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t he Magic of Math is the math book you wish you 

had in school. Using a delightful assortment of 

examples—from ice cream scoops and poker 

hands to measuring mountains and making magic 

squares—this book empowers you to see the beauty, 

simplicity, and truly magical properties behind those 

formulas and equations that once left your head 

spinning. You’ll learn the key ideas of classic areas 

of mathematics like arithmetic, algebra, geometry, 

trigonometry, and calculus, but you’ll also have fun 

fooling around with Fibonacci numbers, investigating 

infi nity, and marveling over mathematical magic tricks 

that will make you look like a math genius!

A mathematician who is known throughout the 

world as the “mathemagician,” Arthur Benjamin 

mixes mathematics and magic to make the subject 

fun, attractive, and easy to understand. In The Magic 

of Math, Benjamin does more than just teach skills: 

with a tip of his magic hat, he takes you on as his 

apprentice to teach you how to appreciate math the 

way he does. He motivates you to learn something new 

about how to solve for x, because there is real pleasure 

to be found in solving a challenging problem or using 

numbers to do something useful. But what he really 

wants you to do is be able to fi gure out why, for that’s 

where you’ll fi nd the real beauty, power, and magic 

of math. 

If you are already someone who likes math, this 

book will dazzle and amuse you. If you never particularly 

liked or understood math, Benjamin will enlighten you 

and—with a wave of his magic wand—turn you into 

a math lover.
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publisher, Skeptic magazine, and author of � e Science of Good and Evil

“Prepare to be dazzled and delighted. � is is a fun, fast-paced magic show of the greatest 
treasures of pre-college math, from poker hands to Pascal’s triangle, all revealed with the � air 
of a showman and the clarity of a master teacher. � e Magic of Math will leave you smiling, 
awestruck, and begging for an encore.” —SteVen  StrOGAtZ , professor of Mathematics, 
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Advance Praise for The Magic of Math

“They say magicians should never reveal their secrets. Happily, Arthur 
Benjamin has ignored this silly adage—for in this small volume, Benja-
min reveals to his audience the secrets of numbers and other mathematical 
illusions that have intrigued mathematicians for millennia.” 

—Edward B. Burger, president, Southwestern University, and author 
of The 5 Elements of Effective Thinking

“This book will be magical for my students, as it would have been for me 
throughout my school days. They’ll be able to revisit the book frequently 
as they learn more math, finding deeper appreciation and discovering new 
areas to explore with each visit.” 

—Richard Rusczyk, founder, Art of Problem Solving, and director, 
USA Mathematical Talent Search

“In The Magic of Math, Arthur Benjamin has pulled off a seemingly im-
possible trick. He has made higher mathematics appear so natural and 
engaging that you will wonder why you were ever bored and confused in 
math class. There are many books that attempt to popularize mathematics. 
This is one of the best. On virtually every page I found myself learning 
new things, or looking at familiar topics in novel ways.” 

—Jason Rosenhouse, professor of Mathematics, James Madison  
University, and author of The Monty Hall Problem

“In The Magic of Math, mathemagician Arthur Benjamin gives us an 
entertaining and enlightening tour of a wide swath of fundamental 
mathematical ideas, presented in a way that is accessible to a broad au-
dience. A particularly appealing feature of the book is the frequent use 
of friendly,  down-to-earth explanations of the concepts and connections 
between them.” 

—Ronald Graham, president emeritus, American Mathematical  
Society, and coauthor of Magical Mathematics

“This book is a whirlwind tour of mathematics from arithmetic and algebra 
all the way to calculus and infinity, and especially the number 9. Arthur 
Benjamin’s enthusiastic and engaging writing style makes The Magic of 
Math a great addition to any math enthusiast’s bag of tricks.” 

—Laura Taalman, professor of Mathematics and Statistics, James 
Madison University
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“Mathematics is full of surprisingly beautiful patterns, which Arthur Ben-
jamin’s witty personality brings to life in The Magic of Math. You will 
not only discover many wonderful ideas, but you will also find some fun 
mathematical magic tricks that you will want to try out on your friends 
and family. Be prepared to learn that math is more entertaining than you 
may have thought.” 

—George W. Hart, mathematical sculptor, research professor, Stony 
Brook University, and cofounder, The Museum of Mathematics

“The Magic of Math is a delightful stroll through a garden filled with fas-
cinating examples. Anyone with any interest in magic, puzzles, or math 
will have many hours of enjoyment in reading this book.” 

—Maria M. Klawe, president, Harvey Mudd College

“Arthur Benjamin has created an instant mathematical classic, by combin-
ing Isaac Asimov’s clarity with Martin Gardner’s taste and adding his own 
sense of fun and adventure. I wish he wrote this book when I was a kid.” 

—Paul A. Zeitz, professor and chair of Mathematics, University of  
San Francisco, and author of The Art and Craft of Problem Solving

“There’s a playful joy to be found in this book, for readers at any lev-
el. Most magicians don’t reveal their secrets, but in The Magic of Math,  
Arthur Benjamin shows how uncovering the mystery behind beautiful 
mathematical truths makes math even more marvelous to behold.” 

—Francis Su, president, Mathematical Association of America

“The Magic of Math offers an expansive, unforgettable journey through 
mathematics where numbers dance and mathematical secrets are revealed. 
Just open the book and start reading; you’ll be swept over by the magic of 
Benjamin’s writing. Luckily, there is no magician’s code to these secrets 
as you’ll undoubtedly want to share and perform them with family and 
friends.” 

—Tim Chartier, professor of Mathematics, Davidson College,  
and author of Math Bytes
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Chapter 0

Introduction

C H A P T E R  Z E R O

Intr0ducti0n

C H A P T E R  Z E R O

Intr0ducti0n

Throughout my life, I have always had a passion for magic. Whether I
was watching other magicians or performing magic myself, I was fas-
cinated with the methods used to accomplish amazing and impressive
feats, and I loved learning its secrets. With just a handful of simple
principles, I could even invent tricks of my own.

I had the same experience with mathematics. From a very early age,
I saw that numbers had a magic all their own. Here’s a trick you might
enjoy. Think of a number between 20 and 100. Got it? Now add your
digits together. Now subtract the total from your original number. Fi-
nally, add the digits of the new number together. Are you thinking of
the number 9? (If not, you might want to check your previous calcu-
lation.) Pretty cool, huh? Mathematics is filled with magic like this,
but most of us are never exposed to it in school. In this book, you will
see how numbers, shapes, and pure logic can yield delightful surprises.
And with just a little bit of algebra or geometry, you can often discover
the secrets behind the magic, and perhaps even discover some beautiful
mathematics of your own.

1
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2 The Magic of Math

This book covers the essential mathematical subjects like numbers,
algebra, geometry, trigonometry, and calculus, but it also covers top-
ics that are not so well represented, like Pascal’s triangle, infinity, and
magical properties of numbers like 9, π, e, i, Fibonacci numbers, and the
golden ratio. And although none of the big mathematical subjects can
be completely covered in just a few dozen pages, I hope you come away
with an understanding of the major concepts, a better idea of why they
work, and an appreciation of the elegance and relevance of each sub-
ject. Even if you have seen some of these topics before, I hope you will
see them and enjoy them with new perspectives. And as we learn more
mathematics, the magic becomes more sophisticated and fascinating.
For example, here is one of my favorite equations:

eiπ + 1 = 0

Some refer to this as “God’s equation,” because it uses the most impor-
tant numbers in mathematics in one magical equation. Specifically, it
uses 0 and 1, which are the foundations of arithmetic; π = 3.14159 . . . ,
which is the most important number in geometry; e = 2.71828 . . . ,
which is the most important number in calculus; and the imaginary
number i, with a square of −1. We’ll say more about π in Chapter 8,
and the numbers i and e are described in greater detail in Chapter 10.
In Chapter 11, we’ll see the mathematics that help us understand this
magical equation.

My target audience for this book is anyone who will someday need
to take a math course, is currently taking a math course, or is finished
taking math courses. In other words, I want this book to be enjoyed by
everyone, from math-phobics to math-lovers. In order to do this, I need
to establish some rules.

Rule 1: You can skip the gray boxes (except this one)!
Each chapter is filled with “Asides,” where I like to go off on a tangent
to talk about something interesting. It might be an extra example or a
proof, or something that will appeal to the more advanced readers. You
might want to skip these the first time you read this book (and maybe
the second and third times too). And I do hope that you reread this book.
Mathematics is a subject that is worth revisiting.

Rule 2: Don’t be afraid to skip paragraphs, sections, or even chap-
ters. In addition to skipping the gray boxes, feel free to go forward
anytime you get stuck. Sometimes you need perspective on a topic be-
fore it fully sinks in. You will be surprised how much easier a topic can
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Introduction 3

be when you come back to it later. It would be a shame to stop partway
through the book and miss all the fun stuff that comes later.

Rule 3: Don’t skip the last chapter. The last chapter, on the math-
ematics of infinity, has lots of mind-blowing ideas that they probably
won’t teach you in school, and many of these results do not rely on the
earlier chapters. On the other hand, the last chapter does refer to ideas
that appear in all of the previous chapters, so that might give you the
extra incentive to go back and reread previous parts of the book.

Rule π: Expect the unexpected. While mathematics is a seriously
important subject, it doesn’t have to be taught in a serious and dry fash-
ion. As a professor of mathematics at Harvey Mudd College, I can’t re-
sist the occasional pun, joke, poem, song, or magic trick to make a class
more enjoyable, and they appear throughout these pages. And since
this is a book, you don’t have to hear me sing — lucky for you!

Follow these rules, and discover the magic of mathematics!
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Chapter 1

The Magic of Numbers

C H A P T E R  O N E

The Magic of Numbers

1 + 2 + 3 + 4 + … + 100 = 5050

C H A P T E R  O N E

The Magic of Numbers

1 + 2 + 3 + 4 + … + 100 = 5050

Number Patterns

The study of mathematics begins with numbers. In school, after we
learn how to count and represent numbers using words or digits or
physical objects, we spend many years manipulating numbers through
addition, subtraction, multiplication, division, and other arithmetical
procedures. And yet, we often don’t get to see that numbers possess a
magic of their own, capable of entertaining us, if we just look below the
surface.

Let’s start with a problem given to a mathematician named Karl
Friedrich Gauss when he was just a boy. Gauss’s teacher asked him and
his classmates to add up all the numbers from 1 to 100, a tedious task
designed to keep the students busy while the teacher did other work.
Gauss astonished his teacher and classmates by immediately writing
down the answer: 5050. How did he do it? Gauss imagined the num-
bers 1 through 100 split into two rows, with the numbers 1 through
50 on the top and the numbers 51 through 100 written backward on the

5
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6 The Magic of Math

bottom, as shown below. Gauss observed that each of the 50 columns
would add up to the same sum, 101, and so their total would just be
50× 101, which is 5050.

1

+ 100

101

2

+  99

101

3

 +  98

101

4

 +  97

101

…

…
47

 +  54

101

48

 +  53

101

49

 +  52

101

50

 +  51

101…

Splitting the numbers from 1 to 100 into two rows; each pair of numbers adds to 101

Gauss went on to become the greatest mathematician of the nine-
teenth century, not because he was quick at doing mental calculations,
but because of his ability to make numbers dance. In this chapter, we
will explore many interesting number patterns and start to see how
numbers dance. Some of these patterns can be applied to do mental cal-
culations more quickly, and some are just beautiful for their own sake.

We’ve used Gauss’s logic to sum the first 100 numbers, but what
if we wanted to sum 17 or 1000 or 1 million? We will, in fact, use his
logic to sum the first n numbers, where n can be any number you want!
Some people find numbers to be less abstract when they can visualize
them. We call the numbers 1, 3, 6, 10, and 15 triangular numbers, since we
can create triangles like the ones below using those quantities of dots.
(You might dispute that 1 dot forms a triangle, but nevertheless 1 is
considered triangular.) The official definition is that the nth triangular
number is 1 + 2 + 3 + · · ·+ n.

The first 5 triangular numbers are 1, 3, 6, 10, and 15

Notice what happens when we put two triangles side by side, as
depicted on the opposite page:
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The Magic of Numbers 7

How many dots are in the rectangle?

Since the two triangles form a rectangle with 5 rows and 6 columns,
there are 30 dots altogether. Hence, each original triangle must have
half as many dots, namely 15. Of course, we knew that already, but
the same argument shows that if you take two triangles with n rows
and put them together as we did, then you form a rectangle with n
rows and n+ 1 columns, which has n× (n+ 1) dots (often written more
succinctly as n(n + 1) dots). As a result, we have derived the promised
formula for the sum of the first n numbers:

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

Notice what we just did: we saw a pattern to sum the first 100 num-
bers and were able to extend it to handle any problem of the same form.
If we needed to add the numbers 1 through 1 million, we could do it in
just two steps: multiply 1,000,000 by 1,000,001, then divide by 2!

Once you figure out one mathematical formula, other formulas often
present themselves. For example, if we double both sides of the last
equation, we get a formula for the sum of the first n even numbers:

2 + 4 + 6 + · · ·+ 2n = n(n+ 1)

What about the sum of the first n odd numbers? Let’s look at what the
numbers seem to be telling us.
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8 The Magic of Math

1    =    1

1 + 3    =    4

1 + 3 + 5    =    9

1 + 3 + 5 + 7    =  16 

1 + 3 + 5 + 7 + 9    =  25 

…

What is the sum of the first n odd numbers?

The numbers on the right are perfect squares: 1× 1, 2× 2, 3× 3, and so
on. It’s hard to resist noticing the pattern that the sum of the first n odd
numbers seems to be n× n, often written as n2. But how can we be sure
that this is not just some temporary coincidence? We’ll see a few ways
to derive this formula in Chapter 6, but such a simple pattern should
have a simple explanation. My favorite justification uses a count-the-
dots strategy again, and reminds us of why we call numbers like 25
perfect squares. Why should the first 5 odd numbers add to 52? Just
look at the picture of the 5-by-5 square below.

How many dots are in the square?

This square has 5 × 5 = 25 dots, but let’s count the dots another
way. Start with the 1 dot in the upper left corner. It is surrounded by 3
dots, then 5 dots, then 7 dots, then 9 dots. Consequently,

1 + 3 + 5 + 7 + 9 = 52

If we started with an n-by-n square, then we can break it into n (back-
ward) L-shaped regions of sizes 1, 3, 5, . . . , (2n− 1). When viewed this
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The Magic of Numbers 9

way, we have a formula for the sum of the first n odd numbers:

1 + 3 + 5 + · · ·+ (2n− 1) = n2

Aside
Later in this book, we’ll see how the approach of counting dots (and the
general approach of answering a question in two different ways) leads
to some interesting results in advanced mathematics. But it can also be
useful for understanding elementary mathematics as well. For exam-
ple, why does 3× 5 = 5× 3? I’m sure you haven’t even questioned that
statement since you were told, as a child, that the order of multiplica-
tion doesn’t matter. (Mathematicians say that multiplication of numbers
is commutative.) But why should 3 bags of 5 marbles contain the same
amount as 5 bags of 3 marbles? The explanation is simple if you just
count the dots in a 3-by-5 rectangle. Counting row by row, we see 3
rows of 5 dots apiece, giving us 3× 5 dots. On the other hand, we also
have 5 columns with 3 dots apiece, so there are also 5× 3 dots.

Why does 3 × 5 = 5 × 3?

Let’s apply the pattern from the sum of odd numbers to find an even
more beautiful pattern. If our goal is to make the numbers dance, then
you might say we are about to do some square dancing.

Consider this interesting pyramid of equations:

1 + 2 = 3

4 + 5 + 6 = 7 + 8

9 + 10 + 11 + 12 = 13 + 14 + 15

16 + 17 + 18 + 19 + 20 = 21 + 22 + 23 + 24

25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35

...

What patterns do you see? It’s easy to count the numbers in each
row: 3, 5, 7, 9, 11, and so on. Next comes an unexpected pattern. What
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10 The Magic of Math

is the first number of each row? Judging from the first 5 rows, 1, 4, 9, 16,
25, . . . , they appear to be the perfect squares. Why is that? Let’s look at
the fifth row. How many numbers appear before row 5? If we count the
numbers in the preceding four rows, we have 3 + 5 + 7 + 9. To get the
leading number of row 5, we just add 1 to this sum, so we really have
the sum of the first 5 odd numbers, which we now know to be 52.

Now let’s verify the fifth equation without actually adding any num-
bers. What would Gauss do? If we temporarily ignore the 25 at the
beginning of the row, then there are 5 remaining numbers on the left,
which are each 5 less than their corresponding numbers on the right.

25

 

26

−  31

−5

27

 −  32

−5

28

 −  33

−5

29

 −  34

−5

30

 − 35

−5

Comparing the left side of row 5 with the right side of row 5

Hence the five numbers on the right have a total that is 25 greater
than their corresponding numbers on the left. But this is compensated
for by the number 25 on the left. Hence the sums balance as promised.
By the same logic, and a little bit of algebra, it can be shown that this
pattern will continue indefinitely.

Aside
For those who wish to see the little bit of algebra now, here it is. Row
n is preceded by 3 + 5 + 7 + · · · + (2n − 1) = n2 − 1 numbers, so the
left side of the equation must start with the number n2, followed by the
next n consecutive numbers, n2 + 1 through n2 + n. The right side has
n consecutive numbers starting with n2 + n + 1 through n2 + 2n. If we
temporarily ignore the n2 number on the left, we see that the n numbers
on the right are each n larger than their corresponding numbers on the
left, so their difference is n× n, which is n2. But this is compensated for
on the left by the initial n2 term, so the equations balance.

Time for a new pattern. We saw that odd numbers could be used
to make squares. Now let’s see what happens when we put all the odd
numbers in one big triangle, as shown on the next page.

We see that 3+ 5 = 8, 7+ 9+ 11 = 27, 13+ 15+ 17+ 19 = 64. What
do the numbers 1, 8, 27, and 64 have in common? They are perfect
cubes! For example, summing the five numbers in the fifth row, we get
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The Magic of Numbers 11

1

3   +   5

  7   +   9   +   11

13   +   15   +   17   +   19

21   +   23   +   25   +   27   +   29

1

8

27

64

125

13

23

33

43

53

… … …

=
=
=
=
=

=
=
=
=
=

An odd triangle

21 + 23 + 25 + 27 + 29 = 125 = 5× 5× 5 = 53

The pattern seems to suggest that the sum of the numbers in the nth
row is n3. Will this always be the case, or is it just some odd coincidence?
To help us understand this pattern, check out the middle numbers in
rows 1, 3, and 5. What do you see? The perfect squares 1, 9, and 25.
Rows 2 and 4 don’t have middle numbers, but surrounding the middle
are the numbers 3 and 5 with an average of 4, and the numbers 15 and
17 with an average of 16. Let’s see how we can exploit this pattern.

Look again at row 5. Notice that we can see that the sum is 53 without
actually adding the numbers by noticing that these five numbers are
symmetrically centered around the number 25. Since the average of
these five numbers is 52, then their total must be 52 + 52 + 52 + 52 + 52 =
5× 52, which is 53. Similarly, the average of the four numbers of row
4 is 42, so their total must be 43. With a little bit of algebra (which we
won’t do here), you can show that the average of the n numbers in row
n is n2, so their total must be n3, as desired.

Since we’re talking about cubes and squares, I can’t resist showing
you one more pattern. What totals do you get as you add the cubes of
numbers starting with 13?

11 13 = 1 = 12

11 13 + 23 = 9 = 32

11 13 + 23 + 33 = 36 = 62

11 13 + 23 + 33 + 43 = 100 = 102

11 13 + 23 + 33 + 43 + 53 = 225 = 152

1111 13 + 23 + 33 + 43 + 53
...

The sum of the cubes is always a perfect square

9780465054725-text.pdf   21 6/29/15   10:28 AM



12 The Magic of Math

When we start summing cubes, we get the totals 1, 9, 36, 100, 225,
and so on, which are all perfect squares. But they’re not just any perfect
squares; they are the squares of 1, 3, 6, 10, 15, and so on, which are all
triangular numbers! Earlier we saw that these were the sums of integers
and so, for example,

13 + 23 + 33 + 43 + 53 = 225 = 152 = (1 + 2 + 3 + 4 + 5)2

To put it another way, the sum of the cubes of the first n numbers is
the square of the sum of the first n numbers. We’re not quite ready to
prove that result now, but we will see two proofs of this in Chapter 6.

Fast Mental Calculations

Some people look at these number patterns and say, “Okay, that’s nice.
But what good are they?” Most mathematicians would probably re-
spond like any artist would—by saying that a beautiful pattern needs
no justification other than its beauty. And the patterns become even
more beautiful the more deeply we understand them. But sometimes
the patterns can lead to real applications.

Here’s a simple pattern that I had the pleasure of discovering (even
if I wasn’t the first person to do so) when I was young. I was looking at
pairs of numbers that added up to 20 (such as 10 and 10, or 9 and 11),
and I wondered how large the product could get. It seemed that the
largest product would occur when both numbers were equal to 10, and
the pattern confirmed that.

Distance Below 100

10 × 10  = 100

19 × 11  = 199

18 × 12  = 196

17 × 13  = 191

16 × 14  = 184

15 × 15  = 175

15 × 15  

1

4

9

16

25

… …

The product of numbers that add to 20

The pattern was unmistakable. As the numbers were pulled farther
apart, the product became smaller. And how far below 100 were they?
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1, 4, 9, 16, 25, . . . , which were 12, 22, 32, 42, 52, and so on. Does this pat-
tern always work? I decided to try another example, by looking at pairs
of numbers that add up to 26.

13 × 13  = 169

12 × 14  = 168

11 × 15  = 165

10 × 16  = 160

19 × 17  = 153

18 × 18  = 144

15 × 15  

Distance Below 169

1

4

9

16

25

… …

The product of numbers that add to 26

Once again, the product was maximized when we chose the two
numbers to be equal, and then the product decreased from 169 by 1,
then 4, then 9, and so on. After a few more examples, I was convinced
that the pattern was true. (I’ll show you the algebra behind it later.)
Then I saw a way that this pattern could be applied to squaring num-
bers faster.

Suppose we want to square the number 13. Instead of performing
13× 13 directly, we will perform the easier calculation of 10× 16 = 160.
This is almost the answer, but since we went up and down 3, it is shy of
the answer by 32. Thus,

132 = (10× 16) + 32 = 160 + 9 = 169

Let’s try another example. Try doing 98× 98 using this method. To
do this, we go up 2 to 100, then down 2 to 96, then add 22. That is,

982 = (100× 96) + 22 = 9600 + 4 = 9604

Squaring numbers that end in 5 are especially easy, since when you
go up and down 5, the numbers you are multiplying will both end in 0.
For example,

352 = (30× 40) + 52 = 1200 + 25 = 1225

552 = (50× 60) + 52 = 3000 + 25 = 3025

852 = (80× 90) + 52 = 7200 + 25 = 7225
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14 The Magic of Math

Now try 592. By going up and down 1, you get 592 = (60× 58) + 12

But how should you mentally calculate 60× 58? Three words of advice:
left to right. Let’s first ignore the 0 and compute 6× 58 from left to right.
Now 6× 50 = 300 and 6× 8 = 48. Add those numbers together (from
left to right) to get 348. Therefore, 60× 58 = 3480, and so

592 = (60× 58) + 12 = 3480 + 1 = 3481

Aside
Here’s the algebra that explains why this method works. (You may want
to come back to this after reading about the difference of squares in Chapter
2.)

A2 = (A+ d)(A− d) + d2

where A is the number being squared, and d is the distance to the near-
est easy number (although the formula works for any number d). For
example, when squaring 59, A = 59 and d = 1, so the formula tells you
to do (59 + 1)× (59− 1) + 12, as in the previous calculation.

Once you get good at squaring two-digit numbers, you can square
three-digit numbers by the same method. For example, if you know
that 122 = 144, then

1122 = (100× 124) + 122 = 12,400 + 144 = 12,544

A similar method can be used for multiplying any two numbers that
are close to 100. When you first see the method, it looks like pure magic.
Look at the problem 104× 109. Next to each number we write down its
distance from 100, as in the figure below. Now add the first number to
the second distance number. Here, that would be 104 + 9 = 113. Then
multiply the distance numbers together. In this case, 4× 9 = 36. Push
those numbers together and your answer magically appears.

104

 ×  109

 113

(4)

(9)

36

A magical way to multiply numbers close to 100—here, 104 × 109 = 11,336

I’ll show you more examples of this and the algebra behind it in
Chapter 2. But while we’re on the subject, let me say a few more words
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about mental math. We spend an awful amount of time learning pencil-
and-paper arithmetic, but precious little time learning how to do math
in your head. And yet, in most practical situations, you are more likely
to need to calculate mentally than to calculate on paper. For most large
calculations, you will use a calculator to get the exact answer, but you
generally don’t use a calculator when reading a nutrition label or hear-
ing a speech or listening to a sales report. For those situations, you
typically just want a good mental estimate of the important quantities.
The methods taught in school are fine for doing math on paper, but they
are generally poor for doing math in your head.

I could write a book on fast mental math strategies, but here are
some of the essential ideas. The main tip, which I cannot emphasize
enough, is to do the problems from left to right. Mental math is a process
of constant simplification. You start with a hard problem and simplify
it to easier problems until you reach your answer at the end.

Mental addition.

Consider a problem like
314 + 159

(I’m writing the numbers horizontally so you’re less tempted to go into
pencil-and-paper mode.) Starting with 314, first add the number 100 to
give us a simpler addition problem:

414 + 59

Adding 50 to 414 gives us an even simpler problem that we can solve
right away:

464 + 9 = 473

That is the essence of mental addition. The only other occasionally
useful strategy is that sometimes we can turn a hard addition problem
into an easy subtraction problem. This often arises if we are adding the
price of retail items. For example, let’s do

$23.58 + $8.95

Since $8.95 is 5 cents below $9, we first add $9 to $23.58, then sub-
tract 5 cents. The problem simplifies to

$32.58− $0.05 = $32.53
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16 The Magic of Math

Mental subtraction.

The most important idea with mental subtraction problems is the strat-
egy of oversubtracting. For example, when subtracting 9, it’s often easier
to first subtract 10, then add back 1. For example,

83− 9 = 73 + 1 = 74

Or to subtract 39, it’s probably easier to first subtract 40, then add
back 1.

83− 39 = 43 + 1 = 44

When subtracting numbers with two or more digits, the key idea is
to use complements. (You’ll compliment me later for this.) The comple-
ment of a number is its distance to the next-highest round number. With
one-digit numbers, this is the distance to 10. (For example, the comple-
ment of 9 is 1.) For two-digit numbers, this is the distance to 100. Look
at the following pairs of numbers that add to 100. What do you notice?

75

 +  25

100

56

 +  44

100

92

 +  08

100

80

 +  20

100

87

 +  13

100

Complementary two-digit numbers sum to 100

We say that the complement of 87 is 13, the complement of 75 is 25,
and so on. Conversely, the complement of 13 is 87 and the complement
of 25 is 75. Reading each problem from left to right, you will notice
that (except for the last problem) the leftmost digits add to 9 and the
rightmost digits add to 10. The exception is when the numbers end in 0
(as in the last problem). For example, the complement of 80 is 20.

Let’s apply the strategy of complements for the problem 1234− 567.
Now, that would not be a fun problem to do on paper. But with com-
plements, hard subtraction problems become easy addition problems! To sub-
tract 567, we begin by subtracting 600. That’s easy to do, especially if
you think from left to right: 1234− 600 = 634. But you’ve subtracted
too much. How much too much? Well, how far is 567 from 600? It’s the
same as the distance between 67 and 100, which is 33. Thus

1234− 567 = 634 + 33 = 667
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Notice that the addition problem is especially easy because there are no
“carries” involved. This will often be the case when doing subtraction
problems by complements:

Something similar happens with three-digit complements.

789

 +   211

1000

555

 +   445

1000

870

 +   130

1000

Complementary three-digit numbers sum to 1000

For most problems (when the number does not end in zero), the
corresponding digits sum to 9, except the last pair of digits sum to 10.
For example, with 789, 7 + 2 = 9, 8 + 1 = 9, and 9 + 1 = 10. This can be
handy when making change. For example, my favorite sandwich from
my local deli costs $6.76. How much change would I get from $10.00?
The answer is found by taking the complement of 676, which is 324.
Hence the change back is $3.24.

Aside
Whenever I buy this sandwich, I can’t help but notice that both the price
and the change were perfect squares (262 = 676 and 182 = 324). (Bonus
question: There is another pair of perfect squares that add up to 1000.
Can you find them?)

Mental multiplication.

After you have memorized your multiplication table through 10, you
can mentally calculate, at least approximately, the answer to any multi-
plication problem. The next step is to master (but not memorize!) your
one-digit times two-digit multiplication problems. The key idea is to
work from left to right. For example, when multiplying 8 × 24, you
should first multiply 8× 20, then add this to 8× 4:

8× 24 = (8× 20) + (8× 4) = 160 + 32 = 192

Once you’ve mastered those, it’s time to practice one-digit times
three-digit multiplication problems. These are a bit trickier, since there
is more to keep in your memory. The key here is to gradually add the
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18 The Magic of Math

numbers as you go along so there is not as much to remember. For ex-
ample, when multiplying 456× 7, you stop to add 2800+ 350, as below,
before adding 42 to it.

456

 ×      7

400 × 7 =     2800

50 × 7 =  +   350

3150

6 × 7 = +     42

3192 

Once you have the hang of doing problems of this size, then it’s
time to move on to two-digit times two-digit problems. For me, this is
where the fun begins, because there are usually many different ways
you can attack these problems. By doing the problem multiple ways,
you can check your answer—and simultaneously revel in the consis-
tency of arithmetic! I’ll illustrate all of these methods with a single ex-
ample, 32× 38.

The most familiar method (most closely resembling what you do on
paper) is the addition method, which can be applied to any problem. Here
we break up one number (usually the one with the smaller ones digit)
into two parts, then multiply each part by the other number, and add
the results together. For example,

32× 38 = (30 + 2)× 38 = (30× 38) + (2× 38) = · · ·

Now how do we calculate 30× 38? Let’s do 3× 38, then attach the 0
at the end. Now 3 × 38 = 90 + 24 = 114, so 30 × 38 = 1140. Then
2× 38 = 60 + 16 = 76, so

32× 38 = (30× 38) + (2× 38) = 1140 + 76 = 1216

Another way to do a problem like this (typically when one of the
numbers ends in 7, 8, or 9) is to use the subtraction method. Here we
exploit the fact that 38 = 40− 2 to get

38× 32 = (40× 32)− (2× 32) = 1280− 64 = 1216

The challenge with the addition and subtraction methods is that
they require you to hold on to a big number (like 1140 or 1280) while
doing a separate calculation. That can be difficult. My usual preferred
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method for two-digit multiplication is the factoring method, which can be
applied whenever one of the numbers can be expressed as the product
of two 1-digit numbers. In our example, we see that 32 can be factored
as 8× 4. Consequently,

38× 32 = 38× 8× 4 = 304× 4 = 1216

If we factor 32 as 4× 8, we get 38× 4× 8 = 152× 8 = 1216, but I prefer
to multiply the two-digit number by the larger factor first, so that the
next number (usually a three-digit number) is multiplied by the smaller
factor.

Aside
The factoring method also works well on multiples of 11, since there is
an especially easy trick for multiplying by 11: just add the digits and put
the total in between. For example, to do 53× 11, we see that 5 + 3 = 8, so
the answer is 583. What’s 27× 11? Since 2 + 7 = 9, the answer is 297.
What if the total of the two digits is bigger than 9? In that case, we insert
the last digit of the total and increase the first digit by 1. For example, to
compute 48× 11, since 4+ 8 = 12, the answer is 528. Similarly, 74× 11 =
814. This can be exploited when multiplying numbers by multiples of 11.
For example,

74× 33 = 74× 11× 3 = 814× 3 = 2442

Another fun method for multiplying two-digit numbers is the close
together method. You can use it when both numbers begin with the same
digit. It seems utterly magical when you first watch it in action. For
example, would you believe that

38× 32 = (30× 40) + (8× 2) = 1200 + 16 = 1216

The calculation is especially simple (as in the example above) when the
second digits sum to 10. (Here, both numbers begin with 3 and the
second digits have the sum 8 + 2 = 10.) Here’s another example:

83× 87 = (80× 90) + (3× 7) = 7200 + 21 = 7221

Even when the second digits don’t add up to 10, the calculation is al-
most as simple. For example, to multiply 41× 44, if you decrease the
smaller number by 1 (to reach the round number 40), then you must
increase the larger number by 1 as well. Consequently,

41× 44 = (40× 45) + (1× 4) = 1800 + 4 = 1804
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20 The Magic of Math

For 34× 37, if you decrease 34 by 4 (to reach the round number 30), then
it gets multiplied by 37 + 4 = 41, and then we add 4× 7 as follows:

34× 37 = (30× 41) + (4× 7) = 1230 + 28 = 1258

By the way, the mysterious multiplication we saw earlier of 104× 109
was just an application of this same method.

104× 109 = (100× 113) + (04× 09) = 11300 + 36 = 11,336

Some schools are asking students to memorize their multiplication ta-
bles through 20. Rather than memorize these products, we can calculate
them quickly enough using this method. For example,

17× 18 = (10× 25) + (7× 8) = 250 + 56 = 306

Why does this mysterious method work? For this, we’ll need alge-
bra, which we will discuss in Chapter 2. And once we have algebra,
we can find new ways to calculate. For example, we’ll see why the last
problem can also be done as follows:

18× 17 = (20× 15) + ((−2)× (−3)) = 300 + 6 = 306

Speaking of the multiplication table, check out the one-digit table
on the opposite page that I promised earlier. Here’s a question that
would appeal to a young Gauss: What is the sum of all the numbers in the
multiplication table? Take a minute and see if you can figure it out in an
elegant way. I’ll provide the answer at the end of the chapter.

Mental estimation and division.

Let’s begin with a very simple question with a very simple answer that
we are rarely taught in school:

(a) If you multiply two 3-digit numbers together, can you immedi-
ately tell how many digits can be in the answer?

And a follow-up question:
(b) How many digits can be in the answer when multiplying a four-

digit number by a five-digit number?
We spend so much time in school learning to generate the digits

of a multiplication or division problem, and very little time thinking
about the important aspects of the answer. Yet it’s way more impor-
tant to know the approximate size of the answer than to know the last
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×

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

2

2

4

6

8

10

12

14

16

18

20

3

3

6

9

12

15

18

21

24

27

30

4

4

8

12

16

20

24

28

32

36

40

5

5

10

15

20

25

30

35

40

45

50

6

6

12

18

24

30

36

42

48

54

60

7

7

14

21

28

35

42

49

56

63

70

8

8

16

24

32

40

48

56

64

72

80

9

9

18

27

36

45

54

63

72

81

90

10

10

20

30

40

50

60

70

80

90

100

What is the sum of all 100 numbers in the multiplication table?

digits or even the first digits. (Knowing that the answer begins with
3 is meaningless until you know whether the answer will be closer to
30,000 or 300,000 or 3,000,000.) The answer to question (a) is five or six
digits. Why is that? The smallest possible answer is 100× 100 = 10,000,
which has five digits. The biggest possible answer is 999× 999, which
is strictly less than 1000 × 1000 = 1,000,000, which has seven digits
(but just barely!). Since 999× 999 is smaller, then it must have six dig-
its. (Of course, you could easily compute the last answer in your head:
9992 = (1000× 998) + 12 = 998,001.) Hence the product of two 3-digit
numbers must have five or six digits.

The answer to question (b) is eight or nine digits. Why? The smallest
four-digit number is 1000, also known as 103 (a 1 followed by three
zeros). The smallest five-digit number is 10,000 = 104. So the smallest
product is 103 × 104 = 107, which has eight digits. (Where does 107

comes from? 103 × 104 = (10× 10× 10)× (10× 10× 10× 10) = 107.)
And the largest product will be just a hair less than the ten-digit number
104 × 105 = 109, so the answer has at most nine digits.

By applying this logic, we arrive at a simple rule: An m-digit num-
ber times an n-digit number has m + n or m + n− 1 digits.
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It’s usually easy to determine how many digits will be in the an-
swer just by looking at the leading (leftmost) digits of each number. If
the product of the leading digits is 10 or larger, then the product is guar-
anteed to have m + n digits. (For example, with 271× 828, the product
of the leading digits is 2× 8 = 16, so the answer has six digits.) If the
product of the leading digits is 4 or smaller, then it will have m + n− 1
digits. For example, 314 × 159 has five digits. If the product of the
leading digits is 5, 6, 7, 8, or 9, then closer inspection is required. For
example, 222 × 444 has five digits, but 234 × 456 has six digits. Both
answers are very close to 100,000, which is really what matters.)

By reversing this rule, we get an even simpler rule for division: An
m-digit number divided by an n-digit number has m− n or m− n+ 1
digits.

For example, a nine-digit number divided by a five-digit number
must have four or five digits. The rule for determining which answer to
choose is even easier than the multiplication situation. Instead of mul-
tiplying or dividing the leading digits, we simply compare them. If the
leading digit of the first number (the number being divided) is smaller
than the leading digit of the second number, then it’s the smaller choice
(m− n). If the leading digit of the first number is larger than the lead-
ing digit of the second number, then it’s the larger choice (m− n + 1).
If the leading digits are the same, then we look at the second digits and
apply the same rule. For instance 314,159,265 divided by 12,358 will
have a five-digit answer, but if we instead divide it by 62,831, the an-
swer will have four digits. Dividing 161,803,398 by 14,142 will result in
a five-digit answer since 16 is greater than 14.

I won’t go through the process of doing mental division since it is
similar to the pencil-and-paper method. (Indeed, any method for divi-
sion problems on paper requires you to generate the answer from left
to right!) But here are some shortcuts that can sometimes be handy.

When dividing by 5 (or any number ending in 5), the problem usu-
ally simplifies if you double the numerator and denominator. For ex-
ample:

34÷ 5 = 68÷ 10 = 6.8

123÷ 4.5 = 246÷ 9 = 82÷ 3 = 27
1

3

After doubling both numbers, you might notice that both 246 and 9
are divisible by 3 (we’ll say more about this in Chapter 3), so we can
simplify the division problem further by dividing both numbers by 3.
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Aside
Look at the reciprocals of all the numbers from 1 to 10:

1/2 = 0.5, 1/3 = 0.333 . . . , 1/4 = 0.25, 1/5 = 0.2

1/6 = 0.1666 . . . , 1/8 = 0.125, 1/9 = 0.111 . . . , 1/10 = 0.1

All of the decimal expansions above either terminate or repeat after two
terms. But the one weird exception is the fraction for 1/7, which repeats
after six decimal places:

1/7 = 0.142857 142857 . . .

(The reason all the other reciprocals end so quickly is that the other num-
bers from 2 through 11 divide into either 10, 100, 1000, 9, 90, or 99, but the
first nice number that 7 divides into is 999,999.) If you write the decimal
digits of 1/7 in a circle, something magical happens:

1

4

2

8

5

7

The 7th circle

What’s remarkable is that all the other fractions with denominator 1/7
can also be created by going around the circle forever from the appro-
priate starting point. Specifically,

1/7 = 0.142857 142857 . . . , 2/7 = 0.285714 285714 . . . ,

3/7 = 0.428571 428571 . . . , 4/7 = 0.571428 571428 . . . ,

5/7 = 0.714285 714285 . . . , 6/7 = 0.857142 857142 . . .

Let’s end this chapter with the question we asked a few pages ago.
What is the sum of all the numbers in the multiplication table? When you
first read the question, it seems intimidating, just as summing the first
100 numbers might have. By becoming more familiar with the beautiful
patterns that emerge when numbers dance, we have a better chance of
finding a beautiful answer to this question.
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We begin by adding the numbers in the first row. As Gauss (or our
triangular number formula or just simple addition) could tell us:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

What about the sum of the second row? Well, that’s just

2 + 4 + 6 + · · ·+ 20 = 2(1 + 2 + 3 + · · ·+ 10) = 2× 55

By the same reasoning, the third row will sum to 3× 55. Continuing
this logic, we conclude that the sum of all of these numbers is

(1 + 2 + 3 + · · ·+ 10)× 55 = 55× 55 = 552

which you should now be able to do in your head . . . 3025!
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The Magic of Algebra

C H A P T E R  T W O

The Magic of Algebra

 { n  = 22n + 4
2

C H A P T E R  T W O  

The Magic of Algebra

 { n = 22n + 4
2

Magical Introduction

My first encounter with algebra was a lesson from my father when I
was a kid. He said, “Son, doing algebra is just like arithmetic, except
you substitute letters for numbers. For example, 2x + 3x = 5x and
3y + 6y = 9y. You got it?” I said, “I think so.” He said, “Okay, then
what is 5Q + 5Q?” I confidently said, “10Q.” He said, “I couldn’t hear
you. Can you say it louder?” So I shouted, “TEN Q!” and he said,
“You’re welcome!” (My dad was always much more interested in puns,
jokes, and stories than teaching math, so I should have been suspicious
from the start!)

My second experience with algebra was trying to understand the
following magic trick.

Step 1. Think of a number from 1 to 10 (though it can be larger if
you wish).

Step 2. Double that number.
Step 3. Now add 10.
Step 4. Now divide by 2.
Step 5. Now subtract the number that you started with.
I believe you are now thinking of the number 5. Right?
So what is the secret behind the magic? Algebra. Let’s go through

the trick step by step, beginning with Step 1. I don’t know what number

25
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you started with, so let’s represent it by the letter N. When we use a
letter to represent an unknown number, the letter is called a variable.

In Step 2, you are doubling the number, so you are now thinking
of 2N. (We typically avoid using the multiplication symbol, especially
since the letter x is frequently used as a variable.) After Step 3, your
number is 2N + 10. For Step 4, we divide that quantity by 2, giving us
N + 5. Finally, we subtract the original number, which was N. After
subtracting N from N + 5, you are left with 5. We can summarize our
trick in the following table.

Step 1: N

Step 2: 2N

Step 3: 2N + 10

Step 4: N + 5

Step 5: N + 5−N

Answer: 5

Rules of Algebra

Let’s start with a riddle. Find a number such that when you add 5 to it,
the number triples.

To solve this riddle, let’s call the unknown number x. Adding 5 to
it produces x + 5. Tripling the original number gives us 3x. We want
those numbers to be equal, so we have to solve the equation

3x = x+ 5

If we subtract x from both sides of the equation, we get

2x = 5

(Where does 2x come from? 3x− x is the same as 3x− 1x, which equals
2x.) Dividing both sides of that equation by 2 gives us

x = 5/2 = 2.5

We can verify that this answer works, since 2.5 + 5 = 7.5, which is the
same as 3 times 2.5.
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Aside
Here’s another trick that algebra can help us explain. Write down any
three-digit number where the digits are in decreasing order, like 842 or
951. Then reverse those numbers and subtract the second number from
the first. Whatever your answer is, reverse it, then add those two num-
bers together. Let’s illustrate with the number 853.

853 495

− 358 + 594

495 1089

Now try it with a different number. What did you get? Remarkably,
as long as you follow the instructions properly, you will always end up
with 1089! Why is that?

Algebra to the rescue! Suppose we start with the three-digit number
abc where a > b > c. Just as the number 853 = (8× 100) + (5× 10) + 3,
the number abc has value 100a + 10b + c. When we reverse the digits,
we get cba, which has value 100c + 10b + a. Subtracting, we get

(100a+ 10b+ c)− (100c+ 10b+ a)

= (100a− a) + (10b− 10b) + (c− 100c)

= 99a− 99c = 99(a− c)

In other words, the difference has to be a multiple of 99. Since the origi-
nal number has digits in decreasing order, a− c is at least 2, so it must be
2, 3, 4, 5, 6, 7, 8, or 9. Consequently, after subtracting, we are guaranteed
to have one of these numbers:

198, 297, 396, 495, 594, 693, 792, or 891

In each of these situations, when we add the number to its reversal,

198 + 891 = 297 + 792 = 396 + 693 = 495 + 594 = 1089

we see that we are forced to end up with 1089.

We have just illustrated what I call the golden rule of algebra: do
unto one side as you would do unto the other.

For example, suppose you wish to solve for x in the equation

3(2x+ 10) = 90

Our goal is to isolate x. Let’s begin by dividing both sides by 3, so the
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equation simplifies to
2x+ 10 = 30

Next, let’s get rid of that 10 by subtracting 10 from both sides. When we
do that, we get

2x = 20

Finally, when we divide both sides by 2, we are simply left with

x = 10

It’s always a good idea to check your answer. Here, we see that when
x = 10, 3(2x + 10) = 3(30) = 90, as desired. Are there any other
solutions to the original equation? No, because such a value of x would
also have to satisfy the subsequent equations, so x = 10 is the only
solution.

Here’s a real-life algebra problem that comes from the New York
Times, which reported in 2014 that the movie The Interview, produced
by Sony Pictures, generated $15 million in online sales and rentals dur-
ing its first four days of availability. Sony did not say how much of this
total came from $15 online sales versus $6 online rentals, but the studio
did say that there were about 2 million transactions overall. To solve
the reporter’s problem, let’s let S denote the number of online sales and
let R denote the number of online rentals. Since there were 2 million
transactions, we know that

S +R = 2,000,000

and since each online sale is worth $15 and each online rental is worth
$6, then the total revenue satisfies

15S + 6R = 15,000,000

From the first equation, we see that R = 2,000,000− S. This allows us
to rewrite the second equation as

15S + 6(2,000,000− S) = 15,000,000

or equivalently, 15S + 12,000,000 − 6S = 15,000,000, which only uses
the variable S. This can be rewritten as

9S + 12,000,000 = 15,000,000
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Subtracting 12,000,000 from both sides gives us

9S = 3,000,000

and therefore S is approximately one-third of a million. That is S ≈
333,333 and so R = 2,000,000− S ≈ 1,666,667. (Checking: total sales
would be $15(333,333) + $6(1,666,667) ≈ $15,000,000.)

It’s time to discuss a rule that we have been using throughout this
book without explicitly naming it, called the distributive law, which is
the rule that allows multiplication and addition to work well together.
The distributive law says that for any numbers a, b, c,

a(b+ c) = ab+ ac

This is the rule that we are using when we multiply a one-digit number
by a two-digit number. For example,

7× 28 = 7× (20 + 8) = (7× 20) + (7× 8) = 140 + 56 = 196

This makes sense if we think about counting. Suppose I have 7 bags of
coins, and each bag has 20 gold coins and 8 silver coins. How many
coins are there altogether? On the one hand, each bag has 28 coins, so
the total number of coins is 7 × 28. On the other hand, we can also
see that there are 7× 20 gold coins and 7× 8 silver coins, and therefore
(7× 20) + (7× 8) coins altogether. Consequently, 7× 28 = (7× 20) +
(7× 8).

You can also view the distributive law geometrically by looking at
the area of a rectangle from two different perspectives, as in the picture
below.

a

b c

ab ac

The rectangle illustrates the distributive law: a(b+ c) = ab+ ac

On the one hand, the area is a(b + c). But the left part of the rectan-
gle has area ab and the right part has area ac, so the combined area is
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ab + ac. This illustrates the distributive law whenever a, b, c are positive
numbers.

By the way, we sometimes apply the distributive law to numbers
and variables together. For instance,

3(2x+ 7) = 6x+ 21

When this equation is read from left to right, it can be interpreted as a
way of multiplying 3 times 2x+ 7. When the equation is read from right
to left, it can be seen as a way of factoring 6x + 21 by “pulling out a 3”
from 6x and 21.

Aside
Why does a negative number times a negative number equal a positive
number? For instance, why should (−5)× (−7) = 35? Teachers come
up with many ways to explain this, from talking about canceling debts
to simply saying “that’s just the way it is.” But the real reason is that we
want the distributive law to work for all numbers, not just for positive
numbers. And if you want the distributive law to work for negative
numbers (and zero), then you must accept the consequences. Let’s see
why.

Suppose you accept the fact that −5 × 0 = 0 and −5× 7 = −35.
(These can be proved too, using a strategy similar to what we are about
to do, but most people are happy to accept these statements as true.)
Now evaluate the expression

−5× (−7 + 7)

What does this equal? On the one hand, this is just −5× 0, which we
know to be 0. On the other hand, using the distributive law, it must also
be ((−5)× (−7)) + (−5× 7). Consequently,

((−5)× (−7)) + (−5× 7) = ((−5)× (−7))− 35 = 0

And since ((−5) × (−7)) − 35 = 0, we are forced to conclude that
(−5) × (−7) = 35. In general, the distributive law ensures that
(−a)× (−b) = ab for all numbers a and b.

The Magic of FOIL

One important consequence of the distributive law is the FOIL rule of
algebra, which says that for any numbers or variables a, b, c, d,

(a+ b)(c+ d) = ac+ ad+ bc+ bd
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FOIL gets its name from First-Outer-Inner-Last. Here, ac is the product
of the first terms in (a + b)(c + d). Then ad is the product of the outer
terms. Then bc is the product of the inner terms. Then bd is the product
of the last terms.

To illustrate, let’s multiply two numbers using FOIL:

23× 45 = (20 + 3)(40 + 5)

= (20× 40) + (20× 5) + (3× 40) + (3× 5)

= 800 + 100 + 120 + 15

= 1035

Aside
Why does FOIL work? By the distributive law (with the sum part writ-
ten first) we have

(a+ b)e = ae+ be

Now if we replace e with c + d, this gives us

(a+ b)(c+ d) = a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd

where the last equality comes from applying the distributive law again.
Or if you prefer a more geometric argument (when a, b, c, d are positive),
find the area of the rectangle below in two different ways.

a

c d

bc bdb

ac ad

On the one hand, the rectangle has area (a + b)(c + d). On the other
hand, we can decompose the big rectangle into four smaller rectangles,
with areas ac, ad, bc, and bd. Hence the area is also equal to ac + ad +
bc + bd. Equating these two areas gives us FOIL.
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Here is a magical application of FOIL. Roll two dice and follow the
instructions in the table below. As an example, let’s suppose when you
roll the dice, the first die has 6 on top and the second die has 3 on top.
Their bottom numbers are 1 and 4, respectively.

Roll two dice (say we get 6 and 3):

Multiply top numbers: 6× 3 = 18

Multiply bottom numbers: 1× 4 = 4

Multiply first top by second bottom number: 6× 4 = 24

Multiply first bottom by second top number: 1× 3 = 3

Total: 49

In our example, we arrived at a total of 49. And if you try it yourself
with any normal six-sided dice you will arrive at the same total. It’s
based on the fact that on every normal six-sided die, the opposite sides
add to 7. So if the dice show x and y on the top, then they must have
7− x and 7− y on the bottom. So using algebra, our table looks like
this.

Roll 2 dice (x and y):

Multiply top numbers: xy = xy

Multiply bottom numbers: (7− x)(7− y) = 49− 7y− 7x+ xy

First top times second bottom: x(7− y) = 7x− xy

First bottom times second top: (7− x)y = 7y− xy

Total: = 49

Notice how we use FOIL in the third row (and that −x times −y is
positive xy). We could also arrive at 49 using less algebra by looking
at the second column of our table and noticing that these are precisely
the four terms we would get by FOILing (x + (7− x))(y + (7− y)) =
7× 7 = 49.

In most algebra classes, FOIL is mainly used for multiplying expres-
sions like the ones below.

(x+ 3)(x+ 4) = x2 + 4x+ 3x+ 12 = x2 + 7x+ 12

Notice that in our final expression, 7 (called the coefficient of the x term)
is just the sum of the two numbers 3+ 4. And the last number, 12 (called
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the constant term) is the product of the numbers 3× 4. With practice, you
can immediately write down the product. For example, since 5+ 7 = 12
and 5× 7 = 35, we instantly get

(x+ 5)(x+ 7) = x2 + 12x+ 35

It works with negative numbers, too. Here are some examples. In the
first example, we exploit the fact that 6+(−2) = 4 and 6× (−2) = −12.

(x+ 6)(x− 2) = x2 + 4x− 12

(x+ 1)(x− 8) = x2 − 7x− 8

(x− 5)(x− 7) = x2 − 12x+ 35

Here are examples where the numbers are the same.

(x+ 5)2 = (x+ 5)(x+ 5) = x2 + 10x+ 25

(x− 5)2 = (x− 5)(x− 5) = x2 − 10x+ 25

Notice that, in particular, (x + 5)2 �= x2 + 25, a common mistake
made by beginning algebra students. On the other hand, something
interesting does happen when the numbers have opposite signs. For
example, since 5 + (−5) = 0,

(x+ 5)(x− 5) = x2 + 5x− 5x− 25 = x2 − 25

In general, it’s worth remembering the difference of squares formula:

(x+ y)(x− y) = x2 − y2

We applied this formula in Chapter 1, where we learned a shortcut
for squaring numbers quickly. The method was based on the following
algebra:

A2 = (A+ d)(A− d) + d2

Let’s first verify the formula. By the difference of squares formula, we
see that [(A + d)(A− d)] + d2 = [A2 − d2] + d2 = A2. Hence the for-
mula works for all values of A and d. In practice, A is the number that
is being squared, and d is the distance to the nearest easy number. For
example, to square 97, we choose d = 3 so that

972 = (97 + 3)(97− 3) + 32

= (100× 94) + 9

= 9409
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Aside
Here’s a proof of the difference of square law using pictures. It shows
how a geometric object with area x2 − y2 can be cut and rearranged to
form a rectangle with area (x + y)(x− y).

x–y

x

x–y

x–y

x

x–y

x+y

x

x

x

x

y

y

y

y yy

y

y

We also learned in Chapter 1 a method for multiplying numbers
that were close together. We focused on numbers that were near 100 or
began with the same digit, but once we understand the algebra behind
it, we can apply it to more situations. Here is the algebra behind the
close-together method.

(z + a)(z + b) = z(z + a+ b) + ab

The formula works because (z + a)(z + b) = z2 + zb + za + ab, and then
we can factor out z from the first three terms. The formula works for
any numbers, but we typically choose z to end in zero (which is why
I chose the letter z). For example, to do the problem 43 × 48, we let
z = 40, a = 3, b = 8. Then our formula tells us that

43× 48 = (40 + 3)(40 + 8)

= 40(40 + 3 + 8) + (3× 8)

= (40× 51) + (3× 8)

= 2040 + 24

= 2064

9780465054725-text.pdf   44 6/29/15   10:28 AM



The Magic of Algebra 35

Notice that the original numbers being multiplied have a sum of
43 + 48 = 91, and the easier numbers being multiplied also have a sum
of 40 + 51 = 91. This is not a coincidence, since the algebra tells us that
the original numbers being multiplied have a sum of (z+ a)+ (z+ b) =
2z+ a+ b, and this is also the sum of the easier numbers z and z+ a+ b.
With this algebra, we see that we could also round up to easy numbers.
For instance, the last calculation could also have been performed with
z = 50, a = −7, and b = −2, so our initial multiplication will be 50×
41. (An easy way to get 41 is to notice that 43 + 48 = 91 = 50 + 41.)
Consequently,

43× 48 = (50− 7)(50− 2)

= (50× 41) + (−7×−2)

= 2050 + 14

= 2064

Aside
In Chapter 1, we used this method for multiplying numbers that were
just above 100, but it also works magically with numbers that are just
below. For example,

96× 97 = (100− 4)(100− 3)

= (100× 93) + (−4×−3)

= 9300 + 12

= 9312

Note that 96+ 97 = 193 = 100+ 93. (In practice, I just add the last digits,
6 + 7, to know that 100 will be multiplied by a number that ends in 3,
so it must be 93.) Also, once you get the hang of it, you don’t have to
multiply two negative numbers together, but just multiply their positive
values. For example,

97× 87 = (100− 3)(100− 13)

= (100× 84) + (3× 13)

= 8400 + 39

= 8439

(continues on the following page)
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Aside (continued)
The method can also be applied to numbers that are just below
and above 100, but now you have to do a subtraction at the end.
For instance,

109× 93 = (100 + 9)(100− 7)

= (100× 102)− (9× 7)

= 10,200− 63

= 10,137

Again, the number 102 can be obtained through 109− 7 or 93 + 9
or 109+ 93− 100 (or just by summing the last digits of the original
numbers; 9+ 3 tells you that the number will end in 2, which may
be enough information). With practice, you can use this to mul-
tiply any numbers that are relatively close together. I’ll illustrate
using three-digit numbers of moderate difficulty. Notice here, the
numbers a and b are not one-digit numbers.

