Axioms for the real numbers: Field axioms

- (A1) For all $a, b, c \in \mathbb{R}$, (a + b) + c = a + (b + c). (+ associative)
- (A2) For all $a, b \in \mathbb{R}$, a + b = b + a. (+ commutative)
- (A3) There exists $0 \in \mathbb{R}$ such that for all $a \in \mathbb{R}$, a + 0 = a. (Zero)
- (A4) For all $a \in \mathbb{R}$, there exists $(-a) \in \mathbb{R}$ such that a + (-a) = 0. (Negatives)
- (M1) For all $a, b, c \in \mathbb{R}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. (\cdot associative)
- (M2) For all $a, b \in \mathbb{R}$, $a \cdot b = b \cdot a$. (\cdot commutative)
- (M3) There exists $1 \in \mathbb{R}$, $1 \neq 0$, s.t. for all $a \in \mathbb{R}$, $a \cdot 1 = a$. (Unit)
- (M4) For all $a \neq 0$ in \mathbb{R} , there exists $(1/a) \in \mathbb{R}$ such that $a \cdot (1/a) = 1$. (Reciprocals)

(DL) For all $a, b, c \in \mathbb{R}$, $a \cdot (b + c) = a \cdot b + a \cdot c$. (Distributive)

In a nutshell: Arithmetic works.

Axioms still hold if we replace \mathbb{R} with \mathbb{Q} , \mathbb{C} , integers mod 2 (the set $\{0,1\}$, taking 1+1=0).

Axioms for the real numbers: Order axioms

An ordered field satisfies axioms (A1)–(A4), (M1)–(M4), and (DL), and also has a relation \leq such that:

(O1) For all
$$a, b \in \mathbb{R}$$
, either $a \leq b$ or $b \leq a$.

(O2) For all
$$a, b \in \mathbb{R}$$
, if $a \leq b$ and $b \leq a$, then $a = b$.

- (O3) For all $a, b, c \in \mathbb{R}$, if $a \leq b$ and $b \leq c$, then $a \leq c$.
- (O4) For all $a, b, c \in \mathbb{R}$, if $a \leq b$, then $a + c \leq b + c$.

(O5) For all $a, b, c \in \mathbb{R}$, if $a \le b$ and $0 \le c$, then $ac \le bc$.

Cor: If c < 0 and $a \le b$, then $bc \le ac$. (Flip!) Also define:

- a < b means $a \le b$ and $a \ne b$;
- $a \ge b$ means $b \le a$;
- a > b means b < a.

In a nutshell: Properties of \leq , <, \geq , > are as you (maybe?) learned them in precalculus.

Both \mathbb{Q} and \mathbb{R} are ordered fields; integers mod 2 and \mathbb{C} are not.

Axioms for the real numbers: Completeness

(C) Every nonempty set of real numbers that has an upper bound also has a **least** upper bound (supremum).

It can be shown that the axioms (A1)–(A4), (M1)–(M4), (DL), (O1)–(O5), and (C) determine \mathbb{R} completely; that is, any other object with the same properties must be essentially the same as \mathbb{R} . For the rest of this course, we assume that there exists an object \mathbb{R} that satisfies all of these axioms. All of our results ultimately rely only on these axioms.

(日) (同) (三) (三) (三) (○) (○)