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PREFACE 

FRANCIS BACON 

J hold l]Jery man a debtor 
to his profession, 
from the which as men of course 
doe seeke to receive countenance and profit, 
so ought they of du~ to endeavour 
themselves by W'!)' of amends, 
to be a kelp and 
ornament thereunto. 



PREFACE TO THE FIRST EDITION 

E,·ery aspect of this book was influenced by the desire to present calculus not 
merely as a prelude to but as the first real encounter with mathematics. Since 
the foundations of analysis provided the arena in which modern modes of math­
ematical thinking developed, calculus ought to be the place in which to expect 
rather than avoid, the strengthening of insight with logic. In addition to devel­
oping the students' intuition about the beautiful concepts of analysis, it is surely 
equally important to persuade them that precision and rigor are neither deterrents 
to intuition, nor ends in themselves, but the natural medium in which to formulate 
and think about mathematical questions. 

This goal implies a view of mathematics which, in a sense, the entire book 
attempts to defend. No matter how well particular topics may be developed, the 
goals of this book will be realized only if it succeeds as a whole. For this reason, it 
would be of little value merely to list the topics covered, or to mention pedagogical 
practices and other innovations. Even the cursory glance customarily bestowed on 
new calculus texts will probably tell more than any such extended advertisement, 
and teachers ,vith strong feelings about particular aspects of calculus will know just 
where to look to sec if this book fulfills their requirements. 

A few features do require explicit comment, howe,·er. Of the twenty-nine chap­
ters in the book, two (starred) chapters are optional, and the three chapters com­
prising Part V have been included only for the benefit of those students who might 
want to examine on their own a construction of the real numbers. l\loreover, the 
appendices to Chapters 3 and 11 also contain optional material. 

The order of the remaining chapters is intentionally quite inflexible, since the 
purpose of the book is to present calculus as the evolution of one idea, not as a 
collection of "topics." Since the most exciting concepts of calculus do not appear 
until Part III, it should be pointed out that Parts I and II will probably require 
less time than their length suggests~ although the entire book covers a one-year 
course, the chapters are not meant to be covered at any uniform rate. A rather 
natural dividing point does occur between Parts II and III, so it is possible to 
reach differentiation and integration even more quickly by treating Part II ,-cry 
briefly, perhaps returning later for a more detailed treatment. This arrangement 
corresponds to the traditional organization of most calculus courses, but I feel 
that it will only diminish the value of the book for students who ha,·e seen a 
small amount of calculus pn'viousl); and for bright students with a reasonable 
backgTound. 

The problems have been desig11cd with this particular audience in mind. They 
range from straightforward, but not m·erly simple, exercises which develop basic 
techniques and test understanding of concepts, to probkms of considerable diffi­
culty and, I hope, of comparable interest. 'There are about 625 problems in all. 
Those which emphasize manipulations usually contain many examples, m1ml1ercd 
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v111 Preface 

with small Roman numerals, while small letters are used to label interrelated parts 
in other problems. Some indication of relative difficulty is provided by a system of 
starring and double starring, but there are so many criteria for judging difficulty, 
and so many hints have been provided, especially for harder problems, that this 
guide is not completely reliable. l\Iany problems are so difficult, especially if the 
hints are not consulted, that the best of students will probably have to attempt only 
those which especially interest them; from the less difficult problems it should be 
easy to select a portion which will keep a good class busy, but not frustrated. The 
answer section contains solutions to about half the examples from an assortment 
of problems that should provided a good test of technical competence. A separate 
answer book contains the solutions of the other parts of these problems, and of all 
the other problems as well. Finally, there is a Suggested Reading list, to which the 
problems often refer, and a glossary of symbols. 

I am grateful for the opportunity to mention the many people to whom I owe my 
thanks. Jane Bjorkgren performed prodigious feats of typing that compensated for 
my fitful production of the manuscript. Richard Serkey helped collect the material 
which provides historical sidelights in the problems, and Richard \Veiss supplied 
the answers appearing in the back of the book. I am especially grateful to my 
friends Michael Freeman, Jay Goldman, Anthony Phillips, and Robert Wells for 
the care with which they read, and the relentlessness with which they criticized, a 
preliminary version of the book. Needles to say, they are not responsible for the 
deficiencies which remain, especially since I sometimes rejected suggestions which 
would have made the book appear suitable for a larger group of students. I must 
express my admiration for the editors and staff of \VA. Beruamin, Inc., who were 
always eager to increase the appeal of the book, while recognizing the audience 
for which it was intended. 

The inadequacies which preliminary editions always involve were gallantly en­
dured by a rugged group of freshmen in the honors mathematics course at Brandeis 
University during the academic year 1965- 1966. About half of this course was 
devoted to algebra and topology, while the other half covered calculus, with the 
preliminary edition as the text. It is almost obligatory in such circumstances to 
report that the preliminary version was a gratifying success. This is always safe­
after all, the class is unlikely to rise up in a body and protest publicly- but the 
students themselves, it seems to me, deserve the right to assign credit for the thor­
oughness with which they absorbed an impressive amount of mathematics. I am 
content to hope that some other students will be able to use the book to such good 
purpose, and with such enthusiasm. 

i I "altham, 1\ lassarlwsetts 
February I 9G7 

MICHAEL SPIVAK 



PREFACE TO THE SECOND EDITION 

I have often been told that the title of this book should really be something like ''An 
Introduction to Analysis,'' because the book is usually used in courses where the 
students have already learned the mechanical aspects of calculus~ such courses are 
standard in Europe, and they arc becoming more common in the United States. 
After thirteen years it seems too late to change the title, but other changes, in 
addition to the correction of numerous misprints and mistakes, seemed called for. 
There are now separate Appendices for many topics that were previously slighted: 
polar coordinates, uniform continuity, parameterized curves, Riemann swns, and 
the use of integrals for evaluating lengths, volumes and surface areas. A few topics, 
like manipulations with power series, have been discussed more thoroughly in the 
text, and there arc also more problems on these topics, while other topics, like 
Newton's method and the trapezoid rule and Simpson's rule, have been developed 
in the problems. There arc in all about 160 new problems, many of which are 
intermediate in difficulty between the few routine problems at the beginning of 
each chapter and the more difficult ones that occur later. 

l\Iost of the new problems are the work of Ted Shifrin. Frederick Gordon 
pointed out several serious mistakes in the original problems, and supplied some 
non-trivial corrections, as well as the neat proof of Theorem 12-2, which took 
t\vo Lemmas and t\vo pages in the first editjon. Joseph Lipman also told me 
of this proof, together with the similar trick for the proof of the last theorem in 
the Appendi."X to Chapter 11, which went unproved in the first edition. Roy 0. 
Davies told me the trick for Problem 11-66, which previously was proved only in 
Problem 20-8 (21-8 in the third edition], and Marina Ratner suggested several 
interesting problems, especially ones on uniform continuity and infinite series. To 
all these people go my thanks, and the hope that in the process of fashioning the 
new edition their contributions weren't too badly botched. 

MICHAEL SPIVAK 
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PREFACE TO THE THIRD EDITION 

The most significant change in this third edition is the inclusion of a new (starred) 
Chapter 17 on planetary motion, in which calculus is employed for a substantial 
physics problem. 

In preparation for this, the old Appendi.x to Chapter 4 has been replaced by 
three Appendices: the first two cover vectors and conic sections, while polar coor­
dinates arc nmv deferred until the third J\ppendi.x, which also discusses the polar 
coordinate equations of the conic sections. l\Iorem·er, the Appendix to Chapter I 2 
has been extended to treat vector operations on ,·ector-valued curves. 

Another large change is merely a rearrangement of old material: "The Cos­
mopolitan Integral," previously a second 1\ppendi.x to Chapter 13, is now an 
Appendi.x to the chapter on "Integration in Elementary Terms" (previously Chap­
ter 18, now Chapter 19); moreover, those problems from that chapter which used 
the material from that Appcndi.x now appear as problems in the newly placed 
Appendi.x. 

A few other changes and renumbering of Problems result from corrections, and 
elimination of incorrect problems. 

I was both startled and somewhat dismayed when I realized that after allow­
ing I 3 years to elapse between the first and second editions of the book, I have 
allowed another 14 years to elapse before this third edition. During this time I 
seem to have accumulated a not-so-short list of corrections, but no longer have 
the original communications, and therefore cannot properly thank the various in­
dividuals involved (who by now ha,·e probably lost interest anyway). I h,ffe had 
time to make only a few changes to the Suggested Reading, which after all these 
years probably requires a complete revision; this will have to wait until the next 
edition, which I hope to make in a more timely fashion. 

MICHAEL SPIVAK 

x 



PREFACE TO THE FOURTH EDITION 

Promises, promises! In the preface to the third edition I noted that it was 13 years 
between the first and second editions, and then another 14 years before the third, 
expressing the hope that the next edition would appear sooner. \Vell, here it is 
another I 4 years later before the fourth, and presumably final, edition. 

Although small changes have been made to some material, especially in Chap­
ters 5 and 20, this edition differs mainly in the introduction of additional problems, 
a complete update of the Suggested Reading, and the correction of numerous er­
rors. These haw' been brought to my attention over the years by, among others, 
Nils \'On Barth; Philip Loewen; Fernando l\Iejias; Lance Miller, who provided a 
long list, particularly for the answer book; and Michael Maltenfort, who provided 
an amazingly extensi\·e list of misprints, errors, and criticisms. 

l\Iost of all, however, I am indebted to my friend Ted Shifrin, who has been 
using the book for the text in his renowned course at the University of Georgia 
for all these years, and who prodded and helped me to finally make this needed 
revision. I must also thank the students in his course this last academic year, \vho 
served as guinea pigs for the new edition, resulting, in particular, in the current 
proof in Problem 8-20 for the Rising Sun Lemma, far simpler than Reisz's original 
proof, or e\·en the proof in [38] of the Suggested Reading, which itself has now 
been updated considerably, again with great help from Ted. 

MICHAEL SPIVAK 
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To be conscious that 
you are ignorant is a great step 
to knowledge. 

BENJAMIN DISRAELI 



CHAPTER I BASIC PROPERTIES OF NUMBERS 

The title of this chapter expresses in a few words the mathematical knowledge 
required to read this book. In fact, this short chapter is simply an explanation of 
what is meant by the "basic properties of numbers," all of which- addition and 
multiplication, subtraction and division, solutions of equations and inequalities, 
factoring and other algebraic manipulations- are already familiar to us. Never­
theless, this chapter is not a review. Despite the familiarity of the subject, the 
survey we are about to undertake will probably seem quite novel; it does not aim 
to present an extended review of old material, but to condense this knowledge 
into a few simple and obvious properties of numbers. Some may even seem too 
obvious to mention, but a surprising number of diverse and important facts turn 
out to be consequences of the ones we shall emphasize. 

Of the twelve properties which we shall study in this chapter, the first nine are 
concerned with the fundamental operations of addition and multiplication. For 
the moment we consider only addition: this operation is performed on a pair 
of numbers- the sum a + b exists for any two given numbers a and b (which 
may possibly be the same number, of course). It might seem reasonable to regard 
addition as an operation which can be performed on several numbers at once, and 
consider the sum a1 + · · · + an of n numbers a1, ... , an as a basic concept. It is 
more convenient, however, to consider addition of pairs of numbers only, and to 
define other sums in terms of sums of this type. For the sum of three numbers 
a, b, and c, this may be done in two different ways. One can first add b and c, 
obtaining b + c, and then add a to this number, obtaining a+ (b + c); or one can 
first add a and b, and then add the sum a + b to c, obtaining (a+ b) + c. Of 
course, the two compound sums obtained are equal, and this fact is the very first 
property we shall list: 

(Pl ) If a, b, and care any numbers, then 

a+ (b + c) = (a+ b) + c. 

The statement of this property clearly renders a separate concept of the sum of 
three numbers superfluous; we simply agree that a + b + c denotes the number 
a+ (b+c) = (a +b) +c. Addition of four numbers requires similar, though slightly 
more involved, considerations. The symbol a + b + c + d is defined to mean 

(1) ((a+b)+c)+d, 
or (2) (a+(b+c))+d, 
or (3) a+ ((b + c) + d), 
or (4) a+(b+(c+d)), 
or (5) (a +b) + (c+ d). 

3 



4 Prologue 

This definition is unambiguous since these numbers arc all equal. Fortunately, this 
fact need not be listed separately, since it follows from the property Pl already 
listed. For example, we know from Pl that 

(a+ b) + c =a+ (b + c), 

and it follows immediately that (I ) and (2) are equal. The equality of (2) and (3) 
is a direct consequence of P 1, although this may not be apparent at first sight 
(one must let b + c play the role of b in Pl, and d the role of c). The equalities 
(3) = (4) = (5) are also simple to prove. 

It is probably obvious that an appeal to Pl will also suffice to prove the equality 
of the I 4 possible ways of summing five numbers, but it may not be so clear how we 
can reasonably arrange a proof that this is so without actually listing these 14 sums. 
Such a procedure is feasible, but would soon cease to be if we considered collections 
of six, seven, or more numbers; it would be totally inadequate to prove the equality 
of all possible sums of an arbitrary finite collection of numbers a1, ... , a 11 • This 
fact may be taken for granted, but for those who would like to worry about the 
proof (and it is worth worrying about once) a reasonable approach is outlined in 
Problem 24. Henceforth, we shall usually make a tacit appeal to the results of this 
problem and write sums a1 + · · · + a 11 with a blithe disregard for the arrangement 
of parentheses. 

The number O has one property so important that we list it next: 

(P2) If a is any number, then 

a+O=O+a=a. 

An important role is also played by O in the third property of our list: 

(P3) For every number a, there is a number -a such that 

a+ (-a)= (-a)+ a = 0. 

Property P2 ought to represent a distinguishing characteristic of the number 0, 
and it is comforting to note that we are already in a position to prove this. Indeed, 

if a number x satisfies 

a+x=a 

for any one number a, then x = 0 (and consequently this equation also holds for all 
numbers a). The proof of this assertion involves nothing more than subtracting a 

from both sides of the equation, in other words, adding -a to both sides; as the 
following detailed proof shows, all three properties P 1 P3 must be used to justify 
this operation. 

If a+x=a, 
then (- a)+ (a+ x) = (- a)+ a = O; 
hence ((- a) +a) +x = O; 
hence O + x = O; 
hence x = 0. 
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As we ha\'e just hinted, it is convenient to regard subtraction as an operation 
derived from addition: we consider a - b to be an abbreviation for a + ( -b). It 
is then possible to find the solution of certain simple equations by a series of steps 
(each justified by Pl, P2, or P3) similar to the ones just presented for the equation 
a + x = a. For example: 

If x + 3 = 5, 
then (x + 3) + (-3) = 5 + (-3); 

hence x + (3 + (-3)) = 5 - 3 = 2; 

hence x + 0 = 2; 
hence x = 2. 

Naturally, such elaborate solutions are of interest only until you become convinced 
that they can always be supplied. In practice, it is usually just a waste of time to 
soh-e an equation by indicating so explicitly the reliance on properties P 1, P2, and 
P3 ( or any of the further properties we shall list). 

Only one other property of addition remains to be listed. \Vhen considering the 
sums of three numbers a, b, and c, only two sums were mentioned: (a + b) + c 

and a+ (b + c). Actually, several other arrangements are obtained if the order of 
a, b, and c is changed. That these sums arc all equal depends on 

(P4) If a and b are any numbers, then 

a+b=b+a. 

The statement of P4 is meant to emphasize that although the operation of ad­
dition of pairs of numbers might conceivably depend on the order of the lli'O 

numbers, in fact it does not. It is helpful to remember that not all operations are 
so well behaved. For example, subtraction does not ha\'e this property: usually 
a - b =j:. b - a. In passing we might ask just when a - b does equal b - a, and it 
is amusing to discover how powerless we are if we rely only on properties P 1 ~P4 
to justify our manipulations. Algebra of the most elementary variety shows that 
a - b = b - a only when a = b. Nevertheless, it is impossible to derive this fact 
from properties P 1- P4; it is instructive to examine the elementary algebra care­
fully and determine which step(s) cannot be justified by Pl P4. \ Ve will indeed 
be able to justify all steps in detail when a few more properties are listed. Oddly 
enough, however, the crucial property im·olves multiplication. 

The basic properties of multiplication are fortunately so similar to those for ad­
dition that little comment will be needed; both the meaning and the consequences 
should be clear. (As in elementary algebra, the product of a and b will be denoted 
by a · b, or simply ab. ) 

(P5) If a, b, and c are any numbers, then 

a · (b · c) = (a · h) · c. 

(P6) If a is any number, then 

a·l=l·a=a. 



6 Prologue 

l\ lore over, 1 =f=. 0. 

(The assertion that l =f=. 0 may seem a strange fact to list, but we have to 
list it, because there is no way it could possibly be proved on the basis of the 
other properties listed- these properties would all hold if there were only one 
number, namely, 0.) 

(P7) For every number a =f=. 0, there is a number a - 1 such that 

a· a - 1 = a - 1 • a = I. 

(PS) If a and b are any numbers, then 

a·b=b·a. 

One detail which deserves emphasis is the appearance of the condition a =f=. 0 
in P7. This condition is quite necessary; since O·b = 0 for all numbers b, there is no 
number 0 - 1 satisfying O · 0 - 1 = 1. This restriction has an important consequence 
for division. Just as subtraction was defined in terms of addition, so division is 
defined in terms of multiplication: The symbol a /b means a · b- 1. Since 0- 1 is 
meaningless, a /0 is also meaningless- division by O is always undefined. 

Property P7 has two important consequences. If a · b = a · c, it does not 
necessarily follow that b = c; for if a = 0, then both a· band a· care 0, no matter 
what b and c are. However, if a =f=. 0, then b = c; this can be deduced from P7 as 
follows: 

If 

then 

hence 
hence 
hence 

a · b = a · c and a =f=. 0. 
a - 1 · (a ·b) = a - 1 · (a ·c); 

(a - 1 · a) · b = (a - 1 · a) · c; 

1 · b = l · c; 

b = c. 

It is also a consequence of P7 that if a· b = 0, then either a = 0 orb = 0. In fact, 

if a · b = 0 and a =f=. 0, 

then a - I· (a ·h) = 0: 

hence (a - 1 ·a)·b=0: 

hence I ·b = 0: 
hence b = 0. 

(It may happen that a = 0 and b = 0 arc both true; this possibility is not excluded 
l " . I O b O" . h . " " . I I . l w 1e11 we say cit 1cr a = or = ; m mat ematics or 1s a ways uscc 111 t 1e 

sense of "one or the othe1~ or both.") 
This latter consequence of P7 is constantly used in the solution of equations. 

Suppose, for cx,11nplc, that a number x is known to satisf)' 

(x - I) (x - 2) = 0. 

Then it follows that either x - I = 0 or x - 2 = 0: hence .r = I or x = 2. 
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On the basis of the eight properties listed so far it is still possible to prove very 
little. Listing the next property, which combines the operations of addition and 
multiplication, will alter this situation drastically. 

(P9) If a, b, and care any numbers, then 

a· (b+c) = a ·h+a ·c. 

(Notice that the equation (b + c) · a = b · a + c · a is also true, by PS.) 

As an example of the usefulness of P9 we will now determine just when a - b = 
b-a: 

If 
then 
hence 
hence 
Consequently 
and therefore 

a-b=b-a, 
(a - b) + b = (b - a)+ b = b + (b - a); 

a= b +b- a; 
a+ a= (b + b - a)+ a= b + b. 

a · (1 + I) = b · (1 + I). 
a= b. 

A second use of P9 is the justification of the assertion a · 0 = 0 which we ha,·e 
already made, and even used in a proof on page 6 (can you find where?). This 
fact was not listed as one of the basic properties, even though no proof was offered 
\Vhcn it was first mentioned. \ \rith P 1 PS alone a proof was not possible, since the 
number O appears only in P2 and P3, which concern addition, while the assertion 
in question involves multiplication. With P9 the proof is simple, though perhaps 
not obvious: \Ve have 

a · 0 + a · 0 = a · (0 + 0) 
= a ·O: 

as we have already noted, this immediately implies (by adding -(a · 0) to both 
sides) that a · 0 = 0. 

A series of further consequences of P9 may help explain the somewhat myste­
rious rule that the product of two negative numbers is positive. To begin with, 
we will establish the more easily acceptable assertion that (-a) · b = - (a · b). To 
prove this, note that 

(-a) · b + a · b = [(-a) +a] · b 

= 0-b 
= 0. 

It follows immediately (by adding -(a· b) to both sides) that (-a)· b = - (a· b). 
Now note that 

(-a)· (-b) +[-(a· b)J =(-a)· ( - b) +(-a)· b 
=(-a)· [(-b) + b] 

=(-a)· 0 
= 0. 
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Consequently, adding (a · b) to both sides, we obtain 

(-a)· (-b) =a· b. 

The fact that the product of two negative numbers is positive is thus a consequence 
of P 1 ~ P9. In other words, if we want P 1 to P9 to be true, tlze rule for tlze product ef two 
negative numbers is forced upon us. 

The various consequences of P9 examined so far, although interesting and im­
portant, do not really indicate the significance of P9; after all, we could have listed 
each of these properties separately. Actually, P9 is the justification for almost all 
algebraic manipulations. For example, although we have shown how to solve the 
equation 

(x - l)(x - 2) = 0, 

we can hardly expect to be presented with an equation in this form. \\Te are more 
likely to be confronted with the equation 

x 2 
- 3x + 2 = 0. 

The "factorization" x 2 - 3x + 2 = (x - I )(x - 2) is really a triple use of P9: 

(x - 1) · (x - 2) = x · (x - 2) + (-1) · (x - 2) 
= x · x + x · (-2) + (-1) · x + ( -1) · (-2) 

= x 2 +x[(-2) + (-1)] + 2 
') 

= x- - 3x + 2. 

A final illustration of the importance of P9 is the fact that this property is actually 
used every time one multiplies arabic numerals. For example, the calculation 

13 
x24 

52 
26 

312 

is a concise arrangement for the following equations: 

13 · 24 = 13 · (2 · IO + 4) 
= 13-2-10+ 13-4 
= 26 ·IO+ 52. 

(Note that moving 26 to the left in the above calculation is the same as writing 
26 · 10.) The multiplication 13 · 4 = 52 uses P9 also: 

13-4=(1·10+3)·4 
= 1·10·4+3 ·4 
=4· 10+12 
=4·10+ 1·10+2 
=(4+ 1)-10 +2 
= 5-10+2 
= 52. 
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The properties Pl - P9 have descriptive names which are not essential to remem­
ber, but which are often convenient for reference. \Ve will take this opportunity to 
list properties Pl - P9 together and indicate the names by which they are commonly 
designated. 

(Pl ) (Associative law for addition) a+ (b + c) =(a+ b) + c. 

(P2) (Existence of an additive a+O=O+a=a. 
identity) 

(P3) (Existence of additive inverses) a + (-a) = (-a) + a = 0. 

(P4) (Commutative law for addition) a+b=b+a. 

(PS) (Associative law for multiplica- a · (b · c) = (a · b) · c. 
tion) 

(P6) (Existence of a multiplicative a· I = I ·a= a; 1 # 0. 
identity) 

(P7) (Existence of multiplicative a-a - 1 =a - 1 ·a=1 
' for a# 0. 

inverses) 

(PS) (Commutative law for multi- a·b=b·a. 
plication) 

(P9) (Distributive law) a · (b + c) = a · b + a · c. 

The three basic properties of numbers which remain to be listed are concerned 
with inequalities. Although inequalities occur rarely in elementary mathematics, 
they play a prominent role in calculus. The two notions of inequality, a < b 
(a is less than b) and a > b (a is greater than b), are intimately related: a < b 
means the same as b > a (thus I < 3 and 3 > l are merely two ways of writing 
the same assertion). The numbers a satisfying a > 0 are called positive, while 
those numbers a satisfying a < 0 are called negative. \ Vhile positivity can thus 
be defined in terms of <, it is possible to reverse the procedure: a < b can be 
defined to mean that b - a is positive. In fact, it is convenient to consider the 
collection of all positive numbers, denoted by P, as the basic concept, and state 
all properties in terms of P: 

(Pl 0) (Trichotomy law) For every number a, one and only one of the 
following holds: 

(i) a = 0, 
(ii) a is in the collection P, 

(iii) -a is in the collection P. 

(PI 1) (Closure under addition) If a and b arc in P, then a + b is in P. 

(P 12) (Closure under multiplication) If a and b arc in P, then a · b is 
in P. 
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These three properties should be complemented with the following definitions: 

a>b if a - bis in P; 

a< b if b > a; 
{l ::::: b if a > b or a = b; 

a 2:: b if a< b ora =b.* 

Note, in particular, that a > 0 if and only if a is in P. 

All the familiar facts about inequalities, however elementary they may seem, arc 
consequences of PIO- Pl 2. For example, if a and b arc any two numbers, then 
precisely one of the following holds: 

(i) a - b = 0, 
(ii) a - b is in the collection P, 

(iii) - ( a - b) = b - a is in the collection P. 

Using the definitions just made, it follows that precisely one of the following holds: 

(i) a = b, 

(ii) a > b, 
(iii) b > a. 

A slightly more interesting fact results from the following manipulations. If 
a < b, so that b - a is in P, then surely (b + c) - (a+ c) is in P; thus, if a < b, 

then a+ c < b + c. Similarly, suppose a <band b < c. Then 

b - a is in P, 

and c - bis in P, 

so c-a=(c-b)+(b-a)isinP. 

This shows that if a < b and b < c, then a < c. (The two inequalities a < b and 
b < c are usually written in the abb1-eviated form a < b < c, which has the third 
inequality a < c almost built in.) 

The following assertion is somewhat less obvious: If a < 0 and b < 0, then 
ab > 0. The only difficulty presented by the proof is the unraveling of definitions. 
The symbol a < 0 means, by definition, 0 > a, which means O - a = -a is in P. 
Similarly -b is in P, and consequently, by Pl 2, (-a )(-b) = ab is in P. Thus 
ab> 0. 

The fact that ab > 0 if a > 0, b > 0 and also if a < 0, b < 0 has one 
special consequence: a 2 > 0 if a =/:- 0. Thus squares of nonzero numbers arc 
always positive, and in particular we have proved a result which might have seemed 
sufficiently elementary to be included in our list of properties: I > 0 (since I = 12). 

* There is one slightly perplexing fr,ature of the symbols 2:: and .::::: . The statement s 

1 + I .::::: 3 
I+ I .::::: 2 

arc both true, c,·cn though ,,·c know that .::::: could be rcplacccl by < in the first , and by = in tlH' 
second. This srnt of thing is bound to o,nir when .::::: is used \\'ith spec ific m11nhcrs; th<' usefulness 
of the symbol is IT\'<'alcd by a statement like Theorem I -here equality holds for some , ·alucs of a 
and h, while in<'quality holds for other values. 
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The fact that -a > 0 if a < 0 is the basis of a concept which will play an 
extremely important role in this book. For any number a, we define the absolute 
value la I of a as follows: 

a 2: 0 
a ::: 0. 

Note that la I is always positive, except when a = 0. For example, we have I - 31 = 
3, 171 = 7, 11 + J2- v'31 = 1 + J2- J3. and 11 + J2- Jio1 = Jlo- J2- l. 
In general, the most straightforward approach to any problem involving absolute 
values requires treating several cases separately, since absolute values are defined 
by cases to begin ,-vith. This approach may be used to prove the following very 
important fact about absolute values. 

For all numbers a and b, we have 

la+ bl::: lal + lbl. 

\ \'e will consider 4 cases: 

(]) a 2: 0, b 2: O; 
(2) a 2: 0, b ~ O; 
(3) a~ 0, b 2: O; 
(4) a~ 0. b ~ 0. 

In case ( 1) we also have a + b 2: 0, and the ~hrnrem is obvious; in fact, 

la + b I = a + b = la I + lb I, 

so that in this case equality holds. 
In case (4) we have a + b ::: 0, and again equality holds: 

la+ bl= -(a+ b) =-a+ (-b) = lal + lbl. 

In case (2), when a 2: 0 and b ~ 0, we must pro,·e that 

la+ bl ~ a - b. 

This case may therefore be divided into two subcases. If a + b 2::: 0. then we must 
prove that 

a+ b ~ a - b, 
1.e., b ~ -b, 

which is certainly true since b < 0 and hrnce -b 2: 0. On the other hand. if 
a + b ::: 0, we must pro,·c that 

-a - b ::: a - b, 

1.c.. -a ~ a. 

which is certainly true since a 2: 0 and hence -a ::: 0. 
Finally, note that case (3) may be disposed of with no additional \\·ork, by apply­

ing case (2) with a and b interchanged. I 
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Although this method of treating absolute values (separate consideration of var­
ious cases) is sometimes the only approach available, there are often simpler meth­
ods which may be used. In fact, it is possible to give a much shorter proof of 
Theorem 1; this proof is motivated by the observation that 

la I = J;i.. 
(Here, and throughout the book, vx denotes the positive square root of x; this 
symbol is defined only when x ~ 0.) \Ve may now observe that 

(la+ bl)2 = (a+ b)2 = a2 + 2ab + b2 

:::: a2 + 21al · lhl + b2 

= lal 2 + 21al · lbl + lbl 2 

= (lal + lbl) 2
. 

From this we can conclude that la+ bl :::; lal + lbl because x 2 < y2 implies x < y, 
provided that x and y are both nonnegative; a proof of this fact is left to the reader 
(Problem 5). 

One final observation may be made about the theorem we have just proved: a 
close examination of either proof offered shows that 

la + bl = la I + lbl 

if a and b have the same sign (i.e., are both positive or both negative), or if one of 
the two is 0, while 

la + bl < la I + lbl 

if a and b arc of opposite signs. 
\Ve will conclude this chapter with a subtle point, neglected until now, whose 

inclusion is required in a conscientious survey of the properties of numbers. After 
stating property P9, we proved that a - b = b - a implies a = b. The proof began 
by establishing that 

a·(l +l)=b·(l +l), 

from which we concluded that a = b. This result is obtained from the equation 
a · ( 1 + l) = b · ( l + l) by dividing both sides by l + 1. Division by O should 
be avoided scrupulously, and it must therefore be admitted that the validity of the 
argument depends on knowing that I+ l =f. 0. Problem 25 is designed to convince 
you that this fact cannot possibly be proved from properties PI P9 alone! Once 
PIO, Pl l, and P12 are available, however, the proof is very simple: \\re have 
already seen that I > O; it follows that I + I > 0, and in particular l + I =f. 0. 

This last demonstration has perhaps only strengthened your feeling that it is 
absurd to bother proving such obvious facts, but an honest assessment of our 
present -situation will help justify serious consideration of such details. ln this 
chapter we have assunwd that m11nbcrs arc familiar objects, and that Pl P 12 arc 
merely explicit statements of obvious, well-known properties or numbers. It would 
be difficult , howcvc1; to justify this assumption. Although one learns how to "work 
with" m11nbcrs in school, just what numbers are, remains rather vague. A great 
deal of' this book is clcvotccl to elucidating the concept or numbers, and by the end 
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of the book we will have become quite well acquainted with them. But it will be 
necessary to work with numbers throughout the book. It is therefore reasonable 
to admit frankly that v,re do not yet thoroughly understand numbers; we may still 
say that, in whatever way numbers are finally defined, they should certainly have 
properties P 1- P 12. 

lVIost of this chapter has been an attempt to present convincing evidence that 
P 1 P 12 are indeed basic properties which we should assume in order to deduce 
other familiar properties of numbers. Some of the problems (which indicate the 
derivation of other facts about numbers from P 1- P 12) are offered as further evi­
dence. It is still a crucial question whether Pl - Pl2 actually account for all prop­
erties of numbers. As a matter of fact, we shall soon see that they do not. In the 
next chapter the deficiencies of properties P 1- P 12 will become quite clear, but 
the proper means for correcting these deficiencies is not so easily discovered. The 
crucial additional basic property of numbers which we are seeking is profound and 
subtle, quite unlike P 1 P 12. The discovery of this crucial property will require all 
the work of Part I I of this book. In the remainder of Part I we will begin to see 
why some additional property is required; in order to investigate this we will have 
to consider a little more carefully what we mean by "numbers." 

PROBLEl\IS 

1. Prove the following: 

(i) If ax = a for some number a # 0, then x = I. 
(ii) x 2 - y 2 = (x - y)(x + y). 

(iii) If x 2 = y 2, then x = y or x = -y. 

(iv) x 3 - y 3 = (x - y)(x 2 + xy + y 2). 

(v) xn _ y n = (x _ y)(xn - 1 + xn - 2y + ... + xyn - 2 + / 1- l). 

(vi) x 3 + y 3 = (x + y )(x2 - xy + y 2). (There is a particularly easy way to 
do this, using (iv), and it will show you how to find a factorization for 
x 11 + y 11 whenever 11 is odd.) 

2. \ 'Vhat is wrong with the following "proof"? Let x = y. Then 

x 2 = xy. 

x2 - y2 = xy - )'2, 

(x + y)(x - y) = y(x - y), 

x + y = y, 
2y = y, 

2 = I. 

3. Prove the following: 

(i) 

(ii) 

a ae . 
- = - ' 1f b' e -=!= 0. 
b be 

a e ad+ be . - + - = , tf b, d -=!= 0. 
b d bd 



14 Prologue 

(iii) (ab)- 1 = a- 1b- 1, if a, b -/= 0. (To do this you must remember the 
defining property of (ab) - 1.) 

(iv) 
a e ae . 
- . - = - if b d ...J_ 0. 
b d db' ' 1 

(v) a I e ad . - - = -, if b, e, d -/= 0. 
b d be 

(vi) If b , d -/= 0, then ~ = ~ if and only if ad = be. Also determine when 

a b 
-
b a 

4. Find all numbers x for which 

(i) 4 - x < 3 - 2x. 
(ii) 5 - x 2 < 8. 
(iii) 5 - x 2 < -2. 
(iv) (x - l)(x - 3) > 0. (When i a product of two numbers positive?) 
(v) x 2 - 2x + 2 > 0. 
(vi) x 2 + x + 1 > 2. 
(vii) x 2 - x + 10 > 16. 
(viii) x 2 + x + 1 > 0. 
(ix) (x - n)(x + 5)(x - 3) > 0. 

(x) (x - ,v12)(x - .J2) > 0. 
(xi) 2x < 8. 
(xii) x + 3x < 4. 

( "') 1 1 O Xlll - + -- > . 
x 1 -x 
x - 1 

(xiv) -- > 0. 
x+l 

5. Prove the following: 

(i) If a < b and e < d , then a + e < b + d. 

(ii) If a < b, then -b < -a. 
(iii) If a < b and e > d , then a - e < b - d. 

(iv) If a < b and e > 0, then ae < be. 
(v) If a < b and e < 0, th n ae > be. 
(vi) If a > 1, then a2 > a. 
(vii) If O < a < 1, then a2 < a. 
(viii) If O ::::: a < band O ::::: e < d , th nae < bd. 
(ix) If O ::::: a < b, th n a2 < b2

. (U (viii).) 
(x) If a, b 2'.: 0 and a2 < b2 th n a < b. (U (ix), ba kward .) 

6. (a) Prov that if O ::::: x < y th n x" < y'i, n = 1 2, 3, .... 
(b) Prov that if x < y and n i dd, th n xn < y". 
( ) Prov that if xn = yn nd n i dd th n x = y. 

(d) Prov that if xn = y 11 and n i or x = -y. 
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7. Prove that if O < a < b, then 

r-;- a+b 
a < v ab < -

2
- < b. 

Notice that the inequality ~:::; (a+ b)/2 holds for all a, b::::. 0. A gener­
alization of this fact occurs in Problem 2-22. 

*8. Although the basic properties of inequalities were stated in terms of the col­
lection P of all positive numbers, and < was defined in terms of P, this 
procedure can be reversed. Suppose that Pl0- P12 are replaced by 

(P'lO) For any numbers a and bone, and only one, of the 
following holds: 

(i) a = b, 
(ii) a < b, 
(iii) b < a. 

(P' 11 ) For any numbers a, b, and c, if a < b and b < c, then 
a< c. 

(P' 12) For any numbers a, b, and c, if a < b, then 
a+ c < b + c. 

(P' I 3) For any numbers a, b, and c, if a <band O < c, then 
ac < be. 

Show that Pl O- P12 can then be deduced as theorems. 

9. Express each of the following with at least one less pair of absolute value 
signs. 

(i) 1J2 + J3 - Js + J71. 
(ii) l(la + bl - lal - lhl)I. 
(iii) l(la +bl+ lcl - la+ b + cl)I. 
(iv) lx 2 - 2xy + y 2 1. 
(v) l(lh + J31 - 1Js - fil)I. 

10. Express each of the following without absolute value signs, treating various 
cases separately when necessary. 

(i) la + bl - lbl. 
(ii) I (Ix I - 1) I. 
(iii) Ix I - lx 2 1. 
(iv) a - l(a - lal)I. 

11. Find all numbers x for which 

(i) Ix - 31 = 8. 
(ii) Ix - 31 < 8. 
(iii) Ix + 41 < 2. 
(iv) Ix - 11 + Ix - 21 > I. 
(v) Ix - I I + Ix + 11 < 2. 
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(vi) Ix - l I + Ix + l I < I . 
(vii) Ix - 11 · Ix + 11 = 0. 
(viii) Ix - 11 · Ix + 21 = 3. 

12. Prove the following: 

(i) 

(ii) 

(iii) 

(iv) 
(v) 

(vi) 
(vii) 

lxyl = lxl · I.vi. 

I

~ I = -
1 

, if x -=f. 0. (The best way to do this is to remember what 
x lxl 

lxl - 1 is.) 

lxl - Ix I 'f O ---,1y-=f.. 
IYI y 

Ix - y I :S Ix I + IY I. (Give a very short proof.) 
Ix I - I y I :S Ix - y I. (A very short proof is possible, if you write things in 
the right way.) 
l(lxl - lyl)I :S Ix - yj. (\Vhy does this follow immediately from (v)?) 
Ix + y + z I :S Ix I + I y I + I z I. Indicate when equality holds, and prove 
your statement. 

13. The maximum of two numbers x and y is denoted by max(x. y). Thus 
max(- l, 3) = max(3, 3) = 3 and max(-1. -4) = rnax(-4. -1) = -1. 
The minimum of x and y is denoted by min (x, y). Prove that 

x+y+ly-xl 
max(x,y)= 

2 
. 

. x+y-ly-xl 
mm(x. y) = 

2 
. 

Derive a formula for max(x, y, z) and min(x, y, z), using, for example 

max(x, y. z) = max(x, max(y, z)). 

14. (a) Prove that lal = I-al. (The trick is not to become confused by too many 
cases. First prove the statement for a ::::: 0. \\1hy is it then obvious for 
a :s O?) 

(b) Prove that -b :::: a :::: b if and only if lal :::: b. In particular, it follows 

that -lal :Sa :S lal. 
(c) Use this fact to give a new proof that la+ bl :S la I + lbl. 

*15. Prove that if x and y are not both 0 , then 

x 2 + xy + y2 > 0, 

x4 +x 3y +x 2y2 +xy3 + y4 > 0. 

Hint: Use Problem 1. 

*16. (a) Show that 

(x + y)2 = x 2 + y 2 only when x = 0 or y = 0 , 

(x + y) 3 = x 3 + y3 only when x = 0 or y = 0 or x = - y . 
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18. 
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(b) Using the fact that 

x 2 + 2xy + y2 = (x + y)2 ~ 0, 

show that 4x2 + 6xy + 4y2 > 0 unless x and y are both 0. 

(c) Use part (b) to find out when (x + y) 4 = x 4 + _y4. 
(d) Find out when (x + y )5 = x 5 + y5. Hint: From the assumption (x + y )5 = 

x 5 + y 5 you should be able to derive the equation x 3 +2x 2y + 2xy2+ y 3 = 
0, if xy =f. 0. This implies that (x + y) 3 = x 2y + xy2 = xy(x + y). 

You should now be able to make a good guess as to when (x + y)'1 = x 11 + y\ 
the proof is contained in Problem 11-63. 

(a) Find the smallest possible value of 2x 2 - 3x + 4. Hint: "Complete the 
square," i. e., write 2x2 - 3x + 4 = 2(x - 3/4)2 +? 

(b) Find the smallest possible value of x 2 - 3x + 2y2 + 4y + 2. 

(c) Find the smallest possible value of x 2 + 4xy + 5y2 - 4x - 6y + 7. 

? . 
(a) Suppose that b- - 4c ~ 0. Show that the numbers 

-b + /b2 - 4c 

2 

-b - /b 2 -4c 

2 

both satisfy the equation x 2 +bx+ c = 0. 

(b) Suppose that b2 - 4c < 0. Show that there are no numbers x satisfying 
x 2 + bx + c = O; in fact, x 2 + bx + c. > 0 for all x. Hint: Complete the 
square. 

(c) Use this fact to give another proof that if x and y are not both 0 , then 
') ? 0 x- +xy + y- > . 

(cl) For which numbers a is it true that x 2 + axy + y 2 > 0 whenever x and 
y arc not both O? 

(e) Find the smallest possible value of x 2 +bx+ c and of ax 2 +bx+ c, for 
a> 0. 

19. The fact that a 2 ~ 0 for all numbers a, elementary as it may seem, is 
nevertheless the fundamental idea upon which most important inequali­
ties are ultimately based. The great-granddaddy of all inequalities is the 
Schwarz inequality: 

(A more general form occurs in Problem 2-21.) The three proofs of the 
Schwarz inequality outlined belmv have only one thing in common~ their 
reliance on the fact that a 2 ~ 0 for all a. 

(a) Prove that if x1 = A)'I and x2 = A)'2 for some number A ~ 0, then 
equality holds in the Schwarz inequality. Prove the same thing if YI = 
Y2 = 0. Now suppose that YI and Y2 arc not both 0, and that there is no 
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number)... such that x1 = AYJ and x2 = AY2· Then 

0 < ().y1 - x1) 2 + ().y2 - x2) 2 

=)... 
2(yi2 + y2 2) - 2).(x1y1 + X2)'2) + (xi2 + x/). 

Using Problem 18, complete the proof of the Schwarz inequality. 
(b) Prove the Schwarz inequality by using 2xy:::: x 2+y2 (how is this derived?) 

with 
X; Yi 

X= , 

Jx1 2 + x22 
v = --;::::=== 
· Jy2+v2' I . 2 

first for i = l and then for i = 2. 
(c) Prove the Schwarz inequality by first proving that 

(x/ + x})(y/ + y}) = (x1y1 + x2y2) 2 + (x1y2 - x2y1)2. 

(d J Deduce, from each of these three proofs, that equality holds only when 
YI = Y2 = 0 or when there is a number )... :::: 0 such that XJ = AYJ and 

x2 = AY2· 

In our later work, three facts about inequalities will be crucial. Although proofs 
will be supplied at the appropriate point in the text, a personal assault on these 
problems is infinitely more enlightening than a perusal of a completely worked-out 
proof The statements of these propositions involve some weird numbers, but their 
basic message is very simple: if x is close enough to xo, and y is close enough to Yo, 

then x + y will be close to xo + Yo, and xy will be close to xoyo, and l / y will be close 
to 1/_vo. The symbol "c" which appears in these propositions is the fifth letter of the 
Greek alphabet (''epsilon"), and could just as well be replaced by a less intimidating 
Roman letter; however, tradition has made the use of c almost sacrosanct in the 
contexts to which these theorems apply. 

20. Prove that if 

then 

*21. Prove that if 

c 
Ix -xol < 2 and 

c 
Iv - vol < -. . 2' 

l(x+y)-(xo+Yo)I <£, 

I (x - y) - (xo - Yo) I < c. 

c 
Ix - xo I < min ( c , I) 

2(1Yol + l) 
and l.v - Yol < 2(1.:rol + l)' 

then lxy - xoyol < c. 

(The notation "min" was defined in Problem 13, but the formula provided by 
that problem is irrelevant at the moment; the first inequality in the h)l)Othesis 
just means that 

c 
Ix - .xol < l(lyol + l) and Ix - xol < l; 
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at one point in the argument you will need the first inequality, and at an­
other point you will need the second. One more word of advice: since the 
hypotheses only provide information about x - xo and y - Yo, it is almost a 
foregone conclusion that the proof will depend upon writing x y - xoyo in a 
way that involves x - xo and y - yo.) 

*22. Prove that if Yo #- 0 and 

then y #- 0 and 

. ( IYol t:1Yol
2

) IY - Yol < mm 2 , -
2
- , 

l~-~1<£. 
Y Yo 

*23. Replace the question marks in the following statement by expressions involv­
ing t:, xo, and Yo so that the conclusion will be true: 

If Yo#- 0 and 

IY - Yol < ? and Ix - xol < ? 

then y #- 0 and 

I~ -::I<£. 
This problem is trivial in the sense that it~ solution follows from Problems 21 
and 22 with almost no work at all (notice that x / y = x · 1 / y ). The crucial 
point is not to become confused; decide which of the two problems should 
be used first, and don't panic if your answer looks unlikely. 

*24. This problem shows that the actual placement of parentheses in a sum is 
irrelevant. The proofs involve "mathematical induction''; if you are not fa­
miliar with such proofs, but still want to tackle this problem, it can be saved 
until after Chapter 2, where proofs by induction are explained. 

Let us agree, for definiteness, that a 1 + · · · + a 11 will denote 

a1 + (a2 + (a3 + · · · + (a11-2 + (a11 - I + a11))) · · · ). 

Thus a1 + a2 + a3 denotes a1 + (a2 + a3), and a1 + a2 + a3 + a4 denotes 
cq + (a2 + (a3 + a4)), etc. 

(a) Pro,·e that 

Hint: Use induction on k. 
(b) Prove that if n :::::. k, then 

(a1 + · · · + ak) + (ak+I +···+an)= a1 + · · · + Cl11, 

Hint: Use part (a) to give a proof by induction ou k. 
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(c) Let s(a1 , ... , ak) be some sum formed from a1, ... , ak. Show that 

s(a1 , . . . , ak) = a1 + · · · + ak. 

Hint: There must be two sums s' (a 1, . . . , a1) and s" (a1+ 1, ... , ak) such 
that 

s (a1 , .. . , ak) = s'(a1 , .. . , a,)+ s"(a1+ 1, ... , ak). 

25. Suppose that we interpret "number" to mean either O or 1, and + and · to 
be the op erations defined by the following two tables. 

+ 

0 

1 

0 1 

1°111 
111°1 

0 1 

0 

1 

Check that properties Pl- P9 all hold, even though 1 + 1 = 0. 



CHAPTER NUMBERS OF VARIOUS SORTS 

In Chapter l we used the word ''number" very loosely, despite our concern with 
the basic properties of numbers. It wi]] now be necessary to distinguish carefu]]y 
various kinds of numbers. 

The simplest numbers are the "counting numbers" 

L 2, 3, .... 

The fundamental significance of this collection of numbers is emphasized by its 
symbol N (for natural numbers). A brief glance at Pl -Pl 2 will show that our 
basic properties of "numbers" do not apply to N ~ for example, P2 and P3 do not 
make sense for N. From this point of view the system N has many deficiencies. 
Nevertheless, N is sufficiently important to deserve several comments before we 
consider larger collections of numbers. 

The most basic property of N is the principle of "mathematical induction." 
Suppose P(x) means that the property P holds for the number x. Then the prin­
ciple of mathematical induction states that P(x) is true for all natural numbers x 

providt'd that 

(1) P(l) is true. 

(2) \\7henever P(k) is true, P(k + 1) is true. 

Note that condition (2) merely asserts the truth of P(k+ 1) under the assumption 
that P(k) is true; this suffices to ensure the truth of P(x) for all x, if condition 
(1) also holds. In fact, if P(l) is true, then it foHows that P(2) is true (by using 
(2) in the special case k = I). Nmv, since P(2) is true it follows that P(3) is true 
(using (2) in the special case k = 2). It is clear that each number will eventually be 
reached by a series of steps of this sort, so that P (k) is true for all numbers k. 

A favorite illustration of the reasoning behind mathematical induction envisions 
an infinite line of people, 

person number 1, person number 2, person number 3, .... 

If each person has been instructed to teH any secret he hears to the person behind 
him (the one with the next largest number) and a secret is told to person number l, 
then clearly every person will eventually learn the secret. If P(x) is the assertion 
that person number x will learn the secret, then the instructions given (to tell aH 
secrets learned to the next person) assures that condition (2) is true, and telling 
the secret to person number I makes ( l ) true. The following example is a less 
facetious use of mathematical induction. There is a useful and striking formula 
which expresses the sum of the first 11 numbers in a simple way: 

21 
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1 + ... + 11 = 11 (11 + 1) 
2 . 

To prove this formula , note first that it is dearly true for 11 = 1. Now assume that 
for some natural number k we have 

Then 

I + ... + k = k(k + l) 
2 . 

k(k + 1) 
1 + · · · + k + (k + l) = 

2 
+ k + 1 

k(k + 1) + 2k + 2 

2 
k2 + 3k + 2 

2 
(k + 1 )(k + 2) 

2 

so the formula is also true for k + 1. By the principle of induction this proves 
the formula for all natural numbers 11. This particular example illustrates a phe­
nomenon that frequently occurs, especially in connection with formulas like the 
one just proved. Although the proof by induction is often quite straightforward, 
the method by which the formula was discovered remains a mystery. Problems 5 
and 6 indicate how some formulas of this type may be derived. 

The principle of mathematical induction may be formulated in an equivalent 
way without speaking of "properties'' of a number, a term which is sufficiently 
vague to be eschewed in a mathematical discussion. A more precise formulation 
states that if A is any collection (or ''set"- a synonymous mathematical term) of 
natural numbers and 

( 1) 1 is in A, 

(2) k + 1 is in A whenever k is in A, 

then A is the set of all natural numbers. It should be dear that this formulation 
adequately replaces the less formal one given previously- we just consider the 
set A of natural numbers x which satisfy P(x ). For example, suppose A is the set 
of natural numbers 11 for which it is true that 

11 (11 + I) 
l+···+n = 

2 
. 

Our previous proof or this formula shmved that A contains I, and that k + l is 
in A, if k is. It follows that A is the set 0L1ll n,Jtural numbers, i.e. , that the formub 
holds for all natural numbers 11. 

There is yet another rigorous formulation of the principle of n1athe111atical in­
duction, which looks quite diflcrcnt. If A is any collection or natural numbers, it 
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is tempting to say that A must have a smallest member. Actually, this statement 
can fail to be true in a rather subtle way. A particularly important set of natural 
numbers is the collection A that contains no natural numbers at all, the "empty 
collection" or "null set,"* denoted by 0. The null set 0 is a collection of natural 
numbers that has no smallest member- in fact, it has no members at all. This 
is the only possible exception, however; if A is a nonnull set of natural numbers, 
then A has a least member. This "intuitively obvious" statement, known as the 
'\vell-ordering principle,'' can be proved from the principle of induction as follows. 
Suppose that the set A has no least member. Let B be the set of natural numbers 
n such that l, ... , n arc all not in A. Clearly 1 is in B (because if 1 were in A, then 
A would ha,·e I as smallest member). Moreover, if 1, .... k are not in A, surely 
k + 1 is not in A (otherwise k + 1 would be the smallest member of A), so 1, ... , 
k + 1 are all not in A. This shows that if k is in B, then k + 1 is in B. It follows 
that every number n is in B , i.e. , the numbers 1, ... , n are not in A for any natural 
number n. Thus A = 0, which completes the proo( 

It is also possible to prove the principle of induction from the well-ordering 
principle (Problem 10). Either principle may be considered as a basic assumption 
about the natural numbers. 

There is still another form of induction which should be mentioned. It some­
times happens that in order to prove P(k + 1) we must assume not only P(k), but 
also P(l) for all natural numbers l :::: k. In this case we rely on the "principle of 
complete induction": If A is a set of natural numbers and 

(I) 1 is in A, 

(2) k + 1 is in A if I , ... , k are in A, 

then A is the set of all natural numbers. 

Although the principle of complete induction may appear much stronger than 
the ordinary principle of induction, it is actually a consequence of that principle. 
The proof of this fact is left to the reader, with a hint (Problem 11 ). Applications 
will be found in Problems 7, 17, 20 and 22. 

Closely related to proofs by induction are "recursive definitions." For example, 
the number n ! (read "n factorial'' ) is defined as the product of all the natural 
numbers less than or equal ton: 

n ! = 1 · 2 · ... · (n - 1) · n . 

This can be expressed more precisely as follows: 

(1) 1!=1 

(2) n!=n·(n-1)!. 

This form of the definition exhibits the relationship bet,veen n ! and (n - 1) ! in an 

* Although it may not strike you as a collection, in the ordinary senst:' of the word, the null set arises 
quite naturally in many contexts. \ Ve frequently consider the set A, consisting of all x satisfying some 
property P; often we have no guarantee that P is satisfied by arry number, so that A might be 0 in 
fact often one proves that P is always false by showing that A = 0. 
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explicit way that is ideally suited for proofs by induction. Problem 23 reviews a 
definition already familiar to you, which may be expressed more succinctly as a re­
cursive definition; as this problem shows, the recursive definition is really necessary 
for a rigorous proof of some of the basic properties of the definition. 

One definition which may not be familiar involves some convenient notation 
which we will constantly be using. Instead of writing 

a1 +···+an, 

we will usually employ the Greek letter I: (capital sigma, for ''sum") and write 

11 

i=l 

II 

In other words, Lai denotes the sum of the numbers obtained by letting 
i=I 

i = l, 2, ... , ,z. Thus 

II I "°' n(n + ) 
L..ti=l+2+···+n= 

2 
. 

i=I 

11 

Notice that the letter i really has nothing to do with the number denoted by Li, 

and can be replaced by any convenient symbol (except n, of course!): 

~. _ n(n+ 1) 
L..tl- 2 , 
J=I 

L
. i(i+l) 
]= 

2 
J=I 

j J(}+l) Ln = 2 . 
11=1 

n 

To define Lai precisely really requires a recursin' definition: 
i=I 

(l) Lai=cq, 
i = l 

11 11 - I 

(2) Lai= Lai +an, 
i = l i = l 

i=l 

B11t only pmYcyors of mathematical anstcrity wo11ld insist too strongly on snch 
precision. In practice, all sorts of modifications of' this symbolism arc used, and 
110 one ever considers it necessary to acid any words of explanation. The symbol 
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Lai, 
i=l 
i/4 

for example, is an obvious way of writing 

or more precisely, 
3 II 

Lai+Lai, 
i=l i=5 
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The deficiencies of the natural numbers which we discovered at the beginning 
of this chapter may be partially remedied by extending this system to the set of 
integers 

... , -2, -1 , 0, 1, 2, .... 

This set is denoted by Z (from German "Zahl,'' number). Of properties P 1- Pl 2, 
only P7 fails for Z. 

A still larger system of numbers is obtained by taking quotients m / 11 of integers 
(with 11 # 0). These numbers are called rational numbers, and the set of all 
rational numbers is denoted by Q (for "quotients''). In this system of numbers all 
of P 1 P 12 are true. It is tempting to conclude that the "properties of numbers," 
which we studied in some detail in Chapter l_, refer to just one set of numbers, 
namely, Q. There is, however, a still larger collection of numbers to which proper­
ties P 1- P 12 apply~ the set of all real numbers, denoted by R. The real numbers 
include not only the rational numbers, but other numbers as well (the irrational 

numbers) which can be represented by infinite decimals; Ir and h are both 
examples of irrational numbers. The proof that Ir is irrational is not easy~ we 
shall devote all of Chapter 16 of Part II I to a proof of this fact. The irrationality 

of J2, on the other hand, is quite simple, and was known to the Greeks. (Since the 
Pythagorean theorem shows that an isosceles right triangle, with sides of length 1, 

has a hypotenuse of length h, it is not surprising that the Greeks should have 
investigated this question.) The proof depends on a few observations about the 
natural numbers. Every natural number 11 can be written either in the form 2k 
for some integer k, or else in the form 2k + 1 for some integer k ( this "obvious" 
fact has a simple proof by induction (Problem 8)) . Those natural numbers of the 
form 2k are called even; those of the form 2k + 1 are called odd. Note that even 
numbers have even squares, and odd numbers have odd squares: 

(2k)2 = 4k2 = 2 · (2k2), 

(2k + 1)2 = 4k2 + 4k + l = 2 · (2k2 + 2k) + I. 

In particular it follows that the converse must also hold: if 11 2 is even, then 11 is even; 

if n2 is odd, then n is odd. The proof that J2 is irrational is now quite simple. 

Suppose that h were rational; that is, suppose there were natural numbers p 
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and q such that 

\Ne can assume that p and q have no common divisor (since all common divisors 
could be divided out to begin with). Now we have 

p2 = 2q2. 

This shows that p2 is even, and consequently p must be even; that is, p = 2k for 
some natural number k. Then 

so 

This shows that q 2 is even, and consequently that q is even. Thus both p and q 

are even, contradicting the fact that p and q have no common divisor. This 
contradiction completes the proo[ 

It is important to understand precisely what this proof shows. \Ne have demon­
strated that there is no rational number x such that x 2 = 2. This assertion is often 
expressed more briefly by saying that J2 is irrational. Note, however, that the 

use of the symbol J2 implies the existence of some number (necessarily irrational) 
whose square is 2. \Ve have not proved that such a number exists and we can as­
sert confidently that, at present, a proof is imjJossible for us. Any proof at this stage 
would have to be based on Pl Pl2 (the only properties of R we have mentioned); 
since Pl - Pl2 are also true for Q the exact same argument would show that there 
is a rational number whose square is 2, and this we know is false. (Note that the 
reverse argument will not work- our proof that there is no rational number whose 
square is 2 cannot be used to show that there is no real number whose square is 2, 
because our proof used not only PI P 12 but also a special property of Q, the fact 
that every number in Q can be written p/q for integers p and q.) 

This particular deficiency in our list of properties of the real numbers could, 
of course, be corrected by adding a new property which asserts the existence of 
square roots of positive numbers. Resorting to such a measure is, however, neither 
aesthetically pleasing nor mathematically satisfactory; we would still not know that 
every number has an nth root if n is odd, and that enTy positiw' number has an 
11th root if 11 is c,·cn. Even if \Ve assumed this, ,ve could not prove the existence of 
a number x satisfying x 5 + x + 1 = 0 (c,·cn though there does happen to be one), 
since we do not know how to write the solution of the equation in terms of' nth 
roots (in fact , it is known that the solution cannot be written in this form). And, 
of course, we certainly do not wish to assume that all equations han' solutions, 
since this is falsc (110 rcal m1111bcr x satisfies x 2 + 1 = 0, for example). lu fact, 
this direction of investigation is not a fruitful one. The most uscf'ul hints about the 
property distinguishing R from Q, the most compelling evidence for the necessity 
of elucidating this property, do not come from the study of numbers alone. In 
order to study the properties of the real numl1<'rs in a more profound way, we 
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must study more than the real numbers. At this point we must begin with the 
foundations of calculus, in particular the fundamental concept on which calculus 
is based- functions. 

PROBLEMS 

1. Prove the following formulas by induction. 

(i) 12 + ... + n2 = n(n + l~(2n + 1) . 

(ii) 13 + · · · + n 3 = (1 + · · · + n )2. 

2. Find a formula for 
II 

(i) I: c2i - 1) = 1 + 3 + s + .. . + c2n - 1). 
i=l 

II 

(ii) I: c2i - 1)2 = 12 + 32 + s2 + ... + c2n - 1)2
. 

i=l 

Hint: What do these expressions have to do with 1 + 2 + 3 + · · · + 2n and 
12 + 22 + 32 + · · · + (2n)2? 

3. If O C'S k C'S n , the "binomial coefficient" G) is defined by 

(
n) __ n! __ n(n - 1) · · · (n - k + 1) 

k k!(n - k)! k! ' 
if k # 0, n 

(;) = (:) = I (a special case of the first formula if we define 0 1 = ! ), 

and fork < 0 or k > n we just define the binomial coefficient to be 0. 

(a) Prove that 

(The proof does not require an induction argument.) 

T his relation gives rise to the following configuration, known as "Pas­
cal's triangle' - a number not on one of the sides is the sum of the two 

numbers above it; the binomial coefficient G) i the (k + I) t number 

in th (n + l )st row. 

I 
1 1 

1 2 1 
1 3 3 

4 6 4 1 
1 5 10 10 5 1 
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(b) Notice that all the numbers in Pascal's triangle are natural numbers. Use 

part (a) to prove by induction that G) i always a natural number. (Your 

entire proof by induction will, in a sense, be summed up in a glance by 
Pascal's triangle.) 

(c) Giv another proof that G) is a natural number by showing that 

(nk) is the number of sets of exactly k integer each chosen from 1, 

... ' n. 

(d) Prove the "binomial theorem": If a and b are any numbers and n is a 
natural number, then 

( e) Prove that 

(i) ft) = (~) + · + (:) = 2" 
1=0 

(ii) i)-llt) = (~)- G) + ±(:)=a 
1=0 

(iii) r: c) = G) + G) + ... = 2"-
1 

I odd 

(iv) r: G) = (~) + G) + = 2, - l 
I even 

4. (a) Prove that 

Hint: pply th binomial th or m lo ( l + x )11 
( J + x )'17. 

(b) Prov that 
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5. (a) Prove by induction on n that 

1 _ , n+ l 
1 + r + , 2 + ... + ,n = ---

1 - r 

if r -=f. 1 (if r = 1, evaluating the sum certainly presents no problem). 
(b) Derive this result by setting S = 1 + r + · · · + rn , multiplying this equation 

by r , and solving the two equations for S. 

6. The formula for 12 + · · · + n2 may be derived as follows. We begin with the 
formula 

(k + 1)3 - k3 = 3k2 + 3k + 1. 

Writing this formula for k = 1, . . . , n and adding, we obtain 

23 
- 13 = 3 · 12 + 3 · 1 + 1 

33 - 23 = 3 · 22 + 3 · 2 + 1 

(n + 1)3 
- n 3 = 3 · n 2 + 3 · n + 1 

(n +l)3-l =3[1 2 + ··· +n2].+3[l+ ·· ·+n]+n. 

n n 

Thus we can find L k2 if we already know L k (which could have been 
k= l k= l 

found in a similar way). Use this method to find 

(i) 
(ii) 

(iii) 

(iv) 

13+·· · +n3. 
14+ .. · +n4. 

1 1 1 
-+-+· · ·+ . 
1 · 2 2 · 3 n (n + 1) 

3 5 2n + 1 
--+--+· ·· +----
l2 · 22 22 · 32 n2 (n + 1) 2 · 

n 

*7. U e the m thod of Problem 6 to how that L kP can alway be writt n in 

the form 
i= l 

n P+ I 
-- + An P + Bn p- l + Cn P- 2 + . .. . 
p+l 

(Th fir t 10 u h xpr sion are 
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11 

Lk = 1112 + ln 2 
k=I 
n 

Lk2=in3 + lll2 
2 + ln 6 

k=I 
11 

Lk3 = ill4 + ln3 
2 + in2 

k=I 
11 

Lk4 = ins + ln4 + ln3 I 
2 3 - 30ll 

k=I 
II 

Lks=in6 + lll5 5 4 I 2 
2 + Tiil - Tiil 

k=I 
n 

Lk6 = 4ll1 + lll6 + 1115 - 1113 I 
2 6 + 42 ll 

k=I 
11 

Lk1=lll8 + lll 7 
2 

+ l_ll6 _ 1_ 11 4 + _1_ 11 2 
12 24 12 

k=I 
11 

Lk8=!119 + 1n8 + 'l:_ll7 7 5 2 3 I 
3 - 15IZ + 911 - 30ll 

k=I 
n 

L k9 = /on 10 + !ll9 + ills - ?on6 + 1n4 - ioll2 

k=I 
11 

"\'"""' klO _ _1_ 11 11 + llllO + 2.,z9 _ 117 7 + 111 5 _ 1 11 3 + 
6
s
6

,z. L - 11 2 6 2 
k=I 

Notice that the coefficients in the second column are always 1, and that after 
the third column the powers of ll with nonzero coefficients decrease by 2 until 
ll 2 or ll is reached. The coefficients in all but the first n-vo columns seem to 
be rather haphazard, but there actually is some sort of pattern; finding it may 
be regarded as a super-perspicacity test. See Problem 27-17 for the complete 
story.) 

8. Prove that every natural number is either even or odd. 

9. Prove that if a set A of natural numbers contains llO and contains k + I 
whene\·cr it contains k, then A contains all natural numbers ::: no. 

10. Prove the principle of mathcnratical induction from the well-ordering prin­
ciple. 

11. Prove the principle of complete induction from the ordinary principle of 
induction. Hint: If A contains I and A contains ll + I whcnc\'Cr it contains 
1, ... , ll , consider the set B of all k such that I .... , k arc all in A. 

12. (a) If a is rational and b is irrational, is a + b necessarily irrational? \\'hat 
if a a11cl b arc both irrational? 
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(b) If a is rational and b is irrational, is ab necessarily irrational? (Careful!) 
(c) Is there a number a such that a2 is irrational, but a4 is rational? 
(d) Are there two irrational numbers whose sum and product are both ra­

tional? 

13. (a) Prove that J3, Js, and J6 are irrational. Hint: To treat J3, for exam­
ple, use the fact that every integer is of the form 3n or 311 + 1 or 3n + 2. 

Why doesn't this proof work for J4? 
(b) Prove that V2 and V3" are irrational. 

14. Prove that 

(a) J2 + J6 is irrational. 

(b) Ji.+ J3 is irrational. 

15. (a) Prove that if .r = p + Jq where p and q are rational, and III is a natural 
number, then xm = a + bJq for some rational a and b. 

(b) Prove also that (p - Jq t 1 = a - bJq. 

16. (a) Prove that if III and 11 are natural numbers and 111
2 / 11

2 < 2, then 
(m + 211 )2 / (111 + 11 )

2 > 2; show, moreover, that 

(111 + 211)2 
111

2 
------,---- - 2 < 2 - -. 
(m + ,z)2 n2 

(b) Prove the same results with all inequality signs reversed. 

(c) Prove that if 111/n < Ji., then there. is another rational number 111
1
/11' 

with m/n < 111' /11' < Ji.. 

*17. It seems likely that ./ii is irrational whenever the natural number n is not 
the square of another natural number. Although the method of Problem 13 
may actually be used to treat any particular case, it is not dear in advance 
that it will always work, and a proof for the general case requires some extra 
information. A natural number p is called a prime number if it is impos­
sible to write p = ab for natural numbers a and b unless one of these is p, 

and the other 1; for convenience we also agree that 1 is not a prime number. 
The first few prime numbers arc 2, 3, 5, 7, 1 L 13, 17, 19. If n > 1 is not a 
prime, then 11 = ab, \Vith a and b both< 11; if either a orb is not a prime it 
can be factored similarly; continuing in this way proves that we can write 11 
as a product of primes. for example, 28 = 4 · 7 = 2 · 2 · 7. 

(a) Turn this argument into a rigorous proof by complete induction. (To 
be sure, any reasonable mathematician would accept the informal argu­
ment, but this is partly because it would be obvious to her how to state 
it rigorously.) 

A fundamental theorem about integers, which we will not prm·e here, states 
that this factorization is unique, except for the order of the factors. Thus, 
for example, 28 can ne,-cr be written as a product of primes one of which 
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is 3, nor can it be written in a way that involves 2 only once (now you should 
appreciate why l is not allowed as a prime). 

(b) Using this fact, prove that Jn is irrational unless n = 111 2 for some natural 
number Ill. 

(c) Prove more generally that !/ii is irrational unless n = mk. 

(d) No discussion of prime numbers should fail to allude to Euclid's beautiful 
proof that there arc infinitely many of them. Prove that there cannot be 
only finitely many prime numbers Pl, P2, p3, ... , p 11 by considering 
Pl · P2 · ... · Pn + 1. 

*18. (a) Prove that if x satisfies 

n + . n- 1 + + Q X an - IX · · · ao = , 

for some integers an- I, ... , ao, then x is irrational unless x is an integer. 
(\iVhy is this a generalization of Problem 17?) 

(b) Prove that ,J6 - J2 - J3 is irrational. 

(c) Prove that J2 + V2 is irrational. Hint: Start by working out the first 6 
powers of this number. 

19. Prove Bernoulli's inequality: If h > -1, then 

(1 +lz) 11 ~ l +nlz 

for any natural number 11. Why is this trivial if h > O? 

20. The Fibonacci sequence a 1, a2, a3, . . . is defined as follows: 

a1 = 1, 
a2 = l, 
a11 =an-I+ an - 2 for n ~ 3. 

This sequence, which begins 1, 1, 2, 3, 5, 8, ... , was discovered by Fibonacci 
(circa 1175- 1250), in connection with a problem about rabbits. Fibonacci 
assumed that an initial pair of rabbits gave birth to one new pair of rabbits 
per month, and that after two months each new pair behaved similarly. The 
number a 11 of pairs born in the nth month is an - I + a 11 _2, because a pair of 
rabbits is born for each pair born the previous month, and moreover each 
pair born two months ago now gives birth to another pair. The number of 
interesting results about this sequence is truly amazing- there is even a Fi­
bonacci Association which publishes a journal, The Fibonacci ()Jwrterry. Prove 
that 

One way of deriving this astonishing formula is presented in Problem 24-16. 
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21. The Schwarz inequality (Problem 1-19) actually has a more general form: 

Give three proofs of this, analogous to the three proofs in Problem 1-19. 

22. The result in Problem 1-7 has an important generalization: If a I, ... , a11 ::::: 0, 
then the "arithmetic mean" 

and "geometric mean" 

satisfy 

a1 +···+an 
A11=-----

11 

G 11 = z!a1 ... a11 

(a) Suppose that a1 < A 11 . Then some a; satisfies a; > A 11 ; for convenience, 
say a2 > A 11 . Let a.1 = A 11 and let a.2 = a1 + a2 - a.1. Show that 

Why does repeating this process enough times eventually prove that G 11 .::::: 
A 11 ? (This is another place where it is a good exercise to provide a formal 
proof by induction, as well as an info'rmal reason.) \Vhen does equality 
hold in the formula G 11 .:::: A 11 ? 

The reasoning in this proof is related to another interesting proo( 

(b) Using the fact that G 11 .::::: A 11 when 11 = 2, prove, by induction on k , that 
G 11 _:::: A 11 for 11 = 2k. 

(c) For a general n, let 2111 > 11. Apply part (b) to the 2111 numbers 

a1, ... ,a11 , A 11 , •••• A 11 
'-,.--' 

2111 -11 times 

to prove that G 11 .:::: An. 

23. The following is a recursive definition of a": 

al= a, 

an+l=an·a. 

Prove, by induction, that 

an+m =all. am, 

(an)m = a'"n. 

(Don't try to be fancy: use either induction on 11 or induction on m , not both 
at once.) 



34 Prologue 

2 

3 

I I(; l RI. I 

24. Suppose we know properties P 1 and P4 for the natural numbers, but that 
multiplication has never been m entioned. Then the following can be used 
as a recursive definition of multiplication: 

1 · b = b , 
(a+ 1) · b =a· b + b. 

Prove the fo llowing (in the order suggested!): 

a · (b + c) = a · b + a · c (use induction on a), 
a · 1 = a, 
a · b = b · a (you just finished proving the case b = 1 ). 

25. In this chapter we began with the natural numbers and gradually built up to 
the real numbers. A completely rigorous discussion of this process requires 
a little book in itself (see Part V) . N o one has ever figured out how to get to 
the real numbers without going through this process, but if we do accept the 
real numbers as given , then the natural numbers can be defined as the real 
numbers of the form 1, 1 + 1, 1 + 1 + 1, etc. The whole point of this problem 
is to show that there is a rigorous mathematical way of saying "etc." 

(a) A set A of real numbers is called inductive if 

( 1) 1 is in A , 

(2) k + 1 is in A whenever k is in A. 

Prove that 

(i) R is inductive. 

(ii) T he set of positive real numbers is inductive. 

(iii) T he set of positive real numbers unequal to ! is inductive. 

(iv) T he set of positive real numbers unequal to 5 is not inductive. 

(v) If A and B are inductive, then the set C of real numbers which 
are in both A and B is also inductive. 

(b) A real number 11 will be called a natural number if 11 is in every inductive 
set. 

(i) Prove that I is a natural number. 

(ii) Prove that k + 1 is a natural number if k is a natural number. 

26. T here is a puzzle consisting of three spindles, with 11 concentric rings of 
decreasing diameter stacked on the fi rst (Figure I). A ring at the top of a 
stack may b<' moved from one spindle to another spindle, prm·ided that it 
is not placed on top of a smaller ring. For example, if the smallest ring is 
moved to spindle 2 and the next-smallest ring is m mTd to spindle 3, then 
the smallest ring may be mo\'Ccl to spindle 3 also, on top of the next-small est. 
Prove that the entire stack of II rings can be mm·cd onto spindle 3 in 211 

- I 
moves, and that this cannot be done in fi, wcr than 211 

- I rnm·es. 
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*27. University B. once boasted 17 tenured professors of mathematics. Tradi­
tion prescribed that at their weekly luncheon meeting, faithfully attended by 
all 17, any members who had discovered an error in their published work 
should make an announcement of this fact, and promptly resign. Such an an­
nouncement had neYer actually been made, because no professor was av,rare 
of any errors in her or his work. This is not to say that no errors existed, 
however. In fact, over the years, in the work of every member of the de­
partment at least one error had been found, by some other member of the 
department. This error had been mentioned to all other members of the 
department, but the actual author of the error had been kept ignorant of the 
fact, to forestall any resignations. 

One fateful year, the department was augmented by a visitor from another 
university, one Pro( X, who had come with hopes of being offered a perma­
nent position at the end of the academic yea1~ Naturally, he was apprised, by 
various members of the department, of the published errors which had been 
discovered. \!Vhen the hoped-for appointment failed to materialize, Pro( X 
obtained his revenge at the last luncheon of the year. "I have enjoyed my Yisit 
here very much,'' he said, ''but I feel that there is one thing that I have to tell 
you. At least one of you has published an incorrect result, which has been 
discovered by others in the department." \!Vhat happened the next year? 

**28. After figuring out, or looking up, the answer to Problem 27, consider the fol­
lowing: Each member of the department already knew what Pro( X asserted, 
so how could his saying it change anything? 
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The statement is so frequent[y made 
that the differential calculus deals with 
continuous magnitude) and yet 
an explanation of this continuity is 
nowhere given; 
even the most rigorous expositions 
of the differential calculus do not base 
their proofs upon continuity but) 

with more or less consciousness of the fact) 

they either appeal to geometric notions 
or those suggested by geometry, 
or depend upon theorems which are never 
established in a purely arithmetic manner. 
Among these,for example, 
belongs the above-mentioned theorem, 
and a more careful investigation 
convinced me that this theorem, or 
any one equivalent to it, can be regarded 
in some way as a sufficient basis 
for infinitesimal analysis. 
It then only remained to discover its true 
origin in the elements of arithmetic 
and thus at the same time 
to secure a real definition of 
the essence of continuity. 
I succeeded Nov. 24, 1858_, and 
a few drfYS afterward I communicated 
the results 
of my meditations to my dear friend
Durege with u)honz I had a long 
and live[y discussion. 

RICHARD DEDEKIND 



CHAPTER 

PROVISIONAL DEFINITION 

3 FUNCTIONS 

Undoubtedly the most important concept in all of mathematics is that of a 
function in almost every branch of modern mathematics functions turn out to 
be the central objects of investigation. It will therefore probably not surprise you 
to learn that the concept of a function is one of great generality Perhaps it will 
be a relief to learn that, for the present, we will be able to restrict our attention to 
functions of a very special kind; even this small class of functions will exhibit suffi­
cient variety to engage our attention for quite some time. \ Ve will not e,·en begin 
with a proper definition. For the moment a provisional definition will enable us to 
discuss functions at length, and will illustrate the intuitive notion of functions, as 
understood by mathematicians. Later, we will consider and discuss the ad,·antages 
of the modern mathematical definition. Let us therefore begin with the following: 

A function is a rule which assigns, to each of certain real numbers, some other real 
number. 

The following examples of functions are meant to illustrate and amplify this defi­
nition, which, admittedly, requires some such clarification. 

Er:amjJle 1 The rule which assigns to each number the square of that number. 

Example 2 The rule which assigns to each number y the number 

y 3 + 3y + 5 
y2 + 1 

ExamjJle 3 The rule which assigns to each number c f. l, -1 the number 

c3 + 3c + 5 
c2 - 1 

Example .J- The rule which assigns to each number x satisfying -17 :::: x :::: JT / 3 
the number x 2. 

ExamjJle 5 The rule which assigns to each number a the number O if a is 
irrational, and the number 1 if a is rational. 

Ernmple C The rule which assigns 

39 

to 2 the number 5, 
36 

to 17 the number - , 
7r 
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7r-
to 17 the number 28, 

36 
to - the number 28, 

][ 

and to any y =j:. 2, 17, n 2 / 17, or 36/n, the number 16 if y is of the form a+ bh 
for a, bin Q. 

ExamjJ/e 7 The rule which assig11s to each number t the number t 3 + x. (This 
rule depends, of course, on what the number x is, so we are really describing 
infinitely many diflerent functions, one for each number x .) 

Example 8 The rule which assig11s to each number ~ the number of 7's in the 
decimal expansion of ~, if this number is finite, and -Jr if there are infinitely many 
7's in the decimal expansion of ~-

One thing should be abundantly clear from these examples- a function is any 
rule that assigns numbers to certain other numbers, not just a rule which can 
be expressed by an algebraic formula, or even by one uniform condition which 
applies to every number; nor is it necessarily a rule which you, or anybody else, 
can actually apply in practice (no one knows, for example, what rule 8 associates 
ton). :Moreover, the rule may neglect some numbers and it may not even be clear 
to ·which numbers the function applies (try to determine, for example, whether the 
function in Example 6 applies ton). The set of numbers to which a function does 
apply is called the domain of the function. 

Before saying anything else about functions we badly need some notation. Since 
throughout this book we shall frequently be talking about functions (indeed \\T shall 
hardly ever talk about anything else) we need a convenient way of naming func­
tions, and of referring to functions in general. The standard practice is to denote 
a function by a lettei: For obvious reasons the letter "f" is a favorite, thereby 
making "g" and "h" other obvious candidates, but any letter (or any reasonable 
symbol, for that matter) will do, not excluding "x" and "y '', although these letters 
arc usually reserved for indicating numbers. If f is a function, then the number 
which f associates to a number x is denoted by f (x ) - this symbol is read ''J of 
x " and is often called the value off at x. Naturally, if we denote a function by .r, 
some other letter must be chosen to denote the number (a perfectly legitimate, 
though perverse, choice would be "f ," leading to the symbol x(f)). Note that the 
symbol f (x) makes sense only for x in the domain of f; for other x the symbol 
J (x) is not defined. 

If the functions defined in Examples l 8 are denoted by J, g, h, r, s, 8, ax, 
and y, then we can rewrite their definitions as follows: 

(I) j(x) = x 2 for all x. 

y 3 + 3,· + 5 
g(y) = ') · for all \'. 

r+I 
(2) 

c3 + 3c + 5 
/z ( c) = ,., for all c =j:. l. - I . 

c~ - I 
(3) 
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(4) r(x) = x 2 for all x such that -17:::: x:::: rr/3. 

(5) s(x) = { ~: 
x irrational 
x rational. 

5, x=2 

36 
x = 17 

Jr 

28, 
rr2 

(6) tl(x) = x = 17 

28, 
36 

x=-
Jr 

16, 
rr 2 36 

x #- 2, 17, -, or-, and x =a+ bv2 for a, bin Q. 
17 rr 

(7) ax(f)=t 3 +x 

(8) y(x) = 
1

11, 

-Jr, 

for all numbers t. 

exactly n Ts appear in the decimal expansion of x 
infinitely many 7's appear in the decimal expansion of x . 

These definitions illustrate the common procedure adopted for defining a func­
tion f indicating what f (x) is for every number x in the domain of f. (Notice 
that this is exactly the same as indicating f(a) for every number a, or f(b) for ev­
ery number b, etc.) In practice, certain abbreviations are tolerated. Definition (1) 
could be written simple 

the qualifying phrase "for all x" being understood. Of course, for definition (4) 
the only possible abbreviation is 

(4) r(x) = x 2, -17::::x::::rr/3. 

It is usually understood that a definition such as 

1 1 
k(x)=-+--, xf.0,1 

x x - 1 

can be shortened to 
1 1 

k(x) = -+ --: 
x x - 1 

in other words, unless the domain is explicitly res!Jicted ji1rtlzer, it is understood to consist ef 
all numbers for which the definition makes a'!:Y sense at all. 

You should have little difficulty checking the following assertions about the func­
tions defined above: 

f (x + I)= f (x) + 2x + l; 
g(x) = lz(x) if x 3 + 3x + 5 = O; 

r (x + I) = r (x) + 2x + l if -17 ~ x :::: ; - I; 
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s(x + y) = s(x) if y is rational; 

ax(x) = x · [J(x) + I]; 

v m = o. y m = -,r. 

If the expression f (s (a)) looks unreasonable to you, then you are forgetting that 
s(a) is a number like any other number, so that f(s(a)) makes sense. As a matter 
of fact, f (s(a)) = s(a) for all a. \!Vhy? Even more complicated expressions than 
f (s(a)) are, after a first exposure, no more difficult to unravel. The expression 

f (r(s(8(a3 (y( 1 ))) )) ), 

formidable as it appears, may be evaluated quite easily with a little patience: 

J (r (s (8(a3 (y(i)))))) 
= J (r(s(8(a3(0))))) 

= J (r(s(8(3)))) 

= J (r(s(l6))) 

= J (r(l)) 

= J(l) 
= I. 

The first few problems at the end of this chapter give further practice manipulating 
this symbolism. 

The function defined in ( 1) is a rather special example of an extremely impor­
tant class of functions, the polynomial functions. A function f is a polynomial 
function if there are real numbers ao, ... , a11 such that 

!( ·) .II+ .n-l + + .2 + . + f .X =Cl11 .X Cl 11 _J.X ••• a2.x ap LIO, for all x 

(when f (x) is written in this form it is usually tacitly assumed that a11 =f. 0). The 
highest power of x with a nonzero coefficient is called the degree of f; for 
example, the polynomial function f defined by f (x) = 5x6 + 13 7 x 4 

- n has 
degree 6. 

The functions defined in (2) and (3) belong to a somewhat larger class of func­
tions, the rational functions; these arc the functions of the form p / q " ·here p 

and q are polynomial functions (and q is not the function which is always 0). The 
rational functions arc themselves quite special examples of an even larger class of 
functions, very thoroughly studied in calculus, which are simpler than many of the 
functions first mentioned in this chapter. The following arc examples of this kind 
of function: 

x + x 2 + x sin 2 
x 

(9) J(x) = -----
x sill x + x sin 2 x 

(10) f(x) = si11(x 2). 

( I 1) J(x) = sin(siu(x 2)). 
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(12) 
. ? .. ? • 2? . (x+sin(xsinx)) f (x) = sm-(sm(sm-(x sm x-))) · sm . . 

x + sm x 

By what criterion, you may feel impelled to ask, can such functions, especially a 
monstrosity like (12), be considered simple? The answer is that they can be built 
up from a few simple functions using a few simple means of combining functions. 
In order to construct the functions (9)- (12) we need to start with the ''identity 
function" I, for which I (x) = x, and the ''sine function" sin, whose value sin(x) at 
x is often written simple sin x. The following are some of the important ways in 
which functions may be combined to produce new functions. 

If f and g are any two functions, we can define a new function f + g, called 
the sum of f and g, by the equation 

(f + g)(x) = f (x) + g(x). 

Note that according to the conventions we have adopted, the domain of f + g 
consists of all x for which "f (x) + g(x)" makes sense, i.e., the set of all x in both 
domain f and domain g. If A and B are any two sets, then A n B (read "A 
intersect B" or "the intersection of A and B'' ) denotes the set of x in both A 

and B; this notation allows us to write domain(!+ g) = domain f n domain g. 

In a similar vein, we define the product f · g and the quotient f (or f / g) of 
g 

f and g by 

(f · g)(x) = f (x) · g(x) 

and 

(f) (x) = f (x). 
g g(x) 

l\loreover, if g is a function and c is a numbe1~ we define a new function c · g by 

(c · g)(x) = c · g(x). 

This becomes a special case of the notation f · g if we agree that the symbol c 

should also represent the function f defined by f (x) = c; such a function, which 
has the same value for all numbers x, is called a constant function. 

The domain of f · g is domain f n domain g, and the domain of c · g is simply 
the domain of g. On the other hand, the domain of f / g is rather complicated- it 
may be written domain f n domain g n {x : g(x) # O}, the symbol {x : g(x) # O} 
denoting the set of numbers x such that g(x) # 0. In general, {x : ... } denotes 

the set of all x such that " ... '' is true. Thus {x : x 3 + 3 < 11} denotes the set of 
all numbers x such that x 3 < 8, and consequently {x : x 3 + 3 < I I} = {x : x < 2}. 
Either of these symbols could just as well have been written using y C\Tr)"'·here 
instead of x. Variations of this notation are common, but hardly require any 
discussion. Any one can guess that {x > 0 : x 3 < 8} denotes the set of positive 
numbers whose cube is less than 8; it could be expressed more formally as {.r : 
x > 0 and x 3 < 8}. Incidentally, this set is equal to the set {x : 0 < x < 2}. One 
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variation is slightly less transparent, but very standard. The set { I , 3. 2, 4}, for 
example, contains just the four numbers 1, 2, 3, and 4; it can also be denoted by 
{x : x = I or x = 3 or x = 2 or x = 4}. 

Certain facts about the smn, product, and quotient offunctions are obvious con­
sequences of facts about srnns, products, and quotients of numbns. For example, 
it is very easy to prove that 

(! + g) + h = f + (g + h). 

The proof is characteristic of almost e,·ery proof which demonstrates that two 
functions are equal the two functions must be shown to have the same domain, 
and the same value at any number in the domain. For example, to prove that 
(! + g) + h = f + (g + h), note that unraveling the definition of the two sides gives 

[ (f + g) + h] (x) = (f + g )(x) + h (x) 
= [f (x) + g(x)] + h(x) 

and 

[f + (g + h)] (x) = f (x) + (g + h)(x) 

= f(x) + [g(x) + h(x)]. 

and the equality of [f(x) + g(x)] + h(x) and f(x) + [g(x) + h(x)] is a fact about 
numbers. In this proof the equality of the two domains was not explicitly men­
tioned because this is obvious, as soon as we begin to write down these equations; 
the domain of (f + g) + h and of f + (g + h) is clearly domain f n domain g n 
domain h. \Ve naturally write f + g + h for (! + g) + h = f + (g + h), precisely 
as we did for numbers. 

It is just as easy to prove that (f · g) · h = f · (g · h), and this function is denoted 
by f · g · h. The equations f + g = g + f and f · g = g · f should also present 
no difficulty. 

Using the operations +, ·, I we can now express the function f defined in (9) 
by 

I + I · I + I · sin · sin 
f = . . .. 

I · sm + I · sm · sm 

lt should be clear, howe,·er, that we cannot express function ( 10) this way. \ Ve re­
quire yet another ,vay of combining functions. This combination, the composition 
of t\vo functions, is by far the most important. 

If f and g arc any t\vo functions, ,ve define a new function f o g, the compo­
sition of f and g, by 

(! o g)(x) = f (g(x)); 

the domain off og is {x: x is in domain g and g(x) is in domain .fl The symbol 
"f o g" is often rcacl "f circle g. '' Com parcel to the phrase "the composition of f 
ancl g'' this has the advantage of brevity, of course, but there is another ach·antagc 
of far greater import: there is much less chance of confusing f o g "itl1 g ,, f, aucl 
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these must not be confused, since they are not usually equal; in fact, almost any f 
and g chosen at random will illustrate this point (try f = I · I and g = sin, for 
example). Lest you become too apprehensive about the operation of composition, 
let us hasten to point out that composition is associative: 

(! 0 g) 0 h = J O (g O lz) 

(and the proof is a triviality); this function is denoted by f o g o h. We can now 
write the functions (10), (11), (12) as 

(10) J = sin o (I · /), 

( 11 ) f = sin o sin o ( I · I), 

(12) f =(sin· sin) o sin o (sin· sin) o (/·[(sin · sin) o (I·/)]) · 

. ( I + sin o (I · sin) ) 
Sln o . 

I+ sin 

One fact has probably already become clear. Although this method of writing 
functions reveals their "structure" very clearly, it is hardly short or convenient. The 
shortest name for the function f such that f (x) = sin (x 2) for all x unfortunately 
seems to be "the function f such that f (x) = sin(x 2) for all x ." The need for 
abbreviating this clumsy description has been clear for two hundred years, but no 
reasonable abbreviation has received universal acclaim. At present the strongest 
contender for this honor is something like 

x ---+ sin(x 2) 

(read "x goes to sin(x 2)" or just "x arrow sin(x 2)"), but it is hardly popular among 
writers of calculus textbooks. In this book we will tolerate a certain amount of 
ellipsis, and speak of "the function f(x) = sin(x 2)." Even more popular is the 
quite drastic abbreviation: "the function sin(x 2)." For the sake of precision we 
will never use this description, which, strictly speaking, confuses a number and 
a function, but it is so convenient that you will probably end up adopting it for 
personal use. As with any convention, utility is the motivating factor, and this 
criterion is reasonable so long as the slight logical deficiencies cause no confusion. 
On occasion, confusion will arise unless a more precise description is used. For 
example, "the function x + t 3" is an ambiguous phrase; it could mean either 

x ---+ x + t 3
, i.e., the function f such that f (x) = x + t 3 for all x 

or 

t ---+ x + t 3
, i.e. , the function f such that f (t) = x + t 3 for all t. 

As we shall see, however, for many important concepts associated with functions. 
calculus has a notation which contains the "x---+" built in. 

By now we have made a sufficiently extensive investigation of functions to \Var­
rant reconsidering our definition. \;\le have defined a function as a ''rule," but it is 
hardly clear what this means. If we ask "What happens if you break this rule?" it 
is not easy to say whether this question is merely facetious or actually profound. 
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A more substantial objection to the use of the word "rule" is that 

f (x) = x2 

and 

f (x) = x 2 + 3x + 3 - 3(x + l) 

arc certainly different rules, if by a rule we mean the actual instructions given for 
determining f (x); nevertheless, we want 

f (x) = x2 

and 

f (x) = x 2 + 3x + 3 - c(x + 1) 

to define the same function. For this reason, a function is sometimes defined as an 
"association" between numbers; unfortunately the word ''association" escapes the 
objections raised against "rule'' only because it is even more vague. 

There is, of course, a satisfactory way of defining functions, or we should never 
have gone to the trouble of criticizing our original definition. But a satisfactory 
definition can never be constructed by finding synonyms for English words which 
are troublesome. The definition which mathematicians have finally accepted for 
"function" is a beautiful example of the means by which intuitive ideas have bern 
incorporated into rigorous mathematics. The correct question to ask about a 
function is not ''\Vhat is a rule?" or "vVhat is an association?" but "\Vhat does 
one have to know about a function in order to know all about it?'' The answer to 
the last question is easy~ for each number x one needs to know the number f (x); 

we can imagine a table which would display all the information one could desire 
about the function f (x) = x 2: 

x f(x) 

-1 1 

2 4 
-2 4 

h 2 

-h 2 
'") 

][ 7r-

-][ ][2 

It is not even necessary to arrange the numbers in a table (,,·hich \\'ould actually 
he impossible if ,vc wanted to li st all of' them). Instead of a two column array we 
can consider various pairs of numbers 

(LI) , (-1, 1), (2.4), (- 2.4). (rr.rr 2). (J2,2) .... 
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simply collected together into a set.* To find J(l) we simply take the second 
number of the pair whose first member is 1; to find f (rr) we take the second 
number of the pair whose first member is rr. VVe seem to be saying that a function 
might as well be defined as a collection of pairs of numbers. For example, if we 
were given the following collection (which contains just 5 pairs): 

f = { (L 7), (3, 7), (5, 3), (4, 8), (8, 4)}, 

then f(l) = 7, f(3) = 7, f(5) = 3, f(4) = 8, f(8) = 4 and 1, 3, 4, 5, 8 are the 
only numbers in the domain of f. If we consider the collection 

!={(1,7), (3.7), (2,5), (1,8), (8,4)}, 

then f (3) = 7, f (2) = 5, f (8) = 4; but it is impossible to decide whether f ( 1) = 7 
or f ( 1) = 8. In other words, a function cannot be defined to be any old collection 
of pairs of numbers; we must rule out the possibility which arose in this case. \Ve 
are therefore led to the following definition. 

A function is a collection of pairs of numbers with the following property: if 
(a, b) and (a, c) are both in the collection, then b = c; in other words, the 
collection must not contain two different pairs with the same first clement. 

This is our first full-fledged definition, and illustrates the format we shall always 
use to define significant new concepts. These definitions arc so important (at 
least as important as theorems) that it is essenti"al to know when one is actually 
at hand, and to distinguish them from comments, motivating remarks, and casual 
explanations. They will be preceded by the word DEFINITION, contain the term 
being defined in boldface letters, and constitute a paragraph unto themselves. 

There is one more definition (actually defining two things at once) which can 
now be made rigorously: 

If f is a function, the domain of f is the set of all a for which thert' is some b 
such that (a, b) is in f. If a is in the domain of f, it follows from the definition 
of a function that there is, in fact, a unique number b such that (a, b) is in f . 

This unique b is denoted by f(a). 

\Vith this definition we have reached our goal: the important thing about a 
function f is that a number f (x) is determined for each number x in its domain. 
You may feel that we have also reached the point where an intuitive definition has 
been replaced by an abstraction with which the mind can hardly grapple. T\\·o 
consolations may be offered. First, although a function has been defined as a 

* The pairs occurring her<:' are often called "ordered pairs," to emphasize that, for exam pk, (2. 4 ) is 
not the same pair as (4 , 2). It is only fair to warn that we are going to define functions in terms of 
ordered pairs, another undefined term. Ordered pairs can be defined, hm\·n ·t:'r, and an appendix to 

this chapter has been pro\'ided for skeptics. 
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collection of pairs, there is nothing to stop you from thinking of a function as a 
rule. Second, neither the intuitive nor the formal definition indicates the best way 
of thinking about functions. The best way is to draw pictures; but this requires a 
chapter all by itself 

PROBLEMS 

1. Let f (x) = 1/(1 + x). VVhat is 

2. 

(i) f (j (x)) (for which x does this make sense?). 

(ii) 1 G). 
(iii) f(cx). 

(iv) f (x + y). 

(v) f(x) + f(y). 
(vi) For which numbers c is there a number x such that f (ex) = f (x). 

Hint: There arc a lot more than you might think at first glance. 
(vii) For which numbers c is it true that f (ex) = f (x) for two different 

numbers x? 

Let g(x) = x 2, and let 

h(x) = I ~: 
(i) For which y is /z(y) :::: y? 
(ii) For which y is h (y) :::: g(y )? 
(iii) What is g(h(z)) - h(z)? 
(iv) For which w is g(w) .::; w? 

x rational 
x irrational. 

(v) For which c is g(g(c)) = g(c)? 

3. Find the domain of the functions defined by the following formulas. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

f (x) = J1 - x 2. 

f (x) = j 1 - j 1 - x 2. 

1 1 
f(x) = -- + --. 

x-1 x-2 

f(x)= JI-x 2 +Jx2 -l. 

f(x)=~+~. 

4. Let S (x) = x 2, let P (x) = 2x, and let s (x) = sin x. Find each of the follmving. 
In each case you answer should be a number. 

(i) ( S O P )(y). 

(ii) (S o s)(y). 

(iii) (S o P o s)(t) +(s o P)(t). 

(iv) s (1 3). 

5. Express each of the following functions in terms of S, P, s , using only 
+, ·, and o (for example, the a11s,vcr to (i) is P o s). In each case your 
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answer should be afunction. 

(i) 
(ii) 
(iii) 

(iv) 
(v) 

(vi) 

(vii) 

f (x) = 2sinx. 

f (x) = sin 2x. 
f(x) = sinx 2. 

f(x) = sin2 x (remember that sin2 x is an abbreviation for (sin x)2). 

f (t) = 221 . (Note: abc always means a<b'\ this convention is adopted 
because (aht can be written more simply as ahc.) 

f (u) = sin(2 11 + 211
\ 

, sin y 

f(y) = sin(sin(sin(22- ))). 

(viii) f (a) = 2sin2 a+ sin(a2) + 2sin(a2+sina). 

Polynomial functions , because they are simple, yet flexible, occupy a fa\·ored 
role in most investigations of functions. The following two problems illustrate their 
flexibility, and guide you through a derivation of their most important elementary 
properties. 

6. (a) If x1, ... , Xn are distinct numbers, find a polynomial function f; of 
degree u - l which is I at x; and O at Xj for j -=!=- i. Hint: the product of 
all (x - Xj) for j -=!=- i, is O at Xj if j -=!=- i. (This product is usually denoted 
by 

11 

n(X-Xj), 

j=l 
#i 

the symbol n (capital pi) playing the same role for products that L plays 
for sums.) 

(b) Now find a polynomial function f of degree n - I such that f (x;) = a;, 

where a I , ... , an are given numbers. (You should use the functions 
f; from part (a). The formula you will obtain is called the "Lagrange 
interpolation formula.") 

7. (a) Prove that for any polynomial function f, and any number a, there is a 
polynomial function g, and a number b, such that f(x) = (x -a)g(x)+h 
for all x. (The idea is simply to divide (x - a) into f (x) by long division. 
until a constant remainder is left. For example, the calculation 

') 

+x -2 x-

x - 1)x3 -3x + l 
x3 -x2 

') -3x x-
') x- -x 

-2x + I 
-2x+2 

-l 
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shows that x 3 - 3x + 1 = (x - l)(x 2 + x - 2) - 1. A formal proof is 
possible by induction on the degree of f .) 

(b) Prove that if f(a) = 0, then f(x) = (x - a)g(x) for some polynomial 
function g. (The converse is obvious.) 

(c) Prove that if f is a polynomial function of degree n, then f has at most 
n roots, i. e., there arc at most n numbers a with f(a) = 0. 

(d) Show that for each n there is a polynomial function of degree n with 
n roots. If n is even find a polynomial function of degree n with no 
roots, and if n is odd find one with only one root. 

8. For which numbers a , b, c, and d will the function 

ax +b 
f(x) = --

ex +d 

satisfy f (f (x)) = x for all x (for which this equation makes sense)? 

9. (a) If A is any set of real numbers, define a function CA as follows: 

CA(X) = { 6: x in A 

x not in A. 

Find expressions for CAnB and CAuB and CR- A, in terms of CA and Cs. 
(The symbol A n B was defined in this chapter, but the other two may 
be new to you. They can be defined as follows: 

A U B = {x : x is in A or x is in B}, 

R - A= {x: x is in R but xis not in A}.) 

(b) Suppose f is a function such that f(x) = 0 or 1 for each x. PrmT that 
there is a set A such that f = CA· 

(c) Show that f = J2 if and only if f = CA for some set A. 

10. (a) For which functions f is there a function g such that f = g2 ? Hint: You 
can certainly answer this question if "function" is replaced by ''number.'' 

(b) For which functions f is there a function g such that f = 1 / g? 
*(c) For which functions b and c can we find a function x such that 

(x(t))2 + b(t)x(t) + c(t) = 0 

for all numbers t ? 
*(cl) What conditions must the functions a and b satisfy if there is to be a 

function x such that 

a(t)x(t) + b(t) = 0 

for all numbers t? How mauy such functions x will there be? 

11. (a) Suppose that His a function and y is a numbers11ch that H(H(y)) = y. 

\ Vhat is 

H ( H ( H ( · · · ( H (y) · · · ) ? 

80 times 



(b) Same question if 80 is replaced by 81. 
(c) Same question if H(H(y)) = H(y). 
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*(d) Find a function H such that H (H (x)) = H (x) for all numbers x, and 
such that H(l) = 36, H(2) = TC/3 , H(l3) = 47, H(36) = 36, H(Tr/3) = 
Tr/3, H(47) = 47. (Don't try to "solve" for H(x); there are many func­
tions H with H(H(x)) = H(x). The extra conditions on Hare supposed 
to suggest a way of finding a suitable H .) 

*(e) Find a function H such that H (H (x)) = H (x) for all x, and such that 
H(l) = 7, H(l7) = 18. 

12. A function f is even if f(x) = f(-x) and odd if f(x) = - f(-x). For 
example, f is even if f(x) = x 2 or f(x) = lxl or f(x) = cosx, while f is 
odd if f (x) = x or f (x) = sin x. 

(a) Determine whether f + g is even, odd, or not necessarily either, in the 
four cases obtained by choosing f even or odd, and g even or odd. (Your 
answers can most conveniently be displayed in a 2 x 2 table.) 

(b) Do the same for f · g. 

(c) Do the same for f o g. 

(d) Prove that every even function f can be written f(x) = g(lxl), for in­
finitely many functions g. 

*13. (a) Prove that any function f with domain R can be written f = E + 0, 
where E is even and O is odd. 

(b) Prove that this way of writing f is unique. (If you try to do part (b) first, 
by "solving" for E and O you will probably find the solution to part (a).) 

14. If f is any function, define a new function If I by If l(x) = If (x)I. If f 
and g arc functions, define two new functions, max(!, g) and min(!, g ), by 

max(!, g)(x) = max(f (x), g(x)), 

min(!, g)(x) = min(f (x), g(x)). 

Find an expression for max(!, g) and min(!, g) in terms of I I. 

15. (a) Show that f = max(!, 0) + min(!, 0). This particular way of writing 
f is fairly useful; the functions max(!, 0) and min(!, 0) are called the 
positive and negative parts of f. 

(b) A function f is called nonnegative if f (x) ~ 0 for all x. Prm·e that any 
function f can be written f = g - h, ,,·here g and h are nonnegative, 
in infinitely many ways. (The "standard ,'\·ay'' is g = max(!, 0) and h = 
- min(!, 0). ) Hint: Any number can certainly be written as the difference 
of two nonnegative numbers in infinitely many ways. 

*16. Suppose f satisfies f (x + y) = f (x) + f (y) for all x and y. 

(a) Prove that f (x1 + · · · + X11) = f (x1) + · · · + f (x11). 
(b) Prove that there is some number c such that f (x) = ex for all rational 

numbers x (at this point we're not trying to say anything about f (x) for 
irrational x ). Hint: First figure out what c must be. Xow pro,T that 
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f (x) = ex, first when x is a natural number, then when x is an integc1~ 
then when x is the reciprocal of an integer and, finally, for all rational x. 

*17. If f(x) = 0 for all x, then f satisfies f (x + y) = f (x) + f (y) for all x and y, 
and also f (x · y) = f (x) · f (y) for all x and y. Now suppose that f satisfies 
these two properties, but that f (x) is not always 0. Prove that f (x) = x for 
all x, as follows: 

(a) Prove that f (1) = 1. 
(b) Prove that f (x) = x if x is rational. 
(c) Prove that f (x) > 0 if x > 0. (This part is tricky, but if you have 

been paying attention to the philosophical remarks accompanying the 
problems in the last two chapters, you will know what to do.) 

(d) Prove that f (x) > f(y) if x > y. 
(e) Prove that f(x) = x for all x. Hint: Use the fact that between any two 

numbers there is a rational number. 

*18. Precisely what conditions must f, g, Ii, and k satisfy in order that f (x)g(y) = 
h(x)k(y) for all x and y? 

*19. (a) Prove that there do not exist functions f and g with either of the follm'l'ing 
properties: 

(i) f(x) + g(y) = xy for all x and y. 
(ii) f (x) · g(y) = x + y for all x and y. 

Hint: Try to get some information about f or g by choosing particular 
values of x and y. 

(b) Find functions f and g such that f (x + y) = g (x y) for all x and y. 

*20. (a) Find a function f, other than a constant function, such that If (y) -

f(x)I::::: IY - xi. 
(b) Suppose that f(y) - f (x) ::::: (y - x) 2 for all x and y. ('\rhy does this 

imply that If (y) - f (x) I ::::: (y - x ) 2 ?) Prove that f is a constant function. 
Hint: Divide the interval from x to y into II equal pieces. 

21. Prove or give a counterexample for each of the following assertions: 

(a) f o (g + Ii) = f o g + f o Ii. 
(b) (g + Ii) 0 f = g Of+ fi Of. 

1 1 
(c) -- = - o g. 

f o g f 

(d) -
1
- = f o (~) f O g g . 

22. (a) Suppose g = Ii o f. Prove that if f(x) = f (y), then g(x) = g(y). 

(b) Conversely, suppose that f and g arc two functions such that g(x) = g(y) 

whenever f (x) = f (y). Prove that g = Ii o f for some function Ii. Hint: 
Just try to define Ii(:) whcu : is of the form z = f (x) (these arc the only: 
that matter) and use the hypotheses to show that your definition will not 
run into trouble. 
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23. Suppose that f · g = I, where I (x) = x. Prove that 

(a) if x f. y, then g(x) f. g(y); 

(b) every number b can be written b = f (a) for some number a. 

*24. (a) Suppose g is a function with the property that g(x) f. g(y) if x f. y. 

Prove that there is a function f such that f o g = I. 
(b) Suppose that f is a function such that every number b can be written 

b = f (a) for some number a. Prove that there is a function g such that 
f o g= I. 

*25. Find a function f such that g =· f = I for some g, but such that there is no 
function h with f o h = I. 

*26. Suppose f o g = I and h o f = I. Prove that g = h. Hint: Use the fact that 
composition is associative. 

27. (a) Suppose f (x) = x + 1. Are there any functions g such that f og = g o f? 
(b) Suppose f is a constant function. For which functions g does f o g = 

g Of? 
(c) Suppose that f og = g ·=i f for all functions g. Show that f is the identity 

function, f (x) = x. 

28. (a) Let F be the set of all functions whose domain is R. Pron· that, using + 
and · as defined in this chapter, all of properties PI P9 except P7 hold 
for F, provided O and I arc interpreted as constant functions. 

(b) Show that P7 does not hold. 
*(c) Show that Pl 0 -Pl 2 cannot hold. In other words, show that there is 

no collection P of functions in F, such that PIO- Pl 2 hold for P. (It is 
sufficient. and will simplify things, to consider only functions vvhich are O 
except at two points xo and XJ .) 

(d) Suppose we define f < g to mean that f(x) < g(x) for all x. Which of 
P'10- P'l3 (in Problem 1-8) now hold? 

(c) If f < g, is h ·=· f < h o g? Is f o h < g o h? 
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APPENDIX. ORDERED PAIRS 

Not only in the definition of a function, but in other parts of the book as well, 
it is necessary to use the notion of an ordered pair of objects. A definition has 
not yet been given, and we have never even stated explicitly what properties an 
ordered pair is supposed to have. The one property which we will require states 
formally that the ordered pair (a, b) should be determined by a and b, and the 
order in which they are given: 

if (a, b) = (c, d), then a = c and b = d. 

Ordered pairs may be treated most conveniently by simply introducing (a, b) 

as an undefined term and adopting the basic property as an axiom- since this 
property is the only significant fact about ordered pairs, there is not much point 
worrying about what an ordered pair "really" is. Those who find this treatment 
satisfactory need read no further. 

The rest of this short appendi.x is for the benefit of those readers who will feel 
uncomfortable unless ordered pairs are somehow defined so that this basic property 
becomes a theorem. There is no point in restricting our attention to ordered pairs 
of numbers; it is just as reasonable, and just as important, to have available the 
notion of an ordered pair of any two mathematical objects. This means that our 
definition ought to involve only concepts common to all branches of mathematics. 
The one common concept which pervades all areas of mathematics is that of a 
set, and ordered pairs (like everything else in mathematics) can be defined in this 
context; an ordered pair will turn out to be a set of a rather special sort. 

The set {a, b}, containing the tvvo clements a and b, is an obvious first choice, 
but will not do as a definition for (a, b ), because there is no way of determining 
from {a, b} which of a or b is meant to be the first element. A more promising 
candidate is the rather startling set: 

{ {a}, {a, b} }. 

This set has two members, both of which are themselves sets; one member is the set 
{a}, containing the single member a, the other is the set {a, b}. Shocking as it may 
seem, we arc going to define (a, b) to be this set. The justification for this choice is 
given by the theorem immediately following the definition- ~ the definition works, 
and there really isn't anything else worth saying. 

(a, b) = { {a}, {a, b} }. 

If (a , b) = (c, d), then a = c and b = d. 

The h)1)othcsis means that 

{{a} , {a,b}} = {{c}, {c,c/}}. 

Now {{a}, {a, b}} contains just two members, {a} and {a. b }: and a is the only 
common element oftl1csc two members of { {a}, {a, b} }. Similarl); c is the unique 
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common member of both members of { { c}, { c , d} } . Therefore a = c. We there­
fore have 

{ {a}, {a , b}} = { {a}, {a , d} }, 

and only the proof that b = d remains. It is convenient to distinguish 2 case . 

Case 1. b = a. In this case, {a , b} = {a}, so the set {{a}, {a , b}} really has only one 
member, namely, {a} . The same must be true of { {a}, {a , d}}, o {a , d} = {a}, 
which implies that d =a= b. 

Case 2. b -=J a. In this case, bis in one member of { {a}, {a , b}} but not in the 
other. It must therefore be true that bis in one member of { {a} , {a , d}} but not 
in the other. Thi can happen only if b is in {a , d}, but b is not in {a} ; thu b = a 
orb= d , but b -=J a ; sob= d. I 
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l\frntion the real numbers to a mathematician and the image of a straight line will 
probably form in her mind, quite involuntarily. And most likely she will neither 
banish nor too eagerly embrace this mental picture of the real numbers. "Geomet­
ric intuition" will allow her to interpret statements about numbers in terms of this 
picture, and may even suggest methods of proving them. Although the properties 
of the real numbers which were studied in Part I are not greatly illuminated by a 

geometric picture, such an interpretation will be a great aid in Part II. 

You arc probably already familiar with the conventional method of considering 
the straight line as a picture of the real numbers, i.e., of associating to each real 
number a point on a line. To do this (Figure 1) we pick, arbitrarily, a point which 
we label 0, and a point to the right, which we label 1. The point twice as far to 
the right is labeled 2, the point the same distance from O to I, but to the left of 0, 
is labeled -1, etc. With this arrangement, if a < b, then the point corresponding 
to a lies to the left of the point corresponding to b. \Ve can also draw rational 

numbers, such as !, in the obvious way. It is usually taken for granted that the 
irrational numbers also somehow fit into this scheme, so that every real number 
can be drawn as a point on the line. \ Ve will not make too much fuss about 
justifying this assumption, since this method of ''drawing" numbers is intended 
solely as a method of picturing certain abstract ideas, and our proofs will ne\Tr 
rely on these pictures (although we will frequently use a picture to suggest or help 
explain a proof). Because this geometric picture plays such a prominent, albeit 
inessential role, geometric terminology is frequently employed when speaking of 
numbers thus a number is sometimes called a point, and R is often called the 
real line. 

The number la-bl has a simple interpretation in terms of this geometric picture: 
it is the distance between a and b, the length of the line segment which has a as one 

end point and b as the other. This means, to choose an example whose frequent 
occurrence justifies special consideration, that the set of numbers x which satisfy 
Ix - a I < £ may be pictured as the collection of points whose distance from a is 
less than c. This set of points is the " interval'' from a - c to a+£, \\'hich may also 
be clescribccl as the points corresponding to numbers x with a - £ < x < a + E 

(Figure 2). 

Sets of' numbers wl1ich correspond to intervals arise so frequently that it is desir­
able to have special names for them. The sct {x : a < .r < b} is denoted by (a, b) 

and called the open interval from a to b. This notation naturally creates some 
ambiguity, sinn· (a. b) is also used to denote a pair of rn1111hcrs, but in context it is 
always clear (or can easily be made clear) \\'hethcr one is talking about a pair or 
an i11tcr\'al. Note that if a ~ h, thcn (a. b) = 0 , the set \\'ith no clements; in prac-
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tice, however, it is almost always assumed (explicitly if one has been careful, and 
implicitly otherwise), that whenever an interval (a, b) is mentioned , the number a 

is less than b. 

The set {x : a :::: x :::: b} is denoted by [a , b] and is called the closed interval 
from a to b. This symbol is usually reserved for the case a < b, but it is som etimes 
used for a = b, also. The usual pictures for the intervals (a, b) and [a, b] are shown 
in Figure 3; since no reasonably accurate picture could ever indicate the difference 
between the two intervals, various conventions have been adopted. Figure 3 also 
shows certain ''infinite" intervals. The set {x : x > a} is denoted by (a, oo), 
while the set {x: x ~ a} is denoted by [a, oo); the sets (-oo, a) and (-oo, a] are 
defined similarly. At this point a standard warning must be issued: the symbols oo 
and -oo, though usually read "infinity" and "minus infinity," are purely suggestive; 
there is no number "oo" which satisfies oo ~ a for all numbers a . \Vhile the 
symbols oo and -oo will appear in many contexts, it is always necessary to define 
these uses in ways that refer only to numbers. The set R of all real numbers is 
also considered to be an "interval," and is sometimes denoted by (-oo, oo). 

Of even greater interest to us than the method of drawing numbers is a method 
of drawing pairs of numbers. This procedure, probably also familiar to you, re­
quires a ''coordinate system ,'' two straight lines intersecting at right angles. To 
distinguish these straight lines, we call one the lzon"zontal axis, and one the vertical 
axis. (l\lore prosaic terminology, such as the "first" and "second" axes, is probably 
preferable from a logical point of view, but most people hold their books, or at 
least their blackboards, in the same way, so that "horizontal" and "vertical" are 
more descripti\·e.) Each of the two axes could be labeled with real numbers, but 
we can also label points on the horizontal axis with pairs (a, 0) and points on the 
vertical axis with pairs (0, b), so that the intersection of the two axes, the "origin" 
of the coordinate system , is labeled (0, 0). Any pair (a, b) can now be drawn as 
in Figure 4, lying at the vertex of the rectangle ~hose other three vertices are la­
beled (0, 0) , (a, 0), and (0, b). The numbers a and b are called the first and second 
coordinates, respectively, of the point determined in this way. 

Our real concern, let us recall, is a method of drawing functions. Since a func­
tion is just a collection of pairs of numbers, we can draw a function by drawing 
each of the pairs in the function. The drawing obtained in this way is called the 
graph of the fun ction. In other words, the graph of f contains all the points cor­
responding to pairs (x, f (x) ). Since most functions contain infinitely many pairs, 
drawing the graph promises to be a laborious undertaking, but, in fact, many 
functions have graphs which are quite easy to draw. 

Not surprisingly; the simplest functions of all, the constant functions f (x) = c, 

have the simplest graphs. It is easy to see that the graph of the function f (x) = c 

is a straight line para llel to the horizontal cLxis, at distance c from it (Figure 5). 

The functions f (x) = ex also have particularly simple graphs straight lines 
through (0, 0) , as in Figure 6. A proof of this fact is indicated in Figure 7: 
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Let x be some number not equal to 0, and let L be the straight line which passes 
through the origin O, corresponding to (0, 0), and through the point A, corre­
sponding to (x, ex). A point A', with first coordinate y, will lie on L when the 
triangle A' B' 0 is similar to the triangle ABO, thus when 

A'B' AB 
--- -- -e· 
OB' - OB - ' 

this is precisely the condition that A' corresponds to the pair (y, ey), i.e., that A' 
lies on the graph of f. The argument has implicitly assumed that e > 0, but the 
other cases arc treated easily enough. The number e, which measures the ratio of 
the sides of the triangles appearing in the proof, is called the slope of the straight 
line, and a line parallel to this line is also said to have slope e. 

This demonstration has neither been labeled nor treated as a formal proo( 
Indeed, a rigorous demonstration would necessitate a digression which we are 
not at all prepared to follow. The rigorous proof of mry statement connecting 
geometric and algebraic concepts would first require a real proof (or a precisely 
stated assumption) that the points on a straight line correspond in an exact way 
to the real numbers. Aside from this, it would be necessary to develop plane 
geometry as precisely as we intend to develop the properties of real numbers. 
Now the detailed development of plane geometry is a beautiful subject, but it is by 
no means a prerequisite for the study of calculus. \Ve shall use geometric pictures 
only as an aid to intuition; for our purposes (and for most of mathematics) it is 
perfectly satisfactory to defi,ne the plane to be the set of all pairs of real numbers, 
and to defi,ne straight lines as certain collections of pairs, including, among others, 
the collections {(x, ex) : x a real number}. To provide this artificially constructed 
geometry with all the structure of geometry studied in high school, one more 
definition is required. If (a, b) and (c, d) are two points in the plane, i.e., pairs of 
real numbers, we defi,ne the distance between (a, b) and (c, d) to be 

/(a - e) 2 + (b - d)2. 

If the motivation for this definition is not clear, Figure 8 should serve as adequate 
explanation- with this definition the Pythagorean theorem has been built into our 
geometry* 

Reverting once more to our informal geometric picture, it is not hard to see 
(Figure 9) that the graph of the function f (x) = ex + d is a straight line 
with slope e, passing through the point (0. d). For this reason, the functions 
f (x) = ex + d are called linear functions. Simple as they are, linear func­
tions occur frequently, and you should feel comfortable \\'Orking \\'ith them. The 
following is a typical problem whose solution should not cause any trouble. Given 
two distinct points (a, h) and (e, d), find the linear function f \\'hose graph goes 
through (a, b) and (e, d). This amounts to saying that .f(a) =band .f(c) = d. If 

* The fastidious reader might object to this d<"finition 011 the grounds that 11on11cgatin' m1111hers 
are not yet k11ow11 to han· square roots. This ol~jert ion is really unanswerable at the 1110111e11t the 
definition will just ha, ·c to be accepted with rcsen·ations, until this little point is settled. 
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f is to be of the form f (x) = ax + f3, then we must have 

aa + f3 = b, 
ac + f3 = d; 

therefore a= (d - b)/(c - a) and f3 = b - [(d - b)/(c - a)]a, so 

d-b d-b d-b 
f(x) = --x +b- --a= --(x -a) +b, 

c-a c-a c-a 
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a formula most easily remembered by using the "point-slope form" (see Problem 6). 
Of course, this solution is possible only if a ::j:. c; the graphs of linear functions 

account only for the straight lines which are not parallel to the vertical axis. The 
vertical straight lines are not the graph of arry function at all; in fact, the graph of a 
function can never contain even two distinct points on the same vertical line. This 
conclusion is immediate from the definition of a function two points on the same 
vertical line correspond to pairs of the form (a, b) and (a, c) and, by definition, a 
function cannot contain (a, b) and (a, c) if b ::j:. c. Conversely, if a set of points in 
the plane has the property that no two points lie on the same vertical line, then 
it is surely the graph of a function. Thus, the first two sets in Figure 10 are not 
graphs of functions and the last two are; notice that the fourth is the graph of a 
function whose domain is not all of R, since some vertical lines have no points on 
them at all. 

After the linear functions the simplest is perhaps the function f (x) = x 2. Ifwe 
draw some of the pairs in f, i.e., some of the pairs of the form (x, x 2), we obtain 
a picture like Figure I 1 . 
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It is not hard to convince yourself that all the pairs (x, x 2) lie along a curve like 
the one shown in Figure 12; this curve is known as a parabola. 

Since a graph is just a drawing on paper, made (in this case) with printer's ink, 
the question ''Is this what the graph really looks like?" is hard to phrase in any 
sensible manner. No drawing is ever realbJ correct since the line has thickness. 
Nevertheless, there arc some questions which one can ask: for example, how can 
you be sure that the graph does not look like one of the drawings in Figure 13? 
It is easy to sec, and even to prove, that the graph cannot look like (a); for if 
0 < x < y, then x 2 < y 2, so the graph should be higher at y than at x, which is 
not the case in (a) . It is also easy to see, simply by drawing a very accurate graph, 
first plotting many pairs (x, x 2), that the graph cannot have a large 'jump" as in (b) 
or a ''corner" as in (c). In order to prove these assertions, however, we first need 
to say, in a mathematical way, what it means for a function not to have a 'jump" 
or "corner"; these ideas already involve some of the fundamental concepts of 
calculus. Eventually we will be able to define them rigorously, but meanwhile you 
may amuse yourself by attempting to define these concepts, and then examining 
your definitions critically. Later these definitions may be compared with the ones 
mathematicians have agreed upon. If they compare favorably, you arc certainly 
to be congratulated! 

The functions f (x) = x 11
, for various natural numbers 11, arc sometimes called 

power functions. Their graphs arc most easily compared as in Figure 14, by 
drawing several at once. 

The power functions are only special cases of polynomial functions, introduced 
in the previous chapter. Two particular polynomial functions are graphed in 

I 
I 
I 
I 
I 
I 
\ 
\ 

(-1. 1)\ 
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f(x) = x 3 / f(x) = x2 

I 
f(x) = x4 · I 

I f (x) = x 

I 
I 

I 
(I, 1) 



FIGURE 15 

(a) 

2 

-2 
(b) 

4. GrajJhs 61 

Figure I 5, while Figure 16 is meant to give a general idea of the graph of the 
polynomial function 

f ( ·) n + .n-1 + + .x = a11 x a11 _1.x · · · ao, 

in the case a11 > 0. 
In general, the graph of f will have at most n - 1 "peaks" or "valleys" (a "peak" 

is a point like (x, f(x)) in Figure 16, while a "valley" is a point like (y, f(y)). The 
number of peaks and valleys may actually be much smaller (the power functions, 
for example, have at most one valley). Although these assertions are easy to make, 
we will not even contemplate giving proofs until Part III (once the powerful meth­
ods of Part III are available, the proofs will be very easy) . 

Figure I 7 illustrates the graphs of several rational functions. The rational func­
tions exhibit even greater variety than the polynomial functions, but their behavior 
will also be easy to analyze once we can use the derivative, the basic tool of Part III. 

Many interesting graphs can be constructed by "piecing together" the graphs of 
functions already studied. The graph in Figure 18 is made up entirely of straight 
lines. The function f with this graph satisfies 

f G) = Hr', 

f (~I ) = ( - I )"+ t, 

f (x) = 1 , Jx I ::: I, 

and is a linear function on each interval [I/ (n + 1), 1 / n] and [ -1 / n, - I/ (11 + I)]. 
(The number O is not in the domain of f .) Of course, one can write out an explicit 
formula for f (x) , when x is in [ 1 / (n + I), 1 / n]; this is a good exercise in the use 
of linear functions, and will also convince you that a picture is worth a thousand 
words. 

x y 

n even n odd 

(a) (b) 
FIGURE 16 
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f (x) = 1 + x2 
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It is actually possibl to define, in a much simpler way, a function which exhibits 
this same property of o cillating infinitely often near 0, by using the sine function, 
which we will discuss in detail in Chapter 15 . As usual, we are using radian 
measure, so an angle of 2n means an angle "all the way around" a circle, an 
angle of n an angle halfway around (or 180° in layman's terms), an angle of n / 2 
a right angle, etc. 

T he graph of the sine function is shown in Figure 19. 

FIGURE 19 

Now consider the fu nction f (x) = in 1 / x. T h graph of f is shown in Fig­
ure 20. To draw this graph it helps to fi rst ob erve that 

f(x) = 0 
1 1 1 

for x = -, 
2 

, 
3 

, ... , 
7T 7T 7T 

f (x) = 1 
1 1 1 

for x = -1 - ' 1 . ' 1 ' ... ' 
2n 2n + 2n 2n + 4n 

f(x) = - 1 
1 1 1 

fo r x = -3 - ' 3 ' 3 ' . . .. 
2n 2n + 2n 2n + 4n 

Notice that when x is large, so that 1/x is small, f (x) is al o small· when x is 

FI G RE 20 
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m ­
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J(x) = x sm -
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"large negative," that is, when Ix I is large for negative x , again f (x) is close to 0, 
although f (x) < 0. 

An interesting modification of this function is f (x) = x sin 1 / x. The graph of 
this function is sketched in Figure 21. Since sin 1 / x oscillates infinitely often near O 
between 1 and -1 , the function f (x) = x sin 1 / x oscillates infinitely often between 
x and - x. The behavior of the graph for x large or large negative is harder to 
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analyze. Since sin l / x is getting close to 0, while x is getting larger and larger, there 
seems to be no telling what the product will do. It is possible to decide, but this is 
another question that is best deferred to Part III. The graph off (x) = x 2 sin 1 /x 

has also been illustrated (Figure 22). 

For these infinitely oscillating functions, it is clear that the graph cannot hope to 
be really "accurate." The best we can do is to show part of it, and leave out the 
part near O (which is the interesting part). Actually, it is easy to find much simpler 
functions whose graphs cannot be "accurately" drawn. The graphs of 

f(x) = l x2, 
2, 

x < 1 
x ~ 1 

and l x2 
g(x) = ' 

2, 
x :::: 1 
x > 1 

can only be distinguished by some convention similar to that used for open and 
closed intervals (Figure 23). 

Out last example is a function whose graph is spectacularly nondrawable: 

FIG U RE 24 

f(x) = l 0, 
1, 

x irrational 
x rational. 

f (x) = { l, 
0, 

x rational 
x irrational 

The graph of f must contain infinitely many points on the horizontal axis and 
also infinitely many points on a line parallel to the horizontal axis, but it must not 
contain either of these lines entirely. Figure 24 shows the usual textbook picture 
of the graph. To distinguish the two parts of the graph, the dots are placed closer 
together on the line corresponding to irrational x. (There is actually a mathemat­

ical reason behind this convention, but it depends on some sophisticated ideas, 
introduced in Problems 21-5 and 21-6.) 

The peculiarities exhibited by some functions are so engrossing that it is easy 
to forget some of the simplest, and most important, subsets of the plane, which 
are not the graphs of functions. The most important example of all is the circle. 
A circle with center (a, b) and radius r > 0 contains, by definition, all the points 
(x, y) whose distance from (a, b) is equal to r. The circle thus consists (Figure 25) 
of all points (x, y) with 

!ex - a)2 + (y - b)2 = r 

or 

(x - a) 2 + ( y - b )2 = r 2 . 
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T he circle with center (0,0) and radius 1, often regarded as a sort of standard copy, 
is called the unit circle. 

A close relative of the circle is the ellipse. This is d fined as the set of points, 
the sum of whose distances from two "focus" points is a con tant. (When the two 
foci are the same, w obtain a circle.) If, for convenience, the focus points are 
taken to be (- c , 0) and (c, 0) , and the sum of the distances is taken to be 2a (the 
factor 2 simplifies some algebra), then (x, y ) is on the ellipse if and only if 

J (x - ( - c) ) 2 + y2 + J (x - c) 2 + y 2 = 2a 

or 
J (x + c) 2 + y2 = 2a - J (x - c )2 + y2 

or 

x 2 + 2cx + c2 + y 2 = 4a2 - 4a J (x - c)2 + y 2 + x 2 - 2cx + c2 + y 2 

or 
4 (cx - a2

) = -4a Jex - c)2 + y2 

or 

or 

or 

Thi is usually written simply 

x2 y2 
a 2 + b2 = 1, 

wh re b = J a2 - c2 (since we must clearly choose a > c, it follow that 
a2 - c2 > 0). A picture of an ellipse is shown in Figure 26. The ellip e inter­
sects th horizontal axis when y = 0, so that 

(0, b) 

(- a , 0) 

(0 , - b) 

Fl ' R I·: 2 6 

x2 
2 = 1, 
a 

x = ±a, 

{ 
x2 y2 } 

(x , y) : a2 + b2 = l 



{ 
x2 y2 } 

(x, y) : a2 - b2 = I 

FIUURE27 

and it intersects the vertical axis when x = 0, so that 

v2 
!J2 = l, y = ±b. 
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The hyperbola is defined analogously, except that we require the difference of 
the two distances to be constant. Choosing the points (-c, 0) and ec, 0) once 
again, and the constant difference as 2a, we obtain, as the condition that (x, y) 

be on the hyperbola, 

lex+ c) 2 + y2 - lex - c) 2 + y2 = ±2a, 

which may be simplified to 

x2 y2 
-2+ 2 ')=l. 
a a - c-

In this case, however, we must clearly choose c > a, so that a2 - c2 < 0. If 

b = I c2 - a2 , then ex, y) is on the hyperbola if and only if 

x2 v2 

a2 - !J2 = 1. 

The picture is shown in Figure 27. It contains two pieces, because the difference 
between the distances of ex. y) from e-c, 0) and ec. 0) may be taken in two dif­
ferent orders. The hyperbola intersects the horizontal axis when y = 0, so that 
x = ±a, but it never intersects the ,·ertical axis. 

It is interesting to compare (Figure 28) the hyperbola with a = b = J2 and 
the graph of the function f ex) = 1 / x. The drawings look quite similar, and 
the two sets are actually identical, except for a rotation through an angle of JT /4 
(Problem 23 ). 

Clearly no rotation of the plane will change circles or ellipses into the graphs of 
functions. Nevertheless, the study of these important geometric figures can often 
be reduced to the study of functions. Ellipses, for example, are made up of the 
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graphs of two functions, 

-a~ x ~ a 

and 

-a~ x ~ a. 

Of course, there are many other pairs of functions with this same property. For 
example, we can take 

and 

g(x) = 
{

-bJI-(x2/a 2), 

bJI-(x2/a 2
, 

-a~ x ~ 0 

-a~ x ~ 0. 

We could also choose 

and 

{ 

b J1 - (x 2/a 2), 
f(x) = 

-b JI - (x 2 /a 2
), 

x rational, - a .:::: x ~ a 

x irrational, - a ~ x ~ a 

x rational, - a ~ x ~ a 

x irrational, - a ~ x ~ a. 

But all these other pairs necessarily involve unreasonable functions which jump 
around. A proof, or even a precise statement of this fact, is too difficult at present. 
Although you have probably already begun to make a distinction between those 
functions with reasonable graphs, and those with unreasonable graphs, you may 
find it very difficult to state a reasonable definition of reasonable functions. A 
mathematical definition of this concept is by no means eas1~ and a great deal of this 
book may be viewed as successive attempts to impose more and more conditions 
that a ''reasonable" function must satisfy. As we define some of these conditions, 
we will take time out to ask if we have really succeeded in isolating the function 
which deserve to be called reasonable. The answer, unfortunately, will always be 
"no," or at best, a qualified "yes." 

PROBLEl\JS 

1. Indicate on a straight line the set of all x satisfying the following conditions. 
Also name each set, using the notation for intervals (in some cases you will 
also need the U sign). 

(i) Ix - 31 < I. 
(ii) Ix - 31 ~ I. 
(iii) Ix - al < c . 
(iv) Ix 2 - 11 < { 



(v) 

(vi) 

(vii) 
(viii) 

1 I 
--->-1 + x2 - s. 

4. Graphs 69 

1 
2 

::S a (give an answer in terms of a, distinguishing various cases). 
l+x 

x 2 + 1 ~ 2. 
(x + 1 )(x - 1 )(x - 2) > 0. 

2. There is a very useful way of describing the points of the dosed interval [a, b] 
(\vhcre we assume, as usual, that a < b). 

(a) First consider the interval [O, b], for b > 0. Prove that if x is in [O, b], 

then x = t b for some t with O ::S t ::S 1. What is the significance of the 
number t? What is the mid-point of the interval [O, b]? 

(b) Now prove that if x is in [a, b], then x = (1 - t)a + tb for some t with 
0 ::S t ::S 1. Hint: This expression can also be written as a+ t(b - a). 

What is the midpoint of the interval [a, b]? What is the point I /3 of the 
way from a to b? 

(c) Prove, conversely, that if O ::St ::S 1, then (1 - t)a + tb is in [a, b]. 

(d) The points of the open interval (a, b) arc those of the form (1 - t)a + tb 

for O < t < 1. 

3. Draw the set of all points (x, y) satisfying the following conditions. (In most 
cases your picture will be a sizable portion of a plane, not just a line or curve.) 

(i) 
( ii) 
(iii) 
(iv) 

(v) 
(vi) 
(vii) 

(viii) 

(ix) 
(x) 

x > y. 

x +a> y +b. 

y < x2. 

y ::S x2. 

Ix - YI < 1. 
Ix+ YI < 1. 
x + y is an integer. 

1 . . 
-- 1s an mtegcr. 
x+y 
(x - 1)2 + ( v - 2)2 < 1. 
x 2 < y < x 4 . 

4. Draw the set of all points (x, y) satisfying the following conditions: 

(i) 
(ii) 
(iii) 

(iv) 
(v) 
(vi) 
( vii) 
(viii) 

lxl + IYI = l. 
lxl - I.vi= 1. 
lx-ll=ly-11. 
11 - x I = IY - 11. 
x2 + y2 = 0. 

xy = 0. 

x 2 - 2x + y 2 = 4. 
,., ') 

x- = y-. 
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(1, m) 

(1, n) 

Ff(; U RE 29 

5. Draw the set of all points (x, y) satisfying the following conditions: 

6. 

7. 

8. 

9. 

(i) 

(ii) 

( iii) 

(iv) 

..., 
x = y-. 

y2 x2 
---= 1 a2 b2 . 

x = lyl. 
x = smy. 

Hint: You already know the answers when x and y are interchanged. 

(a) Show that the straight line through (a, b) with slope 111 is the graph of the 
function f (x) = m(.r - a)+ b. This formula, known as the "point-slope 
form" is far more convenient than the equivalent expression f (x) = 

mx + (b - ma); it is immediately dear from the point-slope form that the 
slope is m, and that the value of f at a is b. 

(b) For a -=f. c, show that the straight line through (a, b) and (c, d) is the 
graph of the function 

cl - b 
f(x) = --(x - a)+ b. 

c-a 

(c) When are the graphs of f (x) = mx + b and g(x) = m'x + b' parallel 
straight lines? 

(a) For any numbers A, B, and C, with A and B not both 0, show that the 
set of all (x. y) satisfying Ax+ By + C = 0 is a straight line (possibly a 
vertical one). Hint: First decide when a vertical straight line is described. 

(b) Show conversely that every straight line, including vertical ones, can be 
described as the set of all (x, y) satisfying Ax+ By+ C = 0. 

(a) Prove that the graphs of the functions 

J (x) = mx + b, 
g(x) = llX + C, 

are perpendicular if 11111 = -1, by computing the squares of the leng1hs 
of the sides of the triangle in Figure 29. (\ \'hy is this special case, where 
the lines intersect at the origin, as good as the general case?) 

(b) Prove that the two straight lines consisting of all (x, y) satisfying the con-
clitions 

Ax+ By+ C = 0, 
A'x + B' y + C' = 0. 

arc perpendicular if and only if A A'+ BB' = 0. 

(a) Prove, using Problem 1-19, that 
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(b) Prove that 

}(x3 - x1)
2 + (y3 - Y1)

2 ::S }(x2 -x1)
2 + (y2 - Y1)

2 

+ J(x3 - x2)
2 + (y3 - Y2)

2
. 

Interpret this inequality geometrically (it is called the "triangle inequal­
ity"). When does strict inequality hold? 

10. Sketch the graphs of the following functions, plotting enough points to get 
a good idea of the general appearance. (Part of the problem is to make 
a reasonable decision how many is "enough"; the queries posed below are 
meant to show that a little thought will often be more valuable than hundreds 
of individual points.) 

(i) 

(ii) 

(iii) 

(iv) 

1 
f (x) = x + -. (What happens for x near 0, and for large x? \\There 

x 
does the graph lie in relation to the graph of the identify function? \\Thy 
does it suffice to consider only positive x at first?) 

1 
f(x) = x - -. 

x 

') 1 
f(x) = x-+ 7· 

x-

l 
f(x)=x 2 - 1 . 

x-

11. Describe the general features of the graph of f if 

(i) f is e\·en. 

(ii) f is odd. 
(iii) f is nonnegative. 

(iv) f(x) = f (x + a) for all x (a function with this property is called peri­
odic, with period a. 

12. Graph the functions f (x) = v'x form = 1, 2, 3, 4. (There is an easy way to 
do this, using Figure 14. Be sure to remember, however, that "jx means the 
positive mth root of x when m is even; you should also note that there will be 
an important difference between the graphs when m is even and when m is 
odd.) 

13. (a) Graph f(x) = lxl and f(x) = x 2. 

(b) Graph f(x) = I sinxl and f(x) = sin2 x. (Then' is an important differ­
ence between the graphs, which we cannot yet even describe rigorously 
Sec if you can discover what it is; part (a) is meant to be a due.) 

14. Describe the graph of g in terms of the graph of f if 
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(i) g(x) = j(x) + c. 

(ii) g(x) = f (x + c). (It is easy to make a mistake here.) 

(iii) g(x) = cf(x). (D' . . 
1 1 0 0 0

) 
(iv) g(x) = j(cx). 1stmgms 1 t 1e cases c = , c > , c < . 

(v) g(x)=f(I/x). 
(vi) g(x) = f (Ix I). 

(vii) g(x) = If (x)I. 
(viii) g(x) = max(!. 0). 

(ix) g(x) = min(!, 0). 

(x) g(x) = max(!. 1). 

15. Draw the graph of f (x) = ax2 +bx+ c. Hint: Use the methods of Prob­
lem l-18. 

16. Suppose that A and C are not both 0. Show that the set of all (x, y) satisfying 

Ax2 + Bx + cy2 + Dy + E = 0 

is either a parabola, an ellipse, or an hyperbola (or a "degenerate case'': two 
lines [ either intersecting or parallel], one line, a point, or 0). Hint: The 
case C = 0 is essentially Problem 15, and the case A = 0 is just a minor 
variant. Now consider separately the cases where A and B are both positive 
or negative, and where one is positive while the other is negative. \ Vhen do 
\Ve have a circle? 

17. The symbol [ x J denotes the largest integer which is :S x. Thus, [2.1 J = [2] = 
2 and [ -0.9] = [ -1 J = -1. Draw the graph of the following functions 
(they are all quite interesting, and several will reappear frequently in other 
problems). 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

f (x) = [x]. 

f (x) = x - [x]. 

f(x) = Jx - [x]. 

f (x) = [x J + Jx - [ x]. 

f(x) = [~ J 
1 

f(x) = [H 
18. Graph the following functions. 

(i) f (x) = {x}, where {x} is defined to be the distance from x to the nearest 

integer. 
(ii) .f(x) = {2x}. 

(iii) f(x) = {x} + !{2x}. 
(iv) .f(x) = {4x}. 

(v) f(x) = {x} + !{2x} + ±{4x}. 
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Many functions may be described in terms of the decimal expansion of a num­
ber. Although we will not be in a position to describe infinite decimals rigorously 
until Chapter 23, your intuitive notion of infinite decimals should suffice to carry 
you through the following problem, and others which occur before Chapter 23. 
There is one ambiguity about infinite decimals which must be eliminated: Every 
decimal ending in a string of 9's is equal to another ending in a string of O's (e.g., 
1.23999 ... = 1.24000 ... ). We will always use the one ending in 9's. 

*19. Describe as best you can the graphs of the following functions (a complete 

*20. 

picture is usually out of the question). 

(i) 
(ii) 
(iii) 

(iv) 

(v) 

(vi) 

Let 

f (x) = the 1st number in the decimal expansion of x. 
f (x) = the 2nd number in the decimal expansion of x. 

f (x) = the number of 7's in the decimal expansion of x if this number 
is finite, and O otherwise. 
f(x) = 0 if the number of 7's in the decimal expansion of x is finite, 
and 1 otherwise. 
f (x) = the number obtained by replacing all digits in the decimal 
expansion of x which come after the first 7 (if any) by 0. 
f (x) = 0 if 1 never appears in the decimal expansion of x, and 11 if I 
first appears in the nth place. 

{ 

0, 

J(x) = i· 
x irrational 

P . l . l x = - rat1ona m owest terms. 
q . 

(A number p/q is in lowest terms if p and q are integers with no common 
factor, and q > 0). Draw the graph of f as well as you can (don't sprinkle 
points randomly on the paper; consider first the rational numbers with q = 2, 
then those with q = 3, etc.). 

21. (a) The points on the graph of f(x) = x 2 are the ones of the form (x, x 2). 

Prove that each such point is equidistant from the point (0, } ) and the 

graph of g(x) = -{ (See Figure 30.) 
(b) Given a horizontal line L, the graph of g(x) = y, and a point P = (a, f3) 

not on L, so that y =/=- {3, show that the set of all points (x, y) equidistant 
from P and Lis the graph of a function of the form f (x) = ax 2+bx +c. 
What is this set if y = f3? 

*22. (a) Show that the square of the distance from (c, d) to (x. mx) is 

x 2(m 2 + I) +x(-2md- 2c) + d 2 + c2
. 

Using Problem 1-18 to find the minimum of these numbers, show that 
the distance from ( c, d) to the graph of f (x) = m x is 

lcm - dl/Jm 2 + I. 

(b) Find the distance from (c, d) to the graph of f (x) = mx + b. (Reduce 
this case to part (a).) 
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*23. (a) Using Problem 22, show that the numbers x ' and y' indicated in Fig­
ure 31 are given by 

I 1 1 
x = h x + h y, 

I 1 1 
y = - h x + h y. 

(b) Show that the et of all (x , y) with (x' / .J2 )2 
- (y' / .J2 )2 = 1 is th same 

as the set of all (x, y) with xy = 1. 
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APPENDIX 1. VECTORS 

Suppose that v is a point in the plane; in other words, v is a pair of numbers 

For convenience, we will use this convention that subscripts indicate the first and 
second pairs of a point that has been described by a single letter. Thus, if we 
mention the points w and z, it will be understood that w is the pair (w1. w2), 

while.: is the pair (z1, z2). 

Instead of the actual pair of numbers (v1, v2), we often picture v as an arrow 
from the origin O to this point (Figure 1 ), and we refer to these arrows as vectors 
in the plane. Of course, we've haven't really said anything new yet, we've simply 
introduced an alternate term for a point of the plane, and another mental picture. 
The real point of the new terminology is to emphasize that we are going to do 
some new things with points in the plane. 

For example, suppose that we have two vectors (i.e., points) in the plane, 

Then we can define a new vector (a new point of the plane) v + w by the equation 

(1) 

Notice that all the letters on the right side of this equation are numbers, and the 
+ sign is just our usual addition of numbers. On the other hand, the + sign on 
the left side is new: previously, the sum of two points in the plane wasn't defined, 
and we've simply used equation ( 1) as a defi,nitioiz. 

A very fussy mathematician might want to use some new symbol for this newly 
defined operation, like 

v + w, or perhaps v EB w. 

but there's really no need to insist on this; since v + w hasn't been defined before, 
there's no possibility of confusion, so we might as well keep the notation simple. 

Of course, any one can make new notation; for example, since it's our definition, 
we could just as well have defined v + w as (v1 + wi · w2. v2 + w1 2), or by some 
other equally weird formula. The real question is, does our new construction have 
any particular significance? 

Figure 2 shows two vectors v and w, as well as the point 

which, for the moment, we have simply indicated in the usual way, without drawing 
an arrow. Note that it is easy to compute the slope of the line L between v and 
our new point: as indicated in Figure 2, this slope is just 

( v2 + w2) - v2 w2 

(vi + wi) - vi wi 

and this, of course, is the slope of our vector w, from the origin O to (w1, w 2). In 
other words, the line L is parallel to w. 
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FIGURE3 
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Similarly, the slope of the line M between (w1, w2) and our new point is 

( v2 + w2) - w2 v2 

(VI + W i) - v2 VI 

which is the slope of the vector v; so M is parallel to v. In short, the new point 
v + w lies on the parallelogram having v and w as sides. \ Vhen we draw v + w as 
an arrow (Figure 3), it points along the diagonal of this parallelogram. In physics, 
vectors are used to symbolize forces, and the sum of two vectors represents the 
resultant force when two different forces arc applied simultaneously to the same 
object. 

Figure 4 shows another way of visualizing the sum v+w. Ifwe use "w" to denote 
an arrow parallel to w, and having the same length, but starting at v instead of at 
the origin, then v + w is the vector from O to the final endpoint; thus we get to 
v + w by first following v, and then following w. 

Many of the properties of + for ordinary numbers also hold for this new + for 
vectors. For example, the "commutative law'' 

V + W = W + V, 

is obvious from the geometric picture, since the parallelogram spanned by v and 
w is the same as the parallelogram spanned by w and v . It is also easily checked 
analytically, since it states that 

and thus simply depends on the commutative law for numbers: 

VJ+ W] = WJ + VJ, 
v2 + w2 = w2 + v2. 

Similarly, unraveling definitions, we find the "associative law'' 

[ v + w] +.:: = v + [ w + .::]. 

Figure 5 indicates a method of finding v + w + z. 
The origin O = (0, 0) is an "additive identity," 

0 + v = v+ 0 = v, 

and if we define 

then we also have 

v + (- v) = - v + v = 0. 

Naturally we can also define 

w - v = w+(- v), 

exactly as with numbers; equivalently, 
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Just as with numbers, our definition of w - v simply means that it satisfies 

v + (w - v) = w. 

Figure 6(a) shows v and an arrow "w - v" that is parallel to w - v but that starts 
at the endpoint of v. As we established with Figure 4, the vector from the origin 
to the endpoint of this arrow is just v + (w - v) = w (Figure 6(b)) . In other words, 
we can picture w - v geometrically as the arrow that goes from v to w ( except that 
it must then be moved back to the origin). 

There is also a way of multiplying a number by a vector: For a number a and 
a vector v = (v1, v2), we define 

(vVe sometimes simply write av instead of a · v; of course, it is then especially 
important to remember that v denotes a vector, rather than a number.) The 
vector a · v points in the same direction as v when a > 0 and in the opposite 
direction when a < 0 (Figure 7). 

You can easily check the following formulas: 

a· (b · v) =(ab)· v, 

} · V = V, 

O· v = 0, 
-l·v=-v. 

Notice that we have only defined a product of a number and a vector, we haYe 
not defined a way of 'multiplying' two vectors. to get another vector.* However, 
there are various ways of 'multiplying' vectors to get numbers, which are explored 
in the following problems. 

PROBLEl\IS 

1. Given a point v of the plane, let Re(v) be the result of rotating v around the 
origin through an angle of e (Figure 8). The aim of this problem is to obtain 
a formula for Re, with minimal calculation. 

(a) Show that 

Re(L 0) = (cose, sine), 
Re(O, l) = (-sine,cose). 

(b) Explain why we have 

[we should really write Re((l, 0)), etc.] 

Re(v + w) = Re(v) + Re(w), 

Re(a · w) =a· Re(w). 

(c) Now show that for any point (.c y) we have 

Re (x, y) = (x cos e - y sine. x sin e + y cos e ). 

* If you jump to Chapter 25 , you 'll find that there is an important way of defining a product, but 
this is something \'ery special for the plane- it doesn't work for \'Cc tors in 3-space, for example, c\·cn 
though the other constructions do. 
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(cl) Use this result to give another solution to Problem 4-23. 

2. Given v and w, we define the number 

this is often called the 'clot product' or 'scalar product' of v and w ('scalar' 
being a rather old-fashioned word for a number, as opposed to a vector). 

(a) Given v, find a vector w such that v • w = 0. Now describe the set of all 
such vectors w. 

(b) Show that 

V•W=W•V 

v • (w + z) = v • w + v • z 

and that 

a· (v · w) =(a· v) · w = v ·(a· w). 

Notice that the last of these equations involves three products: the clot 
product · of two vectors; the product · of a number and a vector; and 
the ordinary product · of two numbers. 

(c) Show that v • v ~ 0, and that v • v = 0 only when v = 0. Hence we can 
define the norm II v II as 

llvll = Jij":v, 

which will be O only for v = 0. \Vhat is the geometric interpretation of 
the norm? 

(cl) Prove that 

llv + wll .::: llvll + llwll, 

and that equality holds if and only if v = 0 or w = 0 or w = a · v for 
some number a > 0. 

(c) Show that 

V • UI = 
llv + wll 2 

- llv - wll 2 

4 

3. (a) Let Re be rotation by an angle of e (Problem l ). Show that 

Re(v) • Re(w) = v • w. 

(b) Let e = ( l, 0) be the \'Cctor of length 1 pointing along the first axis, and 
let w = (cos e, sin B); this is a \·ector of length l that makes an angle of e 
with the first axis (compare Problem l ). Calculate that 

e. w = cose. 

Conclude that in general 

v. 1J) = llvll. llwll. cos 8, 

where 8 is the a 11gk bet ween v a ncl w. 
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4. Given two vectors v and w, we'd expect to have a simple formula, involving 
the coordinates v 1, v2, w l, w2, for the area of the parallelogram they span. 
Figure 9 indicates a strategy for finding such a formula: since the triangle 
with vertices w, A, v + w is congruent to the triangle O Bv, we can reduce 
the problem to an easier one where one side of the parallelogram lies along 
the horizontal axis: 

(a) The line L passes through v and is parallel to w, so has slope w2/w1. 

Conclude that the point B has coordinate 

vi w2 - WJ v2 

and that the parallelogram therefore has area 

det(v, w) = VJ w2 - wi v2. 

This formula, which defines the determinant det, certainly seems to be simple 
enough, but it can't really be true that det(v, w) always gives the area. After 
all , we clearly have 

det(w, v) = - det(u, w), 

so sometimes det will be negative! Indeed, it is easy to see that our "deriva­
tion'' made all sorts of assumptions (that w2 was positive, that B had a positive 
coordinate, etc.) Nevertheless, it seems likely that det(u, w) is± the area; the 
next problem gives an independent proo( 

5. (a) If v points along the positive horizontal axis, show that det( v, w) is the 
area of the parallelogram spanned by v and w for w above the horizontal 
axis ( w2 > 0), and the negative of the area for w below this axis. 

(b) If Re is rotation by an angle of e (Problem J ), show that 

det(Rev, Rew)= det(v, w). 

Conclude that det(u, w) is the area of the parallelogram spanned by 
v and w \vhen the rotation from v to w is counterclockwise, and the 
negative of the area when it is clockwise. 

6. Show that 

and that 

det(u, w + z) = det(u, w) + det(u, z) 

det(u + w, z) = det(u, z) + det(w, z) 

a det(v, w) = det(a · v, w) = det(u, a· w). 

7. Using the method of Problem 3, show that 

det(v, w) = llvll · llwll · sine , 

which is also obvious from the geometric interpretation (Figure 10). 
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APPENDIX 2. TH E CONIC SECTIONS 

Although we will be concerned almost exclusively with figures in the plane, 
defined formally as the set of all pairs of real numbers, in this Appendix we want 
to consider three-dimensional space, which we can describe in terms of triples of 
real numbers, using a "three-dimensional coordinate system ," consisting of three 
straight lines intersecting at right angles (Figure 1 ). Our horizontal and vertical axes 
now mutate to two axes in a horizontal plane, with the third axis perpendicular to 
both. 

One of the simplest subsets of this three-dimensional space is the (infinite) cone 
illustrated in Figure 2; this cone m ay be produced by rotating a "generating line," 
of slope C say, around the third axis. 

FIGURE2 

For any given first two coordinates x and y, the point (.x, y , 0) in the horizontal 

plane has distance Jx2 + y2 from the origin, and thus 

(I) (x, y , z) is on the cone if and only if z = ±CJ .x2 + y 2
. 

\tVe can descend from these three-dimensional vistas to the more familiar two­
dimensional one by asking what happens when we intersect this cone with some 
plane P (Figure 3). 

FI GU RE 3 

Ir the plane is parallel to the horizontal pla11c, there's certa inly no mystery- the 
intersection is just a circle. Otherwise, the plane P intersects the horizontal plane 
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in a straight line. We can make things a lot simpler for ourselves if we rotate 
everything around the vertical axis so that this intersection line points straight out 
from the plane of the paper, while the first axis is in the usual position that we 
are familiar with. The plane P is thus viewed "straight on," so that all we see 
(Figure 4) is its intersection L with the plane of the first and third axes; from this 
view-point the cone itself simply appears as two straight lines. 

If this line L happens to be vertical, consisting of all points (a, z) for some a, 

then equation (1) says that the intersection of the cone and the plane consists of 
all points (a,y,z) with 

which is an hyperbola. 

Otherwise, in the plane of the first and third axes, the line L can be described 
as the collection of all points of the form 

(x, Mx + B), 

where M is the slope of L. For an arbitrary point (x, y, z) it follows that 

(2) (x, y, z) is in the plane P if and only if z = Mx + B. 

Combining (1) and (2), we see that (x, y, z) is in the intersection of the cone and 
the plane if and only if 

Mx + B = ±cff+ y2. 

Now we have to choose coordinate axes in the plane P. We can choose L as the 
first axis, measuring distances from the intersection Q with the horizontal plane 
(Figure 5); for the second axis we just choose the line through Q parallel to our 
original second axis. If the first coordinate of a point in P with respect to these 
axes is x, then the first coordinate of this point with respect to the original axes 
can be written in the form 

ax+ f3 

for some a and f3. On the other hand, if the second coordinate of the point with 
respect to these axes is y, then y is also the second coordinate with respect to the 
original axes. 

Consequently, (*) says that the point lies on the intersection of the plane and the 
cone if and only if 

M(ax + f3) + B = ±CJ(ax + f3) 2 + y2. 

Although this looks fairly complicated, after squaring we can write this as 

C2_v2 - a 2(M2 
- C2)x 2 + Ex + F = 0 

for some E and F that we won't bother writing out. 

Now Problem 4-16 indicates that this is either a parabola, an ellipse, or an 
hyperbola. In fact, looking a little more closely at the solution, ,ve see that the 
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values of E and F are irrelevant: 

( 1) If M = ±C we obtain a parabola; 
(2) If C2 > M 2 we obtain an ellipse; 
(3) If c2 < M 2 

WC obtain an hyperbola. 

These analytic conditions arc easy to interpret geometrically (Figure 6): 

(1 ) If our plane is parallel to one of the generating lines of the cone we obtain 
a parabola; 

(2) If our plane slopes less than the generating line of the cone (so that our 
intersection omits one half of the cone) we obtain an ellipse; 

(3) If our plane slopes more than the generating line of the cone we obtain an 
hyperbola. 

FIGURE6 

In fact, the very names of these "conic sections" are related to this description. 
The word Jwrabola comes from a Greek root meaning 'alongside,' the same root 
that appears in parable, not to mention paradig1n, paradox, paragon, paragraph, 
paralegal, parallax, parallel, and even parachute. Ellipse comes from a Greek root 
meaning 'defect,' or omission, as in ellipsis (an omission, ... or the dots that in­
dicate it). And hyjJerbola comes from a Greek root meaning 'throwing beyond,' or 
excess. \\Tith the currency of words like hyperactive, hypersensitive, and h)verven­
tilate, not to mention hype, one can probably say, without risk of hyperbole, that 
this root is familiar to almost everyone.* 

PROBLEl\IS 

1. Consider a cylinder with a generator perpendicular to the horizontal plane 
(Figure 7); the only requirement for a point (x, y. z) to lie on this cylinder is 

* ,\!though the corrcspm1uc1HT between these roots and the gcomctric picture correspond so beau­
tif11lly, !cir the sake of dull accuracy it ha s to be reported that the Gree-ks originally applied the words 
tu describe fi:atures of cntain equations im·oh-ing the conic sections. 
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that (x, y) lies on a circle: 

2 '") '") 
x +y-=C-. 

Show that the intersection of a plane with this cylinder can be described by 
an equation of the form 

'") '") '") 
(ax+ {3)~ + y- = c-. 

What possibilities are there? 

2. In Figure 8, the sphere S1 has the same diameter as the cylinde1; so that its 
equator CI lies along the cylinder; it is also tangent to the plane P at F1. 
Similarly, the equator C2 of S2 lies along the cylinder, and S2 is tangent to P 
at F2. 

(a) Let z be any point on the intersection of P and the cylinder. Explain 
why the length of the line from z to F1 is equal to the length of the vertical 

FIGURE s line L from.: to C1. 
(b) By proving a similar fact for the length of the line from z to F2, show that 

the distance from .: to F1 plus the distance from z to F2 is a constant, so 
that the intersection is an ellipse, with foci F1 and F2. 

3. Similarly, use Figure 9 (a) to prove geometrically that the intersection of a 
plane and a cone is an ellipse when the plane intersects just one half of the 
cone. Similarly, use (b) to prove that the intersection is an hyperbola when 
the plane intersects both halves of the con~. 

(a) (b) 

F J<; L' RE9 
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APPENDIX 3. POLAR COORDINATES 

In this chapter we've been acting all along as if there's only one way to label 
points in the plane with pairs of numbers. Actually, there are many different 
ways, each giving rise to a different "coordinate system." The usual coordinates 
of a point are called its cartesian coordinates, after the French mathematician 
and philosopher Rene Descartes (1596- 1650), who first introduced the idea of 
coordinate systems. In many situations it is more convenient to introduce polar 
coordinates, which are illustrated in Figure I. To the point P we assign the polar 
coordinates (r, 8), where r is the distance from the origin O to P , and e is the 
measure, in radians, of the angle between the horizontal axis and the line from 
O to P. This e is not determined unambiguously. For example, points on the 
right side of the horizontal axis could have either e = 0 ore = 2n; moreover, e 
is completely ambiguous at the origin O. So it is necessary to exclude some ray 
through the origin if we want to assign a unique pair (r, 8) to each point under 
consideration. 

