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Preface 

The present volume contains all the exercises and their solutions for Lang's 
second edition of Undergraduate Analysis. The wide variety of exe�cises, 
which range from computational to more conceptual and which are of vary
ing difficulty, cover the following subjects and more: real numbers, limits, 
continuous functions, differentiation and elementary integration, normed 
vector spaces, compactness, series, integration in one variable, improper 
integrals, convolutions, Fourier series and the Fourier integral, functions 
in n-space, derivatives in vector spaces, the inverse and implicit mapping 
theorem, ordinary differential equations, multiple integrals, and differential 
forms. My objective is to offer those learning and teaehing analysis at the 
undergraduate level a large number of completed exercises and I hope that 
this book, which contains over 600 exercises covering the topics mentioned 
above, will achieve my goal. 

The exercises are an integral part of L�ng's book and I encourage the 
reader to work through all of them. In some cases, the problems in the 
beginning chapters are used in later ones, for example, in Chapter IV when 
one constructs-bump functions, which are used to smooth out singulari
ties,. and prove that the space of functions is dense in the space of regu
lated maps. The numbering of the problems is as follows .. Exercise IX.5. 7 
indicates Exercise 7, §5, of Chapter IX. 
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0 
Sets and Mappings 

0.2 Mappings 

Exercise 0.2.1 Let S, T, T' be sets. Show that 

S n (T U T') = (S n T) U (S n T') . 
If T1 , . . .  , Tn are sets, show that 

S n (T1 U · · · U Tn) = (S n T1) U · · · U (8 n Tn)· 
Solution. Assume that S, T, and T' are all non-empty (if not the equality 
is trivial) . Suppose that x E S n (T U T') . Then x belongs necessarily to S 
and to at least one of the sets T or T'. Thus x belongs to at least one of 
the sets S n T or S n T'. Hence 

Sn(TUT') c (SnT)U(SnT') . 
To get the reverse inclusion, note that T c (TUT ') so (SnT) .C Sn(TUT') 
and similarly, (S n T') c S n (T U T') . Therefore 

(S n T) U (S n T') c S n (T U T') . 
For 1 � j < n, let Vj = T1 U · · · U Tj. Then by our previous argument 

S n Vn = S n (Vn-1 U Tn) == (S n Vn-1 ) u (S n Tn)· 
Repeating this process n - 1 times we find 

S n (T1 U · · · U Tn) ::;: (S n Vi) U (S n T2) U · · · U (S n Tn) · 

But V1 = T1 so this proves the equality. 
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Exercise 0.2.2 Show that the equalities of Exercise 1 remain true if the 
intersection and union signs n and U are interchanged. 

Solution. We want to show that S U (T n T') = (S U T) n (S U T'). 
Suppose x E S U (TnT') , then x belongs to S or T and T'. But since 
S c (S u T) n (S u T') and (TnT') c (S u T) n (S u T') we must have 
X E (SUT) n (SUT'). Conversely, if X E (SUT) n (SUT') ,  then X belongs 
to (S U T) and (S U T'). If x does not belong to S, then it must lie in T 
and T', thus lies in S U (T n T') as was to be shown. The same argument 
as in Exercise 1 with union and intersection signs interchanged shows that 
if T1 , ... , Tn are sets, then 

S u (Tt n · · · n Tn) = (S u Tt) n · · · n (S u Tn) · 

Exercise 0.2.3 Let A, B be subsets of a set S. Denote by Ac the comple
ment of A in S. Show that the complement of the intersection is the union 
of the complements, i. e. 

(AnB)e=Ae u Be and (AUB)e=AenBe. 

Solution. Suppose X E (An B)e, so X is not in both A and B, that is 
x � A or x � B, thus 

(An B)e c (Ae U Be). 

Conversely, if x E (Ae U Be) , then x � A or x � B so certainly, x � An B, 
thus X E (An B)e. Hence 

(Ae U Be) c (An B)e. 

For the second formula, suppose x E (AU B)e, then x � AU B, so x � A 
and X � B, thus X E Ae n Be. Conversely, if X � A and X � B, then 
X � AU B SO X E (AU B)e. 

Exercise 0.2.4 If X, Y, Z are sets, show that 

(X u Y) X z = (X X Z) u (Y X Z) , 

(X n Y) x z = (X x Z)·n (Y x Z) , 

Solution. Suppose (a, b) e (XUY) x Z. Then bE Z and a eX or a E Y, 
so (a, b) E (X x Z) or (a, b) E (Y x Z) , thus (a, b) E (X x Z) U (Y x Z). 
Conversely, if (a, b) e (X x Z) U (Y x Z), then b E  Z and a E X or a e Y. 
Therefore (a, b) e (XU Y) x Z. This proves the first formula. 

For the proof of the second formula, suppose that (a, b) e (X n Y) x Z, 
then a E XnY and b E  Z. Hence a e X, a E Y and be Z, thus (a, b) E 
(X X Z) and (a, b) E (Y X Z). This implies that (a, b) E (X X Z) n (Y X Z). 
Conversely, if (a, b) E (X X Z) n (Y X Z) , then (a, b) E (X X Z) and 
(a, b) E (Y x Z) , which implies that a e X, a E Y, and b E Z. Thus 
a e (X n Y) and be Z. This implies that (a, b) e (X n Y) x Z as was to 
be shown. 
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Exercise 0.2.5 Let f :  S --+  T be a mapping, and let Y, Z be subsets ofT. 
Show that 

f-1 (Y n Z)  = f-1 (Y) n f-1 (Z ) , 
I-1 (Y U Z)  = /-1 (Y) U /-1 (Z ) .  

Solution. If x E /-1 (Y n Z) ,  then f(x) E Y and f(x) E Z ,  so x E 
f-1 (Y) n f- 1 (Z ) . Conversely, if x e f-1 (Y) n f-1 (Z ) ,  then l(x) e Y and 
f(x) E Z ,  so l(x) E Y n Z and therefore x E f-1 (Y n Z) . This proves the 
first equality. 

For the second equality suppose that x E f -1 (Y U Z) ,  then l(x) E 
(YUZ) , so l(x) e Y or f(x) e Z which implies that x e f-1 (Y)uj-1(Z ) .  
Conversely, if x � I-1 (Y) U I-1 (Z ) ,  then f(x) E Y or f(x) E Z which 
implies that x E f-1 (Y U Z ) . 

Exercise 0.2.6 Let S, T, U be sets, and let I : S --+ T and g :  T -+  U be 
mappings. (a) If g; I are injective, show that go f is injective. {b) If I, g 
are surj ective, show that g o f is surj ective. 

Solution. (a) Suppose that x, y E S and x =/: y. Since I and g are injective 
we have f(x) =/: f(y) and therefore g(f(x)) =/: g(l(y)) , thus gof is injective. 
(b) Since g is surjective, given y E U there exists z E T such that g(z) = y. 
Since f is surjective, there exists x E S  such that f(x) = z. Then g(l(x) )  = 

y, so go f is surjective. 

Exercise 0.2. 7 Let S, T be sets and let f : S --+ T be a mapping. Show 
that I is bijective if and only if I has an inverse mapping. 

Solution. Suppose that f is bijective. Given any y E T there exists x E S 
such that f(x) = y because f is surjective, and this x is unique because f 
is injective. Define a mapping g :  T -+  S by g(y) = x, where x is the unique 
element of S such that f ( x) = y. Then by construction we have fog = idT 
and g o f = ids . 

Conversely, suppose that f has an inverse mapping g. Then given any 
y E T  we have l(g(y)) = y so f is surjective. If x, x' E S and x =/: x', then 
g(l(x)) =/: g(f(x')) which implies that l(x) =/: f(x') .  Thus I is injective. · 

0.3 Natural Numbers and Induction 

(In the exercises you may use the standard properties of numbers concern
ing addition, multiplication, and division.) 

Exercise 0.3.1 Prove the following statements for all positive integers. 
(a) 1 + 3 + 5 + · · · + (2n - 1) = n2 • 
(b) 12 + 22 + 32 + · · · ·+ n2 = n(n + 1) (2n + 1)/6 . 
(c) 13 + 23 + 33 + · · · + n3 = [n(n + 1)/2]2• 
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Solution. (a) For n = 1 we certainly have 1 = 1 .  Assume the formula is 
true for an integer n > 1 .  Then ° 

1+3+5+· · ·+{2n-1)+{2{n+1)-1) = n2+2{n+1)-1 = n2+2n+1  = (n+1)2• 

{b) For n = 1 we certainly have 12 = {1 · 2 · 3)/6. Assume the formula is 
true for some integer n > 1 .  Then 

12 + 22 + 32 + . . .  + n2 + (n + 1)2 _ n(n + 1�(2n + 1) 
+ 

6 (n ; 1)2 

_ (n +01 )(2n2 + 7n + 6)  -
6 

_ (n � l)((n + 1) + 1) (2(n + 1) + 1) - . 
6 

(c) For n = 1 we have 13 = (2/2)3• Assume the formula is true for an 
integer n > 1 .  Then 

13 + 23 + 33 + · · · + n3 + (n + 1)3 
n2 (n + 1)2 4(n + 1)3 - 4 + 

4 

= 
(n + 1)2(n2 + 4n + 4) 0 

4 
- (n + 1)2(n + 2)2 

4 

-
[ (n + 1�(n + 2) r. 

Exercise 0.3.2 Prove that for all numbers x =/: 1 ,  

Solution. The formula is true for n = 0 because (1 + x)(l- x) = 1 - x2• 
Assume the formula is true for an integer n � 0, then 

1 2n+l 
(1 + x)(1 + x2)(1 + x4) . .  • ( 1  + x2")(1 + x2"+1

) = � x (1 + x2"+1
) 

-x 

1 - (x2"+1f 
1 - x 

1 2n+2 -x 
1-x · 

Exercise 0.3.3° Let f : N-+ N be a mapping such that f(xy) = f(x)+f(y) 
for all x,y. Show that /(an)= nf(a) for all n E N. 
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Solution. The formula is true for n = 1 because /(a1 ) = 1 · f(a) .  Suppose 
the formula is true for an integer n > 1 .  Then 

f(an+l )  = /(ana) =  f(an) +/(a) =  nf(a) + f(a) = (n + 1)/(a) ,  
as was to be shown. 

Exercise 0.3.4 Let ( � ) denote th e binomial coefficient, 

( �) = kl(n
n� k)l' 

where n, k are integers � 0, 0 � k::; n, and 0! is defined to be 1. Also n! is 
defined to be the product 1 · 2 · 3 · · · n. Prove the following assertions. 

Solution. (a) This result follows from 

( n � k ) = (n- k)l(n
n� (n -- k))l 

= 
(n -

n�)lkl = ( � ) · 

(b) We simply have 

n! n! 
(k- 1) ! (n- k + 1)! + (n - k) !k! 

_ n!k + n!(n- k + 1) _ n!(n + 1) 
- k!(n - k + 1)1 - k!(n + 1 - k)! 
_ ( n t 1 ) · 

Exercise 0.3.5 Pro ve by induction that 

(x + y)n = t ( � ) xkyn-k. 
k=O 

Solution. For n = 1 the formula is true. Suppose that the formula is true 
for an integer n � 1 .  Then 

(x + y)n+l = (x + y) [� ( � ) xkyn�k] 
= t ( �) xk+lyn-k tt (};) xkyn+l-k 

k=O k=O 

= � ( k � 1 ) xkyn+l-k + t (·:) xkyn+l-k 
k=l k=O 
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_ i � ( n t 1 ) xkyn+l-k + ( : ) xn+l + yn+l 

- r: ( nk 1 ) xkyn+l-k 

as was to be shown. The second to last identity follows from the previous 
• exercise. 

Exercise 0.3.6 Prove that 

( 1)
1 ( 1)

2 ( 1 )
n-1 nn-1 1 + I 1 + 2 · · · 1 + n- 1 

= (n- 1}r 

Find and prove a similar formula for the product of the terms (1  + 1/k)k+l 

taken for k = 1, ... , n - 1. 

Solution. For n = 2 the formula is true because 2 = 22-1 /(2-1)!. Suppose 
the formula is true for an integer n � 2, then 

(1+!)1···(1+ 
1 )

n-1(1+!)
n 

= nn- 1 
(n + 1)

n 
= (n+1)n 

1 n-1 n (n- 1)! n n! 

as was to be shown. The product of the terms (1 + 1/k)k+l taken for 
k = 1, ... , n- 1 is given by the formula 

( 1 ) 2 ( 1 ) n nn 
1 + I · · · 1 + n- 1 = (n- 1)r 

The proof is also by induction. 

0.4 Denuiilerable Sets 

Exercise 0.4.1 Let F be a finite non-empty set. Show that there is a sur
jective mapping of z+ onto F. 

Solution. By definition the set F has n elements for some integer n > 1 .  
There exists a bijection g between F and Jn. Define I: z+-+ F by 

J(k) = { g(k) if k E Jn, 
g(n) if k > n. 

The mapping f is surjective. 

Exercise 0.4.2 How many maps are there which are defined on a set of 
numbers { 1, 2, 3} and whose values are in the set of integers n with 1 � 
n � 10'1 
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Solution. There are 103 maps. See the next exercise. 

Exercise 0.4.3 Let E be a set with m elements and F a set with n ele
ments. How many maps are there defined on E and with values in F9 {Hint: 
Suppose first that E has one eleme nt. Nex t use induction on m, keeping n 
fixed.} 

Solution. We prove by induction that there are nm maps defined on E 
with values in F 

Suppose m = 1 . To the single element in E we can assign n values in F. 
Suppose the induction statement is true for an integer m > 1 . Suppose that 
E has m + 1 elements. Choose x E E. To x we can associate n elements 
of F. For each such association there is nm maps defined on E - {x} with 
values in F. So there is a total of n x nm = nm+l maps defined on E with 
values in F. 

Exercise 0.4.4 If S, T, S', T' are sets, and there is a bijection between S 
and S', T, and T', describe a natural bijection between S x T and S' x T' . 
Such a bijection has been used implicitly in some proofs. 

Solution. Given the bijections f : S -+ S' and g : T -+ T' define a mapping 
h:SxT-+ S'xT'by 

h(x, y) = (f(x), g(y)). 

Given any ( x', y') E S' x T' there exists x E S and y E T such that 
f(x) = x' and g(y) = y'. Then h(x, y) = (x', y'), so h is surjective. The 
map his injective because if h(xt, Yl ) = h(x2, Y2), then /(xt) = j(x2) and 
g(yl ) = g(y2), so Xt = x2 and Yt = Y2 because both f and g are injective. 

0.5 Equivalence Relations 

Exercise 0.5.1  Let T be a subset ofZ having the property that ifm, nE T, 
then m + n and -n are in T. For x, y E Z dt.ifi ne x = y if x - y E T. Show 
that this is an equivalence relation. 

Solution. Suppose that T is non-empty, otherwise there is nothing to 
prove. The element 0 belongs to T because if ·n E T, then -n and 0 = n - n 
belongs to T. Therefore x = x for all x. Since y - x = -(x- y) we see 
that x = y implies y = x. Finally, if x = y and y = z, then x = z because 
x- z = (x - y) + (y - z) so x - z E T. 

Exercise 0.5.2 Let S = Z be the set of integers. Define the relation x = y 
for x, y E Z to mean that x - y is divisible by 3. Show that this is an 
equivalence relation. 
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Solution. Since 0 is divisible by 3 we have x = x for all x E S. If x - y 
is divisible by 3, so is y - x hence y = x whenever x = y. Finally x = z 
whenever x = 'IJ and y = z because x - z = (x - y) + (y - z) . 



I 
Real Numbers 

1.1 Algebraic Axion1s 

Exercise 1.1 .1 Let x, y be numbers -:f 0 .  Show that xy =f. 0.  

Solution. Suppose that xy = 0 and both x and y are non-zero. Then y-1 
exists and xyy-1 = oy-1 = 0 so x =  0 which is a contradiction. 

Exercise 1.1.2 Prove by induction that if x1 , • • • , Xn f= 0, then Xt • • • Xn f= 
0. 

Solution. The assertion is obviously true when n = 1. Suppose that the 
assertion is true for some integer n � 1. We have x1 • • • Xn f= 0 and Xn+l f= 0 
so by Exercise 1 we have 

thus x1 · · · XnXn+1 f= 0, as was to be shown. 

Exercise 1. 1.3 If x, y, z e R and x f= 0, and if xy = xz, prove that y = z. 

Solution. The number x-1 exists because x is non-zero. So x-1 (xy) = 
x-1 (xz) whence (x- 1x)y = (x-1x)z, and therefore y = z. 

Exercise 1.1.4 Using the axioms, verify that 

(x + y)2 = x2 + 2xy + y2 and (x + y) (x - y) = x2-y2• 
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Solution. Distributivity and commutativity imply 

Similarly, 

(x + y) (x + y) = (x + y)x + (x + y)y 
= x2 + yx + xy + y2 
= x2 + 2xy + y2• 

(x + y) (x - y) (x + y)x - (x + y)y 

- x2 + yx - xy - y2 
_ x2 - y2. 

1.2 Ordering Axioms 

Exercise 1.2.1 If 0 < a < b, show that a2 < b2 • Prove by induction that 
an < bn for all positive integers n. 

Solution. The axioms imply aa < ba and ab < bb , so by transitivity (IN 
1 .) we have a2 < �. 

The general inequality is true when n = 1. Suppose the inequality is true 
for some integer n > 1. Then by assumption an < bn and since a and b are 
both > 0 with a < b we find that 

Therefore an+l < bn+l , as was to be shown. 

Exercise 1.2.2 (a) Prove that x :5 lxl for all real x. {b) If a, b > 0 and 
a :5 b, and if VO,, v'b exist, show that Va < v'b. 
Solution. (a) If x � 0, then lx l = x so x < lx f . If x < 0, then x < 0 < lxl 
and we get x < lxf. 
{b) Suppose that v'b < VQ,. Then by Exercise 1 we know that ( v'b)2 < 
( VQ)2 , whence b < a, which contradicts the assumption that a < b. 

Exercise 1.2.3 Let a �  0. For each positive integer n, define a11n to be a 
number x such that xn = a, and x > 0. Show that such a number x, if it 
exists, is uniquely determined. Show that if 0 < a < b, then a11n < b11n 
(assuming that the n-th roots exist). 

Solution. If a = 0 we must have a1/n = 0 for otherwise we get a contra
diction with Exercise 2 of §1 . Suppose that a > 0 and that x exists. Then 
we must have x :/= 0. If xn = yn = a and x, y > 0, then x = y. Indeed, if 
x < y, then xn < yn (Exercise 1) which is a contradiction. Similarly we 
cannot have y < x. 
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Now suppose that 0 < a < b and b11n :5 a1/n. Then arguing like in 
Exercise 1 we find that {b11n)n < (a11n)n so b.:::; a which is a contradiction. 
So a11n < b11n and we are done. 

Exercise 1.2.4 Prove the following inequalities for x, y E R. 

lx - Yl � lx l - IYI , 
lx - Yl � IY I - lx l , 

lx l < lx + yi + IYI · 

Solution. All three inequalities are simple consequences of the triangle 
inequality. For the first we have 

lx l = fx - Y + Yl < fx - Y! + IYI · 

The second inequality follows from 

IY I = IY - x + xf < IY - x l + lxf. 

Finally, the third inequality follows from 

lx l = lx + Y - Yl < fx + Y l  + IYI · 

Exercise 1.2.5 If x, y are numbers > 0 show that 
x + y 

..jXY< 
2 

. 

Solution. The inequality foliows from the fact that 

0 < ( .jX - ..jY)2 = X - 2 ../XY + y. 

Exercise 1.2.6 Let b, f be numbers and e > 0. Show that a number x 
satisfies the condition lx - bl < e if and only if 

b-€ < X <  b + €. 

Solution. Suppose that lx - bf < e. If b < x, then 0 < lx - bl = x -b < e, 
SO X < b + f. If X $ b, then 0 < fx - bf = b - X < e, SO b - € < X. 

Conversely, if b- e < x < b + e, then -e < x - b < E so lx - b l < e. 

Exercise 1.2.7 Notation as in Exercise 6, show that there are precisely 
two numbers x satisfying the condition fx - bl = e. 

Solution. Since f > 0 we must have x =F b. If x > b, the equation lx - bf = f 
is equivalent to x - b = e which has a unique solution namely, x = b + e. 
If we have x < b, then fx -bl = e is equivalent to b -x = f which has a 
unique solution, namely x = b -e. 3o lx - b l  = e has exactly two solutions, 
b + e and b-e. 
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Exercise 1.2.8 Determine all intenJals of numbers satisfying the following 
equalities and inequalities: 
(a) x + lx-21 = 1 + lxl. (b) lx-31 + lx- II < 4. 

Solution. (a) Suppose x � 2. Then the equation is equivalent to x+x-2 = 
1 + x which has a unique SC?lution x = 3. If 0 < x < 2 we are reduced to 
x + 2 - x = 1 + x which has only one solution given by x = 1. If x < 0, 
then x + 2-x = 1 - x has a unique solution x = -1. So the set of solution 
to x + lx- 21 = 1 + lxl isS = { -1 ,  1 ,  3}. 
(b) Separating the cases, 3 < x, 1 < x < 3, and x < 1 we find that the 
interval solution isS = (0,4). 

Exercise 1.2.9 Prove: If x, y, E are numbers and E > 0, and if fx-Yl < e, 
then 

Also, 
lxl < IYI + e, and IYI < lxl + E. 

lxl > IYI -E, and IYI > lxl -E. 
Solution. Using the first inequality of Exercise 4 we get 

lxl < lx-Yl + IYI < E + IYI· 
By the second inequality of Exercise 4 we get 

IYI < lx -Yl + lxl < E + lxl, 

so IYI < e + lxl. 
Exercise 1.2. 10 Define the distance d(x, y) between two numbers x, y to 
be lx-Yl· Show that the distance satisfies the following properties: d(x, y) = 
d(y, x); d(x, y) = 0 if and only if x = y; and for all x, y, z we have 

d(x, y) < d(x, z) + d(z, y) . 
' 

Solution. We have 

d(x, y) = lx-Yl = 1-(y-x)l = IY-xl = d(y,x) .  

Cleary, x = y implies d(x, y) = 0 conversely, if d(x, y) = 0 ,  then lx-yf = 0 
so by the standard property of the absolute value (i.e. lal = 0 if and only 
if a = 0) we conclude that x-y = 0, thus x = y. The last property follows 
from the triangle inequality for the absolute value: 

d(x, y) = lx-Yl = lx-z + z-yf < lx-zl + lz-yf = d(x, z) + d(z, y). 

Exercise 1.2.11  Prove by induction that if Xt , . . .  , Xn are numbers, then 
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Solution. If n = 1 the inequality is obviously true. Suppose that the 
inequality is true for some integer n > 1. Then, by the triangle inequality 
and the induction hypothesis we obtain 

as was to be shown. 

1.3 Integers and Rational Nun1bers 

Exercise 1.3.1 Prove that the sum of a rational number and an irrational 
number is always irrational. 

Solution. If not, then for some rational numbers x, y and some a ¢ Q we 
have x+a  = y. Then a =  y -x, but the difference of two rational numbers 
is rational, so a E Q, which is a contradiction. 

Exercise 1.3.2 Assume that v'2 exists, and let a = v'2. Prove that there 
exists a number c > 0 such that for all integers q,p, and q =F 0 we have 

c 
l qa - pl > - . q 

{Note: The same c should work for all q, p. Try rationalizing qa - p, i. e. 
take the product (qa - p)(-qa - p) , show that it is an integer, so that its 
absolute value is > 1. Estimate qa + p.j 

·Solution. We may assume without loss of generality that q > 0. Let a = 2 
in the solution of Exercise 4. 

Exercise 1.3.3 Prove that v'3 is irrational. 

Solution. Suppose that v'3 is rational and write v'3 = pf q, where the 
fraction is in lowest form. Then 3q2 = p2 • If q is even, then 3q2 is even, 
which implies that p is even. This is a contradiction because the fraction 
pfq is in lowest form. 

If q is odd, then 3q2 is odd, thus p must be odd. Suppose q = 2n + 1 and 
p = 2m + 1. Then we can rewrite 3q2 = p2 as 

12n2 + 12n + 3 = 4m2 + 4m + 1 

which is equivalent to 

6n2 + 6n + 1 = 2m2 + 2m. 

The left-hand side of the above equality is odd and the right hand side 
is even. This contradiction shows that q cannot be odd and concludes the 
proof that v'3 is not rational. 
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Exercise 1.3.4 Let a be a positive integer such that ..fO, is imltional. Let 
a = ..fO,. Show that there exists a number c > 0 such that for all integers 
p, q with q > 0 we have 

fqa- PI > cfq. 

Solution. We follow the suggestion given in �xercise 2. We have 

because a is irrational and a2 = a is an integer. So the absolute value of 
the left-hand side is > 1 which gives 

1 
lqa - pi > 

I I' qa+ p 

Let c be a number such that 0 < c < min{lal, 1/(3lal)}. We consider two 
cases. 

Suppose that Ia- pfql < lal, then 

Therefore 

a +  p :5 f 2af + -a+ 
p < 3faf . q q 

1 1 c fqa-PI > > > - . - lqa +PI 3lalq q 
If Ia- pfql > lal, then 

c fqa- PI > qlal > - . 
q 

This concludes the exercise. 

Exercise 1.3.5 Prove: Given a non-empty set of integers S which is bounded 
from below (i. e. there is some integer m such that m < x for all x E S), 
then S has a least element, that is an integer n such that n e S and n < x 
for all x e S. {Hint: Consider the set of all integers x - m with x e S, 
this being a set of positive integers. Show that if k is its least element, then 
m + k is the least element of S.J 

Solution. Let T = {y e Z : y = x- m for some x e S} . The set Tis 
non-empty and T c z+. The well-ord�ring axiom implies that T has a 
least element k. Then for some xo e S we have k = xo - m so x0 = k + m. 
Clearly for all x e S we have 

x- Xo = x- m- (xo- m) = x- m- k > 0. 
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1.4 The Con1pleteness Axiom 

Exercise 1.4.1 In Proposition 4,.3, show that one can always select the 
rational number a such that a:/= z (in case z itself is rational). {Hint: If z 
is rational, consider z + 1/n.J 

Solution. If z is irrational, then there is no problem. If z is rational, let 
a = z + 1/n e Q, where 1/n < E. Then lz-al  < 1/n < E. 

Exercise 1.4.2 Prove: Let w be a rational number. Given e > 0, there 
exists an irrational number y such that IY-wf < e. 

Solution. Choose z e Q such that l(w/v'2)-zl < efv'2. Then y = zv'2 ¢ 
Q, and IY -wl < e. 

Exercise 1.4.3 Prove: Given a number z, there exists an integer n such 
that n < z < n + 1. This integer is usually denoted by [z] . 

Solution. LetS = {n e Z such that z - 1  < n} which is non-empty. Then 
n0 = inf(S) exists by Exercise 5 of the preceding section and no e S. 
Hence z - 1 < no. We cannot have z - 1 < no - 1 because no = inf(S) , 
thus z- 1 > n0 - 1, which implies z > n0• Putting everything together we 
see that no < z < no + 1. 

Exercise 1.4.4 Let x, y e R. Define x = y if x -y is an integer. Prove: 
(a) This defines an equivalence relation in R. 
(b) If x = y and k is an integer, then kx = ky. 
(c) If Xt = Y1 and x2 = Y2, then x1 + x2 = Y1 + Y2 . 
(d) Given a number x E R, there exists a unique number x such that 
0 < x < 1 and such that x = x (in other words, x-x is an integer). Show 
that x = x- [x] , where the bracket is that of Exercise 3. 
Solution. (a) Since 0 is an integer, x = x for all x. If x = y, then y = x 
because y-x is an integer whenever x-y is an integer. Finally if x = y 
and y = x, then x = z because x - z = x -y + y - z. 
{b) The result follows from the fact that kx-ky = k(x-y). 
{c) Immediate from the fact that {x1 +x2)-(y1 +y2) = {xl-Yl ) +(x2�Y2)· 
(d) By Exercise 3, we know that given x e R there exists an integer n such 
that n < x < n + 1. Let x = x - n = x - [x]. Then 0 < x < 1, thereby 
proving existence. For uniqueness suppose that there exists two numbers a 
and b such that 0 < a, b < 1 and a = x and b = x. Then by {b) and (c) 
a- b = 0 so a- b is an integer. But 0 � a, b < 1, hence -1 <a - b < 1 
which implies that a - b = 0 as was to be shown. 

Exercise 1.4.5 Denote the number x of Exercise 4 by R(x). Show that if 
x, y are numbers, and R(x) + R(y) < 1, then R(x + y) = R(x) + R(y) . In 
general, show that 

R(x + y) < R(x) + R(y) . 
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Show that R(x) + R(y)-R(x + y) is an integer, i. e. 

R(x + y) = R(x) + R(y) . 
Solution. We have the following unique expressions, x = R(x) + nz and 
y = R(y) + ny, with 0 :5 R(x) , R(y) < 1, and nz, n71 E Z. Then 

x + y = R(x) + R(y) + nz + n71• 

By 8S8umption, R(x) + R(y) < 1 and since nz + n71 e Z we conclude that 
R(x + y) = R(x) + R(y). 

If R(x) + R(y) > 1, then R(x + y) < 1 < R(x) + R(y) , so in general we 
have R(x + y) < R(x) + R(y). Finally, R(x + y) = x + y, R(x) = x, and 
R(y) = y so by part (c) of the previous exercise we find that 

R(x + y) - R(x)-R(y) = x + y- x - y = 0 

as was to be shown. 

Exercise 1.4.6 (a) Let a be an imltional number. Let E > 0. Show that 
there exist integers m, n with n > 0 such that lma -nl < E. 
(b) In fact, given a positive integer N, show that there exist integers m, n, 
and 0 < m < N such that lma-nl < 1/N. 
(c) Let w be any number and E > 0. Show that there exist integers q, p  such 
that 

lqa - p -wl < E. 
{In other words, the numbers of type qa- p come arbitmrily close to w. 
Use part (a}, and multiply ma-n by a suitable integer.} 

Solution. Since (b) implies (a) , it suffices to prove (b) . Let nz be the 
unique integer such that 0 < z- nz = z < 1. Divide the interval [0, 1) 
in N intervals [j /N, (j + 1)/N] , j = 0, . . .  , N - 1. Then consider ka for 
k = 0, 1, . . . , N. The number a is irrational, there are N intervals and 
N + 1 numbers ka, therefore for some k1, k2 the numbers k1a and k2o. 
belong to the same interval. Thus 

-- 1 
lkta-ktal = l(kt -k2)a-nk1a + nk2al < 

N · 

(c) Let E > 0. Select integers m, n such that 

0 < lma -nl < e. 

Assume without loss of generality that 0 < ma - n < e. Let k0 be the 
greatest lower bound of the set of integers k such that w < k(ma-n) .  
Then 

(ko- 1)(ma-n) < w < ko(ma-n), 

which implies that 
lkoma -kon -wl < e. 
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Exercise 1.4. 7 Let 8 be a non-empty set of real numbers, and let b be a 
least upper bound for 8. Let -8 denote the set of all numbers -x, with 
x e 8. Show that -b is a greatest lower bound for -8. Show that one-half 
of the completeness axiom implies the other half. 

Solution. Since x � b we have -b < -x for all x E 8 so -b is a lower 
bound for -8. Suppose there exists c e R such that -b < c < y for all 
y e -8. Then b > -c > x for all x e 8. This contradicts the fact that b is 
a least upper bound for 8. 

The first half of the completeness axiom implies the other half. Indeed, 
suppose 8 is bounded from below. Then -8 is bounded from above, thus 
-8 has a least upper bound. Hence 8 has a greatest lower bound. 

Use the same kind of argument to prove that the second half of the 
completeness axiom implies the first half. 

Exercise 1.4.8 Given any real number ?-: 0, show that it has a square root. 

Solution. Assume that a > 0 (the case a = 0 is obvious) . Let 8 = {x E 
R such that 0 $ x and x2 < a} . Since 8 is non-empty, sup(8) exists, call 
it b. Then, proceed as in the proof of Proposition 4.2. Suppose b2 < a. If 
n > (2b + 1)/(a - b2) ,  then ( ) 2 1 2 2b 1 2 2b 1 b + - = b  +- + - < b +- + - < a n n n2 n n 

because of our choice for n. This is a contradiction. If a < b2 , select n such 
that 1/n < (b2 - a)f(2b) . Then ( ) 2 1 2 2b 1 2 2b b -- = b  -- + - > b -- > a  n n � n 

because of our choice for n. This contradiction concludes the exercise. 

Exercise 1.4.9 Let Xt , • .  ·. , Xn be real numbers. Show that x� + · · · + x� is 
a square. 

Solution. Since x� � 0 for all i = 1 , . . .  , n, an easy induction argument 
shows that x�+ · · · +x� > 0. The previous exercise implies that x� +· · · +x� 
has a square root. 





II 
Limits and Continuous Functions 

II. l Sequences of Numbers 

Determine in each case whether the given sequence has a limit , and if it 
does, prove that your stated value is a limit . 

Exercise 11.1 .1  Xn = ! . 

Solution. Given e > 0 choose N such that N > 1/e. Then for all n > N, 
1 1 /nl < e, so {xn} converges to 0. 

Exercise 11. 1.2 Xn = (-�)n. 

Solution. Given e > 0 choose N such that N > 1/e. Then for all n > N, 
we have lxnl = 1 1/r.·l < e, so {xn} converges to 0. 

Exercise 11.1 .3 Xn = ( - 1)n (1 - !) · 
Solution. The sequence {xn} has at least two distinct points of accumu
lation, 1 and -1. Indeed, lxn - 1 1 = 1/n for even n, and Jxn - ( -1) 1 = 1/n 
for odd n. This shows that the sequence {xn} does not have a limit. 

Exercise 11.1.4 Xn = l+(�l)n. 

Solution·. By the triangle inequality we have 

1 + ( - 1)n 2-< - . n - n 
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Given E > 0 choose N so that N > 2/E. Then for all n � N, we have 
lzn l < E. Hence the sequence {zn} converges to 0. 
Exercise 11.1.5 Zn = sin n1r. 

Solution. For all positive integers n, Xn = sinn1r = 0, thus {xn} converges 
to 0. 
Exercise 11.1.6 Xn = sin (T) + cos n1r. 

Solution. Let n be a positive integer. We have 

Z4n = sin ( 4;'') + cos 411" - 1, 

and 
Z4n+l = sin ( 2n1r + ;) + cos{4mr + 1r) = 1 - 1 = 0. 

Thus {xn} has at least two distinct points of accumulation (actually it has 
exactly three, -2, 0, and 1) and therefore the sequence {xn} does not have 
a limit. 

Exercise 11.1.7 Xn = n2�1· 
Solution. Since n2 + 1 > n2 for all n we have 

n 1 
lxn l < 2 = - , 

n n 

so {xn} converges to 0. 

Exercise II.1.8 Xn = n::l . 

Solution. For all n > 1 we have 

n2 
lxn - ll = 2 1 n + 

so {xn} converges to 1. 

Exercise II.1.9 Zn = n::l . 

-- -1 
n2 + 1  

Solution. For all n � 1 ,  we have 1 + 1/n2 � 2. Thus 

n3 n n X - - > -n -
n2 {1 + �) -

1 + � - 2 · 

Given any positive real number M, Xn 2: M whenever n > 2M, thus {xn} 
does not have a limit. 

I II n2-n Exerc se .1.10 Xn = n3+1 • 
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Solution. For all n > 1 ,  we have 0 < n2- n < n2 and n3 < n3 + 1 ,  thus 

n2 1 
lxn l  < 3 = - . n n 

This implies that {xn} converges to 0. 

Exercise 11. 1.11  Let S be a bounded set of real numbers. Let A be the set 
of its points of accumulation. That is, A consists of all numbers a E R such 
that a is the point of accumulation of an infinite subset of S. Assume that 
A is not empty. Let b be its least upper bound. 
(a) Show that b is a point of accumulation of S. Usually, b is called the 
limit superior of S, and is denoted by lim sup S. 
{b) ·Let c be a real number. Prove that c is the limit superior of S if and only 
if c satisfies the following property. For every f there exists only a finite 
number of. elements x E S such that x > c + f, and there exists infinitely 
many elements x of S such that x > c -f. 

Solution. (a) There exis.ts a point of accumulation d of S at distance less 
than f/2 of b. The open ball of radius e/2 centered at d contains infinitely 
many elements of S. Hence the open ball of radius e centered at b contains 
infinitely many elements of S. This proves that b is a point of accumulation 
of S. 
(b) Suppose that c = lim sup S. Then given any f > 0, part (a) implies that 
there exists infinitely many x E S such that x > c -f. If for some fo there 
exists infinitely many x E S such that x > c + e0 , then the Weierstrass
Bolzano theorexn implies that S has a point of accumulation strictly greater 
than c, which is a contradiction. 

Conversely, suppose that c is a number that satisfies both properties. 
Given e > 0, there exists infinitely many x E S such that x > c - e and 
there exists only finitely many x E S such that x > c + f so there are 
infinitely many elements of S in the open ball centered at c of radius 2e. 
Hence c is a point 9f accumulation of S. Now suppose that b is a point of 
accumulation of S such that c < b. Then iff is small, say e < (b- c)/2 
we know that there exists infinitely many elements in S at distance < e 
from b. This implies that there exists infinitely many elements in S that 
are > x + e, which contradicts the second property of c. 

Exercise 11.1 .12 Let {an} be a bounded sequence of real numbers. Let A 
be the set of its point of accumulation in R. Assume that A is not empty. 
Let b be its least upper bound. 
{a) Show that b is a point of accumulation of the sequence. We call b the 
limit superior of the sequence, denoted by lim sup an . 
{b) Let c be a real number. Show �hat c is the lim sup of the sequence {an} 
if and only if c has the following property. F,or every f, there exists only a 
finite number of n such that an > c + e, and there exist infinitely many n 
such that an > c - e. 
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{c) If {an} and {bn} are two sequences of numbers, show that 

lim sup(an + bn) < lim sup an + lim sup�n 

provided the liJDSups on the right exist. 

Solution. The proofs of (a) and (b) are analoguous to the proofs given in 
the previous exercise. 
(c) Let e > 0, a =  lim sup an and b = lim sup bn. If x < a +  e and y < b + e, 
then x + y < a + b + 2E. By (b) we conclude that there exists only finitely 
many n such that a +  b + 2e < an + bn . This implies that 

lim sup( On +  bn) < lim sup an + lim supbn . 

Exercise 11.1.13 Define the limit inferior (lim inf) . State and prove the 
properties analoguous to those in Exercise 1S. 

Solution. (a) Let S be a bounded set of real numbers. Let A. be the set of 
its points of accumulation. Assume that A is non-empty. Then the greatest 
lower bound of A is called the limit inferior of S. If b = lim inf S, then 
b is also a point of accumulation of S because given e > 0 there exists a 
point of accumulation of S at distance e/2 hence there are infinitely many 
elements of S at distance < e of b. 
(b) We prove that a real number c is the limit inferior of S if and only if 
given E > 0 there exists only a finite number of x in S such that x < c - e 
and there exists infinitely many x in S such that x < c+e. If c = lim inf S, 
then the second property holds because c is a point of accumulation of 
S and if the first property does not hold, then the Weierstrass-Bolzano 
theorem implies that there exists a point of accumulation b of S such that 
b < c which is a contradiction. Conversely, suppose that c satisfies both 
properties. Then any ball of positive radius centered at c contains infinitely 
many points of S, so c is a point of accumulation of S. If there were a point 
of accumulation b of S with b < c, then the first property would be violated. 
So c = lim inf S, as was to be shown. 

11.2 Functions and Limits 

Exercise 11.2. 1  Let d > 1 .  Prove: Given B > 1 ,  there exists N such that 
if n > N, then dn > B. {Hint: Write d = 1 + b with b > 0. Then 

d"' = 1 + nb + · · · > 1 + nb.) 

Solution. Write d = 1 + b with b > 0. By the binomial formula we get 

IF =  (1  + bt = t ( �) bk = 1 + nb + · · · > 1 + nb. k=O 
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So given B. > 1 choose N such that N > (B- 1)/b. Then for all n > N, 
we have dn ;::: 1 + nb > B, as was to be shown. 

Exercise 11.2.2 Prove that if 0 < c < 1, then 

lim en = 0. n-+oo 

What if -1 < e < 0? {Hint: Write e = -1/d with d > 1.] 
Solution. Write e = 1/d with d > 1. Exercise 1 implies that given e > 0 
there exists N so that for all n > N we have dn > 1/e. Then for all n > N, 
we get en < E. Hence limn-+oo en = 0. 

If e = 0 the result is trivial. If -1 < c < 0, then 0 < l ei < 1 and 
limn-+oo lcln = 0, so limn-+oo en = 0. 

Exercise 11.2.3 Show that for any number x =/: 1 we have 

xn+l - 1 1 + X+ · · ·+ xn = . x - 1 
If lei < 1 , show that 

lim ( 1  + c + · · ·+ en) = 1 
1 . n-+oo - C 

Solution. We simply expand 

(x - 1) ( xn + xn-l + · · · + X + 1) - xn+l + xn + ·· · + X - xn - ·· · - X - 1 
xn+l - 1 .  

When lei < 1 , consider the difference 

So 

1 n 1 1 - en+l - 1 -en+l 
+ e+ · · · + c - -

- l- e 1 - e - 1 - e . 

n 1 leln+l 
1 + c+ · · · + e - < --

1 - c - 1 -lei · 

But limn .... oo l eln = 0, so the desired limit follows. 

Exercise 11.2.4 Let a be a number. Let f be a function defined for all 
numbers x < a .  Assume that when x < y < a we have f( x) < f( y) and 
also that f is bounded from above. Prove that limx -+a f(x) exists. 

Solution. Let an = a- 1/n , defined for all large n and consider the se
quence whose general term is given by bn = {/(an)}. Then {bn} is an 
increasing sequence of real numbers and is bounded, so limn-+oo bn exists. 
Denote this limit by b. We contend that limx-+a f( x) = b. Clearly, for each 
x, we have f( x) < b because there exists an (depending on x) such that 
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x < an and therefore f(x) < !(an) < b. Given e > 0 choose N such that 
b - bn < e whenever n > N. If aN � x < a, then 

so 0 < b - f(x) < b - bN < E, which proves our contention. 

Exercise 11.2.5 Let x > 0. Assume that the n-th root x11n exists for all 
positive integers n. Find lillln-+oo x11n . 

Solution. If x = 1 the result is trivial. Suppose x > 1 and write xl/n = 
1 + hn with hn > 0. Then 

This implies that 

O < h < x - 1
. - n - n 

Therefore liiDn-+oo hn = 0 and hence liiDn-+oo xl/n = 1 .  
lf O < x < 1,  then 1 < 1/x and limn-+oo(l/x) 1/n = 1. Hence lillln-+oo xl/n 

= 1. 

Exercise 11.2.6 Let f be the function defined by 

/(x) = lim 
1 

1 
2 • n-+oo + n  X 

Show that f is the chamcteristic function of the set {0} , that is /(0) = 1 
and f(x) = 0 if x 1: 0. 

Solution. We have 
/{0) = lim 

1 
1 

0 
= 1, n-+oo + 

so /(0) = 1.  If x 1: 0, choose N so that N2 lxl - 1 > 1/e. Then for all n > N 
we have 

so f(x) = 0. 

1 1 
2 < 2 I < e, 

1 + n  x - n lx - 1 

11.3 Limits with Infinity 

Exercise 11.3.1 Formulate completely the rules for limits of products, sums, 
and quotients when L = -oo. Prove explicitly as many of these as are 
needed to make you feel comfortable with them. 
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Solution. If M is a number > 0, then liinn--.00 f(x)g(x) = -oo because 
given any B > 0 we can find numbers 01 and 02 such that for all X > 01 
we have g(x) > M/2 and such that for all x > 02 we have f(x) < -2B/M. 
Then for all x > max(Ot , 02) we have B < -f(x)g(x) . 

If M = oo, then limn-+oo f(x)g(x) = -oo because given any B > 0 we 
can find numbers 01 and 02 such that for all x > 01 we have g(x) > 1 
and such that for all x > 02 we have f(x) < -B. Then x > max(01 , 02) 
implies f(x)g(x) < -B. 

If M is a number, then limn-+oo f(x) +g(x) = -oo. Choose 01 such that 
X >  Ot implies g(x) < M + 1. Choose c2 such that X >  q2 implies f(x) < 
-B - M - 1. Then for all x > max(Ot , C2) we have f(x) + g(x) < -B. 

If M is a number =/= 0, then lillln--.00 g(x)j f(x) = 0. Indeed, there exists 
a number K (fixed) such that for all large x we have Jg(x) l < K. Given e 
there exists a number 02 such that for all x > 02 we have 1/ (x) l > Kfe 
and lg(x) l < K. Then for all x > 02 we have lg(x)/ /(x) l < e. 

Exercise 11.3.2 Let f(x) = adxd + · · · + ao be a polynomial of degree d. 
Describe the beh.avior of f(x) as x --+  oo depending on whether ad > 0 or 
ad < 0. (Of course the case ad > 0 has already been treated in the text.) 
Similarly, describe the behavior of f(x) as x --+  -oo depending on whether 
ad > 0, ad < 0, d is even, or d is odd. 
Solution. We can write 

f(x) = adxd (t + ad-1  + . . .  + ao 
d
) 

adx adx 

for all large lx f . Since the expression in parentheses --+ 1 as lx l --+ oo we 
conclude that 

lim f(x) = oo 
X -t OO 

if ad > 0 and 
lim f(x) = - oo  :x;-.oo 

if ad < 0. 
Similarly we have 

lim f(x) = oo 
X -t - OO 

if ad > 0 and d is even or ad < 0 and d is odd. Also 

lim f(x) = -oo 
X -t - OO 

if ad > 0 and d is odd or ad < 0 and d is even. 

Exercise 11.3.3 Let f(x) = xn + an- 1X
n- 1 + · · · + ao be a polynomial. A 

root of I is a number e such that /(c) = 0 .  Show that any root satisfies 
the condition 

le i :5 1 + lan-t l  + · · · + lao I · 
{Hint: Consider le i < 1 and le i > 1 sepamtely.J 
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Solution. If fcl � 1 ,  the result is trivial. Suppose lei > 1 .  Since c is a root 
of I we have -en = On-ICn-l + . . .  + ao, thus 

lcln � fan-l l lcln-l + · · · + lao f .  

Dividing by lcln- l implies 

fao l  
lei � lan-1 1 + · · · + 

lcln_1 , 

but since 0 < 1/ fcl < 1 ,  we get 

as was to be shown. 

Exercise 11.3.4 Prove: Let /, g be functions defined for all sufficiently 
large numbers. Assume that there exists a number c > 0 such that f(x) > c 
for all sufficiently large x, and that g( x) --+ oo as x --+ oo .  Show that 
f(x)g(x) --+ oo as x --+  oo .  

Solution. There exists cl > 0 such that for all X > Cl , f(x) is defined 
and /(x) > c. Let B > 0. There is a c2 > 0 such that whenever X >  c2 we 
have g(x) > Bfc. Then whenever x > max(Ct , C2) we have f(x)g (x) > B 
and therefore f(x)g(x) --+ oo as x --+  oo .  

Exercise 11.3.5 Give an example of two sequences {xn} and {Yn} such 
that 

and 

lim Xn = 0, lim Yn = oo, n-+oo n-+oo 

lim (XnYn) = 1 .  n-+oo 

Solution. Take, for example, Xn = 1/n and Yn = n defined for n 2::: 1 .  

Exercise 11.3.6 Give an example of two sequences {xn} and {Yn } such 
that 

lim Xn = 0, lim Yn = oo, n-+oo n-+oo 
'·, 

and limn-+oo(XnYn) does not exists, and such that fxnYn l is bounded, i. e. 
there exists C > 0 such that fxnYn l < C for all n. 

Solution. Let Xn = (-l)n/n and Yn = n. Then XnYn = (-l )n and 
fxnYn l < 1 for all n � 1 .  

Exercise 11.3. 7 Let 

f(x) - anxn + . . .  + ao 
g(x) - bmxm + · · · + bo 
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be polynomials, with an , bm i= 0, so of degree n, m respectively. Assume that 
an, bm > 0. Investigate the limit 

1. l(x) 1m 
( ) 

, n-+oo g X 

distinguishing the cases n > m, n = m, and n < m. 

Solution. For large values of x we can write 

f(x) _ anxn ( 1 + · . .  + a�n ) 
g(x) -

bmxm ( 1 + . .  · + b,!'�m) 1 

where {1 + · · · + aofanxn) and (1 + · · · + bo/bmxm) -+  1 as x -+  oo. Thus 
we have the three cases 

, n > m => 
� n = m  => 

n < m => Ill. 

Exercise 11.3.8 Prove in detail: Let I be defined for all numbers > some 
number a, let g be defined for all numbers > some number b, and assume 
that l(x) > b for all x > a .  Suppose that 

Show that 

lim l(x) = oo and lim g(x) = oo. X--+00 X--+00 

lim g(f(x)) = oo. x-+oo 

Solution. · For all x > a, g(l(x)) is defined. Let B > 0. Choose M9 > b 
such that for all x > M9 we have g(x) > B. Choose MJ > a such that for 
all x > Mt we have f(x) > M9 • Then for all x > M1 we have g(f(x)) > B. 

Exercise 11.3.9 Prove: Let S be a set of numbers, and let a be adherent 
to S. Let I be defined on S and assume 

lim f(x) = oo. x-+a 

Let g be defined for all sufficiently large numbers, and assume 

lim g(x) = L, X--+00 

where L is a number. Show that 

lim g(f(x))  = L. X-+00 



28 II. Limits and Continuous Functions 

Solution. Let f > 0. Choose M such that if y > M, then lo(y) - Ll < E. 
Select 6 > 0 such that whenever x E S and lx - al < 6 we have f(x) > M. 
Clearly for all x E S and lx - a l < 6 we have lo(/(x)) - Ll < f. 
Exercise 11.3.10 Let the assumptions be as in Exercise 9, except that L 
now stands for the symbol oo. Show that 

lim g(f(x)) = oo. 
:X:--+00 

Solution. Let B > 0. Choose M such that for all y > M we have g(y) > B. 
Choose 6 as in Exercise 9. Then for all x E S and lx - a l < 6 we have 
g(f(x)) > B. 

Exercise 11.3.11  State and prove the results analogous to Exercises 9 and 
10 for the cases when a =  oo and L is a number or oo. 
Solution. Suppose L is a number. Given f > 0 choose A and B such that 
y > B implies lg(y) - LI < f and such that x > A implies f(x) > B (x E S) . 
Then for all x > A we have lu(/(x)) - Ll < f. 

Now suppose L = oo. Given M > 0, choose A and B such that for all 
y > B we have g(y) > M and such that x > A implies f(x) > B. Then 
g(f(x)) > M whenever x > A. 

Exercise 11.3.12 Find the following limits as n --+ co: (a) �· (bJ Vn - v'n + l . (c) �· 
{d) 1)nx if X i: 0. (e) Vn - v'n + 10. 
Solution. (a) The limit is 0. To see this write 

1 + n 1 1 
n2 = n2 + n· 

Since 1/n2 --+ 0 and 1/n -+ 0 as n --+  oo we have limn-+oo (1 + n)/n2 = 0. 
(b) The limit is 0. To see this, write 

l - 'n - £ 'n + 1 1 = n - (n + 1) < 
�· v -,, v ·  v'fi +  v'n + 1 - 2 n 

(c) The limit is 1 .  Indeed, we can write 

Vn 1 
v'n + 1 - y'1 + 1/n . 

(d) The limit is 0. For n large, we have 
1 < 1 

1 + nx - nlxl - 1 
and nlxl - 1 -+ oo as n -+ oo. 
(e) The limit is 0 because we have the bound 

lv'n - v'n +  101 = n - (n + 10) 
Vn + v'n + 10 

10 < _ r=· - 2vn 
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11.4 Continuous Functions 

Exercise 11.4.1 Let f :  R � R be a function such that f(tx) = tf(x) for 
all x, t E R. Show that f is continuous. In fact, describe all such functions. 

Solution. The only functions verifying the given property are the linear 
functions with 0 constant term. Indeed, l(x) = f(x · 1) = xl(1) , thus f is 
a linear function with /(0) = 0. 

Conversely, suppose f is a linear function with zero constant term, l(x) = 
ax for some real number a. Then for all t, x E R we have 

f(tx) = atx = tax =  tj(x) 

as was to be shown. 
It is now sufficient to prove the continuity of a linear function with zero 

constant term. Suppose l(x) = ax for some a E R. Let f > 0 and let 
6 = f/( la l + 1) . If lx - xo l < 6, then 

Ja l lf(x) - f(xo) l < f lal + 1 < f. 

Hence f is continuous. 

Exercise 11.4.2 Let f(x) = [x] be the greatest integer < x and let g(x) = 
x - [x] . Sketch the graphs of f and g.  Determine the points at which I and 
g are continuous. 

Solution. If n < x < n + 1 with n E Z, then [x] = n and x - (x] = x - n 
so 0 < g < 1. 

From the definitions of I and g we see that these functions are continuous 
on R - Z. 

I -'1 0 
' 
I 
t 
' 
• 

• 

• 

l L 3 
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Exercise 11.4.3 Let f be the function such that I ( x) = 0 if x is irrational 
and l(pfq) = 1/q if pfq is a rational number, q > 0, and the fraction is 
in reduced form. Show that I is continuous at irrational numbers and not 
continuous at rational numbers. {Hint: For a fixed denominator q, consider 
all fractions mfq. If x is irrational, such fractions must be at distance > 6 
from x. Why?} 

Solution. Suppose xo = Po/qo is a rational number such that the fraction 
is in lowest form and qo > 0. Then l(xo) = 1/qo. Every non-trivial open 
interval contains an irrational number, therefore I ( x) = 0 for x arbitrarily 
close to xo . Th� f is not continuous at x0 , thereby proving that I is not 
continuous at rational numbers. 

Let f > 0 and suppose Xo is irrational. Let qo E z+ such that 1/qo < f. 
For each q E z+ with q < q0 let 89 be the set of p E Z such that 

??. - xo < 1 .  
q 

The set 89 has finitely many elements. So there are only finitely many 
rationals with denominator < q0 which are at distance less than 1 from x0 • 
So we can find 6 such that all rationals in (x0 - 6, x0 + 6) have denominator 
> qo. To be precise we let 

dist(xo , 89) = min {dist (x0 , 
p) } . pES9 q 

Then dist(x0 , 89) > 0 because x0 is irrational, so select 6 such that 

0 < 6 < min{l ,  min dist(xo , 89)} .  l<q<qo 

Then lx - xo l < 6 implies 1/(x) - l(xo) l < E. 

Exercise 11.4.4 Show that a polynomial of odd degree with real coefficients 
has a root. 

Solution. Suppose we have a polynomial 

. p(x) = amxm + · · · + ao , 

where m is odd and am =F 0. We can assume without loss of generality that 
am > 0 (if not, consider -p(x)) .  Then we can write 

( ) m [ am-1 ao ] p x = x  am + + · · · + - .  
X xm 

From this expression, it is clear that . 
lim p(x) = oo and lim p(x) = -oo. x-+oo x-+-oo 

Since p is continuous, the intermediate value theorem implies that p has at 
least one real root. 
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Exercise 11.4.5 For x =/= -1 show that the following limit exists: ( n 1 ) 2 
f(x) = lim 

x -
1 . n-+oo xn + 

(a) What are /(1) , /(� ) , /(2) ?  
{b) What is limx--+1 f(x) ? 
(c) What is limx--+-1 f(x) ? 
{d) For which values of x =/= -1 is f continuous? Is is possible to define 
/(- 1) in such a way that f is continuous at - 1 . 
Solution. If x = 1 ,  then clearly, f(x) = 0. If lx l > 1 ,  then (xn - 1 ) 2 ( 1 - 1/xn ) 2 

xn + 1 - 1 + 1/xn 

so f(x) = 1 .  If lx l < 1, then (xn - 1 ) 2 (-1) 2 
lim = - = 1. n-+oo xn + 1 1 

(a) The above argument shows that /(1) = 0, /(1/2) = 1,  and /(2) = 1 .  
(b) Note that f(x) = 1 for all x such that l x l I: 1, but /(1) is defined and 
/(1) = 0. So limx--+1 f(x) does not exist , but 

lim f(x) = 1 .  z-+1 ,z¢1 

(c) Similarly, limx--+-1 f(x) does not exist, but 

lim f(x) = 1 . z-+-1 ,z¢-1 

(d) The function f is continuous at all x ¥= 1, - 1. However, f can be 
extended continuously as -1 by defining /(-1) = 1 .  

Exercise 11.4.6 Let 
xn 

f(x) = lim . n-+oo 1 + xn 
(a) What is the domain of definition of f, i. e. for .which numb�rs x does 
the limit exist? 
{b) Give explicitly the values f(x) of f for the various x in the domain of 
f. 
(c) For which x in the domain is f continuous at x ?  

Solution. (a) The domain of f is R - {-1} .  
(b) We have 

lx l < 1 => f(x) = 0, 
lx l > 1 => f(x) = 1 ,  
x = 1 => f(x) -· 1/2. 

(c) The function f is continuous for x such that lx l < 1 or lx l > 1 .  



32 II. Limits and Continuous Functions 

Exercise 11.4. 7 Let f be a function on an interoal I. The equation of a 
line being given as usual by the formula y = sx + c where s is the slope, 
write down the equation of the line segment between two points (a, /(a)) 
and (b, f(b)) of the graph of /, if a < b are elements of the interoal I. 

We define the function I above to be convex upward if 

/((1 - t)a + tb) < (1 - t)f(a) + tf(b) (11. 1 ) 

for all a ,  b in the interoal, a =5 b and 0 < t < 1 . Equivalently, we can write 
the condition as 

l(ua + tb) < uf(a) + tj(b) 

for t, u > 0 and t + u = 1 .  Show that the definition of convex upward means 
that the line segment between (a, I( a))  and (b, l(b)) lies above the graph of 
the curve y = f(x) .  

Solution. The equation of the line passing through (a, /(a)) and (b, f(b)) 
is given by 

thus 

1/ - f(a) = f(b) - f(a) (x - a) b - a 

s = /(b) - f(a) 
and c = bf(a) - af(b) . b - a b - a 

Let x E [a, b] and let t = (x - a)/(b - a) . Then t E [0, 1] , ( 1 - t)a + tb = x 
and (1 - t)l(a) + tl(b) = sx + c. The definition of convexity implies 

l(x) < BX + C. 

Exercise 11.4.8 A function I is said to be convex downward if the 
inequality (II. 1) holds when =5 is replaced by > . Interpret this definition in 
tenns of the line segment being below the curoe y = l(x) . 

Solution. Let x E (a, b] .  Using the same argument and the same notation 
as in Exercise 7 we get 

l(x) > ( 1 - t)f(a) + tf(b) = sx + c. 

Exercise 11.4.9 Let I be convex upward on an open interval I. Show that 
f is continuous. [Hint: Suppose we want to show continuity at a point c E I. 
Let a < c and a E I. For a < x < c, by Exercise 7 the convexity condition . gzves 

f(x) < /(c) - f(a) (x - a) + f(a) . 
c - a 

Given e, for x sufficiently close to c and x < c, this shows that 

l(x) < /(c) + e. 
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For the reverse inequality, fix a point b E I with c < b and use 

/(c) � f(b) - f(x) (c - x) + f(x) . ]  b - x  
If the interval is not open, show that the function need not be continuous. 

Solution. The inequality 

f(x) < f(c) - f(a) (x - a) + f(a) c - a 
follows from the equation we gave in Exercise 7 of the line segment between 
(a, /{a) )  and (c, /(c)) and the fact that the curve y = f(x) lies below this 
line. Write x = c - 6. Then we have 

whenever 

f(x) < f(c) - /(a} (x - a) + f(a) c - a 
- /(c) - f(a) (c - a - 6) + f(a) c - a 

_ /(c) _ /(c) - /(a) 6 c - a 
< f(c) + e, 

/(c) - f(a) 6 < e. c - a 
This happens for all small 6, hence for all x close to c and x < c we have 
f(x) < /(c) + e. 

Now we prove the reverse inequality. Fix a point b E  I such that c < b. 
Then since the line between (x, f(x)) and (b, f(b)) lies above the curve 
y = f(x) we see that 

Now we claim that 

f(c) < f(b) - f(x) (c - x) + f(x) . b - x 

/(b) - f(x) < f(b) - /(c) . b - x - b - e 
This inequality is equivalent to proving that 

(b - c) (f(b) - f(x)) < (b - x) (f(b) - f(c)) (b - x) 

which in turn is equivalent to 

j(c) (b - x) < f(b) (c - x) + f(x) (b - c) 

which we can rewrite as · 
e - x b - e f(c) < 
b - x f(b) + b - x f(x) . 



34 II. Limits and Continuous Functions 

' 
Let u = (c - x)f(b - x) and let t = (b - c)f(b - x) . Then u, t > 0 and 
u + t = 1 . \Moreover ub + tx = c, so by the convexity assumption we find 
that our d�ired inequality holds. This implies that 

f(x) < /{b) - /{x) (c - x) + /{x) < /{b)
-

/(c) 
(c - x) + f(x) , 

b - x  b - e  

so if e-x > 0 is small we conclude that /(c) < f(x) +E as was to be shown. 
The same argument applies when c < x. 

Exercise 11.4.10 Let j, g be convex upward and assume that the image 
of f is contained in the interval of definition of g .  Assume that g is an 
increasing function, that is if x < y, then g(x) < g(y) . Show that g o f is 
convex upward. 

Solution. We have the following 

g o f((1 - t)a + tb) < g((1 - t)f(a) + tj(b)) < (1 - t)g o f(a) + tg o f(b). 

Exercise 11.4.11 Let j, g be functions defined on the same set S. Define 
max(/, g) to be the function h such that 

h(x) = max(f(x), g(x)) 

and similarly, define the minimum of the two functions, min(/, g) . Let 
f, g be defined on a set of numbers. Show that if /, g are continuous, then 
max(j, g) and min(/, g) are continuous. 

Solution. Since 

max(!, g) = !u + g + I/ - g l ) and min(!, g) = !u + g - If - gl ) ,  

Exercise 12 implies the continuity of max(/, g) and min(/, g) . 

Exercise 11.4.12 Let f be defined on a set of numbers, and let If I be the 
funcion whose value at x is 1/(x) l . If I is continuous, show that 1/ 1 is 
continuous. 

Solution. The result follows from the inequality 

1 1/(z) l - 1/(zo) l l  < 1/(z) - f(xo) l . 



III 
Differentiation 

111.1 Properties of the Derivative 

Exercise 111.1.1 Let a be an irrational number having the following prop
erty. There e.tists a number c > 0 such that for any rational number pfq 
{in lowest form) with q > 0 we have 

or equivalently, 

p c a - - > 2 '  q q 

c 
l qa - pl > - . q 

(a) Let f be the function defined for all numbers as follows. If x is not a 
rational number, then f(x) = 0. If x is a rational number, which can be 
written as a fmction pfq, with integers q, p and if this fraction is in lowest 
form, q > 0, then f(x) = 1/q3 • Show that f is differentiable at a .  
{b) Let g be the function defined for all numbers as follows. If x is irrational, 
then g(x) = 0. If x is rational, written as a fraction pfq in lowest form, 
q > 0, then g(x) = lfq. Investigate the differentiability of g at the number 
a as above. 

Solution. (a) The Newton quotient of f at a is 

f(x) - f(o:) f(x) -
x - a x - a • 
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Given E > 0 select 6 > 0 such that if lx - af < 6 and pfq = x E Q, then 
1/q < CE. Then 

thus 

f(x) q2 1 
< - . 3 < E, x - a  c q 

lim f(x) - /(a) = O. Q3z--.a X - a 
If x is irrational, then the Newton quotient is 0, so f is differentiable at a 
and /'(a) = 0. 
(b) For pfq = x E Q, the Newton quotient of g at a becomes 

g(a) - g(a) 1 

x - a - IP - qa l · 

By Exercise 6, §4, of Chapter 1 we know that given N > 0 there exists 
integers PN , qN such that 

1 
> N and PN 1 - - a < -

PN - qNa 
thus g is not differentiable at a. 

qN - N '  

Exercise 111.1.2 (a) Show that the function f(x) = lx l is not differen
tiable at 0. (b) Show that the function g(x) = xlx l is differentiable for all 
x. What is its derivative 'I 

Solution. (a) For h > 0 we have 

and if h < 0, then 

lim /(0 + h) - f(O) = lim h 
= 1 ,  h--.o h h--.o h 

lim /(O + h) - f(O) = lim -h 
= - 1  

h--.0 h h--.0 h 
, 

whence f is not differentiable at 0. 
(b) If x > 0, then f(x) = x2 and if h > 0 we get 

lim /(O + h) - /(O) 
= lim h = 0. h--.0 h h--.0 

If x < 0, then f(x) = -x2 and the Newton quotient at 0 tends to 0 as 

h � 0 with h < 0. Thus f is differentiable for all x and for x > 0 its 
derivative is 2x and for x < 0 its derivative is -2x. 
Exercise 111.1.3 For a positive integer k, let J(k) denote the k-th deriva
tive of f .  Let P( x) = ao + a1 x + · · · + anxn be a polynomial. Show that for 
all k, 
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Solution. We prove by induction that for 0 < k < n we have the formula 

(k) _ 1 (k + 1) ! (k + 2) ! 2 • 
• 

• (k + n- k) ! n-k P (x) - k.ak+ 11 ak+tx+ 21 ak+2x + + (n _ k) ! anx . 

When k = 0 the formula holds. Differentiating the above expression we get 

(k ) I (k + 2) ! (k + n- k) ! n-k- 1 + 1 .ak+l + 1 1  ak+2x + · · · + (n _ k _ l) l 
anx 

which is equal to p(k+l� (x), thereby concluding the proof by induction. We 
r 

immediadely get that .P(k) (Q) = k!ak whenever 0 :5 k < n. If k > n, then 
p(k) is identically 0. 

Exercise 111.1.4 By induction, obtg,in a formula for the n-th derivative 
of a product, i. e. (Jg)(n) ,  in terms of lower derivatives J(k) , g(j) . 

Solution. We prove by induction that 

When n = 1 the formula yields (/g)' = /' g + f g' which holds. Differentiat
ing the above formula using the product rule and splitting the sum in two 
we get 

The change of index j = k + 1 in the first sum shows that (fg)<n+l) is 

� ( j n 

1 ) (f)U> (g)<n+l-j) + 'to ( � )  (J)<k> (g)(n+l-k) 

_ (f)(o) (g)<n+l) + (f)(n+l) (g)(O) + t [ ( k 
n 

1 ) + ( � ) ] j<k)g(n+l-k) 
k-1 . 

_ (/)(O) (g)(n+l) + (/)(n+l) (g)(O) + � ( n t 1 ) j<k)g(n+l-k) 

_ � ( n t 1 ) (f) (k) (g )(n+l-k) . 

The second to last equality follows from Exercise 4, §3, of Chapter 0. 
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111.2 Mean Value Theorem 

Exercise 111.2.1 Let l(x) = anxn + · · · + ao be a polynomial with an =/= 0. 
Let c1 < c2 < · · · < Cr be numbers such that /(Ci ) = 0 for i = 1, . . .  , r. 
Show that r < n. {Hint: Show that I' has at least r - 1 roots, continue to 
take the derivatives, and use induction.] 

Solution. Suppose r > n. By Lemma 2.2, /' has at least one root in 
(c; , c;+1 ) for all 1 < j < r - 1.  Therefore f' has at least r- 1 distinct roots. 
Suppose that for some 1 < k :5 n - 1, the function l(k) has at least r - k 
distinct roots, Ck,l < ck,2 < · · · < ck,r-k· Then by Lemma 2.2, j(k+l) has 
at least one root in (ck,; , ck,j+l) for all 1 < j < r - k - 1. Thus f(k+l) has 
at least r - (k + 1) distinct roots. Therefore f(n) has at least r - n roots. 
But f(n) = ann!, so l(n) has no roots. This contradiction shows that r < n. 

Exercise 111.2.2 Let f be a function which is twice differentiable. Let c1 < 
c2 < · · · < Cr be numbers such that f(Ci) = 0 for all i .  Show that I' has at 
least r - 1 zeros (i. e. numbers b such that f'(b) = OJ. 

Solution. Lemma 2.2 implies that for each 1 < j < r - 1 there exists 
numbers d; such that c; < d; < c;+1 and /'(d; ) = 0. So I' has at least 
r - 1 roots. 

Exercise 111.2.3 Let a1 , • • •  , an be numbers. Determine x so that E� 1 ( ai
x )2 is a minimum. 

Solution. Let /(x) = E� 1 (a, - x)2 • The limits limx-+oo f(x) = oo and 
limx-+-oo l(x) = oo imply that I has a minimum. The minimum verifies 
l'(x) = 0, which is equivalent to 

n 
- E 2(ai - x) = O. 

i=l 

We conclude that f is at a minimum at x = E aifn. 

Exercise 111.2.4 Let f(x) = x3 + ax2 + bx + c where a ,  b, c are numbers. 
Show that there is a number d such that I is convex downward if x < d and 
convex upward if x � d. 

Solution. The function /" exists and /"(x) = 6x + 2a . Then for all x < 
d = -a/3, the function f is convex downward, and for all x > d, f is convex 
upward. 

Exercise 111.2.5 A function I on an intenJal is said to satisfy a Lips
chitz condition with Lipschitz constant 0 if for all x, y in the intenJal, 
we have 

ll(x) - I(Y) I < Olx - Yl · 
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Prove that a function whose derivative is bounded on an interoal is Lips
chitz. In particular, a C1 function on a .closed interoal is Lipschitz. Also, 
note that a Lipschitz function is uniformly continuo'UB. However, the con
verse if not necessarily true. See Exercise 5 of Chapter IV, §9. 
Solution. Let M be a bound for the derivative. Given x and y in the 
interval, there exists c in (x, y) such that l(x) - l(y) = l'(c) (x - y) which 
implies 

ll(x) - I(Y) I = 1/'(c) l lx - Y l < M fx - yf . 

Exercise 111.2.6 Let f be a C1 function on· an open interoal, but such 
that its derivative is not bounded. Prove that I is not Lipschitz. Give an 
example of such a function. 

Solution. Assume that I is Lipschitz with Lipschitz constant C. By as
sumption there exists xo in the interval such that ll'(xo) l > 2C. By conti
nuity, we have 1/'(x) l > 20 for all x in a small open interval I centered at 
xo . Choose X1 E I with x1 =I= xo . By the mean value theorem, there exists 
c E I such that 

l(xl ) - l(xo) = l'(c) (xl - xo) 
so, since we assumed I Lipschitz, we get 

2Cixl - xo l < ll' (c) f lxl - xo l  = ll(xl) � l(xo) l < Clx1 - xo l · 
Thus 20 < G which is a contradiction. For an example of such a function, 
consider x � 1/x on (0, 1) or x � x sin{1/x) also on (0, 1) . See Exercise 5, 
§3, qhapter IV. 
Exercise 111.2. 7 Let I, g be functions defined on an interoal [a, b] , contin
uous on this interoal, differentiable on a < x < b. Assume that f(a) < g(a) ,  
and l'(x) < g' (x) on a < x < b. Show that l(x) < g(x) if a < x :5 b .  
Solution. Let h(x) = g(x) - f(x). The function h verifies h'(x) > 0 and 
h(a) > 0. Thus h(x) > 0 for a < x < b. 

111.3 Inverse Functions 

For each one of the following functions I restrict f to an interval so that the 
inverse function g is defined in an interval containing the indicated point, 
and find the derivative of the inverse function at that point. 

Exercise 111.3.1 l(x) = x3 + 1 ;  fi�d g'(2) . 
Solution. Restrict I to [0, 2] because for all x E [0, 2] , f' (x) = 3x2 > 0. 
Then 1(0) · 1 and 1(2) = 9. Thus the inverse function g :  [1 , 9] -+ [0, 2] of 
f is well defined and 

'
( ) 

1 1 g 2 = /'(1) 
= 

3
. 
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Exercise 111.3.2 l(x) = x2 - x + 5; find g' (7) . 
Solution. Restrict I to [1 , 3] because for all x E [1 , 3] , l' (x) = 2x - 1 > 0. 
Then 1(1) = 5 and 1(3) = 1 1 , 1(2) = 7. Thus the inverse function g :  
[5, 11] --+ [1, 3] of I is well defined and 

' ( ) 1 1 g 7 = /' (2) = 3 '  
Exercise 111.3.3 f(x) = x4 - 3x2 + I; find g'( -1) .  
Solution. Restrict I to (0 , y'372] because for all x E (0, y'372], /'(x) = 
2x(2x2 - 3) > 0. Furthermore, /(0) = 1 and I( y'372) = -5/4 , /(1) = -1 . 
Thus the inverse function g :  [0, -5/4] --+ [0, y'372] of I is well defined and 

' ( ) 1 1 g -1 = /'(1) = - 2 . 

Exercise 111.3.4 l(x) = -x3 + 2x + 1; find g'(2) . 
Solution. Restrict I to [ y'2/3, 2] because for all x in this interval, /' (x) = 
-3x2 + 2 :5 0. Furthermore, /( y'2/3) = a > 2, 1(2) = -3, and 1(1) = 2. 
Thus the inverse function g :  [ -3, a] --+ [ y'2/3, 2] of I is well defined and 

g'(2) = /'
:1) = -1 .  

Exercise 111.3.5 l(x) = 2x3 + 1 ;  find g'(21) . 
Solution. Restrict I to [0, 3] because for all x in this interval, l'(x) = 
6x2 > 0. Furthermore, 1(0) = 1 ,  1(3) = 55, and I(�) = 21. Then the 
inverse function g : [1 , 55] --+ [0, 3] of I is well defined and 

' (21) - 1 - 1 g 
- I'(�) - 6 · 10213 • 

Exercise 111.3.6 Let f be a continuo'US function on the interval [a, b) . As
sume that I is twice differentiable on the open interval a < x < b, and that 
f' (x) > 0 and f"(x) > 0 on this interval. Let g be the inverse function of 
f.  
(a} Find an expression for the second derivative of g. 
{b) Show that g"(y) < 0 on its interval of definition. Thus g is convex in 
the opposite direction of I. 
Solution. (a) Since g'(x) = 1/ l'(g(x)) ,  the chain rule and the rule for 
differentiating quotients apply, leading to the following expression for g": 

g"(x) = -f"(g(x))g'(x) 
[/' (g(x))]2 . 

(b) For a <  x < b we have /'(x) > 0 and /"(x) > 0. Therefore we see from 
the above expression of g"(x) , that g"(x) < 0 on its interval of definition. 
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Exercise 111.3. 7 In Theorem 9.2, prove that iff is of class QP with p > 1, 
then its inverse function g is also of class QP. 

Solution. We prove the result by induction on p. Assume that f is of class 
CP, then /' is of class QP-1 . By indtlction the inverse g of I is of class QP-1 
and the map x �--+ 1/x is 000 so the formula of Theorem 3.2 implies that g' 
is of class QP-l ,  hence g is of class QP. 





IV 
Elementary Functions 

IV . 1  Exponential 

Exercise IV.l .l  Let f be a differentiable function such that 

f'(x) = -2xf(x) . 

Show that there is some constant C such that f(x) = ce-x2 . 

Solution. We simply have 

2 2 .!!:__ ( f(x) ) _ f' (x)e-x + 2xf(x)e-x _ -2xf(x) + 2xf(x) _ 0 dx e-x2 - (e-x2 )2 - e-x2 - . 

Exercise IV.1.2 (a) Prove by induction that for any positive integer n, 
and x > 0, 

x2 xn 
1 + X +  -21 + · · · + f < ex. . n. 

{Hint: Let f(x) = 1 + x + · · · + xn /n! and g(x) = ex .] 
(b) Prove that for x � 0, 

x2 xa 
e-x > 1 - X + - - -- 2! 3! . 

(c) Show that 2.7 < e < 3 . 
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Solution. (a) The inequality is true for n = 1 .  Indeed, 

whenever x � 0 and e0- (1+0) = 0, so ex- (1+x) > 0 for all x > 0. Suppose 
the inequality is true for some integer n. Let j(x) = 1 + X + • • • + (::�>1 
and g(x) = ex. Then, the induction hypothesis implies that 

-(g(x) - f(x)) = ex - 1 + x + · · · + - > 0. d ( xn ) 
dx n! 

