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Introduction

Here you are, perusing a book on the essentials of 
Algebra II. You’ll find here, as Joe Friday (star of the 

old Dragnet series) said, “The facts, ma’am, just the facts.” 
For those of you too young to remember Dragnet, just think 
of this essentials book as being the Twitter version — not too 
detailed but with all the necessary information. In this book, 
you find the information you need with enough examples to 
show you the processes, but not a bunch of nitty-gritty details 
that tend to get in the way. 

About This Book
A book on Algebra II isn’t a romance novel (although I do love 
math), and it isn’t science fiction. You could think of this book 
as a cross between a travel guide and a mathematical labora-
tory manual. How do travel and math go together? Let me try 
some situations that may fit:

 ✓ You just finished working through Algebra I and feel 
eager to embark on a new adventure.

 ✓ You haven’t worked with algebra in a while, but math 
has always been your strength, so you think that a little 
prepping with some basic concepts will bring you up to 
speed.

 ✓ You’re helping a friend or family member with Algebra II 
and want just the most necessary information — no frills 
or extra side-trips.

Even though I’ve pared the material in this book down to the 
basics, I haven’t lost sight of the fact that other math areas 
are what drive Algebra II. Algebra is the passport to study-
ing calculus, trigonometry, number theory, geometry, and all 
sorts of good mathematics. Algebra is basic, and the algebra 
you find here will help you grow your skills and knowledge so 
you can do well in math courses and possibly pursue other 
math topics.
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Conventions Used in This Book
To help you navigate this book, I use the following conventions:

 ✓ I italicize special mathematical terms and define them 
right then and there so you don’t have to search around.

 ✓ I use boldface text to indicate keywords in bulleted lists 
or the action parts of numbered steps. I describe many 
algebraic procedures in a step-by-step format and then 
use those steps in an example or two.

Foolish Assumptions
Algebra II is essentially a continuation of Algebra I, so I need 
to make some assumptions about readers of this book.

I assume that a person taking on Algebra II has a grasp of work-
ing with operations on signed numbers, simplifying radical 
expressions, and manipulating with rational terms. Another 
assumption I make is that your order of operations is in order. 
You should be able to work your way through algebraic equa-
tions and expressions using the ordering rules. I also assume 
that you know how to solve basic linear and quadratic equa-
tions and can make quick sketches of basic graphs. Even though 
I lightly cover these topics in this book, I assume that you have 
a general knowledge of the necessary procedures.

If you feel a bit over your head after reading through some 
chapters, you may want to refer to Algebra I For Dummies, 2nd 
Edition (Wiley), or Algebra II For Dummies (Wiley) for a more 
complete explanation of the basics. My feelings won’t be hurt; 
I wrote those, too!

Icons Used in This Book
The icons that appear in this book are great for calling atten-
tion to the hot topics when doing algebra.

 

This icon provides you the rule or law or instruction on how 
to proceed whenever encountering the particular mathemati-
cal situation. The algebra rule given is “the law” — it always 
applies and always must be followed.
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When you see the Example icon, you know that you’ll find the 
result of an attempt at working out an equation or concept. An 
example often has a hidden agenda — it shows you more of a 
process than a basic rule can get across by itself.

 

This icon is like the sign alerting you to the presence of some-
thing special to watch out for on your adventure. It can save 
you time and energy. Use this information to cut to the chase 
and avoid unnecessary detours.

 

This icon helps you bring back information that you may have 
misplaced along the way. The information is needed to get 
you from here to the goal.

 

This icon alerts you to common hazards and stumbling blocks 
that could trip you up — cause accidents or get you into trouble 
with the math police. Those who have gone before you have 
found that these items can cause a big problem — so pay heed.

Where to Go from Here
You can use the table of contents at the beginning of the book 
and the index in the back to navigate your way to the topic 
that you’re most interested in. You may want to start with 
some problem solving — in the form of equations or inequali-
ties. If that’s the case, then look at Chapter 2 for linear equa-
tions and inequalities or Chapters 3 and 4 for quadratic and 
other degree equations. Chapter 5 is your destination if you 
want to see what constitutes a function and its character-
istics. And specific functions such as linear and quadratics 
are found in Chapter 6; polynomials are found in Chapter 7, 
rationals in Chapter 8, and exponentials and logs in Chapter 9. 
I saved the imaginary for last, in Chapter 12. But you could 
stop off and look at conics in Chapter 10, if those curves are of 
interest. Also, systems of equations incorporate several types 
of functions, and you find them in Chapter 11.

And, if you’re more of a freewheeling type of guy or gal, take 
your finger, flip open the book, and mark a spot. No matter 
your motivation or what technique you use to jump into this 
book, you won’t get lost because you can go in any direction 
from there.

Enjoy!





Chapter 1

Making Advances 
in Algebra

In This Chapter
▶ Making algebra orderly with the order of operations and other 

 properties

▶ Enlisting rules of exponents

▶ Focusing on factoring

Algebra is a branch of mathematics that people study 
before they move on to other areas or branches in 

mathematics and science. Algebra all by itself is esthetically 
pleasing, but it springs to life when used in other applications.

Any study of science or mathematics involves rules and pat-
terns. You approach the subject with the rules and patterns 
you already know, and you build on those rules with further 
study. In this chapter, I recap for you the basic rules from 
Algebra I so that you work from the correct structure. I pres-
ent these basics so you can further your study of algebra and 
feel confident in your algebraic ability.

Bringing Out the Best in 
Algebraic Properties 

Mathematicians developed the rules and properties you use 
in algebra so that every student, researcher, curious scholar, 
and bored geek working on the same problem would get the 
same answer — no matter the time or place.
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Making short work of 
the basic properties
The commutative, associative, and other such properties 
are not only basic to algebra, but also to geometry and many 
other mathematical topics. I present the properties here 
so that I can refer to them as I solve equations and simplify 
expressions in later chapters.

The commutative property

 

The commutative property applies to the operations of addi-
tion and multiplication. It states that you can change the 
order of the values in an operation without changing the final 
result:

a + b = b + a Commutative property of addition

a · b = b · a Commutative property of multiplication

So you can be sure that 2 + 4 = 4 + 2 and 8 · 7 = 7 · 8.

The associative property

 

Like the commutative property (see the preceding section), 
the associative property applies to the operations of addition 
and multiplication. The associative property states that you 
can change the grouping of operations without changing the 
result:

a + (b + c) = (a + b) + c Associative property of addition

a(b · c) = (a · b)c  Associative property of 
 multiplication

This property tells you that 3 + (8 + 5) = (3 + 8) + 5 and that 
–4 · (8 · 3) = (–4 · 8) · 3.

The distributive property

 

The distributive property states that you can multiply each 
term in an expression within parentheses by the factor outside 
the parentheses and not change the value of the expression. 
It takes one operation — multiplication — and spreads it out 
over terms that you add to and subtract from one another:
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a(b + c – d) =  Distributing multiplication over 
a · b + a · c – a · d addition and subtraction

For example, you can use the distributive property on the 

problem  to make your life easier. You distribute 

the 12 over the fractions by multiplying each fraction by 12 and 

then combining the results: .

Identities

 

The numbers 0 and 1 have special roles in algebra — 
as identities.

a + 0 = 0 + a = a  The additive identity is 0. Adding 0 to a 
number doesn’t change that number; 
the number keeps its identity.

a · 1 = 1 · a = a  The multiplicative identity is 1. Multiplying 
a number by 1 doesn’t change that 
number; the number keeps its identity.

Inverses

 

You find two types of inverses in algebra — additive inverses 
and multiplicative inverses:

 ✓ A number and its additive inverse add up to 0.

 ✓ A number and its multiplicative inverse have a product 
of 1.

The additive inverse of 6 is –6, so 6 + (–6) = 0. And the multi-

plicative inverse of 6 is , so .

The multiplication property of zero

 

The multiplication property of zero (MPZ) states that if the 
product of a · b · c · d · e · f = 0, at least one of the terms has to 
represent the number 0. The only way the product of two or 
more values can be 0 is for at least one of the values to actu-
ally be 0. If you multiply (16)(467)(11)(9)(0), the result is 0. 
It doesn’t really matter what the other numbers are — the 0 
always wins.
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Organizing your operations
When mathematicians switched from words to symbols to 
describe mathematical processes, their goal was to make deal-
ing with problems as simple as possible; however, at the same 
time, they wanted everyone to know what was meant by an 
expression and for everyone to get the same answer to a prob-
lem. Along with the special notation came a special set of rules 
on how to handle more than one operation in an expression.

 

The order of operations dictates that you follow this sequence:

 1. Raise to powers or find roots.

 2. Multiply or divide.

 3. Add or subtract.

 

If you have to perform more than one operation from the 
same level, work those operations moving from left to right. 
If any grouping symbols appear, perform the operation inside 
the grouping symbols first.

So, to do the problem  , follow the 
order of operations:

 1. The radical acts like a grouping symbol, so 
you subtract what’s in the radical first to get 

  .

 2. Raise the power and find the root: .

 3. Do the multiplication and then the division: 
4 + 9 – 30 + 4 + 7.

 4. Add and subtract, moving from left to right: 4 + 9 – 30 + 
4 + 7 = 13 – 30 + 4 + 7 = –17 + 4 + 7 = –13 + 7 = –6.

Enumerating Exponential Rules
Several hundred years ago, mathematicians introduced 
powers of variables and numbers called exponents. Instead of 
writing xxxxxxxx, you use the exponent 8 by writing x8. This 
form is easier to read and much quicker. The use of exponents 
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expanded to being able to write fractions with negative expo-
nents and radicals with fractional exponents. You find all the 
details in Algebra I For Dummies, 2nd Edition (Wiley).

Multiplying and dividing 
 exponents

 

When two numbers or variables have the same base, you can 
multiply or divide those numbers or variables by adding or 
subtracting their exponents:

 ✓ am · an = am + n: When multiplying numbers with the same 
base, you add the exponents.

 ✓ : When dividing numbers with the same  

  base, you subtract the exponents (numerator minus 
denominator).

To multiply x4 · x5, for example, you add: x4 + 5 = x9. When 

 dividing x8 by x5, you subtract: .

You have to be sure that the bases of the expressions are the 
same. You can multiply or divide 32 and 34, but you can’t use 
the multiplication or division rules for exponents to multiply 
or divide 32 and 43.

Rooting out exponents

 

Radical expressions — such as square roots, cube roots, 
fourth roots, and so on — appear with a radical to show the 
root. Another way you can write these values is by using frac-
tional exponents. You’ll have an easier time combining vari-
ables with the same base if they have fractional exponents in 
place of radical forms:

 ✓ : The root goes in the denominator of the frac-
tional exponent.

 ✓ : The root goes in the denominator of the frac-
tional exponent, and the power goes in the numerator.
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To simplify a radical expression such as , you change 

the radicals to exponents and apply the rules for multiplication 
and division of values with the same base (see the preceding 
section):

 

Powering up exponents

 

When raising a power to a power, you multiply the exponents. 
When taking the root of a power, you divide the exponent by 
the root:

 ✓ (am)n = a(m)(n): Raise a power to a power by multiplying 
the exponents.

 ✓ : Reduce the power when taking a root by 
dividing the exponents.

The second rule may look familiar — it’s one of the rules that 
govern changing from radicals to fractional exponents from 
the preceding section. Here’s an example of how you apply 
the two rules when simplifying an expression:

 

Working with negative exponents

 

You use negative exponents to indicate that a number or vari-
able belongs in the denominator of the term:
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Writing variables with negative exponents allows you to com-
bine those variables with other factors that share the same 
base. You can rewrite the fractions by using negative exponents 
and then simplify by using the rules for multiplying factors with 
the same base:

Assigning Factoring Techniques
When you factor an algebraic expression, you rewrite the 
sums and differences of the terms as a product. The factored 
form comes in handy when you set an expression equal to 0 
to solve an equation. Factored numerators and denominators 
in fractions also make it possible to reduce the fractions.

Making two terms factor

 

When an algebraic expression has two terms, you have four 
different choices for its factorization — if you can factor the 
expression at all. If you try the following four methods and 
none of them works, you can stop your attempt; you just can’t 
factor the expression:

ax + ay = a(x + y)  Greatest common factor 
(GCF)

x2 – a2 = (x – a)(x + a)  Difference of two perfect 
squares

x3 – a3 = (x – a)(x2 + ax + a2)  Difference of two perfect 
cubes

x3 + a3 = (x + a)(x2 – ax + a2) Sum of two perfect cubes

 

In general, you check for a GCF before attempting any of the 
other methods. By taking out the common factor, you often 
make the numbers smaller and more manageable, which helps 
you see clearly whether any other factoring is necessary.
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Factor the expression 6x4 – 6x.

First factor out the common factor, 6x, and then use the pat-
tern for the difference of two perfect cubes:

6x4 – 6x = 6x(x3 – 1) = 6x(x – 1)(x2 + x + 1)

 

A quadratic trinomial is a three-term polynomial with a term 
raised to the second power (and no higher powers). When 
you see something like x2 + x + 1 (as in this case), you immedi-
ately run through the possibilities of factoring it into the prod-
uct of two binomials (see the next section). You can just stop. 
These trinomials that crop up with factoring cubes just don’t 
cooperate.

 

Factor 48x3y2 – 300x3.

When you factor the expression, first divide out the common 
factor, 12x3, to get 12x3(4y2 – 25). Then factor the difference 
of perfect squares in the parentheses: 48x3y2 – 300x3 = 
12x3(2y – 5)(2y + 5).

Factoring three terms

 

When a quadratic expression has three terms, making it a tri-
nomial, you have two different ways to factor it. One method 
is factoring out a GCF, and the other is finding two binomials 
whose product is identical to the sum and/or difference of the 
original three terms:

ax + ay + az = a(x + y + z) GCF

ax2n + bxn + c = (dxn + e)(fxn + g) Two binomials

When you factor a trinomial that results from multiplying two 
binomials, you have to play detective and piece together the 
parts of the puzzle. Look at the following generalized product 
of binomials and the pattern that appears:

(dx + e)(fx + g) = dfx2 + dgx + efx + eg = dfx2 + (dg + ef)x + eg

= ax2 + bx + c

The F in FOIL stands for first; the first terms are the dx and fx. 
The O in FOIL stands for outer; the outer terms are dx and g. 
The I in FOIL stands for inner; the inner terms are e and fx. 
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Their products are dgx (outer) and efx (inner). You add these 
two values. The L in FOIL stands for last; the last terms, e and 
g, have a product of eg.

Now, think of every quadratic trinomial as being of the form 
ax2 + bx + c = dfx2 + (dg + ef)x + eg. The coefficient of the x2 term, 
df, is the product of the coefficients of the two x terms in the 
parentheses; the last term, eg, is the product of the two second 
terms in the parentheses; and the coefficient of the middle term 
is the sum of the outer and inner products. To factor these 
trinomials into the product of two binomials, you use the oppo-
site of FOIL and figure out which factorizations to use.

 

Here are the basic steps you take to unFOIL a quadratic 
trinomial:

 1. Determine all the ways you can multiply two num-
bers to get a, the coefficient of the squared term.

 2. Determine all the ways you can multiply two num-
bers to get c, the constant term.

 3. If the last term is positive, find the combination of 
factors from steps 1 and 2 whose sum is that middle 
term; if the last term is negative, you want the com-
bination to be a difference.

 4. Arrange your choices as binomials so that the factors 
line up correctly.

 5. Insert the + and – signs to finish off the factoring and 
make the sign of the middle term come out right.

 

Factor x2 + 9x + 20.

You find two terms whose product is 20 and whose sum is 9. 
The coefficient of the squared term is 1, so you don’t have to 
take any other factors into consideration. You choose 4 and 
5 as the factors of 20, because 4 + 5 = 9. Arranging the factors 
and x’s, you get x2 + 9x + 20 = (x + 4)(x + 5).

 

Factor 6x2 – x – 12.

You have to consider both the factors of 6 and the factors of 
12. Start 2 and 3 for the factors of 6 and write: (2x   )(3x   ). 
Don’t insert any signs until the end of the process.
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Now, using the factors of 12, you look for a pairing that gives 
you a difference of 1 between the outer and inner products. Try 
the product of 3 · 4, matching (multiplying) the 3 with the 3x 
and the 4 with the 2x. Bingo! Write (2x   3)(3x   4). You’ll multiply 
the 3 and 3x because they’re in different parentheses — not the 
same one. The difference has to be negative, so you can put the 
negative sign in front of the 3 in the first binomial: 6x2 – x – 12 = 
(2x – 3)(3x + 4).

Factoring four or more 
terms by grouping
When four or more terms come together to form an expression, 
you look for a GCF first. If you can’t find a factor common to all 
the terms at the same time, your other option is grouping. To 
group, you take the terms two at a time and look for common 
factors for each of the pairs on an individual basis. After factor-
ing, you see if the new groupings have a common factor.

 

Factor x3 – 4x2 + 3x – 12.

The four terms of x3 – 4x2 + 3x – 12 don’t have any common 
factor. However, the first two terms have a common factor of 
x2, and the last two terms have a common factor of 3:

x3 – 4x2 + 3x – 12 = x2(x – 4) + 3(x – 4)

Notice that you now have two terms, not four, and they both 
have the factor (x – 4). Now, factoring (x – 4) out of each term, 
you have (x – 4)(x2 + 3).



Chapter 2

Lining Up Linear Equations
In This Chapter
▶ Establishing a game plan for solving linear equations

▶ Working through special rules for linear inequalities

▶ Making short work of absolute value equations and inequalities

The term linear has the word line buried in it, and the obvi-
ous connection is that you can graph many linear equa-

tions as lines. But linear expressions can come in many types 
of packages, not just equations or lines. In this chapter, you 
find out how to deal with linear equations, what to do with 
the answers in linear inequalities, and how to rewrite linear 
absolute value equations and inequalities so that you can 
solve them. 

Getting the First Degree: 
Linear Equations

Linear equations feature variables that reach only the first 
degree, meaning that the highest power of any variable you 
solve for is 1. The general form of a linear equation with one 
variable is ax + b = c.

The one variable is the x. But, no matter how many variables 
you see, the common theme to linear equations is that each 
variable has only one solution or value that satisfies the equa-
tion when matched with constants or specific other variables.
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Solving basic linear equations

 

To solve a linear equation, you isolate the variable on one 
side of the equation by adding the same number to both 
sides — or you can subtract, multiply, or divide the same 
number on both sides.

For example, you solve the equation 4x – 7 = 21 by adding 7 to 
each side of the equation, to isolate the variable and the mul-
tiplier, and then dividing each side by 4, to leave the variable 
on its own:

4x – 7 + 7 = 21 + 7 → 4x = 28

4x ÷ 4 = 28 ÷ 4 → x = 7

When a linear equation has grouping symbols such as paren-
theses, brackets, or braces, you deal with any distributing 
across and simplifying within the grouping symbols before 
you isolate the variable. For example, to solve the equation 
5x – [3(x + 2) – 4(5 – 2x) + 6] = 20, you first distribute the 3 and 
–4 inside the brackets:

5x – [3x + 6 – 20 + 8x + 6] = 20

Then you combine the terms that combine and distribute the 
negative sign (–) in front of the bracket; it’s like multiplying 
through by –1:

Simplify again, and you can solve for x:

Eliminating fractions
The problem with fractions, like cats, is that they aren’t par-
ticularly easy to deal with. They always insist on having their 
own way — in the form of common denominators before you 
can add or subtract. And division? Don’t get me started!
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The best way to deal with linear equations that involve vari-
ables tangled up with fractions is to get rid of the fractions. 
Your game plan is to multiply both sides of the equation by the 
least common denominator of all the fractions in the equation.

 

Solve  for x.

Multiply each term in the equation by 70 — the least common 
denominator (also known as the least common multiple) for 
fractions with the denominators 5, 7, and 2:

Now you distribute the reduced numbers over each set of 
parentheses, combine the like terms, and solve for x:

Lining Up Linear Inequalities
Algebraic inequalities show comparative relationships 
between a number and an expression or between two expres-
sions. In other words, you use inequalities for comparisons.

Inequalities in algebra are expressed by the comparisons less 
than (<), greater than (>), less than or equal to (≤), and greater 
than or equal to (≥). A linear equation containing one variable 
has only one solution, but a linear inequality can have an infi-
nite number of solutions.

 

Here are the rules for operating on inequalities (you can 
replace the < symbol with any of the inequality symbols, and 
the rules will still hold):

 ✓ If a < b, then a + c < b + c (adding any number).

 ✓ If a < b, then a – c < b – c (subtracting any number).

 ✓ If a < b and c > 0, then a · c < b · c (multiplying by any 
 positive number).
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 ✓ If a < b and c < 0, then a · c > b · c (multiplying by any 
negative number).

 ✓ If a < b and c > 0, then  (dividing by any positive 
number).

 ✓ If a < b and c < 0, then  (dividing by any negative 
number).

 ✓ If , then  (reciprocating fractions).

 

You must not multiply or divide an inequality by 0.

Solving basic inequalities
To solve a basic linear inequality, first move all the variable 
terms to one side of the inequality and the numbers to the 
other. After you simplify the inequality down to a variable and 
a number, you can find out what values of the variable will 
make the inequality into a true statement.

 

Solve 3x + 4 > 11 – 4x for x.

Add 4x and subtract 4 from each side: 7x > 7.

Divide each side by 7: x > 1.

The sense stayed the same, because you didn’t multiply or 
divide each side by a negative number.

The rules for solving linear equations also work with 
 inequalities — somewhat. Everything goes smoothly until 
you try to multiply or divide each side of an inequality by a 
negative number.

 

When you multiply or divide each side of an inequality by a 
negative number, you have to reverse the sense (change < to >, 
or vice versa) to keep the inequality true.
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Solve the inequality 4(x – 3) – 2 ≥ 3(2x + 1) + 7 for x.

Distributing, you get: 4x – 12 – 2 ≥ 6x + 3 + 7.

Simplifying: 4x – 14 ≥ 6x + 10.

Now subtract 6x and add 14: –2x ≥ 24.

Divide each side by –2, reversing the sense: x ≤ –12.

Introducing interval notation
Much of higher mathematics uses interval notation instead of 
inequality notation. Interval notation is thought to be quicker 
and neater than inequality notation. Interval notation uses 
parentheses, brackets, commas, and the infinity symbol to 
bring clarity to the murky inequality waters.

 

To use interval notation when describing a set of numbers:

 ✓ You order any numbers used in the notation with the 
smaller number to the left of the larger number.

 ✓ You indicate “or equal to” by using a bracket.

 ✓ If the solution doesn’t include the end number, you use a 
parenthesis.

 ✓ When the interval doesn’t end (it goes up to positive 
infinity or down to negative infinity), use +∞ or –∞, 
whichever is appropriate, and a parenthesis.

Here are some examples of inequality notation and the corre-
sponding interval notation:

Inequality Notation Linear Notation

x < 3 (–∞, 3)

x ≥ –2 [–2, ∞)

4 ≤ x < 9 [4, 9)

–3 < x < 7 (–3, 7)
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Solve the inequality –8 ≤ 3x – 5 < 10.

Add 5 to each of the three sections and then divide each 
 section by 3:

You write the answer, –1 ≤ x < 5, in interval notation as [–1, 5).

Absolute Value: Keeping 
Everything in Line

When you perform an absolute value operation, you’re not 
performing surgery at bargain-basement prices; you’re taking 

a number inserted between the absolute value bars, , and 
recording the distance of that number from 0 on the number 

line. For example, , because 3 is three units away from 0. 

On the other hand, , because –4 is four units away from 0.

 

The absolute value of a is defined as

You read the definition as follows: “The absolute value of a is 
equal to a, itself, if a is positive or 0; the absolute value of a is 
equal to the opposite of a if a is negative.”

Solving absolute value equations
A linear absolute value equation is an equation that takes the 

form . To solve an absolute value equation in this 
linear form, you have to consider both possibilities: ax + b 
may be positive, or it may be negative.
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To solve for the variable x in , you solve both 
ax + b = c and ax + b = –c.

 

Solve the absolute value equation .

First, you have to subtract 7 from each side of the equation 
and then divide each side by 3:

Then you can apply the rule for changing the absolute value 
equation to two linear equations:

     

Seeing through absolute 
value inequality
An absolute value inequality contains an absolute value, , 
and an inequality: <, >, ≤, or ≥.

 

To solve an absolute value inequality, you have to change the 
form from absolute value to just plain inequality.

 ✓ To solve for x in , you solve –c < ax + b < c.

 ✓ To solve for x in , you solve ax + b > c and 
ax + b < –c.

 

Solve the absolute value inequality: .

Rewrite the inequality: –5 ≤ 2x – 1 ≤ 5.

Next, add 1 to each section: –4 ≤ 2x ≤ 6.

Divide each section by 2: –2 ≤ x ≤ 3.

You can write the solution in interval notation as [–2, 3].
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Solve  for x.

Rewrite the absolute value inequality as two separate inequal-
ities: 7 – 2x > 11 and 7 – 2x < –11.

When solving the two inequalities, be sure to remember to 
switch the sign when you divide by –2:

     

The solution x < –2 or x > 9, in interval notation, is (–∞, –2) or 
(9, ∞).

 

Don’t write the solution x < –2 or x > 9 as 9 < x < –2. If you do, 
you indicate that some numbers can be bigger than 9 and 
smaller than –2 at the same time, which just isn’t so.



Chapter 3

Making Quick Work of 
Quadratic Equations

In This Chapter
▶ Solving quadratic equations by factoring or taking roots

▶ Using the quadratic formula

▶ Coming to grips with quadratic inequalities

A quadratic equation contains a variable term with an 
exponent of 2, and no term with a higher power. The 

standard form is ax2 + bx + c = 0. Quadratic equations poten-
tially have two real solutions. You may not find two, but you 
start out assuming that you’ll find two and then proceed to 
prove or disprove your assumption. Quadratic equations also 
serve as good models for practical applications.