On the other hand, there is no problem associating a unique point to any pair 
(r. 8) . In fact, it is possible (though not approved of by all) to associate a point 
to (r, 8) when r < 0, according to the schem e indicated in Figure 2. Thus, it 
always makes sense to talk about "the point with polar coordinates (r, 8)," (with 
or without the possibility of r < 0), even though there is some ambiguity when we 
talk about "the polar coordinates" of a given point. 

p 

P is the point with polar coordinates (r, e,) 
and also the point with polar coordinates 
(-r, e2) . 

FI CU R E 2 

It is clear from Figure I (and Figure 2) that the point with polar coordinates 
(r , 0) has cartesian coordinates (x, y) given by 

x = r ros e, y = r sin e . 
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Conversely, if a point has cartesian coordinates (x, y ), then (any of) its polar co­
ordinates (r, ()) satisfy 

r = ±Jx2 + y2 
y 

tan()= -
x 

if x =J. 0. 

Now suppose that f is a function . Then by the graph off in polar co­
ordinates we mean the collection of all points P with polar coordinates (r, ()) 

satisfying r = f (()). In other words, the graph of f in polar coordinates is the 
collection of all points with polar coordinates (!(()), ()). No special significance 
should be attached to the fact that we are considering pairs (!(()),()),with f (()) 
first, as opposed to pairs (x, f (x)) in the usual graph of f; it is purely a matter of 
convention that r is considered the first polar coordinate and () is considered the 
second. 

The graph of f in polar coordinates is often described as "the graph of the 
equation r = f (())." For example, suppose that f is a constant function, f (()) = a 

for all (). The graph of the equation r = a is simply a circle with center O and 
radius a (Figure 3). This example illustrates, in a rather blatant way, that polar 
coordinates are likely to make things simpler in situations that involve symmetry 
with respect to the origin O. 

The graph of the equation r =()is shown in Figure 4. The solid line corresponds 
to all values of() :::::. 0, while the dashed line corresponds to values of () ::::: 0. 

FIGURE4 
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Spiral of Archimedes 

As another example involving both positive and negative r, consider the graph of 
the equation r = cos(). Figure 5(a) shows the part that corresponds to O ::::: () ::::: JT /2 
Figure 5(b) shows the part corresponding to n/2 ::::: () ::::: n; here r < 0. You can 
check that no new points are added for () > JT or () < 0. It is easy to describe 
this same graph in terms of the cartesian coordinates of its points. Since the polar 
coordinates of any point on the graph satisfy 

,. =cos(), 
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and hence 

r 2 = r cose , 

its cartesian coordinates satisfy the equation 

x2 + y2 = x 

which describes a circle (Problem 4-16). [Conversely, it is clear that if the cartesian 
coordinates of a point satisfy x 2 + y 2 = x then it lies on the graph of the equation 
r = cos e.J 

Although we've now gotten a circle in two different ways, we might well be 
hesitant about trying to find the equation of an ellipse in polar coordinates. But 
it turns out that we can get a very nice equation if we choose one of the foci as 
the origin. Figur 6 shows an ellipse with one focus at O, with the sum of the 
distances of all points from O and the other focus f being 2a . We've chosen f to 
the left of O, with coordinates written as 

(-2w, 0). 

0Afe have O .::: s < 1, since we mu t have 2a > distance from f to 0 ). 

FIGURE 6 

Th di tance r from (x, y) to O is given by 

(1) 

By as umption, the di tan e from (x, y) to f i 2a - r , h nee 

(2a - r) 2 = (x - [-2w ])2 + y2, 

or 

(2) 4a2 
- 4ar + r2 = x 2 + 4sax + 4s 2a2 + 2 

ublra Ling (1) fr m (2) and dividing by 4a , w g t 

a - r = sx + s2a, 
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or 

which we can write as 

r = a - 8X - 8
2a 

= (1 - t:2)a - 8X, 

(3) r=A-8x, for A = (1 - 8
2)a. 

Substituting r cos e for x, we have 

and thus 

(4) 

In Chapter 4 we found that 

(5) 

r=A-8rcos8, 

r(l + 8 cos&)= A, 

A 
r=----

l + 8 cos e 

x2 y2 
-+-=1 a2 b2 

is the equation in cartesian coordinates for an ellipse with 2a as the um of the 
distances to the foci, but with the foci at (-c, 0) and (c, 0) , where 

b = .Ja2 - c2 . 

Since the distance between the foci is 2c, when this ellipse i moved left by c 
units, so that the focus (c, 0) is now at the origin, we get the ellipse (4) when we 
take c = w or 8 = c/a (with equation (3) determining A). Conver ely, gi en 
the ellipse described by (4), for the corresponding equation (5) the value of a is 
determined by (3), 

A 
a=--2, 

1- 8 

and again using c = 8a, we get 

b = J a2 - c2 = J a2 - 8 2a2 = a.J 1 - 8 2 = A . 
J i - 8 2 

Thu , we can obtain a and b, the lernrths of the major and minor ax , imm diat 1 
from 8 and A. 

The numb r 

th eccentricity f th 
major and minor 

llip , d t rmin th " hap " of th 
), whil th numb r A d t rmin it 

llip (th rati f th 
l Z ' a l \ 11 by ( 4). 
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PROBLEMS 

1. If two points have polar coordinates (r1, B1 ) and (r2, B2), show that the dis­
tance d between them is given by 

d 2 = r1 2 + r} - 2r1r2 cos(B1 - B2). 

What docs this say geometrically? 

2. Describe the general features of the graph of f in polar coordinates if 

(i) f is even. 
(ii) f is odd. 
(iii) f(B) = f (B + n) . 

3. Sketch the graphs of the following equations. 

(i) r = a sin e. 
(ii) r = a sec e. Hint: It is a very simple graph! 
(iii) r = cos 2e. Good luck on this one! 
(iv) r = cos 3e. 
(v) r = I cos 2e1. 
(vi) r = lcos3e1. 

4. Find equations for the cartesian coordinates of points on the graphs (i), (ii) 
and (iii) in Problem 3. 

5. Consider a hyperbola, where the difference of the distance between the two 
foci is the constant 2a, and choose one focus at O and the other at (-2w, 0). 
(In this case, we must have t: > 1 ). Show that we obtain the exact same 
equation in polar coordinates 

6. 

A 
r= ----

1 + c: cos e 
as we obtained for an ellipse. 

Consider the set of points (x, y) such that the distance (x, y) to O is equal to 
the distance from (x, y) to the line y = a (Figure 7). Show that the distance 
to the line is a - r cos e, and conclude that the equation can be written 

a = ,. (1 + cos e) . 

Notice that this equation for a parabola is again of the same form as (4). 

7. Now, for any A and t: , consider the graph in polar coordinates of the equa­
tion (4), which implies (3). Show that the points satisfying this equation satisfy 

(I - c: 2)x 2 + y2 = A 2 - 2/\c:x. 

Using Problem 4-16, show that this is an ellipse for F < 1, a parabola for 
c = 1, and a h)11crhola for c > 1. 
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8. (a) Sketch the graph of the cardioid r = 1 - sine. 
(b) Show that it is also the graph of r = -1 - sine. 
(c) Show that it can be described by the equation 

x2 + y2 = J x2 + y2 _ y, 

and conclude that it can be described by the equation 

(x2 + y2 + y )2 = x2 + y2 

9. Sketch the graphs of the following equations. 

(i) r = 1 - i sin e. 
(ii) r = 1 - 2 sin e. 
(iii) r = 2 + cos e. 

10. (a) Sketch the graph of the Lemniscate 

r 2 = 2a2 cos 2e. 

(b) Find an equation for its cartesian coordinates. 
(c) Show that it is the collection of all points P in Figure 8 sati fying 

d1d2 = a2. 
(d) Make a guess about the shape of the curves formed by the et of all P 

satisfying d1 d2 = b, when b > a2 and when b < a2. 



CHAPTER 

PROVISIONAL DEFINITION 

5 LIMITS 

The concept of a limit is surely the most important, and probably the most difficult 
one in all of calculus. The goal of this chapter is the definition of limits, but we 
are, once more, going to begin with a provisional definition; what we shall define 
is not the word "limit'' but the notion of a function approaching a limit. 

The function f approaches the limit I near a, if we can make f (x) as close as we 
like to I by requiring that x be sufficiently close to, but unequal to, a. 

Of the si.x functions graphed in Figure 1, only the first three approach I at a. 

Notice that although g(a) is not defined, and h(a) is defined ''the wrong way," it 
is still true that g and lz approach I near a. This is because we explicitly ruled 
out, in our definition, the necessity of ever considering the value of the function 
at a�it is only necessary that f (x) should be close to I for x close to a, but unequal 

to a. \Ve are simply not interested in the value off (a), or even in the question of 
whether f (a) is defined. 

a a a 

/ 

Cl a 

FIGURE I 

One convenient way of picturing the assertion that f approaches I near a is 
provided by a method of drawing functions that was not mentioned in Chapter 4. 
In this method, we draw two straight lines, each representing R, and arrows from 
a point x in one, to f(x) in the other. Figure 2 illustrat('S such a picture for two 
d ifleren t fu 11ct ions. 

90 
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c -2 -1 0 I 2 

~\ 1 I llllN\\ I l !!IZ 
-2 -1 0 I 2 

(a) f(x) = c (b) f (x) = x 3 

FIGURE2 

Now consider a function f whose drawing looks like Figure 3. Suppose we ask 
that f(x) be close to I, say within the open interval B which has been drawn 
in Figure 3. This can be guaranteed if we consider only the numbers x in the 
interval A of Figure 3. (In this diagram we have chosen the largest interval which 
will work; any smaller interval containing a could have been chosen instead.) If we 

l / 

B' 

~ 
a 

~A' 

FIGURE 3 FIGURE4 

choose a smaller interval B' (Figure 4) we will, u~ually, have to choose a smaller A', 

but no matter how small we choose the open interval B, there is always supposed 
to be some open interval A which works. 

A similar pictorial interpretation is possible in terms of the graph of f, but in 
this case the interval B must be drawn on the vertical axis, and the set A on the 
horizontal axis. The fact that f (x) is in B when x is in A means that the part of the 
graph lying over A is contained in the region which is bounded by the horizontal 
lines through the end points of B; compare Figure 5(a), where a valid interval A 

has been chosen, with Figure 5(b), where A is too large. 

B 

A A 
a 

(a) (b) 

FIG U RE S 
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FIG URE 6 

To take a specific simple example, let's consider the function f (x) = 3x with 
a = 5 (Figure 6). Presumably f should approach the limit 15 near 5- we ought 
to be able to get f (x) as close to 15 as we like if we require that x be sufficiently 
close to 5. To be specific suppose we want to make sure that 3x is within 1~ of 
15. This means that we want to have 

I 1 
15 - 10 < 3x < 15 + 10, 

which we can also write as 

1 1 
-- < 3x - 15 < -. 

10 10 

To do this we just have to require that 

1 1 
-- < x -5 < -

30 30' 

or simply Ix - 51 < 3
1
0 ; There is nothing special about the number /0 • It is just as 

easy to guarantee that 13x - 151 < i6o; simply require that Ix - 51 < 36o· In fact, 
if we take any positive num bcr c we can make I 3x - 151 < c simply by requiring 
that Ix - 51 < c/3. 

There's also nothing special about the choice a = 5. It's just as easy to sec that 
f approaches the limit 3a at a for any a: To ensure that 

we just have to require that 

13x - 3al < c 

c 
Ix - al < 3. 

Naturally, the same sort of argument works for the function f (x) = 3, 000, OOOx. 
We just have to be 1,000,000 times as careful, choosing Ix - a I < c /3,000,000 in 
order to ensure that If (x) - a I < c. 

The function f (x) = x 2 is a little more interesting. Presumably, we should be 
able to show that f (x) approaches 9 near 3. This means that we need to shmv 
how to ensure the inequality 

lx 2 
- 91 < c 

for any given positive number c by requiring Ix - 31 to b(:' small enough. The 
obvious first step is to write 

lx 2 
- 91 = Ix - 31 · l.r + 31, 

which gives us the useful Ix - 31 factor. Unlike the situation \\'ith the previous 
examples, however, the extra factor here is l.r+31, \vhich isn't a c011vc11icnt constant 
like 3 or 3,000,000. But the only crucial thing is to make sure that \\T can say 
.something about how big Ix + 31 is. So the first thing we 'II do is to require that 
Ix - 31 < I. Once wc'\'C' specified that Ix - 31 < I, or 2 < .r < 4, \\'C have 
5 < x + 3 < 7 and we've guaranteed that Ix+ 31 < 7. So \\"C uow hm-c 

l.r 2 
- 91 = l.r - 31 . l.r + 31 < 7 Ix - 31, 
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which shows that we have Ix 2 - 91 < £ for Ix - 31 < £ /7, provided that we 'vc 
also required that Jx - 31 < 1. Or, to make it look more official: we require that 
Ix - 31 < min(c/7, 1). 

The initial specification Ix - 31 < 1 was simply made for convenience. \\Te 
could just as well have specified that Ix - 31 < /0 or Ix - 3 i < IO or any other 
convenient number. To make sure you understand the reasoning in the previous 
paragraph, it is a good exercise to figure out how the argument would read if we 
chose Ix - 31 < 10. 

Our argument to show that f approaches 9 near 3 will basically ,vork to show 
that f approaches a2 near a for any a, except that we need to worry a bit more 
about getting the proper inequality for Ix + a I. We first require that Ix - a I < 1, 
again with the expectation that this will ensure that Ix + a I is not too large. In 
fact, Problem 1-12 shows that 

Ix I - la I .:::: Ix - a I < I, 

so 

lxl<l+lal, 

and consequently 

Ix+ al.:::: lxJ + Jal < 2Jal + I, 

so that we then have 

lx 2 
- a 21 = Ix - al· Ix+ al 

< Ix - al· (21al + 1), 

which shows that we have lx 2 -a21 <£for Ix-al < £/(21al + 1 ), provided that we 
also have Ix - al < 1. Officially: we require that Ix - al < min(£/(21al + 1 ). 1). 

In contrast to this example, we'll now consider the function f (x) = 1 /x (for 
x # 0), and try to show that f approaches I /3 near 3. This means that we need 
to show how to guarantee the inequality 

1
_!__~1<£ 
x 3 

for any given positive number £ by requiring Ix - 31 to be small enough. \ Ve begin 
by writing 

1_!__~1=1~1=~--l ·lx-31, 
x 3 3x 3 lxl 

giving us the nice factor Ix - 31, and even an extra j for good measure, along with 
the problem factor 1 / l.r I. In this case, we first need to make sure that Ix I isn't too 
small, so that 1 /Ix I won't be too large. 

\\Tc can first require that Ix - 31 < I, because this gives 2 < x < 4, so that 

I 

4 
< - < - . 

x 2 
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possible values for x 

/; 
a<O 

FIGURE? 

FJ<;U R E 8 

a 

2 

a>O 

which not only tells us that ~ < ~' but also that x > 0, which is important in 
x 2 

1 1 
order to conclude that - < -. \Ve now have 

lxl 2 

l~-~1=~·-1 
·lx-31<~1x-31, 

x 3 3 lxl 6 

which shows that we have 11/x - 1 /31 < c for Ix - 31 < 6c, provided that we've 
also required that Ix - 31 < 1. Or, to make it look official again: we require that 
Ix - 31 < min(6c, I). 

If we instead wanted to show that f approaches -1 /3 near -3, we would begin 
by stipulating that Ix - ( - 3) I < 1, giving -4 < x < -2, once again implying that 
11 / x I < I /2, so that everything works as before. 

To show in general that f approaches I/ a near a for any a we proceed in 
basically the same way, except that, again, we have to be a little more careful 
in formulating our initial stipulation. It's not good enough simply to require that 
Ix -a I should be less than 1, or any other particular number, because if a is close to 
O this would allow values of x that are negative (not to mention the embarrassing 
possibility that x = 0, so that f (x) isn't even defined!). 

The trick in this case is to first require that 

lal 
lx-al< 2 ; 

in other words, we require that x be less than half as far from O as a (Figure 7). 
You should be able to check first that x =I- 0 and that 1/lxl < 2/ial, and then work 
out the rest of the argument. 

\i\'ith all the work required for these simple examples, you may have begun to 
quail at the prospect of tackling even more complicated functions. But that won't 
really be necessary, since we will eventually have some basic theorems that we can 
rely on. Instead of worrying about the unpleasant algebra that might be invoh·ed 

in functions like f(x) = x 3 or J(x) = l/x 3, we'll turn our attention to some 
examples that might appear to be even more frightening. 

Consider first the function f (x) = x sin 1 / x (Figure 8). Despite the erratic 
behavior of this function near O it is clear, at least intuitively, that f approaches 
1 = 0 near a = 0 (remember that our provisional definition specifically exempts 
x = a from consideration, so it doesn't matter that this function isn't even defined 
at 0). We want to show that we can get f (x) = x sin 1 /x as close to O as desired 
if we reciuire that x be sufficiently close to 0, but =I- 0. In other words, for any 
number c > 0, we want to show that we can ensure that 

1/(x) - 01 = Ix sin~ I < £ 

by rcquiri11g tliat Ix I = Ix - 01 is sufficiently small (hut =I- 0). But this is easy. Since 

lsin ~ I ~ I, for all x =I- 0, 
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we have 

I x sin ~ I S Ix I, for all x -=J. 0, 

o we can m ake Ix sin 1 / x I < £ simply by requiring that Ix I < £ and -=J. 0. 

For the function f (x) = x 2 sin 1 / x (Figure 9) it seems ven clearer that f ap­
proaches O near 0. If, for example, we want 

I 

2 . 1 I 1 x sm - < -
x 10 ' 

then we certainly need only require that Ix I < /0 and x -=J. 0, since this implies 

that lx 2
1 < i6o and consequently 

x 2 sin- < lx 2
1 < - < -. 

I 

1 i 1 1 
x - 100 10 

(:Ne could do even better, and allow lx l < 1/ v'lo and x -=J. 0, but there is no 
particular virtue in being as economical as possible.) In general, if £ > 0, to 
ensure that 

we need only require that 

Ix I < £ and x -=J. 0, 

provided that £ .::: 1. If we are given an £ which i great r than 1 (it might b , e en 
though it is " mall" c' which ar of intere t), then it doe not uffice to require 
that Ix I < £, but it rtainly suffic to r quire that Ix I < 1 and x -=J. 0. 

As a third example, consider the function f (x) = vTxJ in 1/x (Figur 10). In 

ord r to make I vTxJ in 1 / x I < £ we an require that 

Ix I < £
2 and x -=J. 0 

(th alg bra i 1 ft t you). 
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Finally, let us consider the function f (x) = sin 1 / x (Figure 11 ). For this function 
it is false that f approaches O near 0. This amounts to saying that it is not true 
for every number E > 0 that we can get If (x) - 01 < E by choosing x sufficiently 
small, and =f. 0. To show this we simply have to find one E > 0 for which the 
condition If (x) - 01 < E cannot be guaranteed, no matter how small we require 

Ix I to be. In fact, E = i will do: it is impossible to ensure that If (x) I < ! no 
matter how small we require Ix I to be; for if A is any inten·al containing 0, there 

is some number x = 1/(!rr +2nrr) which is in this interval, and for this x we have 
f (x) = 1. 

FIGURE II 

1 
2 

A 

This same argument can be used (Figure 12) to show that f docs not approach 
mry number near 0. To show this we must again find, for any particular number l , 
some number E > 0 so that If (x) - /I < E is not true, no matter how small x is 

required to be. The choice E = i works for any number/; that is, no matter how 

small we require Ix I to be, we cannot ensure that If (x) - / I < i. The reason is, 
that for any interval A containing O we can find both XJ and x2 in this interval 
with 

f(x1) = 1 and 

namely 

X1=----
!rr + 2,m 

and x2=----i7r + 2nm 

for large enough 11 and m. But the inte1Yal from I - 1 to I + i cannot contain 
both -1 and 1, since its total length is only 1 ; so we cannot hm·c 

11 - / I < 1 and also I - 1 - / I < i , 
no matter what I is. 

The phenomcn011 exhibited by f (x) = sin I /x near O can occur in many ways. 
If we consider the !'unction 

f(x) = I ~: x irrational 
x rational, 



.·!· ( {x, 
•• x) = 

•• •••• 0, 

FIGURE 13 

x rational 
x irrational 

f(x) = 1, x > 0 

b a 

--------1-] 
f (x) = - 1, x < 0 

FICURE 14 
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then, no matter ,,·hat a is, f does not approach any number I near a. In fact, we 

cannot make I .f (x) - / I < } no matter how dose we bring x to a, because in any 
interval around a there are numbers x with f (x) = 0, and also numbers x with 
f(x) = 1, so that we would need 10 - /I <±and also 11 - /I < ±-

An amusing variation on this behavior is presented by the function shown in 
Figure 13: 

f (x) = I x. 
0, 

x rational 
x irrational. 

The beh,l\'ior of this function is ''opposite" to that of g(x) = sin 1/x; it ap­
proaches O at 0, but docs not approach any number at a, if a =fa 0. By now you 
should have no difficulty convincing yourself that this is true. 

\ Ve conclude with a very simple example (Figure 14): 

f (x) = 1-I, 
l ' 

x < 0 
x > 0. 

If a > 0, then f approaches l near a: indeed, to ensure that If (x) - 11 < c it 
certainly suffices to require that Ix - a I < a, since this implies 

-a < x - a 
or O < x 

so that f (x) = 1. Similarly. if b < 0, then f approaches - l near b: to ensure 
that IJ(x)- (-1)1 <cit suffices to require that 1x -bl < -b. Finally, as you may 
easily check, f does not approach any number near 0. 

The time has now come to point out that of the many demonstrations about 
limits which we have given, not one has been a real proo( The fault lies not 
with our reasoning, but with our definition. If our provisional definition of a 
function was open to criticism. our provisional definition of approaching a limit 
is even more vulnerable. This definition is simply not sufficiently precise to be 
used in proofs. It is hardly dear how one "makes" f (x) dose to I (whatever 
"dose" means) by "requiring'' x to be sufficiently dose to a (howenT dose "suffi­
ciently" dose is supposed to be). Despite the criticisms of our definition you may 
feel (I certainly hope you do) that our arguments ,,·ere nevertheless quite com·inc­
ing. In order to present any sort of argument at all, we hmT been practically forced 
to invent the real definition. It is possible to arriw· at this definition in several steps. 
each one clarifying some obscure phrase which still remains. Let us begin, once 
again, with the provisional definition: 

The function f approaches the Jim it I ne,ir a, if we can make f (x) as close 
as \\'l' like to I by requiring that x \w sufficiently dose to, but unequal to. a. 

The very first change ,,·hich \\'t' made in this definition ,ras to note that making 
f(x) close to I meant making IJ(x) - 11 small, and similarly lor.r and a: 
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The function f approaches the limit I near a, if we can make If (x) - I I as 
small as we like by requiring that Ix - a I be sufficiently small, and x -=/=- a. 

The second, more crucial, change was to note that making If (x) - I I "as small as 
we like" means making If (x) - I I < E for any E > 0 that happens to be given us: 

The function f approaches the limit I near a, if for every number E > 0 we 
can make If (x) - I I < E by requiring that Ix - a I be sufficiently small, and 
x-=/=- a. 

There is a common pattern to all the demonstrations about limits which we have 
given. For each number E > 0 we found some other positive number, 8 say, with 
the property that if x -=/=- a and Ix - a I < 8, then If (x) - I I < E. For the function 
f (x) = x sin 1 /x (with a = 0, I = 0), the number 8 was just the number t:; 

for f(x) = /Gl sin 1/x, it was t:2 ; for f(x) = x2 it was the minimum of 1 and 
t:/(21al + 1). In general, it may not be at all clear how to find the number 8, 
given E, but it is the condition Ix - a I < 8 which expresses how small "sufficiently" 
small must be: 

The function f approaches the limit I near a, if for every E > 0 there is some 
8 > 0 such that, for all x, if Ix - al < 8 and x-=/=- a, then If (x) - II < E. 

This is practically the definition we will adopt. \ Ve will make only one trivial 
change, noting that ''Ix - al < 8 and x -=/=- a" can just as well be expressed "O < 
Ix - al< 8." 

The function f approaches the limit l near a means: for every E > 0 there 
is some 8 > 0 such that, for all x, if O < Ix - a I < 8, then If (x) - I I < E. 

This definition is so important (everything we do from now on depends on it) that 
proceeding any further without knowing it is hopeless. If necessary memorize it, 
like a poem! That, at least, is better than stating it incorrectly; if you do this you 
arc doomed to give incorrect proofs. A good exercise in giving correct proofs is to 
review every fact already demonstrated about functions approaching limits, giving 
formal proofs of each. In most cases, this will merely involve a bit of rewording 
to make the arguments conform to our formal definition all the algebraic work 
has been clone already. \Nhen proving that f does not approach I at a, he sure to 
negate the definition correctly: 

If it is not true that 

then 

for <·very E > 0 thc-re is some 8 > 0 such that, for all .r, if O < l.r - a I < 8, 
then If (x) - II < E, 
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there is some s > 0 such that for every 8 > 0 there is some x which satisfies 
0 < Ix - al < 8 but not If (x) - ll < s. 

Thus, to show that the function f (x) = sin 1 / x does not approach O near 0, we 
consider s = ~ and note that for every 8 > 0 there is some x with O < Ix - 01 < 8 

but not I sin 1/x -0 I< ! - namely, an x of the form l/(rr/2 + 2nn), where 11 is 
so large that 1 / (rr /2 + 2nn) < 8. 

As a final illustration of the use of the definition of a function approaching a 
limit, we have reserved the function shown in Figure 15, a standard example, but 
one of the most complicated: 

f(x) = I ~1q. 
x irrational, 0 < x < 1 
x = p/q in lowest terms, 0 < x < 1. 

(Recall that p / q is in lowest terms if p and q are integers with no common factor 
and q > 0.) 

I 
2 

I • 3 

I • 4 
I • • I 5 

6 I • 
7 • • 

I 1 I 2 
s 4 3 s 
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{ 
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f(x) = f, 
• 

• 
• • 

• 

3 2 3 4 
s 3 4 s 

x irrational 

p . 1 x = - m owest terms 

• • 

q 

For any number a, with O < a < 1, the function f approaches O at a. To prove 
this, consider any number s > 0. Let 11 be a natural number so large that 1 / n S s. 
Notice that the only numbers x for which If (x) - 01 < s could be false are: 

11213 1234 
2; 3·3; 4·4; 5'5'5'5; ll 

n - 1 

ll 

(If a is rational, then a might be one of these numbers.) However many of these 
numbers there may be, there are, at any rate, only finitely many. Therefore, of all 
these numbers, one is closest to a; that is, lp/q -al is smallest for one p/q among 
these numbers. (If a happens to be one of these numbers, then consider only the 
values Ip/ q - a I for p / q -=/=- a.) This closest distance may be chosen as the 8. For 
if O < Ix - a I < 8, then x is not one of 

1 n - 1 
2' ... ' n 
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THEOREM 1 

PROOF 

,~~111 
II - ml ll - 111! 

lt·ngth -
2 

- length -
2

-

FI (; L' R E I 6 

and therefore If (x) - Oi < £ is true. This completes the proo( Note that our 
description of the 8 which vvorks for a given £ is completely adequate- there is no 
reason why we must give a formula for 8 in terms of £. 

Armed with our definition, we are now prepared to prove our first theorem; you 
have probably assumed the result all along, which is a very reasonable thing to do. 
This theorem is really a test case for our definition: if the theorem could not be 
proved, our definition \vould be useless. 

A function cannot approach two different limits near a. In other words, if f 
approaches I near a, and f approaches m near o , then I = m. 

Since this is our first theorem about limits it will certainly be necessary to translate 
the hypotheses according to the definition. 

Since f approaches I near a, we know that for any £ > 0 there is some number 
81 > 0 such that, for all x, 

if O < Ix - a I < 81, then If (x) - I I < £. 

\Ve also know, since f approaches m near a, that there is some 82 > 0 such that, 
for all x, 

if O < Ix - a I < 82, then If (x) - m I < £. 

\ Ve have had to use two numbers, 81 and 82, since there is no guarantee that the 8 
which works in one definition will work in the other. But, in fact, it is now easy to 
conclude that for any £ > 0 there is some 8 > 0 such that, for all x, 

if O < Ix - al< 8, then lf(x) - II <£and lf(x) - ml<£; 

we simply choose 8 = min(81, 82). 

To complete the proof we just ha\T to pick a particular £ > 0 for which the t\vo 
conditions 

lf(x) - 11 <£ and lf(x)-ml <£ 

cannot both hold, if I -=f. m. The proper choice is suggested by Figure 16. If 
I -=f. m , so that !/ - m I > 0, we can choose II - m I /2 as our £. It follows that there 
is a 8 > 0 such that , for all x, 

II-ml 
if o < Ix - o I < 8, then If (x) - I I < 

2 
II - ,,, I 

and lf(x) - ml < --,.,-

This implies that for O < Ix - a I < 8 we have 

II - ,,, I = II - f (x) + f (x) - m I :::; II - f (x) I + If (x) - m I 
II - 111 I II - m I 

< 2 + 2 
= II - mf, 

a contradiction. I 
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The number I which f approaches near a is denoted by lim f (x) (read: the limit 
x ---+ a 

of f (x) as x approaches a ). This definition is possible only because of Theorem 1, 
which ensures that lim f (x) never has to stand for t'No different numbers. The 

X->(I 

equation 
lim f(x) = I 
x---+a 

has exactly the same meaning as the phrase 

f approaches I near a. 

The possibility still remains that f does not approach I near a, for any /, so that 
lim f (x) = I is false for every number /. This is usually expressed by saying that 
x ---+ a 

"lim f (x) does not exist." 
x---+a 

Notice that our new notation introduces an extra, utterly irrelevant letter x, 
which could be replaced by t, y, or any other letter which does not already 
appear~ the symbols 

lim f(x), lirn f (t), lim f (y). 
x ---+ a t---+a y---+a 

all denote precisely the same number, which depends on f and a, and has nothing 
to do with x, t, or y (these letters, in fact, do not denote anything at all). A more 
logical symbol would be something like lim f, but this notation, despite its brevity, 

(/ 

is so infuriatingly rigid that almost no one has seriously tried to use it. The notation 
lim f(x) is much more useful because a function f often has no simple name, even 
x---+ a • 

though it might be possible to express f (x) by a simple formula involving x. Thus, 
the short symbol 

lim (x 2 + sin x) 
X---+ Cl 

could be paraphrased only by the awkward expression 

lim f, where f(x) = x 2 + sinx. 
a 

Another advantage of the standard symbolism is illustrated by the expressions 

lim x + r3, 
x---+a 

lim x + t 3
. 

t---+a 

Tht" first means the number which f approaches near a when 

f(x) = x + t 3 , for all x; 

the second means the number which f approaches near a when 

f(t) = x + r3, for all t. 

You should have little difficulty (especially if you consult Theorem 2) proving that 

lim x + t 3 = a + r3, 
x ---+ a 

limx + t 3 = x + a 3. 
t ---+ a 
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These examples illustrate the main advantage of our notation, which is its flex­
ibility In fact, the notation lim f (x) is so flexible that there is some danger of 

X-'> a 

forgetting what it really means. Here is a simple exercise in the use of this no-
tation, which will be important later: first interpret precisely, and then prove the 
equality of the expressions 

lim f (x) and lim f (a+ h). 
X-'> a h -'> 0 

An important part of this chapter is the proof of a theorem which will make 
it easy to find many limits, as we promised long ago. The proof depends upon 
certain properties of inequalities and absolute values, hardly surprising when one 
considers the definition of limit. Although these facts have already been stated in 
Problems 1-20, 1-2 I, and 1-22, because of their importance they will be presented 
once again, in the form of a lemma (a lemma is an auxiliary theorem, a result that 
justifies its existence only by virtue of its prominent role in the proof of another 
theorem). The lemma says, roughly, that if x is dose to xo, and y is dose to Yo, 

then x + y will be dose to xo + Yo, and xy will be dose to xoyo, and 1/y will be 
dose to l / YO· This intuitive statement is much easier to remember than the precise 
estimates of the lemma, and it is not unreasonable to read the proof of Theorem 2 
first, in order to see just how these estimates are used. 

LEMMA (J) If 

PROOF 

£ £ 
Ix - xol < 2 and IY - Yol < 2, 

then 

I (x + y) - (xo + Yo) I < £. 

(2) If 

£ 
Ix - xol < min (1, 8 

) and 
2(1Yol + I) IY - Yol < 2(1xol +I)' 

then 

(3) If Yo f. 0 and 

then y f. 0 and 

lxy - xoyol < £. 

. ( IYol slyol
2

) IY - Yol < mm 2 . -
2
- , 

I
~ - _!__ I < £. 
Y Yo 

( I ) J(x + y) - (xo + yo)I = l(x - xo) + (y - Yo)I 
£ £ 

::: Jx - .rol + IY - Yol < 2 + 2 = £ . 

(2) Since Jx - .rol < I we have 

Ix I - Jxo I ::: l.r - .ro I < I , 
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so that 

lxl < 1 + lxol. 

Thu 

lxy - xoyol = lx(y - Yo)+ Yo(x - xo)I 
:S lxl · ly -yol + IYol · Ix -xol 

8 8 

< (l + lxol). 2(1xol + 1) + IYol. 2(1Yol + 1) 

8 8 
< - + - = 8. 

2 2 
(3) We have 

IYol I YO 1 - IY I :s I Y - YO I < 2 , 

o IYI > IYol/2. In particular, y -=J. 0, and 

1 2 
- < -. 
IYI IYol 

Thus 

I 

~ - 2_ I = I YO - y I < 2- . _l_ . i I YO 1
2 

= 8. I 
Y Yo IYI · IYol IYol IYol 2 

THEOREM 2 If lim f (x) =land lim g(x) = m , then 
x-a x-a 

(1) lim(f + g)(x) = .[ + m ; 
x-a 

(2) lim (f · g)(x) = l · m. 
x-a 

Moreover, if m -=J. 0, then 

(3) lim (~) (x) = 2-. 
x-a g m 

PROOF The hypothesis m eans that for every 8 > 0 there are 81 , 82 > 0 such that, for 
all x , 

if O < Ix - a I < 81 , then If (x) - l I < 8, 

and if O < Ix - al < 82, then lg(x) - ml < i . 

This means (since, after all, 8 /2 i also a positive number) that there are 81 , 82 > 0 
such that, for all x , 

if O < Ix - a I < 81 , then If (x) - l I < ; , 

and ifO < Ix-al < 82, th n lg(x)-ml < f· 
Now l t 8 = min(81 82). If O < Ix - al < 8 then O < Ix - al < 81 and 
0 < Ix - a I < 82 are both true, o both 

8 
If (x) - /I < 2 and 

8 
lg(x) - ml < 2 
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are true. But by part (1) of the lemma this implies that IC!+ g)(x) - (l + m)I < E. 

This proves (1). 

To prove (2) we proceed similarly, after consulting part (2) of the lemma. If 
E > 0 there are 81 , 82 > 0 uch that, for all x , 

if O < Ix - al < 81, then If (x) - /I < min (1, 8 
) , 

2(1ml + 1) 

and if O < Ix - al < 82, then lg(x) - ml < 
8 

2(1ll + 1) 

Again let 8 = min(81 , 82). If O < Ix - al< 8, then 

If (x) - /I < min (1, 8 
) and 

2(1ml + 1) 

E . 

lg(x) - ml < 2(1ll + 1) 

So, by th lemma, I(! · g) (x) - l · m I < E, and this proves (2). 
Finally, if E > 0 there is a 8 > 0 uch that, for all x , 

(
lml clml2

) if O < Ix - al < 8, then lg(x) - ml < min 2 , -
2
- . 

But according to part (3) of th lemma thi means, first, that g(x) # 0, o (l/g)(x) 
make sense, and econd that 

This proves (3). I 

Using Theorem 2 we can prove, trivially, such fact a 

x 3 + 7x 5 
lim---
X-'>(I X 2 + 1 

without going through the laboriou proce 
begin with 

a3 + 7a5 

a2 + 1 ' 

of finding a 8, given an E. We mu t 

lim7=7, 
X-'>CI 

liml=l , 
X-'>CI 

lim x = a, 
f-'>(I 

but th ar asy to prov di re tly. If we want to find th 8, h w , , r, th pro f f 
Th or m 2 amount. to a pre ription fi r cl ing thi . upp , t tak a impl r 
' ampl , that w want t find a 8 u h that, for all x 

if O < Ix- al < 8, th n lx 2 + x - (a 2 + a)I < E. 
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Consulting the proof of Theorem 2(1 ), we see that we must first find 81 and 82 > 0 
such that, for all x, 

if O <Ix-al< 81, then lx 2 -a2 1 < ~ 

and if O < Ix - a I < 82, then Ix - a I < ~· 

Since we have already given proofs that lim x 2 = a 2 and lim x = a, we know how 

to do this: 

Thus we can take 

X-'>(I X-'>(I 

81 = min ( I. 
2 

~ ) , 
lal + l 

c 
8') = -. 
- 2 

8 = min(81, 82) = min (min (1, ~ ), ~). 
21al+l 2 

If a # 0, the same method can be used to find a 8 > 0 such that, for all x, 

if O < Ix - al < Ii, then I ) 2 - a'2 I < <. 

The proof of Theorem 2(3) shows that the second condition will follow if we find 
a 8 > 0 such that, for all x, 

(
lal

2 
clal

4
) ifO< Ix-al <8,then lx 2 -a21 <min 2 ,-

2
- . 

Thus we can take 

( 

min Cat <1;1
4

)) 

8=min 1, 21al+l . 

Naturally; these complicated expressions for 8 can be simplified considerably, after 
they have been derived. 

One technical detail in the proof of Theorem 2 deserves some discussion. In 
order for 1 im f (x) to be defined it is, as we know, not necessary for f to be defined 

X-'>(I 

at a, nor is it necessary for f to be defined at all points x # a. However, there 
must be some 8 > 0 such that f (x) is defined for x satisfying O < Ix - a I < 8; 
otherwise the clause 

"if O < Ix - al < 8, then If (x) - /I < c" 

,vmdcl make no sense at all, since the symbol f (x) ,vould make no sense for 
some x 's. If f and g are two functions for ,vhich the definition makes sense, 
it is easy to see that the same is true for f + g and f · g. But this is not so 
clear for I/ g, since 1 / g is undefined for x with g(x) = 0. However, this fact gets 
established in the proof of Theorem 2(3). 
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/ 
a 

(a) 

a 

(b) 

FIGURE 17 

a 

FIG l 1 RE 18 

There are times when we would like to speak of the limit which f approaches 
at a, even though there is no 8 > 0 such that f (x) is defined for x satisfying 
0 < Ix - al< 8. For example, we want to distinguish the behavior of the two 
functions shown in Figure 17, even though they are not defined for numbers less 
than a. For the function of Figure l 7(a) we write 

lim f(x) = I or lim f (x) = I. 
x--,. a+ x!a 

(The symbols on the left are read: the limit off (x) as x approaches a from above.) 
These "limits from above" are olJ\'iously closely related to ordinary limits, and the 
definition is very similar: lim f (x) = I means that for every E > 0 there is a 8 > 0 

x --,. a+ 

such that, for all x, 

if O < x - a < 8, then If (x) - / I < E. 

(The condition "O < x - a < 8" is equivalent to "O < Ix - a I < 8 and x > a.") 

"Limits from below" (Figure 18) arc defined similarly: lim f (x) = I ( or 
x--,.a 

lim f (x) = /) means that for every E > 0 there is a 8 > 0 such that, for 
x t a 

all x, 

if O < a - x < 8, then If (x) - / I < E. 

It is quite possible to consider limits from above and below even if f is defined 
for numbers both greater and less than a. Thus, for the function f of Figure 14, 
we have 

lim f(x) = 1 and lim f(x) = -1. 
x--,. 0+ x--,.0-

It is an easy exercise (Problem 29) to show that lim f (x) exists if and only if 
X-+{l 

Jim f (x) and lim f (x) both exist and arc equal. 
x ----> a+ x --,. a -

Like the definitions oflimits from above and below, which have been smuggled 
into the text inf<xmally, there are other modifications of the limit concept which 
will be found useful. ] n Chapter 4 it was claim eel that if x is large, then sin I /x is 
close to 0. This assertion is usually written 

lim sin 1 /x = 0. 
,\' --,. ~ 

'l'he symbol Jim f (x) is read ''the limit of f (x) as x approaches oo," or ''as .\ 
I --,. 00 

becomes infinite." and a limit of the form Jim f (x) is olicn called a limit at infinity. 
X ---+ N 
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Figure 19 illustrate a general situation where lim f (x) = l. Formally, lim f (x) = 
X-+ X-+00 

l means that for every £ > 0 there is a number N uch that, for all x, 

if x > N , then If (x) - ll < £ . 

The analogy with the definition of ordinary limit hould be clear: whereas the 
condition "O < Ix - a I < 8" expre ses the fact that x is close to a , the condition 
"x > N" expresses the fact that x is large. 

FIGURE 19 

We have spent so little time on limits from above and below, and at infinity, 
because the general philosophy behind the definitions should be clear if you un­
derstand the definition of ordinary limits (which are by far the most important). 
Many exercises on the e definitions are provided in the Problems, which also con­
tain several other type of limits which are occasionally useful. 

PROBLEMS 

1. Find the following limits. (These limits all follow, after some algebraic ma­
nipulations, from the various parts of Theorem 2; be sure you know which 
ones are used in each case, but don't bother listing them.) 

(i) lim 
x 2 - 1 

x -+ l X + 1 

(ii) 
x 3 - 8 

lim . 
x-+2 X - 2 

(iii) lim 
x 3 - 8 

x -+ 3 X - 2 

(iv) lim 
xn - y/1 

x-+y x-y 

(v) lim 
x" -yn 

y-+x x-y 

(vi) lim 
Fa+h-fa 

h-+0 h 

2. Find th following limit . 

(i) lim 
1-Jx 

X-+ 1 1 -x 
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(ii) 1
. 1 - J1 - x 2 
1m . 
x-o x 

(iii) 
l- J l -x2 

lim 2 . 
x-o x 

3. In each of the following cases, determine the limit l for the given a , and 
prove that it is the limit by showing how to find a 8 such that If (x ) - l I < r; 

for all x satisfying O < Ix - a I < 8. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

f (x) = x [3 - cos(x 2
) ] , a= 0. 

f(x) = x 2 +Sx- 2, a=2. 

100 
f (x) = -, a = 1. 

x 

f (x) = x4, arbitrary a. 

1 
f (x) = x 4 + - , a = 1. 

x 
x 

f (x) = 
2 

, a=O. 
2 - sin x 

f (x) = M, a = 0. 

f (x) = ./x, a= 1. 

4. For ach of the functions in Problem 4-17, decide for which number a the 
limit lim f (x) exi ts. 

x"""'a 

*5. (a) Do the same fo r each of the functions in Problem 4-19. 
(b) Same problem, if we use infinite decimals ending in a tring of O's 

instead of those ending in a string of 9 's. 

6. Suppo e the functions f and g have the following property: for all r; > 0 
and all x, 

if O < Ix - 21 < sin2 
( E:) + E, then If (x) - 21 < E, 

if O < Ix - 21 < r;2, then lg(x) - 41 < r; . 

For each r; > 0 find a 8 > 0 uch that, for all x, 

(i) if O < Ix - 21 < 8, th n If (x) + g (x ) - 61 < s. 
(ii) if O < Ix - 21 < 8, then If (x)g(x) - 81 < r; . 

(iii) if O < Ix - 21 < 8, then 1-1- - ~1 < £ . 
g(x) 4 

(iv) if O < Ix - 21 < 8, th n • f (x) - ~ I < s. 
g(x) 2 

7. 1v an xamplc f a fun tion f fo r whi h th G llowino- a rti n i faL e: 
If If (x) - /I < s wh n O < Ix - a l < 8 th n If (x) - /I < s/2 h n 

0 < Ix - al < 8/2. 



5. Limits 109 

8. (a) If lim f(x) and lim g(x) do not exist, can lim[f(x) + g(x)] exist? Can 
x-a x-a x-a 

Jim f(x)g(x) exist? 
x-a 

(b) If lim f (x) exists and lim [f (x) + g(x)] exists, must lim g(x) exist? 
x-a x-a x-a 

(c) If lim f (x) exists and lim g(x) does not exist, can lim [f(x)+g(x)] exist? 
x-a x-a x-a 

( d) If lim f (x) exists and lim f (x) g (x) exists, does it follow that lim g (x) 
x - a x-a x-a 

exists? 

9. Prove that lim f (x) = lim f (a+ h). (This is mainly an exercise in under-
x-a 11 - 0 

standing what the terms mean.) 

10. (a) Prove that lim f (x) = I if and only if lim [f (x) - I] = 0. (First see why 
x-a x-a 

the assertion is obvious; then provide a rigorous proof In this chapter 
most problems which ask for proofs should be treated in the same way.) 

(b) Prove that lim f (x) = lim f (x - a). 
x-O x- a 

(c) Prove that lim f(x) = Jim f (x 3). 
x-o x- o 

(d) Give an example where lim f (x 2) exists, but lim f (x) does not. 
x-o x-o 

11. Suppose there is a o > 0 such that f (x) = g (x) when O < Ix - a I < o. ProYe 
that lim f (x) = Jim g(x). In other words, lim f (x) depends only on the 

x-a x-a x-a 
values of f (x) for x near a - this fact is often expressed by saying that limits 
are a "local property." (It will clearly help to use o', or some other letter, 
instead of o, in the definition of limits.) 

12. (a) Suppose that f(x) :S g(x) for all x. Prove that lim f(x) :S lim g(x), 
x-a x-a 

provided that these limits exist. 
(b) How can the hypotheses be weakened? 
( c) If f (x) < g (x) for all x, does it necessarily follow that lim f (x) < 

x-a 
lim g(x)? 
x-a 

13. Suppose that f(x) :S g(x) :S h(x) and that lim f(x) = lim /z(x). Prove that 
x-a x-a 

lim g(x) exists, and that lim g(x) = lim f(x) = lim /z(x). (Draw a picture!) 
x-a x- a x-a x-a 

*14. (a) Prove that if lim j(x)/x = I and b-/= 0, then lim f (hx)/x = bl. Hint: 
x-o x-o 

\'Vrite f(bx)/x = b[f(bx)/bx]. 
(b) \ Vhat happens if b = 0? 
(c) Part (a) enables us to find lim(sin2x)/x in terms of Jim(sinx) /x . Find 

x-o x-o 
this limit in another way. 

15. £\·aluate the following limits in terms of the number a = lim (sin x) / x. 
x - o 

(i) 

(ii) 

1
. sin 3x 
1111--. 

x-0 X 

J
. smax 
m1-­

x-o sin bx· 
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(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(i,x) 

(x) 

(xi) 

. 2 2 
1
. s111 x 
1111 ---

x---+0 X 

. 2 2 
I
. s111 x 
nn 7 

x---+0 x-

i
. 1-cosx 
1111 7 . 

X---+0 x-

tan2 x + 2x 
lim----­
x---+0 x +x2 

I
. x s111 x 
1111 • 

x ---+ O I - cosx 

I
. sin(x+h)-sin.r 
1111 • 

h---+0 h 

I
. sin (x 2 - 1) 
1111 • 

x---+l X - 1 

I
. x 2(3+sinx) 
1111 . 

x---+O (x + sin x )2 

Jim (x 2 
- I )3 sin (-

1
-)

3 

x - d X - 1 

16. (a) Prove that if Jim f (x) = l, then Jim If l(x) = Ill. 
x ---+ a x---+a 

(b) Prove that if Jim f(x) =land Jim g(.r) = m, then Jim max(f. g)(x) = 
x ---+ a x ---+ a x -> a 

max (l. 111) and similarly for min. 

17. (a) Prove that Jim I/ x does not exist, i.e., show that lim I /x = I is false for 
x->0 x -> 0 

every number l. 
(b) Prove that Jim 1 / (x - 1) does not exist. 

X-> I 

18. Prove that if lim f (x) = l, then there is a number 8 > 0 and a number M 
x ---+ a 

such that If (x) I < M if O < Ix - a I < 8. (\ \'hat does this mean pictorially?) 
Hint: \\7hy does it suffice to prove that /-1 < f (x) < l + 1 for O < Ix-a I < 8? 

19. Prove that if f(x) = 0 for irrational x and f(x) = 1 for rational x, 
then Jim f (x) does not exist for any a. 

X---+ a 

*20. Prove that if f (x) = x for rational x, and f (x) = -x for irrational x, then 
Jim f (x) dot's not exist if a f. 0. 
x -> a 

21. (a) Prove that if Jim g(x) = 0, then Jim g(x)sin 1/x = 0. 
x ---+ O x -> 0 

(b) Generalize this fact as follows: If Jim g(x) = 0 and lh(x)I _::::: M for all x, 
.r ->0 

then Jim g (x )h (.r) = 0. (Naturally it is unnecessary to do part (a) if you 
x-> O 

succeed in doing part (b); actually the statement of part (b) may make it 
easier than (a)- that's one of the values of generalization.) 
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22. Consider a function f with the following property: if g is any function for 
which lim g(x) does not exist, then lim [f (x) + g(x)] also does not exist. 

x-o x- o 
Prove that this happens if and only if lim f (x) does exist. Hint: This is 

x-o 
actually very easy: the assumption that lim f (x) does not exist leads to an 

x-0 
immediate contradiction if you consider the right g. 

**23. This problem is the analogue of Problem 22 when f + g is replaced by f · g. 

In this case the situation is considerably more complex, and the analysis 
requires several steps (those in search of an especially challenging problem 
can attempt an independent solution). 

(a) Suppose that lim f (x) exists and is # 0. Prove that if lim g(x) does not 
x-o x-o 

exist, then lim f (x) g (x) also does not exist. 
x-o 

(b) Prove the same result if lim If (x) I = oo. (The precise definition of this 
x-0 

sort of limit is given in Problem 37.) 
(c) Prove that if neither of these two conditions holds, then there is a function 

g such that lim g(x) docs not exist, but lim f (x )g(x) does exist. 
x- o x- o 

Hint: Consider separately the following two cases: ( 1) for some E > 0 
we have If (x) I > E for all sufficiently small x. (2) For every E > 0, there 
are arbitrarily small x with If (x) I < E. In the second case, begin by 
choosing points Xn with lxnl < l/11 and lf(x,z)I < l/n. 

*24. Suppose that An is, for each natural number n, some fmite set of numbers in 
[O, I J, and that An and A111 have no members in common if m # n. Define 
f as follows: 

f(x) = I ~/n, 
x in A 11 

x not in An for any 11. 

Prove that lim f (x) = 0 for all a in [O. 1]. 
x-a 

25. Explain why the following definitions of lim f (x) = I are all correct: 
x- a 

For every 8 > 0 there is an E > 0 such that, for all x, 

(i) ifO<lx-al<c:,thenlf(x)-/1<8. 
(ii) if O < Ix - al < E, then If (x) - /I :S 8. 

(iii) if O <Ix-al< E, then lf(x)-/1 < 58. 

(iv) if O < Ix - al < c:/10, then If (x) - /I < 8. 

*26. Gin' examples to show that the following definitions of lim f (x) = I are not 
x-a 

correct. 

(a) For all 8 > 0 there is an c: > 0 such that if O < Ix - a l < 8, then 
If (x) - /I < E. 

(b) For all E > 0 there is a 8 > 0 such that if If (x) - II < E, then O < 
Ix-al < 8. 
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27. For each of the functions in Problem 4-17 indicate for which numbers a the 
one-sided limits lim f (x) and lim f (x) exist. 

x---+a+ x---+a -

*28. (a) Do the same for each of the functions in Problem 4-19. 
(b) Also consider what happens if decimals ending in O's are used instead of 

decimals ending in 9's. 

29. Prove that lim f (x) exists if lim f(x) = lim f(x). 
x ---+ a x---+a+ x----.a -

30. Prove that 

(i) 

(ii) 

(iii) 

lim f(x) = lim f (-x). 
x----.O+ x----.0 

lim /(lxl) = lim f(x). 
x- 0 x----. O+ 

lim f(x 2
) = lim f (x). 

x ----. 0 x-o+ 

(These equations, and others like them , are open to several interpretations. 
They might mean only that the tvrn limits are equal if they both exist; or that 
if a certain one of the limits exists, the other also exists and is equal to it; or 
that if either limit exists, then the other exists and is equal to it. Decide for 
yourself which interpretations are suitable.) 

31. Suppose that lim f (x) < lim f (x). (Draw a picture to illustrate this as-
x--..a - x----. a+ 

sertion.) Prove that there is some o > 0 such that f (x) < f (y) whenever 
x < a < y and Ix - al < o and IY - al < o. Is the converse true? 

32. Prove that lim (a 11 x
11 + · · · + ao)/(b111 x 111 + · · · + bo) (with a 11 -=fa O and b111 -=fa 0) 

x-oo 

exists if and only if 111 :::_ n. vVhat is the limit when 111 = n? \ Vhen m > 11? 

Hint: the one easy limit is lim 1/xk = O; do some algebra so that this is the 
X---->00 

only information you need. 

33. Find the follmving limits . 

. 3 
. x + sm x 

(i) hm 
x-oo Sx + 6 

x sm x 
lim . 

X---->00 X2 + 5 
(ii) 

(iii) lim /x 2 + x - x. 
X---->00 

. x 2(l + sin 2 
x) 

l1m . 
x----.oo (x + sin x )2 

(iv) 

34. Prove that lim f(l/.r) = lim f(x). 
x---+ O+ x----.oo 

35. Find the following limits in terms of the number a = lim (sin x) /x . 
.r----.0 

(l') 1. sm x 
llll -- . 

X---->00 X 

(1·1·) 1 · . I 1111 x sm - . 
X---->00 X 
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36. Define " lim f (x) = l ." 
x~-

(a) Find lim (a 11 x 11 + · · · + ao)/(bmxm + · · · + bo). 
x~-oo 

(b) Prove that lim f (x) = lim f (-x). 
X-+00 X~-00 

(c) Prove that lim f(l /x) = lim f (x). 
x~ o- X-+-00 

37. W define lim f (x) = oo to mean that for all N there is a 8 > 0 such that, 
x~a 

for all x, if O < Ix - a I < 8, then f (x) > N. (Draw an appropriate picture!) 
(Of course, we may still ay that lim f (x) "does not exist" in the u ual sense.) 

x~a 

(a) Show that lim 1/(x - 3)2 = oo. 
x-+3 

(b) Prove that if f (x) > s > 0 for all x , and lim g(x) = 0, then 
x~a 

lim f(x)/lg(x)I = oo. 
x~a 

38. (a) Define lim f (x) = oo and lim f (x) = oo. (Or at least convince your-
x~a+ x~a-

self that you could write down the definitions if you had the nergy How 
many other such symbols can you define?) 

(b) Prove that lim 1/x = oo. 
x~o+ 

(c) Prove that lim f (x) = oo if and only if lim f (1/x) = oo. 
x~o+ X~OO 

39. Find the following limits, when they exist. 

(i) lim 
x 3 + 4x -7 

x~oo 7 x2 - x + 1 

(ii) lim x (1 + sin 2 x). 
X~OO 

(iii) lim x sin2 x. 
X~OO 

(iv) l' ? . 1 un x-sm -. 
x~oo x 

(v) lim ) x 2 + 2x - x. 
X~OO 

(vi) lim x()x + 2 - ,Jx). 
X~OO 

(vii) 1im M_ 
x~oo x 

40. (a) Find the perimet r of a regular n-gon in rib d in a cir l of radiu r. 
[Answ r: 2rn sin(n/ n).] 

(b) What valu do thi p rimeter approa h a n b com v r larg . 

( ) What limit an you from thi . 
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FIGURE 20 

41. (a) For c > 1, show that c1111 = :,Jc approach s 1 as n becomes very large. 
Hint: Show that for any £ > 0 w cannot have c1111 > 1 + £ for large n . 

(b) More generally, if c > 0, then c1111 approaches 1 as n becomes very large. 

After sending the manu cript for the fir t edition of this book off to the printer, 
I thought of a much simpler way to prove that lim x 2 = a 2 and lim x 3 = 

x-a x-a 

a3, without going through all the factoring tricks on page 92. Suppose, for 
example, that we want to prove that lim x 2 = a2, where a > 0. Given 

x-a 

£ > 0, we simply let o be the minimum of Ja2 + £ - a and a - Ja2 - £ 

(see Figure 19); then Ix - al < o implie that J a2 - £ < x < J a2 + £, so 
a2 - £ < x 2 < a2 + £,or lx 2 - a 2

J < £. It is fortunate that these pages had 
already been set, so that I couldn't make these changes, because this "proof" 
is completely fallacious. Wh rein lies the fallacy? 
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6 CONTINUOUS FUNCTIONS 

If f is an arbitrary function, it is not necessarily true that 

lim J (x) = J (a). 
x->a 

In fact, there are many ways this can fail to be true. For example, f might not 
even be defined at a, in which case the equation makes no sense (Figure 1 ). 

Again, Jim f (x) might not exist (Figure 2). Finally, as illustrated in Figure 3, 
x->a 

even if f is defined at a and lim f (x) exists, the limit might not equal f (a). 
x->a 

/ / • 

(a) (b) (c) 

FIGURE 2 

\ Ve would like to regard all behavior of this type as abnormal and honor, with 
some complimentary designation, functions which do not exhibit such peculiarities. 
The term which has been adopted is ''continuous." Intuitively, a function f is 
continuous if the graph contains no breaks, jumps, or wild oscillations. Although 
this description will usually enable you to decide whether a function is continuous 
simply by looking at its graph (a skill well worth cultivating) it is easy to be fooled, 
and the precise definition is very important. 

The function f is continuous at a if 

lim J (x) = J (a) . 
X->a 

\ Ve will have no difficulty finding many examples offunctions which are, or arc 
not, continuous at some number a ~ evcry example involving limits provides an 
example about continuity, and Chapter 5 certainly provides enough of these. 

The function f (x) = sin 1 /x is not continuous at 0, because it is not e\·en defined 
at 0, and the same is true of the function g(x) = x sin I /x. On the other hand, if 
we arc willing to extend the second of these functions , that is, if ,,-c wish to define 

I 15 
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(a) 

G 

(b) 
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a new function G by 

G (x) = l x sin 1 / x, 
a, 

x/0 
x = 0, 

then the choice of a = G (0) can be made in such a way that G will be continuous 
at 0- to do this we can (if fact, we must) define G(O) = 0 (Figure 4). This sort of 
extension is not possible for f; if we define 

F(x) = l sin 1/x, 
a, 

x/0 
x =0, 

then F will not be continuous at 0, no matter what a is, because lim f (x) does 
x---+0 

not exist. 

The function 

f(x) = l x, 
0, 

x rational 
x irrational 

is not continuous at a, if a# 0, since lim f(x) does not exist. However, lim f(x) = 
x---+a x ---+ 0 

0 = f (0), so f is continuous at precisely one point, 0. 

The functions f(x) = c, g(x) = x, and h(x) = x 2 are continuous at all num­
bers a, since 

lim f (x) = lim c = c = f (a). 
x ----> a x---+a 

Jim g(x) = lim x =a= g(a), 
x ---+ a x---+a 

Jim /z(x) = lirn x 2 = a2 = h(a). 
x-> a x---+a 

Finally, consider the function 

f(x) = l ~/q. x irrational 
x = p / q in lowest terms. 

In Chapter 5 we showed that lim f (x) = 0 for all a (actually, only for O < a < I, 
X --'> O 

but you can easily sec that this is true for all a ). Since O = f (a) only when a is 
irrational, this function is continuous at a if a is irrational, but not if a is rational. 

It is even easier to give examples of continuity if we pro,·e two simple theorems. 

If f and g are continuous at a, then 

(I) f + g is continuous at a, 
(2) f · g is continuous at a. 

l\Joreover, if g (a) # 0, then 

(3) I / g is continuous at a. 
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Since f and g are continuous at a, 

lim f(x) = f(a) and lim g(x) = g(a) . 
X-->(I X-->a 

By Theorem 2(1) of Chapter 5 this implies that 

lim (! + g)(x) = f (a)+ g(a) = (! + g)(a), 
x-->a 

which is just the assertion that f + g is continuous at a. The proofs of parts (2) 
and (3) are left to you. I 

Starting with the functions f (x) = c and f (x) = x, which are continuous at a, 

for every a, we can use Theorem 1 to conclude that a function 

b11 x 11 + bn- lX 11
- I + · · · + bo 

f(x) = 111 + .m-1 + + 
C111 X C111 - 1X · · · CO 

is continuous at every point in its domain. But it is harder to get much further 
than that. \\Then we discuss the sine function in detail it will be easy to prove that 
sin is continuous at a for all a; let us assume this fact meanwhile. A function like 

· 2 2 4 · sm x + x + x sm x 
f(x) = . 27 . 2 

sm x + 4x 2 sm x 

can now be proved continuous at every point in its domain. But we are still 
unable to prove the continuity of a function like f (x) = sin(x 2); we obviously 
need a theorem about the composition of continuous functions. Before stating this 
theorem, the following point about the definition of continuity is worth noting. If 
we translate the equation lim f(x) = f (a) according to the definition of limits, 

we obtain 
X-----'>(I 

for every E > 0 there is o > 0 such that, for all x, 

if O < Ix - al < o, then lf(x) - f(a)I < E . 

But in this case, where the limit is f (a), the phrase 

0 < Ix - al< o 
may be changed to the simpler condition 

Ix - al< o, 
since if x = a it is certainly true that If (x) - f (a) I < E . 

If g is continuous at a, and f is continuous at g(a ), then f o g is continuous at a. 

(Notice that f is required to be continuous at g(a ), not at a.) 

Let E > 0. \ Ve wish to find a o > 0 such that for all x, 

if Ix - al < o, then l(f o g)(x) - (! o g)(a)I < F, 

i.e., lf(g(x)) - f(g(a))I < E. 
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\ Ve first use continuity of f to estimate how close g(x) must be to g(a) in order 
for this inequality to hold. Since f is continuous at g(a), there is a 8' > 0 such 
that for all y, 

(1) if IY -g(a)I < 8', then lf(y)- f(g(a))I < £. 

In particular, this means that 

(2) if lg(x) - g(a)I < 8', then lf(g(x)) - f(g(a))I < £. 

\ Ve now use continuity of g to estimate how close x must be' to a in order for the 
inequality lg(.r) - g(a)I < 8' to hold. The number 8' is a positive number just like 
any other positi\'e number; we can therefore take 81 as the £ (!) in the definition of 
continuity of g at a. \ Ve conclude that there is a 8 > 0 such that, for all x, 

(3) if Ix - a I < 8, then lg(x) - g(a) I < 8'. 

Combining (2) and (3) we see that for all x, 

if Ix - al< 8, then lf(g(x)) - f(g(a))I <£.I 

\ Ve can now reconsider the function 

f(x) = { z.sin 1/x, x=f.O 
x = 0. 

v\'e have already noted that f is continuous at 0. A few applications of Theorems 1 
and 2, together with the continuity of sin, show that f is also continuous at a, for 

a =f. 0. Functions like f (.r) = sin(.r 2 + sin(x + sin 2(x 3))) should be equally easy 
for you to analyze. 

The few theorems of this chapter have all been related to continuity of functions 
at a single point, but the concept of continuity doesn't begin to be really interesting 
until we focus our attention on functions which are continuous at all points of some 
interYal. If f is continuous at x for all x in (a, b), then f is called continuous 
on (a, b ); as a "special case", f is continuous on R = (-oo, oo) [sec page 57] if 
it is continuous at x for all x in R. Continuity on a dosed interval must be defined 
a little differently; a function f is called continuous on [a, b J if 

(I) 

(2) 

f is continuous at x for all x in (a, b), 

lim f(x) = f(a) and lim f(.:,,:) = f(b). 
x -+ o+ x -+ b 

(\ \re also often simply say that a function is continuous if it is continuous at x for 
all x in its domain. ) 

Functions which arc continuous 011 an interYal arc usually regarded as especially 
\Vcll behaved; indeed continuity might be specified as the first condition which a 
"reasonable'' function ought to satisfy 1\ continuous function is sometimes de­
scribed, intuitively, as one whose graph can be drawn \,·ithout lifting your pencil 
from the paper. Collsidcration of the function 

f (x) = I ~.sin I /.r, x=f.O 
x=O 
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J(a) 

J(a) - c = !J (a) 
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shows that this description is a little too optimistic, but it is ne\'ertheless true that 
there are many important results in\'ol\'ing functions which arc continuous on an 
interval. There theorems are generally much harder than the ones in this chapter, 
but there is a simple theorem which forms a bridge between the two kinds of results. 
The hypothesis of this theorem requires continuity at only a single point, but the 
conclusion describes the behavior of the function on some interval containing the 
point. Although this theorem is really a lemma for later arguments, it is included 
here as a pre\'iew of things to come. 

Suppose f is continuous at a, and f(a) > 0. Then f(x) > 0 for all x in some 
interval containing a; more precisely, there is a number 8 > 0 such that f (x) > 0 
for all x satisfying Ix - a I < 8. Similarly, if f (a) < 0, then there is a number 8 > 0 
such that f (x) < 0 for all x satisfying Ix - a I < 8. 

Consider the case f (a) > 0. Since f is continuous at a, for every t: > 0 there is a 
8 > 0 such that, for all x, 

if Ix - al < 8, then lf(x) - f (a)I < t:, 

i.e., -£ < f (x) - J(a) < t:. 

In particular, th is must hold for t: = ~ f (a), since if (a) > 0 (Figure 5). Th us 
there is 8 > 0 so that for all x, 

if Ix - al < 8, then -~f(a) < f(:() - f (a) < 1f(a), 

and this implies that f(x) > JJ(a) > 0. (\Ve could e\'en have picked t: to be f(a) 
itsel( leading to a proof that is more elegant, but more confusing to picture.) 

A similar proof can be given in the case f (a) < O; take t: = - ~ f (a). Or one 
can apply the first case to the function - f. I 

PROBLEl\IS 

1. For which of the follmving functions f is there a continuous function F \\·ith 
domain R such that F (x) = f (x) for all x in the domain of f? 

(i) 

(ii) 

(iii) 
(i,·) 

. x 2 -4 
j (x) = x - 2 · 

!xi 
f(x) = -. 

x 
f (x) = 0, x irrational. 

f (x) = l / q , x = f) / q rational in lo\\'est terms. 

2. At which points arc the functions of Problems 4-17 and 4-19 continuous? 
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3. (a) Suppose that f is a function satisfying If (x) I ~ Ix I for all x. Show that 
f is continuous at 0. (Notice that f (0) must equal 0.) 

(b) Give an example of such a function f which is not continuous at any 
a# 0. 

(c) Suppose that g is continuous at O and g(O) = 0, and lf(x)I ~ lg(x)I. 
Prove that f is continuous at 0. 

4. Give an example of a function f such that f is continuous nowhere, but If I 
is continuous everywhere. 

5. For each number a, find a function which is continuous at a, but not at any 
other points. 

6. (a) Find a function f which is discontinuous at I, !, !, k, ... but continuous 
at all other points. 

(b) Find a function f which is discontinuous at 1, ! , ! , ! , ... , and at 0, but 
continuous at all other points. 

7. Suppose that f satisfies f(x + y) = f(x) + f (y), and that f is continuous 
at 0. Prove that f is continuous at a for all a. 

8. Suppose that f is continuous at a and f (a) = 0. Prove that if a # 0, then 
f + a is nonzero in some open interval containing a. 

9. (a) Suppose f is defined at a but is not continuous at a. Prove that for 
some number c > 0 there arc numbers x arbitrarily close to a with 
If (x) - f(a)I > c. Illustrate graphically. 

(b) Conclude that for some number c > 0 either there are numbers x arbi­
trarily close to a with f (x) < f (a) - c or there are numbers x arbitrarily 
close to a with f(x) > f (a)+ c. 

10. (a) Prove that if f is continuous at a, then so is If I. 
(b) Prove that e,·ery function f continuous on R can be written f = E + 0, 

where E is even and continuous and O is odd and continuous. 
(c) Prove that if f and g are continuous, then so are max(!, g) and 

min(!, g). 

(cl) Prove that every continuous f can be written f = g - lz, where g and h 
are nonnegative and continuous. 

11. Prove Theorem l (3) by using Theorem 2 and continuity of the function 
f(x) = 1/x. 

*12. (a) Prove that if f is continuous at I and Jim g(x) = I, then Jim f(g(x)) = 
x - a x -a 

f (I). (You can go right back to the definitions, but it is easier to consider 
the function G with G(x) = g(x) for x # a , and G(a) = /.) 

(b) Show that if continuity of f at I is not assumed , then it is not generally 
true that Jim f (g(x)) = f (lim g(x)). I lint: Try f(x) = 0 for x # I, and 

x - a x - a 

f (I) = I. 
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13. (a) Prove that if f is continuous on [a, b], then there is a function g which 
is continuous on R, and which satisfies g(x) = f (x) for all .x in [a, b]. 
Hint: Since you obviously have a great deal of choice, try making g 
constant on (-oo, a] and [b, oo). 

(b) Give an example to show that this assertion is false if [a, b J is replaced 
by (a,b). 

14. (a) Suppose that g and h arc continuous at a, and that g (a) = h (a). Define 
f(x) to be g(x) if x:::: a and h(x) if x :Sa. Prove that f is continuous 
at a. 

(b) Suppose g is continuous on [a, b] and h is continuous on [b, c] and 
g(b) = h(b). Let f (x) be g(x) for x in [a, b] and h(x) for x in [b, c]. 
Show that f is continuous on [a, c J. (Thus, continuous functions can be 
''pasted together".) 

15. Prove that if f is continuous at a, then for any £ > 0 there is a 8 > 0 so that 
whenever Ix - al < 8 and IY - al < 8, we have If (x) - f(y)I < £. 

16. (a) Prove the following version of Theorem 3 for "right-hand continuity": 
Suppose that Jim f (x) = f (a), and f (a) > 0. Then there is a number 

x-+a+ 

8 > 0 such that f (x) > 0 for all x satisfying O :S x - a < 8. Similarly, 
if f(a) < 0, then there is a number 8 > 0 such that f(.x) < 0 for a11 x 
satisfying O ~ x - a < 8. 

(b) Prove a \·ersion of Theorem 3 when Jim f (x) = f (b). 
x-+b-

1 7. If Jim f (x) exists, but is =/:- f (a), then f is said to have a removable dis-
x-+a 

continuity at a. 

(a) If f (x) = sin 1 / .x for x =/:- 0 and f (0) = 1, does f have a removable 
discontinuity at O? What if f (x) = x sin I/ x for x =/:- 0, and f (0) = l? 

(b) Suppose f has a removable discontinuity at a. Let g(x) = f(x) for 
x =/:- a , and let g(a) = lim f (x). Prove that g is continuous at a. (Don't 

x-+a 

work very hard; this is quite easy.) 
(c) Let f(x) = 0 if xis irrational, and let f(p/q) = 1/q if p/q is in lowest 

terms. What is the function g defined by g(.x) = lim f (y)? 
y-+x 

*(cl) Let f be a function with the property that C\'ery point of discontinuity 
is a removable discontinuity. This means that Jim f (y) exists for all x, 

y-+ x 

but f may be discontinuous at some ( even infinitely many) numbers x. 
Define g(x) = Jim f(y). Prove that g is continuous. (This is not quite 

y-+x 

so easy as part (b).) 
**(e) ls there a function f which is discontinuous at every point, and which has 

only removable discontinuities? (It is worth thinking about this problem 
now, but mainly as a test of intuition; even if you suspect the correct 
ans\vcr, you will almost certainly be unable to prove it at the present 
time. Sec Problem 22-33.) 



CHAPTER 

THEOREM 1 

THEOREM 2 

THEOREM 3 

11 C, l RL I 

7 THREE HARD THEOREl\fS 

This chapter is devoted to three theorems about continuous functions, and some 
of their consequences. The proofa of the three theorems themselves will not be 
given until the next chapter, for reasons which are explained at the encl of this 
chapter. 

If f is continuous on [a, b] and J(a) < 0 < f (b), then there is some x in [a, b] 
such that f (x) = 0. 

(Geometrically, this means that the graph of a continuous function which starts 
below the horizontal axis and ends above it must cross this axis at some point, as 
in Figure l .) 

If f is continuous 011 [a , b], then f is bounded above 011 [a, /J] , that is, there is 
some number N such that f(x):::: N for all x in [a,b]. 

(Geometrically, this theorem means that the graph of J lies below some line par­
allel to the horizontal axis, as in Figure 2.) 

If f is continuous on [a, bl, then there is some number y 111 [a. b] such that 
f (y) ::::. f (x) for all x in [a , b] (Figure 3). 

These three theorems differ markedly from the theorems of Chapter 6. The 
hypotheses of those theorems always im·olvecl continuity at a single point, \,·hile 
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the hypotheses of the present theorems require continuity on a whole interval 
[a, b] - if continuity fails to hold at a single point, the conclusions may fail. For 
example, let f be the function shown in Figure 4, 

{ 
-1 f (x) = , 
l ' 

O::::;x < J2 
h::::;x::::;2. 

Then f is continuous at every point of [O, 2] except h, and f (0) < 0 < f (2), 
but there is no point x in [O, 2] such that f (x) = O; the discontinuity at the single 

point h is sufficient to destroy the conclusion of Theorem 1. 

Similarly, suppose that f is the function shown in Figure 5, 

f(x)= 11/x, 
0, 

x#O 
x =0. 

Then f is continuous at every point of [O, 1 J except 0, but f is not bounded above 
on [O, 1]. In fact, for any number N > 0 we have f ( 1 /2N) =· 2N > N. 

This example also shows that the closed interval [a, b J in Theorem 2 cannot be 
replaced by the open interval (a, b), for the function f is continuous on (0, 1), but 
is not bounded there. 

Finally, consider the function shown in Figure 6, 

I x2 
f(x) = ' 

0, 
x < 1 
x :::· 1. 

On the interval [O, 1] the function f is bounded above, so f does satisfy the 
conclusion of Theorem 2, even though f is not continuous on [O, 1]. But f 
does not satisfy the conclusion of Theorem 3- there is no y in [O, I J such that 
f (y) ::: f (x) for all x in [O, 1]; in fact, it is certainly not true that f (1) ::: f (x) for 
all x in [O, 1] so we cannot choose y = 1, nor can we choose O :::::; y < 1 because 
f (y) < f (x) if x is any number with y < x < 1. 

This example shows that Theorem 3 is considerably stronger than Theorem 2. 
Theorem 3 is often paraphrased by saying that a continuous function on a closed 
interval "takes on its maximum value" on that interval. 

As a compensation for the stringency of the hypotheses of our three theorems, 
the conclusions are of a totally different order than those of previous theorems. 
They describe the behavior of a function, not just near a point, but on a whole in­
terval; such "global" properties of a function are always sig11ificantly more difficult 
to prove than "local" properties, and are correspondingly of much greater pm\·er. 
To illustrate the usefulness ofTheorcms 1, 2, and 3, we will soon deduce some im­
portant consequences, but it will help to first mention some simple generalizations 
of these theorems. 

If f is continuous on [a, bJ and f (a) < c < f(b), then there is some x in [a. bJ 
such that f (x) = c. 
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Let g = f - c. Then g is continuous, and g(a) < 0 < g(b). By Theorem 1, there 
is some x in [a, b] such that g(x) = 0. But this means that f(x) = c. I 

If f is continuous on [a. b] and f(a) > c > f(b), then there is some x in [a, b] 
such that f (x) = c. 

The function - f is continuous on [a, b] and - f(a) < -c < - f(b). By The­
orem 4 there is some x in [a, b] such that - J(x) = -c, which means that 
J Cx) = c. I 

Theorems 4 and 5 together show that f takes on any value between f (a) 

and f ( b). We can do even better than this: if c and d are in [a, b], then f 
takes on any value between f(c) and f(d). The proof is simple: if, for example, 
c < d, then just apply Theorems 4 and 5 to the interval [ c, d]. Summarizing, if a 
continuous function on an interval takes on two values, it takes on every value in 
between; this slight generalization of Theorem 1 is often called the Intermediate 
Value Theorem. 

If f is continuous on [a, b], then f is bounded below on [a, b] , that is, there is 
some number N such that f (x) ~ N for all x in [a, b]. 

The function - f is continuous on [a, b], so by Theorem 2 there is a number M 
such that - f(x):::; M for all x in [a, b]. But this means that f (x) ~ -M for all x 
in [a. b], so we can let N = - M. I 

Theorems 2 and 6 together show that a continuous function f on [a, b] is 
bounded on [a, b J, that is, there is a number N such that If (x) I :::; N for all x in 
[a, b]. In fact, since Theorem 2 ensures the existence of a number Ni such that 
f(x) :::; N1 for all x in [a, b] , and Theorem 6 ensures the existence of a number 
N2 such that f(x) ~ N2 for all x in [a,b], we can take N = max(IN1l, IN2I). 

If f is continuous on [a, b], then there is some yin [a, b] such that f(y) S f(x) 

for all x in [a, b]. 
(A continuous function on a closed interval takes on its minimum \ 'alue on that 
interval.) 

The function - f is continuous on [a, b]; by Theorem 3 there is some y in [a. b] 
such that -f (y) ~ - f(x) for all x in [a. b], which m eans that f(y) S f(x) for 
all x in la . h]. I 

Now that \Ve have derived the trivial consequences of Theorems l, 2, and 3, we 
can begin proving a frw interesting things. 

Every positive number has a square root. In other words, if a > 0, then there is 
some number x such that .r 2 =a. 
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Consider the function f(x) = x 2, which is certainly continuous. Notice that the 
statement of the theorem can be expressed in terms of f: "the number a has a 
square root" means that f takes on the value a. The proof of this fact about f 
will be an easy consequence of Theorem 4. 

There is obviously a number b > 0 such that f (b) > a (as illustrated in Figure 7); 
in fact, if a > 1 we can take b = a, while if a < 1 we can take b = 1. Since 
f(O) < a < f(b), Theorem 4 applied to [O, b] implies that for some x (in [O, b]), 
we have f(x) = a, i.e., x 2 =a.I 

Precisely the same argument can be used to prove that a positive number has 
an nth root, for any natural number ,z. If n happens to be odd, one can do 
better: every number has an nth root. To prove this we just note that if the positive 
number a has the nth root x, i.e., if xn = a, then (-x )" = -a (since n is odd), so 
-a has the nth root - x. The assertion, that for odd n any number a has an nth 
root, is equivalent to the statement that the equation 

x 11 -a= 0 

has a root if n is odd. Expressed in this way the result is susceptible of great 
generalization. 

If n is odd, then any equation 

n + n- 1 + + Q X 0 11 - ]X .. · GO= 

has a root. 

We obviously want to consider the function 

f (x) = Xn + Gn-JX
11
-I + · · · + ao; 

we would like to prove that f is sometimes positive and sometimes negative. The 
intuitive idea is that for large Ix I, the function is very much like g(x) = xn and, 
since 11 is odd, this function is positive for large positive x and negative for large 
negative x. A little algebra is all we need to make this intuitive idea work. 

The proper analysis of the function f depends on writing 

!( ) n n- 1 n (l Gn-1 ao) 
X = X + 0 11 -IX +···+GO= X + -- + .. · + - . 

x X 11 

Note that 

I 
Gn - 1 Gn-2 ao I Ian-I I laol -+-+ .. ·+- <--+ .. ·+-. 

x x 2 xn - lxl lx 11 I 
Consequently, if we choose x satisfying 

(*) lxl > 1, 2nlan- I I, ... , 2nlaol, 

then lxk I > Ix I and 

lan - k I lan - k I lan - k I -- < -- < ~~-
Ix k I Ix I 2n lan - k I 211' 
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so 

I 
an - 1 an - 2 ao I 1 1 1 -- + - + ... + - < - + ... + - = -. 

x x 2 x 11 
- 211 211 2 

n terms 

In other words, 
1 an- 1 ao 1 

--<--+ .. ·+-<-
2 - x X 11 - 2' 

which implies that 
l a 11 _ 1 ao 
-2 ~ 1 + --+ ... + -. 

x X 11 

Therefore, if we choose an x1 > 0 which satisfies (*), then 

(x 1 )11 
11 ( an - I ao ) 

--~(x1) I+-+ .. ·+-- =f(x1), 
2 X1 (X1) 11 

so that f (xi) > 0. On the other hand, if x2 < 0 satisfies (*), then (x2)'1 < 0 and 

(x2)" 11 ( an - I ao ) 
-- :::: (x2) 1 + - + .. · + -- = f (x2). 

2 x2 (x2) 11 

so that f (x2) < 0. 
Now applying Theorem I to the interval [x2, x1] we conclude that there is an x 

in [x2, x1] such that f (x) = 0. I 

Theorem 9 disposes of the problem of odd degree equations so happily that it 
would be frustrating to leave the problem of even degree equations completely 
undiscussed. At first sight, however, the problem seems insuperable. Some equa­
tions, like x 2 - I = 0, have a solution, and some, like x 2 + 1 = 0, do not- what 
more is there to say? If we are willing to consider a more general question, how­
ever, something interesting can be said. Instead of trying to solve the equation 

,n+ 11- I+ + -0 X a 11 _ 1X · · · ao - , 

let us ask about the possibility of solving the equations 

n+ 11 - I + + x a11 _ 1X ... ao=c 

for all possible numbers c. This amounts to allowing the constant term ao to vary. 
The information \\'hich can be given concerning the solution of these equations 
depends on a fact which is illustrated in Figure 8. 

The graph of the function f (x) = x 11 +a11 _ 1x
11

-
1 + · · · +ao, with II even, contains, 

at least the way we have drmvn it, a lowest point. In other \\'ords. therC' is a 
number y such that f(y) ~ f (x) for all numbers x - the function f takes on a 
minimum value, not just on each closed interval, but on the whole line. (Notice 
that this is false if 11 is odd.) The proof depends 011 Theorem 7, but a tricky 
application will be rcqllircd. \ Ve can apply Theorem 7 to any interval [a, b], and 
obtain a point )'Osuch that f (yo) is the minimum value off on I a, b I; but if r a, b J 
happens to be the interval shown in Figure 8, for example, then the point Yo will 
not be the place where f has its minimum value for the whole line. In the next 
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theorem the entire point of the proof is to choose an interval [a. b J in such a way 
that this cannot happen. 

If fl is even and f(x) = xn + a11 _ 1x 11
-

1 + · · · + ao, then there is a number y such 
that f (y) :'.S f (x) for all x. 

As in the proof of Theorem 9, if 

M = max(l, 2nlan- JI , ... , 2nlaol), 

then for all x with Ix I ~ M, we have 

1 a11 _ 1 ao 
-< !+--+ .. ·+-. 
2 - X X 11 

Since fl is even, x 11 ~ 0 for all x, so 

Xn 11 ( a11 _1 ao) 
- :'.S x 1 + - + · · · + - = f(x), 
2 x X 11 

provided that Ix I ~ M. Now consider the number f (0). Let b > 0 be a number 
such that b11 ~ 2 f (0) and also b > M. Then, if x ~ b, we have (Figure 9) 

xn bll 
f(x) ~ 2 ~ 2 ~ f(O). 

Similarly, if x :'.S - b, then 

X 11 (-bY' bn 
f (x) ~ 2 ~ -2- = 2 ~ f (0). 

Summarizing: 

if x ~ b or x :'.S -b, then f(x) ~ J (0). 

Now apply Theorem 7 to the function f on the interval [ -b, b J. \\Te conclude 
that there is a number y such that 

(1) if -b :'.S x :'.Sb, then f(y) :'.S f(x). 

In particular, f (y) :'.S f(O). Thus 

(2) if x :'.S -b or x ~ b, then f(x) ~ J(O) ~ J(y). 

Combining (1) and (2) we see that f (y) :'.S f (x) for all x. I 

Theorem 10 now allows us to prove the following result. 

Consider the equation 

() 11+ 11 - J+ + * x a11 _ 1x ··· ao=c. 
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and suppose 11 is even. Then there is a number m such that (*) has a solution for 
c ::::: m and has no solution for c < 111. 

Let f(x) = x 11 + a11 _ 1xn - l + · · · + ao (Figure 10). 

According to Theorem 10 there is a number y such that f(y)::::: f(x) for all x. 
Let 111 = f(y). If c < 111, then the equation (*) obviously has no solution, since 
the left side always has a value ::::: 111. If c = 111, then (*) has y as a solution. 
Finally, suppose c > 111. Let b be a number such that b > y and f(b) > c. Then 
f(y) = 111 < c < f(b). Consequently, by Theorem 4, there is some number x in 
[y, b] such that f(x) = c, so xis a solution of (*). I 

These consequences of Theorems 1, 2, and 3 are the only ones we will derive 
now (these theorems will play a fundamental role in everything we do later, how­
ever). Only one task remains- to prove Theorems 1, 2, and 3. Unfortunately, 
we cannot hope to do this- on the basis of our present knowledge about the real 
numbers (namely, Pl - Pl 2) a proof is impossible. There are several ways of con­
vincing ourselves that this gloomy conclusion is actually the case. For example, 
the proof of Theorem 8 relies only on the proof of Theorem I; if we could prove 
Theorem 1, then the proof of Theorem 8 would be complete, and we would have 
a proof that every positive number has a square root. As pointed out in Part I, it 
is impossible to prove this on the basis of P 1 P 12. Again, suppose we consider the 
function 

1 
f(x) = x2 - 2 

If there were no number x with x 2 = 2, then f would be continuous, since the 
denominator would never = 0. But f is not bounded on [O, 2]. So Theorem 2 
depends essentially on the existence of numbers other than rational numbers, and 
therefore on some property of the real numbers other than Pl - Pl 2. 

Despite our inability to prove Theorems I , 2, and 3, they are certainly results 
which we want to be true. If the pictures we have been drawing have any con­
nection with the mathematics we arc doing, if our notion of continuous function 
corresponds to any degree with our intuitive notion, Theorems I, 2, and 3 have 
got to be true. Since a proof of any of these theorems must require some new 
property of R which has so far been overlooked, our present difficulties suggest a 
way to discover that property: let us try to construct a proof of Theorem I, for 
example, and see what goes wrong. 

One idea which seems promising is to locate the first point where f (x) = 0, that 
is, the smallest x in fa, b] such that f (x) = 0. To find this point, first consider 
the set A which contains all numbers x in [a. b 1 such that J is negative on r a. x 1. 
ln Figure l l, x is such a point, while x ' is not. 'The set A itself is indicated by a 
heavy line. Since f is negative at a, and positive at b, the set A contains some 
points greater than a, while all points sufficiently dose to b are not in A. (\ \'e are 
here 11sing the continuity of f on [a, b I, as well as Problem 6-16.) 
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Now suppose a is the smallest number which is greater than all members of A; 
clearly a < a < b. We claim that f (a) = 0, and to prove this we only have to 
eliminate the possibilities f (a) < 0 and f (a) > 0. 

Suppose first that f (a) < 0. Then, by Theorem 6-3 , f (x) would be less than O 
for all x in a small interval containing a, in particular for some numbers bigger 
than a (Figure 12); but this contradicts the fact that a is bigger than every member 
of A, since the larger numbers would also be in A. Consequently, f (a) < 0 is 
false. 

On the other hand, suppose f (a) > 0. Again applying Theorem 6-3, we see that 
f (x) would be positive for all x in a small interval containing a, in particular for 
some numbers smaller than a (Figure 13). This means that these smaller numbers 
are all not in A. Consequently, one could have chosen an even smaller a which 
would be greater than all members of A. Once again we have a contradiction; 
f (a) > 0 is also false. Hence f (a) = 0 and, we are tempted to say, QE.D. 

We know, however, that something must be wrong, since no new properties of R 
were ever used, and it does not require much scrutiny to find the dubious point. 
It is clear that we can choose a number a which is greater than all members of A 
(for example, we can choose a = b), but it is not so clear that we can choose a 
smallest one. In fact, suppose A consists of all numbers x ~ 0 such that x 2 < 2. 
If the number J2 did not exist, there would not be a least number greater than 

all the members of A; for any y > J2 we chose, we could always choose a still 
smaller one. 

Now that we have discovered the fallacy, it i_s almost obvious what additional 
property of the real numbers we need. All we must do is say it properly and use it. 
That is the business of the next chapter. 

PROBLEMS 

1. For each of the following functions , decide which are bounded above or below 
on the indicated interval, and which take on their maximum or minimum 
value. (Notice that f might have these properties even if f is not continuous, 
and even if the interval is not a closed interval.) 

(i) 
(ii) 
(iii) 
(iv) 

(v) 

(vi) 

(vii) 

f(x) = x 2 on (-1. 1). 
f(x) = x 3 on (-L 1). 

f (x) = x 2 on R. 
f (x) = x 2 on [O, oo). 

f(x) = I x2, 
a+ 2, x > a 

x _:s a 
on (-a - 1,a + 1). (\Ve assume a> - 1, so 

that -a - 1 < a + I ; it will be necessary to consider several possibilities 
for a.) 

f(x) = I x2, 
a +2, 

x < a on [ - a - l, a + I]. (Again assume a > - 1.) 
x~a 

I O x irrational O 
1 f (x) = I /. q, I . 1 on [ , J. x = p q m owest terms 
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(viii) f(x) = l I, x irrational 
on [O, l]. 

1/q, x = p / q in lowest terms 

(ix) f(x) = l I, x irrational 
on [O, 1]. 

-l/q, x = p/q in lowest terms 

(x) J(x) = l x, 
x rational 

on [O, a]. 
0, x irrational 

(xi) f(x) = sin2 (cosx + )a +a2) on [O,a 3]. 

(xii) f(x) = [x] on [O, a]. 

2. For each of the following polynomial functions f, find an integer II such that 
f(x) = 0 for some x between 11 and 11 + I. 

(i) f(x)=x 3 -x+3. 

(ii) f(x) = xs + 5x 4 + 2x + 1. 
(iii) f(x) =XS+ X + 1. 
(iv) f(x)=4x 2 -4x+I. 

3. Prove that there is some number x such that 

(i) 

(ii) 

X
l79 + 163 ~ ----= 119. 

1 + x 2 + sin2 x 
sinx = x - I. 

4. This problem is a continuation of Problem 3-7. 

(a) If 11 - k is even, and 2: 0, find a polynomial function of degree 11 with 
exactly k roots. 

(b) A root a of the polynomial function f is said to have multiplicity 111 

if f (x) = (x - a Y1 g (x), where g is a polynomial function that does not 

have a as a root. Let f be a polynomial function of degree 11. Suppose 
that f has k roots, counting multiplicities, i.e., suppose that k is the sum 
of the multiplicities of all the roots. Show that 11 - k is even. 

5. Suppose that f is continuous on [a, b J and that f (x) is always rational. What 
can be said about f? 

6. Suppose that f is a continuous function on f - L 1] such that x 2 + (! (x) ) 2 = I 
for all x. (This means that (x, f (x)) ahvays lies on the unit circle.) Show that 

either f(x) = )I - x 2 for all x, or else f(x) = -JI - x 2 for all x. 

7. How many continuous functions fare there which satisfy (f (x)) 2 = x 2 for 
all x ? 

8. Suppose that f and g arc continuous, that f 2 = g 2, and that f (x) =j:. 0 for 
all x. Prove that either f (x) = g(x) for all x, or else f (x) = - g(x) for all x. 

9. (a) Suppose that f is continuous, that f (x) = 0 only for x = a, and that 
f (x) > 0 for some x > n as well as for some x < a. \\'hat can be said 
about f (x) for all x =j:. n ? 
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(b) Again assume that f is continuous and that f (x) = 0 only for x = a, 

but suppose, instead, that f (x) > 0 for some x > a and f(x) < 0 for 
some x < a. Now what can be said about f(x) for x =j:. a? 

*(c) Discuss the sign of x 3 + x 2y + xy2 + y 3 when x and y are not both 0. 

10. Suppose f and g are continuous on [a, b] and that f (a) < g(a), but f (b) > 

g (b). Prove that f (x) = g (x) for some x in [a, b]. (If your proof isn't very 
short, it's not the right one.) 

11. Suppose that f is a continuous function on [O, 1] and that f (x) is in [O, l] 
for each x (draw a picture). Prove that f (x) = x for some number x. 

12. (a) Problem 11 shows that f intersects the diagonal of the square in Fig­
ure 14 (solid line). Show that f must also intersect the other ( dashed) 
diagonal. 

(b) Prove the following more general fact: If g is continuous on [O, 1] and 
g(O) = 0, g(l) = 1 or g(O) = 1, g(l) = 0, then f(x) = g(x) for some x. 

13. (a) Let f (x) = sin 1 / x for x =j:. 0 and let f (0) = 0. Is f continuous on 
[ - 1. 1]? Show that f satisfies the conclusion of the Intermediate Value 
Theorem on [ -1, 1 J; in other words, if f takes on two values somewhere 
on [ -1, 1], it also takes on every value in between. 

*(b) Suppose that f satisfies the conclusion of the Intermediate Value Theo­
rem, and that f takes on each value on!)• once. Prove that f is continuous. 

*(c) Generalize to the case where f takes on each value only finitely many 
times. 

14. If f is a continuous function on [O, I], let llf II be the maximum ,·alue of If I 
on [O. I]. 

(a) Pro,·e that for any number c we have llcf II = lei · llf II. 
*(b) Prove that llf + gll :=.:: llf II+ llgll. Give an example where llf + gll =j:. 

llfll + llgll-
(c) Prove that llh - f II :=.:: lllz - gll + Ilg - f 11-

*15. Suppose that¢ is continuous and lim ¢(x)/x 11 = 0 = lim ¢(x)/x11
• 

X-+ 00 X-+ - 00 

(a) Prove that if n is odd, then there is a number x such that x 11 + ¢ (x) = 0. 
(b) Prow that if n is even, then there is a number y such that y" + ¢ (y) :::: 

x 11 + ¢ (x) for all x. 

Hint: Of which proofs docs this problem test your understanding? 

*16. (a) Suppose that f is continuous on (a, b) and lim f(x) = lim f (x) = oo . 
x-+a+ x ---- b-

Provc that f has a minimum on all of (a, h ). 
(b) Prove the corresponding result when a = - oo and/ or b = oo. 

*17. Let f be any polynomial function. Prove that there is some number y such 
that lf(y)I :::: lf(x)I for all x. 
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' ' ' ' ' ' ' ' 
a b 

' 
(x, 0) 

*18. Suppose that f is a continuous function with f (x) > 0 for all x, and 
lim f (x) = 0 = lim f (x). (Draw a picture.) Prove that there is some 

X-+00 X ---+-00 

number y such that f(y) ~ f(x) for all x. 

*19. (a) Suppose that f is continuous on [a, b], and let x Ix any number. Prove 

(b) 

(c) 
(d) 

that there is a point on the graph of f which is closest to (x, 0); in 
other words there is some y in [a, b J such that the distance from (x, 0) 

to (y, f (y)) is ::: distance from (x, 0) to (z, f (z)) for all z in [a, b]. (See 
Figure 15.) 
Show that this same assertion is not necessarily true if [a, b 1 is replaced 
by (a,b) throughout. 
Show that the assertion is true if [a, b] is replaced by R throughout. 
In cases (a) and (c), let g(x) be the minimum distance from (x, 0) to a 
point on the graph of f. Prove that g (y) ::: g (x) + Ix - y I, and conclude 

FI cu RE 1 s that g is continuous. 

20. 

f 

x x+ .!. 4 

FIGURE 16 *21. 

(e) Prove that there are numbers xo and x1 in [a, b] such that the distance 
from (xo, 0) to (x 1, f (x 1)) is ::: the distance from (xo', 0) to (x 1 ', f (x 1 ')) 

for any xo', x1' in [a, b]. 

(a) 

*(b) 

(a) 

Suppose that f is continuous on [O, l] and f(O) = J(l). Let II be any 
natural number. Prove that there is some number x such that f (x) = 

f (x + l / n), as shown in Figure 16 for 11 = 4. Hint: Consider the function 
g(x) = f(x) - f(x + 1/n); what would be true if g(x) =I- 0 for all x? 
Suppose O < a < I, but that a is not equal to 1 / 11 for any natural 
number 11. Find a function f which is continuous on [O, I J and which 
satisfies f (0) = f (l ), but which does not satisfy f (x) = f (x + a) for 
any x. 

Prove that there does not exist a continuous function f defined on R 
which takes on every value exactly twice. Hint: If f(a) = f (b) for 
a < b, then either f(x) > f(a) for all x in (a, b) or f(x) < f(a) for 
all x in (a, b). Why? In the first case all values close to f (a), but slightly 
larger than f(a), are taken on somewhere in (a, b); this implies that 
f(x) < f(a) for x < a and x > b. 

(b) Refine part (a) by proving that there is no continuous function f which 
takes on each value either O times or 2 times, i.e., \vhich takes on exactly 
twice each value that it does take on. Hint: The previous hint implies 
that f has either a maximum or a minimum value (which must be taken 
on twice). vVhat can be said about values close to the maximum \·alue? 

(c) Find a continuous function f which takes on every value exactly 3 times. 
l\Iore generally, find one which takes on every value exactly II times, if 
II is odd. 

(cl) Prove that if II is even, then there is no continuous f \\·hich takes on 
every value exactly 11 times. Hint: To treat the case 11 = 4, for example, 
let f (xi) = f (x2) = f (.q) = f (x4). Then either f (x) > 0 for all x in 
two of the three intervals (x1,x2), (x2, .q), (.q,x4), or else f(x) < 0 for 
all x in two of these three intcITals. 
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8 LEAST UPPER BOUNDS 

This chapter reveals the most important property of the real numbers. Never­
theless, it is merely a sequel to Chapter 7; the path which must be followed has 
already been indicated, and further discussion would be useless delay. 

A set A of real numbers is bounded above if there is a number x such that 

x :::: a for every a in A. 

Such a number x is called an upper bound for A. 

Obviously A is bounded above if and only if there is a number x which is an 
upper bound for A (and in this case there will be lots of upper bounds for A); we 
often say, as a concession to idiomatic English, that "A has an upper bound" when 
we mean that there is a number which is an upper bound for A. 

Notice that the term "bounded above'' has now been used in two ways~ first, in 
Chapter 7, in reference to functions, and now in reference to sets. This dual usage 
should cause no confusion, since it will always be clear whether we are talking 
about a set of numbers or a function. :Nioreover, the two definitions are closely 
connected: if A is the set {f(x) : a ~ x ~ b}, then the function f is bounded 
above on [a, b] if and only if the set A is bounded above. 

The entire collection R of real numbers, and the natural numbers N, are both 
examples of sets which are not bounded above. An example of a set which is 
bounded above is 

A = {x : 0 ~ x < 1}. 

To show that A is bounded above we need only name some upper bound for A, 
which is easy enough; for example, 138 is an upper bound for A, and so are 2, 
Ii, l i, and 1. Clearly, I is the least upper bound of A; although the phrase 
just introduced is self-explanatory, in order to avoid any possible confusion (in 
particular, to ensure that we all know what the superlative of "less" means), we 
define this explicitly. 

A number x is a least upper bound of A if 

(1) x is an upper bound of A, 

and (2) if y is an upper bound of A, then x :::: y. 

133 
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The use of the indefinite article "a" in this definition was merely a concession 
to temporary ignorance. Now that we have made a precise definition, it is easily 
seen that if x and y are both least upper bounds of A, then x = y. Indeed, in this 
case 

x .:::: y. since y is an upper bound, and x is a least upper bound, 

and y .:::: x, since x is an upper bound, and y is a least upper bound; 

it follows that x = y. For this reason we speak of the least upper bound of A. 

The term supremum of A is synonymous and has one advantage. It abbreviates 
quite nicely to 

sup A (pronounced "soup A") 

and saves us from the abbreviation 

lub A 

(which is nevertheless used by some authors). 
There is a series of important definitions, analogous to those just given, which 

can now be treated more briefly. A set A of real numbers is bounded below if 
there is a number x such that 

for every a in A. 

Such a number x is called a lower bound for A. A number x is the greatest 
lower bound of A if 

( l) x is a lower bound of A, 
and (2) if y is a lower bound of A, then x :::: y. 

The greatest lower bound of A is also called the infimum of A, abbreviated 

inf A: 

some authors use the abbreviation 

glb A. 

One detail has been omitted from our discussion so far- - the question of which 
sets have at least one, and hence exactly one, least upper bound or greatest lower 
bound. \Ve will consider only least upper bounds, since the question for greatest 
lower bounds can then be answered easily (Problem 2). 

If A is not bounded above, tlwn A has no upper bound at all, so A certainly 
cannot be expected to ha,·e a least upper bound. It is tempting to say that A does 
have a least upper bound if it has some upper bound, but, like the principle of 
mathematical induction, this assertion can fail to be true in a rather special way. 
If A = 0, then A is bounded above. Indeed, any number x is an upper bound 
for 0: 

x :::: y for every y in 0 

simply because there is no y in 0. Since fl'ft)' number is an upper hound for 0, 
there is surely no least upper bound for 0. \Vith this trivial exception however, 
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our assertion is true-- -and very important, definitely important enough to warrant 
consideration of details. We are finally ready to state the last property of the real 
numbers which we need. 

(P 13) (The least upper bound property) If A is a set of real numbers, 
A =J. 0, and A is bounded above, then A has a least upper bound. 

Property Pl3 may strike you as anticlimactic, but that is actually one of its 
virtues. To complete our list of basic properties for the real numbers we require no 
particularly abstruse proposition, but only a property so simple that we might feel 
foolish for having overlooked it. Of course, the least upper bound property is not 
really so innocent as all that; after all, it does not hold for the rational numbers Q. 
For example, if A is the set of all rational numbers x satisfying x 2 < 2, then there 
is no rational number y which is an upper bound for A and which is less than or 
equal to every other rational number which is an upper bound for A. It will become 
clear only gradually how significant Pl3 is, but we are already in a position to 
demonstrate its power, by supplying the proofs which were omitted in Chapter 7. 

If f is continuous on [a, b] and f (a) < 0 < f (b), then there is some number x 

in ra, b] such that f(x) = 0. 

Our proof is merely a rigorous version of the outline developed at the encl of 
Chapter 7- we will locate the smallest number x in [a, b] with f (x) = 0. 

Define the set A, shown in Figure 1, as follows: 

A= {x: a:::; x:::; b, and f is negative on the interval [a, x] }. 

Clearly A =J. 0, since a is in A; in fact, there is some o > 0 such that A contains 
all points x satisfying a :::; x < a + o; this follows from Problem 6-16, since f is 
continuous on [a, b] and f(a) < 0. Similarly, bis an upper bound for A and, in 
fact, there is a o > 0 such that all points x satisfying b - o < x :::; b are upper 
bounds for A; this also follows from Problem 6-16, since f (b) > 0. 

From these remarks it follows that A has a least upper bound a and that 
a < a < b. We now wish to show that f (a) = 0, by eliminating the possibil­
ities f (a)< 0 and f(a) > 0. 

Suppose first that f (a) < 0. By Theorem 6-3, there is a o > 0 such that 
f (x) < 0 for a - o < x < a+ o (Figure 2). Now there is some number xo in A 
which satisfies a - o < xo < a (because otherwise a \"/Otdcl not be the least upper 
bound of A). This means that f is negative on the whole interval [a, xo l But if 
x I is a number between a and a + o, then f is also negative on the whole interval 
[xo,x1l Therefore f is negative on the interval [a,x1], so x, is in A. But this 
contradicts the fact that a is an upper bound for A; our original assumption that 
f (a) < 0 must be false. 

Suppose, on the other hand, that f (a) > 0. Then there is a number o > 0 such 
that f (x) > 0 for a - o < x < a + o (Figure 3). Once again we know that there is 
an xo in A satisfying a - o < xo < a; but this means that f is negative 011 la, .ro], 



136 Foundations 

THEOREM l 

PROOF 

which is impossible, since f (xo) > 0. Thus the assumption f (a) > 0 also leads to 
a contradiction, leaving f (a) = 0 as the only possible alternative. I 

The proofs of Theorems 2 and 3 of Chapter 7 require a simple preliminary 
result, which will play much the same role as Theorem 6-3 played in the previous 
proof. 

If f is continuous a t a , then there is a number 8 > 0 such that f is bounded 
above on the interval (a - 8, a+ 8) (sec Figure 4). 

Since lim f(x) = f(a), there is, for every c > 0, a 8 > 0 such that , for all x, 
X--> a 

if Ix - al < 8, then lf(x) - f(a)I < c. 

It is only necessary to apply this statement to some particular c (any one will do), 
for example, c = 1. \Ve conclude that there is a 8 > 0 such that , for all x, 

if Ix - al < 8, then lf(.x) - f(a)I < 1. 

It follows, in particular, that if Ix - al < 8, then f(x) - f(a) < I. This completes 
the proof: on the interval (a - 8, a + 8) the fonction f is bounded above by 

J<a)+ 1.1 

It should hardly be necessary to add tha t we can now also pro\'C' that f is 
bounded below on some interval (a - 8, a+ 8), a nd , finally, that f is bounded on 
some open interval containing a. 

A more significant point is the observation tha t if fon f (x) = f (a), then there 
X --> a + 

I 
__ __[__ 

a - 8 a a+8 
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is a 8 > 0 such that f is bounded on the set {x : a ::::; x < a + 8}, and a similar 
observation holds if lim f (x) = f (b). Having made these observations (and 

x-+b-

assuming that you will supply the proofs), we tackle our second major theorem. 

If f is continuous on [a, b], then f is bounded above on [a, b J. 

Let 
A = { x : a ::::; x ::::; b and f is bounded above on [a, x J}. 

Clearly A # 0 (since a is in A ), and A is bounded abon· (by b), so A has a least 
upper bound a. Notice that we arc here applying the term "bounded above" both 
to the set A, which can be visualized as lying on the horizontal axis, and to f, i.e., 
to the sets {! (y) : a ::::; y ::::; x}, which can be visualized as lying on the vertical axis 
(Figure 5). 

Our first step is to prove that we actually have a = b. Suppose, instead, that 
a < b. By Theorem l there is 8 > 0 such that f is bounded on (a-8, a+8). Since 
a is the least upper bound of A there is some xo in A satisfying a-8 < xo <a. This 
means that f is bounded on [a, xo]. But if XJ is any number with a < x1 < a +8, 
then f is also bounded on [xo, x1]. Therefore f is bounded on [a, xi], so x1 is 
in A, contradicting the fact that a is an upper bound for A. This contradiction 
shows that a = b. One detail should be mentioned: this demonstration implicitly 
assumed that a < a [so that f would be defined on some interval (a - 8, a+ 8)]; 
the possibility a = a can be ruled out similarly, using the existence of a 8 > 0 such 
that f is bounded on {x : a ::::; x < a+ 8}. 

The proof is not quite complete- we only know that f is bounded on [a. x] for 
every x < b, not necessarily that f is bounded on [a, b J. However, only one small 
argument needs to be added. 

There is a 8 > 0 such that f is bounded on {x : b - 8 < x ::::; b}. There is xo 

in A such that b - 8 < xo < b. Thus f is bounded on [a, xo] and also on [xo, b], 

so J is bounded on r a. b J. I 

To prove the third important theorem we resort to a trick. 

If f is continuous on [a, b J, then there is a number y in [a, b 1 such that f (y) ~ 

f (x) for all x in [a, b]. 

\Ve already know that f is bounded on [a, b], which means that the set 

{f (x): x in [a , bl} 

is bounded. This set is obviously not 0, so it has a least upper bound a. Since 
a~ f(x) for x in [a, b] it suffices to sho\\' that a= f(y) for some yin [a. hJ. 

Suppose instead that a # f (y) for all y in [a, b]. Then the function g defined 
by 

l 
g(x)=a - f(x)' xinfa,b] 
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is continuous on [a, b], since the denominator of the right side is never 0. On the 

other hand, a is the least upper bound of { f (x) : x in [a, b]}; this means that 

for every£> 0 there is x in fa. bl with a - f (x) < £. 

This, in turn, means that 

for every£> 0 there is x in [a, b] with g(x) > I/£. 

But this means that g is not bounded 011 fa, b], contradicting the previous theo­

rem. I 

1\t the beginning of this chapter the set of natural numbers N was given as an 

example of an unbounded set. \ \'e are now going to jJrove that N is unbounded. 

After the difficult theorems prmTd in this chapter you may be startled to find 

such an ''obvious'' theorem ,vinding up our proceedings. If so, you are, perhaps, 

allowing the geometrical picture of R to influence you too strongly. "Look," you 

may say, "the real numbers look like 

0 2 3 nx n+I 

so e,·ery number x is between two integers n, 11 + l (unless x is itself an integer).'' 

Basing the argument on a geometric picture is not a proof, however, and even the 

geometric picture contains an assumption: that if you place unit segments end-to­

end you will eventually get a segment larger than any given seg1nent. This axiom, 

often omitted from a first introduction to geometry, is usually attributed (not quite 

justly) to Archimedes, and the corresponding property for numbers, that N is not 

bounded, is called the ,lrrlzimedean properfv of the real numbers. This property is not 
a consequence of Pl Pl2 (sec reference 114] of the Suggested Reading), although 

it docs hold for Q, of course. Once ,vc have P13 however, there are no longer 

any problems. 

N is not bounded above. 

Suppose N \\TIT bounded abmT. Since N f=. 0, there would be a least upper 

bound a for N. Then 

a ~ II for all II in N. 

Consequently, 

a ~ 11 + l for all 11 in N , 

since 11 + I is i11 N if II is in N. But this 111ea11s that 

a - I ~ 11 for a ll II in N , 

and this mca11s that a - l is also an upper bound for N , contradicting the fact that 

a is tlic least upper bound. I 
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There is a consequence of Theorem 2 (actually an equivalent formulation) which 
we have very often assumed implicitly. 

For any c > 0 there is a natural number n with 1/n < c. 

Suppose not; then 1/n:::::: c for a11 n in N. Thus n:::: 1/c for all n in N. But this 
means that 1 / c is an upper bound for N, contradicting Theorem 2. I 

A brief glance through Chapter 6 will show you that the result of Theorem 3 
was used in the discussion of many examples. Of course, Theorem 3 was not 
available at the time, but the examples were so important that in order to give 
them some cheating was tolerated. As partial justification for this dishonesty we 
can claim that this result was never used in the proof of a theorem, but if your faith 
has been shaken, a review of all the proofs given so far is in order. Fortunately, 
such deception will not be necessary again. \Ve have now stated every property of 
the real numbers that we will ever need. Henceforth, no more lies. 

PROBLEtIS 

1. Find the least upper bound and the greatest lower bound (if they exist) of 
the following sets. Also decide which sets have greatest and least elements 
(i.e., decide when the least upper bound and greatest lower bound happens 
to belong to the set). 

2. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
(vi) 
(vii) 

(viii) 

(a) 

l ~ : 11 in Z and n # 0} . 

{x : x = 0 or x = 1 / n for some n in N}. 
{x : 0 :::: x :::: J2 and x is rational}. 

{x : x 2 + x + 1 ::::::_ O}. 
{x : x 2 + x - 1 < O}. 
{x : x < 0 and x 2 + x - 1 < O}. 

l ~ + ( - I )" : 11 in N}. 

Suppose A =f. 0 is bounded below. Let -A denote the set of all -x 
for x in A. Prove that -A =f. 0, that -A is bounded abon~, and that 
- sup(-A) is the greatest lower bound of A. 

(b) If A =f. 0 is bounded below, let B be the set of all lower bounds of A. 

Show that B =f. 0, that B is bounded abm-c, and that sup B is the greatest 
lower bound of A. 

3. Let f be a continuous function on la,bJ ,,·ith f(a) < 0 < f(b). 

(a) The proof of Thcorcrn 7- 1 showed that there is a smallest x in [a. b] 
with f (x) = 0. If there is more than one x in [a, b] with f (x) = 0, 
is there necessarily a second smallest? Show that there is a largest x in 
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[a, b] with f (x) = 0. (Try to give an easy proof by considering a new 
function closely related to f .) 

(b) The proof of Theorem 7- l depended upon considering A = { x : a :s 
x ::: b and f is negative on [a, xJ}. Give another proof of Theorem 7-1, 
which depends upon consideration of B = {x : a ::S x ::: b and f (x) < 

0}. \ Vhich point x in la, b] with f (x) = 0 will this proof locate? Give 
an example where the sets A and B are not the same. 

*4. (a) Suppose that f is continuous on [a, b] and that j(a) = /(b) = 0. 
Suppose also that f (xo) > 0 for some xo in [a, b]. Prove that there arc 
numbers c and cl with a ::: c < xo < cl ::: b such that f (c) = f (cl) = 0, 
but f(x) > 0 for all x in (c, cl). Hint: The previous problem can be used 
to good advantage. 

(b) Suppose that f is continuous on [a, b] and that j(a) < f(b). Prove that 
there are numbers c and d with a ::S c < cl ::: b such that f (c) = f (a) 

and f (cl)= f (b) and f (a) < f (x) < f(d) for all x in (c. cl). 

5. (a) Suppose that y - x > 1. Prove that there is an integer k such that 
x < k < y. Hint: Let I be the largest integer satisfying I ::: x, and 
consider I + 1. 

(b) Suppose x < y. Prove that there is a rational number r such that x < 

r < y. Hint: If 1 / n < y - x, then ny - nx > 1. (Query: \\Thy have parts 
(a) and (b) been postponed until this problem set?) 

(c) Suppose that r < s are rational numbers. Prove that there is an irrational 
number between r and s. Hint: As a start, you know that there is an 
irrational number between O and 1. 

(d) Suppose that x < y. Prove that there is an irrational number between x 
and y. Hint: It is unnecessary to do any more work; this follows from 
(b) and (c) . 

*6. A set A of real numbers is said to be dense if every open interval contains a 
point of A. For example, Problem 5 shows that the set of rational numbers 
and the set of irrational numbers are each dense. 

(a) Prove that if f is continuous and f (x) = 0 for all numbers x in a dense 
set A, then f (x) = 0 for all x. 

(b) Prove that if/ and g are continuous and f (x) = g(x) for all x in a dense 
set A, then f (x) = g (x) for all x. 

(c) If we assume instead that f(x) :=: g(x) for all x in A, show that f(x) :=: 
g(x) for all x. Can ::: be replaced by > throughout? 

7. Prove that if f is continuous and f(x + y) = f(x) + f(y) for all x and y, 
then there is a number c such that f (x) = ex for all x. (This conclusion 
can be demonstrated simply by combining the results of two previous prob­
lems.) Point of information: 'fhcrc do exist nonrontinuous functions f satisfying 
f(x + y) = j(x) + .f(y) for all x and y, but we cannot pron· this now; in 
fact, this simple question involves ideas that arc usually ncwr mentioned in 
undergraduate courses (sec 1-cfiTencc [71 in the Suggested Reading). 
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Suppose that f is a function such that f (a) < f (b) whenenT a < b (Fig­
ure 6). 

(a) Pro\'e that lim f (x) and lim f(x) both exist. Hint: Why is this prob-
x - a - x-+a+ 

lcm in this chapter? 
(b) Prove that f never has a removable discontinuity (this terminology comes 

from Problem 6-17). 
(c) Prove that if f satisfies the conclusions of the Intermediate Value The­

orem, then f is continuous. 

If f is a bounded function on [0. IJ, let 1111111 = sup{Jf(x)I: x in [O. IJ}. 
Prove analogues of the properties of II II in Problem 7-14. 

Suppose a > 0. Prove that every number x can be written uniquely in the 
form x = ka + x', where k is an integer, and O .::: x' < a. 

(a) Suppose that a 1. a2, a3, . . . is a sequence of positive numbers with 
a 11 + 1 .::: a 11 /2. Prove that for any E > 0 there is some n with a 11 < E. 

(b) Suppose P is a regular polygon inscribed inside a circle. If P' is the 
inscribed regular polygon with twice as many sides, show that the differ­
ence between the area of the circle and the area of P' is less than half the 
difference between the area of the circle and tht' area of P (use Figure 7). 

( c) Prove that there is a regular polygon P inscribed in a circle '"''ith area 
as close as desired to the area of the circle. In order to do part ( c) you 
will need part (a). This was clear to the Greeks, who used part (a) as the 
basis for their entire treatment of proportion and area. By calculating 
the areas of polygons, this method ("the method of exhaustion") allows 
computations of n to any desired accuracy; Archimedes used it to show 

that V/ < n < 2
/. But it has far greater theoretical importance: 

*(cl) Using the fact that the areas of two regular polygons with the same num­
ber of sides have the same ratio as the square of their sides, prove that the 
areas of two circles have the same ratios as the square of their radii. Hint: 
Deduce a contradiction from the assumption that the ratio of the areas 
is greater, or less, than the ratio of the square of the radii by inscribing 
appropriate polygons. 

12. Suppose that A and B are two nonempty sets of numbers such that x .::: y 
for all x in A and all y in B. 

(a) Prove that sup A .::: y for all y in B. 

(b) Prove that sup A .::: inf B. 

13. Let A and B be two nonempty sets of numbers ,vhich are bounded abon', and 
let A+ B denote the set of all numbers x + y with x in A and y in B. Pro,·e that 
sup(A+B) = sup A+sup B. Hint: The inequality sup(A+B) .::: sup A+sup B 
is easy. \Vhy? To prove that sup A+ sup B :::: sup(A + B) it suffices to pro,·e 
that sup A+ sup B .::: sup(A + B) + E for all E > O; begin by choosing x in A 



142 Foundations 

aud y in B with sup A - x < c /2 and sup B - y < c /2. 

Fl(iURE 8 

a3 

14. (a) Consider a sequc-ncc of dosed intervals /1 = [cq, b1], /2 = [a2, b2], .... 
Suppose that a11 ::::: a 11 +1 and b11 + 1 ::::: b11 for all 11 (Figure 8). Prove that 
there is a point x which is in every /11 • 

(b) Show that this conclusion is false if we consider open intervals instead of 
dosed intervals. 

The simple result of Problem 14(a) is called the "Nested Interval Theorem." It 
may be used to give alternati,·e proofa of Theorems l and 2. The appropriate 
reasoning, outlined in the next t,vo problems, illustrates a general method, called 
a "bisection argument.'' 

*15. Suppose f is continuous on [a, b] and J(a) < 0 < f(b). Then either 
f ((a+ b)/2) = 0, or f has different signs at the end points of the interval 
[a, (a + b) /2], or f has difTerent signs at the end points of [ (a + b) /2, b]. 

Why? If J((a + b)/2) f. 0, let /1 be the interval on which f changes sign. 
Now bisect /1. Either f is Oat the midpoint, or f changes sign on one of the 
two intervals. Let /2 be that interval. Continue in this way, to define /11 for 
each 11 (unless f is O at some midpoint). Use the Nested Interval Theorem 
to find a point x where f (x) = 0. 

*16. Suppose f were continuous on [a, b], but not bounded on [a. b]. Then f 
would be unbounded on either [a. (a + b) /2] or [ (a + b) /2, b]. \ Vhy? Let / 1 

be one of these intervals on which f is unbounded. Proceed as in Problem I 5 
to obtain a contradiction. 

17. (a) Let A= {x: x < a}. Prove the following (they arc all easy): 

(i) If x is in A and y < x, then y is in A. 

(ii) A f. 0. 
(iii) A f. R. 
(iv) lf x is in A, then there is some number x' in A such that x < x'. 

(b) Suppose, conversely, that A satisfies (i)- (iv). Prow· that A = {x : x < 
sup A}. 

*18. A number x is called an almost upper bound for A if' there arc 011ly 
finitely many numbers y in A with y 2:: x. 1\11 almost lower bound is 
defined similarly. 

(a) Find all almost upper bounds and almost lmnT bounds of tlie sets in 
Problem I. 

(b) Suppose that A is a bounded infinite set. Prove that the set B of' all 
almost upper hounds of J\ is nom-mpty, and bounded hdow. 
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(c) It follows from part (b) that inf B exists; this number is called the limit 
superior of A, and denoted by lim A or lim sup A. Find lim A for each 
set A in Problem 1. 

(cl) Define lim A, and find it for all A in Problem 1. 

*19. If A is a bounded infinite set pro\'C' 

(a) lim A .:::: lim A. 

(b) lim A .:::: sup A. 

(c) If lim A < sup A, then A contains a largest element. 
(d ) The analogues of parts (b) and (c) for lim. 

b 

shadow points 

FIGL ' RE 9 

20. Let f be a continuous function on R. A point x is called a shadow point 
of f if there is a number y > x with f (y) > f (x). The rationale for this 
terminology is indicated in Figure 9; the parallel lines are the rays of the sun 
rising in the east (you are facing north). Suppose that all points of (a. b) are 
shadow points, but that a and bare not shadow points. Clearly . .f (a) ~ f(b). 

(a) Suppose that f (a) > f (b). Show that the point \\·here f takes on its 
maximum value on r a, b] must be a. 

(b) Then show that this leads to a contradiction, so that in fact we must hm·e 
f (a)= J(h). 

This little result, kno\\'n as the Rising Sun Lemma, is instrumental in 
prm·ing se,·cral beautiful theorems that do not appear in this book; see 
page 450. 
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APPENDIX. UNIFORl\1 CONTINUITY 

Now that we've come to the end of the "foundations,'' it might be appropriate 
to slip in one further fundamental concept. This notion is not used crucially in 
the rest of the book, but it can help clarify many points later on. 

\ Ve know that the fi_111ction f (x) = x 2 is continuous at a for all a. In other 
words, 

if a is any number, then for every E > 0 there is some 8 > 0 
such that, for all x, if J.r - a I < 8, then J.r 2 - a2 J < E. 

Of course, 8 depends on E. But 8 also dej,ends on a - the 8 that works at a might 
not work at b (Figure I). Indeed, it's dear that gi.Ycn E > 0 there is no one 8 > 0 
that works for all a, or even for all positive a. In fact, th, number a + 8 /2 will 
certainly satisfy Jx - al < 8, but if a> 0, then 

( 
8 )2 82 

a + 2 - (/2 = a8 + 4 ::::: a8' 

and this won't be< E once a> c/8. (This is just an admittedly confusing compu­
tational way of saying that f is growing faster and faster! ) 

On the other hand, for any E > 0 there will be one 8 > 0 that works for all a 
in any interval [ -N, N]. In fact, the 8 which works at N or -N will also work 
everywhere else in the interval. 

As a final example, consider th, function f (x) = sin 1 /x, or the function whose 
graph appears in Figure 18 on page 62. It is easy to sec that, so long as E < I, 
there will not be on, 8 > 0 that works for these functions at all points a in the 
open interval (0. 1). 

These examples illustrate important distinctions between the behm·ior of ,·arious 
continuous functions on certain intervals, and there is a special term to signal this 
distinction. 

The function f is uniformly continuous on an interval A if for e,·cry E > 0 
there is some 8 > 0 such that, for all x and y in A, 

if Jx-yJ <8,the11 Jf(.r)-/(y)J <E. 

\ \ 'e'w~ seen that a function can be continuous on the whole line, or on an open 
interval , without being uniformly continuous there. On the other hand, the fimc­
tion f (x) = x 2 <lid turn out to be uniformly continuous on any dosed in ten-al. 
This shouldn't be too surprising it's the same sort of thing that occurs \\'hen we 
,1sk vdwthcr a function is bouudccl on an i11te1Yal and \\T \\"ould be led to suspect 
that any continuous fonction on a dosed intcIYal is also nlliformly colltinuous Oil 

that intc1y;i). In order to prO\T this, \\'c'll need to deal first \\·ith one subtle point. 

Suppose that \\T h,1n· two i11tc1Yals la, h] and !h, c] \\·ith the cornmo11 end­
point b, and a function f that is co11ti11uous Oil I a, c j. Let E > 0 and suppose that 
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the following two statements hold: 

(i) if x and y are in [a, b] and Ix - y I < 81, then If (x) - f (y) I < £, 
(ii) if x and y arc in [b, c] and Ix - YI < 82, then If (x) - f (y)I < £. 

vVc'd like to know if there is some 8 > 0 such that lf(x) - f(y)I <£whenever 
x and _v arc points in [a, c J vvith Ix - y I < 8. Our first inclination might be to 
choose 8 as the minimum of 81 and 82. But it is easy to sec what goes wrong 
(Figure 2): we might have x in [a, b] and y in [ b, c], and then neither (i) nor (ii) 
tells us anything about If (x) - f(y)I. So we hm·c to be a little more cagey, and 
also use continuity of f at b. 

Let a < b < c and let f be continuous on the interval [a, c]. Let £ > 0, and 
suppose that statements (i) and (ii) hold. Then there is a 8 > 0 such that, 

if x and y are in [a, c] and Ix - YI < 8, then lf(x) - f(y)I < £. 

Since f is continuous at b, there is a 83 > 0 such that, 

if Ix - bi < 83, then lf(x) - f(b)I < ;. 

It follows that 

(iii) if Ix - bl < 83 and IY - bl < 83, then lf(x) - f(y)I < £. 

Choose 8 to be the minimum of 81 , 82, and 83. \Ve claim that this 8 works. In 
fact, suppose that x and y arc any two points in [a. c] with Ix - yl < 8. If x and y 
arc both in [a, b], then lf(x) - f(y)I <£by (i); and if x and y are both in [b. c], 
then If (x) - f (y) I < £ by (ii). The only other possibility is that 

x<b<y or y < b < x. 

In either case, since Ix - YI < 8, we also have Ix - bl < 8 and IY - bl < 8. So 
lfCx)-fC.r)I < t: by (iii). I 

If f is continuous on [a, b], then f is uniformly continuous on [a, b]. 

It 's the usual trick, but we've got to be a little bit carcftil about the mechanism of 
the proof. For£ > 0 let's say that f is £-good on [a, b] if there is some 8 > 0 such 
that, for ally and z in [a, b] , 

if IY - zl < 8, then If (y) - f (z)I < £. 

Then we're trying to prove that f is £-good on [a, bl for all£> 0. 
Consider any particular £ > 0. Let 

A= {x: a .::; x .::; band f is £-good on [a. x ]}. 

Then A -=I- 0 (since a is in A), and A is hounded above (by b), so A has a least 
upper bound a. \Ve really should write a t:, since A and a might depend 0 11 c. But 
we won't since we intend to pro\·c that a = b, no matter what c is. 
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Suppose that we had a < b. Since f is continuous at a, there is some 80 > 0 
such that, if IY - al < 80, then If (y) - f(a)I < c/2. Consequently, if IY - al < 80 
and I: - al < 80, then lf(y) - f(:)I < c. So f is surely F-good on the interval 
[ a - 80, a + 80]. On the other hand, since a i. · the least upper bound of A, it 
is also dear that f is c-good on [a. a - 80]. Then the Lemma implies that f is 
c-good 011 [a.a+ 80], so a+ 80 is in A, contradicting the fact that a is an upper 
bound. 

To complete the proof we just ha,·e to show that a = b is actually in A. The 
argument for this is practically the same: Since f is continuous at b, there is some 
80 > 0 such that, if b - 80 < y < b, then If (y) - f(b)I < c/2. So f is c-goocl on 
[b - 80, b]. But f is also £-good on [a. h - 80 I, so the Lemma implies that f is 
i-good on [a, b]. I 

PROBLEl\IS 

1. (a) For which of the following values of a is the function f (x) = xa uni­
formly continuous on [O, oo ): a = l /3, I /2, 2, 3? 

(b) Find a function .f that is continuous and bounded on (0, I], but not 
uniformly continuous on (0, l]. 

(c) Find a function f that is continuous and bounded on [O. oo) but which 
is not uniformly continuous on [O. oo). 

2. (a) Pron' that if f and g are uniformly continuous on A, then so is f + g. 
(b) Prove that if f and g are uniformly continuous and bounded on A, then 

f g is uniformly continuous on A. 
(c) Show that this conclusion does not hold if one of them isn't bounded. 
(cl) Suppose that f is uniformly continuous 011 A, that g is uniformly con­

tinuous on B, and that f (x) is in B for all x in A. Prove that g o f is 
uniformly continuous on A. 

3. Use a "bisection argument" (page 142) to gi\'e another proof of Theorem 1. 

4. Derive Theorem 7-2 as a consequence of Theorem 1. 
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In 1604, at the height of 
his scientific career_, Galileo argued 
that for a rectilinear motion 
in which speed increases proportionally 
to distance covered, 
the law of motion should he 
just that (.x· = c t2) 
which he had discovered 
in the investigation ef falling bodies. 
Between 1695 and 1700 
not a single one of the monthly issues 
of Leipzils Acta Eruditorum was jmhlished 
without articles of Leibniz_, 
the Bernoulli brothers 
or the Afarquis de l'Hopital treating, 
with notation onfy slightly different from 
that which we use today, 
the most varied Jnohlems of 
differential calculus, integral calrnlus 
and the calculus of variations. 
Thus in the space of almost precisely 
one century 
infinitesimal calculus or, 
as we now call it in English, 
The Calculus, 
the calculating tool /Jar excellence, 
had been forged; 
and nearly three centuries of 
constant use have not comjJlete[v dulled 
this incomparable instrument. 

NICHOLAS BOURBAKI 
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9 DERIVATIVES 

The dcrivatin:- of a function is the first of the two major concepts of this section. 
Together with the integral, it constitutes the source from which calculus derives 
its particular flavor. \'Vhile it is true that the concept of a function is fundamental, 
that you cannot do anything without limits or continuity, and that least upper 
bounds are essential, everything we have done until now has been preparation~ if 
adequate, this section will be easier than the preceding ones- for the really exciting 
ideas to come, the powerful concepts that arc truly characteristic of calculus. 

Perhaps (some would say "certainly") the interest of the ideas to be introduced 
in this section stems from the intimate connection between the mathematical con­
cepts and certain physical ideas. l\Iany definitions, and even some theorems, may 
be described in terms of physical problems, often in a revealing war In fact, the 
demands of physics were the original inspiration for these fundamental ideas of 
calculus, and we shall frequently mention the physical interpretations. But we 
shall always first define the ideas in precise mathematical form, and discuss their 
significance in terms of mathematical problems. 

The collection of all functions exhibits such diversity that there is almost no 
hope of discovering any interesting general properties pertaining to all. Because 
continuous functions form such a restricted class, we might expect to find some 
nontrivial theorems pertaining to them, and the sudden abundance of theorems 
after Chapter 6 shows that this expectation is justified. But the most interesting 
and most powerful results about functions ,.vill be obtained only when we restrict 
our attention even further, to functions which have even greater claim to be called 
"reasonable," which are even better behaved than most continuous functions. 

FI<;ll!{E I 

J (x) = Ix I, x ~ 0 

f(x) = x
2

, x::::: 0) 
J(x) = lxl 

(a) (b) (c) 

Figure l illustrates certain types of rnisbehm·ior which continuous functions can 
display. The graphs of these functions arc ''bent" at (0, 0), unlike the graph of 
Figure 2, where it is possible to cl raw a ''tangent line' ' at each point. The quotation 
marks have been used to avoid the suggestion that we have defined "bent'' or 
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FIGURE 3 

FIGURE4 

"tangent line,'' although we arc suggesting that the graph might be "bent" at a 
point where a "tangent line'' cannot be drawn. You have probably already noticed 
that a tangent line cannot be defined as a line which intersects the graph only 
once- such a definition would be both too restrictive and too permissive. VVith 
such a definition, the straight line shown in Figure 3 would not be a tangent line 
to the graph in that picture, while the parabola would have n,vo tangent lines at 
each point (Figure 4), and the three functions in Figure 5 would have more than 
one tangent line at the points where they arc "bent." 

(a) (b) (c) 

FIGURE 5 

A more promising approach to the definition of a tangent line might start with 
"secant lines,'' and use the notion of limits. If h =/= 0, then the two distinct points 
(a, f (a)) and (a+ h, f(a + h)) determine, as in Figure 6, a straight line whose 
slope is 

Flt; l 1 RE 6 

f (a+ h) - f (a) 

h 

f(a + h) - f (a) 

As Figure 7 illustrates, the "tangent line" at (a. f(a)) seems to be the limit, in 
some sense, of these "secant lines,'' as /z approaches 0. \Ve have m·vcr before 
talked about a '' limit'' of lines, but we wn talk about the limit of their slopes: the 
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a 

FTGURE7 

slope of the tangent line through (a. f (a)) should be 

. f (a+ h) - f (a) 
hm . 
h-> 0 h 

\!Ve are ready for a definition, and some comments. 

The function f is differentiable at a if 

1
. f(a + h) - f (a) 
1m exists. 

h-> 0 1z 
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In this case the limit is denoted by J'(a) and is called the derivative off at 
a. (We also say that f is differentiable if f is differentiable at a for every a 
in the domain of f .) 

The first comment on our definition is really an addendum; we define the 
tangent line to the graph of f at (a, f (a)) to be the line through (a, f (a)) 

with slope f'(a). This means that the tangent line at (a, f (a)) is defined only if 
f is differentiable at a. 

The second comment refers to notation. The syrn bol f' (a) is certainly rem­
iniscent of functional notation. In fact, for any function f, we denote by J' the 
function whose domain is the set of all numbers a such that f is differentiable 
at a, and whose value at such a number a is 

1
. f(a + lz) - f(a) 
1111 • 

h-> 0 lz 

(To be very precise: f' is the collection of all pairs 

a, lnn -------( 
. f(a+lz)-f(a)) 

lz -,0 1z 

for which lim [f (a+ lz) - f (a) J / h exists.) The function f' is called the derivative 
h->0 

off. 
Our third comment, somewhat longer than the previous two, refers to the phys­

ical interpretation of the derivative. Consider a particle which is moving along a 
straight line (Figure 8(a)) on which we have chosen an ''origin'' point O, and a 
direction in which distances from O shall be written as positive numbers, the dis­
tance from O of points in the other direction being written as negative numbers. 
Let s (t) denote tlw distance of the particle from O, at time t. The suggestive nota­
tion s (t) has been chosen purposely; since a distance s (t) is determined for each 

t = O t=l 
motion of the particle • • • • 

__ r_~_s ___ r_= •• _4 _____ r_=.;_3+-( __ ) t = 2 

0 line along which particle is mm·ing 
FJ(;URE 8 1a 
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"distance" 

FI G L: R E 8 ( b ) 

number t , the physical situation automatically supplies us with a certain function s. 
The graph of s indicates the distance of the particle from O, on the vertical axis, 
in terms of the time, indicated on the horizontal axis (Figure S(b)). 

The quotient 
s(a + h) - s(a) 

h 

has a natural physical interpretation. It is the "average velocity" of the particle 
during the time interval from a to a + h. For any particular a, this average speed 
depends on h, of course. On the other hand, the limit 

. s(a+h)-s(a) 
hm-------

11 - 0 lz 

depends only on a (as well as the particular function s) and there are important 
physical reasons for considering this limit. \ Ve would like to speak of the "velocity 
of the particle at time a," but the usual definition of velocity is really a definition 
of average velocity; the only reasonable definition of "wlocity at time a" (so-called 
"instantaneous velocity") is the limit 

l
. s(a+h)-s(a) 
un------

h-> O h 

Thus we define the (instantaneous) velocity of the' particle at a to be s'(a). 

Notice that s'(a) could easily be negative; the absolute value Js'(a)J is sometimes 
called the (instantaneous) speed. 

It is important to realize that instantaneous velocity is a theoretical concept, 
an abstraction which docs not correspond precisely to any observable quantity. 
\ Vhile it would not be fair to say that instantaneous velocity has nothing to do 
with m·erage velocity, remember that s'(t) is not 

s(t + h) - s(t) 

h 

for any particular h, but merely the limit of these average , ·elocities as h ap­
proaches 0. Thus, when velocities are measured in physics, what a physicist really 
measures is an a,·eragc velocity over some (wry small) time interval; such a pro­
cedure cannot be expected to give an exact answer, but this is really no drfrct, 
because physical measurements can ne,·er be exact anyway. 

The velocity of a particle is often called the ''rate of change of its position.'' This 
notion of the derivative, as a rate of change, applies to any other physical situation 
in which some quantity varies with time. For example, the "rate of change of 
mass" of a growing object means the derivative of the function m, where 111 (t) is 
the mass at time t. 

In order to become familiar with the basic definitions of this chapter, we will 
spend quite some time examining the derivatives of particular functions. Before 
proving the important theoretical results of Chapter 11, \\T want to have' a good 
idea of what the derivative of a function looks like. The next chapter is devoted 
exclusively to one aspect of this problem calculating the cle1fratin' of' compli­
cated functions. In this chapter ,vc will emphasize the concepts, rather than the 
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FIGURE9 
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calculations, by considering a few simple examples. Simplest of all is a constant 
function, f (x) = c. In this case 

lim f (a+ h) - f (a) = lim c - c = 0. 
h-+0 h h-+0 h 

Thus f is differentiable at a for every number a, and f' (a) = 0. This means that 
the tangent line to the graph of f always has slope 0, so the tangent line always 
coincides with the graph. 

Constant functions are not the only ones whose graphs coincide with their tan­
gent lines- this happens for any linear function f (x) = ex + d. Indeed 

, 
1
. f(a+lz)-f(a) f (a)= 1m ------

h-+O 1z 
. c(a+h)+d-[ca+d] = hm ---------

h-+0 h 

= lim c/z = c 
1z_.o h ' 

the slope of the tangent line is c, the same as the slope of the graph of f. 

A refreshing difference occurs for f (x) = x 2. Here 

, 
1
. f(a+lz)-f(a) f (a)= m1 ------

lz-+O h 

. (a+h) 2 -a2 

= hm · 
lz-+0 h 

. a 2 + 2ah + lz 2 
- a 2 

= hm --------
h-+O 1z 

= lim 2a + h 
lz-+O 

= 2a. 

Some of the tangent lines to the graph of f are shown in Figure 9. In this picture 
each tangent line appears to intersect the graph only once, and this fact can be 
checked fairly easily: Since the tangent line through (a, a2) has slope 2a, it is the 
graph of the function 

g(x) = 2a(x - a)+ a 2 

=2ax-a2
. 

Now, if the graphs off and g intersect at a point (x. f(x)) = (x, g(x)), then 

x 2 = 2ax - a2 

or x 2 
- 2ax + a 2 = 0: 

so (x - a)2 = 0 
or x = a. 

In other words, (a, a 2) is the only point of intersection. 
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slope 3a2 

- 2a 
-+- - -----c=o-l-=-/-'-l-----

1 1 (; l RI '. I O 

The function f (x) = x 2 happens to be quite special in this regard; usually a 
tangent line will intersect the graph more than once. Consider, for example, the 
function f (x) = x 3 . In this case 

!
'( ) 1. J (a+ h) - J (a) 

a = 1111 -------
h-+ 0 h 

1
. (a + h )3 - a 3 

= 1111------
h-+ O h 

. a 3 + 3a 2h + 3alz 2 + Jz 3 - a3 
= hm -----------

1, _.o lz 

1
. 3a 2h + 3ah 2 + !z 3 

= 1111 -------
h-> 0 h 

= lim 3a 2 + 3ah + h2 

h-> 0 

= 3a 2
. 

Thus the tangent line to the graph of f at (a, a 3 ) has slope 3a 2. This means that 
the tangent line is the graph of 

g(x) = 3a 2(x - a)+ a 3 

= 3ci2x - 2a 3 . 

The graphs off and g intersect at the point (x, f(x)) = (x,g(x)) when 

x 3 = 3ci2x - 2a 3 

or x 3 
- 3a 2x + 2a 3 = 0. 

This equation is easily solved if we remember that one solution of the equation 
has got to be x = a, so that (x - a) is a factor of the left side; the other factor can 
then be found by dividing. \,Ve obtain 

? ? 
(x - a)(.c + ax - 2a-) = 0. 

It so happens that x 2 + ax - 2a 2 also has x - a as a factor; we obtain finally 

(x - a)(x - a)(x + 2a) = 0. 

Thus, as illustrated in Figure 10, the tangent line through (a, a 3 ) also intersects 
the graph at the point ( - 2a, -8a3). These two points are always distinct, except 
when a= 0. 

\,Ve have already found the derivative of sufficiently many functions to illustrate 
the classical, and still very popular, notation for clerivati\·es. For a given function f, 
the derivative .f' is often denoted by 

For example, the symbol 

df(x) 

dx 

dx 2 

dx 
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denotes the derivative of the function f (x) = x 2. Needless to say, the separate 
parts of the expression 

df(x) 

dx 

are not supposed to have any sort of independent existence the d's are not num­
bers, they cannot be canceled, and the entire expression is not the quotient of tmJ 
other numbers "df(x)" and "dx." This notation is due to Leibniz (generally 
considered an independent co-discoverer of calculus, along with Newton), and is 
affectionately referred to as Leibnizian notation.* Although the notation df (x )/dx 

seems very complicated, in concrete cases it may be shorter; after all, the symbol 
d x 2 / dx is actually more concise than the phrase "the derivative of the function 
f (x) = x2." 

The following formulas state in standard Leibnizian notation all the information 
that we have found so far: 

de =O 
dx ' 

d(ax + b) 
----=a, 

dx 

dx 2 
-=2x, 
dx 

dx 3 ,., 
- =3x-. 
dx 

Although the meaning of these formulas is clear enough, attempts at literal 
interpretation are hindered by the reasonable stricture that an equation should 
not contain a function on one side and a number on the other. For example. if 
the third equation is to be true, then either df(x)/dx must denote .f'(x), rather 
than f', or else 2x must denote, not a number, but the function whose value at x 
is 2x. It is really impossible to assert that one or the other of these alternatives is 
intended; in practice df (x)/dx sometimes means f' and sometimes means f'(.r), 
while 2x may denote either a number or a function. Because of this ambiguity, 
most authors are reluctant to denote f' (a) by 

df(x) 
-·-(a); 

dx 

instead f' (a) is usually denoted by the barbaric, but unambiguous, symbol 

* L<:'ilmiz was led to this symbol by his intuitiw' notion of the deri\'ati\'C\ \\'hich he considered to lie, 
not the limit of quotients r f (x + h) - I (x) I I h' but the "\'alue'' of t his quotient \\·hm h is an "inf initcly 
small '' numhn This " infinitely small" quantity was denoted by dx and the corresponding- '' infinitcl~ 
small" clifTerrnce f (x +dx) - f (x) by df (x). Although this point of view is impossible to reconcile \,·ith 
properties (PI )· (P 13) of the real numbers, some people find this not ion of the clerivati\'C co11gl'l1ia I. 
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In addition to these difficulties, Leibnizian notation is associated with one more 
ambiguity. Although the notation dx 2 / dx is absolutely standard, the notation 
df(x)/dx is often replaced by df/dx. This, of course, is in conformity with the 
practice of confusing a function with its value at x. So strong is this tendency that 
functions arc often indicated by a phrase like the following: "consider the function 
y = x 2." vVc will sometimes follow classical practice to the extent of using y 
as the name of a function, but we will nevertheless carefully distinguish between 
the function and its values thus we will always say something like ''consider the 
function (defined by) y(x) = x 2.'' 

Despite the many ambiguities of Leibnizian notation, it is used almost exclu­
sively in older mathematical writing, and is still used very frequently today. The 
staunchest opponents of Leibnizian notation admit that it will be around for quite 
some time, while its most ardent admirers would say that it will be around for­
ever, and a good thing too! In any case, Lcibnizian notation cannot be ignored 
com plctely. 

The policy adopted in this book is to disallow Leibnizian notation within the 
text, but to include it in the Problems; several chapters contain a few (immediately 
recognizable) problems which are expressly designed to illustrate the vagaries of 
Leibnizian notation. Trusting that these problems will provide ample practice in 
this notation, we return to our basic task of examining some simple examples of 
derivatives. 

The few functions examined so far have all been differentiable. To fully ap­
preciate the significance of the dcrivati,·e it is equally important to know some 
examples of functions which are not differentiable. The obvious candidates arc the 
three functions first discussed in this chapter, and illustrated in Figure 1; if they 
turn out to be differentiable at O something has clearly gone wrong. 

Consider first f (x) = Ix I. In this case 

f(O + h) - f (0) lhl 
h I, 

Now lhl/ h = 1 for h > 0, and lhl/ h = -I for h < 0. Thi shows that 

lim f (h) - f (O) does not exist. 
h- 0 h 

In fact, 

1
. f(h)-f(O) l 
1111 = 

11 - 0+ h 

and lim f(h)-f(O) =-1. 
11 - 0- h 

(These two limits arc sometimes called the right-hand derivative and the left­
hand derivative, respectively, of f at 0.) 
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f' 

FIGURE I I 

f' 

FIG R£12 

F I (; R 1: I 3 

If a =J 0, then f' (a) does exist. In fact, 

f' (x) = 1 
f'(x) = -1 

if x > 0, 
if x < 0. 

9. Derivatives 15 7 

The proof of this fact is left to you (it is easy if you remember the derivative of a 
linear function). Th graph of f and of f' are hown in Figure 11. 

For the function 

f (x) = l x2, 
x, 

x~O 
x ~ 0, 

a imilar difficulty arise in connection with f' (0). We have 

f(h)-f(O)= ,;=h, I 
h2 

h h 
-=1 h ' 

h > 0. 

Therefore, 

lim f (h) - f (0) = O 
h-+0- h ' 

but lim f (h) - f (0) = 1. 
1,_,.Q+ h 

Thus f' (0) does not exist; f i not differentiable at 0. Once again, however, f' (x) 
xi ts for x =J 0- it i easy to ee that 

f'(x) = ! 2x, 
1, 

x< O 
x > 0. 

The graphs of f and f' are hown in Figur 12. 

Even worse things happen for f (x) = M . For this function 

fh 1 
h>O 

f (h) - f (0) h fh' 

h ~ 1 
--- h < 0. 

h ~· 
In this ca the right-hand limit 

lim f (h) - f (0) = lim _l 
Ix I 1, _,. o+ h 11 _,. o+ .Jh 

does not exi t; in tead I / Jh. become arbitrarily larg a h approache 0. And, 
what' m r, - 1/.J'=h b om arbitraril larg in ab olut \'alu but negative 
(, io-ur 13). 
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f(x) = -ifx f(x) = ifx The function f (x) = ,vx, although not differentiable at 0, is at least a little --- ---

------

FIGURE 14 

THEOREM I 

PROOF 

better behaved than this. The quotient 

f (h) - f (0) 

h 

h 1/ 3 

h 

1 
Ji2/3 

simply becomes arbitrarily large as h goes to 0. Sometimes one says that f has 
an "infinite" derivative at 0. Geometrically this means that the graph of f has a 
"tangent line" which is parallel to the vertical axis (Figure 14 ). Of course, f (x) = 

- rx has the same geometric property, but one would say that f has a derivative 
of "negative infinity'' at 0. 

Remember that differentiability is supposed to be an improvement over mere 
continuity. This idea is supported by the many examples of functions which are 
continuous, but not differentiable; however, one important point remains to be 
noted: 

If f is differentiable at a, then f is continuous at a. 

. . f(a+h)-f(a) 
hm f ( a + h) - f (a) = hm · h 
h--.0 h-+0 h 

1
. f(a+h)-f(a) . 

= 1111 • hm h 
h-+ 0 h h-+ 0 

= f'(a) · 0 
=0. 

As we pointed out in Chapter 5, the equation lim f (a +h)- f (a) = 0 is equivalent 
h-+ 0 

to lim f (x) = f(a); thus f is continuous at a. I 
x-+ a 

It is very important to remember Theorem 1, and just as important to remember 
that the converse is not true. A differentiable function is continuous, but a con­
tinuous function need not be differentiable (keep in mind the function f (x) = jx I, 
and you ,,vill never forget which statement is true and which false). 

The continuous functions examined so far hm·e been differentiable at all points 
with at most one exception, but it is easy to give examples of continuous functions 
which are not differentiable at se,Tral points, even an infinite number (Figure 15). 
Actually, one can do much worse than this. There is a function which is rontinuous 

FJ<;L' RLl 5 
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(a) (b) 

(c) (d) 

F IGU R E 16 

everywhere and differentiable nowhere! Unfortunately, the definition of thi function will 
be inaccessible to us until Chapter 24, and I have been unable to per uade the 
artist to draw it (consider carefully what the graph should look like and you will 
sympathize with her point of view). It i po sible to draw ome rough approxima­
tions to the graph, however; several successively better approximation are hown 
in Figure 16. 

Although such pectacular example of nondifferentiability mu t be postponed, 
we can, with a little ingenuity, find a continuous function which is not differentiable 
at infinitely many points, all ef which are in [O, 1 J. One such function is illu trat d in 
Figure 17. The reader is given the problem of defining it pr ci ely· it i a traight 
line version of the function 

f (x) = { x in~ ' x -=!= 0 

0, x = 0. 

This particular fun tion f i it lf quit 
Indeed, fo r h -=!= 0 w hav 

n itive t th qu tion of diffi rentiability 
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f (h) - f (0) 

h 

. l O h Sill - - 1 
h ----=sin-. 
h h 

Long ago we proved that lim sin 1/ h does not exist, so f is not differentiable at 0. 
h---'> 0 

Geometrically, one can see that a tangent line cannot exist, by noting that the 
secant line through (0, 0) and (h, f (h)) in Figure 18 can have any slope between 
-1 and 1, no matter how mall we require h to be. 

/ 

FIG RE l 8 

I . 1 
f(x) = x sm ~' 

0, 

x#O 
x=O 

This finding represents something of a triumph; although continuous, the func­
tion f seems somehow quite unreasonable, and we can now enunciate one math­
ematically unde irable feature of thi function- it is not differentiable at 0. Nev­
erthele s, one should not become too enthusia tic about the criterion of diffi ren­
tiability. For example, the function 

g(x) = { x
2 

sin~' 

0, 

x/0 

is differentiable at O; in fact g' (0) = 0: 

2 . 1 
lim _g(_h_) _-_g_(O_) = lim _h_s_m_-_h 
h---'> 0 h li ---'> 0 h 

1 
= lim h m -

h---'> 0 h 
=0. 

Th tang nt lin t th graph f g at (0, 0) i th r £ re th horiz ntal , xi (Fig­
ur 19). 

hi example ugg ts that w h uld k v n rnor r tri tiv on liti n n a 
fun ti n than rn r diffi r ntiability. \M an a tually u th d rivati\'C t formulate 
u h onditi ns if w intr lu . another s t f d finition , th last of thi hapt r. 
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f(x) = x- sm ~' 
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For any function f , we obtain, by taking the derivative, a new function f' (whose 
domain may be considerably smaller than that of f ). The notion of differentia­
bility can be applied to the function J', of course, yielding another function (!')', 
whose domain consists of all points a such that f' is differentiable at a. The func­
tion (!')' is usually written simply J" and is called the second derivative of f. 
If f" (a) exists, then f is said to be 2-times differentiable at a, and the number 
f" (a) is called the second derivative off at a. 

In physics the second derivative is particularly important. If s (t) is the posi­
tion at time t of a particle moving along a straight line, then s" (t) is called the 
acceleration at time t. Acceleration plays a special role in physics, because, as 
stated in Newton's laws of motion, the force on a particle is the product of its mass 
and its acceleration. Consequently you can feel the second derivative when you 
sit in an accelerating car. 

There is no reason to stop at the second derivative we can define J"' = (!")', 
f"" = (.{"')', etc. This notation rapidly becomes unwieldy, so the following abbre­
viation is usually adopted (it is really a recursive definition): 

Thus 

f(l) = J', 
fk+I) = (f(k))'. 

.f(l) = f' 
f2J = !" = (! ')'' 

f (3) = f"' = (!")', 

f4J = !"" = (!"')'. 
etc. 

The vanous functions f(k), for k ::::: 2, are sometimes called higher-order 
derivatives of f. 

Usually. \\T resort to the notation f(k) only for k ::::: 4, but it is con\Tnient to 
have f(k ) defined for smaller k also. In fact, a reasonable definition can be made 
for f (Ol, namc>ly, 

f(O) = f. 
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(a) 

(b) 

f"(x) = 2 

( ) 

j Ck'(x) = 0, k 2: 3 

(d) 

II C, R L 20 

Leibnizian notation for higher-order derivatives should al o be mention d. The 
natural Leibnizian symbol for f"(x), nam ly, 

is abbreviated to 

d2 f(x) 

(dx )2 ' 

d(~) 
dx 

or more frequently to 

Similar notation is used for f(k)(x). 

The following example illustrates the notation f (k), and also shows, in one very 
simpl ca e, how various higher-order derivatives ar related to the original func­
tion. Let f (x) = x 2 . Then, as we have already checked, 

f'(x) = 2x, 
J"(x) = 2, 
J"'(x) = 0, 
/k\x) = 0, if k :::: 3. 

Figure 20 shows the function f, toge th r with its various derivative . 
A rather more illuminating example is presented by the following function, 

whose graph is shown in Figure 2l (a): 

It is easy to see that 

Moreover, 

Now 

and 

0 

{ 
x 2 x :::: 0 

f (x) = - ~2, x :': 0. 

f'(a)= 2a ifa > O, 

J'(a) = -2a if a < 0. 

f ' (O) = lim f(h) - f(O) 
1z ~o h 

= lim f(h). 
h~ O h 

lim f (h) = lim h
2 

= 0 
1i ~ o+ h h~ O+ h 

lim f (h ) = lim -h
2 

= 0, 
1, ~ 0- h 1i ~ o- h 

J' (0) = lim f (h) = 0. 
1, 0 h 

Thi inft rm ti n an all b ummariz d a G 11 w : 

f'(x) = 21xl. 



{ 

x2 
f(x) = '2 

-x, 
x::: 0 
x::: 0 

(a) 

f"(x) = -2, x < 0 

(c) 

FIGURE 21 

f"(x)=2,x>0 
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It follows that f" (0) does not exist! Existence of the second derivative is thus a 
rather strong criterion for a function to satisfy. Even a "smooth looking" function 
like f reveals some irregularity when examined with the second derivative. This 
suggests that the irregular behavior of the function 

( . ) _ x - sm - , x =I- 0 
{ 

') . I 
g .\ - x 

0, x = 0 

might also be revealed by the second derivative. At the moment we know that 
g' (0) = 0, but we do not know g' (a) for any a =I- 0, so it is hopeless to begin 
computing g" (0). \Ve will return to this question at the end of the next chapter, 
after ,ve have perfected the technique of finding clerivati,·es. 

PROBLEl\IS 

1. (a) Prove, working directly from the definition, that if f(x) = 1/x , then 

f'(a) = - l/a2, for a =I- 0. 
(b) Pro,T that the tangent line to the graph of f at (a, 1 /a) does not intersect 

the graph off, except at (a, 1/a). 

2. (a) Prove that if f (x) = l/x2, then J'(a) = -2/a3 for a =I- 0. 
(b) Prove that the tangent line to f at (a, l/a 2) intersects f at one other 

point, which lies on the opposite side of the vertical axis. 

3. Prove that if f(x) = Jx, then f'(a) = l/(2Ja), for a> 0. (The expression 
you obtain for [! (a + h) - f (a)]/ h will require some algebraic face lifting, 
but the answer should suggest the right trick.) 

4. For each natural number 11, let S,,(x) = x 11
• Remembering that S1'(x) = 1, 

S2'(x) = 2x, and S3 1(x) = 3x 2, conjecture a formula for S11 '(x). Prove your 
conjecture. (The expression (x + lz)'1 may be expanded by the binomial 
theorem.) 

5. Find f' if f (x) = [x]. 

6. Prove, starting from the definition (and drawing a picture to illustrate): 

(a) if g(x) = f(x) + c, then g'(x) = f'(x): 

(b) if g(x) = cf(x), then g'(x) = cf'(x). 

7. Suppose that f (x) = x 3. 

(a) VVhat is f'(9), f'(25), f'(36)? 
(b) \Vhat is J'(3 2), .f'(52), J'(62 )? 

(c) What is J'(a 2), f'(x 2)? 

If you do not find this problem silly, you are missing a \Try important point: 
J' (x 2) means the derivative of f at the number which \ff happen to be 

calling x 2: it is not the deri,·ativc at x of the function g(x) = f (x 2). Just to 
drive the point home: 

(cl) For f (x) = x3, compare J'(x 2) and g'(x) ,,·here g(x) = f (x 2). 
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8. (a) Suppose g(x) = f (x+e). Prove (starting from the definition) that g'(x) = 
f'(x + e). Draw a picture to illustrate this. To do this problem you must 
write out the definitions of g'(x) and f'(x + e) correctly. The purpose 
of Problem 7 was to convince you that although this problem is easy, it is 
not an utter triviality, and there is something to prove: you cannot simply 
put prime marks into the equation g(x) = f (x + e). To emphasize this 
point: 

(b) Pro,·e that if g (x) = f (ex), then g' (x) = e · f' (ex). Try to see pictorially 
why this should be true, also. 

(c) Suppose that f is differentiable and periodic, with period a (i.e., 
f(x +a)= f(x) for all x). Prove that J' is also periodic. 

9. Find f' (x) and also f' (x + 3) in the following cases. Be very methodical, 
or you will surely slip up somewhere. Consult the answers (after you do the 
problem, naturally). 

(i) f(x) = (x + 3)5 . 

(ii) f (x + 3) = x5. 

(iii) f (x + 3) = (x + 5)7
. 

10. Find f'(x) if j(x) = g(t +x), and if j(t) = g(t +x). The answers \\'ill 110/ 

be the same. 

11. (a) Prove that Galileo was wrong: if a body falls a distance s(t) in t seconds, 
and s' is proportional to s, then s cannot be a function of the form 
s(t) = et 2. 

(b) Prove that the follm\·ing facts arc true about s ifs (t) = (a /2)t 2 (the first 
fact will show why we switched from e to a/2): 

(i) s" (!) = a (the acceleration is constant). 
(ii) [s'(t)] 2 = 2as(l). 

