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sibility to provide guidance and leadership in answering questions about how

to improve mathematics learning for all students.  We would like to thank our

sponsors, the National Science Foundation and the U.S. Department of Edu-

cation, for their foresight in providing a timely opportunity to move the debate
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Studies; and Judith Sowder, San Diego State University, Center for Research

in Mathematics and Science Education.  Additionally, we would like to thank
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Public concern about how well U.S. schoolchildren are learning math-

ematics is abundant and growing.  The globalization of markets, the spread

of information technologies, and the premium being paid for workforce skills

all emphasize the mounting need for proficiency in mathematics.  Media

reports of inadequate teaching, poorly designed curricula, and low test scores

fuel fears that young people are deficient in the mathematical skills demanded

by society.

Such concerns are far from new.  Over a century and a half ago, Horace

Mann, secretary of the Massachusetts State Board of Education, was dismayed

to learn that Boston schoolchildren could answer only about a third of the

arithmetic questions they were asked in a survey.  “Such a result repels com-

ment,” he said.  “No friendly attempt at palliation can make it any better.  No

severity of just censure can make it any worse.”  In 1919, when part of the

survey was repeated in school districts around the country, the results for

arithmetic were even worse than they had been in 1845.  Apparently, there

has never been a time when U.S. students excelled in mathematics, even

when schools enrolled a much smaller, more select portion of the population.

Over the last half-century, however, mathematics achievement has become

entangled in urgent national issues: building military and industrial strength

during the Cold War, maintaining technological and economic advantage when

the Asian tigers roared, and most recently, strengthening public education

against political attacks.  How well U.S. students are learning mathematics

and what should be done about it are now matters for every citizen to ponder.

And one hears calls from many quarters for schools, teachers, and students to

boost their performance.

PREFACE
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xiv PREFACE

During the new math era of the mid-1950s to mid-1970s, reformers

emphasized changes in the mathematics curriculum; today’s reformers want

changes in mathematics teaching and assessment as well.  In the mathemati-

cian E.G. Begle’s laconic formulation, the problem is no longer so much teach-

ing better mathematics as it is teaching mathematics better.  Almost every-

one today agrees that elementary and middle school mathematics should not

be confined to arithmetic but should also include elements from other domains

of mathematics, such as algebra, geometry, and statistics.  There is much less

consensus, however, on how these elements should be organized and taught.

Different people urge that school mathematics be taken in different directions.

A claim used to advocate movement in one direction is that mathematics

is bound by history and culture, that students learn by creating mathematics

through their own investigations of problematic situations, and that teachers

should set up situations and then step aside so that students can learn.  A

countervailing claim is that mathematics is universal and eternal, that stu-

dents learn by absorbing clearly presented ideas and remembering them, and

that teachers should offer careful explanations followed by organized oppor-

tunities for students to connect, rehearse, and review what they have learned.

The trouble with these claims is not that one is true and the other false; it is

that both are incomplete.  They fail to capture the complexity of mathematics,

of learning, and of teaching.

Mathematics is at the same time inside and beyond culture; it is both

timely and timeless.  The theorem attributed to Pythagoras was known in

various forms in the civilizations of ancient Babylon and China, and it is still

true the world over today even though systems of geometry now exist in which

it does not hold.  Mathematics is invented, and it is discovered as well.  Stu-

dents learn it on their own, and they learn it from others, most especially

their teachers.  If students are to become proficient in mathematics, teaching

must create learning opportunities both constrained and open.  Mathematics

teaching is a difficult task under any circumstances.  It is made even more

complicated and challenging when teachers are paying attention simulta-

neously, as they should, to the manifold paths mathematics learning can take

and to the multifaceted nature of mathematics itself.

In this report, we have attempted to address the conflicts in current pro-

posals for changing school mathematics by giving a more rounded portrayal

of the mathematics children need to learn, how they learn it, and how it might

be taught to them effectively.  In coming up with that portrayal, we have

drawn on the research literature as well as our experience and judgment.

Copyright © National Academy of Sciences. All rights reserved.
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Early on, we decided to concentrate primarily on the mathematics of num-

bers and their operations—for reasons spelled out in chapter 1.  We wanted

readers to understand that we were using the topic to illustrate what might be

done throughout the curriculum.  Nonetheless, we recognize the ease with

which some may conclude that attention equals advocacy, that we think arith-

metic must constitute the mathematics curriculum from pre-kindergarten to

eighth grade.  Such a conclusion would be wrong: The emphasis on numbers

and operations in the research literature and the even greater emphasis in

this report say nothing about what the emphasis should be in school.  We

support a comprehensive curriculum that draws on many domains of math-

ematics.

The mathematician George Pólya, poking fun at the new math textbooks

being assembled by platoons of mathematicians and teachers, once proposed

a mock word problem something like the following: If one person can write a

book in 12 months, how many months will 30 people need?  Producing the

present book in 18 months demanded something other than proportional rea-

soning; it took a superb committee of talented, dedicated people.  The com-

mittee members were truly diverse, with different sorts of expertise.  None

of us knew all the others before we began.  We brought many views, some

opposing, on the issues before us.  Yet we set to work immediately to develop

a report we could all support, eventually meeting eight times from January

1999 to June 2000.  Small groups of two or three met occasionally between

committee meetings to draft sections of the report, and we engaged in count-

less e-mail exchanges to work out thorny details.  The process worked because

each of us valued the others’ opinions, we listened to one another thoughtfully

and respectfully, and we worked hard together to reach our common goal.

No matter how many months more or less than 18 it might have taken,

none of us could have written this report alone.  Whatever merits it has lie not

only in the messages it contains but also in how it was produced.  We offer the

report in the hope that it will enable others to address the problems of school

mathematics in a more balanced, informed way than is common today and in

the same spirit we had of cooperation and mutual regard.

Jeremy Kilpatrick, Chair

Mathematics Learning Study Committee
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1

EXECUTIVE SUMMARY

Mathematics is one of humanity’s great achievements.  By enhancing the

capabilities of the human mind, mathematics has facilitated the development

of science, technology, engineering, business, and government.  Mathematics

is also an intellectual achievement of great sophistication and beauty that

epitomizes the power of deductive reasoning.  For people to participate fully

in society, they must know basic mathematics.  Citizens who cannot reason

mathematically are cut off from whole realms of human endeavor.  Innumeracy

deprives them not only of opportunity but also of competence in everyday

tasks.

The mathematics students need to learn today is not the same math-

ematics that their parents and grandparents needed to learn.  When today’s

students become adults, they will face new demands for mathematical

proficiency that school mathematics should attempt to anticipate.  Moreover,

mathematics is a realm no longer restricted to a select few.  All young Ameri-

cans must learn to think mathematically, and they must think mathematically to learn.

Adding It Up: Helping Children Learn Mathematics is about school math-

ematics from pre-kindergarten to eighth grade.  It addresses the concerns

expressed by many Americans, from prominent politicians to the people next

door, that too few students in our elementary and middle schools are success-

fully acquiring the mathematical knowledge, the skill, and the confidence

they need to use the mathematics they have learned.  Moreover, certain seg-

ments of the U.S. population are not well represented among those who do

succeed in school mathematics.

All young

Americans

must learn

to think

mathematically,

and they

must think

mathematically

to learn.
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2 ADDING IT UP

The mathematics curriculum during the preschool, elementary school,

and middle school years has many components.  But at the heart of math-

ematics in those years are concepts of number and operations with numbers—

the mathematical domain of number.   In this report, much of our attention is

given to issues associated with teaching and learning about number in pre-

kindergarten through eighth-grade mathematics.  Many controversies over

the teaching of mathematics center on the understanding and use of numbers.

The learning of concepts associated with number also has been more

thoroughly investigated than the learning of other parts of the mathematics

curriculum.  And much of the rest of the mathematics curriculum, some of

which we do address, is intertwined with number concepts.

Number is a rich, many-sided domain whose simplest forms are compre-

hended by very young children and whose far reaches are still being explored

by mathematicians.  Proficiency with numbers and numerical operations is

an important foundation for further education in mathematics and in fields

that use mathematics.  Because much of this report attends to the learning

and teaching of number, it is important to emphasize that our perspective is

considerably broader than just computation.  First, numbers and operations

are abstractions—ideas based on experience but independent of any particular

experience.  Communication about numbers, therefore, requires some form

of external representation, such as a graph or a system of notation.  The use-

fulness of numerical ideas is enhanced when students encounter and use

multiple representations for the same concept.  Second, the numbers and

operations of school mathematics are organized as number systems, such as

the whole numbers, and the regularities of each system can help students

learn with understanding.  Third, numerical computations require algo-

rithms—step-by-step procedures for performing the computations.  An algo-

rithm can be more or less useful to students depending on how it works and

how well it is understood.  And finally, the domain of number both supports

and is supported by other branches of mathematics, including algebra,

measure, space, data, and chance.  Our decision to address the domain of

number was a pragmatic one; in no way does it imply that the elementary and

middle school curriculum should be limited to arithmetic.

About This Report

The Committee on Mathematics Learning was established by the

National Research Council at the end of 1998.  It was formed at the request

of the Division of Elementary, Secondary, and Informal Education in the

Our decision

to address

the domain

of number

was a

pragmatic

one; in no

way does

it imply

that the

elementary

and middle

school

curriculum

should be

limited to

arithmetic.
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3EXECUTIVE SUMMARY

National Science Foundation’s Directorate for Education and Human

Resources and the U.S. Department of Education’s Office of Educational

Research and Improvement.  The sponsors were concerned about the short-

age of reliable information on the learning of mathematics by schoolchildren

that could be used to guide best practice in the early years of schooling.  More

specifically, the committee was given the following charge:

• To synthesize the rich and diverse research on pre-kindergarten

through eighth-grade mathematics learning.

• To provide research-based recommendations for teaching, teacher

education, and curriculum for improving student learning and to identify areas

where research is needed.

• To give advice and guidance to educators, researchers, publishers,

policy makers, and parents.

We based our conclusions in this report on a careful review of the research

literature on mathematics teaching and learning.  Many educational questions,

however, cannot be answered by research.  Choices about the mathematics

curriculum and the methods used to bring about that curriculum depend in

part on what society wants educated adults to know and be able to do.

Research can inform these decisions—for example, by demonstrating what

knowledge, skills, and abilities employees need in the workplace.  But ideas

about what children need to know also depend on value judgments based on

previous experience and convictions, and these judgments often fall outside

the domain of research.

Once the learning objectives for mathematics education have been estab-

lished, research can guide decisions about how to achieve these objectives.

In preparing this report, we sought research that is relevant to important edu-

cational issues, sound in shedding light on the questions it sets out to answer,

and generalizable in that it can be applied to circumstances beyond those of

the study itself.  We also looked for multiple lines of research that converge on

a particular point and fit well within a larger network of evidence.  Because

studies that touch on a key question and yield unequivocal findings are rare

in educational research, we have sought to point out when we have used

professional judgment and reasoned argument to make connections, note

patterns, and fill in gaps.  In the final chapter of the report, we have also

called for additional research in areas where it could improve educational

practice.
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4 ADDING IT UP

The State of School Mathematics

in the United States

One area in which the research evidence is consistent and compelling

concerns weaknesses in the mathematical performance of U.S. students.  State,

national, and international assessments conducted over the past 30 years indi-

cate that, although U.S. students may not fare badly when asked to perform

straightforward computational procedures, they tend to have a limited under-

standing of basic mathematical concepts.  They are also notably deficient in

their ability to apply mathematical skills to solve even simple problems.

Although performance in mathematics is generally low, there are signs from

national assessments that it has been improving over the past decade.  In a

number of schools and states, students’ mathematical performance is among

the best in the world.  The evidence suggests, however, that many students

are still not being given the educational opportunities they need to achieve at

high levels.

In comparison with the curricula of countries achieving well on inter-

national comparisons, the U.S. elementary and middle school mathematics

curriculum has been characterized as shallow, undemanding, and diffuse in

content coverage.  U.S. mathematics textbooks cover more topics, but more

superficially, than their counterparts in other countries do.  Despite efforts

over the last half-century to set higher learning goals for U.S. school math-

ematics and to provide new instructional materials and better assessments,

most students in grades pre-K to 8 encounter a rather shallow curriculum.

The instruction they are given continues to emphasize the execution of paper-

and-pencil skills in arithmetic through demonstrations of procedures followed

by repeated practice.

To ensure that students are meeting standards, states and districts have,

during the past decade or so, mandated a variety of assessments in math-

ematics, many with serious consequences for students, teachers, and schools.

Although intended to ensure that all students have an opportunity to learn

mathematics, some of these assessments are not well aligned with the

curriculum.  Those that were originally designed to rank order students,

schools, and districts seldom provide information that can be used to improve

instruction.

The preparation of U.S. preschool to middle school teachers often falls

far short of equipping them with the knowledge they need for helping students

develop mathematical proficiency.  Many students in grades pre-K to 8 con-

tinue to be taught by teachers who may not have appropriate certification at

that grade and who have at best a shaky grasp of mathematics.

Most

students in

grades

pre-K to 8

encounter a

rather

shallow

curriculum.
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5EXECUTIVE SUMMARY

Mathematical Proficiency

Our analyses of the mathematics to be learned, our reading of the research

in cognitive psychology and mathematics education, our experience as learners

and teachers of mathematics, and our judgment as to the mathematical knowl-

edge, understanding, and skill people need today have led us to adopt a

composite, comprehensive view of successful mathematics learning.  Recog-

nizing that no term captures completely all aspects of expertise, competence,

knowledge, and facility in mathematics, we have chosen mathematical profi-

ciency to capture what we think it means for anyone to learn mathematics

successfully.  Mathematical proficiency, as we see it, has five strands:

• conceptual understanding—comprehension of math-

ematical concepts, operations, and relations

• procedural fluency—skill in carrying out procedures

flexibly, accurately, efficiently, and appropriately

• strategic competence—ability to formulate, repre-

sent, and solve mathematical problems

• adaptive reasoning—capacity for logical thought,

reflection, explanation, and justification

• productive disposition—habitual inclination to see

mathematics as sensible, useful, and worthwhile, coupled

with a belief in diligence and one’s own efficacy.

The most important observation we make about these

five strands is that they are interwoven and interdependent.

This observation has implications for how students acquire

mathematical proficiency, how teachers develop that profi-

ciency in their students, and how teachers are educated

to achieve that goal.

The Mathematical Knowledge

Children Bring to School

Children begin learning mathematics well before they enter elementary

school.  Starting from infancy and continuing throughout the preschool period,

they develop a base of skills, concepts, and misconceptions.  At all ages, stu-

dents encounter quantitative situations outside of school from which they

learn a variety of things about number.  Their experiences include, for

example, noticing that a sister received more candies, counting the stairs
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Understanding
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Productive
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between the first and second floors of an apartment, dividing a cake so every-

one gets the same amount, and figuring out how far it is to the bus stop.

By the time children reach kindergarten, many of them can use their

counting skills to solve simple problems that call for adding, subtracting, mul-

tiplying, or dividing.  It is only when they move beyond what they under-

stand informally—to the base-10 system for teens and larger numbers, for

example—that their fluency and strategic competencies falter.  Young children

also show a remarkable ability to formulate, represent, and solve simple math-

ematical problems and to reason and explain their mathematical activities.

They are positively disposed to do and to understand mathematics when they

first encounter it.  For the preschool child, the strands of mathematical profi-

ciency are especially closely knit.

Although most U.S. children enter school with a basic understanding of

number, their knowledge is limited to small whole numbers and heavily

influenced by the context in which the numbers appear.  Furthermore, not

all children enter school with the informal understanding of number assumed

by the elementary school curriculum.

Developing Proficiency with Whole Numbers

Whole numbers are the easiest numbers to understand and use.  In the

early grades, children begin by solving numerical problems using methods

that are intuitive and concrete.  They then proceed to methods that are more

problem independent, mathematically sophisticated, and reliant on standard

symbolic notation.  Some form of this progression is seen in each operation

for both single-digit and multidigit numbers.

For most of a century, learning single-digit arithmetic—the sums and prod-

ucts of single-digit numbers and their companion differences and quotients

(e.g., 5 + 7 = 12, 12 – 5 = 7, 12 – 7 = 5 and 5 × 7 = 35, 35 ÷ 5 = 7, 35 ÷ 7 = 5)—

has been characterized in the United States as “learning basic facts,” and the

emphasis has been on memorizing those facts.  Acquiring proficiency in single-

digit arithmetic, however, involves much more than memorizing.  Even in

the early grades, students choose adaptively among different procedures,

depending on the numbers involved and the context.  We use the term basic

number combinations to highlight the relational character of this knowledge.

For addition and subtraction, many children follow a well-documented

progression of procedures.  Counting becomes abbreviated and rapid, and

students begin to use properties of arithmetic to simplify their computation.

Basic multiplication and division combinations are more of a challenge.  Learn-

ing these combinations seems to require much specific pattern-based
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knowledge that needs to be orchestrated into accessible and rapid-enough

procedures.  When given instruction that emphasizes thinking strategies,

children are able to develop the strands of proficiency in a unified manner.

Learning to use algorithms for computation with multidigit numbers is

an important part of developing mathematical proficiency.  Algorithms are

procedures that can be executed in the same way to solve a variety of prob-

lems arising from different situations and involving different numbers.

Children can and do devise algorithms for carrying out multidigit arithmetic,

using reasoning to justify their inventions and developing confidence in the

process.  A variety of instructional approaches (using physical materials, special

counting activities, and mental computation) are effective in helping students

learn multidigit arithmetic by focusing on the base-ten structure and encour-

aging students to use algorithms that they understand.  Physical materials are

not automatically meaningful to students, however, and need to be connected

to the situations being modeled.  Because of its conciseness, the base-ten

place-value system takes time to master.  Full understanding of the system,

however, is not required before students begin to learn multidigit algorithms—

the two can be developed in tandem.  The learning of whole number arith-

metic demands that attention be given to developing all strands of proficiency

in concert, emphasizing no strand at the expense of the others.

Developing Proficiency with Rational Numbers

In grades pre-K to 8, the rational numbers present a major challenge, in

part because rational numbers are represented in several ways (e.g., common

fractions and decimal fractions) and used in many ways (e.g., as parts of regions

and sets, as ratios, as quotients).  There are numerous properties for students

to learn, including the significant fact that the two numbers that compose a

common fraction (numerator and denominator) are related through multipli-

cation and division, not addition.

Students’ informal notions of partitioning, sharing, and measuring provide

a starting point for building the concept of rational number.  Young children

appreciate the idea of “fair shares,” and they can use that understanding to

partition quantities into equal parts.  In some ways, sharing can play the role

for rational numbers that counting does for whole numbers.

As with whole numbers, the written notations and spoken words used for

decimal and common fractions contribute to—or at least do not help correct—

the many kinds of errors students make with them.  Furthermore, many

students do not understand the meanings of and connections between the

various symbols for rational numbers when they are asked to compute with
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them, which creates barriers to developing the strands of proficiency in an

integrated fashion.

Proportions are statements that two ratios are equal.  Understanding and

working with the relationships in a situation involving proportions is called

proportional reasoning and has been described as the capstone of elementary

school arithmetic.  Proportional reasoning is sophisticated and complex; it

needs to develop over many years.  Students need to have a solid under-

standing of proportional situations and be able to reason about them infor-

mally before formal procedures are introduced.

Developing Proficiency Beyond Number

Many students have difficulties making the transition from school arith-

metic to school algebra—with its symbolism, equation solving, and emphasis

on relationships among quantities.  Recent calls of “algebra for all” have

increased the number of students making the transition and therefore the

number encountering obstacles.  Over the past two decades, much has been

learned about the nature of students’ difficulties in algebra.  Various innova-

tive approaches to beginning algebra, many using computational tools, have

been investigated.  At the same time, modifications of elementary school

mathematics have been developed and studied that are aimed at introducing

the notions of algebra earlier.  These new approaches offer considerable prom-

ise for avoiding the difficulties many students now experience.

Just as the elementary and middle school mathematics curriculum should

prepare students for the study of algebra, so it should also include attention

to other domains of mathematics.  Students need to learn to make and inter-

pret measurements and to engage in geometric reasoning.  They also need to

gather, describe, analyze, and interpret data and to use elementary concepts

from probability.  Instruction that emphasizes more than a single strand of

proficiency has been shown to enhance students’ learning about space and

measure and shows considerable promise for helping students learn about

data and chance.

Teaching for Mathematical Proficiency

Effective teaching—teaching that fosters the development of math-

ematical proficiency over time—can take a variety of forms, each with its own

possibilities and risks.  All forms of instruction can best be examined from

the perspective of how teachers, students, and content interact in contexts to

produce teaching and learning.  The effectiveness of mathematics teaching
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and learning is a function of teachers’ knowledge and use of mathematical

content, of teachers’ attention to and work with students, and of students’

engagement in and use of mathematical tasks.  Effectiveness depends on

enactment, on the mutual and interdependent interaction of the three ele-

ments—mathematical content, teacher, students—as instruction unfolds.  The

quality of instruction depends, for example, on whether teachers select

cognitively demanding tasks, plan the lesson by elaborating the mathematics

that the students are to learn through

those tasks, and allocate sufficient

time for the students to engage in and

spend time on the tasks.  Effective

teachers have high expectations for

their students, motivate them to value

learning activities, can interact with

students with different abilities and

backgrounds, and can establish com-

munities of learners.  A teacher’s

expectations about students and the

mathematics they are able to learn can

powerfully influence the tasks the

teacher poses for the students, the

questions they are asked, the time

they have to respond, and the encour-

agement they are given—in other

words, their opportunities and moti-

vation for learning.  How the students respond to the opportunities the teacher

offers then shapes how the teacher sees their capacity and progress, as well as

the tasks they are subsequently given.

The quality of instruction also depends on how students engage with

learning tasks.  Students must link their informal knowledge and experience

to mathematical abstractions.  Manipulatives (physical objects used to repre-

sent mathematical ideas), when used well, can provide such links.  The use

of calculators can enhance students’ conceptual understanding, and practice

can help them make automatic those procedures they understand.  Although

much is known about characteristics of effective instruction, research on teach-

ing has often been restricted to describing isolated fragments of teaching and

learning rather than examining continued interactions among the teacher,

the students, and the mathematical content.

teacher

students
mathematics

students

contexts

contexts
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Developing Proficiency in

Teaching Mathematics

Proficiency in teaching mathematics is related to effectiveness: consis-

tently helping students learn worthwhile mathematical content.  It also entails

versatility: being able to work effectively with a wide variety of students in

different environments and across a range of mathematical content.  Despite

the common myth that teaching is little more than common sense or that

some people are just born teachers, effective teaching practice can be learned.

Just as mathematical proficiency itself involves interwoven strands, teaching

for mathematical proficiency requires similarly interrelated components: con-

ceptual understanding of the core knowledge of mathematics, students, and

instructional practices needed for teaching; procedural fluency in carrying out

basic instructional routines; strategic competence in planning effective instruc-

tion and solving problems that arise while teaching; adaptive reasoning in

justifying and explaining one’s practices and in reflecting on those practices;

and a productive disposition toward mathematics, teaching, learning, and the

improvement of practice.

Effective programs of teacher preparation and professional development

help teachers understand the mathematics they teach, how their students

learn that mathematics, and how to facilitate that learning.  In these pro-

grams, teachers are not given prescriptions for practice or readymade solu-

tions to teaching problems.  Instead, they adapt what they are learning to

deal with problems that arise in their own teaching.

Recommendations

As a goal of instruction, mathematical proficiency provides a better way

to think about mathematics learning than narrower views that leave out key

features of what it means to know and be able to do mathematics.  It takes

time for proficiency to develop fully, but in every grade in school, students

can demonstrate mathematical proficiency in some form.  The overriding

premise of our work is that throughout the grades from pre-K through 8

all students can and should be mathematically proficient.

School mathematics in the United States does not now enable most stu-

dents to develop the strands of mathematical proficiency in a sound fashion.

Proficiency for all demands that fundamental changes be made concurrently

in curriculum, instructional materials, assessments, classroom practice, teacher

preparation, and professional development.  These changes will require con-

tinuing, coordinated action on the part of policy makers, teacher educators,
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teachers, and parents.  Although some readers may feel that substantial ad-

vances are already being made in reforming mathematics teaching and learn-

ing, we find real progress toward mathematical proficiency to be woefully

inadequate.

These observations lead us to five principal recommendations regarding

mathematical proficiency that reflect our vision for school mathematics.  The

full report augments these five with specific recommendations that detail

policies and practices needed if all children are to become mathematically

proficient.

• The integrated and balanced development of all five strands of

mathematical proficiency (conceptual understanding, procedural flu-

ency, strategic competence, adaptive reasoning, and productive dispo-

sition) should guide the teaching and learning of school mathematics.

Instruction should not be based on extreme positions that students learn,

on one hand, solely by internalizing what a teacher or book says or, on

the other hand, solely by inventing mathematics on their own.

One of the most serious and persistent problems facing school math-

ematics in the United States is the tendency to concentrate on one strand of

proficiency to the exclusion of the rest.  For too long, students have been the

victims of crosscurrents in mathematics instruction, as advocates of one learn-

ing goal or another have attempted to control the mathematics to be taught

and tested.  We believe that this narrow and unstable treatment of math-

ematics is, in part, responsible for the inadequate performance that U.S.

students display on national and international assessments.  Our first recom-

mendation is that these crosscurrents be resolved into an integrated, balanced

treatment of all strands of mathematical proficiency at every point in teach-

ing and learning.

Although we endorse no single approach, we contend that instruction

needs to configure the relations among teachers, students, and mathematics

in ways that promote the development of mathematical proficiency.  Under

this view, significant instructional time is devoted to developing concepts

and methods, and carefully directed practice, with feedback, is used to support

learning.  Discussions build on students’ thinking.  They attend to relation-

ships between problems and solutions and to the nature of justification and

mathematical argument.  All strands of proficiency can grow in a coordinated,

interactive fashion.
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• Teachers’ professional development should be high quality, sus-

tained, and systematically designed and deployed to help all students

develop mathematical proficiency.  Schools should support, as a central

part of teachers’ work, engagement in sustained efforts to improve their

mathematics instruction.  This support requires the provision of time

and resources.

Improving students’ learning depends on the capabilities of classroom

teachers.  Although children bring important mathematical knowledge with

them to class, most of the mathematics they know is learned in school and

depends on those who teach it to them.  Teachers cannot automatically know

how to teach more effectively.  Learning to teach well cannot be accomplished

once and for all in a preservice program; it is a career-long challenge.

As we have indicated, proficiency in mathematics teaching has parallels

to proficiency in mathematics.  Unfortunately, just as students’ opportunities

to learn mathematics effectively have been insufficient, so have teachers’

opportunities to learn more about mathematics, students’ learning and think-

ing, and their teaching practice.  Regular time needs to be provided for teach-

ers to continue their professional development, conferring with one another

about common problems and working together to develop their teaching pro-

ficiency.  They need access to resources and expertise that will assist them in

improving their instruction, including access to mathematics specialists in

every elementary school.  If the United States is serious about improving

students’ mathematics learning, it has no choice but to invest in more effec-

tive and sustained opportunities for teachers to learn.

• The coordination of curriculum, instructional materials, assess-

ment, instruction, professional development, and school organization

around the development of mathematical proficiency should drive school

improvement efforts.

Piecemeal efforts aimed at narrow learning goals have failed to improve

U.S. students’ learning.  The development of mathematical proficiency pro-

vides a broad, compelling goal around which all parts of the educational com-

munity can rally.  If even one sector of that community lags behind, it can

thwart the development of mathematical proficiency.

The school mathematics curriculum needs to be organized within and

across grades to support, in a coordinated fashion, all strands of mathematical

proficiency.  Programs at all grades should build on the informal knowledge
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children bring to school.  An integrated approach should be taken to the devel-

opment of proficiency with whole numbers, integers, and rational numbers

to ensure that all students in grades pre-K to 8 can use the numbers fluently

and flexibly to solve challenging but accessible problems.  Students should

also understand and be able to translate within and across the various common

representations for numbers.

A major focus of the study of number should be the conceptual bases for

the operations and how they relate to real situations.  For each operation, all

students should understand and be able to carry out an algorithm that is general

and efficient.  Before they get to the formal study of algebra, they already

should have had numerous experiences in representing, abstracting, and

generalizing relationships among numbers and operations with numbers.  They

should be introduced to these algebraic ways of thinking well before they are

expected to be proficient in manipulating algebraic symbols.  They also need

to learn concepts of space, measure, data, and chance in ways that link these

domains to that of number.

Materials for instruction need to develop the core content of school math-

ematics in depth and with continuity.  In addition to helping students learn,

these materials should also support teachers’ understanding of mathematical

concepts, of students’ thinking, and of effective pedagogical techniques.

Mathematics assessments need to enable and not just gauge the develop-

ment of proficiency.  All elements of curriculum, instruction, materials, and

assessment should be aligned toward common learning goals.

Every school should be organized so that the teachers are just as much

learners as the students are.  The professional development activities in which

teachers of mathematics are engaged need to be focused on mathematical

proficiency.  Just as mathematical proficiency demands the integrated, coor-

dinated development of all strands, so the enhancement of each student’s

opportunities to become proficient requires the integrated, coordinated efforts

of all parts of the educational community.

• Efforts to improve students’ mathematics learning should be

informed by scientific evidence, and their effectiveness should be evalu-

ated systematically.  Such efforts should be coordinated, continual, and

cumulative.

Steady and continuing improvements in students’ mathematics learning

can be made only if decisions about instruction are based on the best available

information.  As new, systematically collected information becomes available,
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better decisions can be made, and mathematics instruction should gradually

but steadily become more effective.  Unfortunately, too many new programs

are tried but then abandoned before their effectiveness has been well tested,

and lessons learned from program evaluations are often lost.  Without high-

quality, cumulative information, the system of school mathematics cannot

learn.

• Additional research should be undertaken on the nature, de-

velopment, and assessment of mathematical proficiency.

We are convinced that the goal of mathematical proficiency for all stu-

dents is the right goal.  Not surprisingly, however, much of the research on

mathematics teaching and learning has been conducted to address narrower

learning goals, since shifting, relatively narrow goals have been the norm.

Although we have interpreted much of that research for this report, extensive

work remains to refine and elaborate our portrayal of mathematical proficiency.

In many places, our conclusions are tentative, awaiting better evidence.

We urge researchers concerned with school mathematics to frame their

questions with a view to the goal of developing mathematical proficiency for

all students.  Evidence from such research, together with information from

evaluations of current and future programs of curriculum and professional

development, will enable the United States to make the genuine, lasting

improvements in school mathematics learning that have eluded it to date.

Conclusion

The goal of mathematical proficiency is an extremely ambitious one.  In

fact, in no country—not even those performing highest on international sur-

veys of mathematics achievement—do all students display mathematical pro-

ficiency as we have defined it in this report.  The United States will never

reach this goal by continuing to tinker with the controls of educational policy,

pushing one button at a time.  Instead, systematic modifications will need to

be made in how the teaching and learning of mathematics commonly proceed,

and new kinds of support will be required.  At all levels of the U.S. educa-

tional system, the formulation and implementation of policies demands

sustained, focused attention to school mathematics.  We hope this report will

be the basis for innovative, comprehensive, long-term policies that can enable

every student to become mathematically proficient.

Copyright © National Academy of Sciences. All rights reserved.



15

1

LOOKING AT MATHEMATICS

AND LEARNING

Children today are growing up in a world permeated by mathematics.

The technologies used in homes, schools, and the workplace are all built on

mathematical knowledge.  Many educational opportunities and good jobs

require high levels of mathematical expertise.  Mathematical topics arise in

newspaper and magazine articles, popular entertainment, and everyday con-

versation.

Mathematics is a universal, utilitarian subject—so much a part of modern

life that anyone who wishes to be a fully participating member of society

must know basic mathematics. Mathematics also has a more specialized,

esoteric, and esthetic side.  It epitomizes the beauty and power of deductive

reasoning.  Mathematics embodies the efforts made over thousands of years

by every civilization to comprehend nature and bring order to human affairs.

These dual aspects of mathematics, the practical and the theoretical, have

earned the subject a place at the center of education throughout history.  Even

simple systems for counting have to be passed on to the next generation.

Every literate society has needed people who knew how to read the heavens

and measure the earth.  Farmers have wanted to calculate crop production,

and merchants to record their transactions.

As mathematics became more formal and abstract in the hands of the

ancient Greeks, it also became enshrined among the liberal arts.  The mastery

of its forms of reasoning became a hallmark of the educated person.  Its study

was seen as bringing the discipline of logical thinking to the apprentice scholar.

Despite the value of mathematics as a model of deductive reasoning, the

teaching of mathematics has often taken quite a different form.  For centuries,
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many students have learned mathematical knowledge—whether the rudi-

ments of arithmetic computation or the complexities of geometric theorems—

without much understanding.1   Of course, many students tried to make what-

ever sense they could of procedures such as adding common fractions or

multiplying decimals.  No doubt many students noticed underlying regulari-

ties in the computations they were asked to perform.  Teachers who themselves

were skilled in mathematics might have tried to explain those regularities.

But mathematics learning has often been more a matter of memorizing than

of understanding.

Today it is vital that young people understand the mathematics they are

learning.  Whether using computer graphics on the job or spreadsheets at

home, people need to move fluently back and forth between graphs, tables

of data, and formulas.  To make good choices in the marketplace, they must

know how to spot flaws in deductive and probabilistic reasoning as well as

how to estimate the results of computations.  In a society saturated with

advanced technology, people will be called on more and more to evaluate the

relevance and validity of calculations done by calculators and more sophisti-

cated machines.  Public policy issues of critical importance hinge on math-

ematical analyses.

Citizens who cannot reason mathematically are cut off from whole realms

of human endeavor.  Innumeracy deprives them not only of opportunity but

also of competence in everyday tasks.  All young Americans must learn to think

mathematically, and they must think mathematically to learn.  The overriding

premise of our work is that throughout the grades from pre-K through 8 all

students should learn to think mathematically.

Helping all students learn to think mathematically is a new and ambitious

goal, but the circumstances of modern life demand that society embrace it.

Equal opportunity in education and in the workplace requires that math-

ematics be accessible to all learners.  The growing technological sophistica-

tion of everyday life calls for universal facility with mathematics.  For the

United States to continue its technological leadership as a nation requires

that more students pursue educational paths that enable them to become

scientists, mathematicians, and engineers.

The research over the past two decades, much of which is synthesized in

this report, convinces us that all students can learn to think mathematically.

There are instances of schools scattered throughout the country in which a

high percentage of students have high levels of achievement in mathematics.

Further, there have also been special interventions in disadvantaged schools

whereby students have made substantial progress.  More is now known about
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how children learn mathematics and the kinds of teaching that supports that

learning.  Research continues to expand our understanding of the teaching-

learning process.  All of this taken together makes us believe that our goal is

in large measure achievable.

Mathematics and Reading

A comparison of mathematics with reading leads to several important

observations.  First, competence in both domains is important in determin-

ing children’s later educational and occupational prospects.  Children who

fail to develop a high level of skill in either one are precluded from the most

interesting and rewarding careers.  As a recent report on reading from the

National Research Council put it, “To be employable in the modern economy,

high school graduates need to be more than merely literate.  They must be

able to read challenging material, to perform sophisticated computations, and

to solve problems independently.”2

Second, there are important similarities as well as differences in the prob-

lems children face in developing competence in reading and mathematics.

Understanding the common features of reading development and math-

ematical development is as important as understanding the special character-

istics of learning in each domain.

Finally, international comparisons suggest that U.S. schools have been

relatively successful in developing skilled reading, with improvements in both

instruction and achievement occurring in a large number of schools.3   Unfor-

tunately, the same cannot be said of mathematics.  International comparisons

discussed in the next chapter suggest that by eighth grade the mathematics

performance of U.S. children is well below that of other industrialized coun-

tries.  Furthermore, this performance has been relatively low in a variety of

comparisons conducted at intervals over several decades.  The organizational

and instructional factors that U.S. schools have used in developing skilled

reading performance may be equally important in improving the learning of

mathematics.  Learning to read and developing mathematical proficiency both

rest on a foundation of concepts and skills that are acquired by many children

before they leave kindergarten.  In the case of reading, children are expected

to enter school with a basic understanding of the sound structure of their

native language, a conscious awareness of the units (phonemes) that are

represented by an alphabetic writing system, and skill in handling basic lan-

guage concepts.  Likewise in mathematics, students should possess a toolkit

of basic mathematical concepts and skills when they enter first grade.  (These
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are reviewed in chapter 5.)  In both reading and mathematics, some children

enter school without the knowledge and experience that school instruction

presumes they possess.  In both domains, there is evidence that early inter-

vention can prevent full-blown problems in school.4

For both reading and mathematics, children’s performance at the end of

elementary school is an important predictor of their ultimate educational suc-

cess.  If they have not mastered certain basic skills, they can expect problems

throughout their schooling and later.  Research on reading indicates that all

but a very small number of children can learn to read proficiently, though

they may learn at different rates and may require different amounts and types

of instructional support.  Furthermore, experiences in pre-kindergarten and

the early elementary grades serve as a crucial foundation for students’ emerging

proficiency.  Similar observations can be made for mathematics.

For example, nearly all second graders might be expected to make a use-

ful drawing of the situation portrayed in an arithmetic word problem as a step

toward solving it.  Representing numbers by means of a drawing is a task that

few children find difficult.  Other tasks, however, depend much more heavily

on children’s knowledge and experience.  For example, in Roman numerals,

the value of V is five regardless of where it is located in the numeral, whether

IV, VI, or VII.  The Hindu-Arabic numerals used in everyday life are differ-

ent; a digit’s value depends on the place it occupies.  For example, the 5 in

115 denotes five, whereas in 151 it denotes fifty, and in 511, five hundred.

Also, a special symbol, 0, is used to hold a place that would otherwise be

unoccupied.  Although adults may view this place-value system as simple

and straightforward, it is actually quite sophisticated and challenging to learn

(see chapters 5 and 6).

To make progress in school mathematics, children must understand

Hindu-Arabic numerals and be able to use them fluently.  But the children

in, say, a second-grade class can be expected to differ considerably in the rate

at which they grasp place value.  It is a complex system of representation that

functions almost like a foreign language that a child is learning to use and

simultaneously using to learn other things.  Much of school mathematics has

this mutually dependent quality.  Abstractions at one level are used to develop

abstractions at a higher level, and abstractions at a higher level are used to

gain insights into abstractions at a lower level.

To ensure that students having reading difficulties get prompt and effec-

tive assistance outside the regular school program, the reading community

has developed a variety of intervention programs designed to address the

problems students are having and to bring them back rapidly into the regular
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program.5   Although there is much “remediation” done as part of school math-

ematics instruction in grades K to 8 and beyond, there are not nearly so many

supplementary interventions in mathematics as there are in reading.  There

is very little in the way of “mathematics recovery” that provides early targeted

enrichment in mathematics to help students overcome special difficulties.

One difference between reading and mathematics is that, after a certain

point, reading requires little explicit instruction: Once children have acquired

basic principles and skills for reading, they use those skills in the service of

other activities, to learn about history, literature, or mathematics, for example.

Their skills can always be polished and instruction given on interpreting a

text, but they need no further explanations and demonstrations of reading by

others.  Furthermore, they practice and develop their reading throughout their

lives, both inside and outside of school.  As is the case for reading, students

develop some basic concepts and practices in mathematics outside of school,

but a new and unfamiliar topic in mathematics—say, the division of fractions—

usually cannot be fully grasped without some assistance from a text or a teacher.

Reading uses a core set of representations.  In U.S. schools, the English

alphabetic writing system, once learned, enables the student to read and

decode any English sentence, although of course not necessarily to under-

stand its meaning.  Graphs, pictures, and signs also need to be read, but the

core symbols are the alphabet.

Mathematics, in contrast, has many types and levels of representation.

In fact, mathematics can be said to be about levels of representation, which

build on one another as the mathematical ideas become more abstract.  For

example, the increasing focus on algebra during the school years builds facil-

ity with more abstract levels of representation.

Another characteristic of learning to read is the vast variation among chil-

dren in their exposure to literature outside of school, as well as in the amount

of time they spend reading.  Studies on the development of reading6  have

shown that variations in children’s reading skill are associated with large dif-

ferences in reading experience.  Children at the 80th percentile in reading

level were estimated to average more than 20 times as much reading per day

as children at the 20th percentile.7

Similar data are not available for mathematics, but differences in the

amount of time spent doing mathematics are likely to be less than for read-

ing.  This suggests that direct school-based instruction may play a larger part

in most children’s mathematical experience than it does in their reading

experience.  If so, the consequences of good or poor mathematics instruction
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may have an even greater effect on children’s proficiency than is the case

with reading.

An important recent change in American education is the increased

emphasis on ensuring that all children achieve a basic level of competence in

reading during the course of elementary school.  Success in school also depends

on establishing good mathematical competence in the early elementary grades,

yet mathematics instruction has not received the same sustained emphasis.

Schools generally lack a mathematics specialist corresponding to the reading

specialists who provide instruction and assist children having difficulties with

the subject.  Many school districts have revised their schedules and their

curriculum programs to ensure that adequate reading instruction is given in

the elementary grades; mathematics instruction has yet to receive similar

attention.  The recommendations we give at the end of this report attempt to

take into account the progress made in homes and at school in achieving read-

ing proficiency.

Looking at Mathematics

The mathematics to which U.S. schoolchildren are exposed from pre-

school through eighth grade has many aspects.  However, at the heart of pre-

school, elementary school, and middle school mathematics is the set of

concepts associated with the term number.8   Children learn to count, and they

learn to keep track of their counting by writing numerals for the natural num-

bers.  They learn to add, subtract, multiply, and divide whole numbers, and

later in elementary school they learn to perform these same operations with

common fractions and decimal fractions.  They use numbers in measuring a

variety of quantities, including the lengths, areas, and volumes of geometric

figures.  From various sources, children collect data that they learn to represent

and analyze using numerical methods.  The study of algebra begins as they

observe how numbers form systems and as they generalize number patterns.

We have focused much of this report on the domain of number.  Most of

the controversy over how and what mathematics should be taught in elemen-

tary and middle school revolves around number.  Should children learn com-

putational methods before they understand the concepts involved?  Should

they be introduced to standard algorithms for arithmetic computation, or

should they be encouraged to develop their own algorithms first?  How much

time should be spent learning long division or how to add common fractions?

Should decimals be introduced before or after fractions?  How proficient do

children need to be at paper-and-pencil arithmetic before they are taught
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algebra or geometry?  Such questions are controversial partly because they

touch on the third R—arithmetic—that parents want their children to master,

and also because they deal with topics on which reformers have taken some

of their strongest stands in opposition to current practice.

Furthermore, much more research has been conducted in the domain of

number than in most other areas of the mathematics curriculum.  For most

controversial questions involving number, at least some related research is

available, and many of these questions have been studied extensively.

Our attention to number and operations is certainly not meant to imply

that the elementary and middle school curriculum is or should be limited to

number.  Mathematics is a broad discipline, and children need to learn about

its many aspects.  Although the amount of research that is available is less, we

have also reviewed what is known from research about how students develop

proficiency with some of the central concepts of measurement, geometry,

descriptive statistics, and probability.  Further, we have reviewed the research

on beginning algebra learning.  Nevertheless, our review of the research on

mathematics learning paints an incomplete picture of the nature of math-

ematics, even elementary and middle school mathematics.  Many facets of

the discipline are not covered or not covered adequately by the research or

our review.  Further, our review does not capture the many connections both

between various topics in mathematics and between mathematics and its uses

in the world around us.  Hence, in describing what is known about how chil-

dren learn mathematics, we are not indirectly prescribing what mathematics

children should learn.

Nature of the Evidence

For every generation of students, the mathematics curriculum and the

methods used to deliver that curriculum are products of many choices.  Some

of these choices reflect the fact that the volume of knowledge in any subject

greatly exceeds the time available for teaching it.  Decisions always must be

made as to what topics to teach and how much time to spend on them.

Choices about the teaching and learning of mathematics also depend on

what society wants educated adults to know.  Questions of what needs to be

taught are essentially questions of what knowledge is most preferred.  Research

can inform these decisions—for example, studies of modern workplaces can

reveal what mathematics employees most need to know.9   However, ideas

about what children today need to know also depend on value judgments

based on previous experience and convictions, and these judgments often

fall outside the domain of research.
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Once choices have been made regarding the mathematics that students

should know, the goals for instruction can be framed.  The available evidence

from research can be used to analyze the feasibility of the goals as well as to

contribute to decisions about how to help children achieve them.  The task

then becomes, first, to identify the research that can be used to inform these

analyses and decisions and, second, to figure out how best to use that research.

The experience that people know and understand best is their own.  To

establish policies for school mathematics, however, it is essential to look

beyond one’s own experience to the evidence obtained through a systematic

examination of what others have seen and reported.

Some of this evidence is analytical or conceptual, such as analyses of math-

ematical representations and strategies.  This research might describe and

categorize mathematical situations, analyze attributes of mathematical repre-

sentations, or design conceptual supports to increase student learning.  The

value of this research depends on the strength of its analytical framework and

its accessibility to others.

Other evidence is more empirical.  The essence of empirical research is

that evidence has been gathered and analyzed in a systematic, focused way

so as to address a clearly formulated question.  Researchers make public the

assumptions they have made and the methods they have used to gather and

analyze their data.  They explain how their conclusions follow from a careful

analysis of those data.  They report their methods and findings in a way that

makes informed critique possible.  In many cases—though not all—adher-

ence to these methods allows others to repeat their work.

Some empirical studies are largely descriptive.  They can illuminate how

learning occurs under various conditions, suggest what the learner brings to

the teaching situation, or describe how the learner understands what is being

taught.  Some studies portray relationships.  They can suggest how differences

in conditions under which learning occurs might be related to differences in

what is learned.  Other studies are experimental.  Through the manipulation

of learning conditions, they can suggest how changes in those conditions might

cause changes in learning.

Whether a study is a tightly controlled experiment or an observation of a

single child’s performance, it can be of high or low quality.  Box 1-1 describes

several determinants of quality in research.  In turn, the quality of the evi-

dence determines the level of confidence with which a conclusion, observa-

tion, or recommendation is made.

In addition, no single study can provide conclusive evidence on broad

educational issues.  It is therefore necessary to look at as many studies as
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Box 1-1

The Quality of Research Studies

Several indicators of quality must be evaluated in assessing studies of

mathematics education.  This report is based on research that meets standards

of relevance, soundness, and generalizability.

Relevance

A research study is relevant if it addresses or produces data that speak to

any of a number of components of mathematics learning.  The teaching and

learning of mathematics involve both desired goals and various mental

processes.  These goals and processes include the content to be learned,

materials for teaching, activities undertaken by teachers and students to

promote learning, and assessment of what has been learned.  Teaching and

learning also take place in a social context ranging from the classroom to the

nation as a whole.  Teaching and learning depend not only on teachers and

students but also on support from a variety of enablers: policy makers, teacher

educators, publishers, researchers, administrators, and others.

A relevant study of mathematics learning might, for example, lead to a

sharper understanding of desired learning processes and outcomes.  It might

reveal features of good practice or evaluate tradeoffs among various

educational alternatives.

Soundness

The soundness of a research study concerns the extent to which the study

supplied the data needed to address the research question.  A study’s

soundness therefore depends on the suitability of the methods used to achieve

the results obtained.  Were the groups of participants adequate in size and

composition, or were they biased or limited in some fashion?  Did the methods

generate credible, reliable, and valid data?  Were the methods specified so

that they could be repeated?  Was the data analysis appropriate to the methods,

carefully conducted, replicable, and penetrating?  Was the data presentation

clear and complete?  Were the conclusions warranted by the results and

appropriately qualified?

Generalizability

The generalizability of a study concerns the extent to which its findings

can be applied to circumstances beyond those of the study itself.  Was the

class typical in size and composition?  Were the time allocated to mathematics

and the materials and equipment used in the study characteristic of today’s

mathematics instruction?  Did the conditions of the study depart from those

of an ordinary classroom?  Were the teachers or students somehow anomalous?
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possible that are relevant to a particular question.  The confidence with which

an observation, conclusion, or recommendation is made is increased when all

the relevant evidence supports the same point.  This feature of convergence

is reinforced when the evidence has been collected in different places, under

different circumstances, and by different researchers working independently.

In particular, findings should stand up across different groups of students

and teachers, and ideally they should have been obtained using different

methods for gathering data.  Findings also should fit well within a larger

network of evidence that makes good common and theoretical sense.  Deter-

mining the degree of convergence in existing evidence demands discrimina-

tion and judgment.  It cannot be ascertained simply by tallying studies.

One problem in weighing the evidence on a given issue in education is

that a fully convergent database that speaks directly to the issue and yields

unequivocal findings is seldom, if ever, available.  The findings from experi-

mental studies of mathematics learning often conflict.  Data from non-

experimental studies of relationships generally are ambiguous with respect

to causality.  Descriptive data can help frame an issue but usually do not

address the question of which processes might lead to which learning out-

comes.  Ostensibly comparable studies can differ in key features, making it

difficult to decide whether the data are really comparable.  Much of the evi-

dence is still in the form of demonstrations that selected children can learn

certain topics in certain ways, and large-scale studies have not yet been done.

All these factors require that the research evidence be interpreted.  Argu-

ments and recommendations have to be constructed by drawing on profes-

sional judgment.  Inductive reasoning must be used to make connections

among studies, note patterns, fill in gaps, and attempt to explain why contra-

dictory findings should be ignored or downplayed.  We have sought to identify

in this report conclusions that depend on such interpretations of the available

evidence.

The Role of Research in Improving

School Mathematics

A premise of this report is that sound research can help guide the design

of effective mathematics instruction.  Yet research cannot be the only basis

for making instructional decisions in mathematics.  First, as we stated earlier,

research, by itself, cannot tell educators which of their learning goals are most

important or how they should set priorities.  Only after such goals have been

established can research generate information to help educators decide
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whether goals are feasible and, if so, how to accomplish them.  In short,

instructional decisions, as well as the research supporting them, must be guided

by values.

Second, decisions about how to help students reach learning goals can

never be made with absolute certainty.  As the famous American psychologist

William James noted at the end of the nineteenth century, psychology’s

description of “the elements of the mental machine . . . and their workings”10

does not translate directly into a prescription for educational practice.  James

warned: “You make a great, a very great mistake, if you think that psychology,

being the science of the mind’s laws, is something from which you can deduce

definite programmes and schemes and methods of instruction for immediate

schoolroom use.”11   Education is an applied field: no matter what the state of

theoretical knowledge from psychology or elsewhere, the conditions of prac-

tice make the success of any procedure contingent.  Just as a doctor cannot be

100 percent sure that this operation will cure that patient, or an engineer that

this design cannot fail, so a teacher cannot know exactly what approach will

work with a particular student or class.  Decisions about procedures can be

made with greater confidence when high-quality empirical evidence is avail-

able, but decisions about educational practice always require judgment,

experience, and reasoned argument, as well as evidence.

Third, the research base for mathematics learning is diverse in the methods

used and contains diverse kinds of results.  For example, observational

methods—including clinical interviews with students—are faithful to actual

conditions and environments.  But they may have trouble controlling irrelevant

variables that might have been responsible for the results.  It can be challenging

to draw scientifically sound conclusions from a selected set of observations.

In contrast, experimental methods—including studies comparing an experi-

mental and control group—establish stronger bases for drawing conclusions,

although even these conclusions have important limitations and qualifica-

tions.  Experimental control is a challenge because the classroom teaching of

mathematics constitutes a system of mutually dependent elements that can-

not easily be disentangled so that each element can be controlled.  Experi-

mental rigor often requires narrowing one’s focus to a single feature of an

instructional method or to a limited amount of mathematical content.  Further-

more, evidence that an instructional method produced a certain result in a

controlled situation does not guarantee that it would produce the same result

in a situation when, for example, different mathematical content were being

taught or the students had different backgrounds and experience.  There are

pros and cons for each methodological approach, and we believe that the great-
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est progress is made when together they offer converging evidence, that is, a

coherent picture of how mathematics learning occurs.  The interpretation

and use of research always require a search for commonalities in evidence

from diverse sources.

Finally, most published studies in education confirm the predictions made

by the investigators.  Information obtained from research therefore is par-

ticularly useful when it goes beyond the sought-after effects.  The interpre-

tation and use of such information require an examination of the conditions

under which the effects were obtained and other possible effects.  For example,

the students in the groups under investigation may have met other learning

goals than those targeted by the instructional methods.

In summary, high-quality research should play a central role in any effort

to improve mathematics learning.  That research can never provide prescrip-

tions, but it can be used to help guide skilled teachers in crafting methods

that will work in their particular circumstances.  For many important issues in

mathematics education, the body of evidence is simply too thin at present to

warrant a comprehensive synthesis.  Where convergent evidence is not avail-

able, we have attempted in this report to suggest the sorts of evidence that

would be needed for good inferences to be drawn.

About This Report

The Committee on Mathematics Learning was created at the request of

the Division of Elementary, Secondary, and Informal Education in the National

Science Foundation’s Directorate for Education and Human Resources and

the U.S. Department of Education’s Office of Educational Research and

Improvement.  The sponsors were concerned about the shortage of reliable

information on the learning of mathematics by schoolchildren that could be

used to guide best practice in the early years of schooling.

The charge to the committee lists three goals:

1. To synthesize the rich and diverse research on pre-kindergarten

through eighth-grade mathematics learning.

2. To provide research-based recommendations for teaching, teacher

education, and curriculum for improving student learning and to identify areas

where research is needed.

3. To give advice and guidance to educators, researchers, publishers,

policy makers, and parents.
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Additionally, the committee was charged with describing the context of

the study with respect to what is meant by successful mathematics learning,

what areas of mathematics are important as foundations in grades pre-K-8 for

building continued learning, and the nature of evidence and the role of research

in influencing and informing education practice, programs, and policies.

The goals for the study cover a broad grade span and a number of different

facets of mathematics education—learning, teaching, teacher education, and

curriculum.  Further, the report is to provide guidance to a diverse audience.

The complexity of the task and the time constraints imposed led the com-

mittee to make some judicious choices and decisions.  First, as indicated earlier,

we chose to focus primarily on the domain of number in order to make our

task manageable and to present findings on the area of mathematics of most

interest to our audience.  Second, because we could not assume a common

background, necessary background had to be included in the report.  Finally,

we decided to limit the detail reported on individual studies in order to make

the report more accessible.

To meets its charge, the committee conducted an extensive examination

of the research literature relevant to the learning of mathematics in the pre-

kindergarten through eighth-grade years.  We did not review other bodies of

literature that have an impact on learning such as textbooks, curriculum

projects, assessments, and standards documents.  In reviewing the research,

we asked ourselves what promising changes in practice the evidence suggests

and what else needs to be known to improve practice.  We then concluded

how teaching, curricula, and teacher education should change to improve

mathematics learning in these critical years.

In chapter 2, we describe the current status of mathematics curricula,

teaching practices, assessments, and student achievement.  In response to

the charge to describe what areas of mathematics are important, chapter 3

outlines the domain of number and discusses what it means to learn about

number in the pre-kindergarten to eighth-grade years.  Chapter 4 details the

strands of what we refer to as “mathematical proficiency,” which we have

established as what is meant by successful mathematics learning in the

elementary school and middle school years.

Chapters 5, 6, 7, and 8 then present a portrait of mathematics learning

that spans the grade levels considered in this report.  Chapter 5 considers

what students learn outside school and bring with them to the formal study of

mathematics.  Chapter 6 describes the process by which students acquire

mathematical proficiency with whole numbers, and chapter 7 addresses pro-

ficiency with other number systems.  Chapter 8 describes the process by which
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students achieve proficiency in domains other than number, including

beginning algebra, measurement and geometry, and statistics and probability.

Chapters 9 and 10 focus on the teaching of mathematics.  Chapter 9

describes what we know from research about teaching for mathematical pro-

ficiency.  Chapter 10 discusses what it means to be a proficient teacher of

mathematics and describes the kinds of experiences teachers need to develop

this proficiency.

Finally, chapter 11 presents the committee’s recommendations for teach-

ing practices, curricula, and teacher education, offering some suggestions for

parents, educators, and others.  Chapter 11 also recommends the various types

of research needed if both practice and policy are to be improved.

Notes

1. Butts, 1955, p. 454; Cubberley, 1920, pp. 17, 235; Kouba and Wearne, 2000; Thorndike,

1922.

2. Snow, Burns, and Griffin, 1998, p. 20.  The case for critical reading skill and literacy by

adolescence is addressed by Moore, Bean, Birdyshaw, and Rycik, 1999.

3. Binkley and Williams, 1996; Elley, 1992.

4. Fuson, Smith, and Lo Cicero, 1997; Griffin, Case, and Siegler, 1994; Snow, Burns, and

Griffin, 1998.

5. One well-known program is called Reading Recovery (see Snow, Burns, and Griffin,

1998, pp. 255–258), which is designed for the lowest fifth of a first-grade class.  In that

program, the teacher, who has received extensive instruction in the reading process

and its implications for teaching, notes an individual child’s literacy strategies and

knowledge and then engages the child in a structured series of activities.  Each child

is tutored individually for a half hour a day for up to 20 weeks.

6. Wagner and Stanovich, 1996.

7. Anderson, Wilson, and Fielding, 1988.

8. See chapter 2 for data on the level of instructional emphasis fourth- and eighth-grade

teachers reported giving to number and operations.

9. See, for example, the SCANS study (U.S. Department of Labor, Secretary’s

Commission on Achieving Necessary Skills, 1991).

10. James, 1899/1958, p. 26.

11. James, 1899/1958, p. 23.
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2

THE STATE OF SCHOOL MATHEMATICS

IN THE UNITED STATES

The U.S. system for teaching children mathematics is large, is complex,

and has numerous components.  Children’s mathematical achievement, how-

ever, is ultimately determined and constrained by the opportunities they have

had to learn.  Those opportunities are determined by several major compo-

nents of school mathematics.  The curriculum contains learning goals spelling

out the mathematics to be studied.  It also includes instructional programs and

materials that organize the mathematical content, together with assessments

for determining what has been learned.  In addition, and of primary impor-

tance, it is through teaching that students encounter the mathematical content

afforded by the curriculum.

In every country, the complex system of school mathematics is situated

in a cultural matrix.  Mathematics teaching is not the same in the United

States as in, say, Japan or Germany,1  and the curricula are different as well.2

Countries differ in such global characteristics as the centralization of educa-

tional policies, the organization and types of schools, and the success of efforts

to provide universal access to education.  The status of teachers in the society,

the composition and mobility of the student population, and the extent to

which external examinations determine one’s life chances all constrain the

ways in which mathematics is taught and learned.  Countries also differ in

more specific ways: parents, teachers, and students have different beliefs about

the value of hard work and the importance of mathematics for one’s educa-

tion; whether and how students are grouped for mathematics instruction varies;

mathematics textbooks are written, distributed, and used in diverse ways;

and there is variation in the prevalence of tutors or special schools to coach
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students for mathematics tests.  Each country provides a unique setting for

school mathematics, one that very much determines how students are taught,

what they learn, how successful they are, and how satisfied society is with the

products of the system.

Education in the United States is marked by a diverse, mobile popula-

tion of students and teachers, a variety of organizational structures, and minimal

centralized control over policies and practices.  The U.S. system of school

mathematics has evolved over several centuries in accordance with these char-

acteristics.  Not only do the components of the U.S. system differ from those

of other countries, but they are organized and operate differently.  To under-

stand the possibilities for improving children’s learning of mathematics, one

needs a sense of how the elements of U.S. school mathematics currently

function.

In the past half century, a number of research studies have examined

differences in the mathematics learned by students in various educational

systems.  Some of these studies have also looked at various features of the

systems that might help researchers understand and interpret the pattern of

results.  To date, the most comprehensive study to be analyzed in detail has

been the Third International Mathematics and Science Study (TIMSS), which

was conducted in the mid-1990s.  Over 40 countries participated in TIMSS.

Tests in science and mathematics, as well as questionnaires about their studies

and their beliefs, were given to students midway through elementary school

(grade 4 in the United States), midway through lower secondary school (U.S.

grade 8), and at the end of upper secondary school (U.S. grade 12).  Question-

naires about beliefs, practices, and policies were also given to these students’

teachers and school administrators.  Unique features of TIMSS included an

extensive examination of textbooks and curriculum guides from many of the

participating countries, a video study of eighth-grade mathematics classes in

three countries, and case studies of educational policies in those three

countries.

The results from TIMSS have been widely reported in the media, catch-

ing the attention of politicians, policy makers, and the general public.  Many

people have compared various practices, programs, and policies in the United

States with those of high-achieving countries.  Such comparisons are inter-

esting but at best can only be suggestive of the sources of achievement differ-

ences.  TIMSS provides no evidence that a single practice—say, the amount

of homework assigned, the particular textbook used, or how periods of math-

ematics instruction are arranged during the school day—is responsible for

higher mathematics test scores in one country than in another.  The countries
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participating in TIMSS vary in many respects—educationally, socially, eco-

nomically, historically, culturally—and in each of those respects, they vary

along many different dimensions.  In the absence of more evidence than

TIMSS can provide, one cannot select one practice and claim that if it were

changed to be more like that of high-scoring countries, scores in the United

States would rise.3   Studies like TIMSS can at best generate conjectures that

need to be tested in the complex system of school mathematics that exists in

any county.  In this report, we use data from TIMSS and other international

studies to help describe practice and performance in the United States—

sometimes in contrast to that of other countries but never assuming a simple

causal relation between a specific practice and performance.

This chapter is intended primarily to give an overall picture of U.S. math-

ematics education, describing the experiences and achievement of most

students.  But it should be emphasized that U.S. education is quite diverse,

partly because of an unequal distribution of needs and resources, and partly

because of the principle of local control.  Thus, this chapter also attempts to

describe that diversity, particularly with respect to student achievement.

In this chapter, we first take up in turn four central elements of school

mathematics—learning goals, instructional programs and materials, assess-

ment, and teaching—discussing the current status of each in the United States.

We then examine the preparation and professional development of U.S.

teachers of mathematics.  Finally, we look at a major indicator of the health of

the whole system, student achievement results, both across time and inter-

nationally.

Learning Goals

The U.S. Constitution leaves to the separate states the responsibility for

public education.  State and local boards of education have the authority to

determine the mathematics that students learn as well as the conditions under

which they learn it.  Many state boards of education have created curriculum

standards and frameworks, and some have specified criteria that educational

materials (principally textbooks) must meet if they are to be approved.  Thus,

each state can, in principle, specify quite different goals for learning math-

ematics at each grade level, and each local district can make adjustments as

long as they fall within the state guidelines.

A major effort to set comprehensive learning goals for school mathemat-

ics at the national level was undertaken in 1989 by the National Council of

Teachers of Mathematics (NCTM) with the release of Curriculum and Evalu-
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ation Standards for School Mathematics.4   The document outlined and illus-

trated goals in the form of standards to be met by school mathematics pro-

grams.  It called for a broadened view of mathematics and its teaching and

learning, emphasizing the development of students’ “mathematical power”

alongside more traditional skill and content goals.  The NCTM later produced

Professional Standards for Teaching Mathematics5  and Assessment Standards for

School Mathematics.6   Beginning in 1995, it embarked on a process to revise all

three documents, resulting in Principles and Standards for School Mathematics,7

which was released in April 2000.

Although none of the NCTM documents established national standards

for school mathematics in an official sense, much of the activity in U.S. math-

ematics education since 1989 has been based on or informed by the ideas in

those documents.  Many school mathematics textbooks claim to be aligned

with the NCTM standards, and 13 curriculum projects were funded by the

National Science Foundation to produce materials for elementary, middle, or

high school that embodied the ideas expressed in the standards documents.8

The NCTM standards of 1989 launched the so-called standards movement,

with standards for other school subjects appearing over the following decade.9

In 1994 the reauthorization of Title I of the Elementary and Secondary Edu-

cation Act furthered boosted the movement.  Title I provides supplemental

financial assistance to local educational agencies to improve teaching and learn-

ing in schools with high concentrations of children from low-income families.

The reauthorization “requires states to develop challenging standards for

performance and assessments that measure student performance against the

standards.”10   It should also be noted that A Nation at Risk, America 2000, and

Goals 2000 (under Presidents Reagan, Bush, and Clinton, respectively) all

called for higher, measurable standards in education.11

As of 1999, 49 states reported having content standards in mathematics

and several states were in the process of revising their standards.12   These

standards (sometimes called curriculum frameworks) describe what students

should know and be able to do in mathematics.  Most of the state standards

reflect the 1989 NCTM standards and either repeated verbatim or were

adapted from the document.  Early versions of these state standards were

organized into grade clusters (e.g., grades K-4), but some states (e.g., California,

Texas, North Carolina, and Virginia) have recently developed grade-by-grade

standards.13

Current state standards and curriculum frameworks vary considerably in

their specificity, difficulty, and character, as illustrated by the widely divergent

ratings they received in three reviews conducted by the American Federa-
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tion of Teachers, the Fordham Foundation, and the Council for Basic Educa-

tion.14   The conflicting reports have created confusion among parents, teachers,

and policy makers alike.  According to one analysis of the reviews:

While . . . multiple analyses of state standards are better than no

analyses, the grade differentials among the three reports are confound-

ing—enough so to make state leaders either throw up their hands in

utter bewilderment or embrace a high mark and ignore the others.

Both responses threaten to defeat the very purpose of the reports.

For example, Florida received a D from one appraiser and the equiva-

lent of an A from another in mathematics.  In both English and math-

ematics, Michigan received an F from one appraiser and a B-plus

from another.15

Often missing from the public discussion of such reports are the processes

and criteria that gave rise to the ratings, which has only added to the confusion.

Some caveats about standards deserve mention.  First, most groups

charged with developing standards for a school subject have strong expecta-

tions for learning in that subject.  They may spend more time devising the

standards than checking the feasibility of achieving them in the time avail-

able for learning.  One analysis of standards for 14 subjects found that it would

take nine additional years of schooling to achieve them all.16   Thus, it is

important that states and districts avoid long lists that are not feasible and

that would contribute to an unfocused and shallow mathematics curriculum.

Second, when grade bands (e.g., grades pre-K–2) are used in specifying

standards, it is important to clarify that each goal does not have to be addressed

at every grade in a band.  Such redundancy again contributes to the dissipa-

tion of learning efforts and interferes with the acquisition of proficiency.

Third, states and districts need to decide what they will do when students

do not meet grade-level goals.  Children enter school with quite different

levels of mathematical experience and knowledge.  Some need additional

learning time and support for learning if they are to meet the goals.  As schools

shift to standards-based mathematics curricula for grades pre-K to 8 with chal-

lenging grade-level goals, thorny questions arise as to whether and how spe-

cial accommodations will be made for some students and what criteria will be

imposed for promotion to the next grade.

A recent comparative analysis of mathematics assessments given to U.S.

and Japanese eighth graders revealed some striking differences in the expec-

tations held for each group, with much lower expectations in the United States.

The author concluded by pointing to the need for grade-level goals:
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To achieve the coherence and focus observed in the Japanese mate-

rials, the Curriculum and Evaluation Standards for School Mathematics

need to be further extended to provide grade level guidance about

focus and primary activities for given years.  This step to achieve-

ment and delivery standards for school mathematics is curricularly

achievable within the framework outlined by the NCTM content

standards.  Whether it is politically acceptable or systematically

implementable are larger and more volatile questions.17

On balance, we see the efforts made since 1989 to develop standards for

teaching and learning mathematics as worthwhile.  Many schools have been

led to rethink their mathematics programs, and many teachers to reflect on

their practice.  Nonetheless, the fragmentation of these standards, their mul-

tiple sources, and the limited conceptual frameworks on which they rest have

not resulted in a coherent, well-articulated, widely accepted set of learning

goals for U.S. school mathematics that would detail what students at each

grade should know and be able to do.  Part of our purpose in this report is to

present a conceptual framework for school mathematics that could be used to

move the goal-setting process forward.

Instructional Programs and Materials

Learning goals are inert until they are translated into specific programs

and materials for instruction.  What is actually taught in classrooms is strongly

influenced by the available textbooks because most teachers use textbooks

as their primary instructional materials.18   As of 1998, 12 states—including

the very large markets of California and Texas—had policies in which the

state either chose the materials that students would use or drew up a list of

textbooks and materials from which districts had to choose, though sometimes

only if they wanted to use state funds for the purchase.  Another seven states

recommended materials for use.19

Surveys of U.S. teachers have consistently shown that nearly all their

instructional time is structured around textbooks or other commercially pro-

duced materials, even though teachers vary substantially in the extent to which

they follow a book’s organization and suggested activities.20   In 1980 one

researcher maintained that the chalkboard and printed textbooks were the

predominant instructional media in mathematics classes,21  a verdict substan-

tiated by recent data from the National Assessment of Educational Progress

(NAEP).  Responding to a questionnaire in 1996, teachers of three fifths of

the fourth graders and of almost three fourths of the eighth graders in the
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NAEP sample said that they used the mathematics textbook almost every

day.22   Observational studies of elementary school classrooms, however, reveal

that at least some teachers pick and choose from the mathematics textbook

even as they follow its core content.23

The American textbook system is notable for being heavily market driven.

In that market, publishers must contend with multiple and sometimes

contradictory specifications:

If we lived in a country with one national curriculum, then textbook

publishers could compete with each other in the effort to produce a

book that would best mirror that one curriculum.  But we are not

such a country.  Instead, we have dozens of powerful ministries of

education issuing undisciplined lists of particulars that publishers must

include in the textbooks.  Since publishers must sell in as many juris-

dictions as possible in order to turn a profit, their books must incor-

porate this melange of test-oriented trivia, pedagogical faddism, and

inconsistent social messages.24

To be sold nationwide, a textbook needs to include all the topics from the

standards and curriculum frameworks of at least those influential states that

officially adopt lists of approved materials.  Consequently, the major U.S.

school mathematics textbooks, which collectively constitute a de facto national

curriculum, are bulky, address many different topics, and explore few topics

in depth.

In comparison with the curricula of countries achieving well on inter-

national comparisons, the U.S. elementary and middle school mathematics

curriculum has been characterized as superficial, “underachieving,” and diffuse

in content coverage.25   Successful countries tend to select a few critical topics

for each grade and then devote enough time to developing each topic for

students to master it.  Rather than returning to the same topics the following

year, they select new, more advanced topics and develop those in depth.  In

the United States, not a single topic in the grade pre-K to 8 mathematics

curriculum is seen as the province of one grade, to be learned there once and

for all.  Instead, topics such as multidigit computations are distributed over

several years, with one digit added to the numbers each year.  Students

invariably spend considerable time on topics they encountered in the previous

grade.26   At the beginning of each year and of each new topic, numerous

lessons are devoted to teaching what was not learned or was learned inad-

equately the year before.  Because the curriculum is consequently so crowded,

depth is seldom achieved, and mastery is deferred.  Not surprisingly, inter-
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national curriculum analyses have found that U.S. mathematics textbooks

cover more topics, but more superficially, than do their counterparts in other

countries.27

The massive amount of review created by the inadvertent de facto cur-

riculum set by textbooks wastes learning time and may bore those students

who have already mastered the content.  Such constant review is also counter-

productive.  It is much easier to help students build correct mathematical

methods at the start than to correct errors that have been learned and practiced

for a year or more.  As the following chapters show, the lack of concentrated

attention to core topics militates against powerful learning.

Further attributes of this de facto curriculum also are problematic.  For

example, even with their supplementary materials, many textbooks fail to

discuss student strategies or progressions in student thinking.  They also fre-

quently omit explanations of mathematical processes.  Further, decorative

artwork with little connection to textbook content sometimes confuses or

distracts students.28   Research indicates that students can learn more math-

ematics than is usually offered them in the early grades, so the U.S. elemen-

tary school mathematics curriculum could be made more challenging.  If the

curriculum of the early grades were more ambitious, and if instruction were

focused on mastery of topics rather than unwarranted review, teachers of the

middle and upper grades could concentrate on teaching core grade-level topics

more thoroughly.

The short timelines between the formulation of state learning goals and

the selection of textbooks create a textbook production schedule that seldom

permits both consultation of research about student learning and field testing

followed by revision based on actual use in schools.29   Most students today

are using materials that were produced under heavy (perceived or actual)

market constraints.  In contrast, some recent school curriculum development

projects that were supported by the National Science Foundation built

research and pilot testing into their design.

An expert panel convened by the Department of Education recently

evaluated materials from these NSF-funded projects as well as from other

programs.  The panel labeled some curriculum programs as “exemplary” and

others as “promising” based on a review process that examined evidence of

the programs’ effectiveness.30   Almost immediately, the panel’s conclusions

were called into question.31   Just as with ratings of standards, evaluations of

curriculum materials have led to divergent ratings depending on the group

doing the evaluating.32
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In some countries, including England, France, Hong Kong, Singapore,

and the Netherlands, there are permanent national centers or institutes that

conduct multi-year research and curriculum development efforts in school

mathematics.  In the United States, the government has funded both a research

center for mathematics learning at a single institution and projects to develop

materials for teaching and learning mathematics at a number of other institu-

tions.33   Typically, the curriculum development programs have required, as

part of the project, both pilot testing of the materials while they are under

development and the collection of evidence on the effectiveness of the

materials, once developed.  In some cases, the evaluation studies have been

only perfunctory and the evidence gathered of poor quality.  In others the

support has resulted in sustained research-based curriculum development

that systematically uses evidence as to what U.S. students can learn.34   Such

a development program can be interactive, with improved learning materials

yielding improved student learning that, in turn, yields improved and even-

more-ambitious learning materials.

Developing teachers’ capacity to acquire and use good instructional

materials is also a problem.  Textbook selection processes can be overwhelm-

ing.  Committee members usually do not have time to examine carefully the

continuity of treatment of topics or the depth and clarity of the conceptual

development facilitated by the materials.  Instead, their focus is often on

superficial features such as the appearance of the materials and whether all

goals on a checklist are addressed.  The problems created by checklists are

especially keen in states and local districts with large numbers of specified

special criteria.  Failure to meet even a few of these criteria can eliminate an

otherwise strong program.35

The methods used in the United States in the twentieth century for pro-

ducing school mathematics textbooks and for choosing which textbooks and

other materials to use are not sufficient for the goals of the twenty-first cen-

tury.  The nation must develop a greater capacity for producing high-quality

materials and for using effectively those that are produced.  In subsequent

chapters, we cite research on children’s learning that can guide that produc-

tion and use.

Assessments

In general, assessments of children’s mathematics learning fall into two

categories: internal and external.  Internal assessments are those used by

teachers in monitoring and evaluating their students’ progress and in making
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instructional decisions.  Such assessments range from the informal questions

a teacher might ask about a student’s work to an end-of-year examination.

They arise from the teaching-learning process in the classroom.  External

assessments, in contrast, come from outside, from projects gathering com-

parative research data or mandated by state or local districts as part of their

evaluation programs.

Relative to the vast literature on external assessments and their results,

little up-to-date information is available on how U.S. teachers conduct internal

assessments in mathematics, particularly those activities such as classroom

questioning, quizzes, projects, and informal observations.  Even less atten-

tion appears to have been paid to how teachers’ assessments might help

improve mathematics learning.  According to one analysis, “Aside from teacher-

made classroom tests, the integration of assessment and learning as an inter-

acting system has been too little explored.”36

As part of the 1996 NAEP mathematics assessment, teachers responded

to several questions about their testing practices.37   Fourth graders were usu-

ally tested in mathematics once or twice a month, with about a third being

tested once or twice a week.  More frequent testing was associated with lower

achievement.38   Eighth graders were somewhat more likely to be tested

weekly.  At both grades, teachers appeared to be responding to calls arising

from the standards movement for less multiple-choice testing in favor of tests

on which students supply written responses.39   Multiple-choice testing is still

prevalent, however, stimulated perhaps by the increased number of such tests

provided by publishers to accompany their textbooks.  Two thirds of fourth

and eighth graders had teachers who reported that they used multiple-choice

tests to assess students’ progress at least once or twice a year, most as often as

once or twice a month.40   In part, teachers are attempting to prepare students

for external assessments by using multiple-choice items on their own tests.

The form of multiple-choice test items appears not to be as big a prob-

lem as the nature of the items and the conditions under which they are typi-

cally administered in the United States.  An examination given to a national

sample of eighth graders in Japan as part of a Special Study on Essential Skills

in Mathematics was composed entirely of multiple-choice items, yet it was

judged substantially more challenging than the 1992 NAEP mathematics

assessment given to U.S. eighth graders, which contained both multiple-choice

items and items on which students had to write either a brief or lengthy

response.41   The difference was that the Japanese exam contained about half

as many items as the U.S. exam; the items were longer, demanded more read-

ing and analysis, and were more focused on strategies for problem solving.
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Exhortations to change assessments, whether internal or external, clearly need

to focus on more than just item format.  In the remainder of this section, we

examine current external assessment practices and results.

In recent years, largely because of language in the reauthorization of Title

I, many states have designed and implemented their own assessments, usu-

ally aligned with newly developed state standards or curriculum frameworks.

Many of these assessments are intended to have high stakes.  They may have

financial or other consequences for districts, schools, teachers, or individual

students.  In some cases, promotion or even a high school diploma may depend

on a student achieving a passing score.  As of 1998, 48 states and the District

of Columbia had instituted testing programs, typically at grades 4, 8, and 11,

and usually in mathematics, language arts, science, and technology.42

Many states report the results of their high-stakes assessments by school

or by district to identify places that are most in need of improvement.  The

states’ responses to those results vary.  Some states have the authority to close,

take over, or “reconstitute” a failing school.  To date, only a few states have

ever used such sanctions.43   Florida awards additional funds to schools that

perform near the bottom and also to schools that perform near the top.44   When

schools or districts with poor results do not show sufficiently rapid improve-

ment, some states revoke accreditation, close down the school, seize control

of the school, or grant vouchers so that students may choose to enroll elsewhere.

Currently, 19 states require that in order to graduate from high school,

students must pass a mandated assessment, and several other states are phasing

in such a requirement.45   In TIMSS, countries with rigorous assessments at

the end of secondary education outperformed other countries at a comparable

level of economic development; such assessments, however, were probably

not the most important determinant of achievement levels.46   In response to

calls for an end to social promotion, some states and districts have begun

requiring grade-level mastery tests for promotion, typically in grades 4 and 8.

Interestingly, there is some evidence to suggest that there is an almost inverse

relationship between statewide testing policies and students’ mathematics

achievement:

Among the 12 highest-scoring states in 8th grade mathematics in 1996,

. . . none had mandatory statewide testing programs in place during

the 1980s or early 1990s.  Only two of the top 12 states in the 4th

grade mathematics had statewide programs prior to 1995.  By contrast,

among the 12 lowest-scoring states, . . . 10 had extensive student test-

ing programs in place prior to 1990, some of which were associated
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with highly specified state curricula and an extensive menu of rewards

and sanctions.47

Of course, this relationship does not imply that simply easing statewide test

policies would improve achievement.

To give teachers, students, parents, and other caregivers sufficient time

to prepare for high-stakes assessments, states typically administer them for

several years before the consequences take effect.  During these trial runs,

the failure rates are sometimes alarmingly high.  In Arizona, for example,

only 1 in 10 sophomores passed the mathematics test first given in the spring

of 1999.  That same spring, only 7% of Virginia schools were able to achieve a

70% passing rate, which was to become the condition for accreditation in 2007.

In response to these results, some states have begun to relax their expecta-

tions, reconsider the test, or withdraw it altogether.  Wisconsin, for example,

yielded to pressure from parents and withdrew its high school graduation

test.  Massachusetts and New York set lower passing scores for their exams.48

Most states report the level of student results on their assessments by

setting so-called cut scores to define categories with such labels as advanced,

proficient, needs improvement, and failing,49  terms similar to those used in NAEP:

advanced, proficient, and basic.  When results on state assessments are com-

pared with the state results in NAEP, the proportions of students reaching

the proficient level are often higher.50   Some researchers, politicians, and policy

makers have concluded from this discrepancy that most state tests do not

reflect sufficiently high expectations.51   Others argue instead that minimum

competence and high expectations are different goals that cannot be mea-

sured by the same assessment and certainly not with the same cut scores.

Thus, the results appear discrepant because the same categories are used to

describe performance on assessments with very different goals.

Many states and school districts use standardized tests52  (which may or

may not coincide with the state assessments discussed above) to assess how

their students are achieving.  Commercially published standardized math-

ematics achievement tests are quite variable in the topics they cover and in

the proportion of these topics emphasized at each grade level.53   The tests

frequently are not aligned with the teaching materials used in a district or

even with the goals of the district.  This misalignment further dilutes teach-

ing efforts, as teachers must add to their long list of goals coverage of the

major topics emphasized on a specific standardized test.

Standardized tests can have other negative consequences.  The word stan-

dardized is likely to carry certain connotations: that such a test is more objec-

tive than other instruments, that it contains mostly grade-level items, that it
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was developed or sanctioned by experts in the domain, that it reflects impor-

tant learning goals in a balanced way, and that it represents and assesses what

students know about the content that the state or district has prescribed for

that grade level.  In fact, many standardized tests have few or none of these

characteristics.54

Most standardized tests might be called “comparison” tests because their

function is to rank order students, schools, and districts or to compare them

with another group that was selected as typical.  Items are chosen to range

widely in difficulty in part to disperse students’ scores.  That range allows for

half the students to be classified as “below average” and the other half as

“above average.”  The tests do not include many items that only a few students

get right or that only a few get wrong, because such items do not help distin-

guish among students.55   The omission of these items may mean that some

important aspects of mathematics that students have or have not learned are

not tested.  For tests designed for making comparisons, however, the omission

is necessary.

In contrast, if the purpose of a test is to assess whether students have met

specific goals, test designers can choose items to span the important math-

ematics to be learned.  When the goal is to determine students’ proficiency

with grade-level topics, the cut scores are then set to indicate various levels

of proficiency.  Students and teachers know where to aim their efforts, and

students can study for the test with the goals in mind.  If the students have

learned well, large proportions of them can achieve high proficiency, and there

is no need to label half of them as below average (or even to rank them at all).

Standardized tests have traditionally been kept secret so that questions can

be reused.  In recent years, this practice has come under fire.  If students are

to reach publicly accepted standards, the argument goes, they need to know

what type of performance will be expected of them.56   They should have an

opportunity to learn the mathematical content and processes on which they

will be examined.  At the same time, they need to become familiar with the

instructions, the organization of the assessment, and the format of the items,

so that such nonmathematical considerations do not prevent them from

showing what they know.  Legally and ethically, when the stakes are high,

students should be provided with sample assessments or at least sample items

that are representative of the actual assessments.57

The movement over the past four decades to hold schools accountable

for students’ performance has resulted in increased high-stakes testing of

“minimum competency” in mathematics and other subjects.  Many states

give competency tests at several grade levels, including high school exit exams.

Performance on the mathematics portions of such tests has often been con-
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siderably below what was anticipated or desired.  Many districts meanwhile

have continued to use standardized comparison tests that were not necessarily

aligned with their textbooks, their state goals, or their state competency tests.

The combination of standardized comparison tests and state competency tests

can overwhelm teachers, who have to prepare students for two kinds of high-

stakes tests about which they often know very little.

State competency tests in mathematics are often given first at a grade

level at which many students are already far behind and likely to have diffi-

culty catching up.  If such tests are to be used, they need to be accompanied

in earlier grades—and throughout all grades—by other assessments that would

enable teachers to make their instruction more effective.  In particular, such

assessments could identify students who are not achieving and need special

help so that they do not fall further behind.  This linking of assessment to

instructional efforts is consistent with the recent NRC report Testing, Teaching,

and Learning,58  which focuses on recommendations for Title I students.  Two

of the central recommendations of that report concerning assessment and

instruction are as follows:

• Teachers should administer assessments frequently and regularly

in classrooms for the purpose of monitoring individual students’ perfor-

mance and adapting instruction to improve their performance.  (p. 47)

• Teachers should monitor the progress of individual children in

grades pre-K-3 to improve the quality and appropriateness of

instruction.  Such assessments should be conducted at multiple points

in time, in children’s natural settings, and should use direct assess-

ments, portfolios, checklists, and other work sampling devices.  The

assessments should measure all domains of children’s development,

particularly social development, reading, and mathematics.  (p. 53)

The current national focus on standards-based testing is a definite

improvement on the past focus on comparison testing.  But standards-based

assessment needs to be accompanied by a clear set of grade-level goals so

that teachers, parents, and the whole community can work together to help

all children in a school achieve those goals.  (And the goals need to aim at

more than skills, as we argue in chapter 4.)  Continuing informal assessments

throughout the year can help teachers adjust their teaching and identify stu-

dents who need additional help.  More such help might be available if money

formerly spent on comparison testing were reallocated to help children learn.
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Teaching

Even with high standards, exemplary textbooks, and powerful assess-

ments, what really matters for mathematics learning are the interactions that

take place in classrooms.  The literature on mathematics education, perhaps

surprisingly, contains little reliable data about those interactions.  Most of the

available research evidence consists of reports by teachers of their practice,

but an increasing amount comes from systematic observations of lessons.  The

discussion in this section addresses both types of evidence.

Reported Practices

The emphasis in U.S. elementary and middle school mathematics teach-

ing seems to be predominantly on number and operations.  Teachers of 93%

of the fourth graders and 88% of the eighth graders in the 1996 NAEP math-

ematics assessment reported that they gave the topic “a lot” of instructional

emphasis.59   At grade 8, algebra also received a lot of emphasis (for 57% of the

students), but that was the only other curriculum strand to receive much atten-

tion.  Fourth-grade teachers reported giving considerable emphasis to facts,

concepts, skills, and procedures (over 90% of the students got “a lot”), with

less emphasis on reasoning processes (52%) and even less attention to com-

munication (38%).  Eighth-grade teachers’ responses followed a similar pattern,

with somewhat less attention to facts, concepts, skills, and procedures (79%).

In a recent study comparing schools participating in state initiatives in math-

ematics and science with schools not involved in such initiatives, elementary

school teachers in the initiatives schools spent significantly more time than

their counterparts on reasoning and problem-solving activities.60

For decades, mathematics educators have been exhorting teachers to allow

children to use manipulatives—counting blocks, geometric shapes, and other

objects—to support their thinking.  The use of manipulatives, however, is

not a common classroom practice.  In 1996, teachers of 27% of the fourth

graders in NAEP reported that their students used counting blocks and geo-

metric shapes at least once a week; 74% used them at least once a month,

leaving 26% who seldom if ever used them.  Teachers of 8% of the eighth

graders said that their students used such manipulatives at least once a week,

and teachers of more than half the students reported essentially no use.  Data

were not available on how this use was connected to mathematical ideas,

words, and notations.

Materials such as rulers and calculators are apparently used much more

frequently than manipulatives in mathematics teaching.  Teachers of almost
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half the fourth graders in the 1996 NAEP sample reported that their students

used rulers or related tools at least once a week, and teachers of 95% of the

fourth graders reported frequencies of at least once a month.  Teachers of a

quarter of the eighth graders reported that their students used objects such as

rulers at least once a week, and teachers of almost 80% said their students

used them at least once a month.

Eighth-grade teachers reported considerably greater use of calculators in

their teaching than fourth-grade teachers did.  Teachers of over half of the

eighth graders in the 1996 NAEP sample reported that their students used

calculators almost every day, and teachers of less than a tenth claimed never

or hardly ever to use calculators.  Teachers of less than a third of the fourth

graders, in contrast, said their students used a calculator in class at least once

a week, teachers of only 5% said almost every day, and teachers of more than

a quarter said never or hardly ever.  Eighth graders enrolled in algebra were

reported to use calculators more frequently than those in prealgebra or eighth-

grade mathematics, and at both grades 4 and 8 the reported frequency of

calculator use increased from 1992 to 1996.