In this chapter, you discover many ways to approach both 
simple and advanced quadratic equations. You can solve 
some quadratic equations in only one way, and you can solve 
others by readers’ choice (factoring, quadratic formula, or 
by-guess-or-by-golly) — whatever your preference. It’s nice to 
be able to choose. But if you have a choice, I hope you choose 
the quickest and easiest ways possible, so I cover these first 
in this chapter (except for by-guess-or-by-golly). 
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Using the Square Root 
Rule When Possible

Some quadratic equations are easier to solve than others. Half 
the battle is recognizing which equations are easy and which 
are more challenging.

 

If a quadratic equation is made up of a squared term and a 
number, written in the form x2 = k, you solve the equation  

using the square root rule: If x2 = k, .

The number represented by k has to be positive if you want 
to find real answers with this rule. If k is negative, you get an 
imaginary answer, such as 3i or 5 – 4i. (For more on imaginary 
numbers, check out Chapter 12.)

 

Solve for x using the square root rule: 6x2 = 96.

The initial equation doesn’t strictly follow the format for the 
square root rule because of the coefficient 6, but you can get 
to the proper form pretty quickly. You divide each side of the 
equation by the coefficient; in this case, you get x2 = 16; now 
you’re in business. Taking the square root of each side, you 
get x = ±4.

 

Solve y2 = 40 for y.

 

You can use a law of radicals to simplify a radical expression. 
Separate the number under the radical into two factors — 

one of which is a perfect square: .
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Solving Quadratic Equations 
by Factoring

When you can factor a quadratic expression that’s part of 
a quadratic equation you can solve quadratic equations by 
setting the factored expression equal to zero (making it an 
equation) and then using the multiplication property of zero 
(MPZ; see Chapter 1). How you factor the expression depends 
on the number of terms in the quadratic and how those terms 
are related.

Factoring quadratic binomials
You can factor a quadratic binomial in one of two ways — if 
you can factor it at all (you may find no common factor, or the 
two terms may not both be squares):

 ✓ Divide out a common factor from each of the terms.

 ✓ Write the quadratic as the product of two binomials, if 
the quadratic is the difference of perfect squares.

Taking out a greatest common factor
The greatest common factor (GCF) of two or more terms is the 
largest number (and variable combination) that divides each 
of the terms evenly.

 

Solve the equation 4x2 + 8x = 0 using factorization and the MPZ.

Factor out the GCF: 4x(x + 2) = 0.

Using the MPZ, you can now make one of three statements 
about this equation:

 ✓ 4 = 0, which is false — this isn’t a solution

 ✓ x = 0

 ✓ x + 2 = 0, which means that x = –2
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You find two solutions for the original equation 4x2 + 8x = 0: 
x = 0 or x = –2. If you replace the x’s with either of these solu-
tions, you create a true statement.

 

Be careful when the GCF of an expression is just x, and always 
remember to set that front factor, x, equal to 0 so you don’t 
lose one of your solutions. A really common error in algebra 
is to take a perfectly nice equation such as x2 + 5x = 0, factor 
it into x(x + 5) = 0, and give the answer x = –5. Don’t forget the 
solution x = 0!

Factoring the difference of squares
Use the factorization of the difference of squares to solve 
some quadratic equations.

This method states that if x2 – a2 = 0, (x – a)(x + a) = 0, and 
x = a or x = –a. Generally, if k2x2 – a2 = 0, (kx – a)(kx + a) = 0, 

and  or .

 

Solve 49y2 – 64 = 0 using factorization and the MPZ.

Factor the terms on the left: (7y – 8)(7y + 8) = 0.

And using the MPZ,  or .

Factoring quadratic trinomials
Like quadratic binomials, a quadratic trinomial can have as 
many as two solutions — or it may have one solution or no 
solution at all. If you can factor the trinomial and use the MPZ 
to solve for the roots, you’re home free. If the trinomial doesn’t 
factor, or if you can’t figure out how to factor it, you can utilize 
the quadratic formula (see the section “The Quadratic Formula 
to the Rescue,” later in this chapter). The rest of this section 
deals with the trinomials that you can factor.

 

Solve x2 – 2x – 15 = 0 for x.

You can factor the left side of the equation into (x – 5)(x + 3) = 0 
and then set each factor equal to 0. When x – 5 = 0, x = 5, and 
when x + 3 = 0, x = –3.

 

Solve 24x2 + 52x – 112 = 0 for x.
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It may not be immediately apparent how you should factor such 
a seemingly complicated trinomial. But factoring 4 out of each 
term to simplify the picture a bit, you get 4(6x2 +13x – 28) = 0.

Factoring the quadratic in the parentheses: 4(3x – 4)(2x + 7) = 0. 

Setting the two binomials equal to 0, you get  or .

The Quadratic Formula 
to the Rescue

The quadratic formula is a wonderful tool to use when other 
factoring methods fail (see the previous section). You take 
the numbers from a quadratic equation, plug them into the 
formula, and out come the solutions of the equation. You can 
even use the formula when the equation does factor, but you 
don’t see how.

 

The quadratic formula states that when you have a quadratic 
equation in the form ax2 + bx + c = 0 (where a ≠ 0), the equation 

 has the solutions .

Realizing rational solutions
You can factor quadratic equations such as 48x2 – 155x + 125 = 0 
to find their solutions, but the factorization may not leap right 
out at you when the numbers are so large. Using the quadratic 
formula for this example, you let a = 48, b = –155, and c = 125. 
Filling in the values and solving for x, you get

Starting with the plus sign, the first solution is . 

For the minus sign, you get . The fact that 
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you get fractions tells you that you could’ve factored the 
quadratic: 48x2 – 155x + 125 = (3x – 5)(16x – 25) = 0. Do you 
see where the 3 and 5 and the 16 and 25 come from in the 
answers?

Investigating irrational solutions
The quadratic formula is especially valuable for solving qua-
dratic equations that don’t factor. Unfactorable equations, 
when they do have real solutions, have irrational numbers in 
their answers. Irrational numbers have no fractional equiva-
lent; they feature decimal values that go on forever and never 
have patterns that repeat.

 

Solve the quadratic equation 2x2 + 5x – 6 = 0.

Using the quadratic formula, you let a = 2, b = 5, and c = –6, 
to get the following:

The answer  is approximately 0.886, and  

is approximately –3.386. You find perfectly good answers, 
rounded off to the nearest thousandth. The fact that the 
number under the radical isn’t a perfect square tells you 
something else: You couldn’t have factored the quadratic, no 
matter how hard you tried.

Promoting Quadratic-like 
Equations

A quadratic-like trinomial is a trinomial of the form ax2n + 
bxn + c = 0. The power on one variable term is twice that of 
the other variable term, and a constant term completes the 
picture. The good thing about quadratic-like trinomials is that 
they’re candidates for factoring and then for the application 
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of the MPZ. Solve these equations by factoring the trinomials 
into the product of binomials and then applying the MPZ.

 

Solve: z6 – 26z3 – 27 = 0.

You can think of this equation as being like the quadratic 
x2 – 26x – 27, which factors into (x – 27)(x + 1). If you replace 
the x’s in the factorization with z3, you have the factorization 
for the equation with the z’s:

z6 – 26z3 – 27 = (z3 – 27)(z3 + 1) = 0

Setting each factor equal to 0:

     

 

Solve the quadratic-like trinomial y4 – 17y2 + 16 = 0.

Factor the trinomial into the product of two binomials. Then 
factor each binomial using the rule for the difference of squares:

Setting the individual factors equal to 0, you get y = 4, y = –4, 
y = 1, y = –1.

Solving Quadratic Inequalities
A quadratic inequality is just what it says: an inequality (<, >, 
≤, or ≥) that involves a quadratic expression. You can employ 
the same method you use to solve a quadratic inequality to 
solve high-degree inequalities and rational inequalities (which 
contain variables in fractions).

 

You need to be able to solve quadratic equations in order to 
solve quadratic inequalities. With quadratic equations, you 
set the expressions equal to 0; inequalities use the same num-
bers that give you zeros and then determine what’s on either 
side of the numbers (positives and negatives).
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To solve a quadratic inequality, follow these steps:

 1. Move all the terms to one side of the inequality sign.

 2. Factor, if possible.

 3. Determine all zeros (roots or solutions).

  Zeros are the values of x that make each factored 
expression equal to 0.

 4. Put the zeros in order on a number line.

 5. Create a sign line to show where the expression in 
the inequality is positive or negative.

  A sign line shows the signs of the different factors in 
each interval. If the expression is factored, show the 
signs of the individual factors.

 6. Determine the solution, writing it in inequality nota-
tion or interval notation (see Chapter 2).

Keeping it strictly quadratic
The techniques you use to solve the inequalities in this sec-
tion are also applicable for solving higher-degree polynomial 
inequalities and rational inequalities. If you can factor a third- 
or fourth-degree polynomial (see “Promoting Quadratic-like 
Equations” to get started), you can handily solve an inequality 
where the polynomial is set less than 0 or greater than 0. You 
can also use the sign-line method to look at factors of rational 
(fractional) expressions. For now, however, consider sticking 
to the quadratic inequalities.

To solve the inequality x2 – x > 12, for example, you need to 
determine what values of x you can square so that when you 
subtract the original number, your answer will be bigger than 
12. For example, when x = 5, you get 25 – 5 = 20. That’s certainly 
bigger than 12, so the number 5 works; x = 5 is a solution. How 
about the number 2? When x = 2, you get 4 – 2 = 2, which isn’t 
bigger than 12. You can’t use x = 2 in the solution. Do you then 
conclude that smaller numbers don’t work? Not so. When you 
try x = –10, you get 100 + 10 = 110, which is most definitely 
bigger than 12. You can actually find infinitely many numbers 
that make this inequality a true statement.
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Therefore, you need to solve the inequality by using the steps 
I outline in the introduction to this section:

 1. Subtract 12 from each side of the inequality 
x2 – x > 12 to move all the terms to one side.

  You end up with x2 – x – 12 > 0.

 2. Factoring on the left side of the inequality, you get 
(x – 4)(x + 3) > 0.

 3. Determine that all the zeroes for the inequality are 
x = 4 and x = –3.

 4. Put the zeros in order on a number line, shown in 
the following figure.

−3 4

 5. Create a sign line to show the signs of the different 
factors in each interval.

  Between –3 and 4, try letting x = 0 (you can use any 
number between –3 and 4). When x = 0, the factor 
(x – 4) is negative, and the factor (x + 3) is positive. 
Put those signs on the sign line to correspond to the 
factors. Do the same for the interval of numbers to 
the left of –3 and to the right of 4 (see the following 
figure).

−3

( − ) ( − )

(x − 4)(x + 3) (x − 4)(x + 3) (x − 4)(x + 3)
x = – 5 x = 0 x = 10

( − ) ( + ) ( + ) ( + )

4

  

 The x values in each interval are really random 
choices (as you can see from my choice of x = –5 and 
x = 10). Any number in each of the intervals gives you 
the same positive or negative value to the factor.

 6. To determine the solution, look at the signs of the 
factors; you want the expression to be positive, cor-
responding to the inequality greater than zero.
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  The interval to the left of –3 has a negative times a 
negative, which is positive. So, any number to the left 
of –3 works. You can write that part of the solution as 
x < –3 or, in interval notation, (–∞, –3). The interval 
to the right of 4 has a positive times a positive, which 
is positive. So, x > 4 is a solution; you can write it as 
(4, ∞). No matter what numbers you choose in the 
interval between –3 and 4, the result is always nega-
tive because you have a negative times a positive. The 
complete solution lists both intervals that have work-
ing values in the inequality.

  The solution of the inequality x2 – x > 12, therefore, is 
x < –3 or x > 4.

Signing up for fractions
The sign-line process (see the introduction to this section and 
the previous example problem) is great for solving rational 

inequalities, such as . The signs of the results of 

multiplication and division use the same rules, so to 
determine your answer, you can treat the numerator and 
denominator the same way you treat two different factors in 
multiplication.

Using the steps from the list I present in the introduction to 
this section, determine the solution for a rational inequality:

 1. Every term in  is to the left of the inequality 
sign.

 2. Neither the numerator nor the denominator factors 
any further.

 3. The two zeros are x = 2 and x = –6.

 4. You can see the two numbers on a number line in 
the following illustration.

−6 2



 Chapter 3: Making Quick Work of Quadratic Equations 33

 5. Create a sign line for the two zeroes.

  You can see in the following figure that the numerator 
is positive when x is greater than 2, and the denomina-
tor is positive when x is greater than –6.

−6

( − )
( − )

( + )
( − )

( + )
( + )

2

 6. When determining the solution, keep in mind that 
the inequality calls for something less than or equal 
to zero.

  The fraction is a negative number when you choose 
an x between –6 and 2. You get a negative numerator 
and a positive denominator, which gives a negative 
result. Another solution to the original inequality is 
the number 2. Letting x = 2, you get a numerator equal 
to 0, which you want because the inequality is less 
than or equal to 0. You can’t let the denominator be 0, 
though. Having a zero in the denominator isn’t allowed 
because no such number exists. So, the solution of 

   is –6 < x ≤ 2. In interval notation, you write 

  the solution as (–6, 2].

Increasing the number of factors
The method you use to solve a quadratic inequality (see the 
“Keeping it strictly quadratic” section, earlier in this chapter) 
works nicely with fractions and high-degree expressions. For 
example, you can solve (x + 2)(x – 4)(x + 7)(x – 5)2 ≥ 0 by cre-
ating a sign line and checking the products.

The inequality is already factored, so you move to the step 
(Step 3) where you determine the zeros. The zeros are –2, 4, 
–7, and 5 (the 5 is a double root and the factor is always posi-
tive or 0). The following figure shows the values in order on 
the number line.

−7 −2 4 5
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Now you choose a number in each interval, substitute the 
numbers into the expression on the left of the inequality, and 
determine the signs of the four factors in those intervals. You 
can see from the following figure that the last factor, (x – 5)2, 
is always positive or 0, so that’s an easy factor to pinpoint.

−7 −2 4 5

(−) (−) (−) (+) (−) (−) (+) (+) (+) (−) (+)

(x  +  2 )(x  −  4 )(x  +  7 )(x  −  5 )2

(+) (+) (+) (+) (+) (+) (+) (+) (+)

You want the expression on the left to be positive or 0, given 
the original language of the inequality. You find an even 
number of positive factors between –7 and –2 and for num-
bers greater than 4. You include the zeros, so the solution you 
find is –7 ≤ x ≤ –2 or x ≥ 4. In interval notation, you write the 
solution as [–7, –2] or [4, ∞).



Chapter 4

Rolling Along with Rational 
and Radical Equations

In This Chapter
▶ Solving equations containing radicals and fractional exponents

▶ Working with negative exponents

▶ Recognizing quadratic-like equations and using unFOIL

Solving an algebraic equation requires some know-how. 
You need a game plan to solve equations with fractions, 

radicals, and negative or fractional exponents — one that 
involves careful planning and a final check of your answers. 
In this chapter, you find out how to tackle equations by 
changing them into new versions that are more familiar and 
easier to solve. You also see a recurring theme of check your 
answers, because changing equations into different forms can 
introduce mysterious strangers into the mix — in the form of 
false answers.

Rounding Up Rational Equations 
and Eliminating Fractions

An equation with one or more terms, at least one of which is 
rational, is called a rational equation. You probably hope that 
all your problems (and the people you associate with) are 
rational, but an equation that contains fractions isn’t always 
easy to handle. 
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A general plan for solving a rational equation is to get rid of 
the fraction or fractions by changing the equation into an 
equivalent form with the same answer — a form that makes it 
easier to solve.

Two of the most common ways to get rid of the fractions are 
multiplying through by the least common denominator (LCD) 
and cross-multiplying proportions. I just happen to discuss 
both of these techniques in the sections that follow.

 

This mathematical sleight of hand — using alternate equa-
tions to solve more complicated problems — isn’t without its 
potential problems. At times, the new equation produces an 
extraneous solution (also referred to as an extraneous root), a 
false solution that pops up because you messed around with 
the original format of the equation. To guard against including 
extraneous solutions in your answers, you need to check the 
solutions you come up with in the original equations.

Making your least common 
denominator work for you
You can solve many rational equations by simply getting rid 
of all the denominators (which gets rid of the fractions). To 
do so, you introduce the LCD into the problem. The LCD is 
the smallest number that all the denominators in the problem 
divide into evenly (such as 2, 3, and 4 all dividing the LCD 12 
evenly).

To solve an equation using the LCD, you find the common 
denominator, write each fraction with that common denomi-
nator, and then multiply each side of the equation by that 
same denominator to get a nice fraction-less equation. The 
new equation is in an easier form to solve. I’ll show you the 
step-by-step process with this example:

 

Solve for x in .

 1. Find a common denominator.

  The LCD is a multiple of each of the original denomina-
tors. To solve this equation, use 4(2x – 3) as the LCD. 
All three denominators divide this product evenly.
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 2. Write each fraction with the common denominator.

  Multiply each fraction by the equivalent of 1. The 
numerator and denominator are the same, and the 
denominator is what is needed to change the original 
denominator into the LCD:

   

  Completing the multiplication:

  

 3. Multiply each side of the equation by that same 
denominator.

  Multiply each term in the equation by the LCD; then 
reduce each term and get rid of the denominators:

 

 4. Solve the new equation.

  To solve the new quadratic equation, you multiply out 
the terms, simplify, and set the equation equal to 0:

  

  Now you find out if the quadratic equation factors. If 
it doesn’t factor, you can resort to the quadratic for-
mula; fortunately, that isn’t necessary here. After fac-
toring, you set each factor equal to 0 and solve for x:
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  You find two solutions for the quadratic equation:

   and x = –1.

 5. Check your answers to avoid extraneous solutions.

  You now have to check to be sure that both your solu-
tions work in the original equation. Remember: One or 
both may be extraneous solutions.

  Checking the original equation to see if the two solu-
tions work, you first look at x = –1. Replace each x 
with –1:

  

  Nice! The first solution works. The next check is to see 

  if  is a solution. And right now I’m going to take 

  “author’s privilege” and tell you that yes, the answer 
works. It takes more space than I have to show you all 
the steps, so I’m going to ask you to trust me and skip 
all the gory details. The two solutions of the rational 

  equation are x = –1 and .

Proposing proportions for solving 
rational equations
A proportion is an equation in which one fraction is set equal 
to another. Proportions have several very nice features that 
make them desirable to work with when you’re solving ratio-
nal equations because you can eliminate the fractions or 
change them so that they feature better denominators. Also, 
they factor in four different ways.

 

When you have the proportion , the following are also true:

 ✓ ad and bc, the cross-products, are equal, giving you 
ad = bc.
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 ✓  and , the reciprocals, are equal, giving .

 ✓ You can divide out common factors both horizontally 
and vertically.

 

Solve for x in the proportion: .

First reduce across the numerators, and then reduce the left 
fraction:

 becomes 

 becomes 

Now cross-multiply and solve the resulting quadratic 
equation:

As usual, you need to check to be sure that you haven’t intro-
duced any extraneous roots. Both solutions work!

Reasoning with Radicals
A radical in an equation often indicates that you want to find a 
root — the square root of a number, its cube root, and so on. 
A radical (root) adds a whole new dimension to what could’ve 
been a perfectly nice equation to solve. In general, you deal 
with radicals in equations the same way you deal with frac-
tions in equations — you get rid of them. But watch out: extra-
neous answers often crop up in your work, so you have to 
check your answers.
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Squaring both sides 
of the equation
If you have an equation with a square root term in it, you 
square both sides of the equation to get rid of the radical.

 

Solve for x in .

First, add 6 to both sides of the equation to get the radical by 
itself on the left. Then square both sides of the equation.

Now set the quadratic equation equal to 0 and solve it:

The two solutions work for the quadratic equation that was 
created, but they don’t necessarily work in the original equa-
tion. Check the work!

When x = –3, you get

The solution x = –3 works. Checking x = –5, you get

This solution works, too.
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Both solutions working out is more the exception rather than 
the rule. Most of the time, one solution or the other works, 
but not both. And, unfortunately, sometimes you go through 
all the calculations and find that neither solution works in the 
original equation. You get an answer, of course (that there is 
no answer), but it isn’t very fulfilling.

Taking on two radicals
Some equations that contain radicals call for more than one 
application of squaring both sides. For example, you have 
to square both sides more than once when you can’t isolate 
a radical term by itself on one side of the equation. And you 
usually need to square both sides more than once when you 
have three terms in the equation — two of them with radicals.

 

Solve .

 1. Move the radicals so that only one appears on 
each side.

 2. Square both sides of the equation.

  After the first two steps, you have the following:

  

 3. Move all the nonradical terms to the left and simplify.

  This gives you the following:

  

 4. Make the job of squaring the binomial on the left 
easier by dividing each term by 2 — the common 
factor of all the terms on both sides. Then square 
both sides, simplify, set the quadratic equal to 0, 
and solve for x.
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  The two solutions you come up with are x = 2 and x = 
34. Both have to be checked in the original equation. 
When x = 2,

  

  When x = 34,

  

The solution x = 2 works. The other solution, x = 34, doesn’t 
work in the equation. The number 34 is an extraneous solution.

Dealing with Negative Exponents
Equations with negative exponents offer some unique chal-
lenges. In general, negative exponents are easier to work with 
if they disappear. Yes, as wonderful as negative exponents are 
in the world of mathematics, solving equations that contain 
them is often easier if you can change the format to positive 
exponents and fractions and then deal with solving the frac-
tional equations (as shown in the previous section). What I do 
in this section, though, is show you how to handle negative 
exponents without resorting to the fractions.

A common type of equation with negative exponents is one 
with a mixture of powers. I show you how to deal with these 
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particular equations by factoring out a greatest common 
factor (GCF). Another common negative-exponent problem is 
one that’s quadratic-like.

Factoring out a negative exponent 
as a greatest common factor
The next example shows you, step-by-step, how to deal with 
an equation with negative exponents that can be solved by 
factoring.

 

Solve 3x–3 – 5x–2 = 0 for x.

 1. Factor out the GCF.

  In this case, the GCF is x–3:

  x–3 (3 – 5x) = 0

 

 Did you think the exponent of the GCF was –2? 
Remember: –3 is smaller than –2. When you factor 
out a GCF, you choose the smallest exponent out of 
all the choices and then divide each term by that 
common factor.

 2. Set each term in the factored form equal to 0 to solve 
for x.

  You end up with:

  

  The first equation has no solution. The fraction with 
1 in the numerator and x3 in the denominator is never 
equal to 0. The only way a fraction is equal to 0 is 
if the numerator is 0 (and the denominator is some 
other number).

 3. Check your answers.

  The only solution for this equation is  — a perfectly 
dandy answer.
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Solving quadratic-like trinomials
Trinomials are expressions with three terms, with the highest 
term raised to the second degree, the expression is quadratic. 
You can simplify quadratic trinomials by factoring them into 
two binomial factors. (See Chapter 3 for details on factoring 
quadratic-like trinomials.)

 

Solve the trinomial equation 3x–2 + 5x–1 – 2 = 0.

You find the quadratic-like pattern: ax–2n + bx–n + c. Factoring 
and setting the two factors equal to 0:

You produce two solutions, and both work when substituted 
into the original equation.

 

Be careful when solving an equation containing negative 
exponents — when the equation involves taking an even root 
(square root, fourth root, and so on). Watch out for zeros in 
the denominator, because those numbers don’t exist, and be 
wary of imaginary numbers — they exist somewhere, in some 
mathematician’s imagination. Factoring into binomials is a nifty 
way of solving equations with negative exponents — just be 
sure to proceed cautiously.
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Fiddling with Fractional 
Exponents

You use fractional exponents ( , for example) to replace rad-
icals and powers under radicals. Writing terms with fractional 
exponents allows you to perform operations on terms more 
easily when they have the same base or variable.

Solving equations by factoring 
fractional exponents
You can easily factor expressions that contain variables with 
fractional exponents if you know the rule for dividing num-

bers with the same base. To factor the expression , 
for example, you note that the smaller of the two exponents is 

the fraction . Factor out x raised to that lower power, chang-

ing to a common denominator where necessary:

 

A good way to check your factoring work is to mentally dis-
tribute the first term through the terms in parentheses to be 
sure that the product is what you started with.

Promoting techniques for working 
with fractional exponents
Fractional exponents represent radicals and powers. Some 
equations with fractional exponents are solved by raising 
each side to an appropriate power to get rid of the fraction in 
the exponent. Other equations require various methods for 
solving equations, such as factoring.

Factoring out the greatest common factor
You don’t always have the luxury of being able to raise each 
side of an equation to a power to get rid of the fractional expo-
nents. Your next best plan of attack involves factoring out the 
variable with the smaller exponent and setting the two factors 
equal to 0.
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Solve .

First factor out an x with the exponent of . Then set the two 
factors equal to 0 to solve for x.

You come up with two perfectly civilized answers: x = 0 and 
x = 27.

Factoring quadratic-like fractional terms
Often, you can factor trinomials with fractional exponents 
into the product of two binomials. This is another version 
of the quadratic-like trinomials. After the factoring, you set 
the two binomials equal to 0 to determine if you can find any 
solutions.

 

Solve .

First, factor the left side into the product of two binomials. 
The exponent of the first term is twice that of the second, 
which should indicate to you that the trinomial has factoring 
potential. After you factor, you set the expression equal to 0 
and solve for x:

Check your answers in the original equation; you find that 
both x = 1 and x = 625 work.