(c) If s is measured in feet, the value of a is 32. How many seconds do you 
have to get out of the way of a chandelier which falls from a 400-foot 
ceil ing? If you don't make it, how fast will the chandelier be going when 
it hits you? \\There was the chandelier when it was moving with half that 
speed? 

12. Imagine a road on which the speed limit is specified at every single point. In 
other words, there is a certain function L such that the speed limit x miles 
from the beginning of the road is L (x). Two cars, A and B, arc driving along 
this road; car A's position at time t is a(!), and car B's is b(t). 

(a) \\That equation expresses the fact that car A always trmTls at the speed 
limit? (The answer is not a'(!)= L(t). ) 

(b) Suppose that A always goes at the speed limit, and that B's position ;1t 
time t is A's position c1t time t - 1. Show that B is also going at the speed 
limit at all times. 

(c) Suppose, instead, that B always stays a constant distance behind A. Un­
der \\·hat conditio11s will B still alwc1ys tran'l at the speed limit? 
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13. Suppose that f (a) = g(a) and that the left-hand derivative of fat a equals 
the right-hand derivative of g at a. Define h (x) = f (x) for x ::: a, and 
lz (x) = g(x) for x :::. a. Prove that lz is differentiable at a. 

14. Let f (x) = x 2 if x is rational, and f (x) = 0 if x is irrational. Prove that 
f is differentiable at 0. (Don't be scared by this function. Just write out the 
definition of f' (0).) 

15. (a) Let f be a function such at lf(x)I ::: x 2 for all x. Prove that f is 
differentiable at 0. (If you have done Problem 14 you should be able to 
do this.) 

(b) This result can be generalized if x 2 is replaced by lg (x) I, where g has 
what property? 

16. Let a> 1. If f satisfies If (x)I::: lxl(\ prove that f is differentiable at 0. 

1 7. Let O < f3 < 1. Prove that if f satisfies If (x) I :::. Ix I.B and f (0) = 0, then f 
is not differentiable at 0. 

*18. Let f (x) = 0 for irrational x, and 1 / q for x = p / q in lowest terms. Prove 
that f is not differentiable at a for any a. Hint: It obviously suffices to prove 
this for irrational a. Why? If a = 111.a 1 a2a3 ... is the decimal expansion 
of a , consider [! (a + lz) - f (a)]/ h for h rational, and also for 

lz = -0.00 ... Oa11+IC111 +2 ... · 

19. (a) Suppose that f(a) = g(a) = lz(a), that f(x)::: g(x) ::: lz(x) for all x, 
and that f'(a) = lz'(a). Prove that ·g is differentiable at a, and that 
J'(a) = g'(a) = h'(a). (Begin with the definition of g'(a). ) 

(b) Show that the conclusion does not follow if we omit the hypothesis 
f(a) = g(a) = lz(a). 

20. Let f be any polynomial function; we will see in the next chapter that f 
is differentiable. The tangent line to fat (a, f(a)) is the graph of g(x) = 
J'(a)(x - a)+ f (a). Thus f (x) - g(x) is the polynomial function d(x) = 
f(x) - J'(a)(x - a) - f(a). We have already seen that if f(x) = x 2, then 
d(x) = (x - a) 2, and if f(x) = x 3, then d(x) = (x - a)2(x + 2a). 

(a) Find d(x) when f(x) = x4, and show that it is divisible by (x - a)2. 

(b) There certainly seems to be some evidence that d (x) is always divisible by 
(x - a )2. Figure 22 provides an intuitive argument: usually, lines parallel 
to the tangent line will intersect the graph at two points; the tangent line 

FIG LT RE 22 intersects the graph only once near the point so the intersection should 
be a "double intersection.' ' To give a rigorous proof, first note that 

d(x) = f(x) - f (a) _ j'(a). 
x - a x - a 

Now answer the following questions. Why is f (x) - f (a) divisible 
by (x - a)? Why is there a polynomial function h such that lz (x) = 
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d(x)/(x - a) for x =f. a? Why is Jim h(x) = O? Why is h(a) = O? \t\'hy 
x--a 

does this solve the problem? 

21. (a) Show that J'(a) = Jim [f (x) - f(a)]/(x - a). (Nothing deep here.) 
x_.a 

(b) Show that derivatives are a "local property'': if f (x) = g (x) for all x in 
some open interval containing a, then f' (a) = g' (a). (This means that 
in computing f'(a), you can ignore f (x) for any particular x =f. a. Of 
course you can't ignore f (x) for all such x at once!) 

22. (a) Suppose that f is differentiable at x. Prove that 

, . f (x + h) - f (x - h) 
f (x) = hm 

2 
. 

lz ----,.0 h 

Hint: Remember an old algebraic trick a number is not changed if the 
same quantity is added to and then subtracted from it. 

**(b) Prove, more generally, that 

, 
1
. f (x + h) - f (x - k) 

f (x) = 1m . 
h,k-+O+ h + k 

Although we haven't encountered something like lim before, its mean­
h ,k-+0 

ing should be clear, and you should be able to make an appropriate s-8 

definition. The important thing here is that we actually have Jim , so 
h ,k-+ O+ 

that we arc only considering positive h and k. 

23. Prove that if f is even, then f' (x) = - f' (-x ). (In order to minimize con­
fusion , let g (x) = f (-x ); find g' (x) and then remember what other thing g 
is.) Draw a picture! 

24. Prove that if f is odd, then f'(x) = J'(-x). Once again, draw a picture. 

25. Problems 23 and 24 say that f' is even if f is odd, and odd if f is even. 
\\That can therefore be said about f(k)? 

26. Find f" (x) if 

(i) f (x) = x 3. 

(ii) f (x) = x 5 . 

(iii) f'(x)=x 4 . 

(iv) f (x + 3) = x5. 

27. If S11 (x) = x 11
, and O .:::: k :::: 11, prove that 

s (k ) ) _ l1 ! 11 - k 

II (X - (11 - k)( 

= k!C)x"-' 
28. (a) Find J'(x) if f(x) = lxl3. Find f"(x). Docs f"'(.r) exist for all x ? 

(h) Analyze f similarly if f (x) = x 4 fur .r ::::_ 0 and f (x) = -x4 for x .:::: 0. 
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29. Let f(x) = xn for x :::: 0 and let f (x) = 0 for x::::: 0. Prove that f(n-l) cxi. t 
(and find a formula for it), but that f(n) (0) does not exist. 

30. Interpret the following specimens of Leibnizian notation; each is a restat -
ment of some fact occurring in a previous problem. 

(i) 
dxn n- 1 
-=nx 
dx 

d z 1 . 1 
if z = -. 

dy y2 y 
(ii) 

d[f(x) + c] df(x) 

dx dx 
(iii) 

d[cf(x)] df(x) 
=C--. 

dx dx 
(iv) 

d z d y . 
- if z = y + c. 

dx dx 
(v) 

dx 3 
(vi) = 3a4

. 
dx 

x=a 2 

(vii) df(x+a)I = df(x)I . 
dx x=b dx x =b+a 

(viii) df(cx)I =c· df(x)I . 
dx x=b dx x=cb 

(ix) df (ex) = c. df (y) I . 
dx dy y=cx 

(x) 
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10 DIFFERENTIATION 

The process of finding the derivative of a function is called differentiation. From the 
previous chapter you may have the impression that this process is usually laborious, 
requires recourse to the definition of the derivative, and depends upon successfully 
recognizing some limit. It is true that such a procedure is often the only possible 
approach- if you forget the definition of the derivative you are likely to be lost. 
Nevertheless, in this chapter we will learn to differentiate a large number of func­
tions, without the necessity of even recalling the definition. A few theorems will 
provide a mechanical process for diflerentiating a large class of functions, which 
are formed from a few simple functions by the process of addition, multiplication, 
division, and composition. This description should suggest what theorems will be 
proved. We will first find the derivative of a few simple functions, and then prove 
theorems about the sum, products, quotients, and compositions of differentiable 
functions. The first theorem is merely a formal recognition of a computation 
carried out in the previous chapter. 

If f is a constant function, f (x) = c, then 

J' (a) = 0 for all numbers a. 

, . f(a+h)-f(a) 
1
. c-c 

O 
I f (a)= hm = 1111 -- = . 

h--.0 h h->O h 

The second theorem is also a special case of a computation in the last chapter. 

If f is the identity function, f (x) = x, then 

J'(a) = 1 for all numbers a. 

, 
1
. J(a+h)-f(a) f (a)= m1 -------

h--. 0 h 

I
. a+ h - a 

= 1n1 ----
h-.O h 
. h 

= lm1 - = l. I 
h--. 0 h 

The derivative of the sum of two functions is just what one would hope the 
sum of the derivatives. 

168 
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If f and g are differentiable at a, then f + g is also differentiable at a , and 

(! + g)'(a) = f'(a) + g'(a). 

(! )'() 1
. (f+g)(a+lz)-(f+g)(a) + g a = 1111 ----------

11 - 0 lz 

= lim f (a+ lz) + g(a + lz) - lf(a) + g(a)l 

h-0 1z 

1
. [f(a+lz )-J(a) g(a+lz)-g(a)] 

= Im +------
h-0 lz h 

1
. J(a+lz)-J(a) . g(a+h)-g(a) 

= Im + hm ------
11 - 0 lz h----+ 0 /z 

= J'(a) + g'(a). I 

The formula for the derivative of a product is not as simple as one might wish, 
but it is nevertheless pleasantly symmetric, and the proof requires only a simple 
algebraic trick, which we have found useful before- a number is not changed if 
the same quantity is added to and subtracted from it. 

If f and g are differentiable at a, then f · g is also differentiable at a, and 

(! · g)'(a) = J'(a) · g(a) + J(a) · g'(a). 

, . (f·g)(a+lz)-(f ·g)(a) 
(! · g) (a)= hm ---------

11 - 0 lz 

. f(a + lz)g(a + lz) - f(a)g(a). = hm ----------
11-0 lz 

=1111 +--------1
. [f(a + lz)[g(a + /z) - g(a)] [!(a+ lz) - f(a)]g(a)] 

11 - 0 lz lz 

. . g(a+lz)-g(a) . f(a+lz)-J(a) . 
=hmf(a+lz)·hm + hm ·hmg(a) 

1z-o 11 - 0 lz 11-0 lz 1i - o 
= f(a) · g'(a) + J'(a) · g(a). 

(Notice that we have used Theorem 9-1 to conclude that lim f (a+ h) = f (a).) I 
h-> 0 

In one special case Theorem 4 simplifies considerably: 

If g(x) = cf (x) and f is differentiable at a, then g is differentiable at a, and 

g'(a) = c · J'(a). 

If lz(x) = c, so that g = lz · f, then by Theorem 4, 

g'(a) = (lz · !)'(a) 

= lz(a) · f'(a) + lz '(a) · J(a) 

=c·J'(a)+O·f(a) 

=c·J'(a). I 
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THEOREM 6 

PROOF 

Notice, in particular, that (-f)'(a) = -J'(a), and consequently(!- g)'(a) = 
(f + [-g])'(a) = J'(a) - g'(a). 

To demonstrate what we have already achieved, we will compute the derivative 
of some more special functions. 

If f (x) = x 11 for some natural number n, then 

! '( ) 11-I a = na for all a. 

The proof will be by induction on 11. For n = 1 this is simply Theorem 2. Now 
assume that the theorem is true for n, so that if f (x) = x 11 , then 

J' (a) = na 11 - 1 for all a. 

Let g(x) = x 11+1. If /(x) = x, the equation x 11+1 = x 11 · x can be written 

g(x) = f(x) · l(x) for all x; 

thus g = f · I. It follows from Theorem 4 that 

g'(a) = (f ·!)'(a)= J'(a) ·/(a)+ J(a) · !'(a) 

= na 11 - 1 · a + a11 · I 
= na 11 + a 11 

= (n + l)a", for all a. 

This is precisely the case n + 1 which we wished to prove. I 

Putting together the theorems proved so far we can now find J' for f of the 
form 

!( ) . II 11 - I 2 x =an.\ +an-IX +···+a2x +aix+ao. 

\ ,Ve obtain 

f '( ) 11 - I ( 1) II - ? 2 . X = na11X + ll - a11 _1x - + · · · + a2x + a1. 

\Ve can also find J": 

! "( ·) _ ( I) .11 - 2 + ( l)( 'J) .11 - 3 + + 'J .\ -llll- a11 .\ 11- ll--Cl11 _ (.\ ··· -a2. 

This process can be continued easily. Each differentiation reduces the highest 
power of x by 1, and eliminates one more ai. It is a good idea to work out the 
derivatives J"', J(4l, and perhaps J(5>, until the pattern becomes quite clear. The 
last interesting derivative is 

for k > 11 we have 

Clearly, the next step in our program is to find the derivatin' of a quotient .f /g. 
It is quite a bit simpler, and , because of Theorem 4, ol)\·iously sufficient to find 
the dcrivatin' of I /g. 
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10. Differentiation 1 71 

If g is differentiable at a, and g(a) =f. 0, then 1/g is differentiable at a, and 

( 
1 )' -g'(a) 
g (a)= [g(a)]2. 

Before we e,·en write 

G) (a +h) - G) (a) 

lz 

we must be sure that this expression makes sense- it is necessary to check that 
( l / g) (a+ lz) is defined for sufficiently small /z. This requires only t\\'o observations. 
Since g is, by hypothesis, differentiable at a, it follows from Theorem 9-1 that g is 
continuous at a. Since g(a) =f. 0, it follows from Theorem 6-3 that there is some 
8 > 0 such that g(a + lz) =f. 0 for llzl < 8. Therefore (1/g)(a + h) does make sense 
for small enough lz, and we can write 

(_gl) (a+ /z) - (-gl) (a) . 
lim = hm g(a + /z) g(a) 
h-----> O 1z h-----> 0 h 

1
. g(a) - g(a + h) 

= 1111 -------
/z-----,0 lz[g(a) · g(a + /z)j 

. -[g(a+lz)-g(a)] = hm --------
1z - o lz g(a)g(a +lz) 

. -[g(a + /z) - g(a)] I = hrn · lim ------
lz -----, 0 lz h-----> 0 g(a) · g(a + /z) 

I I 
= -g (a). [g(a)]2. 

(Notice that \'\-'e have used continuity of g at a once again.) I 

The general formula for the derivative of a quotient is nmN easy to derive. 
Though not particularly appealing, it is important, and must simply be memo­
rized (I always use the incantation: "bottom times dcrivati,·e of top, minus top 
times derivative of bottom, over bottom squared.") 

If f and g arc diflercntiable at a and g(a) =f. 0, then fl g is differentiable at a, 

and 

(£)' _ g(a) · J'(a) - f(a) · g'(a) 
(a) - -, · 

g [g(a)]-
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PROOF Since f jg = f · (1/g) w have 

G)' (a)= (1 · i )' (a) 

= J'(a) · G) (a)+ f(a) · G )' (a) 

= f'(a) + f(a)(-g'(a)) 

g(a) [g(a)]2 

= f'(a) · g(a) - f (a) · g'(a) I 
[g(a)] 2 . 

We can now differentiat a few mor functions. For example, 

if f(x) = x2 - 1, th n f'(x) = (x2 + 1)(2x) - (x2 - 1)(2x) 
x 2 + 1 (x 2 + 1)2 

. x , (x2 + 1) - x (2x) 
if f(x) = 2 1

, then f (x) = 2 1 2 x + (x + ) 
1 I 1 2 if f(x) = -, then f (x) = - 2 = (-l)x- . 
x x 

Notice that the last example can be generalized: if 

1 - x 2 

(x2 + 1)2, 

n 1 r f (x) = x - = -----;;- , 1or ome natural numb r n , 
x 

then 
-nxn - 1 

J'(x) = = (-n)x-n - 1; 
x2n 

4x 
(x2 + 1)2' 

thus Theorem 6 actually holds both for po itive and negative integ r . If we inter­
pret f (x) = x 0 to mean f(x) = 1, and f'(x) = 0 · x - 1 to mean f'(x) = 0, then 
Theorem 6 is true for n = 0 also. (The word "interpret" is n ce ary becau e it i 
not clear how o0 hould be defined and, in any ca e, 0 · 0- 1 i meaningles .) 

Further progre s in differentiation requires the knowledge of the derivative of 
certain special functions to be tudied later. One of the e is the ine fun tion. For 
the moment we shall divulge, and use, the following information, without proof 

sin' (a) = co a 
co 1 (a) = - in a 

for all a, 

for all a, 

Thi information allow u to differentiate many other fun tion . For e 'ampl if 

th n 

f(x) = x inx, 

f' (x) = x o x + in x, 
.f" (x) = - x in x + x + x 

= - x in x + 2 o x; 



if 

then 

if 

then 

. ? . . 
g(x) = sm- x = sm x · sm x, 

g' (x) = sin x cos x + cos x sin x 

= 2 sin x cos x, 
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g" (x) = 2 [ (sin x) ( - sin x) + cos x cos x J 
= 2[cos2 x - sin2 x]; 

? 
lz(x) = cos- x = cosx · cosx, 

lz '(x) = ( cos x) ( - sin x) + ( - sin x) cos x 

= - 2 sin x cos x, 

lz "(x) = - 2[cos2 x - sin 2 xl. 

Notice that 

g' (x) + lz' (x) = 0, 

hardly surprising, since (g + lz )(x) = sin2 
x + cos2 x = 1. As we would expect, we 

also have g"(x) + lz "(x) = 0. 
The examples above involved only products of two functions. A function involv­

ing triple products can be handled by Theorem 4 also; in fact it can be handled 
in two ways. Remember that f · g · lz is an abbreviation for 

(f · g) · lz or f · (g · lz). 

Choosing the first of these, for example, we h~\'e 

(! · g · lz) '(x) = (! · g)'(x) · h(x) + (! · g)(x)h'(x) 

= [f'(x)g(x) + f (x)g ' (x)]h(x) + f(x)g(x)h'(x) 

= f'(x)g(x)lz(x) + f(x)g'(x)lz(x) + f(x)g(x)lz'(x). 

The choice of f · (g · lz) would, of course, have given the same result , with a 
different intermediate step. The final answer is completely symmetric and easily 
remembered: 

(! · g · lz )' is the sum of the three terms obtained by differentiating each of f, 
g, and lz and multiplying by the other two. 

For example, if 
f (x) = x 3 sin x cos x, 

then 

f'(x) = 3x 2 sinxcosx +x 3 cosxcosx +x 3 (sinx)(-sinx). 

Products of more than 3 functions can be handled similarly For example, you 
should have little difficulty deriving the formula 

(! · g · lz · k) '(x) = f'(x)g(x)lz(x)k(x) + f(x)g'(x)lz(x)k(x) 

+ f (x)g(x)lz'(x)k(x) + f(x)g(x)lz(x)k ' (x). 
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You might even try to prm·e (by induction) the general formula: 
II 

U1 · ... · l,1)
1(x) = .I:fi(x) · ... · fi - 1(x)f;'(x)fi+1Cx) · ... · J;i(x). 

i = I 

Differentiating the most interesting functions ol)\'iously requires a formula for 
(f o g )' (x) in terms of f' and g'. To ensure that f o g be differentiable at a, one 
reasonable hypothesis would seem to be that g be differentiable at a. Since the 
behavior of f o g near a depends on the behavior of f near g (a) (not near a), it 
also seems reasonable to assume that f is differentiable at g(a ). Indeed we shall 
prove that if g is differentiable at a and f is differentiable at g(a ), then f o g is 
differentiable at a, and 

(f o g)'(a) = f'(g(a)) · g'(a). 

This extremely important formula is called the Chain Rule, presumable because 
a composition of functions might be called a ''chain" of functions. Notice that 
(f o g)' is practically the product of f' and g', but not quite: f' must be evaluated 
at g(a) and g' at a. Before attempting to prove this theorem we will try a few 
applications. Suppose 

f(x) = sinx 2 . 

Let us, temporarily, use S to denote the ("squaring") function S(x) = x 2. T'hen 

Therefore we have 

f = sin o S. 

f'(x) = sin'(S(x)) · S'(x) 

= cos :/ · 2x. 

Quite a different result is obtained if 

In this case 

so 

f (x) = sin2 x. 

f =S o sin, 

f ' (x) = S'(sinx) · sin'(x) 
= 2 sin x · cos x. 

Notice that this agrees (as it should) with the result obtained by writing f = sin· sin 
and using the product formula. 

Although wc have imTnted a special symbol, S, to name the ''squaring" function. 
it docs not take much practice to do problems like this without bothering to \\Titc 
down special symbols for functions, and \\·ithout e\Tn bothering to \\Tite clmrn the 
particular composition which f is one soon becomes accustomed to taking f 
apart in one's head. The following differentiations may be used as practice for 
such mental gymnastics ii' you find it necessary to work a fr~w out on paper, hy 
all means do so, hut try to develop the knack of writing f' immediately after seeing 
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the definition of f; problems of this sort are so simple that, if you just remember 
the Chain Rule, there is no thought necessary. 

if f(x) = sinx 3 

f (x) = sin3 x 

. I 
f (x) = Slll -

x 

f(x) = sin(sin .r) 

f(x) = sin(.r 3 + 3x 2
) 

f (x) = (.r3 + 3x2)53 

A function like 

then f 1
(x) = cosx 3 · 3x 2 

f l 3 . 2 (x)= sm X·COSX 

f I (_r) = COS ! ' (-; ) 
x x-

f1(x) = cos(sinx) · cosx 

f 1
(x) = cos(x 3 + 3x

2
) · (3x

2 + 6.r) 

f 1 (x) = 53(x 3 + 3x 2 )52 · (3x 2 + 6x ). 

f(x) = sin2 x 2 = [sinx 2]2, 

which is the composition of three functions, 

f =S o sin o S. 

can also be differentiated by the Chain Rule. It is only necessary to remember 
that a triple composition f o g o h means (f o g) o h or f o (g o h). Thus if 

we can write 

f(x) = sin2 x 2 

f = (S o sin) o S. 
f = S o (sin o S). 

The derivative of either expression can be found by applying the Chain Rule 
twice; the only doubtful point is whether the t\vo expressions lead to equally simple 
calculations. As a matter of fact, as any experienced differentiator knows, it is much 
better to use the second: 

I f = S o (sin o S) · I 

\ Ve can now write clown J' (x) in one fell swoop. To begin with, note that the first 
function to be differentiated is S, so the formula for f 1 (.r) begins 

f 1
(.r)=2( 

Inside the parentheses we must put sin x 2, the \·alue at x of the second function, 
sin o S. Thus we begin by writing 

f 1 (x) = 2 sin .r 2 

(the parentheses weren't really necessary, after all). \ Ve must now multiply this 
much of the answer by the derivative of sin o S at x; this part is easy- it i1woh'cs a 
composition of two functions, which we already know how to handle. \ \'e obtain, 
for the final answer, 

f l 2 . 7 ,., 2 (.r) = Sill .C · COS .C · X. 



176 Derivatives and Integrals 

The following example is handled similarly. Suppose 

!( . . ? 
x) = sm (sm x-). 

\\'ithout even bothering to write down fas a composition g oh ok of three functions, 
we can see that the left-most one vvill be sin, so our expression for f' (x) begins 

J' (x) = cos( ) 

Inside the parentheses \\T must put the value of lz o k(x ); this is simply sin x 2 (" ·hat 
you get from sin(sinx2) by deleting the first sin). So our expression for J'(x) begins 

f'(x) = cos(sinx 2) 

We can now forget about the first sin in sin (sin x 2
); we have to multiply what we 

have so far by the derivative of the function whose value at x is sin x 2 which is 
again a problem we already know how to solve: 

f'(x) = cos(sinx 2) · cosx 2 · 2x. 

Finally, here are the derivatives of some other functions which arc the composition 
of sin and S, as well as some other triple compositions. You can probably just 
"see" that the answers are correct~ if not, try writing out f as a composition: 

if f(x) = sin((sinx)2) 

f(x) = [sin(sinx)]2 

f(x) = sin(sin(sinx)) 

j '( . 2( . x) = sm x sm x) 

. . ? . f (x) = sm(sm(.c sm x)) 

then J'(x) = cos((sinx) 2 ) · 2sinx · cosx 

J'(x) = 2sin(sinx) · cos(sinx) · cos.r 

J' (x) = cos(sin (sin x)) · cos(sin x) · cos x 

j'(x) = 2sin(x sinx) · cos(x sinx) 

· [ sin x + x cos x] 

j'(x) = cos(sin(x 2 sinx)) · cos(x 2 sinx) 

· [2x sin x + x 2 cos .rl 

The rule for treating compositions of four (or en:-n more) functions is easy­
always (mentally) put in parentheses starting from the right, 

f O (g O (11 O k)), 

and start reducing the calculation to the deri,·ativc of a composition of a smallei­

numbcr of functions: 

For example, if 

then 

J' (g(/z (k(x )) )) 

[ f = S o sin , S , sm 
=S o (sin , (S ,, sin))] 

j ' (x) = 2 si11(sin 2 x) · cos(sin 2 .r) · 2 sin x · cos.r: 
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if 

f . . ? ') (x) = sm((smx-)- [! = sin · · S ,:; sin u S 
= sin u (S o (sin o S))] 

then 

f 1 ( • ? ? 2 , ? ? 2 . (x)=cos(sm.c)-)· sm.C·cosx-· x: 

if 

f (x) = sin2(sin(sin x)) [fill in yourself, if necessary] 

then 

f'(x) = 2sin(sin(sinx)) · cos(sin(sinx)) · cos(sinx) · cosx. 

\ Vith these examples as reference, you require only one thing to become a master 
differentiator- practice. You can be safely turned loose on the exercises at the end 
of the chapter, and it is now high time that we pro\·ed the Chain Rule. 

The fo11owing argument, while not a proof, indicates some of the tricks one 
might try, as well as some of the difficulties encountered. \ Ve begin, of course, 
with the definition-

(! )'() 1
. (f o g)(a+h)-(f o g)(a) 

o g a = 1111 
h-'>0 h 

= lim f (g(a + h)) - f (g(a)). 
1z_,.o h 

Somewhere in here we would like the expression for g' (a). One approach is to 
put it in by fiat: 

1
. f(g(a + h)) - f(g(a)) 

1
. J(g(a + h)) - f(g(a)) g(a + h) - g(a) 

nn = un ---------
1, _,.o h 1z_,.o g(a+h)-g(a) h 

This does not look bad, and it looks even better if we write 

1
. (! o g)(a + h) - (! o g)(a) 
1m -----------

'1---->0 h 

= lim f(g(a) + [g(a + h) - g(a)]) - f (g(a)) . lim g(a + h) - g(a). 

1z_,.o g(a + h) - g(a) 1z__.o h 

The second limit is the factor g'(a) which we want. If we let g(a + h) - g(a) = k 
(to be precise we should write k(h) ), then the first limit is 

1
. f (g(a) + k) - f(g(a)) 
ll11 . 

h---->0 k 

It looks as if this limit should be f'(g(a)), since continuity of' g at a implies that k 
goes to Oas h does. In fact, one can, and we soon will, make this sort of reasoning 
precise. There is already a problem, hm\'e\·e1~ which you wi11 han~ noticed if' you 
arc the kind of person who does not cli\·ide blindly En'n for h # 0 \\'C might hmT 
g(a + h) - g(a) = 0, making the division and multiplication by g(a + h) - g(a) 

nwaningless. True, we only care about sma11 h, but g(a + h) - g(a) could be O 
for arbitrarily sma11 h. The easiest way this can happen is for g to be a constant 
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THEOREM 9 (THE CHAIN RULE) 

PROOF 

function, g(x) = c. Then g(a + It) - g(a) = 0 for all h. In this case, f ,., g is also 
a constant function, (f o g)(x) = f (c), so the Chain Rule does indeed hold: 

(f o g)'(a) = 0 = f'(g(a)) · g'(a). 

However, there are also nonconstant functions g for which g(a + h) - g(a) = 0 
for arbitrarily small It. For example, if a = 0, the function g might be 

( ) 
{ 

x 2 sin 2-. x -1- 0 
g X = X t 

0, x = 0. 

In this case, g'(O) = 0, as ,ve showed in Chapter 9. If the Chain Rule is correct, we 
must have (f o g )' (0) = 0 for any differentiable f, and this is not exactly ob,·ious. 
A proof of the Chain Rule can be found by considering such recalcitrant functions 
separately, but it is easier simply to abandon this approach, and use a trick. 

If g is diflerentiable at a, and f is differentiable at g(a), then f o g is differentiable 
at a, and 

(f o g)'(a) = f'(g(a)) · g'(a). 

Define a function ¢ as follows: 

{ 

f (g(a + h)) - f (g(a)). 

cp(h)= g(a+h)-g(a) 

f' (g(a )), 

if g(a + lz) -g(a) -f- 0 

if g(a + h) - g(a) = 0. 

It should be intuitively clear that ¢ is continuous at 0: \\Then h is smalL 
g(a + It) - g(a) is also small, so if g(a + h) - g(a) is not zero, then ¢(/z) will 
be close to f'(g(a)); and if it is zero, then ¢('1) actually equals J'(g(a)), which 
is even better. Since the continuity of ¢ is the crux of the whole proof we will 
provide a careful translation of this intuitive argument. 

\
1Ve know that f is differentiable at g(a). This means that 

1. f(g(a)+k)-f(g(a)) f'( ( )) 
1111 = g a . 

k-O k 

Thus, if E > 0 there is some number 8' > 0 such that. for all k, 

. , I f(g(a) + k) - f(g(a)) , I 
(}) 1fO < lkl < 8. then k - f (g(a)) < E. 

Now g is differentiable at a , hence continuous at a, so there is a 8 > 0 such that, 
for all lz, 

(2) if lhJ < 8. then Jg(a + It) - g(a)J < 8' . 

Consider now any h with J/z I < 8. If k = g(a + h) - g(a) -f- 0, then 

f (g(a + h)) - f(g(a)) f (g(a) + k) - f (g(a)) 
¢(/t) = = : 

g(a+h) - g(a) k 

it follows from (2) that Jkl < 8' , and hence from (I ) that 

1¢(/z) - f'(g(a))I < E . 
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On the other hand, if g(a + h) - g(a) = 0, then ¢(h) = f '(g(a)), so it i surely 
true that 

1¢(h) - J'(g(a))I < s . 

W have therefore proved that 

lim ¢ (h) = J' (g(a)), 
h-+0 

so ¢ is continuous at 0. The rest of the proof is easy. If h -=I- 0, then we hav 

f (g(a + h)) - f (g(a)) = ¢(h) . g(a + h) - g(a) 

h h 

even if g(a + h) - g(a) = 0 (because in that case both sides are 0). Therefore 

(f o g )' (a) = lim f (g ( a + h)) - f (g (a)) = lim ¢ ( h ) . lim g ( a + h) - g (a) 
h-+0 h h-+0 h-+0 h 

= J'(g(a)) · g'(a). I 

Now that we can differentiate so many functions so easily we can take another 
look at the function 

{ 

2 . 1 
f(x) = x sm ~· x -=I- 0 

0, x = 0. 

In Chapter 9 we howed that f ' (0) = 0, working straight from the definition (the 
only po sible way). For x -=I- 0 we can use the methods of this chapter. We have 

f (x) = 2x sm - + x cos - · - - ; / · 1 2 1 ( 1) 
x x x2 

Thus 

f, (x) = { 2x sin ~ - cos ~, x -=I- 0 

0, x = 0. 

A this formula reveal , the first derivative f' is indeed badly behaved at 0- it i 
not even continuous there. If we consider instead 

f(x) = { x
3

sin~ , x -=f-0 
0, x = 0, 

then 

J' (x) = { 3x
2 

sin ~ - x cos~, x -=f. 0 

0, x = 0. 

In this cas f' i ontinuous at O but f" (0) doe not exi t (becau e th expre -
ion 3x 2 in 1/x d fines a fun tion which i differentiabl at O but the expre ion 
-x cos I / x doe not). 
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As you may suspect, increasing the power of x yet agam produces another 
improvement. If 

then 

l(x) = { x
4 
sin;· 

0, 

x/0 

x =0, 

{ 

4x 3 sin~ - x 2 cos~. 
l'(x) = x x 

0, 

x/0 

x =0. 

It is easy to compute, right from the definition, that (!')' (0) = 0, and l" (x) rs 
easy to find for x # 0: 

{ 

1 . I I I . I 

l
"(·)- 12x-sm--4xcos--2xcos--sm-, x/0 

x - x x x x 
0, x = 0. 

In this case, the second derivatin' l" is not continuous at 0. By now you may have 
guessed the pattern, which two of the problems ask you to establish: if 

x-n sm -, x # 0 
{ 

? . l 
l(x) = x 

0, x = 0, 

then l' (0), ... , l C
11 \0) exist, but 1(11

) is not continuous at O; if 

{ 

x 211+ 1 sin~ 
l(x) = x' 

0, 

x/0 

x = 0, 

then f' (0), ... , l <
11 \0) exist, and l <

11 l is continuous at 0, but lC11 l is not differ­
entiable at 0. These examples may suggest that "reasonable'' functions can be 
characterized by the possession of higher-order derivatives- no matter how hard 
we try to mask the infinite oscillation of l(x) = sin 1/x, a derivative of sufficiently 
high order seems able to reveal the underlying irregularity. Unfortunately, we will 
see later that much worse things can happen. 

After all these invoked calculations, we will bring this chapter to a close with 
a minor remark. lt is often tempting, and seems more elegant, to write some of 
the theorems in this chapter as equations about functions, rather than about their 
values. Thus Theorem 3 might be written 

(! + g)' = l' + g', 

Theorem 4 might be written as 

(! • f.: )' = l . g' + l I • g' 

and 'Theorem 9 often appears in the form 

(l O g)' = (l' 0 g) • g'. 



10. Differentiation 181 

Strictly speaking, these equations may be false, because the functions on the left­
hand side might have a larger domain than those on the right. Nevertheless, this 
is hardly worth worrying about. If f and g are differentiable ewrywhcre in their 
domains, then these equations, and others like them, are true, and this is the only 
case any one cares about. 

PROBLEl\IS 

1. As a warm up exercise, find f' (x) for each of the following f. (Don't worry 
about the domain of f or f'; just get a formula for f' (x) that gives the right 
answer when it makes sense.) 

(i) 
(ii) 
(iii) 
(iv) 

(v) 

(vi) 

( vii) 
(viii) 

f (x) = sin(x + x 2). 

f (x) = sin x + sin x 2. 

j(x) = sin(cosx). 
j(x) = sin(sinx). 

. (cosx) f (x) = sm -x- . 

sin(cos x) 
f (x) = . 

x 
f (x) = sin(x + sinx). 
f(x) = sin(cos(sin.r)). 

2. Find f' (x) for each of the following functions f. (It took the author 20 min­
utes to compute the derivati,,es for the answer section, and it should not take 
you much longe1: Although rapid calculation is not the goal of mathematics, 
if you hope to treat theoretical applications of the Chain Rule with aplomb, 
these concrete applications should be child's play- mathematicians like to 
pretend that they can't C\'en add, but most of them can when they have to.) 

(i) 
(ii) 

(iii) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 
(x) 
(xi) 
(xii) 
(xiii) 
(xiv) 

f (x) = sin((x + 1)2(x + 2)). 

j(x) = sin3 (x 2 + sin x). 

j(x) = si1/((x + sinx)2). 

. x 
( 

3 ) f (x) = sm --
3 

. 
cosx 

f(x) = sin(x sinx) + sin(sinx 2). 

j(x) = (cosx)31 2
. 

f ( ) · ? · 2 · 2 ? x =s1n-xsmx sm x-. 

f(x) = sin3 (sin 2 (sinx)). 

f (x) = (x + sin5 
x) 6

. 

f(x) = sin(sin(sin(sin(sinx)))). 

f(x) = sin((sin7 x 7 + 1)7). 
f(x) = (((x2 + x)3 + x)4 + x)s. 

f(x) = sin(x 2 + sin(x 2 + si1D: 2)). 

f (x) = sin(6 cos(6 sin(6 cos 6x ))). 
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· 2 · 2 smx sm x 
(xv) f (x) = . 

1 +smx 
1 

(xvi) f(x) = ---
2
--

x---­
x + inx 

(xvii) f(x) = sin (sin(~)). 
(xviii)/ (x) = sin ( . ( x ) ) . x -sm . 

x- mx 

3. Find the derivatives of the functions tan, cotan sec cosec. (You don't have 
to memorize these formulas, although they will be ne ded once in a while; if 
you express your answers in the right way, they will be imple and somewhat 
symmetrical.) 

4. For each of the following functions f, find f' (! (x)) (not (! o !)' (x)). 

(i) 
1 

f (x) = 1 + x. 

(ii) f (x) = sin x . 

(iii) f (x) = x 2. 

(iv) f(x) = 17. 

5. For each of the following functions f , find f (!' (x)) . 

1 
(i) f (x) = -. 

x 

(ii) f(x) = x 2
. 

(iii) f (x) = 17. 
(iv) f(x) = 17x. 

6. Find f' in terms of g' if 

(i) f(x) = g(x + g(a)). 

(ii) f(x) = g(x · g(a)). 

(iii) f(x) = g(x + g(x)). 
(iv) f(x) = g(x)(x - a). 

(v) f(x) = g(a)(x - a). 

(vi) f(x + 3) = g(x 2
). 

7. (a) A ir ular obj ti in r a ino- in iz in om un p ifi d manner but it 
i known that wh n th radiu i 6, th rat f han · of th r diu i 4. 
Find th rat f hano- of th ar a" h n th radiu i 6. (If r (t) and A (t) 

reprc nl th radiu and th ar a al tim t , th n th fun ti n r and A 
ati fy A = rrr 2; a traightG rward u f th h in Rul i all d G r.) 
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(b) Suppose that we are now informed that the circular object we have been 
watching is really the cross section of a spherical object. Find the rate 
of change of the volume when the radius is 6. (You will clearly need to 
know a formula for the volume of a sphere; in case you have forgotten, 
the volume is 1n times the cube of the radius.) 

(c) Now suppose that the rate of change of the area of the circular cross 
section is 5 when the radius is 3. Find the rate of change of the volume 
when the radius is 3. You should be able to do this problem in two 
ways: first, by using the formulas for the area and volume in terms of 
the radius; and then by expressing the volume in terms of the area (to 
use this method you will need Problem 9-3). 

8. The area between two varying concentric circles is at all times 9n in2. The 
rate of change of the area of the larger circle is I On in2 /sec. How fast is the 
circumference of the smaller circle changing when it has area 16n in2? 

9. Particle A mm·es along the positive horizontal axis, and particle B along the 

graph of f(x) = -J3x, x ::: 0. At a certain time, A is at the point (5,0) 
and moving with speed 3 units/ sec; and B is at a distance of 3 units from 
the origin and moving with speed 4 units/ sec. At what rate is the distance 
bttwecn A and B changing? 

10. Let f (x) = x 2 sin 1/x for x =f. 0, and let f (0) = 0. Suppose also that hand k 
arc two functions such that 

h'(x) = si1i(sin(x + I)) 
h(O) = 3 

k'(x) = f (x + 1) 

k(O) = 0. 

Find 

(i) (f o h)'(O). 

(ii) (k o f)'(O). 
(iii) a'(x 2), where a(x) = h(x 2). Exercise great care. 

11. Find f' (0) if 

f (x) = { g(x) sin~' x =f. 0 

0, x = 0, 

and 
g(O) = g' (0) = 0. 

12. Using the derivative of f(x) = 1/x, as found in Problern 9-1 , find (1 / g) ' (x) 

by the Chain Rule. 

13. (a) Using Problem 9-3, find f'(x) for - I< x < 1, if f(x) = / l -x 2. 

(b) Prove that the tangent line to the graph of f at (a, j 1 - a 2 ) intersects 
the graph only at that point (and thus show that the elementary geometry 
definition of the tangent line coincides with ours). 
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14. Prove similarly that the tangent lines to an ellipse or hyperbola intersect these 
sets only once. 

15. If f + g is differentiable at a, arc f and g necessarily differentiable at a? 

If f · g anti f are differentiable at a, what conditions on f imply that g is 
differentiable at a? 

16. (a) Prove that if f is differentiable at a, then If I is also differentiable at a, 
provided that f (a) -1- 0. 

(b) Give a counterexample if f (a) = 0. 
( c) Prove that if f and g are differentiable at a, then the functions 

max(!, g) and min(!, g) are differentiable at a, provided that j(a) -1-
g(a). 

(d) Give a counterexample if f (a)= g(a). 

17. Give an example off unctions f and g such that g takes on all values, and f og 
and g are differentiable, but f isn't differentiable. (The problem becomes 
trivial if Vl'e don't require that g takes on all values; g could just be a constant 
function, or a function that only takes on values in some interval (a, b), in 
which case the behavior of f outside of (a, b) would be irrelevant.) 

18. (a) If g = J2 find a formula for g' (involving f'). 
(b) If g = (!1)2, find a formula for g' (involving f "). 
(c) Suppose that the function f > 0 has the property that 

1 
(!')2 = f + -. 

j3 

Find a formula for f" in terms of f. (In addition to simple calculations, 
a bit of care is needed at one point.) 

19. If f is three times differentiable and f' (x) -1- 0, the Sdm)ar:::,ian derivatiz•e of f 
at x is defined to be 

Qi x = f "' (x) - I ( f" (x)) 2 
f ( ) f'(x) 2 f'(x) 

(a) Show that 

CZv (f O g) = [0)J O g] . g' 2 + <f!Jg. 

. ax+ b O (" (h) Show that if j(x) = , with ad - be -1- 0, then 9 f = . ,011se-
cx + d 

qucntly; CZf{f o g) =Vig. 

20. Suppose that j< 11\a) and g< 11\a) exist. Prove [_,fibni::::.\formula: 
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*21. Prove that if pn)(g(a)) and g<n)(a) both exist, then (! o g)(n)(a) exists. A 
little experimentation should convince you that it is unwise to seek a formula 
for (! o g)<n)(a). In order to prove that (! o g)<n)(a) exists you will therefore 
have to devise a reasonable assertion about (! o g )<n) (a) which can be proved 
by induction. Try something like: "(! o g)<n\a) exists and is a sum of terms 
each of which is a product of terms of the form .... " 

22. (a) If f (x) = a11 xn +a11 _ix 11
-

1 + · · · +ao, find a function g such that g' = f. 
Find another. 

(b) If 
b2 b3 bm 

f (x) = x2 + x3 + ... + xm' 

find a function g with g' = f. 
(c) Is there a function 

n bi bm 
J (x) = anx + · · · + ao + - + · · · + -

x x 111 

such that J'(x) = 1/x? 

23. Show that there is a polynomial function f of degree n such that 

(a) J' (x) = 0 for precisely n - 1 numbers x. 

(b) J'(x) = 0 for no x, if n is odd. 
(c) J'(x) = 0 for exactly one x, if n is even. 
(d) J'(x) = 0 for exactly k numbers x, if n - k is odd. 

24. (a) The number a is called a double root of the polynomial function f if 
f (x) = (x - a )2 g (x) for some polynomial function g. Prove that a is a 
double root of f if and only if a is a root of both f and J'. 

(b) When does f (x) = ax2 + bx + c (a -:f. 0) have a double root? \Vhat does 
the condition say geometrically? 

25. If f is differentiable at a , let d(x) = f(x) - J'(a)(x - a) - f(a). Find d'(a). 
In connection with Problem 24, this gives another solution for Problem 9-20. 

*26. This problem is a companion to Problem 3-6. Let a1, ... , an and bi, ... , b11 

be given numbers. 

(a) If XJ, ... , Xn are distinct numbers, prove that there is a polynomial func­
tion f of degree 2n - 1, such that f (xj) = J' (.-rj) = 0 for j -:f. i, and 
f (x;) = a; and J'(x;) = b;. Hint: Remember Problem 24. 

(b) Prove that there is a polynomial function f of degree 2n - 1 with f (x; ) = 
a; and J'(x;) = b; for all i. 

*27. Suppose that a and b are two consecutive roots of a polynomial function f, 
but that a and b are not double roots, so that we can write f(x) = 
(x - a)(x - b)g(x) where g(a) -:f. 0 and g(b) -:f. 0. 

(a) Prove that g(a) and g(b) have the same sign. (Remember that a and b 
arc consecutive roots.) 
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(b) Prove that there is some number x with a < x <band J'(x) = 0. (Also 
draw a picture to illustrate this fact. ) Hint: Compare the sign of f' (a) 

and f'(b). 

(c) Now prove the same fact, even if a and b are multiple roots. Hint: If 
f(x) = (x-a) 111 (x -b) 11 g(x) where g(a) -=I- 0 and g(b) -=I- 0, consider the 
polynomial function h(x) = f'(x)/(x - a) 111

-
1(x - b) 11 - I. 

This theorem was proved by the French mathematician Rolle, in connection 
with the problem of approximating roots of polynomials, but the result was 
not originally stated in terms of derivatives. In fact, Rolle was one of the 
mathematicians who never accepted the new notions of calculus. This was 
not such a pigheaded attitude, in view of the fact that for one hundred years 
no one could define limits in terms that did not verge on the mystic, but on 
the whole history has been particularly kind to Rolle; his name has become 
attached to a much more general result, to appear in the next chapter, which 
forms the basis for the most important theoretical results of calculus. 

28. Suppose that f (x) = xg(x) for some function g which is continuous at 0. 
Prove that f is differentiable at 0, and find f' (0) in terms of g. 

29. Suppose f is differentiable at 0, and that f (0) = 0. Prove that f (x) = xg(x) 
for some function g which is continuous at 0. Hint: \\That happens if you try 
to write g(x) = f(x)/x? 

30. If f (x) = x- 11 for 11 in N, prove that 

for x -=I- 0. 

*31. Prove that it is impossible to write x = f (x)g(x) where f and g are differ­
entiable and f (0) = g (0) = 0. Hint: Differentiate. 

32. \\That is f(kl(x) if 

(a) f (x) = I /(x - a)'1? 

*(b) f(x) = l/(x 2 - l)? 

*33. Let f (x) = x 211 sin I /x if x -=I- 0, and let f (0) = 0. PrmT that f' (0), ... , 
f (nl (0) exist, and that f(n) is not continuous at 0. (You will encounter the 
same I lasic difficulty as that in Problem 21.) 

*34. Let f(x) = x 211+ 1 sin 1/x if x -=I- 0, and let f (0) = 0. Prow' that j'(O), ... , 
f(n) (0) exist, that f (n) is continuous at 0, and that f( 11 l is 11ot clillcrcntiablc 
at 0. 
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35. In Leibnizian notation the Chain Rule ought to read: 

df(g(x)) = df (y) I . dg(x). 

dx dy y=g(x) dx 

In tead, on usually finds the following statement: "Let y g(x) and 

z = f (y). Then d z dz dy ,, 
-·-

dx dy dx 

Notice that the z in d z/dx denotes the composite function f o g, while the z 
in dz/dy denotes the function f; it is also understood that dz/dy will be "an 
expression involving y," and that in the final answer g(x) must be substituted 
for y. In each of the following cases, find dz/dx by using this formula; then 
compare with Probl m 1. 

(i) Z = Sill y, y = x + x 2 . 

(ii) Z = Sill y, y = cosx. 
(iii) Z = Sln U, u = sin x . 
(iv) Z = Sll1 V, v = cos u, u = s1n x. 
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One aim in this chapter is to justify the time we have spent learning to find the 
derivative of a function. As we shall see, knowing just a little about f' tells us a 
lot about f. Extracting information about f from information about f' requires 
some difficult work, however, and we shall begin with the one theorem which is 
really easy. 

This theorem is concerned with the maximum value of a function on an interval. 
Although we have used this term informally in Chapter 7, it is worthwhile to be 
precise, and also more general. 

Let f be a function and A a set of numbers contained in the domain of f. 
A point x in A is a maximum point for f on A if 

f (x):::::: f(y) for every y in A. 

The number f(x) itself is called the maximum value off on A (and we also 
say that f "has its maximum value on A at x"). 

Notice that the maximum value off on A could be f(x) for several different x 
(Figure I); in other words, a function f can have several different maximum points 
on A, although it can have at most one maximum value. Usually we shall be 
interested in the case where A is a closed interval [a, b]; if f is continuous, then 
Theorem 7-3 guarantees that f does indeed have a maximum value on [a, h J. 

The definition of a minimum of f on A will be left to you. (One possible 
definition is the following: f has a minimum on A at x, if - f has a maximum 
on A at x .) 

We are now ready for a theorem which does not even depend upon the existence 
of least upper bounds. 

Let f be any function defined on (a. b). If xis a maximum (or a minimum) point 
for f on (a, b), and f is differentiable at x, then f' (x) = 0. 
(Notice that we do not assume differentiability, or even continuity, of f at other 
points.) 

Consider the case where f has a maximum at x. Figure 2 illustrates the simple idea 
behind the whole argument -secants drawn through points to the lefl of (x, f (x )) 
have slopes :::::: 0, and secants drawn through points to the right of (x, f (x)) haH' 
slopes ::: 0. Analytically, this argument proceeds as follows. 

188 
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If h is any number such that x + lz is in (a. b), then 

f (x) ~ f(x + lz), 

since f has a maximum on (a, b) at x. This means that 

f (x + lz) - f (x) ::::: 0. 

Thus, if lz > 0 we have 
f(x + h) - f (x) 

lz ::::: 0. 

and consequently 
. f (x + h) - f (x) 

hm h ::::: 0. 
h-+O+ 

On the other hand, if h < 0, we have 

f (x + h) - f (x) > O. 
lz -

so 

1
. f(x+lz)-f(x) 

0 1111 > . 
h-+O- 1z -

By hypothesis, f is differentiable at x, so these two limits must be equal, in fact 
cq ual to f' (x). This means that 

f'(x) ::::: 0 and [(x) ~ 0, 

from which it follows that f' (x) = 0. 

The case \'<1here f has a minimum at x is left to you (give a one-line proof). I 

Notice (Figure 3) that we cannot replace (a. b) by [a, b] in the statement of the 
theorem (unless we add to the hypothesis the condition that x is in (a, b ).) 

Since f' (x) depends only on the values of f near x, it is almost obvious how to 
get a stronger version of Theorem 1. \ Ve begin with a definition which is illustrated 
in Figure 4. 

Let f be a function, and A a set of numbers contained in the domain of f. 
A point x in A is a local maximum [minimum] point for f on A if 
there is some 8 > 0 such that x is a maximum [ minimum J point for f on 
An (x - 8. x + 8). 

If x is a local maximum or minimum for f on (a, b) and f is differentiable at x. 

then J'(x) = 0. 

You should sec why this is an easy application of Theorem l. I 
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The con\'erse of Theorem 2 is definitely not true - it is possible for J' (x) to be O 
even if x is not a local maximum or minimum point for f. The simplest example 
is provided by the function f (x) = x3; in this case J' (0) = 0, but f has no local 
maximum or minimum anywhere. 

Probably the most widespread misconceptions about calculus are concerned 
with the behavior of a function f near x when J' (x) = 0. The point made in 
the previous paragraph is so quickly forgotten by those who want the world to be 
simpler than it is, that we will repeat it: the converse of Theorem 2 is not true- the 
condition J' (x) = 0 docs not imply that x is a local maximum or minimum point 
of f. Precisely for this reason, special terminology has been adopted to describe 
numbers x which satisfy the condition J' (.x) = 0. 

A critical point of a function f is a number .x such that 

f'(x) = 0. 

The number f (.x) itself is called a critical value of f. 

The critical values of f, together with a few other numbers, turn out to be the 
ones which must be considered in order to find the maximum and minimum of a 
gi\'en function f. To the uninitiated, finding the maximum and minimum value 
of a function represents one of the most intriguing aspects of calculus, and there 
is no denying that problems of this sort are fun (until you have done your first 
hundred or so). 

Let us consider first the problem of finding the maximum or minimum of f 
on a dosed interval la, b]. (Then, if f is continuous, we can at least be sure 
that a maximum and minimum value exist.) In order to locate the maximum and 
minimum of f three kinds of points must be considered: 

(I) The critical points of f in [a. b]. 
(2) The encl points a and b. 
(3) Points x in [a, b 1 such that f is not differentiable at x. 

If x is a maximum point or a minimum point for J on [a. b], then x must be in one 
of the three classes listed above: for if x is not in the second or third group, then 
x is in (a, b) and f is differentiable at x; consequently f' (x) = 0, by Theorem l, 
and this means that x is in the first group. 

If there are many points in these three categories, finding the maximum and 
minimum of f may still bc a hopeless proposition, but \\·hen there arc only a fC\v 
critical points, and only a few points where f is not diflcrcntiablc, the procedure is 
fairly straightforward: one simply finds f (x) for each x satisf\ing f' (x) = 0, and 
f (x) for each x such that f is not diffrrcntiable at x and, finally, .f(a) and f (b). 

Thc biggest of th('S(' will b(' the maximum ,·aim' of f, and the smallest will be the 
minimum. A simple example follo\\'s. 
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Suppose we wish to find the maximum and minimum value of the function 

f(x)=x 3 -x 

on the interval [ - I, 2]. To begin with, we hm·e 

J'(x) = 3x 2 
- l, 

so f' (x) = 0 \\'hen 3x 2 - I = 0, that is, when 

x = jij3 or - jjj3. 

The numbers jij3 and -jjj3 both lie in [ -1. 2], so the first group of candidates 
for the location of the maximum and the minimum is 

(1) jjj3, -jlj3. 

The second group contains the end points of the interval, 

(2) - I, 2. 

The third group is empty, since f is differentiable everywhere. The final step is to 
compute 

J(jjj3) = (jjj3)3 - jij3 = tjjj3- jij3 = -~jlj3, 

j(-jjj3) = (-jjj3)3 - (-jjj3) = -tjjj3 + jij3 = ~jjj3. 
f(-1)=0, 

f (2) = 6. 

Clearly the minimum value is - ~ jjj3, occurring at jjj3, and the maxmnnn 
value is 6, occurring at 2. 

This sort of procedure, iffeasiblc, will always locate the maximum and minimum 
value of a continuous function on a closed interval. If the function we are dealing 
with is not continuous, however, or if we are seeking the maximum or minimum 
on an open interval or the whole line, then we cannot even be sure beforehand 
that the maximum and minimum values exist, so all the information obtained by 
this procedure may say nothing. Nc\-erthelcss, a little ingenuity will often reveal 
the nature of things. In Chapter 7 we solved just such a problem when we showed 
that if n is c\·en, then the function 

f(x) = x
11 + a11 - 1x

11
-

1 + · · · + ao 

has a minimum value on the whole line. This proves that the minimum value must 
occur at some number x satisf\ing 

0 ! '( ·) .11 - I ( 1) .11-2 = ,\ = JU. + ll - ll 11 _ J): + · ··+Cl]. 

If we can solve this equation, and compare the \·alues of f (x) for such x, \,·e can 
actually find the minimum off. One more example may be helpful. Suppose we 
wish to find the maximum and minimum, if they exist, of the function 

l 
f(x) = --

1 - x 2 
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on the open interval ( - 1 • I). , Ve have 

2x 
f'(x) = (l - x2)2 

so J' (x) = 0 only for x = 0. ,ve can sec immediately that for x close to I or - I the 
values of f (x) become arbitrarily large, so f certainly does not have a maximum. 
This observation also makes it easy to show that f has a minimum at 0. \Ve just 
note (Figure 5) that there wi11 be numbers a and b, with 

- 1 < a < 0 and O < b < I , 

such that f(x) > f(O) for 

-1 < x ,:S a and b _:s x < 1. 

This means that the minimum of f on [a, b J is the minimum of f on a11 of 
(-1, 1 ). Now on [a, b] the minimum occurs either at O (the only place where 
J' = 0), or at a or b, and a and b have already been ruled out, so the minimum 
value is f (0) = I. 

In solving these problems ,ve purposely did not draw the graphs of f (x) = x 3 - x 

and f (x) = I /(1 - x 2), but it is not cheating to draw the graph (Figure 6) as long 
as you do not rely solely on your picture to prove anything. As a matter of fact, we 
are now going to discuss a method of sketching the graph of a function that rea11y 
gives enough information to be used in discussing maxima and minima- in fact 
we will be able to locate even local maxima and minima. This method involves 
consideration of the sign of f' (x), and relies on some deep theorems. 

The theorems about derivatives which have been proved so far, always yield 
information about f' in terms of information about f. This is true cTen of Theo­
rem 1, although this theorem can sometimes be used to determine certain informa­
tion about f, namely, the location of maxima and minima. ,vhen the derivati,-e 
was first introduced, we emphasized that J' (x) is not [! (x + h) - f (x) J / /z for any 
particular lz, but only a limit of these numbers as h approaches O; this fact becomes 
painfully relevant when one tries to extract information about f from information 
about J'. The simplest and most frustrating il1ustration of the difficulties encoun­
tered is afforded by the following question: If f' (x) = 0 for al1 x, must f be a 
constant function? It is impossible to imagine how f could be anything else, and 
this conviction is strengthened by considering the physical interpretation if the 
, ·elocity of a particle is always 0, surely the particle must be standing still! :Ne,Tr­
thclcss it is difficult even to begin a proof that only the constant functions satisfy 
J' (x) = 0 for a11 x. The hypothesis f' (x) = 0 only means that 

I
. f(x+h) - f(x) 

0 1111 = , 
h- 0 h 

and it is not at all ob\'io11s ho\\' one G111 use the information about the limit to 
derive information about the fo11ctio11. 
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The fact that f is a constant function if f' (x) = 0 for all x, and many other facts 
of the same sort, can all be derin·d from a fundamental theorem, called the 1 kan 
Value Theorem, which states much stronger results. Figure 7 makes it plausible 
that if f is differentiable on [a, b], then there is some x in (a, b) such that 

f'(x) = f(b) - f(a). 
b-a 

Geometrically this means that some tangent line is parallel to the line between 
(a, f(a)) and (b, f(b)). The l\Iean Value Theorem asserts that this is true- there 
is some x in (a, b) such that f' (x ), the instantaneous rate of change of f at x, is 
exactly equal to the average or "mean" change of f on [a, b], this a\·erage change 
being [f(b) - f(a)]/[b - a]. (For example, if you travel 60 miles in one hom~ 
then at some time you must have been traveling exactly 60 miles per hour.) This 
theorem is one of the most important theoretical tools of calculus- probably the 
deepest result about derivatives. From this statement you might conclude that the 
proof is difficult, but there you would be wrong- the hard theorems in this book 
have occurred long ago, in Chapter 7. It is true that if you try to prove the 1 lean 
Value Theorem yourself you will probably fail, but this is neither evidence that the 
theorem is hard, nor something to be ashamed of. The first proof of the theorem 
was an achievement, but today we can supply a proof which is quite simple. It 
helps to begin with a very special case. 

If f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then 
there is a number x in (a, b) such that J'(x) = 0. 

If follows from the continuity off on [a. b] that f has a maximum and a minimum 
value on [a, b]. 

Suppose first that the maximum value occurs at a point x in (a. b ). Then 
f' (x) = 0 by Theorem 1, and we arc clone (Figure 8). 

Suppose next that the minimum value of f occurs at some point x in (a. b). 

Then, again, f' (x) = 0 by Theorem 1 (Figure 9). 
Finally, suppose the m aximum and minimum values both occur at the end 

points. Since f(a) = f (b), the maximum and minimum values of f arc equal, 
so f is a constant function (Figure I 0), and for a constant function \\·e can choose 
any x in (a, b). I 

Notice that we really needed the hypothesis that f is differentiable cvery,d1ere 
on (a, b) in order to apply Theorem 1. \ Vithout this assumption the theorem is 
false (Figure 11 ). 

You may wonder why a special name should be attached to a theorem as easily 
proved as Rolle's Theorem. The reason is, that although Rolle's Theorem is a 
special case of the l\Iean Value Theorem, it also yields a simple proof of the 1\ lean 
Value Theorem. In order to pron· the 1\ lean Value T heorem \\·e \\·ill apply Rolle's 
Theorem to the function which gives the length of the nTtical segment shmrn in 
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Figure 12; this is the difference between f (x), and the height at x of the line L 
between (a, J(a)) and (b, j(b)). Since Lis the graph of 

[
J(b)-f(a)] 

g(x) = (x - a)+ J (a), 
b-a 

we want to look at 

[
f(b) - f(a)] 

J(x)- b-a (x-a)-f(a). 

As it turns out, the constant f (a) is irrelevant. 

If f is continuous on [a, b] and differentiable on (a, b ), then there is a number x 

in (a, b) such that 

J'(x) = f(b) - f(a). 
b-a 

PROOF Let 

(b, f (b)) 

(a. f(a)) 

x 

FI c; l ' RE I 2 

COROLLARY 1 

l'R<)<>F 

[
f (b) - J (a)] 

lz(x) = J (x) - (x - a). 
b -a 

Clearly, his continuous on [a, b] and differentiable on (a. b), and 

lz(a) = f(a). 

h(b) = f (/7) - [ 1 (b) - f (a)] (x - a) 
b-a 

= f(a). 

Consequently, we may apply Rolle's Theorem to It and conclude that there is 
some x in (a. b) such that 

so that 

0 = h'(x) = f'(x) - f(b) - f(a), 
b - (I 

J'(x) = f (b) - f (a). I 
b-a 

Notice that the l\lean Value Theorem still fits into the pattern exhibited by 
previous thcorcms~ information about f yields information about J'. This infor­
mation is so strong, however, that we can now go in the other direction. 

I [ f is defined on an interval and f' (x) = 0 for all x in the intcIYal, then f is 
constant on the intcrYal. 

I ,ct a a11cl h he any two points in the interval with a =/=, h. Then there is some x in 



-
FIGURE 13 

COROLLARY 2 

PROOF 

DEFINITION 

COROLLARY 3 

PROOF 

(a, b) such that 

11. Significmzre ef the Derivative 195 

f'(x) = f(b) - f(a). 
b-a 

But f' (x) = 0 for all x in the interval, so 

O= J(b)-f(a) 
b-a ' 

and consequently /(a) = f (b). Thus the value of f at any two points in the 
interval is the same, i.e., f is constant on the interval. I 

Naturally, Corollary 1 does not hold for functions defined on two or more in­
tervals (Figure 13). 

If f and g arc defined on the same interval, and f' (x) = g' (x) for all x in the 
interval, then there is some number c such that f = g + c. 

For all x in the interval ,vc have (! - g )' (x) = f' (x) - g' (x) ~ 0 so, by Corollary 1, 
there is a number c such that f - g = c. I 

The statement of the next corollary requires some terminology, which is illus­
trated in Figure 14. 

A function is increasing on an interval if f (a) < f (b) whenever a and b are 
two numbers in the interval with a < b. The function f is decreasing on 
an inte1Yal if /(a) > f (b) for all a and b in the interval vvith a < b. (\Ve 
often say simply that f is increasing or decreasing, in which case the interval is 
understood to be the domain of f .) 

If /' (x) > 0 for all x in an interval, then f is increasing on the interval; if f' (x) < 0 
for all x in the interval, then f is decreasing on the interval. 

Consider the case where f' (x) > 0. Let a and b be two points in the interval with 
a < b. Then there is some x in (a, b) with 

f'(x) = f (b) - f (a). 
b-a 

But .f'(x) > 0 for all x in (a, b), so 

f(b) - f (a) 
----- >0. 

b- Cl 

Since b - a > 0 it follows that f (b) > f (a). 

Thl' proof when f' (x) < 0 for all .r is left to you. I 
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Notice that although the converses of Corollary 1 and Corollary 2 are true (and 
obvious), the converse of Corollary 3 is not true. If f is increasing, it is easy to 
see that J' (x) :::::_ 0 for all x, but the equality sig11 might hold for some x (consider 
J (x) = x 3). 

Corollary 3 provides enough information to get a good idea of the graph of 
a function with a minimal amount of point plotting. Consider, once more, the 
function f(x) = x 3 -x. \Ve have 

J'(x) = 3x 2 - I. 

\Ve ha,·e already noted that J'(x) = 0 for x = /173 and x = -/173, and it is 
also possible to determine the sign of J' (x) for all other x. Note that 3x 2 - l > 0 
precisely when 

3x2 > 

X2 > I 
3' 

x > /173 or x < -/173: 
thus 3x 2 - 1 < 0 precisely when 

-/173 < x < /173. 

Thus f is increasing for x < -/173, decreasing between -/173 and /173, 
and once again increasing for x > /173. Combining this information with the 
following facts 

(1) f(-/173)=i/173, 
J(/173) = -i/173, 

(2) J(x) = 0 for x = -1 , 0, 1, 
(3) f (x) gets large as x gets large, and large negati,T as x gets large negative, 

it is possible to sketch a pretty respectable approximation to the graph (Figure 15). 

By the way, notice that the intervals on ,vhich f increases and decreases could 
have been found without even bothering to examine the sign of f'. For example, 

since J' is continuous, and vanishes only at -/173 and /173. we know that J' 
always has the same sign on the interval ( -/173, /173). Since J ( -/173) > 

f ( /173 ), it follmvs that f decreases on this interval. Similarly, f' always has the 

same sign 011 ( /173, oo) and f (.r) is large for large x, so f must be increasing on 

( /173, oo ). Another point worth noting: If J' is continuous, then the sign of J' 
on the interval between two acljacent critical points can be cletcrminecl simply hy 
finding the sign of J' (x) for any one x in this interval. 

Our sketch of the graph of f (x) = x 3 - x contains suflicicnt information 

to allow us to say with confidence that - /173 is a local maximum point, and that 

/173 is a local minimum point. In fact, ,vc can gin' a general scheme for dccicl-



f increasing 

I 
f decreasing 

I 

FIGURE 15 
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f(x) = x 3 - x 

I J increasing 
I 
I 
I 
I 

ing whether a critical point is a local maximum point, a local minimum point, or 
neither (Figure 16): 

(1) if f' > 0 in some interval to the left of x and f' < 0 in some interval to 
the right of x, then x is a local maximum point. 

(2) if f' < 0 in some interval to the left of x and f' > 0 in some interval to 
the right of x, then x is a local minimum point. 

(3) if f' has the same sign in some interval to the left of x as it has in some 
interval to the right, then x is neither a local maximum nor a local minimum 
point. 

(There is no point in memorizing these rules- you can always draw the pictures 
yourself) 

The polynomial functions can all be analyzed in this way, and it is even possible 
to describe the general form of the graph of such functions. To begin, we need a 

~ ~ 
x x x x 

~~ ~+---+ 1~~ +----++----+ 
f'>O f'<O f'<Of'>O f'>Of'>O ! ' < 0 ! ' < 0 

(a) (b) ( ) (d) 

FIGURE 16 
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result already mentioned in Problem 3-7: If 

f ( ·) .11 + n- 1 + + .\ = G11 .\ G11 - JX · · · GQ, 

then f has at most 11 ''roots," i.e., there arc at most II numbers x such that 
f (x) = 0. Although this is really an algebraic theorem, calculus can be used 
to give an easy proo( Notice that if x1 and x2 are roots of f (Figure 17), so that 
f (.q) = f(x2) = 0, then by Rolle's Theorem there is a number x between XJ 

and x2 such that f' (x) = 0. This means that if f has k different roots x1 < x2 < 
· · · < Xk, then f' has at least k - 1 different roots: one between x1 and x2, one 
between x2 and x3 , etc. It is now easy to prove by induction that a polynomial 
function 

f ( ·) .II + 11 - I + + .\ = G 11 .\ a11 - JX · · · ao 

has at most II roots: The statement is surely true for 11 = 1, and if we assume that 
it is true for 11 , then the polynomial 

g(x) = h11+1x 11+1 + b11x 11 +···+ho 

could not have more than 11 + I roots, since if it did, g' would have more than II 

roots. 

\Vith this information it is not hard to describe the graph of 

f (x) = a11x 11 + a11 _ 1x 11 - 1 + · · · + ao. 

The derivative, being a polynomial function of degree 11 - 1, has at most 
11 - 1 roots. Therefore f has at most 11 - 1 critical points. Of course, a criti­
cal point is not necessarily a local maximum or minimum point, but at any rate, 
if a and b are adjacent critical points of f, then f' will remain either positive or 
negative on (a, b ), since f' is continuous; consequently, f will be either increasing 
or decreasing on (a , b). Thus f has at most 11 regions of decrease or increase. 

As a specific example, consider the function 

4 2 f(x) = x - 2x . 

Since 

f'(x) = 4x 3 -4x = 4x(x - l)(x + I), 

the critical points of f are - 1, 0, and 1, and 

/( - 1) = -1, 

f (0) = 0. 
/(l)= - 1. 

The behavior of f on the intervals between th<' critical points can be clctcrminccl 
by one of the methods mentioned before. ln particular. we could determine the 
sign of / ' on these intervals simply be examining the formula for / ' (x ). On the 
other hand , from the three critical \'alncs alone \\'l' can sec (Figure 18) that f 
increases on (- 1, 0) and clccrcascs on (0. I). To determine the sign of' f ' on 
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(-oo, -1) and (1, oo) we can compute 

J'(-2) = 4 · (-2)3 - 4 · (-2) = -24, 

!' (2) = 4 · 23 - 4 · 2 = 24, 

and conclude that f is decreasing on (-oo, -1) and increasing on (1, oo ). These 
conclusions also follow from the fact that f (x) is large for large x and for large 
negative x. 

VVe can already produce a good sketch of the graph; two other pieces of infor­
mation provide the finishing touches (Figure 19). First, it is easy to determine that 

f(x) = 0 for x = 0, ±v'2; second, it is clear that f is even, f(x) = f(-x), so the 
graph is symmetric with respect to the vertical a.-xis. The function f (x) = x 3 - x, 
already sketched in Figure 15, is odd, f (x) = - f (-x ), and is consequently sym­
metric with respect to the origin. Half the work of graph sketching may be saved 
by noticing these things in the beginning. 

f(x) = x 4 
- 2x2 

(-1,-l) CL -1) 

FIGURE 19 

Several problems in this and succeeding chapters ask you to sketch the graphs 
of functions. In each case you should determine 

( 1) the critical points of f, 
(2) the value of f at the critical points, 
(3) the sig11 of f' in the regions between critical points (if this is not already 

clear), 
(4) the numbers x such that f (x) = 0 (if possible), 
(5) the behavior of f (x) as x becomes large or large negative (if possible). 

Finall); bear in mind that a quick check, to see whether the function is odd or 
even, may save a lot of work. 

This sort of analysis, if performed \vith care, will usually reveal the basic shape 
of the graph, but sometimes there arc special features which require a little more 
thought. It is impossible to anticipate all of these, but one piece of information is 
often very important. If f is not defined at certain points (for example, if f is a 
rational function whose denominator vanishes at some points), then the behavior 
of f near these points should be determined. 

For example, consider the function 

x: 2 - 2x + 2 
f (x) = 

1 
, 

x -
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which is not defined at 1. We have 

Thus 

l\foreover, 

, (x - 1)(2x - 2) - (x 2 - 2x + 2) 
f (x) = (x - 1 )2 

x(x - 2) 
- (x - 1)2 · 

(1) the critical points of f are 0, 2. 

(2) f(O) = -2, 

!(2) = 2. 

Because f is not defined on the whole interval (0, 2), the sign of J' must be 
determined separately on the intervals (0, 1) and (1, 2), as well as on the intervals 
(-oo, 0) and (2, oo ). We can do this by picking particular points in each of these 
intervals, or simply by staring hard at the formula for J'. Either way we find that 

(3) J'(x) > 0 if x < 0, 
J'(x) < 0 if 0 < x < 1, 
J'(x) < 0 if 1 < x < 2, 
J'(x) > 0 if 2 < x. 

Finally, we must determine the behavior of f (x) as x becomes large or large 
negative, as well as when x approaches 1 (this information will also give us another 
way to determine the regions on which f increases and decreases). To examine 
the behavior as x becomes large we write 

x 2 - 2x + 2 1 

1 
=x-l+--

1
; 

x- x-

clearly f (x) is close to x - 1 (and slightly larger) when x is large, and f (x) is close' 
to x - 1 (but slightly smaller) when x is large negative. The behavior of f near l 
is also easy to determine; since 

the fraction 

lim (x 2 
- 2x + 2) = l -=fa 0, 

x- 1 

x 2 - 2x + 2 

x - 1 

becomes large as x approaches 1 from above and large negative' as x approaches l 
from below. 

All this information may seem a bit overwhelming, but there is only one way 

that it can be pieced together (Figure 20); be sure that you can account for C'ach 
fC'aturc of the graph. 

\Vhen this sketch has been completed, we might note that it looks like the graph 
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x 2 - 2x + 2 
I (x) = x - 1 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

0 / l 2 

/ 
/ 

/ 

/ 
/ 

of an odd function shoved over 1 unit, and the expression 

x 2 - 2x + 2 

x -1 
(x - 1)2 + 1 

x-l 

shows that this is indeed the case. However, this is one of those special features 
which should be investigated only after you have u ed th other information to get 
a good idea of the appearance of the graph. 

Although the location of local maxima and minima of a function is alway re­
vealed by a detailed sketch of its graph, it is usually unnecessary to do so much 
work. There is a popular test for local maxima and minima which d pends on the 
behavior of the function only at its critical points. 

Suppose f'(a) = 0. If f"(a) > 0, then f has a local minimum at a· if f"(a) < 0, 
th n f has a local maximum at a. 

By definition, 

!"(a)= lim f'(a + h) - f'(a). 
1i~ o h 

Since f' (a) = 0, this can b written 

f " (a) = lim f'(a + h). 
1i~ o h 
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f(x) = -x4 

(a) 

f(x) = x4 

(b) 

J(x) = x 5 

(c) 

FJC;LTRE2 1 

THEOREM 6 

PROOF 

Suppose now that f " (a) > 0. Then J'(a + h)/ h must be positive for sufficiently 
small h. Therefore: 

f' (a + h) must be positive for sufficiently small h > 0 
and J' (a + h) must be negative for sufficiently small h < 0. 

This means (Corollary 3) that f is increasing in some interval to the right of a 
and f is decreasing in some interval to the left of a. Consequently, f has a local 
minimum at a. 

The proof for the case J" (a) < 0 is similar. I 

Theorem 5 may be applied to the function f (x) = x 3 - x, which has already 
been considered. \Ve have 

J'(x) = 3x 2 
- I 

f"(x) = 6x. 

At the critical points, - /173 and /173, we have 

J"(-/173) = -6/173 < 0, 

J" ( /f73) = 6/173 > 0. 

Consequently, -/173 is a local maximum point and /173 is a local minimum 
point. 

Although Theorem 5 will be found quite useful for polynomial functions, for 
many functions the second derivative is so complicated that it is easier to consider 
the sign of the first derivative. ~Ioreover, if a is a critical point of f it may happen 
that J" (a) = 0. In this case, Theorem 5 provides no information: it is possible 
that a is a local maximum point, a local minimum point, or neither, as shown 
(Figure 21 ) by the functions 

f(x) = -x-i. J(x) = x4, J (x) = x 5; 

in each case f' (0) = J" (0) = 0, but O is a local maximum point for the first, a 
local minimum point for the second, and neither a local maximum nor minimum 
point for the third. This point ,vill be pursued further in Part IV 

It is interesting to note that Theorem 5 automatically proves a partial com·erse 
of itself: 

Suppose .f" (a) exists. lf f has a local minimum at a, then f" (a) :::::. O; if f has a 
local maximum at a , then J" (a) :::: 0. 

Suppose f has local minimum at a. Ir .f" (a) < 0, then f \\'ould also ha\'C a 
local maximum at a , by Theorem 5. T'hus f would be constant in some interval 
containing a , so that J" (a) = 0, a contradiction. Thus we must h,1\T f " (a) :::::. 0. 

The case of a local maximum is ha11cllccl similarly. I 
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PROOF 

FIGURE 22 
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(This partial converse to Theorem 5 is the best we can hope for: the ::::. and ~ 
signs cannot be replaced by > and <, as shown by the functions f (x) = x 4 and 
f(x) = -x4 .) 

The remainder of this chapter deals, not with graph sketching, or maxima and 
minima, but with three consequences of the l\1ean Value Theorem. The first is a 
simple, but very beautifi..il, theorem which plays an important role in Chapter 15, 
and which also sheds light on many examples which have occurred in previous 
chapters. 

Suppose that f is continuous at a, and that f' (x) exists for all x in some interval 
containing a, except perhaps for x = a. Suppose, moreover, that lim f' (x) exists. 

x -+a 

Then f' (a) also exists, and 

f'(a) = lim J'(x). 
x -+ a 

By definition, 

!
'( ) 

1
. J(a + h) - f(a) 

a = llTI . 
h-+0 h 

For sufficiently small h > 0 the function f will be continuous on [a, a + h] and 
differentiable on (a. a + h) (a similar assertion holds for sufficiently small h < 0). 
By the l\Iean Value Theorem there is a number a1z in (a, a + h) such that 

f(a+h)-f(a) , 
----- = f (a1z). 

h 

Now a1i approaches a as h approaches 0, because a1z is m (a. a + h ); smce 
lim f' (x) exists, it follows that 
x-+a 

, . f(a + h) - f(a) . , . , 
f (a)= hm = hm f (a.11) = hm f (x). 

h-+ 0 h h-+ O x -+ a 

(It is a good idea to supply a rigorous £-8 argument for this final step, which \\·e 
have treated somewhat informally.) I 

Even if f is an everywhere differentiable function, it is still possible for f' to be 
discontinuous. This happens, for example, if 

f(x) = { x
2

sin ~· x # 0 

0, x =0. 

According to Theorem 7, howeve1~ the graph of f' can never exhibit a disconti­
nuity of the type shown in Figure 22. Problem 61 outlines the proof of another 
beautiful theorem which gives further information about the function f' , and Prob­
lem 62 uses this result to strengthen Theorem 7. 

The next theorem, a generalization of the l\Ican Value Theorem, is of interes t 
mainly because of its applications. 



204 Derivatives and Integrals 

THEOREM 8 (THE CAUCHY MEAN 

VALUE THEOREM) 

If f and g are continuous on [a, b] and differentiable on (a, b ) , then there is a 
number x in (a, b) such that 

[f (b) - f (a)]g'(x) = [g(b) - g(a)]f'(x). 

(If g (b) =f. g (a), and g' (x) =f. 0, this equation can be written 

f (b) - f(a) J'(x) 

g(b) - g(a) g'(x) 

Notice that if g(x) = x for all x, then g'(x) = l, and we obtain the Mean Value 
Theorem. On the other hand, applying the Mean Value Theorem to f and g 
separately, we find that there are x and y in (a, b) with 

f (b) - f (a) J'(x). 

g(b) - g(a) g'(y)' 

but there is no guarantee that the x and y found in this way will be equal. These 
remarks may suggest that the Cauchy l\1ean Value Theorem will be quite difficult 
to prove, but actually the simplest of tricks suffices.) 

PROOF Let 

THEOREM 9 (L'HOPITAL'S RULE) 

h(x) = f(x)[g(b) - g(a)j - g(x)[f(b) - f (a)]. 

Then h is continuous on [a, b], differentiable on (a. b), and 

h(a) = f (a)g(b) - g(a)f (b) = h(b). 

It follows from Rolle's Theorem that h' (x) = 0 for some x in (a, b ), which means 
that 

0 = f'(x)[g(b) - g(a)] - g'(x)[J(b) - f (a)]. I 

The Cauchy lvlean Value Theorem is the basic tool needed to prove a theorem 
which facilitates evaluation of limits of the form 

l
. f (x) 
llll --, 

x--+a g (x) 

when 
lim f (x) = 0 and lim g(x) = 0. 
x--+a x-a 

In this case, Theorem 5-2 is of no use. Every derivative is a limit of this form, and 
computing derivatives frequently requires a gfC'at deal of work. If some derivati\TS 
are known, however, many limits of this form can now be evaluated easily. 

Suppose that 
lim f (x) = 0 and lim g(x) = 0, 
x --+a x --+ a 

and suppose also that lim J'(x)/g'(x) exists. 'Thm lim f (x)/g(x) exists, and 
x-a x - a 

l
. f(x) 

1
. f'(x) 

lnl -- = 1111 --. 
X--+ (I g(X) X--+ CI g'(X) 

(Notice that Theorem 7 is a special case.) 
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The hypothesis that lim f' (x) / g' (x) exists contains two implicit assumptions: 
x-+a 

( 1) there is an interval (a - 8, a + 8) such that J' (x) and g' (x) exist for all x in 
(a - 8, a + 8) except, perhaps, for x = a, 

(2) in this interval g' (x) =I- 0 with, once again, the possible exception 
of x = a. 

On the other hand, f and g are not even assumed to be defined at a. If we define 
f(a) = g(a) = 0 (changing the previous values off (a) and g(a), if necessary), 
then f and g are continuous at a. If a < x < a + 8, then the l\Iean Value 
Theorem and the Cauchy l\Iean Value Theorem apply to f and g on the interval 
[a, x] (and a similar statement holds for a - 8 < x < a ). First applying the l\Iean 
Value Theorem to g, we see that g (x) =I- 0, for if g (x) = 0 there would be some x I 
in (a, x) with g' (:q) = 0, contradicting (2). Now applying the Cauchy Mean Value 
Theorem to f and g, we see that there is a number <Xx in (a, x) such that 

[f (x) - O]g'(ax) = [g(x) - O]f'(ax) 

or 
f (x) f'(ax) 

g(x) g'(ax) 

Now <Xx approaches a as x approaches a, because <Xx is in (a,x); since we are 
assuming that lim f' (y) / g' (y) exists, it follows that 

y-+a 

1
. f(x) 

1
. f'(ax) 

1
. J'(y) 

1m -- = 1111 -- = un --. 
x-+a g(x) x-+a g'(ax) y-+a g'(y) 

(Once again, the reader is invited to supply the details of this part of the argu­
ment. ) I 

PROBLEMS 

1. For each of the following functions, find the maximum and minimum values 
on the indicated intervals, by finding the points in the interval where the 
derivative is 0, and comparing the values at these points with the values at 
the end points. 

(i) f (x) = x 3 - x 2 - 8x + 1 on [-2, 2]. 

(ii) f (x) = xs + x + I on [ -1, I]. 

(iii) f (x) = 3x4 - 8x 3 + 6x 2 on[-1,1J. 

(iv) f(x) = I 
on [-1, I]. 

XS+ X + 1 

M f(x) = x+I 
on[-I,1]. 

x 2 + I 
(vi) f(x) = x 

x 2 - I 
on [O, 5]. 
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2. Now sketch the graph of each of the functions in Problem 1, and find all 
local maximum and minimum points. 

3. Sketch the graphs of the following functions. 

(i) 
1 

f(x ) = x + - . 
x 

(ii) 
3 

f(x) = x + 2· 
x 

(iii) f(x) = 
x2 

x 2 - 1 · 

(iv) 
1 

f( x )= l+ x2 · 

II 

4. (a) If a1 < · · · < a11 , find the minimum value off (x) = I)x - ai)2
. 

i = l 
17 

*(b) Now find the minimum value of f (x ) = L Ix - ail· This is a problem 
i = I 

where calculus won't help at all: on the intervals between the ai 's the 
function f is linear, so that th minimum clearly occurs at one of the ai , 

and thes are precisely the point where f is not differentiable. However, 
the answer is easy to find if you consider how f (x) changes a you pass 
from one such interval to another. 

*(c) Let a > 0. Show that the maximum value of 

1 1 
f( x )= +---

1 + Ix I 1 + Ix - a I 

is (2 + a) / ( 1 + a ). (The derivative can be found on each of the interval 
(-oo, 0) , (0, a ), and (a, oo) separately.) 

S. For each of the following functions, find all local maximum and minimum 
points. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

x, x =;i:3 , 5, 7, 9 
5, x = 3 

f(x) = -3 , 
9, 
7, 

f(x ) = l ~jq, 

f(x ) = l X, 
0, 

f (x) = 11, 
0, 

f(x) = l ~: 

x =S 

x =7 
x = 9. 
x irrational 
x = p / q in lowest t rm . 

x rational 
x irrational. 

x = 1 / n fi r om n in N 
th rwi . 

if th d cimal pan ion of x 
th rwi . 

ntain a S 
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(0,a) 
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6. Prove the following (which we often use implicitly): If f is increasing on (a, b) 

and continuous at a and b, then f is increasing on [a, b]. In particular, if f 
is continuous on [a, b J and f' > 0 on (a, b ), then f is increasing on [a, bl 

7. A straight line is drawn from the point (0, a) to the horizontal axis, and 
then back to (1, b), as in Figure 23. Prove that the total length is shortest 
when the angles a and f3 are equal. (Naturally you must bring a function 
into the picture: express the length in terms of x, where (x, 0) is the point 
on the horizontal axis. The dashed line in Figure 23 suggests an alternati\·e 
geometric proof; in either case the problem can be solved without actually 
finding the point (x, 0).) 

8. (a) Let (xo, yo) be a point of the plane, and let L be the graph of the function 
f (x) = mx + b. Find the point .t such that the distance from (xo, Yo) to 
(i, f(x)) is smallest. [Notice that minimizing this distance is the same as 
minimizing its square. This may simplify the computations somewhat.] 

(b) Also find x by noting that the line from (xo, Yo) to (x, f (x)) is perpen­
dicular to L. 

(c) Find the distance from (xo, Yo) to L, i.e., the distance from (xo, Yo) to 
(.r, f (.'t)). [It will make the computations easier if you first assume that 
b = O; then apply the result to the graph of f (x) = 11ix and the point 
(xo, Yo - b).] Compare with Problem 4-22. 

(cl) Consider a straight line described by the equation Ax + By + C = 

0 (Problem 4-7). Show that the distance from (xo, .vo) to this line is 

(Axo + By0 + C)/J A 2 + s2. 

9. The previous Problem suggests the following question: \Vhat is the relation­
ship between the critical points of f and those of J2? 

10. Prove that of all rectangles with given perimeter, the square has the greatest 

Surface area is the area. 
sum of these areas 

FICl' RE 2-1 

a 

FJ[;LTK E25 

11. Find, among all right circular cylinders of fixed volume V, the one with 
smallest surface area (counting the areas of the faces at top and bottom, as 
in Figure 24). 

12. A right triangle with hypotenuse of length a is rotated about one of its legs 
to generate a right circular cone. Find the greatest possible volume of such 
a cone. 

13. Show that the sum of a positive number and its reciprocal is at least 2. 

14. Find the trapezoid of largest area that can be inscribed in a semicircle of 
radius a , with one base lying along the diameter. 

15. Two hallways, of widths a and b, meet at right angles (Figure 25). What 
is the greatest possible length of a ladder which can be carried horizontally 
around the corner? 
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FIGURE26 

FIGURE27 

FIGURE28 

c c 
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16. A garden is to be designed in the shape of a circular sector (Figure 26), with 
radius R and central angle e. The garden is to have a fo.::ed area A. For 
what value of R and e (in radians) will the length of the fencing around the 
perimeter be rn inimized? 

17. A right angle is moved along the diameter of a circle of radius a, as shown 
in Figure 27. What is the greatest possible length (A + B) intercepted on it 
by the circle? 

18. Ecological Ed must cross a circular lake of radius l mile. He can row across 
at 2 mph or walk around at 4 mph, or he can row part way and walk the 
rest (Figure 28). What route should he take so as to 

(i) see as much scenery as possible? 
(ii) cross as quickly as possible? 

19. (a) Consider points A and Bon a circle with center 0 , subtending an angle 
of a = LA OC (Figure 29). How must B be chosen so that the sum of 
the areas of 6.A OB and 6.B OC is a maximum? Hint: Express things 
in terms of e = LA OB. 

(b) Prove that for n :::: 3, of all n-gons inscribed in a circle, the regular 11-gon 
has maximum area. 

*20. The lower right-hand corner of a page is folded over so that it just touches 
the left edge of the paper, as in Figure 30. If the width of the paper is a and 

the page is very long, show that the minimum length of the crease is 3 v'3a / 4. 

21. Figure 31 shows the graph of the derivative of f. Find all local maximum and 
minimum points of f. 

FIGURE 3 1 

22. Suppose that f is a polynomial function, f (x) = x 11 + a11 _1x 11
-

1 + · · · + ao, 

with critical points - 1, 1, 2, 3, 4, and corresponding critical values 6, 1, 2, 
4, 3. Sketch the graph of f, distinguishing the cases n even and n odd. 

23. (a) Suppose that the critical points of the polynomial function f (x) = x 11 + 
a 11 _1x 11

-
1 + · · · +ao are - 1, l, 2, 3, and f"(-1) = 0, f"(l) > 0, !"(2) < 

0, f" (3) = 0. Sketch the graph of f as accurately as possible on the 
basis of this information. 

(b) Does there exist a polynomial function with the abow properties, except 
that 3 is not a critical point? 

24. Describe the graph of a rational function (in very general terms, similar to 
the text 's description of the graph of a polynomial fimction). 
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25. (a) Prove that two polynomial functions of degree m and n, respectively, 
intersect in at most max(m, n) points. 

(b) For each m and n exhibit two polynomial functions of degree Ill and n 
which intersect max (m, n) times. 

26. Suppose f is a polynomial function of degree n with f ~ 0 (so n must be 
even). Prove that f + J' + J" + · · · + J<n) ~ 0. 

*27. (a) Suppose that the polynomial function f (x) = x 11 + a11 _1x 11
-

1 + · · · + ao 
has exactly k critical points and J" (x) #- 0 for all critical points x. Show 
that n - k is odd. 

(b) For each 11 , show that if n - k is odd, then there is a polynomial function 
f of degree ,z with k critical points, at each of which J" is non-zero. 

( c) Suppose that the polynomial function f (x) = x 11 + a11 _ 1 x 11
-

1 + · · · + ao 
has k1 local maximum points and k2 local minimum points. Show that 
k2 = k1 + 1 if n is even, and k2 = k1 if n is odd. 

(cl) Let n, k1, k2 be three integers with k2 = k1 + 1 if n is even, and k2 = k1 if 
n is odd, and k 1 + k2 < n. Show that there is a polynomial function f of 
degree n , with k1 local maximum points and k2 lqcal minimum points. 

k1 + k2 

Hint: Pick GJ < a2 < · · · < Gk1+k2 and try J' (x) = n (x - ai) · (1 + x 2)1 

for an appropriate number I. i=l 

28. (a) Prove that if J'(x) ~ M forallx in [a,b], then f(b) ~ f(a)+M(b-a). 
(b) Prove that if J'(x)::::: M for all x in [a, b], then f(b)::::: f(a) + M(b-a). 
(c) Formulate a similar theorem when I J' (x) I ::::: M for all x in [a, b]. 

29. Suppose that J' (x) ~ M > 0 for all x in [O, I]. Show that there is an interval 
of length ± on which Ill ~ M /4. 

30. (a) Suppose that J'(x) > g'(x) for all x, and that f(a) = g(a). Show that 
f (x) > g(x) for x > a and f (x) < g(x) for x < a. 

(b) Show by an example that these conclusions do not follow without the 
hypothesis f (a)= g(a). 

(c) Suppose that f(a) = g(a), that J'(x) ~ g'(x) for all x, and that J'(xo) > 

g' (xo) for some xo > a. Show that f (x) > g (x) for all x ~ xo. 

31. Find all functions f such that 

(a) J'(x) = sinx. 
(b) J"(x)=x 3. 

(c) J"'(x)=x+x 2. 

32. Although it is true that a weight dropped from rest will fall s (t) = I 6t 2 

fret after t seconds, this experimental fact does not mention the behavior of 
weights which arc thrown upwards or downwards. On the other hand, the 
law s"(t) = 32 is ahvays true and has just enough ambiguity to account for 
the behavior of a weight released from any height, with any initial vdocity 
For simplicity let us agree to measure heights up,vards from ground level: 
in this case velocities arc positive for rising bodies and negative for falling 
bodies, and all bodies fall according to the law s"(t) = -32. 
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FIG U RE 3 2 

(a) Show thats is of the form s(t) = -16t2 +at+ {3. 
(b) By setting t = 0 in the formula for s, and then in the formula for s', 

show that s (t) = -16t2 + vot + so, where so is the height from which the 
body is released at time 0, and vo is the velocity with which it is released. 

(c) A weight is thrown upwards with velocity v feet per second, at ground 
level. How high will it go? (''How high" means "what is the maximum 
height for all times".) vVhat is its velocity at the moment it achieves its 
greatest height? \ Vhat is its acceleration at that moment? \Vhen will it 
hit the ground again? \Vhat will its velocity be when it hits the ground 
again? 

33. A cannon ball is shot from the ground with velocity v at an angle a (Fig­
ure 32) so that it has a vertical component of velocity v sin a and a hori­
zontal component v cos a. Its distance s (t) above the ground obeys the law 
s (t) = - l 6t 2 + ( v sin a )t, while its horizontal velocity remains constantly 
v cos a. 

(a) Show that the path of the cannon ball is a parabola (find the position at 
each time t , and show that these points lie on a parabola). 

(b) Find the angle a which will maximize the horizontal distance traveled 
by the cannon ball before striking the ground. 

34. (a) Give an example of a function f for which Jim f(x) exists, but 
X -+00 

lim f' (x) does not exist. 
X-+00 

(b) Prove that if lim f (x) and lirn f' (x) both exist, then lim f' (x) = 0. 
X----->(X) X----->00 X -+00 

(c) Prove that if Jim f (x) exists and lim f"(x) exists, then lim f"(x) = 0 . 
. t -+00 X-> 00 X->00 

(See also Problem 20-22.) 

35. Suppose that f and g are two differentiable functions which satisfy 
Jg' - f'g = 0. Prove that if f(a) = 0 and g(a) =/= 0, then f (x) = 0 for all x 

in an interval around a. Hint: On any interval where f/g is defined, show 
that it is constant. 

36. Suppose that If (x) - f(y)I.:::: Ix - yl 11 for 11 > 1. Prove that f is constant by 
considering f'. Compare with Problem 3-20. 

37. A function f is Lipschitz ef order a at x if there is a constant C such that 

(*) If (x) - f (y)I .:'.:: Clx - _via 

for all y in an interval around x. The function f is LijJschitz ef order a on an 
interval if (*) holds for all .r and y in the interval. 

(a) If f is Lipschitz of order a > 0 at x , then f is continuous at x. 
(b) If f is Lipschitz of order a > 0 on an interval, then f is uniformly 

continuous on this int<' rval (sec Chapter 8, Appendix). 
(c) If f is dillcrcntiable at x, then f is Lipschitz of order l at x. Is the 

converse true? 
(dJ If f is diffrrcntiahlc on [a, hl , is f Lipschitz of order l on [a, b] ? 
(e) If f is Lipschitz of order a > I on [a. bl, then .f is constant on ra. hi. 
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38. Prove that if 
ao a1 a11 -+-+···+-- =0, 
I 2 n+l 

then 

ao + a1x + · · · + a 11 x
11 

= 0 

for some x in (0, 1 ). 

39. Prove that the polynomial function f, 11 (x) = x 3 - 3x + 111 never has two roots 
in [O, l J, no matter what 111 may be. (This is an easy consequence of Rolle's 
Theorem. It is instructive, after giving an analytic proof, to graph Jo and h, 
and consider where the graph of f, 11 lies in relation to them.) 

40. Suppose that f is continuous and differentiable on [O, l], that f(x) is in 
[O, l J for each x, and that f' (x) =/= I for all x in [O, l J. Show that there is 
exactly one number x in [O, 1] such that f (x) = x. (Half of this problem 
has been clone already, in Problem 7-11 .) 

41. (a) Prove that the function f(x) = x 2 - cosx satisfies f(x) = 0 for precisely 
two numbers x. 

(b) Prove the same for the function f (x) = x 2 - x sin x - cos x. 

*(c) Prove this also for the function f (x) = 2x 2 - x sin x - cos2 x. (Some 
preliminary estimates will be useful to restrict the possible location of the 
zeros of f .) 

*42. (a) Prove that if f is a twice differentiable function with f (0) = 0 and 
f (l) = l and f'(O) = J'(l) = 0, then lf"(x)I ~ 4 for some x in (0, 1). 
In more picturesque terms: A particle which travels a unit distance in 
a unit time, and starts and ends ,vith velocity 0, has at some time an 
acceleration ~ 4. Hint: Prove that either f" (x) ~ 4 for some x in (0, ~ ), 
or else f" (x) ::::: -4 for some x in ( ! , 1 ). -

(b) Show that in fact we must have lf"(x)I > 4 for some x in (0, 1). 

43. Suppose that f is a function such that J'(x) = 1/x for all x > 0 and f (l) = 
0. Prove that f(xy) = f(x) + f(y) for all x,y > 0. Hint: Find g'(x) when 
g(x) = f(xy). 

44. Suppose that f satisfies 

f"(x) + f'(x)g(x) - f(x) = 0 

for some function g. Prm-e that if f is O at two points, then f is O on the 
interval between them. Hint: Use Theorem 6. 

45. Suppose that f is continuous on [a, b], that it is 11-times dif1erentiablc on 
(a, b), and that f(x) = 0 for 11+ l different x in [a. b]. PrmT that J< 11 )(x) = 0 
for some x in (a, b ). 
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46. Let x 1, ..• , x 11 + 1 be arbitrary points in [a, b] , and let 

n+ I 

Q(x) = n (X - Xj), 

i = I 

Suppose that f is (n + 1 )-times differentiable and that P is a polynomial 
function of degree .:::: n such that P(xi) = f (x;) for i = 1. ... , n + I (see 
Problem 3-6). Show that for each x in [a, b] there is a number c in (a, b) 
such that 

f(n + ll(c) 
f(x) - P(x) = Q(x) · 

1 
. 

(n + )! 

Hint: Consider the function 

F(t) = Q(x)[j(t) - P(t)] - Q(t)[J(x) - P(x)]. 

Show that F is zero at n + 2 different points in [a, b], and use Problem 45. 

4 7. Prove that 

!<v'66-8<~ 
(without computing ,v'66 to 2 decimal places!). 

48. Prove the following slight generalization of the l\kan Value Theorem: If f 
is continuous and differentiable on (a, b) and Jim f (y) and lim f (y) exist, 

y->- a+ y->- h-

then there is some x in (a, b) such that 

Jim J Cr) - lim J(y) 
f, (x) = y-,.b - y-.a+ 

b-a 

(Your proof should begin: "This is a trivial consequence of the Mean Value 
Theorem because ... ".) 

49. Prove that the conclusion of the Cauchy Mean Value Theorem can be written 
in the form 

J(b) - J(a) J'(x) 

g(b) - g(a) - g ' (x)' 

undrr the additional assumptions that g(b) f:. g(a) and that f' (x) and g' (x) 

are never simultaneously O on (a. b). 

50. Prove that if f and g arc continuous on [a. b] and differentiable on (a. b), 
and g'(x) f:. 0 for x in (a, b) , then there is some x in (a, b) \\'ith 

J'(x) f(x) - J(a) 

g'(x) g(b) - g(x) 

Hint: l\Iultiply out first, to see what this really says. 

51. What is wrong with the following use ofTHopital's Rule: 

x 3 +r - 2 3r 2 + 1 6r 
Jim · = Jim - · = Jim - · = 3. 
x->- 1 x 2 - 3x + 2 x--- I 2x - 3 .r -. I 2 

(The limit is actually - 4.) 
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52. Find the following limits: 

(i) 

(ii) 

x 
lim --. 
x---+0 tan .x 

. cos2 .x - 1 
hm 2 x ---+ 0 X 

53. Find f' (0) if 

{ 

g(x) 

f(x)= x ' 
0, 

and g(O) = g'(O) = 0 and g"(O) = 17. 

x/0 

x =0, 

54. Prove the following forms of l'Hopital's Rule (none requiring any essentially 
new reasoning). 

(a) If lim f (x) 
x --> a + 

lim g(x) = 0, and lim J'(x)/g'(x) 
x--> a + x --> a + 

I, then 

lim f (x)/ g(x) = I (and similarly for limits from below). 
x-->a+ 

(b) If lim f (x) = lim g(.x) = 0, and lim f'(x)/g'(x) = oo, then 
x--> a x --> a x---+ a 

lim f(x)/g(x) = oo (and similarly for -oo, or if x ----+ a is replaced 
x-->a 

by x ----+ a+ or x ----+ a -) . 

(c) If lim f(x) = lim g(x) = 0, and lim J'(x)/g'(x) = I, then 
X-->00 X-> 00 X--> 00 

lim f(x)/g(x) I (and similarly for -oo). Hint: Consider 
X--> 00 

lim JO Ix) I g O Ix). 
x--> O+ 

(cl) If lim f(.x) = lim g(.x) 0, and lim f'(x)/g'(x) oo, then 
X-+00 X ---+00 X--> 00 

lim f (x)/g(x) = oo. 
X-->00 

55. There is another form ofl'Hopital's Rule which requires more than algebraic 
manipulations: If lim f(x) = lim g(x) = oo, and lim J'(x)/g'(x) = I, 

X ---+ 00 X-+00 X-->00 

then lim f (x) / g (x) = I. Prove this as follows. 
X-+00 

(a) For every E > 0 there is a number a such that 

---/ <E 

I 
J'(x) I for x > a. 
g'(.x) 

Apply the Cauchy Mean Value Theorem to f and g on [a , x] to show 
that 

I 

_f(_x_) -_ f_(_a) _ / I < 
8 

g(x) - g(a) 

(Why can we assume g(x) - g(a) # O?) 

for x > a. 
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(b) Now write 

f (x) f(x) - f(a) f(x) g(x) - g(a) 

g(x) g(x) - g(a) f(x) - f(a) g(x) 

(why can we assume that f (x) - f (a) =/= 0 for large x ?) and conclude 
that 

I 

f(x) · 
2 ---l<t: 

g(x) 
for sufficiently large x. 

56. To complete the orgy of variations on l'Hopital's Rule, use Problem 55 to 
prove a few more cases of the following general statement (there are so many 
possibilities that you should select just a few, if any, that interest you): 

If Jim f (x) = lim g(x) = { } and lim f'(x)/g'(x) = ( ), then lim 
X-> [] X->[] X--> [] X->[] 

f(x)/g(x) = ( ). Here [] can be a or a+ or a - or oo or -oo, and { 
can be O or oo or -oo, and ( ) can be l or oo or -oo. 

5 7. If f and g are differentiable and lim f (x) / g (x) exists, does it follow that 
x-->a 

lim f' (x) / g' (x) exists (a converse to l'Hopital's Rule)? 
X--> a 

58. Prove that if f' is increasing, then every tangent line of f intersects the graph 
of f only once. (In particular, this is true for the function f (x) = x 11 if n is 
even.) 

59. Redo Problem 10-18 (c) when 

I ') I 
(.{ )- = f - .r2 · 

(\Vhy is this problem is this chapter?) 

*60. (a) Suppose that f is differentiable on [a, b J. Prove that if the minimum 
off on [a, b] is at a, then f'(a) ::::: 0, and if it is at b, then f'(b) :S 0. 
(One half of the proof of Theorem I will go through.) 

(b) Suppose that f'(a) < 0 and f'(b) > 0. Show that .f'(x) = 0 for some x 
in (a, b). Hint: Consider the minimum off on [a, b]; why mu tit be 
somewhere in (a, b)? 

(c) Prove that if f'(a) < c < f'(b), then f'(x) = c for somex in (a. b). (This 
result is known as Darboux's Theorem. Note that we arc not assuming 
that f' is continuous.) Hint: Cook up an appropriate function to which 
part (b) may be applied. 

61. Suppose that f is differentiable in some interval containing a, hut that .f' is 
discontinuous at a. Prove the follo\\'ing: 

(a) The one-sided limits lim .f' (x) and lim f' (x) cannot both exist. (This 
x --> a+ x --> a 

is just a minor variation on Theorem 7 .) 
(b) These 01w-siclccl limits cannot both exist even if we allow limits with the 

value +oo or - oo. Hint: Use Darboux's Theorem (Problem 60). 
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*62. It is easy to find a function f such that If I is differentiable but f is not. 
For example, we can choost> f (x) = l for x rational and f (x) = -1 for 
x irrational. In this example f is not even continuous, nor is this a mere 
coincidence: Prove that if If I is differentiable at a, and f is continuous at a, 
then f is also differt>ntiable at a. Hint: It suffices to consider only a with 
f (a)= 0. \'Vhy? In this case, what must lfl'(a) be? 

*63. (a) Let y #- 0 and let n be even. Prove that x 11 + y 11 = (x + y )" only 
when x = 0. Hint: If xo 11 + y 11 = (xo + y )11

, apply Rollt>'s Theorem to 
f (x) = x 11 + y 11 

- (x + y) 11 on [O. xo]. 

(b) Provt' that if y #- 0 and n is odd, tht>n x 11 + y 11 = (x + y )11 only if x = 0 
or x = -y. 

64. Suppose that f (0) = 0 and f' is increasing. Prove that the function g(x) = 
f (x)/x is incrt>asing on (0, oo). Hint: Obviously you should look at g'(x). 

Prove that it is positive by applying the 1Iean Value Theorf'm to f on the 
right interval (it will help to remember that the hypothesis f (0) = 0 is essen­
tial, as shown by tht> function f (x) = 1 + x 2). 

65. Use derivatives to provt' that if n ~ 1, then 

( I + x )11 > l + nx for - I < x < 0 and O < x 

(notice that equality holds for x = 0). 

66. Lt>t f(x) = x 4 sin 2 l/x for x #- 0, and lt>t f(O) = 0 (Figure 33). 

(a) Prove that O is a local minimum point for f. 

(b) Prove that j'(O) = f"(O) = 0. 

This function thus provides another example to show that Theorem 6 cannot 
be improved. It also illustrates a subtlety about maxima and minima that 
often goes unnoticed: a function may not be incrt>asing in any interval to the 
right of a local minimum point, nor dt>creasing in any intt>rval to the left. 

I 
I 
I 
I 

' 

FIGURE 33 

I 
I 

I 
I 

*67. (a) Prove that if f' (a) > 0 and f' is continuous at a, then f is increasing in 
some interval containing a. 

The next two parts of this problem show that continuity of f' is t>ssential. 

(b) If g(x) = x 2 sin I /x, show that there arc numbers x arbitrarily close to O 
with g'(x) = l and also with g'(x) = -1. 



216 Derivatives and Integrals 

(c) Suppose O < a < I. Let f (x) = ax + x 2 sin 1 / x for x i 0, and let 
f (0) = 0 (see Figure 34). Show that f is not increasing in any open 
inter\'al containing 0, by showing that in any interval there arc points x 
with J'(x) > 0 and also points x with J'(x) < 0. 

' ' ' 

I 
I 

I 

FIGURE 34 

I 
I 

I 
I 

I 

I 

I 
I 

I 

I / l x 7 
• I 

I f(x) = 2 + x- sm :;-, 

0, 

' ' ' ' ' ' 

The behavior of f for a ::::_ 1, which is much more difficult to analyze, 1s 
discussed in the next problem. 

**68. Let f(x) =ax+ x 2 sin 1/x for x i 0, and let J(O) = 0. In order to find 
the sig11 of J' (x) when a ::::_ 1 it is necessary to decide if 2x sin l /x - cos 1 /x 
is < -1 for any numbers x close to 0. It is a little more convenient to 
consider the function g(y) = 2(sin y)/y - cosy for y i O; we want to know 
if g (y) < -1 for large y. This question is quite delicate; the most significant 
part of g(y) is - cosy, which does reach the \'alue -1, but this happens only 
when sin y = 0, and it is not at all clear whether g itself can have values 
< - 1. The obvious approach to this problem is to find the local minimum 
values of g. Unfortunately, it is impossible to solve the equation g'(y) = 0 
explicitly, so more ingenuity is required. 

(a) Show that if g' (y) = 0, then 

cos v = (sin ,·) · , (2- "2) 
. . 2y 

and conclude that 

(2+y2) 
g(y) = (sin y) 

2
y . 
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(b) Now show that if g'(y) = 0, then 

and conclude that 

4v2 
. 2 • 

sin v = ---
. 4 + y4' 

2 + y2 
lg(_v)I = --;::::::== 

J4+y4 

(c) Using the fact that (2+ y 2 )/J4+ y 4 > l, show that if a= 1, then f is 
not increasing in any interval around 0. 

(d ) Using the fact that lirn (2 + y 2)/j 4 + y 4 = l, show that if a > 1, then 
y----+oo 

f is increasing in some interval around 0. 

**69. A function f is increasing at a if there is some number 8 > 0 such that 

and 

f (x) > f(a) if a < x <a+ 8 

f (x) < f (a) if a - 8 < x < a. 

Notice that this does not mean that f is increasing in the interval (a - 8, 
a+ 8); for example, the function shown in Figure 34 is increasing at 0, but 

is not an increasing function in any open interval containing 0. 

(a) Suppose that f is continuous on [O, 1] and that f is increasing at a for 
every a in [O, 11. Prove that f is increasing on [O, l]. (First convince 
yourself that there is something to be proved.) Hint: For O < b < 1, 
prove that the minimum off on [b, 1] must be at b. 

(b) Prove part (a) without the assumption that f is continuous, by consider­

ing for each bin [O, 1] the set Sb= {x: f(y) 2: f(b) for ally in [b,xJ}. 
(This part of the problem is not necessary for the other parts.) Hint: 

Prove that Sb = {x : b :::: x :::: 1} by considering sup Sb. 
( c) If f is increasing at a and f is differentiable at a, prove that f' (a) 2: 0 

(this is easy). 

(d ) If J' (a) > 0, prove that f is increasing at a (go right back to the definition 

of f'(a) ). 

(e) Use parts (a) and (d) to show, without using the l\Iean Value Theorem, 
that if f is continuous on [O, 1] and J' (a) > 0 for all a in [0. 1], then f 
is increasing on [O, 1]. 

(f) Suppose that f is continuous on [O, l] and f'(a) = 0 for all a in (0, 1). 
Apply part (e) to the function g(x) = f (x) + ex to show that f(l) -
f (0) > -8. Similarly, show that f (1) - f (0) < c by considering h (x) = 
ex - j(x). Conclude that f(O) = J(l). 

This particular proof that a function with zero derivative must be constant has 

many points in common with a proof of H. A Schwarz. which may be the 
first rigorous proof ever given. lts discoverer, at least, seemed to think it was. 
See his exuberant letter in reference [54] of the Suggested Reading. 
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**70. (a) If f is a constant function, then every point is a local maximum point 
for f . It is quite possible for this to happen even if f is not a constant 
function: for example, if f (x) = 0 for x < 0 and f (x) = 1 for x ~ 
0. But prove, using Problem 8-4, that if f is continuous on [a, h] and 
every point of [a, h] is a local maximum point, then f is a constant 
function. The same result holds, of course, if every point of [a, h] is a 
local minimum point. 

(b) Suppose now that every point is either a local maximum or a local mini­
mum point for the continuous function f (but we don't preclude the pos­
sibility that some points are local maxima while others arc local minima). 
Prove that f is constant, as follows. Suppose that f (ao) < f (ho). We 
can assume that f (ao) < f (x) < f (ho) for ao < x < ho. (\Vhy?) Using 
Theorem 1 of the Appendix to Chapter 8, partition [ao, hoJ into intervals 
on which sup f - inf f < (!(ho) - f (ao))/2; also choose the lengths of 
these intervals to be less than (ho - ao) /2. Then there is one such interval 
[a1,hI] with ao < a1 < h1 < ho and j(ai) < f(h1). (\!Vhy?) Continue 
inductively and use the Nested Interval Theorem (Problem 8-14) to find 
a point x that cannot be a local maximum or minimum. 

**71. (a) A point x is called a strict maximum point for f on A if f (x) > f (y) 

for all y in A with y =fa x (compare with the definition of an ordinary 
maximum point). A local strict maximum point is defined in the 
obvious way. Find all local strict maximum points of the function 

{ 

0, 

J(x) = f x irrational 

p . 1 x = - m owest terms. 
q 

It seems quite unlikely that a function can have a local strict maximum 
at every point (although the above example might give one pause for 
thought). Prove this as follows. 

(b) Suppose that every point is a local strict maximum point for f. Let 
x 1 be any number and choose a1 < x1 < h1 with h1 - a1 < 1 such 
that f(xi) > f(x) for all x in [a1, h1]. Let x2 =fa x1 be any point in 

(a1,b1) and choose a1 S a2 < x2 < b2 S b1 with b2-a2 <!such that 
f (x2) > f (x) for all x in [a2 , h2]. Continue in this way, and use the 
Nested Interval Theorem (Problem 8-14) to obtain a contradiction. 
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APPENDIX. CONVEXITY AND CONCAVITY 

Although the graph of a function can be sketched quite accurately on the basis 
of the information provided by the derivative, some subtle aspects of the graph are 
revealed only by examining the second derivative. These details were purposely 
omitted previously because graph sketching is complicated enough without wor­
rying about them, and the additional information obtained is often not worth the 
effort. Also, correct proofs of the relevant facts are sufficiently difficult to be placed 
in an appendix. Despite these discouraging remarks, the information presented 
here is well worth assimilating, because the notions of convexity and concavity are 
far more important than as mere aids to graph sketching. Moreover, the proofs 
have a pleasantly geometric flavor not often found in calculus theorems. Indeed, 
the basic definition is geometric in nature (see Figure 1 ). 

A function f is convex on an interval, if for all a and b in the interval, the line 
segment joining (a, f(a)) and (b, f(b)) lies above the graph off. 

The geometric condition appearing in this definition can be expressed in an 
analytic way that is sometimes more useful in proofs. The straight line benveen 
(a, f(a)) and (b, f(b)) is the graph of the function g defined by 

f (b) - f (a) 
g(x) = (x - a)+ f (a). 

b-a 

This line lies above the graph off at x if g(x) > f(x), that is, if 

or 

or 

f (b) - f(a) (x - a)+ f(a) > f (x) 
b-a 

_f_(b_) _-_f_(a_) (x - a) > f(x) - f(a) 
b-a 

f (b) - f (a) 

b-a 

f (x) - f (a) 
>-----

x-a 

\Ve therefore have an equivalent definition of convexity. 

A function f is convex on an interval if for a, x, and b in the in tnval with 
a < x < b we have 

f(x) - f(a) 

x-a 
< 

f (b) - f (a) 

b-a 
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fIGURE2 

THEOREM 1 

PROOF 

If the word "m·er" in Definition 1 is replaced by "under" or, equivalently, if the 
inequality in Definition 2 is replaced by 

f (x) - f (a) 
-----> 

x-a 

f(b) - f(a) 

b-a 

we obtain the definition of a concave function (Figure 2). It is not hard to see that 
the concave functions are precisely the ones of the form - f, where f is convex. 
For this reason, the next three theorems about convex functions have immediate 
corollaries about concave functions, so simple that we vvill not even bother to 
state them. 

Figure 3 shows some tangent lines of a convex function. Two things seem to be 
true: 

(1) The graph off lies above the tangent line at (a, f(a)) except at the point 
(a, f (a)) itself (this point is called the point of contact of the tangent line). 

(2) If a < b, then the slope of the tangent line at (a, f (a)) is less than the slope 
of the tangent line at (b, f (b)); that is, f' is increasing. 

As a matter of fact these observations are true, and the proofs are not difficult. 

fIGURE3 

Let f be convex. If f is differentiable at a, then the graph of f lies above 
the tangent line through (a, f(a)), except at (a, f(a)) itself. If a < b and f is 
differentiable at a and b, then J'(a) < J'(b). 

If O < h 1 < h2 , then as Figure 4 indicates, 

(I) 
f(a + h1) - f(a) f(a + h2) - f(a) 

< 
h, h2 

J\ nonpictorial proof can be derin·d immediately from Definition 2 applied to 
a < a+ h1 < a+ h2. Inequality (I) shows that the values of 

.f (a+ h) - f (a) 

h 
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a a+ hi a+ h2 

FI GURE4 

decrease as h --+ o+. Consequently, 

J'(a) < f(a + h) - f(a) for h > 0 
h 

(in fact f' (a) is the greatest lower bound of all these numbers). But this means that 
for h > 0 the secant line through (a, f (a)) and (a+ h, f (a+ h)) has larger slope 
than the tangent line, which implies that (a+ h, f(a + h)) lies above the tangent 
line (an analytic translation of this argument is easily supplied). 

For negative h there is a similar situation (Figure 5): if h2 < h 1 < 0, then 

> 

This shows that the slope of the tangent line is greater than 

f (a+ h) - f (a) 

h 
for h < 0 

(in fact f'(a) is the least upper bound of all these numbers), so that f (a+ h) lie 
above the tangent lin if h < 0. This proves the first part of the theorem. 

a 

Fl G RE 5 
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a Xl XQ b 

Fl RE 7 

LEMMA 

PRO F 

a b 

FIGURE 6 

Now suppose that a < b. Then, a we have already seen (Figure 6), 

f'(a) < f(a + (b - a)) - f (a) since b - a > 0 
b-a 

f (b) - f (a) 

b-a 

and 

f'(b) > f(b + (aa--b;) - f(b) since a - b < 0 

f(a) - f(b) f (b) - f (a) 

a-b b-a 

Combining these inequalities, we obtain f'(a) < f'(b). I 

Theorem l has two conver es. Here the proofs will be a little more difficult. 
We begin with a lemma that plays the same role in the next theorem that Rolle's 
Theorem plays in the proof of the M an Value Th orem. It stat that if f' 
1s mcreasmg, th n the graph of f lies below any secant line which happens to be 
horizontal. 

Suppo e f is diffi rentiable and f' is .increasing. If a <band f(a) = f (b) , then 
f (x) < f (a) = f (b) for a < x < b. 

Suppose that f (x) :::: f (a) = f (b) for som x in (a, b). Th n th maximum of 
f on [a, b] occurs at some point xo in (a , b) with f (xo) :::: f(a) and, of ur 
f'(xo) = 0 (Figur 7). On th oth r hand applying th M an Valu Th or mt 
th int rval [a , xo] , w find that th r i x i with a < x , < xo nd 

f ' (x,) = f(xo) - f(a) :::: 0, 
xo - a 

ntradi tin th [; t that f' i in r a ing. I 
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\Ve now attack the general case by the same sort of algebraic machinations that 
we used in the proof of the l\Iean Value Theorem. 

If f is differentiable and J' is increasing, then f is convex. 

Let a < b. Define g by 

f (b) - f (a) 
g(x) = J(x) - (x - a). 

b-a 

It is easy to see that g' is also increasing; moreover, g(a) = g(b) = f (a). Applying 
the lemma to g we conclude that 

g(x) < f(a) if a < x < b. 

In other words, if a < x < b, then 

f (b) - f (a) 
f (x) - (x - a) < f(a) 

b-a 

or 
f (x) - f (a) f(b) - f(a) 
~~~~- < ~~~~-

x -a b-a 

Hence f is convex. I 

If f is differentiable and the graph of f lies above each tangent line except at the 
point of contact, then f is convex. 

Let a < b. It is clear from Figure 8 that if (b, J(b)) lies above the tangent line at 
(a. f(a)), and (a, f(a)) lies above the tangent line at (b, J(b)), then the slope of 
the tangent line at (b, f (b)) must be larger than the slope of the tangent line at 
(a, J(a)). The following argument just says this with equations. 

Since the tangent line at (a, f (a)) is the graph of the function 

g(x) = J' (a)(x - a)+ f (a). 

and since (b, f (b)) lies above the tangent line, we have 

(1) j(b) > j'(a)(b - a)+ f(a). 

Similarly, since the tangent line at (b, f(b)) is the graph of 

h(x) = J ' (b)(x - b) + j(b), 

and (a. f(a)) lies above the tangent line at (b. f (b)), we hm·e 

(2) f(a) > f ' (b)(a - b) + f(b). 

It follows from (l) and (2) that j'(a) < J'(b). 
lt now follows from Theorem 2 that f is convex. I 

If a function f has a reasonable second derivative, the information gin·n in these 
theorems can be used to discover the regions in which f is convex or concave. 
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Consider, for example, the function 

For this function , 

1 
f(x) = 2. 

l+x 

-2x 
f'(x) = (1 + x2)2. 

Thus f' (x) = 0 only for x = 0, and f (0) = 1, while 

Moreover 

FIGURE 9 

J' (x) > 0 if x < 0, 
J'(x) < 0 if x > 0. 

f (x) > 0 for all x , 
f (x) ~ 0 a x ~ oo or -oo, 
f i even. 

1 
f(x) = 1 + x2 

The graph of f therefore looks something like Figure 9. We now compute 

11 (1 + x 2) 2(-2) + 2x · [2(1 + x 2) · 2x J 
f (x) = ( 1 + x 2)4 

2(3x 2 - 1) 

(1 + x2)3 · 

It is not hard to determin the ign of f"(x). Note fir t that f "(x) = 0 only when 

x = /173 or -/173. Since f" i cl arly ontinuou , it mu t k p th am 10-n 
on ach of the et 

(-00, -/173 ), 
(-/173, /173), 

(/173, ). 
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Since we easily compute, for example, that 

we conclude that 

J"(-1) = i > 0, 
f"(O) = -2 < 0, 

f"(l) = i > 0, 

J" > 0 on (-oo. -/f73) and (/f73, oo), 

J" < 0 on (-/f73, /f73). 

Since f" > 0 means f' is increasing, it follows from Theorem 2 that f is convex on 

(-oo, -/f73) and ( /f73, oo), while on (-/f73, /f73) f is concave (Figure 10). 

f is convex f is concave 

-/f73 I /f73 
FIGURE 10 

Notice that at ( /f73, !) the tangent line lies below the part of the graph to the 

right, since f is convex on ( /f73, oo), and above the part of the graph to the left, 

since f is concave on (-/f73, /f73 ); thus the tangent line crosses the graph. In 
general, a number a is called an inflection point of f if the tangent line to the 

graph off at (a. f(a)) crosses the graph; thus /f73 and -/f73 are inflection 
point of f(x) = 1/(1 +x2). Note that the condition f"(a) = 0 does not ensure 
that a is an inflection point off; for example, if f (x) = x4, then f"(O) = 0, but 
f is convex, so the tangent line at (0, 0) certainly doesn't cross the graph of f. In 
order to conclude that a is an inflection point of a function f, we need to know 
that f" has different signs to the left and right of a. 

This example illustrates the procedure which may be used to analyze any func­
tion f. After the graph has been sketched, using the information provided by f', 
the zeros of f" are computed and the sign of f" is determined on the intervals 
between consecutive zeros. On intervals where f" > 0 the function is convex; 
on intervals where f" < 0 the function is concave. Knowledge of the regions of 
convexity and concavity of f can often prevent absurd misinterpretation of other 
data about f. Several functions, which can be analyzed in this way. are given in 
the problems, which also contain some theoretical questions. 
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j(c) 

f(b) 

f(a) 

FIGL'REII 

FI<;U R E 1 2 

a 

Cl 

THEOREM 4 

PROOF 

b c 

b x c 

To round out our discussion of convexity and concavity, we will prove one further 
result that you may already have begun to suspect. vVe have seen that convex and 
concave functions have the property that every tangent line intersects the graph 
just once; a few drawings will probably convince you that no other functions have 
this property, but the only proof! know is rather tricky. 

If f is differentiable on an interval and intersects each of its tangent lines just 
once, then f is either convex or concave on that interval. 

There are two parts to the proo( 

( 1) First we claim that no straight line can intersect the graph of f in three different 
points. Suppose, on the contrary, that some straight line did intersect the graph 
of f at (a, f (a)), (b, f (b)) and (c, f (c)), with a < b < c (Figure 11). Then we 
would have 

(1) 
J(b) - f(a) 

b - a 
f (c) - f (a) 

c-a 

Consider the function 

f (x) - f(a) 
g(x)=---­

x- a 
for x in [b , c]. 

Equation (l ) says that g(b) = g(c). So by Rolle's Theorem , there is some number x 
in (b, c) where O = g'(x), and thus 

0 = (x - a)j'(x) - [f (x) - f (a)] 

or 
j'(x) = f(x) - f(a). 

x-a 

But this says (Figure 12) that the tangent line at (x, f (x)) passes through (a, f (a)), 

contradicting the hypotheses. 

(2) Suppose that ao < ho < co and a1 < bi < c1 are points in the interval. Let 

Xr = (l-t)ao+ta1 
Yr = (1 - t )ho + I b1 
Zr = (1 - t )co + t c 1 

O::: t ::: 1. 

Then xo = ao and x 1 = a 1 and (Problem 4-2) the points Xr all lie between ao 
and a I , with analogous statements for Yr and : r. l\Joreover, 

Xr <Yr < Zt 

Now consider the function 

() 
f(Yr) - f(xr) 

g I= ----­
Yt - Xr 

for 

f(:r) - f(xr) 
for O :S I :S l . 

Zt - Xr 

By step (1), g(l) -:j:. 0 for all/ in lO, lj . So either g(l) > 0 for all/ in [O, 11 or 
g (!) < 0 for all I in [O, l j. Thus, either f is com·cx or f is concm·c. I 
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PROBLEMS 

1. Sketch, indicating regions of convexity and concavity and points of inflection, 
the functions in Problem 11-1 (consider (iv) as double starred). 

2. Figure 30 in Chapter 11 shows the graph of J'. Sketch the graph off. 

3. Show that f is convex on an interval if and only if for all x and y in the 
interval we have 

J(tx + (1 - t)y) < tf (x) + (1 - t)f(y), for O < t < 1. 

(This is just a restatement of the definition, but a useful one.) 

4. (a) Prove that if f and g are convex and f is increasing, then f og is convex. 
(It will be easiest to use Problem 3.) 

(b) Give an example where g o f is not convex. 
(c) Suppose that f and g are tvvice differentiable. Give another proof of the 

result of part (a) by considering second derivatives. 

5. (a) Suppose that f is differentiable and convex on an interval. Show that 
either f is increasing, or else f is decreasing, or else there is a number c 
such that f is decreasing to the left of c and increasing to the right of c. 

(b) Use this fact to give another proof of the result in Problem 4(a) when f 
and g arc (one-time) differentiable. (You \vill have to be a little careful 
when comparing J'(g(x)) and j'(g(y)) for x < y.) 

(c) Prove the result in part (a) without assuming f differentiable. You will 
have to keep track of several different cases, but no particularly clever 
ideas are needed. Begin by showing that if a < band f (a) < f (b), then 
f is increasing to the right of b; and if f (a) > f (b), then f is decreasing 
to the left of a. 

*6. Let f be a twice-differentiable function with the following properties: 
f (x) > 0 for x ~ 0, and f is decreasing, and J' (0) = 0. Pro\·e that 
J" (x) = 0 for some x > 0 (so that in reasonable cases f \Vill have an inflec­
tion point at x - an example is given by f (x) = 1 / ( 1 + x 2) ) . Every hypothesis 
in this theorem is essential, as shown by f (x) = 1 - x 2, which is not positi\·e 
for all x; by /(x) = x 2, which is not decreasing; and by f (x) = l/(x + 1), 
which does not satisfy J'(O) = 0. Hint: Choose xo > 0 with J'(xo) < 0. We 
cannot have J'(y):::: J'(xo) for ally > xo. \Vhy not? So J'(.q) > J'(xo) for 
some xi > xo. Consider J' on [O, xi]. 

*7. (a) Prove that if f is convex, then J ([x + y]/2) < [/(x) + f(y)]/2. 
(b) Suppose that f satisfies this condition. Show that f (kx + (1 - k)y) < 

kf(x) + (1 - k)f (y) \vhcnever k is a rational number, between O and L 
of the form 111/211

• Hint: Part (a) is the special case 11 = 1. Ust> induction, 
employing part (a) at each step. 

(c) Suppose that f satisfies the condition in part (a) and f is continuous. 
Show that f is convex. 
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f 

a b c 

II 

*8. For n > 1, let p 1, ... , p11 be positive numbers with L p; = 1. 
i=l 

11 

(a) For any numbers x1, ... , x 11 show that L p;x; lies between the smallest 
and the largest x;. i=l 

11 - l n- 1 

(b) Show the same for (1/t) L p;x;, where t = L p;. 
i=l i=l 

(c) Prove Jensen's inequality: If f is convex, then f ( t p;x;) < t p;f (x; ). 
i=l i=l 

Hint: Use Problem 3, noting that p11 = 1 - t. (Part (b) is needed to show 
n-1 

that (1 /t) L p;x; is in the domain of f if XJ, ... , x 11 are.) 
i=l 

*9. (a) For any function f, the right-hand derivative, lim [!(a +h )- f (a)]/ h, is 
1i ___,, o+ 

denoted by f ~(a), and the left-hand derivative is denoted by f!_ (a). The 
proof of Theorem 1 actually shows that f ~ (a) and f !_ (a) always exist if 
f is convex on some open interval containing a. Check this assertion, 
and also show that f~ and f'_ are increasing, and that f'_(a) :S f~(a). 

(b) Conversely, suppose that f is convex on [a, b] and g is convex on [b, c], 
with f(b) = g(b) and f '_ (b) :S g~(b) (Figure 13 (a)) . If we define h 
on [a. c] to be f on [a, b] and g on [b, c], show that lz is convex on 
[a, c]. Hint: Given P and Q on opposite sides of O = (b, f (b)), as in 
Figure 13 (b ), compare the slope of O Q with that of PO. 

(c) Show that if f is convex, then f~(a) = f!_(a) if and only if f~ is con­
tinuous at a. (Thus f is differentiable precisely when f~ is continuous.) 
Hint: [f (b) - f(a)]/(b - a) is close to f!_(a) for b < a close to a, and 
f~ (b) is less than this quotient. 

*10. (a) Prove that a convex function on R, or on any open interval, must be 
continuous. 

(a) (b) Give an example of a convex function on a closed interval that is not 

p 

a b c 

(b) 

I· I C U RE I 3 

continuous, and explain exactly what kinds of discontinuities are possible. 

11. Call a function f weakly convex on an interval if for a < b < c in this interval 
we have 

f (x) - f (a) f (b) - f (a) 
~~~~- < ~~~~-

x -a b-a 

(a) Show that a weakly convex function is convex if and only if its graph 
contains no straight line segments. (Sometimes a weakly convex function 
is simply called "convex," while convex functions in our sense arc called 
"strictly convex''.) 

(h) Reformulate the theorems of this section for weakly com'cx functions. 
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12. Find two convex functions f and g such that f (x ) = g(x ) if and only if x 
is an integer. Hint: Fir t find an example where g is merely weakly convex, 
and then modify it, using the result of Problem 9 as a guid . 

13. A set A of points in the plane is called convex if A contains th line segment 
joining any two points in it (Figure 14). For a function f , let A f be the set 
of point (x, y ) with y ~ f (x ) , so that A f is the set of points on or above 
the graph of f. Show that A f is convex if and only if f is weakly convex, 
in the terminology of the previous problem. Further information on convex 
sets will be found in reference [18] of the Suggested Reading. 

(a) a convex subset of the plane 

F I G RE 14 

(b) a non-convex sub et of the plane 
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12 INVERSE FUNCTIONS 

\,Ve now have at our disposal quite power[ ul methods for investigating functions; 
what we lack is an adequate supply of functions to which these methods may 
be applied. \Ve have studied various ways of forming new functions from old~ 
addition, multiplication, division, and composition~ but using these alone, we can 
produce only the rational functions (even the sine function, although frequently 
used for examples, has never been defined). In the next few chapters ,-ve will 
begin to construct new functions in quite sophisticated ways, but there is one 
important method which will practically double the usefulness of any other method 
we discover. 

If we recall that a function is a collection of pairs of numbers, we might hit upon 
the bright idea of simply reversing all the pairs. Thus from the function 

J = { (1, 2), (3, 4), (5, 9), (13, 8) }, 

we obtain 

g = { (2, 1 ), (4, 3), (9, 5), (8, 13) }. 

While J(l) = 2 and J(3) = 4, we have g(2) = 1 and g(4) = 3. 
Unfortunately, this bright idea does not always work. If 

f = { (1, 2), (3, 4), (5, 9), (13, 4) }, 

then the collection 

{ (2, 1), (4, 3), (9, 5), (4, 13)} 

is not a function at all, since it contains both (4, 3) and (4, 13). It is clear where 
the trouble lies: f(3) = f (13), even though 3 =I- 13. This is the only sort of thing 
that can go wrong, and it is worthwhile giving a name to the functions for which 
this does not happen. 

A function f is one-one (read "one-to-one") if f (a) =I- f (b) whenc,·er a =I- b. 

The identity function I is obviously one-one, and so is the following modifica-
tion: 

g(x) = { ;: 
5, 

x =I- 3, 5 
x=5 
x = 3. 

'The function f (x) = x 2 is not one-one, since .f ( - I) = .f (I), but if we define 
') 

g(x) = .c, x ::: 0 

230 



DEFINITION 

THEOREM I 

PROOF 

12. Inverse Functions 231 

(and leave g undefined for x < 0), then g is one-one, because g is increasing (since 
g' (x) = 2x > 0, for x > 0). This observation is easily generalized: If n is a natural 
number and 

I (x) = x'1, x ~ 0, 

then I is one-one. If ll is odd, one can do better: the function 

l(x) = x" for all x 

is one-one (since I' (x) = nx 11
-

1 > 0, for all x #- 0). 

It is particularly easy to decide from the graph of I whether I is one-one: the 
condition I (a) #- I (b) for a #- b means that no horizontal line intersects the graph 
of I twice (Figure l ). 

a one-one function a function that is not one-one 

(a) (b) 
FIGURE! 

If we reverse all the pairs in (a not necessarily one-one function) I we obtain, in 
any case, some collection of pairs. It is popular to abstain from this procedure un­
less I is one-one, but there is no particular reason to do so~ instead of a definition 
with restrictive conditions we obtain a definition and a theorem. 

For any function I, the inverse of I, denoted by J-1, is the set of all pairs 
(a, b) for which the pair (b, a) is in I. 

1- 1 is a function if and only if I is one-one. 

Suppose first that I is one-one. Let (a, b) and (a, c) be two pairs in 1- 1• Then 
(b, a) and (c, a) are in I, so a = l(b) and a = l(c); since I is one-one this 
implies that b = c. Thus 1- 1 is a function. 

Conversely, suppose that 1- 1 is a function. If I (b) = l(c), then I contains 
the pairs (b. l(b)) and (c. I (c)) = (c, l(b)), so (f (b), b) and (f (b), c) are in 1- 1• 

Since 1- 1 is a function this implies that b = c. Thus I is one-one. I 
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T he graphs of 1 and 1- 1 are so closely related that it is possible to use the 
graph of 1 to visualize the graph of 1- 1• Since the graph of 1- 1 con ists of all 
pairs (a , b) with (b , a ) in the graph of 1, one obtains th graph of 1- 1 from the 
graph of 1 by interchanging the horizontal and vertical axe . If 1 has the graph 
shown in Figur 2(a), 

2 

F I G RE 2 (a ) 

T hi pr dur i wkw rd with bo k and imp ibl with bla kb rd it i 
fortunat that th r i an th r way f n tru tin · th Taph [ 1- 1

• h p int 
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(a, b) and (b, a) are reflections of each other through the graph of I (x) = x, 

which is called the diagonal (Figure 4). To obtain the graph of 1- 1 we merely 
reflect the graph of I through this line (Figure 5). 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

FIGURE4 

/ 

(a, b) 
• 

(c, d) / 
• 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

//diagonal 

•(b,a) 

FIGURES 

Reflecting through the diagonal tvvice will clearly leave us right back where we 
started; this means that (I-I) - 1 = I, which is also clear from the definition. In 
cm~unction with Theorem 1, this equation has a significant consequence: if I 
is a one-one function, then the function 1- 1 is also one-one (since (I- I ) - 1 is a 
function). 

There are a few other simple manipulations with inverse functions of which you 
should be aware. Since (a, b) is in I precisely when (b, a) is in 1- 1, it follows that 

b = I (a) means the same as 

Thus 1- 1 (b) is the (unique) number a such that I (a) = b; for example, if I (x) = 
x 3, then 1- 1(b) is the unique number a such that a3 = b, and this number is, by 
definition, Vb. 

The fact that 1- 1 (x) is the number y such that I (y) = x can be restated in a 
much more compact form: 

for all x in the domain of 1- 1 
• 

l\!Iorcover, 

for all x in the domain of I; 

this follows from the previous equation upon replacing I by 1- 1• These tv,'o 
important equations can be written 

I o 1- I = I, 

1 - 1 o I= I 

(except that the right side will have a bigger domain if the domain of I or 1- 1 1s 
not all of R). 
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./ 
/. 

5 

FIG URE 6 

THEOREM 2 
FIGURE7 

PROOF 

Since many standard functions will be defined as the inverses of other functions, 
it is quite important that we be able to tell which functions are one-one. \;\Te have 
already hinted which class of functions are most easily dealt with - increasing and 
decreasing functions are obviously one-one. Nloreover, if I is increasing, then 1- 1 

is also increasing, and if I is decreasing, then 1- 1 is decreasing (the proof is left 
to you). In addition, I is increasing if and only if - I is decreasing, a very useful 
fact to remember. 

It is certainly not true that every one-one function is either increasing or decreas­
ing. One example has already been mentioned, and is now graphed in Figure 6: 

{ 

x, 

g(x) = 3, 
5, 

x-=!=3,5 
x = 5 
x = 3. 

Figure 7 shows that there are even continuous one-one functions which are neither 
increasing nor decreasing. But if you try drawing a few pictures you will soon 
suspect that every one-one continuous function defined on an interval is either 
increasing or decreasing. 

If I is continuous and one-one on an interval, then I 1s either increasing or 
decreasing on that interval. 

The proof proceeds in three easy steps: 

( 1) If a < b < c are three points in the interval, then 

either 
or 

(i) 
(ii) 

l(a) < I (b) < l(c) 

l(a) > I (b) > l(c). 

Suppose, for example, that l(a) < l(c). If we had l(b) < l(a) (Figure 8), then 
the Intermediate Value Theorem applied to the interval [b, c] would give an x with 

-- --- 0--
a b c 

FIGLJRE 8 

b < x < c and l(x) = l(a), contradicting the fact that I is one-one on [a. c]. 
Similarly, l(b) > l(c) would lead to a contradiction, so I (a) < l(b) < I (c). 

Naturally, the same sort of argument works for the case I (a) > I (c). 

(2) If a < h < c < d are four points in the interval, then 

either 
or 

(i) 
(ii) 

l(a) < l(b) < l(c) < l(d) 

l(a) > l(b) > l(c) > l(d). 

For we can apply (I) to a < h < c and then to b < c < d. 



a c b 

FIGURE 9 

a c b 

FIGURE 10 

THEOREM 3 
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(3) Take any a < b in the interval, and suppose that l(a) < l(b). Then l is 
increasing: For if c and d are any two points, we can apply (2) to the collection 
{a, b, c, d} (after arranging them in increasing order). I 

Henceforth we shall be concerned almost exclusively with continuous increasing 
or decreasing functions which are defined on an interval. If l is such a function, 
it is possible to say quite precisely what the domain of 1-1 will be like. 

Suppose first that l is a continuous increasing function on the dosed interval 
[a, b J. Then, by the Intermediate Value Theorem, l takes on every value between 
l (a) and l (b). Therefore, the domain of 1- 1 is the closed interval [!(a), l (b)]. 
Similarly, if l is continuous and decreasing on [a, b], then the domain of 1-1 is 
[f (b), l (a)]. 

If l is a continuous increasing function on an open interval (a, b) the analysis 
becomes a bit more difficult. To begin with, let us choose some point c in (a, b ). 

\Ve will first decide which values> l (c) are taken on by l. One possibility is that 
l takes on arbitrarily large values (Figure 9). In this case l takes on all values 
> l (c), by the Intermediate Value Theorem. If, on the other hand, l does not 
take on arbitrarily large values, then A = { l (x) : c S x < b} is bounded above, 
so A has a least upper bound a (Figure 10). Now suppose y is any number with 
l(c) < y < a. Then l takes on some value l(x) > y (because a is the least 
upper bound of A). By the Intermediate Value Theorem, l actually takes on 
the value y. Notice that l cannot take on the value a itself; for if a = l (x) for 
a < x <band we choose t with x < t < b, then l(t) > a, which is impossible. 

Precisely the same arguments work for values less than l (c): either l takes on 
all \'alues less than l (c) or there is a number f3 < l (c) such that l takes on all 
values between f3 and l (c), but not f3 itsel( 

This entire argument can be repeated if l is decreasing, and if the domain of l 
is R or (a, oo) or (-oo, a). Summarizing: if l is a continuous increasing, or 
decreasing, function whose domain is an interval having one of the forms (a, b), 
(-oo, b ), (a, oo ), or R, then the domain of 1- 1 is also an interval which has one 
of these four forms, and we can easily fit the remaining types of intervals, (a, b], 
[a, b], (-oo, b], and [a, oo ), into this discussion also. 

Now that we have completed this preliminary analysis of continuous one-one 
functions, it is possible to begin asking which important properties of a one-one 
function are inherited by its inverse. For continuity there is no problem. 

If l is continuous and one-one on an interval, then 1- 1 is also continuous. 

We know by Theorem 2 that l is either increasing or decreasing. We might as 
well assume that l is increasing, since we can then take care of the other case by 
applying the usual trick of considering - l. \,Ve might as well assume our intef\'al 
is open, since it is easy to see that a continuous increasing or decreasing function 
on any interval can be extended to one on a larger open interval. 

\Ve must show that 
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J(a) + 8 

f (a)= b -- - - ------

J(a)-8 ----

a-£ a 

FIGURE II 

FJ< ;U RE 12 

for each b in the domain of 1- 1• Such a number b is of the form f (a) for some a 

in the domain of l. For any c > 0, we want to find a 8 > 0 such that, for all x, 

if l(a) - 8 < x < l (a)+ 8, then a - c < 1- 1 (x) <a+ c. 

Figure 11 suggests the way of finding 8 (remember that by looking sideways you 
see the graph of 1- 1 ): since 

a - c < a <a+ c, 

it follows that 

l (a - c) < l (a) < l (a+ c); 

we let 8 be the smal ler of l (a +c)- l (a) and l (a)- l (a - c). Figure 11 contains 
the entire proof that this 8 works, and what follows is simply a verbal account of 
the information contained in this picture. 

Our choice of 8 ensures that 

l (a - c) :::: l (a) - 8 and l (a)+ 8 :::: l (a+ c). 

Consequently, if 

l (a) - 8 < x < l (a)+ 8, 

then 

l(a - c) < x < l(a + c). 

Since l is increasing, 1- 1 is also increasing, and we obtain 

1.e., 

a - c < 1-\'C) <a+ c, 

which is precisely what we want. I 

Having successfully investigated continuity of 1- 1, it is only reasonable to tackle 
differentiability. Again, a picture indicates just what result ought to be true. Fig­
ure 12 shmvs the graph of a one-one function l with a tangent line L through 
(a. l(a)). If this entire picture is reflected through the diagonal, it shows the graph 
of 1- 1 and the tangent line L' through (!(a), a). The slope of L' is the reciprocal 
of the slope of L. In other words, it appears that 

- I , 1 
(! ) (j(a)) = f'(a). 

This formula can equally ,veil be written in a way which expresses (f- 1)'(b) di­
rectly, for each b in the domain of 1- 1: 

I 
u - 1)'(b) = ru- 1 (b)). 

Unlike the argument for continuity, this pictorial "proof" becomes somewhat 
imulvccl when formulated analytically. There is another approach which might 
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(a) 

(b) 
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be tried. Since we know that 

it is tempting to prove the desired formula by applying the Chain Rule: 

l'(f- 1(x)) · u - 1)'(x) = 1, 

so 
- J I l 

(! ) (x) = f'(J-1 (x)). 

Unfortunately, this is not a proof that 1- 1 is differentiable, since the Chain Rule 
cannot be applied unless 1- 1 is already known to be differentiable. But this argu­
ment does show what u-1 )' (x) will have to be if 1- 1 is differentiable, and it can 
also be used to obtain some important preliminary information. 

If l is a continuous one-one function defined on an interval and f' u-1 (a)) = 0, 
then 1- 1 is not diflercntiable at a. 

\\Te have 
l(J- 1(x)) = x. 

If 1- 1 were differentiable at a, the Chain Ruic would imply that 

l'(f-l(a)). u-l)'(a) = l, 

hence 
0 · u-1)'(a) = 1, 

which is absurd. I 

A simple example to which Theorem 4 applies is the function l (x) = x 3. Since 

f' (0) = 0 and O = 1- 1 (0), the function 1- 1 is not differentiable at O (Figure 13). 
Having decided where an inverse function cannot be differentiable, we are now 

ready for the rigorous proof that in all other cases the derivative is given by the 
formula which we have already ''derived" in two different ways. Notice that the 
following argument uses continuify of 1- 1

, which we have already proved. 

Let l be a continuous one-one function defined on an interval, and suppose that 
l is diflerentiable at 1- 1 (b ), with derivative f' u-1 (b)) =I- 0. Then 1- 1 is differ-
entiable at b, and 

Let b = l (a). Then 

1
. 1- I (b + h) - 1- I (b) 
nn --------

h--. 0 h 
. 1- 1(b+h) - a 

= Inn ------
h--.0 h 
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Now every number b + h in the domain of 1- 1 can be written in the form 

b+h = l(a+k) 

for a unique k (we hould really write k(h) , but we will stick with k for simplicity). 
Then 

lim 1- 1 
( b + h) - a 

h-'> 0 h 
= lim 1-1 (l (a+ k)) - a 

h-'>0 l (a+ k) - b 
. k 

=hm-----­
iHO l (a+ k) - l (a) 

We are clearly on the right track! It is not hard to get an explicit expression fork; 
smce 

b+h = l(a+k) 

we have 

or 

Now by Theorem 3, the function 1- 1 is continuous at b. This means that k 
approaches O a h approaches 0. Since 

this implies that 

lim l(a + k) - l(a) = l '(a) = l '(f- 1(b)) i= 0, 
k-'>0 k 

1 
u - 1)'Cb) = ru- 1Cb)) . I 

The work we have done on inv rse function will be amply repaid lat r, but h r 
an immediate dividend. For n odd, 1 t 

!,1 (x) = x 11 for all x; 

for n even, let 

x 2: 0. 

T h n f,1 i a c ntinuou on -on fun tion, who mv r fun ti n 1 
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By Theorem 5 we have, for x =J. 0, 

I 1 
gn (x) = fn'CJn - 1(x)) 

1 

n(x l fn)n-1 

1 1 
;;, . X 1-(1/ n) 

= ! . x<l / 11)-l _ 

n 

Thus, if f (x) = xa, and a is an integer or the reciprocal of a natural number, then 
f' (x) = axa- I _ It is now easy to check that this formula is true if a is any rational 
number: Let a= m/n , where mi an integer, and n is a natural number; if 

f (x) = xm fn = (xl fn)m, 

then, by the Chain Rule, 

J ' (x) = m(xl fnr - 1. ! . x(l fn)-1 
n 

= m . X[(m/ n)-( l / n)]+[(l / 11 )- l] 

n 

= m x <m fn)- 1_ 
n 

Although we now have a formula for f' (x) when f (x) = xa and a is rational, 
the treatment of the function f (x) = xa for irrational a will have to be saved 

for later- at the moment we do not even know the meaning of a symbol like x J2. 
Actually, inverse functions will be involved crucially in the d finition of xa for 
irrational a. Indeed, in the next few chapters several important functions will be 
defined in term of their inver e functions. 

PROBLEMS 

1. Find 1- 1 for each of the following f. 

(i) f(x) = x 3 + 1. 
(ii) f(x) = (x - 1)3 . 

(iii) f (x) = l x_,x' x rational 
x irrational. 

(iv) 1-x2 x~O 
f(x) = 3 

1-x, x < 0. 

r x =J. al ' . . . ' an 
(v) f(x) = ai+ l x =ai , i=l , ... ,n-l 

a1 , x = an . 

(vi) f(x) = x + [x]. 
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(vii) l (O.a1a2a3 ... ) = O.a2cqa3 .... (Decimal representation is being used.) 
x 

(viii) l (x) = 7 , - 1 < x < l. 
1 - x-

2. D escribe the graph of 1- 1 when 

(i) l is increasing and always positive. 
(ii) l is increasing and always negative. 
(iii) l is decreasing and always positive. 
(iv) l is decreasing and always negative. 

3. Prove that if l is increasing, then so is 1- 1, and similarly for decreasing 
functions. 

4. 

5. 

6. 

7. 

If land g arc increasing, is l + g? Or l · g? Or l o g? 

(a) Prove that if l and g are one-one, then l o g is also one-one. Find 
(J o g) - 1 in terms of 1- 1 and g- 1• Hint: The answer is not 1- 1 o g - 1. 

(b) Find g - 1 in terms of 1-1 if g(x) = 1 + l(x). 

ax +b 
Show that l (x) = is one-one if and only if ad - be =j:. 0, and find 

ex +d 
1- 1 in this case. 

On which intervals [a, b] will the following functions be one-one? 

(i) 
(ii) 
(iii) 

(iv) 

l(x) = x 3 - 3x2. 

l(x) = x 5 + X. 

l (x) = (1 + x 2) - 1. 

x+I 
l(x) = ? . 

x- + I 

8. Suppose that l is differentiable with derivative J'(x) = (1 + x 3) - 112. Shmv 
that g = 1- 1 satisfies g"(x) = ig(x) 2. 

9. Suppose that f is a one-one function and that 1- 1 has a derivative which is 
nowhere 0. Prove that l is differentiable. Hint: There is a one-step proo( 

10. As a follow up to Problem I 0- I 7 , what additional condition on g will insure 
that l is differentiable? 

11. Find a formula for (f - 1)''(x). 

*12. Prove that if f'(f - 1(x )) =j:. 0 and l(k)(f - 1(.r)) exists, then (J- 1)(k)(x) exists. 

13. The Schwarzian derivative <:], l was defined in Probkm I 0-19. 

(a) Pron· that if' c;J1 l (x) exists for all x, then c:ti 1- '(.r) also exists for all x in 
the domain of 1- 1

• 

(b) Find a formula for 9li l - 1(x). 
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*14. (a) Prove that there is a differentiable function I such that [f (x)] 5 + I (x) + 
x = 0 for all x. Hint: Show that I ean be expressed as an inverse 
function. The easiest way to do this is to find 1- 1• And the easiest way 
to do this is to set x = 1- 1 (y ). 

(b) Find f' in terms of I, using an appropriate theorem of this chapter. 
(e) Find f' in another way, by simply differentiating the equation defining I. 

The funetion in Problem 14 is often said to be defined implicitly by the 
equation y5+y+x = 0. The situation for this equation is quite speeial, however. As 
the next problem shows, an equation does not usually define a function implicitly 
on the whole line, and in some regions more than one function may be defined 
implicitly. 

15. (a) What are the two differentiable functions I which are defined implicitly 
on (-I, 1) by the equation x 2+ y 2 = 1, i.e., which satisfy x 2+ [! (x)] 2 = 1 
for all x in (-1, 1)? Notice that there are no solutions defined outside 
[-1, l]. 

(b) \Vhich functions I satisfy x 2 + [f (x)] 2 = -1? 
*(c) Which differentiable functions I satisfy [f (x)] 3 - 31 (x) = x? Hint: It 

will help to first draw the graph of the function g(x) = x 3 - 3x. 

In general, determining on what intervals a differentiable function is defined im­
plicitly by a partieular equation may be a delicate affair, and is best diseussed in the 
context of advanced caleulus. If we assume that I is such a differentiable solution, 
however, then a formula for f'(x) can be derived, exactly as in Problem 14(c), by 
differentiating both sides of the equation defining I (a proeess known as "implicit 
differentiation"): 

16. (a) Apply this method to the equation [f (x)]2 + x 2 = I. Notice that your 
answer will involve I (x); this is only to be expected, since there is more 
than one function defined implicitly by the equation y 2 + x 2 = 1. 

(b) But check that your answer works for both of the functions I found in 
Problem 15(a). 

(e) Apply this same method to [f(x)] 3 - 3l(x) = x. 

17. (a) Use implicit differentiation to find I' (x) and I" (x) for the functions I 
defined implicitly by the equation x 3 + y3 = 7. 

(b) One of these functions I satisfies I (-1) = 2. Find f' (-1) and I" (-1) 

for this I. 

18. The eolleetion of all points (x, y) sueh that 3.r 3 + 4x2 y - xy 2 + 2y3 = 4 
forms a eertain curve in the plane. Find the equation of the tangent line to 
this curve at the point (-], I). 

19. Leibnizian notation is particularly convenient for implicit differentiation. Be­
cause y is so consistently used as an abbreviation for l(x), the equation in x 
and y which defines I implicitly will automatically stand for the equation 



242 Derivatives and Integrals 

which I is supposed to satisfy. How would the following computation be 
written in our notation? 

y4 + y3 + xy = I, 

3 dy 2dy dy 
4v -+3y -+y+x-=0 

· dx dx dx ' 

dy -y 

dx 4y 3 + 3y2 + x · 

20. As long as Leibnizian notation has entered the picture, the Leibnizian no­
tation for derivatives of inverse functions should be mentioned. If dy /dx 
denotes the derivative of I, then the derivative of 1- 1 is denoted by dx /dy. 
\\Trite out Theorem 5 in this notation. The resulting equation will show you 
another reason why Leibnizian notation has such a large following. It will 
also explain at which point u-1 )' is to be calculated when using the dx / dy 
notation. \\That is the significance of the following computation? 

x = yll, 

y = xl f n, 

dx 1111 dy 

dx dx dx 

dy 

nyn- 1 · 

21. Suppose that I is a differentiable one-one function with a nowhere zero 
derivative and that I= F'. Let G(x) = xl- 1(x) - F(f - 1(x)). Prove that 
G' (x) = 1-1 (x). (Disregarding details, this problem tells us a very interesting 
fact: if we know a function whose derivative is I, then we also know one 
whose derivative is 1- 1. But how could anyone ever guess the function G? 
Two different ways are outlined in Problems 14-14 and 19-16.) 

22. Suppose h is a function such that h'(x) = sin2(sin(x + 1)) and /z(O) = 3. 
Find 

(i) (/z - 1)'(3). 

(ii) c13 - 1 )'(3), where fJ(x) = h(x + l). 

23. (a) Prove that an increasing and a decreasing function intersect at most once. 
(b) Find two continuous increasing functions I and g such that l(x) = g(x) 

precisely when x is an integer. 
(c) Find a continuous increasing function I and a continuous decreasing 

function g, defined on R, which do not intersect at all. 

*24. (a) If I is a continuous function on R and I = 1- 1, prove that there is at 
least one x such that I (x) = x. (\ Vhat does the condition I = 1- 1 mean 
geometrically?) 

(b) Give scnTal examples of continuous I such that I = 1- 1 and I (x) = x 

for exactly one x. Hint: Try decreasing I, and remember the geometric 
interpretation. One possibility is l(.r) = - x. 
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(c) Prove that if f is an increasing function such that f = 1- 1, then 
f (x) = x for all x. Hint: Although the geometric interpretation will 
be immediately convincing, the simplest proof (about 2 lines) is to rule 
out the possibilities f (x) < x and f (x) > x. 

*25. \\Thich functions have the property that the graph is still the graph of a func­
tion when reflected through the graph of -/ (the ''antidiagonal")? 

26. A function f is nondecreasing if f(x) .:::: f(y) whenever x < y. (To be 
more precise we should stipulate that the domain of f be an interval.) A 
nonincreasing function is defined similarly Caution: Some writers use 
"increasing" instead of "nondecreasing,'' and "strictly increasing'' for our 
,,. . ,, 

mcreasmg. 

(a) Prove that if f is nondecreasing, but not increasing, then f is constant 
on some interval. (Beware of unintentional puns: "not increasing" is not 
the same as ''nonincreasing. ") 

(b) Prove that if f is differentiable and nondecreasing, then J' (x) ~ 0 for 
all x. 

(c) Prove that if J' (x) ~ 0 for all x, then f is nondecreasing. 

*27. (a) Suppose that f (x) > 0 for all x, and that f is decreasing. Prove that 
there is a continuous decreasing function g such that O < g(x) .:::: f (x) for 
all x. 

(b) Show that we can even arrange that g will satisfy lim g (x) / f (x) = 0. 
X->00 
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FIGL'RE I 

FIG URE 2 

11 <:l R I. 3 

APPENDIX. PARAMETRIC REPRESENTATION OF CURVES 

The material in this chapter serves to emphasize something that we noticed a 
long time ago~ a perfectly nice looking curve need not be the graph of a function 
(Figure l ). In other words, ,ve may not be able to describe it as the set of all points 
(x, f (x)). Of course, we might be able to describe the curve as the set of all points 
(! (x), x); for example, the curve in Figure 1 is the set of all points (x 2, x). But 
even this trick doesn't work in most cases. It won't allow us to describe the circle, 
consisting of all points (x, y) with x 2 + y 2 = 1, or an ellipse, and it can't be used 
to describe a cu1Yc like the one in Figure 2. 

The simplest way of describing curves in the plane in general harks back to the 
physical conception of a curve as the path of a particle moving in the plane. At 
each time t, the particle is at a certain point, which has two coordinates; to indicate 
the dependence of these coordinates on the time t, we can call them u (t) and v (t). 

Thus, we end up with two functions. Conversely, given two functions u and v, we 
can consider the curve consisting of all points (u (t), v (t)). This curve is said to 
be represented parametn"rally by u and v, and the pair of functions u, v is called a 
parametric representation of the curve. The curve represented parametrically by 
u and v thus consists of all pairs (x,y) with x = u(t) and y = v(t). It is often 
described briefly as "the curve x = u(t), y = v(t).'' Notice that the graph of a 
function f can always be described parametrically, as the curve x = t, y = f (t). 