Since g(O) = /(0) = 1 ,  the desired inequality follows. 
(b) Let 

Then f"'(x) = -e-x + 1 > 0 for all x > 0. Since /(0) = /'(0) = /"(0) = 
/"'(0) = 0, we conclude that f(x) > 0 for all x > 0 and if x > 0 we have 
f(x) > 0. 
(c) Let n = 4 and x = 1 in (a) , so that 

1 1 1 2. 7 < 1 + 1 + 2 + 
6 

+ 24 < e. 

Let x = 1 in (b) to get 

- 1  1 1 1 e > 2 - 6
= 3 . 

Exercise IV.1.3 Sketch the graph of the following functions: 
(a) xex; 
{b) xe-x 
(c) x2ex ; and (c) x2e-x .  

Solution. (a) Let f(x) = xex. Then f'(x) = ( 1 + x)ex , so f is increasing 
on [- l , oo) and decreasing on (-oo, -1] .  The function f is positive for 
x > 0 and negative for x < 0, and /(0) = 0. Clearly, limx-+oo = xex = oo. 
Moreover since lilllu-+oo tt/eu = 0 letting x = -tt we get limx-+-oo /(x) = 0. 
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(b) Let /(x) = xe-x . Note that /(-x) = -xex so the graph of f is the 
image of the graph obtained in (a) in the symmetry with respect to the • • or1g1n. 

-� 

(c) Let f(x) = x2ex . Then /'(x) = xex (2 + x) so f is decreasing on [-2, 0] 
and increasing on R-[-2, 0] . For all x we have /(x) 2': 0 and limx--.00 f(x) = 

oo .  We also have limx-+-oo f(x) = liiiLu-+oo u2 feu = 0. 
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(d) Let f(x) = x2e-x . Since f(-x) = x2ex , the graph of f is ·the reflection 
across the y-axis of the graph obtained in (c) . 

0 

Exercise IV.1.4 Sketch the graph of the following functions: (a) e11x ; and 
{b) e-1/x . 

Solution. (a) Let f(x) = e11x . For x -:/: 0 we have f'(x) = (- 1/x2)e1/x < 0. 
For x < 0, letting u = -1/x, we get limx-...o- f'(x) = lilllu-...00 -u2e-u = 0. 
The behavior of f at the boundary of its domain of definition is described 
by the following limits: 

lim f(x) = e0 = 1 ,  lim f(x) = 0, lim f(x) = oo ,  lim f(x) = 1. 
x-+-oo x-+O- x-...o+ x--+oo 
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(b) Let f(x) = e- 1/x . Notice that 1(-x) = e 11x , so the graph of I is the 
reflection across the y-axis of the graph obtained in (a) . 

- 1.. .. 

e... � 

Exercise IV. l.5 (a) Let I be the function such that l(x) = 0 if x < 0 
and l(x) = e-1/x if x > 0. Show that f is infinitely differentiable at 0, and 
that all its derivatives at 0 are equal to 0. {Hint: Use induction to show that 
the n-th derivative of f for � > 0 is of type Pn (l/x)e-1/x where Pn is a 
polynomial.} 
(b) Sketch the graph of I. 

Solution. (a) For x > 0 there exists a sequence of polynomials {Pn} such 
that j<n> (x) = Pn (l/x)e-l/x . Indeed, we haye l'(x) = ( 1/x2)e- 1/x which 
is of the desired form. We assume that the assertion is true fo� some integer 
n. Differentiating we obtain 
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which is of the desired form, thereby ending the proof by induction. The 
function I is continuous and 

lim f(x) - f(O) 
= 0 = /'{0) . 

x--+0 X - 0 

Assume that I is n times differentiable with all derivatives equal to 0 at 
the origin. For x > 0, let x = 1/u. Then 

l(n) (x) - l(n) (O) lim = lim uPn(u)e-u = 0 
x--+0+ X - 0 u-+oo 

so l(n+1> (o) = 0. By induction we conclude that the function I is infinitely 
differentiable at 0 and l(n) (0) = 0 for all n. 

(b) The graph of the function I is 

0 

Exercise IV.1.6 (a) (Bump Functions) . Let a, b be numbers, a < b. 
Let I be the function such that l(x) = 0 if x < a or x > b, and 

(a) J(x) = e-1/(x-a)(b-x) ur (b) l(x) = e-1/(x-a)e-1/(b-x) 

if a < x < b. Sketch the graph of I. Show that I is infinitely differentiable 
at both a and b. 
(b) We assume you know about the elementary integral. Show that there 
exists a coo function F such that F(x) = 0 if x < a, F(x) = 1 if x > b, 
and F is strictly increasing on [a, b] . 
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(c) Let D > 0 be so small that a +  6 < b - 6. Show that there exists a coo 
function g such that: 

g(x) = 0 if x < a, and g(x) = 0 if x > b; 
g(x) = 1 on [a + 6, b - 6] ; and 
g is strictly increasing on [a, a + o] , and strictly decreasing on [b - o, b] . 

Sketch the gmphs of F and g. 
Solution. (a) We take f(x) = e-l/(x-a) (b-x) . For a < x < b we have 

f'(x) = 
(b - x) - (x - a) e-1/(3:-a) (b-x) . (x - a)2 (x - b)2 

Thus f is .increasing on (a, (a + b)/2) and decreasing on ( (a + b)/2, b) . Just 
as in Exercise 5, use induction to show that there exists a sequence of 
polynomials {Pn} and a sequence of positive integers {kn} such that 

t<"'> (x) = 
Pn(x) e-1/(z-a)(b-z) . [(x - a) (b - x)]kn 

A linear change of variable and the limits computed in Exercise 5 prove 
that f is infinitely differentiable at both a and b. 
{b) Let I = J: f(t)dt = J00

00 
f(t)dt. Since f is continuous, non-negative, 

and not identically zero, we know that I ·-t= 0, so we can define 1 1:1; F(x) = 
I -oo 

f(t)dt. 

Then F(x) = 0 if x < a  and F(x) = 1 if x � b and for all x we have 
d 
dx F(x) = f(x) . 

So F is strictly increasing on [a, b] and F is 000 • 
(c) By (b) we can construct a function F1 on R such that F1 is coo , 
F1 (x) = 0 if x < a, F1 (x) = 1 if x > a +  6, and F is strictly increasing on 
[a, a + 6] . Arguing as in {b) with the function 

1 100 G(x) = -I X 

we see that we can construct a function F2 on R which is coo such that 
F2(x) = 1 if x < b - 6, F2(x) = 0 if x > b, and F2 is strictly decreasing on 
(b - 6, b] . Define g as follows: 

Ft (x) if x < a + o, 
1 if a +  o < x < b - 6, 
F2(x) if b - 6 < x. -

The function g verifies the desired properties. The graph of F and g are 
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�k(f) 

�-S .b 

Exercise IV.1.7 Let f(x) = e-l/x2 if x =/: 0 and 1(0) = 0. Show that I 
is infinitely differentiable and that j<n> (o) = 0 for all n. After you learn 
the terminology of Taylor's formula, you will see that . the function provides 
an {!Xample of a coo function which is not identically 0 but all its Taylor 
polynomials are identically 0. 

Solution. Since limx-+O l(x) = 0, the function f is continuous. There exists 
polynomials {Pn} such that 

l(n) (x) = Pn(1/x)e-l/x2 • 

The proof is by induction and is · similar to the one given in Exercise 5. 
Assuming that l(n) (O) = 0 and letting u = 1/x we see that 

j<n> (x) - l(n) {O) 2 lim = lim uPn(u)e-u = 0 x-+0 X - 0 u-+±oo 

because for all integers m we have ume-'"'2 --. 0 as u --. oo or u --. -oo. By 
induction we conclude that f is infinitely differentiable on R and j(n) (0) = 
0 for all n. 
Exercise IV.1.8 Let n be an integer > 1 .  Let lo , . . .  , In be polynomials 
such that 

fn (x)enx + fn-l (x)e<n-l)x + · · · + fo(x) = 0 
for arbitmrily large numbers x.  Show that lo , . . .  , In are identically 0. {Hint: 
Divide by enz and let x --.  oo .J 

Solution. Dividing the relation by enx we obtain 

fn(x) + ln-t (x)e-x + · · · + fo(x)e-nz = 0. 
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By Theorem 1 . 1  and the fact that /0 , • • • , In are polynomials, we see that 
for all 1 � k � n we have 

lim fn-k (x)e-kx = 0. X-+00 

So limx-+oo fn(x) = 0 which proves that fn is identically 0. By induction 
we see that /j is identically 0 for all 0 � j < n. 

IV .2  Logarithm 

Exercise IV.2.1 Let f(x) = xx for x > 0. Sketch the graph of f. 

Solution. Since f(x) = ex log x the function f is positive for all x > 0. 
Furthermore, f' (x) = (log x+1)ex log x . Thus f is increasing on (1/e, oo) and 
decreasing on (0, 1/e) and therefore attains a minimum at ( 1/e, e- 1/e ) .  We 
also have limx-+oo f(x) = oo ,  and since limx .... o+ x log x = liinu .... oo (log u)/u 
= 0, we have limx .... o+ f(x) = 1 .  

0 1/e i. 

Exercise IV.2.2 Let f be as in Exercise 1, except that we restrict f to 
the infinite interoal x > 1/e . Show that the inverse function g exists. Show 
that one can write 

log y g(y) = log log y 1/J(y) , 

where limy-+oo 'l/J(y) = 1 .  

Solution. Since f is continuous and increasing on (1/e, oo) the function g 
exists and is defined on (e- 1/e , oo) . Put y = f(x) = xx , so log y = x log x 
and 
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Put 

_ log y _ log y log y X - - - . log x log log y - log log x log log y (1 _ log log x) 
1 1 t/J(y) = 

1 _ log log :.:  
= 1 _ h(x) · log log y 

log log y 

But log log y = logx + log log x so h(x) --+ 0 as x --+ oo and therefore 
t/J(y) --+ 1 8B y --+ 00 .  

Exercise IV.2.3 Sketch the graph of: (a) x log x; and {b) x2 log x. 

Solution. (a) Since 
d dx (x log x) = log x + 1 , 

the function is increasing on (1le, oo) and decreasing on (0, 1le) . Further
more, 

lim x log x = oo and lim x log x = lim (log u)lu = 0. X--+00 X--+0+ U--+00 

{b) Since 
d dx (x2 logx) = x(2 log x + 1) , 

the given function is increasing on ( 11 Ve, oo) and decreasing on ( o, 11 Je). 
Futhermore, we have 

lim x2 log x = oo and lim xx log x = 0. x--+oo x--+O+ 
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Exercise IV.2.4 Sketch the graph of: (a) (log x)fx; and {b) (1og x)fx2 • 

Solution. (a) We have 

� ( log x) 
= 

1 - log x 
dx x x2 ' 

thus the function is increasing on (O, e) and decreasing on (e, oo) . Futher
more, we have 

lim (log x)/x = 0 and lim (log x)/x = -oo. 
:J:-+00 :J:-+0+ 

e 
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(b) We have 
.!!:_ ( log x) = 1 - 2 log x 
dz x2 x2 ' 

thus the function is increasing on {0, Ve) and decreasing on ( Ve, oo ) .  Futher-
more 

lim (logx)fx2 = 0 and lim (logx)fx2 = -oo. x-+oo x-+O+ 

Exercise IV.2.5 Let E > 0.  Show: (a) limx-+oo{log x)/xE = 0; 
(b) limx-+O xE log x = 0; and (c) let n be a positive integer, and let f > 0. 
Show that 

lim (log x)n = 0. X--+00 XE 
Roughly speaking, this says that arbitrarily large powers of log x grow slower 
than arbitrarily small powers of x. 
Solution. (a) Let u = xE . Then Theorem 2.2 implies 

0 1. 
log u 1. log xE 1. log x = lm = Im = E lm , U-+00 U X-+00 XE X--+00 XE 

so the desired .limit drops out. 
(b) Put u = 1/xE in Theorem 2.2 so that 

0 = lim logu = lim -t:xe log x, u--+oo U x--+0 
hence limx-+0 xE log x = 0. 
(c) The limit follows from (a) and the fact that 

{logx)n _ log x . . .  log x _ IJn log x 
XE - xE/n xE/n - xE/n • i=l 
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Exercise IV.2.6 Let l(x) = x log x for x > 0, x :/= 0, and 1(0) = 0. 
(a) Is I contin'ltous on [0, 1) ? Is f uniformly continuous on [0, 1] ? 
(b) Is I right differentiable at 0? Prove all your assertions. 

Solution. (a) The function I is continuous at 0 because for x > 0 we have 
limx--.o x log x = 0. Hence f is continuous on [0, 1] . A function continuous 
on a compact set is uniformly continuous, so f is uniformly continuous on 
[0, 1] . 
(b) The Newton quotient of f at 0 is 

f(x) - /(0) _ x log x = log x, x - 0  x 
which tends to -oo as x approaches 0. So f is not right differentiable. 
Exercise IV.2.7 Let f(x) = x2 log x for x > 0, x f:. 0, and f(O) = 0. 
Is f right differentiable at 0? Prove your assertion. Investigate the differ
entiability of f ( x) = xk log x for an integer k > 0, i. e. how many right 
derivatives does this function have at 0? 

Solution. The function is right differentiable at 0 because for x > 0 we 
have 

lim l(x) - /(O) = lim x
2 log x = lim x log x = 0. :r;--.0 X - 0 X-+0 X a;--.0 

Now let f(x) = xk log x. We claim that I has k - 1 right derivatives. By 
induction we see that there exists positive numbers an and bn such that on 
(0, 1] we have 

l(n) (x) = anxk-n logx + bnxk-n , 
so by induction for n = 0, 1, . . . , k - 2 we have f(n+l) (O) = 0 because 

hence 

But · 

. l(n) (x) - f(n) (O) hm 0 = 0. x--.0 X -

. l(k- l) (x) - l(k-l) (O) . anx log x + bnx hm 0 = hm = -oo, :r;--.0 X - z--.0 X 
which proves that f has k - 1 right derivatives. 

Exercise IV.2.8 Let n be an integer > 1 .  Let fo , . . . , In be polynomials 
such that 

/n(x) (logx)n + /n-l (x) (log x)n-l + · · · + fo (x) = 0 

for all numbers x > 0. Show that /o , . . .  , fn are identically 0. {Hint: Let 
x = eY and rewrite the above relation in the form 



56 IV. Elementary Functions 

E aij (efl)iyi ,  

where ai; are numbers. Use Exercise 8 of the preceding section.] 

Solution. Let d3 be the degree of /; and write /; (z) = Et!o ai;zi . Then 
letting z = e'll we get 

n dj E E aij (efl)i yi = 0. 
j=O i=O 

Collecting terms and factoring out the (efl)i 's we get an expression of the 
form 

m 
9o(Y) + 91 (Y) (e11) 1 + · · · + 9m(Y) (e11)m = LYi (Y) (eY)i = 0, 

i=O 
where m = max1 <j<n { d; } and where the 9i 's are polynomials in y. Exercise 
8, §1 ,  of Chapter IV concludes the exercise. 

Exercise IV.2.9 (a) Let a >  1 and x > 0 .  Show that 

za - 1 � a(x - 1) .  

{b) Let p, q be numbers � 1 such that 1/p + 1/q = 1 .  If x � 1,  show that 

zl/p < 
z + ! .  - p q 

Solution. (a) The function h defined by h(z) = za - 1 - a(z - 1) is 
continuous on R�o and differentiable on R>o with h'(x) = a(xa- l - 1) .  
Thus h is decreasing on (0, 1) ,  increasing on (1,  oo) and h(1) = 0. Hence 
h(z) � 0 for all z > 0. 
(b) Let /(z) = z1/P and g(z) = z/p + 1/q. Then /(1) = g(1) = 1 and for 
z > 1 we have 

f'(x) = �x(l-p)fp and g'(x) = �· 
But if p > 1 and z > 1 ,  then z(l-p)/p < 1 which implies that f'(x) < g' (z) 
whenever x > 1 .  Hence f(x) � g(x) and f(x) = g(x) if and only if x = 1 ,  
as was to be shown. 

Exercise IV.2.10 (a) Let u, v be positive numbers, and let p, q be as in 
Exercise 8. Show that 

(b) Let u, v be positive numbers, and 0 < t < 1 .  Show that 

utvl-t � tu + (1 - t)v , 

and that equality holds if and only if u = v. 
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Solution. (a) Let x = ufv in the inequality of Exercise 9(b) and multiply 
both sides of the inequality by v. 
(b) Fix t in (0, 1) ,  and let p = 1/t and q = 1/(1-t) .  Then since 1/p+l/q = 1 
and p, q > 1 ,  the previous exercise implies that utvl-t $ tu + ( 1 - t)v. 
Clearly, if u = v the equality holds. Conversely, if the equality holds, then 
ufv = 1 because as we have seen in Exercise 9(b) , f(x) = g(x) if and only 
if X =  1 . 

Exercise IV.2.11  Let a be a number > 0.  Find the minimum and maxi
mum of the function f(x) = x2 fax . Sketch the gmph of f(x) . 

Solution. Since !!:__ (�) = 
2xax - x2ax log a 

dx ax a2x 

the function attains its minimum 0 at 0. If a > 1 ,  then limx--.-oo f(x) = oo 
and if a < 1 , then lhnx--.00 f(x) = oo. If a = 1 ,  then f(x) = x2 • 

Exercise IV.2.12 Using the mean value theorem, find the limit 

Generalize by replacing ; by 1/k for any integer k > 2. 

Solution. Let fk (x) = x1fk . Then f�(x) = 1/kx(l-k)/k , so by the mean 
value theorem we know that given n there exists a number cn,k such that n < Cn,k < n + 1 and 

Therefore 
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0 < (n + 1)1/k - nl/k < 1 . - - kn1-1/k 
Hence liiDn .... 00(n + 1) 1/k - n1/k = 0 for any integer k � 2. 
Exercise IV.2.13 Find the limit 

. ( 1 + h) 113 - 1 lllll h . 
h-+0 

Solution. We recognize the Newton quotient of f(x) = x113 at 1, thus the 
desired lillli t is /' ( 1) = � . 
Exercise IV.2.14 Show that for x > 0 we have log(1 + x) < x. 
Solution. Let f(x) = log(l + x) and g(x) = x. Then for x � 0 we have 

1 f' (x) = 1 and g'(x) = 1. + x  
Clearly, if x > 0 we have /'(x) < g'(x) , and since /{0) = g(O) = 0 we get 
the desired inequality, namely f(x) � g(x) whenever x > 0. 
Exercise IV.2.15 Prove the following inequalities for x > 0: 2 3 (a) log(l + x) < x - ; + � . 

2 (b) x - ; � log(l + x) . 
(c) Derive further inequalities of the same type. 
(d) Prove that for 0 < x � 1, 

log(1 + x) = lilll (x - � + · · · + (-1)n+l �) . n-+oo 2 n 

Solution. (a) Let f(x) = x - x2 /2 + x3 /3 - log{l + x). Then 
1 f'(x) = 1 - x + x2 - 1 + x � 0 

because 1 - x + x2 > 1/(1 + x) as one sees by lllultiplying both sides by 
1 + x. Furtherlllore, /{0) = 0 which illlplies that f(x) � 0 for all x � 0. 
{b) Let f(x) = log{l + x) - x + x2 /2. Then 

1 f'(x) = 1 + X  - 1 + X >  0 

because 1/(1 + x) � 1 - x as one sees by lllultiplying both sides by 1 + x. 
Since /(0) = 0 we see that f(x) � 0 for all x � 0. 
(c) Let 

and 



IV.2 Logarithm 59 

x2 x3 x2n+l 
P2n+t (x) = x - 2 + 3 - · · · + 2n + 1 

and f(x) = log(l + x) . Then 

P2n(x) :5 /(x) :5 P2n+t (x) .  

Indeed, P2n (O) = /(0) = P2n (O) = 0, f'(x) = 1/(1 + x) , and 

P�n(x) = 1 - x + x2 - · · · - x2n-l and P�n+1 (x) = 1 - x + x2 - · · · + x2n . 

However we can sum the first m terms of a geometric series and obtain the 
formula 

2 1 - ( - 1)m+lxm+l 1 1 -x +x - ·  · · + (- 1)mxm = = --
l + x 1 + x 1 + x ' 

so that P�n(x) < f' (x) � P�n+1 (x) which implies that P2n(x) � f(x) < 
P2n+t (x) . 

We also have the inequality x/(1 + x) � log(l + x) for all x > 0. Indeed, 
consider f(x) = x/(1 + x) - log( 1 + x) .  Then 

-x f'(x) = (1 + x)2 
< 0. 

Since /(0) = 0, the inequality follows. 
(d) Notation being as in part (c) we have P2n+t (x) - P2n (x) � 0 as n � oo 
for all x E [0, 1] , hence 

log(1 + x) = lim P2n(x) = lim P2n+l (x) n-+oo n-+oo 
for all x E [0, 1] . If Ln (x) = x - x2/2 + · · · + (-1)n+lxn/n, then for all 
positive integers n we have L2n (x) = P2n (x) and L2n+t (x) = P2n+t (x) 
which implies · 

lim Ln (x) = log(1 + x) n-+oo 
for all x E [0, 1] . 
Exercise IV.2.16 Show that for every positive integer k one has ( 1 ) k ( 1 ) k+l 

l + k < e < 1 + k . 

Taking the product for k = 1 ,  2, . . . , n - 1, conclude by induction that 

and consequently 

nn-1 nn 
___ < en-1 < __ _ 
(n - 1) 1 (n - 1) ! 

For another way to get this i"equality, see Exercise 20. 
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Solution. By Exercise 14 we have log{! +  1/k) < 1/k. Therefore k log{! +  
1/k) < 1 which implies {1  + 1/k)k < e. For the second inequality plug 
x = 1/k in {c) of the previous exercise to get 1/(k + 1) < log(! + 1/k) 
which implies e < (1 + 1/k)k+1 • 

Since en = en- l e we have the following inequalities 

nn-1 .(n + 1) n 
n nn (n + 1) n+l 

(n - 1) !  n < e < (n - 1)1 n 

which implies 
(n + l)n 

n (n + l)n+l 
I < e < ' . n. n. 

By induction we conclude that the double inequality holds for all positive 
integers n. This double inequality is equivalent to e-n+lnn- I  < (n - 1) !  < 
e-n+lnn which implies ee-nnn < n! < ee-nnn+l , as was to be shown. 

Exercise IV.2.17 Show that 

lim (1 + x )n 
= ez . n--.oo n 

Solution. We first show that lillln--.00 n log(l + x/n) = x. Let h = xjn, 
then 

lim n log(l + x/n) = lim x log(�+ h) 
= x. n--.oo h-+0 

Exponentiating yields the desired limit. 

Exercise IV.2. 18 Let {an}, {bn} be sequences of positive numbers. De
fine these sequences to be equivalent, and write an = bn for n � oo 
to mean that there exists a sequence of positive numbers { Un} such that 
bn = Unan and lim u�/n = 1 .  Alternatively, this amounts to the property 
that lim(an/bn) l/n = 1 .  
(a) Prove that the above relation is an equivalence relation for sequences. 
{b) Show that n! = nne-n for n � oo. Give a similar equivalence /or (3n) ! .  
(c) Show that if an = a� and bn = b�, then anbn = a�b� for n -+ oo .  

Solution. (a) Clearly, an = an because lim 11/n = 1 .  If an = bn , then 
bn = an because an = bn(l/un) with lim(l/un) 1/n = 1. Finally suppose 
that an = bn and bn = Cn · Write bn = Unan and Cn = tnbn ,  where ul/n � 1 
and tl/n -+ 1 as n � oo. Then we have Cn = Untnan with lim(untn) l/n = 1 
so an = Cn, as was to be shown. 
(b) The inequalities deduced in Exercise 16 imply e < n!/(nne-n) < en so 

But lim e1/n = lim n1/n = 1,  hence n! = nne-n . Replacing n by 3n in the 
inequalities of Exercise 16 we find 
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so {3n!) = {3n)3ne-Sn . 
{c) We write an = Una� and b� = tnb� where u1/n � 1 and t1/n -+ 1 
as n -+ oo. Then anbn = Untna�b� , so we have anbn = a�b� because 
lim{untn) 11n = 1. 

Exercise IV.2.19 Find the following limits as n -+  oo :  (aJ( <!�l>) l/n; {b) ( ( 1)3 ) 1/n ( (nl)2 ) 1/n ( 2n ) 1/n · 
n§:e-n ; {c) � ; and {d) (�n)l 

Solution. (a) Since n! = nne-n we have 

lim((3n!)/n3n) l/n = lim(3n-2ne-n)1/n = 0. 

(b) We have (n!)3 = n3ne-Sn so 

1. n. 1. n e _2 
( ( 1)3 ) 1/n ( 3n -3n) 1/n 

1m = 1m = e . n3ne-n n3ne-n 

(c) Since (n!)2 = n2ne-2n the desired limit is e-2 • 
{d) We have (2n!) = {2n)2ne-2n so the desired limit is e-2/4. 
For the next exercises, which concern the logarithm, we assume that you 
know elementary integration and upper-lo\\rer sums associated with the 
integral. Some of the proofs are easiest using such sums. 
Exercise IV.2.20 We shall give here an alternate proof for the estimate 
of Exercise 1 6. Write down upper and lower sums for the integral of log x 
over the interval [1, n] for each positive integer n. Use the partition of the 
interval at the integers k such that 1 < k < n. Using the inequalities 

lower sum � integral < upper sum, 

give a proof of the inequality 

n logn - n + 1 � log(n!) < (n + 1) log n - n + 1. 

Exponentiating, you have a proof of the inequality 

Solution. The lower sum is log 2 + log 3 + · · · + log(n - 1) = log(n - 1) ! 
and the upper sum is log 2 + log 3 + · · · + logn = log(n!) . The integral of 
log x from 1 to n is 

ln 
logxdx = [x log x - x]i = n logn - n + 1, 
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so we get 
log(n - 1)! :5 n log n - n + 1 < log n! . 

Therefore 

n log n - n + 1 < log( n!) < ( n + 1) log n - n + 1 

as was to be shown. 

Exercise IV .2.21 (a) Using an upper and lower sum, prove that for every 
positive integer n, we have 

1 ( 1 ) 1 
1 

< log 1 + - < - .  
n + n n 

{b) By the same technique, prove that 

1 1 1 1 2 + · · · + 
n < log n < 1 + 2 + · · · + 

n - 1 · 

Solution. (a) Consider the function /(x) = 1/(1 +x) for 0 < x :5 1. Noting 
that f is decreasing on the interval from (0, 1) and comparing areas we get 

1 1 11/n 1 
-

1 11 < f(x)dx < -.  
n + n 0 n 

But the integral is equal to log(1 + 1/n) so the desired inequality drops 
out. 
(b) Consider the function /(x) = 1/x from 1 to n. Then the lower sum 
is � + · · · + ! and the upper sum is 1 + � + · · · + (n_:l) so we have the 
inequalities 

1 1 ln 1 1 
- + · · · + - < f (x)dx < 1 + - + · · · + . 
2 n 1 2 n - 1 

But the integral is equal to log n so the desired inequalities follow. 

Exercise IV.2.22 (a) For each integer n > 1 ,  let 

1 1 an = 1 + 2 + · · · + 
n 

- log n. 

Show that an+l < an . {Hint: Consider an - an+l and use Exercise 21.} 
{b) Let bn = an - 1/n. Show that bn+l > bn . 
(c) Prove that the sequences {an} and {bn} are Cauchy sequences. Their 
limit is called the Euler number 1. 

Solution. (a) We have 

1 1 an - an+1 = - log n -
1 

+ log(n + 1) = -
1 

+ log(1 + 1/n) > 0 
n +  n +  
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the last inequality coming from Exercise 21 (a) . 
{b) We simply take the difference and get 

1 1 ( 1 ) 1 bn+l - bn = an+l - an - 1 + - = - log 1 + - + - > 0 n +  n n n 

the last inequality coming from Exercise 21{a) . 
(c) Let f > 0. Choose an integer N > 1/e. Then for all m > n > N we have 

0 < an - am < bn - bm + 1/n - 1/m < 1/n < f, 

and 
0 < bm - an � am - an + 1/n - 1/m < 1/n < f. 

So both {an} and {bn} are Cauchy sequences and they converges to the 
same limit because limn-+oo(an - bn) · 
Exercise IV.2.23 I/ 0 $ x < 1/2, show that log(l - x) > -x - x2 •  {Note: 
When you have Taylor's formula and series later, you can see that 

x2 xa 
log(l - x) = -x - 2 - 3 - · · · .  

The point is that -x is a good approximation to log( I -x) when x is small.] 

Solution. Let f(x) = log(! - x) and let g(x) = -x - x2 • Then f'(x) = 
-1/(1 +x) and g'(x) = -1 - 2x. We wish to show that f'(x) > g' (x) . This 
inequality is equivalent to 1 � (1 - x) (l + 2x) or 0 < x - 2x2 = x(1 - 2x) . 
Clearly, this last inequality is true whenever 0 < x � 1/2 so we have 
f' (x) > g' (x) on this interval. Finally, /(0) = g(O) = 0 so we must have 
f(x) ·> g(x) .  

Exercise IV.2.24 (a) Let s be a number. Define the bimomial coeffi
cients 

( � )  = s and ( : ) = B(n, s) = s(s-l}(s-2} · · · (s-n+l}/n! for n ?::. 2. 

Prove the estimate fB(n, s) f < fs fe l s l (n - t) ls ljn. In particular, 

lim sup fB(n, s ) f 11n < 1 . n-+oo 
Note that the above estimate applies as well if s is complex. 
(b) If s is not an integer > 0, show that lim IB(n, s) l 1/n = 1 . 
Solution. (a) Since 

B(n, s) = .!:.s(s - 1) (.! - 1) · · . ( 8 - 1) n 2 n - 1 
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letting a = ls i , we get 

1 IB(n, s) l < - [a(1 + a)(1  + a/2) · · · (1 + af(n - 1))] n 
hence the estimate for log niB(n, s) l , 

log niB(n, s) l :5 log a + log(1 + a) + · · · + log(1 + af(n - 1)) . 
Exercises 14 and 21 (b) imply that 

log nfB(n, s) f  < log a +  a +  a log(n - 1) . 
Exponentiating we get that niB(n, s) l � ae0 (n - 1)0 •  The lim sup state
ment follows from the fact that 

whenever ls i  ¥: 0. This limit follows from taking the logarithm. 
(b) Because of part (a) it is sufficient to bound fB(n, s) f 11n from below. 
Let a = l s i .  Then the triangle inequality implies 

1 
I
a 

I 
a fB(n s) l > -a Ia - 1 1 - - 1 · · · - 1 . ' n 2 n - 1 

Let no be an integer such that for all n � no we have a/n < 1/2. Then, 
since lim c1/n = lim 1/nl/n = 1 for c =/= 0 we can forget finitely many of the 
beginning terms, namely those up to no including 1/n, so that after taking 
the n-th power and the log we see that is suffices to show that 

An = ; [tog ( 1 - �) + · · · + log ( 1 - n � 1)] -+ 0. 

By assumption on no we have An $; 0, and Exercise 23 implies the following 
estimate 

An > .! [-� - � - . . . - a - a2 ] 
n no n� n - 1 n - 1 

> .!. [-a (..!.. + · · · + 
1 ) - a2c] , n no n - 1 

where G is a positive real number. The last inequality follows from the fact 
that E 1/n2 converges. Exercise 21 implies (assuming that no � 2 which 
we obviously can) 

-a a2G 
0 > An � - log(n - 1) - , n n 

so liiDn-+oo An = 0 as was to be shown. 



IV.3 Sine and Cosine 65 

Exercise IV.2.25 Let a be a real number > 0. Let 

a(a + l) · · · (a + n) an = . n!na 
Show that {an} is monotonically decreasing for sufficiently large values of 
n, and hence approaches a limit. This limit is denoted by 1/r(o:) , where r 
is called the gamma function. 

Solution. For all n � 1 ,  an > 0 and 

an+l a + n + 1 na (l a ) ( n ) a 
an 

= n + l (n + 1)01 = + n + l n + l · 

The inequalities deduced in Exercises 14 and 21 (a) imply that for suffi
ciently large n 

Exponentiating, we find that an+I/an < 1 for all large n, and since an > 0 
we see that {an} is monotonically decreasing for sufficiently large values of 
n. 

IV.3 Sine and Cosine 

Exercise IV.3.1 Define tan x = sin z/ cos x. Sketch the graph of tanx. 
Find 1. tan h lffi 

h . 
h-+0 

Solution. The tangent is not defined for x = 1r /2 + k1r when k E Z, and is 
periodic of period 11". We have 

d 1 -d tan x = 2 > 0 
X COS X 

and tan x = 0 is equivalent to x = k1r, k E Z. The limit 

lim 
tan h

= 1 
h-+0 h 

follows from the expression 

tan h 
h 

1 sin h - ' cos h h 

and the limit limh_.o (sin h)/h = 1 .  The graph of the tangent function is 



66 IV. Elementary Functions 

Exercise IV.3.2 Restrict the sine function to the interval -'lr/2 < x < 
1r /2, on which it is continuous, and such that its derivative is > 0 on 
-1r /2 < x < 1r /2 . Define the inverse function, called the arcsine. Sketch 
the graph, and show that the derivation of arcsin x is 1/ .../1 - x2 • 

Solution. By symmetry with respect to the line y = x we get the graph 
of arcsin x. To compute its derivative on the given interval, we simply use 
the formula for the derivative of the inverse map, so that 

l!.(arcsinx) = 1 = 1 = 1 
. 

dx cos(arcsinx) J1 _ sin2(arcsinx) .../1 - x2 

Exercise IV.3.3 Restrict the cosine function to the interoal 0 < x � 1r. 
Show that the inverse function exists. It is called the arccosine. Sketch its 
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graph, and show that the derivative of arccos x is -1/ VI - x2 on 0 < x < 

Solution. The inverse function exists because on the given interval, cos x 
is continuous and its derivative is < 0 on 0 < x < 1r. Arguing as in the 
previous exercise we find 

d 1 -1 -1  -(arccos x) = = = . dx - sin(arccos x) y"f=(�os2 (arccos x) V1 - x2 

We can also graph the function arccos x using symmetry with respect to 
the diagonal y = x. 

( 1 

Exercise IV.3.4 Restrict the tangent function to - 'lr/2 < x < 1rj2 .  Show 
that its inverse function exists. It is called the arctangent . Show that arc
tan is defined for all numbers, sketch its graph, and show that the derivative 
of arctanx is 1/(1 + x2) .  

Solution. Since the tangent function is continuous, (arctan x)' = 1 + 
tan2 x > 0 and limx--.11"/2 tanx = oo and limx--.-11"/2 tanx = -oo, we con
clude that the inverse function exists on R, that it is continuous with 
derivative 

d 1 1 -(arctanx) = = . dx 1 + tan2 (arctanx) 1 + x2 
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-r 
--

,_ 

Exercise IV.3.5 Sketch the graph of f(x) = x sin 1/x, defined for x =I= 0. 
(a) Show that f is continuous at 0 if we define /(0) = 0. Is I uniformly 
continuous on (0, 1) 'I 
{b) Show that I is differentiable for x ¥: 0, but not differentiable at x = 0. 
(c) Show that f is not Lipschitz on [0, 1] . 

Solution. (a) Since I sin z l :5 1 we have the inequalities - lx l :5 /(x) :5 lxl 
for all x ¥: 0 so l(x) -+ 0 88 x -+ 0, which proves that f is continuous 
at 0 if we define 1(0) = 0. Since [0, 1) is compact and I is continuous , we 
conclude that f is uniformly continuous on (0, 1] . The function I tends to 
1 88 lx l  -+ oo because (sin u)/u -+ 1 88 u -+ 0. Moreover, 

l'(x) = sin(1/x) - (1/x) cos(1/x) , 

so there are oscillations near zero 88 the graph illustrates. In fact, if Xn = 
1/(n7r) , n E Z, and n :/= 0 we have /(xn) = 0. 



(b) The Newton quotient of I at 0 is 
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f(h� = �(O) = sin(l/h) 

which does not tend to a limit as h --. 0, so f is not differentiable at · o. 
(c) The function /' is not bounded on (0, 1) because 

f' (2�) = 21m, 

so by Exercise 6, §2, of Chapter III, we conclude that f is not Lipschitz on 
(0, 1) ,  hence I is not Lipschitz on [0, 1] . 

Exercise IV.3.6 Let 9(x) = x2 sin(1/x) if x :f= 0 and 9(0) = 0. 
(a) Show that g is differentiable at 0, and is thus differentiable on the closed 
interval [0, 1] . 
(b) Show that 9 is Lipschitz on [0, 1] . 
(c) Show that 91 is not continuous at 0, but is continuous for all x :/= 0.  Is 
91 bounded? Why? 
{d) Let 91 (x) = x2 sin(l/x2) for !t :f= 0 and 91 (0) = 0. Show that 9{ (0) = 0, 
but 9� is not bounded on {0 ,  1] . Is 91 Lipschitz? 

Solution. (a) We form the Newton quotient of 9 at 0: 

g(h) - g(O) - h . h 
h _ 0 - s1n . 

But h sin h --. 0 as h � 0, so g is differentiable at 0 and 9'(0) = 0. 
(b) The derivative of 9 is bounded (see (c)) .on [0, 1] so g is Lipschitz on 
[0, 1] . This is a consequence of the mean value theorem. 
(c) For x :f= 0 we have 
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2 
g' (x) = 2x sin(l/x) -

x 
2 cos(l/x) = 2x sin(l/x) - cos(l/x) , 

X 
and since cos(1/x) oscillates between 1 and -1 as x -+  0 the function g1 is 
not continuous at 0, if we let g' (O) = 0. The function g' is bounded on R 
as Exercise 5 shows. 
(d) We have 

1. 9t (h) - 91 (0) - 1. h . (1/h2) - 0 1m h 0 - 1m s1n - , 
h�o - h�o 

so g� (0) = 0. For x ;/= 0 we have 

g� (x) = 2x sin(l/x2) -
2 

cos(lfx2) ,  
X 

and if Xn = 1/..f2im, then Xn -+ 0 and lu� (xn) l  -+ oo as n -+ oo, gi is 
unbounded on (0, 1] . 

Exercise IV.3.7 Show that if 0 < x < 1rj2, then sin x < x and 2/'lr < 
(sin x)fx. 

Solution. Let f(x) = sinx - x. Then f is differentiable on (0, 1r/2) with 
derivative f'(x) = cos x - 1 < 0, so /(x) < /(0) and since 1(0) = 0 we get 
the first inequality. 

For the second inequality,- consider l(x) = sin x - 2xj1r. The derivative 
of I is /'(x) = cos x - 2/?r, so I is increasing on (O, a) and decreasing on 
(a, ?r/2) , where a is the number such that 0 < a <  1rj2 and cos a = 2/?r. 
Conclude using the fact that 1(0) = l(7r/2) = 0. 

Exercise IV .3.8 Let 0 < x. (a) Show that sin x < x. {b) Show that cos x > 
1 - x2 /2. (c) Show that sin x > x - x3 /3! (d) Give the general inequalities 
similar to the preceding ones, by induction. 
Solution. (a) This result follows from the first part of Exercise 7. 
(b) Let 12 (x) = cos x - 1 +x2/2, then f�(x) = - sin x+x > 0 and I2(0) = 0 
which proves the desired inequality. 
(c) Let f3(x) = sin x - x + x3 /3! ,  then /�(x) = /2 (x) > 0 and /a(O) = 0 
which proves the desired inequality. 
(d) Let ln (x) = coa x - 1 + x2/2! - x4/4! + · · · + (-1)n+1x2n/(2n) ! and 
consider also 9n(x) = sin x - x + x3 /3! - · · · + ( -1)n+1x2n- l /(2n - 1)! .  
Then the general inequalities are 

and 

{ ln(x) < 0 for n even, 
/n(x) > 0 for n odd, 

{ 9n(x) < 0 for n even, 
9n(x) > 0 for n odd. 

These inequalities follow by induction and the fact that ln(O) = Un(O) = 0 
and l� (x) = 9n(x) and g�+1 (x) = ln(x). 



IV .4 Complex Numbers 

IV.4 Complex Numbers 71 

Exercise IV.4.1 Let o: be a complex number ;/= 0 .  Show that there are two 
distinct complex numbers whose square is a. 

Solution. The only two numbers solution to z2 = a  are y"i'Qiei(cp/2) and 
y"j"Qiei(1r+cp/2) . See the next exercise. 

Exercise IV.4.2 Let a be a complex, ;/= 0. Let n be a positive integer. 
Show that there are exactly n distinct complex numbers z such that zn = a. 
Write these complex numbers in polar form. 

Solution. Write z and a in polar form, that is z = rei9 and a = r0eicp . 
Suppose zn = a. This equality is equivalent to rneinB = r0eicp . Hence 

n r i( n6-cp) _ 1 -e - . ro 

Taking the absolute value of both sides we see that lz ln = la l .  Moreover we 
must have nO . - cp = 0 (mod 21r) , so the set of solutions of the equation 
zn = a is 

S = { la l l/nei( * ) ' lal l/nei(*+�) ' . . . ' lal l/nei( *+(n-1)�) } . 

Exercise IV .4.3 Let w be a complex number and suppose that z is a com
plex number such that ez = w. Describe all complex numbers u such that 
eu = w. 

Solution. We have ez = eu so taking absolute values we see that u and 
z must have the same real part. Furthermore, their imaginary part must 
differ by an integer multiple of 27ri. Conclude. 

Exercise IV .4.4 What are the complex numbers z such that ez = 1 ?  

Solution. Write z = x + iy. Then ez = exeiY. So ez = 1 implies that X =  0 
and y = 2k7r for some integer k. 

Exercise IV.4.5 If 0 is real, show that 

eiB + e-iB 
cos O = 2 and 

Solution. Since 

eiB _ e-iB 
sin O = 2i . 

ei6 + e-iB = cos 0 + i sin 0 + cos( -0) + i sin(O) = 2 cos fJ 

the first inequality drops out. For the second .formula note that 

ei8 - e-iB = cos 0 + i sin O - cos( -0) - i sin(fJ) = 2i sin O. 
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Exercise IV .4.6 Let F be a differentiable complex valued function defined 
on some interoal. Show that 

d(e�<t> ) 
= F'(t)eF<t> . 

Solution. Let G(t) = eit = cos t + i sin t. Then G'(t) = - sin t + i cos t = 
ieit . Now let F(t) = x(t) + iy(t) , so that eF(t) = ez(t)eitl(t) . The rule for 
differentiating products and the chain rule imply 



v 
The Elementary Real Integral 

V.2 Properties of the Integral 

Exercise V.2.1 (a) Let l, g be continuo'US functions on [a, b] with a < b. 
Assume g positive. Show that there exists c E [a, b] such that 

1b f(x)g(x)dx = f(c) 1b g(x)dx. 

{b) Bonnet Mean Value Theorem {1849) . Let l, g be continuous real 
valued functions on [a, b] . Assume f positive monotone decreasing. Show 
that there exists a point c E [a, b] such that 

1b J(x)g(x)dx = f(a) 1c g(x)dx. 

This result is definitely harder. First assume that I is C1 , so I' < 0.  
Let G(x) be the integral of g from a to x .  Integrate by parts. Using the 
intermediate value theorem, show that there is some c1 E [a, b] such that 

1b f(x)g(x}dx = f(b)G(b) + G(cl) (J(a) - f(b)) .  

Divide by I (a) , use the hypothesis that f is decreasing to conclude that the 
right side in on the segment between G(b) and G(c1 ), so by the intermediate 
value theorem again, is equal to G (c) for som·e c, th'US proving the result in 
this case. In general, possibly wait until Chapter X, §3, Exercise 7. Show 
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that there exists a sequence {fn} ofC1 functions with In( a) = f(a) , fn (b) = 
f(b) , each In is monotone decreasing, and In converges uniformly to f . Use 
bump functions to do this. The theorem is true for each fn, with some Cn 
instead of c. By Weierstrass Bolzano, the sequence {en} has a point of 
accumulation c E [a, b) which does what you want. 

Solution. (a) The function f is continuous on the compact interval [a, b) , 
so f attains its minimum m and its maximum M on [a, b) . For all x E [a, b] 
we have m < /(z) < M and g is positive so mg(x) � f(x)g(x) < Mg(x) , 
which implies 

m 1b g(x)dx < 1b f(x)g(x)dx < M 1b g(x)dx. 

But g is positive and continuous so J: g(x)dx > 0, and therefore 

J: f(x)g(x)dx m <  b < M. 
- fa g(x)dx -

The intermediate value theorem guarantees the existence of a number c E 
[a, b) such that 

J: f
b
(x)g(x)dx = f(c) , 

fa g(x)dx 
concluding the proof of (a) .  
(b) We follow the hint. First assume that f is 01 and let G(x) = J: g(t)dt . 
Integration by parts yields 

1b f(x)g(x)dx = f(x)G(x) l! - 1b !'(x)G(x)dx. (V. l) 

The function G is continuous and therefore attains its maximum M and 
minimum m on [a, b) . Since -f' ( x) is positive, we have 

m(-!' (x)) < -!'(x)G(x) < M(-f'(x)) . 

By the intermediate value theorem there is some c1 E [a, b] such that 

1b -f'(x)G(x)dx == G(ct ) 1b -f'(x)dx = G(ct ) (f(a) - f(b) ) .  

Therefore equation (V . 1) becomes 

1b f(x)g(x)dx = f(b)G(b) + G(ct ) (f(a) - f(b)) . 

Dividing by /(a) and letting u = f(b)/ f(a) we obtain 
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t!a) 1b f(x)g(x)dx = uG(b) + G(c1 ) ( 1 - u) . 

Since G is continuous and u E [0, 1] , there exists c E [a, b] such that uG(b)+  
G(c1 ) (1 - u) = G(c) . This concludes the proof when I E C1 • 

In the general case we approximate I uniformly by a sequence {/n} 
of monotone decreasing C1 functions. This can be done as follows. We 
first approximate f �iformly by step functions { CfJn} such that each CfJn 
is decreasing. Indeed, given n choose 6 such that l l(x) - I(Y) I < 1/n 
whenever lx - Y l < 6 (by the uniform continuity of 1). Then select a 
partition a = to < t1 < · · · < tk = b of [a, b] of size < 6 and define CfJn on 
[t; , t;+t ) to be equal to l(t;) . Then ll(x) - CfJn(x) l < 1/n for all x E [a, b) , 
and CfJn is decreasing. Then using a bump function as in Exercise 6(b) , §1 ,  
of Chapter IV and Exercise 7, §3, of Chapter X, we can approximate cpn 
by a C1 function In such that fln (x) - CfJn(x) l < 2/n for all x E [a, b] and 
In is decreasing. Then we are reduced to part (a) , so we can find for each 
n a number Cn such that 

rb {Cn 
la fn(x)g(x}dx = fn(a) Ja g(x)dx. 

By Weierstrass Bolzano, {en} has a point of accumulation c E [a, b] . We 
may assume without loss of generality that limn--+oo Cn = c. Then letting 
n --+ oo in the above equation we get 

1b f(x)g(x)dx = f(a) 1c g(x)dx 

as was to be shown. 

Exercise V.2.2 Let 

Show that 

and that 

11 Pn(x)Pm(x)dx = 0 if m -::/= n, -1 
11 

)2 2 J>n(X dx = 2 1 . -1 n +  
Solution. (i) For simplicity, let g = g(x) = x2 - 1 and let Kn = 1/(2nn!) . 
By induction one proves that for all 0 $ k :5 n, (dk fdxk)gn = gn-kQk (x) 
where Qo(x) , . . . , Qn (x) are polynomials. We have 
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where 

J 11 d" n d,'B md = -1 d,xn g d,xmg X. 

Assume without loss of generality that m > n. Integrating by parts we 
obtain [ d" r-1 ] 1 11 d"+ 1 r-1 

J = _ n m _ n mdx dzng dzm-1 9  dxn+1 g d,xm-1 9 · -1 - 1  
The expression in brackets is 0 ,  so integrating by parts n successive times 
we get , 

(ii) Let I be the integral we are computing. Letting m = n in (i) we find 

11 d" 

� 

III /(K�) = 
-1 dzn gn J.xngndx • 

Let L be this last integral. Integrating by parts we obtain 

fLI = 11 gn tP:n gndx = (2nl) 11 
gndx . 

-1 dx -1 
This last integral can be evaluated by n successive integration by parts. 
Indeed, 

so 11 ndx ( 1)k 2kn(n - 1) · · · (n - k - 1) 11 2k n-kd _1 9 
= - 3 · 5 · 7 · · · (2k - 1) _1

x 9 x. 

Substituting k = n, we find that 

11 2nn12nn1 2 
gndx = = ' _1 2 · 3 · 4 · (2n - 1) · 2n 2n + 1 

so (Kn)2 L = 2/(2n + 1) .  
Exercise V .2 .3 Show that 

Evaluate 

11 
xm Pn(x)dx = 0 if m < n. 

-1 
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Solution. (i) Integrating by parts we get the following recurrence relation: 

m u, - nd ( l)k m. m-k nd 11 
.-m 

1 11 dn-k 

-1 x dxn g x = - (m- k) ! -1 x dxn-k g x. 

Now let k = m. Since 11 
_d_

n-_m_ ndx = 0 -1 dxn-mg ' 

the desired result follows at once. 
(ii) Integrating by parts k times we also see that 

So 

n n ( )d _ K (-l)n 1 nd _ (-l)2n n. · n. n. 11 11 I 2 2n f2n I 
X .rn X X - n n. g X - 2n I (2 1) 1 ' -1 _1 n. n + . 

hence 11 n 2n+l (n!)2 _1 x Pn(x)dx = (2n + l) ! . 

Exercise V.2.4 Let a < b. If f, g are continuous on [a, b] , let 

(!, g) = 1b f(x)g(x)dx. 

Show that the symbol (/, g) satisfies the following properties. 
{a) If /1 , /2 , g are continuous on [a, b] , then 

lf c is a number, then (c/, g) = c(/, g) . 
{b) We have (/, g) = (g, /) .  
(c) We have (/, /) > 0, and equality holds if and only if f =  0. 
Solution. (a) We simply use the linearity of the integral, namely 

1b (fl (x) + h(x))g(x)dx = 1b fl(x)g(x)dx + 1b h(x)g(x)dx, 

and 1b cf(x)g(x)dx = c 1b f(x)g(x)dx. 

(b) Obvious. 
(c) Since f(x)f(x) � 0 we have (/, /) > 0. If f = 0, then clearly we have 
(/, /) = 0. The converse follows at once from Theorem 2.4. 



78 V. The Elementary Real Integral 

Exercise V .2.5 For any number p > 1 define 

[ b ] 1/p 
I III I�.� = 1 1f(x) l11dx · 

Let q be a number such that 1 I p + 1 I q = 1 .  Prove that 

1 (/, g) l < l l / l lp l l9 l l q ·  

{Hint: If f il l iP and l fg llq ;/= 0, let u = l f iP I I I/ I I� and v = fg fq l lfg lf3 and apply 
Exercise 10 of Chapter IV, §2.] 

Solution. If 1 1/ l lp = 0 or l lg l f q = 0 the inequality is trivially verified, so we 
assume that 1 1 /l lp and l fg lf q are both ;/= 0. Using the inequality 

of Exercise 10, Chapter IV, §2, we obtain 

so that 
IJ IP fg fq lfl lg l < 

pl lf l l�- 1 119 l l q + 
ql lg l l:-1 11/ l lp · 

Integrating both sides yields 

1 1 
{ 1/ 1 , 19 1 } < p l l f l l�.� l lg l l q + q l lf ll�.� l lg ll q = I II II�.� l l9 l l q ·  

Corollary 2.2 implies that 1 (/, g) l < ( 1/ 1 , fg f ) , thus proving the desired in
equality (called Holder's inequality) . 

Exercise V.2.6 Notation being as in the preceding exercise, prove that 

{Hint: Let I denote the integral. Show that 

and apply Exercise 5.] 

Solution. Assume I / + gf ;/= 0 otherwise the inequality is trivial. The 
triangle inequality for the absolute value implies, 
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Since 1/p + (p - 1)/p = 1, Exercise 5 implies, 

so combined with a similar result for the second integral we get 

I I / + o il� � I I (/ + g)P-1 I Ip/(p- l) ( l l/ l lp + l lu l lp) · 

But I I/ + ull�/ 1 1 (/ + g)P-1 I Ipf(p-l) = I I /+ uiiP , and the inequality drops out. 

Exercise V .2. 7 Let f : J -+ C be a comple$ valued function defined on an 
interoal J. Write f = /1 + i/2 , where /1 , /2 are real valued and continuous. 
Define the indefinite integral 

j f(x)dx = j ft(x)dx + i j h(x)dx, 
and similarly for the definite integral. Show that the integral is linear, and 
prove similar properties for it with change of variables and integrating by 
parts. 

Solution. The linearity of the integral and law of addition for the complex -
numbers imply 

1b 
f(x) + 9(x)dx - 1b 

ft (x) + 91 (x)dx + i1b 
f2(x) + 92 (x)dx 

- 1b 
It + 1b 

91 + i 1b 
h + i 1b 

92 

- 1b 
f(x)dx + 1b 

9(x)dx. 

If z = q + it is a complex number, then 

If f and g are complex valued functions, then a simple computation shows 
that (/g)' = J' g + J g' , therefore the integration by parts formula is the 
same as in the text. 

The change of variable formula is the same because if J is a real valued 
function, we have 

1b 
9(/(x))j'(x)dx = 1b 

91 (/)/' + i t 92 (/)/' 
a a Ja 

( ) lb . ( ) l b 1/(b) . 1 /(b) /,/(b) ( = G1 f a + tG2 f a = G1 /(a) + tG2 f(a) = g x)dx. 
f(a) 
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Exercise V .2.8 Show that for real a =I= 0 we have 

Show that for every integer n =I= 0, 

121f eiR$ dx = 0. 

Solution. The first result is a consequence of 

d ( ia� ) · e Ia ia� ia� - - -e - e 
dx ia - ia - · 

For the second result, note that 

ein�dx = e
. = -:-(1 - 1) = 0. 

121r [ in� ] 211' 1 
o 1n 0 1n 

V .3 Taylor's Forn1ula 

Exercise V.3.1 Prove Theorem 9.4 by integrating 
1 tn -- = 1 - t + t2 - • . .  + (-1)n-1tn-1 + (-1)n __ 

1 + t 1 + t 
from 0 to x with -1 < x < 1 .  Prove the estimates for the remainder to 
show that it tends to 0 as n -+ oo. If 0 < c < 1, show that this estimate 
can be made independent of x in the interoal - c  < x � c, and that there is 
a constant K such that the remainder is bounded by Klxln+1 . 
Solution. Integrating the formula given by summing the geometric series 
we get the formula of Theorem 3.4, namely 

log(l + x) = X - - + - - · · · +  (-1)n-1- + (-1)n dt. x2 x3 xn 1� tn 
2 3 n 0 1 + t 

Now we want to estimate the remainder, Rn+1 (x) = ( -1)n J: tn /{1 + t)dt. 
In case 1 (0 � x � 1) we see that if t is positive, then 1 + t > 1 so 

1� xn+1 
IRn+1 (x) l  < tndt = 1 . 

o n +  
In case 2 (-1 < x � 0) , the inequality 1 1 + tl > 1 - ltl > 1 - lx l = 1 + x  
implies 
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If lxl � c < 1 , then in case 1 we have IRn+l (x) l � cn+l /(n + 1) and in case 
2 we have IRn+t (x) l � cn+lj((n + 1) ( 1 - c)) .  If K = 1/(1 - c) , then for 
lx l  � c < 1 the remainder is bounded by Klxln+l . 

Exercise V.3.2 Do the same type of things for the function 1/{1 + t2 ) to 
prove Theorem 3.5. 

Solution. Since (d/dx) (arctanx) = 1/(1 + x2) and 

1 
= 1 - t2 + t4 - . .  • + (-t2)n-1 + (-t2)n 

1 + � 1 + � '  
integrating from 0 to x with -1 < x < 1 gives 

x3 x5 x2n-1 1:�: t2n 
arctan x = x - - + - - · · · + (-1)n-l + (-1)n dt 

3 5 2n - 1 0 1 + t2 ' 

since 1 + t2 � 1 , the remainder can be estimated as follows: 

[1:�:1 t2n [I:A:I lx l2n+l 
IR2n+l (x) l � Jo 1 + t2 dt � Jo t2ndt = 

2n + 1 . 

Futhermore, if 0 < c < 1 and -c � x < c, then the remainder is bounded 
by c2n+l /(2n + 1) . 
Exercise V .3.3 Let j, g be polynomials of degrees < d. Let a > 0. Assume 
that there exists C > 0 such that for all x with lx l  � a we have 

1/(x) - g(x) l � Clxld+l . 

Show that f = g. (Show first that if h is a polynomial of degree < d such 
that lh(x) l < Clxld+l , then h = 0.} 

Solution. Suppose h(x) = amxm + am-tXm-l + · · · + ao with m � d. 
Letting x = 0 shows that a0 = 0. We now continue by induction. Suppose 
ao = a1 = · · · = a�c-1 = 0 for some 1 � k � m. Then we have for x =I= 0 

lh(x)/xk l < Clxld+l-k . 

Letting x � 0 proves that a�c = 0. Therefore ao = · · · = am = 0 so h = 0. 
Letting h = J - g proves the initial claim. 
Exercise 3 shows that the polynomials obtained in Exercises 1 and 2 actu
ally are the same as those obtained from the Taylor formula. 

Exercise V.3.4 Let a >  1 .  Prove that 
an 

lim -1 = 0. 
n--too n. 

Conclude that the remainder te1ms in the Taylor expansions for the sine, 
cosine, and exponential function tend to 0 as n tends to infinity. 
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Solution. Let Un = an /nl , and select an integer N > 2a - 1. For all n � N 
we have 

Un+l a 1 -- = < -Un n + 1  2 ' 

thus for all k � 0 we have UN+k � (1/2)kuN , hence limn-+oo an /n! = 0. 
Clearly, this limit is also true when a < 1. Form the expressions given after 
the formula for some cosine and the exponential we deduce at once that 
the remainder of these functions tends to 0 as n -+ oo. 

Exercise V.3.6 (a) ProtJe that log 2 = log(4/3) +log{3/2) , or even better, 

10 25 81 
log 2 = 7 log 9 - 2 log 24 + 3 log 

80
. 

(b) Find a rational number approximating log 2 to five decimals, and prove 
that it does so. The above trick is much more efficient than the slowly 
convergent expression of log 2 as the alternating series. 

Solution. (a) The first equality follows from the fact that 2 = (4/3) (3/2) . 
For the second equality, note that the right-hand side is equal to 

( 10) 7 ( 24) 2 ( 81 )
3 27263231257 

log 9 
25 80 

= log 
21231457 = log 2. 

(b) We see that 10/9, 25/24, and 81/80 are all close to 1. We use Theorem 
3.4 to estimate each term. Let Pn(x) = x - (x2/2) + · · ·  + f-1)n-lxn/n. 
Then for the first term we have 

7 log ( 1:) = 7 log ( 1 + �) = 7 P5(1/9) + 7 .Rs(1/9) 

with I 7Re(1/9) 1 � (7/2) x 10-6 • Similarly 

2 log (�) = 2 log ( 1 + 
2
�) = 2P3(1/24) + 2.R.(1/24) 

with 1214(1/24) 1 � 2 x 10-6 and 

3 log (�) = 3 log ( 1 + ;O) = 3P2(1/80) + 3Rs(1/80) 

with I3Re(l/9) 1 � 2 x 10-6• Since 

17  Jls(1/9) - 2R4(1/24) + 3Jls(1/9) 1 < (� + 2 + 2
) 

x 10-6 < 10-5 

it follows that 7P5(1/9) - 2Pa(1/24) + 3P2 (1/80) = 0.69314 is a rational 
number, giving the desired approximation of log 2. 



V.3 Taylor's Formula 83 

Exercise V .3.6 (a) Prove that · 

u + v  
arctan u + arctan v = arctan 

1 
. 

- uv 

(b) Prove that 1r /4 = arctan 1 = arctan(1/2) + arctan(1/3) . 
(c) Find a rational number approximating 1r/4 to 9 decimals. 
(d) You will do so even faster if you prove that 

1r 
4 = 4 arctan(1/5) - arctan(1/239) . 

Solution. (a) The addition formula for the tangent, which follows from 
the addition formula for the sine and cosine is 

tan x + tan y 
tan(x + y) = . 

1 - tan x tan y 

Let u = tan x and v = tan y, then 

u + v  
arctan 

1 
- = arctan(tan(x + y)) = x + y = arctan u + arctan v. 

- UV 

(b) Let u = 1/2 and v = 1/3 in the formula obtained in (a) . 
(c) We use the same method of approximation as in Exercise 5. If u = 1/2, 
then 

ua us u1 
arctan u = u - 3 + 5 - 7 + Rs(u) = A + Rs(u) , 

with I.Rg (u) l < 3 x 10-4• If v = 1/3, then 

va v5 
arctan v = v - 3 + 5 + R1(u) = B + Rs(u) ,  

with IR7(v) l < 10-4 • So ?r/4 = A + B + Rg (u) + R7(v) and since 

IRg (u) + R1(v) l < 10-3 

we conclude that the rational number A + B = 0. 785 gives the desired 
approximation. 
{d) Using the formula in (a) repeatedly we find 

arctan(1/5) + arctan(l/5) = arctan(5/12) , 
arctan(1/5) + arctan(5/12) = arctan(37 /55) , 

arctan(l/5) + arctan(37 /55) = arctan(120/119) , 

so 4 arctan(l/5) = arctan(120/119) and therefore 

4 arctan(l/5) - arctan(1/239) = arctan(120/119) + arctan( -1/139) . 
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One more application of the formula in (a) and the result drops out. Pr� 
ceeding as in part (c) we see that the following number is rational and 
approximates 1r /4 to three decimals, 

(! 
-

(1/5)3 (1/5)5) - _!_ 
5 3 

+ 5 2� · 
Exercise V.3. 7 Let A > 0, and consider an internal 0 < 6 � x � 2A - 6. 
Show that there exists a constant C, and for each positive integer n, there 
exists a polynomial Pn such that for all x in the interoal, one has 

J log(x) - Pn(x) J � C/n. 
{Hint: Write x = A + (x - A) so that 

log x = log A +  log ( 1 + x �
A) .] 

Solution. Let c = (A - 6)/A. Then 0 � c < 1 , and -c � (x - A)/A < c if 
and only if 6 < x � 2A - 6. The estimates for the remainder in Theorem 
3.4 show that if -c < X $ c, then 

I.Rn(X) I � .!. 1 
c , n - c  

so if Qn-t (X) = X- (X2 /2) + · · · + (  -l)n-2 xn-1 /(n - 1) , the polynomials 

(x - A) Pn(x) = log A +  Qn-1 A 

satisfy the desired property with C = c/(1-c). Note, that we can take more 
terms in the expansion of the logarithm so that we get a better uniform 
approximation. However, here we have shown that we can choose Pn to be 
of degree n - 1. 

V.4 Asymptotic Estimates and Stirling's Formula 

Exercise V.4.1 lntegmting by parts, prove the following jofTnulas. 
{a) I sinn xdx = -� sinn-l x cosx + !!.=.! I sinn-2 xdx. 
(bJ I cosn xd:x: = ! cosn-1 x sin x + n n r I cosn-2 xdx. 

Solution. (a) Integrating by parts we have 

J sinn-1 x sin xd:x: = - sinn- 1 x cos x  + (n - 1) j cos2 x sinn-2 xdx, 

but cos2 x sinn-2 x = (l - sin2 x) sinn-2 x = sinn-2 x - sinn x which implies 
the desired result. 
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j cosn-l x cos xdx = cos"-1 x sin x + (n - 1) j sin2 x cos"-2 xdx 

and sin2 x = 1 - cos2 x, the equality drops out. 

Exercise V .4.2 Prove the formulas, where n is a positive integer: 
(a) J(log x)ndx = x(log x)n - n J (log x)n- l dx. 
{b) J xne:�:dx = xne:�: - n J xn-lexdx. 

Solution. (a) Let g' (x) = 1 a�d f(x) = {log x)n in the integration by parts 
formula. 
(b) Let g'(x) = e:�: and f(x) = �n in the integration by parts formula. 

Exercise V.4.3 By induction, find the value J0
00 xne-:�:dx = n! . The in

tegral to infinity is defined to be 

{00 
f(x)dx = lim {B f(x)dx. lo B--+oo lo 

Solution. Let In = J000 xne-:�:dx. Using �he same argument as in Exercise 
2{b) we find that 

Letting B -+ oo shows that In = nin-1 · So by induction In = n!It . But 
• s1nce 

so we get It = 1 . 

Exercise V.4.4 Show that the relation of being asymptotic, i. e. f(x) "' 
g( x) for x -+ oo ,  is an equivalence relation. 

Solution. Clearly, J(x) "' f(x) because for all large x we have f(x) =I= 0 and 
f(x)/ f(x) = 1 . If J(x) "' g(x) , then g(x) "' f(x) because if limx--+oo J(x)/ g(x) 
= 1, then 

· 

lim g(x)/f(x) = lim /( )� ( ) = 1 . :1:--+00 X--+00 X g X 

Finally, f(x) "' h(x) whenever f(x) "' g(x) and g(x) "' h(x) because 

. . f(i) g(x) 
hm f(x)/h(x) = hm ( ) h( ) = 1. :�:--+oo :1: --+oo g X X 
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Exercise V.4.6 Let r be a positive integer. Prove that 

1� (lo:x)r
dx = O ( (lO:x)r

) for x -HxJ. 

{Hint: Integrate between 2 and -Vz, and then between -Vz and x .J 

Solution. Let j(t) = 1/(log t)r . The function f is decreasing and positive 
for x � 2, so 

and 

But we have 

[Vi 
12 f(t)dt < f(2) ( ..;x - 2) < !(2)-Vz, 

1� j(t)dt < X - -Vz < X 
• 

v; - (log -Vz)r - (log -Vz)r 

X - 2r X - 0 ( X ) 
(log -Vz)r - (log x )r - (log x )r ' 

for x --+  oo. It is therefore sufficient to show that -Vz = 0 (x/(log x)r) for 
x --+  oo. But 

-Vz 
= 

(log X )r 
--+ 

0 
x/(log x)r -Vz 

as x --+ oo as was shown in Exercise 5, §2, of Chapter IV. Therefore, 
-Vz = O (x/(log x)r) and we are done. 

Exercise V .4.6 (a) Define 

1:1: 1 Li(x) = 1 dx. 2 og x 

Prove that 

Li(x) = 
x 

+ 0 ( x ) 
log x (log x )2 so Li(x) rv 1 x 

. 
og x 

(b) Let r be a positive integer, and let 

1:1: 1 
Lir (x) = 

(l ) 
dx. 2 og x r 

Prove that Lir (X) I'V X I (log X) r for X --+ 00 .  Better, protJe that 

L. ( ) 
X O ( X ) lr X =  

) 
+ 

) 1 • (log X r (log X r+ 

(c) Give an asymptotic expansion of Li(x) for x --+  oo. 
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Solution. (a) Let r = 1 in (b) . 
(b) Integrating by parts we find that 

L" ( ) - r 1 dt = [ t ] z + r r 1 
dt 1r X 12 (log t)r (log t)r 2 12 (log t)r+l 

_ x 1� 1 
- (log x)r + Cr + r }2 (log t)r+l dt, 

where Or is a number. By Exercise 5, §2, of Chapter IV we have 

Cr = 0 ( x ) (log x)r+l 
for x --t oo. Hence Exercise 5 implies the asymptotic estimate of Lir {x) . 
(c) Let fr (x) = (r - l) !x/(Iogx)r . Induction and the first equation obtained 
in (b) imply 

Li(x) = /1 (x) + · · · + fn(x) + n!Lin+l (x) + 0(1) .  

Clearly, fr+l (x) = o(fr (x)) and the estimate of part (b) gives 

n!Lin+l (x) = o(fn(x)) . 
Since fr (x) � oo as x --t oo, the term 0(1) causes no problem and therefore 
{fr} gives an asymptotic estimate of the function Li for x -+ oo. 

Exercise V .4. 7 Let 
1 L(x) = E l k "  2<k<� og 

Show that L(x) = Li(x) + 0(1) for x � oo, so in particular, L(x) rv Li(x) . 
Solution. This is a particular case of Exercise 8 with f(t) = 1/ log t. Note 
that the assumptions of Exercise 8 are satisfied because t � log t implies 1� dt 1� dt -- > - = log x - log 2, 

2 log t 2 t 
hence limx--.00 f2

� ( 1/ log t )dt = oo. 

Exercise V.4.8 More generally, let f be a positive function defined, say, 
for all x > 2 .  Assume that J is decreasing, and let 

F(x) = 1:�: f(t)dt. 
Assume that F(x) is unbounded, i. e. lim F(x) = oo for x --t oo . Show that 

F(x) rv E f(k) for X �  00. 
2<k<x 

In fact, if we denote the sum on the right by .SJ (x), show that 
F(x) = s, (x) + 0(1). 
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Solution. Let N be the largest integer � x. The usual estimate with the 
upper and lower Riemann sums leads to the inequalities 

N 
fa; N 

L J<k> � 12 
J<t>dt � L J<k> 

k=3 2 k=2 
so that -/(2) < F(x) - S1(x) � 0. Hence F(x) = S1(x) + 0(1) and since 
F(x) � oo as x --+  oo we have the relation F(x) � S1 (x) . 

For Exercises 9, 10, and 11, we let 

F(x) = 1:�: 
f(t)dt. 

Exercise V.4.9 Let J and h be two positive continuous functions on R. 
Assume that lima;-+oo h(x) = 0. Assume that F(x) � oo as x � oo. Show 
that 1:�: 

f(t)h(t)dt = o(F(x)) for x --. oo. 

Solution. Given E > 0 select x0 such that x > xo implies h(x) < E. Then 
for x > Xo 

r /h = ro 
/h + 1:�: fh < M + E1:�: /, 12 12 a;o a;o 

where M = f2
a;0 fh. Consequently, 

f2
:J; fh M 

12
:1: I 

� 
12

:1: I + E. 

Since J2a; f --+ oo as x --+ oo we can make the expression on the right < 2E 
for all x sufficiently large, thereby proving that J; J(t)dt = o(F(x)) .  

Exercise V.4. 10 Assume that J, h are continuous positive, that f(x) � 
oo, and that h(x) � 0 as x � oo .  Show that 

1:�: f(t)h(t)dt = o(F(x)) for x --.  oo. 

Solution. If lima;-+oo J(x) = oo, then lim:.:-+oo F(x) = oo so we are reduced 
to Exercise 9. 

Exercise V.4. 11 Suppose that f is monotone positive (increasing or de
creasing) and that 

Prove that 

f(x) = o(F(x)) for x � oo. 

f(x) 112 = o (1:�: f(t) 112dt) for x --. oo. 
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Solution. If f is decreasing, then f(x) 112 (x - 2) < I: j(t) 112dt so 

/(x) l/2 1 
0 < < --- J2x f(t) l/2dt - x - 2 ' 

hence f(x) 112 = o (J2x f(t)112dt) for x --.  oo , and this result holds without 
the assumption that f(x) = o(F(x)) for x --+  oo. If f is increasing, then for 
all 2 < t � x we have 

/(t)l/2 /(t) l/2 < f(x) l/2j(t) l/2 

hence F(x) < f(x)112G(x) where G(x) = I; f(t) 112dt. We can write 

J(x)/F(x) = E(x) 

where limx-+oo E(x) = 0. Multiplying the last inequality by f(x) 112 and 
dividing by F(x) we get 

f(x) 112 < ��� G(x) = e(x)G(x) 

and therefore 
f(x) l/2 
G(x) 

< e(x) . 

So in all cases we have the result j(x) 112 = o (I2x j(t) 112dt) for x --+  oo. 





VI 
Normed Vector Spaces 

Vl.2 Norn1ed Vector Spaces 

Exercise VI.2.1 Let S be a set. By a distance function on S one means 
a function d(x, y) of pairs of elements of S, with values in the real numbers, 
satisfying the following conditions: 

d( x, y) > 0 for all x, y E S, and = 0 if and only if x = y. 
d(x, y) = d(y, x) for all x, y E S. 
d(x, y) < d(x, z) + d(z, y) for all x, y, z E S. 

Let E be a norrned vector space. Define d(x, y) = lx - Yl for x, y E E. Show 
that this is a distance function. 

Solution. Condition N 1 of the norm implies the first condition of the 
distance function. Setting a = -1  in N 2 implies the second condition. 
Finally the triangle inequality for the norm implies 

lx - Yl = lx - z + z - Yl � lx - zl + l z - Yl 

which is the third condition of the distance function. 

Exercise VI.2.2 (a) A set S with a distance function is called a metric 
space. We say that it is a bounded metric if there exists a number 
C > 0 such that d(x, y) < C for all x, y E S. Let S be a metric space with 
an arbitrary distance function. Let xo E S. Let r > 0. Let Sr consist of all 
x E S  such that d(x, xo) < r. Show that the distance function of S defines 
a bounded metric on Sr . 
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{b) Let S be a set with a distance function d. Define another function d' on 
S by d' ( x, y) = min( 1 ,  d( x, y)) . Show that d' is a distance function, which 
is a bounded metric. 
(c) Define 

d"(x, 11) = 
d(x, 11) • 

1 + d(x , y) 

Show that d" is a bounded metric. 

Solution. (a) For all x, y E Sr we have 

d(x, y) < d(x, xo) + d(xo , y) < 2r. 

(b) Clearly, d'(x, y) > 0 �ith equality if and only if d(x, y) = 0. The 
second condition is verifi� because d(x, y) = d(y, x) . To verify the triangle 
inequality consider separate cases: suppose d(x, y) < 1 .  Then since d is 
a distance, the result follows. If d(x, y) > 1 ,  then d' (x, y) = 1 and 1 < 
d(x, z) + d(z, y) , so the result follows. This distance function is a bounded 
metric because we have d'(x, y) < 1. 
(c) We have d"(x, y) = 0 if and only if d(x, y) = 0 so the first property is 
verified. The second property d" ( x, y) = d" (y, x) · holds because d( x, y) = 
d(y, x) . To prove the triangle inquality it suffices to show that 

a b c 
1 + a

<
1 + b

+
1 + c 

whenever a, �' c > 0 and a < b + c. But the above inequality is equivalent 
to 

a < b + c + abc + ab + bc 

which is true. This implies that d" is � distance function, and d" is b�unded 
by 1 because d(x, y) < 1 + d(x, y) . 

Exercise VI.�.3 Let S be a metric space. For each x E S, define the 
function fx : S -+  R by the formula 

fx(Y) = d(x, y) . 

(a) Given two points x, a in S show that fx - Ia is a bounded function on 
s. . 
(b) Show that d(x, y) = l l fx - /11 11 · 
(c) Fix an element a of S. Let gx = fx - fa ·  Show that the map 

is a distance preserving embedding (i. e. injective map) of S into the normed 
vector space of bounded functions on S, with the sup norm. {If the metric 
on S originally was bounded, you can use !:�: instead of 9x ·f This exercise 
shows that the genemlity of metric spaces is illusory. In applications, metric 
spaces usually arise natumlly as subsets of normed vector spaces. 
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Solution. (a) The triangle inequality immediately implies 

-d(a, x) < fx (Y) - !a (Y) = d(x, y) - d(a, y) < d(a, x) . 

(b) By (a) we know that fx - /11 is bounded and that 

lfx C�) - /11 (z) l < d(y, x) . 

Letting z = x or z = y we see that 1 1 /x - /11 11 = d(y , x) . 
(c) Let cp be the given map, that is cp(x) = 9x · The function cp is injective 
because if cp(xt ) = cp(x2) ,  then 9x1 (y) = 9x2 (y) for all y, and putting y = X t  
we get 0 = d(x1 , Xt) = d(x1 , x2) hence x1 = x2 . Furthermore, 9x is bounded 
and l l cp(x) - cp(y) ll = I I  9x - 011 11 = d(x, y) . 
Exercise VI.2.4 Let 1 · 1  be a norm on a vector space E. Let a be a number 
> 0. Show that the function x ._.. afxl is also a norm on E. 