Chapter 5

Forging Function Facts
In This Chapter
▶ Defining functions, domain, and range

▶ Identifying one-to-one functions and even vs. odd functions

▶ Using function composition in the difference quotient

In algebra, the word function is very specific. You reserve 
it for certain math expressions that meet the tough 

standards of input and output values, as well as other math-
ematical rules of relationships. Therefore, when you hear 
that a certain relationship is a function, you know that the 
relationship meets some particular requirements. In this 
chapter, you find out more about these requirements. 
I also cover topics ranging from the domain and range of 
functions to the inverses of functions, and I show you how 
to perform the composition of functions. After acquainting 
yourself with these topics, you can confront a function 
equation with great confidence and a plan of attack. 

Describing Function 
Characteristics

 

A function is a relationship between two variables that fea-
tures exactly one output value for every input value — in 
other words, exactly one answer for every number inserted 
into the function rule.

For example, the equation y = x2 + 5x – 4 is a function equation 
or function rule that uses the variables x and y. The x is the 
input variable, and the y is the output variable. If you input the 
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number 3 for each of the x’s, you get y = 32 + 5(3) – 4 = 9 + 15 – 
4 = 20. The output is 20, the only possible answer. You won’t 
get another number if you input the 3 a second time.

The single-output requirement for a function may seem like 
an easy requirement to meet, but you encounter plenty of 
strange math equations out there, so watch out.

Denoting function notation
Functions feature some special notation that makes working 
with them much easier. The notation doesn’t change any of 
the properties — it just allows you to identify different func-
tions quickly and indicate various operations and processes 
more efficiently.

The variables x and y are pretty standard in functions and 
come in handy when you’re graphing functions. But mathema-
ticians also use another format called function notation. For 
example, here are three particular functions named two differ-
ent ways:

y = x2 + 5x – 4 f (x) = x2 + 5x – 4

 

 

On the left, you see the traditional x and y expression of the 
three functions. But when you see a bunch of functions writ-
ten together, you can be efficient by referring to individual 
functions as f or g or h so listeners don’t have to question 
what you’re referring to. When I say, “Look at function g,” 
your eyes go directly to the function I’m talking about.

Using function notation 
to evaluate functions
When you see a written function that uses function notation, 
you can easily identify the input variable, the output variable, 
and what you have to do to evaluate the function for some 
input (or replace the variables with numbers and simplify). 
You can do so because the input value is placed in the paren-
theses right after the function name or output value.
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Evaluate  when x = 3.

g(3) is what you get when you substitute a 3 for every x in the 
function expression and perform the operations to get the 
output answer.

. Now you can say that g(3) = 1, 
or “g of 3 equals 1.” The output of the function g is 1 if the 
input is 3.

Determining Domain and Range
The input and output values of a function (see the previous 
section) are of major interest to people working in algebra. 
The words input and output describe what’s happening in the 
function (namely what number you put in and what result 
comes out), but the official designations for these sets of 
values are domain and range.

Delving into domain
The domain of a function consists of all the input values of the 
function. (Think of a king’s domain of all his servants enter-
ing his kingdom.) In other words, the domain is the set of all 
numbers that you can input without creating an unwanted or 
impossible situation. Such situations can occur when opera-
tions appear in the definition of the function, such as frac-
tions, radicals, logarithms, and so on.

 

Many functions have no exclusions of values, but fractions are 
notorious for causing trouble when zeros appear in the denom-
inators. Radicals have restrictions as to what you can find 
roots of, and logarithms can only deal with positive numbers.

The way you express domain depends on what’s required of 
the task you’re working on — evaluating functions, graphing, 
determining a good fit as a model, to name a few. Here are 
some examples of functions and their respective domains:

 ✓ : The domain consists of the number 11 
and every greater number thereafter. You write this as 
x ≥ 11 or, in interval notation, [11, ∞). You can’t use numbers 
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smaller than 11 because you’d be taking the square root 
of a negative number, which isn’t a real number.

 ✓ : The domain  

  consists of all real numbers except 6 and –2. You write 
this domain as x < –2 or –2 < x < 6 or x > 6, or, in interval 
notation, as (–∞, –2) , (–2, 6) , (6, ∞). It may be easier to 
simply write “All real numbers except x = –2 and x = 6.” 
The reason you can’t use –2 or 6 is because these num-
bers result in a 0 in the denominator of the fraction, and 
a fraction with 0 in the denominator creates a number 
that doesn’t exist.

 ✓ h(x) = x3 – 3x2 + 2x – 1: The domain of this function is 
all real numbers. You don’t have to eliminate anything, 
because you can’t find a fraction with the potential of a 
zero in the denominator, and you have no radical to put a 
negative value into. You write this domain with a fancy R, 

, or with interval notation as (–∞, ∞).

Wrangling with range
The range of a function is all its output values — all values you 
get by inputting the domain values into the rule (the function 
equation) for the function. You may be able to determine the 
range of a function from its equation, but sometimes you have 
to graph it to get a good idea of what’s going on.

The following are some examples of functions and their 
ranges. Like domains (see the previous section), you can 
express ranges in words, inequalities, or interval notation:

 ✓ k(x) = x2 + 3: The range of this function consists of the 
number 3 and any number greater than 3. You write the 
range as k ≥ 3 or, in interval notation, [3, ∞). The outputs 
can never be less than 3 because the numbers you input 
are squared. The result of squaring a real number is 
always positive (or if you input 0, you square 0). If you 
add a positive number or 0 to 3, you never get anything 
smaller than 3.

 ✓ : The range of this function consists of all 
positive numbers and 0. You write the range as m ≥ 0 or, 
in interval notation, [0, ∞). The number under the radical 
can never be negative, and all the square roots come out 
positive or 0.
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 ✓ : Some functions’ equations, such as this one, 

  don’t give an immediate clue to the range values. It often 
helps to sketch the graphs of these functions. Figure 5-1 
shows the graph of the function p. See if you can figure 
out the range values before peeking at the following 
explanation.

y

x5

Figure 5-1: Try graphing equations that don’t give an obvious range.

The graph of this function never touches the x-axis, but it gets 
very close. For the numbers in the domain bigger than 5, the 
graph has some really high y values and some y values that 
get really close to 0. But the graph never touches the x-axis, 
so the function value never really reaches 0. For numbers 
in the domain smaller than 5, the curve is below the x-axis. 
These function values are negative — some really small. But, 
again, the y values never reach 0. So, if you guessed that the 
range of the function is every real number except 0, you’re 
right! You write the range as p ≠ 0, or (–∞, 0) , (0, ∞). Did you 
also notice that the function doesn’t have a value when x = 5? 
This happens because 5 isn’t in the domain.

Counting on Even and 
Odd Functions

You can classify numbers as even or odd (and you can use 
this information to your advantage; for example, you know 
you can divide even numbers by 2 and come out with an inte-
ger). You can also classify some functions as even or odd.
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Determining whether even or odd

 

An even function is one in which a domain value (an input) 
and its opposite always result in the same range value 
(output): f(–x) = f(x) for every x in the domain. An odd function 
is one in which each domain value and its opposite produce 
opposite results in the range: f(–x) = –f(x).

To determine if a function is even or odd (or neither), you 
replace every x in the function equation with –x and simplify. 
If the function is even, the simplified version looks exactly like 
the original. If the function is odd, the simplified version looks 
like what you get after multiplying the original function equa-
tion by –1.

 

Show that f(x) = x4 – 3x2 + 6 is even.

Whether you input 2 or –2, you get the same output:

 ✓ f(2) = (2)4 – 3(2)2 + 6 = 16 – 12 + 6 = 10

 ✓ f(–2) = (–2)4 – 3(–2)2 + 6 = 16 – 3(4) + 6 = 10

So, you can say f(2) = f(–2).

The example doesn’t constitute a proof that the function is 
even; this is just a demonstration.

 

Show that g(x) = x3 – x is odd.

The inputs 2 and –2 give you opposite answers:

 ✓ g(2) = (2)3 – 2 = 8 – 2 = 6

 ✓ g(–2) = (–2)3 – (–2) = –8 + 2 = –6

So, you can say that g(–2) = –g(2).

Again, I’ve demonstrated, not proved, that the function is odd.

 

You can’t say that a function is even just because it has even 
exponents and coefficients, and you can’t say that a function is 
odd just because the exponents and coefficients are odd num-
bers. If you do make these assumptions, you classify the func-
tions incorrectly, which messes up your graphing. You have to 
apply the definitions to determine which label a function has.
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Using even and odd 
functions in graphs
The biggest distinction of even and odd functions is how their 
graphs look:

 ✓ Even functions: The graphs of even functions are sym-
metric with respect to the y-axis (the vertical axis). You 
see what appears to be a mirror image to the left and 
right of the vertical axis. For an example of this type of 
symmetry, see Figure 5-2a, which is the graph of the even 

  function .

 ✓ Odd functions: The graphs of odd functions are symmet-
ric with respect to the origin. With this symmetry it looks 
the same if you rotate the graph by 180 degrees. The graph 
in Figure 5-2b, which is the odd function g(x) = x3 –8x, dis-
plays origin symmetry.

y

x

y

x

a b

Figure 5-2: An even (a) and odd (b) function.

Taking on Functions One-to-One
Functions can have many classifications or names, depending 
on the situation and what you want to do with them. One very 
important classification is deciding whether a function is one-
to-one.
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Defining which functions 
are one-to-one

 

A function is one-to-one if you have exactly one output value 
for every input value and exactly one input value for every 
output value. Formally, you write this definition as follows:

If f is a one-to-one function, then when f(x
1
) = f(x

2
), it must 

be true that x
1
 = x

2
.

In simple terms, if the two output values are the same, the 
two input values must also be the same.

One-to-one functions are important because they’re the only 
functions that can have inverses, and functions with inverses 
aren’t all that easy to come by. If a function has an inverse, 
you can work backward and forward — find an answer if you 
have a question and find the original question if you know the 
answer (sort of like Jeopardy!).

An example of a one-to-one function is f(x) = x3. The rule for 
the function involves cubing the variable. The cube of a posi-
tive number is positive, and the cube of a negative number 
is negative. Therefore, every input has a unique output — no 
other input value gives you that output.

Some functions without the one-to-one designation may look 
like the previous example, which is one-to-one. Take g(x) = x3 

– x, for example. This counts as a function because only one 
output comes with every input. However, the function isn’t 
one-to-one, because you can create the same output or func-
tion value from more than one input. For example, g(1) = 
(1)3 – (1) = 1 – 1 = 0, and g(–1) = (–1)3 – (–1) = –1 + 1 = 0. You 
have two inputs, 1 and –1, that result in the same output of 0.

Testing for one-to-one functions
You can determine which functions are one-to-one and which 
are violators by sleuthing (guessing and trying), using alge-
braic techniques and graphing. Most mathematicians prefer 
the graphing technique because it gives you a nice, visual 
answer. The basic graphing technique is the horizontal line 
test.
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With the horizontal line test, you can see if any horizontal line 
drawn through the graph cuts through the function more than 
one time. If a line passes through the graph more than once, 
the function fails the test and, therefore, isn’t a one-to-one 
function. Figure 5-3 shows a function that passes the horizon-
tal line test and a function that flunks it.

y

x

y

x

a b

Figure 5-3:  The horizontal line test weeds out the one-to-one functions (left) 

from the violators (right).

Composing Functions
You can perform the basic mathematical operations of addi-
tion, subtraction, multiplication, and division on the equations 
used to describe functions. For example, you can take the two 
functions f(x) = x2 – 3x – 4 and g(x) = x + 1 and perform the four 
operations on them:

f + g = (x2 – 3x – 4) + (x + 1) = x2 – 2x – 3

f – g = (x2 – 3x – 4) – (x + 1) = x2 – 3x – 4 – x – 1 = x2 – 4x – 5

Well done, but you have another operation at your disposal — 
an operation special to functions — called composition.
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Composing yourself with functions
The composition of functions is an operation in which you use 
one function as the input into another and perform the opera-
tions on that input function.

 

You indicate the composition of functions f and g with a small 

 circle between the function names, , and you define 

 the composition as .

Here’s how you perform an example composition, using the 
functions f(x) = x2 – 3x – 4 and g(x) = x + 1:

The composition of functions isn’t commutative. (Addition and 
multiplication are commutative, because you can switch the 
order and not change the result.) The order in which you per-
form the composition — which function comes first — matters. 

The composition  isn’t the same as .

Composing with the 
difference quotient
The difference quotient shows up in most high school algebra 
II classes as an exercise you do after your instructor shows 
you the composition of functions. You perform this exercise 
because the difference quotient is the basis of the definition 
of the derivative in calculus.

So, where does the composition of functions come in? With 
the difference quotient, you do the composition of some tar-
geted function f(x) and the function g(x) = x + h or g(x) = x + Δx, 
depending on what calculus book you use.
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The difference quotient for the function f is .

 

Perform the difference quotient on f(x) = x2 – 3x – 4.

 

Notice that you find the expression for f(x + h) by putting x + 
h in for every x in the function — x + h is the input variable. 
Now, continuing on with the simplification:

 

Did you notice that x2, 3x, and 4 all appear in the numerator 
with their opposites? Now, to finish:

 

Now, this may not look like much to you, but you’ve created 
a wonderful result. You’ve just done some really decent 
algebra.

Getting Into Inverse Functions
Some functions are inverses of one another, but a function 
can have an inverse only if it’s one-to-one. If two functions 
are inverses of one another, each function “undoes” what the 
other “did.” In other words, you use them to get back where 
you started. The process is sort of like Jeopardy! — you have 
the answer and need to determine the question.

The notation for an inverse function is the exponent –1 writ-
ten after the function name. The inverse of function f(x), for 
example, is f –1(x). 
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Don’t confuse the –1 exponent for taking the reciprocal of f(x). 
The notation is what we’re stuck with, so just pay heed. 

Here are two inverse functions and how they can “undo” one 
another:

 and 

 and 

If you put 5 into function f, you get 8 as a result. If you put 8 
into f –1, you get 5 as a result — you’re back where you started.

Now, how can you tell when functions are inverses? Read on!

Finding which functions 
are inverses
In the example from the previous section, I tell you that two 
functions are inverses and then demonstrate how they work. 
You can’t really prove that two functions are inverses by plug-
ging in numbers, however. You may face a situation where a 
couple numbers work, but, in general, the two functions aren’t 
really inverses.

 

The only way to be sure that two functions are inverses of one 
another is to use the following general definition:

Functions f and f –1 are inverses of one another only if 

 and .

In other words, you have to do the composition in both direc-
tions and show that both result in the single value x.

 

Show that  and  are 
inverses of one another.
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First, you perform the composition :

Now you perform the composition in the opposite order:

Both come out with a result of x, so the functions are inverses 
of one another.

Finding an inverse of a function
Up until now in this section, I’ve given you two functions and 
told you that they’re inverses of one another. I can show you 
how to create all sorts of inverses for all sorts of one-to-one 
functions.
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Find the inverse of the one-to-one function .

 1. Rewrite the function, replacing f(x) with y to simplify 
the notation.

  

 2. Change each y to an x and each x to a y.

  

 3. Solve for y.

  

 4. Rewrite the function, replacing the y with f –1(x).

  



Chapter 6

Graphing Linear and 
Quadratic Functions

In This Chapter
▶ Enlisting basic graphing techniques

▶ Identifying and graphing the equation of a line

▶ Graphing quadratic functions using vertices and intercepts

Graphing equations is an important part of understanding 
just what a function or other relationship represents. 

The modern, handheld graphing calculators take care of many 
of the details, but you still need to have a general idea of what 
the graph should look like so you know how to select a view-
ing window and so you know if you’ve entered something 
incorrectly.

Identifying Some Graphing 
Techniques

You do most graphing in algebra on the Cartesian coordinate 
system — a grid-like system where you plot points depending 
on the position and signs of numbers. Within the Cartesian 
coordinate system (which is named for the philosopher and 
mathematician Rene Descartes), you can plug-and-plot points 
to draw a curve, or you can take advantage of knowing a little 
something about what the graphs should look like. In either 
case, the coordinates and points fit together to give you a 
picture. 
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Graphing curves can take as long as you like or be as quick 
as you like. If you take advantage of the characteristics of the 
curves you’re graphing, you can cut down on the time it takes 
to graph and improve your accuracy. Two features that you 
can quickly recognize and solve for are the intercepts and 
symmetry of the graphs.

Finding x- and y-intercepts
The intercepts of a graph appear at the points where the graph 
crosses the axes. The graph of a curve may never cross an 
axis, but when it does, knowing the points that represent the 
intercepts is very helpful.

 

The x-intercepts always have the format (h, 0) — the 
y-coordinate is 0 because the point is on the x-axis. The 
y-intercepts have the form (0, k) — the x-coordinate is 0 because 
the point is on the y-axis. You find the x- and y-intercepts by 
letting y and x, respectively, equal 0. To find the x-intercept(s) 
of a curve, you set y equal to 0 and solve a given equation 
for x. To find the y-intercept(s) of a curve, you set x equal to 0 
and solve the equation for y.

 

Find the intercepts of the graph of y = –x2 + x + 6.

To find the x-intercepts, let y = 0; you then have the quadratic 
equation 0 = –x2 + x + 6 = –(x2 – x – 6). Solve this equation by 
factoring it into 0 = –(x – 3) (x + 2). You find two solutions, x 
= 3 and –2, so the two x-intercepts are (3, 0) and (–2, 0). (For 
more on factoring, see Chapters 1 and 3.)

To find the y-intercept, let x = 0. This gives you the equation 
y = –0 + 0 + 6 = 6. The y-intercept, therefore, is (0, 6).

Reflecting on a graph’s symmetry
A graph that’s symmetric with respect to one of the axes 
appears to be a mirror image of itself on either side of the 
axis. A graph symmetric about the origin appears to be the 
same after a 180-degree turn. Figure 6-1 shows three curves 
and three symmetries: symmetry with respect to the y-axis 
(a), symmetry with respect to the x-axis (b), and symmetry 
with respect to the origin (c).
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a b c

Figure 6-1: Symmetry in a graph makes for a pretty picture.

Recognizing that the graph of a curve has symmetry helps 
you sketch the graph and determine its characteristics. The 
following sections outline ways to determine, from a graph’s 
equation, if symmetry exists.

With respect to the y-axis (even functions):

 ✓ If replacing every x with –x doesn’t change the value of y, 
the curve is the mirror image of itself over the y-axis. The 
graph contains the points (x, y) and (–x, y).

 ✓ For example, the graph of the equation y = x4 – 3x2 + 1 is 
symmetric with respect to the y-axis. If you replace each 
x with –x, the equation remains unchanged. Replacing 
each x with –x, y = (–x)4 – 3(–x)2 + 1 = x4 – 3x2 + 1.

With respect to the x-axis:

 ✓ If replacing every y with –y doesn’t change the value of x, 
the curve is the mirror image of itself over the x-axis. The 
graph contains the points (x, y) and (x, –y).

 ✓ For example, the graph of  is symmetric with 

  respect to the x-axis. When you replace each y with –y, 
the x-value remains unchanged.

With respect to the origin (odd functions):

 ✓ If replacing every variable with its opposite is the same 
as multiplying the entire equation by –1, the curve can 
rotate by 180 degrees about the origin and be its own 
image. The graph contains the points (x, y) and (–x, –y).

 ✓ For example, the graph of y = x5 – 10x3 + 9x is symmetric 
with respect to the origin. When you replace every x and 
y with –x and –y, you get –y = –x5 + 10x3 – 9x, which is the 
same as multiplying everything through by –1.



Algebra II Essentials For Dummies 64

Mastering the Graphs of Lines
Lines are some of the simplest graphs to sketch. It takes only 
two points to determine the one and only line that passes 
through them and goes on forever and ever in a space, so one 
simple method for graphing lines is to find two points — any 
two points — on the line. Another useful method is to use 
a point and the slope of the line. The method you choose is 
often just a matter of personal preference.

The slope of a line also plays a big role in comparing it with 
other lines that run parallel or perpendicular to it. The slopes 
are closely related to one another.

Determining the slope of a line
The slope of a line, designated by the letter m, has a compli-
cated math definition, but it’s basically a number — positive, 
negative, or zero; large or small — that tells you something 
about the steepness and direction of the line. The numerical 
value of the slope tells you if the line slowly rises or drops from 
left to right or dramatically soars or falls from left to right.

Characterizing a line’s slope

 

A line can have a positive slope, a negative slope, a zero slope, 
or no slope at all. The greater the absolute value (the value 
of the number without regard to the sign; in other words, the 
distance of the number from 0) of a line’s slope, the steeper 
the line is. For example, if the slope is a number between –1 
and 1, the line is rather flat. A slope of 0 means that the line is 
absolutely horizontal.

A vertical line doesn’t have a slope. This is tied to the fact that 
numbers go infinitely high, and math doesn’t have a highest 
number — you just say infinity. Only an infinitely high number 
can represent a vertical line’s slope, but usually, if you’re talk-
ing about a vertical line, you just say that the slope doesn’t 
exist.

Computing a line’s slope
You can determine the slope of a line, m, if you know two 
points on the line.
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You find the slope of the line that goes through the points 

 (x
1
, y

1
) and (x

2
, y

2
) with the formula .

 

Find the slope of the line through (–3, 2) and (4, –12).

Use the formula to get . This 

line is fairly steep — the absolute value of –2 is 2 — and it falls 
as it moves from left to right, which makes its slope negative.

 

When you use the slope formula, it doesn’t matter which point 
you choose to be (x

1
, y

1
) — the order of the points doesn’t 

matter — but you can’t mix up the order of the two differ-
ent coordinates. You can run a quick check by seeing if the 
coordinates of each point are above and below one another. 
Also, be sure that the y-coordinates are in the numerator; a 
common error is to have the difference of the y-coordinates in 
the denominator.

Describing two line equations
I offer two different forms for the equation of a line. The first 
is the standard form, written Ax + By = C, with the two vari-
able terms on one side and the constant on the other side. 
The other form is the slope-intercept form, written y = mx + b; 
the y-value is set equal to the product of the slope, m, and x 
added to the y-intercept, b.

Standing up with the standard form
The standard form has more information about the line than 
may be immediately apparent. You can determine, just by 
looking at the numbers in the equation, the intercepts and 
slope of the line.

 

The line Ax + By = C has

 ✓ An x-intercept of 

 ✓ A y-intercept of 

 ✓ A slope of 

 

Graph the line 4x + 3y = 12 using the intercepts.
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Plot the intercepts,  and 

.

Then draw the line through them. Figure 6-2 shows the two 
intercepts and the graph of the line. Note that the line falls as 
it moves from left to right, confirming the negative value of 

the slope from the formula .

x

y

(0,4)

(3,0)

Figure 6-2:  Graphing 4x + 3y = 12, a line written in standard form, 

using its intercepts.

Sliding down the slope-intercept form
When the equation of a line is written in the slope-intercept 
form, y = mx + b, you have good information right at your 
fingertips. The coefficient of the x term, m, is the slope of the 
line. And the constant, b, is the y-value of the y-intercept. With 
these two bits of information, you can quickly sketch the line.

If you want to graph the line y = 2x + 5, for example, you first 
plot the y-intercept, (0, 5), and then “count off” the slope from 
that point moving to the right and then up or down. The slope 
of the line y = 2x + 5 is 2; think of the 2 as the slope fraction, 
with the y-coordinates on top and the x-coordinates on 
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bottom. The slope then becomes . So you move one unit to 

the right and then two units up, because the slope is positive.

Changing from one form to the other
You can graph lines by using the standard form or the slope-
intercept form of the equations. If you prefer one form to the 
other — or if you need a particular form for an application 
you’re working on — you can change the equations to your 
preferred form by performing simple algebra:

 ✓ To change the standard form to the slope-intercept form, 
you just solve for y.

 ✓ To change the slope-intercept form to the standard form, 
you rewrite the equation with the x and y terms on one 
side and then multiply through by a constant to create 
integer coefficients and a constant on the other side.

Identifying parallel and 
perpendicular lines
Lines are parallel when they never touch — no matter how far 
out you draw them. Lines are perpendicular when they inter-
sect at a 90-degree angle. Both of these instances are fairly 
easy to spot when you see the lines graphed, but how can you 
be sure that the lines are truly parallel or that the angle is really 
90 degrees and not 89.9 degrees? The answer lies in the slopes.

Consider two lines, y = m
1
x + b

1
 and y = m

2
x + b

2
.

 

Two lines are parallel when their slopes are equal (m
1
 = m

2
). 

Two lines are perpendicular when their slopes are negative 

 reciprocals of one another: .

For example, the lines y = 3x + 7 and y = 3x – 2 are parallel. 
Both lines have a slope of 3, but their y-intercepts are 
different — one crosses the y-axis at 7 and the other at –2. The 

lines  and  are perpendicular. The slopes 

are negative reciprocals of one another.
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Coming to Terms with the 
Standard Form of a Quadratic

A parabola is the graph of a quadratic function. The graph 
is a nice, gentle, U-shaped curve that has points located an 
equal distance on either side of a line running up through its 
middle — called its axis of symmetry. Parabolas can be turned 
upward, downward, left, or right, but parabolas that represent 
functions only turn up or down. Here’s the standard form for 
the quadratic function:

f(x) = ax2 + bx + c

The coefficients (multipliers of the variables) a, b, and c are 
real numbers; a can’t be equal to 0 because you’d no longer 
have a quadratic function. There’s meaning in everything — 
or nothing!

Starting with “a” in 
the standard form
As the lead coefficient of the standard form of the quadratic 
function f(x) = ax2 + bx + c, a provides important information:

 ✓ If a is positive, the graph of the parabola opens upward.

 ✓ If a is negative, the graph of the parabola opens 
downward.

 ✓ If a has an absolute value greater than 1, the graph of the 
parabola is “steep.”

 ✓ If a has an absolute value less than 1, the graph of the 
parabola flattens.

Figure 6-3 shows some representatives of the different direc-
tions and forms that parabolas can take.
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ba

dc

Figure 6-3: Parabolas opening up and down, appearing steep and flat.