The teachers of about a quarter of the 1996 NAEP sample at both grades

4 and 8 reported that their students worked in small groups or with a partner

almost every day, and teachers of more than 90% of the students had them

working that way at least once a month.  Teachers of about a third of each

sample said that at least once a week their students wrote a few sentences

about how to solve a mathematics problem, but teachers of another third said

their students never or hardly ever wrote up their solutions.  Few students at

either grade wrote reports or worked on projects more than once a week, and

teachers of about two thirds said their students hardly ever did project work.

For nearly half of the eighth graders and more than a third of the fourth graders,

their teachers reported that almost every day they had students discuss

solutions with one another, and teachers of almost all students held such dis-

cussions at least once a month.  According to these survey data, standards-

based efforts to increase attention to realistic mathematics problems may be

having some effect:

In 1996, substantial proportions of students from grades 4 and 8 were

working and discussing mathematics that reflected real-life situations

at least “once or twice a week.”  Teachers of 29 percent of fourth-

grade students reported that their students did this “almost every

day,” while teachers of 45 percent reported that their students did

this “once or twice a week.”
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The percentages were similar for eighth-grade students: teachers of

27 percent reported that students worked and discussed mathematics

problems that reflected real-life situations “almost every day,” and

teachers of 47 percent reported working and discussing these types

of problems “once or twice a week.”61

As part of the 1996 NAEP, teachers were asked about their knowledge of

the 1989 NCTM standards.  The teachers of 46% of the fourth graders pro-

fessed little or no knowledge of the standards, and only 5% of the fourth

graders had teachers who indicated that they were very knowledgeable.  In

contrast, only 19% of the eighth graders had teachers who claimed to have

little or no knowledge of the standards, and 16% had teachers claiming to be

very knowledgeable.62

The accuracy of teachers’ self-reports of their practice can of course be

questioned.  Teachers have their own meanings for what they do.  For example,

in a recent survey of 85 elementary school teachers in two districts, 93% said

that they were using cooperative learning, a practice in which students are

grouped for instruction, are assigned roles in the group, work together on a

task, are each assessed on their performance, are each held accountable for

contributing to the work, and, in some versions, are taught skills for working

together, promote each other’s contributions, and work collectively to improve

their effectiveness.63   Interviews with 21 of the teachers who had indicated

they were using cooperative learning (17 of whom said they used it for math-

ematics) revealed that all but one had their own version of the practice, which

they distinguished from the “more formal” version.  Primarily, they almost

never attempted to make sure that individual students were held account-

able for contributing to the work.  From their own descriptions, the majority

of the teachers were using a form of cooperative learning that differed sub-

stantially from the forms described in the literature by the researchers who

had developed the practice.  Similar discrepancies have been documented

between teachers’ reports of implementation of other reform practices and

the observation of those practices in their video lessons.64

Overall, teachers’ reports give at best a mixed picture of mathematics

teaching in U.S. elementary and middle schools: heavy attention to tradi-

tional content accompanied by modest and possibly idiosyncratic use of

practices endorsed by advocates of standards-based instruction.  Regardless

of how teachers are interpreting these practices, most do appear to be at least

somewhat aware of recent proposals for change.  Self-report data address iso-

lated practices only, however; observational data are needed if one is to get a

sense of how lessons are organized and conducted.
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Observed Lessons

For more than a century, observers have been looking into classrooms

and emerging with descriptions of how U.S. teachers teach.65   What is most

striking in these observers’ reports is that the core of teaching—the way in

which the teacher and students interact about the subject being taught—has

changed very little over that time.  The commonest form of teaching in U.S.

schools has been called recitation.66   Recitation means that the teacher leads

the class of students through the lesson material by asking questions that can

be answered with brief responses, often one word.  The teacher acknowl-

edges and evaluates each response, usually as right or wrong, and asks the

next question.  The cycle of question, response, and acknowledgment con-

tinues, often at a quick pace, until the material for the day has been reviewed.

New material is presented by the teacher through telling or demonstrating.

After the recitation part of the lesson, the students often are asked to work

independently on the day’s assignment, practicing skills that were demon-

strated or reviewed earlier.  U.S. readers will recognize this pattern from their

own school experience because it has been popular in all parts of the country,

for teaching all school subjects.

Although there are some differences in the way different subjects are

taught,67  the description of recitation teaching is consistent with more recent

descriptions of mathematics lessons.  In the mid-1970s, the National Science

Foundation funded a set of studies on classroom practice, including a national

survey of teaching practices68  and a series of case studies.69   After observing a

number of mathematics classrooms, one researcher said:

In all math classes I visited, the sequence of activities was the same.

First, answers were given for the previous day’s assignment.  The

more difficult problems were worked by the teacher or a student at

the chalkboard.  A brief explanation, sometimes none at all, was given

of the new material, and problems were assigned for the next day.

The remainder of the class was devoted to working on the home-

work while the teacher moved about the room answering questions.

The most noticeable thing about math classes was the repetition of

this routine.70

The findings for the full set of case studies are not easily summarized

because there were some substantial differences between teachers, but a com-

missioned synthesis noted that the most common pattern in mathematics

classrooms was “extensive teacher-directed explanation and questioning

followed by student seatwork on paper-and-pencil assignments.”71
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At about the same time, the National Advisory Committee on Math-

ematical Education (NACOME) commissioned a study of elementary school

mathematics instruction.  Their report was entirely consistent with that of

the National Science Foundation studies.  In fact, NACOME expressed some

concern that teaching had changed so little over the previous 10 to 15 years, a

time of concentrated curriculum development in mathematics.  The

NACOME report’s concluding remarks reviewed the committee’s findings:

The median [elementary school] classroom is self-contained.  The

mathematics period is about 43 minutes long, and about half of this

time is written work.  A single text is used in whole-class instruction.

The text is followed fairly closely. . . .  Teachers are essentially teach-

ing the same way they were taught in school.72

The most extensive look into mathematics classrooms around the United

States was conducted in 1995: the video study component of TIMSS.73   The

TIMSS Video Study marked the first time that a nationally representative

sample of classrooms was selected for study and that a sample of lessons was

videotaped.  The videotapes revealed classroom instruction that resembled

the instruction described in earlier reports.  Apparently, U.S. teachers are con-

tinuing to teach mathematics in the same way their predecessors taught.

The TIMSS videotapes allowed researchers to take a much more detailed

look at common classroom practice than any earlier study had provided, and

the availability of tapes from Germany and Japan permitted some contrasting

descriptions.  The full sample included 81 eighth-grade mathematics lessons

in the United States, 100 such lessons in Germany, and 50 lessons in Japan.

Reports from parents and in the popular press as to how U.S. children are

being taught today suggest that some teachers have their students investigat-

ing mathematical ideas almost entirely on their own, whereas others are care-

fully explaining those ideas and providing lots of practice.  It is tempting to

conclude, therefore, that methods of teaching mathematics are highly vari-

able within the United States.  In fact, the TIMSS Video Study clearly shows

that such differences are quite small compared with the substantial differ-

ences that exist between countries.  Each country appears to have its own

dominant style of mathematics teaching.74

In the videotaped lessons from the United States, a typical lesson begins

by checking homework or engaging in a warm-up activity.  The teacher then

presents a few sample problems and demonstrates how to solve them.  This

part of the lesson is often conducted in recitation fashion, with the teacher

asking fill-in-the-blank questions as the procedures are shown.  Seatwork is
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assigned, and students complete exercises like those they have been shown.

The teacher often ends the lesson by checking some of the seatwork prob-

lems and assigning similar problems for homework.

Typical lessons in Germany and Japan contain many of the same compo-

nents, but the components are arranged differently and aim at different goals.

For example, most lessons in all three countries include an early segment in

which the teacher presents one or more problems for the day.  But that activity

has a different purpose in each country.  In Germany, presenting the problem

initiates a relatively lengthy development of advanced solution techniques.

The teacher guides, through questioning, the process of solving the problem,

which is often quite challenging.  In Japan, presenting the carefully chosen

problem sets the stage for the students to work, individually and in groups,

on developing solution procedures that they then report to the class.  About

half the time, the procedures are expected to be original constructions.  As

described above, presenting problems in the United States leads to students

practicing procedures that have been demonstrated by the teacher.

The different patterns of teaching generated a set of findings that illus-

trated the dramatic differences in classroom practice across the three countries.

For example, 78% of the mathematical topics in the U.S. lessons contain con-

cepts that were stated by the teacher rather than developed through examples

or explanations.  In contrast, that practice occurred for 23% of the concepts in

Germany and only 17% in Japan; at least some of the concepts from the

remaining topics in these countries were developed and elaborated in some

way.75   Moreover, the quality of the mathematical content of the U.S. lessons

was independently rated as being much lower than that of the German and

Japanese lessons.76

The descriptions from the TIMSS Video Study match other reports of

classroom practice in mathematics.  For example, a 1998 report to the Califor-

nia State Board of Education summarizes the conventional method of math-

ematics teaching in the United States, often used as the control treatment in

experimental studies of new teaching approaches.77   The summary divides

the conventional method into two phases.  In the first phase, the teacher

demonstrates, often working one to four problems, and the students observe

passively; in the second phase, the students work independently, with the

teacher possibly monitoring their work and giving feedback.

That description might easily have been written to describe U.S. math-

ematics lessons in 1900.  Mathematics teaching in the United States clearly

has not changed a great deal in a century.  It continues to emphasize the
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execution of paper-and-pencil skills through demonstrations of procedures

and repeated practice.

Teacher Preparation, Certification, and

Professional Development

A bachelor’s degree and a teaching certificate are required to teach in

most public schools in the United States.  Teaching certificates are granted

by states, usually based on the completion of specific undergraduate

coursework and field experience in schools.  Some states also require that

candidates pass an examination.  A teaching certificate from one state is occa-

sionally honored across state lines; states without reciprocity of certification

commonly offer a provisional certificate to out-of-state teachers until they

have met all the requirements.  Some states also offer alternative routes to

certification for prospective teachers with a bachelor’s degree but lacking some

of the requisite coursework or field experience.

Programs of teacher education have traditionally separated knowledge of

mathematics from knowledge of pedagogy by offering separate courses in

each.78   A common practice in university-based programs has been for

prospective teachers to take courses in mathematics from the mathematics

department and courses in pedagogy from the college or department of edu-

cation, which is where they also get field experience and do supervised teach-

ing practice.  The standards for both types of courses have, in recent years,

been influenced by reports such as A Call for Change,79  which listed expecta-

tions for the mathematics courses required in teacher preparation, and the

Professional Standards for Teaching Mathematics,80  which concentrated more on

issues of pedagogy.

Nationally, two-year colleges have been urged to play a larger role in

recruiting future elementary and middle school teachers and providing college-

level mathematics courses for them.81   At the same time, universities are

exploring different ways of connecting courses on mathematics content and

pedagogy and on giving students earlier and more intensive experience in

school mathematics classes.  Some recent programs have attempted to bring

content and pedagogy together in both teacher preparation and professional

development by considering the actual mathematical work of teaching.82

Although states have long set such requirements for teachers seeking

certification, some have recently begun to impose higher standards for the

knowledge teachers should have to teach children at a given age or grade

level, requiring teachers to take specified courses and to pass assessments of

their subject matter knowledge.83   There is considerable variation across states
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as to how rigorous these requirements are.  As of 1998, 31 states reported

having standards for teacher certification, although in several the standards

were not yet in effect.  In 12 of the 31, there were specific standards for math-

ematics.  Six other states were still developing standards.84

To be certified to teach elementary school, only 12 states require a mini-

mum number of credits in mathematics (from 6 to 12 semester hours).  The

other states either specify a total number of credits drawn from five to eight

fields (often with a major in one of the fields), impose their own standards

rather than specifying courses, require a minimum number of credits in one

unspecified field, or require the completion of an approved teacher educa-

tion program.  Thirty-seven states grant middle school certification, and the

requirements fall into categories similar to those for elementary school.  Eight

of those states require a minimum number of credits in mathematics to teach

in middle school (from 6 to 21 semester hours).

A highly influential report on the reform of teacher education was issued

in 1986 by the Holmes Group, later the Holmes Partnership, a consortium of

major research universities.85   The report recommended that prospective

teachers get a solid grounding in academic subjects as undergraduates, learn-

ing pedagogy as postgraduates.  The report also encouraged the development

of so-called professional development schools and other forms of cooperative

partnerships between schools and universities.  In part because of the Holmes

report, some 300 schools of education created programs that went beyond the

traditional four-year degree programs, included more study of subject matter,

and gave more clinical training in schools.86   Also, during the 1990s, more

states began to require new teachers to have an undergraduate or graduate

major in an academic subject they would be teaching rather than a major in

education.  As of 1998, 21 states required a major in the teaching field, and

another 10 required either a major or a minor.  In most states the requirement

applies to teachers applying for middle or secondary certification, which usu-

ally cover grades 7 to 12.  In four states an academic major is required for

teachers at all grades K to 12.

In line with the trend toward more mandated assessments of students, as

of 1998, 38 states required that prospective teachers pass an assessment, some-

times to be admitted to a program and other times after completing the pro-

gram but before certification.  Almost all of these states assess new teachers’

“basic skills,” and most of the others also assess “professional knowledge of

teaching,” “subject matter knowledge” (e.g., mathematics), or both.  Eight

states use portfolio assessment, with some requiring the portfolio at the end

of preservice education and others requiring it during the first or second year
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of teaching.  Thirteen states require classroom observation as part of the assess-

ment for certification.

Despite the establishment of these increased standards, there is wide

variation in the extent to which they are enforced:

Whereas some states do not allow districts to hire unqualified teach-

ers, others routinely allow the hiring of candidates who have not met

their standards, even when qualified teachers are available.  In

Wisconsin and eleven other states, for example, no new elementary

or secondary teachers were hired without a license in their field in

1994.  By contrast, in Louisiana, 31% of new entrants were unlicensed

and another 15% were hired on substandard licenses.  At least six

other states allowed 20% or more of new public school teachers to be

hired without a license in their field.87

Of the 26 states reporting data in 1998 on the certification of their teachers

at grades 7 and 8, only 6 states reported that 90% or more of these teachers

were certified in mathematics, and only 10 states reported that more than

80% were certified.  In response to urgent needs for teachers, states often

issue so-called emergency credentials that bypass their own requirements.

These credentials typically require only a bachelor’s degree and enrollment

in an approved program leading to some form of alternative certification.  Many

districts respond to the need for mathematics and science teachers by assign-

ing teachers to teach outside their field.88

The evidence is mixed as to whether relatively fewer teachers are teach-

ing outside their field today than a decade ago; data from different sources

yield different numbers and contrasting evidence of change.  In the 1996

NAEP mathematics assessment, teachers of 81% of the eighth graders in the

sample reported that they were certified in mathematics, and the correspond-

ing figure for fourth graders was 32%.  Those numbers were not significantly

different from what teachers had reported in 1992.89   In contrast, the Council

of Chief State School Officers reported in 1998 that 72% of all mathematics

teachers at grades 7 and 8 in the 26 states providing data were reported as

certified, 22% as not certified, and the remainder as having elementary school

certification.  In a corresponding survey in 1994, the percentage of certified

teachers at those grades had been only 54, a significantly smaller number.90

In other words, to judge by teachers’ own reports, the situation has not

changed, but to judge by reports from the states, it has improved at grades 7

and 8.

Copyright © National Academy of Sciences. All rights reserved.



54 ADDING IT UP

In the 1996 NAEP mathematics assessment, teachers were asked how

many hours of professional development they had received in the previous

12 months.  Nationally, 28% of the fourth graders in the sample had teachers

who had received 16 or more hours of professional development in math-

ematics; for eighth graders, the percentage was 48.  In 16 states, over half the

eighth graders were taught by mathematics teachers who had received that

much professional development.91

The number of states requiring that teachers participate in professional

development activities for renewal of certification has been on the increase

over the past decade.  Currently, only Hawaii, Illinois, New Jersey, New

Mexico, and New York do not have a policy on professional development for

renewing certification.  In half the states the policy is 6 semester credits every

five years.  Several states have higher requirements.  North Carolina requires

15 credits every five years, and in Oregon, teachers must earn 24 quarter hours

in their first three years of teaching.92

In an effort to encourage teachers to extend their professional develop-

ment efforts, 30 states have adopted incentives for teachers certified by the

National Board for Professional Teaching Standards, such as portability of

certification, certification renewal, fee supports, and pay supplements.93

Standards for National Board certification are available in mathematics for

teachers of students ages 11 to 15.  Certification at the elementary school

level is general.  Teachers seeking a certificate must submit a portfolio docu-

menting their classroom practice and must go to an assessment center for a

one-day series of exercises in which they demonstrate their knowledge of

mathematical content and analyze student work.

There is a growing body of evidence suggesting that states and local dis-

tricts “interested in improving student achievement may be well-advised to

attend, at least in part, to the preparation and qualifications of the teachers

they hire and retain in the profession.”94   A qualitative and quantitative analysis

of data from a 50-state survey of policies, state case study analyses, the 1993-94

Schools and Staffing Surveys, and NAEP identified the percentage of teachers

with full certification and a major in the field they teach as a strong and con-

sistent predictor of student achievement in mathematics, considerably stronger

than such factors as class sizes, pupil-teacher ratios, state per-pupil spending,

or teachers’ salaries.95   This link between teacher qualification and student

achievement raises the question of how good that achievement is.
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Achievement

Since the early 1970s, a series of national and international assessments

have provided a reasonably consistent picture of U.S. students’ achievement

in mathematics.  As one analysis of these assessments puts it, the results “evoke

both a sense of despair and of hope.”96   The despair comes from the gener-

ally low level of performance, the hope from signs that performance in some

areas of mathematics and by some groups of students has been improving

over the last decade.

The many mathematics assessments conducted since 1973 by NAEP

demonstrate that student performance at each of the grade levels assessed is

considerably below what mathematics teachers and the public would prefer.

Since 1990, NAEP has included two separate components for mathematics:

main NAEP and long-term trend NAEP.  The long-term trend assessments

use the same sets of questions first used in 1973, allowing comparison across

time.  The main assessments reflect more contemporary educational objec-

tives and are used to collect both national and state data, including contex-

tual data such as teaching practices, some of which are reported earlier in this

chapter.97   Except when we refer explicitly to the long-term trend assess-

ments, the data reported here are from the main assessments.

In the 1996 mathematics assessment—the most recent main assessment

to be thoroughly analyzed—across grades 4, 8, and 12, roughly 35% of the

students were below the basic level of achievement and another 45% or so

were at that level, which is defined as denoting “partial mastery of knowl-

edge and skills that are fundamental for proficient work.”  In the same assess-

ment, 21% of fourth graders and 24% of eighth graders were at or above the

“proficient” level, where proficiency is defined as students having “demon-

strated competency over challenging subject matter” and being “well pre-

pared for the next level of schooling.”  Only 2% and 4% of fourth-grade and

eighth-grade students, respectively, were doing advanced work significantly

“beyond proficient grade-level mastery.”98

Although overall levels of achievement are low, the main NAEP assess-

ments in the 1990s revealed significant gains.99   The gains between 1990 and

1996 have been estimated to be about one grade level.100   According to the

NAEP long-term trend, mathematics achievement improved between 1973

and 1996 at both the fourth-grade and eighth-grade levels.101   Performance

improved even more sharply from 1973 to 1996 among black and Hispanic

students.102   Although the gap between black students and white students

had narrowed through the 1980s, it widened between 1990 and 1999, espe-

cially among students of the best-educated parents.103   This disparity repre-
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sents a serious challenge to U.S. education.  In 1994, NAEP began collecting

information on participation in Title I programs, programs designed to help

disadvantaged students, and in 1996 on eligibility for free or reduced-priced

lunches.  At both grades 4 and 8, students who participated in Title I pro-

grams and students who were eligible for free or reduced-priced lunches scored

lower than their nonparticipating or noneligible classmates.104   The low math-

ematics achievement of poor children is embedded in the larger social issues

of poverty and poses another serious challenge to U.S. education.

International comparisons of mathematics achievement demonstrate many

of the same findings as the NAEP results.  On several international math-

ematics assessments conducted since the 1970s, the overall performance of

U.S. students has lagged behind the performance of students in other

countries.  In TIMSS, U.S. fourth graders performed above the international

average of the 26 participating countries at fourth grade but still significantly

below the levels of the top-performing countries.  U.S. eighth graders per-

formed slightly below the international average in mathematics among the

41 participating countries.

As this volume went to press, the results of  TIMSS-R (Third International

Mathematics and Science Study-Repeat), the 1999 version of TIMSS, had

just been released.  Between 1995 and 1999, there was no significant change

in the mathematics achievement of U.S. eighth graders.  Furthermore, the

eighth graders in 1999, who compared quite well internationally in 1995 as

fourth graders, were very much like the 1995 eighth graders, performing near

the international average.105

One way to quantify U.S. students’ performance is in terms of the aver-

age number of points they scored on the 1995 TIMSS assessment.  Each

student answered a subset of the TIMSS questions, and an average score was

calculated for each question, with some questions worth more than one point.

The U.S. fourth graders scored, on average, 71 out of the 113 points available

on the TIMSS achievement test, which contained 102 questions.106   That

was about 4 points above the performance across all 26 countries, but it was

11 to 15 points below the performance of students in the top four countries

(Singapore, Korea, Japan, and Hong Kong) and was in a band of performance

comparable with that found in the Czech Republic, Ireland, and Canada.

In the assessment of eighth graders, U.S. students scored, on average, 86 points

out of the 162 available on the 151 TIMSS items, which was 3 points below

the 41-country average.  Students in the four top-scoring countries—Singapore,

Japan, Korea, and Hong Kong—scored, on average, between 113 and 128

points.107
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The performance of U.S. students in TIMSS differed markedly across

core domains of mathematics.  U.S. performance was above the international

average on data representation, analysis, and probability and not significantly

different from the international average on fractions, number sense, and

algebra.  Performance was below the international average on geometry, mea-

surement, and proportionality.108   For example, U.S. eighth graders had much

weaker abilities, overall, than their counterparts in other countries to concep-

tualize measurement relationships, perform geometric transformations, and

engage in other complex mathematical tasks.  These kinds of abilities are

among the learning goals called for by national documents setting forth

standards and benchmarks for school mathematics and by many sets of state

standards, indicating that many U.S. students are not now achieving the

objectives of those standards.109

Interestingly, the variance of U.S. scores in the TIMSS results was not

markedly greater than in other countries.  There was, however, considerable

variability in scores between states.  A study linking state NAEP scores at

grade 8 with TIMSS scores showed that the top-scoring states on NAEP per-

formed quite well internationally, with only 6 of 41 countries scoring signifi-

cantly higher.  In contrast, low-scoring states scored significantly higher than

as few as 3 of 41 countries.110   These results suggest that national averages

may miss important aspects of U.S. mathematics education.

Even state averages do not tell the whole story, however.  A consortium

of districts in suburban Chicago participated in TIMSS so that they might be

treated as a country in the analysis.  Their performance was exceptional on

the mathematics assessments at both grades 4 and 8, with only Singapore

scoring significantly higher.  Although some of their success is clearly attrib-

utable to being relatively wealthy districts, socioeconomic factors explained

only 25% of the differences in scores at fourth grade and 50% of the differ-

ences in scores at eighth grade.111

More generally, variance in student scores was strongly linked to the spe-

cific classes a student took (for example, regular mathematics versus algebra

in middle school or junior high) and to differences among schools.  In particular,

64% of the variance in U.S. student mathematics achievement at eighth grade

can be explained by differences between schools or classes.  In Japan, in con-

trast, only 7% of the variance in student mathematics achievement was

between schools or classes.112   These findings suggest that many U.S. stu-

dents are not being given the educational opportunities they need to achieve

at high levels.113
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Coordinating Improvement Efforts

In the late 1850s, the city of Chicago started a massive project to replace

its dirt (and often mud) streets with a more permanent road and sidewalk

system.  The city had to raise the roadbed substantially and lift the existing

buildings so that they were level with the new sidewalks.  The zenith of this

undertaking was the lifting of the Tremont Hotel in 1858, organized by George

Pullman.  While hotel patrons ate breakfast, Pullman’s crew of 1,200 men

carefully turned some 5,000 jackscrews to raise the building evenly.

As with raising the Tremont Hotel, improving the U.S. system of school

mathematics demands not simply effort but coordination.  Although many

individuals have worked diligently over the past several decades to change

the ways in which mathematics is taught and learned, the evidence clearly

indicates that considerable improvement is still necessary.  Across the country,

schools and teachers face the substantial challenge of providing all children

with the opportunity to become mathematically proficient.  Much of the dif-

ficulty in meeting that challenge arises because the effort to date has not

been concerted.  The U.S. system of school mathematics cannot be made to

operate better by fixing one tiny piece at a time; it requires a thorough,

methodical overhaul.114

Authority in the U.S. system is widely dispersed, with states, districts,

the federal government, textbook and test publishers, professional and political

organizations, teachers, and parents and other caregivers each trying to exer-

cise control of the part of the system within their purview.  We urge, there-

fore, all who are attempting to improve mathematics learning in grades pre-K

to 8 to reflect on the observations made in this report and to consider how

they might connect and coordinate their efforts with those of others.

In subsequent chapters we set forth important research, theory, and

organizing principles intended to ground future efforts in fact and principled

argument, to make assumptions more explicit, and to bring greater coher-

ence to the system.  We would like to see an independent group of recog-

nized standing conduct continuing, ongoing assessment of the progress made

over the coming years in meeting the goal of mathematical proficiency for all

U.S. schoolchildren.  Such an assessment would help enormously in the coor-

dination of efforts to make school mathematics a better functioning system

for everyone.

Before considering the issues of learning and teaching that contribute to

the development of mathematical proficiency, we devote the next chapter to

considering the mathematical landscape upon which our later analyses are

built.  To understand how it is that students become proficient and the chal-
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lenges they face in doing so, it is important to understand the mathematics

with which they are engaged.  Because we have chosen to focus on profi-

ciency with number, chapter 3 lays out the mathematics of number.
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3

NUMBER:

WHAT IS THERE TO KNOW?

Seven.  What is seven?  Seven children; seven ideas; seven times in a row;

seventh grade; a lucky roll in dice; seven yards of cotton; seven stories high;

seven miles from here; seven acres of land; seven degrees of incline; seven

degrees below zero; seven grams of gold; seven pounds per square inch; seven

years old; finishing seventh; seven thousand dollars of debt; seven percent

alcohol; Engine No. 7; The Magnificent Seven.  How can an idea with one

name be used in so many different ways, denoting such various senses of

quantity?  Consider how different a measure of time (seven years) is from one

of temperature (seven degrees), how different a measure of length (seven

meters) is from a count (seven children), and how different either of these is

from a position (finishing seventh or being in seventh grade).  Even within

measures, some are represented as ratios (seven pounds per square inch, seven

percent alcohol) and others as simple units (seven miles, seven liters).

Although normally taken for granted, it is remarkable that seven, or any

number, can be used in so many ways.  That versatility helps explain why

number is so fundamental in describing the world.

This chapter surveys the domain of number.  It was developed in part in

response to the charge to the committee to describe the context of the study

with respect to the areas of mathematics that are important as foundations in

grades pre-K to 8 for building continued learning.  The intent of this chapter

is essentially mathematical; learning and teaching are treated elsewhere.  The

chapter does not set forth a curriculum for students but instead provides a

panoramic view of the territory on which the numerical part of the school

curriculum is built.  Nor is the chapter intended as a curriculum for teachers.

Instead, it identifies some of the crucial ideas about number that we think
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teachers should know.  Many of these ideas are treated in more detail in text-

books intended for prospective elementary school teachers.

A major theme of the chapter is that numbers are ideas—abstractions

that apply to a broad range of real and imagined situations.  Operations on

numbers, such as addition and multiplication, are also abstractions.  Yet in

order to communicate about numbers and operations, people need represen-

tations—something physical, spoken, or written.  And in order to carry out

any of these operations, they need algorithms: step-by-step procedures for

computation.  The chapter closes with a discussion of the relationship be-

tween number and other important mathematical domains such as algebra,

geometry, and probability.

Number Systems

At first, school arithmetic is mostly concerned with the whole numbers: 0,

1, 2, 3, and so on.1  The child’s focus is on counting and on calculating—

adding and subtracting, multiplying and dividing.  Later, other numbers are

introduced: negative numbers and rational numbers (fractions and mixed

numbers, including finite decimals).  Children expend considerable effort

learning to calculate with these less intuitive kinds of numbers.  Another

theme in school mathematics is measurement, which forms a bridge between

number and geometry.

Mathematicians like to take a bird’s-eye view of the process of develop-

ing an understanding of number.  Rather than take numbers a pair at a time

and worry in detail about the mechanics of adding them or multiplying them,

they like to think about whole classes of numbers at once and about the prop-

erties of addition (or of multiplication) as a way of combining pairs of num-

bers in the class.  This view leads to the idea of a number system.  A number

system is a collection of numbers, together with some operations (which, for

purposes of this discussion, will always be addition and multiplication), that

combine pairs of numbers in the collection to make other numbers in the

same collection.  The main number systems of arithmetic are (a) the whole

numbers, (b) the integers (i.e., the positive whole numbers, their negative coun-

terparts, and zero), and (c) the rational numbers—positive and negative ratios

of whole numbers, except for those ratios of a whole number and zero.

Thinking in terms of number systems helps one clarify the basic ideas

involved in arithmetic.  This approach was an important mathematical dis-

covery in the late nineteenth and early twentieth centuries.  Some ideas of

arithmetic are fairly subtle and cause problems for students, so it is useful to

have a viewpoint from which the connections between ideas can be surveyed.
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The Whole Numbers

One of the starting points of arithmetic is counting.  Children can find

out how many objects are in a collection by counting them: one, two, three, four,

five.  They also need zero to say that there is not any of some type of thing.2

Addition arises to simplify counting.  When children join two collections,

instead of recounting all the objects in the combined set, they add the num-

bers of objects in each of the original sets.  (I have five apples, and Dave has

three apples.  How many apples do we have together?)  Multiplication pro-

vides a further shortcut when children want to add many copies of the same

number.  (I have 10 boxes of cookies, with 12 cookies in each box.  How many

cookies do I have?)  The whole numbers, with the two operations of addition

and multiplication, form the whole number system, the most basic number sys-

tem.

It is important to take note that, although the whole numbers with their

operations are very familiar, they are already abstract.  Although counting is

usually done with some particular kind of things (apples or cats or dollars),

arithmetic can be independent of the things counted.  Five apples plus three

apples makes eight apples; five cats plus three cats makes eight cats; five

dollars plus three dollars makes eight dollars.  (A word of caution: when add-

ing, you must combine units of the same kind: five dollars plus three cats

does not make eight of anything in particular.)  This independence of the

results from whatever is being counted leads to the abstract operation called

addition.  It is similar with multiplication.  Note that the abstract nature of

the arithmetic operations is exactly what makes them useful.  If addition of

apples, of cats, and of dollars each required its own peculiar set of rules, people

would probably have no general concept of addition, just ideas about com-

bining each type of object in its own individual way.  Mathematics itself might

not exist.  Certainly, it would require a lot more work.

Appropriate to the abstract nature of arithmetic, each operation has sev-

eral concrete interpretations.  We introduced addition by means of its inter-

pretation in terms of combining sets of like objects.  Other interpretations are

often used.  One is the joining of segments of various lengths.  If Jane has a

rod 3 inches long, and another rod 5 inches long, she can lay them end to end

(or perhaps even attach them together) to get a rod 8 inches long.

This interpretation may seem the same, or almost the same, as the

combining-sets interpretation.  Indeed, it must be somewhat similar, since it

is a representation of addition.  But it differs in perhaps subtle ways.  For

example, inches can be subdivided into parts, which are hard to tell from the

wholes, except that they are shorter; whereas it is painful to cats to divide
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them into parts, and it seriously changes their nature.  Thus, joining rods will

support an extension of arithmetic into fractional quantities much more easily

than counting cats will.

3 + 5

6 6+ 6+6 +

4 × 6

Similarly, multiplication has multiple interpretations.  We introduced it

as adding the same number many times.  The set-combination interpretation

of multiplication would be to combine several essentially identical collec-

tions, such as the packages of cookies mentioned above.  If you think of addi-

tion in terms of joining rods, then multiplication would amount to joining

several rods of the same length end to end.  Thus, 4 × 6 can be visualized by

laying four rods of length six end to end, where you can think of each rod as a

little row of boxes.  A more compact way to arrange the rods would be to lay

them side by side rather than end to end.  This arrangement produces an

array of four rows of boxes with six boxes in each row, which may be called a

rectangular array interpretation of multiplication.  When the rods have height

one, there is an added benefit: The array looks like a rectangle of boxes, and

the area of the rectangle (measured in box areas) is just 4 × 6.  This is the area

interpretation of multiplication.

The multiple interpretations of the basic operations is symptomatic of a

general feature of mathematics—the tension between abstract and concrete.3

This tension is a fundamental and unavoidable challenge for school math-

ematics.  On the one hand, as we indicated above, the abstractness of math-
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ematics is an important reason for its usefulness: A single idea can apply in

many circumstances.  On the other hand, it is difficult to learn an idea in a

purely abstract setting; one or another concrete interpretation must usually

be used to make the idea real.  But having been introduced to a mathematical

concept by means of one interpretation, children then need to pry it away

from only that interpretation and take a more expansive view of the abstract

idea.  That kind of learning often takes time and can be quite difficult.  Some-

times the way in which a concept is first learned creates obstacles to learning

it in a more abstract way.  At other times, overcoming such obstacles seems to

be a necessary part of the learning process.

Properties of the Operations

Experience with the operations of addition and multiplication leads to

the observation of certain regularities in their behavior.  For example, it does

not matter in what order two numbers are added.  If I dump a basket of three

apples into a basket with five apples already in it, there will be eight apples in

the basket; and if I dump the basket of five apples into the basket with three,

I will also have eight.  Thus 5 + 3 = 8 = 3 + 5.  The similar fact is true for any two

numbers.  Thus, I know that 83,449 + 173,248,191 = 173,248,191 + 83,449 with-

out actually doing either addition.  I have used what is known as the commutative

law of addition.

When three numbers are to be added, there are several options.  To add 1

and 2 and 3, I can add 1 and 2, giving 3, and then add the original 3 to this, to

get 6.  Or I can add 1 to the result of adding the 2 and the 3.  This process

again gives 6.  These two ways of adding give the same final answer, although

the intermediate steps look quite different:

(1 + 2) + 3 = 3 + 3 = 6 = 1 + 5 = 1 + (2 + 3).

This statement of equality uses what is known as the associative law.  Again,

it holds for any three numbers.  I know that

(83,449 + 173,248,191) + 417 = 83,449 + (173,248,191 + 417)

without doing either sum.

The commutative and associative laws in combination allow tremendous

freedom in doing arithmetic.  If I want to add three numbers, such as 1, 2, and

3, there are potentially 12 ways to do it:

(1 + 2) + 3 (2 + 1) + 3 (1 + 3) + 2 (3 + 1) + 2 (2 + 3) + 1 (3 + 2) + 1

1 + (2 + 3) 2 + (1 + 3) 1 + (3 + 2) 3 + (1 + 2) 2 + (3 + 1) 3 + (2 + 1)
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Commutativity and associativity guarantee that all 12 ways of doing this

sum give the same answer—so it does not matter which one I do.  (For adding

four numbers, there are 120 (!) conceivable different schemes, all of which

again give the same result.)  This flexibility is very useful when students do

computations.  For example, 1 + 8 can be found by thinking of it as 8 + 1 and

then just recalling the next whole number after 8.  The standard procedures

for doing multidigit arithmetic also heavily exploit commutativity and

associativity.  However, the flexibility permitted by these rules also greatly

increases the challenges of teaching arithmetic.  When there are several ways

to do a calculation, it is virtually certain that students will produce the answer

more than one way.  A teacher must therefore have a sufficiently flexible

knowledge of arithmetic to evaluate the various student solutions, to validate

the correct ones, and to correct errors productively.

The commutative and associative laws also hold for multiplication (see

Box 3-1).  The commutativity of multiplication by 2 is also reflected in the

equivalence of the two definitions of even number typically offered by chil-

dren.  The “fair share” definition says that a number is even if it can be

divided into two equal parts with nothing left over (which may be written as

2 × m); the “pairing” definition says that a number is even if it can be divided

into pairs with nothing left over (m × 2).

In addition to these two laws for each operation, there is a rule, known as

the distributive law, connecting the two operations.  It can be written sym-

bolically as a × (b + c) = a × b + a × c.

An example would be 2 × (3 + 4) = 2 × 7 = 14 = 6 + 8 = 2 × 3 + 2 × 4.  A good

way to visualize the distributive law is in terms of the area interpretation of

multiplication.  Then it says that if I have two rectangles of the same height,

the sum of their areas is equal to the area of the rectangle gotten by joining

the two rectangles into a single one of the same height but with a base equal

to the sum of the bases of the two rectangles:

2  (3 + 4) 2  3 2 × 4= +××

The basic properties of addition and multiplication of whole numbers are

summarized in Box 3-1.
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Properties of the Arithmetic Operations

Commutativity of addition.  The order of the two numbers does not affect

their sum: 3 + 5 = 8 = 5 + 3.  In general, m + n = n + m.

Associativity of addition.  When adding three (or more) numbers, it does not mat-

ter whether the first pair or the last pair is added first: (3 + 5) + 4 = 8 + 4 = 12 = 3 +

9 = 3 + (5 + 4).  In general, (m + n) + p = m + (n + p).

Commutativity of multiplication.  The order of the two numbers does not affect

their product: 5 x 8 produces the same answer as 8 x 5.  In general, m x n = m x n.

Associativity of multiplication.  When multiplying three or more numbers, it does

not matter whether the first pair or the last pair is multiplied first: 3 x (5 x 4) is the

same as (3 x 5) x 4.  In general, (m x n) x p = m x (n x p).

Box 3-1

3 + 5 5 + 3

3 +

(3  +  5) + 4

(5  +  4)

5 × 8 8 × 5

Rotate

3 × (5 × 4) (3 × 5) × 4

continued
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Distributivity of multiplication over addition.  When multiplying a sum of two num-

bers by a third number, it does not matter whether you find the sum first and then

multiply or you first multiply each number to be added and then add the two prod-

ucts: 4 x (3 + 2) = (4 x 3) + ( 4 x 2).  In general, m x (n + p) = (m x n) + (m x p).

Question: Is subtraction commutative?

Answer: No.  For example, 6 – 2 = 4, but 2 – 6 = -4.

Question: Is subtraction associative?

Answer: No.  For example, (7 – 4) – 2 = 3 – 2 = 1, but 7 – (4 – 2) = 7 – 2 = 5.

∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇

4 × (3 + 2)

∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇
(4 × 3)

❏  ❏

❑  ❏

❏  ❏

❏  ❏

❏  ❏

❑  ❏

❏  ❏

❏  ❏

(4 × 2)+=

Subtraction and Division

So far we have talked only about addition and multiplication.  It is tradi-

tional, however, to list four basic operations: addition and subtraction, multi-

plication and division.  As implied by the usual juxtapositions, subtraction is

related to addition, and division is related to multiplication.  The relation is

in some sense an inverse one.  By this, we mean that subtraction undoes

addition, and division undoes multiplication.  This statement needs more

explanation.

Just as people sometimes want to join sets, they sometimes want to break

them apart.  If Eileen has eight apples and eats three, how many does she

have left?  The answer can be pictured by thinking of eight apples as com-

posed of two groups, a group of five apples and a group of three apples.  When

the three are taken away, the five are left.  In this solution, you think of eight

as 5 + 3, and then when you subtract the three, you are again left with five.

Thus subtracting three undoes the implicit addition of three and leaves you

with the original amount.  It is the same no matter what amount you start

Box 3-1 Continued
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with: 5 + 3 – 3 = 5; 9 + 3 – 3 = 9; 743 + 3 – 3 = 743.  More formally, subtracting

3 is the inverse of adding 3.

It is similar with division and multiplication.  Just as people sometimes

want to form sets of the same size into one larger set, they sometimes want to

break up a large set into equal-sized pieces.  If you think of 15 as 5 × 3, then

when you divide 15 by 3, you are again left with 5.  Thus division by 3 undoes

implicit multiplication by 3 and leaves you with the original amount.  It is the

same no matter what amount you start with: 5 ×  3 ÷ 3 = 5; 9 ×  3 ÷ 3 = 9;

743 ×  3 ÷ 3 = 743.  More formally, dividing by 3 is the inverse of multiplying

by 3.

Two interpretations of division deserve particular mention here.  If I have

20 cookies, and want to sort them into 5 bags, how many go in each bag?  This

is the so-called sharing model of division because I know in how many ways

the cookies are to be shared.  I can find the answer by picturing the 20 cookies

arranged in 5 groups of 4 cookies, which will be the contents of 1 bag.  If the

cookies originally came out of 5 bags of 4 each, when I put them back into

those bags, I will again have 4 in each.  Thus, division by 5 undoes multipli-

cation by 5, or division by 5 is the inverse of multiplication by 5.  The picture

below shows the sharing model for this situation.

1 2 3 4 5

To think about 20 ÷ 5, you could also use the measurement model: If I have

20 cookies that are to be packaged in bags of 5 each, how many bags will I

get?  In the sharing model (also called the partitioning model or partitive

division), you know the number of groups and seek the number in a group.

In the measurement model (also called quotative division), you know the

size of the groups and seek the number of groups.  The circled numbers in

the figures above and below illustrate a crucial difference between the two

models: the order in which the cookies are placed in bags.  In the sharing

Sharing 20 cookies among 5 bags
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model, the cookies are dealt into the bags one at a time; in the measurement

model, the cookies are counted out by complete bags.  When you deal with

actual cookies, the processes are quite different, but abstractly they are both

20 ÷ 5.  Note that because multiplication is commutative, 5 bags of 4 cookies

each is the same total number of cookies as 4 bags of 5 cookies each.  Eventually

students come to see the two kinds of division as interchangeable and use

whichever model helps them with a particular division problem.

1

2

3

4

5

Measuring 20 cookies into bags of 5 each

Subtraction and the Integers

We might summarize the story so far by saying that there are two pairs of

operations—addition and subtraction, and multiplication and division—and

these are inversely related in the sense described above.  However, this sum-

mary would not quite be correct.  In fact, subtraction is not actually an operation

on whole numbers in the same sense that addition is.  You can add any pair of

whole numbers together, and the result is again a whole number.  Some-

times, however, you cannot subtract one whole number from another.  If I

have three apples, and Bart asks for five, I can’t give them to him.  I just don’t

have five apples.  If I’m really supposed to give him five apples (maybe he

left five apples in my care, I ate two, and then he came back to reclaim his

apples), then I am in trouble.  This situation can be described by using negative

numbers: I have negative-two apples, meaning that after I give Bart all the

apples I have, I still owe him two.  What is happening mathematically is that

I have bumped up against a subtraction problem, 3 – 5, for which there is no

solution (in whole numbers).  Mathematicians respond by inventing a solution

for it, and they call the solution -2.

Thus, the desire to describe solutions for certain “impossible” subtrac-

tion problems leads to the invention of new numbers, the negative integers.4

Thanks to the negative integers, you can solve all whole number subtraction

problems.  But your problems are not over.  You soon find that you cannot be

Copyright © National Academy of Sciences. All rights reserved.



813 NUMBER: WHAT IS THERE TO KNOW?

content simply to admire these new creations.  You get into situations in which

you want to do arithmetic with them also.  If I owe Bart two apples and I owe

Teresa four apples, how many apples do I owe all together—that is, what is

(-2) + (-4)?  If on Monday I get into a situation that leaves me two apples short

and this happens again on Tuesday and Wednesday, how many apples short

am I then—that is, what is 3 × (-2)?  Besides enlarging their idea of number,

people have had to extend the arithmetic operations to this new larger class

of numbers.  They have needed to create a new, enlarged number system.  The

new system, encompassing both positive and negative whole numbers, is called

the integers.

How do people decide what arithmetic in this extended system is (or

should be)?  How do they create recipes for adding and multiplying integers,

and what are the properties of these extended operations?  They have two

guides: (a) intuition and (b) the rules of arithmetic, as described above and in

Box 3-1.  Fortunately, the guides agree.

Consider first the intuitive approach: Think hard about a lot of different

cases and decide what is the right way to add and multiply in each one.  To

use intuition, you need to think in terms of some concrete interpretation of

arithmetic.  The yield of financial transactions is a good one for these pur-

poses.  Here negative amounts are money you owe, and positive amounts are

money that you have or are owed by someone else.  If you owe $2 to Joan and

$3 to Sammy, then you owe $5 to the two of them together.  So (-2) + (-3) = -5.  If

you owe $2 to three people, then you owe $6, so 3 × (-2) = -6.  If you have a

debt of $2 and someone takes it away, you have gained $2.  So -(-2) = 2.  If

someone takes three $2 debts away from you, the amount you owe is then $6

less than before, which means you have $6 more.  Therefore (-3) × (-2) = 6.

Continuing in this way, you can puzzle out what the sum, difference, or product

of any two integers should be.  The trouble with this approach is that it is

somewhat contrived and depends upon making decisions about how to inter-

pret each case in the particular context.5

Another approach6 is to use an exploratory method to reason how the op-

erations should extend from the whole numbers.  By extending the patterns in

the table below, you find that (-3) × (-2) = 6, just as was shown above in context.

3 + 2 = 5 3 – 2 = 1 3 × 2 = 6 (-3) × 2 = -6
3 + 1 = 4 3 – 1 = 2 3 × 1 = 3 (-3) × 1 = -3
3 + 0 = 3 3 – 0 = 3 3 × 0 = 0 (-3) × 0 = 0
3 + (-1) = 3 – (-1) = 3 × (-1) = (-3) × (-2) =
3 + (-2) = 3 – (-2) = 3 × (-2) = (-3) × (-2) =
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By means of somewhat lengthy reasoning, you can find out how to do arith-

metic with integers.  But are the regularities observed about the whole number

system (the rules in Box 3-1) still valid?  Going through the cases again will

show that they are.  So not only has the number system been extended from

the whole numbers to all integers, but the arithmetic in the larger system

looks very similar to arithmetic in the original one in the sense that these laws

are still valid.

Moreover, there are some new notable regularities that describe how the

new numbers are related to the original ones.  These are summarized in Boxes

3-2 and 3-3.

Something much more dramatic is also true.  One can show that, if the

goal is to extend addition and multiplication from the whole numbers to the

integers in such a way that the laws of arithmetic of Boxes 3-1 and 3-2 remain

true, then there is only one way to do it.  And the rules in Box 3-3 describe how

it has to work.  Recipes laboriously constructed by means of some sort of

concrete interpretation of negative numbers are all completely dictated by

this short list of rules of arithmetic.  This uniqueness is a striking exhibition

of the power of these rules—that they capture in a few general statements a

large chunk of people’s intuition about arithmetic.  The extension of whole

numbers to integers is an example of the axiomatic method in mathematics:

basing a mathematical system on a short list of key properties.  Its most famous

success is the Elements of Euclid for plane geometry.  Since Euclid’s time,

axiomatic schemes have been constructed to cover most areas of mathematics.

Another rather striking thing has happened during this extension from

whole numbers to (all) integers.  The reason for making the extension was to

Box 3-2

Additional Properties of Addition

Additive identity.  Adding zero to any number gives that number.  For example,

3 + 0 = 3 and 0 + 3 = 3.  In general, m + 0 = m, and 0 + m = m.

Additive inverse.  Every number has an additive inverse, also called an opposite.

The opposite is the unique number that, when added to that number, gives zero.

For example, the opposite of 3 is -3 because 3 + -3 = 0; the opposite of -4 is 4

because -4 + 4 = 0.  In general, -s is the unique solution m for s + m = 0.

The

extension of

whole

numbers to

integers is

an example

of the

axiomatic

method in

mathematics:

basing a

mathematical

system on a

short list

of key

properties.

Copyright © National Academy of Sciences. All rights reserved.



833 NUMBER: WHAT IS THERE TO KNOW?

Box 3-3

Consequences of the Basic Properties: Formulas for

the Arithmetic of Negation

Subtraction and negation.  Subtracting a number is the same as adding its

opposite.  For example, 5 – 3 = 5 + (-3) and 5 – (-2) = 5 + 2.  In general,

s – t = s + (-t).

Multiplication and negation.  Negation is the same as multiplication by -1.

For example, -3 = (-1) x 3 and 2 = (-1) x (-2).  In general, -s = (-1) x s.

Opposite of opposite.  The opposite of the opposite of a number is the number

itself.  For example, -(-3) = 3.  In general, -(-s) = s.

be able to solve subtraction problems.  Now, in the integers, subtraction is a

true operation in the sense that you can subtract any integer from any other.

As described in the rule on additive inverses in Box 3-2, for every integer,

there is another integer, called its opposite or additive inverse, that counter-

balances it: the two sum to zero.  Thus 2 + (-2) = 0, and -84 + 84 = 0.  The

second equation means that -(-84) = 84 and leads to the rule on subtraction

and negation in Box 3-3, which says that subtracting an integer gives the same result

as adding its additive inverse.  Thus 2 – 3 = 2 + (-3), and 24 – (-7) = 24 + (-(-7)),

which is equal to 24 + 7 = 31.  Thus, at least on a conceptual level, subtraction

is merged into addition, and you really only need to have the single operation

of addition to capture all the arithmetic of addition and subtraction.  As soon

as subtraction is made into a true operation by extending the whole numbers

to the integers, you also get additive inverses, which allows you to subordi-

nate subtraction to addition.  This sort of simplification illustrates a kind of

mathematical elegance: Two ideas that seemed different can be subsumed

under one bigger idea.  As we show below, the analogous thing happens to

division when you construct rational numbers.  That subordination is the best

justification for why mathematicians talk about only the two operations of

addition and multiplication when discussing number systems, and not all four

operations recognized in school arithmetic.

Division and Fractions

Forgetting for a moment the triumph with integers, return to the whole

numbers and the problem of division.  Here the situation is in some sense
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much more complicated than for subtraction.  You can subtract in whole num-

bers about half the time.  However, division of one whole number by another

rarely comes out even.  If I have eight apples and want to share them equally

with Carl and Maria (the three of us), I either have to leave two apples out of

the division or have to cut them in pieces.  The desire to solve this kind of

problem leads to new numbers, the positive rational numbers.  These are usu-

ally written as fractions (here we allow improper fractions, such as 12
5

, in which

the numerator is larger than the denominator), and each one is a solution to a

division problem for integers.  For example, 2
3

 is the number you get when

you divide 2 into 3 equal parts.  In other words, 2
3

 is by definition the number

such that 3 × 2
3

= 2.  Although this definition suffices to specify fractions as

mathematical objects, fractions have many concrete interpretations.  We refer

the reader to the section “Discontinuities in Proficiency” in chapter 7 for a

list of such interpretations.

Again, having introduced these new numbers, you find yourself needing

to do arithmetic with them.  If I get half an apple from Bart and two thirds of

an apple from Teresa, how many apples do I have?  If I have 1 3
4

 boxes of

marbles, and I want to put them in boxes half as large, how many of the small

boxes will that make?  By figuring out the answers to these questions, you

turn the positive rational numbers (along with zero) into a number system,

with operations of addition and multiplication extending the old operations

on whole numbers.  This feat is difficult technically and conceptually.  The

arithmetic of, and even developing meanings for, fractions is one of the stum-

bling blocks of the pre-K to grade 8 mathematics curriculum.7

Nevertheless, if you go through the effort of constructing the arithmetic

of positive rational numbers by considering various cases and using some sort

of concrete model, as with the integers, you find that it can be done.  At the

end of your labors, being a mathematician, you survey the new system and

ask whether the marvelous rules of Box 3-1 still hold.  They do!  Moreover,

there are some further regularities, analogous to the rules of Box 3-2, that

relate the new numbers to the old.  The new rules for multiplication are listed

in Box 3-4.

The analogy with the construction of the integers is remarkable, with

multiplication replacing addition, and division replacing subtraction.  First,

the arithmetic in the laboriously constructed new system is entirely deter-

mined by the rules of Boxes 3-1 to 3-4.  This means that for the formulas of

adding, multiplying, and dividing (positive) rational numbers, as described in

Box 3-5, there really was no choice: That is the only way to do it and preserve

the rules.8  Furthermore, although the new system was created to allow divi-
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Box 3-4

Additional Properties of Multiplication

Multiplicative identity.  Multiplying a number by 1 gives that number: 5 x 1 = 5

and 1 x 5 = 5.  In general, m x 1 = m and 1 x m = m.

Multiplicative inverse.  Every number other than 0 has a multiplicative inverse,

also called a reciprocal.  The reciprocal is the unique number that, when

multiplied by that number, gives 1.  For example, the reciprocal of 3 is 1
3

because 3 x 1
3

 = 1; the reciprocal of 5
8

 is 8
5

 because 5
8

 x 8
5

 = 1.  In general, for

s not zero, 1
s

 is the unique solution m of s x m = 1.

sion, once you have it, you see that in some sense division is no longer neces-

sary.  In enabling division you have created a system in which every (nonzero)

number has a multiplicative inverse or reciprocal.  In this system, division by a

number (other than zero) is accomplished by multiplying by its reciprocal, which

is the source of the “invert and multiply” rule for dividing fractions.

The Rational Numbers

You have seen how a desire to solve subtraction problems with no solu-

tions in whole numbers leads to the construction of the integers.  In a very

similar way, the desire to solve division problems with no solutions in whole

numbers leads to the construction of the positive rational numbers (along

with zero).  But neither of these number systems does it all: There are some

integers that will not divide a given integer, and there are some positive ratio-

nal numbers that cannot be subtracted from a given positive rational number

(and still remain within the system).  Thus, if you want to be able to always

do both operations (except dividing by zero), you have to extend these sys-

tems further: You have to annex reciprocals to the integers, and you have to

annex negatives to the positive rationals.

That process involves a lot more work.  The end result, however, is as

elegant as one could wish.  It turns out that either procedure produces a sys-

tem in which all operations are possible, with additive inverses for all num-

bers and multiplicative inverses for all numbers except zero.  In this system,

subtraction of a number becomes addition of its additive inverse, and divi-

sion by a number becomes multiplication by its multiplicative inverse.  The
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Box 3-5

Consequences of the Basic Properties: Formulas for

the Arithmetic of Fractions

Fraction notation.  The fractions 3/2 and 3
2

 are alternative ways of writing

3 ÷ 2.  For numbers m and n, with m not 0, both n/m and n

m
 denote n ÷ m.

These are not defined when m = 0.

Reciprocal of reciprocal.  The reciprocal of the reciprocal of a number is the

number itself.  For example, 1 5
1
5

=  and 1 2
31

2
3

= . In general, for m and n not 0,

1
1
n

m

n

m
=

Equality.  For m and s not zero, n

m

t

s
=  is true exactly when n x s = m x t.

Addition of fractions.  Adding fractions requires that they have a common

denominator, which often requires conversion to equivalent fractions. When

fractions have a common denominator, their sum is the fraction whose

numerator is the sum of their numerators and whose denominator is the

common denominator.

For example, 2
3

4
5

2 5

3 5

4 3

5 3

2 5 4 3

3 5
22
15

+ = ×
×

+ ×
×

=
×( ) + ×( )

×
= .

In general, for m and s not zero, n

m

t

s

n s

m s

t m

s m

n s t m

m s
+ = ×

×
+ ×

×
=

×( ) + ×( )
×

.

Multiplication of fractions.  The product of two fractions is the fraction whose

numerator is the product of their numerators and whose denominator is the

product of their denominators.  For example, 
2
3

5
7

2 5

3 7
10
21

× = ×
×

= .

 In general, for m and s not zero, 
n

m

t

s

n t

m s
× = ×

×
.

Division of fractions.  Dividing by a fraction is the same as multiplying by its

reciprocal.  For example, 
2
3

5
7

2
3

7
5

2 7

3 5
14
15

÷ = × = ×
×

= .   In general, for m, s, and t not

zero, 
n

m

t

s

n

m

s

t

n s

m t
÷ = × = ×

×
.
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rules in Boxes 3-1 to 3-5 all hold.  In both systems, all arithmetic is deter-

mined by these rules.

Finally, the two procedures actually produce the same system.  The end

result is essentially the same, whether one first annexes the negatives and

then the fractions, or the other way around.  The hard part is making sure that

you can actually do it—that there really is a system in which you can add,

subtract, multiply, and divide, and where all the rules work in harmony to tell

you how to do it.  Mathematicians call this system the rational numbers.

Arithmetic into Geometry—The Number Line

The rational numbers are harder to visualize than the whole numbers or

even the integers, but there is a picture that lets you think about rational

numbers geometrically.  It lets you interpret whole numbers, negative num-

bers, and fractions all as part of one overall system.  Furthermore, it provides

a uniform way to extend the rational number system to include numbers such

as π and 2  that are not rational;9 it provides a link between arithmetic and

geometry; and it paves the way for analytic geometry, which connects algebra

and geometry.  This conceptual tool is called the number line.  It can be seen

in a rudimentary way in many classrooms, but its potential for organizing think-

ing about number and making connections with geometry seems not to have

been fully exploited.  Finding out how to realize this potential might be a

profitable line of research in mathematics education.

The number line is simply a line, but its points are labeled by numbers.

One point on the line is chosen as the origin.  It is labeled 0.  Then a positive

direction (usually to the right) is chosen for the line.  This choice amounts to

specifying which side of the origin will be the positive half of the line; the

other side is then the negative half.  Finally, a unit of length is chosen.  Any

point on the line is labeled by its (directed) distance from the origin mea-

sured according to this unit length.  The point is labeled positive if it is on the

positive half of the line and as negative if it is on the negative half.  The

integers, then, are the points that are a whole number of units to the left or

the right of the origin.  Part of the number line is illustrated below, with some

points labeled.10

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

The potential

for

organizing

thinking

about

number and

making

connections

with

geometry

seems not to

have been

fully

exploited.

Copyright © National Academy of Sciences. All rights reserved.



88 ADDING IT UP

Rational numbers fit into this scheme by dividing up the intervals be-

tween the integers.  For example, 1
2

 goes midway between 0 and 1, and 3
2

goes midway between 1 and 2.  The numbers 1
3

 and 2
3

 divide the interval

from 0 to 1 into three parts of equal length, and the numbers 7
3

 = 2 1
3

 and
8
3

 = 2 2
3

 divide the interval between 2 and 3 similarly.  If you locate fractions

with different denominators on the line, they may appear to be arranged some-

what irregularly.

However, if you fix a denominator, and label all points by numbers with

that fixed denominator, then you get an evenly spaced set, with each unit

interval divided up into the same number of subintervals.  Thus all rational

numbers, whatever their denominators, have well-defined places on the num-

ber line.  In particular, decimals with one digit to the right of the decimal

point partition each unit interval on the number line into subintervals of length
1

10
, and decimals with two digits to the right of the decimal point refine this

to intervals of length 1
100

, with 10 of these fitting into each interval of length
1

10
.  See Box 3-6.

2
1

3
1

3
2

5
1

4
1

5
2

5
3

4
3

4
2

5
40 1

Box 3-6

The Number System of Finite Decimals

Although they are not usually singled out explicitly, the finite decimals, such

as 3, -104, 21.6, 0.333, 0.0125, and 3.14159, form a number system in the

sense that you can add them and multiply them and get finite decimals.  You

can also subtract finite decimals, but you cannot always divide them.  For

example, 1
3

 cannot be exactly represented as a finite decimal, although it

can be approximated by 0.333.  The finite decimal system is intermediate

between the integers and the rational numbers.

The advantage of working with finite decimals rather than all the rational

numbers is that the usual arithmetic for integers extends almost without

change.  The only complication is that one must keep track of the decimal

point.  (This seemingly small complication is actually a large conceptual

leap.)  For example,
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The finite decimal system does allow division by 10 (and by its divisors, 2 and

5), and it may be characterized as the smallest number system containing the

integers and allowing division by 10.  Indeed, another way of representing

finite decimals is as rational numbers with denominators that are powers of

10.  For example, 21.6 = 216/10 and 0.0125 = 125/10,000.

It may not seem a huge gain to be able to divide by 10.  What is the point of

enlarging the system of integers to the system of finite decimals?  It is that

arithmetic can remain procedurally similar to the arithmetic of whole numbers,

and yet finite decimals can be arbitrarily small and, as a consequence, can

approximate any number as closely as you wish.  This process is best illustrated

by using the number line.

The integers occupy a discrete set of points on the number line, each separated

from its neighbors on either side by one unit distance:

  104
× .333

  312

 312

312

34.632

 3.14159

+ .0125

 3.15409

The finite decimals with at most one digit to the right of the decimal point

label the positions between the integers at the division points:

If you allow two digits to the right of the decimal point, these tenths are

further subdivided into hundredths.

-1 0 1 2

-1 0 1 2.1 .2 .3 .4 .5 .6 .7 .8 .9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1

-1 0 1 2
1.41.33-.72

As you can see, space between these numbers is already rather small.  It

would be very difficult to draw a picture of the next division, defined by

decimals with three digits to the right of the decimal point.  Nonetheless,

you can imagine this subdivision process continuing on and on, giving finer

and finer partitions of the line.

continued
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The potential of the number line does not stop at providing a simple way

to picture all rational numbers geometrically.  It also lets you form geometric

models for the operations of arithmetic.  These models are at the same time

more visual and more sophisticated than most interpretations.  Consider addi-

tion.  We have already mentioned that one way to interpret addition of whole

numbers is in terms of joining line segments.  Now you can refine that inter-

pretation by taking a standard segment of a given (positive) length to be the

segment of that length with its left endpoint at the origin.  Then the right

Geometrically, the digits in a decimal representation can be viewed as being

parts of an “address” of the number, with each successive digit locating it

more and more accurately.  Thus if you have the decimal 1.41421356237, the

integer part tells you that the number is between 1 and 2.  The first decimal

place tells you that the number is between 1.4 and 1.5.  The next place says

that the number is between 1.41 and 1.42.  The first decimal place specifies

the number to within an interval of 1
10

.  The second decimal place specifies

the number to within an interval of length 1
100

, and so on.

If you think of it in this way, you can imagine applying this “address system”

to any number, not just finite decimals.  For finite decimals the procedure

would effectively stop, with all digits beyond a given point being zero.  With a

number that is not a finite decimal, the process would go on forever, with

each successive digit giving the number 10 times more precision.  Thus, the

finite decimals give you a systematic method for approximating any number

to any desired accuracy.  In particular, although the reciprocal of an integer

will not usually be a finite decimal, you can approximate it by a finite decimal.

Thus, 1
3

 is first located between 0 and 1, then between 0.3 and 0.4, then

between 0.33 and 0.34, and so on.

But once you have started allowing approximation, there is no need or reason

to restrict yourself to rational numbers.  All numbers on the number line—

even those that are not rational—can be approximated by finite decimals.  For

example, the number 2  is approximately 1.41421.  Expanding the rational

number system to include all numbers on the number line brings you to the

real number system.  Finite decimals give you access to arbitrarily accurate

approximate arithmetic for all real numbers.  That is one reason for their

ubiquitous use in calculators.

NOTE: The finite decimals, also called decimal fractions, were first discussed

by Stevin, 1585/1959.

Box 3-6 Continued
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endpoint will lie at the point labeled by the length of the segment.  To

encompass negative numbers, you must give your segments more structure.

You must provide them with an orientation—a beginning and an end, a head

and a tail.  These oriented segments may be represented as arrows.  The

positive numbers are then represented by arrows that begin at the origin and

end at the positive number that gives their length.  Negative numbers are

represented by arrows that begin at the origin and end at the negative num-

ber.  That way, 4 and -4, for example, have the same length but opposite

orientation.  (Note: For clarity, arrows are shown above rather than on the

number line.)

Suppose I want to compute 4 + 3 on the number line.  It is difficult to add

the arrows when they both begin at the origin:

But the arrows may be moved left or right, as needed, as long as they main-

tain the same length and orientation.  To add the arrows, I move the second

arrow so that it begins at the end of the first arrow.

-4 -3 -2 -1 0 1 2 3 4 5

4

-5

-4 -3 -2 -1 0 1 2 3 4 5-5

-4

-1 0 1 2 3 4 5

4

7 8 96

3

-1 0 1 2 3 4 5

4

7 8 96

3
7 The result of the addition is an 

arrow that extends from the 

beginning of the first arrow to 

the end of the second arrow.

This geometric approach is quite general: It works for negative integers and

rational numbers, although in the latter case it is hard to interpret the answer

in simple form without dividing the intervals according to a common denomi-

nator.
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Another method (see below) for illustrating addition on the number line

is simpler because it uses only one arrow.  The method is more subtle, how-

ever, because it requires that some numbers be interpreted as points and

others as arrows.

-4 -3 -2 -1 0 1 2 3 4 5

3

-5

-5
-23 + -5 = -2

6
30 16

4
6
5

6
1

6
2

3

1

2

1
+

2 3
11

6

5
=

-1 0 1 2 3 4 5 7 8 96

3

Interpret the first number as a
point and the second number as
an arrow.  Position the beginning
of the arrow at the point.  The
result of the addition is given by

the point at the end of the arrow.

-4 -3 -2 -1 0 1 2 3 4 5-5

-5

4 + 3 = 7

3 + -5 = -2

Numbers on the number line have a dual nature: They are simultaneously

points and oriented segments (which we represent as arrows).  A deep under-

standing of number and operations on the number line requires flexibility in

using each interpretation.  A principal advantage to this shorthand method

for addition is that it supports the idea that adding 3, for example, amounts to

moving the line (translating) three units to the right.  By similar reasoning,

adding -5 amounts to translating five units to the left.  In general, adding any

number may be interpreted as a translation of the line.  The size of the trans-

lation depends on the size of the number, and the direction of the translation

depends on its sign (i.e., positive or negative).

Multiplication on the number line is subtler than addition.  Multiplica-

tion by whole numbers, however, may be interpreted as repeated addition:
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-1 0 1 2 3 4 5 7 8 96

8
4 × 2

2 222

0 1 32

23
23 ×

2 2 2
3 3 3

In what way does multiplication transform the line?  Multiplication by 4,

for example, stretches the line so that all points are four times as far from the

origin as they previously were, given a constant unit.  Division by 4 (or multi-

plication by 1
4

) reverses this process, thereby shrinking the line.  Then mul-

tiplication by 3
5

, for example, may be interpreted as stretching by a factor of

3 and then shrinking by a factor of 5.  Multiplication by -1 takes positive

numbers to their negative counterparts and vice versa, which amounts to flip-

ping the line about the origin.

These geometric interpretations of addition and multiplication as trans-

formations of the line are quite sophisticated despite their pictorial nature.

Nonetheless, these interpretations are important because they provide a way

to picture the differences between addition and multiplication.  Furthermore,

the interpretations provide links between number, algebra, geometry, and

higher mathematics.

Nested Systems of Numbers

While the number line gives a faithful geometric picture of the real num-

ber system, it does not make it easy to see geometrically the expansion of the

number systems from whole numbers to integers to rationals, with each sys-

tem contained in the next.  The schematic picture in Box 3-7 illustrates how

the number systems are related as sets.  In the center is zero, surrounded on

the right by the positive whole numbers and on the left by their negative

counterparts.  Together they form the integers.  In the next larger circle are

the rationals, which include the integers as a subset.  In elementary school,

children begin with the right half of the innermost circle (the whole num-

bers) and then learn about the right half of the next larger circle (nonnegative

rationals).  In the middle grades, the two circles are completed with the intro-

duction of integers and negative rationals.  In the late middle grades or high

school, rationals are augmented to form real numbers.
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Reals

Rationals

Integers

0

-3

-27

π

32

1

645
-13

Negative Positive

2

7
25

-0.5

2.15

3
13-

3-

The Real Number System and Its Subsystems

Box 3-7

The number systems that have emerged over the centuries can be seen

as being built on one another, with each new system subsuming an old one.

This remarkable consistency helps unify arithmetic.  In school, however, each

number system is introduced with distinct symbolic notations: negation signs,

fractions, decimal points, radical signs, and so on.  These multiple representa-

tions can obscure the fact that the numbers used in grades pre-K through 8 all

reside in a very coherent and unified mathematical structure—the number

line.

Representations

In this chapter we are concerned primarily with the physical representa-

tions for number, such as symbols, words, pictures, objects, and actions.11

Physical representations serve as tools for mathematical communication,

thought, and calculation, allowing personal mathematical ideas to be exter-

nalized, shared, and preserved.12  They help clarify ideas in ways that support

reasoning and build understanding.  These representations also support the

development of efficient algorithms for the basic operations.13

Mathematics requires representations.  In fact, because of the abstract

nature of mathematics, people have access to mathematical ideas only through

the representations of those ideas.14  Although on its surface school math-
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ematics may seem to be about facts and procedures, much of the real intel-

lectual work in mathematics concerns the interpretation and use of represen-

tations of mathematical ideas.15  The discussion of number systems above,

for example, would have been impossible without the use of a variety of rep-

resentations of numbers and operations.

Mathematical ideas are essentially metaphorical.16  The section on num-

ber systems made liberal use of metaphors, including the following:

• number as collection, number as a point on a line, number as an arrow

• addition as joining, multiplication as area

• fraction as partitioning, fraction as piece, and fraction as number.

It has been argued that in mathematics “a new concept is the product of a cross-

breeding between several metaphors rather than of a single metaphor.”17  This claim

suggests that having multiple metaphors is a necessary condition for a con-

cept to be meaningful.

Because many mathematical representations are suggestive of the corre-

sponding metaphors, mathematical ideas are enhanced through multiple rep-

resentations, which serve not merely as illustrations or pedagogical tricks but

form a significant part of the mathematical content and serve as a source of

mathematical reasoning.  Even the numeral “729” is a representation that

embodies a significant amount of mathematical thinking and interpretation.

Numbers may be represented as physical objects, schematic pictures,

words, or abstract symbols.  For example, the number five may be represented

by collections of physical objects, such as five blocks or five beads, by means

of schematic (iconic) pictures like  or  , or by abstract sym-

bols like 5 or V.

Operations can also be represented.  In this chapter, for example, addi-

tion is represented by combining plates of cookies, by joining segments, and

by symbolic expressions such as 3 + 5.  Similarly, we represent multiplication

as repeated addition, as area, and symbolically as 4 × 6.  There is an inherent

ambiguity in the symbolic notation for operations that is both useful and dif-

ficult to grasp: the expression 3 + 5, for example, simultaneously represents a

process (an addition operation) and the result of that process (the number 8).

For division this distinction is sometimes made through different notations

(e.g., 164 ÷ 17 and 164/17), but in practice, these are often used as synonyms.18

When a child combines a plate of three cookies with a plate of five cookies,

he or she could use 3 + 5 as a representation of the physical situation.  Con-

versely, given the symbolic expression 3 + 5, the child could represent the

Mathematical

ideas are

enhanced

through

multiple

representations.
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mathematical idea by using plates of cookies.  Whether the symbols repre-

sent the concrete objects or vice versa depends upon where the child starts.

Both symbols and objects, however, represent a mathematical idea that is

independent of the particular representation used.

The remainder of this section considers one particular representation

system for numbers, the decimal place-value system, which is a significant

human achievement.  It should be emphasized, however, that representation

systems arise out of human activity, and much mathematical insight can be

gained by considering the genesis and development of the representation

systems of the Egyptians, the Babylonians, the Mayans, or other cultures.

Our intent here is more modest: to describe issues of mathematical represen-

tation by focusing on the representation system that is the major focus of

school mathematics.  It should also be emphasized that a representation sys-

tem discussed previously, the number line, also deserves significant attention.

In fact, the main unifying and synthesizing point of the previous section was

that the number systems of school mathematics, which remain often frag-

mented and disjointed in the perceptions conveyed by school curricula, are

in fact all subsystems of a single system, which has a geometric model that is

the foundation of later analysis and geometry.

Grouping and Place Value

To use numbers effectively, to speak about them, or to manipulate them

requires that they have names.  Modern societies use decimal place-value

notation in daily life and commerce.  With just 10 symbols—0, 1, 2, . . . , 9—

any number, no matter how big or small in magnitude, can be represented.

For example, there are roughly 300,000,000 people in the United States.  Or

the diameter of the nucleus of an atom of gold is roughly 0.00000000034 centi-

meters.  The decimal system is versatile and simple, although not necessarily

obvious or easily learned.  The decimal place-value system is one of the most

significant intellectual constructs of humankind, and it has played a decisive

role in the development of mathematics and science.

Over the centuries, various notational systems have been invented for

naming numbers.  To represent numbers symbolically, the ancient Hindus

developed a numeration system that is based on the principles of grouping19

and place value, and that forms the basis for our numeration system today.  In

this system, objects are grouped by tens, then by tens of tens (hundreds), and

so on.  Hence, this numeration system is a base-10 or decimal system.  These

are nontrivial ideas that took humankind many centuries to invent and refine.
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Early versions of these ideas were present in Roman numerals, for example,

where 729 would be represented as DCCXXIX (D = 500, C = 100, X = 10,

and I = 1).  Although Roman numerals use grouping by tens and the interpre-

tation of a numeral depends to some extent on the placement of the symbols,20

they do not at all constitute a place-value system.  Also, the system of Roman

numerals is ad hoc, in the sense that each new grouping requires a new symbol,

so it is strictly limited in extent.  A crucial steppingstone in the development

of place-value notation was the idea of using a separate symbol to denote

zero, which could then be used as a placeholder when necessary.  This inven-

tion allows the same symbols to be used over and over to describe larger and

larger groups.

Since the grouping is by tens, only 10 symbols, the digits 0 through 9, are

needed to indicate how many groups there are of a particular size.  In a numeral

the size of the group depends on the place that the digit appears in the numeral.

Thus, in 729 the “7” represents seven hundreds, whereas in 174 the “7”

means seven tens.

Some pictorial and physical representations can be helpful in understand-

ing the decimal place-value system.  Special blocks, called base-10 blocks, for

example, can be used to develop and support an understanding of the impor-

tance of tens and hundreds and the meaning of the various digits.  The number

729 is pictured with base-10 blocks below.

700 + 20 + 9
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The composition of 729 shown above might be expressed symbolically

as follows:

729 = 700 + 20+ 9

       = (7 × 100) + (2 × 10) + (9 × 1)

       = (7 × 102) + (2 × 10) + (9 × 1)

The symbol 102 means 10 × 10.  In this case, 2 is called the exponent, and

102 is 10 to the second power.  Making the meaning of the digits explicit in a

larger number requires the use of higher powers of 10.  For example,

39,406 = (3 × 10,000) + (9 × 1,000) + (4 × 100) + (0 × 10) + 6

= (3 × 104) + (9 × 103) + (4 × 102) + (0 × 10) + (6 × 1)

A number in the decimal system is the sum of the products of each digit and

an appropriate power of 10, where the power in question corresponds to the

position of the digit.

The system is general enough to represent any whole number, no matter

how large.21  Furthermore, it is quite concise, requiring only nine digits to represent

the population of the United States, and only 10 digits to represent the popu-

lation of the entire earth.  This conciseness, however, presents a challenge to

young learners as they try to understand this compact notational system.

Extending the decimal system to the right of the decimal point is accom-

plished by analogy.  As you move to the left, the value of the place is multi-

plied by 10: 1, 10, 100, 1,000, and so on.  As you move to the right, this sequence

is reversed, so that the value is divided by 10.  Continuing past the units

(ones) place and over the decimal point, you continue dividing by 10, to reach

places for tenths, hundredths, thousandths, and so on.  A rational number

such as 3
8

, therefore, is written as 0.375, in perfect analogy with the notation

for whole numbers: The number is the sum of the product of each digit to the

right of the decimal point with the appropriate reciprocals (see Box 3-4) of

powers of 10.

3
8

1
10

1
100

1
1000

1
10

1

10

1

10

375

3 07 005

3 1 7 01 5 001

3 7 5

3 7 5
2 3

=

= + +

= ×( )+ ×( )+ ×( )
= × + × + ×

= × + × + ×





































.

. . .

. . .
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The values of the digits are sometimes shown in a place-value chart, in

which 5620.739 might be represented as follows:

5 6 2 0 . 7 3 9

th
ou

sa
nd

s 
(1

,0
00

s)

hu
nd

re
ds

 (
10

0s
)

te
ns

 (
10

s)

te
nt

hs
 (
0.

1s
)

on
es

 (
1s

)

hu
nd

re
dt

hs
 (
0.

01
s)

th
ou

sa
nd

th
s 

(0
.0

01
s)

Because the reciprocals of powers of 10 become smaller in magnitude as

their exponents get larger in absolute value, such decimal representations

can describe quantities that are arbitrarily small.  Consequently, any positive

number, no matter how small in magnitude, can be represented by a decimal.

Choosing and Translating Among

Representations

To represent numbers that are not whole numbers, one could choose a

fractional rather than a decimal representation.  Representational choices are

much broader, however, than whether to use decimals or fractions.  In the

previous section, for example, we used points and arrows on the number line

to indicate fractions, integers, and operations on integers.  Fractional values

are often represented with pictures, and relationships between quantities are

often represented with graphs or tables.  Communicating about mathemati-

cal ideas, therefore, requires that one choose representations and translate

among them.  Such choices depend on balancing such characteristics as the

following:

• Transparency.  How easily can the idea be seen through the

representation? Base-10 blocks, for example, are more transparent than

a number line for understanding the decimal notation for whole num-

bers, whereas the decimal numerals themselves are not at all trans-

parent.

• Efficiency.  Does the representation support efficient com-

munication and use?  Is it concise?  Symbolic representations are more

efficient than base-10 blocks.
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Box 3-8

Clarity of Representations

For simplicity of use, representations should be as clear and unambiguous as

possible.  Much of that clarity is not inherent in the representation, however,

but is established through convention.  For example, the expression 3 + 4 × 5 is

ambiguous on its face because there is no explicit indication of whether to

perform the multiplication or the addition first.*  One might be tempted to

proceed simply from left to right.  The conventional order of operations,

however, dictates that multiplication and division precede addition and

subtraction, so 3 + 4 × 5 is evaluated as 23 = 3 + (4 × 5) and not 35 = (3 + 4) × 5.

In the middle grades and high school, as algebraic symbolism is introduced,

the letter x and the multiplication symbol × can be confused, especially in written

(rather than typeset) work.  This ambiguity is solved in part by omitting

multiplication signs, using parentheses or juxtaposition instead.  Thus, xy means

x times y, and 5(3) means 5 times 3.

But that practice creates another ambiguity.  In the notation for mixed numbers,

3 2
5

 means 3 2
5

+ .  It does not mean 3 2
5

× . Furthermore, juxtaposing symbols

to indicate multiplication creates confusion in high school mathematics with

the introduction of function notation, where f (4) looks like multiplication but

instead means the output of the function f when the input value is 4.  The

ambiguities of such standard notations can interfere with learning if they are

not acknowledged, explained, developed, and understood.

*Try a few different calculators.  Scientific calculators typically perform the multiplica-

tion first, but simpler “four-function” calculators usually perform the addition first.

• Generality.  Does the representation apply to broad classes

of objects?  Finger representations are not general.  The number line

is quite general, allowing the representation of counting numbers,

integers, rationals, and reals.  If digits on both sides of the decimal

point are included, the decimal place-value representation of num-

bers is completely general in the sense that any number may be so

represented.

• Clarity.  Is the representation unambiguous and easy to use?

Representations should be clear and unambiguous, but that is often

established by convention—how the representation is commonly

used.  (See Box 3-8.)
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0 1 2

1
7/14 0.5 50%

• Precision.  How close is the representation to the exact value?

Graphs are usually not very precise.  With enough digits to the right of

the decimal point, decimal representation can be as precise as desired.

Consider the following representations for one-half:

And one-half is the simplest fraction.  Much more is involved in understand-

ing and translating among representations of 13
40

, or rational numbers more

generally.  (See Box 3-9 for an example.)

Translating Among Representations: An Example

Perhaps the deepest translation problem in pre-K to grade 8 mathematics

concerns the translation between fractional and decimal representations of

rational numbers.  Successful translation requires an understanding of rational

numbers as well as decimal and fractional notation—each of which is a

significant and multifaceted idea in its own right.  In school, children learn a

standard way of converting a fraction such as 3
8

 to a decimal by long division.

The first written step of the long division is dividing 30 tenths by 8.  After three

divisions, the process stops because the remainder is zero.  The quotient

obtained, 0.375, is said to be a finite (or terminating) decimal because the

number of digits is finite.

Box 3-9

   .375
8  3.000
  2 4

    60
    56

     40
     40

      0

  .285714
7  2.000000

7
        30

        

        28
         2

       10

      50
49

    60

     40

  14

    56

     35

      

continued
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Understanding a mathematical idea thoroughly requires that several pos-

sible representations be available to allow a choice of those most useful for

solving a particular problem.  And if children are to be able to use a multiplicity

of representations, it is important that they be able to translate among them,

such as between fractional and decimal notations or between symbolic repre-

sentations and the number line or pictorial representations.

Algorithms

Addition is an idea—an abstraction from combining collections of ob-

jects or from joining lengths.  Carrying out the addition of two numbers re-

quires a strategy that will lead to the result.  For single-digit numbers it is

reasonable to use or imagine blocks or cookies, but for multidigit numbers

you need something more efficient.  You need algorithms.

The long division of 2 ÷ 7 is more complicated.  The remainder at the seventh

step is 2, which is where the first step began.  Because there will always be

another 0 to “bring down” in the next place, the sequence of remainders (2,

6, 4, 5, 1, 3) will repeat, as will the digits 285714 in the quotient.  Thus,

2
7

0 285714= . , a repeating decimal, where the horizontal bar is used to

indicate which digits repeat.

The process of using long division to obtain the decimal representation of a

fraction will always be like one of the above cases: Either the process will

stop or it will cycle through some sequence of remainders.  So the decimal

representation of a rational number must be either a repeating or a

terminating decimal.  Thus a nonrepeating decimal cannot be a rational

number and there are many such numbers, such as π and 2 .

*In the process of converting a fraction to a decimal, all remainders must be less than

the denominator of the fraction.  Because the list of possible remainders is finite, and

because each subsequent step is always the same (brings down a 0, etc.), the remain-

ders must eventually repeat.  The fraction 2/7 had six remainders (the maximum) and

repeated in six digits.  Other examples: 1/11 repeats in two digits, 1/13 repeats in six

digits, and 1/17 repeats in 16 digits.

Box 3-9 Continued
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An algorithm is a “precisely-defined sequence of rules telling how to pro-

duce specified output information from given input information in a finite

number of steps.”22  More simply, an algorithm is a recipe for computation.23

Most people know algorithms for doing addition, subtraction, multiplication,

and division with pencil and paper.  There are many such algorithms, as well

as others that do not use pencil and paper.  Years ago many people knew algo-

rithms for computation on fingers, slide rules, and abacuses.  Today, calculators

and computer algorithms are widely used for arithmetic.  (Indeed, a defining

characteristic of a computational algorithm is that it be suitable for implemen-

tation on a computer.)  And in fact, most of algebra, calculus, and even more

advanced mathematics may now be done with computer programs that per-

form calculations with symbols.

When confronted with a need for calculation, one must choose an algo-

rithm that will give the correct result and that can be accomplished with the

tools available.  Algorithms depend upon representations.  (Note, for example,

that algorithms for fractions are different from algorithms for decimals.)  And

as was the case for representations, choosing an algorithm benefits from con-

sideration of certain characteristics: transparency, efficiency, generality, and preci-

sion.  The more transparent an algorithm, the easier it is to understand, and a

child who understands an algorithm can reconstruct it after months or even

years of not using it.  The need for efficiency depends, of course, on how

often an algorithm is used.  An additional desired characteristic is simplicity

because simple algorithms are easier to remember and easier to perform ac-

curately.  Again, the key is finding an appropriate balance among these char-

acteristics because, for example, algorithms that are sufficiently general and

efficient are often not very transparent.  It is worth noting that pushing but-

tons on a calculator is the epitome of a nontransparent algorithm, but it can

be quite efficient.  In Box 3-10, we show some examples of algorithms with

various qualities.

Algorithms are important in school mathematics because they can help

students understand better the fundamental operations of arithmetic and im-

portant concepts such as place value and also because they pave the way for

learning more advanced topics.  For example, algorithms for the operations

on multidigit whole numbers can be generalized (with appropriate modifica-

tions) to algorithms for corresponding operations on polynomials in algebra,

although the resulting algorithms do not look quite like any typical multipli-

cation algorithms but rather are based upon the idea behind such algorithms:

computing and recording partial products and then adding.  The polynomial

multiplication illustrated below, for example, is somewhat like multiplication

An algorithm

is a recipe

for

computation.
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Examples of Algorithms

The decimal place-value system allows many different algorithms for the four

main operations.  The following six algorithms for multiplication of two-digit

numbers were produced by a class of prospective elementary school teachers.

They were asked to show how they were taught to multiply 23 by 15:

In Method 6, sometimes called lattice multiplication,* the factors are written

across the top and on the right, the products of the pairs of digits are put into

the cells (for example, 15 is written
 5

1 ), and the numbers in the diagonals

are added to give the product underneath.

Note that all of these algorithms produce the correct answer.  All except Method

4 are simply methods for organizing the four component multiplications and

23
× 15

115
23

345

23
× 15

45
30

345

23
× 15

15
100
30

200

345

23 × 15

23 × 30 = 690

       ÷  2 = 345

23 × 10 = 230

23 ×  5 = 115

                 345

2 3

1

5

2

5
11

0

543

3

Box 3-10

of whole numbers, but the relationship is hard to see, mostly because there is

no “carrying,” from the x to the x2 term, for example.  The expanded method

below shows the relationship a bit more clearly.

15132

32

1510

5

32

2

2

++

+

+

+

+

xx

xx

x

x

x

Multiplying polynomials

23

× 15

115

23

345

Multiplication

15130200

30200

15100

51015

32023

++

+

+

+=×
+=

Expanded method

= 345

*The method is also called gelosia multiplication and is related to the method of Napier’s

rods or bones, named after the Scottish mathematician John Napier (1550–1617).
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adding.  The algorithms can be verified by decomposing the factors according

to the values of their digits (in this case, 23 = 20 + 3 and 15 = 10 + 5) and using

the distributive law in one of several ways:

23 × 15 = 23 × (10 + 5)

= 23 × 10 + 23 × 5 Methods 1 and 5

= 230 + 115

23 × 15 = (20 + 3) × 15

= 20 × 15 + 3 × 15 Method 2

= 300 + 45

23 × 15 = (20 + 3) × (10 + 5)

= 20 × 10 + 20 × 5 + 3 × 10 + 3 × 5 Methods 3 and 6

= 200 + 100 + 30 + 15

A more compelling justification uses the area model of multiplication.  If the

sides of a 23 × 15 rectangle are subdivided as 20 + 3 and 10 + 5, then the area of

the whole rectangle can be computed by summing the areas of the four smaller

rectangles.

20 3

10

5

200

100

30

15

Note the correspondence between the areas of the four smaller rectangles and

the partial products in Method 3.  With more careful examination, it is possible

to see the same four partial products residing in the four cells in Method 6.

(The 2 in the upper left cell, for example, actually represents 200.)  Methods 1,

continued
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Building Blocks

The preceding sections have described concepts in the domain of num-

ber that serve as fundamental building blocks for the entire mathematics cur-

riculum.  Other fundamental ideas—such as those about shape, spatial rela-

tionships, and chance—are foundational as well.  Students do not need to,

and should not, master all the number concepts we have described before

they study other topics.  Rather, number concepts should serve to support

mathematics learning in other domains as students are introduced to them,

and, conversely, these other domains should support students’ growing under-

standing of number.

2, and 5 differ from these only in that they record the areas for one pair of

these rectangles at a time.

Any of the methods—and, in fact, any of the four justifications that followed—

could serve as the standard algorithm for the multiplication of whole numbers

because they are all general and exact.  Mathematically, these methods are

essentially the same, differing only in the intermediate products that are

calculated and how they are recorded.

These methods, however, are quite different in transparency and efficiency.

