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Preface

About the Text

This book was written for a sequence of courses on the theory and application of numerical
approximation techniques. It is designed primarily for junior-level mathematics, science,
and engineering majors who have completed at least the standard college calculus sequence.
Familiarity with the fundamentals of linear algebra and differential equations is useful, but
there is sufficient introductory material on these topics so that courses in these subjects are
not needed as prerequisites.

Previous editions of Numerical Analysis have been used in a wide variety of situations.
In some cases, the mathematical analysis underlying the development of approximation
techniques was given more emphasis than the methods; in others, the emphasis was re-
versed. The book has been used as a core reference for beginning graduate level courses
in engineering and computer science programs and in first-year courses in introductory
analysis offered at international universities. We have adapted the book to fit these diverse
users without compromising our original purpose:

To introduce modern approximation techniques; to explain how, why, and when they
can be expected to work; and to provide a foundation for further study of numerical
analysis and scientific computing.

The book contains sufficient material for at least a full year of study, but we expect many
people to use it for only a single-term course. In such a single-term course, students learn
to identify the types of problems that require numerical techniques for their solution and
see examples of the error propagation that can occur when numerical methods are applied.
They accurately approximate the solution of problems that cannot be solved exactly and
learn typical techniques for estimating error bounds for the approximations. The remainder
of the text then serves as a reference for methods not considered in the course. Either the
full-year or single-course treatment is consistent with the philosophy of the text.

Virtually every concept in the text is illustrated by example, and this edition contains
more than 2600 class-tested exercises ranging from elementary applications of methods
and algorithms to generalizations and extensions of the theory. In addition, the exercise
sets include numerous applied problems from diverse areas of engineering as well as from
the physical, computer, biological, economic, and social sciences. The chosen applications
clearly and concisely demonstrate how numerical techniques can be, and often must be,
applied in real-life situations.

A number of software packages, known as Computer Algebra Systems (CAS), have
been developed to produce symbolic mathematical computations. Maple®, Mathematica®,
and MATLAB® are predominant among these in the academic environment, and versions
of these software packages are available for most common computer systems. In addition,
Sage, a free open source system, is now available. This system was developed primarily

iX
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X Preface

by William Stein at the University of Washington, and was first released in February 2005.
Information about Sage can be found at the site

http://www.sagemath.org .

Although there are differences among the packages, both in performance and price, all can
perform standard algebra and calculus operations.

The results in most of our examples and exercises have been generated using problems
for which exact solutions are known, because this permits the performance of the approxi-
mation method to be more easily monitored. For many numerical techniques the error
analysis requires bounding a higher ordinary or partial derivative, which can be a tedious
task and one that is not particularly instructive once the techniques of calculus have been
mastered. Having a symbolic computation package available can be very useful in the study
of approximation techniques, because exact values for derivatives can easily be obtained. A
little insight often permits a symbolic computation to aid in the bounding process as well.

We have chosen Maple as our standard package because of its wide academic distri-
bution and because it now has a NumericalAnalysis package that contains programs that
parallel the methods and algorithms in our text. However, other CAS can be substituted with
only minor modifications. Examples and exercises have been added whenever we felt that
a CAS would be of significant benefit, and we have discussed the approximation methods
that CAS employ when they are unable to solve a problem exactly.

Algorithms and Programs

In our first edition we introduced a feature that at the time was innovative and somewhat
controversial. Instead of presenting our approximation techniques in a specific programming
language (FORTRAN was dominant at the time), we gave algorithms in a pseudo code that
would lead to a well-structured program in a variety of languages. The programs are coded
and available online in most common programming languages and CAS worksheet formats.
All of these are on the web site for the book:

http://www.math.ysu.edu/~faires/Numerical-Analysis/ .

For each algorithm there is a program written in FORTRAN, Pascal, C, and Java. In addition,
we have coded the programs using Maple, Mathematica, and MATLAB. This should ensure
that a set of programs is available for most common computing systems.

Every program is illustrated with a sample problem that is closely correlated to the text.
This permits the program to be run initially in the language of your choice to see the form
of the input and output. The programs can then be modified for other problems by making
minor changes. The form of the input and output are, as nearly as possible, the same in
each of the programming systems. This permits an instructor using the programs to discuss
them generically, without regard to the particular programming system an individual student
chooses to use.

The programs are designed to run on a minimally configured computer and given in
ASCII format for flexibility of use. This permits them to be altered using any editor or word
processor that creates standard ASCII files (commonly called “Text Only” files). Extensive
README files are included with the program files so that the peculiarities of the various
programming systems can be individually addressed. The README files are presented
both in ASCII format and as PDF files. As new software is developed, the programs will
be updated and placed on the web site for the book.

For most of the programming systems the appropriate software is needed, such as a
compiler for Pascal, FORTRAN, and C, or one of the computer algebra systems (Maple,
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Mathematica, and MATLAB). The Java implementations are an exception. You need the
system to run the programs, but Java can be freely downloaded from various sites. The best
way to obtain Java is to use a search engine to search on the name, choose a download site,
and follow the instructions for that site.

New for This Edition

The first edition of this book was published more than 30 years ago, in the decade after major
advances in numerical techniques were made to reflect the new widespread availability of
computer equipment. In our revisions of the book we have added new techniques in order
to keep our treatment current. To continue this trend, we have made a number of significant
changes to the ninth edition.

e Qur treatment of Numerical Linear Algebra has been extensively expanded, and con-
stitutes one of major changes in this edition. In particular, a section on Singular Value
Decomposition has been added at the end of Chapter 9. This required a complete rewrite
of the early part of Chapter 9 and considerable expansion of Chapter 6 to include neces-
sary material concerning symmetric and orthogonal matrices. Chapter 9 is approximately
40% longer than in the eighth edition, and contains a significant number of new examples
and exercises. Although students would certainly benefit from a course in Linear Algebra
before studying this material, sufficient background material is included in the book, and
every result whose proof is not given is referenced to at least one commonly available
source.

e All the Examples in the book have been rewritten to better emphasize the problem to
be solved before the specific solution is presented. Additional steps have been added to
many of the examples to explicitly show the computations required for the first steps of
iteration processes. This gives the reader a way to test and debug programs they have
written for problems similar to the examples.

® A new item designated as an Illustration has been added. This is used when discussing a
specific application of a method not suitable for the problem statement-solution format
of the Examples.

e The Maple code we include now follows, whenever possible, the material included in
their NumericalAnalysis package. The statements given in the text are precisely what is
needed for the Maple worksheet applications, and the output is given in the same font
and color format that Maple produces.

¢ A number of sections have been expanded, and some divided, to make it easier for instruc-
tors to assign problems immediately after the material is presented. This is particularly
true in Chapters 3, 6, 7, and 9.

e Numerous new historical notes have been added, primarily in the margins where they
can be considered independent of the text material. Much of the current material used in
Numerical Analysis was developed in middle of the 20th century, and students should be
aware that mathematical discoveries are ongoing.

e The bibliographic material has been updated to reflect new editions of books that we
reference. New sources have been added that were not previously available.

As always with our revisions, every sentence was examined to determine if it was phrased
in a manner that best relates what is described.
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Supplements

A Student Solutions Manual and Study Guide (ISBN-10: 0-538-73351-9; ISBN-13: 978-0-
538-73351-9) is available for purchase with this edition, and contains worked-out solutions
to many of the problems. The solved exercises cover all of the techniques discussed in the
text, and include step-by-step instructions for working through the algorithms. The first two
chapters of this Guide are available for preview on the web site for the book.

Complete solutions to all exercises in the text are available to instructors in secure,
customizable online format through the Cengage Solution Builder service. Adopting in-
structors can sign up for access at www.cengage.com/solutionbuilder. Computation results
in these solutions were regenerated for this edition using the programs on the web site to
ensure compatibility among the various programming systems.

A set of classroom lecture slides, prepared by Professor John Carroll of Dublin City
University, are available on the book’s instructor companion web site at www.cengage.
com/math/burden. These slides, created using the Beamer package of LaTeX, are in PDF
format. They present examples, hints, and step-by-step animations of important techniques
in Numerical Analysis.

Possible Course Suggestions

Numerical Analysis is designed to give instructors flexibility in the choice of topics as well
as in the level of theoretical rigor and in the emphasis on applications. In line with these
aims, we provide detailed references for results not demonstrated in the text and for the
applications used to indicate the practical importance of the methods. The text references
cited are those most likely to be available in college libraries, and they have been updated to
reflect recent editions. We also include quotations from original research papers when we
feel this material is accessible to our intended audience. All referenced material has been
indexed to the appropriate locations in the text, and Library of Congress information for
reference material has been included to permit easy location if searching for library material.

The following flowchart indicates chapter prerequisites. Most of the possible sequences
that can be generated from this chart have been taught by the authors at Youngstown State

University.
Chapter 1
Y Y Y
Chapter 2 Chapter 6 Chapter 3
Chapter 10 Chapter 7 Chapter 8 | Chapter 4 Chapter %
Chapter 9

AA

Chapter 115

v

Chapter 12
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The additional material in this edition should permit instructors to prepare an under-
graduate course in Numerical Linear Algebra for students who have not previously studied
Numerical Analysis. This could be done by covering Chapters 1, 6, 7, and 9, and then, as
time permits, including other material of the instructor’s choice.
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Mathematical Preliminaries
and Error Analysis

Introduction
In beginning chemistry courses, we see the ideal gas law,
PV = NRT,

which relates the pressure P, volume V, temperature 7', and number of moles N of an
“ideal” gas. In this equation, R is a constant that depends on the measurement system.

Suppose two experiments are conducted to test this law, using the same gas in each
case. In the first experiment,

P = 1.00 atm, V =0.100 m®,
N = 0.00420 mol, R = 0.08206.
The ideal gas law predicts the temperature of the gas to be

_ PV (1.00)(0.100)
T NR  (0.00420)(0.08206)

=290.15K =17°C.

When we measure the temperature of the gas however, we find that the true temperature is
15°C.

2 i 3

V,

We then repeat the experiment using the same values of R and N, but increase the
pressure by a factor of two and reduce the volume by the same factor. The product PV
remains the same, so the predicted temperature is still 17°C. But now we find that the actual

temperature of the gas is 19°C.
1
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2 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

Clearly, the ideal gas law is suspect, but before concluding that the law is invalid in
this situation, we should examine the data to see whether the error could be attributed to
the experimental results. If so, we might be able to determine how much more accurate
our experimental results would need to be to ensure that an error of this magnitude did not
occur.

Analysis of the error involved in calculations is an important topic in numerical analysis
and is introduced in Section 1.2. This particular application is considered in Exercise 28 of
that section.

This chapter contains a short review of those topics from single-variable calculus that
will be needed in later chapters. A solid knowledge of calculus is essential for an understand-
ing of the analysis of numerical techniques, and more thorough review might be needed if
you have been away from this subject for a while. In addition there is an introduction to
convergence, error analysis, the machine representation of numbers, and some techniques
for categorizing and minimizing computational error.

1.1 Review of Calculus

Limits and Continuity

The concepts of limit and continuity of a function are fundamental to the study of calculus,
and form the basis for the analysis of numerical techniques.

Definition 1.1 A function f defined on a set X of real numbers has the limit L at x, written

lim f(x) =1L,

X—>X()
if, given any real number ¢ > 0, there exists a real number § > 0 such that
|f(x) —L| <¢e, whenever x€X and 0 < |x—xp| <.

(See Figure 1.1.) [}

Figure 1.1

Xo— 0 X9 Xxot+ 6 x
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Definition 1.2

The basic concepts of calculus
and its applications were
developed in the late 17th and
early 18th centuries, but the
mathematically precise concepts
of limits and continuity were not
described until the time of
Augustin Louis Cauchy
(1789-1857), Heinrich Eduard
Heine (1821-1881), and Karl
Weierstrass (1815 —1897) in the
latter portion of the 19th century.

Definition 1.3

Theorem 1.4

Definition 1.5
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Let f be a function defined on a set X of real numbers and xy € X. Then f is continuous
at xq if

lim f(x) = f(xo).
X—>X(
The function f is continuous on the set X if it is continuous at each number in X. [ ]

The set of all functions that are continuous on the set X is denoted C(X). When X is
an interval of the real line, the parentheses in this notation are omitted. For example, the
set of all functions continuous on the closed interval [a, b] is denoted C[a, b]. The symbol
R denotes the set of all real numbers, which also has the interval notation (—o0, 00). So
the set of all functions that are continuous at every real number is denoted by C(R) or by
C(—00,00).

The limit of a sequence of real or complex numbers is defined in a similar manner.

Let {x,} 72, be aninfinite sequence of real numbers. This sequence has the limit x (converges
to x) if, for any ¢ > O there exists a positive integer N (¢) such that |x, — x| < &, whenever
n > N(g). The notation

limx,=x, or x,—>x as n— o0,
n—oo
means that the sequence {x,}7 , converges to x. [ ]

If f is a function defined on a set X of real numbers and xy € X, then the following
statements are equivalent:

a. f is continuous at xp;

b. If {x,}32, is any sequence in X converging to xo, then lim, .o, f(x,) = f(xp). m

The functions we will consider when discussing numerical methods will be assumed
to be continuous because this is a minimal requirement for predictable behavior. Functions
that are not continuous can skip over points of interest, which can cause difficulties when
attempting to approximate a solution to a problem.

Differentiability

More sophisticated assumptions about a function generally lead to better approximation
results. For example, a function with a smooth graph will normally behave more predictably
than one with numerous jagged features. The smoothness condition relies on the concept
of the derivative.

Let f be afunction defined in an open interval containing xo. The function f is differentiable
at xo if

o) — fim L= )

—xp X — Xo

exists. The number f’(xp) is called the derivative of f atx. A function that has a derivative
at each number in a set X is differentiable on X. [ ]

The derivative of f at xy is the slope of the tangent line to the graph of f at (xo, f (xp)),
as shown in Figure 1.2.
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Figure 1.2
YA
The tangent line has slop&x)
Sxo) +
(¥ f(x0)) vy =1
f >
X0 X
Theorem 1.6 1If the function f is differentiable at xy, then f is continuous at xj. [
The theorem attributed to Michel The next theorems are of fundamental importance in deriving methods for error esti-
Rolle (1652-1719) appeared in mation. The proofs of these theorems and the other unreferenced results in this section can
1691 in a little-known treatise be found in any standard calculus text.

entitled Méthode pour résoundre The set of all functions that have n continuous derivatives on X is denoted C"(X), and

the set of functions that have derivatives of all orders on X is denoted C*°(X). Polynomial,
rational, trigonometric, exponential, and logarithmic functions are in C*°(X), where X
consists of all numbers for which the functions are defined. When X is an interval of the
real line, we will again omit the parentheses in this notation.

les égalites. Rolle originally
criticized the calculus that was
developed by Isaac Newton and
Gottfried Leibniz, but later
became one of its proponents.