The following equations of parabolas demonstrate for you the 
effect of the coefficient on the squared term:

 ✓ y = 4x2 – 3x + 2: You say that this parabola is steep and 
opens upward because the lead coefficient is positive 
and greater than 1.

 ✓ : You say that this parabola is flattened 

  out and opens downward because the lead coefficient 
is negative, and the absolute value of the fraction is less 
than 1.

 ✓ y = 0.002x2 + 3: You say that this parabola is flattened 
out and opens upward because the lead coefficient is 
positive, and the decimal value is less than 1. In fact, the 
coefficient is so small that the flattened parabola almost 
looks like a horizontal line.

Following “a” with “b” and “c”
Much like the lead coefficient in the quadratic function (see 
the previous section), the terms b and c give you plenty of 
information. Mainly, the terms tell you a lot if they’re not 
there.
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 ✓ If the second coefficient, b, is 0, the parabola straddles 
the y-axis. The parabola’s vertex — the highest or lowest 
point on the curve, depending on which way it faces — is 
on that axis, and the parabola is symmetric about the 
axis. The equation then takes the form y = ax2 + c.

 ✓ If the last coefficient, c, is 0, the graph of the parabola 
goes through the origin — in other words, one of its 
intercepts is the origin. The equation then becomes y = 
ax2 + bx, which you can easily factor into y = x(ax + b).

Eyeing a Quadratic’s Intercepts
The intercepts of a quadratic function (or any function) are the 
points where the graph of the function crosses the x- or y-axis.

Intercepts are very helpful when you’re graphing a parabola. 
The points are easy to find because one of the coordinates is 
always 0. If you have the intercepts and the vertex, and you 
use the symmetry of the parabola, you have a good idea of 
what the graph looks like.

Finding the one and 
only y-intercept
The y-intercept of a quadratic function is (0, c). A parabola 
with the standard equation y = ax2 + bx + c is a function, so by 
definition, only one y-value can exist for every x-value. When 
x = 0, then y = c and the y-intercept is (0, c).

To find the y-intercepts of the following functions, you let x = 0:

 ✓ y = 4x2 – 3x + 2: When x = 0, y = 2 (or c = 2). The y-intercept 
is (0, 2).

 ✓ y = –x2 – 5: When x = 0, y = –5 (or c = –5). Don’t let the 
missing x term throw you. The y-intercept is (0, –5).

 ✓ y = x2 + 9x: When x = 0, y = 0. The equation provides no 
constant term; you could also say the missing constant 
term is 0. The y-intercept is (0, 0).
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Getting at the x-intercepts
You find the x-intercepts of quadratics when you solve for 
the zeros, or solutions, of a quadratic equation and find real 
number answers. Parabolas with an equation of the standard 
form y = ax2 + bx + c open upward or downward and may or 
may not have x-intercepts; when the equation 0 = ax2 + bx + c 
has no real solutions, then the graph has no x-intercepts.

The coordinates of all x-intercepts have zeros in them. An 
x-intercept’s y-value is 0, and you write it in the form (h, 0). 
How do you find the value of h? You let y = 0 in the general 
equation and then solve for x. You have two options to solve 
the equation 0 = ax2 + bx + c:

 ✓ Use the quadratic formula (see Chapter 3).

 ✓ Factor the expression and use the multiplication prop-
erty of zero (MPZ; see Chapter 1).

 

Find the x-intercepts of y = 3x2 + 7x – 40.

Set y equal to 0 and solve the quadratic equation by factoring:

0 = 3x2 + 7x – 40 = (3x – 8)(x + 5)

So  or x = –5.

The two x-intercepts are  and (–5, 0).

This next example shows how you determine that an equation 
has no x-intercept.

 

Find the x-intercepts of y = –2x2 + 4x – 7.

Set y equal to 0 and you find that the quadratic doesn’t factor. 
Then you apply the quadratic formula.
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You see that the value under the radical is negative; there 
are no real solutions. Alas, you find no x-intercept for this 
parabola.

Finding the Vertex of a Parabola
Quadratic functions, or parabolas, that have the standard 
form y = ax2 + bx + c are gentle, U-shaped curves that open 
either upward or downward. When the lead coefficient, a, is 
a positive number, the parabola opens upward, creating a 
minimum value for the function — the function values never 
go lower than that minimum. When a is negative, the parabola 
opens downward, creating a maximum value for the function — 
the function values never go higher than that maximum. The 
two extreme values, the minimum and maximum, occur at the 
parabola’s vertex. The y-coordinate of the vertex gives you 
the numerical value of the extreme — its highest or lowest 
point. And the x-coordinate is part of the equation of the axis 
of symmetry.

Computing vertex coordinates
Finding the vertex of the parabola representing a quadratic 
function is as easy as a, b, c — without the c. Just insert the 
coefficients a and b into a formula.

 

The parabola y = ax2 + bx + c has its vertex when the x-value 

 is equal to . You plug in the a and b values from the equa-

 tion to come up with the x-coordinate, and then you find the 
y-coordinate of the vertex by plugging this x-value into the 
equation and solving for y.

 

Find the coordinates of the vertex of y = –3x2 + 12x – 7.

Solving for x, use the coefficients a and b:

You solve for y by putting the x-value back into the equation:

y = –3(2)2 + 12(2) – 7 = –12 + 24 – 7 = 5
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The coordinates of the vertex are (2, 5). This is the highest 
point for the parabola, because a is a negative number, which 
means the parabola opens downward from this point.

Linking up with the 
axis of symmetry
The axis of symmetry of a quadratic function is a vertical line 
that runs through the vertex of the parabola and acts as a 
mirror — half the parabola rests on one side of the axis, and 
half rests on the other. The x-value in the coordinates of the 
vertex appears in the equation for the axis of symmetry. For 
example, if a vertex has the coordinates (2, 3), the axis of sym-
metry is x = 2. All vertical lines have an equation of the form 
x = h. In the case of the axis of symmetry, the h is always the 
x-coordinate of the vertex.

Sketching a Graph from the 
Available Information

You have all sorts of information available when it comes to a 
quadratic function and its graph. You can use the intercepts, 
the opening, the steepness, the vertex, the axis of symmetry, 
or just some random points to plot the parabola. You don’t 
really need all the pieces for each graph; as you practice 
sketching these curves, it becomes easier to figure out which 
pieces you need for different situations. The example I give, 
though, will use all the different possibilities — and each will 
just verify all the others.

 

Sketch the graph of y = x2 – 4x – 5.

First, notice that the equation represents a parabola that 
opens upward, because the lead coefficient, a, is positive (+1). 
The y-intercept is (0, –5), which you get by plugging in 0 
for x. If you set y equal to 0 to solve for the x-intercepts, 
you get 0 = x2 – 4x –5, which factors into 0 = (x + 1)(x – 5). 
The x-intercepts are (–1, 0) and (5, 0).
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The vertex is found using the formula for the x-coordinate of 

the vertex to get . Plug the 2 into the formula for 

the parabola, and you find that the vertex is at (2, –9).

Use the axis of symmetry, which is x = 2, to find some points 
on either side — to help you with the shape. If you let x = 6, 
for example, you find that y = 7. This point is four units to the 
right of x = 2; four units to the left of x = 2 is x = –2. The corre-
sponding point is found by putting –2 into the equation for the 
parabola; you get (–2, 7).

Use all that information in a graph to produce a sketch of the 
parabola (see Figure 6-4).

y

x

(-2, 7) (6, 7)
x = 2

(5, 0)

(4, -5)

(2, -9)

(0, -5)

(-1, 0)

Figure 6-4:  Using the various pieces of a quadratic as steps for sketching 

a graph (y = x 2 – 4x – 5).



Chapter 7

Pondering Polynomials
In This Chapter
▶ Providing techniques for making graphing polynomials easier

▶ Segueing from intercepts to roots of polynomials

▶ Solving polynomial equations using everything but the kitchen sink

The word polynomial comes from poly-, meaning “many,” 
and -nomial, meaning “name” or “designation.” The expo-

nents used in polynomials are all whole numbers — no fractions 
or negatives. Polynomials get progressively more interesting 
as the exponents get larger — they can have more intercepts 
and turning points. This chapter outlines how to deal with 
polynomials: factoring them, graphing them, analyzing them. 
The graph of a polynomial looks like a Wisconsin landscape — 
smooth, rolling curves. Are you ready for this ride?

Sizing Up a Polynomial Equation
A polynomial function is a specific type of function that can be 
easily spotted in a crowd of other types of functions and equa-
tions. By convention, you write the terms from the largest 
exponent to the smallest.

 

The general form for a polynomial function is

Here, the a’s are real numbers and the n’s are whole numbers.
 

The last term is technically a
0
x0, if you want to show the vari-

able in every term.
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Identifying Intercepts 
and Turning Points

The intercepts of a polynomial are the points where the graph 
of the curve of the polynomial crosses the x-axis and y-axis. 
A polynomial function has exactly one y-intercept, but it can 
have many x-intercepts, depending on the degree of the poly-
nomial (the highest power of the variable). The higher the 
degree, the more x-intercepts are possible.

The x-intercepts of a polynomial are also called the roots, 
zeros, or solutions. The x-intercepts are often where the graph 
of the polynomial goes from positive values (above the x-axis) 
to negative values (below the x-axis) or from negative values 
to positive values. Sometimes, though, the values on the graph 
don’t change sign at an x-intercept: These graphs look sort of 
like a touch and go. The curves approach the x-axis, seem to 
change their minds about crossing the axis, touch down at the 
intercepts, and then go back to the same side of the axis.

A turning point of a polynomial is where the graph of the curve 
changes direction. It can change from going upward to going 
downward, or vice versa. A turning point is where you find a 
maximum value of the polynomial or a minimum value.

Interpreting relative value 
and absolute value
A parabola opening downward has an absolute maximum — 
you see no point on the curve that’s higher than the maximum. 
In other words, no value of the function is greater than the 
function value at that point. Some functions, however, also 
have relative maximum or minimum values:

 ✓ Relative maximum: A function value that is bigger than all 
function values around it — it’s relatively large. The func-
tion value is bigger than anything around it, but you may 
be able to find a bigger function value somewhere else.

 ✓ Relative minimum: A function value that is smaller 
than all function values around it. The function value 
is smaller than anything close to it, but there may be a 
function value that’s smaller somewhere else.
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In Figure 7-1, you can see five turning points. Two correspond 
to relative maximum values, which means they’re higher than 
any points close to them. Three correspond to minimum 
values, which means they’re lower than any points around 
them. Two of the minimums correspond to relative minimum 
values, and one has absolutely the lowest function value on 
the curve. This function has no absolute maximum value 
because it keeps going up and up without end.

y

xRelative
minimumRelative

minimum

Relative
maximum

Relative
maximum

Absolute
minimum

Figure 7-1: Extreme points on a polynomial.

Dealing with intercepts 
and turning points
The number of potential turning points and x-intercepts of a 
polynomial function is good to know when you’re sketching 
the graph of the function. You can often count the number of 
x-intercepts and turning points of a polynomial if you have the 
graph of it in front of you, but you can also make an estimate 
of the number if you have the equation of the polynomial. 
Your estimate is actually a number that represents the most 
points that can occur.

 

Given the polynomial 

, the maximum 
number of x-intercepts is n, the degree or highest power of 
the polynomial. The maximum number of turning points is 
n – 1, or one less than the number of possible intercepts. You 
may find fewer x-intercepts than n, or you may find exactly 
that many.
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Examine the function equations for intercepts and turning 
points:

f(x) = 2x7 + 9x6 – 75x5 – 317x4 + 705x3 + 2,700x2

This graph has at most seven x-intercepts (7 is the highest 
power in the function) and six turning points (7 – 1).

You can see the graph of the function in Figure 7-2. According 
to its equation, the graph of the polynomial could have as 
many as seven x-intercepts, but it has only five; it does have 
all six turning points, though. You can also see that two of 
the intercepts are touch-and-go types, meaning that they 
approach the x-axis before heading away again.

y

10,000

x1

Figure 7-2:  The intercept and turning-point behavior of a polynomial 

function.

Solving for y-intercepts 
and x-intercepts
You can easily solve for the y-intercept of a polynomial func-
tion; the y-intercept is where the curve of the graph crosses the 
y-axis, and that’s when x = 0. So, to determine the y-intercept 
for any polynomial, simply replace all the x’s with zeros 
and solve for y (that’s the y part of the coordinates of that 
intercept). For example, in y = 3x4 – 2x2 + 5x – 3, you get y = 
3(0)4 – 2(0)2 + 5(0) – 3 = –3, so the y-intercept is (0, –3).

After you complete the easy task of solving for the y-intercept, 
you find out that the x-intercepts are another matter altogether. 
The value of y is 0 for all x-intercepts, so you let y = 0 and solve. 
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When the polynomial is factorable, you use the multiplication 
property of zero (MPZ; see Chapter 1), setting the factored 
form equal to 0 to find the x-intercepts.

 

Determine the x-intercepts of the polynomial y = x3 – 16x.

Replace the y with zeros and solve for x:

0 = x3 – 16x = x(x2 – 16) = x(x – 4)(x + 4)

Using the MPZ, you get that x = 0, x = 4, or x = –4. The 
x-intercepts are (0, 0), (4, 0), and (–4, 0).

Determining When a Polynomial 
Is Positive or Negative

When a polynomial has positive y-values for some interval — 
between two x-values — its graph lies above the x-axis in that 
interval. When a polynomial has negative values, its graph lies 
below the x-axis in that interval. The only way for a polyno-
mial to change from positive to negative values or vice versa 
is to go through 0 — at an x-intercept.

Incorporating a sign line
If you’re a visual person like me, you’ll appreciate the interval 
method I present in this section. Using a sign line and marking 
the intervals between x-values allows you to determine where 
a polynomial is positive or negative, and it appeals to your 
artistic bent!

 

Determine when the function f(x) = x(x – 2)(x – 7)(x + 3) is 
positive and when it’s negative.

Setting f(x) = 0 and solving, you find that the x-intercepts are 
at x = 0, 2, 7, and –3. To determine the positive and negative 
intervals for a polynomial function, follow this method:

 1. Draw a number line, and place the values of the 
x-intercepts in their correct positions on the line.

  -3 0 2 7
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 2. Choose random values to the right of and left of and 
in between the intercepts to test whether the func-
tion is positive or negative in those intervals.

  One efficient method is to insert the “test values” into 
the factored form of the polynomial and just record 
the signs — which then give you the positive or nega-
tive result for the entire interval.

  +
(–)(–)(–)(–)

–
(–)(–)(–)(+)

+
(+)(–)(–)(+)

+
(+)(+)(+)(+)

–
(+)(+)(–)(+)

–3 0 2 7

 

 You need to check only one point in each interval; 
the function values all have the same sign within that 
interval.

  The graph of this function is positive, or above the 
x-axis, whenever x is smaller than –3, between 0 and 2, 
or bigger than 7. You write this part of the answer as: 
x < –3 or 0 < x < 2 or x > 7. The graph of the function is 
negative when –3 < x < 0 or 2 < x < 7.

Recognizing a sign change rule
In the previous example, you see the signs changing at each 
intercept. If the signs of functions don’t change at an inter-
cept, then the graph of the polynomial doesn’t cross the x-axis 
at that intercept, and you see a touch-and-go. It’s nice to be 
able to predict such behavior.

The rule for whether a function displays sign changes or not 
at the intercepts is based on the exponent on the factor that 
provides you with a particular intercept.

 

If a polynomial function is factored in the form 

, you see a sign change at a
1
 when-

ever n
1 
is an odd number (meaning it crosses the x-axis), 

and you see no sign change whenever n
1
 is even (meaning 

the graph of the function is touch-and-go; see the “Dealing 
with intercepts and turning points” section, earlier in this 
chapter).



 Chapter 7: Pondering Polynomials 81

So, for example, with the function y = x4(x – 3)3(x + 2)8(x + 5)2, 
you’ll find a sign change at x = 3 and no sign change at x = 0, 
–2, or –5. And with the function y = (2 – x)2(4 – x)2(6 – x)2(2 + x)2, 
you never see a sign change — the function is always either 
positive or just touching the x-axis.

Solving Polynomial Equations
Finding intercepts (or roots or zeros) of polynomials can be 
relatively easy or a little challenging, depending on the com-
plexity of the function. Polynomials that factor easily are very 
desirable. Polynomials that don’t factor at all, however, are 
relegated to computers or graphing calculators.

The polynomials that remain are those that factor — but take a 
little planning and work. The planning process involves count-
ing the number of possible positive and negative real roots and 
making a list of potential rational roots. The work is done using 
synthetic division to test the list of choices to find the roots.

Factoring for roots
Finding x-intercepts of polynomials isn’t difficult — as long 
as you have the polynomial in nicely factored form. You just 
set the y equal to 0 and use the MPZ. This section deals with 
easily recognizable factors of polynomials; I cover other, more 
challenging types in the following sections.

Half the battle when factoring is recognizing the patterns in 
factorable polynomial functions. Here are the most easily rec-
ognizable factoring patterns used on polynomials:

 ✓ Difference of squares: a2 – b2 = (a + b)(a – b).

 ✓ Greatest common factor (GCF): ab ± ac = a(b ± c).

 ✓ Difference of cubes: a3 – b3 = (a – b)(a2 + ab + b2).

 ✓ Sum of cubes: a3 + b3 = (a + b)(a2 – ab + b2).

 ✓ Perfect square trinomial: a2 ± 2ab + b2 = (a ± b)2.

 ✓ Trinomial factorization: UnFOIL (see Chapter 1).

 ✓ Common factors in groups: Grouping (see Chapter 1).
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The following examples incorporate the different methods 
of factoring. They contain perfect cubes and squares and all 
sorts of good combinations of factorization patterns.

 

Factor the polynomial: y = 4x5 – 25x3.

First use the GCF and then the difference of squares:

y = 4x5 – 25x3 = x3(4x2 – 25) = x3(2x – 5)(2x + 5)

 

Factor the polynomial: y = 64x8 –64x6 – x2 + 1.

You initially factor the polynomial by grouping. The first two 
terms have a common factor of 64x6, and the second two 
terms have a common factor of –1. The new equation has a 
common factor of x2 – 1. After performing the factorization, 
you see that both factors are the difference of squares:

Now you factor the binomials as the difference of perfect 
squares. Then you can factor the last two new binomials using 
the difference and sum of two perfect cubes:

 

The two trinomials resulting from factoring the difference and 
sum of cubes don’t factor, so you’re done. Whew!

Taking sane steps with the 
rational root theorem
What do you do if the factorization of a polynomial doesn’t 
leap out at you? You have a feeling that the polynomial fac-
tors, but the necessary numbers escape you. Never fear! The 
rational root theorem is here.
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The rational root theorem states that if the polynomial 

 has any ratio-
nal roots, they all meet the requirement that you can write 

 them as a fraction equal to .

In other words, according to the theorem, any rational root 
of a polynomial with integer coefficients is formed by divid-
ing a factor of the constant term by a factor of the lead coef-
ficient. Of course, this means that the a

0
 term, the constant, 

cannot be 0.

Taking the first step

 

The rational root theorem creates a list of numbers that may 
be roots of a particular polynomial. After using the theorem 
to make your list of potential roots, you plug the numbers into 
the polynomial to determine which, if any, work. You may run 
across an instance where none of the candidates work, which 
tells you that there are no rational roots. (And if a given ratio-
nal number isn’t on the list of possibilities that you come up 
with, it can’t be a root of that polynomial.)

Before you start to plug and chug, however, check out the 
“Putting Descartes in charge of signs” section, later in this 
chapter — it helps you with your guesses. Also, you can refer 
to “Finding Roots Synthetically,” later in this chapter, for a 
quicker method than plugging in.

To find the rational roots of the polynomial y = x4 – 3x3 + 2x2 + 12, 
for example, you test the following possibilities: ±1, ±2, ±3, ±4, 
±6, and ±12. These values are all the factors of the number 12. 
Technically, you divide each of these factors of 12 by the fac-
tors of the lead coefficient, but because the lead coefficient is 
one (as in 1x4), dividing by that number won’t change a thing.

 

Find the roots of the polynomial y = 6x7 – 4x4 – 4x3 + 2x – 20.

You first list all the factors of 20: ±1, ±2, ±4, ±5, ±10, and ±20. 
Now divide each of those factors by the factors of 6. You don’t 
need to bother dividing by 1 to create your list, but you need 

to divide each by 2, 3, and 6: , , , , , , , , 

, , , , , , , , , . And, of course, 

you include : ±1, ±2, ±4, ±5, ±10, and ±20 as candidates.
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You may have noticed some repeats in the previous list 
that occur when you reduce fractions. You can discard the 
repeats. And, even though this looks like a mighty long list, 
between the integers and fractions, it still gives you a reason-
able number of candidates to try out. You can check them off 
in a systematic manner.

Changing from roots to factors
When you have the factored form of a polynomial and set it 
equal to 0, you can solve for the solutions (or x-intercepts, 
if that’s what you want). Just as important, if you have the 
solutions, you can go backward and write the factored form. 
Factored forms are needed when you have polynomials in 
the numerator and denominator of fractions and you want 
to reduce the fraction. Factored forms are easier to compare 
with one another.

How can you use the rational root theorem to factor a poly-
nomial function? Why would you want to? The answer to 
the second question, first, is that you can reduce a factored 
form if it’s in a fraction. Also, a factored form is more easily 
graphed. Now, for the first question: You use the rational root 
theorem to find roots of a polynomial and then translate those 
roots into binomial factors whose product is the polynomial.

 

If  is a root of the polynomial f(x), the corresponding 

 binomial (ax – b) is a factor.

 

Write the factorization of a polynomial with the five roots x = 

 1, x = –2, x = 3, , and .

Applying the rule, you get f(x) = (x – 1)(x + 2)(x – 3)(2x – 3)
(2x + 1). Notice that the positive roots give factors of the form 
x – c, and the negative roots give factors of the form x + c, 
which comes from x – (–c). This is just one polynomial with 
these five roots. You can write other polynomials by multiply-
ing the factorization by some constant.

To show multiple roots, or roots that occur more than once, use 
exponents on the factors. For example, if the roots of a polyno-
mial are x = 0, x = 2, x = 2, x = –3, x = –3, x = –3, x = –3, and x = 4, 
a corresponding polynomial is f(x) = x(x – 2)2(x + 3)4(x – 4).
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Putting Descartes 
in charge of signs
Descartes’ rule of signs tells you how many positive and nega-
tive real roots you may find in a polynomial. A real number is 
just about any number you can think of. It can be positive or 
negative, rational or irrational. The only thing it can’t be is 
imaginary.

Counting up the number of possible positive roots
The first part of the rule of signs helps you identify how many 
of the roots of a polynomial are positive.

 

Descartes’ rule of signs (part I): The polynomial 

 
has at most 

n roots. Count the number of times the sign changes in the 
coefficients of f, and call that value p. The value of p is the 
maximum number of positive real roots of f. If the number of 
positive roots isn’t p, it is p – 2, p – 4, or some number less by 
a multiple of 2.

 

Use part I of Descartes’ rule of signs on the polynomial 
f(x) = 2x7 – 19x6 + 66x5 – 95x4 + 22x3 + 87x2 – 90x + 27.

Count the number of sign changes. The sign of the first term 
starts as a positive, changes to a negative, and moves to posi-
tive; negative; positive; stays positive; negative; and then posi-
tive. Whew! In total, you count six sign changes. Therefore, 
you conclude that the polynomial has six positive roots, four 
positive roots, two positive roots, or none at all. When a root, 
such as x = 3 in the previous example, occurs more than once, 
you say that the root has multiplicity two or three or however 
many times it appears. This way, if you count the root as 
many times as it appears, the total will correspond to your 
predicted number.

Counting the possible number of negative roots
Along with the positive roots (see the previous section), 
Descartes’ rule of signs deals with the possible number of 
negative roots of a polynomial. After you count the possible 
number of positive roots, you combine that value with the 
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number of possible negative roots to make your guesses and 
solve the equation.

 

Descartes’ rule of signs (part II): The polynomial 

 
has at most n 

roots. Find f(–x), and then count the number of times the sign 
changes in f(–x) and call that value q. The value of q is the 
maximum number of negative roots of f. If the number of nega-
tive roots isn’t q, the number is q – 2, q – 4, and so on, for as 
many multiples of 2 as necessary. Again, you count a multiple 
root as many times as it occurs when applying the rule.

 

Determine the possible number of negative roots of the poly-
nomial f(x) = 2x7 – 19x6 + 66x5 – 95x4 + 22x3 + 87x2 – 90x + 27.

You first find f(–x) by replacing each x with –x and simplifying:

f(–x) = 2(–x)7 – 19(–x)6 + 66(–x)5 – 95(–x)4 + 22(–x)3 + 
87(–x)2 – 90(–x) + 27 = –2x7 – 19x6 – 66x5 – 95x4 – 22x3 + 
87x2 + 90x + 27

As you can see, the function has only one sign change, from 
negative to positive. Therefore, the function has exactly one 
negative root — no more, no less. In fact, this negative root 
is –1.

 

Knowing the potential number of positive and negative roots 
for a polynomial is very helpful when you want to pinpoint an 
exact number of roots. The example polynomial I present in 
this section has only one negative real root. That fact tells you 
to concentrate your guesses on positive roots; the odds are 
better that you’ll find a positive root first.

Finding Roots Synthetically
You use synthetic division to test the list of possible roots for 
a polynomial that you come up with by using the rational root 
theorem. Synthetic division is a method of dividing a polyno-
mial by a binomial, using only the coefficients of the terms. 
The method is quick, neat, and highly accurate — usually 
even more accurate than long division, because it has fewer 
opportunities for “user error.” 
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Using synthetic division when 
searching for roots
When you use synthetic division to look for roots in a polyno-
mial, the last number on the bottom row of your synthetic divi-
sion problem is the telling result. If that number is 0, the divi-
sion had no remainder, and the number is a root. The fact that 
there’s no remainder means that the binomial represented by 
the number is dividing the polynomial evenly. The number is a 
root because the binomial is a factor of the polynomial.