Methods 3 and 5 and the area model justification are the most transparent

because the partial products are all displayed clearly and unambiguously.  The

three justifications using the distributive law also show these partial products

unambiguously, but some of the transparency is lost in the maze of symbols.

Methods 1 and 2 are the most efficient, but they lack some transparency because

the 23 and the 30 actually represent 230 and 300, respectively.

Method 4 takes advantage of the fact that doubling the factor 15 gives a factor

that is easy to use.  It is quite different from the others.  For one thing, the

intermediate result is larger than the final answer.  This method can also be

shown to be correct using the properties of whole numbers, since multiplying

one factor by 2 and then dividing the product by 2 has no net effect on the final

answer.  The usefulness of Method 4 depends on the numbers involved.

Doubling 15 gives 30, and 23 × 30 is much easier to calculate mentally than

23 × 15.  Using this method to find a product like 23 × 17, on the other hand,

would require first calculating 23 × 34, which is no easier than 23 × 17.  Clearly

this method, although completely general, is not very practical.  For most

factors, it is neither simple nor efficient.

Box 3-10 Continued
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Number is intimately connected with geometry, as illustrated in this

chapter by our use of the number line and the area model of multiplication.

Those same models of number can, of course, arise when measurement is

introduced in geometry.  The connection between number and algebra is

illustrated in the chapter by our use of algebra to express properties of number

systems and other general relationships between numbers.  The links from

number to geometry and to algebra are forged even more strongly when stu-

dents are introduced to the coordinate plane, in which perpendicular number

lines provide a system of coordinates for each point—an idea first put forward

by the French mathematician and philosopher René Descartes (1596–1650),

although he did not insist that the number lines were perpendicular.  Number

is also essential in data analysis, the process of making sense of collections of

numbers.  Using numbers to investigate processes of variation, such as accu-

mulation and rates of change, can provide students with the numerical under-

pinnings of calculus.

Some of the manifold connections and dependencies between number

and other mathematical domains may be illustrated by the so-called hand-

shake problem:

If eight people are at a party and each person shakes hands exactly once with every

other person, how many handshakes are there?

This problem appears often in the literature on problem solving in school

mathematics, probably because it can be solved in so many ways.  Perhaps

the simplest way of getting a solution is just to count the handshakes system-

atically: The first person shakes hands with seven people; the second person,

having shaken the first person’s hand, shakes hands with six people whose

hands he or she has not yet shaken; the third person shakes hands with five

people; and so on until the seventh person shakes hands with only the eighth

person.  The number of handshakes, therefore, is 7 + 6 + 5 + 4 + 3 + 2 + 1,

which is 28.

This method of solution can be generalized to a situation with any number

of people, which is what a mathematician would want to do.  For a party with

20 people, for example, there would be

19 + 18 + 17 + 16 + 15 + 14 + 13 + 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1

handshakes, but the computation would be more time consuming.  Because

mathematicians are interested not only in generalizations of problems but

also in simplifying solutions, it would be nice to find a simple way of adding

the numbers.  In general, for m + 1 people at a party, the number of hand-

shakes would be the sum of the first m counting numbers:24
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1 + 2 + .  .  .  + m.

Numbers that arise in this way are called triangular numbers because they

may be arranged in triangular formations, as shown below.

A closely related numerical approach to the problem of counting hand-

shakes comes from a story told of young Carl Friedrich Gauss (1777–1855),

whose teacher is said to have asked the class to sum the numbers from 1 to

100, expecting that the task would keep the class busy for some time.  The

story goes that almost before the teacher could turn around, Gauss handed in

his slate with the correct answer.  He had quickly noticed that if the numbers

to be added are written out and then written again below but in the opposite

Therefore, 3, 6, 10, 15, 21, and 28 are all triangular numbers.  This is a

geometric interpretation, but can geometry be used to find a solution to the

handshake problem that would simplify the computation?

One way to approach geometrically the problem of adding the numbers

from 1 to m is to think about it as a problem of finding the area of the side of

a staircase.  The sum 1 + 2 + 3 + 4 + 5 + 6 + 7, for example, would then be seen

as a staircase of blocks in which each term is represented by one layer, as in

the diagram on the left below.  The diagram on the right below includes a

second copy of the staircase, turned upside down.  When the two staircases

are put together, the result is a 7 × 8 rectangle, with area 56.  So the area of the

staircase is half that, or 28.  This reasoning, although specific, supports a gen-

eral solution for the sum of the whole numbers from 1 to m: m(m + 1)/2.
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order, the combined (double) sum may be computed easily by first adding

the pairs of numbers aligned vertically and then adding horizontally.  As can

be seen below, each vertical sum is 101, and there are exactly 100 of them.  So

the double sum is 100 × 101, or 10,100, which means that the desired sum is

half that, or 5050.

For the original handshake problem, which involves the sum of the blocks

in the staircase above, that means taking the double sum 7 × 8, or 56, and

halving it to get 28.

The handshake problem can be approached by bringing in ideas from

other parts of mathematics.  If the people are thought of as standing at the

vertices of an eight-sided figure (octagon), then the question again becomes

geometric but in a different way: How many segments (sides and diagonals)

may be drawn between vertices of an octagon?  The answer again is 28, as can

be verified in the picture below.

011101101101101101

1009998321

1239899100

++++++

++++++
++++++

L

L

L

As often happens in mathematics, connections to geometry provide a new

way of approaching the problem: Each vertex is an endpoint for exactly

7 segments, and there are 8 vertices, which sounds like there ought to be

7 × 8 = 56 segments.  But that multiplication counts each segment twice

(once for each endpoint), so there are really half as many, or 28, segments.

In still another mathematical domain, combinatorics—the study of count-

ing, grouping, and arranging a finite number of elements in a collection—the
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problem becomes how to count the number of ways to choose two items

(people shaking hands) from a collection of eight elements.  For example, in

how many ways can a committee of two be chosen from a group of eight

people?  This is the same as the handshake problem because each committee

of two corresponds to a handshake.  It is also the same as the octagon problem

because each committee corresponds to a segment (which is identified by its

two endpoints).

A critically important mathematical idea in the above discussion lies in

noticing that these are all the same problem in different clothing.  It also

involves solving the problem and finding a representation that captures its

key features.  For students to develop the mathematical skill and ability they

need to understand that seemingly different problems are just variations on

the same theme, to solve the problem once and for all, and to develop and

use representations that will allow them to move easily from one variation to

another, the study of number provides an indispensable launching pad.

Key Ideas About Number

In this chapter, we have surveyed the domain of number with an eye

toward the proficiency that students in grades pre-K to 8 need for their future

study of mathematics.  Several key ideas have been emphasized.  First,

numbers and operations are abstractions—ideas based on experience but inde-

pendent of any particular experience.  The numbers and operations of school

mathematics are organized as number systems, and each system provides ways

to consider numbers and operations simultaneously, allowing learners to focus

on the regularities and the structure of the system.  Despite different notations

and their separate treatment in school, these number systems are related

through a process of embedding one system in the next one studied.  All the

number systems of pre-K to grade 8 mathematics lie inside a single system

represented by the number line.  Second, all mathematical ideas require rep-

resentations, and their usefulness is enhanced through multiple representa-

tions.  Because each representation has its advantages and disadvantages, one

must be able to choose and translate among representations.  The number

line and the decimal place-value system are important representational tools

in school mathematics, but students should have experience with other use-

ful interpretations and representations, which also are important parts of the

content.  Third, calculation requires algorithms, and once again there are

choices to make because each algorithm has advantages and disadvantages.

And finally, the domain of number both supports and is supported by other
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branches of mathematics.  It is these connections that give mathematics much

of its power.  If students are to become proficient in mathematics by eighth

grade, they need to be proficient with the numbers and operations discussed

in this chapter, as well as with beginning algebra, measure, space, data, and

chance—all of which are intricately related to number.

Notes

1. Some authors (see, e.g., Russell, 1919, p. 3; Freudenthal, 1983, pp. 77ff) call these

the natural numbers.  We are adopting the common usage of the U.S. mathematics

education literature, in which the natural numbers begin 1, 2, 3, and so on, and the

whole numbers include zero.

2. The recognition that zero should be considered a legitimate number—rather than

the absence of number—was an important intellectual achievement in the history of

mathematics.  Zero (as an idea) is present in the earliest schooling, but zero (as a

number) is a significant obstacle for some students and teachers.  “Zero is nothing,”

some people say.  “How can we ask whether it is even or odd?”

3. “To criticize mathematics for its abstraction is to miss the point entirely.  Abstraction

is what makes mathematics work.  If you concentrate too closely on too limited an

application of a mathematical idea, you rob the mathematician of his [or her] most

important tools: analogy, generality, and simplicity” (Stewart, 1989, p. 291).

4. Although negative numbers are quite familiar today, and part of the standard

elementary curriculum, they are quite a recent development in historical terms, having

become common only since the Renaissance.  Descartes, who invented analytic

geometry and after whom the standard Cartesian coordinate system on the plane is

named, rejected negative numbers as impossible.  (His coordinate axes had only a

positive direction.)  His reason was that he thought of numbers as quantities and

held that there could be no quantity less than nothing.  Now, however, people are

not limited to thinking of numbers solely in terms of quantity.  In dealing with negative

numbers, they have learned that if they think of numbers as representing movement

along a line, then positive numbers can correspond to movement to the right, and

negative numbers can represent movement to the left.  This interpretation of numbers

as oriented length is subtly different from the old interpretation in terms of quantity,

which would here be unoriented length, and gives a sensible and quite concrete way

to think about these numbers that Descartes thought impossible.

5. Freudenthal, 1983, suggests that “negative numbers did not really become important

until they appeared to be indispensable for the permanence of expressions, equations,

formulae in the ‘analytic geometry’” (p. 436).  “Later on arguments of content

character were contrived . . . although some of them are not quite convincing

(positive-negative as capital-debt, gain-loss, and so on)” (p. 435).

6. See Freudenthal, 1983, p. 435.

7. Although rational numbers seem to present more difficulties for students than

negative integers, historically they came well before.  The Greeks were comfortable
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with positive rational numbers over 2000 years before negative numbers became

accepted.  See also Behr, Harel, Post, and Lesh, 1992.

8. The rules are in a sense guided by the fractional notation, a/b.  In other notational

systems, such as decimal representation, the rules will look somewhat different,

although they will be equivalent.

9. These numbers (and many others) are not rational because they cannot be expressed

as fractions with integers in the numerator and denominator.

10. In the number-line illustrations throughout this chapter, the portion displayed and

the scale vary to suit the intent of the illustration.  That is reasonable not just because

one can imagine moving a “lens” left and right and zooming in and out, but also

because the ideas are independent of the choice of origin and unit.

11. Bruner, 1966 (pp. 10–11), suggests three ways of transforming experience into models

of the world: enactive, iconic, and symbolic representations.  Enactively, addition

might be the action of combining a plate of three cookies with a plate of five cookies;

iconically, it might be represented by a picture of two plates of cookies; symbolically,

it might be represented as 5 cookies plus 3 cookies, or merely 5 + 3.

12. Greeno and Hall, 1997.

13. Pimm, 1995, suggests that people seek representational systems in which they can

operate on the symbols as though the symbols were the mathematical objects.

14. Duvall, 1999.

15. Kaput, 1987, argues that much of elementary school mathematics is not about numbers

but about a particular representational system for numbers.  See Cuoco, 2001, for

detailed discussions of various ways representations come into play in school

mathematics.

16. See Lakoff and Núñez, 1997, and Sfard, 1997, for detailed discussion of the metaphoric

nature of mathematics.

17. Sfard, 1997, p. 36, emphasis in original.

18. “I remember as a child, in fifth grade, coming to the amazing (to me) realization that

the answer to 134 divided by 29 is 134/29 (and so forth).  What a tremendous labor-

saving device!  To me, ‘134 divided by 29’ meant a certain tedious chore, while 134/

29 was an object with no implicit work.  I went excitedly to my father to explain my

discovery.  He told me that of course this is so, a/b and a divided by b are just synonyms.

To him it was just a small variation in notation” (Thurston, 1990, p. 847).

19. Grouping is a common approach in measurement activities.  For example, in

measuring time, there are 60 seconds in a minute, 60 minutes in an hour, 24 hours in

a day, approximately 30 days in a month, 12 months in a year, and so on.  For distance,

the customary U.S. system uses inches, feet, yards, and miles, and the metric system

uses centimeters, meters, and kilometers.

20. For example, IX means nine (that is, one less than ten), whereas XI means eleven

(one more than ten).

21. This generality was a significant accomplishment.  In the third century B.C. in Greece,

with its primitive numeration system, a subject of debate was whether there even

existed a number large enough to describe the number of grains of sand in the

universe.  The issue was serious enough that Archimedes, the greatest mathematician
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of classical times, wrote a paper in the form of a letter to the king of his city explaining

how to write such very large numbers.  Archimedes, however, did not go so far as to

invent the decimal system, with its potential for extending indefinitely.

22. Knuth, 1974, p. 323.

23. Steen, 1990.  See Morrow and Kenney, 1998, for more perspectives on algorithms.

24. The ellipsis points “. . .” in the expression are a significant piece of abstract mathematical

notation, compactly designating the omission of the terms needed (to reach m, in this

case).
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4

THE STRANDS OF

MATHEMATICAL PROFICIENCY

During the twentieth century, the meaning of successful mathematics

learning underwent several shifts in response to changes in both society and

schooling.  For roughly the first half of the century, success in learning the

mathematics of pre-kindergarten to eighth grade usually meant facility in

using the computational procedures of arithmetic, with many educators em-

phasizing the need for skilled performance and others emphasizing the need

for students to learn procedures with understanding.1   In the 1950s and 1960s,

the new math movement defined successful mathematics learning primarily

in terms of understanding the structure of mathematics together with its unify-

ing ideas, and not just as computational skill.  This emphasis was followed by

a “back to basics” movement that proposed returning to the view that suc-

cess in mathematics meant being able to compute accurately and quickly.

The reform movement of the 1980s and 1990s pushed the emphasis toward

what was called the development of “mathematical power,” which involved

reasoning, solving problems, connecting mathematical ideas, and communi-

cating mathematics to others.  Reactions to reform proposals stressed such

features of mathematics learning as the importance of memorization, of facil-

ity in computation, and of being able to prove mathematical assertions.  These

various emphases have reflected different goals for school mathematics held

by different groups of people at different times.

Our analyses of the mathematics to be learned, our reading of the research

in cognitive psychology and mathematics education, our experience as learners

and teachers of mathematics, and our judgment as to the mathematical knowl-

edge, understanding, and skill people need today have led us to adopt a
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composite, comprehensive view of successful mathematics learning.  This

view, admittedly, represents no more than a single committee’s consensus.

Yet our various backgrounds have led us to formulate, in a way that we hope

others can and will accept, the goals toward which mathematics learning should

be aimed.  In this chapter, we describe the kinds of cognitive changes that we

want to promote in children so that they can be successful in learning math-

ematics.

Recognizing that no term captures completely all aspects of expertise,

competence, knowledge, and facility in mathematics, we have chosen math-

ematical proficiency to capture what we believe is necessary for anyone to learn

mathematics successfully.  Mathematical proficiency, as we see it, has five

components, or strands:

• conceptual understanding—comprehension of mathematical concepts,

operations, and relations

• procedural fluency—skill in carrying out procedures flexibly, accurately,

efficiently, and appropriately

• strategic competence—ability to formulate, represent, and solve math-

ematical problems

• adaptive reasoning—capacity for logical thought, reflection, explana-

tion, and justification

• productive disposition—habitual inclination to see mathematics as

sensible, useful, and worthwhile, coupled with a belief in diligence and one’s

own efficacy.

These strands are not independent; they represent different aspects of a

complex whole.  Each is discussed in more detail below.  The most important

observation we make here, one stressed throughout this report, is that the

five strands are interwoven and interdependent in the development of profi-

ciency in mathematics (see Box 4-1).  Mathematical proficiency is not a one-

dimensional trait, and it cannot be achieved by focusing on just one or two of

these strands.  In later chapters, we argue that helping children acquire math-

ematical proficiency calls for instructional programs that address all its strands.

As they go from pre-kindergarten to eighth grade, all students should become

increasingly proficient in mathematics.  That proficiency should enable them

to cope with the mathematical challenges of daily life and enable them to

continue their study of mathematics in high school and beyond.

The five strands provide a framework for discussing the knowledge, skills,

abilities, and beliefs that constitute mathematical proficiency.  This frame-

The five

strands are

interwoven

and

interdependent

in the

development

of

proficiency

in

mathematics.
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Box 4-1

Intertwined Strands of Proficiency

Conceptual 
Understanding

Strategic
Competence

Productive
Disposition

Procedural
Fluency

Adaptive
Reasoning

work has some similarities with the one used in recent mathematics assess-

ments by the National Assessment of Educational Progress (NAEP), which

features three mathematical abilities (conceptual understanding, procedural

knowledge, and problem solving) and includes additional specifications for

reasoning, connections, and communication.2   The strands also echo compo-

nents of mathematics learning that have been identified in materials for

teachers.  At the same time, research and theory in cognitive science provide

general support for the ideas contributing to these five strands.  Fundamen-

tal in that work has been the central role of mental representations.  How

learners represent and connect pieces of knowledge is a key factor in whether

they will understand it deeply and can use it in problem solving.  Cognitive
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scientists have concluded that competence in an area of inquiry depends upon

knowledge that is not merely stored but represented mentally and organized

(connected and structured) in ways that facilitate appropriate retrieval and

application.  Thus, learning with understanding is more powerful than sim-

ply memorizing because the organization improves retention, promotes flu-

ency, and facilitates learning related material.  The central notion that strands

of competence must be interwoven to be useful reflects the finding that hav-

ing a deep understanding requires that learners connect pieces of knowledge,

and that connection in turn is a key factor in whether they can use what they

know productively in solving problems.  Furthermore, cognitive science stud-

ies of problem solving have documented the importance of adaptive exper-

tise and of what is called metacognition: knowledge about one’s own thinking

and ability to monitor one’s own understanding and problem-solving activity.

These ideas contribute to what we call strategic competence and adaptive

reasoning.  Finally, learning is also influenced by motivation, a component of

productive disposition.3

Although there is not a perfect fit between the strands of mathematical

proficiency and the kinds of knowledge and processes identified by cogni-

tive scientists, mathematics educators, and others investigating learning, we

see the strands as reflecting a firm, sizable body of scholarly literature both in

and outside mathematics education.

Conceptual Understanding

Conceptual understanding refers to an integrated and functional grasp of

mathematical ideas.  Students with conceptual understanding know more

than isolated facts and methods.  They understand why a mathematical idea

is important and the kinds of contexts in which is it useful.  They have orga-

nized their knowledge into a coherent whole, which enables them to learn

new ideas by connecting those ideas to what they already know.4   Concep-

tual understanding also supports retention.  Because facts and methods learned

with understanding are connected, they are easier to remember and use, and

they can be reconstructed when forgotten.5   If students understand a method,

they are unlikely to remember it incorrectly.  They monitor what they re-

member and try to figure out whether it makes sense.  They may attempt to

explain the method to themselves and correct it if necessary.  Although teachers

often look for evidence of conceptual understanding in students’ ability to

verbalize connections among concepts and representations, conceptual un-

derstanding need not be explicit.  Students often understand before they can

verbalize that understanding.6
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A significant indicator of conceptual understanding is being able to rep-

resent mathematical situations in different ways and knowing how different

representations can be useful for different purposes.  To find one’s way around

the mathematical terrain, it is important to see how the various representa-

tions connect with each other, how they are similar, and how they are differ-

ent.  The degree of students’ conceptual understanding is related to the rich-

ness and extent of the connections they have made.

For example, suppose students are adding fractional quantities of differ-

ent sizes, say 1
3
 + 2

5
.  They might draw a picture or use concrete materials of

various kinds to show the addition.  They might also represent the number

sentence 1
3
 + 2

5
 = ? as a story.  They might turn to the number line, represent-

ing each fraction by a segment and adding the fractions by joining the seg-

ments.  By renaming the fractions so that they have the same denominator,

the students might arrive at a common measure for the fractions, determine

the sum, and see its magnitude on the number line.  By operating on these

different representations, students are likely to use different solution meth-

ods.  This variation allows students to discuss the similarities and differences

of the representations, the advantages of each, and how they must be con-

nected if they are to yield the same answer.

Connections are most useful when they link related concepts and meth-

ods in appropriate ways.  Mnemonic techniques learned by rote may provide

connections among ideas that make it easier to perform mathematical opera-

tions, but they also may not lead to understanding.7   These are not the kinds

of connections that best promote the acquisition of mathematical proficiency.

Knowledge that has been learned with understanding provides the basis

for generating new knowledge and for solving new and unfamiliar problems.8

When students have acquired conceptual understanding in an area of math-

ematics, they see the connections among concepts and procedures and can

give arguments to explain why some facts are consequences of others.  They

gain confidence, which then provides a base from which they can move to

another level of understanding.

With respect to the learning of number, when students thoroughly un-

derstand concepts and procedures such as place value and operations with

single-digit numbers, they can extend these concepts and procedures to new

areas.  For example, students who understand place value and other multidigit

number concepts are more likely than students without such understanding

to invent their own procedures for multicolumn addition and to adopt correct

procedures for multicolumn subtraction that others have presented to them.9
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Thus, learning how to add and subtract multidigit numbers does not have to

involve entirely new and unrelated ideas.  The same observation can be made

for multiplication and division.

Conceptual understanding helps students avoid many critical errors in

solving problems, particularly errors of magnitude.  For example, if they are

multiplying 9.83 and 7.65 and get 7519.95 for the answer, they can immedi-

ately decide that it cannot be right.  They know that 10 × 8 is only 80, so

multiplying two numbers less than 10 and 8 must give a product less than 80.

They might then suspect that the decimal point is incorrectly placed and

check that possibility.

Conceptual understanding frequently results in students having less to

learn because they can see the deeper similarities between superficially

unrelated situations.  Their understanding has been encapsulated into com-

pact clusters of interrelated facts and principles.  The contents of a given

cluster may be summarized by a short sentence or phrase like “properties of

multiplication,” which is sufficient for use in many situations.  If necessary,

however, the cluster can be unpacked if the student needs to explain a

principle, wants to reflect on a concept, or is learning new ideas.  Often, the

structure of students’ understanding is hierarchical, with simpler clusters of

ideas packed into larger, more complex ones.  A good example of a knowl-

edge cluster for mathematically proficient older students is the number line.

In one easily visualized picture, the student can grasp relations between all

the number systems described in chapter 3, along with geometric interpreta-

tions for the operations of arithmetic.  It connects arithmetic to geometry and

later in schooling serves as a link to more advanced mathematics.

As an example of how a knowledge cluster can make learning easier,

consider the cluster students might develop for adding whole numbers.  If

students understand that addition is commutative (e.g., 3 + 5 = 5 + 3), their

learning of basic addition combinations is reduced by almost half.  By

exploiting their knowledge of other relationships such as that between the

doubles (e.g., 5 + 5 and 6 + 6) and other sums, they can reduce still further the

number of addition combinations they need to learn.  Because young chil-

dren tend to learn the doubles fairly early, they can use them to produce

closely related sums.10   For example, they may see that 6 + 7 is just one more

than 6 + 6.  These relations make it easier for students to learn the new addi-

tion combinations because they are generating new knowledge rather than

relying on rote memorization.  Conceptual understanding, therefore, is a wise

investment that pays off for students in many ways.
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Procedural Fluency

Procedural fluency refers to knowledge of procedures, knowledge of when

and how to use them appropriately, and skill in performing them flexibly,

accurately, and efficiently.  In the domain of number, procedural fluency is

especially needed to support conceptual understanding of place value and

the meanings of rational numbers.  It also supports the analysis of similarities

and differences between methods of calculating.  These methods include, in

addition to written procedures, mental methods for finding certain sums, dif-

ferences, products, or quotients, as well as methods that use calculators, com-

puters, or manipulative materials such as blocks, counters, or beads.

Students need to be efficient and accurate in performing basic computa-

tions with whole numbers (6 + 7, 17 – 9, 8 × 4, and so on) without always

having to refer to tables or other aids.  They also need to know reasonably

efficient and accurate ways to add, subtract, multiply, and divide multidigit

numbers, both mentally and with pencil and paper.  A good conceptual under-

standing of place value in the base-10 system supports the development of

fluency in multidigit computation.11   Such understanding also supports sim-

plified but accurate mental arithmetic and more flexible ways of dealing with

numbers than many students ultimately achieve.

Connected with procedural fluency is knowledge of ways to estimate the

result of a procedure.  It is not as critical as it once was, for example, that

students develop speed or efficiency in calculating with large numbers by

hand, and there appears to be little value in drilling students to achieve such

a goal.  But many tasks involving mathematics in everyday life require facility

with algorithms for performing computations either mentally or in writing.

In addition to providing tools for computing, some algorithms are impor-

tant as concepts in their own right, which again illustrates the link between

conceptual understanding and procedural fluency.  Students need to see that

procedures can be developed that will solve entire classes of problems, not

just individual problems.  By studying algorithms as “general procedures,”

students can gain insight into the fact that mathematics is well structured

(highly organized, filled with patterns, predictable) and that a carefully devel-

oped procedure can be a powerful tool for completing routine tasks.

It is important for computational procedures to be efficient, to be used

accurately, and to result in correct answers.  Both accuracy and efficiency can

be improved with practice, which can also help students maintain fluency.

Students also need to be able to apply procedures flexibly.  Not all computa-

tional situations are alike.  For example, applying a standard pencil-and-paper

algorithm to find the result of every multiplication problem is neither neces-
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sary nor efficient.  Students should be able to use a variety of mental strate-

gies to multiply by 10, 20, or 300 (or any power of 10 or multiple of 10).  Also,

students should be able to perform such operations as finding the sum of 199

and 67 or the product of 4 and 26 by using quick mental strategies rather than

relying on paper and pencil.  Further, situations vary in their need for exact

answers.  Sometimes an estimate is good enough, as in calculating a tip on a

bill at a restaurant.  Sometimes using a calculator or computer is more appro-

priate than using paper and pencil, as in completing a complicated tax form.

Hence, students need facility with a variety of computational tools, and they

need to know how to select the appropriate tool for a given situation.

Procedural fluency and conceptual understanding are often seen as com-

peting for attention in school mathematics.  But pitting skill against under-

standing creates a false dichotomy.12   As we noted earlier, the two are inter-

woven.  Understanding makes learning skills easier, less susceptible to

common errors, and less prone to forgetting.  By the same token, a certain

level of skill is required to learn many mathematical concepts with under-

standing, and using procedures can help strengthen and develop that under-

standing.  For example, it is difficult for students to understand multidigit

calculations if they have not attained some reasonable level of skill in single-

digit calculations.  On the other hand, once students have learned procedures

without understanding, it can be difficult to get them to engage in activities

to help them understand the reasons underlying the procedure.13   In an experi-

mental study, fifth-grade students who first received instruction on proce-

dures for calculating area and perimeter followed by instruction on under-

standing those procedures did not perform as well as students who received

instruction focused only on understanding.14

Without sufficient procedural fluency, students have trouble deepening

their understanding of mathematical ideas or solving mathematics problems.

The attention they devote to working out results they should recall or com-

pute easily prevents them from seeing important relationships.  Students need

well-timed practice of the skills they are learning so that they are not handi-

capped in developing the other strands of proficiency.

When students practice procedures they do not understand, there is a

danger they will practice incorrect procedures, thereby making it more diffi-

cult to learn correct ones.  For example, on one standardized test, the grade 2

national norms for two-digit subtraction problems requiring borrowing, such

as 62 – 48 = ?, are 38% correct.  Many children subtract the smaller from the

larger digit in each column to get 26 as the difference between 62 and 48 (see

Box 4-2).  If students learn to subtract with understanding, they rarely make
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this error.15   Further, when students learn a procedure without understand-

ing, they need extensive practice so as not to forget the steps.  If students do

understand, they are less likely to forget critical steps and are more likely to

be able to reconstruct them when they do.  Shifting the emphasis to learning

with understanding, therefore, can in the long run lead to higher levels of

skill than can be attained by practice alone.

If students have been using incorrect procedures for several years, then

instruction emphasizing understanding may be less effective.16   When children

learn a new, correct procedure, they do not always drop the old one.  Rather,

they use either the old procedure or the new one depending on the situation.

Only with time and practice do they stop using incorrect or inefficient

methods.17   Hence initial learning with understanding can make learning more

efficient.

When skills are learned without understanding, they are learned as iso-

lated bits of knowledge.18   Learning new topics then becomes harder since

there is no network of previously learned concepts and skills to link a new

topic to.  This practice leads to a compartmentalization of procedures that

can become quite extreme, so that students believe that even slightly differ-

ent problems require different procedures.  That belief can arise among chil-

dren in the early grades when, for example, they learn one procedure for

subtraction problems without regrouping and another for subtraction prob-

lems with regrouping.  Another consequence when children learn without

understanding is that they separate what happens in school from what happens

outside.19   They have one set of procedures for solving problems outside of

school and another they learned and use in school—without seeing the rela-

tion between the two.  This separation limits children’s ability to apply what

they learn in school to solve real problems.

Also, students who learn procedures without understanding can typically

do no more than apply the learned procedures, whereas students who learn

Box 4-2

A common error in multidigit subtraction

62

48

26

−  
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with understanding can modify or adapt procedures to make them easier to

use.  For example, students with limited understanding of addition would

ordinarily need paper and pencil to add 598 and 647.  Students with more

understanding would recognize that 598 is only 2 less than 600, so they might

add 600 and 647 and then subtract 2 from that sum.20

Strategic Competence

Strategic competence refers to the ability to formulate mathematical prob-

lems, represent them, and solve them.  This strand is similar to what has

been called problem solving and problem formulation in the literature of

mathematics education and cognitive science, and mathematical problem

solving, in particular, has been studied extensively.21

Although in school, students are often presented with clearly specified

problems to solve, outside of school they encounter situations in which part

of the difficulty is to figure out exactly what the problem is.  Then they need

to formulate the problem so that they can use mathematics to solve it.  Con-

sequently, they are likely to need experience and practice in problem formu-

lating as well as in problem solving.  They should know a variety of solution

strategies as well as which strategies might be useful for solving a specific

problem.  For example, sixth graders might be asked to pose a problem on

the topic of the school cafeteria.22   Some might ask whether the lunches are

too expensive or what the most and least favorite lunches are.  Others might

ask how many trays are used or how many cartons of milk are sold.  Still

others might ask how the layout of the cafeteria might be improved.

With a formulated problem in hand, the student’s first step in solving it is

to represent it mathematically in some fashion, whether numerically, sym-

bolically, verbally, or graphically.  Fifth graders solving problems about getting

from home to school might describe verbally the route they take or draw a

scale map of the neighborhood.  Representing a problem situation requires,

first, that the student build a mental image of its essential components.  Becom-

ing strategically competent involves an avoidance of “number grabbing”

methods (in which the student selects numbers and prepares to perform arith-

metic operations on them)23  in favor of methods that generate problem models

(in which the student constructs a mental model of the variables and rela-

tions described in the problem).  To represent a problem accurately, students

must first understand the situation, including its key features.  They then

need to generate a mathematical representation of the problem that captures

the core mathematical elements and ignores the irrelevant features.  This
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step may be facilitated by making a drawing, writing an equation, or creating

some other tangible representation. Consider the following two-step problem:

At ARCO, gas sells for $1.13 per gallon.

This is 5 cents less per gallon than gas at Chevron.

How much does 5 gallons of gas cost at Chevron?

In a common superficial method for representing this problem, students fo-

cus on the numbers in the problem and use so-called keywords to cue appro-

priate arithmetic operations.24   For example, the quantities $1.83 and 5 cents

are followed by the keyword less, suggesting that the student should subtract

5 cents from $1.13 to get $1.08.  Then the keywords how much and 5 gallons

suggest that 5 should be multiplied by the result, yielding $5.40.

In contrast, a more proficient approach is to construct a problem model—

that is, a mental model of the situation described in the problem.  A problem

model is not a visual picture per se; rather, it is any form of mental represen-

tation that maintains the structural relations among the variables in the

problem.  One way to understand the first two sentences, for example, might

be for a student to envision a number line and locate each cost per gallon on

it to solve the problem.

In building a problem model, students need to be alert to the quantities

in the problem.  It is particularly important that students represent the quan-

tities mentally, distinguishing what is known from what is to be found.  Analy-

ses of students’ eye fixations reveal that successful solvers of the two-step

problem above are likely to focus on terms such as ARCO, Chevron, and this,

the principal known and unknown quantities in the problem.  Less success-

ful problem solvers tend to focus on specific numbers and keywords such as

$1.13, 5 cents, less, and 5 gallons rather than the relationships among the

quantities.25

Not only do students need to be able to build representations of indi-

vidual situations, but they also need to see that some representations share

common mathematical structures.  Novice problem solvers are inclined to

notice similarities in surface features of problems, such as the characters or

scenarios described in the problem.  More expert problem solvers focus more

on the structural relationships within problems, relationships that provide

the clues for how problems might be solved.26   For example, one problem

might ask students to determine how many different stacks of five blocks can

be made using red and green blocks, and another might ask how many differ-

ent ways hamburgers can be ordered with or without each of the following:
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catsup, onions, pickles, lettuce, and tomato.  Novices would see these prob-

lems as unrelated; experts would see both as involving five choices between

two things: red and green, or with and without.27

In becoming proficient problem solvers, students learn how to form mental

representations of problems, detect mathematical relationships, and devise

novel solution methods when needed.  A fundamental characteristic needed

throughout the problem-solving process is flexibility.  Flexibility develops

through the broadening of knowledge required for solving nonroutine prob-

lems rather than just routine problems.

Routine problems are problems that the learner knows how to solve based

on past experience.28   When confronted with a routine problem, the learner

knows a correct solution method and is able to apply it.  Routine problems

require reproductive thinking; the learner needs only to reproduce and apply

a known solution procedure.  For example, finding the product of 567 and 46

is a routine problem for most adults because they know what to do and how

to do it.

In contrast, nonroutine problems are problems for which the learner does

not immediately know a usable solution method.  Nonroutine problems

require productive thinking because the learner needs to invent a way to

understand and solve the problem.  For example, for most adults a nonroutine

problem of the sort often found in newspaper or magazine puzzle columns is

the following:

A cycle shop has a total of 36 bicycles and tricycles in stock.

Collectively there are 80 wheels.

How many bikes and how many tricycles are there?

One solution approach is to reason that all 36 have at least two wheels for a

total of 36 × 2 = 72 wheels.  Since there are 80 wheels in all, the eight addi-

tional wheels (80 – 72) must belong to 8 tricycles.  So there are 36 – 8 = 28

bikes.

A less sophisticated approach would be to “guess and check”: If there

were 20 bikes and 16 tricycles, that would give (20 × 2) + (16 × 3) = 88 wheels,

which is too many.  Reducing the number of tricycles, a guess of 24 bikes and

12 tricycles gives (24 × 2) + (12 × 3) = 84 wheels—still too many.  Another

reduction of the number of tricycles by 4 gives 28 bikes, 8 tricycles, and the

80 wheels needed.

A more sophisticated, algebraic approach would be to let b be the num-

ber of bikes and t the number of tricycles.  Then b + t = 36 and 2b + 3t = 80.

The solution to this system of equations also yields 28 bikes and 8 tricycles.
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A student with strategic competence could not only come up with sev-

eral approaches to a nonroutine problem such as this one but could also choose

flexibly among reasoning, guess-and-check, algebraic, or other methods to

suit the demands presented by the problem and the situation in which it was

posed.

Flexibility of approach is the major cognitive requirement for solving

nonroutine problems.  It can be seen when a method is created or adjusted to

fit the requirements of a novel situation, such as being able to use general

principles about proportions to determine the best buy.  For example, when

the choice is between a 4-ounce can of peanuts for 45 cents and a 10-ounce

can for 90 cents, most people use a ratio strategy: the larger can costs twice as

much as the smaller can but contains more than twice as many ounces, so it is

a better buy.  When the choice is between a 14-ounce jar of sauce for 79 cents

and an 18-ounce jar for 81 cents, most people use a difference strategy: the

larger jar costs just 2 cents more but gets you 4 more ounces, so it is the better

buy.  When the choice is between a 3-ounce bag of sunflower seeds for 30

cents and a 4-ounce bag for 44 cents, the most common strategy is unit-cost:

The smaller bag costs 10 cents per ounce, whereas the larger costs 11 cents

per ounce, so the smaller one is the better buy.

There are mutually supportive relations between strategic competence

and both conceptual understanding and procedural fluency, as the various

approaches to the cycle shop problem illustrate.  The development of strate-

gies for solving nonroutine problems depends on understanding the quanti-

ties involved in the problems and their relationships as well as on fluency in

solving routine problems.  Similarly, developing competence in solving

nonroutine problems provides a context and motivation for learning to solve

routine problems and for understanding concepts such as given, unknown, con-

dition, and solution.

Strategic competence comes into play at every step in developing proce-

dural fluency in computation.  As students learn how to carry out an opera-

tion such as two-digit subtraction (for example, 86 – 59), they typically progress

from conceptually transparent and effortful procedures to compact and more

efficient ones (as discussed in detail in chapter 6).  For example, an initial

procedure for 86 – 59 might be to use bundles of sticks (see Box 4-3).  A

compact procedure involves applying a written numerical algorithm that carries

out the same steps without the bundles of sticks.  Part of developing strategic

competence involves learning to replace by more concise and efficient proce-

dures those cumbersome procedures that might at first have been helpful in

understanding the operation.
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Box 4-3

Subtraction Using Sticks: Modeling 86 – 59 = ?

Begin with 8 bundles of 10 sticks along with 6 individual sticks.  Because you

cannot take away 9 individual sticks, open one bundle, creating 7 bundles of 10

sticks and 16 individual sticks.  Take away 5 of the bundles (corresponding to

subtracting 50), and take away 9 individual sticks (corresponding to subtracting

9).  The number of remaining sticks—2 bundles and 7 individual sticks, or 27—is

the answer.

86 = 80 + 6

86 = (70 + 16)

– (50 + 9)

Remove 9Remove 50

20 + 7

 27 remain  

Break apart a bundle
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Students develop procedural fluency as they use their strategic compe-

tence to choose among effective procedures.  They also learn that solving

challenging mathematics problems depends on the ability to carry out proce-

dures readily and, conversely, that problem-solving experience helps them

acquire new concepts and skills.  Interestingly, very young children use a

variety of strategies to solve problems and will tend to select strategies that

are well suited to particular problems.29   They thereby show the rudiments of

adaptive reasoning, the next strand to be discussed.

Adaptive Reasoning

Adaptive reasoning refers to the capacity to think logically about the rela-

tionships among concepts and situations.  Such reasoning is correct and valid,

stems from careful consideration of alternatives, and includes knowledge of

how to justify the conclusions.  In mathematics, adaptive reasoning is the

glue that holds everything together, the lodestar that guides learning.  One

uses it to navigate through the many facts, procedures, concepts, and solution

methods and to see that they all fit together in some way, that they make

sense.  In mathematics, deductive reasoning is used to settle disputes and

disagreements.  Answers are right because they follow from some agreed-

upon assumptions through series of logical steps.  Students who disagree about

a mathematical answer need not rely on checking with the teacher, collecting

opinions from their classmates, or gathering data from outside the classroom.

In principle, they need only check that their reasoning is valid.

Many conceptions of mathematical reasoning have been confined to for-

mal proof and other forms of deductive reasoning.  Our notion of adaptive

reasoning is much broader, including not only informal explanation and justi-

fication but also intuitive and inductive reasoning based on pattern, analogy,

and metaphor.  As one researcher put it, “The human ability to find analogical

correspondences is a powerful reasoning mechanism.”30   Analogical reason-

ing, metaphors, and mental and physical representations are “tools to think

with,” often serving as sources of hypotheses, sources of problem-solving

operations and techniques, and aids to learning and transfer.31

Some researchers have concluded that children’s reasoning ability is quite

limited until they are about 12 years old.32   Yet when asked to talk about how

they arrived at their solutions to problems, children as young as 4 and 5 dis-

play evidence of encoding and inference and are resistant to counter sugges-

tion.33   With the help of representation-building experiences, children can

demonstrate sophisticated reasoning abilities.  After working in pairs and
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reflecting on their activity, for example, kindergartners can “prove” theorems

about sums of even and odd numbers.34   Through a carefully constructed

sequence of activities about adding and removing marbles from a bag con-

taining many marbles,35  second graders can reason that 5 + (-6) = -1.  In the

context of cutting short bows from a 12-meter package of ribbon and using

physical models to calculate that 12 divided by 1
3
 is 36, fifth graders can rea-

son that 12 divided by 2
3
 cannot be 72 because that would mean getting more

bows from a package when the individual bow is larger, which does not make

sense.36   Research suggests that students are able to display reasoning ability

when three conditions are met: They have a sufficient knowledge base, the

task is understandable and motivating, and the context is familiar and com-

fortable.37

One manifestation of adaptive reasoning is the ability to justify one’s work.

We use justify in the sense of “provide sufficient reason for.”  Proof is a form

of justification, but not all justifications are proofs.  Proofs (both formal and

informal) must be logically complete, but a justification may be more tele-

graphic, merely suggesting the source of the reasoning.  Justification and proof

are a hallmark of formal mathematics, often seen as the province of older

students.  However, as pointed out above, students can start learning to jus-

tify their mathematical ideas in the earliest grades in elementary school.38

Kindergarten and first-grade students can be given regular opportunities to

talk about the concepts and procedures they are using and to provide good

reasons for what they are doing.  Classroom norms can be established in which

students are expected to justify their mathematical claims and make them

clear to others.  Students need to be able to justify and explain ideas in order

to make their reasoning clear, hone their reasoning skills, and improve their

conceptual understanding.39

It is not sufficient to justify a procedure just once.  As we discuss below,

the development of proficiency occurs over an extended period of time.  Stu-

dents need to use new concepts and procedures for some time and to explain

and justify them by relating them to concepts and procedures that they already

understand.  For example, it is not sufficient for students to do only practice

problems on adding fractions after the procedure has been developed.  If

students are to understand the algorithm, they also need experience in explain-

ing and justifying it themselves with many different problems.

Adaptive reasoning interacts with the other strands of proficiency, par-

ticularly during problem solving.  Learners draw on their strategic compe-

tence to formulate and represent a problem, using heuristic approaches that

may provide a solution strategy, but adaptive reasoning must take over when
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they are determining the legitimacy of a proposed strategy.  Conceptual under-

standing provides metaphors and representations that can serve as a source of

adaptive reasoning, which, taking into account the limitations of the repre-

sentations, learners use to determine whether a solution is justifiable and

then to justify it.  Often a solution strategy will require fluent use of proce-

dures for calculation, measurement, or display, but adaptive reasoning should

be used to determine whether the procedure is appropriate.  And while carry-

ing out a solution plan, learners use their strategic competence to monitor

their progress toward a solution and to generate alternative plans if the cur-

rent plan seems ineffective.  This approach both depends upon productive

disposition and supports it.

Productive Disposition

Productive disposition refers to the tendency to see sense in mathematics,

to perceive it as both useful and worthwhile, to believe that steady effort in

learning mathematics pays off, and to see oneself as an effective learner and

doer of mathematics.40   If students are to develop conceptual understanding,

procedural fluency, strategic competence, and adaptive reasoning abilities,

they must believe that mathematics is understandable, not arbitrary; that,

with diligent effort, it can be learned and used; and that they are capable of

figuring it out.  Developing a productive disposition requires frequent oppor-

tunities to make sense of mathematics, to recognize the benefits of persever-

ance, and to experience the rewards of sense making in mathematics.

A productive disposition develops when the other strands do and helps

each of them develop.  For example, as students build strategic competence

in solving nonroutine problems, their attitudes and beliefs about themselves

as mathematics learners become more positive.  The more mathematical con-

cepts they understand, the more sensible mathematics becomes.  In contrast,

when students are seldom given challenging mathematical problems to solve,

they come to expect that memorizing rather than sense making paves the

road to learning mathematics,41  and they begin to lose confidence in them-

selves as learners.  Similarly, when students see themselves as capable of

learning mathematics and using it to solve problems, they become able to

develop further their procedural fluency or their adaptive reasoning abilities.

Students’ disposition toward mathematics is a major factor in determining

their educational success.  Students who view their mathematical ability as

fixed and test questions as measuring their ability rather than providing oppor-

tunities to learn are likely to avoid challenging problems and be easily dis-
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couraged by failure.42   Students who view ability as expandable in response

to experience and training are more likely to seek out challenging situations

and learn from them.  Cross-cultural research studies have found that U.S.

children are more likely to attribute success in school to ability rather than

effort when compared with students in East Asian countries.43

Most U.S. children enter school eager to learn and with positive attitudes

toward mathematics.  It is critical that they encounter good mathematics teach-

ing in the early grades.  Otherwise, those positive attitudes may turn sour as

they come to see themselves as poor learners and mathematics as nonsensical,

arbitrary, and impossible to learn except by rote memorization.44   Such views,

once adopted, can be extremely difficult to change.45

The teacher of mathematics plays a critical role in encouraging students

to maintain positive attitudes toward mathematics.  How a teacher views math-

ematics and its learning affects that teacher’s teaching practice,46  which ulti-

mately affects not only what the students learn but how they view them-

selves as mathematics learners.  Teachers and students inevitably negotiate

among themselves the norms of conduct in the class, and when those norms

allow students to be comfortable in doing mathematics and sharing their ideas

with others, they see themselves as capable of understanding.47   In chapter 9

we discuss some of the ways in which teachers’ expectations and the teach-

ing strategies they use can help students maintain a positive attitude toward

mathematics, and in chapter 10 we discuss some programs of teacher devel-

opment that may help teachers in that endeavor.

An earlier report from the National Research Council identified the cause

of much poor performance in school mathematics in the United States:

The unrestricted power of peer pressure often makes good perfor-

mance in mathematics socially unacceptable.  This environment of

negative expectation is strongest among minorities and women—

those most at risk—during the high school years when students first

exercise choice in curricular goals.48

Some of the most important consequences of students’ failure to develop a

productive disposition toward mathematics occur in high school, when they

have the opportunity to avoid challenging mathematics courses.  Avoiding

such courses may eliminate the need to face up to peer pressure and other

sources of discouragement, but it does so at the expense of precluding ca-

reers in science, technology, medicine, and other fields that require a high

level of mathematical proficiency.
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Research with older students and adults suggests that a phenomenon

termed stereotype threat might account for much of the observed differences in

mathematics performance between ethnic groups and between male and

female students.49   In this phenomenon, good students who care about their

performance in mathematics and who belong to groups stereotyped as being

poor at mathematics perform poorly on difficult mathematics problems under

conditions in which they feel pressure to conform to the stereotype.  So-called

wise educational environments50  can reduce the harmful effects of stereo-

type threat.  These environments emphasize optimistic teacher-student rela-

tionships, give challenging work to all students, and stress the expandability

of ability, among other factors.

Students who have developed a productive disposition are confident in

their knowledge and ability.  They see that mathematics is both reasonable

and intelligible and believe that, with appropriate effort and experience, they

can learn.  It is counterproductive for students to believe that there is some

mysterious “math gene” that determines their success in mathematics.

Hence, our view of mathematical proficiency goes beyond being able to

understand, compute, solve, and reason.  It includes a disposition toward math-

ematics that is personal.  Mathematically proficient people believe that math-

ematics should make sense, that they can figure it out, that they can solve

mathematical problems by working hard on them, and that becoming math-

ematically proficient is worth the effort.

Properties of Mathematical Proficiency

Now that we have looked at each strand separately, let us consider math-

ematical proficiency as a whole.  As we indicated earlier and as the preceding

discussion illustrates, the five strands are interconnected and must work to-

gether if students are to learn successfully.  Learning is not an all-or-none

phenomenon, and as it proceeds, each strand of mathematical proficiency

should be developed in synchrony with the others.  That development takes

time.  One of the most challenging tasks faced by teachers in pre-kindergar-

ten to grade 8 is to see that children are making progress along every strand

and not just one or two.

The Strands of Proficiency Are Interwoven

How the strands of mathematical proficiency interweave and support one

another can be seen in the case of conceptual understanding and procedural

fluency.  Current research indicates that these two strands of proficiency con-
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tinually interact.51   As a child gains conceptual understanding, computational

procedures are remembered better and used more flexibly to solve new prob-

lems.  In turn, as a procedure becomes more automatic, the child is enabled

to think about other aspects of a problem and to tackle new kinds of prob-

lems, which leads to new understanding.  When using a procedure, a child

may reflect on why the procedure works, which may in turn strengthen exist-

ing conceptual understanding.52   Indeed, it is not always necessary, useful, or

even possible to distinguish concepts from procedures because understand-

ing and doing are interconnected in such complex ways.

Consider, for instance, the multiplication of multidigit whole numbers.

Many algorithms for computing 47 × 268 use one basic meaning of multipli-

cation as 47 groups of 268, together with place-value knowledge of 47 as 40 + 7,

to break the problem into two simpler ones: 40 × 268 and 7 × 268.  For example,

a common algorithm for computing 47 × 268 is written the following way,

with the two so-called partial products, 10720 and 1876, coming from the two

simpler problems:

268

×  47

1876

1072

12596

Familiarity with this algorithm may make it hard for adults to see how much

knowledge is needed for it.  It requires knowing that 40 × 268 is 4 × 10 × 268;

knowing that in the product of 268 and 10, each digit of 268 is one place to

the left; having enough fluency with basic multiplication combinations to

find 7 × 8, 7 × 60, 7 × 200, and 4 × 8, 4 × 60, 4 × 200; and having enough

fluency with multidigit addition to add the partial products.  As students learn

to execute a multidigit multiplication procedure such as this one, they should

develop a deeper understanding of multiplication and its properties.  On the

other hand, as they deepen their conceptual understanding, they should

become more fluent in computation.  A beginner who happens to forget the

algorithm but who understands the role of the distributive law can recon-

struct the process by writing 268 × 47 = 268 × (40 + 7) = (268 × 40) + (268 × 7)

and working from there.  A beginner who has simply memorized the algo-

rithm without understanding much about how it works can be lost later when

memory fails.
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Proficiency Is Not All or Nothing

Mathematical proficiency cannot be characterized as simply present or

absent.  Every important mathematical idea can be understood at many levels

and in many ways.  For example, even seemingly simple concepts such as

even and odd require an integration of several ways of thinking: choosing

alternate points on the number line, grouping items by twos, grouping items

into two groups, and looking at only the last digit of the number.  When chil-

dren are first learning about even and odd, they may know one or two of

these interpretations.53   But at an older age, a deep understanding of even

and odd means all four interpretations are connected and can be justified one

based on the others.

The research cited in chapter 5 shows that schoolchildren are never com-

plete mathematical novices.  They bring important mathematical concepts

and skills with them to school as well as misconceptions that must be taken

into account in planning instruction.  Obviously, a first grader’s understand-

ing of addition is not the same as that of a mathematician or even a lay adult.

It is still reasonable, however, to talk about a first grader as being proficient

with single-digit addition, as long as the student’s thinking in that realm in-

corporates all five strands of proficiency.  Students should not be thought of

as having proficiency when one or more strands are undeveloped.

Proficiency Develops Over Time

Proficiency in mathematics is acquired over time.  Each year they are in

school, students ought to become increasingly proficient.  For example, third

graders should be more proficient with the addition of whole numbers than

they were in the first grade.

Acquiring proficiency takes time in another sense.  Students need enough

time to engage in activities around a specific mathematical topic if they are to

become proficient with it.  When they are provided with only one or two

examples to illustrate why a procedure works or what a concept means and

then move on to practice in carrying out the procedure or identifying the

concept, they may easily fail to learn.  To become proficient, they need to

spend sustained periods of time doing mathematics—solving problems,

reasoning, developing understanding, practicing skills—and building connec-

tions between their previous knowledge and new knowledge.
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How Mathematically Proficient Are U.S.

Students Today?

One question that warrants an immediate answer is whether students in

U.S. elementary and middle schools today are becoming mathematically pro-

ficient.  The answer is important because it influences what might be recom-

mended for the future.  If students are failing to develop proficiency, the

question of how to improve school mathematics takes on a different cast than

if students are already developing high levels of proficiency.

The best source of information about student performance in the United

States is, as we noted in chapter 2, the National Assessment of Educational

Progress (NAEP), a regular assessment of students’ knowledge and skills in

the school subjects.  NAEP includes a large and representative sample of

U.S. students at about ages 9, 13, and 17, so the results provide a good picture

of students’ mathematical performance.  We sketched some of that perfor-

mance in chapter 2, but now we look at it through the frame of mathematical

proficiency.

Although the items in the NAEP assessments were not constructed to

measure directly the five strands of mathematical proficiency, they provide

some useful information about these strands.  As in chapter 2, the data re-

ported here are from the 1996 main NAEP assessment except when we refer

explicitly to the long-term trend assessment.  In general, the performance of

13-year-olds over the past 25 years tells the following story: Given traditional

curricula and methods of instruction, students develop proficiency among

the five strands in a very uneven way.  They are most proficient in aspects of

procedural fluency and less proficient in conceptual understanding, strategic

competence, adaptive reasoning, and productive disposition.  Many students

show few connections among these strands.  Examples from each strand il-

lustrate the current situation.54

Conceptual Understanding

Students’ conceptual understanding of number can be assessed in part

by asking them about properties of the number systems.  Although about

90% of U.S. 13-year-olds could add and subtract multidigit numbers, only

60% of them could construct a number given its digits and their place values

(e.g., in the number 57, the digit 5 should represent five tens).55   That is a

common finding: More students can calculate successfully with numbers than

can work with the properties of the same numbers.
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The same is true for rational numbers.  Only 35% of 13-year-olds cor-

rectly ordered three fractions, all in reduced form,56  and only 35%, asked for

a number between .03 and .04, chose the correct response.57   These findings

suggest that students may be calculating with numbers that they do not re-

ally understand.

Procedural Fluency

An overall picture of procedural fluency is provided by the NAEP long-

term trend mathematics assessment,58  which indicates that U.S. students’

performance has remained quite steady over the past 25 years (see Box 4-4).

A closer look reveals that the picture of procedural fluency is one of high

levels of proficiency in the easiest contexts.  Questions in which students are

asked to add or subtract two- and three-digit whole numbers presented nu-

merically in the standard format are answered correctly by about 90% of 13-

year-olds, with almost as good performance among 9-year-olds.59   Performance

is slightly lower among 13-year-olds for division.60

Box 4-4

NAEP Scale Scores, Long-Term Trend Assessment,

1973-1999

SOURCE:  Campbell, Hombo, and Mazzeo, 2000, p. 9.  These scale scores include

all content areas: number, geometry, algebra, and so on.

200

250

300

350

Age 17 304 300 298 302 305 307 306 307 308

Age 13 266 264 269 269 270 273 274 274 276

Age 9 219 219 219 222 230 230 231 231 232

1973 1978 1982 1986 1990 1992 1994 1996 1999
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Students are less fluent in operating with rational numbers, both com-

mon and decimal fractions.  The most recent NAEP in 1996 contained few

computation items, but earlier assessments showed that about 50% of 13-

year-olds correctly completed problems like 3 1
2
 – 3 1

3
, 4 × 2 1

2
, and 4.3 – 0.53.

Again, this level of performance has remained quite steady since the advent

of NAEP.  One conclusion that can be drawn is that by age 13 many students

have not fully developed procedural fluency.  Although most can compute

well with whole numbers in simple contexts, many still have difficulties com-

puting with rational numbers.

Strategic Competence

Results from NAEP dating back over 25 years have continually docu-

mented the fact that one of the greatest deficits in U.S. students’ learning of

mathematics is in their ability to solve problems.  In the 1996 NAEP, students

in the fourth, eighth, and twelfth grades did well on questions about basic

whole number operations and concepts in numerical and simple applied con-

texts.  However, students, especially those in the fourth and eighth grades,

had difficulty with more complex problem-solving situations.  For example,

asked to add or subtract two- and three-digit numbers, 73% of fourth graders

and 86% of eighth graders gave correct answers.  But on a multistep addition

and subtraction word problem involving similar numbers, only 33% of fourth

graders gave a correct answer (although 76% of eighth graders did).  On the

23 problem-solving tasks given as part of the 1996 NAEP in which students

had to construct an extended response, the incidence of satisfactory or better

responses was less than 10% on about half of the tasks.  The incidence of

satisfactory responses was greater than 25% on only two tasks.61

Performance on word problems declines dramatically when additional

features are included, such as more than one step or extraneous information.

Small changes in problem wording, context, or presentation can yield dramatic

changes in students’ success,62  perhaps indicating how fragile students’ prob-

lem-solving abilities typically are.

Adaptive Reasoning

Several kinds of items measure students’ proficiency in adaptive reason-

ing, though often in conjunction with other strands.  One kind of item asks

students to reason about numbers and their properties and also assesses their

conceptual understanding.  For example,
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If 49 + 83 = 132 is true, which of the following is true?

49 = 83 + 132

49 + 132 = 83

132 – 49 = 83

83 – 132 = 49

Only 61% of 13-year-olds chose the right answer, which again is considerably

lower than the percentage of students who can actually compute the result.

Another example is a multiple-choice problem in which students were

asked to estimate 12
13
 + 7

8
.  The choices were 1, 2, 19, and 21.  Fifty-five

percent of the 13-year-olds chose either 19 or 21 as the correct response.63

Even modest levels of reasoning should have prevented these errors.  Simply

observing that 12
13
 and 7

8
 are numbers less than one and that the sum of two

numbers less than one is less than two would have made it apparent that 19

and 21 were unreasonable answers.  This level of performance is especially

striking because this kind of reasoning does not require procedural fluency

plus additional proficiency.  In many ways it is less demanding than the com-

putational task and requires only that basic understanding and reasoning be

connected.  It is clear that for many students that connection is not being

made.

A second kind of item that measures adaptive reasoning is one that asks

students to justify and explain their solutions.  One such item (Box 4-5) re-

quired that students use subtraction and division to justify claims about the

population growth in two towns.  Only 1% of eighth graders in 1996 provided

a satisfactory response for both claims, and only another 21% provided a par-

tially correct response.  The results were only slightly better at grade 12.  In

this item, Darlene’s claim is stated somewhat cryptically, and students may

not have understood that they needed to think about population growth not

additively—as in the case of Brian’s claim—but multiplicatively so as to con-

clude that Town A actually had the larger rate of growth.  But given the low

levels of performance on the item, we conclude that Darlene’s enigmatic claim

was not the only source of difficulty.  Students apparently have trouble justi-

fying their answers even in relatively simple cases.

Productive Disposition

Research related to productive disposition has not examined many aspects

of the strand as we have defined it.  Such research has focused on attitudes
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In 1980 the populations of Town A and Town B were 5,000 and 6,000, respectively.

The 1990 populations of Town A and Town B were 8,000 and 9,000, respectively.

Brian claims that from 1980 to 1990 the populations of the two towns grew by

the same amount.  Use mathematics to explain how Brian might have justified

his claim.

Darlene claims that from 1980 to 1990 the population of Town A grew more.  Use

mathematics to explain how Darlene might have justified her claim.

NAEP Results Grade 8 Grade 12

Correct response for both claims 1% 3%

Partial response 21% 24%

Incorrect response 60% 56%

Omitted 16% 16%

SOURCE: 1996 NAEP assessment.  Cited in Wearne and Kouba, 2000, p. 186.

Used by permission of National Council of Teachers of Mathematics.

Box 4-5

Population Growth in Two Towns

toward mathematics, beliefs about one’s own ability, and beliefs about the

nature of mathematics.  In general, U.S. boys have more positive attitudes

toward mathematics than U.S. girls do, even though differences in achieve-

ment between boys and girls are, in general, not as pronounced today as they

were some decades ago.64   Girls’ attitudes toward mathematics also decline

more sharply through the grades than those of boys.65   Differences in math-

ematics achievement remain larger across groups that differ in such factors as

race, ethnicity, and social class, but differences in attitudes toward mathematics

across these groups are not clearly associated with achievement differences.66

The complex relationship between attitudes and achievement is well il-

lustrated in recent international studies.  Although within most countries,

positive attitudes toward mathematics are associated with high achievement,

eighth graders in some East Asian countries, whose average achievement in

mathematics is among the highest in the world, have tended to have, on

average, among the most negative attitudes toward mathematics.  U.S. eighth

Copyright © National Academy of Sciences. All rights reserved.



1414 THE STRANDS OF MATHEMATICAL PROFICIENCY

graders, whose achievement is around the international average, have tended

to be about average in their attitudes.67   Similarly, within a country, students

who perceive themselves as good at mathematics tend to have high levels of

achievement, but that relationship does not hold across countries.  In Asian

countries, perhaps because of cultural traditions encouraging humility or

because of the challenging curriculum they face, eighth graders tend to per-

ceive themselves as not very good at mathematics.  In the United States, in

contrast, eighth graders tend to believe that mathematics is not especially

difficult for them and that they are good at it.68

Data from the NAEP student questionnaire show that many U.S. stu-

dents develop a variety of counterproductive beliefs about mathematics and

about themselves as learners of mathematics.  For example, 54% of the fourth

graders and 40% of the eighth graders in the 1996 NAEP assessment thought

that mathematics is mostly a set of rules and that learning mathematics means

memorizing the rules.  On the other hand, approximately 75% of the fourth

graders and 75% of the eighth graders sampled reported that they understand

most of what goes on in mathematics class.  The data do not indicate, how-

ever, whether the students thought they could make sense out of the math-

ematics themselves or depended on others for explanations.

Despite the finding that many students associate mathematics with memo-

rization, students at all grade levels appear to view mathematics as useful.

The 1996 NAEP revealed that 69% of the fourth graders and 70% of the

eighth graders agreed that mathematics is useful for solving everyday prob-

lems.  Although students appear to think mathematics is useful for everyday

problems or important to society in general, it is not clear that they think it is

important for them as individuals to know a lot of mathematics.69

Proficiency in Other Domains of Mathematics

Although our discussion of mathematical proficiency in this report is

focused on the domain of number, the five strands apply equally well to other

domains of mathematics such as geometry, measurement, probability, and

statistics.  Regardless of the domain of mathematics, conceptual understand-

ing refers to an integrated and functional grasp of the mathematical ideas.

These may be ideas about shape and space, measure, pattern, function,

uncertainty, or change.  When applied to other domains of mathematics, pro-

cedural fluency refers to skill in performing flexibly, accurately, and efficiently

such procedures as constructing shapes, measuring space, computing prob-

abilities, and describing data.  It also refers to knowing when and how to use
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those procedures.  Strategic competence refers to the ability to formulate

mathematical problems, represent them, and solve them whether the prob-

lems arise in the context of number, algebra, geometry, measurement, prob-

ability, or statistics.  Similarly, the capacity to think logically about the rela-

tionships among concepts and situations and to reason adaptively applies to

every domain of mathematics, not just number, as does the notion of a pro-

ductive disposition.  The tendency to see sense in mathematics, to perceive

it as both useful and worthwhile, to believe that steady effort in learning

mathematics pays off, and to see oneself as an effective learner and doer of

mathematics applies equally to all domains of mathematics.  We believe that

proficiency in any domain of mathematics means the development of the

five strands, that the strands of proficiency are interwoven, and that they

develop over time.  Further, the strands are interwoven across domains of

mathematics in such a way that conceptual understanding in one domain, say

geometry, supports conceptual understanding in another, say number.

All Students Should Be

Mathematically Proficient

Becoming mathematically proficient is necessary and appropriate for all

students.  People sometimes assume that only the brightest students who are

the most attuned to school can achieve mathematical proficiency.  Those stu-

dents are the ones who have traditionally tended to achieve no matter what

kind of instruction they have encountered.  But perhaps surprisingly, it is

students who have historically been less successful in school who have the

most potential to benefit from instruction designed to achieve proficiency.70

All will benefit from a program in which mathematical proficiency is the goal.

Historically, the prevailing ethos in mathematics and mathematics edu-

cation in the United States has been that mathematics is a discipline for a

select group of learners.  The continuing failure of some groups to master

mathematics—including disproportionate numbers of minorities and poor

students—has served to confirm that assumption.  More recently, mathematics

educators have highlighted the universal aspects of mathematics and have

insisted on mathematics for all students, but with little attention to the dif-

ferential access that some students have to high-quality mathematics teach-

ing.71

One concern has been that too few girls, relative to boys, are developing

mathematical proficiency and continuing their study of mathematics.  That

situation appears to be improving, although perhaps not uniformly across
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grades.  The 1990 and 1992 NAEP assessments indicated that the few gen-

der differences in mathematics performance that did appear favored male

students at grade 12 but not before.  These differences were only partly

explained by the historical tendency of male students to take more high school

mathematics courses than female students do, since that gap had largely closed

by 1992.  In the 1996 NAEP mathematics assessment, the average scores for

male and female students were not significantly different at either grade 8 or

grade 12, but the average score for fourth-grade boys was 2% higher than the

score for fourth-grade girls.72

With regard to differences among racial and ethnic groups, the situation

is rather different.  The racial/ethnic diversity of the United States is much

greater now than at any previous period in history and promises to become

progressively more so for some time to come.  The strong connection be-

tween economic advantage, school funding, and achievement in the United

States has meant that groups of students whose mathematics achievement is

low have tended to be disproportionately African American, Hispanic, Native

American, students acquiring English, or students located in urban or rural

school districts.73   In the NAEP assessments from 1990 to 1996, white students

recorded increases in their average mathematics scores at all grades.  Over

the same period, African American and Hispanic students recorded increases

at grades 4 and 12, but not at grade 8.74   Scores for African American, His-

panic, and American Indian students remained below scale scores for white

students.  The mathematics achievement gaps between average scores for

these subgroups did not decrease in 1996.75   The gap appears to be widening

for African American students, particularly among students of the best-

educated parents, which suggests that the problem is not one solely of poverty

and disadvantage.76

Students identified as being of middle and high socioeconomic status

(SES) enter school with higher achievement levels in mathematics than low-

SES students, and students reporting higher levels of parental education tend

to have higher average scores on NAEP assessments.  At all three grades, in

contrast, students eligible for free or reduced-price lunch programs score lower

than those not eligible.77   Such SES-based differences in mathematics achieve-

ment are greater among whites than among other racial or ethnic groups.78

Some studies have suggested that the basis for the differences resides in the

opportunities available to students, including opportunities to attend effec-

tive schools,79  opportunities afforded by social and economic factors of the

home and school community,80  and opportunities to get encouragement to

continue the study of mathematics.81

Copyright © National Academy of Sciences. All rights reserved.



144 ADDING IT UP

Goals for mathematics instruction like those outlined in our discussion of

mathematical proficiency need to be set in full recognition of the differential

access students have to high-quality mathematics teaching and the differen-

tial performance they show.  Those goals should never be set low, however, in

the mistaken belief that some students do not need or cannot achieve profi-

ciency.  In this day of rapidly changing technologies, no one can anticipate all

the skills that students will need over their lifetimes or the problems they

will encounter.  Proficiency in mathematics is therefore an important founda-

tion for further instruction in mathematics as well as for further education in

fields that require mathematical competence.  Schools need to prepare stu-

dents to acquire new skills and knowledge and to adapt their knowledge to

solve new problems.

The currency of value in the job market today is more than computa-

tional competence.  It is the ability to apply knowledge to solve problems.82

For students to be able to compete in today’s and tomorrow’s economy, they

need to be able to adapt the knowledge they are acquiring.  They need to be

able to learn new concepts and skills.  They need to be able to apply math-

ematical reasoning to problems.  They need to view mathematics as a useful

tool that must constantly be sharpened.  In short, they need to be mathemati-

cally proficient.

Students who have learned only procedural skills and have little under-

standing of mathematics will have limited access to advanced schooling, better

jobs, and other opportunities.  If any group of students is deprived of the

opportunity to learn with understanding, they are condemned to second-class

status in society, or worse.

A Broader, Deeper View

Many people in the United States consider procedural fluency to be the

heart of the elementary school mathematics curriculum.  They remember

school mathematics as being devoted primarily to learning and practicing com-

putational procedures.  In this report, we present a much broader view of

elementary and middle school mathematics.  We also raise the standard for

success in learning mathematics and being able to use it.  In a significant and

fortuitous twist, raising the standard by requiring development across all five

strands of mathematical proficiency makes the development of any one strand

more feasible.  Because the strands interact and boost each other, students

who have opportunities to develop all strands of proficiency are more likely

to become truly competent with each.
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We conclude that during the past 25 years mathematics instruction in

U.S. schools has not sufficiently developed mathematical proficiency in the

sense we have defined it.  It has developed some procedural fluency, but it

clearly has not helped students develop the other strands very far, nor has it

helped them connect the strands.  Consequently, all strands have suffered.

In the next four chapters, we look again at students’ learning.  We consider

not just performance levels but also the nature of the learning process itself.

We describe what students are capable of, what the big obstacles are for them,

and what knowledge and intuition they have that might be helpful in design-

ing effective learning experiences.  This information, we believe, reveals how

to improve current efforts to help students become mathematically proficient.
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5

THE MATHEMATICAL KNOWLEDGE

CHILDREN BRING TO SCHOOL

Children begin learning mathematics well before they enter elementary

school.  Starting from infancy and continuing throughout the preschool period,

they develop a base of skills, concepts, and misconceptions about numbers

and mathematics.  The state of children’s mathematical development as they

begin school both determines what they must learn to achieve mathematical

proficiency and points toward how that proficiency can be acquired.

Chapter 4 laid out a framework for describing mathematical proficiency

in terms of a set of interwoven strands.  That framework is useful in thinking

about the skills and knowledge that children bring to school, as well as the

limitations of preschoolers’ mathematical competence.  Applying the frame-

work to research on preschoolers’ mathematical thinking also provides a good

example of the way in which the strands of proficiency are interwoven and

interdependent.  Preschoolers’ mathematical thinking rests on a combina-

tion of conceptual understanding, procedural fluency, strategic competence,

adaptive reasoning, and productive disposition.  During the last 25 years, devel-

opmental psychologists and mathematics educators have made substantial

progress in understanding the ways in which these strands interact.  In this

chapter we describe the current state of knowledge concerning the profi-

ciency that children bring to school, some of the factors that account for limi-

tations in their mathematical competence, and current understanding about

what can be done to ensure that all children enter school prepared for the

mathematical demands of formal education.
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Preschoolers’ Mathematical Proficiency

Conceptual Understanding

The most fundamental concept in elementary school mathematics is that

of number, specifically whole number.  To get a sense of both the difficulty of

the concept and how much of it is taken for granted, try to define what a

whole number is.

One common conception of whole number says that two sets have the

same numerosity (same number of members) if and only if each member of

one set can be paired with exactly one member of the other (with no members

left over from either set).  If one set has members left over after this pairing,

then that set has a greater numerosity (more items in it) than the other does.

This definition allows one to decide whether two sets have the same

number of items without knowing how many there are in either set.  The

Swiss psychologist Jean Piaget developed a task based in part on this defini-

tion that has been widely used to assess whether children understand the

critical importance of this one-to-one correspondence in defining numerosity.1

In this task, children are shown an array like the one below, which might

represent candies.  They are then asked a question like the following: Are

there more light candies, the same number of dark and light candies, or more

dark candies?

Most preschoolers recognize that the sets have the same amount of candy,

based on the one-to-one alignment of the individual pieces.  Next, the child

watches the experimenter spread out the items in one set, which alters the

spatial alignment of the pieces:

Shown this diagram, many children younger than 5 years assert that there

are more of whichever kind of candy is in the longer row (the light candies in

this example).  Piaget argued that a true understanding of number requires

an ability to reason about the effects of transformations that is beyond the

capacity of preschool children.  It was not uncommon several decades ago for

educators aware of Piaget’s findings and his claims to make assertions such as
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the following: “Children at different stages cannot learn the same content.

They cannot learn about number, for example, until they reach the concrete

operational stage [roughly ages 7 to 11, according to Piaget].”2

Research over the last 25 years, however, suggests that preschool chil-

dren in fact know quite a bit about number before they enter school.  Much

of that knowledge is tied up with their understanding of counting.  Even for

preschoolers, the act of counting a set of objects is not entirely a rote activity

but is guided by their mathematical understanding.

Counting and the Origins of the Number Concept

Babies show numerical competence almost from the day they are born,3

and some infants younger than six months have shown they can perform a

rudimentary kind of addition and subtraction.4   These abilities suggest that

number is a fundamental component of the world children know.  Whether

and how this early sensitivity to number affects later mathematical develop-

ment remains to be shown, but children enter the world prepared to notice

number as a feature of their environment.

Much of what preschool children know about number is bound up in

their developing understanding and mastery of counting.  Counting a set of

objects is a complex task involving thinking, perception, and movement, with

much of its complexity obscured by familiarity.  Consider what you need to

do to count a set of objects: The items to be counted must be identified and

distinguished from items not to be counted, as well as from those that have

already been counted.  Items are counted by pairing each one with some sort

of verbal representation (typically a number name).  An indicating act is needed

that pairs each object in space with a word said in time.  Finally, you need to

understand that counting results in a number that represents how many things

are in the set that was counted.

Competent counting requires mastery of a symbolic system, facility with

a complicated set of procedures that require pointing at objects and designat-

ing them with symbols, and understanding that some aspects of counting are

merely conventional, while others lie at the heart of its mathematical useful-

ness.  We discuss issues related to competent counting, including the learn-

ing of number names, in the section on procedural fluency below.  In this

section, we discuss children’s understanding of the conceptual aspects of count-

ing.  This separation is somewhat artificial because counting is a good ex-

ample of the way in which the different strands of mathematical proficiency

are interwoven.

Preschool

children

in fact

know quite

a bit about

number

before they

enter school.
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As children learn to count, their thinking changes in a way that shapes

their concept of number.  Counting is not simply reciting the number word

sequence.  There must be items to count; and there must be a procedure to

make each utterance of a number word correspond with one of the items to

be counted.5   At first, these items are perceptual; they might be, for example,

beads, marbles, fingers, taps, steps, or drumbeats.  The child must not only

be able to perceive the items but also to conceive of them as individual things

to be counted.  Later, children become able to count sets of things (e.g., “how

many different colors of buttons are there?”) as well as items that may not be

readily perceivable.6   The counter must always create a mental representa-

tion of the items that are counted.  This process of creation is clearly demon-

strated when a child appears to count specific items in a situation where no

such items are visible, audible, or tangible.  Counting in the absence of per-

ceivable objects is the culmination of a rather intricate developmental process.

The process includes the progressive development of an ability to create unit

items to be counted, first on the basis of conscious perception of external

objects and then on the basis of internal representations.7

Early research on children’s understanding of the mathematical basis for

counting focused on five principles their thinking must follow if their count-

ing is to be mathematically useful:8

1. One-to-one: there must be a one-to-one relation between counting

words and objects;

2. Stable order (of the counting words): these counting words must be

recited in a consistent, reproducible order;

3. Cardinal: the last counting word spoken indicates how many objects

are in the set as a whole (rather than being a property of a particular object in

the set);

4. Abstraction: any kinds of objects can be collected together for pur-

poses of a count; and

5. Order irrelevance (for the objects counted): objects can be counted in

any sequence without altering the outcome.

The first three principles define rules for how one ought to go about count-

ing; the last two define circumstances under which such counting procedures

should apply.
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Understanding Counting and Mastering It

The relation between children’s conceptual understanding of counting

and their mastery of conventional counting remains controversial.  According

to one viewpoint,9  children’s emerging understanding of these counting

principles organizes and motivates their acquisition of conventional counting

procedures.  Other studies indicate that much of children’s conceptual under-

standing of counting follows (and may be based on) an initial mastery of con-

ventional counting procedures.10   An intermediate view is that conceptual

and procedural knowledge of counting develop interactively, with small

changes in one contributing to small changes in the other.11

One reason it has been hard to resolve contrasting claims about how chil-

dren come to understand the conceptual basis for counting is that preschoolers’

performance when they count is often quite variable, as it is with most other

tasks.12   The many errors preschoolers make when counting could indicate

that they fail to understand the importance of the counting principles.  The

variability of their performance makes fundamentally ambiguous the task of

inferring their knowledge of principles from their behavior.  A child’s diffi-

culty in managing the complex processes involved in counting could mask a

real understanding of its conceptual basis.

One way of circumventing the ambiguity of children’s counting behavior

involves asking them to judge the adequacy someone else’s counting rather

than perform the activity themselves.  For example, asked to judge the accu-

racy of counting by a puppet who counted either correctly, incorrectly, or

unconventionally (e.g., starting from an unusual starting point but counting

all of a set of items), 3- to 5-year-olds demonstrated very good performance.

Three-year-olds showed perfect acceptance of correct counting, 96% accep-

tance of unconventional but correct counting, and 67% rejection of real errors.

Four-year-olds were better than 3-year-olds at rejecting true errors.13

Presented with a larger set of counting strategies to judge, children in a

later study did not perform quite as well.14   In fact, 3-year-olds’ acceptance of

unconventional correct counting was actually higher than that of 4-year-olds,

suggesting that some of the acceptance of unconventional correct counting

came from a blanket acceptance of the puppet’s performance.  Finally, and

most relevant to the relation between counting skill and judgment of another’s

counting, the only children who failed to meet a criterion of 75% correct in

rejecting the puppet’s counting errors also failed to meet the same criterion

in their own counting.  Thus, children’s own counting activity might form the

basis for their judgments of what constitutes successful counting.
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There are also important limits on children’s ability to use counting in

problem solving.  Several studies have found that children 3 years and younger

have a great deal of difficulty in using counting to produce sets of a given

numerosity, even when that numerosity is well within their counting range.15

Taken as a whole, these studies indicate that variations in the context in

which children are asked to judge another’s counting can have a great effect

on their acceptance of deviations from conventional counting and of errors

that violate the counting principles.  The ability of young preschool children

to follow counting principles in their own counting and to focus on them in

evaluating the counting of others is also quite vulnerable to situational

variations.16

The controversy about the relation between how understanding of count-

ing principles develops and how conventional counting ability is acquired

echoes issues that emerge throughout children’s later mathematics learning.

Nevertheless, two points are clear.  First, both aspects of counting are impor-

tant developmental acquisitions.  Second, by the time they enter kindergarten,

most U.S. children understand the rules that underlie counting, can perform

conventional counting correctly with sets of objects greater than 10, and can

use counting to solve some simple mathematical problems.

Procedural Fluency

Procedural fluency refers to the ability to perform procedures flexibly,

accurately, and efficiently.  As we noted in Chapter 4, procedural fluency

makes it possible for children to use mathematics reliably to solve problems

and generate examples to test their mathematical ideas.

Procedural Fluency and Counting

In the case of counting, the difficulties young children have in fluently

performing the complex activities required to count a set of objects accu-

rately are a major obstacle to their mathematical development.  For example,

when asked to count increasingly longer row of up to 30 objects, 90% of 3
1
2
-

to 4 1
2
-year-olds made some kind of violation of the one-to-one correspon-

dence between pointing and objects or between pointing and saying the num-

ber words, although these errors were made on only 6% of the sets of objects

counted.17   Directives to “try hard” or “be careful” decreased errors sub-

stantially.  Thus, effort and concentration are important aspects of accurate

counting.
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The difficulty preschoolers have in coordinating the process of keeping

track of objects and counting them seems to be a universal characteristic of

learning to count, with children in different cultures showing comparable rates

of recounting or skipping objects.18   Large differences across languages have

been found in a second key aspect of procedural fluency in the preschool

period, the mastery of the set of number names used in the child’s native

language.

Language and Early Mathematical Development

One aspect of counting that preschool children find particularly difficult

is learning the number names.  Learning a list of number names up to 100 is

a challenging task for young children.  Furthermore, the structure of the

number names in a language is a major influence on the difficulties children

have in learning to count correctly.  These difficulties have important impli-

cations for the initial learning of mathematics in elementary school.

The number names used in a language provide children with a readymade

representation for number.  Counting principles are universal and so do not

differ between languages, but number names do differ in sound and struc-

ture across languages and influence children’s learning to count.

Linguistic structure of number names. Names for numbers

have been generated according to a bewildering variety of systems.19   The

Hindu-Arabic system for representing the whole numbers is clearly a base-10

system, with 10 basic symbols (the digits 0–9).  These may be freely com-

bined, with the place of a digit indicating the power of 10 that it represents.20

The Hindu-Arabic system is a useful reference point in describing number-

naming schemes for two reasons.  First, it is a widely used system for writing

numbers.  Second, it is as consistent and concise as a base-10 system could

be.

Box 5-1 shows how spoken names for numbers are formed in three

languages: English, Spanish, and Chinese.  All of these languages use a base-10

system, but the languages differ in the clarity and consistency with which the

base-10 structure is reflected in the number names.

As the first section of the figure shows, representations for numbers from

1 to 9 consist of an unsystematically organized list.  There is no way to predict

that 5 or five or wu come after 4, four, and si, respectively, in the Arabic numeral,

English, and Chinese systems.
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Box 5-1

Number Names in Chinese, English, and Spanish

a. One to ten

Arabic numeral 1 2 3 4 5

Chinese (spoken) yi er san si wu

English one two three four five

Spanish uno dos tres cuatro cinco

b. Eleven to twenty

Arabic numeral 11 12 13 14 15

Chinese (spoken) shi yi shi er shi san shi si shi wu

English eleven twelve thirteen fourteen fifteen

Spanish once doce trece catorce quince

c. Twenty to ninety-nine

Language Rule

Chinese (spoken) Decade name (unit name + shi) + unit name

English Decade name [(twen, thir, for, fif, six, seven, eight, nine)

+ -ty] + unit name

Spanish Decade name (veinte, treinta, cuarenta, cincuenta,

sesenta, setenta, ochenta, noventa) + and (y) + unit name
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1655 THE MATHEMATICAL KNOWLEDGE CHILDREN BRING TO SCHOOL

6 7 8 9 10

liu qi ba jiu shi

six seven eight nine ten

seis siete ocho nueve diez

16 17 18 19 20

shi liu shi qi shi ba shi jiu er shi

sixteen seventeen eighteen nineteen twenty

diez y seis diez y siete diez y ocho diez y nueve veinte

Example

san  shi  qi

thirty-seven

trenta y siete
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Names for numbers above 10 diverge in interesting ways among these

different languages, as the second part of Box 5-1 demonstrates.  The Chinese

number-naming system maps directly onto the Hindu-Arabic number system

used to write numerals.  For example, a word-for-word translation of shi qi

(17) into English produces ten-seven.  English has unpredictable names for 11

and 12 that bear only a historical relation to one and two.21   Whether the bound-

ary between 10 and 11 is marked in some way can be very significant because

this boundary can offer the first clue that number names are organized accord-

ing to a base-10 system.  The English names for numbers in the teens beyond

12 do have an internal structure, but it is obscured by phonetic modifications

of many of the elements used in the first 10 numbers (e.g., ten becomes -teen,

three becomes thir-, and five becomes fif-).  Furthermore, the order of word

formation reverses the place value, unlike the Hindu-Arabic and Chinese

systems (and the English system above 20), naming the smaller value before

the larger value.  Spanish follows the same basic pattern for English to begin

the teens, although there may be a clearer parallel between uno, dos, tres and

once, doce, trece than between one, two, three and eleven, twelve, thirteen.  The

biggest difference between Spanish and English is that after 15 the number

names in Spanish abruptly take on a different structure.  Thus the name for

16 in Spanish, diez y seis (literally ten and six), follows the same basic structure

as Arabic numerals and Chinese number names (starting with the tens value

and then naming the ones value), rather than the structures of the number

names in English from 13 to 19 and the names in Spanish from 11 to 15 (start-

ing with the ones value and then naming the tens value).

Above 20, all these number-naming systems converge on the Chinese

structure of naming the larger value before the smaller one.  Despite this

convergence, the systems continue to differ in the clarity of the connection

between the decade names and the corresponding unit values.  Chinese

numbers are consistent in forming decade names by combining a unit value

and the base (ten).  Decade names in English and Spanish generally can be

derived from the name for the corresponding unit value, with varying degrees

of phonetic modification (e.g., five becomes fif- in English, cinco becomes

cincuenta in Spanish) and with some notable exceptions, primarily the special

name for 20 used in Spanish.

Psychological consequences of number names. Although

all the number-naming systems being reviewed are essentially base-10

systems, they differ in the consistency and transparency with which that struc-

ture is reflected in the number names.  Several studies comparing English-
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and Chinese-speaking children demonstrate that the organization of number

names does indeed play a significant role in mediating children’s mastery of

this symbolic system.22   These studies have reported that (a) differences in

performance on counting-related tasks do not emerge until children in both

the United States and China begin learning the second decade of number

names, sometime between 3 and 4 years of age; (b) those differences are

generally limited to the verbal aspect of counting, rather than affecting

children’s ability to use counting in problem solving or their understanding of

basic counting principles; and (c) differences in the patterns of mistakes that

children make in learning to count reflect the structure of the systems they

are learning.

Research on children’s acquisition of number names suggests that U.S.

children learn to recite the list of English number names through at least the

teens as essentially a rote-learning task,23  though occasional errors such as

“fiveteen” suggest that some children notice the structure of the counting

words for 13 through 19 that is partially obscured by linguistic modifications.24

When first counting above 20, American preschoolers often produce idio-

syncratic number names, indicating that they fail to understand the base-10

structure underlying larger number names; for instance, they might count

“twenty-eight, twenty-nine, twenty-ten, twenty-eleven, twenty-twelve.”  This

kind of mistake is extremely rare for Chinese children and indicates that the

base-10 structure of number names is more accessible for learners of Chinese

than it is for children learning to count in English.

The relative complexity of English number names has other cognitive

consequences.  Speakers of English and other European languages face a

complex task in learning to write Arabic numerals, one that is more difficult

than that faced by speakers of Chinese.25   (For example, compare the map-

ping between name and numeral for twenty-four with that for fourteen in the

two languages.)  Speakers of languages whose number names are patterned

after Chinese (including Korean and Japanese) are better able than speakers

of English and other European languages to represent numbers using base-

10 blocks and to perform other place-value tasks.26   Because school arith-

metic algorithms are largely structured around place value, the finding of a

relationship between the complexity of number names and the ease with

which children learn to count has important educational implications.

When learning to count, children must acquire a combination of conven-

tional knowledge of number names, conceptual understanding of the math-

ematical principles that underlie counting, and ability to apply that knowledge

in solving mathematical problems.  Language differences during preschool
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appear to be limited to the first aspect of learning to count.  In one study, for

example, Chinese and American preschoolers did not differ in the extent to

which they violated the previously discussed counting principles or in their

ability to use counting to produce sets of a given size in the course of a game.27

The effects of differences in number name structure on children’s early math-

ematical development appear to be very specific to those aspects of math-

ematics that require the learning and use of these symbol systems.  Never-

theless, these effects have implications for learning Arabic numerals and thus

for understanding the principal symbol system used in school mathematics.

As with other aspects of mathematics, counting requires combining a

conceptual understanding of the nature of number with a fluent mastery of

procedures that allow one to determine how many objects there are.  When

children can count consistently to figure out how many objects there are,

they are ready to use counting to solve problems.  It also helps support their

learning of conventional arithmetic procedures, such as those involved in com-

putation with whole numbers.

Preschool children bring a variety of procedures to the task of learning

simple arithmetic.  Most of these procedures begin with strategic application

of counting to arithmetic situations, and they are described in the next section.

As with the distinction between conceptual understanding and procedural

fluency, this categorization is somewhat arbitrary, but it provides a good

example of how children can build on procedures such as counting in extend-

ing their mathematical competence to include new concepts and procedures.

Strategic Competence

Strategic competence refers to the ability to formulate mathematical prob-

lems, represent them, and solve them.  An important feature of mathematical

development is the way in which situations that involve extended problem

solving at one point can later be handled fluently with known procedures.