Instead of considering a curve in the plane as defined by two functions, we 
can obtain a conceptually simpler picture if we broaden our original definition of 
function somewhat. Instead of considering a rule which associates a number with 
another number, we can consider a "function c from real numbers to the plane," 
i.e., a rule c that associates, to each number t, a point in the jJ!ane, which we can 
denote by c(t). vVith this notion, a curve is just a function from some interval of 
real numbers to the plane. 

Of course, these two different descriptions of a curve are essentially the same: 
A pair of (ordinary) functions u and v determines a single function c from the real 
numbers to the plane by the rule 

c(t) = (u(t), v(t)), 

and, conversely, given a function c from the real numbers to the plane, each c(t) 

is a point in the plane, so it is a pair of numbers, which we can call u(t) and v(t), 

so that we have unique functions II and v satisfying this equation. 

In Appendi.x 1 to Chapter 4, we used the term ''vector" to describe a point in 
the plane. In conformity with this usage, a curve in the plane may also be called 
a "vector-valued function." The conventions of that Appendi.x would lead us to 
write c(t) = (c1 (t), c2(1)), but in this Appendix we'll continue to use notation like 
c(t) = (u(t), v(t)) to minimize the use of subscripts. 

A simple example of a \Tctor-valucd function that is quite useful is 

e(t) = (cost,sint), 

which goes round and round the unit circle (Figure 3). 
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For two (ordinary) functions f and g, we defined new functions f + g and f · g 

by the rules 

(I) 

(2) 

(f + g)(x) = j(x) + g(x). 

(f · g)(x) = f (x) · g(x). 

Since we have defined a way of adding vectors, we can imitate the first of these def­
initions for vector-valued functions c and d: we define the vector-valued function 
c+d by 

(c + d)(t) = c(t) + d(t). 

vvhere the + on the right-hand side is now tlze sum of vectors. This simply amounts 
to saying that if 

then 

c(t) = (11(t), v(t)), 

d(t) = (w(t), zU)), 

(c + d)(t) = (11(t), v(t)) + (w(t), z(t)) = (11(t) + w(t), v(t) + z(t)). 

Recall that we have also defined a · v for a number a and a vector v. To 
extend this to vector-valued functions, we want to consider an ordinary function a 
and a vector-valued function c, so that for each t we have a number a(t) and a 
vector c(t). Then we can define a new vector-valued function a · c by 

(a· c)(t) = a(t) · c(t), 

where the · on the right-hand side is the product of a number and a vector. This 
simply amounts to saying that 

(a· c)(t) = a(t) · (u(t), v(t)) = (a(t) · u(t), a(t) · v(t)). 

Notice that the curve a · e, 

(a· e)(t) = (a(t) cost, a(t) sin t), 

is already quite general (Figure 4). In the notation of Appendix 3 to Chapter 4, 
the point (a· e)(t) has polar coordinates a(t) and t , so that (a· e)(t) is the "graph 
of a in polar coordinates." 

Even more generally, given any vector-valued function c, we can define new 
functions r and e by 

c(t) = r(t) · e(B(t)), 

where r(t) is just the distance from the origin to c(t), and B(t) is some choice of 
the angle of c(t) (as usual, the function e isn't defined unambiguously, so one has 
to be careful when using this way of writing an arbitrary curYe c). 

\ Ve aren't in a position to extend (2) to vector-\·alued functions in general, since 
we haven't defined the product of two vectors. HoweYer, Problems 2 and 4 of 
Appendix I to Chapter 4 define two real-valued products v • w and det(u. w). It 
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should be clear, given vector-valued functions c and d, how we would define two 
ordinary (real-valued) functions 

c·d and det(c, d). 

Beyond imitating simple arithmetic operations on functions, we can consider 
more interesting problems, like limits. For c(t) = (u(t), v(t)), we can define 

lim c(t) = lim(u(t), v(t)) to be (lim u(t), lim v(t)). 
t-+a t -+ a t->a t->a 

Rules like 

lim c + d = lim c + lim d, 
( -'> (I (-'>(I ( -'> (I 

lim a · c = lim a (t) · lim c 
( -'> (I (-'>(I (---'>(/ 

follow immediately. Problem 10 shows how to give an equivalent definition that 
imitates the basic definition of limits directly. 

Limits lead us of course to derivatives. For 

c(t) = (u(t), v(t)) 

we can define c' by the straightforward definition 

c' (a) = ( u' (a), v' (a)) . 

We could also try to imitate the basic definition: 

, 
1
. c(a + /z) - c(a) 

c(a)= 1111 , 
h-+0 h 

where the fraction on the right-hand side is understood to mean 

1 
h · [c(a + lz) - c(a)]. 

As a matter of fact, these two definitions are equivalent, because 

1111 = h1n , ------1
. c(a+h)-c(a) . (u(a+lz)-u(a) v(a+h)-v(a)) 

1z - o lz 1z - o lz lz 

( 1
. u(a+lz)-u(a) 

1
. v(a+h)-u(a)) 

= nn , 11n ------
1z_,o lz 1z-o lz 

by our definition (*) of limits 

= (u'(a), v'(a)). 

Figure 5 shows c(a + h) and c(a), as well as the arrow from c(a) to c(a + lz); 
as we showed in Appendix I to Chapter 4, this arrow is c(a + lz) - c(a), except 
moved over so that it starts at c(a). As lz ---+ 0, this arrow would appear to move 
closer and closer to the tangent of our curve, so it seems reasonable to define the 
tangent line of cat c(a) to be the straight line along c'(a), when c' (a) is moved 
over so that it starts at c(a). In other words, we define the tangent line of cat c(a) 

as the set of all points 
c(a) +s ·c'(a); 
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for s = 0 we get the point c(a) itself, for s = 1 we get c(a) + c'(a), etc. (Note, 
however, that this definition does not make sense when c' (a) = (0, 0) .) Problem I 
shows that this definition agrees with the old one when our curve c is defined by 

c(t) = (t, j(t)), 

so that we simply have the graph of f. 
Once again, various old formulas have analogues. For example, 

(c + d)'(a) = c'(a) + d'(a), 

( a · c)' (a) = a' (a) · c (a) + a (a) · c' (a) , 

or, as equations involving functions, 

(c + d)' = c' + d', 

( a · c)' = a' · c + a · c'. 

These formulas can be derived immediately from the definition in terms of the 
component functions. They can also be derived from the definition as a limit, 
by imitating previous proofs; for the second, we would of course use the standard 
trick of writing 

a(a + lz)c(a + lz) - a(a)c(a) = 

a(a + h) · [ c(a + h) - c(a)] + [ a(a + h) - a(a)] · c(a). 

\
1\Te can also consider the function 

d(t) = c(p(t)) = (c o p)(t), 

where pis now an ordinary function, from numbers to numbers. The new curved 
passes through the same points as c, except at different times; thus p corresponds 
to a "reparameterization" of c. For 

we obtain 

or simply 

c=(u,v), 

d = (11 Op, V O p), 

d'(a) = ((11 o p)'(a) , (v o p)'(a)) 

= (p'(a)11 1(p(a)), p'(a)v'(p(a))) 

= p'(a) · (u '(p(a)), v'(p(a))) 

= p'(a) · c'(p(a)), 

d' = p' · (c' o p). 

Notice that if p(a) = a , so that d and c actually pass through the same point at 
time a , then d' (a) = p' (a) · c' (a), so that the tangent vector d' (a) is just a multiple 
of c'(a). This means that the tangent line to cat c(a) is the same as the tangent 
line to the reparameterized curve d at d(a) = c(a). The one exception occurs 
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when p ' (a) = 0, since the tangent line ford is then undefined, even though the 
tangent line for c may be defined. For example, d (1) = c(1 3) won't ha\·e a tangent 
line defined at 1 = 0, even though it's merely a reparameterization of c. 

Finally, since we can define real-valued functions 

(c • d)(l) = c(l) • d(1), 

dct(c, d)(t) = det(c(l), d(1)), 

we ought to have formulas for the derivatives of these new functions. As you might 
guess, the proper formulas arc 

(c · d)'(a) = c(a) • d'(a) + c'(a) • d(a), 

[dct(c, d)]'(a) = det(c', d)(a) + det(c, d')(a). 

These can be derived by straightforward calculations from the definitions in terms 
of the component functions. But it is more elegant to imitate the proof of the or­
dinary product rule, using the simple formulas in Problems 2 and 4 of AppcndLx 1 
to Chapter 4, and, of course, the "standard trick'' referred to above. 

PROBLEMS 

I. (a) For a function f, the ''point-slope form" (Problem 4-6) of the tangent 
line at (a, /(a)) can be written as y - f (a)= (x - a)f'(a), so that the 
tangent line consists of all points of the form 

(x, f(a) + (x - a)f'(a)). 

Conclude that the tangent line consists of all points of the form 

(a+ s, f(a) + sf'(a)). 

(b) If c is the curve c(l) = (t, f(t)), conclude that the tangent line of cat 
(a, f (a)) [ using our new definition] is the same as the tangent line of f 
at (a, f (a)). 

2. Let c(I) = (! (t), 12) , where f is the function shown in Figure 21 of Chap­
ter 9. Show that c lies along the graph of the non-differentiable function 
It (x) = Ix I, but that c' (0) = (0, 0). In other ,vords, a rcparameterization can 
"hide'' a corner. For this reason, \NC arc usually only interested in CLtr\'CS c 

with c' never equal to (0, 0). 

3. Suppose that x = u(l) , y = v(l) is a parametric representation of a CLff\'e, 
and that u is one-one 011 some inte1Yal. 

(a) Show that 0 11 this interval the curve lies along the graph of f = v o u - 1
. 

(b) If u is diflerentiablc on this interval and u' (I) -=I- 0, show that at the point 
x = u (1) we have 

f'(x) = v'(I). 
u '(I) 
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In Leibnizian notation this is often written suggestively as 

dy 

dy dt 
-
dx dx 

-
dt 

(c) We also have 

,, u'(t)v"(t) - v'(t)u"(t) 
f (x) = (u'(t))3 

4. Consider a function f defined implicitly by the equation x 213 + y 213 1. 
Compute J' (x) in two ways: 

(i) By implicit differentiation. 

(ii) By considering the parametric representation x = cos3 t, y = sin3 t. 

5. Let x = u(t), y = v(t) be the parametric representation of a curve, with 
u and v differentiable, and let P = (xo, yo) be a point in the plane. Prove 
that if the point Q = (u(t), v(t)) on the curve is closest to (xo. yo), and u'(t) 

and v' (t) are not both 0, then the line from P to Q is perpendicular to the 
tangent line of the curve at Q (Figure 6). The same result holds if Q is 
furthest from (xo, Yo). 

vVe've seen that the "graph of f in polar coordinates" is the curve 

(! · e)(t) = (f(t) cost, f(t) sin t); 

in other words, the graph of f in polar coordinates is the curve with the para­
metric representation 

x = J(e) cose, y = f ( e) sin e. 

6. (a) Show that for the graph of f in polar coordinates the slope of the tangent 
line at the point with polar coordinates (f (e), e) is 

f (e) cos e + !' (e) sine 

- f (e) sine+ j'(e) cos e 

(b) Show that if f ( e) = 0 and f is differentiable at e, then the line through 
the origin making an angle of e with the positive horizontal axis is a 
tangent line of the graph of f in polar coordinates. Use this result to 
add some details to the graph of the Archimedean spiral in Appendix 3 
of Chapter 4, and to the graphs in Problems 3 and IO of that Appendix 
as well. 

(c) Suppose that the point with polar coordinates (f (e). e) is further from 
the origin O than any other point on the graph of f. \ \'hat can you 
say about the tangent line to the graph at this point? Compare with 
Problem 5. 
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FIGURE? 

(d) Suppose that the tangent line to the graph of f at the point with po­
lar coordinates (f (8), 8) makes an angle of a with the horizontal axis 
(Figure 7), so that a - 8 is the angle between the tangent line and the 
ray from O to the point. Show that 

/(8) 
tan(a - 8) = !'(

8
)" 

7. (a) In Problem 8 of Appendi.x 3 to Chapter 4 we found that the cardioid 
r = I - sin 8 is also described by the equation (.r 2 + y 2 + y )2 = x 2 + y2. 
Find the slope of the tangent line at a point on the cardioid in two ways: 

(i) By implicit differentiation. 
(ii) By using the previous problem. 

(b) Check that at the origin the tangent lines are vertical, as they appear to 
be in Figure 8. 

FIGURE 8 

The next problem uses the material from Chapter 15, in particular, radian 
measure, and the inverse trigonometric functions and their properties. 

8. A cycloid is defined as the path traced out by a point on the rim of a rolling 
wheel of radius a. You can see a beautiful cycloid by pasting a reflector on 
the edge of a bicycle wheel and having a friend ride slowly in front of the 
headlights of your car at night. Lacking a car, bicycle, or trusting friend, you 
can settle instead for Figure 9. 

FICllRE 9 
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(a) Let u(t) and v(t) be the coordinates of the point on the rim after the 
wheel has rotated through an angle of t (radians). This means that the 
arc of the wheel rim from P to Q in Figure 10 has length at. Since the 
wheel is rolling, at is also the distance from O to Q. Show that we ha\'e 
the parametric representation of the cycloid 

H(t) = a(t - sin t) 
v(t) = a(l - cost). 

Figure 11 shows the curves we obtain if the distance from the point to the 
center of the wheel is (a) less than the radius or (b) greater than the radius. 
In the latter case, the curve is not the graph of a function; at certain times 
the point is moving backwards, even though the wheel is mo\'ing forwards! 

(a) 

(b) 
FIGURE!! 

In Figure 9 we drew the cycloid as the graph of a function, but we really 
need to check that this is the case: 

(b) Compute u'(t) and conclude that u is increasing. Problem 3 then shows 
that the cycloid is the graph of f = v o u- 1, and allows us to compute 
J'(t). 

(c) Show that the tangent lines of the cycloid at the "\·ertices" are \·ertical. 

It isn't possible to get an explicit formula for f, but we can come close. 

( d) Show that 

a - v(t) -----
u(t) =a arccos ± Jr2a - v(t)lv(t). 

a 

Hint: first soh-e fort in terms of v(t). 
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(e) The first half of the first arch of the cycloid is the graph of g- 1, where 

a-y 
g(y) = a arccos -- - J(2a - y)y. 

a 

9. Let u and v be continuous on [a, b] and differentiable on (a, b); then u 

and v give a parametric representation of a curve from P = (u (a), v (a)) 

to Q = (u(b), v(b)). Geometrically, it seems clear (Figure 12) that at some 
point on the curve the tangent line is parallel to the line segment from P 
to Q. Prove this analytically. Hint: This problem will give a geometric 
interpretation for one of the theorems in Chapter 11. You will also need to 
assume that we don't have u'(x) = v'(x) = 0 for any x in (a, b) (compare 
Problem 2). 

10. The following definition of a limit for a vector-valued function is the direct 
analogue of the definition for ordinary functions: 

lim c(t) = I means that for every s > 0 there is some 8 > 0 such that, for 
t -+ a 

all t , if O < It - al < 8, then llc(t) - /II < s. 

Here II II is the norm, defined in Problem 2 of Appendix 1 to Chapter 4. If 
I= (/1, /2), then 

llc(t) - If= lu(t) - /11 2 + lv(t) - /21 2. 

(a) Conclude that 

lu(t) - /1 I .::s lldt) - Ill and lv(t) - /21 .::S llc(t) - /II, 

and show that if lim c(t) = I according to the above definition, then we 
t -+ a 

also have 

lim u(t) = /1 and lim v(t) = 12, 
(-+ll t -+ a 

so that lim c(t) = I according to our definition (*) in terms of component 
t -+ a 

functions, on page 246. 
(b) Conversely, show that if lim c(t) = I according to the definition in terms 

t -+ a 

of component functions, then also lim c(t) = I according to the above 
( -+ ll 

definition. 
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13 INTEGRALS 

The derivative does not display its full strength until allied with the "integral,'' the 
second main concept of Part III. At first this topic may seem to be a complete 
digression- in this chapter derivatives do not appear even once! The study of 
integrals does require a long preparation, but once this preliminary work has been 
completed, integrals will be an invaluable tool for creating new functions, and the 
derivative will reappear in Chapter 14, more powerful than ever. 

Although ultimately to be defined in a quite complicated way, the integral for­
malizes a simple, intuitive concept that of area. By now it should come as 
no surprise to learn that the definition of an intuitive concept can present great 
difficulties- "area'' is certainly no exception. 

In elementary geometry, formulas are derived for the areas of many plane fig­
ures, but a little reflection shows that an acceptable definition of area is seldom 
given. The area of a region is sometimes defined as the number of squares, with 
sides oflength I , which fit in the region. But this definition is hopelessly inadequate 
for any but the simplest regions. For example, a circle of radius 1 supposedly has 
as area the irrational number Jr, but it is not at all clear what ''n squares" means. 
Even if we consider a circle of radius l / J;i, which supposedly has area l, it is hard 
to say in what way a unit square fits in this ci rcle, since it does not seem possible 
to divide the unit square into pieces which can be arranged to form a circle. 

In this chapter we will only try to define the area of some very special regions 
(Figure 1 )-those which are bounded by the horizontal axis, the vertical lines 
through (a, 0) and (b, 0), and the graph of a function f such that f (x) ::: 0 
for all x in [a, b]. It is convenient to indicate this region by R(f, a, b). Notice that 
these regions include rectangles and triangles, as well as many other important 
geometric figures. 

The number which we will eventually assign as the area of R (f, a, b) ,vill be 
called the integral of f on [a, b]. Actually, the integral will be defined even for 
functions f which do not satisfy the condition f (x) ::: 0 for all x in [a. b 1- If f is 
the function graphed in Figure 2, the integral will represent the difference of the 
area of the lightly shaded region and the area of the heavily shaded region (the 
"algebraic area" of R(f. a, b) ). 

The idea behind the prospectiw definition is indicated in Figure 3. The interval 
[a, b J has been divided into four subintervals 

by means of numbers to, t1, t2, t3, t4 with 

a = to < t1 < t2 < t3 < t4 = b 

(the numbering of the subscripts begins with O so that the largest subscript \\'ill 
equal the number of subintervals). 

253 
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DEFINITION 

DEFINITION 

On the first interval [to , ti] the function f has the minimum value 1111 and the 
maximum value Mi ; similarly, on the ith interval [t; - i, t;] let the minimum value 
of f be Ill; and let the maximum value be M;. The sum 

represents the total area of rectangles lying inside the region R (!, a, b), while the 
sum 

represents the total area of rectangles containing the region R (!, a, b). The guid­
ing principle of our attempt to define the area A of R(j, a, b) is the observation 
that A should satisfy 

s ::: A and A ::: S, 

and that this should be true, no matter how the interval [a. b] is subdivided. It is to be 
hoped that these requirements will determine A. The following definitions begin 
to formalize , and eliminate some of the implicit assumptions in, this discussion. 

Let a < b. A partition of the interval [a , b] is a finite collection of points in 
[a. b] , one of which is a, and one of which is b. 

The points in a partition can be numbered to , ... , t11 so that 

Q = to < ti < • • • < t11 - l < tn = b; 

we shall always assume that such a numbering has been assigned. 

Suppose f is bounded on [a, b J and P = {to , .. . , t11 } is a partition of [a, b]. Let 

111; = inf {f(x): t;- l ::: x ::: t;} , 

M; = sup{f (x) : t;- l ::: x ::: t; }. 

The lower sum off for P, denoted by L(j, P) , is defin ed as 

II 

L(j, P) = Lm;(t; - t;- i). 

i= l 

T he upper sum of f for P , denoted by U (!, P) , is defined as 

II 

U (j, P ) = L M;(t; - t; _ i). 
i= l 

The lmver and upper sums correspond to the sums s and S in the previous 
example; they are supposed to represent the total areas of rectangles lying below 
and abovc the graph off. Notice, hmvc\"e1; that despite the geometric moti,·ation, 
these sums have been defined precisely without any appeal to a concept of "area.'' 



FIGURE4 

FIGURES 

LEMMA 

PROOF 

13. Integrals 255 

Two details of the definition deserve comment. The requirement that f be 
bounded on [a, b] is essential in order that all the mi and Mi be defined. Note, 
also, that it was necessary to define the numbers mi and Mi as inf's and sup's, 
rather than as minima and maxima, since f was not assumed continuous. 

One thing is clear about lower and upper sums: If P is any partition, then 

because 

and for each i we have 

L(f, P) ::: U (!, P), 

11 

L(f, P) = L llli(ti - /i _ i), 

i=I 
11 

U(f, P) = L Mi(!i - /i - J), 

i=l 

On the other hand, something less obvious ought to be true: If P1 and P2 are 
a,91 two partitions of [a, b], then it should be the case that 

because L (!, Pi) should be ::: area R (!, a, b), and U (!, P2) should be ~ area 
R (!, a, b). This remark proves nothing (since the "area of R (!, a, b)" has not even 
been defined yet), but it does indicate that if there is to be any hope of defining the 
area of R(f, a, b) , a proof that L(f, Pi)::: U(f, P2) should come first. The proof 
,vhich we are about to give depends upon a lemma which concerns the behavior of 
lower and upper sums when more points are included in a partition. In Figure 4 
the partition P contains the points in black, and Q contains both the points in 
black and the points in grey. The picture indicates that the rectangles drawn for 
the partition Q are a better approximation to the region R (!, a, b) than those for 
the original partition P. To be precise: 

If Q contains P (i.e., if all points of P are also in Q), then 

L(f, P) ::: L(f, Q), 

U(f, P) ~ U(f, Q). 

Consider first the special case (Figure 5) in which Q contains just one more point 
than P: 

P = {to, ... , 111}, 

Q ={to, ... , rk - I, 11, tk, ... , 111}, 

where 

a= to < t1 < · · · < tk - I < 11 < lk < · · · < 111 = b. 
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THEOREM 1 

Let 

Then 
II 

111
1 = inf{f(x): tk - l S x S 11} , 

m" = inf {f (x): 11 S x S tk}. 

L(f, P) = L /Iii (ti - ti - I), 

i=l 

k- J II 

L(f, Q) = L llli(ti - ( _ 1) + 111'(11 - tk - l) + 11i''(tk - 11) + L 11li(ti - ti - J). 

i=l i=k+I 

To prove that L(j, P) S L(j, Q) it therefore suffices to show that 

Now the set {f (x) : tk - 1 S x S td contains all the numbers in {f (x) : tk - 1 S 
x S 11}, and possibly some smaller ones, so the greatest lower bound of the first set 
is less than or equal to the greatest lower bound of the second; thus 

Simiiarly, 

Therefore, 

This proves, in this special case, that L(f, P) S L(j, Q). The proof that U (!, P) ~ 

U (j, Q) is similar, and is left to you as an easy, but valuable, exercise. 

The general case can now be deduced quite easily. The partition Q can be 
obtained from P by adding one point at a time; in other words, there is a sequence 
of partitions 

such that P1+ 1 contains just one more point than P1. Then 

L(f, P) = L(j, Pi) S L(f, P2) S · · · S L(f, Pa)= L(f, Q). 

and 

U(f, P) = U(j, Pi) ~ U(j, P2) ~ · · · ~ U(f, Pa)= U(j. Q). I 

The theorem we wish to prove is a simple consequence of this lemma. 

Let P1 and P2 be partitions of [a, b], and let f be a function which is bounded 
on [a, b]. Then 
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f (x) = c 

a= to t1 t2 ln - 1 ln = b 
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There is a partition P which contains both P1 and P2 (let P consist of all points 
in both Pi and P2). According to the lemma, 

L(f, Pi)~ L(f, P):::: U(f, P) ~ U(f, P2). I 

It follows from Theorem 1 that any upper sum U (f. P') is an upper bound for 
the set of all lower sums L(f, P). Consequently, any upper sum U (!, P') is greater 
than or equal to the least upper bound of all lower sums: 

sup{L(f, P): Pa partition of [a, b]} :::: U(f, P'), 

for every P'. This, in turn, means that sup{ L (j. P)} is a lower bound for the set 
of all upper sums of f. Consequently, 

sup{L(f, P)}:::: inf{U(f, P)}. 

It is dear that both of these numbers are between the lower sum and upper sum 
of f for all partitions: 

for all partitions P'. 

L(f, P') :::: sup{L(f, P)} :::: U (!, P'), 
L(f, P'):::: inf {U(f, P)} :::: U(f. P'), 

It may well happen that 

sup{L(f, P) } = inf{U(f, P}; 

in this case, this is the on(y number between the lower sum and upper sum of f 
for all partitions, and this number is consequently an ideal candidate for the area 
of R(f, a. b ). On the other hand, if 

sup{ L (!, P)} < inf { U (!, P)}, 

then every number x between sup{L(f, P)} and inf{U(f, P)} will satisfy 

L(f, P') :::: x:::: U(f, P') 

for all partitions P'. 

It is not at all clear just when such an embarrassment of riches will occw: The 
following two examples, although not as interesting as many ,vhich will soon ap­
pear, show that both phenomena are possible. 

Suppose first that f(x) = c for all x in [a, b] (Figure 6). If P ={to, ... , t11 } is 
any partition of [a, b], then 

so 
11 

L(f, P) = L c(t; - t;_i) = c(b - a). 
i=l 

II 

U(f, P) = Lc(t; - t; _ i) = c(b - a). 

i = I 
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FIGURE 7 

DEFINITION 

In this case, all lower sums and upper sums are equal, and 

sup{L(f, P)} = inf {U(f, P)} = c(b - a). 

Now consider (Figure 7) the function f defined by 

f(x) = I o. 
1, 

x irrational 
x rational. 

If P = {to, ... , tn} is any partition, then 

and 

Therefore, 

m; = 0, since there is an irrational number in [t; _ J, t;], 

M; = 1, since there is a rational number in [t; - J, t;]. 

fl 

L(f, P) =Lo. (t; - t; - 1) = o. 
i=I 

II 

U (!, P) = L 1 · (t; - f; _ i) = b - a. 
i=I 

Thus, in this case it is certainly not true that sup{L(f, P)} = inf {U(f, P)}. The 
principle upon which the definition of area was to be based provides insufficient 
information to determine a specific area for R(f, a, b )~ any number between O 
and b - a seems equally good. On the other hand, the region R(f, a, b) is so 
weird that we might with justice refuse to assign it any area at all. In fact, we can 
maintain, more generally, that whenever 

sup{L(f, P)} =f. inf {U(f, P)}, 

the region R (f, a, b) is too unreasonable to deserve having an area. As our ap­
peal to the word ''unreasonable" suggests, we are about to cloak our ignorance in 
terminology. 

A function f which is bounded on [a, b J is integrable on [a, b J if 

sup{L(f, P): Pa partition of [a, b]} = inf{U(f, P): Pa partition of [a, b]}. 

In this case, this common number is called the integral of f on [a, bl and is 
denoted by 

(The symbol f is called an intfgral sign and was originally an elongated s, for 
"sum;" the numbns a and h arc called the lou•a and ujJ/Jfr limits ef intfgration. ) 

The integral t f is also called the area of R (!, a, b) when f (x) :::: 0 for all x 

in [a, hj. 
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If f is integrable, then according to this definition, 

l
b 

L(f, P)::::: f::::: U(f, P) for all partitions P of [a, b]. 
a 

Moreover, J: f is the unique number with this property. 
This definition merely pinpoints, and does not solve, the problem discussed 

before: we do not know which functions are integrable (nor do we know how to 
find the integral of f on [a, b] when f is integrable). At present we know only 
two examples: 

(I) if /(x) = c, then f is integrable on [a, bl and lb f = c · (b - a). 

(Notice that this integral assigns the expected area to a rectangle.) 

(2) if f (x) = { ~· 
x irrational 
x rational, 

then f is not integrable on [a, b]. 

Several more examples will be given before discussing these problems further. 
Even for these examples, however, it helps to have the following simple criterion 
for integrability stated explicitly. 

If f is bounded on [a, b], then f is integrable on [a, b] if and only if for every 
£ > 0 there is a partition P of [a , b] such that 

U(f, P) - L(f, P) < £. 

Suppose first that for every £ > 0 there is a partition P with 

Since 

it follows that 

U(f. P) - L(f, P) < £. 

inf { u (!, PI)} :'.:: U (!, P) , 
sup{L(f, P')} ::: L(f, P), 

inf{U(f, P')} - sup{L(f, P')} < £. 

Since this is true for all £ > 0, it follows that 

sup{L(f, P')} = inf{U(f, P')}; 

by definition, then, f is integrable. The proof of the converse assertion is similar: 
If f is integrable, then 

sup{L(f, P)} = inf{U(f, P)}. 

This means that for each £ > 0 there arc partitions P', P" with 

U (!, P") - L(f. P' ) < £. 
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2 

F I GU R ES 

Let P be a partition which contains both P' and P". Then, according to the 
lemma, 

U(f, P) :::: U(f, P"), 

L(f, P) :::: L(f, P'): 

consequently, 

U(f, P) - L(f, P):::: U(f, P") - L(f, P') < c. I 

Although the mechanics of the proof take up a little space, it should be dear 
that Theorem 2 amounts to nothing more than a restatement of the definition 
of integrability. Nevertheless, it is a very convenient restatement because there is 
no mention of sup's and inf's, which are often difficult to work with. The next 
example illustrates this point, and also serves as a good introduction to the ty1)e 
of reasoning which the complicated definition of the integral necessitates, even in 
very simple situations. 

Let f be defined on [O, 2] by 

j(x) = l 0, 
l, 

x f. 1 
x = 1. 

Suppose P = {to, ... , 111 } is a partition of l 0, 2] with 

lj - 1 < 1 < lj 

(see Figure 8). Then 
111 i = Mi = 0 if i f. j, 

but 
lllj = 0 and 

Since 

j - J II 

L(f, P) = Lllli(li - ti - I)+ lllj(tj - lj - 1) + L llli(ti - Ii - I), 

i = I i = j+I 

j - J II 

U(f, P) = L Mi(ti - ti - I)+ Mj(tj - tj - 1) + L MJti - ti - I), 

i = I i = j+l 

,ve have 
U(f, P) - L(f, P) = lj - tj - 1· 

This certainly shows that f is integrable: to obtain a partition P with 

U(f, P) - L(f, P) < c, 

it is only necessary to choose a partition with 

lj - 1 < l < lj and lj - l j - 1 < c. 

1\ lorcovcr, it is dear that 

L(f, P) :::: 0 :::: U (!, P) for all partitions P. 
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Since f is integrable, there is only one number between all lower and upper sums, 
namely, the integral of f , so 

f f=O. 

Although the discontinuity of f was responsible for the difficulties in this exam­
ple, even worse problems arise for very simple continuous functions. For example, 
let f (x) = x, and for simplicity consider an interval [O , b] , where b > 0. If 
P = {to , . . . , tn} is a partition of [O, b] , then (Figure 9) 

and 

and therefore 
n 

L(f, P ) = L:>i-1 (ti - ti _ i) 

i=l 

n 

U(f, P ) = I>(t; - t; - 1) 
i=l 

= t1 (t1 - to)+ t2(t2 - t1) + · · · + tn Ctn - tn-I), 

Neither of these formulas is particularly appealing, but both simplify considerably 
for partitions Pn = {to , . .. , tn} into n equal subintervals. In this case, the length 
t; - ti - I of ach subinterval is b/n, so 

in general 

Then 

to= 0, 
b 

ti=- , 
n 
2b 

t2 = - , etc; 
n 

ib 
ti=- . 

n 

n 

L(f, Pn ) = I>i-1 (ti - t;- 1) 
i= l 

[ 

n J b2 
= I:u - 1) n 2 

1= 1 

_ (n-1 ·) b2 - I:1 2· n 
j=O 
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b 

FIC R C 10 

Remembering the formula 

thi can b written 

Similarly, 

l + ... + k = k(k + 1) 
2 ' 

(n - l)(n) b2 

L (!, Pn) = 2 . n 2 

n - 1 b2 
--·-

n 2 

n 

i=l 

n ib b 
=I:-·-n n 

i=l 

n(n + 1) b2 

2 . n 2 

n + 1 b2 

--·-
n 2 

If n is very large, both L(f, Pn) and U (!, Pn) are close to b2 /2, and this remark 
makes it easy to show that f is integrable. Notice first that 

2 b2 

U(f, Pn) - L(f, Pn) =-;;. 2· 

This shows that there are partitions P11 with U (!, Pn) - L (!, Pn) a mall as desired. 

By Theorem 2 the function f is integrable. Moreover, f i f may now be found 
with only a little work. It is clear, first of all, that 

b2 
L(f, Pn) :s 2 :s u (!, Pn) for all n. 

Thi inequality shows only that b2 /2 lies between certain pecial upper and lower 
sums, but we have just seen that U(f, P11) - L(f, Pn) can be mad a mall a 
desir d, so ther i only one number with this prop rty. Sine th integral certainly 
ha thi property, w can conclude that 

lo
b b2 
J--0 - 2. 

Noti that thi quation a ign ar a b2 /2 t a right triangl with ba and alti­
tud b (Figur 10). U in -m r involv d al ulation or app aling to Th or m 4 
it an b hown that 

rb f = b2 - a2. 
} 0 2 2 
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The function f (x) = x2 presents even greater difficulties. In this case (Fig­
ure 11), if P ={to , ... , t11 } is a partition of [O , b] then 

m; = f (t; - 1) = (t; - 1)2 and Mi = f(t; ) = t/. 
Choosing, once again, a partition Pn = {to , .. . , tn} into n equal parts, so that 

i . b 
ti =­

n 
the lower and upper sums become 

n 

i= l 

n b2 b 
= ~(i - 1)2-. -
~ n 2 n 
i=l 

3 n- 1 

=\·I:J2, n 
)=0 

17 

i= l 

Recalling the formula 

12 + .. · + k2 = ik (k + 1) (2k + 1) 

from Problem 2-1 , these sums can be written a 

b3 1 
L(f, P,i) = n

3 
· 6(n - l) (n)(2n - 1) , 

b3 l 
U(f, Pn) = n 3 · 6(n + l )(n)(2n + 1). 

It is not too hard to show that 

b3 
L(f, Pn ):::: 3 :::: U(f, Pn), 

and that U (!, P11 ) - L (!, P11 ) can be made a small a desired, b choo ing n 
sufficiently large. T he ame sort of reasoning a before then show that 

rb - b3 
lo f - 3 · 

T his calculation alr ady repres nt a nontrivial re ult- th ar a of th r gion 
bounded by a parabola is not u ually derived in lem ntar geometry. N , r-
th 1 ss, the result wa known to Ar himede , who deriv d it in entially th am 
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way. The only superiority we can claim is that in the next chapter we will discover 
a much simpler way to arrive at this result. 

Some of our investigations can be summarized as follows: 

l b f = c · (b - a) 
a 

l b f = b2 _ (l2 

a 2 2 

l b f = b3 - a3 

a 3 3 

if f (x) = c for all x, 

if f (x) = x for all x, 

if ? 
f(x) = x- for all x. 

This list already reveals that the notation J: f suffers from the lack ofa convenient 
notation for naming functions defined by formulas. For this reason an alternative 
notation,* analogous to the notation lim f (x), is also useful: 

X-->a 

lb f (x) d x means precisely the same as lb J. 

Thus 

l hcdx=c·(b-a), 
(I 

l
b b2 a2 
xdx= 2 - 2 , 

(/ 

l b x2 dx = b3 - a3. 
a 3 3 

Notice that, as in the notation lim f (x), the symbol x can be replaced by any 
X-->(I 

other letter (except f, a, orb, of course): 

lb f(x)dx = lb f(t)dt = lb f(a)da = lb f(y)dy = lb f(c)dc. 
a a a a a 

The symbol dx has no meaning in isolation, any more than the symbol x ---+ 

has any meaning, except in the context lim f (x). In the equation 
.'(---->(/ 

* The notation ft~ f(x) dx is actually the older, and was for many years the only, symbol for the 
integral. Leibniz used this symbol because he considered the integral tu be the sum (denoted hy f) 
of infinitely many rectangles with height f (x) and " infinitely small" width dx . Later writers used 
xo . ... , x11 to denote the points of a partition, and abbreviated Xi - Xi - I by /:)...r;. The integral was 

II 

defined as the limit as /:)..x; approaches O of the sums L f(x;) /:)..x; (analogous to lower and upper 
i = I 

s11ms). The fact that the limit is obtained by changing L to f, f (x;) to f (x), and /:)..x; to dx, delights 

many people. 



13. Integrals 265 

the entire symbol x 2 dx may be regarded as an abbreviation for: 

the function f such that f (x) = x 2 for all x. 

This notation for the integral is as flexible as the notation lim f (x ). Several ex-
x->a 

amples may aid in the interpretation of various types of formulas which frequently 
appear; we have made use of Theorems 5 and 6.* 

(1) 1\x + y)dx = [b xdx + lb ydx = b
2 

- a
2

2 
+ y(b-a). 

a la a 2 

(2) 1x 1'" 1x x2 a2 
a (y + t) dy = (l .v dy + a r dy = 2 - 2 + t(x - a). 

(3) [' (1'(1 +t)dz) dx = ['(I +t)(x -a)dx 

=(I+ t) 1\x -a)dx 

=(l+I)[~ -
0;-a(b-a)J 

(4) { ([<x + y) dy) dx = { [x(d- c)+ d; <J dx 

( :

2 

- c;) (b - a)+ (d - c) { x dx 

(d; _ c;)(l,-a)+(d-c)(~2 _a;) 

The computations of;;: x dx and J: x 2 dx may suggest that evaluating integrals 
is generally difficult or impossible. As a matter of fact, the integrals of most func­
tions are impossible to determine exactly (a ltlzouglz they ma)' be computed to arry degree 
ef accurac_y desired by calculating lower and upper sums). Nevertheless, as we shall see in 
the next chapter, the integral of many functions can be computed very easily. 

Even though most integrals cannot be computed exactly, it is important at least 
to know when a function f is integrable on [a, b J. Although it is possible to say 
precisely which functions arc integrable, the criterion for integrability is a little too 
difficult to be stated here, and we will have to settle for partial results. The next 
Theorem gives the most useful result, but the proof given here uses material from 
the Appendix to Chapter 8. If you prefer, you can wait until the end of the next 
chapter, when a totally different proof will be given. 

* Lest chaos ovcrtake the reader ,vhen consulting other books, equation (1) requires an important 

qualification. This equation interprets fc7 y dx to mean the integral of the function f such that each 

value f(x) is the number y. But classical notation often uses y for y(x), so Jct y dx might mean the 
integral of some arbitraryfzmction y. 



266 Derivatives and Integrals 
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PROOF 

If f is continuous on [a, b], then f is integrable on [a, b]. 

Notice, first, that f is bounded on la, b], because it is continuous on ra, b]. To 
prove that f is integrable on [a, b J, we want to use Theorem 2, and show that for 
every E > 0 there is a partition P of [a, b] such that 

U(f, P) - l(f. P) < t:. 

Now we know, by Theorem I of the Appendi.x to Chapter 8, that f is uniformly 
continuous on [a, b]. So there is some 8 > 0 such that for all x and y in [a, b], 

if Ix - yl < 8, then If (x) - f (y)I < 
2

(/J ~ a) 

The trick is simply to choose a partition P = {to, ... , t 11 } such that each lti -ti - I I < 

8. Then for each i we have 
E 

If (x) - f (y)I < ,.., 
L.(b - a) 

and it follows easily that 

E E 
Mi -11,i ~ < --. 

2(b-a) b-a 

Since this is true for all i, we then have 

which is what we wanted. I 

11 

i=I 
II 

< _E_ Lti - ti - I 
b-a 

i=I 
E 

=--·b-a 
b-a 

=E, 

Although this theorem will provide all the information necessary for the use of 
integrals in this book, it is more satisfying to ha\T a somewhat larger supply of 
integrable functions. Several problems treat this question in detail. It will help to 
know the following three theorems, which show that f is integrable on [a. b]. if it 
is integrable on [a. c 1 and [ c, b]; that f + g is integrable if f and g arc; and that 
c · f is integrable if f is integrable and c is any number. 

As a simple application of these theorems, recall that if f is O except at one 
point, where its value is I, then f is integrable. l\ f ultiplying this function by c, it 
follows that the same is true if the value of f at the exceptional point is c. Adding 
such a function to an integrable function, we sec that the value of an integrable 
function may be changed arbitrarily at one point without destroying integrability 
By breaking up thc> interval into many s11bintcrvals, \\T see that the value can be 
changed at finitely many points. 

Th<' proof-; of thcsc> theorems usually use the alternative criterion for integrability 
in Theorem 2; as some of our previous demonstrations illustrate, the details of tl1c 
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argument often conspire to obscure the point of the proof It is a good idea to 
attempt proofs of your own, consulting those given here as a last resort, or as a 
check. This will probably clarify the proofs, and will certainly give good practice 
in the techniques used in some of the problems. 

Let a < c < b. If f is integrable on [a, b], then f is integrable on [a, c J and on 
[ c, b]. Conversely~ if f is integrable on [a. c J and on [ c, b J, then f is integrable 
on [a, b]. Finall)~ if f is integrable on [a, b], then 

lb le fh != J+ f. 
a a e 

Suppose f is integrable on [a, b J. If£ > 0, there is a partition P = {to, ... , t11 } of 
[a, b] such that 

U(f, P) - L(f, P) < £. 

\Ve might as well assume that c = t1 for some j. (Otherwise, let Q be the partition 
which contains to, ... , t11 and c; then Q contains P, so U (f, Q) - L (f, Q) :S 
U(f, P) - L(f, P) < £.) 

Now P' ={to, ... , t1} is a partition of [a, c] and P" = {t1, ... , t11 } is a partition 
of [c. b] (Figure 12). Since 

we have 

L(f, P) = L(f, P') + L(f. P"). 
U (f. P) = U (f. P') + U (f. P"). 

[U(f. P') - L(f, P') ] + [U(f, P") - L(f, P")l = U(f, P) - L(f, P) < £. 

Since each of the terms in brackets is nonnegative, each is less than £. This shows 
that f is integrable on [a, c] and [ c, b]. Note also that 

L(f, P') :S le f :S U(f, P'), 
a 

L (.f. P") S lb f S U (.f, P"). 

so that 

L(.f, P) S [ f + { f S U(.f, P). 

Since this is true for any P, this proves that 

l e f + f b f = lb f. 
a e a 

Now suppose that f is integrable on [a, c] and on [ c, b]. If £ > 0, there is a 
partition P' of [a, c] and a partition P" of [ c, bl such that 

U(f. P') - L(f. P') < £/2. 
U (f, P") - L (f, P") < £ /2. 



268 Derivatives and Integrals 

THEOREM 5 

PROOF 

If P is the partition of [a. b] containing all the points of P' and P", then 

consequently, 

L(f, P) = L(f, P') + L(f, P"), 
U (!, P) = U (!, P') + U (!, P"); 

U(f, P) - L(f, P) = [U (!, P') - L(f. P')] + [U(f, P") - L(f, P")] < c. I 

Theorem 4 is the basis for some minor notational conventions. The integral 

f~ f was defined only for a < b. \Ve now add the definitions 

1
(/ 

a f = 0 and 1• f = - { f ifa > b. 

With these definitions, the equation J: f + fcb f = t f holds for all a, c, b even 
if a < c < b is not true (the proof of this assertion is a rather tedious case-by-case 
check). 

If f and g are integrable on [a. b J, then f + g is integrable on [a. b J and 

lb (f + g) = lb f + lb g. 
a a a 

Let P = {to, ... , t11 } be any partition of [a, b]. Let 

111; =inf{(!+ g)(x): t; - 1 :::: x:::: t;}, 

m;' = inf {f (x) : t; - J :::: x :::: t;}, 

m; " = inf {g(x): t; - J :::: x:::: t;}, 

and define M;, M; ', M;" similarly. It is not necessarily true that 

Ill i = lll ;' + lll ;''. 

but it is true (Problem I 0) that 

lll; ~ m;' + m;''. 

Similarly, 
M; :::: M;' + M;". 

Therefore, 
L(f, P) + L(g, P):::: L(f + g , P) 

and 
U(f + g. P) :::: U(f, P) + U(g, P). 

Thus, 

L(f, P) + L(g, P) :::: L(f + g, P) :::: U(f + g, P) :::: U(f, P) + U(g. P). 

Since f and g are integrable, there arc partitions P', P" with 

U(f. P' ) - L(f. P ' ) < c/2. 
U(g, P") - L(g , P" ) < c/2. 
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If P contains both P' and P", then 

U (f, P) + U (g, P) - [ L (f, P) + L (g, P)] < c, 

and consequently 
U(f + g, P) - L(f + g, P) < c. 

This proves that f + g is integrable on [a, b J. l\foreover, 

(l) L(f, P) + L(g, P) ::::: L(f + g, P) 

:::: {u+g) 
::::: U(f + g, P)::::: U(f, P) + U(g, P); 

and also 

(2) L(f, P) + L(g, P) ~ lb f + lb g::::: U(f, P) + U(g, P). 
a a 

Since U(f, P) - L(f, P) and U(g, P) - L(g, P) can both be made as small as 
desired, it follows that 

U(f, P) + U(g, P) - [L(f, P) + L(g, P)] 

can also be made as small as desired; it therefore follows from ( 1) and (2) that 

{u+gJ={t+{g. l 
If f is integrable on [a. b], then for any number c, the function cf is integrable 
on[a.b]and 

The proof (which is much easier than that of Theorem 5) is left to you. It is a good 
idea to treat separately the cases c ~ 0 and c ~ 0. Why? I 

(Theorem 6 is just a special case of the more general theorem that f · g is 
integrable on [a, b], if f and g are, but this result is quite hard to prove (see 
Problem 38).) 

In this chapter we have acquired only one complicated definition, a few simple 
theorems with intricate proofs, and one theorem which required material from the 
Appendix to Chapter 8. This is not because integrals constitute a more difficult 
topic than derivatives, but because powerful tools developed in previous chapters 
have been allowed to remain dormant. The most significant discovery of calculus 
is the fact that the integral and the derivative are intimately related- once we 
learn the connection, the integral will become as useful as the derivative, and as 
easy to use. The connection betwl'en derivatives and integrals deserves a separate 
chapter, but the preparations which ,,ve will make in this chapter may serYe as a 
hint. \ Ve first state a simple inequality concerning integrals, which plays a role in 
many important theorems. 
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c c+h 
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Suppose f is integrable on la. b J and that 

m :'.Sf (x) :'.SM for all x in [a, b]. 

Then 

1
b 

m(b - a) :'.S J :'.S M(h - a). 
(/ 

It is clear that 

m(h - a):::; L(f, P) and U(f, P):::; M(b - a) 

for every partition P. Since J: f = sup{ L (f. P)} = inf { U (J. P)}, the desired 

inequality follows immediately. I 
Suppose now that f is integrable on [a, b]. \ Ve can define a new function f on 

[a. b] by 

F(x) = 1x J = 1x .f(t) dt. 
a a 

(This depends on Theorem 4.) \r\Te have seen that f may be integrable even if it 
is not continuous, and the Problems give examples of integrable functions which 
are quite pathological. The behavior of F is therefore a very pleasant surprise. 

If .f is integrable on [a, b] and F is defined on [a. b] by 

F(x) = 1x J, 
Cl 

then Fis continuous on [a, b]. 

Suppose c is in [a, b]. Since f is integrable on [a, b] it is, by definition, bounded 
on [a, b]; let M be a number such that 

IJ(x)I :'.SM for all x in [a. b]. 

If h > 0, then (Figure 13) 

F(c + h) - F(c) = 1c+h f -1c f = l c+h f. 
(/ Cl c 

Since 
-M:::; .f(x):::; M for all x, 

it follows from Theorem 7 that 

l
c+h 

-M · h :'.S ( f :'.S Mh; 

in other words, 

(I) -M·h :::; F(c+h) - F(c) =S M·h. 

If h < 0, a similar inequality can he dcriwd: Note that 

lc+h le 
F(c + h) - F(c) = .f = - f. 

< c+h 
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Applying Theorem 7 to the interval [c + h , c], of length -h, we obtain 

Mh ~ le f ~ -Mh ; 
c+h 

multiplying by -1, which reverses all the inequalities, we have 

(2) Mh ~ F(c + h) - F(c) ~ -Mh. 

Inequalities (1) and (2) can be combined: 

IF(c + h) - F(c)I ~ M · !hi. 

Therefore, if£ > 0, we have 

IF(c + h) - F(c)I < £, 

provided that lhl < £/ M. This proves that 

lim F(c + h) = F(c); 
h-'>- 0 

in other words F is continuous at c. I 

Figure 14 compares f and F (x) = J: f for various functions f; it appears 
that F i always better behaved than f. In the next chapter we will see how true 
this is. 

f -f 

a 

f 

a f 
+--
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PROBLEMS 

1. Prove that ft x 3 dx = b4/4, by considering partitions into 11 equal subin-
11 

tervals, using the formula for L i3 which was found in Problem 2-6. This 
i=l 

problem requires only a straightforward imitation of calculations in the text, 
but you should write it up as a formal proof to make certain that all the fine 
points of the argument arc clear. 

2. Prove, similarly, that ft x 4 dx = b5 /5. 

11 

*3. (a) Using Problem 2-7, shmv that the sum L kP jnP+I can be made as close 
k=I 

to 1 / (p + I) as desired, by choosing n large enough. 

(b) Prove that ft xP dx = bP+1 /(p + 1) . 

*4. This problem outlines a clever way to find 1b x" dx for O < a < h. (The 

result for a = 0 will then follow by continuity.) The trick is to use partitions 
P = {to, ... , 111 } for which all ratios r = ti/ l; - 1 are equal, instead of using 
partitions for which all differences l; - t; - I are equal. 

(a) Show that for such a partition P we have 

b 
for c = -. 

a 

(b) If f(x) = xP, show, using the formula in Problem 2-5, that 

11 

U(f, P) = aP+l(l - c - l / 11) L(c<p+Il/11/ 

i=l 
1 c - l / 11 

= (ap+ I _ bp+ I)c(p+ l) / 11 __ -__ _ 
1 _ c<i1+ IJ / 11 

1 = (bp+ I _ ap+ l)cp/ 11. _______ _ 
I + cl / 11 + ... + cJJ / 11 

and find a similar formula for L(f, P). 
(c) Conclude that 

1
b bfl+ l - ap+I 
xPdx= -----

a p+ I 
(You might find Problem 5-4 l useful.) 

5. Evaluate without doing any computations: 

(i) f I x 3/l - x2dx. 
I 

(ii) 11

(x 5 +3)/l - x2dx. 
- I 



6. Prove that 

for all x > 0. 

lo
x sin t 
-- dt > 0 

o t + 1 
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7. D ecide which of the following functions are integrable on [O, 2] , and calculate 
the in tegral when you can. 

(i) 1 (x) = I :·_ 2, 

(ii) 1 (x) = I x, 
x -2, 

(iii) f (x) = x + [ x]. 

O:::x< l 
1 ::: x ::: 2. 

O:::x::: l 
1 < x ::: 2. 

(iv) f(x) =l x +[x ] , x ~atio.nal 
0, x rrrat10nal. 

(v) 1
1 x of the form a + bh for rational a and b f (x) = ' 
0, x not of this form. 

(vi) f(x) = [H 
{ 

1 O <x::: l 

0, x = 0 or x > 1. 
(vii) f is the function shown in Figure 15. 

1 

1 1 I 
8 4 2 1 2 

FI GURE 1 5 

8. Find the areas of the regions bounded by 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

x2 
the graphs of f (x) = x 2 and g(x) = 2 + 2. 

the graphs o f f (x) = x 2 and g(x) = -x2 and th vertical line throuo·h 
(- 1, 0) and (1, 0). 

the graphs o f f (x) = x 2 and g(x) = 1 - x 2 . 

the graph of f (x) = x 2 and g(x) = 1 - x 2 and h (x) = 2. 

th graphs o f f (x) = x 2 and g(x) = x 2 - 2x + 4 and th v rti al 1 . 



274 Derivatives and Integrals 

(vi) the graph of f (x) = Jx, the horizontal axis, and the \"Crtical line 

9. Find 

') 

through (2, 0). (Don't try to find 1o- Jx dx; you should sec a way of 

guessing the answer, using only integrals that you already know how to 
evaluate. The questions that this example should suggest are considered 
in Problem 21.) 

{ (t f (x)g(y)dy) dx 

in terms of fc~) f and J/ g. (This problem is an exercise in notation, with a 
\Tngeance; it is crucial that you recognize a constant when it appears.) 

10. Prove, using the notation of Theorem 5, that 

m/ + 111/' = inf{f(xi) + g(x2): 1; - t ::::; x,. x2::::; 1;} ::::; 111;. 

11. (a) \Vhich functions have the property that every lower sum equals every 
upper sum? 

(b) \\Thich functions have the property that some upper sum equals some 
(other) lower sum? 

(c) \Vhich continuous functions have the property that all lower sums are 
equal? 

*(d) \Vhich integrable functions have the property that all lower smns are 
equal? (Bear in mind that one such function is f (x) = 0 for x irrational, 
f (x) = I/ q for x = p / q in lmvest terms.) Hint: You will need the 
notion of a dense set, introduced in Problem 8-6, as well as the results of 
Problem 30. 

12. If a < b < c < d and f is integrable on [a. d], prove that f is integrable on 
[ b, c]. (Don't work hard.) 

13. (a) Prove that if f is integrable on [a. b] and f (x) ~ 0 for all x in [a. b], 

then lb f ~ 0. 
(/ 

(b) Prove that if f and g are integrable on [a, b] and f (x) ~ g(x) for all x 

in [a, b], then lb f ~ lb g. (By now it should be unnecessary to warn 
a a 

that if you work hard on part (b) you arc wasting time.) 

14. Prove that 

l
b lh+c 

f(x)dx = f(x - c)dx. 
a a+c 

(The geometric interpretation should make this \Try plausible.) Hint: En~ry 
partition P = {to, ... , 111 } of [a, b] gives rise to a partition P' = {to+ c, 

...• 111 + c} of [ a + c, b + c], and comuscly. 
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*15. For a. b > 1 prove that 

J,a ~ dt + J,b ~ dt = J,ab ~ dt. 
I t I t I t 

Hint: This can be wrillen /," 1/t dt = 1"b 1/t dt. Every partition P = 
{to, ... , t11 } of [1, a] gives rise to a partition P' = {bto, ... , bt11 } of [b, ab], 
and conversely. 

*16. Prove that 

17. 

18. 

f cb lb 
j(t)dt = c f(ct)dt. 

ca a 

(Notice that Problem 15 is a special case.) 

Given that the area enclosed by the unit circle, described by the equation 
x 2 + y 2 = 1, is JT, use Problem 16 to show that the area enclosed by the 
ellipse described by the equation x 2 /a 2 + y 2 /b2 = 1 is ;rah. 

This problem outlines yet another way to compute 1,,. x" dx; it was used by 

Cavalieri, one of the mathematicians working just before the invention of 
calculus. 

(a) Let c,, = lo I x" dx. Use Problem 16 lo show that lo" x" dx = c,a"+ 1
• 

(b) Problem 14 shows that 

12a la 
x 11 dx = (x + a )11 dx. 

0 - a 

Use this formula to prove that 

2n+lc,,a"+I = 2a"+I L G)c,. 
k e\'en 

(c) Now use Problem 2-3 to prove that c11 = 1/(n + 1). 

19. Suppose that f is bounded on [a. b] and that f is continuous at each point 
in [a, b] with the exception of xo in (a, b ). Prove that f is integrable on 
[a, b J. Hint: Imitate one of the examples in the text. 

20. Suppose that f is nondecreasing on [a, b J. Notice that f is automatically 
bounded on [a, b], because f (a) :S f(x) :Sf (b) for x in [a, b]. 

(a) If P = {to, .... t11 } is a partition of [a. b], what is L (!, P) and U (!. P)? 
(b) Suppose that t; - f; - I = 8 for each i. Prove that U (!. P) - L (!. P) = 

8[.f(b) - f(a)]. 
(c) Prove that f is integrable. 
(d) Give an example of a nondecreasing function on [O, 11 which is discon­

tinuous at infinitely many points. 
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a = to t1 t2 13 111 = h 

It might be of interest to compare this problem with the following extract 
from Newton's PrinrzjJia.* 

LEMMA II 

[fin any.figure AacE, ter111inated by the rzf!,hl lines Aa, AE, and the curve acE, 
there be inscribed airy nunzher ef parallelograms Ab, Be, Cd, &r., comprehended 

'-'--___,__~n under equal bases AB, BC, CD, &r., and the sides, Bb, Cc, Del, &r., jwralle/ 
to one side Aa qf the figure; and the jJaral/elograms aKbl, bLcm, c.Mcln, &c., are 

M O completed: then if the breadth ef those parallelograms be supposed to be diminished, 
and their nwnber to be augmented in infinitum, I say, that the ultimate ratios 
which the inscn"bed figure AKbLd\IdD, the circumscribed figure AalbmrndoE, 

B F c D E and curvilinearfigure AabcdE, will have to one anothe,; are ratios ef equality. 

For the difference of the inscribed and circumscribed figures is the 
sum of the parallelograms Kl, Lm , l\In, Do, that is (from the equality 
of all their bases), the rectangle under one of their bases Kb and the 
sum of their altitudes Aa, that is, the rectangle AB!a. But this rectangle, 
because its breadth AB is supposed diminished in i1ifmitu111, becomes less 
than any given space. And therefore (by Lem. 1) the figures inscribed 
and circumscribed become ultimately equal one to the other; and much 
more will the intermediate curvilinear figure be ultimately equal to either. 
QE.D. 

*21. Suppose that f is increasing. Figure 16 suggests that 

1b J;r1
(b) 

1- 1 = bf- 1(b) - af- 1(a) - f. 
a f - 1(a ) 

(a) If P = {to, ... , t11 } is a partition of [a, b] , let P' 
J - 1(t11 )}. Prove that, as suggested in Figure 17, 

L(f- 1• P) + U(f, P') = bf- 1(b) - af- 1(a). 

(b) Now prove the formula stated above. 

(c) Find 1h if< dx for O ::Sa < b. 

u-1 (to), · · ·, 

22. Suppose that f is a continuous increasing function with f (0) = 0. Prove 
that for a, b > 0 we have lowzg's inequality, 

ab ::s fo" f(x)d.r + fob r ' (.r)dx. 

and that equality holds if and only if b = f (a). Hint: Draw a picture like 
figure 16! 

* Newton's J>rinriJJia, A Revision of ?\l o tt 's Translation, by Florian Cajori. Uni\'ersi ty of Ca li fo rnia 
PrC'ss, Berkeley, Cali forn ia, I 9--l6. 
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23. (a) Prove that if f is integrable on [a, b] and 111 < f(x) :::: M for all x in 
[a. b], then 

l b f (x) dx = (b - a)µ 
a 

for some number µ with 111 :::: µ :S M. 

(b) Prove that if f is continuous on [a, b], then 

lb f (x) dx = (b - a)f (~) 
a 

for some~ in [a. b]. 

(c) Show by an example that continuity is essential. 

(d) More generally, suppose that f is continuous on [a, b] and that g 1s 
integrable and nonnegative on [a, b J. Prove that 

lb lb f(x)g(x)dx = /(~) g(x)dx 
a a 

for some ~ in [a, b J. This result is called the l\Iean Value Theorem for 
Integrals. 

(e) Deduce the same result if g is integrable and nonpositive on [a, b]. 

(f) Show that one of these t\vo hypotheses for g is essential. 

24. In this problem we consider the graph of a function in polar coordinates 
(Chapter 4, AppendLx 3). Figure 18 shows a sector of a circle, with central 

angle e. \\Then e is measured in radians, the area of this sector is r 2 · ;. Now 

consider the region A shown in Figure 19, \'\'here the cun-e is the graph in 
polar coordinates of the continuous function f. Show that 

*25. Let f be a continuous function on [a. b]. If P = {to, .... t11 } is a partition of 
[a. b], define 

II 

FI cu RE 1 9 e (f, P) = L J ( r; - r; _ i) 2 + [! u;) - f u; _ 1) ]2. 
i = I 
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a= to t1 

FIGURE 20 

I I I 
T6 8 4 

FJ (;l ' RL 2 1 

I 
2 

The number e (!, P) represents the length of a polygonal curve inscribed in 
the graph of f (sec Figure 20). \!\Te define the length of f on [a, b] to be 
the least upper bound of all e (j, P) for all partitions P (provided that the set 
of all such f (J, P) is bounded above). 

(a) If f is a linear function on [a, b J, prove that the length of f is the 
distance from (a, f (a)) to (b, f (b)). 

(b) If f is not linear, pron' that there is a partition P = {a, t, b} of [a, bl 
such that €(!, P) is greater than the distance from (a, f (a)) to (b, j(b)). 

(You will need Problem 4-9.) 

(c) Conclude that of all functions f on [a, b] with f(a) = c and f(b) = d, 
the length of the linear function is less than the length of any other. (Or, 
in conventional but hopelessly muddled terminology: ''.A straight line is 
the shortest distance between two points".) 

(d) Suppose that J' is bounded on [a,b]. If Pis any partition of [a,b] 
show that 

Hint: Use the ~lean Value Theorem. 

(e) \\Thy is sup{L(/1 + (!') 2
, P)}::: sup{€(!, P)}? (This is easy.) 

(f ) Now show that sup{€(!. P)} ~ inf{U(/1 + (j') 2
, P)}, thereby proving 

that the length of f on [a. b] is lb j I + (!') 2
• if j 1 + (j') 2 is in te-

a 
grablc on [a, b]. Hint: It suffices to show that if P' and P" are any two 

partitions, then e (j, P') ::: U ( j 1 + (!') 2
, P"). If P contains the points 

of both P' and P" , how docs e(j, P') compare to f(j, P)? 

(g) Let 5£(x) be the length of the graph of f on [a, x], and let d (x) be the 
length of the straight line segment from (a,f(a)) to (x,f(x)). Show 

that if j 1 + (!') 2 is integrable on [a, b] and J' is continuous at a (i.e., 
if lim J'(x) = j'(a) ), then 

x-a+ 

1. 5£(x) - I 
llll -- - . 

x - a+ d(x) 

Hint: It will help to use a couple of .Mean Value Theorems. 

(h) In Figure 21, the part of the graph of f between ± and ! is just half the 

size of the part between ! and I, the part between i and i is just half 

the size of the part between ± and ! , etc. Show that the conclusion of 
part (g) does not hold for this f. 

26. A function s dcfinccl on [a , b J is called a step function if there is a partition 
P = {to, ... , t11 } of [a , b] such thats is a constant 011 each (ti - I, t;) (the , ·a lucs 
of s at t; may be arbitrary). 

(a) Pron· that if f is integrable on [a, bl, then for any E > 0 there is a step 
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function s, :" f with 1• f -1• s1 < E, and also a step function s2 c': f 

,vith lh s2 - lb f < :. a 

(/ (/ 

(b) Suppose that for all E > 0 there are step functions s1 _:::: f and s2 2:. f 

such that lh s2 - lh s, < E. Prm·e that f is integrable. 

(c) Find a firnction f which is not a step function, but which satisfies 1• f = 
L (f, P) for some partition P of la, b]. 

*27. Prove that if f is integrable on [a, b J, then for any E > 0 there arc continuous 

functions g .:::: f .:::: h with J.b h - lb g < E. Hint: First get step functions 
(/ (/ 

with this property, and then continuous ones. A picture will help immensely. 

28. (a) Show that if SJ and s2 are step functions on r a' b J' then SJ + s2 is also. 

(b) Prove, without using Theorem 5, that J.b (s1 + s2) = J.b s1 + lb s2. 
a a a 

(c) Use part (b) (and Problem 26) to gi.ve an alternative proof of Theorem 5. 

29. Suppose that f is integrable on [a, b J. Pro\'e that there is a number x in 

ix lb [a, b J such that f = f. Show by example that it is not always possible 
(I x 

to choose x to be in (a, b ). 

*30. The purpose of this problem is to show that if f is integrable on [a, b J, then 
f must be continuous at many points in [a, b]. 

(a) Let P ={to, . ... 111 } be a partition of [a.b] with U(f. P) - L(f, P) < 
b - a. Prove that for some i we haYc Mi - 111 i < I. 

(b) Pro,·e that there are numbers a1 and bi with a < cq < h1 < b and 
sup{.f(x) : a1 _:::: x _:::: bi} - inf{.f (x): a1 _:::: x _:::: bi} < 1. (You can choose 

la 1, b1] = [ti - 1, ti] from part (a) unless i = 1 or 11; and in these two cases 
a Yery simple deYice sokes the problem.) 

( c) Prove that there are numbers a2 and h2 with a J < a2 < b2 < b I and 

sup{.f (x) : a2 S x S b2} - inf {.f (x) : a2 S x S h2} < 1· 
(d) Continue in this way to find a sequence of intervals In = [a 11 , b11l such 

that sup {.f (x) : x in In} - inf {.f (x) : x in In} < 1 / 11. Apply the 0J ested 
lnteffals Theorem (Problem 8-14) to find a point x at which f is con­
tinuous. 

( e) Prove that f is continuous at infinitely many points in [a, bl 

*31. Let f be integrable on [a, b]. Recall, from Problem 13, that lb f 2:_ 0 if 
(/ 

f (x) 2:. 0 for all x in [a, b J . 

(a) Give an example where f (x) 2:. 0 for all x, and f (x) > 0 for some x in 

l
b 

la, hl, and f = 0. 
(/ 
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(b) Suppose f(x) :=:: 0 for all x in [a, b] and f is continuous at xo in [a, b] 

and f (xo) > 0. Prove that 1'' f > 0. Hint: It suffices to find one lower 

sum L(f, P) which is positive. 
(c) Suppose J is integrable on [a, b] and f(x) > 0 for all x in [a, b]. Prove 

that lb f > 0. Hint: You will need Problem 30; indeed that was one 
a 

reason for including Problem 30. 

*32. ( a) Suppose that f is con tin nons on [a, b] and lb f g = 0 for all continuous 

functions g on [a, b J. Prove that f = 0. (This is easy; there is an obvious 
g to choose.) 

(b) Suppose f is continuous on [a, b] and that lb f g = 0 for those con­

tinuous functions g on [a, b J which satisfy the extra conditions g (a) = 
g(b) = 0. Prove that f = 0. (This innocent looking fact is an important 
lemma in the calculus of variations; see reference [22] of the Suggested 
Reading.) Hint: Derive a contradiction from the assumption f (xo) > 0 
or f (xo) < O; the g you pick will depend on the behavior of f near xo. 

33. Let f (x) = x for x rational and f(x) = 0 for x irrational. 

(a) Compute L(f, P) for all partitions P of [0,1]. 
(b) Find inf { U (!, P) : P a partition of [O, I]}. 

*34. Let f (x) = 0 for irrational x, and 1 / q if x = p / q in lowest terms. Show 

that f is integrable on (0. l] and that lo I f = 0. (Every lower sum is clearly 

O; you must figure out how to make upper sums small.) 

*35. Find two functions f and g which are integrable, but whose composition 
g o f is not. Hint: Problem 34 is relevant. 

*36. Let f be a bounded function on [a, b] and let P be a partition of [a, b]. 
Let Mi and 111 i have their usual meanings, and let M/ and 111 / have the 
corresponding meanings for the function If j. 

(a) Prove that M/ - 111;
1 ~ Mi - 111;. 

(b) Prove that if f is integrable on [a, b], then so is If j. 
(c) Prove that if f and g arc integrable on [a, b], then so are max(f. g) and 

min(!, g). 

(d) Prove that f is integrable on [a, b] if and only if its "positive part'' 
max(!, 0) and its "negative part'' min(!, 0) are integrable on [a. b]. 

37. Prove that if f is integrable 011 [a, b], then 

lib f(t)dtl :::; t lf(t)ldt. 

Hint: 'This follows easily from a certain string of inequalities; Problem 1-14 
is relevant. 
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*38. Suppose f and g are integrable on [a, b] and f(x), g(x) ~ 0 for all x in 
[a, b]. Let P be a partition of [a, b]. Let M/ and m/ denote the appropriate 
sup's and inf's for f, define M/' and m/' similarly for g, and define Mi and mi 

similarly for f g. 

(a) Prove that Mi :S M/ M/" and llli ~ m/m/'. 
(b) Show that 

n 

U(fg, P) - L(fg, P).::: L[M/M/' - m/m/'](ti - ti _ i). 

i=l 

(c) Using the fact that f and g are bounded, so that If (x)I, lg(x)I :SM for 
x in [a, b] , show that 

U(fg, P) - L(f g, P) 

:SM { t[ M;' - m;'](t; - t; - 1) + t [ M;'' - m;''](t; - t;_ 1)} • 

(d) Prove that f g is integrable. 
(e) Now eliminate the restriction that f(x), g(x) ~ 0 for x in [a, b]. 

39. Suppose that f and g are integrable on [a, b]. The Cauchy-Schwarz inequality 
states that 

(a) Show that the Schwarz inequality is a special case of the Cauchy-Schwarz 
inequality. 

(b) Give three proofs of the Cauchy-Schwarz inequality by imitating the 
proofs of the Schwarz inequality in Problem 2-21. (The last one will 
take some imagination.) 

(c) If equality holds, is it necessarily true that f = >...g for some >...? What if 
f and g are continuous? 

') 

(d) Prove that (lo 1 

f )- < (lo 1 

J2
). ls this result true if O and I are 

replaced by a and b? 

*40. Suppose that f is integrable on [O, x J for all x > 0 and lim f (x) = a. Prove 
x -,.oo 

that 
I fo x lim - f (t) dt = a. 

X --> 00 X Q 

Hint: The condition lim f (x) = a implies that J(t) is close to a for 
X -->00 

rN+M 
t ~ some N. This means that j N f (t) dt is close to Ma. If M is large in 

comparison to N, then Ma/(N + M) is close to a. 
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a= to x1 t1 x2 tn =b 

FlGlJREI 

THEOREM I 

PROOF 

APPEND lX. RIEMANN SUMS 

Suppose that P = {to, ...• t11} is a partition of [a, b], and that for each i we 
choose some point Xi in [ti - I, ti]. Then we clearly have 

II 

L(f, P) SL f(xi)(ti - ti - I) S U(f, P). 
II i=J 

Any sum L f (xi) (ti - ti - i) is called a Riemann sum of f for P. Figure 1 shows 
i = l 

the geometric interpretation of a Riemann sum; it is the total area of n rectangles 
that lie partly below the graph of f and partly above it. Because of the arbitrary 
way in which the heights of the rectangles hm·c been picked, we can't say for 
sure whether a particular Riemann sum is less than or greater than the integral 

1 b f (x) d x. But it docs seem that the overlaps shouldn't matter too rn uch; if the 

bases of all the rectangles are narrow enough, then the Riemann sum ought to be 
close to the integral. The following theorem states this precisely 

Suppose that f is integrable on [a, b]. Then for every E > 0 there is some o > 0 
such that, if P = {to, ... , t11 } is any partition of [a, b] with all lengths ti - ti - I < o, 
then 

11 1b 
Lf(xi)(ti-ti_ i)- f(x)dx <E, 
i=l a 

for any Riemann sum formed by choosing Xi in [( - I, ti]. 

Since the Riemann sum and the integral both lie benveen L (f, P) and U (!. P), 

this amounts to showing that for any given Ewe can make U(f, P) - L(f, P) < E 

by choosing a o such that U (!, P) - L (f, P) < E for any partition with all lengths 
( - ti - I < o. 

The definition off being integrable on [a, b] includes the condition that Ill S 
M for some M. First choose some particular partition P* = {110, , ... , 11 K} for 
which 

U(f, P*) - L(f, P*) < t:/2, 

and then choose a o such that 
E 

o<--. 
4MK 

For any partition P with all ti - ti - I < o, we can break the sum 

II 

U(f, P) - L(f, P) = L(Mi - llli)(( - ti - I) 

i = I 

into two smns. The first involves those i for which the interval [ti - I, ti 1 is com­
pletely contained within one of the intervals [uj - 1, llj l This sum is clearly S 
U(f, P*) - L(J, P*) < F/2. For all other i we will have Ii - I < llj < ti for 
some j = l, ... , K - I , so there arc at most K - I of them. Conseciucntly, the 
sum for these terms is < (K - I)· 2M · o < t:/2 . I 
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The moral of this tale is that anything which looks like a good approximation 
to an integral really is, provided that all the lengths Ii - t; _ , of the intervals in the 
partition are small enough. Some of the following problems should bring home 
this message with even greater force. 

PROBLEMS 

1. Suppose that f and g are continuous functions on [a, b]. For a partition 
P ={to, ... , 111 } of [a, b] choose a set of points x; in [ti-I, t;] and another set 
of points u i in [ti - I, t;]. Consider the sum 

II 

L f(xi)g(u;)(ti - l; - I). 

i=I 

Notice that this is not a Riemann sum off g for P. Nevertheless, show that 

all such sums will he within r of 1b f g provided that the partition P has all 

lengths ti - ti - I small enough. Hint: Estimate the difference between such a 
sum and a Riemann sum; you will need to use uniform continuity (Chapter 
8, Appendix). 

2. This problem is similar to, but somewhat harder than, the previous one. 
Suppose that f and g are continuous nonnegative functions on [a, b J. For a 
partition P, consider sums 

II 

L j f(xi) + g(u;) (t; - t; _ i). 

i=I 

Show that these sums will be within r of 1'' Jf + g if all I; - t1_ , are small 

enough. Hint: Use the fact that the square-root function is uniformly con­
tinuous on a closed inten·al [O, M]. 

3. Finally, we're ready to tackle something big! (Compare Problem 13-25.) 
Consider a curve c gi.ven parametrically by two functions u and v on [a, b]. 
For a partition P = {to, ... , t11 } of [a, b] we define 

II 

f(c, P) = L /[u(t;) - u(t; - 1)]2 + [v(ti) - v(t; - 1)]2; 

i = I 

this represents th<." length of an inscribed polygonal curn· (Figure 2). \ \ re 
define the length of c to be the least upper bound of all e (f, P) , if it exists. 
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Prove that if u' and v' are continuous on [a, b] , then the length of c is 

f.b ./ u'2 + v'2. 

4. Let f' be continuous on the interval [80 , 81]. Show that the graph of f in 
polar coordinates on this interval has the length 

re, J !2 + !'2. 
lea 

5. Using Theorem 1, show that th Cauchy-Schwarz inequality (Problem 13-39) 
is a consequence of the Schwarz inequality. 



CHAPTER 

THEOREM 1 (THE FIRST 

FUNDAMENTAL THEOREM 

OF CALCULUS) 

PROOF 

14 THE FUNDAMENTAL THEOREM 
OF CALCULUS 

From the hints given in the previous chapter you may have already guessed the 
first theorem of this chapter. We know that if f is integrable, then F (x) = fax f is 
continuous; it is only fitting that we ask what happens when the original function f 
is continuous. It turns out that F is differentiable (and its derivative is especially 
simple). 

Let f be integrable on [a, b] , and define F on [a, b] by 

F(x) = t f. 

If f is continuous at c in [a, b J, then F is differentiable at c, and 

F' (c) = f (c). 

(If c = a orb, then F'(c) is understood to mean the right- or left-hand derivative 
of F.) 

\Ve will assume that c is in (a, b); the easy modifications for c = a orb may be 
supplied by the reader. By definition, 

, 
1
. F(c+h)-F(c) 

F (c) = nn . 
h-+0 h 

Suppose first that h > 0. Then 

l
c+h 

F(c + h) - F(c) = c f. 

Define 1111, and M1, as follows (Figure 1 ): 

m1z = inf {f(x) : c::; x ::; c + h}, 
M1, = sup{f(x): c::; x::; c + h}. 

It follows from Theorem 13-7 that 

lc+h 

m 1i • h ::; c f ::; M1z · h. 

Therefore 
F(c + h) - F(c) 

1111i < < M1z. - h -

If h < 0, only a few details of the argument have to be changed. Let 

285 

m1, = inf {f (x) : c + h ::; x ::; c}, 

M1, = sup{f(x) : c + h ::; x ::; c}. 
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c c+h 

FIG RE l 

Then 

m11 · (-h)::: f c f::: M11 · (-h). 
c+h 

Since 

[

c+h le 
F(c + h) - F(c) = f = - f 

c c+h 

this yield 

m 11 · h ::: F ( c + h) - F ( c) ::: M11 · h. 

Since h < 0, dividing by h reverses the inequality again yielding the ame r ult 
as before: 

F(c + h) - F(c) 
m11 ::: h ::: M11. 

Thi inequality i true for any integrabl function, continuou or not. m f i 
continuou at c, however, 

lim m11 = lim M1i = f (c), 
11 ~ 0 h~ O 

and thi prove that 

F'(c) = lim F(c + h) - F(c) = f(c). I 
1i~ o h 

Nth u h Th - r m 1 d al nly with th fun tion btain d by var ing th upp r 
limit [ int gration a impl tri k h w whc t h pp n vvh n the l w r limit i 
vari d. ff G i d fin d by 

G(x) = 1• J, 
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then 

G (x) = 1 b f -1 x f. 
a a 

Consequently, if f is continuous at c, then 

G'(c) = - f(c). 

The minus sign appearing here is very fortunate, and allows us to extend Theo­
rem 1 to the situation where the function 

F(x) = ix f 
a 

is defined even for x < a. In this case we can write 

so if c < a we have 

exactly as before. 

t F(x) = - lx f, 

F' ( c) = - ( - f ( c)) = f ( c), 

Notice that in either case, differentiability of F at c is ensured by continuity of f 
at c alone. Nevertheless, Theorem l is most interesting when f is continuous at 
all points in [a. b]. In this case F is differentiable at all points in [a. b] and 

F' = f. 

In general, it is extremely difficult to decide whether a given function f is the 
derivative of some other function; for this reason Theorem 11-7 and 
Problems 11-60 and 11-61 are particularly interesting, since they reveal certain 
properties which f must have. If f is continuous, however, there is no problem 
at all- according to Theorem I , f is the derivative of some function, namely the 
function 

F(x) = 1x f. 
Theorem 1 has a simple corollary which frequently reduces computations of 

integrals to a triviality. 

If f is continuous on [a, b] and f = g' for some function g, then 

1b f = g(b) - g(a). 
a 

PROOF Let 

F(x) = ix f. 
a 

Then F' = f = g' on [a, b J. Consequently, there is a number c such that 

F = g + c. 
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The number c can be evaluated easily: note that 

0 = F(a) = g(a) + c, 

so c = -g(a); thus 
F(x) = g(x) - g(a). 

This is true, in partirnlar, for x = b. Thus 

l
b 

a f = F(b) = g(b) - g(a). I 

The proofof this corollary tends, at first sight, to make the corollary seem useless: 
after all, what good is it to know that 

lb f = g(b) - g(a) 
(/ 

if g is, for example, g(x) = .ff? The point, of course, is that one might happen 
to know a quite different function g with this property. For example, if 

x3 
g(x) = 3 and f(x)=x 2

, 

then g' (x) = f (x) so we obtain, without ever computing lower and upper sums: 

lh x2 dx = b; ~ a;. 

One can treat other powers similarly; if II is a natural number and g(x) 

x 11+ 1 / (n + l), then g' (x) = x 11
, so 

l
b bn+ I an+ I 

x 11 dx = -- - --. 
a n+l n+l 

For any natural number 11, the function f (x) = x - 11 is not bounded on any interval 
containing 0 , but if a and b are both positive or both negati\·e, then 

l
b b - 11 + 1 a - n+ I 

x - n dx = - . 
a -n + 1 -11 + 1 

Naturally this formula is only true for n -=f. -1. rte do not know a simple e.\pressionfor 

l b _!_dx. 
{I x 

The problem of computing this integral is discussed later, but it provides a good 
opportunity to warn against a serious erro r. The conclusion of Corollary I is often 

confused with the definition of integrals many students think that J: f is defined 
as: "g(b) - g(a), where g is a function whose derivative is f ." This "definition" is 
not only wrong- it is useless. One reason is that a function f may be integrable 
without being the derivati\'l· of another function. For example, if f (x) = 0 for 
x -=f. 1 and f ( l) = 1, then f is integrable, but f cannot be a deri\·ati\'l~ (\\'hy not?). 
There is also another reason that is much more important: Ir f is continuous, 
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then we know that f = g' for some function g; but we know this only because ef 
Theorem 1. The function f (x) = l /.r provides an excellent illustration: if x > 0, 
then f (x) = g' (x), vvhere 

J, x 1 
g(x)= -dt, 

I t 

and we know of no simpler function g with this property. 
The corollary to Theorem 1 is so useful that it is frequently called the Second 

Fundamental Theorem of Calculus. In this book, that name is reserved for a 
somewhat stronger result (which in practice, however, is not much more useful). 
As we have just mentioned, a function f might be of the form g' even if f is not 
continuous. If f is integrable, then it is still true that 

1• J = g(b) - g(a). 

The proof, however, must be entirely different~ we cannot use Theorem 1, so we 
must return to the definition of integrals. 

If f is integrable on [a, b J and f = g' for some function g, then 

1b f = g(b) - g(a). 
{l 

Let P = {to, ... , t11 } be any partition of [a. b J. By the l\Iean Value Theorem there 
is a point Xi in [ti - 1, ti] such that 

If 

then clearly 

that is, 

g(ti) - g(ti- I) = g' (xi )(ti - ti - I) 

= f (xi)(ti - (_,). 

mi= inf{f (x): ti - I ~ x ~ td, 
Mi = sup{f (x): ti - I ~ x ~ ti}, 

mi(ti - ti_t) ~ g(ti) - g(ti-I) ~ Mi(ti - ti _ J). 

Adding these equations for i = I .... , 11 we obtain 

11 ll 

i=I i=I 

so that 
l(f, P) ~ g(b) - g(a) ~ U(f, P) 

for eve,y partition P. But this means that 

1
b 

g(b) - g(a) = J. I 
(/ 
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a 

FIGl' RE2 

Ff<;lRL 3 

..,.,," 
/ 

/ 

f(x) = x 3 

I 

I 
I 

I 
I 

I 

b 

,' f(x) = x 2 

l 

/g(x) = x 3 

\Ve have already used the corollary to Theorem l (or, equivalently, Theorem 2) 
to find the integrals of a few elementary functions: 

1
h bn+ I 0 11 + ! 

x 11 dx = -- - --. n =/:- -1. 
a n+l n+I 

(a and b both positive or 
both negative if n > 0). 

As we pointed out in Chapter 13, this integral does not always represent the area 
bounded by the graph of the function, the horizontal axis, and the vertical lines 
through (a. 0) and (b, 0). For example, if a < 0 < b, then 

1• x 3 dx 

does not represent the area of the region shown m Figure 2, which is given 
instead by 

Similar care must be exercised in finding the areas of regions which are bounded 
by the graphs of more than one function- a problem which may frequently invoke 
considerable ingenuity in any case. Suppose, to take a simple example first, that 
we wish to find the area of the region, shown in Figure 3, between the graphs of 
the functions 

f (x) = x 2 and g(x) = x 3 

on the interval [O, 1]. If O .::: x _:s 1, then O _:s x 3 _:s x 2, so that the graph of g lies 
below that of f. The area of the region of interest to us is therefore 

area R(f, 0, 1)- area R(g. 0, 1), 

which is 

This area could hmT been expressed as 

1
b 

(f - g). 
a 

Ir g (x) _:s f (x) for all x in [a , h I, then this integral always gi\'C'S the area bounded 
by f and g, even ?[ f and g mt sometimes negative. The easiest way to see this is shown 
in Figure 4. ff c is a number such that f + c aud g + c arc nonnegatin' on I a, h] , 
then the region R1, bounded by f and g, has the same area as the region R2, 



a b 

(a) 

f +c 

a b 

(b) 

FIGURE 4 
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bounded by f + c and g + c. Consequently, 

area R1 = area R2 = lb (J + c) - lb (g + c) 

= t [ (J + c) - (g + c) J 

=t(J-g). 

This observation is useful in the following problem: Find the area of the region 
bounded by the graphs of 

f(x) = x 3 - x and 
,., 

g(x) = .c. 

The first necessity is to determine this region more precisely. The graphs of f 
and g intersect when 

x3 - x = .x2, 

or x 3 - x 2 - x = 0. 

or x (x 2 
- x - 1) = 0, 

l+v'S 1-v'S 
or x = 0. 

2 
, 

2 
. 

On the interval ([1- v'S]/2.0) we have x 3 -x:::: x 2 and on the interval 

(0. [ 1 + Js J /2) we have x 2 :::: x 3 - x. These assertions are apparent from the 
graphs (Figure 5), but they can also be checked easily, as follows. Since f (x) = g (x) 

only if x = 0, [1 + v'SJ/2, or [1- v'S]/2, the function f -g does not change sign 

on the intervals ([1 - v'S]/2. 0) and (0. [1 + v'S]/2); it is therefore only necessary 
to observe, for example, that 

to conclude that 

c-!)3 - c-!) - (-!)2 = k > o, 

13 - 1 - 12 = -1 < 0, 

f-g::::O on([l-v'S]/2.0). 

f-g::::O on(O,[l+v'S]/2). 

The area of the region in question is thus 

0 1+0 

r Js (x 3 -x-x2)dx+ r 2 

[x 2 -(x3 -x)]dx. 
J~ lo 

As this example reveals, one of the major problems i11\'ohnl in finding the areas 
of a region may be the exact determination of the region. There are, howcn~1~ 
more substantial problems of a logical nature we hm'e thus far defined the areas 
of some very special regions only, which do not even include some of the regions 
whose areas have just been computed! \ Ve have simply assumed that area made 
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FIGURES 

sense for these regions, and that certain reasonable properties of "area" do hold. 
These remarks arc not meant to suggest that you should regard exercising ingenuity 
to compute areas as beneath you, but are meant to indicate that a better approach 
to the definition of area is available, although its proper place is somewhere in 
advanced calculus. The desire to define area was the motivation, both in this 
book and historically, for the definition of the integral, but the integral does not 
really provide the best method of defining areas, although it is frequently the proper 
tool for computing them. 

It may be discouraging to learn that integrals are not suitable for the very pur­
pose for which they were invented, but we \vill soon sec how essential they arc for 
other purposes. The most important use of integrals has already been emphasized: 
if f is continuous, the integral provides a function y such that 

y'(x) = f (x). 

This equation is the simplest example of a "differential equation" (an equation 
for a function y which involves derivatives of y ). The Fundamental Theorem 
of Calculus says that this differential equation has a solution, if f is continuous. 
In succeeding chapters, and in various problems, we will solve more complicated 
equations, but the solution almost always depends somehow on the integral; in 
order to solve a differential equation it is necessary to construct a new function, 
and the integral is one of the best ways of doing this. 

Since the differentiable functions provided by the Fundamental Theorem of 
Calculus will play such a prominent role in later work, it is very important to 
realize that these functions may be combined, like less esoteric functions, to yield 
still more functions, whose derivatiws can be found by the Chain Rule. 

Suppose, for example, that 

1
r 3 

f(x) = a 
I 
. ,., dt. 

I + sm-, 
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Although the notation tends to disguise the fact somewhat, f is the composition 
of the functions 

1
x 1 

C (x) = x 3 and F (x) = . 
2 

dt . 
a 1 + Slll t 

In fact, f (x) = F ( C (x)); in other words, f = F o C . Therefore, by the Chain 
Rule, 

f'(x) = F '(C (x)) · C'(x) 

= F' (x 3) · 3x 2 

__ 1 __ · 3x2 . 
1 + sin2 x 3 

If f is defined, instead , as 

1
(/ 1 

f (x) = . 2 dt , 
.x3 1 + Slll t 

then 

I 1 2 f (x) = -
2 

· 3x . 
1 + sin x 3 

If f is defined as the reverse composition, 

then 

Similarly, if 

then 

f (x) = (1x 1. 2 dt) 3' 
a 1 + sm t 

J'(x) = C'(F (x)) · F'(x ) 

(1 x 1 )2 
= 3 dt 

a 1 + sin2 t 

1
sm x 1 

f (x) = . 
2 

dt , 
a 1 + sm t 

l
a 1 

g(x) = . 
2 

dt , 
sin x 1 + Slll t 

1 
2 . 

1 + sin x 

h (x ) = sin (1x 1
. 2 dt) , 

a 1 + sm t 

1 
j I (X) = · COS X, 

1 + sin 2 
( sin x) 

- 1 
g'(x ) = 

2 
o x, 

1 + in (sin x) 

h'(x) = COS (1x 1
. 

2 
dt ) . __ l __ 

a 1 + sm t 1 + in2 x . 
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The formidable appearing function 

1(f I+st11 2 1 dt) I 
f(x) = --

2
-dt 

a 1 + sin t 

is also a composition; in fact, f = F o F. Therefore 

J'(x) = F'(F(x)) · F'(x) 

1 + sin
2 (1x 1

. 2 dt) 
a 1 + sm t 

2 . 
I + sin x 

As these examples reveal, the expression occurring above (or below) the integral 
sig11 indicates the function which will appear on the right when f is written as a 
composition. As a final example, consider the triple compositions 

fa i+sin2 t dt 

( 
('3 _I dt) 

1 Ja l+sin2, 1 f (x) = --
2
- dt, 

a 1 + sin t 

[( 
x I )] 

-
1-dt I 

g (x) = 1 fa I +sin2 t • 2 d I. 
a 1 + sm t 

which can be written 

f = F o F o C and g = F o F o F. 

Omitting the intermediate steps (which you may supply, if you still feel insecure), 
we obtain 

I 
J'(x) = --------

1 + sin2 (1x3 _I -2 dt) 
I + sin t 

I 
g' (x) = ---------------

1 , 2 [1(f-l+si
1

n2, dt) 1 ] +sm ---
2
-dt 

a 1 + sin t 

I ') 
. ') . 3x-, 

I + sm- x 3 

1 + sin2 (1
1

x I 2 dt) 
I + sin t 

2 . 
I + sin x 

Like the simpler differentiations of Chapter I 0, these manipulations should be­
come much easier after the practice provided by some of the problems, and, like 
the problems of Chapter I 0, these differentiations arc simply a test of your under­
standing of the Chain Ruic, in the somewhat unfamiliar context provided by the 
Fundamental Theorem of Calculus. 

The powerful uses to which the integral will be put in the follo\\'ing chapters 
all depend on the Fundamental Theorem of Calculus, yet the proof of that the­
orem was quite easy- it seems that all the real work went into the definition of 
the integral. Actually, this is not quite true. In order to apply Theorem l to a 
continuous function we need to know that if f is continuous on [a, h], then f is 
integrable on [a, b]. Although we\-c already oflcrccl one proof of this result. there 
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is a more elementary argument that you might prefer. Like most "elementary'' 
arguments, it's quite tricky, but it has the virtue that it will force a review of the 
proof of Theorem l. 

If f is any bounded function on [a, b], then 

sup{ L (!. P)} and inf { U (!, P)} 

will both exist, even if f is not integrable. These numbers are called the lower 
integral of f on [a. b] and the upper integral of f on [a, b], respectively, and 
will be denoted by 

L J.b f and U 1• f. 
The lower and upper integrals both have several properties which the integral 
possesses. In particular, if a < c < b, then 

L{f=L[J+L[f and U lb f = U le f + U lb f, 
a a c 

and if m ~ f (x) ~ M for all x in [a, b], then 

m(b - a) :SL 1• f :SU 1• f :S M(b - a). 

The proofs of these facts arc left as an exercise, since they are quite similar to the 
corresponding proofs for integrals. The results for integrals are actually a corollary 
of the results for upper and lower integrals, because f is integrable precisely when 

lb lb L f =V f. 
a a 

\Ve will prove that a continuous function f is integrable by showing that this 
equality always holds for continuous functions. It is actually easier to show that 

LrJ=vr 1 la la 
for all x in [a. b]; the trick is to note that most of the proof of Theorem 1 didn't 
even depend on the fact that f was integrable! 

If f is continuous on [a. b J, then f is integrable on [a, b]. 

Define functions L and U on [a. b J by 

L(x) = L J.x f and U(x} =UL' f. 
Let x be in (a. b). If h > 0 and 

m1, = inf{f(t): x ~ t ~ x + /z} , 
M11 = sup{f(t): x ~ t ~ x +lz}, 
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then 

l
x+h l x+h 

mh · h :::: L f :::: U f :::: Mh · h , 
x x 

so 
mh · h :::: L(x + h) - L(x):::: U(x + h) - U(x) :::: Mh · h 

or 
L(x + h) - L(x) U(x + h) - U(x) 

mh < < < M11· - h - h -

If h < 0 and 

mh = inf{! (t) : x + h :::: t :::: x}, 

Mh = sup{f (t): x + h :::: t:::: x}, 

one obtains the same inequality, precisely as in the proof of Theorem 1. 
Since f is continuous at x, we have 

lim mh = lim Mh = f (x), 
h---* 0 h---* 0 

and this proves that 

L '(x) = U '(x) = f(x) for x in (a, b). 

This means that there is a number c such that 

U(x) = L(x) + c for all x in [a, b]. 

Since 
U(a ) = L(a) = 0, 

the number c must equal 0, so 

U(x) = L(x) for all x in [a , b]. 

In particular, 

U { f = U(b) = L (b) = L 1& f , 

and this means that f is integrable on [a , b J. I 

PROBLEMS 

1. Find the derivatives of each of the following function . 

(i) F(x) = 1'' in3 
tdt. 

l
(t sin

3
1d1) l 

(ii) F(x) = dt 
3 1 + in6 

t + t2 

J,x(ls y 1 ) (iii) F(x) = dt d y . 
15 8 1 + t 2 + sin 2 t 

(iv) F(x) = {b 1 . 2 dt. 
lx 1 + t 2 + m t 
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(v) F(x) = lb x dt. 
a 1 + t 2 + sin 2 t 

(vi) F(x) = sin ([ in (lo'' sin3 
t di) dy) 

(vii) p - l , wher ix 1 

1 t (Find (F- 1 )' (x) in terms of 
F(x) = -dt. I 

(viii) p - l , wher F(x) = r 1 dt. F - l(x).) 

lo~ 
2. For each of the following f , if F(x) = ft f, at which points x is F'(x ) = 

f (x)? (Caution: it might happen that F' (x) = f (x), even if f is not contin­
uous at x.) 

(i) f(x) = 0 if x ~ 1, f(x) = 1 if x > 1. 

(ii) f(x) = 0 if x < 1, f(x) = 1 if x ~ 1. 

(iii) f(x) = 0 if xi- 1, f(x) = 1 if x = 1. 

(iv) f (x) = 0 if x i irrational, f (x) = 1 / q if x = p / q in lowest terms. 

( v) f (x) = 0 if x ~ 0, f (x) = x if x ~ 0. 

(vi) f(x) = 0 if x ~ 0 or x > 1, f (x) = 1/[l/x] if O < x ~ 1. 

(vii) f i the function shown in Figure 6. 
(viii) f (x) = 1 if x = l/n for some n in N, f (x) = 0 otherwise. 

1 

FIGURE 6 

1 
8 

I 
4 

I 
2 1 

3. Show that the values of the following expre ion do not dep nd on x : 

(i) r _l_ dt + r1 1
x _ l_ dt. 

lo 1 + t 2 lo 1 + t 2 

(ii) f_ 
m x 1 

--- dt , x in (0, n/2). 
- ox~ 
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4. Find u-1 
)' (0) if 

(i) J (x) = fo x 1 + sin( int) dt. 

(ii) f(x) = ix cos(co s t)dt. 

(Don't try to evaluate f explicitly.) 

5. Find a function g such that 

(i) fox tg(t) dt = x + x 2. 

(ii) fo x' tg (t) dt = X + x 2. 

(Notice that g is not assumed continuous at 0.) 

6. (a) Find all continuous functions f satisfying 

for some constant C -=f. 0 

assuming that f ha at most one 0. 
(b) Also find a solution that is O on an interval (-oo, b] with O < b, but 

non-zero for x > b. 
(c) Finally, for C = 0 and any interval [ a, b] with a < 0 < b, find a solution 

that i O on [a , b] , but non-zero elsewhere. 

7. Use Problem 13-23 to prove that 

(i) _l _ < [ I x6 d x < ~. 
7h -Jo J 1+ x2 -7 

(ii) ~ < [1 /2 J 1 - x dx < v'3. 
8 - }0 1 + x - 4 

8. Find F '(x) if F(x) = J; xf(t) dt. (The answer is not xf(x); you hould 
perform an obvious manipulation on the integral b for trying to find F'.) 

9. Prove that if f i continuou , then 

f J (u)(x - u) du= f (f f (t) dt) du. 

Hint: Differentiate both ide , making use of Probl m 8. 

*10. Use Probl m 9 to prov tha t 

ff (u)(x - u)2 du = 2 f (f 2 (f I f (t) dt) du 1) du 2 

11. hnd a fun ti n f uh that f "' (x) = ] / J 1 + in2 x. (Thi probl mi 
upp d t b a y· d n't mi int rpr l th word "find. ) 
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12. A function f is periodic, with period a, if f (x + a) = f (x) for all x. 

(a) If f is periodic with period a and integrable on [O, a J, show that 

f' f = 11,+a f for all h. 

(b) Find a function f such that f is not periodic, but J' is. Hint: Choose 
a periodic g for which it can be guaranteed that f (x) = fo'( g is not 
periodic. 

(c) If f' is periodic with period a and f (a) = f (0), then f is also periodic 
with period a. 

*(d) Conversely, if J' is periodic with period a and f is periodic (with some 
period not necessarily = a ), then f (a) = f (0). 

13. Find ft zlx d x, by simply guessing a function f with f' (x) = zix, and using 
the Second Fundamental Theorem of Calculus. Then check with Prob­
lem 13-21. 

*14. Use the Fundamental Theorem of Calculus and Problem 13-21 to deri\'e the 
result stated in Problem 12-21. 

*15. Let C1, C and C2 be curves passing through the origin, as shown in Figure 7. 
Each point on C can be joined to a point of C1 with a vertical line segment 
and to a point of C2 with a horizontal line segment. We will say that C bisects 
C1 and C2 if the regions A and B have equal areas for every point on C. 

(a) If C1 is the graph off (x) = x 2, x ::: 0 and C is the graph off (x) = 2x 2, 

x ::: 0, find C2 so that C bisects C1 and C2. 
(b) l\lore generally, find C2 if C 1 is the graph of f (x) = xm, and C is the 

graph of f(x) = cx 111 for some c > 1. 

16. (a) Find the derivatives of F(x) = ft 1/t dt and G(x) = J:X 1/t dt. 

(b) Now give a new proof for Problem 13-15. 

*17. Use the Fundamental Theorem of Calculus and Darboux's Theorem (Prob­
lem 11-60) to give another proof of the Intermediate Value Theorem. 

18. Prove that if lz is continuous, f and g are differentiable, and 

1
g (x) 

F(x) = h(t)dt, 
f(x) 

then F'(x) = h(g(x)) · g'(x) - lz(f(x)) · J'(x). Hint: Try to reduce this to 
the two cases you can already handle, with a constant either as the lower or 
the upper limit of integration. 

19. Let f be integrable on [a, b], let c be in (a, b), and let 

F(x) = 1x f, a :S x :S b. 
(/ 

For each of the following statements, give either a proof or a counterexample. 

(a) If f is differentiable at c, then F is differentiable at c. 
(b) If f is difTeren tiable at c, then F' is continuous at c. 
(c) If J' is continuous at c, then F' is continuous at c. 
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*20. Let 

f (x) = { cos~' 

0, 

x-=JO 

x =0. 

Is the function F (x) = fot f differentiable at O? Hint: Stare at page I 79. 

21. Suppose that f' is integrable on [O, I J and f (0) = 0. Prove that for all x in 
[O, l] we have 

If (xll :s j f 1!'12
-

Show also that the hypothesis f (0) = 0 is 11C'C'dcd. Hint: Problem I 3-39. 

*22. Suppose that f is a differentiable function with f (0) = 0 and O < f' .:::: l. 
Prove that for all x 2: 0 we have 

f !3 ~(ff )2 
*23. (a) Suppose G' = g and F' = f. Prove that if the function y satisfies the 

differential equation 

(*) g(y(x)) · y'(x) = f(x) for all x in some interval. 

then there is a number c such that 

(**) G(y(x)) = F(x) + c for all x in this interval. 

(b) Show, conversdy, that if y satisfies (**), then y is a solution of (*). 

(c) Find what condition y must satisfy if 

I l +x2 
v (x) = . 
· I + y(x) 

(In this case g(t) = 1 +t and f(t) = I +t2.) Then ''solve" the resulting 
equations to find all possible solutions y (no solution will ha,·c R as its 
domain). 

(d) Find what condition y must satisfy if 

-1 
y'(x) = . 

1 + 5[y(x)] 4 

(An appeal to Problem 12-14 will shmv that there are functions satisfying 
the resulting equation.) 

(c) Find all functions y satisfying 

y(x)y'(x) = -x. 

Find the solution y satisf\·ing y(O) = -1. 
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24. In Problem 10-19 we found that the Schwarzian derivative 

J'"(x) 3 (f"(x)) 2 

---- --
f'(x) 2 f'(x) 

was O for f(x) = (ax+ b)/(cx + d). Now suppose that f is any function 
whose Schwarzian derivative is 0. 

(a) f" 2 / f' 3 is a constant function. 

(b) f is the form f(x) = (ax+ b)/(cx + d). Hint: Consider u = f' and 
apply the previous problem. 

25. The limit Jim J;N f, if it exists, is denoted bv fXJ f (or J;00 
f(x) dx ), and 

N-+oo a , a a 

called an ''improper integral." 

(a) Determine Ji°° x,. dx, if r < -1. 

(b) Use Problem 13-15 to show that f 1
00 

l/xdx does not exist. Hint: What 
2" 

can you say about f 1 I /x d x? 
(c) Suppose that f (x) ~ 0 for x ~ 0 and that f0

00 f exists. Prove that if 
0 ::::: g (x) ::::: f (x) for all x ~ 0, and g is integrable on each interval 
[O, N], then f0

00 
g also exists. 

(d) Explain why fo(X) I /(1 + x 2) dx exists. Hint: Split this integral up at 1. 

26. Decide whether or not the following improper integrals exist. 

(i) 

(ii) 

(iii) 

roc -----;::==JX. 
lo /I+ x3 

1
00 

X 

0 1 + x 
3/2 dx. 

f
00 k dx (this is really a type considered in Problem 28). 

lo x I+ x 

27. The improper integral f 00 f is defined in the obvious way, as lim J; f. 
N-+-oo 

But another kind of improper integral f~
00 

f is defined in a nonobvious way: 

it is f0
00 f + t 00 f, provided these improper integrals both exist. 

(a) Explain why J~rx; I /(l + x 2) dx exists. 

(b) Explain why J~
00 

x dx does not exist. (But notice that Nlim J!!N x dx does 
-+00 

exist.) 

(c) Prove that if J~(X) f exists, then Nlim J!!N f exists and equals f~
00 

f. 
-+00 

Show moreover, that lim J!!:; 1 f and lim J!!N 2 f both exist and equal 
N-+ oo N -+ oo 

J~
00 

f. Can you state a reasonable generalization of these facts? (1 f you 
can't, you will have a miserable time trying to do these special cases!) 
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28. There is another kind of "improper integral'' in which the interval is 
bounded, but the function is unbounded: 

(a) If a> 0, find Jim J; 1/Jxdx. This limit is denoted by J; 1/Jxdx, 
s---+O+ 

even though the function f (x) = 1 / ,Jx is not bounded on [O, a J, no 
matter how we define f (0). 

(b) Find f~1 
x,. dx if -1 < r < 0. 

(c) Use Problem 13-15 to show that J; x - 1 dx does not make sense, even as 
a limit. 

(d) Invent a reasonable definition of J~0 Ix I,. dx for a < 0 and compute it for 
-1 < r < 0. 

(e) Invent a reasonable definition of t 1(1-x 2) - 112 dx, as a sum of two 

limits, and show that the limits exist. Hint: Why does J~1 (1 + x)- 112 dx 

exist? How does (l +x)- 112 compare with (1-x2) - 112 for -1 < x < O? 

29. ( a) If f is continuous on [ 0, l], compute ,",']!. x 1' f ;
1

) d t. 

*(b) If f is integrable on [O, 1] and continuous at 0, compute 

. 11f(t) 
hm x -"-dt. 

x---+O+ x f-

30. It is possible, finally, to combine the two possible extensions of the notion of 
the integral. 

(a) If f(x) = 1/Jx for O :S x :S 1 and f(x) = 1/x2 for x > L find 100 

f (x) dx (after deciding what this should mean). 

(b) Show that 100 

x' dx never makes sense. (Distinguish the cases - l < 

r < 0 and r < -1. In one case things go wrong at 0, in the other case 
at oo; for r = -1 things go wrong at both places.) 
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FIGURE3 

15 THE TRIGONOMETRIC FUNCTIONS 

The definitions of the functions sin and cos are considerably more subtle than 
one might suspect. l<or this reason, this chapter begins \vith some informal and 
intuitive definitions, which should not be scrutinized too carefully, as they shall 
soon be replaced by the formal definitions which we really intend to use. 

In elementary geometry an angle is simply the union of two half-lines with a 
common initial point (Figure 1 ). 

L-

FIGURE! 

l\lore useful for trigonometry are "directed angles," which may be regarded as 
pairs (/ 1, /2) of half-lines with the same initial point, visualized as in Figure 2. 

FIGURE 2 

If for / 1 we always choose the positive half of the horizontal axis, a directed angle 
is described completely by the second half-line (Figure 3). 

Since each half-line intersects the unit circle precisely once, a directed angle is 
described, even more simply, by a point on the unit circle (Figure 4), that is, by a 
point (x, y) with x 2 + y2 = l. 

303 
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FIG U RE4 

A 

y 

II ClRE6 

The sine and cosine of a directed angle can now be defined as follows (Figure 5): 
a directed angle is determined by a point (x, y) with x 2 + y 2 = 1; the sine of the 
angle is defined as y, and the cosine as x. 

Despite the aura of precision surrounding the previous paragraph, we are not 
yet finished with the definitions of sin and cos. Indeed, we have barely begun. 
\iVhat we have defined is the sine and cosine of a directed angle; what we want 
to define is sin x and cos x for each number x. The usual procedure for doing 
this depends on associating an angle to every number. The oldest method is to 
''measure angles in degrees." An angle ''all the way around" is associated to 360, 
an angle ''half-way around" is associated to 180, an angle "a quarter way around'' 
to 90, etc. (Figure 6). The angle associated, in this manne1~ to the number x, is 
called "the angle of x degrees." The angle of O degrees is the same as the angle 
of 360 degrees, and this ambiguity is purposely extended furthe1~ so that an angle 
of 90 degrees is also an angle of 360 + 90 degrees, etc. One can now define a 
function, which we will denote by sin'' , as follows: 

sin (' (x) = sine of the angle of x degrees. 

There are two difficulties with this approach. Although it may be clear what we 

mean by an angle of 90 or 45 degrees, it is not quite clear what an angle of .Ji 
degrees is, for example. Even if this difficulty could be circumvented, it is unlikely 
that this system, depending as it does on the arbitrary choice of 360, will lead 
to elegant rcsults~ it would be sheer luck if the function sin° had mathematically 
pleasing properties. 

''Radian measure'' appears to offer a remedy for both these defects. Gi\'en any 
number x, choose a point P on the unit circle such that x is the length of the 
arc of the circle beginning at ( 1, 0) and running counterclockwise to P (Figure 7). 
The directed angle determined by P is called "the angle of x radians." Since the 
length of the whole circle is 2n, the angle of x radians and the angle of 2n + x 
radians are identical. A function si1{ can now be defined as follows: 

si1{ (.x) = sine of the angle of x radians. 

This same method can easily be adopted to define sinn; smce we want to have 
sin ° 360 = si1{ 2n, we can define 

• 0 • ,. 2n x . r JT x 
Slll X = Slll 

360 
= Slll 

180
. 

\Ve shall soon drop the superscript r in sin,., since sin,. (and not sin"' ) is the only 
function which will interest us; before we do, a few words of warning are advisable. 

The expressions sin '' x and sin,. x are sometimes written 

sin .t 0 

sin .r radians, 

but this notation is quite misleading; a number x is simply a number it does not 
c;1rry a banner indicating that it is "in degrees" or ''in radians." If the meaning 
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of the notation ''sin x" is in doubt one usually asks: 

"Is x in degrees or radians?'' 

but what one means is: 

"Do you mean 'sin ' or 'sir{'?'' 

Even for mathematicians, addicted to precision, these remarks might be dispens­
able, were it not for the fact that failure to take them into account will lead to 
incorrect answers to certain problems (an example is given in Problem 19). 

Although the function sir/. is the function which we wish to denote simply by sin 
(and use exclusively henceforth), there is a difficulty involved even in the definition 
of sinr. Our proposed definition depends on the concept of the length of a cun-e. 
Although the length of a curve has been defined in several problems, it is also easy 
to reformulate the definition in terms of areas. (A treatment in terms of length is 
outlined in Problem 28.) 

Suppose that x is the length of the arc of the unit circle from ( l, 0) to P; this arc 
thus contains x /2n of the total length 2n of the circumference of the unit circle. 
Let S denote the "sector'' shown in Figure 8; S is bounded by the unit circle, the 
horizontal axis, and the half-line through (0, 0) and P. The area of S should be 
x /2n times the area inside the unit circle, which we expect to be JT; thus S should 
have area 

x x 
-·JT=-. 
2n 2 

\ Ve can therefore define cos x and sin x as the coordinates of the point P which 
determines a sector of area x /2. 

\ Vith these remarks as background, the rigorous definition of the functions sin 
and cos now be?;ins. The first definition identifies JT as the area of the unit circle 
more precisely, as twice the area of a semicircle (Figure 9). 

JC=2·1
1 

/l-x 2 dx. 
- I 

(This definition is not offered simply as an embellishment; to define the trig­
onometric functions it will be necessary to first define sin x and cos x only for 
0 ~ x ~ n .) 

The second definition is meant to describe, for -1 ~ x ~ l, the area A (x) of 
the sector bounded by the unit circle, the horizontal axis, and the half-line through 

(x, / l - x 2 ). If O ~ x ~ l , this area can be expressed (Figure l 0) as the sum of 
the area of a triangle and the area of a region under the unit circle: 

--- + /I="r2 dt. 
x/I -x2 JI 

2 x 
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DEFINITION 

This same formula happens to work for - 1 S x SO also. In this case (Figure 11 ), 
the term 

x/1 - x 2 

2 
is negative, and represents the area of the triangle which must be subtracted from 
the term 

{~di 
If - 1 S x S l , then 

x/1 - x2 11 
A(x) = · + /1 - t2 dt. 

2 x 

Notice that if -1 < x < l, then A is differentiable at x and (using the Funda­
mental Theorem of Calculus), 

A'(x) = ! [x · -2
x + /1 -x2]- /I -x2 

2 2/l-x2 

Notice also (Figure 
from 

= ! [-x2+ (l -x2)]- /I -x2 

2 /1 - x2 

1 - 2x 2 

= - /1 - x 2 

2/1 - x 2 

1 - 2x 2 - 2(1 - x 2) 

2/1 - x 2 

-1 

2/1 - x 2 

12) that on the interval [ -1 . 1] the function A decreases 

A(-1) =0+/_ 1 

/1 -t2 dt = rr 
- 1 2 

to A (1) = 0. This follows directly from the definition of A, and also from the fact 
that its derivative is negative on (-1, 1 ). 

For O S x S rr we wish to define cos x and sin x as the coordinates of a point 
P = ( cos x, sin x) on the unit circle which determines a sector whose area is x /2 
(Figure 13). In other words: 

If O S x S Tr, then cos x is the unique number in [ -1, 1 J such that 

x 
A(cosx) = f 

and 
sin x = / I - (cos.r)2. 
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This definition actually requires a few word of justification. In order to know 
that there is a number y satisfying A (y) = x / 2, we use the fact that A is continuous, 
and that A take on the values O and rr / 2. This tacit appeal to the Intermediate 
Value Theorem is crucial, if we want to make our preliminary definition precise. 
H aving made and justified, our definition, we can now proceed quite rapidly. 

If O < x < rr , then 

cos'(x) = - sin x, 
sin' (x) = co x . 

If B = 2A, then the definition A ( cos x) = x /2 can be written 

B(cosx) = x; 

in other words, cos i just the inver e of B . We have already computed that 

I 1 
A (x) = - , 

2J 1 - x 2 

from which w conclude that 

Consequently, 

Since 

we also obtain 

I 1 
B (x) = - . 

JI -x2 

cos'(x) = cs- 1)'(x) 

1 
B'(B- 1(x)) 

1 
1 

J 1 - [B - 1(x)] 2 

= - J 1 - ( co x) 2 

m x. 

sinx = J I - (cosx)2, 

. , ( 1 - 2 cos x · cos' (x) 
sm x) = - · ---;:::====:--

2 J I - (cosx)2 

co x smx 

sm x 
= cosx. I 

The information contain d in Theorem 1 an b u d to k t h the araph of 
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2 

(b) 

I' IGl ' RL 16 

sin and cos on the interval [O , n]. Since 

cos' (x) = - in x < 0, 0 < x < n , 

the function cos d crea es from cos O = 1 to os n = - 1 (Figure 14). Consequently, 
cosy = 0 for a unique y in [O, n]. To find y, we note that the d finition of cos, 

x 

means that 

so 

It is easy to see that 

so we can also write 

Now we have 

A(co x) = 2, 

y 
A(O) = 2, 

f_ o ~dt = f
1 

~ dt 
- 1 lo 

, I > 0, 0 < x < n / 2 
in (x) = cosx 

< 0, n / 2 < x < n , 

so m mcrease on [O, n / 2] from in O = 0 to sin n / 2 = 1, and then decreases on 
[ n /2, n] to sin n = 0 (Figure 15). 

The values of sin x and cos x for x not in [O, n] are mo t easily defined by a 
two- tep piecing together process: 

(1) If TC :'.S x :'.S 2n , then 

sin x = - sin (2n - x) , 

co x = cos(2n - x) . 

Figure 16 shows the graphs of in and cos on [O, 2n]. 

(2) If x = 2rck + x' for ome integer k , and some x' in [O 2rr] , th n 
• • I 1n x = sin x, 

co x = o x'. 

Fi r 17 show th graph of in and o , n w defin d n all of R. 
Having xt nd d th function in and o to R , we mu t · now h k that th 

ba ic pr p r ti of th fun tion ontinu to h Id. In most a thi 
xampl , it i cl ar that th quati n 

in2 x + o 2 x = I 
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(a) 

(b) 

FIGURE 17 

holds for all x. It is also not hard to prove that 

sin' (x) = cos x, 
cos'(x) = - sinx, 

if x i not a multiple of rr. For example, if rr < x < 2rr, then 

sin x = - sin (2rr - x) , 

so 

sin'(x) = - sin'(2rr - x) · (-1) 
= cos(2rr - x) 
= cosx. 

If x is a multiple of rr we resort to a trick; it is only necessary to apply Th o­
rem 11-7 to conclude that the same formulas are true in thi case also. 

in-t 
I I 
I I 
I I 

i(\3; 
I I 
I I 
I I 

Jr 2Jr 1(\1 I I 
I I 
I I 
I I 

i(\ -I 

I 
Fl G UR l~ 18 
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2 

-1 

JT 

2 2 

THEOREM 2 

FI GURE 19 

PROOF 

-JT JT 

2 2 

JT 

2 
IICl ' R L 20 

The other standard trigonometric functions present no difficulty at all. \Ve 
define 

secx = -
1
-, 

cos x x =J kn + n /2, 
smx 

tanx = --
cosx 

1 } 
cscx = --

sm x x =J kn. 
cosx 

cotx = - .--
smx 

The graphs are sketched in Figure 18. It is a good idea to convince yourself that 
the general features of these graphs can be predicted from the derivatives of these 
functions, which are listed in the next theorem (there is no need to m emorize the 
statement of the theorem, since the results can be rederived whenever needed.) 

If x =J kn + n / 2, then 

If x =J kn , then 

sec' (x) = sec x tan x, 

' ( ) 2 ' tan x = sec .t . 

csc' (x) = - csc x cot x, 

cot' (x) = - csc2 x. 

Left to you (a straightforward computation). I 

The inverses of the trigonometric functions are also easily differentiated. The 
trigonometric functions are not one-one, so it is first necessary to restrict them 
to su itable intervals; the largest possible length obtainable is n, and the intervals 
usually chosen are (Figure 19) 

[ -Jr /2, n /2] 
[O, n] 
(-n /2, n /2) 

for sin, 

for cos, 

for tan. 

(The inverses of the other trigonometric functions arc so rarely used that they will 
not even be discussed here.) 

The inverse of the function 

f(x) = sin x, -n/2 ~ x ~ n / 2 

is denoted by arcsin (Figure 20); the domain of arcsin is [ - I , I J. The notation 
sin - I has been avoided because arcsin is not the im·ersc of sin (\\·hich is not one­
one), hut of the restricted function f; sometimes this function .f is denoted by Sin, 

I . b S" - I an ( a rcsm y m . 
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The inverse of the function 

g(x) = COSX, 

is denoted by arccos (Figure 21 ); the domain of arccos is [ - 1 , l]. Sometimes g 
is denoted by Cos, and arccos by Cos - 1 

• 

The inverse of the function 

h(x) = tan x, -n/2 < x < n/2 

is denoted by arctan (Figure 22); arctan is one of the simplest examples of a 
differentiable function which is bounded even though it is one-one on all of R. 
Sometimes the function h is denoted by Tan, and arctan by Tan- 1

• 

The derivatives of the inverse trigonometric functions are surprisingly simple, 
and do not involve trigonometric functions at all. Finding the derivatives is a simple 
matter, but to express them in a suitable form we will have to simplify expressions 
like 

cos(arcsin x), sec(arctan x ). 

2 

FIGURE 22 

A little picture is the best way to remember the correct simplifications. For exam­
ple, Figure 23 shows a directed angle whose sine is x ~ the angle shown is thus an 
angle of (arcsin x) radians; consequently cos(arcsin x) is the length of the other 

side, namely, j 1 - x 2. However, in the proof of the next theorem we will not 
resort to such pictures. 

If - I < x < 1, then 

l\1 oreover, for all x we have 

arcs in' (x) = ----;:=== /1 - x 2 ' 

-1 
arccos' (x) = ----;:=== 

/1 -x 2 

arctan'(x) = --­] + x2. 
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PROOF 

Now 

that is, 

therefore, 

arcsin ' (x ) = u-1)
1(x) 

1 

ru- 1 (x) ) 

1 

sin' (arcsin x ) 

1 

[ sin(arcsin x )]2 + [ co (ar sin x )] 2 = 1, 

x 2 + [ cos(arcsin x )] 2 = 1; 

cos(arcsin x) = J 1 - x2 . 

(Th po 1t1ve quare root is to be taken because arc in x 1s m (-rr / 2, rr /2) , o 
o (arc in x) > 0.) This proves the fir t fo rmula. 
The second formula has already been e tablished (in the proof of Theorem 1). 

It is also possible to imitate the proof for the first formula, a valuable exercise if 
that proof pre ented any difficultie . The third formula is proved a follows. 

arctan '(x) = (h - 1)'(x ) 

1 
h'(h - 1 (x)) 

1 

tan' ( arc tan x ) 
1 

ec2 ( arc tan x ) 

Dividing both ide of the identity 

sin2 a + cos2 a = 1 

by co 2 a yields 

tan 2 a + 1 = sec2 a. 

It follow that 

[ tan ( ar tan x) J 2 + 1 = 2 
( ar tan x ) , 

or 
x2 +1 = ec2 (artn x), 

whi h prov th third f; rmula. I 

T h traditi nal proofofth fi rmula in' (x) = x (quit difli r nt fr m th n 
giv n h r ) i u Llin d in Pr bl m 27. hi pr [ d p nd up n fir t tabli hing 
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lim sin h = l, 
1i-o h 

and the ''addition formula" 

sin (x + y) = sin x cos y + cos x sin y. 

Both of these formulas can be derived easily now that the derivative of sin and cos 
are known. The first is just the special case sin' (0) = cos 0. The second depends 
on a beautiful characterization of the functions sin and cos. In order to derive this 
result we need a lemma whose proof involves a clever trick; a more straightforward 
proof will be supplied in Part IV. 

Suppose f has a second derivative everywhere and that 

Then f = 0. 

J" + J = 0, 
f(O) = 0, 
f'(O) = 0. 

l\Iultiplying both sides of the first equation by f' yields 

J'J" +ff'= 0. 

Thus 

[(!')2 + J2
]' = 2(!' !" + f j') = 0, 

so (!')2 + J2 is a constant function. From f (0) = 0 and J' (0) = 0 it follows that 
the constant is O; thus 

[!' (x)]2 + [J(x)] 2 = 0 for all x. 

This implies that 

f(x) = 0 for all x. I 

If f has a second derivative everywhere and 

then 

!" + J = 0, 
J(O) = a, 
j'(O) = b, 

J = b · sin + a · cos. 

(In particula1~ if f (0) = 0 and J' (0) = 1, then f = sin; if f (0) = l and f' (0) = 0, 
then f = cos.) 
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PROOF Let 

THEOREM 5 

PROOF 

Then 

Cons quently, 

g (x) = f (x) - b sin x - a cos x. 

g' (x) = f' (x) - b cos x + a sin x, 
g" (x) = f 11 (x) + b sin x + a co x. 

g" + g = 0, 
g(O) = 0, 
g'(O) = 0, 

which show that 

0 = g (x) = f (x) - b sin x - a cos x, for all x. I 

If x and y are any two numbers, then 

in(x + y) = sinx cosy + cosx sin y, 

co (x + y) = cos x cos y - sin x sin y. 

For any particular number y we can define a function f by 

Then 

Consequently, 

f (x) = sin(x + y). 

J '(x) = cos(x + y) 
J "(x) = - sin(x + y). 

! " + f = 0, 
f(O) = sin y, 
J'(O) = co y. 

It follows from Theorem 4 that 

f = (cosy)· sin +(sin y) · co ; 

that i , 
sin (x + y) = cos y sin x + in y o x, for all x. 

Since any number y could hav been cho en to begin with, thi prove th fir t 
formula for all x and y. 

The econd formula i proved imilarly I 

As a on lu i n to thi hapt r and a a pr lud to hapt r 18 w will m nti n 
an lt rnativ appr h to th d finition of th fun ti n m . m 

ar in' (x) = 
1 

for - 1 < x < 1, 
J1 - x 2 



15. The Trigonometric Functions 315 

it follows from the Second Fundamental Theorem of Calculus that 

arcsin x = arcsin x - arcsin O = lo' ~ dt. 

This equation could ha\'e been taken as the drfinition of arcsin. It would follow 
immediately that 

• I 1 
arcsm (x) = ; 

)I -x2 

the function sin could then be defined as (arcsin) - 1 and the formula for the deriva­
tive of an inverse function would show that 

. I /1 • ') sm (x) = - sm- x, 

which could be defined as cos x. Eventually, one could show that A ( cos x) = x /2, 
recm·ering at the very encl of the development the definition with which we started. 
\ Vhile much of this presentation would proceed more rapidly, the definition would 
be utterly unmotivated; the reasonableness of the definitions would be known to 
the author, but not to the student, for whom it was intended! Nevertheless, as 
we shall see in Chapter 18, an approach of this sort is sometimes very reasonable 
indeed. 

PROBLEl\IS 

1. Differentiate each of the following functions. 

(i) 
(ii) 
(iii) 

(iv) 

f (x) = arctan ( arctan ( arctan x)). 

f (x) = a resin ( arctan ( arc cos x)). 

f (x) = arctan(tan x arctan x ). 

f (x) = arcsin ( 
1 

) . 
)I +x2 

2. Find the following limits by l'Hopital's Rule . 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

. sinx-x+x3/6 
hm-------
x --+ O x3 

. sin x - x + x 3 /6 
inn 

4 
. 

x --+ 0 X 

1
. cos x - 1 + x 2 /2 
1m-------

x--+ O x2 

1
. cos x - 1 + x 2 /2 
1m-------

x ---->- O x 4 

1
. arctan x - x + x 3 /3 
1111--------

x--+ O x3 

lim (~ - -
1 

) 
x- 0 x sin x · 
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3. Let f(x) = { si:x' 
l, 

(a) Find J' (0). 
(b) Find J"(O). 

x/0 

x =0. 

At this point, you will almost certainly have to use l'Hopital's Rule, but in 
Chapter 24 we will be able to find J<k\0) for all k, with almost no work 
at all. 

4. Graph the following functions. 

(a) f(x) = sin 2x. 

(b) f(x) = sin(x2
). (A pretty respectable sketch of this graph can be ob­

tained using only a picture of the graph of sin. Indeed, pure thought 
is your only hope in this problem, because determining the sign of the 
derivative J' (x) = cos(x2) • 2x is no easier than determining the behavior 
of f directly. The formula for J' (x) does indicate one important fact, 
however~ J' (0) = 0, which must be true since f is even, and which 
should be dear in your graph.) 

(c) f (x) = sin x + sin 2x. (It will probably be instructive to first draw the 
graphs of g (x) = sin x and h (x) = sin 2x carefully on the same set of 
axes, from O to 2n, and guess what the sum will look like. You can 
easily find out how many critical points f has on [O, 2n] by considering 
the derivative of f. You can then determine the nature of these critical 
points by finding out the sign off at each point; your sketch will probably 
suggest the answer.) 

( d) f (x) = tan x - x. (First determine the behavior of f in ( -Jr /2. Jr /2); in 
the intervals (kn - Jr /2, kn + Jr /2) the graph of f will look exactly the 
same, except moved up a certain amount. \Yhy?) 

(e) f(x) = sinx - x. (The material in the Appendi.x to Chapter 11 will be 
particularly helpful for this function. ) 

(f) f (X) = { SI~ X, X / 0 

1, x = 0. 

(Part (d) should enable you to determine approximately where the zeros 
of J' are located. Notice that f is even and continuous at O; also consider 
the size of f for large x .) 

(g) f (x ) = x sin x. 

*5. 'The lzyjJerbolic JjJiral is the graph of the function f (8) = a /8 in polar coordi­
nates (Chapter 4 , Appendix 3). Sketch this curve, paying particular attention 
to its behavior for f) dose to 0. 

6. Prove the addition formula for cos. 
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7. (a) From the addition formula for sin and cos derive formulas for sin 2x, 

co 2x, sin 3x, and cos 3x. 

(b) Use these formula to find the following values of the trigonometric func­
tions (u ually deduced by geometric arguments in elementary trigonom­
etry): 

• TC TC .J2 
sin - = cos - = -

4 4 2 ' 
TC 

tan 
4 

= 1, 

• TC 1 
sm 6 = 2' 

TC J3 
cos-= -6 2 . 

8. (a) Show that A sin(x + B) can be written as a sin x + b cos x for suitable a 
and b. (One of the theorems in this chapter provides a one-line proof 
You hould al o be able to figure out what a and b. are.) 

(b) Conver ely, given a and b, find numbers A and B such that a sin x + 
b cosx = A sin(x + B) for all x. 

( ) U e part (b) to graph f (x) = J3 sin x + cos x. 

9. (a) Prove that 
tanx + tany 

tan(x + y) = -----
1 - tanx tan y 

provided that x, y, and x + y are not of the form kn + re /2. (Use th 
addition formulas for sin and co .) 

(b) Prove that 

(
x+y) arctan x + arctan y = arctan , 
1 -xy 

indicating any necessary restrictions on x and y. Hint: Replace x by 
arctan x and y by arctan y in part (a). 

10. Prove that 

arcsin a + arcsin f3 = arcsin ( cn/i - {3 2 + f).J 1 - a 2
), 

indicating any restrictions on a and f3. 

11. Prove that if m and n are any numb r , then 

in mx in nx = ! [ co (m - n )x - co (m + n )x J, 
inmx osnx = H in(m +n)x + in(m -n)x], 

co mx co nx = H o (m + n )x + (m - n )x]. 
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12. Prov that if m and n are natural number , then 

in sin mx sin nx dx = { O, 
- n n , 

in cos mxcosnxdx = { O, 
- n n , 

1_: sin mx cos nx dx = 0. 

mi= n 

m =n , 

mi= n 

m =n , 

These relations are particularly important in the theory of Fourier series. Al­
though this topic will rec ive serious attention only in the Suggested R ading 
(see reference [26] ), the next problem provides a hint a to their importance. 

13. (a) If f is integrable on [-n, n] , show that the minimum value of 

1_: (f (x) - a cos nx)2 dx 

occurs when 
I in a= - f(x) cosnx dx, 
n - n 

and the minimum value of 

1_: (f (x) - a sin nx)2 dx 

when 
I in a = - f (x) sin nx dx. 
n - n 

(In each case, bring a outside the integral sign, obtaining a quadratic 
expression in a.) 

(b) D efine 

I in an = - f (x) cos nx dx, 
n -n 

n=0,1,2, ... , 

I in bn = - f(x) sin nx dx, 
n - n 

n = 1, 2, 3, . ... 

Show that if Ci and di are any numbers, then 

{ ( f (x) - [ ~ + f; c, co nx + d, in nx ]) 

2 

dx 

2 aoco co 2 2 in ( N ) ( 2 N ) = - n [f(x)] dx -2n 2 + ~anCn +bndn +n 2 + ; en +dn 

2 ao 2 2 i n ( 2 N ) 
= - n [f(x)] dx - n 2 + ~ an + b11 

+ ,r ( (v0_ - :;Y + f;<,, _ a,,)
2 + (d, _ b,,)2). 
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thus showing that the first integral is smallest when a; = c; and b; = d;. 

In other words, among all "linear combinations" of the functions s11 (x) = 
sin nx and c11 (x) = cosnx for 1 S 11 SN, the particular function 

N 
ao '\"' . 

g(x) = 2 +~an cosnx + b11 sm nx 
11=! 

has the "closest fit" to f on [-rr, rr]. 

14. (a) Find a formula for sin x + sin y. (Notice that this also gives a formula for 
sin x - siny.) Hint: First find a formula for sin(a +b) +sin(a -b). What 
good does that do? 

(b) Also find a formula for cos x + cosy and cos x - cosy. 

15. (a) Starting from the formula for cos 2x, derive formulas for sin2 x and cos2 x 
in terms of cos 2x. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

(b) Prove that 

x j 1 + cos x . x j l - cos x 
cos - = and sm - = 

2 2 2 2 
for O S x S 7T /2. 

(c) Use part (a) to find Jct sin2 x dx and J: cos2 x dx. 

(cl) Graph f (x) = sin 2 x. 

Find sin ( arc tan x) and cos ( arctan x) as expressions not involving trigono­
metric functions. Hint: y = arctan x means that x = tan y = sin y /cosy = 
sin y ;/ 1 - sin2 y. 

If x = tan u /2, express sin u and cos u in terms of x. (Use Problem 16; the 
answers should be very simple expressions.) 

(a) Prove that sin(x + 7T /2) = cos x. (All along we have been drawing the 
graphs of sin and cos as if this were the case.) 

(b) \ 1Vhat is arcsin(cosx) and arccos(sin x)? 

(a) Find [1 - 1
-

2 
dt. Hint: The answer is not 45. lo 1 + t 

1
00 1 

(b) Find -
1
--, dt. 

0 + t-
1 

Find lim x sin - . 
X-+00 X 

(a) Define functions sin° and cosc by sin ':'(x) = sin(rrx/180) and cosu(x) = 
cos(rrx / 180). Find (sin e' )' and (cos0

)' in terms of these same functions. 

1
. sin c, x cl 

1
. . . l 

(b) Find 1m -- an 1111 x sm -
X -> 0 X X----+00 X 

Prove that e\·ery point on the unit circle is of the form ( cos e, sin 8) for at 
least one (and hence for infinitely many) numbers e. 



320 Derivatives and Integrals 

23. (a) Prove that 7T is the maxnnum possible length of an interval on 
which sin is one-one, and that such an interval must be of the form 
[2krr - rr /2, 2krr + rr /2] or [2krr + rr /2, 2(k + 1 )rr - rr /2]. 

(b) Suppose we let g(x) = sinx for x in (2krr - rr/2, 2krr + rr/2). What is 
(g - 1)'? 

24. Let f (x) 

graph. 
sec x for O .::S x < rr. Find the domain of J- 1 and sketch its 

25. Prove that I sin x - sin y I < Ix - y I for all numbers x -=/=- y. Hint: The same 
statement, with < replaced by .::S, is a very straightforward consequence of a 
well-known theorem; simple supplementary considerations then allow .:::: to 
be improved to < . 

*26. It is an excellent test of intuition to predict the value of 

lim fb f (x) sin AX dx. 
)..-oo }a 

Continuous functions should be most accessible to intuition, but once you 
get the right idea for a proof the limit can easily be established for any inte­
grable J. 

(a) Show that lim J:d sin AX dx = 0, by computing the integral explicitly. 
)..-ex:, c 

(b) Show that if s is a step function on [a, b] (terminology from Prob-

lem 13-26), then lim t s(x)sin>-.xdx = 0. 
)..-ex:, a 

(c) Finally, use Problem 13-26 to show that lim t f (x) sin >-.x dx = 0 for 
1..->oo a 

any function f which is integrable on [a, b]. This result, like Problem 12, 
plays an important role in the theory of Fourier series; it is known as the 

C Riemann-Lebesgue Lemma. 

0 B = (1,0) 

I· I C l ' RE 2 4 

27. This problem ou dines the classical approach to the trigonometric functions. 
The shaded sector in Figure 24 has area x /2. 

(a) By considering the triangles OAB and OC B prove that if O < x < rr/4, 
then 

(b) Conclude that 

and prove that 

(c) Use this limit to find 

sm x x sm x 
<-<---

2 2 2 cosx 

sm x 
cosx < -- < l, 

x 

1
. sm x 

1 nn -- = . 
x -> O x 

I
. I - cos x 
1111 • 

x---+0 X 
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(d) Using parts (b) and (c), and the addition formula for sin, find sin' (x), 

starting from the definition of the deri\'ative. 

*28. This problem gives a treatment of the trigonometric functions in terms of 

length, and uses Problem 13-25. Let j(x) = /1 -x2 for -1 < x < 1. 
Define :£ (x) to be the length of f on l x, 1]. 

(a) Show that 

5f(x) = f I ~dt . 
. \ 1 - t 2 

(This is an improper integral, as defined in Problem I 4-28, so you must 
first prow the corresponding assertion for the length on [ x, 1 - c] and 
then pro\'e that 5£(x) is the limit of these lengths as c ---+ o+ .) 

(b) Show that 

I 1 
5£ (x)=------;:::::== 

/1 -x2 
for -1 < x < 1. 

(c) Define JT as 5£(-1). For O.::; x.::; n, define cosx by 5£(cosx) = x, and 

define sin x = j 1 - cos2 x. Prove that cos' (x) = - sin x and sin' (x) = 
cos x for O < x < JT. 

*29. Yet another development of the trigonometric functions was briefly men­
tioned in the text~ starting with irn·erse functions defined by integrals. It 
is convenient to begin with arctan, since this function is defined for all x. 
To do this problem, pretend that you have never heard of the trigonometric 
functions. 

(a) Let a(x) = f0"(1 +t2) - 1 dt. Prove that a is odd and increasing, and that 
lim a (x) and lim a (x) both exist, and are negati\'es of each other. If 

x-. oo x -.-oo 

we define JT = 2 lim a(x), then a - 1 is defined on (-n/2, n/2). 
x-.oo 

(b) Show that (a - 1)'(x) = l + [a - 1(x)] 2• 

(c) For -JT /2 < x < JT /2, define tan x = a - 1 (x ), and then define sin x = 

tan .x// l + tan2 x. Show that 

(i) 

(ii) 

lim sin x = 1 
X-+ Tf / 2-

lim sinx = -1 
x -+- rr / 2+ 

(1
•
1
•
1
.) • '( ) { sm x , -JT /2 < x < JT /2 and x =f. 0 

sin x = tanx 
1. x = 0 

(iv) sin" (x) = - sin x for - JT /2 < x < n2. 

*30. If we arc willing to assume that certain differential equations have solutions, 
another approach to the trigonometric functions is possible. Suppose, in 
particular, that there is some function Yo vvhich is not always O and which 
satisfies Yo"+ Yo = 0. 
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(a) Prove that _vo 2 + (_vo') 2 is constant , and conclude that either Yo(O) -=/=- 0 

or Yo'(O) -=/=- 0. 
(b) Prove that there is a function s satisfying s" + s = 0 and s (0) = 0 and 

s'(O) = 1. Hint: Try s of the form nyo + byo'. 

If we define sin = s and cos = s', then almost all facts about trigono­
metric functions become trivial. There is one point which requires work, 
however- producing the number Tr. This is most easily done using an 
exercise from the Appendix to Chapter 11: 

(c) Use Problem 6 of the Appendix to Chapter 11 to prove that cos x cannot 
be positive for all x > 0. It follows that there is a smallest xo > 0 with 
cos xo = 0, and we can define Tr = 2xo. 

(d) Prove that sin Tr /2 = 1. (Since sin2 + cos2 = 1, we have sin Tr /2 = ± 1; 
the problem is to decide why sin Tr /2 is positive.) 

(e) Find cos Tr, sin Tr, cos 2rr, and sin 2rr. (Naturally you may use any addi­
tion formulas, since these can be derived once we know that sin' = cos 
and cos'= - sin.) 

(f ) Prove that cos and sin are periodic with period 2rr. 

31. (a) After all the work involved in the definition of sin, it would be discon­
certing to find that sin is actually a rational function. Prove that it isn't. 
(There is a simple property of sin which a rational function cannot pos­
sibly have.) 

(b) Prove that sin isn't even defined implicitly by an algebraic equation; that 
is, there do not exist rational functions Jo, .... J,1_ 1 such that 

(sin x)" + f,1_ 1 (x)(sinx)" - 1 + · · · + Jo(x) = 0 for all x. 

Hint: Prove that Jo = 0, so that sin x can be factored out. The remaining 
factor is O except perhaps at multiples of Tr. But this implies that it is O 
for all x. (\iVhy?) You are now set up for a proof by induction. 

*32. Suppose that ¢1 and ¢2 satisfy 

and that g2 > g1. 

(a) Show that 

¢1" + g1¢1 = 0. 
¢2" + g2¢2 = 0, 

¢1 "¢2 - ¢2" ¢1 - (g2 - gi)¢1 ¢2 = 0. 

(b) Show that if ¢1 (x) > 0 and ¢2(x) > 0 for all x in (a. b), then 

and concluck that 



15. The Trigonometric Functions 323 

(c) Show that in this case we cannot have ¢1 (a) = </>1 (b) = 0. Hint: Con­
sider the sign of </>1'(a) and </>1'(b). 

(d) Show that the equations ¢1 (a)= </>1 (b) = 0 are also impossible if ¢1 > 0, 
</>2 < 0 or </>1 < 0, </>2 > 0, or </>1 < 0, </>2 < 0 on (a, b ). (You should be 
able to do this with almost no extra work.) 

The net result of this problem may be stated as fo llows: if a and b are 
consecutive zeros of </>1, then ¢2 must have a zero somewhere between 
a and b. This result, in a slightly more general form, is known as the 
Sturm Comparison Theorem. As a particular example, any solution of 
the differential equation 

y" + (x + 1) y = 0 

must have at least one zero in any interval (mr, (n + l)rr). 
33. (a) Using the formula for sin x - sin y derived in Problem 14, show that 

sin(k + !)x - sin(k - !)x = 2 sin~ cos kx. 
2 

(b) Conclude that 

I sin(n + l )x 
-
2 

+ cos x + cos 2x + · · · + cos nx = 2 

. x 
2sm 2 

Like two other results in this problem set, this equation is very important 
in the study of Fourier series, and we also make use of it in Problems 19-43 
and 23-22. 

(c) Similarly, derive the formula 

. (n + I ) . (n ) sm -
2
-x sm 2x 

sin x + sin 2x + · · · + sin 11 x = ---------
. x 

Sll12 
(A more natural derivation of these formulas will be gwen m Prob­
lem 27-14.) 

( d) Use parts (b) and ( c) to find fob sin x dx and fob cos x dx directly from 

the definition of the integral. 



*CHAPTER 16 TC IS IRRATIONAL 

Thi hort chapter, diverging from the main tream of the book, is included to 
demon trate that we are already in a position to do ome sophi ticated mathemat­
ics. This entir chapter is devoted to an elementary proof that rr is irrational. Like 
many "elementary" proofs of deep theorems, the motivation for many tep in our 
proof cannot be upplied; nevertheles , it i still quite po sibl to follow the proof 
tep-by- tep. 

Two observations must be made before the proof The first concerns the func­
tion 

which cl arly satisfies 

1 
0 < fn (x ) < - for O < x < 1. 

n! 

An important property of the function f n i revealed by considering the xpr ssion 
obtained by actually multiplying out x n ( 1 - x )11

• The lowe t power of x appearing 
will be n and the highest power will be 2n . Thus f 11 can be writt n in the form 

1 211 . 

f n(X) = - " C;X1
, 

n!L 
i=II 

where the number c; are integers. It i clear from thi expr s ion that 

M oreover, 

324 

fn (k) (0) = 0 if k < n or k > 2n. 

J,1 (n) (x ) = J_ [ n! Cn + t rm involving x ] 
n! 
1 

f,1 (n+'\x ) = 1 [(n + l )! c11 + 1 + t rm involvino- x ] 
n . 

f, (211 ) ( ) 1 [ (2 ) ' J " x = - n . c211 . 
n! 
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This means that 

f/1\0) = Cn, 

fn (n+l\O) = (n + l)cn+l 

J/2n\0) = (2n)(2n - 1) · ... · (n + l)c2n , 

where the numbers on the right are all integers. Thus 

fn (k) (0) is an integer for all k. 

The relation 

!,1(x) = fn(l - x) 

implies that 

therefore, 
fn (k) (1) is also an integer for all k. 

The proof that rr is irrational requires one further observation: if a 1s any 
positive number, and c > 0, then for sufficiently large n we will have 

an 
- <c. 
n! 

To prove thi , notice that if n :::: 2a, then 

an+l a an 1 an 
--- = -- . - < - . -. 
(n + 1)! n + 1 n! 2 n! 

Now let no be any natural number with no:::: 2a. Then, whatever value 

(no)! 

may have, the succeeding values satisfy 

a (no+ 1) 1 ano 
---<-·--
(no+ 1)! 2 (no)! 

a<no+2) 1 a<no+l) 1 1 ano 
---<-· <-·-·--
(no+ 2)! 2 (no+ l)! 2 2 (no)! 

a (no+k) 1 ano 
---<-·--
(no+ k)! 2k (no)!· 

ano 
If k is o large that -- < 2k, th n 

(no)! s 
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THEOREM I 

PROOF 

aCno+k) 
---<8, 
(no+k)! 

which is the de ired result. Having made these observations, we are ready for the 
one theorem in this chapter. 

The number n: i irrational; in fact, n: 2 is irrational. (Notic that the irrationality 
of n: 2 implies the irrationality of n:, for if n: were rational, then n: 2 certainly would 
be.) 

Suppo e n: 2 were rational, so that 

2 a 
7r = -

b 
for ome po itive integers a and b. Let 

(1) G (x) = bn [ 7r 2n J,1 (x) - 7r 2n-2 Jn'' (x) + n:2n-4 fn (4\x) 

- · · · + (- lf fn(2n)(x)]. 

Notice that each of the factors 

bnn:2n-2k = b'1(n:2t-k = bn (~r-k = an-kbk 

is an integer. Since f,1 (k) (0) and f,1 (k) ( 1) are integers, this shows that 

G(O) and G(l) are integers. 

Differentiating G twice yields 

(2) G"(x) = bn[n:2n Jn''(x) _ n:2n-2 J,,C4\x) + ... + (-lt f/2n+2\x)]. 

The last term, (-lYJ11 C
211+2\x), is zero. Thu , adding (1) and (2) gives 

(3) 

Now let 
H(x) = G'(x) inrrx - n:G(x) cosn:x. 

Then 

H'(x) = n:G' (x) cos n:x + G" (x) sin n:x - n:G' (x) cos n:x + n: 2G(x) m n:x 

= [ G" (x) + n: 2G(x )] sin n:x 

= n: 2a 11 f,1 (x) sin n:x, by (3). 

By the Second Fundamental Theor m of Cal ulu , 

:n: 2 lo' a" f,, (x) in :n: x dx = H (I) - H (0) 

= G' (1) inn: - n:G(l) o n: - G' (0) in O + n:G(O) 0 
= n: [ G (1) + G (0) J . 

hu 

:n: lo I a" f,,(x) in :n:x dx an integer. 



16. 7T is Irrational 327 

On the other hand, 0 < J,1 (x) < I / n ! for O < x < 1, so 

nail 
0 < nallf,1(x)sinnx < -- for O < x < 1. 

II! 

Consequently, 

1
1 nan 

0 < Jr allf,1(x)sinnxdx < --. 
0 11! 

This reasoning was completely independent of the value of n. Now if n is large 
enough, then 

1
1 nail 

0 < Jr a 11 f, 1 (x) sin Jr x dx < -- < l. 
o n! 

But this is absurd, because the integral is an integer, and there is no integer between 
O and 1. Thus our original assumption must have been incorrect: n 2 is irrational. I 

This proof is admittedly mysterious; perhaps most mysterious of all is the way 
that Jr enters the proof- it almost looks as if we have proved Jr irrational without 
ever mentioning a definition of Jr. A dose reexamination of the proof will show 
that precisely one property of Jr is essential-

sin(n) = 0. 

The proof really depends on the properties of the function sin, and proves the 
irrationality of the smallest positive number x with sin x = 0. In fact, very few 
properties of sin are required, namely, 

• I sm = cos, 
I • cos = - sm, 

sin(O) = 0, 
cos(O) = 1. 

Even this list could be shortened; as far as the proof is concerned, cos might just 
as well be defined as sin'. The properties of sin required in the proof may then be 
written 

sin"+ sin = 0, 
sin(O) = 0, 
sin' (0) = l. 

Of course, this is not really very surprising at all, since, as we han:' seen in the 
pre\·ious chapter, these properties characterize the function sin completely. 

PROBLEl\1S 

1. (a) Fortheareasoftriangles OABand OACinFigure l,with LAOB _:s n / 4. 
show that we have 
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0 (x, 0) = B (1, 0) = C 

FIGURE I 2. 

1 j 1 - Jl - 16(area OAB)2 
areaOAC = 2 2 

Hint: Solve the equations xy = 2(area OAB) , x 2 + y 2 = 1, for y. 

(b) Let Pm be the regular polygon of m sides inscribed in the unit circle. If 
Am is the ar a of P111 show that 

This re ult allows one to obtain (more and more complicated) xpr ss10ns 
for A2,,, starting with A4 = 2, and thus to compute n a accurately 
as desired (according to Probl m 8-11). Although better methods will 
appear in Chapter 20, a slight variant of this approach yield a very 
interesting expression for n : 

(a) Using the fact that 

area( OAB) 
---- =OB, 
area( OAC) 

show that if am is the di tance from O to one side of Pm , then 

(b) Show that 

(c) Using the fact that 
l[ 

am= cos-, 
m 

/ 1 + cosx 
and the formula cosx/2 = y 

2 
(Problem 15-15), prove that 

a4=!£ 
as= h + ~/£, 

t . 
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Together with part (b), this shows that 2/n can be written as an ' infinite 
product" 

to be precise, thi equation m an that the product of the first n factors 
can be made as close to 2/n a desired, by choosing n sufficiently large. 
T his product was discovered by Frarn;:ois Viete in 1579, and is only one of 
many fascinating expressions for n , some of which are mentioned later. 
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17 PLANETARY MOTION 

Nature and Nature's Laws lay hid in night 
God said "Let Newton be," and all was light. 

Alexander Pope 

Unlike Chapter 16, a short chapter diverging from the main stream of the book, 
this long chapter diverges from the main stream of the book to demonstrate that 
we are already in a position to do some real physics. 

In 1609 Kepler published his first two laws of planetary motion. The first law 
describes the shape of planetary orbits: 

Tlze jJlanets move in ellijJses, witlz tlze sun at one focus. 

The second law involves the area swept out by the segment from the sun to the 
planet (the 'radius vector from the sun to the planet') in various time intervals 
(Figure I): 

Equal areas are swept out by tlze radius vector in equal times. (Equivalently, the area 
swept out in time t is proportional to t.) 

Kepler's third law, published in 1619, relates the motions of different planets. If a 

is the major axis of a planet's elliptical orbit and T is its period, the time it takes 
the planet to return to a given position, then: 

The ratio a 3 / T 2 is the same for all planets. 

Newton's great accomplishment was to show (using his general law that the 
force on a body is its mass times its acceleration) that Kepler's laws follow from the 
assumption that the planets are attracted to the sun by a force (the gravitational 
force of the sun) always directed toward the sun, proportional to the mass of the 
planet, and satisfying an inverse square law; that is, by a force directed toward 
the sun whose magnitude varies inversely with the square of the distance from the 
sun to the planet and directly with the mass of the planet. Since force is mass 
times acceleration, this is equivalent simply to saying that the magnitude of the 
acceleration is a constant divided by the square of the distance from the sun. 

Newton's analysis actually established three results that correlate with Kepler's 
individual laws. The first of Newton 's results concerns Kepler's second law (which 
was actually discovered first, nicely preserving the symmetry of the situation): 

330 
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ltepler's second law is true precisely far 'central farces', i.e., if and only the farce between 
the sun and the planet always lies along the line between the sun and the planet. 

Although Newton is revered as the discoverer of calculus, and indeed invented 
calculus precisely in order to treat such problems, his derivation hardly seems to 
use calculus at all. Instead of considering a force that varies continuously as the 
planet moves, Newton first considers short equal time intervals and assumes that 
a momentary force is exerted at the ends of each of these intervals. 

To be specific, let us imagine that during the first time interval the planet moves 
along the line P1 P2, with uniform velocity (Figure 2a). If, during the next equal 
time interval, the planet continued to move along this line, it would end up at 
P3, where the length of P1 P2 equals the length of P2P3. This would imply that 
the triangle S P1 P2 has the same area as the triangle S P2P3 (since they have equal 
bases, and the same height)~ this just says that Kepler's law holds in the special 
case where the force is 0. 

Now suppose (Figure 2b) that at the moment the planet arrives at P2 it experi­
ences a force exerted along the line from S to P2, which by itself would cause the planet 
to move to the point Q. Combined with the motion that the planet already has, 
this causes the planet to move to R, the vertex opposite P2 in the parallelogram 
whose sides are P2 P3 and P2 Q. 

Thus, the area swept out in the second time interval is actually the triangle 
S P2 R. But the area of triangle S P2 R is equal to the area of triangle S P3 P2, since 
they have the same base S P2, and the same heights (since R P3 is parallel to S P2 ). 
Hence, finally; the area of triangle S P2 R is the same as the area of the original 
triangle S P1 P2 ! Conversely, if the triangle SR P2 has the same area as S P1 P2, and 
hence the same area as S P3 P2, then R P3 must be parallel to S P2, and this implies 
that Q must lie along S P2. 

Of course, this isn't quite the sort of argument one would expect to find in a 
modern book, but in its own charming way it shows physically just why the result 
should be true. 

To analyze planetary motion we will be using the material in the Appendix to 
Chapter 12, and the "determinant" <let defined in Problem 4 of Appendi.x 1 to 
Chapter 4. \!Ve describe the motion of the planet by the parameterized cun·e 

c(t) = r(t)(cosB(t), sinB(t)). 

so that r always gives the length of the line from the sun to the planet, while e 
gives the angle, which we will assume is increasing (the case where e is decreasing 
then follows easily). It will be convenient to write this also as 

(1) c(t) = r(t) · e(B(t)), 

where 

e(t) =(cost, sin t) 

is just the parameterized curve that runs along the unit circle. Note that 

e' (t) = ( - sin t, cost) 
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c(O) 

FIGURE3 

c(t) 

F I GURE 4 

is also a vector of unit length, but perpendicular to e(t), and that we also have 

(2) det(e(t), e'(t)) = 1. 

Differentiating ( 1 ), using the formulas on page 24 7, we obtain 

(3) c'(l) = r'(t) · e(B(t)) + r(t)e'(t) · e'(8(t)), 

and combining with ( 1 ), together with the formulas in Problem 6 of Appendi....._ 1 
to Chapter 4, we get 

det(c(t), c'(t)) = r(t)r'(t) det(e(B(t)), e(B(t))) + r(t)28'(t) det(e(B(t)), e'(B(t))) 

= r(t) 28' (t) det( e(B(t)), e' (B(t))), 

since det(v, v) is always 0. Using (2) we then get 

(4) det(c, c') = r 2e'. 

As we will see, r 2e' turns out to have another important interpretation. 

Suppose that A (t) is the area swept out from time O to t (Figure 3). We want 
to get a formula for A' (t), and, in the spirit of Newton, we'll begin by making 
an educated guess. Figure 4 shows A(t + h) - A(t), together with a straight line 
segment between c(t) and c(t + h). It is easy to write down a formula for the area 
of the triangle fl(h) with vertices 0, c(t), and c(t + h): according to Problems 4 
and 5 of Appendix 1 to Chapter 4, the area is 

area(fl(h)) = 1 det(c(t), c(t + h) - c(t)). 

Since the triangle fl (h) has practically the same area as the region A (t + h) - A (t), 
this shows (or practically shows) that 

, 1· A(t+h)-A(t) 
A (t) = nn ------

h-> O h 

1
. area fl (lz) 

= un ----
1z_,.o h 

_ Id - ( 1. c(t+lz)-c(t)) 
- 'r et c(t), un ------

~ h-> 0 h 

= ~ det(c(t) , c'(t)). 

A rigorous derivation, establishing more in the process, can be made using Prob­
lem 13-24, which gives a formula for the area of a region determined by the graph 
of a function in polar coordinates. According to this Problem, we can write 

1 f. () (t) 
A(t) = -

2 
p(¢)2 dcp 

() (0) 

if our parameterized curve c(t) = r(l) · e(B(t)) is the graph of the function pin 
polar coordinates (here we\-e used ¢ for the angular polar coorcliuatc, to avoid 
confusion with the function () used to describe the curve c). 
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Now the function p is just 

p=r o e- 1 

[for any particular angle ¢, e- 1 (</>) is the time at which the curve c has angular 
polar coordinate ¢, so r(e - 1(t)) is the radius coordinate corresponding to ¢]. 
Although the presence of the inverse function might look a bit forbidding, it's 
actually quite innocent: Applying the First Fundamental Theorem of Calculus 
and the Chain Rule to(*) we immediately get 

A'(t) = ip(()(t))2 
· ()'(t) 

= -!r(t) 2()'(t), since p = r O e- 1
. 

Briefly, 

Combining with (4), we thus have 

(5) A'= 1 det(c, c') = 1r2e'. 

Now we're ready to consider Kepler's second law. Notice that Kepler's second law 
is equivalent Lo sryJing that A' is constant, and thus it is equivalent to A" = 0. But 

So 

A"= Hdet(c, c')]' = 1 det(c', c') + 1 det(c, c") 

= 1 det(c, c"). 

(see page 248) 

Kepler's second law is equivalent to det(c, c") = 0. 

Putting this all together we have: 

Kepler's second law is true if and only if the force is central, and in this case each 
planetary path c(t) = r(t) · e(e(t)) satisfies the equation 

r 2
()' = det(c, c') = constant. 

Saying that the force is central just means that it always points along c(t). Since 
c"(t) is in the direction of the force, that is equivalent to saying that c"(t) always 
points along c(t). And this is equivalent to saying that we always ha\·e 

det(c, c") = 0. 

\\'e've just seen that this is equivalent to Kepler's second law. 

l\Ioreover, this equation implies that [ clet(c. c') ]' = 0, which by (5) gives (K 2). I 
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c(t) 

FIGURE 5 

Newton next showed that if the gravitational force of the sun is a central force 
and also satisfies an inverse square law, then the path of any object in it will be a 
conic section having the sun at one focus. Planets, of course, correspond to the 
case where the conic section is an ellipse, and this is also true for cornets that visit 
the sun periodically; parabolas and hyverbolas represent objects that come from 
outside the solar system, and eventually continue on their merry way back outside 
the system. 

If the gravitational force of the sun is a central force that satisfies an inverse square 
law, then the path of any body in it will be a conic section having the sun at one 
focus (more precisely, either an ellipse, parabola, or one branch of an hyperbola). 

Notice that our conclusion specifies the shape of the path, not a particular param­
eterization. But this parameterization is essentially determined by Theorem I: the 
hypothesis of a central force implies that the area A(t) (Figure 5) is proportional 
to t, so determining c(t) is essentially equivalent to determining A for arbitrary 
points on the ellipse. Unfortunately, the areas of such seg1nents cannot be deter­
mined explicitly.* This means that we have to determine the shape of the path 
c(t) = r(t) · e(8(t)) without finding its parameterization! Since it is the function 
r o e- 1 which actually describes the shape of the path in polar coordinates, we 
shouldn't be surprised to find e- 1 entering into the proof 

By Theorem 1, the hypothesis of a central force implies that 

r28' = det(c. c') = M 

for some constant M. The hypothesis of an inverse square law can be written 

II H 
c (t) = - --,., e(8(t)) 

r(t)-

for some constant H. Using (K 2), this can be written 

c"(t) H 
- = - -e(8(t)). 
8'(t) M 

Notice that the left-hand side of this equation is 

So if vve let 
D = c' o e- 1 

(this is the main trick- ''we consider c' as a function of 8"), then the equation can 
be written as 

I H H ( . ) D (8(t)) = - - e(8(t)) = - - cos8(t), sm 8(1) . 
M M 

* l\lorc precisely, \,\\' can 't write dmrn a solution in terms of familiar "standard fonctio11 s," like sin, 
a rcsin , t·t c. 
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and we can write this simply as 

D (u) = - -(cosu,smu) = - -cosu, - -smu , H . ( H H.) 
M M M 

[for all u of the form 8 (t) for some t], completely eliminating 8. 