 

Use synthetic division, the rational root theorem, and 
Descartes’ rule of signs to find roots of the polynomial 
f(x) = x5 + 5x4 – 2x3 – 28x2 – 8x + 32.

Using the rational root theorem, your list of the potential 
rational roots is ±1, ±2, ±4, ±8, ±16, and ±32.

Then, applying Descartes’ rule of signs, you determine that 
there are two or zero positive real roots and three or one 
negative real roots.

Here are the steps for performing synthetic division on a poly-
nomial to find its roots:

 1. Write the polynomial in order of decreasing powers 
of the exponents. Replace any missing powers with 0 
to represent the coefficient.

  In this case, you’ve lucked out. The polynomial is 
already in the correct order: f(x) = x5 + 5x4 – 2x3 – 
28x2 – 8x + 32.

 2. Write the coefficients in a row, including the zeros.

  1 5 –2 –28 –8 32

 3. Put the number you want to divide by in front of the 
row of coefficients, separated by a half-box. Then 
draw a horizontal line below the row of coefficients, 
leaving room for numbers under the coefficients.

  In this case, my guess is x = 1.
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 4. Bring the first coefficient straight down below the 
line. Then multiply the number you bring below the 
line by the number that you’re dividing into every-
thing. Put the result under the second coefficient.

  

 5. Add the second coefficient and the product, putting 
the result below the line.

  

 6. Repeat the multiplication/addition with the rest of 
the coefficients.

  

The last entry on the bottom is a 0, so you know 1 is a root. 
Now, you can do a modified synthetic division when testing 
for the next root; you just use the numbers across the bottom. 
(These values are actually coefficients of the quotient, if you 
do long division; see the following section.)

If your next guess is to see if x = –1 is a root, the modified syn-
thetic division appears as follows:

The last entry on the bottom row isn’t 0, so –1 isn’t a root.

The really good guessers amongst you decide to try x = 2, 
x = –4, x = –2, and x = –2 (a second time). These values repre-
sent the rest of the roots.



 Chapter 7: Pondering Polynomials 89

Synthetically dividing 
by a binomial
Finding the roots of a polynomial isn’t the only excuse you 
need to use synthetic division. You can also use synthetic 
division to replace the long, drawn-out process of dividing a 
polynomial by a binomial. The polynomial can be any degree; 
the binomial has to be either x + c or x – c, and the coefficient 
on the x is 1. This may seem rather restrictive, but a huge 
number of long divisions you’d have to perform fit in this cat-
egory, so it helps to have a quick, efficient method to perform 
these basic division problems.

To use synthetic division to divide a polynomial by a bino-
mial, you first write the polynomial in decreasing order 
of exponents, inserting a 0 for any missing exponent. The 
number you put in front or divide by is the opposite of the 
number in the binomial.

 

Divide 2x5 + 3x4 – 8x2 – 5x + 2 by the binomial x + 2 using syn-
thetic division.

Using –2 in the synthetic division:

As you can see, the last entry on the bottom row isn’t 0. If 
you’re looking for roots of a polynomial equation, this fact 
tells you that –2 isn’t a root. In this case, because you’re work-
ing on a long division application, the –36 is the remainder of 
the division — in other words, the division doesn’t come out 
even.

You obtain the answer (quotient) of the division problem 
from the coefficients across the bottom of the synthetic divi-
sion. You start with a power one value lower than the original 
polynomial’s power, and you use all the coefficients, dropping 
the power by one with each successive coefficient. The last 
coefficient is the remainder, which you write over the divisor.
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Here’s the division problem and its solution. The original 
division problem is written first. Under the problem, you see 
the coefficients from the synthetic division written in front of 
variables — starting with one degree lower than the original 
problem. The remainder of –36 is written in a fraction on top 
of the divisor, x + 2.



Chapter 8

Being Respectful of 
Rational Functions

In This Chapter
▶ Investigating domains and related vertical asymptotes

▶ Looking at limits and horizontal asymptotes

▶ Removing discontinuities of rational functions

The best way to investigate rational functions is to look at 
the intercepts, the asymptotes, any removable disconti-

nuities, and the limits to tell where the function values have 
been, what they’re doing for particular values of the domain, 
and what they’ll be doing for large values of x. You also need 
all this information to discuss or graph a rational function.

Whether you’re graphing rational functions by hand or with a 
graphing calculator, you need to be able to recognize the vari-
ous characteristics (intercepts, asymptotes, and so on) of the 
rational function. And, if you don’t know what these charac-
teristics are and how to find them, your calculator is no better 
than a paperweight to you.

Examining Rational Functions
You see rational functions written, in general, in the form of a 
fraction:

, where f and g are polynomials 

Rational functions (and more specifically their graphs) are 
distinctive because of what they do and don’t have. The 
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graphs of rational functions do have asymptotes (dotted lines 
drawn in to help with the shape and direction of the curve), 
and the graphs often don’t have all the real numbers in their 
domains. Polynomials and exponential functions (which I 
cover in Chapters 7 and 9, respectively) make use of all the 
real numbers — their domains aren’t restricted.

Deliberating on domain
As I explain in Chapter 5, the domain of a function consists 
of all the real numbers that you can insert into the function 
equation. Values in the domain have to work in the equation 
and avoid producing imaginary or nonexistent answers.

The following list illustrates some examples of domains of 
rational functions:

 ✓ The domain of  is all real numbers except 2.

 ✓ The domain of  is all real numbers except 
0 and –4.

Investigating intercepts
Functions in algebra can have intercepts (where the graph of 
the function crosses or touches an axis). A rational function 
may have an x-intercept and/or a y-intercept, but it doesn’t 
have to have either. You can determine whether a given ratio-
nal function has intercepts by looking at its equation.

Introducing zero to find y-intercepts
The coordinates (0, b) represent the y-intercept of a rational 
function. To find the value of b, you substitute a 0 for x and 
solve for y. If 0 is in the domain of a rational function, you can 
be sure that the function at least has a y-intercept.

Making X mark the spot
The coordinates (a, 0) represent an x-intercept of a rational 
function. To find the value(s) of a, you let y equal 0 and solve 
for x. (Basically, you just set the numerator of the fraction 
equal to 0, after you completely reduce the fraction.)
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Find the intercepts of the rational function .

First, to find the y-intercept you replace each x with 0 to get 

. The y-intercept is (0, 16). To find the 

x-intercepts, set the numerator equal to 0 and solve for x. You 
get that x2 – 64 = (x – 8)(x + 8) = 0. The two solutions are x = 8 
and x = –8, so the x-intercepts are at (8, 0) and (–8, 0). When 
setting the numerator equal to 0 to get the x-intercepts, you 
need to be sure that none of the factors in the numerator is 
also in the denominator.

Assigning Roles to Asymptotes
The graphs of rational functions take on some distinctive 
shapes because of asymptotes. An asymptote is a sort of 
ghost line. Asymptotes are drawn into the graph of a rational 
function to show the shape and direction of the function’s 
graph. The asymptotes aren’t really part of the graphs. You 
lightly sketch in the asymptotes when you’re graphing to help 
you with the final product. The types of asymptotes that you 
usually find in a rational function include the following:

 ✓ Vertical asymptotes

 ✓ Horizontal asymptotes

 ✓ Oblique (slant) asymptotes

In this section, I explain how you crunch the numbers of ratio-
nal equations to identify asymptotes and graph them.

Validating vertical asymptotes
The equations of vertical asymptotes appear in the form 
x = h. This equation of a line has only the x variable — no 
y variable — and the number h. To find a vertical asymptote 

you establish, first, that in the rational function , f(x) 

and g(x) have no common factors; then you determine when 
the denominator equals 0: g(x) = 0. The vertical asymptotes 
occur when the x-values make the denominator equal to 0.
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Find the vertical asymptotes of the function .

First note that there’s no common factor in the numerator and 
denominator. Then set the denominator equal to 0. Factoring 
x2 – 4x + 3 = 0, you get (x – 1)(x – 3) = 0. The solutions are x = 1 
and x = 3, which are the equations of the vertical asymptotes.

Finding equations for horizontal 
asymptotes
The horizontal asymptote of a rational function has an equa-
tion that appears in the form y = k. This linear equation only 
has the variable y — no x — and the k is some number. A 
rational function has only one horizontal asymptote — if it 
has one at all (some rational functions have no horizontal 
asymptotes, others have one, and none of them has more 
than one). A rational function has a horizontal asymptote 
when the degree (highest power) of f(x), the polynomial in 
the numerator, is less than or equal to the degree of g(x), the 
polynomial in the denominator.

 

Here’s a rule for determining the equation of a horizontal 
asymptote. The horizontal asymptote of 

  is:

 ✓  when n = m, meaning that the highest degrees of 

  the polynomials are the same. The fraction here is made 
up of the lead coefficients of the two polynomials.

 ✓ y = 0 when n < m, meaning that the degree in the numera-
tor is less than the degree in the denominator.

 

Find the horizontal asymptote for .

The degree of the denominator is the same as the degree of 

the numerator. The horizontal asymptote is y = 3 . The 

fraction formed by the lead coefficients is .
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Taking vertical and horizontal 
asymptotes to graphs
When a rational function has one vertical asymptote and 
one horizontal asymptote, its graph usually looks like two 
flattened-out, C-shaped curves that appear diagonally oppo-
site one another from the intersection of the asymptotes. 
Occasionally, the curves appear side by side, but that’s the 
exception rather than the rule. Figure 8-1 shows you two 
examples of the more frequently found graphs in the one hori-
zontal and one vertical classification.

a 

y 

y=–1 

x=1 

y=–1 

x=1 

x

b 

y 

x

Figure 8-1:  Rational functions approaching vertical and horizontal 

asymptotes.

 

Reconcile the rational equations  and  with 
the two graphs in Figure 8-1.

In both graphs, the vertical asymptotes are at x = 1, because 
the denominators are equal to 0 when x = 1. Also, in both 
graphs, the horizontal asymptotes are at y = –1.

In , the highest power in both numerator and denomi-

nator is 1. You get . Letting x = 0, you get a y-intercept 

of (0, –2). Letting y = 0, you get an x-intercept of (2, 0). So this 
equation corresponds to Figure 8-1a.

The horizontal asymptote of function  is . 

Letting x = 0, you get a y-intercept of (0, 1). Letting y = 0, you 
get an x-intercept of (–1, 0). So this equation corresponds to 
Figure 8-1b.
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The graph of a rational function can cross a horizontal asymp-
tote, but it never crosses a vertical asymptote. Horizontal 
asymptotes show what happens for very large or very small 
values of x.

Getting the scoop on oblique 
 (slant) asymptotes
An oblique or slant asymptote takes the form y = ax + b. You may 
recognize this form as the slope-intercept form for the equation 
of a line. A rational function has a slant asymptote when the 
degree of the polynomial in the numerator is exactly one value 

greater than the degree in the denominator ( , for example).

You can find the equation of the slant asymptote by using 
long division. You divide the denominator of the rational 
function into the numerator and use the first two terms in the 
answer. Those two terms are the ax + b part of the equation of 
the slant asymptote.

 

Find the slant asymptote of .

Doing the long division:

You can ignore the remainder at the bottom. The slant asymp-
tote for this example is y = x – 3. (For more on long division 
of polynomials, see Algebra Workbook For Dummies, by yours 
truly and published by Wiley.)

An oblique (or slant) asymptote creates two new possibili-
ties for the graph of a rational function. If a function has an 
oblique asymptote, its curve tends to be a very-flat C on 
opposite sides of the intersection of the slant asymptote 
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and a vertical asymptote (see Figure 8-2a), or the curve has 
U-shapes between the asymptotes (see Figure 8-2b).

a

y

y=x–1

y=x+1

x

x=1 x=1

b

y

x

Figure 8-2: Rational graphs between vertical and oblique asymptotes.

Figure 8-2a has a vertical asymptote at x = 1 and a slant 
asymptote at y = x – 1; its intercepts are at (0, 0) and (2, 
0). Figure 8-2b has a vertical asymptote at x = 1 and a slant 
asymptote at y = x + 1; its only intercept is at (0, 0).

Discounting Removable 
Discontinuities

A discontinuity in the graph of a function is just what the word 
suggests: a break or pause in the action. Vertical asymptotes 
mark discontinuities. The domain does not include values at 
the vertical asymptotes. But rational functions can sometimes 
have removable discontinuities. The removable designation 
is, however, a bit misleading. The gap in the domain still 
exists at that “removable” spot, but the function values and 
graph of the curve tend to behave a little better at x-values 
where there’s a removable discontinuity. The function values 
stay close together — they don’t spread far apart — and the 
graphs just have tiny holes, not vertical asymptotes where the 
graphs rise to positive infinity or plunge to negative infinity.

Removable discontinuities are found when you’re factor-
ing the original function statement — if it does factor. If the 
numerator and denominator don’t have a common factor, 
then there isn’t a removable discontinuity.
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Finding removable discontinuities 
by factoring
Discontinuities are removed when they no longer have an effect 
on the rational function equation. You know this is the case 
when you find a factor that’s common to both the numerator 
and the denominator. You accomplish the removal process by 
factoring the polynomials in the numerator and denominator of 
the rational function and then reducing the fraction.

To remove the discontinuity in the rational function 

, for example, you first factor the fraction and 

reduce:

The removable discontinuity occurs when x = –2. Now you 
have a new function statement:

By getting rid of the removable discontinuity, you simplify the 
equation that you’re graphing. Now you need only work with 
the new equation which shows you a function with vertical 
asymptote of x = 7, horizontal asymptote of y = 1, y-intercept 

of , and x-intercept of (2, 0). You also will have a “hole” in 

the graph when x = –2. Substituting that x-value into the new 

equation, you get . So the small hole in the graph, mark-

ing the discontinuity, is at .

Evaluating the removals
You need to take care when removing discontinuities. Numbers 
excluded from the domain stay excluded even after you remove 
the discontinuity. The function still isn’t defined for any values 
you find before the procedure. It’s just that the function behaves 
differently at the different types of discontinuities. When the 
graph of a function has a hole, the curve approaches the value, 
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skips it, and goes on. It behaves in a reasonable fashion: The 
function values skip over the discontinuity, but the x-values 
can get really close to it. When a vertical asymptote appears, 
though, the discontinuity doesn’t go away. The function values 
go haywire — they’re unrestrained as the x-values get close.

Figure 8-3 shows a rational function with a vertical asymptote 
at x = –2 and a removable discontinuity at x = 3. The horizon-
tal asymptote is the x-axis (written y = 0). Unfortunately, graph-
ing calculators don’t show the little hollow circles indicating 
removable discontinuities. Oh, sure, they leave a gap there, but 
the gap is only 1 pixel wide, so you can’t see it with the naked 
eye. You just have to know that the discontinuity is there. 
We’re still better than the calculators!

y

x

x=–2

Figure 8-3: A removable discontinuity at the coordinates (3, 0.2).

Looking at Limits of 
Rational Functions

The limit of a rational function is a description of its behavior — 
telling you what the function equation is doing as you get nearer 
and nearer to some input value. If a function has a limit as you 
approach a number, then, as you get closer from the left or from 
the right, you home in on a particular function value. The func-
tion doesn’t have to be defined at the number you’re approach-
ing (sometimes they are and sometimes not) — there could be 
a discontinuity at the point you’re investigating. But, if a limit 
exists, the values of the function have a recognizable pattern.
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Here is the special notation for limits:

You read the notation as, “The limit of the function, f(x), as 
x approaches the number a, is equal to L.” The number a 
doesn’t have to be in the domain of the function. You can talk 
about a limit of a function regardless of whether a is in the 
domain. And you can approach a; you don’t actually reach it.

Determining limits at function 
discontinuities
The beauty of a limit is that it can also work when a rational 
function isn’t defined at a particular number. The function 

, for example, is discontinuous at x = 0 and at 

x = 2. You find these numbers by factoring the denominator, 
setting it equal to 0 — x(x – 2) = 0 — and solving for x. This 
function has no limit when x approaches 0, but it has a limit 
when x approaches 2. Sometimes it’s helpful to actually see 
the numbers — see what you get from evaluating a function 
at different values — so I’ve included Table 8-1. It shows what 
happens as x approaches 0 from the left and right, and it illus-
trates that the function has no limit at that value.

Table 8-1 Approaching x = 0 from 
 Both Sides in 

 x
Approaching 
0 from the 
Left

Corresponding 
Behavior of 

 x
Approaching 
0 from the 
Right

Corresponding 
Behavior of 

–1.0  –1 1.0  1

–0.5  –2 0.5  2

–0.1  –10 0.1  10

–0.001  –1,000 0.001  1,000

–0.00001 –100,000 0.00001 100,000
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Table 8-1 shows you that  doesn’t exist. As x 

approaches from below the value of 0, the values of the func-
tion drop down lower and lower toward negative infinity. 
Coming from above the value of 0, the values of the function 
raise higher and higher toward positive infinity. The sides will 
never come to an agreement; no limit exists.

Table 8-2 shows you how a function can have a limit even 
when the function isn’t defined at a particular number. 
Sticking with the previous example function, you find a limit 
as x approaches 2.

Table 8-2 Approaching x = 2 from 
 Both Sides in 

x
Approaching 
2 from the 
Left

Corresponding 
Behavior in 

 x
Approaching 
2 from the 
Right

Corresponding 
Behavior in 

1.0 1.0 3.0 0.3333 . . .

1.5 0.6666 . . . 2.5 0.4

1.9 0.526316 . . . 2.1 0.476190 . . .

1.99 0.502513 . . . 2.001 0.499750 . . .

1.999 0.500250 . . . 2.00001 0.4999975 . . .

Table 8-2 shows .

The numbers get closer and closer to 0.5 as x gets closer and 
closer to 2 from both directions. You find a limit at x = 2, even 
though the function isn’t defined there.

Determining a limit algebraically
If you’ve examined the two tables from the previous section, 
you may think that the process of finding limits is exhausting. 
Allow me to tell you that algebra offers a much easier way to 
find limits — if they exist.

Functions with removable discontinuities have limits at 
the values where the discontinuities exist. In the “Finding 
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removable discontinuities by factoring” section, earlier in this 
chapter, I show you the process needed to remove a disconti-
nuity. I apply the same technique here.

To solve for the limit when x = 2 in the rational function 

, you first factor and then reduce the fraction:

Now you replace the x with 2 and get y = 0.5, the limit when 

x = 2. I write that as . In general, if a ratio-

nal function factors, then you’ll find a limit at the number 
excluded from the domain if the factoring makes that exclu-
sion seem to disappear.

Determining whether the function has a limit
Some rational functions have limits at discontinuities and 
some don’t. You can determine whether to look for a remov-
able discontinuity in a particular function by first trying the 
x-value in the function. Replace all the x’s in the function with 
the number in the limit (what x is approaching). The result of 
that substitution may tell you if you have a limit or not. You 
use the following rules of thumb:

 ✓ If , the function has no 

  limit at a.

 ✓ If , the function may have a limit at a. You 

  reduce the fraction and evaluate the newly formed func-
tion equation at a.

Finding infinity
When a rational function doesn’t have a limit at a particular 
value, the function values and graph have to go somewhere. 
Even though the function has no limit at some value, you can 
still say something about the behavior of the function. The 
behavior is described with one-sided limits.
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A one-sided limit tells you what a function is doing as the 
x-value of the function approaches some number from one 
side or the other. One-sided limits are more restrictive; they 
only work from the left or from the right.

Here is the notation for indicating one-sided limits from the 
left or right:

 ✓ The limit as x approaches the value a from the left is 

.

 ✓ The limit as x approaches the value a from the right is 

.

 

Do you see the little positive or negative sign after the a? You 
can think of from the left as coming from the same direction as 
all the negative numbers on the number line and from the right 
as coming from the same direction as all the positive numbers.

Table 8-3 shows some values of the function , which 
has a vertical asymptote at x = 3.

Table 8-3 Approaching x = 3 from 
 Both Sides in 

Approaching 3 
from the Left

Corresponding 
Behavior in 

x Approaching 
3 from the 
Right

Corresponding 
Behavior in 

2.0  –1 4.0  1

2.5  –2 3.5  2

2.9  –10 3.1  10

2.999  –1,000 3.001  1,000

2.99999 –100,000 3.00001 100,000

You express the one-sided limits for the function from 
Table 8-3 as follows:
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The function goes down to negative infinity as it approaches 
3 from below the value and up to positive infinity as it 
approaches 3 from above the value. “And nary the twain 
shall meet.”

Looking at infinity
The previous section describes how function values can go 
to positive or negative infinity as x approaches some specific 
number. This section also talks about infinity, but it focuses 
on what rational functions do as their x-values become very 
large or very small (approaching infinity themselves).

A function such as the parabola y = x2 + 1 opens upward. If 
you let x be some really big number, y gets very big, too. Also, 
when x is very small (a “big” negative number), you square 
the value, making it positive, so y is very big for the small x. In 
function notation, you describe what’s happening to this func-

tion as the x-values approach infinity with .

In the case of rational functions, the limits at infinity — as 
x gets very large or very small — may be specific, finite, 
describable numbers. In fact, when a rational function has a 
horizontal asymptote, its limit at infinity is the same value as 
the number in the equation of the asymptote.

If you’re looking for the horizontal asymptote of the function 

, for example, you can use the rules in the 

section “Taking vertical and horizontal asymptotes to graphs” 
to determine that the horizontal asymptote of the function 
is y = 2. Using limit notation, you can write the solution as 

.

 

The proper algebraic method for evaluating limits at infinity 
is to divide every term in the rational function by the highest 
power of x in the fraction and then look at each term. Here’s 
an important property to use: As x approaches infinity, any 

 term with  or  or , and so on in it approaches 0 — in 

 other words, gets very small — so you can replace those 
terms with 0 and simplify.
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Here’s how the property works when evaluating the limit of 

the previous example function, . The highest 

power of the variable in the fraction is x2, so every term is 
divided by x2:

The limit as x approaches infinity is 2. As predicted, the 
number 2 is the number in the equation of the horizontal 
asymptote. The quick method for determining horizontal 
asymptotes is an easier way to find limits at infinity; this alge-
braic procedure is the correct mathematical way of doing it — 
and it shows why the other rule (the quick method) works.
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Chapter 9

Examining Exponential and 
Logarithmic Functions

In This Chapter
▶ Investigating exponential functions and rules of exponents

▶ Introducing laws of logarithms and simplifications

▶ Solving exponential and logarithmic equations

Exponential growth and decay are natural phenomena. 
They happen all around us. And, being the thorough, 

worldly people they are, mathematicians have come up with 
ways of describing, formulating, and graphing these phenom-
ena. You express the patterns observed when exponential 
growth and decay occur mathematically with exponential and 
logarithmic functions.

Computing Exponentially

 

An exponential function is unique because its variable 
appears in the exponential position and its constant appears 
in the base position. You write an exponent, or power, as a 
superscript just after the base. In the expression 3x, for exam-
ple, the variable x is the exponent, and the constant 3 is the 
base. The general form for an exponential function is f(x) = a · 
bx, where

 ✓ The base b is any positive number.

 ✓ The coefficient a is any real number (where  a ≠ 0).

 ✓ The exponent x is a variable representing any real 
number.
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When you enter a number into an exponential function, you 
evaluate it by using the order of operations, evaluating the 
function in the following order:

 1. Powers and roots

 2. Multiplication and division

 3. Addition and subtraction

 

Evaluate f(x) = 4(3)x + 1 for x = 2 and x = –2.

Letting x = 2, you replace the x with the number 2. So, 
f(2) = 4(3)2 + 1 = 4(9) + 1 = 36 + 1 = 37.

When x = –2, .

Getting to the Base of 
Exponential Functions

The base of an exponential function can be any positive 
number. The bigger the number, the bigger the function 
value becomes as the variable increases in value. (Sort of like 
the more money you have, the more money you make.) The 
bases can get downright small, too. In fact, when the base is 
some number between 0 and 1, you don’t have a function that 
grows; instead, you have a function that falls.

Classifying bases
The base of an exponential function tells you so much about 
the nature and character of the function, making it one of the 
first things you should look for when working with exponential 
functions. One main distinguishing characteristic of bases of 
exponential functions is whether they’re larger or smaller than 
1. After you make that designation, you look at how much larger 
or how much smaller. The exponents also affect the expres-
sions that contain them in somewhat predictable ways, making 
them another place to garner information about the function.

 

Because the domain of an exponential function is all real num-
bers, and the base is always positive, the result of bx is always 
a positive number.
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Focusing on bases
Algebra actually offers three classifications for the base of an 
exponential function, due to the fact that the numbers used as 
bases appear to react in distinctive ways when raised to posi-
tive powers:

 ✓ When b > 1, the values of bx grow larger as x gets bigger — 
for example, 22 = 4, 25 = 32, 27 = 128, and so on.

 ✓ When b = 1, the values of bx show no movement. Raising 
the number 1 to higher powers always results in the 
number 1: 12 = 1, 15 = 1, 17 = 1, and so on. You see no expo-
nential growth or decay.

 ✓ When 0 < b < 1, the value of bx grows smaller as x gets 
bigger. Look at what happens to a fractional base when 
you raise it to the second, fifth, and eighth degrees: 

  , ,
 

. The numbers get 

  smaller and smaller as the powers get bigger.