Simple arithmetic tasks provide a good example.  Most preschoolers show

that they can understand and perform simple addition and subtraction by at

least 3 years of age, often by modeling with real objects or thinking about sets

of objects.  In one study, children were presented with a set of objects of a

given size that were then hidden in a box, followed by another set of objects

that were also placed in the box.28   The children were asked to produce a set

of objects corresponding to the total number contained in the box.  The

majority of children around age 3 were able to solve such problems when

they involved adding and subtracting a single item, although their perfor-

mance decreased quickly as the size of the second set increased.
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Preschool arithmetic: A wealth of strategies. Much

research has described the diversity of strategies that children show in per-

forming simple arithmetic, from preschool well into elementary school.29   Strat-

egies for solving a problem such as “What is 3 + 5?” include counting all (“1,

2, 3, . . . 4, 5, 6, 7, 8”), counting on from the larger addend (“5, . . . 6, 7, 8”),

deriving the sum (“3 + 5 is like 4 + 4, so it’s 8”), and recall.  Some children will

model the problem using available object or fingers; others will do it verbally.

(These strategies are discussed in detail in Chapter 6.)

Kindergartners use all of these strategies, and second graders use all of

them except for counting all.30   What changes with age is the distribution of

strategies, not the use of completely new ones.  When 5-year-olds were given

four individual sessions over 11 weeks in which they solved more than 100

addition problems, most of them discovered the counting-on-from-larger

strategy, which saves effort by requiring them to do less counting.31   The

children typically first identified this strategy when they were working with

small numbers, where it does not save much effort.  They then were most

likely to apply it to problems (e.g., “What is 2 + 9?”) in which it makes a big

difference in the amount of work needed.

The diversity of strategies that children show in early arithmetic is a fea-

ture of their later mathematical development as well.  In some circumstances

the number of different strategies children show predicts their later learn-

ing.32   The fact that children are inventing their own diverse strategies for

doing arithmetic creates its own educational issues, however, as teachers need

to be able to help children understand why some strategies work and others

do not and to help them move on to advanced strategies.

Solving word problems. Young children are able to make sense of

the relationships between quantities and to come up with appropriate count-

ing strategies when asked to solve simple word, or story, problems.  Word

problems are often thought to be more difficult than simple number sentences

or equations.  Young children, however, find them easier.  If the problems

pose simple relationships and are phrased clearly, preschool and kindergarten

children can solve word problems involving addition, subtraction, multiplica-

tion, or division.33   Young children are extremely sensitive to context, how-

ever, so the way in which the problem is posed can make a big difference in

their performance.  For example, if a picture of five birds and four worms is

shown to preschoolers, most of them can answer the following: “Suppose the

birds all race over and each one tries to get a worm.  Will every bird get a

worm?  How many birds won’t get a worm?”  But fewer of them can answer

the question, “How many more birds than worms are there?”34

Copyright © National Academy of Sciences. All rights reserved.



170 ADDING IT UP

In addition to using counting to solve simple arithmetic problems, pre-

school children show understanding at an early age that written marks on

paper can preserve and communicate information about quantity.35   For

example, 3- and 4-year-olds can invent informal marks on paper, such as tally

marks and diagrams, to show how many objects are in a set.  But they are less

able to represent changes in sets or relationships between sets, in part because

they fail to realize that the order of their actions is not automatically pre-

served on paper.

Adaptive Reasoning

Adaptive reasoning refers to the capacity to think logically about the rela-

tionships among concepts and situations and to justify and ultimately prove

the correctness of a mathematical procedure or assertion.  Adaptive reasoning

also includes reasoning based on pattern, analogy, or metaphor.  Research

suggests that young children are able to display reasoning ability if they have

a sufficient knowledge base, if the task is understandable and motivating,

and if the context is familiar and comfortable.36   In particular, preschool chil-

dren can generate solutions to problems and can explain their thinking.

Situations that require preschoolers to use their mathematical concepts

and procedures in unconventional ways often cause them difficulty.  For

example, when preschool children are asked to count features of objects (e.g.,

the tines of forks) or subsets of objects (e.g., just the red buttons in a mixed

set), they often cannot overcome their tendency to count all the separate

objects.37

Another example of the limitations on preschoolers’ ability to generalize

their mathematics is that they perform better in situations that require them

to think about adding or subtracting actual objects (even if those objects are

hidden from view in a box) than they do when simply asked an equivalent

question (e.g., “What’s 3 and 5?”).38   Four- and 5-year-olds do begin to use

their knowledge to answer correctly the Piagetian number task presented

above involving equivalent sets of candies, and later they recognize without

counting that the sets have the same number of candies.39

Most preschool children enter school with an initial understanding of pro-

cedures (e.g., counting, addition, subtraction) that forms the basis for much

of their later mathematics learning, although they have limited ability to gener-

alize that knowledge and to understand its importance.  A major challenge of

formal education is to build on the initial and often fragile understanding that

children bring to school and to make it more reliable, flexible, and general.40
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Productive Disposition

In addition to the concepts and skills that underlie mathematical profi-

ciency, children who are successful in mathematics have a set of attitudes and

beliefs that support their learning.  They see mathematics as a meaningful,

interesting, and worthwhile activity; believe that they are capable of learning

it; and are motivated to put in the effort required to learn.  Reports on the

attitudes of preschoolers toward learning in general and learning mathematics

in particular suggest that most children enter school eager to become compe-

tent at mathematics.  In a survey that examined a number of personality and

motivational features relevant to success in mathematics, teachers and parents

reported that kindergarteners have high levels of persistence and eagerness

to learn (although teachers differed in their perceptions of children from dif-

ferent ethnic groups, as we discuss below).41   Children enter school viewing

mathematics as important and themselves as being competent to master it.

In one study, first graders rated their interest in mathematics on average at

approximately 6 on a scale from 1 to 7 (with 7 being the highest).42   Children

gave similar ratings to their competence in mathematics, with boys giving

somewhat higher ratings for their mathematics competence than girls did,

the opposite of the pattern for reading.

One important factor in attaining a productive disposition toward math-

ematics and maintaining the motivation required to learn it is the extent to

which children perceive achievement as the product of effort as opposed to

fixed ability.  Extensive research in the learning of mathematics and other

domains has shown that children who attribute success to a relatively fixed

ability are likely to approach new tasks with a performance rather than a learn-

ing orientation, which causes them to show less interest in putting themselves

in challenging situations that result in them (at least initially) performing

poorly.43   Preschoolers generally enter school with a learning orientation, but

already by first grade a sizable minority react to criticism of their performance

by inferring that they are not smart rather than that they just need to work

harder.44

Most preschoolers enter school interested in mathematics and motivated

to learn it.  The challenge to parents and educators is to help them maintain

a productive disposition toward mathematics as they develop the other strands

of their mathematical proficiency.
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Limitations of Preschoolers’ Mathematical Proficiency

In some circumstances, preschool children show impressive mathematical

abilities that can provide the basis for their later learning of school mathematics.

These abilities are, however, limited in a number of important ways.

One of the most important limitations is that much of preschoolers’ under-

standing of number is constrained to sets of a certain size.  Because the algo-

rithms that preschoolers develop are based on counting and on their experience

with sets of objects, they do not generalize to larger numbers.  For example,

preschool children can show a mastery of the concepts of addition and sub-

traction for very small numbers.45   But being able to predict the results of

adding one to a number does not imply that children will be able to predict

the results of adding two to the same number.  This limitation is an important

feature of preschool mathematical thinking and is an important way in which

preschool mathematical proficiency differs from adult proficiency.

Another important limitation is that preschoolers’ thinking about arith-

metic is influenced heavily by the context of the problem.  As stated above,

the way in which a word problem is phrased can be the difference between

success and failure.  Furthermore, if children succeed, the strategy they use

is a direct model of the story; they, in effect, act out the story to find the

answer.  They will need to make several advances in development before

they realize that a few basic counting strategies can be used to solve a wide

variety of word problems, that stories can be represented by written number

sentences of the form a + b = c or a – b = c, and that many different stories can

be represented by the same sentence.

Equity and Remediation

Most U.S. children enter school with mathematical abilities that provide

a strong base for formal instruction in mathematics.  These abilities include

understanding the magnitudes of small numbers, being able to count and to

use counting to solve simple mathematical problems, and understanding many

of the basic concepts underlying measurement.  For example, a large survey

of U.S. kindergartners found that 94% of first-time kindergartners passed their

Level 1 test (counting to 10 and recognizing numerals and shapes) and 58%

passed their Level 2 test (reading numerals, counting beyond 10, sequencing

patterns, and using nonstandard units of length to compare objects).46

A number of children, however, particularly those from low socioeconomic

groups, enter school with specific gaps in their mathematical proficiency.  For

example, the survey of kindergartners found that while 79% of children whose
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mother had a bachelor’s degree passed the Level 2 test described above, only

32% of those whose mother had less than a high school degree could do so.47

The same survey found large differences between ethnic groups on the more

difficult tests (but not on the Level 1 tasks) with 70% of Asian and 66% of

non-Hispanic white children passing the Level 2 tasks, but only 42% of African

American, 44% of Hispanic, 48% of Hawaiian Native or Pacific Islander, and

34% of American Indian or Alaska Native participants doing so.48   Other

research has shown that children from lower socioeconomic backgrounds have

particular difficulty understanding the relative magnitudes of single-digit

whole numbers49  and solving addition and subtraction problems verbally rather

than using objects.50   Overall, the research shows that poor and minority chil-

dren entering school do possess some informal mathematical abilities but that

many of these abilities have developed at a slower rate than in middle-class

children.51   This immaturity of their mathematical development may account

for the problems poor and minority children have understanding the basis for

simple arithmetic and solving simple word problems.52

Several promising approaches have been developed to deal with this

developmental immaturity in mathematical knowledge.  For example, the

Rightstart program consists of a set of games and number-line activities aimed

at providing children needing remedial assistance with an understanding of

the relative magnitudes of numbers.  Twenty minutes a day over a three- to

four-month period in kindergarten was successful in bringing these children’s

mathematical knowledge up to a level commensurate with their peers, gains

that persisted through the end of first grade.53

Another intervention is aimed at ensuring that Latino children under-

stand the base-10 structure of number names, something that, as noted above,

U.S. children in general find confusing.54   Performance at the end of a year-

long intervention was at levels comparable to those reported for Asian children

and substantially above those typically reported for nonminority children.

Taken together, these results suggest that relatively simple interventions may

yield substantial payoffs in ensuring that all children enter or leave first grade

ready to profit from mathematics instruction.

The kindergarten survey cited above reported smaller ethnic differences

in factors related to productive disposition (persistence, eagerness to learn,

and ability to pay attention) than in mathematical knowledge.  There were,

however, some noteworthy differences between the reports of teachers and

parents for different ethnic groups.  Parents reported high levels of eagerness

to learn (e.g., 93% for non-Hispanic whites, 90% for non-Hispanic African

Americans, and 90% for Hispanics), but teachers differed in their judgments
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of eagerness (judging 78% of non-Hispanic whites, 66% of non-Hispanic

African Americans, and 70% of Hispanics as eager to learn).  Teachers and

parents are, of course, judging children against different comparison groups,

but the data at least raise the possibility that kindergarten teachers may be

underestimating the eagerness of their students to learn mathematics.

Preschool Children’s Proficiency

For preschool children, the strands of mathematical proficiency are par-

ticularly closely intertwined.  Although their conceptual understanding is lim-

ited, as their understanding of number emerges they become able to count

and solve simple problems.  It is only when they move beyond what they

informally understand—to the base-10 system for teens and larger numbers,

for example—that their fluency and strategic competencies falter.  Young

children also show a remarkable ability to formulate, represent, and solve

simple mathematical problems and to reason and explain their mathematical

activities.  The desire to quantify the world around them seems to be a natu-

ral one for young children.  They are positively disposed to do and under-

stand mathematics when they first encounter it.

Most U.S. children enter school with a basic understanding of number

and number concepts that can form the foundation for learning school math-

ematics, but their knowledge is limited in some very important ways.  Pre-

school children generally show a much more sophisticated understanding of

small numbers than they do of larger numbers.  They also have a great deal of

difficulty in moving from the number names in languages such as English

and Spanish to understanding the base-10 structure of number names and

mastering the Arabic numerals used in school mathematics.  Furthermore,

not all children enter school with the intuitive understanding of number

described above and assumed by the elementary school curriculum.  Recent

research suggests that effective methods exist for providing this basic under-

standing of number.
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6

DEVELOPING PROFICIENCY

WITH WHOLE NUMBERS

Whole numbers are the easiest numbers to understand and use.  As we

described in the previous chapter, most children learn to count at a young age

and understand many of the principles of number on which counting is based.

Even if children begin school with an unusually limited facility with number,

intensive instructional activities can be designed to help them reach similar

levels as their peers.1   Children’s facility with counting provides a basis for

them to solve simple addition, subtraction, multiplication, and division prob-

lems with whole numbers.  Although there still is much for them to work out

during the first few years of school, children begin with substantial knowl-

edge on which they can build.

In this chapter, we examine the development of proficiency with whole

numbers.  We show that students move from methods of solving numerical

problems that are intuitive, concrete, and based on modeling the problem

situation directly to methods that are more problem independent, mathemati-

cally sophisticated, and reliant on standard symbolic notation.  Some form of

this progression is seen in each operation for both single-digit and multidigit

numbers.

We focus on computation with whole numbers because learning to

compute can provide young children the opportunity to work through many

number concepts and to integrate the five strands of mathematical proficiency.

This learning can provide the foundation for their later mathematical devel-

opment.  Computation with whole numbers occupies much of the curricu-

lum in the early grades, and appropriate learning experiences in these grades

improve children’s chances for later success.
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Whole number computation also provides an instructive example of how

routine-appearing procedural skills can be intertwined with the other strands

of proficiency to increase the fluency with which the skills are used.  For

years, learning to compute has been viewed as a matter of following the

teacher’s directions and practicing until speedy execution is achieved.  Changes

in career demands and the tasks of daily life, as well as the availability of new

computing tools, mean that more is now demanded from the study of compu-

tation.  More than just a means to produce answers, computation is increas-

ingly seen as a window on the deep structure of the number system.  Fortu-

nately, research is demonstrating that both skilled performance and conceptual

understanding are generated by the same kinds of activities.  No tradeoffs are

needed.  As we detail below, the activities that provide this powerful result

are those that integrate the strands of proficiency.

Operations with Single-Digit Whole Numbers

As students begin school, much of their number activity is designed to

help them become proficient with single-digit arithmetic.  By single-digit arith-

metic, we mean the sums and products of single-digit numbers and their

companion differences and quotients (e.g., 5 + 7 = 12, 12 – 5 = 7, 12 – 7 = 5

and 5 × 7 = 35, 35 ÷ 5 = 7, 35 ÷ 7 = 5).  For most of a century, learning single-

digit arithmetic has been characterized in the United States as “learning ba-

sic facts,” and the emphasis has been on memorizing those facts.  We use the

term basic number combinations to emphasize that the knowledge is relational

and need not be memorized mechanically.  Adults and “expert” children use

a variety of strategies, including automatic or semiautomatic rules and

reasoning processes to efficiently produce the basic number combinations.2

Relational knowledge, such as knowledge of commutativity, not only pro-

motes learning the basic number combinations but also may underlie or affect

the mental representation of this basic knowledge.3

The domain of early number, including children’s initial learning of single-

digit arithmetic, is undoubtedly the most thoroughly investigated area of school

mathematics.  A large body of research now exists about how children in many

countries actually learn single-digit operations with whole numbers.  Although

some educators once believed that children memorize their “basic facts” as

conditioned responses, research shows that children do not move from know-

ing nothing about the sums and differences of numbers to having the basic

number combinations memorized.  Instead, they move through a series of

progressively more advanced and abstract methods for working out the answers
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to simple arithmetic problems.  Furthermore, as children get older, they use

the procedures more and more efficiently.4   Recent evidence indicates children

can use such procedures quite quickly.5   Not all children follow the same

path, but all children develop some intermediate and temporary procedures.

Most children continue to use those procedures occasionally and for some

computations.  Recall eventually becomes the predominant method for some

children, but current research methods cannot adequately distinguish between

answers produced by recall and those generated by fast (nonrecall) proce-

dures.  This chapter describes the complex processes by which children learn

to compute with whole numbers.  Because the research on whole numbers

reveals how much can be understood about children’s mathematical develop-

ment through sustained and interdisciplinary inquiry, we give more details in

this chapter than in subsequent chapters.

Word Problems: A Meaningful Context

One of the most meaningful contexts in which young children begin to

develop proficiency with whole numbers is provided by so-called word prob-

lems.  This assertion probably comes as a surprise to many, especially math-

ematics teachers in middle and secondary school whose students have spe-

cial difficulties with such problems.  But extensive research shows that if

children can count, they can begin to use their counting skills to solve simple

word problems.  Furthermore, they can advance those counting skills as they

solve more problems.6   In fact, it is in solving word problems that young

children have opportunities to display their most advanced levels of counting

performance and to build a repertoire of procedures for computation.

Most children entering school can count to solve word problems that

involve adding, subtracting, multiplying, and dividing.7   Their performance

increases if the problems are phrased simply, use small numbers, and are

accompanied by physical counters for the children to use.  The exact proce-

dures children are likely to use have been well documented.  Consider the

following problems:

Sally had 6 toy cars.  She gave 4 to Bill.  How many did she have left?

Sally had 4 toy cars.  How many more does she need to have 6?

Most young children solve the first problem by counting a set of 6,

removing 4, and counting the remaining cars to find the answer.  In contrast,
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they solve the second problem by counting a set of 4, adding in more as they

count “five, six,” and then counting those added in to find the answer.

Children solve these problems by “acting out” the situation—that is, by

modeling it.  They invent a procedure that mirrors the actions or relation-

ships described in the problem.  This simple but powerful approach keeps

procedural fluency closely connected to conceptual understanding and stra-

tegic competence.  Children initially solve only those problems that they

understand, that they can represent or model using physical objects, and that

involve numbers within their counting range.  Although this approach limits

the kinds of problems with which children are successful, it also enables them

to solve a remarkable range of problems, including those that involve multi-

plying and dividing.

Since children intuitively solve word problems by modeling the actions

and relations described in them, it is important to distinguish among the dif-

ferent types of problems that can be represented by adding or subtracting,

and among those represented by multiplying or dividing.  One useful way of

classifying problems is to heed the children’s approach and examine the actions

and relations described.  This examination produces a taxonomy of problem

types distinguished by the solution method children use and provides a frame-

work to explain the relative difficulty of problems.

Four basic classes of addition and subtraction problems can be identi-

fied: problems involving (a) joining, (b) separating, (c) part-part-whole rela-

tions, and (d) comparison relations.  Problems within a class involve the same

type of action or relation, but within each class several distinct types of prob-

lems can be identified depending on which quantity is the unknown (see

Table 6-1).  Students’ procedures for solving the entire array of addition and

subtraction problems and the relative difficulty of the problems have been

well documented.8

For multiplication and division, the simplest kinds of problems are group-

ing situations that involve three components: the number of sets, the num-

ber in each set, and the total number.  For example:

Jose made 4 piles of marbles with 3 marbles in each pile.  How many marbles did

Jose have?

In this problem, the number and size of the sets is known and the total is

unknown.  There are two types of corresponding division situations depend-

ing on whether one must find the number of sets or the number in each set.

For example:
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Problem
Type

Join (Result Unknown) (Change Unknown) (Start Unknown)

Connie had 5 Connie has 5 Connie had some
marbles. Juan gave marbles. How many marbles.  Juan gave
her 8 more marbles. more marbles does her 5 more.  Now she
How many marbles she need to have 13 has 13 marbles.
does Connie have marbles altogether? How many marbles
altogether? did Connie have to

start with?

Separate (Result Unknown) (Change Unknown) (Start Unknown)

Connie had 13 Connie had 13 Connie had some
marbles.  She gave marbles.  She gave marbles.  She gave
5 to Juan.  How some to Juan.  Now 5 to Juan. Now she
many marbles does she has 5 marbles has 8 marbles left.
Connie have left? left. How many How many marbles

marbles did Connie did Connie have
give to Juan? to start with?

Part- (Whole Unknown) (Part Unknown)
Part-
Whole Connie has 5 red Connie has 13

marbles and 8 blue marbles: 5 are red
marbles.  How many and the rest are blue.
marbles does she How many blue
have altogether? marbles does Connie

have?

Compare (Difference (Compare Quantity (Referent
Unknown) Unknown) Unknown)

Connie has 13 Juan has 5 marbles. Connie has 13
marbles.  Juan has 5 Connie has 8 more marbles.  She has 5
marbles.  How many than Juan.  How more marbles than
more marbles does many marbles does Juan.  How many
Connie have than Connie have? marbles does Juan
Juan? have?

SOURCE:  Carpenter, Fennema, Franke, Levi, and Empson, 1999, p. 12. Used by
permission of Heinemann.  All rights reserved.

Table 6-1

Addition and Subtraction Problem Types
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Jose has 12 marbles and puts them into piles of 3.  How many piles does he have?

Jose has 12 marbles and divides them equally into 3 piles.  How many marbles

are in each pile?

Additional types of multiplication and division problems are introduced later

in the curriculum.  These include rate problems, multiplicative comparison

problems, array and area problems, and Cartesian products.9

As with addition and subtraction problems, children initially solve multi-

plication and division problems by modeling directly the action and relations

in the problems.10   For the above multiplication problem with marbles, they

form four piles with three in each and count the total to find the answer.  For

the first division problem, they make groups of the specified size of three and

count the number of groups to find the answer.  For the other problem, they

make the three groups by dealing out (as in cards) and count the number in

one of the groups.  Although adults may recognize both problems as 12 divided

by 3, children initially think of them in terms of the actions or relations

portrayed.  Over time, these direct modeling procedures are replaced by more

efficient methods based on counting, repeated adding or subtracting, or

deriving an answer from a known number combination.11

The observation that children use different methods to solve problems

that describe different situations has important implications.  On the one hand,

directly modeling the action in the problem is a highly sensible approach.

On the other hand, as numbers in problems get larger, it becomes inefficient

to carry out direct modeling procedures that involve counting all of the objects.

Children’s proficiency gradually develops in two significant directions.

One is from having a different solution method for each type of problem to

developing a single general method that can be used for classes of problems

with a similar mathematical structure.  Another direction is toward more effi-

cient calculation procedures.  Direct-modeling procedures evolve into the

more advanced counting procedures described in the next section.  For word

problems, these procedures are essentially abstractions of direct modeling

that continue to reflect the actions and relations in the problems.

The method children might use to solve a class of problems is not neces-

sarily the method traditionally taught.  For example, many children come to

solve the “subtraction” problems described above by counting, adding up, or

thinking of a related addition combination because any of these methods is

easier and more accurate than counting backwards.  The method tradition-

ally presented in textbooks, however, is to solve both of these problems by
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subtracting, which moves students toward the more difficult and error-prone

procedure of counting down.  Ultimately, most children begin to use recall or

a rapid mental procedure to solve these problems, and they come to recog-

nize that the same general method can be used to solve a variety of problems.

Single-Digit Addition

Children come to understand the meaning of addition in the context of

word problems.  As we noted in the previous section, children move from

counting to more general methods to solve different classes of problems.  As

they do, they also develop greater fluency with each specific method.  We

call these specific counting methods procedures.  Although educators have

long recognized that children use a variety of procedures to solve single-digit

addition problems,12  substantial research from all over the world now indi-

cates that children move through a progression of different procedures to

find the sum of single-digit numbers.13

This progression is depicted in Box 6-1.  First, children count out objects

for the first addend, count out objects for the second addend, and count all of

the objects (count all).  This general counting-all procedure then becomes

abbreviated, internalized, and abstracted as children become more experi-

enced with it.  Next, they notice that they do not have to count the objects for

the first addend but can start with the number in the first or the larger addend

and count on the objects in the other addend (count on).  As children count

Box 6-1

Learning Progression for Single-Digit Addition

1 2 3 4 5

1 2 3 4 5

1 2 3

6 7 8
5 6 7 8

Count all Count on

Recall (1 + 1, 2 + 1, etc.)

Thinking strategies (for larger numbers)

Make a ten:  9 + 6 = 10 + 5 = 15

Doubles: 6 + 7 = 6 + 6 + 1 = 12 + 1 = 13

Recall (small totals) Recall (various totals)

6

7 8

5
5 + 3 = ?
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on with objects, they begin to use the counting words themselves as count-

able objects and keep track of how many words have been counted on by

using fingers or auditory patterns.  The counting list has become a represen-

tational tool.  With time, children recompose numbers into other numbers

(4 is recomposed into 3 + 1) and use thinking strategies in which they turn an

addition combination they do not know into one they do know (3 + 4 becomes

3 + 3 + 1).  In the United States, these strategies for derived number combina-

tions often use a so-called double (2 + 2, 3 + 3, etc.).  These doubles are

learned very quickly.

As Box 6-1 shows, throughout this learning progression, specific sums

move into the category of being rapidly recalled rather than solved in one of

the other ways described above.  Children vary in the sums they first recall

readily, though doubles, adding one (the sum is the next counting word), and

small totals are the most readily recalled.  Several procedures for single-digit

addition typically coexist for several years; they are used for different numbers

and in different problem situations.  Experience with figuring out the answer

to addition problems provides the basis both for understanding what it means

to say “5 + 3 = 8” and for eventually recalling that sum without the use of any

conscious strategy.

Children in many countries often follow this progression of procedures, a

natural progression of embedding and abbreviating.  Some of these proce-

dures can be taught, which accelerates their use,14  although direct teaching

of these strategies must be done conceptually rather than simply by using

imitation and repetition.15   In some countries, children learn a general proce-

dure known as “make a 10” (see Box 6-2).16   In this procedure the solver

makes a 10 out of one addend by taking a number from the other addend.

Educators in some countries that use this approach believe this first instance

of regrouping by making a 10 provides a crucial foundation for later multidigit

arithmetic.  In some Asian countries this procedure is presumably facilitated

by the number words.17   It has also been taught in some European countries

in which the number names are more similar to those of English, suggesting

that the procedure can be used with a variety of number-naming systems.

The procedure is now beginning to appear in U.S. textbooks,18  although so

little space may be devoted to it that some children may not have adequate

time and opportunity to understand and learn it well.

There is notable variation in the procedures children use to solve simple

addition problems.19   Confronted with that variation, teachers can take vari-

ous steps to support children’s movement toward more advanced procedures.

One technique is to talk about slightly more advanced procedures and why
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Box 6-2

Make a Ten: 8 + 6 = ?

Solution Student's thinking

Ten-frame

10 + ___

"Two are missing to make 10."

10 + 4 = 14

"Use 2 from 6 to complete 10.  Four are left 
over. That makes 14."

Student drawing
8 + 6

10 + 4

"Six gives 2 to the 8 to make 10.  Four left 
(in the 6) makes 10 + 4, which is 14."

Numerical solution

8 + 6 = 14
2+4

"Six gives 2 to the 8 to make 10.  Four left 
(in the 6) makes 10 + 4, which is 14."

they work.20   The teacher can stimulate class discussion about the proce-

dures that various students are using.  Students can be given opportunities to

present their procedures and discuss them.  Others can then be encouraged

to try the procedure.  Drawings or concrete materials can be used to reveal

how the procedures work.  The advantages and disadvantages of different

procedures can also be examined.  For a particular procedure, problems can

be created for which it might work well or for which it is inefficient.

Other techniques that encourage students to use more efficient proce-

dures are using large numbers in problems so that inefficient counting proce-

dures cannot easily be used and hiding one of the sets to stimulate a new way

of thinking about the problem.  Intervention studies indicate that teaching

counting-on procedures in a conceptual way makes all single-digit sums ac-

cessible to U.S. first graders, including children who are learning disabled

and those who do not speak English as their first language.21   Providing sup-

port for children to improve their own procedures does not mean, however,

that every child is taught to use all the procedures that other children develop.

Nor does it mean that the teacher needs to provide every child in a class with
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support and justification for different procedures.  Rather, the research pro-

vides evidence that, at any one time, most children use a small number of

procedures and that teachers can learn to identify them and help children

learn procedures that are conceptually more efficient (such as counting on

from the larger addend rather than counting all).22

Mathematical proficiency with respect to single-digit addition encom-

passes not only the fluent performance of the operation but also conceptual

understanding and the ability to identify and accurately represent situations

in which addition is required.  Providing word problems as contexts for add-

ing and discussing the advantages and disadvantages of different addition

procedures are ways of facilitating students’ adaptive reasoning and improv-

ing their understanding of addition processes.

Single-Digit Subtraction

Subtraction follows a progression that generally parallels that for addition

(see Box 6-3).  Some U.S. children also invent counting-down methods that

model the taking away of numbers by counting back from the total.  But

counting down and counting backward are difficult for many children.23

Box 6-3

Learning Progression for Single-Digit Subtraction

1 2 3 4 5

1 2 3 4 5 1 2 3

6 7 8

Take away Count up to

Recall (2 – 1, 3 – 1, etc.)

Thinking strategies (for larger numbers)
Up over 10: 15 – 9 as

9 + 1 (to 10) + 5 (to 15), so 6

Down over 10: 15 – 9 as
5 (from 15 down to 10) + 1 (down to 9) = 6

Doubles: 13 – 7 as
7 + 7 = 14, so 6 because 13 is 1 less than 14

Recall (small numbers) a) as subtractions
b) from related additions

(5 + ? = 8 for 8 – 5)

6

7 8

5

3 more from
5 up to 8.
So 3 left.

8

7 6 5
4

3 left

7

6 5 4
3

3 left8

Count down

or

8 – 5 = ?
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A considerable number of children invent counting-up procedures for

situations in which an unknown quantity is added to a known quantity.24

Many of these children later count up in taking-away subtraction situations

(13 – 8 = ? becomes 8 + ? = 13).  When counting up is not introduced, many

children may not invent it until the second or third grade, if at all.  Interven-

tion studies with U.S. first graders that helped them see subtraction situa-

tions as taking away the first x objects enabled them to learn and understand

counting-up-to procedures for subtraction.  Their subtraction accuracy became

as high as that for addition.25

Experiences that focus on part-part-whole relations have also been shown

to help students develop more efficient thinking strategies, especially for

subtraction.26   Students examine a join or separate situation and identify which

number represents the whole quantity and which numbers represent the parts.

These experiences help students see how addition and subtraction are related

and help them recognize when to add and when to subtract.  For students in

grades K to 2, learning to see the part-whole relations in addition and subtrac-

tion situations is one of their most important accomplishments in arithmetic.27

Examining the relationships between addition and subtraction and seeing

subtraction as involving a known and an unknown addend are examples of

adaptive reasoning.  By providing experiences for young students to develop

adaptive reasoning in addition and subtraction situations, teachers are also

anticipating algebra as students begin to appreciate the inverse relationships

between the two operations.28

Single-Digit Multiplication

Much less research is available on single-digit multiplication and divi-

sion than on single-digit addition and subtraction.  U.S. children progress

through a sequence of multiplication procedures that are somewhat similar to

those for addition.29   They make equal groups and count them all.  They

learn skip-count lists for different multipliers (e.g., they count 4, 8, 12, 16,

20, . . . to multiply by four).  They then count on and count down these lists

using their fingers to keep track of different products.  They invent thinking

strategies in which they derive related products from products they know.

As with addition and subtraction, children invent many of the procedures

they use for multiplication.  They find patterns and use skip counting (e.g.,

multiplying 4 × 3 by counting “3, 6, 9, 12”).  Finding and using patterns and

other thinking strategies greatly simplifies the task of learning multiplication

tables (see Box 6-4 for some examples).30   Moreover, finding and describing

For students

in grades K
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part-whole

relations in

addition and

subtraction

situations

is one of

their most

important

accomplish-

ments in
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Box 6-4

Thinking Strategies for Single-Digit Multiplication

In single-digit arithmetic, there are 100 multiplication combinations that students

must learn.  Commutativity reduces that number by about half.  Multiplication by

0 and by 1 may quickly be deduced from the meaning of multiplication.  Multipli-

cation by 2 consists of the “doubles” from addition.  Single-digit multiplication by

9 is simplified by a pattern: in the product, the sum of the digits is 9.  (For example,

9 × 7 = 63 and 6 + 3 = 9.)  Multiplication by 5 may also be deduced through patterns

or by first multiplying by 10 and then dividing by 2, since 5 is half of 10.

The remaining 15 multiplication combinations (and their commutative counter-

parts) may be computed by skip counting or by building on known combinations.

For example, 3 × 6 must be 6 more than 2 × 6, which is 12.  So 3 × 6 is 18.  Similarly,

4 × 7 must be twice 2 × 7, which is 14.  So 4 × 7 is 28.  (Note that these strategies

require proficiency with addition.)  To compute multiples of 6, one can build on the

multiples of 5.  So, for example, 6 × 8 must be 8 more than 5 × 8, which is 40.  So

6 × 8 is 48.  If students are comfortable with such strategies for multiplication by 3,

4, and 6, only three multiplication combinations remain: 7 × 7, 7 × 8, and 8 × 8.

These can be derived from known combinations in many creative ways.

patterns are a hallmark of mathematics.  Thus, treating multiplication learn-

ing as pattern finding both simplifies the task and uses a core mathematical

idea.

After children identify patterns, they still need much experience to pro-

duce skip-count lists and individual products rapidly.  Little is known about

how children acquire this fluency or what experiences might be of most help.

A good deal of research remains to be done, in the United States and in other

countries, to understand more about this process.

Single-Digit Division

Division arises from the two splitting situations described above.  A col-

lection is split into groups of a specified size or into a specified number of

groups.  Just as subtraction can be thought of using a part-part-whole relation,

division can be thought of as splitting a number into two factors.  Hence,

divisions can also be approached as finding a missing factor in multiplication.

For example, 72 ÷ 9 = ? can be thought of as 9 × ? = 72.  But there is little
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research concerning how best to introduce and use this relationship, or whether

it is helpful to learn a division combination at the same time as the corre-

sponding multiplication combination.  Further, there is little research about

how to help children learn and use easily all of the different symbols for divi-

sion, such as 15
3
, 15 ÷ 3, and )3 15 .

Practicing Single-Digit Calculations

Practicing single-digit calculations is essential for developing fluency with

them.  This practice can occur in many different contexts, including solving

word problems.31   Drill alone does not develop mastery of single-digit combi-

nations.32   Practice that follows substantial initial experiences that support

understanding and emphasize “thinking strategies” has been shown to

improve student achievement with single-digit calculations.33   This approach

allows computation and understanding to develop together and facilitate each

other.  Explaining how procedures work and examining their benefits, as part

of instruction, support retention and yield higher levels of performance.34   In

this way, computation practice remains integrated with the other strands of

proficiency such as strategic competence and adaptive reasoning.

It is helpful for some practice to be targeted at recent learning.  After

students discuss a new procedure, they can benefit from practicing it.  For

example, if they have just discussed the make-a-10 procedure (see Box 6-2),

solving problems involving 8 or 9 in which the procedure can easily be used

provides beneficial practice.  It also is helpful for some practice to be cumula-

tive, occurring well after initial learning and reviewing the more advanced

procedures that have been learned.

Many U.S. students have had the experience of taking a timed test that

might be a page of mixed addition, subtraction, multiplication, and division

problems.  This scattershot form of practice is, in our opinion, rarely the best

use of practice time.  Early in learning it can be discouraging for students

who have learned only primitive, inefficient procedures.  The experience can

adversely affect students’ disposition toward mathematics, especially if the

tests are used to compare their performance.35   If appropriately delayed, timed

tests can benefit some students, but targeted forms of practice, with particular

combinations that have yet to be mastered or on which efficient procedures

can be used, are usually more effective.36
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Summary of Findings on Learning Single-Digit

Arithmetic

For addition and subtraction, there is a well-documented progression of

procedures used worldwide37  by many children that stems from the sequential

nature of the list of number words.  This list is first used as a counting tool;

then it becomes a representational tool in which the number words them-

selves are the objects that are counted.38   Counting becomes abbreviated and

rapid, and students begin to develop procedures that take advantage of prop-

erties of arithmetic to simplify computation.  During this progression, indi-

vidual children use a range of different procedures on different problems and

even on the same problem encountered at different times.39   Even adults

have been found to use a range of different procedures for simple addition

problems.40   Further, it takes an extended period of time before new and

better strategies replace previously used strategies.41   Learning-disabled chil-

dren and others having difficulty with mathematics do not use procedures

that differ from this progression.  They are just slower than others in moving

through it.42

Instruction can help students progress.43   Counting on is accessible to

first graders; it makes possible the rapid and accurate addition of all single-

digit numbers.  Single-digit subtraction is usually more difficult than addition

for U.S. children.  If children understand the relationship between addition

and subtraction, perhaps by thinking of the problem in terms of part-part-

whole, then they recognize that counting up can be used to solve subtraction

problems.  This recognition makes subtraction more accessible.44

The procedures of counting on for addition and counting up for subtrac-

tion can be learned with relative ease.  Multiplication and division are some-

what more difficult.  Even adults might not have quick ways of reconstructing

the answers to problems like 6 × 8 = ? or 72
8
 = ? if they have forgotten the

answers.  Learning these combinations seems to require much specific pattern-

based knowledge that needs to be orchestrated into accessible and rapid-

enough products and quotients.  As with addition and subtraction, children

derive some multiplication and division combinations from others; for example,

they recall that 6 × 6 = 36 and use that combination to conclude that 6 × 7 = 42.

Research into ways to support such pattern finding, along with the necessary

follow-up thinking and practice, is needed if all U.S. children are to acquire

higher levels of proficiency in single-digit arithmetic.

Acquiring proficiency with single-digit computations involves much more

than rote memorization.  This domain of number demonstrates how the dif-

ferent strands of proficiency contribute to each other.  At this early point in
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development, many of the linkages among strands result from children’s

natural inclination to make sense of things and to engage in actions that they

understand.  Children begin with conceptual understanding of number and

the meanings of the operations.  They develop increasingly sophisticated

representations of the operations such as counting-on or counting-up proce-

dures as they gain greater fluency.  They also lean heavily on reasoning to use

known answers such as doubles to generate unknown answers.  Even in the

early grades, students choose adaptively among different procedures and

methods depending on the numbers involved or the context.45   As long as the

focus in the classroom is on sense making, they rarely make nonsensical errors,

such as adding to find the answer when they should subtract.  Proficiency

comes from making progress within each strand and building connections

among the strands.  A productive disposition is generated by and supports

this kind of learning because students recognize their competence at making

sense of quantitative situations and solving arithmetic problems.

Multidigit Whole Number Calculations

Step-by-step procedures for adding, subtracting, multiplying, or dividing

numbers are called algorithms.  For example, the first step in one algorithm

for multiplying a three-digit number by a two-digit number is to write the

three-digit number above the two-digit number and to begin by multiplying

the one’s digit in the top number by the one’s digit in the bottom number

(see Box 6-5).

In the past, algorithms different from those taught today for addition,

subtraction, multiplication, and division have been taught in U.S. schools.

Also, algorithms different from those taught in the United States today are

currently being taught in other countries.46   Each algorithm has advantages

Box 6-5

Beginning a multiplication algorithm

752

× 23

6
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and disadvantages.  Therefore, it is important to think about which algorithms

are taught and the reasons for teaching them.

Learning to use algorithms for computation with multidigit numbers is

an important part of developing proficiency with numbers.  Algorithms are

procedures that can be executed in the same way to solve a variety of prob-

lems arising from different situations and involving different numbers.  This

feature has three important implications.  First, it means that algorithms are

useful tools—different procedures do not need to be invented for each prob-

lem.  Second, algorithms illustrate a significant feature of mathematics: The

structure of problems can be abstracted from their immediate context and

compared to see whether different-looking problems can be solved in similar

ways.  Finally, the process of developing fluency with arithmetic algorithms

in elementary school can contribute to progress in developing the other strands

of proficiency if time is spent examining why algorithms work and comparing

their advantages and disadvantages.  Such analyses can boost conceptual under-

standing by revealing much about the structure of the number system itself

and can facilitate understanding of place-value representations.

Research findings about learning algorithms for whole numbers can be

summarized with seven important observations.  First, the linkages among

the strands of mathematical proficiency that are possible when children

develop proficiency with single-digit arithmetic can be continued with

multidigit arithmetic.  For example, there can be a close connection between

understanding and fluency.  Conceptual knowledge that comes with under-

standing is important for the development of procedural fluency, while fluent

procedural knowledge supports the development of further understanding

and learning.   When students fail to grasp the concepts that underlie proce-

dures or cannot connect the concepts to the procedures, they frequently

generate flawed procedures that result in systematic patterns of errors.47

These so-called buggy algorithms are signs that the strands are not well con-

nected.48   When the initial computational procedures that students use to

solve multidigit problems reflect their understanding of numbers, understand-

ing and fluency develop together.

A second observation is that understanding and fluency are related.  For

multidigit addition and subtraction, given conventional instruction that

emphasizes practicing procedures, a substantial percentage of children gain

understanding of multidigit concepts before using a correct procedure, but

another substantial minority do the opposite.49   In contrast, instructional pro-

grams that emphasize understanding algorithms before using them have been

shown to lead to increases in both conceptual and procedural knowledge.50
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So there is some evidence that understanding is the basis for developing

procedural fluency.51

A third observation is that proficiency with multidigit computation is more

heavily influenced by instruction than single-digit computation is.  Many

features of multidigit procedures (e.g., the base-10 elements and how they

are represented by place-value notation) are not part of children’s everyday

experience and need to be learned in the classroom.  In fact, many students

are likely to need help learning efficient forms of multidigit procedures.  This

means that students in different classrooms and receiving different instruction

might follow different learning progressions use different procedures.52   For

single-digit addition and subtraction, the same learning progression occurs

for many children in many countries regardless of the nature and extent of

instruction.53   But multidigit procedures, even those for addition and sub-

traction, depend much more on what is taught.

A fourth observation is that children can and do devise or invent algo-

rithms for carrying out multidigit computations.54   Opportunities to construct

their own procedures provide students with opportunities to make connec-

tions between the strands of proficiency.  Procedural fluency is built directly

on their understanding.  The invention itself is a kind of problem solving,

and they must use reasoning to justify their invented procedure.  Students

who have invented their own correct procedures also approach mathematics

with confidence rather than fear and hesitation.55   Students invent many dif-

ferent computational procedures for solving problems with large numbers.

For addition, they eventually develop a procedure that is consistent with the

thinking that is used with standard algorithms.  That thinking enables them

to make sense of the algorithm as a record on paper of what they have already

been thinking.  For subtraction, many students can develop adding-up pro-

cedures and, if using concrete materials like base-10 blocks, can also develop

ways of thinking that parallel algorithms usually taught today.56   Some students

need help to develop efficient algorithms, however, especially for multiplica-

tion and division.  Consequently, for these students the process of learning

algorithms involves listening to someone else explain an algorithm and trying

it out, all the while trying to make sense of it.  Research suggests that students

are capable of listening to their peers and to the teacher and of making sense

of an algorithm if it is explained and if the students have diagrams or concrete

materials that support their understanding of the quantities involved.57

Fifth, research has shown that students can learn well from a variety of

different instructional approaches, including those that use physical materials

to represent hundreds, tens, and ones, those that emphasize special counting
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activities (e.g., count by tens beginning with any number), and those that

focus on developing mental computation methods.58   Although the data do

not point to a single preferred instructional approach, they do suggest that

effective approaches share some key features: The multidigit procedures that

students use are easily understood; students are encouraged to use algorithms

that they understand; instructional supports (classroom discussions, physical

materials, etc.) are available to focus students’ attention on the base-10 struc-

ture of the number system and on how that structure is used in the algorithm;

and students are helped to progress to using reasonably efficient but still com-

prehensible algorithms.59

Sixth, research on symbolic learning argues that, to be helpful,

manipulatives or other physical models used in teaching must be represented

by a learner both as the objects that they are and as symbols that stand for

something else.60   The physical characteristics of these materials can be initially

distracting to children, and it takes time for them to develop mathematical

meaning for any kind of physical model and to use it effectively.  These find-

ings suggest that sustained experience with any physical models that students

are expected to use may be more effective than limited experience with a

variety of different models.61

In view of the attention given to the use of concrete models in U.S. school

mathematics classes, we offer a special note regarding their effective use in

multidigit arithmetic.  Research indicates that students’ experiences using

physical models to represent hundreds, tens, and ones can be effective if the

materials help them think about how to combine quantities and, eventually,

how these processes connect with written procedures.  The models, how-

ever, are not automatically meaningful for students; the meaning must be

constructed as they work with the materials.  Given time to develop meaning

for a model and connect it with the written procedure, students have shown

high levels of performance using the written procedure and the ability to give

good explanations for how they got their answers.62   In order to support under-

standing, however, the physical models need to show tens to be collections of

ten ones and to show hundreds to be simultaneously 10 tens and 100 ones.

For example, base-10 blocks have that quality, but chips all of the same size

but with different colors for hundreds, tens, and ones do not.

A seventh and final observation is that the English number words and

the Hindu-Arabic base-10 place-value system for writing numbers compli-

cate the teaching and learning of multidigit algorithms in much the same

way, as discussed in Chapter 5, that they complicate the learning of early

number concepts.63   Closely related to the difficulties posed by the irregu-

Copyright © National Academy of Sciences. All rights reserved.



1996 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

larities with number words are difficulties posed by the complexity of the

system for writing numbers.  As we said in chapter 3, the base-10 place-value

system is very efficient.  It allows one to write very large numbers using only

10 symbols, the digits 0 through 9.  The same digit has a different meaning

depending on its place in the numeral.  Although this system is familiar and

seems obvious to adults, its intricacies are not so obvious to children.  These

intricacies are important because research has shown that it is difficult to

develop procedural fluency with multidigit arithmetic without an understand-

ing of the base-10 system.64   If such understanding is missing, students make

many different errors in multidigit computations.65

This conclusion does not imply that students must master place value

before they can begin computing with multidigit numbers.  In fact, the evi-

dence shows that students can develop an understanding of both the base-10

system and computation procedures when they have opportunities to explore

how and why the procedures work.66   That should not be surprising; it simply

confirms the thesis of this report and the claim we made near the beginning

of this chapter.  Proficiency develops as the strands connect and interact.

The six observations can be illustrated and supported by examining briefly

each of the arithmetic operations.  As is the case for single-digit operations,

research provides a more complete picture for addition and subtraction than

for multiplication and division.

Addition Algorithms

The progression followed by students who construct their own proce-

dures is similar in some ways to the progression that can be used to help

students learn a standard algorithm with understanding.  To illustrate the

nature of these progressions, it is useful to examine some specific procedures

in detail.

The episode in Box 6-6 from a third-grade class illustrates both how

physical materials can support the development of thinking strategies about

multidigit algorithms and one type of procedure commonly invented by chil-

dren.67   The episode comes from a discussion of students’ solutions to a word

problem involving the sum 54 + 48.

The episode suggests that students’ invented procedures can be con-

structed through progressive abstraction of their modeling strategies with

blocks.  First, the objects in the problem were represented directly with the

blocks.  Then, the quantity representing the first set was abstracted, and only

the blocks representing the second set were counted.  Finally, the counting

words were themselves counted by keeping track of the counts on fingers.
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Box 6-6

A Third-Grade Class Finds 54 + 48

The students had worked on the problem at their desks for about 15 minutes and

were sharing their procedures with the class.  The teacher, Ms. G., called everyone

over to look at Ellen’s solution strategy.

Ellen: [Makes 54 and 48 with tens and ones blocks.]  I knew this was 54, so

I went 64, 74, 84, 94, . . . . [She moves one 10 block for each count.

Then she counts the single cubes, moving a cube with each count.]

Ninety-five, 96, . . . , 102.

Ms. G: Now class, what question am I going to ask her?  Norman?

Norman: You didn’t use the 54.  Did you have to make it?

Ms. G: Good, Norman, that’s just what I was going to ask her.  Ellen, did

you need to make that 54?

Ellen: No.

Ms. G: [Pulls the 54 away and covers it with her hand.]  OK, now show me

how you can solve the problem without the 54.

Ellen: Sixty-four, 74, . . . .  [She repeats the above strategy, counting on

without the 54.]

Ms. G: OK, now you told me that you could do this without us moving to

your desk.  How would you have done that?

Ellen: OK, I just put 54 in my head, and then I go 48 more.  I go 54 [slight

pause], 64, 74, 84, 94.  [She puts up a finger with each count to keep

track of the four tens in 48.  At this point she has four fingers up.

She puts down her fingers and puts them up again with each count

as she continues counting by ones.]  Ninety-five, 96, 97, . . . , 102.

SOURCE: Adapted from Carpenter, Fennema, and Franke, 1996, p. 11.
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Ellen’s final solution was for all intents and purposes a verbal description of

what she did with the blocks.  But it was more than that.  It represented a

solution that could actually be carried out without the blocks as explicit refer-

ents.  Other invented procedures share some of the same features.

Boxes 6-7 through 6-10 illustrate procedures for multidigit addition and

subtraction.  Method C in Box 6-7 captures, in written form, the thinking

strategies that many students use as they continue constructing procedures

for adding multidigit numbers.68   They usually begin by combining the larger

units first and then combining the subtotals to find the sum.  They invent a

variety of mental and written techniques to keep track of the subtotals until

they can combine them.  The important observation is that students who

construct these methods understand that ones are combined with ones, tens

with tens, and hundreds with hundreds, and they understand that 10 of each

unit compose one unit of the next higher magnitude (e.g., 10 tens make 100).

Fundamental properties of the number system, like the associative and dis-

tributive properties, are used in decomposing and recombining numbers.  In

other words, the procedures children construct on their own build directly on

the foundational number concepts, and these underlying concepts often are

quite visible when one examines the steps in the procedures.

Standard algorithms, in contrast to children’s constructed algorithms, are

quite far removed from their conceptual underpinnings.  They have evolved

over centuries for efficiency and compactness.  They can be executed quickly,

but they can be difficult to learn with understanding.

Method A in Box 6-7 is an addition algorithm currently appearing in many

U.S. textbooks.  Learning this procedure with understanding poses three dif-

ficulties for many students.  First, it moves from right to left, in contrast to

reading and in contrast to most methods invented by children.  Many chil-

dren initially, and some children for a long time, have difficulty remembering

to start on the right and move to the left.69   Second, for some children, put-

ting the little 1’s above the top number changes the problem (it actually does

change the problem, but that does not change the answer).  This change can

be a source of confusion.  Third, adding the numbers in a given column is

difficult with this method.  You must add the 1 to the top number, remember

the sum without writing it down, and add that remembered number you can-

not see to the bottom number while you ignore the number you can see in

the top row.  If children instead add the two numbers they see (a much easier

method), many of them then forget to add the extra 10 (or extra hundred).
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Box 6-7

Three Methods for Multidigit Addition

A Common U.S. Algorithm

Accessible Generalizable Methods

Method A

568
+ 876
1444

1 1

 (a) right to left
 

(b) add, carry to left

 (c) add carry to top number, remember new number while adding it 

to bottom number

Method B

568

+ 876

4
1

568

+ 876

44
1 1

568

+ 876

1444
1 1

(a) right to left

(b) carry goes below in answer space, 

keeping total together

(c) add 2 numbers you see, then 

increase that number by 1 

for previous carry

Method C

568
+ 876
1300

130
14

1444

(a) can be done in either direction

(b) add each kind of unit first, 

then add those totals
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Method B is a variation of Method A that addresses two of these three prob-

lems (it also moves from right to left).  Method B is taught in China and has

been invented by students in the United States.70   In this method the new 1

or regrouped 10 (or new hundred) is recorded on the line separating the prob-

lem from the answer.  This arrangement makes it easier to see the 14 that

generated the regrouped 10 than when the 1 is written above the problem.

Because the new 1 sits below in the answer space, it does not change the top

number.  Adding is easy: You just add the two numbers you see and then

increase that total by one.

Methods A and B both require that children understand what to do when

they get 10 or more in a given column.  Because they can only write 9 or less

of a given grouping in a column, they must make a group of 10 ones (or tens

or hundreds, etc.) and give that group to the next left place.  This conceptual

trouble spot for students is called carrying or regrouping or trading.  Method C,

reflecting more closely many students’ invented procedures, reduces the prob-

lem by writing the total for each kind of unit on a new line.  The carrying-

regrouping-trading is done as part of the adding of each kind of unit.  Also,

Method C can be done in either direction (Box 6-7 shows the left-to-right

version).  Because you write out the whole value of each partial sum (e.g., 500

+ 800 = 1300), this method also facilitates children’s thinking about and

explaining how and what they are adding.  Accessibility studies indicate that

young children can solve multidigit addition problems using methods like B

and C and some other methods also.71

Drawings like that in Box 6-8 can be used to support children’s under-

standing of the quantities in the problem and how those quantities are grouped

to make new tens, hundreds, or thousands.  Such drawings can be used with

any of the three methods (or with other methods).  Whether drawings or objects

are used to support understanding of an addition method, it is vital that they

be linked to the numbers in the algorithm until the student can perform it

with understanding.  If the drawings (or physical models like base-10 blocks)

are used simply to calculate answers, they lose their ability to help connect

understanding to procedures.  The benefits of using the materials come from

seeing that the actions performed on the drawings or objects to get answers

are the very actions that are used in carrying out the algorithm.  Learning the

algorithm then becomes a matter of students recording with numbers on paper

the actions and thinking they did with the drawings or objects.  This linking

process takes time.  Asking students to explain their procedure as if the

numbers were the drawings or physical models can facilitate the linking

process.
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Box 6-8

A Model for Multidigit Addition: 568 + 876 = ?

Stage 1:  Sustained linking of quantities to written algorithm to quantity meanings.

Stage 2:  Only do algorithm but occasionally explain using quantity words.

1 thousand 1 hundred 1 ten

 568

+ 876

Subtraction Algorithms

Students can construct multidigit subtraction procedures, though often

these procedures are less similar to standard algorithms than is the case for

addition.  Still, as with addition, research has shown that students can learn a

subtraction algorithm meaningfully if provided with appropriate experiences.

In most cases, subtraction algorithms require more time and support than

addition algorithms, but students can learn to execute them accurately and to

explain why they work.72

Two subtraction procedures are shown in Box 6-9.  Method A is an algo-

rithm commonly taught in the United States.  It moves from right to left and

alternates between the two major subtraction steps.  Step 1 involves regroup-

ing (or borrowing or trading) to get 10 or more in the top position.  Step 2 is

subtracting after the top number has been fixed.  Alternating between these

two steps presents three kinds of potential difficulties for students.  The first

is learning this alternation and the reasons for it.  The second is remembering

to alternate the steps.  The third is that the alternation renders students sus-

ceptible to a very common subtracting error: subtracting a smaller top digit

from a larger bottom digit.  In the example, after subtracting bottom digit in
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Box 6-9

Three Methods for Multidigit Subtraction

A Common U.S. Algorithm

Method A

1444
– 568

876

3
1

13

(a) right to left

(b) alternate ungrouping and subtracting

Method B Method C

Do all ungrouping, in any
order, until every top number
is larger than the bottom
number.  Then subtract each
kind of multiunit, in any
order.

1444
– 568

876

13 1414
13

1444
– 568

876

13 143

13

left-to-right right-to-left
ungrouping ungrouping

Accessible Generalizable Methods

the ones place to get 6, a student moves to the left and sees 3 on the top and

6 on the bottom.  The answer 3 is generated spontaneously as a subtraction

answer, given 6 and 3.  It takes extra effort to suppress this answer and think

about the direction in which one is subtracting.

Methods B and C are slight variations of Method A in which Step 1

(regrouping) is done for all columns first.  For each column in either direc-

tion, the student asks the regrouping (borrowing) question, “Can I subtract

in this column?  Is the top digit as big as or bigger than the bottom digit?”
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The goal is to fix the top number so that every top digit is larger than the

corresponding bottom digit.  The second major step is then to subtract in

every column.  This subtraction can also be done in any direction.  Methods

B and C clarify that the top number is a single number that must be rewritten

in a form equivalent in value but ready for subtraction in every column.  This

rewriting can reduce the otherwise frequent “top from bottom” error.73

The drawing in Box 6-10 shows how students can make a quantity draw-

ing to show both aspects of multidigit subtracting.  Making such drawings

initially can help students develop their own procedures or help them make

sense of an algorithm presented by someone else.  Again, such drawings should,

when used, be linked to a numerical method and not just used to calculate an

answer.

Multiplication Algorithms

There is much less research on children’s understanding of multidigit

multiplication (and division) than of addition and subtraction.  Sample con-

ceptual teaching lessons have been published for multiplication, and some

alternative methods of instruction have been explored.74   A preliminary learn-

ing progression of multidigit procedures that fosters children’s invention of

Box 6-10

Model for Multidigit Subtraction: 1444 – 568 = ?

– 568

1444
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algorithms has also been reported.75   The data are still insufficient, however,

to permit firm conclusions about students’ learning progressions in multidigit

multiplication.

Nevertheless, it is useful to examine algorithms students are expected to

learn and to consider alternatives that might facilitate understanding.  Stan-

dard multiplication and division algorithms used in the United States are com-

plex procedures in which multiplying alternates with adding or subtracting

(see Box 6-11).  In these algorithms the meaning and scaffolding provided by

substeps have been sacrificed for efficiency.  The algorithms use alignment

of place value to keep the steps organized without requiring the student to

understand what is actually happening with the ones, tens, hundreds, and so

on.  Algorithms that might be more accessible to students, and still generaliz-

able and fairly efficient, are presented and discussed below.

Arrays are powerful representations of multiplication.  An array or area

model is shown on the left in Box 6-12.  Such a model provides initial support

for the crucial understanding of the effects of multiplying by 1, 10, and 100

(shown by arrows and products around the array).  It also shows clearly how

all of the tens and ones digits in 46 and 68 are multiplied by each other and

then added.  The sizes of the resulting rectangles indicate the sizes of these

various products (sometimes referred to as partial products).  The abbreviated

array model (shown on the right in Box 6-12) can be drawn later when the

students clearly understand the effects of multiplying by tens and by ones.

This abbreviated model summarizes the steps in multidigit multiplication,

and the separation into tens and ones facilitates finding the partial products.

Box 6-11

A Common U.S. Algorithm for Multidigit Multiplication

46

×  68

368

276

3128

1

1

4

3
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Box 6-12

Models for Multidigit Multiplication: 46 × 68

Array Model

60

+

8

40 + 6
10 × 10

= 100 10 × 1
= 10

1 × 1
= 1

1 × 10 = 10

Abbreviated Array Model

60

+

8

40 + 6

2400

320 48

360

The multiplication algorithm shown in Box 6-13 is an expanded form in

which all possible products are written.  As students come to understand each

aspect of multiplication, some of the written supports can be dropped, result-

ing in a streamlined version that is a simple expanded form of typical U.S.

algorithms.  Although this algorithm has been proposed as an alternative for

some time, and variations of it have been used in some textbooks,76  algo-

rithms currently used in the United States are substantially different.  They

typically start at the right and multiply ones first.  The expanded algorithm

begins at the left, as students are naturally inclined to do.  That also has the

advantage that the first product written is the largest, which permits all of the

smaller products to be aligned easily under it in their correct places.  Writing

the factors beside each product emphasizes what one is actually doing in each

step and permits an easy check.  In this variation the complex alternation of

multiplying and adding is not necessary.  Students who understand and wish
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Box 6-13

Expanded Algorithm for Multidigit Multiplication

Note:  Steps can be dropped when they are no longer needed.

46 = 40 + 6

×  68 = 60 + 8

2400 = 60 ×  40
360 = 60 ×  6
320 = 8 × 40

48 = 8 ×  6

3128
1 1

to drop steps in this algorithm can do so readily, with a result looking some-

thing like the common algorithm in Box 6-11, except that it has, in this case,

four instead of two partial products to be added.  These four can even be

collapsed into two for those students who wish to do so.  Therefore, the

expanded model permits students to function at their own level of compe-

tence and is likely to help them understand what they are doing.  The key

point is that regardless of the algorithm that students use, they should be

able to explain what they are doing and why it works.

Multiplying by a three-digit number is an extension of the two-digit ver-

sion that requires the development of new understanding about multiplying

by hundreds.  The expanded algorithm for these larger numbers is relatively

easy to carry out because the necessary steps are visible, although the num-

ber of partial products more than doubles.  Given the accessibility of calcula-

tors, it might not be wise for students to spend a great deal of valuable school

learning time becoming efficient at multiplication with three-digit or larger

numbers.  There is no research on how much pencil-and-paper computation

is necessary or the impact of experiences with calculating with larger numbers

on other mathematical understanding.  Having some experience working with

larger numbers, however, seems essential if students are to extend their con-

ceptual understanding of multiplication and develop their ability to estimate
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the results of calculating with large numbers.  Both of these skills are impor-

tant even when children use calculators.

At present, many students have not achieved procedural fluency with

single-digit multiplication when they begin work on multidigit multiplica-

tion.  A proper balance in instruction among the strands of mathematical pro-

ficiency would serve to diminish the number of such students.  Until that

balance is achieved, however, such students need help in working simulta-

neously on a multiplication algorithm and obtaining fluency with single-digit

multiplication.  Using a table to look up some single-digit products can permit

students to participate in classwork on algorithms while perhaps motivating

as well as supporting their continued learning of single-digit arithmetic.

Division Algorithms

As we indicated earlier, relatively little research is available to shed light

on how students think about multidigit division or what learning activities

might be of most help to them.  Sample teaching lessons have been proposed,

and preliminary results suggest that students can construct their own proce-

dures that, over time, approximate standard algorithms.77   As with multipli-

cation, however, the best that educators can do at this point is to examine

some alternative algorithms that are likely to support students’ efforts to

develop proficiency with multidigit division.

Common U.S. division algorithms have two aspects that can create diffi-

culties for students.  First, the algorithms require students to determine exactly

the maximum copies of the divisor that can be taken from successive parts of

the dividend.  For example, in the problem 3129 ÷ 46 = ?, one must first

determine exactly how many 46s can be subtracted from 312.  That determi-

nation is not always easy.  Second, the algorithms creates no sense of the size

of the answers one is writing, in part because one is always multiplying by

what looks like a single-digit number written above the dividend.  In the

example in Box 6-14, to begin the division process, the student just writes a 6

above the line as the first digit in the quotient.  There is no sense of 60,

because the student will be multiplying 46 by 6.

The accessible division method shown in Box 6-15 facilitates safe under-

estimating.  Rather than trying to determine the largest number of 46s that

can be subtracted from 312, the student can just keep subtracting multiples

of 46s until the remainder is less than 46.  This method builds experience

with estimating (as well as accurate assessment of calculator answers) because

students multiply by the correct number (e.g., 50, not 5).  It is procedurally

easy for those students still mastering multiplication combinations because it
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Box 6-14

A Common Algorithm for Multidigit Division

 46  3129

–276

369

– 368

1

68

Box 6-15

Expanded Algorithm and Model for Multidigit Division

Abbreviated Model:

Build up copies of 46

50

10

40 + 6

2000

400 60

300

5 200 30

2 80 12
1 40 6

Accessible Division Algorithm:
Take away copies of 46 until no more remain

3129

–2300

829

–  460

369

–  230

139

–  92

47

–  46

R 1

50  (5s are easy: take

half of 10 × 46) 

10

5  (I already did it)

2  (doubling is easy)

1

68

46
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permits the use of products likely to be known.  It can be made as brief as the

current standard algorithm for those who can manage the abbreviation.  This

accessible division algorithm has been proposed as an alternative for some

time and since at least the 1950s has been used in some textbooks.78

The example of the accessible method given in Box 6-15 shows a solu-

tion that might be produced by a student very early in learning division.  Box

6-15 also gives a model that supports accessible methods.  The student builds

up copies of the divisor until the dividend is reached and then reads off the

quotient.  A later version of the procedure by the same student is given in

Box 6-16.  At this point the student no longer needs the drawing to give

meaning to the steps.  This version can readily be related to the more common

method in Box 6-14.

Summary of Findings on Multidigit Calculations

Research indicates that U.S. children can understand and explain proce-

dures for calculating with multidigit numbers rather than just executing them

mechanically.  This conclusion, which is especially well established for addi-

tion and subtraction,79  means that mathematical proficiency with multidigit

arithmetic is achievable by students even at early grades.  In fact, a higher

level of performance can be achieved at earlier grades than is currently

expected.80

Box 6-16

Expanded Algorithm for Multidigit Division with

Fewer Steps

46  3129

–2760

369

– 276

93
– 92

R 1

60

6

2

68
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Students acquire proficiency with multidigit algorithms by moving

through a progression of experiences.  Although there is relatively little

research on students’ learning of multiplication and division algorithms, it is

likely that their learning trajectories are similar to the ones documented for

addition and subtraction.  The progression might begin with problem model-

ing and the use of easily understood concrete representations and algorithms

and move toward more efficient methods that are less transparent and more

problem independent.  Or it might begin by learning with understanding

some method that easily makes sense when connected to the quantities

involved.  Some students invent their own methods for performing multidigit

computations, and some learn by listening to others—another student or the

teacher—explain a method.  Whatever avenue students take, their proce-

dural fluency is intertwined with their conceptual understanding and adap-

tive reasoning.  The many kinds of errors students make when multidigit

methods are not connected to place-value meanings are well documented.81

Research on addition and subtraction algorithms clearly indicates that

helping students keep the strands of proficiency connected means providing

supports for their efforts to make sense of written algorithms.  The use of

easily understood versions of algorithms can facilitate procedural fluency.  Dis-

cussing and comparing different methods, including those that students bring

from home, can provide opportunities to extend their understanding of place

value and its uses.  Teachers need to ensure that children who are less profi-

cient have a relatively advanced method they understand and can use.  The

focus of instruction, however, should be on their understanding and explain-

ing and not just on routine use.  Comparing methods through classroom dis-

cussion is a means of facilitating reflection by all children on the conceptual

and notational features of arithmetic algorithms.

Physical materials or drawings that show the different sizes of ones, tens,

and hundreds can support the development of understanding if those sup-

ports are used to develop thinking strategies for combining quantities and if

they are linked to written algorithms.  What appears to be essential is that

sufficient time and support are provided at the outset for children to develop

meaning for the algorithms.  That development hinges on certain prerequi-

site understanding (which may be developed alongside methods), and children

also need to negotiate and become more skilled with the complexities of

multistep, multidigit methods.82

How much of the precious time available for school mathematics should

be spent on written algorithms with large numbers is a question that will

need to be continually revisited during the twenty-first century.  New goals
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will arise to compete with the goal of fluency with written algorithms, as they

already have.  At present, it seems worthwhile to spend some time on written

algorithms that facilitate students’ understanding of how multidigit proce-

dures can be built from key concepts of place value and properties of the

number system, such as the distributive property.  Because calculating activi-

ties with large numbers incorporate calculations with single-digit numbers,

such activities can also buttress children’s mastery of basic arithmetic.  How-

ever, drilling for long periods on problems involving large numbers seems a

goal more appropriate to the twentieth century than the twenty-first.

Mental Arithmetic and Estimation

Written procedures for adding, subtracting, multiplying, and dividing are

the major focus of mathematics in the elementary school curriculum, and we

have discussed how they can be integrated into the other strands of children’s

developing mathematical proficiency.  We end this chapter by considering

two other kinds of calculation methods and the roles they can play in foster-

ing the development of mathematical proficiency.

Mental Arithmetic

A number of researchers have argued that mental arithmetic—calculat-

ing the solution to multidigit arithmetic problems mentally without the use

of pencil and paper—can lead to deeper insights into the number system.83

For example, a student might calculate 198 × 12 mentally by adding 2 to 198,

multiplying 200 by 12 to get 2400, and then subtracting two 12s from the

product, 2400 – 24 = 2376.  Mental arithmetic, or mental math, can provide

opportunities for students to practice and use numbers and operations in ways

that promote making sense of the mathematics and reveal further insights

into the properties of numbers and operations.

Beliefs about the contribution of mental arithmetic to the development

of mathematical proficiency have changed over time and differ across countries.

In nineteenth-century America, the ability to perform mental arithmetic was

held in high esteem.84   Mental arithmetic, particularly as performed using a

mental representation of the abacus, remains a popular activity in East Asian

countries, with international competitions and a formalized system for rating

calculation skill.85   In the United States, however, mental calculation has not

been emphasized in school mathematics in recent decades.86

Mental arithmetic places a premium on flexible procedures that take

advantage of mathematical structure and rely on well-known operations.  Stu-

In the

United

States,

mental

calculation

has not been

emphasized

in school

mathematics

in recent

decades.
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dents who have developed the ability to calculate mentally use a variety of

procedures that take advantage of their knowledge of numbers, including

working from left to right, using distributivity and other properties of arith-

metic, and factoring numbers to simplify their work.87   These procedures can

increase students’ awareness that typically there are multiple ways of solving

any calculation problem.

Children entering school have already begun developing mental proce-

dures for performing simple arithmetic, procedures that are eventually

channeled into the pencil-and-paper algorithms that they can use for most

computational work.  If they are not encouraged to continue developing mental

computation procedures, most will be inclined to view the new algorithms as

the preferred, possibly the only, methods for computing and will discontinue

use of mental procedures even when they are easier.88   There is evidence,

though, that some instruction on mental arithmetic in upper elementary

grades, if it is focused on understanding and uses number and operation prop-

erties, can move students away from the clumsy and error-prone mental use

of written algorithms toward use of a variety of mental procedures better

adapted to particular number combinations.89

Beyond its many practical uses in the modern world, mental arithmetic

can promote mathematical proficiency by bringing together the various strands.

Mental arithmetic should be taught to encourage children to reason about

the problem situation and the numbers involved, to take advantage of their

conceptual understanding of the properties and rules of arithmetic, and to

strategically select and adapt procedures to simplify a computation and cal-

culate the answer.

Estimation

Making estimates of exact answers is another form of computation that

has its own special properties and uses in developing mathematical profi-

ciency.  Estimating before solving a problem can facilitate number sense and

place-value understanding by encouraging students to use number and

notational properties to generate an approximate result.  Estimating is also a

practical skill.  It can guide students’ use of calculators, especially in identify-

ing implausible answers, and is a valuable part of the mathematics used in

everyday life.

Estimating the result of a computation is a complex skill in itself.  It may

require reformulating numbers, compensating for errors, and sometimes

restructuring a problem.90   For example, the sum 261 + 242 + 235 could be
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estimated by reformulating (in this case, rounding) each number as 250.  In

this form the simplest way of estimating the sum would be multiplying 250

by 3 and then compensating for the fact that the sum will be somewhat less

than 750.  Computational estimation takes advantage of important properties

of numbers and notational systems, including powers of ten, place value, and

relations among different operations.  It also requires recognizing that the

appropriateness of an estimate is related to the problem and its context.91

Estimation requires a flexibility of calculation that emphasizes adaptive reason-

ing and strategic competence, guided by children’s conceptual understanding

of both the problem situation and the mathematics underlying the calculation.

Research on estimation shows how difficult it is for students who receive

conventional instruction, with its frequent overemphasis on routine paper-

and-pencil calculation, to move from calculating exact answers to estimating

wisely.  For example, one study92  reported that many students’ fear of being

wrong led them to find the exact answer first and then round it to obtain a

close estimate, with this tendency increasing from grades 5 to 9.  Children

also had difficulty using powers of 10 to identify the order of magnitude of a

calculation (e.g., 4.638 × 87,325), and failed to understand that rounding can

lead to systematic errors that need to be taken into account.

Estimating the results of a computation is a complex activity that should

integrate all strands of mathematical proficiency.  Its potential benefit is lost,

however, if it is treated as a separate skill and taught as a set of isolated rules

and techniques.  Its benefit is realized when students are allowed to draw on

other strands to find ways to simplify calculations and compensate for that

simplification.  For example, the representation students make of the math-

ematical situation enables them to make simple, appropriate estimates.  Both

fluency with computational procedures and awareness of the kinds of calcu-

lations that are easy to perform contribute to successful estimation.  Finally,

estimation is a good indicator of students’ productive disposition—in this case,

their propensity to make sense of mathematical situations so that they under-

stand that estimates are not wild guesses but informed, approximate solutions.

Developmental Themes

Becoming proficient with whole numbers is more complicated than many

people realize.  It is not simply moving quickly from ignorance to compe-

tence.  Nor is it a matter of students following the teacher’s directions and

explanations and then practicing until they get it right.  Rather, it involves

students—with support from learning materials, teachers, and peers—invent-
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ing, understanding, and practicing methods; trying to learn and use concepts

that look easy to adults but are challenging for children (e.g., place value);

and gradually increasing their mathematical proficiency by continually seek-

ing to make sense of number and numerical operations.

A few basic themes are critical.  First, students’ progress viewed from a

distance is marked by a kind of gradualness and continuity, but viewed up

close it appears uneven and varied.  At any given moment, students know

and use a range of computation methods that may vary according to the

numbers in the problem, the problem situation, and other individual and class-

room variables.  A student may use different methods even on very similar

problems, and any new method competes for a long time with older methods

and may not be used consistently.  In general, however, students steadily

extend methods they understand to solve a larger variety of problems, and

they shape current methods into more efficient ones.

A second theme is the many ways in which the strands of proficiency can

be interwoven.  Initially, in classrooms focused on understanding, students’

conceptual understanding and procedural fluency are tightly connected—

students use only methods they understand.  Later, their learning in one strand

boosts their progress in the others.  As students become more fluent with

multidigit algorithms, their understanding and use of the place-value nota-

tional system become more robust.  As their reasoning about multidigit

numbers and place-value concepts improves, they make sense of more effi-

cient multidigit algorithms.  Students also actively choose among different

procedures and representations.  In so doing, they strengthen their strategic

knowledge and their conceptual understanding of the procedures and the

representations.  Not only is mathematical proficiency multidimensional, but

also the path to proficient performance requires progress along each strand

interactively.

A third and final theme is that there are some identifiable patterns in the

development of students’ proficiency as long as the strands are allowed to

develop together in mutual dependence.  Students begin their study of

number situations by modeling problems directly, using the context to shape

their concrete and often cumbersome methods.  They gradually move toward

representing problems more abstractly.  They apply methods that are less

transparent and more embedded, abbreviated, and independent of the prob-

lem.  These methods are more sophisticated mathematically, use structural

properties such as commutativity, and use the place-value symbolic notation

in productive ways.  As students begin multidigit arithmetic, it is vital that

teachers and classrooms provide support for all to build understanding of
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multidigit quantities that can enable their calculation methods to become

personally meaningful.  Mathematical proficiency with whole numbers de-

pends on all five strands developing together.

Notes

1. Griffin, Case, and Siegler, 1994; Fuson, Smith, and Lo Cicero, 1997.

2. Baroody, 1984b, 1985; LeFevre, Bisanz, Daley, Buffone, Greenham, and Sadesky,

1996; LeFevre, Sadesky, and Bisanz, 1996.

3. Baroody, 1985, 1994.  Basic number combinations may be represented not as a table

of facts but as a network of facts and interconnecting relations (e.g., Baroody, 1985,

1987b, 1992).  This idea is consistent with research in cognitive science, which says

that expert knowledge is organized and connected (Bransford, Brown, and Cocking,

1999).

4. This observation was suggested by Jerman, 1970, and later verified by the work of

Baroody, 1999a, 1999b, and many others.

5. Baroody, 1999a, 1999b.

6. Carpenter, Ansell, Franke, Fennema, Weisbeck, 1993; Carpenter and Moser, 1984;

Carpenter, Moser, and Romberg, 1982; Fuson, 1992a, 1992b; Riley and Greeno, 1988;

Siegler, in press; Verschaffel and De Corte, 1993.

7. Carpenter, Ansell, Franke, Fennema, and Weisbeck, 1993.

8. Carpenter, 1985; Fuson, 1992a, 1992b.

9. For a detailed analysis of multiplication and division problems, see Greer, 1992;

Nesher, 1992; Vergnaud, 1983; Harel and Confrey, 1994.

10. Carpenter, Ansell, Franke, Fennema, and Weisbeck, 1993; Kouba, 1989.

11. Kouba, 1989.

12. For example, Brownell, 1956/1987.

13. Fuson, 1992b.

14. Fuson and Secada, 1986; Leutzinger, 1979; Steinberg, 1985; Thornton, 1978.

15. Baroody, 1996; Resnick and Ford, 1981.

16. Fuson and Kwon, 1992b; Fuson, Stigler, and Bartsch, 1988; Geary, 1994; Matsushita,

1994.  Hatano, 1988, discusses a “complementary number-to-10” strategy used by

Japanese students on an abacus.  When there are not enough beads available to add

8, for example, the student adds 10 and subtracts 2.

17. Fuson and Kwon, 1991.

18. See, for example, the 1999 edition of Scott Foresman-Addison Wesley Math, Grade 1.

19. Carpenter and Moser, 1984; Fuson, 1992a, 1992b.

20. See reviews in Fuson, 1992a, 1992b.

21. Fuson and Secada, 1986; Fuson and Fuson, 1992.  Both studies included students

with learning disabilities and English-language learners (K. C. Fuson, personal com-

munication, Northwestern University, 2000).

22. Carpenter, Ansell, Franke, Fennema, and Weisbeck, 1993; Carpenter, Moser, and

Romberg, 1982; Fuson, 1992a; Riley and Greeno, 1988; Siegler, in press.

23. See, for example, Baroody, 1984a.

Copyright © National Academy of Sciences. All rights reserved.



2196 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

24. Carpenter and Moser, 1984.

25. Fuson, 1986b; Fuson and Fuson, 1992.

26. Armstrong, 1990/1991; Huinker, 1990/1991; Rathmell and Huinker, 1989.

27. Resnick, 1983.

28. Baroody, 1999a.

29. Mulligan and Mitchelmore, 1997; Steffe, 1994.  Lemaire and Siegler, 1995, found

similar results with French second graders.  Brownell, 1944, showed that, from grades

3 to 5, students became faster at multiplication combinations because they

progressively used more efficient strategies.

30. Thornton, 1978; Baroody, 1987a, 1999b.

31. Carpenter, Fennema, Peterson, Chiang, and Loef, 1989, found that when instruction

focused on problem solving, children not only became better problem solvers but

also mastered more combinations than did children whose instruction focused on

drill and practice of basic facts.

32. Brownell and Chazal, 1935, found that drill on arithmetic facts does not necessarily

lead to recall.  In spite of drill, children tend to maintain whatever procedures have

satisfied their number needs.  Drill does not supply children with more mature ways

of dealing with number combinations.  Brownell and Chazal argue that drill must be

preceded by sound instruction.

33. Carnine and Stein, 1981; Cook and Dossey, 1982; Rathmell, 1978; Thornton, 1978.

34. See Rathmell, 1978.

35. Bergeron and Herscovics, 1990.

36. Brownell and Chazal, 1935.

37. Davydov and Andronov, 1981; Fuson and Kwon, 1992b; Saxe, 1982.

38. Bergeron and Herscovics, 1990; Fuson, 1988; Steffe, Cobb, and von Glasersfeld, 1988.

39. Geary and Brown 1991; Siegler, 1996, pp. 61–71.

40. Siegler, 1996, p. 97.

41. Siegler and Jenkins, 1989.

42. Geary, 1994; Ginsburg and Allardice, 1984.

43. Carnine and Stein, 1981; Cook and Dossey, 1982; Thornton, 1978.

44. Fuson, 1986b; Fuson and Fuson, 1992; Fuson and Willis, 1988.

45. Siegler and Jenkins, 1989; Siegler, 1996, pp. 61–71.

46. For example, see Ron, 1998, for a discussion of a European-Latino subtraction

algorithm; Fuson and Kwon, 1992a, for a Korean subtraction algorithm; and Chapter

3 of this volume for various multiplication algorithms learned by teachers in this

country.

47. Siegler, in press.

48. Brown and Van Lehn, 1980.

49. For a synthesis on the relationship between conceptual and procedural knowledge

for multidigit addition and subtraction, see Rittle-Johnson and Siegler, 1998.  For a

specific study, see Hiebert and Wearne, 1996.

50. Fuson and Briars, 1990; Fuson, Wearne, Hiebert, Murray, Human, Olivier, Carpenter,

Fennema, 1997; Hiebert and Wearne, 1996.

Copyright © National Academy of Sciences. All rights reserved.



220 ADDING IT UP

51. On the basis of these results for multidigit addition and subtraction, Siegler, in press,

suggests, as a broad principle, that conceptual instruction should occur prior to

teaching of procedures.  Rittle-Johnson and Alibali, 1999, reported similar results

with respect to mathematical equivalence.

52. Beishuizen, 1993; Beishuizen, Van Putten, and Van Mulken, 1997; Hiebert, Carpenter,

Fennema, Fuson, Wearne, Murray, Olivier, Human, 1997; Hiebert and Wearne, 1993,

1996.

53. Fuson, 1992a, 1992b.

54. Carpenter, Franke, Jacobs, Fennema, Empson, 1998; Carraher, Carraher, and

Schliemann, 1987; Cobb and Wheatley, 1988; Fuson and Burghardt, 1993; Hiebert,

Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human, 1997; Hiebert

and Wearne, 1996; Kamii, 1989; Labinowicz, 1985; Nunes, 1992; Olivier, Murray,

and Human, 1990; Saxe, 1988; Ambrose, Baek, and Carpenter, in press.

55. Kamii and Dominick, 1998.

56. Hiebert and Wearne, 1993, 1996.

57. Carpenter, Franke, Jacobs, Fennema, and Empson, 1998; Fuson and Briars, 1990;

Hiebert and Wearne, 1993, 1996.

58. Cobb and Bauersfeld, 1995; Fuson, 1992a, 1992b; Hiebert, Carpenter, Fennema,

Fuson, Wearne, Murray, Olivier, and Human, 1997; Kamii, 1989.

59. Carpenter, Franke, Jacobs, Fennema, and Empson, 1998; Fuson and Briars, 1990;

Hiebert and Wearne, 1993, 1996.  See Carroll and Porter, 1998, for some alternative

algorithms.  For a discussion of principles for creating classroom environments that

incorporate these features of effective teaching, see Fuson, De La Cruz, Smith, Lo

Cicero, Hudson, Ron, and Steeby, 2000.

60. Uttal, Scudder, DeLoache, 1997.

61. Hiebert and Wearne, 1996.

62. Beishuizen, Gravemeijer, and van Lieshout, 1997; Bowers, Cobb, and McClain, 1999;

Fuson and Burghardt, 1993, in press; Carpenter, Franke, Jacobs, Fennema, and

Empson, 1998; McClain, Cobb, and Bowers, 1998; Fuson and Briars, 1990.

63. Fuson, 1990.

64. Cauley, 1988; Fuson and Burghardt, 1993, 1997, in press; Hiebert and Wearne, 1996.

65. VanLehn, 1986.

66. Fuson and Briars, 1990; Hiebert and Wearne, 1993, 1996.  For examples of student

difficulties with numeration and the base-10 system, see Bednarz and Janvier, 1982.

67. Student-invented procedures are sometimes not really algorithms because the steps

are not precisely specified but instead follow a path that emerges through the

process—and that path may be slightly different if the same problem is posed again.

Because such procedures can often be made into algorithms by deliberate specification

of the steps, the distinction between algorithms and ad hoc procedures is seldom

maintained in the literature.  (See, e.g., the articles in Morrow and Kenney, 1998.)

68. Carpenter, Franke, Jacobs, Fennema, Empson, 1998; Fuson and Burghardt, 1993;

Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human, 1997.

69. Fuson, Wearne, Hiebert, Murray, Human, Olivier, Carpenter, and Fennema, 1997.

70. Fuson and Burghardt, 1993, in press.

Copyright © National Academy of Sciences. All rights reserved.



2216 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

71. Bowers, Cobb, and McClain, 1999; Hiebert and Wearne, 1996; Kamii, 1989.

72. Carpenter, Franke, Jacobs, Fennema, and Empson, 1998; Fuson, 1986a; Fuson and

Briars, 1990; Hiebert and Wearne, 1993, 1996; Kamii, 1989.

73. Fuson, 1986a; Fuson and Briars, 1990.

74. For example, Carroll and Porter, 1998; Kamii, 1994; Lampert, 1986a, 1986b.

75. Baek, 1998; Ambrose, Baek, and Carpenter, in press.

76. See, for example, the 1999 edition of Scott Foresman-Addison Wesley Math, Grade 4.

77. Lampert, 1992; Murray, Olivier, and Human, 1992.

78. See, for example, Scott Foresman’s Seeing Through Arithmetic, Grade 4 (Hartung, Van

Engen, and Knowles, 1955).

79. For example, Bowers, Cobb, and McClain, 1999, and Carpenter, Franke, Jacobs,

Fennema, and Empson, 1998; Fuson and Burghardt, in press; Hiebert and Wearne,

1996; Kamii, 1994.  In a comparison study, Hiebert and Wearne, 1993, showed that

students who spent more time on fewer problems and were asked to explain their

procedures outperformed their more traditionally taught peers.

80. Fuson, 1986a; Fuson, Smith, Lo Cicero, 1997.

81. For example, VanLehn, 1986, and Fuson and Burghardt, in press.

82. For example, Bowers, Cobb, and McClain, 1999; Carpenter, Franke, Jacobs, Fennema,

and Empson, 1998; Fuson, 1986a; Fuson and Burghardt, in press; Hiebert and Wearne,

1993, 1996; Kamii, 1994.

83. Beberman, 1959; Rathmell and Trafton, 1990.  For a similar discussion about

estimation, see Buchanan, 1978.  Beishuizen, 1993, discusses students connecting

mental arithmetic procedures to using base-10 blocks and hundreds squares.

84. Cohen, 1982.

85. Stigler, 1984; Hatano, 1988.

86. Sowder, 1992.

87. Hope and Sherrill, 1987.

88. Davis, 1984.

89. Markovits and Sowder, 1988.

90. Reys, Rybolt, Bestgen, and Wyatt, 1982.

91. Markovits and Sowder, 1994; Rubenstein, 1985.

92. Sowder and Wheeler, 1989.

References

Ambrose, R., Baek, J., & Carpenter, T. P.  (in press).  Children’s construction of

multiplication and division algorithms.  In A. J. Baroody & A. Dowker (Eds.), The

development of arithmetic concepts and skills: Constructing adaptive expertise.  Mahwah, NJ:

Erlbaum.

Armstrong, G. A.  (1991).  Use of the part-whole concept for teaching word problems to

grade three children (Doctoral dissertation, National College of Education, 1990).

Dissertation Abstracts International, 52(03), 833A.

Copyright © National Academy of Sciences. All rights reserved.



222 ADDING IT UP

Baek, J.-M.  (1998).  Children’s invented algorithms for multidigit multiplication problems.

In L. J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms in school

mathematics (1998 Yearbook of the National Council of Teachers of Mathematics, pp.

151–160).  Reston, VA: NCTM.

Baroody, A. J.  (1984a).  Children’s difficulties in subtraction: Some causes and cures.

Arithmetic Teacher, 32(3), 14–19.

Baroody, A. J.  (1984b).  The case of Felicia: A young child’s strategies for reducing memory

demands during mental addition.  Cognition and Instruction, 1, 109–116.

Baroody, A. J.  (1985).  Mastery of the basic number combinations: Internalization of

relationships or facts?  Journal of Research in Mathematics Education, 16, 83–98.

Baroody, A. J.  (1987a).  Children’s mathematical thinking: A developmental framework for preschool,

primary, and special education teachers.  New York: Teachers College Press.

Baroody, A. J.  (1987b).  The development of counting strategies for single-digit addition.

Journal for Research in Mathematics Education, 18, 141–157.

Baroody, A. J.  (1992).  The development of kindergartners’ mental-addition strategies.

Learning and Individual Differences, 4, 215–235.

Baroody, A. J.  (1994).  An evaluation of evidence supporting fact-retrieval models.  Learning

and Individual Differences, 6, 1–36.

Baroody, A. J.  (1996).  Self-invented addition strategies by children classified as mentally

handicapped.  American Journal of Mental Retardation, 101, 72–89.

Baroody, A. J.  (1999a).  Children’s relational knowledge of addition and subtraction.