The equation that we have just obtained is simply a pair of equations, for the 
components of D, each of which we can easily solve individually; we thus find that 

D(u)= +A. +B ( 
H · sin u H · cos u ) 

-M M 

for two constants A and B. Letting u = 8 (t) again we thus have an explicit formula 
for c': 

c = + A, + B . 
I ( H . sin 8 H . cos 8 ) 

-M M 

[Here sin 8 really stands for sin oe, etc., abbreviations that we will use throughout.] 
Although we can't get an explicit formula for c itself. if we substitute this equa­

tion, together with c = r(cos 8, sin 8), into the equation 

det(c, c') = M (equation (K2)), 

we get 

r [Z cos
2 e + B case+: sin2 e - A sine]= M, 

which simplifies to 

r - + - COS 8 - - Slll 8 = J . [ 
H B A . ] 

M2 M M 

Problem 15-8 shows that this can be written in the form 

r(I) [:2 + Ccos(e(t) + D)] = I, 

for some constants C and D. \!\Te can let D = 0, since this simply amounts to 
rotating our polar coordinate system (choosing which ray corresponds to 8 = 0), 
so we can write, finally, 

M2 
r[l + £cos8] = - = A. 

H 

But this is the formula for a conic section derived in Appendix 3 of Chapter 4 
(together with Problems 5, 6, and 7 of that Appendix). I 

In terms of the constant M in the equation 

r 28' = M 

and the constant A in the equation of the orbit 

r [ I + £ cos 8] = A 
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the la t equation in our proof hows that we can rewrite ( *) a 

II M2 1 
c (t ) = - - · - e(8(t)). 

A r(t)2 

(a) 

Recall (page 87) that the major axis a of th ellipse is given by 

A 
a=-1--2, 

- £ 

while the minor axi b i given by 

(b) 
A 

b=---;::== 
J 1 - £2 

Con quently, 

(c) 
b2 
- =a. 
A 

Remember that equation (5) gives 

A'(t ) = !r28' = iM , 

and thus 

A (t) = ! Mt . 

We can therefore interpret M in terms of the period T of the orbit. This period T 

i , by definition , the value oft for which we have 8(t ) = 2n , so that we obtain the 
complete ellip e. H ence 

area of the ellipse = A(T) = !MT, 

or 
2(area of the ellipse) 2nab 

M= = --
T T 

by Problem 13-17. 

H ence the constant M 2 / A in (**) i 

M 2 4n 2a2b2 

A T 2A 

4n 2a3 

y 2 ' using (c). 

This complet s the final tep of Newton's analy i : 

Kepl r 's third law i true if and only if th ace 1 ration c" (t) of th van ou plan t , 
moving on llip ati fy 

1 
c" (t ) = - G · 2 e(8 (t)) 

r 

f; r n tant G th t do n t d p nd n th plan t. 
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It should be mentioned that the converse of Theorem 2 is also true. To prove 
this, we first want to establish one further consequence of Kepler's second law. 
Recall that for 

e(t) =(cost, sin t) 

we have 
e' (t) = (- sin t, cost). 

Consequently, 
e"(t) = (-cost, -sint) = -e(t). 

Now differentiating (3) gives 

c"(t) = r"(t) · e(8(t)) + r'(t)8'(t) · e'(8(t)) 

+ r'(t)8'(t) · e'(8(t)) + r(t)8"(t) · e'(8(t)) + r(t)8'(t)8'(t) · e"(8(t)). 

Using e"(t) = -e(t) we get 

c"(t) = [r"(t)- r(t)8'(t) 2
] · e(8(t)) + [2r'(t)8'(t) + r(t)8"(t)] · e'(8(t)). 

Since Kepler's second law implies central forces, hence that c" (t) is always a mul­
tiple of c(t), and thus always a multiple of e(8(t)), the coefficient of e'(8(t)) 
must be O [ as a matter of fact, we can see this directly by taking the derivative of 
formula (K2)]. Thus Kepler's second law implies that 

(6) c"(t) = [r"(t) - r(t)8'(t/] · e(8(t)) . 

If the path of a planet moving under a central gravitational force lies on a conic 
section with the sun as focus, then the force must satisfy an inverse square law. 

As in Theorem 2, notice that the hypothesis on the shape of the path, together 
with the hypothesis of a central force, which is equivalent to Kepler's second law, 
essentially determines the parameterization. But we can't write clown an explicit 
solution, so we have to obtain information about the acceleration without actually 
knowing what it is. 

Once again, the hypothesis of a central force implies that 

for some constant M. and the hypothesis that the path lies on a conic section with 
the sun as focus implies that it satisfies the equation 

(A) r [ 1 + t: cos 8] = A, 

for some c and A. For our (not especially illuminating) proof, we will keep differ­
entiating and substituting from these two equations. 

First we differentiate (A) to obtain 

r'[l + t: cos8] - ere' sine= 0. 

Multiplying by r this becomes 

rr' [ l + c cos 8] - cr2e' sine = 0. 
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Using both (A) and (K2), thi become 

Ar' - c M sin e = 0. 

Differentiating again, we get 

U ing (K2) we get 

and then using (A) we g t 

Ar" - cM8' co e = 0. 

" cM2 
Ar - -- o e = 0, 

r2 

Ar - - - - 1 = 0. II M
2 

[ A J 
r 2 r 

Sub tituting from (K2) ye t again, we get 

M2 
A [r" - r(8 ')2J + 2 = 0, 

r 
or 

r 11 - r(8')2 = - M2 . 
Ar2 

Comparing with (6), we obtain 

II M 2 
c (t) = - Ar2 e(8(t)) , 

which is preci ely what we wanted to show: the force i inversely proportional to 
the square of the distance from the sun to the plan t. I 



CHAPTER 18 THE LOGARITHM AND 
EXPONENTIAL FUNCTIONS 

In Chapter 15 the integral provided a rigorous formulation for a preliminary def­
inition of the functions sin and cos. In this chapter the integral plays a more 
essential role. For certain functions even a preliminary definition presents difficul­
ties. For example, consider the function 

J (x) = lOX. 

This function is assumed to be defined for all x and to have an inverse function, 
defined for positive x, which is the "logarithm to the base 1 O," 

In algebra, 1 OX is usually defined only for rational x, while the definition for ir­
rational x is quietly ignored. A brief review of the definition for rational x will 
not only explain this omission, but also recall an important principle behind the 
definition of l OX. 

The symbol 1011 is first defined for natural numbers n. This notation turns out 
to be extremely convenient, especially for multiplying very large numbers, because 

1011 · I 0 111 = 1011 +111
• 

The extension of the definition of 1 OX to rational x is motivated by the desire 
to preserve this equation; this requirement actually forces upon us the customary 
definition. Since we want the equation 

10°. 1011 = 10°+11 = 1011 

to be true, we must define I o0 = I; since we want the equation 

10-n · 1011 = 10° = l 

to be true, we must define I 0- 11 = I/ l 011 ; since we want the equation 

lQl / 11 ..... lQl / 11 = lQ l / n+··+ l/ 11 = 101 = lQ 
"-.,-' 

11 times 11 times 

to be true, we must define 101111 = zlio; and since we want the equation 

lQl / 11 ..... lQl / 11 = 1 Q l/n+··+l / 11 = ) 0111 / 11 
"-.,-' 

111 times 111 times 

to be true, we must define I Qm / n = ( z/io )m. 

Unfortunately, at this point the program comes to a dead halt. \\re hm·e been 
guided by the principle that I ox should be defined so as to ensure that I ox+y = 
lox I QY; but this principle docs not suggest any simple algebraic way of defining 

339 
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I ox for irrational x. For this reason we will try some more sophisticated ways of 
finding a function f such that 

f (x + y) = f (x) · f (y) for all x and y. 

Of course, we are interested in a function which is not always zero, so we might 
add the condition f (I) /:- 0. If we add the more specific condition f (1) = 10, 
then ( *) will imply that f (x) = 10 1 for rational x, and 10 1 could be defined as f (x) 
for other x; in general f(x) will equal [JO)Y for rational x. 

One way to find such a function is suggested if we try to solve an apparently 
more difficult problem: find a differentiable function f such that 

f(x + y) = f(x) · f (y) for all x and y, 

f (l) = 10. 

Assuming that such a function exists, we can try to find .f'~ knowing the derivative 
of f might provide a clue to the definition of f itsel( Now 

, . f(x + lz) - f(x) 
f (x) = hm -----

h--. O /z 

= lim f(x). f (lz) - f (x) 
h--. 0 /z 

. f(h)-1 
= f(x) · hrn · . 

h----">0 /z 

The answer thus depends on 

f'(O) = lirn f (h) - l; 
h--. 0 /z 

for the moment assume this limit exists, and denote it by a. Then 

f'(x)=a·f(x) forallx. 

Even if a could be computed, this approach seems self-defeating. The derivative 
of f has been expressed in terms of f again. 

If we examine the inverse function .r-1 = log 10 , the whole situation appears in 

a new light: 

I 1 
log 10 (x) = ru-1 (x)) 

1 

ct·f(f- 1(x)) ax 

The derivative of 1- 1 is about as simple as one could ask! And, what is even 

more interesting, of all the integrals 1b x" dx examined pre\'iousli; the integral 

1/J x - 1 dx is the only one which we ca1~not c\·aluate. Since log 10 1 = 0 we should 
(/ 

have 
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This suggests that we define log 10 x as (1/a) fx t - 1 dt. The difficulty is that a is 

unknown. One way of evading this difficulty is to define 

f
x l 

logx = - dt, 
l t 

and hope that this integral will be the logarithm to some base, which might be 
determined later. In any case, the function defined in this way is surely more 
reasonable, from a mathematical point of view, than log 10 . The usefulness of 
log 10 depends on the important role of the number 10 in arabic notation (and thus 
ultimately on the fact that we have ten fingers), while the function log provides a 
notation for an extremely simple integral which cannot be evaluated in terms of 
any functions already known to us. 

I If x > 0, then 

f x 1 
log x = - dt. 

l t 

The graph of log is shown in Figure I. Notice that if x > 1, then log x > 0, 
and if O < x < l, then log x < 0, since, by our conventions, 

f x 1 11 l 
- dt = - - dt < 0. 

l t x t 

For x :S 0, a number log x cannot be defined in this way, because f (t) = 1 / t is 
not bounded on [x, l]. 

area= log x 

x 

(a) (b) 

FI G URE l 

The justification for the notation "log'' comes from the following theorem. 

If x, y > 0, then 

log(xy) = logx +logy. 
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PROOF 

COROLLARY 1 

PROOF 

COROLLARY 2 

PROOF 

Notic fir t that log'(x) = 1/x, by the Fundamental Theorem of Calculus. Now 
choo e a number y > 0 and let 

f (x) = log(xy). 

Then 
/ / 1 1 f (x) = log (x y) · y = - . y = - . 

xy x 

Thu f ' = log' . This means that there is a number c uch that 

f(x) = logx + c for all x > 0, 

that is, 
log(xy) = log x + c for all x > 0. 

The number c can be evaluated by noting that when x = 1 we obtain 

log(l · y) = log 1 + c 
= c. 

Thus 
log(xy) = log x +logy for all x. 

Since this is true for all y > 0, the theorem is proved. I 

If n is a natural number and x > 0, then 

log(x 11
) = n log x . 

Let to you (use induction). I 

If x, y > 0, then 

log(~) = logx - logy. 

This follows from the equations 

log x = log G . y) = log m +logy. I 

Theorem 1 provides some important information about the graph of log. Th 
fun tion log i cl arly increa ing, but since log' (x) = 1 / x , the d rivative be com 
very mall a x becomes large, and log consequ ntly grows mor and mor lowly. 
It i not immediately lear whether log i bound d or unbound don R. Ob rv 
however, that for a natural numb r n , 

100'(211
) = nl 2 ( nd 1 g2 > 0)· 

it fi llow that log i , in fa t, n t bound d abov . imil rly 

( __!__ ) = lo 1 - 1 g211 = - nl 2· 
' 211 
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therefore log is not bounded below on (0, I). Since log is continuous, it actu­
ally takes on all values. Therefore R is the domain of the function log - I. This 
important function has a special name, whose appropriateness will soon become 
clear. 

The "exponential function," exp, is defined as log- 1
• 

The graph of exp is shown in Figure 2. Since log x is defined only for x > 0, we 
always have exp(x) > 0. The derivative of the function exp is easy to determine. 

For all numbers x, 
exp' (x) = exp(x). 

I I I l exp (x) = (log- ) (x) = 
1 log' (log - (x)) 

1 

log- I (x) 

= log- I (x) = exp(x). I 

A second important property of exp is an easy consequence of Theorem 1. 

If x and y are any two numbers, then 

exp(x + y) = exp(x) · exp(y). 

Let x' = exp(x) and y' = exp(y), so that 

Then 

This means that 

x = logx', 
y =logy'. 

x + y = log x' +logy' = log(x ' y'). 

exp(x + y) = x'y' = exp(x) · exp(y). I 

This theorem, and the discussion at the beginning of this chapter, suggest that 
exp( I) is particularly important. There is, in fact , a special symbol for this number. 

e = exp(l). 
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1 
f (t) = -

t 

1 

FIGURE3 

2 3 4 

DEFINITION 

This definition is equivalent to the equation 

As illustrated in Figure 3, 

and 

Thus 

J,
2 1 

- dt < 1, 
l t 

J,
4 1 

- dt > 1, 
1 t 

J,
e 1 

1 = loge = - dt. 
1 t 

since 1 · (2 - 1) is an upper sum for 
f (t) = 1/t on [1 , 2] , 

smc ! · (2 - 1) + ! · (4 - 2) = 1 is a lower 
sum for f(t) = 1/t on [1 , 4]. 

J, 2 1 J,e 1 J,4 1 
- dt < - dt < - dt ' 

l t l t 1 t 

which shows that 

2 < e < 4. 

In Chapter 20 we will find much better approximations fore, and al o prove that 
e is irrational (the proof is much easier than the proof that n is irrational!). 

As we remarked at the beginning of the chapter, the equation 

exp(x + y) = exp(x) · exp(y) 

implies that 

exp(x) = [ xp(l)Y 
= ex , for all rational x . 

Since exp is defined for all x and exp(x) = ex for rational x, it is con istent with 
our earlier use of the exponential notation to defi,ne ex as xp(x) for all x . 

I For any number x, 
e x = xp(x). 

The terminology "exponential fun tion" hould now b cl ar. W hav u -
eeded in defining ex for an arbitrary ( ven irrational) xponent x . W hav not 

y t d fin d aX, if a =/=- e, but ther i a r a nabl prin ipl to uide u in th 
att mpt. If x i rational, th n 

But th la t pr n 1 d fin d for aLL x o w n u it t d fin ax. 
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If a > 0, then, for any real number x, 

(If a = e this definition clearly agrees with the previous one.) 

The requirement a > 0 is necessary, in order that log a be defined. This is not 
unduly restrictive since, for example, we would not even expect 

( _ 1) I /2 ~ /=I 
to be defined. (Of course, for certain rational x, the symbol ax will make sense, 
according to the old definition; for example, 

(-1)1 13 = R = -1.) 

Our definition of ax was designed to ensure that 

As we would hope, this equation turns out to be true when e is replaced by any 
number a > 0. The proof is a moderately involved unraveling of terminology. At 
the same time we will prove the other important properties of ax. 

If a > 0, then 

(Notice that ab will automatically be positive, so (abf will be defined); 

(2) a 1 = a and ax+y =ax· a-" for all x, y. 

(Notice that (2) implies that this definition of ax agrees with the old one for all 
rational x .) 

(Each of the steps in this string of equalities depends upon our last definition, or 
the fact that exp = log- I.) 

(2) a I = e I log a = elog a = a, 

ax +y = /x+y) log a = ex loga+y log a = ex log a . eY log a = ax . a Y . I 

Figure 4 shows the graphs of f (x) = ax for several different a. The behavior 
of the function depends on whether a < 1, a = I, or a > l. If a = l , then 
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FIGURE 5 

f (x) = l x = I . Suppose a > l. In this case log a > 0. Thus, 

if 
then 

so 
i.e., 

x < y, 

x log a < y log a, 
ex log a < eY log a• 

ax < aY. 

Thus the function f(x) = er' is increasing. On the other hand, if O < a < 1, 
so that log a < 0, the same sort of reasoning shows that the function f (x) = ax 
is decreasing. In either case, if a > 0 and a -=/= l, then f (x) = ax is one-one. 
Since exp takes on every positive value it is also easy to see that ax takes on every 
positive value. Thus the inverse function is defined for all positive numbers, and 
takes on all values. If f (x) = ax, then 1- 1 is the function usually denoted by log a 

(Figure 5). 
Just as ax can be expressed in terms of exp, so log

0 
can be expressed in terms 

of log. Indeed, 

In other words, 

if 

then 
so 

or 

y = log
0 

x, 

X = a y = eY log a, 

log x = y log a. 

log x 
y = log a· 

logx 
logax = --. 

log a 

The derivatives of f (x) = ax and g (x) = log
0 

x are both easy to find: 

f (x) = ex log a. 

Iogx 
g(x) =-I-, 

oga 

so J' (x) = log a · ex log a = log a · er'. 

I l 
so g (x) = l 

x oga 

A more complicated function like 

f(x) = g(x)h(x) 

is also easy to differentiate, if you remember that, by definition, 

f(x) = eh(x) log-g(x); 

it fo ll ows from the Chain Rule that 

J'(x) = eh(xl logg(x). h'(x) log g(x) + h(x)--[ 
g'(x)J 
g(x) 

= g(x)h(x) · h'(x) log g(x) + h(x)-- . [ 
g'(x)J 

'-- g(x) 

There is no point in remembering this fo rmula - simply apply the principle behind 
it in any specific case that arises; it docs help, hmvcve1; to remember that the first 
factor in the derivative will be ..c: (x )h(x). 
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There is one special case of the above formula which is worth remembering. 
The function f (x) = xa was previously defined only for rational a. \Ne can now 
define and find the derivative of the function f (x) = xa for any number a; the 
result is just what we would expect: 

f (x) = Xa = ea logx 

so 

J'(x) = ~. ealogx = ~. xa = axa-1. 
x x 

Algebraic manipulations with the exponential functions will become second na­
ture after a little practice- just remember that all the rules which ought to work 
actually do. The basic properties of exp are still those stated in Theorems 2 and 3: 

. , I 

. exp (x) =:=.:exp(x), 

exp(x -t- y) = exp(x) · exp(y). 

In fact, each of these properties _comes dose to characterizing the function exp. 
Naturally, exp is not the only fua_ction f satisfying J' = f, for if f = cex, then 
f I (X) = CeX = f (X); these funCtK>~1~-;are• the Only Ones With this property, however. 

If f is differentiable and 

J' (x) = j (x) for all x, 

then there is a number c such that 

J(x)=cex forallx. 

PROOF Let 
f(x) 

g(x) = -. 
eX 

(This is permissible, since ex =j=. 0 for all x .) Then 

I 
ex J'(x) - J (x)ex 

g (x) = = 0 
(ex)2 · 

Therefore there is a number c such that 

J(x) 
g(x) = -- = c for all x. I 

eX 

The second basic property of exp requires a more invoked discussion. The 
function exp is clearly not the only function f which satisfies 

f(x + y) = f (x) · f (y). 

In fact, f (x) = 0 or any function of the form f (x) = ax also satisfies this equation. 
But the true story is much more complex than this- there are infinitely many other 
functions which satisfy this property, but it is impossible, without appealing to mor~ 
advanced mathematics, to prO\T that there is even one function other than those 
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x 

FIG U R E 6 

already mentioned! It is for this reason that the definition of I ox is so difficult: 
there are infinitely many functions f which satisfy 

f (x + y) = f(x) · f(y), 
f(l) = 10, 

but which are not the function f (x) = IOx! One thing is true however- any 
continuous function f satisfying 

f (x + y) = f (x) · f (y) 

must be of the form f (x) = ax or f (x) = 0. (Problem 38 indicates the way to 
prove this, and also has a few words to say about discontinuous functions with this 
property.) 

In addition to the two basic properties stated in Theorems 2 and 3, the function 
exp has one further property which is very important- exp "grows faster than any 
polynomial.'' In other words, 

For any natural number 11 , 

ex 
lim - = oo. 

X-->00 Xll 

The proof consists of several steps. 

Step 1. ex > x for all x, and consequently lim ex = oo (this may be considered 
X-->00 

to be the case 11 = 0). 
To prove this statement (which is clear for x :S 0) it suffices to show that 

x > log x for all x > 0. 

If x < 1 this is clearly true, since log x < 0. If x > 1, then (Figure 6) x - 1 is an 
upper sum for f (t) = 1 / t on [ 1, x], so log x < x - 1 < x. 

Step 2. 
. ex 

hm - = oo. 
X-->00 X 

To prove this, note that 

ex = ex/2 . ex /2 = ~ (ex/'2) . ex /2. 

x ~.? 2 ~ 
2 - 2 

By Step I, the expression in parentheses is greater than 1, and lim ex /2 = oo; this 
X---+00 

shows that lim ex /x = oo. 
X---+00 

Ste/J 3. 
ex 

lim - = oo. 
X --> 00 .X 11 

Note tha t 

xn 
---- = - · 

W"·ll" 1111 
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The expression in parentheses becomes arbitrarily large, by Step 2, so the nth 
power certainly becomes arbitrarily large. I 

It is now possible to examine carefully the following very interesting function : 
f(x ) = e - l /x

2
, x =j:. 0. We have 

Therefore, 

! '( ) - - l /x2 2 x -e · 3 . 

f ' (x) < 0 
f'(x) > 0 

x 

for x < 0, 
for x > 0, 

so f is decreasing for negative x and increasing for positive x. Moreover, if Ix I is 
large, then x 2 is large, so -l/x2 is close to 0, so e - l /x

2 
is close to 1 (Figure 7). 

------------------------ 1 ------------------------------ ---------

FI GU R E? 

The behavior of f near O is more interesting. If x is small, then l/x2 is large, 
so e1lx

2 
is large, so e - l /x

2 
= l / (e 1lx

2
) is small. This argument, suitably stated with 

e's and 8's, shows that 

Therefore, if we define 

lim e - l /x
2 

= 0. 
x---+ 0 

I -l /x2 

f (x) = e ' 
0, 

x =/:- 0 
x = 0, 

then the function f is continuous (Figure 8). In fact, f is actually differentiable 

------------------------ 1 ---------------------- - --· 

f (x ) = e- ' x' 
{ 

l /x2 _j_ 0 

0, x = 0 

F l G R E 8 
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at 0: Indeed 

and 

W already know that 

e - l / h
2 1/h 

f' (0) = lim -- = lim --
11~0 h h"""7 0 eCl / '1 )2 ' 

whil 

ex 
- =oo; 
x 

lim __}j__!!_ = - lim x . 
1i~ o- e(I / h)2 

X~OO eCx2) 

it is all the more true that 
eCx2) 

lim -- = oo, 
x~ X 

and thi mean that 
. x 

hm -
2
- = 0. 

X~OO e(X ) 

Thus 

{ 

e-l /x2 . ~ 
f '(x )= x3' 

0, 

x/0 

x =0. 

We can now compute that 

J "(O) = lim j'(h) - j'(O) 
h~ O h 

e - l / '1 2 . ~ 
= lim h3 

h---+ 0 h 

an argument similar to the one above show that f " (0) = 0. Thu 

{ 

- l /x2 -6 - l /x2 4 
J "(x) = e . 0 + e . x6 ' x # 0 

0, x = 0. 

Thi argum nt can be continued. In fa t, using indu tion it an b h wn (Prob-
1 m 40) that J Ck) (0) = 0 for every k. The function f i e tremely flat at 0, and 
appr a h O o quickly that it an mask many irr ·ulariti f oth r fun ti n . 
I,or xampl (Figur 9), uppo that 

f (x) = { e- l /x2. in~ ' 

0, 

x/ 0 

x =0. 
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It can be shown (Problem 41 ) that for this function it is also true that f (k) (0) = 0 

for all k. This example shows, perhaps more strikingly than any other, just how 
bad a function can be, and still be infinitely differentiable. In Part IV we will 
investigate even more restrictive conditions on a function, which will finally rule 
out behavior of this sort. 

FIGURE9 

/ 
/ 

f (x) = e sm 1 / x, x -=j:. 0 // { - l / x2 • 

0, x =0 

PROBLEl\IS 

1. Differentiate each of the following functions (remember that ab' always de­
notes aW>). 

(i) 

(ii) 

(iii) 

(i\') 

(v) 
(vi) 

(vii) 

(viii) 
(ix) 
(x) 
(xi) 

f (x) = ee,e' . 

f(x) = log( 1 + log(l + log(l + el +e l+x ))). 

f(x) = (sinxyin(sinx). 

( rx e-12 dt) 
f(x) = e Jo . 

f(x) = (sinx) (sinx)sinx . 

f (x) = log(e' ) sin x. 

f (x) = [arcsin ( ~)] log(sin ex ). 
sm x 

f(x) = (log(3 + e4 ))e4
x + (arcsinx)10g3 . 

f (x) = (log x )logx . 

f(x) = xx. 

f (x) = sin(x sin(x'in ' >). 

2. (a) Check that the derivative of log o f is f' / f. 

This expression is called the logan'thmic derimtil'e of f. It is often easier 
to compute than f', since products and powers in the expression for f 
become sums and products in the expression for log o f. The deriva­
tive f' can then be recovered simply by multiplying by f: this process is 
called logarithmic differentiation. 

(b) Use logarithmic differentiation to find J'(x) for each of the following. 

(i) f(x) = ( I + x)(I + ex\ 



352 Derivatives and Integrals 

(ii) 
(3 - x) 1/3x2 

f (x) = (1 - x)(3 + x)2/3. 

(iii) f(x) = (sinx) osx + (cosx) in x _ 

3. Find 

(for f > 0 on [a , b] ). 

1b f ' (t) 
--dt 

a f (t) 

4. Graph each of the following functions. 

(a) f (x) = ex+ l _ 

(b) 
(c) 
(d) 

f(x)=ein x . 

f (x) = e~ + e-x . } (Compare the graph with the graphs of exp and 
f(x)=ex -e-x. 1/exp.) 

ex - e-x e2x - 1 2 
( e) f (x) = = = 1 - . 

ex + e-x e2x + 1 e2x + 1 

5. Find the following limits by l'Hopital's Rule. 

(i) 

(ii) 

ex - 1 - x - x 2 /2 
lim------
x~o x2 

lim ex - 1 - x - x 2 /2 - x 3 /6 
x~o x 3 

ex - 1 - x - x 2/2 
(iii) lim --------:----

x~o x3 

. log(l+x)-x+x2/2 
(iv) lun -------

x~o x2 

(v) 
lim log(l + x) - x + x2 /2 
x~o x3 

(vi) lim log(l + x) - x + x
2 /2 - x

3 /3 
x~o x3 

6. Find th following limits by l'H opital' Rul . 

(i) lim (1 - X) I /x . 
x~o 

(ii) lim ( tan x ) tan 2x . 
x t 

(iii) lim ( o x ) 1 I x
2

. 
x~o 
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(a) 
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2
-y

2
= I)~ 

( cosh x, sinh x) 

(b) 

FIGURE 10 
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ex - e-x 
sinhx = ---

2 ' 
ex+ e-x 

coshx = , 
2 

ex - e-x 2 
tanhx = = 1 - , 

ex + e-x e2x + 1 

are called the hyperbolic sine, hyperbolic cosine, and hyperbolic 
tangent, respectively (but usually read 'sinch,' 'cosh,' and 'tanch '). There 
are many analogies between these functions and their ordinary trigonometric 
counterparts. One analogy is illustrated in Figure 1 O; a proof that the region 
shown in Figure lO(b) really has area x /2 is best deferred until the next chap­
ter, when we will develop methods of computing integrals. Other analogies 
are discussed in the following three problems, but the deepest analogies must 
wait until Chapter 27. If you have not already done Problem 4, graph the 
functions sinh, cosh, and tanh. 

8. Prove that 

(a) cos!/ - sinh2 = 1. 
(b) tanh 2 + l / cosh 2 = 1. 
(c) sinh(x + y) = sinh x cosh y + cosh x sinh y. 

(d) cosh(x + y) = cosh x cosh y + sinh x sinh y. 

(e) sinh' = cosh. 

(f ) cosh' = sinh. 
I 1 

(g) tanh = --
2 

. 
cosh 

9. The functions sinh and tanh are one-one; their inverses sinh- 1 and tanh- 1
, 

are defined on Rand (-1, 1 ), respectively. These inverse functions are some­
times denoted by arg sinh and arg tanh (the "argument" of the hyperbolic 
sine and tangent). If cosh is restricted to [O, oo) it has an inverse, denoted 

by arg cosh, or simply cosh - I, which is defined on [ l, oo ). Prove, using the 
information in Problem 8, that 

(a) sinh(cosh- 1 x) = j x2 - l. 

(b) cosh(sinh- 1 x) = )I +x2. 

I 
(c) (sinh - 1)'(x) = . 

}I +x2 

I l 
(d) (cosh- )'(x) = forx > I. 

}x2 - l 
l 

(e) (tanh - 1)'(x) = 
2 

for lxl < l. 
1-x 
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10. (a) Find an explicit formula for sinh - 1
, cosh - t , and tanh - 1 (by olving the 

equation y = sinh - t x for x in term of y , etc.). 
(b) Find 

lb 1 dx, 

a J1 + x2 

l b 1 dx 

a Jx2 - 1 
for a, b > 1 or a, b < - 1, 

l b 1 2 dx 
a 1 - X 

for lal , lbl < 1. 

Compare your answer for the third integral with that obtained by writing 

1 l [ 1 1 ] 
1 - x2 = 2 1 - x + 1 + x · 

11. Show that 

J, x 1 
F(x) = -dt 

2 log t 

is not bounded on [2, oo). 

12. Let f be a nondecreasing function on [l , oo), and define 

F(x) = r f (t) dt , 
11 t 

x 2:: 1. 

Prove that f is bounded on [ 1, oo) if and only if F / log is bounded on [ 1, oo). 

13. Find 

(a) lim ax for O < a < 1. (Remember the definition!) 
x~ 

x 
(b) lim --

X~OO (log X )n 

(c) lim (logxY 
x~oo x 

( 1) 11 

(-1)11 log -
(d) lim x (logxY . Hint: x (logxY = x 

x~ o+ 1 

x 

14. Graph f (x) = xx for x > 0. (U e Problem 13(e).) 

15. (a) Find the minimum value of f (x) = ex /x 11 for x > 0, and on lud that 
f (x) > en /n 11 for x > n. 

(b) U ing the expr ion f'(x) = ex (x - n) /x 11+1 prov that .f'(x) > 
e11 + l /(n + 1) 11 + 1 for x > n + l and Lhu ob tain noth r proof that 
lim f(x) = oo. 

x 

16. raph f(x) = ex /x 11
• 
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17. (a) Find lim log(l + y)/y. (You can use l'Hopital's Rule, but that would be 
y-+0 

silly.) 
(b) Find lim xlog(l + 1/x). 

X-+00 

(c) Prove that e = lim (l + 1/xf. 
X-+00 

(d) Prove that ea = lim (1 + a/xf. (It is possible to derive this from part (c) 
X-+00 

with just a little algebraic fiddling.) 

*(e) Prove that log b = lim x(b 1/x - 1). 
X-+00 

18. Graph f(x) = (l + 1/xY for x > 0. (Use Problem 17(c).) 

19. If a bank gives a percent interest per annum, then an initial investment I 
yields I (1 +a/ l 00) after I year. If the bank compounds the interest (counts 
the accrued interest as part of the capital for computing interest the next 
year), then the initial investment grows to I ( I +a/ I 00)" after 11 years. Now 
suppose that interest is given twice a year. The final amount after 11 years 
is, alas, not I (1 +a/ 100)2\ but merely I (1 + a /200) 2n~ although interest is 
awarded twice as often, the interest must be halved in each calculation, since 
the interest is a /2 per half year. This amount is larger than I (l +a/ I 00)\ 
but not that much larger. Suppose that the bank now compounds the interest 
continuously, i.e., the bank considers what the investment would yield when 
compounding k times a year, and then takes the least upper bound of all 
these numbers. How much will an initial investment of I dollar yield after 
I year? 

20. (a) Let f(x) = log lxl for x =f=. 0. Prove that f'(x) = 1/x for x =f=. 0. 
(b) If f(x) =f=. 0 for all x, prove that (log lfl)' = f'/f. 

21. Suppose that on some interval the function f satisfies f' 
number c. 

cf for some 

(a) Assuming that f is never 0, use Problem 20(b) to prove that If (x)I = /ec.r 
for some number I (> 0). It follows that f (x) = kecx for some k. 

(b) Show that this result holds without the added assumption that f is 
never 0. Hint: Show that f can't be O at the endpoint of an open 
interval on which it is nowhere 0. 

( c) Give a simpler proof that f (x) = ke0 for some k by considering the 
function g(x) = f(x)/ecx. 

(d) Suppose that f' = Jg' for some g. Show that f(x) = keg(xl for some k. 

*22. A radioactive substance diminishes at a rate proportional to the amount 
present (since all atoms have equal probability of disintegrating, the total 
disintegration is proportional to the number of atoms remaining). If A (t) 

is the amount at time t, this means that A'(t) = cA(t) for some c (which 
represents the probability that an atom will disintegrate). 

(a) Find A (t) in terms of the amount Ao = A (0) present at time 0. 
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(b) Show that there is a number r (the "half-life" of the radioactive element) 
with the property that A (t + r) = A (t) /2. 

23. Newton's law ef cooling states that an object cools at a rate proportional to 
the difference of its temperature and the temperature of the surrounding 
medium. Find the temperature T (t) of the object at time t, in terms of its 
temperature To at time 0, assuming that the temperature of the surrounding 
medium is kept at a constant, M. Hint: To solve the differential equation 
expressing Newton's law, remember that T' = (T - M)'. 

24. Prove that if f (x) = fo x J(t) dt, then f = 0. 

25. Find all continuous functions f satisfying 

(i) [ f = e'. 

(ii) fox' f = I - e2x' . 

26. Find all functions f satisfying .f'(t) = f (t) + lo I J(t) dt. 

27. Find all continuous functions f which satisfy the equation 

lo
x t 

(f(x)) 2 = f(t)--
2 

dt. 
o 1 + t 

28. (a) Let f and g be continuous functions on [a, b] with g nonnegative. Sup­
pose that for some C we have 

f(x) :SC+ 1x f g, a::::: x::::: b. 

Prove Gronwall's inequality: 

f(x)::::: cef g . 

Hint: Consider the derivative of the function h (x) = ( C + .fc:" f g) e - J: i. 
(b) Let f and g be nonnegative functions with g continuous and f differen­

tiable. Suppose that J'(x) = g(x)J(x) and f(O) = 0. Prove that f = 0. 
(Compare Problem 21.) 

29. (a) Prove that 

x2 x3 xn r 

I + x + - + - + · · · + - < e· for x :::: 0. 
2! 3! II! -

Hint: Use induction on 11, and compare ckrivatiws. 
(h) Give a new proof that lirn ex /x" = oo. 

X --* 00 

30. Give yet another proof of this fact, using the appropriate form of l'Hopital's 
Rule. (Sec Problem I 1-56.) 
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31. (a) Evaluate lim e - x
2 r e1

2 
dt. (Y~m should be able to make an educated 

X-HXl lo 
guess before doing any calculations.) 

(b) Evaluate the following limits. 

(i) 1
x+ (l /x) 

lim e - x
2 e1 2 

dt. 
X-->00 X 

(ii) 
• 2 1 x+(logx) /x 2 

hm e -.x e1 dt. 
X-->00 X 

? 1 x+(logx) / 2x 
lim e- :r- e1 2 

dt. 
X-->00 X 

(iii) 

32. This problem outlines the classical approach to logarithms and exponentials. 
To begin with, we will simply assume that the function f (x) = ax, defined in 
an elementary way for rational x, can somehow be extended to a continuous 
one-one function, obeying the same algebraic rules, on the whole line. (See 
Problem 22-29 for ·a direct proof of this.) The inverse of f will then be 

, denoted by log
0

• 

(a) Show, directly from the definition, that 

loga '(x) = lim log
0 

1 + ..!._ ( 
I ) 1; 11 

h-->0 x 

= ~ ·log
0

1

(lim(l +k)l /k). 
x k-->0 

Thus, the whole problem has been reduced to the determination of 
lim (1 + h) 1 I h. If we can show that this has a limit e, then log/ (x) = 
h-->0 

1 I 1 1 ll d .. I) - · log e = -, and consequent y exp = og; 1as envat1ve exp (x = 
X e X 

exp(x). 

(b) Let a,. = ( I + ~ )" for natural numbers 11. Using the hinorn ial theorem, 

show that 

n 1 ( 1) ( 2) ( k - 1) all = 2 + :z= - 1 - - 1 - - . . . . . 1 - -- . 
k! 11 ll ll 

k=2 

Conclude that an < a11 +1 · 

(c) Using the fact that 1/k!::: l/2k- l fork::::_ 2, show that all all < 3. Thus, 
the set of numbers {a1, a2. a3, ... } is bounded, and therefore has a least 
upper bound e. Show that for any c > 0 we have e - an < c for large 
enough n. 

(d) If 11 ::: x ::: n + l , then 
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A p B 

Q 
FI GURE II 

Concl ude that lim (1 + 2-)x = e. Also show that lim (1 + 2-) x = e, 
x--> oo X x-->-oo X 

and conclude that lim (1 + h) l / h = e. 
lz-->0 

*33. A point P is moving along a line segment AB of length 107 while another 
point Q moves along an infinite ray (Figure 11 ). The velocity of P is always 
equal to the distance from P to B (in other words, if P(t) is the position of P 

at time t , then P'(t ) = 107 - P(t)) , while Q moves with constant velocity 
Q' (t) = I 07. The distance traveled by Q after time t is defin ed to be the 
Napien'an logantlzm of the distance from P to B at time t. Thus 

107 t = Nap log[ 107 
- P(t)]. 

T his was the definition of logarithms given by Napier (1550- 1617) in his 
publication of 1614, Afirjfici logantlzmonum canonis descnption (A Description of 
the Wonderful Law of Logarithms); work which was done before the use of 
exponents was invented! T he number I 07 was chosen because Napier's ta­
bles (intended for astronomical and navigational calculations), listed the loga­
rithms of sines of angles, for which the best possible available tables extended 
to seven decimal places, and Napier wanted to avoid fractions. Prove that 

107 
Nap logx = 107 log-. 

x 

Hint: Use the same trick as in Problem 23 to solve the equation for P. 

*34. (a) Sketch the graph of f (x) = (log x) / x (paying particular attention to the 
behavior near O and oo). 

(b) Which is larger, err or n e? 

(c) Prove that if O < x ~ 1, or x = e, then the only number y satisfying 
xY = yx is y = x; but if x > 1, x-=!= e, then there is precisely one number 
y -=!= x satisfying x Y = y\ moreover, if x < e, then y > e, and if x > e, 

then y < e. (Interpret these statements in terms of the graph in part (a)!) 

(d) Prove that if x and y are natural numbers and xY = yX, then x = y or 
x = 2, y = 4, or x = 4, y = 2. 

(e) Show that the set of all pairs (x, y) with xY = yx consists of a curve and 
a straight line which intersect; find the intersection and draw a rough 
sketch. 

**(f) For I < x < e let g(x) be the unique number > e with x g(x) = g(xY . 

Prove that g is differentiable. (It is a good idea to consider separate 
functions, 

logx 
f 1 (x) = -' - , 0 < x < e 

x 
logx 

h (x) = -- , e < x 
x 
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and write g in terms of !1 and f2. You should be able to show that 

g'(x) = [g(x)]2 1 - log x 
1 - log g(x) x2 

if you do this part properly.) 

*35. This problem uses the material from the Appendix to Chapter 11. 

(a) Prove that exp is convex and log is concave. 
II 

(b) Prove that if L Pi = 1 and all Pi > 0, then for all Zi > 0 we have 
i=l 

ZJ /JI · ,,, · -;,,/" < PJ';.I + · · · + PnZ-11· 

(Use Problem 8 from the Appendix to Chapter 11.) 
(c) Deduce another proof that G 11 ~ An (Problem 2-22). 

36. (a) Let f be a positive function on [a, b], and let P11 be the partition of [a, b] 
into n equal intervals. Use Problem 2-22 to show that 

-
1
-L(log f, Pn) ~ log (-

1
-L(f, Pn)). 

b-a b-a 

(b) Use the Appendix to Chapter 13 to conclude that for all integrable f > 0 
we have 

_1_ lb log f ~ log (-1- lb f) . 
b-a a b-a a 

A more direct approach is illustrated in the next part: 

(c) In Problem 35, Problem 2-22 was deduced as a special case of the in­
equality 

( 

II ) fl 

g tr PiXi ~ tr Pig(Xi) 

II 

for Pi > 0, L p; = 1 and g convex. For g concave we have the reverse 
i = I 

inequality 

t. p;g(x;) ~ g (t. p;x). 

Apply this with g = log to prove the result of part (b) directly for any 
integrable f. 

( d) State a general theorem of which part (b) is just a special case. 

37. Suppose f satisfies!'= f and f (x + y) = f (x)f (y) for all x and y. Prow 
that f = exp or f = 0. 
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*38. Prove that if f is continuous and f (x + y) = f (x) f (y) for all x and y, then 
either f = 0 or f(x) = [f(l)Y for all x. Hint: Show that f(x) = [f(l)J-" 
for rational x, and then use Problem 8-6. This problem is closely related to 
Problem 8-7, and the information mentioned at the end of Problem 8-7 can 
be used to show that there are discontinuous functions f satisfying f (x + y) = 

f (x)f (y). 

*39. Prove that if f is a continuous function defined on the positive real numbers, 
and f(xy) = f (x) + f(y) for all positive x and y, then f = 0 or f(x) = 
f(e) logx for all x > 0. Hint: Consider g(x) = f(ex). 

*40. Prove that if f (x) = e- 1 fx
2 

for x =j:. 0, and f (0) = 0, then f (k) (0) = 0 for 
all k (you will encounter the same sort of difficulties as in Problem 10-21 ). 

Hint: Consider functions g(x) = e- I/x
2 
P(l /x) for a polynomial function P. 

*41. Prove that if f(x) = e- I/x
2 

sin 1/x for x =j:. 0, and f(O) = 0, then f<k)(O) = 0 
for all k. 

42. (a) Prove that if a is a root of the equation 

( ) 11 + 11 - l + + + 0 * a11 X {l 11 _ JX · · · {lJX ao = , 

then the function y (x) = eax satisfies the differential equation 

(**) a11 y<n) + a11 _ 1y<n- l) + · · · + a1y' + aoy = 0. 

*(b) Prove that if a is a double root of (*), then y(x) = xeax also satisfies(**). 
Hint: Remember that if a is a double root of a polynomial equation 
f (x) = 0, then f' (a) = 0. 

*(c) Prove that if a is a root of (*) of order r, then y(x) = xkeax is a solution 
for O :::: k :::: r - 1. 

If (*) has n real numbers as roots (counting multiplicities), part (c) gives 
n solutions YI, ... , Yn of (**). 

(d) Prove that in this case the function CJYI + · · · + c11 y11 also satisfies (**). 

It is a theorem that in this case these are the only solutions of (**). Prob­
lem 21 and the next two problems prove special cases of this theorem, 
and the general case is considered in Problem 20-26. In Chapter 27 we 
will see what to do when (*) does not hm-c n real numbers as roots. 

*43. Suppose that f satisfies f" - f = 0 and f (0) = f'(O) = 0. Prove that f = 0 
as follows. 

(a) Show that f 2 - (f')2 = 0. 
(b) Suppose that f (x) =j:. 0 for all x in some interval (a, b). Show that either 

f(x) = cex or else f (x) = ce - x for all x in (a, b) , for some constant c. 
**(c) If f (xo) =j:. 0 for xo > 0, say, then there would be a number a such that 

0 :::: a < xo and f(a) = 0, while f(x) =j:. 0 for a < x < xo. Why? Use 
this fact and part (b) to deduce a contradiction. 
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*44. (a) Show that if l satisfies l" - l = 0, then l (x) = aex + be-x for 
some a and b. (First figure out what a and b should be in terms of l (0) 
and 1'(0), and then use Problem 43.) 

(b) Show also that l = a sinh +b cosh for some (other) a and b. 

45. Find all functions l satisfying 

(a) 1(11)=1(11- 1)_ 

(b) 1<11) = p11-2). 

*46. This problem, a companion to Problem 15-30, outlines a treatment of the ex­
ponential function starting from the assumption that the differential equation 
f' = l has a nonzero solution. 

(a) Suppose there is a function l -f:. 0 with f' = l. Prove that l (x) -f:. 0 for 
each x by considering the function g (x) = l (xo + x) l (xo - x), where 
l (xo) -=I- 0. 

(b) Show that there is a function l satisfying l' = l and l (0) = 1. 
(c) For this l show that l (x + y) = l(x) · l (y) by considering the function 

g(x) = l (x + y)/ l (x). 

(d) Prove that l is one-one and that u- 1 )' (x) = I/ x. 

4 7. Let l and g be continuous functions such that lim l (x) = lim g (x) = oo. 

\Ve say that l growsjaster than g (j » g) if 

1
. l(x) -
11n -- - oo, 

X-+00 g(X) 

X-+00 X-+ 00 

and we say that l and g grow at the same rate (! ""'g) if 

1. l(x) . d" -1-0 
1111 -- exists an 1s r , oo. 

X-+00 g(X) 

For example, for any polynomial function P with lim P(x) = oo (i.e., P 
X-+00 

is non-constant and has positive leading coefficient) we have exp » P and 
P » log11 for any positive integer n. 

(a) Given l and g, with lim l (x) = lim g (x) = oo, is it necessarily true 
X-+ 00 X-+ 00 

that one of the three conditions l » g or g » l or l ""' g holds? 

(b) If l » g, then l + g ""' l. 
(c) If 

log l 
-->c> 
logg -

for sufficiently large x, then l » g. 

(d) If l » g and F(x) = fox l, G (x) = fox g, does it necessarily follow 

that F » G? 
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(e) Arrange ach of the following set of functions in incr asing order of 
growth (fo r convenience, we indicate each function simply by giving its 
value at x): 

(i) 

(ii) 

(iii) 

x 3, eX, x 3 + log(x 3) , log 4x, (log x Y, xX, x + e- Sx, x 3 log x . 

x log2 x, e5x, log(xx), ex2, xx, x logx, (log x )x . 
ex Xe xx ex2 2x ex/2 (log x)2x 

' ' ' ' ' ' . 
48. Suppose that g 1, g2, g3, . . . are continuous function . Show that there is a 

continuous function f which grows faster than each gi. 

49. Prove that log10 2 is irrational. 



CHAPTER 19 INTEGRATION IN ELEMENTARY TERMS 

Every computation of a derivative yields, according to the Second Fundamental 
Theorem of Calculus, a formula about integrals. For example, 

if F(x) = x(logx) - x then F'(x) = logx; 

consequently, 

1b logx dx = F(b) - F(a) = b(logb) - b - [a(loga) - a], 0 < a, b. 
(/ 

Formulas of this sort arc simplified considerably if we adopt the notation 

F(x) lh = F(b) - F(a). 
a 

, ,ve may then write 

1b log x dx = x(logx) - xi:. 

This evaluation of.£: log x dx depended on the lucky guess that log is the deriva­
tive of the function F (x) = x (log x) - x. In general, a function F satisfying F' = f 
is called a primitive of f. Of course, a continuous function f always has a 
primitive, namely, 

but in this chapter we will try to find a primitive which can be written in terms of 
familiar functions like sin, log, etc. A function which can be written in this way 
is called an elementary function. To be precise,* an elementary function is 
one which can be obtained by addition, multiplication, division, and composition 
from the rational functions, the trigonometric functions and their inverses, and the 
functions log and exp. 

It should be stated at the very outset that elementary primitives usually cannot 
be found. For example, there is no elementary function F such that 

F' (x) = e-x
2 

for all x 

(this is not merely a report on the present state of mathematical ignorance; 1t 1s 
a (difficult) theorem that no such function exists). And, what is even worse, you 

* The definition which ,ve will give is precise, but not really accurate, or at least not quite standard. 
Usually the elementary functions are defined to include "algebraic" fun ctions, that is, functions g 
satisfying an equation 

(g(x)) 11 + fn-1 (xl(g(x)) 11
- I + · · · + fo(x) = 0, 

where the fi arc rational functions. But for our purposes these functions can be ignored. 

363 
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will have no way of knowing whether or not an elementary primitive can be found 

(you will just have to hope that the problems for this chapter contain no misprints). 
Because the search for elementary primitives is so uncertain, finding one is often 
peculiarly satisfying. If we observe that the function 

log(l + x 2 ) 
F(x) = x arctan x -

2 

satisfies 
F' (x) = arctan x 

(j ust how we would ever be led to such an observation is quite another matter), so 
that 

b ? b 

1 log(l + x-) 
arctan x dx = x arctan x - ? , 

a - a 

then we may feel that we have "really" evaluated fc~ arctan x dx. 

This chapter consists of little more than methods for finding elementary prim­
itives of given elementary functions (a process known simply as "integration"), 
together with some notation, abbreviations, and conventions designed to facilitate 
this procedure. This preoccupation with elementary functions can be justified by 
three considerations: 

(1) Integration is a standard topic 111 calculus, and everyone should know 
about it. 

(2) Every once in a while you might actually need to evaluate an integral, under 
conditions which do not allow you to consult any of the standard integral 
tables (for example, you might take a (physics) course in which you are 
expected to be able to integrate). 

(3) The most useful "methods" of integration are actually very important the­
orems (that apply to all functions, not just elementary ones). 

Naturally, the last reason is the crucial one. Even if you intend to forget how 
to integrate (and you probably will forget some details the first time through), you 
must never forget the basic methods. 

These basic methods are theorems which allow us to express primiti,·es of one 
function in terms of primitives of other functions. To begin integrating we "·ill 
therefore need a list of primitives for some functions; such a list can be obtained 
simply by diflerentiating various '"'ell-known functions. The list gi,·en below makes 
use of a standard symbol which requires some explanation. The symbol 

ff or f f(x)dx 

means ''a primitive off'' or, more precisely, "the collection of all primiti,·cs of .f .'' 
The symbol ff will often by used in stating theorems, " ·hile J f (x) dx is most 
useful in formulas like the following: 

f 
\..J. 

x
3

dx = j· 
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This "equation" means that the function F(x) = x 4/4 satisfies F'(x) = x 3 . It 
cannot be interpreted literally because the right side is a number, not a function, 
but in this one context we will allow such discrepancies; our aim is to make the 
integration process as mechanical as possible, and we will resort to any possible 
device. Another feature of the equation deserves mention. l\1ost people write 

f 
x4 

x
3

dx = 4 +c 

to emphasize that the primitives of f (x) = x 3 are precisely the functions of the 
form F(x) = x 4 /4 + C for some number C. Although it is possible (Problem 14) 
to obtain contradictions if this point is disregarded, in practice such difficulties do 
not arise, and concern for this constant is merely an annoyance. 

There is one important convention accompanying this notation: the letter ap­
pearing on the right side of the equation should match with the letter appearing 
after the "d" on the left side- thus 

f 
ll4 

u3 du= 4 . 

f tx2 

txdx = 2 , 

f xt 2 

txdt = 2 . 

A function in ff (x) d.x, i.e. , a primitive of f, is often called an "indefinite 

integral" off, while J:1 f(x)dx is called, byway of contrast, a "definite integral." 
This suggestive notation works out quite well in practice, but it is important not to 
be led astray At the risk of boring you, the following fact is emphasized once again: 

the integral J: f(x)dx is not defined as "F(b) - F(a), where Fis an indefinite 
integral of f" (if you do not find this statement repetitious, it is time to reread 
Chapter 13). 

\Ve can verify the formulas in the following short table of indefinite integrals 
simply by differentiating the functions indicated on the right side. 

fa dx = ax 

f 
x11 + I 

x 11 dx = --, n #- -1 
1t + 1 

f ! dx = log x (! ! dx is often written f dx for convenience; similar 
x x x 

f ex dx = ex 

abbreviations arc used in the last two examples of this 
table.) 

f sin x d x = - cos x 
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THEOREM l (INTEGRATION BY PARTS) 

f cosx dx = sinx 

f sec2 x d x = tan x 

f secx tanx dx = secx 

f 
dx 

1 
+ x 2 = arctan x 

f dx . 
--;::::== = arcsm x 
Ji -x 2 

Two general formulas of the same nature are consequences of theorems about 
differentiation: 

f [f(x) + g(x)] dx =ff (x) dx + f g(x) dx, 

f c · f(x)dx = c · f f(x)dx. 

These equations should be interpreted as meaning that a primitive of f + g can 
be obtained by adding a primitive of f to a primitive of g, while a primitive of 
c · f can be obtained by multiplying a primitive of f by c. 

Notice the consequences of these formulas for definite integrals: If f and g are 
continuous, then 

lb [J(x) + g(x)] dx = lb J(x)dx + lb g(x)dx, 

lb c · J(x)dx = c · lb f(x)dx. 
a a 

These follow from the previous formulas, since each definite integral may be writ­
ten as the difference of the values at a and b of a corresponding primitive. Con­
tinuity is required in order to know that these primitives exist. (Of course, the 
formulas are also true when f and g are merely integrable, but recall how much 
more difficult the proofs are in this case.) 

The product formula for the derivative yields a more interesting theorem, which 
will be written in several different ways. 

If J' and g' are continuous, then 

f Jg'= f g - f J'g, 

f f(x)g'(x)dx = f(x)g(x) - f J'(x)g(x)dx, 

l h lb lb J(x)g'(x)dx = J(x)g(x) - J'(x)g(x)dx. 
a a a 

(Notice that in the second equation .f(x)g(x) denotes the Junrtion f · g. ) 
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The formula 

(Jg)'= f' g + f g' 

can be written 

f g' = (Jg)' - !' g. 

Thus 

f Jg'= f (Jg)' - f f'g, 

and f g can be chosen as one of the functions denoted by J (! g )'. This proves the 
first formula. 

The second formula is merely a restatement of the first, and the third formula 
follows immediately from either of the first two. I 

As the following examples illustrate, integration by parts is useful when the func­
tion to be integrated can be considered as a product of a function f, whose deriva­
tive is simpler than f, and another function which is obviously of the form g'. 

f x ex d x = x ex - f 1 · ex dx 

tt tt t t 
f g' f g !' g 

f xsin x dx = x · (- cosx) - f 1 · (- cosx)dx 

t t t t t t 
f g' f g !' g 

= -x cosx + sinx 

There are two special tricks which often work with integration by parts. The 
first is to consider the function g' to be the factor 1, which can always be written 
lll. 

f logxdx = f 1 · logxdx = xlogx - f x · (1/x)dx 

t t t t t t 
g' f g f g !' 

= x(logx) - x. 

The second trick is to use integration by parts to find J h in terms of J h again, 
and then solve for J h. A simple example is the calculation 

f (1/x) · logx dx = logx · logx - f (l/x) · logx dx. 

t t t t t t 

which implies that 

g' f g f !' g 

2 f .!._ log x dx = (log x) 2 

x 
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or 

I 1
1 

(log x)2 
- ogxdx = ---
x 2 

A more complicated calculation is often requir d: 

f ex in x dx = ex · (- cos x) - f ex · (- cos x) dx 

+ + + + + + 
f g' f g f' g 

= -ex cosx + f exco x dx 

+ + 
u v' 

= -ex cosx +[ex · ( inx) - f ex(sinx)dx]; 

+ + + + 
u v u' v 

ther fore, 

2 f ex sinxdx = ex(sinx - cosx) 

or 

I x . ex(sinx - cosx) 
e smx dx = 

2 
. 

Since integration by parts depends upon recognizing that a function is of the 
form g' the more functions you can already integrate, the greater your chances for 
succes . It is frequently r asonable to do a preliminary integration before tackling 
the main problem. For example, we can u e parts to integrate 

f (log x)2 dx = f (log x)(log x) dx 

+ + 
f g' 

if we recall that flog x dx = x (log x) - x (thi formula was itself derived by inte­
gration by part ); w have 

f (log x) (log x) dx = (log x) [ x (log x) - x J - f (1 / x )[ x (log x) - x J dx 

+ + + + + + 
f g' f g f' g 

= (log x) [ x (log x) - x J - f [log x - 1 J dx 

= (log x) [ x (log x) - x J - f log x dx + f 1 d x 

= (log x) [ x (log x) - x J - [ x (log x) - x J + x 

= x(lo x)2 
- 2x(logx) + 2x. 

Th mo t imp rtant m th d f int urati n i a on qu n [ th hain Rul . 
h u [ thi m thod r quir n id rably m r in · nuity than int OT tinu b 

p rts and v n th xplanati n of th m thod i mor diffi ult. W will th r fi r 



THEOREM 2 

(THE SUBSTITUTION FORMULA) 

PROOF 

19. Integration in Elementary Terms 369 

develop this method in stages, stating the theorem for definite integrals first , and 
saving the treatment of indefinite integrals for later. 

If f and g' are continuous, then 

1
g(b) lb 

f = (! 0 g). g' 
g(a) a 

1g(b) lb 
f(u) du= f(g(x)) · g'(x) dx. 

g(a) a 

If F is a primitive of f, then the left side is F(g(b)) - F(g(a)). On the other 
hand, 

(F o g)'= (F' o g). g' = (! o g). g', 

so F o g is a primitive of (! o g) · g' and the right side is 

(F o g)(b) - (F o g)(a) = F(g(b)) - F(g(a)) . I 

The simplest uses of the substitution formula depend upon recognizing that a 
given function is of the form (f o g) · g'. For example, the integration of 

1• sins x cosx dx ( = j\sin x)s cosx dx) 

is facilitated by the appearance of the factor cos x, which will be the factor g' (x) 
for g (x) = sin x; the remaining expression, (sin x )5 , can be written as (g (x) )5 = 
f(g(x)), for f(u) = u5 . Thus 

1• sins x cosx dx [ 
g (x) = sin x] 
f (u) = u5 

= lb f(g(x))g'(x)dx = [ g(b) f(u) du 
a } g(a) 

= u5 du = -- - --. 1sin b sin6 b sin6 a 

sin a 6 6 

The integration of f~ tan x d x can be treated similarly if we write 

l
b lb -sinx 

tanxdx = - dx. 
a a COSX 

In this case the factor - sinx is g'(x), where g(x) = cosx; the remaining factor 
1/ cosx can then be written f(cosx) for f(u) = 1/u. H ence 

[ 

g(x) = ~osx] 

f(u) = -
ll 

l
b 

a tanx dx 

l
b 1g(b) 

= - f(g(x))g'(x)dx = - f(u)du 
a g(a) 

!
cosb l 

= - -du= log(cosa) - log(cosb) . 
cosa ll 
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Finally, to find 

lb 1 dx, 
a x log x 

notice that 1 / x = g' (x) where g (x) = log x , and that 1 / log x 

f (u) = l/u. Thus 

lb 1 dx 
a x log x [ 

g(x) = l~g x] 

f(u) = -
u 

l b J, g(b) 
= f (g(x))g' (x) dx = f (u) du 

a g (a ) 

1
log b 1 

= - du = log(log b) - log(log a). 
log a U 

f (g(x )) for 

Fortunately, these u e of the ubstitution formula can be shortened considerably. 
The intermediate step , which involve writing 

lb f(g(x))g'(x)dx = [ g (b) f(u)du, 
a } g (a) 

can easily be eliminated by noticing the following: To go from the left side to the 
right side 

. { u for g(x) 
substitute 

du for g'(x) dx 

(and change the limits of integration); 

the ubstitutions can be performed directly on the original function (accounting 
for the name of this theorem). For example, 

1b sin5 x cos x dx [ sub titute u for sin x J - rin b u5 du 
du for cosx dx - Jsina ' 

and similarly 

l b - sin x dx [ substitute u for cos x J - rosb ~ d 
a cosx du for - sinx dx - l co a u u. 

Usually we abbreviate this method even more, and say simply: 

Thu 

"L t u = g(x) 
du= g'(x) dx." 

l b _l_dx [let u = lfgx] = [1 g b ~ du. 
a x log x du= - dx J1, ga u 

x 

In thi hapt r w ar u ually int r t d in primitiv rath r than definit 111-

ral but if w an find t f (x) dx fi r all a and b th n w an rtainly find 
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f f (x) dx. For example, since 

l
b · 6 b · 6 . s sm sm a 

sm xcosxdx = -- - --
6 6 ' a 

it follows that 

I . 5 sin6 x 
sm x cos x dx = -

6
-. 

Similarly, 

f tan x dx = - log cos x, 

I 1 
dx = log(log x). 

x logx 

It is quite uneconomical to obtain primitives from the substitution formula by first 
finding definite integrals. Instead, the two steps can be combined, to yield the 
following procedure: 

(1) Let 
u = g(x), 

du= g' (x) dx; 

(after this manipulation only the letter u should appear not the 
letter x). 

(2) Find a primitive (as an expression involving u). 
(3) Substitute g(x) back for u. 

Thus, to find 

( 1) let 

so that we obtain 

(2) evaluate 

f sin 5 x cos x dx, 

u = s1nx, 
du= cosx dx 

J u5 
du; 

u5 du = -· I u6 

6' 

(3) rem mb r to sub ti tut in x back for u o that 

I 5 sin6 x 
in x co x dx = -

6
-
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Similarly, if 

then 

o that 

To evaluat 

let 

1-1
-dx 

x logx 

u = logx, 
1 

du= -dx, 
x 

b come J ~du= logu, 

I 1

1 
dx=log(logx). 

x ogx 

I 1: x2 dx, 

u=l+x2
, 

du= 2x dx; 

the factor 2 which ha just popped up causes no problem- the integral becomes 

~1~du= ~logu 
2 u 2 ' 

so 

I x 1 2 

1 
+x2 dx = 2log(l +x ). 

(This result may be combined with integration by parts to yield 

J 1 · arctan x dx = x arctan x - J 
1 

: x 2 dx 

= x arctan x - ! log(l + x 2
), 

a formula that has already been mentioned.) 
These applications of the substitution formula* illustrate the mo t straight­

forward and 1 a t intere ting typ - once the uitable factor g' (x) i recognized, 
the whole problem may even become simple enough to do mentally The following 
thr e pro bl ms require only the information provided by the hort tabl of ind fi­
nite integrals at the beginning of the chapter and, of cour e, the right ub titution 

* Th ubstitution formula i often written in the form 

J J (u) du= J f(g(x))g' (x) dx , u = g(x). 

Thi formula nnol b tak n litera lly (aft r all , J f (u) du hould mean a primitiv of J and th 
ymb 1 J f (g(x))g 1 (x) dx hould m an a primitiv f (! o g) · g1

; th a r crtainly n t qual). 
H w v r, it may b r g rd d a a ymb li ummary of th pro dur whi h w hav d 
w u Leibniz ' n tali n, and a littl fud ing, th formula r ad parti ularly w 11 : 

J f(u) du = J f(u) ;u dx. 
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(the third problem has been disguised a little by some algebraic chicanery). 

f sec2 
x tan 5 x d x, 

f (cosx)esinx dx, 

I ex dx. 
)1 - e2x 

If you have not succeeded in finding the right substitutions, you should be able to 
guess tl1<'m from the answers, which are (tan6 x)/6, esinx, and arcsin ex. At first you 
may find these problems too hard to do in your head, but at least when g is of the 
very simple form g(x) =ax+ b you should not have to waste time writing out the 
substitution. The following integrations should all be clear. (The only worrisome 
detail is the proper positioning of the constant- should the answer to the second be 

e3x /3 or 3e3x? I always take care of these problems as follows. Clearly f e3x dx = 

e3x. (something). Now if I differentiate F(x) = e3X, I get F'(x) = 3e3X, so the 
"something" must be j, to cancel the 3.) 

f x ~ 3 = log(x + 3), 

I 
e3x 

e3xd.x = -
3 ' 

I sin 4x 
cos4xd.x = -

4
-, 

I . -cos(2.x + l) 
sm ( 2x + l) d .x = 

2 
, 

I d.x = arctan 2x. 

l + 4x 2 2 

J\lore interesting uses of the substitution formula occur when the factor g' (x) 
does not appear. There are two main types of substitutions where this happens. 
Consider first 

I I +ex 
-1--x dx. 

-e 

The prominent appearance of the expression ex suggests the simplifying substitu­
tion 

l( =ex' 
du= e-" d.r. 

Although the expression ex d x docs not appear, it can always be put in: 

\ \'c therefore obtain 

---d.x = --- · - ·e d.,. I l + ex . I 1 + ex l x . 

l - ex I - ex ex 

I l+u l 
-- · -du, 
1-u u 
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which can be evaluated by the algebraic trick 

so that 

f 
l +u 1 f 2 1 -- · -du = --+- du= -2log( l - u) +log u, 
l -u u l-u u 

f 1 + ex 
- - dx = -2 log(l - ex) + log ex = -2log(l - ex) + x . 
1 - ex 

T here is an alternative and preferable way of handling this problem, which does 
not require multiplying and dividing by ex. If we write 

then 

f 1 + ex 
- -dx 
1 - eX 

x = log u, 

1 
dx = - du , 

u 

immediately becomes 
f 

1 + u. ~du. 
1 - u u 

Most substitution problems are much easier if one resorts to this trick of expres -
ing x in terms of u, and dx in terms of du , instead of vice versa. It is not hard to 
see why this trick always works (as long as the function expressing u in terms of x 

is one-one fo r all x under consideration): If we apply the substitution 

u= g(x), x = g- 1(u ) 

dx = (g - 1)'(u) du 

to the integral 

f f (g(x)) dx, 

we obtain 

(1 ) f f (u)(g- 1 
) ' (u) du. 

On the other hand, if we apply th straightforward substitution 

u = g(x) 
du= g' (x) dx 

to the same integral, 

we obtain 

f
f (g(x)) dx = f f (g(x)) · -

1
- · g' (x) dx, 

g' (x) 

(2) f f (u) · g'(g\u)) du . 

T he in t gral (1) and (2) ar id nti al, in (g - 1)' (u) = l /g ' (g - 1 (u)) . 
A anoth r concr t xampl , con id r 

f 
e2 

~ dx. 
ve ' -r I 



19. Integration in Elementary Terms 375 

In this case we will go the whole hog and replace the entire expre sion ~ 
by one letter. Thus we choose the substitution 

U=~, 

u2 =ex+ 1, 
u2 - 1 = eX, x = log(u2 - 1), 

2u 
dx = 

2 
du. 

u - 1 

The integral then becomes 

I ( u 2 - 1) 2 2u I 2 2u 3 
---- · du = 2 u - 1 du = - - 2u. 

u u 2 - 1 3 

Thus 

---dx =-(ex+ 1)3/2 _ 2(ex + 1)1 / 2_ I 
e2x 2 

~ 3 

Another example, which illustrates the second main type of ub titution that can 
occur, is the integral 

f ./1-x2 dx. 

In this case, instead of replacing a complicated expression by a simpler one, we 

will replace x by sin u, because ./1 - sin2 u = cos u . This really means that we 
are using the substitution u = arcsin x, but it is the expression for x in terms of u 
which helps u find the expression to be substituted for dx. Thus, 

let x = sinu, [u = arcsinx] 
dx=cosudu; 

then the integral becomes 

f ./1 - sin2 u cosudu = f cos2 udu . 

The evaluation of this integral depends on the equation 

2 1 + cos2u 
cos u = 

2 
(see the discussion of trigonometric functions below) so that 

I 2 _ I 1 + cos 2u _ ~ sin 2u 
cos u du -

2 
du -

2 
+ 

4 
, 

and 

I 1
1 2 

arcsin x in (2 arcsin x) 
v -x dx = 

2 
+ 

4 
arc in x 1 . . . 

= 
2 

+ 2 sm(arcsm x) · co (arc m x) 

_ ar in x ~ I _ 2 -
2 

+ 
2

xv 1 x . 
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Substitution and integration by parts are the only fundamental method which 
you have to learn; with their aid primitiv can be found for a large number of 
functions. Neverthel ss, a ome of our examples reveal, sue es often depend 
upon some additional trick . T he most important are listed below. Using the e 
you should be able to integrate all the function in Problems 1 to 10 (a £ w oth r 
int resting tricks ar explained in ome of the remaining problems). 

1. T RIG O NOMETRIC FUNCTIONS 

Since 

and 

we obtain 

or 

sin2 x + cos2 x = 1 

co 2x = co 2 x - sin 2 x, 

cos 2x = cos2 x - (1- cos2 x) = 2 cos2 x - 1, 

cos 2x = (1 - sin 2 x) - sin 2 x = 1 - 2 sin 2 x, 

. 2 
sin x = 

1 - co 2x 

2 
1 + cos 2x 

cos2 x = ----
2 

These formulas may be us d to integrate 

if n is even. Substituting 

I . /1 d SID X X, 

J cos11 x dx, 

(1 - cos 2x) 

2 
or 

(l + cos 2x) 

2 

fo r in2 x or cos2 x yield a sum oft rm involving lower p ower of co . For 
example, 

J in 4 
x dx = J C -~, 2x r dx = J ~ dx _ u co 2x dx + H o 

2 
2x dx 

and I o 22xdx = f -l _+_c_2o_4_x dx. 

If n i odd n = 2k + 1 th n 

J in" x dx = J in x (1 -
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the latter expression, multiplied out, involves terms of the form sin x cos1 x, all of 
which can be integrated easily. The integral for cos11 x is treated similarly. An 
integral 

f 'II »I d sm x cos x .x 

is handled the same way if 11 or m is odd. If n and 111 are both even, use the 
formulas for sin2 x and cos2 x. 

A final important trigonometric integral is 

! _I_ dx = f sec x dx = log(sec x + tanx). 
cosx 

Although there are several ways of "deriving" this result, by means of the meth­
ods already at our disposal (Problem 13), it is simplest to check this formula by 
differentiating the right side, and to memorize it. 

2. REDUCTION FORMULAS 

Integration by parts yields (Problem 21) 

f . n ] . n-1 11 - 1 f . n-2 sm x dx = - - sm x cos x + -- sm x dx , 
11 11 

f 1 I . n-11 , 2 cos11 xdx=-cos11
- xsmx+-- cos 1

- xdx, 
n n 

f 1 d x = 1 x + 2n - 3 f 1 d x 
(x2 + 1)11 2n - 2 (x 2 + 1)11

-
1 211 - 2 (x 2 + 1)11

-
1 

and many similar formulas. The first two, used repeatedly, give a different method 
for evaluating primitives of sin11 or cos11

• The third is very important for integrating 
a large general class of functions, which will complete our discussion. 

3. RATIONAL FUNCTIONS 

Consider a rational function p / q where 

( ) II+ 11 - l + px =a11x an-IX +··· ao. 
q(x) = b 111 X

111 + bm - JXm - l + · · · + bo. 

We might as well assume that a11 = b111 = 1. Moreover, we can assume that 11 < 111 , 

for otherwise we may express p/q as a polynomial function plus a rational function 
which is of this form by dividing (the calculation 

u2 1 
--=u+l+-­
u-1 u-l 

is a simple example). The integration of an arbitrary rational function depends 
on two facts; the first follows from the "Fundamental Theorem of Algebra'' (see 
Chapter 26, Theorem 2 and Problem 26-3), but the second will not be proved in 
this book. 
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THEOREM 

THEOREM 

Every polynomial function 

q(x) = X111 + bm _ ,xm - l +···+ho 

can be written as a product 

q(x) = (x - 0:11)'"1 · ... · (x - ak)'"' (x 2 + f31x + yi)5' · ... · (x 2 + f31x + Y1) 51 

(where r1 + · · · + rk + 2(s 1 + · · · + s1) = m ). 

(In this expression, identical factors have been collected together, so that all 

x - O:'i and x 2 + f3ix + Yi may be assumed distinct. :Moreover, we assume that each 
quadratic factor cannot be factored further. This means that 

13/ - 4Yi < 0, 

since otherwise we can factor 

into linear factors.) 

If 11 < 111 and 

( ·) .II+ 11- J+ + p.\ =X a11 _ 1X ·•· G(), 

( -) m+b m- 1+ I q J'. = X 111 - IX · · · + 'JQ 

= (x - 0:11 )'°' · ... · (x - akr (x 2 + f31x + YI )5' · ... · (x 2 + f31x + YI )51
, 

then p (x) / q (x) can be written in the form 

p(x) [ a1.1 a1.r, J 
--= +···+ +··· 
q(x) (x-ai) (x-a1Y1 

+ [ O:'k,J + ... + O:'k,rk J 
(x - ak) (x - akYk 

+ ' . +···+ . . +··· [ 
b1 JX + CJ 1 b1 5 /i' + CJ s1 J 

(x 2 + /31 x + yi) (x 2 + f31x + YI )'51 

+ [ b1.1x + C/ , I + ... + b1.s/C + C/,s1 J 
(x2 + f31x + YI) (.r2 + /3,x + YI )s, . 

This expression, known as the ''partial fraction decomposition" of p(x) / q (x ), is 
so complicated that it is simpler to examine the following example, which illustrates 
such an expression and shows how to find it. According to the theorem, it is 
possible to write 

2x7 + 8.r6 + 13x 5 + 20.r4 + 15x3 + 16.r 2 + 7.r + 10 

(.r2 +x + 1)2(.r2 + 2x + 2)(x - 1)2 

a b ex+ d ex + f gx + h --- + + + +----
- x - I (.r - l )2 x2 + 2.r + 2 x2 + x + I (.r 2 + x + I )2 . 
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To find the numbers a, b, c, d, e, f, g, and h, write the right side as a polynomial 
over the common denominator (x 2 + x + 1)2(x2 + 2x + 3)(x - 1 )2; the numerator 
becomes 

7 2 7 2 7 7 
a(x - l)(x- + 2x + 2)(x + x + 1)- + b(x + 2x + 2)(x- + x + 1)-

+ (ex+ d)(x - 1)2 (x 2 + x + I )2 +(ex+ f)(x - 1)2 (x 2 + 2.x + 2)(x2 + x + I) 
+ (gx + h)(x - 1)2 (x 2 + 2x + 2). 

Actually multiplying this out (!) we obtain a polynomial of degree 8, whose coef­
ficients are combinations of a, ... , /z. Equating these coefficients with the coeffi­
cients of 2x 7 + 8x6 + l 3x5 + 20x 4 + 15x3 + l 6x 2 + 7x + 10 (the coefficient of x 8 is 0) 
we obtain 8 equations in the eight unknowns a, ... , h. After heroic calculations 
these can be solved to gi\T 

Thus 

a= 1, 
e = 0, 

b = 2, 

f =0. 
c= 1, d=3, 
g = 0. lz = I. 

f 2.x 7 + 5.x 6 + 13x5 + 20x4 + 17x 3 + 16.x 2 + 7x + 7 
7 7 7 2 dx 

(.x- + x + 1)-(x- + 2x + 2)(x - 1) 

f 1 f 2 f 1 f x+3 = dx + dx + 7 dx + 7 dx. 
(.x - I) (x - 1)2 (x2 + x + I)- x- + 2x + 2 

(In simpler cases the requisite calculations may actually be feasible. I obtained this 
particular example by starting with the partial fraction decomposition and convert­
ing it into one fraction. ) 

\Ve are already in a position to find each of the integrals appearing in the abm·e 
expression; the calculations will illustrate all the difficulties which arise in integrat­
ing rational functions. 

The first two integrals are simple: 

! _I_ dx = log(x - 1), 
x - 1 

f __ 2_dx = _-_2 __ 
(x - 1)2 x - I 

The third integration depends on "completing the square": 

x
2 + x + I = (x + !)2 + £ 

= ~ [ c~~r + 1l 
(If we had obtained -! instead of ~ we could not take the square root , but in this 
case our original quadratic factor could have been factored into linear factors. ) \ \\_· 
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can now write 

f __ I - dx - _I 6 f __ I_----,- I 

(x2 + x + 1)2 - 9 w ~~) + Ir x 

The substitution 

x+! 
u = ~' 

4 
I 

du= -dx ~· 
4 

changes this integral to 

16 f ft - 4 du, 
9 (u 2 + 1)2 

which can be computed using the third reduction formula given above. 
Finally, to evaluate 

we write 

f __ x_+_3 __ d '( 
(x 2 + 2x + 2) -

f x + 3 dx = ~ f 2x + 2 dx + f 2 dx. 
x 2 + 2x + 2 2 x 2 + 2x + 2 (x + I )2 + 1 

The first integral on the right side has been purposely constructed so that we can 
evaluate it by using the substitution 

u = x 2 + 2x + 2, 
du= (2x +2)dx 

The second integral on the right, which is just the difference of the other two, is 
simply 2 arctan(x + 1 ). If the original integral were 

f x + 3 1 f 2x + 2 f 2 
2 dx = - dx + clx. 

(x +2x+2) 11 2 (x 2 +2x+2) 11 [(x+l)2+1J 11 

the first integral on the right would still be evaluated by the same substitution. 
The second integral would be evaluated by means of a reduction formula. 

This example has probably convinced you that integration of rational functions 
is a theoretical curiosity only, especially since it is necessary to find the factorization 
of q(x) before you can even begin. This is only partly true. \Ve hmT already seen 
that simple rational functions sometimes arise, as in the integration 

f 1 + ex . 
l - e' clx, 

another important example is the integral 

f I f 1. 1. l I 
,., clx = - 2- - - 2- dx = - log-(x - I) - - log-(x + I). 

x- - I x - I x + I 2 ' 2 '--
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lv1oreover, if a problem has been reduced to the integration of a rational function, 
it is then certain that an elementary primitive exists, even when the difficulty or 
impossibility of finding the factors of the denominator may preclude writing this 
primitive explicitly 

PROBLEMS 

1. This problem contains some integrals which require little more than alge­
braic manipulation, and consequently test your ability to discover algebraic 
tricks, rather than your understanding of the integration processes. Never­
theless, any one of these tricks might be an important preliminary step in 
an honest integration problem. l\1Ioreover, you want to have some feel for 
\vhich integrals are easy, so that you can see when the end of an integration 
process is in sight. The answer section, if you resort to it, will only reveal 
what algebra you should have used. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

f V+Vx 
.jx dx. 

f dx 

fx-=-T + \!x+l' 

f 
ex + e2x + e3x 

4 dx. 
e x 

f ax dx. 
bX 

f tan2 x dx. (Trigonometric integrals are always very touchy, because 
there are so many trigonometric identities that an easy 
problem can easily look hard.) 

f dx 
a2 + x2. 

f 
dx 

J a2 - x2. 

f dx 

1 + sin x · 

f _8x_
2
_+_6_x_+_4 dx. 
x+l 

f I dx. 
J2x - x 2 

2. The following integrations in\'ol\'e simple substitutions, most of \rhich you 
should be able to do in your head. 

(i) f ex sin ex d x. 
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3. 

(ii) f xe-x
2 

dx. 

(iii) f logx --dx. 
x 

(In the text this wa 

(iv) f ex dx 
e2x + 2ex + 1 · 

(v) f eex ex dx. 

(vi) f xdx 
,h - x 4 . 

(vii) fF, .Jx dx. 

(viii) f xJl - x 2dx. 

(ix) f log(cosx)tanxdx . 

(x) 
f log(log x) 

xlogx 
dx. 

Integration by parts. 

(i) f x 2ex dx. 

(ii) f x 3 ex
2 

dx. 

(iii) f eax sin bx dx . 

(iv) f x 2 sin x dx. 

(v) f (log x )3 dx. 

f log(log x) 
(vi) dx. 

x 

done by parts.) 

(vii) f sec3 x dx. (Thi i a tricky and important integral that often come 
up. If you do not succeed in evaluating it, b sur to 
con ult the answer .) 

(viii) f co (log x) dx . 

(ix) f .jx log x dx . 

(x) f x(lo x)2 dx. 
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4. The following integrations can all be done with substitutions of the form 
x = sin u, x = cos u, etc. To do some of these you will need to remember 
that 

f secx dx = log(secx + tanx) 

as well as the following formula, which can also be checked by differentiation: 

f csc x dx = - log(csc x + cot x). 

In addition, at this point the derivatives of all the trigonometric functions 
should be kept handy. 

(i) f dx 
2

. (You ~lready know.this integral, bu.t use the substitution 
j I - x x = sm u anyway, Just to see how 1t works out.) 

(ii) f dx s· 2 2 • ----;::::==· ( mce tan u + 1 = sec u, you want to use the subst1-
j 1 + x 2 tution x = tan u.) 

(iii) f dx 

/x 2 - 1. 

(iv) f d;t: . (~he answer \~ll ~e a certain inverse function that was 
x j x - l gwen short shnft m the text.) 

(v) f dx 

x/1 -x2 . 

(vi) f dx 

x/1 +x2 . 

f x 3
J1 -

7

x2 dx. } You will need to remember the methods for 

f 
integrating powers of sin and cos. 

/1 - x-dx. 

(vii) 

(viii) 

(ix) f /1 +x2 dx. 

(x) f )x2 - 1 dx. 

5. The following integrations involve substitutions of various types. There is 
no substitute for cleverness, but there is a general rule to follow: substitute 
for an expression which appears frequently or prominently; if two different 
troublesome expressions appear, try to express them both in terms of some 
new expression. And don't forget that it usually helps to express x directly 
in terms of u , to find out the proper expression to substitute for dx. 

(i) f dx 

1 + h""+l. 
(ii) f dx 

1 +ex· 
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(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

f dx 

./x + ~ -

! dx . (T he substitution u = ex leads to an integral requir­
) l + ex ing yet another substitution; thi is all right, but both 

substitutions can be done at once.) 

f 
dx 

2 + tan x · 

f dx . . (Another place where one substitution can b made to 
.J ./x + 1 do the work of two.) 

f 4x + 1 
2x + 1 dx. 

f ev'x dx. 

(IX. ) f ~ d (I h. . b . . k b ./x x . n t 1s case two successive su st1tut1ons wor out est; 
1 - x there are two obvious candidates for the first sub titu­

tion, and either will work.) 

*(x) f J: ~ ~ · x12 d x. 

6. The previous problem provided gratis a haphazard selection of rational func-
tion to be integrated. H ere is a more systematic selection. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

f 2x 2 + 7x - 1 
x3 + x2 - x - 1 dx . 

f 2x + 1 
- ------dx . 
x3 - 3x2 + 3x - 1 

f x
3 + 7 x 2 - Sx + 5 
(x- 1)2(x +l )3 dx . 

f 2x 2 + x + 1 
------

2
dx. 

(x + 3)(x - 1) 

f x +4 
x2+ ldx. 

f x
3 

+ x + 2 d 
x 4 + 2x 2 + 1 x . 

f 3x2 + 3x + 1 d 
x 3 + 2x 2 + 2x + 1 x · 

f x/: 1 · 

f (x2 +2: + 1)2 dx. 

f __ 3x _ _ dx 
(x2 + x + 1)3 . 
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Find f dx , which looks a little different from any of the previous 
Jx n - x2 

problems. Hint: It help to write (x n- x 2)112 =x(xn- 2-1) 112. ExtraHint 1: 
Use a substitution of the form u2 = ... to obtain an answer involving arctan. 
Extra Hint 2: U se a substitution of the form y = x a to obtain an answer 
involving arcsin. 

Potpourri. (No holds barred.) The following integrations involve all the 
method of the previous problems 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

f arctan x 
l+ x2 dx. 

f x arctan x 
2 2 dx. 

(1 + x ) 

f log J 1 + x 2 dx . 

f x log J 1 + x 2 dx . 

f x 2 - 1 1 
2 

· dx. 
x +l J 1+ x 4 

f arcsin .Jx d x . 

f x dx . 
1 + sin x 

f in x x cos3 x - sin x _ 
e · 

2 
dx . 

cos x 

f Jtan x dx . 

f 6
d x . (To factor x 6 + 1, first factor y 3 + 1, using Problem 1-1.) 

x + 1 

The following two problems provide still more practice at integration, if you need 
it (and can bear it). Problem 9 involve algebraic and trigonometric manipulation 
and integration by parts, while Problem 10 involves ubstitutions. (Of course, in 
many cases the resulting integrals will require till further manipulations.) 

9. Find the following integral . 

(i) f log(a2 + x 2) dx. 

(ii) f 1 + cosx 
. 2 dx. 

Sill X 

(iii) ---;::==dX. f x+ l 

J 4 -x2 

(iv) f x arctan x dx. 
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(v) f sin
3 

x dx. 

(vi) I sin
3 x --dx. 

cos2 x 

(vii) f x 2 arctan x dx. 

(viii) I xdx 
Jx 2 - 2x + 2. 

(ix) f sec3 x tanx dx . 

(x) f x tan2 xdx. 

10. Find the following integrals. 

(i) I dx 
(a2 + x2)2 · 

(ii) f JI - sinx dx. 

(iii) f arctan .Jx dx. 

(iv) f sin h+t dx. 

(v) r./x3 - 2 dx. 
x 

f log(x + J x2 - 1) dx . 
[ There are obvious substitutions to try 

(vi) but integration by parts is much easier. 

f log(x + .Ji) dx. 
Comparing the answers obtained is, 

(vii) perhaps, instructive. 

(viii) I dx 
x - x3/5. 

(ix) f (arcsin x )2 dx. 

(x) f x 5 arctan(x 2
) dx. 

11. If you have done Problem 18-10, the integrals (ii) and (iii) in Probl m 4 will 
look very familiar. In general, the substitution x = cosh u oft n works for 

integral involving J x 2 - 1, while x = sinh u is the thing to try for integral 

involving J x 2 + 1. Try these ub titution on th oth r int gral in Prob-
1 m 4. (Th meth d i not r ally re omm nded; it i ea i r to tick with 
trigonom tri ub titutions.) 

*12. Th world' n aki t ub tituti n i und ubt dly 

x 
t = tan 2, x = 2 ar tan t , 

2 
dx = --2 dt. 

I + t 
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As we found in Problem 15-17, this substitution leads to the expressions 

. 2t 
SinX = --

2
, 

1 + t 
1 - t 2 

cosx = I+ t2. 

This substitution thus transforms any integral which involves only sin and 
cos, combined by addition, multiplication, and division, into the integral of 
a rational function. Find 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

f __ dx ____ (Compare your answer with Problem l (viii).) 
1 +smx 

f dx . . h 
. 2 . (In this case It IS better to let t = tan x. W y?) 

1 - sm x 

f . d x . (There is also another way to do this, using 
a sm x + b cosx Problem 15-8.) 

f sin2 x dx. (An exercise to convince you that this substitution 
should be used only as a last resort.) 

f 3 
d
5
x. . (A last resort.) 

+ smx 

*13. Derive the formula for f sec x dx in the following two ways: 

(a) By writing 

1 cosx 

cosx cos2 x 
cosx 

l - sin2 x 

1 [ cosx cosx J 
= 2 1 + sin x + 1 - sin x ' 

an expression obviously inspired by partial fraction decompositions. Be 
sure to note that f cos x /(1 - sin x) dx = - log(l - sin x ); the minus sign 
is very important. And remember that 1 log a = log ./a. From there 
on, keep doing algebra, and trust to luck. 

(b) By using the substitution t = tan x /2. One again, quite a bit of manip­
ulation is required to put the answer in the desired form; the expression 
tan x /2 can be attacked by using Problem 15-9, or both answers can 
be expressed in terms of t. There is another expression for f sec x dx, 
which is less cumbersome than log(sec x + tan x ); using Problem 15-9, 
we obtain 

( 
x) 1 + tan -

f sccxdx = log ~ = log (tan G + ;n 
I - tan 2 

This last expression was actually the one first discovered, and was due, 
not to any mathematician's cleverness, but to a curious historical acci-
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dent: In 1599 \Vright computed nautical tables that amounted to definite 
integrals of sec. When the first tables for the logarithms of tangents were 
produced, the correspondence between the two tables was immediately 
noticed (but remained unexplained until the invention of calculus). 

14. The derivation off ex sin x dx given in the text seems to prove that the only 
primitive of f (x) = ex sin x is F (x) = ex (sin x - cos x) /2, whereas F (x) = 
ex (sin x - cos x) /2 + C is also a primitive for any number C. Where does C 
come from? (\Vhat is the m eaning of the equation 

f ex sin x dx = ex sin x - ex cos x - f ex sin x dx?) 

15. Suppose that f" is continuous and that 

!arr [f(x) + f"(x)] sinx dx = 2. 

Given that f(rr) = L compute f (0). 

16. (a) Find J arcsin x dx , using the same trick that worked for log and arctan. 
*(b) Generalize this trick: Find f 1- \r) dx in terms off f(x) dx. Compare 

with Problems 12-21 and 14-14. 

17. (a) Find f sin4 x dx in two different ways: first using the reduction formula, 

and then using the formula for sin2 x. 
(b) Combine your answers to obtain an impressive trigonometric identity 

18. Express f log(logx)dx in terms of j(logx)- 1 dx. (Neither is expressible in 
terms of elementary functions. ) 

19. Express f x 2e-x
2 

dx in terms of J e-x
2 

dx. 

20. Prove that the function f (x) = ex /(e5x +ex+ I) has an elementary primitive. 
(Do not try to find it!) 

21. Prove the reduction formulas in the text. For the third one write 

f dx f dx f x
2

dx 
(x2 + l)n = (x2 + I )11 - l - (x2 + 1)11 

and work on the last integral. (Another possibility is to use the substitution 
x = tan zt.) 

22. Find a reduction formula for 

(a) f x 11 ex dx 

(b) f (logx)'1 dx. 

*23. Prove that 

~dt= . 
;;

rnsh x cosh x sinh x r 

I 2 2 

(Sec Problem 18-7 for the significance of this computation.) 
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24. Prove that 

1b f(x)dx = 1b f(a + b - x)dx. 

(A geometric interpretation makes this clear, but it is also a good exercise in 
the handling of limits of integration during a substitution.) 

25. Prove that the area of a circle ofradius r is n r 2 • (Naturally you must remem­
ber that rr is defined as the area of the unit circle.) 

26. Let </> be a nonnegative integrable function such that </> (x) = 0 for Ix I 2: 

and such that 11 

</> = 1. For h > 0, let 
- 1 

1 
<Ph(X) = lz</>(x/ h). 

(a) Show that </>,Jx) = 0 for Ix I :::: h and that lh </>1z = 1. 
- h 

(b) Let f be integrable on [ -1, 1] and continuous at 0. Show that 

lim 11 

</>1zf = lim lh </>1zf = f (0). 
h----.O+ - I h----.O+ - h 

(c) Show that 

lim 11 

') h 2 dx = rr . 
h----.0+ - 1 h- + x 

The final part of this problem might appear, at first sight, to be an exact 
analogue of part (b), but it actually requires more careful argument. 

(cl) Let f be integrable on [-1, 1] and continuous at 0. Show that 

1
1 1z 

lim 
2 

')f(x)dx=rrf(O). 
h----.0+ - I h + x-

Hint: If h is small, then /z/ (h 2 + x 2) will be small on most of [ -1, l]. 

The next two problems use the formula 

~ [ ()I f (())2 d()' 
2 Je0 

derived in Problem 13-24, for the area of a region bounded by the graph of f in 
polar coordinates. 

27. For each of the following functions, find the area bounded by the graphs in 
polar coordinates. (Be careful about the proper range for (), or you will get 
nonsensical results!) 

(i) /(fJ)=asinfJ. 
(ii) f(fJ) = 2 + cosfJ. 
(iii) f (fJ)2 = 2a 2 cos 2(). 

(iv) f(fJ)=acos2fJ. 
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0 XJ XO 

FIGURE! 

28. Figure I shows the graph of f in polar coordinates; the region O AB thus 

11e1 has area - f(fJ)2 de. Now suppose that this graph also happens to be 
2 ea 

the ordinary graph of some function g. Then the region O AB also has area 

1
xo 

area ~Ox1 B + g - area ~OxoA. 
X] 

Prove analytically that these two numbers are indeed the same. Hint: The 
function g is determined by the equations 

x = f c e) cos e, g(x) = f (fJ) sine. 

The next four problems use the formulas, derived in Problems 3 and 4 of the 
Appendi.x to Chapter 13, for the lengih of a curve represented parametrica11y (and, 
in particular, as the graph of a function in polar coordinates). 

29. Let c be a curve represented parametrically by u and v on [a, b], and let lz 
be an increasing function with h(a) = a and h(b) = b. Then on [a, b] the 
functions it = u o h, v = v o It give a parametric representation of another 
curve c; intuitively, c is just the same curve c traversed at a different rate. 

(a) Shmv, directly from the definition of length, that the length of c on [a, b] 
equals the lengih of c on [a, jj]. 

(b) Assuming differentiability of any functions required, show that the 
lengths are equal by using the integral formula for length, and the ap­
propriate substitution. 

30. Find the length of the following curves, a11 described as the graphs of func­
tions, except for (iii), which is represented parametrica11y. 

(i) I 7 3/ 7 f(x)= 3(x-+2) -, O:::;x:::;l. 

(ii) 
3 1 f (x) = x + 

12
x, l :::; x :::; 2. 

(iii) x = a 3 cos3 t, y = a 3 sin3 t, 0 < t < 27f. 
(iv) f(x)=log(cosx), O:::;x :Slf/6. 

(v) f (x) = log x, l :S x :::; e. 

(vi) f (x) = arcs in ex, - log 2 :::; x :::; 0. 

31. For the fo11owing functions, fin<l the lengih of the graph in polar coordinates. 

(i) f(fJ) = a cose. 
(ii) f (fJ) = a ( I - cos 0). 

(iii) f ((}) = a sin2 (fJ /2). 
(iv) f(8) = e O < (} < 27f. 
(v) f (fJ) = 3 sec e O:::; e :::; l[ /3. 
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32. In Problem 8 of the AppendL-x to Chapter 12 we described the cycloid, which 
has the parametric representation 

x = u(t) = a(t - sin t), y = v(t) = a(l - cost). 

(a) Find the length of one arch of the cycloid. [ Answer: 8a .] 
(b) Recall that the cycloid is the graph of v a u- 1• Find the area under 

one arch of the cycloid by using the appropriate substitution in ff and 
evaluating the resultant integral. [Answer: 3n a 2 .] 

33. Use induction and integration by parts to generalize Problem 14-10: 

r f (U)(.'f - ll)
11 r ( t'" ( ( [II] ) ) ) j O 

11 
! d ll = JO } O • · • } O f (t) d t d lit . . . d ll 11 • 

34. If f' is continuous on [a, b], use integration by parts to prove the Riemann­
Lcbesgue Lemma for f: 

lim 1b f (t) sin(>-.t) dt = 0. 
>..-HXl a 

This result is just a special case of Problem 15-26, but it can be used to prove 
the general case (in much the same way that the Riemann-Lebesgue Lemma 
was derived in Problem 15-26 from the special case in which f is a step 
function). 

35. The l\Ican Value Theorem for Integrals was introduced in Problem 13-23. 
The "Second Mean Value Theorem for Integrals" states the following. Sup­
pose that f is integrable on [a, b J and that ¢ is either nondecreasing or 
nonincreasing on [a, b J. Then there is a number ~ in [a, b J such that 

1" J(x)rj,(x)dx = rj,(a) 1' f(x)dx + rj,(b) J." J(x)dx. 

In this problem, we will assume that f is continuous and that ¢ is differen­
tiable, with a continuous derivative ¢'. 

(a) Prove that if the result is true for nonincreasing ¢, then it is also true for 
nondecreasing¢. 

(b) Prove that if the result is true for nonincreasing ¢ satisfying ¢(b) = 0, 
then it is true for all nonincreasing ¢. 

Thus, we can assume that ¢ is nonincreasing and ¢(b) = 0. In this case, 
we have to prove that 

1b 1~ f(x)</J(x)dx = ¢(a) f(x)dx. 
a a 

(c) Prove this by using integration by parts. 
(d) Show that the hypothesis that ¢ is either nondecreasing or nonincreasing 

is needed. 
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From this special case of the Second Mean Value Theorem for Integrals, the 
general case could be derived by some approximation arguments, just as in the case 
of the Riemann-Lebesgue Lemma. But there is a more instructive way, outlined 
in the next problem. 

36. (a) Given a1, ... , a 11 and bi, ... , b11 , let sk = a1 + · · · + ak, Show that 

(*) a1h1 + · · · + a11h11 = s1 (b1 - b2) + s2(h2 - b3) 

+···+Sn- I (bn - 1 - b,i) + Snbn 

This disarmingly simple formula is sometimes called "Abel's formula for summation 
by parts." It may be regarded as an analogue for sums of the integration by parts formula 

lb J'(x)g(x)dx = f(b)g(b)- f(a)g(a) - lb J(x)g'(x)dx, 

especially if we use Riemann sums (Chapter 13, Appendi'x). In fact, for a partition 
P =Ito, ... , t11 ) of [a, b], the left side is approximately 

II 

(I) L !'Uk)g(tk-l)(tk - fk - 1), 

k=I 

while the right side is approximately 
II 

f(b)g(b) - f(a)g(a) - L f(tk)g'Uk)(tk - fk - 1) 

k=I 

which is approximately 

~ g(tk) - g(tk-1) 
f(b)g(b) - f(a)g(a) - L f(tk) Uk - tk - 1) 

k=I fk - fk - 1 
II 

= f(b)g(h) - J(a)g(a) + L f(tk)[g(tk-1) - g(tk)] 

k=I 
11 

= f(b)g(b) - f(a)g(a) + L [!Uk) - f(a)l · [gCtk - 1) - g(tk)] 

k=I 
II 

+ 1ca> I: g(tk-1) - g(tk)· 

k= I 

Since the right-most sum is just g(a) - g(b), this works out to be 
II 

(2) [f(b) - J(a)lg(b) + L[f(tk) - f(a)J · [g(tk - 1) - g(tk)]. 

If we choose 

then 

(I) 

which is the left side of (*), while 

k 

k=I 

IS 

II 

I: akbk, 

k=I 

k 

sk = L !'Ui)(ti - ti - J) is approximately I: .ru;) - 1u; - 1) = f(tk) - .t<a). 

i=l 
so 

(2) is approximately 

which is the right side of (*). 

i=I 

II 

s11 bn + L sk(bk - bk - 1) , 

k= I 
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This discussion i not meant to suggest that Abel's fo rmula can actually be derived from 
the formula fo r integration by parts, or vice ver. a. But, a we shall see, Abel's formula can 
often be u ed a a sub titute for integration by parts in situations where the functions in 
question ar n't differentiable. 

(b) Suppose that {bn} is nonincreasing, with bn ::: 0 for each n , and that 

m ~ a1 + · · · + a n ~ M 

for all n. Prove Abel's Lemma: 

b1m ~ a1b1 + · · · + anbn ~ b1M. 

(And, moreover, 

a fo rmula which only looks more general, but really isn't.) 
( c) Let f be integrable on [a , b J and 1 t ¢ be nonincreasing on [a , b J with 

</> (b) = 0. Let P = {to, ... , t11 } be a partition of [a , b]. Show that the 
um 

n 

I: 1 cti - 1)<1>ui - 1)(t; - t; - 1) 
i=l 

lies between the smallest and the largest of the sums 

k 

<t>(a) I: 1 cti - 1) (( - ( - 1). 
i= l 

Conclude that 

1b f(x )lj;(x ) d x 

lies between the minimum and the maximum of 

</>(a ) 1x f (t)dt , 

and that it therefore equals ¢ (a) 1' f (t ) dt for some$ in [a , b] . 

37. (a) Show that the following improper integral both converge. 

(i) f sin ( x + D d x 

(ii) f sin
2 

( x + D d x. 

(b) Decide which of th followincr improper integrals converge. 

(i) f in G) dx . 

(ii) J, in
2 G) d x 
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I 

38. (a) Compute the (improper) integral la log x dx. 

(b) Show that the improper integral foJT log(sin x) dx converges. 

(c) Use the substitution x = 2u to show that 

fa' log(sin x) d x = 2 fo'12 
log(sin x) d x + 2 fo' 12 

log(cos x) dx + n log 2. 

( d) Compute la rr 12 
log( cos x) dx. 

(e) Using the relation cosx = sin(.rr/2-x), compute 1JT log(sinx)dx. 

39. Prove the following version of integration by parts for improper integrals: 

100 loo loo u'(x)v(x)dx = u(x)v(x) - u(x)v'(x)dx. 
a a a 

The first symbol on the right side means, of course, 

lim ll(x)v(x) - u(a)v(a). 
X-+00 

*40. One of the most important functions in analysis is the gamma function, 

r(x) = 1= e- t ,x- l dt. 

(a) Prove that the improper integral r (x) is defined if x > 0. 
(b) Use integration by parts (more precisely, the improper integral version 

in the previous problem) to prove that 

r(x + 1) = xr(x). 

( c) Show that r (1) = 1, and conclude that r (n) = (11 - 1) ! for all natural 
numbers ll. 

The gamma function thus provides a simple example of a continuous function 
which "interpolates" the values of 11 ! for natural numbers ll. Of course there 
arc infinitely many continuous functions f with f (11) = (11 - l)!; there are 
even infinitely many continuous functions f with f (x + 1) = xf (x) for all 
x > 0. However, the gamma function has the important additional property 
that log o r is convex, a condition which expresses the extreme smoothness 
of this function. A beautiful theorem due to Harold Bohr and Johannes 
l\folkrup states that r is the only function f \\'ith log of com·ex, f (1) = l 
and f(x + I) =xf(x). See reference l43] ofthe Suggested Reading. 

*41. (a) Use the reduction formula for f sin 11 x dx to show that 

fo
JT/2 I fo JT/2 . n II - . n - ') 

sm xdx= -- sm -xdx. 
() ll O 
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(b) Now show that 

fo' /2 sin2,+1 x dx = ~ . ; . ; ..... 2n2: I' 

f 2 
sin2,, x dx =; · ~ · ~. ~. · ... 2

n2: 
1

, 

and conclud that 

7T 2 2 4 4 6 6 ~ 
-·-·-·-·-·-····· 

2 1 3 3 5 5 7 2n - 1 

[H /2 
2n lo sin211 x dx 

2n + 1 fo lr/2 
sin211+1 x dx 

. 0 

( c) Show that the quotient of the two integrals in this expression is between 
1 and 1 + 1 /2n, starting with the inequalities 

0 . 211 + l . 211 • 211- l < sm x .:::: sm x .:::: sm x for O < x < rr /2. 

This result, which shows that the products 

2 2 4 4 6 6 2n 
1 . 3 . 3 . 5 . 5 . 7 . · · · . 2n - 1 

2n 

2n + 1 

can be made as close to rr /2 as desired, is usually written as an infinite 
product, known a Wallis' product: 

rr 224466 
-·-·-·-·-·-· 

2 133557 

( d) Show also that the products 

1 2 · 4 · 6 · ... · 2n 

fn 1 · 3 · 5 · . . . · (2n - 1) 

can be made a dos to ./ii as desired. (This fact i used in the next 
problem and in Problem 27-19 .) 

Walli ' proc dur wa quite different! H e worked with the integral J0
1 (1 - x 2t dx 

(which app ar in Problem 42), hoping to recover, from the value obtained for natural 
numbers n , a formula for 

::._= rl(l-x2)l /2dx. 
4 lo 

A complete account can be found in reference [49] of th Sugge t d Reading, but th 
foll owing summary gives the ba ic id a. Wallis fir t obtained the formula 

r\1-x2) 11 dx=~·~ ···~ lo 3 5 2n + l 
(2·4···211) 2 211 (11!) 2 

2 · 3 · 4 · · · 211 (2n + 1) 211 + I (211) ! · 

H e then rea oned that rr /4 should b 

{I 21 (11) 2 

lo ( l -x2)1 ;2 dx = 2T = (!!)2. 
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If we interpret 1 ! to mean r ( I + 1 ), this agrees with Problem 45 , but Wallis did not 
know of the gamma fun ction (which was im·ented by Euler, guided principally by Wallis' 

work). Since (211)! / (11!) 2 is the binomial coefficient c:1
), Wallis hoped to find 1! by 

finding (p; q) for p = l/ = I / 2. Now 

(
P + q) = (p + q )(p + q - I) · · · ( p + 1) 

p q! 

and this makes sense even if p is not a na tural number. \Vallis therefore decided that 

I I 3 

(
2+ q) = C2 + q)· · · C2)_ 

! (J' 2 . 

With this interpretation of (p; q) for p = 1/ 2 , it is still true that 

(
P + q + 1) = p + q + I (P + q) . 

p q + 1 p 

Denoting ( 1 : q) by W(q ) this equation can be written 
2 

~ + q + I 2q + 3 
W(q + I) = - q + I W(q ) = 

2
q + 2 W(q ), 

which leads to the table 

q 

W(q) 3 
2 

2 

3 5 
2· 4 

3 

But, since W(1) should be 4 / n , Wallis also constructs the table 

I 3 5 
q 2 2 2 

W( ) _i 4 4 -I 4 6 
CJ n :rr · 1 :rr·1· s 

Next Wallis notes tha t if a1 , a2, a3, <q are 4 successive values W (q ), W (q + I) , W(q + 2) , 
W (q + 3) , appearing in either of these tables, then 

a2 a3 a4 . 2q + 3 2q + 5 2q + 7 
- > - > - smce -- > -- · --
a 1 a2 a3 2q + 2 2q + 4 2q + 6 

(this says tha t log o( I / W ) is convex, compare the remarks before Problem 41 ), which 
implies that 

[a3 > a3 > 04. 
V;; a2 V ~ 

\Vall is then argues that this should still be true when a 1 , a2, a3, a4 are four successive 
values in a combined table where q is given both integer and half-integer values! Thus, 

taking as the four successiYe values W(11 + 1 ), W(11) , W(n + i ), W(11 + 1 ), he obtains 

4 4 6 211 + 4 4 4 6 211 + 2 3 5 211 + 3 
- · -·- ···-- -·-·-· · · - - - · - ···--
11 3 5 211 + 3 Tr 3 5 211 + 1 2 4 211 +2 

> > 
4 4 6 211 + 2 3 5 7 211 + I 3 5 7 211 + I 

-·- · -·· ·-- - . - . - . ··--
Tr 3 5 211 + I 2 4 6 211 2 4 6 211 

which yields simply 

211 + 4 > .:.. . [ 2 . 4 . 4 . 6 . 6 " . ( 211 )( 211 )( 211 + 2) J > 

211 + 3 n 3 · 3 · 5 · 5 · · · (211 + I )(211 + I) 

from which \ Vallis' product fcillows immedia td)i 
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**42. It is an astonishing fact that improper integrals 100 

f (x) dx can often be 

computed in cases where ordinary integrals 1" f (x) dx cannot. There is no 

elementary formula for 1" e- x' dx, but we can find the value of 100 

e- x' dx 

precisely! There are many ways of evaluating this integral, but most require 
some advanced techniques; the following method involves a fair amount of 
work, but no facts that you do not already know. 

(a) Show that 

[ l 2 II 2 4 2/Z 
1 o ( l - x ) d x = 3 . 5 . . . . . 2n + l , 

[ 00 1 n 1 3 2n - 3 
lo (1 + x2) 11 dx = 2 . 2 . 4 ... · . 2n - 2 · 

(This can be done using reduction formulas, or by appropriate substitu­
tions, combined with the previous problem.) 

(b) Prove, using the derivative, that 

2 .2 
I - x ~ e-.\ for O ~ x ~ 1. 

.2 
e-., < for O ~ x. 

- 1 +x2 

(c) Integrate the nth powers of these inequalities from Oto I and from Oto 
oo, respectively. Then use the substitution y = ./n x to show that 

2 4 2n 
J,i 3 . 5 . · · · . 2n + 1 

[J,i [ 00 
~ lo e -_v2 dy ~ lo e _Y2 dy 

n l 3 2n - 3 
<-./,i-·-····· . 
- 2 2 4 2n - 2 

(cl) Now use Problem 41 (d) to show that 

- \'2 v Jr 1
00 C 

o e . dy = 2· 

**43. (a) Use integration by parts to show that 

lb sin x cos a cos b lb cosx 
--dx = -- - -- - --dx 

2 ' a X a b a X 

and conclude that f0
00 

(sin x) / x d x exists. (Use the left side to investigate 
the limit as a ---+ o+ and the right side for the limit as b ---+ oo.) 
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(b) U Probl m 15-33 to show that 

lo
rr sin(n + i)t 

------'=-- d t = 7r 
0 . t m-

2 

for any natural number n. 

(c) Prove that 

lim f rr sin().+ !)t [~ - -
1
- ] dt = 0. 

>-- lo t . t 
sm-

2 

Hint: Th term in brackets i bounded by Problem 15-2(vi); the 
Riemann-Leb gue L mma then applies. 

(d) Use the ub titution u = (>,_ + !)t and part (b) to show that 

--dx = -. 1
00 sinx n 

o x 2 

44. Given the valu of 1= (sin x) / x dx from Problem 4 3, ompu te 

by u ing integration by parts. (A in Problem 38, the formula for sin 2x will 
play an important rol .) 

*45. (a) U e the ubstitution u = tx to show that 

1 lo l / 1 r(x) = - e- l( du. 
x O 

(b) Find r(!). 

*46. (a) Suppose that f(x) i int grable on every interval [a,b] for O <a< b, 
x 

and that lim f (x) = A and lim f (x) = B. Prove that for all a, f3 > 0 
x-o x-

we hav 

f (ax) - f (f3x) dx = (A - B) loo·!!_ . 
x a 

Hint: To 
. 1N f (ax) - f (f3x) 

st1mate dx u two different ub titution . 
e X 

(b) Now uppo instead that 1 
Jim f(x) = A. Pr v that 
1- 0 

f (x) dx onv rg G r all a > 0 and that 
x 

J (ax) - f (f3x) dx = A 1 g [!__ 
x a 
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(c) Compute the following integrals: 

(i) rX! e- ax - e- f3x dx. 

lo x 

(ii) [
00 

cos(ax) - cos(f3x) dx. 

lo x 

In Chapter 13 we said, rather blithely, that integrals may be computed to any 
degree of accuracy desired by calculating lower and upper sums. But an applied 
mathematician, who really has to do the calculation, rather than just talking about 
doing it, may not be overjoyed at the prospect of computing lower sums to evaluate 
an integral to three decimal places, say (a degree of accuracy that might easily be 
needed in certain circumstances). The next three problems show how more refined 
methods can make the calculations much more efficient. 

\Ve ought to mention at the outset that computing upper and lower sums might 
not e,Tn be practical, since it might not be possible to compute the quantities m; 

and M; for each interval [r; - J, l;]. It is far more reasonable simply to pick points X; 
II 

in [r; - J, f;] and consider L f (x;) · (r; - f; - 1). This represents the sum of the areas 
i=l 

of certain rectangles which partially overlap the graph of f - see Figure 1 in the 
J\ppcndi.x to Chapter 13. But we will get a much better result if we instead choose 
the trapezoids shown in Figure 2. 

FI G CRE 2 

Suppose, in particular, that we divide [a, b] into 11 equal intervals, by means of 
the points 

(b-a) 
f; = a + i -11- = a + i /,. 

'Then th<' trapezoid with base [r; - J. r;] has area 
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' ' ', 

FIG U R E3 

a a+b 

2 

/ 

b 

I 

I 
I 

I 

and the sum of all these areas is simply 

I:n = lz [j(fi) + f(a) + f(t2) + f(ti) + ... + f(b) + J(t11_i)] 
2 2 2 

= i [1 (a)+ 2 ~ f (a+ ii,)+ f (b)], 
b-a 

h ---- . 
11 

This method of approximating an integral is called the trajJe;:,oid rule. Notice that to 
obtain I:211 from I:11 it isn't necessary to recompute the old f (t; ); their contribution 
to I:211 is just ! I: 11 • So in practice it is best to compute ~2, I:4, 1:s, ... to get 

1b 1b approximations to f. In the next problem we will estimate f - I:11 • 

a a 

47. (a) Suppose that J" is continuous. Let P; be the linear function which agrees 
with fat f; - l and f;. Using Problem 11-46, show that if 11; and N; are 
the minimum and maximum of J" on [ti - I, t;] and 

f
t, 

I = (x - f; - 1)(x - t;) dx 
t, - 1 

then 
11;! f1

' N;I - > (j- P) > -. 2 - I - 2 
t, - 1 

(b) Evaluate I to get 

u;h3 ft, N;/13 
-~ 2: (j - P;) 2: -~. 

t, - 1 

( c) Conclude that there is some c in (a, b) with 

1/J (b-a)3 II 

a f = I:11 - 12112 f (c). 

Notice that the "error term" (b - a) 3 J"(c)/1211 2 varies as l/112 (\\.:hilc 
the error obtained using ordinary sums varies as I/ 11 ) . 

\'Ve can obtain still more accurate results if we approximate f by quadratic 
functions rather than by linear functions. \Ve first consider what happens ,vhen 
the interval [a, b] is divided into two equal intervals (Figure 3). 

48. (a) Suppose first that a = 0 and b = 2. Let P be the polynomial function 
of degree ::: 2 which agrees with f at 0, l, and 2 (Problem 3-6). Show 
that 

f
2 

P = ~[!(0) +4J(I) + j(2)]. Jo 3 

(b) Conclude that in the general case 

1h /J-a [ (a+h) J 
a P = - 6- .f(a) + 4J - 2- + f(/J) . 
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(c) Naturally 1" P = 1• f when f is a quadratic polynomial. But, re­

markably enough, this same relation holds when l is a cubic polynomial! 
Prove this, using Problem 11-46; note that l"' is a constant. 

The previous problem shows that we do not have to do any new calculations 

to compute 1• Q when Q is a cubic polynomial which agrees with f at a, b, and 

a+b 
-

2
-: we still have 

rb b-a [ (a+b) ] la Q = -
6

- l (a)+ 41 -
2

- + l(b) . 

But there is much more lee-way in choosing Q, which we can use to our advantage: 

49. (a) Show that there is a cubic polynomial function Q satisfying 

Q(a) = l(a), Q(b) = J(b), Q (a;'')= f (" ;'') 
Q' ( a ; b) = f, ( a ; b). 

Hint: Clearly Q(x) = P(x) + A(x - a)(x - b) (x -a; b) for some A. 

(b) Prove that if l <
4) is defined on [a, b], then for every x in [a, b] we have 

( 
a+b)2 1<4)(~) 

l (x) - Q(x) = (x - a) x - -
2

- (x - b) 
4

! 

for some~ in (a, b). Hint: Imitate the proof of Problem 11-46. 
(c) Conclude that if 1<4) is continuous, then 

t f = b ~ a [f(a) +4! (a; b) + f(b) ]- (b2;815 l4l(c) 

for some c in (a, b). 

(d) Now divide [a, b] into 211 intervals by means of the points 

b-a 
ti = a + i lz, h = --. 

211 
Prove Simpson)s rule: 

b b ( ll n- 1 ") 1 l = ~
1 
a l(a) + 4 L l (t2i - i) + 2 L lU2J + l (b) 

a i=I i=l 

(b a)5 
- 1<4\c) 

288011 4 

for some c in (a. b). 
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APPENDIX. THE COSl\fOPOLITAN INTEGRAL 

\
1\Te originally introduced integrals in order to find the area under the graph of 

a function, but the integral is considerably more versatile than that. For example, 
Problem 13-24 used the integral to express the area of a region of quite another 
sort. l\foreover, Problem 13-25 showed that the integral can also be used to ex­
press the lengths of curves- though, as we've seen in Appendix to Chapter 13, a 
lot of work may be necessary to consider the general case! This result was prob­
ably a little more surprising, since the integral seems, at first blush, to be a very 
two-dimensional creature. Actually, the integral makes its appearance in quite a 
few geometric formulas, which we will present in this AppendLx. To derive these 
formulas we will assume some results from elementary geometry (and allmv a little 
fudging). 

Instead of going down to one-dimensional objects, we'll begin by tackling some 
three-dimensional ones. There are some very special solids whose volumes can 
be expressed by integrals. The simplest such solid V is a ''solid of revolution,'' 
obtained by revolving the region under the graph of f ~ 0 on [c1. b] around 
the horizontal axis, when we regard the plane as situated in space (Figure 1 ). 
If P = {to, ... , tn} is any partition of [a, b J, and m; and M; have their usual 
meanings, then 

is the volume of a disc that lies inside the solid V (Figure 2). Similarly, 
Jr M/(t; - f;_i) is the volume of a disc that contains the part of V between t; - J 

and t;. Consequently, 

II II 

Jr L m/(t; - f; _ i)::::: volume V::::: Jr L M;2(t; - f; - 1). 

i=I i=I 

But the sums on the ends of this inequality are just the lower and upper sums for 
J2 on [a, b]: 

? 2 
Jr · L(f-, P) ::::: volume V ::::: Jr · U (! , P). 

Consequently, the volume of V must be given by 

1
h 

volume V = Jr a f (x )
2 

dx. 

This method of finding volumes is aflcctionately referred to as the "disc method." 

Figure 3 shows a more complicated solid V obtained by revolving the region 
under the graph of f around the vertiral axis (V is the solid left over when \\'C start 
with the big cylinder of radius b and take away both the small cylinder of radius a 

and the solid V1 sitting right on top of' it ). In this case \\'C assume a ::::: 0 as \\'ell 
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as f ::::. 0. Figures 4 and 5 indicate some other possible shapes for V. 

Fl G l 1 RE -I 

FIGURE 5 

For a partition P = {to, ... , tn} we consider the "shells" obtained by rotating the 
rectangle with base [t; - J, t;] and height 111; or M; (Figure 6). Adding the volumes 
of these shells we obtain 

II n 

""" 2 2 l """ 2 2 JT L m;(t; - t; - J ) :::: vo ume V:::: JT L M;(t; - t; - J ), 

i=I i=I 

which we can write as 

II 11 

i=I i=I 

Now these sums are not lower or upper sums of anything. But Problem I of the 
Appendix to Chapter 13 shows that each sum 

II 

Lm;t;(t; - t; _ i) 

i=l 

and 
11 

I:111;t; - 1(t; - f; _ i) 

i=I 

can be made as close as desired to fhxf(x)dx by choosing the lengths t; -t; - 1 
la 

small enough. The same is true of the sums on the right, so we find that 

volume V = 2,r lb xf (x) dx; 

this is the so-called "shell method'' of finding volumes. 

Tlw surface area of certain cmTed regions can also be expressed in terms of inte­
grals. Before we tackle complicated regions, a little review of elementary geometric 
formulas may be appreciated here. 

Figure 7 shows a right pyramid made up of triangles with bases of length I and 
altitude s. The total surface area of the sides of the pyramid is thus 

where p is the perimeter of the base. By choosing the base to be a regular polygon 
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FI<;lJRE 10 

with a large number of sides we sec that the area of a right cirrnlar cone (Figure 8) 
must be 

I 

2 (2n r )s = Jr rs. 

where s is the "slant height." Finally, consider the frustum of a cone with slant 
height s and radii r1 and r2 shown in Figure 9(a). Completing this to a cone, as 
in Figure 9(b), we have 

SJ SJ+ S 

so 

SJ= ---

Consequently, the surface area is 

r2s 
SJ +s = --­

r2 - r1 

Now consider the surface formed by revolving the graph of f around the hori­
zontal axis. For a partition P = {to, ... , tn} \Ne can inscribe a series of frustums of 
cones, as in Figure I 0. The total surface area of these frustums is 

II 

Jr I)1cti- J) + J(ti)Jjui - 1i _i)2 + [!(ti) - 1ui- 1>J2 
i=I 

ll 

l + (
f(td - !Cti - d)

2
( . _ . ) t, t, - 1 . 

ti - ti - I 
= Jr I)1cti- 1) + 1ui)] 

i=I 

By the :Mean Value Theorem, this is 

II 

Jr L]!Cti - d + f(ti)]/1 + f'(xi) 2 (ti - ti _i) 
i=l 

for some Xi in (ti - I, ti). Appealing to Problem 1 of the Appendix to Chapter 13, 
we conclude that the surface area is 

2Jf 1• J(xi/1 + J'(x) 2 dx. 

PROBLEMS 

1. (a) Find the volume of the solid obtained by revoking the region bounded 
by the graphs off (x) = x and f (x) = x 2 around the horizontal axis. 

(b) Find the volume of the solid obtained by rcrnlving this same region 
around the vertical axis. 

2. Find tire volume of a sphere of radius r. 
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3. When the ellipse consisting of all points (x,y) with x2/a2 + y2 j b2 = 1 is 
rotated around the horizontal axis we obtain an "ellipsoid of revolution" 
(Figure 11 ). Find th volume of the enclosed olid. 

b 

FIGURE !! 

4. Find the volume of the "torus" (Figure 12), obtained by rotating the circle 
(x - a)2 + y2 = b2 (a > b) around the vertical axis. 

length b 

FIG RE 12 

5. A cylindrical hole of radiu a i bored through the center of a sph re of 
radius 2a (Figure 13). Find the volume of the remaining olid. 

2a 

F' l G RE 13 
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6. (a) For the solid hown in Figure 14, find the volum by the h 11 method. 

FIG R.E14 

(b) This vol um can also be evaluated by the di c method. Write down 
the integral which must be valuat d in thi case; notice that it is more 
complicated. The next problem tak up a que tion which this might 
sugge t. 

7. Figure 15 shows a cylinder of height b and radius f (b) , divided into three 
solids, one of which, V1, is a cylinder of height a and radiu f (a). If f 
i one-on , th n a compari on of the disk method and the shell method of 
computing volumes lead u to believe that 

:n:bf (b)2 - :n:af (a)2 - :n: ib f (x)2 dx = volume V2 

J,
f(b) 

= 2rr y 1- 1 (y) d y. 
f(a) 

Prove this analytically, using the formula for f 1- 1 from Problem 19-16, or 

more simply by going through the teps by which thi formula was derived. 

b 

F I G Rh 15 
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8. ( a) Figure 16 shows a solid with a circular base of radius a. Each plane 
perpendicular to the diameter AB intersects the solid in a square. Using 
arguments similar to those already used in this Appendix, express the 
volume of the solid as an integral, and evaluate it. 

(b) Same problem if each plane intersects the solid in an equilateral triangle. 

9. Find the volume of a pyramid (Figure 17) in terms of its height h and the 
area A of its base. 

FICURE 17 

10. Find the volume of the solid which is the intersection of the two cylinders 
in Figure 18. Hint: Find the intersection of this solid with each horizontal 
plane. 

FIG CR E I 8 

11. (a) Prove that the surface area of a sphere of radius r is 4n r2 • 

(b) Prove, more generall)~ that the area of the portion of the sphere shown 
in Figure 19 is 2nrlz. (Notice that this depends only on h, not on the 
position of the planes.) 

Fl c; l ' RE 19 
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(c) A circular mud puddle can just be covered by a parallel collection of 
boards of length at least the radius of the circle, as in Figure 20 (a). Prove 
that it cannot be covered by the same boards if they are arranged in any 
non-parallel configuration, as in (b ). 

(a) (b) 

FIG URE 20 

12. (a) Find the surface area of the ellipsoid of revolution in Problem 19-3. 
(b) Find the surface area of the torus in Problem 19-4. 

13. The graph of f(x) = 1/x , x :::: 1 is revolved around the horizontal axis 
(Figure 21). 

(a) Find the volume of the enclosed "infinite trumpet." 
(b) Show that the surface area is infinite. 
(c) Suppose that we fill up the trumpet with the finite amount of paint found 

in part (a). It would seem that we have thereby coated the infinite inside 
surface area with only a finite amount of paint. How is this possible? 

FIGURE21 
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One of tlze most remarkable series of 
algebraic anab,sis is the following: 

l 
m m(m - 1) 

2+ -x+ x 
1 1 · 2 

+ 
m(m - 1 )(m - 2) 

x3 + 
.
.
. 

1 · 2 · 3 

m(m - 1) · · · [m - (n - 1)]
+ x

n 

l · 2 · · · · · · · · · · n 

+· ..

Mlhen m is a positive whole number 
the sum of the series, 
which is then finite, can be expressed

)

as is known, by (1 + x)"'. 
vVhen m is not an integer_, 
the series goes on to infinity, and it will 
converge or diverge according 
as the quantities 
m and x have this or that value. 
In this case, one writes the same equality 

Ill 

( l + x)m = 1 + l X

+ 
m(m - 1) 

x2 + ... etc. 
1 · 2 

It is assumed that 
the numerical equality will always occur 
whenever the series is convergent, but 
th is has never yet been Jnoved. 

NIELS HENRIK ABEL 



CHAPTER 20 APPROXIMATION BY 
POLYNOMIAL FUNCTIONS 

There is one sense in which the "elementary functions" are not elementary at all. 
If p is a polynomial function, 

p(x) = ao + a1X + · · · + G11 X
11

, 

then p(x) can be computed easily for any number x. This is not at all true for 
functions like sin, log, or exp. At present, to find logx = f( 1/t dt approximately, 
we must compute some upper or lower sums, and make certain that the error 
involved in accepting such a sum for log x is not too great. Computing ex = 
log- 1(x) would be even more difficult: we would have to compute log a for many 
\·alues of a until we found a number a such that log a is approximately x- then a 
would be approximately ex. 

In this chapter we will obtain important theoretical results which reduce the 
computation of f(x), for many functions f, to the evaluation of polynomial func­
tions. The method depends on finding polynomial functions which are close ap­
proximations to f. In order to guess a polynomial which is appropriate, it is useful 
to first examine polynomial functions themselves more thoroughly, 

Suppose that 
p(x) = ao + a,x + · · · + a 11 x

11
• 

It is interesting, and for our purposes very important, to note that the coefficients ai 

can be expressed in terms of the value of p and its various derivatives at 0. To 
begin with, note that 

p(O) = ao. 

Differentiating the original expression for p(x) yields 

'( ) 2 n- 1 p x = a1 + a2x + · · · + na11 x . 

Therefore, 

Differentiating again we obtain 

p"(x) = 2a2 + 3 · 2 · a3x + · · · + 11(11 - 1) · a 11 x
11

-
2. 

Therefore, 

In general, we will have 

or 

If we agree to define O! = 1, and recall the notation p<O) = p, then this formula 
holds for k = 0 also. 

411 



412 1,ifmite Sequmres and lrifmite Series 

If we had begun with a function p that was written as a ''polynomial in (x - a)," 

p(x) = ao + a1 (x - a)+ · ··+ a11 (x - a)11, 

then a similar argument would show that 

p<k) (a) 

k! 

Suppose now that f is a function (not necessarily a polynomial) such that 

all exist. Let 

and define 

Pn.a (x) = ao + a1 (x - a)+···+ a11(X - a)'1. 

The polynomial P11 •0 is called the Taylor polynomial of degree n for f at a. 

(Strictly speaking, we should use an even more complicated expression, like P11 .a.J, 
to indicate the dependence on f; at times this more precise notation will be usefu l.) 
The Taylor polynomial has been defined so that 

P11 )k>(a) = j1k>(a) for O:::; k ~ n; 

in fact, it is dearly the only polynomial ef degree ~ n with this property. 

Although the coefficients of Pn,a.f seem to depend upon f in a fairly compli­
cated way, the most important elementary functions have extremely simple Taylor 
polynomials. Consider first the function sin. vVe have 

sin(O) = 0, 
sin' (0) = cos O = 1, 
sin" (0) = - sin O = 0, 
sin"'(O) = -cosO = -1, 

sin<4\0) = sin O = 0. 

From this point on, the derivatives repeat in a cycle of 4. The numbers 

sin <k) (0) 
ak = 

k! 
are 

o. L o. 1 ,. 0, S!' 0, -
7

,. 0. 
9

,. 

Therefore the Taylor polynomial P211 + 1.0 of degree 211 + l for sin at O is 

x 3 x 5 x 7 II .r 211 + I 
P211+ 1.o(x) = x - 3! + 5! - 7! + ... + ( - 1) (211 + I)!' 

(Of' course, P211 + 1.0 = P211+2.o). 
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The Taylor polynomial P2n.O of degree 211 for cos at O is (the computations are 
left to you) 

x2 x4 x6 x2n 
P211.o(x) = 1- 2! + 4! - 6! + ... + (-1)" (211)!. 

The Taylor polynomial for exp is especially easy to compute. Since exp(kl (0) = 
exp(O) = I for all k, the Taylor polynomial of degree n at O is 

x x 2 x 3 x 4 x" 
P11.o(x) = 1 + l! + 2! + 3! + 4 ! + · · · + -;;T· 

T'he Taylor polynomial for log must be computed at some point a =f. 0, since 
log is not even defined at 0. The standard choice is a = 1. Then 

I 1 I 
log (x) = - , log (1) = 1; 

x 
II 1 II 

log (x) = - ?' log (1) = -1; 
x-

iii 2 ,,, 
log (x) = 3 , log (l) = 2; 

x 

in general 

1 
(k) (-l/- 1(k - l)! 

og (x) = k , 
x 

Therefore the Taylor polynomial of degree II for log at I is 

(x - 1)2 (x - 1)3 (-1) 11
-

1(x - l)" 
P11 1 (x) = (x - I) -

2 
+ 

3 
+ · · · + 

11 

It is often more convenient to consider the function f (x) = log(l + x ). In this 
case vve can choose a = 0. \ 1Ve have 

fk)(x) = log(k)(l + x), 

so 

Therefore the Taylor polynomial of degree II for f at O is 

x2 x3 x-+ (-l)n - lxn 
P11.o(x) = x - 2 + 3 - 4 + ... + n 

There is one other elementary function whose Taylor polynomial is important­
arctan. The computations of the derivatives begin 

I I I 
arctan (x) = 

1 
-, arctan (0) = I ; 

+x-

11 -h II 
arctan (x) = 

1 
-, -, , arctan (0) = 0: 

( +x-)-

11, ( I + x 2) 2 · ( - 2) + 2x · 2 ( I + x 2) · 2x 
arctan (x) = 

2 4 
arctan"' (0) = - 2. 

(1 + x ) 
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It is clear that this brute force computation will never do. However, the Taylor 
polynomials of arctan will be easy to find after we have examined the properties 
of Taylor polynomials more closely- although the Taylor polynomial Pn.a.f was 
simply defined so as to have the same first n derivatives at a as f, the connection 
between f and Pn.a.f will actually turn out to be much deeper. 

One line of evidence for a closer connection between f and the Taylor polyno­
mials for f may be uncovered by examining the Taylor polynomial of degree I, 
which is 

P1 ,a(X) = J (a)+ J'(a)(x - a). 

Notice that 
f(x) - P1. 0 (x) J(x) - J (a) , 
---- = - f (a). 

x-a x-a 

Now, by the definition of J'(a) we have 

FIG U RE I 

l
. f(x) - P1,a(X) O 
1111 = . 

x->a x - a 

x2 
P2,o(x) = 1 +x + 2 

In other words, as x approaches a the difference f(.x) - P1.a(X) not only becomes 
small, but actually becomes small even compared to x - a. Figure I illustrates the 
graph of f (.x) = ex and of 

P1.o(x) = J(O) + J'(O)x = l + .x, 

which is the Taylor polynomial of degree 1 for f at 0. The diagram also shows 
the graph of 

f" (0) \'2 
P2.o(x) = f(O) + f'(O) + ~x

2 = l + x + ·
2

, 

which is the Taylor polynomial of degree 2 for f at 0. As x approaches 0, the 
cliflcrcncc f (.x) - P2.0 (x) seems to be getting small e\Tll faster than the difference 



THEOREM 1 

20. Approximation by Polynomial Functions 415 

f(x) - Pi .o(x). As it stands, this assertion is not very precise, but we are now 
prepared to give it a definite meaning. We have just noted that in general 

lim f (x) - P1.a(x) = 0. 
x-ta x - a 

For f (x) = ex and a = 0 this means that 

lim f(x) - Pi .o(x) = lim ex - 1 - x = O. 
x-tO X x-tO X 

On the other hand, an easy double application of l'Hopital 's Rule shows that 

1
. ex - 1 - x 1 O 
rm =-#- . 

x-tO x 2 2 

Thus, although f (x) - Pi ,O (x) becomes small compared to x, as x approaches 0, it 
doe not become small compared to x 2. For P2,o(x) the situation is quite different; 
the extra term x 2 /2 provides just the right compensation: 

x2 
ex - 1 - x - - ex - 1 - x 

lim 2 = lim ----
x-tO x2 x-tO 2x 

= lim ex - 1 = 0. 
x-tO 2 

This re ult holds in general- if f'(a) and f "(a) exist, then 

lim f (x) - P2,a(x) = O; 
x-ta (x - a)2 

in fact, the analogous a sertion for P,1,0 is also true. 

Suppo e that f is a function for which 

f' (a), ... , J<n\a) 

all exi t. Let 

0 ~ k ~ n , 

and define 

P11 ,a (x) = ao + at (x - a) + · · · + an (x - a )11
• 

Then 

lim f (x) - Pn .a (X) = O. 
x-ta (x - a) 11 
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PROOF Writing out Pn,a (x) explicitly, we obtain 

f (x) - Pn.a(x) 

(x - a)n 

n - I f (i) (a) . 
f (x) - L .

1 
(x - a)' 

l . 
i=O 

It will help to introduce th new functions 

n- 1 Ci) a 
Q(x) = L f .

1
( ) (x - a); and g(x) = (x - at; 

i=O l. 

now we must prove that 

Notice that 

Thus 

. f(x) - Q(x) JCn\a) 
lun = . 
x--? a g(x) n! 

Q(k)(a) = /k\a), k :Sn - 1, 

g(k )(x) = n!(x - at- k /(n - k)!. 

lim [f (x) - Q(x)] = f (a) - Q(a) = 0, 
X--? Q 

lim[f'(x)- Q'(x)] = J'(a) - Q'(a) = 0, 
X --? Q 

lim [f(n-2\x) - Q(n- 2\x)] = f(n - 2\a) - Q(n- 2)(a) = 0. 
X --? Q 

and 
lim g(x) = lim g'(x) = · · · = lim g(n - 2\x) = 0. 
X--? Q X--? Q X--? Q 

We may therefore apply l'Hopital 's Rule n - 1 tim to obtain 

. f(x) - Q(x) . J<n-l)(x) - Q (n- l)(x) 
hm =hm . 
x--?a (x - a) 11 x--? a n! (x - a) 

Since Q i a polynomial of degree n - 1 its (n - 1) t derivativ 
fact, Q(n- l)(x) = JCn - l>(a). Thu 

. f(x) - Q(x) . J Cn- 1\x) - J Cn- l)(a) 
lun = hm --------
x--? a (x - a) 11 

x--? a n! (x - a) 

and thi lat limit i JCn)(a)/n! by definition of f( 11\a). I 

a constant; in 

On impl ons qu n of heor m 1 allow u to p rfi l th te t for 1 al 
maxima and minima whi h wa d lop din hapt r 11. If a i a riti al point 
[ f , th n a ording to Th or m 11-5, th fun ti n f ha a 1 al minimum 
t a if j"(a) > 0, and a 1 l m imum al a if f"(a) < 0. If f"(a) = 0 n 
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conclusion was possible, but it is conceivable that the sig11 of !"'(a) might give 
further information; and if f"'(a) = 0, then the sign of J(4l(a) = 0 might be 
significant. Even more generally, we can ask what happens when 

(*) f'(a) = J"(a) = · · · = f 11
-

1\a) = 0, 
f(IIJca) =/= 0. 

The situation in this case can be guessed by examining the functions 

f (x) = (x - a )'1, 
g(x) = -(x-a)'1. 

which satisfy (*). Notice (Figure 2) that if 11 is odd, then a is neither a local 
maximum nor a local minimum point for f or g. On the other hand, if n is 
even. then f, with a positive nth derivative, has a local minimum at a , while 
g, with a negative nth derivative, has a local maximum at a. Of all functions 
satisfying ( * ), these are about the simplest available; nevertheless they indicate the 
general situation exactly. In fact, the whole point of the next proof is that any 
function satisfying (*) looks very much like one of these functions, in a sense that 
is made precise by Theorem 1. 

Suppose that 

J'(a) = ... = fn-1\a) = 0, 

f 11
l (a) =/= 0. 

(1 ) If 11 is even and f (n) (a) > 0, then f has a local minimum at a. 

(2) If 11 is even and f (n) (a) < 0, then f has a local maximum at a. 

(3) If 11 is odd, then f has neither a local maximum nor a local minimum at a. 

There is clearly no loss of generality in assuming that f (a)= 0, since neither the 
hypotheses nor the conclusion are affected if f is replaced by f - f (a). Then, 
since the first 11 - I derivatives of f at a are 0, the Taylor polynomial P11 ,a of f is 

J'(a) f(11l(a) 
P11 .a (x) = f(a) + -

11
-(x - a)+···+ 

1 
(x - a)" 

• 11. 
JCn\a) 

= (x - a)'1. 
11 ! 

Thus, Theorem I states that 

O = lim f(x) - P11.a(x) = lim [ f(x) _ f(n)(a)J. 
x --. a (x - a ) 11 x--.a (x - a )11 11 ! 

Consequently, if x is sufficiently close to a , then 

f(x) 

(x - a) 11 has the same sign as 

Suppose now that n is even. In this case (x - a )11 > 0 for all x =/= a. Since 
f(x)/(x-a)n has the same sig11 as J<nl(a)/11! for x sufficiently close to a, it follows 
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i"1 C l RE 3 

f(x) = e ' x -r 
{ 

- l /x2 -I- 0 

0, x =0 

(a) 

{ 

-e - l /x X f. 0 
f(x) = ' 

0, x =0 

(b) 

{ 

- l / x2 
e ' 

J(x) = 0, 
-e- l /x2 

(c) 
' 

x>O 
x=O 
x<O 

THEOREM 3 

l'ROOI' 

that f (x) itself has the same sign as r (a)/ 11 ! for x sufficiently close to a. If 
J<n)(a) > 0, this means that 

f(x) > 0 = f(a) 

for x dose to a. Consequently, f has a local minimum at a. A similar proof works 
for the case jC11

) (a) < 0. 

Now suppose that 11 is odd. The same argument as before shows that if x is 
sufficiently close to a, then 

f(x) 

(x -a) 11 
ahvays has the same sign. 

But (x - a )11 > 0 for x > a and (x - a )11 < 0 for x < a. Therefore f (x) has different 
signs for x > a and x < a. This proves that f has neither a local maximum nor 
a local minimum at a. I 

Although Theorem 2 will settle the question of local maxima and minima for 
just about any function which arises in practice, it docs have some theoretical 
limitations, because f (k) (a) may be O for all k. This happens (Figure 3(a)) for the 
function 

l -l /x2 

f(x) = e ' 
0, 

x=f.O 
x = 0, 

which has a minimum at 0, and also for the negative of this function (Figure 3(b)) , 
which has a maximum at 0. Moreover (Figure 3(c)) , if 

{ 

e - l /x2 

f (x) = 0, 
- l /x2 

-e ' 

x>O 
x=O 
x < 0, 

then f (k) (0) = 0 for all k, but f has neither a local minimum nor a local maximum 
at 0. 

The conclusion of Theorem 1 is often expressed in terms of an important con­
cept of "order of equality.'' Two functions f and g are equal up to order n 
at a if 

. f (x) - g(x) 
0 hm =. 

x--;. a (x - a) 11 

In the language of this definition , Theorem 1 says that the Taylor polynomial 
Pn.a.f equals f up to order 11 at a. T'he Taylor polynomial might very \\'Cll have 
been designed to make this fact true, because there is at most one polynomial of 
degree ~ 11 with this property. This assertion is a consequence of the following 
elementary theorem. 

Let P and Q be two polynomials in (x - a), of dcgr<'e ~ 11, and suppose that P 
and Q are equal up to ordn 11 at a. Then P = Q. 

Let R = P - Q. Since R is a polynomial of degree ~ 11, it is only necessary to 
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prove that if 

R(x) =ho+···+ h11(x - a)11 

satisfies 
R(x) 

lim = 0, 
x--->a (x - a) 11 

then R = 0. Now the hypothesis on R surely imply that 

1. R(x) O 
un . = 

x--->a (x - a)' 
for O ::: i ::: 11. 

For i = 0 this condition reads simply lim R(x) = O; on the other hand, 
X--->CI 

lim R(x) = lim [ho+ bi (x - a)+···+ bn(X - aY,] 
x--->a x-;.a 

Thus ho= 0 and 

Therefore, 

and 

Thus b1 = 0 and 

= ho. 

R(x) = b1(x -a)+··· +b 11 (x -a)'1. 

R~t) 11 - I -- = b1 + b2(x - a)+···+ b11 (x - a) 
x - a 

. R(x) 
lim -- = bi. 
X--->CI X - (l 

R(x) = b2(x - a)2 + · · · + h11(X - a)11. 

Continuing in this way, we find that 

bo = · · . = b11 = o. I 

Let f be ,z-times differentiable at a , and suppose that P is a polynomial in (x - a) 

of degree ::: 11 , which equals f up to order 11 at a. Then P = P11 .a.f. 

Since P and P11 ,a.f both equal f up to order 11 at a, it is easy to see that P equals 
P11 ,a.J up to order n at a. Consequently, P = P11 .a.f by the Theorem. I 

At first sight this corollary appears to have unnecessarily complicated hypotheses; 
it might seem that the existence of the polynomial P would automatically imply 
that f is sufficiently differentiable for P,,.a.f to exist. But in fact this is not so. For 
example (Figure 4), suppose that 

f (x) = .\ . l . 11 + 1 

0, 
x irrational 
x rational. 

If P(x) = 0 , then P is certainly a polynomial of degree ::: n which equals f up to 
order 11 at 0. On the other hand, f' (a) docs not exist for any a =f. 0, so f" (0) is 
undefi11ed. 
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··. 

F I GURE 4 

. . .. 

f f(x) = x ' 
: [ n+ l 

: 0, 
x irrational 
x rational 

When f doe have n derivativ s at a , how v r, the corollary may provide a 
useful method for finding the Taylor polynomial of f . In particular, remember 
that our first attempt to find the Taylor polynomial for arctan ended in failure. 

The equation lox 1 
arctan x = --2 dt 

o 1 + t 
suggests a promising method of finding a polynomial close to arctan- divide 1 
by 1 + t2, to obtain a polynomial plus a remainder: 

1 (-1)'7+1r2n+2 
-- = 1 - t2 + t4 - t6 + ... + < - lY t2,, + -----
1 + t 2 1 + t 2 

This formula, which can be checked easily by multiplying both sides by 1 + t2, 

how that 

arctanx = 1- t 2 + t 4 - · · · + (-l)'1t 2ndt + (-1) 11 +1 --dt lo
x lox t 2n+2 

O o 1 + t 2 

=x--+-- ··· +(-IY +(-1y+1 --dt. 
X3 XS x2n+ I lox t 2n+2 

3 S 2n + 1 o 1 + t 2 

According to our corollary the polynomial which appear h r will b the Taylor 
polynomial of degree 2n + 1 for arctan at 0, provided that 

Since 

lo
x t 2n+2 
--dt 

lim O 1 + t 2 = 0. 
x-+ 0 x2n+ l 

lo
x t 2n+2 
--dt 

o 1 + t2 

lx l211 +3 

2n +3' 

thi is 1 arly tru . Thu w hav fo und that th Tayl r p l nomial of d o-r 

2n + 1 £ r ar tan at O i 

X XS X211+I 
P211 + I ,0 (x) = x - 3 + 5 - ... + ( - 1 ),, 2n + l 
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By the way, now that we have discovered the Taylor polynomials of arctan, it is 
possible to work backwards and find arctan (kl (0) for all k: Since 

x3 XS x2n+I 

P211+1.o(x) = x - 3 + 5 - ... + (-1)112n + I, 

and since this polynomial is, by definition, 

arctan <2) (0) arctan <211 + 1 l (0) 
arctan<0)(0) + arctan°\0) + 

2
! x 2 + ... + x 211 + 1

, 
(2n + l)! 

we can find arctan (kl (0) by simply equating the coefficients of xk in these two 
polynomials: 

arctan <21+ 1) (0) 

(2/ + 1 )! 

arctan (kl (0) 
----- = 0 if k is even, 

k! 

(-Ii 

21 + 1 
or arctan(2!+!)(0) =(-Ii· (2/)!. 

A much more interesting fact emerges if we go back to the original equation 

,..3 ,.,.5 \.211+! ix r2n+2 
. . ., . , II • 11+] 

arctan., = ., - - + - - · · · + (-1) + (-1) --,.., dt, 
3 5 2n + l o l + r-

and remember the estimate 

ix r2n+2 
--dt 

o 1 + r2 

lxl2n+3 
<---

2n + 3 · 

\Vhen Ix I :::: 1, this expression is at most I /(2n + 3), and we can make this as 
small as we like simply by choosing n large enough. In other words, for Ix I :::: l 
we ran use the Taylor po6momials for arctan to romjJu!e arctan x as affurate[y as we like. 
The most important theorems about Taylor polynomials extend this isolated result 
to other functions, and the Taylor polynomials will soon play quite a new role. 
The theorems proved so far have always examined the behavior of the Taylor 
polynomial P11 .a forfi.ted n, as x approaches a. Henceforth we will compare Taylor 
polynomials P11 ,a for.fixed x, and different n. In anticipation of the coming theorem 
we introduce some new notation. 

If f is a function for which Pn,a (x) exists, we define the remainder term 
R11 •0 (x) by 

f (x) = Pn.a(X) + R,, ,a(X) 

· , f< 11
\a) 

= f (a)+ f (a)(x - a)+···+ 
1 

(x - a)'1 + R11 ,a(x). 
ll. 

\Ve would like to have an expression for Rn .a (x) \\'hose size is easy to estimate. 
There is such an expression, invoh·ing an integral, just as in the case for arctan. 
One way to guess this expression is to begin with the case n = 0: 

f (x) = f(a) + Ro.a(x). 
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The Fundamental Theorem of Calculus enable us to write 

f (x) = f (a)+ J. x J' (t) dt , 

o that 

Ro.a(x) = 1x f'(t)dt. 

A similar expression for R l ,a (x) can be derived from this formula using int gra­
tion by parts in a rather tricky way: L t 

u(t) = J'(t) and v(t) = t-x 

(notice that x r presents some fixed number in the expre sion for v(t), so v'(t) = 1); 
then 

[ J'(t) dt = 1 J'(t). 1 dt 

+ + 
u(t) v'(t) 

= u(t)v(t) Ix - r f"(t)(t - x) dt. 
a la + + 

Since v(x) = 0, we obtain 
u'( t) v(t) 

f(x) = f(a) + J. x J'(t)dt 

= f (a) - u(a)v(a) + J. x J " (t)(x - t) dt 

= f (a)+ J'(a)(x - a)+ [ J"(t)(x - t) dt. 

Thus 
Ri ,a(X) = J.x J" (t)(x - t) dt. 

It i hard to give any motivation for choosing v (t) = t - x, rather than v (t) = t. 
It just happens to be the choice which work out, the ort of thing one might 
discover after sufficiently many similar but futile manipulations. However, it i 
now easy to gues th formula for R2,a (x ). If 

-(x - t) 2 

u(t) = f" (t) and v(t) = 
2 

, 

then v' (t) = (x - t), o 

r Ix r (x t)2 la f"(t)(x - t ) dt = u(t)v(t) a - la J"'(t) · 
2 

dt 

f"(a)(x - a)2 1x f"'(t) 2 
= + --(x- t) dt. 

2 a 2 

Thi h w that r i<3)(t) 
R2,a(X) = l a 

2 
(x - t)

2 
dt. 

You h uld now hav litll diffi ulty 0'1\ inO' a riO' r u pr f, b indu ti n the t 
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if 1(11+ I) is continuous on [ a, x ], then 

1
x I (11+]) (t) 

R11 .a(X) = 
1 

(x - t)'1 dt. 
a n. 

This formula is called the integral form of the remainder, and we can easily esti­
mate it in terms of estimates for I (II+ 

1 
> / 11 ! on [a, x]. If m and M are the minimum 

and maximum of I (II+ 1) / 11 ! on [a, x], then Rn.a (x) satisfies 

m lx (x - t)'1 dt ::::: Rn ,a (x) :S M 1x (x - t ) dt, 
a a 

so we can write 
(x - a)'1+ 1 

Rn,a(X) =a· l 
n+ 

for some number a between m and M. Since we've assumed that 1<11+ I) is con­
tinuous, this means that for some t in (a, x) we can also write 

. 1<11+1\t) (x - a)n+l 1(11+!) n+l 

R11 ,a(x)= 1 +l = ( +l) 1(x-a) , ,z. n n . 

which is called the Lagrange form of the remainder (these manipulations \vill look 
familiar to those who have done Problem 13-23). 

The Lagrange form of the remainder is the one we will need in almost all 
cases, and we can even give a proof that doesn't require 1(11+ 1) to be continuous 
(a refinement admittedly of little importance in most applications, where vve often 
assume that I has derivatives of all orders). This is the form of the remainder that 
we will choose in our statement of the next theorem (Taylor's Theorem). 

Suppose that the function R is (n + 1 )-times differentiable on [a, b], and 

R<k\a) = 0 fork= 0, 1, 2, ... , ,z. 

Then for any x in (a, b] we have 

R(x) R(n+l\t) 

(n + 1 )! 
for some t in (a. x). 

For n = 0, this is just the Mean Value Theorem, and we will prove the theorem 
for all II by induction on 11. To do this we use the Cauchy l\:lcan Value Theorem 
to write 

R(x) R'(z) R'(z) 
---- = for some z in (a, x) , 
(x - a) 11 + 2 (n + 2)(z - a)11 + 1 n + 2 (z - a) 11 + 1 

and then apply the induction hypothesis to R' on the interval fa, z] to get 

R(x) (R1)<11+1\t) 
---- - -- for some t in (a, z) 
(x -a)11+2 n + 2 (n + l)! 

R(n+2Jcr) 
= .• 

(n + 2)! 
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Suppo e that f ', ... , f(n+I) ar d fined on [a ,x], and that R11 ,0 (x) i defined by 

f (n) (a) 
f (x) = f(a) + f'(a)(x - a)+···+ 

1 
(x - a) 11 + Rn ,a(x). 

n. 

Then 
j(n+l)(t) 

R (x) - (x - a) 11 +1 for om t in (a, x) 
11 ,a - (n + l)! 

(Lagrange form of the remainder). 

The function R11 ,a satisfi th condition of the Lemma by the very definition of 
the Taylor polynomial, so 

Rn ,a (x) 
(x - a)n+l 

R (n+ l ) (t) 11 ,a 

(n + l)! 
for some tin (a, x). But 

Rn .a (n+ l ) = f(n+l)' 

since R11 ,a - f is a polynomial of d gr n. I 

Applying Taylor's Theorem to the functions sin, cos, and exp, with a = 0, we 
obtain the following formulas: 

x3 xs x211 +l sin(2n+2)(t) 
sin x = x - - + - - ... + ( -1 )11 + x 2n+2 

3! 5! (2n + 1)! (2n + 2)! 

X 2 X 4 X 2n CO (2n + 1) ( t) 
COS X = 1 - - + - - · · · + ( -1 t -- + X 

211+ l 
2! 4! (2n)! (2n + l)! 

x 2 x " e' 
ex = 1 + x + - + · · · + - + xn+l 

2! n! (n + 1)! 

( of course, we could actually go on power higher in th r maind r t rm for m 
and co ). 

Estimates for the first two ar specially ea y. Sine 

I sin <211 +2\ t ) I .::: l for all t , 

w have 
. (211 +2) (t ) 
in 2n+2 ----x < 
(2n + 2)! 

imilarly, w an h w tha t 

(211 + I \t) 
----x211+1 < 

(2n + l)! 

lx l211 +2 

(2n + 2)! 

lx l211 +1 

(2n + 1 )! 
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These es timates are particularly interesting, because (as proved in Chapter 16) for 
any£ > 0 we can make 

<£ 
11 ! 

by choosing n large enough (how large 11 must be will depend on x). This enables 
us to compute sin x to any degree of accuracy desired simply by evaluating the 
proper Taylor polynomial P,1.o(x). For example, suppose we wish to compute 
sin 2 with an error of less than 10- 4 . Since 

sin2 = P211+1.0(2) + R, 
2211 +2 

where !RI :S --­
(2n + 2)!' 

we can use P2 11+ 1.0(2) as our answer, provided that 

2211+2 
---< 10- 4. 
(2n + 2)! 

A number 11 with this property can be found by a straightforward search- it ob­
viously helps to have a table of values for n ! and 211 (see page 432). In this case it 
happens that n = 5 works, so that 

sin 2 = P11,0(2) + R 

23 2s 21 29 2 11 
= 2 - 3! + 5! - 7! + 9! - l1! + R, 

where !RI < 10-4
, 

It is even easier to calculate sin J approximately, since 

sin 1 = P211+1,oO) + R, 
1 

where !RI<---­
(2n + 2)! 

To obtain an error less than £ we need only find an 11 such that 

1 
---- <£, 
(2n + 2)! 

and this requires only a brief glance at a table of factorials. (l\Ioreover, the indi­
vidual terms of P211 +1.00) will be easier to handle.) 

For very small x the estimates will be even easier. For example, 

. 1 ( I ) sm lO = P211 + l.O lO + R, 
1 

where !RI < · 
10211+2(211 + 2)! 

To obtain IR I < Io- to we can clearly take n = 4 (and we could c\·en get away 
with 11 = 3). These methods can actually be used to compute tables of sin and 
cos; a high-speed computer can compute P2 11 +1.o(x) for many diflerent .r in almost 
no time at all. Nowadays, computers, and eveu cheap calculators, determine the 
values or such functions "on-the-fly", though by specialized methods that are even 
faster. 
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Estimating the remainder for ex is only slightly harder. For simplicity assume 
that x :::_ 0 (the estimates for x ::::: 0 arc obtained in Problem 15). On the interval 
[O, x] the maximum value of er is ex, since exp is increasing, so 

ex x11+I 

R11.0 ::::: (n + l)!. 

Since we already know that e < 4, we have 

exx11+I 4xx11+ I 
---< ' 
(11 + I ) ! (n + 1 ) ! 

which can be made as small as desired by choosing n sufficiently large. How large 
n must be will depend on x (and the factor 4x will make things more difficult). 
Once again, the estimates are easier for small x. If O .::::: x ::::: I, then 

.r x 2 x 11 
e =l+x+-+···+-+R, 

4 
where O < R < --­

(n + l)! 2! n ! 

In particular, if n = 4, then 

so 

which shows that 

(This then shows that 

4 1 
O<R<-<-

5! 10' 

2 < e < 3. 

I 
where O < R < 

10 

allowing us to improve our estimate of R slightly.) By taking n 
compute that the first 3 decimals for e arc 

e=2.718 ... 

7 you can 

(you should check that n = 7 docs give this degree of accuracy, but it ,vmild be 
cruel to insist that you actually do the computations). 

The function arctan is also important but, as you may recall, an expression for 
arctan (k ) (x) is hopelessly complicated, so that our expressions for the remainder 
arc pretty useless. On the other hand, our derivation of the Taylor polynomial for 
arctan automatically provided a formula for the remainder: 

x3 ( - l)"x2n+ I 
arctan x = x - -;:;- + · · · + 

2 1 _J fl+ + lo
x ( - 1)11+ ! ,211 +2 

.., dt. 
O I+ t-
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As we have already estimated, 

lo
x (-1 )''+ I 1211 +2 

? d1 
o 1 + 1- I lo

x I Ix 1211 +3 < 1211+2 d1 = . 
- 0 211 + 3 

For the moment we will consider only numbers x with Ix I ::S 1. In this case, the 
remainder term can clearly be made as small as desired by choosing II sufficiently 
large. In particular, 

1 1 (-1) 11 
arctan I = 1 - - + - - · · · + + R, 

3 5 211 + 1 

1 
where IRI < 

2 
. 

n + 3 

\!Vith this estimate it is easy to find an II which will make the remainder less than 
any preassigned number; on the other hand, 11 will usually have to be so large as to 
make computations hopelessly long. To obtain a remainder < 10- 4 , for example, 
we must take 11 > (104 - 3)/2. This is really a shame, because arctan 1 = JT/4, 
so the Taylor polynomial for arctan should allow us to compute JT. Fortunately, 
there are some clever tricks which enable us to surmount these difficulties. Since 

lxl:211+3 
IR211+ 1.o(x)I < 1 + 

3
. 

-11 

much smaller 11 'swill work for only somewhat smaller x 's. The trick for computing 
JT is to express arctan 1 in terms of arctan x for smaller x; Problem 6 shows how 
this can be done in a convenient way. 

From the calculations on page 413, we see that for x ~ 0 we have 

x2 x3 x4 (-1)11-lx11 (-1)" 11+! 
log(l +x) =x - -+- - -+ ···+ + --1 

2 3 4 II n+l 

where 

--111+1 <--
I 

(-1)" I x"+' 

n+l -n+l 

and there is a slightly more complicated estimate when -1 < x < 0 (Problem 16). 
For this function the remainder term can be made as small as desired by choosing 
11 sufficiently large, provided that - 1 < x ::S 1. 