218× 211 = (200 + 18)(200 + 11)

= (200× 229) + (18× 11)

= 45,800 + 198

= 45,998

985× 978 = (1000− 15)(1000− 22)

= (1000× 963) + (15× 22)

= 963,000 + 330

= 963,330

Solving for x

Earlier in this chapter, we saw examples of solving some equations
by applying the golden rule of algebra. When the equation contains
just one variable (say x) and when both sides of the equation are lin-
ear (which means that they can contain numbers or multiples of x, but
nothing more complicated, like x2 terms), then it is easy to solve for x.
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For example, to solve the equation

9x− 7 = 47

we could add 7 to both sides of the equation to get 9x = 54, then divide
by 9 to find x = 6.

Or for a slightly more complicated algebra problem:

5x+ 11 = 2x+ 18

we simplify by subtracting 2x from both sides and (at the same time, if
you like) subtracting 11 from both sides, resulting in

3x = 7

which has the solution x = 7/3. Ultimately any linear equation can
be simplified to ax = b (or ax − b = 0) which has solution x = b/a
(assuming a �= 0).

The situation gets more complicated for quadratic equations (where
the variable x2 enters the picture). The easiest quadratic equations to
solve are those like

x2 = 9

which has two solutions, x = 3 and x = −3. Even when the right side is
not a perfect square, as below,

x2 = 10

we have two solutions, x =
√

10 = 3.16 . . . and x = −√10 = −3.16 . . . .
In general, for n > 0, the number

√
n, called the square root of n, denotes

the positive number with a square of n. When n is not a perfect square,√
n is usually computed with a calculator.

Aside
What about the equation x2 = −9? For now, we say it has no solution.
And indeed there are no real numbers with a square of−9. But in Chapter
10, we will see that in a very real sense, there are two solutions to this
equation, namely x = 3i and x = −3i, where i is called an imaginary
number with a square of −1. If that sounds impossible and ridiculous
now, that’s fine. But there was a time in your life when negative numbers
seemed impossible too. (How can a number be less than 0?) You just
needed to look at numbers in the right (or left!) way before they made
sense.
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An equation like
x2 + 4x = 12

is a little more complicated to solve because of the 4x term, but there are
a few different ways to go about it. Just like with mental mathematics,
there is often more than one way to solve the problem.

The first method that I try on problems like this is called the factor-
ing method. The first step is to move everything to the left side of the
equation, so all that remains on the right side is 0. Here, the equation
becomes

x2 + 4x− 12 = 0

Now what? Well, as luck would have it, in the last section, when prac-
ticing our FOILing, we saw that x2 + 4x− 12 = (x + 6)(x− 2). Hence,
our problem can be transformed to

(x+ 6)(x− 2) = 0

The only way that the product of two quantities can be 0 is if at least one
of those quantities is 0. Consequently, we must have either x + 6 = 0 or
x− 2 = 0, which means that either

x = −6 or x = 2

which, you should verify, solves the original problem.
According to FOIL, (x + a)(x + b) = x2 + (a + b)x + ab. This makes

factoring a quadratic a bit like solving a riddle. For instance, in the last
problem, we had to find two numbers a and b with a sum of 4 and a
product of −12. The answer, a = 6 and b = −2, gives us our factoriza-
tion. For practice, try to factor x2 + 11x + 24. The riddle becomes: find
two numbers with sum 11 and product 24. Since the numbers 3 and 8
do the trick, we have x2 + 11x + 24 = (x + 3)(x + 8).

But now suppose we have an equation like x2 + 9x = −13. There is
no easy way to factor x2 + 9x + 13. But have no fear! In cases like this,
we are rescued by the quadratic formula. This useful formula says that

ax2 + bx+ c = 0

has the solution

x =
−b±√b2 − 4ac

2a

where the ± symbol means “plus or minus.” Here’s an example. For
the equation

x2 + 4x− 12 = 0
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we have a = 1, b = 4, and c = −12.
Hence the formula tells us

x =
−4±√

16− 4(1)(−12)

2
=
−4±√64

2
=
−4± 8

2
= −2± 4

So x = −2 + 4 = 2 or x = −2− 4 = −6, as desired. I think you’ll agree
that the factoring method was more straightforward for this problem.

Aside
Another interesting method for solving a quadratic equation is called
completing the square. For the equation x2 + 4x = 12, let’s add 4 to both
sides of the equation, so that we get

x2 + 4x+ 4 = 16

The reason we added 4 to both sides was so that the left side would
become (x + 2)(x + 2). Thus our problem becomes

(x+ 2)2 = 16

In other words, (x + 2)2 = 42. Thus,

x+ 2 = 4 or x+ 2 = −4

which tells us that x = 2 or x = −6, as previously observed.

But for the equation

x2 + 9x+ 13 = 0

our best option is to use the quadratic formula. Here, we have a = 1,
b = 9, and c = 13. Therefore, the formula tells us

x =
−9±√81− 52

2
=
−9±√29

2

which is not something we would have easily noticed before. There are
very few formulas that you need to memorize in mathematics, but the
quadratic formula is certainly one of them. With just a little practice,
you’ll soon find that applying this formula is as easy as . . . a, b, c!
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Aside
So why does the quadratic formula work? Let’s rewrite the equation
ax2 + bx + c = 0 as

ax2 + bx = −c
then divide both sides by a (which is not 0) to get

x2 +
b

a
x =

−c
a

And since (x+ b
2a )

2 = x2 + b
a x+ b2

4a2 , we can complete the square by adding
b2

4a2 to both sides of the above equation, giving us

(
x+

b

2a

)2

=
b2

4a2
+
−c
a

=
b2 − 4ac

4a2

Taking the square root of both sides,

x+
b

2a
= ±

√
b2 − 4ac

2a

Thus,

x =
−b±√b2 − 4ac

2a

as desired.
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Algebra Made Visual Through Graphs

Mathematics took a giant step forward in the seventeenth century when
the French mathematicians Pierre de Fermat and René Descartes inde-
pendently discovered how algebraic equations can be visualized and,
conversely, how geometrical objects can be expressed through algebraic
equations.

Let’s start with the graph of a simple equation

y = 2x+ 3

This equation says that for every value of the variable x, we double
and add 3 to obtain y. Here is a table listing a handful of values of x, y
pairs. Next we plot the points, as below. When drawn on a graph, the
points can be labeled as ordered pairs. For instance, the plotted points
here would be (−3, 3), (−2,−1), (−1, 1), and so on. When you connect
the dots and extrapolate, the resulting object is called a graph. Below,
we show the graph of the equation y = 2x + 3.

x y

−3 −3

−2 −1

−1 1

0 3

1 5

2 7

3 9

-10 10

-10

10

x

y

The graph of the equation y = 2x+ 3

Here is some useful terminology. The horizontal line in our picture
is called the x-axis; the vertical line is the y-axis. The graph in this ex-
ample is a line with slope 2 and y-intercept 3. The slope measures the
steepness of the line. With a slope of 2, this says that as x increases by 1,
then y increases by 2 (which you can see from the table). The y-intercept
is simply the value of y when x = 0. Geometrically, this is where the
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line intersects the y-axis. In general, the graph of the equation

y = mx+ b

is a line with slope m and y-intercept b (and vice versa). We usually
identify a line with its equation. So we could simply say that the graph
in the figure above is the line y = 2x + 3.

Here’s a graph of the lines y = 2x− 2 and y = −x + 7.

−10 −5 5 10

−10

−5

5

10

x

y

Where do the graphs of y = 2x− 2 and y = −x+ 7 intersect?

The line y = 2x − 2 has slope 2 and y-intercept −2. (The graph is
parallel to y = 2x + 3, where the entire line has been shifted vertically
down by 5.) The graph y = −x + 7 has slope −1, so as x increases by 1,
y decreases by 1. Let’s use algebra to determine the point (x, y) where
the lines cross. At the point where they cross, they have the same x and
y value, so we want to find a value of x where the y-values are the same.
In other words, we need to solve

2x− 2 = −x+ 7

Adding x to both sides and adding 2 to both sides tells us that

3x = 9

so x = 3. Once we know x, we can use either equation to give us y.
Since y = 2x − 2, then y = 2(3) − 2 = 4. (Or y = −x + 7 gives us
y = −3 + 7 = 4.) Hence the lines cross at the point (3, 4).
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Drawing the graph of a line is easy since once you know any two
points on the line, you can easily draw the entire line. The situation
becomes trickier with quadratic functions (when the variable x2 enters
the picture). The simplest quadratic to graph is y = x2, pictured below.
Graphs of quadratic functions are called parabolas.

−5 5

−5

5

10

x

y

The graph of y = x2

Here’s the graph of y = x2 + 4x− 12 = (x + 6)(x− 2).
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The graph of y = x2 + 4x− 12 = (x+ 6)(x− 2). The y-axis has been rescaled.

Notice that when x = −6 or x = 2, then y = 0. We can see this in the
graph since the parabola intersects the x-axis at those two points. Not
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coincidentally, the parabola is at its lowest point halfway between those
two points when x = −2. The point (−2,−16) is called the vertex of the
parabola.

We encounter parabolas every day of our lives. Anytime an object
is tossed, the curve created by the object is almost exactly a parabola,
whether the object is a baseball or water streaming out of a fountain,
as illustrated below. Properties of parabolas are also exploited in the
design of headlights, telescopes, and satellite dishes.

−40 −20 20 40

−40

−20

20

40

60
y

x

A typical water fountain. This one corresponds to the parabola y = −.03x2 + .08x+ 70.

Time for some terminology. So far, we have been working with poly-
nomials, which are combinations of numbers and a single variable (say
x), where the variable x can be raised to a positive integer power. The
largest exponent is called the degree of the polynomial. For example,
3x + 7 is a (linear) polynomial of degree 1. A polynomial of degree 2,
like x2 + 4x − 12, is called quadratic. A third-degree polynomial, like
5x3− 4x2−√2, is called cubic. Polynomials of degree 4 and 5 are called
quartics and quintics, respectively. (I haven’t heard of names for poly-
nomials of higher degree, mainly because they don’t arise that often
in practice, although I wonder if we would call seventh-degree poly-
nomials septics. Some people might call them that, but I’m skeptical.)
A polynomial with no variable in it, like the polynomial 17, has de-
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gree 0 and is called a constant polynomial. Finally, a polynomial is
not allowed to have an infinite number of terms in it. For instance,
1 + x + x2 + x3 + · · · is not a polynomial. (It’s called an infinite series,
which we will talk more about in Chapter 12.)

Note that with polynomials, the exponents of the variables can only
be positive integers, so exponents may not be negative or fractional. For
instance, if our equation includes something like y = 1/x or y =

√
x,

then it is not a polynomial since, as we’ll see, 1/x = x−1 and
√

x = x1/2.
We define the roots of the polynomial to be the values of x for which

the polynomial equals 0. For example, 3x + 7 has one root, namely
x = −7/3. And the roots of x2 + 4x − 12 are x = 2 and x = −6. A
polynomial like x2 + 9 has no (real) roots. Notice that every polynomial
of degree 1 (a line) has exactly one root, since it crosses the x-axis at
exactly one point, and a quadratic polynomial (a parabola) has at most
two roots. The polynomials x2 + 1, x2, and x2 − 1 have zero, one, and
two roots, respectively.

−5 5

−5

5

10

x

y

−5 5

−5

5

10

x

y

The graphs of y = x2 + 1 and y = x2 − 1 have, respectively, zero and two roots. The

graph of y = x2, pictured earlier, has just one root.

On the next page we have graphs of some cubic polynomials, and
you will notice that they contain at most three roots.
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−5 5

−10

−5

5

10

x

y

−5 5

−10

−5

5

10

x

y

The graph of y = (x3 − 8)/10 = 1
10 (x− 2)(x2 + 2x+ 4) has one root and

y = (x3 − 7x+ 6)/2 = 1
2 (x+ 3)(x− 1)(x− 2) has three roots

In Chapter 10 we will encounter the fundamental theorem of algebra,
which shows that every polynomial of degree n has at most n roots.
Moreover, it can be factored into linear or quadratic parts. For example,

(x3 − 7x+ 6)/2 =
1

2
(x− 1)(x− 2)(x+ 3)

has three roots (1, 2, and −3). Whereas

x3 − 8 = (x− 2)(x2 + 2x+ 4)

has exactly one real root, when x = 2. (It also has two complex roots, but
that will definitely have to wait for Chapter 10.) By the way, I should
point out that nowadays it is easy to find the graph of most functions,
simply by typing the equation into your favorite search engine. For
instance, typing something like “y = (x^3 - 7x + 6)/2” produces a
graph like the one above.

In this chapter, we have seen how to easily find the roots of any
linear or quadratic polynomial. As it turns out, there are also formu-
las for finding the roots of a cubic or quartic polynomial, but they are
extremely complicated. These formulas were discovered in the six-
teenth century, and for more than two hundred years, mathematicians
searched for a formula that would solve any quintic polynomial. This
problem was attempted by many of the best minds in mathematics, all
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without success, until the Norwegian mathematician Niels Abel proved,
in the early nineteenth century, that such a formula would be impossi-
ble for polynomials of degree 5 or higher. This leads to a riddle that
only mathematicians find funny: Why didn’t Isaac Newton prove the
impossibility theorem for quintics? He wasn’t Abel! We’ll see examples
of how to prove things impossible in Chapter 6.

Aside
Why does x−1 = 1/x? For example, why should 5−1 = 1/5? Look at
the pattern of numbers below:

53 = 125, 52 = 25, 51 = 5, 50 = ?, 5−1 = ??, 5−2 = ???

Notice that each time our exponent decreases by 1, the number is di-
vided by 5, which makes sense if you think about it. For that pattern to
continue, we would need 50 = 1 and 5−1 = 1/5, 5−2 = 1/25, and so
on. But the real reason for it is because of the law of exponents, which
says xaxb = xa+b. Now the law makes perfect sense when a and b are
positive integers. For instance, x2 = x · x and x3 = x · x · x. Thus,

x2 · x3 = (x · x) · (x · x · x) = x5

Since we want the law to work for 0, then that would require

xa+0 = xa · x0

and since the left side equals xa, so must the right side. But that can only
happen if x0 = 1.

Since we want the law of exponents to work for negative integers
too, then this forces us to accept

x1 · x−1 = x1+(−1) = x0 = 1

Dividing both sides by x implies that x−1 must equal 1/x. By a similar
argument, x−2 = 1/x2, x−3 = 1/x3, and so on.

And since we want the law of exponents to be true for all real num-
bers as well, that forces us to accept

x1/2x1/2 = x1/2 + 1/2 = x1 = x

Hence when we multiply x1/2 by itself, we get x, and therefore (when x
is a positive number) we have x1/2 =

√
x.
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Figuring Out Y (and X Too!)

Let’s end this chapter as we began it, with an algebra-based magic trick.
Step 1. Think of two numbers from 1 to 10.
Step 2. Add those numbers together.
Step 3. Multiply that number by 10.
Step 4. Now add the larger original number.
Step 5. Now subtract the smaller original number.
Step 6. Tell me the number you’re thinking of and I’ll tell you both

of the original numbers!
Believe it or not, with that one piece of information, you can deter-

mine both of the original numbers. For example, if the final answer is
126, then you must have started with 9 and 3. Even if this trick is re-
peated a few times, it’s hard for your audience to figure out how you
are doing it.

Here’s the secret. To determine the larger number, take the last digit
of the answer (6 here) and add it to the preceding number(s) (12 here),
then divide by 2. Here we conclude that the larger digit is (12 + 6)/2 =
18/2 = 9. For the smaller digit, take the larger digit that you just com-
puted (9) and subtract the last digit of the answer. Here that would be
9− 6 = 3.

Here are two more examples for practice. If the answer is 82, then
the larger number is (8+ 2)/2 = 5 and the smaller number is 5− 2 = 3.
If the answer is 137, then the larger number is (13 + 7)/2 = 10 and the
smaller number is 10− 7 = 3.

Why does it work? Suppose you start with two numbers X and Y,
where X is equal to or larger than Y. Following the original instructions
and the algebra in the table below, we see that after Step 5, you end up
with the number 10(X + Y) + (X−Y).

Step 1: X and Y

Step 2: X + Y

Step 3: 10(X + Y )

Step 4: 10(X + Y ) +X

Step 5: 10(X + Y ) + (X − Y )

Larger Number: ((X + Y ) + (X − Y ))/2 = X

Smaller Number: X − (X − Y ) = Y
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How does that help us? Notice that a number of the form 10(X +Y)
would have to end in 0, and the digit (or digits) preceding the 0 would
be X + Y. Since X and Y are between 1 and 10, and X is greater than
or equal to Y, then X−Y is forced to be a one-digit number (between 0
and 9). Hence the last digit of the answer must be X − Y. For example,
if you started with digits 9 and 3, then X = 9 and Y = 3. Hence the
answer after Step 5 must begin with X + Y = 9 + 3 = 12 and end with
X − Y = 9− 3 = 6, resulting in 126. Once we know X + Y and X − Y,
we can take their average to get ((X +Y) + (X−Y))/2 = X. For Y, we
could calculate ((X+Y)− (X−Y))/2 (here that would be (12− 6)/2 =
6/2 = 3), but I find it simpler to just take the larger number you just
calculated and then subtract the last digit of their answer (9− 6 = 3)
since X− (X−Y) = Y.

Aside
If you would like an additional challenge for yourself (and the spectator,
who might want to use a calculator), you can ask the spectator to pick
any two numbers between 1 and 100, but now in Step 3 you have them
multiply their total by 100 instead of 10, then proceed as before. For
example, if they started with 42 and 17, then after five steps they end
up with an answer of 5925. You can reconstruct the answer by stripping
off the last two digits from the rest of the answer and calculating their
average. Here, the larger number is (59 + 25)/2 = 84/2 = 42. To get
the smaller number, subtract the last two digits of their answer from the
larger number. Here, 42− 25 = 17, as desired. The reason this works is
almost the same explanation as before, except after step 5, the answer is
100(X + Y)− (X−Y), where X−Y is the last two digits of the answer.

Here’s one more example: if the answer is 15,222 (so X + Y = 152
and X − Y = 22), then the larger number is (152 + 22)/2 = 174/2 = 87
and the smaller number is 87− 22 = 65.
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Chapter 3

The Magic of 9

C H A P T E R  T H R E E
The Magic of Nine  9  = 3

 9  = 3

C H A P T E R  T H R E E

The Magic of 9

The Most Magical Number

When I was a kid, my favorite number was 9 since it seemed to pos-
sess so many magical properties. To see an example, please follow the
mathemagical instructions below.

1. Think of a number from 1 to 10 (or choose a larger whole number
and use a calculator, if you’d like).

2. Triple your number.

3. Add 6 to it.

4. Now triple your number again.

5. If you wish, double your number again.

6. Add the digits of your number. If the result is a one-digit number,
then stop.

7. If the sum is a two-digit number, then add the two digits together.

8. Concentrate on your answer.

51
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I get the distinct impression that you are now thinking of the number 9.
Is that right? (If not, then you may want to recheck your arithmetic.)

What is so magical about the number 9? In the rest of this chapter,
we’ll see some of its magical properties, and we’ll even consider a world
where it makes sense to say that 12 and 3 are functionally the same!
The first magical property of the number 9 can be seen by looking at its
multiples:

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, . . .

What do these numbers have in common? If you add the digits of each
number, it seems that you always get 9. Let’s check a few of them: 18
has digit sum 1 + 8 = 9; 27 has 2 + 7 = 9; 144 has 1 + 4 + 4 = 9. But
wait, there’s an exception: 99 has digit sum 18, but 18 is itself a multiple
of 9. So here is the key result, which you may have been taught in
primary school, and which we will explain later in this chapter:

If a number is a multiple of 9, then its digit sum is a multiple of 9
(and vice versa).

For example, the number 123,456,789 has digit sum 45 (a multiple of
9), so it is a multiple of 9. Conversely, 314,159 has digit sum 23 (not a
multiple of 9), so it is not a multiple of 9.

To use this rule to understand our earlier magic trick, let’s examine
the algebra. You started by thinking of a number, which we call N. After
tripling it, you get 3N, which becomes 3N + 6 at the next step. Tripling
that result gives us 3(3N + 6) = 9N + 18, which equals 9(N + 2). If you
decide to double that number, you have 18N + 36 = 9(2N + 4). Either
way, your final answer is 9 times a whole number, and therefore you
must end up with a multiple of 9. When you take the sum of the digits
of this number, you must again have a multiple of 9 (probably 9 or 18
or 27 or 36), and the sum of these digits must be 9.

Here is a variation of the previous magic trick that I also like to per-
form. Ask someone with a calculator to secretly choose one of these
four-digit numbers:

3141 or 2718 or 2358 or 9999

These numbers are, respectively, the first four digits of π (Chapter 8),
the first four digits of e (Chapter 10), consecutive Fibonacci numbers
(Chapter 5), and the largest four-digit number. Then ask them to take
their four-digit number and multiply it by any three-digit number. The
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end result is a six-digit or seven-digit number that you couldn’t pos-
sibly know. Next ask them to mentally circle one of the digits of their
answer, but not to circle a 0 (since it is already shaped like a circle!) Ask
them to recite all of the uncircled digits in any order they want and to
concentrate on the remaining digit. With just a little concentration on
your part, you successfully reveal the answer.

So what’s the secret? Notice that all of the four numbers they could
start with are multiples of 9. Since you start with a multiple of 9, and
you are multiplying it by a whole number, the answer will still be a
multiple of 9. Thus, its digits must add up to a multiple of 9. As the
numbers are called out to you, simply add them up. The missing digit
is the number you need to add to your total to reach a multiple of 9.
For example, suppose the spectator calls out the digits 5, 0, 2, 2, 6, and 1.
The sum of these numbers is 16, so they must have left out the number
2 to reach the nearest multiple of 9, namely 18. If the numbers called
out are 1, 1, 2, 3, 5, 8, with a total of 20, then the missing digit must be 7
to reach 27. Suppose the numbers called out to you add up to 18; what
did they leave out? Since we told them not to concentrate on 0, then the
missing digit must be 9.

So why do multiples of 9 always add up to multiples of 9? Let’s look
at an example. The number 3456, when expressed in terms of powers
of 10, looks like

3456 = (3× 1000) + (4× 100) + (5× 10) + 6

= 3(999 + 1) + 4(99 + 1) + 5(9 + 1) + 6

= 3(999) + 4(99) + 5(9) + 3 + 4 + 5 + 6

= (a multiple of 9) + 18

= a multiple of 9

By the same logic, any number with a digit sum that is a multiple of 9
must itself be a multiple of 9 (and vice versa: any multiple of 9 must
have a digit sum that is a multiple of 9).

Casting Out Nines

What happens when the sum of the digits of your number is not a mul-
tiple of 9? For example, consider the number 3457. Following the above
process, we can write 3457 (whose digits sum to 19) as 3(999) + 4(99) +
5(9) + 7 + 12, so 3457 is 7 + 12 = 19 bigger than a multiple of 9. And
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since 19 = 18+ 1, this indicates that 3457 is just 1 bigger than a multiple
of 9. We can reach the same conclusion by adding the digits of 19, then
adding the digits of 10, which I represent as

3457 → 19 → 10 → 1

The process of adding the digits of your number and repeating that
process until you are reduced to a one-digit number is called casting out
nines, since at each step of the process, you are subtracting a multiple of
9. The one-digit number obtained at the end of the process is called the
digital root of the original number. For example, the digital root of 3457
is 1. The number 3456 has digital root 9. We can succinctly summarize
our previous conclusions as follows. For any positive number n:

If n has a digital root of 9, then n is a multiple of 9.
Otherwise, the digital root is the remainder obtained when n is

divided by 9.

Or expressed more algebraically, if n has digital root r, then

n = 9x+ r

for some integer x. The process of casting out nines can be a fun way to
check your answers to addition, subtraction, and multiplication prob-
lems. For example, if an addition problem is solved correctly, then the
digital root of the answer must agree with the sum of the digital roots.
Here’s an example. Perform the addition problem

!
!

! 5

6

11

32

24

91787

 + 42864

134651

51   

!
! 2

! 220

#

Notice that the numbers being added have digital roots of 5 and 6
and their sum, 11, has digital root 2. It is no coincidence that the digital
root of the answer, 134,651, also has a digital root of 2. The reason this
process works in general is based on the algebra

(9x+ r1) + (9y + r2) = 9(x+ y) + (r1 + r2)
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If the numbers didn’t match, then you have definitely made a mis-
take somewhere. Important: if the numbers do match, then your answer
is not necessarily right. But this process will catch most random errors
about 90 percent of the time. Note that it will not catch errors where
you’ve accidentally swapped two of the correct digits, since the swap-
ping of two correct digits does not alter the digit sum. But if a single
digit is in error, it will detect that mistake, unless the error turned a
0 into a 9 or a 9 into a 0. This process can be applied even when we
are adding long columns of numbers. For example, suppose that you
purchased a number of items with the prices below:

! 5

! 5

!
!
!
!
!
!

!
!
!
!
!
!

6

2

1

8

9

6

32

15

20

19

26

9

15

112.56 

96.50

 14.95 

48.95

108.00

 17.52

398.48
#
32

Adding the digits of our answer, we see that our total has digital
root 5, and the sum of the digital roots is 32, which is consistent with
our answer, since 32 has digital root 5. Casting out nines works for
subtraction as well. For instance, subtract the numbers from our earlier
addition problem:

32

24

5

6

{1

!
!

!
!

! 8

! 8

91787

 { 42864

48923
#
26

The answer to the subtraction problem 48,923 has digital root 8.
When we subtract the digital roots of the original numbers we see that
5− 6 = −1. But this is consistent with our answer, since −1 + 9 = 8,
and adding (or subtracting) multiples of 9 to our answer doesn’t change
the digital root. By the same logic, a difference of 0 is consistent with a
digital root of 9.
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Let’s take advantage of what we’ve learned to create another magic
trick (like the one given in the book’s introduction). Follow these in-
structions; you may use a calculator if you wish.

1. Think of any two-digit or three-digit number.

2. Add your digits together.

3. Subtract that from your original number.

4. Add the digits of your new number.

5. If your total is even, then multiply it by 5.

6. If your total is odd, then multiply it by 10.

7. Now subtract 15.

Are you thinking of 75?
For example, if you started with the number 47, then you began by

adding 4 + 7 = 11, followed by 47− 11 = 36. Next 3 + 6 = 9, which
is an odd number. Multiplying it by 10 gives you 90, and 90− 15 = 75.
On the other hand, if you started with a 3-digit number like 831, then
8 + 3 + 1 = 12; 831− 12 = 819; 8 + 1 + 9 = 18, an even number. Then
18× 5 = 90, and subtracting 15 gives us 75, as before.

The reason this trick works is that if the original number has a digit
sum of T, then the number must be T greater than a multiple of 9. When
we subtract T from the original number, we are guaranteed to have a
multiple of 9 below 999, so its total will be either 9 or 18. (For example,
when we started with 47, it had a digit sum of 11. We subtracted 11 to
get to 36, with digit sum 9.) After the next step, we will be forced to
have 90 (as 9× 10 or 18× 5) followed by 75, as in the examples above.

Casting out nines works for multiplication too. Let’s see what hap-
pens as we multiply the previous numbers:

32

24

5

6

30

!
!

!
!

! 3

! 3

91787

 ×  42864

3,934,357,968
#
57 12 !
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The reason that casting out nines works for multiplication is based
on FOIL from Chapter 2. For instance, in our last example, the digi-
tal roots on the right tell us that the numbers being multiplied are of
the form 9x + 5 and 9y + 6, for some integers x and y. And when we
multiply these together, we get

(9x+ 5)(9y + 6) = 81xy + 54x+ 45y + 30

= 9(9xy + 6x+ 5y) + 30

= (a multiple of 9) + (27 + 3)

= (a multiple of 9) + 3

Although casting out nines is not traditionally used to check divi-
sion problems, I can’t resist showing you an utterly magical method for
dividing numbers by 9. This method is sometimes referred to as the
Vedic method. Consider the problem

12302÷ 9

Write the problem as

9)1 2 3 0 2

Now bring the first digit above the line and write the letter R (as in
remainder) above the last digit, like so.

9))1 2 3 0 R

9)1 2 3 0 2

1

Next we add numbers diagonally like in the circled positions below.
The circled numbers 1 and 2 add to 3, so we put a 3 as the next number
in the quotient.

9))1 3 3 0 R

9)1 2 3 0 2

3

Then 3 + 3 = 6.

9))1 3 6 0 R
9)1 2 3 0 2

6
3

Then 6 + 0 = 6.
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9))1 3 6 0 R

9)1 2 3 0 2

6

3

Finally, we add 6 + 2 = 8 for our remainder.

9))1 3 6 6 R

9)1 2 3 0 2

8

0

R

And there’s the answer: 12,302÷ 9 = 1366 with a remainder of 8.
That seemed almost too easy! Let’s do another problem with fewer de-
tails.

31415÷ 9

Here’s the answer!

9 3  4  8  9  R
9)3  1  4  1  5

14

Starting with the 3 on top, we compute 3 + 1 = 4, then 4 + 4 = 8,
then 8 + 1 = 9, then 9 + 5 = 14. So the answer is 3489 with a remainder
of 14. But since 14 = 9 + 5, we add 1 to the quotient to get an answer of
3490 with a remainder of 5.

Here’s a simple question with an attractive answer. I’ll leave it to
you to verify (on paper or in your head) that

111,111÷ 9 = 12,345 R 6

We saw that when the remainder is 9 or larger, we simply added 1
to our quotient, and subtracted 9 from the remainder. The same sort of
thing happens when we have a sum that exceeds 9 in the middle of the
division problem. We indicate the carry, then subtract 9 from the total
and continue (or should I say carry on?) as before. For example, with
the problem 4821÷ 9, we start off like this:

9 4 3 5 R 

9)4 8 2 1

1

4

Here we start with the 4, but since 4 + 8 = 12, we place a 1 above
the 4 (to indicate a carry), then subtract 9 from 12 to write 3 in the next
spot. This is followed by 3 + 2 = 5, then 5 + 1 = 6 to get an answer of
535 with a remainder of 6, as illustrated on the next page.
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9 4 3 5 R 6
9)4 8 2 1

1

Here is one more problem with lots of carries. Try 98,765÷ 9.

9 9 8 6 3 R 8

9)9 8 7 6 5

1 1 1

Starting with 9 on top, we add 9 + 8 = 17, indicate the carry and
subtract 9, so the second digit of the quotient becomes 8. Next, 8 + 7 =
15; indicate the carry and write 15− 9 = 6. Then 6+ 6 = 12; indicate the
carry and write 12− 9 = 3. Finally, your remainder is 3+ 5 = 8. Taking
all the carries into account, our answer is 10,973 with a remainder of 8.

Aside
If you think dividing by 9 is cool, check out dividing by 91. Ask for any
two-digit number and you can instantly divide that number by 91 to as
many decimal places as desired. No pencils, no paper, no kidding! For
example,

53÷ 91 = 0.582417 . . .

More specifically, the answer is 0.582417, where the bar above the digits
582417 means that those numbers repeat indefinitely. Where do these
numbers come from? It’s as easy as multiplying the original two-digit
number by 11. Using the method we learned from Chapter 1, we calcu-
late 53× 11 = 583. Subtracting 1 from that number gives us the first half
of our answer, namely 0.582. The second half is the first half subtracted
from 999, which is 999− 582 = 417. Therefore, our answer is 0.582417,
as promised.

Let’s do one more example. Try 78÷ 91. Here, 78× 11 = 858, so the
answer begins with 857. Then 999− 857 = 142, so 78÷ 91 = 0.857142.
We have actually seen that number in Chapter 1, because 78/91 simpli-
fies to 6/7.

This method works because 91× 11 = 1001. Thus, in the first ex-
ample, 53

91 = 53×11
91×11 = 583

1001 . And since 1/1001 = 0.000999, we get the
repeating part of our answer from 583× 999 = 583,000− 583 = 582,417.

Since 91 = 13× 7, this gives us a nice way to divide numbers by
13 by unsimplifying it to have a denominator of 91. For instance, 1/13 =
7/91, and since 7× 11 = 077, we get

1/13 = 7/91 = 0.076923

Likewise, 2/13 = 14/91 = 0.153846, since 14× 11 = 154.
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The Magic of 10, 11, 12, and Modular Arithmetic

Much of what we have learned about the number 9 extends to all other
numbers as well. When casting out nines, we were essentially replacing
numbers with their remainders when divided by 9. The idea of replac-
ing a number with its remainder is not new for most people. We have
been doing it ever since we learned how to tell time. For example, if
a clock indicates that the time is 8 o’clock (without distinguishing be-
tween morning or evening), then what time will it indicate in 3 hours?
What about in 15 hours? Or 27 hours? Or 9 hours ago? Although your
first reaction might be to say that the hour would either be 11 or 23 or
35 or−1, as far as the clock is concerned, all those times are represented
by 11 o’clock, since all of those times differ by multiples of 12 hours.
The notation mathematicians use is

11 ≡ 23 ≡ 35 ≡ −1 (mod 12)

12
1

2

3

4

5
6

7

8

9

10

11

What time will the clock say in 3 hours? In 15 hours? Or 27 hours? Or 9 hours ago?

In general, we say that a ≡ b (mod 12) if a and b differ by a multiple
of 12. Equivalently, a ≡ b (mod 12) if a and b have the same remainder
when divided by 12. More generally, for any positive integer m, we say
that two numbers a and b are congruent mod m, denoted a ≡ b (mod m),
if a and b differ by a multiple of m. Equivalently,

a ≡ b (mod m) if a = b+ qm for some integer q

The nice thing about congruences is that they behave almost exactly
the same as regular equations, and we can perform modular arithmetic
by adding, subtracting, and multiplying them together. For example, if
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a ≡ b (mod m) and c is any integer, then it is also true that

a+ c ≡ b+ c and ac ≡ bc (mod m)

Different congruences can be added, subtracted, and multiplied. For
instance, if a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d and ac ≡ bd (mod m)

For example, since 14 ≡ 2 and 17 ≡ 5 (mod 12), then 14× 17 ≡ 2× 5
(mod 12), and indeed 238 = 10 + (12× 19). A consequence of this rule
is that we can raise congruences to powers. So if a ≡ b (mod m), then
we have the power rule:

a2 ≡ b2 a3 ≡ b3 · · · an ≡ bn (mod m)

for any positive integer n.

Aside
Why does modular arithmetic work? If a ≡ b (mod m) and c ≡ d
(mod m), then a = b + pm and c = d + qm for some integers p and q.
Thus a + c = (b + d) + (p + q)m, and therefore a + c ≡ b + d (mod m).
Furthermore, by FOIL,

ac = (b+ pm)(d+ qm) = bd+ (bq + pd+ pqm)m

so ac and bd differ by a multiple of m and so ac ≡ bd (mod m). Multiply-
ing the congruence a ≡ b (mod m) by itself gives us a2 ≡ b2 (mod m),
and repeating this process gives us the power rule.

It is the power rule that makes 9 such a special number when work-
ing in base 10. Since

10 ≡ 1 (mod 9)

the power rule tells us that 10n ≡ 1n = 1 (mod 9) for any n, and there-
fore a number like 3456 satisfies

3456 = 3(1000) + 4(100) + 5(10) + 6

≡ 3(1) + 4(1) + 5(1) + 6 = 3 + 4 + 5 + 6 (mod 9)

Since 10 ≡ 1 (mod 3), this explains why you can also determine if a
number is a multiple of 3 (or what its remainder will be when divided
by 3) just by adding up its digits. If we worked in a different base, say
in base 16 (called the hexadecimal system, used in electrical engineering
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and computer science), then since 16 ≡ 1 (mod 15), you could tell if a
number is a multiple of 15 (or 3 or 5), or determine its remainder when
divided by 15, just by adding its digits.

Back to base 10. There is a neat way to determine if a number is a
multiple of 11. It is based on the fact that

10 ≡ −1 (mod 11)

and therefore 10n ≡ (−1)n (mod 11). Therefore 102 ≡ 1 (mod 11),
103 ≡ (−1) (mod 11), and so on. For example, a number like 3456
satisfies

3456 = 3(1000) + 4(100) + 5(10) + 6

≡ −3 + 4− 5 + 6 = 2 (mod 11)

Thus 3456 has a remainder of 2 when divided by 11. The general rule
is that a number is a multiple of 11 if, and only if, we end up with a
multiple of 11 (such as 0, ±11, ±22, . . . ) when we alternately subtract
and add the digits. For instance, is the number 31,415 a multiple of 11?
By calculating 3− 1 + 4− 1 + 5 = 10, we conclude that it is not, but if
we considered 31,416, then our total would be 11, and so 31,416 would
be a multiple of 11.

Mod 11 arithmetic is actually used in the creation and verification
of an ISBN number (International Standard Book Number). Suppose
your book has a 10-digit ISBN (as most books do that were published
prior to 2007). The first few digits encode the book’s country of origin,
publisher, and title, but the tenth digit (called the check digit) is chosen so
that the numbers satisfy a special numerical relationship. Specifically, if
the 10-digit number looks like a-bcd-efghi-j, then j is chosen to satisfy

10a+ 9b+ 8c+ 7d+ 6e+ 5f + 4g + 3h+ 2i+ j ≡ 0 (mod 11)

For example, my book Secrets of Mental Math, published in 2006, has
ISBN 0-307-33840-1, and indeed

10(0) + 9(3) + 8(0) + 7(7) + 6(3) + 5(3) + 4(8) + 3(4) + 2(0) + 1

= 154 ≡ 0 (mod 11)

since 154 = 11 × 14. You might wonder what happens if the check
digit is required to be 10. In that case, the digit is assigned the letter
X, which is the Roman numeral for 10. The ISBN system has the nice
feature that if a single digit is entered incorrectly, the system can detect
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that. For instance, if the third digit is incorrect, then the total at the
end will be off by some multiple of 8, either as ±8 or ±16 or . . .± 80.
But none of those numbers are multiples of 11 (because 11 is a prime
number), so the adjusted total cannot be a multiple of 11. In fact, with
a little bit of algebra, it can also be shown that the system can detect
an error whenever two different digits are transposed. For example,
suppose that digits c and f were transposed but everything else was
correct. Then the only part of the total affected is the contribution from
the c and f term. The old total uses 8c + 5 f and the new total uses
8 f + 5c. The difference is (8 f + 5c)− (8c + 5 f ) = 3( f − c), which is not
a multiple of 11. Hence the new total will not be a multiple of 11.

In 2007, publishers switched to the ISBN-13 system, which used 13
digits and was based on mod 10 arithmetic instead of mod 11. Under
this new system, the number abc-d-efg-hijkl-m can only be valid when
it satisfies

a+ 3b+ c+ 3d+ e+ 3f + g + 3h+ i+ 3j + k+ 3l+m ≡ 0(mod 10)

For example, the ISBN-13 for this book is 978-0-465-05472-5. A quick
way to check this number is to separate the odd and even positioned
numbers to compute

(9 + 8 + 4 + 5 + 5 + 7 + 5) + 3(7 + 0 + 6 + 0 + 4 + 2)

= 43 + 3(19) = 43 + 57 = 100 ≡ 0 (mod 10)

The ISBN-13 system will detect any single-digit error and most (but not
all) transposition errors of consecutive terms. For instance, in the last
example, if the last three digits are changed from 725 to 275, then the
error will not be detected, since the new total will be 110, which is still
a multiple of 10. A similar sort of mod 10 system is in place for verify-
ing barcode, credit card, and debit card numbers. Modular arithmetic
also plays a major role in the design of electronic circuits and Internet
financial security.

Calendar Calculating

My favorite mathematical party trick is to tell people the day of the
week they were born, given their birthday information. For example, if
someone told you that she was born on May 2, 2002, you can instantly
tell her that she was born on a Thursday. An even more practical skill is
the ability to figure out the day of the week for any date of the current
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or upcoming year. I will teach you an easy method to do this, and the
mathematics behind it, in this section.

But before we delve into the method, it’s worth reviewing some of
the scientific and historical background behind the calendar. Since the
Earth takes about 365.25 days to travel around the Sun, a typical year
has 365 days, but we add a leap day, February 29, every four years.
(This way, in four years, we have 4 × 365 + 1 = 1461 days, which is
just about right.) This was the idea behind the Julian calendar, estab-
lished by Julius Caesar more than two thousand years ago. For ex-
ample, the year 2000 is a leap year, as is every fourth year after that:
2004, 2008, 2012, 2016, and so on, up through 2096. Yet 2100 will not be
a leap year. Why is that?

The problem is that a year is actually about 365.243 days (about
eleven minutes less than 365.25), so leap years are ever so slightly over-
represented. With four hundred trips around the Sun, we experience
146,097 days, but the Julian calendar allocated 400× 365.25 = 146,100
days for this (which is three days too long). To avoid this problem (and
other difficulties associated with the timing of Easter) the Gregorian cal-
endar was established by Pope Gregory XIII in 1582. In that year, the
Catholic nations removed ten days from their calendar. For example,
in Spain, the Julian date of Thursday, October 4, 1582, was followed by
the Gregorian date of Friday, October 15, 1582. Under the Gregorian cal-
endar, years that were divisible by 100 would no longer be leap years,
unless they were also divisible by 400 (thus removing three days). Con-
sequently, 1600 remained a leap year on the Gregorian calendar, but
1700, 1800, and 1900 would not be leap years. Likewise, 2000 and 2400
are leap years, but the years 2100, 2200, and 2300 are not leap years.
Under this system, in any four hundred year period, the number of
leap years is 100− 3 = 97 and therefore the number of days would be
(400× 365) + 97 = 146, 097 as desired.

The Gregorian calendar was not accepted by all countries right away,
and the non-Catholic countries were particularly slow to adopt it. For
example, England and its colonies didn’t make the switch until 1752,
when Wednesday, September 2, was followed by Thursday, September
14. (Notice that eleven days were eliminated, since 1700 was a leap
year on the Julian calendar but not in the Gregorian calendar.) It was
not until the 1920s that all countries had converted from the Julian to
the Gregorian calendar. This has been a source of complications for his-
torians. My favorite historical paradox is that both William Shakespeare
and Miguel de Cervantes died on the same date, April 23, 1616, and yet
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they died ten days apart. That’s because when Cervantes died, Spain
had converted to the Gregorian calendar, but England was still on the
Julian calendar. So when Cervantes died on Gregorian April 23, 1616,
it was still April 13, 1616, in England, where Shakespeare was living (if
only for ten more days).

The formula to determine the day of the week for any date on the
Gregorian calendar goes like this:

Day of Week ≡ Month Code + Date + Year Code (mod 7)

and we will explain all of these terms shortly. It makes sense that the
formula uses modular arithmetic, working mod 7, since there are 7 days
in a week. For example, if a date is 72 days in the future, then its day of
the week will be two days from today, since 72 ≡ 2 (mod 7). Or a date
that is 28 days from today will have the same day of the week, since 28
is a multiple of 7.

Let’s start with the codes for the days of the week, which are easy to
memorize.

Number Day Mnemonic

1 Monday 1-day

2 Tuesday 2s-day

3 Wednesday raise 3 fingers

4 Thursday 4s-day

5 Friday 5-day

6 Saturday 6er-day

7 or 0 Sunday 7-day or none-day

I have provided mnemonics to go along with each number-day pair,
most of which are self-explanatory. For Wednesday, notice that if you
raise three fingers on your hand, you create the letter W. For Thursday,
if you pronounce it as “Thor’s Day,” then it will rhyme with “Four’s
Day.”
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Aside
So where do the names of the days of the week come from? The cus-
tom of naming the days of the week after the Sun, the Moon, and the
five closest heavenly bodies dates back to ancient Babylonia. From the
Sun, the Moon, and Saturn, we immediately get Sunday, Monday, and
Saturday. Other names are easier to see in French or Spanish. For in-
stance, Mars becomes Mardi or Martes; Mercury becomes Mercredi or
Miércoles; Jupiter becomes Jeudi or Jueves; Venus becomes Vendredi
or Viernes. Note that Mars, Mercury, Jupiter, and Venus were also the
names of Roman gods and goddesses. The English language has Ger-
manic origins and the early Germans renamed some of these days for
Norse gods. So Mars became Tiw, Mercury became Woden, Jupiter be-
came Thor, and Venus became Freya, and that’s how we arrived at the
names for Tuesday, Wednesday, Thursday, and Friday.

The month codes are given below, along with my mnemonics for
remembering them.

Month Code Mnemonic

January* 6 W-I-N-T-E-R

February* 2 Month number 2

March 2 March 2 the beat!

April 5 A-P-R-I-L or F-O-O-L-S

May 0 Hold the May-O!

June 3 June B-U-G

July 5 Fiver-works in the sky!

August 1 August begins with A = 1

September 4 Beginning of F-A-L-L

October 6 T-R-I-C-K-S (rhymes with 6)

November 2 2 pieces of 2rkey!

December 4 L-A-S-T or X-M-A-S

*Exception: In leap years, January = 5 and February = 1

I’ll explain how these numbers are derived later, but I want you to
first learn how to perform the calculation. For now, the only year code
you need to know is that 2000 has year code 0. Let’s use this information
to determine the day of the week of March 19 (my birthday) that year.
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Since March has a month code of 2, and 2000 has a year code of 0, then
our formula tells us that March 19, 2000, has

Day of Week = 2 + 19 + 0 = 21 ≡ 0 (mod 7)

Therefore, March 19, 2000, was a Sunday.

Aside
Here is a quick explanation of where the month codes come from. Notice
that in a non-leap year, the month codes for February and March are
the same. That makes sense, because when February has 28 days, then
March 1 is 28 days after February 1, and so both months will begin on
the same day of the week. Now as it happens, March 1, 2000, was a
Wednesday. So if we want to give 2000 a year code of 0 and we want to
give Monday a day code of 1, then that forces the month code for March
to be 2. Thus, if it’s not a leap year, then February must have a code of
2 too! And since March has 31 days, which is 3 greater than 28, then the
April calendar is shifted 3 days further, which is why it has a month code
of 2 + 3 = 5. And when we add the 28 + 2 days of April to the month
code of 5, we see that May must have month code 5 + 2 = 7, which can
be reduced to 0 since we are working mod 7. Continuing this process,
we can determine the month codes for the rest of the year.

On the other hand, in a leap year (like 2000), February has 29 days,
so the March calendar will be one day ahead of February’s calendar,
which is why the month code for February is 2− 1 = 1 in a leap year.
January has 31 days, so its month code must be 3 below the month code
for February. So in a non-leap year, the month code for January will be
2− 3 = −1 ≡ 6 (mod 7). In a leap year, the month code for January will
be 1− 3 = −2 ≡ 5 (mod 7).

What happens to your birthday as you go from one year to the next?
Normally, there are 365 days between your birthdays, and when that
happens, your birthday advances by one day because 365 ≡ 1 (mod 7),
since 365 = 52× 7 + 1. But when February 29 appears between your
birthdays (assuming you weren’t born on February 29 yourself), then
your birthday will advance by two days instead. In terms of our for-
mula, we simply add 1 to the year code each year, except in leap years,
when we add 2 instead. Here are the year codes for years 2000 through
2031. Don’t worry. You will not need to memorize this!

Notice how the year codes begin 0, 1, 2, 3, then at 2004 we leap over
the 4 for a year code of 5. Then 2005 has year code 6, and 2007 should
have year code 7, but since we are working mod 7, we simplify this
number to 0. Then 2007 has year code 1, then 2008 (a leap year) has
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Year Code Year Code Year Code Year Code

2000* 0 2008* 3 2016* 6 2024* 2

2001 1 2009 4 2017 0 2025 3

2002 2 2010 5 2018 1 2026 4

2003 3 2011 6 2019 2 2027 5

2004* 5 2012* 1 2020* 4 2028* 0

2005 6 2013 2 2021 5 2029 1

2006 0 2014 3 2022 6 2030 2

2007 1 2015 4 2023 0 2031 3

Year codes from 2000 through 2031 (* denotes leap year)

year code 3, and so on. Using the table, we can determine that in 2025
(the next year which will be a perfect square), Pi Day (March 14) will be
on

Day of Week = 2 + 14 + 3 = 19 ≡ 5 (mod 7) = Friday

How about January 1, 2008? Note that 2008 is a leap year, so the
month code for January will be 5 instead of 6. Consequently, we have

Day of Week = 5 + 1 + 3 = 9 ≡ 2 (mod 7) = Tuesday

Notice that when you read across each row in the table, as we gain
8 years, our year code always increases by 3 (mod 7). For instance,
the first row has 0, 3, 6, 2 (where 2 is the same as 9 (mod 7)). That’s
because in any 8-year period, the calendar will always experience two
leap years, so the dates will shift by 8 + 2 = 10 ≡ 3 (mod 7).

Here’s even better news. Between 1901 and 2099, the calendar will
repeat every 28 years. Why? In 28 years, we are guaranteed to expe-
rience exactly 7 leap years, so the calendar will shift by 28 + 7 = 35
days, which leaves the day of the week unchanged, since 35 is a mul-
tiple of 7. (This statement is not true if the 28-year period crosses 1900
or 2100, since those years are not leap years.) Thus by adding or sub-
tracting multiples of 28, you can turn any year between 1901 and 2099
into a year between 2000 and 2027. For example, 1983 has the same
year code as 1983+ 28 = 2011. The year 2061 has the same year code as
2061− 56 = 2005.
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Thus, for all practical purposes, you can convert any year into one of
the years on this table, and these year codes can be calculated pretty eas-
ily. For example, why should 2017 have a year code of 0? Well, starting
in 2000, which has a year code of 0, the calendar has shifted 17 times plus
an additional 4 times to account for the leap years of 2004, 2008, 2012,
and 2016. Hence the year code for 2017 is 17 + 4 = 21 ≡ 0 (mod 7).
How about 2020? This time we have 5 leap-year shifts (including 2020)
so the calendar shifts 20 + 5 = 25 times, and since 25 ≡ 4 (mod 7), the
year 2020 has a year code of 4. In general, for any year between 2000
and 2027, you can determine its year code as follows.

Step 1: Take the last two digits of the year. For example, with 2022,
the last two digits are 22.

Step 2: Divide that number by 4, and ignore any remainder. (Here,
22÷ 4 = 5 with a remainder of 2.)

Step 3: Add the numbers in Steps 1 and 2. Here, 22 + 5 = 27.
Step 4: Subtract the biggest multiple of 7 below the number in Step 3

(which will either be 0, 7, 14, 21, or 28) to obtain the year code. (In other
words, reduce the number in Step 3, mod 7.) Since 27− 21 = 6, then the
year code for 2022 is 6.

Note that Steps 1 through 4 will work for any year between 2000
and 2099, but the mental math is usually simpler if you first subtract a
multiple of 28 to bring the year between 2000 and 2027. For example, the
year 2040 can be first reduced to 2012, then Steps 1 through 4 produce a
year code of 12 + 3− 14 = 1. But you can also work directly on 2040 to
obtain the same year code: 40 + 10− 49 = 1.

The same steps can be applied to years outside of the 2000s. The
month codes do not change. There is just one little adjustment for the
year codes. The year code for 1900 is 1. Consequently, the codes from
1900 through 1999 are exactly one larger than their respective codes
from 2000 through 2099. So since 2040 has a year code of 1, then 1940
will have a year code of 2. Since 2022 has a year code of 6, then 1922 will
have a year code of 7 (or, equivalently, 0). The year 1800 has a year code
of 3, 1700 has a year code of 5, and 1600 has a year code of 0. (In fact,
the calendar will cycle every 400 years, since in 400 years it will have
exactly 100− 3 = 97 leap years and so 400 years from now, the calendar
will shift 400 + 97 = 497 days, which is the same as today, since 497 is a
multiple of 7.)

What day of the week was July 4, 1776? To find the year code for
2076, we first subtract 56 and then compute the year code for 2020: 20+
5 − 21 = 4. Thus the year code for 1776 is 4 + 5 = 9 ≡ 2 (mod 7).
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Therefore, on the Gregorian calendar, July 4, 1776, has

Day of Week = 5 + 4 + 2 = 11 ≡ 4 (mod 7) = Thursday

Perhaps the signers of the Declaration of Independence needed to pass
legislation quickly before the long holiday weekend?

Aside
Let’s end this chapter with another magical property of the number
9. Take any number that has different digits, written from smallest to
largest. Such numbers include 12345, 2358, 369, or 135789. Multiply this
number by 9 and add the digits. Although we expect the sum to be a
multiple of 9, it is quite surprising that the sum of the digits will always
be exactly 9. For instance,

9× 12345 = 11,105 9× 2358 = 21,222 9× 369 = 3321

It even works if digits are repeated, as long as the number is written
from smallest to largest and the ones digit is not equal to the tens digit.
For example,

9× 12223 = 110,007 9× 33344449 = 300,100,041

So why does this work? Let’s see what happens when we multiply
9 by the number ABCDE, where A ≤ B ≤ C ≤ D < E. Since multi-
plying by 9 is the same as multiplying by 10− 1, this is the same as the
subtraction problem

A B C D E 0

− A B C D E

If we do the subtraction from left to right, then since B ≥ A and C ≥ B
and D ≥ C and E > D, this becomes the subtraction problem

A (B-A) (C-B) (D-C) (E-D) 0

− E

A (B-A) (C-B) (D-C) (E-D-1) (10 - E)

and the sum of the digits of our answer is

A+ (B −A) + (C −B) + (D−C) + (E −D− 1) + (10−E) = 9

as desired. �
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The Magic of Counting

C H A P T E R  F O U R

The Magic of Counting
 3! { 2!  = 4

C H A P T E R  F O U R

The Magic of Counting

3! { 2!  = 4

Math with an Exclamation Point!

We began this book with the problem of adding the numbers from 1 to
100. We discovered the total of 5050 and found a nice formula for the
sum of the first n numbers. Now suppose we were interested in finding
the product of the numbers from 1 to 100; what would we get? A really
big number! If you’re curious, it’s the 158-digit number given below:

9332621544394415268169923885626670049071596826438162146

8592963895217599993229915608941463976156518286253697920

827223758251185210916864000000000000000000000000

In this chapter, we will see how numbers like this are the foundation
of counting problems. These numbers will enable us to determine such
things as the number of ways to arrange a dozen books on a bookshelf
(nearly half a billion), your chance of being dealt at least one pair in
poker (not bad), and your chance of winning the lottery (not good).

When we multiply the numbers from 1 to n together, we denote the
product as n!, which is pronounced “n factorial.” In other words,

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1

For example,
5! = 5× 4× 3× 2× 1 = 120

71
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I think the exclamation point is the appropriate notation since the num-
ber n! grows very quickly and, as we’ll see, it has many exciting and sur-
prising applications. For convenience, mathematicians define 0! = 1,
and n! is not defined when n is a negative number.

Aside
From its definition, many people expect that 0! should be equal to 0. But
let me try to convince you why 0! = 1 makes sense. Notice that for
n ≥ 2, n! = n× (n− 1)!, and so

(n− 1)! =
n!
n

If we want that statement to remain true when n = 1, this would require
that

0! =
1!
1

= 1

As seen below, factorials grow surprisingly quickly:

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40,320

9! = 362,880

10! = 3,628,800

11! = 39,916,800

12! = 479,001,600

13! = 6,227,020,800

20! = 2.43× 1018

52! = 8.07× 1067

100! = 9.33× 10157

How big are these numbers? It’s been estimated that there are about
1022 grains of sand in the world and about 1080 atoms in the universe.
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If you thoroughly mix up a deck of 52 cards, which we’ll see can be
done 52! ways, there is a very good chance that the order you obtained
has never been seen before and will never be seen again, even if every
person on earth produced a new shuffled deck every minute for the
next million years!

Aside
At the beginning of this chapter, you probably noticed that 100! ended
with lots of zeros. Where did all the zeros come from? When multiplying
the numbers from 1 to 100 we obtain a 0 every time a multiple of 5 is
multiplied by a multiple of 2. Among the numbers from 1 to 100 there
are 20 multiples of 5 and 50 even numbers, which might suggest that we
should have 20 zeros at the end. But the numbers 25, 50, 75, and 100 each
contribute an additional factor of 5, so 100! will end with 24 zeros.