Solution. We have a > 0 so alxl > 0 and = 0 if and only if fx l = 0. The 
second axiom holds because afbx l = afbl lx l  = l b lalx l .  Finally the triangle 
inequality follows from 

Exercise VI.2.5 Let l · l t and l · l 2 be norms on E. Show that the functions 
x .._.. fxh + lxl2 and x ._.. max( fx f l , lx l2) are norms on E. 

Solution. (i) We have lx l 1 + lx l2 > 0 and = 0 if and only if lx l 1  = lx l2 = 0. 
Clearly, f axh + faxf2 = a(lxh + lx f2) · Finally, the triangle inequality 

fx + Yh + fx + Yl2 � lx l 1 + IY I 1 + lxl2 + IYI2 · 

(ii) For the second function only the triangle inequality requires a little 
work: 

max(fx + Yh , lx + Yl2) < max(fxh + IY I 1 ,  lx l2 + IY I2 ) 
< max(lxh , fx f2) + max(IYi t , IY I 2) · 

Exercise VI.2.6 Let E be a vector space. By a seminorm on E one 
means a function u :  E -+  R such that u(x) > 0 for all x E E, u(x + y) < 
u(x) + u(y), and u(cx) = l cfu(x) for all c E R, x, y E E. 
(a) Let u1 , u2 be seminorms. Show that u1 + u2 is a seminorm. If A1 , A2 
are numbers > 0, show that A1u1 + A2u2 is a seminorm. By induction show 
that if u1 , . . .  , Un are seminorms and A1 , . . .  , An are numbers > 0, then 
A1U1 + · · · + AnUn is a seminorm. 
(b) Let u = max(u1 ,  u2) . Show that u is a seminorm. 

Solution. (a) The function u1 +u2 is a seminorm. Indeed, u1 ( x) +u2 ( x) > 0 
and the other axioms follow from Exercise 5. The function ,.\1u1 + ,.\2u2 is a 
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seminorm. Indeed, we have Atu1 (x) > 0 and ,.\2u2 (x) > 0, thus by Exercise 
4, we see that �10"1 and A20'2 are seminorms. By the first part of this exercise 
we conclude that �10"1 + �20"2 is senlinorm. We prove the last statement by 
induction. If �10'1 + · · · + AmO'm is a seminorm with 0 < m < n, then since 
Am+1l1m+l is a seminorm, we conclude that 

is also a seminorm. 
(b) The fact that max(u1 , u2) is a seminorm follows from Exercise 5. 
Exercise VI.2. 7 Let u1 be a norm and u2 a seminorm on a vector space. 
Show that u1 + u2 and max(u1 , u2) are norms. 

Solution. From Exercise 6, we know that u1 + u2 and max(u1 , u2) are 
seminorms. It is therefore sufficient to show that N 1 holds in both cases. 
In the first case, u1 (x) + u2(x) = 0 if and only if u1 (x) = u2(x) = 0 and 
since Ut is a norm, we get the desired conclusion. In the second c&Be, we 
have max(u1 (x) , u2(x)) = 0 if and only if u1 (x) = u2(x) = 0. Conclude. 

Exercise VI.2.8 Let u be a seminorm on a vector space E. Show that the 
set of all x E E such that u(x) = 0 is a subspace. 

Solution. Let F = {x E E : u(x) = 0}. Axiom 2 implies u{O · x) = 
O · u(x) = 0 so 0 E F. If x1 , x2 E F, then u(x1 +x2) < u(x1 )  +u(x2) = 0 so 
x1 + x2 E F. Finally, if x E F we have u(ax) = lalu(x) = 0 for all x E R, 
thereby proving that F is a subspace of E. 

Exercise VI.2.9 (The CP Seminorms) Let p be an integer > 0. Let 
E = GP([O, 1]) be the space of p-times continuously differentiable functions 
on (0, 1] . Define up and Np by 

up(/) =  sup l f(P) (x) l and Np(l) = max ur (f) , 
x O<r<p 

where the marimum is taken for r = 0, . . .  , p. 
(a) Show that up is a seminorm and Np is a norm. Note that uo = No is 
just the ordinary sup norm. The norm Np is called the CP-norm. 
(b) Describe the subspace of E consisting of those functions I such that 
up(/) = 0 for p = 0 and also for p > 0. This is the subspace of Exercise 8. 

Solution. (a) Clearly, we have up(l) > 0 for all f E E. We also have 
up(cf) = sup l cf<P> (x) l = lclup(/) .  Finally the triangle inequality holds 
because 

up(ft + l2 ) $ sup( I/�P) (x) l + 1/JP> (x) l ) < sup 1 /�P) (x) l + sup 1/JP> (x) l . 

This proves that CTp is a seminorm. Exercise 7 and an induction argument 
show that Np is a seminorm. Suppose Np(l) = 0, then uo (/) = 0 and since 
u0 is the sup norm we conclude that I = 0, hence Np is a norm. 
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(b) If p = 0, then u0 is simply the sup norm, so E is reduced to the 
zero function. Suppose p > 0 and up (/) = 0. Then j<P> (x) = 0 for all 
x E [0, 1] . Integrating p-times we find that f is a polynomial of degree 
< p - 1. Conversely, all polynomials of degree < p - 1 have CTp-seminorm 
equal to 0, hence E is the set of all polynomials of degree � p - 1 .  

Exercise VI.2.10 Consider a scalar product on a vector space E which 
instead of satisfying SP 4 (that is positive definiteness) satisfies the weaker 
condition that we only have (v, v) � 0 for all v E E. Let w E E be such 
that (w, w) = 0. Show that (w, v) = 0 for all v E E. {Hint: Consider 
(v + tw, v + tw) > 0 for large positive or negative values of t .J 

Solution. Suppose that for some vo E E we have (w, v0) =/= 0. We then 
have 

0 < (vo + tw, vo + tw) = (vo , vo) + 2t(w, vo) .  
If (w, v0) > 0 we see that for large negative values of t we get a contra
diction. If (w, vo) < 0 we get a contradiction for large positive values of 
t. 

Exercise VI.2.11 Notation as in the preceding exercise, show that the 
function 

w ..-. Uwl l = J(w, w) 
is a seminorm, by proving the Schwarz inequality just as was done in the 
text. 

Solution. We have l lw l l > 0 and l lcw ll = Jc2 (w, w) = l cl l lw l l . To get 
the triangle inequality is suffices (by Theorem 2.2) to prove the Schwarz 
inequality. Suppose (w, w) =/= 0, then we can divide by (w, w) and the 
desired inequality holds. If (w, w) = 0, then (v, w) = 0 (by the preceding 
exercise) and we see that the inequality still holds. This argument, together 
with the proof of the Schwarz inequality given in the text, concludes the 

• exercise. 

Exercise VI.2.12 Let E be a vector space with a postive definite scalar 
product, and the corresponding norm l l v l l = ViJ:V. Prove the parallelo
gram law for all v, w E E: 

Dmw a picture illustmting the law. For a follow up, see §4, Exercises 5, 6, 
and 7. 

Solution. We prove the parallelogram law, 

l l v + wll 2 + l l v - wll 2 - (v + w, v + w) + (v - w, v - w) 
(v, v) + 2(v, w) + (w, w) + (v , v) - 2(v, w) + (w, w) 
2 l lv l l2 + 2 l lw l l 2 . 
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The parallelogram law is illustrated by the following picture: 

VI.3 n-Space and Function Spaces 

Exercise VI.3. 1 Let E, F be normed vector spaces, with norms denoted 
by 1 · 1 · Let E x  F be the set of all pairs (x, y) with x E E and y E F. Define 
addition componentwise: 

( x, y) + ( x', y') - ( x + x', y + y') , 
c(x, y) - (ex , cy) ,  

for c E R. Show that E x F is a vector space. Define 

l(x, Y)l = max(lxl, fyl) . 

Show that this is a norm on Ex F. Genemlize to n-factors, i. e. if Et , . . .  , En 
are normed vector spaces, define a similar norm on E1 x · · · x En (the set 
of n-tuples (xt,  . . .  , Xn) with Xi E Ei)· 

Solution. One verifies without difficulty that all the axioms of a vector 
space hold for E x F with the operations defined above. The 0 element of 
E x F is given by (0, 0) . 

We check that l(x, y)l defines a norm on E x F. If l(x, y)l = 0, then 
lxl = 0 and IYI = 0 so x = 1J = 0 and therefore (x, y) = 0. Conversely, 
1 (0, 0) 1 = 0. Also we have 

lc(x, Y)l = l (cx, cy)l = max(lcxl ,  lcyl) = lei max(lxl, IYD = lcll(x, Y)l. 

Finally, the triangle inequality holds because 



Vl.3 n-Space and Function Spaces 97 

l (xt ,  Yt ) + (x2 , 1/2) 1 - max(fxt + x2 l , IYt + Y2D � max(fxt l  + fx2 l , IYt l + IY2D 
< max(lxt f , IYt D + max( lx2 l , IY2 D = f (xt , Yt ) l + l (x2 , Y2) 1 .  

In the general case we simply set 

Exercise VI.3.2 Let E = an, and for A = (at ,  . . .  ,. an) define 

n 
IIAI I = E lai f · 

i=l 

Show that this defines a norm. Prove directly that it is equivalent to the sup 
norm. 

Solution. Obviously, I I Al l > 0 and if I I Al l  = 0, then Jai I = 0 for all 1 < i 5 
n so that A = 0. Conversely, if A = 0, then we see at once that I IAI I = 0. 
For the second property we have 

n n 
l l cA II = E lcai l = E lcf lai l = lcf i iAfl . 

i=l i=l 

For the triangle inequality we have 

n n n 
I IA + Bfl = E lai + bi l $ E Jai l + E l bi l = flA i l + l iB I f . 

i=l i=l i=l 

The following inequalities show why this norm and the sup norm are equiv
alent 

Exercise VI.3.3 Using properties of the integral, prove in detail that the 
symbol (/, g) defined by means of the integral is in fact a positive definite 
scalar product in the space of continuous functions on [0, 1] . 

Solution. See Exercise 4, §2, Chapter V. 

Exercise Vl.3.4 Let E be the vector space of continuo'US functions on 
[0, 1] . 

. 

(a) Show that the L1 -norm is indeed a norm on E. 
{b) Show that the L1 -norm is not equivalent to the sup norm. 
(c) Show that the L1-norm is not equivalent to the L2-norm. {Hint: 7run
cate the function 1/ Vx near 0.} 
{d) Show that 1 1 / ll t $ l l/ l l 2 for f E E. {Hint: Use the Schwarz inequality.} 
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Solution. (a) Theorems 2.1 and 2.4 of Chapter V imply the first axiom. 
The second axiom holds because 

l lc/ lh = 11 lc/(x) ldx = 1
1
lcl lf(x) ldx = lcl ll/ lh · 

Finally, the triangle inequality holds because 

1 1/ +glh = 11 1/(x)+g(x) ldx < 11 1/(x) ldx+ 11 lg(x) ldx = ll/ l l
1 
+ 11911

1
· 

(b) Let /n (x) = xn. Then 1 1/n ll = 1 (sup norm) but l l /n ll 1 = 1/(n + 1) ,  so 
we cannot find a constant C such that 1 1 /n ll :5 Cll/n ll 1 for all n. 
(c) For each positive integer n, define a function 9n by 9n (x) = .;ii if 
x E [0, 1/n] and 9n (x) = 1/v'X if x E [1/n, 1) . Then we have 

and 

l l9n lh = � + t �dx = 2 - �� n }1/n vx vn 

n 11 1 llYn I I� = - + -dx = 1 + log n. n 1/n X 

So we cannot find a constant C such that l l9n l l 2 < CIIYn ll t for all n. 
(d) Putting v = 1/ 1 and w = 1 in the Schwarz inequality applied to the 
positive definite scalar product given in Exercise 3 we find 

11 1/(t) ldt $ (11 l/(t) l2dt) 
112 

(11 ld
t
) 
112

' 

in other words, I I I l i t  < I I f l l 2 · 
Exercise VI.3.5 Let E be a finite dimensional vector space. Show that the 
sup norms with respect to two different bases are equivalent. 
Solution. Let n be the dimension of E, let v b� a vector in E, and Xt(v) = 
(x1 , . . . , Xn) and X2(v) = (y1 , . . . , Yn ) be the coordinate vectors of v in 
bases 1 and 2, respectively. Looking at the coordinates of the vectors of 
one basis in the other bases we see that there exists an invertible n x n 
matrix M = (mi; ) I<i,j<n such that Xt(v) = MX2(v) for all v E E. Let 
Ct = maxt<i,j<n lmi; l =/= 0 and let l l · l l k be the sup norm with respect to 
base k (k = 1, 2) . Then for all 1 < i < n we have 

n n 
IYi l  = � mijXj < � lmij l lx3 1 < nCt llv l l t · 

j=l j=l 

Thus l fv ll 2 < nC t il v li t · By symmetry, there exist C2 =/= 0 such that I I v li t  :5 
nC2 I Iv l l 1 · This shows that I I · li t  and I I · l l 2 are equivalent. Of course one 
could simply apply Theorem 4.3 of the next section. 
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Exercise VI.3.6 Give an example of a vector space with two norms, and 
a subset S of the vector space such that S is bounded for one norm but not 
for the other. 

Solution. Consider the vector space of 01 functions on [0, 1] . Let S be the 
set of all monomials, i.e. S = { 1 ,  x, x2 , • • •  , xn , . . .  } . Then the sup norm of 
any element in S is 1 , but the 01-norm (see Exercise 9, §2) of x t-+ xn is 
equal to n. 

VI.4 Completeness 

Exercise VI.4.1 Give an example of a sequence in 0°( [0, 1]) which is L2-
Cauchy but not sup norm Cauchy. Is this sequence L1 -Cauchy'l If it is, can 
you construct a sequence which is L2-Cauchy but not L1 -Cauchy? Why? 

Solution. Let fn(x) = n114xn . Then 1/n(l) - lm{1) 1  = ln114 - m114 1 so 
{/n} is not sup norm Cauchy, but this sequence is L2-Cauchy because 

so 

1 1 11 n1/2 1 
l lf 1 12 = .,2 = n1/2x2ndx = < _ n 2 0 J n 0 2n + 1 - n1/2 ' 

1 1 l lln - lm l l 2 < l l/n ll 2 + l flm ll 2 < n1/4 + m1/4 ' 

and 1/n114 + 1/m114 -+ 0 as n, m -+ oo. The sequence {In} is also L1-
Cauchy because of the inequality deduced in part (d) of Exercise 4, §3, 
namely, l l / l l 1 < 1 11 1 12 · This inequality also shows that any L2-Cauchy se
quence in 0° ([0,  1] ) is also L1-Cauchy. 

Exercise VI.4.2 Let fn(x) = xn, and view {In} as a sequence in 0°([0, 1]) . 
Show that {In} approaches 0 in the L1 -no1m and the L2-norm, but not in 
the sup norm. 

Solution. We have 

hence {/n} approaches 0 in the L1-norm and in the £2-norm. However, the 
sup norm of each In is 1. 

Exercise VI.4.3 Let I · l 1 and I · 1 2 be two equivalent norms on a vector 
space E. Prove that limits, Cauchy sequences,. converyent sequences are the 
same for both norms. For instance, a sequence { Xn} has the limit v for one 
norm if and only if it has the limit v for the other norm. 
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Solution. There exist positive numbers 01 and 02 such that for all w E E 
we have Ct iWi t < lwl2 < C2 lwl t .  Suppose that {xn} converges to v in l · h · 
Then given E > 0 there exists a positive integer N such that for all n > N we 
have lv-xn l t < E. Then for all n > N we have lv-xn l2 < 02 lv-xn l 1  < 02E, 
which shows that {xn} converges to v in l · l2 · 

Suppose {xn} is a Cauchy sequence in the norm 1 · 1 1 • Then given E > 0 
there exists a positive integer N such that if n, m > N we have lxn -Xm I t < 
E. So for all n, m > N we have fxn - Xm l2 < 02 lxn - Xm l 1 < 02E, which 
proves that {xn} is Cauchy for the norm l l · l l 1 · 
Exercise VI.4.4 Show that the space 0°([0, 1]) is not complete for the 
L2-norm. 

Solution. Consider the family of functions {In} in 00([0, 1] ) defined by 

x = { x-1/4 if 1/n < x < 1 In( ) n114 if 0 :::; x < 1/n 

The proof follows the one given in the text with l(x) = x-114 for 0 < x < 1. 
We have J01 /2 = 2 and 

,�� ,1� 3 
I I / - /n i l� = Jo (x-1/4 - n1/4)2dx < Jo x-1/2 + n1/2dx = v'n' 

hence 

which shows that {In} is L2-Cauchy. We now show that there is no con
tinuous function g on [0, 1] such that {/n} is L2-convergent to g. Suppose 
such a function g exists. Then 

as n -+  oo. Hence I I/ -gll2 = 0. Since both functions f and g are continuous 
on the open interval (0, 1] , if for some c we have /(c) I- g(c) , then I I/ -gU2 > 
0. Since I fl. 00([0, 1]) we get a contradiction, which completes the proof 
that {/n} has no L2-limit in 00([0, 1) ) . 

Almost all the time it has been appropriate to deal with subsets of normed 
vector spaces. However, for the following exercises, it is clearer to formulate 
them in terms of metric spaces, as in Exercises 1 and 2 of §2. The notion of 
Cauchy sequence can be defined just as we did in the text, and a metric 
space X is said to be complete if every Cauchy sequence in X co�verges. 
We denote the distance between two points by d(x1 , x2) .  
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Exercise VI.4.5 (The Semiparallelogram Law) Let X be a complete 
metric space. We say that X satisfies the semiparallelogram law if for 
any two points x1 , x2 in X, there is a point z such that for all x E X we 
have 

d(x1 , x2)2 + 4d(x, z)2 � 2d(x, x1 )2 + 2d(x, x2)2 . 

(a) Prove that d(z, x1 ) = d(z, x2) = d{xl , x2)/2 .  {Hint: Substitute x = Xt 
and x = x2 in the law for one inequality. Use the triangle inequality for 
the other.] Draw a picture of the law when there is equality instead of an 
inequality. 
(b) Prove that the point z is uniquely determined, i. e. if z' is another point 
satisfying the semiparallelogram law, then z = z' . 

· 

In light of (a) and (b }, one calls z the midpoint of Xt , x2 . 

Solution. Letting x = x1 and then x = x2 in the law, and taking square 
roots, we get · 

(VI. l) 

The triangle inequality d(x1 , x2) < d(x1 , z)+d(x2 , z) and the first inequality 
in (VI. l) implies 2d(x1 , z) < d(xi , z) +d(x2 , z) so d(x1 , z) < d(x2 , z) .and by 
a similar argument we obtain d(x2 , z) < d(x1 , z) ,  and therefore d(x1 , z) = 
d(x2 , z) . The triangle inequality now reads d(x1 , x2) < 2d(x1 , z) so together 
with (VI. l) we get 

as was to be shown. 
With equality, the semi parallelogram law becomes the parallelog�am law, 

and we have the following picture: 

(b) Suppose z' also satisfies the semiparallelogram law. Then by (a) we 
must have 
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d(xt , z') = d(x2 , z') = !d(xt t x2) · 
If we put x = z' in the law and use the above inequalities we get 

d(x1 , x2)2 + 4d(z, z')2 � d(x1 , x2)2 , 

whence d(z, z') = 0, and therefore z = z'. 
Exercise VI.4.6 (Bruhat-Tits-Serre) Let X be a complete metric space, 
and let S be a bounded subset. Then S is contained in some closed ball 
BR(x) of some radius R and center x E X. Define r (depending on S) to 
be the in/ of all such radii R with all possible centers x. By definition, there 
exists a sequence {rn} of numbers � r such that limn-+oo rn = r, together 
with a sequence of balls Br" (xn) of centers Xn, such that Br" (xn) contains 
S. In geneml, it is not true that there exists a ball Br (x) with radius pre
cisely r and some center x, containing S. If such a ball exists, it is called 
a ball of minimal radius containing S. Prove the following theorem: 

Let X be a complete metric space satisfying the semiparallelogram law. Let 
S be a bounded subset. Then there exists a unique closed ball Br(xl ) of 
minimal radius containing S. 

{Hint: You have to prove two things: existence and uniqueness. Use the 
I 

semiparallelogmm law to prove each one. For existence, let {xn} be a se-
quence of points which are centers of balls of radius rn approaching r, and 
Br" ( Xn) contains S. Prove that { Xn} is a Cauchy sequence. Let c be its 
limit. Show that Br(c) contains S. 

For uniqueness, again use the semiparallelogram law.· Let Br(xl ) and 
Br(x2) be balls of minimal radius centered at x1 , x2 . Let z be the midpoint, 
and use the fact that given f, there exists an element x E S such that 
d(x, z) > r - f.} 

The center of the ball of minimal radius containing S is called the cir
cumcenter of S. 

Solution. We first prove existence. Choose {xn} as in the hint. If the 
sequence {xn} is a Cauchy sequence, then it converges to some point which 
is the center of a closed ball or radius r and which by continuity contains 
S, and we are done. We show this must always happen. Let Zmn be the 
midpoint between Xn and Xm and let f > 0. By the minimality of r, there 
exists a point Xnm in S such that d(Xmn' Zmn)2 > r2 - f. We apply the 
semiparallelogram law with x = Xmn and z = Zmn · We get 

d(xm, Xn)2 � 2d(Xmn ' Xn)2 + 2d(Xmn, Xm)2 - 4d(Xmn, Zmn)2 
� 2r� + 2r� - 4r2 + 4f, 

so for all large m and n we have d(xm, Xn)2 < 5E, thus proving that {xn} 
is a Cauchy sequence, and concluding the proof of existence. 
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We now prove uniqueness. Suppose there are two balls Br ( x1 ) and Br ( X2) 
of minimal radius containing 8 and x1 =I= x2• Let x be any point of S, so 
d(x, x1 ) $ r and d(x, x2) < r. Let z be the midpoint between Xt and x2. 
By the semi parallelogram law, we have 

d(xt , x2)2 < 4r2 - 4d(x, z)2 . 
Since by the definition of r, there are points x in S such that d(x, z) is 
arbitrarily close to r, it follows that d(x1 , x2) = 0 and therefore Xt = x2. 

Let X be a metric space. By an isometry of X we mean a bijection 
9 :  X -+  X 

such that g preseroes distances. In other words, for all x1 , x2 E X we have 

Note that if 91 , g2 are isometri,es, so is the composite g
1 

o g2 . Also if g is 
an isometry, the_n g has an inverse mapping {because g is a bijection}, and 
the isometry condition immediately shows that g- 1 : X -+ X is also an 
isometry. Note that the identity mapping id : X -+ X  is an isometry. 
Let G be a set of isometries. We say that G is a group of isometries if 

G contains the identity mapping, G is closed under composition {that is, if 
g1 , g2 E G, then g1 o g2 E G), and is closed under inverse (that is, if 9 E G 
then g- 1 E G). One often writes g192 instead of 91 o 92 · Note that the set 
of all isometries is itself a group of isometries. 
Let x' E X. The subset Gx' consisting of all elements g(x') with g E G 

is called the orbit of x' under G. Let S denote this orbit. Then for all 
g E G and all elements x e 8 it follows that gx E 8. Indeed, we can write 
x = g1 x' for some g1 E G, and then 
g(g1x') = g(g1 (x')) = (g o  91 ) (x') E 8, and g o  91 E G by assumption. 
In fact, G(S) = S because G contains the identity mapping. 
After these preliminaries, prove the following major result. 

Exercise VI.4. 7 (Bruhat-Tits Fixed Point Theorem) Let X be a 
complete metric space satisfying the semiparallelogram law. Let G be a 
group of isometries. Suppose that an orbit is bounded in X. Let x1 be the 
circumcenter of thi,'l orbit. Then x1 is a fixed point of G, that is, g(z1 ) = x1 
for all g E G. 
Solution. Let Br(x1 ) be the unique closed ball of minimal radius contain
ing the orbit Gx'. Then for any g E G, the image gBr (x1 ) = Br(x2) is 
a closed ball of the same radius containing �he orbit Gx', and x2 = gx1 , 
so by the uniqueness of the ball (Exercise 6) it follows that x2 = x1 and 
therefore x1 is a fixed point for G. 
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V1.5 Open and Closed Sets 

Exercise VI.5.1 Let S be a subset of a normed vector space E, and let S 
denote the set of all points of E which are adherent to S. 
(a) Prove that S is closed. We call S the closure of 8. 
(b) If S, T are subsets of E, and S C T, show that S C T. 
(c) If S, T are !_U�sets of E, show that S U T  = S U T. 
(d) Show that S = S. 
(e) If S C T C S, prove that T = S. 
(f) Let E, F be normed. vector spaces, 8 a subset of E and T a subset of 
F. Take the sup norm on E x F. Show that (S x T) = S x T. 

Solution. (a) Let {xn}�1 be a sequence in 8 with limit x. Let f > 0 and 
consider the ope·n ball Bf:(x) of radius f centered at x. We must show that 
this ball contains an element of S. Select N such that XN E B£;2(x) ,  and 
since XN is adherent to 8, there exists 11 E 8 such that 11 E Bf:;2(xN ) which 
implies that 11 E Bf:(x) , as was to be shown. 
(b) Let x E S. Then for all f > 0, the open ball Bf: (x) contains elements of 
S and therefore of T, so x E T. 
(c) If x E S U T, the� for all f > 0, the open ball Bf: ( x) contains elements 
of S or of T, so S U T c S U T. Conversely, if x e S U T, then for all E > 0, 
Bf:(x) contains elements of S U T. . -
(d) The inclusion S C S is  clear because the closure of a set always contains -
the set itself. Conversely, suppose x E S. Then there exists a sequence {xn} 
in S converging to x. For each n there exists Yn E 8 such that lxn - Yn l < 
1/n. Then 

and we see that {Yn} converges to x. This shows that x E S. 
(e) We apply (b) twice. First 8 c T implies S c T and applying (b) to 
T c S we obtain T c S, so by (d) we get T c S, and we are done. 
(f) Suppose x = (x1 , x2) E S x T. Then for all E > 0, the open ball Bf: (x) 
contains points of S x T. Since the norm on the product is the sup norm, 
it follows that x1 is adherent to 8 and x2 is adherent to T. Conversely, 
suppose that x = (x1 , x2) E S x T. Then given E > 0 we can find 111 E S 
and 112 E T such that lx1 - 111 ls < f and lx2 - 112 IT $ E. By the definition 
of the sup norm it follows that if y = (111 ,  Y2) E S x T, then lx - yfsxT < f. 
So x E 8 x T as was to be shown. 

Exercise VI.5.2 A boundary point of S is a point v E E such that 
every open set U which contains v also contains an element of S and an 
element of E which is not in S. The set of boundary points is called the 
boundary of S, and is denoted by 88. 
(a) Show that 88 is closed. 
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(b) Show that S is closed if and only if S contains all its boundary points. 
(c) Show that the boundary of S is equal to the boundary of its complement. 

Solution. One could simply note that as = S n Sc = � n E - S. We 
can also argue straight from the definitions. Suppose X E as and assume 
without loss of generality that x E 8. Then for some f > 0 the open ball 
Bf. (x) does not intersect the complement of S, so Be (x) is contained in the 
complement as. 
(b) Suppose S is closed. Let x E E - S, then there exists f > 0 such that 
Bf. (x) n 8  is empty. So x is not a boundary point of S. Conversely, suppose 
S contains all of its boundary points. Then given x E E - S there exists 
f > 0 such that BE ( x) n S is empty, otherwise x would be a boundary point 
of S. Thus 8 is closed. 
(c) The fact that the boundary of S equals the boundary of its complement 
follows at once fr<;>m the symmetry of the definition of a boundary point. 
Indeed, x E E is a boundary point of 8 if and only if x is a boundary point 
of the complement of 8. 

Exercise VI.5.3 An element u of 8 is called an interior point of 8 if 
. there exists an open ball B centered at u such that B is contained in S. 

The set of interior points of 8 is denoted by Int(8) . It is obviously open. 
It is immediate that the intersection of Int(S) and as is empty. Prove the 
formula 

S = Int(S) U 8S. 

In particular, a closed set is the union of its interior points and its boundary 
points. If S, T are subsets of normed vector spaces, then also show that 

Int(S x T) = Int(S) x Int(T) . 

Solution. Suppose x E S, so x is adherent to S. If for some f > 0, the open 
ball Be(x) is contained in S, then x E Int(S) .  If not, then for all positive 
integers n, the open ball B1/n(x) intersects the complement of S, so that 
x E 88. Conversely, it is immediate that any point in 88 or Int(8) belongs 
to S so S = Int(S) U 88. 

We now show that Int(S x T) = Int(8) x Int(T) . Suppose (x1 , y1 ) E 
Int(S x T) , then for some f > 0 the open ball Be ((xl , y1 )) is contained in 
S x T. Suppose that lx1 - x2 l < e, then the sup norm implies 

so x2 E S and therefore x1 E Int(S) .  A similar argument for the sec
ond factor proves that (xt , y1 ) e Int(S) x Int(T) . Conversely, if (x1 , y1 ) E 
Int(8) x Int(T) , then for some f > 0, lx1 -. x2 l < E implies x2 E S and 
IY1 - Y2 l < E implies '1/2 E T. So if l (x l , Yt ) - (x2 , Y2) lsxT < E, then it 
follows that (x2 , Y2) E S x T, so (x1 , y1 ) E lnt(8 x T). 
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Exercise VI.5.4 Let 8, T be subsets of a normed vector space. Prove the 
following: 
(a) a(S U T) c a8 u 8T. 
{b) a(8 n T) c 88 U 8T. 
(c) Let 8 - T denote the set of elements x E 8 such that x fl. T. Then 
8(S - T) c as U 8T. {Note: You may save yourself some work if you use 
the fact that asc = as where sc is the complement of S, and use properties 
like 8 - T = S n Tc, as well as (S n T)c = sc U Tc .} 
{d) a(8 X T) = (a8 X T) X (8 X 8T) . 

Solution. (a) Let x E a(8 U T) . For every E > 0, the open ball Bf. (x) 
contains points of sc and Tc because (S U T)c = 8c n Tc. If x is not a 
boundary point of S or T, then there exists Eo > 0 such that Bf.o ( x) n ( SUT) 
is empty. Contradiction. 
(b) Every open ball centered at a point of a( 8 n T) intersects S and T. 
Since (S n T)c = sc U Tc we conclude that every open ball centered at a 
point of a( S n T) intersects sc or Tc . Conclude. 
(c) We have 

8(8 - T) = 8(8 n Tc) c 88 U 8Tc 
but 8Tc = 8T, so the result drops out. 
(d) Suppose (x, y) E 8(8 x T). Then since every open ball centered at 
(x, y) intersects S x T the definition of the sup norm implies that x E 8 
and y E T. If S and T are subsets of E we see that 

(8 x T)c = (Sc x E) U (E x Tc) ,  

so we have a(S x T) c (88 x T) x (S x 8T). Conversely, if (x, y) belongs 
to as X T or s  X 8T, then by the definition of the sup norm we see that 
(x, y) E a(8 x T) . 

Exercise VI.5.5 Let 8 be a subset of a normed vector space E. An element 
v of 8 is called isolated {in S) if there exists an open ball centered at v 
such that v is the only element of S in this open ball. An element x of E 
is called an accumulation point (or point of accumulation) of S if x 
belongs to the closure of the set 8 - { x} . 
(a) Show that x is adherent to S if and only if x is either an accumulation 
point of S or an isolated point of 8. 
{b) Show that the closure of S is the union of_8 and its set of accumulation 
points. 

Solution. (a) Suppose x is adherent to 8. If there exists f > 0 such that 
the only point of Bf.(x) in S is x, then x is an isolated point. If no such f 
exists, then every open ball centered at x contains points 1= x that lie in S. 
Hence x is adherent to S - { x} and is therefore a point of accumulation of 
S. Conversely, if x is isolated, then it is adherent to 8 by definition. If x is 
a point of accumulation of S, then every open ball centered at x contains 
points of 8 - {x} ,  thus x is adherent to 8. 
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(b) If x belongs to S, then either x E S or x is a point of accumulation 
of 8 because every open ball centered at x intersects S. Conversely, if x 
belongs to 8, then x E S and if x is a point of accumulation of 8, then x 
is adherent to S. 

Exercise VI.5.6 Let U be an open subset of a normed vector space E, 
and let v E E. Let Uv be the set of all elements x + v where x E U. Show 
that Uv is open. Prove a similar statement about closed sets. 

Solution. Let w E U11 • Let B be the open ball centered at w - v and 
contained in U. Then Bv is contained in U11 • 

If U is closed, then Uv is closed because (E - U)v = E - U11 • 

Exercise VI.5.7 Let U be open in E. Let t be a number > 0. Let tU be 
the set of all elements tx with x E U. Show that tU is open. Prove a similar 
statement about closed sets. 

Solution. Let w = tx where x E U. There exists r > 0 such that Br (x) is 
contained in U. Then Btr(x) is contained in tU. 

If U is closed, then tU is closed because t(E - U) = E - tU. 

Exercise VI.5.8 Show that the projection Rx R -+  R given by (x, y) t-+ x 
is continuous. Find an example of a closed subset A of R x R such that 
the projection of A on the first factor is not closed. Find an example of an 
open set U in R 2 whose projection is closed, and U 1= R 2 • 

Solution. The projection map is continuous because 

lx - xo l  < ( l (x - xo, Y - Yo) l l .  

Let A = {(x,  y) E R2 : y = 1/x with x e (0, 1] } .  Then A is closed in R2 
and the projection of A is (0, 1] , which is not closed in R. 

Let U = {(x, y) E R2 : y > 0}. Then U is the upper half plane which is 
open in R2, and the projection of U is R which is closed. 

Exercise VI.5.9 Prove the remark before Theorem 5. 6. 

Solution. First suppose that S is open in E. Suppose X is open in 8. Then 
there exists an open set U in E such that X = 8 n U. The intersection of 
open sets is open, so X is open in E. Conversely, if X is open in E, note 
that X =  8nX and therefore we can take U = X  in the definition, thereby 
proving that X is open in S. 

Now suppose 8 is closed in E. Suppose that X is closed in E. Then there \ 
exists a closed set Z in E such that X = S n Z. The intersectio� of two 
closed sets is closed, so X is closed. Conversely, if X is closed in E, we note 
that X = 8 n X so that we can take Z = X in the definition, therefore X 
is closed in E. 
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Exercise VI.5.10 Let U be open in a no1med vector space E and let V 
be open in a normed vector space F. Let 

f : U -+ V  and g : V -+ U  

be continuous maps which are inverses of each other, that is 

f o g = idv and g o f = idu , 

where id means the identity map. Show that i/ U1 is open in U, then j(U1 ) 
is open in V, and that the open subsets of U and V are in bijection under 
the association 

U1 t-+ j(U1 ) and V1 t-+ g(V1 ) . 

Solution. Since f and g are inverses of each other, j(U1 ) = g- 1 (U1)  so 
the continuity of g guarantees that /(U1) is open whenever U1 is open. 

The existence of the inverse map of f implies that Ut t-+ /(Ut) is injec
tive. Indeed, if f(x) = f (y) we compose with g to conclude that x = y. 
Therefore, U1 1-+ f(U1 ) and V1 1-+ /(Vi) are bijective and inverses of each 
other. 

Exercise VI.5.11  Let B be the closed ball of radius r > 0 centered at the 
origin in a no1med vector space. Show that there exists an infinite sequence 
of open sets Un whose intersection is B. 

Solution. Let Un be the open ball of radius r + 1/n centered at the origin. 
Then B is contained in n� 1 Un . Conversely, if X E n� 1 Un then lx l < 
r + 1/n for all n, hence lx l  < r which shows that x E B. This proves that 

Exercise VI.5. 12 Prove in detail that the following notions are the same 
for two equivalent no1ms on a vector space: (a) open set; (b) closed set; (c) 
point of accumulation of a sequence; {d) continuous function; (e) boundary 
of a set; and (/) closure of a set. 

Solution. Consider two norms l · l 1 and l · l 2 such that 

G1 lvl 1 < lv l2 < G2 lvi i · 
(a) Suppose U is open with respect to I · I I · Let x belong to U. Then for 
some f > 0, the open ball B: (x) with respect to I · I I is contained in U. 
So the open ball B'tJ1£ (x) with respect to l · l2 is contained in B: (x) and is 
therefore also contained in U. 
(b) Suppose that G is closed with respect to I · I I · The complement of G is 
open with respect to I · I I ,  so by (a) the complement of G is also open with 
respect to l · l2 , and therefore G is closed with respect to l · l2 · 
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(c) Suppose that x is a point of accumulation of the sequence { Xn } for l · l t · 
Let E > 0, then for some m we have lx - xm l t < e/02 so lx - Xm l2 < f, 
hence x is a point of accumulation of {xn} for I · l2 · (d) Suppose f is continuous at xo with respect to l · l t · Let e > 0, then there 
exists 6 > 0 such that lf(x) - /(xo) l l < t:./02 whenever Jx ·- xo l t  < 6/Ct .  
Then, if lx - xo l2 < 6 we immediately conclude that 1/(x) - /(xo) l2 < e, 
so f is continuous at xo with respect to l · l 2 · · 
(e) By Exercise 3, 88 = S - Int(S) and by (a) and (b) we know that the 
closure of S is the same with respect to equivalent norms and similarly for 
the interior of S, so the boundary of S is also the same with respect to 
equivalent norms. 
(f) By Exercise 3, if follows that the closure of a set is the same set with 
respect to equivalent norms. 

Exercise VI.5.13 Let l · l t  and l · l2 be . two norms on a vector space E, and 
suppose that there exists a constant 0 > 0 such that for all x E E we have 
lxh < Clx2 l · Let !1 (x) = lxh . Prove in detail: Given e, there exists 6 such 
that if x, y E E, and lx - Yl2 < 6, then 1/t (x) - /t (Y) I < e . [Remark. Since 
/1 is real valued, the last occurrence of the signs I · I denotes the absolute 
value on R.j In particular, !1 is continuous for the norm I · l2 . 

Solution. Given e > 0, let 6 = efC. Then lx - Yl2 < 6 implies lx - Yl 1 < f. 
The triangle inequality for the norm implies lx l t - lY l t < lx - Yl t  and 
IY I 1 - (x l t :5 (x - Yh so l lxh - (y( I I < lx - Y( t and therefore 

l/1 (x) - /1 (y) l < lx - ult < E, 
as was to be shown. 

Exercise VI.5.14 Let BS denote the space of all sequences of numbers 

which are bounded, i. e. there exists C > 0 (depending on X) such that 
fxn f < C for all n E z+. Then BS is a special case of Example 2 of §1, 
�amely the space of bounded maps B(Z+, R) . For X E BS, the sup norm 
�s 

I I  X II = sup lxn l ,  n 
i. e. I I  XI I is the least upper bound of all absolute values of the components. 
(a) Let Eo be the set of all sequences X such that Xn = 0 for all but a finite 
number of n. Show that Eo is a subspac� of B$,. 
{b) Is Eo dense in BS'I Prove your assertion. {Note. In Theorem 3. 1 of 
Chapter VII, it will be shown that BS is cornplete.J 

Solution. (a) Addition and scalar multiplication is defined componentwise. 
Suppose X and Y belong to Eo , and that p and q are the number of nonzero 
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elements in X and Y, respectively. Then X + Y has at most p + q nonzero 
elements, hence X+ Y belongs to E0• Similarly, aX belongs to Eo whenever 
a E R and X E Eo. Clearly, (0, 0, . . .  ) belongs to Eo , hence we conclude 
that Eo is a subspace of B S. 
(b) We contend that Eo is not dense if BS. Let X = (1 ,  1 ,  1 ,  . . .  ) . Then 
we see that for all Y E Eo the vector X - Y has at least one component 
equal to 1. In fact, X - Y has only finitely many components =F 1 ,  therefore 
IIX - Yll � 1 and this proves our contention. 



VII 
Limits 

VII. l Basic Properties 

Exercise VII. l .l A subset S of a normed vector space E is said to be 
convex if given x, y E S the points 

(1 - t)x + ty, 0 < t < 1 ,  

are contained in S. Show that the closure of a convex set is convex. 

Solution. Suppose x and y are adherent to S and let {xn} and {Yn} be 
sequences of points in S converging to x and y, respectively. Then for each 
0 < t < 1, (1 - t)xn + tyn belongs to S and converges to (1 - t)x + ty 
as n -+ oo. This implies that for every 0 < t < 1 ,  the point (1 - t)x + ty 
belongs to the closure of S. 

Exercise VII.1.2 Let S be a set of numbers containing arbitrarily large 
numbers {that is, given an integer N > 0, there exists x E S such that 
x 2: N ) . Let f :  S -+  R be a function. Prove that the following conditions 
are equivalent: 
(a) Given e, there exists N such that whenever x, y E S and x, y > N, then 

1/(x) - f(y) l < E. 

{b) The limit 
lim f(x) 

x-+ oo 

exists. 
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(Your argument should be such that it applies as well to a map f : S -+ F 
of 8 into a complete normed vector space.) 

Solution. Condition (b) implies (a) because if w is the limit in {b) , and we 
choose N such that x � N implies 1/(x) - wl < f/2, then for all x, y > N 
we have 

1/(x) - /(y) l  � 1/(x) - /(w) l + 1/(w) - /(y) l  < f. 

Conversely, assume (a) and choose a sequence of points {xn} such that 
Xn � n. Then {/(xn)} is a Cauchy sequence because if n, m > N, then 
1/(xn) - f(xm) l < f. The completeness of R (or F) implies that {/(xn)} 
converges to a limit point, say w. Then for all x � N and Xn so large that 
Xn > N and 1/(xn) - wl < f we have 

lf(x) - wl < lf(x) - /(xn) l + 1/(xn) - wl < 2f. 

Exercise VII.1.3 Let F be a normed vector space. Let E be a vector space 
(not normed yet) and let L :  E -+ F be a linear map, that is satisfying 
L(x+y) = L(x) +L(y) and L(cx) = cL(x) for all c E R, x, y E E. Assume 
that L is injective. For each x E E, define lx l = IL(x) l . Show that the 
function x ....... lxl is a norm on E. 

Solution. Since L is injective, L(x) = 0 if and only if x = 0, so lx l = 0 if 
and only if x = 0. Clearly, 

faxl = IL(ax) l = laL(x) l = la i iL(x) l = la l lx l . 

Finally we check the triangle inequality 

lx + Yl = IL(x + Y) l  = IL(x) + L(y) l < IL(x) l + IL(y) l = lx l + IYI , 

and this concludes the proof. 

Exercise VII.1.4 Let Ps be the vector space of polynomial functions of 
degree < 5 on the intenJal [0, 1) . Show that Ps is closed in the space of all 
bounded functions on [0, 1] with the sup norm. {Hint: If f(x) = a5x5 + · · · + 
ao is a polynomial, associate to it the point (a5 ,  • • •  , ao) in R6, and compare 
the sup norm on functions, with the norm on R6 .] 

Solution. Consider the 8880Ciation f (X) = a5x5 + . . . + ao +-+ ( a5 , . . .  , ao) 
and define a new norm on R6 to be the sup norm of the 8880ciated polyno
mial. This new norm is equivalent to the euclidean norm {Theorem 4.3) . If 
{Pn} converges, it is a Cauchy sequence for the sup norm, so the aBBociated 
sequence of points in R 6 is a Cauchy sequence for the euclidean norm and 
by completeness we conclude that {Pn} converges to a polynomial of degree 
� 5. 
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Exercise VII.1.5 Let E be a complete normed vector space and let F be 
a subspace. Show that the closure of F in E is a subspace. Show that this 
closure is complete. 

Solution. The element 0 belongs to the closure. If x, y lie in the closure of 
F, choose sequences {xn} and {Yn} of points in F that converge to x and 
y, respectively. Then, x + y = liii1n_,.00 (Xn + Yn) , so x + y belongs to the 
closure of F. Similarly, ex =  limn-+oo exn so ex belongs to the closure of F. 
This proves that the closure of F is a subspace. 

A Cauchy sequence in the closure of F is a Cauchy sequence in E, so 
by completeness, this sequence converges in E. Since the closure of F is 
closed, the result follows at once. 

Exercise VII.1.6 Let E be a normed vector space and F a subspace. As
sume that F is dense in E and that every Cauchy sequence in F has a limit 
in E. Prove that E is complete. 

Solution. Let {xn} be a Cauchy sequence in E. For each positive integer n 
choose Yn E F such that lxn -Yn l < 1/n. Then using the triangle inequality 
we see that 

IYn - Ym l < IYn - Xn l + lxn - Xm l + lxm - Ym l 
1 1 

< - + lxn - Xm I + -
n m 

so {Yn} is a Cauchy sequence. Let y be its limit. Then {xn} converges to y 
because 

VII.2  Continuous Maps 

Exercise VII.2.1 (a) Prove Theorem 2.4 (a). 
{b) Prove Theorem 2.4{b). {Hint: Given e, and two points x, y E E with 
lx - Yl < e, there exists v E S such that lx - vi < d(x, S) + e. Then 

d(y, S) < d(y, v) < d(x, S) + 2e. 
Take it from here.} 
(c) Let S, T be two non-empty closed subsets of E, and assume that they 
are disjoint, i. e. have no points in common. Show that the function 

d(S, v) f(v) = d(S, v) + d(T, v) 
is a continuous function, with values between 0 and 1, taking the value 0 
on S and 1 on T. 

{For a continuation of this exercise, cf. the next chapter, §2.) 
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Solution. (a) Suppose v lies in the closure, then there exists a sequence 
of points in S converging to v thus d(S, v) = 0. Conversely, if d(S, v) � 0, 
then some points of S come arbitrarily close to v, proving that v is in the 
closure of S. 
(b) From the hint we find that d(y, S) - d(z, S) < 2£. There exists a vector 
w in S such that IY - wl < d(y, S) + e. Then we have 

d(x, S) < lx - wl � lx - Yl + IY - wl < d(y, S) l + 2e 
so that d{x, S) - d(y, S) < 2e. Hence ld(x, S) - d(y, S) l < 2e. 
(c) Since both subsets are closed, their closures are disjoint, so the denom
inator of f is never 0 which together with (b) implies the continuity of f. 
Since d(S, v) + d(T, v) > d(S, v) the function f takes values between 0 and 
1.  On S, the numerator is 0. On T, the numerator and denominator are 
both non-zero and they are equal. 

Exercise VII.2.2 (a) Show that a function I which is differentiable on 
an intenJal and has a bounded derivative is uniformly continuous on the 
intenJal. 
(b) Let f(x) = x2 sin(1/x2) for 0 < x < 1 and I(O) = 0. Is f uniformly 
continuous on [0, 1] 'I Is the derivative of I bounded on (0, 1) 'I Is f uniformly 
continuous on the open interoal (0, 1) 'I Proofs 'I 

Solution. (a) By the mean value theorem we have 1/(x)- /(y) l  < Mlx-yl , 
where M is a bound for the derivative. 
(b) Since lx2 sin(1/x2) 1  < lx2 1 we see that f is continuous at 0. Hence I 
is continuous on [0, 1) and therefore uniformly continuous on this interval 
because [0, 1] is compact. The derivative is unbounded on (0, 1) because 

/'(x) = 2x sin(1/x2) - (2/x) cos(1/x2) 

and if Xn = 1/v'2im, then Xn -4 � and 1/' (xn) l = 2v'2im, -4 oo as n -4 oo. 
However, the function f is uniformly continuous on (0, 1) because it is 
�iformly continuous on the larger interval [0, 1) . 

Exercise VII.2.3 (a) Show that for every c > 0, the function f(x) = 1/x 
is uniformly continuous for x > c. 
(b) Show that the function f(x) = e-x is uniformly continuous for x > 0, 
but not on R. 
(c) Show that the function sin x is uniformly continuous on R. 

Solution. "(a) For x, y � c we have 

lx - yl 1 
1/(x) - /(y) l = 

lxy l 
< c2 lx - Yl · 

(b) For z > 0, the function f has a bounded derivative and is therefore 
uniformly continuous. To see why f is not uniformly continuous on R, 
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suppose that given f there exists 6 > 0 such that lx - Yl < 6 implies 
re-x - e-11 1  < f. Let X =  y - 6/2. Then lx - Yl < 6 and 

1/(x) - f(y) l = ( e-y+6/2e-Y I = e-Y ie6/2 - 1 1 . 
This last expression tends to oo as y tends to -oo which gives the desired 
contradiction. 
(c) The mean value theorem implies I sin x- sin Yl < (x - y( for all x, y E R. 

Exercise VII.2.4 Show that the function f(x) = sin(1/x) is not uni
formly continuous on the interoal 0 < x � 1r, even though it is continuous. 

Solution. For n > 0, let Xn = 1/(n'lr + 'lr/2) . Then lxn+l - Xn l  -+ 0 as 
n -+ oo and 

1/(Xn+l ) - f(xn) l = 2, 
so f is not uniformly continuous. 

Exercise VII.2.5 (a) Define for numbers t, x: 
sin tx . f(t, x) = t �l t =/; 0, f(O, x) = x. 

Show that I is continuous on R x R. {Hint: The only problem is continuity 
at a point (0, b) .  If you bound x, show precisely how sin tx = tx + o(tx) .J 
{b) Let 

f(x, y) = y4�z!l i! (x , y) =F (0, 0) , 
{ (y2 x)2 

1 if (x, y) = (0, 0) , 
Is I continuous at (0, 0) ? Explain. 

Solution. (a) Taylor's formula at the origin implies that sin(z) = z + R(z) 
with the esimate IR(z) l < lz (2 /2! . So for x bounded we have IR(tx) f/t -+ 0 
as t -+ 0, therefore 

1. sin(tx) _ 1. R(tx) b 1m - 1m x + = , 
(t,x)-.(O,b) t (t ,x)-t(O,b) t 

which proves the continuity of f at the point (0, b) . 
(b) The function f is not continuous at (0, 0) because lima-.oo f(a2 , a) = 0. 
Exercise VII.2.6 (a) Let E be a normed vector space. Let 0 < r1 < r2 . 
Let v E E. Show that there exists a continuous function f on E, such that: 

f(x) = 1 if x is in the ball of radius r1 centered at v, 
f(x) = 0 if x is outside the ball of radius r2 centered at v. 
We have 0 < f(x) < 1 for all x. 

{Hint: Solve first the problem on the real line, and then for the special case 
v = 0.} 
{b) Let v, w E E and v '# w. Show that there exists a contiuous function f 
on E such that f(v) = 1 and f(w) = 0, and 0 < l(x) :5 1 for all x E E. 



116 VII. Limits 

Solution. (a) The function defined by 

f(x) = 

satisfies all the conditions. Note that we can also apply Exercise l (c) with 
T the closed ball of radius r1 centered at v ,  and S the complement of the 
open ball of radius r2 centered at v. 
(b) Let rt = lv - w l/3 and r2 = 2 lv - w l/3. The function f defined in part 
(a) satisifes the desired conditions. 

Exercise VII.2. 7 Let S be a subset of a normed vector space E, and let 
f : S -+ F be a continuous map of S into a normed vector space. Let S' 
consist of all points v E E such that v is adherent to S and 

lim /(x) exists. 
X-t-V , XES 

Define I ( v) to be this limit. If x E S, then f ( v) = f ( v) by definition, so 
f is an extension of I to S' . For simplicity one may therefore write l(v) 
instead of f ( v) . Show that f is continuot&S on S' . {Hint: Select v E S' . You 
have to consider separately the estimates 

l f(x) - /(v) l and 1/(v') - /(v) l 

for x E S and v' E S' . You tht&S run into a 2f-proof.J 

In Exercise 7, the set S' is contained in S essentially by definition, but is 
not necessarily equal to S. The next exercise gives a condition under which 
S' = S. 
Solution. Let v0 E S' and let f > 0. Select 6 > 0 such that if x belongs to 
S and lx - vo l < 6, then 

1/(x) - /(vo) l < f. 

Suppose x' belongs to S' and lx' - vo l < 6/2. Select y in S near x' with 
IY - vo l < 6/2 and 1/(y) - /(x') l < f. Then we have 

l f(x') - /(vo) l < lf(x') - f(y) f + lf(y) - /(vo) l  < 2f 

thus the extension of f is continuous on S' . 

Exercise VII.2.8 Prove Theorem 2. 6. {Hint: Show that the uniform con
tinuity condition implies that for every v E S, the limit limx-..v I ( x) exists. 
Define f(v) to be this limit.} 
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Solution. Given f > 0, pick 6 > 0 such that 1/(x) - f(y) l < f whenever 
fx - Y l < 26 and x, y E S. If vo E S, then for all x, y E S and lx - vo l < 6, 
IY - vo l < 6 we have 

1 /(x) - f(y) l < e. 
Theorem 1 .2 implies the existence of limx-.vo f(x) , x E S. 

Exercise VII.2.9 Let S, T be closed subsets of a no1med vector space, 
and let A = S U T. Let f :  A -+ F be a map into some normed vector space. 
Show that f is continuous on A if and only if its restrictions on 8 and T 
are continuous. 

Solution. Suppose I is continuous on A. Let x E S  and let {xn} be a se
quence in S converging to x. Then since {zn} is a sequence in A converging 
to x it follows that lim l(xn) = f(x) , thereby proving that I is continuous 
on S. A similar argument proves that f is continuous on T. 

Conversely, suppose that f is continuous on S and T. Let x e A and let 
f > 0. If x ¢. T, then x is not adherent to T, so we can choose a ball of small 
radius centered at x which does not intersect T. This ball is contained in 
S so we see that f is continuous at x. Similarly if x ¢. S. Now if x E S n T, 
then choose 61 and 62 such that 

lf(ys) - l(x) l < f and II(YT) - l(x) l < f 

whenever IYs - xl < 61 , Ys E S and IYT - xl < 62 , YT E T. Then put 
6 = min( 61 , 62) in the definition of continuity. 

Continuous Linear Maps 

Exercise VII.2.10 Let E, F be normed vector spaces, and let L : E -+ F 
be a linear map. 
(a) Assume that there is a number C > 0 such that IL(x) l < Clxl for all 
x E E. Show that L is continuous. 
{b) Conversely, assume that L is continuous at 0. Show that there exists 
such a number C. [Hint: See §1  of Chap_ter X.] 

Solution. (a) Given f > 0, let 6 = efC because 

IL(x) - L(y) l = IL(x - y) l < Clx - Yl · 
(b) Choose 6 > 0 such that lx l � 6 implies IL(x) l :5 1 .  Then for all v E E, 
v =F 0 we see that l6v/ lv l l = 6, so 

IL(c5v/ lv l ) l < 1 

which implies IL(v) l < Clv l where C = 1/6. 

Exercise VII.2.11 Let L :  Rk -+ F be a linear map oj Rk into a normed 
vector space. Show that L is continuous. 
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Solution. For 1 < j < k, let e; = {0, 0, . . .  , 0, 1 ,  0, . . .  ) be the vector with 
all entries 0 except 1 at the j-th entry. If v = (at , . . .  , ak ) ,  then 

IL (v) l $ lat i iL(et ) l + · · · + lan i iL(en) l 
$ lv la�c ( IL(e t ) l + · · · + IL(en) l ) ,  

where I · la�c is the sup norm on Rk. Exercise 10 implies the continuity of 
L. . 

Exercise VII.2. 12 Show that a continuous linear map is uniformly con
tinuous. 

Solution. Let f > 0. There exists 6 > 0 such that IL (v) l < f whenever 
lv l < 6. If lx - Yl < 6, then IL (x) - L(y) l = IL (x - y) l < e. This proves the 
uniform continuity of L. 

Exercise VII.2. 13 Let L :  E -4 F be a continuous linear map. Show that 
the values of L on the closed ball of radius 1 are bounded. If r is a number 
> 0, show that the values of L on any closed ball of radius r are bounded. 
{The closed balls are centered at the origin.) Show that the image under L 
of a bounded set is bounded. 

Because of Exercise 10, a continuous linear map L is also called bounded. 
If C is a number such that IL(x) l < Clxl for all x E E, then we call C a 
bound for L .  

Solution. Since L is continuous at 0 ,  there exists a number C > 0 such 
that IL (x) l < Clxl for all x E E. If lx l � r, then IL (x) l < Girl which proves 
that the values of L on the closed ball of radius r centered at the origin are 
bounded. 

Given a bounded set S, there exists a closed ball such that S is contained 
in the closed ball. Therefore, the values of L on S are bounded. 

Exercise VII.2. 14 Let L be a continuous linear map, and let IL l denote 
the greatest lower bound of all numbers C such that IL(x) l < Clx l for all 
x E E. Show that the continuous linear maps of E into .F form a vector 
space, and that the function L ....,. IL l is a norm on this vector space. 

Solution. The sum of continuous linear maps is continuous and linear, and 
cL is continous and linear whenever L is continuous and linear and c is a 
scalar. It is easy to verify that all the properties of a vector space hold, so 
the space of continuous linear maps is a vector space. 

We must show that 1 · 1 is a norm on the vector space of continuous linear 
maps. First note that 0 < IL l < oo because L is continuous. If L = 0, then 
IL l = 0. Conversely, suppose IL l = 0. Then for each x the inequality 

IL(x) l $ elxl 
holds for every E > 0. Letting e -4 0 shows that L = 0. The second property 
of a norm holds because 
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laL(x) ( = (L(ax) l � C(ax ( = Clal (x( 
and therefore C is a bound for L if and only if la iC is a bound for aL. 
Finally, we prove the triangle inequality. Suppose ILi (x) l < Ci lx l  for i = 
1 , 2, then 

ILt (x) + L2 (x) l � fLt (x) f + IL2 (x) f < Ct fxl + C2 fxf = (Ct + C2) lx l 
and therefore (Lt + L2 l � (Lt l + (L2 I · 
Exercise VII.2.15 Let a < b be numbers, and let E = C0([a, b] ) be the 
space of continuous functions on [a, b] . Let I! : E -. R be the integral. Is 
I! continuous: (a) for the L1 -norm; and {b) for the L2-norm on E ?  Prove 
your assertion. 

Solution. (a) Let f, g E E, and let f > 0. Suppose that I/ - ol t  < f, then 

II!(!) - I!(g) l < II! (! - g) l < 1b l f(x) - g(x) ldx = If - Yh < £, 

whence I! is continuous for the £1-norm. 
(b) The integral is also continuous for the L2-norm because the Schwarz 
inequality gives " b If - Y l t - 1 1f(x) - g(x) ldx 

< (1b ldx) 1/2 (1b l f(x) - g(x) l2dx) 1/2 
< Clf - ol2 · 

Exercise VII.2.16 Let X be a complete metric space satisfying the semi
parallelogram law. (Gf. Exercise 5 of Chapter VI, §4.) Let S be a closed 
subset, and assume that given x1 , x2 E S the midpoint between x1 and x2 
is also in S. Let v E X. Prove that there exists an element w E S such that 
d(v, w) = d(v, S) . 
Solution. Let d = d( v, S) . We assume that v ¢. S, otherwise choose v = w. 
Let {xn} be a sequence of points in S such that d(v, xn) converges to d. 
We now show that {xn} is a Cauchy sequence. Let Zmn be the midpoint of 
Xm and Xn. Applying the semiparallelogram law with x = v we get 

d(xm, Xn)2 < 2d(xm , v) + 2d(xn , v)2 - 4d(Zmn , v)2 • 
By assumption, Zmn E S so 4d(zmn , v)2 > 4cP and therefore 

d(xm, Xn)2 < 2d(xm , v) + 2d(xn , v)2 - 4d2 , 
whence {xn} is Cauchy. Since X is complete, ·and S is closed, the sequence 
{xn} converges to an element w E  S which verifies d(v, w) = d(v, S) .  
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VII.3 Limits in Function Spaces 

Exercise VII.3.1 Let fn(x) = xn /(1 + xn) for x � 0. 
(a) Show that In is bounded. 
{b) Show that the sequence {/n} contJerges uniformly on any intenJal [O, c] 
for any number 0 < c < 1 .  
(c) Show that this sequence contJerges uniformly on the interoal x � b if b 
is a number > 1, but not on the interoal x � 1 .  

Solution. (a) For x > 0 ,  we have xn � 1 + xn so 0 � fn (x) � 1. 
(b) The sequence converges uniformly to 0 because 

and en -+ 0 as n -+ oo. 
(c) If x � b > 1 we estimate 

I � (x) - 1 1 - 1 < 1 < 1 
Jn - 1 1 + xn l - lxln - 1 - bn - 1 

80 the sequence {/n} converges uniformly to 1. 
For all x > 1 we have lillln ..... oo /n(x) = 1 and /n(1) = 1/2 for all n so the 

sequence {/n} does not converge uniformly for x � 1.  
Exercise VII.3.2 Let g be a function defined on a set S, and let a be a 
number > 0 such that g(x) > a for all x E S. Show that the sequence 

ng 
9n = 1 + ng 

contJerges uniformly to the constant function 1. ProtJe the same thing if the 
assumption is that lg(x) l > a for all x e S. 

Solution. We prove the stronger result when lg(x) l � a >  0. The uniform 
convergence follows from the fact that for all large n we have 

1 1 1 
lun (x) - l l = < 

( 
< 

. 1 1 + ng(x) l - nfg x) l - 1 - na - 1 

Exercise VII.3.3 Let fn(x) = x/( 1 + nx2) . Show that {/n} contJerges 
uniformly for x E R, and that each function f n is bounded. 

Solution. For x > 0, x < 1 + nx2 (separate cases x :5 1 and x > 1) ,  and 
each /n is odd, so 1/n(x) l < 1 for all x and all n. 

By symmetry we can reduce the proof of uniform convergence for x > 0. 
We then have 

1 - nx2 
/�(x) = (1 + nx2)2 ' 

80 In attains its maximum 1/(2� at x = 1/..;n, thus 1/n (x) l < 
1/(2..;n) 

proving that the sequence converges to 0 uniformly on R. 
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Exercise VII.3.4 Let S be the interval 0 $ x < 1 . Let I be the function 
defined on S by l(x) = 1/{1 - x) . 
(a) Determine whether I is uniformly continuous. 
{b) Let pn(x) = 1 +x + ·  · · +xn . Does the sequence {Pn} conf!erge uniformly 
to I on 8'1  
{c) Let 0 < c < 1 .  Show that I is uniformly continuous on the interval 
[0, c], and that the sequence {Pn} converges uniformly to I on this interval. 

Solution. (a) The function f is not uniformly continuous because if it were, 
then there would exist 0 < 6 < 1/2 such that ll(x) - f(y) f < 1 whenever 
lx - Y l < 6. Let y = 1 - 6 and suppose y < x < 1. Then for values of x 
close to 1 we see that 1 /(x) - I(Y) I  � 1. 
(b) We know that Pn(x) = {1 - xn+l)/(1 - x) so 

fx ln+l 
IPn (x) - f(x) l = 

1 1 _ x l ' 

For fixed n we have fx ln+l / 1 1  - x f  -+ oo 88 x -+ 1 so the sequence {Pn} 
does not converge uniformly to f on S. 
(c) On [0, c] , the function I has a bounded derivative, so I is uniformly 
continuous. Furthermore, we have the estimate 

cn+l 
IPn (x) - l(x) f < 

1 _ c '  

so {Pn} converges uniformly to I on [0, c] . 

Exercise VII.3.5 Let fn(x) = x2/{1 + nx2) for all real x. Show that the 
sequence {In} converges uniformly on R. 

Solution. For each n > 0 the function In is even, positive, and differen
tiable on R with 

f�(x) = 
{1 +

2:2)2 ' 

and fn(x) tends to 1/n 88 x � ±oo. Therefore lfn (x) l < 1/n which proves 
that {In} converges uniformly to 0 as n -+  oo. 

Exercise VII.3.6 Consider the function defined by 

l(x) = lim lim (cos m!1rx)2n . m-.oo n-+oo 

Find explicitly the values of I at rational and irrational numbers. 

Solution. Suppose x = pfq, then for large m, m > 2fq l ,  hence m!1rx = 21rk 
for some k E Z thus l(x) = 1 .  

If x is irrational, then I cos( m!1rx) I < 1 for all positive integers m so 
l(x) = 0. 
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Exercise VII.3. 7 As in Exercise 5 of §B, let 

f(x, y) = 11a�z i! (x, y) ::/: (0, 0), 
{ (y2 z�2 

1 i/ (x, y) = (0, 0) . 

Is f continuous on R2 'I Explain, and determine all points where f is con
tinuous. Determine the limits 

lim lim f(x, y) and lim lim f(x, y) . z�o ,�o y�o z�o 

Solution. The function f is continuous on R2 - {0} . The only problem is 
at the origin and we have shown in Exercise 5, §2, that f is not continuous 
at the origin. However, lillly--+O f(x, y) = 1 and limz-+O f(x, y) = 1 so 

lim lim f(x, y) = lim lim f(x, y) = 1 .  z�o y�O y--+O z--+0 

Exercise VII.3.8 Let S, T be subsets of a normed vector spaces. Let f :  
S � T and 9 : T -+ F be mappings, with F a normed vector space. Assume 
that 9 is uniformly continuous. Prove: Given f, there exists 6 such that if 
It :  S -+  T is a map such that I ll - /t i l  < 6, and 9t : T -+ F is a map such 
that I I  g - 9t I I  < f, then I I 9 o 1 - gt o !t i l < 2f. 

In other words, if It approximates f uniformly and 9t approximates 9 
uniformly, then 91 o It approximates 9 o f uniformly. One can apply this 
result to polynomial approximations obtained from Taylor's formula, to re
duce computations to polynomial computations, within a given degree of 
approximation. 

Solution. For x E S the triangle inequality gives 

19 o f(x) - 9t o /1 (x) l < 19 o f(x) - g o /t (x) l + 19 o ft (x) - 9t o /t (x) l . 

Pick 6 such that if y , y1 E T and IY - Yt l < 6, then lg(y) - 9(Yt ) l < f . Apply 
this with y =  f(x) and y1 = ft (x) . Then the first term on the right is < f 
and the second term is also < f by the hypothesis that l lg - 9t ll < €. 

Exercise VII.3.9 Give a Taylor formula type proof that the absolute value 
can be approximated uniformly by polynomials on a finite closed interval 
[-c, c] . First, reduce it to the interval (-1,  1) by multiplying the variable by 
c or c-1 as the case may be. Then write It I = v't2. Select 6 small, 0 < 6 < 1 .  
If we can approximate (t2 + 6) tl2, then we can approximate v't2. Now to 
get (t2 + 6) 112 either use the Taylor series approximation for the square 
root function, or if you don't like the binomial expansion, first approximate 

log(t2 + 6) 112 = � log(t2 + 6) 

by a polynomial P. This works because the Taylor formula for the log con
verges uniformly for 6 < u < 2A - 6. Then take a sufficiently large number 
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of terms from the Taylor formula for the exponential function, say a poly
nomial Q, and use Q o P to solve your problems. Cf. Exercise 7 of Chapter 
v, §3. 

Solution. Given f, uniform continuity implies that there exists 6 which we 
select small such that for all t E (0, 1] we have 

By the estimates given in Chapter 5, we see that the Taylor polynomial 
of v'l + X converges uniformly on -1 + 6 < X < 6. We then substitute 
X =  t2 + 6  - 1. 

We can use Exercise 8, with f = � log, g = exp, and /1 , 91 their respective 
Taylor polynomials. The detailed proof runs as follows: by uniform conti
nuity on a closed and bounded interval [-C, C] where G is large positive, 
we see that there exists ft such that if la- bl < ft , then lea - eb l < €. By the 
uniform convergence of the Taylor polynomial for the log on (6, 6 + 1] we see 
that given Et there exists a polynomial P such that I � log X - �P(X) I < f1 
(we have in mind X =  t2 + 6) . Thus 

(VII. I) 
Similarly, the uniform convergence of the Taylor polynomial for the expo
nential on an arbitrarily large closed interval containing the origin, guar
antees the existence of a polynomial Q such that l eY - Q(Y) I < e. So 

eiP(X) - Q(�P(X)) < €. (VII.2) 

Combining equations (VII. 1) and (VII.2) and subsituting X = t2 + 6 we 
get 

Exercise VII.3.10 Give another proof for the preceding fact, by using the 
sequence of polynomials {Pn}, starting with Po(t) = 0 and letting 

Show that {Pn} tends to Vi uniformly on [0, 1] , showing by induction that 

2Vf, 0 < ../t - Pn(t) � Vi'  2 +. n  t 

whence 0 < Vi - Pn(t) < 2/n. 
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Solution. We prove by induction the inequalitites and the fact that Pn(t) � 
0. Since 0 � Vi - 0 � Vi and Po(t) = 0 the assertion is true when n = 0. 
Assume the assertion is true for an integer n. Since 

and Pn(t) < Vi we have 

so 0 < Vi - Pn+t (t) . Furthermore, if Pn(t) > 0, then 0 � P�(t) � t which 
implies Pn+t (t) > 0. Finally, for the second inequality note that 

so 

But 

1 ( ) Vi 1 - 2 v'i + Pn{t) < 1 - 2' 

0 < v'i - � (t) < 2vt (1 - �) . - n+l - 2 + nv'i 2 

2v'i (1 _ �) = 2v'i 2(2 + nv'i) - (n + l)t 
2 + nv'i 2 2 + (n + l)v'i 2(2 + nv'i) ' 

so the inequality drops out. 



VIII 
Compactness 

VIII. l  Basic Properties of Coinpact Sets 

Exercise VIII.l.l Let S be a compact set. Show that every Cauchy se
quence of elements of S has a limit in S. 

Solution. Let { Xn} be a Cauchy sequence. This sequence has a subsequence 
{xn�c }  which converges to some x in S. Given f > 0, there exists positive 
integers N and M such that for all n, m > N we have lxn - Xm I < f and 
such that for all k > M we have fxn�c - xl < €. Select k such that k > M 
and nk > N. Then for all n > N we have 

Exercise VIII.1.2 (a) Let 81 , . . .  , Sm be a finite number of compact sets 
in E. Show that the union 81 U · · · U Sm is compact. 
{b) Let {Si}iei be a family of compact sets. Show th.at the intersection 
niei Si is compact. Of course, it may be empty. 

Solution. (a) We prove the result for two sets. Let S be an infinite subset 
of 81 US2 . Assume that Sn81 is infinite (if not, then SnS2 must be infinite 
and the argument is the same) so that S n 81 has a point of accumulation 
in 81 • Therefore S has a point of accumulation in 81 U S2 • By induction we� 
conclude that 81 U · · · U Sm is compact. 
(b) Let S be any member of the family. Then ·nieJ Si is a closed subset of 
S and is therefore compact by Theorem 1 .2. 
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Exercise VIII.1.3 Show that a denumerable union of compact sets need 
not be compact. 

Solution. Each interval In = [-n, n] is compact but the union Un In is 
unbounded and therefore not compact. 

Exercise VIII.1.4 Let {xn} be a sequence in a normed vector space E 
such that { Xn} converges to v .  Let S be the set consisting of all Xn and " .  
Show that S is compact. 

Solution. Let {vk} be a sequence in S. If there are infinititely many k's 
such that 'Ilk is equal to the same element of S, then {vk} has a converging 
subsequence in S. If one element of S is not repeated infnitely many times 
in {vk} ,  then we can find a subsequence of {vk } which is a subsequence of 
{xn} and which therefore converges to v in S. 

VIII.2 Continuous Maps on Compact Sets 

Exercise VIII.2.1 Let S c T be subsets of a nofmed vector space E. Let 
I : T � F be a mapping into some normed vector space. We say that I is 
relatively uniformly continuous on S if given E there exists 6 such that 
whenever x E S, y E T, and lx - Yl < 6, then 1/(x) - /(Y) I  < E. Assume 
that S is compact and I is continuous at every point of S. Verify that the 
proof of Theorem B.3 yields that f is relatively uniformly continuous on S. 

Solution. Suppose that f is not relatively uniformly continuous on S. Then 
there exists an € > 0 and for each positive integer n there exists Xn E S and 
Yn E T such that lxn - Yn l < 1/n but ll(xn) - I(Yn) l > E. There exists an 
infinite subset J1 of z+ and a v E S such that Xn -+ "  as n -+  oo, n e J1 . 

The inequality 
lv - Yn l < lv - Xn l + lxn - Yn l 

implies that Yn -+ v as n -+ oo, n E J1 . Then the continuity of f at v 
implies �hat ll(xn) - I(Yn) l approaches 0 as n -+ oo, n E J1 , which gives 
us the desired contr&diction. 

Exercise VIII.2.2 Let S be a subset of a normed vector space. Let I : S -+ 
F be a map of S into a normed vector space. Show that f is continuous on S 
if and only if the restriction off to every compact subset of S is continuous. 
{Hint: Given v E S, consider sequences of elements of S converging to v.J 

Solution. Suppose the restriction of f to every compact subset is con
tinuous. Let v E S and consider a sequence {xn} which converges to v. 
Then the subset T = { v, Xt , . . . , Xn , . . .  } of S is compact and therefore 
limn-+oo l(xn) = l(v) . This proves that I is continuous on S. 

The converse is clear. 
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Exercise VIII.2.3 Prove that two norms on Rn are equiv�lent by the 
following method. Use the fact that a continuous /unction on a ·  compact set 
has a minimum. Take a norm to be the function, and let the compact set 
be the unit sphere for the sup norm. 
Solution. Suppose that we want to show that the norm l · l t  is equivalent to 
the sup norm l · loo · Equip Rn with the sup norm. The function / (v) = lv l 1 
is continuous because 

where C = E� 1 fei l t · The unit sphere is compact for the sup :norm, there
fore f attains its minimum and maximum, say at x and y, respectively. 
Then 

fxh < lvh < IYh · 
Given any v E Rn , v =/= 0 we have l v/ fvloo loo = 1 ,  so if we let C1 = fx l t  and 
C2 = IYi t we obtain 

which implies 
C1 lv loo � lvh < C2 lv loo · 

Exercise VIII.2.4 {Continuation of Exercise 1, Chapter VII, §2). Let 
E = R k and let S be a closed subset of R k . Let v E R k . Show that there 
exists a point w E S such that 

d(S, v) = lw - vi . 

{Hint: Let B be a closed ball of some suitable radius, centered at v, and 
consider the function x �--+ lx - v i for x E B n S.j 
Solution. Consider a closed ball centered at v of radius large enough so 
that B n S is not empty. Since E = Rk , and B n S is closed and bounded, 
we conclude that B n S  is compact. The function defined by fv (x) = fx - v l 
is continuous, and therefore fv has a minimum on B n 8. 

Exercise VIII.2.5 Let K be a compact set in R k and let S be a closed 
subset oj Rk . Define 

d( K, S) = glb:�:eK,11es fx - Yl · 

Show that there exist elements xo E K and Yo E S such that 

d(K, S) = lxo - Yo I ·  

{Hint: Consider the continuous map x .....,. d(S, x) for x E K.j 
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Solution. The function defined by f(x) = d(x, S) is continuous {Exercise 
1, §2, of Chapter 7) and Theorem 2.2 implies that for some x0 E K, the 
function f attains its minimum. Exercise 4 implies that there exists Yo E S 
such that /(xo) = lxo - Yo I · Then d(K, S) = lxo - 1/o l · Indeed, d(x , S) < 
lx - 111 for all x e K and y e S, thus /{xo) < d(K, S) and the reverse 
inequality, d(K, S) s; f(xo) is obvious. 