Theorem 1.7 (Rolle’s Theorem)

Suppose f € Cla,b] and f is differentiable on (a, b). If f(a) = f(b), then a number c in
(a, b) exists with f’(c) = 0. (See Figure 1.3.) [

Figure 1.3

f(a) = f(b)

e

Theorem 1.8 (Mean Value Theorem)
If f € Cla,b] and f is differentiable on (a, b), then a number c in (a, b) exists with (See
Figure 1.4.)

f®) - fl@

f'e) = ===
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Figure 1.4

Parallel lines

Slopef’(c) 1
y=fx

Stope /©) /@
b—a

Bﬂ——
=Y

Theorem 1.9 (Extreme Value Theorem)

If f € Cla,b], then ¢y, c; € [a,b] exist with f(c;) < f(x) < f(ca), for all x € [a,b].
In addition, if f is differentiable on (a, b), then the numbers c¢; and ¢, occur either at the

endpoints of [a, b] or where f’ is zero. (See Figure 1.5.) [ |
Figure 1.5
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I
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|
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a () 1 b X

Research work on the design of
algorithms and systems for
performing symbolic
mathematics began in the 1960s. ) . )
The first system to be operational, As mentioned in the preface, we will use the computer algebra system Maple whenever
in the 1970s, was a LISP-based appropriate. Computer algebra systems are particularly useful for symbolic differentiation
system called MACSYMA. and plotting graphs. Both techniques are illustrated in Example 1.

Example 1 Use Maple to find the absolute minimum and absolute maximum values of
f(x) =5co0s2x — 2xsin 2x f (x)
on the intervals (a) [1,2], and (b) [0.5,1]

Solution There is a choice of Text input or Math input under the Maple C 2D Math option.
The Text input is used to document worksheets by adding standard text information in
the document. The Math input option is used to execute Maple commands. Maple input
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The Maple development project
began at the University of
Waterloo in late 1980. Its goal
was to be accessible to
researchers in mathematics,
engineering, and science, but
additionally to students for
educational purposes. To be
effective it needed to be portable,
as well as space and time
efficient. Demonstrations of the
system were presented in 1982,
and the major paper setting out
the design criteria for the
MAPLE system was presented in
1983 [CGGQG].
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can either be typed or selected from the pallets at the left of the Maple screen. We will
show the input as typed because it is easier to accurately describe the commands. For pallet
input instructions you should consult the Maple tutorials. In our presentation, Maple input
commands appear in italic type, and Maple responses appear in cyan type.

To ensure that the variables we use have not been previously assigned, we first issue
the command.

restart

to clear the Maple memory. We first illustrate the graphing capabilities of Maple. To access
the graphing package, enter the command

with(plots)

to load the plots subpackage. Maple responds with a list of available commands in the
package. This list can be suppressed by placing a colon after the with(plots) command.
The following command defines f(x) = 5 cos 2x — 2x sin 2x as a function of x.

f:=x— 5cos(2x) — 2x - sin(2x)
and Maple responds with
x — 5cos(2x) — 2xsin(2x)
We can plot the graph of f on the interval [0.5, 2] with the command
plot(f,0.5..2)

Figure 1.6 shows the screen that results from this command after doing a mouse click on
the graph. This click tells Maple to enter its graph mode, which presents options for various
views of the graph. We can determine the coordinates of a point of the graph by moving the
mouse cursor to the point. The coordinates appear in the box above the left of the plot( f,
0.5 .. 2) command. This feature is useful for estimating the axis intercepts and extrema of
functions.

The absolute maximum and minimum values of f(x) on the interval [a, b] can occur
only at the endpoints, or at a critical point.

(a) When the interval is [1, 2] we have
f(1)=5cos2—2sin2=—3.899329036 and f(2)=5cos4 —4sin4= —0.241008123.

A critical point occurs when f’(x) = 0. To use Maple to find this point, we first define a
function fp to represent f’ with the command

Jp == x — diff (f (x),x)
and Maple responds with
< fw
—- —f(x
* dx

To find the explicit representation of f’(x) we enter the command

fo(x)

and Maple gives the derivative as
—12sin(2x) — 4x cos(2x)
To determine the critical point we use the command

fsolve(fp(x),x,1..2)
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Figure 1.6

wied 1] - Bapds
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and Maple tells us that f'(x) = fp(x) = 0 for x in [1,2] when x is
1.358229874

We evaluate f(x) at this point with the command

1 (%)

The % is interpreted as the last Maple response. The value of f at the critical point is
—5.675301338

As a consequence, the absolute maximum value of f(x) in [1,2]is f(2) = —0.241008123
and the absolute minimum value is f(1.358229874) = —5.675301338, accurate at least to
the places listed.

(b) When the interval is [0.5, 1] we have the values at the endpoints given by
f(0.5)=5cos1—1sin1=1.860040545 and f(1)=5cos2—2sin2= —3.899329036.

However, when we attempt to determine the critical point in the interval [0.5, 1] with the
command

fsolve(fp(x),x,0.5..1)
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Maple gives the response
fsolve(—12sin(2x) — 4x cos(2x),x,.5..1)

This indicates that Maple is unable to determine the solution. The reason is obvious once
the graph in Figure 1.6 is considered. The function f is always decreasing on this interval,
so no solution exists. Be suspicious when Maple returns the same response it is given; it is
as if it was questioning your request.

In summary, on [0.5, 1] the absolute maximum value is f(0.5) = 1.86004545 and
the absolute minimum value is f(1) = —3.899329036, accurate at least to the places
listed. [ ]

The following theorem is not generally presented in a basic calculus course, but is
derived by applying Rolle’s Theorem successively to f, f,..., and, finally, to f~D.
This result is considered in Exercise 23.

Theorem 1.10 (Generalized Rolle’s Theorem)

Suppose f € Cla, b] is n times differentiable on (a,b). If f(x) = 0 at the n + 1 distinct
numbers a < xp < x; < ... < X, < b, then a number c in (xy, x,), and hence in (a, b),
exists with £ (c) = 0. n

We will also make frequent use of the Intermediate Value Theorem. Although its state-
ment seems reasonable, its proof is beyond the scope of the usual calculus course. It can,
however, be found in most analysis texts.

Theorem 1.11 (Intermediate Value Theorem)

If f € Cla,b] and K is any number between f(a) and f(b), then there exists a number ¢
in (a, b) for which f(c) = K. [ |

Figure 1.7 shows one choice for the number that is guaranteed by the Intermediate
Value Theorem. In this example there are two other possibilities.

Figure 1.7
VA
@+ (a, f(a))
: _
b) -
10 | ¥0)
i : -
a ¢ b X

Example 2 Show that x> — 2x® + 3x?> — 1 = 0 has a solution in the interval [0, 1].

Solution Consider the function defined by f(x) = x° — 2x> 4 3x? — 1. The function f is
continuous on [0, 1]. In addition,
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fO)=-1<0 and 0<1=f().

The Intermediate Value Theorem implies that a number x exists, with 0 < x < 1, for which
X =23 4+3x2—-1=0. ]

As seen in Example 2, the Intermediate Value Theorem is used to determine when
solutions to certain problems exist. It does not, however, give an efficient means for finding
these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

Definition 1.12 The Riemann integral of the function f on the interval [a, b] is the following limit,

George Fredrich Berhard provided it exists:

Riemann (1826-1866) made b n

many of the important / f@) dr= lim Z @) Ax;,

discoveries classifying the a max Ax;—0 Py

functions that have integrals. He

also did fundamental work in where the numbers xg, X, . . ., x, satisfya = xp < x; < --- < x, = b, where Ax; = x;—x;_1,

geometry and complex function foreachi = 1,2,...,n, and z; is arbitrarily chosen in the interval [x;_, x;]. [
theory, and is regarded as one of

the profound mathematicians of X . . . . 5 .
A function f that is continuous on an interval [a, b] is also Riemann integrable on

[a, b]. This permits us to choose, for computational convenience, the points x; to be equally
spaced in [a, b], and for eachi = 1,2, ..., n, to choose z; = x;. In this case,

the nineteenth century.

b o b—a <
fa f)dx = lim Tgf(xi),

where the numbers shown in Figure 1.8 as x; are x; = a + i(b — a) /n.

Figure 1.8

y=f&)

<Y

a=Xxy Xi Xp ... X1 X; . X, b=x,

n—

Two other results will be needed in our study of numerical analysis. The first is a
generalization of the usual Mean Value Theorem for Integrals.
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Theorem 1.13 (Weighted Mean Value Theorem for Integrals)

Suppose f € Cla, b], the Riemann integral of g exists on [a, b], and g(x) does not change
sign on [a, b]. Then there exists a number c in (a, b) with

b b
f Sf)gx) dx = f(c) / g(x) dx. ™

When g(x) = 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives
the average value of the function f over the interval [a, b] as (See Figure 1.9.)

1 b
@ = — / £ dx.
—al,

Figure 1.9

/© N

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be
found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These
polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor's Theorem)

Brook Taylor (1685-1731) Suppose f € C"[a,b], that f"+D exists on [a, b], and x € [a, b]. For every x € [a, b],
described this series in 1715 in there exists a number & (x) between xj and x with

the paper Methodus

incrementorum directa et inversa. f x) =P,(x) + R,(x),

Special cases of the result, and

likely the result itself, had been where

previously known to Isaac

Newton, James Gregory, and i (x ) @ (x ) n
others PA(0) = £G0) + /G — x0) + L S =30 T2 ()
— f® (o)
= Z TO (x — .X(])k
k=0 ’
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Colin Maclaurin (1698-1746) is
best known as the defender of the
calculus of Newton when it came
under bitter attack by the Irish
philosopher, the Bishop George
Berkeley.

Maclaurin did not discover the
series that bears his name; it was
known to 17th century
mathematicians before he was
born. However, he did devise a
method for solving a system of
linear equations that is known as
Cramer’s rule, which Cramer did
not publish until 1750.

Example 3

Figure 1.10
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and

U E®)

_ n+1
Ry (x) = TR (r —x0)" " u

Here P, (x) is called the nth Taylor polynomial for f about xj, and R, (x) is called
the remainder term (or truncation error) associated with P, (x). Since the number & (x)
in the truncation error R,(x) depends on the value of x at which the polynomial P,(x) is
being evaluated, it is a function of the variable x. However, we should not expect to be
able to explicitly determine the function & (x). Taylor’s Theorem simply ensures that such a
function exists, and that its value lies between x and xg. In fact, one of the common problems
in numerical methods is to try to determine a realistic bound for the value of "+ (£(x))
when x is in some specified interval.

The infinite series obtained by taking the limit of P, (x) as n — oo is called the Taylor
series for f about xy. In the case xo = 0, the Taylor polynomial is often called a Maclaurin
polynomial, and the Taylor series is often called a Maclaurin series.

The term truncation error in the Taylor polynomial refers to the error involved in
using a truncated, or finite, summation to approximate the sum of an infinite series.

Let f(x) = cosx and xo = 0. Determine
(a) the second Taylor polynomial for f about xy; and
(b) the third Taylor polynomial for f about xy.
Solution Since f € C*°(R), Taylor’s Theorem can be applied for any n > 0. Also,
f'(x) = —sinx, f’(x) = —cosx, f”(x) =sinx, and f®(x)=cosx,
SO
fO =1, f'(0)=0, f"(0)=-1, and f"(0)=0.

(a) Forn =2 and xy = 0, we have

/O - n STE®)

cosx = f(0) + f'(0)x + 5 3

=1 12+13',§()
=1-= —x~ sin ,
TR X

where £(x) is some (generally unknown) number between 0 and x. (See Figure 1.10.)
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When x = 0.01, this becomes

—6

1 1
cos0.0l1 =1— 5(0.01)2 + 6(0.01)3 sin £(0.01) = 0.99995 + sin £(0.01).

The approximation to cos 0.01 given by the Taylor polynomial is therefore 0.99995. The
truncation error, or remainder term, associated with this approximation is

-6
sin £(0.01) = 0.16 x 10~®sin £(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely.
Although we have no way of determining sin £(0.01), we know that all values of the sine
lie in the interval [—1, 1], so the error occurring if we use the approximation 0.99995 for
the value of cos 0.01 is bounded by

| c0s(0.01) — 0.99995| = 0.16 x 107°| sin £(0.01)| < 0.16 x 1075.
Hence the approximation 0.99995 matches at least the first five digits of cos 0.01, and
0.9999483 < 0.99995 — 1.6 x 107% < c0s0.01
<0.99995 + 1.6 x 107% < 0.9999517.

The error bound is much larger than the actual error. This is due in part to the poor
bound we used for | sin £(x)|. It is shown in Exercise 24 that for all values of x, we have
| sinx| < |x|. Since 0 < & < 0.01, we could have used the fact that | sin £(x)| < 0.01 in the
error formula, producing the bound 0.16 x 1075,

(b) Since f”(0) = 0, the third Taylor polynomial with remainder term about xo = 0
is

I 2+ 2xt cosé(x)

cosx=1—— —x" cos ,

X 2x 24x X
where 0 < £(x) < 0.01. The approximating polynomial remains the same, and the ap-
proxiznation is still 0.99995, but we now have much better accuracy assurance. Since

|cos&(x)| < 1 for all x, we have

. 1
x*cosE(x)| < ﬁ(0.0l)“(l) ~ 42 x 10719,

’L
24
So
| c0s0.01 —0.99995| < 4.2 x 10717,
and
0.99994999958 = 0.99995 — 4.2 x 10~1°
< ¢0s0.01 < 0.99995 + 4.2 x 107" = 0.99995000042. ]

Example 3 illustrates the two objectives of numerical analysis:
(i) Find an approximation to the solution of a given problem.
(ii) Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor
polynomial gave a much better answer to (ii) than the second Taylor polynomial.
We can also use the Taylor polynomials to give us approximations to integrals.
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lllustration We can use the third Taylor polynomial and its remainder term found in Example 3 to
approximate foo'l cosx dx. We have

0.1 0.1 1 1 rol _
/ cosx dx = / 1—=x?) de+ — x* cos&(x) dx
0 0 2 24 Jo

1 3 0.1 0.1 . -
=[x—=x — d
|:x X :|o + 2 ), X" cosé&(x) dx

1 1o -
=0.1 _8(0‘1)3+ﬂ/0 x* cos & (x) dx.