Examining exponents
When an exponent is replaced with a particular type of real 
number, you get results that are somewhat predictable. The 
exponent makes the result take on different qualities, depend-
ing on whether the exponent is greater than 0, equal to 0, or 
smaller than 0:

 ✓ When the base b > 1 and the exponent x > 0, the values 
of bx get bigger and bigger as x gets larger — for exam-
ple, 43 = 64 and 46 = 4,096. You say that the values grow 
 exponentially.

 ✓ When the base b > 1 and the exponent x = 0, the only 
value of bx you get is 1. The rule is that b0 = 1 for any 
number except b = 0. So, an exponent of 0 really flattens 
things out.

 ✓ When the base b > 1 and the exponent x < 0 — a negative 
number — the values of bx get smaller and smaller as the 
exponents get further and further from 0. Take these 

  expressions, for example:  and . 

  These numbers can get very small very quickly.
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Introducing the more frequently 
used bases: 10 and e
Exponential functions feature bases represented by numbers 
greater than 0. The two most frequently used bases are 10 and 
e, where b = 10 and b = e.

It isn’t too hard to understand why mathematicians like to use 
base 10 — in fact, just hold all your fingers in front of your 
face! All the powers of 10 are made up of ones and zeros — for 
instance, 102 = 100, 109 = 1,000,000,000, and 10–5 = 0.00001. How 
much more simple can it get? Our number system, the deci-
mal system, is based on tens.

Like the value 10, base e occurs naturally. Members of the sci-
entific world prefer base e because powers and multiples of e 
keep creeping up in models of natural occurrences. Including 
e’s in computations also simplifies things for financial profes-
sionals, mathematicians, and engineers.

If you use a scientific calculator to get the value of e, you see 
only some of e. The numbers you see estimate only what e is; 
most calculators give you seven or eight decimal places such 
as these first nine decimal places: e ≈ 2.718281828.

Exponential Equation Solutions
The process of solving exponential equations incorporates 
many of the same techniques you use in algebraic equations — 
adding to or subtracting from each side, multiplying or divid-
ing each side by the same number, factoring, squaring both 
sides, and so on.

Solving exponential equations requires some additional 
techniques, however. One technique you use when solving 
exponential equations involves changing the original expo-
nential equation into a new equation that has matching bases. 
Another technique involves putting the exponential equation 
into a more recognizable form — such as a linear or quadratic 
equation — and then using the appropriate methods.
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Creating matching bases

 

If you see an equation written in the form bx = by, where the 
same number represents the bases b, then it must be true 
that x = y. You read the rule as follows: “If b raised to the xth 
power is equal to b raised to the yth power, that implies that 
x = y.”

 

Solve the equation 23 + x = 24x – 9 for x.

You see that the bases (the twos) are the same, so the expo-
nents must also be the same. You just solve the linear equa-
tion 3 + x = 4x – 9 for the value of x: 12 = 3x, or x = 4. You 
then put the 4 back into the original equation to check your 
answer: 23 + 4 = 24(4) – 9, which simplifies to 27 = 27, or 128 = 128.

Many times, bases are related to one another by being powers 
of the same number.

 

Solve the equation 4x + 3 = 8x – 1 for x.

You need to write both the bases as powers of 2 and then 
apply the rules of exponents. The number 4 is equal to 22, and 

8 is 23, so you can write the equation as:  .

Now, raising a power to a power gives you 22x + 6 = 23x – 3.

The bases are the same, so set the exponents equal to one 
another and solve for x: 2x + 6 = 3x – 3, which solves to give you 
x = 9. Substituting the 9 for x in the original equation, you get

Quelling quadratic patterns
When exponential terms appear in equations with two or 
three terms, you may be able to treat the equations as you 
do quadratic equations (see Chapter 3) to solve them with 
familiar methods. Using the methods for solving quadratic 
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equations is a big advantage because you can factor the expo-
nential equations, or you can resort to the quadratic formula.

You can make use of just about any equation pattern that you 
see when solving the exponential functions. If you can sim-
plify the exponential to the form of a quadratic or cubic and 
then factor, find perfect squares, find sums and difference of 
squares, and so on, you’ve made life easier by changing the 
equation into something recognizable and doable.

Factoring out a common factor
When you solve a quadratic equation by factoring out a great-
est common factor (GCF), you use the rules of exponents to 
find the GCF and divide the terms.

 

Solve for x in 32x – 9 · 3x = 0.

Factor 3x from each term and get 3x(3x – 9) = 0. Now use the 
multiplication property of zero (MPZ; see Chapter 1) by setting 
each of the separate factors equal to 0.

3x = 0 has no solution; 3 raised to a power can’t be equal to 0. 
But the second factor does not equal 0.

The factor is equal to 0 when x = 2; you find only one solution 
to the entire equation.

Factoring a quadratic-like trinomial
The trinomial 52x – 26 · 5x + 25 = 0, resembles a quadratic 
 trinomial that you can factor using unFOIL. This exponential 
equation has the same pattern as the quadratic equation y2 – 
26y + 25 = 0, which would look something like the exponential 
equation if you replace each 5x with a y.

 

Solve for x in the equation 52x – 26 · 5x + 25 = 0.

The quadratic y2 – 26y + 25 = 0 factors into (y – 1)(y – 25) = 0. 
Using the same pattern on the exponential version, you get 
the factorization (5x – 1)(5x – 25) = 0. Setting each factor equal 
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to 0, when 5x – 1 = 0, 5x = 1. This equation holds true when 
x = 0, making that one of the solutions. Now, when 5x – 25 = 0, 
you say that 5x = 25, or 5x = 52. In other words, x = 2. You find 
two solutions to this equation: x = 0 and x = 2.

Looking into Logarithmic 
Functions

A logarithm is actually the exponent of a number. Logarithmic 
(abbreviated log) functions are the inverses of exponential 
functions. Logarithms answer the question, “What power gave 
me that answer?” The log function associated with the expo-
nential function f(x) = 2x, for example, is f –1(x) = log

2
x. The 

superscript –1 after the function name f indicates that you’re 
looking at the inverse of the function f. So, log

2
8, for example, 

asks, “What power of 2 gave me 8?”

 

A logarithmic function has a base and an argument. The loga-
rithmic function f(x) = log

b
x has a base b and an argument x. 

The base must always be a positive number and not equal to 1. 
The argument must always be positive.

You can see how a function and its inverse work as exponen-
tial and log functions by evaluating the exponential function 
for a particular value and then seeing how you get that value 
back after applying the inverse function to the answer. For 
example, first let x = 3 in f(x) = 2x; you get f(3) = 23 = 8. You put 
the answer, 8, into the inverse function f –1(x) = log

2
x, and you 

get f –1(8) = log
2
8 = 3. The answer comes from the definition of 

how logarithms work; the 2 raised to the power of 3 equals 8. 
You have the answer to the fundamental logarithmic question, 
“What power of 2 gave me 8?”

Presenting the properties 
of logarithms
Logarithmic functions share similar properties with their 
exponential counterparts. When necessary, the properties of 
logarithms allow you to manipulate log expressions so you 
can solve equations or simplify terms. As with exponential 
functions, the base b of a log function has to be positive. I 
show the properties of logarithms in Table 9-1.
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Table 9-1 Properties of Logarithms

Property 
Name

Property Rule Example

Equivalence y = log
b
x ↔ by = x y = log

9
3 ↔ 9y = 3

Log of a 
product

log
b
xy = log

b
x + log

b
y log

2
8z = log

2
8 + log

2
z

Log of a 
quotient

Log of a 
power

log
b
xn = nlog

b
x log

3
810 = 10log

3
8 

Log of 1 log
b
1 = 0 log

4
1 = 0

Log of 
the base

log
b
b = 1 log

4
4 = 1

Exponential terms that have a base e have special logarithms 
just for the e’s (the ease?). Instead of writing the log base e as 
log

e
x, you insert a special symbol, ln, for the log. The symbol 

ln is called the natural logarithm, and it designates that the 
base is e. The equivalences for base e and the properties of 
natural logarithms are the same, but they look just a bit differ-
ent. Table 9-2 shows them.

Table 9-2 Properties of Natural Logarithms

Property 
Name

Property Rule Example

Equivalence y = ln x ↔ ey = x 6 = ln x ↔ e6 = x

Natural log 
of a product

ln xy = ln x + ln y ln 4z = ln 4 + ln z

Natural log 
of a quotient

Natural log 
of a power

ln xn = nln x ln x5 = 5ln x

Natural 
log of 1

ln 1 = 0 ln 1 = 0

Natural 
log of e

ln e = 1 ln e = 1
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As you can see in Table 9-2, the natural logs are much easier 
to write — you have no subscripts. Professionals use natural 
logs extensively in mathematical, scientific, and engineering 
applications.

Doing more with logs than sawing

 

You can use the basic exponential/logarithmic equivalence 
log

b
x = y ↔ by = x to simplify equations that involve loga-

rithms. Applying the equivalence makes the equation much 
nicer. If you’re asked to evaluate log

9
3, for example (or if you 

have to change it into another form), you can write it as an 
equation, log

9
3 = x, and use the equivalence: 9x = 3. Now you 

have it in a form that you can solve for x. (The x that you get 
is the answer or value of the original expression.)

 

Evaluate log
9
3.

After writing log
9
3 = x, and the equivalence 9x = 3, you solve by 

changing the 9 to a power of 3 and then finding x in the new, 
more familiar form:

The result tells you that  — much simpler than the 
original log expression.

 

Evaluate 10(log
3
27).

First, write log
3
27 = x and its equivalence, 3x = 27. The number 

27 is 33, so you can say that 3x = 33. For that statement to be 
true, it must be that x = 3. Now, replacing log

3
27 with 3 in the 

original problem, you get 10(log
3
27) = 10(3) = 30. Another 

way to approach evaluating log
3
27 is to write it as log

3
33. 

Using the law of logarithms involving powers (refer to Table 
9-1), the expression becomes 3log

3
3. Again, using a law of 

logarithms from the same table, you can substitute 1 for log
3
3, 

so 3log
3
3 = 3(1) = 3. 
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Using log laws to expand expressions
A big advantage of logs is their properties and the way that 
you can change powers, products, and quotients into simpler 
addition and subtraction. Put all the log properties together, 
and you can change a single complicated expression into sev-
eral simpler terms.

 

Simplify  by using the properties of logarithms.

First, use the property for the log of a quotient and then use 
the property for the log of a product on the new first term.

 

The last step is to use the log of a power on each term, chang-
ing the radical to a fractional exponent first:

The three new terms you create are each much simpler than 
the whole expression.

Using compacting
Results of computations in science and mathematics can 
involve sums and differences of logarithms. When this hap-
pens, you usually prefer to have the answers written all in one 
term, which is where the properties of logarithms come in.

 

Simplify  by writing the 

 three terms as a single logarithm. 

First, apply the property involving the natural log (ln) of a 
power to all three terms. Then factor out –1 from the last two 
terms and write them in a bracket:
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Now use the property involving the ln of a product on the 

terms in the bracket, change the  exponent to a radical, and 

use the property for the ln of a quotient to write everything as 
the ln of one big fraction:

The expression is messy and complicated, but it sure is 
compact.

Solving Equations 
Containing Logs

Logarithmic equations can have one or more solutions, just 
like other types of algebraic equations. What makes solving 
log equations a bit different is that you get rid of the log part 
as quickly as possible, leaving you to solve either a polynomial 
or an exponential equation in its place. Polynomial and expo-
nential equations are easier and more familiar, and you may 
already know how to solve them. The only caution I present 
before you begin solving logarithmic equations is that you need 
to check the answers you get from the new, revised forms. You 
may get answers to the polynomial or exponential equations, 
but they may not work in the logarithmic equation. Switching to 
another type of equation introduces the possibility of extrane-
ous roots — answers that fit the new, revised equation that you 
choose but sometimes don’t fit in with the original equation.

Seeing all logs created equal
One type of log equation features each term carrying a loga-
rithm in it (and the logarithms have to have the same base). 
You can apply the following rule:
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If log
b
x = log

b
y, then x = y.

 

Solve the equation log
4
x2 = log

4
(x + 6).

Apply the rule so that you can write and solve the equation 
x2 = x + 6. Setting the quadratic equation equal to 0, you get 
x2 – x – 6 = 0 which factors into (x – 3)(x + 2) = 0. The solu-
tions x = 3 and x = –2 are for the quadratic equation, and both 
work in the original logarithmic equation. You always must 
check, though, because the solutions from a related quadratic 
equation don’t always work in the original.

The following equation shows you how you may get an extra-
neous solution. Note that, when there’s no base showing, you 
assume that you have common logarithms that are base 10.

 

Solve log(x – 8) + log (x) = log (9).

First apply the property involving the log of a product to get 
just one log term on the left: log(x – 8)(x) = log(9). Next, you 
use the property that allows you to drop the logs and get the 
equation (x – 8)x = 9. This is a quadratic equation that you 
can solve with factoring. Multiplying on the left, you get 
x2 – 8x. Subtracting 9 from each side, the quadratic equation 
is x2 – 8x – 9 = 0, which factors into (x – 9)(x + 1) = 0. The two 
solutions of the quadratic equation are x = 9 and x = –1.

Checking the answers, you find that the solution 9 works just 
fine, but the –1 doesn’t work: log (–1– 8) + log (–1) = log (9).
You can stop right there. Both of the logs on the left have neg-
ative arguments. The argument in a logarithm has to be posi-
tive, so the –1 doesn’t work in the log equation (even though 
it was just fine in the quadratic equation). You determine 
that –1 is an extraneous solution and throw it out.

Solving log equations by 
changing to exponentials
When a log equation has log terms and a term that doesn’t 
have a logarithm in it, you need to use algebra techniques and 
log properties (see Table 9-1) to put the equation in the form 
y = log

b
x. After you create the right form, you can apply the 

equivalence to change it to a purely exponential equation.
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Solve log
3
(x + 8) –2 = log

3
x.

First subtract log
3
x from each side and add 2 to each side to 

get log
3
(x + 8) – log

3
x = 2. Now you apply the property involv-

ing the log of a quotient, rewrite the equation by using the 
equivalence, and solve for x:

The only solution is x = 1, which works in the original logarith-
mic equation.
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Chapter 10

Getting Creative 
with Conics

In This Chapter
▶ Determining the centers of circles, ellipses, and hyperbolas

▶ Graphing parabolas using vertex and direction

▶ Using equations to sketch graphs of all conics

Conic is the name given to a special group of curves. The 
four conic sections are a parabola, circle, ellipse, and 

hyperbola.

Each conic section has a specific form or type of equation, 
and I cover each in this chapter. You can glean a good deal 
of valuable information from a conic section’s equation, such 
as where it’s centered in a graph, how wide it opens, and its 
general shape. I also discuss the techniques that work best for 
you when you’re called on to graph conics.

The graphs of circles and ellipses are closed curves. 
Parabolas and hyperbolas open upward, downward, left, 
or right — depending on the type you’re graphing. Just to 
acquaint you with what conic sections look like, I show you 
some graphs in Figure 10-1. Then, in subsequent sections, 
I give you all the details in terms of the characteristics and 
important features of the individual conics. 
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Parabola Circle

Ellipse Hyperbola

(h,k)

(h,k)

(h,k) (h,k)

Figure 10-1: The four conic sections.

Posing with Parabolas
A parabola, a U-shaped conic that I first introduce in Chapter 
6 (the parabola is the only conic section that fits the definition 
of a polynomial), is defined as all the points that fall the same 
distance from some fixed point, called its focus, and a fixed 
line, called its directrix. The focus is denoted by F, and the 
directrix by y = d (assuming the parabola opens up or down).

A parabola has a couple other defining features. The axis of 
symmetry of a parabola is a line that runs through the focus 
and is perpendicular to the directrix. The axis of symmetry 
does just what its name suggests: It shows off how symmetric 
a parabola is. A parabola is a mirror image on either side of 
its axis. Another feature is the parabola’s vertex. The vertex 
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is the curve’s extreme point — the lowest or highest point, 
or the point on the curve farthest right or farthest left. The 
vertex is also the point where the axis of symmetry crosses 
the curve.

Generalizing the form of 
a parabola’s equation
The curves of parabolas can open upward, downward, to 
the left, or to the right; they also can be steep (tight) or 
widespread. The vertex can be anywhere in the coordinate 
plane. So, how do you track the curves down to pin them on 
a graph? You look to their equations, which give you all the 
information you need to find out where they’ve wandered to.

Opening left or right

 

When the vertex of a parabola is at the point (h, k), and the 
general form for the equation is as follows, the parabola 
opens left or right:

(y – k)2 = 4a(x – h)

When the y variable is squared, the parabola opens left or 
right. From this equation, you can extract information about 
the elements:

 ✓ If 4a is positive, the curve opens right; if 4a is negative, 
the curve opens left.

 ✓ If , the parabola is relatively wide; if , the 
parabola is relatively narrow.

 ✓ The focus is at the point (h + a, k).

 ✓ The directrix is x = h – a.

Opening up or down

 

When the vertex of a parabola is at the point (h, k), and the 
general form for the equation is as follows, the parabola 
opens up or down:

(x – h)2 = 4a(y – k)
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When the x variable is squared, the parabola opens up or 
down. Here’s the info you can extract from this equation:

 ✓ If 4a is positive, the parabola opens upward; if 4a is nega-
tive, the curve opens downward.

 ✓ If , the parabola is wide; if , the parabola 
is narrow.

 ✓ The focus is at the point (h, k + a).

 ✓ The directrix is y = k – a.

Making short work of 
a parabola’s sketch
Parabolas have distinctive U-shaped graphs, and with just a 
little information, you can make a relatively accurate sketch of 
the graph of a particular parabola. The first step is to think of 
all parabolas as being in one of the general forms I list in the 
previous section.

Here’s the full list of steps to follow when sketching the graph 
of a parabola — either (x – h)2 = 4a(y – k) or (y – k)2 = 4a(x – h):

 1. Determine the coordinates of the vertex (h, k) and 
plot that vertex.

 

 If the equation contains (x + h) or (y + k), change the 
forms to (x –[–h]) or (y–[–k]), respectively, to deter-
mine the correct signs. Actually, you’re just reversing 
the sign that’s already there.

 2. Determine the direction the parabola opens, and 
decide if it’s wide or narrow, by looking at the 4a 
portion of the general parabola equation.

 3. Lightly sketch in the axis of symmetry that goes 
through the vertex.

  x = h when the parabola opens up or down and y = k 
when it opens left or right.

 4. Choose a couple other points on the parabola and 
find each of their partners on the other side of the 
axis of symmetry to help you with the sketch.
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For example, if you want to graph the parabola (y + 2)2 = 8(x – 1), 
you first note that this parabola has its vertex at the point 
(1, –2) and opens to the right, because the y is squared (if the 
x had been squared, it would open up or down) and a, being 2,  
is positive. The graph is relatively wide about the axis of sym-
metry, y = –2, because a = 2, which is greater than 1. Figure 
10-2a shows the vertex, axis of symmetry, and two points that 
satisfy the equation of the parabola. You find the points by 
substituting in a value for y and solving for x.

ba

y

x

(1,-2)

(5.5,4)

(9,6)

y = -2

y

x

Figure 10-2:  A parabola sketched from points and lines deduced from the 

standard equation.

The two randomly chosen points have counterparts on the 
opposite side of the axis of symmetry. The point (9, 6) is 8 
units above the axis of symmetry, so 8 units below the axis 
puts you at (9, –10). The point (5.5, 4) is 6 units above the axis 
of symmetry, so its partner is the point (5.5, –8). Figure 10-2b 
shows the two new points and the parabola sketched in.

Changing a parabola’s equation 
to the standard form
When the equation of a parabola appears in standard form, 
you have all the information you need to graph it or to deter-
mine some of its characteristics, such as direction or size. Not 
all equations come packaged that way, though. You may have 
to do some work on the equation first to be able to identify 
anything about the parabola.
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The standard form of a parabola is (x – h)2 = 4a(y – k) or 
(y – k)2 = 4a(x – h), where (h, k) is the vertex.

The methods used here to rewrite the equation of a parabola 
into its standard form also apply when rewriting equations of 
circles, ellipses, and hyperbolas. The standard forms for conic 
sections are factored forms that allow you to immediately 
identify needed information. Different algebra situations call 
for different standard forms — the form just depends on what 
you need from the equation.

For example, if you want to convert the equation x2 + 10x – 
2y + 23 = 0 into the standard form, you act out the following 
steps, which contain a method called completing the square, 
which I show you here.

 1. Rewrite the equation with the x2 and x terms (or the 
y2 and y terms) on one side of the equation and the 
rest of the terms on the other side.

  x2 + 10x = 2y – 23

 2. Add a number to each side to make the side with the 
squared term into a perfect square trinomial (thus, 
completing the square).

  x2 + 10x + 25 = 2y – 23 + 25

 3. Rewrite the perfect square trinomial in factored 
form, and factor the terms on the other side by the 
coefficient of the variable.

  (x + 5)2 = 2y + 2

  (x + 5)2 = 2(y + 1)

You now have the equation in standard form. The vertex is at 
(–5, –1); it opens upward and is fairly wide.

Circling Around a Conic
A circle, probably the most recognizable of the conic sections, 
is defined as all the points plotted at the same distance from 
a fixed point — the circle’s center, (h, k). The fixed distance is 
the radius, r, of the circle.
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The standard form for the equation of a circle with radius r 
and with its center at the point (h, k) is (x – h)2 + (y – k)2 = r2.

When the equation of a circle appears in the standard form, 
it provides you with all you need to know about the circle: its 
center and radius. With these two bits of information, you can 
sketch the graph of the circle. The equation x2 + y2 + 6x – 4y – 
3 = 0, for example, is the equation of a circle. You can change 
this equation to the standard form by completing the square 
for each of the variables. Just follow these steps:

 1. Change the order of the terms so that the x’s and y’s 
are grouped together and the constant appears on 
the other side of the equal sign.

  Leave a space after the groupings for the numbers 
that you need to add:

  x2 + 6x    + y2 – 4y    = 3

 2. Complete the square for each variable, adding the 
numbers that create perfect square trinomials.

  x2 + 6x + 9 + y2 – 4y + 4 = 3 + 9 + 4

 3. Factor each perfect square trinomial.

  (x + 3)2 + (y – 2)2 = 16

The example circle has its center at the point (–3, 2) and has 
a radius of 4 (the square root of 16). To sketch this circle, you 
locate the point (–3, 2) and then count 4 units up, down, left, 
and right; sketch in a circle that includes those points.

Getting Eclipsed by Ellipses
The ellipse is considered the most aesthetically pleasing of all 
the conic sections. It has a nice oval shape often used for mir-
rors, windows, and art forms.

The definition of an ellipse is all the points where the sum 
of the distances from the points to two fixed points is a 
constant. The two fixed points are the foci (plural of focus), 
denoted by F. Figure 10-3 illustrates this definition. You can 
pick a point on the ellipse, and the two distances from that 
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point to the two foci add up to the same number as the sum of 
the distances from any other point on the ellipse to the foci. 
In Figure 10-3, the distances from point A to the two foci are 
3.2 and 6.8, which add up to 10. The distances from point B to 
the two foci are 5 and 5, which also add up to 10.

A

F F

B

3.2 units 6.8 units

5 units

y

x

5 units

Figure 10-3:  The sum of the two distances to the foci are the same.

You can think of the ellipse as a sort of squished circle. Of 
course, there’s much more to ellipses than that, but the label 
sticks because the standard equation of an ellipse has a vague 
resemblance to the equation for a circle (see the previous 
section).

 

The standard equation for an ellipse with its center at the 

 point (h, k) is , where

 ✓ (x, y) is a point on the ellipse.

 ✓ a is half the length of the ellipse from left to right at its 
widest point.

 ✓ b is half the distance up or down the ellipse at its tallest 
point.

The standard equation tells you about the center, whether the 
ellipse is long and narrow or tall and slim. The equation tells 
you how long across, and how far up and down. You may even 
want to know the coordinates of the foci. You can determine 
all these elements from the equation.
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Determining the shape
An ellipse is crisscrossed by a major axis and a minor axis. 
Each axis divides the ellipse into two equal halves, with the 
major axis being the longer of the segments. The two axes 
intersect at the center of the ellipse. At the ends of the major 
axis, you find the vertices of the ellipse. Figure 10-4 shows two 
ellipses with their axes and vertices identified.

vertex

vertex

major axis

major axis

v
e

rt
e

x

v
e

rt
e

x

minor
axis

minor axis

Figure 10-4: Ellipses with their axis properties identified.

 

To determine the shape of an ellipse, you need to pinpoint 
two characteristics:

 ✓ Lengths of the axes: You can determine the lengths of 
the two axes from the standard equation of the ellipse. 
You take the square root of the numbers in the denomi-
nators of the fractions. Whichever value is larger, a2 or 
b2, tells you which one is the major axis. The square 
roots of these numbers represent the distances from the 
center to the points on the ellipse along their respective 
axes. In other words, a is half the length of one axis, and 
b is half the length of the other. Therefore, 2a and 2b are 
the lengths of the axes.

 ✓ Assignment of the axes: The positioning of the axes is 
significant. The denominator that falls under the x’s signi-
fies the axis that runs parallel to the x-axis. The denomi-
nator that falls under the y factor signifies the axis that 
runs parallel to the y-axis.
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Finding the foci

 

You can find the two foci of an ellipse by using information 
from the standard equation. The foci, for starters, always lie 
on the major axis. They lie c units from the center. To find 
the value of c, you use parts of the ellipse equation to form 
the equation c2 = a2 – b2 or c2 = b2 – a2, depending on which is 
larger, a2 or b2. The value of c2 has to be positive.

In the ellipse , for example, the major axis runs 

across the ellipse, parallel to the x-axis. Actually, the major 
axis is the x-axis, because the center of this ellipse is the 
origin. You know this because the h and k are missing from 
the equation (actually, they’re both equal to 0). You find the 
foci of this ellipse by solving the foci equation:

So, the foci are 4 units on either side of the center of the 
ellipse. In this case, the coordinates of the foci are (–4, 0) 
and (4, 0).