The behavior of the remainder terms for arctan and f (x) = log(x + 1) is quite 
another matter when Ix I > 1. In this case, the estimates 

lxl2n+3 
IR211+1.o(x)I < 

2 3 
for arctan. 

ll + 
x11+I 

IR11.o(x)I < --
1 

(x > 0) for f. 
II+ 

are of no use, because when Ix I > I the bounds xm / 111 become large as 111 be­
comes large. This predicament is un,woidable. and is not just a deficiency of our 
estimates. It is easy to get estimates in the other direction which show that the 
remainders actually do remain large. To obtain such an estimate for arctan. note 



428 b!finite Sequences and b!finite Series 

that if t is in ro, x] (or in [ x, OJ if x < 0), then 

so 

1 +t2 ~ l +x2 ~2x 2
• iflxl ~ L 

lo
x ,211 +2 
--dt 

o 1 + ,2 
1 I !ox , , I 1x1211 + l > -, r 11+- dt = . 

- 2x- o 411 + 6 

To g<"t a similar estimate for log( 1 + x ), we can use the formula 

1 (-1 )II fl/ 
__ = l _ t + ,2 _ ... + (-1)11 - 1,11 - 1 + ; 
l+t l+t 

to get 

lo
x I ¥2 ¥3 :rn 

log(!+ x) = --dt = x - :..___ + ::_ - ... + (-1) 11
-

1 ::_ 
O l+t 2 3 II 

+ ( - 1 )'1 r -'-11

- d t. lo 1 + t 
lf x > 0, then for t in [ 0, xJ Wt' have 

1 + t ~ I + x ~ 2x, if x ~ 1, 

so r _,_n_ d t > _l_ rx ti/ d t = xll . 
} o t + 1 - 2x } o 211 + 2 

These estimates show that if Ix I > 1, then the remainder terms become large as 
11 becomes large. In other words, for Ix I > 1, the Taylor polynomials for arctan 
and f are ef no use wlzatsoez'er in comjJuting arctan x and log(x + I). This is no tragedy, 
because the values of the e functions can be found for any x once they are known 

for a ll x with lxl < 1. 
This same situation occurs in a spectacular way for the function 

f(x) = ' I -I / r2 e . 
. 0, 

x:fO 
x = 0. 

\ Ve ha\·e already seen that pk) (0) = 0 for every natural number k. This means 
that the Taylor polynomial P11 .o for f is 

' f" (0) ') f (11) (0) 11 

Pn o(x) = f (0) + f (O)x + --r + · · · + x . 2! II! 
=0. 

ln other words, the rcmaiudcr tt'rm R11 .o(x) always equals f (x ), and the Taylor 
polynomial is useless for computing f (x ), except for x = 0. E\·entually we will be 
able to offrr some cxplanat ion for the bch,wior oft his function, \\'hich is such a 
disconcerting illustration of the limitations of Taylor's Theorem. 

The word "compHtc" has been used so often in connection \\'ith our esti111ates 
for the remainder term, that the significance of ' faylor's Theorem might be mis­
construed. It is tnw that Taylor's Theorem can be used as a computational aid 
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(despite its ignominious failure in the previous example), but it has even more im­
portant theoretical consequences. Most of these will be developed in succeeding 
chapters, but two proofs will illustrate some way in which Taylor's Theorem may 
be used. The first illu tration will be particularly impressive to those who have 
waded through the proof, in Chapter 16, that Tr is irrational. 

e is irrational. 

We know that, for any n , 

1 1 1 1 3 
e = e =1+-

1
,+-21 +·· · +,+Rn , where O < R11 < 
. . n. (n + l)! · 

Suppos that e were rational, ay e = a / b , where a and b are positive integers. 
Choo e n > b and also n > 3. Then 

a 1 1 
-=1+1+ - + · ··+ - +R 
b 2! n! 11

' 

0 

n!a n! n! 
- = n!+n! + -

2 
+ ··· + - +n!R11 • 

b ! n! 

Every term in this equation other than n!Rn is an integer (the left side is an integer 
becau e n > b). Cons quently, n!R11 must be an integer also. But 

so 

3 
0 < Rn < (n + l )! , 

3 3 
0 < n!R11 < -- < -

4 
< 1, 

n+l 

which is impossible for an integer. I 

The second illustration 1s merely a straightforward demon tration of a fact 
proved in Chapter 15: If 

!" + f = 0, 
J(O) = 0, 
J'(O) = 0, 

then f = 0. To prove this, observe fir t that j Ck) xi t for every k; in fact 

JC3) = (!") ' = - j'' 
JC4) = (f (3)) ' = (- !')' = - ! " = f, 
JCS) = (f (4)) ' = j', 

etc. 
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This shows, not only that all f (k) exist, but also that there are at most 4 different 
ones: f, f', - f, - f'. Since f (0) = f'(O) = 0, all f(k\O) are 0. Now Taylor's 
Theorem states, for any n, that 

J<n+l)(t) 
f(x)= (x-a)11 

(n + l)! 

for some t in [O, x]. Each function J<n +I) is continuous (since f( 11+2
> exists), so for 

any particular x there is a number M such that 

lin+l)(t)I ~ M for O ~ t ~ x, and all n 

(we can add the phrase ''and all n" because there are only four different f(k> ). 
Thus 

MJxl"+I 
If (x)I ~ (n + 1 )! 

Since this is true for every n, and since Ix 1
11 

/ n ! can be made as small as desired by 
choosing n sufficiently large, this shows that If (x) I :::: c for any c > O; consequently, 
f (x) = 0. 

The other uses to which Taylor's Theorem will be put in succeeding chapters 
are closely related to the computational considerations which have concerned us 
for much of this chapter. If the remainder term Rn.a (x) can be made as small as 
desired by choosing n sufficiently large, then f (x) can be computed to any degree 
of accuracy desired by using the polynomials P11 .a (x ). As we require greater and 
greater accuracy we must add on more and more terms. If we are willing to add 
up infinitely many terms (in theory at least!), then we ought to be able to ignore 
the remainder completely. There should be "infinite sums" like 

x3 xs x7 
sin x = x - - + - - - + · · · 

3! 5! 7! ' 
x2 x4 x6 xs 

cosx = I - - + - - - + - - ... 
2! 4! 6! 8! . 

x x2 x3 x4 
e =l+x+-+-+-+ ... 

2! 3! 4! . 
x3 xs x7 

arctan x = x - - + - - - + · · · 
3 5 7 
x2 x3 x4 

log( I + x) = x - 2 + 3 - 4 + · · · 

if Ix I ~ I. 

if - l < x :::: I . 

\Ve are almost completely prepared for this step. Only one obstacle remains 
we have never even defined an infinite sum. Chapters 22 and 23 contain the 
ncccssa ry de fin it ions. 
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PROBLEMS 

1. Find the Taylor polynomials ( of the indicated degree, and at the indicated 
point) for the following functions. 

(i) f (x ) = eex; degree 3, at 0. 

(ii) f (x) = e sin x degree 3, at 0. 

(iii) in; degree 2n , at ; . 

(iv) co ; degree 2n , at n . 

(v) exp; degree n , at 1. 

(vi) log; degree n , at 2. 

(vii) f (x) = x s + x 3 + x; degree 4, at 0. 

(viii) f (x) = xs + x 3 + x; degree 4, at 1. 

(ix) 

(x) 

1 
f (x) = 

2
; degree 2n + 1, at 0. 

l+ x 

1 
f (x) = --; degree n , at 0. 

l+ x 

2. Write each of the following polynomial in x as a polynomial in (x - 3) . (It 
is only necessary to compute the Taylor polynomial at 3, of the same degree 
as the original polynomial. Why?) 

(i) x 2 -4x -9. 

(ii) x 4 - 12x 3 + 44x 2 + 2x + 1. 

(iii) X S. 

(iv) ax 2 + bx + c. 

3. Write down a sum (using L notation) which equal each of the foll owing 

numbers to within the specified accuracy. To minimiz ne dl computa-
tion, consult the tables for 2n and n ! on the next page. 

(i) sin 1; error < 10- 17 . 

(ii) sin 2; rror < 10- 12 . 

(iii) sin i; error < 10- 20 . 

(iv) e; error < 10- 4 . 

(v) e2; error < 10- s. 
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11 211 11 ! 

2 
2 4 2 
3 8 6 
4 16 24 
5 32 120 
6 64 720 
7 128 5,040 
8 256 40,320 
9 512 362,880 

10 1,024 3,628,800 
11 2,048 39,916,800 
12 4,096 4 79,001,600 
13 8,192 6,227 ,020,800 
14 16,384 87, 178,291,200 
15 32,768 1,307 ,674,368,000 
16 65,536 20,922, 789 ,888,000 
17 131,072 355,687 ,428,096,000 
18 262,144 6,402,373,705,728,000 
19 524,888 121,645, 100,408,832,000 
20 1,048,576 2,432,902,008, 176,640,000 

*4. This problem is similar to the previous one, except that the errors demanded 
are so small that the tables cannot be used. You will have to do a little 
thinking, and in some cases it may be necessary to consult the proof, in 
Chapter 16, that x 11 

/ 11 ! can be made small by choosing n large~ the proof 
actually provides a method for finding the appropriate 11. In the previous 
problem it was possible to find rather short sums; in fact, it was possible 
to find the smallest 11 which makes the estimate of the remainder given by 
Taylor's Theorem less than the desired error. But in this problem, finding af!_y 

specific sum is a moral victory (provided you can demonstrate that the sum 
works). 

(i) sin I; error < 10- 0°
10>. 

(ii) e; error < 10- 1.ooo. 

(iii) sin 1 O; error < l 0- 20. 

(iv) e 10; error< 10- 30 . 

(v) arctan /0 ; error < 10- 0010>. 

5. (a) In Problem 11-41 you showed that the equation .r2 = cos x has pre­
cisely tvvo solutions. Use the third degree 1:'lylor polynomial of cos to 

show that the solutions arc approximately ±j2/3, and find bounds on 
the error. Thm use the fifth degree Taylor polynomial to get a better 
approximation. 

(b) Similarly, estimate the solutions of the equation 2.r 2 = x sin x + cos2 x. 
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6. (a) Prove, using Problem 15-9, that 

n I 1 
4 = arctan 2 + arctan 3, 
n 1 1 
4 = 4 arctan 5 - arctan 

239
. 

(b) Show that n = 3 .14159 .... (Every buckling mathematician should ver­
ify a few decimals of n, but the purpose of this exercise is not to set you 
off on an immense calculation. If the second expression in part (a) is 
used, the first 5 decimals for n can be computed with remarkably little 
work.) 

7. Suppose that a; and b; are the coefficients in the Taylor polynomials at a of f 
and g, respectively. In other words, a;= f(i)(a)/i! and b; = gUl(a)/i!. Find 
the coefficients c; of the Taylor polynomials at a of the following functions, 
in terms of the a i's and bi's. 

8. 

(i) 
(ii) 
(iii) 

(iv) 

(v) 

(a) 

f +g. 
Jg. 
f'. 

h(x) = 1x f(t) dt. 

k(x) = fox f(t)dt. 

Prove that the Taylor polynomial off (x) = sin(x 2) of degree 4n + 2 at O 
IS 

x6 XIO x4n+2 
x 2 

- - + - - · · · + (-1)" . 
3! 5! (2n + I)! 

Hint: If P is the Taylor polynomial of degree 211 + 1 for sin at 0, then 
sin x = P(x) + R(x), where lim R(x)/x 2n+ I = 0. What does this imply 

x--+0 

about lim R(x2)/x411+2 ? 
x--+0 

(b) Find J<k\0) for all k. 
(c) In general, if f(x) = g(xm), find Jfk\O) in terms of the derivatin's of g 

at 0. 

The ideas in this problem can be extended significantly, in ways that are explored 
in the next three problems. 

9. (a) Problem 7 (i) amounts to the equation 

Pn ,a.f +g = Pn.a.f + P11 ,a.g · 

Give a more direct proof by writing 

f (x) = Pn ,a.f (X) + Rn ,a.f (X) 

g(x) = P11 .a,g (X) + Rn.a ,& (x), 

and using the obvious fact about Rn.a.f + R11 .a .g . 
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(b) Similarly, Problem 7 (ii) could be used to show that 

p f - [P f . p ] 11,a •. g - 11 . a , 11 ,a,g 11, 

where [ PJ 11 denotes the truncation of P to degree 11, the sum of all 
terms of P of degree ::::: 11 [ with P vvrittcn as a polynomial in x - a J. 
Again, give a more direct proof, using obvious facts about products in­
volving terms of the form R11 • 

(c) Prove that if p and q are polynomials in x-a and lim R(x)/(x-a)11 = 0, 
x ->0 

then 

p(q(x) + R(x)) = p(q(x)) + R(x) 

where 

lim R(x)/(x - a) 11 = 0. 
x -> O 

Also note that if p is a polynomial in x - a having only terms of degree 
> 11, and q is a polynomial in x - a whose constant term is 0, then all 
terms of p(q (x - a)) arc of degree > 11. 

(cl) If a = 0 and b = g(a) = 0, then 

Pn ,a.f og = [ P,1 ,b,f o Pn ,a,g ]11 · 

(Problem 8 is a special case.) 

(e) The same result actually holds for all a and any value of g(a). Hint: 
Consider F(x) = f(x+g(a)), G(x) = g(x+a) and H(x) = G(x)-g(a). 

(f ) If g(a) = 0, then 

Pn.a. l~R = [1 + Pn.a ,g + (Pn.a .g)
2 + · · · + (P11 ,a.g)

11 J,,. 

10. For the following applications of Problem 9, we assume a = 0 for simplicity, 
and just write P11 .f instead of Pn .a.f. 

(a) For f(x) = ex and g(x) = sinx, find Ps,J+g(x). 

(b) For the same f and g, find Ps,Jg· 

(c) Find Ps.tanCx). Hint: First use Problem 9 (0 and the value of Ps.cos(x) to 

find Ps.I / cos(x). (Answer: x + ·3
3 + 2(; ) 

(cl) Find P4.f for f (x) = e2
.r cos x. (Answer: 1 + 2x + ~x 2 + !x 3 - {4 x

4
) 

(e) Find PsJ for f(x) = sinx/cos2x. (Answer: x + 1ix 3 + i~bx5
) 

(f) Find P6.f for f (x) = x 3 /[(l + x 2)e·T (Answer: x 3 - x 4 
- !x 5 + ix 6

) 

11. Calculations of this sort may be used to evaluate limits that we might other­
wise try to find through laborious use ofl'Hopital's Rule. Find the following: 

ex - l - x - ~ x 2 N (x) 
(a) Jim . - = Jim --. 

x --> 0 x - sm x .r --> 0 D (x) 

Hint: First find P3.o.N(x) and P3 .o.n(x) for the m,mcrator and cknomi­
nator N(x) and D(x). 
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ex 1 2 
-- -1- -x 

(b) lim 1 + x . 2 
x-* O x - sin x 

Hint: For the term ex /(1 + x), first write 1/ (1 + x ) = l- x +x2-x3+- · . . 

(c) Jim (-1 - _!_) 
x-* O sin2 x x 2 

(d) lim 
1 - cos(x 2) 

X-"*0 x 2 sin2 x 

(e) lim _1_ - 1 
x-* O sin2 x sin (x2) · 

(f ) lim 
(sin x)(arctan x ) - x 2 

X-* 0 1 - co (x2) 

Let {'mx x /0 
f (x ) = x ' 

1, x = 0. 

Starting with the Taylor polynomial of degree 2n + 1 for sin x , together with 
the estimate for the remainder term derived on page 424, show that 

wher 

( 
x 2 x4 x2n ) 

f (x) = 1 - - + - +· ·· + (-It + R2 o 1Cx) 
3! 5! (2n + 1)! n . ' 

Ix 12n+ l 

IR2n,O,J(x) I ~ (2n + 2)! , 

and use this to conclude that 

ln
l lnl ( x2 x4 ) 1703 J ~ 1--+- dx = --~ .946 

o o 3! 5! 1800 

with an error of less than 1 o-3. 

13. Let 

14. 

{ 

ex - I 
f (x) = -x-, 

1, 

x/ 0 

x = 0. 

(a) Find the Taylor polynomial of degree n for fat O compute jCk) (0), and 
give an estimate for the remainder term R n,O.f. 

(b) Compute lo 1 

f with an error of less than 10- •. 

[0.1 
Estimate Jo xp(x 2) dx with an error fl than 10- 5. 
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15. Prove that if x .::::: 0, then the remainder term R11 .o for ex satisfies 

1x111 +I 
IRn,ol.::::: (n + l)! 

16. Prove that if -1 < x < 0, then the remainder term Rn.O for log( 1 + x) 

satisfies 

lx1'7+ 1 

IR11,ol .::::: (1 + x)(n + l) 

*17. (a) Show that if lg'(x)I .::::: Mix - al 11 for Ix - al< 8, then lg(x) - g(a)I.::::: 
Mlx-aln+Ij(n + l) for Ix -al< 8. 

(b) Use part (a) to show that if lim g'(x)/(x - a) 11 = 0, then 
X -'> ll 

l
. g(x) - g(a) 

0 llll = . 
x -+ a (x _ a )11 + I 

(c) Show that if g(x) = J (x) - Pn,a.f (X), then g'(x) = J'(x) - Pn- 1.a ,f'(x). 

(d) Give an inductive proof of Theorem 1, vvithout using l'Hopital's Rule. 

18. Deduce Theorem 1 as a corollary of Taylor's Theorem, with any form of 
the remainder. (The catch is that it will be necessary to assume one more 
derivative than in the hypotheses for Theorem 1.) 

19. Lagrange's method for proving Taylor's Theorem used the following device. 
\Ve consider a fi"Xed number x and write 

f(ll) (t) 
f(x) = J(t) + J ' (t)(x - t) + · · · + (x - 1)'1 + S(t) 

11 ! 

for S(t) = R11 •1 (x). The notation is a tip-off that we are going to consider the 
right side as giving the rnlue of some function for a given t, and then write 
clown the fact the derivative of this function is 0, since it equals the constant 
function whose value is always f (x). To make sure you understand the roles 
of x and t, check that if 

f (k)( ) 

( ) I ( )k g I= x-t , 
k! 

then 
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(a) Show that 

0 = J'(I) + [- J'(t) + r;;t) (x - t)] 

[
-f"(t) j<3>(t) 2] + l! (x-t)+ 2! (x-t) 

+··· 
+ (x - t)'1 - 1 + (x - t)'1 

[

- f(n)(t) f(11+l\t) ] 

(11 - 1)! n! 

+ S'(t), 

and notice that everything collapses to 

f (11 + l) (t) 
S'(t)=- (x-t)'1. 

II! 

Noting that 
S(x) = R11 ,x(x) = 0, 
S(a) = R11 •0 (x), 

apply the Cauchy l\lean Value Theorem to the functions Sand h(t) = 
(x - t) 11+ 1 on [a, x] to obtain the Lagrange form of the remainder 
(Lagrange actually handled this part of the argument differently). 

(b) Similarly, apply the regular l\lean Value Theorem to S to obtain the 
strange hybrid formula 

1(11+ I \t) 
R11 •0 (x) = (x - t)'1(x - a). 

11 ! 

This is called the Cauchy form of the remainder. 

20. Deduce the Cauchy and Lagrange forms of the remainder from the integral 
form on page 423, using Problem 13-23. There will be the same catch as in 
Problem 18. 

I know of only one situation where the Cauchy form of the remainder is used. 
The next problem is preparation for that eventuality. 

21. For every number a, and every natural number 11, we define the "binomial 
coefficient" 

(a) = a(a - 1) · ... · (a - 11 + 1), 

ll ll ! 

and we define ( ~) = I, as usual. If ot is not an integer, then (~) is ne,·er 0, 

and alternates in sig11 for 11 > a. Show that the Taylor polynomial of degree II 

for f(x) = (I + x)" at O is P,,.o(x) = t (:}r'. and that the Cauchy and 
k=O 

Lagrange forms of the remainder arc the follm\'ing: 
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Cauchy form: 

a(a - I)· ... · (a - n) 
Rn ,o(x) = I x(x -1)11

() + 1)°' - n- l 
11. 

= x(I + 1)°' --
a(a - I)· ... · (a - n) _ 1 (x -1) 11 

n! 1 + 1 

= (n + 1) x(I + l)a - l -- , 
( 

(X ) (X - 1 )II 
n + I I +1 

1 in (0,x) or (x,0). 

Lagrange form: 
a(a - I)·,··· (a - n) n+ I I a-11-I 

Rno(x) = I x ( +1) 
. (n + ) ! 

= ( a )x 11+ 1 (1 + l)a - n-l, 1 in (0, x) or (x. 0). 
11 + 1 

Estimates for these remainder terms are rather difficult to handle, and arc 
postponed to Problem 23-21. 

22. (a) Suppose that f is twice differentiable on (0, oo) and that lf(x)I _:s Mo 
for all x > 0, while lf"(x)I :S M2 for all x > 0. Use an appropriate 
Taylor polynomial to prove that for any x > 0 we have 

I 2 h 
If (x)I :S hMo + 2M2 for all h > 0. 

(b) Show that for all x > 0 we have 

lf'(x)I :S 2/ MoM2. 

Hint: Consider the smallest value of the expression appearing in (a). 
(c) If f is twice differentiable on (0, oo), f" is bounded, and f (x) ap­

proaches O as x ---+ oo, then also f' (x) approaches O as x ---+ oo. 
(d) If lim f (x) exists and lim f"(x) exists, then lim f"(x) = lirn J'(x) = 

X-+00 x ----> oo X-+CX) X ----> 00 

0. (Compare Problem 11-34.) 

23. (a) Prove that if f" (a) exists, then 

,, 
1
. f(a+h)+f(a-h)-2f(a) 

f (a)= nn 2 h--+0 h 

The limit on the right is called the Schwarz second den"vative off at a. Hint: 
U sc the T,1.ylor polynomial P2.a (x) with x = a + h and with x = a - h. 

(b) Let f(x) = x 2 for x::: 0, and -x2 for x _:s 0. Show that 

lim _f_(O_+_h_) +_f_(O_-_h_) _-_2_f_(O_) 
h----. 0 11 2 

exists, even though f" (0) docs not. 
(c) Prove that if f has a local maximum at a , and the Schwarz second 

derivative of f at a exists, then it is _:s 0. 
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( d) Prove that if f'" (a) exists, then 

f"'(a) = lim f(a + h) - f (a - h) - 2/zf'(a). 

3 h---+ 0 h3 

24. Use the Taylor polynomial P1.a.J, together with the remainder, to prove a 
weak form of Theorem 2 of the Appendi.x to Chapter 11: If f" > 0, then 
the graph of f always lies above the tangent line of f, except at the point 
of contact. 

*25. Problem 18-43 presented a rather complicated proof that f = 0 if f" - f = 0 
and f (0) = f' (0) = 0. Gi\·e another proof, using Taylor's Theorem. (This 
problem is really a preliminary skirmish before doing battle with the general 
case in Problem 26, and is meant to convince you that Taylor's Theorem is 
a good tool for tackling such problems, even though tricks work out more 
neatly for special cases.) 

**26. Consider a function f which satisfies the differential equation 

n- 1 
I'll) = I: OJJ(j). 

)=0 

for certain numbers ao, ... , a11 _ 1. Several special cases have already received 
detailed treatment, either in the text or in other problems; in particula1; we 
have found all functions satisfying f' = f, or J" + f = 0, or J" - f = 0. The 
trick in Problem 18-42 enables us to find many solutions for such equations, 
but doesn't say whether these are the only solutions. This requires a uniqueness 
result, which will be supplied by this problem. At the end you will find some 
(necessarily sketchy) remarks about the general solution. 

(a) Derive the following formula for f(n+I) (let us agree that "a-1'' will be 0): 

11 - I 

f (n+I) "( + )f(j) = ~ Clj - 1 0 11 - IClj . 

.i=O 

(b) Deduce a formula for f( 11+2>. 

The formula in part (b) is not going to be used; it was inserted only to con­
vince you that a general formula for f(n+k) is out of the question. On the 
other hand, as part (c) shows, it is not very hard to obtain estimates on the 
size of f(n+k>(x). 

(c) Let N = max(l,laol, ... ,la11 _1I). Then laJ - 1 +a11 _ 1a1 1 < 2N2; this 
means that 

11 - I 

J<n+I) = L b1
1 j<J>, where lb1

1
1 ~ 2N2 . 

)=0 
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Show that 

n- 1 

/
11+2

> = Lb/ JU), where lb/ I =:: 4N3 , 

)=0 

and, mor generally, 

n-1 

f(n+k) = Lb/ J<i>, wher lb/ I =:: 2k Nk+ 1. 

)=0 

( d) Conclud from part ( c) that, for any particular numb r x, there i a 
number M such that 

If (n+k\x) I =:: M · 2k Nk+ 1 for all k. 

(e) Now suppose that f (0) = j'(O) = · · · = j<11
-

1\0) = 0. Show that 

M. 2k+l Nk+21xln+k+1 

lf(x)I ::: (n+k+l)! 
M · 12Nxln+k+ l 

<------
(n+k+l)! ' 

and conclude that f = 0. 
(f) Show that if Ji and h are both solutions of the differential equation 

11-l 

1<11) = I: a; 1u>. 
J=O 

In other words, the solutions of this differ ntial equation are determined 
by the "initial ondition " (the value jUl (0) for O ::: j ::: n - 1 ). Thi 
means that we can find all olutions once we can find enough solution 
to obtain any given set of initial conditions. If the equation 

n n-l O 
X -Q 11 _]X - · ··-ao= 

ha n di tin ct root a 1 . . • a 11 , then any function of the form 

f(x) = q/:1'.JX + .. . + Cnea,,x 

1 a olution, and 

f (0) = CI + · · · + Cn, 

j'(O) = O'.JCJ +. •. + 0'.11C11, 

A a matt r of fa t, ver olution i of thi fi rm b au w 
any l of numb r n th l ft id b h 
will n l try t prov thi la t a rtion. (It i 
ou an a ily h k fi r n = 2 r 3.) T h 
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of the roots are multiple roots, and even in the more general situation 
considered in Chapter 27. 

**27. (a) Suppose that f is a continuous function on [a, b] with f(a) = f(b) 

and that for all x in (a, b) the Schwarz second derivative of f at x is O 
(Problem 23). Show that f is constant on [a, b]. Hint: Suppose that 
f (x) > f (a) for some x in (a, b). Consider the function 

g(x) = f(x) - .s(x - a)(b - x) 

with g(a) = g(b) = f (a). For sufficiently small £ > 0 we will have 
g(x) > g(a) , so g will have a maximum point y in (a, b). Now use 
Problem 23(c) (the Schwarz second derivative of (x - a)(b - x) is simply 
its ordinary second derivative). 

(b) If f is a continuous function on [a, b] whose Schwarz second derivative 
is Oat all points of (a, b), then f is linear. 

*28. (a) Let f(x) = x 4 sin l/x2 for x =/=- 0, and f(O) = 0. Show that f = 0 up to 
order 2 at 0, even though f" (0) does not exist. 

This example is slightly more complex, but also slightly more impressive, 
than the example in the text, because both f' (a) and f" (a) exist for 
a =!=- 0. Thus, for each number a there is another number m (a) such that 

' m(a) 2 
f (x) = f(a) + f (a)(x - a)+ -

2
-(x - a) + R0 (x), 

. R0 (x) 
where hm 2 = O; 

x-a(x-a) 

namely, m(a) = f"(a) fora =f=. O, and m(O) = 0. Notice that the function 
m defined in this way is not continuous. 

(b) Suppose that f is a differentiable function such that (*) holds for all a , 
with m(a) = 0. Use Problem 27 to show that f"(a) = m(a) = 0 for 
all a. 

(c) Now suppose that (*) holds for all a, and that m is continuous. Prove 
that for all a the second derivative f" (a) exists and equals m (a). 



*CHAPTER 21 e IS TRANSCENDENTAL 

The irrationality of e was so easy to prove that in this optional chapter we will 
attempt a more difficult frat, and prove that the number e is not merely irrational, 
but actually much worse. Just how a number might be even worse than irrational 
is suggested by a slight rewording of definitions. A number x is irrational if it is 
not possible to write x = a /b for any integers a and b, with b #- 0. This is the 
same as saying that x docs not satisfy any equation 

bx - a= 0 

for integers a and b, except for a = 0, b = 0. Viewed in this light, the irrationality 

of h does not seem to be such a terrible deficiency; rather, it appears that h just 

barely manages to be irrational- although J2 is not the solution of an equation 

ap: +no= 0, 

it is the solution of the equation 

x 2 
- 2 = 0, 

of one higher degree. Problem 2-18 shows how to produce many irrational num­
bers x which satisfy higher-degree equations 

.n+ 11 - I+ + 0 G11X G11 - JX """ ao = , 

where the a; are integers not all 0. A number which satisfies an "algebraic'' equa­
tion of this sort is called an algebraic number, and practically every number we 
have ever encountered is defined in terms of solutions of algebraic equations (n 
and e arc the great exceptions in our limited mathematical experience). All roots, 
such as 

J"i, IV3, 

are dearly algebraic numbers, and even complicated combinations, like 

arc algebraic (although we \viii not try to prove this). Numbers which cannot be 
obtained by the process of solving algebraic equations are called transcendental; 
the main result of this chapter states that e is a number of this anomalous sort. 

The proof that e is transcendental is well within our grasp, and was theoretically 
possible even before Chapter 20. Nevertheless, with the inclusion of this proof: we 
can justifiably classify ourselves as something more than nm·iccs in the study or 
higher mathematics; while many irrationality proofs depend only on elementary 
properties or nnmbcrs, the proof that a number is transcendental usually imul\'C's 

442 
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some really high-pm\·ered mathematics. Even the dates connected with the tran­
scendence of e are impressively recent- the first proof that e is transcendental, 
clue to Hermite, dates from 1873. The proof that we will give is a simplification, 
due to Hilbert. 

Before tackling the proof itself, it is a good idea to map out the strategy, which 
depends on an idea used even in the proof that e is irrational. Two features of the 
expression 

I I l 
e = I + -1, + ?I + · · · + 1 + R11 

. -· II. 

were important for the proof that e is irrational: On the one hand, the number 

1 l 
l+-+ .. ·+-

1 ! 11 ! 

can be written as a fraction p / q with q ::::: 11 ! (so that 11 ! (p / q) is an integer); on the 
other hand, 0 < R11 < 3 / (11 + 1) ! (so 11 ! R11 is not an integer). These two facts show 
that e can be approximated particularly well by rational numbers. Of course, every 
number x can be approximated arbitrarily closely by rational numbers- if c > 0 
there is a rational number r with Ix - r I < c; the catch, however, is that it may be 
necessary to allow a very large denominator for r, as large as 1 / c perhaps. For e 
we arc assured that this is not the case: there is a fraction p / q within 3 / (11 + l) ! 
of e, whose denominator q is at most 11 ! . If you look carefully at the proof that e 
is irrational, you will see that only this fact about e is ever used. The number e is 
by no means unique in this respect: generally speaking, the better a number can be 
approximated by rational numbers, the worse it is (some evidence for this assertion 
is presented in Problem 3). The proof that e is transcendental depends on a natural 
extension of this idea: not only e, but any finite number of powers e, e2 , ... , e", 
can be simultaneously approximated especially well by rational numbers. In our 
proof we will begin by assuming that e is algebraic, so that 

(*) a11 e
11 +···+cqe+ao=O. ao=f:.O 

for some integers ao, ... , a11 . In order to reach a contradiction we will than find 
certain integers M, M 1, ... , M11 and certain ''small" numbers E 1, ... , E11 such that 

e' = M1 + EJ 
M 

e2 = M2 + E2 

M 

M11+E11 
en=---

M 

Just how small the E's must be will appear when these expressions are substituted 
into the assumed equation (*). After multiplying through by M we obtain 

[ aoM + Cl j MI + ... + Cln Mn l + [EI Cl ( + ... + E11Cl11 l = 0. 
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THEOREM I 

PROOF 

The first term in brackets is an integer, and we will choose the M's so that it will 
necessarily be a nonzero integer. We will also manage to find E's so small that 

this will lead to the desired contradiction~ the sum of a nonzero integer and a 
number of absolute value less than ! cannot be zero! 

As a basic strategy this is all very reasonable and quite straightforward. The 
remarkable part of the proof will be the way that the M's and E's are defined. In 
order to read the proof you will need to know about the gamma function! (This 
function was introduced in Problem 19-40.) 

e is transcendental. 

Suppose there were integers ao, ... , a11 , with ao -=j:. 0, such that 

( ) n + n-1 + 0 * ane an-le ···+ao= . 

Define numbers M, M1, ... , Mn and El, ... , En as follows: 

lo
oo xP-l [(x - 1) · ... · (x - n)]Pe- x 

M= dx, 
o (p-1)! 

k 100 xP- 1[(x - 1) · ... · (x - n)]Pe-x 
Mk= e 

1 
dx, 

k (p - )! 

k lok xp - l [(x - 1) · ... · (x - n)]Pe-x 
Ek= e dx. 

O (p - l)! 

The unspecified number p represents a prime number* which we will choose later. 
Despite the forbidding aspect of these three expressions, with a little work they will 
appear much more reasonable. We concentrate on M first. If the expression in 
brackets, 

[ (x - 1) · ... · (x - n )] , 

is actually multiplied out, we obtain a polynomial 

x
11 + · · · ± n! 

* The term "prime number" was defined in Problem 2-17. An important fact about prime numbers 
will be used in the proof, although it is not proved in this book: If p is a prime number which docs 
not divide the integer a, and which docs not divide the integer b, then p also docs not divide ab. 
The Suggested Reading mentions refncnces for this theorem (which is crucial in proving that the 
factorization of an integer into primes is unique). \\'c will also use the result of Problem 2-I 7(d), 
that there arc infinitely many primes the reader is asked to determine at prccisdy \\'hi,h points this 
information is required. 
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with integer coefficients. When rai ed to the pth power this becomes an even 
more complicated polynomial 

xnp + ... ± (n!)P. 

Thus M can be written in the form 

where the Ca are certain integers, and Co = ±(n!)P. But 

fo 00 

x'e-x dx = k'. 

Thus 

L
np (p - 1 + a)! 

M = Ca . 
(p - 1)! 

a=O 

Now, for a= 0 we obtain the t rm 

±(n!)P (p - ? = ±(n!)P. 
(p - )! 

We will now consider only primes p > n; then this term is an integer which is not 
divisible by p. On the other hand, if a > 0, then 

(p - 1 + a)! 
Ca =Ca(p+a-l)(p+a-2)· ... ·p, 

(p - l)! 

which is divisible by p. Therefore M itself is an integer which is not divisible by p. 

Now consider Mk . We have 

1 xP- 1[(x - 1) · ... · (x - n)]Pe-x 
Mk= ek k dx 

(p - 1)! 

1
00 xP- 1[(x - 1) · ... · (x - n)]Pe-(x-k) 

= dx. 
k (p - 1)! 

Thi can be transformed into an expression looking very much lik M by th 
substitution 

u=x-k 

du= dx. 

The limits of integration are changed to O and oo, and 

1
00 (u + k)p - l [(u + k - 1) · ... · u · ... · (u + k - n)]Pe-u 

Mk= l du. 
0 (p - )! 

There is on very significant difference between thi expr ion and that for M. 
The term in brackets contains the factor u in the kth pla . Thu the pth pov: r 
contains the factor uP. Thi mean that th ntire e 'pr 1011 

(u + k)p - l [ (u + k - 1) · ... · (u + k - n)]P 
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is a polynomial with integer coefficients, every term ef whiclz has degree at least p. 

Thus 

np l Loo np l I 
M _L D p - l +a - ud -I:D (p- +a). 
k- a /{ e ll- a ' 

(p-1)! o (p-1)! 
a= I a=I 

where the Da are certain integers. Notice that the summation begins with a = l; 
in this case eve1y term in the sum is divisible by p. Thus each Mk is an integer 
which is divisible by p. 

Now it is clear that 

k Mk+ Ek 
e = , k= l, ... , n. 

M 

Substituting into (*) and multiplying by M we obtain 

[aoM + c1JM1 + · · · + a11M11] + [a1E1 + · · · + ll11E11] = 0. 

In addition to requiring that p > 11 let us also stipulate that p > lao I. This means 
that both Mand ao are not divisible by p , so aoM is also not divisible by p. Since 
each Mk is divisible by p, it follows that 

aoM+a1M1 +···+a11M11 

is not divisible by p. In particular it is a nonzero integer. 
In order to obtain a contradiction to the assumed equation (*), and thereby 

prove that e is transcendental, it is only necessary to show that 

la1E1 + · · · + a11E11I 

can be made as small as desired, by choosing p large enough; it is clearly sufficient 
to show that each I Ek I can be made as small as desired. This requires nothing more 
than some simple estimates; for the remainder of the argument remember that II 

is a certain frxcd number (the degree of the assumed polynomial equation (*)) . To 
begin with, if 1 :::; k _:::: 11 , then 

· fnk lxp- l [(x - 1) · ... · (x - n)JPI e-x 
IE I < ek dx 

k - o (p-1)! 

11 111 nP- 11(x - l) · ... · (x - n)IPe- x 
< e dx. 
- 0 (p - l)! 

Now let A be the maximum of l(x - 1) · ... · (x - n)I for x in [O. n]. Then 

ennp - 1 AP 111 . 
IEkl < e- .\ dx 

- (p - l)! 0 

=----
(p - l)! 

e11 11P AP 
<---

(p - l)! 

e11 (11A)P 

(p - l )! 
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But 11 and A are fixed; th us (n A) P / (p - I)! can be made as small as desired by 
making p sufficiently large. I 

This proof, like the proof that n is irrational, deserves some philosophic af­
terthoughts. At first sight, the argument seems quite ''advanced"- after all, we 
use integrals, and integrals from O to oo at that. Actually, as many mathemati­
cians have observed, integrals can be eliminated from the argument completely; 
the only integrals essential to the proof are of the form 

hoc xk e-x dx 

for integral k, and these integrals can be replaced by k! whenever they occur. 
Thus M, for example, could have been defined initially as 

L
np (p - 1 + a)! 

M = Cr.x . 
(p - I)! 

a=O 

where Ca are the coefficients of the polynomial 

[ (x - 1) · ... · (x - n)] P. 

If this idea is developed consistently, one obtains a "completely elementary'' proof 
that e is transcendental, depending only on the fact that 

1 1 1 
e=l+-+-+-+··· 1 ! 2! 3! . 

Unfortunately, this "elementary" proof is harder to understand than the original 
one- the ,vhole structure of the proof must be hidden just to eliminate a fev.r 
integral signs! This situation is by no means peculiar to this specific theorem­
"elementary'' arguments are frequently more difficult than "advanced" ones. Our 
proof that n is irrational is a case in point. You probably remember nothing 
about this proof except that it involves quite a few complicated functions. There is 
actually a more advanced, but much more conceptual proof, which shows that n 
is transcendental, a fact which is of great historical, as well as intrinsic, interest. One 
of the classical problems of Greek mathematics was to construct, with compass 
and straightedge alone, a square whose area is that of a circle of radius I. This 
requires the construction of a line segment whose length is )n, which can be 
accomplished if a line segment of length n is constructible. The Greeks were 
totally unable to decide whether such a line segment could be constructed, and 
even the full resources of modern mathematics were unable to settle this question 
until 1882. In that year Lindemann proved that n is transcendental; since the 
length of any segment that can be constructed with straightedge and compass can 
be written in terms of +, ·, -, ---;---, and f, and is therefore algebraic, this proves 
that a line scg1ncnt of length n cannot be constructed. 

The proof that Jr is transcendental requires a sizable amount of mathematics 
which is too advanced to be reached in this book. Ncn·rtheless, the proof is not 
much more difficult than the proof that e is transcendental. In fact, the proof 
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for n is practically the same as the proof fore. This last statement should certainly 
surprise you. The proof that e is transcendental seems to depend so thoroughly 
on particular properties of e that it is almost inconceivable how any modifications 
could ever be used for 7T; after all, what does e have to do with n? Just wait and 
see! 

PROBLEl\IS 

1. (a) Prove that if a > 0 is algebraic, then ./a is algebraic. 
(b) Prove that if a is algebraic and r is rational, then a + r and ar are 

algebraic. 

Part (b) can actually be strengthened considerably: the sum, product, 
and quotient of algebraic numbers is algebraic. This fact is too difficult 
for us to prove here, but some special cases can be examined: 

2. Prove that h + J3 and h(l + J3) are algebraic, by actually finding 
algebraic equations which they satisfy (You will need equations of degree 4.) 

*3. (a) Let a be an algebraic number which is not rational. Suppose that a 
satisfies the polynomial equation 

f(x) = OnX
11 + 0 11 - IXn - l + · · · + OQ = 0, 

and that no polynomial function oflower degree has this property Show 
that f(p/q) =f. 0 for any rational number p/q. Hint: Use Prob­
lem 3-7(b). 

(b) Now show that If (p / q) I ~ 1 / q11 for all rational numbers p / q with q > 0. 
Hint: vVrite f (p / q) as a fraction over the common denominator q 11

• 

(c) Let M = sup{ lf'(x)I : Ix - al < 1 }. Use the l\Iean Value Theorem 
to prove that if p/q is a rational number with la - p/ql < 1, then 
la - p/q I > 1 / Mq 11

• (It follows that for c = min( I. I/ M) \Ve have 
la - p/ql > c/q 11 for all rational p/q. ) 

*4. Let 
a =0.110001000000000000000001000 ... , 

where the l's occur in the n ! place, for each 11. Use Problem 3 to proYe that 
a is transcendental. (For each 11, show that a is not the root of an equation 
of degree n .) 

Although Problem 4 mentions only one specific transcendental number, it should 
be clear that one can easily construct infinitely many other numbers a which do 
not satisfy la - p/ql > c/q 11 for any c and ,z. Such numbers were first considered 
by I ,iouville ( 1809 1882), and the inequality in Problem 3 is often called Liouville 's 
inequality. None of'thc transcendental numbers constructed in this way happens to 
be particularly interesting, but for a long time Liouville's transcendental numbers 
were the only ones known. This situation was changed quite radically by the work 
of Cantor ( 1845 1918), who showed, without exhibiting a single transccnclental 
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number, that most numbers are transcendental. The next two problems provide an 
introduction to the ideas that allow us to make sense of such statements. The basic 
definition with which we must work is the following: A set A is called countable 
if its elements can be arranged in a sequence 

The obvious example (in fact, more or less the Platonic ideal of) a countable set 
is N, the set of natural numbers; dearly the set of even natural numbers is also 
countable: 

2,4, 6, 8, .... 

It is a little more surprising to learn that Z, the set of all integers (positive, negative 
and 0) is also countable, but seeing is believing: 

0, l, -1, 2, -2, 3, -3, .... 

The next hNo problems, which outline the basic features of countable sets, are 
really a series of examples to show that (1) a lot more sets are countable than one 
might think and (2) nevertheless, some sets are not countable. 

*5. (a) Show that if A and B are countable, then so is A U B = { x : x is in A or 
x is in B }. Hint: Use the same trick that ,vorked for Z. 

(b) Show that the set of positive rational numbers is countable. (This is really 
quite startling, but the figure below indicates the path to enlightenment.) 

I 
5 

2 
5 

3 
5 

(c) Show that the set of all pairs (m, n) of integers is countable. (This is 
practically the same as part (b).) 

(d) If A J, A2, A3, ... arc each countable, prove that 

is also countable. (Again use the same trick as in part (b).) 

(e) Prove that the set of all triples (/, m, n) of integers is countable. (A triple 
(I, Ill, n) can be described by a pair (/, m) and a number n .) 

(f ) Prove that the set of all n-tuplcs (a1, a2, ... , a 11 ) is countable. (If you ha,T 
done part (e), you can do this, using induction.) 

(g) Prove that the set of all roots of polynomial functions of degree n \\·ith 
integer coefficients is countable. (Part (f) sho\\'s that the set of all these 
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polynomial functions can be arranged in a sequence, and each has at 
most II roots.) 

(h) Now use parts (d) and (g) to prove that the set of all algebraic numbers 
is countable. 

*6. Since so many sets turn out to be countable, it is important to note that the 
set of all real numbers between O and 1 is not countable. In other words, 
there is no way of listing all these real numbers in a sequence 

a, = O.a, 1a12a13a1-1- .. . 

a2 = O.a21 a22a23a2-1- .. . 

a3 = O.a31a32a33a3-1- .. . 

(decimal notation is being used on the right). To prove that this is so, suppose 
such a list were possible and consider the decimal 

o.a11a22a33a44 ... , 

where a,111 = 5 if Gnn I= 5 and a,111 = 6 if a,111 = 5. Show that this number 
cannot possibly be in the list, thus obtaining a contradiction. 

Problems 5 and 6 can be summed up as follows. The set of algebraic numbers 
is countable. If the set of transcendental numbers were also countable, then the 
set of all real numbers would be countable, by Problem S(a), and consequently the 
set of real numbers benveen O and 1 would be countable. But this is false. Thus, 
the set of algebraic numbers is countable and the set of transcendental numbers 
is not ("there are more transcendental numbers than algebraic numbers"). T'he 
remaining nvo problems illustrate further how important it can be to distinguish 
between sets which are countable and sets which are not. 

*7. Let f be a nondecreasing function on [O, I]. Recall (Problem 8-8) that 
lim f (x) and lim f (x) both exist. 

x--->a+ x ---> a -

(a) For any c > 0 prove that there are only finitely many numbers a in 
[O, I] \Vith Jim f(x) - lim f(x) > £. Hint: There are, in fact, at most 

X --'> ll + X--'> (1 -

[f (l) - f(O)]/ c of them. 
(b) Prove that the set of points at which f is discontinuous is countable. 

Hint: If lim f (x) - Jim f (x) > 0, then it is > I/ 11 for some natural 
x ---> a+ x--->a -

number 11. 

This problem shows that a nondecreasing function is automatically con­
tinuous at most points. For differentiability the situation is mofl' difficult 
to analyze and also more interesting. A nondecreasing function can fail 
to be differentiable at a set of points which is not countab le, but it is still 
true that nondecreasing functions arc differentiable at most points (in a 
clifit~rent sense of' the word ' 'most''). Reference [ 38 J of the Suggested 
Reading gin:s a proof using the Rising Sun Lemma of Problem 8-20. 
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For those who have done Problem 9 of the Appendix to Chapter 11 , it 
is possible to provide at least one application to differentiability of the 
idea alr ady developed in this problem se t: If f is convex, then f is 
differentiable except at those points where its right-hand derivative f +' 
is discontinuous; but the function f +' is increasing, so a convex function 
is automatically differentiable except at a countable set of points. 

*8. (a) Problem 11-70 showed that if every point is a local maximum point for 
a continuous function f , then f is a constant function. Suppose now that 
th hypothesis of continuity is dropped. Prove that f takes on only a 
countable t of values. Hint: For each x choose rational numbers ax 
and bx such that ax < x < bx and x is a maximum point for f on 
(ax, bx) . T hen every value f (x) is the maximum value of f on some 
interval (ax, bx) , H ow many such intervals are there? 

(b) Deduce Probl m ll-70(a) as a corollary. 
( c) Prove the result of Problem ll -70(b) similarly. 
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The idea of an infinite sequence is so natural a concept that it is tempting to 
dispense with a definition altogether. One frequently writes simply "an infinite 
sequence 

a1, a2, a3, a4, as, ... , " 

the three dots indicating that the numbers a; continue to the right "forever." A 
rigorous definition of an infinite sequence is not hard to formulate, however; the 
important point about an infinite sequence is that for each natural number, n, 
there is a real number all. This sort of correspondence is precisely what functions 
are meant to formalize. 

An infinite sequence of real numbers is a function whose domain is N. 

From the point of view of this definition, a sequence should be designated by a 
single letter like a, and particular values by 

a(I), a(2), a(3), .... 

but the subscript notation 
a1,a2,a3, ... 

is almost always used instead, and the sequence itself is usually denoted by a symbol 
like {a 11 }. Thus {n}, {(-1)'1}, and {l/11} denote the sequences a, f3, and y defined 
by 

all= n, 

f3n = ( - 1 )'1, 

1 
Yll = -. 

11 

A sequence, like any function, can be graphed (Figure 1) but the graph is usually 
rather unrevealing, since most of the function cannot be fit on the page . 

• 
• 

• 

• • 
• 

• • • • • • • 
• • • • • 

(a) (I>) ( (') 

Fl c; l TR E I 
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· ' ' = {35 = {33 = /31 0 

Y4 Y2 

O Ys Y3 Yi 

FIGURE 2 

A more convenient representation of a sequence is obtained by simply labeling 
the points a1, a2, a3, ... on a line (Figure 2). This sort of picture shows where 
the sequence "is going." The sequence {a11 } "goes out to infinity," the sequence 
{/311} 'jumps back and forth between -1 and l ," and the sequence { y11 } "converges 
to O." Of the three phrases in quotation marks, the last is the crucial concept 
associated with sequences, and will be defined precisely (the definition is illustrated 
in Figure 3). 

~~-r-~====::======----t--:-~ ...... ~-e-::-;;----::-r-~~-----~ 
1-£ aN+S aN+3 aN+ I 

FlGURE3 

A sequence { a 11 } converges to I (in symbols lim a11 = l) if for every s > 0 there 
ll-->00 

is a natural number N such that, for all natural numbers 11, 

if n > N, then Ian - l I < c. 

In addition to the terminology introduced in this definition, we sometimes say 
that the sequence {an} approaches I or has the limit /. A sequence {an} is said 
to converge if it converges to l for some l, and to diverge if it does not converge. 

To show that the sequence { Yn} converges to 0, it suffices to observe the follavving. 
If s > 0, there is a natural number N such that 1 / N < s. Then, if n > N we 
have 

The limit 

1 1 
Yn = - < - < s, 

n N 
SO I Yn - 01 < c. 

lim J,;°+l - 0z = 0 
ll -->00 

will probably seem reasonable after a little reflection (it just says that J,;°+l is 

practically the same as /;,, for large n ), but a mathematical proof might not be so 
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obvious. To estimate ~ - fn w can u e an algebraic trick: 

~-Fn= (~-/;i)(~+/;i) 
~+Fn 

n+l-n 

~+Fn 
1 

It is also possible to estimat Fn"+1 - Jn by applying the Mean Value Theorem 
to the function f(x) = ../x on the int rval [n, n + l]. We obtain 

Fn"+1 - fn = f'(x) 
1 

1 

2fx' 
1 

< 2,,/n' 

for some x in (n, n + 1) 

Either of these estimat s may be used to prove the above limit; the detailed proof 
is left to you, as a imple but valuable exerci e. 

The limit 
3n3 + 7n2 + 1 

lim 
n-HX) 4n3 - 8n + 63 

3 
-
4 

hould also eem reasonable, because the terms involving n 3 are the most impor­
tant when n is large. If you remember the proof of Theorem 7-9 you will be able 
to guess the trick that translates this idea into a proof- dividing top and bottom 
by n 3 yields 

3n3 + 7n2 + 1 

4n3 - 8n + 63 

7 1 
3+-+­

n n 3 

8 63 
4--+­

n2 n3 

Using this expression, the proof of the above limit is not difficult, e p cially if one 
uses the following facts: 

If lim a11 and lim b11 both exist, then 
ll -+00 11 -+ 

lim (an + bn) = lim a/1 + lim bn , 
11 -+ 11-+ 11 -+ 

lim (a 11 • b11 ) = lim a11 • lim b11 ; 
11 -+ II -+ II -+ 

moreov r if lim b11 =I- 0, th n b11 =I- 0 for all n o-r at r than om N and 
11 

lim a11 /b11 = lim a11 / lim b11, 
11 II II 
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(If we wanted to be utterly precise, the third statement would have to be even 
more complicated. As it stands, we arc considering the limit of the sequence 
{c11 } = {a 11 /b 11 }, where the numbers c11 might not even be defined for certain 11 < N. 

This doesn't really matter- we could define c11 any way we liked for such 11 -

because the limit of a sequence is not changed if we change the sequence at a 
finite number of points.) 

Although these facts are very useful, we will not bother stating them as a 
theorem- you should have no difficulty proving these results for yourself, because 
the definition of lim a11 = I is so similar to previous definitions of limits, especially 

/1-->00 

lim f (x) = l . 
. r --> oo 

The similarity between the definitions of lim a 11 = l and lim f (x) = l is 
11 --> 00 X --> 00 

actually closer than mere analogy; it is possible to define the first in terms of the 
second. If f is the function whose graph (Figure 4) consists oflinc segments joining 

FIGURE-4 

the points in the graph of the sequence {a11 }, so that 

f (x) = (a 11 + 1 - an)(X - 11) + a11 11:sx:sn+L 

then 

lim a11 = I 
11 --> 00 

if and only if lim f(.r) = I. 
X-->00 

Conversely, if f satisfies lim f (x) = I, and we set a11 = f (11), then lim an = I. 
X ---+CV X --> OC 

This second observation is frequently very useful. For example, suppose that 
0 <a< 1. Then 

lim a 11 = 0. 
11 --> N 

To prove this we note that 

lim ax = lim ex log a = 0, 
X --> CXJ X --> 00 

since log a < 0, so that x log a is a negative and large in absolute value for large x. 

Notice that we actually have 

lim a 11 = 0 if la I < I ; 
II ->('() 

for if a < 0 we can write 

lim a 11 = lim ( - I)" la 111 = 0. 
11 --> N 11 -'>N 
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THEOREM I 

PROOF 

The behavior of the logarithm function also shows that if a > I, then an be­
comes arbitrarily large as n becomes large. This assertion is often written 

lim a" = oo, a > I, 
ll-"00 

and it is sometimes even said that {all} approaches oo. We also write equations 
like 

lim -a" = -oo, 
11--"00 

and say that {-all} approaches -oo. Notice, however, that if a < -1, then lim a 11 

n-e,cx:, 

does not exist, even in this extended sense. 

Despite this connection with a familiar concept, it is more important to visualize 
convergence in terms of the picture of a sequence as points on a line (Figure 3). 
There is another connection between limits of functions and limits of sequences 
which is related to this picture. This connection is somewhat less obvious, but con­
siderably more interesting, than the one previously mentioned- instead of defining 
limits of sequences in terms of limits of functions, it is possible to reverse the pro­
cedure. 

Let f be a function defined in an open interval containing c, except perhaps at c 
itself, with 

lim f(x) = l. 
X-"C 

Suppose that {an} is a sequence such that 

(I) each all is in the domain of f, 
(2) each all =I- c, 

(3) lim a11 = c. 
11--"00 

Then the sequence {!(a,,)} satisfies 

lim f(an) = I. 
11--"00 

Conversely, if this is true for every sequence {all} satisfying the above conditions, 
then lim f (x) = l. 

X-"C 

Suppose first that lim f (.x) = l. Then for every c > 0 there is a 8 > 0 such that, 
X-"C 

for all x, 
if O < Ix - cl < 8, then lf(x) - II < c. 

If the sequence {an} satisfies lim an = c, then (Figure 3) there is a natural num-
ll -"OO 

ber N such that, 

if n > N, then lall - cl< 8. 

By our choice of 8, this means that 

lf(a,z)-11 <c, 



a1 a2 a3 a4 

FIGURES 

THEOREM 2 

PROOF 
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showing that 

lim f (an)= i. 
11 --'>00 

Suppose, conversely, that lirn f(a 11 ) = i for every sequence {a11 } with lim a11 = 
II -'> 00 ll -'>00 

c. If lim f (x) = i were not true, then" would be some £ > 0 such that for every 
X-'>C -

8 > 0 there is an x with 

0 < Ix - cl < 8 but lf(x) - ii > £. 

In particular, for each II there would be a number x 11 such that 

1 
0 < lxn - cl < - but If (x,i) - ii > £. 

II 

Now the sequence {x11 } clearly converges to c but, since If (x11 ) - ii >£for all n. 
the sequence { f (x11 )} does not converge to i. This contradicts the hypothesis, so 

lim f (x) = I must be true. I 
X-'>C 

Theorem 1 provides many examples of convergent sequences. For example, the 
sequences {a11 } and {b11 } defined by 

a,, = sin ( 13 + 
11
\) 

b,, = cos ( sin ( l + ( - I )" · D) . 
clearly converge to sin(13) and cos(sin(l)), respectively. It is important, however, 
to have some criteria guaranteeing convergence of sequences which arc not obvi­
ously of this sort. There is one important criterion which is very easy to prove, but 
which is the basis for all other results. This criterion is stated in terms of concepts 
defined for functions, which therefore apply also to sequences: a sequence {a11 } is 

increasing if a 11 + 1 > a11 for all n, nondecreasing if a 11 + 1 ~ a11 for all n, and 
bounded above if there is a number M such that a 11 ::::: M for all n; there are sim­
ilar definitions for sequences which are decreasing, nonincreasing, and bounded 

below. 

If {a11 } is nondecreasing and bounded above, then {a11 } converges (a similar state­
ment is true if {a11 } is nonincreasing and bounded below). 

The set A consisting of all numbers a11 is, by assumption, bounded above, so A has 
a least upper bound a. \Ve claim that lim a11 = a (Figure 5). In fact, if £ > 0 , 

/1----+0v 

there is some aN satisfying a - aN < £, smcc a is the least upper bound of A. 
Then if 11 > N we have 

an ~ a N, so a - a,, ::::: Ci - a N < £ . 

This proves that lim a11 = a. I 
11 --'> 0<...; 
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2 and 6 are pt"ak points 

I I I I I I I I I I 
2 3 4 S 6 7 8 9 10 11 

FIGURE 6 

LEMMA 

PROOF 

COROLLARY (THE 

BOLZANO-WEIERSTRASS THEOREM) 

The h}1)othesis that {a11 } is bounded above is dearly essential in Theorem 2: if 
{a11 } is not bounded above, then (,vhether or not {a11 } is nondecreasing) {a11 } dearly 

diverges. Upon first consideration, it might appear that there should be little 

trouble deciding whether or not a given nondecreasing sequence {a11 } is bounded 
above, and consequently whether or not {a11 } converges. In the next chapter such 
sequences will arise very naturally and, as ,ve shall see, deciding whether or not 

they converge is hardly a trivial matte1: For the present, you might try to decide 
whether or not the fo llmving (obviously increasing) sequence is bounded above: 

l, l+{ l+!+f, 1+1+1 +±, .... 
Although Theorem 2 treats only a very special class of sequences, 1t 1s more 

useful than might appear at first, because it is always possible to extract from an 

arbitrary sequence {a11 } another sequence which is either nonincreasing or else 
nondecreasing. To be precise, let us define a subsequence of the sequence {a11 } 

to be a sequence of the form 

where the n j arc natural numbers ,vith 

111 < 112 < n 3 · · · 

Then every sequence contains a subsequence which is either nondecreasing or 

nonincreasing. It is possible to become quite befuddled trying to prove this as­
sert ion, although the proof is very short if you think of the right idea; it is worth 

recording as a lemma. 

Any sequence {a11 } contains a subsequence which is either nondecreasing or non-
. . 
mcreasmg. 

Call a natural number 11 a ''peak point" of the sequence {a11 } if am < a11 for all 

111 > n (Figure 6). 

Case I. The sequmce has irifinitely marry jJeak points. In this case, if 111 < 112 < 

n3 < · · · are the peak points, then a,11 > a 11 2 > a 113 > · · · , so {a 11 k } is the desired 
(nonincrcasing) subsequence. 

Case 2. The sequence lzas 01161.finitely maJ?Y peak /Joints. In this case, let 111 be greater 
than all peak points. Since 111 is not a peak point, there is some 112 > 111 such that 
a112 :::: a 111 • Since n 2 is not a peak point (it is greater than 111, and hence greater 
than all peak points) there is some 113 > 11 2 such that a113 :::: a11 2 • Continuing in this 

way we obtain the desired (nondecreasing) subsequence. I 

Ir we assume that our original seq uence {a 11 } is hounded, we can pick up an 

extra corollary along the way. 

En' ry bounded sequence has a com'ngcnt subsequence. 
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\ \'ithout some additional assumptions this is as far as we can go: it is easy to 
construct sequences having many, evenly infinitely many, subsequences converg­
ing to different numbers (sec Problem 3). There is a reasonable assumption to 
add, which yields a necessary and sufficient condition for convergence of any se­
quence. Although this condition will not be crucial for our work, it does simplify 
many proofs .. Moreover, this condition plays a fundamental role in more advanced 
investigations, and for this reason alone it is worth stating now. 

If a sequence converges, so that the individual terms are eventually all close to 
the same number, thcu the difference of any two such individual terms should be 
, ·ery small. To be precise, if lim a11 = I for some I, then for any E > 0 there is 

11--H XJ 

an N such that la11 - /I < E/2 for n > N; now if both 11 > N and 111 > N, then 

E E 
Ian - Gm I ::=: Ian - / I + I/ - a111 I < 2 + 2 = E · 

This final inequality, Ian - a111 I < E, which eliminates mention of the limit / , can 
be used to formulate a condition (the Cauchy condition) which is clearly necessary 
for convergence of a sequence. 

A sequence {a11 } is a Cauchy sequence if for every E > 0 there is a natural 
number N such that, for all 111 and n, 

if 111. 11 > N, then Ian - aml < E. 

(This condition is usually written lim lam - an I = 0.) 
111,11 ----+ 00 

The beauty of the Cauchy condition is that it is also sufficient to ensure conver­
gence of a sequence. After all our preliminary work, there is very little left to do 
in order to pro,·e this. 

A sequence {an} converges if and only if it is a Cauchy sequence. 

\Ve have already shown that {a11 } is a Cauchy sequence if it converges. The proof of 
the converse assertion contains only one tricky feature: showing that every Cauchy 
sequence {a11 } is bounded. If we take E = 1 in the definition of a Cauchy sequence 
we find that there is some N such that 

lam - an I < l for 111. 11 > N. 

In particular, this means that 

lam - aN+II < I for all 111 > N. 

Thus {am : 111 > N} is bounded; since there arc only finitely many other ai 's the 
whole sequence is bounded. 
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The corollary to the Lemma thus impli s that some ubsequence of {an} con­
verges. 

Only one point remains, whose proof will be left to you: if a subsequence of a 
Cauchy sequ nc converges, th n the Cauchy sequence itself converges. I 

PROBLEMS 

1. Verify ach of the following limits. 

2. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

*(x) 

. n 
hm --= l. 

n -H)O n + 1 

lim n + 3 - 0 
n-'> n3 + 4 - · 

lim V n2 + 1- Vn + 1 = 0. Hint: You should at least be able to prove 
n-'>OO 

that lim V n 2 + 1 - ~ = 0. 
n-'>OO 
n' 

lim _:___ = 0. 
11 ---'>00 n11 

lim ::.fa,= 1, a > 0. 
11 ---'>00 

lim :in,= 1. 
11 ---'>00 

lim :;/n2 +n=l. 
11 ---'>00 

lim ~an+ bn = max(a, b) , a , b ~ 0. 
n-'>OO 

· a (n) O h · h b f · h . h d " ·d hm -- = , w ere a(n) 1s t e num er o pnmes w 1c 1v1 e n. 
n-'>OO n 
Hint: The fact that each prime is ~ 2 gives a very simple estimate of 
how small a (n) must be. 

11 

I:e 
1 

lim k= l 

n-'>oo nP+l p+l 

Find the following limits. 

(i) 
n n+l 

lim --- --. 
11 ---'>oo n + 1 n 

(ii) lim n - J n + aJ n + b. 
11 ---'> 

(iii) lim 
211 + (-1)'1 

11 ---'> 211+1 + (-l)n+l · 

(iv) lim 
(-1)'1 Jn in(n 11

) 

11 ---'> n+l 

(v) Jim 
an - b11 

n a 11 + b11 

(vi) lim nc11
, lcl < 1. 

17 



(vii) 
2112 

lim 
n-->oo n! 
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3. (a) \Vhat can be said about the sequence {an} if it converges and each a11 is 
an integer? 

(b) Find all convergent subsequences of the sequence I, -1, I, -1, 1, -1, 
.... (There are infinitely many, although there are only n,vo limits which 
such subsequences can have.) 

(c) Find all convergent subsequences of the sequence 1, 2, I, 2, 3, 1, 2, 
3, 4, I, 2, 3, 4, 5, . . . . (There are infinitely many limits which such 
subsequences can have.) 

(d) Consider the sequence 

I 2 I 2 3 I 2 3 4 I 
2' 3' 3' 4' 4' 4' 5' 5' 5' 5' 6' 

l<or which numbers a is there a subsequence converging to a? 

4. (a) Prove that if a subsequence of a Cauchy sequence converges, then so 
does the original Cauchy sequence. 

(b) Prove that any subsequence of a convergent sequence converges. 

5. (a) Prove that if O < a < 2, then a < J'2c; < 2. 
(b) Prove that the sequence 

converges. 

(c) Find the limit. Hint: Notice that if lirn a11 = l, then lim A,= h, 
/Z-'>00 11-'> 00 

by Theorem 1. 

6. Let O < a1 < b1 and define 

Cln+I=~. 

(a) Prove that the sequences {a11 } and {bn} each converge. 
(b) Prove that they have the same limit. 

7. In Problem 2-16 we saw that any rational approximation k / l to J2 can be 
replaced by a better approximation (k + 21)/(k + l). In particular, starting 
with k = l = 1, we obtain 

3 7 
1. 2' 5' 

(a) Prove that this sequence is given recursively by 

I 
Cln+ I = 1 + ---. 

I +a11 
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(b) Prove that lim a11 
11 ---+00 

h. This gwes the so-called continued fraction 

expansion 

h=l+---
1 

2+ - -
2+··· 

Hint: Consider separately the subsequences {a211 } and {a211 + 1 }. 

(c) Prove that for any natural numbers a and b, 

b 
/a 2 +b=a+-----

b 
2a+---

2a + · · · 
8. Identify the function f(x) = lim ( Jim (cosn!Trx) 2k). (It has been mentioned 

11 ---+oo k---+oo 

many times in this book.) 

9. .Many impressive looking limits can be evaluated easily (especially by the 
person who makes them up), because they are really lower or upper sums in 
disguise. \Vith this remark as hint, evaluate each of the following. (Warn­
ing: the list contains one reel herring which can be evaluated by elementary 
considerations.) 

(i) 
. vie + fe2 + ... + :y;;; 

hm . 
11 

(ii) 
. vie+ fel+···+ ~ 

hm . 
/1 -H)U 11 

(iii) lim ( -
1
- + · · · + -

1 
) . 

11 -. (XJ 11 + I 211 

(iv) lim ( __!_ + I + · · · + -
1 
-) . 

11---+oo 11 2 (11 + 1 )2 (211 )2 

(v) • ( 11 11 11 ) hm 7 + 7 + · · · + . 
11---+CXJ (11 + I)- (11 + 2)- (11 + 11 ) 2 

(vi) lim ( 11 + 11 + ... + ') 11 ) • 
11-ev ,,2 + I 11 2 + 22 11- + 112 

10. Although limits like Jim ifn and lim a 11 can be evaluated using facts about 
11 ---+00 11 ->00 

the behavior of the logarithm and exponential functions, this approach is 
vaguely dissatisfying, because integral roots and pmvcrs can be defined with­
out using the exponential function. Some of the standard "elementary" ar­
guments for such limits arc outlined here; the basic tools arc inequalities 
derived from the binomial theorem, notably 

(I +h)'1 ~ I + uh, for h > O; 

and , for part (c), 

11 (11 - I) 2 11 (11 - I) 1 
(l+h)'1 ~ l+11h+ 2 h ~ 2 1z - . for h > 0. 
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(a) Prove that lim a11 = oo if a > l, by setting a = 1 + h, where h > 0. 
11-+00 

(b) Prove that lim a11 = 0 if O <a< 1. 
ll-+00 

(c) Prove that lim ';/a= I if a > 1, by setting ';/a= 1 +h and estimating h. 
ll-+00 

(d) Prove that lim 'Ja = 1 if O < a < I. 
/l -'> 00 

(e) Prove that lim if,i = I. 
/1--400 

11. (a) Prove that a convergent sequence is always bounded. 
(b) Suppose that lim an = 0, and that some a11 > 0. Prove that the set of 

ll -+ 00 

all numbers a11 actually has a maximum member. 

12. (a) Prove that 

1 1 
-- < log(11 + 1) - log n < -. 
11+1 11 

(b) If 
1 1 1 

a = 1 + - + - + · · · + - - log n 
II 2 3 ll ' 

show that the sequence {an} is decreasing, and that each an > 0. It 
follows that there is a number 

y = lim (1 + · · · + ~ - log n). 
/1 --'> 00 ll 

This number, known as Euler's number, has proved to be quite refractory; 
it is not even known whether y is rational. 

13. (a) Suppose that f is increasing on [l,oo). Show that 

f (l) + · · · + f (n - I) < f II f (x) dx < f (2) + · · · + f (11). 

(b) Now choose f = log and show that 

11 11 (n + 1 )"+ I 
-- < n! < ----
en-I en 

it follows that 
~l 

lim --· = -. 
11-"o.:J n e 

This result shows that ~ is approximately 11 / e, in the sense that the 
ratio of these two quantities is close to I for large 11. But we cannot 
conclude that 11! is close to (11/et in this sense; in fact, this is false. An 
estimate for n ! is \Try desirable, even for concrete computations, because 
n ! cannot be calculated easily even with logarithm tables. The standard 
(and difficult) theorem which provides the right information will be found 
in Problem 27-19. 
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FIGURE? 

FIG U RES 

FIUURE 9 

14. (a) Show that the tangent line to the graph of f at (x1, f (x1 )) intersects the 
horizontal axis at (x2, 0), where 

J(x1) 
x2 =x1 - --. 

f'(x1) 

This intersection point may be regarded as a rough approximation to 
the point where the graph of f intersects the horizontal axis. If we now 
start at x2 and repeat the process to get x3, then use x3 to get x4, etc., 
we have a sequence {x11 } defined inductively by 

J (x,i) 
Xn + I =Xn - -f'( )' 

Xn 

Figure 7 suggests that {x11 } will converge to a number c with f (c) = O; 
this is called Newton's method for finding a zero of f. In the remainder 
of this problem we ,vill establish some conditions under which Newton's 
method works (Figures 8 and 9 show two cases where it doesn't). A few 
facts about convexity may be found useful; see Chapter 11, Appendi.x. 

(b) Suppose that J,' J" > 0, and that we choose x1 with f (xi) > 0. Show 
that XJ > x2 > x3 > · · · > c. 

(c) Let 8k = Xk - c. Then 

8 
_ f (xk) 

k - f'(~k) 

for some ~k in (c, Xk ). Show that 

Conclude that 

for some l}k in (c, Xk), and then that 

J"( 11k) 2 
8k+I :'.:: f'( . ) Dk . 

. \k 

(d) Let 111 = J'(c) = inf J' on [c,x1] and Jet M = supf" on [c,x1J. Show 
that Newton's method works if XJ - c < 111/M. 

(e) \Vhat is the formula for X 11 + J when f (x) = x 2 - A? 
If we take A = 2 and XJ = 1.4 \Ve gf't 

XJ = 1.4 
x2 = 1.4142857 

X3 = 1.4142136 
X.t = ].4142136, 

which is already correct to 7 decimals! Notice th,1t the number of' correct 
decimals at least doubled each time. This is essentially guaranteed by the 
inequality (*) whf'n M / 111 < I. 
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15. Use Newton's method to estimate the zeros of the following functions. 

(i) f (x) = tan x - cos2 x 
(ii) f(x)=cosx-x 2 

(iii) f (x) = x 3 + x - 1 
(iv) J (x) = x 3 - 3x 2 + 1 

*16. Prove that if lim an = I, then 
ll -">00 

near 0. 
near 0. 
on [O, 1]. 
on [O, 1]. 

. a1 +···+an 
hm = I. 

/l -">00 /l 

Hint: This problem is very similar to (in fact, it is actually a special case ofj 
Problem 13-40. 

17. (a) Prove that if lim a11+1 - a11 = l, then lim a11 /11 = I. Hint: Sec the 
11 --->00 11 --->CX) 

previous problem. 
(b) Suppose that f is continuous and lim f (x + I) - f (x) = I. Prove 

X-">00 

that lim f (x) / x = I. Hint: Let a11 and b11 be the inf and sup of f on 
X ---> 00 

[n, 11 + 1]. 

*18. Suppose that a11 > 0 for each n and that lim a11+1/a11 = I. Prove that 
ll -">00 

lim ~ = I. Hint: This requires the same sort of argument that works in 
11 ---> ou 

Problem 16, except using multiplication instead of addition, together with 
the fact that lim 'fa = 1, for a > 0. 

/l--+ CX) 

19. (a) Suppose that {a11 } is a convergent sequence of points all in [O, 1]. Prove 
that lim a11 is also in [O, 1]. 

11 ---"> 00 

(b) Find a convergent sequence {a11 } of points all in (0, 1) such that lim a11 
11---">00 

is not in (0, 1 ). 

20. Suppose that f is continuous and that the sequence 

x, J(x), J(f(x)), J(f(f(x))), ... 

converges to I. Prove that I is a "fixed point" for f, i.e., f (l) = I. Hint: Two 
special cases have occurred already. 

21. (a) Suppose that f is continuous on [O, l] and that O :::: f(x):::: 1 for all x in 
[O. l]. Problem 7-11 shows that f has a fixed point (in the terminology 
of Problem 20). If f is increasing, a much stronger statem ent can be made: 
For any x in [O, 1], the sequence 

x, f (x), J(f (x)), ... 

has a limit (which is necessarily a fixed point, by Problem 20). Prove this 
assertion, by examining the behavior of the sequence for f (x) > x and 
J (x) < x, or by looking at Figure I 0. A diagram of this sort is used 
in Littlewood's ,\latlzematician's Jliscellany to preach the value of drawing 
pictures: "For the professional the only proof needed is [this Figure]." 
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*(b) Suppose that f and g arc two continuous functions on [0. l J, with O ::: 
f(x) ::: 1 and O ::: g(x) ::: I for all x in [O, l], which satisfy f o g = 

g o f. Suppose, moreover, that f is increasing. Shmv that f and g have 
a common fixed point in other words, there is a number I such that 
f (I)= I= g(I). Hint: Begin by choosing a fixed point for g. 

For a long time mathematicians amused themselves by asking whether the 
conclusion of part (b) holds without the assumption that f is increasing, but 
two independent announcements in the Notices of the American l\lathcmati­
cal Society, Volume 14, Number 2 give counterexamples, so it was probably 
a pretty silly problem all along. 

The trick in Problem 20 is really much more valuabk than Problem 20 might 
suggest, and somc of the most important "fixed point theorems" depend upon 
looking at sequences of the form x, f (x), f (f (x)), .... A special, but representa­
tive, case of one such theorem is treated in Problem 23 (for which the next problem 
is preparation). 

22. (a) Use Problem 2-5 to show that if c # 1, then 

cm - cn+I 
cm +cm+I + ... +en= ___ _ 

1-c 
(b) Suppose that Jcl < 1. PrmT that 

lim cm + · · · + c11 = 0. 
111 , 1! -+00 

(c) Suppose that {x11 } is a sequence with Jx 11 - x 11+ 1 I ::: c11
, where O < c < 1. 

Prove that {x11 } is a Cauchy sequence. 

23. Suppose that f is a function on R such that 

If (x) - f (y)J ::: cJx - yJ, for all x and y, 

where c < I. (Such a function is called a contraction. ) 

(a) Prove that f is continuous. 
(b) Prove that f has at most one fixed point. 
(c) By considering the sequence 

x, f(x), f(f(x)), 

for any x, prove that f docs have a fi\:cd point. (This result, in a more 
general setting, is knmv11 as the "contraction lemma.") 

24. (a) Prove that if f is differentiable and lf'I < 1, then f has at most one 
fixed point. 

(b) Prove that if lf'(.r)J ::: c < I for all x , then f has a fixed point. 
(c) Give au example to show that the h)1Jothesis If' (x) I ::: 1 is not sullicicnt 

to ensure that f has a fixed point. 

25. 'l'his problem is a sort of converse to the previous problem. I ,ct b11 be a 
sequence defined by b1 = a, b11+ 1 = f (b11 ). Prow that if b = lim b11 exists 

11-+N 
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and f ' is continuous at b, then lf'(b)I :::: 1 (provided that we don't already 
have b11 = b for some 11 ). Hint: If lf'(b)I > l, then IJ'(x)I > l for all x in 
an interval around b, and b11 will be in this interval for large enough n. Now 
consider f on the interval [b, b11 ]. 

26. This problem investigates for which a > 0 the symbol 

makes sense. In other words, if we define bi = a, b11 +1 = ab", when docs 
b = lim b11 exist? Note that if b exists. then ab = b by Problem 20. 

11---+00 

(a) If h exists, then a can be written in the form y l /y for some y. Describe 
the graph of g(y) = y 1IY and conclude that O <a:::: e 11e . 

(b) Suppose that 1 :::: a :::: e 1 /e. Show that { b11 } is increasing and also bn :::: e. 

This pro\'es that b exists (and also that b :::: e). 

The analysis for a < 1 is more difficult. 

(c) Using Problem 25 , show that if b exists, then e- 1 :::: b:::: e. Then show 
that e -e :::: a :::: el /e. 

From now on we will suppose that e -e :::: a < 1. 

(cl) Show that the function 

ax 
f(x) = -

logx 

is decreasing on the interval (0, 1 ). 
(e) Let b be the unique number such that ab = b. Show that a < b < 1. 

Using part (e), show that if O < x < b, then x < aa' < b. Conclude that 
I = lim a211+ 1 exists and that aa' = I. 

11 ---+ 00 

(f) Using part (e) again, show that I = b. 

(g) Finally, show that lim a211 +2 = b, so that lim b11 = b. 
II-"> 00 /l-"> 00 

27. Let {x11 } be a sequence which is bounded, and let 

Yn = sup{xn, X11 + 1, X 11+2, ... }. 

(a) Prove that the sequence {y11 } converges. The limit lim y11 is denoted by 
fl-+ (X) 

lim x11 or lim supx11 , and ca11ed the limit superior, or upper limit, 
11 - 00 II -"> 00 

of the sequence {x11 }. 

(b) Find lim x 11 for each of the following: 

(i) 

(ii) 

II -+ 00 

Xn = -. 
11 

II 1 
.\'11 = (-]) -. 

11 
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(iii) x,, = ( - 1)" [ I + H 
(iv) X 11 = :J,i. 

(c) Define lirn x11 (or lim inf x,i) and prove that 
ll --+00 /1 ->00 

lim X 11 ::'.:: lirn X 11 • 

11--+00 
11 ->00 

(d) Prove that lim x 11 exists if and only if lim x 11 = lim x 11 and that in this 
/1 --+00 II -+ 00 

/1 --+00 

case lim x 11 = lim x 11 = lim x 11 • 
11 --+00 11 ->00 -

/l --+00 

(e) Recall the definition, in Problem 8-18, of lim A for a bounded set A. 

Prove that if the numbers x 11 are distinct, then lim x 11 = lim A, where 
II-+ 00 

A = {x11 : n in N}. 

28. In the Appendi.x to Chapter 8 we defined uniform continuity of a function 
on an interval. If f (x) is defined only for rational x, this concept still makes 
sense: we say that f is uniformly continuous on an interval if for every t: > 0 
there is some 8 > 0 such that , if x and y are rational numbers in the interval 
and Ix - YI < 8, then If (x) - f (y)I < t:. 

(a) Let x be any (rational or irrational) point in the interval, and let {x11 } be 
a sequence of rational points in the interval such that lim x11 = x. Show 

/1 --+00 

that the sequence {f (x,i)} converges. 

(b) Prove that the limit of the sequence {f (x,i)} doesn't depend on the choice 
of the sequence {x11 }. 

\'\Te will denote this limit by j (x) , so that J is an extension of f to the 
whole interval. 

(c) Prove that the extended function J is uniformly continuous on the inter­
val. 

29. Let a > 0, and for rational x let f (x) = a-\ as defined in the usual elementary 
algebraic way. This problem shows directly that f can be extended to a 

continuous function J on the whole line. Problem 28 provides the necessary 
machinery. 

(a) For rational x < y, show that ax < a" for a > I and ax > a·'' for a < I. 

(b) Using Problem I 0 , show that for any t: > 0 we have lax - 11 < t: for 
rational numbcrs x close enough to 0. 

(c) Using the equation a x - a Y = aY (ax -y - I), prmT that on any closed 
interval f is uniformly continuous, in the sense of Problem 28. 

(d) Show that the extended function ./ of Problem 28 is increasing for a > 
and decreasing for a < I and sat isfies j(x + y) = /(x)j(y). 
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*30. The Bolzano-\!\'cierstrass Theorem is usually stated, and also proved, quite 
differently than in the text- the classical statement uses the notion of limit 
points. A point x is a limit point of the set A if for every s > 0 there is a 
point a in A with Ix - al < s but x =/:- a. 

(a) Find all limit points of the following sets. 

(i) l ~ : 11 in NI· 

(ii) f ~ + __!__ : 11 and m in NI· l n ,11 

(iii) l (- l )" [ I + ~ J : 11 in NJ 
(iv) Z. 
(v) Q. 

(b) Prove that x is a limit point of A if and only if for every s > 0 there are 
infinitely many points a of A satisfying Ix - a I < s. 

(c) Prove that lim A is the largest limit point of A, and lim A the smallest. 

The usual form of the Balzano-\!\Teierstrass Theorem states that if A is 
an infinite set of numbers contained in a closed interval [a, b], then some 
point of [a. b] is a limit point of A. Prove this in two ways: 

(cl) Using the form already proved in the text. Hint: Since A is infinite, there 
are distinct numbers xi, x2, X3, ... in A. 

(e) Using the Nested Intervals Theorem. Hint: If [a, b] is di,·ided into two 
intervals, at least one must contain infinitely many points of A. 

31. (a) Use the Bolzano-\!\Teierstrass Theorem to prove that if f is continuous 
on [a, b] , then f is bounded above on [a. b]. Hint: If f is not bounded 
above, then there are points x 11 in [a. b J with f (x11 ) > 11. 

(b) Also use the Bolzano-\Veierstrass Theorem to prove that if f is contin­
uous on [a, b], then f is uniformly continuous on [a, b J (see Chapter 8, 
Appendix). 

**32. (a) Let {a 11 } be the sequence 

112123 123412 
2· 3, 3, 4· 4, 4, 5· 5' 5, 5· 6· 6' 

Suppose that O :::: a < b :::: 1. Let N (n: a, b) be the number of integers 

j:::: 11 such that aj is in (a, b). (Thus N(2: j, ~) = 2, and N(4: j, ~) = 3.) 
Prove that 

. N(n: a, b) 
hm = b-a. 

/l--400 ll 

(b) A sequence {a11 } of numbers in [O, I J is called uniformly distributed 
in [O, I] if 

1
. N(11; a, b) 
1111 = b - a 

11 --400 II 
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for all a and b with O :S a < b :S 1. Prove that if s is a step function 
defined on [O, 1 J, and {an} i uniformly distributed in [O , 1 J, then 

{
1

5
= lim s(a 1)+···+s(a11 )_ 

lo n~oo n 

(c) Prove that if {a11 } is uniformly distributed in [O, 1] and f is integrabl 
on [O, 1] , then 

[1 f = lim f (ai) + · · · + f (an). 
lo n~ n 

**33. (a) Let f be a function defined on [O, l J uch that lim f (y) exists for all a 
y~a 

in [O, 1]. For any c > 0 prove that there are only finitely many points a 
in [O , l] with I lim f(y) - f(a)I > c. Hint: Show that the set of such 

y ~ a 

points cannot have a limit point x, by showing that lim f (y) could not 
y~x 

exist. 
(b) Prove that, in the t rminology of Problem 21-5, the et of points where 

f i · di continuou i countable. This finally answers the question of 
Problem 6-17: If f has only removable di continuities, then f i contin­
uou except at a countable set of points, and in particular, f cannot be 
di continuous everywhere. 



CHAPTER 23 INFINITE SERIES 

Infinite sequences were introduced in the pre\'ious chapter with the specific inten­
tion of considering their ''sums" 

in this chapter. This is not an entirely straightforward matter, for the sum of 
infinitely many numbers is as yet completely undefined. \ 1Vhat can be defined are 
the ''partial srnns" 

Sn=a1+···+an, 

and the infinite sum must presumably be defined in terms of these partial smns. 
Fortunately, the mechanism for formulating this definitio n has already been de, ·el­
oped in the pre\'ious chapter. If there is to be any hope of computing the infinite 
sum a1 + a2 + a3 + · · ·, the partial sums s11 should represent closer and closer ap­
proximations as n is chosen larger and larger. This last assertion amounts to little 
more than a sloppy definition oflimits: the "infinite sum'' a1 + a2 + a3 + · · · ought 
to be Jim Sn, This approach will necessarily lea,·e the "sum'' of many sequences 

n -+oo 

undefined, since the sequence {sn} may easily fail to ha,T a limit. For example, the 
sequence 

L -I, 1. -1, 

with a11 = ( -1 yz+ 1 yields the new sequence 

SJ= a1 = 1, 
s2 = a1 + a2 = 0. 
s3 = a1 + a2 + a3 = 1, 
s4 = a 1 + a2 + a3 + a4 = 0. 

for which Jim Sn does not exist. 1\lthough there happen to be some cJeyer ex-
11--,.oc 

tensions of the definition suggested here (see Problems 12 and 24-20) it seems 
unavoidable that some sequences will ha, ·e no sum. For this reason. an acceptable 
definition of the sum of a sequence should contain, as an essential component. 
terminology which distinguishes sequences for which st11ns can be defined from 
less fortunate sequences. 

471 
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DEFINITION T he sequence {a11 } is summable if the sequence {s11 } converges, where 

Sn = a1 + ·· · +an. 

In this case, lim s11 is denoted by 
11 -'>00 

(or, less formally. a1 + a 2 + a 3 + · · ·) 
11 =1 

and is called the sum of the sequence { a11 }. 

T he terminology introduced in this definition is usually replaced by less precise 
expressions; indeed the title of this chapter is derived from such everyday language. 

00 

An infinite sum L a11 is usually called an irfmite series, the word "series" emphasiz-
n= I 

ing the connection with the infinite sequence {a11 }. The statement that {an} is, or 
00 

is not, summable is conventionally replaced by the statement that the series L a11 
11 =1 

does, or docs not, converge. This terminology is somewhat peculiar, because at 
00 

best the symbol L a11 denotes a number (so it can 't "converge"), and it doesn't de-
n= I 

note anything at all unless {an} is summable. Nevertheless, this informal language 
is convenient, standard, and unlikely to yield to attacks on logical grounds. 

Certain elementary arithmetical operations on infinite series are direct conse­
quences of the definition. It is a simple exercise to show that if {a11} and {b11} are 
summable, then 

00 00 00 

I:::ca/1 + b11) = I:a,, + I:b11, 
11=1 n= I n= I 

00 00 

I: c·a,, =C · Lan. 
11 =1 11=1 

As yet these equations are not very interesting, since we have no examples of 
summable sequences (except fo r the trivial examples in which the terms are even­
tually all 0). Before we actually exhibit a summable sequence, some general con­
ditions for summability will be recorded. 

T here is one necessary and sufficient condition fo r summability which can be 
stated im mediately. The sequence {a11 } is summable if and only if the sequence {s,,} 
converges, which happens, according to T heorem 22-3 , if and only if lim s111 -

In J I -" 00 

s,, = O; this condition can be rephrased in terms of the original sequence as follows. 
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The sequence {a11 } is summable if and only if 

lim a11 +1 +···+am= 0. 
f/l,/l-+00 

Although the Cauchy criterion is of theoretical importance, it is not very useful 
for deciding the summability of any particular sequence. However, one simple 
consequence of the Cauchy criterion provides a necessary condition for summability 
which is too important not to be mentioned explicitly. 

If {a11 } is summable, then 

lim a11 = 0. 
17 ---+ 00 

This condition follows from the Cauchy criterion by taking m = fl + 1; it can also 
be proved directly as follows. If lim Sn = l, then 

n-+ oo 

lim an= lim (s11 - Sn - 1) = lim Sn - lim Sn-I 
11 ---+ oo n-+oo 11---+oo n-+oo 

= l - l = 0. 

Unfortunately, this condition is far from sufficient. For example, lim 1 / n = 0, 
ll-+ 0,) 

but the sequence { 1 /fl} is not summable; in fact, the following grouping of the 
numbers l / fl shows that the sequence {sn} is not bounded: 

l+l+ t+! +!+i+t+k+!+ .. ·+ /6+"· · 
'-v--' '-..,-' 

I I I 
~ 2 ~ 2 ~ 2 

(2 terms, 

each ~ ;\- ) 

(4 terms, 

each ~ ! ) 

(8 terms, 

each ~ ~ ) 

The method of proof used in this example, a clever trick which one might never 
see, reveals the need for some more standard methods for attacking these problems. 
These methods shall be developed soon (one of them will give an alternate proof 

00 

that L 1 / fl does not converge) but it will be necessary to first procure a few 
n=I 

examples of convergent series. 
The most important of all infinite series are the "geometric series'' 

00 

L ,.n = 1 + r + r2 + r3 + .... 
n= O 

Only the cases lrl < 1 are interesting, since the individual terms do not approach O 
if lrl ::::: 1. These series can be managed because the partial sums 

Sn = l + r + · · · + r 11 

can be evaluated in simple terms. The two equations 
') 

Sn = l + r + ,.- + · · · + r 11 

r Sn = r + ,.2 + ... + ,.n + ,.n+ I 
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THE BOUNDEDNESS CRITERION 

THEOREM l 

(THE COMPARISON TEST) 

lead to 

sll(l - r) = 1 - rll + I 

or 

s,, = 
l - r 

(division by 1 - r is valid si nce we are not considering the case r 

lim r 11 = 0, since Ir I < 1. It follows that 
11- 00 

In particular, 

that is, 

(X) 

L il l' r = 1111 
11 -00 

11=0 

l _ ,.n+ I 

1 - r l - r ' 
lrl < 1. 

00 (1) 11 00 (1) 11 1 L - =L - -1=-, -1=1. 
2 2 1 - -

11=1 11=0 2 

1). Now 

an infinite sum which can always be rem embered from the picture in Figure 1. 

0 I 
2 

3 
4 

7 
8 

------v-------- -----..----~ 

FI GURE I 

I 
2 

I 
4 

I 
8 

Special as they are, geometric series are standard examples from which important 
tests for summability will be deri\·ed. 

For a while we shall consider only sequences {a 11 } with each a 11 :::: O; such 
sequences are called nonnegative. If {all} is a nonnegative sequence, then the se­
quence {s11 } is dearly nondecreasing. This remark, combined with Theorem 22-2, 
provides a simple-minded test for summability: 

A nonnegative seq uence {an} is summable if and only if the set of partial 
sums Sn is bounded. 

By itself, this criterion is not very helpful deciding whether or not the set of 
all Sn is bounded is just what \Ve are unable to do. On the other hand, if some 
convergent series arc already available for comparison, this criterion can be used 
to obtain a result whose simplici ty belies its importan ce (it is the basis for almost 
all other tests). 

Suppose that 

0 :'.:: On :'.:: hn for all 11. 



00 

Then if L bn converges, so does L an. 
n=l n=l 

2 3. Infinite Series 4 7 5 

PROOF If 

THEOREM 2 

(THE LIMIT COMPARISON TEST) 

then 

00 

Sn = a1 +· · ·+an, 
tn = b1 + · · · + bn, 

for all n . 

Now Un} is bounded, since L bn converges. Therefore {sn} is bounded; conse-
n=l 

00 

quently by the boundedness criterion L an converges. I 
n=l 

Quit frequently the comparison test can be used to analyze very complicated 
looking series in which most of the complication is irrelevant. For example, 

~ 2+sin3(n + 1) 
L..t 2n + n2 
n=l 

converges because 

0 
< 2 + sin 3 

(n + 1) 
- 2n + n2 

and 

is a convergent (geometric) series. 
Similarly, we would expect the series 

00 1 

L 2n - 1 + sin 2 n 3 
n=l 

to converge, since the nth term of the series is practically 1 /211 for large n, and we 
would expect the series 

00 
n + 1 

Ln2+ 1 
n=l 

to diverge, since (n + l)/(n2 + 1) is practically 1/n for large n. Thee fact an 
be derived immediately from the following theorem, anoth r kind of" ompari on 
te t." 

If an, b11 > 0 and }!_;D an/ bn = c =f. 0, th n Lan onv rO' if and only if L b11 

converg s. n= 1 11= I 
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PROOF 

THEOREM 3 (THE RATIO TEST) 

PROOF 

00 

Suppose '°"' bn converges. Since Jim an/b11 = c, there is some N such that L 11 -+oo 

n=I 

forn:::. N. 
00 

But the sequence 2c L b11 certainly converges. Then Theorem 1 shows that 
n=N 

00 00 

L an converges, and this implies convergence of the whole series Lan, which 
n=N n=I 
has only finitely many additional terms. 

The converse follows immediately, since we also have Jim bn/a11 = 1/c =j:. 0. I 
ll -+00 

The comparison test yields other important tests when we use previously an-
oo 

alyzed series as catalysts. Choosing the geometric series L r 11
, the convergent 

n=O 
series par excellence, we obtain the most important of all tests for summability. 

Let an > 0 for a11 n, and suppose that 

00 

]. an+I 
1m --=r. 

n-+oo an 

Then L a 11 converges if r < 1. On the other hand, if r > 1, then the terms an 
n=I 

00 

are unbounded, so Lan diverges. (Notice that it is therefore essential to compute 
11=1 

lim an+1/a11 and not lim a11/an+1! ) 
11-+00 n-+ oo 

Suppose first that r < 1. Choose any number s with r < s < 1. The hypothesis 

. an+I 
hm--=r< 

n---"oo an 
implies that there is some N such that 

forn:::: N. 

This can be written 

an+I .::'.:: sa11 for n :::: N. 

Thus 
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00 00 

Since L aNsk = aN Li converges, the comparison test shows that 
k=O k=O 

00 00 

Lan= LaN+k 
n=N k=O 

00 

converg s. This implie the convergence of the whole series Lan. 
11=1 

The case r > 1 is even easier. If 1 < s < r, then there is a number N such that 

for n ~ N, 

which means that 

k = 0, 1, ... , 

so that the terms ar unbounded. I 

00 

As a simple application of the ratio test, consider the series L 1 / n ! . Letting 

a11 = 1/n ! we obtain 

Thu 

1 

(n + l)! 
1 

n! 

00 

n! 

(n + l)! 
1 

n+l 

n=l 

which hows that the series L 1/n! converges. If we consider instead the series 
n= l 

00 

L r 11 
/ n ! , where r is some fixed positive number, then 

n=l 

lim (n + l )! = lim _r_ = 0 
11 --'>00 r 11 11 --'> 00 n + 1 ' 

n! 

00 

o L r 11 
/ n ! converge . It follow that 

11=1 

rn 
lim - = 0 ' ' n-+ n. 
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a result already proved in Chapter 16 (the proof given there was based on the same 
00 

ideas as those used in the ratio test). Finally, if we consider the series L II r 11 we 
11=1 

have 
• (11 + 1) r 11+ I 

hm 
11 -HX) nrn 

. n + 1 
hm r · -- = r, 

/1 ----'>00 11 

CV 

smce lim (n + I)/ n = I. This proves that if O ~ r < 1, then "n rn converges, 
11 ----'>oo L 

n=I 
and consequently 

lim 11 r 11 = 0. 
/1 ----'>00 

(This result clearly holds for - I < r ~ 0, also.) It is a useful exercise to provide a 
direct proof of this limit, without using the ratio test as an intermediary. 

Although the ratio test will be of the utmost theoretical importance, as a practical 
tool it will frequently be found disappointing. One drawback of the ratio test is 
the fact that lim a11+if a11 may be quite difficult to determine, and may not even 

11 ----'>00 

exist. A more serious deficiency, which appears with maddening regularity, is the 
fact that the limit might equal 1. The case lim an+1/a11 = 1 is precisely the one 

/1 ----'>00 

which is inconclusive: {a 11 } might not be summable (for example, if a11 = l /n ), 
00 

but then again it might be. In fact, our very next test will show that L (I/ 11 )
2 

11=1 

converges, even though 

1. 

This test provides a quite different method for determining convergence or diver­
gence of infinite series- -like the ratio test, it is an immediate consequence of the 
comparison test, but the series chosen for comparison is quite novel. 

Suppose that f is positive and decreasing on [l, oo), and that J(n) = a 11 for all n. 
00 

Then L a 11 converges if and only if the limit 
11=1 

J, oo f = Jim J,A f 
I A ----+oo I 

exists. 

The existence of Jim J,A f is eqllivalent to com·crgcncc of the series 
A-~ I 

{1+{1 +{1+···. 
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Now, since f is decreasing we have (Figure 2) 

1

11+1 
f(n +I)< 

11 
f < f(n). 

00 

The first half of this double inequality shows that the series L a11+ 1 may be com-
11=! 

00 111+1 00 00 

pared to the series L f, proving that L a11+ 1 (and hence L a11 ) converges 
11=! 11 11 = ! n=I 

if lim [A exists. 
A->ool1 

Dv 111+ ! 
The second half of the inequality shows that the series L f may be com-

pared to the sc ries t a,, , proving that Jim { A f mu st e~i~: if" t a,, converges. I 
A->oc 11 

11=! 11=! 

Only one example using the integral test will be given here, but it settles the 
question of convergence for infinitely many series at once. If p > 0, the co1wer­

N 

gence of L 1 / 11 P is equivalent, by the integral test, to the existence of 
11 = 1 

Now 

J;
A J 

- dx= 
, ·{J 

I ·" 

J;
oo 1 

-dx. 
I xP 

{
- (p- 1). A;-1 + p~I' 

log A. 

p-j:.I 

p = 1. 

This shows that lim [A 1/xP dx exists if p > 1, but not if p:::: 1. Thus f 1/nP 
A->e>v 11 

11=! 

converges precisely for p > 1. In particular, L 1 / 11 di\·erges. 
11 = ! 

The tests considered so far apply only to nonnegative sequences, but nonpositi\·e 
sequences may be handled in precisely the same way. In fact, since 

00 (00 ) Lan=- :Z::::-an , 
n= I n= I 

all considerations about nonpositive sequences can be reduced to questions im·oh-­
ing nonnegati\'l:' sequences. Sequences which contain both positive and negati\·e 
terms are quite another story. 

00 

If L a11 is a sequence with both positi\·e and negatiw terms, one can con-
11=1 

00 

sidn instead the sequence L la11 I, all of \,·hose terms are nonnegative. Clwerfully 
11 = 1 
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ignoring the possibility that we may have thrown away all the interesting informa­
tion about the original sequence, we proceed to eulogize those sequences which 
are converted by this procedure into convergent sequences. 

00 00 

The series Lan is absolutely convergent if the series L la 11 I is convergent. 
11=1 n=l 

(In more formal language, the sequence {a11 } is absolutely summable if the 
sequence {la 11 I} is summable.) 

Although we have no right to expect this definition to be of any interest, it turns 
out to be exceedingly important. The following theorem shows that the definition 
is at least not entirely useless. 

Every absolutely convergent series is convergent. .Moreover, a series is absolutely 
convergent if and only if the series formed from its positive terms and the series 
formed from its negative terms both converge. 

00 

If L la11 I converges, then, by the Cauchy criterion, 
11=! 

lim la11+1 I+···+ laml = 0. 
111,n --+OO 

Since 
Ian+!+··· +aml .:'.:: lan+II + · · · + laml, 

it follows that 
lim a11+ 1 + · · · + a111 = 0, 

111 , 11 --+00 

00 

which shows that Lan converges. 
n=l 

To prove the second part of the theorem, let 

an+ l an, if a11 2: 0 
0, if Cl11.:::: 0. 

l a11, if Cl 11 .:'.:: 0 
an 

0, if a11 2: 0. 

00 00 00 

so that L a11 + is the series formed from the positive terms of L a11 , and Lan -
11=1 n= I 11 = 1 

is the series formed from the ncgatin' terms. 
ex:, CV 

If L a 11 + and L a11 - both converge, then 
11 = 1 11 = 1 

11 = 1 11 = 1 11 = 1 n= I 
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00 

also converges, o Lan converge absolutely. 
n= l 

00 00 

On the other hand, if L \an I converges, then, a we have just shown, Lan 
n= l n=l 

also converges. Therefore 

and 

both converge. I 

It follows from Theorem 5 that every convergent series with positive terms can 
be used to obtain infinitely many other convergent series, simply by putting in 
minu ign at random. Not very convergent series can be obtained in this way, 
however- there are series which are convergent but not absolutely convergent 
( uch serie are called conditionally convergent). In order to prove this state­
ment we need a test for convergence which applies specifically to erie with positive 
and negative terms. 

Suppose that 

and that 

lim an = 0. 
n-+oo 

Then the series 
00 

L (-1 t + 1 an = a 1 - a2 + a3 - a4 + as - · · · 
n.=1 

converges. 

Figure 3 illustrates relationships between the partial sums which we will e tablish: 

(1) S2 :S S4 :S S6 :S · · · , 
(2) SI :::: S3 :::: S5 :::: · · · , 

(3) Sk ::: s, if k is even and l i odd. 

FIG R 3 
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To prove the first two inequalities, observe that 

~ s2n+ l , 

To prove the third inequality, notic first that 

s2n = s211 - l - a2n 

~ s211 - l since a211 :::: 0. 

This prove only a special case of (3), but in conjunction with (1) and (2) the general 
case 1s easy: if k is even and l is odd, choo e n such that 

2n :::: k and 2n - 1 :::: l ; 

then 

which proves (3). 
Now, the sequence {s211 } converges, b cau e it is nondecr a ing and is bounded 

above (bys, for any odd l ). Let 

a = sup{s211 } = lim s2n. 
n-oo 

Similarly, let 
f3 = inf { s211+ i} = lim s211+ l · 

n-oo 

It follows from (3) that a ~ {3; since 

s2n+ 1 - s2n = a2n+ 1 and lim an = 0 
n-oo 

it i actually the case that a = f3. This proves that a = f3 = lim Sn. I 
11-00 

The standard example derived from Theorem 6 i th sen es 

1-!+t-l +!- .. ·, 

which is convergent, but not absolutely convergent (since L 1/ n do s not con-
n=l 

verge). If the um of this s rie i denoted by x, the following manipulation lead 
to quite a paradoxical re ult: 

x= l -! + !-1+!-i+ ... 
= 1 - ! - i + ! - t - i + ~ - -fa - t

12 + ~ - /4 - /6 + ... 
(th patt rn h re is on p sitive t rm follow d by two n gati on 

= o - !) - 1 + ct - t) - k + c~ - 16 ) - /2 + c~ - 1~) - /6 + .. · 
I I I 1 l l I l =2-4+6-s+m-12+14-TG+··· 

= 10 - 1 + t - * + ~ - t + ~ - ~ + ... ) 
I 

= 2X, 
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so x = x /2, implying that x = 0. On the other hand, it is easy to see that x =j:. 0: 
the partial sum s2 equals t and the proof of Leibniz's Theorem shows that x ::::. s2. 

This contradiction depends on a step which takes for granted that operations 
valid for finite sums necessarily have analogues for infinite sums. It is true that the 
sequence 

{b11} = 1, I I I I 1 1 1 
-2, -4, 3' -6, -8. 5' -m, -12, 

contains all the numbers in the sequence 

{a11} = 1. 1 I 1 I I I I 1 I I I -2, 3' -4, 5' -6· 7' -8, 9, -m, TT• -12, 

In fact, {b11 } is a rearrangement of {a11 } in the following precise sense: each 
b11 = a f( 11 J where f is a certain function which "permutes'' the natural numbers, 
that is, eYcry natural number m is f (n) for precisely one ,z. In our example 

f (2m + l) = 3m + 1 

f (4m) = 3111 

f (4111 + 2) = 3111 + 2 

(the terms l, ~· !- ... go into the 1st, 4th, 7th, ... 
places), 
(the terms -! , -i, - /2 , ... go into the 3rd, 6th, 9th, 
... places), 
(the terms -! , -! , - /0 .... go into the 2nd, 5th, 8th, 
... places). 

00 00 

Nevertheless, there is no reason to assume that L b11 should equal L a 11 : these 
11 = 1 n=I 

sums arc, by definition, lim bi + · · · + b11 and lim a 1 + · · · + a11 , so the particular 
11---->00 11---->00 

00 

order of the terms can quite conceivably matter. The series L (-1 )'1+1 
/ n is not 

11=1 

special in this regard; indeed, its behavior is typical of series which are not ab-
solutely convergent- the following result (really more of a grand counterexample 
than a theorem) shows how bad conditionally convergent series are. 

00 
If Lan converges, but does not converge absolutely, then for any number a there 

n=I 
N 

is a rearrangement {b11 } of {a11 } such that L b11 = a. 
11 = 1 

00 00 
Let L p 11 denote the series formed from the positive terms of {a11 } and let L q11 

n= I 11=1 
denote the series of negatiYe terms. It follows from Theorem 5 that at least one of 
these series docs not converge. As a matter of fact, both must fail to com-crgc, for 
if one had bounded partial sums, and the other had unbounded partial sums, then 
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00 

the original series Lan would also have unbounded partial sums, contradicting 
n= l 

the assumption that it converges. 
Now let a b any number. A sume, for simplicity, that a > 0 (the proof for 

a < 0 will be a simple modification). Since the eries L p11 is not convergent, 
n= l 

there is a number N such that 

N 

LPn > a . 
n= l 

We will choose N1 to be the smallest N with this property. This means that 

Then if 

we have 

0 

F I G U R E 4 

N 1- l 

(1 ) L Pn :S a , 
n= l 

N 1 

but (2) L Pn > a . 
n= l 

N 1 

S1=LPn, 
n= l 

Pl + .. . + P Ni - 1 + P N1 

This relation, which is clear from Figure 4, follows immediately from equation (1): 

N1- l 

S1 - a :S S1 - L Pn = PN1 • 

n= l 

To the sum S1 we now add onju t enough negative term to obtain a n w sum T1 
which is less than a . In other words, w choo e the malle t int g r MI for which 

M1 

Ti = S1 + L qn < a . 
n= I 

A b for , w hav 

W now ntinu thi pr dur ind finit l 
nd mall r than a a h tim ho in O' th 

obtaining 
mall t Nk 

um lt rn t 1 larff r 
r Mk p ibl h 
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sequence 

is a rearrangement of { a 11 }. The partial sums of this rearrangement increase to S 1, 

then decrease to T1, then increase to S2, then decrease to T2, etc. To complete the 
proof we simply note that I Sk -a I and I Tk -a I are less than or equal to p Nk or -q Mk, 

respectively, and that these terms, being members of the original sequence {an}, 
00 

must decrease to 0, since Lall converges. I 
n=I 

Together with Theorem 7, the next theorem establishes conclusively the distinc­
tion ben,veen conditionally convergent and absolutely convergent series. 

00 00 

If Lall converges absolutely, and {b11 } is any rearrangement of {a11 }, then L b11 

n=I ll=I 
also converges (absolutely), and 

00 00 

n=I ll=I 

Let us denote the partial sums of {a11 } by s,1 , and the partial sums of {bll} by 111 • 

00 

Suppose that £ > 0. Since Lall converges, there is some N such that 
ll=I 

I f: a, - SN I < e. 
n=I 

00 

Moreover, since L la11 I converges, we can also choose N so that 
n=I 

00 

Llanl - (la1l+ .. ·+laNI) <£, 
n=I 

i.e., so that 

Now choose M so large that each of a1, ... , aN appear among b1, ... , bM. Then 
whenever m > M, the difference !111 - s N is the sum of certain a,., where a 1 , ••• , a N 

are defi,nitely excluded. Consequently, 
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Thus if m > M , then 

I L a, - Im I = I ta, - s N - (tm - SN) I 
n= l n= l 

'.'o I ta,, - s N I + ltm - S N I 

n= I 
< £ + t: . 

00 00 

Since this is true for every £ > 0, the series L bn converges to L a11 • 

n= l n= l 
00 

To show that L bn converges absolutely, note that { lbn I} is a rearrangement 
n= l 
00 00 

of {Ian! }; since L ja11 j converges absolutely, L lbnl converges by the first part of 
n= l n= l 

the theorem . I 

Ab olute convergence is al o important when we want to multiply two infinite 
sen es. U nlike the situation for addition, where we have the simple formula 

00 00 

n= l n= l 

there isn 't quite so obvious a candidate for the product 

It would seem that we ought to sum all the products aibj . The trouble is that these 
for m a two-dimensional array, rather than a sequence: 

Neverthele s, all the element of this array can be arranged in a s quence. Th 
picture below shows on way of doing this, and of cour e, th r are (infinit ly) 
many oth r way . 
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Suppose that k11} is some sequence of this sort, containing each product aibj 
just once. Then we might naively expect to have 

00 00 00 

Len 
11=1 11 = 1 11=1 

But this isn't true (see Problem 10), nor is this really so surprising, since we've said 
nothing about the specific arrangement of the terms. The next theorem shows 
that the result does hold when the arrangement of terms is irrelevant. 

00 00 

If L a11 and L b11 converge absolutely, and {c11 } is any sequence containing the 
11 = 1 11 = 1 

products a;bj for each pair (i, }), then 

00 00 00 

11=1 11=1 11 = 1 

Notice first that the sequence 

L L 

PL= Lla;I · Llbjl 
i=l j=I 

converges, since {an} and {bn} are absolutely convergent, and since the limit of a 
product is the product of the limits. So {pd is a Cauchy sequence, which means 
that for any c > 0, if L and L' are large enough, then 

U U L L IL la;I · L lbjl - L la;I · L lbjl I < ~· 
i=I j=l i=I j=I 

It fo llows that 

(1) L la;l·lbjlS~<c. 
i or j > L 

Now suppose that N is any number so large that the terms e11 for n S N include 
every term a;bj for i, j S L. Then the difference 

N L L 

Len - Lai· Lbj 
11=1 i = l j= I 

consists of terms a;bj with i > Lor j > L, so 

(2) If>,, - j'.>,, · i)j I < L la,I · lbjl 
11=1 i = I j=l i or j > L 

< c by (l ). 

But since the limit of a product is the product of the limits, we also haYe 

(3) If"'. i\ -±>. i>j I< 8 

i= I j=I i=I j= I 
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for large enough L. Consequently, if we choose L , and then N , large enough, we 
will have 

+lta;·i>j -f>,I 
i=l J=l n= I 

< 2£ by (2) and (3), 

which proves the theorem. I 

Unlike our previous theorems, which were merely concerned with summability, 
this result says something about the actual sums. Generally speaking, there is 
no reason to presume that a given infinite sum can be "evaluated" in any simpler 
terms. However, many simple expressions can be equated to infinit sums by using 
Taylor's Theorem. Chapter 20 provides many examples of functions for which 

n f (i) (a) i 
f(x)=L .

1 
(x-a) +Rn,a(x), 

i=O l . 

where lim Rn ,a (x) = 0. This is precisely equivalent to 
n-oo 

n (i) a 
f ( ) 1. I: 1 c ) c )i x = un x -a , 

11 -00 i! 
i=O 

which means, in turn, that 

oo JCi\a) . 
f (x) = L ., (x - a)1. 

l. 
i=O 

As particular examples we have 

x3 xs x7 
sinx = x - - + - - - + · · · 

3! 5! 7! ' 

x2 x4 x6 
cos x = 1 - - + - - - + · · · 

2! 4! 6! ' 

x x 2 x 3 x 4 

ex = 1 + 1! + 2! + 3! + 4 ! + ... ' 

x3 xs x7 
arctan x = x - 3 + 5 - 7 + · · · , Ix I .::: 1, 

x2 x3 x4 xs 
lo (1 + x) = x - 2 + 3 - 4 + 5 + · · · , - 1 < x .::: l. 
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(Notice that the series for arctan x and log(l + x) do not even converge for Jx I > 1 · 
in addition, when x = -1, the series for log( 1 + x) becomes 

-1 I I I 
2 3 4 ... 

which does not converge.) 

Some pretty impressive results arc obtained with particular values of x: 

][3 ][5 Jr 7 
O=n--+---+··· 

3! 5! 7! 

1 1 1 
e=l+-+-+-+··· 

1 ! 2! 3! 

n 1 1 1 
4 l-3+5-7+··· 

1 I 1 
log 2 = 1 - 2 + 3 - 4 + · · · . 

l\forc significant developments may be anticipated if we compare the series for 
sin x and cos x a little more carefully. The series for cos x is just the one we would 
have obtained if we had enthusiastically differentiated both sides of the equation 

. X3 XS 
sm x = x - - + - - · · · 

3! 5! 

term-by-term, ignoring the fact that we have never proved anything about the 
derivatives of infinite sums. Likewise, if we differentiate both sides of the for­
mula for cos x formally (i.e., without justification) we obtain the formula cos' (x) = 
- sin x, and if we differentiate the formula for ex we obtain exp' (x) = exp(x ). 
In the next chapter we shall see that such term-by-term differentiation of infinite 
sums is indeed valid in certain important cases. 

PROBLEl\IS 

1. Decide whether each of the following infinite series is convergent or diver­
gent. The tools which you will need are Leibniz's Theorem and the compar­
ison, ratio, and integral tests. A few examples have been picked with malice 
aforethought; two series which look quite similar may require different tests 
(and then again, they may not). The hint below indicates which tests may be 
used. 

(i) 

(ii) 

(iii) 

(iv) 

~ sin ne 
L...t 112 . 
n= I 

I-1+!-t+···. 
1-1.+; _ 1.+~-.!.+~-.!.+··· 2 3 3 4 4 5 5 

I)-I)" log 11 • 

ll 
11 = ! 
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(v) 
00 

L 1 
. (The summation begin with n = 2 simply to avoid 

n=2 V n2 
- l the meaningle s term obtained for n = 1). 

(vi) 
00 1 

:; Vn2 + 1· 

(vii) 
00 2 

I: :!. 
n= l 

'"°' log n. (viii) L 
n 

n=l 

00 1 
(ix) I: 

logn · 

(x) 

n=2 

00 1 

L (logn)k. 
n=2 

00 1 
(xi) '"°' --L (log n )n. 

n=2 

00 1 
(xii) '"°' (- lt . 

L (logn)n 
11=2 

00 ? 

(xiii) '"°' n -
L n3 + 1 · 
n= l 

00 1 
(xiv) L sin - . 

n 
11 = 1 

00 1 
(xv) '"°' -­

L nlogn· 
n=2 

00 1 
( xvi) '"°' -------c­

L n(logn)2 · 
n=2 

(xvii) f 
2 

l . 
n (log n) 

n=2 

n! 
( viii)'"°' - . L nn 

n= I 

L 2
11 n!. (xix) 
n" 

11 = ] 
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(XJ 311 11! 
(xx) ~-. L 11 11 

11=1 

Hint: Use the comparison test for (i), (v), (vi), (ix), (x), (xi), (xiii), (xiv), (xvii); 
the ratio test for (vii), (xviii), (xix), (xx); the integral test for (viii), (xv), (xvi). 

The next two problems examine, with hints, some infinite series that require 
more delicate analysis than those in Problem 1. 

*2. (a) If you have successfully solved examples (xix) and (x..x) from Problem 1, 
00 

it should be clear that L a 11 n ! / 11 11 converges for a < e and diverges for 
n=I 

00 

a > e. For a = e the ratio test fails; show that L e11 n ! / 11
11 actually 

n=l 
diverges, by using Problem 22-13. 

00 

(b) Decide when I:11 11 /a 11 n! converges, again resorting to Problem 22-13 
n=l 

when the ratio test fails. 

00 00 

*3. Problem 1 presented the two series L (log 11 )-k and L (log 11 )-n, of which 
11=2 11=2 

the first diverges while the second converges. The series 

oo I 

L (log n)log11' 
n=2 

which lies between these two, is analyzed in parts (a) and (b). 

00 

(a) Show that ft eY/yY dy exists, by considering the series L(e/n) 11
• 

n=l 

(b) Show that 

oo I 

L (log n)log11 
n=2 

converges, by using the integral test. Hint: Use an appropriate substitu­
tion and part (a). 

(c) Show that 

oo I 

L (log 11 )log(log n) 
11=2 

diverges, by using the integral test. Hint: Use the same substitution as 
in part (b), and show directly that the resulting integral diverges. 
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4. 

5. 

°" I 
Decide whether or not """'-1 -11

- converges. ~II + II 

11 = 1 
00 00 

(a) Pron' that if L a11 converges absolutely, then so docs L a11
3. 

11 = 1 11=1 

*(b) Show that this does not hold for conditional convergence. 

6. Let f be a continuous function on an interval around 0, and let a11 = f (1 / 11) 

(for large enough 11 ) . 

N 

(a) Prove that if L a11 converges, then f (0) = 0. 

11 = 1 

(b) Prove that if f' (0) exists and L a11 converges, then f' (0) = 0. 
11 = 1 00 

(c) Prove that if f"(O) exists and f (0) = f'(O) = 0, then I:a 11 converges. 

00 n= I 

(cl) Suppose L a11 converges. l\Iust f' (0) exist? 
11 = 1 00 

(c) Suppose f (0) = f' (0) = 0 . . Must L a11 converge? 
11 = 1 

00 

7. (a) Let {a11 } be a sequence of integers with O ~ a11 ~ 9. Prove that L a11 1 o- n 

11=1 
exists (and lies between O and I). (This, of course, is the number which 
we usually denote by O.a1a2a3a4 ... . ) 

(b) Suppose that O ~ x ~ l. Prove that there is a sequence of integers {a11 } 
CX) 

with O ~ a11 ~ 9 and I:a,)0- 11 = x. Hint: For example, a1 = [10x] 
n= I 

(where [y] denotes the greatest integer which is ~ y). 
(c) Show that if {a11 } is repeating, i.e., is of the form a1,a2, ... ,ak, 

CX) 

a1. a2, ... , ak, a1, a2, ... , then L a 11 l o - n is a rational number (and find 
11=1 

it). The same result naturally holds if {a11 } is eventually repeating, i.e., if 
the sequence {aN+d is repeating for some N. 

00 

(d) Prove that if x = L a11 I0- 11 is rational, then {a11 } is eventually repeat-
11 = 1 

ing. (Just look at the process of finding the decimal expansion of p / q-
clividing q into p by long division.) 

8. Suppose that {a11 } satisfies the h)l)Othesis of Leibniz's Theorem. Use the 
proof of I ,eibniz's Theorem to obtain the following estimate: 

I f)- 1)"+1
a,, - [a1 - a2 + · · · ±aN] I< "N+ I· 

n= l 
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00 

9. (a) Prove that if a11 2::: 0 and lim ::fa,;= r, then Lan converges if r < 1, 
II-'> 00 

11=1 

and diverges if r > 1. (The proof is very similar to that of the ratio test.) 
00 

This result is known as the "root test." l\Iore generally, L a11 converges 
11=1 

if there is some s < l such that all but finitely many ::fa,; are _:::: s, and 
00 

L a11 diverges if infinitely many ::fa,; are 2::: 1. This result is known as the 
11=1 

"delicate root test'' (there is a similar delicate ratio test). It follows, using 
00 

the notation of Problem 22-27, that ~ a11 converges if lim ::fa,; < 1 L 11 ...... 00 

11=1 

and diverges if lim ::fa,; > I; no conclusion is possible if lim ::Ja,; = 1. 
11-'>00 11-'>00 

(b) Prove that if the ratio test works, the root test will also. Hint: Use a 
problem from the previous chapter. 

It is easy to construct series for which the ratio test fails, while the root 
test works. For example, the root test shows that the series 

l + l + ( ~ )2 + ( l )2 + ( l )3 + ( l )3 + ... 2 3 _ 3 2 3 

converges, even though the ratios of successive terms do not approach a 
limit. l\ifost examples are of this rather artificial nature, but the root test 
is nevertheless quite an important theoretical tool. 

II 

10. For two sequences {a11 } and {b11 }, let c11 = Lakbn+l- k· (Then c11 is the sum 
k=I 

of the terms on the nth diagonal in the picture on page 486.) The series 
00 00 CX) 

L c11 is called the Cauchy jJroduct of L a11 and L b11 • If a11 = b11 = 
n=I n=l 11=1 

(-1)'1 / J,i, show that lc11 I 2::: 1, so that the Cauchy product does not con­
verge. 

11. (a) Consider the collection A of natural numbers that do not contain a 9 in 
their usual (base 10) representation. Show that the sum of the reciprocals 
of the numbers in A converges. Hint: How many numbers between 1 and 
9 are in A?; how many between 10 and 99?; etc. 

(b) If B is the collection of natural numbers that do not have al! 10 digits 
0, ... , 9 in their usual representation, then the sum of the reciprocals of 
the numbers in B com·erges. (So "most'' integers must have all ten digits 
in their representation.) 

12. A sequence {a11 } is called Cesaro summable, vvith Cesaro sum I, if 

. s1 + · · · +sn 
hm = I 

11 -'> 00 fl 

(where sk = a 1 + · · · + ak)· Problem 22-16 shows that a summable sequence 
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is automatically Cesaro summable, with sum equal to its Cesaro sum. Find 
a sequence which is not summable, but which is Cesaro summable. 

13. Suppose that an > 0 and {an} is Cesaro summable. Suppose also that the 
CX) 

sequence {nan} is bounded. Prove that the series L a11 converges. Hint: If 
11=1 

11 1 II 

s11 =~a; and a11 = - ~ Si, prove that s11 - -

1
-
1 
-a11 is bounded. 

L 11 L n+I 
i = l i=l 

14. This problem outlines an alternative proof of Theorem 8 which does not rely 
on the Cauchy criterion. 

(a) Suppose that a11 ::::. 0 for each 11. Let {bn} be a rearrangement of {a11 }, 

and let s11 = a1 + · · · + a11 and t11 = b1 + · · · + b11 • Show that for each 11 

there is some 111 with s11 .::::: tm. 
CX) CX) CX) 

(b) Show that L a11 .::::: L b 11 if L bn exists. 
n=I n=I 11=1 

CX) Ou 

(c) Show that Lan= L bn. 

n=l n=I 
CX) 

(d) Now replace the condition a11 ::::. 0 by the hypothesis that L a11 converges 
n=I 

absolutely, using the second part of Theorem 5. 

00 

15. (a) Prove that if L a11 converges absolutely, and {bn} is any subsequence of 
n=I 

{a11 }, then Lbn converges (absolutely). 
11=1 

CX) 

(b) Show that this is false if L a 11 does not converge absolutely. 
11=! 

00 

*(c) Prove that if L 0 11 converges absolutely, then 
n=I 

CX) 

Lan = (a1 + a3 + as + · · ·) + (a2 + a4 + a6 + · · · ). 
n=l 

16. Prove that if fa,, is absolutely convergent. then If a,, I :" f ja,, I. 
n= I n=I n= I 

* 17. Problem 19-43 shows that the improper integral f00u (sin x) /x dx conn:rgcs. 
Prove that f0N I (sin x) /x I dx diverges. 

*18. Find a continuous function .f with f (x) ::::_ 0 for all x such that J(; .f (x) dx 
exists, but lim f (x) docs not exist. 

X -.> CXl 
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*19. Let f(x) = x sin 1/x for O < x ::::; 1, and let f (0) = 0. Recall the definition 
of C(f, P) from Problem 13-25. Show that the set of all £(!, P) for P a 
partition of [O, 1] is not bounded (thus f has "infinite length''). Hint: Try 
partitions of the form 

I 2 2 2 2 21 
p = O, (2n + 1 )n' .. ·' 7n' Sn' 3n' Jr' 

1 · 

20. Let f be the function shown in Figure 5. Find f0
1 f, and also the area of the 

shaded region in Figure 5. 

*21. In this problem we will establish the "binomial series" 

o +x)" = t (:V 
k=O 

lxl < 1, 

for any a, by showing that lim R11 .o (x) = 0. The proof is in several steps, 
11-'>00 

and uses the Cauchy and Lagrange forms as found in Problem 20-21. 

(a) Use the ratio test to show that the series f (;),-k does indeed converge 
k=O 

for Ir I < 1 (this is not to say that it necessarily converges to (1 + r)a ). It 

follows in particular that lim (a) r" = 0 for Ir I < 1. 
11-'> 00 /l 

(b) Suppose first that O ::::; x < 1. Show that lim Rn.o(x) = 0, by using 
11-'> 00 

Lagrange's form of the remainder, noticing that (1 + t)a- n- l ::::; I for 
,z + 1 > a. 

(c) Now suppose that -1 < x < O; the number t in Cauchy's form of the 
remainder satisfies -1 < x < t ::::; 0. Show that 

where M = max(l, (1 +x)a- 1), 

and 

I 
x _ t I ( 1 _ t /x) -- = lxl ::::; lxl. 
l+t 1+t 

Using Cauchy's form of the remainder, and the fact that 

(n+l)( a )=a(a-1), 
n+I n 

show that lim R11 .o (x) = 0. 
II-'> 00 

22. (a) Suppose that the partial sums of the sequence {a11 } are bounded and that 
00 

{ b11 } is a sequence with b11 :::: b11+ 1 and lim b11 = 0. Prove that "'\' a,JJ11 
11 -'>00 L..., 

n= I 
converges. This is known as Dirichlet's test. Hint: Use Abel 's Lemma 
(Problem 19-36) to check the Cauchy criterion. 

(h) Deri,·e Leibniz's Theorem from this result. 
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00 

(c) Prove, using Problem 15-33, that the series L)cosnx)/n converges if x 
11=1 

is not of the form 2kn for any integer k (in which case it clearly diverges). 

(d) Prove Abel's test: If L a 11 converges and {bn} is a sequence which is either 
11 = ! 

00 

nondecreasing or nonincreasing and which is bounded, then L anb11 

11=! 

converges. Hint: Consider b11 - b, where b = Jim b11 • 
f!----->00 

00 

*23. Suppose {a11 } is decreasing and lim a 11 = 0. Prove that if "a11 converges, 
11 ----->oo L 

11=1 
00 

then L 211 a211 also converges (the "Cauchy Condensation Theorem"). No-
n=I 

00 00 

tice that the divergence of L } /n is a special case, for if L I /n converged, 
11 = ! 11=! 

00 

then L 211 
( l /2n) would also converge; this remark may serve as a hint. 

11=1 

00 '.Xl 00 

*24. (a) Prove that if L a 11
2 and L b11

2 converge, then L a11 b11 converges. 
11=! 11 = 1 11=1 

00 00 

(b) Prove that if La} converges, then L a11 /11a converges for any a > ~-
11=! n=I 

00 

*25. Suppose {a11 } is decreasing and each a 11 > 0. Prove that if L a 11 converges, 
n=I 

then Jim 11a 11 = 0. Hint: \\Trite down the Cauchy criterion and be sure to 
11-+ 00 

use the fact that {a11 } is decreasing. 

00 

*26. If "all converges, then the partial sums s11 arc bounded, and lim a11 = 0. L ll -----> oo 

11 = 1 

It is tempting to conjecture that boundedness of the partial smns, together 
00 

with the condition Jim a 11 = 0, implies convergence of the series Lall. 
11 ----->00 

11 = 1 

Find a counterexample to show that this is not true. Hint: Notice that some 
subsequence of the partial sums will have to converge; you must somehow allow 
this to happen, without letting the sequence of partial sums itself converge. 

00 N 

27. Prove that if a 11 ::::: 0 and L a 11 diverges, then L 
1 

+an also diverges. Hint: 
11 = 1 11 = ! a,z 

Compare the partial sums. Docs the converse hold? 
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28. For bn > 0 we say that th infinite produ t n bn converges if the sequence 
n 

Pn = n bi converges, and also lim Pn #- 0. 
n­

i = l 

00 

n=I 

(a) Prove that if n bn converge , then bn approaches 1. 
n=I 

00 

(b) Prove that n bn converges if and only if L log bn converges. 
n=I n=I 

00 

(c) For an ~ o, prove that no + an) converges ir and only if I: an con-
11=1 n= I 

verges. Hint: Use Problem 27 for one implication, and a simple estimate 
for log(l + a) for the reverse implication. 

The remaining part of thi Problem show that the hypothesis a11 ~ 0 is 
needed. 

(d) Use the Taylor series for log(l + x ) to show that for sufficiently small x 

we have 
l x 2 < x - log(l + x ) < lx 2 . 4 - - 4 

00 

Conclude that if all a11 > -1 and L a11 converges, then the en e 
n= I 

00 

L log (l + an) converges if and only if La/ converge . Similar! , 
n=l n=I 

00 

if all a11 > -1 and L a/ converge, then L log(l + a11 ) com·erge if 
n= I 

and only if L a11 converges. Hint: Use the Cauchy crit rion. 
n= l 

( e) Show that 
00 (-1)/l 

I: Jn 
n=2 

conv rge , but 

00 ( (- 1)11) n 1+-
Jn n=2 

diverges. 

(f) Consider the equen e 

{an}= 1, -!, i, -k, i, -k, i, -k , !, -i, !, -i, !, -i, · · · 
'--,.,--' --~~---~~~-~~~~~.,.--~~~~ 

I pair pairs S pa ir 
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00 

(compare Problem 26). Show that Lan diverges, but 
n=l 

00 n (1 +an)= 1. 
n= l 

29. (a) Compute 11 (1 - n\). 
n=2 

00 

(b) Compute n (1 + x211
) for lxl < 1. 

n=l 

00 

30. The diverg nee of L 1 / n is related to the following remarkable fact Any 
n=l 

positive rational number x can be written as a.finite sum of distinct numbers 
of the form 1 / n. The idea of the proof i shown by the following calculation 
for ~i : Since 

we have 

27 l _ 23 
TI - 2 - 62 

23 l 7 
62 - 3 - 186 

7 1 1 
186 < 4, · · ·' 26 

7 1 1 
186 - 27 = 1674 

27 l l l l 
TI = 2 + 3 + 27 + 1674 · 

Notice that the numerators 23, 7, 1 of the differences are decreasing. 

(a) Prove that if 1/(n + 1) < x < l /n for omen, then the numerator in this 
sort of calculation must always decrease; conclude that x can be written 
as a finite sum of distinct numbers 1/ k. 

(b) Now prove the re ult for all x by using the divergence of L l / n. 
n=l 
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24 UNIFORM CONVERGENCE AND 
POWER SERIES 

The considerations at the end of the previous chapter suggest an entirely new way 
of looking at infinite series. Our attention will shift from particular infinite sums 
to equations like 

? 
x 1 x .:r-

e = +-+-+··· 
1! 2! 

which concern sums of quantities that depend on x. In other words, we are 
interested injunctions defined by equations of the form 

J (x) = !1 (x) + h(x) + h(x) + · · · 

(in the previous example f,1(x) = x 11
-

1/(n - 1)!). In such a situation {f,1 } will be 
some sequence of functions; for each x we obtain a sequence of numbers {J,1 (x)}, 

and f (x) is the sum of this sequence. In order to analyze such functions it will 
certainly be necessary to remember that each sum 

!1 (x) + h(x) + h(x) + · · · 

is, by definition, the limit of the sequence 

fi(x), fi(x)+h(x), fi(x)+h(x)+h(x), 

If we define a new sequence of functions {s11 } by 

Sn = f I + · · · + J,1, 

then we can express this fact more succinctly by writing 

J (x) = lim s11 (x). 
n-->oo 

For some time we shall therefore concentrate on functions defined as limits, 

J(x) = lim fn(X), 
ll-+00 

rather than on functions defined as infinite sums. The total body of results about 
such functions can be summed up very easily: nothing one would hope to be 
true actually is- -instead we have a splendid collection of counterexamples. The 
first of these shows that even if each J,1 is continuous, the function f may not be! 
Contrary to what you may expect, the functions J,1 will be very simple. Figure 1 
shows the graphs of the functions 

499 

0:::: x:::: 1 
x::::: 1. 
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-1 

FI G URE 2 

-1 

FIGUR E 3 

3 

2 

I· l (i L R I. 4 

-1 

I I I 
43 2 

These functions are all continuous, but the function f (x) 

continuous; in fact, 

lim !,I ( X) = l 0
1 

' 
II -'> N ' 

O~x< 
x 2: 1. 

lirn f,1 (x) 1s not 
11 ----'> 00 

Another example of this same phenomenon is illustrated m Figure 2; the func­
tions f,1 are defined by 

-1, 

!,1(X) = nx, 

1, 

1 
x<- -

- 11 

1 1 
--<x<-

11 - - 11 

1 
- < x. 
11 -

In this case, if x < 0, then J,1 (x) is eventually (i.e., for large enough 11 ) equal to -1, 
and if x > 0, then J,1 (x) is eventually 1, while J,1 (0) = 0 for all 11. Thus 

{ 

-1 
lim j,

1
(x) = 0, , 

11--> 00 
1, 

X<O 
x=O 
x > O; 

so, once again, the function f (x) = lim J,1 (x) is not continuous. 
11 ----'> 00 

By rounding off the corners in the previous examples it is even possible to 
produce a sequence of differentiable functions { f,1 } for which the function f (x) = 
lim J,1 (x) is not continuous. One such sequence is easy to define explicitly: 

11 ----'> 00 

-1, 

J,,(x) = . (/7JrX) sm 2 , 

I l, 

l 
x~-­

n 
1 1 

--~x~-
n 11 

1 
- ~x. 
11 

These functions are differentiable (Figure 3), but we still have 

{

-L 
Jim j,1 (x) = 0, 

II -'> 00 

1, 

x<O 
x=O 
x > 0. 

Continuity and differentiability arc, moreover, not the only properties for which 
problems arise. Another difficulty is illustrated by the sequence { f,1 } shown in 
Figure 4; on the interval 1_0, 1 / n] the graph of J,1 forms an isosceles triangle of 
altitude 11 , while J,1 (x) = 0 for x 2: l / 11. These functions may be defined explicitly 
as follows: 
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fn(X) = 
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2n - 2n 2x 
' 

0, 

l 
O<x < -- - 211 

l 1 
- <x <-
2n - - n 

I 
-~x~ l. 
ll 

Because this sequence varies so erratically near 0, our primitive mathematical 
instincts might suggest that lim f,,(x) does not always exist. Nevertheless, this 

11->N 

limit does exist for all .x, and the function f (x) = lim f,, (x) is even continuous. 
11->N 

In fact if x > 0, then f,, (x) is eventually 0, so lim f,, (x) = O; moreover, f,, (0) = 0 
11->00 

for all n, so that we certainly have lim f,, (0) = 0. In other words, f (x) = 
11-,.00 

lim f,, (x) = 0 for all x. On the other hand, the integral quickly reveals the 
11->00 

strange behavior of this sequence; we have 

but 

Thus, 

f f,,(x) dx = !, 

fo 1 

f (x)dx = 0. 

lim [1 f,, (x) dx #- [ 
1 

lim f,, (.x) dx. 
11

-
00 lo lo 11

-
00 

This particular sequence of functions behaves in a way that we really never 
imagined when we first considered functions defined by limits. Although it is true 
that 

f(x) = lim f,,(x) 
ll--->00 

for each x in [O. l], 

the graphs of the functions f,, do not "approach" the graph of f in the sense of 
lying close to it - if, as in Figure 5, we draw a strip around f of total width 2E (al­
lowing a width of E above and below), then the graphs of .f,, do not lie completely 
within this strip, no matter hmv large an 11 we choose. Of course, for each x there 
is some N such that the point (x. f 11 (x)) lies in this strip for n > N; this assertion 
just amounts to the fact that lim f,,(x) = f(x). But it is necessary to choose larger 

II -'> 00 

and larger N's as x is chosen closer and closer to 0, and no one N will work for 
all x at once. 

The same situation actually occurs, though less blatantly. for each of the other 
examples given previously. Figure 6 illustrates this point for the sequence 

I r11 
f,,(x) = ·I,. 

A strip of total width 2c has been drawn around the graph off (x) = lim f 11 (x). 
/1-+C\.., 

If E < ! , this strip consists of two pieces, which contain no points ,vith second 
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A 

FIGURE? 

DEFINITION 

coordinate equal to ~; since each function f, 1 takes on the value ~, the graph of 
each f, 1 fails to lie within this strip. Once again, for each point x there is some N 
such that (x. !,1 (x)) lies in the strip for 11 > N; but it is not possible to pick one N 
which works for all x at once. 

It is easy to check that precisdy the same situation occurs for each of the other 
examples. In each case we have a function f, and a sequence of functions {f,1 }, 

all defined on some set A, such that 

f(x) = lim J,,(x) for all x in A. 
11 --'> N 

This means that 

for all c > 0, and for all x in A, there is some N such that if 11 > N, then 
If (x) - f,, (x)I < £. 

But in each case different N's must be chosen for different x 's, and in each case it 
is not true that 

for all c > 0 there 1s some N such that for all x m A, if 11 > N, then 
If (x) - fn (x) I < c. 

Although this condition differs from the first only by a minor displacement of the 
phrase ''for all x in A," it has a totally different sig11ificance. If a sequence {f,1 } 

satisfies this second condition, then the graphs of f, 1 eventually lie close to the 
graph of f, as illustrated in Figure 7. This condition turns out to be just the one 
which makes the study of limit functions feasible. 

Let {./;,} be a sequence of functions defined on A, and let f be a function which 
is also defined on A. Then f is called the uniform limit of {!,,} on A if for 
every c > 0 there is some N such that for all x in A, 

if 11 > N, then If (x) - J,, (x) I < c. 

\Ve also say that {_f,,} converges uniformly to f onA, or that f,, approaches 
f uniformly on A. 

As a contrast to this definition, if we know only that 

f(x) = lim f,,(x) for each x in A, 
/1 -> 0.::, 

then we say that { f,,} converges pointwise to f on A. Clearly, uniform conver­
gence implies pointwise convergence (but not conversely!). 

Evidence for the usefrdness of uniform convergence is not at all difficult to amass. 
lntegrals represent a particularly easy topic Figure 7 makes it almost obvious that 
if {.f,1 } converges uniformly to f , thrn the integral of _f,1 can be made as close 
to the integral of f as desired. Expressed more precisely, we haw' the following 
theorem. 
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Suppose that {f,1 } is a sequence of functions which are integrable on [a. b], and 
that { f, 1 } converges uniformly on [a, b J to a function f which is integrable on 
[a, b]. Then 

lb f = lim lb f,,. 
a 11-+oo a 

Let £ > 0. There is some N such that for all n > N we have 

If (x) - f,,(x)I < £ for all x in [a, b]. 

Thus, if n > N we have 

It f (x) dx - t f,,(x) dx I = It [f (x) - f,,(x)] dx I 
:'.c lb IJ(x) - f,,(x)I dx 

.::: lb£ dx 
a 

= t:(b - a). 

Since this is true for any £ > 0, it follows that 

lh lb f = lim 1,,. I 
II-+ 00 a a 

The treatment of continuity is only a little bit more difficult, involving an 
''t:/3-argument," a three-step estimate of If (x)- f(x + h)I. If {f,1 } is a sequence 
of continuous functions ,vhich converges uniformly to f, then there is some n such 
that 

(1) 
£ 

If (x) - J,,(x)I < 3, 

(2) 
£ 

lf(x + /z) - f,,(x + h)I < 3. 

l\Ioreover, since f,1 is continuous, for sufficiently small lz we have 

(3) 

It will follow from (1), (2), and (3) that If (x)- f (x +lz)I < £. In order to obtain (3), 
however, we must restrict the size of J/z I in a way that cannot be predicted until n 
has already been chosen; it is therefore quite essential that there be some fixed n 
which makes (2) true, no matter how small lh I may be--it is precisely at this point 
that uniform convergence enters the proo( 

Suppose that {f,1 } is a sequence of functions which are continuous 011 [a, b], and 
that {f,1 } com'erges uniformly on [a, b] to f. Then f is also continuous on [a. b]. 

For each x in [a, b] we must prove that f is continuous at x. \ Ve will deal only 
with x in (a, b ); the cases x = a and x = b require the usual simple modifications. 
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L t c > 0. Sine { f,,} converges uniformly to f on [a, b J, there is om n such 
that 

c 
If (y) - J,, (y) I < 3 for all y in [a, b J. 

In parti ular, for all h uch that x + h is in [a, b], we have 

(l) 

(2) 

c 
If (x) - J,,(x)f < 3, 

c 
lf(x+h)-J,1(x+h)f < 3. 

Now !,1 is continuou , so th re is ome 8 > 0 uch that for [hf < 8 we have 

(3) 

Thu, if [hf < 8, then 

If (x + h) - f (x)f 

= [f(x + h) - fn(X + h) + f,,(x + h) - fn(x) + f,,(x) - f(x)I 

:S lf(x + h) - J,,(x + h)f + l!,1(X + h) - !,1(x)[ + lfn(x) - f(x)[ 

c c c 
<-+-+-

3 3 3 

= c. 

This proves that f is continuous at x. I 

Fl CURE 8 

Aft r th two noteworthy ucce s provid d by Th or m 1 and Th or m 2, 
th situation for diffi r nti bility turn out to be v ry di appointin ·. If a h f,, i 
diffi r ntiabl , and if {f,,} onv rg unifi rml t f it i till not n aril tru 
that f i diffi r ntiabl . For xampl Figur h v that th r i a qu n of 
cliffi r ntial l fun lions{!,,} whi h onv rg unifi rml to th fun tion f(x) = [x[. 
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Even if f is differentiable, it may not be true that 

J'(x) = lim Jn'(x); 
n-oo 

this is not at all surprising if we reflect that a smooth function can be approximated 
by very rapidly oscillating functions. For example (Figure 9), if 

1 . 2 
!,1(x) = - sm(n x), 

n 

then { /,1} converges uniformly to the function f (x) = 0, but 

f,/(x) = n cos(n 2x), 

and lim n cos(n 2x) does not always exist (for example, it does not exist if x = 0). 
n-oo 

FIGURE 9 -1 

Despite such examples, the Fundamental Theorem of Calculus practically guar­
antees that some sort of theorem about derivatives will be a consequence of Theo­
rem l; the crucial hypothesis is that {!,,'} converges uniformly (to some continuous 
function). 

Suppose that {f,1 } is a sequence of functions which are differentiable on [a, b], 
with integrable derivatives!,,', and that Un} converges (pointwise) to f. Suppose. 
moreover, that {!,/} converges uniformly on [a, b] to some continuous function g. 

Then f is differentiable and 

f'(x) = lim f,/(x). 
n-oo 

Applying Theorem 1 to the interval [a, x], we see that for each x we have 

r g = lim r !,1' la n-oo la 
= lim [!,1(x) - fn (a)] 

n-oo 

= f (x) - f (a). 
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DEFINITION 

COROLLARY 

Since g is continuous, it follows that J'(x) = g(x) = lim f,1'(x) for all x in the 
/l -+ 00 

interval [a, b] . I 

Now that the basic facts about uniform limits have been established, it is clear 
how to treat function s defined as infinite sums, 

f (x) = Ji (x) + h(x) + h(x) + · · · 
This equation m eans that 

f (x) = lim ft (x) + · · · + J,, (x): 
/l -+00 

our previous theorems apply when the new sequence 

Ji, !1+h , !1+h+h, ... 

converges uniformly to f. Since this is the only case we shall ever be interested 
in , we single it out with a definition. 

00 

The series L f,1 converges uniformly (more formally: the sequence {f,1 } is 
11=1 

uniformly summable) to f on A, if the sequence 

Ji, !1 +h, !1 +h+h, ... 

converges uniformly to f on A. 

\Ve can now apply each of Theorems 1, 2, and 3 to uniformly convergent series; 
the results may be stated in one common corollary. 

00 

Let L f,1 converge uniformly to f on [a, b]. 
n=l 

(1) If each f,1 is continuous on [a, b], then f is continuous on [a, b]. 
(2) If f and each f,1 is integrable on [a, b J, then 

00 

.Moreover, if L f 11 converges (pointwise) to f on [a, b 1, each f,1 has an integrable 
n=I 

CXi 

derivative f, 1
1 and L !,,' converges uniformly on [a, b] to some continuous func-

n= I 
tion, then 

CXi 

(3) f'(x) = L .f;,'(x) for all x in [a, b]. 
n= I 
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( l) If each f, 1 is continuous, then so is each !1 + · · · + f,1 , and f is the uniform limit 
of the sequence !1, !1 + h , !1 + h + h, ... , so f is continuous by Theorem 2. 

(2) Since !1, !1 + h, !1 + h + h, ... converges uniformly to f, it follmvs from 
Theorem l that 

l b f = lim 1bu1 + ... + J,,) 
11 ---->00 

{I (/ 

= lim (lb !1 + · · · + 1b fn) 
11 ---->00 a a 

00 b 

= L 1 f,,. 
n= I a 

(3) Each function !1 + · · · + J,1 is differentiable, with derivative f1' + · · · + !,/, 
and !1 ', !1' + h', !1' + h ' + h', ... converges uniformly to a continuous function, 
by hypothesis. It follmvs from Theorem 3 that 

j'(x) = lim [f1'(x) + · · · + J,,'(x)] 
11 ----> 00 

00 

n= I 

At the moment this corollary is not very useful , since it seems quite difficult to 
predict when the sequence !1, !1 + h, !1 + h+ h, ... will converge uniformly. The 
most important condition which ensures such uniform convergence is provided by 
the follmving theorem; the proof is almost a triviality because of the deverncss 
with which the very simple hypotheses have been chosen. 

Let { f,1 } be a sequence of functions defined on A , and suppose that { M11 } 1s a 
sequence of numbers such that 

for all x in A. 

00 00 

Suppose moreover that L M11 converges. Then for each x in A the series L J,1 (x) 
n= I n=I 

00 

converges (in fact, it converges absolutely), and L f, 1 converges uniformly on A 

n= I 
to the function 

00 

1 ex) = L 1,1 ex). 
n= I 
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I 
8 

!1 (x) = ! {2x} 

1 

(a) 

h(x) = !{4x} 

1 

(b) 

FI G Rb I l 

PROOF 

00 

For each x in A the series L I fn (x) I converges, by the comparison test; conse-
n=I 

00 

quently L fn(x) converges (absolutely). Moreover, for all x in A we have 
n=l 

If (x) - [!1 (x) + · · · + !N(x)] / = I f J.(x) I 
n=N+I 

00 

:'.:: L lfn(x)I 
n=N+l 

00 

00 00 

Since L Mn converges, the number L Mn can be made as small as desired, 
n=l n=N+l 

by choosing N sufficiently large. I 

1 

f(x) = {x} 

-3 -2 -1 1 2 3 

FIGURE 10 

The following sequence Un} illustrates a simple application of the Weier trass 
M-test. Let {x} denote the distance from x to the nearest integer (the graph of 
f(x) = {x} is illustrated in Figure 10). Now define 

!,1 (x) = 0
1 

pon x }. 1 n 

The functions Ji and h ar shown in Figure 11 (but to make the drawing impler, 
1 on has been replaced by 211

). This equence of function ha be n d fin d o that 
the Wei rstras M-test automatically applies: clearly 

1 
I fn (x) I :::: 1 on for all x, 
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00 00 

and L 1/1011 converges. Thus L f,1 converges uniformly; since each f,1 is con-
11= l 11 = ! 

tinuous, the corollary implies that the function 

00 00 1 
f(x) = ""'!,1(x) = ""' -{ l011 x} L L1011 

11=1 n=l 

is also continuous. Figure 12 shows the graph of the first few partial smns !1 + 
· · · + J,1, As n increases, the graphs become harder and harder to draw, and 

00 

the infinite sum L f 11 is quite undrawable, as shmvn by the following theorem 
11=! 

(included mainly as an interesting sidelight, to be skipped if you find the going too 
rough). 

The function 
00 1 

f (x) = ""' - { 1011 x} L 1011 
n=I 

is continuous everywhere and differentiable nowhere! 

,ve have just shown that f is continuous; this is the only part of the proof which 
uses uniform convergence. , Ve will prove that f is not differentiable at a, for 
any a, by the straightforward method of exhibiting a particular sequence {lzm} 
approaching O for which 

1
. f (a+ lz111) - f (a) 
1111 

111 -+00 h,n 

does not exist. It obviously suffices to consider only those numbers a satisfying 
O<a::::1. 

Suppose that the decimal expansion of a is 

a = O.a1a2a3a-1- .... 

Let h111 = 1 o-m if am =j=. 4 or 9, but let /z 111 = -1 o-m if a111 = 4 or 9 (the reason for 
these tvvo exceptions will appear soon). Then 

f ( a + h m) - f (a) = ~ _l_ . { 1011 
( a + h 111 )} - { 1011 a} 

lz L 1011 ± 10- 111 
m n= I 

00 

= L ± 1 0111
-

11 
[ { 1011 ( a + h ,,z)} - { 1 011 a}]. 

11 = 1 

This infinite series is really a finite sum, because if n ::::_ m , then 1011 lzm is an intege1~ 
so 

On the other hand, for 11 < m we can write 

1011 
a = integer + O.a11+ 1 a11 +2a11+3 ... am ... 

1011 (a + h 111 ) = integer + O.a11 + 1 a11 +2a11 +3 ... (am ± I) ... 
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1 
4 

I 
4 

I 
4 

FI G L. RE 12 

!1 +h 

(a) 

(b) 

1 
2 

I 
2 

J, + f2 + f3 + f4 

(c) I 
2 

(in order for the second equation to be true it is essential that we choose /z 111 -

- 1 o- m when a111 = 9). Now suppose that 

O.a 11 + J a11 +2Cl 11 +3 ... a 111 • • • :S ~. 

Then \\'e also have 

O.an+ I a11+2a11+3 ... (am ± 1) · · · :S 1 
(in the special case 111 = n + 1 the second equation is true because we chose 
hm = -10- 111 when a111 = 4). This means that 

{ l 011 
( a + h m ) } - { 1 011 a } = ± 1011

-
111 

, 

and exactly the same equation can be derived when O.a 11 + 1 a 11+2a11+3 ... > ! . Thus, 
for n < Ill we have 

1 0111 
-n [{ 1011 

( a + h ,,i) } - { 1011 a } ] = ± I. 

In other words, 
J(a + hm) - J (a) 

h111 

is the sum of m - 1 numbers, each of which is ±I. Now adding + l or -1 to a 
number changes it from odd to even, and vice versa. The sum of Ill - 1 numbers 
each ± 1 is therefore an even integer if m is odd, and an odd integer if m is even. 
Consequently the sequence of ratios 

J (a+ hm) - J (a) 

cannot possibly converge, since it is a sequence of integers which are alternately 
odd and even. I 

In addition to its role in the previous theorem, the \\Teierstrass M-test is an ideal 
tool for analyzing functions which are very well behaved. \Ve will give special 
attention to functions of the form 

00 

J (x) = L an(X - a)'1, 

11=0 

which can also be described by the equation 

00 

J (x) = L f,i(x), 

11=0 

for J,1 (x) = a 11 (x - cz )'1. Such an infinite sum, of functions which depend only 
on powers of (x - a) , is called a power series centered at a. For the sake of 
simplicity, we will usually concentrate on power series centered at 0, 

o..J 

f(x) = La11X 11 . 

11 = 0 
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One especially important group of power series are those of the form 

~ j(n)(a) n 

L ' (x -a) ' n. 
n=O 

where f is ome function which has derivatives of all orders at a; this series is 
called th Taylor series for f at a. Of cour e, it i not necessarily true that 

oo f(n)(a) 
f(x) = '°"' (x - at; L n! 

n=O 

this equation holds only when the remainder terms satisfy lim Rn .a (x) = 0. 
17 --+00 

00 

We alr ady know that a power serie L anxn does not necessarily converge for 

all x. For example the power series 

x3 xs x7 

x-3+5-7+··· 
conv rg s only for Ix I ::::: 1, while the power series 

x2 x3 x4 xs 
x-2+3-4+5 +· ·· 

converges only for -1 < x ::::: 1. It is even possible to produce a power series which 
converges only for x = 0. For example, the power series 

does not converge for x -/=- O; indeed, the ratio 

(n + l)! (xn+l) 
----- = (n + l)x 

n!xn 
00 

are unbounded for any x -/=- 0. If a power series L anxn does converge for 
n=O 

some xo -f=. 0 however, then a great deal can be said about the series L anxn for 

lxl < lxol-

Suppose that the series 
00 

f(xo) = L GnXQn 

n=O 

converges, and let a be any numb r with O < a < lxol. Th non [-a , a] th n 

f(x)= LanX11 

n=O 
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onverge uniformly (and ab olutely). Moreover, th same is true for the series 
00 

g(x) = Lnanxn- l _ 

11=1 

Finally, f is diffi rentiable and 
00 

f '(x) = L na11 xn-L 

n=l 

for all x with Ix I < lxo I. 

00 

Since L a11 xo 11 converge , the terms a11xo 11 approach 0. Hence they are surely 
n=O 

bounded: there is some number M such that 

lanXOn I = Ian I · lxo 11 I :::: M 

Now if xis in [-a, a], then lxl:::: lal , so 

lanxnl = lanl · lx 11
I 

:'.:: Ian I · Ian I 

for all n. 

= la,,l · lxol" · I :
0 

I" (this is the clever step) 

sMl:J 
But la/xol < 1, so the (geometric) serie 

converges. Choosing M · la /xol 11 as the number Mn in the Weierstrass M-test, it 
00 

follows that L a11 x 11 converges uniformly on [-a, a J. 
00 

To prove the sam assertion for g(x) = Lnanxn-I notice that 
n=L 

I n-
11 I I I 11

-
11 nanx =nan . x 

:'.:: n Ian I · la 11
-

1 I 

Ian I n I a In =-·lxol n -
lal xo 

M I a 1

11 

:'.:: ~ n xo 

Sine la/xol < I , the s nc 

nv rg (Lhi fa l wa pr v d in hapl r 23 a an appli ati n f th rati t t). 
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00 

Another appeal to the \!Veierstrass M-test proves that L nanx 11
-

1 converges um-
11=1 

formly on [-a, a]. 
Finally, our corollary proves, first that g is continuous, and then that 

00 

J'(x) = g(x) = L'rn11x
11

-
1 for x in [-a, a]. 

11=1 

Since we could have chosen any number a with O < a < lxol, this result holds for 
all x with Ix I < lxol. I 

\!Ve are now in a position to manipulate power series with ease. l\Iost algebraic 
manipulations are fairly straightforward consequences of general theorems about 

00 00 

infinite series. For example, suppose that f (x) = L a11 x
11 and g (x) = L b11 x

11
, 

11=0 11=0 
where the two power series both converge for some xo. Then for Ix I < lxol we 
have 

00 00 00 00 

LanX11 + Lb11 x
11 = L(a11 x

11 +b11 x
11

) = L(a11 +b,i)xn. 
n=O 11=0 n=O 11=0 

00 

So the series h (x) = L (a 11 + b,i)x 11 also converges for Ix I < lxo I, and h = f + g 
11=0 

for these x. 
The treatment of products is just a little more involved. If Ix I < lxo I, then we 

00 00 

know that the series L a11 x
11 and L bnX 11 converge absolute61. So it follows from 

00 00 

Theorem 23-9 that the product L a11 x
11 

• L b11 x
11 is given by 

11=0 n=O 

00 00 

LL CljXi bjXj. 
i=O j=O 

where the elements aixi bp.:j are arranged in any order. In particular, we can 
choose the arrangement 

which can be written as 
II 

for C11 = L akb,1 - k. 
k=O 

This is the "Cauchy product" that was introduced in Problem 23-10. Thus, the 
00 

Cauchy product lz(x) L Cn x 11 also converges for Ix I < lxo I and lz = f g for 
11=0 

these x. 
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Finally, suppose that f (x) = L anX 11
, where ao # 0, o that f (0) = ao # 0. 

00 

Then we can try to find a power serie L b11 x
11 which r pre nt 1 / f. Thi mean 

that we want to have 

00 

L GnX
11 

• L b11 x
11 = 1 = 1 + 0 · X + 0 · x 2 + · · · . 

11=0 n=O 

Since the left side of this equation will be given by the Cauchy product, w want 
to have 

aobo = 1 
aob1 + a1bo = 0 
aob2 + a1b1 + a2bo = 0 

Since ao # 0, we can solve the first of these equations for bo. Then we can solve 
00 

the second for b 1, etc. Of course, we still have to prove that the new series L b11 x
11 

does converge for some x # 0. This is left as an exercise (Problem 18). 

For derivatives, Theorem 6 gives us all the information we need. In particular, 
when we apply Theorem 6 to the infinite series 

x3 xs x7 x9 
sinx = x - - + - - - + - - · · · 

3! 5! 7! 9! ' 

x2 x4 x6 x8 
cosx = 1 - - + - - - + - - · · · 

2! 4! 6! 8! 

x x 2 x 3 x 4 

ex=l+-+-+-+-+··· 
1! 2! 3! 4! 

we get precisely the results which are expected. Each of these converges for any xo, 
h nee the conclusions of Theorem 6 apply for any x : 

3x2 5x4 
sin' (x) = 1 - - + - - · · · = co x, 

3! 5! 

2x 4x 3 6xs 
cos'(x)=--+---+ · · · =- 1n x, 

2! 4! 6! 

, 2x 3x2 
exp (x) = 1 + 2! + 3! + · · · = exp(x). 

For th functions ar tan and f (x) = loo-(l + x) th itualion i nly lightl mor 
omplicated. Sin th n 

x3 xs x7 
ar tanx = x - - + - - - + · · · 

3 5 7 
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converges for xo = 1, it also converges for Ix I < l, and 

I ') 4 6 1 
arctan (x) = 1 - x- + x - x + · · · = 2 l+x 

for lxl < 1. 