Therefore
0.1 1 _
/ cosx dx ~ 0.1 — 8(0.1)3 = 0.09983.
0

A bound for the error in this approximation is determined from the integral of the Taylor
remainder term and the fact that | cos £(x)| < 1 for all x:

1 0.1 B 1 0.1 B
ﬁf x* cos & (x) dx §ﬂf x*| cos € (x)| dx
0 0
1 [0 0.1)5 -
s—/ x4dx=( ) =83 x 1075,
24 J, 120

The true value of this integral is

0.1 0.1
/ cosx dx = sin x:| =sin0.1 ~ 0.099833416647,
0 0

so the actual error for this approximation is 8.3314 x 1078, which is within the error
bound. 0

We can also use Maple to obtain these results. Define f by
f 1= cos(x)

Maple allows us to place multiple statements on a line separated by either a semicolon or
a colon. A semicolon will produce all the output, and a colon suppresses all but the final
Maple response. For example, the third Taylor polynomial is given by

s3 := taylor(f,x = 0,4) : p3 := convert(s3, polynom)

1
1 — —x?

2
The first statement s3 :=taylor(f,x = 0,4) determines the Taylor polynomial about
xo = 0 with four terms (degree 3) and an indication of its remainder. The second p3:=
convert(s3, polynom) converts the series s3 to the polynomial p3 by dropping the remainder
term.

Maple normally displays 10 decimal digits for approximations. To instead obtain the

11 digits we want for this illustration, enter

Digits := 11
and evaluate f(0.01) and P5(0.01) with
vl :=evalf(subs(x = 0.01, f)); y2 :=evalf(subs(x = 0.01, p3)
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This produces

0.99995000042
0.99995000000

To show both the function (in black) and the polynomial (in cyan) near xo = 0, we enter

plot((f,p3),x=-2..2)
and obtain the Maple plot shown in Figure 1.11.

Figure 1.11

The integrals of f and the polynomial are given by
gl :=int(f,x=0..0.1); g2 := int(p3,x =0..0.1)

0.099833416647
0.099833333333

We assigned the names g1 and g2 to these values so that we could easily determine the error
with the command

err:=|ql — q2|

8.3314 1078

There is an alternate method for generating the Taylor polynomials within the Numer-
icalAnalysis subpackage of Maple’s Student package. This subpackage will be discussed
in Chapter 2.

EXERCISE SET 1.1

1. Show that the following equations have at least one solution in the given intervals.
a. xcosx—2x>+3x—1=0, [0.2,0.3]and[1.2,1.3]
b. (x—22—Inx=0, [1,2]and [e, 4]
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c. 2xcos(2x) —(x—2)>=0, [2,3]and[3,4]
d x—(nx)*=0, [45]
2. Find intervals containing solutions to the following equations.
a. x—37=0
b. 4>—¢"=0
c¢. ¥—-22—-4x+2=0
d. x*+4.001x* +4.002x +1.101 =0
3. Show that f’(x) is O at least once in the given intervals.
a. f(x)=1—-e"+(e—1)sin((w/2)x), [0,1]
b. f(x) =—1tanx+ xsinzwx, [0,1]
c. fx =xsingx—(x—2)lnx, [1,2]
d fx=&-2)sinxln(x+2), [—1,3]
4. Find max,<x< | f (x)| for the following functions and intervals.
a. fx)=Q2—-e+2)/3, [0,1]
b. f(x) = @x—3)/x*—-2x), [0.5,1]
e f(x) =2xcos(2x) — (x —2)2, [2,4]
A f@x) =1+e =D [1,2]
5. Use the Intermediate Value Theorem 1.11 and Rolle’s Theorem 1.7 to show that the graph of
f(x) = x> 4+ 2x + k crosses the x-axis exactly once, regardless of the value of the constant k.

6. Suppose f € Cla,b] and f'(x) exists on (a, b). Show that if f'(x) # O for all x in (a, b), then there
can exist at most one number p in [a, b] with f(p) = 0.

7. Let f(x) =x°.
a.  Find the second Taylor polynomial P, (x) about xo = 0.
b.  Find R,(0.5) and the actual error in using P»(0.5) to approximate f(0.5).
c. Repeat part (a) using xo = 1.
d. Repeat part (b) using the polynomial from part (c).
8.  Find the third Taylor polynomial P5(x) for the function f(x) = +/x + I about x, = 0. Approximate
\/(ﬁ, \/ﬁ, «/ﬁ, and «/ﬁ using P3(x), and find the actual errors.

9. Find the second Taylor polynomial P, (x) for the function f(x) = e cosx about xy = 0.

a. Use P,(0.5) to approximate f(0.5). Find an upper bound for error | £ (0.5) — P,(0.5)| using the
error formula, and compare it to the actual error.

b. Find a bound for the error | f(x) — P,(x)| in using P,(x) to approximate f(x) on the interval
[0, 1].
Approximate fol f(x) dx using /01 P, (x) dx.
d. Find an upper bound for the error in (c) using fol |R,(x) dx|, and compare the bound to the actual
error.
10. Repeat Exercise 9 using xo = 7 /6.
11.  Find the third Taylor polynomial P;(x) for the function f(x) = (x — 1) Inx about xy = 1.

a. Use P3(0.5) to approximate f(0.5). Find an upper bound for error | f(0.5) — P3(0.5)| using the
error formula, and compare it to the actual error.

b. Find a bound for the error | f(x) — P3(x)| in using P3(x) to approximate f(x) on the interval
[0.5,1.5].
Approximate folss f (%) dx using fol": P;(x) dx.
d. Find an upper bound for the error in (c) using fol_‘: |[R3(x) dx|, and compare the bound to the
actual error.
12.  Let f(x) = 2xcos(2x) — (x — 2)? and xo = 0.
a. Find the third Taylor polynomial P;(x), and use it to approximate f(0.4).

b.  Use the error formula in Taylor’s Theorem to find an upper bound for the error | f (0.4) — P3(0.4)|.
Compute the actual error.
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16 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

¢.  Find the fourth Taylor polynomial P,(x), and use it to approximate f(0.4).

d.  Use the error formula in Taylor’s Theorem to find an upper bound for the error | £ (0.4) —P4(0.4)|.
Compute the actual error.

13.  Find the fourth Taylor polynomial P4(x) for the function f(x) = xe* about xo = 0.
a.  Find an upper bound for | f (x) — P4(x)|, for 0 <x < 0.4.
b. Approximate f00'4 f (%) dx using fOOA Py(x) dx.

c¢.  Find an upper bound for the error in (b) using f00'4 P4y(x) dx.
d. Approximate f'(0.2) using P;(0.2), and find the error.

14. Use the error term of a Taylor polynomial to estimate the error involved in using sinx & x to
approximate sin 1°.

15.  Use a Taylor polynomial about 7 /4 to approximate cos 42° to an accuracy of 107,
16. Let f(x) = ¢”?sin(x/3). Use Maple to determine the following.

a.  The third Maclaurin polynomial P;(x).

b. f®(x) and a bound for the error | f (x) — P3(x)| on [0, 1].
17. Let f(x) = In(x? + 2). Use Maple to determine the following.

a. The Taylor polynomial P;(x) for f expanded about xy = 1.

b. The maximum error | f(x) — P3(x)|, for0 <x < 1.

¢.  The Maclaurin polynomial P5(x) for f.

d. The maximum error | f (x) — Py )|, for0 <x < 1.

e. Does P3(0) approximate f(0) better than P5(1) approximates f(1)?

18. Let f(x) = (1 —x)~!' and xy = 0. Find the nth Taylor polynomial P, (x) for f(x) about x,. Find a
value of n necessary for P, (x) to approximate f(x) to within 10=% on [0, 0.5].

19. Let f(x) = ¢* and xo = 0. Find the nth Taylor polynomial P, (x) for f(x) about xy. Find a value of n
necessary for P, (x) to approximate f (x) to within 107 on [0, 0.5].

20. Find the nth Maclaurin polynomial P, (x) for f(x) = arctanx.

21.  The polynomial P,(x) = 1 — 1x% is to be used to approximate f(x) = cosx in[—3, 1]. Find a bound
for the maximum error.

22.  The nth Taylor polynomial for a function f at x, is sometimes referred to as the polynomial of degree
at most n that “best” approximates f near xo.

a. Explain why this description is accurate.
b. Find the quadratic polynomial that best approximates a function f near x, = 1 if the tangent
line at xo = 1 has equation y = 4x — 1, and if f”(1) = 6.
23.  Prove the Generalized Rolle’s Theorem, Theorem 1.10, by verifying the following.
a. Use Rolle’s Theorem to show that f "(z) = O for n — 1 numbers in [a,b] witha < z; < 2o <
c < Zpo1 < b.
b. Use Rolle’s Theorem to show that f”(wi) = 0 for n — 2 numbers in [a, b] with z; < w; < 25 <
Wy Wyn < Zpg < b.
c.  Continue the arguments in a. and b. to show that for eachj = 1,2,...,n — 1 there are n — j
distinct numbers in [a, b] where f© is 0.
d. Show that part c. implies the conclusion of the theorem.
24.  InExample 3 itis stated that for all x we have | sinx| < |x|. Use the following to verify this statement.

a.  Show that for all x > 0 we have f(x) = x —sinx is non-decreasing, which implies that sinx < x
with equality only when x = 0.

b.  Use the fact that the sine function is odd to reach the conclusion.

25. A Maclaurin polynomial for e is used to give the approximation 2.5 to e. The error bound in this
approximation is established to be E = é. Find a bound for the error in E.

26. The error function defined by
erf(r) = —— / e
NE
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1.2 Round-off Errors and Computer Arithmetic 17

gives the probability that any one of a series of trials will lie within x units of the mean, assuming that
the trials have a normal distribution with mean 0 and standard deviation +/2/2. This integral cannot
be evaluated in terms of elementary functions, so an approximating technique must be used.

a. Integrate the Maclaurin series for ¢ to show that

(_l)kx2k+l

2 oo
et = = g Qk+ Dkl

b.  The error function can also be expressed in the form

2 B aad 2k x2k+1
erf(x) = —e™ Z _—
JT k=01~3-5~--(2k+1)
Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the Maclaurin series for e*)‘z.]
c.  Use the series in part (a) to approximate erf(1) to within 1077,
d. Use the same number of terms as in part (c) to approximate erf(1) with the series in part (b).
e. Explain why difficulties occur using the series in part (b) to approximate erf(x).

27. A function f : [a,b] — R is said to satisfy a Lipschitz condition with Lipschitz constant L on [a, b]
if, for every x, y € [a, b], we have | f(x) — f(y)| < L|x —y|.
a. Show thatif f satisfies a Lipschitz condition with Lipschitz constant L on an interval [a, b], then
f € Cla,b].
b.  Show thatif f has aderivative thatis bounded on [a, b] by L, then f satisfies a Lipschitz condition
with Lipschitz constant L on [a, b].

c¢. Give an example of a function that is continuous on a closed interval but does not satisty a
Lipschitz condition on the interval.

28.  Suppose f € Cla, b], that x| and x, are in [a, b].
a. Show that a number & exists between x; and x, with

fOa)+ fl) 1

1
fé) = > —Ef(xl)+§f(Xz)-
b.  Suppose that ¢; and ¢, are positive constants. Show that a number £ exists between x; and x,
with
FE) = ¢ f(xp) +sz(xz).
cr+ao

c.  Give an example to show that the result in part b. does not necessarily hold when ¢; and ¢, have
opposite signs with ¢; # —c;.
29. Let f € Cla,b], and let p be in the open interval (a, b).
a. Suppose f(p) # 0. Show that a § > 0 exists with f(x) # 0, for all x in [p — §,p + §], with
[p — 8,p + 8] a subset of [a, b].
b. Suppose f(p) = 0 and k > 0 is given. Show that a § > 0 exists with | f(x)| < k, for all x in
[p — 8,p + 8], with [p — §, p + 8] a subset of [a, b].

1.2 Round-off Errors and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arithmetic in
algebra and calculus courses. You would likely expect that we always have as true statements
things suchas 242 =4,4-8 = 32, and («/§)2 = 3. However, with computer arithmetic we
expect exact results for 2+2 = 4 and 4 - 8 = 32, but we will not have precisely (+/3)2 = 3.
To understand why this is true we must explore the world of finite-digit arithmetic.
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18 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

In our traditional mathematical world we permit numbers with an infinite number of
digits. The arithmetic we use in this world defines +/3 as that unique positive number that
when multiplied by itself produces the integer 3. In the computational world, however, each
representable number has only a fixed and finite number of digits. This means, for example,
that only rational numbers—and not even all of these—can be represented exactly. Since
/3 is not rational, it is given an approximate representation, one whose square will not
be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in most
situations. In most cases, then, this machine arithmetic is satisfactory and passes without
notice or concern, but at times problems arise because of this discrepancy.

Error due to rounding should be The error that is produced when a calculator or computer is used to perform real-
expected whenever computations ~ number calculations is called round-off error. It occurs because the arithmetic per-
are performed using numbers that  formed in a machine involves numbers with only a finite number of digits, with the re-
are not powers of 2. Keeping this  gy]t that calculations are performed with only approximate representations of the actual
error under controlis extremely  pymbers. In a computer, only a relatively small subset of the real number system is used
for the representation of all the real numbers. This subset contains only rational numbers,
both positive and negative, and stores the fractional part, together with an exponential
part.

important when the number of
calculations is large.

Binary Machine Numbers

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report called
Binary Floating Point Arithmetic Standard 754—1985. An updated version was published
in 2008 as IEEE 754-2008. This provides standards for binary and decimal floating point
numbers, formats for data interchange, algorithms for rounding arithmetic operations, and
for the handling of exceptions. Formats are specified for single, double, and extended
precisions, and these standards are generally followed by all microcomputer manufacturers
using floating-point hardware.

A 64-bit (binary digit) representation is used for a real number. The first bit is a sign
indicator, denoted s. This is followed by an 11-bit exponent, c, called the characteristic,
and a 52-bit binary fraction, f, called the mantissa. The base for the exponent is 2.

Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume
that a number represented in this system has at least 16 decimal digits of precision. The
exponent of 11 binary digits gives a range of 0 to 2'! — 1 = 2047. However, using only posi-
tive integers for the exponent would not permit an adequate representation of numbers with
small magnitude. To ensure that numbers with small magnitude are equally representable,
1023 is subtracted from the characteristic, so the range of the exponent is actually from
—1023 to 1024.