Cognition and Instruction, 17, 137–175.

Baroody, A. J.  (1999b).  The roles of estimation and the commutativity principle in the

development of third-graders’ mental multiplication.  Journal of Experimental Child

Psychology, 74 [Special issue on mathematical cognition], 157–193.

Beberman, M.  (1959).  Introduction.  In C. H. Shutter & R. L. Spreckelmeyer (Eds.),

Teaching the third R.  Washington, DC: Council for Basic Education.

Bednarz, N., & Janvier, B.  (1982).  The understanding of numeration in primary school.

Educational Studies in Mathematics, 13, 33–57.

Beishuizen, M.  (1993).  Mental procedures and materials or models for addition and

subtraction up to 100 in Dutch second grades.  Journal for Research in Mathematics

Education, 24, 294–323.

Beishuizen, M., Gravemeijer, K. P. E., & van Lieshout, E. C. D. M. (Eds.).  (1997).  The

role of contexts and models in the development of mathematical strategies and procedures (pp.

163–198).  Utrecht: CD-B Press/Freudenthal Institute.

Beishuizen, M., Van Putten, C. M., & Van Mulken, F.  (1997).  Mental arithmetic and

strategy use with indirect number problems up to one hundred.  Learning and

Instruction, 7, 87–106.

Bergeron, J. C., & Herscovics, N.  (1990).  Psychological aspects of learning early arithmetic.

In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the

International Group for the Psychology of Mathematics Education.  ICMI study series (pp.

31–52).  Cambridge, UK: Cambridge University Press.

Bowers, J., Cobb, P., & McClain, K.  (1999).  The evolution of mathematical practices: A

case study.  Cognition and Instruction, 17, 25–64.

Copyright © National Academy of Sciences. All rights reserved.



2236 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.).  (1999).  How people learn: Brain,

mind, experience, and school.  Washington, DC: National Academy Press.  Available:

http://books.nap.edu/catalog/6160.html. [July 10, 2001].

Brown, J. S., & Van Lehn, K.  (1980).  Repair theory: A generative theory of bugs in

procedural skills.  Cognitive Science, 4, 379–426.

Brownell, W. A.  (1944).  Rate accuracy and process in learning.  Journal of Educational

Psychology, 35, 321–337.

Brownell, W. A.  (1987).  AT classic: Meaning and skill—maintaining the balance.  Arithmetic

Teacher, 34(8), 18–25.  (Original work published 1956)

Brownell, W. A., & Chazal, C. B.  (1935).  The effects of premature drill in third-grade

arithmetic.  Journal of Educational Research, 29, 17–28.

Buchanan, A. D.  (1978).  Estimation as an essential mathematical skill (Professional Paper

No. 39, SWRL-PP-39).  Los Alamitos, CA: Southwest Regional Laboratory for

Educational Research and Development.  (ERIC Document Reproduction Service

No. ED 167 385)

Carnine, D. W., & Stein, M.  (1981).  Organizational strategies and practice procedures for

teaching basic facts.  Journal for Research in Mathematics Education, 12, 65–69.

Carpenter, T. P.  (1985).  Learning to add and subtract: An exercise in problem solving.  In

E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research

perspectives (pp. 17–40).  Hillsdale, NJ: Erlbaum.

Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L.  (1993).  Models

of problem solving: A study of kindergarten children’s problem-solving processes.

Journal for Research in Mathematics Education, 24, 428–441.

Carpenter, T. P., Fennema, E., & Franke, M. L.  (1996).  Cognitively guided instruction: A

knowledge base for reform in primary mathematics instruction.  Elementary School

Journal, 97, 3–20.

Carpenter, T. P., Fennema, E., Franke, M. L., Empson, S. B., & Levi, L. W. (1999). Children’s

mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann.

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M.  (1989).  Using

knowledge of children’s mathematics thinking in classroom teaching: An experimental

study.  American Educational Research Journal, 26, 499–531.

Carpenter, T. P., Franke, M. L., Jacobs, V. R., Fennema, E., & Empson, S. B.  (1998).  A

longitudinal study of invention and understanding in children’s multidigit addition

and subtraction.  Journal for Research in Mathematics Education, 29, 3–20.

Carpenter, T. P., & Moser, J. M.  (1984).  The acquisition of addition and subtraction

concepts in grades one through three.  Journal for Research in Mathematics Education,

15, 179–202.

Carpenter, T. P., Moser, M. J., & Romberg, T. A. (Eds.).  (1982).  Addition and subtraction: A

cognitive perspective.  Hillsdale, NJ: Erlbaum.

Carraher, T. N., Carraher, D. W., & Schliemann, A. D.  (1987).  Written and oral mathematics.

Journal for Research in Mathematics Education, 18, 83–97.

Carroll, W. M., & Porter, D.  (1997).  Invented procedures can develop meaningful

mathematical procedures.  Teaching Children Mathematics, 3, 370–74.

Carroll, W. M., & Porter, D.  (1998).  Alternative algorithms for whole-number operations.

In L. J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms in school

mathematics (1998 Yearbook of the National Council of Teachers of Mathematics, pp.

Copyright © National Academy of Sciences. All rights reserved.



224 ADDING IT UP

106–114).  Reston, VA: NCTM.

Cauley, K. M.  (1988).  Construction of logical knowledge: Study of borrowing in subtraction.

Journal of Educational Psychology, 80, 202–205.

Cobb, P., & Bauersfeld, H. (Eds.).  (1995).  The emergence of mathematical thinking: Interaction

in classroom cultures.  Hillsdale, NJ: Erlbaum.

Cobb, P., & Wheatley, G.  (1988).  Children’s initial understandings of ten.  Focus on Learning

Problems in Mathematics, 10(3), 1–28.

Cohen, P. C.  (1982).  A calculating people: The spread of numeracy in early America.  Chicago:

University of Chicago Press.

Cook, C. J., & Dossey, J. A.  (1982).  Basic facts thinking strategies for multiplication—

revisited.  Journal for Research in Mathematics Education, 13, 163–171.

Davis, R. B.  (1984).  Learning mathematics: The cognitive science approach to mathematics

education.  Norwood, NJ: Ablex.

Davydov, V. V., & Andronov, V. P.  (1981).  Psychological conditions of the origination of ideal

actions (Project Paper No. 81–2).  Madison: University of Wisconsin, Research and

Development Center for Individualized Schooling.

Fuson, K. C.  (1986a).  Roles of representation and verbalization in the teaching of multi-

digit addition and subtraction.  European Journal of Psychology of Education, 1, 35–56.

Fuson, K. C.  (1986b).  Teaching children to subtract by counting up.  Journal for Research

in Mathematics Education, 17, 172–189.

Fuson, K. C.  (1988).  Children’s counting and concepts of number.  New York: Springer-Verlag.

Fuson, K. C.  (1990).  Conceptual structures for multiunit numbers: Implications for learning

and teaching multidigit addition, subtraction, and place value.  Cognition and Instruction,

7, 343–403.

Fuson, K. C.  (1992a).  Research on learning and teaching addition and subtraction of

whole numbers.  In G. Leinhardt, R. T. Putnam, & R. A. Hattrup (Eds.), The analysis

of arithmetic for mathematics teaching (pp. 53–187).  Hillsdale, NJ: Erlbaum.

Fuson, K. C.  (1992b).  Research on whole number addition and subtraction.  In D. Grouws

(Ed.), Handbook of research on mathematics teaching and learning (pp. 243–275).  New

York: Macmillan.

Fuson, K. C., & Briars, D. J.  (1990).  Using a base-ten blocks learning/teaching approach

for first- and second-grade place-value and multidigit addition and subtraction.  Journal

for Research in Mathematics Education, 21, 180–206.

Fuson, K. C., & Burghardt, B. H.  (1993).  Group case studies of second graders inventing

multidigit addition procedures for base-ten blocks and written marks.  In J. R. Becker

& B. J. Pence (Eds.), Proceedings of the fifteenth annual meeting of the North American

Chapter of the International Group for the Psychology of Mathematics Education (pp. 240–

246).  San Jose, CA: San Jose State University.  (ERIC Document Reproduction Service

No. ED 372 917).

Fuson, K. C., & Burghardt, B. H.  (1997).  Group case studies of second graders inventing

multidigit subtraction methods.  In J. A. Dossey, J. O. Swafford, M. Parmantie, & A.

E. Dossey (Eds.), Proceedings of the nineteenth annual meeting of the North American Chapter

of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 291–

298).  Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and

Environmental Education.  (ERIC Document Reproduction Service No. ED 420

494).

Copyright © National Academy of Sciences. All rights reserved.



2256 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

Fuson, K. C., & Burghardt, B. H.  (in press).  Multi-digit addition and subtraction methods

invented in small groups and teacher support of problem solving and reflection.  In A.

Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing

adaptive expertise.  Hillsdale, NJ: Erlbaum.

Fuson, K. C., De La Cruz, Y., Smith, S., Lo Cicero, A., Hudson, K., Ron, P., & Steeby, R.

(2000).  Blending the best of the twentieth century to achieve a mathematics equity

pedagogy in the twenty-first century.  In M. J. Burke (Ed.), Learning mathematics for a

new century (2000 Yearbook of the National Council of Teachers of Mathematics, pp.

197–212).  Reston, VA: NCTM.

Fuson, K. C., & Fuson, A. M.  (1992).  Instruction to support children’s counting on for

addition and counting up for subtraction.  Journal for Research in Mathematics Education,

23, 72–78.

Fuson, K. C., & Kwon, Y.  (1991).  Chinese-based regular and European irregular systems

of number words: The disadvantages for English-speaking children.  In K. Durkin &

B. Shire (Eds.), Language and mathematical education (pp. 211–226).  Milton Keynes,

UK: Open University Press.

Fuson, K. C., & Kwon, Y.  (1992a).  Korean children’s understanding of multidigit addition

and subtraction.  Child Development, 63, 491–506.

Fuson, K. C., & Kwon, Y.  (1992b).  Korean children’s single-digit addition and subtraction:

Numbers structured by ten.  Journal for Research in Mathematics Education, 23, 148–

165.

Fuson, K. C., & Secada, W. G.  (1986).  Teaching children to add by counting-on with one-

handed finger patterns.  Cognition and Instruction, 3, 229–260.

Fuson, K. C., Smith, S. T., & Lo Cicero, A. M.  (1997).  Supporting Latino first graders’

ten-structured thinking in urban classrooms.  Journal for Research in Mathematics

Education, 28, 738–766.

Fuson, K. C., Stigler, J., & Bartsch, K.  (1988).  Brief report: Grade placement of addition

and subtraction topics in Japan, mainland China, the Soviet Union, Taiwan, and the

United States.  Journal for Research in Mathematics Education, 19, 449–456.

Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I.,

Carpenter, T. P., & Fennema, E.  (1997).  Children’s conceptual structures for multidigit

numbers and methods of multidigit addition and subtraction.  Journal for Research in

Mathematics Education, 28, 130–162.

Fuson, K. C., & Willis, G. B.  (1988).  Subtracting by counting up: More evidence.  Journal

for Research in Mathematics Education, 19, 402–420.

Geary, D. C.  (1994).  Children’s mathematical development: Research and practical applications.

Washington, DC: American Psychological Association.

Geary, D. C., & Brown, S. C.  (1991).  Cognitive addition: Strategy choice and speed-of-

processing differences in gifted, normal and mathematically disabled children.

Developmental Psychology, 27, 298–406.

Ginsburg, H. P., & Allardice, B. S.  (1984).  Children’s difficulties with school mathematics.

In B. Rogoff & J. Lave (Eds.), Everyday cognition: Its development in social contexts (pp.

194–219).  Cambridge, MA: Harvard University Press.

Greer, F.  (1992).  Multiplication and division as models of situations.  In D. Grouws (Ed.),

Handbook of research on mathematics teaching and learning (pp. 276–295).  New York:

Macmillan.

Copyright © National Academy of Sciences. All rights reserved.



226 ADDING IT UP

Griffin, S. A., Case, R., & Siegler, R. S.  (1994).  Rightstart: Providing the central conceptual

prerequisites for first formal learning of arithmetic to students at risk for school failure.

In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice

(pp. 25–49).  Cambridge, MA: MIT Press.

Harel, G., & Confrey, J.  (1994).  The development of multiplicative reasoning in the learning of

mathematics.  Albany: State University of New York Press.

Hartung, M. L., Van Engen, H., & Knowles, L.  (1955).  Seeing through arithmetic.  Chicago:

Scott Foresman.

Hatano, G.  (1988, Fall).  Social and motivational bases for mathematical understanding.

New Directions for Child Development, 41, 55–70.

Hiebert, J., Carpenter, T., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., Olivier, A.,

& Human, P.  (1997).  Making sense: Teaching and learning mathematics with understanding.

Portsmouth, NH: Heinemann.

Hiebert, J., & Wearne, D.  (1993).  Instructional tasks, classroom discourse, and student

learning in second grade.  American Educational Research Journal, 30, 393–425.

Hiebert, J., & Wearne, D.  (1996).  Instruction, understanding, and skill in multidigit

addition and subtraction.  Cognition and Instruction, 14, 251–83.

Hope, J. A., & Sherrill, J. M.  (1987).  Characteristics of unskilled and skilled mental

calculators.  Journal for Research in Mathematics Education, 18(2), 98–111.

Huinker, D. M.  (1991).  Effects of instruction using part-whole concepts with one-step

and two-step word problems in grade four (Doctoral dissertation University of

Michigan, 1990).  Dissertation Abstracts International, 52(01), 103A.

Jerman, M.  (1970).  Some strategies for solving simple multiplication combinations.  Journal

for Research in Mathematics Education, 1, 95–128.

Kamii, C.  (1989).  Young children continue to reinvent arithmetic—2nd grade: Implications of

Piaget’s theory.  New York: Teachers College Press.

Kamii, C.  (1994).  Young children continue to reinvent arithmetic—3rd grade: Implications of

Piaget’s theory.  New York: Teachers College Press.

Kamii, C. & Dominick, A.  (1998).  The harmful effects of algorithms in grades 1-4. In L.

J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms in school

mathematics (1998 Yearbook of the National Council of Teachers of Mathematics, pp.

130–140).  Reston VA: NCTM.

Kouba, V.  (1989).  Children’s solution procedures for equivalent set multiplication and

division word problems.  Journal for Research in Mathematics Education, 20, 147–158.

Labinowicz, E.  (1985).  Learning from children: New beginnings for teaching numerical thinking.

Menlo Park, CA: Addison-Wesley.

Lampert, M.  (1986a).  Knowing, doing, and teaching multiplication.  Cognition and

Instruction, 3, 305–342.

Lampert, M.  (1986b).  Teaching multiplication.  Journal of Mathematical Behavior, 5, 241–

280.

Lampert, M.  (1992).  Teaching and learning long division for understanding in school.  In

G. Leinhardt, R. T. Putnam, & R. A. Hattrup (Eds.), The analysis of arithmetic for

mathematics teaching (pp. 221–282).  Hillsdale, NJ: Erlbaum.

LeFevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S.  (1996).

Multiple routes to solution of single-digit multiplication problems.  Journal of

Experimental Psychology: General, 125, 284–306.

Copyright © National Academy of Sciences. All rights reserved.



2276 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

LeFevre, J., Sadesky, G. S., & Bisanz, J.  (1996).  Selection of procedures in mental addition:

Reassessing the problem-size effect in adults.  Journal of Experimental Psychology:

Learning, Memory, and Cognition, 22, 216–230.

Lemaire, P., & Siegler, R. S.  (1995).  Four aspects of strategic change: Contributions to

children’s learning of multiplication.  Journal of Experimental Psychology: General, 124,

83–97.

Leutzinger, L. P.  (1979).  The effects of counting on the acquisition of addition facts in

grade one (Doctoral dissertation, University of Iowa, 1979).  Dissertation Abstracts

International, 40(07), 3765A.

Markovits, Z., & Sowder, J.  (1988).  Mental computation and number sense.  In M. J.

Behr, C. B. Lacampagne, & M. M. Wheeler (Eds.), Proceedings of the tenth annual meeting

of the North American Chapter of the International Group for the Psychology of Mathematics

Education (pp. 58–64).  DeKalb: Northern Illinois University.  (ERIC Document

Reproduction Service No. ED 411 126).

Markovits, Z., & Sowder, J.  (1994).  Developing number sense: An intervention study in

grade 7.  Journal for Research in Mathematics Education, 25, 4–29.

Matsushita, K.  (1994).  Acquiring mathematical knowledge through semantic and pragmatic

problem solving.  Human Development, 37, 220–232.

McClain, K., Cobb, P., & Bowers, J.  (1998).  A contextual investigation of three-digit

addition and subtraction.  In L. J. Morrow & M. J. Kenney (Eds.), The teaching and

learning of algorithms in school mathematics (1998 Yearbook of the National Council of

Teachers of Mathematics, pp. 141–150).  Reston, VA: NCTM.

Morrow, L. J., & Kenney, M. J. (Eds.).  (1998).  The teaching and learning of algorithms in

school mathematics (1998 Yearbook of the National Council of Teachers of Mathematics).

Reston, VA: NCTM.

Mulligan, J., & Mitchelmore, M.  (1997).  Young children’s intuitive models of multiplication

and division.  Journal for Research in Mathematics Education, 28, 309–330.

Murray, H., Olivier, A. & Human, P.  (1992).  The development of young children’s division

strategies.  In W. Geeslin & K. Graham (Eds.), Proceedings of the Sixteenth International

Conference for the Psychology of Mathematics Education (vol. 2, pp. 152–159).  Durham,

NH: PME Program Committee.  (ERIC Document Reproduction Service No. ED

383 538).

Nesher, P.  (1992).  Solving multiplication word problems.  In G. Leinhardt, R. T. Putnam,

& R. A. Hattrup (Eds.), The analysis of arithmetic for mathematics teaching (pp. 189–220).

Hillsdale, NJ: Erlbaum.

Nunes, T.  (1992).  Ethnomathematics and everyday cognition.  In D. A. Grouws (Ed.),

Handbook of research on mathematics teaching and learning (pp. 557–574).  New York:

Macmillan.

Olivier, A., Murray, H. & Human, P.  (1990).  Building on young children’s informal

mathematical knowledge.  In G. Booker, P. Cobb, & T. N. Mendicuti (Eds.), Proceedings

of the Fourteenth International Conference for the Psychology of Mathematics Education (vol. 3,

pp. 297–304).  Oaxtepec, Mexico: PME Program Committee.  (ERIC Document

Reproduction Service No. ED 411 139).

Rathmell, E. C.  (1978).  Using thinking procedures to learn basic facts.  In M. Suydam

(Ed.), Developing computational skills (1978 Yearbook of the National Council of Teachers

of Mathematics, pp. 13-38).  Reston, VA: NCTM.

Copyright © National Academy of Sciences. All rights reserved.



228 ADDING IT UP

Rathmell, E., & Huinker, D.  (1989).  Using “part-whole” language to help children

represent and solve word problems.  In P. R. Trafton (Ed.), New directions for elementary

school mathematics (1989 Yearbook of the National Council of Teachers of Mathematics,

pp. 99–110).  Reston, VA: NCTM.

Rathmell, E. C., & Trafton, P. R.  (1990).  Whole number computation.  In J. R. Payne

(Ed.), Mathematics for the young child (pp. 153-172).  Reston, VA: National Council of

Teachers of Mathematics.

Resnick, L. B.  (1983).  A developmental theory of number understanding.  In H. P. Ginsburg

(Ed.), The development of mathematical thinking (pp. 110–152).  Hillsdale, NJ: Erlbaum.

Resnick, L. B., & Ford, W. W.  (1981).  The psychology of mathematics for instruction.  Hillsdale,

NJ: Erlbaum.

Reys, R. E., Rybolt, J. F., Bestgen, B. J., & Wyatt, J. W.  (1982).  Processes used by good

computational estimators.  Journal for Research in Mathematics Education, 13, 183–201.

Riley, M. S., & Greeno, J. G.  (1988).  Developmental analysis of understanding language

about quantities and of solving problems.  Cognition and Instruction, 5, 49–101.

Rittle-Johnson, B., & Alibali, M. W.  (1999).  Conceptual and procedural knowledge of

mathematics: Does one lead to the other?  Journal of Educational Psychology, 91, 175–

189.

Rittle-Johnson, B., & Siegler, R. S.  (1998).  The relation between conceptual and procedural

knowledge in learning mathematics: A review.  In C. Donlan (Ed.), The development of

mathematical skills (pp. 75–110).  East Sussex, UK: Psychology Press.

Ron, P.  (1998).  My family taught me this way.  In L. J. Morrow & M. J. Kenney (Eds.), The

teaching and learning of algorithms in school mathematics (1998 Yearbook of the National

Council of Teachers of Mathematics, pp. 115–119).  Reston, VA: NCTM.

Rubenstein, R. N.  (1985).  Computational estimation and related mathematical skills.

Journal for Research in Mathematics Education, 16, 106–119.

Saxe, G. B.  (1982).  Culture and the development of numerical cognition: Studies among

the Oksapmin of Papua New Guinea.  In C. J. Brainerd (Ed.), Progress in cognitive

development research: Vol. 1: Children’s logical and mathematical cognition (pp. 157–176).

New York: Springer-Verlag.

Saxe, G. B.  (1988).  The mathematics of child street vendors.  Child Development, 59, 1415–

1425.

Siegler, R. S.  (1996).  Emerging minds: The process of change in children’s thinking.  New York:

Oxford University Press.

Siegler, R. S.  (in press).  Implications for cognitive science research for mathematics education.  In

J. Kilpatrick, W. G. Martin, & D. E. Schifter (Eds.), A research companion to principles

and standards for school mathematics.  Reston, VA: National Council of Teachers of

Mathematics.

Siegler, R. S., & Jenkins, E.  (1989).  How children discover new strategies.  Hillsdale, NJ:

Erlbaum.

Sowder, J. T.  (1992).  Making sense of numbers in school mathematics.  In G. Leinhardt,

R. Putnam, & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp.

1–51).  Hillsdale, NJ: Erlbaum.

Sowder, J. T., & Wheeler, M. M.  (1989).  The development of concepts and procedures

used in computational estimation.  Journal for Research in Mathematics Education, 20,

130–146.

Copyright © National Academy of Sciences. All rights reserved.



2296 DEVELOPING PROFICIENCY WITH WHOLE NUMBERS

Steffe, L.  (1994).  Children’s multiplying schemes.  In G. Harel & J. Confrey (Eds.), The

development of multiplicative reasoning in the learning of mathematics (pp. 3–39).  Albany:

State University of New York Press.

Steffe, L. P., Cobb, P., & von Glasersfeld, E.  (1988).  Construction of arithmetical meanings

and procedures.  New York: Springer-Verlag.

Stigler, J. W.  (1984).  “Mental abacus”: The effect of abacus training on Chinese children’s

mental calculation.  Cognitive Psychology, 16, 145–176.

Steinberg, R.  (1985).  Instruction on derived facts strategies in addition and subtraction.

Journal for Research in Mathematics Education, 16, 337–355.

Thornton, C. A.  (1978).  Emphasizing thinking strategies in basic fact instruction.  Journal

for Research in Mathematics Education, 9, 214–227.

Uttal, D. H., Scudder, K. V., & DeLoache, J. S.  (1997).  Manipulatives as symbols: A new

perspective on the use of concrete objects to teach mathematics.  Journal of Applied

Developmental Psychology, 18, 37–54.

VanLehn, K.  (1986).  Arithmetic procedures are induced from examples.  In J. Hiebert

(Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 133–179).

Hillsdale, NJ: Erlbaum.

Vergnaud, G.  (1983).  Multiplicative structures.  In R. Lesh & M. Landau (Eds.), Acquisition

of mathematics concepts and processes (pp. 127–174).  New York: Academic Press.

Verschaffel, L., & De Corte, E.  (1993).  A decade of research on word-problem solving in

Leuven: Theoretical, methodological, and practical outcomes.  Educational Psychology

Review, 5(3), 1–18.

Copyright © National Academy of Sciences. All rights reserved.



Copyright © National Academy of Sciences. All rights reserved.



231

7

DEVELOPING PROFICIENCY

WITH OTHER NUMBERS

In this chapter, we look beyond the whole numbers at other numbers

that are included in school mathematics in grades pre-K to 8, particularly in

the upper grades.  We first look at the rational numbers, which constitute

what is undoubtedly the most challenging number system of elementary and

middle school mathematics.  Then we consider proportional reasoning, which

builds on the ratio use of rational numbers.  Finally, we examine the integers,

a stepping stone to algebra.

Rational Numbers

Learning about rational numbers is more complicated and difficult than

learning about whole numbers.  Rational numbers are more complex than

whole numbers, in part because they are represented in several ways (e.g.,

common fractions and decimal fractions) and used in many ways (e.g., as parts

of regions and sets, as ratios, as quotients).  There are numerous properties

for students to learn, including the significant fact that the two numbers that

compose a common fraction (numerator and denominator) are related through

multiplication and division, not addition.1   This feature often causes mis-

understanding when students first encounter rational numbers.  Further,

students are likely to have less out-of-school experience with rational num-

bers than with whole numbers.  The result is a number system that presents

great challenges to students and teachers.

Moreover, how students become proficient with rational numbers is not

as well understood as with whole numbers.  Significant work has been done,

however, on the teaching and learning of rational numbers, and several points
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can be made about developing proficiency with them.  First, students do

have informal notions of sharing, partitioning sets, and measuring on which

instruction can build.  Second, in conventional instructional programs, the

proficiency with rational numbers that many students develop is uneven across

the five strands, and the strands are often disconnected from each other.  Third,

developing proficiency with rational numbers depends on well-designed class-

room instruction that allows extended periods of time for students to con-

struct and sustain close connections among the strands.  We discuss each of

these points below.  Then we examine how students learn to represent and

operate with rational numbers.

Using Informal Knowledge

Students’ informal notions of partitioning, sharing, and measuring provide

a starting point for developing the concept of rational number.2   Young chil-

dren appreciate the idea of “fair shares,” and they can use that understanding

to partition quantities into equal parts.  Their experience in sharing equal

amounts can provide an entrance into the study of rational numbers.  In some

ways, sharing can play the role for rational numbers that counting does for

whole numbers.

In view of the preschooler’s attention to counting and number that we

noted in chapter 5, it is not surprising that initially many children are con-

cerned more that each person gets an equal number of things than with the

size of each thing.3   As they move through the early grades of school, they

become more sensitive to the size of the parts as well.4   Soon after entering

school, many students can partition quantities into equal shares correspond-

ing to halves, fourths, and eighths.  These fractions can be generated by suc-

cessively partitioning by half, which is an especially fruitful procedure since

one half can play a useful role in learning about other fractions.5   Accompany-

ing their actions of partitioning in half, many students develop the language

of “one half” to describe the actions.  Not long after, many can partition quan-

tities into thirds or fifths in order to share quantities fairly among three or five

people.

An informal understanding of rational number, which is built mostly on

the notion of sharing, is a good starting point for instruction.  The notion of

sharing quantities and comparing sizes of shares can provide an entry point

that takes students into the world of rational numbers.6   Equal shares, for

example, opens the concept of equivalent fractions (e.g., If there are 6 chil-
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dren sharing 4 pizzas, how many pizzas would be needed for 12 children to

receive the same amount?).

It is likely, however, that an informal understanding of rational numbers

is less robust and widespread than the corresponding informal understanding

of whole numbers.  For whole numbers, many young children enter school

with sufficient proficiency to invent their own procedures for adding, sub-

tracting, multiplying, and dividing.  For rational numbers, in contrast, teachers

need to play a more active and direct role in providing relevant experiences

to enhance students’ informal understanding and in helping them elaborate

their informal understanding into a more formal network of concepts and

procedures.  The evidence suggests that carefully designed instructional pro-

grams can serve both of these functions quite well, laying the foundation for

further progress.7

Discontinuities in Proficiency

Proficiency with rational numbers, as with all mathematical topics, is sig-

naled most clearly by the close intertwining of the five strands.  Large-scale

surveys of U.S. students’ knowledge of rational number indicate that many

students are developing some proficiency within individual strands.8   Often,

however, these strands are not connected.  Furthermore, the knowledge stu-

dents acquire within strands is also disconnected.  A considerable body of

research describes this separation of knowledge.9

As we said at the beginning of the chapter, rational numbers can be ex-

pressed in various forms (e.g., common fractions, decimal fractions, percents),

and each form has many common uses in daily life (e.g., a part of a region, a

part of a set, a quotient, a rate, a ratio).10   One way of describing this complex-

ity is to observe that, from the student’s point of view, a rational number is

not a single entity but has multiple personalities.  The scheme that has guided

research on rational number over the past two decades11  identifies the

following interpretations for any rational number, say 3
4
: (a) a part-whole re-

lation (3 out of 4 equal-sized shares); (b) a quotient (3 divided by 4); (c) a

measure ( 3
4
 of the way from the beginning of the unit to the end); (d) a ratio

(3 red cars for every 4 green cars); and (e) an operation that enlarges or re-

duces the size of something ( 3
4
 of 12).  The task for students is to recognize

these distinctions and, at the same time, to construct relations among them

that generate a coherent concept of rational number.12   Clearly, this process is

lengthy and multifaceted.
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Instructional practices that tend toward premature abstraction and

extensive symbolic manipulation lead students to have severe difficulty in

representing rational numbers with standard written symbols and using the

symbols appropriately.13   This outcome is not surprising, because a single

rational number can be represented with many different written symbols (e.g.,
3
5
, 12
20

, 0.6, 0.60, 60%).  Instructional programs have often treated this com-

plexity as simply a “syntactic” translation problem: One written symbol had

to be translated into another according to a sequence of rules.  Different rules

have often been taught for each translation situation.  For example, “To change

a common fraction to a decimal fraction, divide the numerator by the

denominator.”

But the symbolic representation of rational numbers poses a “semantic”

problem—a problem of meaning—as well.  Each symbol representation means

something.  Current instruction often gives insufficient attention to develop-

ing the meanings of different rational number representations and the con-

nections among them.  The evidence for this neglect is that a majority of U.S.

students have learned rules for translating between forms but understand

very little about what quantities the symbols represent and consequently make

frequent and nonsensical errors.14   This is a clear example of the lack of pro-

ficiency that results from pushing ahead within one strand but failing to con-

nect what is being learned with other strands.  Rules for manipulating sym-

bols are being memorized, but students are not connecting those rules to

their conceptual understanding, nor are they reasoning about the rules.

Another example of disconnection among the strands of proficiency is

students’ tendency to compute with written symbols in a mechanical way

without considering what the symbols mean.  Two simple examples illustrate

the point.  First, recall (from chapter 4) the result from the National Assess-

ment of Educational Progress (NAEP)15  showing that more than half of U.S.

eighth graders chose 19 or 21 as the best estimate of 12
13
 + 7

8
.  These choices

do not make sense if students understand what the symbols mean and are

reasoning about the quantities represented by the symbols.  Another survey

of students’ performance showed that the most common error for the addi-

tion problem 4 + .3 = ? is .7, which is given by 68% of sixth graders and 51% of

fifth and seventh graders.16   Again, the errors show that many students have

learned rules for manipulating symbols without understanding what those

symbols mean or why the rules work.  Many students are unable to reason

appropriately about symbols for rational numbers and do not have the strate-

gic competence that would allow them to catch their mistakes.
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Supporting Connections

Of all the ways in which rational numbers can be interpreted and used,

the most basic is the simplest—rational numbers are numbers.  That fact is so

fundamental that it is easily overlooked.  A rational number like 3
4
 is a single

entity just as the number 5 is a single entity.  Each rational number holds a

unique place (or is a unique length) on the number line (see chapter 3).  As a

result, the entire set of rational numbers can be ordered by size, just as the

whole numbers can.  This ordering is possible even though between any two

rational numbers there are infinitely many rational numbers, in drastic con-

trast to the whole numbers.

It may be surprising that, for most students, to think of a rational number

as a number—as an individual entity or a single point on a number line—is a

novel idea.17   Students are more familiar with rational numbers in contexts

like parts of a pizza or ratios of hits to at-bats in baseball.  These everyday

interpretations, although helpful for building knowledge of some aspects of

rational number, are an inadequate foundation for building proficiency.  The

difficulty is not just due to children’s limited experience.  Even the interpre-

tations ordinarily given by adults to various forms of rational numbers, such

as percent, do not lead easily to the conclusion that rational numbers are num-

bers.18   Further, the way common fractions are written (e.g., 3
4
) does not help

students see a rational number as a distinct number.  After all, 3
4
 looks just

like one whole number over another, and many students initially think of it

as two different numbers, a 3 and a 4.

Research has verified what many teachers have observed, that students

continue to use properties they learned from operating with whole numbers

even though many whole number properties do not apply to rational num-

bers.  With common fractions,19  for example, students may reason that 1
8
 is

larger than 1
7
 because 8 is larger than 7.  Or they may believe that 3

4
 equals 4

5
because in both fractions the difference between numerator and denomina-

tor is 1.  With decimal fractions,20  students may say .25 is larger than .7 be-

cause 25 is larger than 7.  Such inappropriate extensions of whole number

relationships, many based on addition, can be a continuing source of trouble

when students are learning to work with fractions and their multiplicative

relationships.21

The task for instruction is to use, rather than to ignore, the informal knowl-

edge of rational numbers that students bring with them and to provide them

with appropriate experiences and sufficient time to develop meaning for these

new numbers and meaningful ways of operating with them.  Systematic errors

can best be regarded as useful diagnostic tools for instruction since they more
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often represent incomplete rather than incorrect knowledge.22   From the cur-

rent research base, we can make several observations about the kinds of learn-

ing opportunities that instruction must provide students if they are to de-

velop proficiency with rational numbers.  These observations address both

representing rational numbers and computing with them.

Representing Rational Numbers

As with whole numbers, the written notations and spoken words used for

decimal and common fractions contribute to—or at least do not help correct—

the many kinds of errors students make with them.  Both decimals and com-

mon fractions use whole numbers in their notations.  Nothing in the notation

or the words used conveys their meaning as fractured parts.  The English

words used for fractions are the same words used to tell order in a line: fifth in

line and three fifths (for 3
5
).  In contrast, in Chinese, 3

5
 is read “out of 5 parts

(take) 3.”  Providing students with many experiences in partitioning quanti-

ties into equal parts using concrete models, pictures, and meaningful con-

texts can help them create meaning for fraction notations.  Introducing the

standard notation for common fractions and decimals must be done with care,

ensuring that students are able to connect the meanings already developed

for the numbers with the symbols that represent them.

Research does not prescribe a one best set of learning activities or one

best instructional method for rational numbers.  But some sequences of

activities do seem to be more effective than others for helping students develop

a conceptual understanding of symbolic representations and connect it with

the other strands of proficiency.23   The sequences that have been shown to

promote mathematical proficiency differ from each other in a number of ways,

but they share some similarities.  All of them spend time at the outset help-

ing students develop meaning for the different forms of representation.  Typi-

cally, students work with multiple physical models for rational numbers as

well as with other supports such as pictures, realistic contexts, and verbal

descriptions.  Time is spent helping students connect these supports with

the written symbols for rational numbers.

In one such instructional sequence, fourth graders received 20 lessons

introducing them to rational numbers.24   Almost all the lessons focused on

helping the students connect the various representations of rational number

with concepts of rational number that they were developing.  Unique to this

program was the sequence in which the forms were introduced: percents,

then decimal fractions, and then common fractions.  Because many children
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in the fourth grade have considerable informal knowledge of percents, per-

cents were used as the starting point.  Students were asked to judge, for

example, the relative fullness of a beaker (e.g., 75%), and the relative height

of a tube of liquid (e.g., 30%).  After a variety of similar activities, the percent

representations were used to introduce the decimal fractions and, later, the

common fractions.  Compared with students in a conventional program, who

spent less time developing meaning for the representations and more time

practicing computation, students in the experimental program demonstrated

higher levels of adaptive reasoning, conceptual understanding, and strategic

competence, with no loss of computational skill.  This finding illustrates one

of our major themes: Progress can be made along all strands if they remain

connected.

Another common feature of learning activities that help students under-

stand and use the standard written symbols is the careful attention the activi-

ties devote to the concept of unit.25   Many conventional curricula introduce

rational numbers as common fractions that stand for part of a whole, but little

attention is given to the whole from which the rational number extracts its

meaning.  For example, many students first see a fraction as, say, 3
4
 of a pizza.

In this interpretation the amount of pizza is determined by the fractional part

( 3
4
) and by the size of the pizza.  Hence, three fourths of a medium pizza is

not the same amount of pizza as three fourths of a large pizza, although it may

be the same number of pieces.  Lack of attention to the nature of the unit or

whole may explain many of the misconceptions that students exhibit.

A sequence of learning activities that focus directly on the whole unit in

representing rational numbers comes from an experimental curriculum in

Russia.26   In this sequence, rational numbers are introduced in the early grades

as ratios of quantities to the unit of measure.  For example, a piece of string is

measured by a small piece of tape and found to be equivalent to five copies of

the tape.  Children express the result as “string/tape = 5.”  Rational numbers

appear quite naturally when the quantity is not measured by the unit an exact

number of times.  The leftover part is then represented, first informally and

then as a fraction of the unit.  With this approach, the size of the unit always

is in the foreground.  The evidence suggests that students who engage in

these experiences develop coherent meanings for common fractions, mean-

ings that allow them to reason sensibly about fractions.27
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Computing with Rational Numbers

As with representing rational numbers, many students need instructional

support to operate appropriately with rational numbers.  Adding, subtracting,

multiplying, and dividing rational numbers require that they be seen as numbers

because in elementary school these operations are defined only for numbers.

That is, the principles on which computation is based make sense only if

common fractions and decimal fractions are understood as representing

numbers.  Students may think of a fraction as part of a pizza or as a batting

average, but such interpretations are not enough for them to understand what

is happening when computations are carried out.  The trouble is that many

students have not developed a meaning for the symbols before they are asked

to compute with rational numbers.

Proficiency in computing with rational numbers requires operating with

at least two different representations: common fractions and finite decimal

fractions.  There are important conceptual similarities between the rules for

computing with both of these forms (e.g., combine those terms measured

with the same unit when adding and subtracting).  However, students must

learn how those conceptual similarities play out in each of the written symbol

systems.  Procedural fluency for arithmetic with rational numbers thus requires

that students understand the meaning of the written symbols for both common

fractions and finite decimal fractions.

What can be learned from students’ errors? Research

reveals the kinds of errors that students are likely to make as they begin com-

puting with common fractions and finite decimals.  Whether the errors are

the consequence of impoverished learning of whole numbers or insufficiently

developed meaning for rational numbers, effective instruction with rational

numbers needs to take these common errors into account.

Some of the errors occur when students apply to fractions poorly under-

stood rules for calculating with whole numbers.  For example, they learn to

“line up the numbers on the right” when they are adding and subtracting

whole numbers.  Later, they may try to apply this rule to decimal fractions,

probably because they did not understand why the rule worked in the first

place and because decimal fractions look a lot like whole numbers.  This

confusion leads many students to get .61 when adding 1.5 and .46, for

example.28

It is worth pursuing the above example a bit further.  Notice that the rule

“line up the numbers on the right” and the new rule for decimal fractions

“line up the decimal points” are, on the surface, very different rules.  They
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prescribe movements of digits in different-sounding ways.  At a deeper level,

however, they are exactly the same.  Both versions of the rule result in align-

ing digits measured with the same unit—digits with the same place value

(tens, ones, tenths, etc.).  This deeper level of interpretation is, of course, the

one that is more useful.  When students know a rule only at a superficial

level, they are working with symbols, rules, and procedures in a routine way,

disconnected from strands such as adaptive reasoning and conceptual under-

standing.  But when students see the deeper level of meaning for a proce-

dure, they have connected the strands together.  In fact, seeing the second

level is a consequence of connecting the strands.  This example illustrates

once more why connecting the strands is the key to developing proficiency.

A second example of a common error and one that also can be traced to

previous experience with whole numbers is that “multiplying makes larger”

and “dividing makes smaller.”29   These generalizations are not true for the

full set of rational numbers.  Multiplying by a rational number less than 1

means taking only a part of the quantity being multiplied, so the result is less

than the original quantity (e.g., 2
3
 × 12 = 8, which is less than 12).  Likewise,

dividing by a rational number less than 1 produces a quantity larger than

either quantity in the original problem (e.g., 6 ÷ 2
3
 = 9).

As with the addition and subtraction of rational numbers, there are im-

portant conceptual similarities between whole numbers and rational num-

bers when students learn to multiply and divide.  These similarities are often

revealed by probing the deeper meaning of the operations.  In the division

example above, notice that to find the answer to 6 ÷ 2 = ? and 6 ÷ 2
3
 = ?, the

same question can be asked: How many [2s or 2
3
s] are in 6?  The similarities

are not apparent in the algorithms for manipulating the symbols.  Therefore,

if students are to connect what they are learning about rational numbers with

what they already understand about whole numbers, they will need to do so

through other kinds of activities.

One helpful approach is to embed the calculation in a realistic problem.

Students can then use the context to connect their previous work with whole

numbers to the new situations with rational numbers.  An example is the

following problem:

I have six cups of sugar.  A recipe calls for 2
3
 of a cup of sugar.  How many

batches of the recipe can I make?

Since the size of the parts is less than one whole, the number of batches will

necessarily be larger than the six (there are nine 2
3
s in 6).  Useful activities
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might include drawing pictures of the division calculation, describing solu-

tion methods, and explaining why the answer makes sense.  Simply teaching

the rule “invert and multiply” leads to the same sort of mechanical manipula-

tion of symbols that results from just telling students to “line up the decimal

points.”

What can be learned from conventional and experimen-

tal instruction? Conventional instruction on rational number com-

putation tends to be rule based.30   Classroom activities emphasize helping

students become quick and accurate in executing written procedures by fol-

lowing rules.  The activities often begin by stating a rule or algorithm (e.g.,

“to multiply two fractions, multiply the numerators and multiply the denomi-

nators”), showing how it works on several examples (sometimes just one),

and asking students to practice it on many similar problems.  Researchers

express concern that this kind of learning can be “highly dependent on

memory and subject to deterioration.”31   This “deterioration” results when

symbol manipulation is emphasized to the relative exclusion of conceptual

understanding and adaptive reasoning.  Students learn that it is not impor-

tant to understand why the procedure works but only to follow the prescribed

steps to reach the correct answer.  This approach breaks the incipient con-

nections between the strands of proficiency, and, as the breaks increase, pro-

ficiency is thwarted.

A number of studies have documented the results of conventional

instruction.32   One study, for example, found that only 45% of a random sample

of 20 sixth graders interviewed could add fractions correctly.33   Equally dis-

turbing was that fewer than 10% of them could explain how one adds fractions

even though all had heard the rules for addition, had practiced the rules on

many problems, and sometimes could execute the rules correctly.  These

results, according to the researchers, were representative of hundreds of inter-

views conducted with sixth, seventh, and ninth graders.  The results point to

the need for instructional materials that support teachers and students so that

they can explain why a procedure works rather than treating it as a sequence

of steps to be memorized.

Many researchers who have studied what students know about opera-

tions with fractions or decimals recommend that instruction emphasize con-

ceptual understanding from the beginning.34   More specifically, say these

researchers, instruction should build on students’ intuitive understanding of

fractions and use objects or contexts that help students make sense of the

operations.  The rationale for that approach is that students need to under-
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computation

tends to be

rule based.
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stand the key ideas in order to have something to connect with procedural

rules.  For example, students need to understand why the sum of two frac-

tions can be expressed as a single number only when the parts are of the same

size.  That understanding can lead them to see the need for constructing

common denominators.

One of the most challenging tasks confronting those who design learning

environments for students (e.g., curriculum developers, teachers) is to help

students learn efficient written algorithms for computing with fractions and

decimals.  The most efficient algorithms often do not parallel students’ infor-

mal knowledge or the meaning they create by drawing diagrams, manipulat-

ing objects, and so on.  Several instructional programs have been devised that

use problem situations and build on algorithms invented by students.35

Students in these programs were able to develop meaningful and reasonably

efficient algorithms for operating with fractions, even when the formal algo-

rithms were not presented.36   It is not yet clear, however, what sequence of

activities can support students’ meaningful learning of the less transparent

but more efficient formal algorithms, such as “invert and multiply” for divid-

ing fractions.

Although there is only limited research on instructional programs for

developing proficiency with computations involving rational numbers, it seems

clear that instruction focused solely on symbolic manipulation without under-

standing is ineffective for most students.  It is necessary to correct that

imbalance by paying more attention to conceptual understanding as well as

the other strands of proficiency and by helping students connect them.

Proportional Reasoning

Proportions are statements that two ratios are equal.  These statements

play an important role in mathematics and are formally introduced in middle

school.  Understanding the underlying relationships in a proportional situa-

tion and working with these relationships has come to be called proportional

reasoning.37   Considerable research has been conducted on the features of

proportional reasoning and how students develop it.38

Proportional reasoning is based, first, on an understanding of ratio.  A

ratio expresses a mathematical relationship that involves multiplication, as in

$2 for 3 balloons or 2
3
 of a dollar for one balloon.  A proportion, then, is a

relationship between relationships.  For example, a proportion expresses the

fact that $2 for 3 balloons is in the same relationship as $6 for 9 balloons ( 2
3
 = 6

9
).

Ratios are often changed to unit ratios by dividing.  For example, the unit

ratio 2
3
 dollars per balloon is obtained by “dividing” $2 by 3 balloons.  The
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ratio or rate, $ 2
3
 per balloon, is called the unit rate because it is the cost of one

balloon.  The unit rate may be useful to students when they think about real

situations.39   In this case it describes the precise manner by which any num-

ber of dollars can be compared with any number of balloons at the same price.

Proportional reasoning has been described as the capstone of elementary

school arithmetic and the gateway to higher mathematics, including algebra,

geometry, probability, statistics, and certain aspects of discrete mathemat-

ics.40   Nevertheless, U.S. seventh and eighth graders have not performed

well on even simple proportion problems such as finding the cost of 6 pieces

of candy if 2 pieces cost 8 cents and if the price of the candy is the same no

matter how many are sold.41   On the 1996 NAEP, only 12% of eighth-grade

students could solve a problem involving the comparison of two rates, 8 miles

every 10 minutes and 20 miles every 25 minutes.42

Research tracing the development of proportional reasoning shows that

children have some informal knowledge of proportions.  Studies with second

graders have suggested that their intuitive understanding is insufficient for

solving certain proportion problems.43   Proficiency grows as students connect

different aspects of proportional reasoning.44   Three aspects are especially

important.  First, students’ reasoning is facilitated as they learn to make com-

parisons based on multiplication rather than just addition.  For example, con-

sider two marigolds that were 8 inches and 12 inches tall two weeks ago and

11 inches and 15 tall inches now.  Which plant grew more?  There are two

different correct responses to this question.  An additive or absolute compari-

son focuses on the difference and concludes that each plant grew the same,

3 inches.  A multiplicative or relative comparison looks at the change relative

to the original height; the shorter plant grew 3
8
 of its original height, while

the larger plant grew less, just 3
12
 of its original height.  Either answer is

correct depending on whether “grew more” is interpreted in absolute or

relative terms.  The ability to reason about comparisons in relative terms is

closely tied to reasoning proportionally.45

A second aspect is that students’ reasoning is facilitated as they distin-

guish between those features of a proportion situation that can change and

those that must stay the same.46   In a proportion the quantities composing a

ratio can change together in such a way that the relationship between them

(the quotient) remains the same.  Some students are inclined to take a more

simplistic view, believing that if something changes, everything changes.  In

a proportion the numbers in the ratios can change but the multiplicative rela-

tionship must stay the same (e.g., $2 for 3 balloons expresses the same relation-

ship as $4 for 6 balloons).  The physical situation is not the same because the
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second ratio refers to twice as many dollars and balloons as the first.  What is

the same is the multiplicative relationship between the dollars and the bal-

loons or, said another way, the cost of a single balloon (the unit rate).  Written

symbolically, without labels, the statement becomes 2
3
 = 4

6
.  But notice how

the important contextual framework is lost with this abstract notation.

Proportional reasoning is further enhanced as the first two aspects are

connected with a third: Students’ reasoning is facilitated as they learn to build

composite units, or units of units.  The rate “$2 for 3 balloons” or “2-for-3” is

a composite unit.47   The ability to use composite units is one of the most

obvious differences between students who reason well with proportions and

those who do not.48   Students who reason correctly about proportional situa-

tions often choose one ratio as a composite unit and use it as a comparative

base.  For example, they might use “2-for-3” to examine whether another

ratio, such as 12-for-24, has the same relationship.  By building up the 2-for-3

units (2-for-3, 4-for-6, 6-for-9, 8-for-12, 10-for-15, 12-for-18), the students re-

alize 2-for-3 is not proportional to 12-for-24, because 12-for-24 cannot be gen-

erated with the 2-for-3 composite unit.  There is a danger, of course, in using

this essentially additive building-up process to generate equivalent ratios

because students may not understand that the relationship is multiplicative.

They need to see that 2-for-3 and 6-for-9, for example, express the same rela-

tionship or unit rate because 9 is the same multiple of 3 as 6 is of 2.  But

building from composite units does provide many students with a useful tool

for working with proportional situations.

The conceptual aspects of proportional reasoning usually play out in three

types of proportion problems.  Missing value problems present three values

and ask students to find the fourth or missing value (e.g., If 3 balloons cost $2,

then how much do 24 balloons cost?).  Numerical comparison problems ask

students to determine which of two given ratios represents more or less (e.g.,

Which is the better value: 3 balloons for $2 or 24 balloons for $12?).  Qualita-

tive comparison problems ask students to evaluate the effect on a ratio of a

qualitative change in one or both of the quantities involved (e.g., What happens

to the price of a balloon if you get more balloons for the same amount of

money?).  Traditionally, instruction has focused on missing-value problems,

with some attention to numerical comparisons.  For both kinds of problems,

traditional textbooks tend to emphasize formal strategies from the begin-

ning49—setting up a correct equation (3:2 = 24:x), using a variable for the

missing value, and using a “cross-multiplication” algorithm (3x = 48 or x = 16).

It should be clear from the previous analysis that moving directly to the

cross-multiplication algorithm, without attending to the conceptual aspects
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of proportional reasoning, can create difficulties for students.  The aspects of

proportional reasoning that must be developed can be supported through

exploring proportional (and nonproportional) situations in a variety of prob-

lem contexts using concrete materials or situations in which students collect

data, build tables, and determine the relationships between the number pairs

(ratios) in the tables.50   When 187 seventh-grade students with different cur-

ricular experiences were presented with a sequence of realistic rate problems,

the students in the reform curricula considerably outperformed a comparison

group of students 53% versus 28% in providing correct answers with correct

support work.51   These students were part of the field trials for a new middle

school curriculum in which they were encouraged to develop their own pro-

cedures through collaborative problem-solving activities.  The comparison

students had more traditional, teacher-directed instructional experiences.

Proportional reasoning is complex and clearly needs to be developed over

several years.52   One simple implication from the research suggests that pre-

senting the cross-multiplication algorithm before students understand pro-

portions and can reason about them leads to the same kind of separation

between the strands of proficiency that we described earlier for other topics.

But more research is needed to identify the sequences of activities that are

most helpful for moving from well-understood but less efficient procedures

to those that are more efficient.

Ratios and proportions, like fractions, decimals, and percents, are aspects

of what have been called multiplicative structures.53   These are closely related

ideas that no doubt develop together, although they are often treated as sepa-

rate topics in the typical school curriculum.  Reasoning about these ideas

likely interacts, but it is not well understood how this interaction develops.

Much more work needs to be done on helping students integrate their knowl-

edge of these components of multiplicative structures.

Integers

The set of integers comprises the positive and negative whole numbers

and zero or, expressed another way, the whole numbers and their inverses,

often called their opposites (see Chapter 3).  The set of integers, like the set

of whole numbers, is a subset of the rational numbers.  Compared with the

research on whole numbers and even on noninteger rational numbers, there

has been relatively little research on how students acquire an understanding

of negative numbers and develop proficiency in operating with them.
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A half-century ago students did not encounter negative numbers until

they took high school algebra.  Since then, integers have been introduced in

the middle grades and even in the elementary grades.  Some educators have

argued that integers are easier for students than fractions and decimals and

therefore should be introduced first.  This approach has been tried, but there

is very little research on the long-term effects of this alternative sequencing

of topics.

Concept of Negative Numbers

Even young children have intuitive or informal knowledge of nonpositive

quantities prior to formal instruction.54   These notions often involve action-

based concepts like those associated with temperature, game moves, or other

spatial and quantitative situations.  For example, in some games there are

moves that result in points being lost, which can lead to scores below zero or

“in the hole.”

Various metaphors have been suggested as approaches for introducing

negative numbers, including elevators, thermometers, debts and assets, losses

and gains, hot air balloons, postman stories, pebbles in a bag, and directed

arrows on a number line.55   Many of the physical metaphors for introducing

integers have been criticized because they do not easily support students’

understanding of the operations on integers (other than addition).56   But some

studies have demonstrated the value of using these metaphors, especially for

introducing negative numbers.57

Students do appear to be capable of understanding negative numbers far

earlier than was once thought.  Although more research is needed on the

metaphors and models that best support students’ conceptual understanding

of negative numbers, there already is enough information to suggest that a

variety of metaphors and models can be used effectively.

Operations with Integers

Research on learning to add, subtract, multiply, and divide integers is

limited.  In the past, students often learned the “rules of signs” (e.g., the

product of a positive and negative number is negative) without much under-

standing.  In part, perhaps, because instruction has not found ways to make

the learning meaningful, some secondary and college students still have dif-

ficulty working with negative numbers.58

Alternative approaches, using the models mentioned earlier, have been

tried with various degrees of success.59   A complete set of appropriate learn-
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ing activities with integers has not been identified, but there are some prom-

ising elements that should be explored further.  Students generally perform

better on problems posed in the context of a story (debts and assets, scores

and forfeits) or through movements on a number line than on the same prob-

lems presented solely as formal equations.60   This result suggests, as for other

number domains, that stories and other conceptual structures such as a number

line can be used effectively as the context in which students begin their work

and develop meaning for the operations.  Furthermore, there are some

approaches that seem to minimize commonly reported errors.61   In general,

approaches that use an appropriate model of integers and operations on inte-

gers, and that spend time developing these and linking them to the symbols,

offer the most promise.

Beyond Whole Numbers

Although the research provides a less complete picture of students’

developing proficiency with rational numbers and integers than with whole

numbers, several important points can be made.  First, developing proficiency

is a gradual and prolonged process.  Many students acquire useful informal

knowledge of fractions, decimals, ratios, percents, and integers through

activities and experiences outside of school, but that knowledge needs to be

made more explicit and extended through carefully designed instruction.

Given current learning patterns, effective instruction must prepare for inter-

ferences arising from students’ superficial knowledge of whole numbers.  The

unevenness many students show in developing proficiency that we noted

with whole numbers seems especially pronounced with rational numbers,

where progress is made on different fronts at different rates.  The challenge

is to engage students throughout the middle grades in learning activities that

support the integration of the strands of proficiency.

A second observation is that doing just that—integrating the strands of

proficiency—is an even greater challenge for rational numbers than for whole

numbers.  Currently, many students learn different aspects of rational num-

bers as separate and isolated pieces of knowledge.  For example, they fail to

see the relationships between decimals, fractions, and percents, on the one

hand, and whole numbers, on the other, or between integers and whole num-

bers.  Also, connections among the strands of proficiency are often not made.

Numerous studies show that with common fractions and decimals, especially,

conceptual understanding and computational procedures are not appropri-

ately linked.  Further, students can use their informal knowledge of propor-
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tionality or rational numbers strategically to solve problems but are unable to

represent and solve the same problem formally.  These discontinuities are of

great concern because the research we have reviewed indicates that real

progress along each strand and within any single topic is exceedingly difficult

without building connections between them.

A third issue concerns the level of procedural fluency that should be

required for arithmetic with decimals and common fractions.  Decimal frac-

tions are crucial in science, in metric measurement, and in more advanced

mathematics, so it is important for students to be computationally fluent—to

understand how and why computational procedures work, including being

able to judge the order-of-magnitude accuracy of calculator-produced answers.

Some educators have argued that common fractions are no longer essential in

school mathematics because digital electronics have transformed almost all

numerical transactions into decimal fractions.  Technological developments

certainly have increased the importance of decimals, but common fractions

are still important in daily life and in their own right as mathematical objects,

and they play a central role in the development of more advanced mathematical

ideas.  For example, computing with common fractions sets the stage for com-

puting with rational expressions in algebra.  It is important, therefore, for

students to develop sound meanings for common fractions and to be fluent

with ordering fractions, finding equivalent fractions, and using unit rates.

Students should also develop procedural fluency for computations with

“manageable” fractions.  However, the rapid execution of paper-and-pencil

computation algorithms for less frequently used fractions (e.g., 7
24

 + 11
54

) is

unnecessary today.

Finally, we cannot emphasize too strongly the simple fact that students

need to be fully proficient with rational numbers and integers.  This profi-

ciency forms the basis for much of advanced mathematical thinking, as well

as the understanding and interpretation of daily events.  The level at which

many U.S. students function with rational numbers and integers is unaccept-

able.  The disconnections that many students exhibit among their concep-

tual understanding, procedural fluency, strategic competence, and adaptive

reasoning pose serious barriers to their progress in learning and using math-

ematics.  Evidence from experimental programs in the United States and

from the performance of students in other countries suggests that U.S. middle

school students are capable of learning more about rational numbers and

integers, with deeper levels of understanding.

Copyright © National Academy of Sciences. All rights reserved.



248 ADDING IT UP

Notes

1. See Harel and Confrey, 1994.  Rational numbers, ratios, and proportions, which on

the surface are about division, are called multiplicative concepts because any division

problem can be rephrased as multiplication.  See Chapter 3.

2. Behr, Lesh, Post, and Silver, 1983; Confrey, 1994, 1995; Empson, 1999; Kieren, 1992;

Mack, 1990, 1995; Pothier and Sawada, 1983; Streefland, 1991, 1993.

3. Hiebert and Tonnessen, 1978; Pothier and Sawada, 1983.

4. Empson, 1999; Pothier and Sawada, 1983.

5. Confrey, 1994; Pothier and Sawada 1989.

6. Confrey, 1994; Streefland, 1991, 1993.

7. Cramer, Behr, Post, and Lesh, 1997; Empson, 1999; Mack, 1995; Morris, in press;

Moss and Case, 1999; Streefland, 1991, 1993.

8. Kouba, Zawojewski, and Strutchens, 1997; Wearne and Kouba, 2000.

9. Behr, Lesh, Post, and Silver, 1983; Behr, Wachsmuth, Post, and Lesh, 1984; Bezuk

and Bieck, 1993; Hiebert and Wearne, 1985; Mack, 1990, 1995; Post, Wachsmuth,

Lesh, and Behr, 1985; Streefland, 1991, 1993.

10. Kieren, 1976.

11. Kieren, 1976, 1980, 1988.

12. Students not only should “construct relations among them” but should also eventually

have some grasp of what is entailed in these relations—for example, that Interpretation

D is a contextual instance of E—namely, you multiply the number of green cars by
3
4
 to get the number of red cars, while thinking of 3

4
 as three times 1

4
 (Interpretation

A), and thinking of it as 3 divided by 4, is the equation 
3 1

4
3
4

×( )
= , which is basically

the associative law for multiplication.

13. Behr, Wachsmuth, Post, and Lesh, 1984; Hiebert and Wearne, 1986.

14. Hiebert and Wearne, 1986; Resnick, Nesher, Leonard, Magone, Omanson, and Peled,

1989.

15. Carpenter, Corbitt, Kepner, Lindquist, and Reys, 1981.

16. Hiebert and Wearne, 1986.

17. Behr, Lesh, Post, and Silver, 1983.

18. Davis, 1988.

19. Behr, Wachsmuth, Post, and Lesh, 1984.

20. Resnick, Nesher, Leonard, Magone, Omanson, and Peled, 1989.

21. Behr, Wachsmuth, Post, and Lesh, 1984.

22. Resnick, Nesher, Leonard, Magone, Omanson, and Peled, 1989.

23. Cramer, Post, Henry, and Jeffers-Ruff, in press; Hiebert and Wearne, 1988; Hunting,

1983; Mack, 1990, 1995; Morris, in press; Moss and Case, 1999; Hiebert, Wearne,

and Taber, 1991.

24. Moss and Case, 1999.

25. Behr, Harel, Post, and Lesh, 1992.

26. Davydov and Tsvetkovich, 1991; Morris, in press; Schmittau, 1993.

27. Morris, in press.

Copyright © National Academy of Sciences. All rights reserved.



2497 DEVELOPING PROFICIENCY WITH OTHER NUMBERS

28. Hiebert and Wearne, 1986.

29. Bell, Fischbein, and Greer, 1984; Fischbein, Deri, Nello, and Marino, 1985.

30. Hiebert and Wearne, 1985.

31. Kieren, 1988, p. 178.

32. Mack, 1990; Peck and Jencks, 1981; Wearne and Kouba, 2000.

33. Peck and Jencks, 1981.

34. Behr, Lest, Post, and Silver, 1983; Bezuk and Bieck, 1993; Bezuk and Cramer, 1989;

Hiebert and Wearne, 1986; Kieren, 1988; Mack, 1990; Peck and Jencks, 1981;

Streefland, 1991, 1993.

35. Cramer, Behr, Post, and Lesh, 1997; Huinker, 1998; Lappan, Fey, Fitzgerald, Friel,

and Phillips, 1996; Streefland, 1991.

36. Huinker, 1998; Lappan and Bouck, 1998.

37. Lesh, Post, and Behr, 1988.

38. Tourniaire and Pulos, 1985.

39. Behr, Harel, Post, and Lesh, 1992; Cramer, Behr, and Bezuk, 1989.

40. Post, Behr, and Lesh, 1988.

41. Lesh, Post, and Behr, 1988.

42. Wearne and Kouba, 2000.

43. Ahl, Moore, and Dixon, 1992; Dixon and Moore, 1996.

44. Lamon, 1993, 1995.

45. Lamon, 1993.

46. Lamon, 1995.

47. The term composite unit refers to thinking of 3 balloons (and hence $2) as a single

entity.  The related term compound unit is used in science to refer to units such as

“miles/hour,” or in this case “dollars per balloon.”

48. Lamon, 1993, 1994.

49. Heller, Ahlgren, Post, Behr, and Lesh, 1989; Langrall and Swafford, 2000.

50. Cramer, Post, and Currier, 1993; Kaput and West, 1994.

51. Ben-Chaim, Fey, Fitzgerald, Benedetto, and Miller, 1998; Heller, Ahlgren, Post, Behr,

and Lesh, 1989.

52. Behr, Harel, Post, and Lesh, 1992; Karplus, Pulas, and Stage, 1983.

53. Vergnaud, 1983.

54. Hativa and Cohen, 1995.

55. English, 1997. See also Crowley and Dunn, 1985.

56. Fischbein, 1987, ch. 8.

57. Duncan and Sanders, 1980; Moreno and Mayer, 1999; Thompson, 1988.

58. Bruno, Espinel, Martinon, 1997; Kuchemann, 1980.

59. Arcavi and Bruckheimer, 1981; Carson and Day, 1995; Davis, 1990; Liebeck, 1990;

Human and Murray, 1987.

60. Moreno and Mayer, 1999; Mukhopadhyay, Resnick, and Schauble, 1990.

61. Duncan and Saunders, 1980; Thompson, 1988; Thompson and Dreyfus, 1988.

Copyright © National Academy of Sciences. All rights reserved.



250 ADDING IT UP

References

Ahl, V. A., Moore, C. F., & Dixon, J. A.  (1992).  Development of intuitive and numerical

proportional reasoning.  Cognitive Development, 7, 81–108.

Arcavi, A., & Bruckheimer, M.  (1981).  How shall we teach the multiplication of negative

numbers?  Mathematics in School, 10, 31–33.

Behr, M., Harel, G., Post, T., & Lesh, R.  (1992).  Rational number, ratio, and proportion.

In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 296–

333).  New York: Macmillan.

Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A.  (1983).  Rational number concepts.  In R.

Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91–

126).  New York: Academic Press.

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R.  (1984).  Order and equivalence of

rational numbers: A clinical teaching experiment.  Journal for Research in Mathematics

Education, 15, 323–341.

Bell, A. W., Fischbein, E., & Greer, B.  (1984).  Choice of operation in verbal arithmetic

problems: The effects of number size, problem structure and content.  Educational

Studies in Mathematics, 15, 129–147.

Ben-Chaim, D., Fey, J. T., Fitzgerald, W. M., Benedetto, C., & Miller, J.  (1998).

Proportional reasoning among 7th grade students with different curricular experiences.

Educational Studies in Mathematics, 36, 247–273.

Bezuk, N. D., & Bieck, M.  (1993).  Current research on rational numbers and common

fractions: Summary and implications for teachers.  In D. T. Owens (Ed.), Research

ideas for the classroom: Middle grades mathematics (pp. 118–136).  New York: Macmillan.

Bezuk, N., & Cramer, K.  (1989).  Teaching about fractions: What, when, and how?  In P.

Trafton (Ed.), New directions for elementary school mathematics (1989 Yearbook of the

National Council of Teachers of Mathematics, pp. 156–167).  Reston VA: NCTM.

Bruno, A., Espinel, M. C., Martinon, A.  (1997).  Prospective teachers solve additive

problems with negative numbers.  Focus on Learning Problems in Mathematics, 19, 36–55.

Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Jr., Lindquist, M. M., & Reys, R. E.  (1981).

Results from the second mathematics assessment of the National Assessment of Educational

Progress.  Reston, VA: National Council of Teachers of Mathematics.

Carson, C. L., & Day, J.  (1995).  Annual report on promising practices: How the algebra project

eliminates the “game of signs” with negative numbers.  San Francisco: Far West Lab for

Educational Research and Development.  (ERIC Document Reproduction Service

No. ED 394 828).

Confrey, J.  (1994).  Splitting, similarity, and the rate of change: New approaches to

multiplication and exponential functions.  In G. Harel & J. Confrey (Eds.), The

development of multiplicative reasoning in the learning of mathematics (pp. 293–332).  Albany:

State University of New York Press.

Confrey, J.  (1995).  Student voice in examining “splitting” as an approach to ratio,

proportion, and fractions.  In L. Meira & D. Carraher (Eds.), Proceedings of the nineteenth

international conference for the Psychology of Mathematics Education (Vol. 1, pp. 3–29).

Recife, Brazil: Federal University of Pernambuco.  (ERIC Document Reproduction

Service No. ED 411 134).

Cramer, K., Behr, M., & Bezuk, N.  (1989).  Proportional relationships and unit rates.

Mathematics Teacher, 82, 537–544.

Copyright © National Academy of Sciences. All rights reserved.



2517 DEVELOPING PROFICIENCY WITH OTHER NUMBERS

Cramer, K., Behr, M., Post, T., & Lesh, R.  (1997).  Rational Numbers Project: Fraction

lessons for the middle grades, level 1 and level 2.  Dubuque, IA: Kendall Hunt.

Cramer, K., Post, T., & Currier, S.  (1993).  Learning and teaching ratio and proportion:

Research implications.  In D. T. Owens (Ed.), Research ideas for the classroom: Middle

grades mathematics (pp. 159–178).  New York: Macmillan.

Cramer, K., Post, T., Henry, A., & Jeffers-Ruff, L.  (in press).  Initial fraction learning of

fourth and fifth graders using a commercial textbook or the Rational Number Project

Curriculum.  Journal for Research in Mathematics Education.

Crowley, M. L., & Dunn, K. A.  (1985).  On multiplying negative numbers.  Mathematics

Teacher, 78, 252–256.

Davydov, V. V., & Tsvetkovich, A. H.  (1991).  On the objective origin of the concept of

fractions.  Focus on Learning Problems in Mathematics, 13, 13–64.

Davis, R. B.  (1988).  Is a “percent” a number?”  Journal of Mathematical Behavior, 7(1),

299–302.

Davis, R. B.  (1990).  Discovery learning and constructivism.  In R. B. Davis, C. A. Maher,

& N. Noddings, (Eds.), Constructivist views on the teaching and learning of mathematics

(Journal for Research in Mathematics Education Monograph No. 4, pp. 93–106).

Reston, VA: National Council of Teachers of Mathematics.

Dixon, J. A., & Moore, C. F.  (1996).  The developmental role of intuitive principles in

choosing mathematical strategies.  Developmental Psychology, 32, 241–253.

Duncan, R. K., & Saunders, W. J.  (1980).  Introduction to integers.  Instructor, 90(3), 152–

154.

Empson, S. B.  (1999).  Equal sharing and shared meaning: The development of fraction

concepts in a first-grade classroom.  Cognition and Instruction, 17, 283–342.

English, L. D. (Ed.).  (1997).  Mathematical reasoning: Analogies, metaphors, and images.

Mahwah, NJ: Erlbaum.

Fischbein, E.  (1987).  Intuition in science and mathematics.  Dordrecht, The Netherlands:

Reidel.

Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S.  (1985).  The role of implicit models

in solving problems in multiplication and division.  Journal for Research in Mathematics

Education, 16, 3–17.

Harel, G., & Confrey, J.  (1994).  The development of multiplicative reasoning in the learning of

mathematics.  Albany: State University of New York Press.

Hativa, N., & Cohen, D.  (1995).  Self learning of negative number concepts by lower

division elementary students through solving computer-provided numerical problems.

Educational Studies in Mathematics, 28, 401–431.

Heller, P., Ahlgren, A., Post, T., Behr, M., & Lesh, R.  (1989).  Proportional reasoning: The

effect of two concept variables, rate type and problem setting.  Journal for Research in

Science Teaching, 26, 205–220.

Hiebert, J., & Tonnessen, L. H.  (1978).  Development of the fraction concept in two

physical contexts: An exploratory investigation.  Journal for Research in Mathematics

Education, 9, 374–378.

Hiebert, J., & Wearne, D.  (1985).  A model of students’ decimal computation procedures.

Cognition and Instruction, 2, 175–205.

Copyright © National Academy of Sciences. All rights reserved.



252 ADDING IT UP

Hiebert, J., & Wearne, D.  (1986).  Procedures over concepts: The acquisition of decimal

number knowledge.  In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case

of mathematics (pp. 199–223).  Hillsdale, NJ: Erlbaum.

Hiebert, J., & Wearne, D.  (1988).  Instruction and cognitive change in mathematics.

Educational Psychologist, 23, 105–117.

Hiebert, J., Wearne, D., & Taber, S.  (1991).  Fourth graders’ gradual construction of decimal

fractions during instruction using different physical representations.  Elementary School

Journal, 91, 321–341.

Huinker, D.  (1998).  Letting fraction algorithms emerge through problem solving.  In L.

J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms in school

mathematics (1998 Yearbook of the National Council of Teachers of Mathematics, pp.

170–182).  Reston, VA: NCTM.

Human, P., & Murray, H.  (1987).  Non-concrete approaches to integer arithmetic.  In J. C.

Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the Eleventh International

Conference for the Psychology of Mathematics Education (vol. 2, pp. 437–443).  Montreal:

University of Montreal.  (ERIC Document Reproduction Service No. ED 383 532)

Hunting, R. P.  (1983).  Alan: A case study of knowledge of units and performance with

fractions.  Journal for Research in Mathematics Education, 14, 182–197.

Kaput, J. J., & West, M. M.  (1994).  Missing-value proportional reasoning problems: Factors

affecting informal reasoning patterns.  In G. Harel & J. Confrey (Eds.), The development

of multiplicative reasoning in the learning of mathematics (pp. 235–287).  Albany: State

University of New York Press.

Karplus, R., Pulas S., & Stage E.  (1983).  Proportional reasoning and early adolescents.  In

R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 45–

91).  New York: Academic Press.

Kieren, T. E.  (1976).  On the mathematical, cognitive and institutional foundations of

rational numbers.  In R. Lesh & D. Bradbard (Eds.), Number and measurement: Papers

from a research workshop (pp. 104–144).  Columbus OH: ERIC/SMEAC.  (ERIC

Document Reproduction Service No. ED 120 027).

Kieren, T. E.  (1980).  The rational number construct—Its elements and mechanisms.  In

T. E. Kieren (Ed.), Recent research on number learning (pp. 125–149).  Columbus, OH:

ERIC/SMEAC.  (ERIC Document Reproduction Service No. ED 212 463).

Kieren, T. E.  (1988).  Personal knowledge of rational numbers: Its intuitive and formal

development.  In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the

middles grades (pp. 162–181).  Reston, VA: National Council of Teachers of Mathematics.

Kieren, T. E.  (1992).  Rational and fractional numbers as mathematical and personal

knowledge; Implications for curriculum and instruction.  In G. Leinhardt & R. T.

Putnam (Eds.), Analysis of arithmetic for mathematics teaching (pp. 323–371).  Hillsdale,

NJ: Erlbaum.

Kouba, V. L., Zawojewski, J. S., & Strutchens, M. E.  (1997).  What do students know

about numbers and operations?  In P. A. Kenney & E. A. Silver (Eds.), Results from the

sixth mathematics assessment of the National Assessment of Educational Progress (pp. 33–

60).  Reston, VA: National Council of Teachers of Mathematics.

Kuchemann, D.  (1980).  Children’s understanding of integers.  Mathematics in School, 9,

31–32.

Copyright © National Academy of Sciences. All rights reserved.



2537 DEVELOPING PROFICIENCY WITH OTHER NUMBERS

Lamon, S. J.  (1993).  Ratio and proportion: Connecting content and children’s thinking.

Journal for Research in Mathematics Education, 24, 41–61.

Lamon, S. J.  (1994).  Ratio and proportion: Cognitive foundations in unitizing and norming.

In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning

of mathematics (pp. 89–120).  Albany: State University of New York Press.

Lamon, S. J.  (1995).  Ratio and proportion: Elementary didactical phenomenology.  In J.

T. Sowder & B. P Schappell (Eds.), Providing a foundation for teaching mathematics in

the middle grades (pp. 167–198).  Albany: State University of New York Press.

Langrall, C. W., & Swafford, J. O.  (2000).  Three balloons for two dollars: Developing

proportional reasoning.  Mathematics Teaching in the Middle School, 6, 254–261.

Lappan, G., & Bouck, M. K.  (1998).  Developing algorithms for adding and subtracting

fractions.  In L. J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms

in school mathematics (1998 Yearbook of the National Council of Teachers of

Mathematics, pp. 183–197).  Reston, VA: NCTM.

Lappan, G., Fey, J. Fitzgerald, W., Friel, S., & Phillips E.  (1996).  Bits and pieces 2: Using

rational numbers.  Palo Alto, CA: Dale Seymour.

Lesh, R., Post, T. R., & Behr, M.  (1988).  Proportional reasoning.  In J. Hiebert & M. Behr

(Eds.), Number concepts and operations in the middle grades (pp. 93–118).  Reston, VA:

National Council of Teachers of Mathematics.

Liebeck, P.  (1990).  Scores and forfeits: An intuitive model for integer arithmetic.

Educational Studies in Mathematics, 21, 221–239.

Mack, N. K.  (1990).  Learning fractions with understanding: Building on informal

knowledge.  Journal for Research in Mathematics Education, 21, 16–32.

Mack, N. K.  (1995).  Confounding whole-number and fraction concepts when building on

informal knowledge.  Journal for Research in Mathematics Education, 26, 422–441.

Moreno, R., & Mayer, R. E.  (1999).  Multimedia-supported metaphors for meaning making

in mathematics.  Cognition and Instruction, 17, 215–248.

Morris, A. L.  (in press).  A teaching experiment: Introducing fourth graders to fractions

from the viewpoint of measuring quantities using Davydov’s mathematics curriculum.

Focus on Learning Problems in Mathematics.

Moss, J., & Case, R.  (1999).  Developing children’s understanding of the rational numbers:

A new model and an experimental curriculum.  Journal for Research in Mathematics

Education, 30, 122–147.

Mukhopadhyay, S., Resnick, L. B., & Schauble, L.  (1990).  Social sense-making in mathematics;

Children’s ideas of negative numbers.  Pittsburgh: University of Pittsburgh, Learning

Research and Development Center.  (ERIC Document Reproduction Service No.

ED 342 632).

Peck, D. M., & Jencks, S. M.  (1981).  Conceptual issues in the teaching and learning of

fractions.  Journal for Research in Mathematics Education, 12, 339–348.

Post, T., Behr, M., & Lesh, R.  (1988).  Proportionality and the development of pre-algebra

understanding.  In A. F. Coxford & A. P. Schulte (Eds.), The ideas of algebra, K–12

(1988 Yearbook of the National Council of Teachers of Mathematics, pp. 78–90).

Reston, VA: NCTM.

Post, T. P., Wachsmuth, I., Lesh, R., & Behr, M. J.  (1985).  Order and equivalence of

rational numbers: A cognitive analysis.  Journal for Research in Mathematics Education,

16, 18–36.

Copyright © National Academy of Sciences. All rights reserved.



254 ADDING IT UP

Pothier, Y., & Sawada, D.  (1983).  Partitioning: The emergence of rational number ideas

in young children.  Journal for Research in Mathematics Education, 14, 307–317.

Pothier, Y., & Sawada, D.  (1989).  Children’s interpretation of equality in early fraction

activities.  Focus on Learning Problems in Mathematics, 11(3), 27–38.

Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I.  (1989).

Conceptual bases of arithmetic errors: The case of decimal fractions.  Journal for

Research in Mathematics Education, 20, 8–27.

Schmittau, J.  (1993).  Connecting mathematical knowledge: A dialectical perspective.

Journal of Mathematical Behavior, 12, 179–201.

Streefland, L.  (1991).  Fractions in realistic mathematics education: A paradigm of developmental

research.  Dordrecht, The Netherlands: Kluwer.

Streefland, L.  (1993).  Fractions: A realistic approach.  In T. P. Carpenter, E. Fennema, &

T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 289–325).

Hillsdale, NJ: Erlbaum.

Thompson, F. M.  (1988).  Algebraic instruction for the younger child.  In A. F. Coxford &

A. P. Shulte (Eds.), The ideas of algebra, K-12 (1988 Yearbook of the National Council

of Teachers of Mathematics, pp. 69–77).  Reston, VA: NCTM.

Thompson, P. W., & Dreyfus, T.  (1988).  Integers as transformations.  Journal for Research

in Mathematics Education, 19, 115–133.

Tourniaire, F., & Pulos, S.  (1985).  Proportional reasoning: A review of the literature.

Educational Studies in Mathematics, 16, 181–204.

Vergnaud, G.  (1983).  Multiplicative structures.  In D. Lesh & M. Landau (Eds.), Acquisition

of mathematics concepts and processes (pp. 127–174).  New York: Academic Press.

Wearne, D., & Kouba, V. L.  (2000).  Rational numbers.  In E. A. Silver & P. A. Kenney

(Eds.), Results from the seventh mathematics assessment of the National Assessment of

Educational Progress (pp. 163–191).  Reston, VA: National Council of Teachers of

Mathematics.

Copyright © National Academy of Sciences. All rights reserved.



255

8

DEVELOPING MATHEMATICAL

PROFICIENCY BEYOND NUMBER

In this chapter, we go beyond number to examine other domains of school

mathematics in grades pre-K to 8.  Because a great deal of the curriculum

dealing with number leads naturally to algebra and because whether and how

to teach algebra to all children is a hotly debated topic in many schools, we

devote the bulk of the chapter to issues of beginning algebra.  The first section

is organized according to the algebraic activities of representing, transform-

ing, and generalizing and justifying, which allows us to survey the literature

relevant to learning algebra in grades pre-K to 8.  We close the chapter with

two briefer sections: one on measurement and geometry, the other on statis-

tics and probability.  As we noted in Chapters 1 and 3, these domains are

intimately related to number.  Measurement is one of the most common uses

of number, and the geometry studied in elementary and middle school uses

lengths, areas, and volumes usually expressed as numerical quantities.

Statistics and probability involve the quantification of phenomena dealing

with data and chance.  Throughout the last two sections we emphasize the

strands of conceptual understanding and adaptive reasoning because these

have been the focus of much recent research and because traditional instruc-

tion has tended to emphasize the development of procedural fluency instead.

Beginning Algebra

For most students, school algebra—with its symbolism, equation solv-

ing, and emphasis on relationships among quantities—seems in many ways

to signal a break with number and arithmetic.  In fact, algebra builds on the

proficiency that students have been developing in arithmetic and develops it

Algebra

builds on the

proficiency

that students

have been

developing

in arithmetic

and develops

it further.
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further.  In particular, the place-value numeration system used for arithmetic

implicitly incorporates some of the basic concepts of algebra, and the algo-

rithms of arithmetic rely heavily on the “laws of algebra.”  Nevertheless, for

many students, learning algebra is an entirely different experience from learn-

ing arithmetic, and they find the transition difficult.

The difficulties associated with the transition from the activities typi-

cally associated with school arithmetic to those typically associated with school

algebra have been extensively studied.1   In this chapter, we review in some

detail the research that examines these difficulties and describe new lines of

research and development on ways that concepts and symbol use in elemen-

tary school mathematics can be made to support the development of alge-

braic reasoning.  These recent efforts have been prompted in part by the

difficulties exposed by prior research and in part by widespread dissatisfaction

with student learning of mathematics in secondary school and beyond.  The

efforts attempt to avoid the difficulties many students now experience and to

lay the foundation for a deeper set of mathematical experiences in secondary

school.  Before reviewing the research, we first describe and illustrate the

main activities of school algebra.

Previous chapters have shown how the five strands of conceptual under-

standing, procedural fluency, strategic competence, adaptive reasoning, and

productive disposition are interwoven in achieving mathematical proficiency

with number and its operations.  These components of proficiency are equally

important and similarly entwined in successful approaches to school algebra.

The Main Activities of Algebra

What is school algebra?  Various authors have given different definitions,

including, with “tongue in cheek, the study of the 24th letter of the alphabet

[x].”2   To understand more fully the connections between elementary school

mathematics and algebra, it is useful to distinguish two aspects of algebra

that underlie all others: (a) algebra as a systematic way of expressing generality

and abstraction, including algebra as generalized arithmetic; and (b) algebra

as syntactically guided transformations of symbols.3   These two main aspects

of algebra have led to various activities in school algebra, including represen-

tational activities, transformational (rule-based) activities, and generalizing

and justifying activities.4

The representational activities of algebra involve translating verbal infor-

mation into symbolic expressions and equations that often, but not always,

involve functions.  Typical examples include generating (a) equations that

represent quantitative problem situations in which one or more of the quan-
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tities are unknown, (b) functions describing geometric patterns or numerical

sequences, and (c) expressions of the rules governing numerical relationships

(see Box 8-1 for an example of each).

Proficiency with representational activities involves conceptual under-

standing of the mathematical concepts, operations, and relations expressed

in the verbal information, and it involves strategic competence to formulate

and represent that information with algebraic equations and expressions.

Hence, facility with generating expressions and equations combines two of

the strands of mathematics proficiency.

The second kind of algebraic activities—the transformational or rule-based

activities—includes, for instance, collecting like terms, factoring, expanding,

substituting, solving equations, and simplifying expressions.  These activities

are largely concerned with changing the form of an expression or equation to

an equivalent one using the rules for manipulating algebraic symbols.  For

example, in solving the equation 4(x + 3) = 2x + 19, you can replace the

expression 4(x + 3) by the equivalent expression 4x + 12.  Subsequently, by

subtracting 2x and then 12 from both sides, the equation 4x + 12 = 2x + 19 can

be replaced by the equivalent equation 2x = 7; finally, dividing both sides by

Box 8-1

Representational Activities of Algebra

1. There are 3 piles of stones; the first has 5 less than the third, and the second

has 15 more than the third.  There are 31 altogether.  Find the number in each pile.

2. Say to yourself what you see in the picture sequence.  Then state a rule for

extending the sequence of pictures indefinitely.

3. The sum of two consecutive numbers is always an odd number.  Can you

show why, using algebra?

SOURCES: Bell, 1995, p. 61; Lee and Wheeler, 1987, p. 160; Mason, 1996, p. 84.

Used by permission of Elsevier Science and of Kluwer Academic Publishers.

l

l l

l l l l l l l l l

Copyright © National Academy of Sciences. All rights reserved.



258 ADDING IT UP

2 yields the solution x = 3 1
2
.  Facility with symbolic computation in algebra

has an obvious parallel with, and indeed draws upon, procedural fluency in

the domain of number.  Just as in arithmetic, aspects of conceptual under-

standing and strategic competence interact with each other and with proce-

dural fluency in transformational activities in algebra.

Lastly, there are the generalizing and justifying activities.  These include

problem solving, modeling, noting structure, justifying, proving, and predict-

ing.  These activities are not exclusive to algebra, but they often use its

language and tools.  For example, the consecutive numbers problem (show

that the sum of two consecutive numbers is always an odd number) illus-

trates how algebra is used to generalize and justify.5   Arithmetic can be used

to generate many instances to show that the sum of two consecutive numbers

is odd: 3 + 4 = 7, 12 + 13 = 25, and so on.  But the representational and trans-

formational aspects of algebra make it possible to justify that the sum is always

odd.  The sum of two consecutive integers can be represented with algebra

as x + (x + 1), where the key is the recognition that x represents any whole

number.  This expression can be transformed into the equivalent expression

2x + 1, which is the general form of any odd number.  This example illustrates

the power of algebra, as against arithmetic, as a tool for making generaliza-

tions and providing justifications, at least for those learners who understand

how statements using variables express generality.

Generalizing and justifying activities typically involve examining and

interpreting representations that have previously been generated or manipu-

lated.  Such activities can provide insight into, for example, the underlying

mathematical structure of a situation, or they can yield answers to specific

questions or conjectures.  They encourage students to develop an awareness

of the role that algebra can play in mathematical thinking.  All of the strands

of algebraic proficiency come together in these activities, especially adaptive

reasoning.

One of the great strengths of algebra is that, for experts, a great deal of its

transformational activity can be carried out in what appears to be a rather

automated manner.  Once a student makes the transformation rules his or her

own, the algorithms of algebra can be executed, in a sense, without thinking.

The student needs to be thinking, for example, not of what the letters in the

expressions refer to or of the operations he or she is carrying out, but only that

the actions on the symbolic objects are allowable.  In fact, once an expression

or equation has been generated (or provided) and the goal is known, it seems

to be treated in an almost mindless fashion.  But is that possible?
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Every algebraic manipulation involves an anticipatory element, a sense

of the direction in which you want to be going and of what the desired

expression will look like once you get there.6   The development of this sense

of anticipation provides an alternative to the “blind” manipulation that is so

often performed by beginning algebra students.7   Research suggests, how-

ever, that such anticipatory thinking is not acquired without effort.  Even

students with extensive algebra experience can make poor strategic decisions

that leave them “going round in circles” because they cannot seem to “see”

the right thing in algebraic expressions.8

The transformational aspects of algebra have traditionally been empha-

sized in U.S. textbooks, which have tended to pay more attention to the rules

to be followed in manipulating symbolic expressions and equations than to

the concepts that support those rules or give meaning to the expressions or

equations being manipulated.  Although few experimental comparisons have

been conducted, research has shown that rule-based instructional approaches

that do not give students opportunities to create meaning for the rules or to

learn when to use them can lead to forgetting,9  unsystematic errors,10  reli-

ance on visual clues,11  and poor strategic decisions.12   For example, experi-

enced algebra students were found to choose inappropriate strategies when

deciding what to do next in the simplification of an algebraic expression and

would often end up with an expression that was more difficult to deal with,

even though they had performed legal transformations.13   Beginning algebra

students were found to be quite haphazard in their approach; they might

simplify 4(6x – 3y) + 5x as 4(6x – 3y – 5x) on one occasion and do something

else on another.14   When the consecutive numbers problem was given to 113

high school students who had studied algebra, only 8 worked the problem

correctly.15   The rest made a variety of errors, including substituting a few

values for x to show the sum’s “oddness,” using different letters for each num-

ber (x and y), representing the consecutive numbers as 1x and 2x, and setting

the expression x + (x + 1) equal to a fixed odd number and then solving for x.