Just like in Chapter 1, there are many beautiful number patterns us-
ing factorials. Here is one my favorites.

11 1 · 1! = 1 = 2!− 1

11 1 · 1! + 2 · 2! = 5 = 3!− 1

11 1 · 1! + 2 · 2! + 3 · 3! = 23 = 4!− 1

11 1 · 1! + 2 · 2! + 3 · 3! + 4 · 4! = 119 = 5!− 1

11 1 · 1! + 2 · 2! + 3 · 3! + 4 · 4! + 5 · 5! = 719 = 6!− 1

1111 13 + 23 + 33 + 43 + 53
...

A factorial number pattern

The Rule of Sum and Product

Most counting problems essentially boil down to two rules: The rule of
sum and the rule of product. The rule of sum is used when you want
to count the total number of options you have when you have different
types of choices. For example, if you had 3 short-sleeved shirts and 5
long-sleeved shirts, then you have 8 different choices for which shirt to
wear. In general, if you have two types of objects, where there are a
choices for the first type and b choices for the second type, then there
are a + b different objects (assuming that none of the b choices are the
same as any of the a choices).
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Aside
The rule of sum, as stated, assumes that the two types of objects have no
objects in common. But if there are c objects that belong to both types,
then those objects would be counted twice. Hence the number of dif-
ferent objects would be a + b − c. For example, if a class of students
has 12 dog owners, 19 cat owners, and 7 students who own both dogs
and cats, then the number of students who own a cat or a dog would be
12 + 19− 7 = 24. For a more mathematical example, among the num-
bers from 1 to 100 there are 50 multiples of 2, 33 multiples of 3, and 16
numbers that are multiples of 2 and 3 (namely the multiples of 6). Hence
the number of numbers between 1 and 100 that are multiples of 2 or 3 is
50 + 33− 16 = 67.

The rule of product says that if an action consists of two parts, and
there are a ways to do the first part and then b ways to do the second
part, then the action can be completed in a× b ways. For instance, if I
own 5 different pairs of pants and 8 different shirts, and if I don’t care
about color coordination (which I’m afraid applies to most mathemati-
cians), then the number of different outfits is 5× 8 = 40. If I own 10
ties and an outfit consists of shirt, pants, and tie, then there would be
40× 10 = 400 outfits.

In a typical deck of cards, each card is assigned one of 4 suits (spades,
hearts, diamonds, or clubs) and one of 13 values (A, 2, 3, 4, 5, 6, 7, 8, 9,
10, J, Q, or K). Hence the number of cards in a deck is 4× 13 = 52. If we
wanted to, we could deal out all 52 cards in a 4-by-13 rectangle, which
is another way of seeing that there are 52 cards.

A 2 3 4 5 6 7 8 9 10 J Q K

A 2 3 4 5 6 7 8 9 10 J Q K

A 2 3 4 5 6 7 8 9 10 J Q K

A 2 3 4 5 6 7 8 9 10 J Q K

A 2 3 4 5 6 7 8 9 10 J Q K
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Let’s apply the rule of product to count zip codes. How many five-
digit zip codes are theoretically possible? Each digit of a zip code can be
any number from 0 to 9, so the smallest zip code could be 00000 and the
largest would be 99999; hence there are 100,000 possibilities. But you
can also see this by the rule of product. You have 10 choices for the first
digit (0 through 9) then 10 choices for the second digit, 10 choices for
the third, 10 choices for the fourth, and 10 choices for the fifth. Hence
there are 105 = 100,000 possible zip codes.

When counting zip codes, numbers were allowed to be repeated.
Now let’s look at the situation where objects can’t be repeated, such as
when you are arranging objects in a row. It’s easy to see that two objects
can be arranged 2 ways. For instance, letters A and B can be arranged
either as AB or as BA. And three objects can be arranged 6 ways: ABC,
ACB, BAC, BCA, CAB, CBA. Now can you see how four objects can be
arranged in 24 ways without explicitly writing them down? There are
4 choices for which letter goes first (either A or B or C or D). Once that
letter has been chosen, there will be 3 choices for the next letter, then 2
choices for the next letter, and finally there is only 1 possibility for the
last letter. Altogether, there are 4× 3× 2× 1 = 4! = 24 possibilities. In
general, there are n! ways to arrange n different objects.

We combine the rules of sum and product in this next example. Sup-
pose a state manufactures license plates of two varieties. Type I license
plates consist of 3 letters followed by 3 digits. Type II license plates
consist of 2 letters followed by 4 digits. How many license plates are
possible? (We allow all 26 letters and all 10 digits, ignoring the confu-
sion that can occur with similar characters like O and 0.) From the rule
of product, the number of Type I plates is:

26× 26× 26× 10× 10× 10 = 17,576,000

The number of Type II plates is

26× 26× 10× 10× 10× 10 = 6,760,000

Since every plate is either Type I or Type II (not both), then the rule of
sum says that the number of possibilities is their total: 24,336,000.

One of the pleasures of doing counting problems (mathematicians
call this branch of mathematics combinatorics) is that quite often you can
solve the same problem in more than one way. (We saw this was true
with mental arithmetic problems too.) The last problem can actually be
done in one step. The number of license plates is

26× 26× 36× 10× 10× 10 = 24,336,000
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since the first two characters of the plate can each be chosen 26 ways,
the last 3 characters can each be chosen 10 ways, and the third character,
depending on whether it was a letter or a digit, can be chosen 26+ 10 =
36 ways.

Lotteries and Poker Hands

In this section, we’ll apply our new counting skills to determine the
chance of winning the lottery or being dealt various types of poker
hands. But first let’s relax with a little bit of ice cream.

Suppose an ice cream shop offers 10 flavors of ice cream. How many
ways can you create a triple cone? When creating a cone, the order
of the flavors matters (of course!). If the flavors are allowed to be re-
peated, then since we have 10 choices for each of the three scoops, there
would be 103 = 1000 possible cones. If we insist that all three flavors
be different, then the number of cones is 10× 9× 8 = 720, as illustrated
opposite.

But now for the real question. How many ways can you put three
different flavors in a cup, where order does not matter? Since order
doesn’t matter, there are fewer possibilities. In fact, there are 1/6th as
many ways. Why is that? For any choice of three different flavors in a
cup (say chocolate, vanilla, and mint chip), there are 3! = 6 ways that
they can be arranged on a cone. Hence there would be 6 times as many
cones as cups. Consequently, the number of cups is

10× 9× 8

3× 2× 1
=

720

6
= 120

Another way to write 10× 9× 8 is 10!/7! (although the first expres-
sion is easier to calculate). Hence the number of cups can be expressed
as 10!

3!7! . We call this expression “10 choose 3,” and it is denoted by the
symbol (10

3 ), which equals 120. In general, the number of ways to choose
k different objects where order does not matter from a collection of n
different objects is pronounced “n choose k” and has the formula(

n

k

)
=

n!
k!(n− k)!

Mathematicians refer to these counting problems as combinations,
and numbers of the form (n

k) are called binomial coefficients. Counting
problems where the order does matter are called permutations. It’s easy
to mix these terms up—for example, we often refer to a “combination
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10
9
8

For every cup with 3 flavors, there are 3! = 6 ways to arrange them on a cone

lock” when we really should be saying “permutation lock,” since the
order that the numbers are used is important.

If the ice cream shop offered 20 flavors and you wish to fill a bucket
with 5 scoops consisting of all different flavors (where order is not im-
portant), then there would be(

20

5

)
=

20!
5!15!

=
20× 19× 18× 17× 16

5!
= 15,504

possibilities. By the way, if your calculator does not have a button that
computes (20

5 ), you can just type the words “20 choose 5” into your fa-
vorite search engine and it will probably display a calculator with the
answer.

Binomial coefficients sometimes appear in problems where order
seems to matter. If we flip a coin 10 times, how many possible sequences
are there (like HTHTTHHTTT or HHHHHHHHHH)? Since there are 2
possible outcomes for each flip, then the rule of product tells us that
there are 210 = 1024 sequences, each of which has the same probabil-
ity of occurring. (Some people are initially surprised by this, since the
second sequence in our example may seem less probable than the first
one, but they each have probability of 1

1024 .) On the other hand, it is
way more likely for ten flips of a coin to produce 4 heads than 10 heads.
There is just one way to achieve 10 heads, so that has probability 1

1024 .
But how many ways can we get 4 heads out of 10? Such a sequence
is determined by picking 4 of the 10 flips to be heads, and the rest are
forced to be tails. The number of ways to determine which 4 of the 10
flips are to be heads is (10

4 ) = 210. (It’s like picking 4 different scoops of
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ice cream among 10 possible flavors.) Hence when a fair coin is flipped
10 times, the probability that we get exactly 4 heads is

(10
4 )

210
=

210

1024

which is about 20 percent of the time.

Aside
It’s natural to ask, from 10 possible flavors, how many cups with 3
scoops can be made if repetition of flavors is allowed? (The answer is
not 103/6, which is not even a whole number!) The direct approach
would be to consider three cases, depending on the number of different
flavors in the cup. Naturally there are 10 cups that use just one flavor
and, from the above discussion, there are (10

3 ) = 120 cups that use three
flavors. There are 2× (10

2 ) = 90 cups that use two flavors, since we can
choose the two flavors in (10

2 ) ways, then decide which of the flavors
gets two scoops. Adding all three cases together, the number of cups is
10 + 120 + 90 = 220.

There is another way to get this answer without breaking it into
three cases. Any cup can be represented using 3 stars and 9 bars. For
example, choosing flavors 1, 2, and 2 can be represented by the star-bar
arrangement

∗ | ∗∗ | | | | | | | |
Picking flavors 2, 2, and 7 would look like

| ∗∗ | | | | | ∗ | | |

and the star-bar arrangement

| | ∗ | | ∗ | | | | | ∗

would be a cup with flavors 3, 5, and 10. Every arrangement of 3 stars
and 9 bars corresponds to a different cup. Together the stars and bars
occupy 12 spaces, 3 of which are occupied by stars. Hence, the stars and
bars can be arranged in (12

3 ) = 220 ways. More generally, the number
of ways to choose k objects out of n where order is not important, but
repetition is allowed, is the number of ways to arrange k stars and n− 1
bars, which can be done in (n+k−1

k ) ways.
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05 08 13 21 34

MEGA 03

Many problems involving games of chance involve combinations.
For example, in the California Lottery, you pick 5 different numbers be-
tween 1 and 47. Additionally, you choose a MEGA number between 1
and 27 (which is allowed to be a repeat of one of your 5 chosen num-
bers). There are 27 choices for the MEGA number and the other 5 num-
bers can be chosen (47

5 ) ways. Hence the number of possibilities is

27×
(

47

5

)
= 41,416,353

Thus your chance of winning the lottery grand prize is about 1 in 40
million.

Now let’s switch gears and consider the game of poker. A typical
poker hand consists of 5 different cards chosen from 52 different cards,
where the order of the 5 cards is unimportant. Hence the number of
poker hands is (

52

5

)
=

52!
5!47!

= 2,598,960

In poker, five cards of the same suit, such as

K

K

3

3

2

2

5

5

8

8

is called a flush. How many flushes are there? To create a flush, first
choose your suit, which can be done in 4 ways. (Mentally, I like to
commit to a definite choice, say spades.) Now how many ways can you
choose 5 cards of that suit? From the 13 spades in a deck, 5 of them can
be chosen in (13

5 ) ways. Hence the number of flushes is

4×
(

13

5

)
= 5148
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Hence the chance of being dealt a flush in poker is 5148/2,598,960,
which is approximately 1 in 500. For poker purists, you can subtract
4× 10 = 40 hands from the 5148 for straight flushes, when the flush uses
five consecutive cards.

A straight in poker consists of 5 cards of consecutive values, such as
A2345 or 23456 or . . . or 10JQKA, like the one below.

64 7

64 7

4

5

5 76

3

3

There are 10 different types of straights (defined by the lowest card),
and once we choose its type (say 34567) then each of the 5 cards can be
assigned one of 4 suits. Hence the number of straights is

10× 45 = 10,240

which is nearly twice as many as flushes. So the probability of being
dealt a straight is about 1 in 250. That’s the reason flushes are worth
more than straights in poker: they are harder to get.

An even more valuable hand is the full house, consisting of 3 cards
of one value and 2 cards of a different value. A typical hand might look
like this:

Q

Q

Q

Q

Q

Q 7

7

7

7

7

To construct a full house, we first need to choose a value to be tripled
(13 ways), then a value to be doubled (12 ways). (Say we’ve decided on
using three queens and two 7s.) Then we need to assign suits. We can
decide which three queens to use in (4

3) = 4 ways and which two 7s in
(4

2) = 6 ways. Altogether the number of full houses is

13× 12× 4× 6 = 3744
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So the probability of being dealt a full house is 3744/2,598,960, which is
about 1 in 700.

Let’s contrast the full house with getting exactly two pair. Such
hands have two cards of one value, two cards of a different value, and
another card of a third value, like

Q

Q

7

7

Q

Q

7

7

5

5

Many people mistakenly start counting the paired values with 13× 12,
but this double-counts, since first picking queens followed by 7s is the
same as first picking 7s followed by queens. The correct way to start
is (13

2 ) (say picking queens and 7s together), then choosing a new value
for the unpaired card (like 5), then assign suits. The number of two-pair
hands is (

13

2

)(
11

1

)(
4

2

)(
4

2

)(
4

1

)
= 123,552

which occurs about 5 percent of the time.
We won’t go through all of the rest of the poker hands in detail, but

see if you can verify the following. The number of poker hands that are
four of a kind, like A♠A♥A♦A♣8♦, is(

13

1

)(
12

1

)(
4

4

)(
4

1

)
= 13× 12× 1× 4 = 624

A poker hand like A♠A♥A♦9♣8♦ is called three of a kind. The number
of these is (

13

1

)(
12

2

)(
4

3

)(
4

1

)(
4

1

)
= 54,912

The number of poker hands with exactly one pair, like A♠A♥J♦9♣8♦,
is (

13

1

)(
12

3

)(
4

2

)
43 = 1,098,240

about 42 percent of all hands.
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Aside
So how many hands might be classified as junk, containing no pairs, no
straight, and no flush? You could carefully add up the cases above and
subtract from (52

5 ), but here is a direct answer:((
13

5

)
− 10

)
(45 − 4) = 1,302,540

The first term counts the ways to choose any 5 different values (prevent-
ing two or more cards of the same value) with the exception of the 10
ways of picking five consecutive values like 34567. Then the next term
assigns a suit to each of these five different values; there are 4 choices
for each value, but we have to throw away the 4 possibilities that they
were all assigned the same suit. The upshot is that about 50.1 percent of
all hands are worth less than one pair. But that means 49.9 percent are
worth one pair or better.

Here’s a question that has three interesting answers, two of which
are actually correct! How many five-card hands contain at least one ace?
A tempting wrong answer is simply 4× (51

4 ). The (faulty) reasoning is
that you pick an ace 4 ways, and then the other 4 cards can be chosen
freely among the remaining 51 cards (including other aces). The prob-
lem with this reasoning is that some hands (those with more than one
ace) get counted more than once. For instance, the hand A♠A♥J♦9♣8♦
would get counted when we first choose A♠ (then the other 4 cards) as
well as when we first choose the A♥ (then the other 4 cards). A correct
way to handle this problem is to break the problem into four cases, de-
pending on the number of aces in the hand. For instance, the number
of hands with exactly one ace is (4

1)(
48
4 ) (by picking one ace, then four

non-aces). If we continue this way, and count hands with two, three, or
four aces, the total number of hands with at least one ace is(

4

1

)(
48

4

)
+

(
4

2

)(
48

3

)
+

(
4

3

)(
48

2

)
+

(
4

4

)(
48

1

)
= 886,656

But a quicker calculation can be done by addressing the opposite
question. The number of hands with no aces is simply (48

5 ). Hence the
number of hands with at least one ace is(

52

5

)
−

(
48

5

)
= 886,656

We noted earlier that poker hands are ranked according to how rare
they are. For example, since there are more ways to be a single pair than
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two pair, one pair is worth less than two pair. The order of poker hands,
from lowest to highest, is:

One pair

Two pair

Three of a kind

Straight

Flush

Full house

Four of a kind

Straight flush

A simple way to remember this is ”One, two, three, straight, flush; two-
three, four, straight-flush.” (“Two-three” is the full house.)

Now suppose we play poker with jokers (cards, not people). Here
we have 54 cards where the two jokers are wild and can be assigned any
value that gives you the best hand. So, for example, if you end up with
A♥, A♦, K♠, 8♦ and joker, you would choose to make the joker an ace
to give yourself three aces. If you turn the joker into a king, then your
hand would be two pair, which is an inferior hand.

Joker

Joker

A

A

A

A

K

K

8

8

What card should we assign the joker to achieve the best hand?

But here’s where things get interesting. Under the traditional order-
ing of hands, if you are presented with hands like the one above that
could be assigned two pair or three of a kind, then you would count
it as three of a kind instead of two pair. But the consequence of this is
that there will be more hands that would count as three of a kind than
as two pair, so two pair would become the rarer hand. But if we try
to fix that problem by making the two-pair hand more valuable, then
the same problem occurs and we wind up with more hands that would
count as two pair than as three of a kind. The surprising conclusion,
discovered in 1996 by mathematician Steve Gadbois, is that when you
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play poker with jokers, there is no consistent way to rank the hands in
order of frequency.

Patterns in Pascal’s Triangle

Behold Pascal’s triangle:

Row 0: (0
0)

Row 1: (1
0) (1

1)

Row 2: (2
0) (2

1) (2
2)

Row 3: (3
0) (3

1) (3
2) (3

3)

Row 4: (4
0) (4

1) (4
2) (4

3) (4
4)

Row 5: (5
0) (5

1) (5
2) (5

3) (5
4) (5

5)

Row 6: (6
0) (6

1) (6
2) (6

3) (6
4) (6

5) (6
6)

Row 7: (7
0) (7

1) (7
2) (7

3) (7
4) (7

5) (7
6) (7

7)

Row 8: (8
0) (8

1) (8
2) (8

3) (8
4) (8

5) (8
6) (8

7) (8
8)

Row 9: (9
0) (9

1) (9
2) (9

3) (9
4) (9

5) (9
6) (9

7) (9
8) (9

9)

Row 10: (10
0 ) (10

1 ) (10
2 ) (10

3 ) (10
4 ) (10

5 ) (10
6 ) (10

7 ) (10
8 ) (10

9 ) (10
10)

Pascal’s triangle with symbols

In Chapter 1, we saw interesting patterns arise when we put numbers
in triangles. The numbers (n

k) that we’ve just been studying contain
their own beautiful patterns when viewed in a triangle, called Pascal’s
triangle, as displayed above. Using our formula (n

k) =
n!

k!(n−k)! , let’s turn
these symbols into numbers and look for patterns (see next page). We
will explain most of these patterns in this chapter, but feel free to skip
the explanations on first reading and just enjoy the patterns.

The top row (called row 0) has just one term, namely (0
0) = 1. (Re-

member 0! = 1.) Every row will begin and end with 1 since(
n

0

)
=

n!
0!n!

= 1 =

(
n

n

)

Have a look at row 5.

Row 5: 1 5 10 10 5 1

Notice that the second entry is 5, and in general, the second entry of
row n is n. This makes sense because (n

1), the number of ways to choose
one object from n objects, is equal to n. Notice also that each row is
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Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Row 5: 1 5 10 10 5 1

Row 6: 1 6 15 20 15 6 1

Row 7: 1 7 21 35 35 21 7 1

Row 8: 1 8 28 56 70 56 28 8 1

Row 9: 1 9 36 84 126 126 84 36 9 1

Row 10: 1 10 45 120 210 252 210 120 45 10 1

Pascal’s triangle with numbers

symmetric: it reads the same backward as it does forward. For example,
in row 5, we have (

5

0

)
= 1 =

(
5

5

)
(

5

1

)
= 5 =

(
5

4

)
(

5

2

)
= 10 =

(
5

3

)
In general, the pattern says that(

n

k

)
=

(
n

n− k

)

Aside
This symmetry relationship can be justified two ways. From the formula,
we can algebraically show that(

n

n− k

)
=

n!
(n− k)!(n− (n− k))!

=
n!

(n− k)!k!
=

(
n

k

)

But you don’t really need the formula to see why it is true. For example,
why should (10

3 ) = (10
7 )? The number (10

3 ) counts the ways to choose 3
ice cream flavors (from 10 possibilities) to put in a cup. But this is the
same as choosing 7 flavors to not put in the cup.

The next pattern that you might notice is that, except for the 1s at
the beginning and end of the row, every number is the sum of the two
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numbers above it. This relationship is so striking that we call it Pascal’s
identity. For example, look at rows 9 and 10 in Pascal’s triangle.

Row 9:          1      9      36    84    126   126    84     36      9       1

Row 10:  1     10     45   120   210   252   210   120   45     10     1

Each number is the sum of the two numbers above it

Now why should that be? When we see that 120 = 36 + 84, this is a
statement about the counting numbers(

10

3

)
=

(
9

2

)
+

(
9

3

)

To see why this is true, let’s ask the question: If an ice cream store sells
10 flavors of ice cream, how many ways can you choose 3 different fla-
vors of ice cream for a cup (where order is not important)? The first
answer, as we have already noted, is (10

3 ). But there is another way to an-
swer the question. Assuming that one of the possible flavors is vanilla,
how many of the cups do not contain vanilla? That would be (9

3), since
we can choose any 3 flavors from the remaining 9 flavors. How many
cups do contain vanilla? If vanilla is required to be one of the flavors,
then there are just (9

2) ways to choose the remaining two flavors in the
cup. Hence the number of possible cups is (9

2) + (9
3). Which answer

is right? Our logic was correct both times, so they are both right, and
hence the two quantities are equal. By the same logic (or algebra, if you
prefer), it follows that for any number k between 0 and n,(

n

k

)
=

(
n− 1

k− 1

)
+

(
n− 1

k

)

Now let’s see what happens when we add all of the numbers in each
row of Pascal’s triangle, as seen on the opposite page.

The pattern suggests that the sum of the numbers in each row is
always a power of 2. Specifically row n will add up to 2n. Why should
that be? Another way to describe the pattern is that the first row sums
to 1, and then the sum doubles with each new row. This makes sense if
you think of Pascal’s identity, which we just proved. For instance, when
we add the numbers in row 5, and rewrite them in terms of the numbers
in row 4, we get

1 + 5 + 10 + 10 + 5 + 1
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1

1  +  1

1  +  2  +  1

1  +  3  +  3  +  1

1  +  4  +  6  +  4  +  1

1  +  5  +  10  +  10  +  5  +  1

…

=

=

=

=

=

=

1

2

4

8

16

32

In Pascal’s triangle, the row sums are powers of 2

= 1 + (1 + 4) + (4 + 6) + (6 + 4) + (4 + 1) + 1

= (1 + 1) + (4 + 4) + (6 + 6) + (4 + 4) + (1 + 1)

which is literally twice the sum of the numbers in row 4. And by the
same reasoning, this doubling pattern will continue forever.

In terms of the binomial coefficients, this identity says that when we
sum the numbers in row n:(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n

which is somewhat surprising, since the individual terms are evaluated
with factorials, and are often divisible by many different numbers. And
yet the grand total has 2 as its only prime factor.

Another way to explain this pattern is through counting. We call
such an explanation a combinatorial proof. To explain the sum of the
numbers in row 5, let’s go to an ice cream store that offers 5 flavors.
(The argument for row n is similar.) How many ways can we put dif-
ferent scoops of ice cream in our cup with the restriction that no flavor
is allowed to be repeated? Our cup is allowed to have 0 or 1 or 2 or 3 or
4 or 5 different flavors, and the order of the scoops in the cup is not im-
portant. How many ways can it have exactly 2 scoops? As we’ve seen
before, this can be done (5

2) = 10 different ways. Altogether, depending
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How many ways can we put different scoops of ice cream in our cup?

on the number of scoops in the cup, the rule of sum tells us that there
are (

5

0

)
+

(
5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)

ways, which simplifies to 1 + 5 + 10 + 10 + 5 + 1. On the other hand,
we can also answer our question with the rule of product. Instead of
deciding in advance how many scoops will be in our cup, we can look
at each flavor and decide, yes or no, whether it will be in the cup. For
instance, we have 2 choices for chocolate (yes or no), then 2 choices for
vanilla (yes or no), and so on down to the fifth flavor. (Notice that if
we decide “no” on each flavor, then we have an empty cup, which is
permissible.) Hence the number of ways we can make our decision is

2× 2× 2× 2× 2 = 25

Since our reasoning was correct both times, it follows that(
5

0

)
+

(
5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)
= 25

as predicted.
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Aside
A similar combinatorial argument shows that if we sum every other num-
ber in row n, we get a total of 2n−1. This is no surprise in odd-numbered
rows like row 5, since the numbers we are adding, 1 + 10 + 5, are the
same as the numbers we are excluding, 5 + 10 + 1, so we get half of the
2n grand total. But it also works in even-numbered rows as well. For
instance, in row 4, 1 + 6 + 1 = 4 + 4 = 23. In general, for any row n ≥ 1,
we have (

n

0

)
+

(
n

2

)
+

(
n

4

)
+

(
n

6

)
+ · · · = 2n−1

Why? The left side counts those ice cream cups that have an even num-
ber of scoops (when there are n possible flavors and all scoops must be
different flavors). But we can also create such a cup by freely choosing
flavors 1 through n− 1. We have 2 choices for the first flavor (yes or no),
2 choices for the second flavor, . . . , and 2 choices for the (n− 1)st flavor.
But there is just one choice for the last flavor if we want the total number
of flavors to be even. Hence the number of even-sized cups is 2n−1.

When we write Pascal’s triangle as a right triangle, more patterns
emerge. The first column (column 0) consists of all 1s, the second col-
umn (column 1) are the positive integers 1, 2, 3, 4, and so on. Column
2, beginning 1, 3, 6, 10, 15 . . . , should also look familiar. These are the
triangular numbers that we saw in Chapter 1. In general, the numbers
in column 2 can also be expressed as(

2

2

)
,

(
3

2

)
,

(
4

2

)
,

(
5

2

)
,

(
6

2

)
, . . .

and column k consists of the numbers (k
k), (

k+1
k ), (k+2

k ), and so on.
Now look at what happens when you add the first few (or many)

numbers of any column. For instance, if we add the first 5 numbers
of column 2 (see next page), we get 1 + 3 + 6 + 10 + 15 = 35, which
happens to be the number diagonally down from it. In other words:(

2

2

)
+

(
3

2

)
+

(
4

2

)
+

(
5

2

)
+

(
6

2

)
=

(
7

3

)

This is an example of the hockey stick identity because the pattern formed
in Pascal’s triangle resembles a hockey stick, with a long column of
numbers, next to another number jutting out from it. To understand
why this pattern works, imagine we have a hockey team with 7 play-
ers, each with a different number on their jersey: 1, 2, 3, 4, 5, 6, 7. How
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7
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Pascal’s right triangle displays a ”hockey stick” pattern

many ways can I choose 3 of these players for a practice session? Since
order is not important, there are (7

3) ways this can be done. Now let’s
answer that same question by breaking it into cases. How many of these
ways include player 7? Equivalently, this asks: How many have 7 as the
largest jersey number? Since 7 is included, there are (6

2) ways to pick the
other two players. Next, how many of these ways have 6 as the largest
jersey number? Here, 6 must be chosen, and 7 must not be chosen, so
there are (5

2) ways to pick the other two players. Likewise, there are (4
2)

ways for 5 to be the largest number, (3
2) ways for 4 to be the largest num-

ber, and (2
2) = 1 way for 3 to be the largest number. Since the largest of

the three numbers must be 3, 4, 5, 6, or 7, we have counted all of the pos-
sibilities, so the three members can be chosen in (2

2) + (3
2) + · · · (6

2) ways,
as described by the left side of the previous equation. More generally,
this argument shows that(

k

k

)
+

(
k+ 1

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k+ 1

)

Let’s apply this formula to resolve an important problem that you
probably think about every year during the holiday season. According
to the popular song “The Twelve Days of Christmas,” on the first day
your true love gives you 1 gift (a partridge). On the second day you get
3 gifts (1 partridge and 2 turtledoves). On the third day you get 6 gifts
(1 partridge, 2 turtledoves, 3 French hens), and so on. The question is:
After the 12th day, how many gifts do you receive in total?
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1

e

n!

After the 12th day of Christmas, how many gifts did my true love give to me?

On the nth day of Christmas, the number of gifts you receive is

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
=

(
n+ 1

2

)

(This comes from our handy formula for triangular numbers or from the
hockey stick identity when k = 1.) So on the first day you get (2

2) = 1
gift; on the second day you get (3

2) = 3 gifts, and so on up through
the 12th day, when you receive (13

2 ) = 13×12
2 = 78 gifts. Applying the

hockey stick identity, it follows that the total number of gifts will be(
2

2

)
+

(
3

2

)
+ · · ·+

(
13

2

)
=

(
14

3

)
=

14× 13× 12

3!
= 364

Thus, if you spread these gifts out over the next year, you could enjoy
a new gift practically every day (perhaps taking one day off for your
birthday)!

Let’s celebrate our answer to the last problem with a festive song I
call “The nth Day of Christmas.”
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On the nth day of Christmas, my true love gave to me
n novel knick-knacks
n− 1 thing or other
n− 2 et cetera

...
5 (plus 10) other things!
Counting all the gifts
Through day n,
What’s the total sum?
It’s precisely (n+2

3 ).

Now here is one of the oddest patterns in Pascal’s triangle. If you
look at the triangle, where we have circled each of the odd numbers,
you will see triangles within the triangle.

7 1

11

1

1

2

4 46

10 10 5

6 620

3 3

8 82828 56 5670

3

2

1

1 1

1 1

11

1 1

1 1

1 1

1

3 3

5 5

1515

7 21 213535

Odd numbers in Pascal’s triangle

Now let’s take a longer view of the triangle with 16 rows, where we
replace each odd number with 1 and each even number with 0. No-
tice that underneath each pair of 0s and each pair of 1s, you get 0. This
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reflects the fact that you get an even total when you add two even num-
bers together or two odd numbers together.

1

0

1

1

1

1

1 1 1 1

0 0 0 11

1111 0 0

00 0 1111

1 1 1 1 1 1 1 1

00000001 1

00000011 1 1

000000 01 111

1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 0 01 1 1

11111111 0 0 0 0 0 0

11111111 0 0 0 0 0 0 0

1111111111111111

A longer view of the odd numbers

We have an even longer view of the triangle on the next page, con-
sisting of the first 256 rows, where we have replaced each odd number
with a black square and each even number with a white square.

This figure is an approximation of the fractal image known as the
Sierpinski triangle. It’s just one of the many hidden treasures inside Pas-
cal’s triangle. Here’s another surprise. How many odd numbers are in
each row of Pascal’s triangle? Looking at rows 1 through 8 (excluding
row 0), we count 2, 2, 4, 2, 4, 4, 8, 2, and so on. No obvious pattern
jumps out, although it appears that the answer is always a power of 2.
In fact, powers of 2 play an important role here. For example, notice
that the rows with exactly 2 odd numbers are rows 1, 2, 4, and 8, which
are powers of 2. For the general pattern, we exploit the fact that every
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Pascal meets Sierpinski

whole number greater than or equal to zero can be obtained in a unique
way by summing distinct powers of 2. For example:

1 = 1

2 = 2

3 = 2 + 1

4 = 4

5 = 4 + 1

6 = 4 + 2

7 = 4 + 2 + 1

8 = 8

We have 2 odd numbers in rows 1, 2, 4, and 8 (which are powers of 2).
We have 4 odd numbers in rows 3, 5, and 6 (which are the sum of 2
powers of 2), and we have 8 odd numbers in row 7 (which is the sum
of 3 powers of 2). Here is the surprising and beautiful rule. If n is the
sum of p different powers of 2, then the number of odd numbers in row
n is 2p. So, for example, how many odd numbers are in row 83? Since
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83 = 64 + 16 + 2 + 1, the sum of 4 powers of 2, then row 83 will have
24 = 16 odd numbers!

Aside
We won’t prove the fact here, but in case you’re curious, (83

k ) is odd
whenever

k = 64a+ 16b+ 2c+ d

where a, b, c, d can be 0 or 1. Specifically, k must be equal to one of these
numbers:

0, 1, 2, 3, 16, 17, 18, 19, 64, 65, 66, 69, 80, 81, 82, 83

We end this chapter with one last pattern. We have seen what hap-
pens when we add along the rows of Pascal’s triangle (powers of 2) and
the columns of Pascal’s triangle (hockey stick). But what happens when
we add the diagonals?

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

1

3

6

10

15

21

28

1

4

10

20

35

56

1

5

15

35

70

1

6

21

56

1

7

28

1

8 1

Diagonal Sums

1

1

2

3

5

8

13

21

34

Pascal meets Fibonacci

When we add the diagonals, as illustrated above, we get the follow-
ing totals:

1, 1, 2, 3, 5, 8, 13, 21, 34

These are the fabulous Fibonacci numbers, and they will be the subject
of our next chapter.
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Chapter 5

The Magic of Fibonacci Num-
bers

C H A P T E R  F I V E

The Magic of 
Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21…

C H A P T E R  F I V E

The Magic of 
Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21…

Nature’s Numbers

Behold one of the most magical sequences of numbers, the Fibonacci
numbers!

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

The Fibonacci sequence starts with numbers 1 and 1. The third num-
ber is 1 + 1 (the sum of the two previous numbers), which is 2. The
fourth number is 1 + 2 = 3, the fifth number is 2 + 3 = 5, and the
numbers continue to grow in leapfrog fashion: 3 + 5 = 8, 5 + 8 = 13,
8 + 13 = 21, and so on. These numbers appeared in the book Liber
Abaci in 1202 by Leonardo of Pisa (later nicknamed “Fibonacci”). Liber
Abaci, which literally means “The Book of Calculation,” introduced to
the Western world the Indo-Arabic numerals and methods of arithmetic
that we currently use today.

One of the book’s many arithmetic problems involved immortal rab-
bits. Suppose that baby rabbits take one month to mature, and each pair
produces a new pair of baby rabbits every month thereafter for the rest
of their never-ending lives. The question is, if we start with one pair

97
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of baby rabbits, how many pairs of rabbits will there be twelve months
later?

Month 1

Month 2

Month 3

Month 4

Month 5
rr

r

r

r

R

R

R

R

R

RR

The problem can be illustrated through pictures or symbols. We let
a lower-case letter “r” denote a baby pair of rabbits and an upper-case
“R” denote an adult pair of rabbits. As we go from one month to the
next, every little “r” becomes a big “R,” and each “R” is replaced by
“R r.” (That is, little rabbits become big rabbits and big rabbits produce
little rabbits.)

The situation can be modeled as in the following table. We see
that in the first six months, the number of rabbit pairs is, respectively,
1, 1, 2, 3, 5, and 8.

Month Number Population Number of Rabbit Pairs

1 r 1

2 R 1

3 Rr 2

4 Rr R 3

5 Rr R Rr 5

6 Rr R Rr Rr R 8
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1
2

3

4
5

678
9

10

11

12 13

Let’s try to convince ourselves that there will
be 13 pairs of rabbits in the seventh month,
without explicitly listing the population. How
many adult rabbit pairs will be alive in the sev-
enth month? Since every rabbit that was alive in
month six is now an adult rabbit, then there will
be 8 adult rabbits in month seven.

1
2

3
4
5

6
7

8

How many baby rabbit pairs will be alive in the sev-
enth month? That’s equal to the number of adult rab-
bit pairs from the sixth month, namely 5, which is (not
coincidentally) the same as the total population of the
fifth month. Consequently, the number of rabbit pairs
in the seventh month will be 8 + 5 = 13.

If we call the first two Fibonacci numbers F1 = 1
and F2 = 1, then define the next Fibonacci number as
the sum of the previous two Fibonacci numbers, so that
for n ≥ 3,

Fn = Fn−1 + Fn−2

Then F3 = 2, F4 = 3, F5 = 5, F6 = 8, and so on, as in the table below.

n 1 2 3 4 5 6 7 8 9 10 11 12 13

Fn 1 1 2 3 5 8 13 21 34 55 89 144 233

The first 13 Fibonacci numbers

Consequently, the answer to Fibonacci’s “immortal
rabbits” problem would be F13 = 233 rabbit pairs (con-
sisting of F12 = 144 adult pairs and F11 = 89 baby
pairs).

Fibonacci numbers have numerous applications be-
yond population dynamics, and they appear in nature surprisingly of-
ten. For example, the number of petals on a flower is often a Fibonacci
number, and the number of spirals on a sunflower, pineapple, and
pinecone tends to be a Fibonacci number as well. But what inspires
me most about Fibonacci numbers are the beautiful number patterns
that they display.
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For example, let’s look at what happens when we add the first sev-
eral Fibonacci numbers together:

1 = 1 = 2− 1

1 + 1 = 2 = 3− 1

1 + 1 + 2 = 4 = 5− 1

1 + 1 + 2 + 3 = 7 = 8− 1

1 + 1 + 2 + 3 + 5 = 12 = 13− 1

1 + 1 + 2 + 3 + 5 + 8 = 20 = 21− 1

1 + 1 + 2 + 3 + 5 + 8 + 13 = 33 = 34− 1
...

The numbers on the right side of the equation are not quite Fibonacci
numbers, but they are close. In fact, each of those numbers is just one
shy of being Fibonacci. Let’s see why that pattern makes sense. Con-
sider the last equation, and see what happens when we replace each
Fibonacci number with the difference of the next two Fibonacci num-
bers. That is,

1 + 1 + 2 + 3 + 5 + 8 + 13

=(2− 1)+(3− 2)+(5− 3)+(8− 5)+(13− 8)+(21− 13)+(34− 21)

= 34− 1

Notice how the 2 from (2 − 1) is canceled by the 2 from (3 − 2).
Then the 3 from (3− 2) is canceled by the 3 from (5− 3). Eventually
everything cancels except for the largest term, 34, and the initial −1.
In general, this shows that sum of the first n Fibonacci numbers has a
simple formula:

F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1

Here’s a related question with a similarly elegant answer. What do
you get when you sum the first n even-positioned Fibonacci numbers?
That is, can you simplify the following sum?

F2 + F4 + F6 + · · ·+ F2n
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Let’s look at some numbers first:

1 = 1

1 + 3 = 4

1 + 3 + 8 = 12

1 + 3 + 8 + 21 = 33
...

Wait. These numbers look familiar. In fact, we saw these numbers
in our previous sums. They are one less than Fibonacci numbers. In
fact, we can transform these numbers into our last problem by using
the fact that each Fibonacci number is the sum of two before it, and
replacing, after the first term, each even-positioned Fibonacci number
with the sum of the two previous Fibonacci numbers, as below.

1 + 3 + 8 + 21

= 1 + (1 + 2) + (3 + 5) + (8 + 13)

= 34 − 1

The last line follows from the fact that the sum of the first seven Fi-
bonacci numbers is one less than the ninth.

In general, if we exploit the fact that F2 = F1 = 1 and replace each
subsequent Fibonacci number with the sum of two previous Fibonacci
numbers, we see that our sum reduces to the sum of the first 2n − 1
Fibonacci numbers.

F2 + F4 + F6 + · · ·+ F2n

= F1 + (F2 + F3) + (F4 + F5) + · · ·+ (F2n−2 + F2n−1)

= F2n+1 − 1

Let’s see what we get when we add the first n odd-positioned Fi-
bonacci numbers.

1 = 1

1 + 2 = 3

1 + 2 + 5 = 8

1 + 2 + 5 + 13 = 21
...
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Oddly, the pattern is even clearer. The sum of the first n odd-positioned
Fibonacci numbers is simply the next Fibonacci number. We can exploit
the previous trick, as follows:

F1 + F3 + F5 + · · ·+ F2n−1

= 1 + (F1 + F2) + (F3 + F4) + · · ·+ (F2n−3 + F2n−2)

= 1 + (F2n − 1)

= F2n

Aside
We could also have arrived at the answer in another way, using what we
have already shown. If we subtract the first n even-positioned Fibonacci
numbers from the first 2n Fibonacci numbers, we’ll be left with the first
n odd-positioned Fibonacci number:

F1 + F3 + F5 + · · ·+ F2n−1

= (F1 + F2 + · · ·+ F2n−1)− (F2 + F4 + · · ·+ F2n−2)

= (F2n+1 − 1)− (F2n−1 − 1)

= F2n

Counting on Fibonacci

We have only scratched the surface of the beautiful number patterns
satisfied by the Fibonacci numbers. You may be tempted to guess that
these numbers must be counting something other than pairs of rabbits.
Indeed, Fibonacci numbers arise as the solution to many counting prob-
lems. In 1150 (before Leonardo of Pisa wrote about rabbits), the Indian
poet Hemachandra asked how many cadences of length n were possible
if a cadence could contain short syllables of length one or long syllables
of length two. We state the question in simpler mathematical terms.

Question: How many ways can we write the number n as a sum of
1s and 2s?

Answer: Let’s call the answer fn and examine fn for some small
values of n.
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n 1− 2 Sequences That Add to n fn

1 1 1

2 11, 2 2

3 111, 12, 21 3

4 1111, 112, 121, 211, 22 5

5 11111, 1112, 1121, 1211, 122, 2111, 212, 221 8
...

...
...

There is one sum that adds to 1, two sums that add to 2 (1+ 1 and 2),
and 3 sums that add to 3 (1 + 1 + 1, 1 + 2, 2 + 1). Note that we are only
allowed to use the numbers 1 and 2 in our sums. Also, the order of the
numbers being added matters. So, for example, 1 + 2 is different from
2 + 1. There are 5 sums that add to 4 (1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1,
2 + 1 + 1, 2 + 2). The numbers in our table seem to suggest that the
numbers will be Fibonacci numbers, and indeed that is the case.

Let’s see why there are f5 = 8 sums that add to the number 5. Such
a sum must begin with a 1 or 2. How many of them begin with 1? Well,
after the 1, we must have a sequence of 1s and 2s that sum to 4, and
we know there are f4 = 5 of them. Likewise, how many of the sums
that add to 5 begin with the number 2? After the initial 2, the remaining
terms must add to 3, and there are f3 = 3 of those. Hence the total
number of sequences that add to 5 must be 5+ 3 = 8. By the same logic,
the number of sequences that add to 6 is 13, since f5 = 8 begin with 1
and f4 = 5 begin with 2. In general, there are fn sequences that add to
n. Of these, fn−1 begin with 1 and fn−2 begin with 2. Consequently,

fn = fn−1 + fn−2

Thus, the numbers fn begin like the Fibonacci numbers and will con-
tinue to grow like the Fibonacci numbers. Therefore they are the Fi-
bonacci numbers, but with a twist, or perhaps I should say a shift. No-
tice that f1 = 1 = F2, f2 = 2 = F3, f3 = 3 = F4, and so on. (For
convenience, we define f0 = F1 = 1 and f−1 = F0 = 0.) In general, we
have, for n ≥ 1,

fn = Fn+1

Once we know what the Fibonacci numbers count, we can exploit
that knowledge to prove many of their beautiful number patterns. Re-
call the pattern that we saw at the end of Chapter 4 when we summed
the diagonals of Pascal’s triangle.
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1

1

2

3

5

8

13

21

34

For example, summing the eighth diagonal gave us

1 + 7 + 15 + 10 + 1 = 34 = F9

In terms of the “choose numbers,” this says(
8

0

)
+

(
7

1

)
+

(
6

2

)
+

(
5

3

)
+

(
4

4

)
= F9

Let’s try to understand this pattern by answering a counting question
in two ways.

Question: How many sequences of 1s and 2s add to 8?
Answer 1: By definition, there are f8 = F9 such sequences.
Answer 2: Let’s break this answer into 5 cases, depending on the

number of 2s that are used. How many use no 2s? There’s just one way
to do this, namely 11111111—and not coincidentally, (8

0) = 1.
How many use exactly one 2? This can be done 7 ways: 2111111,

1211111, 1121111, 1112111, 1111211, 1111121, 1111112. Such sequences
have 7 numbers, and there are (7

1) = 7 ways to choose the location of
the 2.

How many use exactly two 2s? A typical example would be 221111.
Instead of listing all 15 of them, note that any such sequence would
have two 2s and four 1s, and therefore six digits altogether. There are
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(6
2) = 15 ways to choose the locations of the two 2s. By the same logic, a

sequence with exactly three 2s would have to have two 1s and therefore
have five digits altogether; such sequences could be created in (5

3) = 10
ways. And finally, a sequence with four 2s can only be created (4

4) = 1
way, namely 2222.

Comparing answers 1 and 2 gives us the desired explanation. In
general, the same argument can be applied to prove that whenever we
sum the nth diagonal of Pascal’s triangle, we get a Fibonacci number.
Specifically, for all n ≥ 0, when we sum the nth diagonal (until we fall
off the triangle after about n/2 terms), we get(

n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+

(
n− 3

3

)
+ · · · = fn = Fn+1

An equivalent and more visual way to think about the Fibonacci
numbers is through tilings. For example, f4 = 5 counts the five ways
to tile a strip of length 4 using squares (of length 1) and dominos (of
length 2). For example, the sum 1 + 1 + 2 is represented by the tiling
square-square-domino.

1 + 1 + 1 + 1

1 + 1 + 2

1 + 2 + 1

2 + 1 + 1

2 + 2

There are 5 tilings of length 4, using squares and dominos, illustrating f4 = 5

We can use tilings to understand another remarkable Fibonacci num-
ber pattern. Let’s look at what happens when we square the Fibonacci
numbers.
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n 0 1 2 3 4 5 6 7 8 9 10

fn 1 1 2 3 5 8 13 21 34 55 89

f2
n 1 1 4 9 25 64 169 441 1156 3025 7921

The squares of Fibonacci numbers, from f0 to f10

Now, it’s no surprise that when you add consecutive Fibonacci num-
bers, you get the next Fibonacci number. (That’s how they’re created,
after all.) But you wouldn’t expect anything interesting to happen with
the squares. However, check out what happens when we add consecu-
tive squares together:

f2
0 + f2

1 = 12 + 12 = 1 + 1 = 2 = f2

f2
1 + f2

2 = 12 + 22 = 1 + 4 = 5 = f4

f2
2 + f2

3 = 22 + 32 = 4 + 9 = 13 = f6

f2
3 + f2

4 = 32 + 52 = 9 + 25 = 34 = f8

f2
4 + f2

5 = 52 + 82 = 25 + 64 = 89 = f10

...

Let’s try to explain this pattern in terms of counting. The last equa-
tion says that

f2
4 + f2

5 = f10

Why should that be? We can explain this by asking a simple counting
question.

Question: How many ways can you tile a strip of length 10 using
squares and dominos?

Answer 1: By definition, there are f10 such tilings. Here is a typical
tiling, which represents the sum 2 + 1 + 1 + 2 + 1 + 2 + 1.

1  2  3  4  5  6  7  8  9  10

We say that this tiling is breakable at cells 2, 3, 4, 6, 7, 9, and 10. (Equiv-
alently, the tiling is breakable everywhere except the middle of a domino.
In this example, it is unbreakable at cells 1, 5, and 8.)

Answer 2: Let’s break the answer into two cases: those tilings that
are breakable at cell 5, and those tilings that are not. How many ways
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can we create a length-10 tiling that is breakable at cell 5? Such a tiling
can be split into two halves, where the left half can be tiled in f5 = 8
ways and the right half can also be tiled in f5 = 8 ways. Hence by the
rule of product in Chapter 4, we can create such a sum in f 2

5 = 82 ways,
as illustrated below.

1  2  3  4  5  6  7  8  9  10

f5 ways f5 ways f2
5 waysways ways ways

There are f2
5 tilings of length 10 that are breakable at cell 5

How many length-10 tilings are not breakable at cell 5? Such tilings
must necessarily have a domino covering cells 5 and 6, as illustrated
below. Now the left half and right half can each be tiled f4 = 5 ways
and so there are f 2

4 = 52 unbreakable tilings. Putting these two cases
together, it follows that f10 = f 2

5 + f 2
4 , as desired.

1  2  3  4  5  6  7  8  9  10

f4 ways f4 ways f2
4 waysways ways ways

There are f2
4 tilings of length 10 that are not breakable at cell 5

In general, by considering whether a tiling of length 2n is breakable
in the middle or not, we arrive at the beautiful pattern

f2n = f2
n + f2

n−1

Aside
After seeing the previous identity, we might try to extend it to similar
cases. For example, consider the number of tilings of length m + n. How
many of these tilings are breakable at cell m? The left side can be tiled
fm ways and the right side can be tiled fn ways, so there are fm fn such
tilings. How many are not breakable at m? Such a tiling must have a
domino covering cells m and m + 1, and the rest of the tiling can be tiled
fm−1 fn−1 ways. Altogether, we get the following useful identity. For
m, n ≥ 0,

fm+n = fmfn + fm−1fn−1
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Time for a new pattern. Let’s see what happens when we add all of
the squares of Fibonacci numbers together.

12 + 12 = 2 = 1× 2

12 + 12 + 22 = 6 = 2× 3

12 + 12 + 22 + 32 = 15 = 3× 5

12 + 12 + 22 + 32 + 52 = 40 = 5× 8

12 + 12 + 22 + 32 + 52 + 82 = 104 = 8× 13
...

Wow, this is so cool! The sum of the squares of Fibonacci numbers
is the product of the last two! But why should the sum of the squares of
1, 1, 2, 3, 5, and 8 add to 8× 13? One way to “see” this with geometric
figures is to take six squares with side lengths 1, 1, 2, 3, 5, and 8 and
assemble them as in the figure below.

1 1

2
3

5

8

Start with a 1-by-1 square, then put the other 1-by-1 square next
to it, creating a 1-by-2 rectangle. Beneath that rectangle, put the 2-by-
2 square, which creates a 3-by-2 rectangle. Next to the long edge of
that rectangle, place the 3-by-3 square (creating a 3-by-5 rectangle), then
place the 5-by-5 square underneath that (creating an 8-by-5 rectangle).
Finally, place the 8-by-8 square next to that, creating one giant 8-by-13
rectangle. Now let’s ask a simple question.

Question: What is the area of the giant rectangle?
Answer 1: On the one hand, the area of the rectangle is the sum of

the areas of the squares that compose it. In other words, the area of this
rectangle must be 12 + 12 + 22 + 32 + 52 + 82.

Answer 2: On the other hand, we have a big rectangle with height 8
and a base length of 5 + 8 = 13, hence the area of this rectangle must be
8× 13.
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Since both answers are correct, they must give the same area, which
explains the last identity. In fact, if you read again how the rectangle
was constructed, you see that it explains all of the relationships listed
about this pattern (like 12 + 12 + 22 + 32 + 52 = 5 × 8). And if you
continue this logic, you will create rectangles of size 13× 21, 21× 34,
and so on, so the pattern will continue forever. The general formula
says that

12 + 12 + 22 + 32 + 52 + 82 + · · · + F 2
n = FnFn+1

Now let’s see what happens when we multiply Fibonacci neighbors
together. For example, the neighbors of 5 are 3 and 8, and their product
is 3× 8 = 24, which is one less than 52. The neighbors of 8 are 5 and
13, and their product is 5 × 13 = 65, which is just one more than 82.
Examining the table below, it’s hard to resist the conclusion that the
product of the neighbors is always one away from the square of the
original Fibonacci number. In other words,

F 2
n − Fn−1Fn+1 = ±1

n 1 2 3 4 5 6 7 8 9 10 11

Fn 1 1 2 3 5 8 13 21 34 55 89

F 2
n 1 1 4 9 25 64 169 441 1156 3025 7921

Fn−1Fn+1 0 2 3 10 24 65 168 442 1155 3026 7920

F 2
n − Fn−1Fn+1 1 −1 1 −1 1 −1 1 −1 1 −1 1

The product of the neighbors of a Fibonacci number is one away from its square

Using a proof technique (called induction) that we will learn in the
next chapter, it can be proved that for n ≥ 1,

F 2
n − Fn−1Fn+1 = (−1)n+1

Let’s push this pattern even further by looking at distant neighbors.
Look at the Fibonacci number F5 = 5. We saw that when we multiply
its immediate neighbors, we get 3× 8 = 24, which is one away from 52.
But the same thing happens when we multiply the Fibonacci numbers
that are two away from it: 2× 13 = 26, which is also one away from
52. How about the neighbors that are 3 away, 4 away, or 5 away? Their
products are 1× 21 = 21, 1× 34 = 34, and 0× 55 = 0. How far away are
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these numbers from 25? They are 4 away, 9 away, and 25 away, which
are all perfect squares. But they’re not just any perfect squares; they are
squares of Fibonacci numbers! See the table below for more evidence of
this pattern. The general pattern is:

F 2
n − Fn−rFn+r = ±F 2

r

n 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55

F 2
n 1 1 4 9 25 64 169 441 1156 3025 F 2

n − Fn−rFn+r

Fn−1Fn+1 0 2 3 10 24 65 168 442 1155 3026 ±1

Fn−2Fn+2 0 5 8 26 63 170 440 1157 3024 ±1

Fn−3Fn+3 0 13 21 68 165 445 1152 3029 ±4

Fn−4Fn+4 0 34 55 178 432 1165 3016 ±9

Fn−5Fn+5 0 89 144 466 1131 3050 ±25
...

...
...

The product of distant neighbors of a Fibonacci number is always close to its square.

Their distance apart is always the square of a Fibonacci number.

More Fibonacci Patterns

In Pascal’s triangle, we saw that the even and odd numbers displayed
a startlingly complex pattern. With Fibonacci numbers, the situation is
much simpler. Which Fibonacci numbers are even?

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

The even numbers are F3 = 2, F6 = 8, F9 = 34, F12 = 144, and so on. (In
this section, we switch back to the capital-F Fibonacci numbers, since
they will produce prettier patterns.) The even numbers first appear
in positions 3, 6, 9, 12, which suggests that they occur precisely every
3 terms. We can prove this by noticing that the pattern begins

odd, odd, even

and is then forced to repeat itself,

odd, odd, even, odd, odd, even, odd, odd, even . . .
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since after any “odd, odd, even” block, the next block must begin with
“odd + even = odd,” then “even + odd = odd,” followed by “odd + odd
= even,” so the pattern goes on forever.

In the language of congruences from Chapter 3, every even number
is congruent to 0 (mod 2), every odd number is congruent to 1 (mod 2),
and 1 + 1 ≡ 0 (mod 2). Thus the mod 2 version of the Fibonacci num-
bers looks like

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 . . .

What about multiples of 3? The first multiples of 3 are F4 = 3, F8 =
21, F12 = 144, so it’s tempting to believe that the multiples of 3 occur at
every fourth Fibonacci number. To verify this, let’s reduce the Fibonacci
numbers to 0, 1, or 2 and use mod 3 arithmetic, where

1 + 2 ≡ 0 and 2 + 2 ≡ 1 (mod 3)

The mod 3 version of the Fibonacci numbers is

1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1 . . .

After eight terms, we are back to the beginning with 1 and 1, so the pat-
tern will repeat in blocks of size eight, with 0 in every fourth position.
Thus every fourth Fibonacci number is a multiple of 3, and vice versa.
Using arithmetic mod 5 or 8 or 13, you can verify that

Every fifth Fibonacci number is a multiple of 5
Every sixth Fibonacci number is a multiple of 8

Every seventh Fibonacci number is a multiple of 13

and the pattern continues.
What about consecutive Fibonacci numbers? Do they have anything

in common? What’s interesting here is that we can show that, in one
sense, they have nothing in common. We say that the consecutive pairs
of Fibonacci numbers

(1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), (13, 21), (21, 34), . . .

are relatively prime, which means that there is no number bigger than 1
that divides both numbers. For example, if we look at the last pair, we
see that 21 is divisible by 1, 3, 7, and 21. The divisors of 34 are 1, 2, 17,
and 34. Thus 21 and 34 have no common divisors, except for 1. How
can we be sure that this pattern will continue forever? How do we know
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that the next pair (34, 55) is guaranteed to be relatively prime? We can
prove this without finding the factors of 55. Suppose, to the contrary,
that there was a number d > 1 that divided both 34 and 55. But then
such a number would have to divide their difference 55− 34 = 21 (since
if 55 and 34 are multiples of d then so is their difference). However, this
is impossible, since we already know that there is no number d > 1
that divides both 21 and 34. Repeating this argument guarantees that
all consecutive pairs of Fibonacci numbers will be relatively prime.