To save storage and provide a unique representation for each floating-point number, a
normalization is imposed. Using this system gives a floating-point number of the form

(_l)szc'—IOZS(l 4 f)

Illustration Consider the machine number
0 10000000011 1011100100010000000000000000000000000000000000000000.

The leftmost bit is s = 0, which indicates that the number is positive. The next 11 bits,
10000000011, give the characteristic and are equivalent to the decimal number

c=12240-224...40-224+1-2"4+1-2°=1024+2+ 1 = 1027.
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1.2 Round-off Errors and Computer Arithmetic 19

The exponential part of the number is, therefore, 2!92771923 = 24 The final 52 bits specify
that the mantissa is

! 12 1\ 1’ 18 1\ 12
=1-(= 1-(= 1-(= 1-(= 1-{= 1-{=) .
As a consequence, this machine number precisely represents the decimal number

1 1 1 1 1 1
_1)spe-1023 (g — (—1)°. 10271023 ( Lo 2
=D I+ f) =D + 2+8+16+32+256+4096

= 27.56640625.

Howeyver, the next smallest machine number is

0 10000000011 1011100100001111111111 11111111111 1111111 111111111111,
and the next largest machine number is

0 10000000011 1011100100010000000000000000000000000000000000000001.
This means that our original machine number represents not only 27.56640625, but also half
of the real numbers that are between 27.56640625 and the next smallest machine number,
as well as half the numbers between 27.56640625 and the next largest machine number. To

be precise, it represents any real number in the interval

[27.5664062499999982236431605997495353221893310546875,
27.5664062500000017763568394002504646778106689453125). 0

The smallest normalized positive number that can be represented has s = 0, ¢ = 1,
and f = 0 and is equivalent to
271022 (1 4 0) ~ 0.22251 x 10737,
and the largest has s = 0, c = 2046,and f =1 — 2752 and is equivalent to
21082 —27%%) ~ 0.17977 x 10°%.
Numbers occurring in calculations that have a magnitude less than
27102 (1 1)
result in underflow and are generally set to zero. Numbers greater than
21023 _ 952
result in overflow and typically cause the computations to stop (unless the program has
been designed to detect this occurrence). Note that there are two representations for the

number zero; a positive 0 when s = 0, c = 0 and f = 0, and a negative O when s = 1,
c=0and f =0.
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20 CHAPTER 1 =

The error that results from
replacing a number with its
floating-point form is called
round-off error regardless of
whether the rounding or
chopping method is used.

Example 1

The relative error is generally a
better measure of accuracy than
the absolute error because it takes
into consideration the size of the
number being approximated.

Definition 1.15
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Mathematical Preliminaries and Error Analysis

Decimal Machine Numbers

The use of binary digits tends to conceal the computational difficulties that occur when a
finite collection of machine numbers is used to represent all the real numbers. To examine
these problems, we will use more familiar decimal numbers instead of binary representation.
Specifically, we assume that machine numbers are represented in the normalized decimal
floating-point form

+0.didy...dpy x 10", 1<d; <9, and 0<d; <9,

foreach i = 2,..., k. Numbers of this form are called k-digit decimal machine numbers.
Any positive real number within the numerical range of the machine can be normalized
to the form

y= 0.d1d2 PN dkdk+1dk+2 ...ox 107,

The floating-point form of y, denoted f/(y), is obtained by terminating the mantissa of
y at k decimal digits. There are two common ways of performing this termination. One
method, called chopping, is to simply chop off the digits di41dk+2 - . .. This produces the
floating-point form

fI(y) = 0.dvd> . . . dy x 10"

The other method, called rounding, adds 5 x 107~ &+D o y and then chops the result to
obtain a number of the form

FIy) = 08185 ... 8 x 10"

For rounding, when d;+; > 5, we add 1 to d; to obtain fI(y); that is, we round up. When
di+1 < 5, we simply chop off all but the first k digits; so we round down. If we round down,
then §; = d;, foreach i = 1,2,...,k. However, if we round up, the digits (and even the
exponent) might change.

Determine the five-digit (a) chopping and (b) rounding values of the irrational number 7.

Solution 'The number 7 has an infinite decimal expansion of the form 7 = 3.14159265. ...
Written in normalized decimal form, we have

7 =0.314159265... x 10"
(a) The floating-point form of 7 using five-digit chopping is

fl(r) = 0.31415 x 10" = 3.1415.

(b) The sixth digit of the decimal expansion of 7 is a 9, so the floating-point form of
7 using five-digit rounding is

fl(w) = (0.31415 4+ 0.00001) x 10" = 3.1416. ]
The following definition describes two methods for measuring approximation errors.
Suppose that p* is an approximation to p. The absolute error is |p — p*|, and the relative

lp — p*l
I

error is , provided that p # 0. [ ]

Consider the absolute and relative errors in representing p by p* in the following
example.
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Example 2 Determine the absolute and relative errors when approximating p by p* when

(@) p=0.3000 x 10" and p* = 0.3100 x 10';
(b) p =0.3000 x 1073 and p* = 0.3100 x 1073;
(¢) p=0.3000 x 10* and p* = 0.3100 x 10*.

Solution

(a) For p = 0.3000 x 10' and p* = 0.3100 x 10" the absolute error is 0.1, and the
relative error is 0.3333 x 107!

We often cannot find an accurate (b) Forp = 0.3000 x 1073 and p* = 0.3100 x 103 the absolute error is 0.1 x 104,

value for the true error in an . . £y _
o . and the relative error is 0.3333 x 10,
approximation. Instead we find a

bound for the error, which gives (¢) Forp = 0.3000 x 10* and p* :_0.3100 x 10%, the absolute error is 0.1 x 10°, and
us a “worst-case” error. the relative error is again 0.3333 x 107!,

This example shows that the same relative error, 0.3333 x 10—, occurs for widely varying
absolute errors. As a measure of accuracy, the absolute error can be misleading and the
relative error more meaningful, because the relative error takes into consideration the size
of the value. [

The following definition uses relative error to give a measure of significant digits of
accuracy for an approximation.

Definition 1.16 The number p* is said to approximate p to ¢ significant digits (or figures) if 7 is the largest

o . nonnegative integer for which
The term significant digits is

often used to loosely describe the lp — p*| B
number of decimal digits that —— <5x10 ! ]
appear to be accurate. The Ip|

definition is more precise, and

provides a continuous concept. Table 1.1 illustrates the continuous nature of significant digits by listing, for the various
values of p, the least upper bound of |p — p*|, denoted max |p — p*|, when p* agrees with p

to four significant digits.

Table 1.1
)4 0.1 0.5 100 1000 5000 9990 10000

max |p — p*| 0.00005 0.00025 0.05 0.5 25 4.995 5.

Returning to the machine representation of numbers, we see that the floating-point
representation f/(y) for the number y has the relative error

‘y—fl(y)'
—

If k decimal digits and chopping are used for the machine representation of

y= 0.d1d2 .. .dkdk+1 oo X 10",

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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then

y—fly| |0dids...didisy ... x 10" = 0.dyd; ... dy x 10"
y N 0.did, ... x 10"

. O.dk+1dk+2 Lox 1ok
| 0didy... x 10"

_ ‘O.dk+1dk+2 ce.

x 107%.
0.dids ...

Since d; # 0, the minimal value of the denominator is 0.1. The numerator is bounded above
by 1. As a consequence,

<L x 107% = 107+,
- 0.1

'w
y

In a similar manner, a bound for the relative error when using k-digit rounding arithmetic
is 0.5 x 107%t!_ (See Exercise 24.)

Note that the bounds for the relative error using k-digit arithmetic are independent of the
number being represented. This result is due to the manner in which the machine numbers
are distributed along the real line. Because of the exponential form of the characteristic,
the same number of decimal machine numbers is used to represent each of the intervals
[0.1,1], [1,10], and [10, 100]. In fact, within the limits of the machine, the number of
decimal machine numbers in [10”, 10"*!] is constant for all integers n.

Finite-Digit Arithmetic

In addition to inaccurate representation of numbers, the arithmetic performed in a computer
is not exact. The arithmetic involves manipulating binary digits by various shifting, or
logical, operations. Since the actual mechanics of these operations are not pertinent to this
presentation, we shall devise our own approximation to computer arithmetic. Although our
arithmetic will not give the exact picture, it suffices to explain the problems that occur. (For
an explanation of the manipulations actually involved, the reader is urged to consult more
technically oriented computer science texts, such as [Ma], Computer System Architecture.)

Assume that the floating-point representations f/(x) and fI(y) are given for the real
numbers x and y and that the symbols &, &, ®, & represent machine addition, subtraction,
multiplication, and division operations, respectively. We will assume a finite-digit arithmetic
given by

x@y = fIfIX) + fI)), x®@y= fI(fI(x) x fIy),
xOy = fI(flx) = fI), x&y= fI(fl(x)+ fl()).

This arithmetic corresponds to performing exact arithmetic on the floating-point repre-
sentations of x and y and then converting the exact result to its finite-digit floating-point

representation.
Rounding arithmetic is easily implemented in Maple. For example, the command

Digits :== 5

causes all arithmetic to be rounded to 5 digits. To ensure that Maple uses approximate rather
than exact arithmetic we use the evalf. For example, if x = 7 and y = +/2 then

evalf (x); evalf(y)

produces 3.1416 and 1.4142, respectively. Then fI(fI(x) + fI(y)) is performed using
5-digit rounding arithmetic with

evalf (evalf (x) + evalf (y))
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1.2 Round-off Errors and Computer Arithmetic 23
which gives 4.5558. Implementing finite-digit chopping arithmetic is more difficult and
requires a sequence of steps or a procedure. Exercise 27 explores this problem.

Example 3  Suppose that x = % andy = % Use five-digit chopping for calculating x + y, x —y, x Xy,

and x = y.
Solution Note that
5 N 1 -
x===0.714285 and y=-=0.3
7 3
implies that the five-digit chopping values of x and y are
fl(x) =0.71428 x 10° and fI(y) = 0.33333 x 10°.
Thus
x®y= fl(flx)+ fl(y) = fl (0.71428 x 10 4 0.33333 x 100)
= f1(1.04761 x 10°) = 0.10476 x 10".

The true value is x +y = % + % = 2—%, so we have

22
Absolute Error = ‘ﬁ —0.10476 x 10'| = 0.190 x 107*
and
0.190 x 10~*
Relative Error = | ————— | = 0.182 x 107*.
22/21
Table 1.2 lists the values of this and the other calculations. [
Table 1.2 . .
Operation Result Actual value Absolute error Relative error
XDy 0.10476 x 10! 22/21 0.190 x 1074 0.182 x 107#
X0y 0.38095 x 10° 8/21 0.238 x 107> 0.625 x 1073
x®y 0.23809 x 10° 5/21 0.524 x 105 0.220 x 10~
X0y 0.21428 x 10! 15/7 0.571 x 10~ 0.267 x 1074

The maximum relative error for the operations in Example 3 is 0.267 x 107#, so the
arithmetic produces satisfactory five-digit results. This is not the case in the following
example.

Example 4  Suppose that in addition to x = 2 and y = 1 we have
u=0.714251, v =98765.9, and w=0.111111 x 1074,
so that
fl(u) = 0.71425 x 10°,  fI(v) = 0.98765 x 10°, and fI(w) =0.11111 x 107%,

Determine the five-digit chopping values of x O u, x O u) ® w, x © u) ® v, and u @ v.
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Solution These numbers were chosen to illustrate some problems that can arise with finite-
digit arithmetic. Because x and u are nearly the same, their difference is small. The absolute
error for x © u is

|x —u) = (xQu)| =|(x —u) = (FI(fI(x) = flw)))]

= ‘(% - o.714251) — (f1(0.71428 x 10° — 0.71425 x 10°))

=10.347143 x 107* — £1(0.00003 x 10°)| = 0.47143 x 107,

This approximation has a small absolute error, but a large relative error

047143 x 10-5
‘ x <0.136.

0.347143 x 10~

The subsequent division by the small number w or multiplication by the large number v
magnifies the absolute error without modifying the relative error. The addition of the large
and small numbers u and v produces large absolute error but not large relative error. These

calculations are shown in Table 1.3. [
Table 1.3 . .

Operation Result Actual value Absolute error Relative error

xXQu 0.30000 x 107* 0.34714 x 107* 0.471 x 1073 0.136

xowew 0.27000 x 10! 0.31242 x 10! 0.424 0.136

xouw®v 0.29629 x 10! 0.34285 x 10! 0.465 0.136

udv 0.98765 x 10° 0.98766 x 10° 0.161 x 10! 0.163 x 10~

One of the most common error-producing calculations involves the cancelation of
significant digits due to the subtraction of nearly equal numbers. Suppose two nearly equal
numbers x and y, with x > y, have the k-digit representations

fl(x) = O.d1d2 .. .dpap+10lp+2 o0 X 10”,

and

fl(y) =0.did, .. .dpﬂp+1ﬂp+2 - ,Bk x 10",

The floating-point form of x — y is

FIFIX) = fIG)) = 0.0p410p42 - .. 0% X 10777,

where

O.Up+10p+2 ... O = 0.0lp+1()(l,+2 oL O — O-ﬁp+]ﬂp+2 .o ,3k~

The floating-point number used to represent x — y has at most k — p digits of significance.
However, in most calculation devices, x — y will be assigned k digits, with the last p being
either zero or randomly assigned. Any further calculations involving x —y retain the problem
of having only k — p digits of significance, since a chain of calculations is no more accurate
than its weakest portion.

If a finite-digit representation or calculation introduces an error, further enlargement of
the error occurs when dividing by a number with small magnitude (or, equivalently, when
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Example 5

Illustration

The roots x; and x, of a general
quadratic equation are related to
the coefficients by the fact that
X +x=—-—
a
and
c
XX = —.
a
This is a special case of Vieta’s
Formulas for the coefficients of
polynomials.
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multiplying by a number with large magnitude). Suppose, for example, that the number z
has the finite-digit approximation z + &, where the error § is introduced by representation
or by previous calculation. Now divide by ¢ = 107", where n > 0. Then

(DY \
g~f1<fl(8)>—(z+8)x10.

The absolute error in this approximation, |§| x 107, is the original absolute error, |§|, mul-
tiplied by the factor 10”.

Let p = 0.54617 and g = 0.54601. Use four-digit arithmetic to approximate p — g and
determine the absolute and relative errors using (a) rounding and (b) chopping.

Solution The exact value of r = p — g is r = 0.00016.