Exercise VIII.2.6 Let K be a compact set, and let f : K -+ K be a 
continuous map. Suppose that f is expanding, in the sense that 

1/(x) - /(y) l > lx - Yl 

for all x, y e K. 
(a) Show that f is injective and that the inverse map f-1 : f ( K) -+ K is 
continuous. 
{b) Show that f(K) = K. {Hint: Given xo E K, consider the sequence 
{/n (xo)}, where fn is the n-th iterate of f. You might use Corollary �.3.} 
Solution. (a) If /(x) = f(y) , then 0 > lx - Yl so x = y. The inverse 
function is continuous because 

(b) Suppose there exists x E K such that x ¢ f(K) . Since f(K) is com
pact, Exercise 5 implies that d(f(K) , x) = d > 0. Let xo = x and define 
the sequence {xn} by Xn+l = f(xn) · Since K is compact, there exists a 
subsequence { Xn,. }  which converges in K. So there exists m e N such that 
lxnm+l - Xnm I < d/2. We can write Xnm+l = Xp and Xnm = Xq for some 
positive integers p, q with p > q. Then 

and therefore repeating the process we obtain 

lxnm+l - Xnm l > IXp-1 - Xq-1 1 > • • • > lxp-q - Xo l  > d, 

and the last inequality holds because Xp-q belongs to f(K) .  We get a 
contradiction which proves that f(K) = K. 
Exercise VIII.2. 7 Let U be an open subset of R n . Show that there exists 
a sequence of compact subsets K; of U such that K; c Int(K;+1 ) for all 
j, and such that the union of all K; is U. {Hint: Let B; be the closed 
ball of radius j, and let K; be the set of points x E U n B; such that 
d(x, 8U) > lfj .J 
Solution. Define K; as in the hint. Let f(x) = d(x, 8U) so that f is a con
tinuous function on Rn. Since (1/j, oo) is closed, it follows that f-1 ( [1/j, oo)) 
is closed, namely, the set of all x e R n such that d( x, 8U) > 1/ j is closed. 
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Hence its intersection with the closed and bounded set U n B; is compact, 
so K; is compact. As for various inclusions, we have 

K; c {x E U n Bj+l such that d{x, 8U) > 1/{j + 1)} {VIII. I) 
c {z e U n B;+t such that d(z, 8U) 2: 1/{j + l)} (VIII.2) 
= Kj+l · (VIII.3) 

Again, since f is continuous, the set on the right of the first inclusion is 
open because it is the intersection with U n B3+1 with the inverse image 
under f of the open interval (1/(j + 1 ) ,  oo) . Hence (VIII. I) shows that 
K; c Int(U) and (VIII.2) shows that K3 c Int(K3+1) .  Finally we show 
that the union of all the K; is equal to U. Observe that every point of U 
is at distance > 0 from the boundary of U because the boundary is closed. 
Pick j such that 1/j < d(x, 8U) and lx l < j, so by definition we have 
x E K3 , which concludes the proof. 

VIII.4 Relation with Open Coverings 

Exercise VIII.4.1 Let {U1 ,  . . .  , Um} be an open covering of a compact 
subset S of a normed vecto1· space. Prove that there exists a number r > 0 
such that if x, y E S and lx - Yl < r, then x and y are contained in Ui for 
some i .  

Solution. Suppose that such a number r does not exists. Then for eac� n 
there exists a point Xn E s such that Bt;n (Xn) is not contained in ui for 
any i. There exists a subsequence {xn�c } of {x11} which converges to x. Pick 
m' such that x E Um' · Since Um' is open, there exists a positive integer N 
such that B1;N (x) C Um' · We can find p such that for all k > p we have 
lxn�c - x l < 1/2N. Then for k >  max{p, 2N) we have Bt/n�c (Xn�c ) C u:n, a 
contradiction. 

Exercise VIII.4.2 Let {Si}ieJ be a family of compact subsets of a normed 
vector space E. Suppose the intersection niei Si is empty. Prove that there 
is a finite number of indices i 1 , • • •  , in such that 

This is the 11dual" property of the finite covering property. 

Solution. Let S be one member of the family. Let Ui = Sf, so that Ui 
is open. Then by hypothesis, the family {Ui} covers S, whence a finite 
number Ui1 , • • • , Uin covers S by Theorem 4.2, that is S c Ui1 U · · · U Uin . 
Taking complements shows that Si1 n · · · n Sin c sc, so the intersection 
s n sil n . . .  n sin is empty, as was to be shown. 
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Exercise VIII.4.3 Let S be a compact set and let R be the set of contin
uous real valued functions on S. Let I be a subset of R containing o; and 
having the following properties: 
(i) If /, 9 E I, then I + 9 E I. 
(ii} If f E I and h E R, then hf E I. 
Such a subset is called an ideal of R. Let Z be the set of points x E S such 
that f(x) = 0 for all f E I. We call Z the set of zeros of I. . 
(a) Prove that Z is closed, expressing Z as an intersection of closed sets. 
(b) Let I E R be a function which vanishes on Z, i. e. I ( x) = 0 for all x E Z. 
Show that I can be uniformly approximated by elements of I. {Hint: Given 
E, let C be the closed set of elements x E S such that 1/(x) l > E. For each 
x e C, there exists g e I such that 9(x) #: 0 in a neighborhood of C. Cover 
C with a finite number of them, corresponding to functions 91 , . . . , 9r . Let 
9 = g� + · · · +.9� · Then 9 E I. Furthermore, 9 has a minimum on C, and 
for n large, the function 

n9 I l + ng 
is close to f on C, and its absolute value is < E on the complement of C 
in S. Jwtifg all the details of this proof.} 

Solution. (a) Given I e I, let Xf,n = {x e S : 1/(x) l < 1/n} . Since 
I is continuous x,,n is closed. So Z(f) = n: 1 x,,n is closed and z = 
n(ei Z(/) is also closed. 
(bJ If x E C, then x f/: Z, so we can find a function g e I such that 9(x) -:/= 0. 
By continuity, g is non-zero in a neighborhood Vz of x. Then Uzec Vz is 
an open covering of C from which we can select a finite subcovering of 
C because C is compact. Let 91 , • • • , gr be the functions corresponding to 
the finite subcover, and let g = g� + · · · + 9� . The function g belongs to I 
because of properties (i) and (ii) . Furthermore, 9 is continuous on C, it is 
> 0 and nowhere 0, otherwise 9I (Y) = · · · = 9r(Y) = 0 for an element y E C 
where y belongs to one of the sets of the subcover. This is a contradiction. 
The function 9 attains a minimum a > 0 on C. Consider the function 

n9 
1 + ng · 

This function belongs to I and Exercise 2, §3, of Chapter 7 implies that 
n9/(1 + n9) tends uniformly to 1 on C. Thus 

which belongs to I tends uniformly to f on C, so for all large n we have 

n9 I - I 1 + ng < f. 
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On the complement we have the estimate 

I ng I < I ng 
f - f 1 + ng - Il l + f 1 + ng < 2£. 





IX 
Series 

IX.2 Series of Positive Numbers 

Exercise IX.2.1 (a) Prove the convergence of the series E 1/n(log n)1+E 
for every e > 0. 
{b) Does the series E 1/n log n converger Proof? 
(c) Does the series E l/n{log n){log log n) converge? Proof? What if you 
stick an exponent of 1 + f to the {log log n) r 

Solution. (a) We have f2
00 1/x(logx) 1+Edz < oo because 

1B 1 [-1 ] B 
(l ) l+E

dX = -(log x)-E 1 
2 x ogx e 2 

so the series E 1/n{log n) 1+E converges. 
(b) The integral test shows that the series diverges. Indeed, 

f8 1 dx = [log log x]: = log log B - log log 2 -+ oo }2 x logx 

as B -+  oo. 
(c) Again, the integral test shows that the series diverges, 

1B 1 B ( ) (  1 ) dx = [log log log x]3 = log log log B - log log log 3 
3 x log x log og x . . 

and this last expression -+ oo as B -+  oo. 
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For any f > 0, the series E 1/n(log n) (log log n) 1+E converges because 

fB 1 
dx = [-! (Iog log x)-E] 8 }3 x(log x) (log log x) 1+E f 3 

• 

Exercise IX.2.2 Let E an be a series of tefmS > 0. Assume that there ex
ist infinitely many integers n such that an > 1/n. Assume that the sequence 
{an} is decreasing. Show that E an diverges. 

Solution. Let E = {n E N :  an > 1/n} . Then E is unbounded. Let no =  1 
and let n;+t be the smallest integer in E such that n;+t > 2n; . Then using 
the fact that {an} is decreasing we conclude that for every positive integer 
m we have nm m 

1 m 
1 L: ak ;:?:  L<n; - n;-t )� > L 1 - 2 . k=t j=t n, j=t 

But n; -+ oo as j -+ oo whence the partial sums are unbounded, and the 
series diverges. 

Exercise IX.2.3 Let E an be a convergent series of numbers > 0, and 
let {bt , �' ba , . . .  } be a bounded sequence of numbers. Show that E anbn 
converges. 
Solution. Let B be a bound for the sequence {bn} · Given f > 0, there exists 
a positive integer N such that for all n > m > N we have 0 < E: m+l ak < 
£/B. Furthermore, we have fanbn l < Bfan l ,  so for all n > m > N we have 

n n 
L akbk < L lakbk l < f. 

k=m+l k=m+l 
Thus the partial sums of E anbn form a Cauchy sequence, as was to be 
shown. 

· 

Exercise IX.2.4 Show that E (log n)/n2 converges. If 8 > 1, does 
E(log n)3 /n8 converge 'I Given a positive integer d, does E(log n)d /n8 con
verge 'I 

Solution. Let 8 = 2 in the text. Now we prove the general result. Let d be 
a positive integer, and write s =  1 + 2£ with f > 0. Then 

(log n)d 1 (log n)d -
nt+2E nl+E nE ' 

and for all large n we have (log n )d < nE whence we conclude that the series 
E(log n )d /n8 converges. 

Exercise IX.2.5 (a) Let n! = n(n - l) (n - 2) · · · 1  be the product of the 
first n integers. Using the ratio test, show that E 1/nl converges. . 
{b) Show that E 1/nn converges. For any number x, show that E xn/n! 
converges and so does E xn/nn . 
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Solution. (a) Let an = 1/n! . For all n > 1 , an+l $ �an because 

an+l 1/{n + 1) ! _ 1 
- 1/nl 

-
n + 1 · 

(b) Since nn > n! the comparison t�t implies that E 1/n"' converges. 
Suppose x > 0 and let an = x"'/n! . Then a,+t/an = x/(n + 1) which 

tends to 0 as n -+  oo, so the ratio test implies the convergence of the series 
E xn/n! .  

If x < 0, let an = lx ln/n! and bn - (-�)n. Exercise 3 implies the 
convergence of the series E Xn/n! . 

Finally, if x = 0, then E Xn/n! = 0. 
Note that for x > 0, the series E xn /nn converges, and this result also 

holds for x $ 0. 
Exercise IX.2.6 Let k be an integer > 2. Show that · 

00 
L 1/n2 < 1/(k - 1). 
n=k 

Solution. Using an upper sum estimate, as in the integral test, we find 
that 

00 1 {00 dx 1 � � < J�c_1  x2 
= k - 1 '  

We could also argue as follows. For each n > 2 we have n2 > n(n - 1) ,  so 
for all m > k we obtain 

m 1 m 1 m 1 1 1 1 
L � < L n(n - 1) = L n - 1 - n = k - 1 - m · n=k n=k n=k · 

Letting m -+ oo we see that 

00 1 1 � - < . LJ n2 - k - 1 n=k 

Suppose that for some k, this last inequality is an equality. Then we have 

which implies 

00 1 00 1 
L � = L n(n - 1) ' n=k n=k 

00 ( 1 1 . ) � n( n - 1) - n2 = O. 
But 1/n(n - 1) - 1/n2 > 0 for all n, so we get a contradiction. We conclude 
that the inequality is always strict, that is 
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for all k � 2. 

00 1 I: fi2 < 1/{k - 1) ,  
n=k 

Exercise IX.2. 7 Let E a! and E b� converge, assuming an > 0 and bn � 
0 for all n. Show that E anbn converges. {Hint: Use the Schwarz inequality 
but be careful: The Schwarz inequality has so far been protJed only for finite 
sequences. J 

Solution. For each integer m > 0, consider the m-tuples ( a1 , • • •  , am) and 
(bt , . . . , bm)· The standard inner product in am and the Schwarz inequality 
imply 

so the partial sums are bounded. 

Exercise IX.2.8 Let {an} be a sequence of numbers � 0, and assume that 
the series E an/n' converges for some number s = so . Show that the series 
converges for s. � so . 

Solution. If s � so , then 1/n' � 1/n'0 so E an/n' converges by compar
ision with E an/n'0 • 
Exercise IX.2.9 Let {an} be a sequence of numbers > 0 such that E an 
diverges. Show that: 
(a) E 1:: diverges. 
{b) E l+:ia" converges. 
(c) E .;::a .. sometimes converges and sometimes diverges. 
{d) E 1+:! sometimes converges and sometimes diverges. 

Solution. (a) .Suppose the series E 1::" converges. There is some no such 
that for all n � no we have 

an 1 O < l + an = bn < 2 . 

Since an = bn/ (1 - bn) we conclude that for all n > no , 0 < an < 2bn which 
implies the convergence of E an. This gives us the desired contradiction. 
(b) The series E t+��a" converges because 

O < � an < _!__ - L..J 1 + n2an - n2 
(c) If we put an = 1 ,  then E 1.::a" diverges. Suppose an = 1 whenever 
n is a perfect square, i.e. Vn E z+ and an = 0 otherwise. Then E �.::an 
converges. 
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(d) If we put an = 1 ,  then E 1::a diverges. Choose a number e > 1 and 
let an = en . Then 

an 1 1 -- < - = - , 
1 + a� - an en 

so E 1�!a converges by comparision to the geometric series. 

Exercise IX.2.10 Let {an} be a sequence of real numbers > 0 and assume 
that lim an = 0. Let 

n 
II(� + ak) = ( 1  + at ) (1 + a2) · · · ( 1  + an) · 
k=l 

We say that the product converges as n � oo if the limit of the preceding 
product exists, in which case it is denoted by 

00 II (1 + ak) · 
k=l 

Assume that E an converges. Show that the product converges. {Hint: Take 
the log of the finite product, and compare log(1 + ak) with ak . Then take 
exp.j 

Solution. Taking the log of the partial product we obtain E�-1 log(1+ak) · 
But log(1 + ak) < ak , so E log(1 + ak) converges. The exponential map is 
continuous and 

exp (� log( l + ak)) = g ( 1  + aA:) ,  

so the infinite product converges. 

Exercise IX.2.11  (Decimal Expansions) (a) Let o: be a real number 
with 0 < o: < 1 .  Show that there exist integers an with. 0 < an � 9 such 
that 

The sequence (a1 , a2 , . . .  ) or the series E an/10n is called a decimal ex
pansion of o:. {Hint: Cut [0, 1] into 10 pieces, then into 102 , etc.} 
{b) Let o: = E� m ak/lOk with numbers ak such that fak l � 9. Show that 
lo: l  :5 1/1om-l . 
{c) Conversely, let {ak } be integers with lak l < 9, ak -:/= ±1 for all k. Let 
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Suppose that Ia: I < tjtoN for some positive integer N. Show that a�c = 0 
for k = t, . . .  , N - t . 
{d) Let o: = E� t a�c/tOk = E� 1 b�c/tOk with integers a�c , b�c such that 
0 � a�c < 9 and 0 < b�c < 9. Assume that there exist arbitrarily large k such 
that a�c #: 9 and similarly b�c -:/: 9. Show that a�c = b�c for all k. 

Solution. (a) Cut up the interval [0, t] in tO equal segments of length 1/tO, 
namely, let 

1 [ 1 ] t [ j j + 1 ] t [ 9 ] Io = 0, 10 , . . .  , I; = 10'  tO , . . .  , Ig = 10'  t . 

Pick j such that o: E IJ , and let at = j. Then Ia: - a 1 l < t/10. Then cut 
up the interval I�1 in tO , namely consider 

2 [at j at j + t ] I3 = tO + t02 ' tO + t02 

for j = 0, . . .  , 9. Pick j such that o: E IJ, and let a2 = j. Then 

Ia - (�� + 1�2 ) 1  < 
1� · 

Proceeding by induction we get a sequence (at , a2 , . . .  ) such that 0 < an < 9 
and such that 

Hence o: = E an/10n. 

m � an < t . o: - L....J ton - tom 
n=t 

(b) The inequality follows from 

I I < � lak I < 9 � 1 o: - L....J 10k - tom L....J tOk 
k=m k=O 

and the fact that E� 0 tjtOk = 10/9. 
(c) Write o: = E� m a�c/10k with am -:/: 0 and m < N - 1. Then 

lam l < l tOmo: - ami +  l tOmo:l .  

On the one hand, we have 

and on the other hand, we have 
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Hence lam l < 1 + 1/10 and since am -:/= ±1 by assumption, we conclude 
that ak = 0 for k = 1, . . . , N - 1. 
(d) We prove the result by induction. The assumption implies that for 
arbitrarily large k we have l ak - bk l < 9 so 

and therefore, la1 - b1 l < 1 which implies a1 = b1 . Suppose ak = 0 for all 
0 < k < n, then 

00 

L 
k=n+2 

and therefore an+l = bn+l · 
Exercise IX.2.12 Let S be a subset of R. We say that S has measure 
zero if given E there exists a sequence of intervals {Jn} such that 

00 

L length(Jn) < E, 
n=1 

and such that S is contained in the union of these intervals. 
(a) If S and T are sets of measure 0, show that their union has measure 0. 
(b) If 81 , 82 , . . .  is a sequence of sets of measure 0, show that the union of 
all 

8i (i = 1, 2, . . .  ) 

has mea,'Jure 0. 

Solution. (a) Special case of (b) . 
(b) For each i ,  we can find a sequence of intervals {Ji,n }� 1 which cover 
8i and such that E� 1 1Ji,n l  < E/2i . Then u� 1 U�-1 Ji,n covers u� 1 8i . 
Moreover, 

Conclude. 

00 00 00 

L L IJi,n l  < L ;i = f. 
i=l n=1 i=l 

Exercise IX.2. 13 (The Space l2) Let l2 be the set of sequences of num
bers 

such that 

converges. 
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(a) Show that £2 is a vector space. 
{b) Using Exercise 7, show that one can define a product between two ele
ments X and Y = (Yt , 112 , • • • ) by 

00 

(X, Y) = L XnYn· 
n=l 

Show that this product satisfies all the conditions of a positive definite scalar 
product, whose associated norm is given by 

(c) Let Eo be the space of all sequences of numbers such that all but a finite 
number of components are equal to 0, i. e. sequences 

Then Eo is a subspace of l2 • Show that Eo is dense in P .  
{d) Let {Xi} be an P-Cauchy sequence in Eo . Show that {Xi} is P
convergent to some element in l2 • 
(e) Prove that tJ is complete. [Cf. Exercise 6 of Chapter VII, § 1.} 

Solution. (a) In l2 define addition and scalar multiplication component
wise. If X, Y e E, then X+ Y E E because the Schwartz inequality implies 

m 

0 < L(xn + Yn)2 
n=l 

m 

L x� + 11! + 2XnYn 
n=l 

< 
� 

2 
� 

2 (� 
2) 1/2 (� 

2) 1/2 
LJ Xn + L...J Yn + 2 L...J Xn LJ Yn < 00, 

and clearly, eX E E. The zero element is simply 0 = (0, 0, . . .  ) and belongs 
to E and X + (-X) = 0, so we conclude that E is a  vector space. 
(b) The product ( · ,  ·) : E x E -+ R is well defined because by Exercise 7 we 
know that if E x� and E Y! converge, then so does E lxn l lYn J .  We contend 
that this product is a positive definite scalar product. The linearity prop
erties follows from standard properties of the real numbers and because of 
the theorems on limits. If X = 0, then clearly, (X, X) = 0, and conversely, 
if (X, X) = 0, then Ex� = 0 which implies Xn = 0 for all n hence X = 0. 
So the scalar product is postitive definite. The 88Sociated norm is given by 
I IX I I� = (X, X) = Ex�. (c) It is clear that Eo is a subspace of l2 • We contend that this subspace 
is dense in P. Let X = (x1 , x2 , . . .  ) E £2 and let E > 0. The series E x� 
converges, so for some N we have 

00 

L 
n=N+l 



· IX.2 Series of Positive Numbers 141 

If we let Y = (x1 , x2 , • • •  , XN ,  0, 0, . . . ) ,  then Y E Eo and I IX - Yl l � < f. 
This proves our contention. 

{d) Let Xn = {xn,; }j 1 . Then given f > 0, there is a positive integer N 
such that for all n, m > N we have I IXn - Xmlf 2 < f. This implies that for 
each j, the sequence of real numbers { Xn,j} � 1 is Cauchy and therefore, it 
converges to a real number which we denote by Y; . Let Y = {Y; } j 1 . We 
contend that Y e (J and that Xn converges to Y in the 1.2-norm. For each 
positive integer M and all n, m > N we have 

M E lxn,j - Xm,j 12 < f2 ' 
j=l 

so letting m __. oo we get 

M E lxn,j - Y; l 2 < f2 • 
j=l 

Therefore, for all n > N we get that I IXn - Yll2 < f. Moreover, 

k - E IY; - Xn,j + Xn,j 12 
j=l 

k 

< I IXn - Yl l2 + I IXn l l 2 + 2 E IY; - Xn,; l lxn,j l  
j=l 

so Exercise 7 implies that Y E £2• 
{e) Immediate consequence from {d) and Exercise 6, §1 ,  of Chapter 7 (al
though you should note that {d) applies directly because we never assumed 
that {Xn} was in Eo.) 

Exercise IX.2.14 Let S be the set of elements en in the space 1.2 of Ex
ercise 13 such that en has component 1 in the n-th coordinate and 0 for all 
other coordinates. Show that S is a bounded set in E but is not compact. 

Solution. For all n we have l l en l l2 = 1, so the set S is bounded. However, 
if n -:/=  m, then l i en - em il � = 2 so the sequence {en} has no converging 
subsequence. Thus S is not compact. 

Exercise IX.2.15 (The Space 1.1 ) Let 1.1 be the set of all sequences of 
numbers X = {xn} such that the series 

converges. Define I IX Ih to be the value of this series. 
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(a) Show that f1 is a vector space. 
{b) Show that X t-+ I I X li t  defines a norm on this space. 
(c) Let Eo be the same space as in Exercise 13{c) . Show that Eo is dense 
in f1 • 
(d) Let {Xi}  be an l1 -Cauchy sequence in E0 •  Show that {Xi } is f1 -
convergent to an element of l1 • 
(e) Prove that l1 is complete. 
Solution. (a) Define addition and scalar multiplication componentwise. 
The triangle inequality and the theorems on limits imply that if X, Y e 1,1 , 
then X + Y e f1 and if c is a scalar, then eX e f1 . Hence E is a vector 
space. 
{b) The function II · li t is a norm. Indeed, I IO II t = 0 and if I IXI I 1 - 0, 
then E lxn I = 0 which implies Xn = 0 for all n, hence X = 0. Clearly, 
l lcX Ih = lci i iX II t · For the triangle inequality we simply have on the partial 
sums N N N 

L lxn + Yn l  < L lxn l  + L IYn l  < I IXI I 1 + I IYII t · 
n=l n=l n=l 

Letting N __. oo gives the desired inequality, and we conclude that I I · l i t is 
a norm on f1 . 
(c) Given f > 0 and X E f1 , there exists N such that E� N+l lxn l < E, 
so if we let Y = (xt , x2 , . . . , XN , 0, 0, . . .  ) we get I IX - Yil t < f. Thus Eo is 
dense in l1 . 
{d) Suppose Xn = {xn ,j }j 1 is a Cauchy sequence. Then given f > 0, there 
is a positive integer N such that for all n, m > N we have I IXn - Xm ll t < f. 
This implies that for each j, the sequence of real numbers { Xn,j } � 1 is 
Cauchy and therefore converges to a real number which we denote by Y; . 
Let Y = {y; }j 1 . We contend that Y E f1 and that Xn converges to Y in 
the f1-norm. For each positive integer M and all n, m > N we have 

so letting m -+ oo we get 

M 
L lxn,j - Xm,; l < E, 
j=l 

M 
L lxn,j - Y; l  < f. 
j=l 

Therefore, for all n > N, we get that I IXn - Yil t < f. Moreover Y E l1 
because 

M M M 
L IY; I < L IY; - Xn,; l + L lxn,j l < I IXn - Yll 1 + I IXn ll l , 
j=l j=l j=l 

for all M > 1. 
(e) Immediate from {d) and Exercise 6, §1 ,  of Chapter 7. 
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Exercise IX.2.16 Let {an} be a sequence of positive numbers such that 
E an converges. Let {un} be a sequence of seminorms on a vector space E. 
Assume that for each x E E there exists C(x) > 0 such that un(x) � C(x) 
for all n. Show that E anun defines a seminorm on E. 

Solution. Let u(x) = E anun(x). For each x E E we have u(x) = 
C(x) E an so u(x) is well defined. Since un(x) > 0 for all x and all n 
we see that u(x) � 0 for all x E E. Furthermore 

M M 
L (anun(x + y)) < L (anun (x) + anun(Y)) ·< u(x) + u(y) 
n=l n=l 

so letting M -+ oo we obtain the triangle inequality. Finally, the property 
u(cx) = lclu(x) follows from 

M M M 
L anun(cx) = L an lclun (x) = lei L anun(x) 
n=l n=l n=l 

and letting M -+ oo. 

Exercise IX.2.17 (Khintchine) Let f be a positive function, and as
sume that 00 

L J<q> 
q=l 

converges. Let S be the set of numbers x such that 0 < x < 1, and such 
that there exist infinitely many integers q, p > 0 such that 

X - p 
< 

f(q) . q q 

Show that S has measure 0. {Hint: Given E, let qo be such that 

L J(q) < f. 
q>qo 

Around each fraction O/q, l/q, . . .  , qfq consider the interval of length f(q)fq. 
For q > qo, the set S is contained in the union of such intervals . . . .  } 

Solution. Given f, let qo be such that Eq>qo f(q) < f. For each q > qo 
consider the intervals of len.gth 2/{q)/q centered at 0/q, 1/q, . . . , qfq. Let 
U be the union of all such intervals. Then, given any x E S, there exist 
q � qo and an integer p with 0 < p < q, such that 

X - p 
< 

f(q) 
q q , 
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so S is contained in U, and the sum of the length of the intervals is bounded 
by 

I,: 2(q + 1) 
f(q) 

< I,: 4q
f(q) 

< 4e. 

q>qo q 
q >qo q 

Exercise IX.2.18 Let a be a real number. Assume that there is a number 
C > 0 such that for all integers q > 0 and integers p we have 

p c a - - > - . 
q q 

Let 1/J be a positive decreasing function such that the sum E� 1 1/J( n) con
verges. Show that the inequality 

a - P < 1/J(q) 
q 

has only a finite number of solutions. {Hint: Otherwise, 1/J(q) > C/q for 
infinitely many q. Cf. Exercise 2.] 

Solution. Suppose that the inequality la -p/ql < 1/J(q) has infinitely many 
solutions. Then C / q < I a - � I < 1/J( q) for infinitely many q. Exercise 2 
implies that the series E 1/J(q)/0 diverges, a contradiction. 

Exercise IX.2.19 (Schanuel) Prove the converse of Exercise 18. That 
is, let a be a real number. Assume that for every positive decreasing function 
1/J with convergent sum E 1/J(n) , the inequality Ia - pfql < 1/J(q) has only 
a finite number of solutions. Show that there is a number G > 0 such that 
Ia - pfql > G/q for all intergers p, q with q > 0. {Hint: If not, there exists 
a sequence 1 < Ql < Q2 < · · · such that 

Let 

Solution. Suppose the conclusion of the exercise is false. Then for each 
integer i > 1 ,  there exists a p�r of integers (Pi ,  qi ) with qi > 0 such that 

We now show that we can choose the qi 's such that 1 < Ql < q2 < · · · .  To 
do so, it suffices to prove the following lemma: 

Lemma. For each i, there is infinitely many choices of q > 0 such that 
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for some p (which depends on q) . 
Proof. Suppose that for some i, there is only finitely many choices. Then, 
since a is irrational, there exists 6 > 0 such that if Ia - pfql < 6, then 

Select k such that k > i and 1/2k < 6. By assumption, there exists p' , q' 
with q' > 0 such that 

p' 1 
a - --; < 2k ' 

< 6, q q 

so Ia - p' fq' l 2! 1/(2iq') . We choose k > i so 

1 p' 1 1 
--;-- < a - - < < -2"q' - q' 2kql 2iql , 

and this contradiction proves the lemma, and shows that for each i we can 
find a pair (pi , qt, ) with qi > 0 such that 

Now let 

Then 1/J(t) � e E(l/2i ) < oo, 1/J is positive and decreasing because t t-+ e-t 
is decreas\ng. Furthermore, 

1/J(q;) > � e-q; /q; = � 23q; 23q; 

for all j,  and the series E 1/J( n) converges because 

and for all small x we have the inequality, e-� $ 1 - �z so for all large qi 
we get 

__!._ 1 < 
2qi 

2iqi 1 - e-1/qi - 2iqi , 

and therefore, E 1/J( n) < oo. This contradiction concludes the exercise. 
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IX.3 Non-Absolute Convergence 

Exercise IX.3.1 Let an � 0 for all n. Assume that E an converges. Show 
that E ,;a:;,/ n converges. 

Solution. Since E 1/n� and E an converge, Exercise 7, §2, implies the 
convergence of E ,;a:;,/n. 

Exercise IX.3.2 Show that for x real, 0 < x < 21r, E einx /n converges. 
Conclude that 

• � s1n nx 
L....J and 

n 

converge in the same intenJal. 

Solution. If 0 < x < 21r, then eix -:/= 1 .  We estimate the sum G(k) = 
eix + · · · + ekix , using the standard formula for a geometric series, namely 

eix - e(ktl)ix 2 
IG(k) l = . < 

I . I ' 1 - e"x - 1 - e"x 
Since x t-+ 1/x decreases to 0 as x -+  oo, summation by parts implies the 
convergence of the series E einx fn. 

A sequence of complex numbers {Zn} converges to z, if and only if the 
real sequences {Re(.zn)} and {Im(zn)} converge to Re(z) and Im(z) , re
spectively. But einx = cos( nx) + i sin( nx) so the series 

converge. 

Exercise IX.3.3 A series of numbers E an is said to converge abso
lutely if E lan l converges. Determine which of the following series con
verge absolutely, and which just converge. 
{a} E Jt+l//: . (b) E{-l)n si:n 
{Hint for {b): Show that among three consecutive positive integers, for at 
least one of them, say n, one has I sin nl > 1/2.} 
(cJ E(-1)n �-vn .  {d) E 2� 
1 )  � sin n  (f) �( 1)n n2-4n ( e LJ 2n2-n . LJ - 2n3tn-5 / , ) � 2n±l {h) � ncosn 
( g, LJ an-4 . L...J n6-n3tl 
{i} E(-1)n lo!n · U) E(-l)n n(lo!n)2 

Solution. (a) For large n, n1/n < 2 so n1+l/n < 2n hence the series is not 
absolutely convergent. 
(b) Given any three consecutive positive integers at least one must verify 
I sin nl � 1/2 because 
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{x > 0 :  l sin x l  < 1/2} C U [-i + k1r, ; + k1r] . 
kez+ 

So for each j E z+, 

1 
aa;+l + aaH2 + aa;+a > 2(3j + a) . 

We conclude that E lan l  diverges. 
(c) Since 

v'n.+ 1 - vfn 1 1 
n = n(v'n + 1 + vfn) :::; nvfn' 

the sum E lan l converges. 
{d) Since an+1fan -+ 1/2 the ratio test implies the convergence and abso
lute convergence of E an . 
(e) The series converges absolutely because for all n, 2n2 - n 2:: n2 , thus 

(f) For all large n, 2n3 < 2n3 + n - 5 < 3n3 , so 

1 n2 n2 
- = - < and 3n 3n3 - 2n3 + n - 5 

4n < �  2n3 + n - 5 - n2 ' 
thus E (an i diverges. 
(g) For all large n we have 2n + 1 < 2n+l and 3n - 4 > 3n /2 so 

2n + 1 2n -- < 4-. an - 4 - 3n 

Since E(2/3)2 converges we conclude that E an converges absolutely. 
{h) For all large n we have n5 - n3 + 1 > n5 /2 so that 

Thus E lan l  converges. 

ncosn 2 
� -4 .  n5 - n3 + l n 

(i) Since log n < n we conclude at once that E lan l  diverges. 
(j ) Put f = 1 in Exercise 1 ,  §2, to prove that EJan I converges. 

Exercise IX.3.4 For which values of x does the following series converge 'I 

Solution. If -1 < x < 1 the series converges because E xn converges and 
x2n -+ 0 as n -+ oo. 
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Assume that x > 1 . Then for all large n we have x2"' 
- 1 > z2"' 

/2 and 
2n � 2n. This implies that for all large n we have 

n n 2 X 
< 2_:_ < -

x2"' - 1 - x2n - xn , 

so if x > 1 the series converges. This convergence is also true for x < -1 
as one sees from putting absolute values. 

We conclude that the series converges for x e R - {1 , -1}. 

Exercise IX.3.5 Let {an} be a sequence of real numbers such that E an 
converges. Let {bn} be a sequence of real numbers which converges mono
tonically to infinity. {This means that {bn} is an unbounded sequence such 
that bn+1 � bn for all n.) Show that 

1 N 
lim -b :E anbn = 0. N-+oo N n=1 

Does this conclusion still hold if we only assume that the partial sums of 
E an are bounded 'I 

Solution. Given E > 0, select a positive integer no such that for all m > no 
we have I E:'=no+1 an i < f and an0 > 0. Then for N > no splitting the 
sum we obtain 

1 N 1 no 1 N 
b :E anbn < b :E anbn + b :E anbn . 
N n=1 N n=1 N n=no+1 

The first sum will be $ f for all large N. For the second sum we use 
summation by parts to obtain, after some elementary computations, 

N N-1 :E anbn = bN(AN - Ano )  - :E (Ak - Ano )(bk+1 - bk) , 

n=no+l k=no+1 

where An = E:-1 ak are the partial sums. Therefore by the triangle in
equality, the fact that IAk - Ano I < E for all k > no and that {bk} increases 
we get 

N :E anbn < IbN IE +  E(bN - bno) ,  
n=no+1 

hence for all large N we have 

which concludes the proof. 

1 N 

b :E anbn � 3e 
N n=no+1 
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If we only assume that the partial sums of E an are bounded we cannot 
conclude that the limit is 0. Indeed, let an = ( -1)n and bn = 2n . Then 

and the above expression does not have a limit as N --+ oo. 

Exercise IX.3.6 (The Cantor Set) Let K be the subset of [0, 1] consist
ing of all numbers having a trecimal expansion 

where an = 0 or an = 2. This set is called the Cantor set. 
(a) Show that the numbers an in the trecimal expansion of a given number 
in K are uniquely determined. 
{b) Show that K is compact. 

Solution. The two lemmas will show that E cn/3n with Cn = 0, 2 or -2 
is close to 0 if and only if Cn = 0 for n = 1,  . . .  , N with N large. 

Lemma 1 Let 'Y = E� m ck/3k with Ck = 0, 2 or -2. Then I'Y I < 1/3m- l . 
Lemma 2 Suppose that 7 = E en/3n with Cn = 0, 2 or -2. If 171 $ 
1/3N+l ,  then Ck = 0 for 1 < k :5 N - 1 . 
In Exercise 11 ,  §2, we proved the analogue results for decimal expansions. 
The proofs of the above lemmas are an €-variation of the proofs given in 
Exercise 11 ,  §2. 
(a) Let a = E� 1 an/3n and {3 = E� 1 bn/3n and suppose that a = {3. 
Let 7 = a - {3  = E� 1 en/3n. Then 'Y = 0 and Cn = 0, 2 or -2 so by 
Lemma 2 it follows that Cn = 0 for all n. 
(b) We first show that K is closed. Let { a3 } be a Cauchy sequence in the 
Cantor set, with ai = E ain/3n , where ain = 0 or 2. By Lemma 2, if 
lai - a3 I < 1/3N+l , then ain = ajn for n = 1 ,  . . .  , N - 1 .  Hence f9r each n, 
limi--.oo ain exists, say an . Then an = 0 or 2. Let a = E an/3n. Then a is 
in the Cantor set and ai --t a as i --t oo ,  because given f > 0, we can find 
an integer n such that E� N+1 3� < e, and then 

and the right-hand side can be made < e for all large i .  Hence K is closed. 
The Cantor set is contained in the compact interval [0, 1] and is therefore 
compact. 
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Exercise IX.3.7 (Peano Curve) Let K be the Cantor set. Let S =  (0, 1] 
x (0, 1] be the unit square. Let f :  K --+ S be the map which to each element 
E an/3n of the Cantor set assigns the pair of numbers 

where bm = am/2 . Show that f is continuous, and is surjective. 

Solution. We first prove surjectivity. Let (x, y) E [0, 1] x [0, 1] and write 

X = � Xn and '1/ = � �' 
� 2n � 2n 

where Xn and 'Yn take on values of 0 or 1. Let 

c = 2 (f 3�:. + f �) . 
n=l n=l 

Then c E  K and /(c) = (x, y) . 
For continuity, suppose a = E an/3n and a' = E a�/3n are elements of 

K which are close together. Let 'Y = a - a'. Then Lemma 2 of the previous 
exercise shows that an = a� for n = 1, . . . , N - 1 with large N, so if 

J(a) = ( L �;t, L �) and J<o') = ( L �;:• , L �) 
then bm = b:n,. By the analogue of Lemma 1 of the previous exercise for 
binary expansions it follows that 1/(a)-/(a') l is small, and we even directly 
proved the uniform continuity of f. 

IX.5 Absolute and Uniform Convergence 

Exercise IX.5.1 Show that the following series converge uniformly and 
absolutely in the stated interval for x. 
(a) E n=»!:�::a for 0 < x. (b) E 8��j; for all x. 
(c) E xne-n:r: on every bounded interval 0 � x � C. 

Solution. (a) Since 1/(n2 + x2) :5 1/n2 , the uniform convergence of the 
desired series follows at once. 
(b) l sin nxl/n312 � 1/n312 and E 1/n312 < oo. 
(c) For all x > 0, xjez < 1/e , so xne-n:r: < (1/e)n . 

Exercise IX.5.2 Show that the series 

xn E l + xn 

converges uniformly and absolutely for 0 < lx l < C, where C is  any number 
with 0 < C < 1 .  Show that the convergence is not uniform in 0 < x < 1 . 



IX.5 Absolute and Uniform Convergence 151 

Solution. The inequalities 0 < fx fn $ en � C < 1 imply 

xn lx ln lx ln en 
< < < --1 + xn - 1 - fx fn - 1 - C - 1 - C ' 

so the convergence of the series is absolute and uniform on [-C, C] . The 
convergence is not uniform on [0, 1) because 

Loo xn 1 Loo n 1 xk -- > - X -- - --
1 + xn - 2 - 2 1 - X ' n=k n=k 

and xk/(1 - x) --+  oo as x --+  1 and x < 1 . 

Exercise IX.5.3 Let 00 1 f(x) = L 1 2 • 
n=l + n X 

Show that the series con11erges uniformly for x > 0 > 0. Determine all 
points x where I is defined, and also where I is continuous. 

Solution. The inequality 1 + n2x > 1 + n2C whenever x > C > 0 implies 
the uniform convergence of the series for x > C > 0. 

Let S = {y E R :  y = -1/n2 for some n E N*} U {0}. The function 
I is defined for all x E R - S because the series E 1/n2 converges. The 
convergence is uniform for x < C < -1 and on every closed interval not 
intersecting S because 

whence the function I is continuous on R - S. 

Exercise IX.5.4 Show that the series 

converges absolutely and uniformly on any closed interval which does not 
contain an integer. 

Solution. The distance between a closed interval not containing any in
teger and the set of integers is strictly positive. Therefore, if x belongs to 
a closed interval not intersecting the set of integers, there exists a num
ber C > 0 such that for all integers n and all x in the interval, we have 
1 1 - x2 /n2 1 > C. Then 

1 < 1 . ln2 - x2 1 - n2C 
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Exercise IX.5.5 (a) Show that 

nx2 E n3 + x3 
con11erges uniformly on any interoal [0, 9] with C > 0. 
(b) Show that the series 

con11erges uniformly in e11ery bounded interoal, but does not con11erge abso
lutely for any 11alue of x. 
Solution. (a) For all x in the interval [0, C) , the following inequality holds 

nx2 02 --- < -n3 + x3 - n2 , 

which proves the uniform and absolute convergence of the series on [0, C) 
with C > 0. 
(b) Let C be a number and assume that fx l < C. Then for all n > C2 we 
have 

x2 + n 02 1 2 -- < - + - < - . n2 - n2 n - n 
By the tail-end estimate given in Theorem 3.3, we conclude that the series 
converges uniformly in every bounded interval. However the inequality 

shows that the series does not converge absolutely for any value of x. 
Exercise IX.5.6 Show that the series E ein:z: /n is uniformly con11ergent 
in e11ery interoal [6, 21r - 6) for e11ery 6 such that 

0 < 6 < 11". 

Conclude the same for E(sin nx)/n and E(cosnx)fn. 
Solution. There exists a number C > 0 such that if x E [6, 21r - 6] , then 
f l - ei:�: l > C. We then have the following estimate 

which combined with summation by parts implies 

m eik:z: 2 ( 1 1 ) 2 E < - - - - < - . 
k=n k - C n m - On 
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This tail-end estimate of the series E einx / n proves its uniform convergence 
in every interval [6, 21r - 6] for every 6 such that 0 < 6 < 1r. 

Since 

and 

m ikx 
L \ 
k=n 

m "k m e"' x sin kx 
L k � L k 

, 
k=n k=n 

we conclude the same for the series E(sin nx)/n and E(cos nx)/n. 

Exercise IX.5.7 Let i1 be the set of sequences a = {an} ,  an E R, such 
that 

converges. This is the space of §2, Exercise 15, with the i1 -norm l laf l t = 
E (an i · 
(a) Show that the closed ball of radius 1 in i1 is not compact. 
{b) Let a = {an} be an element of i1, and let A be the set of all sequences 
{3 = {bn} in i1 such that fbn ( < fan f  for all n .  Show that e11ery sequence of 
elements of A has a point of accumulation in A, and hence A is compact. 

Solution. (a) Consider the sequence {en} in £1 where en = (0, 0, . . .  , 
0, 1 ,  0, . . .  ) has components all 0 except for 1 in the n-th coordinate. Then 
II en - em I I � = 2 whenever n i= m so the sequence {en} has no converging 
subsequence. Thus the closed unit ball in i1 is not compact. 
{b) Consider a sequence {,Bn } in A where f3n = {bn,; }j 1 • Then for all n 
and all j we have lbn,j l  < laj l ·  From {bn, 1 } we can extract a subsequence 
s1 = {bni , 1 }�1 which converges to a limit b1 (Bolzano-Weierstrass) . Call 
m1 the first index of St . Then from the truncated sequence of second terms 
{bni ,2 }i' 1 extract a subsequence s2 which converges to a limit b2 . Call m2 
its second index. Continue this process, find a converging subsequence Sj+1 
of the subsequence {bn,j+1 }n indexed by s; and call b;+1 its limit, and 
m; + 1 its j + 1 index. Then {3 = { b1 , b2 , . . .  } belongs to A and we contend 
that this sequence is a point of accumulation of {f3n}·  Indeed, given e > 0 
choose k such that E� k+1 lan l < e. Then choose N such that j � N 
implies 

Then for all j � N we have ff3mj - PI < 3e. This concludes the exercise. 

Exercise IX.5.8 Let F be the complete normed vector space of continuous 
functions on (0, 27r] with the sup norm. For a =  {an} in i1 , let 
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00 
L(o:) = L an cosnx. 

n=l 
Show that L is a continuous linear map of £1 into F, and that I lL( a) I I < 
l lo: ll 1 for all a E £1 • 

Solution. Since I cosnxl < 1 we have 

If {3 = {bn} E £1 and c is a number we get 

and 

00 
L(a + {j) = L an cos nx + bn cos nx 

n=l 00 00 
L an cosnx + L bn cosnx 
n=l n=l 

- L(a) + L({3) 

00 00 
L(ca) = L can cosnx = c L an cosnx = cL(a) .  

n=l n=l 
So L is linear. Finally, L is continuous because 

I lL( a) - L(f3) 1 1  < l la - f311 t · 

Exercise IX.5.9 For z E C (complex numbers) and lz l i= 1, show that the 
following limit exists and give the 11alues: (zn - 1) f(z) = lim 

1 
. n--.oo zn + 

Is it possible to define f(z) when lz l  = 1 in such a way to make f contin
uous? 

Solution. Suppose lz l  < 1, then 

88 n --+  oo, so f(z) = -1 . If lz l  > 1, then 

zn - 1 
- 1 = 2 --+ 0 zn + 1  lzn + l l 

88 n --+  oo, so f(z) = 1. From these results we see that we cannot define 
f(z) when lz l = 1 so 88 to make f continuous. 
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Exercise IX.5.10 For z complex, let 
zn 

f(z) = lim 1 . 
n-.oo + zn 

(a) What is the domain of definition off, that is for which complex numbers 
z does the limit existq 
(b) Give explicitly the 11alues of f(z) for the various z in the domain of f. 

Solution. If lzl < 1, then zn --+ 0 as n --+ oo so f(z) = 0. If fzl > 1 ,  then 
f(z) = 1 because 

as n --t oo . 

We now investigate what happens on the unit circle. Let z = ei9 with 
0 < () < 27r. Then 1 + zn = 1 + eniO , so if () = 0 we immediately get 
f(1) = 1/2. If () :f: 0, then 

eni9 1 f(z) = 1 + eniO = 1 + e-niO ' 

and since e-niO goes around the circle, we cannot define f at the points 
z = ei6 with () =/= 0. So the domain of definition of f is the set z E C such 
that lz l =/= 1 or z = 1 .  
Exercise IX.5.11 (a) For z complex, show that the series 

00 n-1 � (1 - zn�(l _ zn+l ) 

converges to 1/ (1 -z)2 for lz f < 1 and to 1/z(l-z)2 for fz l > 1 . {Hint: This 
is mostly a question of algebra. Formally, factor out 1/ z, then at first add 1 
and subtract 1 in the numerator, and use a partial fraction decomposition, 
pushing the thing through algebraically, before you worry about convergence. 
Use partial sums.] 
{b) Prove that the convergence is uniform for lz l < c < 1 in the first case, 
and l zl > b > 1 in the second. 

Solution. (a) Let Un = zn/(1 - zn-) (1 - zn+l) and let D(z) = (1 - zn) ( 1 -
zn+1) .  Then 

Un = zn (l - z) 
D(z) (1 - z) 

1 [zn - zn+l ] 
1 - z D(z) 

1 [ (Zn - 1) + (1 - zn+l) ] 
1 - z (1 - zn) (1 - zn+l ) 

-
1 [ 1 1 ] 

1 - z - 1 - zn+l + 1 - zn · 
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We get a telescopic sum, whence 

and therefore 

n 1 [ 1 1 ] Uk = -L 1 - z 1 - z 1 - zn+l k=l 

n zk-1 1 [ 1 1 ] Sn(z) = H (1 - zk) (1 - zk+l ) = z(1 - z) 1 - z - 1 - zn+l · 

If l zl < 1 ,  then 1/(1 - zn+l ) --+ 1 as n --+ oo and therefore Sn(z) --+ 
1/(1 - z2) 88 n --+ oo. If lz l > 1 ,  then 1/(1 - zn+l ) --+ 0 as n --+ oo so 
Sn(z) --+ 1/ z(1 - z2) .  
(b) Suppose fz l $ c < 1 . A little algebra and part (a) imply that 

1 1 zn+l Sn(z) - ( 1 - z)2 - z(1 - z) 1 - zn+l · 

But 1 1 - zn+l l > 1 -:- lzln+l > 1 - cn+l so we get the estimate 

1 1 en Sn(z) - (1 - z)2 < 
1 - c 1 - cn+t 

for all z in the region l z l < c < 1 . Now en --+ 0, hence the convergence is 
uniform in the region f z l < c < 1 . 

If I zl > b > 1 ,  then 

1 
Sn(z) - z(1 - z)2 -

1 1 < 1 1 
z(1 - z) 1 - zn+l - b(b - 1) bn+l - 1 

and bn+l --+ oo, so the convergence is uniform in the region lz l > b > 1. 

IX.6 Power Series 

Exercise IX.6.1 Determine the radii of con11ergence of the following power . senes. 
(a) Enxn . (b) En2xn . (c) E :�:: . 
{d} E �: .  (e) E 2nxn . (f) �: . 
(g) E (n2X:2n) . (h) E(sin n1r)xn . 

Solution. (a) The radius of convergence is 1 because n1/n --+ 1 88 n --+  oo. 
(b) The radius of convergence is 1 because n2/n --+ 1 as n --+  oo. 

(c) The radius of convergence is 1 because 1/n1/n --+ 1 88 n --+  oo .  

{d) The radius of convergence is oo because 1/n --+ 0 88 n --+  oo. 
(e) The radius of convergence is 1/2. 
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(f) The radius of convergence is 2. 
(g) The radius of convergence is 1 because n21n (1+2/n) 1/n -+ l as n -+  oo. 
(b) The radius of convergence is oo because sin(n1r) = 0 for all n hence the 
series is identically zero. 

Exercise IX.6.2 Determine the radii of con11ergence of the following se-
. nes. 

{a) E(logn)xn . 
{c) E nlo� n Xn . 
(e) E (4:�1)1 · 

{b) E lognxn . 
{d) E n(l�n)2 Xn . 

(/) E (2;�7)1 xn · 
Solution. (a) The radius of convergence is 1 because 1 < (logn) 1/n < n11n 
for n > 3. 
(b) The radius of convergence is 1 because (logn) 1/n -+ 1 and n1/n -+ 1 as 
n -+  oo .  

(c) The radius of convergence is 1 because 

1 1 ( 1 ) ( log n) 2 0 n og nlog n = - Vn -+ 

as n -+  oo .  
(d) The radius of convergence is 1 because (logn) 1/n -+ 1 and n1/n -+ 1. 
(e) The radius of convergence is oo because of Example 1 in the text and 
the inequality 1/(4'n - 1)! :5· 1/n! . 
(f) The radius of convergence is oo because for any r > 0, 

2n+1rn+l (2n + 7) 1 --+ 
O (2(n + 1) + 7) ! 2nrn 

as n -+  oo. 

Exercise IX.6.3 Suppose that E anzn has a radius of con11ergence r > 0. 
Show that given A >  1/r there exists C > 0 such that 

fan l < CAn for all n. 
Solution. Since A > 1/r = lim sup lan l l/n the inequality lan f 1/n � A holds 
for all but finitely Inany n. Hence lan f < An for all but finitely many n so 
we can choose C so large that lan l < CAn for all n. 
Exercise IX.6.4 Let {an} be a sequence of positi11e numbers, and assume 
that lim an+l/ an = A > 0. Show that lim a!/n = A. 
Solution. Suppose first A > 0 for simplicity. Given e > 0, let n0 be such 
that A - f � an+ I/ an < A+ f if n 2:: no . Without loss of generality, we can 
assume e < A so A - e > 0. Write 
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then by induction, there exists constants 01(e) and 02(e) such that 

Ot (e)(A - E)n-no < an < 02(E) (A + E)n-no . 

Put C{ (E) = C1 (E)(A - e)-no and C�(e) = C2(E) (A + E)-no .  Then 

C� (e) 11n (A - e) < a:/n < C�(e)11n (A + e) . 

There exists N > no such that for n > N we have 

and similarly 

Then 
A - e + 61 (n) (A - E) <  a11n < A +  E + 62(n) (A + e) . 

This shows that la1/n - AI < 2e and concludes the proof when A > 0. If 
A = 0 one can simply write the terms on the left of the inequalities as 0 
throughout. 

Exercise IX.6.5 Determine the radius of con11ergence of the following se-. nes. 
1 ) � nl n (b) � fnl)}� n { a L...J n" z . L...J 3n z . 

Solution. (a) By Chapter IV, we know that n! = nnen for n --+  oo, where 
an = bn means that there exists a sequence {un} such that bn = Unan and 
lim u:/n = 1. See Exercise 18, §2, of Chapter IV. So 

lim � = lim (e-n)1/n = -
( 1 )  1/n 1 

n-+oo nn n-+oo e 

and the radius of convergence of the series is e. Note that we can also use 
Exercise 4 because 

(b) In Exercise 18, §2, of Chapter IV, we proved that (3n) ! = (3n)3ne-3n 
so that 

I. ( ( nf)3 ) 1/n 
1. ( n3ne-3n ) 1/n 1 

1m = 1m = - . n-+oo (3n)l n-+oo (3n)3ne-3n 27 

Hence the power series has a radius of convergence equal to 27. 
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Exercise IX.6.6 Let {an} be a decreasing sequence of positive numbers 
appoaching 0. Prove that the power series E anzn is uniformly convergent 
on the domain of complex z such that 

lzl < 1 and lz - l f  > 6, 

where 6 > 0. Remember summation by parts. 

Solution. Let Tn(z) = E� 0 akzk and Sn(z) = · E� 0 zk . The summation 
by parts formula gives 

n-1 
Tn(z) = anSn(z) - 2: Sk (z)(ak+l - ak) ,  

k=O 
hence if n > m some straightforward computations show that the difference 
Tn(z) - Tm(z) is equal to 

n-1 
an (Sn(z) - Sm(z)) + 2: (Sk (z) - Sm (z)) (ak - ak+1) · 

k=m+1 
(IX.l) 

Summing a geometric series we find Sn(z) = (.zn+1 - 1)/(z - 1) , so using 
the assumption that lz l � 1 and lz - 1 1 > 6 we get the uniform bound 
ISn(z) l < 2/6 for all n. Therefore ISn(z) - Sm(z) l  < 4/6 for all m and n. 
Putting absolute values in (IX.1) , using the triangle inequality and the fact 
that {an} is positive, and decreasing we get 

4 4 n-1 
ITn(z) - Tm(z) l  :$ an {J + -g 2: · (ak - ak+l ) 

k=m+l 4 4 
- an 6 + 6 (am+l - an) 

4 
- �am+l · 

Since am --.. 0 as m -+ oo we conclude that the series E anzn is uniformly 
convergent in the domain fz l < 1 and fz - l f > 6 of the complex plane. 

Exercise IX.6.7 (Abel's Theorem) Let E� 1 anzn be a power series 
with radius of convergence � 1 . Assume that the series E� 1 an converges. 
Let 0 � x < 1 .  Prove that 

Solution. Let f(x) = E� 1 akxk , A = E� 1 ak and An - E�=1 ak. 
Consider the partial sums 
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n 
sn(x) = L akxk . 

k=l 
We first prove that the sequence of partial sums { Bn ( x)} converges uni
formly for 0 � x � 1 .  For m < n, applying the summation by parts 
formula, we get 

n 
sn (x) - sm (x) - E xkak 

k=m+l 
n-1 

= xn(An - Am+l) + E (Ak - Am+t) (xk - xk+l ) . 
k=m+l 

There exists N such that for k, m > N we have IAk - Am+t l < f. Hence 
for 0 < x < 1 and n, m > N we have 

n-1 
lsn (x) - Bm(x) l < f + f E (xk - xk+l) 

k=m+l 
- f + f(xm+l - xn) 
< 3f. 

This proves the uniform convergence of { Bn ( x) } . 
Now given f, pick N as above. Choose 6 (depending on N) such that if 

lx - 1 1 < 6, then 
ISN(x) - AN I < f. 

By combining the above results we find that 

1/(x) - AI < 1/(x) - Bn (x) l + lsn (x) - BN (x) l  + lsN (x) - AN I + IAN - AI 
< 1/(x) - Bn(x) l  + 5f 

for all n > N and fx - 1 1 < 6. For a given x, pick n so large (depending on 
x !) so that the first term is also < f, to conclude the proof. 

IX. 7 Differentiation and Integration of Series 

Exercise IX.7.1 Show that if f(x) = E 1/(n2 + x2) , then f' (x) can be 
obtained by differentiating this series term by term. 

Solution. Let fn(x) = 1/(n2 + x2 ) . Then for all lx l < C we have 

-2x C 
1/� (x) l = (n2 + x2)2 

< 2 n4 ' 

so E /� ( x) converges uniformly on every compact interval. Clearly, E f n ( x) 
converges absolutely for each x, thus /'(x) = E /n (x) . 
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Exercise IX.7.2 Same problem if f(x) = E 1/{n2 - x2) ,  defined when x 
is not equal to an integer. 

Solution. In Exercise 4, §5, we prove that the series converges absolutely 
and uniformly on any closed interval not containing an integer. The derived 
series is simply E -2x/(n2-x2)2 which converges absolutely and uniformly 
on every compact interval not containing an integer. The argument is the 
same as the one given in Exercise 4, §5. We conclude that f'(x) = E fn(x) 
whenever x is not an integer. 

Exercise IX.7.3 Let F be the vector space of continuous functions on 
[0, 21r] with the sup norm. On F define the scalar product 

(I, g) = L21f 
f(x)g(x)dx . 

Two functions /, g are called orthogonal if (/, g) = 0. Let 

lf'n (x) = cos nx and 1/Jn (x) = sin nx. 

{Take n > 1 except for ft'o (x) = 1 .) Show that the functions lpo, lf'n , 1/Jm are 
pairwise orthogonal. {Hint: Use the formula 

sinnx cos mx = � [sin(n + m)x + sin(n - m)x] 

and similar ones.] Find the norms of lf'n, lpo, 1/Jm · 
Solution. For all n > 1 we have 

and 

(cpo , IPn) = f21f 
cos nxdx = .!:. [sin nx]�1f = 0 · h n 

(lf'o , 'I/Jn) = 121f 
sin nxdx -l [cos nx]�1f = 0. 

o n 
Since sin O = 0 we also find that (ft'o , 'I/Jo) = 0. Furthermore, 

{IPnii/Jm) = L21f 
cos nx sin mxdx = ! 121f 

sin(n + m)x + sin{n - m)dx = 0 

so the functions lf'o , lf'n , 1/Jm are pairwise orthogonal. 
For the norms, we have l llf'o l l 2 = (cpo , lf'o) = 21r and for all n > 1 , 

and 



162 IX. Series 

Exercise IX.7.4 Let {an} be a sequence of numbers such that E an con
verges absolutely. Prove that the series 

converges uniformly. Show that 

(/, cpo) = 0, (/, 1/Jm) = 0 fur all m, (/, cpk) = 1rak . 

Solution. The series converges uniformly because lan cos nxl < lan l and 
E lan l < oo .  Theorem 7.1 implies {21r (/, cpo) = E Jo On cos nxdx = 0. 

Since the series E an cos nx sin nx converges uniformly we have 

(1, '1/Jm) = E 121r On cos nx sin nxdx = E On (cp, "  '1/Jm) = 0. 

Similarly, we have 

Exercise IX. 7.5 Let {an} be a sequence of numbers. Show that there ex
ists an infinitely differentiable function g defined on some open intenJal 
containing 0 such that 

{Hint: {Tate) Given n > 0 and f, there exists a function f = In,�. which is 
coo on -1 < x < 1 such that: 

{1) /(0) = /'(0) = · · · = f(n- l) (O) = 0 and f(n) (O) = 1 . 
{B) IJ(k) (z) l < f for k =  0, . . . , n - 1 and lx l � 1 .  

Indeed, let cp be ,a coo function on ( - 1 , 1) such that: 

cp(x) = 1 i/ lx l � f/2 , 
0 < cp( x) < 1 if f /2 :5 lx I < f, 
cp(x) = 0 if f < fx l  < 1 . 

Integrate cp from 0 to x, n times to get f(x) . Then let fn be chosen so that 
E lan l fn converges. Put 

00 

g(x) = E anfn,t.n (x) . 
n=O 

For k > 0 the series 
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converges uniformly on lx l < 1, as one sees by decomposing into the sum 
from 0 to k and from k + 1 to oo, because for n > k we have 

Solution. We coristruct the coo function as follows: Let a = E./2 and b = f, 
and let h be the function (bump function) defined to be equal to 0 if t < a  
or t � b and 

h(t) = e-1/(t-a)(t-b) 

otherwise. Then h is a 000 function (Exercise 6, §1 ,  of Chapter IV) with 
all derivatives equal to 0 at both a and b. Let 

g(x) = 1 - C j� h(t)dt, 

where 1/C = J: h(t)dt. Then g(a) = 1, g(b) = 0, 0 � g(x) < 1 , and g is 
000 with all derivatives equal to 0 at both a and b. For 0 $ x � 1 define 

1 if 0 < X < E./2, 
ft'(X) = g(x) if E./2 � X  � f, 

0 if E. <  x. 

For -1 < x < 0 define fP by lt'(x) = ft'( -x) . 
To get /, let 1/Jo(x) = fP(x) and 1/Jk+t (x) = J: 1/Jk(t)dt . Then let f = 1/Jn· 
If fn = 1/(n2 lan l + 1) ,  then E lan l fn converges. Finally, let 

00 
g(x) = L anfn,£n (x) . 

n=O 

For k � 0, the series E anDk fn,fn converges uniformly on lx l � 1 because 
88 we split the sum 

L anDk ln,fn = L anDk ln,fn + L anDk /n,fn 
n<k n>k+l 

and if n > k + 1 , we have IDk fn,fn I :5 E.n by construction. Hence 

Dkg(x) = L anDkfn,£n • 

When k < n we have Dk(/n,fn ) = 0 by (1) in the hint and if k > n, then 
we also have Dk fn,€n (0} = 0 because fP is locally constant near the origin. 
Since Dn /n,fn (0) = 1 we see that Dkg(x) = ak , 88 was to be shown. 
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Exercise IX. 7.6 Given a C00 function g : [a, b] --+ R from a closed in
tenJal, show that g can be extended to a coo function defined on an open 
intenJal containing [a, b] . 

Solution. Let an = gCn> (a) and bn = g(n) (b) . Then by the previous ex
ercise we can extend g is some open neighborhood of a and in some open 
neighborhood of b such that this extension is coo on an interval containing 
[a , b] . 

Exercise IX. 7. 7 Let n � 0 be an integer. Show that the series 

oo (-1)kxn+2k Jn(x) = � 2n+2kkl(n + k)! 

converges for all x. Prove that y = Jn(x) is a solution to Bessel 's equation 

II 1 I ( n2 ) y + -y + 1 - - y = 0. x x2 

Solution. The absolute value of the k-th term is < lx ln+2k /k! so the se
ries converges absolutely for every x and the convergence is uniform on 
every closed and bounded interval. A similar argument shows that we can 
differentiate term by term to get y1 and y'1 • Let 

Then the coefficient of the term xn+2k-2 in the sum 

is equal to 

II 1 I ( n2 ) y + -y + 1 - - y = 0 x x2 

ak(n + 2k) (n + 2k - 1) + ak(n + 2k) + ak-1 - n2ak = (4kn + 4k2)ak +ak-1 . 

But ak-1/ak = -4k(n + k) so we conclude that y = Jn(x) is a solution to 
Bessel's equation. 



X 
The Integral in One Variable 

X.3 Approximation by St�p Maps 

Exercise X.3.1 If I is a continuous real valued function on (a, b] , show 
that one can approximate I uniformly by step functions whose values are 
less than or equal to those of I, and also by step functions whose values 
are greater than or equal to those of f.  The integrals of these step functions 
are then the standard lower and upper Riemann sums. 

Solution. Let e > 0. Choose a partition of [a, b) as in Theorem 3.1 ,  that is, 
a partition of size < {j where 6 is chosen so that ll(x) - f(y) ( < e whenever 
I x - y I < 6. If ai- l < t < ai let 

g(t) = max f(t) and h(t) = min /(t) , 
ai-l  <t<at at-1 <t<ai 

and if t = ai for some i let 

g(t) = max l(t) and h(t) = min l(t) . 
a<t<b . a<t<b 

Then g and h are step maps which approximate I uniformly and for all t 
we have h(t) < l(t) $ g(t) .  

Exercise X.3.2 Show that the product of two regulated maps is regulated. 
The product of two piecewise continuous maps is piecewise continuous. 

Solution. (i) Suppose that j, g E Reg( [a , b] , G) , and let M be a common 
bound for I and g. Given e > 0, choose step maps 11 and g1 such that 
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I I/ - /1 ll < E and 1 19 - 91 11 < E. Considering a refinement of the partitions 
BBSOciated to /1 and 01 , one sees at once that /191 is a step map. We then 
have 

1 119 - /19t l l  = l l /9 - !19 + /19 - lt9t ll s 119 11 1 1/ - /1 ll + l ift II I Io - 9t l l 
< M£ + ( l l/1 - /11 + 1 1/ 1 1 )£ 
< f(2M + E) . 

(ii) Given two piecewise continuous functions f and 9 with their partitions, 
consider a refinement of both partitions. Since the product of continuous 
functions is continuous we conclude that the product f 9 is also a piecewise 
continuous function. 

Exercise X.3.3 On the space of regulated maps f :  [a, b] --. C, show that 
l/1 is regulated, and define 

1 1 / l l t = 1b l/1 . 

Show that this is a seminorm (all the properties of a norm except that 
1 1/l l t > 0 but 1 1/ll t  may be 0 without I itself being 0}. 

Solution. Given f > 0 choose a step map h such that I I/ - hll < f . Then 
lhl is also a step map and the inequality 

1 1/(t) l - lh(t) l f  < 1/(t) - h(t) l , 

implies that 1 1 1/ 1 - fhl l f < f so l/1 is regulated. From this analysis we extract 
the fact that l/ 1  can be uniformly approximated by positive step maps, so 
that 

{21r 
1 1/ lh = lo 1/ 1  > 0. 

Furthermore, if we consider the step map which is 0 on (a, b] and 1 at a, 
then its norm is 0. If c is a number and {hn} is a sequence of step maps 
converging to /, then the sequence { fhn f} converges to l/1 and the sequence 
{ lchn f} converges to lcfl · The integral of step maps is a linear function so 

I!( lchn l) = lcii!( Ihn l) 

hence l lc/ll 1 = fcf l l/ ll t ·  Finally, if / and 9 are regulated and {/n},  {gn} are 
sequences of step maps converging to f and 9, respectively, then {/n + 9n} 
converges to f + 9 and { 1/n + 9n l } converges to I/ +  91 · Since 

l/n(t) + 9n(t) 1 < l/n(t) l  + l9n (t) 1 

we conclude that I I/ +  911 1 < 1 1/ l l t  + IIY if t , thus I I · lh is a seminorm. 
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Exercise X.3.4 Let F be the 'Vector space of real 'Valued regulated functions 
on an intenJal [a, b] . We have the sup norm on F. We have the seminofm 
of Exercise 9. It is called the L1-seminorm. Prove that the continuous 
functions are dense in F, for the L1 -seminorm. In other words, prove that 
given f E F, there exists a continuous function g on [a, b] such that · 1 1  I -
Yi l t < e . {Hint: First approximate f by a step function. Then approximate a 
step function by a continuous function obtained by changing a step funct�on 
only near its discontinuities.] 

Solution. Given a regulated function f E F there exists a step function cp 
such that I I / - c,oll 1 < E (cf. Exercise 6) . 

Now approximate cp by a continuous function g in the following way. We 
may assume after changing the values of cp(a) and cp(b} that cp is continuous 
at a and b. Let a1 < a2 < · · · < an be the points where cp is discontinuous, 
and let ao = a  and an+l = b. Let 6 > 0 be a number such that 

6 < m'n (a;+t - a; )/2 and 6 < e/(2Bn) , o<,<n 
where B is a bound for lcpl .  For 1 < j < n let 

l· = [a · - 6 a · + 6 ] 
3 ' 2 ' 3 2 . 

Then on each interval I; replace cp by the line segment having the same 
values as cp at the end points of the interval. 

( ' � .. . .  _ _, _  
., > 

Define g to be equal to these linear functions on the intervals I; and equal 
to cp otherwise (i.e. on [a, b] - U; I;) .  Then g is continuous and on U; I; we 
have l lcp - g l ( < 2B. On the complement, [a, b] - U; I; we have g = cp by 
construction. Thus 1b liP - 91 � 2Bn6, 
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which implies l lcp - Yil t  < E because of our choice for 6. Putting everything 
together we get 1 1 /-gll t < 2£., thereby proving that the continuous functions 
are dense in "p for the L1-seminorm. 

Exercise X.3.5 On the space of regulated functions as in Exercise ,4, de
fine the scalar product 

(/, g) = lb f(x)g(x)dz. 

The seminorm associated with this scalar product is called the £2-semi

norm. (Cf. Exercise 11 of Chapter VI, §·!.) Show that the
. 
continuous func

tions are dense in F for the L2 -semi norm. 
' 

Solution. Given a regulated function f, and f. > 0 there exists a step 
function cp such that I I/ - cpll 2 < f. (see Exercise 6) . Then we argue as in 
Exercise 4 with 6 < £.2 /4B2n instead of 6 < £./2Bn. The resulting continu
ous function g satisfies 

lb l<p - 912 < 4B2n6 < f.2 , 

so that flcp - /ll 2 < f.. Then I I/ - ull 2 < 2£.. 

Exercise X.3.6 The space F still being as in Exercise 4 or 5, show that the 
step functions are dense in F for the L1 -seminorm and the L2 -seminorm. 

Solution. Given a regulated function f and f. > 0 there exists a step map 
cp such that 

Then 
I I/ - cpll < f/(b - a) . 

I I/ - cpll t < (b - a) ll/ - <.Oil < f.. 
So the step functions are dense in F for the L1-seminorm. 

To prove that the step maps are also dense for the L2-seminorm, choose 
a step map such that 

I I / - cpll < f/Vb - a. 
Then lb If - <pl2 < (b - a) ll/ - cpll 2 < f.2 , 

and therefore II I - <,0 l l 2 < f.. 

Exercise X.3. 7 Let F be the space of regulated functions on (a, b) once 
more. Let coo ·= C00((a, b]) be the space of infinitely differentiable real val
ued functions on (a, b] . Prove that coo is (a) L1 -dense and {b) L2 -dense in 
F. {Hint: First approximate by step functions, then smooth out the comers 
using bump functions which are 0 in a 6-interoal around a comer and 1 
outside a 26-interoal around each corner. Pick 6 sufficiently small.] 
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Solution. We give two methods of smoothing out the corners. The first 
method follows the hint and is important, for example, in the context of 
Stokes' theorem with singularities. The second method is the' one we use 
in Exercise 1 ,  §2, of Chapter V. 
(a) We use the same notation as in Exercise 4. We approximate f by a 
step function cp and again, we let B be a bound for lcpl . Now we use bump 
functions to smooth out the corners on I; . 

Method 1. We multiply cp on I; by the bump function which is 0 on 
[a; - 6/4, a; + 6/4] and 1 outside [a; - 6/2, a; + 6/2] , so that we get the 
following picture: 

Let 9 be the function resulting from modifying cp on each I; . By con
struction, 9 is in coo and the same estimate as in Exercise 4 shows that 
l lcp - 91 1 1 < f. 
Method 2.  Let a3 be a discontinuity point of cp. We assumed that a < 
a; < b. Pick 6 as in Exercise 4. Then choose a coo function 9; which is 
defined on I; and which has the following properties: 
9; is equal to cp(a; - 6/2) on [a; - 6/2, a; - 6/4] ; 
9; is monotone on [a; - 6/4, a; + 6/4] ; and 
9; is equal to cp(a; + 6/2) on [a; + 6/4, a; + 6/2] . 
To do so, use Exercise 6, §1 ,  of Chapter IV (multiply and translate if 
necessary) . We have the following picture: 
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I I I I I 

Let g be the function resulting from modifying cp on each I; . By con
struction, g is in coo and the same estimate 88 in Exercise 4 shows that 
l fcp - Yil t < E. 
(b) The argument is the same 88 in part (a) except that we use the notation 
and estimates of Exercise 5. We conclude that coo is £2-dense in F. 

X.4 Properties of the Integral 

Exercise X.4.1 Let a �  t < b be a closed interoal and let 

P = {a =  to � t1 < · · · < tn} 

be a partition of this interoal. By the size of P we mean 

size P = max(tk+l - tk) · k 
Let f be a continuous function on [a, ·b) , or even a regulated function. Given 
numbers ck with 

fo1Tn the Riemann sum 

n-1 
S(P, c, /) = E f(ck) (tk+l - tk) · 

k=O 
Let 

L = 1b f(t)dt. 

Show that given E > 0, there exists 6 such that if size ( P) < 6, then 

IS(P, c, /) - Ll < E. 
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Solution. Given E > 0 and a regulated function f, choose a step function 
cp such that 

Then we have 

E 1b I I / - <I'l l < b _ a so 0 If - 'PI < E. 

1b . 1b 1b 1b S(P, c, f) - 0 f < S(P, c, f) - 0 (f - cp) - 0 cp < S(P, c, /) - 0 cp +E . 

Now we estimate the tenn IS(P, c, f) - J: 'P I · Let a =  ao $ a1 < · · · < ap = 
b be a partition associated to cp. Let P = {a =  to < t1 < · · · < tn = b} .be 
a partition of [a, b] and let B be a bound for f which is also a bound for cp. 
By linearity of the integral we can write 

S(P, c, f) - 1b cp 
n-1 1tlc+t 

= L f(ck)(tk+I - tk) - <p 
k=O t�c 
n-1 rtlc+l 

'!: � lt" f(ck) - cp(t)dt. 

For each k (k = 0, . . . , n - 1) ,  look at the interval [tk , tk+1] .  If no ai (i = 
0, . . .  , p) belongs to [tk , tk+1] ,  then cp is constant on this interval and we get ltlc+l E 

tr. f(ck ) - cp(t)dt . $ � . ...,. a (
tk+l - tk) · 

If for some integer i ( i = 1 ,  . . .  , p) the point ai belongs to [ tk , tk+ 1] ,  then 

fcp(t) - f(ck ) l < 2B 

for all t E [tk , tk+l] and therefore 

Since each ai belongs to at most two intervals [tk , tk+1] we conclude that 

S(P, c, f) - 1b cp < E + 4B(p + l) (size P) . 

Let 6 = E/(4B{p + 1)) .  Then if size P < 6, we see that 

IS(P, c, f) - Ll < 3E 

and the proof is complete. If f is continuous, we can also argue as in the 
next exercise with h(x) = x. 
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Exercise X.4.2 (The Stieltjes Integral) Let f be a continuotJS func
tion on an interval a < t :::; b. Let h be an increasing function on this 
interval, and assume that h is bounded. Given a partition 

P = {a = to < t1 < · · · < tn = b} 

of the interoal, let ck be a number, tk < Ck < tk+t ,  and define the Riemann
Stieltjes sum relative to h to be 

n-1 
S(P, c, f) = L f(ck) [h(tk+1 )  - h(tk)] .  

k=O 

Prove that the limit 
L = lim S(P, c, f) P,c 

exists as the size of the partition approaches 0. This means that there exists 
a number L having the following property. Given E there exists 6 such that 
for any partition P of size < 6 we have 

IS(P, c, f) - Ll < E. 
{Hint: Selecting values for Ck such that f(ck) is a maximum (resp. mini
mum) on the interoal [tk , tk+t] , use upper and lower sums, and show that 
the difference is small when the size of the partition is small.] The above 
limit is tJSually denoted by 

L =  1b fdh. 
Solution. Given a partition P of (a, b) we define the upper Riemann
Stieltjes sum to be 

n-1 
S(P, f) = L f(ck) [h(tk+1 ) - h(tk)] , 

k=O 

where Ck = maxt�c<t<t�c+t f(t) . Similarly, we define the lower Riemann
Stieltjes sum to be 

n-1 
S(P, f) = L f(c�) [h(tk+t ) - h(tk)] , 

k=O 

where c'k = mint,. <t<t�c+t f(t) . Clearly, we always have 

S(P, f) < S(P, f) . 

In fact, if P' is a refinement of P, that is, if P' is obtained from P by 
adding finitely many points, we see that 
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§..(P, /) < §..(P', /) :5 S(P', /) < S(P, f) . 

This is obvious when P' is obtained by adding one point, hence the above 
inequalities follow by induction on the number of points added to P. Now 
if P1 and P2 are partitions of [a, b] , then 

because if P' is a refinement of both P1 and P2 , then 

This proves that 

inf{S(P, /)} and sup{S(P, /)} p P · 

exist, where the infimum and supremum are taken over all partitions of 
[a, b] . 

Let B be a bound for h. Given E > 0 choose a positive number a such 
a that 2Ba < e. Since f is uniformly continuo�, there exists 6 > 0 such 
that lx - yf < 6 implies 1/(x) - f(y) f < a. If the size of P is  < 6, then 

S(P, f) - S(P, f) :5 2Ba < E. 