And now for my favorite Fibonacci fact! The greatest common divisor
of two numbers is the largest number that divides both of the numbers.
For example, the greatest common divisor of 20 and 90 is 10, denoted

gcd(20, 90) = 10

What do you think is the greatest common divisor of the 20th Fibonacci
number and the 90th Fibonacci number? The answer is absolutely po-
etic. The answer is 55, which is also a Fibonacci number. Moreover, it
happens to be the 10th Fibonacci number! In equations,

gcd(F20,F90) = F10

And in general, we have for integers m and n,

gcd(Fm,Fn) = Fgcd(m,n)

In other words, “the gcd of the Fs is the F of the gcd”! We won’t prove
this beautiful fact here, but I couldn’t resist showing it to you.

Sometimes a pattern can be deceptive. For instance, which of the
Fibonacci numbers are prime numbers? (As we’ll discuss in the next
chapter, a prime is a number bigger than 1 that is divisible only by 1 and
itself.) Numbers bigger than 1 that are not prime are called composite
since they can be decomposed into the product of smaller numbers. The
first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19 . . .

Now look at the Fibonacci numbers that are in prime locations:

F2 = 1,F3 = 2,F5 = 5,F7 = 13,F11 = 89,F13 = 233,F17 = 1597

The numbers 2, 5, 13, 89, 233, and 1597 are prime. The pattern suggests
that if p > 2 is prime, then so is Fp, but the pattern fails with the next
data point. F19 = 4181 is not prime, since 4181 = 37× 113. However,
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it is true that every prime Fibonacci number bigger than 3 will occur
in a prime position. This follows from our earlier pattern. F14 must be
composite, since every 7th Fibonacci number is a multiple of F7 = 13
(and indeed, F14 = 377 = 13× 29).

In fact, Fibonacci primes seem to be pretty rare. As of this writ-
ing, there have only been 33 confirmed discoveries of prime Fibonacci
numbers, the largest one being F81839, and it is still an open question in
mathematics whether there is an infinite number of Fibonacci primes.

We interrupt this serious discussion to bring you a fun little magic
trick based on Fibonacci numbers.

Row 1: 3

Row 2: 7

Row 3: 10

Row 4: 17

Row 5: 27

Row 6: 44

Row 7: 71

Row 8: 115

Row 9: 186

Row 10: 301

A Fibonacci magic trick: Start with any two positive numbers in rows 1 and 2. Fill out the

rest of the table in Fibonacci fashion (3 + 7 = 10, 7 + 10 = 17, and so on), then divide row

10 by row 9. The answer is guaranteed to begin with 1.61.

On the table above, write any numbers between 1 and 10 in the first
and second row. Add those numbers together and put the total in row
3. Add the numbers in row 2 and row 3, and put their total in row 4.
Continue filling out the table in Fibonacci fashion (row 3 + row 4 =
row 5, and so on) until you have numbers in all 10 rows. Now divide
the number in row 10 by the number in row 9 and read off the first
three digits, including the decimal point. In this example, we see 301

186 =
1.618279 . . . so its first three digits are 1.61. Believe it or not, starting
with any two positive numbers in rows 1 and 2 (they don’t have to be
whole numbers or be between 1 and 10), the ratio of row 10 and row 9
is guaranteed to be 1.61. Try an example or two yourself.
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To see why this trick works, let’s let x and y denote the numbers in
rows 1 and 2, respectively. Then by the Fibonacci rules, row 3 must be
x + y, row 4 must be y + (x + y) = x + 2y, and so on, as illustrated in
the table below.

Row 1: x

Row 2: y

Row 3: x+ y

Row 4: x+ 2y

Row 5: 2x+ 3y

Row 6: 3x+ 5y

Row 7: 5x+ 8y

Row 8: 8x+ 13y

Row 9: 13x+ 21y

Row 10: 21x+ 34y

The question amounts to looking at the ratio of the entries in rows
10 and 9:

Row 10

Row 9
=

21x+ 34y

13x+ 21y

So why should that ratio always begin with 1.61? The answer is based
on the idea of adding fractions incorrectly. Suppose you have two frac-
tions a

b and c
d where b and d are positive. What happens when you add

the numerators together and add the denominators together? Believe
it or not, the resulting number, called the mediant, will always be some-
where in between the original two numbers. That is, for any distinct
fractions a/b < c/d, where b and d are positive, we have

a

b
<

a+ c

b+ d
<

c

d

For example, starting with the fractions 1/3 and 1/2, their mediant
is 2/5, which lies between them: 1/3 < 2/5 < 1/2.

9780465054725-text.pdf   124 6/29/15   10:28 AM



The Magic of Fibonacci Numbers 115

Aside
Why does the mediant lie between the original numbers? If we start
with fractions a

b < c
d , with b and d positive, then it must be true that

ad < bc. Adding ab to both sides of this gives us ab + ad < ab + bc or,
equivalently, a(b + d) < (a + c)b, which implies a

b < a+c
b+d . By similar

logic, we can also show that a+c
b+d < c

d .

Now notice that for x, y > 0,

21x

13x
=

21

13
= 1.615 . . .

34y

21y
=

34

21
= 1.619 . . .

Hence their mediant must lie in between them. In other words,

1.615 . . . =
21

13
=

21x

13x
<

21x+ 34y

13x+ 21y
<

34y

21y
=

34

21
= 1.619 . . .

Thus the ratio of row 10 and row 9 must begin with the digits 1.61, as
predicted!

Aside
Before revealing the 1.61 prediction, you can impress your audience by
instantly adding all the numbers in your table. For instance, in our ex-
ample starting with 3 and 7, a quick glance at the table immediately re-
veals that the total will be 781. How do you know that? Algebra gives us
the answer. If you sum the values in the second table, you get a grand
total of 55x + 88y. How is that helpful? Well, that just happens to be
11(5x + 8y) = 11× row 7. So if you look at the number in row 7 (that’s
71 in our example) and multiply it by 11 (perhaps using the trick we
learned in Chapter 1 for multiplying by 11s), you get a grand total of
781.

What is the significance of the number 1.61? If you were to extend
the table further and further, you would find that the ratio of consecu-
tive terms will gradually get closer and closer to the golden ratio

g =
1 +

√
5

2
= 1.61803 . . .

Mathematicians sometimes denote this number with the Greek letter φ,
spelled phi, and pronounced “phie” (rhymes with pie) or “fee” as in
“phi-bonacci.”
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Aside
Using algebra, we can prove that the ratio of consecutive Fibonacci num-
bers gets closer and closer to g. Suppose that Fn+1/Fn gets closer and
closer to some ratio r as n gets larger and larger. But by the definition of
Fibonacci numbers, Fn+1 = Fn + Fn−1, so

Fn+1

Fn
=

Fn + Fn−1

Fn
= 1 +

Fn−1

Fn

Now as n gets larger and larger, the left side approaches r and the right
side approaches 1 + 1

r . Thus,

r = 1 +
1

r

When we multiply both sides of this equation by r, we get

r2 = r+ 1

In other words, r2 − r − 1 = 0, and by the quadratic formula, the only
positive solution is r = 1+

√
5

2 , which is g.

There’s an intriguing formula for the nth Fibonacci number that uses
g, called Binet’s formula. It says that

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5

2

)n
]

I find it amazing and amusing that this formula, with all of the
√

5 terms
running around, produces whole numbers!

We can simplify Binet’s formula somewhat, since the quantity

1−√5

2
= −0.61803 . . . (same dots as before!)

is between−1 and 0, and when we raise it to higher and higher powers,
it gets closer and closer to 0. In fact, it can be shown that for any n ≥ 0,
you can calculate Fn by taking gn/

√
5 and rounding it to the nearest

integer. Go ahead and take out your calculator and try this. If you
approximate g with 1.618, then raise 1.618 to the 10th power, you get
122.966 . . . (which is suspiciously close to 123). Then divide that number
by
√

5 ≈ 2.236, and you get 54.992. Rounding this number tells us that
F10 = 55, which we already knew. If we take g20 we get 15126.99993,
and if we divide it by

√
5 we get 6765.00003, so F20 = 6765. Using our

calculator to compute g100/
√

5 tells us that F100 is about 3.54× 1020.
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In the calculations we just did, it seemed that g10 and g20 were also
practically whole numbers. What’s going on there? Behold the Lucas
(pronounced “loo-kah”) numbers,

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521 . . .

named in honor of French mathematician Édouard Lucas (1842–1891)
who discovered many beautiful properties of these numbers and Fi-
bonacci numbers, including the greatest common divisor property we
saw earlier. Indeed, Lucas was the first person to name the sequence
1, 1, 2, 3, 5, 8 . . . the Fibonacci numbers. The Lucas numbers satisfy their
own (somewhat simpler) version of Binet’s formula, namely

Ln =

(
1 +

√
5

2

)n

+

(
1−√5

2

)n

Put another way, for n ≥ 1, Ln is the integer closest to gn. (This is
consistent with what we saw earlier since g10 ≈ 123 = L10.) We can see
more connections with Fibonacci and Lucas numbers in the table below.

n 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55

Ln 1 3 4 7 11 18 29 47 76 123

Fn−1 + Fn+1 3 4 7 11 18 29 47 76 123

Ln−1 + Ln+1 5 10 15 25 40 65 105 170 275

FnLn 1 3 8 21 55 144 377 987 2584 6765

Fibonacci numbers, Lucas numbers, and some of their interactions

It’s hard to miss some of the patterns. For example, when we add
Fibonacci neighbors, we get Lucas numbers:

Fn−1 + Fn+1 = Ln

and when we add Lucas neighbors we get 5 times the corresponding
Fibonacci number,

Ln−1 + Ln+1 = 5Fn

When we multiply corresponding Fibonacci and Lucas numbers to-
gether, we get another Fibonacci number!

FnLn = F2n
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Aside
Let’s prove this last relationship using the Binet formulas and a lit-
tle bit of algebra (specifically (x − y)(x + y) = x2 − y2). Letting h =
(1−√5)/2, the Binet formulas for Fibonacci and Lucas numbers can be
stated as

Fn =
1√
5
(gn − hn) and Ln = gn + hn

When we multiply these expressions together, we get

FnLn =
1√
5
(gn − hn) (gn + hn) =

1√
5

(
g2n − h2n

)
= F2n

So where does the name “golden ratio” come from? It comes from
the golden rectangle below, where the ratio of the long side to the short
side is exactly g = 1.61803 . . . .

0.618…1

1 1

The golden rectangle produces a smaller rectangle that also has golden proportions

If we label the short side as 1 unit and remove a 1-by-1 square from
the rectangle, then the resulting rectangle has dimensions 1-by-(g− 1)
and the ratio of its long side to short side is

1

g− 1
=

1

0.61803 . . .
= 1.61803 . . . = g

Thus the smaller rectangle has the same proportions as the original rect-
angle. By the way, g is the only number that has this nice property, since
the equation 1

g−1 = g implies that g2 − g− 1 = 0, and by the quadratic

formula, the only positive number that satisfies this is (1 +
√

5)/2 = g.
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Because of this property, the golden rectangle is considered by some
to be the most aesthetically beautiful rectangle, and it has been used
deliberately by various artists, architects, and photographers in their
work. Luca Pacioli, a longtime friend and collaborator of Leonardo da
Vinci, gave the golden rectangle the name “the divine proportion.”

The Fibonacci numbers and the golden ratio have inspired many artists, architects, and

photographers. (Photo courtesy of Natalya St. Clair)

Because there are so many marvelous mathematical properties sat-
isfied by the golden ratio, there is sometimes a tendency to see it even
in places where it doesn’t exist. For example, in the book The Da Vinci
Code, author Dan Brown asserts that the number 1.618 appears every-
where, and that the human body is practically a testament to that num-
ber. For instance, it is claimed that the ratio of a person’s height to the
height of his or her bellybutton is always 1.618. Now, I personally have
not conducted this experiment, but according to the College Mathemat-
ics Journal article “Misconceptions About the Golden Ratio,” by George
Markowski, this is simply not true. But to some people, anytime a num-
ber appears to be close to 1.6, they assume it must be the golden ratio at
work.
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I have often said that many of the number patterns satisfied by Fi-
bonacci numbers are pure poetry in motion. Well, here’s an example of
where the Fibonacci numbers actually arise in poetry. Most limericks
have the following meter. (You might call it a “dum” limerick!)

Limerick di dum Syllables

di-dum di-di-dum di-di-dum 5 3 8

di-dum di-di-dum di-di-dum 5 3 8

di-dum di-di-dum 3 2 5

di-dum di-di-dum 3 2 5

di-dum di-di-dum di-di-dum 5 3 8

Total 21 13 34

The poetry of Fibonacci numbers

If you count the syllables in each row, we see Fibonacci numbers
everywhere! Inspired by this, I decided to write a Fibonacci limerick of
my own.

I think Fibonacci is fun.
It starts with a 1 and a 1.
Then 2, 3, 5, 8.
But don’t stop there, mate.
The fun has just barely begun!
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Chapter 6

The Magic of Proofs

C H A P T E R  S I X

The Magic of Proofs

1 + 2 + 3 = 1 × 2 × 3 = 6

C H A P T E R  S I X

The Magic of Proofs

1 + 2 + 3 = 1 × 2 × 3 = 6

The Value of Proofs

One of the great joys of doing mathematics, and indeed what separates
mathematics from all other sciences, is the ability to prove things true
beyond a shadow of a doubt. In other sciences, we accept certain laws
because they conform to the real world, but those laws can be contra-
dicted or modified if new evidence presents itself. But in mathematics,
if a statement is proved to be true, then it is true forever. For exam-
ple, it was proved by Euclid over two thousand years ago that there are
infinitely many prime numbers, and there is nothing that we can say
or do that will ever contradict the truth of that statement. Technology
comes and goes, but a theorem is forever. As the great mathematician
G. H. Hardy said, “A mathematician, like a painter or poet, is a maker
of patterns. If his patterns are more permanent than theirs, it is because
they are made with ideas.” To me, it often seems like the best route to
academic immortality would be to prove a new mathematical theorem.

Not only can mathematics prove things with absolute certainty, it
can also prove that some things are impossible. Sometimes people say,
“You can’t prove a negative,” which I suppose means that you can’t
prove that there are no purple cows, since one might show up someday.
But in mathematics, you can prove negatives. For example, no matter
how hard you try, you will never be able to find two even numbers

121
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that add up to an odd number nor find a prime number that is larger
than all other primes. Proofs can be a little scary the first (or second or
third) time that you encounter them, and they are definitely an acquired
taste. But once you get the hang of them, proofs can be quite fun to read
and write. A good proof is like a well-told joke or story—it leaves you
feeling very satisfied at the end.

Let me tell you about one of my first experiences of proving some-
thing impossible. When I was a kid, I loved games and puzzles. One
day, a friend challenged me with a puzzle about a game, and so of
course I was interested. He showed me an empty 8-by-8 checkerboard
and brought out 32 regular 1-by-2 dominos. He asked, “Can you cover
the checkerboard using all 32 dominos?” I said, “Of course, just lay 4
dominos across each row, like this.”

Covering an 8-by-8 checkerboard with dominos
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“Very good,” he said. “Now suppose I remove the squares from
the lower-right and upper-left corners.” He placed a coin on those two
squares so I couldn’t use them. Now can you cover the remaining 62
squares using 31 dominos?”

52

52

Can the checkerboard be covered with dominos when two opposite corners are removed?

“Probably,” I said. But no matter how hard I tried, I was unable to
do it. I was starting to think that the task was impossible.

“If you think it’s impossible, can you prove that it’s impossible?” my
friend asked. But how could I prove that it was impossible without
exhaustively going through the zillions of possible failed attempts? He
then suggested, “Look at the colors on the checkerboard.”

The colors? What did that have to do with anything? But then I
saw it. Since both of the removed corner squares were light-colored,
then the remaining board consisted of 32 dark squares and just 30 light
squares. And since every domino covers exactly one light square and
one dark square, it would be impossible for 31 dominos to tile such a
board. Cool!
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Aside
If you liked the last proof, you will enjoy this one as well. The video
game Tetris uses seven pieces of different shapes, sometimes given the
names I, J, L, O, Z, T, and S.

I J L O 

Z T S 

Can these 7 pieces be arranged to form a 4-by-7 rectangle?

Each piece occupies exactly four squares, so it is natural to wonder
whether it would be possible to arrange them in such a way that they
form a 4-by-7 rectangle, where we are allowed to flip or rotate the tiles.
This turns out to be an impossible challenge. How do you prove that it’s
impossible? Color the rectangle with fourteen light squares and fourteen
dark squares, as shown.

Notice that, with the exception of the T tile, every piece must cover two
light squares and two dark squares, no matter where it is located. But the
T tile must cover three squares of one color and one square of the other
color. Consequently, no matter where the other six tiles are located, they
must cover exactly twelve light squares and twelve dark squares. This
leaves two light squares and two dark squares to be covered by the T
tile, which is impossible.
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So if we have a mathematical statement that we think is true, how
do we actually go about convincing ourselves? Typically, we start by
describing the mathematical objects that we are working with, like the
collection of integers

. . . ,−2,−1, 0, 1, 2, 3, . . .

consisting of all whole numbers: positive numbers, negative numbers,
and zero.

Once we have described our objects, we make assumptions about
these objects that we consider to be self-evident, like “The sum or prod-
uct of two integers is always an integer.” (In the next chapter, on ge-
ometry, we’ll assume statements like “For any two points there is a line
that goes through those two points.”) These self-evident statements are
called axioms. And from these axioms, and a little logic and algebra, we
can often derive other true statements (called theorems) that are some-
times far from obvious. In this chapter, you will learn the basic tools of
proving mathematical statements.

Let’s start by proving some theorems that are easy to believe. The
first time we hear a statement like “The sum of two even numbers is
even” or “The product of two odd numbers is odd,” our mind typically
checks the statement with a few examples, then concludes that it’s prob-
ably true or that it makes sense. You might even think that the statement
is so self-evident that we could make it an axiom. But we don’t need to
do that, since we can prove this statement using the axioms we already
know. To prove something about even and odd numbers, we need to be
clear about what odd and even mean.

An even number is a multiple of 2. To express this algebraically, we
say n is even if n = 2k where k is an integer. Is 0 an even number? Yes,
since 0 = 2× 0. We are now ready to prove that the sum of two even
numbers is even.

Theorem: If m and n are even numbers, then m + n is also an even
number.

This is an example of an “if-then” theorem. To prove such a state-
ment, we typically assume the “if” part and, through a mixture of logic
and algebra, show that the “then” part follows from our assumptions.
Here we assume that m and n are even and want to conclude that m + n
is also even.

Proof: Suppose m and n are even numbers. Thus, m = 2j and n = 2k
where j and k are integers. But then

m+ n = 2j + 2k = 2(j + k)
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and since j + k is an integer, m + n is also a multiple of 2, so m + n must
be even.

Notice that the proof relied on the axiom that the sum of two inte-
gers (here, j + k) must also be an integer. As you prove more compli-
cated statements, you are more likely to rely on previously proved the-
orems than the basic axioms. Mathematicians often denote the end of a
proof with a designation like � or � or Q.E.D on the right margin of the
last line of the proof, as seen above. Q.E.D. is the abbreviation for the
Latin phrase “quod erat demonstrandum,” meaning “that which was
to be demonstrated.” (It’s also the abbreviation for the English phrase
”quite easily done,” if you prefer.) If I think that a proof is particularly
elegant, I will end it with a smiley like �.

After proving an if-then theorem, mathematicians can’t resist won-
dering about the truth of the converse statement, obtained by reversing
the “if” part and the “then” part. Here, the converse statement would
be “If m + n is an even number, then m and n are even numbers.” It’s
easy to see that this statement is false, simply by providing a counterex-
ample. For this statement, the counterexample is literally as easy as

1 + 1 = 2

since this example shows that it’s possible to have an even sum even
when both numbers are not even.

Our next theorem is about odd numbers. An odd number is a num-
ber that is not a multiple of 2. Consequently, when you divide an odd
number by 2, you always get a remainder of 1. Algebraically, n is odd
if n = 2k + 1, where k is an integer. This allows us to prove, by simple
algebra, that the product of odd numbers is odd.

Theorem: If m and n are odd, then mn is odd.
Proof: Suppose m and n are odd numbers. Then m = 2j + 1 and

n = 2k + 1 for some integers j and k. Thus, according to FOIL,

mn = (2j + 1)(2k+ 1) = 4jk+ 2j + 2k+ 1 = 2(2jk+ j + k) + 1

and since 2jk + j + k is an integer, this means that the number mn is of
the form “twice an integer + 1.” Hence mn is odd.

What about the converse statement: “If mn is odd, then m and n are
odd”? This statement is also true, and we can prove it using a proof
by contradiction. In a proof by contradiction, we show that rejecting
the conclusion (here, the conclusion is that m and n are odd) leads to
a problem. In particular, if we reject the conclusion, there would also
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be a problem with our assumptions, so logically the conclusion must be
true.

Theorem: If mn is odd, then m and n are odd.
Proof: Suppose, to the contrary, that m or n (or both) were even. It

really doesn’t matter which one is even, so let’s say that m is even and
therefore m = 2j for some integer j. Then the product mn = 2jn is also
even, contradicting our initial assumption that mn is odd.

When a statement and its converse are both true, mathematicians
often call this an “if and only if theorem.” We have just shown the
following:

Theorem: m and n are odd if and only if mn is odd.

Rational and Irrational Numbers

The theorems just presented were probably not surprising to you and
their proofs were pretty straightforward. The fun begins when we prove
theorems that are less intuitive. So far, we have mostly been dealing
with integers, but now it’s time to graduate to fractions. The rational
numbers are those numbers that can be expressed as a fraction. To be
more precise, we say r is rational if r = a/b, where a and b are integers
(and b �= 0). Rational numbers include, for example, 23/58, −22/7,
and 42 (which equals 42/1). Numbers that are not rational are called
irrational. (You may have heard that the number π = 3.14159 . . . is irra-
tional, and we will have more to say about that in Chapter 8.)

For the next theorem, it may be helpful to recall how to add frac-
tions. It is easiest to add fractions when they have a common denomi-
nator. For example,

1

5
+

2

5
=

3

5
,

3

4
+

1

4
=

4

4
= 1,

5

8
+

7

8
=

12

8
=

3

2
= 1.5

Otherwise, to add the fractions, we rewrite them to have the same de-
nominators. For example,

1

3
+

1

6
=

2

6
+

1

6
=

3

6
=

1

2
,

2

7
+

3

5
=

10

35
+

21

35
=

31

35

In general, we can add any two fractions a/b and c/d by giving them a
common denominator, as follows:

a

b
+

c

d
=

ad

bd
+

bc

bd
=

ad+ bc

bd
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We are now ready to prove a simple fact about rational numbers.
Theorem: The average of two rational numbers is also rational.
Proof: Let x and y be rational numbers. Then there exist integers

a, b, c, d where x = a/b and y = c/d. Notice x and y have average

x+ y

2
=

a/b+ c/d
2

=
ad+ bc

2bd

and that average is a fraction where the numerator and denominator
are integers. Consequently, the average of x and y is rational.

Let’s think about what this theorem is saying. It says that for any
two rational numbers, even if they are really, really close together, we
can always find another rational number in between them. You might
be tempted to conclude that all numbers are rational (as the ancient
Greeks believed for a while). But, surprisingly, that’s not the case. Let’s
consider the number

√
2, which has decimal expansion 1.4142 . . . . Now,

there are many ways to approximate
√

2 with a fraction. For example,
√

2
is approximately 10/7 or 1414/1000, but neither of these fractions has a
square that is exactly 2. But maybe we just haven’t looked hard enough?
The following theorem says that such a search would be futile. The
proof, as is usually the case for theorems about irrational numbers, is
by contradiction. In the proof below, we will exploit the fact that every
fraction can be reduced until it is in lowest terms, where the numerator
and denominator share no common divisors bigger than 1.

Theorem:
√

2 is irrational.
Proof: Suppose, to the contrary, that

√
2 is rational. Then there must

exist positive integers a and b for which
√

2 = a/b

where a/b is a fraction in lowest terms. If we square both sides of this
equation, we have

2 = a2/b2

or equivalently,
a2 = 2b2

But this implies that a2 must be an even integer. And if a2 is even, then
a must also be even (since we previously showed that if a were odd,
then a times itself would be odd). Thus a = 2k, for some integer k.
Substituting that information into the equation above tells us that

(2k)2 = 2b2
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So
4k2 = 2b2

which means that
b2 = 2k2

and therefore b2 is an even number. And since b2 is even, then b must
be even too. But wait a second! We’ve just shown that a and b are both
even, and this contradicts the assumption that a/b is in lowest terms.
Hence the assumption that

√
2 is rational leads to trouble, so we are

forced to conclude that
√

2 is irrational. �
I really love this proof (as evidenced by the smiley) since it proves a

very surprising result through the power of pure logic. As we will see
in Chapter 12, irrational numbers are hardly rare. In fact, in a very real
sense, virtually all real numbers are irrational, even though we mostly
work with rational numbers in our daily lives.

Here is a fun corollary to the previous theorem. (A corollary is a the-
orem that comes as a consequence of an earlier theorem.) It takes ad-
vantage of the law of exponentiation, which says that for any positive
numbers a, b, c, (

ab
)c

= abc

For example, this says that
(
53)2

= 56, which makes sense, since

(
53

)2
= (5× 5× 5)× (5× 5× 5) = 56

Corollary: There exist irrational numbers a and b such that ab is
rational.

It’s pretty cool that we can prove this theorem right now, even though
we currently know only one irrational number, namely

√
2. We call the

following proof an existence proof, since it will show you that such values
of a and b exist, without telling you what a and b actually are.

Proof: We know that
√

2 is irrational, so consider the number
√

2
√

2
.

Is this number rational? If the answer is yes, then the proof is done, by
letting a =

√
2 and b =

√
2. If the answer is no, then we now have a new

irrational number to play with, namely
√

2
√

2
. So if we let a =

√
2
√

2
and

b =
√

2, then, using the law of exponentiation, we get

ab =

(√
2

√
2
)√2

=
√

2

√
2×√2

=
√

2
2
= 2
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which is rational. Thus, regardless of whether
√

2
√

2
is rational or irra-

tional, we can find a and b such that ab is rational. �
Existence proofs like the one above are often clever, but sometimes a

little unsatisfying, since they might not tell you all the information that

you are seeking. (By the way, if you are curious, the number
√

2
√

2
is

irrational, but that’s beyond the scope of this chapter.)
More satisfying are constructive proofs, which show you exactly how

to find the information you want. For example, one can show that ev-
ery rational number a/b must either terminate or repeat (since in the
long division process, eventually b must divide a number that it has
previously divided). But is the reverse statement true? Certainly a ter-
minating decimal must be a rational number. For example, 0.12358 =
12,358/100,000. But what about repeating decimals? For example, must
the number 0.123123123 . . . necessarily be a rational number? The an-
swer is yes, and here is a clever way to find exactly what rational num-
ber it is. Let’s give our mystery number a name, like w (as in waltz), so
that

w = 0.123123123 . . .

Multiplying both sides by 1000 gives us

1000w = 123.123123123 . . .

Subtracting the first equation from the second, we get

999w = 123

and therefore
w =

123

999
=

41

333

Let’s try this with another repeating decimal, where we don’t start
repeating from the very first digit. What fraction is represented by the
decimal expansion 0.83333 . . .? Here we let

x = 0.83333 . . .

Therefore
100x = 83.3333 . . .

and
10x = 8.3333 . . .
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When we subtract 10x from 100x everything after the decimal point
cancels, leaving us with

90x = (83.3333 . . .)− (8.3333 . . .) = 75

Therefore
x =

75

90
=

5

6

Using this procedure, we can constructively prove that a number
is rational if and only if its decimal expansion is either terminating or
repeating. If the number has an infinite decimal expansion that doesn’t
repeat, like

v = .123456789101112131415 . . .

then that number is irrational.

Proofs by Induction

Let’s go back to proving theorems about positive integers. In Chapter
1, after observing that

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

we suspected, and later proved, that the sum of the first n odd num-
bers is n2. We accomplished this by a clever combinatorial proof where
we counted the squares of a checkerboard in two different ways. But
let’s try a different approach that doesn’t require as much cleverness.
Suppose I told you, or you accepted on faith, that the sum of the first 10
odd numbers 1 + 3 + · · ·+ 19 has a total of 102 = 100. If you accepted
that statement, then it would automatically follow that when we added
the 11th odd number, 21, the total would be 121, which is 112. In other
words, the truth of the statement for 10 terms automatically implies the
truth of the statement for 11 terms. That’s the idea of a proof by induc-
tion. We show that some statement involving n is true at the beginning
(usually the statement when n = 1), then we show that if the theorem
is true when n = k, then it will automatically continue to be true when
n = k + 1. This forces the statement to be true for all values of n. Proofs
by induction are analogous to climbing a ladder: suppose we show that
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you can step onto the ladder and that, if you have already made it to
one step, you can always make it to the next. A bit of thought should
convince you that you could get to any step on the ladder.

For example, with the sum of the first n odd numbers, our goal is to
show that for all n ≥ 1,

1 + 3 + 5 + · · ·+ (2n− 1) = n2

We see that the sum of just the first odd number, 1, is indeed 12, so the
statement is certainly true when n = 1. Next we notice that if the sum
of the first k odd numbers is k2, namely,

1 + 3 + 5 + · · ·+ (2k− 1) = k2

then when we add the next odd number (namely 2k + 1), we see that

1 + 3 + 5 + · · ·+ (2k− 1) + (2k+ 1) = k2 + (2k+ 1)

= (k+ 1)2

In other words, if the sum of the first k odd numbers is k2, then the sum
of the first k + 1 odd numbers is guaranteed to equal (k + 1)2. Thus,
since the theorem is true for n = 1, it will continue to be true for all
values of n.

Induction is a powerful tool. The very first problem we looked at in
this book was to consider the sum of the first n numbers. We showed,
by various means, that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

That statement is certainly true when n = 1 (since 1 = 1(2)/2). And if
we assume that the statement is true for some number k:

1 + 2 + 3 + · · ·+ k =
k(k+ 1)

2

then when we add the (k + 1)st number to that sum, we get

1 + 2 + 3 + · · ·+ k+ (k+ 1) =
k(k+ 1)

2
+ (k+ 1)

= (k+ 1)

(
k

2
+ 1

)

=
(k+ 1)(k+ 2)

2
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This is our formula with n replaced by k+ 1. Thus if the formula is valid
when n = k (where k can be any positive number), then it will continue
to be valid when n = k + 1. Hence the identity holds for all positive
values of n.

We will see more examples of induction in this chapter and later
in this book. But to help reinforce it further, here’s a song written by
“mathemusicians” Dane Camp and Larry Lesser. It’s sung to the tune
of “Blowin’ in the Wind” by Bob Dylan.

How can you tell that a statement is true
For every value of n?
Well there’s just no way you can try them all.
Why you could just barely begin!
Is there a tool that can help us resolve
This infinite quand’ry we’re in?

The answer, my friend, is knowin’ induction.
The answer is knowin’ induction!

First you must find an initial case
For which the statement is true,
Then you must show if it’s true for k
Then k + 1 must work too!
Then all statements fall just like dominos do.
Tell me how did we score such a coup?

The answer, my friend, is knowin’ induction.
The answer is knowin’ induction!

If I told you n times, I told you n + 1,
The answer is knowin’ induction!
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Aside
In Chapter 5, we discovered several relationships with Fibonacci num-
bers. Let’s see how to prove some of those identities using induction.

Theorem: For n ≥ 1,

F1 + F2 + · · ·+ Fn = Fn+2 − 1

Proof (by induction): When n = 1, this says F1 = F3 − 1, which is
the same as 1 = 2− 1, which is certainly true. Now assume that theorem
is true when n = k. That is,

F1 + F2 + · · ·+ Fk = Fk+2 − 1

Now when we add the next Fibonacci number Fk+1 to both sides, we get

F1 + F2 + · · ·+ Fk + Fk+1 = Fk+1 + Fk+2 − 1

= Fk+3 − 1

as desired.
The proof for the sum of the squares of Fibonacci numbers is equally

simple.
Theorem: For n ≥ 1,

F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1

Proof (by induction): When n = 1, this says F2
1 = F1F2, which is

true, since F2 = F1 = 1. Assuming the theorem when n = k, we have

F 2
1 + F 2

2 + · · ·+ F 2
k = FkFk+1

Adding F2
k+1 to both sides gives us

F 2
1 + F 2

2 + · · ·+ F 2
k + F 2

k+1 = FkFk+1 + F 2
k+1

= Fk+1 (Fk + Fk+1)

= Fk+1Fk+2

as desired.
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In Chapter 1, we noticed that “the sum of the cubes is the square of
the sum.” That is,

13 = 12

13 + 23 = (1 + 2)2

13 + 23 + 33 = (1 + 2 + 3)2

13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2

but we weren’t ready to prove it. We can now do it pretty quickly by
induction. The general pattern says that for n ≥ 1,

13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

and since we already know that 1 + 2 + · · ·+ n = n(n+1)
2 , we prove the

equivalent theorem, shown below.
Theorem: For n ≥ 1,

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4

Proof (by induction): When n = 1, the theorem gives us the true
statement 13 = 12(22)/4. Inductively, if the theorem is true when n = k
so that

13 + 23 + 33 + · · ·+ k3 =
k2(k+ 1)2

4

then when we add (k + 1)3 to both sides, we get

13 + 23 + 33 + · · ·+ k3 + (k+ 1)3 =
k2(k+ 1)2

4
+ (k+ 1)3

= (k+ 1)2

(
k2

4
+ (k+ 1)

)

= (k+ 1)2

(
k2 + 4(k+ 1)

4

)

=
(k+ 1)2(k+ 2)2

4

as desired.

9780465054725-text.pdf   145 6/29/15   10:28 AM



136 The Magic of Math

Aside
Here is a geometrical proof of the sum of the cubes identity.

Let’s compute the area of this figure in two different ways, then compare
answers. On the one hand, since the figure is a square where each side
has length 1 + 2 + 3 + 4 + 5, its area is (1 + 2 + 3 + 4 + 5)2.

On the other hand, if we start in the upper left corner and move
diagonally downward, we can see one 1-by-1 square, then two 2-by-2
squares (with one square cut into two halves), then three 3-by-3 squares,
then four 4-by-4 squares (with one square cut into two halves), then five
5-by-5 squares. Consequently, the area of this figure is equal to

(1× 12) + (2× 22) + (3× 32) + (4× 42) + (5× 52)

= 13 + 23 + 33 + 43 + 53

Since both areas must be equal, it follows that

13 + 23 + 33 + 43 + 53 = (1 + 2 + 3 + 4 + 5)2

The same sort of picture can be created for the square with side lengths
1 + 2 + · · ·+ n to establish

13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

�
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Proofs by induction can handle more than
just sums. Induction is often useful whenever
the solution to your “larger” problem (of size
k + 1) can be expressed in terms of a smaller
problem (of size k). Here is my favorite proof
by induction, and it relates to the checkerboard
tiling problem at the beginning of the chapter.

But instead of proving that something is impossible, we use it to show
that something is always possible. And instead of tiling the board with
dominos, we tile the board with trominos, which are little L-shaped tiles
that cover 3 squares.

Since 64 is not a multiple of 3, we can’t cover an 8-by-8 checkerboard
with trominos alone. But if you place a 1-by-1 square on the board, then
we claim that the rest of the board can be tiled with trominos regardless
of the square’s location. In fact, not only is this statement true for 8-by-8
checkerboards, it’s also true for boards of size 2-by-2, 4-by-4, 16-by-16,
and so on.

Theorem: For all n ≥ 1, a checkerboard of size 2n-by-2n can be tiled
with non-overlapping trominos and a single 1-by-1 square, where the
square can be located anywhere on the board.

Proof (by induction): The theorem is true when n = 1, since any 2-
by-2 board can be covered with a single tromino and square, where the
square can be anywhere on the board. Now suppose the theorem holds
when n = k, that is, for boards of size 2k-by-2k. Our goal is to show that
it remains true for boards of size 2k+1-by-2k+1. Place the 1-by-1 square
anywhere on the board, then divide the board into four quadrants, as
illustrated below.

12

3 4

2k  +1

2k  +1

2k

2k

Covering a checkerboard with trominos
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Now the quadrant containing the square has size 2k-by-2k, so it can
be tiled with trominos (by the assumption that the theorem is true when
n = k). Next we place a tromino in the center of the board, which inter-
sects the other three quadrants. These quadrants have size 2k-by-2k with
one square specified, so they too can be covered with non-overlapping
trominos. This provides us with the desired tiling of the original 2k+1-
by-2k+1 board. �

The final identity we prove in this section has many useful appli-
cations. We’ll prove it by induction, as well as a few other ways. The
motivating question is: What do you get when you add up the first n
powers of 2, beginning with 20 = 1? Here are the first few powers of 2:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

As we start to add these numbers together, we see:

1 = 1

1 + 2 = 3

1 + 2 + 4 = 7

1 + 2 + 4 + 8 = 15

1 + 2 + 4 + 8 + 16 = 31

Do you see the pattern? Each sum is 1 less than the next higher
power of 2. The general formula is as follows:

Theorem: For n ≥ 1,

1 + 2 + 4 + 8 + · · ·+ 2n−1 = 2n − 1

Proof (by induction): As noted above, the theorem is true when
n = 1 (and 2, 3, 4, and 5, for that matter!). Assuming the theorem holds
for n = k, we can say that

1 + 2 + 4 + 8 + · · ·+ 2k−1 = 2k − 1

When we add the next power of 2, which is 2k, to both sides, we get

1 + 2 + 4 + 8 + · · ·+ 2k−1 + 2k = (2k − 1) + 2k

= 2 · 2k − 1

= 2k+1 − 1

In Chapters 4 and 5, we proved many relationships by answering a
counting question in two different ways. You might say that the follow-
ing combinatorial proof counts the most!
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Question: How many ways can a hockey team with n players (with
jerseys numbered 1 through n) choose a delegation to attend a confer-
ence where at least one player must be on the delegation?

Answer 1: Each player has 2 choices, either attend or not, so the
answer would seem to be 2n, but we need to subtract 1 to exclude the
possibility that all players choose not to attend. Thus there are 2n − 1
possibilities.

Answer 2: Consider the largest jersey number who attends the con-
ference. There is only 1 delegation where 1 is the largest jersey num-
ber. There are 2 delegations where 2 is the largest jersey number (since
player 2 either attends alone or with player 1). There are 4 delegations
where 3 is the largest jersey number (since player 3 must attend and
players 1 and 2 each have two choices). Continuing in this manner,
there are 2n−1 delegations where player n is the largest jersey number,
since that player must attend, but players 1 through n− 1 each have 2
choices (to attend or not). Altogether, there are 1 + 2 + 4 + · · · + 2n−1

possibilites.
Since answer 1 and answer 2 are both correct, then they must be

equal. Therefore 1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1. �
But perhaps the simplest proof relies only on algebra. It is remi-

niscent of the method we used for expressing a repeated decimal as a
fraction.

Proof by Algebra:

Let S = 1 + 2 + 4 + 8 + · · ·+ 2n−1

Multiplying both sides by 2 gives us

2S = 2 + 4 + 8 + · · ·+ 2n−1 + 2n

Subtracting the first equation from the second, we have massive cancel-
lation except for the first term of S and the last term of 2S. Therefore,

S = 2S − S = 2n − 1

The theorem we just proved is actually the key to the important bi-
nary representation of numbers, which is how computers store and ma-
nipulate numbers. The idea behind binary is that every number can be
represented as a unique sum of distinct powers of 2. For example,

83 = 64 + 16 + 2 + 1

9780465054725-text.pdf   149 6/29/15   10:28 AM



140 The Magic of Math

We express this in binary by replacing each power of 2 with the number
1 and each missing power of 2 with 0. In our example, 83 = (1 · 64) +
(0 · 32) + (1 · 16) + (0 · 8) + (0 · 4) + (1 · 2) + (1 · 1). Thus 83 has binary
representation

83 = (1010011)2

How do we know that every positive number can be represented
this way? Let’s suppose that we were able to represent all numbers from
1 to 99 with powers of 2 in a unique way. How do we know that we can
represent 100 in a unique way? Let’s start by taking the largest power
of 2 below 100, which would be 64. (Must we include 64? Yes, because
even if we chose 1, 2, 4, 8, 16, and 32, their sum would be 63, which falls
short of 100.) Once we use 64, we need to use powers of 2 to reach a
total of 36. And since, by assumption, we can represent 36 in a unique
way using powers of 2, this gives us our unique representation of 100.
(How do we represent 36? By repeating this logic, we take the largest
power of 2 that we can, and continue in this manner. Thus 36 = 32 + 4,
and so 100 = 64+ 32+ 4 has binary representation (1100100)2.) We can
generalize this argument (using what’s called a strong induction proof ) to
show that every positive number has a unique binary representation.

Prime Numbers

In the last section, we established that every positive integer can be
uniquely expressed as a sum of distinct powers of 2. In a sense, you
could say that the powers of 2 are the building blocks of the positive
integers under the operation of addition. In this section, we’ll see that
the prime numbers play a similar role with regard to multiplication:
every positive integer can be uniquely expressed as a product of primes.
Yet unlike the powers of 2, which can be easily identified and hold few
mathematical surprises, the prime numbers are much trickier, and there
are still many things we don’t know about them.

A prime number is a positive integer with exactly two positive divi-
sors, namely 1 and itself. Here are the first few primes.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 . . .

The number 1 is not considered a prime number because it has only
one divisor, namely 1. (There is a more significant reason why 1 is not
considered prime, which we will mention shortly.) Notice that 2 is the

9780465054725-text.pdf   150 6/29/15   10:28 AM



The Magic of Proofs 141

only even prime. Some might say that makes it the oddest of all prime
numbers!

A positive integer with three or more divisors is called composite
since it can be composed into smaller factors. The first few composites
are

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30 . . .

For example, the number 4 has exactly three divisors: 1, 2, and 4.
The number 6 has four divisors: 1, 2, 3, and 6. Note the number 1 is not
composite either. Mathematicians call the number 1 a unit, and it has
the property that it is a divisor of every integer.

Every composite number can be expressed as the product of primes.
Let’s factor 120 into primes. We might start by writing 120 = 6× 20.
Now, 6 and 20 are composite, but they can be factored into primes,
namely 6 = 2× 3 and 20 = 2× 2× 5. Thus,

120 = 2× 2× 2× 3× 5 = 23 31 51

Interestingly, no matter how we initially factor our number, we still
wind up with the same prime factorization. This is a consequence of
the unique factorization theorem, also known as the fundamental theo-
rem of arithmetic, which states that every positive integer greater than
1 has a unique prime factorization.

By the way, the real reason the number 1 is not considered to be
prime is that if it were, then this theorem would not be true. For exam-
ple, the number 12 could be factored as 2× 2× 3, but it could also be
factored as 1× 1× 2× 2× 3, so the factorization into primes would no
longer be unique.

Once you know how a number factors, you know an awful lot about
that number. When I was a kid, my favorite number was 9, but as I
grew older, my favorite numbers became larger, then gradually more
complex (for example, π = 3.14159 . . . , φ = 1.618 . . . , e = 2.71828 . . . ,
and i, which has no decimal representation, but we will discuss that
in Chapter 10). For a while, before I started experimenting with irra-
tional numbers, my favorite number was 2520, since it was the smallest
number that was divisible by all the numbers from 1 through 10. It has
prime factorization

2520 = 23 32 51 71
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Once you know a number’s prime factorization, you can instantly
determine how many positive divisors it has. For example, any divisor
of 2520 must be of the form 2a3b5c7d where a is 0, 1, 2, or 3 (4 choices), b is
0, 1, or 2 (3 choices), c is 0 or 1 (2 choices), and d is 0 or 1 (2 choices). Thus
by the rule of product, 2520 has 4× 3× 2× 2 = 48 positive divisors.

Aside
The proof of the fundamental theorem of arithmetic exploits the follow-
ing fact about prime numbers (proved in the first chapter of any number
theory textbook). If p is a prime number and p divides a product of two
or more numbers, then p must be a divisor of at least one of the terms in
the product. For example,

999,999 = 333× 3003

is a multiple of 11, so 11 must divide 333 or 3003. (In fact, 3003 = 11×
273.) This property is not always true with composite numbers. For
example, 60 = 6× 10 is a multiple of 4, even though 4 does not divide 6
or 10.

To prove unique factorization, suppose the contrary, that some num-
ber had more than one prime factorization. Suppose that N was the
smallest number that had two different prime factorizations. Say

p1p2 · · · pr = N = q1q2 · · · qs
where all of the pi and qj terms are prime. Since N is certainly a multiple
of the prime p1, then p1 must be a divisor of one of the qj terms. Let’s
say, for ease of notation, that p1 divides q1. Thus, since q1 is prime, we
must have q1 = p1. So if we divide the entire equation above by p1, we
get

p2 · · · pr = N

p1
= q2 · · · qs

But now the number N
p1

has two different prime factorizations, which
contradicts our assumption that N was the smallest such number.
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Aside
Incidentally, there are number systems where not everything factors in a
unique way. For example, on Mars, where all Martians have two heads,
they only use even numbers

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, . . .

In this Martian number system, a number like 6 or 10 is considered prime
because it cannot be factored into smaller even numbers. In this system,
the primes and composite numbers simply alternate. Every multiple of
4 is composite (since 4k = 2× 2k) and all the other even numbers (like
6, 10, 14, 18, and so on), are prime, since they can’t be factored into two
smaller even numbers. But now consider the number 180:

6× 30 = 180 = 10× 18

Under the Martian number system, the number 180 can be factored into
primes in two different ways, so prime factorization is not unique in the
number system used on this planet.

Very…
…interesting!
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Among the numbers from 1 to 100, there are exactly 25 primes.
Among the next hundred numbers, there are 21 primes, then 16 primes
among the hundred numbers after that. As we look at larger and larger
numbers, primes tend to become rarer (but not in a predictable way—
for example there are still 16 primes between 300 and 400 and 17 primes
between 400 and 500). The number of primes between 1,000,000 and
1,000,100 is only 6. The fact that primes become more scarce makes
sense because a large number has so many numbers below it that could
potentially divide it.

We can prove that there are stretches of 100 numbers with no primes.
There are even primeless collections of consecutive numbers of length
1000, or 1 million, or as long as you’d like. Let me try to convince you
of this fact by instantly providing you with 99 consecutive composite
numbers (although this isn’t the first time that this happens). Consider
the 99 consecutive numbers

100! + 2, 100! + 3, 100! + 4, . . . , 100! + 100

Since 100! = 100× 99× 98× · · · × 3× 2× 1, it must be divisible by
all the numbers from 2 to 100. Now consider a number like 100! + 53.
Since 53 divides into 100!, then it must also divide into 100! + 53. The
same argument shows that for all 2 ≤ k ≤ 100, 100! + k must be a
multiple of k, so it must be composite.

Aside
Note that our argument doesn’t say anything about the primeness of
100! + 1, but we can determine that as well. There is a beautiful theorem
called Wilson’s theorem, which says that n is a prime number if and only
if (n − 1)! + 1 is a multiple of n. Try it on a few small numbers to see
it in action: 1! + 1 = 2 is a multiple of 2; 2! + 1 = 3 is a multiple of 3;
3! + 1 = 7 is not a multiple of 4; 4! + 1 = 25 is a multiple of 5; 5! + 1 =
121 is not a multiple of 6; 6! + 1 = 721 is a multiple of 7; and so on.
Consequently, since 101 is prime, Wilson’s theorem says that 100! + 1 is
a multiple of 101, and is therefore composite. Thus the numbers 100!
through 100! + 100 comprise 101 consecutive composite numbers.

With prime numbers becoming scarcer and scarcer among the very
large numbers, it is natural to wonder if at some point we simply run
out of primes. As Euclid told us over two thousand years ago, this will
not be the case. But don’t just take his word for it; enjoy the proof for
yourself.

Theorem: There are infinitely many primes.
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Proof: Suppose, to the contrary, that there were only finitely many
primes. Hence there must be some largest prime number, which we shall
denote by P. Now consider the number P! + 1. Since P! is divisible by
all numbers between 2 and P, none of those numbers can divide P! + 1.
Thus P!+ 1 must have a prime factor that is larger than P, contradicting
the assumption that P was the largest prime.

Although we will never find a largest prime number, that doesn’t
stop mathematicians and computer scientists from searching for larger
and larger primes. As of this writing, the largest known prime has
17,425,170 digits. Just to write that number down would require nearly
a hundred books of this size. Yet we can describe that number on one
line:

257,885,161 − 1

The reason it has that simple form is that there are especially efficient
methods for determining whether or not numbers of the form 2n − 1 or
2n + 1 are prime.

Aside
The great mathematician Pierre de Fermat proved that if p is an odd
prime number, then the number 2p−1− 1 must be a multiple of p. Check
this out with the first few odd primes. For the primes 3, 5, 7, 11, we see
22 − 1 = 3 is a multiple of 3; 24 − 1 = 15 is a multiple of 5; 26 − 1 = 63 is
a multiple of 7; and 210 − 1 = 1023 is a multiple of 11. As for composite
numbers, it is clear that if n is even, then 2n−1 − 1 must be odd, so it
can’t be a multiple of n. Checking the first few odd composites 9, 15,
and 21, we see that 28 − 1 = 255 is not a multiple of 9; 214 − 1 = 16,383
is not a multiple of 15; and 220 − 1 = 1,048,575 is not a multiple of 21
(nor even a multiple of 3). As a result of Fermat’s theorem, if a large
number N has the property that 2N−1− 1 is not a multiple of N, then we
can be 100 percent sure that N is not prime, even without knowing what
the factors of N are! However, the converse of Fermat’s theorem is not
true. There do exist some composite numbers (called pseudoprimes) that
behave like primes. The smallest example is 341 = 11× 31, which has
the property that 2340 − 1 is a multiple of 341. Although it’s been shown
that pseudoprimes are relatively rare, there are an infinite number of
them, but there are tests to weed them out.

Prime numbers have many applications, particularly within com-
puter science. Primes are at the heart of nearly every encryption al-
gorithm, including public key cryptography, which allows for secure
financial transactions across the Internet. Many of these algorithms are
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based on the fact that there are relatively fast ways to determine if a
number is prime or not, but there are no known fast ways of factor-
ing large numbers. For example, if I multiplied two random 1000-digit
primes together and gave you their 2000-digit answer, it is highly un-
likely that any human or computer (unless a quantum computer is built
someday) could determine the original prime numbers. Codes that are
based on our inability to factor large numbers (such as the RSA method)
are believed to be quite secure.

People have been fascinated with prime numbers for thousands of
years. The ancient Greeks said that a number is perfect if it is equal to
the sum of all of its proper divisors (every divisor except itself). For
example, 6 is perfect since it has proper divisors 1, 2, and 3, which sum
to 6. The next perfect number is 28, which has proper divisors 1, 2, 4,
7, and 14, which sum to 28. The next two perfect numbers are 496 and
8128. Is there any pattern here? Let’s look at their prime factorizations.

6 = 2× 3

28 = 4× 7

496 = 16× 31

8128 = 64× 127

Do you see the pattern? The first number is a power of 2. The second
number is one less than twice that power of 2, and it’s prime. (That’s
why you don’t see 8× 15 or 32× 63 on the list, since 15 and 63 are not
prime.) We can summarize this pattern in the following theorem.

Theorem: If 2n − 1 is prime, then 2n−1 × (2n − 1) is perfect.

Aside
Proof: Let p = 2n− 1 be a prime number. Our goal is to show that 2n−1 p
is perfect. What are the proper divisors of 2n−1 p? The divisors that do
not use the factor p are simply 1, 2, 4, 8, . . . , 2n−1, which has sum 2n− 1 =
p. The other proper divisors (which excludes 2n−1 p) utilize the factor p,
so these divisors sum to p(1 + 2 + 4 + 8 + · · · + 2n−2) = p(2n−1 − 1).
Hence the grand total of proper divisors is

p+ p(2n−1 − 1) = p(1 + (2n−1 − 1)) = 2n−1p

as desired.

The great mathematician Leonhard Euler (1707–1783) proved that
every even perfect number is of this form. As of this writing, there have
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been forty-eight discovered perfect numbers, all of which are even. Are
there any odd perfect numbers? Presently, nobody knows the answer to
that question. It has been shown that if an odd perfect number exists,
then it would have to contain over three hundred digits, but nobody
has yet proved that they are impossible.

There are many easily stated unsolved problems pertaining to prime
numbers. We have already stated that it is unknown whether there are
infinitely many prime Fibonacci numbers. (It has been shown that there
are only two perfect squares among the Fibonacci numbers (1 and 144)
and only two perfect cubes (1 and 8).) Another unsolved problem is
known as Goldbach’s conjecture, which speculates that every even num-
ber greater than 2 is the sum of two primes. Here, too, nobody has been
able to prove this conjecture, but it has been proved that if a counterex-
ample exists, then it must have at least 19 digits. (A breakthrough was
recently made on a similar-sounding problem. In 2013, Harald Helfgott
proved that every odd number bigger than 7 is the sum of at most three
odd primes.) Finally, we define twin primes to be any two prime num-
bers that differ by 2. The first examples of twin primes are 3 and 5, 5 and
7, 11 and 13, 17 and 19, 29 and 31, and so on. Can you see why 3, 5, and
7 are the only “prime triplets”? And even though it has been proved
(as a special case of a theorem due to Gustav Dirichlet) that there are
infinitely many primes that end in 1 (or end in 3 or end in 7 or end in 9),
the question of whether there exists an infinite number of twin primes
remains open.

Let’s end this chapter with a proof that’s a little fishy, but I hope you
agree with the statement anyway.

Claim: All positive integers are interesting!
Proof?: You’ll agree that the first few positive numbers are all very

interesting. For instance, 1 is the first number, 2 is the first even number,
3 is the first odd prime, 4 is the only number that spells itself F-O-U-
R, and so on. Now suppose, to the contrary, that not all numbers are
interesting. Then there would have to be a first number, call it N, that
was not interesting. But then that would make N interesting! Hence no
uninteresting numbers exist! �
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Some Geometry Surprises

Let’s begin with a geometry problem that could be presented as a magic
trick. On a separate sheet of paper, follow the steps below.

Step 1. Draw a four-sided figure where the sides don’t cross each
other. (This is called a quadrilateral.) Label the four corners A, B, C, and
D, in clockwise order. (See some examples below.)

C

B
A

D

A

B

C

D A

C

B

D

Three random quadrilaterals

149
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Step 2. Label the midpoints of the four sides AB, BC, CD, and DA
as E, F, G, and H, respectively.

Step 3. Connect the midpoints to form a quadrilateral EFGH, as
shown in the examples below.

C

B
A

D

H

E

F

G

A

B

C

D E

F

G

H

A

C

B

D

E

F

G

H

Connecting the midpoints of a quadrilateral always produces a parallelogram

Believe it or not, EFGH is guaranteed to be a parallelogram. In other
words, EF will be parallel to GH; FG will be parallel to HE. (Also,
EF and GH will have the same length, as will FG and HE.) This is
illustrated in the figure above, but you should try some examples of
your own.

Geometry is filled with surprises like this. Applying simple logi-
cal arguments to the simplest of assumptions, one often winds up with
beautiful results. Let’s take a short quiz to test your geometric intu-
ition. Some of these questions have very intuitive answers, but some
of these questions have answers that will surprise you, even after you
have learned the appropriate geometry.

Question 1. A farmer wishes to build a rectangular fence with a
perimeter of 52 feet. What should the dimensions of the rectangle be to
maximize the rectangle’s area?

A) A square (13 feet per side).
B) Close to the proportions of the golden ratio 1.618 (say around 16

feet by 10 feet).
C) Make the width as long as possible (close to 26 feet by 0 feet).
D) All answers above give the same area.
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Question 2. Consider the parallel lines below, with X and Y on the
lower line. We wish to choose a third point on the upper line so that the
triangle formed by X, Y, and the upper point has the smallest perimeter.
What upper point should be chosen?