In one of the few experimental studies of rule-based instruction, students

who were taught an estimate-and-test sense-making strategy performed better

in solving systems of equalities and inequalities than students taught rule-

based equation solving.16

Data from the National Assessment of Educational Progress (NAEP) fur-

ther reveal the shortcomings of traditional school algebra.  For example, one

of the NAEP tasks from the second mathematics assessment involved com-

pleting the table shown in Box 8-2.  Most of the students with one or two

years of algebra could recognize the pattern—adding 7—from the given nu-
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Box 8-2

Table Completion Task from NAEP

Give the values of y when x = 3 and when x = n.

x 1 3 4 7 n

y 8 11 14

SOURCE: Carpenter, Corbitt, Kepner, Lindquist, and Reys, 1981. Used by permis-

sion of the National Council of Teachers of Mathematics.

merical values and use it when x = 3 (with success rates of 69% and 81% for

the two groups of students, respectively).  They were less successful, how-

ever, when asked to derive from the same table the value of y when x = n

(correct response: y = n + 7; success rates: 41% and 58%, respectively).

The next three sections of the chapter present representative findings

from the large body of research on algebra learning and teaching for the three

types of algebraic activity sketched above.  Since much of this research has

been carried out with students making the transition from arithmetic to alge-

bra, it casts light on the kinds of thinking that students bring with them to

algebra from the traditional arithmetic curriculum centered on algorithmic

computation that has been predominant in U.S. schools.17   Indeed, many

studies have been oriented toward either developing approaches to teaching

algebra that take this arithmetic thinking into account or, more recently, devel-

oping approaches to elementary school mathematics that build foundations

of algebraic reasoning earlier.

Much research also has focused on linear relations and linear functions,

perhaps because these are considered the easiest and are the first ones

encountered by students making the transition from arithmetic to algebra.

Although the domain of algebra is far richer than linear relations, much of the

research at the cusp of arithmetic and algebra focuses on them.18   Some of the

newer curriculum programs, however, introduce nonlinear relations along with

linear relations in the middle grades.  In particular, exponential growth rela-

tions (e.g., doubling) have been shown to be an accessible topic for middle

school students.19
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Several of the teaching approaches discussed in the following sections

have profitably used computer technologies, especially graphics, as a means

of making algebraic symbolism more meaningful.  These studies provide evi-

dence of the positive role that computer-supported approaches can play in

the learning of algebra, as well as suggesting that technology can be a means

for making algebra accessible to all students, including those who, for what-

ever reason, lack skill in pencil-and-paper computation.20   Thus, these

examples suggest that some version of “algebra for all” may be viable.

The Representational Activities of Algebra

What the Number-Proficient Student Brings

Traditional representational activities of algebra center on the formation

of algebraic expressions and equations.  Creating these expressions and equa-

tions involves understanding the mathematical operations and relations and

representing them through the use of letters and—for equations—the equal

sign.  It also requires thinking that proceeds in rather different ways from the

thinking that develops in traditional arithmetic.

In the transition from arithmetic to algebra, students need to make many

adjustments, even those students who are quite proficient in arithmetic.  At

present, for example, elementary school arithmetic tends to be heavily answer

oriented and does not focus on the representation of relations.21   Students

beginning algebra, for whom a sum such as 8 + 5 is a signal to compute, will

typically want to evaluate it and then, for example, write 13 for the box in the

equation 8 + 5 =  + 9 instead of the correct value of 4.  When an equal sign

is present, they treat it as a separator between the problem and the solution,

taking it as a signal to write the result of performing the operations indicated

to the left of the sign.22   Or, when doing a sequence of computations, students

often treat the equal sign as a left-to-right directional signal.  For example,

consider the following problem:

Daniel went to visit his grandmother, who gave him $1.50.  Then he bought a

book for $3.20.  If he has $2.30 left, how much money did he have before

visiting his grandmother?

In solving this problem, sixth graders will often write 2.30 + 3.20 = 5.50 – 1.50

= 4.00, tacking the second computation onto the result of the first.23   Since

2.30 + 3.20 equals 5.50, not 5.50 – 1.50, the string of equations they have

written violates the definition of equality.  To modify their interpretation of

the equality sign in algebra, students must come to respect the true meaning
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of equality as a statement that the two sides of an equation are equal to each

other.

Students oriented toward computation are also perplexed by an expres-

sion such as x + 3; they think they should be able to do something with it, but

are unsure as to what that might be.  They are not disposed to think about the

expression itself as being the subject of attention.  Similarly, they need to

rethink their approach to problems.  In solving a problem such as “When 3 is

added to 5 times a certain number, the sum is 38; find the number,” students

emerging from arithmetic will subtract 3 from 38 and then divide by 5—

undoing in reverse order, as they have been taught, the operations stated in

the problem text.  In contrast, they will be taught in algebra classes first to

represent the relationships in the situation by using those operations and not

reversing them: 3 + 5x = 38.

Although most students beginning algebra have had some experience

with the use of letters in arithmetic, such as finding the number n such that

n + 12 = 37, rarely have they worked with more general problem situations in

which the letter can take on any of an infinite set of values.  In a third-grade

class,24 the students were presented with the problem, “Who can make up a

number sentence that equals 10 but has more than two numbers adding up to

10?”  Most students started with examples like 5 + 2 + 3 = 10 and

8 + 1 + 1 = 10, but the class went on to generate a variety of equations,

including 200 – 200 + 10 = 10 and 1,000,000 – 1,000,000 + 10 = 10.  With the

teacher’s help, they soon were able to formulate the equation x – x + 10 = 10,

for any number x.  This use of a letter as variable, where the letter can take on

a range of values, is seldom seen in typical elementary school mathematics.

More often, the letter, or some placeholder, represents an unknown, and only

one numerical value will make the equation true.  In algebra, both of these

conceptions of literal terms (or letters) are important.

A number of recent intervention studies have shown how selected modi-

fications of elementary school mathematics might support the development

of algebraic reasoning.  One approach infuses elementary mathematics with a

systematic use of problems requiring students to generalize, to determine

values of a literal term that satisfy quantitative constraints (with or without

equations), or to treat numbers in algebraic ways.  For example, students

might be asked to determine how many ways the number 4 can be written

using a given number of 1s and the four basic operations.  Since each expres-

sion must equal 4, students must distinguish among the different possibilities

on the basis of their symbolic form rather than their value when evaluated.25
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Another approach is to assist elementary school teachers in modifying

their instructional materials and classroom practices to emphasize generaliz-

ing and expressing generality in elementary mathematics, particularly using

patterns, functions, and the notions of variable.  Third graders whose teachers

were given such assistance showed substantial increases in their understand-

ing of variable and equality compared with traditionally instructed students

in the same grade and school.  Further, these third graders outperformed

fourth graders on items testing number sense from a mandated statewide

assessment.26

A third approach to modifying elementary school mathematics focuses

on helping teachers understand their students’ thinking when the students

are asked to generalize operations and properties from arithmetic.  In one

combination first-and-second-grade class, the teacher focused on number

sentences twice a week during the school year.  Instruction started with true

and false number sentences and progressed to increasingly complex forms of

open sentences.  Number sentences were also used to help the children

articulate and represent conjectures about properties of numbers and opera-

tions.  By the end of the year most of the students (13 of 17) developed a

relational concept of equality and operations, along with an ability to form

and express general relations among number sentences.27   In particular, the

majority of these students no longer made mistakes like writing 13 for the

box in 8 + 5 =  + 9.

Much of the difficulty that students experience when they first encounter

algebra is symptomatic of the cognitive challenges inherent in moving from

one mode of thinking to another, from arithmetic reasoning to algebraic reason-

ing.  Research on algebra learning has sought to uncover the ways in which

beginning algebra students think, thus helping ease their transition into

algebra.  In the examples cited above of research on more algebraic approaches

to elementary school mathematics that are intended to avoid transition prob-

lems, the approaches are in their early stages.  Although the long-term impact

of these approaches is still unknown, they offer considerable promise for avoid-

ing the difficulties many students now experience.

Developing Meaning

Much of the algebra research in the 1970s and early 1980s yielded evidence

that incoming algebra students have trouble interpreting letters as variables.28

Building on these findings, recent work has focused on how students learn to

use algebraic letters to represent a range of values.
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One investigator studied an approach designed to address students’ diffi-

culties with thinking about and symbolizing algebraic expressions.29   Students

were asked to give instructions to an “idealized mathematics machine”: for

example, “I want the machine to add 5 to any number I give it; how will I

write the instructions?” or “I want the machine to add any two numbers I

give it” or “Have the machine find the area of any square, given a side.”  The

students easily made sense of the idea of employing letters to write rules that

would enable the machine to solve whole classes of problems.  In the examples

above, the rules would be expressed using (x + 5), (x + y), and x2, respectively.

This approach addresses two issues related to the introduction of algebra: the

usefulness or purpose of learning algebra, and the difficulty of new algebraic

concepts.  The investigator emphasized that “children who are not persuaded

on the former point will make little effort to try and come to terms with the

latter” and added that “certainly the evidence . . . clearly indicated this to be

the case.”30   The majority of the students in the study made significant gains

in thinking about the letters in algebraic expressions as taking on multiple

values (from 23% correct on the pretest to 85% correct on the delayed posttest)

and in improving their attitude toward algebra (at the beginning of the study,

they “hated algebra, didn’t understand it” and complained that “letters are

stupid; they don’t mean anything”).31   Later research in which students used

actual computers confirmed these results, both with respect to increasing the

students’ motivation and developing their understanding of algebraic expres-

sions as general computational procedures.32

Representational activities of algebra can interact with well-established

natural-language-based habits.  These interactions are particularly clear in

the well-studied class of tasks exemplified by the so-called students-and-

professors problem:33

At a certain university, there are six times as many students as professors.

Using S for the number of students and P for the number of professors, write

an equation that gives the relation between the number of students and the

number of professors.

A robust reversal error is committed by a majority of students, ranging from

first-year algebra students to college freshmen, who write “6S = P” and treat

the “6” as an adjective modifying the “S” as if it were a noun.34   This error

occurs across different versions of the problem and is resistant to easy correc-

tion.35   The error, while of intrinsic interest, has an especially important con-

nection to the instruction that students receive prior to studying algebra.  In

particular, detailed correlational analyses have shown that the error’s robust-
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ness is strongly associated with students’ understanding of rates and ratios—

the worse their understanding, the more robust the error.36   Such findings

could signal the connections between building proficiency in using algebra

as a representational tool and building conceptual understanding of number

ideas—in this case, multiplicative ideas.  Interestingly, related findings show

that a procedural perspective that treats the variables in the equation as input-

output pairs leads to improved equation-writing performance,37  which is con-

sistent with the results described above using the idealized machine and the

computer.

A series of teaching experiments conducted over three years during the

late 1980s in Mexico and the United Kingdom demonstrated the potential of

computer spreadsheets to help students grasp the meaning of variables and

algebraic expressions, including students who had been having difficulty with

traditional approaches to algebraic symbolism.38   Further, spreadsheets can

provide a vehicle for introducing students to formal symbolism.39   For an

example of how a student can profit from the use of a spreadsheet, see Box 8-3.

This student was a tenth grader in a low mathematics track of a school in

England who had little previous experience with algebra.

Experimental studies involving spreadsheets have also shown enhanced

student learning relative to traditional instruction.40   Studies of the use of

spreadsheets have found that it is relatively easy for students to pass from a

mixture of spreadsheet and algebraic notation to traditional algebraic sym-

bolism.41   It should be noted that the spreadsheet approach involves creating

a range of values for the expressions that represent the various relationships

in the problem statement.  Thus, a spreadsheet column of the values that are

generated provides an explicit representation of sample values of each variable.

Moreover, the particular value of X that solves the problem is often found in

one line of the spreadsheet array (if the situation is linear).  In the spread-

sheet approach, therefore, the unknown is viewed simply as that particular

value that satisfies the constraints of the problem.

In general, the use of spreadsheets has been found to be an effective way

to develop several notions involved in the representational activities of alge-

bra.  It encourages discussion of the role of a letter as both a variable and an

unknown; it provides meaningful experience in creating algebraic expres-

sions; and it puts the focus squarely on the representation of quantitative

relationships.  Research from both small-group instruction42  and broad-based

implementations involving several schools43  provides support for these claims.

Closely related to spreadsheets are intelligent tutors in which students

label spreadsheet-like worksheets and fill in calculated results for specific
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Box 8-3

Building on Spreadsheet Experiences

Jo, like several of her 14- and 15-year-old peers, had some previous experience

with algebra.  But she disliked mathematics and had performed very poorly on the

algebra test given at the beginning of the study.  She viewed algebraic symbols as

no more than letters of the alphabet whose numerical values corresponded to

their position in the alphabet.  During a four-month study (with one lesson per

week), Jo learned how to use a spreadsheet to solve various kinds of word prob-

lems.  At the end of the study, she was given the following problem to solve (with

no computer available):

One hundred chocolates were distributed to three groups of children.  The

second group received four times as many chocolates as the first group.

The third group received 10 chocolates more than the second group.  How

many chocolates did the first, second, and third groups receive?

Jo drew a spreadsheet on paper and showed in her written solution how the spread-

sheet code was beginning to play a role in her thinking processes.  Interviewed

subsequently, she was asked,

“If we call this cell x, what could you write down for the number of choco-

lates in the other groups?”

She wrote the following, which shows that she was now able to represent the

problem using the literal symbols of algebra (note that the syntax of many spread-

sheets requires the entry of an equal sign before the algebraic expression):

= x = x × 4 = x × 4 + 10

SOURCE: Sutherland, 1993, p. 22. Used by permission of Micromath.

values of the variable.44   For example, given the situation that a plumbing

company charges $42 per hour plus $35 for the service call, students are asked

to find the cost of a 3-hour service call and of a 4.5-hour service call.  This

inductive-support strategy has students provide an arithmetic representation

for the problem before being asked to give the algebraic representation.  Such

an intelligent tutor has been made part of an experimental ninth-grade algebra

curriculum that focuses on the mathematical analysis of realistic situations.
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When the curriculum was tested in three urban schools, students in the ex-

perimental classes significantly outperformed students in comparison classes

on standardized tests (42% correct vs. 37% correct) and on tests targeting the

curriculum’s objectives (38% correct vs. 18% correct).45

Recent research in algebra learning also has examined coordinate graphs

as a means of representing the relationships of problem situations and pro-

viding visual support for symbolic expressions.  This use of graphs has usually

been done with families of functions; that is, linear functions, quadratic

functions, exponential functions, and so on.  The wide assortment of com-

puter graphing packages on the market that not only generate coordinate

graphs but also link operations on them to updated tabular and symbolic rep-

resentations have made it feasible for mathematics teachers to use innovative

approaches involving these representations.46

One research group that has worked extensively with multirepresentational

approaches to the teaching of elementary algebra has developed a computer-

intensive, function-based algebra curriculum focused on problem solving that

has been tested in first-year algebra classes, as well as college algebra classes.47

The curriculum uses several kinds of software to “develop students’ under-

standing of algebra concepts and their ability to solve problems requiring

algebra, before they master symbol manipulation techniques.”48   An adapta-

tion of a sample problem from the curriculum is presented in Box 8-4.

Even though this curriculum was not intended as an alternative curricu-

lum to be compared to a traditional one, members of the research team car-

ried out a few such evaluations.  Interviews and tests of one cohort of stu-

dents at the end of their first year of algebra showed that the experimental

group did significantly better than their counterparts from conventional classes

in improving their problem-solving abilities and in comprehending the no-

tion of variable.  For example, in constructing mathematical representations,

the success rates were 48% versus 21%; in interpreting mathematical repre-

sentations, 78% versus 28%; and in planning solutions and solving problems,

77% versus 66%, respectively.49

A similar approach to teaching algebra that involves graphing calculators

has been implemented in a three-year high school mathematics curriculum

used in several states.50   When students from three schools at the end of their

third year in this curriculum were compared with students nearing the end of

their high school algebra experience in advanced algebra classes in three other

schools, the students in the new curriculum did better than the comparison

group on algebraic tasks that were embedded in applied problem contexts

when graphing calculators were available (43% correct for the project group
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Weather Balloon Problem

Situation.  Summer weather in Maryland and Pennsylvania brings heavy clouds

and thunderstorms on many late afternoons.  As warm, moist air rises, it cools.

When the air has cooled to the condensation temperature, it forms water drops.

These data were recorded by a weather balloon sent up on a warm day.

Data

Altitude Temperature in

in meters degrees centigrade

0 32

500 27

1000 23

1500 18

2000 14.5

2500 9

3000 3.5

3500 -3

1. Use a function-fitting program to find a linear function that describes the

data well.  Record the rule relating temperature, t (a), to altitude, a, rounding

the coefficient and constant term appropriately.

t (a) = ____.

2. Explain what the slope and constant term reveal about the temperature as it

is related to altitude.

3. Look at a plot of your data and the fitted function to see how well the rule

matches the experimental data.  Can you see any reason that the altitude

and temperature data are not exactly linear?  How well does the fitted func-

tion represent a reasonable range of values for the altitude?

SOURCE: Heid, 1990, p. 195.  A later version of this problem appears in Fey,

Heid, et al., 1999, p. 171. Used by permission of the National Council of Teachers

of Mathematics.

Box 8-4
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vs. 34% for the comparison group).  On transformation tasks involving equa-

tion solving and expression simplification without any context and for which

calculators were not permitted, however, the comparison group scored higher

(38% correct vs. 29%).  This finding did not surprise the researchers because

the new curriculum had not emphasized symbolic manipulation with paper

and pencil, whereas the curriculum for the comparison group had consisted

almost exclusively of such manipulation.  In fact, when the equation-solving

tasks were presented in a contextualized form, such as the example shown in

Box 8-5, the students in the new curriculum were more successful than the

comparison students (61% correct vs. 45%).51

The ways that graphing calculator use can produce improved student

performance were examined more deeply in a recent study.52   The study

used a three-condition pretest-posttest design to study the impact of pro-

longed use of the graphing calculator throughout the entire school year for all

topics of the mathematics curriculum (i.e., functions and graphs, change,

exponential and periodic functions).  Three experimental classes used the

graphing calculator throughout the year; a second set of five experimental

classes used the graphing calculator with only one topic for six weeks; and

four classes, which served as the control group, covered the same subject

matter throughout the year but without the graphing calculator.  The students

who used the calculator throughout the year had enriched solution reper-

Box 8-5

Water Business Problem

The Turtle Mountain Springs Company made plans for growth in its share of the

water business.  They predicted that annual income from the sale of its bottled

water B and filters F would change over time according to the following formulas.

Time, t, is in years since 1990, and income is in millions of dollars per year.

Bottled Water Income: B = 20 + 5t

Filtering Devices Income: F = 28 + 3t

Question: When does the Turtle Mountain Springs Company expect the two water

products to give the same annual income?

SOURCE: Huntley, Rasmussen, Villarubi, Sangtong, and Fey, 2000, p. 347. Used by

permission of the author.
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toires and a better understanding of functions.  The students who used the

graphing calculator for only a short period of time did no better on the posttest

than the students in the control group.  They merely replaced their algebraic

and guess-and-test procedures with graphing methods.  Unlike the students

who spent more time using the graphing calculator, they were not able to

enrich their conceptual understanding of functions.

The widespread availability of computer and graphing-calculator tech-

nologies has dramatically affected the kinds of representational activities that

have been developed and studied since the 1980s.  Today’s graphing pro-

grams, curve fitters, spreadsheets, and spreadsheet-like generators of tables

of values and so on have been found to provide more effective environments

than pencil and paper for introducing students to variables, algebraic expres-

sions, and equations in a problem-solving context.  Research has documented

that the visual and numerical supports provided for symbolic expressions by

digital representations of graphs and tables help students create meaning for

expressions and equations in ways difficult to manage in learning environ-

ments not supported by computers or calculators.  More research is needed

into the ways that computers and graphing calculators are being used and can

be used effectively in the early grades.

The Transformational Activities of Algebra

What the Number-Proficient Child Brings

In the previous section, we discussed some of the perspectives brought

to the study of algebra by students emerging from traditional elementary school

arithmetic.  These perspectives included the following:

• An orientation to execute operations rather than to use them to rep-

resent relationships; which leads to

• Use of the equal sign to announce a result rather than signify an

equality;

• Use of inverse or undoing operations to solve a problem and the cor-

responding absence of a notion of describing a situation with the stated op-

erations of a problem; and

• A perception of letters as representing unknowns but not variables.

In this section, we discuss additional features of arithmetic thinking that must

be addressed when students encounter the transformational activities of

algebra.
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Students who are proficient with arithmetic are generally assumed to have

facility with the arithmetic operations of addition and multiplication and their

inverses (subtraction and division), with computations written in a horizontal

form, and with the equivalence of numerical expressions.  These notions,

however, are not always as well cultivated in elementary school mathematics

as they should be if they are to serve as a basis for algebraic reasoning.

Students emerging from six or seven years of elementary school math-

ematics are ordinarily aware of the close relationship between addition and

subtraction.  After all, they check subtraction written vertically by adding the

answer (the difference) to the number above it (the subtrahend) to see if it

gives the number in the top line of the subtraction (the minuend).  But they

seem less comfortable with moving among the written forms of this relation-

ship—for example, from an addition statement written horizontally to its

equivalent subtraction (e.g., writing 35 + 42 = 77 as 35 = 77 – 42).  Thus, these

students seem somewhat bewildered when asked in initial algebra instruc-

tion to express, say, x + 42 = 77 as x = 77 – 42.  The same confusion over the

written notation for the inverse relationship between addition and subtrac-

tion is seen in the errors students make in solving equations53  when they

judge, say, x + 37 = 150 to be equivalent to x = 37 + 150 and x + 37 = 150 to be

equivalent to x + 37 – 10 = 150 + 10.

Solving equations and simplifying expressions require the ability to reason

about operations as expressions of quantitative relationships rather than just

procedures.  Researchers have found that sixth graders lack adequate

experience in developing this ability.  Students were asked to judge the equiva-

lence (without computing the totals) of three-term arithmetic expressions

with a subtraction and an addition operation;54  for example, 685 – 492 + 947,

947 + 492 – 685, 947 – 685 + 492, and 947 – 492 + 685.  The typical answer was

that you needed to calculate to decide whether the expressions were equiva-

lent.  Similar results were found in another study55  when students of the

same age were presented with the task of stating the value of  in the

expression (235 + ) + (679 – 122) = 235 + 679.  Findings such as these illus-

trate that traditionally instructed students who are proficient with numbers

need to shift from thinking about “finding the answer” to thinking about the

“numerical relationships” underlying the calculations they perform and the

nature of the methods they use.

Students’ experience with equivalence in earlier grades is often restricted

to their study of equivalent fractions.  For example, 1
2
 is equivalent to 2

4
,

which is equivalent to 3
6
, and so on.  But this equivalence is one of numbers,

not of operations or expressions.  There are few opportunities in the present

Traditionally

instructed

students

who are

proficient

with

numbers

need to

shift from

thinking

about

“finding the

answer”

to thinking

about the

“numerical

relationships”

underlying

the

calculations

they perform

and the

nature of the

methods

they use.

Copyright © National Academy of Sciences. All rights reserved.



272 ADDING IT UP

elementary school number curriculum for students to gain experience with

these more abstract forms of equivalence.  It would be helpful, for example,

if the curriculum included perimeter problems in which students were asked

to calculate the perimeter of a 7-by-4 rectangle in three ways that yield equiva-

lent expressions: 2(7 + 4), (2 × 7) + (2 × 4), and 7 + 7 + 4 + 4.  Such situations

are ideal for initiating discussions of the equivalence of arithmetic expressions

and of the properties underlying that equivalence.  Because such occasions

are currently quite rare in the part of the curriculum dealing with number,

however, notions of equivalence generally have to be further developed when

arithmetic is extended to algebra.

Developing Meaning

Students’ notions of equality and equivalence, as well as their deepening

understanding of the relationship between operations and their inverses, are

developed through the transformational activities of algebra, especially those

related to simplifying expressions and solving equations.  A great deal of re-

search has been carried out on this sphere of algebraic activity.

Performing the same operation on both sides of the equation is an impor-

tant formal equation-solving procedure.  This method, however, is often not

the first one taught to students.  Trial-and-error substitution of values for the

unknown and other informal techniques such as the cover-up method and

working backwards (undoing) are used to introduce equation solving (see

Box 8-6).

In one comparison of the cover-up method with the formal procedure of

performing the same operation on both sides of the equation in six seventh-

grade classes, the students who learned to solve equations by means of the

cover-up method performed better than those who learned both methods in

close proximity.56   The students who learned to solve equations using only

the formal method performed worse than those who learned both methods.

These findings suggest that students learning formal methods of equation

solving may benefit from well-timed prior instruction in the informal tech-

nique of “cover up.”

Another study found that students who were entering their first algebra

course showed one of two preferences when solving simple linear equations

in which there was only one operation: Some used trial-and-error substitu-

tion; the others used undoing.57   For two-step equations involving two opera-

tions such as 2x – 5 = 11, the latter group of students spontaneously extended

their right-to-left undoing technique: Take 11, add 5 to it, then divide by 2.
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Box 8-6

Two Methods for Solving Equations

Cover-Up Method Work Backward (Undoing) Method

2x + 9 = 5x 2x + 5 = 11

Cover up 9. Undo adding 5; subtract 5 from 11;

Since 2x + (cover up) = 5x, 2x = 6

9 = 3x. Undo multiplying by 2; divide 6 by 2;

Cover up x. x = 3.

Since 3 times (cover up) equals 9,

x = 3.

For equations involving multiple operations, such as 3x + 4 – 2x = 8, they

erroneously generalized their method and simply undid each operation as

they came to it.  For example, they would take 8, divide it by 2, add 4, and

then subtract 3.  (They had to ignore the last operation of multiplication

because they had run out of operands.)  A preference for the undoing method

of equation solving seemed to work against the students when they were

later taught the procedure of performing the same operation on both sides of

an equation.  The students who preferred the undoing method were, in gen-

eral, unable to make sense of “performing the same operation on both sides.”

The instruction seemed to have its greatest impact on those students who

had an initial preference for the informal method of substitution and who

viewed the equation as a balance between left and right sides.  This observa-

tion suggests that learning to operate on the structure of a linear equation by

performing the same operation on both sides may be easier for students who

already view equations as entities with symmetric balance and not as state-

ments about a calculation on the left side and the answer on the right.

Despite the considerable body of research on creating meaning for the

transformational activities of algebra, few researchers have been able to shed

light on the long-term acquisition and retention of transformational fluency.

In one study, students were able to produce a meaningful justification for
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equivalence transformations, but soon afterwards most remembered only the

rules, and some did not even remember that much.58   According to another

study, recency of experience seems to account best for students’ ability to

carry out certain transformational activities.59   Regardless of the teaching

approach used, whether reform-based or traditional (i.e., oriented toward

symbol manipulation), students’ ability to carry out successfully the transfor-

mational activities of algebra by the end of their high school career appears to

be severely limited.  This result has been found repeatedly, even in recent

studies: “Few students [can] do the kinds of basic symbolic calculation that

are common fare on college-admission and placement tests.”60

The Role of Technology

Transformational activities of algebra have benefited substantially less

than representational activities from the use of computer technology to help

develop meaning and skill.  Nevertheless, a few researchers have used graph-

ing technology as a means of providing a foundation for simplifying expres-

sions and solving equations.61   This research is based on the idea that an

important aspect of students’ mathematical development is their ability to

support the symbolic transformations of algebraic objects by means of visual

representations.  For instance, the graphs of two functions can be added geo-

metrically to arrive at a third graph whose expression is their algebraic sum.

Equations also can be solved by graphing the functional expressions on each

side of an equation on a computer or graphing calculator, zooming in on the

point of intersection, and finding the approximate value of x for which the

two functions are equal.

In one study the students had become so skilled at graphing linear func-

tions by focusing on the y-intercept and slope that they could do it mentally

(see Box 8-7).  Although most teachers of algebra would be happy if a student

could solve equations mentally by visualizing graphs, they would not be

satisfied with solutions found by such informal methods.  The issue is not,

however, simply being able to produce a more accurate solution than one

obtained by examining a graph.  If it were, computer software and calculators

that can do symbol manipulation could be called on to generate solutions that

are as accurate as desired.  The issue is the role the process plays in learning:

When symbol manipulators become widely available, we will probably

take the same view with equation solving that we do with graphing.

That is, we will continue to teach students paper-and-pencil means

for solving linear equations because the idea is important and the process
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Box 8-7

Mentally Graphing to Find the Solution to an Equation

Toward the end of a study of equation solving by means of a graphical representa-

tion, a seventh grader was asked to solve the equation 7x + 4 = 5x + 8 (an equation

whose solution is x = 2).  Rather than graph the two expressions, the student took

a “shortcut.”

Interviewer: Can you solve 7x + 4 = 5x + 8?

Jer: Well, you could, see, it would be like start at 4 and 8, this one would go up by

7, hold on, 8, 8 and 7, hold on, no, 4 and 7, 4 and 7 is 11.  They’d be equal, like, 2 or

3 or something like that.

Interviewer: How are you getting that 2 or 3?

Jer: I’m just like graphing it in my head.

SOURCE: Kieran and Sfard, 1999, p. 15. Used by permission of the author.

is generalizable, but we will also teach how to use symbol manipulators

to solve these and more-complicated equations [emphasis added].62

Thus, most teachers—for the time being, at least—remain insistent that

students learn to do by hand the various algebraic transformations of expres-

sions and equations.  In 1989 one mathematics educator noted that “the

unanswered question standing in the way of reducing the manipulative skills

agenda of secondary school algebra is whether students can learn to plan and

interpret manipulations of symbolic forms without being themselves profi-

cient in the execution of those transformations.”63   Very little research has

been conducted since then to help resolve the question; however, the research

that has been done is quite telling.  A recent study investigated the impact on

algebra achievement of a three-year integrated mathematics curriculum in

which technology was used to perform symbolic manipulations as well as to

link various representations of problem situations.64   In this study, which

involved over 300 high school students in 12 schools, some support was found

for the notion that learning how to interpret results of algebraic calculations is

not highly dependent on the ability to perform the calculations themselves.
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Furthermore, skill in algebraic symbol manipulation was not a prerequisite

for the students’ success in problem solving, and as the researchers empha-

sized, “when those students had access to the kind of technological tools that

are becoming standard mathematical tools, they could overcome limited per-

sonal calculation skills.”65

Although researchers have made notable advances in finding ways to make

representing and interpreting algebraic expressions and equations more mean-

ingful for students with the help of computer and calculator technology, simi-

lar efforts in the realm of transforming expressions and equations have been

less abundant.  As inexpensive symbol manipulators continue to become avail-

able for the algebra classroom, it may be feasible to develop and evaluate

programs that incorporate their use.  At present, despite the occasional use of

calculator- and computer-supported approaches to the transformational

activities of algebra, the traditional rule-based methods for developing

manipulative skills tend to dominate.  However, few people at any level in

education are satisfied that the traditional approach leads to sufficient profi-

ciency in algebra for most students.

Generalizing and Justifying Activities of Algebra

In this section, we consider activities such as solving problems, modeling

situations, noting mathematical structure, justifying, proving, and predicting.

None of these activities is exclusive to algebra, but in all of them algebra is

often used as a tool.  Several of these activities require a certain level of skill

in representing and transforming algebraic expressions, as well as in adaptive

reasoning.  Two problems from the research literature help illustrate the issues

(see Box 8-8).

Justifying Generalizations

Students given Problem A in Box 8-8 tended to give a strictly numerical

justification in Part 1.  The explicit demand of Part 2 to use algebra, however,

requires translating the nonspecific number and the sequence of operations

into algebraic notation and then manipulating that notation to obtain an ex-

pression that can be interpreted in terms of the problem’s conditions.  If x is

the number, that translation yields

5 12 4 4 12 4

4 3 4

3

x x x

x

x

+ −( ) ⇒ +( )
⇒ +( )
⇒ +

/ /

/

.
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Box 8-8

Problems That Involve Generalizing and Justifying

Activities

Problem A

Part 1.  A girl multiplies a number by 5 and then adds 12.  She then subtracts the

original number and divides the result by 4.  She notices that the answer she gets

is 3 more than the number she started with.  She says, “I think that would happen,

whatever number I started with.”

Part 2.  Using algebra, show that she is right.

Problem B

Triangular numbers can be built with dots as shown below.  The first four triangular

numbers are 1, 3, 6, and 10.

Part 1.  Predict the number of dots in the 20th triangle.

Part 2.  Give a rule for predicting the number of dots in any triangle.

SOURCES: Arzarello, 1992; Lee and Wheeler, 1987. Used by permission of Springer-

Verlag and by the authors.

2 3 4 5

and so on

1

More specifically, the major conceptual demands of Problem A are the

following: (a) translating from a verbal representation to a symbolic represen-

tation through the use of a letter as a variable to represent “any number,”

(b) manipulating the algebraic expression to yield simpler equivalent expres-

sions with the underlying aim of arriving at an expression indicating “3 more

than the number she started with,” and (c) being aware that the algebraic

result—the expression x + 3—constitutes a proof or justification of the result

that one obtains empirically by trying several particular numbers.  Note that
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the only conceptual demand that is somewhat independent of the context is

manipulating the algebraic expression to yield simpler algebraic expressions.

That activity is very important, however, since it allows the student to see at

a glance why the result for the above problem is always x + 3, whatever the

value of x.  The evolving sequence of simplified algebraic expressions can

permit a perception of “x + 3-ness” in a way that is not so readily available

from simply reading the problem.  Thus, the algebraic representation can

induce an awareness of structure that is much more difficult, if not impos-

sible, to achieve using everyday language.

One hundred eighteen algebra students who had already taken algebra

for a year were given Problem A.  Only nine set up the expression (5x + 12 – x)/4

and then reduced it algebraically to x + 3.  Four of them went on to “demon-

strate further” by substituting a couple of numerical values for x.  Thirty-four

others set up the equation (5x + 12 – x)/4 = x + 3 and then proceeded to

simplify the left side, yet they did not base their conclusions on their alge-

braic work.  Instead, they worked numerical examples and drew conclusions

from them.

For the great majority of students, therefore, this task posed enormous

problems both in representing a general statement and in using that state-

ment to justify numerical arguments.  According to the researchers, these

students seemed completely lost when asked to use algebra.  “Formulating

the algebraic generalization was not a major problem for the [few] students

who chose to do so; using it and appreciating it as a general statement was

where these students failed.”66   Therefore, for the students who responded

to the request to use algebra, their difficulties were related not to the simpli-

fication of the expression but to the third of the conceptual demands outlined

above: being aware that the algebraic result constitutes a proof or justification

of the arithmetical result that one obtains empirically by trying several num-

bers.  This research also suggests that even when students are successfully

taught symbolic manipulation, they may fail to see the power of algebra as a

tool for representing the general structure of a situation.  Without some skill

with symbolic manipulations, however, students are unlikely to use algebra

to justify generalizations.

Predicting Patterns

Tasks involving geometric and numerical patterns are a frequent means

of introducing students to the use of algebra for predicting.  Problem B in

Box 8-8 is typical.  To help students find a pattern in the arrangement of dots

Even when
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in the problem, they might be asked to use a table of values in which the first

column points to a position in the sequence and the second column gives the

corresponding number of dots.67

Sequential position (x) Number of dots (y)

of the triangular number in the triangular number

1 1

2 3

3 6

4 10

M M

Two kinds of rules describe this table.  One, the recursive rule, is based on

an analysis of the growth occurring in the right-hand column.  For the nth

triangle, add n dots to the number of dots in the previous triangle.  But this

right-hand regularity, which is not too difficult to detect, is easier to say in

words than to symbolize algebraically.  The other kind of rule, the closed form,

requires analyzing both columns together to try to determine a relationship

between a member of the left-hand column and the corresponding member

in the right-hand column.  Algebra students have more difficulty deriving the

latter rule, y = x(x + 1)/2, than the former.68

The use of computer technology can enable students to engage in activi-

ties like those above without having to generate or transform algebraic equa-

tions on their own.69   But students have to learn how to use the equations

produced by the technology to make predictions, even if they do not actually

generate them by hand.

Through an emphasis on generalization, justification, and prediction,

students can learn to use and appreciate algebraic expressions as general state-

ments.  More research is needed on how students develop such awareness.

At the same time, more attention needs to be paid to including activities in

the curriculum on identifying structure and justifying.  Their absence is an

obstacle to developing the “symbol sense”70  that constitutes the power of

algebra.

Algebra for All

Because of advancements in the use of technology and its prevalence

today, a greater understanding of the fundamentals of algebra and algebraic

reasoning is viewed as necessary for all members of society, including those
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who are low achieving or underserved.71   The U.S. eighth-grade curriculum

is not as advanced as those of other countries.  In the Third International

Mathematics and Science (TIMSS) Video Study, for example, whereas 40%

of U.S. eighth-grade lessons included topics from arithmetic, German and

Japanese eighth-grade lessons were more likely to cover algebra and

geometry.72   Over the past decade, however, more and more U.S. schools

have started to offer first-year algebra in the eighth grade.  According to data

collected by NAEP, 25% of eighth-grade students were enrolled in algebra in

1996 compared with 16% in 1990.73   Further, all but 3% of the twelfth-grade

students reported that they had taken first-year algebra, the majority in grade

9.  Although the goal of “algebra for all” has essentially been achieved by the

time students reach the end of high school, many of these students experi-

ence difficulties in their first course in algebra.

The study of algebra need not begin with a formal course in the subject.

Recent research and development efforts have been encouraging.  By focus-

ing on ways to use the elementary and middle school curriculum to support

the development of algebraic reasoning, these efforts attempt to avoid the

difficulties many students now experience and to lay a better foundation for

secondary school mathematics.74   From the earliest grades of elementary

school, students can be acquiring the rudiments of algebra, particularly its

representational aspects.  They can observe that over time and across differ-

ent circumstances, numerical quantities may vary in principled ways—the

essence of the concept of variable.  They can learn about functions by study-

ing how a change in one variable is reflected in the behavior of another.  As

students encounter algebraic ideas, they discover the value of precise language

and of working with clear definitions.

Once students are familiar with the laws of arithmetic, they can learn to

see them as a convenient summary of arithmetic practice and as a valuable

guide to methods that work.  Students can learn to express the laws algebra-

ically and can use them to support their reasoning and to justify their claims

about numbers.  It is important that they become aware of the role played by

general statements expressed in algebraic symbols when justifying numeri-

cal arguments or discussing classes of situations.  Little is known, however,

about the relative effectiveness of strategies for helping students learn to

justify their claims.  With the development of new approaches to algebra and

the infusion of the rudiments of algebra in the elementary and middle grades,

an algebra-proficient population might become a reality.
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Measurement and Geometry

In elementary and middle school mathematics, the closely related do-

mains of measurement and geometry are often referred to as measure and

space.  Geometry, as its Greek origin as “earth measure” indicates, is a route

for developing an understanding of two- and three-dimensional space.

Measurement, too, is a process that links mathematics with the world, and

with science in particular.  Measure is a diverse topic, built on the need to

quantify particular attributes of an object or phenomenon.  By learning about

how length, area, and volume are measured, students mentally structure and

revise their construction of space, both large-scale and small-scale.  When

they study science, they need to know about other measures, such as time,

density, and speed, and they need to know about choosing a measurement

scale and considering the precision of their measurements.  Although mea-

surement and the theory behind it can be treated as distinct from geometry,

there is much pedagogical value in returning geometry to its roots in spatial

measure.  Our discussion focuses on the measurement of length, area, and

volume, three measures that are the basis for the connection between geom-

etry and number, as shown in chapter 3 through the geometric interpreta-

tions of the operations of addition and multiplication.

Acquiring Measure Concepts

The early work of Piaget and his collaborators75  focused on showing that

understanding measure entails successive mental restructurings of space.  The

idea of a unit of measure is fundamental, as is the notion that measurement

involves the organized accumulation of standard units.  Further, conservation

of length, area, and volume (understanding that these quantities do not change

under transformations such as reflection or other rigid motion) was consid-

ered both a hallmark of, and a constraint on, children’s development in each

domain of spatial measure.  Studies conducted in the last two decades, how-

ever, have generally failed to support the contention that there is a tight

coupling between understanding a spatial measure and knowing when it is

conserved.76

Length Measure

Length needs to be understood from several perspectives: for example,

as magnitude, as a span, as the distance traveled, or as motion.77   Proficiency

in the measurement of length requires the learner to restructure space so that
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he or she “sees” a count of n adjacent unit lengths as representing a distance

of n units.  Children need to recognize the need for identical units, and they

need to understand that a unit can be partitioned into smaller units.78

Children’s first understanding of length measure involves the direct com-

parison of objects.79   They observe that two congruent objects can be put

side by side and shown to have the same length.  As early as first grade, chil-

dren typically understand that the lengths of two objects can be compared by

representing them with a string or paper strip.  First graders can also use

given units to find the length of different objects, and they associate higher

counts with longer objects.80   This apparent ease of counting, however, need

not imply understanding of length measure as a distance.  First and second

graders, for example, often fail to see the point of having identical units of

length measure.  They freely mix units such as inches and centimeters, count-

ing them all to “measure” a length.81

Given a measuring device such as a ruler, very few young children under-

stand that any point on the scale can serve as the starting point or origin, and

even many older children (e.g., fifth graders) respond to measurement with a

nonzero origin by simply reading off whatever number on a ruler aligns with

the other end of the object.82   These difficulties young children have in under-

standing length indicate that teachers cannot assume that their students under-

stand various aspects of the number line.  When the number line is used as a

pedagogical tool, efforts must be made to be sure that students understand

that they are counting lengths, not the endpoints where the numbers are.  In

a recent teaching experiment on measuring length, children used computer

tools that provided them experience with a unit and the repetition of units to

get a measurement.  The tools helped the children mentally restructure lengths

into units.83   In other studies, researchers have placed a premium on transi-

tions from active forms of length measure, like pacing, to recording and sym-

bolizing these forms as “foot strips” and other kinds of measurement tools.84

Tools like foot strips help children reason about the mathematically impor-

tant components of activity (e.g., pacing) so that invariants like unit are rep-

resented physically and then mentally.85   Although constructing and using

tools have a long tradition in teaching practice, recent teaching experiments

have shown ways in which these practices can contribute to conceptual

change.86
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Area Measure

The basic idea of measuring area is that of covering a region by units that

“just fit” (an idea that is sometimes called tiling).  In many ways the develop-

ment of area measure parallels that of length, but it lags behind.  First and

second graders often treat length measure as a surrogate for area measure.

For example, some children will measure the area of a square by measuring

the length of one side, moving the ruler parallel to itself a bit and measuring

the length again, and so on, treating length as a space-filling attribute.87   When

provided with geometric manipulatives (squares, right triangles, circles, and

rectangles) for use in finding the area measure of a variety of shapes, most

students in grades 1 to 3 freely mix units and then report the total count of

those units.

As they progress through the elementary grades, students usually begin

to differentiate area measure from length measure, and the space-filling (tiling)

requirement of the unit becomes more apparent to most of them.  Other

aspects of area measure, however, remain problematic.  Students find it very

difficult to decompose and then recompose shapes or even to see one shape

as a composition of others, an idea that is fundamental to conservation.88   For

example, students in grades 1 to 3 often cannot think of a rectangle as an

array of units.89

By the end of the elementary grades, students typically understand core

concepts like using identical units and covering the object for length mea-

sure but not for area measure.  Younger children often employ resemblance

as the prime criterion for selecting a unit of area measure, suggesting the

need for attention to the qualities of a unit that make it suitable for measur-

ing area.  The common instructional practice of declaring that the square is

the unit of area measure may lead to procedural competence but may violate

students’ preconceptions about what makes a unit suitable.

Teaching experiments with area measure have revealed that second

graders could develop a comprehensive understanding of area measure when

they began by solving problems involving partitioning and redistributing areas

without measuring.90   It is worth emphasizing that this approach makes con-

servation of area a fundamental construct rather than an afterthought.  Later,

when the children explored the suitability of different units (e.g., beans) for

finding the areas of irregular shapes like handprints, they found that units

like squares had desirable properties of space filling and identity.  By the end

of the school year, these children had little difficulty creating two-dimensional

arrays of units for rectangles and even for irregular (nonpolygonal) shapes.
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Volume Measure

The measurement of volume presents some additional complexities for

reasoning about the structure of space, primarily because the units of mea-

sure must be defined and coordinated in three dimensions.  Although the

evolution of children’s conceptions of units of volume measure is not well

understood, an emerging body of work addresses strategies that children use

to measure a volume when given a unit.91

In one study, fifth graders who had a wide range of experience with rep-

resentations of volume and its measurement typically organized space into

three-dimensional arrays, and most could conceive of volume as a product of

area and height.92   Thus, traditional notions about how volume concepts

develop may need to be revised in light of the results from recent teaching

experiments.

Developing Geometric Reasoning

Early work on geometric reasoning suggested that proficiency in geometry

develops in a sequence of stages associated with age93  and that children can

be assisted, through appropriate activities, to move to more advanced levels

of reasoning.94   Recent work has confirmed the effectiveness of appropriate

activities even as it has called into question the notion of a stage-like

sequence.95

Reasoning About Shape and Form

Children enter school with a great deal of knowledge about shapes.  They

can identify circles quite accurately and squares fairly well as early as age

four.96   They are less accurate at recognizing triangles (about 60% correct)

and rectangles (about 50% correct).  Given conventional instruction, which

tends to elicit and verify this prior knowledge, children generally fail to make

much improvement in their knowledge of shapes from preschool through the

elementary grades.97

Instruction needs to build on students’ informal knowledge and move

beyond it.  For example, in one experiment, first graders were given a 10-day

instructional sequence to help them identify specific classes of quadrilaterals

and understand the relationships among the classes.98   They learned to arrange

the figures from the most to the least general members of the class (e.g., from

quadrilaterals to squares), to embed hierarchies in the names they gave to

shapes (e.g., “square-rectangles”), and to examine characteristics of the figures.
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Encouraged to reflect on and articulate their developing knowledge, the chil-

dren subsequently demonstrated levels of reasoning well beyond their earlier

performance, both in their precision of language and in their use of argu-

ments based on the properties of shapes rather than on visual comparison to

some prototypical shape.

In another study, fourth graders were encouraged to reflect on and articu-

late their ideas about concepts such as angle and line and also about relational

concepts, such as class inclusion among quadrilaterals.  One group of 16 stu-

dents received instruction with Logo, a computer programming language with

a feature called Turtle Geometry that allows children to instruct a turtle on

the screen to move, tracing a geometric path as it goes.  A second group of 16

students used traditional tools like protractors and rulers.  On a set of geometry

items from NAEP,99  the performance of both groups well exceeded the per-

formance by the high school students in NAEP.  Moreover, on measures of

abstracting and applying geometric properties for reasoning, the fourth graders

who had used Logo as a construction tool significantly outperformed their

contemporaries.100

Although previous work had suggested that children’s reasoning about

geometric figures is based on global appearances, primary school children in

one study101  routinely used a variety of attributes of shape and form to describe

how two shapes, in either two or three dimensions, were alike yet different

from a third shape.  Their judgments about shape and form revealed distinc-

tions that appeared to involve several distinct forms of mental operation, rang-

ing from simple feature detection (“it has four sides”), to comparison to known

prototypes (“it’s squarish”), to mental representation of the action-based

embodiment of transforming one form into another (“if you push the top of

this one [a parallelogram] to the side, it makes a rectangle”).  Mixture across

levels of reasoning was the rule, not the exception.

Concepts about shapes begin forming in the preschool years and stabilize

as early as age 6.102   Hence, if preschool provides sufficient opportunities for

children to learn about geometric figures, by the end of second grade they

should be able to “identify a wide range of examples and non-examples of a

wide range of geometric figures; classify, describe, draw, and visualize shapes;

and describe and compare shapes based on their attributes.”103

Although they have considerable experience with three-dimensional

objects, students are less proficient with three-dimensional geometric shapes

than they are with two-dimensional ones.  Even intermediate-grade students

have difficulty naming solids, using names of plane figures instead.104   In

reasoning about solids, they refer to a variety of characteristics, such as
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“pointyness” or slenderness.105   Studying only plane figures in the early grades

may be responsible for some of the difficulty students have in discriminating

between the terms for two- and three-dimensional figures.  Construction

activities involving foldout shapes of solids may help students make such

discriminations.106   Other promising activities need to be developed and

investigated.

An important and difficult geometric figure for students to understand

and be able to use is the angle.  In the course of schooling, students need to

encounter multiple mathematical conceptions of angle,107  including: (a) angle

as movement, as in rotation or sweep; (b) angle as a geometric shape, a delin-

eation of space by two intersecting lines; and (c) angle as a measure, a per-

spective that encompasses the other two.108  Although as preschoolers, they

encounter and use angles intuitively in their play, children have many mis-

conceptions about angles.  They typically believe that angle measures are

influenced by the lengths of the intersecting lines or by the angle’s orienta-

tion in space.109   The latter conception decreases with age, but the former is

robust at every age.110   Some researchers have suggested that students in the

elementary grades should develop separate mental models of angle as move-

ment and angle as shape.111

There is some research on instructional approaches that attempt to develop

the two models of angles.  With appropriate instruction, Logo’s Turtle

Geometry can support the development of measures of rotations.112   The

students, however, rarely connected these rotations to models of the space in

the interior of figures traced by the turtle.113   Simple modifications to Logo

helped students perceive the relationship between turns and traces (the path

made by Logo’s turtle), and the students could then use turns to measure

static intersections of lines.114   Another approach used multiple concrete analo-

gies such as turns, slopes, meetings, bends, directions, corners, and openings

to help children develop general angle concepts by recognizing common fea-

tures of these situations.115   Other research took as the starting point children’s

experience with physical rotations, especially rotations of their own bodies.116

In time, students were able to assign numbers to certain turns and integrate

turn-as-body-motion with turn-as-number.

An understanding of angle requires novel forms of mental structuring,

the coordination of several potential models, and an integration of those

models.  The long developmental process is best begun in the early grades.

Common admonitions to teach angles as turns run the risk of students devel-

oping only one concept of angle since they rarely spontaneously relate situa-

tions involving rotations to those involving shape and form.
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In several studies of instruction in space and geometry,117  teachers have

posed challenging tasks (e.g., design a playground), engaged students in math-

ematical explanation and justification, and provided computer tools (e.g.,

Sketchpad,118  Logo) and related means (e.g., Polydrons119 ) for reasoning about

space.  The emerging portrait of mathematical reasoning in these contexts

suggests that children’s conceptions of shape and form can encompass fairly

sophisticated mathematical understanding.

Reasoning About More Advanced Concepts

During the last decade, studies of geometry learning have focused less

exclusively on shape and form, although conceptions of form are still a promi-

nent topic.  Related ideas like congruence, symmetry, similarity, and transfor-

mation have received more systematic attention in recent studies.  Begin-

ning as early as age 4, children can create and use strategies for judging whether

two figures are the same size and shape.120   By about first grade they can

develop sophisticated and accurate mathematical procedures for determin-

ing congruence.

Children also have intuitive notions of symmetry from a very early age,

preferring symmetric figures over asymmetrical ones.121   Vertical bilateral sym-

metry, in particular, seems to be easier for children to identify than horizontal

symmetry.122   Young children can identify similar shapes in certain situations.

They can verify their identifications using an overhead projector,123  and they

can use computers to create similar figures.124

The findings are mixed regarding children’s ability with geometric

motions.  In one study, second graders could perform transformations manu-

ally but not mentally.125   In contrast, other researchers found that children do

learn something about these motions and appear to internalize them.126   Slides

appear to be the easiest motion, followed by flips and turns, although the

difficulty depends on the specific task.127   Computer environments can be

particularly useful in helping students develop proficiency with congruence,

similarity, symmetry, and transformations.128

Several researchers have looked at the effects of introducing children to

ideas about modeling space.  In these studies, middle school students made

significant progress in developing their conceptions of proportion and scale

when they used a computer-assisted-drawing (CAD) tool to map their class-

room129  or designed a playground and its equipment.130   Modeling of space

can be done by primary grade children as well.  For example, first graders

learned about properties of shapes as they searched for a configuration of
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players (ultimately a circle) that would be “fair” (equidistant) in a classroom

game of tag.131

Some research has focused on relationships between spatial models and

learning about science.  For example, middle school students’ understanding

of area and volume measure was found to make a significant contribution to

their understanding of concepts like buoyancy,132  and the idea of similarity in

substance helped in developing their understanding of similarity of shapes.133

Engineering problems involving stability have also been employed to help

middle school students understand the relationship between geometry and

the success or failure of architectural structures.134

Collectively, research on geometry points the way to a significant expan-

sion of what is meant by the study of shape and form in school mathematics.

Children enter school with much informal knowledge of geometry that can

be developed throughout the grades.  Given children’s affinity toward, knowl-

edge of, and ability to gain geometric knowledge, it is important that this

domain of mathematics not be neglected.  Instruction in geometry needs to

complement the study of number and operation in grades pre-K to 8.

Statistics and Probability

In the elementary and middle grades, the domains of statistics and prob-

ability are often referred to as the study of data and chance.  Research in

these two domains is less extensive than that in number and operation, in

algebra, or in measurement and geometry.  But like measurement and

geometry, many of the central conceptual structures of statistics and prob-

ability have been identified, especially with respect to school mathematics in

grades pre-K to 8. 135

Learning to Use Data

Although the graphing of data is a common activity in grades pre-K to 8

and has been the focus of some investigations, recent research into students’

statistical thinking at the elementary and middle school grades has adopted a

broader perspective.  Four key processes have been studied: describing,

organizing, representing, and analyzing data.136   We consider research on each

of these processes in turn, starting with a definition of the process.
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Describing Data

Describing data involves reading displays of data (e.g., tables, lists, graphs);

that is, finding information explicitly stated in the display, recognizing graphi-

cal conventions, and making direct connections between the original data

and the display.  The process is essentially what has been called reading the

data,137  and researchers have found that the majority of students in the

elementary and middle school grades can read data displays accurately.138

Although children in the primary grades often give idiosyncratic descriptions

of data, explorations with categorical and numerical data in instruction that

incorporates technology produce more focused and less idiosyncratic descrip-

tions.139

Organizing Data

The process of organizing, and reducing, data incorporates mental ac-

tions such as ordering, grouping, and summarizing.140   Data reduction also

includes the use of representative measures of center (often termed measures

of central tendency) such as mean, mode, or median, and measures of spread

such as range or standard deviation.  Research on organizing data at grades

pre-K to 8 is quite limited.

Most of the available research on data reduction by elementary school

students has focused on their understanding of measures of center, particu-

larly the mean.  The most familiar measure of center is the mean, which is

computed by adding up all the data values and dividing by the number of

values.  The median is the middle value when the data are sorted (or the

mean of the two middle values).  The mode is the most common data value.

All of these measures of center are called “averages” for some kinds of data.

With housing prices and incomes, for example, the preferred average is the

median because the mean is easily skewed by a few very high incomes, giv-

ing a false impression of income for an “average” or typical family.  With

clothing sizes, the preferred average is the mode because it gives the best

impression of the typical buyer.

First and second graders have informal conceptions of mode and median

as measures of center, and they also have some conception of spread.141   Most

elementary school students understand that the mean is located between

extreme values.142   Nearly all realize that the mean is influenced by values in

the data set and that the mean does not necessarily equal one of the actual

data values.  In a study of fourth, sixth, and eighth graders’ concept of aver-

age, the younger students interpreted the average as the mode.143   Although
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the researchers claimed that these students did not see the data set as an

entity that can be represented by a single value, an alternative interpretation

is that the students used the mode because it is so easily identified in a

graph.144   Some students consider the average to be a data point roughly

centered within the data, that is, they conceptualize average as median.145

Students in the primary grades seem not to have the idea of center as a math-

ematical point of balance, a vital characteristic of the mean.  They cannot use

an algorithmic procedure to find the mean, let alone create a data set given

the mean.146   Different measures of center appear to be important for differ-

ent students; all need eventually to understand the different measures and

their purposes.

Representing Data

Representing data in visual displays requires the generation of different

organizations of data according to certain conventions.  Many elementary stu-

dents have difficulty creating visual displays of data.147   First and second

graders’ knowledge of how to represent data appears to be constrained by

difficulties in sorting and organizing data, and technology has been found to

be helpful in overcoming those difficulties.148

Studies of middle school students have revealed substantial gaps in their

abilities to construct graphs from given data.149   Processes like organizing

data and conventions like labeling and scaling are crucial to data representa-

tion and are strongly connected to the concepts and processes of measure-

ment.  Given the difficulties students experience, instruction might need to

differentiate these processes and conventions more sharply and utilize the

potential of technology to make them more accessible to students.

Analyzing Data

The process of analyzing, and interpreting, data incorporates recognizing

patterns and trends in data and making inferences and predictions from the

data.  It includes what has been referred to as reading between the data and

reading beyond the data.150   Reading between the data requires students to

compare quantities and use mathematical operations to combine and inte-

grate data and to identify mathematical relationships expressed in the data or

in visual representations of the data.  Reading beyond the data requires

students to make predictions or inferences from the data that are neither

explicitly nor implicitly stated in the visual representation.
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Elementary school students have difficulty analyzing and interpreting

data.  In one study, 80% of the first and second graders interviewed gave

idiosyncratic or incomplete responses when they attempted to analyze data

from a line plot and a bar graph.151   In another study, almost all the fourth and

sixth graders could describe bar graphs, but fewer could interpret them, and

many fewer still could use the graphs to predict.152

Learning About Chance

Although there has been substantial research on students’ probabilistic

thinking over the past 50 years by both psychologists153  and mathematics

educators,154  only recently has students’ learning about chance been exam-

ined with a view toward informing instruction.  In this section, we examine

what is known about students’ probabilistic thinking about five key concepts:

sample space, probability of an event, probability comparisons, conditional

probability, and independence.155

Sample Space

Students exhibit an understanding of sample space when they are able to

identify the complete set of possible outcomes in a random experiment, an

experiment in which the actual outcome cannot be determined ahead of time

even though the set of possible outcomes can be determined.  When two

coins are flipped, for example, the possible outcomes may be represented as

HH, HT, TH, and TT.

Several studies have addressed children’s thinking about sample space.156

Recent research has concluded that a substantial number of students in grades

1 through 3 are not able to list the outcomes of a one-dimensional experiment

(such as rolling a single die) even after instruction.157   The students in these

studies adopted a deterministic posture, maintaining that it was “always”

possible to predict a particular outcome.  The situation with respect to two-

dimensional experiments (such as rolling two dice) is also problematic.

Although some children as young as seven years can use efficient procedures

for listing all outcomes,158  other children in grades 4 through 6 are reluctant

or unable to list them all.159

Probability of an Event

Although probability tasks used in research with elementary and middle

school students have typically involved equally likely outcomes, a number of
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researchers have investigated children’s probabilistic thinking about unequally

likely events.160   In comparing event probabilities, students commit them-

selves to one of three strategies: (a) a numerator strategy in which they only

examine the part that corresponds to the event; (b) an “incomplete” denomi-

nator strategy in which they examine the part that corresponds to the comple-

ment of the event; and (c) an integrating strategy in which they recognize the

moderating effect that each part has on the other.161   In a recent study that

incorporated instruction, the kind of reasoning that third graders used was

fundamental to their quantifying probability situations in a meaningful way.162

Overall, comparisons of event probabilities are difficult for students and seem

to be linked to their proficiency with rational numbers.

Probability Comparisons Across Sample Spaces

Students’ understanding of probability comparisons is measured by their

ability to determine and justify which of two probability situations is more

likely to generate the target event in a random draw.  For example, given a

bag with 2 red and 2 blue bears and another with 3 red and 4 blue, they might

be asked, “Which bag would give the better chance of getting a red bear?”

Researchers have found that elementary and middle school students use both

intuitive and informal quantitative strategies for comparing the probabilities

of the target event.163   In one seminal study the three incorrect strategies

used by students in grades 1 through 5 involved choosing the probability

situation with: (a) more instances corresponding to the target event; (b) fewer

instances corresponding to the nontarget event; and (c) a greater difference

(as opposed to greater ratio) of instances favoring the target event.164

Conditional Probability

A number of studies have addressed elementary and middle school stu-

dents’ thinking in conditional probability situations—their ability to recog-

nize when the probability of an event is or is not changed by the occurrence

of another event.165   For example, the conditional probability of drawing a

white ball, given that you have already drawn and not replaced a white ball

from a bag containing three white balls and three red balls, is 0.4, not 0.5.

When fifth, sixth, and seventh graders were asked to determine conditional

probabilities, the performance of the sixth and seventh graders was dramati-

cally lower when the tasks involved selection without replacement compared

with selection with replacement.166   Similar results were found in a study167

with students in grades 6 through 8.  In a study with third graders, several

Comparisons
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probabilities
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seem to be
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levels of thinking in conditional probability were identified, with few chil-

dren being able to recognize that the probabilities changed in situations of

selection without replacement.  Following instruction, 51% were able to rec-

ognize that conditional probabilities changed in these situations.168   Children

have difficulty determining the conditioning event and may be confused about

the context of a conditional probability problem.

Independence

Students’ intuitive understanding of independence is measured by their

ability to recognize and justify when the occurrence of one event has no

influence on the occurrence of another.  In one study, students in grades 4

through 8 were asked to determine which event was more likely: obtaining 3

heads by tossing one coin 3 times, or by tossing 3 coins simultaneously.169

Some 38% of fourth and fifth graders and 30% of seventh and eighth graders

with no prior instruction in probability responded that the probabilities were

not equal.  Follow-up interviews revealed that these students harbored the

pervasive misconception that the outcomes of a coin toss can be controlled.

Similar misconceptions were evident in other studies of middle school

students.170   Misconceptions of the kind illustrated above have been charac-

terized more generally as representativeness—a belief that a sample or sequence

of outcomes should reflect the whole population.171

From Arithmetic to Mathematics

As children move from number to other domains of mathematics, they

both use their proficiency with number and develop it further.  The school

mathematics curriculum, although separated into domains for the purposes

of this report, needs to be experienced by the learner as a unified whole.

In general, the arithmetic thinking of number-proficient students emerg-

ing from the typical elementary school mathematics program is different from

the thinking that is central to algebra.  Some of the conceptual understanding

of the arithmetic thinker requires an adjustment when the student engages

in the main types of activities in algebra.  Whereas arithmetic focuses on

number and numerical answers, school algebra focuses on relations.  Algebra

remains, however, a natural extension of arithmetic.  Students’ numerical

thinking can therefore continue to grow and develop into algebraic thinking,

but their numerical thinking habits must be taken into account.

Just as current research has influenced conceptions of algebra in the early

grades, the nature of school algebra in higher grades has likewise been evolv-
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ing.  Over the past two decades, computational tools have increasingly influ-

enced the kinds of transformations that are important to learn, the kinds of

representations, especially graphical ones, that are readily accessible, and the

kinds of applications of mathematics that are appropriate to address.  One of

the biggest shifts has been to emphasize the ideas of pattern, function, and

variation.172   This new focus is particularly amenable to approaches that begin

in the elementary grades and continue through middle school, and a sizable

body of instructional materials has been developed that reflects this empha-

sis.173   But the long-term impact of these materials is as yet unknown.

Recent research on measurement and geometry suggests that children’s

development of geometric reasoning can be greatly enhanced in instructional

environments that are specifically designed to promote such understanding

and that children’s thinking may fluctuate across stages identified by earlier

researchers.  Furthermore, computer technologies offer the promise of being

able to support developing understanding in ways not available before.

Unlike the domains of measurement and geometry, research on the devel-

opment of concepts of statistics and probability indicates that, especially for

probability, very young children are capable of less than developmental

theories might predict.  Fundamental concepts in both domains, such as the

conventions of scaling in graphs and the makeup of the sample space, need

more careful attention in initial instruction.  As in the areas of measurement

and geometry, technology offers promise for helping to support and link stu-

dents’ developing conceptions of data and chance.  It is still an open question

when and how many of the central conceptual structures of probability and

statistics should be introduced in the elementary and middle grades.
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9

TEACHING FOR

MATHEMATICAL PROFICIENCY

Previous chapters have described mathematical proficiency as the inte-

grated attainment of conceptual understanding, procedural fluency, strategic

competence, adaptive reasoning, and productive disposition.  Effective forms

of instruction attend to all these strands of mathematical proficiency.  In this

chapter we turn from considering what there is to learn and what is known

about learning to an examination of teaching that promotes learning over time

so that it yields mathematical proficiency.

Instruction as Interaction

Our examination of teaching focuses not just on what teachers do but

also on the interactions among teachers and students around content.1   Rather than

considering only the teacher and what the teacher does as a source of teaching

and learning, we view the teaching and learning of mathematics as the prod-

uct of interactions among the teacher, the students, and the mathematics in

an instructional triangle (see Box 9-1).

Certainly the knowledge, beliefs, decisions, and actions of teachers affect

what is taught and ultimately learned.  But students’ expectations, knowl-

edge, interests, and responses also play a crucial role in shaping what is taught

and learned.  For instruction to be effective, students must have, perceive,

and use their opportunities to learn.  The particular mathematical content

and its representation in instructional tasks and curriculum materials also

matter for teachers’ and students’ work, but teachers and students vary in

their interpretations and uses of the same content and of the same curricular

resources.  Students interpret and respond differently to the same mathemati-

We view the

teaching and

learning of

mathematics

as the

product of

interactions

among the

teacher, the

students,

and the

mathematics.
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Box 9-1

The Instructional Triangle:

Instruction as the Interaction Among Teachers,

Students, and Mathematics, in Contexts

SOURCE: Adapted from Cohen and Ball, 1999, 2000, in press.

teacher

students
mathematics

students

contexts

contexts

cal task, ask different questions, and complete the work in different ways.

Their interpretations and actions affect what becomes the enacted lesson.

Teachers’ attention and responses to students further shape the course of

instruction.  Some teachers may not notice how students are interpreting the

content, others may notice but not investigate further, and still others may

notice and respond by reiterating their own interpretation.

Moreover, instruction takes place in contexts.  By contexts we mean the

wide range of environmental and situational elements that bear on instruc-

tion—for instance, educational policies, assessments of students and teachers,
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school organizational structures, school leadership characteristics, the nature

and organization of teachers’ work, and the social matrix in which the school

is embedded.  These matter principally as they permeate instruction—that

is, whether and how they enter into the interactions among teachers, stu-

dents, and content.2   Hence, what goes on in classrooms to promote the

development of mathematical proficiency is best understood through an

examination of how these elements—teachers, students, content—interact

in contexts to produce teaching and learning.

Much debate centers on forms and approaches to teaching: “direct

instruction” versus “inquiry,” “teacher centered” versus “student centered,”

“traditional” versus “reform.”  These labels make rhetorical distinctions that

often miss the point regarding the quality of instruction.  Our review of the

research makes plain that the effectiveness of mathematics teaching and learn-

ing does not rest in simple labels.  Rather, the quality of instruction is a func-

tion of teachers’ knowledge and use of mathematical content, teachers’

attention to and handling of students, and students’ engagement in and use

of mathematical tasks.  Moreover, effective teaching—teaching that fosters

the development of mathematical proficiency over time—can take a variety

of forms.  To highlight this point, we use excerpts from four classroom lessons

and analyze what we see going on in them in light of what we know from

research on teaching.

Four Classroom Vignettes

The pedagogical challenge for teachers is to manage instruction in ways

that help particular students develop mathematical proficiency.  High-quality

instruction, in whatever form it comes, focuses on important mathematical

content, represented and developed with integrity.  It takes sensitive account

of students’ current knowledge and ways of thinking as well as ways in which

those develop.  Such instruction is effective with a range of students and over

time develops the knowledge, skills, abilities, and inclinations that we term

mathematical proficiency.

The four classroom vignettes we present below offer four distinct images

of what mathematics instruction can look like.  Each vignette configures dif-

ferently the mathematical content and the roles and work of teachers and

students in contexts; hence, each produces different opportunities for math-

ematics teaching and learning.  Two points are important to interpreting and

using these vignettes.  First, to provide a close view, each vignette zooms in

on an individual lesson.  Effective instruction, however, depends on the
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coherent connection over time among lessons designed collectively to achieve

important mathematical goals.  For example, some of these teachers may be

attempting to develop students’ productive disposition toward mathematics

and as mathematics learners, but it is difficult to pinpoint isolated attempts in

a single lesson since that development takes place gradually—over months

rather than minutes.  Second, rather than seeking to argue that one of these

lessons is “right,” our analysis probes the possibilities and the risks each affords.

The instructional challenge in any approach to teaching and learning is to

capitalize on its opportunities and ward off its pitfalls.

The first example (Box 9-2) is typical of much teaching that many Ameri-

can adults remember from their own experience in mathematics classes.3   Note

how the teacher, Mr. Angelo, constructs the lesson in a way that structures

the students’ path through the mathematics by tightly constraining both the

content and his students’ encounters with it.  The approach used by

Mr. Angelo structures and focuses students’ attention on a specific aspect of

the topic: multiplying by powers of 10.  He has distilled the content into an

integrated “rule” that his students can use for all instances of multiplication

by powers of 10.

Box 9-2

Mr. Angelo—

Teaching Eighth Graders About Multiplying

by Powers of 10

After a conducting a short warm-up activity and checking a homework assignment

that focused on multiplying by 10, Mr. Angelo announces that the class is going to

work on multiplying by powers of 10.  He is concerned that students tend to per-

form poorly on this topic on the spring tests given by the school district, and he

wants to make sure that his students know what to do.  He reviews briefly the idea

of powers of 10 by showing that 100 equals 102, 1000 equals 103, and so on.  Going

to the overhead projector, he writes the following:

4 × 10 = 45 × 100 = 450 × 100 =

“Who knows the first one?” Mr. Angelo asks.  “Luis?”  “Forty,” replies Luis.  Nod-

ding, Mr. Angelo points to the second, “And this one?”  Sonja near the front offers,

“Forty-five hundred.”  “That’s right—forty-five hundred,” affirms Mr. Angelo, and

he writes the number on the overhead transparency.  “And what about the last

one?” he asks.  “Forty-five thousand,” call out several students.
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Writing “45,000,” Mr. Angelo says, “Good, you are all seeing the trick.  What is it?

Who can say it?”

Several hands shoot into the air.  Ethel says, “You just add the same number of

zeros as are all together in the number and in the number you are multiplying by.

Easy.”  “Right,” says Mr. Angelo.  “Let’s try some more and see if you are getting it.”

He writes three more examples:

30 × 70 = 40 × 600 = 45 × 6000 =

“So who can do these?” he asks, looking over the students.  “What’s the first

one?”  “Three hundred!” announces Robert, confidently.  Mr. Angelo pauses and

looks at the other students.  “Who can tell Robert what he did wrong?”

There is a moment of silence and then Susan raises her hand, a bit hesitantly.  “I

think it should be twenty-one hundred,” she says.  “You have to multiply both the

3 and the 7, too, in ones like this.  So 3 times 7 is 21, and then add two zeros—one

from the 30 and one from the 70.”  “Good!” replies Mr. Angelo.  “Susan reminded

us of something important for our trick.  It’s not just about adding the right number

of zeros.  You also have to look to see whether the number you are multiplying by

begins with something other than a 1, and if it does, you have to multiply by that

number first and then add the zeros.”  He writes 2100 after the equals sign and

continues with the remaining examples.

Mr. Angelo writes another three examples on the overhead:

4.5 × 0.1 = 4.5 × 0.01 = 4.5 × 0.001=

“I wonder whether I can fool you.  Now we are going to multiply by decimals that

are also powers of 10: one tenth, one hundredth, one thousandth, and so on.  We’ll

do easy ones to start.”  Who knows the first one?” he asks.  “Luis?”  “Point four

five,” replies Luis.  Nodding, Mr. Angelo rephrases Luis’s answer: “Forty-five hun-

dredths.”  He then points to the second, “How about this one?”  Nadya responds,

“Point zero four five,” almost inaudibly.  “That’s right.  Forty-five thousandths,”

Mr. Angelo affirms, and he writes the number on the overhead.  “And what about

the last one?”  “Point zero zero forty-five,” responds the girl near the front again.

Mr. Angelo writes “0.0045” and says, “Good, does anyone see the rule.  Who can

say it?”

After a long pause, one hand in the back goes up.  “You just move the decimal

point.”

continued
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“Right,” says Mr. Angelo.  “You move the decimal point to the left as many places

as there are in the multiplier.*  But think now.  What did we decide happens to the

product when we multiply a decimal by 10, 100, or 1,000?  These are the powers of

10 that are greater than one, right?”

This time several hands go up.

“You just add the same number of zeros to the end of the number as are in the

number you are multiplying by.”

“Okay, that is what we said.  But now we are ready for a better rule now that we

have looked at some powers of 10 that are less than one.  They are numbers like

one tenth, one hundredth, one thousandth, and so on.  Instead of having two com-

pletely different rules, it is better to have one good rule.  And here it is.  Listen

carefully:

“When you multiply by a power of 10 that is greater than one, you move the deci-

mal point to the right as many places as the number of zeros in the multiplier.

When you multiply by a power of 10 that is less than one, you move the decimal

point to the left as many places as there are in the multiplier.”

Mr. Angelo illustrates the movement of the decimal point with a colored pen.  He

explains, “You can remember which way to move the decimal point if you remem-

ber that multiplying by a number greater than one makes the product bigger and

multiplying by a number less than one makes the product smaller.  Right makes

bigger, left makes smaller.”

“Let’s practice this a bit now and get it under our belts.”  Mr. Angelo passes out a

worksheet with 40 exercises that resemble what was done in class.  He goes over

the first exercise to make sure his students remember what to do.  While the students

work, Mr. Angelo circulates around the room, answering questions and giving hints.

The students make a variety of computational errors, but most seem able to use

the rule correctly.  Mr. Angelo is pleased with the outcome of his lesson.

* Mr. Angelo is referring to the number of places between the decimal point and

the last nonzero digit in the multiplier.  Strictly speaking the first factor in a product

is the multiplier.  But because of the commutative property, Mr. Angelo uses the

term for whichever factor he wishes to focus on.

Box 9-2 Continued

Copyright © National Academy of Sciences. All rights reserved.



3199 TEACHING FOR MATHEMATICAL PROFICIENCY

This lesson focuses on mathematical procedures for multiplying by powers

of 10.  Mr. Angelo designs the work to progress from simple examples

(multiplying by 10, 100, and 1,000), to more complex ones (multiplying by

multiples of powers of 10), to multiplying by powers of 10 less than one.4  He

stages the examples so that the procedure he is trying to teach covers more

and more cases, thus leading to a more general rule usable for multiplication

by any power of 10 other than 100 = 1.

Mr. Angelo asks brief questions to engage students in the steps he is

taking.  By giving the students a rule, he simplifies their learning, heading off

frustration and making getting the right answer the point—and likely to be

attained.  Concerned about the spring testing, he attempts to ensure that his

students develop a solid grasp of the procedure and can use it reliably.  He is

careful to connect what are often two disjointed fragments: a rule for adding

zeros when multiplying by powers of 10 greater than one and a different rule

for moving the decimal point when multiplying by powers of 10 less than

one.

Although Mr. Angelo integrates these two “rules,” he does not work in

the underlying conceptual territory.  He does not, for example, explain why,

for problems such as 30 × 70 = ?, students multiply the 3 and the 7.  He might

have shown them that 30 × 70 = 3 × 10 × 7 × 10 and that, using associativity

and commutativity, one can multiply 3 by 7 and then multiply that product

by 10 times 10, or 100.  Instead, he skips this opportunity to help the proce-

dure make sense and instead adds an extra twist to the rule.  He also does not

show his students what they are doing when they “move the decimal point.”

In fact, of course, one does not “move” the decimal point.  Instead, when a

number is multiplied by a power of 10 other than one, each digit can be thought

of as shifting into a new decimal place.  For example, since .05 is one tenth

times .5, in .5 × 10-1 = ?, the 5 can be thought of as shifting one place to the

right—to the hundredths place, which is one tenth of one tenth.  If a 5 is in

the tens place, then multiplying by 10 shifts it to the left one place, to the

hundreds place: What was 50 is now 500.  Describing these changes in terms

of “adding zeros” or “moving the decimal point” stays at the surface level of

changes in written symbols and does not go beneath to the numbers them-

selves and what it means to multiply them.  Students miss an opportunity to

see and use the power of place-value notation: that the placement of digits in

a numeral determines their value.  A 5 in the tens place equals 50; in the

hundredths place, 0.05; and in the ones place, 5.  Mr. Angelo offers his stu-

dents an effective and mathematically justifiable rule, but he does so without

exploring its conceptual underpinnings.
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In lessons such as Mr. Angelo’s, mathematics entails following rules and

practicing procedures, often with little attention to the underlying concepts.5

Procedural fluency is given central attention.  Adaptive reasoning is not

Mr. Angelo’s goal: He does not offer a justification for the rule he is teaching,

nor does he engage students in reasoning about the structure of the place-

value notation system that is its foundation.  He focuses instead on ensuring

that they can use it correctly.  Other aspects of mathematical proficiency are

also not on his agenda.  Instead, Mr. Angelo has a clear purpose for the lesson,

and to accomplish that purpose he controls its pace and content.  Students

speak only in response to closed questions calling for a short answer, and

students do not interact with one another.  When a student gets an answer

wrong, Mr. Angelo signals that immediately and asks someone else to pro-

vide the correct answer.  The lesson is paced quickly.

We turn now to our second teacher, Ms. Lawrence, who is working with

her fifth graders on adding fractions (Box 9-3).  Ms. Lawrence’s goals are

different from Mr. Angelo’s.  Although she also structures the lesson to

accomplish her goals, unlike Mr. Angelo, she emphasizes explanation and

reasoning along with procedures.  The pace of the lesson is carefully con-

trolled to allow students time to think but with enough momentum to en-

gage and maintain their interest.

Box 9-3

Ms. Lawrence—

Teaching Fifth Graders About Adding Fractions

After a few minutes in which the class does mental computation to warm up, Ms.

Lawrence reviews equivalent fractions by asking the students to provide other

names for 3
5

.  She asks the class what fractions are called that “name the same

number.”  On the chalkboard she writes a problem involving the addition of frac-

tions with like denominators:

3
8

4
8

+ =

She asks the students how to find the sum.  One student, Betsy, volunteers that

you just add the numerators and write the sum over the denominator.  “Why does

this work?” Ms. Lawrence asks.  She asks Betsy to go to the board and explain.

Confidently, Betsy draws two pie diagrams, one for each fraction, and explains

that the denominator tells the size of the pieces and the numerators how many

pieces all together:
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In response, Ms. Lawrence poses another problem, this time involving unlike de-

nominators: 2
3

 + 1
4

 = ?  “How would we find the sum of these two?” she asks.

Stepping back, she gives the students a chance to think.  She then asks whether

the sum would be less than or greater than 1.  Several students raised their hands,

eager to respond.  Ms. Lawrence calls on Susan, who explains that the sum would

be less than 1 because 1
4

 is less than 1
3

 and 2
3

 + 1
3

 equals exactly 1.

Ms. Lawrence then asks how you could find the exact sum.  Jim raises his hand

and offers 8
12

 and 3
12

 as equivalent fractions with a common denominator.  Ms.

Lawrence writes on the chalkboard as Jim dictates:

2
3

1
4

8
12

3
12

8 3

12
11
12

+ = + =
+( )

=

8
12

3
12

11
12

+ =

She asks Jim why he chose 12 as the common denominator.  “Twelve is the small-

est number that both 3 and 4 go into,” replies Jim.  “How did you come up with

that?” Ms. Lawrence asks.  “By multiplying 3 and 4,” he answers.

Ms. Lawrence turns to the class.  “Let’s take a closer look.  Jim got the equivalent

fractions by multiplying the numerator and denominator of each fraction by the

denominator of the other fraction.  So if we show all the steps, it looks like this.”

She then reworks the problem to make her point, justifying each step by giving a

property of the rational numbers:

2
3

1
4

2 4

3 4

1 3

4 3

2 4 1 3

3 4

8 3

12
11
12

+ =
×( )
×( )

+
×( )
×( )

=
×( ) + ×( )

×( )
=

+( )
=

Ms. Lawrence stops and looks at the students.  “How do we know that what Jim

did makes sense?  How do we know that he is adding the same fractions as in the

original problem: 2
3

 and 1
4

?  This is really important.  Maybe he has just added

two other fractions.”

3

8

4

8

continued
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“Oh!” exclaims Lucia.  “I know! Two thirds is equivalent to eight twelfths.  We

could show that with a picture like what Betsy drew for three eighths and four

eighths.  If we draw two thirds on a pie that has three pieces, those two pieces will

actually make eight pieces on that same pie if it’s divided into 12.  But the eight

pieces, eight twelfths, will equal the same total amount of pie as two pieces that

are each one third of the pie.”  She pauses, and beams, looking at Ms. Lawrence

expectantly.  “Is that right?”

“Yes, you explained it well,” says Ms. Lawrence.  “Can someone come up and

make pictures to show what Lucia just said?”

Several hands go up, and Ms. Lawrence picks Nicole, who comes to the board and

represents accurately what Lucia said.  Ms. Lawrence makes a few additional

remarks to make sure that all the students understand.

Ms. Lawrence continues with three more examples, showing all the steps in each.

She then asks the students to generalize the process by writing “a rule that would

work for any two fractions.”  Several students volunteer a verbal rule.  “Let’s try

this out on a couple of less obvious examples,” she says, writing on the overhead

projector:

3
8

4
15

+ =
7

16
11
24

+ =

Ms. Lawrence asks the students to work on these problems in pairs.  As the students

work, she walks around, listening, observing, and answering questions.  Satisfied

that the students seem to understand and are able to carry out the procedure, she

assigns a page from their textbook for practice.  The assignment contains a mix-

ture of problems in adding fractions, including some fractions that already have

like denominators and many that do not, and in adding whole numbers as well as

several word problems.

Ms. Lawrence wants the practice that she provides to require the students to think

and not merely follow the algorithm blindly.  She believes that this way of working

will equip them well for the standardized test her district administers in April and

the basic skills test they have to take at the beginning of sixth grade.  She expects

the students to remember the procedure because they have had opportunities to

learn why it makes sense.  She knows that this approach is understandable to her

students’ parents, while at the same time she is stretching them beyond what

some have been demanding—a solid focus on basic skills.  She feels comfortable

with the balance she has struck on these issues.

SOURCE: This vignette was constructed to embody the principles from Good,

Grouws, and Ebmeier, 1983.

Box 9-3 Continued
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In this lesson, Ms. Lawrence is trying to develop her students’ ability to

add fractions with like or unlike denominators.  She wants them to under-

stand how to convert fractions to fractions with the same denominator and

add them, and to have a reliable procedure for doing so.  She also wants them

to understand why the procedure works.  Her lesson is designed to engage

the students actively in the conceptual and procedural development of the

topic.  She begins by reviewing equivalent fractions, a concept both familiar

and necessary for the new work.  She poses a variety of questions and expects

the students to explain their reasoning.  She does not stop with well-articulated

statements of the procedure but demands explanation and connection to the

underlying meaning.  She seeks to make the procedure make sense by asking

for and providing explanations.

In this lesson, time is spent in a variety of ways to address Ms. Lawrence’s

goals: The students spend time practicing mental computation, developing a

general rule for adding fractions, explaining and making sense of others’

explanations, and working with a partner to practice on more complex

examples of what they were learning.  The lesson proceeds at a steady pace,

but one that affords time for developing the ideas.  Ms. Lawrence checks to

see whether the students are understanding before she assigns them inde-

pendent work, and the assignment mixes familiar and extension problems to

help strengthen students’ proficient command of the content.  Although the

focus of the lesson is not on strategic competence, when she asks students to

estimate the sum of two fractions, she is helping them become sensitive to

strategies they might use.

Our third teacher, Mr. Hernandez, is working on making and linking dif-

ferent representations of rational numbers (Box 9-4).  He works hard to engage

all his students in active work on the mathematics.  Toward that end, he asks

challenging questions that allow for a variety of solutions, and he expects the

students to push themselves.  He is conscious of the district and state basic

skills assessments, but he has concluded that if he invests in this sort of work

with his students, it pays off in their preparedness for the test.  Occasionally,

he finds that the approach is not working for some of his students, and he

seeks ways to build their skills more solidly.  He worries a bit, since the parents

have been quite vocal in his school, with much pressure about getting students

to algebra in eighth grade.  He takes a strong stand on the importance of

developing a solid foundation with number and representation, particularly

with rational numbers.

This lesson is different from either Mr. Angelo’s or Ms. Lawrence’s.

Mr. Hernandez has selected a task that draws on students’ past experience
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Box 9-4

Mr. Hernandez—

Teaching Seventh Graders About Representations of

Rational Numbers

Mr. Hernandez presents his seventh graders with a set of rectangular grids of various

sizes.  He lists specified portions of these areas—as a percentage of the total, a

fraction of the total, a decimal fraction of the total, or a specific number of squares—

and the students are to shade that portion.  For each region shaded, he asks them

to give a fraction, a decimal, or a percent to represent the shaded part of the total

area.  After working on the problems alone, the students are expected to be able to

explain their strategies to the rest of the class.

After the students have had a chance to work on the task for about 15 minutes,

Mr. Hernandez calls on Michelle to do the first problem at the overhead projector:

Shade .725 of the area of an 8-by-10 grid

Drawing a grid on the transparency, Michelle incorrectly shades 72.5 of the 80

squares.  Mr. Hernandez asks her to explain her thinking.  “I’m not sure,” she

admits.  He then asks her to reread the problem.  He asks the class to think about

what would happen if they tried to distribute 100% across the 80 squares.  “Each

square would represent more than 1%,” responds Michelle, a glimmer of under-

standing on her face.  “Wouldn’t each square represent 1.25%?” asks Eric.  Michelle

thinks for a minute and then explains that after allocating 1 percent to each square

there would be 20 left over and that 20 divided among 80 would give one quarter

more for each square or 0.25.  “Oh, I see!” exclaims Michelle excitedly, doing

some calculations off to the side of the transparency.  “Fifty-eight squares should

be shaded for 72.5% of 80, because 58 times 1.25 equals 72.5!  Is that it?”

In the discussion that follows, Louis says that he multiplied 0.725 by 80 to get 58

and explains that he obtained a fraction 58
80

 and reduced it to 29
40

.  Jenny says that

she divided 80 squares into 10 equal columns of eight squares each and then shaded

seven columns (56 squares) and two more squares (because 2 is 1
4

 of 8, which

equals 0.025 of 80) for a total of 58 squares.  Lynn explains how she used a calcu-

lator to find her solution.

Throughout the lesson, Mr. Hernandez presses the students to make their reason-

ing explicit and to explain their solution processes.  He requires them to say what

the symbols and representations mean in the context of the problems they are

solving.  When the students arrive at a numerical answer, he asks questions such

as “Can you explain what that number refers to?”
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To wrap things up for today, Mr. Hernandez summarizes the different strategies

presented.  He then assigns a similar set of problems for homework and asks the

students to experiment with the various strategies they had seen in class with an

eye toward determining the one they thought “best.”  “What does it mean for a

strategy to be ‘best’?” asks Laura.  “Good question!” says Mr. Hernandez.  “That’s

part of what I want you to think about.  What criteria would you use to decide

whether one strategy was better than others?”  Several hands shoot up, but he

waves them down.  “We’ll discuss that tomorrow.  I want everyone to work on this

first.”