Together with the results obtained above we conclude that both limits 

lim S(P, /) and lim S(P, f) 
P, size(P)-+0 P, si�e(P)-+0 -

exist, and that they are equal, say to a number L. Then, given any partition 
P of size < 6 we have 

S(P, /) :5 S(P, c, /) < S(P, f) 

so that 
JS(P, c, f) - Ll < E. 

Exercise X.4.3 Suppose that h is of class 01 on [a, b] , that is h has a 
derivative which is continuous. Show that 

1b fdh = 1b f(t)h'(t)dt . 

.. 
Solution. Let I = J: f(t)h'(t)dt and J = J: fdh. The integral I exists 
because fh' is continuous. Using the notation of Exercises 1 and 2, given 
E > 0 choose a partition P = {a = to < · · · < tn = b} of size < 6. By the 
mean value theorem we know that 
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for some Ck E [tk+1 , tk] · So, with this choice of c, we get 

n-1 n-1 
SRs(P, c, /) = E f(ck)(h(tk+1 ) - h(tk)) - E f(ck)h'(ck) (tk+1 - tk) 

k=O k=O 
SR(P, c, fh') ,  

where Ssn and Sn denote the Riemann-Stieltjes sum and the Riemann 
sum, respectively. We also have as a consequence of our choice the following 
inequalities 

Thus 

ISns(P, c, /) - Jl < E and ISn(P, c, fh') - II < E. 

II - Jl < II - Sn(P, c, fh') l + IJ - Sns(P, c, /) I < 2E. 
Since this is true for all E > 0 we conclude that I =  J. 

Exercise X.4.4 (The Total Variation.) Let 

f :  [a, b) -+ C 

be a complex valued function. Let P = {to < t1 < · · · < tn} be a partition 
of [a, b) . Define the variation Vp(f) to be 

n-1 
Vp(f) = E l/(tk+1) - f(tk) l . 

k=O 
Define the variation 

V(f) = sup Vp(f) , 
p 

where the sup (least upper bound if it exists, othenoise oo) is taken over all 
partitions. If V (f) is finite, then f is called of bounded variation. 
(a) Show that if f is real valued, increasing, and bounded on [a, b) , then f 
is of bounded variation, in fact bounded by f(b) - f(a) . 
(b) Show that if f is differentiable on (a, b) and f' is bounded, then f is of 
bounded variation. This is so in particular iff has a continuous derivative. 
(c) Show that the set of functions of bounded variations on [a, b) is a vector 
space, and that if /, g are of bounded variation, so is the product f g .  

Solution. (a) Under the aBSumptions of (a) we have 

n-1 
Vp(f) = E f(tk+1 ) - f(tk) = f(tn) - /(to) = f(b) - f(a) . 

k=O 

(b) Let B be a bound for f'. By the mean value theorem, there. exists for 
each k a number Ck which belongs to [tk , tk+l] and which verifies 
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Vp(f) = L lf' (ck ) (tk+1 - tk) l < B(b - a) , 
k=O 

whence V(f) is finite. 
(c) Suppose that I and g are of bounded variation on [a, b) . Since 

we see that 

n-1 
Vp(f + g) = L l l(tk+1 ) + g(tk+1 ) - l(tk) - g(tk) l 

k=O 

n-1 n-1 
Vp(f + g) < L ll(tk+1 - l(tk) l + L fg(tk+1) - g(tk) l � V(f) + V(g) , 

k=O k=O 
hence I + g is of bounded variation on [a, b] . If c is a scalar, then 

n-1 
Vp(cl) = L lcl(tk+l ) - cl(tk) l = l ciVP (I) � l ciV(I) , 

k=O 
so cf is of bounded variation on [a, b) , and we see that the set of mappings 
of bounded variation on [a, b) forms a vector space. 

In order to show that if I and g are of bounded variation on [a, b) , then 
so is the product lg, we first prove that I and g are bounded. For I we 
have 

ll(x) l  < l l(a) J + 1/(x) - /(a) I 
< ll(a) l  + ll(x) - /(a) I +  lf(x) - l(b) l  
< ll(a) l + V(l) , 

so I is bounded, and a similar argument shows that g is bounded. Then 
since 

l(x)g(x) - l(y)g(y) = l(x)g(x) - l(x)g(y) + l(x)g(y) - l(y)g(y) 
putting absolute values and using the triangle inequality we obtain 

ll(x)g(x) - l(y)g(y) l  = l ll f l lg(x) - g(y) f  + ll(x) - l(y) f l lg(y) f l , 

where I I · I I denotes the sup norm. Consequently 

Vp(lg) < l l l l fVp (g) + Vp (l) l fg lf < I I I I IV(g) + V(f) l fg l f 
which proves that f g is of bounded variation whenever f and g are of 
bounded variation. 
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The notation for the variation really should include the interoal, and we 
should write 

V(f, a, b) . 
Define 

V1(x) = V(j, a, x) ,  
so V1 is a function of x, called the variation function of f. 
Exercise X.4.5 (a} Show that V1 is an increasing function. 
(b) If a < x < y < b show that 

V(J, a, y) = V(j, a, x) + V(J, x, y) . 

Solution. (a) Suppose x < y, and let P be a partition of [a , x) . Then 
consider the partition, P' = P U {y} of [a, y) . Then 

Vp(f, a, x) < Vp, (f, a , y) , 

so V1(x) < VJ (y) . 
(b) Let P1 be a partition of [a, x] and P2 a partition of [x, y) .  Then 

Vp1 (/, a, x) + V� (f, z, y) = Vp1uP2 (/, a, y) < V(j, a, y) .  

So V(j, a, x) + V(j, x, y) < V(j, a, y) . It suffices to prove the reverse in
equality. If P is a partition of [a, y] we consider the refinement P' obtained 
by including the number x to P. Then the triangle inequality implies 

Vp(f, a, y) < Vp, (f, a, y) 

so if P1 and P2 are the restrictions of P' to (a, x] and [x, y) we get 

Vp(f, a , y) < Vp1 (f, a, x) + Vp2 (/, x, y) < V(f, a, x) + V(f, x, y) 

hence V(f, a, y) < V(f, a, x) + V(f, x, y) , as was to be shown. 

Exercise X.4.6 Theorem. If f is continuoWJ, then V1 is continuous. 
Sketch of Proof: By Exercise 5(b}, it suffices to prove (say for continuity 
on the right) that 

lim V(f, x, y) = 0. 
1J-+:I: 

If the limit is not 0 (or does not exist}, then there exists 6 > 0 such that 

V(j, x, y) > 6 

for y arbitmrily close to x, and hence by Exercise 5{b}, such that 

V(f, x, y) > 6 

for all y with x < y < Y1 with some fixed Yl ·  Let 
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P = {xo = x < Xt < · · · < Xn = Yt } 

be a partition such that Vp(f) > 6.  By continuity of f at x, we can select 
Y2 such that x < Y2 < Xt and such that f(Y2) is very close to f(x) . Replace 
the term 

l /(x1 ) - f(x) l by lf(x1 ) - /(Y2) 1 
in the sum expressing Vp(f) . Then we have found Y2 such that V(f, Y2 , Y1 ) > 
6. Now repeat this procedure, with a descending sequence 

· · · < Yn < Yn-1 < · · · < Y1 · 
Using Exercise 5(b}, we find that 

V(j, x, y1 ) > V(f, yn , Yn-1 ) + V(f, Yn-1 , Yn-2) + · · · + V(j, y2 , y1 ) 
> (n - 1)6. 

This is a contradiction for n sufficiently large, thus concluding the proof. 

Solution. We justify some details in the almost complete proof. We can 
choose a partition P because of the definition of the sup. Then we can write 
Vp(f) = 6 + e for some E > 0. Then we select Y2 such that x < Y2 < x1 and 
ff(Y2) - f(x) f < E/2� Then 

€ 
- 2 + ff(x1 ) - f(x) f < l/(x1) - /(x) I - I/(Y2) - f(x) f < l!(x1 ) - /(Y2) 1 

so € 
6 < 6 + E - 2 < V(J, Y2 , Y1 ) · 

Exercise X.4. 7 Prove the following theoren,. 

Theorem. Let f be a real valued function on (a, b] , of bounded variation. 
Then there exist increasing functions g, h on [a, b] such that g(a) = h(a) = 0 
and 

f(x) - f(a) = g(x) - h(x) , 
V1(x) = g(x) + h(x) . 

[Hint: Define g, h by the formulas 

2g = V1 + / - f(a) and 2h = V1 - I +  /(a) .] 

Solution. Define the functions g, h as  in the hint. Then we have 2g(a) = 
2h(a) = 0 because V(j, a , a) = 0. We also have 

(2(g - h)) = 2(/ - /(a)) 

and 
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2(g + h) = 2V, . 
The function g is increasing because if a � x ::; y ::; b, then part (b) of 
Exercise 5 implies 

2(g(y) - g(x)) = V(f, x, y) + f(y) - f(x) . 

But the simple partition { x � y} of [x , y) shows that 

V(f, x, y) � 1/(x) - f(y) l , 

so g is increasing. Similarly for h we have 

2(h(y) - h(x)) = V(f, x, y) - f(y) + f(x) > 0 

and therefore h is also increasing. 

Exercise X.4.8 Let f be a real valued function of bounded variation on 
(a, b) .  Let c E [a, b) .  Prove that the limits 

lim f(c + h) and lim f(c + h) 
h -+0 h-+0 
h>O h<O 

exist if c :/:- a, b. If c = a or c = b, then one has to deal with the right limit 
with h > 0, respectively, the left limit with h < 0. {Hint: First prove the 
result if f is an increasing function.] 

Solution. Suppose f is increasing and c E (a ,  b) . We prove that the first 
limit exists. By assumption, /(c) < f(c + h) for all h > 0, hence 

a = inf {/(c + h)} 
h>O 

exists. We contend that a is the desired limit. Given E > 0, there exists 
ht > 0 such that 0 ::; f(c + ht)  - a  < E. But f is increasing, so 0 < h < ht 
implies f(c + h) < f(c + ht ) , so for all 0 < h < h1 we have 

0 < f(c + h) - a < E, 

which proves our contention, namely 

The same argument with 

shows that 

lim f(c + h) = a .  
h-+0 
h>O 

a' = sup{f(c + h)} 
h<O 
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lim /(c + h) = a' . 
h--tO 
h<O 

If c is one of the end points of the interval [a, b] we only have to investigate 
the limit which makes sense and the same argument shows that in all cases, 
the desired limit exists. 

Finally, Exercise 7 implies that the same result is true for a function of 
bounded variation. Indeed, using the notation of Exercise 7, we know that 
the result is true for g and h. Hence the limit exists for g and -h, and 
therefore the limits also exist for f. 

X.6 Relation Between the Integral 
and the Derivative 

Exercise X.6.1 Let J be an interval and let f : J -. C be a complex 
valued differentiable function. Assume that f(t) =F 0 for all t E J. Show 
that 11 f is differentiable, and that its derivative is -f' I /2 as expected. 

Solution. Let g = 11 f. Then 

g(to + h) - g(to) _ 11 f(to + h) - 11 f(to) 
h h . 

Multiply the numerator and denominator by /(to + h)f(to) to obtain 

g(to + h) - g(to) /(to + h) - f(to) 1 = -h h !(to + h)f(to) · 

Letting h -. 0 shows that g is differentiable and that g' = -f' I /2 •  
Exercise X.6.2 Let f :  [a, b] -. E be a regulated map. Let ,\ :  E -. G be a 
continuous linear map. Prove _that ,\ o f is regulated. Prove that 

Solution. We must show that ,\ o f can be uniformly approximated by 
step maps. Since ,\ is continuous, there exists a number C > 0 such that 
1,\(x) l  :5 CJx l for all x. Given E > 0, there exists a step map cp on [a, b] 
such that I I / - cpll < eiC. Then ,\ o cp is also a step map on [a, b] and for 
all x E [a, b] we have 

l A o f(x) - ,\ o cp(x) l  < Clf(x) - cp(x) l  < e, 

so I f,\ o f - ,\ o cplf < e, thereby proving that ,\ o f is regulated. 
Consider a sequence {cpn} of step maps which converges uniformly to f. 

Then 
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. lb lb a 'Pn -+ a J 
and since ,\ is continuous we get 

We have shown that { ,\ o CfJn} also converges uniformly to ,\ o f so 

lb .X 0 'Pn -+ lb .X 0 f. 

�rther�ore, if 

then 

because ,\ is linear. So 

Therefore we conclude that 

as was to be shown. 

Exercise X.6.3 Prove: Let f be a regulated real valued function on [a, b] . 
Assume that there is a differentiable funtion F on [a, b] such that F' = f. 
Prove that 

lb f = F(b) - F(a) . 
{Hint: For a suitable partition (ao < a1 < · · · < an) use the mean value 
theorem 

and the fact that f is uniformly approximated by a step map on the parti
tion.] 
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Solution. Given E > 0 there exists a step map cp such that I I / - cpl l  < 
ef(b - a) . Then 

1b I - 1b cp < E. 

Moreover, if P = {a =  a0 < a1 < · · · < an = b} is the partition associated 
to cp and Wi is the value of cp on (ai , ai+1 ) we have 

b n-1 n- 1 1 cp - F(b) + F(a) = L Wi (ai+1 - ai) - LCF(ai+1 ) - F(ai)) . a i=O i=O 
The mean value theorem implies that there exists Ci E (ai , ai+1 ) such that 
F(ai+1 )  - F(ai) = /(Ci) (ai+1 - ai) , so 

b n-1 1 cp - F(b) + F(a) $ L lwi - I(Ci) l (tli+t - ai) < e, a i=O 
because lwi - l(ct) l < ef(a - b) .  Thus 

1b I - F(b) + F(a) $ 1b I - 1b cp + 1b cp - F(b) + F(a) < 2E, 

and the formula I: I = F(b) - F(a) follows. 

Exercise X.6.4 Let I : [a, b] -. E be a differentiable map with continuous 
derivative from a closed interval into a complete normed vector space E. 
Show that 

lf(b) - f(a) l < (b - a) sup l l' (t) l , 
the sup being, taken for t E [a, b] . This result can be used to replace estimates , 
given by the mean value theorem. 

Solution. By Theorem 6.2 we have f(b) - f(a) = I: /', so we conclude 
that 

lf(b) - I( a) ! = 1b I' < (b - a) l l l' l l , 

where I I/' II = sup ll' (t) l . 

Exercise X.6.5 Let f be as in Exercise 4. Let t0 E [a, b] . Show that 

lf (b) - f(a) - f'(to) (b - a) l :5 (b - a) sup 1/'(t) - /'(to) l , 

the sup being again taken for t in the interval. {Hint: Apply Exercise 4 to 
the map g(t) = f(t) - J' (to)t. We multiply vectors on the right to fit later 
notation.] 
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Solution. Let g(t) = f(t) - f'(t0)t. Then g'(t) = f'(t) - !'(to) because 

f'(to) (t + h) - f'(to)t = !'(to) . h 
Since g(b) - g(a) = f(b) - f(a) - f'(to)(b - a) ,  Exercise 4 implies that 

1/(b) - f(a) - f'(to) (b - a) l < (b - a) sup 1/'(t) - /'(to) l , 

as was to be shown. 



XI 
Approximation with Convolutions 

XI. l Dirac Sequences 

Exercise XI.l.l. Let K be a real function of a real variable such that 
K > 0, K is continuous, zero outside some bounded interval, and 

1: K(t)dt = 1.  

Define Kn (t) = nK(nt) . Show that {Kn} is a Dirac sequence. 

Solution. Suppose K is 0 outside (-c, c] . Clearly we have Kn � 0. Since 
K is continuous, so is each Kn and the change of variables formula t --+ nu 
gives 

1 = 1c 
K(t)dt = 1c/n 

nK(nu)du = 100 Kn(u)du. 
-c -�n - oo 

Finally, we see that Kn vanishes outside [-cfn, cfn] so given e, 6 > 0, select 
N such that lc i/N < 6. Then for all n > N we have 

1-6 100 Kn + Kn = 0 < f. 
- oo 6 Exercise XI.1.2 Show that one can find a function K as in Exercise 1 

which is infinitely differentiable (cf. Exercise 6 of Chapter IV, § 1), even, 
and zero outside the interval [ -1 ,  1] . 

Solution. Let K(x) = e-l/(x+l)(l-x) , if x E (-1, 1) and 0 otherwise. Then 
K satisifies all the desired properties. 
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Exercise Xl.1.3 Let K be infinitely differentiable, and such that K(t) = 
0 if t is outside some bounded interval. Let f be a piecewise continuous 
function, and bounded. Show that K * f is infinitely differentiable, and in 
fact, (K * /)' = K' * f. 

Solution. Suppose K is 0 outside (-c, c] . Then we can write 

n- 11ai+1 
K * f(x) = L f(t)K(x - t)dt. 

i=O a, 
We can make f continuous on each [ai , ai+l] without changing the value of 
the integral. Since K is coo, we can differentiate under the integral sign, 
so it follows that K * f is coo and 

n-1 1ai+l 

(K * /)' (x) = L f(t)K'(x - t)dt = (K' * f) (x) . 
i=O ai 

Exercise XI.1.4 Let f, g, h be piecewise continuous (or even continuous 
if it makes you more comfortable}, and bounded, and such that g is zero 
outside some bounded intenJal. Define 

I *  g = 1: f(t)g(x - t)dt. 

Show that (f * g) * h = f * (g * h) . With suitable assumptions on !1 , !2,  

show that (It +  /2) * g = /1 * g + /2 * g. Show that I * g = g * f. 

Solution. We assume for simplicity that f, g and h are continuous. Suppose 
g is 0 outside the interval [-c, c) .  The change of variable formula implies 

(g * f) = 1: g(t)f(x - t)dt 

- 1z-c -g(x - u)f(u)du 
z+c - 1: f(u)g(x - u)du = f * g. 

We then have 

and 

(f * g) *  h(x) = 1: (f * g) (x - u)h(u)du 

- -L: [1: f(t)g(x - u - t)h(u)dt] du, 
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f * (g * h) (x) - J: f(t) (g * h)(x - t)dt 

- -1: [L: f(t)g(x - t - u)h(u)du] dt. 

Interchanging integral signs we see that (f •g) •h  = f• (g•h) . Furthermore, 

(!I + h) * g = 1: (!I + h) (t)g(x - t)dt 

= J: !I(t)g(x - t)dt + J: h(t)g(x - t)dt 

- /1 * g(x) + /2 * g(x). 

Xl.2 The Weierstrass Theorem 

Exercise XI.2.1 Let f be continuous on [0, 1] . Assume that 

11 
f(x)xndx = 0 

for every integer n = 0, 1 ,  2 . . . . Show that f = 0. {Hint: Use the Weierstrass 
theorem to approximate f by a polynomial and show that the integral of /2 
is equal to 0.] 

Solution. Let B > 0 be a bound for 1/ 1  on [0, 1] . Given E > 0 there exists 
a polynomial P such that for all x E [0, 1] we have lf(x) - P(x) l < e/ B. So 

l/2 (x) - f(x)P(x) l = 1/(x) l l/(x) - P(x) l < BiJ = E. 

But since J01 P(x)f(x) = 0 we obtain 

11 
P(x)dx = 11 

P(x) - f(x)P(x)dx < 11 l/2 {x) - f(x)P(x) ldx < E. 

This is true for all e > 0 so J01 /2(x)dx = 0. Since /2 is continuous and 
� 0, we must have /2 = 0 and therefore I = 0. 

Exercise XI.2.2 Prove that if f is a continuous function, then 

11 h lim h2 2 /(x)dx = 7r/(O) .  
h-o _1 + x h>O 

Solution. Suppose that f is continuous on [-1 ,  1] . Then we can extend f 
to a continuous and bounded function on R. Call this extension I again, 
and let M be a bound for f. Then Exercise 10, §3 , of Chapter XIII implies 
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because 

1 1
00 h lim - h2 2 f(x)dx = /{0) ,  

h .... o 7r _00 + X  h>O 

{! h2 � x2 } h>O 
is a Dirac family. To conclude the proof, it suffices to show that 

1-
1 

h 100 h lim h2 2 /(x)dx = lim h2 2 f(x)dx = 0. 
h .... o _00 + X h .... o 1 + X h>O h>O 

The second limit follows from 

JB h 
h2 2 /(x)dx < 

I + x  JB h M h2 2 dx 
1 + x  

- M {B .!_ 1 dx }1 h 1 + (x/h)2 

JB/h 1 - M dx 1/h 1 + u2 
- M(arctan(B/h) - arctan(l/h)) . 

Let B -. oo and then h -. 0 to conclude. 

Exercise XI.2.3 (An Integral Operator) Let K = K(x, y) be a con
tinuous function on the rectangle defined by the inequalities 

a < x < b and c < y :5 d. 

For I E  C0([c, d)), define the function Tf = TK/ by the formula 

TK/(x) = 1d K(x, y)f(y)dy. 

(a} Prove that TK is a continuous linear map 

OO([c, d)) -. OO([a, b] ) ,  

with the sup norm on both spaces. 
{b) Prove that TK is a continuous linear map with the L2-norm on both 
spaces. 

Solution. (a) The linearity property of the integral implies at once that 
TK is linear. We now show that TK is continuous with the sup norm on 
both spaces. Since the function K is continuous on a compact set, it is 
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bounded, say by M. If f belongs to C0([c, d)), then for all X E [a, b] we 
have 

ITKf(x) l  < 1d IK(x, y) l lf(y) ldy 
< M(d - c) J I/ 1 1 . 

Hence I ITKfl l < M(d - c) II/ IJ ,  which concludes the proof of the continuity 
of the linear map TK in this particular case. 
(b) We now show that TK is also continuous with the L2-norm on both 
spaces. We have 

I ITKflg = 1b ITK/(x) l2dx 

b ( d ) 2 
= 1 1 K(x, y)f(y)dy dx. 

Let M be a bound for K. Then the last expression is 

b ( d ) 2 ( d ) 2 
< 1 1 Mlf(y) ldy dx = M2(b - a) 1 1/(y) ldy . 

By the Schwarz inequality applied to the scalar product defined by the 
integral (Exercises 4 and 5, §2 , of Chapter V) we see that 

therefore 

( d ) 2 d 1 1/(y) ldy < (d - c) 1 1 /(y) l2dy, 

I ITK /II� < M2(b - a) (d - c) l l / 1 1 � , 
which proves the continuity of the linear map TK in this case. 





XII 
Fourier Series 

XII. l Hern1itian Products and Orthogonality 

Exercise XII.l.l Verify the statements about the orthogonality of the 
functions Xn, and the functions cpo , cpn , 'f/Jn · That is, prove (xn, Xm) = 0 
and (cpn , CfJm) = 0 if m =/= n. 

Solution. For the functions Xn we have 

and if n =F m we have 11r • • 1 [ .( ) ] .,.. (xn , Xm) e"nz-tmxdx = . e" n-m X ·= 0. -1r t(n - m) -1r 

The orthogonality of the functions cp0, cpn, 1/Jn was studied in Exercise 3, §7, 
of Chapter IX. 
Exercise XII. 1.2 On the space en consisting of all vectors z = (z1 , • • •  , Zn) 
and w = ( Wt , • • •  , Wn) where Zi , Wi E C, define the product 

Show that this is a hermitian product, and that (z ,  z) = 0 if and only if 
z = 0. 
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Solution. The verification of all the properties is routine. We have 
n n 

(z, w) = L ziwi = L-w-iZ-i = (w , z) . 
i=l i=l 

Then we also have 

and 

and also 

Finally, we have 
(v, v) = L lvi l2 > 0. 

Now suppose (z, z) = 0. Then E lzi l2 = 0 so lzi l = 0 for all i, hence z = 0. 
Conversely, if z = 0, then it is clear that (z, z) = 0. 

Exercise XII.1.3 Let l2 be the set of all sequences {en} of complex num
bers such that E len l2 converges. Show that l2 is a vector space, and that 
i/ {an} ,  {.Bn} are elements of l2, then the product 

is a hermitian product such that (a, a) = 0 if and only if a = 0. (Show 
that the series on the right converges, using the Schwarz inequality for each 
partial sum. Use the same method to prove the first statement.) Prove that 
12 is complete. 

Solution. (i) Suppose {an}, {,Bn} are in 12 • Then 
n n n n 

L lan + .Bn l2 < L lan l 2 + L IPn l2 + 2 L lan i i.Bn l · i=l i=l i=l i=l 

The Schwarz inequality implies that 

Letting n --+ oo we conclude that {an + .Bn} E 12 • If c is a scalar, then 
E loon l2 = lcl2 E lan l2 so {can} E 12 • We conclude that l2 is a vector 
space. 
(ii) First we show that the product makes sense. The Schwarz inequality 
implies that 
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so the series E anPn converges. We have verified in Exercise 2 that the par
tial sums verify the properties of a hermitian product. So these properties 
are also true for the product defined in this exercise. 

Now we prove that l2 is complete. Let Xn = { an,j }j 1 and suppose 
{Xn}� 1 is a Cauchy sequence. Given 0 < e < 1 there exists a positive 
integer N such that for all n, m > N·we have I IXn - Xm l l < E. Then for all 
n, m  > N we have 

I: fan�j - am,j 12 < f.2 . 
j 

Hence, for each j ,  fan,j - am,j I < e and therefore { an,j }� 1 is a Cauchy 
sequence in C for each j. Let a; b� its limit and let X = {a3}j 1 •  We 
assert that X belongs to l2 and that Xn --+ X  as n --+  oo with respect to 
the norm given by the hermitian product studied at the beginning of the 
exercise. For each positive integer M and all n ,  m > N we have 

M I: lan,j - ·am,j l 2 < €2 , 
j=1 

so letting m --+ oo and then M --+ oo we see that X belongs to l2 and that 
I IXn - XI I < e for all n > N, thus p�oving our assertions. 

Exercise XII. 1.4 If f  is periodic of period 21r, and a, b E  R, then 

1b 1b+21r 1b-21r 
f(x)dx = f"(x)dx = f(x)dx. 

a a+21r a-21r 
{Change variables, letting u = x - 21r, du = dx.) Also, 

11r 1
"" 

11r+a 

_
,.. f(x + a)dx = 

-1r 
f(x)dx = -1r+a 

f(x)dx. 

(Split the integral over the bounds -1r+a, -1r, 1r, 1r+a and use the preceding 
statement.) 

Solution. The change of variable u = x- 21r and the periodicity of f imply 
1b 1b--21r 1b-21r 

f(x) = f(u + 21r)du = /(u)du. 
a a-21r a-21r 

The change of variable u = x + 211" and the periodicity of f imply 
1b 1b+21r 1b+21r 

f(x) = /(u - 21r)du = /(u)du. 
a a+21r a+21r 
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The change of variable u = z + a implies 

111' 1w+o 
_,.. 

f(x + a)dx = -1r+a /{u)du. 
Moreover we have 

1w+o 1-1r 11r 11r+o 
-1r+a /(u)du = -1r+a /(u)du + 

_,.. 

/(u)du + 
,.. 

f(u)du , 

and 

so 
11r+G 11r 
-1r+a /(u)du = 

_
,.. /(u)du 

as was to be shown. 

Exercise XII.1.5 Let I be an even function {that is l(x) = I( -x)). Show 
that all its Fourier coefficients with respect to sin nx are 0. Let g be an odd 
function (that is .g( -x) = -g(x)) . Show that all its Fourier coefficients with 
respect to cos nx are 0. 

Solution. If h is odd, then Jw 1r h(x )dx = 0. To prove this, split the integral 
and change variables u = -x in the first integral, so that 

1,.. h(x)dx = 1
° 

h(x)dx + 1,.. h(x)dx = -1
° 

h(-u)du + 1,.. h(x)dx -11' -1r 0 1r 0 
= 1

° 
h(u)du + 1,.. h(x)dx = 0. 

The exercise is a consequence of the following observations. If I is even, 
then the functions /(x) sinnz are odd, and if g is odd, then the functions 
g( x) cos nx are odd. 

Exercise XII.l.6 Compute the real Fourier coefficients of the following 
functions: (a) x; {b) x2; (c) lx l ; {d) sin2 x; (e) I sin xl ; and (!) I cos xf . 

Solution. (a) Since x 1-+ x is odd, Exercise 5 implies that ao = ak = 0. 
Integrating by parts we find 

1 1
.,.. 

bn = - z sin(nx)dx -

'Tr 

_

.,.. 

[ X ] 1r 1 111' 
- - cos(nx) + - cos(nx)dx 

1rn -1r 1rn -1r 
- {-l)n+1 2 . 

n 

(b) The function x 1-+ x2 is even, so Exercise 5 implies that bk = 0. We 
have 
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an = !j1r x2 cos(nx)tk = [� sin(nx)] 1r 
- _!_j1r 

x sin(nx)dx 
1r -1r 1rn -1r 1rn -1r 

= (-l}n+l-i- . 
n 

(c) We find that the Fourier series of the function z t-+ lx l  is 

1r. 4 ( cos 3x cos(2n + l)x ) 
lxl = 2 - ; cos x + 32 + . . .  + 

(2n + 1)2 + . . . . 

(d) A simple trigonometric identity gives 

(e) 

(f) 

• 2 1 cos 2x s1n x = 2 - 2 . 

. 4 ( 1 cos 2x cos 2nx ) 
I sin x� = ; 2 - 3 - . . .  - 4n2 - 1 - . . .  . 

l cos xl = i (! + cos 2x + . . .  + (-l}n-l cos 2nx 
+ . .  ·) .  1r 2 3 4n2 - 1 

Exercise XII.l.  7 Let f ( x) be the function equal to ( 1r - x) /2 in the in
terval [0, 21r] , and extended by periodicity to the whole real line. Show that 
the Fourier series of I is L(sin nx)fn. 

Solution. We see that the function is odd, so an = 0 by Exercise 5. Exercise 
4 implies 

1 (21r ('Tr - x) 1 {21r 1 f21r bn = ; Jo 2 sin(nx}dx = 2 Jo sin(nx}dx - 211" Jo x sin(nx)tk. 

The first integral is equal to 0 and the second integral is 

= ;: { [-: cos(nx)] :1f 
+ � [sin(nx)]�1f } = ! . 

So the Fourier series of I is indeed L(sin nx)fn. 

Exe.rcise XII.1 .8 Let I be periodic of period 21r, and of class 01 • Show 
that there is a constant 0 > 0 such that all Fourier coefficients Cn (n =f:. 0) 
satisfy the bound len l < 0/lnf . {Hint: Integrate by parts.] 

Solution. Let C be a bound for /' , and suppose that n =f:. 0. Integrating 
by parts and using the fact that f is periodic we find that 

11r . -1 [ . ] 1r 1 11r . 
2'TrCn = l(x)e-tnxdx = -:- f(x)e-tnx + -:- l'(x)e-tnxdx 

-1r �n -1r �n 1r 
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Hence the estimate 

2 I I 1 11r Cl -inz I _.l_ 27rC 
71" 

Cn < lnl -w 
e u;,; = 

lnl · 

Therefore len I � C /In I for all n =F 0. 

Exercise XII.1.9 Let f be periodic of period 2w, and of class C2 (twice 
continuously differentiable). Show that there is a ·constant C > 0 such that 
all Fourier coefficients Cn (n � 0} satisfy the bound len l :5 C/n2 • General-
. zze. 

Solution. We prove the general result. Suppose f e CP, p > 1 , and that 
I is 211" periodic. Then /' , I", . . .  , f(P) are all 2w periodic. Let n � 0. Then 
integrating by parts we get the following string of equalities 

211"Cn = -:- l' (x)e-tnxdx = . . . = . I(P) (x)e-"nxdx. 1 11r . 1 11r . 
'n - w  ( 'n )P -1r 

If Bp is a bound for l(p) we get 

211" I I < 
211" Bp 

Cn - lniP 

and therefore len I :5 Bp/lniP for all n =F 0. 

Exercise XII.l.lO Let t be real and not equal to an integer. Determine 
the Fourier series for the functions I ( x) = cos tx and g( x) = sin tx. 

Solution. (i) Since I is even conclude that bk = 0 for all k > 1 .  For the 
other coefficients we have 

1 11r 1 [ 1 . ] 1r sin(t1r) ao = -2 cos(tx)dx = -2 - stn(tx) = , 1r -1r 11" t -1r t'lr 

and for n > 1 , 

2 11r 1 11r 
an = - cos(tx) cos(nx)dx = - cos(tx + nx) + cos(tx - nx)dx 11" 0 11" 0 

- _!_ [ 1 sin(t7r + n7r) - 1 sin(t71" - n7r)] 
1r t + n t - n  

= (- 1t 2t sin(t7r) 
7r(t2 - n2) . 

So the Fourier series of I is 

sin(tw) 2t sin(tw) � ( -1)n ( ) -- + LJ 2 2 cos nx . tw 11" n=l t - n 
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(ii) The function g is odd, so an = 0 for all n > 0. The other coefficients 
are obtained by integration 

2 11r 1 11r 
bn - sin(tx) sin(nx)dx = - cos(tx - nx) - cos(tx + nx)dx 

� 0 � 0 - ! [ 1 
sin( t1r - n1r) - 1 

sin( t1r + n1r >] 
� t - n  t - n  

_ ( _ 1)n 2n sin(t7r) 
�(t2 - n2) . 

So the Fourier series of g is 

sin(t�) 
L
oo 

(-l)n 2n . ( ) 2 2 s1n nx . 
� t - n  n=l 

Exercise XII.l.ll Let E be a vector space over C with a hermitian prod
uct. Prove the parallelogram law: For all v, w e E  we have 

Solution. Using the properties of the hermitian product we find 

l lv + w lf 2 = (v + w, v + w) = (v, v) + (v, w) + (w, v) + (w, w) , 

and 

l lv - w l l2 = (v - w, v - w) = (v, v) - (v, w) - (w, v) + (w, w) , 

hence l tv +  w l l2 + l lv - w l l2 = 2 l lv l l2 + 2 J iw l l2 , as was to be shown. 

Exercise XII. 1 .12 Let E be a vector space with a hermitian product which 
is positive definite, that is if l lv l l = 0, then v = 0 . Let F be a complete 
subspace of E. Let v E E  and let 

a =  inf ( lx - v ii . 
xeF 

Prove that there exists an element x0 E F such that a =  f lv - xo f l · [Hint: 
Let {Yn} be a sequence in F such that ll Yn - v ii converges to a. Prove that 
{Yn} is Cauchy, using the parallelogram law on 

Yn - Ym = (Yn - x) - (Ym - x) .] 

Solution. Let {Yn} be a sequence in F such that l lYn - v ii --+ a  as n --+  oo. 

The parallelogram law implies 

But 
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1 2 
l lYn + Ym - 2vll2 = 4 2 (Yn + Ym) - t1 > 4a2 

because F is a subspace. So 

l lYn - Ym ll2 � 2 IIYn - vll 2 + 2I IYm - v ll2 - 4a2 • 
Given E > 0 there exists N such that if n > N, then l lYn - v ll2 < a2 + E. 
Then for all n, m > N we have 

ll Yn - Ym ll2 < 4£, 
so the sequence {Yn} is Cauchy and therefore has a limit x0 e E. Since F 
is closed, xo e F, and l lxo - v i i = a. 
Remark. In this exercise we assume that F is a subspace. From this as
sumption, we concluded that ! (Yn + 1Im) E F whenever Yn, 1Im in F. So if 
F is only assumed to be a closed convex set, the conclusion of the exercise 
still holds. For a similar result , see Exercise 16, §2, of Chapter VII. 

Exercise XII.1.13 Notation as in the preceding exercise, assume that 
F =F E. Show that there exists a vector z e E which is perpendicular 
to F and z =f:. 0. {Hint: Let v e E, v f!J. F. Let x0 be as in Exercise 1S, and 
let z = v - x0 • Changing v by a translation, you may assume that z = v, 
so that 

l l z ll 2 � l i z + xll 2 for all z E F. 
You can use two methods. One of them is to consider z + tax, with small 
positive values of t, and suitable a e C. The other is to use Pythagoras ' 
theorem.] 
Solution. We wish to show that z is perpendicular to all x in F. 

Method 1. Suppose llx ll =I 0 and let c be the component of z along x. 
Write z = z - ex + ex so by Pythagoras 

l l z ll 2 = l i z - exll2 + llcxll2 > l i z - exll2 • 

By the choice of z we have ll z ll 2 < l i z +  yl l2 for all y E F. Hence we obtain 

l l z ll 2 = l i z - exll 2 
which implies that l lexll2 = 0 and therefore c = 0, as was to be shown. 

Method 2. Consider l lz l l 2 :5 l i z + tx 11 2 for small values of t. Expanding 
yields 

(z, z) < (z, z) + 2tRe(z, x) + t2 (x , x) 
which implies 

0 :5 2tRe(z , x) + t2 (x , x) . 
We pick t small of the opposite sign of Re(z, x) to get a contradiction when 
Re(z, x) =I 0. Using ix instead of x proves that Im(z, x) = 0. This concludes 
the proof. 
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Exercise XII. 1.14 Notation as in Exercises 12 and 19, let A :  E --+  C be 
a continuous linear map. Show that there exists y E E such that A(x) = 
(x, y) for all x E E. {Hint: Let F be the subspace of all x E E such that 
A(x) = 0.  Show that F is closed. If F =F E, use Exercise 13 to get an 
element z e E, z fj F, z :/= 0, such that z is perpendicular to F. Show that 
there exists some complex a such that az == y satisfies the requirements, 
namely a ==  A(z)/ llz l l2 .] 

Solution. The subspace F is closed because if Xn E F and Xn -+ :t, then 
0 = A(xn) -+ A(x) by continuity, so A(x) = 0 and x E F. Suppose F =/= E 
and choose z as in Exercise 13. Then let y = az where a = A(z)/l lz fl 2 • Any 
x in E can be expressed as 

A(x) A(x) 
x = x -

�(z) 
z + �(z) 

z. 

But u = x - (A(x)/A(z))z belongs to F because 

�(u) = �(x) - ��:� �(z) = 0. 

So 
A(x) _A(x) 

{x, y) = (u + �(z) 
z, az) = a 

�(z) 
{z, z) = �(x) . 

Exercise XII.1 .15 Let E be a vector space over C with a hermitian prod
uct which is positive definite. Let 111 , • • •  , 11n be elements of E, and assume 
that they are linearly independent. This means: if c111I + · · · + Cn 11n = 0 with 
ct. e C, then ct. = 0 for all i . Prove that for each k = 1 ,  . . . , n there exist 
elements w1 , • • •  , Wk which are of length 1, mutually perpendicular (that is 
(wi , wj) = 0 if i =f:. j), and generate the same subspace as 11I , • • •  , vk . These 
elements are unique up to multiplication by complex numbers of absolute 
value 1. {Hint: For the existence, use the usual orthogonalization process: 
Let 

U1 - 11t , 

U2 - V2 - C111I , 
• 
• 
• 

Uk - Vk - Ck-I11k-I - • • • - CI11I , 

where ct. are chosen to orthogonalize. Divide each Ui by its length to get Wi . 
Put in all the details and complete this proof.] 

Solution. Let u1 = 11I and w1 = ui/ IIul ll · Then for k = 1 we see that 
l lwt l l = 1 and that {vi } and {wi } generate the same subspace. If WI and 
wi generate the same subspace and both have norm 1 ,  then WI = Awi 
where IAI = 1. 
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Let u2 = v2 - c1w1 where c1 = (112 , w1 ) . Then 

(u2 , WI ) = (112 , WI ) - (112 , W1) = 0. 

The vector u2 is non-zero for otherwise { 11I , 112} are linearly dependent. Let 
w2 = u2/ llu2 ll · The vectors WI and w2 are both linear combinations of VI 
and 112 . Conversely, 11I and 112 are both linear combinations of WI and w2, so 
{ 11I , 112} and {WI , w2} generate the same space. The definition shows that 
this vector is unique up to multiplication by a complex number of absolute 
value 1 .  

Now proceed by induction. For k > 2 we let 

where c; = (vk , w;) .  Then (uk , w;) = 0 for all i < j � k - 1. The vector Uk 
is non-zero, otherwise the vectors, 11I , . . . , 11k would be linearly dependent. 
Let Wk = uk/ l luk l l · Here we see that Wk is unique up to multiplication 
by a complex number of norm 1 . The induction hypothesis implies that 
{WI , . . . , Wk-1 }  and { 11I , . . .  , 11k-I }  generate the same space. So Wk is a 
linear combination of the vectors VI , . . .  , Vk , hence the space generated by 
{ w1 , • • •  , Wk} is contained in the space generated by { v1 , • • . , Vk }. Since 
{WI , . . .  , Wk} is a set of k linearly independent vectors we conclude that 
the space generated by { w1 , • . • , Wk } is the same as the space generated by 
{11I , . . .  , Vk }· This concludes the proof. 

Exercise XII.l.l6 In this exercise, take all functions to be real valued, 
and all vector spaces over the reals. Let K ( x, y) be a continuous function of 
two variables, defined on the square a < x :5 b and a < y < b. A continuous 
function f on [a, b} is said to be an eigenfunction for K ,  with respect to 
a real number A, if 1b K(x, y)f(y)dy = >.j(x) . 

Use the L2-nonn on the space E of continuous functions on [a , bJ . Prove 
that if /I ,  . . .  , In are in E, mutually orthogonal, and of L2-nonn equal to 
1, and are eigenfunctions with respect to the same number A =F 0, then n 
is bounded by a number depending only on K and A. {Hint: Use Theorem 
1.5.] 

Solution. Fix x with a < x < b. Let 

(K, /k) ) Ck = (!k, !k) = (K, '
" 

. 

Theorem 1 .5 implies that E:=I lck l2 < I IKI I2 so 

n 
L A2 1/k (x) l2 < 1 1Kif2 . 
k=l 
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If B is a bound for K on the square [a, b] x [a, b] , we see that 

n 

L A2 llk (x) l2 < B2 (b - a) . 
k=1 

This last inequality is true for all x with a < x < b, so integrating with 
respect to x and using the fact that 1 1/k l l� = 1 , we get 

;\2n < B2(b - a)2 • 

XII.2 Thigonoinetric Polynoinials as a Total 
Falllily 

Exercise XII.2.1 Let a be an irrational n'f!,mber. Let I be a continuous 
function (complex valued, of a real variable}, periodic of period 1 .  Show that 

1 N 11 
lim N ""' f(na) = f(x)dx. N--.oo L.J 0 n=1 

[Hint: First, let f(x) = e21rikx for some integer k. If k :/: 0, then you 
can compute explicitly the sum on the left, and one sees at once that the 
geometric sums 

N 
L e21rikna 
n=1 

are bounded, whence the assertion follows. If k = 0, it is even more trivial. 
Second, prove that if the relationship is true for two functions, then it is t'r'Je 
for a linear combination of these functions. Hence if the relationship is true 
for a family of generators of a vector space of functions, then it is true for 
all elements of this vector space. Third, prove that if the relationship is true 
for a sequence of functions {fk} ,  and these functions converge uniformly 
to a function I, then the relationship is true for f.] 

Solution. Suppose f(x) = e21rikx . First, suppose k f:. 0. Then since a is 
irrational, we see that 

1 N . 1 e21rika _ e21ri(N +1}ko: 1 2 
- � e21rtkna = - < - -+ 0 N L.J N 1 - e21rika - N 1 1 - e21rika I n=1 

as N -+  oo .  Since f0
1 e21rikxdx = 0, the formula holds. Suppose k = 0.· Then 

1 N {1 
N L 1 = 1 = Jo 1dx , 

n=l 0 

so in this case, the formula is also true. 
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If f and g verify the relationship, then so does a/ + bg for all complex 
numbers a and b because the integral is linear and 

1 N 1 N 1 N 
N E af(na) + bg(na) = aN E /(na) +. bN E g(na). 

n=l n=l n=l 

Finally, suppose that {/k} is a sequence of continuous functions, of period 
1 ,  which satisfy the formula and which converges uniformly to a function 
f. We contend that f verifies the formula. Given E > 0, choose k such that 
I I/ - !k ll < e, where 1 1 · 1 1 denotes the sup norm. Then 

1 N (1 1 N 1 N (1 
N E /(na) - Jo f � N E 1/(na) - !k(na) l + N E !k(na) - Jo /k 

n= l 0 n=l n=l 0 

+ fo1 Ilk - fl . 

The first and third term are < E for all N. For all large N the second term 
is < E, so for all large N we have 

l N (1 N L f(na) - Jo f < 3e, 
n=l 0 

thereby proving our contention. 
Now we give the concluding argument. The first and second step show 

that the relationship is true for all trigonometric polynomials. Since any 
continuous and periodic function is the uniform limit or trigonometric poly
nomials, the third step shows that the relationship is true for all continuous 
functions with period 1 .  
Exercise XII.2.2 Prove that the limit of the preceding exercise is valid 
if f is an arbitrary real valued periodic (period 1} regulated function (or 
Riemann integmble function) by showing that given e, there exist continuous 
functions g, h periodic of period 1, such that 

g � I � h and fo1 (h - g) < e. 

In particular, the limit is valid iff is the chamcteristic function of a subin
teroal of [0, 1] . In probabilistic tenns, this means that the probability that 
21rka (with a positive integer k}, up to addition of some integml multiple 
of 21r, lies in a subinteroal [a, b) , is exactly the length of the interoal b - a. 
This result provides a quantitative continuation of Chapter I, §4, Exercise 
6. It is also called the equidlstribution of the numbers {ka} modulo Z. 

So\ut\on. Given E > 0, there exists a step map tp such that iot :c E \\), 1' we 
have \/(z) - cp(z) \  < E. We can assume cp(O) = cp(l) because J is periodic. 
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We extend cp on R by defining cp(x) = cp(x - n) if x E [n, n + 1] , so that cp 
is now periodic of period 1 , and t.he inequality ll(x) - cp(x) l < e holds for 
all x. 

First, we build g and h on the interval [0, 1] .  Suppose cp has discontinuities 
at the points of the partition 

0 = ao < a1 < · · · < an < 1. 

We call 6-intervals, intervals of length 26 centered at points of the partition. 
Suppose that ai is not an end point. If x is not in one of the 6-intervals, we 
set h(x) = cp(x) + e  and g(x) = cp(x) - e. Let M be a bound for I and select 
B such that B > M + £. We now define h and g on the 6-intervals. Let h be 
the linear function having the value cp( ai - 6) + e at ai - 6 and B at ai .  Let 
h have the value cp(ai +6) +e at ai +6 and be linear on [ai , ai +6] .  Similarly, 
for g, which is defined to be the linear function having value cp(ai - 6) - € 
at ai - 6, -B at ai , and cp(ai + 6) - f at ai + 6. We also modify the end 
points, so that g(O) = g(1) and h(O) = h(1) , so we can extend g and h to 
be periodic of period 1 on R. Then g and h are continuous, periodic, and 
g < I < h. 

Furthermore, 11 h - g < 2e + 2n6B , 

hence we can choose 6 so that the integral is < 3e. Then we have 

1 
N 1 N 1 N 

N L g(na) < 
N L f(na) 5 N L h(na) . 

n=l n=l n=l 

But by the previous exercise we know that 
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1 N {1 
1 N {1 

N E g(na) --+ Jo g and N E h(na) --+ Jo h, 
n=l 0 n=l 0 

and 11 
g < 11 

I < 11 
h and 11 

h - g < 3E 

so we conclude that the desired limit exists and 

1 N 11 
lim N E /(na) = f. N-+oo 0 n=1 

Exercise XII.2.3 (a) Let P, Q be trigonometric polynomials. Show that 
P + Q and PQ is also a trigonometric polynomial. If c is a constant, then 
cP is a trigonometric polynomial. 
(b) Suppose a trigon_ometric polynomial P is written in the form 

n 

P(x) = ao + E(ak cos kx + bk sin kx) . 
k=l 

If an or bn :/: 0, define the trigonometric degree off to be n. Prove that 
if j, g are two trigonometric polynomials, then 

trig deg(/ g) = trig deg(/) + trig deg(g) . 

Solution. (a) The only difficulty is to show that the product of two trigono
metric polynomials is also a trigonometric polynomial. This can be done 
using the product formulas for the sine and cosine which are 

sin a ·  sin {j 
1 - 2 [cos( a - fj) - cos( a + P)] , 

sin a ·  cos {j ! (sin( a + ,8) + sin( a - ,8)] , 

cos a ·  sin {j - ! (sin( a + ,8) - sin( a - ,8}] , -

cos a · cos {j 
1 - 2 (cos( a + fj) + cos( a - {j)] . 

These formulas show that any expression of the form cosi x · sin; x can be 
written as a linear combination of sine and cosine. 
(b) The fact that trig deg(fg) = trig deg(/) + trig deg(g) follows from the 
product formulas. 

Exercise XII.2.4 Let COO be the space of coo functions with are periodic 
and vanish at -1r, 1r. Show that COO is L2 -dense in E (the space of piecewise 
continuous periodic functions). {Hint: Approximate the function by step 
functions, and use bump functions.] 
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Solution. The hint gives the proof away. Let cp be a step map that approx
imates /, that is I I/ - cplf� < €. The coo bump functions smooth out the 
corners and eliminate the singularities of cp. For the construction of such 
functions, see Exercise 6, §1 ,  of Chapter IV and Exercise 7, §3, of Chapter 
X. Doing this construction at each discontinuity of cp and making sure that 
at the end-points we let the bump function be equal to 0, we get a function 
g E COO which approximates cp. We have the following pictures: 

-r 

The smaller 6, the better the approximation. Indeed, let n be the number 
points of the partition which defines the step map cp. Then if B is a bound 
for cp, we see that estimating the integral on the 6-intervals, we get 

l l cp - o il �  < 2onB2• 

So for small 6, we will get I I/ - g l f� < 2f. 

XII.3 Explicit Uniform Approximation 

Exercise XII.3.1 Let E be as in the text, the vector space of piecewise 
continuous periodic functions. If f, g E E, define 

f * g(x) = 1: f(t)g(x - t)dt. 

Prove the following properties: 
(a) f * g = g * f· 
{b) If h E  E, then I *  (g + h) =  f * g + / * h. 
{c) (/ * g) *  h = I * (g * h) .  
{d) If a is a number, then (a/) * g = a(f * g) .  
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Solution. (a) The change of variable u = x - t implies 

(/ * g)(x) = 11r f(t)g(x - t)dt = -1z-1r f(x - u)g(u)du 
- �  z+� 

= /_: g(u)f(x - u)du = (g * f)(x) . 

(b) The linearity of the integral implies that I * (g + h) = I * g + I * h. 
(c) Both (/ * 9) * h(x) and f * (g * h)(x) are equal to 

1:1: f(t)h(u)g(x - t - u)dudt. 

(d) This is an easy consequence of the linearity of the integral. 

Exercise XII.3.2 For 0 < r < 1, define the Poisson kernel as 

Show that 

00 

P(r, 9) = Pr(9) = _!_ ""' rlnleinll. 21r L-1 -oo 

R ( 9) - _!_ 1 - r2 
r - 21r 1 - 2r cos 9 + r2 • 

Solution. We use the formula to sum a geometric series 

Exercise XII.3.3 Prove that Pr (9) satisfies the three conditions DIR 1, 
2, 3, where n is replaced by r and r -+  1 instead ofn -+  oo .  In other words: 
DIR 1. We have Pr(9) > 0 for all r and all 9. 
DIR 2. Each Pr is continuous and 

1: Pr(9)d9 = 1 .  

DIR 3. Given E and 6, there exists ro , 0 < ro < 1 such that if ro < r < 1 ,  
then 

1-6 1� 

Pr + Pr < E. 
-� 6 

Solution. We use the formula obtained in the previous exercise. First, 
DIR 1 holds because -1  < cos x < 1 hence 
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1 - 2r cos 9 + r2 >· 1 - 2r + r2 = (1 - r)2 > 0, 

and the numerator is > 0 because 0 < r < 1 . 
DIR 2 is also verified. Indeed, each Pr is continuous because the series 
converges uniformly (comparison to the geometric series) . Furthermore, we 
can integrate the series term by term, so 

But if n -'- 0 J'lr ein8d6 = 0 so r ' - 'lr  

11r 1 11r 

Pr(O)d9 = 2 1d9 = 1.  
- 1f'  1r -1r 

Finally, we verify DIR 3. If 6 $ 0 $ 1r, then cos 8 < cos 6 so 

But 1 - 2r cos 6 + r2 -+ 2(1 - cos o) and 1 - r2 -+ 0 as r -+  1 ,  and since Pr 
is even, there exists 0 < ro < 1 such that if ro < r < 1 , then 

1-6 1'11" Pr + Pr < E. 
-1r 6 

Exercise XII.3.4 Show that Theorem 1. 1 concerning Dime sequences ap
plies to the Poisson kernels, again letting r -+ 1 instead of n -+ oo .  In other 
words: Let f be a piecewise continuous function on R which is periodic. Let 
S be a compact set on which f is continuous. Let 

fr = Pr * f. 

Then fr converges to f uniformly on S as r -+  1 .  

Solution. Let E > 0 .  Then DIR 2 implies that 

(Pr * f) (x) - f(x) = 1: [f(x - 9) - /(x)] Pr (9)dJJ. 

The function f is uniformly continuous on S so there exists o > 0 such that 
lf(x - 9) - f(x) l < E whenever 10 1 < 6. Let B be a bound for f, and select 
ro , 0 < ro < 1 such that if ro < r < 1 , then 

Then we have 

1-6 11r Pr + Pr < 
2� . 

- 'lr  6 
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I (Pr * /) (x) - /(x) l < 1�6 
+ 16

6 + 11r l f(x - 9} - f(x} IPr(9}d9. 

The middle integral is estimated by 

16

6 1/(x - 9) - /(x} IPr(9}d9 < 16

6 
EPr (9}d9 < E 1: Pr(9)d9 = E. 

The sum of the first and third integral is 

< ��6 
+ 1: 2BPr(9}d9 < E, 

so if ro < r < 1 , then for all x E S we have I (Pr * /)(x) - /(x) l < 2e. 

Exercise XII.3.5 In this exercise we use partial derivatives which you 
should know from more elementary courses. See Chapter XV, § 1, for a 
systematic treatment. 

Let x = r cos 9 and y = r sin 8 where (r, 8) are the usual polar coordinates. 
Prove that in terms of polar coordinates, we have the relation 

02 02 o2 1 0 1 o2 
lJx2 + 8y2 = lJr2 + r 8r + r2 8(}2 · 

This means that if f(x, y) is a function of the rectangular coordinates x, y, 
then 

f(x, y) = f(r cos 9, r sin 9) = u(r, 9) 
is also a function of (r, 9), and if we apply the left-hand side to f, that is 

IJ2/ 82/ 
ox2 + {}y2 ' 

then we get the same thing as if we apply the right-ha�d side to u( r, 8) . The 
above relation gives the expression for the Laplace operator (ofox)2 + 
(ofoy)2 in terms of polar coordinates. The Laplace operp,tor is denoted by 
a. 

A junction I is called harmonic if at = 0 .  

Solution. We simply differentiate. For the first term o2 / or2 we have 

au = of cos 9 + � sin 8 or ox oy 

and therefore, we find that (o2ufor2) is equal to ( 02/ 02 I . ) . ( 02 I 82 I . ) 
- cos 9 lJx2 cos 9 + 8ylJx sm 9 + sm 9 8ylJx cos 9 + 8y2 sm 9 

o2 I 2 9 
o2 I . 9 9 

o2 I . 9 9 
o2 I . 2 9 - OX2 COS + ox{}y Sin COS + O'gOX 

Sin COS + {}y2 SID • 
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For the last term {)2 / {)()2 we have 

so we find that 

au 8/ . 8! - = -r- s1n O + r- cos O, 80 8x 8y 

��� = -r� cos ()  - r� sin () + r2 �� sin2 () - r2 ::� sin () cos () 
lJ2f lJ2f -r2 sin fJ cos fJ + r2 cos2 . oyox 8y2 

The formula that gives the expression of the Laplace operator in terms of 
polar coordinates drops out. 

Exercise XII.3.6 (a) Show that the functions r lk l eikB are harmonic, for 
every integer k. 
(b) Show that �p = 0. In other words, the function 

1 00 
P(r, 0) = 211'" ,L: r1k l eik6 

k=-oo 
is harmonic for 0 < r < 1 .  Justify the term by term differentiations. 

Solutio·n. (a) Let u(r, fJ) = rlk l eikB . If k = 0 there is nothing to prove. 
Assume k =I= 0. Then 

� = l k lrlkl- leik6 , �;� = lkl ( lk l - l)rlk l-2eik6 and ��= = -k2rlkl eik6 1 

so Exercise 5 implies 

Au =  r1k l-2eik8 (k2 - lkl + fk l - k2) = 0. 

(b) Differentiating with respect to r we get the following two series: 

00 00 

,L: l kJrlkl- leikB and ,L: l k l ( lkl - 1)rlkl-2eik8 . 
-oo -oo 

The ratio test implies that these two series converge absolutely and uni
formly on every closed interval [0, c] with 0 < c < 1 and with 0 E R. 
Differentiating with respect to 0 we get 

00 00 L ikrlk l eikB and L -k2rlkl eik8 . 
-oo -oo 

If r E [0, c] with 0 < c < 1 and 0 E R, the ratio test and the fact that 
l eikB I = 1 implies that the series converges absolutely and uniformly. So we 
can differentiate term by term the given function, and part (a) implies that 
Pr (O) is harmonic for 0 < r < 1 . 
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Exercise XII.3. 7 Let g be a continuous function of 9, periodic of period 
21r. Define 

u(r, O) = (Pr * g)(B) for 0 < r < 1 .  
(a) Show that u(r, 9) is harmonic. (You will need to differentiate under an 
intergml sign.) In fact, a(P * g) = (aP) * g. 
(b) Show that 

lim u(r, 9) = g(6) r-+1 
uniformly in 9, as a special case of approximation of Dime families. 

Solution. (a) The functions g and Pr are periodic of period 21r, so u is also 
periodic of period 21r. Suppose r E [0, c] with 0 < c < 1.  The convolution 
is equal to 

u(r, 9) = 1: Pr(t)g(9 - t)dt. 

All the functions being continuous, we differentiate under the integral sign 
to conclude that 

/).u = (I).Pr) * g. 
In Exercise 6 we proved that I).Pr = 0 so /).u = 0. This result holds for any 
c with 0 < c < 1 ,  thus u(r, 9) is harmonic. 
(b) For 9 E [0, 21r] , Exercise 4 implies that u(r, 0) converges uniformly to g 
as r -+  1. Then since all the functions are periodic 21r, we conclude that 

lim u(r, 9) = g(fJ) r-+1 

uniformly in 9. 

XII.4 Pointwise Convergence 

Exercise XII.4.1 (a) Ca1T7J out the computation of the Fourier series of 
(1r - x)2 /4 on [0, 21r) . Show that this Fourier series can be differentiated 
term by term in every interoal [6, 21r - 6] and deduce that 

1r - x  
-

� sin kx 
L..J 0 < X < 211". 

2 -
k=l k 

, 

(b) Deduce the same identity from Theorem 4.5. 

Solution. The function is odd, so bn = 0 for all n. For n > 1 we integrate 
by parts to obtain 

1 1211" (1r - x)2 1 (1r - x) an = - 4 cos nxdx = -
2 

sin nx. 
1r o 1rn 
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Exercise 7, §1 ,  implies that an = 1/n2 • When n = 0 we get 

_ _!_ (21r (1r _ x)2 _ � 
ao - 21r }0 4 dx -

12 ' 

so the Fourier series of (1r - x)2/4 on [0, 21r] is 

The derived series is 

1r2 � cos nx 
12 + L, n2 • 

n=l 

00 • 
_ L 

smnx . n 
n=l 

In Exercise 6, §5, of Chapter IX, we proved the uniform convergence of this 
series in every interval [6, 21r - 6] ,  so we can differentiate the Fourier series 
term by term. The derivative of ( 1r -x )2 /4 is -( 1r - x) /2, so for 0 < x < 21r 
we have 00 • 1r - x = L 

smnx
. 2 

n=l 
n 

(b) Let 0 < x < 21r. Since u .-. (1r -u)j2 is differentiable at x, Theorem 4.5 
implies that the Fourier series at x converges to (1r-x)j2. In Exercise 7, §1 , 
we proved that this Fourier series is E: 1 (sin nx)jn. The result follows. 

Exercise XII.4.2 Let J be a coo periodic function (period 21r ) . Prove that 
given a positive integer k, one has 

/_: f(x)eiA:�:dx = 0{1/ IAik) fm- A -+  ±oo. 

Solution. We assume that A E Z. Integrating by parts once we get 

f(x)eiAzdx = . - -:- J'(x)eiAxdx 
[ "A ] 1r 11r f(x)e"' x 1 11r -1r �A -1r tA -1r 

= --:- f'(x)eiAzdx. 
1 11r 

tA -1r 
So integrating by parts k times and putting absolute values we get 

1 11r --k j(k) (x)eiAxdx 
IAI -1r 
1 j1r 

I (k) I < 
IAik -1r I (x) dx 

27r (k) < 
IAik _:;�!>1r If (x) l . 

The last sup exists because we assume that f e coo and (-1r, 1r] is compact. 
Conclude. 
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Exercise XII.4.3 Show that the convergence of the Fourier series to f(x) 
at a given point x depends only on the behatJior off near x. In other words, 
i/ g(t) = /(t) for all t in some open intenJal containing x, then the Fourier 
series of g converges to g(x) at x if and only if the Fourier series of f 
converges to f ( x) at x .  

Solution. Suppose that I =  g in the open ball of radius r centered at x. 
We can write Dn * g(x) - g(x) and Dn * l(x) - /(x) 88 the sum of three 
integrals 88 in Theorem 4.5. Suppose the Fourier series of I converges to 
j(x) at x. Given f > 0 for all large n we have 

IDn * f(x) - /(x) l < f. 

Let 6 be also < r. So the middle integral in Dn * g(x) -g(x) and Dn * l(x) 
f(x) are equal. The Riemann-Lebesgue lemma implies that the first and 
third integral converge to 0, so we conclude that for large n, Dn •g(x) -g(x) 
is small. Therefore, the Fourier series of g converges to g(x) . Conversely, the 
Fourier series of I converges to j(x) at x if the Fourier series of g converges 
to g(x) at x. 

Exercise XII.4.4 Let F be the complete normed vector space of continu
ous periodic functions on [-1r, 1r) with the sup norm. Let 11 be the vector 
space of all real sequences a =  {an} (n = 1 , 2, . . .  ) such that E lan l con
verges. We define, as in Exercise 8 of Chapter IX, §5, the norm 

00 
J la l l t = :E lan l · 

n=l 

Let La(x) = E an cos nx, so that L :  11 --+ F is a linear map, satisfying 

Let B be the closed unit ball of mdius 1 centered at the origin in 11 • Show 
that L(B) is closed in F. {Hint: Let {/k} (k = 1, 2, . . .  ) be a sequence of 
elements of L(B) which converges uniformly to a function f in F. Let 
/k = L(ak) with ak = {a�} in 11 • Show that 

a! = - fk (x) cos nxdx. 1 11r 

1r -1r 

Let bn = 1/11" J1r1r f(x) cos nxdx. Note that Ibn - a� I < 2 1 1/ - /k lloo · Let 
{3 = {bn} · Show first that {3 is an element of 11 , proceeding as follows. If 
{3 rp 11 , then for some N and c > 0 we have E� 1 lbn l � 1 + c. Taking k 

large enough, show that E� 1 la� l > 1, which is a contmdiction. Why can 
you now conclude that L({J) = / '1/ 
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Solution. We use the notation of the chapter and of the hint. Since I cos mxl 
� 1 , the series E� 1 a�cpnC,Om converges uniformly to /kC,Om· We can inte
grate term by term so that 

� 00 . 1 fk(x) cos mxdx = '.E a!{cpn 1 'Pm) = 1ra�. 
- � n=l 

Let bn = 1/'lr f�
� j(x) cos nxdx. Then 

Ibn - a! l  < - IJ(x) - !k (x) l l cos nxldx < - II/ - /k ll · 
1 1� 27r 
7r -� 7r 

Now we prove that {3 E B. If not, then for some N and c > 0, we have 

N 
L fbn f  > 1 + C. 
n=l 

The hypotheses implies that for some k we have II/ - fk ll < c/(4N) . Then 

Ia! I =  Ia! - bn + bn l > lbn l - la! - bn l > Ibn I - 2 11/ - fk ll > I bn I - 2� , 
so 

But 1J ak l l 1 < 1 so we get a contradiction which proves that {3 E B. Now we 
prove that L(/3) = f. For each k, the function fk is even and continuous, so 
j is even and continuous. Hence the Fourier coefficients of f with respect 
to the sine are 0. Furthermore, the 0-th Fourier coefficient of f is 0 because 

I: f(x)dx = 0, 

and this follows from the fact that f�
� fk(x)dx = 0 for all k, by symmetry. 

So the Fourier series of f simply is E� 1 bn cos nx = L({J). By Theorem 
4. 1 we conclude that f = L.(/3) . This proves that L(B) is closed. 

Exercise XII.4.5 Determine the Fourier series for the function whose 
values are ez for · 

0 < X < 211". 

Solution. We compute the Fourier series of the function eaz where a is 
not of the form in where n is an integer. The complex Fourier coefficients 
are g�ven by 
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So the Fourier series of the function eo:�: is 
e21ro - 1 21ro � a + ik + a - ik . a + ik - a + ik . = 2 + (e - l) .L.J 2 ( 2 k2) cos kx + z 2 ( 2 k2) smkx 1ra k> 1 

1r a + 1r a + 
e21ro - 1 e2"'0 - 1 a cos kx - k sin kx 

21ra + 1r 2: a2 + k2 • k�l 

Exercise XII.4.6 For 0 < z < 211" and a =F 0 we have 

oz = ( 2a1r - l) (..!.. � a coskx - k sin kx) 'Ire e 2 + LJ k2 2 • a k=l + a 

Solution. By factoring e21ro - 1 and multiplying by 1r the expression of 
the Fourier series computed in Exercise 5, we get the right-hand side of 
the formula. Theorem 4.5 shows that the Fourier series converges to the 
function. This yields the desired formula. 

Exercise XII.4. 7 For 0 < x < 211' and a not an integer, we have 

_ sin 2a1r � a sin 2a1r cos kx + k( cos 2a?r - 1) sin kx 1r cos ax - 2 + LJ 2 k2 • a lc=l a -

Solution. The formula obtained in Exercise 6 is valid for any complex 
number a not equal to in for some integer n. Suppose a is a real number 
not equal to an integer and let ia = a. Then we have 

1re0:�: = 1r( cos ax + i sin ax) , 

so 1r cos ax is simply the real part of the right-hand side of the formula 
derived in Exercise 6. The expression in the first parentheses equals 

e2ia1r - 1 = cos(2a1r) - 1 + i sin(2a1r) = u1 + iv1 , 
and the expression in the second parentheses equals 

-i � ia cos kx - k sin kx _ . 
2 + LJ k2 2 - U2 + IV2 • a k=I - a 

Therefore, 1r cos ax = u1 u2 - v1 v2 and the desired formula follows from a 
simple computation. 

Exercise XII.4.8 Letting x = 1r in Exercise 7, conclude that 

a'lr 1 2 2 2:oo (-1)k 
-- = + a 
sin a?r a2 - k2 

k=l 

when a is not an integer. 
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Solution. Letting x = 1r in Exercise 7, we get 

thus 

( 1 00 (-1)k ) ?rcos a?r = sin(2a?r) 2 + a 2: 2 _ k2 , a k=l a 

Exercise XII.4.9 (Eikies) Let B be the periodic function with period 1 
defined on [0, 1] by 

1 B(x) = x2- x + 6 .  
(a) Prove that B(x) = 2!2 En¥O �e2n-inx . 
(b) Prove the polynomial identity for every positive integer M: 

(c) Prove that for all integers M > 1 we have: 

M ( 
m ) 1 � 1 - M + 1 B(mu) > - 12 . 

(d) More generally, let A =  (at , . . .  , ar) be an r-tuple of positive numbers. 
Let X = (x1 , . . .  , Xr) be a� r-tuple of real numbers. Define 

1 E(A, X) = L aia; 2B(xi- x;) . 
i=/:j 

Prove that 

Solution. (a) Let u = 21rx �nd consider the function B2 defined by B2(u) = 
B(u/27r) , and whicl1 is periodic of p�riod 21r. For n =I= 0 the complex Fourier 
coefficients of B2 are given by 

27rCn = _1_ {2'" u2e-inudu- _.!:.._ {2'" ue-inudu + ! {2'" e-inudu. 411"2 lo 21r lo 6 lo 
The last integral equals 0, and integration by parts shows that the second 
term equals 1/(in) . Integrating by parts also shows that the first integral 
is equal to -1/(in) + 1/(7rn2) , so 
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If n = 0, we have 121r ( 8 1) 2weo = B2(u)du = w - - 1 + - = 0. 
0 12 3 

Theorem 4.5 implies 

B ( ) 1 � 1 in:�: 2 u = 2 2 L...J 2e 
' 11" n�O n 

but B2(2wx) = B(x) so the formula for B(x) drops out. 
(b) Induction. The formula is true when M = 1. Assume that the formula 
is true for some positive integer M. Set 

1 (M+2 ) (M+2 ) 
A = M + 2 � zn � z-k . 

Then we see that 

l (M+l M+l M+l M+l ) 
A = M + 2 L zn . 2: z-k + zM+2 2: z-k + z-M-2 L zn + 1 . 

n=l k=l k=l n=l 
The induction hypothesis implies that 

as was to be shown. 
(c) Part (a) implies 

is equal to 

M+l ( ) � 1 - M: 1 B(mu) 

M+l ) __!._ � _!_. � (1 - m (e21l"inmu + e-2'11'inmu) 21r2 L...J n2 L...J M + 1 ' 
n>O m=l 

and by part (b) we see that this last expression is 
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= __!_ � 1 � e21rinku � e-21rinku - ..!.. . (M+l ) (M+l ) 
21r2 LJ n2 (M + 1) LJ L.J n2 

n>O k=l k=l 

But E e-21rinku is the complex conjugate of E e21rinku so we see that the 
above expression is 

-1 � 1 1 
� 21r2 LJ n2 = -12, 

n>O 

where we have used the fact that E� 1 1/n2 - 1r2 /6. This proves the 
inequality of (c) . 
(d) We have 

E(A, X) 

2 

L aje21rinz; - L a� 
j j 





XIII 
Improper Integrals 

XIII. l Definition 

Exercise XIII.l.l Let I be complex valued, I = It + il2 where It , l2 are 
real valued, and piecewise continuous. 
(a) Show that 

100 f converges if and only if 100 11 and 100 h converge. 

(b) The function f is absolutely integrable on R if and only if 11 and /2 
are absolutely integmble. 

Solution. (a) Suppose f:O f converges to Ut +  iu2 , then since 

1b f;. - Ui < 1b f - (u1 + i'U2) 1 

for i = 1 ,  2 we conclude that f:O It and f:O l2 converge to Ut and u2 , 
respectively. 

Conversely, suppose that J:O It and J:O l2 converge to Ut and u2 , re
spectively. Then 

1b f - (ul + iu2) < 1b 11 - U1 + 1b h - U2 1 

so J:O I converges to u1 + iu2 . 
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(b) Since 1/t l < 1/ 1 , l/2 l < l/ 1 , and 1/ 1 < l/t l + l/2 l , I is absolutely integrable 
on R if and only if 11 and /2 are absolutely integrable on R. 

Exercise XIII.1.2 Integrating by parts, show that the following integrals 
exist and evaluate them: 

and 100 e-z cosxdx. 

Solution. Integrating by parts twice we find that 

so that 
roo 1 

Jo e-z sin xdx = 2 , 

and similarly for the other integral. Note that we can compute both in
tegrals simultaneously. Compute J: e-zei:�;dx and use Exercise 1. You will 
get fob . 1 . b e-beib - 1 e-xe"xdx = . [e-xe":I;] = . ' 0 � - 1 ° � - 1 
but le-beib l = e-b --+ 0 as b -+ oo, so that 

e-xe"xdx = = . 100 • -1 1 + i 
0 i - 1 2 

Therefore the integrals J000 e-x sin xdx and J000 e-z cosxdx both converge 
to 1/2. 

Exercise XIII.1.3 Let I be a continuous function on R which is abso
lutely integrable. 
(a) Show that 1: /( -x)dx = 1: f(x)dx. 

(b) Show that for every real number a we have 

1: f(x + a)dx = 1: f(x)dx. 

(c) Assume that the function j(t)/ l t l is continuous and absolutely inte
grable. Use the symbols 

L. f(t)d· t = 1: f(t)mdt. 
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If a is any real number f:. 0, show that 

f f(at)tf't = f f(t)d*t. la· la· 
This is called the invariance of the integral under multiplicative 
translations with respect to dtft . 

Solution. The change of variable u = -x implies 

1° f(x)dx = r 1(-u.)du. and fb 

f(x)dx = 1° 1(-u.)du.. 
-a Jo Jo -b 

Taking limits yields the desired result. 
(b) The change of variable u = x + a implies 

lo
a f(x + a)dx = 1a

a+a 
f(u.)du. and 1p f(x + a)dx = 1P+a 

f(u.)du.. 

Taking limits yields the desired result. 
(c) Suppose a > 0. Then 

lc 1 lac 1 1{3 1 1a{3 1 
-a /(at) !at! dt = 

-aa 
f(u.)jUjdu. and c /(at) !at ! dt = 

ac 
f(u.)jUjdu. 

Taking limits yields the desired result. If a < 0, part (a) implies the result. 

XIII.2  Criteria for Convergence 

Exercise XIII.2.1 Show that the following integrals converge absolutely. 
We take a > 0, and P is a polynomial. 
(a) f000 P(x)e-xdx. {b) J000 P(x)e-axdx. 
{c) J000 P(x)e-ax2 dx. {d) J0000 P(x)e-afxldx. 
(e) J000(1 + lx l )ne-axdx for every positive integer n. 

Solution. (a) Let a =  1 in (b) . 
(b) It is sufficient to prove the absolute convergence in the case where P is 
a monomial, i.e. P(x) = xn . We can write 

For all large x > 0 we have fxne-ax/2 1 < 1 . Clearly, the integral f000 e-axf2dx 
converges because 
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88 B -+  oo. Therefore, the integral J000 P(x)e-axdx converges. 2 (c) For all large x, e-ax < e-ax so (b) guarantees the absolute convergence 
of the integral J000 P(x)e-ax2 dx. 
(d) If A, B > 0, we can write 

LB P(x)e-alzldx - LB P(x)e-azdx and 

1: P(x)e-alzl dx - LA
P( -x)e-azdx. 

Conclude using part (b) . 
(e) Since x > 0, lx l  = x and expanding (1 + x)n we get a polynomial, we 
conclude from part (b) that J000(1 + lx l )ne-axdx converges absolutely. 

Exercise XIII.2.2 Show that the integrals converge. 

{a) J;12 l ein� l l/2 dx. {b) J:/2 l ain�p/2 dx. 

Solutio�. (a) Write 

1 x112 1 
I sin xf l/2 

-
I sin xf l/2 xl/2 · 

The function x 1-+ x112 / I  sin x l 112 is continuous on [0, 1r /2] and bounded 
because uf sin u -+ 1 88 u -+ 0. The result follows from the f�ct that the 
integral 

converges. Indeed, 

r1r'2 dx 
lo xl/2 

{1r /2 dx 1r /2 lo xl/2 = [2VxJo = 2y';72. 
(b) Suppose 6 > 0 is small. The change of variable u = 1r - x implies 

11r-6 dx 16 -du {1r/2 du 
1r/2 I sin x l 112 

dx = 1r/2 I sin(1r - u) l l/2 
= }6 I sin ul 112 • 

Let 6 -+  0 and use part (a) to conclude. 