(a) Suppose the subtraction is performed using four-digit rounding arithmetic. Round-
ing p and q to four digits gives p* = 0.5462 and g* = 0.5460, respectively, and
r* = p* — ¢* = 0.0002 is the four-digit approximation to r. Since
|r —r*| _10.00016 — 0.0002]

- —0.25,
Il 10.00016)

the result has only one significant digit, whereas p* and g* were accurate to four
and five significant digits, respectively.

(b) If chopping is used to obtain the four digits, the four-digit approximations to p, ¢,
and r are p* = 0.5461, ¢* = 0.5460, and r* = p* — ¢* = 0.0001. This gives
|r —r* _10.00016 — 0.0001]

- — 0.375,
7l 0.00016

which also results in only one significant digit of accuracy. [ ]

The loss of accuracy due to round-off error can often be avoided by a reformulation of
the calculations, as illustrated in the next example.

The quadratic formula states that the roots of ax® + bx + ¢ =0, when a # 0, are

—b+ Vb* — dac and —b — V/b* —4dac
= Xy = — .

1.1
2a 2a (1.1)

X1
Consider this formula applied to the equation x> + 62.10x + 1 = 0, whose roots are
approximately

x; = —0.01610723 and x, = —62.08390.

We will again use four-digit rounding arithmetic in the calculations to determine the root. In
this equation, b? is much larger than 4ac, so the numerator in the calculation for x; involves
the subtraction of nearly equal numbers. Because

Vb2 — dac = /(62.10)2 — (4.000)(1.000)(1.000)
= +/3856. — 4.000 = v/3852. = 62.06,

we have

—62.10 + 62.06 _ —0.04000
2.000 T 2.000

flx) = = —0.02000,
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a poor approximation to x; = —0.01611, with the large relative error
| —0.01611 4 0.02000|
| —0.01611]

On the other hand, the calculation for x; involves the addition of the nearly equal numbers
—b and —+/b? — 4ac. This presents no problem since

—62.10 — 62.06  —124.2
2.000 ~2.000

~24x%x 107

= —62.10

flx2) =

has the small relative error
| —62.08 4+ 62.10]
| —62.08]

To obtain a more accurate four-digit rounding approximation for x;, we change the form of
the quadratic formula by rationalizing the numerator:

_ —b+b*—dac [ —b— /b2 —4ac\ b — (b —4ac)
B 2a —b— b2 —4dac) 2a(—b— b — dac)’
which simplifies to an alternate quadratic formula

—2c

3.2 x 1074,

X1

X=——. (1.2)
' b+ Vi — dac
Using (1.2) gives
—2.000 —2.000

fl(xy) = = —0.01610,

62.10 + 62.06 1242

which has the small relative error 6.2 x 10™%.

The rationalization technique can also be applied to give the following alternative quadratic
formula for x,:

—2c
b — /b —4ac
This is the form to use if b is a negative number. In the [llustration, however, the mistaken use
of this formula for x, would result in not only the subtraction of nearly equal numbers, but

also the division by the small result of this subtraction. The inaccuracy that this combination
produces,

= (1.3)

Fle) —2c —2.000 —2.000 50.00

X2) = = — = —50.00,

Y /T —dac  62.10—62.06  0.04000

has the large relative error 1.9 x 107!, (|

e The lesson: Think before you compute!

Nested Arithmetic

Accuracy loss due to round-off error can also be reduced by rearranging calculations, as
shown in the next example.

Evaluate f(x) = x> — 6.1x% + 3.2x + 1.5 at x = 4.71 using three-digit arithmetic.

Solution Table 1.4 gives the intermediate results in the calculations.
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Table 1.4

X x? X 6.1x2 3.2x
Exact 4.71 22.1841 104.487111 135.32301 15.072
Three-digit (chopping) 4.71 22.1 104. 134. 15.0
Three-digit (rounding) 4.71 222 105. 135. 15.1

To illustrate the calculations, let us look at those involved with finding x* using three-
digit rounding arithmetic. First we find

x* =4.71 =22.1841  which rounds to 22.2.
Then we use this value of x? to find
x*=x* x=222-471 =104.562 which rounds to 105.

Also,

6.1x*> = 6.1(22.2) = 135.42 which rounds to 135,
and

3.2x =3.2(4.71) = 15.072 which rounds to 15.1.
The exact result of the evaluation is

Exact: f(4.71) = 104.487111 — 135.32301 + 15.072 + 1.5 = —14.263899.

Using finite-digit arithmetic, the way in which we add the results can effect the final result.
Suppose that we add left to right. Then for chopping arithmetic we have

Three-digit (chopping): f(4.71) = ((104. — 134.) + 15.0) + 1.5 = —13.5,
and for rounding arithmetic we have
Three-digit (rounding): f(4.71) = ((105. — 135.) +15.1) + 1.5 = —13.4.

(You should carefully verify these results to be sure that your notion of finite-digit arithmetic

is correct.) Note that the three-digit chopping values simply retain the leading three digits,

with no rounding involved, and differ significantly from the three-digit rounding values.
The relative errors for the three-digit methods are

—14.263899 + 13.5 —14.263899 + 13.4
+ ~ 0.05, and Rounding: + =~ 0.06.
—14.263899 —14.263899

Chopping:

lllustration  As an alternative approach, the polynomial f(x) in Example 6 can be written in a nested

. manner as
Remember that chopping (or

rounding) is performed after each fx) = x3 _ 6.1x2 +32x+15=((x—6.Dx+3.2)x + 1.5.

calculation.

Using three-digit chopping arithmetic now produces

FAT1) = (471 — 6.1)4.71 +3.2)4.71 4+ 1.5 = ((=1.39)(4.71) +3.2)4.71 + 1.5
= (=654 +32)4.71 + 1.5 = (=3.34)4.71 + 1.5 = —15.7 + 1.5 = —14.2.
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In a similar manner, we now obtain a three-digit rounding answer of —14.3. The new relative
errors are

—14.263899 + 14.2

Three-digit (chopping): ‘ 4263899 ‘ ~ 0.0045;
—14.263899 + 14.3
Three-digit (rounding): + ~ 0.0025.
—14.263899

Nesting has reduced the relative error for the chopping approximation to less than 10%
of that obtained initially. For the rounding approximation the improvement has been even
more dramatic; the error in this case has been reduced by more than 95%. O

Polynomials should always be expressed in nested form before performing an evalu-
ation, because this form minimizes the number of arithmetic calculations. The decreased
error in the Illustration is due to the reduction in computations from four multiplications
and three additions to two multiplications and three additions. One way to reduce round-off
error is to reduce the number of computations.

EXERCISE SET 1.2

1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Compute the absolute error and relative error in approximations of p by p*.

a. p=m,p-=22/7 b. p=mx,p*=23.1416
c. p=ep =2718 d. p=+2,p"=1414
e. p=2¢e' p*=22000 f. p=107, p* = 1400
g p=8lp*=39900 h. p=9!p* =187 (9/¢)°

Find the largest interval in which p* must lie to approximate p with relative error at most 10~ for
each value of p.

a. w b. e

e V2 d 7

Suppose p* must approximate p with relative error at most 107>, Find the largest interval in which
p* must lie for each value of p.

a. 150 b. 900

c. 1500 d. 90

Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii)
using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

1
a. g+§ b. gg
1 3 +3 d 1+3 3
3011 20 ) 3011 20

Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error
and relative error with the exact value determined to at least five digits.

a. 133+0.921 b. 133 —0.499
c. (121 -0327)—119 d. (121 —119) — 0.327
B_6 3
47 f. —107 + 6e — —
2¢ — 5.4 62

2\ (9 72
g (5) (5 h. -

Repeat Exercise 5 using four-digit rounding arithmetic.
Repeat Exercise 5 using three-digit chopping arithmetic.
Repeat Exercise 5 using four-digit chopping arithmetic.
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9.  The first three nonzero terms of the Maclaurin series for the arctangent function are x — (1/3)x> +
(1/5)x>. Compute the absolute error and relative error in the following approximations of 77 using the
polynomial in place of the arctangent:

1 1

a. 4|arctan| - | 4+ arctan | =

2 3
b. 16arct: ! 4 arct !
X ctan [ — ) — ctan (| —
arctai 3 arctai 739

10. The number e can be defined by e = Zf;o(l/n!), wheren! =n(n—1)---2-1forn #0and 0! = 1.

Compute the absolute error and relative error in the following approximations of e:
5 10

1 1
a. i b. o
n=0 n=0
11.  Let
XCosx — sinx
f&)=——""7"".
X —sinx
a. Find lim,_o f(x).
b.  Use four-digit rounding arithmetic to evaluate f(0.1).
c. Replace each trigonometric function with its third Maclaurin polynomial, and repeat part (b).
d. The actual value is f(0.1) = —1.99899998. Find the relative error for the values obtained in
parts (b) and (c).
12.  Let
fo =5
a. Find lim,_ (e — e™)/x.
b.  Use three-digit rounding arithmetic to evaluate f(0.1).
c. Replace each exponential function with its third Maclaurin polynomial, and repeat part (b).
d. The actual value is f(0.1) = 2.003335000. Find the relative error for the values obtained in

parts (b) and (c).
13.  Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate
approximations to the roots of the following quadratic equations. Compute the absolute errors and
relative errors.

Lo 1
. 3x 4x 6_
1, 123 1
b, -4y =
T

c. 1.002x> —11.01x +0.01265 =0
d. 1.002x* + 11.01x + 0.01265 = 0

14. Repeat Exercise 13 using four-digit chopping arithmetic.

15.  Use the 64-bit long real format to find the decimal equivalent of the following floating-point machine
numbers.

a. 0 10000001010 1001001100000000000000000000000000000000000000000000
b. 1 10000001010 1001001100000000000000000000000000000000000000000000
c. 0 01111111111 0101001100000000000000000000000000000000000000000000
d. 0 01111111111 0101001100000000000000000000000000000000000000000001

16. Find the next largest and smallest machine numbers in decimal form for the numbers given in Exer-
cise 15.

17.  Suppose two points (xo, yo) and (x, y;) are on a straight line with y; # yo. Two formulas are available
to find the x-intercept of the line:

XpY1 — X1Yo (x1 — Xo0)yo
x=———"— and x=xy— —.
Y1 — Yo Y1 —Yo
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a.  Show that both formulas are algebraically correct.

b.  Use the data (xq,y0) = (1.31,3.24) and (x1,y1) = (1.93,4.76) and three-digit rounding arith-
metic to compute the x-intercept both ways. Which method is better and why?

18.  The Taylor polynomial of degree n for f(x) = e*is ) ;_,(x'/i!). Use the Taylor polynomial of degree
nine and three-digit chopping arithmetic to find an approximation to e~> by each of the following

methods.
9 ; 9
b e (D (DS
a e = Z T Z i
i=0 i=0
1 1
b. ¢’=—~ -
DY

c. An approximate value of e~> correct to three digits is 6.74 x 1073, Which formula, (a) or (b),
gives the most accuracy, and why?

19. The two-by-two linear system
ax+by =e,
cx+dy=f,

where a, b, ¢, d, e, f are given, can be solved for x and y as follows:

setm = E, provided a # 0;

a

dy =d — mb;

fi=f —me;

-4

dy’
(e — by)

xX=—".

a

Solve the following linear systems using four-digit rounding arithmetic.

a.  1.130x — 6.990y = 14.20 b. 8.110x 4 12.20y = —0.1370
1.013x — 6.099y = 14.22 —18.11x + 112.2y = —0.1376
20. Repeat Exercise 19 using four-digit chopping arithmetic.
21. a. Show that the polynomial nesting technique described in Example 6 can also be applied to the
evaluation of

fx) = 1.01e* — 4.62¢> — 3.11¢* + 12.2¢° — 1.99.

b.  Use three-digit rounding arithmetic, the assumption that e'>3 = 4.62, and the fact that &™ = (e*)"
to evaluate f(1.53) as given in part (a).
¢.  Redo the calculation in part (b) by first nesting the calculations.
d. Compare the approximations in parts (b) and (c) to the true three-digit result f(1.53) = —7.61.
22. A rectangular parallelepiped has sides of length 3 cm, 4 cm, and 5 cm, measured to the nearest
centimeter. What are the best upper and lower bounds for the volume of this parallelepiped? What
are the best upper and lower bounds for the surface area?
23. Let P,(x) be the Maclaurin polynomial of degree n for the arctangent function. Use Maple carrying
75 decimal digits to find the value of n required to approximate 7 to within 10723 using the following
formulas.

v afn(2)en ()] e 1on (1) o ()
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24.  Suppose that fI(y) is a k-digit rounding approximation to y. Show that

‘m

y

[Hint: If diyy < 5, then fI(y) = 0.didy ... dy x 10". If diyy > 5, then fl(y) = 0.did, ... dx x 10" +
10"7*]

25. The binomial coefficient
m\ m!
k) kl'(m—k)!

describes the number of ways of choosing a subset of k objects from a set of m elements.

< 0.5 x 1071,

a.  Suppose decimal machine numbers are of the form
+0.d\drdsds x 10", withl <d; <9,0<d;<9,ifi=2,3,4 and |n| <15.

What is the largest value of m for which the binomial coefficient (',:’) can be computed for all k
by the definition without causing overflow?

b.  Show that ('Z) can also be computed by

m _(m) m—1 m—k+1
k) \k/\k—1 1 ‘
c.  What is the largest value of m for which the binomial coefficient (’;‘) can be computed by the
formula in part (b) without causing overflow?

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible
5-card hands in a 52-card deck. Compute the actual and relative errors.
26. Let f € Cla,b] be a function whose derivative exists on (a, b). Suppose f is to be evaluated at xj
in (a, b), but instead of computing the actual value f(x,), the approximate value, f (xo), is the actual
value of f at xo + €, thatis, f(xo) = f(xo+€).

a. Use the Mean Value Theorem 1.8 to estimate the absolute error | f (xy) — f (x0)| and the relative

error | f (xo) — f(x0)|/|f (x0)|, assuming f (xo) # O.
b. Ife =5 x 107%and x, = 1, find bounds for the absolute and relative errors for
i fx)=¢€
ii. f(x)=sinx
c. Repeat part (b) with € = (5 x 107%)x, and x, = 10.
27.  The following Maple procedure chops a floating-point number x to ¢ digits. (Use the Shift and Enter
keys at the end of each line when creating the procedure.)

chop := proc(x,t);

local e, x2;
ifx =0then 0
else

e := ceil (evalf (log10(abs(x))));
x2 = evalf (trunc (x - 10¢79) . 10¢9);
end if
end;

Verify the procedure works for the following values.

a. x=124.031,r=5 b. x=124.036,tr=5
c. x=-124031,t=5 d. x=-124.036,t=5
e. x=0.00653,t=2 f. x=0.00656, t =2
g. x=-—0.00653, t=2 h. x=-0.00656, t =2
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28. The opening example to this chapter described a physical experiment involving the temperature of a
gas under pressure. In this application, we were given P = 1.00 atm, V = 0.100 m*, N = 0.00420 mol,
and R = 0.08206. Solving for T in the ideal gas law gives

P 1. .1
r= BV UO0OOI00) o505k _jgec,
NR  (0.00420)(0.08206)
In the laboratory, it was found that 7 was 15°C under these conditions, and when the pressure was
doubled and the volume halved, T was 19°C. Assume that the data are rounded values accurate to the
places given, and show that both laboratory figures are within the bounds of accuracy for the ideal
gas law.