A) Point A (above the point that is halfway between X and Y).
B) Point B (so the triangle formed by B, X, and Y is a right triangle).
C) As far away from X and Y as possible (like point C).
D) It doesn’t matter. All triangles will have the same perimeter.

X Y

ABC

Which point on the upper line results in a triangle (with points X and Y) with the smallest

perimeter? Which point results in the greatest area?

Question 3. Using the same figure as above, what point P on the
upper line should be chosen so that the triangle formed by X, Y, and P
has the greatest area?

A) Point A.
B) Point B.
C) As far away from X and Y as possible.
D) It doesn’t matter. All triangles will have the same area.

Question 4. The distance between two goalposts on a football field
is 360 feet (120 yards). A rope of length 360 feet is about to be tied tightly
between the bottom of the two goalposts, when an extra foot of rope is
added. How high can the rope be lifted in the middle of the field?

A) Less than one inch off the ground.
B) Just high enough to crawl under.
C) Just high enough to walk under.
D) High enough to drive a truck under.
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A rope of length 361 feet is tied between goalposts 360 feet apart.

How high can we lift the rope in the middle of the field?

The answers to these questions are given below. I think the first two
answers are pretty intuitive, but the other two answers will surprise
most people. All of the answers will be explained later in the chapter.

Answer 1. A. For any given perimeter, to maximize the area of the
rectangle, you should let all sides have equal length. Thus, the optimal
shape will be a square.

Answer 2. A. Choosing the point A above the midpoint of X and Y
will create the triangle XAY that has smallest perimeter.

Answer 3. D. All triangles will have the same area.
Answer 4. D. At the midpoint of the field, the rope can be lifted

more than 13 feet in the air—high enough for most trucks to fit under.
We can explain the first answer using simple algebra. For a rectangle

with top and bottom lengths b (b as in base) and left and right lengths
h (h as in height), the perimeter of the rectangle is 2b + 2h, which is the
sum of the lengths of all four sides. The area measures what can fit into
the rectangle and is the product bh. (We’ll say more about area later.)
Since the perimeter is required to be 52 feet, we have 2b + 2h = 52, or
equivalently

b+ h = 26

And since h = 26− b, the area bh that we wish to maximize is equal to

b(26− b) = 26b− b2

What value of b maximizes this quantity? We’ll see an easy way to do
this with calculus in Chapter 11. But we can also find b by using the
technique of completing the square, presented in Chapter 2. Notice that

26b− b2 = 169− (b2 − 26b+ 169) = 169− (b− 13)2

is the area of our rectangle when base b is chosen. When b = 13 our
rectangle has area 169− 02 = 169. When b �= 13, our area is

169− (something not equal to 0)2
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Since we are subtracting a positive quantity from 169, this will always
be less than 169. Consequently, the area of the rectangle is maximized
when b = 13 and h = 26− b = 13. One of the amazing things about
geometry is that the fact that the farmer has 52 feet of fence is irrelevant.
To maximize the area of a rectangle with any given perimeter p, the
same technique can be used to show that the optimal shape will be a
square, where all sides are of length p/4.

In order to explain the other problems, we need to first look at some
seemingly paradoxical results and explore some classics of geometry.
Why should a triangle have 180 degrees? What is the Pythagorean the-
orem all about? How can you tell when two triangles will have the same
shape, and why should we care?

Geometry Classics

The subject of geometry goes back to the ancient Greeks. The name
geometry comes from the Greek words for “earth” (geo) and “measure-
ment” (metria), and indeed geometry’s original uses were for the study
of earthly measurements in surveying and construction, and for heav-
enly applications such as astronomy. But the ancient Greeks were mas-
ters of deductive reasoning and developed the subject into the art form
that it is today. All of the results of geometry that were known at the
time (around 300 BC) were compiled by Euclid into The Elements, which
became one of the most successful textbooks of all time. This book intro-
duced the ideas of mathematical rigor, logical deduction, the axiomatic
method, and proofs, which are still utilized by mathematicians.

Euclid began with five axioms (also known as postulates), which are
statements that we are supposed to accept as common sense. And once
you accept these axioms, then you can, in principle, derive all geometri-
cal truths from them. Here are Euclid’s five axioms. (Actually, he stated
the fifth axiom a little differently, but our axiom is equivalent to it.)

Axiom 1. Given any two points, we can connect them with a unique
line segment.

Axiom 2. Line segments can be extended indefinitely in both direc-
tions to create lines.

Axiom 3. Given any points O and P, we can draw a unique circle,
centered at O, where P is on the circle.

Axiom 4. All right angles measure 90 degrees.
Axiom 5. Given a line � and a point P not on the line, there exists

exactly one line through P that is parallel to �.
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Aside
I should clarify that in this chapter we are working with plane geome-
try (also referred to as Euclidean geometry), where it is assumed that we
are working on a flat surface, such as the x-y plane. But if we change
some of the axioms, we can still get interesting and useful mathemati-
cal systems, like spherical geometry, which looks at points on a sphere.
In spherical geometry, the “lines” are circles of maximum circumference
(called great circles), and as a consequence, all lines must intersect some-
where, so parallel lines don’t exist. If axiom 5 is changed so that there are
always at least two different lines through P that are parallel to �, then we
get something called hyperbolic geometry, which has beautiful theorems
all its own. Many of the brilliant prints created by the artist M. C. Escher
were based on this type of geometry. The image below was created by
Douglas Dunham using the rules of hyperbolic geometry, and was used
with permission.
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As it happens, there are other axioms that Euclid left out, and some
of them will be mentioned as needed. Since this chapter is not intended
to replace an entire geometry textbook, we won’t try to define and prove
everything from the ground up. I will assume that you have an intuitive
idea about the meaning of points, lines, angles, circles, perimeters, and
areas, and I will try to keep jargon and notation to a minimum, so we
can concentrate on the interesting ideas of geometry.

For example, I will assume that you already know, or are willing
to accept, that a circle has 360 degrees, denoted 360◦. The measure of
an angle is some number between 0◦ and 360◦. Think of the hands of
a clock, joined at the center of a circle. At 1 o’clock, the hands indicate
1/12th of the circle, so they form an angle of 30◦. At 3 o’clock, the hands
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The angles above have measures 30◦, 90◦, and 180◦

indicate one-quarter of the circle, so they form a 90◦ angle. Angles of
90 degrees are called right angles, and the lines or segments that form
them are called perpendicular. A straight line, such as at 6 o’clock, has
an angle of 180 degrees.

Here’s one piece of useful notation. The line segment connecting
points A and B is denoted by AB, and its length has the bar omitted, so
the length of AB is AB.

When two lines cross they create four angles, as in the figure on
the following page. What can we say about these angles? Notice that
adjacent angles (like a and b) together form a straight line, which has
180◦. Thus, angles a and b must add up to 180◦. Such angles are called
supplementary.
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a
b

c
d

When two lines cross, the adjacent angles sum to 180◦.

The non-adjacent angles (called vertical angles) are equal.

Here angles a and c form a vertical angle pair, as do angles b and d.

This property holds for every other adjacent pair of angles. That is,

a+ b = 180◦

b+ c = 180◦

c+ d = 180◦

d+ a = 180◦

Subtracting the second equation from the first equation tells us that
a− c = 0. That is,

a = c

And subtracting the third equation from the second equation gives us

b = d

When two lines cross, the non-adjacent angles are called vertical an-
gles. We have just proved the vertical angle theorem: vertical angles
are equal.

Our next goal is to prove that the sum of the angles in any triangle
is 180 degrees. To do this, we need to first say a few things about paral-
lel lines. We say that two different lines are parallel if they never cross.
(Remember that lines extend infinitely in both directions.) The figure
opposite shows two parallel lines, �1 and �2, and a third line �3 that is
not parallel to them, and therefore crosses the lines at points P and Q re-
spectively. If you look at the picture, it appears that line �3 cuts through
lines �1 and �2 at the same angle. That is, we believe that a = e. We call
angles a and e corresponding angles. (Other examples of corresponding
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angles are angles b and f , angles c and g, and angles d and h.) It sure
seems that corresponding angles should always be equal, yet this can’t
actually be proved as a consequence of the original five axioms. Thus,
we need a new axiom.

�1

�2

�3

ab
c d

ef
g h

Corresponding angles are equal. Here a = e, b = f , c = g, and d = h.

Corresponding angle axiom: Corresponding angles are equal.
When combined with the Vertical Angle Theorem, this says that in

the figure above, we must have

a = c = g = e

b = d = h = f

Math books give special names for some of the equal angle pairs
above. For example, angles a and g, forming a Z pattern, are called
alternate interior angles. Thus, we’ve shown that any angle is equal to
its vertical angle, corresponding angle, and alternate interior angle. We
now use this result to prove a fundamental theorem of geometry.

Theorem: For any triangle, the sum of its angles is 180 degrees.
Proof: Consider a triangle ABC like the one on the next page, with

angles a, b and c. Now draw a line through the point B that is parallel
to the line going through A and C.

Angles d, b, and e form a straight line, so d+ b+ e = 180◦. But notice
that angles a and d are alternate interior angles, as are angles c and e.
Thus d = a and e = c, so a + b + c = 180◦, as desired.
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d b e

a c

B

A C

Why does a+ b+ c = 180◦?

Aside
The 180◦ theorem for triangles is an essential fact of plane geometry, but
it need not hold for other geometries. For example, consider drawing a
triangle on a globe, starting at the north pole, going down to the equator
along any longitudinal line, turning right at the equator, going around
a quarter of the earth, then turning right again until you return to the
north pole. This triangle would actually contain three right angles and
sum to 270◦. In spherical geometry, the sum of the angles of triangles is
not constant, and the extent to which the sum of the angles exceeds 180◦
is directly proportional to the area of the triangle.

In geometry classes, much attention is paid to proving that various
objects are congruent, which means that by sliding, rotating, or flipping
one object, we can obtain the other object. For example, the triangles
ABC and DEF pictured below are congruent, since we can slide triangle
DEF so that it perfectly overlaps triangle ABC. In our figures, when two
sides (or angles) have the same number of hash marks, this indicates
that they have same length (or measure).

F

D

EC

A

B

Congruent triangles

We indicate this with the ∼= symbol by writing ABC ∼= DEF. This
is equivalent to saying that the lengths and angles match up perfectly.
Specifically, the side lengths AB, BC, and CA are respectively equal to
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DE, EF, and FD, and the angles associated with A, B, and C are respec-
tively equal to the angles D, E, and F. We have marked this in the fig-
ure by putting the same symbol in angles that are equal, and similarly
marked sides of the triangle that are equal.

Once you know that some of the sides and angles are equal, then the
rest can follow automatically. For instance, if you know that all three
sides are equal, and that two pairs of angles are equal (say ∠A = ∠D
and ∠B = ∠E), then the third pair of angles must also be equal, and
so the triangles must be congruent. However, we don’t even need all
of this information. Once you know that two of the side lengths are
equal, say AB = DE and AC = DF, and you know that the angles
between them are equal, here ∠A = ∠D, then everything else is forced:
BC = EF, ∠B = ∠E, and ∠C = ∠F. We call this the SAS axiom, where
SAS stands for “side-angle-side.”

The SAS axiom is not a theorem, since it cannot be proved by the
preceding axioms. But once we accept it, we can rigorously prove other
useful theorems like SSS (side-side-side), ASA (angle-side-angle), and
AAS (angle-angle-side). There is not an analogous theorem called SSA
(or its embarrassing backward namesake) since the common angle must
be between the two equal sides to ensure congruence. The theorem SSS
is most intriguing, since it says that if two triangles have equal side
lengths then they must have equal angles as well.

Let’s apply SAS to prove the important isosceles triangle theorem. A
triangle is isosceles if two of its sides have the same length. While we’re
at it, let’s mention a few more types of triangles. An equilateral triangle
is a triangle where all three sides have the same length. A triangle with
a 90◦ angle is called a right triangle. If all angles of the triangle are less
than 90◦, then we have an acute triangle. If the triangle has an angle that
is more than 90◦, then it is called an obtuse triangle.

Equilateral triangle, acute triangle, right triangle, and obtuse triangle
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Isosceles triangle theorem: If ABC is an isosceles triangle with equal
side lengths AB = AC, then the angles opposite these sides must also
be equal.

A

CB

Isosceles triangle theorem: If AB = AC, then ∠B = ∠C

Proof: Begin by drawing a line from A that splits ∠A into two equal
angles, as in the figure below. (This is called the angle bisector of A.)
Let’s say it intersects segment BC at point X.

A

CB
X

The isosceles triangle theorem can be proved by drawing an angle bisector and then

applying the side-angle-side axiom to the newly created triangles

We claim that triangles BAX and CAX are congruent. This is a con-
sequence of SAS since BA = CA (by isosceles assumption), ∠BAX =
∠CAX (because of the angle bisector), and AX = AX. (No, that’s not a
typo—AX appears in the two triangles we are comparing and it has the
same length in both of them!) And since BAX ∼= CAX, the other sides
and angles must be equal too. Specifically, ∠B = ∠C, which was our
goal.
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Aside
The isosceles triangle theorem can also be proved using the SSS theorem.
For this proof, let M denote the midpoint of BC, where BM = MC. Then
draw the line segment AM. Like in the previous proof, triangles BAM
and CAM are congruent, since BA = CA (isosceles), AM = AM, and
MB = MC (midpoint). Thus, by SSS, BAM ∼= CAM, so their respective
angles are also equal. In particular, ∠B = ∠C, as desired.

As a result of congruence, it follows that ∠BAM = ∠CAM, so
the segment AM is also the angle bisector. Moreover, since ∠BMA =
∠CMA and since these equal angles sum to 180◦, they must both be 90◦.
So in an isosceles triangle, the angle bisector of A is also the perpendicular
bisector of BC.

By the way, the converse of the isosceles triangle theorem is also true.
That is, if ∠B = ∠C, then AB = AC. This can be proved by drawing the
angle bisector from A to point X, as in the original proof. Now we claim
that BAX ∼= CAX by AAS since ∠B = ∠C (by assumption), ∠BAX =
∠CAX (angle bisector), and AX = AX. Thus, AB = AC, so the triangle
is isosceles.

In an equilateral triangle, where all sides are equal, we can apply the
previous theorem to all three pairs of sides to see that all three angles
are also equal. Thus, since the three angles must sum to 180◦, we have
the following:

Corollary: In an equilateral triangle, all angles must be 60◦.
According to the SSS theorem, if two triangles ABC and DEF have

matching sides (AB = DE, BC = EF, CA = FD), then they must also
have matching angles (∠A = ∠D,∠B = ∠E,∠C = ∠F). Is the converse
statement true? If ABC and DEF have matching angles, then must they
have equal sides? Certainly not, as seen in the picture below.

C

A

B F

D

E

Similar triangles have matching angles and proportional sides

Two triangles with the same angle measurements are called similar.
If two triangles ABC and DEF are similar (denoted�ABC ∼ �DEF or
just ABC ∼ DEF), then ∠A = ∠D, ∠B = ∠E, ∠C = ∠F. Essentially,
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similar triangles are just scaled versions of one another. So if ABC ∼
DEF, then the sides must be scaled by some positive factor k. That is,
DE = kAB, EF = kBC, and FD = kCA.

Let’s apply what we have learned so far to answer question 2 from
the beginning of the chapter. Recall that we started with two parallel
lines with segment XY on the lower line. Our goal was to find a point P
on the upper line so that triangle XYP has the smallest possible perime-
ter. We claimed that the following was true:

Theorem: The point P on the upper line that minimizes the perime-
ter of XYP is directly above the midpoint of XY.

Although this problem could be solved using tricky calculus, we
will see how geometry allows us to solve the problem with just a little
bit of “reflection.” (The proof that follows is interesting, but somewhat
long, so feel free to skim or skip it.)

Proof: Let P be any point on the upper line, and let Z denote the
point on the upper line that is directly above Y. (More precisely, the
point Z is placed so that it is on the line containing Y, and YZ is per-
pendicular to both the upper and lower lines. See the figure below.)
Let Y′ be the point on the perpendicular line such that Y′Z = ZY. In
other words, if the upper line were a big mirror, then Y′ would be the
reflection of Y through the point Z.

I claim that triangles PZY and PZY′ are congruent. That’s because
PZ = PZ, ∠PZY = 90◦ = ∠PZY′, and ZY = ZY′, so the triangles are
congruent by SAS. Consequently, PY = PY′, which we can exploit.

X Y

Z

Y         '

P

Since triangles PZY and PZY ′ are congruent (by SAS), we must have PY = PY ′
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The perimeter of triangle YXP is the sum of the three lengths

Y X +XP + PY

and since we have shown that PY = PY′, the perimeter also equals

Y X +XP + PY ′

Now, the length YX does not depend on P, so our problem reduces to
finding the point P that will minimize XP + PY′.

Notice that the line segments XP and PY′ form a crooked path from
X to Y′. Since the shortest distance between two points is a straight line,
the optimal point P∗ can be found by drawing a straight line from X to
Y′; P∗ is the point where this line intersects the upper line. See the figure
below. So why aren’t we done? To complete the proof we need to show
that P∗ is directly above the midpont of XY.

X Y

Y         '

P     *

M

Z

Triangles MXP ∗ and Y XY ′ are similar with scale factor 2

Let M denote the point directly below P∗ (so that P∗M is perpendic-
ular to XY). Since the upper and lower lines are parallel, the lengths
P∗M and ZY must be equal. (This makes intuitive sense since par-
allel lines have a constant distance between them, but it can also be
proved by drawing the segment MZ and verifying that triangles MYZ
and ZP∗M are congruent by AAS.)

To prove that M is the midpoint of XY, we first prove that triangles
MXP∗ and YXY′ are similar. Notice that ∠MXP∗ and ∠YXY′ are the
same angle, ∠P∗MX = ∠Y′YX since they are both right angles, and
once we have two matching angles, then the third angle must match
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as well, since the sum of the angles is 180◦. What is the scale factor
between these similar triangles? By construction, the length

Y Y ′ = Y Z + ZY ′ = 2Y Z = 2MP ∗

so the scale factor is 2. Consequently, the length XM is half the length
of XY, and is therefore the midpoint of XY.

Summarizing, we have shown that the point P∗ on the upper line
that minimizes the perimeter of triangle XYP lies directly above the
midpoint of XY.

Sometimes geometry problems can be solved using algebra. For ex-
ample, suppose the line segment AB is drawn on the plane where A has
coordinates (a1, a2) and B has coordinates (b1, b2). Then the midpoint
M, which is halfway between A and B, has coordinates

M =

(
a1 + b1

2
,
a2 + b2

2

)

as illustrated below. For example, if A = (1, 2) and B = (3, 4), then the
midpoint of AB is M = ((1 + 3)/2, (2 + 4)/2) = (2, 3).

1 2 3 4 5

1

2

3

4

5

0

y

x

A = (1, 2)

B = (3, 4)

M = (2, 3)

The midpoint of a line segment can be found by taking the average of its endpoints

Let’s use this idea to prove a useful fact about triangles. Draw a
triangle, then connect the midpoints of any two sides with a line seg-
ment. Do you notice anything interesting? The answer is given in the
following theorem.
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Triangle midpoint theorem: Given any triangle ABC, if we draw a
line segment connecting the midpoint of AB with the midpoint of BC,
then that line segment will be parallel to the third side AC. Moreover,
if the length of AC is b, then the segment connecting the midpoints will
have length b/2.

Proof: Place the triangle ABC on the plane in such a way that point
A is at the origin (0, 0) and side AC is horizontal so that point C is at the
point (b, 0), as shown below. Suppose that point B is located at (x, y).
Then the midpoint of AB has coordinates (x/2, y/2) and the midpoint
of BC will have coordinates ((x+ b)/2, y/2). Since both midpoints have
the same y-coordinate, the line segment connecting them must be hori-
zontal, so it will be parallel to side AC. Moreover the length of this line
segment is (x + b)/2− x/2 = b/2, as desired.

0

y

x

A = (0, 0)

B = (x, y)

C = (b, 0)

(x
2
, y

2
) (x+b

2
, y

2
)

When the midpoints of two sides of a triangle are connected by a line segment, then that

segment is parallel to the third side and has half of its length

The triangle midpoint theorem reveals the secret to the magic trick
at the beginning of this chapter. Starting with quadrilateral ABCD, we
connected the midpoints to form a second quadrilateral EFGH, which
always turned out to be a parallelogram. Let’s see why this works. If
we imagine a diagonal line drawn from vertex A to vertex C, then this
creates two triangles ABC and ADC, as shown on the next page.
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C

B

A

D

H

E

F

G

By the triangle midpoint theorem, EF and GH are both parallel to AC

Applying the triangle midpoint theorem to triangles ABC and ADC,
we find that EF will be parallel to AC, and AC will be parallel to GH.
Thus EF is parallel to GH. (Moreover, EF and GH have the same length,
since they are both half the length of AC.) By the same logic, by imag-
ining the diagonal line from B to D, we get that FG and HE are parallel
and have the same length. Thus EFGH is a parallelogram.

Many of the previous theorems dealt with triangles, and indeed in
geometry a great deal of time is spent studying triangles. Triangles are
the simplest of polygons, followed by quadrilaterals (4-sided polygons),
pentagons (5-sided polygons), and so on. A polygon with n sides is
sometimes called an n-gon. We have proved that the sum of the an-
gles of any triangle is 180◦. What can be said of polygons with more
than three sides? A quadrilateral, such as a square, rectangle, or par-
allelogram, has 4 sides. In a rectangle, all four angles have a measure
of 90◦, so the sum of the angles must be 360◦. The next theorem shows
that is true for any quadrilateral. You might call this a 4-gon conclusion.
(Sorry, I couldn’t resist!)

Theorem: The sum of the angles of a quadrilateral is 360◦.
Proof: Take any quadrilateral with vertices A, B, C, D like the one on

the next page. By drawing a line segment from A to C, the quadrilateral
is broken into two triangles, each of which has an angle sum of 180◦.
Hence the angles of the quadrilateral sum to 2× 180◦ = 360◦.
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A
B

C

D

The sum of the angles of a quadrilateral is 360◦

One more theorem should reveal the general pattern.
Theorem: The sum of the angles of a pentagon is 540◦.
Proof: Consider any pentagon with vertices A, B, C, D, E like the one

below. By drawing a line segment from A to C, the pentagon is broken
into a triangle and a quadrilateral. We know that the angles of triangle
ABC sum to 180◦ and by our 4-gon conclusion, the sum of the angles of
quadrilateral ACDE is 360◦. Hence the sum of the angles of a pentagon
is 180◦ + 360◦ = 540◦.

A

B

C

D

E

The sum of the angles of a pentagon is 540◦

We obtain the following theorem by repeating this argument for an
n-gon by doing a proof by induction or by creating n − 2 triangles by
drawing line segments from A to all other vertices.

Theorem: The sum of the angles of an n-gon is 180(n− 2) degrees.
Here’s a magical application of this theorem. Draw an octagon (an

8-sided polygon) and put 5 points anywhere inside it. Then connect the
vertices and points in such a way that the only shapes inside the octagon
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are triangles. (This is called a triangulation.) Below are two examples of
different triangulations, with one empty for you to try yourself.

In both of my examples, we ended up with exactly 16 triangles. In
the third octagon, no matter where you place the 5 points inside it, you
should also have exactly 16 triangles, if everything was done properly.
(If you didn’t get 16 triangles, look closely at every interior region and
make sure that it has only three points. If a triangular-looking region
has four points, then you need to insert another line segment to prop-
erly split it into two triangles.) The explanation for this comes from the
following theorem.

Theorem: Any triangulation of a polygon with n sides and p interior
points will contain exactly 2p + n− 2 triangles.

In the previous example, n = 8 and p = 5, so the theorem predicts
exactly 10 + 8− 2 = 16 triangles.

Proof: Suppose the triangulation has exactly T triangles. We prove
that T = 2p + n − 2 by answering the following counting question in
two ways.

Question: What is the sum of the angles of all of the triangles?
Answer 1: Since there are T triangles, each with an angle sum of

180◦, the sum must be 180T degrees.
Answer 2: Let’s break the answer into two cases. The angles sur-

rounding each of the p interior points must go all around the circle, so
they contribute 360p to the total. On the other hand, from our previ-
ous theorem, we know that the sum of the angles on the n-gon itself is
180(n− 2) degrees. Hence the sum of all the angles is 360p+ 180(n− 2)
degrees.

Equating our two answers gives us

180T = 360p+ 180(n− 2)
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Dividing both sides by 180 gives us

T = 2p+ n− 2

as predicted. �

Perimeters and Areas

The perimeter of a polygon is the sum of the lengths of its sides. For
example, in a rectangle with a base of length b and a height of length h,
its perimeter would be 2b+ 2h, since it has two sides of length b and two
sides of length h. What about the area of the rectangle? We define the
area of a 1-by-1 square (the unit square) to have area 1. When b and h are
positive integers, like in the figure below, we can break up the region
into bh 1-by-1 squares, so its area is bh. In general, for any rectangle
with base b and height h (where b and h are positive, but not necessarily
integers), we define its area to be bh.

b = 5

h     = 3

A rectangle with base b and height h has perimeter 2b+ 2h and area bh
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Aside
Throughout this chapter, we have used algebra to help us explain geom-
etry. But sometimes geometry can help us explain algebra too. Consider
the following algebra problem. How small can the quantity x + 1

x be,
where x is allowed to be any positive number? When x = 1, we get
2; when x = 1.25, we get 1.25 + 0.8 = 2.05; when x = 2, we get 2.5.
The data seem to suggest that the smallest answer we can get is 2, and
that’s true, but how can we be sure? We’ll find a straightforward way to
answer this question with calculus in Chapter 11, but with a little clev-
erness we can solve this problem with simple geometry.

Consider the geometric object below made up of four dominos, each
with dimensions x by 1/x, strung together to form a square with a hole
in the middle of it. What is the area of the whole region, including the
hole?

x 1/x

x1/x

x

1/x

x

1/x

On the one hand, since the region is a square with side length x + 1/x,
its area must be (x + 1/x)2. On the other hand, the area of each domino
is 1, so the area of the region must be at least 4. Consequently

(x+ 1/x)2 ≥ 4

which implies that x + 1/x ≥ 2, as desired. �
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Starting with the area of a rectangle, it is possible to derive the area
of just about any geometrical figure. First and foremost, we derive the
area of a triangle.

Theorem: A triangle with base length b and height h has area 1
2 bh.

To illustrate, all three triangles shown below have the same base
length b and the same height h, and therefore they all have the same
area. This was essentially the content of question 3 at the beginning of
the chapter, and it comes as a surprise to many.

A

B

C A

B

C A

B

Cb b b

h h h

The area of a triangle with base b and height h is 1
2 bh.

This is true, regardless of whether the triangle is right-angled, acute, or obtuse.

There are three cases to consider, depending on the size of the base
angles ∠A and ∠C. If ∠A or ∠C is a right angle, then we can make
a copy of triangle ABC and put the two triangles together to form a
rectangle of area bh, as is shown below. Since triangle ABC occupies
half of the rectangle’s area, then the triangle must have area 1

2 bh, as
claimed.

A

B D

b C

h

Two right triangles of base b and height h can form a rectangle of area bh
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When ∠A and ∠C are acute angles, we offer a cute proof. Draw the
perpendicular line segment from B to AC (called an altitude of triangle
ABC), which has length h, intersecting at the point we call X, as shown
below.

A

B

Cb1 X

h

b2

AC can be split into two segments AX and XC, which have respec-
tive lengths b1 and b2, where b1 + b2 = b. And since BXA and BXC are
right triangles, then the previous case tells us that they have respective
areas 1

2 b1h and 1
2 b2h. Hence triangle ABC has area

1

2
b1h+

1

2
b2h =

1

2
(b1 + b2)h =

1

2
bh

as desired.
When angle A or C is obtuse, we get a picture that looks like this.

A

B

Cb Y

h

c

In the acute case, we expressed triangle ABC as the sum of two right
triangles. Here we express ABC as the difference of two right triangles,
ABY and CBY. The big right triangle ABY has base length b + c, so it
has area 1

2 (b + c)h. The smaller right triangle CBY has area 1
2 ch. Hence

triangle ABC has area

1

2
(b+ c)h− 1

2
ch =

1

2
bh

as desired. �
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The Pythagorean Theorem

The Pythagorean theorem, perhaps the most famous theorem of geom-
etry and indeed one of the most famous formulas in mathematics, de-
serves a section of its own. In a right triangle, the side opposite the
right angle is called the hypotenuse. The other two sides are called legs.
The right triangle below has legs BC and AC and hypotenuse AB, with
respective lengths a, b, and c.

C

B

b A

a c

Pythagorean theorem: For a right triangle with leg lengths a and b
and hypotenuse length c,

a2 + b2 = c2

There are reportedly over three hundred proofs of the Pythagorean
theorem, but we’ll present the simplest ones here. Feel free to skip some
of the proofs. My goal is that at least one of the proofs makes you smile
or say, “That’s pretty cool!”

Proof 1: In the picture on the next page, we have assembled four
right triangles to create a giant square.

Question: What is the area of the giant square?
Answer 1: Each side of the square has length a + b, so the area is

(a + b)2 = a2 + 2ab + b2.
Answer 2: On the other hand, the giant square consists of four trian-

gles, each with area ab/2, along with a tilted square in the middle with
area c2. (Why is the middle object a square? We know that all four sides
are equal and we can use symmetry to see that all four angles are equal:
if we rotated the figure 90 degrees, it would be identical, and so each
of the middle square’s angles must be the same. Since the sum of the
angles in a quadrilateral is 360 degrees, we know that each angle must
be 90 degrees.) Therefore the area is 4(ab)/2 + c2 = 2ab + c2.

Equating answers 1 and 2 gives us

a2 + 2ab+ b2 = 2ab+ c2
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b

a b

a

b

ab

a c

c

c

c

Compute the area of the big square in two different ways.

When you compare your two answers, the Pythagorean theorem pops out.

Subtracting 2ab from both sides gives us

a2 + b2 = c2

as desired. �
Proof 2: Using the same picture as above, we rearrange the triangles

as in the figure below. In the first picture the area not occupied by trian-
gles is c2. In the new picture, the area not occupied by triangles is seen
to be a2 + b2. Thus c2 = a2 + b2, as desired. �

b

a b

a

b

ab

a c

c

c

c

b

a

a

b

b

b

a

a

Compare the area of the white space in this figure and the previous one: a2 + b2 = c2

Proof 3: This time, let’s rearrange the four triangles to form a more
compact square on the opposite page with area c2. (One reason this
object is a square is that each corner is composed of ∠A and ∠B, which
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sum to 90◦.) As before, the four triangles contribute an area of 4(ab/2) =
2ab. The tilted square in the middle has area (a− b)2 = a2 − 2ab + b2.
Hence the combined area equals 2ab + (a2 − 2ab + b2) = a2 + b2, as
desired. �

c

c

c

c

c

c

a    { b

a { b

ab

a

b

The area of this figure is both c2 and a2 + b2

Proof 4: Here’s a similar proof, and by that I mean, let’s exploit what
we know about similar triangles. In right triangle ABC, draw the line
segment CD perpendicular to the hypotenuse, as shown below. Notice

C

B

A

D

Both of the two smaller triangles are similar to the large one

that the triangle ADC contains both a right angle and ∠A, so its third
angle must be congruent to ∠B. Likewise, triangle CDB has a right an-
gle and ∠B, so its third angle must be congruent to ∠A. Consequently,
all three triangles are similar:

�ACB ∼ �ADC ∼ �CDB

Note that the order of the letters matters. We have ∠ACB = ∠ADC =
∠CDB = 90◦ are all right angles; likewise, ∠A = ∠BAC = ∠CAD =
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∠BCD, and ∠B = ∠CBA = ∠DCA = ∠DBC. Comparing side lengths
from the first two triangles gives us

AC/AB = AD/AC ⇒ AC2 = AD×AB

Comparing side lengths from the first and third triangles gives us

CB/BA = DB/BC ⇒ BC2 = DB ×AB

Adding these equations, we have

AC2 +BC2 = AB × (AD+DB)

And since AD + DB = AB = c, we have our desired conclusion:

b2 + a2 = c2 �
The next proof is purely geometrical. It uses no algebra, but it does

require some visualization skills.
Proof 5: This time we start with two squares, with areas a2 and b2,

placed side by side, as below. Their combined area is a2 + b2. We can
dissect this object into two right triangles (with side lengths a and b
and hypotenuse length c) and a third strange-looking shape. Note that
the angle at the bottom of the strange shape must be 90◦ since it is sur-
rounded by ∠A and ∠B. Imagine a hinge placed in the upper left corner
of the big square and the upper right corner of the smaller square.

a b b

a

a

a c

b b
c

b b

a a

These two squares with area a2 + b2 can be transformed into . . .

Now imagine that the bottom left triangle is “swiveled” 90◦ in a
counter-clockwise direction so it rests on the outside of the top of the
large square. Then swivel the other triangle clockwise 90◦ so that the
right angles match up and it sits comfortably in the corner made by the
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a

a

c

b

b

a

a

b

bc

c

c

c

c

c b

a

b

a

b

. . . a square of area c2!

two squares, as shown in the figure above. The end result is a tilted
square of area c2. Thus a2 + b2 = c2, as promised. �

We can apply the Pythagorean theorem to explain question 4 about
the football field at the beginning of the chapter with a rope of length
361 feet connecting two goalposts that are 360 feet apart.

h
180.5

180

By the Pythagorean theorem, h2 + 1802 = 180.52

The distance from either goalpost to the middle of the field is 180
feet. After the rope is raised to its highest point, h, we create a right
triangle, as shown below, with leg length 180 and hypotenuse 180.5.
Thus by the Pythagorean theorem, and a few lines of algebra, we get

h2 + 1802 = 180.52

h2 + 32,400 = 32,580.25

h2 = 180.25

h =
√

180.25 ≈ 13.43 feet

Hence the rope would be high enough that most trucks could drive
under it!
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Geometrical Magic

Let’s end this chapter, as it began, with a magic trick based on geometry.
Most proofs of the Pythagorean theorem involve rearranging the pieces
of one geometrical object to obtain another with the same area. But con-
sider the following paradox. Starting with an 8-by-8 square, as pictured
below, it looks like we can cut it into four pieces (all of which have Fi-
bonacci number lengths of 3, 5, or 8!), then reassemble those pieces to
create a 5-by-13 rectangle. (Try this yourself!) But this should be impos-
sible, since the first figure has area 8× 8 = 64, while the second figure
has area 5× 13 = 65. What’s going on?

AB

C

D A
B

C

D

3 5

3

5

53

8

5

5 8

5

8 5

Can a square of area 64 be reassembled to create a rectangle of area 65?

The secret to this paradox is that the diagonal “line” of the 5-by-
13 rectangle is not really a straight line. For example, the triangle la-
beled C has a hypotenuse with slope 3/8 = 0.375 (since its y-coordinate
increases by 3 as its x-coordinate increases by 8), whereas, the top of
the figure labeled D (a trapezoid) has a slope of 2/5 = 0.4 (since its y-
coordinate increases by 2 as its x-coordinate increases by 5). Since the
slopes are different, it doesn’t form a straight line, and the same phe-
nomenon occurs with the bottoms of the upper trapezoid and triangle
as well. Hence, if we actually looked closely at the rectangle, like in the
figure on the opposite page, we’d see a little bit of extra space between
the two “almost diagonal lines.” And in that space, spread out over a
large region, is exactly one extra unit of area.
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D

B

C

A

The rectangle contains one unit of extra area spread out across the diagonal

In this chapter, we derived many important properties of triangles,
squares, rectangles, and other polygons, all of which are created with
straight lines. The investigation of circles and other curved objects will
require more sophisticated geometric ideas through trigonometry and
calculus, all of which will depend on the magical number π.
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Chapter 8

The Magic of π

C H A P T E R  E I G H T

The Magic of ¼

3.141592653589…

C H A P T E R  E I G H T

The Magic of ¼

3.141592653589…

Circular Reasoning

We began the last chapter with some problems designed to challenge
your geometric intuition pertaining to rectangles and triangles, ending
with a problem that involved a rope connecting two goalposts at the
opposite ends of a football field. In this chapter our focus will be on
circles, and we’ll begin with a problem that starts by putting a rope
around the Earth!

Question 1. Imagine that a rope is
about to be tied around the Earth’s equa-
tor (approximately 25,000 miles long).
Before tying the ends together, an extra
10 feet of rope is added. If we now some-
how lift the rope so that it hovers over
each point of the equator by the same
distance, about how high will the rope
be?

A) Less than one inch off the ground.
B) Just high enough to crawl under.
C) Just high enough to walk under.
D) High enough to drive a truck under.

181
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Question 2. Two points X and Y are fixed on a circle, as in the figure
below. We wish to choose a third point Z on the circle somewhere on
the major arc (the long arc between X and Y, not the short arc). Where
should we choose the point Z to maximize the angle ∠XZY?

A) Point A (opposite the midpoint of X and Y).
B) Point B (the reflection of X through the center of the circle).
C) Point C (as close to X as we can).
D) It doesn’t matter. All angles will have the same measure.

X

Y

A

B

C

Which point on the major arc between X and Y results in largest angle? Is it angle

∠XAY ,∠XBY ,∠XCY , or are they all the same?

To answer these questions, we need to improve our understanding
of circles. (Well, I suppose you don’t need circles to read the answers.
The answers are B and D, respectively. But in order to appreciate why
these answers are true, we need to understand circles.) A circle can be
described by a point O and a positive number r so that every point on
the circle has a distance r away from O, as shown on the opposite page.
The point O is called the center of the circle. The distance r is called the
radius of the circle. As a mathematical convenience, a line segment OP
from O to a point P on the circle is also called a radius.

Circumference and Area

For any circle, its diameter D is defined to be twice its radius, and is the
distance across the circle. That is,
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P

O

r

Q

r

A circle with center O, radius r, and diameter D = 2r

D = 2r

The perimeter of a circle (its distance around) is called the circle’s
circumference, denoted by C. From the picture, it is clear that C is bigger
than 2D, since the distance along the circle from P to Q is bigger than D
and the distance from Q back to P is also bigger than D. Consequently,
C > 2D. If you eyeball it, you might even convince yourself that C is a
little bigger than 3D. (But to see it clearly, you might need to wear 3-D
glasses. Sorry.)

Now, if you wanted to go about comparing a circular object’s cir-
cumference to its diameter, you might wrap a string around the circum-
ference. Then divide the length you measured by the diameter. You’ll
find, regardless of whether you are measuring a coin, the base of a glass,
a dinner plate, or a giant hula hoop, that

C/D ≈ 3.14

We define the number π (pi, pronounced “pie”; the Greek letter for
the “p” sound) to be the exact constant that represents the ratio of a
circle’s circumference to its diameter. That is,

π = C/D
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and π is the same for every circle! Or if you prefer, you can write this
as a formula for the circumference of any circle. Given the diameter D
or radius r of any circle, we have

C = πD

or
C = 2πr

The digits of π begin as follows:

π = 3.14159 . . .

We will provide more digits of π and discuss some of its numerical
properties later in this chapter.

Aside
Interestingly, the human eye is not so good at estimating circumferences.
For example, take any large drinking glass. What do you think is bigger,
its height or its circumference? Most people think the height is bigger,
but it’s usually the circumference. To convince yourself, put your thumb
and middle finger on opposite sides of a glass to determine its diameter.
You will likely see that your glass is less than 3 diameters tall.

We can now answer question 1 from the beginning of the chapter. If
we think of the equator of the Earth as a perfect circle with circumfer-
ence C = 25,000 miles, then its radius must be

r =
C

2π
=

25,000

6.28
≈ 4000 miles

But we don’t actually need to know the value of the radius to answer
this question. All we really need to know is how much the radius will
change if we increase the circumference by 10 feet. Adding 10 feet to
the circumference will create a slightly larger circle with a radius that is
larger by exactly 10/2π = 1.59 feet. Hence there would be enough
space beneath the rope that you could crawl under it (but not walk
under it, unless you were quite a limbo dancer!). What is especially
surprising about this problem is that the answer of 1.59 feet does not
depend at all on the Earth’s actual circumference. You would get the
same answer with any planet or with a ball of any size! For example,
if we have a circle with circumference C = 50 feet, then its radius is
50/(2π) ≈ 7.96. If we increase the circumference by 10 feet, then the
new radius is 60/(2π) ≈ 9.55, which is bigger by about 1.59 feet.
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Aside
Here’s another important fact about circles.

Theorem: Let X and Y be opposite points on a circle. Then for any
other point P on the circle, ∠XPY = 90◦.

For example, in the figure below, angles ∠XAY, ∠XBY, and ∠XCY
are all right angles.

A

B

C

YX Or r

Proof: Draw the radius from O to P, and suppose that ∠XPO = x
and ∠YPO = y. Our goal is to show that x + y = 90◦.

yx

YX

P

O
x y

r

r r

Since OX and OP are radii of the circle, they both have length r, and
therefore triangle XPO is isosceles. By the isosceles triangle theorem,
∠OXP = ∠XPO = x. Similarly, OY is a radius and ∠OYP = ∠YPO = y.
Since the angles of triangle XYP must sum to 180◦, we have 2x + 2y =
180◦, and therefore x + y = 90◦, as desired. �

The theorem above is a special case of one of my favorite theorems
from geometry — the central angle theorem, described in the next aside.
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Aside
The answer to question 2 from the beginning of the chapter is revealed
by the central angle theorem. Let X and Y be any two points on the circle.
The major arc is the longer of the two arcs connecting X and Y. The
shorter arc is called the minor arc. The central angle theorem says that the
angle ∠XPY will be the same for every point P on the major arc between
X and Y. Specifically, angle ∠XPY will be half of the central angle ∠XOY.
If Q is on the minor arc from X to Y, then ∠XQY = 180◦ −∠XPY.

O

X
Y

P

100°

50°

Q

130°

For example, if ∠XOY = 100◦, then every point P on the major arc from
X to Y has ∠XPY = 50◦, and every point Q on the minor arc from X to
Y has ∠XQY = 130◦.

Once we know the circumference of a circle, we can derive the im-
portant formula for the area of a circle.

Theorem: The area of a circle with radius r is πr2.
This is a formula that you probably had to memorize in school, but

it is even more satisfying to understand why it is true. A perfectly rig-
orous proof requires calculus, but we can give a pretty convincing ar-
gument without it.

Proof 1: Think of a circle as consisting of a bunch of concentric rings,
as pictured on the following page. Now cut the circle from the top to
its center, as shown, then straighten out the rings to form an object that
looks like a triangle. What is the area of this triangular object?
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2¼r

r

r

r

The area of a circle with radius r is πr2

The area of a triangle with base b and height h is 1
2 bh. For the

triangle-like structure the base is 2πr (the circumference of the circle)
and the height is r (the distance from the center of the circle to the bot-
tom). Since the peeled circle becomes more and more triangular as we
use more and more rings, then the circle has area

1

2
bh =

1

2
(2πr)(r) = πr2

as desired. �
For a theorem so nice, let’s prove it twice! The last proof treated the

circle like an onion. This time we treat the circle like a pizza.
Proof 2: Slice the circle into a large number of equally sized slices,

then separate the top half from the bottom half and interweave the
slices. We illustrate with 8 slices, then with 16 slices, on the next page.

As the number of slices increases, the slices become more and more
like triangles with height r. Interlacing the bottom row of triangles
(think stalagmites) with the top row of triangles (stalactites) gives us
an object that is very nearly a rectangle with height r and base equal to
half the circumference, namely πr. (To make it look even more like a
rectangle, instead of a parallelogram, we can chop the leftmost stalac-
tite in half and move half of it to the far right.) Since the sliced circle
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r

r

¼r

¼r

Another proof (by pizza pi?) that the area is πr2

becomes more and more rectangular as we use more and more slices,
the circle has area

bh = (πr)(r) = πr2

as predicted. �
We often want to describe the graph of a circle on the plane. The

equation to do so for a circle of radius r centered at (0, 0) is

x2 + y2 = r2

as seen in the graph on the next page. To see why this is true, let (x, y)
be any point on the circle, and draw a right triangle with legs of length
x and y and hypotenuse r. Then the Pythagorean theorem immediately
tells us that x2 + y2 = r2.
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(x,y)

y

x

r

A circle of radius r centered at (0, 0) has formula x2 + y2 = r2 and area πr2

When r = 1, the above circle is called the unit circle. If we “stretch”
the unit circle by a factor of a in the horizontal direction and by a factor
of b in the vertical direction, then we get an ellipse, like the one below.

a

b

{ a

{ b

The area of an ellipse is πab

Such an ellipse has the formula

x2

a2
+

y2

b2
= 1

and has area πab, which makes sense, because the unit circle has area
π and the area has been stretched by ab. Notice that when a = b = r,
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we have a circle of radius r and the πab area formula correctly gives us
πr2.

Here are some fun facts about ellipses. You can create an ellipse
by taking two pins, a loop of string, and a pencil. Stick two pins on a
piece of paper or cardboard and wrap the string around the pins with
a little bit of slack. Place your pencil at one part of the string and pull
the string taut so that the string forms a triangle, as in the figure below.
Then move the pencil around the two pins, keeping the string taut the
entire time. The resulting diagram will be an ellipse.

The positions of the pins are called the foci of the ellipse, and they
have the following magical property. If you take a marble or billiard
ball and place it at one focus, then hit the ball in any direction, after one
bounce off the ellipse it will head straight to the other focus.

Heavenly bodies like planets and comets travel around the sun in
elliptical paths. I can’t resist the following rhyme:

Even eclipses
Are based on ellipses!
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Aside
Interestingly, there is no simple formula for the circumference of an el-
lipse. But the mathematical genius Srinivasa Ramanujan (1887–1920) es-
tablished the following excellent approximation. The circumference of
an ellipse, as described above, is approximately

π

(
3a + 3b−

√
(3a + b)(3b + a)

)

Notice that when a = b = r, this reduces to π(6r −
√

16r2) = 2πr, the
circumference of a circle.

The number π appears in three-dimensional objects as well. Con-
sider a cylinder, such as a can of soup. For a cylinder of radius r and
height h, its volume (which measures how much room the shape takes
up) is

Vcylinder = πr2h

This formula makes sense, since we can think of the cylinder as made
up of circles with area πr2 stacked one on top of another (like a stack of
round coasters at a restaurant) to a height of h.

What is the surface area of the cylinder? In other words, how much
paint would be necessary to paint its exterior, including the top and
bottom? You do not need to memorize the answer since you can figure
it out by breaking the cylinder into three pieces. The top and bottom
of the cylinder each have an area of πr2, so they contribute 2πr2 to the
surface area. For the rest of the cylinder, cut the cylinder with a straight
cut from bottom to top and flatten the resulting object. The object will
be a rectangle with height h and base 2πr, since that’s the circumference
of the surrounding circle. Since this rectangle has area 2πrh, the total
surface area of the cylinder is

Acylinder = 2πr2 + 2πrh

A sphere is a three-dimensional object where all points are a fixed
distance away from its center. What is the volume of a sphere of radius
r? Such a sphere would fit inside a cylinder of radius r and height 2r,
so its volume must be less than πr2(2r) = 2πr3. As luck (and calculus)
would have it, the sphere occupies exactly two-thirds of that space. In
other words, the volume of a sphere is

Vsphere =
4

3
πr3
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The surface area of a sphere has a simple formula that is not so sim-
ple to derive:

Asphere = 4πr2

Let’s end this section with examples of where π appears in ice cream
and pizza. Imagine an ice cream cone with height h, and where the
circle at the top has radius r. Let s be the slant height from the tip of
the cone to any point on the circle, as shown below. (We can calculate s
from the Pythagorean theorem, since h2 + r2 = s2.)

r

hs

The cone has volume πr2h/3 and surface area πrs

Such a cone would fit inside a cylinder with radius r and height h,
so it is no surprise that the cone’s volume is less than πr2h. But it is
a surprise (and completely unintuitive without using calculus) that the
volume is exactly one-third of that number. In other words,

Vcone =
1

3
πr2h

Although we can derive the surface area without calculus, we just dis-
play it for its elegance and simplicity. The surface area of a cone is

Acone = πrs
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Finally, consider a pizza with radius z and thickness a, as shown
below. What would its volume be?

z

a

What is the volume of this pizza with radius z and thickness a?

The pizza can be thought of as an unusually shaped cylinder with
radius z and height a, so its volume must be

V = πz2a

But the answer was really staring you in the face all along, since if we
spell out the answer more carefully we get

V = pi z z a

Some surprising appearances of π

It’s no surprise to see π show up in areas and circumferences of circular
objects like the ones we have seen. But π shows up in many parts of
mathematics where it doesn’t seem to belong. Take, for example, the
quantity n!, which we explored in Chapter 4. There is nothing particu-
larly circular about this number. It is largely used for counting discrete
quantities. We know that it’s a number that grows extremely fast, and
yet there is no efficient shortcut for computing n!. For instance, comput-
ing 100,000! still requires many thousands of multiplications. And yet
there is a useful way to estimate n! using Stirling’s approximation, which
says that

n! ≈
(n

e

)n√
2πn
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where e = 2.71828 . . . (another important irrational number that we will
learn all about in Chapter 10). For instance, a computer can calculate
that to four significant figures, 64! = 1.269× 1089. Stirling’s approxima-
tion says that 64! ≈ (64/e)64

√
128π = 1.267× 1089. (Is there a shortcut

to raising a number to the 64th power? Yes! Since 64 = 26, you just start
with 64/e, and square it six times.)

The famous bell curve, pictured below, which appears throughout
statistics and all of the experimental sciences, has a height of 1/

√
2π.

We’ll say more about this curve in Chapter 10.

− 3 − 2 − 1 0 1 2 3

1/ 2¼/

0.1

0.2

0.3

0.4

The height of the bell curve is 1/
√

2π

The number π also often appears in infinite sums. It was Leonhard
Euler who first showed that when we add the squares of the reciprocals
of the positive integers, we get

1 + 1/22 + 1/32 + 1/42 + · · · = 1 + 1/4 + 1/9 + 1/16 + · · · = π2/6

And if we square each of the above terms, the sum of the reciprocals of
fourth powers turns out to be

1 + 1/16 + 1/81 + 1/256 + 1/625 + · · · = π4/90

In fact, there are formulas for the sum of reciprocals of every even power
2k, producing an answer of π2k, multiplied by a rational number.

What about powers of odd reciprocals? In Chapter 12, we will show
that the sum of the reciprocals of the positive integers is infinite. With
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odd powers bigger than 1, like the sum of the reciprocals of the cubes,

1 + 1/8 + 1/27 + 1/64 + 1/125 + · · · = ???

the sum is finite, but nobody has figured out a simple formula for the
sum.

Paradoxically, π pops up in problems pertaining to probability. For
example, if you randomly choose two very large numbers, the chance
that they have no prime factors in common is a little over 60 percent.
More precisely, the probability is 6/π2 = .6079 . . . . It is no coincidence
that this is the reciprocal of the answer to one of our earlier infinite
sums.

Digits of π

By doing your own careful measurements, you can experimentally de-
termine that π is a little bit bigger than 3, but two questions naturally
arise. Can you prove that π is near 3 without the use of physical mea-
surements? And is there a simple fraction or formula for π?

We can answer the first question by drawing a circle of radius 1,
which we know has area π12 = π. In the figure below, we have drawn
a square with sides of length 2 that completely contains the circle. Since
the area of the circle must be less than the area of the square, this proves
that π < 4.

1

1

1

60°

2

2

A geometrical proof that 3 < π < 4

On the other hand, the circle also contains a hexagon at six equally
spaced points along the circle. What is the perimeter of the inscribed
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hexagon? The hexagon can be broken into 6 triangles, each with a cen-
tral angle of 360◦/6 = 60◦. Two sides of each triangle are radii of the
circle with length 1, so the triangle is isosceles. By the isosceles trian-
gle theorem, the other two angles are equal, and must therefore also be
60◦. Hence, these triangles are all equilateral with sides of length 1. The
perimeter of the hexagon is 6, which is less than the circumference of
2π. Thus 6 < 2π, and so π > 3. Putting it all together, we have

3 < π < 4

Aside
We can restrict π to a smaller interval by using polygons with more
sides. For example, if we surround the unit circle with a hexagon in-
stead of a square, we can prove that π < 2

√
3 = 3.46. . . .

1/ 3

60°

1
2/ 3

30°

Once again, the hexagon can be subdivided into six equilateral triangles.
Each of these triangles can be subdivided into two congruent right tri-
angles. If the short leg has length x, then the hypotenuse has length 2x,
and by the Pythagorean theorem, x2 + 1 = (2x)2. Solving for x gives us
x = 1/

√
3. Consequently, the perimeter of the hexagon is 12/

√
3 = 4

√
3,

and since this is greater than the circle’s circumference, 2π, it follows that
π < 2

√
3. (Interestingly, we reach the same conclusion by comparing the

area of the circle to the area of the hexagon.)
The great ancient Greek mathematician Archimedes (287 to 212 BC)

built on this result to create inscribed and circumscribed polygons with
12, 24, 48, and 96 sides, leading to 3.14103 < π < 3.14271 and the sim-
pler looking inequality

3
10

71
< π < 3

1

7
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There are many simple ways to approximate π as a fraction. For
example,

314

100
= 3.14

22

7
= 3.142857

355

113
= 3.14159292 . . .

I particularly like the last approximation. Not only does it correctly
give π to six decimal places, but it also uses the first three odd numbers
twice: two 1s, two 3s, and two 5s, in order!

Naturally, it would be interesting to find a fraction that gave us π

exactly (where the numerator and denominators are integers; otherwise
we could simply say π = π

1 ). In 1768, Johann Heinrich Lambert proved
that such a search would be futile, by showing that π is irrational. Per-
haps it could be written in terms of square roots or cube roots of simple
numbers? For example,

√
10 = 3.162 . . . is pretty close. But in 1882,

Ferdinand von Lindemann proved that π is more than just irrational.
It is transcendental, which means that π is not the root of any polyno-
mial with integer coefficients. For example,

√
2 is irrational, but it is not

transcendental, since it is a root of the polynomial x2 − 2.
Although π cannot be expressed as a fraction, it can be expressed

as the sum or product of fractions, provided we use infinitely many of
them! For example, we will see in Chapter 12 that

π = 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

)

The formula above is beautiful and startling, yet it is not a very prac-
tical formula for calculating π. After 300 terms, we are still not any
closer to π than 22/7 is. Here’s another astounding formula, called
Wallis’s formula, where π is expressed as an infinite product, although it
also takes a long time to converge.

π = 4

(
2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · ·

)

= 4

(
1− 1

9

) (
1− 1

25

) (
1− 1

49

) (
1− 1

81

)
· · ·
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Celebrating and Memorizing π (and τ )

Because of people’s fascination with π (and as a way to test the speed
and accuracy of supercomputers), π has been calculated to trillions of
digits. We certainly don’t need to know π to that level of accuracy. With
just forty digits of π, you can measure the circumference of the known
universe to within the radius of a hydrogen atom!

The number π has developed almost a cult following. Many people
like to celebrate the number π on Pi Day, March 14 (with numeric rep-
resentation 3/14), which also happens to be the birthdate of Albert Ein-
stein. A typical Pi Day event might consist of mathematically themed
pies for display and consumption, Einstein costumes, and of course π

memorization contests. Students generally memorize dozens of digits
of π, and it is not unusual for the winner to have memorized over a hun-
dred digits. By the way, the current world record for π memorization
belongs to Chao Lu of China, who in 2005 recited π to 67,890 decimal
places! According to the Guinness Book of World Records, Lu practiced
for four years to reach this many digits, and it took him a little over
twenty-four hours to recite all the digits.

Behold the first 100 digits of π:

π = 3.141592653589793238462643383279502884197169399375

105820974944592307816406286208998628034825342117067 . . .

Over the years, people have come up with creative ways to memorize
the digits of π. One method is to create sentences where the length of
each word gives us the next digit of π. Some famous examples include
“How I wish I could calculate pi” (which yields seven digits: 3.141592)
and “How I want a drink, alcoholic of course, after the heavy lectures
involving quantum mechanics” (which provides fifteen digits).