Exercise XIII.2.3 Interpret the following integral as a sum of integrals 
between n1r and (n + 1)11", and then show that it converges: 

roo 1 
lo (x2 + l } l sinxj l/2

dx. 
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Solution. Let 1(n+1)11' 1 an = ( 2 1) I . j i/2 dx. n1r X + Sin X 

The change of variables u = x - n1r shows that 1n11'+11' /2 1 1"' /2 1 ----------�dx = du n1r+cS1 (x2 + 1) 1  sin x f 112 . c51 ((u + n1r)2 + 1) 1 sin ul 112 

< 1 r/2 du 
n21r2 Jo I sin uf l/2 ' 

and a similar estimate holds for the integral from n1r+ 1r /2 to (n+ 1)11" - 62 • 
Using Exercise 2, we see that an is finite and since E 1/n2 converges and 
an > 0 we conclude that the series E an converges. Since the integrand is 
positive it follows that the integral 

converges. 

100 1 
. dx 0 (x2 + 1) 1  s1nx l 1/2 

Exercise XIII.2.4 Show that the following integrals converge: 

{a) J000 Jxe-xdx. {b) J000 z1a e-xdx for s < 1 . 

Solution. (a) Put 8 = 1/2 in (b) . 
(b) Because of Exercise 1, we may assume that 0 < 8 < 1. We split the 
integral 

LB 1 Ll 1 1B 1 -e-xdx = - e-xdx + -e-xdx. 
c5 

xs 
c5 

xs 1 xs 

The first integral converges because for x > 0 

and 

0 < e-x 
< _!_ - 8 - 8 X X 

fl dx 1 6-s+l 

}6 X8 = -s + 1 -
- 8  + 1 

tends to 1/(1 - s) as 6 -+ 0. The second integral also converges because for 
all large x we have 

and 

-x 
0 < e < e-x - 8 -X 

converges. This concludes our argument. 
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Exercise XIII.2.5 Assume . that I is continuous for x > 0. Prove that if 
I100 l(x)dx exists, then 

100 
f(x)dx = a  100 

f(ax)dx for a > 1 .  

Solution. Changing variable, u = xfa we see that 

18 f(x)dx = 1B/a f(au)adu. 

Let B -+ oo and conclude. 

Exercise XIII.2.6 Let E be the set of functions I (say real valued, of one 
variable, defined on R) which are continuous and such that 

1: 1/(x} ldx 

converges. 
(a) Show that E is a vector space. 
{b) Show that the association 

f � 1: 1/(x} ldx 

is a norm on this space. 
{c) Give an example of a Cauchy sequence in this space which does not 
converge (in other words, this space is not complete). 

Solution. Suppose I, g E E. Then I + g is continuous and ll(x) + g(x) l < 
ll(x) l + lu(x) l so /0000 1/(x) + g(x) ldx converges. If a is a number, then 

I: la/1 = la l I: Il l , so al E E. Thus E is a  vector space. 
(b) Let 

1 1 / lh = 1: 1 /(x} ldx. 

Then if I = 0 we clearly have l ll lh = 0, and conversely, if l ll lh , we must 
have I = 0 because I is continuous. Indeed, if II(Y) I > 0 for some y, then 
Il l > 0 in some open ball centered at y and therefore the integral would be 
> 0. Clearly, l fal ll t = lal l ll lh whenever a is a real number. Finally, the 
triangle inequality follows from the fact that ll(x) + g(x) f < ll(x) l + lu(x) f 
for every x. 
(c) Consider the function In equal to 0 outside [-1/n, 1 + 1/n) which takes 
the value 1 on [0 , 1] and which is linear on the intervals [- 1/n, O] and 
[1 , 1 + 1/n] . Consider the sequence {In}� 1 • Then if n > m we have 

2 
l lln - lm lh < -, 

m 
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so {/n} is a Cauchy sequence. Suppose that there exists a continuous func
tion f E E such that f n -+ f in the I I · l i t norm. Then 

11 1 1 - f(x) jdx = 11 l fn (x) - f(x) ldx < l lfn - f lh · 

But 1 1/n - /lh -+ 0 so we conclude that f(x) = 1 if x E [0, 1] because f 
is continuous. The same argument shows that f(x) = 0 if x ¢ (0, 1] . Since 
we assumed f continuous, we get a contradiction and this proves that E is 
not complete under I I  · 1 1 1 • 

· 

In the following exercise, you may assume that 

Exercise XIII.2.7 (a) Let k be an integer > 0. Let P(t) be a polynomial, 
and let c be the coefficient of its term of highest degree. Integrating by parts, 
show that the integral 

1: ( !: e-t2) P(t)dt 

is equal to 0 if deg P < k, and is equal to (- 1)kk!cy-i if deg P = k. 
{b) Show that 

dk 
( t2 ( t2 

dtk e- ) = Pk t)e- , 

where Pk is a polynomial of degree k, and such that the coefficient of tk in 
Pk is equal to 

ak = (- 1)k2k . 
{c) Let m be an integer > 0. Let Hm be the function defined by 

Show that J: Hm(t)2dt = (-lrm!amv'1r, 

and that if m � n, then 

1: Hm(t)Hn(t)dt = 0. 

Solution. (a) Let I be the integral we wish to compute. When integrating 
by parts, the first term equals 0 because of (b) and because if R is a 
polynomial, then 
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2 lim R(t)e-t = 0. 
l t l-+oo 

So if r = deg P < k we see that integrating by parts r times we get foo ( dk-r ) [ dk-r-1 ] 00 
I = (-lt -oo dt1c-r e-t2 p(r) (t)dt = (-ltr!c dtlc-r-1 e-t2 - oo  = 0. 

If deg P = k, then 

I = (-1)1ck!c J: e-t2 dt = (-l)kk!cy'i. 
(b) We use induction. If k = 0, then Po = 1 ,  so the result is true. Suppose 

with deg Qk :5 k - 1 .  Then differentiating the above expression we see that 

where 

pk+l(t) = [k( -2)ktk-l + Q�(t)] + [( -2)k+ltk+l - 2tQk(t)] . 

This proves (b) . 
(c) Note that 

Hm(t)2 = et2/2pm(t)e-t2 et2/2:; (e-t2 ) = Pm(t):; (e-t\ 

so part (a) implies 

For the second case, assume without loss of generality that n < m. Then 

Part (a) implies 1: Hn(t)Hm(t)dt = 0. 

Exercise XIII.2.8 (a) Let I be a real valued continuous function on the 
positive real numbers, and assume that I is monotone decreasing to 0. Show 
that the integrals 
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· fB f(t) sin tdt, fB f(t) cos tdt, {B f(t)eitdt }A }A jA 
are bounded uniformly for all numbers B > A > 0. 
{b) Show that the improper integrals exist: 

100 f(t) sin tdt, 100 f(t) cos tdt, 100 f(t)eitdt. 

The integrals of this exercise are called the oscillatory integrals. 

Solution. (a) The function f is bounded, so it is sufficient to show that 
the integral of cosine, sine, and eit are uniformly bounded. We have 

Since eit = cos t + i sin t we have 

LB cos tdt � 2 and LB sin tdt < 2. 

(b) Theorem 2.6 in1plies the conyergence of the three oscillatory integrals. 

XIII.3 Interchanging Derivatives and Integrals 

Exercise XIII.3.1 Show that the integral 

g(x) = roo sin t e-txdt lo t 

converges uniformly for x > 0 but does not converge absolutely for x = 0. 

Solution. We isolate the key step. 

Theorem 1 Let f be a differentiable, non-r,egative decreasing function and 
let h be a continuous function. Suppose that there exists M > 0 such that 

LB h(x)dx � M  

for all A <  B. Then 

LB f(x)h(x)dx � f(A)M. 
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The proof goes as follows. Let H(x) = J; h(t)dt. Integrating by parts we 
obtain LB f(x)g(x)dx = [f(x)H(x)J! - LB 

f'(x)H(x}dx. 

Putting absolute values and using the triangle inequality we get 

LB f(x)h(x}dx < f(B)M + M LB -f'(x}dx 

- /(B)M + M(-/(B) + /(A))  = /(A)M. 

We apply this result to f(t) = e-tx ft and h(t) = sin t. Then /(t) � 0 
and /'(t) < 0, and 

LB sin tdt � 2 

by Exercise 8 of §2. So we can apply the theorem. Since 

when x > 0, we get 

f(A) = 
e-:z 

< ! 
{B sin t -txdt < _!_ 

}A t e - A 

and the convergence is uniform for x > 0, as was to be shown. 
Now we prove that the integral 

roo sin t dt lo t 

diverges. On the interval [(n - l)1r, n1r) we have 

sin t 1 
I . t l > - s1n , t - n1r 

and the change of variable t - (n - 1)11" = u implies 1n1r 
I sin t ldt = 2. 

(n-l)1r 

The series E 1/n diverges, so the integral is not absolutely convergent. 

Exercise XIII.3.2 Let g be as in Exercise 1. (a) Show that you can dif
ferentiate under the integral sign with respect to x .  Integrating by parts and 
justifying all the steps, show that for x > 0, 

g(x) = - arctan x + const. 
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{b) Taking the limit as x --+  oo, show that the above constant is 11"/2. 
(c) Justifying taking the limit for x � 0, conclude that 

100 sin td _ 1r t - -. 0 t 2 

Solution. (a) The argument in the text justifies differentiating under the 
integral sign 

g' (x) = -100 e-tx sin tdt. 

Now we can integrate by parts the integral from 0 to B, 

-18 e-tx sin tdt = [e-tx cos t]: + 1B 
xe-tx cos tdt. 

Now we integrate by parts the integral on the right 

-18 e -tx sin tdt = [ e -tx cos t]: + [ xe -tx sin t] : + x2 1B 
e -tx sin tdt. 

Letting B -+ oo we get 

hence 

g' (x) = -1 - x2g' (x) 

-1 g' (x) = 
1 2 . 

+ x 
Integrating we see that for x > 0 we have 

g(x) = - arctanx + const. 

(b) To find the limit of g(x) as x -+  oo we must estimate the integral. The 
mean value theorem implies I sin t l < It I so 

and therefore limx--+oo g( x) = 0. The value of the constant is 1r /2 because 
lim�--+oo - arctanx = -11"/2. 
(c) The uniform convergence proved in Exercise 1 implies the continuity of 
g at 0, and since limx-+O arctan x = 0 we conclude that 

g(O) = f)O sin t dt = '11" . }0 t 2 

Exercise XIII.3.3 Show that for any number b > 0 we have 
{00 sin bt dt = 11" . }0 t 2 
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Solution. The change of variable u = bt implies 

{B sin bt dt = fbB bsin 'U !du , 16 t Jb6 u b 
so taking the limits 6 -+ 0 and B -+ oo we get 

roo sin bt dt = roo sin u du = 11" . lo t lo u 2 

Exercise XIII.3.4 Show that there exists a constant C such · that 

roo 2 2 
lo e-t cos txdt = ce-x 14 • 

{Hint: Let f(x) be the integral. Show that f'(x) = -xf(x)/2. See the proof 
of Theorem 1.3 of the next chapter. Using the value 

1oo e-t2 dt = v;' 
one sees that C = ..fK /2.} 

Solution. Let g(t, x) = e-t2 cos tx . Then g and D2g are both continuous 
and we have the estimates 

2 2 lg(t, x) l < e-t and ID2g(t, x) l < te-t 
so we can differentiate under the integral sign. We obtain 

f'(x) = 100 -te-t2 sin txdt. 
Integrating by parts we get 

[ e -t2 • l oo X roo 2 X !'(x) = 2 smtx 
0 

- 2 lo e-t cos txdt = - 2 J(x) . 

Conclude by arguing as in Exercise 1 ,  §1 ,  of Chapter IV. 

Exercise XIII.3.5 Determine the following functions in terms of elemen
tary functions: 

(a) f(x) = /00
00 e-t2 sin txdt. {b) f(x) = J0000 e-t2 eitxdt. 

Solution. (a) Let g(t, x) = e-t2 sin tx . We have /(x) = 0 because g( -t , x) = 
g(t, x) , and putting absolute values we see that the integral converges. 
(b) The function g defined in Exercise 4 is even in t ,  so 
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100 e-t2 cos txdt = 2 roo e-t2 cos txdt. 
-oo 1o 

Exercise 4 implies that 

where C = y'i /2. To conclude, remember that eix = sin x + i cos x. 

Exercise XIII.3.6 Determine whether the following integrals converge: 

(a) J:O xv'f+x2dx. (b) f01 sin(l/x)dx. 

Solution. (a) We must check convergence at 0 and oo. For 0 < x < 1 we 
have v'l + x2 � 2, so for D > 0 close to 0 we have 

[1 dx > [1 dx = - log 6
. 16 xv'l + x2 - 16 2x 2 

Since - log D � oo as D � 0, the integral does not converge. Notice however 
that 

converges because 
1 < I.. 

xv'l + x2 - x2 

{b) We must check convergence near the origin. Let f > 0. If 0 < a < b < f 
then 1b sin(l/x)dx < 1b I sin(l/x) ldx < b - a < t:, 

so the Cauchy criterion is verified, hence J; sin{l/x)dx converges. One 
could also change variables x = 1/u and use the · fact that J1

00 (sin u)/u2du 
converges. 

Exercise XIII.3. 7 Show that J:O sin(x2)dx converges. {Hint: Use the sub
titution x2 = t .] 
Solution. We change variables x2 = t . Then dt/(2../t) = dx so 

1B 1B2 
sin t 

sin(x2)dx = .fidt . 0 0 2 t 

But we know from Exercise 8, §2, that J: sin tdt j < 2. Since t �--+ 1/ .fi is 
monotone decreasing to 0, we conclude that J000 sin(x2)dx converges. 
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Exercise XIII.3.8 Evaluate the integrals 1oo roo t ' X 1oo roo t X 
1 A (x + t)3 

dtdx and 1 it (x + t)3 
dxdt 

to see that they are not equal. Some sort of assumption has to be made to 
make the interchange of Theorem 3. 5 possible. 

Solution. Direct computations show that the integrals converge. For the 
first integral, change variables u = x + t, 

1
B 

t - X 1
B
+:�: U - 2x [ -1 ] 

B
+:�: [ 1 ] 

B
+:�: 

-----�
3
dt = 

3 
du = - + x  2 . 

1 (x + t) I+:�: u u 1+:�: u 1+:�: 
Taking the limit as B --+ oo we obtain 

So 

100 t - x
dt = 

1 _ x = 1
. 1 (x + t)3 1 + x (1 + x)2 (1 + x)2 

---dtdx - -
J.ooJ.oo t - x J.oo dx 1 

1 1 (x + t)3 - 1 ( 1  + x)2 
- 2 · 

For the second integral, a similar argument shows that 100 t - x  -1 

1 (x + t)3
dx = 

(1 + t)2 and 
1oo {oo t - X -1 

1 it (x + t)3
dxdt = 2" 

Exercise XIII.3.9 ·For x > 0 let 

100 log(u2x2 + 1) 
g(x) = 

2 1 
du 

0 u + 

so that g(O) = 0. Show that g is continuous for x > 0. Show that g is 
differentiable for x > 0. Differentiate un4er the integral sign and use a 
partial fraction decomposition to show that 

1r 
g'(x) = 

1 
/M x > 0, 

+ x  

and thus prove that g(x) = 1r log{1 + x) . (This proof is due to Seeley.) 

Solution. Let /( ) _ log(u2x2 + 1) 
u, x -

2 1 . u + 

Suppose x e [0, c) . There exists a number M > 0 such that for all u > M 
we have 
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for all x e [0, c] . Then for all B > M we have 

1
B 

log(u2x2 + 1) 1B {2u2)1/4 1
B 

du -..;_----du < - < K , 
M u2 + 1 - M u2 + 1 - M u3/2 

for some fixed constant K. The convergence of J:O 1/u312du implies the 
uniform convergence of J000 /( u, x )du. So g is continuous on [0, c] and since 
c was arbitrary we conclude that g is continuous for x > 0. 

Now we prove differentiability. Let 0 < a < b and suppose x e [a, b] . 
Then we have 

2u2x 2bu2 K' ID2/(u x) l = < < -' (u2 + 1) (u2x2 + 1) - u2a2u2 - u2 

so the integral J; D2/(u, x)du converges uniformly for x E [a, b] . Since a 
and b are arbitrary, we conclude that g is differentiable for x > 0 and 

g'(x) = fooo 
D2f(u, x)du. 

Suppose x -:/= 1. Since 

we have 

u2 1 [ 1 1 ] 
(u2 + 1) {u2x2 + 1) 

= (x2 - 1) u2 + 1 - u2x2 + 1 ' 

1 2x [ 1r 1r ] 1r 
9 (x) = (x2 - 1) 2 - 2X = x + 1 ·  

If x = 1, then we see that 

roo u2 g'(l) = 2 Jo (u2 + 1)2 du, 

and to evaluate this integral, consider the change of variable u = ta� t so 
that 

,�/2 1r g'(l) = 2 Jo sin2 tdt = 2 .  
Thus for all x > 0 we have 

g'(x) = 1r 
1 ' x + 

Integrating, we obtain g(x) = 1r log{1 + x) + constant. The continuity of g 
at 0 implies that the constant is 0. 

Exercise XIII.3.10 (a) For y > 0 let 
1 y 

tpy (x) = ;: x2 + y2 . 
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Prove that { cp11} is a Dirac family for y --+ 0. 
{b) Let f be continuous on R and bounded. Prove that (cp11 •f) (x) converges 
to /(x) as 11 --+ 0. 
(c) Show that cp( x, 11) = cp11 ( x) is harmonic. Probably using the Laplace 
oeprator in polar coordinates makes the computation easier. 

Solution. (a) Clearly, cp11 is continuous and positive. Changing variables 
x = uy we get 

1 100 y 1 100 1 - 2 2 dx = - 2 du = 1. 1r -oo X + Y 1r -oo 'U + 1 

Finally, if 6 > 0, then 

+ 
11 

dx -1-6 100 -00 . . 6 . x2 + y2 
roo 11 2 }6 x2 + y2 

- 2 roo 1 du }6111 u2 + 1 

= 2 (?r - arctan 6) 2 y . ' 
but arctan t --+ 1r /2 as t --+ oo, so this completes the proof that { cp11} is a 
Dirac family for y --+  0. 
(b) We give the standard proof. Let f > 0 and fix x. Then we have 

(tp11 * f) (x) - l(x) = 1: [f(x - t) - f(x)]cp11(t)dt. 

Let B be a bound for f and choose 6 such that 1/(x - t) - j(x) l < f 
whenever l t l  < 6. Then we estimate 

l (cpy * /) (x) - f(x) l < 1: + 1: + 100 

lf(x - t) - f(x) fcp11 (t)dt. 

(XIII. 1)  

Select 11o such that if 0 < 11 < 11o, then J ! + J:O cp11 < t:/(2B) .  Then we 
see that in (XIII. l)  the sum of the first and second integral is < f, and the 
middle integral is also < f. This proves that (cp11 * /)(x) --+ f(x) as 11 --+ 0. 
(c) T�e Laplace operator in polar coordinates is 

82 82 82 1 8 1 82 
� = - + - = - + - - + -- . 8x2 8y2 8r2 r 8r r2 802 

Letting x = r cos O  and y =  r sin O we find that cp = (sin O)/r. Hence 

A 2 sin 0 
ucp = 3 r 

which proves that cp is harmonic. 

sin O 
r3 

sin O = 0 
r3 ' 
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Exercise XIII.3.11  For each reai number t let [t] be the largest integer 
:5 t .  Let 

1 P1 (t) = t - [t] - 2 • 

{a) Sketch the graph of Pt (t) , which is called the sawtooth function for 
the obvious reason. 
{b) Show that the integral 

converges. 
(c) Let 6 > 0. Show that the integral 

f(x) = ('XI Pl (t�dt }0 x + t 

converges uniformly for x � 6. 
{d) Let 

P2 (t) = 1 (t2 - t) for 0 < t < 1, 2 
and extend P2 (t) by periodicity to all of R (period 1}. Then P2 (n) = 0 for 
all integers n and P2 is bounded. Furthermore, P� (t) = P1 (t) . Show that 
for x > 0, 

roo Pt (t) dt = roo P2(t) dt. lo x + t }0 (x + t)2 
{e) Show that if f(x) denotes the integral in part {d), then f'(x) can be 
found by differentiating under the integral sign on the right-hand side, for 
X > 0.  

Solution. (a) On [0 , 1) , Pt (t) = t - � and since P1 is periodic of period 1 
the graph of P1 follows at once: 

.3 ·  
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{b) It is clear from the cancellations that the integral J: P1 (t)dt is bounded 
for all 0 < a < b. Since t � 1/(1 + t) is monotone decreasing to 0 we 
conclude that the integral 

converges. 
(c) The uniform convergence follows from inequality 

which holds for all x > 6. 

1 < 1 
x + t - 6 + t  

(d) The second integral converges because P2 is bounded and J000 1/ (x + 
t2)dt converges. We have 

r Pt(t) _ P2(t) dt = � li+l Pt (t) (x + t) - P2(t) dt }0 x + t (x + t)2 i=O i (x + t)2 ' 

and since P�(t) = P1 (t) we see that 

li+l Pt (t) (x + t) - P2(t) dt = li+l �(t)(x + t) - P2(t) dt = [P2(t) ] i+l = O , (x + t)2 i (x + t)2 x + t i 
because P2(j) = 0 for all j. Let n -+  co and conclude. 
(e) Let g(t, x) = P2(t)/(x + t)2 • Then 

ID (t ) I = Pt (t)(x + t)2 - 2P2(t) (x + t) < IPt (t) l 2 IP2(t) l 29 ' x (x + t)4 - (x + t)2 + (x + t)3 · 

If x E [a, b] with 0 < a < b we have the estimates 

so J:O D2g(t, x)dt converges uniformly for x e [a, b) hence we can differen
tiate under the integral sign. Since a and b are arbitrary, the result extends 
to x > 0. 

Exercise XIII.3.12 Show that the formula in Exercise 11{d) is valid when 
x is replaced by any complex number z not equal to a real number < 0. Show 
that 

lim foo Pt (t) dt = 0. 11�00 }0 iy + t 

Solution. Let x = z in part (d) of Exercise 11 .  The integrals converge 
because l z + t l > t - lz l and the formula holds for exactly the same reasons 
given in Exercise 11 (d) . 
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Now if z = iy and B is a bound for P2 we have 

{M Pt (t) dt = {M P2(t) dt < B {M dt = B [ -1 ] M . 
lo iy + t lo ( iy + t)2 - lo ( t - IYD2 t - IY I 0 

Taking the limit 88 M --+ co and then 88 y --+ oo yields the desired result. 

Exercise XIII.3.13 (The Gamma :Function) Define 

for x > 0. 
(a) Show that f is continuous. 
{b) Integrate by parts to show that l(x + 1) = xl(x) . Show that 1(1) = 1, 
and hence that l(n + 1) = n! for n = 0, 1 ,  2, . . . . 
(c) Show that for any a >  0 we have 

roo e-attz-ldt = l(x) . Jo az 

{d) Sketch the graph of I for x > 0, showing that I has one minimum 
point, and tends to infinity as x --+  oo, and as x -+  0. 
(e) Evaluate I(� )  = ...{i. [Hint: Substitute t = u2 and you are allowed to 
use the value of the integral in the hint of Exercise 4.] 
(f) Evaluate /{3/2) ,  1(5/2) , . . .  , f (n + � ) .  
(g) Show that 

Vif(2n) = 22n-l f (n)/ ( n + !) . 
{h) Show that f is infinitely differentiable, and that 

J<n> (x) = 1oo (log t)nt'�:-le-tdt. 

For any complex number s with Re( s) > 0 one defines the gamma func
tion 

r(s) = e-tt8 -.  
100 dt 

0 t 
Show that the gamma function is continuous as a function of s .  If you know 
about complex differentiability, your proof that it is differentiable should also 
apply for the complex variable s .  

Solution. (a) Let 0 < a < b and suppose that x e [a, b] . Split the integral 
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For 0 < t < 1 we have t:�:-le-t < ta-le-t and since a > 0 the first 
integral on the right converges uniformly for x e [a, b) . If t � 1 we have 
tx-le-t < tb-le-t and since tb-le-t/2 --+ 0 as t --+  oo we see that the second 
integral converges uniformly for x e [a, b] .  Since the continuity condition 
on (t, x) � tx-le-t is verified, we conclude that f is continuous. 
(b) Integrating by parts, we get 

letting B --+  oo we see that xf(x) = J(x + 1) .  Moreover, we have 

{B 
e-tdt = [-e-t] B ' lo 0 

so letting B -+  oo we see that /(1) = 1. Argue by induction to prove that 
f(n + 1) = n! . 
(c) The change of variable u = at implies 

Let 6 -+ 0 and B -+ oo to conclude. 
(d) First we investigate the limit of f 88 x -+  0. We write 

f(x) = 11 
fl:-1e-tdt + [00 tx- 1e-tdt. 

The second integral is positive and the first tends to oo 88 x tends to 0. 
Indeed, when 0 < t < 1 we have e-t > e- 1 and therefore 

so the desired limit drops out. 
By {h) we know that j<2> > 0 so f' is increasing. We contend that for x 

close to 0, f' is negative. Suppose x < 1/2 and write 

The second integral is uniformly bounded, and the first can be estimated 
as follows: 

11 
(log t)tx-1e-tdt < K 11 

{log t)e:-1dt 

where K is a positive constant. Integrating by parts we see that 
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11 11 tx-1  
(log t)tx- 1dt = - dt. 0 0 X 

This last integral tends to -oo as x --+ 0, thus proving our contention. If 
x > 2 we see at once that f is increasing, so I has one minimum point. 

0 1 

(e) Change variables t = u2 and use finite integrals as in (c) to obtain 

(f) We simply use (b) . We find that 

and 

and I (�) = �I (�) = 5 x 3� . 

By induction we prove that 

Indeed, by (b) 

( 1 ) _ (2n - 1) (2n - 3) · · · 5 x 3 I n + 2 - 2n ..fi. 

I ( 1 !) = 2n + l l ( !) = (2n + 1) (2n - 1) (2n - 3) · · · 5 x 3 _ c n + + 2 2 n + 2 2n+1 y 'lr. 
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(g) By (b) we know that ../il(2n) = y'i(2n - 1)! .  By (e) we see that 

22n-1/(n)/ ( n + ! ) = 22n-l (n _ 1) ! (2n - 1)(2n
2: 3) · · · 5 X 3 .;i 

= (2n - 1) !../i, 
so v'ifl(2n) = 22n-l l(n)l (n + � ) .  
(h) Let 

It :  x 1-+ 1
1 e-tt!"-1dt and /2 : x 1-+ 100 e-ttx-1dt, 

and let g(t, x) = e-ttx-t . Then g is infinitely differentiable with respect to 
the second variable, and if x e [a, b] and 0 < t < 1 ,  then 

lg(n) ( t, X) I < I log tin e-tta-l 
and since the integral 

1l l log tlne-tta-ldt 

converges {to see this, write I log t lnta-t = I log t lnt! tf -l ) ,  an easy induc
tion shows that It is infinitely differentiable on [a, b) and 

/�n) (x) = 1
1 
I log t lne-ttx-ldt. 

For 12 we see that if 1 < t, then 

lu<n> (t, x) l < l log tlne-ttb-1 , 
and just as for 11 we conclude that 12 is infinitely differentiable on [a, b] 
and that 

JJn> (x) = 100 I log tlne-tt!"-1dt. 

In the complex case, we see that if s = x + iy, then 

l e-tts-1 1 = e-ttx-1 
so the above argument can be adapted to the complex gamma function. 
Note that in the complex case, one works with compact rectangles in the 
complex plane instead of compact intervals on the real line. 

Exercise XIII.3.14 Show that 

du = 1r 2 100 1 r(s - 1) 
-oo (u2 + 1)8 Vi r(s) 

1 I or mathrmRe( s) > 2 . 

{Hint: Multiply the desired integral by r(s) and let t �  (u2 + l)t.J 



XIII.3 Interchanging Derivatives and Integrals 239 

Solution. We have 
100 1 

roo roo e-tts-l r(s) 
- OO (u2 + l)B dU = 2 lo lo (u2 + l)B dtdU. 

If t = (u2 + l)q, then dt = (u2 + 1)dq so that 

r(s) du = 2 e-u qe-qq8-1dqdu. 
100 1 100100 

2 
- oo (u2 + 1)8 o o 

The change of variable a = uyfq implies 
roo 

e-u2qdu = _..!:.._ 
roo 

e_"'2 da = .,fii q-l/2 , lo yfq lo 2 

For Re(s) > 1/2 the hypotheses of Theorem 3.5 are verified so that 

1
oo
1
oo 

e..J..u2qe-qq8-l 
- 2 ( 2 l) 

dudq 
0 0 u + 8 

Vi e-qq8-1-1/2_!!_ = y:Kr(s - - ) . 
1
00 

d 1 
0 q 2 

Exercise XIII.3.15 (A Bessel Function) Let a, b be real numbers > 0. 
For any complex number s define 

K 1. Ka (a, b) = 

roo 
e-<a2t+b2 !t>ts �. 

Jo t 

Show that the integral converges absolutely. For c > 0 define 

K 2. 

Show that 

K 3. Ka(a, b) = (!) 8 K8 (ab) . 

Show that 

K 4. K8(c) = K_8(c) . 

K 5. 

{Hint: Let 
g(x) = K112 (x) . 
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Change variables, let t t-+ tfx. Let h(x) = y'Xg(x) . Differentiate under the 
integml sign and twiddle the integml to find that 

h'(x) = -2h(x) , 

whence h(x) = ce-2:1: for some constant c. Let X = 0 in the integml for 
h(x) to evaluate C, which comes out as r(!) = y'i.J 

Solution. If s = x + iy, then we want to study the integral 

11 
e-(a2 t+b2 /t)e:-ldt and 100 e-(a2t+b2 ft)tx-ldt 

separately. The first integral converges. 
because near 0, e-a2t is bounded and J; e-b2/ttz- ldt converges because for all small t we have e-b2/ttz- l < 

e-b2 /2t . 
The second integral also converges because for all large t, e-b2 /t is bounded 

and J01 e-a2ttz- ldt converges. 
K 3. In the integral K8(a, b) put t = (bu)/a. Then 

Ks(a, b) = 1oo e-(abu+ab/u)us (!) s � = (!) II Ks(ab). 

K 4. We change variables u = 1/t, then 

K 5. Changing variables t = u/ x we get 

so 

Since 
�{ -u-z2 fu -1/2) _ -2x -u-z2/u 
8x e u - u3/2 e ' 

we see that the integral 

1oo D2(e-u-z2fuu-lf2)du 

converges uniformly for x e [a, b] with 0 < a < b, so we can differentiate 
under the integral sign and we get 

h'
( ) = loo -2x -u-z2 /ud x 312 e u. 0 u 



XIII.3 Interchanging Derivatives and Integrals 241 

The change of variables q = x2 /u gives 

1o -2x 2/ 2 2 h' (x) = oo (x2fq)3/2 e-q-x q (-x jq )dq = -2h(x) , 

so h(x) = Ce-2:.: for some constant G. Moreover, if we let u = a2 and if 
we use continuity of h at 0 we get 

so 





XIV 
The Fourier Integral 

XIV . 1  The Schwartz Space 

Exercise XIV.l.l Let g e S and define 9a(x) = g(ax) for a > 0. Show 
that 

9a(Y) :--- �g (�) · 

In particular, if g(x) = e-z2 , find 9a(x) . 

Solution. Change variables u = ax so that 

Let B � oo and conclude. 
Let f(x) = e-x2/2 • Then g(x) = f(v'2x), so we have 

9(y) = �! (72) ' 
and therefore 

ba(x) = .!.g (=) = 
1 

f ( x ) = 
1 e_z2 /(4o.2 ) . a a av'2 av'2 av'2 

Exercise XIV.l.2 Normalize the Fourier series differently, for the inter
val [0, 1] .  That is, define the scalar product for two functions f, g periodic 
of period 1 to be 
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11 j(t)g(t)dt. 

The total orthogonal family that corTesponds to the one studied in Chapter 
1� is then the family of functions 

These are already unit vectors, that is these functions form an orthonormal 
family, which is often convenient because one does not have to divide by 21r. 
The theorems of Chapter XII go over this situation, of course. In particular, 
if we deal with a very smooth fucntion g, its Fourier series is uniformly 
convergent to the function. That 's the application we are going to consider 
now. 

Let f be in the Schwartz space. Define a different normalization of the 
Fourier transform for the present purposes, namely define the Poisson 
dual 

Prove the Poisson summation formula: 

{Hint: Let 

E /(n) = E /v (n) . 
nEZ nEZ 

g(x) = E f(x + n) . 
nEZ 

Then g is periodic of period 1 and infinitely differentiable. Let 

c.n = ,� g(x)e-2wim:J:dx = ,� E J<x + n)e-2wimzdx. lo lo nEZ 
Then 

E Cm = g(O) = E /(n) . 
mEZ nEZ 

On the other hand, using the integml for em ,  insert the factor 1 = e-21rimn, 
�hange variables, and show that Cm = fv (m) .  The formula drops out.] 

Solution. The Fourier series of g at 0 converges to g(O) , so we have 

E Cm = g(O) = E /(n) .  
mEZ nEZ 

But 
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em - t L J<x + n)e-2wimzdx = t L J<x + n)e-2wim(z+n>dx Jo nez Jo nEZ 
- L 11 f(x + n)e-2wim(z+n)dx = L 1n+l f(u)e-2wimudu 

nEZ O nEZ n - J f(u)e-21rimudu = /v (m), 

whence the Poisson summation formula 

L f(n) = L /v (n) . 
nEZ nEZ 

Exercise XIV.1.3 Functional Equation of the Theta Function 
Let 8 be the function defined for x > 0 by 00 O(x) = L e-n2wz . 

-oo 
Prove the functional equation, namely 

O(x-1 ) = x1120(x) . 
Solution. Fix x and let f(y) = e-(1rx)y2 • Then using the notation of Ex
ercise 2 and an argument similar to the proof of Theorem 1.3, one finds 
that 

Di<Y> = ( -!1r y) J(y) , 
A 2/ A 

so I = ce-1rY X . We see that /{0) = c, so changing variables tVifX = u 
we have 

C = e-(1r:c)t dt = e-u du = - .  100 2 2 1°0 2 1 
-oo V1fX 0 ..fX 

The Poisson summation formula applied to f implies the functional equa
tion of the theta function. 

Exercise XIV.1.4 (Functional Equation of the Zeta Function 
(Riemann)) Let s be a complex number, s = u + it with u, t real. If u > 1, 
and a > 1 ,  show that the series 00 1 ((s) = "' -L...J ns n=l 
converges absolutely, and uniformly in every region u > a > 1 .  Let F be 
the function of s defined for u > 1 by 

F(s) = 1r-s/2r (i) ((s) . 
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Let g(x) = E:-1 e-n2"'z, so that 2g(x) = 8(x) - 1 .  Show that 

F(s) = x812g(x)-loo dx 
o X 

= xsf2g(x)- + x-sf2g _ - . 
1.00 

dx 1.00 ( 1 ) dx 

1 X 1 X X 
Use the functional equation of the theta function to show that 

F(s) = - - + (xs/2 + x<1-s)/2)g(x)-. 1 1 J.oo dx 
s - 1 s 1 x 

Show that the integral on the right converges absolutely for all complex s, 
and uniformly for s in a bounded region of the complex plane. The expres
sion on the right then defines F for all values of s =I= 0, 1 ,  and w.e see 
that 

Solution. We have 

F(s) = F(1 - s). 

1 1 1 - = - < -
ns ntr - na , 

so the series ((s) converges absolutely and uniformly on every region u > 
a >  1 .  

We have oo loo -tts/2 dt F(s) = 'Tr-s/2 L: e 
s - , 

n=l 0 n t 

and after the change of variable t = 1rn2x we obtain 

We can split the integral from 0 to 1 and from 1 to oo. In the integral from 
0 to 1 we change variables x = 1/ y so 

xsf2g(x)- = _ y-s/2g _ y_)!_ = y-s/2g _ ..J!.. , L 1 dx 11 ( 1 ) d J.oo ( 1 ) d 
0 X oo Y Y2 1 Y Y  

and the second formula for F drops out. 
From the functional equation of the theta function we get 

2g(x-1 ) - O(x-1 ) - 1 = x1128(x) - 1 = x112 [2g{x) + 1] - 1 
2xlf2g(x) + x1/2 - 1. 

From the second formula for F we get 
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F(s) - 1oo 
xsf2g(x) + x-•/2 [xlf2g(x) + 

xl/2 - !] dx 
1 2 2 X 

- 100 
g(x) [xs/2 + x(l-s)/2]� + 1 [ 2 x<l-s)/2]00 

_ 1 [�x-s/2]00 

1 x 2 1 - s  1 2 s 1 

But Re(s) > 1 so 

F(s) = g(x) [xs/2 + x<l-s)/2] - + - - . 100 dx 1 1 
1 x s - 1 s 

We now show that the integral on the right converges uniformly on every 
bounded region of the complex plane. Suppose there exists a number B 
such that lui < B for ail s. We have Jx812 J = xtr/2 and Jx(l-s)/2 1 = x<1-tr)/2 

2 
and e-n 1rx < {e-1rx)n so 

For all x > A we have 1 - e-1r:c > 1/2 so combined with the triangle 
inequality we have 

LM lu(x) [xs/2 + x<l-s)/2] 1 � < 2 LM (xl+B/2 + xl+(l+B)/2)e-""zdx. 

The integral on the right converges as M -+ oo, thus proving the uni
form convergence on every bounded region of the complex plane, and the 
absolute convergence for every complex number s. 

XIV . 2  The Fourier Inversion Formula 
A 

Exercise XIV .2.1 Let T denote the Fourier transform, i. e. T f = f. Then 
T : S -+  S is an invertible linear map. Iff E S and g = f+Tf+T2 f+T3 I, 
show that Tg = g, that is g = g. This shows how to get a lot of functions 
equal to their roofs. 

Solution. We simply have 

Tg = Tf + T21 + T31 + T41 = Tl + T21 + T31 + I = g. 

Exercise XIV.2.2 Show that every infinitely differentiable function which 
is equal to 0 outside some bounded interual is in S. Show that there exist 
such functions not identically zero. (Essentially an exercise in the chapter 
on the exponential function!) 

The support of � function I is the closure of the set of points x such 
that f(x) =f: 0. In particular, the support is a closed set. We may say that 
a coo function with compact suppo1t is in the Schwartz space. The support 
of f is denoted by supp(l) .  
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Solution. Suppose f is zero outside the closed and bounded interval I. 
All the derivatives of f are 0 outside I so for all m and d, the function 
lx lm f(d) (x) is bounded because this function is continuous and is equal to 
0 outside I. Thus I e S. 

Exercise 6, §1 ,  of Chapter IV gives an example of a 000 function with 
compact support which is not identically zero. 

Exercise XIV.2.3 Write out in detail the statements and proofs for the 
theory of Fourier integrals as in the text but in dimension n, following the 
remark at the end of the section. 

Solution. For a complete exposition of the theory of the Fourier integral 
in n variables see S. Lang's Real and Jilunctional Analysis . 

The next exercises are formulated for R, but you may also do them for 
an in light of Exercise 3. 

Exercise XIV.2.4 Let g E Cc(R) , g � 0, and J g = 1 .  Show that 191 :5 1 .  

Solution. We estimate the Fourier transform of g, 

lb(Y) I  = � I g(x)e-izydx < I lg(x) l le-i:J:tlldx. 

But le-izy 1 = 1 and g > 0 so 

lb(y) l � 1 g = 1.  

Exercise XIV .2.5 Suppose that g is even, real valued in S. Let f = g * g. 
Show that j = 1912 • How does supp(j) compare with supp(9) 'f 

A 

Solution. By Theorem 1.2 we know that f = 99. The assumption that g 
is even and real valued implies that 9 = g. Indeed, 

9(y) = I g(x)e-izydtX = I g(x)eizyd1x = I g(x)eizyd1x 

and changing variables we get 

9(y) = I g(-x)e-izyd1x = I g(x)e-i:l:tldtx = g(y) , 

which proves the assertion. Hence j = 99 = 19 12 • This equality shows that 
j(x) = 0 if and only if g(x) = 0, whence supp(j) = supp(g) . 

Exercise XIV.2.6 Given E > 0, show that there exists a function f e S, 
real valued, such that: 

I >  0, j{O) = 1 ,  supp(j) C [-E, e) .  
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Solution. First we show that there exists a function h such that 

h � 0, h(O) = 1,  supp(h) c [-f, f) . 

Let g be a function in C� {R) with support in (-f/2, f/2] such that g is 
even, positive and not identically 0. This can be achieved by using bump 
functions (see Chapter IV). Then let h = g * g. By the previous exercise, 

A 

we know that h � 0. By multiplying g by a positive constant if necessary, 
we get h(O) = 1. Finally, 

supp(h) c supp(g) + supp(g) , 
where supp(g) + supp(g) = { x + y : x, y E supp(g)} . Indeed, changing 
variables we have 

h(x) = L g(x - t)g(t)dt 

so if x ¢ supp(g) + supp(g) , then for any t E supp(g) we see that we have 
x - t ¢ supp(g) , so g(x - t)g(t) = 0 for all t, hence h(x) = 0. Therefore 
supp{h) c [-e, e] as was to be shown. ,. 

Now let f be the Fourier transform of h, that is f = h. Then f > 0, and ,. 
j = h = h- , so j(O) = h- (o) = h(O) = 1 and 

supp(j) = supp(h) c [-f, f] . 

This concludes the exercise. 

Exercise XIV .2. 7 As for the Poisson formula, define the Poisson dual 

/v (y) = L f(x )e-2'/ria:y dx. 

Verify the the formula /vv = f- , which thus holds also for this normaliza
tion of the Fourier transform. You can get this one out of the other one by 
changes of variables in the integrals. Keep cool, calm, and collected. 

Solution. We have 

/V (y) = ( j(x)e-21ri:x:ydx and r(y) = l ( j(x)e-i:x;ydx. h 2� h 

Hence fv(y) = �/"(27ry) and therefore, 

/vv (y) = .;21r L /A(27rx)e-2wia:ydx. 

Changing variables u = 21rx we get 

jYV (y) = � r r(u)e-iuydx = rA(y) . 
21r la 

Therefore /vv = f- . 
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XIV.3 An Example of Fourier Transform Not in 
the Schwartz Space 

Exercise XIV.3.1 (The Lattice Point Problem) Let N(R) be the 
number of lattice points (that is, elements of Z2) in the closed disc of radius 
R in the plane. A famo'US conjecture asserts that 

N(R) = 1rR2 + O(R112+E) 

for every E > 0. It is known that the error term cannot be O(R112(log R)k) 
for any positive integer k (result of Hardy and Landau). Prove the following 
best know result of Sierpinski- Van der Corput- Vinogradov-Hua: 

N(R) = 1rR2 + O(R213) .  

{Hint: Let <p be the characteristic function of the unit disc, and put 

IPR (x) = cp (;) • 
Let 1/J be a coo function with compact support, positive, and such that 

fa2 1/J(x)dx = 1, and let 1/J£ (x) = C21/J (;) . 
Then { 1/JE} is a Dirac family for E -+ 0, and we can apply the Poisson 
summation formula to the convolution <p R * 1/JE to get 

L </JR * 1/JE (m) = L cpn(m)�E (m). 

= 1rR2 + L R2cp(Rm)�(em).  
m�O 

We shall choose E depending on R to make the error term best possible.} 
Note that 'PR * 1/JE(x) = <pn(x) if dist(x, Sn) > E, where Sn is the circle 

of radius R. Therefore we get an esimate 

l left - handside - N(R) I ¢: eR. 

Splitting off the term with m = 0 on the right-hand side, we find by Theorem 
9.4: E R2<P(Rm)'¢(em) ¢: R2-3/2 E lml-3/2'¢(em). 

m�O m�O 
But we can compare this last sum with the integral 

J.oo r-312tb(Er)rdr = O(E-112). 

Therefore we find 
N(R) = 1rR2 + O(eR) + O(R112e-112) .  

We choose E = R-1/3 to make the error term O(R213) as desired. 
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Solution. The proof is almost complete. We verify that {1/Jf.} is a Dirac 
family for E -+  0. We work with two variables x1 and x2 because x E R2• 
Then changing variables x = ey we get 

Finally the third property is verified because changing variables as before 
we get 

I 1/JE (x)dx = I 1/J(a)do: 
Jlx i>B Jlxi>B/f. 

and the last integral is 0 when E is small because 1/J has compact support. 
Note that the area of the unit disc is 1r so changing variables x = Ry we 

get 
cpR(O) = I IPR(x)dx = R2 I cp(y)dy = 1rR2• 

Furthermore, 

A 

Generalizing the formula of Exercise 1, §1 , we find 1/Jf.(m) = 1/J(em) and 
cpn(m) = R2cp(Rm) . 

Finally, note that lleft - handside - N(R) I is the number of the lattice 
points NA in the annulus A = {x : R - e < lx l < R + e} . But considering 
the area of the annulus A' = {x : R - e - V2 < lx l < R + e + .../2} ( V2 is 
the diameter of one of the squares in Z2) we find that NA = O(eR). 





XV 
Functions on n-Space 

XV. l  Partial Derivatives 

In the exercises, assume that all repeated partial derivatives exist and are 
continuous as needed. 

Exercise XV.l.l Let /, g be two functions of two variables with contin
uous partial derivatives of order < 2 in an open set U. Assume that 

Show that 

8/ 8g 
ax = - 8y 

8! 8g and - = -. 8y 8x 

Solution. We simply have 

82/ 82/ 82g 82g 
8x2 + 8y2 = - 8x8y + 8y8x = O. 

Exercise XV .1 .2 Let f be a function of three variables, defined for X =f:. 0 
by f(X) = 1/ IXI . Show that 

82/ 82/ 82/ 
8x2 + 8y2 + 8z2 = 0 

if the three variables are (x, y, z) . (The norm is the euclidean norm.) 
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Solution. We compute {) f2 I ox2. First we have 

and therefore 

of x 
& = - IXI3 

82 f IXI3 - 3x2 IXI _ 2x2 - y2 - z2 
ox2 - - IXI6 - IXI5 • 

By symmetry we conclude that 

[J2f 82f [J2j 
8x2 + {)y2 + {)z2 = 0. 

Exercise XV.1.3 Let f(x, y) = arctan(y/x) for x > 0. Show that 

[J2f 82f 
8x2 + {)y2 = 0. 

Solution. If f(x, y) = arctan(y/x) , then 

and therefore 

8f - 1 -y - -y 
8x - l + (y/x)2 7 - x2 + y2 

82/ 2xy 
{Jx2 - (x2 + y2)2 , 

and similarly we obtain 

Conclude. 

82/ -2xy 
8y2 - (x2 + y2)2 · 

Exercise XV.1.4 Let 6 be a fixed number, and let 

x = u cos (} - v sin fJ, y = u sin fJ + v cos 6. 

Let f be a function of two variables, and let f(x, y) = g(u, v) . Show that 

Solution. We simply have 

and 

8g of 8f . - = - cos 6 + - s1n fJ 
au 8x {Jy 

8g of . 8f - = - - s1n fJ + - cos O. 8v 8x oy 
Adding the squares of the above expressions and using the fact that cos2 9+ 
sin2 6 = 1 we get the desired identity. 
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Exercise XV.1.5 Assume that f is a function satisfying 

f(tx, ty) = tm f(x, y) 

for all numbers x, y, and t . Show that 

82/ 82/ 82/ x2 
8x2 + 2xy 8x8y + y2 

8y2 = m(m - 1)/(x, y) . 

[Hint: Differentiate twice with respect to t .  Then put t =  1 .] 

Solution. Differentiating once with respect to t we get 

�x + �y = mtm-l f(x y) 8x 8y ' '  

and differentiating again with respect to t we find (82/ 82/ ) ( 82/ 82/ ) m-2 x 8x2 x + 8y8x y . + Y 8x8y x + 8y2 Y = (m - l)mt f(x ,  y) . 

Collect terms and put t =  1. 

Exercise XV.1.6 Let x = r cos 6 and y =  r sin iJ. Let f(x, y) = g(r, B) .  
Show that 

-8! -
8x 
8/ - -
8y 

8g sin iJ 8g 
cos O- - 88 ' or r 
. ()8g cos () 8g s1n 7ir + r 89 . 

[Hint: Solve the simultaneous system of linear equations (*) and (**) given 
in the example of the text.] 

Solution. If we form r sin 6{ *) + cos 9( **) we get 

r� sin2 0 + r� cos2 0 = r:� sin O + � cos O. 

Dividing by r yields the desired formula for 8 f / 8y. To find tl1e formula for 
of fax, form r cos 6(*) - sin 9(**) and divide by r. 

Exercise XV.1.7 Let x = r cos 6 and y =  r sin 6. Let f(x , y) = g(r, B) . 
Show that 

This exercise gives the polar coordinate form of the Laplace operator, and 
we can write symbolically: 

( 8 ) 2 ( 8 ) 2 ( 8 ) 2 1 8 1 ( 8 ) 2 
ox + 8y = 7ir + ;ar + r2 88 . 
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{Hint for the proof: Start with (*) and (**) and take the further derivatives 
as needed. Then take the sum. Lots of things will cancel out leaving you 
with Dl/ + D�f.] 

Solution. See Exercise 5, §3, of Chapter XII. 

Exercise XV.1.8 With the same notation as in the preceding exercise, 
show that (�) 2 _!_ (�) 2 

= 
({)') 2 (�) 2 

8r + r2 86 8x + oy · 

Solution. Using the formul'as in the solution of Exercise 5, §3, of Chapter 
XII, we get after cancellations 

(�) 2 
+ � (�:Y = (�Y (cos2 0 + sin2 0) + (�) 2 

(cos2 0 + sin2 0) .  

Exercise XV.1.9 In R2, suppose that f(x, y) = g(r) where r = Jx2 + y2 • 
Show that 

82f 82/ lPg l dg 
8x2 + 8y2 = dr2 + r dr ·  

Solution. See Exercise 10. 

Exercise XV.l. lO (a) In R3, suppose that f(x, y, z) = g(r) where r = 
Jx2 + y2 + z2 . Show that 

()2j ()2j 82/ ,Pg 2 dg 
ox2 + 8y2 + {)z2 = dr2 + 

r ;]; . 
{b) Assume that f is harmonic except possibly at the origin on Rn, and 
that there is a 02 function g such that f(X) = g(r) where r = ../X ·  X. Let 
n > 3. Show that there exist constants C, K such that g(r) = Kr2-n + C. 
What if n = 2 '1  

Solution. (a) We prove the general formula in Rn. If /(xl , . . . , Xn) = g(r) 
where r = (x� + · · · + x�)112 , then 

Indeed, 
8/ 09 Xj - = --, OXj or r 

hence 
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Summing over j we get the desired formula. 
(b) For r > 0 we have 

� ( g'(r) ) = g'' (r) (2 - n)r1-n - g'(r) (l - n) (2 - n)r-n 1 

dr {2 - n)rl-n [(2 - n)rl-n]2 

but f is harmonic, so this last expression is 0 because by (a) we know that 

g11 ( r) = g' ( r) ( 1 - n) / r. 

So there exists a constant K such that g'(r) = K(2 - n)r1-n. Integrating 
once we see that there exists a constant C such that g(r) = Kr2-n + C. 

The primitive of 1/x is log x, so for n = 2 we might expect log y"x� + x� 
to be harmonic on R2 - {0}. Indeed, if /(x1 , x2) = log v'x� + x� , then a 
straightforward computation shows that 

82! x� - x� 82/ x� - x� 
8x2 - (x� + x� )2 

and 
[Jy2 = (x1 + x� )2 · 

Exercise XV.l.ll Let � = y"x2 + y2 and let r, () be the polar coordinates 
in the plane. Using the formula for the Laplace opemtor in Exercise 7 verify 
that the following functions are harmonic: 
(a) rn cos n() = g(r, 9) . (b) rn sin nO = g(r, 9) .  
As usual, n denotes a positive integer. So you are supposed to prove that 
the expression 

82g 1 8g 1 lJ2g 
lJr2 + -;. a;. + r2 {)()2 

is equal to 0 for the above functions g . 

Solution. (a) We have 

and 

and 

� = nrn-l cos n9 or 

829 2 n () 
89

2 = -n r cos n , 

so a simple manipulation gives 

82g 1 8g 1 82g 
8r2 + r 8r 

+ ;:2 882 = O. 

(b) In this case, we have 

� = nrn-l sin n6 
8r 
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and 

and 

lPg = n(n - l)rn-2 sin n6 or2 

{}29 2 n • _n 

062 = -n r s1n 1w , 

so a simple manipulation gives 

82g 1 8g 1 o2g 
{}r2 + r 8r + r2 8()2 = 0. 

Exercise XV.l.l2 For x E Rn, let x2 = x� + · · · + x� . For t real > 0, let 

f(x, t) = t-n/2e-x2 /4t . 

If � is the Laplace operator, � = E 82 I 8x�' show that �� = a fIat. A 
function satisfying this differential equation is said to be a solution of the 
heat equation. 

Solution. Differentiating once yields 

8/ = t-n/2 (-2x; ) -x2/4t 
8x; 4t e ' 

and differentiating once more we get 

hence 

82 f - - t-n/2-1 [ -x2 /4t - 2x' -x2 /4tl 
8x� - 2 e 4t e ' 

3 

A f -x2/4t X t-n/2-1 ( 2 ) 
u = - 2 e n - 2t . 

Differentiating once with respect to t yields 

- = -nt-n/2-1e-x2/4t+t-n/2�e-x2/4t = - e-x2/4t n - � 8/ 2 t-n/2-1 ( 2 ) 
at 2 4t2 2 2t , 

whence �/ = of jOt. 

Exercise XV.l. l3 This exercise gives an example of a function whose 
repeated partials exist but such that D1D2! :/= D2D1!. Let 

Prove: 

f(x, y) = { xv::�=: i( (x, y) :F (0, 0) , 
0 if (x, y) = (0, 0) . 

(a) The partial derivatives 82 f f8x8y and 82 f f8y8x exist for all (x, y) and 
are continuous except at (0, 0) . 
{b) D1D2/{0, 0) =/= D2D1/{0, 0) . 
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Solution. We have 
81 x4 - y4 + 4x2y2 

and 
8x 

= y (x2 + y2)2 

Both these partials are equal to 0 at (0, 0) . This follows from a direct 
computation of the Newton quotient. For (0, 0) we see that 

and 

81 f8x(O, h) - 81 f8x(O, 0) = _1 = {)2 I (O O) h 8y8x ' ' 

8/ f/Jy(h, 0) - 81 j{)y(O, 0) = 1 = 82 I (O o) h 8x8y ' · 

For (x, y) � (0, 0) we have 

021 _ (x4 _ 5y4 + 12x2y2) (x2 + y2)2 _ (yx4 _ y5 + 4x2y3) (4y(x2 + y2)) 
8y8x (x2 + y2)2 
Then letting y = 0 we find that 

. 821 
hm = 1 . 

(x,0)--.(0,0) 8y8x 
By symmetry, we conclude that both 82 I 8y8x and 82 I 8x8y exist and are 
continuous except at (0, 0) . 

Green's Functions 

Exercise XV.1.14 Let (a, b) be an open interval, which may be (a, oo) . 
Let 

My
= - (�r + p(y) , 

where p is an infinitely differentiable function. We view My as a differential 
operator. If f is a function of the variable y, then we use the notation 

Myl(y) = -l"(y) + p(y)l(y) .  
A Green's function for the differential operator M is a suitably smooth 
function g(y, y') defined for y, y' in (a, b) such that 

My 1b g(y, y')l(y')dy' = l(y) 

for all infinitely differentiable functions f on (a, b) with compact support 
(meaning I is 0 outside a closed interval contained in (a, b)). Now let 
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g(y, y') be any continuous function satisfying the following additional con
ditions: 

GF 1. g is infinitely differentiable in each variable except on the diagonal, 
that is when y = 11' . 
GF 2. If y � y', then M11g(y, y') = 0. 

Prove: 
Let g be a function satisfying GF 1 and GF 2 .  Then g is a Green's function 
for the operator M if and only if g also satisfies the jump condition. 

GF 3. D1g(y, y+) - D1g(y, y-) = 1 .  

As usual, one defines 

D1g(y, y+) = lim D1g(y, y') ,  
v' - v  
111>11 

and similarly for y- instead of y+, we take the limit with y' < y. {Hint: 
Write the integral 

Solution. The chain rule shows that under some suitable 888umptions we 
have 

d 1a(x) 1a(x) 8 
dX a 

f(x, t)dt = f(x ,  a(x))a'(x) + 
a axf(x, t)dt. 

Splitting the integral as hinted, and after some cancellations we see that 

tP 1b 
dij2 a g(y, y')f(y')dy' = f(y) (Dlg(y, y-) - D1g(y, y+)) 

+ 111 :2 g(y, y')f(y')dy' + 1b :2 g(y, y')f(y')dy'. 

Condition GF 2 implies that the sum of the last two integrals is equal to 

p(y) 1b g(y' y') I (y')dy'. 

So we see that g is a Green's function if and only if 

D1g(y, y-) - D1g(y, y+) = -1, 

as was to be shown. 

Exercise XV.1.15 Assume now that the differential equation f" -pf = 0 
has two linearly independent solutions J and K. (See Chapter XIX, §3, 
Exercise �-) Let W = JK' - J'K. 
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(a) Show that W is constant f:. 0. 
{b) Show that there exists a unique Green's function of the form 

, _ { A(y')J(y) if y' < y, g(y, y )  - B(y')K(y) if y' > y, 

and that the functions A, B necessarily have the values A = K fW, B = 
JfW . 

Solution. The quantity W is constant because 

W' = J'K' + JK" - J"K - J'K' = JpK - JpK = 0. 

Suppose W is 0. If J is never 0, then (K/ J)' = 0 which is impossible 
because the solutions are linearly independent. If for some to , J(to) = 0, 
then J'(t0)K(t0) = 0. If J'(t0) = 0, then J is identically 0 �d if J' (to) f:. 
0, then K(t) = (K' (to)/ J' (t0))J(t) by the uniqueness theorem. This is a 
contradiction. 
(b) First we show that if A = K /W and B = J fW, then the function 
g(y, y') is a Green's function. The continuity condition is satisfied and we 
have g(y, y) = JKfW. Since J and K are solutions of the differential 
equation /" - pf = 0 we see at once that if y f:. y' , then M11g(y, y') = 0. 
Finally, we verify the jump condition, 

D1g(y, y+) - D1g(y, y-) = J(y)K'(y) - K(y)J'(y) = 1 . w 
So g(y, y') is a Green's function. This solution is unique. Indeed, the con
tinuity and jump conditions imply 

but 

Conclude. 

{ A(y)J(y) - B(y)K (y) = 0, 
A(y)J' (y) - B(y)K'(y) = 1 , 

J(y) K(y) -J' (y) K'(y) - W =F 0. 

Exercise XV.1.16 On the interval ( -oo, oo) let My = - (d/dy)2 + c2 
where c is a positive number, so take p = c > 0 constant. Show that ecy 
and e-cy are two linearly independent solutions and write down explicitly 
the Green's function for M11 • 

Solution. We have 

and 
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tP - dy2 e
-cy + c2e-cll = -c?e-cy + c?e-cy = 0. 

Clearly, both solutions are linearly independent. Let J = e-cy and K = eCfl, 
then 

W = ce-C11eCfl + ce-cyeCfJ = 2c, 
so the expression of the Green's function is { eCfl' ( e-Cfl /2c) if 11' < y, 

e-Cfl' ( ec11 /2c) if y' > y. 

Exercise XV.1.17 On the interval (O, oo) let 

M = _ (�) 2 _ s(l - s) 
11 dy y2 ' 

where s is some fixed complex number. For s =/= � ,  show that y1-8 and y8 
are two linearly independent solutions and write down explicitly the Green's 
function for the opemtor. 

Solution. Both functions y1-8 and y8 are solutions of the differential equa
tion because 

and 

tfJ 8 ( 1) 8-2 ( 1 ) Y
8 

--y = -s s - y = s  - s -dy2 y2 ' 

tP 1-8 
- d 2 yl-s = s(l - s)y-l-s = s(l - s) Y 2 . y y 

Clearly, both solutions are linearly independent. Let J(y) = y8 and K(y) = 
y1-8 • Then 

W = ys (l - s)y-8 + sys-1y1-8 = 1 , 

so the expression of the Green's function is { (y') l-8 y8 if y' < 1J, 
(y')8 yl-8 if y' > Y• 

XV .2 Differentiability and the Chain Rule 

Exercise XV.2.1 Show that any two points on the sphere of mdius 1 {or 
any radius) in n-space centered at the origin can be joined by a differen
tiable curoe. If the points are not antipodal, divide the straight line between 
them by its length at each point. Or use another method: taking the plane 
containing the two points, and using two perpendicular vectors of lengths 1 
in this plane, say A, B, consider the unit circle 

a(t) = (cos t)A + (sin t)B. 
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Solution. Method 1. If A and B are the two points, the equation of the 
line segment joining them is L(t) = A + t(B - A) where t E [0 , 1] .  If A and 
B are not antipodal, then L(t) # 0 for all t so fL(t) J � 0 for all t. If R is 
the radius of the sphere, the curve 

L(t) a(t) = R
IL(t) l ' 

is a solution to our problem because a is differentiable, Ia I = R, a(O) = A, 
and o:(l) = B. 

Method 2. We can always choose A to be the vector determined by one 
of the points. Note that 

la l2 = IAI cos2 t + fBI sin2 t = R2• 

There exist numbers a and b such that the second point equals aA + bB. 
Taking the square of the norm we see that a2 + b2 = 1 thus there exists a 
number t0 such that the second point equals a(t0) .  

Exercise XV.2.2 Let f be a differentiable junction on Rn, and assume 
that there is a differentiable function h such that 

(grad /) (X) = h(X)X. 

Show that f is constant on the sphere of radius r centered at the origin in 
Rn . [Hint: Use Exercise 1.] 

Solution. Let A and B be two points on the sphere and let a be as in 
Exercise 1 . Then 

(/ o o:)' (t) = grad f(a(t)) · o:' (t) = h(a(t) )o:(t) · o:' (t) . 

Since o: · o: is constant we see that 

d 0 = d:i [a(t) · a(t)] = 2o:(t) · o:' (t) , 

and therefore (/ o a)' (t) = 0. Hence f(A) = f(B) . 

Exercise XV .2.3 Prove the converse of Exercise 2, which is the last state
ment preceding the exercises, namely .if f(X) = g(r) , then grad f(X) = 
g' (r)Xfr.  

Solution. The chain rule implies 

8/ '( ) Xi - = g r , 8Xi v' X� + • • • � X� 
so we immediately get that grad /(X) = g' (r)Xfr. 
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Exercise XV.2.4 Let f be a differentiable function on Rn and assume 
that there is a positive integer m such that f(tX) = tm f(X) for all numbers 
t =/= 0 and all points X in Rn. Prove Euler's relation: 

X1 0
{)j + · · · + Xn :f = mf(X) . 
Xt Xn 

Solution. We differentiate with respect to t the identity f(tX) = tm f(X). 
The left-hand side becomes grad f ( tX) ·X and the right-hand side becomes 
mtm-l /(X) . Put t = 1 and conclude. 

Exercise XV .2.5 Let f be a differentiable function defined on all of space. 
Assume that 

f(tP) = tf(P) 
for all numbers t and all points P. Show that 

f(P) = grad /(0) · P. 

Solution. Differentiate f(tP) = tf(P) with respect to t. You get grad /(tP) · 
P = /(P) . Put t = 0. 

Exercise XV.2.6 Find the equation of the tangent plane to each of the 
following surfaces at the specified point. 
(a) x2 + y2 + z2 = 49 at (6, 2, 3) . 
(b) x2 + xy2 + y3 + z + 1 = 0 at {2, -3, 4) . 
(c) x2y2 + xz - 2y3 = 10 at (2, 1 ,  4) . 
(d) sin xy + sin 1J z + sin xz = 1 at ( 1 ,  1r /2, 0) . 
Solution. (a) 6x + 2y + 3z = 49. 
(b) 13x + 15y + z = -15. 
(c) 4x + y + z  = 13. 
(d) z = 0. 

Exercise XV .2. 7 Find the directional derivative of the following func
tions at the specified points in the specified directions. 
(a) log(x2 + y2) 112 at (1 ,  1) ,  direction (2, 1) .  
(b) xy + yz + xz at ( -1 ,  1,  7) ,  direction (3, 4, -12) . 
Solution. (a) 3/(2¥'5). 
(b) 48/13. 

Exercise XV.2.8 Let f(x, y, z) = (x + y)2 + (y + z)2 + (z + x)2 • What 
is the direction of greatest increase of the function at the point (2, - 1, 2) 'I 
What is the directional derivative of f in this direction at that point? 

Solution. The gradient is simply 

(4x + 2y + 2z, 4y + 2x + 2z, 4z + 2x + 2y) , 

so the direction of greatest increase of f at the given point is (10, 4, 10) or 
any scalar multiple of this vector. The directional derivative is 6v'6. 
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Exercise XV .2.9 Let f be a differentiable function defined on an open set 
U. Suppo_se that P is a point of U sue� that f(P) is a maximum, that is 
suppose we have 

f(P) > f(X) for all X in U. 
Show that grad f(P) = 0. 

Solution. Let g(t) = f(P + tH). Then f(P) � g(t) for all small t and 
g(O) = f(P) so 

0 = g' (O) = grad /(P) · H. 
This equality holds for every vector H, H # 0 so grad f(P) = 0, as was 

to be shown. 

Exercise XV.2.10 Let f be a function on an open set U in 9-space. Let 
g be another function, and let S be the surface consisting of all points X 
such that 

g(X) = 0 but grad g(X) # 0. 
Suppose that P is a point of the surface S such that f(P) is a maximum 
for I on S, that is 

/(P) > f(X) for all X on S. 

Prove that there is a number >. such that 

grad f(P) = ,\grad g(P) . 

Solution. Let a(t) be a C1 curve such that a(t) E S for all t, and a( to) = P 
for some number to . Then f(a(t) ) has a maximum at t0 so 

d 0 = dtf(a(t)) = grad /(P) · a'(t0) . to 
Hence grad /(P) is perpendicular to the level hypersurface at P. Conclude. 

Exercise XV.2.11 Let f :  R2 � R be the function_ such that f(O, 0) = 0 
and 

z3 
f(x, Y) = x2 + y2 if (x, y) =f (0, 0) . 

Show that f is not differentiable at (0, 0) . However, show that for any differ
entiable curve cp : J -+ R2 passing through the origin, f o <p is differentiable. 

Solution. Since f(x, 0)/x = 1 we have 

8/ 
ax (0, 0) = 1 . 

Moreover, if A =  grad /(0) and h = (h1 , �) ,  then 
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hr -h1h� f(O + h) - f(O) - A ·  h = h2 h2 - h1 = h2 h2 = 1/J(h) . 
1 + 2 1 + 2 

If h1 = h2 , then 11/J(h) l/ lhl = 1/(2v'2),  whence 1/J is not o(h) and therefore 
I is not differentiable at (0, 0) . 

Let cp be a differentiable curve paBSing through the origin. Write (/'(t) = 
((/'1 (t) , (/'2(t) ) and assume without loss of generality that (/'(0) = 0. The 
Newton quotient at 0 is 

f(cp(h)) - /(cp(O)} - V'l (h)3 - 'Pl1�>a 
h - h(cpl (h)2 + V'2(h)2) 

- ( 'fl1�l2 + 'P21�l2 ) . 

If cp� (0) and (/'�(0) are not both zero, then we see that the Newton quotient 
tends to 

[cp� (0)]3 
[cp� (0))2 + [(/'2 (0)]2 

as h tends to 0. If both (/'i (0) and cp2(0) are zero, then the inequality 

/(cp(h)) - /(cp(O)) = V'l (h) 'Pl1�l2 < cp1 (h) 
h h (<el (h)2 + <e2(h)2 ) - h h2 h2 

implies that the Newton quotient tends to 0 as h tends to 0. Therefore I o cp  
is differentiable. 

XV .3 Potential Functions 

Exercise XV.3.1 Let X =  (x1 , • • •  , xn) denote a vector in an . Let lXI 
denote the euclidean norm. Find a potential function for the vector field F 
defined for all X =/= 0 by the formula 

F(X) = rkX, 

where r = IXJ .  (Treat separately the cases k = -2, and k # -2.) 

Solution. If k I: -2, let 

Then 

8cp _ Xi 
axi - IX I2

• 
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Exercise XV .3.2 Again, let r = lXI . Let g be a differentiable function of 
one variable. Show that the vector field defined by 

F(X) = g' (r) 
X r 

on the open set of all X # 0 has a potential function, and determine this 
potential function. 

Solution. Let cp = g(r) . See Exercise 3, §2. 

Exercise XV .3.3 Let ( -y X ) G(x, y) = x2 + y2 ' x2 + y2 . 

This vector field is defined on the plane R2 from which the origin has been 
deleted. 
(a) For this vector field G = (/, g) show that D2f = D1g .  
{b) Why does this 'IJector field have a potential function on every rectangle 
not containing the origin? 
(c) Verify that the function 1/J(x, y) = - arctan x/y is a potential function 
for G on any rectangle not intersecting the line y = 0. 
(d) Verify that the function 1/J( x, y) = arccos x / r is a potential function for 
this vector field in the upper half plane. 

Solution. (a) A simple computation gives 

(b) Theorem 3.3. 

y2 _ x2 
D2/ = ( 2 2)2 = DtY· X + y  

(c) See the intermediate steps of Exercise 3, §1 . 
(d) In the upper half plane, we have y > 0. Differentiating yields 

and 

8'¢ -1  r - x2fr _ -y 
& = 

y'1 - (x/r)2 r2 - x2 + y2 ' 

81/J -1 -xy x 
8y 

= 
y'l - (x/r)2 r3 - x2 + y2 · 

XV.4 Curve Integrals 

Compute the curve integrals of the vector field over the indicated curves. 

Exercise XV.4.1 F(x, y) = (x2 -2xy, y2 -2xy) along the parabola y = x2 
from ( -2, 4) to (1, 1) .  
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Solution. -369/10. Parametrize the piece of the parabola by (t, t2) with 
-2 < t � 1 .  

Exercise XV.4.2 (x, y, xz - y) over the line segment from (0, 0, 0) to 
(1, 2, 4) . 

Solution. 23/6. Parametrize the line segment by (t, 2t, 4t) . 

Exercise XV .4.3 (x2y2 , xy2) along the closed path formed by pf!,rts of the 
line x = 1 and the pa�bola y2 = x, counterclockwise. 

Solution. 4/15. Write the integral as the sum of two integrals .. The first 
over the line and the second over the parabola. Parametrize the line segment 
by ( 1, t) with -1 � t � '1 and parametrize the piece of the parabola by 
(t2 , -t) with 1 < t < 1 .  

�xercise XV .4.4 Let ( -y X ) G(x, y) = x2 + y2 ' x2 + y2 . 

(a) Find the integral of this vector field counterclockwise along the circle 
x2 + y2 = 2 from (1, 1) to ( -V2, 0) . 
{b) Counterclockwise around the whole circle. 
(c) Counterclockwise around the circle x2 + y2 = a2 for a >  0. 

Solution. If a(8) = (r cos 8, r sin 8) , then 

r sin 8 . r cos 8 G(a(8)) · a'(8) = 2 r s1n 8 + 2 r cos 8 = 1. r r 
So if we integrate counterclockwise from an angle 81 to an angle 82 we get 

f G = {82 diJ = 82 - Ot . lc le1 
(a) 31r/4 because ?r/4 < 8 < 1r. 
(b) 21r because 0 < 8 < 21r. 
(c) 21r because 0 < 8 < 21r. 

Exercise XV.4.5 Let r = (x2 + y2) 112 and F(X) = r-1 X for X =  (x, y) . 
Find the integral of F over the circle or radius 2, centered at the origin, 
taken in the counterclockwise direction. 

Solution. 0. Special case of Exercise 6. 

Exercise XV .4.6 Let C be a circle of radius 20 with center at the origin. 
Let F(X) be a vector field on R2 such that F(X) has the same direction 
as X {that is there exists a differentiable function g(X) such that f(X) = 
g(X)X, and g(X) > 0 for all X). What is the integral of F around C, 
taken counterclockwise 'I 
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Solution. Parametrize the circle by G(O) = . (r cos 6 , r sin 6) with r = 20 
and 0 :5 6 $ 21r. Then 

r 12� ,2� 
Jc F = Jo F(C(O)) • C'(O)dO = Jo g(C(O))C(O) · C'(O)dO = 0 

because G(O) · G'(O) = 0. This follows at once from differentiating the 
identity G(O) · G(O) = r2 = constant. 

Exercise XV .4. 7 Let P, Q be points in 9-spaces. Show that the integral of 
the vector field given by 

F(x, y, z) = (z2 , 2y, 2xz) 

from P to Q is independent of the curve selected between P and Q. 

Solution. The function z2x + y2 is a potential function of the vector field. 
Conclude. 

Exercise XV.4.8 Let F(x, y) = (xfr3 , yfr3) where r = (x2 +y2) 112 • Find 
the integml of F along the curve 

a(t) = (et cos t, et sin t) 

from the point (1 ,  0) to the point ( e2� , 0) . 

Solution. The function -1/r is a potential function of the vector field, so 

(e2'��' ,0} 
( F = - ! = 1 - e-211" . lc r ( l ,O) 

Exercise XV.4.9 Let F(x, y) = (x2y, xy2) .  
(a) Does this vector field admit a potential function? 
{b) Compute the integral of this vector field from (0, 0) to the point 

p = (1/-../2, 1/-../2) 

along the line segment from (0, 0) to P. 
(c) Compute the integral of this vector field from (0, 0) to P along the path 
which consists of the segment /rom (0, 0) to (1 , 0) ,  and the arc of circle from 
(1, 0) to P. Compare with the value found in {b). 

Solution. (a) No, because D1g f= D2f· (b) Parametrize the line segment by L(t) = � (t, t) with 0 < t < 1. Then 

[ F = 11 F(L(t)) · L'(t)dt = ! 11 2t3dt = ! . 
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(c) Parametrize the line segment by L1 (t) = (t, O) with 0 � t < 1. Then 
F(Lt (t)) = (0, 0) , so 

1 F = O. 
L1 

Parametrize the arc by G(t) = (cos t, sin t) with 0 < t � tr/4. Then 

F(C(T)) · C'(t) = - cos2 t sin2 t + cos2 t sin2 t = 0, 

hence 

so the answer is 0. 

Exercise XV.4.10 Let 

F( ) _ (x cos r y cos r) x, y - , . ' r r 

where r = J x2 + y2 • Find the value of the integral of this vector field: 
(a) Counterclockwise along the circle of radius 1, from (1, 0) to (0, 1) . 
(b) Counterclockwise around the entire circle. 
(c) Does this vector field admit a potential function? Why? 

Solution. (a) 0. 
(b) 0. 
(c) The function g(x, y) = sin Jx2 + y2 is a potential function for the 
vector field F, because grad g(x, y) = F(x, y) . 

Exercise XV.4.11 Let (xer yer ) F(x, y) = 7' 7 . 

Find the value of the integral of this vector field: 
(a) Counterclockwise along the circle of radius 1 centered at the origin. 
(b) Counterclockwise along the circl� of radim 5 centered at the point 
(14, -17) . 
(c) Does this vector field admit a potential function? Why? 

Solution. (a) 0. 
(b) 0. 
(c) The function g(x, y) = er is a potential function for the vector field F 
because grad g(x, y) = F(x, y) . 

Exercise XV.4.12 Let ( -y X ) G(x, y) = x2 + y2 ' x2 + y2 . 
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(a) Find the integml of G along the line x + y = 1 from (0, 1) to ( 1 , 0) . 
(b) Prom the point (2 , 0) to the point (-1 ,  v'3) along the path shown on the 
figure: 

(2, 2) 
( - 1 , J3> 

1 

- 2  - 1  1 2 

Solution. (a) -tr/2. 
(b) 2tr/3. 

In Exercise 3, §3, we found a potential function for G in the upper half 
plane, namely g(x , y) = arccos(x/r) . In (a) we have 

arccos ( 1 ) - arccos ( 0 ) = - 11" v'
1 + 0 

v'
1 + 0 2 

and in (b) we have 

arccos ( v';: 
3
) - arccos ( �) = 

2; . 

Exercise XV.4.13 Let F be a smooth vector field on R2 from which the 
origin has been deleted, so F is not defined at the origin. Let F = (f, g) . 
Assume that D2! = D1g and let 

k = 2
1 r F, 
1r lc 

where G is the circle of radius 1 centered at the origin. Let G be the vector 
field ( -y X ) G(x , y) = x2 + y2 '  x2 + y2 . 