In this case, the series happens to converge for x = -1 also. However, the formula 
for the derivative is not correct for x = 1 or x = -1; indeed the series 

1 - x 2 + x 4 
- x 6 + ... 

diverges for x = I and x = -1. Notice that this does not contradict Theorem 6, 
which proves that the derivative is given by the expected formula only for Ix I < lxo I. 

Since the series 

x2 x3 x4 xs 
log(l + x) = x - 2 + 3 - 4 + 5 - ... 

converges for xo = I, it also converges for Ix I < 1, and 

-
1
- = log'(l + x) = I - x + x 2 

- x 3 + · · · 
l+x 

for lxl < 1. 

In this case, the original series does not converge for x = - l; moreover, the 
differentiated series does not converge for x = 1. 

All the considerations which apply to a power series will automatically apply to 
its derivative, at the points where the derivative is represented by a power series. 
If 

00 

f(x) = LanX11 

n=O 

converges for all x in some interval (-R, R) , then Theorem 6 implies that 

00 

J'(x) = I:na11x 11
-

1 

n=l 

for all x in ( - R, R). Applying Theorem 6 once again we find that 

00 

J"(x) = Ln(n - l)a 11 x
11

-
2

, 

n=2 

and proceeding by induction we find that 

00 

J (k) (x) = L n (n - 1) · ... · (n - k + 1 )a 11 x
11
-k. 

n=k 

Thus, a function defined by a power series which converges in some inter\'al 
(-R, R) is automatically infinitely differentiable in that interval. l\Ioreover, the 
previous equation implies that 

so that 
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In other words, a convergent power sen.es centered at O is always the Taylor series at O ef the 
Junction which it defines. 

On this happy note we could easily end our study of power series and Taylor 
series. A careful assessment of our situation will reveal some unexplained facts, 
however. 

The Taylor series of sin, cos, and exp are as satisfactory as we could desire; 
they converge for all x, and can be differentiated term-by-term for all x. The 
Taylor series of the function f (x) = log( 1 + x) is slightly less pleasing, because it 
converges only for - 1 < x ::S 1, but this deficiency is a necessary consequence of 
the basic nature of power series. If the Taylor series for f converged for any xo 
with lxol > I, then it would converge on the interval (-lxol, lxol), and on this 
interval the function which it defines would be differentiable, and thus continuous. 
But this is impossible, since it is unbounded on the interval (-L 1 ), where it equals 
log(] + x). 

The Taylor series for arctan is more difficult to comprehend there seems to 
be no possible excuse for the refusal of this series to converge when Ix I > 1. This 
mysterious behavior is exemplified even more strikingly by the function f (x) = 
l / (1 + x 2), an infinitely differentiable function which is the next best thing to a 
polynomial function. The Taylor series of f is given by 

I l 2 . ..i 6 s f (x) = 
1 
+ x 2 = . - x + ., - x + x - .... 

If Ix I :::: 1 the Taylor series does not converge at all. vVhy? \\That unseen obstacle 
pre\·ents the Taylor series from extending past I and - l? Asking this sort of 
question is always dangerous, since we may have to settle for an unsympathetic 
answer: it happens because it happens- that's the way things are! In this case 
there does happen to be an explanation, but this explanation is impossible to give 
at the present time; although the question is about real numbers, it can be answered 
intelligently only when placed in a broader context. It will therefore be necessary 
to devote two chapters to quite new material before completing our discussion of 
Taylor series in Chapter 27. 

PROBLEMS 

1. For each of the following sequences {.{,,}, determine the pointwise limit of 
{!11 } (if it exists) on the indicated interval, and decide v,:hether { J,1 } converges 
uniformly to this function. 

(i) f;1 (x) = 1:/x, on [ 0, l]. 

(ii) !,1(X) = I 0, 
x - ll, 

x ::s ll 

X :::'.: IZ, 
on fa, b[, and on R. 
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ex 
(iii) fn (x) = -----;; , on ( 1, 00). 

x 

(iv) fn(X) = e-nx2, on [-1, 1]. 

(v) 
-x2 

fn(x) = _e -, on R. 
n 

2. This problem asks for the same information as in Problem 1, but the functions 
are not so easy to analyze. Some hints are given at the end. 

(i) 

(ii) 

fn(x) = xn - x 2n on [O, 1]. 
nx 

fn(x) = l on [O, oo). 
+n+x 

(iii) f,(x) = J x 2 + ~2 on [a, oo), a> 0. 

-~ (iv) fn(x) - y x~ + ;I, on R. 

(v) f,(x) = Jx + ~ - ./x on [a, oo), a> 0. 

(vi) f,(x) = Jx + ~ - ./x on [O, oo). 

(vii) f,(x) = n (Jx + ~ - .rx) on [a, oo), a> 0. 

(viii) f, (x) = n (J x + ~ - ./x) on [O, oo) and on (0, oo). 

Hints: (i) For each n, find the maximum of If - fnl on [O, 1]. (ii) For each n, 
consider If (x) - fn (x) I for x large. (iii) Mean Value Theorem. (iv) Give a 
separate estimate of lf(x) - fn(x)I for small Ix I. (vii) Use (v). 

3. Find the Taylor series at O for each of the following functions. 

(i) 
1 

f (x) = --, a =I- 0. 
x-a 

(ii) f (x) = log(x - a), a < 0. 

1 
(iii) f (x) = = (1 - x)- 112. (Use Problem 20-21.) 
~ 

1 
(iv) f (x) = · 

Ji -x2 

(v) f (x) = arcsin x. 
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4. Find ach of th following infinite sum . 

(i) 

(ii) 

(iii) 

x 2 x3 x4 
1-x +- -- + --· ·· 

2! 3! 4! . 

1 - x 3 + x 6 - x 9 + · · · fo r Ix I < 1. 

Hint: What is 1 - x + x 2 - x 3 + .. . ? 

x2 x3 x 4 xs 
--- + - - - +· ·· forl x l < l. 
2 3 . 2 4.3 5.4 

Hint: Differentiate. 

5. Evaluate the following infinite sums. (In most cases they are f (a) where a 
i ome obvious number and f (x) i giv n by ome power series. To evalu­
ate the various power series, manipulate them until some well-known power 
series emerge.) 

00 (-1 )'722117r2n 
(i) I: (2n)! 

n=O 

00 1 
(ii) I: c2n)! · 

n=O 

(iii) 
00 

l ur+I 
L2n+1 2 
n=O 

00 

(iv) I:;11 . 
n=O 

00 1 
(v) I: 311 (n + 1) · 

n=O 

(vi) t2n+l . 
211 n! 

n=O 

6. If f (x) = (sin x)/x for x -=fa O and f (O) = 1, find J Ck) (O ). Hint: Find th 
power series for f . 

7. In this p roblem w deduce the binomial serie (1 +x)" = L (:)x", /x i < 1 
11 =0 

without all th work of Problem 23-21 although we will u a fa t tabli h d 

in part (a) f that pr bl m- the eri f (x) = L (: )x" d onv f " G r 
n=O 

lx l < 1. 
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(a) Prove that (1 + x) f ' (x) = af (x) for Ix I < 1. 

(b) Now show that any function f satisfying part (a) i of the form f (x) = 
c (1 + x )a for some constant c, and use this fact to e tablish the binomial 
series. Hint: Consider g(x) = f(x)/(1 + xt . 

8. Suppose that fn are nonnegative bounded functions on A and let Mn = 
00 

sup fn. If L fn converges uniformly on A , does it follow that L M 11 con-
n=l n=l 

verges (a converse to the Weierstras M-test)? 

9. Prove that the series 
00 

L n(l: nx2) 
n=l 

converge uniformly on R. 

10. (a) Prove that the series 

converges uniformly on [a,oo) fora > 0. Hint: lim(sinh) /h = 1. 
h-+ 0 

(b) By con idering the sum from N to oo for x = 2/(rr3N), show that the 
series does not converge uniformly on (0, oo) . 

11. (a) Prove that the en es 

00 '°"' nx 
f(x) = L__; 1 +n4x2 

n=O 

converges uniformly on [ a , oo) for a > 0. Hint: First find the maximum 
of nx / (1 + n4x 2) on [O, oo). 

(b) Show that 

and by using an integral to estimate the um, show that f (1/ N 2 ) ::::: 1/4. 
Conclud that the series does not converg uniformly on R. 

(c) What about the nes 
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12. (a) Use Problem 15-33 and Abel's Lemma (Problem 19-36) to obtain a "uni­
form Cauchy condition", showing that for any £ > 0, 

t sin/x 

k=m 

can be made arbitrarily small on the whole interval [ £, 2rr - £ I by choos­
ing m (and n) large enough. Conclude that the series 

00 • L smnx 
n 

11=1 

converges uniformly on [ £, 2rr - £] for £ > 0. 
(b) For x = rr / N, with N large, show that 

Conclude that 

2N 

I:sinkx 
k=N 

N 

I:sinkx 
k=O 

2N . k 
'"""smk x > 
L-J 2rr' 
k=N 

> 
N 

and that the series does not converge uniformly on [O, 2rr]. 

00 

13. (a) Suppose that f (x) = L GnX
11 converges for all x in some interval 

n=O 
(-R, R) and that J(x) = 0 for all x in (-R, R). Prove that each a11 = 0. 
(If you remember the formula for a11 this is easy.) 

(b) Suppose we know only that f(x 11 ) = 0 for some sequence {x11 } with 
lim x,, = 0. Prove again that each a11 = 0. Hint: First show that 

11--+00 

f (0) = ao = O; then that J'(O) = a1 = 0, etc. 

This result shows that if f (x) = e- 1 fx
2 

sin 1 / x for x #- 0, then f cannot 
possibly be written as a power series. It also shows that a function defined 
by a power series cannot be O for x .:::: 0 but nonzero for x > 0 - thus a 
power series cannot describe the motion of a particle which has remained 
at rest until time 0, and then begins to move! 

00 00 

(c) Suppose that f(x) = L a 11 x
11 and g(x) = L b,,x 11 converge for all x 

n=O n=O 
in some interval containing O and that f (1111 ) = g(t111 ) for some sequence 
{tm} converging to 0. Show that a11 = b11 for each 11. 

00 

14. Prove that if f (x) = L a11 x
11 is an even function, then a11 = 0 for II odd, 

n=O 
and if f is an odd function, then a11 = 0 for 11 even. 
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15. Show that the power series for f (x) = log(] - x) converges only for -1 S 
x < I, and that the power series for g (x) = log [ ( I + x) / ( 1 - x)] converges 
only for x in ( -1, 1). 

*16. Recall that the Fibonacci sequence {a,z} is defined by a 1 = a2 = 1, a11+ 1 

an +an- I· 

(a) Show that a11 + 1/a11 S 2. 
(b) Let 

00 

f (x) = L anxn - I = I + x + 2x 2 + 3x3 + · · · . 
n=I 

Use the ratio test to prove that f (x) converges if lxl < I /2. 

(c) Prove that if Ix I < 1 /2, then 

-1 
f (x) = ? . 

x- + x - 1 

Hint: This equation can be written f (x) - xf (x) - x 2 f (x) = I. 

(d) Use the partial fraction decomposition for 1 /(x 2 + x - 1 ), and the power 
series for I /(x - a), to obtain another power series for f. 

(e) Since the two power series obtained for f must be the same (they are 
both the Taylor series of the function), conclude that 

(' +/5)" ('-/)" 
Y's 

an= 

00 00 

17. Let f (x) = L a11 x
11 and g(x) = L b11 x

11
• Suppose we merely knew that 

11=0 n=O 
00 

f (x)g(x) = L c11 x
11 for some c11 , but we didn't know how to multiply series 

11=0 
in general. Use Leibniz's formula (Problem 10-20) to show directly that this 
series for f g must indeed be the Cauchy product of the series for f and g. 

00 

18. Suppose that f (x) = L a11.r 11 converges for some xo, and that ao =f. O; 
n=O 

for simplicity~ we '11 assume that ao = I. Let { b11 } be the sequence defined 
recursively by 

bo = I 
11 - I 

bn = - L bkan- k· 
k=O 
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00 

The aim of this problem is to show that L b11 x
11 also converges for some 

11=0 

x # 0, so that it represents 1 / f for sm all enough Ix j. 

(a) If all ja11 .ro11 I ::: M, show that 

11 - l 

lh11.ro11 
I ::: ML lbkxok j. 

k=O 

(b) Choose M so that ja11 xc/1I::: M, and also so that M/( M2 - 1) ::: I. Show 
that 

'.Xi 

(c) Conclude that L b11 x
11 converges for Ix I sufficiently small. 

n=O 

00 00 

*19. Suppose that Lan converges. \Ve know that the series f (x) = L a11 xn 
11=0 n=O 

must converge uniformly on [-a, a] for O < a < 1, but it may not converge 
uniformly on [ - 1, 1] ; in fact, it may not even converge at the point - 1 
(for example, if f(x) = log(! +x)). However, a beautiful theorem of Abel 
shows that the series does converge uniformly on [O, 1]. Consequently, f is 

00 00 

continuous on [O, 1 J and , in particular, "a11 = lim_ "a 11x11
• Prove Abel's 

L X-* I L 
n=O n=O 

T lworem by noticing that if ja111 + · · · + a11 j < £, then lamX 111 + · · · + a11 x 11 I < £, 

by Abel's Lemma (Problem 19-36). 

00 

20. A sequence {an} is called Abel summable if _.}2!V- L a11 x 11 exists; Prob-
n=O 

!em 19 shows that a summable sequence is necessarily Abel summable. Find 
a sequence \vhich is Abel summable, but which is not summable. Hint: Look 
over the list of Taylor series until you find one which does not converge at 1, 
even though the function it represents is continuous at 1. 

21. (a) Using Problem 19, find the following infinite sums. 

l 1 1 1 
---+---+· ··. 2-1 3.2 4.3 5.4 

(i) 

(ii) 
00 00 

(b) Let L c11 be the Cauchy product of two convergent power series L a 11 

00 00 

and L b11 , and suppose merely that L c11 com·ergcs. Prove that , in fact , 

00 00 

it cmwcrgcs to the product L a11 • L bn. 
n=O n= O 
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22. (a) Show that the series 

211 + 2 

converges uniformly to ! log(x + 1) on [-a, a J for O < a < I, but that 
at 1 it converges to log 2. (\\Thy doesn't this contradict Abel's Theorem 
(Problem l 9)?) 

23. (a) Suppose that U11 } is a sequence of bounded (not necessarily continuous) 
functions on [a, b] which converge uniformly to f on [a, b]. Prove that 
f is bounded on [a, b]. 

(b) Find a sequence of continuous functions on [a, b] which converge point­
wise to an unbounded function on [a, b]. 

24. Suppose that f is diflerentiable. Prove that the function f' is the pointwise 
limit of a sequence of continuous functions. (Since we already know exam­
ples of discontinuous derivatives, this provides another example vvherc the 
pointwisc limit of continuous functions is not continuous.) 

25. Find a sequence of integrable functions { f, 1 } which converges to the (nonin­
tegrable) function f that is I on the rationals and O on the irrationals. Hint: 
Each f,1 will be O except at a few points. 

26. (a) Prove that if f is the uniform limit of { f 11 } on [a, b] and each f 11 is 
integrable on [a, b], then so is f. (So one of the hypotheses in Theorem 1 
was unnecessary.) 

(b) In Theorem 3 \Ve assumed only that U11 } converges pointwise to f. Show 
that the remaining hypotheses ensure that {f,1 } actually converges uni­
formly to f. 

(c) Suppose that in Theorem 3 we do not assume Un} converges to a func­
tion f, but instead assume only that f,1 (xo) converges for some xo in 
[a, b]. Show that f,1 does comTrge (uniformly) to some f (with f' = g). 

(d) Prove that the series 

CX) (-1)11 

L x +11 
11 = 1 

converges uniformly on [O, oo). 

27. Suppose that f,1 are continuous functions on [O, 1] that com·crge uniformly 
to f. Prove that 

lo
l - l / 11 lo) 

lim !,1 = f. 
11 -H:XJ Q Q 

ls this true if the convergence isn't uniform? 
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28. (a) Suppose tha t {f,1 } is a sequence of continuous functions on [a , bl which 
approaches O pointwise. Suppose m oreover that we have J,1 (x) ::::_ J,1+ 1 (x) 

::::_ 0 fo r all n and all x in [a , b]. Prove tha t { J,1 } actually approaches O 
uniformly on [a , b]. Hint: Suppose not, choose an appropriate sequence 
of points x11 in [a. b] , and apply the Bolzano-\i\Teierstrass theorem . 

(b) Prove Dini's Theorem: If {J,1 } is a nonincreasing sequence of continuous 
functions o n [a. b] which app roaches the continuous function f point­
wise, then {f,1 } also approaches f uniformly on [a, b]. (The sam e result 
holds if {f,1 } is a nondecreasing sequence.) 

(c) D oes Dini's Theorem hold if f isn 't continuous? How about if [a , b] is 
replaced by the open interval (a , b)? 

29. (a) Suppose that {f,1 } is a sequence of continuous functions on [a , b] that 
converges uniformly to f. Prove that if x 11 approaches x , then J,1 (x 11 ) 

approaches f(x). 

(b) Is this statem ent true without assuming that the J,1 are continuous? 

(c) Prove the converse of part (a): If f is continuous on [a, b] and {J,1 } is 
a sequence with the property tha t J,1 (x 11 ) approaches f (x) whenever x 11 

approaches x , then J,1 converges uniformly to f on [a, b] . Hint: If not, 
there is an E > 0 and a sequence x 11 with lf,1 (x 11 ) - J (x 11 ) I > E for infinitely 
m any d istinct x 11 • Then use the Bolzano-VVeierstrass theorem. 

30. T his problem outlines a completely different approach to the integral; con­
sequently, it is unfair to use any facts about integrals learned previously. 

(a) Let s be a step fun ction on [a, b], so that s is constant on (t;- 1. f;) for 

l
b II 

som e partition {to , ... , t11 } of [a , b]. D efine s as L s; · (t; -t; - J) where 
a i= l 

s; is the (constant) value of s on (t; - J , t;) . Show that this definition does 
not depend on the partition { to, ... , t11 }. 

(b) A function f is called a regulated function on [a, b J if it is the uniform 
limit of a sequence of step fu nctions {s11 } on [a , b]. Show that in this 

case there is, for every E > 0, som e N such that for 111 , 11 > N we have 
ls11 (x) - Sm(x)I < E for all x in [a. h]. 

(c) Show that the sequence of numbers 11• s,, } will be a Cauchy sequence. 

(d) Suppose that {t11 } is another sequence of step functions on [a, b J which 
converges u niforrnly to f. Show that for every E > 0 there is an N such 
that fo r 11 > N we have ls11 (x) - t11 (x) I < E for x in [a , b]. 

(c) Conclude tha t lim lb s11 = lim lb t11 • This m eans that ,ve can define 
11 ---'>00 a 11 ---'>00 a 

l b f to be lim s11 for any sequence of step fun ctions {s11 } converging 
11 ---'>00 

(I 

unifor mly to f. The only rem aining question is: \ Vhich functions are 
regula ted? 
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*(f ) Prove that a continuous function i regulated. Hint: To find a step func­
tions on [a , b] with lf(x) - s(x)I < c for all x in [a , b] , consider ally 
for which there i such a step function on [ a, y]. 

(g) Every step function s has the property that lim s (x) and lim s (x) exist 
x~a+ x~a-

for all a. Conclude that every regulated function has the same property, 
and find an integrable function that i not regulated. (It is al o true 
that, conversely, every function f with the property that lim f (x) and 

x~a+ 

lim f (x) exist for all a is regulated.) 
x~a -

*31. Find a sequence {f,1 } approaching f uniformly on [O, 1] for which we have 
lim (length of fn on [O, 1 ] ) =I- length of f on [O, 1]. (Length is defined in 

11 ~ 

Problem 13-25, but the simple t example will involve functions the length of 
whose graphs will be obvious.) 
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VVith the exception of the last few paragraphs of the previous chapter, this book 
has presented unremitting propaganda for the real numbers. Nevertheless, the 
real numbers do have a great deficiency~ not every polynomial function has a 
root. The simplest and most notable example is the fact that no number x can 
satisfy x 2 + 1 = 0. This deficiency is so severe that long ago mathematicians 

felt the need to "invent" a number i with the property that i2 + 1 = 0. For a 
long time the status of the ''number" i was quite mysterious: since there is no 
number x satisfying x 2 + 1 = 0, it is nonsensical to say "let i be the number 
satisfying i2 + l = O.'' Nevertheless, admission of the "imaginary" number i to 
the family of numbers seemed to simplify greatly many algebraic computations, 
especially when "complex numbers" a + bi (for a and b in R) were allowed, and 
all the laws of arithmetical computation enumerated in Chapter 1 were assumed 
to be valid. For example, every quadratic equation 

') 

ax- + bx + c = 0 

can be solved formally to give 

X= 
-b + )b2 - 4ac 

2a 
or x = 

(a -1- 0) 

-b- )b2 - 4ac 

2a 

If b2 - 4ac ~ 0, these formulas give correct solutions; when complex numbers are 
allowed the formulas seem to make sense in all cases. For example, the equation 

') 

x- +x + 1 = 0 

has no real root, since 

x
2 + x + I = (x + i )2 + J > 0, for all x. 

But the formula for the roots of a quadratic equation suggest the "solutions'' 

x= 
-i+R 

2 
and \"-

-1-R 
2 

if we understand }=3 to mean )3 · (-I) = J3. J=T = J3 i, then these numbers 
would be 

I J3 - - + - i and 
2 2 

It is not hard to check that these, as yet purely formal, numbers do indeed satisf)· 
the equation 

x 2 +x + 1 = 0. 

526 
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It is even possible to ''sokc" quadratic equations whose coefficients are themselves 
complex numbers. For example, the equation 

x 2 + x + 1 + i = 0 

ought to have the solutions 

X= 
-1 ± j1 -4(1 +i) 

2 

-1 ± )-3 -4i 

2 

where the symbol )-3 - 4i means a complex number a + f3i whose square is 
- 3 - 4i. In order to have 

(a + f3i) 2 = a 2 
- {3 2 + 2af3i = -3 - 4i 

we need 

2 2 a - f3 = -3, 
2af3 = -4. 

These t,rn equations can easily be solved for real a and {3; in fact, there are two 
possible solutions: 

a= l 
f3 = -2 

and 
a= -1 
f3 = 2. 

Thus the two "square roots'' of -3 - 4i are 1 - 2i and -1 + 2i. There is no 

reasonable way to decide which one of these should be called )-3 - 4i, and which 

- )-3 - 4i; the conventional usage of Jx makes sense only for real x ::::_ 0, in 
which case Jx denotes the (real) nonnegative root. For this reason, the solution 

X= 
-1 ± )-3 -4i 

2 

must be understood as an abbreviation for: 

X= 
-l+r 

2 
where r is one of the square roots of -3 - 4i. 

\Yith this understanding \'\IC arrive at the solutions 

X= 
-1 + 1 - 2i 

2 
=-/, 

-1 - 1 + 2i 
r - ----- = -1 +i· 

2 ' 

as you can easily check, these numbers do provide formal solutions for the equation 

x 2 + x + 1 + i = 0. 

For cubic equations complex numbers are equally useful. E,·ery cubic equation 

ax 3 + bx 2 + ex + d = 0 (a -/= 0) 

with real coefficients a, b, c, and d, has, as we know, a real root a, and if we cfo·ide 
ax 3 + hx 2 +ex+ d by x - a we obtain a second-degree polynomial whose roots are 
the other roots of ax 3+bx2+cx+d = 0: the roots of this second-degree polynomial 
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may be complex numbers. Thus a cubic equation will have either three real roots 
or one real root and 2 complex roots. The existence of the real root is guaranteed 
by our theorem that every odd degree equation has a real root, but it is not really 
necessary to appeal to this theorem (which is of no use at all if the coefficients 
are complex); in the case of a cubic equation we can, with sufficient cleverness, 
actually find a formula for all the roots. The following derivation is presented not 
only as an interesting illustration of the ingenuity of early mathematicians, but as 
further evidence for the importance of complex numbers (whatever they may be). 

To solve the most general cubic equation, it obviously suffices to consider only 
equations of the form 

1 ,., 
r + b.c + ex + d = 0. 

It is even possible to eliminate the term involving x 2, by a fairly straight-forward 
manipulation. If we let 

then 

so 

b 
x = y - 3' 

b2 v b3 
x 3 = v3 - bv2 + -· - -, 

. · 3 27 

2 2 2by b2 
x =y -3+9. 

0 = x 3 + bx 2 +ex+ d 

= v3 - by2 + -· - - + by2 - --· + - + ey - - + d 
( 

b2 v b3 ) ( 2b2 v b3 ) ( be) 
· 3 27 3 9 3 

(
b2 2b2 ) (b3 b3 be ) 

= y3 + 3 - 3 + e y + 9 - 27 - 3 + d . 

The right-hand side now contains no term with y 2. If we can soh-e the equation 
for y we can find x; this shows that it suffices to consider in the first place only 
equations of the form 

x 3 + px + q = 0. 

In the special case p = 0 we obtain the equation x 3 = -q. \ Ve shall see later on 
that every complex number docs have a cube root, in fact it has three. so that this 
equation has three solutions. The case p i=- 0, on the other hand, requires quite 
an ingenious step. Let 

p 
x=w --

3w 
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O = x
3 + px + q = ( w - ;:)3 + p ( w - ;w) + q 

3 3w2 p 3wp2 p3 p2 
= w - -- + -- - -- + pw - - + q 

3w 9w2 27w3 3w 

3 p3 
=w---+q. 

27w3 

This quation can be written 

which is a quadratic equation in w 3 (!!). 

Thu 

w 3 = -27q ± J (27)2q2 + 4 · 27 p 3 

2 · 27 

=-~ ±h2 + ~~ 
Remember that this really mean : 

3 q 
w =--+r 

2 ' 

We can therefore write 

q2 p3 
where r is a square root of 4 + 

27 
. 

-q ~ 
W= 

3 2±V4+2f 

this equation means that w is some cube root of -q /2 + r, where r is som square 
root of q2 /4 + p 3 /27. This allows six possibilities for w, but when these are 
u bstitu ted in to ( *), yielding 

p 

-q ~2 p3 3. 3 -± -+-
2 4 27 

it turns out that only 3 different values for x will be obtained! An e n more 
urprising feature of thi olution arises when we con ider a cubic quation all of 

whose roots are real; the formula derived above may till involv compl x numb r 
m an e ential way. For exampl , the roots of 

x 3 - 15x - 4 = 0 
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are 4, - 2 + v'3, and -2 - v'3. On the other hand, the formula derived above 
(with p = -15, q = -4) gives as one solution 

Nmv, 

x = ij 2 + J 4 - 1 25 - - l 5 

3 · i 2 + J 4 - 125 

15 
~h+l1i+ 

3.~h+lli 

(2 + i) 3 = 23 + 3 . 22i + 3. 2. i 2 + i 3 

= 8 + 12i - 6 - i 
=2+ Iii. 

so one of the cube roots of 2 + 11 i is 2 + i. Thus, for one solution of the equation 
we obtain 

15 
x = 2 + i + 6 + 3i 

_ 2 i _ 1_5_ . 6 - 3i 
- + + 6 + 3i 6 - 3i 

90 - 45i 
= 2 + i + 36 + 9 

= 4(!). 

The other roots can also be found if the other cube roots of 2 + 11 i are known. 
The fact that even one of these real roots is obtained from an expression which 
depends on complex numbers is impressive enough to suggest that the use of 
complex numbers cannot be entirely nonsense. As a matter of fact, the formulas 
for the solutions of the quadratic and cubic equations can be interpreted entirely 
in terms of real numbers. 

Suppose we agree, for the moment, to write all complex numbers as a + bi, 

writing the real number a as a + Oi and the number i as O + Ii. The laws of 
ordinary arithmetic and the relation i2 = -1 show that 

(a+ bi)+ (c + di) = (a+ c) + (b + d)i 
(a + bi) · (c + di) = (ac - hd) + (ad+ bc)i. 

Thus, an equation like 

( 1 + 2i) · (3 + 1 i) = 1 + 7i 

may be regarded simply as an abbreviation for the /u.10 equations 

1·3 - 2-1=1. 
1 · 1 + 2 · 3 = 7. 
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The solution of the quadratic equation ax2 + bx + c 
could be paraphrased as follows: 

O with real coefficients 

then 

If l u 
2 

- v
2 = b2 

- 4a c, 
llV = 0, 

(i.e., if (u + vi) 2 = b2 - 4ac), 

I a[(-~: 11 Y-(~J2]+b[-b2:
11 J+c=O, 

(I [ 2 (-';:II) (;a)] + b [ ~/] = Q, 

(
. (-b+u+vi)

2 
(-b+u+vi) ) 1.e., then a 

2
a + b 

2
a + c = 0 . 

It is not very hard to check this assertion about real numbers without writing 
clown a single "i ," but the complications of the statement itself should convince 
you that equations about complex numbers are worthwhile as abbre\·iations for 
pairs of equations about real numbers. (If you are still not convinced, try para­
phrasing the solution of the cubic equation.) If we really intend to use complex 
numbers consistentl)', however, it is going to be necessary to present some reason­
able definition. 

One possibility has been implicit in this whole disrnssion. All mathematical 
properties of a complex number a + bi are determined completely by the real 
numbers a and b; any mathematical object with this same property may reasonably 
be used to define a complex numbe1: The obvious candidate is the ordered pair 
(a, b) of real numbers; we shall accordingly define a complex number to be a pair 
of real numbers, and likewise define what addition and multiplication of complex 
numbers is to mean. 

A complex number is an ordered pair ofreal numbers; if z = (a, b) is a com­
plex number, then a is called the real part of .::. and b is called the imaginary 
part of .::. The set of all complex numbers is denoted by C. If (a, b) and (c, d) 

arc two complex numbers we define 

(a.b)+(c,d) = (a+c.h+d) 
(a, b) · (c, d) =(a· c - b · d, a· d + b · c). 

(The + and · appearing on the left side arc new symbols being defined, while the 
+ and · appearing on the right side arc the familiar addition and multiplication 
for real numbers.) 

\1\rhen complex numbers were first introduced, it was understood that real num­
bers were, in particula1~ complex numbers; if our definition is taken seriously this 
is not true a real number is not a pair of real numbers, after all. This difficulty 
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is only a minor annoyance, however. Notice that 

(a, 0) + (b, 0) =(a+ b, 0 + 0) =(a+ b, 0), 
(a, 0) · (b, 0) =(a· b - 0 · 0, a· 0 + 0 · b) =(a· b, 0); 

this shows that the complex numbers of the form (a, 0) behave precisely the same 
with respect to addition and multiplication of complex numbers as real numbers 
do with their own addition and multiplication. For this reason we will adopt the 
convention that (a, 0) will be denoted simply by a. The familiar a + bi notation 
for complex numbers can now be recovered if one more definition is made. 

DEFINITION i = (0, l ). 

Notice that i2 = (0, 1) · (0, l) (-1. 0) = -1 (the last equality sign depends 
on our convention). l\Joreover 

(a, b) = (a, 0) + (0, b) 

= (a, 0) + (b, 0) · (0, 1) 

=a+ bi. 

You may feel that our definition was merely an elaborate device for defining 
complex numbers as "expressions of the form a+ bi." That is essentially correct; 
it is a firmly established prejudice of modern mathematics that new objects must 
be defined as something specific, not as "expressions.'' Nevertheless, it is inter­
esting to note that mathematicians were sincerely worried about using complex 
numbers until the modern definition was proposed. l\Joreover, the precise defini­
tion emphasizes one important point. Our aim in introducing complex numbers 
was to avoid the necessity of paraphrasing statements about complex numbers in 
terms of their real and imaginary parts. This means that we wish to work with 
complex numbers in the same way that we worked with rational or real numbers. 
For example, the solution of the cubic equation required writing x = w - p/3w, 
so we want to know that 1/w makes sense. l\Ioreover, w3 was found by solving a 
quadratic equation, which requires numerous other algebraic manipulations. In 
short, we are likely to use, at some time or other, any manipulations performed on 
real numbers. \Ve certainly do not want to stop each time and justify every step. 
Fortunately this is not necessary. Since all algebraic manipulations performed on 
real numbers can be justified by the properties listed in Chapter 1. it is only nec­
essary to check that these properties are also true for complex numbers. ln most 
cases this is quite easy, and these facts will not be listed as formal theorems. For 
example, the proof of Pl, 

I ca, b) + (c, cl) I+ (e, n = (a, b) + rec, cl)+ (e . .f)J 

requires only the application of the definition of addition for complex numbers. 
The left side becomes 

([ a + c] + e, [b +cl] + !). 
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and the right side becomes 

( a + [ c + e], b + [ d + J J ) ; 

these two are equal because Pl is true for real numbers. It is a good idea to 
check P2 P6 and P8 and P9. Notice that the complex numbers playing the role 
of O and 1 in P2 and P6 are (0, 0) and ( 1. 0), respectively. It is not hard to figure 
out what -(a, b) is, but the multiplicative inverse for (a, b) required in P7 is a little 

trickier: if (a, b) f. (0. 0), then a 2 + b2 f. 0 and 

(a,b). ( 2 a ?' ?-b 2) = (1,0). 
a + b- a-+ b 

This fact could have been guessed in two ways. To find (x, y) with 

(a, b) · (x, y) = (1, 0) 

it is only necessary to solve the equations 

ax - by= l, 
bx+ ay = 0. 

The solutions are x = a/(a2 + b2), y = -b/(a2 + b2). It is also possible to reason 
that if 1 /(a+ bi) means anything, then it should be true that 

a - bi a - bi 

a+ bi a + bi . a - bi = a2 + b2 · 

Once the existence of inverses has actually been proved (after guessing the inverse 
by some method), it follows that this manipulation is really valid; it is the easiest one 
to remember when the inverse of a complex number is actually being sought- it 
was precisely this trick which we used to evaluate 

15 

6 + 3i 

15 6 - 3i 

6 + 3i 6 - 3i 

90 - 45i 

36+9 . 

Unlike Pl ~P9, the rules P10- P12 do not have analogues: it is easy to prove that 
there is no set P of complex numbers such that Pl 0 - Pl 2 are satisfied for all complex 
numbers. In fact, if there were, then P would have to contain 1 (since 1 = 12) and 
also -1 (since -1 = i2), and this would contradict PIO. The absence of Pl 0- Pl 2 
will not have disastrous consequences, but it does mean that we cannot define 
~ < w for complex z and w. Also, you may remember that for the real numbers. 
PIO P12 were used to prove that 1 + 1 f. 0. Fortunately, the corresponding fact 
for complex numbers can be reduced to this one: clearly ( 1. 0) + ( 1. 0) f. (0, 0). 

Although we will usually write complex numbers in the form a + hi, it is worth 
remembering that the set of all complex numbers C is just the collection of all 
pairs of real numbers. Long ago this collection was identified with the plane, and 
for this reason the plane is often called the "complex plane." The horizontal axis, 
which consists of all points (a. 0) for a in R, is often called the real axis, and the 
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? z = (x, y) = x + iy 

•z=x -iy 

FIG L' RE I 
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vertical axis is called the imaginary axis. Two important definitions arc also related 
to this geometric picture. 

If z = x + iy is a complex number (with x and y real), then the conjugate z 
of z is defined as 

z=x-iy, 

and the absolute value or modulus lzl of z is defined as 

I 2 2 lzl = v x + y . 

(Notice that x2 + y 2 2'.: 0, so that /x 2 + y 2 is defined unambiguously; it denotes 
the nonnegative real square root of x 2 + y 2.) 

Geometrically, z is simply the reflection of z in the real axis, while lzl is the 
distance from z to (0, 0) (Figure I). Notice that the absolute value notation for 
complex numbers is consistent with that for real numbers. The distance between 
t\,vo complex numbers z and w can be defined quite easily as lz-wl. The following 
theorem lists all the important properties of conjugates and absolute values. 

Let z and w be complex numbers. Then 

(1) z=z. 
(2) z = z if and only if z is real (i.e., is of the form a + Oi, for some real 

number a). 

(3) z + w = z + uJ. 
(4) -z = -z. 
(5) z · w = z · ii). 
(6) : - 1 = (z) - 1, if z =!= 0. 
(7) 1:1 2 = z. :. 
(8) lz · wl = lzl · lwl. 
(9) lz + wl .:::: lzl + lwl. 

Assertions (1) and (2) are obvious. Equations (3) and (5) may be checked by straight­
forward calculations and (4) and (6) may then be proved by a trick: 

0 = 0 = z + ( - :) = z + - z, so - z = - z, 

l=l=z·(z- 1)=z· z- 1, soz- 1 =(z) - 1
• 

Equations (7) and (8) may also be proved by a straightforward calculation. The 
only difficult part of the theorem is (9). This inequality has, in fact, already oc­
curred (Problem 4-9), but the proof will b<' repeated here, using slightly different 
terminology. 

It is cl<'ar that <>quality holds in (9) if z = 0 or w = 0. It is also easy to sec that (9) 
is true if z = AW for any real number A (consider separately the cases A > 0 and 
A < 0). Suppose, on the other hand, that z =/= AW for any real number A, and that 
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w =I- 0. Then, for all real numbers A, 

(*) 0 < lz - Awl 2 = (z - Aw)· (z - AW) 
= (z - AW) . (z - AUJ) 

= zz + A 2wuJ - A(w.: + zw) 
= A 2 1wl 2 + 1.::12 - A(w.: + .::uJ). 

Notice that wz + zw is real, since 

wz + zw = wz + zu1 = wz + zw = wz + zw. 

Thus the right side of ( *) is a quadratic equation in A with real coefficients and no 
real solutions; its discriminant must therefore be negative. Thus 

it follows, since w.: +.:wand lwl · 1.::1 are real numbers, and lwl · lzl ::::. 0, that 

(wz + zw) < 21wl · 1.::1. 

From this inequality it follows that 

which implies that 

I z + w 12 = ( z + w) . ( z + UJ) 

= lzl 2 + lwl 2 + (wz + zw) 

< lzl
2 

+ lwi2 + 21wl · lzl ,., 
= (lzl + lwl)-. 

lz + wl < lzl + lwl. I 

The operations of addition and multiplication of complex numbers both have 
important geometric interpretations. The picture for addition is \·ery simple (Fig­
ure 2). Two complex numbers z = (a, b) and w = (c, d) determine a paral­
lelogram having for two of its sides the line segment from (0, 0) to z, and the 
line segment from (0, 0) to w; the \·ertex opposite (0, 0) is z + w (a proof of this 
geometric fact is left to you [ compare Appendix 1 to Chapter 4] ). 

The interpretation of multiplication is more involved. If .:: = 0 or w = 0, 
then .:: · w = 0 (a one-line computational proof can be given, but e\·en this is 
unnecessary the assertion has already been shown to follow from Pl P9), so we 
may restrict our attention to nonzero complex numbers. \ Ve begin by putting every 
nonzero complex number into a special form (compare Appendi.x 3 to Chapter 4). 

For any complex number z =I- 0 we can write 

in this expression, I z I is a positive real number, while 

1~1 = lzl = I, 
1.::1 1.::1 
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so that z/lzl is a complex number of absolute value 1. Now any complex number 
a = x + iy with 1 = la I = x 2 + y2 can be written in the form 

a= (cos8,sin8) = cos8 +isin8 

for some number 8. Thus every nonzero complex number z can be written 

.: = r(cos 8 + i sin 8) 

for some r > 0 and some number 8. The number r is unique (it equals lzl ), but 8 

is not unique; if 80 is one possibility, then the others arc 80 + 2krr fork in Z- any 
one of these numbers is called an argument of.:. Figure 3 shows .: in terms of r 

and 8. (To find an argument() for z = x + iy we may note that the equation 

x + iy =.: = l.:l(cos 8 + i sin 8) 

means that 

x=lzlcose, 
y = lzl sin 8. 

So, for example, if x > 0 we can take 8 = arctan y /x; if x 
e = rr/2 when y > 0 and e = 3rr/2 when y < 0.) 

IS 

Now the product of two nonzero complex numbers 

z = r ( cos 8 + ; sin 8)' 

w = s ( cos ¢ + i sin ¢), 

z · w = rs(cos8 + i sin 8)(cos ¢ + i sin¢) 

0, we can take 

= rs [ ( cos e cos</> - sin 8 sin</>) + i (sin 8 cos</> + cos 8 sin </>)] 
= rs[cos(8 + ¢) +; sin(8 + ¢)]. 

Thus, the absolute value of a product is the product of the absolute values of the 
factors, while the sum of any argument for each of the factors will be an argument 
for the product. ror a nonzero complex number 

z = r(cos8 + i sin 8) 

it is now an easy matter to prove by induction the following very important formula 
(sometimes known as De l\loivrc's Theorem): 

z11 = lzl'1 (cos 118 + i sin 118), for any argument 8 of.:. 

This formula describes .:11 so explicitly that it is easy to decide just when z11 = w: 

Every nonzero complex number has exactly 11 complex 11th roots. 
.More precisely, for any complex number w =/= 0, and any natural number 11, 

there are precisely 11 different complex numbers .: satisfying .:11 = w. 

Let 
w = s(cos¢ + i sin¢) 
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for s = lwl and some number¢. Then a complex number 

z = r ( cos e + i sin e) 

satisfies 2
11 = w if and only if 

r 11 (cosne + i sin nB) = s(cos¢ + i sin¢), 

which happens if and only if 

r 11 = s, 
cosne + i sinne =cos¢+ i sin¢. 

From the first equation it follows that 

r = :/s. 

where :/s denotes the positive real nth root of s. From the second equation it 
follows that for some integer k we have 

¢ 2kn e =Bk=-+-. 
ll 11 

Conversely, if we choose r = ';/s and e = ek for some k, then the number z = 
r(cos e + i sin B) will satisfy z11 = w. To determine the number of nth roots of w, 
it is therefore only necessary to determine which such z are distinct. Now any 
integer k can be written 

k = nq + k' 

for some integer q, and some integer k' between O and n - 1. Then 

cos ek + i sin ek = cos ek' + i sin ek' . 

This shows that every z satisfying z11 = w can be written 

z = ';/s (cosek + i sin Bk) k = 0, ... , 11 - 1. 

l\Ioreover, it is easy to see that these numbers are all different, since any two ek for 
k = 0, ... , n - I differ by less than 2n. I 

In the course of proving Theorem 2, we have actually developed a method for 
finding the nth roots of a complex number. For example, to find the cube roots 
of i (Figure 4) note that Ii I = 1 and that n /2 is an argument for i. The cube roots 
of i are therefore 

[ Jr . Jr] 1 · cos 6 + i sm 6 , 

[ ( Jr 2n) (n 2n)] Sn Sn ] · cos 6 + 3 + i sin 6 + 3 = cos 6 + i sin 6 . 

I · cos - + - + i sm - + - = cos - + i sm -[ ( Jr 4n) . (Jr 4n)] 3n . 3n 
6 3 6 3 2 2· 
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Since 

Jr J3 . rr I 
cos-= -

6 2 ' 
Sln - = -

6 2' 

5rr J3 . 5rr 
cos-=--

6 2 ' 
sm - = -

6 2' 
3rr 

cos 2 = 0, 
. 3rr 

sm - = - 1 
2 ' 

the cube roots of i are 

J3 +i 
2 

-J3 +i 
2 

-1. 

In general, we cannot expect to obtain such simple results. For example, to find 

the cube roots of 2 + 11 i, note that 12 + I Ii I = J22 + 11 2 = JT25 and that 
arctan 1

2
1 is an argument for 2 + I Ii. One of the cube roots of 2 + 11 i is therefore 

Vlli [ ( arctan 
1
2
1 

) • • ( arctan 
1
2
1 

) ] 125 cos 
3 

+ 1 sm 
3 

Js [ ( arctan 
1
2
1 

) • • ( arctan 
1
2
1 

) ] = 5 cos 
3 

+ 1 sm 
3 

· 

Previously we noted that 2 + i is also a cube root of 2 + 11 i. Since 12 + i I = 

J22 + 12 = Js, and since arctan 1 is an argument of 2 + i , we can write this 
cube root as 

2 + i = v's(cos arctan 1 + i sin arctan 1). 
These two cube roots are actually the same number, because 

11 arctan 2 I 

3 
= arctan 2 

(you can check this by using the formula in Problem 15-9), but this is hardly the 
sort of thing one might notice! 

The fact that every complex number has an nth root for all 11 is just a special 
case of a very important theorem. The number i was originally introduced in 
order to provide a solution for the equation x 2 + I = 0. The Fundamental Theorem 
ef Algebra states the remarkable fact that this one addition automatically provides 
solutions for all other polynomial equations: every equation 

_n + _11 - l + + _ 0 .... n11 - 1.... ··· no- a O, ... , a 11 _ 1 in C 

has a complex root! 
In the next chapter we shall give an almost complete proof of the Fundamental 

Theorem of Algebra; the slight gap left in the text can be filled in as an exercise 
(Problem 26-5). The proof of the theorem will rely on several new concepts which 
come up quite naturally in a more thorough investigation of complex numbers. 
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PROBLEl\IS 

1. Find the absolute value and argument(s) of each of the following. 

(i) 3 + 4i. 
(ii) (3 +4i) - 1• 

(iii) (] + i)5. 

(iv) :/3 + 4i. 
(v) 13+4il. 

2. Solve the following equations. 

(i) 
(ii) 
(iii) 

(iv) 

(v) 

x 2 +ix+ l = 0. 

x 4 + x 2 + 1 = 0. 
x 2 + 2i x - 1 = 0. 

I ix - (1 + i)y = 3, 
(2 + i)x + iy = 4 · 

x 3 - x 2 - x - 2 = 0. 

3. D escribe the set of all complex numbers z such that 

(i) 
(ii) 
(iii) 
(iv) 
(v) 

: = -z. 
= - _- 1 
" - " 

lz-al=lz-bl. 
lz - a I + lz - bl = c. 
lzl < I - real part of z. 

4. Prove that lzl = lzl, and that the real part of z is (z+z)/2, while the imaginary 
part is (z - z) /2i. 

5. Prove that lz + wl 2 + lz - wl 2 = 2(1zl2 + lwl2 ) , and interpret this statcmem 
geometrically. 

6. What is the pictorial relation between z and .Ji· z~ ? (Note that there 

may be more than one answer, because .Ji and ~ both have two diffe1Tnt 
possible values.) Hint: \Vhich line goes into the real axis under multiplication 

by r-1? 
7. (a) Prove that if ao , ... , a11 _ 1 are real and a + bi (for a and b real; satislles 

the equation z11 + a 11 _1z11
-

1 + · · · + ao = 0, then a - bi also sat isfies this 
equation. (Thus the nonreal roots of such an equation always occur in 
pairs, and the number of such roots is even.) 

(b) Conclude that z11 + a11 _ 1 z11
-

1 + · · · + ao is divisible by z2 - 2a : + (a 2 + b2) 

(whose coefficients are real). 

*8. (a) Let c be an integer which is not the square of another integc1: Ir a and b 

are integers we define the conjugate of a+ b,/'c, denoted by a+ bJc. 
as a - b,/'c. Shavv that the conjugate is well defined by shm\'ing that a 

number can be written a + b Jc, for integers a and b, in only one \\'.l\. 
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(b) Show that for all a and f3 of the form a+ b-/c, we have a = a; a = a if 

and only if a is an integer; a + f3 =a+~; -a = -a; a · f3 = a · ~; and 
a - 1 = (a) - 1 if a -1- 0. 

(c) Prove that if ao, ... , a11 _ 1 are integers and z = a + bJe satisfies the 
equation z11 + a11 _ 1 z11

-
1 + · · · + ao = 0, then z = a - b Jc also satisfies 

this equation. 

9. Find all the 4th roots of i; express the one having smallest argument in a 
form that does not involve any trigonometric functions. 

*10. (a) Prove that if w is an nth root of 1, then so is wk. 

(b) A number w is called a primitive nth root of 1 if { 1, w, w2, ... , w11
-

1} 

is the set of all nth roots of 1. How many primitive nth roots of I are 
there for 11 = 3, 4, 5 , 9? 

n- 1 

(c) Let w be an nth root of 1, with w -1- 1. Prove that L wk = 0. 
k=O 

*11. (a) Prove that if .:1, ... , Zk lie on one side of some straight line through 0, 
then .: 1 + · · · + Zk -1- 0. Hint: This is obvious from the geometric inter­
pretation of addition, but an analytic proof is also easy: the assertion is 
clear if the line is the real axis, and a trick will reduce the general case 
to this one. 

(b) Show further that z 1- 1, ••. , Zk - I all lie on one side of a straight line 
through 0, so that z 1 - I + · · · + Zk - I -1- 0. 

*12. Prove that if lz1I =bl= lz3I and z1 + z2 + .:3 = 0, then ZJ, .:2, and Z3 are 
the vertices of an equilateral triangle. Hint: It will help to assume that z1 1s 
real, and this can be done with no loss of generality. Why? 



CHAPTER 26 COMPLEX FUNCTIONS 

You will probably not be surprised to learn that a deeper investigation of complex 
numbers depends on the notion of functions. Until now a function '"''as (intuitively) 
a rule which assigned real numbers to certain other real numbers. But there is no 
reason why this concept should not be extended; we might just as well consider a 
rule which assigns complex numbers to certain other complex numbers. A rigorous 
definition presents no problems (we will not even accord it the full honors of a 
formal definition): a function is a collection of pairs of complex numbers which 
does not contain tvvo distinct pairs with the same first element. Since we consider 
real numbers to be certain complex numbers, the old definition is really a special 
case of the new one. Nevertheless, we will sometimes resort to special terminology 
in order to clarify the context in which a function is being considered. A function 
f is called real-valued if f (z) is a real number for all z in the domain of f, and 
complex-valued to emphasize that it is not necessarily real-valued. Similarly, 
we will usually state explicitly that a function f is defined on [ a subset of] R in 
those cases where the domain of f is [ a subset of] R; in other cases we sometimes 
mention that f is defined on [ a subset of] C to emphasize that f (z) is defined for 
complex z as well as real z. 

Among the multitude of functions defined on C, certain ones are particularly 
important. Foremost among these are the functions of the form 

f(z) = anZ
11 + an- JZ

11
-I + · · · + ao, 

where ao, ... , a11 are complex numbers. These functions are called, as in the 
real case, polynomial functions; they include the function f (z) = z (the "identity 
function") and functions of the form f (z) = a for some complex number a ("con­
stant functions"). Another important generalization of a familiar function is the 
''absolute value function" f (';,) = lzl for all z in C. 

Two functions of particular importance for complex numbers are Re (the ''real 
part function") and Im (the "imaginary part function"), defined by 

Re (x + i y) = x, 

lm(x + iy) = y. 
for x and y real. 

The "co1~ugate function" is defined by 

f (z) = z. = Re(z) - i lm(z). 

Familiar real-valued functions defined on R may be combined in many ways to 
produce new complex-valued functions defined on C an example is the function 

f (x + iy) = eY sin(x - y) + ix 3 cosy. 

541 
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The formula for this particular function illustrates a decomposition which is always 
possible. Any complex-valued function f can be written in the form 

f =u+iv 

for some real-valued functions u and v- simply define u (z) as the real part of f (z), 

and v(z) as the imaginary part. This decomposition is often very useful, but not 
always; for example, it would be inconvenient to describe a polynomial function 
in this way. 

One other function will play an important role in this chapter. Recall that an 
argument of a nonzero complex number z is a (real) number () such that 

z. = I z I ( cos () + i sin ()). 

There are infinitely many arguments for z, but just one which satisfies O :=:: () < 
2.rr. If we call this unique argument () (z), then () is a (real-valued) function (the 
''argument function") on {z in C : z. =f. O}. 

"Graphs" of complex-valued functions defined on C, since they lie in 4-dimen­
sional space, arc presumably not very useful for visualization. The alternative 
picture of a function mentioned in Chapter 4 can be used instead: we draw two 
copies of C, and arrows from z in one copy, to f (z.) in the other (Figure I). 

FIGL'RE I 

The most common pictorial representation of a complex-\·alued function is pro­
duced by labeling a point in the plane with the value f(z), instead of with z (which 
can be estimated from the position of the point in the picture). Figure 2 shows this 
sort of picture for se\·eral different functions. Certain features of the function are 
illustrated very dearly by such a "graph." For example, the absolute value function 
is constant on concentric circles around 0, the functions Re and Im arc constant 
on the \'ertical and horizontal lines, respectively, and the function f (z.) = z2 wraps 
the circle of radius r twice around the circle of radius r2 . 

Despite the problems invoked in visualizing complex-valued functions in gen­
eral, it is still possible to define analogues of important properties previously defined 
for real-valued functions on R, and in some cases these properties may be easier 
to visualize in the complex case. For exam pk, the notion of limit can be defined 
as follows: 

lirn f (z) = /means that for c\·cry (real) numbn £ > 0 there is a (real) number 
z-a 
8 > 0 such that, for all z., if O < lz - al< 8, then If(.::) - /I <£. 
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Although the definition reads precisely as before, the interpretation is slightly dif­
ferent. Since lz - wl is the distance between the complex numbers z and w, the 
equation lirn f (z) = l means that the values of f (z) can be made to lie inside 

z~a 

any given circle around /, provided that z is restricted to lie inside a sufficiently 
small circle around a. This assertion is particularly easy to visualize using the "two 
copy" picture of a function (Figure 3). 

FIGURE3 

Certain facts about limits can be proved exactly as in the real case. In particular, 

lim c = c, 
z---+a 

lim z = a, 
z---+a 

lim[f(z) + g(z)] = lim f(z) + lim g(z), 
z-+ a z-+a z-+a 

lim f (z) · g(z) = lim f (z) · lim g(z), 
z-+a z-+ a z -+a 

. 1 1 
hm -- = . , if lim g(z) =f. 0. 
-;_-.a g(z) hm g(z) ';.-+a 

z---+ a 

The essential property of absolute values upon which these results are based is the 
inequality lz + wl ::: 1.:1 + lwl, and this inequality holds for complex numbers as 
well as for real numbers. These facts already provide quite a few limits, but many 
more can be obtained from the following theorem. 

Let f (z) = 11(:::.) + iv(:::.) for real-valued functions u and v, and let l =a+ if3 for 
real numbers a and fJ. Then lim f (z) = l if and only if 

Z-+ a 

lim u(z) = a, 
z-+ a 

lirn v(z) = {3. 
z-+a 

Suppose first that lim f (:::.) = l. If t: > 0, there is 8 > 0 such that , for all z, 
z---+ a 

if O < lz - al < 8, then If(.:) - /I < t: . 

The second inequality can be written 

l[u(z) - a] + i[v( :::.)-f3]1 < t:, 
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or 

[u(z) - o:]2 + [v(z) - .BJ2 < c2
. 

Since u (z) - a and v (z ) - .B are both real numbers, their squares are positive; this 
inequality therefore implies that 

[u (z) - a] 2 < c2 and [v(z) - ,8] 2 < c2 , 

which implies that 

lu(z) - al < c and lv(z) - .Bl < c. 

Since this is true for all c > 0, it follows that 

lim u(z) = a and lim v(z) = ,B . 
z-a z- a 

Now suppose that these two equations hold. If c > 0, there is a 8 > 0 such that, 
for all z, if O < lz - al < 8, then 

which implie that 

c 
lu(z)-al < 2 and 

c 
lv(z) - al < 2 

If (z) - l I = I [ u (z) - a] + i [ v (z) - .BJ I 

::: lu(z) -al+ Iii· lv(z)-.81 
c c 

< 2 + 2 = c. 

This proves that lim f (z) = l. I 
z-a 

In order to apply Theorem 1 fruitfully, notice that since we already know the 
limit lim z = a, we can conclude that 

z---:,. a 

lim Re(z) = Re(a) , 
z-a 

lim Im (z) = Im(a). 
z-a 

A limit like 
lim sin (Re(z)) = sin(Re(a)) 
z-a 

follows easily, using continuity of sin. Many applications of these principles prove 
such limits a the following: 

lim z = a, 
z-a 

lim lzl = lal , 
z-a 

lim eY sin x + ix 3 co y = eb in a + i a 3 o b. 
(x+ iy)- a+bi 

Now that th notion oflimit has b en xt nd d to omplex fun tions th n ti n 
of continuity can al ob ext nded: f i continuous at a if lim f (z) = f (a) and 

z-a 



546 Irfmite Sequences and lrifinite Series 

f is continuous if f is continuous at a for all a in the domain of f. The previous 
work on limits shows that all the following functions are continuous: 

f(z) = a11z 11 + a11 - 1z.11 - 1 + · · · + ao, 
f (;::) = ~. 
f(z.) = lz.l, 

f (x + ;y) = e-" sin x + ;x 3 cosy. 

Examples of discontinuous functions are easy to produce, and certain ones come 
up very naturally. One particularly frustrating example is the ''argument func­
tion'' (), which is discontinuous at all nonnegative real numbers (see the "graph" 
in Figure 2). By suitably redefining () it is possible to change the discontinu­
ities; for example (Figure 4), if ()'(z.) denotes the unique argument of z. with 
TC /2 :::: ()' (z) < Sn /2, then ()' is discontinuous at ai for every nonnegative real 
number a. But, no matter hmv () is redefined, some discontinuities will always 
occur. 

JT 

n n n n n n n n n 2n 2n 2n 2n 2n 2n 2n 2n 2n 
3JT 

3JT 2 

2 

3JT 
2 

3JT 
2 

3JT 
2 

3JT 
2 

3JT 

2 

3JT 
2 

f(z) = B'(z) 

The discontinuity of 8 has an important bearing on the problem of defining a 

''sq uare-root !'unction,'' that is, a function f such that (f (-:.))2 =;:: for all z.. For rc,il 
numbers the function -..! had as domain only the nonnegatin· real numbers. If 
complex numbers arc allowed, then e,·cry numlwr has t\\'o square roots (except 0, 
which has only onc). Although this sit uation may seem bet1e1~ it is in some ways 
worse; since the squa re roots of' z. arc complex numbers. there is no clear criterion 
for selecting one root to he f (-::.), i11 prelc-rcncc to the otlwr. 
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One way to define f is the following. We set f (0) = 0, and for z # 0 we set 

~ ( e(z) . e(z)) f('::.) = v 1~1 cos -
2

- +ism 2 . 

Clearly (f (::.) )2 = ::., but the function f is discontinuous, since (3 is discontinuous. 
As a matter of fact, it is impossible to find a continuous f such that (f(::.)) 2 =::. for 
all ::.. In fact, it is even impossible for f (::.) to be defined for all ::. with I z I = 1. To 
prove this by contradiction, we can assume that f ( 1) = 1 (since we could always 
replace f by - f). Then we claim that for all e with O :::: e < 2n we have 

f 
. e . e 

(cose + i sme) = cos - +ism-. . 2 2 

The argument for this is left to you (it is a standard type of least upper bound 
argument). But (*) implies that 

Jim j(cose +isine) = COSJr +isin;r 
e-2n 

= -l 
# f(l), 

e,·en though cos e + i sine ~ l as e ~ 2n. Thus, we have our contradic­
tion. A similar argument shows that it is impossible to define continuous "nth-root 
functions" for any 11 ::: 2. 

For continuous complex functions there are important analogues of certain the­
orems which describe the behavior of real-valued functions on closed intervals. A 
natural analogue of the interval [a, b J is the set of all complex numbers z = x + i y 
with a :::: x :::: b and c :::: y :::: d (Figure 5). This set is called a closed rectangle, 
and is denoted by [a, b] x [ c. d]. 

If f is a continuous complex-valued function whose domain is [a, b J x [ c, d], 
then it seems reasonable, and is indeed true, that f is bounded on [a, b J x [ c, d]. 

That is, there is some real number M such that 

If (z)I :'.'.:: M for all z in [a, b] x [c, d]. 

It does not make sense to say that f has a maximum and a minimum value on 
[a, b] x [ c, d], since there is no notion of order for complex numbers. If f is a 
real-valued function , howev<:T, then this assertion does make sense, and is true. In 
particula1~ if f is any complex-valued continuous function on [a. b] x [ c. d]. then 
If I is also continuous, so there is some ::.o in [a, b J x [ c. d] such that 

lf(::.o)I :S lf(::.)I for all::. in [a, b] x [c. d]: 

a similar sta tcment is true with the inequality reversed. It is sometimes said that 
''f attains its maximum and minimum modulus on [a. b J x [ e, d] .'' 

The various facts listed in the previous paragraph will not be prmnl here, al­
though proofs are outlined in Problem 5. Assuming these facts, howe,·er, we can 
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THEOREM 2 (THE FUNDAMENTAL 

THEOREM OF ALGEBRA) 

now give a proof of the Fundamental Theorem of Algebra, which is really quite 
surprising, since we have not yet said much to distinguish polynomial functions 
from other continuous functions. 

Let ao, .... a11 _ 1 be any complex numbers. Then there is a complex number z 
such that 

II + 711 - I + 711 - 2 + + - 0 Z an - I~ an - 2~ ··· ao- · 

PROOF Let 

f(z) = Z11 + an-JZ11 - I + · · · + ao. 

Then f is continuous, and so is the function If I defined by 

Ill(.::)= lf(z)I = l.:: 11 + a11-JZ11 - 1 + · · · + aol-

Our proof is based on the observation that a point zo with f (zo) = 0 would clearly 
be a minimum point for If I. To prove the theorem we will first show that If I does 
indeed have a smallest value on the whole complex plane. The proof will be almost 
identical to the proof, in Chapter 7, that a polynomial function of even degree 
(with real coefficients) has a smallest value on all of R; both proofs depend on the 
fact that if lz I is large, then If (z) I is large. 

\'\Te begin by writing, for z =I- 0, 

f ( z) = Zn ( I + a n- 1 + ... + ao) ' 
z z_fl 

so that 
II I I a11 - I ao I lf(z)I = lzl · + - + · · · + - . .:: zn 

Let 

M = max(l, 2n la11-1 I, ... , 211 lao I). 

Then for all z with lzl :::: M, we have ll I :::: lzl and 

lan - k J lan - k I lan - k I -- < -- < ~~-
I z k I - Jzl - 2nlan- kl 211' 

so 

I 
a11

_ 1 ao I I an - I I I ao I I -- + ... + - :'.:: -- + ... + - :'.:: -, 
z z11 z -;, 11 2 

which implies that 

I+ -- + · · · + - > 1 - -- + · · · + - > - . 
I 

a11 - I ao I I an - I ao I I 
.:: .:n - : :n - 2 

This means that 

lf(-::.)1 :::: 1~
11 

for lzl :::: M. 

ln particular, if Jzl :::: M and also 1-::.1 :::: 121! (0)1, then 

If (.::)I :::: lf(O)I. 
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Now let [a, b] x [ c, d] be a closed rectangle (Figure 6) which contains { z : I z I ~ 

max(M , 121!(0)1) }, and suppose that the minimum of Ill on [a, b] x [c, d] is 
attained at zo, so that 

(1) lf(zo)I ~ lf(z)I for z in [a, b] x [c, d]. 

It fo llows, in particular, that If (zo) I ~ If (0) I. Thus 

(2) if lzl ~ max(M, 121!(0)1 ), then lf(z)I ~ lf(O)I ~ If (zo)I. 

Combining (1) and (2) we see that lf(zo)I ~ lf(z)I for all z, so that Ill attains its 
minimum value on the whole complex plane at zo. 

max(M, V21f(O)I) 

lf(z)I::: lf(O)I 
for z here 

FIGURE 6 

To complete the proof of the theorem we now show that f (zo) 
convenient to introduce the function g defined by 

g(z) = f (z + zo). 

0. It is 

Then g is a polynomial function of degree n, whose minimum absolute value 
occurs at 0. \Ve want to show that g(O) = 0. 

Suppose instead that g(O) = a =f. 0. If 111 is the smallest positive power of z 
which occurs in the expression for g, we can write 

( ) + R m + 7 m+ I + + 7 n g Z = <X JJZ Cm t J~. · · · Cn.., , 

when' f3 =f. 0. Now, according to T heorem 25-2 there is a complex numbt"r y 
such that 

m a 
y =--

{3 
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Then, setting dk = Ck yk, we have 

lg(yz)I =la+ fJylll z/11 + dm +1z111+1 + """ + d11z11
I 

- Irv - rv 71/l + d ..,.Ill + I + • • • J - u u,, 111 + !<-

= I a ( I - zm + d,:+ I z"'+ I + ... ) I 

= I a ( I - z'" + z"' [ d,:+ 
1 
z + · · · ]) I 

_ I I 11 m + 111 [dm +I + J I - Ci • - z z --z . . . . 
Ci 

This expression, so tortuously arrived at, will enable us to reach a quick contra­
diction. Notice first that if lzl is chosen small enough, we will have 

I 
dm +I I ~z+ ... < I. 

If we choose, from among all z for which this inequality holds, some z which is real 
and positive, then 

I Ill [dm +I + JI z --z ... 
Ci 

< lz111 I = Zm. 

Consequently, if O < z < 1 we have 

_ l 111 + I 111 [dm +I + J I - -z z --z ... 
Ci 

< l - Z
111 + Z111 

= I. 

This is the desired contradiction: for such a number z we have 

lg(yz)I < lal, 

contrad icting the fact that lal is the minimum of lgl on the whole plane. Hence, 
the original assumption must be incorrect, and g(O) = 0. This implies, finally, that 

f (zo) = 0. I 

Even taking into account our om1ss1on of the proofs for the basic facts about 
continuous complex functions, this proof verified a deep fact with surprisingly 
little work. It is only natural to hope that other interesting developments will arise 
if we pursue further the analogues of properties of real functions. The next obvious 
step is to define derivatives: a function f is differentiable at a if 

1
. f (a+ z) - f (a) 
1111 exists, 

:::-o z 
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in which case the limit is denoted by J'(a). It is easy to prove that 

J'(a) = 0 if f(z) = c. 
f'(a) = I if f(z) = z, 

(! + g)'(a) = J'(a) + g'(a), 
(! · g)'(a) = f'(a)g(a) + f(a )g'(a), 

(
~) ' (a) = - g'(a) if g(a) =I- 0 , 
g [g(a)]2 

(! o g)'(a) = f ' (g(a)) · g' (a); 

the proofs of all these formulas are exactly the same as before . It foll ows, in 
particular, that if f (z) = z11

, then f' (z) = nz11
-

1• T hese for mulas only prmT the 
differentiability of rational functions however. Many other obvious candidates a rc 

not differentiabk. Suppose, fo r example, that 

f (x + i y) = x - iy (i.e., f (-;,) = ~). 

If f is to be differentiable at 0, then the limit 

lim 
(x + iy)---+0 

f (x + i y) - f (0) 

x + iy 

X - 1)' 
lim - -

(x+i y ) ---+ 0 X + i y 

must exist. Notice however, that 

and 

x - iy 
if y = 0, then --.- = I. 

x+ 1y 

. x - i v 
1f x = 0, then --.-· = -1; 

x+ ,y 

therefore this limit cannot possibly exist, since the quotient has both the values 1 
and -1 for x + iy arbitrarily close to 0. 

In view of this example, it is not at all clear where other d iffcrentiabk functions 
are to come from. If you recall the definitions of sin and exp, you will see that 
there is no hope at all of generalizing these definitions to complex numlxrs. . \ t 
the moment the outlook is bleak, but all our problems will soon be soh-ed . 

PROBLEMS 

1. (a) For any real number y , define a(x) = x + i y (so that a is a rnmpkx­
valued function defined on R). Show that a is continuous. (This follm,·s 
immediately from a theorem in this chapter.) Show similarly that f3 (y) = 
x + i y is continuous. 

(b) Let f be a continuous function defined on C. For fixed y , let g (.r) = 
f (x + i y). Show that g is a continuous function (defined on R 1. Shm\' 
similarly that h(y) = f(x + iy) is continuous. Hint: Use part (a). 

2. (a) Suppose that f is a continuous real-valued function defined on a closed 
rectangle [a , b] x [c, cl]. Prove that if f takes on the values/(-;.) and /(u 1) 
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(a) 

(b) 

F!Cl . RE 7 

for .:: and win [a , b] x [c , d] , then f also takes all values between f( z ) 
and f(w). Hint: Consider g (t) = J(t z + (l - t)w ) fort in [O, l]. 

*(b) If f is a continuous complex-valued function defined on [a, b] x [c, d] , 
the assertion in part (a) no longer makes any sense, since we cannot talk 
of complex numbers between f (z) and f (w). \!\Te might conjecture that 
f takes on all values on the line segment between f( z) and f (w) , but 
even this is false. Find an example which shows this. 

3. (a) Prove that if ao, ... , a11 _ 1 are any complex numbers, then there are 
complex num bers ZJ, ... , z11 (not necessarily distinct) such that 

II 

Z
11 + a 11 _ 1z11 - I + · · · + ao = n (z - Zi) . 

i = I 

(b) Prove that if ao, .. . , a 11 _ 1 are real, then -z, 11 +a 11 _ 1z 11
-

1 + ··· +ao can be 
written as a product oflin ear factors .: +a and quadratic factors z2+a z+b 
all of whose coefficients are real. (Use Problem 25-7.) 

4. In this problem we will consider only polynomials with real coefficients. Such 
a polynomial is called a sum of squares if it can be written as h 1 2 + · · · + h 11 

2 

for polynomials hi with real coefficients. 

(a) Prove that if f is a sum of squares, then f (x) ::::_ 0 for all x. 

(b) Prove that if f and g arc sums of squares, then so is f · g. 

(c) Suppose that f (x) ::::_ 0 for all x. Show that f is a sum of squares. Hint: 
k 

First write f (x) = n(x -ai) 2g(x) , where g (x) > 0 for all x. Then use 
i = I 

Problem 3(b). 

5. (a) Let A be a set of complex numbers. A number z is called, as in the 
real case, a limit point of the set A if for every (real) c > 0, there is 
a point a in A with I.:: - a I < c but .:: -=j:. a. Prove the two-dimensional 
version of the Bolzano-vVeierstrass T heorem: If A is an infinite subset 
of [a,b] x [c , d] , then A has a limit point in [a , b] x [c,d]. Hint: First 
divide [a,b] x [c, d] in half by a vertical line as in Figure 7(a). Since A 
is infinite, at least one half contains infinitely m any points of A. Divide 
this in half by a horizontal line, as in Figure 7(b). C ontinue in this way, 
alternately dividing by vertical and horizontal lines. 

(T he two-dimensional bisection argument outlined in this hint is so stan­
dard that the title " Bolzano-\i\Teierstrass" often serves to describe the 
method of proof, in addition to the theorem itsel( See, for example, 
H . Petard, ':i\ Contribution to the i\lathcmatical Theory of Big Game 
Hunting," Amo: 1\/ath. 1\/onthly, 45 (1938), 446 -447 .) 

(b) Prove that a continuous (complex-valued) function on [a, bl x [c, d] is 
bounded on [a , b] x [c, dJ . (Imit ate Problem 22-31.) 

(c) Prove that if f is a real-valued continuous function on [a , bJ x [c, dl, 
then f takes on a maximum aml minimum value on [a , bJ x [c, d] . (You 
can use the same trick that works fo r Theorrm 7-3 .) 



(a) a convex subset of the plane 

(b) a nonconvex subset of the plane 
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The proof of Theorem 2 cannot be considered to be completely elementary 
because the possibility of choosing y with ym = -a/ f3 depends on Theo­
rem 25-2, and thus on the trigonometric functions. It is therefore of some 
interest to provide an elementary proof that there is a solution for the equa­
tion z11 

- c = 0. 

(a) Make an explicit computation to show that solutions of z2 - c = 0 can 
be found for any complex number c. 

(b) Explain why the solution of z11 
- c = 0 can be reduced to the case where 

n is odd. 
(c) Let zo be the point where the function f (z,) = -;, 11 

- c has its minimum 
absolute value. If zo # 0, show that the integer m in the proof of Theo­

rem 2 is equal to l; since we can certainly find y with y 1 = -a/ {3, the 
remainder of the proof works for f. It therefore suffices to show that the 
minimum absolute value of f does not occur at 0. 

(d) Suppose instead that f has its minimum absolute value at 0. Since n is 
odd, the points ±8, ±oi go under J into -c±on, -c±o11 i. Show that for 
small o at least one of these points has smaller absolute value than -c, 
thereby obtaining a contradiction. 

7. Let J (z) = (z - z1)m 1 • ••• • (z - zk)'11
k for nq, ... , lllk > 0. 

k 

(a) Show that J'(z) = (z - z1) 1111 • ••• • (z - zk)'11
k • Lma(Z - Za)- 1. 

a=I 
k 

(b) Let g(z) = Lma(Z - Z.a) -
1

. Show that if g(-;,) = 0, then ZJ, .. ,,Zk 

a=l 
cannot all lie on the same side of a straight line through z. Hint: Use 
Problem 25-11. 

(c) A subset K of the plane is convex if K contains the line segment joining 
any two points in it (Figure 8). For any set A, there is a smallest convex 
set containing it, which is called the convex hull of A (Figure 9); if a 

p 

J 

FIGURE9 
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point P is not in the conv x hull of A , then all of A is contain d on on 
side of some straight line through P. Using this information, prove that 
the roots of f'( z) = 0 lie within the convex hull of the set {z 1, ... , Zk }. 

Further information on convex sets will be found in reference [18] of the 
Suggested Reading. 

8. Prove that if f is differentiable at z, then f is continuous at z. 

*9. Suppose that f = u + iv where u and v are r al-valued functions. 

(a) For fixed YO let g(x) = u(x + i yo) and h(x) = v(x + iyo) . Show that if 
f' (xo + i yo) =a+ if3 for real a and {3 , then g' (xo) = a and h' (xo) = f3. 

(b) On the other hand, suppose that k(y) = u(xo +iy) and l(y) = v(xo+iy). 

Show that l ' (yo) = a and k' (yo) = - f3. 

(c) Suppose that f' (z) = 0 for all z. Show that f is a constant function. 

10. (a) Using the expre sion 

f (x) = 1 ~ 2 = 21 · (-1-. - +1 . ) ' 
X l X-l X l 

find f (k) (x) for all k. 
(b) Use thi result to find arctan Ck) (0) for all k. 
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CHAPTER 

THEOREM I 

PROOF 

27 COMPLEX POWER SERIES 

If you have not already guessed where differentiable complex functions are going 
to come from, the title of this chapter should give the secret away: we intend to 
define functions by means of infinite series. This will necessitate a discussion of 
infinite sequences of complex numbers, and sums of such sequences, but (as was 
the case with limits and continuity) the basic definitions are almost exactly the 
same as for real sequences and series. 

An infinite sequence of complex numbers is, formally, a complex-valued func­
tion whose domain is N; the convenient subscript notation for sequences of real 
numbers will also be used for sequences of complex numbers. A sequence {all} of 
complex numbers is most conveniently pictured by labeling the points all in the 
plane (Figure 1). 

The sequence shown in Figure 1 converges to 0, "convergence" of complex 
sequences being defined precisely as for real sequences: the sequence {a11 } 

converges to l, in symbols 
lim a11 = l, 

11-H )O 

if for every£ > 0 there is a natural number N such that, for all n, 

ifn > N, then Ian -II<£. 

This condition means that any circle drawn around l will contain a11 for all suffi­
ciently large n (Figure 2); expressed more colloquially, the sequence is eventually 
inside any circle drawn around l. 

Convergence of complex sequences is not only defined precisely as for real 
sequences, but can even be reduced to this familiar case. 

Let 

an= bn + icn for real b11 and C11. 

and let 

l=f3+iy for real f3 and y. 

Then lim a11 = l if and only if 
11 -H)O 

lim b11 = f3 and lim c11 = y. 
11 -+ 00 11 -+00 

The proof is left as an easy exercise. If there is any doubt as to how to proceed, 
consult the similar Theorem I of Chapter 26. I 

The sum of a sequence {a11 } is defined, once again, as lim s11 , where 
/l --+00 

Sn= a1 + ... +an. 

555 
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Sequences for which this limit exists are summable; alternatively, we may say that 
00 

the infinite series L a11 converges if this limit exists, and diverges otherwise. It 
11=1 

is unnecessary to develop any new tests for convergence of infinite series, because 
of the following theorem. 

THEOREM 2 Let 

PROOF 

a11 = bn + ic11 for real b11 and c11 • 

00 00 00 

Then L a 11 converges if and only if L bn and L c11 both converge, and in this 
n=I 11=1 n= I 

case 

00 00 ( 00 ) L a11 = L b11 + i L C11 • 

n=l 11=1 n=I 

This is an immediate consequence of Theorem l applied to the sequence of partial 
stuns of { a11}. I 

There is also a notion of absolute convergence for complex series: the series 
00 00 

L a 11 converges absolutely if the series L Ian I converges (this is a series of real 
n=I n=I 
numbers, and consequently one to which our earlier tests may be applied). The 
following theorem is not quite so easy as the preceding two. 

THEOREM 3 Let 

a11 = b11 + ic11 for real b11 and c11 . 

00 00 00 

Then L a 11 c01werges absolutely if and only if L b11 and L c11 both converge 
n= I 11 =1 11=1 

absolutely 

00 00 CX) 

PROOF Suppose first that L b11 and L c11 both converge absolutely, i.e., that L lb11 I and 
n= I n=I 

00 

L lc11 I both converge. It fo11ows that L lb11 I + lc11 I converges. Now, 
11=1 n=I 

la,,I = lh11 + ic11I:::::: lh11I + lc11I· 

00 

It follows from the comparison test that L la11 I converges (the numbers la11 I and 
11 =1 

00 

lb11 I + lc11 I arc real and nonnegative). Thus L a11 converges absolutely. 
11 =1 
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00 

Now suppose that L Ian I converges. Since 
n=I 

it is clear that 

lbnl::::lanl and lcnl::::lanl· 
00 00 

Once again, the comparison test shows that L lh11 I and L lc11 I converge. I 
n=I n=I 

00 

Two consequences of Theorem 3 are particularly noteworthy. If Lan con-

00 00 

verges absolutely, then L b11 and L c11 also converge absolutely; consequently 
n=l n=I 

00 00 00 

L b11 and L c11 converge, by Theorem 23-5, so L a11 converges by Theorem 2. 
n=I n= l 11=1 

In other words, absolute convergence implies convergence. Similar reasoning 
shows that any rearrangement of an absolutely convergent series has the same 
sum. These facts can also be proved directly, without using the corresponding the­
orems for real numbers, by first establishing an analogue of the Cauchy criterion 
(see Problem 13). 

\ Vith these preliminaries safely disposed of, we can now consider complex 
power series, that is, functions of the form 

00 

f (z) = L an(Z - a)" = ao + a1 (z - a)+ a2(z - a)2 + · · · . 
n=O 

Here the numbers a and a11 are allowed to be complex, and we are naturally 
interested in the behavior of f for complex z. As in the real case, we shall usually 
consider power series centered at 0, · 

00 

f(z) = Lanz\ 
n=O 

in this case, if f(zo) converges, then f(z) will also converge for lzl < lzol. The 
proof of this fact will be similar to the proof of Theorem 24-6, but, for reasons 
that will soon become clear, we will not use all the paraphernalia of uniform con­
vergence and the \iVeierstrass M-test, even though they have complex analogues. 
Our next theorem consequently generalizes only a small part of Theorem 24-6. 

Suppose that 
00 

L GnZ()
11 

= ao + GJ zo + a2za2 + · · · 
11=0 
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PROOF 

F I GU R E3 

converges for some zo =j:. 0. Then if lzl < lzol , the two series 

00 

La11z11 = ao + a1 z + a2 z2 + ... 
n=O 
00 

L'lan.::'.n- I = a,+ 2a2z + 3a3z2 + .. . 
n= l 

both converge absolutely. 

As in the proof of Theorem 24-6, we will need only the fact that the set of numbers 
an zo11 is bounded: there is a number M such that 

for all n. 

\Ve then have 

and, for z =j:. 0, 

I n- 11 ] I n I I z In nan ::. = -n an::.o . -
lzl zo 

M I 111 <- n ~ 
- lzl zo 

00 00 00 

Since the series L lz/zol 11 and Ln lz/zol 11 converge, this shows that both Lanl' 

00 00 

and L na11 z11
-

1 converge absolutely (the argument for L na11 z11 - 1 assumed that 
n= l n= l 

z =j:. 0, but this series certainly converges for z = 0 also). I 

Theorem 4 evidently restricts greatly the possibilities for the set 

{ z : f a,, z" converges l · 
n=O 

00 

For example, the shaded set A in Figure 3 cannot be the set of all .::: where L a 11 ::.
11 

converges, since it contains z, but not the number w satisfying lwl < lz. l. 
It seems quite unlikely that the set of points where a power series converges 

could be anything except the set of points inside a circle. If we allow "circles of 
radius O" (when the power series converges only at 0) and "circles of radius oo" 
(when the power series converges at all points), then this assertion is true (with one 
complication which ,ve will soon mention); the proofrcquires only Theorem 4 and 
a knack fo r good organization. 
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For any power series 

00 

L a11zn = ao + a1 z + a2z
2 + a3z

3 + · · · 
n=O 

one of the following three possibilities must be true: 

00 

(1) L a11 zll converges only for z = 0. 

00 

(2) L anz 11 converges absolutely for all z in C. 

00 

(3) There is a number R > 0 such that L a 11 zn converges absolutely if lzl < R 
11=0 

and diverges if lzl > R. (Notice that we do not mention what happens 
when lzl = R.) 

PROOF Let 

S = {x in R: f a,,w" converges for some w with lwl = x }· 
n=O 

Suppose first that S is unbounded. Then for any complex number z, there is 
00 

a number x in S such that I z I < x. By definition of S , this means that L all w 11 

00 

converges for some w with lwl = x > lzl. It follows from Theorem 4 that L a11 z'1 

converges absolutely. Thus, in this case possibility (2) is true. 
Now suppose that S is bounded, and let R be the least upper bound of S. If 

00 

R = 0, then L a11 z11 converges only for z = 0, so possibility (1) is true. Suppose, 
n=O 

on the other hand, that R > 0. Then if z is a complex number with lzl < R, there 
00 

is a number x in S with lzl < x. Once again, this means that Lall w 11 converges 

00 

for some w with lzl < lwl, so that L anzn converges absolutely. l\Ioreover, if 

00 

lzl > R, then L a11 z11 does not converge, since 1.:1 is not in S. I 
n=O 

The number R which occurs in case (3) is called the radius of convergence of 
00 

L allz'1
• In cases (1) and (2) it is customary to say that the radius of cmwergence 

n=O 

is O and oo, respectively. When O < R < oo, the circle {z : lzl = R} is called 
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I 

the terms anzn are not bounded 

circle of 
convergence 

F I GURE 4 

OU 

the circle of convergence of L a11 z11
• If z is outside the circle, then, of course, 

00 II~ L a 11 z
11 docs not converge, but actually a much stronger statement can be m ade: 

11 = 0 
the terms a11 z11 are not even bounded. To prove this, let w be any number with 
lzl > lwl > R; if the terms a11 z11 were bounded, then the proof of T heorem 4 would 

00 

show that L a11 w
11 converges, which is fal se. Thus (Figure 4), inside the circle of 

n=O ou 

convergence the series L a11 z11 converges in the best possible way (absolutely) and 
11 =0 

outside the circle the series diverges in the worst possible way (the terms a11 z11 are 
not bounded). 

What happens on the circle of convergence is a much more difficult question. 
We will not consider that question at all , except to mention that there are power 
series which converge everywhere on the circle of convergence, power series which 
converge nowhere on the circle of convergence, and power series that do just about 
anything in between. (Sec Problem 5.) 

Algebraic m anipulations on complex power series can be justified just as in the 
00 /')() 

real case. Thus, if f (z) = L a 11z
11 and g(z) = L b11 z

11 both have radius of 

00 

convergence :::: R , then h (z) = L (a11 + b,i)z11 also has radius of convergence 

:::: R and h = f + g inside the cifE~ of radius R. Similarly, the C auchy product 
00 11 

h (z) = L c11 z
11

, for c11 = L a1,; b11 _1,;, has radius of convergence :::: R and h = f g 
n=O k=O 

00 

inside the circle ofradius R. And if f (z) = L a11 z
11 has radius of convergence > 0 

00 

and ao =/:- 0, then we can find a power se ries L b11 z11 with radius of convergence 
n=O 

> 0 which represents I / f inside its circle of convergence. 
But our real goal in this chapter is to produce differentiable functions. We 

therefore want to generalize the result proved for real power series in C hapter 24, 
that a function defined by a power series can be differentiated term-by-term in­
side the circle of convergence. At this point we can no longer imitate the proof of 
Chapter 24, even if we were willing to introduce uniform convergence, because no 
analogue of T heorem 24-3 seems available. Instead we will use a direct argument 
(which could also have been used in C hapter 24). Before beginning the proof, 
we notice that at least there is no problem about the convergence of the series 

00 

produced by term-by-term differentiation . If the series L a 11 z
11 has radius of con-

11 = 0 00 

vcrgcncc R , then T heorem 4 immediately implies that the series L 11a 11 z
11

-
1 also 

11 = 1 

converges for lzl < R . l\ lorcmT1; if lzl > R , so that the terms a 11 z
11 arc unbounded, 
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00 

then the terms na11 z11
-

1 are surely unbounded, so L na11 z
11 - 1 does not converge. 

n=I 
00 

This shows that the radius of convergence of L 1zanz'1- 1 is also exactly R. 
n=I 

If the power series 
00 

J(z) = La11z 11 

n=O 

has radius of convergence R > 0, then f is differentiable at z for all z with lzl < R, 

and 
00 

! '( ) " 11 - l z = Lnanz . 
n=I 

\
1Ve will use another "c /3 argument." The fact that the theorem is clearly true for 

polynomial functions suggests writing 

00 00 
( ( Z + h )" - Z

11 ) n - I 
= Lan - Lllanz 

/z 

f(z + h) - f(z) Loo n-1 
------ - 11a 11 z 

lz 
n=I n=O n=I 

oo N 
((z + h)n - .::11

) ((.:: + h)" - z11 ) 
< "an - "an------

L h L h 
n=O n=O 

L
N ((z + h)n - Zn) LN n-l + an - nanz 

h 
n=O 11=1 

N oo 
+ Lna11zn-l - L'za11z11- I 

n=I 11=1 

\'Ve will show that for any c > 0, each absolute value on the right side can be made 
< c /3 by choosing N sufficiently large and h sufficiently small. This will clearly 
prove the theorem. 

Only the first term in the right side of (*) will present any difficulties. To begin 
with, choose some zo with lzl < lzol < R; henceforth we will consider only h 
with lz + hi :::: lzol- The expression ((z + h)" - zn)/ h can be written in a more 
convenient way if we remember that 

xn -yn ___ = Xn - 1 + Xn - 2y + Xn - 3y2 + ... + yn - 1. 
x-y 

Applying this to 

we obtain 

(z + h )'1 - zn 

h 

(z + h)'1 - z11 

(z + h) - z · 

(z + h) 11 
- zn ----- = (z + '1)11 - I + z(z + 1ir- 2 + ... +Zn- I. 

h 
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Since 
l(z + ht - l + z (z + ht- 2 + .. . + Zn- I I ~ nl zoln- l ' 

we have 

I 

((z + ht - Zn) I I I I 1n- l an h ~ n an . zo . 

00 

But the series L nlanl · lzol 11
-

1 converg s, so if N is sufficiently large, then 
n=l 

00 

L nlanl · lzol 11
-

1 

n=N+ I 

8 
<-3 · 

This means that 
00 

((z + h )11 
- Zn) N ((z + ht - Zn) 

L an h - L an h 
n=O n=O 

00 

'"" nl 
8 

< L n Ian 1 · 1 zo 1 - < 3. 
n=N+I 

In short, if N is sufficiently large, then 

(1) 
00 

(( z + ht - z11
) N ((z + ht - Zn) 

L an h - L an h 
n=O n=O 

for all h with lz + hi ~ lzol . 

8 

< 3' 

00 

It is easy to deal with the third term on the right side of (*): Since L nanz11 - 1 

converges, it follows that if N is sufficiently large, then n= l 

oo N 

(2) L nanz11
-

1 
- L nan zn- 1 < i. 

n= l n= l 

Finally, choosing an N uch that (1) and (2) are true, we note that 

1. LN ((z + h.t - Zn) LN n- l 
1m an = nanz ' 

h~ O h 
n=O n= l 

N 

smc the polynomial function g (z) = L a11 z
11 is ertainly differentiable. T h r fo r 

11 =0 

fo r uffi i ntly mall h . 

As w hav alr ady indi at d, (1), (2), nd (3) pr v th th r m. I 
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Theorem 6 has an obvious corollary: a function represented by a power series is 
infinitely differentiable inside the circle of convergence, and the power series is its 
Taylor series at 0. It follows, in particular, that f is continuous inside the circle of 
convergence, since a function differentiable at z is continuous at z (Problem 26-8). 

The continuity of a power series inside its circle of convergence helps explain the 
behavior of certain Taylor series obtained for real functions, and gives the promised 
answers to the questions raised at the end of Chapter 24. We have already seen 
that the Taylor series for the function f (z) = 1/(1 + z2), namely, 

1 2 4 6 -z +z -z +···, 
converges for real z only when lz I < 1, and consequently has radius of conver­
gence 1. It is no accident that the circle of convergence contains the two points 
i and -i at which f is undefined. If this power series converged in a circle of 
radius greater than 1, then (Figure 5) it would represent a function which was 
continuous in that circle, in particular at i and -i. But this is impossible, since it 
equals 1/(1 + z2) inside the unit circle, and 1/(1 + z2) does not approach a limit 
as z s approaches i or -i from inside the unit circle. 

The use of complex numbers also sheds some light on the strange behavior of 
the Taylor series for the function 

f(x) = e ' l -l/x2 

0, 
x=;fO 
x =0. 

Although we have not yet defined e; for complex z, it will presumably be true that 
if y is real and unequal to 0, then 

f (iy) = e- l/Uy)2 = e1;y2. 

The interesting fact about this expression is that it becomes large as y becomes 
small. Thus f will not even be continuous at O when defined for complex numbers, 
so it is hardly surprising that it is equal to its Taylor series only for z = 0. 

The method by which we will actually define ez (as well as sin z and cos z) for 
complex z should by now be clear. For real x we know that 

X3 XS 
sin x = x - - + - - · · · 

3! 5! ' 
x2 x4 

cos x = 1 - - + - - · · · 
2! 4! 

2 

ex=l+~+~+··· 
1! 2! 

For complex z we therefore defzne 

. z3 zs 
sm z = z - 3! + 5! - · · · , 

.,,2 74 
cos - = 1 - .::__ + .::__ + · .. ... 2! 4! ' 

z 72 
exp(z) = ez = 1 + - + .::__ + ... 

I! 2! 
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Then sin ' (z) = cos z, cos' (z) = - sin z, and exp' (z) = exp(z) by Theorem 6. 
Moreover, if we replace z by i z in the series for e2

, and make a rearrangement 
of the terms (justified by absolutf' convergence), something particularly interesting 
happens: 

. (i z)2 (i z) 3 (i z)4 (i z)s 
ei~ = 1 + l Z + -- + -- + -- + -- + · · · 

2! 3! 4! 5! 
. z2 i z3 i z4 i zs 

=l+z z ----+-+-+··· 
2! 3! 4! 5! 

( 
1 - z2 + z4 - ... ) + i (z - z3 + zs + ... ) 

2! 4! 3! 5! ' 

so 
ei z = cos z + i sin z. 

It is clear from the definitions (i.e., the power series) that 

sin(-z) = - sin z, 
cos( - z) = cos z, 

so we also have 
- i ? .. e - = cos z - z sm z. 

From the equations for ei z and e - iz we can derive the formulas 

ei z _ e - iz 
s1nz = ----

2i 

cosz= --
2
--

The development of complex power series thus places the exponential function at 
the very core of the development of the elementary functions- it reveals a con­
nection between the trigonometric and exponential functions which was never 
imagined when these functions were first defined, and which could never have 
been discovered without the use of complex numbers. As a by-product of this 
relationship, we obtain a hitherto unsuspected connection between the numbers e 
and JT: if in the formu la 

/ z = cos z + i sin z 

we take z = JT , we obtain the remarkable result 

(More generally, e2ni / n is an nth root of l .) 
vVith these remarks we will bring to a close our investigation of complex func­

tions. And yet there are still several basic facts about power series ,vhich have not 
been mf'ntionecl. 'fhus far, we have seldom considered power series centered at a, 

00 

f (z) = L a11(Z - a)'1, 
11 = 0 
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except for a = 0. This omission was adopted partly to simplify the exposition. 
For power series centered at a there are obvious versions of all the theorems in 
this chapter (the proofs require only trivial modifications): there is a number R 

(X) 

(possibly O or "oo") such that the series L a11 (z - a )'1 converges absolutely for z 
n=O 

with lz - al < R, and has unbounded terms for z with lz - al > R; moreover, for 
all z with lz - a I < R the function 

(X) 

f(z) = L an(Z - a) 11 

n=O 

has derivative 
00 

f'(z) = L nan(Z - a) 11
-

1. 

n=l 

It is less straightforward to investigate the possibility of representing a function 
as a power series centered at b, if it is already written as a power series centered 
at a. If 

(X) 

f(z) = Lan(z-a)'1 

n=O 

has radius of convergence R, and b is a point with lb - a I < R (Figure 6), then it 
is true that f (z) can also be written as a power series centered at b, 

(X) 

f(z) = L bn(Z - b)'1 
n=O 

(the numbers b11 are necessarily f( 11\b)/n! ); moreover, this senes has radius of 
convergence at least R - lb - a I (it may be larger). 

\Ve will not prove the facts mentioned in the previous paragraph, and there are 
several othfT important facts we shall not prove. For example, if 

(X) 00 

f (z) = Lan (z - a) 11 and g(z) = L bn(Z - b)'1, 
n=O n=O 

and g (b) = a, then we would expect that f o g can be written as a power series 
centered at b. All such facts could be proved now without introducing any basic 
new ideas, but the proofs would not be as easy as the proofs about sums, products 
and reciprocals of power series. The possibility of changing a power series centered 
at a into one centered at b is quite a bit more involved, and the treatment of 
f o g requires still more skill. Rather than end this section with a tour de Jorre 
of computations, we will instead give a preview of "complex analysis," one of 
the most beautiful branches of mathematics, where all these facts arc derived as 
straightforward consequences of some fundamental results. 

Power series were introduced in this chapter in order to provide complex func­
tions which arc differentiable. Since these functions arc actually infinitely differ­
entiable, it is natural to suppose that we have therefore selected only a very special 
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• 
a1 

FIGllRE 7 

collection of differentiable complex functions. The basic theorems of complex 
analysis show that this is not at all true: 

if a complex function is defined in some region A of the plane and is differentiable in A, 
then it is automatically iefmitely differentiable in A. Aloreover, for each point a in A the 
Ta)llor series for f at a will converge to f in a,ry circle contained in A (Figure 7). 

These facts are among the first to be proved in complex analysis. It is impossible 
to give any idea of the proofs themselves- the methods used are quite different 
from anything in elementary calculus. If these facts are granted, however; then 
the facts mentioned before can be proved very easily. 

Suppose, for example, that f and g are functions which can be written as power 
series. Then, as we have shown, f and g are differentiable- it then follows from 
easy general theorems that f + g, f · g, 1 / g and f o g are also differentiable. 
Appealing to the results from complex analysis, it follows that they can be written 
as power senes. 

We already know how to compute the power series for f + g, f · g and 1 / g from 
those for f and g. It is also easy to guess how one would compute an expression 
for f og as a power series in (z - b) when we are given the power series expansions 

with a= g(b) = ho, so that 

(X) 

f (z) = L a11(Z - a) 11 

11=0 
(X) 

g(:::) = I::bk(::: - bl. 
k=O 

(X) 

g(z) - a= Lbk(Z - bl. 
k= I 

First of all, we know how to compute the power series 

(g(z) - a)1 = ( f),(z - b)' )', 
k;;;;;) 

and this power series will begin with (::: - bi. Consequently, the coefficient of z11 

111 
(X) 

f (g(z)) = L a1(g(z) - a/ 

l=O 

can be calculated as a finite sum, involving only coefficients arising from the first 11 

powers of g (z) - a. 
Similarly, if 

f(z) = Lan(Z - a) 11 

11 =0 

has radius of convergence R, then f is clille rcntiable in the region A = {z : lz. - a I < 
R}. Thus, if b is in A, it is possible to write f as a power series centered at b, 
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which will converge in the circle of radius R - lb - a J. The coefficient of zn 
will be f(n) (b) / ll ! . This series may actually converge in a larger circle, because 

00 

L a11 (z - a)" may be the series for a function differentiable in a larger region 
n=O 

than A. For example, suppose that f(-;,) = 1/(1 + -::. 2). Then f is differentiable, 
except at i and -i, where it is not defined. Thus f (z) can be written as a power 

(X) 

series L anzn with radius of convergence I (as a matter of fact, we know that 
n=O 

a211 = ( - 1 )11 and ak = 0 if k is odd). It is also possible to write 

00 

f (z) = L bn(Z - !Y1, 
n=O 

where b11 = ! (11>(!)/12!. \V'e can easily predict the radius of convergence of this 

series: it is J 1 + ( ! )2 , the distance from ! to i or -i (Figure 8). 
As an added incentive to investigate complex analysis further, one more result 

will be mentioned, which lies quite near the surface, and which will be found in 
any treatment of the subject. 

For real -::, the values of sin z always lie between -1 and I, but for complex z 
this is not at all true. In fact, if -::, = i y, for y real, then 

ei(iy ) _ e - i(iy) 

sm 1y = 
2i 2i 

If y is large, then sin iy is also large in absolute value. This behavior of sin is typical 
offunctions which are defined and differentiable on the whole complex plane (such 
functions are called entire). A result which comes quite early in complex analysis is 
the following: 

Liouville)s Theorem: The only bounded entire .fimrtions are the constant Junctions. 

As a simple application of Liouville's Theorem, consider a polynomial function 

!(7) - .,,11 + a .,,n - 1 + + a " - "' n- 1" · · · 0, 

where n > I, so that f is not a constant. We already know that f (z) is large for 
large z, so Liouvillc 's Theorem tells us nothing interesting about f. But consider 
the function 1 

g(z) = f (z) · 

If f (z) were never 0, then g would be entire; since f (z) becomes large for large z, 

the function g would also be bounded, contradicting Liouville's Theorem. Thus 
f (-::,) = 0 for some z, and we have proved the Fundamental Theorem of Algebra. 

PROBLEl\IS 

1. Decide whether each of the following series converges, and whether it con­
verges absolutely. 
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(i) 

00 
(1 + it 

1= n! 
n= l 

(ii) 

00 
1 + 2i 

1= ~ · 
n= l 
00 · 11 

(iii) L ln . 
n= l 
00 

(iv) 1=c! + !it . 
n= I 

~ log n .11 log n 
(v) ~ -+i -. 

n n 
n=2 

2. U se the ratio test to how that the radius of convergence of each of the 
following pow r s ri s is 1. (In each case the ratio of succe sive t rms will 
approach a limit < 1 if lz l < 1, but for lzl > 1 the ratio will tend to oo or 
to a limit > 1.) 

00 11 

(i) 1= \ . n 
n= l 
00 11 

(ii) 1= ~. n 
n= l 

00 

(iii) L Zn. 
11 = 1 
00 

(iv) L(n + 2- 11 )z11 . 
n= l 

00 

(v) 1= 2n zn!. 
n= l 

3. U se the root test (Problem 23-9) to find the rad ius of convergence of ach of 
the following power erie . (In som e case , you will need limit derived in th 

problems to Chapter 22.) 

(i) 
Z Z2 z3 24 zs 26 

2 + 3 + 22 + 32 + 23 + 33 + . . .. 

(ii) 1= n,, - z . 2n 
11 = 1 

(iii) 
oo n! l 1 

1= ---;;;:- · 
n= l 

(iv) 
n 2 

1= -z11. 211 
11 = 1 

(v) 1= 2"zn! . 
n= l 
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4. The root test can always be used, in theory at least, to find the radius of 
convergence of a power series; in fact, a close analysis of the situation leads 
to a formula for the radius of convergence, known as the "Cauchy-Hadamard 

formula." Suppose first that the set of numbers ™ is bounded. 

00 

(a) Use Problem 23-9 to show that if lim ™ lzl < 1, then '°" a11 z'1 con-
11---,.00 ~ 

verges. 
00 

(b) Also show that if lim ™ lzl > 1, then '°" a11 z'1 has unbounded terms. 
n---,.oo ~ 

00 

(c) Parts (a) and (b) show that the radius of convergence of L a11 z11 is 
n=O 

1 / lim ™ (where "1 /0" means "oo"). To complete the formula, de-
n --> oo 

fine lim ™ = oo if the set of all ™ is unbounded. Prove that in 
11 --> 00 

00 

this case, L a11 z'1 diverges for z =j:. 0, so that the radius of convergence 
n=O 

is O (which may be considered as "1 / oo"). 

5. Consider the following three series from Problem 2: 
(X) 

LZn. 
n=l 

Prove that the first series converges everywhere on the unit circle; that the 
third series converges nowhere on the unit circle; and that the second series 
converges for at least one point on the unit circle and diverges for at least 
one point on the unit circle. 

6. (a) Prove that ez · ew = ez+w for all complex numbers z and w by shmving 
that the infinite series for ez+w is the Cauchy product of the series for e2 

and ew. 

(b) Show that sin(z + w) = sinzcosw + coszsin wand cos(z + w) = 
cos z cos w - sin z sin w for all complex z and w. 

7. (a) Prove that every complex number of absolute value 1 can be written eiY 

for some real number y. 

(b) Prove that I ex+iy I = ex for real x and y. 

8. (a) Prove that exp takes on every complex value except 0. 
(b) Prove that sin takes on every complex ,·alue. 

9. For each of the following functions, compute the first three nonzero terms of 
the Taylor series centered at O by manipulating power series. 

(i) f (.::) = tan.::. 
(ii) f(z) = .::(1 - z) - 112. 



5 70 Infinite Sequences and Infinite Series 

(iii) 

(iv) 

(v) 

(vi) 

esin ::: _ 1 
f(z)=--

z 
f (z) = log( 1 - z2 ). 

. 2 
sm z 

f(z) = -?-. 
z-

sin(z2) 
f (z) = ? . 

z cos- z 
1 

(vii) f (z) = z4 - 2z2 + 3. 

I 
(viii) f (z) = : [ e<v'i+z- l) - 1]. 

"' 

10. (a) Suppose that we write a differentiable complex function f as f = ll + 
iv , where u and v arc real-valued. Let ii and v denote the restrictions 
of u and v to the real numbers. In other words, tt(x) = u(x) for real 
numbers x (but 1, is not defined for other x ). Using Problem 26-9, show 
that for real x we have 

J'(x) = 1t'(x) + iv'(x), 

where f' denotes the complex derivative, while ii' and v' denote the 
ordinary derivatives of these real-valued functions on R. 

(b) Show, more generally, that 

t<k\x) = 1, <k\x) + iv (k)(x) . 

(c) Suppose that f satisfies the equation 

(*) J<11
l + a11 - 1t<11

- I ) + · · · + aof = 0, 

where the Cli are real numbers, and where the f(k) denote higher-order 
complex derivatives. Show that it and v satisfy the same equation, where 
it(k) and ij(k) now denote higher-order derivatives of real-valued functions 
on R. 

(cl) Show that if a= b+ei is a complex root of the equation z 11 +a 11 _ 1zn - l + 
· · · + ao = 0, then f (x) = ebx sin ex and f (x) = ebx cos ex are both 
solutions of(*). 

11. (a) Show that exp is not one-one on C. 

(b) Given w =/:- 0, show that ez = w if and only if z = x + iy with x = log lwl 
(here log denotes the real logarithm function), and y an argument of w. 

*(c) Show that there docs not exist a continuous function log defined for 
nonzero complex numbers, such that cxp(log(z)) = z for all z =/:- 0. 
(Show that log cannot even be defined continuously for lzl = I.) 

Since there is no way to define a contin uous logarithm fonction we can­
not speak of the logarithm of a complex number, but only of ''a logarithm 
for w," meaning one or the infinitely many numbers z with e-:. = w. And 
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for complex numbers a and b we define ab to be a set of complex num­
bers, namely the set of all numbers ebloga or, more precisely, the set of 
all numbers ebz where z is a logarithm for a. 

(cl) If 111 is an integer, then am consists of only one number, the one given by 
the usual elementary definition of a 111

• 

(e) If 111 and 11 are integers, then the set amf n coincides with the set of values 
given by the usual elementary definition, namely the set of all bm where b 
is an 11th root of a. 

(f ) If a and b are real and b is irrational, then ab contains infinitely many 
members, even for a > 0. 

(g) Find all logarithms of i, and find all values of ii. 
(h) By (abf we mean the set of all numbers of the form zc for some number z 

in the set ab. Show that (1 if has infinitely many values, while l i·i has 
only one. 

(i) Show that all values of ab·c are also values of (abf. Is ab·c = (abf n(acl? 

12. (a) For real x show that we can choose log(x + i) and log(x - i) to be 

log(x + i) = log(/1 +x2 ) + i (; - arctanx), 

log(x - i) = log( j I + x2 ) - i (; - arctan x). 
(It will help to note that JT /2 - arctan x = arctan I /x for x > 0.) 

(b) The expression 

yields, formally, 

f dx l 
2 

= -
2

. [log(x - i) - log(x + i)]. 
I +x 1 

Use part (a) to check that this answer agrees with the usual one. 

13. (a) A sequence {a11 } of complex numbers is called a Cauchy sequence if 
lim lam - a 11 I = 0. Suppose that a 11 = b11 + ic11 , where b11 and c11 are 

lll,11-+00 

real. Prove that {a11 } is a Cauchy sequence if and only if {b11 } and {c11 } 

are Cauchy sequences. 
(b) Prove that every Cauchy sequence of complex numbers com-crges. 
(c) Give direct proofs, without using theorems about real series, that an 

absolutely convergent series is convergent and that any rearrangement 
has the same sum. (It is permitted, and in fact advisable, to use the jJroojs 
of the corresponding theorems for real series.) 

14. (a) Prove that 

II . . I - einx 
"e'kx = e'x . 
L 1-e'x 
k= I 

sin (~x) 
__ 2 __ ei(n+ l)\ / 2 

. x 
Slll 2 
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II II 

(b) Deduce the formulas for L cos kx and L sin kx that arc given 111 

k= I k= l 
Problem 15-33. 

15. Let {a11 } be the Fibonacci sequence, a1 = a2 = l, a11+2 = a 11 + a 11+ J· 

(a) If r11 = a 11+1/a11 , show that r11 +1 = 1 + l/r11, 

(b) Show that if r = lim r11 exists, then r = 1 + 1 / r , so that r = ( 1 + Js) /2. 
11 -+00 

(c) Prove that the limit does exist. Hint: If r11 < (l + Js)/2, then r/ -
r 11 - 1 < 0 and r11 < r 11 +2· 

00 

(d) Show that I::a11 z11 has radius of convergence 2/(1 + Js). (Using 
11 =1 

00 

the unproved theorems m this chapter and the fact that L a11 z'1 = 
n=I 

-1 / (z2 + z - 1) from Problem 24-16 we could have predicted that the 
radius of convergence is the smallest absolute value of the roots of z2 + 
z - 1 = O; since the roots are ( -1 ± Js) /2, the radius of convergence 

should be (- 1 + -Js) /2. Notice that this number is indeed equal to 

2/(1 + Js).) 

16. Since (ez - 1 )/z can be written as the power series 1 + z/2! + z2 /3! + · · · 
which is nonzero at 0, it follows that there is a power series 

00 

__ z_ = """ h11 z" 
ez - 1 L 11! 

11=0 

with nonzero radius of convergence. Using the unproved theorems in this 
chapter, we can even predict the radius of convergence; it is 2rr, since this is 
the smallest absolute value of the non-zero numbers z = 2kn i for which 
ez - 1 = 0. The numbers b11 appearing here arc called the Bernoulli 
numbers.* 

(a) Clearly bo = 1. Now show that 

z z z. e~ + I 
-- =- - + - ·--
ez - I 2 2 ez - 1 ' 

eZ +] 
----

eZ - ] ' 

and deduce that 

b 1 = -! , b11 = 0 if II is odd and 11 > 1. 

* Sometimes the numbers B11 = (- 1 )11 - 1 b211 arc called the Bernoulli numbers, because b11 = 0 if II 
is odd a nd > I (sec part (a)) and because the nurnlwrs b211 alternate in sign , altliough we will not 
prove this. Other modifications of this nomenclature arc also in use. 
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(b) By finding the coefficient of z11 in the right side of the equation 

("bk k) ( z
2 

z
3 

) z = f:o 0 z z + 2! + 3! + · · · , 

show that 

n- 1 ( ) L; bi=O forn > l. 
1=0 

This formula allows us to compute any bk in terms of previous ones, and 
hows that each is rational. Calculate two or thr e of the following: 

b2 = t, b4 = - lo, b6 = 12, bg = - 3~ · 

*(c) Part (a) shows that 

00 
b2n 2n Z e z + 1 Z e z/2 + e-z/2 

L (2n)! Z = 2 . e z - 1 = 2 . e z/2 - e-z /2 · 
n=O 

Replace z by 2i z and show that 

00 

" b2n 2 2 z cotz = L --(-lt2 11 z 11
• 

(2n)! 
n=O 

*(d) Show that 
tan z = cot z - 2 cot 2z. 

*( ) Show that 

00 b 
tan z = " ~(-l)11-I22n(22n - l )z2n- l_ 

L (2n)! 
n= l 

(Thi serie converg s for lz I < n: /2 .) 

17. The B rnoulli numbers play an important role in a theorem which is be t 
introduced by ome notational nonsen e. Let us use D to denote the "differ­
entiation operator," so that DJ den te f'. Th n Dk f will mean f (k) and 

00 

eD f will mean L f (n) /n! (of course thi erie makes no sense in general 
n=O 

but it will mak sen e if f i a polynomial function, for example). Finally 
let ~ denote the "difference operator" for which ~f (x) = f (x + 1) - f (x). 

Now Taylor's Theorem implies, di regarding question of convergenc , that 

or 

f (n) ( ) 

f (x + 1) = L ' x ' 
n=O n. 

J<11\x) 
f (x + 1) - f (x) = " ; L n! 

n= l 
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we may write this symbolically as !}.j = (e 0 - 1) f, where 1 stands for the 
"identity operator." Even more symbolically this can be written !}. = eD - 1, 
which suggests that 

D 
D= D 1/}.. 

e -

Thus we obviously ought to ha\ ·e 

CXJ b . 
D = "°" __!_Dk!}. Lk! . 

k=O 

i.e. , 

00 b 
1'cx) = I: k~ u<kicx + 1) - 1<k\x)J. 

k=O 

The beautiful thing about all this nonsense is that it works! 

(a) Prove that (**) is literally true if f is a polynomial function (in which case 
the infinite sum is really a finite sum). Hint: By applying (*) to f(k), find 
a formula for f(k) (x + l) - J'k) (x ); then use the formula in Problem 16(b) 

to find the coefficient of f(j) (x) in the right side of (**). 

(b) Deduce from (**) that 

CXJ b . 
! ' (0) + ... + f' (11) = L k~ [f(k) (11 + 1) - .t<k\O)]. 

k=O 

(c) Show that for any polynomial function g we have 

1
11 + 1 CXJ l 

g(O) + · · · + g(n) = g(t) dt + L .!_!._ [g(k - 1\n + 1) - g'k-1\0)]. 
O k! 

k=I 

(cl) Apply this to g(x) = xfl to show that 

11 - I p+ J fl b ( ) 
"""kP = _n __ +""" __!_ p llp -k+ l. 
L p+l Lkk-1 
k=I k=l 

Using the fact that b1 =-!,show that 

n p+ I p P b ( ) Lk" = _n __ + ~ + L __!_ p 1111 - k+ I. 
p+I 2 k k-1 

k=l k=2 

The first ten instances of' this formula were written out in Problem 2-7, 

which offered as a challenge the discovery of the general pattern. This 
may now seem to he a preposterous suggestion, but the Bernoulli mnn­
bers were actually discovered in precisely this way! After writing out 
these IO formulas, Bernoulli claims (in his posthumously printed \\·ork 
, In Conjerlandi, 1713 ): "\\'hoc, ·er will exam inc the series as to their regu­

larity may he able to continue the table.'' He then writes clmrn the abm-c 
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formula, offering no proof at all, m rely noting that the coefficients bk 
(which he denoted imply by A, B , C, .. . ) atisfy the equation in Prob­
lem 16(b). Th relation between these numbers and the coefficients in 
the power series for z/(ez - 1) was discovered by Euler. 

*18. The formula in Problem 17(c) an be gen ralized to the case wh reg is not a 
polynomial function; the infinite sum must be replaced by a finite sum plu a 
remainder term. In order to find an expression for the remainder, it is useful 
to introduce some new functions. 

(a) The Bernoulli polynomials <p,, are defin d by 

Th fir t three are 

Show that 

1 
<p1 (x) = x - 2, 

2 1 
<p2 (x) = x - x + 6 , 

3x 2 x 
<p3 (x) = x 3 - - + - . 

2 2 

<fJn (0) = bn , 
<fJn (1) = b11 if n > 1, 

<p,/(x) = n<p11 - 1 (x), 
<fJn(x) = (-lt<p,,(1- x) . 

Hint: Prov the last equation by induction on n. 

(b) Let RNk (x) be the remainder term in Taylor' Theorem for f (k), on the 
interval [x, x + 1] , o that 

Prove that 

Hint: Imitate Problem 17(a). Notice the ub ript N - k on R. 

( ) Use the integral form of the remaind r to show that 

Nb l x+lrn (x+l- t ) L k~ RN_/(x) = - .,.,N N! /N+ l)(t) dt. 
k=O ~ 
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(d) Deduce the "Euler-Maclaurin Summation Formula'': 

g (x) + g (x + l ) + · · · + g (x + 11) 

j
x+n+I N b , 

= g(t)clt + L-.hg(k- l\x +11 + 1) -g(k- l\x)] + SN(x,11), 
\ k. , k= I 

where 

S ( . )- - ~Jx+j+ l<f)N(x+ j+l-t) (N)() cl 
N X, 11 - ~ I g t t. , N 

J=O x+1 . 
\ 

(e) Let l/J11 be the periodic function, with period 1, which satisfies l/J11 (t) = 
<p11 (t) for O :S t < 1. (Part (a) implies that if 11 > 1, then l/J11 is continuous, 
since <p11 ( l ) = <p11 (0), and also that l/J11 is even if II is even and odd if n is 
odd.) Show that 

j x+n+I VJN(X - t) 
SN(X,11)=- g(N\t)clt 

x N! 

( 

r x+n+ I ,/, (t) 
= (-l)N+ I lx 'f'~! g(N\t)clt if x is an integer). 

U nlike the remainder in Taylor 's Theorem, the remainder SN (x, 11) usually 
docs not satisfy lim SN (x, 11) = 0, because the Bernoulli numbers and functions 

N-HXJ 

become large very rapidly (although the first few examples do not suggest this). 
Nevertheless, important informa tion can often be obtained from the summation 
formula. The general situation is best discussed within the context of a specialized 
study ("asymptotic series''), but the next problem shows one particularly important 
example. 

**19. (a) Use the Euler-Maclaurin Formula, with N = 2, to show that 

log 1 + · · · + log(n - l) 

;;

11 

1 1 ( 1 ) ;;n VJ2 (t) = log t cl t - - log 11 + - - - 1 + -- cl t. 
I 2 ) 2 II I 2t2 

(b) Show that 

lo · - - + -- cit 
( 

II ! ) l l ;; 
11 VJ2 (t) 

g 11 n+l/2e- n+ 1/ (1211) - 12 1 2t2 · 

( c) Explain why the improper intq,;ral tl = ;; "' 1fr2 (t) / 21 2 d t exists, and show 

that if a = cxp(/3 + 11 / 12), then 

( 
11! ) f ("XJ l/J2(t) log '"' = - --.,- dt. , a 11 11 + 1 /2e - n + 1 /( L11) 

11 
2r-
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(d) Problem 19-41 (d) hows that 

Use part (c) to show that 
a 2 n 2n + 1 e-2n 2 211 

,Jn = lim , 
11---+00 a(2n)2n+l /2e- 2n.jn 

and conclude that a = .J2;. 
(e) Show that 

fol /2 
<p2(t)dt = fo' lf)2(t)dt = 0. 

(You can do the computation explicitly, but th r ult also follows im­
mediately from Problem l 8(a).) Conclude that 

f(x) = fox 1/fi(t) dt I ::=:: 0 for O ::::: x ::::: 1/2 

::::: 0 for 1/2::::: x::::: 1, 

with 1fr(n) = 0 for all n. Hint: Graph {fr on [O, l] , paying particular 
attention to its values at xo, ! , and x 1, where xo and x1 are the roots 
of <p2 (Figure 9). 

cp2 

FIGURE9 

(f) Noting that 1fr(x) = -{f(l -x), show that 

if(x) = f {it(t) dt:::, 0 on [O, l], 

and hence everywhere, with 1fr(n) = 0 for all n. 

(g) Finally, use this information and integration by parts to show that 

f
00 *2 

~) dt > 0. 
} 11 2t 

(h) Using th fact that the maximum value of l<fJ2 (x) I for x in [O, 1] is i 
conclude that 

0 < f J, 
(i) Finally, conclud that 

o/2 (t) 1 
-2-dt < -12 . 2t n 
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The final result of Problem 19, a trong form of Stirling' Formula, shows that 
n! i approximately ~ n11+112e- 11

, in the sense that this xpression differs from n! 
by an amount which is small compared to n when n is large. For xample, for 
n = 10 we obtain 3598696 inst ad of 3628800, with an error < 1 %. 

A more general form of Stirling' Formula illustrate th "asymptotic" nature of 
the summation formula. T he same argument which was u ed in Problem 19 can 
now be used to show that for N 2:: 2 w have 

( 
n! ) LN bk 100 

V!N(t) lo· - ± --dt 
g ../2n nn+ l/2e-n - k=2 k(k - l)nk- 1 n NtN . 

Since V!N i bounded, we can obtain e timates of the form 

If N is large, the con tant MN will al o be large; but for very large n the factor 
n I - N will make the product very small. Thu , the expression 

may be a v ry bad approximation for n ! when n i small, but for large n (how large 
dep nd on N ) it will be an extremely good one (how good depend on N). 
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There was a most ingenious Architect 
who had contrived a new Nlethod 

for building Houses
) 

by beginning at the Roof, and working 
downwards to the Foundation. 

JONATHAN SWIFT 



CHAPTER 28 FIELDS 

Throughout this book a conscientious attempt has been made to define all im­
portant concepts, even terms like "function," for which an intuitive definition is 
often considered sufficient. But Q and R, the two main protagonists of this story, 
have only been named, never defined. What has never been defined can never be 
analyzed thoroughly, and "properties" Pl - Pl3 must be considered assumptions, 
not theorems, about numbers. Nevertheless, the term "axiom" has been purposely 
avoided, and in this chapter the logical status of Pl- P13 will be scrutinized more 
carefully. 

Like Q and R , the sets N and Z have also remained undefined. True, some 
talk about all four was inserted in Chapter 2, but those rough descriptions are far 
from a definition. To say, for example, that N consists of 1, 2, 3, etc., merely 
names some elements of N without identifying them (and the "etc." is useless). 
The natural numbers can be defined, but the procedure is involved and not quite 
pertinent to the rest of the book. The Suggested Reading list contains references 
to this problem, as well as to the other steps that are required if one wishes to 
develop calculus from its basic logical starting point. The further development 
of this program would proceed with the definition of Z, in terms of N, and the 
definition of Q in terms of Z. This program results in a certain well-defined 
set Q, certain explicitly defined operations + and · , and properties P 1- P 12 as 
theorems. The final step in this program is the construction of R , in terms of Q. 
It is this last construction which concerns us. Assuming that Q has been defined, 
and that P 1 Pl 2 have been proved for Q, we shall ultimately defi,ne Rand prove all 
of Pl - Pl 3 for R. 

Our intention of proving Pl - Pl 3 means that we must define not only real num­
bers, but also addition and multiplication of real numbers. Indeed, the real num­
bers are of interest only as a set together with these operations: how the real 
numbers behave with respect to addition and multiplication is crucial; what the 
real numbers may actually be is quite irrelevant. This assertion can be expressed in 
a meaningful mathematical way, by using the concept of a "field," which includes 
as special cases the three important number systems of this book. This extraordi­
narily important abstraction of modern mathematics incorporates the properties 
P l - P9 common to Q, R, and C. A field is a set F (of objects of any sort what­
soever), together with two "binary operations" + and • defined on F (that is, two 
rules which associate to elements a and b in F, other elements a + b and a • b 
in F) for which the following conditions are satisfied: 

(1 ) ( a + b) + c = a + (b + c) for all a, b, and c in F. 
(2) There is some element O in F such that 

(i) a + 0 = a for all a in F, 
(ii) for every a in F, there is some element b in F such that a + b = 0. 

581 
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(3) a + b = b + a for all a and b in F. 
(4) (a• b) • c =a• (b • c) for all a, b, and c in F. 
(5) There is some element 1 in F such that 1 =!= 0 and 

(i) a • 1 = a for all a in F, 
(ii) For every a in F with a =/= 0, there is some element b in F such that 

a•b=l. 

(6) a • b = b • a for all a and b in F. 
(7) a• (b + c) =a• b +a• c for all a, b, and c in F. 

The familiar examples of fields are, as already indicated, Q, R, and C, with 
+ and • being the familiar operations of + and · . It is probably unnecessary to 
explain why these are fields, but the explanation is, at any rate, quite brief. When 
+and• are understood to mean the ordinary+ and·, the rules (I), (3), (4), (6), (7) 
are simply restatements of Pl, P4, PS, PS, P9; the elements which play the role of O 
and 1 are the numbers O and 1 (which accounts for the choice of the symbols 0, l ); 
and the number b in (2) or (5) is -a or a - 1, respectively. (For this reason, in an 
arbitrary field F we denote by -a the element such that a + (-a) = 0, and by 
a-1 the clement such that a • a-• = 1, for a =!= 0.) 

In addition to Q, R, and C , there arc several other fields which can be described 

easily. One example is the collection F1 of all numbers a + b J2 for a, b in Q. 
The operations + and • will, once again, be the usual + and · for real numbers. 
It is necessary to point out that these operations really do produce new elements 
of F1: 

(a+ bJ2) + (c + dJ2) =(a+ c) + (b + d)v2., which is in F1; 

(a+ bv2) · (c + dJ2) = (ac + 2bd) +(be+ ad)v2, which is in F1. 

Conditions (1), (3), (4), (6), (7) for a field are obvious for F1: since these hold for 

all real numbers, they certainly hold for all real numbers of the form a + bv2. 

Condition (2) holds because the number O = O+OJ2 is in F1 and, for a = a +bJ2 

in F1 the number f3 = (-a) + (-b)h in F1 satisfies a + f3 = 0. Similarly, 

1 = 1 + oh is in F1, so (Si) is satisfied. The verification of (5ii) is the only slightly 

difficult point. If a+ bJ2 =!= 0, then 

a+ bJ2 · l = I: 
a+bJ2 

it is therefore necessary to show that l / (a + bv2) is in F1. This is true because 

I = a-bJ2 = a + (-h) h. 
a+ bh (a - bv2)(a + bv2) a2 - 2b2 a2 

- 2b2 

(The division by a - bJ2 is valid because the relation a - bJ2 = 0 could be true 

only if a = b = 0 (since J2 is irrational) which is ruled out by the h)1)othcsis 

a+ hJ2 =!= 0.) 
The next exam pk of a field, F2, is considerably simpler in one respect: it con­

tains only two clements, which we might as well denote by O and 1. The operations 
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+ and • are described by the following tables. 

+ 0 1 0 1 

0 

~ 
0 ~=R 1 1 

The verification of conditions ( 1 )- (7) are straightforward, case-by-case checks. For 
example, condition ( 1) may be proved by checking the 8 equations obtained by 
setting a, b, c = 0 or 1. Notice that in this field 1 + 1 = O; this equation may also 
be written 1 = -1. 

Our final example of a field is rather silly: F3 consists of all pairs (a, a) for a 

in R, and + and • arc defined by 

(a,a) + (b,b) = (a +b,a +b), 
(a, a)• (b, b) =(a· b, a· b). 

(The + and · appearing on the right side are ordinary addition and multiplication 
for R.) The verification that F3 is a field is left to you as a simple exercise. 

A detailed investigation of the properties of fields is a study in itself, but for our 
purposes, fields provide an ideal framework in which to discuss the properties of 
numbers in the most economical way. For example, the consequences of Pl - P9 
which were derived for ''numbers" in Chapter 1 actually hold for any field; in 
particular, they are true for the fields Q, R, and C. 

Notice that certain common properties of Q, R, and C do not hold for all fields. 
For example, it is possible for the equation 1 + 1 = 0 to hold in some fields, and 
consequently a - b = b - a does not necessarily imply that a = b. For the field 
C the assertion 1 + 1 # 0 was derived from the explicit description of C; for the 
fields Q and R, however, this assertion was derivt'd from further properties which 
do not have analogues in the conditions for a field. There is a related concept 
which does use these properties. An ordered field is a field F (with operations + 
and • ) together with a certain subset P of F (the "positive" elements) with the 
following properties: 

(8) For all a in F, one and only one of the following is true: 

(i) a = 0, 
(ii) a is in P, 

(iii) -a is in P. 

(9) If a and b are in P, then a + b is in P. 
(10) If a and bare in P, then a• bis in P. 

\ 'Ve have already seen that the field C cannot be made into an ordered field. 
The field F2, with only two clements, likewise cannot be made into an ordered 
field: in fact, condition (8), applied to 1 = -1 , shows that 1 must be in P; then (9) 
implies that 1 + 1 = 0 is in P, contradicting (8). On the other hand, the field F1, 

consisting of all numbers a + bh with a, b in Q, certainly can be made into 
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an ordered field: let P be the set of all a + b.Ji which are positive real numbers 
(in the ordinary sense). The field F3 can also be made into an ordered field; the 
description of P is left to you. 

It is natural to introduce notation for an arbitrary ordered field which corre­
sponds to that used for Q and R: we define 

a>b if a - bis in P, 
a<b if b > a, 

a'!!:, b if a < b or a = b, 

a~b if a> b or a= b. 

Using these definitions we can reproduce, for an arbitrary ordered field F , the 
definitions of Chapter 7: 

A set A of elements of F is bounded above if there is some x in F such 
that x ~ a for all a in A. Any such x is called an upper bound for A. An 
element x of F is a least upper bound for A if x is an upper bound for A 

and x '!!:, y for every y in F which is an upper bound for A. 

Finally, it is possible to state an analogue of property P 13 for R; this leads to the 
last abstraction of this chapter: 

A complete ordered field is an ordered field in which every nonempty set 
which is bounded above has a least upper bound. 

The consideration of fields may seem to have taken us far from the goal of 
constructing the real numbers. However, we arc now provided with an intelligible 
means of formulating this goal. There are two questions which will be answered 
in the remaining two chapters: 

1. Is there a complete ordered field? 
2. Is there only one complete ordered field? 

Our starting point for these considerations will be Q, assumed to be an or­
dered field, containing N and Z as certain subsets. At one crucial point it will be 
necessary to assume another fact about Q: 

Let x be an element of Q with x > 0. Then for any y in Q there is some II 
in N such that nx > y. 

'This assumption , which asserts that the rational numbers ha\'C the Archimedean 
property of the real numbers, docs not follow from the other properties of an 
ordered field (for the example that demonstrates this conclusively sec rcfc,re11ce l 14] 
of the Suggested Reading). The important point for ns is that when Q is explicitly 
constructed, properties PI P 12 appear as theorems, and so docs this additional 
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assumption; if we really began from the beginning, no assumptions about Q would 
be necessary. 

PROBLEMS 

1. Let F be the set {O, L 2} and define operations+ and· on F by the following 
tables. (The rule for constructing these tables is as follows: add or multiply 
in the usual way, and then subtract the highest possible multiple of 3; thus 
2 · 2 = 4 = 3 + 1, so 2 · 2 = l . ) 

+ 0 2 0 2 

0 0 1 2 0 0 0 0 

1 2 0 0 1 2 

2 2 0 1 2 l 0 2 1 

Show that F is a field, and proye that it cannot be made into an ordered 
field. 

2. Suppose now that we try to construct a field F having elements 0, 1, 
2, 3 with operations + and • defined as in the previous example, by adding 
or multiplying in the usual way; and then subtracting the highest possible 
multiple of 4. Show that F will not be a field. 

3. Let F = {O, 1, a, ,B} and define operations + and • on F by the following 
tables. 

+ 0 ,B 0 1 

0 0 1 a ,B 0 0 0 0 0 

1 1 0 ,B a 0 1 a ,B 

a ,B 0 1 0 a ,B 1 

,B ,B a 1 0 ,B 0 ,B 1 a 

Show that F is a field. 

4. (a) Let F be a field in which 1 + 1 = 0. Show that a + a = 0 for all a (this 
can also be written a = -a). 

(b) Suppose that a + a = 0 for some a =I- 0. Show that 1 + 1 = 0 (an<l 
consequently b + b = 0 for all b). 
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5. (a) Show that in any field we have 

(1 + · · · + 1) · (1 + · · · + l) = 1 + · · · + 1 

111 times II times 

for all natural numbers m and 11. 

(b) Suppose that in the field F we have 

1+···+1=0 
'-.-' 

III tim<'s 

'-.-' 
11111 times 

for some natural number 111. Show that the smallest Ill with this property 
must be a prime number (this prime number is called the characteristic 
of F). 

6. Let F be any field with only finitely many elements. 

(a) Show that there must be distinct natural numbers 111 and 11 with 

1+···+1=1+···+1. 
'-.-' -.,--' 

111 times II times 

(b) Conclude that there is some natural number k with 

1 + · · · + 1 = 0. 
-.,--' 

k times 

7. Let a, b, c, and d be clements of a field F with a· d - b • c #- 0. Show that 
for any a and f3 in F the equations 

a•x+b·y=a, 
c. x + d • )' = {3, 

can be solved for x and v in F. 

8. Let a be an element of a field F. A "square root" of a is an element b of F 

with b2 = b • b = a. 

(a) Hmv many square roots does O have? 

(b) Suppose a #- 0. Show that if a has a square root. then it has two square 
roots, unless 1 + 1 = 0, in which case a has only one. 

9. (a) Consider an equation x 2 + b • x + c = 0, where b and care elements of 
a field F. Suppose that b2 - 4 • c has a square root r in F. Show that 
(-b + r) /2 is a solution of this equation. (Here 2 = 1 + 1 and 4 = 2 + 2.) 

(b) In the field F2 of the text, both clements clearly have a square root. 
On thr other hand, it is easy to check that neither clement satisfies the 
rquation x 2 + x + 1 = 0. Thus some detail in part (a) must be incorrect. 
\ Vhat is it? 

10. Let F be a f1elcl and a an clement of F which docs uot ha\'(_' a square root. 
This problem shows how to construct a bigger field F', containing F, in 
which a docs ha\·c a square root. (This construction has already been carried 



2 8. Fields 587 

through in a special case, namely, F = R and a = -1; this special case should 
guide you through this example.) 

Let F' con i t of all pairs (x, y) with x and y in F. If the operations on F 

are + and • , define operations EB and O on F' a follow : 

(x, y) EB(:, w) = (x + :, y + w), 

(x, y) 0 (:, w) = (x • z + a · y • w, y • ~ + x • w). 

(a) Prove that F', with the operations EB and O, i a field. 
(b) Prove that 

(x, 0) EB (y, 0) = (x + y, 0), 
(x, 0) O (y, 0) = (x • y, 0), 

so that we may agree to abbreviate (x, 0) by x. 

(c) Find a quare root of a = (a, 0) in F'. 

11. Let F be the set of all four-tuples ( w, x, y, ~) of real number . Define + 
and • by 

(s, t, u, v) + ( w, x, y, z) = (s + w, t + x, u + y, v + z), 

(s, t, u, v) • (w, x, y, :) = (sw - tx - uy - vz, sx + t w + uz - vy, 

sy + uw + vx - tz, sz + vw + ty - ux). 

(a) Show that F sati fies all conditions for a field, except (6). At time the 
algebra will become quite ornate, but the existence of multiplicative in­
verses is the only point requiring any thought. 

(b) It is cu tomary to denote 

(0, 1, 0, 0) by i, 
(0,0, 1,0) by j, 
(0, 0, 0, 1) by k. 

Find all 9 product of pairs i, j, and k. The re ult will how in particular 
that condition (6) i definitely fal e. This "skew field" F is known as the 
quaternions. 



CHAPTER 29 CONSTRUCTION OF THE 
REAL NUMBERS 

The mass of drudgery which this chapter necessarily contains is relieved by one 
truly first-rate idea. In order to prove that a complete ordered field exists we will 
have to explicitly describe one in detail; verifying conditions ( 1)- (10) for an ordered 
field will be a straightforward ordeal, but the description of the field itself, of the 
elements in it, is ingenious indeed. 

At our disposal is the set of rational numbers, and from this raw material it is 
necessary to produce the field which will ultimately be called the real numbers. 
To the uninitiated this must seem utterly hopeless- if only the rational numbers 
are known, where are the others to come from? By now we have had enough 
experience to realize that the situation may not be quite so hopeless as that casual 
consideration suggests. The strategy to be adopted in our construction has already 
been used effectively for defining functions and complex numbers. Instead of 
trying to determine the "real nature" of these concepts, we settled for a definition 
that described enough about them to determine their mathematical properties 
completely. 

A similar proposal for defining real numbers requires a description of real mun­
bers in terms of rational numbers. The observation, that a real number ought to 
be determined completely by the set of rational numbers less than it, suggests a 
strikingly simple and quite attractive possibility: a real number might (and in fact 
eventually will) be described as a collection of rational numbers. In order to make 
this proposal effective, however, some means must be found for describing "the 
set of rational numbers less than a real number" without mentioning real num­
bers, which are still nothing more than heuristic figments of our mathematical 
imagination. 

If A is to be regarded as the set of rational numbers which are less than the 
real number a, then A ought to have the following property: If x is in A and y 
is a rational number satisfying y < x, then y is in A. In addition to this property, 
the set A should have a few others. Since there should be some rational number 
x < a, the set A should not be empty. Likewise, since there should be some 
rational number x > a, the set A should not be all of Q. Finally, if x < a, then 
there should be another rational mun ber y with x < y < a, so A should not 
contain a greatest member. 

If we temporarily regard the real numbers as known, then it is not hard to 
check (Problem 8- l 7) that a set A with these properties is indeed the set of rational 
numbers less than some real number a. Since the real numbers arc presently 
in limbo, your proo( if' you supply one, must be regarded only as an unoflicial 
comment on these proceedings. lt will serve to convince you, however, that \\'e 
have not failed to notice any crucial property of the set A. There appears to be 
no reason for hesitating any longer. 

588 
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A real number is a set a, of rational numbers, with the following four proper­
ties: 

( 1) If x is in a and y is a rational number with y < x, then y is also in a. 
(2) a i 0. 
(3) a i Q. 
(4) There is no greatest element in a; in other words, if x is in a , then there 

is some y in a with y > x. 

The set of all real numbers is denoted by R. 

Just to remind you of the philosophy behind our definition, here is an explicit 
example of a real number: 

a = { x in Q : x < 0 or x 2 < 2}. 

It should be clear that a is the real number which will eventually be known as ./2, 
but it is not an entirely trivial exercise to show that a actually is a real number. 
The whole point of such an exercise is to prove this using only facts about Q; 
the hard part will be checking condition (4), but this has already appeared as a 
problem in a previous chapter (finding out which one is up to you). Notice that 
condition (4), although quite bothersome here, is really essential in order to avoid 
ambiguity; without it both 

{x in Q: x < 1} 

and 

{ x in Q : x :.:: 1 } 

would be candidates for the "real number l." 
The shift from A to a in our definition indicates both a conceptual and a no­

tational concern. Henceforth, a real number is, by definition, a set of rational 
numbers. This means, in particular, that a rational number (a member of Q ) 
is not a real number; instead every rational number x has a natural counterpart 
which is a real number, namely, {y in Q : y < x }. After completing the construc­
tion of the real numbers, we can mentally throw away the elements of Q and 
agree that Q will henceforth denote these special sets. For the moment, however, 
it will be necessary to work at the same time with rational numbers, real numbers 
(sets of rational numbers) and even sets of real numbers (sets of sets of rational 
numbers). Some confusion is perhaps inevitable, but proper notation should keep 
this to a minimum. Rational numbers will be denoted by lower case Roman letters 
(x , y , z, a, b, c) and real numbers by lower case Greek letters (a , {3, y ); capital 
Roman letters (A, B, C) will be used to denote sets of real numbers. 

The remainder of this chapter is devoted to the definition of +, ·, and P for R, 
and a proof that with these structures R is indeed a complete ordered field. 

" re shall actually begin with the definition of P, and e\Tn here we shall work 
backwards. vVe first define a < {3; later, when +, · , and O are available, we shall 
define P as the set of all a with O < a, and prove the necessary properties fo r P. 
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The reason for beginning with the definition of < is the simplicity of this concept 
in our present setup: 

Definition. If a and f3 arc real numbers, then a < f3 means that a is contained in 
f3 (that is, every clement of a is also an clement of f3 ), but a -=f. {3. 

A repetition of the definitions of :::S, >, ~ would be stultifying, but it is interesting 
to note that :::S can now be expressed more simply thau <; if a and f3 are real 
numbers, then a :::S f3 if and only if a is contained in f3. 

If A is a bounded collection of real numbers, it is almost obvious that A should 
have a least upper bound. Each a in A is a co llection of rational numbers; if these 
rational numbers are all put in one collection {3, then f3 is presumably sup A. In 
the proof of the following theorem we check all the little details which have not 
been mentioned, not least of which is the assertion that f3 is a real number. (\ Ve 
will not bother numbering theorems in this chaptc1~ since they all add up to one 
big Theorem: There is a complete ordered field. ) 

If A is a set of real numbers and A -=f. 0 and A is bounded above, then A has a 
least upper bound. 

Let f3 = {x : x is in some a in A}. Then f3 is certainly a collection of rational 
numbers; the proof that f3 is a real number requires checking four facts. 

(1) Suppose that x is in f3 and y < x. The first condition means that x is in a 
for some a in A. Since a is a real number, the assumption y < x implies 
that y is in a. Therefore it is certainly true that y is in f3. 

(2) Since A -=f. 0, ther<" is some a in A. Since a is a real numbc1~ there is some 
x in a. This means that x is in {3, so f3 -=f. 0. 

(3) Since A is bounded above, there is some real number y such that a < y 

for every a in A. Since y is a real number, there is some rational number 
x which is not in y. Now a < y means that a is contained in y, so it is 
also true that x is not in a for any a in A. This means that x is not in {3; 

so f3 -=I- Q. 
(4) Suppose that x is in {3. Then x is in a for some a in A. Since a does not 

have a greatest mcmbc1~ there is some rational number y " ·ith x < y and y 
in a. But this means that y is in {3; thus f3 docs not ha,·c a greatest member. 

These four observations prove that f3 is a real numbec The proof that f3 is the 
least upper bound of A is easier. If a is in A, then clearly a is contained iu {3 ; this 
means that a :::S f3, so f3 is an upper bound for A. On the other hand, if y is au 
upper hound for A, then a :::S y for every a i11 A; this means that a is contained 
i11 y , for every a in A, and this surely implies that f3 is contained in y. This, in 
tum, means that f3 :::S y; thus f3 is the least upper bound of A. I 

The definition of + is both obvious aucl easy, but is must be compkmcutccl with 
a proof that this "obvious'' definition makes any sense at all. 
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Defmitiozz. If a and f3 are real numbers, then 

a + f3 = {x : x = y + ~ for some y in a and some ~ in {3}. 

If a and f3 are real numbers, then a + f3 is a real number. 

Once again four facts must be verified. 

(I) Suppose w < x for some x in a+ {3. Then x = y + z for some yin a and 
some z in {3, which means that w < y + z, and consequently, w - y < z. 
This shows that w - y is in f3 (since z is in {3, and f3 is a real number). Since 
w = y + (w - y), it follows that w is in a+ {3. 

(2) It is clear that a + f3 #- 0, since a #- 0 and f3 #- 0. 
(3) Since a #- Q and f3 #- Q, there are rational numbers a and b with a 

not in a and b not in {3. Any x in a satisfies x < a (for if a < x, then 
condition (1) for a real number would imply that a is in a ); similarly any y 

in f3 satisfies y < b. Thus x + y < a + b for any x in a and y in {3. This 
shmvs that a + b is not in a + {3, so a + f3 #- Q. 

(4) If x is in a+ {3, then x = y + z for y in a and z in {3. There are y' in a 
and z' in f3 with y < y' and z < z'; then x < y' + z' and y' + z' is in a+ {3. 
Thus a + f3 has no greatest member. I 

By now you can see how tiresome> this whole procedure is going to be. Every time 
we mention a new real number, we must prove that it is a real number; this requires 
checking four conditions, and even when trivial they require concentration. There 
is really no help for this (except that it will be less boring if you check the four 
conditions for yourself). Fortunately, however, a few points of interest will arise 
now and then, and some of our theorems will be easy. In particular, two properties 
of + present no problems. 

If a, {3, and y are real numbers, then (a+ {3) + y =a+ ({3 + y). 

Since (x + y) + z = x + (y + z) for all rational numbers x, y, and z, every member 
of (a+ {3) + y is also a member of a+ (/3 + y), and vice \'ersa. I 

If a and f3 are real numbers, then a + f3 = f3 +a. 

Left to you (even easier). I 

To prove the other properties of + we first define 0. 

Defizzitiou. 0 = {x in Q : x < O}. 

It is, thank goodness, obvious that O is a real numbc1~ and the following theorem 
is also simple. 
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If a is a real number, then a + 0 =a. 

If x is in a and y is in 0, then y < 0, so x + y < x. This implies that x + y is in a. 
Thus every member of a + 0 is also a member of a. 

On the other hand, if x is in a, then there is a rational number y in a such that 
y > x. Since x = y + (x -y), where y is in a, and x -y < 0 (so that x -y is 
in 0), this shows that x is in a + 0. 'Thus every member of a is also a member 
of a+ 0. I 

The reasonable candidate for -a would seem to be the set 

{x in Q : -x is not in a} 

(since -x not in a means, intuiti\Tly, that -x > a, so that x < -a). But in certain 
cases this set will not even be a real number. Although a real number a does not 
have a greatest member, the set 

Q - a= {x in Q: xis not in a} 

may have a least clement xo; when a is a real number of this kind, the set 
{x : -x is not in a} will have a greatest element -xo. It is therefore necessary to 
introduce a slight modification into the definition of -a , which comes equipped 
with a theorem. 

Definition. If a is a real number, then 

-a = {x in Q : -x is not in a. but - x is not the least element of Q - a}. 

If a is a real number, then -a is a real number. 

(1) Suppose that .x is in -a and y < x. Then -y > -x. Since -x is not in a, 
it is also true that -y is not in a. lvloreover, it is dear that -y is not the 
smallest element of Q - a, since -x is a smaller element. This shows that 
y lS ll1 -a. 

(2) Since a -=/=- Q, there is some rational number y which is not in a. \ \re can 
assume that y is not the smallest rational number in Q - a (since y can 
always be replaced by any y' > y). Then -y is in -a. Thus -a# 0. 

(3) Since a # 0, there is some x in a. Then - x cannot possibly be in -a, so 
-a#Q. 

(4) If xis in -a, then-xis not in a, and there is a rational number y < -x 
which is also not in a. Let z. be a rational number with y < z. < -x. Then 
z is also not in a, and z is dearly not the smallest element of Q - a. So 
- z. is m -a. Since -z. > x, this shows that -a docs not hm·e a greatest 
element. I 

The proof that a + (-a) = 0 is not entirely straightforward. The cliffirnltics 
are not caused, as you might presume, by the finicky details in the definition 
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of -a. Rathc1; at this point we require the Archimedean property of Q stated on 
page 584, which does not follow from Pl ~Pl2. This property is needed to pro\·c 
the following lemma, which plays a crucial role in the next theorem. 

Let a be a real number, and z a positive rational number. Then there are (Figure 1) 
rational numbers x in a, and y not in a, such that y - x = z. l\Ioreover, we may 
assume that y is not the smallest element of Q - a. 

Suppose first that z is in a. If the numbers 

z, 2z, 3z, ... 

were all in a , then eve1y rational number would be in a, since every rational num­
ber w satisfies w < nz for some n, by the additional assumption on page 584. This 
contradicts the fact that a is a real number, so there is some k such that x = kz is 
in a and y = (k + 1 ).:: is not in a. Clearly y - x = z. 

l\Ioreover, if y happens to be the smallest element of Q - a, let x' > x be an 
clement of a, and replace x by x', and y by y + (x' - x ). 

If z is not in a, there is a similar proof, based on the fact that the numbers (-n )z 
cannot all fail to be in a. I 

z 

a i 
FIGURE I x y 

If a is a real number, then 

a+(-a)=O. 

Suppose x is in a and y is in -a. Then -y is not in a, so -y > x. Hence 
x + y < 0, so x + y is in 0. Thus every member of a+ (-a) is in 0. 

It is a little more difficult to go in the other direction. If z is in 0, then -z > 0. 
According to the lemma, there is some x in a, and some y not in a, with y not the 
smallest element of Q - a, such that y - x = - z. This equation can be written 
x + (-y) = z. Since xis in a, and -y is in -a, this proves that z is in a+ (-a). I 

Before proceeding with multiplication, we define the "positive elements" and 
prove a basic property: 

Definition. P = {a in R: a > O}. 

Notice that a + f3 is dearly in P if a and f3 arc. 
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If a is a real numbc1~ then one and only one of the follm, ·ing conditions holds: 

(i) a = 0, 
(ii) a is in P, 

(iii) -a is in P. 

lf a contains any positive rational number, then a certainly contains all ncgatin· 
rational numbers, so a contains O and a =!=- 0, i.e. , a is in P. If a contains no 
positive rational numbers, then one of two possibilities must hold: 

( I) a contains all negatin· rational numbers; thC'n a = 0. 
(2) thcrC' is some negative rational number x which is not in a; it can be as­

sumed that x is not the least clement of Q - a (since x could be rf'placed 
by x /2 > x ); then -a contains the positive rational number -x, so, as we 
ha,T just pron'd, -a is i11 P. 

This shows that at least Ollf of (i)- (iii) must hold. If a = 0, it is clearly impossible 
for condition (ii) or (iii) to hold. l\ [orcovc1~ it is impossible that a > 0 and -a > 0 
both hold, since tliis would imply that O = a + (-a) > 0. I 

Recall that a > f3 was defined to m ean that a contains f3, but is unequal to f3. 
This definition was fine for prm·ing completf'ncss, but now we han· to show that 
it is equi,·alent to the definition which would be made in terms of P. Thus, we 
must show that a - f3 > 0 is equivalent to a > f3. This is clearly a consequence 
of the next theorem. 

If a , {3 , and y an' real numbers and a > {3 , then a + y > f3 + y. 

The hypothesis a > f3 implies that f3 is contained in a; it follows immediately from 
the definition of + that f3 + y is contained in a+ y. This shows that a+ y ~ f3 + y. 
We can easily rule out the possibility of equality, for if 

<X + y = f3 + y, 

then 

a = (a + y) + (-y) = ({3 + y) + (-y) = {3, 

vvhich is false. 'rhus a + y > f3 + y. I 

Multiplication presents difficulties of its own. If a, f3 > 0, then a • f3 can be 
defined as follows. 

Definition. If a and f3 arc real numbers and a, f3 > 0, then 

a· f3 = {z : z ::: 0 or z = x · y for some x i11 a ancl y in f3 with x. y > 0). 

If a ancl f3 arc real 11umbcrs with a. f3 > 0, then a • f3 is a real 11111nbci: 
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As usual, we must check four conditions. 

(I) Suppose w <.::,where.:: is in a •f3. If w ~ 0, then w is automatically 
in a· {3. Suppose that w > 0. Then z > 0, so.:: = x · y for some positive x 
in a and positive y in {3. Now 

w = u~z = w:y = G . x) . y. 

Since O < w <.::,we have w/-::. < 1, so (w/z) ·xis in a. Thus w is in a •f3. 
(2) Clearly a • f3 -=j:. 0. 
(3) If x is not in a, and y is not in {3, then x > x' for all x' in a, and y > y' 

for all y' in {3. Hence xy > x'y' for all such positive x' and y'. So xy is not 
in a • {3; thus a • f3 -=j:. Q. 

(4) Suppose w is in a • {3, and w _:s 0. There is some x in a with x > 0 and 
some y in f3 with y > 0. Then .:: = xy is in a • f3 and z > w. Now suppose 
w > 0. Then w = xy for some positive x in a and some positive y in {3. 
l\foreover, a contains some x' > x; if z = x'y, then -::, > xy = w, and.:: is 
in a • f3. Thus a • f3 docs not have a greatest element. I 

Notice that a • f3 is clearly in P if a and f3 arc. This completes the verification 
of all properties of P. To complete the definition of • we first define la 1-

Definition. If a is a real number, then 

lal =la, 
-a. 

if a~ 0 
if a~ 0. 

Dffmition. If a and f3 are real numbers, then 

{ 

0, 

a•/3= lal·lf31, 
-(lal • lf31), 

if a = 0 or f3 = 0 
if a > 0, f3 > 0 or a < 0, f3 < 0 
if a > 0, f3 < 0 or a < 0, f3 > 0. 

As one might suspect, the proofs of the properties of multiplication usually in­
volve reduction to the case of positive numbers. 

If a, {3, and y arc real numbers, then a • ({3 • y) = (a • {3) • y. 

This is clear if a, /3, y > 0. The proof for the general case requires considering 
separate cases (and is simplified slightly if one uses the following theorem). I 

If a and /3 arc real numbers, then a • f3 = f3 •a. 
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This is clear if a, f3 > 0, and the other cases arc easily checked. I 

Definition. 1 = {x in Q : x < I}. 
(It is clear that 1 is a real number.) 

If a is a real number, then a • 1 =a. 

Let a > 0. It is easy to see that every member of a • 1 is also a member of a. 
On the other hand, suppose x is in a. If x .:::: 0, then x is automatically in a • 1. 
If x > 0, then there is some rational number y in a such that x < y. Then 
x = y · (x/y), and x/y is in 1, so xis in a· 1. This proves that a• l = a if a> 0. 

If a < 0, then, applying the result just proved, we have 

a• 1 = -(lal •Ill)= -(lal) = a. 

Finally, the theorem is obvious when a = 0. I 

Dflinition. If a is a real number and a > 0, then 
a-1 = {x in Q: x.:::: 0, or x > 0 and 1/x is not in a, but 1/x is not the smallest 

member of Q - a}; 

if a < 0, then a-1 = -(la 1)-1. 

If a is a real number unequal to 0, then a-1 is a real number. 

Clearly it suffices to consider only a > 0. Four conditions must be checked. 

(I) Suppose y < x, and xis in a-1. If y.:::: 0, then y is in a-1. If y > 0, then 
x > 0, so 1/x is not in a. Since ljy > l/x, it follows that ljy is not in a, 
and 1 /y is dearly not the smallest element of Q - a, so y is in a-1. 

(2) Clearly a-1 =f. 0. 
(3) Since a > 0, there is some positive rational number x in a. Then I/ x 1s 

not in a-1, so a-1 =f. Q. 
(4) Suppose x is in a-1 . If x .:::: 0, there is clearly some y in a-1 with y > x 

because a-1 contains some positive rationals. If x > 0, then 1 /x is not in a. 
Since I /x is not the smallest member of Q - a, there is a rational number 
y not in a, with y < I /x. Choose a rational number .:: with y < .:: < I /x. 
Then l /: is in a-1, and 1 / z > x. Thus a-1 docs not contain a largest 
member. I 

In order to prove that a-1 is really the multiplicative imnse of a, it helps to 
have another lemma, ,vhich is the multiplicative analogue of our first lemma. 

Let a be a real number with a > 0, and z a rational number with .:: > I. Then 
there are rational numbers x in a, a11d y not in a, such that y/x = .::. ~loreovcr, 
we can assume that y is not the least clement of Q - a. 
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Suppose first that .:: is in a. Since .:: - I > 0 and 

z" = (1 + ( z - I ) ) 11 ~ 1 + n ( z - 1 ) , 

it follows that the numbers 
7 z2 73 
..... , ' ..... ' ... 

cannot all be in a. So there is some k such that x = .::k is in a, and y = i+1 is not 
in a. Clearly y / x = .::. 1 foreover, if y happens to be the least element of Q - a, 
let x' > x be an clement of a, and replace x by x' and y by yx'/x. 

If .:: is not in a, there is a similar proo( based on the fact that the numbers l / .::k 
cannot all fail to be in a. I 

If a is a real number and a =I= 0, then a • a- 1 = 1. 

It obviously suffices to consider only a > 0, in which case a-1 > 0. Suppose that 
x is a positive rational number in a, and y is a positive rational number in a-1. 

Then I/ y is not in a, so I/ y > x; consequently x y < 1, which means that x y is 
in 1. Since all rational numbers x ::::; 0 are also in 1, this shows that every member 
of a • a- 1 is in 1. 

To prove the converse assertion, let .:: be in 1. If .:: .::::: 0, then clearly z is in 

a • a-1. Suppose O < .:: < l. According to the lemma, there are positive rational 
numbers x in a, and y not in a, such that y/x = 1/.::; and we can assume that y 
is not the smallest element of Q - a. But this means that z = x · (1/y), where x 

is in a, and 1/y is in a-1. Consequently, z is in a• a-1. I 

\Ve arc almost done! Only the proof of the distributive law remains. Once again 
we must consider many cases, but do not despair. The case when all numbers are 
positive contains an interesting point, and the other cases can all be taken care of 
very neatlr 

If a, f3, and y are real numbers, then a• (fJ + y) =a• f3 +a• y. 

Assume first that a, f3, y > 0. Then both numbers in the equation contain all 
rational numbers ::::; 0. A positive rational number in a • (f3 + y) is of the form 
x · (y + z) for positive x in a, y in f3, and .:: in y. Since x · (y + z) = x · y + x · z, 
where x · y is a positive element of a • f3, and x · .:: is a positive element of a • y , 

this number is also in a • f3 + a • y. Thus, every element of a • (f3 + y) is also in 
a•f3+a•y. 

On the other hand, a positive rational number in a • f3 + a • y is of the form 
x1 · y +x2 · z for positive x1,x2 in a, yin f3 , and z in y. If x1.::::: x2. then 
(x1/x2) · y.::::: y, so (x1/x2) · y is in f3. Thus 

x1 · y + x2 · z = x2[(x1/x2))' + .::] 
is in a• (f3 + y). Of course, the same trick works if x2 ::::; XJ. 

To complete the proof it is necessary to consider the cases when a. f3. and y 

arc not all > 0. lf any one of the three equals 0, the proof is easy and the cases 
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im'Olving a < 0 can be derin'd immediately once all the possibilities for f3 and 
y ha,·e been accounte<l for. Thus we assume a > 0 and consider three cases: 
{3. y < 0, and f3 < 0, y > 0, and f3 > 0, y < 0. The first follows immediately from 
the case already pro\'cd, and the third follows from the second by interchanging f3 
and y. Therefore we concentrate on the case f3 < 0, y > 0. There are then two 
possibilities: 

so 

so 

( l ) f3 + y ~ 0. Then 

a· y =a· ([{3 + y] + lfJI) =a• ({3 + y) +a· lfJI, 

(2) f3 + y !:: 0. Then 

a • ({3 + y) = -( a • I fJ I) + a • y 
=a·f3+a•y. 

a• lfJI =a· (lfJ +YI+ y) =a· lf3 +YI+ a• Y, 

a• ({3 + y) =-(a· lfJ + yl) =-(a· lfJI) +a• y =a· f3 +a· y. I 

This proof completes the work of the chapter. Although long an<l frequently 
tedious, this chapter contains results sufficiently important to be read in detail at 
least once (and preferably not more than once!). For the first time we know that we 
have not been operating in a vacuum there is in<leed a complete orderc<l field, the 
theorems of this book are not based on assumptions which can ne\'er be realized. 
One interesting and horrid possibility remains: thel'e may be several complete 
ordered fields. ff this is true, then the theorems of calculus are unexpectedly rich 
in content, but the properties P 1- P 13 are disappointingly incomplete. The last 
chapter disposes of this possibility; properties Pl ~P 13 completely characterize the 
real numbers- anything that can be proved about real numbers can be prove<l on 
the basis of these properties alone. 

PROBLEJ\IS 
There are only two problems in this set, but each asks for an entirely <liffrrent 

construction of the real numbers! The detailed examination of another construc­
tion is recommended only for masochists, but the main idea behind these other 
constructions is worth knowing. The real numbers constructed in this chapter 
might be called "the algebraist's real numbers," since they were purposely defined 
so as to guarantee the least uppcl' bound property, which in\'oh'es the ordering <, 

an algebraic notion. The real number system constructed in the next problem 
might be called "the analyst's real numbers," since they are cle\'ise<l so that Cauchy 
scq11e11ces \\'ill al\\'ays com·crgc. 

1. Since ewry rea l number ought to be the limit of' some Cauchy sequence 
of rational numbers, we might try to defi11r a real number to be a C auchy 



29. Constmrtion ef the Real J\~mzbers 599 

sequence of rational numbers. Since two Cauchy sequences might converge 
to the same real numbcT, however, this proposal requires some modifications. 