SOURCE: Adapted from Henningsen and Stein, 1997.

with decimals, percents, and fractions—all of which they have modeled using

multiple representations prior to this lesson—while also setting them up to

extend their proficiency in this domain.  He has used this same task many

times and has discussed it with other teachers who have also used it with

their students.  He knows what students are likely to do and where they

might stumble.  He has prepared questions to help move the work firmly

toward the mathematical goal.  He is able to take advantage of students’ ques-

tions as they arise.  He appraises the mathematical value of their questions

and makes careful decisions, on the spot, as to which are worth taking up in

class, which might be better simply answered, and which merit individual

work but do not seem worth bringing up in class for everyone’s consideration.

The students have had considerable experience representing areas other

than the usual 10 × 10 grid.  At the same time, the task Mr. Hernandez pre-

sents is not yet routine for the students and is open to a variety of solution

strategies.  He does not tell them what to do; instead, he uses the task as the

medium for the lesson development.  Mr. Hernandez has given the discus-

sion of multiple solution strategies a great deal of thought before making it

part of the lesson, for he is aware that explicitly examining the correspon-

dences among alternative representations is crucial.  If students merely see

different representations without explicit attention to their correspondences,

the lesson he is teaching will not produce the learning that he is striving for.

The discussion of multiple solution strategies at the overhead projector pro-

vides an opportunity for Mr. Hernandez and several of the students to model
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adaptive reasoning and conceptual understanding.  He also knows how much

he has to do to make sure that the productive work the students are doing

comes together at the end.  He has found this way of working valuable.  He is

sensitive to the critical role that he plays during the lesson, even though it

seems that the students are doing a large amount of the talking and the work.

We have been looking at upper elementary and middle school classrooms.

In the last sample lesson (Box 9-5), a fourth teacher, Ms. Kaye, is attempting

to develop her first-grade students’ understanding of subtraction as it is used

to compare quantities.  She wants the students to find and consider their own

ways of making comparisons of two-digit whole numbers in which the larger

number has the smaller digit in the ones place.

Box 9-5

Ms. Kaye—

Teaching First Graders About Comparing Prices

Ms. Kaye gives her first-grade class a problem that involves comparing prices on a

menu.  She reads the following problem several times and writes the numbers on

the overhead projector:

At Wu’s Dairy a single ice cream cone costs 59¢.  A double costs 85¢.

How much more does a double dip cost than a single dip?

The children eagerly set to work on the problem at their desks.  A number of tools—

including counters of various kinds, plastic coins, and base-10 blocks—are avail-

able in the corner of the room.  While the children work, Ms. Kaye talks with indi-

vidual children about their solutions.

Ms. Kaye stops at Kurt’s desk and asks him what he is doing.  He explains that he

is trying to find out how much more 85 is than 59 and proceeds to make 59 with

base-10 blocks.  Ms. Kaye asks him what he is going to do next.  Without answer-

ing, Kurt makes 85, again with the blocks.  Once more Ms. Kaye asks him what he

is going to do next.  Staring at the blocks, Kurt does not respond.  Ms. Kaye asks

what he is trying to figure out.  “How much bigger 85 is than 59,” he murmurs.  He

does not seem know how to proceed.  Ms. Kaye focuses his attention on the base-

10 blocks and asks whether they could help him figure it out.  Saying that he wants

find out how much more there is in the 85 set of blocks than the 59 set, Kurt pro-

ceeds to match the two sets, pairing block for block.  He trades in a rod (a 10) from

the 85 set for 10 ones to make possible the matching of the 5 ones and the 9 ones.

After the matching is complete, Kurt counts the blocks left unmatched and gets
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two rods (tens) and six units (ones).  “That’s 26 more,” he announces, looking up

and smiling at his accomplishment.

This interaction with Kurt takes about five minutes.  Continuing to circulate around

the class, Ms. Kaye works with five more students in a similar fashion, asking

questions, watching, listening carefully, and guiding where needed.

After about 15 minutes of individual work by the students, Ms. Kaye gathers the

class together for a discussion of the problem.  Some of the students are asked to

share their solutions with the rest of the class.  As they do, Ms. Kaye asks them to

explain what they are doing and why.  She asks the children to compare solutions:

“How is Mina’s solution like the one Brian showed?  How is it like Liona’s?  Are

there differences?”  Five children present their solutions.  Two have counted up

from 59 to 85, although using different approaches.  Another counts with money

from 59¢ to 85¢.  One has subtracted 59 from 85, another 59¢ from 85¢.  One child

has 34¢ for an answer, and Ms. Kaye gently guides her to see where she made an

error, which she corrects.

After each child finishes, Ms. Kaye tries to make sure that the presented solution is

clear.  She also keeps asking the class to compare the different strategies.  Ms.

Kaye presents a new problem, and the work begins again, following the same

pattern as before.  Again, she works with individual students.  Over the course of

the class period, she is able to work individually with almost half the class; the

next day, while working on the next set of problems, she will try to get to the rest.

At the end of the lesson, Ms. Kaye asks the children to summarize what they did in

class by writing in their math journals.  She reads over their shoulders and notes

how much more articulate they are becoming in speaking and in writing.  She

passes out a sheet of paper with a problem for homework, asks them to put the

sheet in their backpacks, and sends them out for recess.

SOURCE: Adapted from Carpenter, Fennema, Fuson, Hiebert, Human, Murray,

Olivier, and Wearne, 1999.

In this lesson, students work on contextualized problems—problems set

in a realistic context—that are designed to develop their ability to model

situations and use arithmetic operations to solve questions about comparing

quantities.  Developing the students’ representational ability and adaptive

reasoning is an explicit goal.  In particular, Ms. Kaye is trying to develop in
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her students the inclination and skill to compare alternative representations

for a problem situation and their solutions to the problem.  She has been

impressed by their developing capacity to work sensibly with numbers larger

than she would have expected several years ago.  Ms. Kaye is also deliber-

ately working on helping the students develop language as a tool for doing

mathematics: to pose and respond to questions, to give explanations, to reflect

on their work.  The lesson is structured in a way that enables Ms. Kaye, when

the class is working independently, to deal individually with students, guid-

ing their work in particular ways while remaining attuned to each student’s

efforts and progress.

The approach Ms. Kaye is using takes considerable planning: The task

that the students are doing must be mathematically productive of the next

step in the curriculum, and it must also be engaging and appropriately diffi-

cult for all the children, so that they are able to work without constant super-

vision.  It also takes developing norms in the class whereby the teacher can

work individually with students and be able to attend closely to the math-

ematical knowledge and ways of reasoning being used by each child.  This

approach is worth developing, Ms. Kaye believes, for it continually provides

her with accurate information about what the students are learning, informa-

tion she uses to shape how she continues the lesson.  The lesson also pro-

vides students with time to work alone, uninterrupted by others’ thinking, as

well as with time to share and compare ideas, methods, and results.  Ms. Kaye

is aware of risks she runs with this approach.  For example, when students

share different methods, they may become confused.  Students may end up

wondering what the right answer to the problem is.  However, she has seen

the benefits of this approach and is committed to continuing to work on

developing her skills in working with students in these ways.  She knows that

some parents are pleased and others worried about what she is doing.  She

works hard to keep the parents informed and frequently invites them in to

observe and later talk with her about what she and the children are doing.

She finds that this investment in parents’ awareness and support has paid off

in terms of her students’ learning, as well as in communication between home

and school.

Comparing the Lessons

The four classroom vignettes provide snapshots of different ways in which

students, teachers, and content interact to produce different opportunities

for student learning, teaching practice, and curriculum content to be mani-
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fested.  With respect to developing the mathematical proficiency of the

students in the class, each approach affords possibilities, and each holds risks.

Consider first the mathematical content and how each teacher selects,

shapes, and represents it for learning.  Mr. Angelo, for example, constrains

the content topic of multiplying by powers of 10 in ways that make it likely

that all students will be able to produce correct answers, at least as long as

they remember the rule.  He provides them with a single rule that consoli-

dates two separate rules, adding zeros and moving decimal points.  His role is

to demonstrate, provide practice, and check on their progress.  The focus of

this lesson is not to explore different methods for solving problems or probe

the underlying meanings.  Rather, he is deeply concerned with helping every

student in his class learn to multiply by powers of 10 efficiently and accurately.

Mr. Angelo recognizes that one risk he faces is that students will develop

competence with the procedure and yet lack understanding of what they are

doing or why.  Should they forget the procedure, they would have no concep-

tual basis for reconstructing it.  However, he has seen that when they learn

rules solidly, they are able to demonstrate procedural fluency with routine

mathematical procedures.  One way in which he has tried to avoid that risk is

to make sure that the rules his students do learn are not mere fragments (add

zeros, move decimal points).  More general rules have greater power; he knows

that and works to avoid giving the students lots of bits and pieces.  He also

designs his work with them to stage the development of the procedure in a

way that he thinks will help build a better platform for their capacity to multiply

numbers by powers of 10.

Ms. Lawrence organizes her students’ mathematical work to bring them

to a general process for adding fractions, including an indication of its natural

origins and why it works.  She asks questions designed to take the lesson

where she wants it to go; the students are expected to participate in that

venture, answering questions and following the development of the ideas.

What she makes mathematically central—a procedure for adding fractions

together with its justification—melds conceptual understanding, procedural

fluency, and adaptive reasoning.  How she engages students requires active

participation on their part, following closely her design for the lesson.  Her

students rarely produce unexpected ideas or solutions, for she tightly plans

her lessons to anticipate what students will do and say, and their contribu-

tions typically fit her plan.

Again, Mr. Hernandez’s lesson about different representations of rational

numbers is different from either Mr. Angelo’s or Ms. Lawrence’s.

Mr. Hernandez’s approach involves less control of students’ work as he seeks

With

respect to

developing

the

mathematical

proficiency

of the
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the class,
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to develop their understanding and skill.  He takes rational number—a topic

often treated piecemeal in school mathematics—and works explicitly on con-

nections: How do different representations of the same rational number map

onto one another?  The problems he offers students are not as straightforward

as those provided by any of the other teachers: That is, the mathematical

work is designed to challenge the students’ thinking and to elicit specific

variations in their strategies and solutions.  The tasks and the ways in which

Mr. Hernandez uses them are not designed to lead students directly to obvious

conclusions.  Instead, they set the stage for the work he intends.  Students’

solutions and explanations provide raw material for the lesson, and

Mr. Hernandez expects the students to work on one another’s solutions during

the class discussion.  He has seen that students will not automatically be able

to engage in discussions of complex mathematical problems, especially in

classrooms as diverse as his.  Consequently, he has been working hard over

the last few years to develop his own skills at getting all students involved,

including challenging different students appropriately.

In Ms. Kaye’s first-grade lesson on whole numbers, the students are not

taught a procedure for solving comparison problems (e.g., When you see “how

many more?” it means you should subtract).  In fact, a major mathematical

goal of her lesson goes well beyond comparison of two quantities.  It is to

generate and uncover different solution strategies, including modeling situa-

tions and using representations, to explore and justify those strategies, and

then to find similarities and differences between different solutions.  She

wants to build on her students’ mathematical understanding.

Ms. Kaye’s lesson also illustrates that how the development of the math-

ematical content in instruction can rest on the teacher engaging students in

solving mathematical problems.  In her class the students’ ideas and methods

generate significant portions of the lesson’s substance, and the students are

expected to play a major role in the development of the lesson—sharing their

solutions, providing explanations, analyzing options.  Ms. Kaye’s forays around

the room give her detailed information about individual students’ progress

that she uses in directing their mathematical work toward her goals.

Because Ms. Kaye has designed a lesson that opens up space for a variety

of student ideas and methods, her approach risks generating multiplicity with-

out clarity, connection, or closure.  Although it is not Ms. Kaye’s intention,

the students may conclude that mathematics is a subject in which everyone

can devise his or her own equally valid concepts and methods.  The students

may fail to appreciate the need for analysis, comparison, and evaluation—for

common knowledge—or may continue to use their own safe procedures rather
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than developing more sophisticated ones.  These are serious risks, ones she

has seen emerge both in her own teaching before she was as aware of this

problem as she is now and in the classrooms and accounts of many of her

colleagues.  Consequently, she is now much more careful to see to it that the

lesson is pulled together at the conclusion, so that the mathematical points

are made plain for students.  Ms. Kaye keeps a close eye on all the district’s

learning goals for first grade as she uses problems like the one in the lesson,

being careful that she covers the curriculum for the year.

While Ms. Kaye poses a problem that invites a wide range of solution

methods appropriate for students at different places in their understanding,

Mr. Hernandez gives a problem strategically designed to elicit specific

approaches, material to be used to advance students’ understanding of the

correspondences among representations of rational numbers.  In both

Mr. Hernandez’s and Ms. Kaye’s classes, the students hear, use, and interact

with other students’ ideas.  In Mr. Angelo’s and Ms. Lawrence’s classes, the

teacher is the source of the lesson substance, and the students engage less

with one another as a source and medium of mathematical work.

These vignettes help to show that the mathematical content and how it

is framed and formulated into instructional tasks make a difference for the

learning opportunities provided in a lesson.  How the teacher interprets and

uses such tasks to develop a lesson also fundamentally shapes instruction.

Moreover, the ways in which the students make sense of and engage with the

tasks and the teacher significantly affect how the lesson proceeds.  All teachers

face the challenge of engaging students in the mathematical work, maintain-

ing their focused involvement in it, and helping them take advantage of

instruction to learn.  Each of our four teachers manages this challenge differ-

ently, which has different consequences for students’ opportunities to learn.

Mr. Angelo constrains the mathematical content in ways that focus students’

attention on the specific learning goals of the lesson, making divergence of

method or result unlikely.  Ms. Lawrence musters students’ engagement by

asking them to explain and justify what they are saying.  Mr. Hernandez’s

approach relies on setting challenging tasks and using anticipated students’

solutions—errors as well as correct solutions—as part of the lesson material.

Ms. Kaye engages the students through thought-provoking, carefully chosen

tasks that invite multiple representations and strategies, and then she works

intensively with individual students.  Whereas Mr. Angelo runs the risk of his

students forgetting the procedure since they lack the conceptual foundation,

Ms. Kaye risks confusing her students with a blizzard of solution methods.

Ms. Lawrence maintains a tight focus and hence reduces the ambiguity for
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her students—ambiguity that in Mr. Hernandez’s lesson may be leading to

frustration or disengagement for his students.

Teachers vary in how they manage the content and the incentives for

students to engage in and succeed with it, and their choices present different

advantages and risks for learning.  Although it may not seem obvious, teach-

ers who teach in ways like Mr. Hernandez and Ms. Kaye must prepare in

detail for class; many observers of teaching fail to appreciate the significance

of design and preparation in making these sorts of lessons more effective in

helping students learn.  Teachers like Mr. Angelo and Ms. Lawrence, how-

ever, need to work hard to figure out what their students are actually taking

from instruction and what that implies for their approach to teaching com-

mon mathematical procedures.

The four lessons make plain that instruction does not occur in a vacuum.

Parents, administrators, policies, the expectations of other teachers all may

affect teachers’ conceptions and practices.  Teachers are differentially sensi-

tive to particular features of their environments and respond in different ways.

Mr. Angelo is concerned about the pressures exerted by testing and tailors

his approach to target the focus of these tests.  Mr. Hernandez, in contrast, is

sure that approaching the topic more conceptually and with more complexity

will equip his students to do well even on relatively routine, skill-based tests.

Just as teachers’ perceptions of their environments affect instruction, so too

do students’ perceptions.  For example, if students hear criticism at home or

if parents are puzzled and concerned about the mathematics program, stu-

dents’ resulting unease will affect their interactions with their teachers.

These snapshots of four classrooms are no more than glimpses into a com-

plex set of interactions happening over time.  They are segments from single

lessons and, as such, provide a nearsighted view of school mathematics in-

struction.  Instruction is not self-contained in serial lessons but draws on what

happened yesterday, last week, last fall.  Ideas about decimal notation that

were taken up in a previous unit are used as Mr. Hernandez’s students grapple

with correspondences among different ways to represent rational numbers.

Ms. Kaye’s work with her first graders early in the year, helping them learn to

express mathematical ideas in speech and in writing, equips them to write

better now.  Later learning builds on earlier successful accomplishment; new

ideas are constructed using those already known.  For example, a teacher

could not effectively define a prime number if her students did not already

possess some understanding of factoring.  That understanding might have

been developed in a variety of ways, but without it teaching the concept of a

prime number would require simultaneously teaching about factors.
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Neither in one lesson nor over a year does any one of the core elements

of instruction—mathematical content, teacher, students—alone determine

what happens.  Instead, it is in enactment—in their mutual and interdepen-

dent interaction—that instruction unfolds.  The quality of instruction does

not inhere in any single element, whether challenging, exemplary curricu-

lum material; competent, enthusiastic teachers; or capable, eager students.

What makes curriculum exemplary, teachers competent, and students capable

is their skilled use of one another to produce teaching and learning.  How

well they can take advantage of the possibilities afforded by the lesson and

how well they can avoid the pitfalls determine how well students are able to

use instruction to learn and how well teachers are able to guide that learning.

We turn next to what research on teaching has to say about shaping the

nature and quality of instructional interaction.  Given the possibilities that

are paramount in each of the episodes described above and the potential risks

of each approach, what is known about how to take advantage of the possi-

bilities and avoid the pitfalls?

Findings from Research on Teaching

The interactive perspective on instruction6  that we take in this chapter

shapes our discussion of the studies we review.  Using the instructional tri-

angle depiction of instruction in Box 9-1, we ask what is known about the

impact on student learning of how teachers select and use content (the teacher-

content side of the triangle), how teacher and students interact (the teacher-

student side), and how students interact with content (the student-content

side).  Although we discuss each side of the instructional triangle separately,

instruction is not about one side alone but is about the trilateral interaction

among teacher, students, and content.

Teachers and Content

What is learned depends on what is taught.  Choosing the content, decid-

ing how to present it, and determining how much time to allocate to it are

ways in which learning is affected by how the teacher interacts with the con-

tent.  Furthermore, some decisions about the content are made not at the

classroom level but at the school, district, or even state levels.

Opportunity to Learn

The circumstances that allow students to engage in and spend time on

academic tasks such as working on problems, exploring situations and gather-
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ing data, listening to explanations, reading texts, or conjecturing and justify-

ing have been labeled opportunity to learn.  As might be expected, students’

opportunity to learn affects their achievement.  In fact, opportunity to learn is

widely considered the single most important predictor of student achieve-

ment.7   Opportunity to learn can be influenced by individual students, their

teachers, their schools or school districts, or even the country’s educational

system.

Research at the local and national levels has identified the curriculum as

a potent force in students’ opportunity to learn.  Students in different cur-

riculum tracks receive differential opportunities to learn mathematics, which

is then reflected in their achievement.8   Some studies show that when stu-

dents believed to be less capable academically are given an opportunity to

learn, they can in fact do so.9

Many curriculum decisions are made at the school or district level and lie

outside the province of the classroom teacher.  Nevertheless, teachers still

have considerable control over their students’ opportunity to learn.  U.S.

elementary school teachers vary widely, for example, in how much instruc-

tional time they allocate to various school subjects.  In one study of second-

grade classes, the average time allocated to mathematics ranged dramatically

from a low of 24 to a high of 61 minutes a day for different teachers.10   In

another study some “teachers spent as much as 40 percent of their time

teaching mathematics; several others never taught mathematics in the twenty

randomly chosen hours when our observers visited each classroom.”11   That

sort of variation is not unusual across classrooms and even within an indi-

vidual teacher’s practice.  Teachers also vary in how they manage the time

they have, sometimes focusing on one strand of proficiency and ignoring

others.  For example, two fourth-grade teachers ostensibly following the same

mathematics textbook were found to spend their time quite differently: One

teacher focused on concepts, and the other emphasized drill and practice of

computational skills.12   Even when the amount of time and the textbook are

uniform, therefore, students can encounter different content and have differ-

ent opportunities to learn it.

Consider the lessons of Mr. Angelo and Ms. Lawrence in the vignettes

presented above.  These two teachers use about the same amount of instruc-

tional time.  The crucial differences lie in how they use that time.  Mr. Angelo

works on developing fluency with the procedures without a focus on their

underlying meanings or justification.  Ms. Lawrence, in contrast, spends most

of her time developing understanding of a procedure through structured
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interactions with her students.  Mr. Angelo gives 40 practice problems, whereas

Ms. Lawrence uses only four.

Task Selection and Use

Researchers have recently taken a closer look at instruction by investi-

gating the choice and use of academic tasks.  Tasks are central to students’

learning, shaping not only their opportunity to learn but also their view of the

subject matter.  The cognitive demand of tasks can vary significantly.  More-

over, the tasks typically assigned to students in many classrooms make only

minimal demands on their thinking, relying primarily on memorization or

use of procedures without connections to concepts.  There is growing evi-

dence that students learn best when they are presented with academically

challenging work that focuses on sense making and problem solving as well

as skill building.13   Take a couple of the tasks from our lesson vignettes.  The

task presented by Mr. Hernandez, shading 0.725 of an 8 × 10 grid, is a

cognitively demanding task for seventh graders.  His students have had prior

experience with decimals, percents, and fractions, all of which they have

modeled using multiple representations.  But they have not had to coordi-

nate the three, a mathematical problem of considerably more sophistication.

The task presented by Mr. Angelo is less cognitively demanding, for all that

students have to do is recall the steps of the procedure and answer questions

about them.  Still, whatever task a teacher poses, its cognitive demand is

shaped by the way students use it.  In fact, tasks that are set up to engage

students in cognitively demanding activities often degenerate into less

demanding activities as teachers and students work together to help the stu-

dent “understand.”14

Several factors have been identified as influencing the decline in cogni-

tive demand from task setup to task enactment.  Chief among them is that

the task is made routine in one of two ways: The students may start pressing

the teacher to reduce the challenge by specifying explicit procedures or steps

for them to perform, or the teacher may take over the demanding aspects of

the task when the students encounter difficulty by either telling them or

demonstrating what to do.

Similarly, factors have been identified that help to maintain student

engagement at a high level.15   One is choosing tasks that build on students’

prior knowledge.  In our vignettes both Ms. Lawrence and Ms. Kaye use

students’ prior knowledge to engage them in demanding cognitive tasks.

Ms. Lawrence links what students already know about adding fractions to
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the new topic of adding fractions with unlike denominators.  Rather than

merely presenting the process, she guides them in formulating the process

themselves, building on their existing knowledge.  Ms. Kaye uses students’

informal knowledge about numbers, money, and operations to pose a demand-

ing two-digit subtraction problem to her first graders.  She also provides so-

called scaffolding to help Kurt stay engaged in the task without showing him

how to do it.

The use of scaffolding is another factor that helps to maintain student

engagement at a high level.  By offering a subtle hint, posing a similar prob-

lem, or asking for ideas from other students, Mr. Hernandez provides some

scaffolding to assist his students as they reason through the grid problems.

He does so without reducing the complexity of the task at hand or specifying

exactly how to proceed.  He allows substantial time for discussion of the prob-

lem, thus affording the students an opportunity to learn by considering and

discussing multiple solution strategies.

Allocating neither too much nor too little time for the task is another

factor associated with keeping engagement and cognitive demand high.  Recall

how Ms. Lawrence steps back to give her students a chance to think.  Had

she not provided that opportunity, Jim might not have come up with his solu-

tion.  Mr. Hernandez also allows ample time for discussing the problems,

thus affording his students an opportunity to learn by considering and dis-

cussing multiple solution strategies.  The discussion of multiple solution

strategies at the overhead projector provides an opportunity for Mr. Hernandez

as well as several students to model a high level of performance—another

factor that helps maintain engagement in cognitively demanding tasks.

Ms. Lawrence also models a high level of performance by justifying each

step in the general procedure for adding fractions with unlike denominators.

A final factor in maintaining high levels of student engagement with de-

manding tasks is sustained pressure from the teacher on explanation and the

development of meaning.  Throughout their lesson, Ms. Lawrence and

Mr. Hernandez press students to explain their solution processes and to attach

meaning to the symbols they are using.  Ms. Kaye does likewise, both as she

talks with individual students and as she responds to individual students pre-

senting their solutions to the class.  Teachers must not only select and suc-

cessfully launch a high-level mathematical task but must also actively and

consistently support students’ cognitive activity without reducing the com-

plexity and cognitive demands of the task.  In the classroom the teacher, the

students, and the task clearly interact in a dynamic way to shape students’

learning.
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Planning

Given that the learning of mathematics develops interactively over time,

effective teachers understand that teaching requires considerable effort at

design.  Such design is often termed planning, which many teachers think of

as a core routine of teaching.

Studies of how U.S. teachers plan show that they tend to focus on the

activities in which students will be engaged and how those activities will be

organized.16   Teachers’ plans seldom elaborate the content that the students

are to learn through their engagement with the proposed activities.17   Other

research suggests that teachers who make detailed plans can sometimes be

relatively inflexible when students encounter difficulties or raise thoughtful

questions.  These teachers are committed to their plans and have difficulty

making midcourse adjustments.

Some teacher educators have made planning a central objective of their

teacher preparation programs.  Most programs provide prospective teachers

with model plans or rubrics to scaffold their planning.  Derived from teacher

educators’ ideas about what would constitute helpful approaches to preparing

lessons, these frameworks do not necessarily reflect what good teachers do.

Researchers have rarely explored what it might mean to prepare for teach-

ing in ways that would elaborate content goals and simultaneously equip the

teacher with good maps of the paths they might take to reach desired desti-

nations.  Because many curriculum materials seek to do this sort of prepara-

tion for teachers, an important area for research is how teachers use the highly

elaborated teachers’ guides often held up by educators as positive examples.

What do teachers read when planning, how do they interpret and use what

they read, and how do those uses affect their teaching?

Recent studies of Japanese professional development programs have

revealed a practice termed lesson study that involves groups of teachers working

together on single lessons, elaborating goals, investigating pupils’ thinking

and difficulties with particular content, and exploring different representa-

tions and tasks.  The teachers make repeated trials of these lessons, improv-

ing them in light of their collective study of the effectiveness of the lesson

designs.  We discuss this approach to professional development in chapter 10.

Here we highlight the idea of designing lessons to combine a significant elabo-

ration of one’s content goals with a dedicated and thorough anticipation of

and preparation for a range of likely student responses.  Planning can profit-

ably be seen as a detailed form of instructional design aimed at reducing the

uncertainties of one’s practice, centered on the continual adjustment and
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improvement of instruction, and informed by a close scrutiny of what hap-

pens as the lesson unfolds.

Teachers and Students

Teacher Expectations

Teachers’ selections of tasks and their interactions with students during

instruction are guided by their beliefs about what students need to learn and

are capable of learning.18   Low expectations can lead a teacher to interact

with certain students in ways that fail to support their development of math-

ematical proficiency.  For example, in comparison with their treatment of

high achievers, some teachers consistently wait less time for low achievers to

answer a question before calling on someone else.  They tend to give these

students the answer rather than helping them improve their responses by

rephrasing questions, they criticize them more frequently for failure and praise

them less frequently for success, they call on them less often, and they give

them less cognitively demanding questions and tasks.19   Mr. Hernandez might

easily have succumbed to such a temptation in responding to Michelle’s wrong

answer.  Instead, he asked her to reread the problem and think about what

would happen if 100% were to be distributed across the 80 squares.  That is,

he expected Michelle to be able to solve the problem if she persisted in work-

ing on it—and on her own and with assistance from her classmates, she did.

Closely related to teachers’ expectations is their sense of efficacy, the

feeling that they are effective in helping students learn.  Successful teachers

not only expect their students to succeed but also see themselves as capable

of motivating and instructing students effectively.  Less successful teachers

lack confidence either in themselves as instructors (e.g., “I don’t know the

mathematics well enough to teach it effectively”; “I know what I want to

teach, but I don’t know how to give my students what they need to be able to

learn it”) or in their students’ learning potential (e.g., “No teacher could be

effective with these students because they lack ability, motivation, support-

ive home environments, and so on”).  Studies have identified consistent rela-

tionships among teachers’ sense of efficacy, the patterns of teacher-student

interactions that occur in their classrooms, and their students’ achievement.

For example, teachers with a high sense of efficacy tend to appear more

confident in the classroom, to be more positive and less critical with their

students, to be better classroom managers, to be more accepting and effec-

tive in responding to challenges from students (e.g., “Why are we learning

this?”), and to be more effective in supporting growth and achievement.20

Successful

teachers not

only expect

their

students to

succeed but

also see

themselves

as capable of
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instructing

students
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These findings on teachers’ sense of efficacy underscore the importance

of preparing teachers so they possess sufficient knowledge to teach with con-

fidence and effectiveness.  They need to know the mathematics they will

teach, their students’ current mathematical thinking, and strategies for rep-

resenting mathematics and meeting their students’ learning needs.  Helping

teachers become proficient in understanding their students’ reasoning, in

choosing a good follow-up question, and otherwise providing scaffolding for

their students can be particularly challenging because such techniques require

high levels of all three types of knowledge and are different from the tech-

niques emphasized in most teachers’ prior experience.21

Motivation

To make consistent progress toward proficiency, students need to be

motivated to engage productively in mathematics lessons and the learning

activities in those lessons.  Motivation for school mathematics learning depends

primarily on the interaction of students with teachers and of students with

mathematical tasks.22   Traditional approaches to motivation typically either

attempt to make learning fun or to rely on grades and other extrinsic rewards

and punishments to pressure students to put forth the necessary effort.  Recent

research on students’ motivation has moved well beyond these traditional

conceptions to establish a richer, more balanced depiction of motivation,

allowing the identification of effective motivational strategies that apply to

the teaching of all subjects, including mathematics.23

Students’ motivation depends on both expectation and value.24   That is,

students are motivated to engage in a learning task to the extent that they

expect to be able to perform the task successfully if they apply themselves and

the degree to which they value the task or the rewards that performing it

successfully will bring.  Therefore, teachers can motivate students to strive

for mathematical proficiency both by supporting their expectations for achiev-

ing success through a reasonable investment of effort and by helping them

appreciate the value of what they are learning.

Maintaining an expectation of success. To make steady

progress toward proficiency, students need continued confidence that they

can meet the challenges of school mathematics.  The most basic strategy for

supporting students’ expectations of success (and their related perceptions

and beliefs, such as a sense of efficacy) involves two basic elements.  The

first is to design for success by assigning tasks on which students can succeed

if they invest reasonable effort.  The second is to provide whatever scaffold-
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ing may be needed to help students acquire and apply concepts, skills, and

abilities as they work on assignments.  This strategy involves building on

students’ current knowledge, which in turn requires understanding what they

already know and where they are headed.

Other strategies include helping students to commit themselves to goals

that are near at hand, specific, and challenging and then following up by help-

ing them assess their performance in terms of their progress toward those

goals rather than by comparing their performance to that of their classmates.

In modeling their own mathematical thinking, in communicating expecta-

tions to students, and in socializing students’ attitudes and beliefs, teachers

should continually emphasize that mathematical proficiency is built up through

experiences in learning and applying what has been learned (and are not in-

nately given and limited).  They need to emphasize that students can meet

daily challenges successfully and move toward higher levels of proficiency if

they consistently put forth reasonable effort and that such effort results in a

gradual but productive deepening of understanding and refinement of skill.25

Valuing learning activities.  To be optimally motivated, students

need not only confidence that they can achieve success but belief that what

they are learning is worth learning.  Traditional approaches to the value aspect

of motivation have attempted not to help students see value in learning

activities but instead to link their performance on these activities to some-

thing else that they do value, such as the prospect of earning rewards.  Rewards

can be useful, but they need to be handled carefully because they can under-

mine intrinsic motivation and distract students’ attention from learning goals

if they are overemphasized.  Rewards can also have undesirable side effects if

they are tied to competitions that create winners and losers.

Alternative strategies for addressing the value aspect of motivation involve

taking advantage of students’ existing intrinsic motivation by emphasizing

topics they find interesting and tasks they find enjoyable.  For example, stu-

dents usually enjoy responding actively rather than merely listening; oppor-

tunities to interact with their peers; situations that invite thought by posing

divergent questions; and activities with game-like features, such as puzzles

and brainteasers.26   These strategies for intrinsic motivation can be helpful,

although teachers may find that their opportunities to use such strategies are

limited by constraints of time and curriculum.

Moreover, although use of these strategies may increase students’ enjoy-

ment of a lesson, it does not directly stimulate their motivation to learn what

the lesson is designed to teach.  Motivation to learn includes the students’
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tendency to find mathematical activities meaningful and worthwhile, to try

to get intended learning benefits by attempting to make sense of the activi-

ties, to relate the new knowledge or skills they are developing to their prior

knowledge or skills, and to think about how they can apply the mathematics

they are learning.  Teachers create motivation to learn by modeling it in their

own classroom discourse, communicating their expectations for success,

assuming that their students are already motivated to learn, and molding their

class into a coherent learning community.  When teaching particular lessons

or providing learning activities, teachers can spur students’ motivation to learn

by communicating enthusiasm for the content, stimulating curiosity or sus-

pense, personalizing the content to make it more concrete or familiar, intro-

ducing it in ways that stimulate interest or an appreciation for its value,

engaging the students in authentic applications of the content, and helping

them to remain goal oriented and attuned to strategies as they work on appli-

cations.27

The lessons taught by our four teachers illustrate some of these prin-

ciples.  These teachers provide environments that support learning.  Their

students participate actively by answering questions, offering solutions, or

providing explanations.  Ms. Lawrence, Mr. Hernandez, and Ms. Kaye focus

on students’ understanding and sense making, and they try to connect the

lesson to students’ prior knowledge.  Mr. Angelo gives his rule for multiplying

by powers of 10 and relates it to the earlier “add zeros” rule for multiplying

by powers of 10 greater than one.  His approach of giving explicit rules to

follow helps to assure success on the tasks, provided that students can

remember the rule.  Mr. Angelo relies for motivation on the personal engage-

ment he shows with his students and on the extrinsic pressures built into the

grading system.  Rather than motivate students through interest or intrinsic

aspects of the intellectual work, he inspires confidence because the goal seems

attainable.

Teaching Students with Special Needs

Although existing research does not provide clear guidelines for teaching

mathematics to children with severe learning difficulties, existing evidence

and experience suggest that the same teaching and learning principles apply

to all children, including special-needs children.  It has long been assumed

that children with moderate, mild, and borderline mental retardation or learn-

ing disabilities are not capable of meaningful or conceptual mathematical learn-

ing and, thus, unlike other children, have to be taught by rote.  Researchers
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have found, however, that it useful not to prejudge them or to assume that

they learn by means of different “laws of learning.”  Instead, it is in the best

interest of special-needs children to assume that the following principles apply

to all children: (a) learning with understanding involves connecting and

organizing knowledge; (b) learning builds on what children already know;

and (c) formal school instruction should take advantage of children’s informal

everyday knowledge of mathematics.28

Learning difficulties among special-needs children stem largely from

instruction that violates one or more of these principles.  Common mistakes

in their instruction include (a) not assessing, fostering, or building on their

informal knowledge; (b) overly abstract instruction that proceeds too quickly;

and (c) instruction that relies on memorizing mathematics by rote.  In other

words, the learning difficulties of special-needs children and children in gen-

eral are the same.

When special-needs children are taught mathematics in accordance with

the above principles, many show significant improvement in learning con-

cepts and skills and can exhibit considerable proficiency.29   Furthermore, even

within what are presumed to be homogeneous groups of children, there are

significant individual differences in their readiness and capacity to learn par-

ticular mathematical skills and concepts.  Together, these findings imply that

many, if not all, special-needs children can benefit from meaningful instruc-

tion that addresses the development of all five strands of proficiency and that

gives attention to both the students’ thinking and the mathematics.

Note that it does not follow from the above principles that special chil-

dren should be treated identically to their same-age peers.  For children with

mental retardation, for example, it may take several years to help them con-

struct the number or arithmetic concepts that other children do in a much

shorter span of time.  Moreover, applying these principles to teaching spe-

cial-needs children may require creative adaptations.  With children who are

blind, for example, computer-based instruction may not be helpful or may

need to be adapted in imaginative ways.  Likewise, for children with commu-

nication disorders, creative solutions may be required to enable them to ben-

efit from small-group work.30   Again, good instruction of special-needs chil-

dren will depend on reflective, knowledgeable, and flexible teachers.

Special-needs children can benefit from careful and thoughtful use of

both mainstreaming and segregated instruction.  Mainstreaming is an instruc-

tional tool that can be used wisely or not.  Currently, it is all too often used

inflexibly and ineffectively.  Consider the case of Ann, a Down syndrome

child, who is placed in a regular eighth-grade mathematics class along with
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children the same chronological age.  Ann sits through class after class with

little or no comprehension of the instruction.  The assigned aide tries to dis-

cuss the instruction afterward, but with little success.  The aide also provides

simplified or watered-down worksheets (e.g., asking Ann what half of various

amounts are instead of worksheets on operations on fractions).  In brief, Ann’s

integration into the class is in name only and does almost nothing to foster

her mathematical proficiency or even rote learning of mathematics.

It is worth noting that Alfred Binet devised the IQ test and advocated

segregated instruction for low-ability students for the most humane of rea-

sons.  As the case of Ann illustrates, he saw that such children were often

utterly lost in regular classrooms and suffered terribly there.  Because segre-

gated instruction was implemented poorly or abused, it has now largely been

abandoned.  Now educators advocate mainstreaming for the most humane of

reasons.  Unfortunately, this approach is all too frequently being implemented

poorly.  In the end there is no substitute for providing adequate support for

all children.  This support includes providing sufficient staff who are both

well trained and caring.  Real improvement in the education of special-needs

children will also require moving past dogmatic positions and taking a reflec-

tive approach that takes into account the best interests of each child.

Interactions with Different Students

In the mathematics class the teacher naturally interacts differently with

different students.  Sometimes, however, differential interactions are associ-

ated not with differences in mathematical ability or accomplishment but with

differences in students’ social class, ethnicity, language, or gender.  For

example, studies have shown that boys have a larger number of academic

interactions with teachers in mathematics class than girls do.  Not only is the

quantity of interactions different, but the quality differs also.  Studies have

documented that girls often receive simpler, more routine questions than boys,

who then receive more difficult and challenging questions.31   As noted ear-

lier, some teachers interact differently with lower achieving students than

higher achieving students, giving them less time to respond, asking them

less demanding questions, criticizing them more often, and calling on them

less.  And lower achieving students are disproportionately children of color,

from poverty, or from households without native speakers of English.  Not

only is there substantial evidence that teachers interact differently with stu-

dents, but students from marginalized groups are also more vulnerable than

other students are to self-fulfilling prophecies of low expectations.32
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Interactions between teacher and student need to be appropriate to the

student and the content, regardless of the student’s social class, ethnicity,

language, or gender.  Effective teachers often make use of their students’

interests to engage them in academic tasks.  Effective teachers of urban African

American students do so by making use of the culture of their students.  They

demonstrate an understanding of their students’ backgrounds and experi-

ences, link classroom content to those experiences, use familiar cultural pat-

terns, and focus on the child.33   High expectations for all students without

regard to their social class, ethnicity, or gender can also pay high dividends.

For example, low-achieving minority students can do as well as other students

when placed in more demanding programs.34   Also, in a study of teachers in

schools serving children of poverty, higher achievement results were obtained

when teachers placed more emphasis on meaning in their mathematics class-

rooms.35   Because the quality of the interaction of teacher and student around

the content is so critical to the success of instruction, the most successful

teachers are not merely sensitive to the cultural diversity of their students

but use that diversity to enrich the learning experiences they provide to the

class as a whole.36

Communities of Learners

Creating classrooms that function as communities of learners has been

the focus of much recent research and scholarship in mathematics educa-

tion.37   In the research on teaching and learning mathematics with under-

standing, four features of the social culture of the classroom have been iden-

tified.38   The first is that ideas and methods are valued.  Ideas expressed by

any student warrant respect and response and have the potential to contrib-

ute to everyone’s learning.

A second feature of a classroom community of learners is that students

have autonomy in choosing and sharing their methods of solving problems.

Students recognize that many strategies are likely to exist for solving a problem,

they respect the methods used by others and that others need to understand

their own methods, and they are given the freedom to explore alternatives

and to share their thinking with the rest of the class.  Notice how

Mr. Hernandez has three other students besides Michelle share their solu-

tions to the grid problem.  Ms. Kaye has five students present their solution

methods.  She also engages the class in a discussion of the similarities and

differences between the various methods.  In contrast, Ms. Lawrence and

Mr. Angelo, although they call on students to answer questions, are more
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interested in presenting a correct solution method than in soliciting multiple

methods.

A third feature of classrooms that function as communities of learners is

an appreciation of the value of mistakes as sites of learning for everyone.

Mistakes are not covered up; rather, they are used as opportunities to exam-

ine reasoning and to deepen everyone’s analysis.  The appreciation of mis-

takes is a fundamental aspect of mathematical work outside the classroom;

inside, it helps build the community.  When Michelle makes a mistake on

the grid problem, Mr. Hernandez does not tell her it is wrong and then call on

someone else.  He uses it instead to push her thinking.

Finally, a core feature of these classrooms is the recognition that the au-

thority for whether something is both correct and sensible lies in the logic

and structure of the subject rather than the status of the teacher or the popu-

larity of the person making the argument.  The resolution of disagreements

resides in mathematical argument.  Both Mr. Hernandez and Ms. Kaye have

their students justify their solution strategies.  Although Ms. Lawrence

frequently asks her students to justify their work, when she presents the pro-

cedure for adding fractions with unlike denominators, she provides the justi-

fication.  She does use mathematical properties to explain the procedure,

however, rather than simply present the rule as Mr. Angelo did.  Hence, in

addition to selecting tasks with goals in mind and sharing essential informa-

tion, the teacher’s primary role is to establish a classroom culture that sup-

ports learning with understanding, thereby serving to motivate students to

learn.

Managing Discourse

An important part of classroom instruction is to manage the discourse

around the mathematical tasks in which teachers and students engage.

Teachers must make judgments about when to tell, when to question, and

when to correct.  They must decide when to guide with prompting and when

to let students grapple with a mathematical issue.  Their decisions do not

simply rest with the mathematical task at issue.  They also need to decide

who should get the floor in whole-group discussions and how turns should be

allocated.  Teachers have responsibility for moving the mathematics along

while affording students opportunities to offer solutions, make claims, answer

questions, and provide explanations to their colleagues.  The point of class-

room discourse is to develop students’ understanding of key ideas.  But it

also provides opportunities to emphasize and model mathematical reasoning
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and problem solving and to enhance students’ disposition toward mathematics.

Therefore, discourse needs to be planned with these goals in mind, not merely

as a “checking for understanding” form of recitation.

Teachers are often inclined to call on students who have the correct or

desired solutions.  This practice makes managing the discourse less complex,

since less complicated or confusing ideas get the floor.  It also shapes both the

task and students’ opportunities to learn from it.

Our four teachers manage the discourse in their classrooms in very differ-

ent ways.  In Mr. Angelo’s lesson, for instance, he does virtually all the talk-

ing, opening only a few constrained entry points for students to offer their

answers.  Ms. Kaye, in contrast, deliberately elicits five disparate solutions

from a range of students.  The group discussion forms the content of the

lesson, so individual students’ ideas contribute directly to the enacted cur-

riculum of the class.  Ms. Lawrence controls students’ contributions to the

lesson but proffers complex questions so that the discourse requires substan-

tial work from students.  She manages by planning strategic questions to move

the lesson to its goal.  Mr. Hernandez incorporates students’ ideas into his

design, deliberately sowing questions that will get particular issues and ideas

on the table for the class to hear and learn from.  Managing the discourse is

both one of the most complex tasks of teaching and the least thoroughly

studied.  Research needs to make visible teachers’ considerations as they

handle classroom discourse and the consequences of their moves for students’

learning.

Grouping

Students are sometimes grouped for instruction either by curriculum path

or achievement level.  Grouping by curriculum, often called tracking, is more

common in high school, where different curriculum tracks exist for students

with different goals for the future: college, business, or trades.  Grouping by

achievement level is more common in elementary and middle schools.  At

those grades, homogeneously grouped classes are usually taught essentially

the same content, but the higher the level, the greater the depth and breadth

of mathematical ideas and the more rapid the pace.

Grouping by achievement level is especially relevant in grades pre-K to

8.  We make two points about such grouping.  First, it is in fact grouping by

achievement and not ability grouping, as it is so often called.  The test scores

(and in some cases school grades) that provide the basis for such grouping are

measures of mathematical knowledge and skills that students have accumu-
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lated to date; they are not measures of some underlying (presumably fixed,

stable, and possibly innate) substrate of mathematical ability.  What is known

about neural capacity and brain functioning with respect to mathematical

abilities is limited and largely speculative.  The evidence does not support

any practice of grouping pre-K to grade 8 students according to their supposed

mathematical abilities.  Meanwhile, data from international comparisons

(especially studies of Asian countries) support proceeding on the assumption

that all students can achieve important mathematical learning goals and work-

ing within heterogeneously grouped classes to see that students do.

In the United States, interest in grouping students by achievement for

mathematics instruction has waxed and waned over the years.  Proponents of

homogeneous grouping claim that reducing the range of achievement levels

within a class or group enables the teacher to meet that group’s needs more

consistently.  Opponents of such grouping claim that the advantages to high

achievers are overstated.  Instead of providing low achievers with ideal

instruction that helps them make rapid gains in proficiency, homogenous

grouping typically results in low achievers being taught a barren curriculum

by less capable teachers in classes that lack strong peer role models.  Any

gains that might accrue to the high achievers are more than offset by losses to

the low achievers and by the resultant perpetuation of social class, racial, and

ethnic inequities in schooling.39

This controversy highlights a second point about grouping: Many studies

on grouping have been conducted over the years (including studies on group-

ing for mathematics instruction), but the results concerning effects on achieve-

ment have been both weak and mixed.40   The findings indicate that overall

mathematical achievement is likely to be similar whether students are grouped

homogeneously or heterogeneously, especially if the same curriculum is pro-

vided to all groups.  When the curriculum is altered, tracking appears to ben-

efit students in high-track classes.41   At the same time, there is evidence that

heterogeneous classes may help students whose earlier performance was low,

with little effect on other students’ performance.42   An analysis of data from

the National Education Longitudinal Study (NELS), however, found that

the estimated achievement of average and high-achieving students would be

depressed in heterogeneous eighth-grade mathematics classes.43   If one were

to look only at these achievement data, one might conclude that it makes

little difference whether students are grouped homogeneously or heteroge-

neously.  However, concerns raised about undesirable side effects of homo-

geneous grouping in grades pre-K–8 in the United States, as well as interna-

tional comparison data indicating that some countries with the most impressive
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mathematical achievement scores practice heterogeneous grouping, suggest

that heterogeneous grouping is the wiser course in the elementary and middle

school grades.

Significant improvements in students’ mathematical achievement are

more likely to result from adjustments in curriculum and instruction than

from adjustments in how students are assigned to classes.  The snapshot of

Ms. Kaye’s class illustrates how a teacher can work effectively with a hetero-

geneous group of students.  All of her first graders are given the same prob-

lem, but she encourages the use of different solution strategies depending on

the level of the student.  Mr. Hernandez provides another example.  He allows

students to present both more and less sophisticated procedures, provided

the students can explain them.  In each case the key is the interaction of the

teacher and the students around a challenging problem, rather than some

particular instructional organization.

Cooperative Groups

Cooperative grouping of students in a class is a teaching practice that has

become popular in recent years.  Because it has also been a target of concern

and criticism, we devote specific attention to it and to the warrants for and

conditions of its use.  First, important to realize is that there is no single prac-

tice or structure that can be identified as “cooperative groups.”  Cooperative

groups are usually groups of three, four, or five students who have been given

a task to work on together, with some effort by the teacher to specify the role

each child is to play in the group’s work.  The several different models for

organizing and conducting cooperative groups generally share common goals.

One goal is to specify the social processes of the groups so as to accommodate

students’ lack of experience with collective work and to provide them with

support.  A second is a commitment to distributing classroom talk more widely,

encouraging all students to talk, to share their ideas, and to become more

actively engaged intellectually.  A third is to help students develop their social

and collaborative skills and not just support their learning of content.  Like

most such techniques and tools, whether cooperative groups contribute to

the development of mathematical proficiency depends primarily on how they

are used.

Several models of cooperative grouping have been extensively studied.

The research indicates that these cooperative group methods are likely to

have positive effects on achievement and on other social and psychological

characteristics.44   The effects on achievement appear to be related to the use
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of specific rewards for a group based on its members’ performance rather

than on the particular cooperative method used.  Ensuring the accountability

of individual group members for the collective work can prevent one or two

students from doing it all while the others simply copy or sit passively.  The

most effective methods combine group goals with individual accountability.

Effects of such grouping on outcomes other than achievement are more

impressive.  Cooperative grouping arrangements promote friendship and posi-

tive social interaction among students who differ in achievement, gender,

race, or ethnicity, and they promote acceptance of handicapped students who

have been placed in regular classes.  Although there may be disadvantages to

using cooperative groups, their judicious use may have potential nonacademic

benefits.

For cooperative groups to be effective, students need to be taught how to

work in this mode.  Simply telling students to push their desks together and

work on a task together does not ensure cooperative learning.  Skills for work-

ing cooperatively have to be taught directly, and students need to be pre-

pared for both the social and the cognitive demands of such work.  Further,

there is evidence that children’s collaborative interactions vary across social

and cultural groups.45   For teachers to use cooperative groups effectively, they

also need to select, organize, and present tasks that are well suited both to

collaborative work and to the curriculum.

Cooperative grouping is one of many instructional practices that teachers

may choose to use at times.  It is neither a wholesale replacement for whole-

class instruction nor a disastrous technique to be avoided at all costs.  Further,

the cooperative methods that have been found to produce positive learning

outcomes take knowledge and skill to implement.  Like any practice, coop-

erative groups can be used effectively or not.

Assessment

Information about students is crucial to a teacher’s ability to calibrate

tasks and lessons to students’ current understanding and skills.  Mr. Hernandez

and Ms. Kaye have each designed the lesson to afford them critical informa-

tion about their students’ progress.  The tasks they frame create a strategic

space for students’ work and for gaining insight into students’ thinking.

Ms. Lawrence gets some of the same sort of information from her probing of

Jim’s solution.  Although Mr. Angelo and Ms. Lawrence get some idea of how

students are doing by circulating around the room, they use the questions

they ask during class as their primary mode of assessment during the lesson.
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In addition to tasks that reveal what students know and can do, the quality

of instruction depends on how teachers interpret and use that information.

Teachers’ understanding of their students’ work and the progress they are

making relies on the teachers’ own understanding of the mathematics and

their ability to use that understanding to make sense of what the students are

doing.  Moreover, after interpreting students’ work, teachers need to be able

to use their interpretations productively in making specific instructional

decisions: what questions to ask, tasks to pose, homework to assign.  Studies

show that when teachers learn to see and hear students’ work during a lesson

and to use that information to shape their instruction, their instruction becomes

clearer, more focused, and more effective.46

More formal sources of assessment information can also help improve

the quality of instruction, including homework, project reports, notebooks,

journals, quizzes, tests, and examinations.  The more precise and detailed

the information and the better coordinated it is with curricular goals, the better

a resource it is for instruction.  Teachers’ ability to interpret and make judi-

cious strategic use of assessment information from many sources is a critical

factor in their instructional effectiveness.

Students and Content

Students and Tasks

How well a mathematical task works to support students’ learning is a

function both of its quality—that is, of its potential for stimulating math-

ematics learning—and of the ways students interpret and use it.  The tasks

Mr. Hernandez designed offer sufficient complexity to be challenging because

he has varied the grid from the familiar 10 × 10 to other configurations.  His

students can make sense of these tasks and are able to work on them, coming

up with solutions that open opportunities for instruction.  Had the tasks been

either too difficult or too trivial for these students, the tasks might not have

worked.  One important consideration in designing mathematical tasks, there-

fore, is that they must take account of what the students already know and

must maximize the possibility for the students to make progress in learning

the content.  This process entails judgments about design so that the tasks

anticipate students’ responses and are built on appropriate-sized mathemati-

cal steps.  All four of our teachers were able to choose and pose problems that

engaged their students in addressing the mathematical goals for the lesson.

Where the lessons differed was in the mathematical significance of the tasks

and in the challenge they posed to students’ thinking and learning.
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Practice

Role of practice.  To many students, practice is as much a part of study-

ing mathematics as of playing a sport or a musical instrument.  The role of

practice in mathematics, as in sports or music, is to be able to execute proce-

dures automatically without conscious thought.  That is, a procedure is prac-

ticed over and over until so-called automaticity is attained.47

There are cognitive benefits to automatization.  The more automatically

a procedure can be executed, the less mental effort is required.  Since each

person has a limited amount of mental effort that he or she can expend at any

one time, more complex tasks can be done well only when some of the subtasks

are automatic.48   Hence, the automatization of mathematical procedures is

justifiable when those procedures are regularly required to complete other

tasks.  For example, basic multiplication combinations such as 4 × 6 = 24 and

6 × 7 = 42 are needed for estimation, multidigit multiplication, single-digit

division, multidigit division, and addition and multiplication of fractions, to

name a few.  Therefore, multiplication combinations need to be practiced

until they can be produced quickly and effortlessly.  The availability of calcu-

lators and computers raises the question of which mathematical procedures

today need to be practiced to the point of automatization.  Single-digit whole

number addition, subtraction, multiplication, and division certainly need to

be automatic, since they are used in almost all other numerical procedures.

Opinions vary, however, as to which other procedures should be made

automatic.

Kinds of practice.  Textbook and worksheet exercises offer the most

common kinds of practice used in U.S. mathematics classrooms.  Such exer-

cises are used to provide students frequent and repeated opportunities to

practice what they have learned.  Often the practice is directly associated

with the topic of the lesson, with the teacher or other students providing

assistance until the student can perform independently.  Another approach

distributes the practice over a longer period: On any one day, only a few of

the exercises assigned might address the lesson topic, and the rest would

address topics studied earlier in the year.  Such distributed practice is based

on the principle that mastery is achieved gradually and once achieved is main-

tained through regular practice.  A number of studies of the U.S. curriculum

have concluded that it is too repetitive.49   These criticisms are about topics

being retaught year after year, not about students practicing learned concepts

and procedures throughout the year to improve efficiency and retention.

Ms. Lawrence’s assignment of a mixture of problems is presumably no acci-
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dent.  Notice that she has even included problems on whole-number addi-

tion to help her students maintain their skill with that operation.

Sites for practice that often go unrecognized are problem solving and the

learning of new content.50   When a group of primary teachers in several stud-

ies shifted their emphasis from skills to problem solving, for example, there

was no overall change in their students’ computational performance.51   Their

students were still getting ample opportunity to practice computations.

Ms. Kaye’s lesson is an example of how practice can be embedded in problem-

solving activity.  Students can also practice previously learned skills while

they are learning new material.  Consider how much practice students get

with single-digit addition while learning how to add multidigit numbers.

Homework

Homework is widely viewed as a useful supplement to classroom instruc-

tion.  Little is known, however, about how much or what kinds of homework

to assign for learning to be optimal.  The limited research on homework has

been confined to investigations of the relation between the quantity of home-

work assigned and students’ achievement test scores.  Neither the quality

nor the function of homework has been considered.52  In fact, even the defi-

nition of homework—done in school or not and with what assistance, if any—

has not always been clear.  Several useful purposes that homework can serve

have been identified, including providing practice, preparing students for

the next class, fostering traits such as responsibility and independence, and

communicating with the home.  Assigning homework for punishment, how-

ever, is always inappropriate.53

As a site for practice, homework can be used to increase procedural flu-

ency and to maintain skill.  Homework can provide for both focused and

distributed practice.  When used for practice, homework assignments should

be realistic in length and difficulty if students are to complete them indepen-

dently and successfully.  Students, however, need to be able to perform pro-

cedures correctly before they undertake practice without supervision.

Otherwise, the practice can automatize incorrect procedures, which are then

difficult to correct.  Further, homework must be monitored and followed up

if it is to have instructional value.54   In making her homework assignment,

Ms. Lawrence first determines that the students understand the new proce-

dure and can perform it correctly.  The next day she will follow up on the

assignment by asking the students to check one another’s work on selected

problems.
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Students can be assigned tasks for homework that might be used to launch

the next day’s lesson or to engage the class in an enrichment activity.  For

example, Mr. Angelo uses the homework to introduce the rule for multiply-

ing by powers of 10.  In Mr. Hernandez’s class, students are asked to try the

various strategies that have been presented and to think about which one

they thought was “best” in preparation for the next day’s discussion.

Homework also provides a means to communicate with parents about

the importance of schoolwork and learning.  Many opportunities exist to send

home assignments that call for relatively little parental involvement.  They

may require no specialized knowledge, or relatively simple guidelines may

be provided.  For example, parents or other caregivers can supervise practice

on the basic number combinations.  Homework support needs to be provided,

however, when home environments may make doing homework difficult.

Manipulatives

The use of concrete materials, sometimes termed manipulatives, for teach-

ing mathematics is widely accepted, particularly in the elementary grades.

Manipulatives should always be seen as a means and not an end in them-

selves.  They require careful use over sufficient time to allow students to

build meaning and make connections.  Beginning in the 1960s, manipulatives

gained popularity in U.S. elementary school mathematics with the introduc-

tion of a variety of concrete materials, including base-10 blocks, Cuisenaire

rods, chips for trading, logic blocks, fraction pieces, and Unifix cubes, to name

a few.

Manipulatives have had their advocates and critics.  Both sides agree,

however, that simply putting concrete materials on desks or suggesting to

students that they might use manipulatives is not enough to guarantee that

students will learn appropriate mathematics from them.  The relationship

between learning and the use of manipulatives is far more complex than many

mathematics educators have thought.  Recent research has explored how stu-

dents interact with manipulatives.  Students may not look at these objects

the same way adults do, and it can be a challenge for students to see math-

ematical ideas in them.  When students use a manipulative, they need to be

helped to see its relevant aspects and to link those aspects to appropriate

symbolism and mathematical concepts and operations.55   Observational studies

have documented cases in which students were taught to use manipulatives

in a prescribed way to perform “wooden algorithms.”56   If students do not see

the connections among object, symbol, language, and idea, using a manipula-
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tive becomes just one more thing to learn rather than a process leading to a

larger mathematical learning goal.57

When used well, manipulatives can enhance student understanding.  They

can, for example, enable teachers and students to have a conversation that is

grounded in a common referential medium, and they can provide material on

which students can act productively provided they reflect on their actions in

relation to the mathematics being taught.58   The base-10 blocks that Kurt is

using in Ms. Kaye’s class provide both student and teacher with a way to

discuss the problem that would have been more difficult without the blocks.

Research on four successful projects aimed at teaching multidigit number

concepts and operations through a problem-solving approach found that, al-

though different in approach, the projects treated the use of conceptual sup-

ports, whether manipulatives or diagrams, in similar ways.59   Each project

provided sustained opportunities for students to construct connections be-

tween the conceptual support, the written symbols, and the number words

and to use the object-word-symbol triad in solving multidigit addition and

subtraction problems.  Manipulatives also help students correct their own

errors.60   The evidence indicates, in short, that manipulatives can provide

valuable support for student learning when teachers interact over time with

the students to help them build links between the object, the symbol, and

the mathematical idea both represent.

Calculators

Although calculators are used more frequently than manipulatives in

grades 4 and 8, the use of calculators is more controversial in mathematics

lessons in grades pre-K-8 than are manipulatives, particularly in the elemen-

tary grades.  Although mathematics educators have advocated the appropri-

ate use of calculators since the 1970s, persistent concerns have been expressed

that an extensive use of calculators in mathematics instruction interferes with

students’ mastery of basic skills and the understanding they need for more

advanced mathematics.61

A large number of empirical studies of calculator use, including long-

term studies,62  have generally shown that the use of calculators does not

threaten the development of basic skills and that it can enhance conceptual

understanding, strategic competence, and disposition toward mathematics.

A meta-analysis of 79 research studies on the effects of calculator was con-

ducted in 1986 and extended in 1992 with nine additional studies.63   This

analysis found that with the exception of the fourth grade, students at all
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grade levels who used calculators together with traditional instruction main-

tained their computational skills.  For average-ability students, a small nega-

tive effect at fourth grade suggested that sustained use of calculators at that

grade might hamper the acquisition of basic skills.  On the other hand, use of

calculators enhanced basic skills acquisition by average-ability students at all

other grade levels, so the negative effect at fourth grade might have been an

artifact of conditions specific to those studies that included fourth graders.

For all ability groups at all grades, problem solving was improved by the use

of calculators.  The positive effects were found when calculator use was per-

mitted in testing; the effects were weak or absent, but never negative, when

testing was conducted without calculators.  Students using calculators were

also found to possess a better attitude toward mathematics and a better self-

concept in mathematics.  This meta-analysis of calculator use has been widely

cited to support efforts to introduce calculators into mathematics instruction

in grades K to 8.  Meta-analysis as a procedure for synthesizing research results,

however, has not been without its critics.64   Studies included in such meta-

analyses often vary in quality and use a variety of different treatments labeled

with a single term, in this case “calculator use.”

Long-term studies of calculator use, however, support the findings of the

meta-analysis.  A study in Sweden found that students in grades 4–6 who

used calculators improved in conceptual understanding, the ability to choose

the correct operation, and proficiency with estimation and mental arithmetic

but did not lose skill in pencil-and-paper calculations when compared with

students in traditional classes.65   The students in the experimental classes

continued to study algorithms, but they spent relatively less time on algo-

rithms and more on problem solving than students in the traditional classes.

In an Australian project involving over 60 teachers and 1,000 students, stu-

dents who had been given unrestricted access to a calculator beginning in

kindergarten were familiar with a wider range of numbers, were better with

mental calculations and estimation, and were better able to tackle real-world

problems than students who had not had access to calculators.  Their pattern

of use of standard algorithms, left-to-right algorithms, and invented methods

did not vary greatly from that of the children who did not have access to

calculators.  Further, they did not become reliant on calculators at the expense

of other methods of calculations.  In sum, no detrimental effects of calculator

use were observed.66   These findings are consistent with those from England

in which six-year-olds in a calculator awareness project, compared with children

in a regular program, demonstrated knowledge of a wider range of numbers,

including decimals and negative numbers.  Project children also performed
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better than traditionally taught children with respect to understanding and

mental computations and were more enthusiastic and persistent.67

Calculator use has been increasing in the United States since 1980.  In

the 1996 NAEP, teachers of 80% of both fourth graders and eighth graders

reported that their students had access to calculators at school.  Only 33% of

the fourth graders were reported to use calculators as frequently as once a

week, whereas 76% of the eighth graders reportedly used calculators daily or

weekly.  These percentages were up from 16% and 56%, respectively, in 1992.

Concomitantly, the percentage of students who never or hardly ever used

calculators in class was down from 51% to 26% at the fourth grade and from

24% to 9% at the eighth grade.68   On TIMSS similar percentages for calcula-

tor use were reported by U.S. teachers.  In some countries, including some

high-achieving countries (such as Japan and Korea) as well as in some low-

achieving countries, mathematics teachers rarely had students use calcula-

tors.69   Internationally, there does not appear to be a correlation between

calculator use and achievement in mathematics.

The question, therefore, is not whether but how calculators should be

used.  There is very little empirical research, however, on the effectiveness of

various uses of calculators.  Issues just beginning to be investigated include

when calculators should be introduced, how young children should use them,

and how much time needs to be spent on written algorithms when calculators

are available.  In the experimental projects described above, calculator use

was accompanied by instruction on number combinations and traditional writ-

ten algorithms and by an emphasis on mental calculations.  These projects

also demonstrate how instructional emphasis in a calculator-inclusive envi-

ronment can shift from computational procedures to problem solving and

mental arithmetic.  Although there is substantial support for the use of calcu-

lators in school mathematics, their role and place remain open to debate and

experimentation.

Issues in Improving Instruction

Research on teaching mathematics offers useful direction for developing

instructional practices that lead to mathematical proficiency.  The studies we

have cited, as well as others too numerous to include, offer a set of recurrent

findings worthy of attention.  Although these findings are presented in broad

strokes, they matter for the finer-grained questions of concern to practitioners

and policy makers, parents, and the public.  Unless these findings are under-

stood, efforts to improve instructional quality and consequent learning are

likely to founder.
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First, no instructional practice, commodity, or material exists indepen-

dently of context and participants as a durable and reliable resource for

developing mathematical proficiency.  How teachers and students interpret,

value, and use such matters as time, curriculum, books, tasks, and calculators

shapes whether and how these affect instruction.

Second, effectiveness depends on enactment.  The effectiveness of a

curriculum, for example, depends not only on its mathematical integrity and

organizational design, but also on how usefully it guides instruction.  Although

analyses of the content of instructional materials are crucial, so too are analy-

ses of how those materials actually play out in lessons day by day across units

of instruction: what is taught, in what ways, and what students learn.  The

same can be said of tools and techniques such as manipulatives, calculators,

small-group work, and homework.

Third, teachers and students’ interactions about mathematics iteratively

shape the effectiveness of their instructional work.  Teachers’ expectations of

students can shape the nature of the tasks the teachers pose, what they ask,

how long they wait, how and how much encouragement they provide—

elements that together compose students’ opportunities to learn as well as

their motivation and confidence to learn.  The students’ responses, in turn,

affect teachers’ estimates of their capacity and progress, shaping their next

moves with students.

Although much is known about effective instruction, many questions merit

close study if teachers and researchers are to develop the kind of knowledge

needed to improve instruction.  We conclude with some core issues crucial to

building the knowledge base on teaching and learning for mathematical pro-

ficiency.

The first issues center on our myopia in examining the research.  The

research on teaching that we reviewed was almost entirely U.S. based.  Closer

probes of practice in other social, political, and cultural settings may chal-

lenge many current assumptions about effective instruction in mathematics.

Despite an intense and appropriate interest in practices in other countries,

Americans know too little about instruction or its effects in other systems.

The interactive framework in this chapter offers a perspective that could be

used to design studies to look across systems.  Comparative research that

affords opportunities to learn about key elements of teaching and learning, as

well as examining both practice and the environments that shape it, would be

enormously helpful in developing a greater knowledge of teaching and learn-

ing for mathematical proficiency.  Researchers need to address not just what

the curriculum is but how it is used and what teachers and students do with
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it, not just how much time is allocated for mathematics but how that time is

spent.  They need to investigate not just whether calculators or other resources

are used, but how they are used.70   Research that looks across countries can

provide a sharper picture of what matters in instruction aimed at developing

proficiency.

A second set of issues concerns instruction over time.  Although learning

is fundamentally temporal, too little research has addressed the ways in which

instruction develops over time.  Many studies are restricted to isolated frag-

ments of teaching and learning, providing little understanding of how the

interactions of teachers, students, and content emerge over time, and how

earlier interactions shape later ones.  How do ideas developed in class affect

later work, and what affects teachers’ and students’ ability and inclination to

make such links, as well as their use of such connections over time?  How is

time used, and how does its use by teachers and students affect the quality of

instruction?

A third arena concerns students and how their diversity affects instruc-

tion.  Too little research offers insight into the experience of students and

how the instruction offered, together with their responses to it, affects their

learning.  Still more important, there are too few well-designed studies that

would offer insight into how instruction might be developed to work effec-

tively for all students.  Too often, research on classroom teaching and learn-

ing either studies faceless, colorless students and teachers out of context, or it

is situated in particular contexts but lacks a design that permits analyses that

could provide the knowledge needed for effective instruction in mathematics.

Fourth, too little research has addressed what it takes for students to learn

mathematics in class.  What do students need to do, and know how to do, in

order to profit from the instruction offered by each of our four teachers?  A

cursory glance at any mathematics class makes plain that the skills, abilities,

knowledge, and dispositions displayed by students are not the same, and yet

teachers and researchers rarely attend to what students need to know and be

able to do in order to use instruction effectively.  People seem to assume

implicitly that instruction acts on students and that opportunities to learn are

actually moments of learning.  Research that examined both what students

have to know and do in mathematics instruction and what teachers can do to

enable all students to make use of that instruction would add significantly to

the knowledge base on teaching and learning mathematics.

A fifth set of issues has to do with reconnecting research on teacher knowl-

edge with instructional effectiveness.  Although most people believe that

teachers’ knowledge of mathematics and of students makes a difference for
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the quality of teaching, little empirical confirmation of this belief can be found.

Moreover, too little is known about the mathematical knowledge that teachers

need and how it is used in instruction.  We discuss this point more in chapter

10, but it is important to the discussion in this chapter, too.  Every time we

reiterate that how teachers use texts, manipulatives, and calculators makes

the difference, we are hovering around questions concerning what teachers

know and how they make use of that knowledge in teaching.

Finally, too little of the extant research probes the work of teaching at a

sufficiently fine grain to contribute to the development of a conceptual and

practical language of practice.  Much of the interactive work in instruction

remains unexamined, which leaves to teachers the unnecessary challenge of

reinventing their practice from scratch, armed with only general advice.

Suggestions that a class “discuss the solutions to a problem” provides little

specificity about what constitutes a productive discussion and runs the risk of

a free-for-all session that resembles sharing more than instruction.  Research

needs to be designed to illuminate what is entailed in a “discussion” and to

probe the specific moves that teachers and students engage in that lead to

productive rather than an unproductive discussions.

Instruction that develops mathematical proficiency is neither simple,

common, nor well understood.  It comes in many forms and can follow a vari-

ety of paths.  As this chapter demonstrates, such instruction offers numerous

fertile sites for research that could make a profound difference in teachers’

practice and their students’ learning.

Notes

1. An interactive perspective on teaching and learning has been discussed by a number

of people, including Piaget, Vygotsky, Bauersfeld, Steier, Voigt, Hawkins, Gravemeijer,

Easley, Cobb, and von Glaserfeld.  The particular version employed here is based on

the work of Cohen and Ball, 1999, 2000, in press.

2. Cohen and Ball, 1999, 2000, in press.

3. This lesson is typical of lessons observed in many U.S. classrooms during the past

half-century.  See, for example, the report by Fey, 1979, or the more recent TIMSS

video study (Stigler and Hiebert, 1999).

4. Note that Mr. Angelo has avoided 100, partly because the rule is stated in terms of

moving the decimal point, and multiplying by 100 = 1 leaves the number unchanged.

5. U.S. eighth-grade lessons from the TIMSS video study were characterized the same

way.  See Stigler and Hiebert, 1999.

6. Cohen and Ball, 2000.
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7. Berliner and Biddle, 1995.  Opportunity to learn was also studied in what is now

called the First International Mathematics Study (Husén, 1967), although there it

was based on teachers’ perceptions of students’ opportunity to learn.

8. McKnight, Crosswhite, Dossey, Kifer, Swafford, Travers, and Cooney, 1987.

9. Knapp, Shields, and Turnbull, 1995; Mason, Schroeter, Combs, and Washington, 1992;

Steele, 1992.

10. Berliner, 1979.

11. Stevenson and Stigler, 1992, p. 150.

12. Freeman and Porter, 1989; Porter, 1993.

13. See, for example,  Campbell, 1996; Carpenter, Fennema, Peterson, Chiang, and Loef,

1989; Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human,

1997; Knapp, 1995; Silver and Stein, 1996.

14. Doyle, 1983, 1988; Stein, Grover, and Henningsen, 1996.

15. Henningsen and Stein, 1997; Stein, Grover, and Henningsen, 1996.

16. Clark and Yinger, 1979.

17. Shavelson and Stern, 1981.

18. Boaler, 1997.

19. Good and Brophy, 2000.

20. Good and Brophy, 2000.

21. Smith, 1996.

22. For example, Hatano, 1988, suggests that students are motivated to learn with

understanding when they encounter novel problems regularly, are encouraged to

seek comprehension over efficiency, and engage in dialogue.

23. National Research Council, 1999b, pp. 29–38.

24. Feather, 1982.

25. Bandura, 1997; Bandura and Schunk, 1981; Dweck and Elliott, 1983.

26. Good and Brophy, 2000.

27. Brophy, 1998, Brophy and Kher, 1986; Good and Brophy, 2000.

28. These principles and the discussion that follows are based largely on a synthesis by

Baroody, 1999.  For related research and syntheses, see also Baroody, 1987, 1996;

Cawley, 1985; and Geary, 1993.  For practical advice for teaching, see Thornton and

Bley, 1994.

29. Baroody, 1999.

30. See Donlan, 1998, for example, for a discussion of students with speech deficiencies.

See Nunes and Moreno, 1998, for a discussion of hearing impairment.

31. Becker, 1981; Leder, 1987.  See also Leder, 1992.

32. Ladson-Billings, 1999.

33. Foster, 1995.

34. Steele, 1992.

35. Knapp, 1995.

36. Good and Brophy, 2000.

37. See, for example, Ball and Bass, 2000; Cobb, Boufi, McClain, and Whitenack, 1997;

Hiebert and Wearne, 1993; Lampert, 1990; Wood, 1999.

38. Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human, 1997.
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39. Oakes, 1985: Oakes, Gamoran, and Page, 1992.

40. Kulik, 1992; Linchevski and Kutsher, 1998; Mason and Good, 1993; Mosteller, Light,

and Sachs, 1996; Slavin, 1987, 1993.

41. Loveless, 1998.

42. Linchevski and Kutscher, 1998.

43. Argys, Rees, and Brewer, 1996.

44. Druckman and Bjork, 1994, pp. 83-111; Johnson, Johnson, and Maruyama, 1983;

Sharan, 1980; Slavin, 1980, 1983, 1995.

45. Ellis and Gauvain, 1992.

46. Fennema, Carpenter, Franke, Levi, Jacobs, and Empson, 1996; Thompson and Briars,

1989.

47. Hiebert, 1990.

48. Case, 1985.

49. Flanders, 1987; McKnight, Crosswhite, Dossey, Kifer, Swafford, Travers, and Cooney,

1987; Schmidt, McKnight, and Raizen, 1997.

50. Siegler and Stern, in press; Sophian, 1997.

51. Carpenter, Fennema, Peterson, Chiang, and Loef, 1989; Cobb, Wood, Yackel,

Nicholls, Wheatley, Trigatti, and Perlwitz, 1991; Fennema, Carpenter, Franke, Levi,

Jacobs, and Empson, 1996; Hiebert and Wearne, 1993.

52. Cooper, 1989; Epstein, 1988; Miller and Kelley, 1991.

53. Epstein, 1998; Good and Brophy, 2000.

54. Good and Brophy, 2000.

55. Fuson, 1986; Fuson and Briars, 1990; Wearne and Hiebert, 1988.

56. Cohen, 1990; Hart, 1996; Resnick and Omanson, 1987.

57. Ball, 1992a, 1992b.

58. Thompson and Lambden, 1994.

59. Fuson, Wearne, Hiebert, Murray, Human, Olivier, Carpenter, and Fennema, 1997;

Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human, 1997.

60. Fuson, 1986.

61. Fey, 1989; NCTM, 1974.

62. Brolin and Björk, 1992; Groves 1993, 1994a, 1994b; Hembree and Dessart, 1986,

1992; Ruthven, 1996, 1998;  Shuard, 1992.

63. Hembree and Dessart, 1986, 1992.

64. Ruthven, 1996.

65. Brolin and Björk, 1992.

66. Groves, 1993, 1994a, 1994b.

67. Shuard, 1992.

68. Mitchell, Hawkins, Jakwerth, Stancavage, and Dossey, 1999.

69. National Research Council, 1999a, p. 48.

70. Stigler and Hiebert, 1999.
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10

DEVELOPING PROFICIENCY IN

TEACHING MATHEMATICS

In the previous chapter, we examined teaching for mathematical profi-

ciency.  We now turn our attention to what it takes to develop proficiency in

teaching mathematics.  Proficiency in teaching is related to effectiveness: con-

sistently helping students learn worthwhile mathematical content.  Proficiency

also entails versatility: being able to work effectively with a wide variety of

students in different environments and across a range of mathematical content.

What Does It Take to Teach for

Mathematical Proficiency?

Teaching in the ways portrayed in chapter 9 is a complex practice that

draws on a broad range of resources.  Despite the common myth that teach-

ing is little more than common sense or that some people are just born teach-

ers, effective teaching practice can be learned.  In this chapter, we consider

what teachers need to learn and how they can learn it.

First, what does it take to be proficient at mathematics teaching?  If their

students are to develop mathematical proficiency, teachers must have a clear

vision of the goals of instruction and what proficiency means for the specific

mathematical content they are teaching.  They need to know the mathematics

they teach as well as the horizons of that mathematics—where it can lead and

where their students are headed with it.  They need to be able to use their

knowledge flexibly in practice to appraise and adapt instructional materials,

to represent the content in honest and accessible ways, to plan and conduct

instruction, and to assess what students are learning.  Teachers need to be

able to hear and see expressions of students’ mathematical ideas and to design
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A Chinese teacher on how a profound understanding

of fundamental mathematics is attained

One thing is to study whom you are teaching, the other thing is to study the knowl-

edge you are teaching.  If you can interweave the two things together nicely, you
will succeed. . . . Believe me, it seems to be simple when I talk about it, but when

you really do it, it is very complicated, subtle, and takes a lot of time.  It is easy to

be an elementary school teacher, but it is difficult to be a good elementary school
teacher.

SOURCE: Ma, 1999, p. 136. Used by permission from Lawrence Erlbaum Associates.

appropriate ways to respond.  A teacher must interpret students’ written work,

analyze their reasoning, and respond to the different methods they might use

in solving a problem.  Teaching requires the ability to see the mathematical

possibilities in a task, sizing it up and adapting it for a specific group of stu-

dents.  Familiarity with the trajectories along which fundamental mathemati-

cal ideas develop is crucial if a teacher is to promote students’ movement

along those trajectories.  In short, teachers need to muster and deploy a wide

range of resources to support the acquisition of mathematical proficiency.

In the next two sections, we first discuss the knowledge base needed for

teaching mathematics and then offer a framework for looking at proficient

teaching of mathematics.  In the last two sections, we discuss four programs

for developing proficient teaching and then consider how teachers might de-

velop communities of practice.

The Knowledge Base for Teaching

Mathematics

Three kinds of knowledge are crucial for teaching school mathematics:

knowledge of mathematics, knowledge of students, and knowledge of

instructional practices.1   These can be seen in the instructional triangle

(Box 9-1 in chapter 9 and below).2   Mathematics and students are two of the

triangle’s vertices, and instructional practices are the interactions portrayed

by the arrows.
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Mathematical knowledge includes knowledge of mathematical facts, con-

cepts, procedures, and the relationships among them; knowledge of the ways

that mathematical ideas can be represented; and knowledge of mathematics

as a discipline—in particular, how mathematical knowledge is produced, the

nature of discourse in mathematics, and the norms and standards of evidence

that guide argument and proof.  In our use of the term, knowledge of mathematics

includes consideration of the goals of mathematics instruction and provides a

basis for discriminating and prioritizing those goals.  Knowing mathematics

for teaching also entails more than knowing mathematics for oneself.  Teachers

certainly need to be able to understand concepts correctly and perform

procedures accurately, but they also must be able to understand the concep-

tual foundations of that knowledge.  In the course of their work as teachers,

they must understand mathematics in ways that allow them to explain and

unpack ideas in ways not needed in ordinary adult life.  The mathematical

sensibilities they hold matter in guiding their decisions and interpretations of

students’ mathematical efforts.

Knowledge of students and how they learn mathematics includes general

knowledge of how various mathematical ideas develop in children over time

as well as specific knowledge of how to determine where in a developmental

trajectory a child might be.  It includes familiarity with the common difficul-

teacher

students
mathematics

students

contexts

contexts
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ties that students have with certain mathematical concepts and procedures,

and it encompasses knowledge about learning and about the sorts of

experiences, designs, and approaches that influence students’ thinking and

learning.

Knowledge of instructional practice includes knowledge of curriculum, knowl-

edge of tasks and tools for teaching important mathematical ideas, knowl-

edge of how to design and manage classroom discourse, and knowledge of

classroom norms that support the development of mathematical proficiency.

Teaching entails more than knowledge, however.  Teachers need to do as

well as to know.  For example, knowledge of what makes a good instructional

task is one thing; being able to use a task effectively in class with a group of

sixth graders is another.  Understanding norms that support productive class-

room activity is different from being able to develop and use such norms with

a diverse class.

Knowledge of Mathematics

Because knowledge of the content to be taught is the cornerstone of teach-

ing for proficiency, we begin with it.  There is a substantial body of research

on teachers’ mathematical knowledge, and teachers’ knowledge of mathemat-

ics is prominent in discussions of how to improve mathematics instruction.

Improving teachers’ mathematical knowledge and their capacity to use it to

do the work of teaching is crucial in developing students’ mathematical

proficiency.

Many recent studies have revealed that U.S. elementary and middle school

teachers possess a limited knowledge of mathematics, including the math-

ematics they teach.  The mathematical education they received, both as K-12

students and in teacher preparation, has not provided them with appropriate

or sufficient opportunities to learn mathematics.  As a result of that educa-

tion, teachers may know the facts and procedures that they teach but often

have a relatively weak understanding of the conceptual basis for that knowl-

edge.  Many have difficulty clarifying mathematical ideas or solving problems

that involve more than routine calculations.3   For example, virtually all teachers

can multiply multidigit numbers, but several researchers have found that many

prospective and practicing elementary school teachers cannot explain the basis

for multidigit multiplication using place-value concepts and the underlying

properties for adding and multiplying.4   In another study,5  teachers of fourth

through sixth graders scored over 90% on items testing common decimal cal-

culations, but fewer than half could find a number between 3.1 and 3.11.
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Teachers frequently regard mathematics as a fixed body of facts and pro-

cedures that are learned by memorization, and that view carries over into

their instruction.  Many have little appreciation of the ways in which math-

ematical knowledge is generated or justified.  Preservice teachers, for ex-

ample, have repeatedly been shown to be quite willing to accept a series of

instances as proving a mathematical generalization.6   Nowhere in their edu-

cation have they had opportunities to study and experience the nature and

role of justification in mathematics, a notion central to developing mathemati-

cal knowledge.

Although teachers may understand the mathematics they teach in only a

superficial way, simply taking more of the standard college mathematics

courses does not appear to help matters.  The evidence on this score has been

consistent, although the reasons have not been adequately explored.  For

example, a study of prospective secondary mathematics teachers at three major

institutions showed that, although they had completed the upper-division

college mathematics courses required for the mathematics major, they had

only a cursory understanding of the concepts underlying elementary math-

ematics.7   The mathematics of the elementary and middle school curriculum

is not trivial, and the underlying concepts and structures are worthy of serious,

sustained study by teachers.  To develop prospective teachers’ understand-

ing of the mathematics they will teach, careful attention must be given to

identifying the mathematics that teachers need in order to teach effectively,

articulating the ways in which they must use it in practice and what that implies

for their opportunities to learn mathematics.  This sort of attention to teachers’

mathematical knowledge and its central role in practice is crucial to ensure

that their study of mathematics provides teachers with mathematical knowl-

edge useful to teaching well.

Teachers’ mathematical knowledge and student achieve-

ment.  Conventional wisdom asserts that student achievement must be

related to teachers’ knowledge of their subject.  That wisdom is contained in

adages such as “You cannot teach what you don’t know.”  For the better part

of a century, researchers have attempted to find a positive relation between

teacher content knowledge and student achievement.  For the most part, the

results have been disappointing: Most studies have failed to find a strong

relationship between the two.

Many studies, however, have relied on crude measures of these variables.

The measure of teacher knowledge, for example, has often been the number

of mathematics courses taken or other easily documented data from college
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transcripts.  Such measures do not provide an accurate index of the specific

mathematics that teachers know or of how they hold that knowledge.  Teachers

may have completed their courses successfully without achieving mathemati-

cal proficiency.  Or they may have learned the mathematics but not know

how to use it in their teaching to help students learn.  They may have learned

mathematics that is not well connected to what they teach or may not know

how to connect it.  Similarly, many of the measures of student achievement

used in research on teacher knowledge have been standardized tests that

focus primarily on students’ procedural skills.  Some evidence suggests that

there is a positive relationship between teachers’ mathematical knowledge

and their students’ learning of advanced mathematical concepts.8   There

seems to be no association, however, between how many advanced math-

ematics courses a teacher takes and how well that teacher’s students achieve

overall in mathematics.9   In general, empirical evidence regarding the effects

of teachers’ knowledge of mathematics content on student learning is still

rather sparse.

In the National Longitudinal Study of Mathematical Abilities (NLSMA),

conducted during the 1960s and still today the largest study of its kind, there

was essentially no association between students’ achievement and the num-

ber of credits a teacher had in mathematics at the level of calculus or beyond.10

Commenting on the findings from NLSMA and a number of other studies of

teacher knowledge, the director of NLSMA later said,

It is widely believed that the more a teacher knows about his subject

matter, the more effective he will be as a teacher.  The empirical

literature suggests that this belief needs drastic modification and in

fact suggests that once a teacher reaches a certain level of under-

standing of the subject matter, then further understanding contrib-

utes nothing to student achievement.11

The notion that there is a threshold of necessary content knowledge for teach-

ing is supported by the findings of another study in 1994 that used data from

the Longitudinal Study of American Youth (LSAY).12   There was a notable

increase in student performance for each additional mathematics course their

teachers had taken, yet after the fifth course there was little additional

benefit.13

Data from the 1996 NAEP on teachers’ college major rather than the

number of courses they had taken provide a contrast to the general trend of

this line of research.  The NAEP data revealed that eighth graders taught by

teachers who majored in mathematics outperformed those whose teachers
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majored in education or some other field.  Fourth graders taught by teachers

who majored in mathematics education or in education tended to outperform

those whose teachers majored in a field other than education.14

Although studies of teachers’ mathematical knowledge have not demon-

strated a strong relationship between teachers’ mathematical knowledge and

their students’ achievement, teachers’ knowledge is still likely a significant

factor in students’ achievement.  That crude measures of teacher knowledge,

such as the number of mathematics courses taken, do not correlate positively

with student performance data, supports the need to study more closely the

nature of the mathematical knowledge needed to teach and to measure it

more sensitively.

The persistent failure of the many efforts to show strong, definitive rela-

tions between teachers’ mathematical knowledge and their effectiveness does

not imply that mathematical knowledge makes no difference in teaching.

The research, however, does suggest that proposals to improve mathematics

instruction by simply increasing the number of mathematics courses required

of teachers are not likely to be successful.  As we discuss in the sections that

follow, courses that reflect a serious examination of the nature of the math-

ematics that teachers use in the practice of teaching do have some promise of

improving student performance.

Teachers need to know mathematics in ways that enable them to help

students learn.  The specialized knowledge of mathematics that they need is

different from the mathematical content contained in most college mathemat-

ics courses, which are principally designed for those whose professional uses

of mathematics will be in mathematics, science, and other technical fields.

Why does this difference matter in considering the mathematical education

of teachers?  First, the topics taught in upper-level mathematics courses are

often remote from the core content of the K-12 curriculum.  Although the

abstract mathematical ideas are connected, of course, basic algebraic concepts

or elementary geometry are not what prospective teachers study in a course

in advanced calculus or linear algebra.  Second, college mathematics courses

do not provide students with opportunities to learn either multiple represen-

tations of mathematical ideas or the ways in which different representations

relate to one another.  Advanced courses do not emphasize the conceptual

underpinnings of ideas needed by teachers whose uses of mathematics are to

help others learn mathematics.15   Instead, the study of college mathematics

involves the increasing compression of elementary ideas into the more and

more powerful and abstract forms needed by those whose professional uses

of mathematics will be in scientific domains.  Third, advanced mathematical
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study entails using elementary concepts and procedures without much con-

scious attention to their meanings or implications, thus reinforcing the mak-

ing of prior learning routine in the service of more advanced work.  While this

approach is important for the education of mathematicians and scientists, it is

at odds with the kind of mathematical study needed by teachers.

Consider the proficiency teachers need with algorithms.  The power of

computational algorithms is that they allow learners to calculate without hav-

ing to think deeply about the steps in the calculation or why the calculations

work.  That frees up the learners’ thinking so that they can concentrate on

the problem they are trying to use the calculation to solve rather than having

to worry about the details of the calculation.  Over time, people tend to forget

the reasons a procedure works or what is entailed in understanding or justify-

ing a particular algorithm.  Because the algorithm has become so automatic, it

is difficult to step back and consider what is needed to explain it to someone

who does not understand.  Consequently, appreciating children’s difficulties

in learning an algorithm can be very difficult for adults who are fluent with

that algorithm.