Getting Hyped for Hyperbolas
The hyperbola is a conic section that features two completely 
disjoint curves, or branches, that face away from one another 
but are mirror images across a line that runs halfway between 
them.

A hyperbola is defined as all the points such that the dif-
ference of the distances from the point to two fixed points 
(called foci) is a positive constant value. In other words, you 
pick a value, such as the number 6; you find two distances 
whose difference is 6, such as 10 and 4; and then you find 
a point that rests 10 units from the one point and 4 units 
from the other point. The hyperbola has two axes, just as 
the ellipse has two axes (see the previous section). The axis 
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of the hyperbola that goes through its two foci is called the 
transverse axis. The other axis, the conjugate axis, is perpen-
dicular to the transverse axis, goes through the center of the 
hyperbola, and acts as the mirror line for the two branches.

 

There are two basic equations for hyperbolas. You 
use one when the hyperbola opens to the left and right: 

 . You use the other when the hyperbola 

 opens up and down: .

In both cases, the center of the hyperbola is at (h, k), and the 
foci are c units away from the center, where the relationship 
b2 = c2 – a2 describes the relationship between the different 
parts of the equation.

Including the asymptotes

 

A very helpful tool you can use to sketch hyperbolas is to first 
lightly sketch in the two diagonal asymptotes of the hyperbola. 
Asymptotes aren’t actual parts of the graph; they just help you 
determine the shape and direction of the curves. The asymp-
totes of a hyperbola intersect at the center of the hyperbola. 
You find the equations of the asymptotes by replacing the 1 
in the equation of the hyperbola with a 0 and simplifying the 
resulting equation into the equations of two lines.

 

Find the equations of the asymptotes of the hyperbola 

 .

Change the 1 to 0, set the two fractions equal to one another, 
and take the square root of each side:
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Then you multiply each side by 12 to get the equations of the 
asymptotes in better form and consider the two cases — one 
using the positive sign, and the other using the negative sign. 

The equations of the two asymptotes that result are  

and . Notice that the slopes of the lines are the oppo-

sites of one another.

Graphing hyperbolas
Hyperbolas are relatively easy to sketch, if you pick up the 
necessary information from the equations. To graph a hyper-
bola, use the following steps as guidelines:

 1. Determine if the hyperbola opens to the sides or up 
and down by noting whether the x term is first or 
second.

  The x term first means it opens to the sides.

 2. Find the center of the hyperbola by looking at the 
values of h and k.

 3. Lightly sketch in a rectangle twice as wide as the 
square root of the denominator under the x value 
and twice as high as the square root of the denomi-
nator under the y value.

  The rectangle’s center is the center of the hyperbola.

 4. Lightly sketch in the asymptotes through the vertices 
of the rectangle (see the preceding section).

 5. Draw in the hyperbola, making sure it touches the 
midpoints of the sides of the rectangle.

You can use these steps to graph the hyperbola 

. First, note that this hyperbola opens to 

the left and right because the x value comes first in the equa-
tion. The center of the hyperbola is at (–2, 3).

Now comes the mysterious rectangle. Starting at the center at 
(–2, 3), you count 3 units to the right and left of center (total-
ing 6), because twice the square root of 9 is 6. Now you count 
4 units up and down from center, because twice the square 
root of 16 is 8. When the rectangle is in place, you draw in the 
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asymptotes of the hyperbola, diagonally through the vertices 
(corners) of the rectangle. Lastly, with the asymptotes in 
place, you draw in the hyperbola, making sure it touches the 
sides of the rectangle at the midpoints and slowly gets closer 
and closer to the asymptotes as they get farther from the 
center. You can see the full hyperbola in Figure 10-5.

a b

x

y

x

y

(-2, 3)(-2, 3)

Figure 10-5: The hyperbola takes its shape with the asymptotes in place.
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Chapter 11

Solving Systems 
of Equations

In This Chapter
▶ Finding solutions for systems of two, three, or more linear equations

▶ Determining if and where lines and parabolas intersect

▶ Expanding the search for intersections to other curves

A system of equations consists of a number of equations 
with common variables — variables that are linked in a 

specific way. The solution of a system of equations consists of 
the sets of numbers that make each equation in the system a 
true statement or a list of relationships between numbers that 
makes each equation in the system a true statement.

In this chapter, I cover both systems of linear equations and 
some nonlinear equations. You have a number of techniques 
at your disposal to solve systems of equations, including 
graphing lines, adding multiples of one equation to another, 
and substituting one equation into another. 
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Looking at Solutions Using the 
Standard Linear-Systems Form

The standard form for a system of linear equations is as 
follows:

The x’s all represent variables, the k’s are constants, and the 
a, b, c, and so on all represent constant coefficients of the 
variables.

If a system has only two linear equations with two variables, 
the equations appear in the Ax + By = C form and can be 
graphed on the coordinate system to illustrate the solution. 
But a system of equations can contain any number of equa-
tions. (I show you how to work through larger systems in the 
later section, “Increasing the Number of Equations.”)

Linear equations, like Ax + By = C, with two variables have lines 
as graphs. In order to solve a system of two linear equations 
with two variables, you need to determine what values for x 
and y make both the equations true at the same time. Your job 
is to account for which of three possible types of solutions (if 
you count “no solution” as a solution) can make this happen:

 ✓ One solution: The solution appears at the point where 
the lines intersect — the same x and the same y work at 
the same time in both equations.

 ✓ An infinite number of solutions: The equations are 
describing the same line.

 ✓ No solution: Occurs when the lines are parallel — no 
value for (x, y) works in both equations.
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Solving Linear Systems 
by Graphing

To solve systems of linear equations with two equations and 
two variables (and integers as solutions), you can graph both 
equations on the same axes and you see one of three things: 
intersecting lines (one solution), identical lines (infinitely 
many solutions), or parallel lines (no solution).

 

Solving linear systems by graphing the lines created by the 
equations is very satisfying to your visual senses, but beware: 
Using this method to find a solution requires careful plotting 
of the lines. Also, the task of determining rational (fractions) 
or irrational (square roots) solutions from graphs on graph 
paper is too difficult, if not impossible. In general, solving sys-
tems by graphing isn’t very practical.

Interpreting an intersection
Lines are made up of many, many points. When two lines 
cross one another, they share just one of those points. You 
need to graph very carefully, using a sharpened pencil and 
ruler with no bumps or holes.

A quick way to sketch two lines is to find their intercepts 
(where they cross the axes). Plot the intercepts on a graph 
and draw a line through them.

If the two lines clearly intersect at a point, you mark the point 
and determine the solution by counting the grid marks in the 
figure. This method shows you how important it is to graph 
the lines very carefully!

Tackling the same line
A unique situation that occurs with systems of linear equa-
tions happens when everything seems to work. Every point 
you find that works for one equation works for the other, too. 
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This match-made-in-heaven scenario plays out when the equa-
tions are just two different ways of describing the same line.

When two equations in a system of linear equations represent 
the same line, the equations are multiples of one another.

Putting up with parallel lines
Parallel lines never intersect and never have anything in 
common except their slope. So, when you solve systems of 
equations that have no solutions at all, you should know right 
away that the lines represented by the equations are parallel.

 

One way you can predict that two lines are parallel — and 
that no solution exists for the system of equations — is by 
checking the slopes of the lines. You can write each equation 
in slope-intercept form for the line. The slope-intercept form 

 for the line x + 2y = 8, for example, is , and the 

 slope-intercept form for 3x + 6y = 7 is . The lines 

 both have the slope , and their y-intercepts are different, so 

 you know the lines are parallel.

Using Elimination (Addition) 
to Solve Systems of Equations

Even though graphing lines to solve systems of equations is 
more visually satisfying, as a technique for solving systems 
of equations, graphing is time-consuming and requires care-
ful plotting of points and cooperative answers. The two most 
preferred (and common) methods for solving systems of two 
linear equations are elimination, which I cover in this sec-
tion, and substitution, which I cover in the section “Finding 
Substitution to Be a Satisfactory Substitute,” later in this 
chapter. Determining which method you should use depends 
on what form the equations start out in and, often, personal 
preference.
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To carry out the elimination method, you want to add two 
equations together, or subtract one from another other, and 
eliminate (get rid of) one of the variables. Sometimes you have 
to multiply one or both of the equations by a carefully selected 
number before you add them together (or subtract them).

 

Solve the following system of equations:

The system requires some adjustments before you add 
or subtract the two equations. You have several different 
options to choose from to make the equations in this example 
system ready for elimination, and the one I would choose is to 
multiply the first equation by 2 and the second by –3 and then 
add to eliminate the x’s.

Here’s the new version of the system:

Adding the two equations together, you get 11y = –44, eliminat-
ing the x’s. Dividing each side of the new equation by 11, you 
get y = –4. Substitute this value into the first original equation. 
Substituting –4 for the y value, you get 3x – 2(–4) = 17. Solving for 
x, you get x = 3. Now check your work by putting the 3 and –4 
into the second original equation. You get 2(3) – 5(–4) = 26; 
6 + 20 = 26; 26 = 26. Check! The solution is (3, –4).

When you graph systems of two linear equations, it becomes 
pretty apparent when the systems produce parallel lines or 
have equations that represent the same line. But you can also 
recognize these situations algebraically, if you know what to 
look for.

 ✓ When doing the algebra using elimination or substitution 
and you get an impossible statement, such as 0 = 5, then 
the false statement is your signal that the system doesn’t 
have a solution and that the lines are parallel.
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 ✓ If the algebra results in an equation that’s always true, 
such as 0 = 0 or 5 = 5, then you know that the original 
equations are just two ways of giving you the same line.

Finding Substitution to Be 
a Satisfactory Substitute

Another method used to solve systems of linear equations 
is called substitution. Substitution works best when solving 
nonlinear systems, so some people prefer sticking to substitu-
tion for both types. The method used is often just a matter of 
personal choice.

Variable substituting made easy
Executing substitution in systems of two linear equations is a 
two-step process:

 1. Solve one of the equations for one of the variables, 
x or y.

 2. Substitute the value of the variable into the other 
equation.

 

Solve the following system by substitution:

First look for a variable that is a likely candidate for the first 
step. In other words, you want to solve for it.

Look for a variable with a coefficient of 1 or –1, if possible. 
The y term of the first equation has a coefficient of –1, so you 
solve this equation for y (rewrite it so y is alone on one side of 
the equation). You get y = 2x – 1. Now you can substitute the 
2x – 1 for the y in the other equation:
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You’ve already created the equation y = 2x – 1, so you can put 
the value x = –6 into the equation to get y:

y = 2(–6) –1 = –12 – 1 = –13

To check your work, put both values, x = –6 and y = –13, into 
the equation that you didn’t change (the second equation, 
in this case): 3(–6) – 2(–13) = 8; –18 + 26 = 8; 8 = 8. Your work 
checks out. Your solution is (–6, –13).

Writing solutions for 
coexisting lines
As I mention in the section “Recognizing situations with paral-
lel and coexisting lines,” earlier in this chapter, you want to 
identify the impossible (parallel lines) and always possible 
(coexisting lines). And then, with equations that represent the 
same line, you can say more about a solution.

The following system of equations represents two ways of 
saying the same equation — two equations that represent the 
same line:

When you solve the system by using substitution, you can end 
up with the equation: 4 = 4.

When substitution creates an equation that’s always true, any 
pair of values that works for one equation will work for the 
other. For this reason, you can write the solution in the (x, y) 
form, showing a pattern or formula for all the solutions.
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In the following system, the y value is always 2 less than  the 
x value (you get this from the second equation):

So the (x, y) form for the solution of the system is . 

Some solutions found, using the format, are: (2, 1), , 

and (4, 4).

Taking on Systems of Three 
Linear Equations

Systems of three linear equations may also have solutions: 
sets of numbers (all the same for each equation) that make 
each of the equations true. What I show you in this section, 
involving three equations, can be extended to four, five, or 
even more equations. The basic processes are the same.

Finding the solution of a system 
of three linear equations
When you have a system of three linear equations and three 
unknown variables, you solve the system by reducing the 
three equations with three variables into a system of two 
equations with two variables. At that point, you’re back to 
familiar territory and you have all sorts of methods at your 
disposal to solve the system (see the previous sections in this 
chapter). After you determine the values of the two variables 
in the new system, you back-substitute into one of the original 
equations to solve for the value of the third variable.
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Solve the following system:

First, you choose a variable to eliminate. The prime two can-
didates for elimination are the y and z because of the coef-
ficients of 1 or –1 that occur in their equations. Assume that 
you choose to eliminate the z variable.

Start by multiplying the terms in the top equation by –2 and 
adding them to the terms in the middle equation. Then, mul-
tiply the terms in the top equation (the original top equation) 
by 3 and add them to the terms in the bottom equation:

–2(3x – 2y + z = 17) →

 

3(3x – 2y + z = 17) →

 

Now deal with the two equations you created by solving them 
as a new system of equations with just two variables. Solve 
it by multiplying the terms in the first equation by 9 and the 
terms in the second equation by 5; add the two equations 
together, getting rid of the y terms, and solving for x:

Now you substitute x = 3 into the equation –4x + 5y = –22. 
Choosing this equation is just an arbitrary choice — 
either equation will do. When you substitute x = 3, you 
get –4(3) + 5y = –22. Adding 12 to each side, you get 5y = –10, 
or y = –2.
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Putting x = 3 and y = –2 into the first equation, you get 3(3) – 
2(–2) + z = 17, giving you 9 + 4 + z = 17. You subtract 13 from 
each side for a result of z = 4. Your solution is x = 3, y = –2, 
z = 4, or you can write it as an ordered triple, (3, –2, 4).

Generalizing with 
a system solution
When dealing with three linear equations and three variables, 
you may come across a situation where one of the equations 
is a linear combination of the other two. This means you 
won’t find a single solution for the system — but you may find 
an infinite number of solutions or none at all. A generalized 
(giving infinitely many) solution looks like (–z, 2z, z), where 
you can pick numbers for z that determine what the x and y 
values are.

You first get an inkling that a system has a generalized answer 
when you find out that one of the reduced equations you 
create is a multiple of the other.

 

Solve the following system:

To solve this system, you can eliminate the z’s by multiply-
ing the terms in the first equation by 4 and adding them to 
the second equation. You then multiply the terms in the first 
equation by 11 and add them to the third equation:

4(2x + 3y – z = 12) →

 

11(2x + 3y – z = 12) →

 



 Chapter 11: Solving Systems of Equations 145

The second equation, 27x + 27y = 108, is three times the 
first equation. Because these equations are multiples of 
one another, you know that the system has infinitely many 
solutions — not just a single solution.

To find those solutions, you take one of the equations and solve 
for a variable. You may choose to solve for y in 9x + 9y = 36. 
Dividing through by 9, you get x + y = 4. Solving for y, you get 
y = 4 – x. You substitute that equation into one of the original 
equations in the system to solve for z in terms of x. After you 
solve for z this way, you have the three variables all written 
as some version of x.

Substituting y = 4 – x into 2x + 3y – z = 12, for example, you get

The ordered triple giving the solutions of the system is 
(x, 4 – x, –x). You can find an infinite number of solutions, all 
determined by this pattern. Just pick an x, such as x = 3, and 
then the solution is (3, 1, –3). These values of x, y, and z all 
work in the equations of the original system.

Increasing the Number 
of Equations

Systems of linear equations can be any size. You can have 
two, three, four, or even a hundred linear equations. (After 
you get past three or four, you definitely need to resort to 
technology.) Some of these systems have solutions and others 
don’t. You have to dive in to determine whether you can find 
a solution or not. You can try to solve a system of just about 
any number of linear equations, but you find a single, unique 
solution (one set of numbers for the answer) only when the 
number of equations isn’t smaller than the number of vari-
ables. If a system has three different variables, you need at 
least three different equations. Having enough equations for 
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the variables doesn’t guarantee a unique solution, but you 
have to at least start out that way.

The general process for solving n equations with n variables 
is to keep eliminating variables. A systematic way is to start 
with the first variable, eliminate it, move to the second vari-
able, eliminate it, and so on until you create a reduced system 
with two equations and two variables. You solve for the solu-
tions of that system and then start substituting values into the 
original equations. This process can be long and tedious, and 
errors are easy to come by, but if you have to do it by hand, 
this is a very effective method. Technology, however, is most 
helpful when systems get unmanageable.

The following system has five equations and five variables:

You begin the process by eliminating the x’s:

 1. Multiply the terms in the first equation by –2 and 
add them to the second equation.

 2. Multiply the first equation through by –3 and add 
the terms to the third equation.

 3. Multiply the first equation through by –1 and add 
the terms to the fourth equation.

 4. Multiply the first equation through by –2 and add 
the terms to the last equation.

After you finish (whew!), you get a system with the x’s 
eliminated:



 Chapter 11: Solving Systems of Equations 147

Now you eliminate the y’s in the new system by multiplying 
the last equation by 3, 2, and 5 and adding the results to the 
first, second, and third equations, respectively:

You eliminate the z’s in the latest system by multiplying the 
terms in the first equation by 7 and the second by –4 and adding 
them together. You then multiply the terms in the second equa-
tion by 5 and the third by –7 and add them together. The new 
system you create has only two variables and two equations:

To solve the two-variable system in the most convenient way, 
you multiply the first equation through by –4 and add the 
terms to the second:

You find w = –4. Now back-substitute w into the equation –52w 
+ 2t = 222 to get –52(–4) + 2t = 222, which simplifies to

Take these two values and plug them into –4z – 12w – 2t = 22. 
Substituting, you get –4z – 12(–4) –2(7) = 22, which simplifies to

Put the three values into y – z – 3w – t = 0: y – (3) – 3(–4) – 7 = 
0, or y + 2 = 0 and y = –2. Only one more to go!
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Move back to the equation x + y + z + w + t = 3, and plug in 
values: x + (–2) + 3 + (–4) + 7 = 3, which simplifies to x + 4 = 3 
and x = –1.

The solution reads: x = –1, y = –2, z = 3, w = –4, and t = 7 or, as 
an ordered quintuple, (–1, –2, 3, –4, 7).

Intersecting Parabolas and Lines
A parabola is a predictable, smooth, U-shaped curve. A line is 
also very predictable; it goes up or down and left or right at the 
same rate forever and ever. If you put these two characteristics 
together, you can predict with a fair amount of accuracy what 
will happen when a line and a parabola share the same space.

When you combine the equations of a line and a parabola, you 
get one of three results:

 ✓ Two common solutions (intersecting in two places)

 ✓ One common solution (a line tangent to the parabola or 
parallel to the axis of symmetry)

 ✓ No solution at all (the line and parabola never cross)

 

The easiest way to find the common solutions, or common 
sets of values, for a line and a parabola is to solve their 
system of equations algebraically. A graph is helpful for con-
firming your work and putting the problem into perspective, 
but solving the system by graphing usually isn’t very efficient. 
When solving a system of equations involving a line and a 
parabola, most mathematicians use the substitution method.

You almost always substitute x’s for the y in an equation, 
because you often see functions written with the y’s equal to 
so many x’s. You may have to replace x’s with y’s, but that’s 
the exception. Just be flexible.

Determining if and where lines 
and parabolas cross paths
The graphs of a line and a parabola can cross in two places, 
one place, or no place at all. In terms of equations, these 
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assertions translate to two common solutions, one solution, 
or no solution at all. Doesn’t that fit together nicely?

Taking on two solutions
A parabola and a line may have two points in common. When 
using the substitution method, you first need to solve for one 
or the other variable.

 

Find the intersections of y = 3x2 – 4x – 1 and x + y = 5.

Solve for y in the equation of the line: y = –x + 5. Now you 
substitute this equivalence of y into the first equation, set the 
new equation equal to 0, and factor as you do any quadratic 
equation:

Setting each of the binomial factors equal to 0, you get x = 2 
and x = –1. When you substitute those values into the equa-
tion y = –x + 5, you find that when x = 2, y = 3, and when 
x = –1, y = 6. The two points of intersection, therefore, are 
(2, 3) and (–1, 6). Figure 11-1 shows the graphs of the parabola 
(y = 3x2 – 4x – 1), the line (y = –x + 5), and the two points of 
intersection.

y

x

(-1, 6)

(2, 3)

Figure 11-1: You find the two points of intersection with substitution.
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Finding just one solution
When a line and a parabola have one point of intersection 
and, therefore, share one common solution, the line is tangent 
to the parabola or parallel to its axis of symmetry. A line and 
a curve can be tangent to one another if they touch or share 
exactly one point and if the line appears to follow the cur-
vature at that point. (Two curves can also be tangent to one 
another — they touch at a point and then go their own merry 
ways.) The following example shows two figures that have 
only one point in common — at their point of tangency.

 

Find the intersection of y = –x2 +5x + 6 and y = 3x + 7.

Substitute the equivalence of y in the line equation into the 
parabolic equation and solve for x:

 

The dead giveaway that the parabola and line are tangent is 
the quadratic equation that results from the substitution. It 
has a double root — the same solution appears twice — when 
the binomial factor is squared.

Substituting x = 1 into the equation of the line, you get 
y = 3(1) + 7 = 10. The coordinates of the point of tangency 
are (1, 10).

Determining that there’s 
no solution
You can see when no solution exists in a system of equations 
involving a parabola and line if you graph the two figures and 
find that their paths never cross. But you don’t need to graph 
the figures to discover that a parabola and line don’t intersect — 
the algebra gives you a “no-answer answer.”
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Solve the system of equations containing the parabola x = y2 – 
4y + 3 and the line y = 2x + 5.

Using substitution, you get the following:

The equation looks perfectly good so far, even though the 
quadratic doesn’t factor. You have to resort to the quadratic 
formula. Substituting the numbers from the quadratic equa-
tion into the formula, you get the following:

Whoa! You can stop right there. You see that a negative value 
sits under the radical. The square root of –7 isn’t real, so no 
real-number answer exists for x. (For more on non-real num-
bers, see Chapter 12.) The nonexistent answer is your big clue 
that the system of equations doesn’t have a common solution, 
meaning that the parabola and line never intersect.

I wish I could give you an easy way to tell that a system has no 
solution before you go to all that work. Think of it this way: An 
answer of no solution is a perfectly good answer.

Crossing Parabolas with Circles
The graph of a parabola is a U-shaped curve, and a circle — 
well, you could go ’round and ’round about a circle. When a 
parabola and circle share some of the same coordinate plane, 
they can interact in one of several different ways. The two 
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figures can intersect at four different points, three points, two 
points, one point, or no points at all. The possibilities may 
seem endless, but that’s wishful thinking. The five possibili-
ties I list here are what you have to work with. Your chal-
lenge is to determine which situation you have and to find 
the solutions of the system of equations. And the best way to 
approach this problem is algebraically.

Finding multiple intersections
A parabola and a circle can intersect at up to four different 
points, meaning that their equations can have up to four 
common solutions. The next example shows you the algebraic 
solution of such a system of equations.

 

Find the four intersections of the parabola y = –x2 + 6x + 8 and 
the circle x2 + y2 – 6x – 8y = 0.

To solve for the common solutions, you have to solve the 
system of equations by either substitution or elimination. You 
usually don’t get to use elimination in problems like this — 
you’d have to substitute what y is equivalent to from the parab-
ola into the equation for the circle. It gets a bit messy. But, 
because I see x2 and –x2, 6x and –6x in the two equations, I’m 
going to take advantage of the situation and use elimination.

First, set the equation of the parabola equal to 0, rearrange 
the terms in both, and add the two equations together:

Now factor the quadratic for y:

Substituting 1 in for y in the equation of the parabola and solv-
ing the resulting quadratic in x, you get:
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So, when y = 1, x is either 7 or –1. This gives you two solu-
tions: (7, 1) and (–1, 1). You go through a similar process with 
y = 8 and get that x = 0 or x = 6. So the final two points of inter-
section are at (0, 8) and (6, 8).

A circle and a parabola can also intersect at three points, two 
points, one point, or no points.

 

You use the same methods to solve systems of equations that 
end up with fewer than four intersections. The algebra leads 
you to the solutions — but beware the false promises. You 
have to watch out for extraneous solutions by checking your 
answers.

If substituting one equation into another, take a look at the 
resulting equation. The highest power of the equation tells 
you what to expect as far as the number of common solutions. 
When the power is 3 or 4, you can have as many as three or 
four solutions, respectively. When the power is 2, you can have 
up to two common solutions. A power of 1 indicates only one 
possible solution. If you end up with an equation that has no 
solutions, you know the system has no points of intersection — 
the graphs just pass by like ships in the night.

Sifting through the possibilities 
for solutions
In the “Intersecting Parabolas and Lines” section, earlier in 
this chapter, the examples I provide use substitution where 
the x’s replace the y variable. Most of the time, this is the 
method of choice, but I suggest you remain flexible and open 
for other opportunities. The next example is just such an 
opportunity — taking advantage of a situation where it makes 
more sense to replace the x term with the y term.

 

Find the common solutions of the parabola y = x2 and the 
circle x2 + (y – 1)2 = 9.
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Take advantage of the simplicity of the equation y = x2 by 
replacing the x2 in the circle equation with y. That sets you up 
with an equation of y’s to solve:

This quadratic equation doesn’t factor, so you have to use the 
quadratic formula to solve for y:

You find two different values for y, according to this solu-
tion. When you use the positive part of the ±, you find that 
y is close to 3.37. When you use the negative part, you find 
that y is about –2.37. Something doesn’t seem right. What is it 
that’s bothering you? It has to be the negative value for y. The 
common solutions of a system should work in both equations, 
and y = –2.37 doesn’t work in y = x2, because when you square 
x, you don’t get a negative number. So, only the positive part 
of the solution, where y ≈ 3.37, works.