(a) Define two Cauchy sequences of rational numbers {a11 } and {b11 } to be 
equivalent (denoted by {a11 } '"" {b11 }) if lim (a 11 - b,z) = 0. Pro,·e that 

11--'>N 
{a11} '"" {an}, that {b11} '"" {a11 } if {a 11 } '"" {b11 }, and that {a11 } '"" k 11 } if 
{an} '"" {b11} and {b11} '"" kn}. 

(b) Suppose that a is the set of all sequences equivalent to {a11 }, and f3 is the 
set of all sequences equivalent to { b11 }. Prove that either a n f3 = 0 or 
a= {3. (If a n{3-=/=- 0, then there is some {c,1 } in both a and {3. Shmv that 
in this case a and f3 both consist precisely of those sequences equivalent 
to {c11 }.) 

Part (b) shows that the collection of all Cauchy sequences can be split up 
into disjoint sets, each set consisting of all sequences equivalent to some 
fixed sequence. \ \'e define a real number to be such a collection, and 
denote the set of all real numbers by R. 

(c) If a and f3 are real numbers, let {a11 } be a sequence in a , and {b11 } a 
sequence in {3. Define a+ f3 to be the collection of all sequences equiva­
lent to the sequence {a,1 + b11 }. Show that {a11 + b 11 } is a Cauchy sequence 
and also show that this definition docs not depend on the particular se­
quences {a11 } and {b11 } chosen for a and {3. Check also that the analogous 
definition of multiplication is well defined. 

(cl) Show that R is a field with these operations; existence of a multiplicative 
imTrse is the only interesting point to check. 

(e) Define the positive real numbers P so that R will be an ordered field. 
(f) Prove that every Cauchy sequence of real numbers converges. Remem­

ber that if {a11 } is a sequence of real numbers, then each a 11 is itself a 
collection of Cauchy sequences of rational numbers. 

2. This problem outlines a construction of "the high-school student's real mnn­
bers.'' \Ve define a real number to be a pair (a, {b11 } ). where a is an inte­
ger and {b11 } is a sequence of natural numbers from O to 9, with the pro­
viso that the sequence is not e,·entually 9; intuiti,·ely. this pair represents 

00 

a + L b11 l 0- 11
• \ Vith this definition, a real number is a very concrete ob-

11= I 

ject, but the difficulties inrnlved in defining addition and multiplication are 
formidable (how do you add infinite decimals \\·ithout \\'orrying about car­
rying digits infinitely far out?). A reasonable approach is outlined below; the 
trick is to use least upper bounds right from the start. 

(a) Define (a, {b11 }) < (c, {d11 }) if a< c, or if a= c and for some 11 \\'C have 
b11 < d 11 but b1 = d1 for l :S j < 11. Using this definition, pron' the least 
upper bound property. 

k 

(b) Gin'n a = (a, {b11 }), define ak = a + L b11 JO 11 · intuitin,}y. CXk 1s the 
11 = ! 
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rational number obtained by changing all decimal places after the kth 
k 

to 0. Conversely, given a rational number r of the form a+ L b11 10-n, 
n= l 

let r' denote the real number (a, {b,/}) , where bn' = b11 for 1 .::: n .::: k 
and b,/ = 0 for n > k. Now for a= (a, {b11 }) and fJ = (c, {d11 }) define 

a + fJ = up{ (a k + fJk)' : k a natural number} 

(the least upper bound exists by part (a)) . If multiplication is defined 
similarly, then the verification of all conditions for a field is a straight­
forward task, not highly recommended. Once more, however, existence 
of multiplicative inverses will be the hardest. 



CHAPTER 30 UNIQUENESS OF THE REAL NUl\IBERS 

\t\Te shall now revert to the usual notation for real numbers, reserving boldface 
symbols for other fields which may turn up. l\Ioreover, we will regard integers and 
rational numbers as special kinds of real numbers, and forget about the specific 
way in which real numbers were defined. In this chapter we are interested in only 
one question: are there any complete ordered fields other than R? The answer 
to this question, if taken literally, is ''yes.'' For example, the field F3 introduced in 
Chapter 28 is a complete ordered field, and it is certainly not R. This field is a 
"silly" example because the pair (a, a) can be regarded as just another name for 
the real number a; the operations 

(a,a) + (b,b) = (a +b,a +b), 

(a, a)· (b, b) =(a· b, a· b), 

are consistent with this renaming. This sort of example shows that any intelligent 
consideration of thl' question requires some mathematical means of discussing such 
renaming procedures. 

If the elements of a field F are going to be used to rename elements of R, then 
for each a in R there should correspond a ''name" f (a) in F. The notation f (a) 

suggests that renaming can be formulated in terms of functions. In order to do 
this we will need a concept of function much more general than any which has 
occurred until now; in fact, we will require the most general notion of "function" 
used in mathematics. A function, in this general sense, is simply a rule which 
assigns to some things, other things. To be formal, a function is a collection of 
ordered pairs (of objects of any sort) which does not contain two distinct pairs with 
the same first element. The domain of a function f is the set A of all objects a 

such that (a,b) is inf for some b; this (unique) bis denoted by J(a). If f(a) is 
in the set B for all a in A , then f is called a function from A to B. For example, 
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if f (x) = sin x for all x in R (and f is defined only for x in R ), then f is a 
function from R to R; it is also a function from R to [ -1. 1]; 

if f (.::) = sin z for all .:: in C, then f is a function from C to C; 

if f (z) = e" for all z in C, then f is a function from C to C; it is also a 
function from C to {z in C : z -=f. O}; 

e is a function from {z in C: z -=f. O} to {x in R: 0:::: x < 2rr}; 

if f is the collection of all pairs (a, (a, a)) for a in R then f is a function 
from R to F3. 
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DEFINITION 

Suppose that F1 and F2 arc two fields; we will denote the operations in F1 by 
EB, 0, etc., and the operations in F2 by +, •, etc. If F2 is going to be considered 
as a collection of new names for elements of F1 , then there should be a function 
from Fi to F2 with the following properties: 

( 1) The function f should be one-one, that is, if x # y, then we should have 
f (x) # f (y); this means that no two elements of F1 have the same name. 

(2) The function f should be "onto," that is, for every element ::: in F2 there 
should be some x in F1 such that z = f (x ); this means that every element 
of F2 is used to name some element of F1. 

(3) For all x and y in F1 we should have 

f(x EB y) = f(x) + f(y), 

J (x O y) = J (x) • f (y); 

this means that the renaming procedure is consistent with the operations of 
the field. 

If we are also considering F1 and F2 as ordered fields, we add one more re­
quirement: 

(4) If x ©Y, then J (x) < J (y). 

A function with these properties is called an isomo1jJ/zism from F1 to F2. This 
definition is so important that we restate it formally. 

If F1 and F2 are two fields, an isomorphism from F1 to F2 is a function J 
from F1 to F2 with the following properties: 

(1) If x # y, then f(x) # J (y). 

(2) If z is in F2 , then z = f(x) for some x in F1. 
(3) If x and y are in F1, then 

J (x EB y) = J (x) + f(y), 
f (x O y) = J (x) • f (y). 

If F1 and F2 are ordered fields we also require: 

(4) If x © y, then J (x) < J(y). 

The fields F1 and F2 are called isomorphic if there is an isomorphism between 
them. Isomorphic fields may be regarded as essentially the same- any important 
property of one will automatically hold for the other. Therefore, \\T can, and 
should, reformulate the question asked at the beginning of the chapter; if F is a 
complete ordered field it is silly to expect F to equal R rather. we ,rnuld like to 
know if F is isomorphic to R. In the following theorem. F ,viii be a field. \\'ith 
operations + and • , and "positive clements'' P; we ,vrite a < b to mean that b - a 

is in P, and so forth. 
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If F is a complete ordered field, then F is isomorphic to R. 

Since two fields are defined to be isomorphic if there is an isomorphism benveen 
them, we must actually construct a function f from R to F which is an isomor­
phism. We begin by defining f on the integers as follows: 

J(O) = 0, 
f(n) = 1 + ... + 1 for n > 0, --..-

n times 

f(n)=-(1+ ... +1) for n < 0. 

It is easy to check that 

111\ times 

f (m + n) = f (m) + f(n), 
f(m · n) = f(m) • f (n), 

for all integers m and n, and it is convenient to denote f (n) by n. \ Ve then 
define f on the rational numbers by 

f(m/n) = 1n/n = 1n • n-1 

(notice that the n-fold sum 1 + · · · + 1 #- 0 if n > 0, since F is an ordered field). 
This definition makes sense because if m/n = k/ l, then ml= nk, so 1n°l = k·n, so 
,n • n-1 = k • r•. lt is easy to check that 

f (r1 + r2) = f (ri) + f (r2), 
f (r1 · r2) = f(ri) • f (r2). 

for all rational numbers r1 and r2, and that f(r1) < f (r2) if r1 < r2. 
The definition of f (x) for arbitrary x is based on the now familiar idea that 

any real number is determined by the rational numbers less than it. For any x 
in R, let Ax be the subset of F consisting of all f (r), for all rational numbers 
r < x. The set Ax is certainly not empty, and it is also bounded above, for if ro 
is a rational number with ro > x, then f (ro) > f (r) for all f (r) in Ax, Since F 

is a complete ordered field, the set Ax has a least upper bound; we define f (x) as 
sup Ax, 

\Ve now have f (x) defined in two different ways, first for rational x, and then for 
any x. Before proceeding further, it is necessary to show that these hvo definitions 
agree for rational x. In other words, if x is a rational numbc1; we want to show 
that 

sup Ax = f (x), 

where f (x) here denotes 1n / n, for x = 111 / n. This is not au to ma tic, but depends 
on the completeness of F; a slight digression is thus required. 

Since F is complete, the elements 

1 + ... + 1 --..-
II times 

for natural numbers n 
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form a set which is not bounded above; the proof is exactly the same as the proof 
for R (Theorem 8-2). The consequences of this fact for R have exact analogues 
in F: in particular, if a and bare elements of F with a < b, then there is a rational 
number r such that 

a < f(r) < b. 

Having made this observation, we return to the proof that the two definitions 
of f (x) agree for rational x. If y is a rational number with y < x, then we 
have already seen that f(y) < f (x). Thus every element of Ax is < f (x). 
Consequently, 

sup Ax ~ f (x). 

On the other hand, suppose that we had 

sup Ax < f (x). 

Then there would be a rational number r such that 

sup Ax < f (r) < f (x). 

But the condition f(r) < f(x) means that r < x, which means that f(r) is in the 
set Ax; this clearly contradicts the condition sup Ax < f (r). This shows that the 
original assumption is false, so 

sup Ax= f (x). 

We thus have a certain well-defined function f from R to F. In order to show 
that f is an isomorphism we must verify conditions (1)- (4) of the definition. We 
will begin with (4). 

If x and y are real numbers with x < y, then clearly Ax is contained 111 Ay. 
Thus 

f(x) = sup Ax~ supAy = f(y). 

To rule out the possibility of equality, notice that there are rational numbers r 
and s with 

x <,. < s < y. 

We know that f (r) < f (s). It follows that 

f(x) ~ f (r) < f (s) ~ f(y). 

This proves (4). 
Condition (1) follmvs immediately from (4): If x =j::. y, then either x < y or 

y < x; in the first case f(x) < f(y), and in the second case f(y) < f(x); in 
either case f (x) =/=- f(y). 

To prove (2), let a be an element of F, and let B be the set of all rational 
numbers r with f (r) < a. The set B is not empty, and it is also bounded above, 
because there is a rational numbers with f(s) > a, so that f(s) > f (r) for r 
in B, which implies that s > r. Let x be the least upper bound of B; we claim 
that f(x) = a. In order to pro,T this it suffices to eliminate the alternatives 

f(x) < a. 
a < f (x). 
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In the first case there would be a rational number r with 

f (x) < f (r) < a. 

But this means that x < r and that r is in B, which contradicts the fact that 
x = sup B. In the second case there would be a rational number r with 

a < f (r) < f (x). 

This implies that r < x. Since x = sup B, this means that r < s for some s in B. 
Hence 

f(r) < f (s) < a. 

again a contradiction. Thus f (x) = a, proving (2). 
To check (3), let x and y be real numbers and suppose that f (x + y) # 

f(x) + f (y). Then either 

f (x + y) < f (x) + f (y) or f (x) + f (y) < f(x + y). 

In the first case there would be a rational number r such that 

f(x + y) < f(r) < f(x) + f (y). 

But this would mean that 
x + y < r. 

Therefore r could be written as the sum of two rational numbers 

r = r, + r2, where x < r1 and y < r2. 

Then, using the facts checked about f for rational numbers, it would follow that 

f(r) = f (r, + r2) = f(ri) + f(r2) > f (x) + f(y), 

a contradiction. The other case is handled similarly. 
Finally, if x and y are positive real numbers, the same sort of reasoning shows 

that 
f (x · y) = f (x) • f (y); 

the general case is then a simple consequence. I 

This theorem brings to an encl our investigation of the real numbers, and resolves 
any doubts about them: There is a complete ordered field and, up to isomorphism, 
only one complete ordered field. It is an important part of a mathematical educa­
tion to follow a construction of the real numbers in detail, but it is not necessary 
to refer ever again to this particular construction. It is utterly irrelevant that a real 
number happens to be a collection of rational numbers, and such a fact should 
never enter the proof of any important theorem about the real numbers. Reason­
able proofa should use only the fact that the real numbers arc a complete ordered 
field, because this property of the real numbers characterizes them up to isomor­
phism, and any significant mathematical property of the real numbers \\·ill be true 
for all isomorphic fields. To be candid I should admit that this last assertion is just 
a prejudice of the author, but it is one shared by almost all other mathematicians. 
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PROBLEl\IS 

1. Let f be an isomorphism from Fi to F2. 

(a) Show that f (0) = 0 and f (1) = 1. (Here O and 1 on the left denote 
elements in F1, while O and 1 on the right denote dements of F2. ) 

(b) Show that f(-a) = -f(a) and f(a- 1) = f(a)- 1, for a=/:- 0. 

2. Herc is an opportunity to convince yourself that any significant property of 
a field is shared by any field isomorphic to it. The point of this problem is 
to write out very formal proofs until you arc certain that all statements of 
this sort are obvious. F1 and F2 will be two fields which arc isomorphic; for 
simplicity ,ve will denote the operations in both by + and •. Show that: 

(a) If the equation x 2 + 1 = 0 has a solution in F1, then it has a solution 
in F2. 

(b) If every polynomial equation x 11 + a 11 _ 1 • x 11
-

1 + · · · + ao = 0 with 
ao, ... , a11 _ 1 in F1, has a root in F1, then c,·ery polynomial equation 
.x 11 + b11 _ 1 • xn - l + · · · + bo = 0 with bo, ... , b11 _ 1 in F2 has a root in F2. 

(c) If 1 + · · · + I (summed m times) = 0 in F1, then the same is true in F2. 
(d) If F1 and F2 are ordered fields (and the isomorphism f satisfies f (x) < 

f (y) for x < y) and F1 is complete, then F2 is complete. 

3. Let f be an isomorphism from F1 to F2 and g an isomorphism from F2 
to F3. Define the function g o f from F1 to F3 by (g o f)(x) = g(f (x)). 

Show that g o f is an isomorphism. 

4. Suppose that Fis a complete ordered field, so that there is an isomorphism f 
from R to F. Show that there is actually only one isomorphism from R 
to F. Hint: In case F = R, this is Problem 3-17. Now if f and g are two 
isomorphisms from R to F consider g - 1 o f. 

5. Find an isomorphism from C to C other than the identity function. 
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One purpose of this bibliography is to guide the reader to other sources, but the 
most important function it can serve is to indicate the variety of mathematical 
reading available. Cons!:'quently, there is an attempt to achieve diversity, but no 
pretense of being complete. The present plethora of mathematics books would 
make such an undertaking almost hopeless in any case, and since I have tried to 
encourage independent reading, the more standard a text, the less likely it is to 
appear here. In some cases, this philosophy may seem to have been carried to 
extremes, as some entries in the list cannot be read by a student just finishing a 
first course of calculus until several years have elapsed. Nevertheless, there are 
many selections which can be read now, and I can't believe that it hurts to have 
some idea of what lies ahead. 

For most references, only the title and author have been given, since so many of 
these books have gone through numerous editions and printings, often having gone 
out of print at some point only to be resurrected later on by a different publisher 
(often as an inexpensive paperback by the redoubtable Dover Publications or by 
the l\Iathematical Association of America). More exact information really isn't 
necessary, since it is now so easy to search for books on-line ·at Amazon.com and 
other sites. 

t is used to indicate books whose availability, either new or used, is problematical. 
Author and title searches may turn up other intriguing books by the same author, 
or other books with similar titles. In addition, many of these books will still be 
found in well-stocked academic libraries, perhaps the best place of all to search; 
despite the co11Yenience of the internet, nothing matches the experience of an 
actual (as opposed to a virtual) library, with books stacked according to subject, 
awaiting serendipitous discovery. 

One of the most elementary unproved theorems mentioned in this book is the 
"Fundamental Theorem of Arithmetic", that every natural number can be written 
as a product of primes in only one way. This follows from the basic fact alluded 
to on page 444, a proof of which will be found near the beginning of almost 
any book on elementary number theory. Few books have \\'on so enthusiastic an 
audience as 

[ I J An Jntrodurtion to thf Theory ef Numbers, by G. H. Hardy and E. l\ I. \\'right. 

Two other recommended books arc 

t [2] A Selection ef Problems in the Theory qf Xumbers, by \ \: Sierpinski. 
[3] Three Pearls qf }{umber Theory, by A. Khinchin. 

The Fundamental Theorem also applies in more general algebraic settings, see 
references [33] and [ 34]. 

The subject of irrational numbers straddles the fields of number thcorv and 
analysis. An excellent introduction will be found in 

f 4] Irrational .Numbers, by I. l\I. Niven. 

609 
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Together with many historical notes, there arc references to some fairly elementary 
articles in journals. There is also a proof that 7T is transcendental (sec also [ 59] ) 
and, finally, a proof of the ''Gelfond-Schneider theorem": If a and b arc algebraic, 
with a -=!=- 0 or I, and b is irrational, then ab is transcendental. 

All the books listed so far begin with natural numbers, but whenc\'Cr necessary 
take for granted the irrational numbers, not to mention the integers and rational 
numbers. Several books present a construction of the rational numbers from the 
natural numbers, but one of the most lucid treatments is still to be found in 

[5] Foundations ef .A11au1sis, by E. Landau. 

\ Vhile many mathematicians arc content to accept the natural numbers as a nat­
ural starting point, numbers can be defined in terms of sets, the most basic starting 
point of all. A charming exposition of set theory can be found in a sophisticated 
little book called 

[6] }faive Set Tltemy, by P R. Halmos. 

Another very good introduction is 

[7] Tlteoo1 ef Sets, by E. Kamke. 

Perhaps it is necessary to assure some victims of the ''new math" that set theory 
does have some mathematical content (in fact, some very deep theorems). Using 
these deep results, Kamke proves that there is a discontinuous function f such 
that f(x + y) = f (x) + f(y) for all x and y. 

Inequalities, which were treated as an elementary topic in Chapters 1 and 2, 
actually form a specialized field. A good elementary introduction is provided by 

[8] .Ana[vtic Inequalities, by N. KazarinofI 

Twelve different proofs that the geometric mean is less than or equal to the arith­
metic mean, each based on a different principle, can be found in the beginning of 
the more ackanced book 

[9] An Introduction lo Inequalities, by E. Beckenbach and R. Bellman. 

The classic work on inequalities is 

f I OJ Inequalities, by G. H. Hardy, J. E. I ,ittlewood, and G. Polya. 

Each of the authors of this triple collaboration has provided his own contribution 
to the sparse literature about the nature of mathematical thinking, written from a 
mathematician's point of view. l\ ly favorite is 

ll 1] ,,11\/atlzemalician\ ..:ljJO!ogy, by C.H. Hardy. 

Littk\\'ood's a11ecdotal selections arc cutitlccl 

t fl 21 ,.1 1\/atlzematician\ Jlisce!!a,~y, by.J. E. Littlewood. 
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Pol ya 's contribution is pedagogy at the highest le,·el: 

[13] Jlatlzematics and Plausible Reasoning (Vol. I: Induction and .1lnalogy in Jlatlzematics; 
t Vol. II: Patterns ef Plausible Inference), by G. Polya. 

Geometry is the other main field ,vhich can be considered as background for 
calculus. Though Euclid's Elements is still a masterful mathematical work, greater 
perspective is supplied by some more modern texts, which examine foundational 
questions, non-Euclidean geometry, the role of the ''Archimedean axiom'' in geom­
etry, and further results from "classical geometry". Of the following three books, 
the first, listed in previous editions of this book, has probably been supplanted by 
the later ones, which cover some more advanced material, and perhaps require a 
little more sophistication on the part of the reader. 

t [ 14 J Elementary Geometry jiwn rm Advanced Stand/Joint, by E. l\ Ioise. 
[15] Euclidean and JVon -Eudidean Geomellies, by 1\1. J Greenberg. 
[ 16] Geometry: Euclid and Bqond, by R. Hartshorne. 

ln addition, all sorts of fascinating geometric things can be found in 

[ 17] Introduction to Geometry, by H. S. Coxeter. 

Almost all treatments of geometry at least mention convexity, which forms an­
other specialized topic. I cannot imagine a better introduction to convexity, or a 
better mathematical experience in general, than reading and working through 

t [ 18] C01wex fzgures, by I. l\ I. Yagi om and W G. Boltyanskii. 

This book contains a carefully arranged sequence of definitions and statements of 
theorems, whose proofs arc to be supplied by the reader (worked-out proofs are 
supplied in the back of the book). Its current unavailability is perhaps a testament 
to the lack of interest in working through exercises, which might also apply to 
another geometry book modeled on the same principle: 

t l 19] Combinato,ial Geomeby in the Plane, by H. Hadwiger and H. Debrunner. 

Along with these two out-of-the-ordinary books, I might mention an extremely 
valuable little book, also of a specialized sort, 

[20] Counterexamples in Analysis, by B. Gelbaum and J. Olmsted. 

1\Iany of the example in this book come from more advanced topics in analysis. 
but quite a few can be appreciated by someone ,,·ho knows calculus. 

Of the infinitude of calculus books. two arc considered classics: 

[21] A Cow'.1·e qf Pure Jlatlzematics, by G. H. Hardy. 
[22] Dffferential and integral Calculus (two rnlumcs). by R. Courant. 
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Courant is especially strong on applications to physics. There is also a more mod­
ern update 

[23] Introduction to Calculus and Ana[ysis, by R. Courant and F John. 

Speaking of applications to physics, an elegant exposition of the material in 
Chapter 17, together with much further discussion, can be found in the article 

[24] On the geometl)' ef the Kepler problem, by John l\Iilnor; in The American Alathe­
matical Alonth[y, Volume 90 (1983), pp. 353- 365. 

(In this paper the curve c' of Chapter 17 is denoted by v, and the derivative of 
the important composition v o e-1 (page 334) is introduced quite off-handedly as 
dv /de. ) A "straight-forward'' derivation of Kepler's laws, together with numerous 
references, can be found in another article in this same journal, 

[25] The mathematical relationshzjJ between li.epler's laws and Newton's laws, by 
Andrew T Hyman; in The American ,\lathemalical ,Honth[y, Volume 100 
( 1993), pp. 932 936. 

The later parts of Volume I of Courant contain material usually found in ad­
vanced calculus, including differential equations and Fourier series. An introduc­
tion to Fourier series (requiring a little advanced calculus) will also be found in 

[26] An Introduction to Fourier Series and Integrals, by R. Seeley. 

The second volume of Courant (advanced calculus in earnest) contains addi­
tional material on differential equations, as well as an introduction to the calculus 
of variations. A widely admired book on differential equations is 

[271 Lectures on Ordinary Differential Equations, by W. Hurewicz. 

A good example of new approaches and new topics is provided by 

f28] Differential Equations, Dynamical !fystems, and An Introduction to Chaos, 
by 1\1. Hirsch, S. Smale, and R. L. Devaney. 

I will bypass the more or less standard advanced calculus books (which can easily 
be found by the reader) since nowadays the presentation of advanced calculus for 
mathematics students is based upon linear algebra. One of the first treatments of 
advanced calculus using linear algebra is the very nice book 

t f29] Calculus of f'ector Functions, by R. H. Crowell and R. E. \ \'illiamson. 

l\!f ore recent books to be recommended are 

[301 Advanced Calrulu.s ef Several Variables, by C. H. Edwards,Jr. 
131] Alultivariable Mathematics, by T Shifrin. 

And of course I am still partial to an older text 

132] Calrulus on .\lanifolriY, by 1\1. Spivak. 
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There are three other topics which are somewhat out of place in this bibli­
ography because they are gradually becoming established as part of a standard 
undergraduate curriculum. The purposeful study of fields and related systems is 
the domain of ''algebra.'' Two excellent texts are 

[33] Algebra, by l\Iichael Artin. 
[34] Abstract Algebra, by D. Dummit and R. Foote. 

For "complex analysis", the promised land of Chapter 27, the classical text is 

[35] Complex Ana(ysis, by L. Ahlfors. 

Rather revolutionary when it was first published, it might now be considered some­
what old-fashioned, and you might prefer the second in a series of books (3 and 
counting) that have appeared more recently: 

[36] Fourier Ana(ysis: An lntrodurtion, by E. Stein and R. Shakarchi. 
[37] Complex Ana(ysis, by E. Stein and R. Shakarchi. 
[38] Real Anafysis, by E. Stein and R. Shakarchi. 

And, since the topic of''real analysis" [high-octane Calculus] has been broached, 
two classics should be mentioned. The first, affectionately known as ''baby Rudin", 
was the source of several problems that appear in this book. 

[39] Principles ef 1\Jathematical Ana(ysis, by W Rudin. 
[40] .Functional Ana(ysis, by \\: Rudin. 

The subject of "topology" has not been mentioned before, but it has really been 
in the background of many discussions, since it is the natural generalization of the 
ideas about limits and continuity which play such a prominent role in Part II of 
this book. The standard text is now 

[41] Topology, by]. R. Munkres. 

For the related field of "differential topology", see 

[42] Differential TojJology, by V. Guillemin and A. Pollack. 

The next few topics, ranging from elementary to very difficult, are included 
in this bibliography because they have been alluded to in the text. The gamma 
function has an elegant little book devoted entirely to its properties, most of them 
proved by using the theorem of Bohr and l\Iollerup which was mentioned in Prob­
lem 19-40: 

t [43] The Gamma Function, by E. Artin 

The gamma function is only one of several important improper integrals in math­
ematics. In particulai; the calculation of f0

00 e- x
2 
dx (sec Problem 19-42) is impor-
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tant in probability theory, where the " normal distribution function" 

1 lx I )'2 
<t>(x) = r;::;- e- 2 dy 

v 2n -oo 

plays a fundamental role. A classic book on probability theory is 

[44] An Introduction to Probability The01y and Its Applications, by \\'. Feller. 

The impossibility of integrating certain functions in elementary terms (among 

them f (x) = e-x
2

) is a fairly esoteric topic. A clisrnssion of the possibilities of 
integrating in elementary terms, with an outline of the impossibility proof", and 
references to the original papers of Liouville, will be found in 

f 451 The Integration ef Functions ef a Single Variable, by G. H. Hardy. 

The basically algebraic ideas behind the arguments were made much d earer over 
a hundred years after Liouvillc 's work, in the paper 

[46] On Liousville's Theorem onjunctions with elementary iutegrals, by M. Rosenlicht; in 
Pacific Journal ef.Matlzematics, Volume 24, No. l ( 1968), pp. 153 161. (Also 
available on-line: go to pro j ecteuclid. org and search for Rosenlicht.) 

For a good overview of the subject, and some more recent developments, see 

[47] Integration in finite terms: the Liousville theory, by T Kasper; in Alat!tematics 
Alaga;:,ine, Volume 53, No. 4 (1980), pp. 195 - 201. 

Reference [46] makes use of the notions of"differential algebra'' , a field in which 
a related but seemingly mofC' difficult problem had been solved earlier: There arc 
simple differential equations (y" + xy = 0 is a specific example) whose solutions 
cannot be expressed even in terms of indefinite integrals of elementary functions. 
This fact is proved on page 43 of the (60-pagc) book: 

t [481 An Introduction to Differential Algebra, by I. K aplansky 

A few words should also be said in defense of the process of integrating in 
elementary terms, which many mathematicians look upon as an art (unlike differ­
entiation, which is merely a skill). You are probably already aware that the process 
of integration can be expedited by tables of indefinite integrals. There arc several 
books containing extensive tables of integrals (and also tables of series and prod­
ucts), but for most integrations it suffices to consult one of the fairly cxtensin' tables 
of indefinite integrals that arc available on-line, for example, at sosrnath. corn, and 
at wikipedia. org, with its <.' \ 'er-expanding source of generally defiuitivc entries for 
mathematics and physics. 

The remaining references arc of a somewhat clifkrcnt sort. They fall into three 
categories, of which the first is historical. 

For the history of calculus it se lf, an excellent comprehe11si\'c source, lilied \\'ith 
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detailed explicit examples, rather than generalized descriptions, is 

[49] The Historical Development ef Calculus, by C. H. Edwards,Jr. 

Some historical remarks, and an attempt to incorporate them into the teaching of 
calculus, will be found in 

[50] The Calculus: A Genetic Approach, by 0. Toeplitz. 

An admirable textbook on the history of mathematics in general is 

[51] An Introduction to the History ef Aiathematics, by H. Eves. 

As might be inferred from the quotation on page 39, the basic idea for constructing 
the real numbers is derived from Dedekind, whose contributions can be found in 

[52] Essays on the Theory ef Numbers, by R. Dedekind. 

The most important notions of set theory, especially the proper treatment of infinite 
numbers, were first introduced by Cantor, whose work is reproduced in 

[53] Contributions to the Founding ef the Theory ef Tranifmite Numbers, by G. Cantor. 

The letter of H. A. Schwarz referred to in Problem l l-69 will be found in 

t [54] lVays ef Tlzought ef Great 1\iathematicians, by H. Meschkowski. 

Finally, a great deal of interesting historical material may also be found on-line at 
the site www-groups. des. st-and. ac. uk/ -history I 

The second category in this final group of books might be described as "pop­
ularizations." There are a surprisingly large number of first-rate ones by real 
mathematicians: 

[55] What is Aiathematics?, by R. Courant and H. Robbins. 
[56] Geometry and the Imagination, by D. Hilbert and S. Cohn-Vossen. 
[57] The Enjoyment ef 1\lathematics, by H. Rademacher and 0. Toeplitz. 

t [58] famous Problems ef JHathematics, by H. Tietze; Graylock Press, 1965. 

One of the most renowned "popularizations" is especially concerned with the 
teaching of mathematics: 

[59] Elementary Aiathematicsfrom an Advanced Standpoint, by F. Klein (vol. I: Arith­
metic, Algebra, Anarysis; vol. 2: Geometry); Dover, 1948. 

Volume 1 contains a proof of the transcendence of n which, although not so ele­
mentary as the one in [4], is a direct analogue of the proof that e is transcendental, 
replacing integrals with complex line integrals. It can be read as soon as the basic 
facts about complex analysis arc known. 

The third category is the very opposite extreme- original papers. The clifli­
culties encountered here are formidable, and I have only had the courage to list 
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one such paper, the source of the quotation for Part IV. It is not even in English, 
although you do have a choice of foreign languages. The articl in the original 
French is in 

[60] Oeuvres Completes d 'Abel. 

It fir t appeared in a German translation in the Journal far die reine und angewandte 
Mathematik, Volum 1, 1826. To compound the difficulties, these reference will 
usually be available only in university libraries. Yet the study of this paper will 
probably be as valuable as any oth r reading mentioned here. The reason is 
ugg st d by a remark of Abel himself, who attributed his profound knowledge of 

mathematics to the fact that he read the masters, rather than the pupils. 
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TO SELECTED 

PROBLEMS 





CHAPTER 1 I. (i) I = a - 1a = a - 1 (ax)= (a - 1a)x = } · x = x. 

(iii) If x 2 = y 2 , then O = x 2 - y2 = (x - y)(x + y), so either x - y = 0 or 

x + y = 0, that is, either x = -y or x = y. 
(vi) Replace y by -y in (iv). 

2. One step requires dividing by x - y = 0. 
3. (i) a/b = ab- 1 = (ac)(b- 1c- 1) = (ac)(bc) - 1 (by (iii)) = ac/bc. 

(ii) (ad+ bc)/(bd) = (ad+ bc)(bd) - 1 = (ad+ bc)(b- 1d - 1) (by (iii)) = 
ab- 1 + ccJ- 1 = a/b + c/d. 

(iii) ab(a - 1b- 1) = (a -a - 1)(b · b - 1) = 1, so a - 1 · b- 1 = (ab) - 1. 

(v) (a/b)/(c/d) = (a/b)(c/d)- 1 =(a· b- 1)(c · d - 1) - 1 =(a· b- 1)(c- 1 • d) = 
ad(b - 1 • c- 1) = ad(bcr 1 = (ad)/(bc). 

4. (i) x < -1. 
(iii) x > J7 or x < - ./7. 
(v) All x, since x 2 - 2x + 2 = (x - l )2 + 1. 
(vii) x > 3 or x < -2, since 3 and -2 are the roots of x 2 - x - 6 = 0. 
(ix) x > n or -5 < x < 3. 
(xi) x < 3. 
(xiii) 0 < x < l. 

5. (i) b - a and d - c are in P , so (b - a) + (d - c) = (b + d) - (a + c) is 
in P. Thus, b + d >a+ c. 

(iii) Using (ii), -c < -cl; then (i) implies that a + (-c) < b + (-d). 
(v) (b-a) and-care in P, so -c(b-a) = ac-bc is in P, that is, ac > be. 
(vii) Using (iv), a > 0 and a < 1, so a2 < a. 
(ix) Substitute a for c and b ford in (viii). 

9. (i) J2 + J3 - Js + ./7. 
(iii) la+ bl+ lcl - la+ b + cl. 

(v) J2+ J3+ Js-J7. 
10. (i) a if a :::: -b and b :::: O; 

-a if a ~ -b and b ~ O; 

(iii) 

11. (i) 
(iii) 
(v) 

(vii) 
12. (i) 

(iii) 
(v) 

(vii) 

619 

a + 2b if a :::: -b and b ~ O; 
-a - 2b if a ~ -b and b :::: 0. 
x - x 2 if x:::: O; 
- x - x 2 if x ~ 0. 
x = 11, -5. 
-6 < x < -2. 
No .x (the distance from x to 1 plus the distance from x to -1 is at 
least 2). 
x=l ,- 1. 
(lxyl)2 = (xy)2 = x 2y 2 = lxl 2 1yl2 =(I.xi· ly1)2; since lxyl and lxl · lyl 
are both:::: 0, this prm·es that lxyl = lxl · IYl-
lxl/lyl = lxl · lyl- 1 =I.xi· 1.v - 11 (by (ii)) = lxy - 11 (by (i)) = lx / yl. 
Itfollowsfrom (iv) that lxl = ly-(y-x)I ~ IYl+ly-xl,so lxl-lYI ~ 
Ix -yl. 
Ix+ y + zl ~Ix+ YI+ 1.::1 ~I.ti+ IYI + 1.::1. If equality holds, then 
Ix + y I = Ix I + IY I, so x and y ha\·e the same sign. l\ lorem·er . .:: must 
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CHAPTER 2 

have the same ign a x + y, so x , y , and z must all have the same sign 
(unle s one is 0). 

1. (i) Since 12 = 1 · (2) · (2 · 1 + 1) /6, the formula is true for n = 1. Suppos 
that th formula i true for k. Then 

2 . (i) 

k(k + 1)(2k + l) 
12 + ... + k2 + (k + 1)2 = + (k + 1)2 

6 

= (k; l) [k(2k + 1) + 6(k + l)] 

= (k; l) [(k + 2)(2k + 3)] 

(k + l)(k + 2)(2[k + 1] + 1) 

6 

so the formula is true for k + 1. 

n 

I)2i - 1) = 1 + 3 + s + .. . + c2n - 1) 
i=l 

= 1 + 2 + 3 + · · · + 2n - 2 (1 + · · · + n ) 

(2n )(2n + 1) 
= 

2 
- n(n + 1) 

=n2. 

5. (a) Since 

(b) 

1 - r 2 

l+r=-- , 
1-r 

the formula is true for n = 1. Suppose that 

Then 

Thus 

1 - rn+l 
1 + r + · · · + r 11 = - --

1 - r 

1 - rn+l 
1 + r + ... + rn + rn+ I = + rn+ 1 

1 - r 
1 - rn+l + rn+lo - r) 

1 - r 

1 - r 

S = 1 + r + · · · + r11 

rS = r + · · · + r" + r 11+1
• 

S(l - r ) = S - rS = 1 - r11+1
, 



6. (i) 

so 

S= 

From 

1 _ ,-n+l 

1 - ,. 
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(k + 1 )4 
- k4 = 4k3 + 6k2 + 4k + l, k= 1, ... ,/Z 

we obtain 
II 11 11 

so 

I 4 1 6
11 (n + 1 )(211 + 1) 11 (n + 1) 

(11 + ) - - 6 - 4 2 - 11 I:>3 
= 4 

k=l 

II 

(iii) From 

1 1 
----
k k + 1 k(k + 1). 

k= 1. .... 11 

we obtain 
1 II 1 

1 - 11 + 1 = L k(k +I). 
k=l 

8. is either even or odd, in fact it is odd. Suppose II is either even or odd; 
then n can be written either as 2k or 2k + 1. In the first case n + I = 2k + 1 
is odd; in the second case n + I = 2k + I + 1 = 2(k + 1) is even. In either 
case, n + 1 is either even or odd. (Admittedly, this looks fishy, but it is really 
correct.) 

9. Let B be the set of all natural numbers I such that no - 1 + I is in A. Then 
1 is in B, and I + I is in B if I is in B, so B contains all natural numbers, 
which means that A contains all natural numbers :::::. no. 

12. (a) Yes, for if a+ b were rational, then b = (a+ b) - a would be rational. If 
a and b are irrational, then a + b could be rational, for b could be r - a 
for some rational number r. 

(b) If a = 0, then ab is rational. But if a -=/=- 0, then ab could not be rational, 
for then b = (ab) · a - 1 would be rational. 

(c) Yes; for example, tl2. 
(cl) Yes; for example, J2 and -h. 

13. (a) Since 

(311 + 1)2 = 9n 2 + 611 + I = 3(311 2 + 2n) + 1, 
(3n + 2)2 = 9n 2 + 1211 + 4 = 3(311 2 + 411 +I)+ 1, 

it follows that if k2 is divisible by 3, then k must also be divisible by 3. 

Now suppose that J3 were rational, and let J3 = p / q where p and 
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q have no common factor. Then p 2 = 3q 2 , so p 2 is divisible by 3, so 
p must be. Thus, p = 3 p' for some natural number p', and conse­
quently (3 p')2 = 3q 2 , or 3(p')2 = q 2 . Thus, q is also di\'isible by 3, a 
contradiction. 

The same proofs work for Js and ./6, because the equations 

(Sn+ 1)2 = 2Sn 2 + I On+ 1 = S(Sn 2 + 2n) + 1, 
(Sn+ 2)2 = 2Sn 2 + 20n + 4 = S(Sn 2 + 4n) + 4, 

(Sn+ 3)2 = 2Sn 2 + 30n + 9 = S(Sn 2 + 6n + 1) + 4, 

(Sn+ 4) 2 = 2Sn 2 + 40n + 16 = S(Sn 2 + 8n + 3) + L 

and the corresponding equations for numbers of the form 6n + m, show 

that if k2 is divisible by S or 6, then k must be. The proof fails for J4, 
because (4n + 2)2 is divisible by 4. (For precisely this reason this proof 
cannot be used to show that in general Jci is irrational if a is not a 
perfect square~ we have no guarantee that (a 11 + m )2 might not be a 
multiple of a for some m < a. Actually, this assertion is true, but the 
proof requires the information in Problem 17 .) 

(b) Since 

(2n + 1)3 = 8n 3 + 12n 2 + 6n + 1 = 2(4n 3 + 6n 2 + 3n) + I, 

it fo11ows that if k3 is even, then k is even. If V1 = p / q where p and 
q have no common factors, then p 3 = 2q 3 , so p 3 is divisible by 2, so p 

must be. Thus, p = 2p' for some natural number p', and consequently 
(2p')3 = 2q 3 , or 4(p')3 = q 3. Thus, q is also even, a contradiction. 

The proof for V3 is similar, using the equations 

(3n + 1)3 = 27n 3 + 27n 2 + 9n + 1 = 3(9n 3 + 9n 2 + 311) + l, 
(3n + 2)3 = 27n 3 + S4n 2 + 36n + 8 = 3(9n 3 + 18n 2 + 12n + 2) + 2. 

19. If n = 1, then(} + h)" = 1 + nh. Suppose that (1 + h)11 ~ 1 + 11h. Then 

(} + h)11+1 = (} + h)(l + h)11 ~ (} + h)(} + nh), since 1 + h > 0 

1. 

2. 

= 1 + (n + l)h + nh2 
::::_ 1 + (n + l)h. 

For h > 0, the inequality fo11ows directly from the binomial theorem, since 
all the other terms appearing in the expansion of ( 1 + h )'1 are positive. 

(i) 

(iii) 
(v) 
(vii) 

(i) 
(iii) 
(v) 

(x + 1)/(x + 2); the expression f (f (x)) makes sense only when x #- -1 
and x #- -2. 
1 / (} +ex) (for x #- - 1 / c if e #- 0). 
(x + y + 2)/(x + I )(y + 1) (for x, y #- - I ). 
Only e = 1, since f (x) = f (ex) implies that x = ex, and this must be 
true for at least one x #- 0. 
y ~ 0 and rational, or y ~ l. 
0. 

- } ' 0, 1. 
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3. (i) {x : -1.:::x.:::l} . 

(iii) {x : x =J. 1 and x =J. 2}. 

(v) 0. 

4. (i) 22y . 

(iii) 22sin1 + sin(2t) . 

5. (i) p o s. 

(iii) s o S. 

(v) P o P. 

(vii) s o s o s o P o P o P o s . 

11. (a) y. 

(b) H(y). 

(c) H(y). 

12. (a) 
even odd 

even even neither 

odd neither odd 

(b) 
even odd 

even even odd 

odd odd even 

(c) 
f even f odd 

g even even even 

g odd even odd 

(d) Let g(x) = f (x) for x ~ 0 and define g arbitrarily for x < 0. 

21. (a) Let g(x) = h(x) = 1 and let f be a function for which f (2) =J. f (l) + 
f (1). Then f o (g + h) =J. f o g + f o h. 

(b) [(g+h) o f](x) = (g+h)(f(x)) =g(f(x))+h(f(x)) = (g o f)(x)+(h o 
f)(x) =[(g o !)+ (h o f)](x). 

1 1 1 (1 ) (c) f o g (x) = f (g(x)) = f (g(x)) = f o g (x). 

(d) Let g(x) = 2 and let f be a function for which f Ci) =J. 1/f (2). Th n 
1/(f O g) =J. f O (1/g). 
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CHAPTER 4 1. (i) (2, 4). 
(iii) (a-c,a+c). 

(v) [-2. 2]. 
(vii) (-oo. l] U [l. oo). 

3. (i) All points below the graph of f (x) = x. 
(iii) All points below the graph of f (x) = x 2. 

(\') All points between the graphs of f (x) = x + 1 and f (x) = x - 1. 
( vii) A collection of straight lines parallel to the graph of f (x) = - x, inter-

sccting the horizontal axis at the points (11, 0) for integers 11. 

(ix) All points inside the circle of radius 1 and around (1, 2). 
4. (i) A square with vertices (I, 0), (0, 1 ), (-1, 0), and (0, -1 ). 

(iii) The union of the graph of f(x) = x and of f(x) = 2 - x. 
(v) The point (0, 0). 

(vii) The circle of radius Js around ( l, 0), since x 2 - 2x + y 2 = (x - I )2 + 
)'2 - 1. 

6. (a) Simply obser\'e that the graph of f (x) = 111 (x - a) + b = mx + (b - ma) 
is a straight line with slope 111, which goes through the point (a, b). (The 
important point about this exercise is simply to remember the point slope 
form. ) 

(b) The straight line through (a. b) and (c. d) has slope (d - b)/(c - a), so 
the equation follows from part (a). 

(c) \Vhen 111 = 111 1 and b -=f. b'. In that case, there is clearly no number x with 
f(x) = g(x), while such a number x always exists if 111 -=f. 111

1
, namely, 

x = (b' - b)/(m - m'). 

7. (a) If B = 0 and A -=f. 0, then the set is the vertical straight line formed 
by all points (x, y) with x = -C /A. If B -=f. 0, the set is the graph of 
f(x) = (-A/B)x + (-C/A). 

(b) The points (x, y) on the vertical line with x = a are precisely the ones 
which satisfy 1 · x + 0 · y + (-a) = 0. The points (x, y) on the graph of 
f(x) = mx+b are precisely the ones which satisfy (-111)x+ 1-y+(-b) = 
0. 

11. ( i) The graph of f is symmetric with respect to the vertical axis. 

(ii) The graph of f is symmetric with respect to the origin. Equivalently, 
the part of the graph to the left of the vtTtical axis is obtained by re-
fleeting first through the vertical axis, and then through the horizontal 
axis. 

(iii) The graph of f lies above or on thC::' horizontal axis. 

(iv) The graph of f repeats the part between O and a over and over. 

21. (a) The square of the distance from (x, x 2) to (0, ! ) is 
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which is the square of the distance from (x, x 2) to the graph of g. 

(b) The point (x, y) satisfies this condition if and only if 

1. (ii) 

(iv) 

(vi) 

(x - a)2 + (y - /3)2 = (y - y)2, 

or 

x 2 
- 2ax + a2 + y2 - 2/3y + /32 = y2 - 2yy + y 2, 

or 

y = x2 + -- x+ . ( 
1 ) ( a ) (a2 + 132 _ y2) 

2/3 - 2y y - /3 2/3 - 2y 

If /3 = y, o that P is on the line L, then the solution is the vertical line 
through P. 

lim x 
3 

-
8 = lim (x 2 + 2x + 4) = 12. 

x---+ 2 X - 2 x ---+ 2 

xn -yn 
lim = lim xn-1 + xn-2y + ... + xyn-2 + yn-1 
x---+y x - y x---+y 

= Yn - 1 + Yn - 1 + ... + Yn-1 = nyn - 1. 

lim ,Ja+h - ,Ja = lim ( ,Ja+h - ,Ja) ( ,Ja+h + ,Ja) 
h-+0 h h---+ 0 h(.J a+ h + Ja) 

1
. 1 

= 1m-----

h---+ O .j a + h + ,Ja 
1 

2,Ja" 

3. (i) l = 0. For all x we have I cos(x2) I :::; 1, so 13 - cos(x 2) I :::; 4, and thus 

If (x) - 01 = lxl · 13 - cos(x 2)1 :::; 4 · lxl. 

So we can take 8 = s/4. 
(iii) l = 100. We have 

I 
lOO - 100 I = 100 · I ~ - 1 ! = 100 · -

1 
· Ix - 11. 

x x lxl 

The initial stipulation Ix - 11 < ! makes x > ! , so 1 / Ix I < 2, o we 
then have 

If (x) - 1001 < 200 · [x - 11. 

So we can take 8 = min(l/2, s/200). 
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(v) I = 2. The same sort of argument that was used in the text and in 
number (iii) shows that 

I f - 11 < e for O < Ix - 11 < 81 = min (I /2, e /2), 

so that 

1

1 I c -~ - I < 2 forO < Ix - 11 < 81 = min(l/2, c/4). 

Similarly, the solution to number (iv) gi\'(_'S a 82 such that 

lx 4 
- 11 < c for O < Ix - 11 < 82 , 

and we have a corresponding 82. Then we can take o = min(81, 82). 
(\'ii) I = 0. Let o = c2. 

6. (i) \Ye need If (x) - 21 < c/2 and lg(x) - 41 < c/2, so we need 

0 < Ix - 21 < min (sin
2 

( ;: ) + ~· ~) = 8. 

(iii) \ Ve need 

so '"''e need 

(
141 cl41

2
) lg(x) - 41 < min 2 , -

2
- , 

0 < Ix - 21 < [min(2, 8c)] 2 = 8. 

9. Let I= lim f(x) and define g(h) = f(a + h). Then for every c > 0 there is 
x-+a 

a o > 0 such that, for all x, if O < Ix - al < 8, then lf(x) - I < cl. Now, if 
0 < Jhl < o,thenO < l(h+a) - al < o,so lf(a+h)-11 < c . This inequality 
can be written lg(h) - II < c. Thus, Jim g(h) = I, which can also be written 

h -+ 0 

Jim f(a+h) = I. The same sort of argument shows that if lim f(a+h) = 111, 
h-+ 0 h -+0 

then lim f (x) = 111. So either limit exists if the other does, and in this case 
x-+a 

they are equal. 

10. (a) Intuitively, we can get f (x) as close to I as we like if and only if we can 
get f (x) - I as close to Oas we like. The formal proof is so trivial that it 
takes a bit of work to make it look like a proof at all. To be ,Try precise, 
suppose Jim f(x) = I and let g(x) = f (x) - I. Then for all c > 0 there 

x-+a 

is a o > 0 such that , for all x, if O < Ix - al < 8, then If (x) - /I < c . 
This last inequality can be written Jg(x) - 01 < c, so Jim g(x) = 0. The 

X-+ <l 

argument in the other direction is similarly uninteresting. 

(b) Intuitively, making x close to a is the same as making x - a close to 0. 
Formally: Suppose that Jim f(x) = I , and let g(x) = f(x - a). Then 

X-+(I 

for all c > 0 there is a o > 0 such that , for all x, if' 0 < Ix - al < o, 
then lf(x) - /I < c. Now, if O < IYI < 8, then O < J(y + a) - al < 8, so 
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lf(y +a) - II<£. But this last inequality can be written lg(y) - /I<£. 
So lim g(y) = I. The argument in the reverse direction is similar. 

y---+ 0 

(c) Intuitively, x is close to O if and only if x 3 is. Formally: Let lim f (x) = 
x ---+ 0 

I. For every £ > 0 there is a 8 > 0 such that if O < lxl < 8, then 
lf(x)-/1 <£.Then if O < lxl < min(l,8), we have O < lx 31 < 8, so 
lf(x3) - /I < £. Thus, lim f(x) = l. On the other hand, if we assume 

x ---+ 0 

that lim f (x 3) exists, say lim f (x 3) = 111, then for all £ > 0 there is a 8 
x ---+ 0 x ---+ 0 

such that if O < lxl < 8, then lf(x3) - ml < £. Then if O < lxl < 83, 

we have O < i ,Vxi < 8, so If ([ ift°] 3) - m I <£,or If (x) - m I < £. Thus 
lim f (x) = m. 
x---+O 

(d) Let f(x) = l for x ::::_ 0, and f(x) = -1 for x < 0. Then lim f(x 2) = 1, 
x ---+ 0 

but lim f (x) does not exist. 
x ---+ 0 

17. (a) The function f (x) = l /x cannot approach a limit at 0, since it becomes 
arbitrarily large near 0. In fact, no matter what 8 > 0 may be, there 
is some x satisfying O < lxl < 8, but 1/x > Ill +c, namely, any x < 
min(8, 1/(111 + c)). Any such x does not satisfy 10/x) - /)I < £. 

(b) No matter what 8 > 0 may be, there is some x satisfying O < Ix - 11 < 8, 
but 1/(x - l) > Ill+£, namely, any x < min(l + 8, l + 1/(111 + c)). 
Such an x does not satisfy 11/(x - l) -/I < £. (It is also possible to apply 
Problem 1 O(b ): lim 1 /x = lim 1 / (x - l) if the latter exists, so this limit 

x---+O x---+I 

does not exist, because of part (a).) 
25. (i) This is the usual definition, simply calling the numbers 8 and£, instead 

of£ and 8. 
(ii) This is a minor modification of (i): if the condition is true for all 8 > 0, 

then it applies to 8 /2, so there is an £ > 0 such that if O < Ix - a I < £, 
then If (x) - /I ~ 8/2 < 8. 

(iii) This is a similar modification: apply it to 8 /5 to obtain (i). 
(iv) This is also a modification: it says the same thing as (i), since £ / 10 > 0, 

and it is only the existence of some £ > 0 that is in question. 
29. If lim f (x) = lim f (x) = I, then for every£> 0 there are 81, 82 > 0 such 

x ---+ a+ .r ---+ a -

tha t, for all x, 

if a < x < a + 81, then If (x) - / I < £, 
if a - 82 < x < a, then If (x) - / I < £. 

Let 8 = min(81, 82). If O < Ix - a I < 8, then either a - 82 < a - 8 < x < a 

or else a < x < a + 8 < a + 81, so If (x) - / I < £. 
30. (i) If I= lim f (x), then for all£> 0 there is a 8 > 0 such that If (x)-/1 < 

.r ---+O+ 
£ for O < x < 8. If -8 < x < 0, then O < -x < 8, so If (-x) - /I < £. 
Thus lim f(-x) = I. Similarly, if lim f(x) exists, then lim f(x) 

x -> O- x ---+ O x---+ 0+ 

exists and has the same value. (Intuitively, x is close to O and positin:' if 
and only if -x is close to O and negative.) 
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(ii) If I= Jim f(x), then for all£ > 0 there is a o > 0 such that If (x)-11 < 
X-4 0+ 

£ for O < x < o. So if O < lxl < o, then lf(lxl) - /I < £. Thus 
lim f ( Ix I) = I. The reverse direction is similar. (Intuitively, if x is close 
x -+ O 

to 0, then Ix I is close to O and positive.) 

(iii) If I= lim f(x), then for all£> 0 there is a o > 0 such that lf(x)-/1 < 
x-+O+ 

£ for O < x < o. If O < lxl < Jo, then O < x 2 < o, so lf(x 2) - /I<£. 
Thus lim f (x 2) = I. The reverse direction is similar. (Intuitively, if x 

x -+ 0 

is close to 0, then x 2 is close to O and positive.) 

34. If I= lim f(x), then for every£> 0 there is some N such that lf(x)-/1 < £ 
X-400 

for x > N, and we can clearly assume that N > 0. Now, if O < x < l / N, 
then l /x > N, so I J (1 / x) - / I < £. Thus lim f (1 / x) = I. The reverse 

x - 0+ 

direction is similar. 

1. (i) F (x) = x + 2 for all x. 

(iii) F(x) = 0 for all x. 

I. (i) Bounded above and below; minimum value O; no maximum value. 

(iii) Bounded belm,· but not above; minimum value 0. 

(v) Bounded above and below. If a .:::: -1 /2, then a ::: -a - 1, so f (x) = 
a+ 2 for all x in (-a - 1. a+ 1), so a+ 2 is the maximum and minimum 
value. If -1/2 < a .:::: 0, then f has the minimum value a2, and if 
a ~ 0, then f has the minimum value 0. Since a + 2 > (a + I )2 only 

for (-I -Js)/2 <a< (-1 + Js)/2, ,,·hen a~ -1/2 the function f 
has a maximum value only for a.:::: (-1 + Js)/2 (the maximum value 
being a + 2). 

(vii) Bounded above and below; maximum value I; minimum ,·alue 0. 

(i.x) Bounded above and below; maximum value I; minimum , ·alue -1. 

(xi) f has a maximum and minimum value, since f is continuous. 

2. (i) 11 = -2, since f(-2) < 0 < J(-1). 

(iii) 11 = -1, since f(-1) = - 1 < 0 < J(O). 

3. (i) If J(x) = x 179 + 163/(1 +x2 + sin2 x)- 119, then f is continuous on 
Rand J(2) > 0, while f(-2) < 0, so f(x) = 0 for some x in (-2, 2). 

5. f is constant, for if J took on two different , ·alues, then f would take on all 
values in between, which would include irrational ,·alues. 

7. (1) f (x) = x; 

(2) J (x) = -x; 

(3) f (x) = Ix I; 
(4) J (.r) = - lxl. 

10. Apply Thrnrcm I to f - g. 
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11. If f(O) = 0 or J(l) = 1, choose x = 0 or 1. If f(O) > 0 = /(0) and 
f ( 1) < 1 = I ( 1), then Problem 10 applied to f and I implies that f (x) = x 

for some x. 

1. (i) 1 is the greatest clement, and the greatest lower bound is 0, which is 
not in the set. 

(iii) 1 is the greatest element, and O is the least element. 

(v) Since {x : x 2+x + 1 2: O} = R, there is no least upper bound or greatest 
lower bound. 

(vii) Since {x : x < 0 and x 2 + x - l < O} = ([-1 - Js ]/2, 0), the greatest 

lower bound is [ - 1 - Js] /2, and the least upper bound is 0: neither 
belongs to the set. 

2. (a) Since A =f=. 0, there is some x in A. Then -x is in -A, so -A =f=. 0. 
Since A is bounded below, there is some y such that y ::: x for all x in 
A. Then -y 2: -x for all x in A, so -y 2: z for all z in -A, so -A is 
bounded above. Let a= sup(-A). Then a is an upper bound for -A, 
so, reversing the argument just given, -a is a lower bound for A. 

Moreover, if f3 is any lower bound for A, then -{3 is an upper bound for 
-A, so -{3 2: a, so f3 ::: -a. Thus -a is the greatest lower bound for A. 

5. (a) If I is the largest integer with I::: x, then I+ 1 > x, but I+ 1 :S x + I < y. 
So we can let k = I + 1. (Proof that a largest such integer I exists: 
Since N is not bounded above, there is some natural number II with 
-11 < x < 11. There are consequently only a finite number of integers I 
with -11 :S I ::: x. Pick the largest.) 

(b) Since y - x > 0, there is some natural number II with l/11 < y - x. 
Since ny - 11x > 1, there is, by part (a), an integer k with 11 x < k < 11,r, 

which means that x < k / 11 < y. 

(c) Chooser+ v'l(s - r)/2. 

( cl) By part (b ), there is a rational number r with x < r < y, and therefore 
a rational numbers with x < r < s < y. Apply part (c) to r < s. 

10. Let k be the largest integer :S x /a (the solution to Problem 5 shows that such 
a k exists), and let x' = x - ka 2: 0. If x - ka = x' 2: a, then x 2: (k + l)a, 

so k + 1 ::: x /a, contradicting the choice of k. So O ::: x ' < a. 

I 2. (a) Since any y in B satisfies y 2: x for all x in A, any y in B is an upper 
bound for A , soy 2: sup A. 

(b) Part (a) shows that sup A is a lower bound for B, so sup A ::: inf B. 

13. Since x ::: sup A and y :::; sup B for every x in A, and y in B, it follows that 
x + y :::; sup A+ sup B. Thus, sup A+ sup B is an upper bound for A+ B, so 
sup(A + B) :S sup A+ sup B. If x and y arc chosen in A and B, respectively. 
so that sup A-x < c/2 and sup B-y < c/2, then sup A+sup B-(x+y) < c. 
Hence, 

sup(A + B) 2: x + y > sup A + sup B - c. 
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I 1 

!
'( ) 

1
. f (a + h) - f (a) 

1
. a + h - -;, 

a=1m =1m----
h-'>O h h-'>0 h 

-1 1 
= lim = - -. 

iHO a(a + h) a2 

(b) The tangent line through (a, 1/a) is the graph of 

2. (a) 

-1 1 
g(x) = ~(x - a)+-;, 

-x 2 
=~+-;,· 

If f (x) = g(x), then 

or 

so x = a. 

1 x 2 
-=--+­
x a2 a 

x 2 
- 2ax + a 2 = 0, 

1 1 

J'(a) = lim f (a+ h) - f (a) = lim (a+ h)2 a2 
h-'>0 h h-'>0 h 

. (-2ah - h2) 2 
= lim = - -

/HO ha2(a + h)2 a3 · 

(b) The tangent line through (a, I/a2) is the graph of 

2 1 
g(x)=--(x-a)+-

a3 a2 
2x 3 

=--+-a3 a2. 

If f (x) = g(x), then 

1 -2x 3 
---+-x2 - a3 a2' 

or 

2x3 - 3ax2 + a3 = 0, 

or 

0 = (x - a)(2x2 - ax - a2) = (x - a)(2x + a)(x - a). 

ox = a or x = -a/2; th p int (-a/2, 4/a2) li n th opp it id 
f th v r6 al axi from (a, l/a2). 
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3. 

f'(a) = lim f(a + h) - f(a) = lim ~ - ,Ja 
h-+ 0 h h-+ 0 h 

= lim (~ - -via)(~+ -via)= lim h 
h-+ 0 h(Ja + h + -via) h-+0 h(~ + ,Ja) 

1 

2,Ja " 

4. Conjecture: Sn' (x) = nx 11
-

1. Proof: 

S 
'( ) _ 1. Sn(X +h) - S11 (x) _ 1. (x +h)'1-x11 

nX-Ull -un----
h-+0 h h-+ 0 h 

t C)x"-j hj - x" 

1
. 1=0 

=un------
h-+0 h 

since lim hJ-l = 0 for j > 1. 
h-+ 0 

5. f' (x) = 0 for x not an integer, and f' (x) is not defined if x is an integer. 
6. (a) 

g' (x) = lim g(x + h) - g(x) = lim [f (x + h) + c] - [f (x) + c] 
h-+ 0 h h-+0 h 

= lim f(x + h) - f (x) = f'(x) . 
h-+ 0 h 

(b) 

g'(x) = lim g(x + h) - g(x) = lim cf(x + h) - cf (x) 
h-+0 h h-+ 0 h 

= c · lim f(x + h) - f (x) = cf'(x). 
h-+ 0 h 

7. (a) f'(9) = 3 · 92
; ! ' (25) = 3 · (25)2

; ! '(36) = 3 · (36)2. 
(b) !'(32) = !'(9) = 3 · 92 ; ! ' (52) = ! '(25) = 3 · (25)2; ! '(62) = !'(36) = 

3 . (36) 2 . 

(c) f'(a 2) = 3(a2)2 = 3a4; f'(x 2 ) = 3(x2)2 = 3x 4 . 

(d) f'(x 2) = 3x4; but g(x) = x 6 , so g'(x) = 6x 5 . 

8. (a) 

g'(x) = lim g(x + h) - g(x) = lim f(x + h + c) - f (x + c) 
h-+ 0 h h-+ 0 h 

1
. f([x+c]+h)-f(x+c) , 

= un = f (x + c) . 
h-+0 h 



632 Answers to Selected Problems 

CHAPTER 10 

(b) 

, . g(x+h)-g(x) . f(cx+clz)-f(cx) 
g (x) = 11111 = hrn -------

h--0 lz h->0 h 

I
. c[f(cx + ch) - f (ex)] 

1
. clf(cx + k) - f(cx)] 

= 1111 = 1111 --------
h-> 0 ch k---.0 k 

1
. f (ex+ k) - f (ex) , 

= c · 1111 = c · f (ex). 
k--0 k 

(Compare the manipulations in this calculation with Problem 5-14.J 
(c) If g(x) = f(x + a), then g'(x) = J'(x + a), by part (a). But g = f, so 

f' (x) = g' (x) = f' (x +a) for all x, which means that J' is periodic, with 
period a. 

9. (i) If g(x) = x 5 , then g'(x) = 5x4
. Now f (x) = g(x + 3), so by Prob-

lem 8(a), J'(x) = g'(x + 3) = S(x + 3)4 . And J'(x + 3) = S(x + 6)4 . 

(ii) f(x) = (x-3) 5, so J'(x) = S(x-3)4, as in part (i). And J'(x+3) = 5x4 . 

(iii) f(x) = (x + 2)7, so f'(x) = 7(x + 2)6 , as in part (i). And J'(x + 3) = 
7(x+5)6 . 

10. If f(x) = g(t+x), then J'(x) = g'(t+x), by Problem 8(a). If f(t) = g(l+x), 

then f' (t) = g' (t + x), by Problem 8(a), so f' (x) = g' (2x). 

I I. (a) If s(t) = ct2, then s'(t) = 2ct, and there is no number k such that 
s'(t) = ks(t) [that is, 2ct = kct2] for all t. 

(By the \Va); at this point we do not know any nonzero function f for 
which f' is proportional to f. After Chapter 18 it might be amusing to 
determine what the world would be like if Galileo were correct.) 

(b) (i) If s(t) = (a/2)t 2, then s'(t) = at, so s"(t) = a. 

(ii) ls '(t)] 2 = (at) 2 = 2a · (a/2)t 2 = 2as(t). 

(c) The chandelier falls s(t) = 16t2 feet int seconds, so it falls 400 fi:et in 
t seconds, if 400 = l 6t2, or t = 5. After 5 seconds the velocity will 
be s' (5) = Sa = 5 · 32 = 160 feet per second. The speed was half this 
amount when 80 = s'(t) = 32t, or t = ~· 

21. (a) This is another 'Nay of writing the definition (sec Problem 5-9). 
(b) This follows from Problem 5-11, applied to the functions a (lz) 

[f(a+h)-f(a)J/h andf3(h) = [g(a+h)-g(a)]/h. 

26. (i) f"(x) = 6x. 

(iii) /" (x) = 4x 3. 

30. (i) means that f' (a) = na 11
-

1 if f (x) = x 11
• 

(iii) means that g'(a) = J'(a) if g(x) = f(x) + c. 

(v) means the same as (iii). 
(vii) means that g'(b) = f'(b + a) if g(x) = f (x + a). 

(ix) means that g'(h) = cf'(cb) if g(x) = f(cx). 

I. (i) (I+ 2x) · cos(x +x2). 

(iii ) ( - si n x) · cos( cos x ). 

(v) (
cosx) - xsmx - cosx 

cos -- . 
x x2 



2. 
(vii) 
(i) 
(iii) 
(v) 
(vii) 

(ix) 
(xi) 
(xiii) 

(xv) 
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(cos(x + sinx)) · (1 + cosx). 

(cos((x + 1)2(x + 2))) · [2(x + l)(x + 2) + (x + 1)2]. 

[2 sin((x + sinx)2) cos((x + sin x)2)] · 2(x + sin x)(l + cosx). 

(cos(x sin x )) · (sin x + x cosx) + (cos(sin x 2)(cos x 2)) · 2x. 

(2 sin x cos x sin x 2 sin2 x 2 ) + (2x cos x 2 sin2 x sin2 x 2 ) 

+ (4x sin x 2 cos x 2 sin2 x sin x 2 ). 

6(x + sin5 x)5(1 + 5 sin4 x cosx). 

cos(sin 7 x 7 + 1) 7 · 7 (sin 7 x 7 + l )6 · (7 sin 6 x 7 · cos x 7 · 7 x 6 ). 

cos(x 2 + sin(x 2 + sin x 2)) · [ (2x + cos(x 2 + sin x 2) • (2x + 2x cosx 2))]. 

( 1 + sin x) (2x cos x 2 · sin 2 x + sin x 2 · 2 sin x cos x) - cos x sin x 2 sin 2 x 

(1 + sin x)2 

(xvii) cos 
x3 

sin(~) smx 

3 2 . ( x
3

) 3 ( x
3

) (3x
2

sinx -x
3
cosx) x sm -- -x cos -- · 

sin x sin x sin 2 x 

( 
x3 ) sin2 --

smx 

4. (i) 
(x + 1)2 

(x + 2)2" 

(iii) 2x 2. 

5. (i) -x2. 

(iii) 17. 
6. (i) J'(x) = g'(x + g(a)). 

(iii) f'(x) = g'(x + g(x)) · (1 + g'(x)). 

(v) f'(x) = g(a). 

7. (a) A'(t) = 2rrr(t)r'(t). Since r'(t) = 4 for that t with r(t) = 6, it follows 
that A'(t) = 2rr · 6 · 4 = 48rr when r(t) = 6. 

(b) If V(t) is the volume at time t, then V(t) = 4rrr(t)3 /3, so V'(t) = 
4rrr(t)2r'(t) = 4rr · 62 · 4 = 576rr when r(t) = 6. 

(c) First method: Since A'(t) = 2rrr(t)r'(t), and A'(t) = 5 for r(t) = 3, it 
follows that 

Thus 

, A'(t) 5 
r (t) = = - when r(t) = 3. 

2rrr(t) 6rr 

V'(t) = 4rrr(t)2r'(t) 

5 
= 4rr · 9 · -

6rr 
= 30 when r(t) = 3. 
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To apply the second method, we first note that if 

f ( t) = A ( t) 312 = J A ( t) 3 , 

then, using Problem 9-3 and the Chain Rule, 

J '(t) = ~ · 3A(t)2A'(t) 
2 A(t)3 

Now 

So 

1 2 1 

2A (t)3/2 . 3A(t) A (t) 

= ~A(t) 112 A'(t) (just as we might have guessed). 
2 

4nr(t) 3 4:rr[r(t)2J 3/2 
v (t ) = 3 3 

4[:rrr(t)2J3/2 

3:rr 1/2 

4A (t) 312 

3:rr 1/2 

4 3 
V' (t) = 3:rr 1/2 . 2JA(t)A'(t) 

2 
= - · n 112r(t)A' (t) 

Jr I / 2 

= 2 · 3 · 5 = 30. 

10. (i) (f o h) '(O) = f'(h(O)) · h'(O) = f'(3) · in2 (sin 1) = 

[6 sin! - cos !J in2 (sin 1). 

(iii) a '(x 2) = h'(x 4 ) · 2x 2 = sin2(sin(x 4 + 1)) · 2x 2 . 

12. The Chain Rule implies that 

( 1)/ / I I g (x)=(f o g)(x) =f (g(x))·g(x) 

1 I 

= - g(x)2 . g (x). 

35 . 
d z d z dy 2 

(i) - = - · - = (cosy) · (1 +2x) = (co (x +x )) · (1 +2x). 
d x d y dx 

d z d z du . 
(iii) - = -. · - = ( co u) · ( co x) = ( co ( m x)) · ( co x) . 

d x du dx 

1. (i) 0 = f'(x) = 3x2 - 2x - 8 for x = 2 and x = -1, both of which ar m 
[-2, 2] ; 
f(-2) = 5, f(2) = - 11 f(-1) = 2

2~
3

; 

· 203 · · 11 maximum = --;yr , m1nrmum = - . 
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(iii) 0 = f'(x) = 12x 3 - 24x 2 + 12x = 12x(x 2 - 2x + 1) for x = 0 and 
x = 1, of which only O is in [-!, !J; 
f (-i) = it f <i) = !J, f (0) = 0; 
maximum = i~, minimum = 0. 

(v) 0 = f'(x) = 

x 2 + 1 - (x + 1 )2x 

(x2 + 1)2 

1 - 2x - x 2 

(x2 + 1)2 

for x = -1 + fl and x = -1 - fl, of vvhich only -1 + fl is in 

[-1, !J; 
f(-1) = 0, !(!) = i, j(-1 +fl)= (l + fl)/2; 

maximum= (1 + fl )/2, minimum= 0. 
2. (i) -1 is a local maximum point, and 2 is a local minimum point. 

(iii) 0 is a local minimum point, and there arc no local maximum points. 

(\') -1 + fl is a local maximum point, and -1 - fl is a local minimum 
point. 

4. (a) Notice that f actually has a minimum value, since f is a polynomial 
function of e\'en degree. The minimum occurs at a point x with 

II 

0 = f'(x) = 2 I)x - ai), 

i=l 

so x = ( a 1 + · · · + a 11) In. 
5. (i) 3 and 7 are local maximum points, and 5 and 9 are local minimum 

points. 
(iii) All irrational x > 0 are local minimum points. and all irrational x < 0 

are local maximum points. 
(v) xis a local minimum point if its decimal expansion docs not contain a 5. 

It is a local maximum point if its decimal expansion contains exactly 
one 5 that is followed by an infinite string of 9's. In all other cases, x is 
both a local maximum point and a local minimum point. 

7. If f (x) is the total length of the path, then 

f(x) = /x2+a2+/(1-x)2+b2. 

The positi\'e function f dearly has a minimum, since lim f (x) = lim f (x) 
X->00 .r ---+-00 

= oo, and f is differentiable everywhere, so the minimum occurs at a point 
x with f' (x) = 0. No\\,; f' (x) = 0 when 

x 
----;::::=(=l =-=x=)== = 0. 
/( 1 - x)2 + !J2 /x2 + a2 

This equation says that cos a = cos f3. 
It is also possible to notice that f (x) is equal to the sum of the lengths of the 

clashed line segment and the line segment from (x, 0) to (l, b). This is short­
est when the two line segments lie along a line (because of Problem 4-9(b ). if 
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a rigorous reason is required); a little plane geometry shows that thi happens 
when a= /3. 

10. If x is the length of one side of a r ctangle of perimeter P, then th length 
of the other side is ( P - 2x) /2, so the area is 

x(P - 2x) 
A(x) = 

2 
. 

So the rectangle with greatest ar a occur when x i the maximum point for f 
on (0, P /2). Since A is continuous on [O, P /2], and A(O) = A(P /2) = 0, 
and A(x) > 0 for x in (0, P /2), the maximum exists. Since A is di:ffi r ntiable 
on (0, P /2), the minimum point x satisfies 

P-2x 
O=A'(x)= 

2 
-x 

P-4x 

2 

so x = P/4. 
11. Let S (r) be the surface area of the right circular cylinder of volume V with 

radius r. Since 

V = rrr 2h where h is the height, 

we have h = V /rcr2, so 

S(r) = 2rrr2 + 2rrrh 

2V 
= 2rrr2 + -. 

r 

We want the minimum point of S on (0, oo); this exists, ince lim S(r) = 
r~o 

lim S(r) = oo. Since S i differentiable on (0, oo), the minimum point r 
r~oo 
satisfies 

or 

, 2V 
0 = S (r) = 4rrr - -

2 r 

4rrr3 - 2V 
r2 

21. 1 is a local maximum point, and 3 is a local minimum point. 

28. (a) We have 

f(b)-f(a)=f'(x) for om xin(a,b) 
b-a 

>M . - , 

o f(b) - f(a)::::: M(b - a). 



(b) \Ve have 
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f (b) - f(a) = J'(x) for some x in (a, b) 
b-a 

~Ill, 

so f (b) - f (a) ~ m(b - a). 

(c) If lf'(x)I ~ M for all x in [a, b], then -M ~ f(x) ~ M, so 

f (a) - M(b - a)~ f (b) ~ f(a) + M(b - a), 

or 

If (h) - f (a)I ~ M(b - a). 

31. (a) f (x) = - cos x + a for some number a (because f (x) = - cos x is one 
such function, and any two such functions differ by a constant function). 

(b) J'(x) = x 4 /4+a for some number a, so f(x) = xs /20+ax +b for some 
numbers a and b. 

(c) f"(x) = x 2 + x 3 /3 + a for some a, so f'(x) = x 3 /6 + x 4/12 +ax+ b 
for some a and b, so f(x) = x 4 /24 + xs /60 + ax 2 /2 +bx+ c for some 
numbers a, b, and c. Equivalently, and more simply, f(x) = x 4 /24 + 
xs /60 + ax 2 +bx+ c for some numbers a, b, and c. 

32. (a) Since s"(t) = -32, we have s'(t) = -32t + a for some a, so s(t) = 

-16t2 + at + f> for some a and f>. 
(b) Clearly, s(O) = 0 + 0 + f> and s'(O) = 0 + a. Thus, a= vo and f> = so. 

(c) In this case, so = 0 and vo = v, so s (t) = -16t2 + vt. The maximum 
value of s occurs when O = s'(t) = -32t + v, or t = v/32, so the 
maximum value is 

s ( 3v2) = - 16 ( 3v2) 2 + v . ( 3v2) 

-v2 v2 

= 64 + 32 

v2 

- 64' 

At that moment the \'elocity is clearly 0, but the acceleration is -32 (as 
at any time). The ,veight hits the ground at time t > 0 when 

Q = s(t) = -]6t2 + Vt, 

or t = v / 16 (it takes as long to fall back dmrn as it took to reach the top). 
The velocity is then 

s'(v/16) = -32 ( 
1
v
6

) + v 

= -v 

(the same velocity with which it was initially mm·ing upward;. 
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47 . Apply th M an Value Theorem to l (x) =,Ji.on [64, 66]: 

v'66 - #4 / 1 . 
66 

_ 
64 

= l (x) = 
2

,Jx. for some x m [64, 66]. 

Since 64 < x < 81 , we have 8 <,Ji.< 9, so 

1 v'66-8 1 
-- < < -- . 
2·9 2 2·8 

51. l'Hopital's Rule does not lead to the equation 

lim 3x2 + 1 = lim 6x 
x~ 1 2x - 3 x ~ 1 2 

becau e lim 3x 2 + 1 -=J 0. 
x~ I 

52. (i) 

1. x 1· 1 1· 2 1 lffi -- = lffi -- = lffi cos x = . 
x~o tan x x~o sec2 x x~o 

(ii) 

lim cos
2 

x - 1 = lim - 2 sin x cos x = - l . 
x~o x 2 x~o 2x 

1. (i) 1- 1cx) = (x - 1)113. (If y = 1- 1cx), then x = l(y) = y3 + 1, so 
y =(x-1) 1/3.) 

(iii) 1- 1 = l. (If y = 1- 1(x), then 

x = l (y) = { y, y rational 
- y, y irrational; 

since ± y is rational or irrational if and only if y is, we have y = x if x 

is rational and y = -x if x is irrational, soy = l(x). ) 
(v) 

1-1 (x) = ai - 1 , x = a;, i = 2, ... , n 
{ 

x , X -=/: a1, ... ,an 

an, X = a1. 

(vii) 1-1 = l. 
2. (i) 1- 1 is increasing and 1- 1 (x) i not defined for x :S 0. 

(iii) 1- 1 i decreasing and 1- 1 (x) is not defined for x :S 0. 
3. Suppose l i increa ing. Leta< b. Then 1-1(a )-=/: 1-1(b), ince 1- 1 is 

one-one. So either 1- 1 (a) < 1- 1(b) or 1- 1(a) > 1- 1(b ) . But if 1- 1(a) > 
1- 1 (b), then 

a ntradiction. Th pro f i imilar fo r d r a ing l 
- fin t ad. 

an on id r 

4. 1 arly, l + g i in r a inrr, ~ r if l(a) < f(b) and g(a) < g(b), th n 
(! + g)(a) = l(a) + g(a) < f(b) + g(b) = (f + g)(b). 
f ·g is not n s arily in r a ing; ~ r ampl , if l(x) = g(x) = x. (But l ·g 
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is increa ing if I (x), g(x) ~ 0 for all x. ) 

I o g is increasing, for if a < b, then g(a) < g(b), so l(g(a)) < I (g(b)) . 

5. (a) If (! o g)(x) = (! o g)(y), so that I (g(x)) = I (g(y)), then g(x) = g(y), 

since I is one-one, o x = y, since g is one-one. 
(! o g) - 1 = g- 1 o 1- 1: for if y = (! o g) - 1(x), then x = (! o g)(y) = 
l(g(y)) , so g(y) = 1- 1(x) , 0 y = g- 1u-1(x)). 

6. If I (x) = I (y) , then 
ax+ b ay + b 

ex+ d ey + d' 

so 

aexy +bey+ adx + bd = aexy + ady + bex + bd, 

or 
ad(x - y) = be(x - y). 

If ad# be, this implies that x - y = 0. (But if ad= be, then I (x) = I (y) 
for all x and y in the domain of I. ) 
If y = 1- 1 (x) , then x = I (y) , so 

ay + b 
X= 

ey +d 

so 
1 -dx + b 1- (x) = y = --- for x # a/e. 

ex -a 

7. (i) Those intervals [a, b J which are contained in ( - oo, OJ or [O, 2J or 
[2, oo) , since I is increasing on (-oo, OJ and [2, oo), and decreasing 
on [O, 2]. 

(iii) Those intervals [a, b J which are contained in (-oo, OJ or [O, oo), since 
I is increasing on (-oo, OJ and decreasing on [O, oo). 

11. Since 

we have 

- 1 I 1 
(! ) (x) = f'(J - l(x)), 

u-l)" (x) = -l"(f- l(x)). u - l)'(x) 
[f'(J-l(x))]2 

- l"(f- 1(x)) 

[f'(J-1 (x ))]3. 

20. The formula for the derivative reads: 

dx 1 
dy dy. 

dx 

(In this formula, it i under tood that dx/dy mean u-1)'(y), \, hil d) / dx 

i an "expre sion involving x ," and in th final an , er x mu t b r pla d 
by y, by mean of th quation y = I (x ).) 
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21. 

The computation in Problem 20, when completed, shows that 

dx 1f n 1 1 
dx n(xl / 11)11-l nxl - (1 / 11) 

= !x(l / 11) - l. 
n 

G'(x) = x(f- 1 )' (x) + J - \x) - F'(f - 1 (x)) · (f- 1)'(x) 

= x(f- 1)' (x) + 1 - '(x) - f(f - 1(x)). u-1)
1 (x) 

= x(f- 1)' (x) + f - 1(x) - x(f- 1)' (x) 

= f - 1 (x) . 

22. (i) 
1 1 h- ] I 3 - 1 

( ) ( ) - h'(h - 1 (3)) h'(O) sin2 (sin 1) · 

1. If Pn ={to, ... , t11 } is the partition with ti = ib/n, then 

and similarly 

II 

i= l 

/1 b b 
= "O - 1)3. _l. -

L n3 n 
i= l 

b4 n- 1 

L .3 =- } 
n4 

j=O 

_ b4 [(n - 1)4 (n - 1)3 (n - 1)2
] 

- n4 4 + 2 + 4 ' 

b4 11 
U(f, P,i) = 4 LJ3 

n 
j = l 

Cl arly L(f, P11 ) and U (!, P11 ) an be made a l e to b4 /4 a d ir d by 
choo ing n uffi i ntly larg , so U (!, P11 ) - L(f, P11 ) an b mad a mall 
a d ir d, by hoo ing n larg nough. Thi h w that f i int oTabl . 
Mor over, th r i only on numb r a with L(f, P11 ) ~ a ~ U(f, P11) for 

all n ; in .ft x dx ha thi prop rt , th pr of that /~
1 
x 3 dx = b4 / 4 will 

b mpl t on w hov that L(f, P11 ) ~ b4 /4 ~ U(.f, P11 ) f; r all n. Thi 
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can be done by a straightforward computation, but it actually follows from 
the fact that L(f, P,i) and U(f, P11 ) can be made as close to b4 /4 as desired 

by choosing n sufficiently large. In fact, ifit were true that b4 /4 < It x 3 dx, 

theu it would not be possible to make U (!, P11 ) as close as desired to b4 / 4 by 

choosing n large enough, since each U (!, P11 ) ~ It x 3 dx, and similarly we 

cannot have b4 /4 > I~7 

x 3 dx. 
2. \Ye ha\'e 

b5 [ (n - 1)5 (n - 1)4 (n - 1)3 
L (!, P,i) = n 5 5 + 2 + 3 

(n - 1)] 
30 ' 

Clearly L (!, P11 ) and U (!, P11 ) can be made as close to b5 /5 as desired by 

choosing n large enough. As in Problem 1, this implies that It x 4 dx = b5 /5. 

7. (i) I; f = 0. 

(iii) I0
2 f = 3. 

(v) f is not integrable. 
') 

(Yii) Io f = 1. 
(For a rigorous proof that the functions in (i), (iii), and (vii) are integrable, 
Sf'e Problem 19. The Yalues of the integrals, which are clear from the 
geometric picture, can also be deduced rigorously by using the ideas in 
the proof of Problem 19, together with known integrals.) 

8. (i) 
- x- ,., 1 
') [( ') ) ] 6 /_
2 2 + 2 - x~ dx = 3 . 

(iii) 

(v) 
(2 ') ') lo [(x--2x+4)-.c]dx=4. 

9. 

J,b (ld f (x)g(y) dy) dx = J,b (I (x) ld g(y) dv) dx (here f(x) is the constant) 

= ld g(y) dy · lb f (x) dx 

(here id g(y) dy is the constant). 

13. (a) Clearly L (!, P) ~ 0 for n-cry partition P. 
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(b) Apply part (a) to f - g , and use the fact that 

tu -g) = t 1 - t g. 

23. (a) Clearly 

m (b - a)::::: L(f, P) ::::: U(f, P) ::::: M(b - a) 

for all partitions P of [ a, b]. Consequently, 

m(b - a) S 1• f(x)dx S M(b - a). 

Thu 1• f(x)dx 
µ.,=_a ___ _ 

b-a 

satisfie m ::::: µ., ::::: M. 
(b) Let m and M be the minimum and m aximum values of f on [ a , b]. 

Since f is continuous, it takes on the values m and M , and consequently 
the number µ., of part (a). 

33. (a) 0. 
(b) !-

37. Since 

1. 

2. 

- lfl :'.::: f :'.::: Iii , 

we have 

so 

It ii s t111. 
(Problem 36 implies that [b Iii makes sense.) 

la 
(i) 

(iii) 

(v) 

(vii) 

(i) 
(iii) 
(v) 
(vii) 

-----dt. f.
x 1 

8 1 + t 2 + sin 2 
t 

r 1 dt. 
la 1 + t2 + in2 

t 
1 

(F - 1 )' ( ) F - 1 ( ) 
x = F'(F - 1 (x)) = x . 

Allx -1- 1. 
Allx -1- I. 
Allx. 

A ll x -1- 0 . (F i n t diffi r nliabl al O be au F(x) = 0 ft r x ::::: 0, but 
lh r ar x > 0 arbilraril lo to O with F~r) = ~ .) 
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4. (i) 

- 1 I O - 1 
(f ) ( ) - j'(J- l(O)) 

1 

1 + sin(sin(j - l (O))) 

1 = 1. 
1 + sin (sin 0) 

8. F (x) = x fo x f(t) d t , so 

F' (x) = xf (x) +ff (t) dt . 

11. 

f(x) = r ( fY ( f l . dt) d z ) d y. 
JO JO Jo J 1 + sm 2 t 

13. We can choose 

Then 

1. (i) 

(iii) 

2. (i) 0. 

(iii) 0. 
(v) 0. 

7. (a) 

x(l / n)+ l 
f(x) = 

1 
-+1 
n 

r b(l / n)+ l 

Jo ::/x dx = f (b) - f (0) = 1 
0 - + 1 

n 

1 1 1 

1 + arctan 2 ( arctan x) 1 + arc tan 2 x 1 + x 2 · 

----
1
---- · ( sec2 x arctan x + tan x ) . 

1 + (tan x arctanx)2 1 + x2 

sin 2x = sin (x + x) = sin x cos x + cos x sin x = 2 sin x cos x. 

cos 2x = cos2 x - sin2 x = 2 cos2 x - 1 = 1 - 2sin2 x . 

sin 3x = sin(2x + x) = sin 2x cos x + cos 2x sin x 

= 2 sin x cos2 x + (cos2 x - sin2 x) sin x 

= 3 sin x cos2 x - sin 3 x . 

cos 3x = cos(2x + x) = cos 2x cos x - sin 2x sin x 

= ( cos2 x - sin 2 x) co x = 2 sin 2 x cos x 

= cos3 x - sin2 x co x - 2 in2 x co x 

= cos3 x - 3 sin 2 x co x 

= 4 cos3 x - 3 o x. 
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(b) Since cos n /4 > 0 and 

9. (a) 

Jr Jr 27r 
0 = cos - = cos 2 · - = 2 cos - - 1 

2 4 4 ' 

we have cos n /4 = h/2. It follow , since sin n /4 > 0 and sin2 + 
co 2 = 1, that sin n / 4 = J2 /2, and consequently tan n / 4 = 1. Sim­
ilarly, since cos n /6 > 0 and 

Jr Jr 37r Jr 
0 = co - = cos 3 · - = 4 cos - - 3 cos -

2 6 6 6' 

we have cos n /6 = F3 /2. It follows, since sin n /6 > 0, that sin n /6 = 

J1 - (F3/2)2 = ~-

sin(x + y) 
tan(x + y) = ---­

cos(x + y) 

sin x cos y + cos x sin y 

co x cos y - sm x m y 
. . 

sm x cos y cos x sm y ---- + ---­
co x cos y cos x co y 

cos x cos y sm x sm y 

cos x cos y cos x cos y 

tanx + tany 

1-tanxtany 

(b) From part (a) we have 

tan ( arc tan x) + tan ( arc tan y) 
tan(arctanx +arctany) = ------------

1 - tan ( arctan x) tan ( arc tan y) 

x+y 
1 -xy' 

provided that arctan x , arctan y , and arctan x + arctan y =j:. kn + n /2. 
Since -Jr /2 < arctan x , arctan y < n /2, this is alway the ca e except 
when arctan x + arctan y = ±n /2, which is quival nt to xy = 1. From 
thi equation we can conclud that 

arctan x + ar tan y = ar tan (
x+y) 
1-xy 

pr vid d that ar tan x +arctan y li in (-n /2, n /2) whi hi tru wh n­
v r x y < 1. (If x, y > 0 an l x y > 1, o that r tan x + ar tan y > n /2 

th n w mu t add n t the right id and if x, y < 0 nd x y > 1 o 
that ar tan x + ar tan y < -n /2 th n w mu t ubtra t n .) 
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11. The first formula is derived by subtracting the second of the following two 
equations from the first: 

cos(m - n)x = cos(mx - nx) = cosmx cos(-nx) - sin mx sin(-nx) 
= cos mx cos nx + sin mx sin nx, 

cos(m + n)x = cosmx cosnx - sin mx sin nx. 

The other formulas are derived similarly. 
12. It follows from Problem 11 that if m # n, then 

1
7[ 1 17[ 

-n sin mx sin nx dx = 2 -n [ cos(m - n)x - cos(m + n)x J dx 

= ~ { [sin(m - n)n _ sin(m + n)n J 
2 m-n m+n 

_ [sin(m - n)n _ sin(m + n)n J} 
m-n m+n 

=0. 

(Note that sin(m - n)(-n) = sin(m - n)rr since m - n is an integer.) But if 
m = n, then 

1
7[ 1 17[ 

sin mx sin nx dx = - 1 - cos(m + n)x dx -7[ 2 -7[ 
= ~ { [rr _ sin(m + n)n J _ [-rr _ sin(m + n)n J} 

2 m+n m+n 

= Jr. 

The other formulas are proved similarly. 
15. (a) We have 

So 

cos 2x = cos2 x - sin2 x 

= 1 - 2sin2 x 

= 2cos2 x - 1. 

1 - cos 2x 
sin2 x = ----

2 
1 + cos2x 

cos2 x = ----
2 

(b) These formulas follow from part (a), because cosx/2 2:: 0 and sinx/2 2:: 0 
(since O .:::: x .:::: rr /2). 

(c) 

r t 1 - cos 2x 1 1 la sin2 
x dx = la 

2 
dx = 2(b - a) - 4(sin 2b - in 2a). 

lb 2 lb 1 + cos 2x 1 1 . . 
a cos xdx= a 

2 
dx= 2(b-a)+ 4(m2b - m2a). 
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19. 

20. 

21. 

1. 

5. 

(a) arctan 1 - arctan O = ;r /4. 

(b) lim arctan x - arctan O = ;r /2. 
X-+00 

1 1 
lim x sin - = lim - sin x = 1. 

x-+ oo X x-+O+ X 

(a) 
· 0 1 Jl' (Jl'X) Jl' o (sm ) (x) = 

180 
cos 

180 
= 

180 
cos (x). 

o l ]l' · (Jl'X) -]l' · o 
(cos ) (x) = 180 . - sm 180 = 180 sm (x). 

(b) lim sin° x = lim sin(nx/180) = lim _!!_. sin(nx/180) = _!!__ 
x-+ 0 X x-+ 0 X x-+0 180 ;rx/180 180 

• • 
0 

1 . sin° x ;r 
hm xsm - = hm --

x-+oo X x-+0+ X 180. 

(i) ee 
,rr ,? x . ee . ee . ex. 

(iii) (sin x )sii,( in x) [ (log(sin x)) · co (sin x) · cos x 

+ (cosx/sinx) · sin(sinx)] . 

(v) ( in x )<sin x)'" ' [ ( in x) in x · log(sin x) { cos x · log(sin x) + sin x cos x ) 
smx 

. . cosx ] + ( mx)smx. -.- . 
smx 

(vii) [ . ( x ) t(,;n <') [ ( ( . ( x ) ) ) (co ex)ex arcsm -.- log arcsm -.- · . 
smx smx smex 

smx - x cosx ] + log(sin ex) · . 

arcsin (-,!--) J l - (-,!--)2. sin2 x 
smx mx 

(ix) 1 [ I I l] (logx) ogx · log(logx) · - + logx · -- · - . 
x log x x 

(xi) o (x ' ;n(x';" 'l) · X ;n(x';"') · [ co (x ;nx) · X ;a, · log X 

{ cosx l co x · log x + -x- + in(: ;n x) ]. 

(i) 0. 

(iii) I 
6' 

(v) I 
3· 
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8. (a) 2 2 (ex + e- x )
2 

( ex - e-x )
2 

co h x - sinh x = 
2 

-
2 

_ [ e2x 1 e- 2x ] [ e2x 1 e-2x ] - -+-+- - ---+-
4 2 4 4 2 4 

= 1. 

(c) 

sinh x cosh y + coshx inh y = ( e-' ~ e-' ) ( eY ~ e-Y ) + ( e' ~ e-x ) ( eY ~ e-y ) 

= - --- - --+- + ----+----[
ex+y e-x-y e-x+y ex- y ] [ ex+y e-x-y e-x+y ex- y] 

4 4 4 4 4 4 4 4 

(e) Since 

we have 

(g) Since 

we have 

ex+y - e- (x+y) 

2 
= sinh(x + y) . 

ex + e-x 
sinh x = 

2 

ex - e-x 
sinh' (x) = 

2 
= cosh x . 

sinh x 
tanh x = --, 

cosh x 

, (cosh x)2 - (sinh x)2 
tanh (x) = 

2 cosh x 
1 

cosh2 x 

9. (a) If y = cosh - 1x,then y~ O and 

by part (a). 

x = cosh y = J 1 + sinh2 y by Problem 7(a). 

So 

sinh (cosh- 1 x) = sinh y = Jx 2 - 1 ince sinh y ~ 0 fo r y ~ 0. 

(c) 

(sinh - I )' (x) = 
1 

1 sinh' (sinh - (x)) 

1 

co h (sinh - 1 (x)) 
1 

JI +x2 
by part (b). 
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(e) 

1 I 1 (tanh- ) (x) = 
1 

, 
tanh'(tanh- (x)) 

= cosh2ctanh- 1(x)). 

Now, 
2 1 

tanh y + 2 = 1 by Problem 8(b), 
cosh y 

so 
2 l 1 tanh (tanh- (x)) + 

2 1 
= 1, 

cosh (tanh- (x)) 

or 
1 

cosh2(tanh-J (x)) = 2. 
1-x 

10. (a) If y = sinh- 1 x , then 

(b) 

so 

so 

or 

eY - e-Y 
x = sinhy = --

2
-

eY - e-Y = 2x, 

e2Y - 2xeY - 1 = 0, 

eY = 2x ± J 4x2 + 4 
2 

eY = x + J 1 + x 2 since e>' > 0 

y = sinh- 1 x = log(x + J1 + x2 ). 

Similarly, 

cosh- 1 x = log(x + J x 2 - 1 ), 

tanh- 1 x = i log(l + x) - 1 log(l - x). 

fb 1 
dx = sinh- 1 b - sinh- 1 a by Problem 9(c) 

la JI+ x2 

= log(b + /1 + b2 ) - log(a + J1 + a2 ). 

--;===dX -l b 1 { log(b + /b2 - 1) - log(a + J a2 - 1) a, b > l 

a Jx2-l - -log(- b+/b2- l)+log(- a+Ja2 - l) a , b <- 1 

l
b 1 1 

2 dx = -[log(} + b) - log(} - b) - loo-(1 +a)+ log(l - a)J. 
a 1 - X 2 
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13. (a) lim ax = lim ex log a. Since log a < 0, we have lim x log a = -oo, so 
X-·HX) x--+oo X--+00 
lim ex log a = 0. 

X--+00 

. (log x )'1 V
11 

(c) lnn - lim ::__ = 0. 
x-+oo x y-+oo eY 

(e) lim xx = lim edogx. Now, lim x log x = 0 by part (d), so lim xx = I. 
x-+O+ x-+O+ x-+0+ x-tO+ 

17. (a) lim log(l + y)/y = log'(l) = 1. 
y-+0 

(b) lim x log(l + l/x) = lim log(l + y)/y = I. 
X-+ 00 y-+O+ 

(c) 

(d) 

e =exp(])= exp(lim xlog(l + l/x)) 
X-+00 

(*) = lim exp(xlog(l + 1/x)) 
X-+00 

= lim (1 + l/x)"'. 
X-+00 

(The starred equality depends on the continuity of exp at 1, and can 
be justified as follows. for every c > 0 there is some 8 > 0 such that 
le - exp y I < c for IY - 11 < 8. Moreover, there is some N such that 
Ix log(l + l/x) - 11 < 8 for x > N. So le - exp(x log(l + 1/x))I < c for 
x > N. 

ea = [ lim (1 + 1 Ix rt = lim (1 + I Ix tx 
X-+ 00 X-+00 

= lim (1 + l/xtx 
CIX-+00 

= lim (1 + a/y)Y. 
y-+ oo 

19. After one year the number of dollars yielded by an initial investment of one 
dollar will be 

lim (1 + a/lOOx)"' = ea/ lOO_ 
X--+00 

20. (a) Clearly f'(x) = l/x for x > 0. If x < 0, then f(x) = log(-x) , so 
j'(x) = (-1) · 1/(-x) = 1/x. 

(b) We can write log If I as g o f where g (x) = log Ix I is the function of part 
(a). So (log If I)'= (g' o f)· f' = 1/f · J'. 

21. (c) Let g(x) = f(x)/ecx. Then 

' ecx J'(x) - f (x)cecx 
g (x) = = 0. e2cx 

so there is some number k such that g (x) = k for all x. 

22. (a) According to Problem 21, there is some k such that A(t) = kec1
• Then 

k = ke0·1 = Ao. So A(t) = Aoect. 

(b) If A(t + r) = A(t)/2, then 

A Cl 

A cr+cr oe 
oe = -2-, 
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so ee1 ecr: = ee1 /2 or ecr: = 1, so r = -(log 2) / c. It is easy to heck that 
this r does work. 

23. Newton's law state that, for a certain (positive) number c, 

T '(t) = c(T - M), 

which can be written 

(T - M)' = c(T - M). 

So by Problem 21 there is ome number k such that 

T(t) - M = kect, 

and k = ke0·1 = T(O) - M = To - M. So T(t) = M + (To - M)ee1
• 

1. (i) ( ijx3 + $)/ Fx = xl / 10 + x-1 /3_ 

1 ~-Fx+i 
~+fx+I -2 

(ii) 

(iii) (ex + e2x + e3x) / e4x = e- 3x + e-2x + e-x. 

(iv) ax/bx= (a/bY = ex log(a /b)_ 

(v) tan2 x = c2 x - 1. 

(vi) 
1 l /a 2 

2 · 

1 + (~) 
a2 + x2 

1 l /a 
(vii) 

Ja2 - x2 J1 - (x/a)2 

1 
(viii) 

1 + inx 

1 - sin x 

1 - sin2 x 

1 - sinx 
--

2
- = sec2 x - secx tanx. 

cos x 

(ix) 8x
2 + 6x + 4 = 8x _ 2 + _6 __ 
x+ l x+ l 
1 1 

J 2x - x 2 J 1 - (x - 1) 2 
(x) 

2. (i) - co ex. (Let u = ex. ) 

(iii) (log x )2 /2. (L t u = log x .) 

(v) e ex . (Let u = e e' .) 

(vii) 2eJx. (Let u = Fx.) 
(ix) -(log( o x))2/2. (Lt u = 1 g( o x). ) 

3. (i) f x1ex dx = x1e' - f 2xe' dx = x1e' - 2 [xe - f e' dx J 
= x 2ex - 2xex + 2e-'. 
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(iii) W have 

I e0
x sin bx b I 

eax sin bx dx = a - --;;_ e0 x cos bx d x 

= eax sin bx - ~ [ eax cos bx - ~ I eax(- inbx)dx], 
a a a a 

so 

I eax sin bx d x = a e0 x sin bx - b e0 x cos bx. 
a2 + b2 a2 + b2 

(v) U ing the result f (log x )2 dx = x (log x )2 - 2x (log x) + 2x from the text, 
we have 

J (log x )3 dx = [x (log x )2 
- 2x (log x) + 2x J log x 

(vii) 

-J ~[x(logx)
2 

- 2x(logx) + 2x] dx 

= x(logx) 3 - 2x(logx)2 + 2x logx 

-f oogx)2 dx +2[xlogx-x]-2x 

= x(logx) 3 - 2x(logx)2 + 2x logx 

- [x(logx)2 - 2x(logx) + 2x] + 2[x locr x - x] - 2x 

= x (log x )3 - 3x (log x )2 + 6x log x - 6x . 

J sec3 x d x = J (sec2 x)(secx)dx = tan x secx - J (tanx)( ecx tanx)dx 

= tanxsecx - J secx(sec2 x - l )dx 

= tanx secx - J sec3 x dx + J secx d x, 

0 

J sec3 x dx = i(tan x sec x + log(sec x + tan x )]. 

(ix) 

I 2x
3
1
2 

2 I 1 ,Jilogxdx = --logx - - x 31
2 · -dx 

3 3 x 

2x3/2 2 I 
= --logx - - x 112 dx 

3 3 
2x 312 4 

- --logx - -x312 
- 3 9 ' . 

4. (i) Let x = sin u , d x = cos u du. The int gral be om 

I cos u du = J 1 du = u = arc in x. 
J 1 - in2 u 
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(iii) Let x = sec u , dx = sec utan u du. Th integral becomes 

f sec u tan u du f 
----::====- = sec u du= log(sec u + tan u) 
Jsec2 u - 1 

= log(x + J x2 - 1 ). 

(v) Let x = sin u , dx = co u du. The integral becomes 

f co udu f = cscudu = -log(c cu +cotu) 
sin u J l - sin 2 u 

= -log u + Ji :x2) 

(vii) Let x = sin u, dx = co u du. The integral become 

f (sin3 u cos u) cos u du = f sin3 u cos2 u du = f (sin u)(l - cos2 u) cos2 u du 

f CO 3 
U cos5 U 

= (sin u)(cos2 u - cos4 u) du= - -
3
- + -

5
-

(1 _ x2)3/2 (1 _ x2)5/2 
=- 3 + 5 

(ix) Let x = tan u, dx = sec2 u du. The integral becomes 

f sec u sec2 u du= f sec3 u du 

= ! [tan u sec u + log( ec u + tan u)] by Problem 3(vii) 

= HxJI + x2 + log(x +JI+ x2 )]. 

5. (i) Let u = .rx+I, x = u2 - 1, dx = 2u du. The integral become 

f 2u du = f (2 + ~) du 
l+u l+u 

= 2u - 2 log(l + u) = 2.rx+I - 2log(l + fx+J ). 

(iii) Let u = x 116, x = u6, dx = 6u 5 du . Th int oTal b c m s 

f 6t5 
d1,~ = 6! (u 2 

- u + 1 - -
1

- ) du= 2u 3 
- 3u 2 + 6u - 6log(u + 1) 

u +u u+J 

= 2,Jx - 3~ + 6lfx" - 61 er ( t/x + 1) . 
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(v) Let u = tan x, x = arctan u, dx = du/(1 + u2). The integral becomes 

I du 1 I ( 1 u _ 2 ) 
(1 + u 2) (2 + u) = 5 2 + u - 1 + u 2 du 

1 I du 1 I 2u 2 I du 
= 5 2 + u - 10 1 + u2 du+ 5 1 + u2 

1 1 2 
= 5 log(2 + u) -

10 
log(l + u2

) + 5 arctan u 

1 1 2 
= 5 log(2 + tanx) -

10 
log(l + tan2 x) + 5x. 

(vii) Let u = 2X, x = (log u)/(log 2), dx = du/(u log 2). The integral 
becomes 

1 I u
2 
+ 1 1 I ( 1 _ u ) -- du = -- 1 + du 

log2 (u + l)u log2 u(u + 1) 

= -- 1 + - - -- du 1 I ( 1 2 ) 
log2 u u + 1 · 

1 
= log

2 
[u + log u - 2log(u + l)] 

1 
= --[2x + x log 2 - 2 log(2x + l)]. 

log2 

(ix) Let u = ,Ji, x = u2, dx = 2u. The integral becomes 

I ) 1 - u 2 2u du . 

1 - u 

Now let u = sin y, du = cosy d y. The integral becomes 

I 2 cos y sin y cos y I (1 - sin 2 y) sin y 
---.--dy=2 . dy 

1 - smy 1 - smy 

= 2 f (1 + sin y) sin y d y 

= 2 f sin y d y + f 1 - cos 2 y d y 

sin 2y 
= - 2 cosy + y - -

2
- = - 2 cosy + y - m y cos y 

= -2)1 - u2 + arcsin u - u)l - u2 

= -2ri=-; + arcsin Fx - Fxri=-;. 

The substitution u = ri=-;, x = 1 - u2, dx = -2u du lead to 

I -2u2 du 

1 - )I - u2 
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and the substitution u = sin y then lead to 

I -2 sin 2 y co y d y . . 
------ = - 2 sm y - y - sm y cos y 

1 - cosy 

= -2u - arcsin u - uJl - u2 

= -2~ - arcsin ~ - ~Fx. 
These answers agr e, since 

·r::TC ·~ arcsm v x = 2 - arcsm v 1 - x 

(check this by comparing their derivatives and their value for x = 0). 
6. In these problems I will denote the original integral. 

(i) 

(iii) 

(v) 

(vii) 

I= --dx+ dx I 2 I 3 
x - 1 (x + 1)2 

3 
= 2log(x - 1) - --. 

x+l 

I = f 1 
dx + f 4 

dx 
(x - 1)2 (x + 1)3 

1 2 
(x - 1) (x + 1)2 · 

I= - dx + dx 1 I 2x I 4 
2 x 2 + 1 x 2 + 1 

= ! log(x 2 + 1) + 4 arctan x. 

I= dx + dx I 1 I 2x 
(x + 1) (x 2 + x + 1) 

= --dx+ dx- dx. I 1 I h+l I 1 
x + 1 x 2 + x + 1 x 2 + x + 1 

Now 

I 1 
dx = f l dx 

x2 + x + 1 (x + i)2 + i 
41 1 

= 3 [ 2 ( I )]
2 dx 

J3 x+ 2 +l 

= ~ · v13 arctan (_1_ (x + .L)) 
3 2 J5 2 

= 
2;3 ar tan (JJ (x + !)) . 
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so 

I = log (x + 1) + log(x 2 + x + 1) -
2

~ arctan ( Ji ( x + ~)) . 

(ix) 

I= d x - d x J 2x + 1 J 1 
(x 2 + x + 1)2 (x 2 + x + 1)2 

J 2x + 1 16 J 1 
= (x2 + x + 1)2 d x - 9 ([.1_ ( 1)]2 )2 d x. 

v'3 x + 2 +l 

Now the substitution 

changes the second integral to 

16 v'3 J du 
- 9 . 2 (u2 + 1)2 · 

Using the reduction formula, this can be written 

8v'3 [ u 1 J du ] 
- -9- 2(u2 + 1) + 2 u 2 + 1 ' 

so 

1 v'3(x + !) 4v'3 ( 2 ( 1)) 
I = - x2 + x + 1 - 4 (x2 + x + 1) - -9- arctan v'3 x + 2 . 

14. T he equation f ex sin x dx = ex sin x - ex co x - f ex sin x dx mean that any 
function F with F' (x) = ex sin x can be written F (x) = ex sin x - ex co x -

G (x) where G is another function with G' (x) = ex sin x. O f course, G = F +c 

for some number c, but it is not necessarily true that F = G. 

16. (a) 

J arc in x d x = J 1 · arcsin x d x = x arc in x - J x d x 
JI -x2 

= x arcsin x + J 1 - x 2 . 
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17. (a) 

f . 4 sin 
3 

x cos x 3 f . 2 sm x dx = -
4 

+ 4 sm x dx 

in 
3 

x co x 3 [ sin x cos x 1 f J ---- + - - + - 1 dx 
4 4 2 2 

in 3 x cos x 3 sin x cos x 3 
4 8 + 8x. 

sm x x = dx = - - -- + dx f . 4 d f ( 1 - cos 2x ) 
2 f ( 1 cos 2x cos

2 
2x ) 

2 4 2 4 

= ~ _ sin 2x + ~ f 1 + cos 4x dx 
4 4 4 2 

= i _ sin
4
2x + i [ ~ + sin/x J 

3x sin 2x sin 4x 
=g--4-+32· 

(b) It follow that these two an wers are th same, since they have the same 
value for x = 0. 

21. (a) 

·n d Jc· )('11-1 )d sm x x = sm x sm x x 

= - cos x m x + n - cos x sm x cos x x · n-1 ( 1) J ( · n-2 ) d 

· 11 - l ( 1) J ( · n-2 · 11 ) d = - co x sm x + n - sm x - sm x x, 

so 

f . n . 1 . 11- l n - 1 f . n-2 
sm x dx = - -;;_ cos x m x + -n- sm x dx. 

(b) 

f cos" x dx = f (cosx)(cos11 - 1 x)dx 

inxco n- l x + (n -1) f sinx(co n -
2 x) inxdx 

inxcos11
-

1 x + (n -1) f ( o n -
2 x - o 11 x)dx, 

0 

f o 11 x dx = ~ m x o n - Ix+ n - l f o n - 2 x dx. 
n n 



CHAPTER 20 1. 

Answers to Selected Problems 65 7 

(c) 

f dx f dx f x
2

dx 
(x2 + J )11 = (x2 + 1)11-l - (x2 + 1)11 

= - '""· dx f dx f x 
(x2+1)n-l · (x2+l)n 

f dx [ x 
= (x2 + l)n- 1 - 2(1 - n)(x2 + l)n-1 

-f 2(1 - 11)~:i + l)"-1 J 
so 

f 
dx 

(x2 + l)n 

x 

2(,z - I) (x2 + l)n - 1 

211 ...,... 3 f 1 ----clx. 
2(n-l) (x2+I)n-l 

\\Te can also use the substitution x = tan u , dx = sec2 u du, which 
changes the integral to 

f sec
2 

u du f 2 ? --- = cos 11 - - u du 
sec211 u 

1 "11 - 3 . 211 - 3 f "11 - 4 = 
2 2 

cos- u sm u + 
2 2 

cos- u du 
ll- ,Z-

1 1 x 2n - 3 f dx 
= 211 - 2 . ( j x2 + 1 )211 - 3 · /x2 + 1 + 2n - 2 (x2 + 1)11- I 

1 x 2n - 3 f dx 
= +--

2(11 - 1) (x 2 + 1)11 - 1 2n - 2 (x2 + 1)11 - l · 

(i) P3.o(x) = e +ex+ ex2 + (5e/3!)x 3
. 

(iii) 
(x - Jr /2) 2 (x - Jr /2)4 (-1 )'1 (x - n /2) 211 

P211.rr;2(x) = 1 - 2! + 4 ! - · · · + (2n)! 

e(x - 1)2 e(x - 1)'1 
P 1 (x) = e + e(x - 1) + + · · · + ---

n. 2! ll ! (v) 

(vii) P4.o(x) = x + x 3. 
(ix) P211+1.o(x) = l -x2 +x4 - · · · + (-1)'1x 211

• 

2. If f is a polynomial function of degree ll, then f <
11+ 1) = 0. It follows from 

Taylor's Theorem that R11 .a(X) = 0 , so J(x) = P11 .a(x). 

(i) -12 + 2(x - 3) + (x - 3)2. 
(iii) 243 + 405(x - 3) + 270(x - 3)2 + 90(x - 3)3 + 15(x - 3)4 + (x - 3)5 . 

3. 
9 

(-1/ ( 1 ) L (2i + 1 )! since (2n + 2)! < 10-
17 

for 2n + 2 ~ 19, or n::::: 9 . 
1=0 

(i) 

(iii) 
8 (-1 )i ( . 1 
~ 2i (2i + l)! smce 2211+2 (2n + 2)! < 10- 20 for 2n + 2 ~ 18. 

or 11 :,: 8). 
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CHAPTER 22 

CHAPTER 23 

132;(· 32.211+1 ) 
"'"' - smce < 10- 5 for 11 + I > 14, or 11 ~ 13 . 
~ i! (11 + I)! 
i=O 

(v) 

7. (i) l'i = a; + bi. 

(iii) C; = (i + l)ai. 

(v) co= foa f(t) dt: c; = ai - 1/i for i > 0. 

1. (i) 1 - 11 / (11 + I) = 1 / (11 + 1) < E for n + I > I/ E. 

(iii) lim V11 2 + I - 0z+l = lirn ( V112 + 1- V) + lirn ( lf,z- 0z+l) 
11-00 11 -> C,.., 11 -> Cv 

= 0 + 0 = 0. (Each of these two limits can be proved in the same way 

that lim ( J;+l - J,i) = 0 was proved in the text.) 
11 -> (X) 

(v) Clearly lim (log a )/11 = 0. So lirn z/a = lirn eOog al / 11 = e0 (by Theo-
n-Hx , 11->oo 11 -> oo 

rem 1) = I. 

(vii) 'f;i. :S '1~11-2_+_11 _:::: ::(i;;i., so ( ::/n )2 :s '1112 + 11 :s v12( if,z )2 , and 

Jim ( ::/n )2 = lim v12( ::/n )2 = I by parts (v) and (vi). 
11->00 11 -> Cv 

(i.-x) Clearly a(11) :S log2 11, and lim (log2 11)/11 = 0. 
11 -> oo 

5. (a) If O < a < 2, then a 2 < 2a < 4, so a < J2;; < 2. 
(b) Part (a) shows that 

Ji < {;:ii < j 2{;:ii < · · · < 2. 

so the sequence com·erges by Theorem 2. 

(c) If this sequence is denoted by {a11 }, then the sequence { ~} is the 

same as {a11+d· So the hint shows that I = J2l, or I = 2. 

8. If x is rational, then n ! JT x is a multiple of JT for sufficiently large 11, so 
(cosn!nx) 2k = I for all such 11, so lim ( lim (cosn!nx) 2k) = 1. If x is 

II-> (X) k -> CX! 

irrational, then 11 ! JT x is not a multiple of JT for any 11, so I cos 11 ! JT x I < I, so 
lim (cosn!nx)2k = 0, so f(x) = 0. 

k -> oo 

9. (i) lo 1 
e-' dx = e - I. (Use par1i1ions of fO, I J into 11 equal parts.) 

(iii) 

(v) 

1
1 I 

-
1
-dx = log 2. 

o +x 

(1 I 1 
Jo (1 +x)2 dx = 2· 

I. (i) (Absolutely) convergent , since l(sin 118)/11 2
1 _:::: l/11 2. 

(iii) Divergent, since the first 2n terms ha\·e sum ! + · · · + I / 11. \Leibniz's 
Theorem does not apply since the terms arc not decreasing in absolute 
value.) 
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(v) Divergent, since 

1 1 
-----;::== > --
;/ n2 - 1 - n2/3. 

(vii) Convergent, since 

lirn ( n + 1) 
2 

/ ( n + 1) ! = Jim ( n + 1 ) 
2 

. _l _ = O. 
n-+oo n 2 / n! n-+ oo n n + 1 

(ix) 

(xi) 

(xiii) 

Divergent, since 1 / (log n) > 1 / n . 

Convergent, ince 1 / (log n t < _..!._ for n > 9. 211 
Divergent, since 

n2 1 
-->­
n3 + 1 2n 

for large enough n . 

(xv) Divergent smce 

f N 
1 

dx = log(log N) - log(log 2) ---+ oo as N ---+ oo. 12 x log x 

(Notice that f (x) = 1 / (x log x) is decreasing on [2, oo), since 

f ' (x) = - [ 1 + log x] < 0 
(x log x) 2 for x > 1. 

(xvii) Convergent, since l / n2 (log n) < 1/ n2 for n > 2. 

(xix) Convergent, since 

1
. 2n+ l (n + l)! /(n + 1)'1+ 1 2(n + l )n 11 

llTI =lim 
l'HOO 2nn!/n 11 II -+ (n + l)n+l 

. 2 
= }~ ( 1)11 

1 +-
n 

by Problem 18-17. 

7. (a) For each N we clearly have 

N oo 

0 ~ La11 10-n < 9 L 10- n = 1, 

n=l n= l 

00 

2 
e 

o L a11 10-n conv rge by the bound dn criterion, and lie betw n 
n=l 

O and 1. (Actually, this numb r i d not d by O.a I a2a3a4 . .. only ,, h n 
the equence {a 11 } is not eventually 0.) 
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CHAPTER 24 

20. The area of the shaded region is i· The integral is 

~ c [ 1 - !J + [ ! - k J + U6 - A J + · · · ) - ! ([ ! - ! J + [ k - i'6J + · · · ) 

= ! c ! + k + A + 11s + · · · ) - ! c ! + /6 + 6~ + 216 + · · · ) 

= iCl + i + /6 + i4 + ... ) - !Cl+ i + /6 + 6~ + ... ) 

= ~ (1 + ~ + _]:__ + 2_ + .. . ) 
8 4 42 43 

1 1 
-·--
8 1 - i 
1 
6" 

1. (i) 

f 1. -r ! 0, x = 0 
(x) = 1m 1 n (x) = l O l 

n---+ , < X::: . 

Un} does not converge uniformly to f. 

(iii) f(x) = lim fn(x) = 0 (since lim x 11 = oo for x > 1). The sequence 
n---+oo n ---+ oo 

{f,1 } does not converge uniformly to f; in fact, for any n we have f 11 (x) 

large for sufficiently large x. 

(v) f(x) = lim fn(x) = 0, and Un} converges uniformly to f , since 
n ---+oo 

lf,i(x) I ::: 1/n for all x. 

3. 
1 x x 2 

a a2 a3 (i) 

oo c-1/(-!) '°"" k x2k+l _ 
L 2k+ 1 
k=O 

(v) 

4. (i) e- x. 

(iii) If 
x2 x3 x4 

f(x) = - - - + - - · · · 
2 3.2 4.3 ' Ix I ::: 1 

then 

x2 x3 
f'(x) = x - 2 + 3 - · · · 

= log(l + x) lx l < 1, 

o for Ix I < 1 w hav f (x) = (1 + x) l g(l + x) - ( 1 + x) + c for 
om numb re. m /(0)=0 w hav c= l of(x)=(l+ x)· 

log(l + x) - x for lxl < l. 
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6. Since 

1. 

2. 

. oo (-l)'1x2n+I 
smx=L----

(211 + 1)! 
n=O 

we have 
oo ( - 1 )'1 X 2n 

f (x) = L (2n + l)! 
n=O 

(notice that the right side is l for x = 0). So 

(i) 

(iii) 

(v) 
(i) 

{ 

(-1)'1 

/kl(O) = 211 + 1' 
0, 

13 + 4il = 5; e = arctan 1-

k = 2n 

k odd. 

1(1 +i)5J = (11 +iJ)5 = (v2)5; since n/4 = arctan 1/1 is an argument 
for 1 + i, an argument for (1 + i) 5 is Sn /4. 
1(13 + 4il)I = 151 = 5; e = o. 

-i ± /-1 -4 
.x = ------

2 

-i ± Jsi 
2 

(-1 + v's)i 

2 
or 

(-1 - v's)i 

2 

(iii) x 2 + 2ix - 1 = (x + i) 2 , so the only solution is x = -i. 
(v) x 3 - x 2 - x - 2 = (x - 2)(x2 + x + 1). The solutions are 

2, 
1 vi3 

-- - -[. 

2 2 
3. (i) All z = iy with y real. 

(iii) All z on the perpendicular bisector of the line segment between a and b. 

(v) For.::= x + iy, we need J x 2 + y2 < 1 - x. This requires that 1 - x > 
0, and then our inequality is equivalent to x 2 + y 2 < (l - x )2 , or 
x < (1 - y 2)/2 (and conversely this inequality implies that x < !, so 
that l - x > 0 holds). The set of points x + iy with x = ( 1 - y 2) /2 is the 
parabola pointing along the second axis, with the point i + Oi closest 
to the origin, and which passes through the points O + i and O - i; the 
desired set of complex numbers is the set of points inside this parabola. 

4. Ix+ iyl2 = x2 + y2 = x2 + (-y)2 = Ix - iyJ2. 

(z + z)/2 = [(x + iy) + (x - iy)]/2 = x. 

(z - z)/2 = [(x + iy) - (x - iy)]/2i = y. 

5. lz + wJ 2 + lz - wJ 2 = (z + w)(z + uJ) + (z - w)(z - w) = 2zz + 2wuJ = 
2(JzJ2 + JwJ 2). Geometrically, this says that the sum of the squares of the 
diagonals of a parallelogram equal the sum of the squares of the sides. 
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CHAPTER 27 
I . (i) Converg sabsolutely, inc ICl+it/n!I = (../2)'1/n! , and L(../2)'1/n! 

n=l 
converg s. 

(iii) Converges, but not absolutely, since the real term form the series 

l I l 1 - 2 +4-6+s-· · · 

and the imaginary t rms form the n s 

i(t-!+!-4+···). 

(v) Diverge , since th r al terms form th sen e 

log 3 + 2 log 4 + log 5 + log 7 + 2 log 8 + log 9 + ... 
3 4 5 7 8 9 . 

2. (i) The limit 

lzl11 +1 
/(n + 1)

2 
. ( n )

2 
lim = hm -- lzl = lzl 

11 -HXJ lzln/n2 n-H)O n+l 

is < 1 for lzl < 1, but > 1 for lzl > 1. 
(iii) The limit 

lzln+ l 
lim -- = lzl 

n-+oo lzl17 

is < 1 for lzl < 1 but > 1 for lzl > 1. 
(v) The limit 

2 n+ 11 l(n+l)! 
lim z = lim 21 zl(n+l)!- n! 

17 -+00 217 lz 111! n-+oo 

is O for lzl < 1, but oo for lzl > 1. 
3. (i) The limits 

lim 211 ~ =~ 
IH v~ J3 and I 1211 +1 I I lirn 2,, + 1 z = Z 

17 -+ 00 211+1 h 

are < 1 for lzl < ../2, o th series converges absolutely for lzl < h. 
But the series does not converge absolutely for lzl > h , so th radiu 
of convergence is h. 

(iii) Since 

lim " nl zln = lim ~ z/n = lzl by Probl m 22-l (vi), 
n-+ 2n n-+ 2 2 

the radius of onv rgence i 2. 
(v) The limit 

lim :/211 -::,11 ! = 2 lim z<n- I)! 
17 -+ 11 -+ 

O fi r lz l < 1, bul for lzl > 1, lh radiu f onv rg n 1. 
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p 9 

lal 11 

Ji 12 
max(x, y) 16 
min(x, y) 16 
£ ("epsilon") 18 
N 21 
0 23 
n! 23 

i=I 

Z 25 
Q 25 
R 25,589 

G) 27 

f(x) 40, 47, 601 
I 43 
f + g 43 , 245 
A nB 43 
f ·g 43 
f/g 43 
c · g 43 
{x : ... } 43 
{a, ... , z} 44 
f +g +h 44 
f · g · h 44 
J o g 44 
f O g Oh 45 
x---+ f(x) 45 
abc 49 

CA 50 
A UB 50 
R-A 50 

Ill 51 
max(!, g) 51 
min(!, g) 51 
f < g 53 
the pair (a, b) 54 
the open interval (a, b) 

56 
[a,b] 57 
(a, oo) 57 
[a, oo) 57 
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(-oo, a) 57 
(-oo, a] 57 
(-oo, oo) 57 
[x] 72 
{x} 72 
v + w 75 
v • w 78 
llvll 78 
det(v, w) 79 
8 ("delta") 98 

lim f (x) 101 
X->a 

lim J 101 
a 

lim f(x) 106 
x->a+ 

limf(x) 106 
xia 

lim J(x) 106 
x-..a-

Jim f(x) 106 
xta 

lim f(x) 106 
X->00 

lim f(x) 113 
x~-oo 

lim f(x) = oo 
x->a 

lim f(x) = oo 
X->00 

sup A 134 
lub A 134 
inf A 134 
glbA 134 

limA 143 
limsup A 143 
limA 143 

!'(a) 151 
J' I 51 
df(x) 

154 
dx 

df (x) I 155 
dx x=a 

!" 161 

!"' 161 
J<k) 161 

d2 J(x) 
162 

dx2 

1-' 231 

113 

l 13 

e 244,331 

c + d 245 
a· c 245 
c • d 246 
det(c, d) 246 
c' 246 
R(f, a, b) 253 
L(f, P) 254 
U(f, P) 254 

lb f 258 

lb f (x) dx 264 

£(!, P) 277 
9:(x) 278 

L lb J 295 

U lb f 295 

100 

f 301 

100 

f (x) dx 301 

J_~ f 301 

1_: f 301 

sin° 304 
si1{ 304 
n 305 
A(x) 306 
cos 306, 308, 563 
sm 306, 308, 563 
sec 310 
tan 310 
csc 310 
cot 310 
arcsm 310 
arccos 311 
arctan 311 
e 331 
log 341 
exp 343,563 
e 343 
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e 1 344 
a >- 345 
log

0 
346 

inh 353 
osh 353 

tanh 353 
arg cosh 353 
arg inh 353 
arg tanh 353 
Nap log 358 

b 

F(x) la 363 

f J 364 

J f(x) dx 364 

r(x) 394 
P11 •0 412 
P11 .a.f 412 
R,,.a 421 
[ P] 11 434 

(:) 437 

{a,,} 452 

lim a11 453 
II -> 

lim a11 = oo 456 

y 463 

lim x,, 467 

lim upxn 467 
n --+oo 

lim x,, 468 
11 --+ 

lim inf x,, 468 
II -+ 

N(n;a,b) 469 

00 

I>,, 472 

526 532 
C 531 
z 534 

lzl 534 
Re 541 
Im 541 
e 542 

lim f (z) 542 
z--+ a 

f'(a) 551 

sm 563 
cos 563 
exp 563 

bl! 572 

B,, 572 
D 573 
Dk 573 
eD 573 
!). 573 

<p,, 575 

VJ,, 576 

+ 581 , 591 . 581 , 594 
0 581 , 591 
I 582 596 
- a 582, 592 
a - 1 582 596 

P 583 
> 584, 590 
< 584, 590 
~ 584, 590 
< 584, 590 

lal 595 
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AalbmcndoE, 276 
Abel, Niels Henrik, 410, 522 
Abel summable, 522 
Abel's formula for summation by parts, 

392 
Abel's Lemma, 393 
Abel's test, 496 
Abel's Theorem, 522 
Absolute value, 11 

of a complex number, 534 
Absolutely convergent, 480, 556 
Absolutely summable, 480 
Acceleration, 161 
Acta Eruditorum, 148 
Addition, 3 

associative law for, 9 
commutative law for, 9 
o[ complex numbers, 531 

geometric interpretation of, 535 
of vector-valued functions, 245 
of vectors, 75 

Addition formula 
for arcsin, 317 
for arctan, 317 
for cos, 314 
for sin, 313,314 
for tan, 317 

Additive identity 
existence of, 9 
for vectors, 7 6 

Additive inverses 
existence of, 9 

Algebra, Fundamental Theorem of, 
377, 538, 548, 567 

Algebraic functions, 363 
Algebraic number, 442 
Algebraist's real numbers, 598 
Almost lower bound, 142 
Almost upper bound, 142 
Analyst's real numbers, 598 
Angle, 303 

directed, 303 
Antidiagonal, 243 
Arabic numerals, multiplication of, 8 
Arc length, 278, 283 
Arccos, 311 

derivative of, 311 
Archimedes, 138, 141, 263 
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Archimedian property 
for the rational numbers, 584 
for the real numbers, 138 

Archimedian spiral, 85, 249 
Arcsec, 320, 383 
Arcsin, 310 

addition formula for, 317 
derivative of, 311 
Taylor series for, 517 

Arctan, 311 
addition formula for, 317 
derivative of, 311 
Taylor polynomials for, 413, 420 

remainder term for, 426 
Area, 253, 258 
Arg cosh, 353 
Arg sinh, 353 
Arg tanh, 353 
Argument, 536 
Argument function, 542 

discontinuities of, 546 
Argument of the hyperbolic 

functions, 353 
Arithmetic mean, 33 
Arrow, 75, 76 

''x arrow sin(x2)", 45 
Associative law 

for addition, 9 
of vectors, 76 

for multiplication, 9 
Average velocity, 152 
Axis 

horizontal, 57 
1magmary, 534 
real, 533 
vertical, 57 

Bacon, Francis, v1 
Basic properties of numbers, 3 
"Bent graphs", 149 
Bernoulli, Jakob, 148, 574 
Bernoulli numbers, 572 
Bernoulli polynomials, 575 
Bernoulli's inequality, 32 
Big game hunting, mathematical 

theory of, 552 
Binary operation, 581 
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Binomial coefficient, 27, 437 
Binomial series, 495, 5 18 
Binomial theorem, 28 
Bisection argument, 142, 552 
Bolu~ l larold , 394 
Bolzano-\\'eicrstrass TlwofC'm, 458, 469, 

552 
Bound 

almost lower, 142 
almost upper, 142 
greatest lo\\·er, 134 
lt'ast upper, 133, 584 
lower, 134 
upper, 133 

Boundedness criterion , 474 
Bounded abon·, 122, 133, 457, 584 
Bounded below, 134, 457 
Bourbaki, Nicholas, 148 

Cantor, Georg, 448 
Cardioid, 89, 250 
Cartesian coordinates, 84 
Cauchy 

Condensation Theorem, 496 
criterion, 4 73 
form of the remainder, 437 
l\ lean Value Theorem, 204 
product, 493, 513 
sequence, 459, 57·1 

equi, ·alence of. 599 
Cauchy-Hadamard formula, 569 
Cauchy-Schwarz inequality. 281 
Cavalieri, Bonm·entura, 275 
Cesaro summable, 493 
Chain Rule, 174 fI 

proof of, 178 
Change, rate of~ 152 
Characteristic (of a field), 586 
Circle, 65 

'' f circle g" ' , 44 
unit, 66 

Circle of convergence, 560 
Classical notation 

fcir derivatives, 154 156, 162, 167, 
187, 241 242 

for integrals, 265 
Cicio, 186 
Closed intc1Yal , 57 
Closed rectangle, 547 

Closure under addition, 9 
Closure under multiplication, 9 
Commutati,·e law 

for addition, 9 
of ,·ectors, 76 

for multiplication, 9 
Comparison test, 474 

limit, 475 
Comparison Theorem, Sturm, 323 
Complete induction, 23 
Complete ordered field, 584, 603 
Completing the square, 17, 3 79 
Complex analysis, 565 
Complex function 

continuous. 545, 546 
differentiable, 550 
graph of: 542 
limit of. 542 
nondiffcrcntiablc, 551 
Taylor series for, 563 

Complex 11th root, 536 
Complex numbers, 526, 531 

absolute value of, 534 
addition of, 531 

geometric interpretation of~ 535 
geometric interpretation of, 533 534 
imaginary part of, 531 
infinite sequence of. 555 
infinite series of. 555 557 
logar·ithm of. 570 
modulus of, 534 
multiplication of, 531 

geometric interpretation 
of, 535- 536 

rcal part of, 531 
Complex plane, 533 
Complex pm,·er series, 557 

circle of com·ergence of, 560 
radius of com·ergence of, 559 

Complcx-,·alued functions, 541 
Composition of functions, 44 
Conca\'e function, 220 
Conditionally com·ergcnt series, 481 
Cone, 80 

generating line of, 80 
surface area of. 404 

Conic sections, 80: Hf alw Ellipse, 
I lyp<'rhola, Parabola 

Co1~j11gatc, 534, 539 



Conjugate function , 541 
Constant fun ction, 43 
Construction of the real numbers, 

588 ff. 
C ontinued fraction , 462 
Continuous, uniformly, 144 
C ontinuous a t a , 115, 545 
C ontinuous function, 115, 118, 546 

nowhere differentiable , 159, 509 
Continuous on (a, b), 118 
Continuous on fa. b] , 118 
Contraction , 466 
Contraction lemma, 466 
Com·t'rge 

pointwisC' , 502 
uniformly, 502, 506 

C om·crgcnt sequence, 453 , 555 
Conn:rgcnt se ries . 472, 556 

absolutely, 480, 556 
rnnclitionally, 481 

Conwx fun ction , 219 
strictly, 228 
\\Takly, 228 

C onvex subset of the plane, 229. 553 
C ooling, Ne\\·ton's law of, 356 
C oordinate 

first, 57 
second, 57 

Coordinate system , 57 
cart t's ian , 84 
origin of, 57 

C oordina tes 
polar, 84 

"Corner" , 60 
Cos. 303 -304, 306, 321 322, 563 

addition formula for , 3 l 4 
dcri,·atiw of, l 72 , 307 
inn·rsc of, see Arccos 
Taylor polynomials for, 413 

rcmainclC'r term for , 424 
Cosh, 353 
C osine, hyperbolic , 353 
C ot, 310 

derivative of, 3 l O 
Countable, 449 
Counting numbers, 21 
C ritical point , 190 
C ritical value, l 90 
Csc. 310 
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derivati, ·e of, 310 
Cubic equation, general solution, 

528 529 
Cun·e 

parameterized, tangent lint' oC 246 
parametric representation of, 244 
rcparameterization of, 247 

Cycloid, 250 

Darboux 's Theorem, 2 l 4 
Dt> ~loivre's Theorem , 536 
Decimal C'xpansion, 73 . 492, 599 
Dccrt>asing function, 195 
Decreas ing sequence , 457 
De<lekind, Richard, 38 
Defined implicitly, 24 l 
Definite integral, 365 
DEFINITION, 47 
Definiti on , recursi,·e . 23 
Degree (of a polynomial), 42 
Degree nwasurement , 304--305 
Delicate ra tio tes t, 493 
Delicate root test, 493 
D ense, 140 
D eriva tive, 149 IT. , 151 

classical notation for , 154 156, 162, 
167 , 187, 241 242 

higher-order, 161 
" infi nite'", 158 
left-hand , 156 
Leibnizian notation for , see Deriva tive, 

classical notation for 
logarithmic, 351 
"negative infinity". 158 
of f .LSI 
of .fat a . 151 
of n ·ctor-valuecl function, 246 
right-hand, l 56 
SclH,varzian, l 84 
second, 161 

Sclw,arz, 439 
Derivatiw· of quotient. incantation for. 

171 
Descartes, Rene. 84 
Determinant , 79 

of ,·cc tor-, ·alued fun ctions. 248 
Diagonal, 233 
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Difference operator, 573 
Differentiable, 151, 550 
Differential equation, 292, 300, 321 , 

322- 323, 356, 361, 438 -440 
initial conditions for, 440 

Differentiation, 168 f[ 

implicit, 241 
logarithmic, 351 

Differentiation operator, 573 
Dini's Theorem, 524 
Dirt'cted anglt', 303 
Dirichlet's tt'st, 495 
Disc method, 402 
Discontinuities of a nondecreasing 

function, 450 
Discontinuity, removable, 121 
Disraeli, Benjamin, 2 
Distance, 58, 534 

shortt'st between two points, 278 
Distributive law, 9 
Diverge, 453, 556 
Division, 6 
Division by zero, 6 
Domain, 40, 41, 47, 601 
Dot product 

of vectors, 78 
of vector-valued functions , 246 

Doublt' interst'ction, 165 
Double root, 185 
Durege, 38 

e, 343 
irrationality of, 429 
relation with JT , 448, 564 
transcendcntality of, 444 
value of, 344, 426 

Eccentricity of dlipse, 87 
Elementary function, 363 
Ellipse, 66, 82 

axes of, 87 
eccentricity of, 87 
equation in polar coordinates, 86 87 
forns point of, 66, 86 
1rnuor axis of, 87 
minor axis of, 87 

Ellipsoid of rrvolution, 405 
Empty collection, 23 

Entire function, 567 
Epsilon, 18 
Equal up to ordt'r 11, 418 
Equality, order of, 418 
Equations, diflerential, see Differential 

t'quations 
Equivalent Cauchy sequences, 599 
Etymology lesson, 82 
Eult'r, Leonhard, 575 
Euler's numbt'r, 463 
Euler-1\Iaclaurin Summation Formula, 

576 
Ewn function, 51, 199 
Evt'n number, 25 
Eventually inside, 555 
Exhaustion, method of, 141 
Exp, 343 ff., 563 

classical approach to, 357 
elementary dt'finition of, 468 
Taylor polynomials for , 413 

remainder term for, 426 
Expansion, decimal , 73, 492, 599 
Extension of a function, 115- 116 

Factorial, 23 
Factorials, table of, 432 
Factorization into primes, 31 
Fibonacci, 32 
Fibonacci Association, 32 
Fibonaffi ()Jwrter£v, The, 32 
Fibonacci sequmce, 32, 521 , 572 
Field, 581 

characteristic of, 586 
complt'te ordered, 584, 603 
ordered, 583 

First coordinate, 57 
First Fundamental Theorem of Calculus, 

285 
Fixed point of a function, 465 
Focus point, 66, 86 
Force, as ,·ector, 76 
Four leaf clm·er, 88 
Fourier series, 318, 320, 323 
Fraction, continued, 462 
Function, 39, 47 

absolute , ·aluc, 541 



Function (continued) 
argument, 542 

discontinuities of, 546 
complex valued, 541 
composition of, 44 
concave, 220 
conjugate, 541 
constant, 43 
continuous, 115 ff. 
convex, 219 
critical point of, 190 
critical value of, 190 
decreasing, 195 
derivative of, 149 ff. 
clifierentiable, 151 , 550 
elementary, 363 
entire, 567 
e\'en, 51 , 199 
exponential, 343- 344 
extension of, I 15 1 16 
fixed point of, 465 
from A to B, 601 
from real numbers to the plane, 244 
graphs of, 57- 65, 198, 542 
hyperbolic, 353 
identity, 43 
imaginary part, 541 
implicitly defined, 241 
increasing~ 195 
integrable, 258 
integral of, 258 
inverse, 231 ff. 
linear, 58 
local maximum point of, 189 
local minimum point of, 189 
local strict maximum point of, 218 
logarithm, 341, 346 
maximum point of, 188 
maximum value of, 188 
minimum value of, 188 
most general definition of, 601 
negative part of, 51 
nondecreasing, 243 
nonincreasing, 243 
nonn ega tive, 51 
notation for, 40, 45 
odd, 51, 199 
one-one, 230 
periodic, 71, 164, 298 

polynomial, 42 
positiw part of, 51 
power, 60 
product of, 43 
quotient of, 43 
rational, 42 
real part, 541 
real-valued, 541 

Index 673 

''reasonable", 68, 118, 149, 180 
regulated, 524 
square root, 546- 547 
step, 278 

strict maximum point of, 218 
sum of, 43 
trigonometric, 303 ff. 
value at x, 40 
vector-valued, 244 

Fundamental Theorem of Algebra, 377, 
538, 549, 567 

Fundamental Theorem of Calculus 

First, 285 
Second, 289 

Gabriel, 408 
Galileo Galilei, 148, 164 
Gamma function, 394, 444 
Generating line, of a cone, 80 
Geometric mean, 33 
Geometric series, 4 73 
Global property, 123 
Goes to, "x goes to sin(x2 )", 45 
Graph of polynomial function, 197 198 
Graph sketching, 196- 20 I 
Graphs, 57 65, 85 ff. , 90- 91 , 197 198, 

542 
Gravitation, 330 
Greatest lower bound, 134 
Grin and bear it, 385 -386 
Gron\\'all's inequality, 356 
Grow 

at the same rate as, 361 
faster than, 361 
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Hadamard, jff Cauchy-Hadamard 
formula 

Half-life (of radioactive substance), 356 
Hermite, Charles, 443 
High-school student's real numbers, 599 
Higher-order derivati\·es, 161 
Hilbert, David, 443 
Horizontal axis, 57 
HnxTbola, 67, 82 

equation in polar coordinates, 88 
Hypcrl>olic cosine, 353 
l-!)1wrl>olic functions, 353 
H)1X' rbolic sine, 353 
Hnwrbolic spiral, 316 
HylJerholic tangent , 353 

Identity 
additin·, 9 
multiplicatiw, 9 

Identity function, 43 
Identity operator, 574 
Imaginary axis, 534 
Imaginary part function, 54 l 
Imaginary part of a complex number, 

531 
Implicit differentiation, 241 
Implicitly defined, 241 
Improper integral. 301 - 302, 397 -399 
Incantation for deri\'ativc of quotient, 

171 
Increasing at a, 217 
Increasing function, 195 
Increasing sequence, 457 
Indefinite integral, 365 
Indefinite integrals, short table of, 

365 366 
Induction , mathematical, 21 

complete, 23 
Inductive' set of rral numbers. 34 
Inequalities, 9 

in an ordered field, 584 
I1wquality 

Bernoulli's, 32 
Cauchy-Schwarz. 281 
gcomctrir-arithnwtic mean. 33 
( ;ronwall's, 356 

j<'IIS<' ll 'S, 228 

I ,iouville's, 448 

Schwarz, 17 , 33, 281 

triangle, 71 

foung's , 276 

I nfimum, 134 
" ] nfinitc" deri\·atin', 158 

Infinite intervals, 57 

Infinite product, 329, 395, 497 

Infinite sC'quence, 452, 555 

Infinite sC'ries, 4 71 

multiplication of, 486 

Infinite sum, 430, 471 

Infinite trumpet, 408 

Infinitely many primes, 32 

" lnfmitcly small", 155, 264 

Infinity, 57 

minus, 57 

I nOection point, 225 

Initial conditions for differential equa-
tions, 440 

Instantaneous speed. I 52 

Instantaneous \'elocity, 152 

lntC'ger, 25 

Integrable, 258 

Integral, 258 

classical notation for, 264 265 

cldinite, 365 

improper, 301 302, 397- 399 

indefinite, 365 

short table of, 365 366 

Leilrnizian notation for, see Integral, 
classical notation for 

lower, 295 

l\ lean Value Theorem for, 277 

Second l\ lean \ 1;1Jue Theorem for , 
391 

upper, 295 
Integral form of the remainder, 423 

Integral sig11. 258 
Integral test, 4 78 

Integral io11 

hy parts, 366 ff. 
by substitution, 369 tr 
limits of: 258 
or rational fi.111ctions, 377 11: 

Interest (finance), 355 



Intermediate Value Theorem, 124, 131, 
135, 299 

Interpolation, Lagrange, 49 
Intersection of sets, 43 
Interval, 56 

closed, 57 
infinite, 57 
open, 56; see also Nested Intervals 

Theorem 
Inverse 

additive, 9 
multiplicative, 9 

Inverse of a function, 231 fl 
Inverse square law, 330 
Inverses of trigonometric functions, 

see Trigonometric functions 
Irrational numbers, 25 
Isomorphic fields, 602 
Isomorphism, 602 

Jensen's inequality, 228 
Johnson, Samuel, 607 
Jump, 60 

Kepler, Johannes, 330 
Kepler's laws of planetary motion, 330 

Lagrange form of the remainder, 423, 
436 

Lagrange interpolation formula, 49 
Large negative, 64 
Least upper bound, 133 ff, 584 
Least upper bound property, 135 
Lebesgue, see Riemann-Lebesgue 

Lemma 
Left-hand derivative, 156 
Leibniz, Gottfried Wilhelm, 155, 264 
Leibniz's formula, 184 
Leibniz's Theorem, 481 
Leibnizian notation for derivatives, 154-

156, 167, 187, 241 
for higher order derivatives, 162 

Lemma, 102 
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Lemniscate, 89 

Length, 278, 283 
L'Hopital, lVIarquis de, 148 
L'Hopital's Rule, 204, 213 214 
Limit, 90 fl, 98, 542 

at infinity, 106 
"does not exist", 101 
from above, 106 

from below, 106 
of a sequence, 453 
of vector-valued function, 246, 252 
uniqueness of, 100 

Limit comparison test, 4 75 
Limit of integration, 258 

Limit point, 469, 552 
Limit superior, 143, 467 
Lindemann, Ferdinand von, 44 7 

Line, real, 5 6 
Line, tangent, see Tangent line 

Linear functions, 58 

Liou ville, Joseph, 448 
Liouville 's inequality, 448 
Liouville's Theorem, 567 
Lipschitz of order a, 210 
Local maximum point of function, 189 

higher-order derivative test for, 417 
second derivative test for, 201 

Local minimum point of function, 189; 
see also Local maximum point 

Local property, 109, 123, 166 
Local strict maximum point, 218 

Log, 341, 346 
Taylor polynomials for, 413 

remainder term for, 427 
Logarithm 

classical approach to, 357 
Napierian, 358 
of a complex number, 570 
to the base 10, 339 

Logarithmic derivative, 35 l 
Lower bound, 134 

almost, 142 
greatest, 134 

Lm•;er integral, 295 
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Lavver limit of integration, 258 
Lower sum, 254 
Lowest terms, 73 

l\Jaclaurin, sec Euler-1\Iaclaurin summa-
tion formula 

.i\lajor axis of ellipse, 87 
Mass, rate of change of, 152 
l\lathematical induction, 21 
l\Iaximum of two numbers, 16 
l\laximum point of a function , 188 

local, 189; see also Local maximum 
point 

local strict, 21 8 
strict, 218 

l\Iaximum value off unction , 188 
l\lean 

arithmetic, 3 3 
geometric, 3 3 

.i\lean Value Theorem, 193, 194 
Cauchy, 204 
for integrals, 277 

Second, 391 
l\ lethod of exhaustion, 141 
l\Iinimum of function , 188 
l\Iinimum of two numbers, 16 
.i\ linimum point of a function, local, 

189; see also Local minimum point 
l\Iinor axis of ellipse, 87 
l\finus infinity, 57 
1\ Iirifici logaritlznwnwn rnnonis description, 

358 
l\lodulus of a complex number, 534 
.i\follerup, Johannes, 394 
l\ lultiplication, 5 

associative law for, 9 
closure under, 9 
commutative law for, 9 
of arabic numerals , 8 
of complex numbers, 531 

geometric interpretation, 535 -536 
of function and , ·ector-valued func-

tion, 245 
of infinite series, 486 
of numb<:> r and vector, 77 
of ,·cctors , 77 

.i\ l u ltiplica tin: ickntit y, existence of, 9 

l\Iultiplicative inverses, existence of, 9 
l\Iultiplicity (of a root), 130, 185 186 

Napier, .John, 358 
Napierian logarithm, 358 
Natural numbers, 21, 34 
N cgative, large, 64 
"Negative infinity", derivati,·e, 158 
Negative number, 9 
Negative numbers, product of two, 7 
Negative part of a function, 51 
Nested Interval Theorem, 142 
Newton, Isaac, 155, 276, 330 
Newton's law of cooling, 356 
Newton's laws of motion, 161 
Newton's method, 464 
Nondecreasing function, 243 
Nondecreasing sequence, 457 
Nondifferentiable complex functions , 

551 
Nonincreasing function, 243 
Nonincreasing st'quence, 457 
Nonnegati,·e function, 51 
Nonnegative sequence, 474 
Norm, 78 , 252 
Notational nonsense, 573 
Nowhere differentiable continuous 

function, 509 
nth root, 71, 536 

existence of, 125, 536, 553 
primitive, 540 

Null set, 23 
Number 

algebraic, 442 
complex, 526, 531 
counting, 21 
even, 25 
imaginary, 526 
irrational, 25 
natural, 21, 34 
odd, 25 
prime, 31 
rational, 25 
real, 25, 534, 589 
transcendental, 442 

Numbers, basic properties of: 3 



Odd function, 51, 199 
Odd number, 25 
One-one function, 230 
Open interval, 56 
"Or" , 6 
Order of equality, 418 
Ordered field, 583 

complete, 584 
Ordered pair, 47 (footnote), 54 
Origin (of a coordinate system), 57 

Pair, 46 
ordered, 47 (footnote), 54 

Parabola, 60, 82 
area under, 263 
equation in polar coordinates, 88 

Parallelogram, 76 
Parameterized curve, tangent line of, 

246 
Parametric representation of a curve, 

244 
Partial fraction decomposition, 378 
Partial sums, 4 71 
Partition, 254 
Parts 

Abel's formula for summation by, 392 
integration by, 366 ff. 

Pascal's triangle, 27 
"Peak", 61 
Peak point, 458 
Period of a function, 71, 164, 298 
Periodic function, 71, 164, 298 
Perpendicularity of lines, 70 
Petard, H., 552 
Pig, yellow, v, 375 
Pigheaded, 186 
Plane, 58 

complex, 533 
Planetary motion, Kepler's laws of, 330 
Point, 56 
Point of contact, 220 
Point-slope form of equation of a line, 

59, 70 
Polar coordinates, 84 ff. 
Polynomial function, 42 

graph of, 61, 197 ff. 
multiplicity of roots, 130, 185- 186 

Polynomials, Bernoulli, 575 
Pope, Alexander, 330 
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Position, rate of change of, 152 
Positive element of R, 593 
Positive elements of an ordered 

field, 583 
Positive number, 9 
Positive part of a function, 51 
Power functions, 60 
Power series, 510 

complex, 557 
centered at a, 510, 564 

Powers of 2, table of, 432 
Prime number, 31 

characteristic of a field, 586 
infinitely many of, 32 
unique factorization into, 3 I 

Primitive, 363 
Primitive nth root, · 540 
Pn.ncipia, 276 
Product, 5 

Cauchy, 493, 513 
infinite, 329, 395, 497 
of function and vector-valued func-

tion, 245 
of functions, 43 
of number and vector, 77 
of two negative numbers, 7 
of vectors, 77 

Pyramid 
surface area of, 403 
volume of, 407 

Pythagorean theorem, 25, 58 
Tr, 305 

Archimedes' approximation of, 141 
irrationality of, 326 
relation to e, 448, 564 
transcendentality of, 44 7 
value of, 433 
Viete's product for 2/Tr, 329 
Wallis ' product for Tr /2, 395 

Quaternions, 587 
Quotient of functions, 43 



678 Index 

Rabbit s 

growth of population , 32 
Rad ian measure, 63 , 304 305 
Radioactive decay, 355- 356 
Rad ius of convergence of complex 

power series, 559 
Rate of change of mass, 152 
Rate of change of pos ition. 152 
Ratio tf's t, 4 76 

delicate, 493 
Rational functions, 42 

integration of. 377 IT. 
Rational numbers, 25 
Real axis, 533 
Real line, 56 
Real number (formal definition), 589 
Real numbers, 25 

algebraist's, 598 

analyst's, 598 
Archimedian property of, 138 
construction of, 588 ff. 
high-school student 's, 599 
inductive set of, 34 

Real part function , 541 
Real part of a complex numbf'r. 53 I 
Real-valued function , 54 I 
Rearrangement of a sequence, 483 
"Reasonable" function , 68, I 18, 149, 

180 
Rectangle, closed , 54 7 
Recursive definition , 23 
Reduction formulas, 377 
Regula ted fun ction, 524 
Remainder term for Taylor poly-

nomials, 421 , 423, 437 
Removable discontinuity, 121 
Reparameterization , 24 7 
Revolution 

ellipsoid of, 405 
solid of, 402 

Riemann sum , 282 
Riemann-Lebesgue Lemma, 320, 391 
Right-hand derivative, 156 
Rising Sun Lm1111a, 143 
Rolle, l\ Iichel, I 86 
Rolle 's Theorem, 193 
Root 

111ultiplicity o f, I 30. 185 186 

Root of a polynomial function , 50 
double, 185; see also nth roots 

Root test, 493 
delicate , 493 

Same sig11, 12 
Scalar, 78 
Scalar product of vectors, 78 
Schwarz, H. A. , 217 
Schwarz inequality, 17, 33 , 281 
Schwarz second derivative, 438 
Schwarzian derivati\·e, 184 
Sec, 310 

deri\·a tive of, 3 IO 
im·erse of, see Arcsec 

Secant line, 150 
Second coordinate, 57 
Second derivative , 161 

Schwarz, 438 
Second derivatiw test for maxima and 

minima, 201 
Second Fundamental Theorem of 

Calculus, 289 
Second l\Iean Value Theorem for 

[ n tegrals, 391 
Sequence 

absolut ely summable, 480 
Cauchy, 459 

complex, 57 I 
equivalence of. 599 

complex numbers, 555 
conve rgent, 453 

pointwise, 502 
uniformly, 502 

decreasing, 457 
divergent, 453 , 556 
Fibonacci. 32, 521 , 572 
increas ing, 457 
infinite, 452, 555 
limit of, 453 
nondecreasing, 457 
non increasing, 457 
nonnegati\·e, 4 7 4 
rearrangement of, 483 
summable. 472 

Series 
absolutely comTrgent, 480 
co nditionally com·crgcnt, 481 



Series (continued) 
con\'ergent, 4 72, 556 
Fourier, 318, 320, 323 
geometric, 4 73 
power, 5 I 0, 557 
Taylor, 5 l 1 

Set, 22 
empty, 23 

Sets 
intersec tion of, 43 
notation for, 43 44 

Shadow point, 143 
Shell method, 403 
Sigma, 24 
Sig11, 12 
Simpson's rule, 401 
Sin, 43 , 303 304, 306, 321 - 322, 563 

addition formula for, 313, 314 
derivative of, 172, 307 
inverse of, see Arcsin 
Taylor polynomials for, 412 

remainder term for, 424 
Sine, hyperbolic, 353 
Sine function, 43 
Sinh, 353 
Sketching graphs, 196- 201 
Skew field , 587 
Slope of a straight line , 58 
Solid of revolution , 402 
Speed, instantaneous, 152 
Spiral 

Archimedian, 85, 249 
hyperbolic , 3 16 

Square root, 12, 527 
existence of, 124 

Square root function, 546- 547 
Square root in a field, 586 
Squaring the circle, 447 
Step function , 278 
Stirling's Formula, 578 
Straight line 

analytic definition, 58 
shortest distance between t\,vo points, 

278 
slope of, 58 

Strict maximum point , 218 
Strictly convex, 228 
Sturm Comparison Theorem, 323 
Subsequence, 458 

Substitution 
integration by, 369 IT. 
world's sneakiest, 386 

Substitution formula, 369 
Subtraction, 5 
Sum 

finite, 3 4 
infinite, 430, 4 71 
lower, 254 
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of an infinite sequence, 4 72 
of an infinite sequence of complex 

numbers, 555 
of functions, 43 
of vector-valued functions, 245 
of vectors, 75 
partial , 4 71 
sigma notation for, 24 
upper, 254 

Sum of squares, 552 
Summable, 472, 556 

Abel, 522 
absolutely, 480 
Cesaro, 493 
uniformly, 506 

Summation by parts, Abel's formula for, 
392 

Supremum, 134 
Surface area 

of cone, 404 
of pyramid, 403 
of solid of revolution, 404 

Swift, Jonathan, 580 
Symmet1y in graphs, 199 

Tan, 310 
derivative of, 310 
inverse oC see Arctan 
Taylor series for, 573 

Tangent, hyperbolic, 353 
Tangent line, 149, 151 

of parameterized curve, 246 
point of contact of, 220 

"Tangent line", H'rt ical, 158 
Tanh, 353 
Taylor polynomial, 4 I 2 ff 

remainder term of, 421 , 423, 427: 
see also Jjwfftr functions 
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Taylor series, 5 I I 

Taylor's Theorem, 424 
Torus, 405 
Transcendental number, 442 
Trapezoid rule, 400 
Triangle inequality, 71 

Trichotomy law, 9 
Trigonometric functions, 303 ff. , see also 

cos, cot, csc, sec, sin, tan 
integration of, 376- 377 
inverses of, 3 IO ff., see also arccos, 

arcsec, arcsin, arctan 

Trumpet 
infinite, 408 

Truncation of a polynomial, 434 
Two-time diflerentiablc, I 6 I 

Uniform limit, 502 
Uniformly continuous function, 144 
Uniformly com·ergent sequence, 502 
Uniformly convergent series, 506 
Uniformly distributed sequence, 469 
Uniformly summable, 506 
Uniqueness 

of factorization into primes, 31 
of limits, I 00 

Unit circle, 66 
Upper bound, I 33, 584 

almost, 142 

least, 133 
Upper integral, 295 
Upper limit of integration, 258 
Upper sum, 254 

"Valley", 61 
Value 

absolute, see Absolute value 

Value off at x, 40 

Vanishing condition, 473 
Vector-valued functions, 244 
Vector-valued functions 

determinant of, 246 
derivative of, 246 
dot product of, 246 
limit of, 246, 252 
multiplication of function by, 245 
sum of, 245 

Vectors, 75 
addition of, 75 
as forces, 76 
dot product of, 78 
multiplication by numbers, 77 

multiplication of, 77 
scalar product of, 78 

Velocity 
average, I 52 
instantaneous, 152 

Vertical axis, 57 
Victe, Franc;ois, 329 
Volume, 402-403 

of solid of revolution , 402 

Wallis' product, 395 
Weakly convex, 228 
\Veierstrass, see Bolzano-\ Veicrstrass 

Theorem 
Weierstrass M-test , 507 
Well-ordering principle, 23 
Wright, Edward, 388 

Young's inequality, 276 

Zahl, 25 
Zero, division by, 6 
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