1.3 Algorithms and Convergence

Throughout the text we will be examining approximation procedures, called algorithms,
involving sequences of calculations. An algorithm is a procedure that describes, in an
unambiguous manner, a finite sequence of steps to be performed in a specified order. The
object of the algorithm is to implement a procedure to solve a problem or approximate a
solution to the problem.

We use a pseudocode to describe the algorithms. This pseudocode specifies the form
of the input to be supplied and the form of the desired output. Not all numerical procedures

The use of an algorithm is as old
as formal mathematics, but the
name derives from the Arabic

mathematician Muhammad give satisfactory output for arbitrarily chosen input. As a consequence, a stopping technique
ibn-M384 al-Khwararizmi independent of the numerical technique is incorporated into each algorithm to avoid infinite
(c. 780-850). The Latin loops.

translation of his works begins Two punctuation symbols are used in the algorithms:

with the words “Dixit Algorismi”

meaning “al-Khwardrizmi says.™ o 3 perjod (.) indicates the termination of a step,

® asemicolon (;) separates tasks within a step.
Indentation is used to indicate that groups of statements are to be treated as a single entity.
Looping techniques in the algorithms are either counter-controlled, such as,
For i=1,2,...,n
Set xi=a+i-h
or condition-controlled, such as
While i < N do Steps 3-6.
To allow for conditional execution, we use the standard
If ... then or If ... then
else

constructions.

The steps in the algorithms follow the rules of structured program construction. They
have been arranged so that there should be minimal difficulty translating pseudocode into
any programming language suitable for scientific applications.

The algorithms are liberally laced with comments. These are written in italics and
contained within parentheses to distinguish them from the algorithmic statements.
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N
lllustration  The following algorithm computes x; +x, + -+ +xy = in, given N and the numbers

X1,X2,...,XN. =
INPUT N,x1,x2,...,x%,.

OUTPUT sUM =YV x.

Step 1 SetSUM = 0. ( Initialize accumulator.)

Step2 Fori=1,2,...,Ndo
set SUM = SUM + x;. ( Add the next term.)

Step 3 OUTPUT (SUM);
STOP. -

Example 1 The Nth Taylor polynomial for f(x) = Inx expanded about xog = 1 is

N

—1)it! .
PN(x)=Z( "y,

; i
i=1

and the value of In 1.5 to eight decimal places is 0.40546511. Construct an algorithm to
determine the minimal value of N required for

[In1.5 — Py(1.5)] < 1072,

without using the Taylor polynomial remainder term.

Solution From calculus we know thatif ) -, a, is an alternating series with limit A whose

terms decrease in magnitude, then A and the Nth partial sum Ay = ZnN:I a, differ by less
than the magnitude of the (N + 1)st term; that is,

|A —An| < lay+1l.
The following algorithm uses this bound.

INPUT value x, tolerance TOL, maximum number of iterations M.
OUTPUT degree N of the polynomial or a message of failure.
Step 1 SetN = 1;

y=x—1;
SUM = 0;
POWER = y;
TERM = y;

SIGN = —1. (Used to implement alternation of signs.)
Step 2 While N < M do Steps 3-5.

Step 3 Set SIGN = —SIGN;  (Alternate the signs.)
SUM = SUM + SIGN - TERM;  (Accumulate the terms.)
POWER = POWER - y;
TERM = POWER/(N + 1). (Calculate the next term.)
Step 4 1If [TERM| < TOL then (Test for accuracy.)
OUTPUT (N);
STOP.  (The procedure was successful.)

Step 5 SetN =N + 1. (Prepare for the next iteration.)
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Step 6 OUTPUT (‘Method Failed’); (The procedure was unsuccessful.)
STOP.

The input for our problem is x = 1.5, TOL = 1073, and perhaps M = 15. This choice
of M provides an upper bound for the number of calculations we are willing to perform,
recognizing that the algorithm is likely to fail if this bound is exceeded. Whether the output
is a value for N or the failure message depends on the precision of the computational
device. [ ]

Characterizing Algorithms

We will be considering a variety of approximation problems throughout the text, and in each
case we need to determine approximation methods that produce dependably accurate results
for a wide class of problems. Because of the differing ways in which the approximation
methods are derived, we need a variety of conditions to categorize their accuracy. Not all
of these conditions will be appropriate for any particular problem.

One criterion we will impose on an algorithm whenever possible is that small changes
in the initial data produce correspondingly small changes in the final results. An algorithm
that satisfies this property is called stable; otherwise it is unstable. Some algorithms are
stable only for certain choices of initial data, and are called conditionally stable. We will
characterize the stability properties of algorithms whenever possible.
indicates that a small change in To further consider the subject of round-off error growth and its connection to algorithm
initial data or conditions does not  Stability, suppose an error with magnitude £y > O is introduced at some stage in the
result in a dramatic change in the ~ calculations and that the magnitude of the error after n subsequent operations is denoted by
solution to the problem. E,. The two cases that arise most often in practice are defined as follows.

The word stable has the same
root as the words stand and
standard. In mathematics, the
term stable applied to a problem

Definition 1.17  Suppose that Ey > 0 denotes an error introduced at some stage in the calculations and E,
represents the magnitude of the error after n subsequent operations.

e If E, ~ CnE,, where C is a constant independent of n, then the growth of error is
said to be linear.

e If E, =~ C"Ey, for some C > 1, then the growth of error is called exponential. m

Linear growth of error is usually unavoidable, and when C and E; are small the results
are generally acceptable. Exponential growth of error should be avoided, because the term C”
becomes large for even relatively small values of n. This leads to unacceptable inaccuracies,
regardless of the size of Ey. As a consequence, an algorithm that exhibits linear growth of
error is stable, whereas an algorithm exhibiting exponential error growth is unstable. (See
Figure 1.12.)

lllustration  For any constants ¢; and c;,

is a solution to the recursive equation

10
an?pn—l — Dn—2, forn:2,3,....
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Figure 1.12
E, A
[ ]
Unstable exponential error growth
o E,=C'E,
[ ]
[ ]
. . © Stable linear error growth
Y ° o ® En:CI’lEO
. L]
Eot °
1 2 3 4 5 6 7 8 n

This can be seen by noting that

10 10 "' 1\"2
?an —Dn-2 = 3 |:C1 <§) + 623"_l:| — |:C1 <§> + 623"_2:|
1\72710 1 10
= - — . ==1 32— .31
. (3) [ 33 ] e [ 3 ]
— 1 i 1 + 3n—2(9) _ 1 " 4 3n _
= (] 3 9 (%) = 3 €25 = Pn.

Suppose that we are given pyp = 1 and p; = % This determines unique values for the
constants as ¢y = 1 and ¢; = 0. So p, = (%)" for all n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given by
this equation, then pp = 1.0000 and p; = 0.33333, which requires modifying the constants

to ¢; = 1.0000 and ¢, = —0.12500 x 107>. The sequence {p, o0 » generated is then given
by

1 n
Pn = 1.0000 <§) —0.12500 x 1073(3)",
which has round-off error,

P — Pn = 0.12500 x 1073(3"),

This procedure is unstable because the error grows exponentially with n, which is reflected
in the extreme inaccuracies after the first few terms, as shown in Table 1.5 on page 36.

Now consider this recursive equation:
DPn=2Pn_1—Pn_a, forn=273....
It has the solution p, = ¢ + ¢;n for any constants c¢; and c,, because
2pn—1 = pp—2 =2(c1 + c2(n — 1)) = (c1 + c2(n = 2))
=c—1D+c2n—-2—-—n+2)=cy+con=p,.
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Table 1.5
n Computed p, Correct p, Relative Error
0 0.10000 x 10! 0.10000 x 10!
1 0.33333 x 10° 0.33333 x 10°
2 0.11110 x 10° 0.11111 x 10° 9 x 1073
3 0.37000 x 107! 0.37037 x 107! 1 x 1073
4 0.12230 x 107! 0.12346 x 107! 9x 1073
5 0.37660 x 1072 0.41152 x 1072 8 x 1072
6 0.32300 x 1073 0.13717 x 1072 8 x 107!
7 —0.26893 x 1072 0.45725 x 1073 7 x 10°
8 —0.92872 x 1072 0.15242 x 1073 6 x 10!
If we are given py = 1 and p; = % then constants in this equation are uniquely determined
tobecy =1and ¢, = —%. This implies that p, = 1 — %n
If five-digit rounding arithmetic is used to compute the terms of the sequence given by this
equation, then py = 1.0000 and p; = 0.33333. As a consequence, the five-digit rounding
constants are ¢; = 1.0000 and ¢, = —0.66667. Thus
D = 1.0000 — 0.66667n,
which has round-off error
. 2

Pn — Pn = | 0.66667 — 3 n.
This procedure is stable because the error grows grows linearly with n, which is reflected
in the approximations shown in Table 1.6. |

Table 1.6 R .

n Computed p, Correct p, Relative Error
0 0.10000 x 10! 0.10000 x 10!
1 0.33333 x 10° 0.33333 x 10°
2 —0.33330 x 10° —0.33333 x 10° 9 x 107
3 —0.10000 x 10! —0.10000 x 10! 0
4 —0.16667 x 10! —0.16667 x 10! 0
5 —0.23334 x 10! —0.23333 x 10! 4x 1073
6 —0.30000 x 10! —0.30000 x 10! 0
7 —0.36667 x 10! —0.36667 x 10! 0
8 —0.43334 x 10! —0.43333 x 10! 2 x 107

The effects of round-off error can be reduced by using high-order-digit arithmetic such
as the double- or multiple-precision option available on most computers. Disadvantages in
using double-precision arithmetic are that it takes more computation time and the growth
of round-off error is not entirely eliminated.

One approach to estimating round-off error is to use interval arithmetic (that is, to
retain the largest and smallest possible values at each step), so that, in the end, we obtain
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an interval that contains the true value. Unfortunately, a very small interval may be needed
for reasonable implementation.

Rates of Convergence

Since iterative techniques involving sequences are often used, this section concludes with a
brief discussion of some terminology used to describe the rate at which convergence occurs.
In general, we would like the technique to converge as rapidly as possible. The following
definition is used to compare the convergence rates of sequences.

Definition 1.18  Suppose {8,}2, is a sequence known to converge to zero, and {«,}2, converges to a

number «. If a positive constant K exists with
lay — | < K|Byl, forlarge n,

then we say that {a,};2, converges to « with rate, or order, of convergence O(f,). (This
expression is read “big oh of 8,”.) It is indicated by writing o, = o + O(B,,). [ ]

Although Definition 1.18 permits {a,};2, to be compared with an arbitrary sequence
{Bn}o2,, in nearly every situation we use

for some number p > 0. We are generally interested in the largest value of p with o, =
a+ 01 /nP).
Example 2 Suppose that, forn > 1,

n—+1 R n+3
=— and «, =

Ap

n n3

Both lim,_, o, = 0 and lim,_, ., &, = 0, but the sequence {&,} converges to this limit
much faster than the sequence {¢,}. Using five-digit rounding arithmetic we have the values
shown in Table 1.7. Determine rates of convergence for these two sequences.

Table 1.7
n 1 2 3 4 5 6 7

a, 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327
Qy 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

There are numerous other ways

of describine the growth of Solution Define the sequences 8, = 1/n and B, = 1/n>. Then

scq}lcnccs z?nd functions, some of n+1 n+n 1

which require bounds both above let,, — O| =— < — = 2. - = 2[3,1

and below the sequence or n n n

function under consideration. and

Any good book that analyzes

algorithms, for example [CLRS], ~ _ n+3 n+3n _ 1 Y
P . . |an_0|_ 3 S 3 _4'_2_4ﬂn'

will include this information. n n
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Hence the rate of convergence of {¢,} to zero is similar to the convergence of {1/n} to zero,
whereas {&,} converges to zero at a rate similar to the more rapidly convergent sequence
{1/n?}. We express this by writing

1 1
an=0+0<—> and &n=0+0(—2>. ™
n n

We also use the O (big oh) notation to describe the rate at which functions converge.
Definition 1.19  Suppose that lim;,_,o G(h) = 0 and lim;_,o F(h) = L. If a positive constant K exists with

|F(h) — L| < K|G(h)|, for sufficiently small A,

then we write F(h) = L + O(G(h)). [ |

The functions we use for comparison generally have the form G(h) = h”, where p > 0.
We are interested in the largest value of p for which F(h) = L + O(hP).

1
Example 3  Use the third Taylor polynomial about 2 = 0 to show that cos & + §h2 =14+ 0h").

Solution In Example 3(b) of Section 1.1 we found that this polynomial is

h=1 1h2 + 1 h* cos & (h)
cosh=1—— —h" cos s
2 24

for some number § (h) between zero and /. This implies that
h+1h2 1+ 1h“ E(h)
cos —h* = —h" cos .
2 24
Hence

h4<ih4’
- 24

1 1 ~
<cosh+ §h2> — 1‘ = ‘ﬂcosé(h)

soash — 0, cosh + %hz converges to its limit, 1, about as fast as h converges to 0. That
is,

1, 4
cosh—i—zh =1+ 0h"). [
Maple uses the O notation to indicate the form of the error in Taylor polynomials and

in other situations. For example, at the end of Section 1.1 the third Taylor polynomial for
f(x) = cos(x) was found by first defining

f = cos(x)

and then calling the third Taylor polynomial with
taylor(f,x = 0,4)

Maple responds with

1 ,
1— Exz + 0"

to indicate that the lowest term in the truncation error is x*.
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EXERCISE SET 13

1. a. Use three-digit chopping arithmetic to compute the sum Y_,°, (1/i%) firstby 1 + 1 +... 4 Lo

and then by 1= + ar + - -+ + +. Which method is more accurate, and why?
b.  Write an algorithm to sum the finite series Zfl: | %i in reverse order.