Substitute  into the equation y = x2 to get x:

The value of x comes out to about ±1.84. The graph in Figure 
11-2 shows you the parabola, the circle, and the points of 
intersection at about (1.84, 3.37) and about (–1.84, 3.37).

When y = –2.37, you get points that lie on the circle, but these 
points don’t fall on the parabola. The algebra shows that, and 
the picture agrees.
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y 

x 

Figure 11-2: This system has only two points of intersection.

 

When substituting into one of the original equations to solve 
for the other variable, always substitute into the simpler 
equation — the one with smaller exponents. This helps you 
catch any extraneous solutions.
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Chapter 12

Taking the Complexity Out 
of Complex Numbers

In This Chapter
▶ Defining imaginary and complex numbers

▶ Writing complex solutions for quadratic equations

▶ Determining complex solutions for polynomials

Mathematicians define real numbers as all the whole 
numbers, negative and positive numbers, fractions 

and decimals, radicals — anything you can think of to use in 
counting, graphing, and comparing amounts. Mathematicians 
introduced imaginary numbers when they couldn’t finish 
some problems without them. For example, when solving for 
roots of quadratic equations such as x2 + x + 4 = 0, you quickly 
discover that you can find no real answers. Using the qua-
dratic formula, the solutions come out to be

The equation has no real solution. So, instead of staying stuck 
there, mathematicians came up with something innovative. 
They made up a number and named it i.

 

The square root of –1 can be replaced with the imaginary 

number i: . Furthermore, i2 = –1.

In this chapter, you find out how to create, work with, and 
analyze imaginary numbers and the complex expressions they 
appear in. Just remember to use your imagination! 
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Simplifying Powers of i
The powers of i (representing powers of imaginary numbers) 
follow the same mathematical rules as the powers of real 
numbers. The powers of i, however, have some neat features 
that set them apart from other numbers.

 

You can write all the powers of i as one of four different num-
bers: i, –i, 1, and –1; all it takes is some simplifying of products, 
using the properties of exponents, to rewrite the powers of i:

 ✓ i = i: Just plain old i.

 ✓ i2 = –1: From the definition of an imaginary number (see 
the introduction to this chapter).

 ✓ i3 = –i: Use the rule for exponents (i3 = i2 · i) and then 
replace i2 with –1. So, i3 = (–1) · i = –i.

 ✓ i4 = 1: Because i4 = i2 · i2 = (–1)(–1) = 1.

 ✓ i5 = i: Because i5 = i4 · i = (1)(i) = i.

 ✓ i6 = –1: Because i6 = i4 · i2 = (1)(–1) = –1.

 ✓ i7 = –i: Because i7 = i4 · i2 · i = (1)(–1)(i) = –i.

 ✓ i8 = 1: Because i8 = i4 · i4 = (1)(1) = 1.

 

Simplify the powers of i:

 ✓ i41 = i: Because i41 = i40 · i = (i4)10(i) = (1)10 · i = 1 · i = i.

 ✓ i935 = – i: Because i935 = i932 · i3 = (i4)233(i3) = (1)233 (– i) = 
1(– i) = –i.

 

Every power of i where the exponent is a multiple of 4 is equal 
to 1. If the exponent is one value greater than a multiple of 4, 
the power of i is equal to i. An exponent that’s two more than 
a multiple of 4 results in –1; and three more than a multiple 
of 4 as a power of i results in –i. So, all you need do to change 
the powers of i is figure out where the exponent is in relation 
to some multiple of four.
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Getting More Complex with 
Complex Numbers

The imaginary number i is a part of the numbers called com-
plex numbers, which arose after mathematicians established 
imaginary numbers. The standard form of complex numbers 
is a + bi, where a and b are real numbers, and i2 is –1. The fact 

that i2 is equal to –1 and i is equal to  is the foundation of 
the complex numbers.

Some examples of complex numbers include 3 + 2i, –6 + 4.45i, 
and 7i. In the last number, 7i, the value of a is 0. 

Performing complex operations
You can add, subtract, multiply, and divide complex numbers — 
in a very careful manner. The rules used to perform opera-
tions on complex numbers look very much like the rules used 
for any algebraic expression, with two big exceptions:

 ✓ You simplify the powers of i.

 ✓ You don’t really divide complex numbers — you change 
the division problem to a multiplication problem.

Making addition and subtraction complex

 

When you add or subtract two complex numbers a + bi and 
c + di together, you get the sum (difference) of the real parts 
and the sum (difference) of the imaginary parts:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) – (c + di) = (a – c) + (b – d)i

 

Add (–4 + 5i) and (3 + 2i); then subtract (3 + 2i) from (–4 + 5i).

(–4 + 5i) + (3 + 2i) = (–4 + 3) + (5 + 2)i = –1 + 7i

(–4 + 5i) – (3 + 2i) = (–4 – 3) + (5 – 2)i = –7 + 3i
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Creating complex products

 

To multiply complex numbers, you have to treat the numbers 
like binomials and distribute both the terms of one complex 
number over the other:

(a + bi)(c + di) = (ac – bd) + (ad + bc)i

 

Find the product of (–4 + 5i) and (3 + 2i).

(–4 + 5i)(3 + 2i) = –12 – 8i + 15i + 10i2

You simplify the last term by replacing the i2 with –1 to give 
you –10. Then combine –10 with the first term. Your result 
is –22 + 7i, a complex number.

Performing complex division by 
multiplying by the conjugate
The complex thing about dividing complex numbers is that 
you don’t really divide. Instead of dividing, you do a multipli-
cation problem — one that has the same answer as the divi-
sion problem.

Describing the conjugate of a complex number
A complex number and its conjugate are a + bi and a – bi. The 
real part, the a, stays the same; the sign between the real and 
imaginary part changes. For example, the conjugate of –3 + 2i 
is –3 – 2i, and the conjugate of 5 –3i is 5 + 3i.

 

The product of an imaginary number and its conjugate is a 
real number (no imaginary part) and takes the following form:

(a + bi)(a – bi) = a2 + b2

Dividing complex numbers
When a problem calls for you to divide one complex number 
by another, you write the problem as a fraction and then mul-
tiply by a fraction that has the conjugate of the denominator 
in both numerator and denominator.

 

Divide (–4 + 5i) by (3 + 2i).
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Write the problem as a fraction. Then multiply the problem’s 
fraction by a second fraction that has the conjugate of 3 + 2i in 
both numerator and denominator.

Simplifying reluctant radicals
Until mathematicians defined imaginary numbers, many prob-
lems had no answers because the answers involved square 
roots of negative numbers. After the definition of an imagi-
nary number, i2 = –1, came into being, the problems involving 
square roots of negative numbers were solved.

 

To simplify the square root of a negative number, you write 
the square root as the product of square roots and simplify: 

.

 

Simplify .

First, split up the radical into the square root of –1 and the 
square root of the rest of the number, and then simplify by 
factoring out perfect squares:

By convention, you write the previous solution as .

Unraveling Complex Solutions 
in Quadratic Equations

You can always solve quadratic equations with the quadratic 
formula. It may be easier to solve quadratic equations by 
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factoring, but when you can’t factor, the formula comes in 
handy. Until mathematicians began recognizing imaginary 
numbers, however, they couldn’t complete many results of 
the quadratic formula. Whenever a negative value appeared 
under a radical, the equation stumped the mathematicians.

The modern world of imaginary numbers to the rescue! Now 
quadratics with complex answers have results to show.

 

Solve the quadratic equation 2x2 + x + 8 = 0.

Using the quadratic formula, you let a = 2, b = 1, and c = 8:

Investigating Polynomials 
with Complex Roots

Polynomials are functions whose graphs are nice, smooth 
curves that may or may not cross the x-axis. If the degree (or 
highest power) of a polynomial is an odd number, its graph 
must cross the x-axis, and it must have a real root or solution. 
When solving equations formed by setting polynomials equal 
to 0, you plan ahead as to how many solutions you can expect 
to find. The highest power tells you the maximum number 
of solutions you can find. If the solutions are real, then the 
curve either crosses the x-axis or touches it. If any solutions 
are complex, then the number of crossings or touches is 
decreased by the number of complex roots.
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Classifying conjugate pairs
A polynomial of degree (or power) n can have as many as n 
real zeros (also known as solutions, roots, or x-intercepts). If 
the polynomial doesn’t have n real zeros, it has n – 2 zeros, 
n – 4 zeros, or some number of zeros decreased two at a time. 
The reason that the number of zeros decreases by two is that 
complex zeros always come in conjugate pairs — a complex 
number and its conjugate.

 

Complex zeros, or solutions of polynomials, come in conjugate 
pairs — a + bi and a – bi. If one of the pair is a solution, then 
so is the other.

The equation 0 = x5 – x4 + 14x3 – 16x2 – 32x, for example, has 
three real roots and two complex roots, which you know 
because you apply the rational root theorem and Descartes’ 
rule of signs (see Chapter 7) and ferret out those real and 
complex solutions. The equation factors into 0 = x(x – 2)(x + 
1)(x2 + 16). The three real zeros are 0, 2, and –1. The two com-
plex zeros are 4i and –4i. You say that the two complex zeros 
are a conjugate pair, and you get the roots by solving the 
equation x2 + 16 = 0.

Making use of complex zeros
The polynomial function y = x4 + 7x3 + 9x2 – 28x – 52 has two 
real roots and two complex roots. According to Descartes’ rule 
of signs, the function could’ve contained as many as four real 
roots (suggested by the rational root theorem). You can deter-
mine the number of complex roots in two different ways: by fac-
toring the polynomial or by looking at the graph of the function.

The polynomial function factors into y = (x – 2)(x + 2)(x2 + 7x 
+ 13). The first two factors give you real roots, or x-intercepts. 
When you set x – 2 equal to 0, you get the intercept (2, 0). When 
you set x + 2 equal to 0, you get the intercept (–2, 0). Setting the 
last factor, x2 + 7x + 13, equal to 0 doesn’t give you a real root.

But you can also tell that the polynomial function has com-
plex roots by looking at its graph. You can’t tell what the 
roots are, but you can see that the graph has some. If you 
need the values of the roots, you can resort to using algebra 
to solve for them. Figure 12-1 shows the graph of the example 
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function, y = x4 + 7x3 + 9x2 – 28x – 52. You can see the two 
x-intercepts, which represent the two real zeros. You also see 
the graph flattening on the left.

x

y

Figure 12-1: A flattening curve indicates a complex root.

Figure 12-2 can tell you plenty about the number of real zeros 
and complex zeros the graph of the polynomial has . . . before 
you ever see the equation it represents.

x

y

Figure 12-2:  A polynomial with one real zero and several complex zeros 

(marked by changes in direction).

The polynomial in Figure 12-2 appears to have one real zero and 
several complex zeros. Do you see how it changes direction all 
over the place under the x-axis? These changes indicate the 
presence of complex zeros. The graph represents the polyno-
mial function y = 12x5 + 15x4 – 320x3 – 120x2 + 2880x – 18,275. 
The function has four complex zeros — two complex (conju-
gate) pairs — and one real zero (when x = 5).



Chapter 13

Ten (Or So) Special 
Formulas

In This Chapter
▶ Counting the number of items or groups or arrangements

▶ Adding up large lists of numbers

▶ Figuring interest earned or interest paid

A formula is actually an equation that expresses some 
relationship that always holds true. In this chapter, you 

find ten (or so) formulas that are found frequently in algebra 
and some mathematical studies that use a lot of algebra.

Using Multiplication to Add
The multiplication property of counting states that if you 
choose one item from the first set of choices, one item from 
the second set of choices, one item from the third set of 
choices, and so on, all you need do to find the total number of 
arrangements you might create is to multiply how many items 
are in each set.

So, if you have ten shirts, six pairs of slacks, eight pairs of socks, 
and three pairs of shoes, you can determine the total number 
of different outfits possible. Just multiply 10 · 6 · 8 · 3 = 1,440. 
You won’t have to repeat an outfit for several years! 
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Factoring in Factorial
The factorial operation says that you take a whole number 
and multiply it times every natural number smaller than that 
whole number: n! = n · (n – 1) · (n – 2) . . . 3 · 2 · 1. Also, by spe-
cial designation, 0! = 1.

To find 6!, you multiply 6 · 5 · 4 · 3 · 2 · 1 = 720.

Picking Out Permutations
A permutation is a way of counting how many different 
arrangements are possible if you choose r items out of a pos-
sible n items and need them in a particular order:

So, if you have five finalists in a race and want to determine 
how many different ways you can have first and second place 
happen, you find the number of permutations possible with 5 
choose 2:

The computation gives you the number of arrangements. Now 
you have to list them: Andy and Bob, Andy and Chuck, and 
so on.

Collecting Combinations
A combination is a way of counting how many different 
arrangements are possible if you choose r items out of a pos-
sible n items where the order they’re in doesn’t matter:

As you may have noticed, the only difference between permuta-
tions and combinations is that the denominator in the formula 



 Chapter 13: Ten (Or So) Special Formulas 167

for combinations has the additional factor — making the 
denominator a larger number (if r isn’t 0 or 1).

Adding n Integers
When you want to add 1 + 2 + 3 + 4 + . . . + n, use the following 
formula:

So, if the bottom row of your stack has 20 blocks, the next 
row up has 19 blocks, and so on, the total number of blocks in 
your stack is

  
blocks

Adding n Squared Integers
When you want to add 12 + 22 + 32 + 42 + . . . + n2, use the fol-
lowing formula:

To find the sum of the first ten squares, 12 + 22 + 32 + 42 + . . . + 102:

Adding Odd Numbers
When you want to add 1 + 3 + 5 + 7 + . . . + (2n – 1), use the fol-
lowing formula:
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Computing the sum of the first ten odd numbers, 1 + 3 + 5 + 
7 + . . . + 19:

Going for the Geometric
A geometric sequence is formed by multiplying by the same 
number repeatedly. For example, multiplying by the number 
three, over and over again: 1, 3, 9, 27, 81, 243, . . . . To add up 
all the terms in a geometric sequence, you use the formula:

, where a is the first term in the 

sequence and r is the ratio or repeating multiplier.

So the sum of 1, 3, 9, 27, 81, and 243 is

And, to add to the excitement, here’s the formula for finding 
the sum of an infinite geometric sequence — all the terms for-
ever and ever:

The formula only works if the multiplier, r, is between –1 and 1.

Calculating Compound Interest
You deposit $10,000 in an account that earns 2 percent inter-
est, compounded quarterly. How much will there be in the 
account at the end of 20 years? Use the following formula:
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, where A is the total amount accumulated, 

P is the principal or beginning amount, r is the interest 
rate written as a decimal, n is the number of times com-
pounded per year, and t is the number of years

So, to answer the opening question, you’d have
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• Symbols •
e (base e), 110
10 (base 10), 110
C (combinations), 166–167
0! (factorial operation), 166
> (greater than), 17
≥ (greater than or equal to), 17
i (imaginary numbers), 157–159
x (input variable), 47–49
< (less than), 17
≤ (less than or equal to), 17
y (output variable), 47–49
P (permutations), 166
Σ (sums), 167–168

• A •
absolute value inequality, 21–22
absolute value operation

basic steps for solving, 20–21
polynomial equations, 76–77
solving with inequalities, 21–22
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algebraic properties, 6–7
geometric sequences, 168
odd numbers, 167
summing n integers, 167
sums of squares, 167

additive identity, 7
additive inverse, 7
Algebra I For Dummies (Sterling), 2, 9
Algebra II For Dummies (Sterling), 2
Algebra Workbook For Dummies 

(Sterling), 96
algebraic inequalities

about the rules of, 17–18
basic steps for solving, 18–19
interval notation, 19–20

algebraic properties, 5–8
arrangements, numbers of, 166

associative property, 6
assumptions, about you, 2
asymptotes

graphing, 95–96
horizontal asymptotes, 94
hyperbola, 131–133
oblique asymptotes, 96–97
vertical asymptotes, 93–94

axis. See x-axis; y-axis
axis of symmetry

parabola, 68, 122–123
sketching a graph, 73–74

• B •
base (exponent)

about the notation, 107
classifying, 108–109
creating matching bases, 111
frequently used, 110

binomials, quadratic
solving by factoring, 25–26
using synthetic division, 87–88

• C •
C (combinations), 166–167
calculus, 1
circles

dei ning the features, 126
intersecting parabolas, 151–155
rewriting to standard form, 126
standard form, 127

coexisting lines, 141–142
combinations (C ), 166–167
common denominator, least (LCD), 

36–38
common factor, greatest. See 

greatest common factor (GCF)
commutative property, 6

Index



complex numbers
addition and substraction, 159–160
imaginary numbers, 157–158
division and multiplication, 160–161
polynomial equations, 162–164
quadratic equations, 161–162
simplifying radicals, 161

complex root, 162–164
complex zeros, 163–164
compound interest, 168–169
conics. See circles; ellipses; 

hyperbolas; parabolas
conjugate axis, 131
conjugate pairs, 163–164
conventions, book, 2
counting states, multiplication 

property of, 165
cross-multiplying, 38–39

• D •
Descartes’ rule of signs, 85–88
difference of squares, 26
difference quotient, 56–57
directrix, parabola, 122
discontinuities, 97–102
distributive property, 6–7
division, 6–7, 9–11
domain

of exponential functions, 108
input values, 49–50
of rational functions, 92

double root, 150

• E •
e (base e), 110
elimination, 138–140
ellipses

dei ning the features, 127
determining axes, 129
i nding the foci, 130
rewriting to standard form, 126
standard form, 128

equations, solving systems of
by graphing, 137–137
parabolas with circles, 151–155
parabolas with lines, 148–151
special formulas for, 165–169
using elimination, 138–140
using substitution, 140–142
using the standard form, 136
with three linear equations, 

142–145
with more than three equations, 

145–148
even functions

classifying, 52
graphing, 53, 62–63

exponential function
classifying bases, 108–109
frequently used bases, 109
order of operations, 107–108
solving, 110–113

exponents
about the rules of, 8–11
factoring out negatives, 42–44
notation, 107
order of operations, 108
power of i, 158

extraneous solution, 36–38

• F •
factorial operations, 166
factoring. See also quadratic entries

applying, 11–14
exponent equations, 112–113
i nding discontinuities by, 98
polynomial equations, 81–82
quadratic equations, 25–28

i rst-degree linear equations, 16–17
i rst terms, trinomial. See FOIL
focus/foci

ellipse, 127, 130
hyperbola, 130–131
parabola, 122

FOIL (trinomial factoring), 12–13
formulas, frequently used, 165–169
four-term factoring, 14
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fractional exponents
basic review of, 9–11
factoring, 45
factoring out GCF, 45–46
quadratic-like terms, 46

fractions
cross-multiplying, 38–39
eliminating, 16–17
LCD, 36–38
working with exponents, 9–11

functions
composing, 56–57
dei ning function notation, 47–49
domain and range, 49–51
even and odd, 51–53
identifying inverses, 57–60
one-to-one, 53–55

• G •
GCF. See greatest common factor 

(GCF)
geometric sequences, 168
geometry, 1, 6
graphing

about x- and y-intercepts, 61–62
conics, 121–122
hyperbolas, 132–133
linear functions, 64–67, 137–138
one-to-one functions, 55
parabolas, 73–74, 124–125
parabolas with circles, 151–155
parabolas with lines, 148–151
quadratic functions, 68–74
rational functions, 91–97
symmetry, 62–63
using domain and range, 51
using odd and even functions, 53

greater than (>), 17
greater than or equal to (≥), 17
greatest common factor (GCF)

exponential equations, 112
factoring techniques, 11–14
fractional exponents, 45–46 
negative exponents, 42–44
quadratic equations, 25–26

grouping of operations. See 
operations, order of

• H •
horizontal asymptotes, 94–96
humor, mathematics, 4
hyperbolas

asymptotes, 131–132
dei ning the features, 130–131
rewriting to standard form, 126
sketching the graph, 132–133

• I •
icons, dei ned, 2–3
identities, 7
imaginary numbers (i), 157–159. 

See also complex numbers
inequality/inequality notation

absolute value operation, 21–22
in linear equations, 17–20
in quadratic equations, 29–34

ini nite geometric sequences, 168
ini nity

determining, 102–104
evaluating limits at, 104–105

inner terms, trinomial. See FOIL
intercepts. See x-axis; y-axis
interest, calculating, 168–169
interval notation, 19–20
inverses

dei ned, 7
identifying functions as, 58–59
one-to-one functions, 54, 59–60

irrational numbers, 28

• L •
last terms, trinomial. See FOIL
least common denominator (LCD), 

36–38
less than (<), 17
less than or equal to (≤), 17
limits, rational function

i nding discontinuities, 100–102
i nding ini nity, 102–105
notation, 99–100
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linear equations
absolute value operations, 20–22
basic inequalities, 17–20
i rst degree, 15–17
graphing, 64–67, 137–138
intersecting parabolas, 148–151
solving system of three, 142–145
solving systems of more than three, 

145–148
solving with standard form, 136
using elimination, 138–140
using substitution, 140–142

linear inequalities
about the rules of, 17–18
basic steps for solving, 18–19
interval notation, 19–20

linear notation, 19–20

• M •
major axis, ellipse, 129
minor axis, ellipse, 129
multiplication

algebraic properties, 6–7
working with exponents, 9–11

multiplication property of counting 
states, 165

multiplication property of zero (MPZ)
dei ned, 7
determining x-intercept, 71
in exponential equations, 112
in quadratic equations, 25–26

multiplicative identity, 7
multiplicative inverse, 7

• N •
negative exponents

basic review of, 9–11
factoring, 42–44

negative numbers, 18–19
number theory, 1
numbers/number systems

complex numbers, 159–164
geometric sequences, 168
imaginary numbers, 157–158
irrational numbers, 28

negative numbers, 18–19
odd numbers, 167–168
permutations and 

combinations, 166

• O •
oblique (slant) asymptotes, 96–97
odd functions

classifying, 52
graphing, 53, 62–63

odd numbers, adding, 167–168
one (numeral), 7
one-to-one functions, 53–55, 59–60
operations, order of. See also 

equations, solving systems of
applying algebraic properties, 6–7
exponential function, 107–108
four-term expressions, 14
rules for performing, 8

outer terms, trinomial. See FOIL

• P •
P (permutations), 166
parabolas

about the form of, 123–124
computing the vertex, 72–73
dei ning the features, 122–123
graphing, 68–70
intersecting with circles, 151–155
intersecting with lines, 148–151
sketch the graph, 73–74, 124–125
standard form, 125–126
x-intercept, 71–72
y-intercept, 70

parallel lines, 67, 141–142
permutations (P), 166
perpendicular lines, graphing, 67
polynomial equations

about the form of, 75
with complex numbers, 162–164
creating the sign line, 79–81
Descartes’ rule of signs, 85–86
intercepts and turning points, 

77–78
rational root theorem, 82–84
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relative versus absolute value, 76–77
roots, factoring, 81–82
roots, synthetic division, 86–90
x- and y-intercepts, 78–79

power (exponent). See exponents
power of i, 158
proportions, 38–39

• Q •
quadratic binomials, 25–26
quadratic equations

about using, 23
factoring, applying, 11–14
factoring, solving with, 25–28
similarity to exponents, 111–112
square root rule, 24

quadratic formula
complex numbers, 157, 161–162
determining x-intercept, 71
when factoring fails, 26–28, 37, 

150–151
quadratic functions

about graphing, 68–70
axis of symmetry, 68, 73–74
computing the vertex, 72–73
i nding y-intercept, 70
getting x-intercept, 71–72
sketching the graph, 73–74

quadratic inequalities, 29–34
quadratic trinomials

factoring, 12–14
solving, 26–27, 44, 112–113

quadratic-like equations
factoring, 112–113
fractional terms, 46
solving, 28–29, 44

• R •
radicals/radical expressions

grouping operations, 8
solving, 39–42
square root rule, 25
with complex numbers, 161
working with exponents, 9–11

range (output value), 50–51
rational functions

about the form of, 91–92
domain (input value), 92
eliminating fractions, 35–38
graphing, 95–96
horizontal asymptotes, 94
limits, 99–105
proportions, 38–39
removable discontinuities, 97–99
vertical asymptotes, 93–94
x- and y-intercepts, 92–93

rational root theorem, 82–84
rational solutions, 27–28
relative value, polynomial, 76–77
removable discontinuities

determining limits of, 100–102
rational function, 97–99

reverse the sense, 18
roots

complex roots, 162–164
Descartes’ rule of signs, 85–86
double root, 150
factoring for, 81–82
rational root theorem, 82–84
solving radical equations, 40–41
using synthetic division, 87–88
working with exponents, 9–10

• S •
sense of the inequality, 18
sign line

increasing the factors of, 33–34
polynomial equations, 79–81
quadratic inequalities, 30–32
rational inequalities, 32–33

signs
Descartes’ rule of signs, 85–86
sign change rule, 80–81

slant (oblique) asymptotes, 96–97
slope of a line

graphing, 64–65
parallel lines, 138

slope-intercept form, 65–67, 138
square root. See roots
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square root rule, 25
squared integers, sums of, 167
standard form

circles, 126
ellipses, 126
hyperbolas, 126
linear equations, 136
linear functions, 65–67
parabolas, 125–126
quadratic functions, 68–70
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subtraction, 6–7
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about using, 86
dividing by a binomial, 89–90
searching for roots, 87–88

• T •
tangents, 150
10 (base 10), 110
three-term factoring, 12–14
transverse axis, 131
trigonometry, 1
trinomials, 44. See also 

quadratic trinomials
turning points, 

polynomial, 77–78
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slope-intercept form, 66–67
standard form, 65–66

two-term factoring, 11–12

• U •
unFOIL, 13–14

• V •
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ellipse, 129
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vertical asymptotes, 93–96
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x-axis/x-intercept

ellipse, 129
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solving polynomials, 78–79
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