A most impressive example was written in 1995 by Mike Keith, who
generated 740 digits in an amazing parody of Edgar Allan Poe’s poem
“The Raven.” The first stanza, along with the title, generates 42 digits.
The stanza’s “disturbing” ten-letter word generates the digit 0.

Poe, E. Near a Raven

Midnights so dreary, tired and weary.
Silently pondering volumes extolling all by-now obsolete lore.
During my rather long nap—the weirdest tap!
An ominous vibrating sound disturbing my chamber’s antedoor.
“This,” I whispered quietly, “I ignore.”
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Keith went on to extend this masterpiece by writing a 3835-digit
“Cadaeic Cadenza.” (Note that if you replace C with 3, A with 1, D
with 4, and so on, then “cadaeic” becomes 3141593.) It begins with the
“Raven” parody, but also includes digital commentaries and parodies
of other poems such as Lewis Carroll’s “Jabberwocky.” His most recent
contribution to this genre is Not a Wake: A Dream Embodying π’s Digits
Fully for 10000 Decimals. (Note the word lengths in the book’s title!)

The word length method for memorizing π suffers from a signifi-
cant problem. Even if you could memorize the sentences, poems, and
stories, it is not so easy to instantly determine the number of letters in
each word. Or as I like to say, “How I wish I could elucidate to others.
There are often superior mnemonics!” (which yields thirteen digits).

My favorite way to memorize numbers is through the use of a pho-
netic code called the major system. In this code, every digit is represented
by one or more consonant sounds. Specifically,

1 = t or d
2 = n
3 = m
4 = r
5 = l
6 = j, ch, or sh
7 = k or hard g
8 = f or v
9 = p or b
0 = s or z
There are even mnemonics for memorizing this mnemonic system!

My friend Tony Marloshkovips offers the following suggestions. The
letter t (or its phonetically similar d) has 1 downstroke; n has 2 down-
strokes; m has 3 downstrokes; “four” ends in the letter r; displaying
5 fingers, you see an L between your index finger and your thumb; a
backward 6 looks like a j; two 7s can be drawn to form a K; a skater
does a f igure 8; turning the 9 backward or upside down, you obtain p
or b; “zero” begins with z. Or if you prefer, you can put all the con-
sonants in order, TNMRLShKVPS, and you get my (fictitious) friend’s
name: Tony Marloshkovips.

We can use this code to turn numbers into words by inserting vowel
sounds around the associated consonant sounds. For example, the num-
ber 31, which uses consonants m and t (or m and d), can be turned into
words like

31 = mate, mute, mud, mad, maid, mitt, might, omit, muddy
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Notice that a word like “muddy” or “mitt” is acceptable, since the
d or t sound only occurs once. Spelling doesn’t matter. Since the con-
sonant sounds of h, w, and y are not represented on the list, then it is
acceptable to use those sounds as freely as vowels. Thus, we could also
turn 31 into words like “humid” or “midway.” Notice that although a
number can often be represented by many different words, a word can
only be represented by a single number.

The first three digits of π, with consonant sounds m, t, and r, can
become words like

314 = meter, motor, metro, mutter, meteor, midyear, amateur

The first five digits 31415, can become “my turtle.” Extending this to the
first twenty-four digits of π, 314159265358979323846264 can become

My turtle Pancho will, my love, pick up my new mover Ginger

I turn the next seventeen digits 33832795028841971, into

My movie monkey plays in a favorite bucket

I like the next nineteen digits, 6939937510582097494, since they allow
some long words:

Ship my puppy Michael to Sullivan’s backrubber

The next eighteen digits of π, 459230781640628620, could give us

A really open music video cheers Jenny F. Jones

followed by twenty-two more digits, 8998628034825342117067:

Have a baby fish knife so Marvin will marinate the goose chick!

Thus, with five silly sentences, we have encoded the first one hundred
digits of π!

The phonetic code is quite useful for memorizing dates, phone num-
bers, credit card numbers, and more. Try it, and with a little bit of prac-
tice, you will vastly improve your ability to remember numbers.

All mathematicians agree that π is one of the most important num-
bers in mathematics. But if you look at the formulas and applications
that use π, you will find that most of them have π multiplied by 2. The
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Greek letter τ (tau, rhymes with “wow”) has been adopted to represent
this quantity

τ = 2π

Many people believe that if we could go back in time, mathematical
formulas and key concepts in trigonometry would be expressed more
simply using τ instead of π. These ideas have been elegantly and en-
tertainingly expressed in articles by Bob Palais (“π is Wrong!”) and
Michael Hartl (“The Tau Manifesto”). The “central point” of the argu-
ment is that circles are defined in terms of their radius, and when we
compare the circumference to the radius, we have C/r = 2π = τ. Some
textbooks are now labeled as “τ-compliant” to indicate that they will
express formulas in terms of both π and τ. (Although switching to this
constant may not be “easy as pie,” many students and teachers will
agree that τ is easier than π.) It will be interesting to see what happens
to this movement in the coming decades. Supporters of τ (who call
themselves tauists) earnestly believe that they have the truth on their
side, but they are tolerant of the more traditional notation. As they like
to say, tauists are never pious.

Here are the first one hundred digits of τ with spaces inserted for
the mnemonics given afterward. Note that τ begins with the numbers
6 and 28, both of which are perfect numbers, as described in Chapter 6. Is
that a coincidence? Of course! But it’s a fun tidbit anyway.
τ = 6.283185 30717958 64769252 867665 5900576 839433 8798750

211641949 8891846 15632 812572417 99725606 9650684 234135 . . .

In 2012, thirteen-year-old Ethan Brown established a world record
by memorizing 2012 digits of τ as a fund-raising project. He used the
phonetic code, but instead of creating long sentences, he created visual
images, where each image contained a subject, an action (always ending
in -ing) and an object being acted upon. The first seven digits, 62 831 85,
became “An ocean vomiting a waffle.” Here are his images for the first
one hundred digits of τ.

An ocean vomiting a waffle
A mask tugging on a bailiff
A shark chopping nylon
Fudge coaching a cello
Elbows selling a couch
Foam burying a mummy
Fog paving glass
A handout shredding a prop
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FIFA beautifying the Irish
A doll shooing a minnow
A photon looking neurotic
A puppy acknowledging the sewage
A peach losing its chauffeur
Honey marrying oatmeal

To make the images even easier to remember, Brown adopted the
memory palace approach by imagining himself wandering through his
school, and as he walked down certain passageways and entered vari-
ous classrooms, there would be three to five objects doing silly things in
each room. Ultimately, he had 272 images split up among more than 60
locations. It took him about 4 months of preparation to recite the 2012
digits, which he did in 73 minutes.

Let’s end this chapter with a musical celebration of π. I wrote this as
a lyrical addition to Larry Lesser’s parody, “American Pi.” You should
only sing the song once, because π doesn’t repeat.

A long, long, time ago,
I can still remember how my math class used to make me snore.
’Cause every number we would meet
Would terminate or just repeat,
But maybe there were numbers that did more.

But then my teacher said, “I dare ya
To try to find the circle’s area.”
Despite my every action,
I couldn’t find a fraction.

I can’t remember if I cried,
The more I tried or circumscribed,
But something touched me deep inside
The day I learned of pi!

Pi, pi, mathematical pi,
Twice eleven over seven is a mighty fine try.
A good old fraction you may hope to supply,
But the decimal expansion won’t die.
Decimal expansion won’t die.

Pi, pi, mathematical pi,
3.141592653589.
A good old fraction you may hope to define,
But the decimal expansion won’t die!
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The Magic of Trigonometry

20º = ¼    = 9

The High Point of Trigonometry

The subject of trigonometry allows us to solve geometrical problems
that can’t be solved using classical geometry. For example, consider the
following problem.

Question: Using only a protractor and pocket calculator, determine
the height of a nearby mountain.

We will provide five different methods for solving this problem. The
first three methods actually require almost no math whatsoever!

Method 1 (brute force approach): Climb to the top of the mountain
and hurl your calculator off the mountain. (This may require consid-
erable force.) Measure the time it takes for your calculator to hit the
ground (or listen for the scream of a backpacker below). If the time
is t seconds, and if we ignore the effects of air resistance and terminal
velocity, then standard physics equations indicate that the height of the
mountain is approximately 16t2 feet. The disadvantage of this approach
is that the effects of air resistance and terminal velocity can be quite sig-
nificant, so your calculation will be inaccurate. Also, you are unlikely
to recover your calculator. And it requires a timekeeping device, which
might have been on your calculator. The advantage of this method is
that the protractor does not need to be used.

203
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Method 2 (method of tan gents): Find a friendly park ranger and
offer her your shiny new protractor if she tells you the height of the
mountain. If no park ranger can be found, look for a gentleman with a
nice tan who has probably spent considerable time outdoors and might
well know the answer to your question. The advantage of this approach
is that you may make a new friend and you don’t need to surrender
your calculator. Also, if you are suspicious of the tan gent’s response,
you can still climb the mountain and apply method 1. The disadvantage
is that you may lose your protractor and be accused of bribery.

Method 3 (law of signs): Before attempting method 1 or 2, look for
a posted sign that tells you the height of the mountain. This has the
advantage that you don’t need to surrender any of your equipment. �

Of course, if none of these three methods appeal to you, then we
must resort to more mathematical solutions, which are the subject of
this chapter.

Trigonometry and Triangles

The word “trigonometry” has Greek roots trigon and metria, which liter-
ally means triangle measurement. We begin with the analysis of some
classic triangles.

Isosceles right triangle. In an isosceles right triangle, there is a 90◦
angle, and the other two angles must be equal. The other angles are thus
45◦ (since the sum of the angles is 180◦), so we refer to such a triangle as
a 45-45-90 triangle. If both legs have length 1, then by the Pythagorean
theorem, the hypotenuse must have length

√
12 + 12 =

√
2. Note that

all isosceles right triangles will have the same proportions of 1 : 1 :
√

2,
as pictured below.

21

1

45°

45°

145°

45°

b

b

45°

b 2

45°

2  2 =

2  2 =

In a 45-45-90 triangle, the side lengths are proportional to 1 : 1 :
√

2
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30-60-90 triangle. In an equilateral triangle, all sides have equal length,
and all angles measure 60◦. If we divide an equilateral triangle into two
congruent halves, as pictured below, we obtain two right triangles with
angles measuring 30◦, 60◦, and 90◦. If the sides of the equilateral trian-
gle all have length 2, then the hypotenuse of the right triangle will have
length 2, and the short leg will have length 1. By the Pythagorean the-
orem, the long leg will have height

√
22 − 12 =

√
3. Thus all 30-60-90

triangles have the same proportions, 1 :
√

3 : 2 (or as I remember it,
they are as easy as 1, 2,

√
3). In particular, if the hypotenuse has length

1, then the other side lengths are 1/2 and
√

3/2.

1 1

60°

22

60°

1

60°

23

60°

1

30°

3  2 =

  1  2 =

30°30°

In a 30-60-90 triangle, the sides are proportional to 1 :
√

3 : 2, respectively

Aside
When positive integers a, b, c satisfy a2 + b2 = c2, we call (a, b, c) a
Pythagorean triple. The smallest and simplest triple is (3, 4, 5), but there
are infinitely many more. Naturally, you could scale your triple by a pos-
itive integer to get triples like (6, 8, 10) or (9, 12, 15) or (300, 400, 500), but
we would like more interesting examples. Here’s a clever way to create
Pythagorean triples. Choose any two positive numbers m and n where
m > n. Now let

a = m2 − n2 b = 2mn c = m2 + n2

Notice that a2 + b2 = (m2 − n2)2 + (2mn)2 = m4 + 2m2n2 + n4, which
equals (m2 + n2)2 = c2, so (a, b, c) is a Pythagorean triple. For exam-
ple, choosing m = 2, n = 1 produces (3, 4, 5); (m, n) = (3, 2) gives
us (5, 12, 13); (m, n) = (4, 1) yields (15, 8, 17); (m, n) = (10, 7) yields
(51, 140, 149). What is especially remarkable (and is proved in any
course on number theory) is that every Pythagorean triple can be created
by this process.
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All of trigonometry is based on two important functions: the sine
and cosine functions. Given a right triangle ABC, as pictured below,
we let c denote the length of the hypotenuse and let a and b denote the
lengths of the sides opposite ∠A and ∠B, respectively.

C

B

A

a

b

c

sinA = a/c = opp
hyp

cosA = b/c = adj
hyp

tanA = a/b = opp
adj

For angle A (which is necessarily acute in a right triangle), we define
the sine of ∠A, denoted sin A, to be

sinA =
a

c
=

length of leg opposite A

length of hypotenuse
=

opp

hyp

Similarly, we define the cosine of ∠A to be

cosA =
b

c
=

length of leg adjacent to A

length of hypotenuse
=

adj

hyp

(Note that any right triangle with angle A will be similar to the origi-
nal triangle and will have sides of proportional length, so the sine and
cosine of A will not depend on how large the triangle is.)

After sine and cosine, the next most commonly used function in
trigonometry is the tangent function. We define the tangent of ∠A to
be

tanA =
sinA

cosA

In terms of the right triangle, we have

tanA =
sinA

cosA
=

a/c
b/c

=
a

b
=

length of leg opposite A

length of leg adjacent to A
=

opp

adj

There are many mnemonics for remembering the formulas for sine,
cosine, and tangent. The most popular one is “SOH CAH TOA,” where
SOH reminds us that sine is opposite/hypotenuse, and similarly for
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CAH and TOA. My high school teacher used a mnemonic (which as-
sumed that you proceeded in order of sine, then cosine, then tangent)
of Oscar Has A Heap Of Apples (OH-AH-OA). My friends modified
this to become Olivia Has A Hairy Old Aunt!

For example, in the 3-4-5 triangle below, we have

sinA =
3

5
cosA =

4

5
tanA =

3

4

C

B

A

3

4

5

For the 3-4-5 right triangle, sinA = 3/5, cosA = 4/5, tanA = 3/4

Now what about ∠B in the same triangle? If we calculate its sine
and cosine values, we see that

sinB =
4

5
= cosA cosB =

3

5
= sinA

Here we have sin B = cos A and cos B = sin A. This is not a coinci-
dence, since for any angle ∠A, the other acute angle will switch what it
considers to be the opposite side and the adjacent side, but it will still
have the same hypotenuse. Since ∠A + ∠B = 90◦, we have for any
acute angle

sin(90◦ −A) = cosA cos(90◦ −A) = sinA

Thus, for example, if a right triangle ABC has ∠A = 40◦, then its com-
plement ∠B = 50◦ has the property sin 50◦ = cos 40◦ and cos 50◦ =
sin 40◦. In other words, the complement sine is equal to the cosine
(which is where the word “cosine” comes from).

There are three other functions that should be part of your trigono-
metric vocabulary, but they won’t be used nearly as much as the first
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three functions. They are the secant, cosecant, and cotangent functions,
and they are defined as

secA =
1

cosA
cscA =

1

sinA
cotA =

1

tanA

You can easily verify that the “co”-functions have the same complemen-
tary relationships that sine and cosine do. Namely, for any acute angle
in a right triangle, sec(90◦ − A) = csc A and tan(90◦ − A) = cot A.

Once you know how to compute the sine of an angle, you use com-
plements to find the cosine of any angle, and from those you can com-
pute tangents and the other trig functions. But how do you calculate a
sine value, like sin 40◦? The simplest way is to just use a calculator. My
calculator (in degree mode) tells me that sin 40◦ = 0.642 . . . . How does it
do that calculation? We’ll explain that near the end of this chapter.

There are a handful of trig values that you should know without
needing to resort to a calculator. Recall that a 30-60-90 triangle has sides
proportional to 1 :

√
3 : 2, as shown previously. Consequently,

sin 30◦ = 1/2 sin 60◦ =
√

3/2

and
cos 30◦ =

√
3/2 cos 60◦ = 1/2

And since a 45-45-90 triangle has sides proportional to 1 : 1 :
√

2, we
have

sin 45◦ = cos 45◦ = 1/
√

2 =
√

2/2

Since tan A = sin A
cos A , I don’t think it is necessary to memorize any values

of the tangent function except perhaps tan 45◦ = 1 and that tan 90◦ is
undefined since cos 90◦ = 0.

Before we determine the height of a mountain using trigonometry,
let’s first solve the simpler problem of determining the height of a tree.
(Would that be using twigonometry or treegonometry?)

Suppose you stood 10 feet from a tree, and the angle from the ground
to the top of the tree was 50◦, as pictured on the opposite page. (By
the way, most smartphones have apps that measure angles. With more
primitive tools, one can create a functional angle measurer, called a cli-
nometer, using a protractor, a straw, and a paper clip.)
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50°

10 feet

h

How tall is the tree?

Let h denote the height of the tree. It follows that

tan 50◦ =
h

10

and therefore h = 10 tan 50◦, which according to the calculator equals
10(1.19 . . .) ≈ 11.9, so the tree is about 11.9 feet tall.

We are now prepared to answer the mountain question by our first
mathematical method. The challenge is that we don’t know our dis-
tance to the center of the mountain. Essentially we have two unknowns
(the mountain’s height and its distance from us), so we collect two
pieces of information. Suppose we measure the angle from our posi-
tion to the top of the mountain and find the angle to be 40◦, then move
1000 feet further away from the mountain and find that the angle now
measures 32◦, as shown on the next page. Let’s use this information to
approximate the size of the mountain.

Method 4 (method of tangents): Let h denote the height of the moun-
tain, and let x be our initial distance from the mountain (so x is the
length of CD). Looking at the right triangle BCD, we compute tan 40◦ ≈
0.839, and therefore

tan 40◦ ≈ 0.839 =
h

x

which implies h = 0.839x. From triangle ABC, we have

tan 32◦ ≈ 0.625 =
h

x+ 1000
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A

B

C D

h

x

40°
1000
32°

so h = 0.625(x + 1000) = 0.625x + 625.
Equating h from both expressions, we get

0.839x = 0.625x+ 625

which has solution x = 625/(0.214) ≈ 2920. Consequently, h is approx-
imately 0.839(2920) = 2450, so the mountain is approximately 2450 feet
high.

Trigonometry and Circles

So far, we have defined trigonometric functions in terms of a right trian-
gle, and I strongly encourage you to be comfortable with that definition.
However, this definition has the shortcoming that it allows us to find the
sine, cosine, and tangent only when the angle is strictly between 0◦ and
90◦ (since a right triangle always contains a 90◦ angle and two acute an-
gles). In this section, we define the trigonometric functions in terms of
the unit circle, which will allow us to find sines, cosines, and tangents
for any angle whatsoever.

Recall that the unit circle is a circle of radius 1, centered at the origin
(0, 0). It has equation x2 + y2 = 1, which we derived in the last chapter
using the Pythagorean theorem. Suppose I asked you to determine the
point (x, y) on the unit circle that corresponds to acute angle A, mea-
sured in the counterclockwise direction from the point (1, 0), as shown
in the next figure.
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(x,y)=(cos A, sin A) 

y

x0

1

1

−1

−1

1

A

The point (x, y) on the unit circle corresponding to angle A has x = cosA and y = sinA

We can find x and y by drawing a right triangle and applying our
formulas for cosine and sine. Specifically,

cosA =
adj

hyp
=

x

1
= x

and
sinA =

opp

hyp
=

y

1
= y

In other words, the point (x, y) is equal to (cos A, sin A). (More gener-
ally, if the circle has radius r, then (x, y) = (r cos A, r sin A).)

For any angle A, we extend this idea by defining (cos A, sin A) to
be the point on the unit circle identified with angle A. (In other words,
cos A is the x-coordinate and sin A is the y-coordinate of the point on
the circle with angle A.) Here’s the big picture.
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(cos A, sin A)

0

1

1

−1

−1

A

The general definition of cosA and sinA

Here’s another big picture, where we have subdivided the unit circle
into angles that are 30◦ apart (with 45◦ thrown in for good measure),
since these correspond to the angles of the special triangles we looked
at earlier. We have listed the cosine and sine values for 0◦, 30◦, 45◦, 60◦,
and 90◦. Specifically,

(cos 0◦, sin 0◦) = (1, 0)

(cos 30◦, sin 30◦) = (
√

3/2, 1/2)

(cos 45◦, sin 45◦) = (
√

2/2,
√

2/2)

(cos 60◦, sin 60◦) = (1/2,
√

3/2)

(cos 90◦, sin 90◦) = (0, 1)

As we’ll see, multiples of these angles can be calculated by reflecting
the values from the first quadrant.
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0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

45◦

(√
3

2
, 1

2

)
(√

2
2

,
√

2
2

)
(

1
2
,
√

3
2

)

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Since adding or subtracting 360◦ to an angle doesn’t really change
the angle (it literally takes us full circle), we have for any angle A,

sin(A± 360◦) = sinA cos(A± 360◦) = cosA

A negative angle moves in the clockwise direction. For example, the
angle −30◦ is the same as the angle 330◦. Notice that when you move
A degrees in the clockwise direction, you have the same x-coordinate
as when you move A degrees in the counterclockwise direction, but the
y-coordinates will have opposite signs. In other words, for any angle A,

cos(−A) = cosA sin(−A) = − sinA

For example,

cos(−30◦) = cos 30◦ =
√

3/2 sin(−30◦) = − sin 30◦ = −1/2

When we reflect angle A across the y-axis, we get the supplementary
angle 180− A. This keeps the y-value on the unit circle unchanged, but
the x-value is negated. In other words,

cos(180−A) = − cosA sin(180−A) = sinA
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For instance, when A = 30◦,

cos 150◦ = − cos 30◦ = −
√

3/2 sin 150◦ = sin 30◦ = 1/2

We continue to define the other trigonometric functions as before,
for instance, tan A = sin A/ cos A.

The x-axis and y-axis divide the plane into four quadrants. We call
these quadrants I, II, III, and IV, where quadrant I has angles between 0◦
and 90◦; quadrant II has angles between 90◦ and 180◦; quadrant III has
angles between 180◦ and 270◦; and quadrant IV has angles between 270◦
and 360◦. Note that the sine is positive in quadrants I and II, the cosine
is positive in quadrants I and IV, and therefore the tangent is positive
in quadrants I and III. Some students use the mnemonic All Students
Take Calculus (A, S, T, C) to remember which of the trig functions are
positive in each respective quadrant (all, sine, tangent, cosine).

The last bit of vocabulary worth learning involves the inverse trigono-
metric functions, which are useful for determining unknown angles. For
example, the inverse sine of 1/2, denoted as sin−1(1/2), tells us the an-
gle A for which sin A = 1/2. We know that sin 30◦ = 1/2, so

sin−1(1/2) = 30◦

The sin−1 function (also called the arc sine function) always gives an
angle between −90◦ and 90◦, but be aware that there are other angles
outside of this interval that have the same sine value. For example,
sin 150◦ = 1/2, as is any multiple of 360◦ added to 30◦ or 150◦.

For the 3-4-5 triangle pictured on the opposite page, our calcula-
tor can determine angle A in three different ways through inverse trig
functions:

∠A = sin−1 (3/5) = cos−1 (4/5) = tan−1 (3/4) ≈ 36.87◦ ≈ 37◦
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C

B

A

3

4

5

Inverse trig functions can determine angles from side lengths.

Here, since tanA = 3/4, ∠A = tan−1(3/4) ≈ 37◦.

It’s time to put these trigonometric functions to work. In geometry,
the Pythagorean theorem tells us the length of the hypotenuse given
the lengths of the legs of any right triangle. In trigonometry, we can
perform a similar calculation for any triangle using the law of cosines.

Theorem (law of cosines): For any triangle ABC, where the sides of
length a and b form ∠C, the third side of length c satisfies

c2 = a2 + b2 − 2ab cosC

For example, in the triangle below, triangle ABC has sides of length
21 and 26 with a 15◦ angle between them. So according to the law of
cosines, the third side of length c must satisfy

c2 = 212 + 262 − 2(21)(26) cos 15◦

and since cos 15◦ ≈ 0.9659, this equation reduces to c2 = 62.21, and
therefore c ≈ 7.89.

A

B

C

26

21

15°

c
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Aside
Proof: To prove the law of cosines, we consider three cases, depending
on whether ∠C is a right angle, acute, or obtuse. If ∠C is a right angle,
then cos C = cos 90◦ = 0, so the law of cosines simply says that c2 =
a2 + b2, which is true by the Pythagorean theorem.

C

B

Ab

ha c

D

x b             1{1x

If ∠C is acute, as in the figure above, draw the perpendicular line
from B to AC intersecting at point D; this splits ABC into two right tri-
angles. From the picture above and the Pythagorean theorem applied to
CBD, we have a2 = h2 + x2, and therefore

h2 = a2 − x2

From triangle ABD, we have c2 = h2 + (b− x)2 = h2 + b2 − 2bx + x2,
and therefore

h2 = c2 − b2 + 2bx− x2

Setting the above values of h2 equal to each other gives us

c2 − b2 + 2bx− x2 = a2 − x2

and therefore
c2 = a2 + b2 − 2bx

And from right triangle CBD, we see that cos C = x/a, so x = a cos C.
Thus, when ∠C is acute,

c2 = a2 + b2 − 2ab cosC

If ∠C is obtuse, then we create the right triangle CBD on the outside
of the triangle, as shown in the figure opposite.

(continues on the following page)

9780465054725-text.pdf   226 6/29/15   10:28 AM



The Magic of Trigonometry 217

Aside (continued)

A

B

Cb

hac

Dx

From right triangles CBD and ABD, Pythagoras tells us that a2 = h2 + x2

and c2 = h2 + (b + x)2. This time, when we equate the values h2, we get

c2 = a2 + b2 + 2bx

This time, triangle CBD tells us that cos(180◦ − C ) = x/a, so x =
a cos(180◦ − C) = −a cos C. So once again, we get the desired equation

c2 = a2 + b2 − 2ab cosC �
By the way, there is also a nice formula for the area of the previous

triangle.
Corollary: For any triangle ABC, where the sides of length a and b

form ∠C,

area of triangle ABC =
1

2
ab sinC

Aside
Proof: The area of a triangle with base b and height h is 1

2 bh. In all
three cases covered in the law of cosines proof, the triangle has a base
b; now let’s determine h. In the acute case, observe that sin C = h/a,
so h = a sin C. In the obtuse case, we have sin(180◦ − C) = h/a, so
h = a sin(180◦ − C) = a sin C, as before. In the right-angled case, h = a,
which equals a sin C, since C = 90◦ and sin 90◦ = 1. Thus, since h =
a sin C in all three cases, the area of the triangle is 1

2 ab sin C, as desired.

As a consequence of this corollary, notice that

sinC =
2(area of triangle ABC)

ab

and therefore
sinC

c
=

2(area of triangle ABC)

abc
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In other words, for the triangle ABC, (sin C)/c is twice the area of ABC
divided by the product of the lengths of all of its sides. But there was
nothing special about angle C in this statement. We would get the same
conclusion from (sin B)/b or (sin A)/a. Consequently, we have just
proved the following very useful theorem.

Theorem (law of sines): For any triangle ABC with respective side
lengths a, b, and c,

sinA

a
=

sinB

b
=

sinC

c

or equivalently,
a

sinA
=

b

sinB
=

c

sinC

We can apply the law of sines to determine the height of the moun-
tain a different way. This time, we focus on a, our original distance to
the top of the mountain, as in the illustration below.

A

B

C D

h

40°

1000

32°

a

8°

140°

Finding the mountain’s height with law of sines

Method 5 (law of sines): In triangle ABD, ∠BAD = 32◦, ∠BDA =
180◦ − 40◦ = 140◦, and therefore ∠ABD = 8◦. Applying the law of
sines to this triangle, we have

a

sin 32◦
=

1000

sin 8◦

Multiplying both sides by sin 32◦, we get a = 1000 sin 32◦/ sin 8◦ ≈ 3808
feet. Next, since sin 40 ≈ 0.6428 = h/a, it follows that

h = a sin 40 ≈ (3808)(.6428) = 2448
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so the mountain is about 2450 feet high, which is consistent with our
previous answer.

Aside
Here’s another pretty formula worth knowing, called Hero’s formula,
which tells us the area of a triangle from its side lengths a, b, and c. The
formula is straightforward once you calculate the semi-perimeter

s =
a+ b+ c

2

Hero’s formula says that the area of the triangle with side lengths a, b, c
is √

s(s− a)(s− b)(s− c)

For example, a triangle with side lengths 3, 14, 15 (first five digits of π)
would have s = (3 + 14 + 15)/2 = 16. Therefore the triangle has area√

16(16− 3)(16− 14)(16− 15) =
√

416 ≈ 20.4.
Hero’s formula can be derived from the law of cosines and a little bit

of heroic algebra.

Trigonometric Identities

Trigonometric functions satisfy many interesting relationships, called
identities. We have seen a few of them already, like

sin(−A) = − sinA cos(−A) = cosA

but there are other interesting identities leading to useful formulas, which
we will explore in this section. The first identity comes from the formula
for the unit circle:

x2 + y2 = 1

Since the point (cos A, sin A) is on the unit circle, it must satisfy that re-
lationship, and therefore (cos A)2 + (sin A)2 = 1. This gives us perhaps
the most important identity in all of trigonometry.

Theorem: For any angle A,

cos2 A+ sin2 A = 1

So far we have mainly been using the letter A to represent an arbi-
trary angle, but there is certainly nothing special about that letter. The
identity above is often stated with other letters. For instance,

cos2 x+ sin2 x = 1
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The Greek letter θ (theta) is another popular choice

cos2 θ+ sin2 θ = 1

And sometimes we simply refer to the identity without any variable at
all. For instance, we might abbreviate the theorem as

cos2 + sin2 = 1

Before proving the other identities, let’s apply the Pythagorean the-
orem to compute the length of a line segment. This will be key to the
proof of our first identity, and it’s a useful result by itself.

Theorem (distance formula): Let L be the length of the line segment
from (x1, y1) to (x2, y2). Then

L =
√
(x2 − x1)2 + (y2 − y1)2

For example, the length of the line segment from (−2, 3) to (5, 8)
would be

√
(5− (−2))2 + (8− 3)2 =

√
72 + 52 =

√
74 ≈ 8.6.

x

y

(x
1
, y

1
) x

2 
{ x

1

y
2 
{ y

1

(x
2
, y

2
)

L

From the Pythagorean theorem, L2 = (x2 − x1)
2 + (y2 − y1)

2

Proof: Consider two points (x1, y1) and (x2, y2) as in the figure above.
Draw a right triangle so that the line segment connecting them is the
hypotenuse of a right triangle. In our picture, the length of the base is
x2 − x1, and the height is y2 − y1. Hence by the Pythagorean theorem,
the hypotenuse L satisfies

L2 = (x2 − x1)
2 + (y2 − y1)

2

and therefore L =
√
(x2 − x1)2 + (y2 − y1)2, as desired.
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Note that the formula works even when x2 < x1 or y2 < y1. For
instance, when x1 = 5 and x2 = 1, the distance between x1 and x2 is 4,
and even though x2 − x1 = −4, the square of that number is 16, which
is all that matters.

Aside
In a box of dimensions a× b× c, what is the length of the diagonal? Let
O and P be diagonally opposite corners of the base of the box. The base
is an a× b rectangle, so the diagonal OP has length

√
a2 + b2.

a

b
√a2 + b2 

c

O

Q

P

Now if we go straight up a distance c from P, we reach the point Q that
is in the opposite corner from O. To find the distance from O to Q, notice
that triangle OPQ is a right triangle with leg lengths

√
a2 + b2 and c.

Hence, by the Pythagorean theorem, the length of the diagonal OQ is√√
a2 + b2

2
+ c2 =

√
a2 + b2 + c2

We are now ready to prove a trigonometric identity that is both ele-
gant and useful. The proof of this theorem is a little tricky, so feel free
to skip it, but the good news is that once we have done the hard work
to establish it, then many more identities will immediately follow.

Theorem: For any angles A and B,

cos(A−B) = cosA cosB + sinA sinB

Proof: On the unit circle centered at O pictured on the next page, let
P be the point (cos A, sin A) and Q be the point (cos B, sin B). Suppose
we let c denote the length of PQ. What can we say about c?
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x

y

(−1, 0) (1, 0)

(0 −1)

(0, 1) (cosB, sinB)

(cosA, sinA)

B

A  {B

A

,

P

Q
c

O

1

1

This picture can be used to prove cos(A−B) = cosA cosB + sinA sinB

In triangle OPQ, we see that OP and OQ are both radii of the unit
circle, so they have length 1 and the angle ∠POQ between them has
measure A− B. Therefore, by the law of cosines,

c2 = 12 + 12 − 2(1)(1) cos(A−B)

= 2− 2 cos(A−B)

On the other hand, from the distance formula, c satisfies

c2 = (x2 − x1)
2 + (y2 − y1)

2

so the distance c from point P = (cos A, sin A) to point Q = (cos B, sin B)
satisfies

c2 = (cosB − cosA)2 + (sinB − sinA)2

= cos2 B − 2 cosA cosB + cos2 A+ sin2 B − 2 sinA sinB + sin2 A

= 2− 2 cosA cosB − 2 sinA sinB

where the last line used cos2 B + sin2 B = 1 and cos2 A + sin2 A = 1.
Equating the two expressions for c2 tells us

2− 2 cos(A−B) = 2− 2 cosA cosB − 2 sinA sinB

Subtracting 2 from both sides, then dividing by −2 gives us

cos(A−B) = cosA cosB + sinA sinB
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Aside
The proof of the cos(A− B) formula relied on the law of cosines and as-
sumed that 0◦ < A− B < 180◦. But we can also prove the theorem with-
out making those assumptions. If we rotate the previous triangle POQ
clockwise B degrees, we obtain the congruent triangle P′OQ′ where Q′
is on the x-axis at the point (1, 0).

x

y

(−1, 0) (1, 0)

(0 −1)

(0, 1)

A{B

,

Q   

c

O

¶

P     = (cos(A{B), sin(A{B))¶

=

1

1

Since ∠P′OQ′ = A− B, we have P′ = (cos(A− B), sin(A− B)). Thus if
we apply the distance formula to P′Q′, we have

c2 = (cos(A−B)− 1)2 + (sin(A−B)− 0)2

= cos2(A−B)− 2 cos(A−B) + 1 + sin2(A−B)

= 2− 2 cos(A−B)

so we can conclude that c2 = 2− 2 cos(A− B) without using the law of
cosines or making any assumptions about the angle A− B. The rest of
the proof follows as before.
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Notice that when A = 90◦, the cos(A− B) formula says

cos(90◦ −B) = cos 90◦ cosB + sin 90◦ sinB

= sinB

since cos 90◦ = 0 and sin 90◦ = 1. If we replace B with 90◦ − B in the
above equation, we get

cosB = cos 90◦ cos(90◦ −B) + sin 90◦ sin(90◦ −B)

= sin(90◦ −B)

Earlier, we saw that these two statements were true when B is an acute
angle, but the algebra above makes it true for all angles B. Likewise, if
we replace B with −B in the cos(A− B) theorem, we obtain

cos(A+B) = cosA cos(−B) + sinA sin(−B)

= cosA cosB − sinA sinB

since cos(−B) = cos B and sin(−B) = − sin B. When we let B = A
above, we get the double angle formula:

cos(2A) = cos2 A− sin2 A

and since cos2 A = 1− sin2 A and sin2 A = 1− cos2 A, we also get

cos(2A) = 1− 2 sin2 A and cos(2A) = 2 cos2 A− 1

We can build on these cosine identities to get related sine identities. For
example,

sin(A+B) = cos(90− (A+B)) = cos((90−A)−B)

= cos(90−A) cosB + sin(90−A) sinB

= sinA cosB + cosA sinB

Setting B = A gives us a double angle formula for sines, namely

sin(2A) = 2 sinA cosA

Or replacing B with −B, we have

sin(A−B) = sinA cosB − cosA sinB
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Let’s summarize many of the identities that we have learned in this
chapter so far.

Pythagorean theorem: cos2 A + sin2 A = 1

Negative angles: cos(−A) = cos(360◦ − A) = cos A
sin(−A) = sin(360◦ − A) = − sin A

Supplementary angles: cos(180◦ − A) = − cos(A)

sin(180◦ − A) = sin(A)

Complementary angles: cos(90◦ − A) = sin(A)

sin(90◦ − A) = cos(A)

Cosine of difference: cos(A− B) = cos A cos B + sin A sin B
Cosine of sum: cos(A + B) = cos A cos B− sin A sin B
Sine of sum: sin(A + B) = sin A cos B + cos A sin B
Sine of difference: sin(A− B) = sin A cos B− cos A sin B
Double angle formulas: cos(2A) = cos2 A− sin2 A

cos(2A) = 1− 2 sin2 A
cos(2A) = 2 cos2 A− 1

sin(2A) = 2 sin A cos A
For triangle ABC: Area = 1

2 ab sin C
Law of cosines: c2 = a2 + b2 − 2ab cos C
Law of sines: sin A

a = sin B
b = sin C

c

Some useful trigonometric identities

Again, I should point out that although we have written the identi-
ties using angle A or B, there is nothing particularly special about these
letters. You might well see them written with other angles. For instance,
cos(2u) = cos2 u− sin2 u or sin(2θ) = 2 sin θ cos θ.
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Radians and Trigonometric Graphs

So far in our discussion of geometry and trigonometry, we have as-
signed our angles a measure that ranges from 0 to 360 degrees. But if
you look at the unit circle, there is nothing particularly natural about
the number 360. This number was chosen by the ancient Babylonians,
probably since they used a base 60 number system and it is approxi-
mately the number of days in a year. Instead, for most areas of science
and mathematics, it is preferable to measure angles using radians. We
define

2π radians = 360◦

Or equivalently,

1 radian =
180◦

π

Or for the tauists out there who like τ = 2π,

1 radian =
360◦

2π
=

360◦

τ

Numerically, 1 radian is approximately 57◦. Why are radians more
natural than degrees? On a circle of radius r, an angle of 2π radians
captures the circle’s circumference of 2πr. If we take any fraction of
that angle, then the amount of arc that we capture is 2πr times that
fraction. Specifically, 1 radian captures an arc of length 2πr(1/2π) = r
and m radians would capture an arc of length mr. In summary, on the
unit circle, the angle in radians is equal to its corresponding arc length.
How convenient!

1 radian

r

r

A circle has 2π radians
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Here is the unit circle with some common angles given in radians.

x

y

0◦

30◦
60◦90◦

120◦

150◦

180◦

210◦

240◦
270◦ 300◦

330◦

360◦

π
6

π
4

π
3

π
22π

3

π

3π
2

2π
(−1, 0) (1, 0)

(0,−1)

(0, 1)

And here’s a τ version for comparison.

x

y

0◦

30◦
60◦90◦

120◦

150◦

180◦

210◦

240◦
270◦ 300◦

330◦

360◦
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τ
8

τ
6

τ
4τ

3

τ
2

3τ
4

τ
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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You can see from the pictures one of the reasons some mathemati-
cians prefer τ over π. For a 90◦ angle, which is one-quarter of the circle,
the radian measure is τ/4. For 120◦, which is one-third of the circle, the
measure is τ/3. Indeed, the letter τ was chosen since it suggested the
word turn. For instance, 360◦ is one turn of the circle and has radian
measure τ; 60◦ is one-sixth of a turn and has radian measure τ/6.

As we’ll see later in this book, the formulas for computing trigono-
metric functions are much cleaner when using radians instead of de-
grees. For example, we can compute sines and cosines as “infinitely
long polynomials” with the formulas

sinx = x− x3/3! + x5/5!− x7/7! + x9/9!− · · ·

cosx = 1− x2/2! + x4/4!− x6/6! + x8/8!− · · ·
but these formula only work when x is expressed in radians. Likewise,
in calculus, we will see that the derivative of sin x is cos x, but that is
only true when x is in radians. The graphs of trigonometric functions
y = sin x and y = cos x are often given when x is measured in radians.

x

y

x

y

¼
2

¼ 3¼
2

2¼¼
2

−¼−3¼
2

−2¼−

¼
2

¼ 3¼
2

2¼¼
2

−¼−3¼
2

−2¼−

y   = sin x 

y   = cos x 

1

1−
0

1

1−
0

The graphs of sinx and cosx, where the x variable is measured in radians
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Because of the circular nature of sines and cosines, both graphs re-
peat themselves every 2π units. (Score another point for the tau-ists!)
This makes sense because the angle x + 2π is the same as the angle x.
We say that these graphs have period 2π. Moreover, if you shift the co-
sine graph to the right by π/2 units, it completely coincides with the
sine graph. That’s because π/2 radians is 90◦, and therefore

sinx = cos(π/2− x)

= cos(x− π/2)

For example, sin 0 = 0 = cos(−π/2) and sin π/2 = 1 = cos 0.
Since tan x = sin x/ cos x, it is undefined whenever cos x = 0 (which

happens halfway between each multiple of π). The graph of the tangent
function has period π, as shown below.

x

y

¼
2

¼ 3¼
2

2¼¼
2

−¼−3¼
2

−2¼−

y   = tan x 
2

1

0

−
2−

1

The graph of y = tanx

You can combine sine functions and cosine functions to create al-
most any function that behaves in a periodic way. This is why trigono-
metric functions are instrumental in modeling seasonal behavior like
temperatures and economic data, or physical phenomena such as sound
and water waves, electricity, or the beating of your heart.
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Let’s end with a magical connection between trigonometry and π.
On a calculator, type as many 5s as you can. My calculator allows
5,555,555,555,555,555. Now take the reciprocal of this number. On my
calculator, I get

1/5,555,555,555,555,555 = 1.8× 10−16

Next press the sin button on your calculator (in degree mode) and look
at the leading digits (ignoring any initial strings of zeros that may ap-
pear). The answer on my display is

3.1415926535898× 10−18

which (after a decimal point, followed by seventeen 0s) are the digits of
π to several places! In fact, you should get a similar pi-culiar result if
you start with any number of 5s — as long as you have at least five of
them.

In this chapter, we have seen how trigonometry helps us better un-
derstand triangles and circles. Trigonometric functions interact with
each other in many beautiful ways, and we have seen how they are in-
timately connected with the number π. In the next chapter, we will see
that they are also intertwined with two other fundamental numbers, the
irrational number e = 2.71828 . . . and the imaginary number i.
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e i ¼ + 1 = 0
C H A P T E R  T E N

The Magic of i and e

e i ¼ + 1 = 0

The Most Beautiful Mathematical Formula

Every once in a while, mathematics and science journals survey their
readers to choose the most beautiful mathematical equations. Inevitably,
at the top of this list is the following formula, attributed to Leonhard
Euler:

eiπ + 1 = 0

Sometimes people refer to this as “God’s equation” because it uses per-
haps the five most important numbers in mathematics: 0 and 1, which
are the foundations of arithmetic; π, the most important number in ge-
ometry; e, the most important number in calculus; and i, which may
be the most important number in algebra. Even more than that, it uses
the fundamental operations of addition, multiplication, and exponenti-
ation. Although we have a good idea about the meaning of 0, 1, and π,
it is the goal of this chapter to explore the irrational number e and the
imaginary number i so that when we are finished, the formula will be al-
most as obvious to us as 1+ 1 = 2 (or at least as easy as cos 180◦ = −1).

231
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Aside
Here are some other mathematical equations that were also contenders
for being most beautiful. Most of these formulas appear in this book;
some have already been discussed, while others are still to come! The
first two of these formulas were also discovered by Leonhard Euler.

1. In any polyhedron (a solid figure made up of flat faces, straight-
line edges, and sharp corners called vertices) with V vertices, E
edges, and F faces,

V −E + F = 2

For example, a cube has 8 vertices, 12 edges, and 6 faces, and it
satisfies V − E + F = 8− 12 + 6 = 2.

2. 1 + 1/4 + 1/9 + 1/16 + 1/25 + · · · = π2/6

3. 1 + 1/2 + 1/3 + 1/4 + 1/5 + · · · =∞
4. 0.99999 . . . = 1

5. Stirling’s approximation for n!:

n! ≈
(n

e

)n√
2πn

6. Binet’s formula for the nth Fibonacci number:

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5

2

)n
]

The Imaginary Number i: The Square Root of−1

The number i has the mysterious property that

i2 = −1

When people first hear that, they tend to think that it’s impossible. How
can a number times itself be negative? After all, 02 = 0 and a negative
number times itself must be positive. But before you totally dismiss the
idea, it is possible that there was a time in your life when you thought
that negative numbers were impossible (as most mathematicians did
for centuries). What does it mean for a number to be less than 0? How
can something be less than nothing? Eventually, you came to view num-
bers as occupants of the real line shown opposite, with positive numbers
to the right of 0 and negative numbers to the left of 0. In a similar way,
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we’ll need to think outside the box (or outside the line, anyway) to ap-
preciate i, but once we do, we will find that it has a very real significance.

am here!

−3 −2 −1 1

i

2 30

The real line does not contain imaginary numbers. Where could they be hiding?

We call i an imaginary number. An imaginary number is any number
whose square is a negative number. For example, the imaginary num-
ber 2i satisfies (2i)(2i) = 4i2 = −4. Algebra with imaginary numbers
works just like it does with real numbers. For instance,

3i+ 2i = 5i, 3i− 2i = 1i = i, 2i− 3i = −1i = −i

and
3i× 2i = 6i2 = −6,

3i

2i
= 3/2

By the way, note that the number −i also has a square of −1, since
(−i)(−i) = i2 = −1. Multiplying a real number by an imaginary num-
ber has predictable results. For example, 3× 2i = 6i.

What happens when you add a real number and an imaginary num-
ber? For instance, what is 3 plus 4i? The answer is just that: 3 + 4i.
It doesn’t simplify further (in the same way that we don’t simplify
1 +

√
3). Numbers of the form a + bi (where a and b are real num-

bers) are called complex numbers. Note that real and imaginary num-
bers can be considered special cases of complex numbers (where b = 0
and a = 0, respectively). Thus the real number π and the imaginary
number 7i are also complex.

Let’s do some examples of (not so) complex arithmetic, beginning
with addition and subtraction:

(3 + 4i) + (2 + 5i) = 5 + 9i

(3 + 4i)− (2 + 5i) = 1− i
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For multiplication we use the FOIL rule from algebra in Chapter 2:

(3 + 4i)(2 + 5i) = 6 + 15i+ 8i+ 20i2

= (6− 20) + (15 + 8)i

= −14 + 23i

With complex numbers, every quadratic polynomial ax2 + bx + c
has two roots (or one repeated root). From the quadratic formula, the
polynomial will equal 0 whenever

x =
−b±√b2 − 4ac

2a

In Chapter 2, we said there were no real solutions if the number un-
der the square root was negative, but now negative square roots don’t
bother us. For example, the equation x2 + 2x + 5 has roots

x =
−2±√4− 20

2
=
−2±√−16

2
=
−2± 4i

2
= −1± 2i

By the way, the quadratic formula still works even when a, b, or c is
complex.

Quadratic polynomials always have at least one root, although it
may be complex. The next theorem says that this is true for almost all
polynomials.

Theorem (Fundamental theorem of algebra): Every polynomial p(x)
of degree 1 or higher has a root z where p(z) = 0.

Notice that a first-degree polynomial like 3x − 6 can be factored as
3(x − 2), where 2 is the only root of 3x − 6. In general, if a �= 0, the
polynomial ax− b can be factored as a(x− (b/a)) where b/a is the root
of ax− b.

Similarly, for every second-degree polynomial ax2 + bx + c, we can
factor it as a(x − z1)(x − z2) where z1 and z2 are (possibly complex,
possibly the same) roots of the polynomial. As a consequence of the
fundamental theorem of algebra, this pattern extends to polynomials of
any degree.

Corollary: Every polynomial of degree n ≥ 1 can be factored into n
parts. More specifically, if p(x) is an nth-degree polynomial with lead-
ing term a �= 0, then there exist n numbers (possibly complex, possibly
the same) z1, z2, . . . , zn such that p(x) = a(x − z1)(x − z2) · · · (x − zn).
The numbers zi are the roots of the polynomial where p(zi) = 0.
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This corollary means that every polynomial of degree n ≥ 1 has at
least one, and at most n, distinct roots. For example, the polynomial
x4 − 16 has degree 4 and can be factored as

x4 − 16 = (x2 − 4)(x2 + 4) = (x− 2)(x+ 2)(x− 2i)(x+ 2i)

and has four distinct roots 2,−2, 2i,−2i. The polynomial 3x3 + 9x2− 12
has degree 3, but since it factors as

3x3 + 9x2 − 12 = 3(x2 + 4x+ 4)(x− 1) = 3(x+ 2)2(x− 1)

it has only two distinct roots, −2 and 1.

The Geometry of Complex Numbers

The complex numbers can be visualized by drawing the complex plane.
It looks just like the (x, y) plane from algebra, but the y-axis has been
replaced with the imaginary axis with numbers like 0,±i,±2i, and so on.
We have plotted some complex numbers in the figure below.

3 + 2i

4− i

−1 + i

−3− 2i

−4

−4i

−3

−3i

−2

−2i

−1

−i

1

i

2

2i

3

3i

4

4i

Some points in the complex plane

We have seen how easy it is to add, subtract, and multiply complex
numbers numerically. But we can also perform these operations geo-
metrically, just by looking at their points on the complex plane.
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For example, consider the addition problem

(3 + 2i) + (−1 + i) = 2 + 3i

In the figure below, notice that the points 0, 3 + 2i, 2 + 3i, and −1 + i
form the vertices of a parallelogram.

w =−1 + i

0

z = 3 + 2i

z +w =2 + 3i

−3

−3i

−2

−2i

−1

−i

1

i

2

2i

3

3i

In general, we can add complex numbers z and w geometrically,
just by drawing a parallelogram, as in the previous example. To do
the subtraction problem z− w, we plot the point −w (which is located
symmetrically opposite w) and add the points z and −w, as illustrated
below.

z

w

−w

z +w

z −w

0

−3

−3i

−2

−2i

−1

−i

1

i

2

2i

3

3i

Complex numbers can be added and subtracted by drawing parallelograms
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In order to multiply and divide complex numbers geometrically, we
first need to measure their sizes. We define the length (or magnitude) of
a complex number z, denoted |z|, to be the length of the line segment
from the origin 0 to the point z. Specifically, if z = a + bi, then by the
Pythagorean theorem, z has length

|z| =
√
a2 + b2

For example, as illustrated below, the point 3+ 2i has length
√

32 + 22 =√
13. Note that the angle θ corresponding to 3+ 2i would satisfy tan θ =

2/3. Thus θ = tan−1 2/3 ≈ 33.7◦ or about 0.588 radians.

√13

μ
−4

−4i

−3

−3i

−2

−2i

−1

i

1

i

2

2i

3i

4

4i

3

3

2

−

z     =    3 +  2i

The complex number z = 3 + 2i has length |z| = √
13, and an angle θ where tan θ = 2/3

If you plot the points that have length 1, you get the unit circle on
the complex plane, shown on the next page. What is the complex num-
ber on the circle associated with angle θ? If this were the x-y Carte-
sian plane, then from Chapter 9 we know that it would be the point
(cos θ, sin θ). So in the complex plane, this would be cos θ + i sin θ. Like-
wise, any complex number with length R is of the form

z = R(cos θ+ i sin θ)
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We call this the polar form of the complex number. Maybe I shouldn’t
tell you this now, but at the end of this chapter, we will learn that this is
also equal to Reiθ . (Would that be a “spEuler alert”?)

z   = cos μ + i  sin μ 

0

1

i

—1

—i

1

μ

The unit circle in the complex plane

Remarkably, when complex numbers are multiplied, their lengths
multiply as well.

Theorem: For complex numbers z1 and z2, |z1z2| = |z1||z2|. In other
words, the length of the product is the product of the lengths.

Aside
Proof: Let z1 = a + bi and z2 = c + di. Then |z1| =

√
a2 + b2 and

|z2| =
√

c2 + d2. Thus,

|z1z2| = |(a+ bi)(c+ di)| = |(ac− bd) + (ad+ bc)i|
=

√
(ac− bd)2 + (ad+ bc)2

=
√
(ac)2 + (bd)2 − 2abcd+ (ad)2 + (bc)2 + 2abcd

=
√
(ac)2 + (bd)2 + (ad)2 + (bc)2

=
√
(a2 + b2)(c2 + d2)

=
√
a2 + b2

√
c2 + d2

= |z1||z2|
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For example,

|(3 + 2i)(1− 3i)| = |9− 7i| =
√

92 + (−7)2 =
√

130

=
√

13
√

10 = |3 + 2i| |1− 3i|
What about the angle of the product? The notation arg z is often

used to denote the angle that the complex number z makes with the
positive x-axis. For instance, we saw that arg(3 + 2i) = 0.588 radians.
Likewise, since 1− 3i is in quadrant IV and its angle satisfies tan θ = −3,
we have arg(1− 3i) = tan−1(−3) = −71.56◦ = −1.249 radians.

Note that (3 + 2i)(1 − 3i) = (9 − 7i) has angle tan−1(−7/9) =
−37.87◦ = −0.661 radian, which just happens to be 0.588 + (−1.249).
According to the next theorem, this is not a coincidence!

Theorem: For complex numbers z1 and z2, arg(z1z2) = arg(z1) +
arg(z2). In other words, the angle of the product is the sum of the angles.

The proof, presented in the following box, relies on trigonometric
identities from the previous chapter.

Aside
Proof: Suppose that z1 and z2 are complex numbers with respective
lengths R1 and R2 and respective angles θ1, and θ2. Then, writing z1
and z2 in polar form, we have

z1 = R1(cos θ1 + i sin θ1) z2 = R2(cos θ2 + i sin θ2)

Therefore,

z1z2 = R1(cos θ1 + i sin θ1)R2(cos θ2 + i sin θ2)

= R1R2[cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + sin θ2 cos θ1)]

= R1R2[cos(θ1 + θ2) + i(sin(θ1 + θ2))]

where we exploited the identities for cos(A + B) and sin(A + B), which
were derived last chapter. Consequently, z1z2 has length R1R2 (which
we knew) and angle θ1 + θ2, as was to be shown.

To summarize, when multiplying complex numbers, you simply
multiply their lengths and add their angles. For example, when multiplying
a number by i, the length stays the same, but the angle increases by 90◦.
Notice that when we multiply real numbers together, the positive num-
bers have angles of 0◦ (or equivalently, 360◦) and the negative numbers
have angles of 180◦. When you add angles of 180◦ together, you get an
angle of 360◦, which is another way of saying that the product of two
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negative numbers is a positive number. The imaginary numbers have
angles of 90◦ and −90◦ (or 270◦). Thus, when you multiply an imagi-
nary number by itself, the angle must be 180◦ (since 90◦+ 90◦ = 180◦ or
−90◦+−90◦ = −180◦ is the same as 180◦), which is a negative number.
Finally, note that if z has angle θ, then 1/z must have angle −θ. (Why?
Since z · 1/z = 1, the angles for z and 1/z must sum to 0◦.) Therefore,
when dividing complex numbers, you divide their lengths and subtract
their angles. That is, z1/z2 has length R1/R2 and angle θ1 − θ2.

? We’re sorry. You have 
reached an imaginary 
number. If you need a 
real number, then 
please rotate your 
phone by 90 degrees 
and try again!

The Magic of e

If you have a scientific calculator, please try the following experiment.

1. Enter a memorable seven-digit number on your calculator (per-
haps a phone number or identification number, or maybe your
favorite one-digit number repeated seven times).

2. Take the reciprocal of that number (by pressing the 1/x button on
your calculator).

3. Add 1 to your answer.

4. Now raise this number to the power of your original seven-digit
number (by pressing the xy button, followed by your seven-digit
number, followed by the equals sign).
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Does your answer begin 2.718? In fact, it wouldn’t surprise me if
your answer began with several digits of the irrational number

e = 2.718281828459045 . . .

So what is this mysterious number e, and why is it so important? In
the magic trick you just performed, you calculated

(1 + 1/n)n

for some large number n. Now, what would you expect to happen to
this number as n gets larger and larger? On the “one” hand, as n gets
larger, the number (1 + 1/n) gets closer and closer to the number 1,
and when we raise 1 to any power, we still get 1. Thus it would be
reasonable to expect that for very large values of n, (1 + 1/n)n would
be approximately 1. For example, (1.001)100 ≈ 1.105.