2. The number e is defined by e = Z;io(l/n!), where n! = n(n—1)---2-1forn # 0and 0! = 1.
Use four-digit chopping arithmetic to compute the following approximations to e, and determine the
absolute and relative errors.

>\ 1 S

a. ex — b. ex Z P ——
= = (5-))!
0 10 1

C. e~ It d. e ?
—n! = (10 = p!

3. The Maclaurin series for the arctangent function converges for —1 < x < 1 and is given by
K21

arctanx = lim P,(x) = lim Z(_l)m —
n— 00 n—00 i—
i=1

a. Use the fact that tan 7 /4 = 1 to determine the number of n terms of the series that need to be
summed to ensure that [4P,(1) — 7| < 1073,

b. The C++ programming language requires the value of 7 to be within 10~'°. How many terms
of the series would we need to sum to obtain this degree of accuracy?

4. Exercise 3 details a rather inefficient means of obtaining an approximation to . The method can
be improved substantially by observing that 7 /4 = arctan% + arctan% and evaluating the series
for the arctangent at % and at % Determine the number of terms that must be summed to ensure an

approximation to 7 to within 1073,
L

5. Another formula for computing 7 can be deduced from the identity 7 /4 = 4 arctan é — arctan 5.
3

Determine the number of terms that must be summed to ensure an approximation to r to within 107.
6. Find the rates of convergence of the following sequences as n — o0.

1 1

a. limsin— =0 b.  lim sin — =0

n—»00 n n—00 n

1\’ - - =

c. lim <sin 7> =0 d. nlirgc[ln(n +D—In(m]=0

n—oo n

7. Find the rates of convergence of the following functions as z — 0.

i sinh_1 b i l—cosh_0
&N T B B -

. sinh—hcosh 1—¢"
c. lim——— =0 d. lim =-1

h—0 h =0 h

8. a. How many multiplications and additions are required to determine a sum of the form

n

Z i aibj?

i=1 j=1

b. Modify the sum in part (a) to an equivalent form that reduces the number of computations.
9. LetP(x) = aX" +a,_1x" '+ +ax+abea polynomial, and let xy be given. Construct an
algorithm to evaluate P(x;) using nested multiplication.

10. Equations (1.2) and (1.3) in Section 1.2 give alternative formulas for the roots x; and x, of
ax®* + bx + ¢ = 0. Construct an algorithm with input a,b,c and output x;, x, that computes
the roots x; and x, (which may be equal or be complex conjugates) using the best formula for each
root.

11.  Construct an algorithm that has as input an integer » > 1, numbers xg, X1, . . . , X, and a number x and
that produces as output the product (x — xp) (x — x1) - - - (x — X;,).
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12.  Assume that

1—2x n 2x — 4x3 n 4x3 — 8x7 n _ 14+ 2x
1—x+x2 1 —x24+x* 1 —x*+x8 T l4x4x2

for x < 1, and let x = 0.25. Write and execute an algorithm that determines the number of terms
needed on the left side of the equation so that the left side differs from the right side by less than 107,

13. a. Suppose that 0 < ¢ < p and that &, = o + O (n™"). Show that o, = & + O (n79).

b. Make a table listing 1/n, 1/n2, 1/n?, and 1/n* for n = 5,10, 100, and 1000, and discuss the
varying rates of convergence of these sequences as n becomes large.

14. a. Supposethat 0 < g < p and that F(h) = L 4+ O (k). Show that F'(h) = L 4+ O (h9).

b. Make a table listing &, 42, h*, and h* for h = 0.5,0.1,0.01, and 0.001, and discuss the varying
rates of convergence of these powers of & as h approaches zero.

15.  Suppose that as x approaches zero,
Fi(x) =L +0(x% and F>(x) =L, + 0(xP).
Let ¢; and ¢, be nonzero constants, and define
F(x) =c1Fi(x) + c,F(x)  and
G(x) = Fi(c1x) + Fa(c2x).

Show that if y = minimum {«, $}, then as x approaches zero,
a. Fx)=cLi+cl,+0x")
b. Gx)=L,+L,+O0Kx").
16. Thesequence {F,} describedby Fp = 1,F; = 1,and F,,,, = F,+F,.,ifn > 0,is called a Fibonacci
sequence. Its terms occur naturally in many botanical species, particularly those with petals or scales

arranged in the form of a logarithmic spiral. Consider the sequence {x,}, where x, = F,11/F,.
Assuming that lim,,_, , x, = x exists, show that x = (1 + V5) /2. This number is called the golden
ratio.

17. The Fibonacci sequence also satisfies the equation

1 [{1+5) [(1=v5)
a5 (]

Write a Maple procedure to calculate Fgo.

Use Maple with the default value of Digits followed by evalf to calculate Fyq.
Why is the result from part (a) more accurate than the result from part (b)?

Why is the result from part (b) obtained more rapidly than the result from part (a)?

e &0 FP

What results when you use the command simplify instead of evalf to compute F;g0?

18. The harmonic series 1 + % + % + % + - -+ diverges, but the sequence y, = 1 + % + -4 % —1Inn
converges, since {y,} is a bounded, nonincreasing sequence. The limit y = 0.5772156649 ... of the
sequence {y,} is called Euler’s constant.

a. Use the default value of Digits in Maple to determine the value of n for y, to be within
1072 of y.
b. Use the default value of Digits in Maple to determine the value of n for y, to be within
1073 of y.
c¢.  What happens if you use the default value of Digits in Maple to determine the value of n for y,
to be within 107 of y?
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1.4 Numerical Software

Computer software packages for approximating the numerical solutions to problems are
available in many forms. On our web site for the book

http://www.math.ysu.edu/~faires/Numerical-Analysis/Programs.html

we have provided programs written in C, FORTRAN, Maple, Mathematica, MATLAB,
and Pascal, as well as JAVA applets. These can be used to solve the problems given in the
examples and exercises, and will give satisfactory results for most problems that you may
need to solve. However, they are what we call special-purpose programs. We use this term
to distinguish these programs from those available in the standard mathematical subroutine
libraries. The programs in these packages will be called general purpose.

The programs in general-purpose software packages differ in their intent from the algo-
rithms and programs provided with this book. General-purpose software packages consider
ways to reduce errors due to machine rounding, underflow, and overflow. They also de-
scribe the range of input that will lead to results of a certain specified accuracy. These are
machine-dependent characteristics, so general-purpose software packages use parameters
that describe the floating-point characteristics of the machine being used for computations.

lllustration  To illustrate some differences between programs included in a general-purpose package
and a program that we would provide for use in this book, let us consider an algorithm that
computes the Euclidean norm of an n-dimensional vector x = (x1, X2, . .., X,)". This norm
is often required within larger programs and is defined by

n

2

Xl = | > x;
i=1

The norm gives a measure for the distance from the vector x to the vector 0. For example,
the vector x = (2,1,3, -2, —1)" has

x|y = [2% + 12 + 32 + (=2)* + (=112 = V19,

so its distance from 0 = (0,0, 0,0, 0)" is v/19 ~ 4.36.

An algorithm of the type we would present for this problem is given here. It includes
no machine-dependent parameters and provides no accuracy assurances, but it will give
accurate results “most of the time.”

172

INPUT n,x1,x0,...,x,.

OUTPUT NORM.

Step 1 Set SUM = 0.

Step2 Fori=1,2,...,nset SUM = SUM—{-xiZ.
Step 3 Set NORM = SUM'/?.

Step 4 OUTPUT (NORM);
STOP. O

A program based on our algorithm is easy to write and understand. However, the pro-
gram could fail to give sufficient accuracy for a number of reasons. For example, the magni-
tude of some of the numbers might be too large or too small to be accurately represented in
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the floating-point system of the computer. Also, this order for performing the calculations
might not produce the most accurate results, or the standard software square-root routine
might not be the best available for the problem. Matters of this type are considered by algo-
rithm designers when writing programs for general-purpose software. These programs are
often used as subprograms for solving larger problems, so they must incorporate controls
that we will not need.

General Purpose Algorithms

Let us now consider an algorithm for a general-purpose software program for computing
the Euclidean norm. First, it is possible that although a component x; of the vector is within
the range of the machine, the square of the component is not. This can occur when some |x;|
is so small that xl-2 causes underflow or when some |x;| is so large that xiz causes overflow.
It is also possible for all these terms to be within the range of the machine, but overflow
occurs from the addition of a square of one of the terms to the previously computed sum.

Accuracy criteria depend on the machine on which the calculations are being performed,
so machine-dependent parameters are incorporated into the algorithm. Suppose we are
working on a hypothetical computer with base 10, having ¢+ > 4 digits of precision, a
minimum exponent emin, and a maximum exponent emax. Then the set of floating-point
numbers in this machine consists of 0 and the numbers of the form

x=f-10°, where f==%(fi10"'+ £1072+ ...+ £,107),

where 1 < fj <9and 0 < f; < 9,foreachi = 2,...,¢, and where emin < e < emax.
These constraints imply that the smallest positive number represented in the machine is
o = 10“""=1 50 any computed number x with |x| < o causes underflow and results in
x being set to 0. The largest positive number is A = (1 — 107)10°***, and any computed
number x with |x| > A causes overflow. When underflow occurs, the program will continue,
often without a significant loss of accuracy. If overflow occurs, the program will fail.

The algorithm assumes that the floating-point characteristics of the machine are de-
scribed using parameters N, s, S, y, and Y. The maximum number of entries that can be
summed with at least 7/2 digits of accuracy is given by N. This implies the algorithm will

proceed to find the norm of a vector x = (x,xz,...,x,)" only if n < N. To resolve the
underflow-overflow problem, the nonzero floating-point numbers are partitioned into three
groups:

¢ small-magnitude numbers x, those satisfying 0 < |x| < y;
¢ medium-magnitude numbers x, where y < [x| < ¥;

® Jarge-magnitude numbers x, where ¥ < |x|.

The parameters y and Y are chosen so that there will be no underflow-overflow prob-
lem in squaring and summing the medium-magnitude numbers. Squaring small-magnitude
numbers can cause underflow, so a scale factor § much greater than 1 is used with the result
that (Sx)? avoids the underflow even when x? does not. Summing and squaring numbers
having a large magnitude can cause overflow. So in this case, a positive scale factor s much
smaller than 1 is used to ensure that (sx)> does not cause overflow when calculated or
incorporated into a sum, even though x2 would.

To avoid unnecessary scaling, y and Y are chosen so that the range of medium-
magnitude numbers is as large as possible. The algorithm that follows is a modification
of one described in [Brow, W], p. 471. It incorporates a procedure for adding scaled compo-
nents of the vector that are small in magnitude until a component with medium magnitude
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is encountered. It then unscales the previous sum and continues by squaring and summing
small and medium numbers until a component with a large magnitude is encountered. Once
a component with large magnitude appears, the algorithm scales the previous sum and
proceeds to scale, square, and sum the remaining numbers.

The algorithm assumes that, in transition from small to medium numbers, unscaled
small numbers are negligible when compared to medium numbers. Similarly, in transition
from medium to large numbers, unscaled medium numbers are negligible when compared to
large numbers. Thus, the choices of the scaling parameters must be made so that numbers
are equated to O only when they are truly negligible. Typical relationships between the
machine characteristics as described by ¢, o, A, emin, emax, and the algorithm parameters
N, s, S,y,and Y are given after the algorithm.

The algorithm uses three flags to indicate the various stages in the summation process.
These flags are given initial values in Step 3 of the algorithm. FLAG 1 is 1 until a medium or
large component is encountered; then it is changed to 0. FLAG 2 is 0 while small numbers
are being summed, changes to 1 when a medium number is first encountered, and changes
back to 0 when a large number is found. FLAG 3 is initially O and changes to 1 when a
large number is first encountered. Step 3 also introduces the flag DONE, which is O until
the calculations are complete, and then changes to 1.

INPUT N,s,S,v,Y, A, n,x1,%,...,%,.
OUTPUT NORM or an appropriate error message.

Step 1 If n < 0 then OUTPUT (‘The integer n must be positive.”);
STOP.

Step 2 1If n > N then OUTPUT (‘The integer n is too large.’);
STOP.

Step 3 Set SUM = 0;
FLAG1 = 1; (The small numbers are being summed.)

FLAG2 = 0;
FLAG3 = 0;
DONE = 0;

i=1.
Step 4 While (i < nand FLAG1 = 1) do Step 5.

Step 5 If |x;| < y then set SUM = SUM + (Sx;)*;
i=i+1
else set FLAG1 = 0. (A non-small number encountered.)

Step 6 1Ifi > nthen set NORM = (SUM)'/?/S;

DONE =1
else set SUM = (SUM/S)/S; (Scale for larger numbers.)
FLAG2 = 1.

Step 7 While (i <nand FLAG2 = 1) do Step 8.  (Sum the medium-sized numbers.)
Step 8 1If |x;| < Y then set SUM = SUM + x};
i=i+1
else set FLAG2 = 0. (A large number has been encountered.)
Step 9 1f DONE = 0 then
if i > n then set NORM = (SUM)"/%;

DONE =1
else set SUM = ((SUM)s)s; (Scale the large numbers.)
FLAG3 = 1.
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The first portable computer was
the Osborne I, produced in 1981,
although it was much larger and
heaver than we would currently
think of as portable.

The system FORTRAN
(FORmula TRANSslator) was the
original general-purpose

scientific programming language.

It is still in wide use in situations
that require intensive scientific
computations.

The EISPACK project was the
first large-scale numerical
software package to be made
available in the public domain
and led the way for many
packages to follow.
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Step 10 While (i < n and FLAG3 = 1) do Step 11.

Step 11 Set SUM = SUM +(sx;)*;
i=i+1.

Step 12 1f DONE = 0 then
if SUM'/? < s then set NORM = (SUM)'/?/s;

DONE =1

else set SUM = A.

(Sum the large numbers.)

(The norm is too large.)

Step 13 If DONE = 1 then OUTPUT (‘Norm is’, NORM)
else OUTPUT (‘Norm >’, NORM, ‘overflow occurred’).

Step 14 STOP.