Show that there exists a function cp defined on R 2 from which the origin 
has been deleted such that 

F = grad cp + kG. 
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{Hint: Follow the same method as in the proof of Theorem 4.� in the text, 
but define tp(P) by integrating F from the point (1 ,  0) to P as shown on the 
figure.} 

p 

Solution. Suppose J0 F = 0. Then F has a potential function. Indeed, 
define cp( P) to be the integral of F along the path shown on the figure: 

I 
I 
• 
I 
l 

By assumption, cp is well defined. We want to show that D1cp(P) = f(P), 
so we proceed as in the text, we form the Newton quotient, namely 

cp(P + het ) - cp(P) 
h 

. 

But if we add the line segment from P to P+het we see after a cancellation 
that we formed a closed path (in bold) and that 
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cp(P + he1 ) - cp(P) - f F = 1 F. J[P,P+het) closed path 

For all small h we can inscribe the closed paths in a rectangle which does 
not intersect the origin. The assumptions imply that F has a potential 
function in the rectangle, thus 

This implies 

1 F = O. 
closed path 

cp(P + he1 ) - cp(P) = .!_ { F. h h j(P,P+het) 
From Theorem 4.2 we know that the right-hand side tends to f(P) as 
h --+  0, thus D1cp(P) = f(P) . 

If fc F f:= 0, then we have 

L F - kG = L F - k L G = 21rk - 21rk = 0. 

Hence there exists a function cp such that F - kG = grad cp. 

XV .5 Taylor's Formula 

Exercise XV .5.1 Let f be a differentiable function defined for all of Rn . 
Assume that f(O) = 0 and that f(tX) = tj(X) for all numbers t and 
vectors X =  (x1 , . . .  , xn) · Show that for all X E Rn we have f(X) = 
grad /(0) · X. 

Solution. See Exercise 5, Chapter XV, §2. 

Exercise XV .5.2 Let f be a function with continuous partial derivatives 
of order < 2, that is of class 02 on Rn . Assurne that f(O) = 0 and f(tX) = 
t2 f(X) for all numbers t and all vectors X. Show that for all X we have 

/(X) = (X ·  V)2 /{0) . 2 

Solution. Differentiate both sides of f(tX) = t2 f(X) with respect to t. 
For the left-hand side, use Theorem 5. 1 ,  so that 

(X ·  V)2 f(tX) = 2/(X). 

Put t =  0. 
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Exercise XV .5.3 Let f be a function defined on an open ball centered at 
the origin in R" and assume that f is of class coo . Show that one can 
write 

/(X) = /(0) + 01 (X)x1 + · · · + 9n (X)xn, 
where 91 , . . .  , 9n are functions of class coo . {Hint: Use the fact that 

/(X) - /(0) = 11 �/(tX)dt.] 
Solution. The chain rule implies that 

d of of 
;uf(tX) = X1 dx1 (tX) + · · · + Xn dxn (tX) . 

Then one can take 
{1 of 9; (X) = Jo dXj (tX)dt. 

Exercise XV .5.4 Let f be a coo function defined on an open ball centered 
at the origin in R" . Show that one can write 

/(X) = /(0) + grad /(0) · X + L 9i; (X)xix; , 
i,j 

where 9ij are C00 functions. {Hint: Assume first that f( 0) = 0 and 
grad /(0) = 0. In Exercises 9 and ,4, use an integral form for the re
mainder.} 

Solution. We use the integral expression twice. First we have 

11 d 11 /(X) - /(0) = ;uf(tX)dt = L Dd(tX)xidt 
0 0 . ' 

= 11 
�(Di/(tX) - Dif(O))x,dt + grad /(0) · X. 

' 

However, 

11 d 1 1 
Dif(tX) - Di/(0) = -d Dif(tuX)du = L D;Dif(tuX)x;du, 

0 u 0 . 3 

so by plugging this expression in the above formula for /(X) - /(0) and 
taking the sum signs out, we find the desired result. 

Exercise XV.5.5 Generalize Exercise 4 near an arbitrary point 
A = (a1 , . . .  , an) ,  expressing 

n 
/(X) = /(A) + L Dif(A) (xi - ai) + L hi; (X)(xi - ai) (x; - a; ) . 

i=1 i,j 
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Solution. Use the same method as in Exercise 4, or combine the result of 
Exercise 4 together with a change of variable. The proof goes as follows. 
Consider the function g defined by g(Y) = f(Y + A) , where Y = X - A. 
By Exercise 4 we have the expression 

g(Y) - g(O) = grad g(O) . y + L Yi; (Y)yiyj , 
i ,j 

so using the expression for g, and the change of variable, we get 

f(X-A+A) -f(A) = grad f(A) · (X -A) +  L gi; (X - A) (xi - ai ) (x; - a; ) , 

i ,j 

as was to be shown. 

Exercise XV.5.6 Let F00 be the set 'of all coo functions defined on an 
open ball centered at the origin in Rn . By a derivation D of Foo into 
itself, 011,e means a map D : F oo --+ F 00 satisfying the rules 

D(/ + g) =  Df + Dg, D(cf) = cDf, 
D(fg) = fD(g) + D(f)g, 

for coo functions f, g and constant c. Let A 1 , • . •  , An be the coordinate func
tions, that is Ai (X) = Xi for i = 1 ,  . . . , n. Let D be a derivation as above, 
and let 1/Ji = D(Ai) · Show that for any coo function f on the ball, we have 

n 
D(f) = L 1/JiDi/, 

i=l 
where Dif is the i-th partial derivative of f .  {Hint: Show first that D(l) = 0 
and D(c) = 0 for every constant c. Then use the representation of Exercise 
5.} 
Solution. We first show that D(l) = 0. This follows from the fact that 
D(l) = D(l · 1) which implies 

D(l) = lD(l) + D(l) l = 2D(l) ,  

hence D(l) = 0 as was to be shown. We also have D(c) = 0 for all constants 
c because D(c) = cD(l) . Let A be a point. Now using the expression of 
Exercise 5 and the properties of the derivation we find 

n 
D(f) = L Dif(A)DAi + L D [hi; (Ai - ai) (A; - a; )] .  

i=l i ,j 

We now show that the last sum is zero when we put X = A. Using the 
properties of the derivation, we see that D [hi; (Ai - ai) (A; - a; )] is equal 
to 
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and evaluating this expression at A we find 0, so 

n 
D(f) = E Dif(A)D�i(A) . 

i=l 

This last expression holds for all points A e R" so D(/) = E� 1 1/liDi/, 
as was to be shown. 
Exercise XV.5.7 Let /(X) and g(X) be polynomials in n variables 
(xt , . . . , Xn ) of degrees :5 8 - 1 .  Assume that there is a number a > 0 
and a constant C such that 

1/(X) - g(X) I s CIXI8 

for all X such that lXI < a. Show that f = g. In particular, the polynomial 
of Taylor 's formula is uniquely determined. 

Solution. It is sufficient to prove that if P is a polynomial of degrees 
S 8 - 1, and 

IP(X) I s CIXI8 , 
then P = 0. Set x1 = x2 = · · · = Xn and use Exercise 3, §3, of Chapter V 
to conclude. 

Exercise XV.5.8 Let U be open in an and let f :  U --+  R be a function of 
class CP. Let g :  R -+ R be a function of class CP . Prove by induction that 
g o  f is of class CP. Furthermore, assume that at a certain point P e U all 
partial derivatives 

Di1 · · · Dirf(P) = 0 
for all choices of it , . . .  , ir and r $ k.  In other words, assume that all 
partials of I up to order k vanish at P. Prove that the same is true for 
g o  f. {Hint: Induction.} 

Solution. For each 0 < k < p the function g(k) exists and is continuous. 
We have 

Dk(9 o /)(X) =  g'(f(X))Dk(f(X)) , 
so g o ! is of cl88S 01 • Suppose g o I is of class or. Any expression of the 
form Dl1 • • • D�n (g o /) where i1 + · · · + in = r can be written as a linear 
combination of terms of the form 

(XV. 1) 

where k < r, a1 + · · · + an < r, and 0 $ bt + · · · + bn S r. This is proved 
by induction. Applying D; to the expression (XV.1) we get terms of the 
form given in (XV. l) but now the sum of the powers is bounded by r + 1 .  
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Under tl;le assumptions we see that we can differentiate one more time with 
respect to any variable and that the result is continuous for g o I is of class 
cr+l . By induction, we conclude that g 0 I is of class CP. 

Furthermore, we see from this analysis that if �11 partial derivatives of 
f up to order k vanish at P, then all the partial derivatives of g o I also 
vanish at P. 

XV . 6  Maxima and the Derivative 

Exercise XV.6. 1 Find the maximum of 6x2 + 17y4 on the subset o/ R2 
consisting of those points (x, y) such that 

(x - 1)3 - y2 = 0. 

Solution. Given any large x, there exists y > 0 such that (x - 1)3 - y2 = 0 
and y is also large, so 6x2 + 17y4 does not attain a maximum on the given 
set. 

Exercise XV.6.2 Find the maximum of x2 + xy + y2 + yz + z2 on the 
sphere of radius 1 centered at the origin. 

Solution. Since g(x, y, z) = x2 + y2 + z2 = 1 , we can choose to maximize 
the function 

l(x, y, z) = 1 + xy + yz. 
We have grad g = 2(x, y, z) which is never 0 when g = 1 .  So at an extremum 
point on the sphere there exists a number A such that Agrad g = grad f, 
thus 

y = 2Ax , x + z = 2Ay, y = 2Az (XV.2) 

Suppose � = 0. Then y = 0 and x = -z. From the equation g = 1 we 
conclude that x = ±1/V'2, so we consider the two points 

P1 = (1/V'2, 0, -l/V'2) and P2 = (-1/V'2, 0, 1/V'2). 

Since y = 0 we have 
/(Pt ) = I(P2) = 1 .  

Suppose A f:= 0. Then from the first and third equation of (XV.2) we see 
that x = z. The second equation implies 2a: = Ay = A2x so x(A2 - 2) = 0. 
We cannot have x = 0 because (0, 0, 0) is not a point on the sphere, so we 
must have A = ±J2. If A = V2, subtituting in the equation g = 1 we find 
the two points 

Q1 = (1/2, -V'2/2, 1/2) and Q2 = (-1/2, V'2/2, - 1/2) .  

Evaluate f at each of these two points to find that the maximum of f on 
the sphere is 1 + 1/J2. 
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Exercise XV .6.3 Let f be a differentiable function on an open set U in 
an' and suppose that p is a minimum for I on u, that is f(P) � /{X) 
for all X in U. Show that all partial derivatives Dif(P) = 0.  

Solution. See Exercise 9,  Chapter XV, §2, or consider functions of one 
variable and use the fact that if a function of one variable attains an ex
tremum at an interior point, then the derivative vanishes. 

Exercise XV.6.4 Let A, B, C be three distinct points in R". Let 

/(X) = (X - A)2 + (X - B)2 + (X - 0)2 • 

Find the point where f reaches its minimum and find the minimum value. 

Solution. If lXI is large, we see that /(X) is large, so the function I reaches 
a minimum in some closed ball of large radius centered at the origin. The 
minimum is global and is not on the boundary of the ball, hence is a critical 
point (a critical point is a point where all the partial derivatives of I are 
zero, see Exercise 3) . We use the notation 

We have for i = 1 ,  2, 3 

if and only if 
a1 + b1 + c1 

Xi = 3 · 

So the unique critical point of I is 

1 M =  3 (A + B + C). 

We then find the value of I at this point 

j(M) = : (A2 + B2 + 02 - AB - AC - BC). 

Exercise XV.6.5 Find the maximum of the function f(x, y, z) = xyz sub
ject to the constraints x > 0, y > 0, z � 0 and xy + yz + xz = 2.  

Solution. Let g(x, y, z) = xy + yz + xz. If one of the coordinates x, y, or 
z is 0, then f(x, y, z) = 0. Suppose that x > 0, y > 0, and z > 0. Then 

grad g = (y + z, x + z, y + x) and grad f = (yz, xz, yx) . 

So there is a number .;\ such that 
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yz = ,\(y + z) ,  xz = A(x + z) ,  yx = A(y + x) . (XV.3) 

By assumption we cannot have A = 0 so we can take the ratio of the first 
and second equation in (XV.3) , which gives 

Y y + z  - = x + z ' 

so x =  y. Repeating the same argument shows that x = y = z. So f attains 
a maximum of (2/3)312 at y'2/3(1,  1 ,  1) .  

Exercise XV .6.6 Find the shortest distance from a point on the ellipse 
x2 + 4y2 = 4 to the line x + y = 4. 

Solution. The problem has a solution, as was shown in Exercise 5 of 
Chapt�r VIII, §2. Let /(xl , Yl) = x� + 4y� , g(x2 , Y2) = x2 + Y2 , and 
h(x1 , 'Yl , x2 , Y2) = (x1 - x2)2 + {Yl - Y2)2 . Our goal is to minimize h under 
the constraints f = 4 and g = 4. We can eliminate the second constraint 
by substituting Y2 = 4 - x2 . So we must minimize 

h(x1 , Yl , X2) = (xl - X2)2 + (Yl - 4  + X2)2 

subject to j(x1 , Y1 , x2) = x� + 4y� = 4. Setting 

we get the system 

grad h = A/ 

2{xl - X2) - 2AX1 , 
2(yl - 4 + X2) - 8Ayl , 
-2(xl - :r:2) + 2(Yl - 4 + X2) - 0, 

this system is equivalent to 

Xl - X2 
Y1 - 4 + x2 
Xl - X2 

- AXl , 
- 4Ayl , 

Yl - 4 + X2. 

We find that x1 = 4yl so plugging this in the equation of the ellipse we 
find that we have two possibilities, 

A = (4/Y5", 1/Y5) and B = (-4/VS", -1/VS").  

We can now find the various possibilities for x2 , and then plug in to find 
which combination gives us the smallest value of h. These simple compu
tations show that the minimum distance between the ellipse and the line 
• IS 

4 - v'5 
2 
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Exercise XV.6.7 Let S be the set of points (x1 , • • •  , xn) in Rn such that 

E xi = 1 and xi > O  for all i. 

Show that the maximum of g(x) = x1 • • • Xn occurs at ( 1/n, . . .  , 1/n) and 
that 

g(x) < n-n for all x E S. 
{Hint: Consider log g.} Use the result to prove that the geometric mean of 
n positive numbers is less than or equal to the arithmetic mean. 

Solution. Let f(x) = Ei Xi · Then S union its boundary is a compact 
set, and therefore g attains its maximum and minimum on this set. The 
minimum of f, namely 0, is attained on the boundary where one of the 
coordinates is 0. So at the maximum, which is an interior point, we have 

grad g = Agrad f. 

This equality yields the system of n linear equations 

X2X3 · · · Xn - A, 
X1X3 • • • Xn - A, 

• 
• • 

X1X2 · · · Xn-1 - A. 

Multiplying the k-th equation by Xk we see that AX1 = · · · = AXn. But 
Xk > 0 so A :/= 0 hence X1 = · · · = Xn. From the constraint / = 1 we 
conclude that g attains its maximum 1/nn at ( 1/n, . . .  , 1/n). So g(x) < n-n 
for all x E S. 

Suppose we are given n positive numbers a1 , . . . , an. Let 
ai Xi = . E�c ak 

Then Ei Xi = 1 . The inequality g(x) � n-n implies that 

( ) 1/n < a 1 + . . .  + On al . . .  On - . n 
Exercise XV . 6 .8 Find the point nearest the origin on the intersection of 
the two surfaces 

x2 - xy + y2 - z2 = 1 and z2 + y2 = 1 . 

Solution. The square of the distance function is 

f(x, y, z) = x2 + y2 + z2. 

But x2 + y2 = 1 ,  so the first constraint becomes z2 = -xy, and we are 
reduced to the problem of minimizing the function f(x, y) = 1 - xy subject 
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to the constraint g(x, y) = x2 + y2 - 1 = 0 and xy � 0. If x = 0, then 
y = ±1 and similarly, if y = 0, then x = ±1. In the other cases, we have 

which implies 

grad I = Agrad g 

-y = 2Ax and - x = 2Ay . 
The number A cannot be 0 because both x and y cannot be 0 at the 
same time. Taking the ratio of both equations, we find that x2 = y2 , 
thus x = ±1/V'2 and y = ±1/Vi. By direct evaluation we find that the 
minimum of I is 1. 

Exercise XV.6.9 Find the maximum and minimum of the function 
f(x, y, z) = xyz: 
(a) on the ball x2 + y2 + z2 < 1; and 
{b) on the plane triangle x + y + z = 4, x 2: 1, y > 1, z � 1 .  

Solution. (a) Since grad I =  (yz, xz, xy) , we see that I attains its maxi
mum on the boundary of the ball. Let g( x, y, z) = x2 + y2 + z2 , then on the 
sphere, grad g � 0 so we solve grad I = Agrad g. We obtain the following 
three equations 

yz = 2Ax, xz = 2Ay, xy = 2Az. 

If A =  0, then at least one coordinate is 0, hence f equals 0. 
If A �  0 and none of the coordinates is 0, then we can take the ratio of 

two equations and we get x2 = y2 = z2 and we find that the maximum of 
I is {1/¥'3)3 and the minimum is -{1/¥'3)3• 
{b) On the bour1dary, we have x = 1 or y = 1 or z = 1. Suppose that z = 1, 
then we want to investigate xy subject to x +y = 3 and x > 1 , y > 1. Write 
y = 3-x , so that the study is reduced to the polynomials 3x-x2 for x 2: 1 
and x :5 2. This polynomial reaches a maximum of 9/4 when x = 3/2 and 
it reaches a minimum of 2 when x = 1 or x = 2. For the other sides of the 
triangle we simply permute the coordinates to see that the maximum and 
minimum remain the same. 

Now let g(x, y, z) = x + y + z. Then grad g � 0 so we solve 

grad I = Agrad g. 

We otain 
yz = A, xz = A, xy = A. 

Since xyz � 0 we must have A � 0, so we can take the ratio of two equations. 
We obtain x = y = z, so x =  y = z = 4/3. Then /{4/3, 4/3, 4/3) = (4/3)3• 

We conclude that I attains a maximum of {4/3)3 and a minimum of 2 
in the given region. 
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Exercise XV.6.10 Find the maxima and minima of the function 

(ax2 + by2)e-z2-tl2 

if a, b are numbers with 0 < a < b. 

Solution. Let f(x, y) = (ax2 + by2)e-z2-'��2 • Then for all x, y we have 
f(x, y) � 0 and /{0, 0) = 0 so 0 is the minimum value of f. If we set 
8 I I 8x = 8 f I lJy = 0, then we are reduced to the following two equations: 

x(a - ax2 - by2) = 0 and y(b - ax2 - by2) = 0. 

We cannot have both x and y nonzero, for otherwise a = b. If x = 0, then 
from the second equation we get y = ±1. If y = 0 see that x = ±1. Since 
a < b we conclude that the maximum of f is be-1 • 

Exercise XV.6.11  Let A, B, C denote the intercepts which the tangent 
plane at (x, y, z) 

(x > 0, y > 0, z > 0) 
on the ellipsoid 

x2 y2 z2 - + - + - = 1 a2 b2 c2 
makes on the coordinate axes. Find the point on the ellipsoid such that the 
following functions are a minimum: 
(a) A + B + O. 
(b) v'A2 + B2 + 02. 
Solution. (a) The gradient is a vector orthogonal to the surface, so an 
equation of the plane passing through {x, y, z) on the ellipse and tangent 
to the ellipse is given by 

X y Z 
Q2X +  62 Y + c2 Z - 1 = 0, 

so A = a2lx, B = b2ly, and 0 = c?lz. Let 

x2 y2 z2 g(x, y, z) = 02 + b2 + c2 , 

and f1 (x, y, z) = A + B + O  = a2lx + b2ly + c2lz. Then from the equation 
Agrad /1 = grad g we get the following: 

-Aa4 = 2x3, -Ab4 = 2y3, and - Ac4 = 2z3• 

Writting z and y as functions of x and substituting in the equation of the 
ellipse we get 

2 (a-2/3 + b-2/3 + c-2/3) _ x a4/3 - 1 . 
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By symmetry, it is easy to find similar expressions for y and z. Finally we 
find that the minimum value of /1 is 

(a4/3 + b4/3 + c4/3) (a-2/3 + b-2/3 + c-2/3) 1/2 . 

(b) Let 12(x, y, z) = A2 + B2 + 02 = a4 lx2 + b4 IY2 + c4 I z2 . Then the 
equation grad 12 = Agrad g yields 

(XV.4) 

Taking the square root and substituting in the equation of the ellipse we 
get 

r=r 
V T (a + b + c) = 1 

hence -A = (a + b + c)2 • From the equations in (XV.4) we find that the 
minimum value of 12 is (a + b + c)2 • 

Exercise XV.6.12 Find the maximum of the expression 

x2 + 6xy + 3y2 
x2 - xy + y2 . 

Because there are only two variables, the following method will work: Let 
y = tx, and reduce the question to the single variable t. 

Solution. When x = 0 and y � 0, the fraction equals 3. Suppose x � 0 
and let t = y I x, so that the fraction becomes 

f(t) = 
1 + 6t + 3t2 • 
1 - t +  t2 

Setting the derivative of I equal to 0 and disregarding the denominator, 
we find 

-9t2 + 4t + 7 = 0. 

An analysis of the graph of f shows that the maximum of I happens at 
the largest of the roots of the above equation, namely at 

Then we find that 

to = 2 + v'67
. 9 

/(to) = 
14 + 2v'67. 3 

Exercise 12 can be generalized to more variables, in which case the above 
method has to be replaced by a different conceptual approach, as follows. 
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Exercise XV.6.13 Let A be a symmetric n x n matrix. Denote coluf?'&n 
vectors in Rn by X, Y, etc. Let X E Rn, let f(X) = (AX, X) ,  so f is a 
quadratic form. Prove that the maximum of f on the sphere of radius 1 is 
the largest eigenvalue of A. 

Remark. If you know some linear algebra, you should know that the roots 
of the characteristic polynomial of A are precisely the eigenvalues of A. 
Solution. We know that f attains its maximum �t an eigenvector, say X. 
Let A be the corresponding eigenvalue. Then 

f(X) = tXAX = tXAX = A. 

Conclude. 

Exercise XV.6.14 Let C be a symmetric n x n �atrix, and assume that 
X 1-+ (OX, X) defines a symmetric positive definite scalar product on Rn. 
Such a matrix is called positive definite. Prom linear algebra, prove that 
there exists a symmetric positive definite matrix B such that for all X E Rn 
we have 

(CX, X) = (BX, BX) = I IBXII2 ! 

Thus B is a square root of C, denoted by 0112 • {Hint: The vector space 
V = Rn has a basis consisting of eigenvectors of C, so one can define the 
square root of C by the linear map operating diagonally by the square roots 
of the eigenvalues of C.] 

Solution. The Spectral Theorem for symmetric operators guarantees the 
existence of a basis of eigenvectors of C. In this basis, the matrix is diagonal 
with eigenvalues on the diagonal. These eigenvalues are positive beeause C 
is positive definite. Indeed, if X is a non-zero eigenvector with eigenvalue 
A, then 

0 < (AX, X) = A(X, X) 

so 0 < A. Hence taking the square roots of the eigenvalues we see that there 
exists a matrix whose square is C. 

Exercise XV .6.15 Let A, C be symmetric n x n matrices, and assume that 
C is positive definite. Let QA(X) = (AX, X) and Qc(X) = (CX, X) = 
(BX, BX) with B = 0112 • Let 

. 

/(X) = QA(X)/Qc(X) for X �  0. 

Show that the maximum of f (for X i= 0) is the maximal eigenvalue of 
B-1 AB-1 • {Hint: Change variables, write X .- BY .J 

Solution. Changing variables Y = BX, and using the f�t that B is sym
met�ic we get 



QA(X) 
Qo(X) 
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(AB-1Y, B-1Y} _. (B-1AB-1Y, Y} 
(Y, Y} (Y, Y} 

- (B-1 AB-1 {Y/IYI) ,  'Y/IYI ) .  

But Y/IYI has norm 1 ,  hence we want to maximize the form QB-lAB-1 on 
the unit sphere. Exercise 12 concludes the proof. 

Exercise XV.6.16 Let a, b, c, e, j, g  be real numbers. Show that the max
imum value of the expression 

ax2 + 2bxy + cy2 
ex2 + 2fxy + gy2 (eg - /2 > 0) 

is equal to the greater of the roots of the equation 

Solution. Let 

A -- ( a
b c

b ) ( e ! ) and 0 =  I 9 . 

Then the problem is to maximize 

QA(X) 
Qo(X) . 

By multiplying all numbers by -1 if necessary, we may assume that C is 
positive definite, because det C = eg - /2 > 0. Let B be a square root of 
C. Then by the previous exercises, the maximum of the above quotient is 
equal to the greater of the roots of the equation 

However, 

so the solution to the problem is equal to the greater of the roots of det( A
tC) , which when we expand is the equation given in the exercise. 





XVI 
The Winding Number and Global 
Potential Functions 

XVI.2 The Winding Number and Hon1ology 

Exercise XVI.2. 1 In Theorem !2. 7, let 'Yi be a small circle centered at �
Determine the value 1 Gpj . 'Yi 

Solution. If i � j, then consider an open disc V such that 'Yi c V and 
P3 ¢. V. Then by the integrability theorem we see that 

If i = j ,  then translating to .the origin and using Exercise 4, §4, of Chapter 
XV we find that 1 G P; = 1 G = 21r. 

'Yi 'Y 

One can also do the computation with the parametrization 

'Yi (O) = (xi + r cos O, Yi + r sin O) , 

so that 
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1 -(y - Yi ) dx + (x - Xi) dy 
"Yi (a; - Xi)2 + (y - Yi)2 (a; - Xi)2 + (y - Yi)2 

_ 1211' ( -r sin 8) ( -r sin 8) ( r cos 8) ( r cos 8) d8 = 2 -
2 + 2 1r. 

0 r r 

Exercise XVI.2.2 Give a complete proof of Theorem S. 7, using Theorem 
S. 6. {Hint: Let 

Solution. Define ai as in the hint. The vector field F - E aiGi is locally 
integrable on U* . Moreover, U* is connected because U is connected and 
if a path passes through a point P3 ,  then this path can be modified in a 
small disc around P; so that P; does not belong to the new path. 

Let 'Y be a closed path in U* .  Then Theorem 2.6 implies 

so 

Theorem 4.2 of Chapter XV concludes the exercise. 

XVI.5 The Homotopy Form of the Integrability 
Theoren1 

Exercise XVI.5.1 Let A be a closed annulus bounded by two circles lX I = 
r1 and lXI = r2 with 0 < r1 < r2 . Let F be a locally integrable vector field 
on an open set containing the annulus. Let 11 and 12 be the two circles, 
oriented counterclockwise. Show that 

1 F =1 F. "Yl "Y2 

Solution. We must exhibit a homotopy of closed paths between the two 
circles; so we must deform continuously one circle onto the other. This 
can be done as the figure shows, namely by considering a family of circles 
centered at the origin and whose radius increases from r1 to r2. 
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We contend that 

1/J :  (0, 1] X [0, 1] � 

(t, s) ...-+ 

R2 
, 

(1 - S )II ( t) + S12 (t) , 

does exactly what we want. Indeed, we have ,P(t, 0) = 11 (t) and ,P(t, 1) = 
12 ( t) . Moreover, '1/J is continuous and if we parametrize the circles by li ( t) = 
(ri cos t, ri sin t) we see at once that '1/J is a circle of radius (1 - s)rt + sr2 . 

Hence 11 � 12 and therefore 

1 F = 1 F. 
"Yl "Y2 

Exercise XVI.5.2 A set S is called star-shaped if there exists a point 
Po in S such that the line segment between Po and any point P in S is 
contained in S. Prove that a star-shaped set is simply connected, that is, 
every closed path is homotopic to a point. 

Solution. Clearly, S is connected because given two points A, B in S we 
can connect A to Po and then Po to B by line segments. 

Given any continuous closed path 1 parametrized on [a, b] we must show 
that it is homotopic to a point. Let 

'1/J :  [a, b] x [0, 1] � R2, 
(t, s) r-+ ( 1 - s)1(t) + sPa . 

Then 'ljJ is a homotopy of closed paths deforming 1 in P0 • Indeed, 1 is 
continuous, ,P(t, o) = 1(t) , ,P(t, 1) = P0, and for each s ,  the path ,P(s) is 
closed because 1 is closed, thus 1 � Po. 

Exercise XVI.5.3 Let U be the open set obtained from R2 by deleting the 
set of real numbers > 0. Prove that U is simply connected. 
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Solution. By Exercise 2, it suffices to show that U is star-shaped. Let 
Po = (- 1 , 0) ,  and let Q = (a, b) be any point in U. The line segment 
between these two points can be written as 

LQ,P0 (t) = (1 - s)Q + sPo = ( (1 - s)a - s, ( 1 - s)b) ,  

where s E [0, 1] . When the y coordinate is 0 we see that the x coordinate 
is negative, so LQ,P0 (t) c U. Conclude. 

Exercise XVI.5.4 Let V be the open set obtained from R2 by deleting the 
set of real numbers :5 0. Prove that V is simply connected. 

Solution. Show that V is star-shaped by taking Po = (1 ,  0) . See the pre-• • v1ous exercise. 

XVI.6 More on Ho111otopies 

In this section, all the homotopies are defined on the unit square 

s1 = [o, 11 x [o, 1] .  

Exercise XVI.6.1 (Proposition 6.1) Let P, Q E S. 
If a, {J, 'Y E Path(P, Q) and a � {J, fJ � 'Y, then a � 'Y.  
If a � {J, then fJ � a. 

Solution. Let a �h1 fJ and fJ �h2 'Y· Then define h on 81 by 

h(t u) _ { h1 (t, u) if O < u < 1/2, 
' - h2 (t, 2u - 1) if 1/2 < u :5 1. 

We see at once that a �h 'Y· 
If a �h {J, then {J �;&1 a where h(t, u) = h(t, 1 - u) . This proves the 

second assertion. 

Exercise XVI.6.2 (Proposition 6.2) If a �  a1 and fJ � /J1 , then a#P 
� a1#P1 · 
{Hint: Let h(t, u) = h1 (2t, u) for 0 < t < 1/2; h(t, u) = h2 (2t - 1 , u) for 
1/2 $. t < 1 ./ 

Solution. The idea behind the homotopy given in the hint, is that for each 
u we consider the union of the paths given by h1 and h2 • 

Exercise XVI.6.3 (Proposition 6.6) Let P e S and let 1 E Path(P, P) 
be a closed curoe in S. Suppose that 'Y is homotopic to a point Q in S, by 
a homotopy which does not necessarily leave the point P fixed. Then 'Y is 
also homotopic to P itself, by a homotopy which leaves P fixed. 
{Hint: Use Proposition 6.5 when 'Yl has the constant value Q. Then 
a#'Yt #a- simply consists of first going along a, and then retracting your 
steps backward. You can then use Proposition 5.9(c).J 
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Sol�tion. Proposition 6.5 implies that 1 � o.#11 #a- where the homotopy 
leaves P fixed. But 'YI has the constant value Q, so we have 1 = a#a
and since a#o.- � P by a homotopy which leaves P fixed, the proposition 
follows. 





XVII 
Derivatives in Vector Spaces 

XVII. l  The Space of Continu·ous · Linear Maps 

Exercise XVII.l .l Let E be a vector space and let Vt ,  • • •  , Vn E E. As
sume that every element of E has a unique ·expression as a linear combi
nation XtVt + · · · + XnVn with Xi E R. That is, given v E E, there exist 
unique numbers Xi E R such that 

Show that any linear map A :  E � F into a nonned vector space is contin
uous. 

Solution. Define the sup norm on E by lv l = maxi lxi l · Any norm in E is 
equivalent to the sup norm, because E is finite dimensional. The continuity 
of A follows from 

n n 
l A(v) l = L xiA(vi) < L lxi i iA(vi) l < C)v f , 

i=l i=l 

where C = E? 1 IA(vi) l . 

Exercise XVII.1.2 Let Matm,n be the vector space of all m x n matrices 
with components in R. Show that Matm,n has elements eij {i = 1 ,  . .  � ,  m 
and j = 1, . . .  , n) such that every element A of Matm,n can be written in 
the form 
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m n 
A = LL ai;ei; ,  

i=I j=1 

with number ai; uniquely detenn!ned by A. 

Solution. Let ei; be the matrix with 1 in the ij-entry and 0 in all the 
other entries. Then the set { ei;}  does the job. 

Exercise XVII.1.3 Let E, F be nonned vector spaces. Show that the as
sociation 

L(E, F) X E --+  F 

given by 
(�, y) t-+ �(y) 

is a product in the sense of Chapter VII, §1 .  

Solution. By definition we have (�1 +�2) (v) = �I (v)+�2(v) and (c�) (v) = 
c�(v). The map � is linear, so the first two conditions ,of a product are 
verified. We must now verify the norm condition. By definition we see that 

I�( v) I < l� l lvl 

thereby proving that the given association is a product. 

Exercise XVII. 1.4 Let E, F, G be nonned vector spaces. A map 

� : E x F --+ G  

is said to be bilinear if it satisfies the conditions 

�(v, WI + w2) = �(v, w1 ) + �(v, w2) ,  
�(v1 + v2 , w) - �(vi , w) + �(v2 , w) , 

�(cv, w) - c�(v, w) = �(v, cw) , 

for all v, Vi E E, w, Wi E F, and c E R. 
(a) Show that a bilinear map is continuous if and only if there exists 0 > 0 
such that for all (v, w) E E x  F we have 

l�(v, w) l < Olvl lwl . 

(b) Let v E E be fixed. Show that if � is continuous, then the map �" : F --+ 
G given by w t-+ �(v, w) is a continuous linear map. 

Solution. (a) Suppose that � is continuous. Then � is continuous at 0 so 
there exists 6· > 0 such that if lv l < 6 and lwl < 6, then l�(v, w) l < 1 . For 
arbitrary v and w, both non-zero, we can write 
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lv l lwl ( 6v 6w) 
..\(v, w) = 

62 ..\ fvi'  jWj . 

Let 0 � 1/62 and conclude. 
Conversely, suppose that IA(v, w) J < Olvl lwl for some number 0 > 0. 

We want to prove the continuity of � at the point (vo , wo) E E x  F. We 
have 

�(v, w) - �(vo , wo) = �(v, w - wo) + �(v - vo , wo) 
so 

l�(v, w) - �(vo , wo) l < Olvl lw - wo l + Olv - vo l lwo l · 
But lv l < lv - vo l + lvo l , so we see that A is continuous. 
(b) We simply have 

l�(v, w) - �(v, wo) l < Olvl fw - wo l 

so �" is continuous. 

XVII.2 The Derivative as a Linear Map 

Exercise XVII.2.1 Find explicitly the Jacobian matrix of the polar coor
dinate map 

x = r cos 8 and y = r sin 6. 
Compute the determinant of this 2 x 2 matrix. The determinant of the 
matrix 

is by definition ad - be. 

Solution. Taking partial derivatives we find 

Therefore 

J = ( c?s 8  -r sin iJ ) . s1n 8 r cos iJ 

det(J) = r cos2 8 + r sin2 () = r. 

Exercise XVII.2.2 Find the Jacobian matrix of the map (u, v) = F(x, y) 
where 

u = ex cos y , v = ex sin y. 
Compute the determinant of this 2 x 2 matrix. The determinant of the 
matrix 

is by definition ad - be. 
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Solution. Taking partial derivatives we find 

Therefore 

Exercise XVII.2.3 Let � :  Rn --+ Rm be a linear map. Show that � is 
differentiable at every point, and that >..'(x) = � for all x E Rn . 

Solution. We have 

>..(x + h) = �(x) + �(h) + lh lt/J(h) , 

where 'ljJ is identically 0. The uniqueness of the derivative implies D�(x) = >.. 
for all x E Rn. 

XVII.3 Properties of the Derivative 

Exercise XVII.3.1 Let U be open in E. Assume that any two points of 
U can be connected by a continuous curoe. Show that any two points can 
be connected by a piecewise differentiable curoe. 

Solution. Let A and B be two points in U and let a : [a, b] -+ U be a 
continuous curve such that a(O) = A  and a(l) = B. If U = E we can just 
join A and B by a straight line. If U � E, then we proceed as follows. The 
image of a is compact, and E - U is non-empty and closed, so by Exercise 
5, §2, of Chapter VIII, the distance d between a( [a, b) ) and E - U exists 
and d > 0. Select r such that 0 < r < d/4. By the uniform continuity of a, 
we can find a partition {a = ao < a1 < · · · < an = b} of [a, b) such that 

Then we can connect the two consecutive points a(ai ) and a(ai+l ) by 
a straight line segment which is entirely contained in U because of the 
convexity of the ball. Considering the union of all these line segments, we 
obtain a piecewise differentiable curve connecting A and B: 
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Exercise XVII.3.2 Let f : U -+ F be a differentiable map such that 
f' (x) = 0 for all x e U. Assume that any two points of U can be con
nected by a piecewise differentiable curve. Show that f is constant on U. 

Solution. Let A and B be two points in U and let a = { a1 , . . .  , at} be 
a piecewise differentiable curve connecting A and B. By the chain rule we 
have 

{/ o ai)'(t) = f'(o:i (t)) o a�(t) = 0, 

hence f o ai is constant. By induction, we find that if � is the end point 
of ai , we get 

/(A) = /{Pt ) = j(P2) = · · · = /(Pr) = /(B) 

and therefore we conclude that f is constant. 

XVII.4 Mean Value Theore111 

Exercise XVII.4.1 Let f :  [0, 1] -+ Rn and g :  [0 , 1] -+ R have continuous 
derivatives. Suppose 1/'{t) l < g'(t) for all t. Prove that 1/(1) - /{O) J < 
lo{1) - g{O) I . 

Solution. We write f(t) = (!l (t) , . . .  , fn (t)) ,  where /i : [0, 1] -+ R. Then 

1/(1) - /{O) J = l/m(l) - /m (O) I 

for some m, with 1 < m < n. This follows at once from the definition of 
the sup norm. We have 1/k (t) l < g' (t) for each k where 1 < k < n, so 

-g' (t) < lk (t) < g'(t) , 
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and integrating from 0 to 1 we get 

Therefore 
-(g(l) - g(O)) < /k{l) - /k{O) < g{l) - g(O) 

which implies 
1/k {l) - /k{O) I < lo{l) - g(O) I , 

for all 1 < k < n. 

XVII.5 The Second Derivative 

Exercise XVII.5.1 Let E1 ,  • • •  , En , F be normed vector spaces and let 

A : E1 X • • • X En -+ F 

be a multilinear map. Show that A is continuous if and only if there exists 
a number C > 0 such that for all vi E Ei we have 

Solution. If A is continuous, it is continuous at the origin, so there exists 
6 > 0 such that the inequalities lv1 l < 6, . . . , lvn I < 6 imply 

IA{Vt , . . .  , Vn) l < 1. 

Then for arbitrary VI ,  • • •  , Vn , we have 

lvt l · · · lvn I ( 6v1 6vn ) 
I�( tit , · · · ' 'Vn) l = 

6" 
� lvt l ' . .  

· '  lvn l · 

Let 0 = 1/6n and conclude. 
Conversely, suppose there exists a constant 0 such that 

where 

n 
A(vl ,  . . .  , Vn) - A(al , . . .  , an) = L hi , 

i=l 



But 

so 
n 
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IA(vl , . . .  , Vn) - A(al , . . .  , an) I < C 2: fa1 l · · · lai-1 I · Jvi - ai f · fvi+l l ·  · · fvn f · 
i=l 

Let (v1 , . . .  , vn) be in some open ball centered at (a1 , . . . , an) · Then there 
exists a number B > 0 such that fai l , lvi l � B for all i so 

n 
IA(vl ,  . . .  , Vn) - A(al , . . .  , an) l � CBn-l 2: lvi - ai ( < nCBn-l lv - a( , 

i=l 

hence A is continuous. 

Exercise XVII.5.2 Denote the space of continuous multilinear maps as 
above by L(E1 , . . . , En ; F) . If A is in this space, define IA I to be the greatest 
lower bound of all numbers C > 0 such that 

for all Vi E Ei . Show that this defines a norm. 

Solution. Clearly, IA I > 0 and IA I = 0 whenever A = 0. Conversely, suppose 
lA I = 0. Fix (v1 , . . .  , vn) and note that the inequality 

holds for every e > 0. Letting e --+ 0 we see that A = 0 . 
. Clearly, leAl = lei IAI because 

fcA(vl , . . .  , Vn) l = fcf fA(vl ,  . . . , Vn) f . 

Finally, the triangle inequality follows because 

Exercise XVII.5.3 Consider the case of bilinear maps. We denote by 
L2 (E, F) the space of continuous bilinear maps of E x E --+ F. If A E 
L(E, L(E, F)), denote by 1� the bilinear map such that f�(v, w) = A(v) (w) . 
Show that IA I = l/� 1 · 
Solution. Since 

I A(v)(w) l < I A(v) l lwl < IA I Ivf lw l , 
we conclude that 11� 1 < IA f . Now suppose C = 11� 1 < fA I . By definition, 
there exists a vector v0 of norm 1 such that 



300 XVII. Derivatives in Vector Spaces 

C < lA( vo) l < I A I . 

But, by definition of C, for all vectors w of norm 1 we have 

IA(vo) (w) l < Cfvo l lwl = C, 

and therefore, for all vectors u =F 0, we have 

A(Vo) (�) < 0 

which implies that 
IA(vo) (u) l < Clul 

hence I A( vo) I < C. This contradiction implies that I />. 1 = I AI . 

Exercise XVII.5.4 Let E, F, G be normed tJector spaces. Show that the 
composition of mappings 

L(E, F) x L(F, G) --+ L(E, G) 

given by (A, w) t-+ w o A is continuous and bilinear. Show that the constant 
C of Exercise 1 is equal to 1.  

Solution. The map w is linear, so 

Similarly, 

so the composition of mappings (A, w) � w o A is bilinear. Furthermore, 
this composition is continuous because 

lw o A(v) l < lw i iA(v) l < lw l fA I Ivl , 

whence lw o A I < lw i iAf . 

Exercise XVII.5.5 Let f be a function of class C2 on some open ball U 
in Rn centered at A. Show that 

/(X) = /(A) +  Df(A) · (X - A) +  g(X)(X - A, X - A) , 

where g : U __. L2(Rn, R) is a continuous map of U into the space of 
bilinear maps ofRn into R. Show that one can select g(X) to be symmetric 
for each X E U. 
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Solution. We can write 

/(X) - /(A) = 11 fti(A + t(X - A))dt. 

Integrating by parts, we see that the integral equals 

[ d ] 1 [1 tP 
= -(1 - t) d/(A + t(X - A)) 

0 
+ Jo (1 - t) dt2

/(A + t(X - A))dt 

[1 tP = D /(A) · (X - A) + Jo 
(1 - t) 

dt2 /(A + t(X - A))dt. 

But 

= 2: 2:  DjDi/(A + t(X - A)) (xi - ai ) (x3 - a3) , 
j i 

so we see that we can write [1 (];2 
Jo 

(1 - t) dt2 /(A + t(X - A) )dt = g(X) (X - A, X - A) , 

where g(�) is the bilinear m�p whose matrix is 

1 
0 (1 (1 - t}DjDd(A + t(X - A))dt) t<i,j<n · 

Then g is symmetric because D3Di = DiDj . 

XVII.6 Higher Derivatives and Taylor's Formula 

Exercise XVII.6.1 Let U be open in E and V open in F. Let 

I :  U __. V and g :  V --+ G 

be of class CP. Let Xo E U. Assume that Dk f(xo) = 0 for all k = 0, . . . , p. 
Show that Dk(g o /) (x0) = 0 for 0 < k < p. [Hint: Induction.] Also, prove 
that if Dk(g(f(xo)) = 0 for 0 < k < p, then (Dkg o /)) (xo) = 0 for 
0 < k < p. 

Solution. By the chain rule, we know that 

D(f o g) (x) � Dg(f(x) ) o Df(x) , 
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hence D(/ o g)(x0) . The point now, is that composition of linear maps acts 
as a product, so differentiating one more time we find 

D2(g o /) (x) = D(Dg(J(x))) o Df(x) + Dg(f(x)) o D2 f(x) 
= D2g(f(x)) o Df(x) o Df(x) + Dg(f(x) )  o D2 /(x) . 

By induction we see that Dk(g o /) (x) is a linear combination of terms of 
the form 

Dmg(f(x)) · · · Dn f(x) 
with 1 < m, n < k. Conclude. 



XVIII 
Inverse Mapping Theorem 

XVIII. l  The Shrinking Lemma 

Exercise XVIII.l .l  (Tate) Let E,F be complete normed vector spaces. 
Let I : E --+ F be a map having the following property. There exists a 
number C > 0 such that for all x, y E E we have 

ll(x + y) - f(x) - f(y) l < C. 

(a) Show that there exists a unique additive map g :  E --+ F such that g - I 
is bounded for the sup norm. {Hint: Show that the limit 

g(x) = lim 
f (2nx) 

n--+oo 2n 

exists and satisfies g(x + y) = g(x) + g(y) .J 
(b) If f is continuous, prove that g is continuous and linear. 

Solution. (a) Let 

fn(x) = /(�:x) 
· 

We then have 

because 

and therefore 
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lln+m(x) - /n(x) l � lln+m(x) - ln+m-1 (x) l + lfn+m-1 (x) - ln+m-2(x) l 
+ · · · + lln+1 (x) - ln(x) l 

c ( 1 1 ) < 2n+1 2m-1 + • . . + 2 + 1 

< 
c 

- 2n ' 
thus {In} converges uniformly to a map g = liiDn-+oo In· Since 

c 
lln(X + Y) - ln(x) - ln(Y) I < 2fi 

in the limit we get g(x + y) = g(x) + g(y) , so g is additive. Clearly, I - g 
is bounded because lo = I and therefore 

l/m (x) - /(x) l < C 

so it suffices to let m --+ oo. If there exists two additive functions g1 and 
92 such that / - 91 and J - 92 are bounded, then 91 - 92 is additive and 
bounded. But if h is a bounded additive function, then 

h(nx) = nh(x) , 

so h must be identically zero. This proves the uniqueness of g. 
(b) If I is continuous, then each In is continuous, so the uniform limit g is 
also continuous. If p and q are integers, with q :/: 0, we see that additivity 
implies 

qg (�x) = g(px) = pg(x) 

so for all rational numbers r we have g(rx) = r9(x) . The continuity of g 
implies that the above relation also holds for all real numbers r. This proves 
that g is linear. 

Exercise XVIII.1.2 Generalize Exercise 1 to the bilinear case. In other 
words, let I :  E x F __. G be a map and assume that there is a constant C 
such that 

ll(x1 + x2, 71) - l(xi , 1J) - l(x2 , y) l < C, 
ll(x, 1/1 + 712) - l(x, Yt ) - l(x, Y2) 1 < C, 

/or all x, x1 , x2 E E and y, y1 , Y2 E F. Show that there exists a unique 
biadditive map g :  E x F __. G such that I - 9 is bounded for the sup norm. 
If I is continuoU8, then g is continuous and bilinear . . 
Solution. Let 
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Then 
ln+l (x, y) - ln(x, y) = V'n(X, y) + 1/Jn(x, y) , 

where 

and 
/(2nx, 2n+ly) 1(2nx, 2ny) 

1/Jn (x , 'Y) = 22n+l - 22n · 
Using the inequalities on I and arguing as in Exercise 1 ,  we find that 

c c 
lc,on (x, y) f < 22n+2 and 11/Jn (x, Y) l < 22n+l · 

So the triangle inequality implies 

The same argument as in Exercise 1 shows that the sequence {In} converges 
uniformly to a map g and that g is additive in each variable, I - g is 
bounded, and g is unique. If I is continuous, then so is each In and therefore 
g is continuous and bilinear. 

Exercise XVIII.1.3 Prove the following statement. Let Br be the closed 
ball of radius r centered at 0 in E. Let f : Br --+ E be a map such that: 
(a) lf(x) - f(y) l < b fx - Yl with 0 < b < 1 �  
(b) 11(0) 1  < r(1 - .b) . 
Show that there exists a unique point x E Br such that l(x) = x. 
Solution. It is sufficient to· show that the · image of f is contained · in Br·, 
because then we can apply the shrinking leinina. The following inequalities 
give us what we want 

l f(x) l :5 lf(x) - f(O) I  + 11(0) 1 < br + ( 1 - b)r = r. 

Exercise XVIII.1.4 Notation as in Exercise 9, let g be another map of 
Br into E and let c > 0 be such that lg(x) - l(x) l < c for all x. Assume 
that g has a fixed point x2 , and let x1 be the fixed point of f. Show that 
lx2 - x1 l  :5 c/(1 - b) . 

Solution. This result follows at once from 

lx2 - x1 l = lg(x2) - /(xt ) l < lu(x2) - /(x2) l + fl(x2) - /(xl ) l 
< c + blx2 - x1 l · 

Exercise XVIII.1.5 Let K be a continuous function of two variables, 
defined for (x, y) in the square a < x < b and a < y < b. Assume that 
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I IKII � C for some constant C > 0. Let I be a continuous function on [a, b) 
and let r be a real number satisfying the inequality 

1 
lr l < C(b - a) ' 

Show that there is one and only one function g continuoU8 on [a, b) such 
that 

f(x) = g(x) + r  1b K(t, x)g(t)dt. 

Solution. Let C0(a, b) be the vector space of all continuous functions on 
(a, b) equipped with the sup norm. Consider the map 1/J :  CO[a, b) __. CO[a, b) 
defined by 

g 1-+ f - r 1b Kgdt, 

where 

f - r 1b Kgdt : x 1-+ f(x) - r 1b K(t, x)g(t)dt. 

There exists a number k such that 0 < k < 1 and lr l :5 k/C(b - a). Then 
we have 

· 
1 11/J(gt ) - ,P(g2) 11 :5 kll9t - 92 11 , 

so by the shrinking lemma, there exists a unique function g e CO[a, b) such 
that 1/J(g) = g. 
Exercise XVIII.1.6 (Newton's Method) This method seroes the same 
purpose as the shrinking lemma but sometimes is more efficient and con
tJerges more rapidly. It is used to find zeros of mappings. 

Let Br be a ball of radius r centered at a point xo E E. Let f :  Br --+ E be 
a C2 mapping, and assume that /11 is bounded by some number C > 1 on 
Br . Assume that f'(x) is intJertible for all x E Br and that l/'{x)-1 1 < C 
for all x E Br . Show that there exists a number 6 depending only on C and 
r such that if 1/{xo) l < 6, then the sequence defined by 

Xn+l = Xn - /'(xn)-1 /(xn) 
lies in Br and contJerges to an element x such that f(x) = 0. {Hint: Show 
inductitJely that 

and hence that 
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Solution. Select 6 > 0 such that 

ccs(1+2+·· ·+2n) 62n < r/2n+2 

for all n � 0. Such a choice of 6 is possible because 

ccs(1+2+·· ·+2n) = ccs(2n+1-1) < cs(2n+1 ) . 
Now suppose that J/(xo) J < 6. We prove inductively, that 

{ lxn+1 - Xn l  < CC3(1+2+· · ·+2n>62n < r/2n+2 , 
1/(Xn+l ) J  < C3(1+2+·· ·+2n+1 )62n+l . 

We check the base step n = 0. We have 

But our choice of 6 gives .CC36 < r/22 , so x1 E Br. Note that 

/'(xo)x1 = !'(xo)xo - !'(xo)!' (xo)-1 f(xo) = !'(xo)xo - f(xo) , 

hence /'(xo) (x1 - xo) = -f(xo) . Now we use Taylor's formula given in §6 
of Chapter XVII. We let x = xo and y = X1 - xo and we use R2. The 
preceding computations, the estimate of the remainder, and the bound for 
/11 on Br imply 

1/(xl ) l :5 Clx1 - xo l2 :5 CC2C662 = 03(1+2>62 , 

and this proves the base step of the induction. Assume that the formulas 
are true for all integers < n. Then the recurrence formula for Xn+2 , the 
induction assumption, and our choice of 6 gives 

So we see that Xn+2 E Br because 

fxn+2 - xo f  < fxn+2 - Xn+1 1 + Jxn+l - Xn l  + · · · + Jx1 - xo J  
< r ( 2n�3 + . . .  + 2

1
2) � ; . 

From the recurrence formula for Xn+2 we immediately get 

so appyling Taylor's formula, with the bound on /", we find that 

J/(Xn·f-2) J < CJxn+2 - Xn+1 12 , 

and since 
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This completes the proof by induction. 
The sequence {xn} is Cauchy because 

hence {xn} has a limit, say x which is in Br because the above argument 
shows that in fact {xi}ro is contained in Br/2 , the ball of radius r/2 
centered at x0• The second formula we proved by induction implies 

Cr 
II(Xn+t ) l  < 2n+3 ' 

so by continuity we conclude that f(x) = 0. 

Exercise XVIII.1�7 Apply Newton's method to prove the following state
ment. Assume that f :  U -+ E is of class C2 and that for some point xo E U 
we have f(xo) = 0 and f' (xo) is invertible. Show that given y sufficiently 
close to 0, there exists x close to x0 such that l(x) = y. {Hint: Consider 
the map g(x) = f(x) - y.J 

Solution. Applying Theorem 2. 1 of this chapter and using the fact that I 
is of class 02, we see that there exists an open ball B centered at x0 and a 
constant C > 1 such that for all x e B, the linear map l'(x) is invertible 
and we have the bounds on /" and ll' (x)- 1 1 as in the previous exercise. 
Since 

lg(xo) l = IY I 
we see that if y is sufficiently close to 0, we can apply Newton's method. 
Conclude. 

Exercise XVIII.1 .8 The following is a reformulation due to Tate of a 
theorem of Michael Shub. 
(a) Let n be a positive integer, and let I : R --+ R be a differentiable function 
such that l'(x) > r > 0 for all x. Assume that l(x + 1) = f(x) + n. Show 
that there exists a strictly increasing continuous map a : R --+ R satisfying 

a(x + 1) = a(x) + 1 

such that 
f(a(x)) = a(nx) .  

{Hint: ·Follow Tate 's proof. Show that f is continuous, strictly increasing, 
and let g be its inverse function. You want to solve a(x) = g(a(nx)) .  Let M 
be the set of all continuous /unctions which are increasing (not necessarily 
strictly) and satisfying a(x + 1) = a(x) + 1 .  On M, define the norm 
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l lo: l f = sup fo:(x) f . 
O<x<l 

Let T: M � M be the map such that 

(To:)(x) = g(o:(nx)) ) . 

Show that T maps M into M and is a shrinking map. Show that M is 
complete, and that a fixed point for T solves the problem.} Since one can 
write 

nx = o:-1 (/(o:(x)) 
one says that the map x .._... nx is conjugate to f. Interpreting this on the 
circle, one gets the statement originally due to Shub that a differentaible 
function on the circle, with positive derivative, is conjugate to the n-th 
power for some n. 
(b) Show that the differentiability condition can be replaced by the weaker 
condition: There exist numbers r1 , r2 with 1 < r1 < r2 such that for all 
x > 0 we have 

r1 s < f(x + s) - f(x) $ r2s. 
Further problems involvin_g similar ideas, and combined with another 

technique will be found at the end of the next section. It is also recommended 
that the first theorem on differential equations be considered simultaneously 
with these problems. 

Solution. We prove (b) . By assumption, I is continuous, strictly increas
ing, and therefore f has an inverse g. 

We contend that T maps M into M. Clearly, To: is continuous and 
increasing because g and a: are continuous and increasing. By induction, 
we find 

o:(n(x + 1)) = o:(nx) + n 
so 

f [(To:)(x + 1)] = o:(nx) + n, 
and 

I [(To:) (x) + 1] = I ((To:)(x)] + n = o:(nx) + n. 
The function f is injective so (To:) (x + 1) = (To:) (x) + 1 which proves 
our contention. The map T is a shrinking map because the condition on f 
implies 

thus 

r1 (g(x) - g(y)) < f(g(x)) - J(g(y)) � r2 (g(x) - g(y)) ,  

X - y � g(x) _ g(y) < X - y
' r2 r1 

so there exists a constant 0 < K < 1 such that 
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lg(x) - g(y) l < Klx - Yl · 

Finally we show that M is complete. Let {an} be a Cauchy sequence in 
M. By induction, we see that a(x + j) = a(x) + j for all integers j, so if 
l lan - am I I < e, then lan(x) - am(x) l < E for all x. Use an argument as 
in Theorem 3. 1 of Chapter VII, and the fact that the limit of a uniformly 
convergent sequence of continuous functions is continuous, to show that 
there exists a continuous function a such that an -+ a as n -+ oo. Since 
an (x + 1) = an(x) + 1 in the limit we have a(x + 1) = a(x) + 1 ,  and a is 
increasing, whence M is complete. 

The shrinking lemma implies that there exists a map a0 such that Ta0 = 
ao or equivalently 

g(ao (nx) )  = ao(x) , 

thus ao(nx) = /(ao(x)) . 

XVIII.2 Inverse Mappings, Linear Case 

Exercise XVIII.2.1 Let E be the space of n x n matrices with the wual 
norm IAI such that 

IABI < IAI IB I . 
Everything that follows would also apply to an arbitmry complete normed 
vector space with an associative product E x E -+ E into itself, and an 
element I which acts like a multiplicative identity, such that JI I = 1 .  
(a) Show that the series 

oo An exp(A) = � -n=O n! 

converges absolutely, and that I exp(A) - I I < 1 if IAI is sufficiently small. 
{b) Show that the series 

. B B2 Bn 
log( I + B) =  T - 2 + . . . + (-l)n+ln + . . .  

converges absolutely if fB I < 1 and that in that case 

f log(/ + B) I < IBI/(1 - IBI ) . 

If II - Cf < 1, show that the series 

logC = (C - 1) - (C - !)2 + · · · + (-l)n+l (C - I)n + · · · 
2 n 

converges absolutely. 
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(c) If IAI is sufficiently small show that log exp(A) ?= A  and if fC - I I < 1 
show that exp log(C) = C. {Hint: Approximate exp and log by the polyno
mials of the usual Taylor series, estimating the error terms.} 
{d) Show that if A, B commute, that is AB = BA, then 

exp(A + B) = exp A exp B. 

State and prove the similar theorem for the log. 
(e) Let G be a matrix sufficiently close to I. Show that given an integer 
m > 0, there exists a matrix X such that xm = C, and that one can choose 
X so that XC = CX. 

Solution. (a) Since lAB I � IA I IB I we have I An i � lA in . The ratio test 
implies at once the absolute convergence of the series. One could also com
pare the series with the series of the exponential function defined for real 
numbers and use the comparison test. 

We have 
1 exp(A) - I I < L IA�n 

= eiAI - 1 , 
n>l 

n. 
but for x sufficiently small and positive, we know that ex - 1 is < 1 so 
I exp(A) - I I < 1 if lA I is sufficiently small. We could also estimate the 
series on the right using the fact that for all n > 2 we have n! > 2n . 
(b) The estimate 

(-l)R+l Bn < IB in < IB in , n n 
and the fact that IB I  < 1 imply the absolute convergence of the series. If 
IB I  < 1 we have 

I Bin f log(I + B) I < IB I + · · · +  + · · · 
n 

< IB I + . . . + IB in + . . .  = 
IB I  

1 - IBI ' 
as was to be shown. To show the absolute convergence of the second series, 
let C - I =  B and argue as we just did. 
(c) We prove that logexp(A) = A when A is sufficiently small. In fact, 
suppose that IA I < log 2. Then I exp{A) - II $ eiAI - 1 < 2 - 1 = 1 so the 
expression log exp(A) makes sense. It is sufficient to show that for large r 
and s, the expression 

t (-l)n-1 
n n=l 

8 

" .!_A3 LJ .,  . 1 J .  J= 

n 

- A  (XVIII. !) 

has small absolute value. Suppose r, s > t where t is a large positive integer. 
We view the term on the left as a polynomial in A. Writing log ex as a power 
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series (here x is a real number) and using the fact that log ez - x = 0 we see 
that the coefficients of all the terms of degree � t are 0. Choose 0 < a < 1 
such that IAI < a < log 2. Then there is a constant C depending only on a 
such that the absolute value of the coefficient of the term AP in (XVIII. l) 
is � C/a". Putting absolute values in (XVIII. l) and using the triangle 
inequality we see that the desired expression is 

rs fAfP rs ( IAI ) " Ca ( IAI ) t+l 
< L c = C  L - < -

p=t+l aP p=t+l a a - IAI a 

whenever r, s > t. The above expression on the right, tends to 0 as t --. 
oo, thereby concluding the proof of the first formula. The second formula 
exp log C = C is proved using the same argument. 
(d) The series E An/nl and E Bn/n! converge absolutely and the general 
term of the product of these two series is given by 

n Ak Bn-k L kf (n - k) f '  k=O 

Since A and B commute, the binomial formula implies that 

n Ak Bn-k (A + B)n � kf (n - k) ! = 
n! ' 

and therefore exp(A + B) =  exp(A) exp(B) . 
(e) If we take 

X =  exp (! log O) , 

then one sees at once that xm = exp{log C) = C. Moreover 

XC = exp (! log O) exp(log C) 

= exp (! log O + log O) 
= exp (tog O + � log O) 
- exp(log C) exp (� log O) = OX. 

Exercise XVIII.2.2 Let U be the open ball of radius 1 centered at I. Show 
that the map log : U --. E is differentiable. 

Solution. The difficulty is that multiplication of matrices is not commuta
tive, so we cannot simply differentiate the series term by term. Let LA,n+l 
be the linear map defined by 
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We define a linear map Lo by 

00 
Lc = 2:(-l)n+l Lc�I,n . 

n=l 
This series converges absolutely by comparison to the geometric series 

We contend that log' C = Lc. With the notation C - I = C1 , and the fact 
that we can write 

(CI + h)n - Cj = Lo-I,n (h) + Pn(CI , h) 

(note that the binomial formula does not apply because the multiplication 
is not commutative) we get 

log(CI + h) - log C1 - Lc(h) = f )- tt+l
Pn(�I , h)

. 
n=l 

Since the series on the left is absolutely convergent, so is the series on the 
right. If lhl < 6 and I01 I < 1 ,  then we have the estimate 

Conclude. 

Exercise XVIII.2.3 Let V be the open ball of radius 1 centered at 0. Show 
that the map exp : V --. E is differentiable. 

Solution. Let LA,n+l be the linear map defined by 

LA,n+1 (X) = An X + An-1 XA + · · · + AXAn-1 + X An. 

We define a linear map LA by 

00 
L _ '"' LA,n A - L..J . 

n=l n! 

This series converges absolutely because of the estimate 

ILA,n l < niAin-l 
= IAin-l 

nl - n! (n - 1) ! 
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and the comparison test. We contend that exp' A =  LA. We have 

oo (A + h)n - An 
exp(A + h) - exp A = .L: n! , 

n=l 
and we can write (A + h)n - An = LA,n (h) + Pn (A, h) so that 

oo R (A h) exp(A + h) - exp A - LA(h) = L n 1 '  • 
n= 1 n. 

Since the left-hand side converges absolutely, so does the right-hand side. 
If IA I < 1 and lhl < 6, then we have the estimate 

Pn�, h) < �� � ( � ) lhlk iAin-k < ����
2 � ( � )  ltS i k-2 = lhi2Qn(6) ,  

hence f Pn(�, h) 
< lhl2 f Qn(6) . n. n=l n=l 

Conclude. Note that we have never used the fact that A E V because the 
exponential is differentiable on all of E. 

Exercise XVIII.2.4 Let K be a continuous function of two variables, 
defined for (x, y) in the square a < x < b and a � y < b. Assume that 
I lK II � C for some constant C > 0. Let f be a continuow function on [a, bJ 
and let r be a real number satisfying the inequality 

1 
lrl < C(b - a) ' 

Show that there is one and only one function g continuous on [a, b) such 
that 

f(x) = g(x) + r 1b K(t, x)g(t)dt. 

{This exercise was also given in the preceding section. Solve it here by using 
Theorem 2. 1 .) 
Solution. Consider the linear transformation L :  CO[a, b] --+ C0[a, b] defined 
by 

(Lg)(x) = -r 1b K(t, x)g(t)dt. 

Then IL l < 1 because there exists a number k with 0 < k < 1 such that 
lr l < k/C(b - a) hence 

I (Lg) (x) l < k sup fg(t) l , te[a,b) which means that I ILg ll � k f lg l l , where I I · I I is the sup norm. Theorem 2. 1 
implies that I - L is invertible. Conclude. 
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Exercise XVIII.2.5 Exercises 5 anlt 6 develop a special case of a theorem 
of Anosov, by a proof due to Moser. 

First we make some definitions. L�t A :  R2 --. R2 be a linear map. We 
say that A is hyperbolic if there exist numbers b > 1 ,  c < 1, and two 
linearly independent vectors v, w in R2 such that Av = bv and Aw � cw .  
As an example, show that the matrix {linear map) 

A - ( 2  1 ) 
- 3 2 

has this property. 

Next we introduce the C1 norm. If f is a 01 map, such that both f and 
f' are bounded, we define the 01 norm to be 

l l / l l 1  = max( lf/ 1 1 , I I /' I I ) ,  

where I I · I I is the usual sup norm. In this case, we also say that f is C1 -
bounded. · 
The theorem we are after runs as follows: 

Theorem. Let A :  R2 --. R2 be a hyperbolic linear map. There exists 6 
having the following property. If f :  �2 --. R2 is a C1 map such that 

then there exists a continuous bounded map h :  R2 --. R2 satisfying the 
equation 

f o h  = h o A. 

First prove a lemma. 
Lemma. Let M be the vector space of continuous bounded maps o/R2 into 
R2 • Let T :  M --.  M be the map define� by Tp = p - A-1 o p o A. Then T 
is a continuous linear map, and is invertible. 
To prove the lemma, write 

p(x) = p+ (x)v + p- (x)w 

where p+ and p- are functions, and note that symbolically, 

that is Tp+ = (I - S)p+ where I IS I I < 1 .  So find an inverse for T on 
p+ . Analogously, show that Tp- = (I - S01 )p- where l fSo l l < 1, so that 
SoT = So - I  is invertible on p- . lienee T can be inverted componentwis�, 
as it were. 
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To prove the theorem, write f = A + g where g is 01 -small. We want to 
solve for h = I + p with p E M, satisfying f o h = h o A. Show that this is 
equivalent to solving 

Tp = -A-1 o g o  h, 

or equivalently 
p = -T-1 (A:... 1 o g o  (I + p)) . 

This is then a fixed point condition for the map R :  M --+ M given by 

R(p) = -T-1 {A-1 o g o (I + p)) . 

Show that R is a shrinking map to conclude the proof. 

Solution. The numbers b and c are eigenvalues, and v, w are eigenvectors, 
so we must solve 

2 - A 1 
3 2 - A = O. 

The solutions of this equation are b = 2 + v'3 and c = 2 - \1'3. If we let 
v = {1 , \1'3) and w = {1 ,  -\1'3), then we have Av = bv and Aw = cw so the 
linear map A is hyperbolic. 

To prove the lemma, we see that we can write 

Tp = p+v + p-w - A-1 (p+(A)v + p- (A)w) 
= (p+ - b-1p+(A) )v + (p- - c-1p- (A))w. 

On the first component we have 

Tp+ = p+ - b-1p+(A) = (I - S)p+ , 

where S:  p+ � b-1p+(A) . We find that I ISII < 1 {for the sup norm on M) 
because b > 1 and 

Actually, we have equality because A is invertible. Hence I- S is invertible 
and its inverse is given by the geometric series I + S + 82 + · · · + sn + · · · 

(see Theorem 2. 1) . 
On the second component we have 

Tp- = p- - c-1p- (A) = (I - S01 )p- , 

where So : p- � cp- (A-1 ) , and hence S01 : p- � c-1p- (A) . We also have 
II So li < 1 because c < 1 ,  so I -80 is invertible, whence S01 {I-S0) = S01-I 
is invertible. This concludes the proof of the lemma. 

We see that the equation f o h = h o A is equivalent to 
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(A + g) o h  = (I + p) o A, 
A o p + g o h = p o A, 

p = A-1 (p o A - g o h) , 
p - A-1p o A  = -A-1 o g o h, 

Tp = -A-1 o g o  h. 

To apply the shrinking lemma which would guarantee the existence of p, 
we must show that R is a shrinking map. We have 

R(p) (x) - R(q) (x) = -T-1 A-1 (g(x + p(x)) - g(x + q(x))) 
(XVII1.2) 

for all x. Since I IT-1 11 depends only on A, we can select B > 0 (depend
ing only on A) such that I IT-1 f i i iA-1 f l < B. Putting absolute values in 
(XVIII.2) and using the mean value theorem with l ln l l t < 6 we get 

IR(p) (x) - R(q)(x) l < B6lx + p(x) - x - q(x) l 

for all x, so 

I IR(p) - R(q) f l < B6llp - qll , 

where I I  · I I  denotes the sup norm. It is now clear that if we choose 6 small 
enough, then R is a shrinking map and we are done. 

Exercise XVIII.2.6 One can formulate a variant of the preceding exer
cise (actually the very case dealt with by Anosov-Moser). Assume that the 
matrix A with respect to the standard basis of R 2 has integer coefficients. 
A vector z e R2 is called an integral vector if its coordinates are integers. 
A map p :  R 2 --. R 2 is said to be periodic if 

p(x + z) = p(x) 

for all x e R2 and all integral vectors z .  Prove: 

Theorem. Let A be hyperbolic, with integer coefficients. There exists 6 
having the following property. If g is a 01 , periodic map, and I IY I I 1 < 6, 
and if 

f = A + g, 

then there exists a periodic continuous map h satisfying the equation 

/ o h  = h o A. 

Note. With a bounded amount of extra work, one can show that the map 
h itself is 0°-invertible, and so I = h 0 A 0 h-1 •  
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Solution. Let Mper denote the vector space of continuous and periodic 
maps of R2 into R2• With the notation of Exercise 5, we may view Mper 
as a subspace of M. This subspace is closed because the uniform limit of 
continuous periodic functions is continuous and periodic. To use the same 
proof as in Exercise 5 with Mper instead of M, we must show that T maps 
Mper into Mper, and that R maps Mper into Mper· Since A has integral 
coefficients, a brute force computation shows that if x E R2, then 

A(v + integral vector) = Av + integral vector, 

where the integral vector on the right-hand side need not be the same as 

the integral vector on the left-hand side. It follows that if z is an integral 
vector, then 

Tp(x + z) = Tp(x) 

whenever p E Mper , hence T maps Mper into Mper· It is clear that R maps 
Mper into Mper· 

XVIII.3 The Inverse Mapping Theorem 

Exercise XVIII.3.1 Let I :  U --+ F be of class C1 on an open set U of 
E. Suppose that the derivative of I at every point of U is invertible. Show 
that f(U) is open. 

Solution. Let y e /(U) and select x such that l(x) = y. By the inverse 
mapping theorem we know that I is locally C1-invertible at x, so by def
inition there exists an open set U1 such that x e U1 and /(U1 ) is open. 
Since y e I{Ut )  we conclude that I(U) is open. 

Exercise XVIII.3.2 Let l(x, y) = (ex + efl , ex - efl) .  By computing Ja
cobians, show that f is locally invertible around every point of R2• Does f 
have a global inverse on R2 itself'/ 

Solution. The Jacobian of f at a point {x, y) is 

whose determinant is -2exefJ =I= 0, so I is locally invertible around every 
point of R2. Note that f is injective because if j(x1 , Yl ) = j(x2, Y2) , then 

{ ext + eflt = ex2 + efl2 ,  
ext _ e'llt = ex2 _ efl2 ,  

so adding the two equations we get x1 = x2 and subtracting the two equa
tions we see that Yt = Y2 . This shows that 



XVIII.3 The Inverse Mapping Theorem 319 

has a set inverse. Note that 

f(R2) = {(x , y) E R2 : x > y} = V 

because ex + eY > ex - eY and if (a, b) E V, then 

- ( a + b a - b) I log 2 , log 2 = (a, b) . 

From this analysis, we also see that the map g :  V --+ R 2 defined by ( x + y x - y) g(x , y) = log 2 , log 2 

is a 01-inverse for ] because g(f(x , y)) = (x, y) and all the partial deriva
tives of g exist and are continuous on V. 

Exercise XVIII.3.3 Let I :  R2 -+ R2 be given by f(x , y) = (ex cos y, 
ex sin y) . Show that Df(x, y) is invertible for all (x , y) E R2, that f is 
locally invertible at every point, but does not have an inverse defined on all 
of R2 • 

Solution. The Jacobian of f at (x, y) is 

J (x ) = 
( ex cos y -ex sin y ) 

I , y  ex sin y ex cos y 

and its determinant is e2z � 0, thus I is locally invertible around every 
point of R2• However, I does not have an inverse defined on all of R2 
because it is not injective on all of R2• Indeed, 

f(x, y) = f(x, y + 211") . 

Exercise XVIII.3.4 Let f : R2 --+ R2 be given by f(x, y) = (x2 -y2 , 2xy) . 
Determine the points of R2 at which f is locally invertible, and determine 
whether f has an inverse defined on all of R2 • 

Solution. We have 
J,(x, y) = ( ;: -;;y ) 

so that det J 1 ( x, y) = 4x2 + 4y2• Hence f is locally invertible at every point 
of R 2 - { 0}. The map f does not have an inverse defined on all of R 2 
because f is not injective on all of R2• Indeed, /(1 ,  1) = 1(-1 , -1) . In fact, 

f(t, t) = !( -t, -t) 

for all t E R. 
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XVIII.5 Product Decompositions 

Exercise XVIII.5.1 Let f :  R2 --. R be .a function of class ct . Show that 
f is not injective, that is there must be points P, Q e R 2 , P � Q, such that 
/(P) = /(Q) . 

Solution. Assuming f not constant, we can apply Exercise 2. Here we give 
a proof where we only assume that f is continuous. After translation and 
multiplication by a real number, we may assume without loss of generality 
that /(0, 0) = 0 and /(1, 0) = 1 (if /(1, 0) = 0, there is nothing to prove) . 
We look at lines passing through the origin 
Case 1 .  If /(0, 1) = 0 we are done. 
Case 2. If a = /(0, 1) > 0, select {3 > 0 such that {3 < a and {3 < 1 .  The 
intermediate value theorem guarantees the existence of 0 < x, y < 1 such 
that 

so f is not injective. 

f(x, 0) = /3 and /(0, y) = {3, 

Case 3.  If a =  /(0, 1) < 0, then consider the point ( -1 ,  0) . If /( -1 ,  0) = 0 
we are done. If /(-1, 0) > 0, then arguing as in case 2 above, we see that 
there exists 0 < x, t < 1 such that 

/( -t, 0) = f(x, 0) . 

If /(-1 , 0) < 0 the same argument shows that there exists 0 < s, y < 1 
such that 

f( -s, 0) = /(0, y) , 

thereby concluding the exercise. 

Exercise XVIII.5.2 Let f :  R n --. R m be a mapping of class ct with m < 
n. Assume f'(xo) is surjective for some xo . Show that f is not injective. 
(Actually much more is troe, but it 's harder to prove.) 

Solution. Let E = Ker /'(x0) .  Then by assumption on the dimensions, 
E -:F 0. Select F such that E Ea F  = Rn. Since we assume /'(x0) surjective, 
we know that D2/(x0) : F --.  Rm is an isomorphism. By Theorem 5. 1 the 
map 1/J : E x  F --.  E x  Rm given by 

(x, y) .._. (x, f(x, y)) 

is locally at-invertible at Xo.  Let h be its local inverse and let 11'"2 be the 
projection of E x  Rm onto Rm. Then we can select open sets Vt , V2,  and 
U in E, Rm, and Rn, respectively, such that the following diagram is 
tolmn."U\��� 
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This implies that after a change of charts the map f becomes a projection, 
and therefore f is not injective. 

Exercise XVIII.5.3 Let f :  R -.  R be a 01 function such that f' (x) =I= 0 
for all X E R. Show that I is a 01 -isomorphism of R with the image of I. 