On the other hand, even when n is large, (1 + 1/n) is still slightly
bigger than 1. And if you raise any fixed number that is bigger than 1 to
larger and larger powers, then that quantity gets arbitrarily large. For
example, (1.001)10,000 is over 20,000.

The problem is that the base (1 + 1/n) is getting small while the ex-
ponent n is getting large simultaneously. And in this tug-of-war between
1 and infinity, the answer gets closer and closer to e = 2.71828. . . . For
example, (1.001)1000 ≈ 2.717. Let’s look at the function (1 + 1/n)n for
large values of n, as shown in the following table.

n (1 + 1/n)n

10 (1.1)10 = 2.5937424 . . .

100 (1.01)100 = 2.7048138 . . .

1000 (1.001)1000 = 2.7169239 . . .

10,000 (1.0001)10,000 = 2.7181459 . . .

100,000 (1.00001)100,000 = 2.7182682 . . .

1,000,000 (1.000001)1,000,000 = 2.7182805 . . .

10,000,000 (1.0000001)10,000,000 = 2.7182817 . . .

We define e to be the number that (1 + 1/n)n is getting closer and
closer to as n gets larger and larger. Mathematicians call this the limit of
(1 + 1/n)n as n goes to infinity, denoted

e = lim
n→∞(1 + 1/n)n
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If we replace the fraction 1/n with x/n where x is any real number,
then as n/x gets larger and larger, the number (1 + x/n)n/x gets closer
and closer to e. Raising both sides to the power x (and recalling that(

ab)c
= abc) gives us what’s called the exponential formula:

lim
n→∞(1 + x/n)n = ex

The exponential formula has many interesting applications. Suppose
you put 10,000 dollars in a savings account that earns an interest rate of
0.06 (that is, 6 percent per year). If the interest is applied annually, then
at the end of one year, you would have 10,000(1.06) = 10,600 dollars.
After two years, you would earn 6 percent on this new amount and
have 10,000(1.06)2 = 11,236 dollars. In three years, you would have
10,000(1.06)3 = 11,910.16 dollars. After t years, you would have

10,000(1.06)t

dollars. More generally, if we replace the interest rate of 0.06 with an
interest rate r, and if you begin with a principal of P dollars, then at the
end of t years, the number of dollars you would have would be

P (1 + r)t

Now suppose our 6 percent interest is compounded semiannually: so
you earn 3 percent every six months. Then after a year you would have
10,000(1.03)2 = 10,609 dollars, which is a little more than the 10,600 dol-
lars for annual compounding. If the money is compounded quarterly,
then you earn 1.5 percent four times a year, yielding 10,000(1.015)4 =
10,613.63 dollars. More generally, if our money is compounded n times
per year, then after one year, you would have

10,000

(
1 +

0.06

n

)n

dollars. Letting n get very large is called continuous compounding. By
the exponential formula, after one year you would have

10,000 lim
n→∞

(
1 +

0.06

n

)n

= 10,000e0.06 = 10,618.36

dollars, as shown in the next table.
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Principal Interest Compounded Amount after one year

$10,000 6% Annually $10,000(1.06) = $10,600.00

$10,000 6% Semiannually $10,000(1.03)2 = $10,609.00

$10,000 6% Quarterly $10,000(1.015)4 = $10,613.83

$10,000 6% Monthly $10,000(1.005)12 = $10,616.77

$10,000 6% n installments $10,000(1 + 0.06
n )n

$10,000 6% Continuously $10,000e0.06 = $10,618.36

More generally, if you start with an initial principal of P dollars and
if your money is compounded continuously at interest rate r, then after
t years, you will have A dollars given by this pretty (or perhaps I should
say “pertly”) formula:

A = Pert

As seen in the graph below, the function y = ex grows very quickly.
Alongside it, we also present the graphs of e2x and e0.06x. We say that
these functions grow exponentially. The graph y = e−x goes to 0 very
quickly and exhibits exponential decay.

−6 −4 −2 2 4 6

5

10

15
y = ex

y = e2x

y = e.06x

y = e−x

Some exponential functions

How about the graph of 5x? Since e < 5 < e2, then 5x must lie
in between the functions ex and e2x. More specifically, it turns out that
e1.609... = 5 and therefore 5x ≈ e1.609x. In general, any function ax can
be expressed as an exponential function ekx, once we find an exponent
k for which a = ek. How do we find k? Using logarithms.
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In the same way that the square root is the inverse of the squaring
function (since the functions undo each other), the logarithm is the in-
verse of the exponential function. The most commonly used logarithm
is the base 10 logarithm, denoted log x. We say that

y = logx if 10y = x

Or equivalently,
10logx = x

For example, since 102 = 100, we have log 100 = 2. Here is a useful
table of logarithms.

Logarithm Explanation

log 1 = 0 Since 100 = 1

log 10 = 1 Since 101 = 10

log 100 = 2 Since 102 = 100

log 1000 = 3 Since 103 = 1000

log(1/10) = −1 Since 10−1 = 1/10

log .01 = −2 Since 10−2 = .01

log
√

10 = 1/2 Since 101/2 =
√

10

log 10x = x Since 10x = 10x

log 0 is undefined Since no y has 10y = 0

One of the reasons that logarithms are so useful is that they trans-
form large numbers into much smaller numbers that our brains are bet-
ter able to comprehend. For example, the Richter scale uses logarithms,
which allow us to measure the size of an earthquake on a scale of 1
to 10. Logarithms are also used for measuring the intensity of sound
(using decibels), the acidity of a chemical solution (pH), and even the
popularity of a webpage through Google’s PageRank algorithm.

What is log 512? Any scientific calculator (or even most search en-
gines) will tell you log 512 = 2.709. . . . This seems reasonable: since 512
lies between 102 and 103, its logarithm must be between 2 and 3. Log-
arithms were invented as a tool for converting multiplication problems
into easier addition problems. This was based on the following useful
theorem.

Theorem: For any positive numbers x and y,

logxy = logx+ log y
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In other words, the log of the product is the sum of the logs.
Proof: This comes immediately from the law of exponents, since

10logx+log y = 10logx10log y = xy = 10logxy

Thus, raising 10 to the log x + log y power gives us xy, as desired.
Another useful property is the exponent rule.
Theorem: For any positive number x and any integer n,

logxn = n logx

Proof: By the law of exponents, abc = (ab)c. Therefore,

10n logx = (10logx)n = xn

Hence the logarithm of xn equals n log x.
There is nothing particularly special about the base 10 logarithm, al-

though it is widely used in chemistry and physical sciences like geology.
But in computer science and discrete mathematics, the base 2 logarithm
is more popular. For any b > 0, the base b logarithm logb is defined by
the rule

y = logb x if by = x

For example, log2 32 = 5 since 25 = 32. All of the previous loga-
rithm properties hold for any base b. For example,

blogb x = x logb xy = logb x+ logb y logb x
n = n logb x

However, in most areas of mathematics, physics, and engineering,
the most useful logarithm is with base b = e. This is called the natural
logarithm and is denoted by ln x. That is,

y = lnx if ey = x

Or equivalently, for any real number x,

ln ex = x

For example, your calculator can determine ln 5 = 1.609. . . , which is
how we determined earlier that e1.609 ≈ 5. We will have more to say
about the natural logarithm function in Chapter 11.
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Aside
All scientific calculators compute natural logarithms and base 10 loga-
rithms, but most do not explicitly calculate logarithms in other bases.
But this turns out to not be a problem, since there is a simple way to
convert logarithms from one base to another. Essentially, if you know
one logarithm, you know them all. Specifically, using just the base 10
logarithm, we can determine the base b logarithm with the following
rule.

Theorem: For any positive numbers b and x,

logb x =
logx

log b

Proof: Let y = logb x. Then by = x. Taking the log of both sides,
log by = log x. And by the exponent rule, this says y log b = log x.
Therefore y = (log x)/(log b), as desired.

For example, for any x > 0,

lnx = (logx)/(log e) = (logx)/(0.434 . . .) ≈ 2.30 logx

log2 x = (logx)/(log 2) = (logx)/(0.301 . . .) ≈ 3.32 logx

More Appearances of e

Just like the number π, the number e is pervasive in mathematics, show-
ing up in places where you wouldn’t expect it. For example, the classic
bell curve, which we saw in Chapter 8, has the formula

y =
e−x2/2

√
2π

Its graph (shown opposite) is probably the most important graph in the
subject of statistics.

In Chapter 8 we also saw e appear in Stirling’s approximation for n!:

n! ≈
(n

e

)n√
2πn

As we’ll see in Chapter 11, e is fundamentally connected to the fac-
torial function. We will show that ex has the infinite series

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ · · ·
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0.1

0.2

0.3

0.4

y =
e− x2/ 2

√2¼

−2 −1 1 20

The bell curve has formula e−x2/2/
√

2π

In particular, when x = 1, this formula says

e = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · ·

which is a very quick way to determine the digits of e.
By the way, the digits of e begin with the repetitive pattern

e = 2.718281828 . . .

or as my high school teacher would say, “2.7 Andrew Jackson, Andrew
Jackson,” since 1828 was the year that the seventh US president was
elected. (Although for me the mnemonic worked the other way. I re-
member the year of Jackson’s election from the digits of e.) You might
be tempted to believe that e is a rational number, which it would be if
the digit sequence 1828 repeated forever, but that is not the case. The
next six digits of e are . . . 459045. . . , which I remember as the angles of
an isosceles right triangle.

The number e also shows up in many probability problems where
you wouldn’t expect to see it. For example, let’s suppose that every
week you purchase a raffle ticket where your chance of winning a prize
is 1 in 100. If you buy a ticket for 100 consecutive weeks, what are your
chances of winning a prize at least once? Each week, your probability
of winning is 1/100 = 0.01 and your chance of losing is 99/100 = 0.99.
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Since your chance of winning in any given week is independent of pre-
vious weeks, your chance of losing all 100 weeks is

(0.99)100 ≈ 0.3660

which is very close to

1/e ≈ 0.3678794 . . .

This is not a coincidence. Recalling the exponential formula when we
first introduced ex, we have

lim
n→∞

(
1 +

x

n

)n
= ex

Now if we let x = −1, then for any large number n, we have(
1− 1

n

)n

≈ e−1 = 1/e

When n = 100, this says that (0.99)100 ≈ 1/e, as promised. Thus your
chance of winning is about 1− (1/e) ≈ 64 percent.

One of my favorite probability problems goes by the name of the
matching problem (or the hat-check problem or the derangement prob-
lem). Suppose that n homework assignments are being returned to a
class, but the teacher is lazy and gives each student a random assign-
ment (which may be that student’s or may belong to any of the other
students in the class). What is the probability that no student receives
her own homework back? Equivalently, if the numbers 1 through n are
randomly mixed, what is the probability that no number is in its natural
position? For example, when n = 3, the numbers 1, 2, 3 can be arranged
3! = 6 ways, and there are 2 derangements where no number is in its
natural position, namely 231 and 312. Thus when n = 3, the probability
of a derangement is 2/6 = 1/3.

With n homework assignments being returned, there are n! possible
ways to return them. If we let Dn denote the number of derangements,
then the probability that nobody gets her own homework back is pn =
Dn/n!. For example, when n = 4, there are 9 derangements:

2143 2341 2413 3142 3412 3421 4123 4312 4321

Thus p4 = D4/4! = 9/24 = 0.375, as listed in the following table.
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n Dn pn = Dn/n!

1 0 0

2 1 1/2 = 0.50000

3 2 2/6 = 0.33333

4 9 9/24 = 0.37500

5 44 44/120 = 0.36667

6 265 265/720 = 0.36806

7 1856 1865/5040 = 0.36825

8 14,887 14,887/40,320 = 0.36823

As n gets larger and larger, pn will get closer and closer to 1/e. The
implications are astounding. This says that the likelihood of nobody re-
ceiving her own homework back is virtually the same, whether the class
has 10 students or 100 students or one million students! The chance is
really, really close to 1/e.

Where does 1/e come from? As a first approximation, with n stu-
dents, each student has a 1/n chance of receiving her homework back
and therefore a 1− (1/n) chance of getting someone else’s assignment.
Thus the probability that all n students get someone else’s assignment
is

pn ≈
(

1− 1

n

)n

≈ 1/e

The probability is approximate because, unlike the raffle problem, we
do not quite have independent events. If student 1 gets her own home-
work, that slightly increases the probability that student 2 gets his. (The
probability would be 1/(n − 1) instead of 1/n.) Likewise, if student
1 does not get her homework back, then student 2’s chances go down
ever so slightly. But since the probabilities don’t change too much, the
approximation is very good.

The exact probability for pn uses the infinite series for ex,

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

When we substitute x = −1 into this equation, we get

1− 1 +
1

2!
− 1

3!
+

1

4!
− · · · = e−1 = 1/e
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It can be shown that for n students, the probability that nobody receives
their own homework is exactly

pn = 1− 1

1!
+

1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

1

n!

For example, with n = 4 students, pn = 1− 1 + 1/2− 1/6 + 1/24 =
9/24, as previously shown. The convergence to 1/e is extremely fast.
The distance between pn and 1/e is less than 1/(n + 1)!. Thus p4 is
within 1/5! = 0.0083 of 1/e; p10 agrees with 1/e to seven decimal
places; p100 agrees with 1/e to over 150 decimal places!

Aside
Theorem: The number e is irrational.

Proof: Suppose, to the contrary, that e is rational. Then e = m/n for
some positive integers m and n. Now let’s use the number n to split the
infinite series for e into two parts, so that e = L + R, where

L = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

(n− 1)!
+

1

n!

R =
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·

Notice that n!e = en(n− 1)! = m(n− 1)! must be an integer (since m and
(n− 1)! are integers) and n!L is an integer too (since n!/k! is an integer
for all k ≤ n). Thus n!R = n!e− n!L is the difference of two integers, so
it must be an integer itself. But this is impossible, since n ≥ 1 implies
that

n!R =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

≤ 1

2
+

1

2 · 3 +
1

2 · 3 · 4 + · · ·

=
1

2!
+

1

3!
+

1

4!
+ · · · = 0.71828...

< 1

So n!R can’t be an integer because there are no positive integers less
than 1. Hence the assumption that e = m/n leads to a contradiction,
and therefore e is irrational.
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Euler’s Equation

The number e was explored and popularized by the great mathemati-
cian Leonhard Euler, and he was the first to assign this fundamental
number its current name. Most historians of mathematics disagree with
the suggestion that he chose the letter e because it was the first letter of
his last name. But many people still refer to e as Euler’s number.

We have already introduced the infinite series for the functions ex,
cos x, and sin x, and we will explain where they come from in the next
chapter. But let’s put them all in one place here.

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

These formulas are valid for all real numbers x, but Euler had the
audacity to imagine what they would say if we let x be an imaginary
number. What would it mean for a number to be raised to an imaginary
power? The result is Euler’s beautiful theorem.

Theorem (Euler’s theorem): For any angle θ (measured in radians),

eiθ = cos θ+ i sin θ

Proof: We prove this theorem by seeing what happens when we
substitute x = iθ in the series for ex.

eiθ = 1 + iθ+
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · ·

Note what happens to the power of i as it is raised to various powers:
i0 = 1, i1 = i, i2 = −1, i3 = −i (since i3 = i2i = −i), and then the pattern
repeats: i4 = 1, i5 = i, i6 = −1, i7 = −i, i8 = 1, and so on. In particular,
notice that the powers of i alternate between real and imaginary, and
we can factor the number i out of every second term, as in the algebra
that follows.

eiθ = 1 + iθ− θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
− θ6

6!
− i

θ7

7!
+

θ8

8!
+ · · ·

=

(
1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ− θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)
= cos θ+ i sin θ �
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This gives us the proof of “God’s equation,” introduced at the be-
ginning of the chapter. Letting θ = π radians (or 180◦), we have

eiπ = cosπ + i sinπ = −1 + i(0) = −1

But Euler’s theorem says much more than this. We have seen the
expression cos θ + i sin θ before. It is the point on the unit circle of the
complex plane that has an angle of θ relative to the positive x-axis. Eu-
ler’s theorem says that you can express that point in a simple way, as
shown in the figure.

eiμ   = cos μ + i  sin μ 

0

1

i

—1

—i

1

μ

By Euler’s theorem, the points on the unit circle are all of the form eiθ

But wait, there’s more! Every point on the complex plane is just a
scaled version of a point on the unit circle. Specifically, if the complex
number z has a length of R and an angle of θ, then that point is just R
times the corresponding point on the unit circle. In other words,

z = Reiθ

Thus if we have any two points in the complex plane, say z1 = R1eiθ1

and z2 = R2eiθ2 , then the law of exponents (with complex numbers) tells
us that

z1z2 = R1e
iθ1R2e

iθ2 = R1R2e
i(θ1+θ2)

which is the complex number with length R1R2 and angle θ1 + θ2. So
once again we can conclude that to multiply complex numbers, you
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simply multiply their lengths and add their angles. When we proved
this fact earlier in the chapter, we relied on about a page’s worth of al-
gebra and trigonometric identities. But with Euler’s theorem, we arrive
at this conclusion in just one line, all thanks to the number e!

Let’s end with a poem to celebrate this remarkable number, with
apologies to Joyce Kilmer.

I think that I shall never see
A number lovelier than e.
Whose digits are too great to state
They’re 2.71828 . . .
And e has such amazing features.
It’s loved by all (but mostly teachers).
With all of e’s great properties,
Most integrals are done with . . . ease.
Theorems are proved by fools like me.
But only Euler could make an e.
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The Magic of Calculus
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C H A P T E R  E L E V E N

The Magic of Calculus

y  =  x11 ) y  = 11x10

Going off on Tangents

Mathematics is the language of science, and the mathematics used to
express most laws of nature is calculus. Calculus is the mathematics
of how things grow and change and move. In this chapter, we will
learn how to determine the rate at which functions change and how to
approximate complicated functions with simpler functions like polyno-
mials. Calculus is also a powerful tool for optimization and can be useful
for determining how to choose your numbers in such a way as to maxi-
mize a quantity (like profit or volume) or minimize a quantity (like cost
or distance traveled).

For example, suppose you have a square piece of cardboard, 12
inches per side, as shown on the next page. Suppose you cut x-by-x
squares out of the corners and then fold the resulting tabs up to create
a tray. What is the maximum possible volume of the resulting tray?

Let’s start by computing the volume as a function of x. The base of
the tray would have area (12− 2x)(12− 2x) and the height of the tray
would be x, so the volume of the tray would be

V = (12− 2x)2x

255
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x

x

x

x

12 { 2x
x

x

x

x

x

12 { 2x

12 { 2x

What value of x maximizes the volume of the box?

cubic inches. Our goal is to choose the value of x to make this volume
as large as possible. We can’t choose x to be too big or too small. For
instance, if x = 0 or x = 6, then the box has a volume of 0. The optimal
value of x lies somewhere in between.

Below is a graph of the function y = (12− 2x)2x as x ranges from 0
to 6. When x = 1, we compute that the volume is y = 100. When x = 2,
y = 128. When x = 3, y = 108. The value of x = 2 looks promising,
but perhaps there is a real number that does even better somewhere
between 1 and 3?

6

y = (12− 2x)2x

x

y

The point where y = (12 − 2x)2x is maximized has a horizontal tangent line
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Just to the left of the maximum, the function is going uphill, with a
positive slope, and just to the right, it is going downhill, with a nega-
tive slope. So, at the maximum point, the function is neither increasing
nor decreasing: it is switching between the two. To put it more mathe-
matically, at this optimal point, there is a horizontal tangent line (with
a slope of 0). In this chapter, we will use calculus to find that point
between 0 and 6 where the tangent line is horizontal.

And speaking of tangents, we will be going off on many tangents
throughout this chapter. For instance, the problem we just considered
was to find the optimal way to cut corners, and indeed we will be cut-
ting lots of corners in this chapter. Calculus is a vast subject, with typ-
ical textbooks containing more than a thousand pages. In just a couple
dozen pages, we will only have time to cover the highlights. In this
book, we will not cover the topic of integral calculus, which computes
areas and volumes of complicated objects; we will focus only on differ-
ential calculus, which measures how functions grow and change.

The simplest functions to analyze are straight lines. In Chapter 2,
we noted that the line y = mx + b has a slope of m. Thus if x increases
by 1, then y increases by m. For example, the line y = 2x + 3 has a slope
of 2. If we increase the value of x by 1 (say from x = 10 to x = 11), then
y will increase by 2 (here, from 23 to 25).

We have drawn the graphs of various lines in the figure below. Here,
y = −x has slope −1, and the horizontal line y = 5 has slope 0.

−10 −5 5 10

−2

2

4

6

8

10

y = 2x+ 3

y = 5

y = −x

x

y

Graphs of lines
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Given any two points, we can draw a line through them and deter-
mine the slope of that line without needing the line’s formula. The slope
of the line that goes through the point (x1, y1) and (x2, y2) is given by
the “rise over run” formula:

m =
y2 − y1

x2 − x1

For example, take any two points on the line y = 2x + 3, say the
points (0, 3) and (4, 11). Then the slope of the line connecting these
points is m = y2−y1

x2−x1
= (11− 3)/(4− 0) = 8/4 = 2, which is exactly the

slope we see in the original equation of that line.
Now consider the function y = x2 + 1, as shown in the graph below.

This graph is not a straight line and we can see that the slope is always
changing. Let’s try to determine the slope of the tangent line at the point
(1, 2).

−4 −3 −2 −1 1 2 3 4

1

2

3

4

y = x2 + 1
(1, 2)

x

y

For y = x2 + 1, find the slope of the tangent line at the point (1, 2)

The bad news is that it takes two points to determine a slope, and
we only have the one point (1, 2). Thus we first approximate the slope
of the tangent line by looking at a line that goes through two points on
the curve (called a secant line), as shown on the right. If x = 1.5, then
y = (1.5)2 + 1 = 3.25. So let’s look at the slope of the line from (1, 2) to
(1.5, 3.25). According to our slope formula, the slope of this secant line
is

m =
y2 − y1

x2 − x1
=

3.25− 2

1.5− 1
=

1.25

0.5
= 2.5
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−4 −3 −2 −1 1 2 3 4

1

2

3

4

y = x2 + 1
(1, 2)

(1.5, 3.25)

x

y

Approximating the tangent line with a secant line

For a better approximation, we move the second point closer to
(1, 2). For instance, if x = 1.1, then y = (1.1)2 + 1 = 2.21, and the
resulting secant slope is m = (2.21− 2)/(1.1− 1) = 2.1. As shown in
the table below, as we move the second point closer and closer to (1, 2),
the secant slope seems to get closer and closer to 2.

(x1, y1) x2 y2 = x2
2 + 1

y2−y1

x2−x1
Slope

(1, 2) 1.5 3.25 3.25−2
1.5−1

= 1.25
0.5

= 2.5

(1, 2) 1.1 2.21 2.21−2
1.1−1

= 0.21
0.1

= 2.1

(1, 2) 1.01 2.0201 2.0201−2
1.01−1

= 0.0201
0.01

= 2.01

(1, 2) 1.001 2.002001 2.002001−2
1.001−1

= 0.002001
0.001

= 2.001

(1, 2) 1 + h 2 + 2h+ h2 (2+2h+h2)−2

(1+h)−1
= 2h+h2

h = 2 + h

Look what happens when x = 1 + h where h �= 0, but could be just
a hair’s length away from x = 1. Then y = (1 + h)2 + 1 = 2 + 2h + h2.
The slope of the secant line would then be

y2 − y1

x2 − x1
=

(2 + 2h+ h2)− 2

(1 + h)− 1
=

2h+ h2

h
= 2 + h

Now as h gets closer and closer to 0, the secant slope gets closer and
closer to 2. Formally, we say

lim
h→0

(2 + h) = 2
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This notation means that the limit of 2 + h as h goes to zero is 2. Intu-
itively, as h gets closer and closer to 0, 2 + h gets closer and closer to 2.
So we have found that for the graph y = x2 + 1 at the point (1, 2), the
slope of the tangent line is 2.

The general situation looks like this. For the function y = f (x),
we want to find the slope of the tangent line at the point (x, f (x)). As
pictured below, the slope of the secant line through the point (x, f (x))
and the neighboring point (x + h, f (x + h)) is

y2 − y1

x2 − x1
=

f(x+ h)− f(x)

(x+ h)− x
=

f(x+ h)− f(x)

h

f(x+ h)

f(x)

x x+ h
x

y

The slope of the secant line through (x, f (x)) and (x+ h, f (x+ h)) is
f (x+h)−f (x)

h

We use the notation f ′(x) to denote the slope of the tangent line at
the point (x, f (x)), so

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

This is a complicated definition, so let’s do some examples. For a straight
line y = mx + b, then f (x) = mx + b. To find f (x + h) we replace x with
x + h to obtain f (x + h) = m(x + h) + b. Therefore, the secant slope is
equal to

f(x+ h)− f(x)

h
=

m(x+ h) + b− (mx+ b)

h
=

mh

h
= m
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The tangent slope is also equal to m regardless of the value of x in-
volved, so f ′(x) = m. This makes sense because the line y = mx + b
always has a slope of m.

Let’s now find the derivative y = x2 using the definition. Here, we
have

f(x+ h)− f(x)

h
=

(x+ h)2 − x2

h

=
(x2 + 2xh+ h2)− x2

h

=
2xh+ h2

h
= 2x+ h

and as h goes to 0, we get f ′(x) = 2x.
For f (x) = x3, we have

f(x+ h)− f(x)

h
=

(x+ h)3 − x3

h

=
(x3 + 3x2h+ 3xh2 + h3)− x3

h

=
3x2h+ 3xh2 + h3

h

= 3x2 + 3xh+ h2

and as h goes to 0, we get f ′(x) = 3x2.
Given the function y = f (x), the process of determining the deriva-

tive function f ′(x) is called differentiation. The good news is that once
we have found the derivatives of a few simple functions, we can de-
termine the derivatives of more complicated functions with very little
difficulty and without needing to use the formal limit-based definition
given above. The following theorem is very useful.

Theorem: If u(x) = f (x) + g(x), then u′(x) = f ′(x) + g′(x). In
other words, the derivative of the sum is the sum of the derivatives. Also, if
c is any real number, the derivative of c f (x) is c f ′(x).

As a consequence of this theorem, since y = x3 has derivative 3x2

and y = x2 has derivative 2x, then y = x3 + x2 has derivative 3x2 + 2x.
To illustrate the second statement, the function y = 10x3 has derivative
30x2.
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Aside
Proof: Let u(x) = f (x) + g(x). Then

u(x+ h)− u(x)

h
=

f(x+ h) + g(x+ h)− (f(x) + g(x))

h

=
f(x+ h)− f(x)

h
+

g(x+ h)− g(x)

h

Taking the limit of both sides as h → 0 gives us

u′(x) = f ′(x) + g′(x)

Note that when we take the limit on the right side of the equation,
we are using the fact that the limit of the sum is the sum of the limits. We
won’t rigorously prove that here, but the intuition is that if the number
a is getting closer and closer to A and b is getting closer and closer to
B, then a + b is getting closer and closer to A + B. We note that it’s also
true that the limit of the product is the product of the limits and the limit of
the quotient is the quotient of the limits. But as we’ll see, the corresponding
rules for derivatives are not quite as straightforward. For instance, the
derivative of the product is not the product of the derivatives.

For the second half of the theorem, if v(x) = c f (x), then we have

v′(x) = lim
h→0

v(x+ h)− v(x)

h
= lim

h→0

cf(x+ h)− cf(x)

h

= c lim
h→0

f(x+ h)− f(x)

h
= cf ′(x)

as desired.

To differentiate f (x) = x4, let’s first expand f (x + h) = (x + h)4 =
x4 + 4x3h + 6x2h2 + 4xh3 + h4. The coefficients of this expression, 1, 4,
6, 4, 1, might look familiar to you, as they are row 4 of Pascal’s triangle,
studied in Chapter 4. Thus, we have

f (x + h)− f (x)
h

=
4x3h + 6x2h2 + 4xh3 + h4

h
= 4x3 + h× [STUFF]

and as h → 0, we get f ′(x) = 4x3. Do you see a pattern? The deriva-
tives of x, x2, x3, and x4 are, respectively, 1, 2x, 3x2, and 4x3. Applying
the same logic to higher exponents gives us the following powerful rule.
Another popular notation for the derivative is y′, so let’s start using it
here.
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Theorem (the power rule): For n ≥ 0,

y = xn has derivative y′ = nxn−1

For example,
if y = x5, then y′ = 5x4

and
if y = x10, then y′ = 10x9

Even a constant function, like y = 1, can be differentiated by this rule,
since 1 = x0 and y = x0 has derivative 0x−1 = 0, for every value of x.
This makes sense since the line y = 1 is horizontal. As a consequence of
the power rule and the previous theorem, we can now differentiate any
polynomial. For example, if

y = x10 + 3x5 − x3 − 7x+ 2520

then
y′ = 10x9 + 15x4 − 3x2 − 7

The power rule is even true when n is not a positive integer. For
instance, if

y =
1

x
= x−1

then
y′ = −1x−2 =

−1

x2

Likewise, if
y =

√
x = x1/2

then
y′ =

1

2
x−1/2 =

1

2
√
x

But we’re not ready to prove these facts yet. Before we learn how to
differentiate more complicated functions, let’s take advantage of what
we have learned so far to solve some other interesting and practical
optimization problems.
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Max-Min Problems

Differentiation helps us determine where a function achieves its max-
imum or minimum values. For instance, for what value of x does the
parabola y = x2 − 8x + 10 reach its lowest point?

−15 −10 −5 5 10 15

−10

10

y = x2 − 8x+ 10

(4,−6)

x

y

The parabola y = x2 − 8x+ 10 is at its lowest point when y′ = 0

At the lowest point, the slope of the tangent line must be 0. Since
y′ = 2x− 8, solving 2x− 8 = 0 tells us that the minimum occurs when
x = 4 (and y = 16− 32 + 10 = −6). For the function y = f (x), a value
of x that satisfies f ′(x) = 0 is called a critical point of f . For the function
y = x2 − 8x + 10, the only critical point is x = 4.

Where does the maximum occur? In the above problem, there is no
maximum because the y-value of x2 − 8x + 10 can get arbitrarily big.
But if x were restricted to an interval, say 0 ≤ x ≤ 6, then y would be
greatest at one of its endpoints. Here, we see that when x = 0, y = 10
and when x = 6, y = −2, so the function would be maximized at the
endpoint x = 0. In general, we have the following important theorem.

Theorem (optimization theorem): If a differentiable function y =
f (x) is maximized or minimized at a point x∗, then x∗ must be either a
critical point of f or an endpoint.

Let’s return to the box problem at the beginning of the chapter. Here
we are interested in maximizing the function

y = (12− 2x)2x = 4x3 − 48x2 + 144x

where x is required to be between 0 and 6. We wish to find a value of
x for which y is maximized. Since our function is a polynomial, we see
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that it has derivative

y′ = 12x2 − 96x+ 144 = 12(x2 − 8x+ 12) = 12(x− 2)(x− 6)

Hence the function has critical points x = 2 and x = 6.
The box has volume 0 at the endpoints x = 0 and x = 6, so the

volume is minimized there. It has maximum volume at the other critical
point x = 2, where y = 128 cubic inches.

Differentiation Rules

The more functions that we can differentiate, the more problems we can
solve. Perhaps the most important function in calculus is the exponential
function y = ex. What makes y = ex special is that it is equal to its own
derivative.

Theorem: If y = ex, then y′ = ex.

Aside
Why does f (x) = ex satisfy f ′(x) = ex? Here is the essential idea. First
notice that

f(x+ h)− f(x)

h
=

ex+h − ex

h
=

ex(eh − 1)

h

Now recall that the number e has definition

e = lim
n→∞

(
1 +

1

n

)n

which means that as n gets larger and larger, (1 + 1/n)n gets closer and
closer to e. Now let h = 1/n. When n is very large, then h = 1/n is very
close to 0. Thus for h near 0,

e ≈ (1 + h)1/h

If we raise both sides to the power h and use the exponent law
(

ab
)c

=

abc, then we see that
eh ≈ 1 + h

and therefore
eh − 1

h
≈ 1

Thus as h gets closer and closer to 0, eh−1
h gets closer and closer to 1, so

f (x+h)− f (x)
h gets closer and closer to ex.
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Are there any other functions that are their own derivative? Yes, but
they are all of the form y = cex where c is a real number. (Note that this
includes the case when c = 0, giving us the constant function y = 0.)

We have seen that when we add functions, the derivative of the sum
is the sum of the derivatives. What about the product of functions?
Alas, the derivative of a product is not the product of the derivatives,
but it’s not too hard to compute, as the following theorem demonstrates.

Theorem (product rule for derivatives): If y = f (x)g(x), then

y′ = f (x)g′(x) + f ′(x)g(x)

For example, according to the product rule, to differentiate y = x3ex,
we let f (x) = x3 and g(x) = ex. Therefore

y′ = f(x)g′(x) + f ′(x)g(x)
= x3ex + 3x2ex

Notice that when f (x) = x3 and g(x) = x5, then the product rule
says that their product x3x5 = x8 has derivative

y′ = x3(5x4) + 3x2(x5)

= 5x7 + 3x7 = 8x7

which is consistent with the power rule.

Aside
Proof (product rule): Let u(x) = f (x)g(x). Then

u(x+ h)− u(x)

h
=

f(x+ h)g(x+ h)− f(x)g(x)

h

Next we cleverly add 0 to the numerator by subtracting and adding
f (x + h)g(x) to get

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= f(x+ h)

(
g(x+ h)− g(x)

h

)
+

(
f(x+ h)− f(x)

h

)
g(x)

As h → 0, this becomes f (x)g′(x) + f ′(x)g(x), as desired.
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The product rule is not just computationally useful: it also allows
us to find derivatives of other functions. For example, we previously
proved the power rule for positive exponents. But now we can prove
that it is true for fractional and negative exponents too.

For example, the power rule predicts that

if y =
√
x = x1/2, then y′ =

1

2
x−1/2 =

1

2
√
x

Let’s see why this is true using the product rule. Suppose u(x) =
√

x.
Then

u(x)u(x) =
√
x
√
x = x

When we differentiate both sides, the product rule tells us that

u(x)u′(x) + u′(x)u(x) = 1

Thus 2u(x)u′(x) = 1, and therefore u′(x) = 1
2u(x) =

1
2
√

x , as predicted.

Aside
The power rule also predicts that for negative exponents, y = x−n

should have the derivative y′ = −nx−n−1 = −n
xn+1 . To prove this, let

u(x) = x−n, where n ≥ 1. Then, by definition, for x �= 0, we have

u(x)xn = x−nxn = x0 = 1

When we differentiate both sides, the product rule tells us that

u(x)(nxn−1) + u′(x)xn = 0

Dividing through by xn and moving the first term to the other side, we
get

u′(x) = −nu(x)
x

=
−n
xn+1

as desired.
Thus, if y = 1/x = x−1, then y′ = −1/x2.
If y = 1/x2 = x−2, then y′ = −2x−3 = −2/x3, and so on.
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In Chapter 7 we wanted to find the positive number x that would
minimize the function

y = x+ 1/x

Using clever geometry, we showed that this occurs when x = 1. But
with calculus, we don’t have to be as clever. We simply solve y′ = 0,
which gives us 1− 1/x2 = 0, and the only positive number that satisfies
this is x = 1.

The trigonometric functions are also easy to differentiate. Note that
for the following theorem to be true, the angles must be expressed in
radians.

Theorem: If y = sin x, then y′ = cos x. If y = cos x, then y′ =
− sin x. In other words, the derivative of sine is cosine and the derivative of
cosine is negative sine.

Aside
Proof: The proof relies on the following lemma. (A lemma is a statement
that helps us prove a more important theorem.)
Lemma:

lim
h→0

sinh

h
= 1 and lim

h→0

cosh− 1

h
= 0

This says that for any tiny angle h (in radians) near 0, its sine value
is very close to h and its cosine value is very close to 1. For exam-
ple, a calculator reveals that sin 0.0123 = 0.0122996. . . and cos 0.0123 =
0.9999243. . . . Assuming the lemma for now, we can differentiate the sine
and cosine functions. Using the sin(A + B) identity from Chapter 9, we
have

sin(x+ h)− sinx

h
=

sinx cosh+ sinh cosx− sinx

h

= sinx

(
cosh− 1

h

)
+ cosx

(
sinh

h

)

As h → 0, then according to our lemma, the expression above becomes
(sin x)(0) + (cos x)(1) = cos x. Likewise,

cos(x+ h)− cosx

h
=

cosx cosh− sinx sinh− cosx

h

= cosx

(
cosh− 1

h

)
− sinx

(
sinh

h

)

As h → 0, this becomes (cos x)(0)− (sin x)(1) = − sin x, as desired.
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Aside
We can prove limh→0

sin h
h = 1 using the figure below.

h

O

P
Q

RS

1

On the unit circle above, R = (1, 0) and P = (cos h, sin h), where h is a
small positive angle. Also, in right triangle OQR,

tanh =
QR

OR
=

QR

1
= QR

It follows that right triangle OPS has area 1
2 cos h sin h, and right triangle

OQR has area 1
2ORQR = 1

2 tan h = sin h
2 cos h .

Now focus on the sector OPR, which is a wedge-shaped object. The
area of the unit circle is π12 = π, and sector OPS is just a fraction h/(2π)
of the unit circle. Therefore sector OPR has area π(h/2π) = h/2.

Since sector OPR contains triangle OPS and is contained inside tri-
angle OQR, then by comparing their areas we have

1

2
cosh sinh <

h

2
<

sinh

2 cosh

Multiplying through by 2
sin h > 0, we have

cosh <
h

sinh
<

1

cosh

For positive numbers, if a < b < c, then 1/c < 1/b < 1/a. Therefore,

cosh <
sinh

h
<

1

cosh

Now as h → 0, both cos h and 1/ cos h go to 1, as desired.
Therefore, limh→0

sin h
h = 1.
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Aside
We can prove limh→0

cos h−1
h = 0 using the previous result and a few

lines of algebra (including cos2 h + sin2 h = 1).

cosh− 1

h
=

cosh− 1

h
· cosh+ 1

cosh+ 1
=

cos2 h− 1

h(cosh+ 1)

=
− sin2 h

h(cosh+ 1)
= −sinh

h
· sinh

cosh+ 1

Now as h → 0, sin h
h → 1, and sin h

cos h+1 → 0
2 = 0.

Hence limh→0
cos h−1

h = 0.

Once we know the derivatives of sine and cosine, we can differenti-
ate the tangent function.

Theorem: For y = tan x, y′ = 1/(cos2 x) = sec2 x.
Proof: Let u(x) = tan x = (sin x)/(cos x). Then

tan(x) cosx = sinx

Differentiating both sides and using the product rule, we have

tanx(− sinx) + tan′(x) cosx = cosx

Dividing through by cos x and solving for tan′(x) gives us

tan′(x) = 1 + tanx tanx = 1 + tan2 x =
1

cos2 x
= sec2 x

where the second-to-last equality is obtained by dividing the identity
cos2 x + sin2 x = 1 by cos2 x.

Taking a similar approach allows us to prove the quotient rule for
differentiation.

Theorem (quotient rule): If u(x) = f (x)/g(x), then

u′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)g(x)
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Aside
Proof of quotient rule: Since u(x)g(x) = f (x), then when we differenti-
ate both sides, the product rule gives us

u(x)g′(x) + u′(x)g(x) = f ′(x)

If we multiply both sides by g(x), we get

g(x)u(x)g′(x) + u′(x)g(x)g(x) = g(x)f ′(x)

Replacing g(x)u(x) with f (x) and solving for u′(x) gives us the desired
quantity.

We know how to differentiate polynomials, exponential functions,
trigonometric functions, and more. We have seen how to differentiate
functions when they are added, multiplied, and divided. The chain rule
(stated below, but not proved) tells us what to do when the functions are
composed. For example, if f (x) = sin x and g(x) = x3, then

f(g(x)) = sin(g(x)) = sin(x3)

Note that this is not the same as the function

g(f(x)) = g(sinx) = (sinx)3

Theorem (chain rule): If y = f (g(x)), then y′ = f ′(g(x))g′(x).
For example, if f (x) = sin x, and g(x) = x3, then f ′(x) = cos x and

g′(x) = 3x2. The chain rule tells us that if y = f (g(x)) = sin(x3), then

y′ = f ′(g(x))g′(x) = cos(g(x))g′(x) = 3x2 cos(x3)

More generally, the chain rule tells us that if y = sin(g(x)), then y′ =
g′(x) cos(g(x)). By the same logic, y = cos(g(x)) has y′ = −g′(x) sin(g(x)).

On the other hand, for the function y = g( f (x)) = (sin x)3, the chain
rule says that

y′ = g′(f(x))f ′(x) = 3(f(x)2)f ′(x) = 3 sin2 x cosx

More generally, the chain rule tells us that if y = (g(x))n, then y′ =
n(g(x))n−1g′(x). What does it say about differentiating y = (x3)5?

y′ = 5(x3)4(3x2) = 5x12(3x2) = 15x14

which is consistent with the power rule.
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Let’s differentiate y =
√

x2 + 1 = (x2 + 1)1/2. Then

y′ =
1

2
(x2 + 1)−1/2(2x) =

x√
x2 + 1

Exponential functions are easy to differentiate too. Since ex is its
own derivative, if y = eg(x), then

y′ = g′(x)eg(x)

For example, y = ex3
has y′ = (3x2)ex3

.
Notice that the function y = ekx has derivative y′ = kekx = ky. This

is one of the properties that makes exponential functions so important.
They arise anytime that the rate of growth of a function is proportional
to the size of its output. This is why exponential functions arise so often
in financial and biological problems.

The natural logarithm function ln x has the property that

elnx = x

for any x > 0. Let’s use the chain rule to determine its derivative. Let-
ting u(x) = ln x, we have eu(x) = x. Differentiating both sides of this
equation tells us u′(x)eu(x) = 1. But since eu(x) = x, it follows that
u′(x) = 1/x. In other words, if y = ln x, then y′ = 1/x. Applying the
chain rule again, we obtain that if y = ln(g(x)), then y′ = g′(x)

g(x) .
We summarize these consequences of the chain rule here.

y = f (g(x)) y′ = f ′(g(x))g′(x)

y = sin(g(x)) y′ = g′(x) cos(g(x))

y = cos(g(x)) y′ = −g′(x) sin(g(x))

y = (g(x))n y′ = n(g(x))n−1g′(x)
y = eg(x) y′ = g′(x)eg(x)

y = ln(g(x)) y′ = g′(x)/g(x)

Let’s apply the chain rule to solve a problem from cow-culus! Clara
the Cow is one mile north of the x-axis river, which runs from east to
west. Her barn is three miles east and one mile north of her current po-
sition. She wishes to drink from the river and then walk to her barn so
as to minimize her total amount of walking. Where on the river should
she stop to drink?
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y

x
3

1

2

x
0

(0,1)

(3,2)

3 − x 
x

Cow-culus question: Where should the cow drink to minimize the total amount of walking?

Assuming that Clara walks in a straight line from her starting point
(0, 1) to the drinking point (x, 0), then the Pythagorean theorem (or
the distance formula) tells us that the length of the line to the drink-
ing point is

√
x2 + 1 and the length of the trip to the barn at B = (3, 2)

is
√
(3− x)2 + 4 =

√
x2 − 6x + 13. Hence the problem is to determine

the number x (between 0 and 3) that minimizes

y =
√

x2 + 1 +
√
x2 − 6x+ 13 = (x2 + 1)1/2 + (x2 − 6x+ 13)1/2

When we differentiate the above expression (using the chain rule) and
set it equal to 0, we get

x√
x2 + 1

+
x− 3√

x2 − 6x+ 13
= 0

You can verify that when x = 1, the left side of the above equation be-
comes 1/

√
2− 2/

√
8, which indeed equals 0. (You can solve the equa-

tion directly by putting x/
√

x2 + 1 on the other side of the equation,
then squaring both sides and cross-multiplying. A lot of cancellation
occurs, and the only solution between 0 and 3 is x = 1.)

We can confirm our answer with just a little reflection like we did in
Chapter 7. Imagine that instead of Clara going to the barn at (3, 2) after
her drink, she went to the barn’s reflection at B′ = (3,−2), as in the
figure on the next page.

The distance to B′ is exactly the same as the distance to B. And
every point from above the river to below the river must cross the x-
axis somewhere. The path with the shortest distance is the straight line
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y

x
3

1

2

0

(0,1)

(3,2)

(3, { 2)

1

2

Upon reflection, there is another way to solve this problem

from (0, 1) to (3,−2) (with slope −3/3 = −1), which intersects the x-
axis when x = 1. No calculus or square roots required!

A Magical Application: Taylor Series

When we proved Euler’s equation at the end of last chapter, we relied
on the following mysterious formulas:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

Before we see how we arrived at these, let’s play with them for a lit-
tle bit. Look what happens as you differentiate every term in the series
for ex. For example, the power rule tells us that the derivative of x4/4!
is (4x3)/4! = x3/3!, which is the preceding term of the series. In other
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words, when we differentiate the series for ex, we get back the series for
ex, which agrees with what we know about ex!

If we differentiate x− x3/3! + x5/5!− x7/7! + · · · term by term, we
get 1 − x2/2! + x4/4! − x6/6! + · · · , which is consistent with the fact
that the derivative of the sine function is the cosine function. Likewise,
when we differentiate the cosine series we get the negative of the sine
series. Notice also that the series confirms that cos 0 = 1, and because
every exponent is even, the value of cos(−x) will be the same as cos x,
which we know to be true. (For example, (−x)4/4! = x4/4!.) Likewise,
for the sine series, we see that sin 0 = 0 and because all of the exponents
are odd, we get sin(−x) = − sin x, as appropriate.

Now let’s see where those formulas come from. In this chapter, we
have learned how to find the derivative of most commonly used func-
tions. But there are times when it is useful to differentiate a function
more than once by computing its second derivative or third derivative
or more, denoted by f ′′(x), f ′′′(x), and so on. The second derivative
f ′′(x) measures the rate of change of the slope of the function (also
known as its concavity) at the point (x, f (x)). The third derivative mea-
sures the rate of change of the second derivative, and so on.

The formulas given above are called Taylor series, named after En-
glish mathematician Brook Taylor (1685–1731). For a function f (x) with
derivatives f ′(x), f ′′(x), f ′′′(x), and so on, we have

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ f ′′′′(0)

x4

4!
+ · · ·

for all values of x that are “close enough” to 0. What does close enough
mean? For some functions, like ex, sin x, and cos x, all values of x are
close enough. But for some functions, as we’ll see later, x has to be small
for the series to match the function.

Let’s see what the formula says for f (x) = ex. Since ex is its own
first (and second and third . . . ) derivative, it follows that

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = · · · = e0 = 1

so the Taylor series for ex is 1 + x + x2/2! + x3/3! + x4/4! + . . . , as
promised. When x is small, then we only need to compute a few terms
of the series to get an excellent approximation of the exact answer.

Let’s apply this to compound interest. In the last chapter we saw
that if we have $1000 earning 5 percent interest, compounded continu-
ously, then at the end of the year we have $1000e0.05 = $1051.27. But we
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can get a get a good estimate of that with the second-order Taylor polyno-
mial approximation

$1000(1 + 0.05 + (0.05)2/2!) = $1051.25

and the third-order approximation gives us $1051.27.
We illustrate Taylor approximation in the figure below, where y = ex

is graphed along with its first three Taylor polynomials.

1 2

y

−2 −1

1

2

x

y = 1 + x   + 
x2

2

y = ex 

y = 1 + x   + x2 + 
x3

6
y = 1 + x

Taylor approximations of ex

As we increase the degree of the Taylor polynomial, the approxi-
mation becomes more and more accurate, especially for the values of x
near 0. So what is it about the Taylor polynomials that make them work
so well? The first-degree approximation (also called the linear approxi-
mation) says that for x near 0,

f(x) ≈ f(0) + f ′(0)x

9780465054725-text.pdf   286 6/29/15   10:28 AM



The Magic of Calculus 277

This is a straight line that goes through the point (0, f (0)) and has
slope f ′(0). Likewise, it can be shown that the nth-degree Taylor poly-
nomial goes through the point (0, f (0)) with the same first derivative,
same second derivative, same third derivative, and so on, up to the
same nth derivative as the original function f (x).

Aside
Taylor polynomials and Taylor series can also be defined for values of
x near other numbers besides 0. Specifically, the Taylor series for f (x)
with basepoint a is equal to

f(a) + f ′(a)(x− a) + f ′′(a) (x− a)2

2!
+ f ′′′(a) (x− a)3

3!
+ · · ·

As in the case when a = 0, the Taylor series is equal to f (x) for all real
or complex numbers x sufficiently close to a.

Let’s look at the Taylor series for f (x) = sin x. Notice that f ′(x) =
cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, and f ′′′′(x) = sin x = f (x)
again. When this is evaluated at 0, starting at f (0), we obtain the cyclic
pattern 0, 1, 0,−1, 0, 1, 0,−1, . . . , causing every even power of x to dis-
appear in the Taylor series. Thus we have, for all values of x (measured
in radians),

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

And similarly, when f (x) = cos x we get

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

Finally, let’s look at an example where the Taylor series is equal to
the function for some values of x, but not all values of x. Consider
f (x) = 1

1−x = (1− x)−1. Here f (0) = 1 and using the chain rule, the
first few derivatives are

f ′(x) = −1(1− x)−2(−1) = (1− x)−2

f ′′(x) = (−2)(1− x)−3(−1) = 2(1− x)−3

f ′′′(x) = −6(1− x)−4(−1) = 3!(1− x)−4

f ′′′′(x) = −4!(1− x)−5(−1) = 4!(1− x)−5
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Continuing this pattern (or using a proof by induction), we see that the
nth derivative of (1− x)−1 is n!(1− x)−(n+1), and when x = 0, the nth
derivative is just n!. Consequently, the Taylor series gives us

1

1− x
= 1 + x+ x2 + x3 + x4 + · · ·

but this equation is only valid when x is between −1 and 1. For exam-
ple, when x is greater than 1, then the numbers being added get larger
and larger and so the sum is undefined.

We will say more about this series in the next chapter. In the mean-
time, you might wonder what it really means to add up an infinite num-
ber of numbers. How could such a sum be equal to anything? That’s a
fair question, and we will attempt to answer it as we explore the nature
of infinity, where we will encounter many surprising, puzzling, unintu-
itive, and beautiful results.
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1 + 2 + 3 + … = 1
(or maybe {1/12?)

C H A P T E R  T W E L V E

The Magic of Infinity

1 + 2 + 3 + … = 1
(or maybe {1/12?)

Infinitely Interesting

Last, but certainly not least, let’s talk about infinity. Our journey began
in Chapter 1 with the sum of the numbers from 1 to 100:

1 + 2 + 3 + 4 + · · ·+ 100 = 5050

and we eventually discovered formulas for the sum of the numbers
from 1 to n:

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

and we discovered formulas for other sums with a finite number of
terms. In this chapter, we will explore sums that have an infinite num-
ber of terms like

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

which, I hope, I will convince you has a sum that is equal to 2. Not
approximately 2, but exactly equal to 2. Some sums have intriguing an-
swers, like

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · = π

4

And some infinite sums, like

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

279
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don’t add up to anything. We say that the sum of all the positive num-
bers is infinity, denoted

1 + 2 + 3 + 4 + 5 + · · · =∞
which means that the sum grows without bound. In other words, the
sum will eventually exceed any number you wish: it will eventually
exceed one hundred, then one million, then one quadrillion, and so on.
And yet, by the end of this chapter, we shall see that a case could be
made that

1 + 2 + 3 + 4 + 5 + · · · = −1

12

Are you intrigued? I hope so! As we shall see, when you enter the
twilight zone of infinity, very strange things can happen, which is part
of what makes mathematics so fascinating and fun.

Is infinity a number? Not really, although it sometimes gets treated
that way. Loosely speaking, mathematicians might say:

∞+ 1 =∞ ∞+∞ =∞ 5×∞ =∞ 1

∞ = 0

Technically, there is no largest number, since we can always add 1 to
obtain a larger number. The symbol ∞ essentially means “arbitrarily
large” or bigger than any positive number. Likewise, the term −∞
means less than any negative number. By the way, the quantities ∞−∞
(infinity minus infinity) and 1/0 are undefined. It is tempting to define
1/0 = ∞, since when we divide 1 by smaller and smaller positive num-
bers, the quotient gets bigger and bigger. But the problem is that when
we divide 1 by tiny negative numbers, the quotient gets more and more
negative.

An Important Infinite Sum: The Geometric Series

Let’s start with a statement that is accepted by all mathematicians, but
seems wrong to most people when they first see it:

0.99999 . . . = 1

Everyone agrees that the two numbers are close, indeed extremely close,
but many still feel that they should not be considered the same number.
Let me try to convince you that the numbers are in fact equal by offering
various different proofs. I hope that at least one of these explanations
will satisfy you.
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Perhaps the quickest proof is that if you accept the statement that

1

3
= 0.33333 . . .

then when you multiply both sides by 3 you get

1 =
3

3
= 0.99999 . . .

Another proof is to use the technique that we used in Chapter 6 to
evaluate repeating decimals. Let’s denote the infinite decimal expan-
sion with the variable w as follows:

w = 0.99999 . . .

Now if we multiply both sides by 10, then we get

10w = 9.99999 . . .

Subtracting the first equation from the second gives us

9w = 9.00000 . . .

which means that w = 1.
Here’s an argument that uses no algebra at all. Do you agree that

if two numbers are different, then there must be a different number
in between them (for instance, their average)? Then suppose, to the
contrary, that 0.99999 . . . and 1 were different numbers. If that were the
case, what number would be in between them? If you can’t find another
number between them, then they can’t be different numbers.

We say that two numbers or infinite sums are equal if they are arbi-
trarily close to one another. In other words, the difference between the
two quantities is less than any positive number you can name, whether
it be 0.01 or 0.0000001 or 1 divided by a trillion. Since the difference be-
tween 1 and 0.99999 . . . is smaller than any positive number, then math-
ematicians agree to call these quantities equal.

It’s with the same logic that we can evaluate the infinite sum below:

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 2

We can give this sum a physical interpretation. Imagine you are stand-
ing two meters away from a wall, and you take one big step exactly one
meter toward the wall, then another step half a meter toward the wall,
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then a quarter of a meter, then an eighth of a meter, and so on. After
each step, the distance between you and the wall is cut exactly in half.
Ignoring the practical limitations of taking tinier and tinier steps, you
eventually get as close to the wall as desired. Hence the total length of
your steps would be exactly two meters.

We can illustrate this sum geometrically, as in the figure below. We
start with a 1-by-2 rectangle with area 2, then cut it in half, then half
again, then half again, and so on. The area of the first region is 1. The
next region has area 1/2, then the next region has area 1/4, and so on.
As n goes to infinity, the regions fill up the entire rectangle, and so their
total area is 2.

1

1/2

1/4

1/8

1/16
1/32

…

A geometric proof that 1 + 1/2 + 1/4 + 1/8 + 1/16 + · · · = 2

For a more algebraic explanation, we look at the partial sums, as
given in the table below.

Partial sums of 1 + 1
2
+ 1

4
+ 1

8
+ · · ·

1 = 1 = 2− 1

1 + 1
2

= 11
2

= 2− 1
2

1 + 1
2
+ 1

4
= 13

4
= 2− 1

4

1 + 1
2
+ 1

4
+ 1

8
= 17

8
= 2− 1

8

1 + 1
2
+ 1

4
+ 1

8
+ 1

16
= 115

16
= 2− 1

16

1 + 1
2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
= 131

32
= 2− 1

32
...

...
...
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The pattern seems to indicate that for n ≥ 0,

1 +
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
= 2− 1

2n

We can prove this by induction (as we learned in Chapter 6) or as a
special case of the finite geometric series formula below.