The necessary compression of ideas in the course of mathematical study

also shortchanges teachers’ mathematical needs.  Most advanced mathemat-

ics classes engage students in taking ideas they have already learned and

using them to construct increasingly powerful and abstract concepts and

methods.  Once theorems have been proved, they can be used to prove other

theorems.  It is not necessary to go back to foundational concepts to learn

more advanced ideas.  Teaching, however, entails reversing the direction fol-

lowed in learning advanced mathematics.  In helping students learn, teachers

must take abstract ideas and unpack them in ways that make the basic under-

lying concepts visible.16   For example, most adults have lost sight of the fact

that there are different interpretations of division.  For adults, division is an

operation on numbers.  Division, however, is rooted in quite different physi-

cal situations, and distinctions among those situations are important for un-

derstanding children’s thinking, developing their understanding of the mean-

ing of division, and helping them apply that understanding to solve problems.17

For example, although both of the following problems can be represented as

dividing 24 by 6, young children think about them in very different ways and

use quite different strategies to solve them:18

Jane has 24 cookies.  She wants to put 6 cookies on each plate.  How many plates

will she need?
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Jeremy has 24 cookies.  He wants to put all the cookies on 6 plates.  If he puts the

same number of cookies on each plate, how many cookies will he put on each

plate?

These two problems correspond to the measurement and sharing models of

division, respectively, that were discussed in chapter 3.  Young children using

counters solve the first problem by putting 24 counters in piles of 6 counters

each.  They solve the second by partitioning the 24 counters into 6 groups.

In the first case the answer is the number of groups; in the second, it is the

number in each group.  Until the children are much older, they are not aware

that, abstractly, the two solutions are equivalent.  Teachers need to see that

equivalence so that they can understand and anticipate the difficulties chil-

dren may have with division.

To understand the sense that children are making of arithmetic prob-

lems, teachers must understand the distinctions children are making among

those problems and how the distinctions might be reflected in how the chil-

dren think about the problems.  The different semantic contexts for each of

the operations of arithmetic is not a common topic in college mathematics

courses, yet it is essential for teachers to know those contexts and be able to

use their knowledge in instruction.  The division example illustrates a differ-

ent way of thinking about the content of courses for teachers—a way that can

make those courses more relevant to the teaching of school mathematics.

A recent study indicates that teachers’ performance on mathematical tasks

that have been set in the context of teaching practice is positively related to

student achievement.19   In the study, teachers’ ability to interpret four stu-

dent responses to a ratio problem and to determine which were correct was

strongly related to their students’ mathematics achievement.

Teachers’ mathematical knowledge and their teaching

practice.  Conventional wisdom holds that a teacher’s knowledge of math-

ematics is linked to how the teacher teaches.  Teachers are unlikely to be

able to provide an adequate explanation of concepts they do not understand,

and they can hardly engage their students in productive conversations about

multiple ways to solve a problem if they themselves can only solve it in a

single way.

In the last 15 years, researchers have investigated how teachers’ math-

ematical knowledge shapes the way they teach.  Most of the investigations

have been case studies, almost all involving fewer than 10 teachers, and most

only one to three teachers.  In general, the researchers found that teachers
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with a relatively weak conceptual knowledge of mathematics tended to dem-

onstrate a procedure and then give students opportunities to practice it.  Not

surprisingly, these teachers gave the students little assistance in developing

an understanding of what they were doing.20   When the teachers did try to

provide a clear explanation and justification, they were not able to do so.21   In

some cases, their inadequate conceptual knowledge resulted in their pre-

senting incorrect procedures.22

Some of the same studies contrasted the teaching practices of teachers

with low levels of mathematical knowledge with the teaching practices of

teachers who had a better command of mathematics.  These studies indicate

that a strong grasp of mathematics made it possible for teachers to under-

stand and use constructively students’ mathematical solutions, explanations,

and questions.23   Several researchers found, however, that some teachers with

strong conceptual knowledge did not necessarily use that knowledge to under-

stand their students’ mathematical explanations, preferring instead to impose

their own explanations.24

Knowledge of Students

Knowledge of students includes both knowledge of the particular stu-

dents being taught and knowledge of students’ learning in general.  Knowing

one’s own students includes knowing who they are, what they know, and how

they view learning, mathematics, and themselves.  The teacher needs to know

something of each student’s personal and educational background, especially

the mathematical skills, abilities, and dispositions that the student brings to

the lesson.  The teacher also needs to be sensitive to the unique ways of

learning, thinking about, and doing mathematics that the student has devel-

oped.  Each student can be seen as located on a path through school math-

ematics, equipped with strengths and weaknesses, having developed his or

her own approaches to mathematical tasks, and capable of contributing to

and profiting from each lesson in a distinctive way.

Teachers also need a general knowledge of how students think—the

approaches that are typical for students of a given age and background, their

common conceptions and misconceptions, and the likely sources of those

ideas.  Over the last decade, researchers have produced an impressive body

of evidence about how children’s thinking about various mathematical con-

cepts progresses over time.  We have described some of those progressions in

chapters 6 through 8.  Using that body of evidence, researchers have also
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studied how teachers’ knowledge of students’ mathematical thinking is related

to how they teach and to how well their students achieve.

From the many examples of misconceptions to which teachers need to

be sensitive, we have chosen one: An important mathematical notion that

poses a major stumbling block when students are moving from arithmetic to

algebra is the role played by “=,” the sign for equality.25   As we discussed in

chapter 8, many if not most elementary school children have the misconception

that the equality sign is a signal to do something, to carry out the calculation

that precedes it.26   The number immediately after the equal sign is seen as the

answer to the calculation.  For example, in the number sentence 8 + 4 =  + 5,

many students would put 12 in the box.  Children can develop this impres-

sion because that is how the notation is often described in the elementary

school curriculum and most of their practice exercises fit that pattern.  Few

teachers realize the degree of their students’ misunderstanding of such sen-

tences.27   Moreover, although most teachers have some idea that equality is a

relation between two numbers, few realize how important it is that students

understand equality as a relation, and few consider this need for understand-

ing when they use the equals sign.

Knowledge of Classroom Practice

Knowing classroom practice means knowing what is to be taught and

how to plan, conduct, and assess effective lessons on that mathematical con-

tent.  It includes a knowledge of learning goals as expressed in the curricu-

lum and a knowledge of the resources at one’s disposal for helping students

reach those goals.  It also includes skill in organizing one’s class to create a

community of learners and in managing classroom discourse and learning

activities so that everyone is engaged in substantive mathematical work.  We

have discussed these matters in chapter 9.  This type of knowledge is gained

through experience in classrooms and through analyzing and reflecting on

one’s own practice and that of others.

In the sections that follow, we consider how to develop an integrated

corpus of knowledge of the types discussed in this section.  First, however,

we need to clarify our stance on the relation between knowledge and prac-

tice.  We have discussed the kinds of knowledge teachers need if they are to

teach for mathematical proficiency.  Although we have used the term knowl-

edge throughout, we do not mean it exclusively in the sense of knowing about.

Teachers must also know how to use their knowledge in practice.  Teachers’

knowledge is of value only if they can apply it to their teaching; it cannot be
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divorced from practice.  Effective programs of teacher preparation and pro-

fessional development cannot stop at simply engaging teachers in acquiring

knowledge; they must challenge teachers to develop, apply, and analyze that

knowledge in the context of their own classrooms so that knowledge and

practice are integrated.

Proficient Teaching of Mathematics

In chapter 4 we identified five components or strands of mathematical

proficiency.  From that perspective, successful learning is characterized by

comprehension of ideas; ready access to skills and procedures; an ability to

formulate and solve problems; a capacity to reflect on, evaluate, and adapt

one’s knowledge; the ability to reason from what is known to what is wanted;

and a habitual inclination to make sense of and value what is being learned.

Teaching is a complex activity and, like other complex activities, can be con-

ceived in terms of similar components.  Just as mathematical proficiency itself

involves interwoven strands, teaching for mathematical proficiency requires

similarly interrelated components.  In the context of teaching, proficiency

requires:

• conceptual understanding of the core knowledge required in the prac-

tice of teaching;

• fluency in carrying out basic instructional routines;

• strategic competence in planning effective instruction and solving prob-

lems that arise during instruction;

• adaptive reasoning in justifying and explaining one’s instructional prac-

tices and in reflecting on those practices so as to improve them; and a

• productive disposition toward mathematics, teaching, learning, and the

improvement of practice.

Like the strands of mathematical proficiency, these components of math-

ematical teaching proficiency are interrelated.  In this chapter we discuss the

problems entailed in developing a proficient command of teaching.  In the

previous section we discussed issues relative to the knowledge base needed

to develop proficiency across all components.  Now we turn to specific issues

that arise in the context of the components.
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Understanding of Core Knowledge

It is not sufficient that teachers possess the kinds of core knowledge

delineated in the previous section.  One of the defining features of concep-

tual understanding is that knowledge must be connected so that it can be

used intelligently.  Teachers need to make connections within and among

their knowledge of mathematics, students, and pedagogy.

The kinds of knowledge that make a difference in teaching practice and

in students’ learning are an elaborated, integrated knowledge of mathematics,

a knowledge of how students’ mathematical understanding develops, and a

repertoire of pedagogical practices that take into account the mathematics

being taught and how students learn it.  The implications for teacher prepa-

ration and professional development are that teachers need to acquire these

forms of knowledge in ways that forge connections between them.  For

teachers who have already achieved some mathematical proficiency, separate

courses or professional development programs that focus exclusively on math-

ematics, on the psychology of learning, or on methods of teaching provide

limited opportunities to make these connections.  Unfortunately, most uni-

versity teacher preparation programs offer separate courses in mathematics,

psychology, and methods of teaching that are taught in different departments.

The difficulty of integrating such courses is compounded when they are

located in different administrative units.

The professional development programs we discuss later in this chapter

all situate their portrayals of mathematics and children’s thinking in contexts

directly relevant to the problems teachers face daily in teaching mathematics.28

This grounding in reality allows knowledge of mathematics and knowledge

of students to be connected in ways that make a difference for instruction

and for learning.  It is not enough, however, for mathematical knowledge and

knowledge of students to be connected; both need to be connected to class-

room practice.  Teachers may know mathematics, and they may know their

students and how they learn.  But they also have to know how to use both

kinds of knowledge effectively in the context of their work if they are to help

their students develop mathematical proficiency.

Similarly, many inservice workshops, presentations at professional meet-

ings, publications for teachers, and other opportunities for teacher learning

focus almost exclusively on activities or methods of teaching and seldom

attempt to help teachers develop their own conceptual understanding of the

underlying mathematical ideas, what students understand about those ideas,

or how they learn them.  Alternative forms of teacher education and profes-

sional development that attempt to teach mathematical content, psychology
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of learning, and methods of teaching need to be developed and evaluated to

see whether prospective and practicing teachers from such programs can draw

appropriate connections and apply the knowledge they have acquired to teach

mathematics effectively.

Instructional Routines

The second basic component of teaching proficiency is the development

of instructional routines.  Just as students who have acquired procedural flu-

ency can perform calculations with numbers efficiently, accurately, and flex-

ibly with minimal effort, teachers who have acquired a repertoire of instruc-

tional routines can readily draw upon them as they interact with students in

teaching mathematics.  Some routines concern classroom management, such

as how to get the class started each day and procedures for correcting and

collecting homework.  Other routines are more grounded in mathematical

activity.  For example, teachers need to know how to respond to a student

who gives an answer the teacher does not understand or who demonstrates a

serious misconception.  They need to know how to deal with students who

lack critical prerequisite skills for the day’s lesson.  Teachers need business-

like ways of dealing with situations like these that occur on a regular basis so

that they can devote more of their attention to the more serious issues facing

them.  When teachers have several ways of approaching teaching problems,

they can try a different approach if one does not work.

Researchers have shown that expert teachers have a large repertoire of

routines at their disposal.29   They can choose among a number of approaches

for teaching a given topic or responding to a situation that arises in their classes.

Novice teachers, in contrast, have a limited range of routines and often can-

not respond appropriately to situations.  Expert teachers not only have access

to a range of routines, they also can apply them flexibly, know when they are

appropriate, and can adapt them to fit different situations.

Strategic Competence

The third component of teaching proficiency is strategic competence.

Although teachers need a range of routines, teaching is very much a problem-

solving activity.30   Like other professionals, teachers are constantly faced with

decisions in planning instruction, implementing those plans, and interacting

with students.31   Useful guidelines are seldom available for figuring out what

to teach when, how to teach it, how to adapt material so that it is appropriate

for a given group of students, or how much time to allow for an activity.  On
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the spot, teachers need to find out what a student knows, choose how to

respond to a student’s question or statement, and decide whether to follow a

student’s idea.  These are problems that every teacher faces every day, and

most do not have readymade solutions.

Conceptual understanding of the knowledge required to teach for profi-

ciency can help equip teachers to deal intelligently with these problems.  It is

misleading to claim that teachers actually solve such problems in the sense of

solving a mathematical problem.  There is never an ideal solution to the more

difficult problems of teaching, but teachers can learn to contend with these

problems in reasonable ways that take into account the mathematics that stu-

dents are to learn; what their students understand and how they may best

learn it; and representations, activities, and teaching practices that have proven

most effective in teaching the mathematics in question or that have been

effective in teaching related topics.

Teacher education and professional development programs that take into

account the strategic decision making in teaching can help prepare teachers

to be more effective in solving instructional problems.  Rather than being

designed to resolve teachers’ problems, programs of teacher education and

professional development can engage prospective and practicing teachers in

the analysis of instructional problems and potential ways of dealing with them.

Teachers can learn to recognize that teaching involves solving problems and

that they can address these problems in reasonable and intelligent ways.

Adaptive Reasoning

The fourth component of teaching proficiency is adaptive reasoning.

Teachers can learn from their teaching by analyzing it: the difficulties their

students have encountered in learning a particular topic; what the students

have learned; how the students responded to particular representations, ques-

tions, and activities; and the like.32   Teachers can become reflective prac-

titioners, and reflection is essential in improving their practice.  The focus of

teachers’ reflection and the tools they use shape the nature of that reflection

and affect whether, what, and how they learn from it.  Many successful pro-

grams of teacher education and professional development engage teachers in

reflection, but the reflection, or perhaps more appropriately the analysis, is

grounded in specific examples.  In those programs, teachers engage in analyses

in which they are asked to provide evidence to justify claims and assertions.

As with other complex activities, teacher learning can be enhanced by making

more visible the goals, assumptions, and decisions involved in the practice of
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teaching.33   The implications for teacher education and professional devel-

opment is that teachers engage not only in learning methods of teaching but

also in reflecting on them and justifying and explaining them in relation to

such matters as the mathematics being taught, the goals for students, the

conceptions and misconceptions that students have about the mathematics,

the difficulties they have in learning it, and the representations that are most

effective in communicating essential ideas.

One of the ways that the professional development programs described

below foster teachers’ ability to justify and explain classroom practices is that

teachers examine familiar artifacts from practice, and those artifacts help them

focus their attention and develop a common language for discussion.  In some

cases the program leaders provide the artifacts; in others the artifacts come

from the teachers’ classrooms.  Teachers are often asked to pose a particular

mathematical problem to their classes and to discuss the mathematical think-

ing that they observe.

Productive Disposition

The final component of teaching proficiency is a productive disposition

about one’s own knowledge, practice, and learning.  Just as students must

develop a productive disposition toward mathematics such that they believe

that mathematics makes sense and that they can figure it out, so too must

teachers develop a similar productive disposition.  Teachers should think that

mathematics, their understanding of children’s thinking, and their teaching

practices fit together to make sense and that they are capable of learning

about mathematics, student mathematical thinking, and their own practice

themselves by analyzing what goes on in their classes.  Teachers whose learning

becomes generative perceive themselves as in control of their own learning.34

They learn by listening to their students and by analyzing their teaching prac-

tices.  Not only do they develop more elaborated conceptions of how stu-

dents’ mathematical thinking develops by listening to their students, but they

also learn mathematical concepts and strategies from their interactions with

students.  The teachers become more comfortable with mathematical ideas

and ripe for a more systematic view of the subject.

Teachers whose learning becomes generative see themselves as lifelong

learners who can learn from studying curriculum materials35  and from analyzing

their practice and their interactions with students.  Programs of teacher edu-

cation and professional development that portray to the participants that they

are in control of their own learning help teachers develop a productive dispo-
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sition toward learning about mathematics, student mathematical thinking,

and teaching practice.  Programs that provide readymade, worked-out solu-

tions to teaching problems should not expect that teachers will see them-

selves as in control of their own learning.

Programs to Develop Proficient Teaching

In a teacher preparation program, teachers clearly cannot learn all they

need to know about the mathematics they will teach, how students learn that

mathematics, and how to teach it effectively.  Consequently, some authori-

ties have recommended that teacher education be seen as a professional con-

tinuum, a career-long process.36   Hence, teachers need a basis for ongoing

learning.  They need to be able to adapt to new curriculum frameworks, new

materials, advances in technology, and advances in research on student think-

ing and teaching practice.  They have to learn how to learn, whether they are

learning about mathematics, students, or teaching.  Teachers can continue to

learn by participating in various forms of professional development.  But formal

professional development programs represent only one source for continued

learning.  Teachers’ schools and classrooms can also become places for teachers

as well as students to learn.37   Professional development programs that engage

teachers in inquiry in their classrooms can provide the basis for teachers’ learn-

ing to become generative so that their knowledge, conceptions, and practice

continue to grow and evolve.38

Programs of teacher education and professional development based on

research integrate the study of mathematics and the study of students’ learn-

ing so that teachers will forge connections between the two.  Some of these

programs begin with mathematical ideas from the school curriculum and ask

teachers to analyze those ideas from the learners’ perspective.  Other pro-

grams use students’ mathematical thinking as a springboard to motivate

teachers’ learning of mathematics.  Still others begin with teaching practice

and move toward a consideration of mathematics and students’ thinking.  We

consider below examples of four such program types that represent an array

of alternative approaches to developing integrated proficiency in teaching

mathematics.39

Focus on Mathematics

Some teacher preparation and professional development programs attempt

to enhance prospective and practicing teachers’ knowledge of mathematics

by having them probe more deeply fundamental ideas from elementary school
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mathematics, often through problem solving.  For example, prospective el-

ementary school teachers may take a mathematics course that focuses, in part,

on rational numbers or proportionality rather than the usual college algebra or

calculus.  Such courses are offered in many universities, but they are seldom

linked to instructional practice.  The lesson depicted in Box 10-1 comes from

a course in which connections to practice are being made.

Box 10-1

Investigating Division of Fractions in a

Mathematics Course

The prospective teachers stare at the board, trying to figure out what the instructor

is asking them to do.  After calculating the answer to a simple problem in the

division of fractions (13
4

 ÷ 1
2

 = ?) and recalling the old algorithm—invert and mul-

tiply—most of them have come up with the answer, 3 1
2

.  It is familiar content, and

although they have not had occasion to divide fractions recently, they feel com-

fortable, remembering their own experiences in school mathematics and what

they learned.  But now, what are they being asked?  The instructor has challenged

them to consider why they are getting what seems to be an answer ( 3 1
2

) that is

larger than either of the numbers in the original problem (13
4

 and 1
2

).  “Doesn’t

dividing make numbers smaller?” she asks.  Confused, they are suddenly stuck.

None of them noticed this fact before.

The instructor proposes a new task: “See if you can make up a story problem,
devise a real-world context, or draw a picture that will go with one and three fourths

divided by a half.  Can you come up with an example or a model that shows what

is going on with dividing one and three fourths by one half?”

The prospective teachers set to work, some in pairs, some alone.  The instructor

walks around, watching them work, and occasionally asking a question.  Most

have drawn pictures like those below:
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They have written problems like the following:

I have two pizzas.  My little brother eats one quarter of one of them and

then I have one and three quarters pizzas left.  My sister is very hungry, so

we decide to split the remaining pizza between us.  We each get 3 1
2

 pieces

of pizza.

One pair of students has a different problem:

I have 13
4

 cups of sugar.  Each batch of sesame crackers takes 1
2

 cup of

sugar.  How many batches of crackers can I make?

And another pair has envisioned filling 1
2

-liter containers, starting with 13
4

 liters of

water.

After about 10 minutes, the instructor invites students to share their problems

with the rest of the class.  One student presents the pizza situation above.  Most
students nod appreciatively.  When a second student offers the sesame cracker

problem, most nod again, not noticing the difference.  The instructor poses a ques-

tion: How does each problem we heard connect with the original computation?
Are these two problems similar or different, and does it matter?

Through discussion the students gradually come to recognize that, in the pizza

problem, the pizza has been divided in half and that the answer is in terms of

fourths—that is, that the 3 1
2

 pieces are fourths of pizzas.  In the case of the sesame

cracker problem, the answer of 3 1
2

 batches is in terms of half cups of sugar.  In the

first instance, they have represented division in half, which is actually division by

two; in the second they have represented division by one half.

           

           

2 pizzas

2 pizzas, with one quarter eaten

sharing the remaining pizza with

one other person
A

A

A

A

B

B
B

B

continued
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The instructor moves into a discussion of different interpretations of division: shar-

ing and measurement.  After the students observe that the successful problems—
involving the sesame crackers and the liters of water—are measurement problems,

she asks them to try to develop a problem situation for 13
4

 ÷ 1
2

 that represents a

sharing division.  In other words, could they make a sensible problem in which the
1
2

 is not the unit by which the whole is being measured, but instead is the number

of units into which the whole has been divided?

For homework, the instructor asks the students to try making representations for

several other division situations, which she chooses strategically, and finally asks

them to select two numbers to divide that they think are particularly good choices
and to say why.  She also asks them to try to connect what they have done in class

today with the familiar algorithm of “invert and multiply.”

In this excerpt from a university mathematics course, the prospective

teachers are being asked to unpack familiar arithmetic content, to make explicit

the ideas underlying the procedures they remember and can perform.

Repeatedly throughout the course, the instructor poses problems that have

been strategically designed to expose concepts on which familiar procedures

rest.

One principle behind the instructor’s efforts is to engage the prospective

teachers in a kind of mathematical work that focuses on developing their

proficiency with the mathematical content of the elementary school curricu-

lum.  A second principle is to link that work with larger mathematical ideas

and structures.  For example, the lesson on the division of fractions is part of

a larger agenda that includes understanding division, its relationship to frac-

tions and to multiplication, and the meaning and representation of opera-

tions.  Moreover, throughout the development of these ideas and connec-

tions, the prospective teachers work with whole and rational numbers,

considering how the mathematical world looks inside these nested systems.

The overriding purpose of a course like this is to provide prospective

teachers with ample opportunities to learn fundamental ideas of school math-

ematics, how they are related, and how students come to learn them.  The

Box 10-1 Continued
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ways in which the prospective teachers’ opportunities to learn are designed

may at times situate the mathematical questions within apparently pedagogi-

cal contexts (e.g., make a story problem), so that the kind of mathematical

work they do in the course helps them develop mathematical proficiency in

ways they can use in teaching.  But the course is not about how to teach, nor

about how children learn.  It is explicitly and deliberately a sustained oppor-

tunity for prospective teachers to learn mathematical ideas in ways that will

equip them with mathematical resources needed in teaching.

Focus on Student Thinking

The successful programs that focus on mathematics and children’s think-

ing are programs grounded in practice.  Teachers do not learn abstract con-

cepts about mathematics and children.  In the programs, teachers look at

problem-solving strategies of real students, artifacts of student work, cases of

real classrooms, and the like.  Furthermore, the teachers in these programs

are challenged to relate what they learn to their own students and their own

instructional practices.  They learn about mathematics and students both in

workshops and by interacting with their own students.  Specific opportunity

is provided for the teachers to discuss with one another how the ideas they

are encountering influence their practice and how their practice influences

what they are learning.  Discussions in these programs are conducted in a

spirit of supporting the teachers’ inquiry.  The analysis of children’s thinking

is not presented as a fixed body of knowledge, and the teachers engage not

only in inquiry about how to apply knowledge about students’ thinking in

planning and implementing instruction but also in inquiry to deepen their

understanding of students’ thinking.40

The workshop described in Box 10-2 forms part of a professional devel-

opment program designed to help teachers develop a deeper understanding

of some critical mathematical ideas, including the equality sign.  The pro-

gram, modeled after Cognitively Guided Instruction (CGI), which has proven

to be a highly effective approach,41  assists teachers in understanding how to

help their students reason about number operations and relations in ways

that enhance the learning of arithmetic and promote a smoother transition

from arithmetic to algebra.42   This particular workshop was directed at illu-

minating students’ misconceptions about equality and considering how those

misconceptions might be addressed.

Several features of this example of professional development are worth

noting.  The teachers focus on children’s thinking about a critical mathematical

idea.  Although they begin by considering how children think, the teachers
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Box 10-2

Investigating the Concept of Equality in a

Professional Development Group

Before attending the workshop, participating teachers ask their students to find

the number that they could put in the box to make the following open-number
sentence a true number sentence: 8 + 4 =  + 5.  At the workshop, the teachers

share their findings with the other participants.  Fewer than 10% of the students in

any teacher’s class solved the problem correctly.*  The majority of the incorrect
responses were 12, with a number of responses of 17.  These findings, which

surprised most teachers, have led them to begin to listen to their students, and a

number of teachers have engaged their students in a discussion of the reasons for
their responses.  The teachers’ experiences have precipitated a discussion in the

workshop of how students are thinking about equality and how these misconcep-

tions might have been acquired.  The discussion generates insights about how
children are thinking and what teachers can learn by listening to their students.

Although the teachers recognize the students’ errors on this problem, however,

they do not have a good idea of how they would address the misconception.

The workshop leader introduces several true and false number sentences as a

context to challenge children’s incorrect notions of equality.  Examples include

8 = 3 + 5, 17 + 9 = 36, 23 = 23, 17 + 26 = 27 + 16, and 76 + 7 = 76.  The task is to decide
whether the sentence is true or false.  Sometimes the decision requires calculation

(e.g., 74 – 57 = 17), and sometimes it does not (e.g., 67 + 96 = 96 + 67).  The teachers

work in small groups to construct true and false number sentences they might use
to elicit various views of equality.  Using these sentences, their students could

engage in explorations that might lead to understanding equality as a relation.

The sentences could also provide opportunities for discussions about how to re-
solve disagreement and develop a mathematical argument.  The teachers work

together to consider how their students might respond to different number sen-

tences and which number sentences might produce the most fruitful discussion.

* These responses and this level of success are typical for classes ranging from

grade 1 to 6.

SOURCE: Falkner, Levi, and Carpenter, 1999. Used by permission of the authors.

must also examine their own conceptions.  Properties of equality that the

teachers have not usually examined carefully before emerge in their discus-

sions of students’ conceptions and misconceptions in using the equals sign.

The teachers also begin to ponder how notation is used and how ideas are

justified in mathematics.  A central feature of their discussion is that math-
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ematics and children’s thinking are set in a context that relates to their prac-

tice.  The mathematical ideas and how children think about them are seen in

classroom interactions.  The problems discussed in the workshop are prob-

lems that the teachers can and do use in their classes; the interactions about

mathematics that occur in the teachers’ classes provide a setting for work-

shop discussion of mathematical ideas and children’s thinking.  The activi-

ties taking place in the workshop and in the teachers’ classrooms have the

same goals.  In both places the teachers engage in inquiry to gain a deeper

understanding of mathematics, students’ thinking about that mathematics,

and how to plan their instruction so as to foster the development of students’

mathematical thinking.

Before beginning a professional development program similar to the one

described above, teachers participating in the program found that fewer than

10% of their students at any grade demonstrated a relational concept of

equality.  After one year of the program, the percentage of students in their

classes who demonstrated a relational concept of equality ranged from 66%

in first and second grades to 84% in sixth grade.43

Although these programs place a heavy emphasis on children’s thinking,

understanding children’s mathematical thinking depends upon understand-

ing the mathematics with which that thinking is engaged.  The programs do

not deal with general theories of learning.  They concentrate instead on under-

standing children’s thinking in specific domains of mathematical content.

Understanding the mathematics of the domain being studied is a prerequi-

site to understanding children’s thinking in that domain.  For example, to

understand the different strategies that children use to solve different prob-

lems, teachers must understand the semantic differences between problems

represented by the same operation, as illustrated by the sharing and

measurement examples of dividing cookies described above in Box 10-1.  In

programs focusing on children’s mathematical thinking, teachers learn to rec-

ognize and appreciate the mathematical significance of children’s informal

methods for solving problems, how these methods evolve into more abstract

and more powerful methods, and how the informal methods could serve as a

basis for students to learn formal concepts and procedures with understanding.

Professional development programs focusing on helping teachers under-

stand both the mathematics of specific content domains and students’ math-

ematical thinking in that domain have consistently been found to contribute

to major changes in teachers’ instructional practices that have resulted in sig-

nificant gains in students’ achievement.44   For example, in an experimental

study of CGI with first-grade teachers, teachers who had taken a month-long
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workshop on children’s development of addition and subtraction concepts

taught problem solving significantly more and number facts significantly less

than did teachers who had instead taken two 2-hour workshops on nonroutine

problem solving.  Students in the CGI teachers’ classes performed as well as

students in the comparison teachers’ classes on a standardized computation

test and outperformed students in the comparison teachers’ classes on com-

plex addition and subtraction word problems.45   After teachers have studied

the development of children’s mathematical thinking, they tend to place a

greater emphasis on problem solving, listen to their students more and know

more about their students’ abilities, and provide greater opportunity for their

students to use a variety of solution methods.  Gains in student achievement

generally have been in the areas of understanding and problem solving, but

none of the programs has led to a decline in computational skills, despite

their greater emphasis on higher levels of thinking.

Focus on Cases

Case examples are yet another way to build the connections between

knowledge of mathematics, knowledge of students, and knowledge of prac-

tice.  Although the cases focus on classroom episodes, the discussions the

teachers engage in as they reflect on the cases emphasize mathematics con-

tent and student thinking.  The cases involve instruction in specific math-

ematical topics, and teachers analyze the cases in terms of the mathematics

content being taught and the mathematical thinking reflected in the work

the children produce and the interactions they engage in.  Cases can be pre-

sented in writing or using multiple media such as videotapes and transcrip-

tions of lessons.  The episode in Box 10-3 is taken from a case discussion in

which the case is presented through video recordings of lessons from an entire

year that were captured on computer disks, together with the teacher’s plans

and reflections and with samples of student work.

Notable in this example is how the teachers’ opportunities to consider

mathematical ideas—in this case, functions—are set in the context of the use

of those ideas in teaching.  These teachers are probing the concept of func-

tions from several overlapping perspectives.  They dig into the mathematics

through close work on and analysis of the task that the teacher posed.  They

also explore the ideas by investigating students’ work on the problem.  And

they revisit the mathematical ideas by looking carefully at how the teacher

deals with the mathematics during the lesson.
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Box 10-3

Investigating Mathematical Tasks Using Cases from

Real Practice

A dozen teachers are gathered around a table.  They have read a case of a teacher

teaching a lesson on functions.  The written case includes the task the teacher
used and a detailed narrative account of what happened in the class as students

worked on the problem.  The teacher used the following task:

Sara has made several purchases from a mail-order company.  She has
found that the company charges $12.90 to ship an 8-kg package, $6.40 to

ship a 3-kg package, and $9.00 to ship a 5-kg package.  Sara decides that

the company must be using a simple rule to determine how much to charge
for shipping.  Help her figure out how much it would most likely cost to

ship a 1-kg package and how much each additional kilogram would cost.

Photocopies of students’ work are available, as are pages from the curriculum
materials being used.  Before the teachers studied the case and the accompanying

materials, they solved the mathematical problem themselves.

To begin the discussion, the workshop leader asks the teachers to look closely at
one segment of the lesson in which two students are presenting solutions to the

problem.  She asks them to interpret what each student did and to compare the

two solutions.  This request precipitates an animated discussion in which the
teachers probe the students’ representations and explanations.  One teacher notes

that a third student has a method that is similar to the first student’s, but several

others argue that the method is not similar.  The teachers continue to analyze the
students’ thinking, with repeated careful use of the reproductions of the students’

work.  At one point one teacher raises a mathematical point, asking whether there

might be something particularly significant in one student’s idea.

The teachers launch into a discussion of the mathematics for several minutes.

They note that if the given values (weight, cost) are graphed, the points lie on the

same straight line.  Reading the graph provides a solution.  Also, by asking how
much each additional kilogram would cost, the problem suggests there is a constant

difference that can be used in solving it.  Since the 2-kg difference between 5 kg and

3 kg is $2.60, and the 3-kg difference between 8 kg and 5 kg is $3.90, the simplest rule
would be that each additional kilogram costs $1.30.  A linear function (y = 1.30x + 2.50)

fits the three values, and one can use constant differences or a graph to find this

function (although that is not necessary to answer the two questions).

After a much-needed break, the leader refocuses the discussion on the teacher’s

moves throughout the episode that they have been discussing.  At first, several

continued
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teachers comment that the teacher doesn’t seem to be doing much.  “She is more
of a guide,” one teacher remarks.  “It is really a student-centered class.”  “Is it?”

asks the leader.  She asks them to analyze the text closely and try to categorize

what the teacher is doing.

This discussion yields surprises for most of the teachers.  Suddenly the intricate

work that the teacher is doing becomes visible.  They see her posing strategic

questions, using particular aspects of the students’ solutions to focus the class
discussion, providing direction at some moments and letting the students struggle

a bit at others.  They begin to describe and name the different moves she makes.

One teacher becomes intrigued with how the teacher helps students express their
ideas by asking questions to support their explanations before she asks other stu-

dents to comment.  It is quite clear that this is no generic skill, for the mathematical

sensitivity and knowledge entailed are quite visible throughout.  Another teacher
notices how the teacher’s own mathematical knowledge seems to shape her skilled

questioning.  The teachers become fascinated with what looks like an important

missed opportunity to unpack a common misconception about function.  Specu-
lating about why that happened leads them to a productive conversation about

what one might do to seize and capitalize on the opportunity.

The session ends with the teachers agreeing to bring back one mathematical task
from their own work on functions and compare it with the task used in the case.

Several are overheard to be discussing features of this problem that seem particu-

larly fruitful and that have them thinking about how they frame problems for their
students.  The group briefly discusses some ways to vary the problem to make it

either simpler or more complex.  The leader then closes by summarizing some of

the mathematical issues embedded in the task.  She points out that it is not obvi-
ous what the value of 2.50 means in the algebraic expression of the function.  It is

the cost of sending a package of zero weight, an idea that does not appear any-

where in the problem itself or in real life.  She also says that it is important to
understand that x refers to whole numbers only.  Finally, she notes that with a

different function, the differences might not be constant.  The assumption of con-

stant differences is one suggested by the problem and common in situations like
those involving shipping costs, but it is not necessarily always warranted.

Studies of teachers’ learning in professional development programs that

have used classroom cases show that the teachers learned mathematics from

studying such cases.  They gained a greater repertoire of ways to represent

mathematical ideas, were able to articulate connections among mathematical

ideas, and developed a deeper understanding of mathematical structures.46

Box 10-3 Continued
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As a result of their work in this program, the teachers became more likely to

bring out students’ reasoning in discussions and to invite both public and

private reflection on the students’ ideas.  At least some of the teachers con-

tinued the process of learning mathematics by examining the mathematical

work of their own students in their own classrooms.

The case-based programs that focus on classroom instruction treat the

cases as problematic situations that serve as a basis for discussion and inquiry

rather than as models of instruction for the teachers to emulate.  Teachers

analyze classes not to figure out how they can do what the teacher in the case

example did; instead, the case discussions provide models for inquiry that

teachers may apply to analyze their own students’ mathematical thinking and

their own teaching practices.

Focus on Lesson Study

A somewhat different approach to professional development is repre-

sented by so-called lesson study groups, which are used in Japan (see Box 10-4).

These study groups focus on the development and refinement of one spe-

cific mathematical lesson, called a “research lesson.”  Teachers work together

to consider a specific difficulty entailed in teaching some important piece of

mathematics.  They design a lesson, and one member of the group teaches it

while the others watch.  Afterwards they discuss what happened in light of

their anticipations and goals.  Based on this experience, the group revises the

lesson and someone else teaches it.  The cycle continues of trying the lesson,

discussing and analyzing how it worked, and revising it.  Through such lesson

study groups, teachers engage in very detailed analyses of mathematics, of

students’ mathematical thinking and skill, of teaching and learning.  Although

the process results in a well-crafted lesson, in the process of developing and

refining the lesson, teachers work on analyzing students’ responses and learn

from and revise their own teaching practices.  Their knowledge becomes a

basis for further learning through the study of a lesson.47

Lesson study groups might follow somewhat different formats and sched-

ules than the one described above, but most meet regularly during the year

and focus on improving a very few lessons with clear learning goals.  Using

the lesson as the unit of analysis and improvement, the teachers are encour-

aged to improve their knowledge of all aspects of teaching within the context

of their own classrooms—knowledge of mathematics, of students’ thinking,

of pedagogy, of curriculum, and of assessment.  Although the year’s activity

yields a collective product that can be shared with other teachers (the group’s

written report), Japanese teachers say that the primary value of lesson study
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Box 10-4

The Japanese Lesson Study

Small groups of teachers form within the school around areas of common teach-

ing interests or responsibilities (e.g., grade-level groups in mathematics or in sci-
ence).  Each group begins by formulating a goal for the year.  Sometimes the goal

is adapted from national-level recommendations (e.g., improve students’ prob-

lem-solving skills) and is translated into a more specific goal (e.g., improve stu-
dents’ understanding of problems involving ratios).  The more specific goal might

focus on a curriculum topic that has been problematic for students in their class-

rooms.  A few lessons then are identified that ordinarily deal with that topic, and
the group begins its yearlong task to improve those lessons.

Lesson study groups meet regularly, often once a week after school (e.g., 3:00 to

5:00 pm), to develop, test, and refine the improved lessons.  Some groups divide
their work into three major phases, each taking about one third of the school year.

During the first phase, teachers do research on the topic, reading and sharing rel-

evant research reports and collecting information from other teachers on effective
approaches for teaching the topic.  During the second phase, teachers design the

targeted lessons (often just one, two, or perhaps three lessons).  Important parts

of the design include (a) the problems that will be presented to students, (b) the
teachers’ predictions about how students will solve the problems, and (c) how

these different solution methods are to be integrated into a productive class dis-

cussion.

During the third phase, the lessons are tested and refined.  The first test often

involves one of the group members teaching a lesson to his or her class while the

other group members observe and take notes.  After the group refines the lesson,
it might be tested with another class in front of all the teachers in the school.  In

this case, a follow-up session is scheduled, and the lesson study group engages

their colleagues in a discussion about the lesson, receiving feedback about its
effectiveness.

The final task for the group is to prepare a report of the year’s work, including a

rationale for the approach used and a detailed plan of the lesson, complete with
descriptions of the different solution methods students are likely to present and

the ways in which these can be orchestrated into a constructive discussion.
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is teacher development.  Working directly on improving teaching is their means

of becoming better teachers.

Communities of Practice

Learning in ways that continue to be generative over time is best done in

a community of fellow practitioners and learners, as illustrated by the Japa-

nese lesson study groups.  The foregoing discussion of teacher proficiency

focused on individual teachers’ knowledge, but teaching proficiency does

not easily develop and is not generally sustained in isolation.  Studies of school

reform efforts suggest that professional development is most effective when

it extends beyond the individual teacher.48   Collaboration among teachers

provides support for them to engage in the kinds of inquiry that are needed

to develop teaching proficiency.  Professional development can create contexts

for teacher collaboration, provide a focus for the collaboration, and provide a

common frame for interacting with other teachers around common problems.

When teachers have opportunities to continue to participate in communities

of practice that support their inquiry, instructional practices that foster the

development of mathematical proficiency can more easily be sustained.

The focus of teacher groups matters for what teachers learn from their

interactions with others.  When sustained work is focused on mathematics,

on students’ thinking about specific mathematical topics, or on the detailed

work of designing and enacting instruction, the resources generated for teach-

ers’ own practice are greater than when there is less concrete focus.  For

example, general sharing, or discussion of approaches, ungrounded in the

particulars of classroom artifacts, while possibly enjoyable, less often produces

usable knowledge that can make a difference for teachers’ work.

Mathematics Specialists

Because of the specialized knowledge required to teach mathematics,

there has been increased discussion recently of the use of mathematics spe-

cialists, particularly in the upper elementary and middle school grades.  The

Learning First Alliance, comprising 12 major education groups, recommends

that mathematics teachers from grades 5 through 9 have “a solid grounding in

the coursework of grades K-12 and the teaching of middle grades mathemat-

ics.”49   The Conference Board of the Mathematical Sciences recommends in

its draft report that mathematics in middle grades should be taught by math-

ematics specialists, starting at least in the fifth grade.50   They further recom-

mend that teachers of middle school mathematics have taken 21 semester

Professional
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hours of mathematics, 12 of which are on fundamental ideas of school math-

ematics appropriate for middle school teachers.

Implicit in the recommendations for mathematics specialists is the notion

of the mathematics specialist in a departmental arrangement.  In such

arrangements, teachers with a strong background in mathematics teach math-

ematics and sometimes another subject, depending on the student popula-

tion, while other teachers in the building teach other subject areas.  Depart-

mentalization is most often found in the upper elementary grades (4 to 6).

Other models of mathematics specialists are used, particularly in elementary

schools, which rarely are departmentalized.  Rather than a specialist for all

mathematics instruction, a single school-level mathematics specialist is some-

times used.  This person, who has a deep knowledge of mathematics and

how students learn it, acts as a resource for other teachers in the school.  The

specialist may consult with other teachers about specific issues, teach dem-

onstration lessons, observe and offer suggestions, or provide special training

sessions during the year.  School-level mathematics specialists can also take

the lead in establishing communities of practice, as discussed in the previous

section.  Because many districts do not have enough teachers with strong

backgrounds in mathematics to provide at least one specialist in every school,

districts instead identify district-level mathematics coaches who are respon-

sible for several schools.  Whereas a school-level specialist usually has a regu-

lar or reduced teaching assignment, district-level specialists often have no

classroom teaching assignment during their tenure as a district coach.  The

constraint on all of the models for mathematics specialists is the limited num-

ber of teachers, especially at the elementary level, with strong backgrounds

in mathematics.  For this reason, summer leadership training programs have

been used to develop mathematics specialists.

Effective Professional Development

Perhaps the central goal of all the teacher preparation and professional

development programs is in helping teachers understand the mathematics they

teach, how their students learn that mathematics, and how to facilitate that

learning.  Many of the innovative programs described in this chapter make

serious efforts to help teachers connect these strands of knowledge so that

they can be applied in practice.  Teachers are expected to explain and justify

their ideas and conclusions.  Teachers’ ideas are respected, and they are

encouraged to engage in inquiry.  They have opportunities to develop a pro-

ductive disposition toward their own learning about teaching that contrib-
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utes to their learning becoming generative.  Teachers are not given readymade

solutions to teaching problems or prescriptions for practice.  Instead, they

adapt what they are learning and engage in problem solving to deal with the

situations that arise when they attempt to use what they learn.

Professional development beyond initial preparation is critical for devel-

oping proficiency in teaching mathematics.  However, such professional devel-

opment requires the marshalling of substantial resources.  One of the critical

resources is time.  If teachers are going engage in inquiry, they need repeated

opportunities to try out ideas and approaches with their students and con-

tinuing opportunities to discuss their experiences with specialists in math-

ematics, staff developers, and other teachers.  These opportunities should

not be limited to a period of a few weeks or months; instead, they should be

part of the ongoing culture of professional practice.  Through inquiry into

teaching, teacher learning can become generative, and teachers can continue

to learn and grow as professionals.
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11

CONCLUSIONS AND

RECOMMENDATIONS

To many people, school mathematics is virtually a phenomenon of na-

ture.  It seems timeless, set in stone—hard to change and perhaps not need-

ing to change.  But the school mathematics education of yesterday, which had

a practical basis, is no longer viable.  Rote learning of arithmetic procedures

no longer has the clear value it once had.  The widespread availability of

technological tools for computation means that people are less dependent on

their own powers of computation.  At the same time, people are much more

exposed to numbers and quantitative ideas and so need to deal with math-

ematics on a higher level than they did just 20 years ago.  Too few U.S. stu-

dents, however, leave elementary and middle school with adequate math-

ematical knowledge, skill, and confidence for anyone to be satisfied that all is

well in school mathematics.  Moreover, certain segments of the U.S. popula-

tion are not well represented among those who succeed in learning math-

ematics.  Widespread failure to learn mathematics limits individual possibili-

ties and hampers national growth.  Our experiences, discussions, and review

of the literature have convinced us that school mathematics demands sub-

stantial change.  We recognize that such change needs to be undertaken care-

fully and deliberately, so that every child has both the opportunity and sup-

port necessary to become proficient in mathematics.

In this chapter, we present conclusions and recommendations to help

move the nation toward the change needed in school mathematics.  In the

preceding chapters, we have offered citations of research studies and of theo-

retical analyses, but we recognize that clear, unambiguous evidence is not

available to address many of the important issues we have raised.  It should
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be obvious that much additional research will be needed to fill out the picture,

and we have recommended some directions for that research to take.  The

remaining recommendations reflect our consensus that the relevant data and

theory are sufficiently persuasive to warrant movement in the direction indi-

cated, with the proviso that more evidence will need to be collected along

the way.

Information is now becoming available as to the effects on students’ learn-

ing in new curriculum programs in mathematics that are different from those

programs common today.  Over the coming years, the volume of that informa-

tion is certain to increase.  The community of people concerned with math-

ematics education will need to pay continued attention to studies of the

effectiveness of new programs and will need to examine the available data

carefully.  In writing this report we were able to use few such studies because

they were just beginning to be published.  We expect them collectively to

provide valuable information that will warrant careful review at a later date

by a committee like ours.

Our report has concentrated on learning about numbers, their properties,

and operations on them.  Although number is the centerpiece of pre-K to

grade 8 mathematics, it is not the whole story, as we have noted more than

once.  Our reading of the scholarly literature on number, together with our

experience as teachers, creators, and users of mathematics, has yielded obser-

vations that might be applied to other components of school mathematics

such as measurement, geometry, algebra, probability, and data analysis.  Num-

ber is used in learning concepts and processes from all these domains.

Below we present some comprehensive recommendations concerning

mathematical proficiency that cut across all domains of policy, practice, and

research.  Then we propose changes needed in the curriculum if students are

to develop mathematical proficiency, and we offer some recommendations

for instruction.  Finally, we discuss teacher preparation and professional devel-

opment related to mathematics teaching, setting out recommendations de-

signed to help teachers be more proficient in their work.

Mathematical Proficiency

As a goal of instruction, mathematical proficiency provides a better way

to think about mathematics learning than narrower views that leave out key

features of what it means to know and be able to do mathematics.  Math-

ematical proficiency, as defined in chapter 4, implies expertise in handling

mathematical ideas.  Students with mathematical proficiency understand basic
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concepts, are fluent in performing basic operations, exercise a repertoire of

strategic knowledge, reason clearly and flexibly, and maintain a positive out-

look toward mathematics.  Moreover, they possess and use these strands of

mathematical proficiency in an integrated manner, so that each reinforces the

others.  It takes time for proficiency to develop fully, but in every grade in

school students can demonstrate mathematical proficiency in some form.  In

this report we have concentrated on those ideas about number that are devel-

oped in grades pre-K through 8.  We must stress, however, that proficiency

spans all parts of school mathematics and that it can and should be developed

every year that students are in school.

All young Americans must learn to think mathematically, and they must

think mathematically to learn.  We have elaborated on what such learning

and thinking entail by proposing five strands of mathematical proficiency to

be developed in school.  The overriding premise of our work is that throughout the

grades from pre-K through 8 all students can and should be mathematically

proficient.  That means they understand mathematical ideas, compute fluently,

solve problems, and engage in logical reasoning.  They believe they can make

sense out of mathematics and can use it to make sense out of things in their

world.  For them mathematics is personal and is important to their future.

School mathematics in the United States does not now enable most stu-

dents to develop the strands of mathematical proficiency in a sound fashion.

Proficiency for all demands that fundamental changes be made concurrently

in curriculum, instructional materials, classroom practice, teacher preparation,

and professional development.  These changes will require continuing, coor-

dinated action on the part of policy makers, teacher educators, teachers, and

parents.  Although some readers may feel that substantial advances are al-

ready being made in reforming mathematics teaching and learning, we find

real progress toward mathematical proficiency to be woefully inadequate.

These observations led us to five general recommendations regarding math-

ematical proficiency that reflect our vision for school mathematics.

• The integrated and balanced development of all five strands of math-

ematical proficiency should guide the teaching and learning of school math-

ematics.  Instruction should not be based on extreme positions that students

learn, on the one hand, solely by internalizing what a teacher or book says or,

on the other hand, solely by inventing mathematics on their own.

• Teachers’ professional development should be high quality, sustained,

and systematically designed and deployed to help all students develop math-
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ematical proficiency.  Schools should support, as a central part of teachers’

work, engagement in sustained efforts to improve their mathematics instruc-

tion.  This support requires the provision of time and resources.

• The coordination of curriculum, instructional materials, assessment,

instruction, professional development, and school organization around the

development of mathematical proficiency should drive school improvement

efforts.

• Efforts to improve students’ mathematics learning should be informed

by scientific evidence, and their effectiveness should be evaluated system-

atically.  Such efforts should be coordinated, continual, and cumulative.

• Additional research should be undertaken on the nature, develop-

ment, and assessment of mathematical proficiency.

These recommendations are augmented in the discussion below.  In that dis-

cussion we propose additional recommendations that detail some of the poli-

cies and practices needed if all children are to be mathematically proficient.

Curriculum

The balanced and integrated development of all five strands of math-

ematical proficiency requires that various elements of the school curriculum—

goals, core content, learning activities, and assessment efforts—be coordi-

nated toward the same end.  Achieving that coordination puts heavy demands

on instructional programs, on the materials used in instruction, and on the

way in which instructional time is managed.  The curriculum has to be orga-

nized within and across grades so that time for learning is used effectively.

Instead of cursory and repeated treatments of a topic, the curriculum should

be focused on important ideas, allowing them to be developed thoroughly

and treated in depth.  The unproductive recycling of mathematical content is

to be avoided, but students need ample opportunities to review and consoli-

date their knowledge.

Building on Informal Knowledge

Most children in the United States enter school with an extensive stock

of informal knowledge about numbers from the counting they have done,

from hearing number words and seeing number symbols used in everyday
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life, and from various experiences in judging and comparing quantities.  Many

are also familiar with various patterns and some geometric shapes.  This knowl-

edge serves as a basis for developing mathematical proficiency in the early

grades.  The level of children’s knowledge, however, varies greatly across

socioeconomic and ethnic groups.  Some children have not had the experi-

ences necessary to build the informal knowledge they need before they enter

school.

A number of interventions have demonstrated that any immaturity of

mathematical development can be overcome with targeted instructional

activities.  Parents and other caregivers, through games, puzzles, and other

activities in the home, can also help children develop their informal knowl-

edge and can augment the school’s efforts.  Just as adults in the home can

help children avoid reading difficulties through activities that promote lan-

guage and literacy growth, so too can they help children avoid difficulties in

mathematics by helping them develop their informal knowledge of number,

pattern, shape, and space.  Support from home and school can have a catalytic

effect on children’s mathematical development, and the sooner that support

is provided, the better:

• School and preschool programs should provide rich activities with

numbers and operations from the very beginning, especially for children who

enter without these experiences.

• Efforts should be made to educate parents and other caregivers as to

why they should, and how they can, help their children develop a sense of

number and shape.

Learning Number Names

Research has shown that the English number names can inhibit children’s

understanding of base-10 properties of the decimal system and learning to

use numerals meaningfully.  Names such as “twelve” and “fifteen” do not

make clear to children that 12 = 10 + 2 and 15 = 10 + 5.  These connections are

more obvious in some other languages.

U.S. children, therefore, often need extra help in understanding the base-

ten organization underlying number names and in seeing quantities orga-

nized into hundreds, tens, and ones.  Conceptual supports (objects or diagrams)

that show the magnitude of the quantities and connect them to the number

names and written numerals have been found to help children acquire insight

into the base-10 number system.  That insight is important to learning and
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understanding numerals and also to developing strategies for solving prob-

lems in arithmetic.  So that number names will be understood and used cor-

rectly, we recommend the following:

• Mathematics programs in the early grades should make extensive

use of appropriate objects, diagrams, and other aids to ensure that all children

understand and are able to use number words and the base-10 properties of

numerals, that all children can use the language of quantity (hundreds, tens,

and ones) in solving problems, and that all children can explain their reason-

ing in obtaining solutions.

Learning About Numbers

The number systems of pre-K–8 mathematics—the whole numbers,

integers, and rational numbers—form a coherent structure.  For each of these

systems, there are various ways to represent the numbers themselves and the

operations on them.  For example, a rational number might be represented

by a decimal or in fractional form.  It might be represented by a word, a sym-

bol, a letter, a point or length on a line, or a portion of a figure.  Proficiency

with numbers in the elementary and middle grades implies that students can

not only appreciate these different notations for a number but also can trans-

late freely from one to another.  It also means that they see connections among

numbers and operations in the different number systems.  As a consequence

of many instructional programs, students have had severe difficulty repre-

senting, connecting, and using numbers other than whole numbers.  Innova-

tions that link various representations of numbers and situations in which

numbers are used have been shown to produce learning with understanding.

Creating this kind of learning will require changes in all parts of school math-

ematics to ensure that the following recommendations are implemented:

• An integrated approach should be taken to the development of all

five strands of proficiency with whole numbers, integers, and rational

numbers to ensure that students in grades pre-K–8 can use the numbers flu-

ently and flexibly to solve challenging but accessible problems.  In particular,

procedures for calculation should frequently be linked to various represen-

tations and to situations in which they are used so that all strands are brought

into play.
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• The conceptual bases for operations with numbers and how those

operations relate to real situations should be a major focus of the curricu-

lum.  Addition, subtraction, multiplication, and division should be presented

initially with real situations.  Students should encounter a wide range of

situations in which those operations are used.

• Different ways of representing numbers, when to use a specific rep-

resentation, and how to translate from one representation to another should

be included in the curriculum.  Students should be given opportunities to use

these different representations to carry out operations and to understand

and explain these operations.  Instructional materials should include visual

and linguistic supports to help students develop this representational ability.

Operating with Single-Digit Numbers

Learning to operate with single-digit numbers has long been character-

ized in the United States as “learning basic facts,” and the emphasis has been

on rote memorization of those facts, also known as basic number combina-

tions.  For adults the simplicity of calculating with single-digit numbers often

masks the complexity of learning those combinations and the many different

methods children can use in carrying out such calculations.  Research has

shown that children move through a fairly well-defined sequence of solution

methods in learning to perform operations with single-digit numbers, par-

ticularly for addition and subtraction, where rapid general procedures exist.

Children progress from using physical objects for representing problem situ-

ations to using more sophisticated counting and reasoning strategies, such as

deriving one number combination from another (e.g., finding 7 + 8 by know-

ing that it is 1 more than 7 + 7 or, similarly, finding 7 × 6 as 7 more than 7 × 5).

They know that addition and multiplication are commutative and that there

is a relation between addition and subtraction and between multiplication

and division.  They use patterns in the multiplication table as the basis for

learning the products of single-digit numbers.  Instruction that takes such

research into account is needed if students are to become proficient:

• Children should learn single-digit number combinations with un-

derstanding.

• Instructional materials and classroom teaching should help students

learn increasingly abbreviated procedures for producing number combinations

rapidly and accurately without always having to refer to tables or other aids.
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Learning Numerical Algorithms

We believe that algorithms and their properties are important mathemati-

cal ideas that all students need to understand.  An algorithm is a reliable step-

by-step procedure for solving problems.  To perform arithmetic calculations,

children must learn how numerical algorithms work.  Some algorithms have

been well established through centuries of use; others may be invented by

children on their own.  The widespread availability of calculators for per-

forming calculations has greatly reduced the level of skill people need to

acquire in performing multidigit calculations with paper and pencil.  Anyone

who needs to perform such calculations routinely today will have a calculator,

or even a computer, at hand.  But the technology has not made obsolete the

need to understand and be able to perform basic written algorithms for addi-

tion, subtraction, multiplication, and division of numbers, whether expressed

as whole numbers, fractions, or decimals.  Beyond providing tools for compu-

tation, algorithms can be analyzed and compared, which can help students

understand the nature and properties of operations and of place-value notation

for numbers.  In our view, algorithms, when well understood, can serve as a

valuable basis for reasoning about mathematics.

Students acquire proficiency with multidigit numerical algorithms through

a progression of experiences that begin with the students modeling various

problem situations.  They then can learn algorithms that are easily under-

stood because of obvious connections to the quantities involved.  Eventually,

students can learn and use methods that are more efficient and general, though

perhaps less transparent.  Proficiency with numerical algorithms is built on

understanding and reasoning, as well as frequent opportunity for use.

Two recommendations reflect our view of the role of numerical algorithms

in grades pre-K–8:

• For addition, subtraction, multiplication, and division, all students

should understand and be able to carry out an algorithm that is general and

reasonably efficient.

• Students should be able to use adaptive reasoning to analyze and

compare algorithms, to grasp their underlying principles, and to choose with

discrimination algorithms for use in different contexts.
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Using Estimation and Mental Arithmetic

The accurate and efficient use of an algorithm rests on having a sense of

the magnitude of the result.  Estimation techniques enable students not only

to check whether they are performing an operation correctly but also to decide

whether that operation makes sense for the problem they are solving.

The base-10 structure of numerals allows certain sums, differences, prod-

ucts, and quotients to be computed mentally.  Activities using mental arith-

metic develop number sense and increase flexibility in using numbers.  Mental

arithmetic also simplifies other computations and estimations.  For example,

dividing by 0.25 is the same as multiplying by 4, which can be found by

doubling twice.  Whether or not students are performing a written algorithm,

they can use mental arithmetic to simplify certain operations with numbers.

Techniques of estimation and of mental arithmetic are particularly important

when students are checking results obtained from a calculator or computer.

If children are not encouraged to use the mental computational procedures

they have when entering school, those procedures will erode.  But when

instruction emphasizes estimation and mental arithmetic, conceptual under-

standing and fluency with mental procedures can be enhanced.  Our recom-

mendation about estimation and computation, whether mental or written, is

as follows:

• The curriculum should provide opportunities for students to develop

and use techniques for mental arithmetic and estimation as a means of pro-

moting a deeper number sense.

Representing and Operating with Rational Numbers

Rational numbers provide the first number system in which all the op-

erations of arithmetic, including division, are possible.  These numbers pose

a major challenge to young learners, in part because each rational number can

represent so many different situations and because there are several different

notational schemes for representing the same rational number, each with its

own method of calculation.

An important part of learning about rational numbers is developing a clear

sense of what they are.  Children need to learn that rational numbers are

numbers in the same way that whole numbers are numbers.  For children to

use rational numbers to solve problems, they need to learn that the same

rational number may be represented in different ways, as a fraction, a deci-

mal, or a percent.  Fraction concepts and representations need to be related
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to those of division, measurement, and ratio.  Decimal and fractional repre-

sentations need to be connected and understood.  Building these connec-

tions takes extensive experience with rational numbers over a substantial

period of time.  Researchers have documented that difficulties in working

with rational numbers can often be traced to weak conceptual understand-

ing.  For example, the idea that a fraction gets smaller when its denominator

becomes larger is difficult for children to accept when they do not under-

stand what the fraction represents.  Children may try to apply ideas they have

about whole numbers to rational numbers and run into trouble.  Instructional

sequences in which more time is spent at the outset on developing meaning

for the various representations of rational numbers and the concept of unit

have been shown to promote mathematical proficiency.

Research reveals that the kinds of errors students make when beginning

to operate with rational numbers often come because they have not yet devel-

oped meaning for these numbers and are applying poorly understood rules

for whole numbers.  Operations with rational numbers challenge students’

naïve understanding of multiplication and division that multiplication “makes

bigger” and division “makes smaller.”  Although there is limited research on

instructional programs for developing proficiency with computations involv-

ing rational numbers, approaches that build on students’ intuitive understand-

ing and that use objects or contexts that help students make sense of the

operations offer more promise than rule-based approaches.

We make the following recommendation concerning the rational numbers:

• The curriculum should provide opportunities for students to develop

a thorough understanding of rational numbers, their various representa-

tions including common fractions, decimal fractions, and percents, and

operations on rational numbers.  These opportunities should involve con-

necting symbolic representations and operations with physical or pictorial

representations, as well as translating between various symbolic represen-

tations.

Extending the Place-Value System

The system of Hindu-Arabic numerals—in which there is a decimal point

and each place to the right and the left is associated with a different power of

10—is one of humanity’s greatest inventions for thinking about and operat-

ing with numbers.  Mastery of that system does not come easily, however.

Students need assistance not only in using the decimal system but also in

understanding its structure and how it works.
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Conceptual understanding and procedural fluency with multidigit num-

bers and decimal fractions require that students understand and use the base-

10 quantities represented by number words and number notation.  Research

indicates that much of students’ difficulty with decimal fractions stems from

their failure to understand the base-10 representations.  Decimal representa-

tions need to be connected to multidigit whole numbers as groups getting

10 times larger (to the left) and one tenth as large (to the right).  Referents

(diagrams or objects) showing the size of the quantities in different decimal

places can be helpful in understanding decimal fractions and calculations with

them.  The following recommendation expresses our concern that the decimal

system be given a central place in the curriculum:

• The curriculum should devote substantial attention to developing

an understanding of the decimal place-value system, to using its features in

calculating and problem solving, and to explaining calculation and problem-

solving methods with decimal fractions.

Developing Proportional Reasoning

The concept of ratio is much more difficult than many people realize.

Proportional reasoning is the term given to reasoning that involves the equal-

ity and manipulation of ratios.  Children often have difficulty comparing ratios

and using them to solve problems.  Many school mathematics programs fail

to develop children’s understanding of ratio comparisons and move directly

to formal procedures for solving missing-value proportion problems.  Research

tracing the development of proportional reasoning shows that proficiency

grows as students develop and connect different aspects of proportional rea-

soning.  Further, the development of proportional reasoning can be supported

by having students explore proportional situations in a variety of problem

contexts using concrete materials or through data collection activities.  We

see ratio and proportion as underdeveloped components of grades pre-K–8

mathematics:

• The curriculum should provide extensive opportunities over time

for students to explore proportional situations concretely, and these situa-

tions should be linked to formal procedures for solving proportion problems

whenever such procedures are introduced.
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Using the Number Line

Students often view the study of whole numbers, decimal fractions, com-

mon fractions, and integers as disconnected topics.  One tool that we believe

may be useful in developing numerical understanding and in making con-

nections across number systems is the number line, a geometric representa-

tion of numbers that gives each number a unique point on the line and an

oriented distance from the origin, depicting its magnitude and direction.

Although it may be difficult to learn, the number line gives a unified geo-

metric representation of integers and rational numbers within the real num-

ber system, later to be encountered in geometry, algebra, and calculus.  The

geometric models of operations afforded by the number line apply uniformly

to all real numbers, thus presenting one unified number system.  The number

line may become particularly useful as students are learning about integers

and rational numbers, for it may help students develop a sense of the magni-

tudes and relationships of those numbers in a way that is less clear in other

representations:

• Because it can serve as a tool for simultaneously representing whole

numbers, integers, and rational numbers, teachers and researchers should

explore effective uses of the number line representation when students learn

about operations with numbers, relations among number systems, and more

formal symbolic representations of numbers.

Expanding the Number Domain

Students currently encounter the expansion of the number domain by

starting with whole numbers, gradually incorporating fractions, and only much

later expanding the domain to include negative integers and irrational

numbers.  That sequence has a long history, but there are arguments for an

alternative.  For example, expanding the whole numbers to take in the nega-

tive integers in the early grades would allow students to do more with addi-

tion and subtraction before venturing into the rational number system, which

requires multiplication and division.  Systematic study of this alternative is

needed:

• Teachers, curriculum developers, and researchers should explore the

possibility of introducing integers before rational numbers.  Ways to engage

younger children in meaningful uses of negative integers should be devel-

oped and tested.
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Developing Algebraic Thinking

The formal study of algebra is both the gateway into advanced math-

ematics and a stumbling block for many students.  The transition from arith-

metic to algebra is often not an easy one.  The difficulties associated with the

transition from the activities typically associated with school arithmetic to

those typically associated with school algebra (representational activities, trans-

formational activities, and generalizing and justifying activities) have been

extensively studied.  Research has documented that the visual and numeri-

cal supports provided for symbolic expressions by computers and graphing

calculators help students create meaning for expressions and equations.  The

research, however, has shed less light on the long-term acquisition and reten-

tion of transformational fluency.  Although through generalizing and justify-

ing, students can learn to use and appreciate algebraic expressions as general

statements, more research is need on how students develop such awareness.

The study of algebra, however, does not have to begin with a formal course

in the subject.  New lines of research and development are focusing on ways

that the elementary and middle school curriculum can be used to support the

development of algebraic reasoning.  These efforts attempt to avoid the dif-

ficulties many students now experience and to lay a better foundation for

secondary school mathematics.  We believe that from the earliest grades of

elementary school, students can be acquiring the rudiments of algebra, par-

ticularly its representational aspects and the notion of variable and function.

By emphasizing both the relationships among quantities and ways of repre-

senting these relationships, instruction can introduce students to the basic

ideas of algebra as a generalization of arithmetic.  They can come to value the

roles of definitions and see how the laws of arithmetic can be expressed alge-

braically and be used to support their reasoning.  We recommend that algebra

be explicitly connected to number in grades pre-K–8:

• The basic ideas of algebra as generalized arithmetic should be

anticipated by activities in the early elementary grades and learned by the

end of middle school.

• Teachers and researchers should investigate the effectiveness of

instructional strategies in grades pre-K–8 that would help students move

from arithmetic to algebraic ways of thinking.
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Promoting Algebra for All

In some countries by the end of eighth grade, all students have been

studying algebra for several years, although not ordinarily in a separate course.

“Algebra for all” is a worthwhile and attainable goal for middle school stu-

dents.  In the United States, however, some efforts to promote algebra for all

have involved simply offering a standard first-year algebra course (algebra

through quadratics) to everyone.  We believe such efforts are virtually guar-

anteed to result in many students failing to develop proficiency in algebra, in

part because the transition to algebra is so abrupt.  Instead, a different cur-

riculum is needed for algebra in middle school:

• Teachers, researchers, and curriculum developers should explore

ways to offer a middle school curriculum in which algebraic ideas are devel-

oped in a robust way and connected to the rest of mathematics.

Using Technology to Learn Algebra

Research has shown that instruction that makes productive use of com-

puter and calculator technology has beneficial effects on understanding and

learning algebraic representation.  It is not clear, however, what role the newer

symbol manipulation technologies might play in developing proficiency with

the transformational aspects of algebra.  We recommend the following:

• Research should be conducted on the effects on students’ learning of

using the symbol-manipulating capacities of calculators and computers to

study algebraic concepts and to transform algebraic expressions and equa-

tions.

Solving Problems as a Context for Learning

An important part of our conception of mathematical proficiency involves

the ability to formulate and solve problems coming from daily life or other

domains, including mathematics itself.  That ability is not being developed

well in U.S. pre-K to grade 8 classrooms.  Studies in almost every domain of

mathematics have demonstrated that problem solving provides an important

context in which students can learn about number and other mathematical

topics.

Problem-solving ability is enhanced when students have opportunities

to solve problems themselves and to see problems being solved.  Further,

problem solving can provide the site for learning new concepts and for prac-
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ticing learned skills.  We believe problem solving is vital because it calls on

all strands of proficiency, thus increasing the chances of students integrating

them.  Problem solving also provides opportunities for teachers to assess stu-

dents’ performance on all of the strands.  Other activities, such as listening to

an explanation or practicing solution methods, can help develop specific

strands of proficiency, but too much emphasis on them, to the exclusion of

solving problems, may give a one-sided character to learning and inhibit the

formation of connections among the strands.  We see problem solving as cen-

tral to school mathematics:

• Problem solving should be the site in which all of the strands of math-

ematics proficiency converge.  It should provide opportunities for students to

weave together the strands of proficiency and for teachers to assess students’

performance on all of the strands.

Improving Materials for Instruction

Analyses of the U.S. curriculum reveal much repetition from grade to

grade and many topics, few of which are treated in much depth.  Further,

instructional materials in pre-K to grade 8 mathematics seldom provide the

guidance and assistance that teachers in other countries find helpful, such as

discussions of children’s typical misconceptions or alternative solution

methods.  How teachers might understand and use instructional materials to

help students develop mathematical proficiency is not well understood.  On

the basis of our reasoned judgment, we offer the following recommendations

for improving instructional materials in school mathematics:

• Textbooks and other instructional materials should develop the core

content of school mathematics in a focused way, in depth, and with continu-

ity in and across grades, supporting all strands of mathematical proficiency.

• Textbooks and other instructional materials should support teacher

understanding of mathematical concepts, of student thinking and student

errors, and of effective pedagogical supports and techniques.

• Activities and strategies should be developed and incorporated into

instructional materials to assist teachers in helping all students become

proficient in mathematics, including students low in socio-economic status,

English language learners, special education students, and students with a

special interest or talent in mathematics.
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• Efforts to develop textbooks and other instructional materials should

include research into how teachers can understand and use those materials

effectively.

• A government agency or research foundation should fund an inde-

pendent group to analyze textbooks and other instructional materials for the

extent to which they promote mathematical proficiency.  The group should

recommend how these materials might be modified to promote greater math-

ematical proficiency.

Giving Time to Instruction

Research indicates that a key requirement for developing proficiency is

the opportunity to learn.  In many U.S. elementary and middle school class-

rooms, students are not engaged in sustained study of mathematics.  On some

days in some classes they are spending little or no time at all on the subject.

Mathematical proficiency as we have defined it cannot be developed unless

regular time (say, one hour each school day) is allocated to and used for math-

ematics instruction in every grade of elementary and middle school.  Further,

we believe the strands of proficiency will not develop in a coordinated fash-

ion unless continual attention is given to every strand.  The following recom-

mendation expresses our concern that mathematics be given its rightful place

in the curriculum:

• Substantial time should be devoted to mathematics instruction each

school day, with enough time devoted to each unit and topic to enable stu-

dents to develop understanding of the concepts and procedures involved.  Time

should be apportioned so that all strands of mathematical proficiency together

receive adequate attention.

Giving Students Time to Practice

Practice is important in the development of mathematical proficiency.

When students have multiple opportunities to use the computational proce-

dures, reasoning processes, and problem-solving strategies they are learning,

the methods they are using become smoother, more reliable, and better under-

stood.  Practice alone does not suffice; it needs to be built on understanding

and accompanied by feedback.  In fact, premature practice has been shown

to be harmful.  The following recommendation reflects our view of the role

of practice:
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• Practice should be used with feedback to support all strands of math-

ematical proficiency and not just procedural fluency.  In particular, practice

on computational procedures should be designed to build on and extend under-

standing.

Using Assessment Effectively

At present, substantial time every year is taken away from mathematics

instruction in U.S. classrooms to prepare for and take externally mandated

assessments, usually in the form of tests.  Often, those tests are not well

articulated with the mathematics curriculum, testing content that has not been

taught during the year or that is not central to the development of math-

ematical proficiency.  Preparation for such tests, moreover, does not ordinarily

focus on the development of proficiency.  Instead, much time is given to

practicing calculation procedures and reviewing a multitude of topics.  Teachers

and students often waste valuable learning time because they are not informed

about the content to be tested or the form that test items will take.

We believe that assessment, whether externally mandated or developed

by the teacher, should support the development of students’ mathematical

proficiency.  It needs to provide opportunities for students to learn rather

than taking time away from their learning.  Assessments in which students

are learning as well as showing what they have already learned can provide

valuable information to teachers, schools, districts, and states, as well as the

students themselves.  Such assessments help teachers modify their instruc-

tion to support better learning at each grade level.

Time and money spent on assessment need to be used more effectively

so that students have the opportunity to show what they know and can do.

Teachers need to receive timely and detailed information about students’

performance on each external assessment.  In that way, students and teachers

alike can learn from assessments instead of having assessments used only to

rank students, teachers, or schools.  The following recommendations will help

make assessment more effective in developing mathematical proficiency:

• Assessment, whether internal or external, should be focused on the

development and achievement of mathematical proficiency.  In particular,

assessments used to determine qualification for state and federal funding

should reflect the definition of mathematics proficiency presented in this

report.
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• Information about the content and form of each external assessment

should be provided so that teachers and students can prepare appropriately

and efficiently.

• The results of each external assessment should be reported so as to

provide feedback useful for teachers and learners rather than simply a set of

rankings.

• A government agency or research foundation should fund an inde-

pendent group to analyze external assessment programs for the extent to which

they promote mathematical proficiency.  The group should recommend how

programs might be modified to promote greater mathematical proficiency.

Instruction

Effective teaching—teaching that fosters the development of mathe-

matical proficiency over time—can take a variety of forms.  Consequently,

we endorse no single approach.  All forms of instruction configure relations

among teachers, students, and content.  The quality of instruction is a func-

tion of teachers’ knowledge and use of mathematical content, teachers’

attention to and handling of students, and students’ engagement in and use

of mathematical tasks.  The development of mathematical proficiency requires

thoughtful planning, careful execution, and continual improvement of instruc-

tion.  It depends critically on teachers who understand mathematics, how

students learn, and the classroom practices that support that learning.  They

also need to know their students: who they are, what their backgrounds are,

and what they know.

Planning for Instruction

Planning, whether for one lesson or a year, is often viewed as routine and

straightforward.  However, plans seldom elaborate the content that the stu-

dents are to learn or develop good maps of paths to take to reach learning

goals.  We believe that planning needs to reflect a deep and thorough consid-

eration of the mathematical content of a lesson and of students’ thinking and

learning.  Instructional materials need to support teachers in their planning,

and teachers need to have time to plan.  Instruction needs to be planned with

the development of mathematical proficiency in mind:
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• Content, representations, tasks, and materials should be chosen so

as to develop all five strands of proficiency toward the big ideas of math-

ematics and the goals for instruction.

• Planning for instruction should take into account what students

know, and instruction should provide ways of ascertaining what students

know and think as well as their interests and needs.

• Rather than simply listing problems and exercises, teachers should

plan for instruction by focusing on the learning goals for their students, keep-

ing in mind how the goals for each lesson fit with those of past and future

lessons.  Their planning should anticipate the events in the lesson, the ways

in which the students will respond, and how those responses can be used to

further the lesson goals.

Managing Classroom Discourse

Mathematics classrooms are more likely to be places in which mathematical

proficiency develops when they are communities of learners and not collec-

tions of isolated individuals.  Research on creating classrooms that function

as communities of learners has identified several important features of these

classrooms: ideas and methods are valued, students have autonomy in choos-

ing and sharing solution methods, mistakes are valued as sites of learning for

everyone, and the authority for correctness lies in logic and the structure of

the subject, not in the teacher.  In such classrooms the teacher plays a key

role as the orchestrator of the discourse students engage in about mathematical

ideas.  Teachers are responsible for moving the mathematics along while

affording students opportunities to offer solutions, make claims, answer ques-

tions, and provide explanations to their peers.  Teachers need to help bring a

mathematical discussion to a close, making sure that gaps have been filled

and errors addressed.  To develop mathematical proficiency, we believe that

students require more than just the demonstration of procedures.  They need

experience in investigating mathematical properties, justifying solution

methods, and analyzing problem situations.  We recommend the following:

• A significant amount of class time should be spent in developing math-

ematical ideas and methods rather than only practicing skills.
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• Questioning and discussion should elicit students’ thinking and solu-

tion strategies and should build on them, leading to greater clarity and

precision.

• Discourse should not be confined to answers only but should include

discussion of connections to other problems, alternative representations and

solution methods, the nature of justification and argumentation, and the like.

Linking Experience to Abstraction

Students acquire higher levels of mathematical proficiency when they

have opportunities to use mathematics to solve significant problems as well

as to learn the key concepts and procedures of that mathematics.  Although

mathematics gains power and generality through abstraction, it finds both its

sources and applications in concrete settings, where it is made meaningful to

the learner.  There is an inevitable dialectic between concrete and abstract in

which each helps shape the other.  Exhortations to “begin with the concrete”

need to consider carefully what is meant by concrete.  Research reveals that

various kinds of physical materials commonly used to help children learn

mathematics are often no more concrete to them than symbols on paper might

be.  Concrete is not the same as physical.  Learning begins with the concrete

when meaningful items in the child’s immediate experience are used as scaf-

folding with which to erect abstract ideas.  To ensure that progress is made

toward mathematical abstraction, we recommend the following:

• Links among written and oral mathematical expressions, concrete

problem settings, and students’ solution methods should be continually and

explicitly made during school mathematics instruction.

Assigning Independent Work

Part of becoming proficient in mathematics is becoming an independent

learner.  For that purpose, many teachers give homework.  The limited research

on homework in mathematics has been confined to investigations of the rela-

tion between the quantity of homework assigned and students’ achievement

test scores.  Neither the quality nor the function of homework has been stud-

ied.  Homework can have different purposes.  For example, it might be used

to practice skills or to prepare the student for the next lesson.  We believe

that independent work serves several useful purposes.  Regarding indepen-

dence and homework, we make the following recommendations:
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• Students should be provided opportunities to work independently of

the teacher both individually and in pairs or groups.

• When homework is assigned for the purpose of developing skill, stu-

dents should be sufficiently familiar with the skill and the tasks so that they

are not practicing incorrect procedures.

Using Calculators and Computers

In the discussion above, we mention the special role that calculators and

computers can play in learning algebra.  But they have many other roles to

play throughout instruction in grades pre-K–8.  Using calculators and com-

puters does not replace the need for fluency with other methods.  Confronted

with a complex arithmetic problem, students can use calculators and com-

puters to see beyond tedious calculations to the strategies needed to solve

the problem.  Technology can relieve the computational burden and free

working memory for higher-level thinking so that there can be a sharper focus

on an important idea.  Further, skillfully planned calculator investigations

may reveal subtle or interesting mathematical ideas, such as the rules for order

of operations.

A large number of empirical studies of calculator use, including long-

term studies, have generally shown that the use of calculators does not threaten

the development of basic skills and that it can enhance conceptual under-

standing, strategic competence, and disposition toward mathematics.  For

example, students who use calculators tend to show improved conceptual

understanding, greater ability to choose the correct operation, and greater

skill in estimation and mental arithmetic without a loss of basic computa-

tional skills.  They are also familiar with a wider range of numbers than stu-

dents who do not use calculators and are better able to tackle realistic math-

ematics problems.

Just like any instructional tool, calculators and computers can be used

more or less effectively.  Our concern is that, when computing technology is

used, it needs to contribute positively:

• In all grades of elementary and middle school, any use of calculators

and computers should be done in ways that help develop all strands of stu-

dents’ mathematical proficiency.
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Teacher Preparation and

Professional Development

One critical component of any plan to improve mathematics learning is

the preparation and professional development of teachers.  If the goal of math-

ematical proficiency as portrayed in this report is to be reached by all students

in grades pre-K to 8, their teachers will need to understand and practice tech-

niques of teaching for that proficiency.  Our view of mathematics proficiency

requires teachers to act in new ways and to have understanding that they

once were not expected to have.  In particular, it is not a teacher’s fault that

he or she does not know enough to teach in the way we are asking.  It is a far

from trivial task to acquire such understanding—something that cannot rea-

sonably be expected to happen in one’s spare time and something that will

require major policy changes to support and promote.  Teacher preparation

and professional development programs will need to develop proficiency in

mathematics teaching, which has many parallels to proficiency in mathematics.

Developing Specialized Knowledge

The knowledge required to teach mathematics well is specialized knowl-

edge.  It includes an integrated knowledge of mathematics, knowledge of the

development of students’ mathematical understanding, and a repertoire of

pedagogical practices that take into account the mathematics being taught

and the students learning it.  The evidence indicates that these forms of knowl-

edge are not acquired in conventional undergraduate mathematics courses,

whether they are general survey courses or specialized courses for mathematics

majors.  The implications for teacher preparation and professional develop-

ment are that teachers need to learn these forms of knowledge in ways that

help them forge connections.

Mathematical knowledge is a critical resource for teaching.  Therefore,

teacher preparation and professional development must provide significant

and continuing opportunities for teachers to develop profound and useful

mathematical knowledge.  Teachers need to know the mathematics of the

curriculum and where the curriculum is headed.  They need to understand

the connections among mathematical ideas and how they develop.  Teachers

also need to be able to unpack mathematical content and make visible to

students the ideas behind the concepts and procedures.  Finally, teachers

need not only mathematical proficiency but also the ability to use it in guid-

ing discussions, modifying problems, and making decisions about what mat-

ters to pursue in class and what to let drop.  Very few teachers currently have
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the specialized knowledge needed to teach mathematics in the way envi-

sioned in this report.  Although it is not reasonable in the short term to expect

all teachers to acquire such knowledge, every school needs access to exper-

tise in mathematics teaching.

Teachers’ opportunities to learn can help them develop their own knowl-

edge about mathematics, about children’s thinking about mathematics, and

about mathematics teaching.  Such opportunities can also help teachers learn

how to solve the sorts of problems that are central to the practice of teaching.

The following recommendations reflect our judgment concerning the spe-

cialized knowledge that teachers need:

• Teachers of grades pre-K–8 should have a deep understanding of the

mathematics of the school curriculum and the principles behind it.

• Programs and courses that emphasize “classroom mathematical

knowledge” should be established specifically to prepare teachers to teach

mathematics to students in such grades as pre-K–2, 3–5, and 6–8.

• Teachers should learn how children’s mathematical knowledge

develops and what their students are likely to bring with them to school.

• To provide a basis for continued learning by teachers, their prepa-

ration to teach, their professional development activities, and the instruc-

tional materials they use should engage them, individually and collectively,

in developing a greater understanding of mathematics and of student thinking

and in finding ways to put that understanding into practice.  All teachers,

whether preservice or inservice, should engage in inquiry as part of their

teaching practice (e.g., by interacting with students and analyzing their

work).

• Through their preparation and professional development, teachers

should develop a repertoire of pedagogical techniques and the ability to use

those techniques to accomplish lesson goals.

• Mathematics specialists—teachers who have special training and

interest in mathematics—should be available in every elementary school.
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Working Together

Elementary and middle school teachers in the United States report spend-

ing relatively little time, compared with their counterparts in other countries,

discussing the mathematics they are teaching or the methods they are using.

They seldom plan lessons together, observe one another teach, or analyze

students’ work collectively.  Studies of programs that require teachers to teach

mathematically demanding curricula suggest that success is greater when

teachers help one another not only learn the mathematics and learn about

student thinking but also practice new teaching strategies.  Our recommenda-

tion concerning time is not just about how much is available but how it is used:

• Teachers should be provided with more time for planning and con-

ferring with each other on mathematics instruction with appropriate sup-

port and guidance.

Capitalizing on Professional Meetings

Teachers need more mathematically focused opportunities to learn math-

ematics, and they need to be prepared to manage changes in the field.  Math-

ematics teachers already come together at meetings of professional societies

such as the National Council of Teachers of Mathematics (NCTM), its affili-

ated groups, or other organizations.  These occasions can provide opportuni-

ties for professional development of the sort discussed above.  For example,

portions of national or regional meetings of the NCTM could be organized

into minicourses or institutes, without competing sessions being held at the

same time.  Professional development needs to grow out of current activities:

• Professional meetings and other occasions when teachers come together

to work on their practice should be used as opportunities for more serious

and substantive professional development than has commonly been available.

Sustaining Professional Development

Preparing to teach is a career-long activity.  Teachers need to continue to

learn.  But rather than being focused on isolated facts and skills, teacher learn-

ing needs to be generative.  That is, what teachers learn needs to serve as a

basis for them to continue to learn from their practice.  They need to see that

practice as demanding continual review, analysis, and improvement.  Studies

of teacher change indicate that short-term, fragmented professional develop-

ment is ineffective for developing teaching proficiency.
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More resources of all types—money, time, leadership, attention—need

to be invested in professional development for teachers of mathematics, and

those resources already available could be used more wisely and productively.

Each year a substantial amount of money is invested in professional develop-

ment programs for teachers.  Individual schools and districts fund some pro-

grams locally.  Others are sponsored and funded by state agencies, federal

agencies, or professional organizations.  Much of the time and money invested

in such programs, however, is not used effectively.  Sponsors generally fund

short-term, even one-shot, activities such as daylong workshops or two-day

institutes that collectively do not form a cohesive and cumulative program of

professional development.  Furthermore, these activities are often conducted

by an array of professional developers with minimal qualifications in math-

ematics and mathematics teaching.  Professional development in mathematics

needs to be sustained over time that is measured in years, not weeks or months,

and it needs to involve a substantial amount of time each year.  Our recom-

mendations to raise the level of professional development are as follows:

• Local education authorities should give teachers support, including

stipends and released time, for sustained professional development.

• Providers of professional development should know mathematics and

should know about students’ mathematical thinking, how mathematics is

taught, and teachers’ thinking about mathematics and their own practice.

• Organizations and agencies that fund professional development in

mathematics should focus resources on multi-year, coherent programs.

Resources of agencies at every level should be marshaled to support substan-

tial and sustained professional development.

Monitoring Progress Toward

Mathematical Proficiency

In this report we have set forth a variety of observations, conclusions, and

recommendations that are designed to bring greater coherence and balance

to the learning and teaching of mathematics.  In particular, we have described

five strands of mathematical proficiency that should frame all efforts to improve

school mathematics.

Over the past decades, various visions have been put forward for improv-

ing curriculum, instruction, and assessment in mathematics, and many of those

ideas have been tried in schools.  Unfortunately, new programs are tried but

Professional
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mathematics
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over time

that is
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not weeks

or months.
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then abandoned before their effectiveness has been well tested, and lessons

learned from program evaluations are often lost.  Although aspects of math-

ematics proficiency have been studied, other aspects such as productive dis-

position have received less attention; and no one, including the National

Assessment of Educational Progress (NAEP), has studied the integrated por-

trait of mathematics proficiency set forth in this report.  In order that efforts

to improve U.S. school mathematics might be more cumulative and coordi-

nated, we make the following recommendation:

• An independent group of recognized standing should be constituted to

assess the progress made in meeting the goal of mathematical proficiency for

all U.S. schoolchildren.

Supporting the Development of

Mathematical Proficiency

The mathematics students need to learn today is not the same math-

ematics that their parents and grandparents needed to learn.  Moreover, math-

ematics is a domain no longer limited to a select few.  All students need to be

mathematically proficient to the levels discussed in this report.  The math-

ematics of grades pre-K–8 today involves much more than speed in pencil-

and-paper arithmetic.  Students need to understand mathematics, use it to

solve problems, reason logically, compute fluently, and use it to make sense

of their world.  For that to happen, each student will need to develop the

strands of proficiency in an integrated fashion.

No country—not even those performing highest on international surveys

of mathematics achievement—has attained the goal of mathematical profi-

ciency for all its students.  It is an extremely ambitious goal, and the United

States will never reach it by continuing to tinker with the controls of educa-

tional policy, pushing one button at a time.  Adopting mathematics textbooks

from other countries, testing teachers, holding students back a grade, putting

schools under state sanctions—none of these alone will advance school math-

ematics very far toward mathematical proficiency for all.  Instead, coordi-

nated, systematic, and sustained modifications will need to be made in how

school mathematics instruction has commonly proceeded, and support of new

and different kinds will be required.  Leadership and attention to the teach-

ing of mathematics are needed in the formulation and implementation of

policies at all levels of the educational system.
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