Solution. Since the derivative of f is continuous and never 0, it is of 
constant sign. Assume without loss of generality that /'(x) > 0 for all 
x E R. Conclude, using Theorem 3.2 of Chapter III. 

Exercise XVIII.5.4 Let U be open in Rn and let f : U --. Rm be 000 
with f' ( x) : R n --+ R m surjective for all x in U. Prove that f ( U) is open. 

Solution. Let x E U. We contend that f (x) has an open neighborhood 
which is contained on f (U) . Let E = Ker f'(x) . Then E is a  subspace of 
Rn so we can write Rn = E x  F, where F � Rm because we assumed that 
f' (x) is surjective. Now we can apply Theorem 5. 1  of this section. Since 1/J 
is a local isomorphism, it maps open sets onto open sets. Our contention 
follows from choosing a sufficiently small open neighborhood about x and 
using the product topology on E x F. 

Exercise XVIII.5.5 Let f : Rm --. Rn be a 01 map. Suppose that x E 
Rm is a point at which Df(x) is injective. Show that there is an open set 
U containing x such that f(y) =I= f(x) for all y E U. 

Solution. The continuous linear map Df(x) is a bijection from Rm onto 
its image. Let L be its inverse. Then L is continuous so there exists a 
constant c > 0 such that fL(z) f � cfzf ,  so if we let z = Df(x) (y) we see 
that for all y we have 

bfyf � ID/(x)yf , 
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where b = c-1 • Let f = b/2 . Since f is differentiable, there exists a neigh
borhood U of x such that for all 11 E U we have 

1 /(y) - f(x) - D f(x) (y - x) l � £1x - y l . 

The triangle inequality implies the following estimate for the left-hand side 

IDf(x) (y - x) l - 1/(y) - f(x) l < lf(y) - f(x) - Df(x) (y - x) l , 

so combined with the previous result we obtain 

b lx - Yl - elx - Yl < 1/(y) - f(x) l . 

Since E = b/2 we have 

b 
2 1Y - xl < l f(y) - /(x) l 

fo�all y E U. This proves that f(y) � f(x) whenever y � x and y E U. 

Exercise XVIII.5.6 Let [a, b] be a closed interoal J and let f :  J --+ R2 
be a map of class 01 • Show that the image f(J) has measure 0 in R2 • By 
this we mean that given e, there exists a sequence of squares {81 ,  82 , . . .  } 
in R2 such that the area of the square Sn is equal to some number Kn and 
we have 

f(J) C U sn and L Kn < E. 

Genrealize this to a map f :  J --. R3, in which case measure 0 is defined by 
using cubes instead of squares. 

Solution. See Exercise 7. 

Exercise XVIII.5. 7 Let U be open in R2 and let f :  U --. R3 be a map 
of class 01 • Let A be a compact subset of U. Show that f(A) has measure 
0 in R3• (Can you generalize this, to maps of Rm into Rn when n > m 'I) 

Solution. Propositions 2. 1 and 2.2 in §2 of Chapter XX are also valid 
when replacing "negligible set" by "set of measure 0" . We see at once 
that combined with the remark after Proposition 2.2 of Chapter XX, these 
results imply Exercises 6 and 7. 

· 

Exercise XVIII.5.8 Let U be open in Rn and let f :  U --. Rm be a 01 
map. Assume that m � n and let a E U. Assume that f(a) = 0, and that 
the rank of the matrix (D;fi (a)) is m, if (/1 , . . .  , fm) are the coordinate 
functions of f. Show that there exists an open subset U1 of U containing a 
and a 01 -isomorphism cp :  V1 --+ U1 {where Vi is open in Rn) such that 
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Solution. We use the notation x = (x1 , • • •  , Xn) · Since the rank of the 
matrix (D;/i (a)) is m, we may assume that the matrix (D;Ii (a)) (i = 
1 ,  . . . , m) and (j = n - m + 1,  . . .  , n) is invertible. By Theorem 5.1 ,  the 
map 'ljJ : U -+ Rn-m X Rm given by 

(xl , · · · , xn) t-+ (xl , • • • , Xn-m , f(x)) 

is a local 01-isomorphism at a. Let U1 be an open neighborhood of a where 
'1/J has an inverse which we denote by <p : Vi -+ U1 , where Vi is open in Rn. 
If we write <p = ( <{Jl , • • •  , CfJn) ,  then 

X = '1/J(<p(x)) = (cpl , . . .  , <fJn-m ' f(<p(x))) , 
so that 

(Xn-m+l , · · · , Xn) = f(<p(x)) ,  
thereby concluding the exercise. 

Exercise XVIII.5.9 Let I : R x R --+ R be a 01 function such that 
D2/(a, b) =I= 0, and let g solve the implicit function theorem, so that 
l(x, g(x)) = 0 and g(a) = b. Show that 

' (x) = _ Dtl(x, g(x)) . 9 
D2l(x, g(x)) 

Solution. If 1/J : x �--+ l(x, g(x)) ,  then we can write 1/J = I o h where 
h :  x »-+ (x, g(x)) .  The chain rule implies that 

1/J'(x) = Dtf(x, g(x)) + g'(x)D2I(x, g(x) ) . 
But 1/J is identically 0, so the desired formula drops out. 

Exercise XVIII.5.10 Generalize Exercise 9, and show that in Theorem 
5.4, the derivative of g is given by 

g'(x) = -(D2I(x, g(x)) )-1 o Dtf(x, g(x)) . 
Solution. If 1/J :  x »-+ l(x, g(x)) and h :  x �-+ (x , g(x)) ,  then 1/J = I o h. The 
chain rule implies that 

Dtl(x, g(x )) + D2J(x, g(x )) o g' (x) = 0, 

and therefore 

g'(x) = -(D2I(x, g(x)) )-1 o Dtf(x, g(x)) . 
Exercise XVIII.5.11 Let f : R -+ R be of class 01 and such that 
ll'(x) l < c < 1 for all x. Define 

g :  R2 --+ R2 

by 
g(x, y) = (x + l(y) , y + f(x)) . 

Show that the image of g is all of R2 • 
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Solution. Let v be a point of R2• Consider the map Tv :  R2 -+ R2 defined 
by 

(x, y) .._. -g(x, y) + (x, y) + v. 
Using the fact that l/(z2) - j(z1 ) l < clz2 - z1 l and the sup norm (or the 
euclidean norm) we get 

1Tv (x1 , 1/1 ) - Tv(x2 , Y2) 1 < cl (x1 , 1/1 ) - (x2 , 1/2) 1 , 
which proves that Tv is a shrinking map. The shrinking lemma concludes 
the exercise. 

Exercise XVIII.5.12 Let f :  Rn --. Rn be a C1 map, and assume that 
1/' (x) l < c < 1 for all x E Rn . Let g(x) = x+ f(x) . Show that g :  Rn --. Rn 
is surjective. 

Solution. Let v E Rn. Consider the map Tv : Rn --. Rn defined by 

(x, y) .._. -g(x) + x + v. 

Then we see that 

so Tv is a shrinking map. The shrinking lemma concludes the exercise. 

Exercise XVIII.5.13 Let ,\ :  E -+ R be a continuous linear map. Let F 
be its kernel, that is the set of all w e E  such that ,\(w) = 0. Assume that 
F � E and let vo E E, v0 ¢. F. Let F1 be the subspace of E generated by 
v0 • Show that E is a direct sum F E9 F1 (in particular, prove that the map 

(w, t) .._. w + tvo 

is an invertible linear map from F x R onto E). 

Solution. Let v be an element of E, and let t = ,\( v)/ ,\( v0) . Let w = v-tv0 • 
Then 

�(w) = �(v) - :(<::) �(Vo) = 0 

and therefore w belongs to the kernel of ,\. So the continuous linear map 
a :  F x R --. E given by 

(w, t) .._. w + tvo 
is surjective. This map is also injective because if we assume that 

w + tvo = w' + t'vo , 

where w, w' E F and t , t' E R, then 

,\(w + tvo) = ,\(t'vo) 

which implies that t = t' and therefore w = w'. Conclude. 
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Exercise XVIII.5.14 Let l(x, y) = (x cos y, x sin y) . Show that the deter
minant of the Jacobian of f in the rectangle 1 < x < 2 and 0 < y < 7 is 
positive. Describe the image of the rectangle under I. 

Solution. The Jacobian of I at the point (x, y) is given by 

thus 

J (x ) = ( cos y -x sin y ) 
I , y  sin y x cos y 

det J1 (x, y) = x, 
and we see that the determinant of the Jacobian of f is indeed positive in 
the given rectangle. Since I describes the change from rectangular coordi
nates to polar coordinates, we see that the image of the rectangle under I 
is the annulus A defined by 

A = {(x, y) E R2 : 1 < l (x, y) l < 2} , 

where the norm is the euclidean norm 

Exercise XVIII.5.15 Let S be a submanifold of E, and let P E S. If 
'l/Jl : ul n s -+ vl and 1/>J :  u2 n s __.. V2 

are two charts for S at P (where U1 , U2 are open in R3}, show that there 
exists a local isomorphism between Vi at ,P1 ( P) and V2 at 'l/J2 ( P) , mapping 
'l/J1 ( P) on 1/J2 ( P) . 
Solution. We can write 

t 

'l/J1 (S n U1 n U2) = V{ ahd 'l/J2(S n U1 n U2) = v; , 
where V{ is open in lli and V� is open in V2• The map given by the compo
sition 1/J2 o ¢11 : V{ --. V� gives a local isomorphism between V1 at 1/J1 (P) 
and V2 at 1jJ2(P). The picture that describes the situation is the following: 

V '  
' 

1JJ ---1 '1LJ o rj r,. t 

I vt. 
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Exercise XVIII.5.16 Let 1/Jt : U1 n S --.  Vi be a chart for S at P and let 
9t : Vi --. Ut n S be its inverse mapping. Suppose Vt is open in Ft ,  and let 
Xt E Ft be the point such that 

Show that the image of 9� (xt ) : Ft --. E is independent of the chart for S 
at P. (It is called the subspace of E which is parallel to the tangent space 
of S at P.) 

Solution. Let 1/J2 : U2 n S --. V2 be another chart for S at P, and let 
92 : V2 --. U2 n S be its inverse mapping. As in Exercise 15, let 

and let h :  V{ --. v; be the local 01-isomorphism defined by 

h = ¢2 0 1/J11 = 1/J2 0 91 · 

Then 91 = 92 o h and by the chain rule we get 

Since h'(x1 ) : F1 --.. F2 is invertible, it follows that the image of 9� (x1 ) is 
the same as the image of g� (x2) . 



XIX 
Ordinary Differential Equations 

XIX. l Local Existence and Uniqueness 

Exercise XIX.l.l Let f be a 01 vector field on an open set U in E. If 
f(x0) = 0 for some Xo E U, if a :  J -+  U is an integral curve for /, and 
there exists some t0 E J such that a(t0) = xo , show that a(t) = x0 for all 
t E J. (A point x0 such that f(xo) = 0 is called a critical point of the 
vector field.) 

Solution. Consider the map {J :  J --.  U defined by [J(t) = x0• Then {J is an 
integral curve for f because for all t E J we have 

0 = {J'(t) = f([J(t)) .  

The uniqueness of integral curves with the 8ame -initial condition implies 
that o:(t) = [J(t) for all t E J. 

Exercise XIX.1.2 Let f be a 01 vector field on an open set U of E. Let 
o: : J --. U be an integral curoe for f .  Assume that all numbers t > 0 are 
contained in J, and that there is a point P in U such that 

lim a(t) = P. t-+oo 

Prove that f(P) = 0.  (Exercises 1 and 2 have many applications, notably 
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when f = grad g for some function g. In this case, we see that P is a 
critical point of the vector field.) 

Solution. When t is large and t' > t , we have 

t' 

a(t') - a(t) = 1 f(a(u))du. 

Write f(a(u)) = f(P) + g(u) , where lilllu-+oo g(u) = 0. Then integrating 
and putting absolute values we see that 

1/(P) I I t' - t l � la(t') - a(t) l + It' - t l sup lg(u) l . 
t<u<t' 

Divide by It' - t l and conclude that lf(P) I is arbitrarily small. 

Exercise XIX.1 .3 Let U be open in Rn and let g :  U --.  R be a function 
of class 02 • Let x0 E·  U and assume that xo is a critical point of g {that is 
g'(xo) = 0}. Assume also that D2g(x0) is negative definite. By definition, 
take this to mean that there exists a number c > 0 such that for all vectors 
v we have 

D2g(xo)(v, v) < -c lv l2• 

Prove that if x1 is a point in the ball Br(x0) of radius r, centered at xo, 
and if r is S'Ufficiently small, then the intergral curve a of grad g having x1 
as initial condition is defined for all t > 0 and 

lim a(t) = xo . t-+oo 

{Hint: Let 'ljJ(t) = (a(t) - x0) • (a(t) - xo) be the square of the distance from 
a(t) to x0 •  Show that 1/J is strictly decreasing, and in fact satisfies 

1/J'(t) $ -2c11/J(t) , 

where c1 > 0 is near c, and is chosen so that 

for all x in a sufficiently small neighborhood of xo . 
Divide by 1/J( t) and integrate to see that 

log 1/J(t) - log 1/J(O) < -ct. 

Alternatively, use the mean value theorem on ,P(t2) - 1/J(tl ) to show that 
this difference has to approach 0 when t1 < t2 and t1 , t2 are large.} 
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Solution. If 1/J(t) = (a(t) - xo) · (a(t) - xo) , then 

1/J'(t) = 2a'(t) · (a(t) - xo) = 2Dg(a(t)) · (a(t) - xo) . 

Using the fact that Dg(x0) = 0 and the usual integral expression we find 
that 

Dg(y) = 11 
D2g(xo + u(y - xo)) (y - xo)du. (XIX. I) 

Note that we are integrating linear maps. By continuity there exists a 
constant K > 0 and a ball B centered at x0 such that if z E B, then we 
have D2g(z) (v, v) � -Kiv l2 for all vectors v. Suppose y is in B. Then 
applying (XIX.l) to y - x0 and using the above inequality, we find that 

If x1 E B, then by continuity of a we see that for all small t � 0 we have 
a(t) E B and therefore the above inequality can be applied with y =  a(t) , 
so that for all small t � 0 we have 

� ,P'(t) = Dg(o:(t)) · (o:(t) - xo) < -K io:(t) - xo l2 = -K,P(t) . 

Hence for all small t > 0 we get 

1/J' (t) < -2K 1/J(t) . 

Thus 1/J is decreasing and therefore a(t) gets closer to x0 for increasing 
small values of t, hence for all t > 0 the inequality 1/J' (t) < -2K1jJ(t) holds. 

Now let 2K = c1 . If a(t0) = xo for some positive t0 , then a(t) = xo for 
all large t because 'l/J is decreasing and positive. If 1/J(t) is never 0 we can 
divide by it and then integrate, so that 

log 'f/J(t) - log 'f/J(O) < -c1 t , 

and therefore limt--.00 1/J(t) = 0 as was to be shown. 

Exercise XIX.1.4 Let U be open in E and let I :  U � E be a 01 vector 
field on U. Let x0 E U and assume that l(x0) = v =f 0.  Let a be a local 
flow for I at x0 •  Let F be a subspace of E which is complementary to the 
one-dimensional space generated by v, that is the map 

R x F � E  
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given by (t, y) 1-+ tv + y is an invertible continuous linear map. 
(a) If E = R n show that such a subspace exists. 
(b) Show that the map {3 :  (t, y) 1-+ a(t, x0 + y) is a local 01 -isomorphism 
at (0, 0) . You may assume that D2o. exists and is continuous, and that 
D2a(O, x) = id. This will be proved in §4. Compute D{j in terms of D1a 
and D2o.. 
(c) The map u :  ( t, y) t-+ x0 + y + tv is obviously a 01-isomorphism, because 
it is composed of a tmnslation and an invertible linear map. Define locally 
at x0 the map cp by cp = {3 o u-1 , so that by definition, 

cp(xo + y + tv) = o.(t , Xo + y) . 

Using the chain rule, show that for all x near x0 we have 

If we view cp as a change of chart near x0, then this result shows that the 
vector field f when tmnsported by this change of chart becomes a constant 
vector field with value v .  Thus near a point where a vector field does not 
vanish, we can always change the chart so that the vector field is stmight
ened out. This is illustmted in the following picture: 

Vo 

In this picture we have dmwn the flow, which is normalized on the left, 
the vector field being constant. In geneml, suppose cp :  Vo � Uo is a C1 -
isomorphism. We say that a vector field g on Vo and f on Uo corTespond 
to each other under cp, or that f is transported to Vo by cp if we have the 
relation 

f(cp(x)) = Dcp(x)g(x) , 

which can be regarded as coming from the following diagmm: 



g 
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J" 

In the special case of our Exercise; g is the constant map such that g(x) = v 
for all x E Vo .  
Solution. (a) If E = Rn, then we can choose F to be the orthogonal 
complement of the one-dimensional space generated by v which we denote 
by V. Then 

Rn = V Ee F. 

One can simply construct a basis { v, v2 , • • •  , Vn} of Rn and take F to be 
the subspace spanned by { v2 , . . . , Vn} .  
(b) Consider the maps X1 and X2 such that Xl (t , y) = t and x2(t , y) = y. 
Then {3 = a(x1 , xo + X2) so that 

D{3(t, y) = D1a(t, xo + Y)Xl + D2a(t, Xo + Y)X2 · 

Evaluating at {t, y) = (0, 0) we get 

D/3(0, 0) = VX1 + idX2 · 
So 

D/3(0, O) (t' , y') = vt' + y' 
and therefore D/3 is invertible at {0, 0) .  The inverse mapping theorem im
plies that {3 is a local C1-isomorphism. 
(c) Differentiating with respect to t we see that 

Dcp(x)v = a' (t, xo + y) = f(a(t, xo + y)) = f (cp(x)) . 

XIX.3 Linear Differential Equations 

Exercise XIX.3.1 Let A :  J � Matnxn be a continuous map from an 
open interval J containing 0 into the space of n x n matrices. Let S be the 
vector space of solutions of the differential equation 
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X'(t) = A(t)X(t). 

Show that the map X t-+ X(O) is a linear map from S into Rn, whose 
kernel is { 0} . Show that gi11en any n-tuple G = ( c1 , • • • , Cn) there exists a 
solution of the differential equation such that X(O) = G. Conclude that the 
map X 1-+ X(O) gives an isomorphism between the space of solutions and 
Rn . 

Solution. Consider the map � :  S -+  Rn defined by X 1-+ X(O) .  Then by 
definition we have 

�(X + Y) = (X + Y)(O) = X(O) + Y(O) = �(X) + C)(Y),  

and 
C)( eX) = (cX) (O) = cX(O) = �(X) , 

so C) is linear. Since the function which is identically 0 satisfies the differen
tial equation, the uniqueness of the solutions implies that the kernel of � is 
{0}. Moreover, given any n-tuple C, Theorem 3. 1 guarantees the existence 
of a solution verifying X(O) = C. Thus the map C) is bijective and therefore 
this map gives an isomorphism between the space of solutions and Rn. 

Exercise XIX.3.2 (a) Let go , . . .  , 9n-1 be continuous functions from an 
open interoal J containing 0 into R. Show that the study of the differential 
equation 

Dny + 9n-tDn-ly + · · · + 9oY = 0 
can be reduced to the study of a linear differential equation in n-space. 
{Hint: Let Xt = y, X2 = y' , • • •  , Xn = y(n-l) .} 
(b) Show that the space of solutions of the equation in part (a} has dimen
sion n. 

Solution. Let (*) be the equation Dny + 9n-tDn-ly + · · · + 9oY = 0. We 
see that with the notation of the hint we have 

D:tt = X2 , • • • , Dxn-1 = Xn 

and 
Dxn = -on-IXn - · · · - 9oXt . 

Consider the matrix 

0 1 0 0 • • • 0 
0 0 1 0 • • • 0 

A(t) = • • • 
• • • 
• • • 

0 0 0 0 • • • 1 
-go (t) -gl (t) • • • • • • • • • -On-t (t) 

and let X(t) = (xi (t) , . . . , Xn(t)) . If y solves (*) , then we see that X solves 
the equation X'(t) = A(t)X(t) . Conversely, if X solves X'(t) = A(t)X(t) , 
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then x1 solves (*) , so we have reduced the study of (*) to the study of a 
linear differential equation in n-space. 
(b) Exercise 1 implies that the space of solutions of (*) has dimension n. 

Exercise XIX.3.3 Give an explicit power series solution for the differen-
tial equation 

du 
dt = Au(t) , 

where A is a constant n x n matrix, and the solution u(t) is in the space 
of n x n matrices. 

Solution. The power series 

u(t) = f (tAt 
0 n. n= 

converges absolutely and uniformly on every compact interval because 

(tA)n < l tAin 
' - ' . n. n. 

The derived series is given by 

oo (tA)n 
L A ' 0 n. n= 

which also converges absolutely and uniformly on every compact interval. 
Therefore u'(t) = Au(t) , as was to be shown. 

Exercise XIX.3.4 Let A :  J -+  L(E, E) and let 'l/J :  J -+  E be continuous. 
Show that the integral curves of the differential equation 

{3' (t) = A(t){j(t) + ,P(t) 

are defined on all of J. 

Solution. We proceed as in Theorem 3.1 .  Let f(t, v) = A(t)v + ,P(t) . Since 

f(t, v2) - f(t , Vt ) = A(t) (v2 - Vt ) , 

we see that f verifies the Lipschitz condition of Theorem 2.4. Condition 
(i) is also satisfied. Proceeding as in the proof of Theorem 3. 1 we see that 
f(t, {3(t)) is bounded on [0 , to) .  Conclude. \ 
Exercise XIX.3.5 For each point (to , xo) E J x E let v (t , t0 , x0) be the 
integral curve of the differential equation 

et' (t) == A(t)et(t) 
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satisfying the condition a( to) = x0 • Pro'IJe the following statements: 
(a) For each t E J, the map x .....,. v( t, s, x) is an invertible continuous linear 
map of E onto itself, denoted by C(t, s) . 
{b) For fixed s, the map t .....,. C(t, s) is an integml curve of the differential 
equation 

w'(t) = A(t) o w(t) 
on L(E, E), with initial condition w(s) = id. 
(c) For s, t, u E J we have 

C(s , u) = C(s, t)C(t, u) and C(s, t) = C(t, s)-1 • 

{d) The map (s, t) .....,. C(s, t) is continuous. 

Solution. (a) Let a and {3 be solutions of the differential equation with 
a( to) = x1 and {3(t0) = x2 • Then a + {3 is a solution of the differential 
equation with (a +f3) (t0) = x1 +x2 s� the uniqueness theorem implies that 

C(t, s) (x1 + x2) = C(t , s) (x1 ) + C(t, s) (x2) . 
Similarly, we see that C(t, s) (ax) = aC(t, s)(x) . Theorem 2. 1 (with E = 0) 
implies at once the continuity of C(t, s). We contend that the map C(t, s) 
is bijective. Let Xo E E and let e be the integral .curve such that e(t) = Xo . 
Let y = e(s) . Then C(t, s) (y) = Xo which shows that the map C(t, s) is 
surjective. Clearly, the uniqueness theorem implies that C(t, s) (x) = 0 if 
and only if x = 0, so C(t, s) is injective, thereby proving our contention. 
(b) For every x E E, we have 

A(t)w(t)x = A(t)C(t, s)x = A(t) (v(t, s, x)) = v'(t, s , x) 

and 
(w(t)x)' = v'(t, s, x) . 

The rule for differentiating a product implies that (w(t)x)' = w'(t)x so 
we see that w is an integral curve for the differential equation w' ( t) -
A(t) o w(t) . Moreover we have w(s) = C(s, s) and 

· 

C(s, s)x = v(s, s , x) = x, 

thus w(s) = id. 
(c) We see that � :  s .....,. C(s, t)C(t, u)x solves the differential equation and 
we have �( t) = v( t, u, x) so the uniqueness theorem implies that 

C(s, t)C(t, u)x = C(s , u)x 

as was to be shown. For the second assertion, put s = u in the formula we 
just proved. 
(d) Observe that 

C(s, t) = C(s ,  to)C(to , t) = C(s, to)C(t, to)-1 

and use part (a) to conclude. 
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Exercise XIX.3.6 Show that the integml curve of the non-homogeneous 
differential equation 

{3'(t) = A(t),B(t) + 1/J(t) 
such that {3(t0) = xo is given by 

{j(t) = C(t, to)xo + ft C(t, s)¢(s)ds. 
lto 

Solution. Aspplying the chain rule we get 

{3' (t) = C'(t, to)x0 + C(t, t)¢(t) + ft C'(t, s)¢(s)ds 
ito 

= C'(t, to)xo + 1/l(t) + ft C'(t, s)¢(s)ds, 
ito 

and we also have 

A(t)fj(t) + 1/l(t) = A(t)C(t, to)xo + ft A(t)C(t, s)¢(s)ds + 1/l(t) 
ito 

= C'(t, to)xo + ft C'(t, s)¢(s)dx + 1/l(t) , 
ito 

thus proving that {3'(t) = A(t){3(t) + ,P(t) . At t = to we have {3(to) = 
x0 thereby proving that the integral curve of the given non-homogeneous 
differential equation is given by 

fj(t) = C(t, t0)x0 + ft C(t, s)¢(s)ds. 
lto 





XX 
Multiple Integrals 

XX. l  Eleme�tary Multiple Integration 

The first set of exercises shows how to generalize the class of integrable 
functions. 

Exercise XX.l.l Let A be a subset of Rn and let a E A. Let f be a 
bounded function defined on A. For each r > 0 define the oscillation of f 
on the ball of radius r centered at a to be 

o(J, a, r) = sup 1/(x) - f(y) l 

the sup being taken for all x, y E Br (a) . Define the oscillation at a to be 

o(f, a) = lim o{/, a, r) . r--+0 

Show that this limit exists. Show that f is continuous at a if and only if 

o(f, a) = 0. 

Solution. The function f is bounded so o(f, a, r) exists. If r1 < r2 , then 

so limr--+O o(/, a, r) exists. . 
Suppose f is continuous at a. Then given e > 0 there exists r0 such that 

if lz - a ( < ro ,  then 1/(z) - f(a) l < e/2. So if x, y E Br0 (a) , then 
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1/(x) - /(71) 1  < 1/(x) - f(a) l  + 1/(a) - /(y) l  < E, 

hence o(f, a) = 0. Conversely, if o(/, a) = 0, then given E > 0 there exists 
an r0 such that if r � ro , then o(/, a, r) < E. Hence if x E Br(a) , then 

1/(x) - /(a) l  < E 

proving that f is continuous. 

Exercise XX.l.2 Let A be a closed set, and let f be a bounded function 
on A. Given E, show that the subset of elements x E A such that o(f, x) > E 
is closed. 

Solution. Assume that E > 0 and let 

S = {x E S : o(f, x) > E} . 

Let {an} be a sequence in S converging to some a E A. We must show that 
a E S. Suppose not, so that o(/, a) < E, and write o(f, a) = E - 6, where 
6 > 0. Select ro such that o(f, a, ro) < E - 6/2 and choose no such that 
ano E Bro/2(a) . Then o(/, ano , ro/2) < E, which is a contradiction. 

Exercise XX.1.3 A set A is said to have measure 0 if given E, there 
exists a sequence of rectangles { R 1 , R2 , . . . } covering A such that 

00 
L v(R; ) < E. 
j=l 

Show that a denumemble union of sets of measure 0 has measure 0. Show 
that a compact set of measure 0 is negligible. 

Solution. Let 81 , 82, . . .  be sets of measure 0. For each i select a covering 
of Si by rectangles {Rti , R2i , . . .  } such that 

00 
L v(R;i) < E2-i . 
j=l 

Then {R;i }t<i,j<oo covers U Si and 
00 00 00 
L Lv(R;i) < E L 2-i = E, 
i=l j=l i=l 

so u si has measure o. 
Now suppose that S is compact and has measure 0. From any covering 

of S we can extract a finite subcovering, so from the definition of measure 
0, we see that there exists a finite number of rectangles whose union covers 
S and such that the sum of their volumes is < E. This proves that S is 
negligible whenever S is compact and has measure 0. 



XX.l Elementary Multiple Integration 339 

Exercise XX.1.4 Let f be a bounded function on a rectangle R. Let D 
be the subset of R consisting of points where f is not continuous. If D has 
measure 0, show that f is integrable on R. {Hint: Given f, consider the set 
A of points x such that o(j, x) ;?: f. Then A has measure 0 and is compact.] 

Solution. Since A c D, the set A has measure 0, and since A is bounded 
and closed, it is compact, thus A is negligible. Cover A by a finite number 
of open rectangles R1 , • • •  , Rk such that E v(�) < e. Then the set 

is closed and bounded, therefore compact, and by definition of the oscil
lation at each point x E C we can find a rectangle Qx centered at x such 
that for all y, z E Qx, we have 

ff(y) - f(z) f < f. 

This condition will play the same role as uniform continuity in the proof 
of Theorem 1 .3. From the covering {Qx}xec of C we can extract a finite 
subcovering {Qj }l<j<m· Then by projecting the sides of each rectangle 
Rt , . . .  , Rk and Q1 , . . .  , Qm on each factor we get a partition P of R. Refine 
P so that if 81 , • • •  , Sp are the rectangles of P which intersect R1 , • • •  , Rk ,  
then E v(Si) < 2f. To conclude, estimate U(P, f) - L(P, f) as in the proof 
of Theorem 1 .3. 

Exercise XX.1.5 Prove the converse of Exercise 4, namely: If f is inte
grable on R, then its set of discontinuities has measure 0. {Hint: Let A1;n 
be the subset of R consisting of all x such that o(j, x) > 1/n. Then the 
set of discontinuities of f is the union of all A1;n for n = 1, 2, . . . so it 
suffices to prove that each A1;n has measure 0, or equivalently that.A1;n is 
negligible.] 

Solution. Given f > 0, there exists a partition P = (81 , • • • , Sr) of R such 
that f U(P, f) - L(P, f) < - .  

n 
Let 81 , . . .  , Sk be a finite number of rectangles of P which cover A1;n and 
let St , . . .  , Sm be the rectangles whose interior intersects A1;n · Then we 
have 

� [s�p{J) - i�f(/)] v(S;) < : , 

however At;n = {x E R :  o(f, x) > 1/n} so 
m 

L v(Sj ) < e. 
j=l 
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The union of the boundaries of the rectangles Sm+t , . . .  , Sk has measure 0, 
so we conclude that A11n has measure 0. 

Exercise XX.1.6 Let A be a subset of an. Let t be a real number. Show 
that lJ(tA) = tlJ(A) (where tA is the set of all points tx with x E A). 

Solution. Assume that t � 0. Suppose that x E 8(tA) and write x' = tx for 
some x E A. By assumption, for every E > 0 the open ball BE {x') intersect 
tA, so there exists an element y' = ty with y E A, and 

IY' - x' l < E. 

The above inequality implies lx - Yl < e/ lt l , so BE/Itl (x) intersects A. 
Sinrllarly, we find see that BE/Itl (x) intersects the complement of A, thus 
lJ(tA) c to(A) . Reversing the argument proves that tlJ(A) c o(tA) . 
Exercise XX.l. 7 Let R be a rectangle, and x, y two points of R. Show 
that the line segment joining x and y is contained in R. 

Solution. Write x = (xt , . . .  , Xn) and y = (yt , . . .  , Yn), and suppose that 
the rectangle R is given by the product It x · · · x In . To show that the 
line segment between x and y is contained in R it suffices to show that 
for each j, the projection of the segment on the j-th factor. is contained in 
the interval I3 • The desired projection is given by x3 + t(y3 - x3 ) . Since 
Xj ,  'Yi E Ij , 0 < t � 1, and Ij is convex, the line segment between these two 
points is contained in Ij . 

Exercise XX.1.8 Let A be a subset ofRn and let A0 be the interior of A. 
Let x E A0 and let y be in the complement of A. Show that the line segment 
joining x and y intersects the boundary of A. {Hint: The line segment is 
given by x + t(y - z) with 

0 < t s 1. 
Consider those values of t such that (0, t] is contained in A0, and let s be 
the least upper bound of such values.] 

Solution. Let S be the set of u E [0, 1) such that for all t E [0, u) , x+t(y-x) 
is contained in A0• This set is non-empty because 0 E S and it is bounded 
by 1.  Let c be the least upper bound of S. We contend that the point P 
defined by 

P = x + c(y - x) 
belongs to the boundary of A. If not, then we must consider two cases. 
Case 1 .  If P is in the interior of A, then some open ball centered at P is 
contained in A. So for some small 6 > 0, the point c + 6 E S because the 
ball is convex. This contradicts the fact that c is the least upper bound for 
s. 
Case 2. If P is in the interior of the complement of A, arguing as in case 
1, we find that for some small 6 > 0, c - 6 is an upper bound for S which 
again contradicts the definition of c. 
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Exercise XX.l.9 Let A be an admissible set and let S be a rectangle. 
Prove that precisely one of the following possibilities holds: S is contained 
in the interior of A, S intersects the boundary of A, S is contained in the 
complement of the closure of A. 

Solution. If S is contained in the interior of A, then clearly, S does not 
intersect the boundary of A and S is not contained in the complement of 
the closure of A. Suppose S is not contained in the interior of A, so S 
intersects the complement of the interior of A. We consider two cases. 
Case 1. Suppose S also intersects the interior of A, then by Exercises 7 and 
8 we see that S intersects the boundary of A and clearly S is not contained 
in the complement of the closure of A. · 
Case 2. If S does not intersect the interior of A, then either S intersects 
the closure of A in which case S intersects the boundary of A, or S is 
contained in the complement of the closure of A. 

Exercise XX.l.lO Let A be an admissible set in an , contained in some 
rectangle R. Show that 

Vol(A) = lubp E v(S) , 
S¢A 

the least upper bound being taken over all partitions of R, and the sum 
taken over all subrectangles S of P such that S C A. Also prove: Given e, 
there exists 6 such that if size P < 6, then 

Vol(A) - E v(S) < t:, 
SeA 

the sum being taken over all subrectangles S of P contained in A. Finally, 
prove that 

Vol(A) = glbp v(S) ,  
SnA not empty 

the sum now being taken over all subrectangles S of the partition P having 
a non-empty intersection with A. 

Solution. Let f = lA .  Then by definition, Vol(A) = lA(l) = IR(f) .  Given 
a partition P of R, the lower sum is given by 

L(P, J) = E iW(f)v(S) . 
SEP 

If S is not contained in A, then inf s (f) = 0 and is S if contained in A, 
then infs (/) = 1,  consequently 

L(P, f) = E v(S). 
SeP,ScA 
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By definition of the integral, we conclude that 

Vol(A) = lubp L v(S). 
seA 

Since I is admissible, there exists 6 > 0 such that if P is a partition of 
size < 6, then 

But 

thus 

as was to be shown. 

U(P, /) - L(P, /) < E. 

L(P, /) < Vol( A) < U(P, /) , 

Vol(A) - L v(S) < E, 
seA 

If a rectangle S intersects A, then sup8(/) = 1 and if S does not intersect 
A, then sups(/) = 0, so 

U(P, j) = v(S). 
SnA not empty 

By definition of Vol( A) it follows that 

Vol(A) = glbp v(S) . 
SnA not empty 

Exercise XX.l .ll Let R be a rectangle and f an integrable function on 
R. Suppose that for each rectangle S in R we are given a number 18/ 
satisfying the following conditions: 
(i) If P is a partition of R, then 

IR.J = Lisf· 
s 

(ii) If there are numbers m and M such that on a rectangle S we have 

then 

m $. f(x) $. M for all x E S, 

mv(S) � lsf � Mv(s) . 

Show that IR.f = IRf . 

Solution. Let S be a subrectangle of a partition P of R. Then for all x E S 
we have 

so 
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irf(f)v(S) � IS/ � s�p(/)v(S) . 

L(P, f) � � 18/ � U(P, /) , 
seP 

and therefore IR,f = IRf· 
Exercise XX.l.12 Let U be an open set in Rn and let P E U. Let g be a 
continuous function on U. Let V,. be the volume of the ball of radius r .  Let 
B(P, r) be the ball of radius r centered at P. Prove that 

g(P) = lim ,� f g. r-+O Vr J B(P,r) 
Solution. Given E > 0, there exists 6 such that if X E B(P, r) with r < 6, 
then 

g(P) - E � g(X) < g(P) + E, 

so if r < 6, then 

(g(P) - e) f 1 � f g < (g(P) + e) f 1 . j B(P,r) j B(P,r) j B(P,r) 
If r > 0, then V,. > 0 because we can always inscribe a small non-degenerate 
rectangle in the open ball B(P, r) , thus for all r < 6 we have 

So the limit 

g(P> - ,� r g < e. Vr JB(P,r) 

1. 1 l 1m - g r-+O Vr B(P,r) 
exists and is equal to g(P) . 

XX.2 Criteria for Adm.issibility 

Exercise XX.2.1 Let g be a continuous function defined on an interval 
[a, b] . Show that the graph of g is negligible. 

Solution. Given E > 0, choose n such that lo(x) - g(y) l < f whenever 
lx - Yl < (b - a)fn . For k = 0, . . . , n let ak = a + ! (b - a) and let 
Ij = [aj , aj+t] for j = 0, .· . . , n - 1.  Then for each j = 0, . . . , n - 1 consider 
the rectangle 

Rj = Ij x [g(aj) - e, g(aj) + e] . 
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By definition, the graph of 9 is the set of all pairs of points ( x, 9( x)) in 
[a, b) x R, so we see that 

graph(9) c U R; 
j 

and since v(R;) = 2e(b - a)/n we have 

E v(R;) = 2e(b - a) , 
j 

which proves that the graph of 9 is negligible. 

Exercise XX.2.2 Let 91 , 92 be continuous functions on (a, b] and assume 
that 91 � 92 · Let A be the set of points (x, y) such that a � x � b and 
91 (x) < y � 92(x) .  Show that A is admissible. 

Solution. The set A is clearly bounded. The map defined by x 1-+ (x, 91 (x)) 
is continuous, and so is the map x 1-+ ( x, 92 (x)) so we see that the boundary 
of A is contained in the union of the graphs of 91 and 92 and the two 
vertical segments given by [(a, 91 (a)) ,  (a, 92 (a))] and ((b, 9t (b)) , (b, 92(b))) . 
The union of negligible sets is negligible, so A is admissible. 

Exercise XX.2.3 Let u be open in an and let I :  u -+ an be a map of 
class 01 

• Let R be a closed cube contained in U, and let A be the subset of 
U consisting of all x such that 

Det l'(x) = 0. 

Show that f(AnR) is negligible. {Hint: Partition the cube into Nn subcubes 
each of side s/N where 8 is the side of R, and estimate the diameter of 
each f(A n S) for each subcube S of the partition.} 

Solution. Let e > 0. Since R is compact and I is of class 01 , the map /' is 
uniformly continuous on R, so there exists N such that if we subdivide R in 
Nn subcubes, then for each subcube S we have fl' (y) -l'(x) f < E whenever 
x, y E S. Given x  E S let 9(y) = f(y)-J'(x)y. Then 9'(y) = f'(y)-f'(x) for 
all y E S, so by the mean value theorem we see that fg(x) - g(y) f < efx - yf 
for all x, y E S. Hence · 

8 
lf(y) - f(x) - f'(x)(y - x) l < E lx - Yl < ECt N for all y E S, 

where 01 is a positive constant depending only on n. If AnS is non-empty, 
we can take x E S. In this case, the above inequality shows that if V is the 
image of f'(x) , then {/(y) : y E S} lies within t.Cts/N of f(x) + V. But 
since x E A n  S, the dimension of V is � n - 1. On the other hand, there 
exists a number M such that 
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lf(y) - /(x) l < Mfx - Yl for all x, y E R, 

hence 1/(y) - f(x) f :5 C2s/N where C2 is a positive constant. This implies 
that {/(y) : y E S} is contained in 8 cylinder of height ECts/N whose 
base is an (n - I)-dimensional sphere of radius � C2sfN. ·The volume of 
this cylinder is � E03(s/N)n where 03 is a positive constant. There are at 
most Nn subcubes S which intersect A so f(S n A) lies in 8 set of volume 
< E.Casn. This concludes the exercise. 

XX.3 Repeated Integrals 

Exercise XX.3.1 Let f be defined on the square S consisting of all points 
(x, y) such that 0 � x � 1 and 0 � y < 1 .  Let f be the function on S such 
that 

(a) Show that 

does not exist. 

{ 1 if x is irrational, f(x, y) = ya if x is rational. 

{b) Show that the integral Is(!) does not exist. 

Solution. (a) If x is irrational, then 

11 /(x, y)dy = 1 .  

If x is rational, then we have 

{1 {1 [y4 ] 1 1 
lo f(x, y) = lo y3dy = 4 o 

= 
4 · 

So if F(x) = J; f(x, y)dy we found that 

F( ) = { 1 if x is irrational, x 1/4 if x is rational. 

This implies that every upper Riemann sum of F is equal to 1 and every 
lower Riemann sum is equal to 1/4, and therefore the repeated integral 

does not exist. 
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(b) We can partition (0, 1) in n equal subdivisions by letting ak = k/n for 
k = 0, . . .  , n. We call such a partition an n-partition of (0, 1) and we denote 
it by Pn• 

Let P be a partition of S. Then the upper sum with respect to this 
partition is equal to 1. It suffices to show that 

for all n, because there exists a partition P' and an integer m such that 
L( P, f) - L( P', /) is small and P m x P m is a refinement of P'. The volume 
of a rectangle in Pn x Pn is 1/n2 , so adding the contribution of each row 
of rectangles we find that 

and the inequality drops out. Thus f is not integrable. 

XX.4 Change of Variables 

Exercise XX.4.1 Let A be an admissible set, symmetric about the origin 
(that means: if x E A, then -x E A). Let I be an admissible function on 
A such that 

f(-x) = -f(x) . 

Show that L / = 0. 

Solution. Let cp be the function defined by cp(x) = -x. Then 

1 I = f (! o �P) I�<p l · cp(A) j A 

But cp(A) = A, lt.\cp l  = 1 ,  and I o cp(x) = -f(x) , so 

which proves that fA f = 0. 
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Exercise XX.4.2 Let T :  Rn --. Rn be an invertible linear map, and let 
B be a ball centered at the origin in Rn . Show that 

r e-(Ty,Ty) dy = r e-(z,z) d:z:l det T-1 1 ·  JT-l (B) ln 
{The symbol (, ) denotes the ordinary dot product in Rn .) Taking the limit 
as the ball 's radiw goes to infinity, one gets 

f e-(x,x) dxl det T-1 1 Jan 
- 11"n/2 1 det T-1 1 · 

Solution. Let f = T-1 in the change of variable formula so that 

r e- (Ty,Ty) dy = r
B 

e- (TT-lx,TT-1:�:) I det T-1 fdx JT-l (B) JE - L e- (z,z) dxl det T-1 1 . 

Exercise XX.4.3 Let Bn(r) be the closed ball of radius r in an, centered 
at the origin, with respect to the euclidean norm. Find its volume Vn ( r) . 
{Hint: First, note that 

Vn(r) = rnVn(1). 
We may assume n > 2. The ball Bn(1) consists of all (zt ,  . . .  , Xn) such 
that 

X� + • • • + X� < 1 . 
Put (x1 , x2) = (x, y) and let g be the characteristic function on Bn(l) .  
Then 

Vn(l) = 11 11 [ r g(x, y, xa , . . .  ' Xn)dxa . . . dxn] dxdy, 
-1 -1 }Rn-2 

where Rn-2 is a rectangle of radius 1 centered at the origin in (n- 2)-space. 
If x2 + y2 > 1, then g(x, y, X3 , . . .  , Xn) = 0. Let D be the disc of radius 1 
in R2• If x2 + y2 � 1 ,  then g(x, y, xa , . . . , Xn) , viewed as a function of 
(xa , . . .  , Xn) , is the characteristic function of the ball 

Hence the inner integral is equal to 

so that 
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Vn(1) = Vn-2(1) L (1 - x2 - 'li)<n-2)12dxdy. 

Using polar coordinates, the last integral is easily evaluated, and we find 
11"n 2"11"n-1 

�n(1) = nr and �n-1 (1) = 1 · 3 . 5 . . .  (2n - 1) '  

Suppose that r is a function such that r(x + 1) = xr(z) , r(1) = 1 ,  and 
r(1/2) = Ji. Show that 

11"n/2 
Vn(1) = r(1 + n/2) .] 

Solution. We compute the integral fn(l - x2 - y2)<n-2>12dxdy. Switching 
to polar coordinates, we see that 

So we get the desired formulas for Vn(1) by induction. Now we prove the 
formula Vn(1) = 1rnl2 jr(1 + n/2) . In Exercise 13, §3, of Chapter XIII, we 
have proved the formulas 

r(n) = (n - 1) 1  and r(1/2 + n) = 1 ' 3 . 5 . ;}2n - 1) 1r112 . 

If n is even, write n = 2p, so that r(1 + n/2) = r(1 +p) = pi , therefore the 
quotient 1rnl2 jr(1 + n/2) is equal to 1rP /pi , whence 

1rnl2 jr(1 + n/2) = 11"11 /pi = V211(1) = Vn(1) . 

If n i� odd, then write n = 2p - 1 ,  so that 

r(1 + n/2) = r(1/2 + p) = 1 · 3 . 5 . . . (2p - 1) 1rt/2 , 2P 
and therefore 

2P 1rn/2 jr(1 + n/2) = 1rp-l 1 . 3 . 5 . . . (2p _ 1) = �p-t (1 ) = Vn(1) 

which concludes the proof. 

Exercise XX.4.4 Determine the volume of the region in Rn defined by 
the inequality 
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Solution. We argue as in Exercise 3. Let Vn(r) be the volume of the given 
region. Then Vn ( r) = rn Vn ( 1) , so if g is the characteristic function of the 
region described by lx1 l + · · · + lxn l < 1 , we have 

and therefore g viewed as a function on x2 , • • • , Xn is the characteristic 
function of the region defined by lx2 l + · · · + lxn l :5 1 - fxl f , thus 

Vn(1) = Vn-1 (1) 11

1 
(1 - 1x1 1 )n-1dx1 . 

Integrating from -1  to 0 and then from 0 to 1 we find that the last integral 
is equal to 

Hence 
2n-l 2n 

Vn (l) = 1 Vi(1) = 1· n. n. 
Exercise XX.4.5 Determine the volume of the region in R2n = R2 x · · · x 
R2 defined by 

fz1 l + · · · + lzn I < r, 
where Zi = (Xi , Yi) and I Zi J = J xl + Yl is the euclidean norm in R 2 • 

Solution. We argue as in Exercises 3 and 4. Let V2n ( r) be the volume of 
the given region. Then V2n(r) = r2nV2n(1) ,  and we have 

V2n(1) = f [ f g(zt t  . . .  , .z,.)dz2 · · · dzn] dz1 , Jlz1 I S. l }Rn-2 
where g is the characteristic function of the region described by l z1 l + · · · + 
f zn f < 1 and where dzi = dxidYi · Consequently 

This last integral is equal to 

L (1 - Jx2 + y2)2n-2dxdy -
11 121f 

r(1 - r)2n-2d()dr 

Integrating by parts we find that 

- 211" 11 
r(1 - r)2n-2dr. 
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{1 {1 )2n-2d 1 
Jo r - r r = 

2n{2n - 1) , 

and since l/2{1) = 1r we obtain 

{27r)n 
V2n (l) = 

(2n) ! 
. 

Exercise XX.4.6 (Spherical Coordinates) (a) Define f :  R3 � R3 by 

Show that 

x1 - r cos 01 ,  
x2 - r sin 01 cos 02 , 
xa - r sin 61 sin 02. 

ll.J(r, Ot , . . .  , On-1 )  = r2 sin 01 . 

Show that / is invertible on the open set 

0 < r, 0 < 61 < 1r, 0 < 02 < 21r, 

and that the image under f of this rectangle is the open set obtained from 
R3 by deleting the set of points (x, y, 0) with y > 0, and x is arbitmry. 

Let S(r1 ) be the closed rectangle of points (r, 61 , 62) satisfying 

0 � r � r1 , 0 � 61 � 1r, 0 � 62 � 2,.-. 

Show that the image of S(r1 ) is the closed ball of radius r1 centered at the 
origin in R 3 • 
(b) Let g be a continuous function of one variable, defined for r � 0 .  Let 

G(x1 , x2, xa) = g( J x� + x� + x�) . 
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Let B(r1 ) denote the closed ball of radius r1 . Show that 

{ G = Ws r1 g(r)r2dr, J B(r1 ) Jo 
where Wa = 3V3 , and Va is the volume of the three-dimensi•al ball of 
radius 1 in R3 • 
(c) The n-dimensional generalization of the spherical coordinates is given 
by the following formulas: 

x1 = r cos fJ1 , 
x2 - r sin fJ1 sin 82 , 

• • • 
Xn-1 - r sin fJ1 sin 02 · · · sin On-2 cos On-1 , 

Xn - r sin fJ1 sin 92 · · · sin 9n-2 sin 9n-1 · 

We take 0 < r, 0 < 9i < 1r for i = 1 ,  . . .  , n - 2 and 0 < 9n-1 < 2?r. The 
Jacobian determinant is then given by 

6.1(r, fJ1 , . . .  , On-1 ) - rn-1 sinn-2 fJ1 sinn-a fJ2 · · · sin 9n-2 
- rn-1 J(9) . 

Then one has the n-dimensional analogue of dxdy = rdrdfJ, namely 

dx1 · · · dxn = rn-1J(9)drdfJ1 · · · d9n-l abbreviated rn-1drdJ..t(O) . 

Assuming this formula, define the (n - !)-dimensional area of the sphere 
to be 

Wn = A(S"-1 ) = j dJL(O) ,  

where the multiple integral on the right is over the intervals prescribed above 
for fJ = ( fJ1 , . . .  , On-1 ) .  Prove that 

A(sn-1 ) = nVn, 

where Vn is the n-dimensional volume of the n-ball of mdius 1 .  This gen
eralizes the formula Wa = 3V3 carried out in 3-space. 

Solution. (a) The Jacobian of f is given by 

cos 91 -r sin 91 0 
sin 81 cos 92 r cos 91 cos (}2 -r sin 91 sin 92 
sin 81 sin 92 r cos 01 sin 62 r sin 01 cos fJ2 

so we have 6.1 = r2 sin 01 . 

' 

Let S be the set obtained from R3 by deleting the set of points (x1 , x2 , 0) 
with x2 > 0 and x1 arbitrary. Suppose that xa = 0, then fJ2 = 1r, so 
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we have x2 < 0, thus /(R) c S. Conversely, if (x1 , x2 , x3) e S, let r = 
v' x� + x� + x�, and let 61 be such that 0 < 01 < 1r and r cos 01 = x1 • Then 
polar coordinates in the plane (x2 , x3) imply that there exists p > 0 and 
0 < 62 < 21r such that x2 = pcos fJ2 and xa = psin 02. Since x� + x� + x� = 
r2 we must have p2 = r2 sin2 fJ1 . This shows that f is invertible on the 
rectangle and its inverse is 01 because the Jacobian of f is everywhere 
non-zero. 

Since x� + x� + x� = r2 we see that (x 1 , x2, x3) belongs to B(r1 ) .  Con
versely, if {x1 , x2 , xa E B(r1 ) ,  then we have x� + x� + x� < rl and since 
we set r = x1 + x2 + x3 we conclude that the image of S(r1) is B(rl) · 
{b) We use the change of variable formula along with spherical coordinates, 
80 that 

hence 

L(Rt) G = 211" (fort g(r)�dr) (foff sin(Jtd(h) = 41!" fort g(r)r2dr. 

But Va = 41r /3 80 the formula drops out. 
(c) The n-dimensional volume of the n-ball Bn is defined to be 

so switching to spherical coordinates we find that 

Exercise XX.4. 7 Let T :  Rn -+ an be a linear map whose determinant 
is equal to 1 or -1 .  Let A be an admissible set. Show that 

Vol(T A) = Vol{ A). 

(Examples of such maps are the so-called unitary maps, i. e. those T for 
which (Tx, Tx) = (x, x) for all x E Rn .) 
Solution. The linear map is invertible so we can apply the change of 
variable formula 

Vol(TA) = I lTA = I lA i det TI = I lA = Vol(A) . jTA }A }A 

Exercise XX.4.8 (a} Let A be the subset of R2 consisting of all points 



XX.4 Change of Variables 353 

with 0 � t1 and t1 + t2 ::;; 1 .  {This is just a triangle.) Find the area of A by 
integration. 
{b) Let v1 , v2 be linearly independent vectors in R 2 • Find the area of the 
set of points t1v1 + t2v2 with 0 � ti and t1 + t2 � 1 ,  in te�s o/ Det(v1 , v2) .  

Solution. (a) The vectors e1 and e2 are the unit vectors, so using repeated 
integration we find 

Vol(A) = 11 11-:1: 
dydx = 11

1 - xdx = � · 

(b) Let T be the linear transformation such that Te1 = v1 and Te2 = v2 . 
Using the notation of (a) we see that we want to compute the area of T A. 
Th� 

. 

Vol(T A) = !Det(v1 ,  112) 1Vol(A) = 1Det(�1 ' v2) 1
. 

Exercise XX.4. 9 Let v1 , • • •  , Vn be linearly independent vectors in R n . 
Find the volume of the solid consisting of all points 

with 0 < ti and t1 + · · · + tn < 1 .  

Solution. Let S be the solid described in the text and let T be the invertible 
linear transformation such that Tei = Vi for all i .  Let A be the subset of 
Rn consisting of all points t1e1 + · · · + tnen with 0 < ti and t1 + · · · + tn < 1.  
Then we have 

Vol(S) = I det(T) IVol(A) . 

We contend that Vol(A) = 1/nl . This result is a consequence of Exercise 
4. Indeed, in the expression lx1 l + · · · + lxn I each Xi can be either positive 
or negative, so the region defined by lx1 1 + · · · + lxn l < 1 is the union of 
2n disjoint regions and the volume of each of these subregions is equal to 
Vol(A) . The formula obtained in Exercise 4 proves our contention. 

Exercise XX.4.10 Let Ba be the closed ball of radius a > 0, centered at 
the origin. In n-space, let X = (x1 , . . .  , Xn) and let r = lXI , where I · I is 
the euclidean 1�orm. Take 

0 < a < 1 ,  

and let Aa be the annulus consisting of all points X with a �  lX I  < 1 .  Both 
in the case n = 2 and n = 3 (i. e. in the plane and in 3-space), compute the 
integral 

Ia = L,. l� l dx1 · · · dXn . 

Show that this integral has a limit as a -+  0.  Thus, contrary to what happens 
in 1-space, the function f(X) = 1/ IXI can be integrated in a neighborhood of 
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0. [Hint: Use polar or spherical coordinates. Actually, using n-dimensional 
spherical coordinates, the result also holds in n-space.J Show further that in 
9-space, the function 1/IXI2 can be similarly integrated near 0. 

Solution. In the case n = 2, we use polar coordinates together with a 
change of variable to obtain 

so 

1 1 1 1 11 1211' 1 
lXI 

dx1dx2 = J 
dxdy = -rdJJdr = 21r(l - a) , 

Aa Aa x2 + y2 a o r 

�!!t,L .. 
,
�

,
dx1dx2 = 21r. 

In the case n = 3 we use spherical coordinates and a change of variables 
to get 

hence �!!tL .. 
,
�

,
dx1dx2dx3 = 21r. 

Spherical coordinates and the change of variable formula imply that 

so 

Exercise XX.4.11 Let B be the region in the first quadrant o/R2 bounded 
by the cunJes xy = 1 ,  xy = 3, x2 - y2 = 1 and x2 - y2 = 4. Find the value 
of the integral 

by making the substitution u = x2 - y2 and v = xy. Explain how you are 
applying the change of variables formula. 

Solution. Let A be the rectangle defined by 

A =  { (u , v) E R2 : 1 � u � 4 and 1 � v � 3}. 

Let 1/J be the function defined by 1/J(x, y) = (u, x) where u = x2 - y2 and 
v = xy. Then 1/J : B __. A is 01 invertible, so by the change of variables 
formula 
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f 1A = f 1t�J<B> = f 1a 1a"' I ·  j A 11/J(B) 1 B 

J = ( 2x -2y ) 1/J y X ' 

so we ha.ve ILl1fJ I  = 2(x2 + y2) .  Therefore 

and since 

we find that 
I L 1A = (3 - 1) (4 - 1) = 6 

I L x2 + y2 dxdy = 3. 

Exercise XX.4.12 Prove that 

where A denotes the half plane x > a > 0 .  [Hint: Use the transformation 

x2 + y2 = u2 + a2 and y = vx .] 

Solution. We represent a point in the right half plane x � a by the in
tersection of a circle centered at the origin and a line passing through the 
origin. The variable u determines the radius of the circle and v determines 
the slope of the line. For a fixed u we see that v ranges between -u/ a and 
ufa. 
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Since x2 + y2 = a2 + u2 and y = vx we find that 

x =  ("'2 + a2 ) 1/2 

1 + v2 ( 2 + 2 ) 1/2 
and y = v  �

+ v
� . 

So if g( u, 11) = ( x, y) some elementary computations show that the deter
minant of the Jacobian is u 

a =  1 2 . 
+ v  

If I is the integral we want to compute, the change of variables formula 
implies 

However, lu/a dv 
1 2 = arctan(u/a) -u/a + 11 

so 

I = e-a2 100 
2ue-14

2 arctan(uja)du. 

Integrate by parts using the fact that e-u2 arctan(u/a)du -+ 0 as u -+ oo 
and arctan(O) = 0 to find the desired expression for I. 

Exercise XX.4.13 Find the integral 

j j j xyzdxdydz 

taken over the ellipsoid 

Solution. Let X =  xfa, Y = yfb, and Z = zfc. If I is the integral we want 
to compute, then the change of variables formula implies 

I =  jj' { (abc)2XYZdXdYdZ, jB(l) 
where B(l) is the open ball of radius 1 centered at the origin. Then Exercise 
1 implies that I = 0. One could also use spherical coordinates and the 
change of variables formula to find that 

1 =  (11 
r5dr) (1• 

cos lh sin3 fhdfh) (12• 
cos 62 sin 62d62) . 

Evaluating the middle integral we find 0. 
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Exercise XX.4.14 Let f be in the Schwartz space on Rn . Define a nor
malization of the Fourier transform by 

r (y) = f f(x)e-21ri:D•1Jdx. 
Jan 

Prove that the function h(x) = e-1rx2 is self dual, that is hv = h. 

Solution. We first investigate the case n = 1 .  In the chapter on the Fourier 
integral, it was shown that � I e -:e2 /2 e -ixy dx .= e -y2 /2 . 

Putting y = -./2iv and changing variables x = ..;2iU in the above formula 
we get 

v 2?r e -1ru e- .,..,uv du ....:. e -1rv • 

1 - tn=l 2 2 . 2 
V2i . 

This takes care of the case n = 1 .  In the general case, we have 

I e -?1':&2 e -21ri:&·1J dx = I . . .  I e -·< z� +· ·+:e!) e -211'( :&1'1/1 +· .  +z .. y .. ) dxt • • •  dxn 
n - I · · ·  I II e-w:e� e-2?1':&"11" dx1 • • • dxn 

k=l 

n 
II 2 2 - . e -1ry�c = e -1ry • 

k=l 
Exercise XX.4.15 Let B be an n x n non-singular real matrix. Define 
(f o B) (x) = f(Bx) . Prove that the dual of f o B is given by 

1 (/ 0 B)v(y) = /v (t B-ly) f iB II ' 

where IIBII is the absolute value of the determinant of B.  

Solution. We use the change of variables formula 

(I 0 B)v (y) - I f(Bx)e-211'i:&·1Jdx = 
1 1! 1 1  I f(x)e-211'iB- 1z•1Jdx 

-
11! 1 1  I f(x)e-211'i:D·' B- 111 dx = 

1 1� 1 1 r (t B-ly) . 

Exercise XX.4.16 For b E Rn define !b(x) = f(x - b) . Prove that 

(/b)v (y) = e-21rib·y 1v (y) . 
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Solution. The change of variables formula implies 

(/b) v (y) = I f(x - b)e-2w�·Ydz = I f(x)e-2ri(:�:+b)·Ydz = e-2wib·y /v (y) . 

XX.5 Vector Fields on· Spheres 

Exercise XX.&.l Prove the statements depending on inverse mapping 
theorems which have been left as exercises in the proof of the section. 

Solution. Consider the annulus 

A = {x e R3 : 1/2 < lX I < 3/2}. 

We extend E to A by E(rU) = rE(U) for any unit vector U and any 
number ·r such that 1/2 � r � 3/2. Since E is continuously differentiable, 
there exists a positive constant c > 0 which satisfies the Lipschitz condition 
on A 

IE( X) - E(Y) I � cfX - Yl for all X, Y E A. 
Choose t so small that 0 < t < 1/3 and 0 < t < c-1 •  Let Y e 83 and 
consider the map gy (X) = Y - tE(X) defined on A. Since ltE(X) I < 1/2 
we have 

1 1 1 - 2 < IY - tE(X) I � 1 + 2 '  
so gy is a map of the complete metric space S into itself. Moreover, gy is 
a contraction because 

By the shrinking lemma, gy has a unique fixed point, so there exists a 
unique X in A such that X +  tE(X) = Y. Conclude the exercise by mul
tiplying X and Y by v'l + t2. 



XXI 
Differential Forms 

XXI. l Definitions 

Exercise XXI.l.l Show that dd/ = 0 for any function /, and also for a 
1-form. 

Solution. Let f be a function. Then we have 

so that 

n 
df = Dtf dxt + · · · + Dnf dxn = L Di/ dxi , 

n n 

i=l 

dd/ = L L D;Dif dx; 1\ dxi. 
j=l i=l 

But since dx; 1\ dxi = -dxi 1\ dx; and dxi 1\ dxi = 0 we see that 

ddf = L (DsDkf - DkDsf) dxs 1\ dx�c , 
l<s<k<n 

and since we assume f to be 000, the partials commute and ddf = 0. 
Now suppose that w is a 1-form. It suffices to prove that dtk.J = 0 when 

w is decomposable. We write w = g dx�c so that 
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where li = Dig. An argument similar to the one given above shows that 

n 
ddL.J = E dli " dxi " dx�c = o. 

i=l 

Exercise XXI.1.2 Show that ddL.J = 0 for any differential fonn w .  

Solution. We prove the result by induction on the degree of the form. 
Suppose ddtp = 0 for all m-forms where m < p- 1. Let w be a decomposable 
p-form and write w = '1 A 1/J where 1/J is of degree 1. Then applying the 
formula of Theorem 1 . 1  we obtain 

where r = deg f1. Applying the same formula again we find 

The induction hypotheses and Exercise 1 imply dd'f/ = dd,P = 0 so ddL.J = 0. 

Exercise XXI.1.3 In 3-space, express dw in standard form for each one 
of the following w :  
(a) w = x dx + y dz. {b) w = xydy + x dz. 
(c) w = (sin x) dy + dz. {d) w = eY dx + y dy + ezu dz . 

Solution. (a) dw = dy A dz. 
(b) tk.J = y dx 1\ dy + dx A dz. 
(c) dw = (cos x) dx A dy. 
(d) dw = eY dy A dx + yexy dx A dz +  xexy dy A dz. 

Exercise XXI.1.4 Find the standard expression for dw in the following 
cases: 
(a) w = x2y dy - xy2 dx. {b) w = e:ey dx 1\ dz. 
(c) w = l(x , y) dx where I is a function. 

Solution. (a) dw = 4xy dx 1\ dy. 
(b) tk.J = xezy dy 1\ dx A dz. 
(c) dw = u dy l\ dx. 

Exercise XXI.1.5 (a) Express dw in standard form if 

w = x dy A dz + y dz A dx + z dx 1\ dy. 

{b) Let I, g, h be functions, and let 

w = l dy A dz +  g dz A dx + h dx  A dy. 

Find the standard form for dw. 



Solution. (a) We simply have 

dw = 3 dx A dy 1\ dz . 

(b) In this case we find 

XXI.l Definitions 361 

(of of 81) dw = ax 
+ {}y + 8z dx 1\ dy 1\ dz. 

Exercise XXI.l.6 In n-space, find an (n - 1)-fonn w such that 

dw = dx1 1\ · · · A dxn . 

Solution. Take for example 

Exercise XXI.1.7 Let w be a form of odd degree on U, and let f be a 
function such that f(x) :/; 0 for all x E U, and such that d(fw) = 0. Show 
that w A dw = 0. 

Solution. Let r be the degree of the form w. Then 

2 w l\ w = (-l)r w l\ w  = -w l\ w, 

thus w 1\ w = 0. This implies that 

0 = d(fw 1\ w) = d(fw) 1\ w - fw 1\ dw. 

By assumption, we know that d(fw) = 0 so fw l\dw = 0 and since f(x) =F 0 
for all x E U we conclude that w 1\ dw = 0. 

Exercise XXI.1.8 A form, w on U is said to be exact is there exists a 
form 1/J such that w = d'l/J. If w1 , w2 are exact, show that w1 1\ w2 is exact. 

Solution. Assume that WI = d'l/J1 and w2 = d,P2 • Then 

so the form WI 1\ w2 is exact. 

Exercise XXI.1 .9 Show that the form 

1 w(x, y, z) = 3(x dy 1\ dz + y dz 1\ dz + z dx 1\ dy) r 

is closed but not exact. As usual, r2 = x2 + y2 + z2 and the form is defined 
on the complement of the origin in R3 • 
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Solution. To prove that the form w is closed we must show that dw = 0. 
The only term that survives after taking the exterior derivative is dx A dy 1\ 
dz, so we must show that its coefficient is 0. We see that 

8 ( x ) -2x2 + y2 + z2 

ox (x2 + y2 + z2)3/2 
= 

(x2 + y2 + z2)5/2 ' 

so by symmetry, we see that dw is equal to 

-2x2 + y2 + z2 - 2y2 + x2 + z2 - 2z2 + x2 + y2 
( 2 2 2)5/2 

dx 1\ dy 1\ dz = 0, 
x + y  + z 

as was to be shown. Integrating this form over the unit 2-sphere in R 3 we 
find 47r so w is not exact. 

XXI.3 Inverse Image of a Forin 

Exercise XXI.3.1 Let the polar coordinate map be given by 

(x, y) = f(r, 9) = (r cos 9, r sin 9) . 

Give the standard form for /* ( dx) ,  /* ( dy) , and f* ( dx A dy) . 

Solution. We have 

f* (dx) = cos fJdr - r sin 9d9, 
/* ( dy) = sin Odr + r cos (Jd,(J, 
/* (dx A dy) = /* (dx) A /* (dy) = rdr A dO. 

Note that �/ = r. 

Exercise XXI.3.2 Let the spherical coordinate map be given by 

(x1 , x2 , xa) = f(r, 81 , 82) = (r cos 81 , r sin 81 cos 62 , r sin 81 sin 82) .  

Give the standardfonnfor j* (dx1 ) ,  j* (dx2) ,  /* (dxa) , /* (dx1/\dx2) ,  /* (dx1A 
dxa) ,  /* (dx2 A dxa), and j* (dx1 1\ dx2 A dxa) .  

Solution. The computations show that 

/* ( dx1 ) = cos 81 dr - r sin 81 d/J1 , 
/* ( dx2) = sin 81 cos 82 dr + r cos 81 cos 82d/J1 - r sin 81 sin 82d82 , 
/* ( dx3) = sin 81 sin 82dr + r cos 81 sin 82d/J1 + r sin 81 cos 82 d82 . 

Also, /* (dx1 A dx2) is equal to 

( r cos 92 )dr A d/J1 + ( -r cos 61 sin 61 sin fJ2 )dr 1\ d62 + ( r2 sin2 fJ1 sin 62 )dOt A fJ2 
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and /* (dxt /\ dxa) is equal to 

( r sin 62)dr 1\ dOt + ( r sin 61 cos Ot cos 62)dr 1\ d62 + ( -r2 sin2 Bt cos 62)d6t /\ 62 

and f* (dx2 1\ dxs) is equal to 

(r sin2 Bt )dr A dOt + (r2 sin Bt cos Ot )dBt 1\ 82 

and f* (dxt 1\ dx2 1\ dxa) is equal to 

r2 sin 61 dr 1\ d81 1\ d62 . 

XXI.4 Stokes' Forinula for Simplices 

Exercise XXI.4.1  Instead of using rectangles, one can use triangles in 
Stokes ' theorem. Develop this pamllel theory as follows. Let vo , . . .  , 111c be 
elements of Rn such that Vi - Vo (i = 1 ,  . . .  , k} are linearly independent. 
We define the triangle spanned by vo , . . .  , Vk to consist of all points 

tovo + · · · + tkvk 

with real ti such that 0 < ti and to + · · · + t k = 1 .  
We denote this triangle by T, or T(v0 ,  • • •  , vk ) · 

(a) Let Wi = vi - vo for i =  1 ,  . . . , k . Let S be the set of points 

StWt + · · · + BkWk 

with Bi > 0 and St + · · · + sk < 1 .  Show that T( v0 ,  • • •  , v�c ) is the tmnslation 
of S by vo . 

Define the oriented boundary of the triangle T to be the chain 
1c 

8°T = L< - l);T(vo , . . .  ' Vj , . . .  ' v�c ) . 
j=O 

(b) Assume that k = n, and that T is contained in an open set U of Rn . 
Let w be an ( n - 1) -form on U. In analogy to Stokes ' theorem for rectangles, 
show that 

Solution. (a) Since 

StWl + · • · + SlcWk + Vo = (1 - 81 - • • • - Bk)Vo + StVt + · · · + Bk111c , 

we see at once that T(v0, • • •  , v�c) is the translation of S by v0 •  
(b) The proof is carried out in Chapter 10 of Rudin's Principles of Math
ematical Analysis . 

The subsequent exercises do not depend on anything fancy, and occur in 
R2• Essentially, you don't need to know anything from this chapter. 
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Exercise XXI.4.2 Let A be the region of R2 bounded by the inequalities 

a < x < b 

and 
9I (x) � Y < 92(x) 

where g1 , g2 are continuous functions on (a, b] . Let C be the path consisting 
of the boundary of this region, oriented counterclockwise, as on the following 
picture: 

a b 

Show that if P is a continuous function of two variables on A, then 

L Pdx = I L -*dydx. 

Prove a similar statement for regions defined by similar inequalities but with 
respect to y. This yields Green's theorem in special · cases. The geneml 
case of Green's theorem is that if A is the interior of a closed piecewise 01 
path C oriented counterclockwise and w is a 1-form then 

Solution. The boundary of the region A can be written as 

C = Ot + L2 - 02 - Lt 

where 01 , 02 , £1 , and £2 are the curves shown on the figure. We have the 
following parametrization 

Ot (t) - (t, g1 (t)) , a < t < b, 
02(t) - (t, g2(t)) , a < t < b, 
Lt (t) = (a, t) , Yt (a) < t < 92(a) , 
L2(t) - (b, t) , gt (b) < t < 92(b) . 
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We have 

But 

f. f -�dydx }A 8y 

consequently f. f -�p dydx = f Pdx - f Pdx. JA Y lc1 lc2 
It is sufficient to show that JL1 Pdx = JL2 Pdx = 0, which follows from the 
fact that the derivative of a constant is 0. This proves Green's theorem in 
this case. 

In the subsequent exercises, you may assume Green's theorem. 

Exercise XXI.4.3 Assume that the function f satisfies Laplace 's equation 

82/ 82/ 
8x2 + 8y2 = 0, 

on a region A which is the interior of a curoe C, oriented counterclockwise. 
Show that 

f 81 dx - �dy = 0. lc 8y 8x 

Solution. Taking the exterior derivative of the form Udx - udy we get 

(8! 8/ ) 82/ 82! d aydx - lfXdy = {):x;2 dy A dx - {)y2 dx A dy = 0. 

Applying Green's theorem yields 

f 8/ 8/ f. f 82 I 82 I 
1 c 8y dx - 8x dy = - 1 A 8x2 + 8y2 dxdy = O. 

Exercise XXI.4.4 IfF = (Q, P) is a vector field, we recall that its diver
gence is defined to be div F = 8Qf8x + 8Pf8y. If C is a curve, we say 
that C is pammetrized by arc length if I IC'(s) l l  = 1 (we then use s as the 
pammeter). Let 

C(s) = (Dt (s) , g2 (s)) 
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be parametrized by arc length. Define the unit normal vector at s to be the 
vector 

N(s) = (g� (s) , -gi (s) ) . 
Verify that this is a unit vector. Show that ifF is a vector field on a region 
A, which is the interior of a closed curve C, oriented counterclockwise, and 
parametrized by arc length, then 

I L (div F)dydx = L F . Nds. 

If C is not pammetrized by arc length, we define the unit normal vector 
by 

N(t) n(t) = IN(t) l ' 

where IN(t) l is the euclidean norm. For any function f we define the nor
mal derivative (the directional _derivative in the normal direction) to be 

Dnf = (grad /) · n. 

So for any value of the pammeter t, we have 

(Dn/) (t) = grad /(C(t)) · n(t) . 
Solution. Since I IC'(s) l l = 1 this means that 

(gi )2(s) + (g�)2 (s) = 1 
which in turn implies that I IN(s) l l = 1.  Applying Green's theorem to the 
vector field ( -P, Q) we obtain 

I L (div F)dydx = L -Pdx + Qdy = L F · Nds. 

Exercise XXI.4.5 Prove Green's formulas for a region A bounded by a 
simple closed curve C, always assuming Green's theorem. 
(a) f�[(grad I) ·  (grad g) + g�f]dxdy = fc gDnfds. 
(b) JJA (g�f - f�g)dxdy = f0(gDnf - fDng)ds. 

Solution. (a) We write 

g grad I = (gDtf, gD2!) , 
so that 2 

div(g grad /) = �Dig/ Di/ + gDiDif· 
i=l 

By definition, Jlf = D
1
D1/ +D2D2/, so applying the divergence theorem 

to ggrad I we obtain 
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J L [(grad /) ·  (grad g) + gilf]dxdy = Ia gD0/ds. 

{b) By symmetry we also have 

J L [(grad g) · (grad f) + f Llg]dxdy = Ia f D0gds. 

Taking the difference of the above two equations we obtain Green's second 
formula. 

Exercise XXI.4.6 Let C : [a, b] --+ U be a 01 -curoe in an open set U of 
the plane. If f is a function on U (assumed to be differentiable as needed}, 
we define 

fa I = 1b f(C(t) ) I IC'(t) l l dt 
-------

= 1b f(C(t)) ( :) 2 + ( �) 2 dt. 
For r > 0, let x = r cos (J and y = r sin 8. Let cp be the function of r deji1�ed 
by 

cp(r) = 2
1 f I = -2 1 r" f(r cos O, r sin O)rdO, 
1rr lor 1rr Jo 

where Cr is the circle of radius r, parametrized as above. Assume that f 
satisfies Laplace 's equation 

82/ 82f 
8x2 + 8y2 = 0. 

Show that cp(r) does not depend on r and in fact 

/{0, 0) = _21 f f. 1rr lor 
{Hint: First take cp' ( r) and differentiate under the integral, with respect to 
r.  Let Dr be the disc of radius r which is the interior of Cr . Using Exercise 
4, you will find that 

V''(r) = 2!r J Lr 
div grad f(x, y)dydx = 2!r J Lr 

( �J + :;) dydx = 0. 

Taking the limit as r --+  0, proves the desired assertion.] 

Solution. Differentiating under the integral sign we get 

1 f27r 8/ 8/ 
VJ1(r) = 2,;: 

Jo 
ax cos O +  ay sin OdO. 
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Applying Stokes' theorem to the form w = -(8/ foy)dx + (8/ f8x)dy or 
Exercise 4 to the vector field (D1/, D2/) , we see that 

f. r 82/ 82/ f21r 8/ of . 
}A ax2 + 8y2 dxdy = r Jo 8X cos O + 8y sm OdfJ, 

and therefore cp'(r) = 0, thus cp is constant. Taking the limit as r -+ 0 in 
the expression for cp we obtain /(0, 0) so that cp(r) = /(0, 0) , which proves 
the desired assertion. 
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