Theorem (finite geometric series): For x �= 1 and n ≥ 0,

1 + x+ x2 + x3 + · · ·+ xn =
1− xn+1

1− x

Proof 1: This can be proved by induction as follows. When n = 0,
the formula says that 1 = 1−x1

1−x , which is certainly true. Now assume
the formula holds when n = k, so that

1 + x+ x2 + x3 + · · ·+ xk =
1− xk+1

1− x

Then the formula will continue to be true when n = k + 1, since when
we add xk+1 to both sides, we get

1 + x+ x2 + x3 + · · ·+ xk + xk+1 =
1− xk+1

1− x
+ xk+1

=
1− xk+1

1− x
+

xk+1(1− x)

1− x

=
1− xk+1 + xk+1 − xk+2

1− x

=
1− xk+2

1− x

as desired.
Alternatively, we can prove this by shifty algebra, as follows.
Proof 2: Let

S = 1 + x+ x2 + x3 + · · ·+ xn

Then when we multiply both sides by x we get

xS = x+ x2 + x3 + · · ·+ xn + xn+1

Subtracting away the xS (pronounced “excess”), we have massive amounts
of cancellation, leaving us with

S − xS = 1− xn+1
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In other words, S(1− x) = 1− xn+1, and therefore

S =
1− xn+1

1− x

as desired.
Notice that when x = 1/2, the finite geometric series confirms our

earlier pattern:

1 +
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
=

1− (1/2)n+1

1− 1
2

= 2− 1

2n

As n gets larger and larger, (1/2)n gets closer and closer to 0. Thus, as
n → ∞, we have

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = lim

n→∞

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n

)

= lim
n→∞

(
2− 1

2n

)
= 2

Aside
Here’s a joke that only mathematicians find funny. An infinite number
of mathematicians walk into a bar. The first mathematician says, “I’d
like one glass of beer.” The second mathematician says, “I’d like half
a glass of beer.” The third mathematician says, “I’d like a quarter of a
glass of beer.” The fourth mathematician says, “I’d like an eighth of a
glass. . . .” The bartender shouts, “Know your limits!” and hands them
two beers.

More generally, any number between −1 and 1 that gets raised to
higher and higher powers will get closer and closer to 0. Thus we have
the all-important (Infinite) geometric series.

Theorem (geometric series): For −1 < x < 1,

1 + x+ x2 + x3 + x4 + · · · = 1

1− x

The geometric series solves the last problem by letting x = 1/2:

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1

1− 1/2
= 2
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If the geometric series looks familiar, it’s because we encountered it
at the end of the last chapter when we used calculus to show that the
function y = 1/(1− x) has Taylor series 1 + x + x2 + x3 + x4 + · · · .

Let’s see what else the geometric series tells us. What can we say
about the following sum?

1

4
+

1

16
+

1

64
+

1

256
+ · · ·

When we factor the number 1/4 out of each term, this becomes

1

4

(
1 +

1

4
+

1

16
+

1

64
+ · · ·

)

so the geometric series (with x = 1/4) says that this simplifies to

1

4

(
1

1− 1/4

)
=

1

4
× 4

3
=

1

3

That series has a particularly beautiful proof without words as shown
on the next page. Notice that the dark squares occupy exactly one-third
of the area of the big square.

We can even use the geometric series to settle the 0.99999 . . . ques-
tion, since an infinite decimal expansion is just an infinite series in dis-
guise. Specifically, we can use the geometric series with x = 1/10 to
get

0.99999 . . . =
9

10
+

9

100
+

9

1000
+

9

10000
+ · · ·

=
9

10

(
1 +

1

10
+

1

100
+

1

1000
+ · · ·

)

=
9

10

(
1

(1− 1/10)

)

=
9

10− 1
= 1
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Proof without words: 1/4 + 1/16 + 1/64 + 1/256 + · · · = 1/3

The geometric series formula even works when x is a complex num-
ber, provided that the length of x is less than 1. For example, the imagi-
nary number i/2 has length 1/2, so the geometric series tells us that

1 + i/2 + (i/2)2 + (i/2)3 + (i/2)4 + · · · = 1

1− i/2

=
2

2− i
=

2

2− i
× 2 + i

2 + i
=

4 + 2i

4− i2
=

4 + 2i

5
=

4

5
+

2

5
i

which we illustrate on the next page on the complex plane.

1/2

1/2

1/4

1/4

1/8

1/8

…
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i

10.8

0.4i

1 + i/2 + (i/2)2 + (i/2)3 + (i/2)4 + (i/2)5 + · · · = 4
5 + 2

5 i

Although the finite geometric series formula is valid for all values
of x �= 1, the (infinite) geometric series formula requires that |x| < 1.
For example, when x = 2, the finite geometric series correctly tells us
(as we derived in Chapter 6) that

1 + 2 + 4 + 8 + 16 + · · ·+ 2n =
1− 2n+1

1− 2
= 2n+1 − 1

but substituting x = 2 in the geometric series formula says that

1 + 2 + 4 + 8 + 16 + · · · = 1

1− 2
= −1

which looks ridiculous. (Although looks can be deceiving. We will ac-
tually see a plausible interpretation of this result in our last section.)
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Aside
There are infinitely many positive integers:

1, 2, 3, 4, 5 . . .

There are also infinitely many positive even integers:

2, 4, 6, 8, 10 . . .

Mathematicians say that the set of positive integers and the set of even
positive integers have the same size (or cardinality or level of infinity)
because they can be paired up with one another:

1 2 3 4 5 · · ·
� � � � � · · ·
2 4 6 8 10 · · ·

A set that can be paired up with the positive integers is called countable.
Countable sets have the smallest level of infinity. Any set that can be
listed is countable, since the first element in the list is paired up with 1,
the second element is paired up with 2, and so on. The set of all integers

. . .− 3,−2,−1, 0, 1, 2, 3 . . .

can’t be listed from smallest to largest (what would be the first number
on the list?), but they can be listed this way:

0, 1,−1, 2,−2, 3,−3 . . .

Thus the set of all integers is countable, and of the same size as the num-
ber of positive integers.

How about the set of positive rational numbers? These are the num-
bers of the form m/n where m and n are positive integers. Believe it or
not, this set is countable too. They can be listed as follows:

1

1
,

1

2
,

2

1
,

1

3
,

2

2
,

3

1
,

1

4
,

2

3
,

3

2
,

4

1
. . .

where we first list the fractions according to the sum of their numerators
and denominators. Since every rational number appears on the list, the
positive rational numbers are countable too.
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Aside
Are there any infinite sets of numbers that are not countable? The Ger-
man mathematician Georg Cantor (1845–1918) proved that the real num-
bers, even when restricted to those that lie between 0 and 1, form an
uncountable set. You might try to list them this way:

0.1, 0.2, . . . , 0.9, 0.01, 0.02, . . . , 0.99, 0.001, 0.002, . . . 0.999, . . .

and so on. But that will only generate real numbers with a finite number
of digits. For instance, the number 1/3 = 0.333 . . . will never appear
on this list. But could there be a more creative way to list all the real
numbers? Cantor proved that this would be impossible, by reasoning as
follows. Suppose, to the contrary, that the real numbers were listable. To
give a concrete example, suppose the list began as

0.314159265 . . .

0.271828459 . . .

0.618033988 . . .

0.123581321 . . .

...

We can prove that such a list is guaranteed to be incomplete by creating
a real number that won’t be on the list. Specifically, we create the real
number 0.r1r2r3r4 . . . where r1 is an integer between 0 and 9 and differs
from the first number in the first digit (in our example, r1 �= 3) and r2
differs from the second number in the second digit (here r2 �= 7) and so
on. For instance, we might create the number 0.2674 . . . . Such a number
can’t be on the list anywhere. Why is it not the millionth number on the
list? Because it differs in the millionth decimal place. Hence any exam-
ple of a list you create is guaranteed to be missing some numbers, so the
real numbers are not countable. This is called Cantor’s diagonalization
argument, but I like to call it proof by Cantor-example. (Sorry.)

In essence, we have shown that although there are infinitely many
rational numbers, there are considerably more irrational numbers. If
you randomly choose a real number from the real line, it will almost
certainly be irrational.
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Infinite series arise frequently in probability problems. Suppose you
roll two 6-sided dice repeatedly until a total of 6 or 7 appears. If a 6
occurs before a 7 occurs, then you win the bet. Otherwise, you lose.
What is your chance of winning? There are 6× 6 = 36 equally likely
dice rolls. Of these, 5 of them have a total of 6 (namely (1, 5), (2, 4),
(3, 3), (4, 2), (5, 1)) and 6 of them have a total of 7 ((1, 6), (2, 5), (3, 4),
(4, 3), (5, 2), (6, 1)). Hence it would seem that your chance of winning
should be less than 50 percent. Intuitively, as you roll the dice, there are
only 5+ 6 = 11 rolls that matter—all the rest require us to roll again. Of
these 11 numbers, 5 of them are winners and 6 are losers. Thus it would
seem that your chance of winning should be 5/11.

We can confirm that the probability of winning is indeed 5/11 using
the geometric series. The probability of winning on the first roll of the
dice is 5/36. What is the chance of winning on the second roll? For
this to happen, you must not roll a 6 or 7 on the first roll, then roll a
6 on the second roll. The chance of a 6 or 7 on the first roll is 5/36 +
6/36 = 11/36, so the chance of not rolling 6 or 7 is 25/36. To find
the probability of winning on the second roll, we multiply this number
by the probability of rolling a 6 on any individual roll, 5/36, so the
probability of winning on the second roll is (25/36)(5/36). To win on
the third roll, the first two rolls must not be 6 or 7, then we must roll
6 on the third roll, which has probability (25/36)(25/36)(5/36). The
probability of winning on the fourth roll is (25/36)3(5/36), and so on.
Adding all of these probabilities together, the chance of winning your
bet is

5

36
+

(
25

36

) (
5

36

)
+

(
25

36

)2 (
5

36

)
+

(
25

36

)3 (
5

36

)
+ · · ·

=
5

36

[
1 +

25

36
+

(
25

36

)2

+

(
25

36

)3

+ · · ·
]

=
5

36

(
1

1− 25
36

)
=

5

36− 25
=

5

11

as predicted.

The Harmonic Series and Variations

When an infinite series adds up to a (finite) number, we say that the
sum converges to that number. When an infinite series doesn’t converge,
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we say that the series diverges. If an infinite series converges, then the
individual numbers being summed need to be getting closer and closer
to 0. For example, we saw that the series 1 + 1/2 + 1/4 + 1/8 + · · ·
converged to 2, and notice that the terms 1, 1/2, 1/4, 1/8 . . . are getting
closer and closer to 0.

But the converse statement is not true, since it is possible for a se-
ries to diverge even if the terms are heading to 0. The most important
example is the harmonic series, so named because the ancient Greeks dis-
covered that strings of lengths proportional to 1, 1/2, 1/3, 1/4, 1/5, . . .
could produce harmonious sounds.

Theorem: The harmonic series diverges. That is,

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · =∞

Proof: To prove that the sum is infinity, we need to show that the
sum gets arbitrarily large. To do this we break up our sum into pieces
based on the number of digits in the denominator. Notice that since the
first 9 terms are each bigger than 1/10, therefore

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
>

9

10

The next 90 terms are each bigger than 1/100, and so

1

10
+

1

11
+

1

12
+ · · ·+ 1

99
> 90× 1

100
=

9

10

Likewise, the next 900 terms are each bigger than 1/1000. Thus,

1

100
+

1

101
+

1

102
+ · · ·+ 1

999
>

900

1000
=

9

10

Continuing this way, we see that

1

1000
+

1

1001
+

1

1002
+ · · ·+ 1

9999
>

9000

10,000
=

9

10

and so on. Hence the sum of all of the numbers is at least

9

10
+

9

10
+

9

10
+

9

10
+ · · ·

which grows without bound. �
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Aside
Here’s a fun fact:

1 +
1

2
+

1

3
+ · · ·+ 1

n
≈ γ + lnn

where γ is the number 0.5772155649 . . . (called the Euler-Mascheroni
constant) and ln n is the natural logarithm of n, described in Chapter
10. (It is not known if γ, pronounced “gamma,” is rational or not.) The
approximation gets better as n gets larger. Here is a table comparing the
sum with the approximation.

n 1 + 1
2 + 1

3 + · · ·+ 1
n γ + lnn Error

10 2.92897 2.87980 0.04917

100 5.18738 5.18239 0.00499

1000 7.48547 7.48497 0.00050

10,000 9.78761 9.78756 0.00005

Equally fascinating is the fact that if we only look at prime denomina-
tors, then for a large prime number p,

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+ · · ·+ 1

p
≈M + ln ln p

where M = 0.2614972 . . . is the Mertens constant and the approximation
becomes more accurate as p gets larger.

One consequence of this fact is that

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+ · · · =∞

but it really crawls to infinity because the log of the log of p is small,
even if p is quite large. For instance, when we sum the reciprocals of all
prime numbers below googol, 10100, the sum is still below 6.

Let’s see what happens when you modify the harmonic series. If
you throw away a finite number of terms, the series still diverges. For
example, if you throw away the first million terms 1 + 1

2 + · · · + 1
106 ,

which sums to a little more than 14, the remaining terms still sum to
infinity.

If you make the terms of the harmonic series larger, then the sum
still diverges. For example, since for n > 1, 1√

n > 1
n , we have

1 +
1√
2
+

1√
3
+

1√
4
+ · · · =∞
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But making each term smaller does not necessarily mean that the sum
will converge. For example, if we divide each term in the harmonic
series by 100, it still diverges, since

1

100
+

1

200
+

1

300
+ · · · = 1

100
(1 + 1/2 + 1/3 + 1/4 + · · · ) =∞

Yet there are changes to the series that will cause it to converge. For
instance, if we square each term, the series converges. As Euler proved,

1 +
1

22
+

1

32
+

1

42
+ · · · = π2

6

In fact, it can be shown (through integral calculus) that for any p > 1,

1 +
1

2p
+

1

3p
+

1

4p
+ · · ·

converges to some number below p
p−1 . For example, when p = 1.01,

even though the terms are just slightly smaller than the terms of the
harmonic series, we have a convergent series

1 +
1

21.01
+

1

31.01
+

1

41.01
+ · · · < 101

Suppose we remove from the harmonic series any number with a
9 in it somewhere. In this situation, we can show that the series does
not sum to infinity (and therefore must converge to something). We
prove this by counting the 9-less numbers with denominators of each
length. For instance, we begin with 8 fractions with one-digit denom-
inators, namely 1

1 through 1
8 . There are 8× 9 = 72 two-digit numbers

without 9, since there are 8 choices for the first digit (anything but 0
or 9) and 9 choices for the second digit. Likewise, there are 8× 9× 9
three-digit numbers without 9s, and more generally, 8 × 9n−1 n-digit
numbers without 9s. Noting that the largest of the one-digit fractions is
1, the largest two-digit fraction is 1

10 , and the largest three-digit fraction
is 1

100 , we can break our infinite series into blocks as follows,

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
< 8

1

10
+

1

11
+

1

12
+ · · ·+ 1

88
< (8× 9)× 1

10
= 8

(
9

10

)

1

100
+

1

101
+

1

102
+ · · ·+ 1

888
< (8× 92)

1

100
= 8

(
9

10

)2
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and so on. The sum of all of the numbers is at most

8

(
1 +

9

10
+

(
9

10

)2

+

(
9

10

)3

+ · · ·
)

=
8

1− 9
10

= 80

by the geometric series. Hence, the 9-less series converges to a number
less than 80.

One way to think of the convergence of this series is that almost all
large numbers have a 9 in them somewhere. Indeed, if you generate
a random number with each digit randomly chosen from 0 to 9, the
chance that the number 9 was not among the first n digits would be
(9/10)n, which goes to 0 as n gets larger and larger.

Aside
If we treat the digits of π and e as random strings of digits, then it is a
virtual certainty that your favorite integer appears somewhere in those
numbers. For example, my favorite four-digit number, 2520, appears as
digits 1845 through 1848 of π. The first 6 Fibonacci numbers 1, 1, 2, 3, 5, 8,
appear beginning at digit 820,390. It’s not too surprising to see this
among the first million digits, since with a randomly generated num-
ber, the chance that the digits of a particular six-digit location matches
your number is one in a million. So with about a million six-digit lo-
cations, your chances are pretty good. On the other hand, it is rather
astonishing that the number 999999 appears so early in π, beginning at
digit 763. Physicist Richard Feynman once remarked that if he memo-
rized π to 767 decimal places, people might think that π was a rational
number, since he could end his recitation with “999999 and so on.”

There are programs and websites that will find your favorite digit
strings inside π and e. Using one of these programs, I discovered that if
I memorized π to 3000 decimal places, it would end with 31961, which
is amazing to me because March 19, 1961, happens to be my birthday!

Intriguing and Impossible Infinite Sums

Let’s summarize some of the sums we have seen so far.
We began this chapter by investigating

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 2

We saw that this was a special case of the geometric series, which says
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that for any value of x where −1 < x < 1,

1 + x+ x2 + x3 + x4 + · · · = 1

1− x

Notice that the geometric series also works for negative numbers be-
tween 0 and −1. For instance, when x = −1/2, it says

1− 1

2
+

1

4
− 1

8
+

1

16
− · · · = 1

1− (−1/2)
=

2

3

A series that alternates between positive and negative numbers that
are getting closer and closer to zero is called an alternating series. Alter-
nating series always converge to some number. To illustrate with the
alternating series above, draw the real line and put your finger on the
number 0. Then move it to the right by 1, then go to the left by 1/2, then
go to the right by 1/4. (At this point, your finger should be on the point
3/4.) Then go to the left by 1/8 (so that your finger is now on the point
5/8), and so on. Your finger will be homing in on a single number, in
this case 2/3.

Now consider the alternating series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

After four terms, we know that the infinite sum is at least 1 − 1/2 +
1/3− 1/4 = 7/12 = 0.583 . . . , and after five terms, we know that it is
at most 1− 1/2 + 1/3− 1/4 + 1/5 = 47/60 = 0.783. . . . The eventual
infinite sum is a little more than halfway between these two numbers,
namely 0.693147. . . . Using calculus, we can find the real value of this
number.

As a warm-up exercise, take the geometric series:

1 + x+ x2 + x3 + x4 + · · · = 1

1− x

and let’s see what happens when we differentiate both sides. Recall
from Chapter 11 that the derivatives of 1, x, x2, x3, x4, and so on are,
respectively, 0, 1, 2x, 3x2, 4x3, and so on. Thus, if we assume that the
derivative of an infinite sum is the (infinite) sum of the derivatives, and
use the chain rule to differentiate (1− x)−1, then we get for−1 < x < 1,

1 + 2x+ 3x2 + 4x3 + 5x4 + · · · = 1

(1− x)2
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Next let’s take the geometric series with x replaced by −x, so that
for −1 < x < 1,

1− x+ x2 − x3 + x4 − · · · = 1

1 + x

Now we take the anti-derivative of both sides, known to calculus stu-
dents as integration. To find the anti-derivative, we go backward. For
instance, the derivative of x2 is 2x, so going backward, we say that the
anti-derivative of 2x is x2. (As a technical note for calculus students, the
derivative of x2 + 5, or x2 + π, or x2 + c for any number c, is also 2x,
so the anti-derivative of 2x is really x2 + c.) The anti-derivatives of 1, x,
x2, x3, x4, and so on are, respectively x, x2/2, x3/3, x4/4, x5/5, and the
anti-derivative of 1/(1 + x) is the natural logarithm of 1 + x. That is,
for −1 < x < 1,

x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · = ln(1 + x)

(Technical note for calculus students: the constant term on the left side
is 0, since when x = 0, we want the left side to evaluate to ln 1 = 0.)
As x gets closer and closer to 1, we discover the natural meaning of
0.693147 . . . , namely

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = ln 2

Aside
If we write the geometric series with x replaced with −x2, we get, for x
between −1 and 1,

1− x2 + x4 − x6 + x8 − · · · = 1

1 + x2

In most calculus textbooks, it is shown that y = tan−1 x has derivative
y′ = 1

1+x2 . Thus, if we take the anti-derivative of both sides (and note
that tan−1 0 = 0), we get

x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · = tan−1 x

Letting x get closer and closer to 1, we get

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · = tan−1 1 =

π

4
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We have seen how the geometric series can be used, now let’s see
how it can be abused. The formula for the geometric series says that

1 + x+ x2 + x3 + x4 + · · · = 1

1− x

for values of x where −1 < x < 1. Let’s look at what happens when
x = −1. Then the formula would tell us that

1− 1 + 1− 1 + 1− · · · = 1

1− (−1)
=

1

2

Of course that’s impossible; since we are only adding and subtracting
integers, there is no way that they should sum to a fractional value like
1/2, even if the sum converged to something. On the other hand, the
answer isn’t entirely ridiculous, because when we look at the partial
sums we have

1 = 1

1− 1 = 0

1− 1 + 1 = 1

1− 1 + 1− 1 = 0

and so on. Since half of the partial sums are 1 and half of the partial
sums are 0, the answer 1/2 isn’t too unreasonable.

Using the illegal value x = 2, the geometric series says

1 + 2 + 4 + 8 + 16 + · · · = 1

1− 2
= −1

This answer looks even more ridiculous than the last sum. How can the
sum of positive numbers possibly be negative? And yet maybe there
is a reasonable interpretation for this sum too. For instance, in Chapter
3, we encountered ways in which a positive number could act like a
negative number, with relationships like

10 ≡ −1 (mod 11)

allowing us to make statements like 10k ≡ (−1)k (mod 11).
Here’s a way to understand 1 + 2 + 4 + 8 + 16 + · · · that requires

thinking out of the box a little. Recall that in Chapter 4, we observed
that every positive integer can be represented as the sum of powers
of 2 in a unique way. This is the basis for binary arithmetic, which is
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the way digital computers perform calculations. Every integer uses a
finite number of powers of 2. For instance, 106 = 2 + 8 + 32 + 64 uses
just four powers of 2. But now suppose that we also allowed infinite
integers, where we could use as many powers of 2 as we wanted. A
typical infinite integer might look like

1 + 2 + 8 + 16 + 64 + 256 + 2048 + · · ·

with powers of 2 appearing forever. What these numbers would rep-
resent is unclear, but we could come up with consistent rules for doing
arithmetic with them. For instance, we could add such numbers pro-
vided that we allowed carries to occur in the natural way. For instance,
if we add 106 to the above number, we would get

1 + 2 + 8 + 16 + 64 + 256 + · · ·

+ 2 + 8 + 32 + 64

1 + 4 + 64 + 128 + 256 + · · ·
where the 2 + 2 combine to create the 4; next, the 8 + 8 forms 16, but
when added to the next 16 creates a 32, which when added to the next
32 creates 64, which when added to the two 64s creates 64 and 128. Ev-
erything from 256 onward is unchanged. Now imagine what happens
when we take the “largest” infinite integer and add 1 to it.

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + · · ·

+1

The result would be a never-ending chain reaction of carrying with no
power of 2 appearing below the line. Hence, the sum can be thought of
as 0. Since (1 + 2 + 4 + 8 + 16 + · · · ) + 1 = 0, then subtracting 1 from
both sides suggests that the infinite sum behaves like the number −1.

Here is my favorite impossible infinite sum:

1 + 2 + 3 + 4 + 5 + · · · = −1

12

We “prove” this by the shifty algebra approach that we used in the sec-
ond proof of the finite geometric series. Although the shifty approach is
valid for finite sums, it can lead to nonsensical-looking results for infi-
nite sums. For instance, let’s first use shifty algebra to explain an earlier
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identity. We write the sum twice, but shift the terms over by one space
in the second sum as follows:

S = 1− 1 + 1− 1 + 1− 1 + · · ·
S = 1− 1 + 1− 1 + 1− · · ·

Adding these equations together gives us

2S = 1

and therefore S = 1/2, as we asserted earlier, when we set x = −1 in
the geometric series.

Aside
We can use the shifty algebra approach to give a quick, but not quite
legal, proof of the geometric series formula.

S = 1 + x+ x2 + x3 + x4 + x5 + · · ·

xS = x+ x2 + x3 + x4 + x5 + · · ·
Subtracting these two equations gives us

S(1− x) = 1

and therefore
S =

1

1− x

Next we claim that the alternating version of our desired sum also
has an interesting answer, namely

1− 2 + 3− 4 + 5− 6 + 7− 8 + · · · = 1

4

Here’s the shifty algebra proof. Writing the sum twice, we get

T = 1− 2 + 3− 4 + 5− 6 + 7− 8 + · · ·
T = 1− 2 + 3− 4 + 5− 6 + 7− · · ·

When we add these equations we get

2T = 1− 1 + 1− 1 + 1− 1 + 1− 1 + · · ·

Therefore 2T = S = 1/2 and so T = 1/4, as claimed.
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Finally, let’s see what happens when we write the sum of all posi-
tive integers as U and underneath that we write the previous (and un-
shifted) sum T.

U = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + · · ·
T = 1− 2 + 3− 4 + 5− 6 + 7− 8 + · · ·

Subtracting the second equation from the first one reveals

U − T = 4 + 8 + 12 + 16 + · · · = 4(1 + 2 + 3 + 4 + · · · )

In other words,
U − T = 4U

Solving for U, we get 3U = −T = −1/4, and therefore

U = −1/12

as claimed.
For the record, when you add an infinite number of positive inte-

gers, the sum diverges to infinity. But before you dismiss all of these
finite answers as pure magic with no redeeming qualities, it is possible
that there is a context where this actually makes sense. By expanding
our view of numbers, we saw a way in which the sum 1 + 2 + 4 + 8 +
16 + · · · = −1 was not so implausible. Recall also that when we con-
fined numbers to the real line, it was impossible to find a number with
a square of−1, yet this became possible once we viewed complex num-
bers as occupants of the plane with their own consistent rules of arith-
metic. In fact, theoretical physicists who study string theory actually
use the sum 1 + 2 + 3 + 4 + · · · = −1/12 result in their calculations.
When you encounter paradoxical results like the sums shown here, you
could just dismiss them as impossible and be done with it, but if you
allow your imagination to consider the possibilities, then a consistent
and beautiful system can arise.

Let’s end this book with one more paradoxical result. At the begin-
ning of this section we saw that the alternating series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

converged to the number ln 2 = 0.693147. . . . If you add these numbers
in a different order, you would naturally expect to still get the same

9780465054725-text.pdf   310 6/29/15   10:28 AM



The Magic of Infinity 301

sum, since the commutative law of addition says that

A+B = B +A

for any numbers A and B. And yet, look what happens when we rear-
range the sum in the following way:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · ·

Note that these are the same numbers being summed, since every frac-
tion with an odd denominator is being added and every fraction with
an even denominator is being subtracted. Even though the even num-
bers are being used up at twice as fast a rate as the odd numbers, they
both have an inexhaustible supply, and every fraction from the original
sum appears exactly once in the new sum. Agreed? But notice that this
equals

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

(
1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)

which is one-half of the original sum! How can this be? How is it possi-
ble that when we rearrange a collection of numbers, we can get a com-
pletely different number? The surprising answer is that the commuta-
tive law of addition can actually fail when you are adding an infinite
number of numbers.

This problem arises in a convergent series whenever both the posi-
tive terms and the negative terms form divergent series. In other words,
the positive terms add to ∞ and the negative terms add to −∞. Such
was the case with our last example. These sequences are called con-
ditionally convergent series and, amazingly, they can be rearranged to
obtain any total you desire. How would we rearrange the last sum to
get 42? You would add enough positive terms until the sum just exceeds
42, then subtract your first negative term. Then add more positive terms
until it exceeds 42 again. Then subtract your second negative term. Re-
peating this process, your sum will eventually get closer and closer to
42. (For instance, after subtracting your fifth negative term, −1/10, you
will always be within 0.1 of 42. After subtracting the fiftieth negative
term, −1/100, you will always be within 0.01 of 42, and so on.)
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Most of the infinite series that we encounter in practice do not ex-
hibit this strange sort of behavior. If we replace each term with its ab-
solute value (so that each negative term is turned positive), then if that
new sum converges, then the original series is called absolutely conver-
gent. For example, the alternating series we encountered earlier,

1− 1

2
+

1

4
− 1

8
+

1

16
− · · · = 2

3

is absolutely convergent, since when we sum the absolute values we get
the familiar convergent series

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 2

With absolutely convergent series, the commutative law of addition will
always work, even with infinitely many terms. Thus in the alternating
series above, no matter how thoroughly you rearrange the numbers 1,
−1/2, 1/4, −1/8 . . . , the rearranged sum will always converge to 2/3.

Unlike an infinite series, a book has to end sometime. We don’t dare
to try to go beyond infinity, so this seems like a good place to stop, but
I can’t resist one last mathemagical excursion.

Encore! Magic Squares!

As a reward for making it all the way to the end of the book, here is one
more magical mathematical topic for your enjoyment. It has nothing
to do with infinity, but it does have the word “magic” squarely in its
title: magic squares. A magic square is a square grid of numbers where
every row, column, and diagonal add to the same number. The most
famous 3-by-3 magic square is shown below, where all three rows, all
three columns, and both diagonals add to 15.

4 9 2

3 5 7

8 1 6

A 3-by-3 magic square with magic total 15

Here’s a little-known fact about this magic square that I call the
square-palindromic property. If you treat each row and column as a
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3-digit number and take the sum of their squares, you will find that

4922 + 3572 + 8162 = 2942 + 7532 + 6182

4382 + 9512 + 2762 = 8342 + 1592 + 6722

A similar phenomenon occurs with some of the “wrapped” diagonals,
too. For instance,

4562 + 3122 + 8972 = 6542 + 2132 + 7982

Magic “squares” indeed!
The simplest 4-by-4 magic square uses the numbers 1 through 16

where all rows, columns, and diagonals sum to the magic total of 34,
like the one below. Mathematicians and magicians like 4-by-4 magic
squares because they usually contain dozens of different ways to achieve
the magic total. For instance, in the magic square below, every row, col-
umn, and diagonal adds to 34, as does every 2-by-2 square inside it,
including the upper left quadrant (8, 11, 13, 2), the four numbers in the
middle, and the four corners of the magic square. Even the wrapped
diagonals sum to 34, as do the corners of any 3-by-3 square inside.

8 11 14 1

13 2 7 12

3 16 9 6

10 5 4 15

A magic square with total 34. Every row, column, and diagonal sums to 34, as do nearly

every other symmetrically placed four squares.

Do you have a favorite two-digit number bigger than 20? You can
instantly create a magic square with total T just by using the numbers
1 though 12, along with the four numbers T − 18, T − 19, T − 20 and
T − 21 as shown on the next page.

For example, see the magic square on the next page with a magic
total of T = 55. Every group of four that used to add up to 34 will
now add up to 55, as long as the group of 4 includes exactly one (not
two, not zero) of the squares that use the variable T. So the upper right
squares will have the correct total (35+ 1+ 7+ 12 = 55) but the middle
left squares will not (34 + 2 + 3 + 37 �= 55).
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8 11 T − 20 1

T − 21 2 7 12

3 T − 18 9 6

10 5 4 T − 19

A quick magic square with magic total T

8 11 35 1

34 2 7 12

3 37 9 6

10 5 4 36

A magic square with total 55

Although not everyone has a favorite two-digit number, everyone
does have a birthday, and I find that people appreciate personalized
magic squares that use their birthdays. Here is a method that I use for
creating a “double birthday” magic square, where the birthday actually
appears twice: in the top row and in the four corners. If the birthday
uses the numbers A, B, C, and D, then you can create the following
magic square. Notice that every row, column, and diagonal, and most
symmetrically placed groups of four squares, will add to the magic total
A + B + C + D.

A B C D

C − 1 D+ 1 A− 1 B + 1

D+ 1 C + 1 B − 1 A− 1

B A− 2 D+ 2 C

A double birthday magic square. The date A/B/C/D appears in the top row and four corners.

For my mother’s birthday, November 18, 1936, the magic square
looks like this:
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11 18 3 6

2 7 10 19

7 4 17 10

18 9 8 3

A birthday magic square for my mother: 11/18/36, with magic total 38

Now create a magic square based on your own birthday. If you fol-
low the pattern given above, your birthday total will appear more than
three dozen times. See how many you can find.

Although 4-by-4 magic squares have the most combinations, there
are techniques for creating magic squares of higher order. For example,
here is a 10-by-10 magic square using all the numbers from 1 to 100.

92 99 1 8 15 67 74 51 58 40

98 80 7 14 16 73 55 57 64 41

79 6 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28

86 93 25 2 9 61 68 75 52 34

17 24 76 83 90 42 49 26 33 65

23 5 82 89 91 48 30 32 39 66

4 81 13 95 97 29 31 38 45 72

10 12 94 96 78 35 37 44 46 53

11 18 100 77 84 36 43 50 27 59

A 10-by-10 magic square using numbers 1 through 100

Can you figure out the magic total of each row, column, and diago-
nal without adding up any of the rows? Sure! Since we showed a long
time ago that numbers 1 through 100 add to 5050, each row must add to
one-tenth of that. Hence the magic total must be 5050/10 = 505. This
book began with the problem of adding the numbers from 1 to 100, and
so it seems appropriate that we end here as well. Congratulations (and
thank you) for reading to the end of the book. We covered a great many
mathematical topics, ideas, and problem-solving strategies. As you go
back through this book and read other books that rely on mathematical
thinking, I hope you find the ideas presented in this book to be useful,
interesting, and magical.
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Aftermath

I hope that this is not the last math book you ever read, since there is
so much good material out there. Indeed, most of the really interest-
ing math that I have learned came from outside of the classroom, and
included many of the items listed here.

This book is an outgrowth of my video course The Joy of Mathemat-
ics, produced by The Great Courses. That course contains twenty-four
30-minute lectures by me on all of the topics covered in this book, plus a
few more topics, like The Joy of Probability, Mathematical Games, and
Magic. (I am grateful for their willingness to let me borrow many ideas
from that course for this book.) The Great Courses has more than three
dozen mathematics courses (available on audio, video, and download-
able formats) on many mathematical topics, including entire courses
devoted to topics like algebra, geometry, calculus, and history of math-
ematics. They have done an excellent job at finding some of the best pro-
fessors in the country to teach these courses, and it has been an honor
and a privilege to create four courses for them. My other three courses
are Discrete Mathematics, The Secrets of Mental Math, and The Mathematics
of Games and Puzzles.

For printed information on doing math in your head, see my book
Secrets of Mental Math, written with Michael Shermer, published by Ran-
dom House. It goes into great detail on how to quickly and accurately
answer all kinds of problems, big and small. If you know your multi-
plication tables through 10, then you should be able to understand all
of the techniques in the book. For a more elementary approach, I have
created a workbook on doing mental addition and subtraction that is
aimed at elementary-school-age children, called The Art of Mental Cal-
culation (co-authored and beautifully illustrated by Natalya St. Clair).
You can find it on Amazon.com or createspace.com.

I have written three other mathematics books for advanced readers.
The Mathematical Association of America (MAA) has published Proofs
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That Really Count: The Art of Combinatorial Proof, with Jennifer J. Quinn,
and Biscuits of Number Theory, co-edited with Ezra Brown. My most re-
cent book is The Fascinating World of Graph Theory with Gary Chartrand
and Ping Zhang, published by Princeton University Press.

I owe a literary debt of gratitude to Martin Gardner, the greatest
mathemagician of all time, who wrote more than two hundred books,
many on the subject of recreational mathematics. His books (and “Math-
ematical Games” columns in Scientific American) inspired many genera-
tions of mathematicians and math enthusiasts. Following in Gardner’s
footsteps, I also recommend all books by Alex Bellos, Ivars Peterson,
and Ian Stewart. One of the best new books in this genre is The Joy of X:
A Guided Tour of Math, from One to Infinity by Steven Strogatz.

For mathematics textbooks aimed at the high end of the math ability
spectrum, I am a huge fan of The Art of Problem Solving book series, by
Richard Rusczyk. These include challenging but clearly written books
on algebra, geometry, calculus, problem solving, and more. Their web-
site (ArtOfProblemSolving.com) also offers online courses for students
who enjoy mathematics and participate in math contests.

There are other enjoyable online resources too. My colleague Fran-
cis Su has hundreds of examples of amazing mathematics on his Math
Fun Facts page (www.math.hmc.edu/funfacts). They were originally
designed for teachers who wanted to do something quick and inter-
esting in the first five minutes of class. Alex Bogomolny has created a
website, Cut the Knot (Cut-The-Knot.org) with dozens of “Interactive
Mathematics Miscellany and Puzzles” that will keep you entertained
for a long time. One of his columns provides over one hundred proofs
of the Pythagorean theorem. For a fun, free video resource, check out
the videos created by Numberphile (Numberphile.com), which present
mathematics in a most entertaining way.

I have nothing more to add (or multiply), so happy reading!
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AAS theorem, 159
Abel, Niels, 47
absolute value, 302
absolutely convergent, 302
algebra, 20

distributive law, 29–30
FOIL rule of, 30–36, 38
fundamental theorem of, 46, 141, 234
golden rule of, 27
graphs and, 41–47
rules of, 26–30
shifty, 283, 298–299
solving for x, 36–40
solving for y, 48–49

alternate interior angles, 157
alternating series, 295
altitude of triangle, 172
“American Pi” (Lesser), 202
angles

alternate interior, 157
bisector, 160
corresponding, 156–157
perpendicular, 155
right, 155
sums of, 156 (fig.)
sums of, of pentagon, 167 (fig.)

supplementary, 155–156, 213
vertical, 156

anti-derivatives, 296
approximations, 128
arc sine function, 214
Archimedes, 196
area, 169–172

of circles, 182–193
of ellipses, 190 (fig.)
of rectangles, 108–109, 152
of square, 173–174
surface, 191, 192
of triangles, 171, 187, 217

arithmetic, fundamental theorem of, 141
ASA theorem, 159
axioms, 125

corresponding angle, 157
of Euclid, 153–154
SAS, 159

base ten, 61–62
basepoints, 277
bell curve, 194

formula, 247 (fig.)
Benjamin, Arthur, 322
binary arithmetic, 297–298
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binary representation, 139
Binet’s formula, 232

Fibonacci numbers and, 116
for Lucas numbers, 118

binomial coefficients, 76–77
Pascal’s identity and, 87

birthdays, 304–305
“Blowin’ in the Wind” (Dylan), 133
Brown, Dan, 119
Brown, Ethan, 201

cadences, 102–103
Caesar, Julius, 64
calculus, 162

differential, 257
integral, 257
magic of, 255–263

calendar
calculating, 63–70
Gregorian, 64
history of, 64
Julian, 64
leap years, 64
mnemonics for, 65–66
month codes, 66–67
weekday names, 66
year codes, 67–68

Camp, Dane, 133
Cantor, Georg, 289
cards, decks of, 73

See also poker hands
Carroll, Lewis, 199
casting out nines, 53–59

division and, 57–58
multiplication and, 56–57

central angle theorem, 186
Cervantes, Miguel de, 64–65
chain rule, 271–272
check digit, 62
checkerboards

dominos covering, 122–123
trominos covering, 137

circles, 155
area of, 182–193
circumference of, 182–193
diameter of, 182–183
magic of, 181–182
major arc of, 186
minor arc of, 186
radius of, 182, 185
trigonometry and, 210–219
unit, 188, 210, 237, 238 (fig.)

circumference, 182–193
definition of, 183

circumscribed polygons, 196
clinometer, 208
clocks, 60 (fig.)
coefficients, 32–33

binomial, 76–77, 87
College Mathematics Journal, 119
combinations, 76
combinatorial proof, 87, 131
combinatorics, 71, 75
commutative property, 9
complements, 16–17 
completing the square, 39–40
complex numbers, 233–240 
complex plane, 235

unit circle in, 238 (fig.)
complex roots, 46
composite numbers, 112, 141
compound interest, 242
concavity, 275
conditionally convergent, 301
cone, 192
congruences, 60–61
congruent objects, 158
congruent triangles, 158 (fig.)
constant terms, 33
constructive proofs, 130
contradiction, 126
convergence, 290–291

absolute, 302
conditional, 301
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converse statements, 126
corollaries, 129
corresponding angles, 156

axiom, 157
cosecant function, 208
cosine function, 206, 212 (fig.)

graphs of, 228 (fig.)
cosines, law of, 215, 216
cotangent function, 208
countability, 288
counterexamples, 126
counting, 29

Fibonacci numbers, 102–110
critical points, 264
cryptography, 145–146
cubes

sums of, 11–12
sums of, identity, 136

cubics, 44
cylinder

surface area of, 191
volume of, 191

da Vinci, Leonardo, 119
The Da Vinci Code (Brown, D.), 119
degree of polynomials, 44
delegations, 139
denominators, 23
derivatives, 228

product rule for, 266–268
Descartes, René, 41
diameter, 182–183
differences of squares formula, 14, 33

proof of, 34
differential calculus, 257
differentiation, 261

rules, 265–274
digital roots, 54
Dirichlet, Peter, 147
distinct powers, 94
distributive law

definition of, 29

FOIL and, 31
illustration of, 29–30
negative numbers and, 30

divergence, 291
dividing by zero, 
division

mental, 20–24
number of digits, 22

domino, 107
on checkerboard, 122–123

Dunham, Douglas, 154
Dylan, Bob, 133

e (number), 240–250
Earth’s equator, 181–182, 184
The Elements (Euclid), 153
eleven, 60–63
ellipses, 189

area of, 190 (fig.)
foci of, 190

encryption, 145–146
endpoints, average of, 164 (fig.)
equations

beautiful, 232
linear, 36–37
quadratic, 37, 39–40
solving, 36–40

equilateral triangle, 159, 161, 205
Escher, M. C., 154
estimation

mental, 20–24
of number of digits, 21–22

Euclid, 121, 144–145
axioms of, 153–154

Euclidean geometry, 154
Euler, Leonhard, 146–147, 231
Euler-Mascheroni constant, 292
Euler’s equation, 251–253
even numbers theorem, 125–126
exclamation points, 71–72
existence proof, 129
exponential decay, 243
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exponential formula, 242
exponential functions, 243 (fig.), 265
exponentiation, law of, 129
exponents, law of, 47

factorials, 71–72
factoring method, 19, 38
fast mental calculations, 12–24
Fermat, Pierre de, 41

on prime numbers, 145
Feynman, Richard, 294
Fibonacci numbers, 2, 178, 232

addition of squares of, 108
applications of, 99
Binet’s formula and, 116
consecutive, 111
counting, 102–110
distant neighbors, 109–110
first six, 1, 1, 2, 3, 5, 8
first thirteen, 99 (table)
greatest common divisors of, 112
induction and, 109, 134
limericks and, 120
Lucas numbers and, 117 (table)
magic of, 97–102, 113 (table)
multiplication of, 109 (table), 110 

(table)
in nature, 99
neighbors, 109
Pascal’s triangle and, 95, 103–104
patterns, 110–120
poetry of, 120 (table)
prime, 112–113
rabbits, 97–99
relatively prime, 111
sequences that add to n, 103 (table)
shifting, 103
squares of, 106 (table)
sum of even, 100–101
sum of odd, 102
as tilings, 105

Fibonacci sequence, 97

financial transactions, 145–146
flushes, 79–80
foci of ellipses, 190
FOIL rule, 30–36, 38, 57, 234

applications of, 32
distributive law and, 31

football fields, 151–152
formulas

bell curve, 247 (fig.)
Binet’s, 116, 118, 232
differences of squares, 14, 33, 34
exponential, 242
Hero’s, 219
quadratic, 38
Wallis’s, 197

four of a kind, 81
fractions, addition of, 127–128
full house, 80
fundamental theorem of algebra, 46, 

234
fundamental theorem of arithmetic, 141

Gadbois, Steve, 83
Gauss, Karl Friedrich, 10, 20

number patterns, 5–6
geometric series, 280–290

finite, 283
infinite, 284–286

geometrical proofs, 136
geometry

classics, 153–169
of complex numbers, 235–240
Euclidean, 154
hyperbolic, 154
magic of, 149–153, 178–179
plane, 154

goalposts, 151–152, 177
God’s equation, 2, 231

proof of, 252
Goldbach’s conjecture, 147
golden ratio, 2, 115

cultural perceptions of, 119
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naming of, 118
properties of, 119

golden rectangle, 119
golden rule of algebra, 27
Google, 244
graphs

algebra and, 41–47
lines in, 41
ordered pairs and, 41
parabolas, 43–44
parallel, 42
slope in, 41
x-axis of, 41
y-axis of, 41–42
y-intercept in, 41

great circles, 154
greatest common divisors, 112
Gregorian calendar, 64
Gregory XIII (Pope), 64
Guinness Book of World Records, 198

Hardy, G. H., 121
harmonic series, 290–294
Hartl, Michael, 201
Harvey Mudd College, 3
Hemachandra, 102
Hero’s formula, 219
hexadecimal system, 61–62
hexagons, 195–196
hockey stick identity, 89–90, 90 (fig.)
hockey teams, 89–90
hyperbolic geometry, 154
hypotenuse, 173

i (number), 232
ice cream flavors, 76–77
identity

hockey stick, 89–90, 90 (fig.)
Pascal’s, 86, 87
sum of cubes, 136
trigonometric, 219–225

if-then theorem, 125

imaginary axis, 235
imaginary numbers, 2, 37, 233
induction

Fibonacci numbers and, 109, 134
proof by, 131–140
strong, 140

index, 311
infinite integers, 298
infinite series, 45

geometric, 284–286
impossible, 294–302

infinity, 279–280
inscribed hexagons, 195–196
integers, 125

composite, 141
infinite, 298

integral calculus, 257
integration, 296
interest, compound, 242
Internet, 145–146
The Interview (film), 28
inverse trigonometric functions, 214, 

215 (fig.)
irrational numbers, 127–131
ISBN, 62–63
isosceles right triangle, 204
isosceles triangles, 159

theorem, 151, 160

“Jabberwocky” (Carroll), 199
Jackson, Andrew, 247
joker, 83
Julian calendar, 64
junk hands (poker), 82

Keith, Mike, 198, 199
Kilmer, Joyce, 253

Lambert, Johann Heinrich, 197
laws

of cosines, 215, 216
of exponentiation, 129
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laws (continued)
of exponents, 47
of sines, 218–219

leap years, 64
legs, 173
lemmas, 268
length, products and, 238
Leonardo of Pisa, 97
Lesser, Larry, 133, 202
Liber Abaci (Leonardo of Pisa), 97
license plates, 75
limericks, 120
limits, 260

products of, 262
of quotients, 262
sums and, 262

linear approximation, 276
linear equations, 36–37
lines

in graphs, 41
midpoint of, 164 (fig.)
parallel, 156
secant, 258
tangent, 257, 259 (fig.)

logarithms, 243–244
natural, 245, 272

lotteries, 76–84
lowest terms, 128
Lu, Chao, 198
Lucas, Édouard, 117
Lucas numbers

Binet’s formula for, 118
Fibonacci numbers and, 117 (table)

magic
of algebra, 25–26
of calculus, 255–263
of circles, 181–182
of Fibonacci numbers, 97–102, 113 

(table)
of geometry, 149–153, 178–179
of infinity, 279–280

mathematics and, 1
of nine, 51–52
numbers and, 51–53
squares, 302–305

major arc, 186
major system, 199
Markowski, George, 119
Marloshkovips, Tony, 199
Mars, 143
matching problem, 248
mathematics

laws of, 121
magic and, 1
permanence and, 121

max-min problems, 264–265
mediant, 115
memory palace, 202
mental calculations

addition, 15
division, 20–24
estimation, 20–24
fast, 12–24
multiplication, 17–20
subtraction, 16–17

Mertens constant, 292
midpoint, 161

of line, 164 (fig.)
triangle, 165

minor arc, 186
“Misconceptions About the Golden 

Ratio” (Markowski), 119
modular arithmetic, 60–63
month codes, 66–67
mountain heights, 203–204, 209, 218
multiples of nine, 52–53
multiplication

addition method, 18
casting out nines and, 56–57
of close numbers, 34–35
commutative property of, 9
of Fibonacci numbers, 109 (table), 

110 (table)
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mental, 17–20
of negative numbers, 30
of numbers close to 100, 14–15
subtraction method in, 18
table, 21 (table), 23–24
See also products

my favorite number, 2520
why?, 141

natural logarithm, 245, 272
negative numbers, 37

distributive law and, 30
multiplication of, 30

Newton, Isaac, 47
n-gon, 166
nine (number)

casting out, 53–59
magic of, 51–52
multiples of, 52–53

Not a Wake (Keith), 199
number patterns, 5–12

beauty of, 12
factorial, 73 (table)
Fibonacci, 110–120
Gauss and, 5–6

numbers
complex, 233, 235–240
composite, 112
even, 125–126
imaginary, 2, 37, 233
interesting, 147
irrational, 127–131
magic and, 51–53
negative, 30, 37
odd, 7, 10–11, 92–93, 126, 131–132
Pascal’s triangle with, 85
perfect, 146
rational, 127–131
real, 37
relatively prime, 111
study of, 5
sum of first 100, 5–6

sum of first n, 7
sum of first n even, 7
sum of first n odd, 7
triangular, 6–7

obtuse triangle, 159
odd numbers

in Pascal’s triangle, 92–93
sum of first n, 7
sums of, 131–132
theorem about, 126
in triangles, 10–11

one (number), 140–141
one pair, 81
1.61, 113–115
optimization, 255

theorem, 264–265
ordered pairs, 41
origin, 210
oversubtracting, 16

Pacioli, Luca, 119
Palais, Bob, 201
parabolas, 43

properties of, 44
vertex of, 44

parallel, 42
parallel lines, 156
parallelograms, 150
partial sums, 282
Pascal’s identity, 86

binomial coefficients and, 87
Pascal’s triangle, 84–95

addition of numbers in, 86–87
Fibonacci numbers and, 95, 103–104
odd numbers in, 92–93
patterns in, 92
as right triangle, 89
symmetry in, 85

pentagons, 166
sums of angles of, 167 (fig.)

perfect numbers, 146
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perfect squares, 8
perimeters, 169–172

of inscribed hexagons, 195–196
of rectangles, 152

period, 229
permutations, 76
perpendicular angles, 155
perpendicular bisectors, 161
phonetic codes, 199
pi, 2, 52, 183–184

celebrating, 198–202
digits of, 195–197
memorizing, 198–202
surprising appearance of, 193–195
transcendental, 197

Pi-Day, 198
pizza, 187–188, 193
plane geometry, 154
plus or minus symbol, 38
Poe, Edgar Allan, 198–199
poetry, 120 (table)
poker hands, 76–78

flushes, 79–80
four of a kind, 81
full house, 80
jokers in, 83
junk, 82
one pair, 81
straight, 80
straight flush, 80
three of a kind, 81
two pair, 81
value of, 83–84
wild cards, 83

polar form, 238
polygons, 166

circumscribed, 196
triangulation of, 168

polyhedrons, 232
polynomials

cubic, 44
degree of, 44

quadratic, 44
quartic, 44
quintic, 44
roots of, 45
Taylor, 276

population dynamics, 97–99
postulates. See axioms
power rule, 61, 263
prime numbers

Fermat on, 145
Fibonacci, 112–113
infinitely many, 144–145
proofs and, 140–147
relatively, 111
two as, 140–141
Wilson’s theorem on, 144

product rule
for derivatives, 266–268
proofs, 266

products
of complex numbers, 238–240
length and, 238
of limits, 262
of numbers that add to 20, 12 (table)
rule of, 73–76

proofs
by algebra, 139
axioms in, 125
combinatorial, 87, 131
constructive, 130
by contradiction, 126
converse statements in, 126
counterexamples in, 126
existence, 129
geometrical, 136
of God’s equation, 252
by induction, 131–140
involving trominos, 137–138
irrational numbers, 127–131
of negatives, 121–122
product rule, 266
of Pythagorean theorem, 173–174
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of quotient rule, 271
rational numbers, 127–131
strong induction, 140
of sum of cubes identity, 136
of unique factorization theorem, 142
value of, 121–127

pseudoprimes, 145
public key cryptography, 145–146
Pythagorean theorem, 173–177

in area of square calculation,  
173–174

proofs of, 173–174
Pythagorean triple, 205

quadrants, 214
quadratic equations, 37

completing squares, 39–40
quadratic formula, 38
quadratic functions, 43
quadratic polynomials, 44
quadrilaterals, 166

definition, 149
midpoints of, 150 (fig.)

quartics, 44
quintics, 44
quotients

of limits, 262
rule, 270–271

rabbits, 97–99
radians, 226–230
radius, 182, 185
Ramanujan, Srinivasa, 189
rational numbers

averages of, 128
proofs, 127–131

“The Raven” (Poe), 198–199
real line, 232
real numbers, 37
reciprocals, 23
rectangles, 7 (fig.)

area of, 108–109, 152

fences, 150–151
golden, 118, 119
perimeters of, 152

reflections, 162, 273
relatively prime numbers, 111
right angles, 155
right triangles

isosceles, 204
Pascal’s triangle as, 89

roots
complex, 46
digital, 54
of polynomials, 45
square, 37

rule of products, 73–76
rule of sum, 73–76

SAS axiom, 159
secant function, 208
secant line, 258

slope of, 260 (fig.)
Secrets of Mental Math (Benjamin and 

Shermer), 62
semi-perimeter, 219
Shakespeare, William, 64–65
shifty algebra, 283, 298–299
Sierpinski triangle, 93
sine function, 206, 212 (fig.)

graphs of, 228 (fig.)
sines, law of, 218–219
slant height, 192
slope, 258

in graphs, 41
of secant line, 260 (fig.)

solving for x, 36–40
solving for y, 48–49
sphere, 191
square root, 37
squares, 8 (fig.)

addition of, of Fibonacci numbers, 
108

addition of consecutive, 106
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squares (continued)
area of, 173–174
difference of, 14, 33–34
of Fibonacci numbers, 106 (table)
magic, 302–305
perfect, 8
quick calculations of, 13–14

SSS theorem, 161
Stirling’s approximation, 193–194, 232
straight, 80
straight flush, 80
strong induction, 140
subtraction

complements in, 16
mental, 16–17
method in multiplication, 18

sums
of angles, 156 (fig.)
of angles of pentagon, 167 (fig.)
of cubes, 11–12
of cubes identity, 136
of even-positioned Fibonacci 

numbers, 100–101
of first 100 numbers, 5–6
of first n even numbers, 7
of first n numbers, 7
of first n odd numbers, 7
limits and, 262
of numbers in multiplication table, 

21, 23–24
of odd numbers, 131–132
of odd-positioned Fibonacci numbers, 

102
partial, 282
rule of, 73–76
See also addition

supplementary angles, 155–156, 213
surface area

of cone, 192
of cylinder, 191
of sphere, 191

syllables, 102–103
symmetry in Pascal’s triangle, 85

tangent function, 206
tangent line, 257

approximation of, 259 (fig.)
tau, 201
Taylor, Brook, 275
Taylor polynomials, 276
Taylor series, 274–278
Tetris, 124
The, 1–310
theorems

AAS, 159
ASA, 159
central angle, 186
even numbers, 125–126
if-then, 125
odd numbers, 126
optimization, 264–265
Pythagorean, 173–177
SSS, 159, 161

30-60-90 triangle, 205
three of a kind, 81
tilings

breakable, 106
Fibonacci numbers as, 105
identities, 107
unbreakable, 106

transcendental, 197
tree heights, 208–209
triangles, 6–7, 158

altitude of, 172
area of, 171, 187, 217
congruent, 158 (fig.)
equilateral, 159, 161, 205
isosceles, 151, 159, 160
isosceles right, 204
midpoint theorem, 165
obtuse, 159
right, 89, 204

9780465054725-text.pdf   330 6/29/15   10:28 AM



Index   321

Sierpinski, 93–94
30–60–90, 205
See also Pascal’s triangle

triangular numbers, 6–7
triangulation, 168
trigonometric graphs, 226–230
trigonometric identities, 219–225
trigonometry, 201, 204

circles and, 210–219
trominos, 137
“The Twelve Days of Christmas,” 90–91
twin primes, 147
two pair, 81

unbreakable tilings, 106
uncountable sets, 289
unique factorization theorem, 141

proof of, 142
unit, 141
unit circle, 188, 210, 237, 238 (fig.)

variables, 26

vertex, 44
vertical angle theorem, 156
volume, 191
von Lindemann, Ferdinand, 197

Wallis’s formula, 197
water fountain, 44 (fig.)
weekday names, 66
wild cards, 83
Wilson’s theorem, 144

x, solving for, 36–40
x-axis, 41

y, solving for, 48–49
y-axis, 41–42
year codes, 67–68
y-intercept, 41

zip codes, 75
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