The relationships between the machine characteristics ¢, o, A, emin, emax, and the
algorithm parameters N, s, S, y, and Y were chosen in [Brow, W], p. 471, as:

N =10°", where ey = |(t—2)/2], the greatestinteger less than or equal to
(rt—12)/2;
s = 10%, where e; = |—(emax+ey)/2];
S =10°, where es=[(1 —emin)/2], the smallestinteger greater than or equal

to (1 — emin)/2;
y = 10%, where

Y =10%,

ey = [(emin +t — 2)/27;

where ey = [(emax — ey)/2].

The reliability built into this algorithm has greatly increased the complexity compared to
the algorithm given earlier in the section. In the majority of cases the special-purpose and
general-purpose algorithms give identical results. The advantage of the general-purpose
algorithm is that it provides security for its results.

Many forms of general-purpose numerical software are available commercially and in
the public domain. Most of the early software was written for mainframe computers, and
a good reference for this is Sources and Development of Mathematical Software, edited by
Wayne Cowell [Co].

Now that personal computers are sufficiently powerful, standard numerical software
is available for them. Most of this numerical software is written in FORTRAN, although
some packages are written in C, C++, and FORTRANO0.

ALGOL procedures were presented for matrix computations in 1971 in [WR]. A pack-
age of FORTRAN subroutines based mainly on the ALGOL procedures was then developed
into the EISPACK routines. These routines are documented in the manuals published by
Springer-Verlag as part of their Lecture Notes in Computer Science series [Sm,B] and [Gar].
The FORTRAN subroutines are used to compute eigenvalues and eigenvectors for a variety
of different types of matrices.

LINPACK is a package of FORTRAN subroutines for analyzing and solving systems
of linear equations and solving linear least squares problems. The documentation for this
package is contained in [DBMS]. A step-by-step introduction to LINPACK, EISPACK, and
BLAS (Basic Linear Algebra Subprograms) is given in [CV].

The LAPACK package, first available in 1992, is a library of FORTRAN subroutines
that supercedes LINPACK and EISPACK by integrating these two sets of algorithms into
a unified and updated package. The software has been restructured to achieve greater effi-
ciency on vector processors and other high-performance or shared-memory multiprocessors.
LAPACK is expanded in depth and breadth in version 3.0, which is available in FORTRAN,
FORTRANO90, C, C++, and JAVA. C, and JAVA are only available as language interfaces



Software engineering was
established as a laboratory
discipline during the 1970s and
1980s. EISPACK was developed
at Argonne Labs and LINPACK
there shortly thereafter. By the
early 1980s, Argonne was
internationally recognized as a
world leader in symbolic and
numerical computation.

In 1970 IMSL became the first
large-scale scientific library for
mainframes. Since that time, the
libraries have been made
available for computer systems
ranging from supercomputers to
personal computers.

The Numerical Algorithms
Group (NAG) was instituted in
the UK in 1971 and developed
the first mathematical software
library. It now has over 10,000
users world-wide and contains
over 1000 mathematical and
statistical functions ranging
from statistical, symbolic,
visualisation, and numerical
simulation software, to compilers
and application development
tools.

MATLAB was originally written
to provide easy access to matrix
software developed in the
LINPACK and EISPACK
projects. The first version was
written in the late 1970s for use
in courses in matrix theory, linear
algebra, and numerical analysis.
There are currently more than
500,000 users of MATLAB in
more than 100 countries.
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or translations of the FORTRAN libraries of LAPACK. The package BLAS is not a part of
LAPACK, but the code for BLAS is distributed with LAPACK.

Other packages for solving specific types of problems are available in the public domain.
As an alternative to netlib, you can use Xnetlib to search the database and retrieve software.
More information can be found in the article Software Distribution using Netlib by Dongarra,
Roman, and Wade [DRW].

These software packages are highly efficient, accurate, and reliable. They are thor-
oughly tested, and documentation is readily available. Although the packages are portable,
it is a good idea to investigate the machine dependence and read the documentation thor-
oughly. The programs test for almost all special contingencies that might result in error and
failures. At the end of each chapter we will discuss some of the appropriate general-purpose
packages.

Commercially available packages also represent the state of the art in numerical meth-
ods. Their contents are often based on the public-domain packages but include methods in
libraries for almost every type of problem.

IMSL (International Mathematical and Statistical Libraries) consists of the libraries
MATH, STAT, and SFUN for numerical mathematics, statistics, and special functions, re-
spectively. These libraries contain more than 900 subroutines originally available in FOR-
TRAN 77 and now available in C, FORTRANO90, and JAVA. These subroutines solve the
most common numerical analysis problems. The libraries are available commercially from
Visual Numerics.

The packages are delivered in compiled form with extensive documentation. There is an
example program for each routine as well as background reference information. IMSL con-
tains methods for linear systems, eigensystem analysis, interpolation and approximation,
integration and differentiation, differential equations, transforms, nonlinear equations, opti-
mization, and basic matrix/vector operations. The library also contains extensive statistical
routines.

The Numerical Algorithms Group (NAG) has been in existence in the United Kingdom
since 1970. NAG offers more than 1000 subroutines in a FORTRAN 77 library, about 400
subroutines in a C library, more than 200 subroutines in a FORTRAN 90 library, and an
MPI FORTRAN numerical library for parallel machines and clusters of workstations or
personal computers. A useful introduction to the NAG routines is [Ph]. The NAG library
contains routines to perform most standard numerical analysis tasks in a manner similar to
those in the IMSL. It also includes some statistical routines and a set of graphic routines.

The IMSL and NAG packages are designed for the mathematician, scientist, or engineer
who wishes to call high-quality C, Java, or FORTRAN subroutines from within a program.
The documentation available with the commercial packages illustrates the typical driver
program required to use the library routines. The next three software packages are stand-
alone environments. When activated, the user enters commands to cause the package to solve
a problem. However, each package allows programming within the command language.

MATLAB is a matrix laboratory that was originally a Fortran program published by
Cleve Moler [Mo] in the 1980s. The laboratory is based mainly on the EISPACK and
LINPACK subroutines, although functions such as nonlinear systems, numerical integration,
cubic splines, curve fitting, optimization, ordinary differential equations, and graphical tools
have been incorporated. MATLAB is currently written in C and assembler, and the PC
version of this package requires a numeric coprocessor. The basic structure is to perform
matrix operations, such as finding the eigenvalues of a matrix entered from the command
line or from an external file via function calls. This is a powerful self-contained system that
is especially useful for instruction in an applied linear algebra course.

The second package is GAUSS, a mathematical and statistical system produced by Lee
E.Ediefson and Samuel D. Jones in 1985. Itis coded mainly in assembler and based primarily
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on EISPACK and LINPACK. As in the case of MATLAB, integration/differentiation, non-
linear systems, fast Fourier transforms, and graphics are available. GAUSS is oriented less
toward instruction in linear algebra and more toward statistical analysis of data. This package
also uses a numeric coprocessor if one is available.

The third package is Maple, a computer algebra system developed in 1980 by the
Symbolic Computational Group at the University of Waterloo. The design for the original
Maple system is presented in the paper by B.W. Char, K.O. Geddes, W.M. Gentlemen, and
G.H. Gonnet [CGGG].

The NAG routines are compatible Maple, which is written in C, has the ability to manipulate information in a symbolic
with Maple beginning with manner. This symbolic manipulation allows the user to obtain exact answers instead of
version 9.0. numerical values. Maple can give exact answers to mathematical problems such as integrals,

differential equations, and linear systems. It contains a programming structure and permits
text, as well as commands, to be saved in its worksheet files. These worksheets can then
be loaded into Maple and the commands executed. Because of the properties of symbolic
computation, numerical computation, and worksheets, Maple is the language of choice for
this text. Throughout the book Maple commands, particularly from the NumericalAnalysis
package, will be included in the text.

Although we have chosen Maple Numerous packages are available that can be classified as supercalculator packages for
as our standard computer algebra  the PC. These should not be confused, however, with the general-purpose software listed
system, the equally popular here. If you have an interest in one of these packages, you should read Supercalculators on

Mathematica, released in 1988, the PC by B. Simon and R. M. Wilson [SW].

can also be used for this purpose. Additional information about software and software libraries can be found in the books
by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by Dongarra and
Walker [DW]. More information about floating-point computation can be found in the book
by Chaitini-Chatelin and Frayse [CF] and the article by Goldberg [Go].

Books that address the application of numerical techniques on parallel computers in-

clude those by Schendell [Sche], Phillips and Freeman [PF], Ortega [Or1], and Golub and
Ortega [GO].
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Solutions of Equations in One Variable

Introduction

The growth of a population can often be modeled over short periods of time by assuming that
the population grows continuously with time at a rate proportional to the number present at
that time. Suppose that N (¢) denotes the number in the population at time ¢ and A denotes the
constant birth rate of the population. Then the population satisfies the differential equation

dN (1)
dt

whose solution is N (f) = Nye*, where Ny denotes the initial population.

= AN(D),

N 4

3000+

2000+ N(\) = 1000 + 4735(& - 1)

1564
14354

Population (thousands)

1000+

A
>y

Birth rate

This exponential model is valid only when the population is isolated, with no im-
migration. If immigration is permitted at a constant rate v, then the differential equation
becomes

dN(t)
dt

= AN(®) + v,

whose solution is
N() = Noe* + %(e“ —1).
47
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Suppose a certain population contains N(0) = 1,000,000 individuals initially, that
435,000 individuals immigrate into the community in the first year, and that N(1) =
1,564,000 individuals are present at the end of one year. To determine the birth rate of
this population, we need to find A in the equation

435,000
1,564,000 = 1,000,000e* + ————

e —1.

Itis not possible to solve explicitly for A in this equation, but numerical methods discussed in
this chapter can be used to approximate solutions of equations of this type to an arbitrarily
high accuracy. The solution to this particular problem is considered in Exercise 24 of
Section 2.3.

2.1 The Bisection Method

In this chapter we consider one of the most basic problems of numerical approximation,
the root-finding problem. This process involves finding a root, or solution, of an equation
of the form f(x) = 0, for a given function f. A root of this equation is also called a zero
of the function f.

The problem of finding an approximation to the root of an equation can be traced back
at least to 1700 B.C.E. A cuneiform table in the Yale Babylonian Collection dating from that
period gives a sexigesimal (base-60) number equivalent to 1.414222 as an approximation to
V/2, a result that is accurate to within 10>, This approximation can be found by applying
a technique described in Exercise 19 of Section 2.2.

Bisection Technique

In computer science, the process ~ The first technique, based on the Intermediate Value Theorem, is called the Bisection, or
of dividing a set continually in Binary-search, method.

half to search for the solution to a Suppose f is a continuous function defined on the interval [a, b], with f(a) and f ()
problem, as the bisection method  of gpposite sign. The Intermediate Value Theorem implies that a number p exists in (a, b)
does, is known as a binary search g £( p) = 0. Although the procedure will work when there is more than one root in the
interval (a, b), we assume for simplicity that the root in this interval is unique. The method
calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating
the half containing p.

To begin, set a; = a and b; = b, and let p; be the midpoint of [a, b]; that is,

procedure.

— 4 +b1—a1_a1+b1
pr=a 3 = 5

e If f(p1) =0, then p = p;, and we are done.

e If f(p1) # 0, then f(p;) has the same sign as either f(a;) or f(b)).

e If f(py) and f(a;) have the same sign, p € (p1,by). Seta, = p; and by = b;.
e If f(py) and f(a;) have opposite signs, p € (aj,p1). Seta, = a; and b, = p;.

Then reapply the process to the interval [as, b,]. This produces the method described in
Algorithm 2.1. (See Figure 2.1.)
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Figure 2.1
Y A
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Bisection

To find a solution to f (x) = 0 given the continuous function f on the interval [a, b], where
f(a) and f(b) have opposite signs:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure.

Step 1 Seti=1;
FA = f(a).

Step 2 Whilei < Ny do Steps 3-6.

Step3 Setp=a+ (b—a)/2; (Compute p;.)
FP = f(p).
Step4 IfFP=0or (b—a)/2 < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step5 Seti=i+ 1.

Step 6 If FA-FP > Othenseta =p; (Compute a;,b;.)
FA =FP
else set b = p. (FA is unchanged.)

Step 7 OUTPUT (‘Method failed after N iterations, Ny =, Np);
(The procedure was unsuccessful.)
STOP. ]

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of
the iterative techniques in this chapter. For example, we can select a tolerance ¢ > 0 and
generate py, . . ., py until one of the following conditions is met:
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Py —pn-1l <&, 2.1
v =pvil 0 o 2.2)
| il
[ f(pn)] < e. (2.3)

Unfortunately, difficulties can arise using any of these stopping criteria. For example,
there are sequences { p,},2,, with the property that the differences p, — p,— converge to
zero while the sequence itself diverges. (See Exercise 17.) It is also possible for f(p,) to
be close to zero while p,, differs significantly from p. (See Exercise 16.) Without additional
knowledge about f or p, Inequality (2.2) is the best stopping criterion to apply because it
comes closest to testing relative error.

When using a computer to generate approximations, it is good practice to set an upper
bound on the number of iterations. This eliminates the possibility of entering an infinite
loop, a situation that can arise when the sequence diverges (and also when the program is
incorrectly coded). This was done in Step 2 of Algorithm 2.1 where the bound Ny was set
and the procedure terminated if i > Nj.

Note that to start the Bisection Algorithm, an interval [a, b] must be found with f(a) -
f(b) < 0. At each step the length of the interval known to contain a zero of f is reduced
by a factor of 2; hence it is advantageous to choose the initial interval [a, b] as small as
possible. For example, if f(x) = 2x* — x> +x — 1, we have both

f(=4) - f@ <0 and f(0)- f(1) <0,

so the Bisection Algorithm could be used on [—4,4] or on [0, 1]. Starting the Bisection
Algorithm on [0, 1] instead of [—4, 4] will reduce by 3 the number of iterations required to
achieve a specified accuracy.

The following example illustrates the Bisection Algorithm. The iteration in this example
is terminated when a bound for the relative error is less than 0.0001. This is ensured by
having

: |p — pal 104,

min{|ay|, |b,}

Example 1 Show that f(x) = x> 4+ 4x?> — 10 = 0 has a root in [1, 2], and use the Bisection method to
determine an approximation to the root that is accurate to at least within 1074,

Solution Because f(1) = —5and f(2) = 14 the Intermediate Value Theorem 1.11 ensures
that this continuous function has a root in [1, 2].

For the first iteration of the Bisection method we use the fact that at the midpoint of
[1,2] we have f(1.5) = 2.375 > 0. This indicates that we should select the interval [1, 1.5]
for our second iteration. Then we find that f(1.25) = —1.796875 so our new interval
becomes [1.25, 1.5], whose midpoint is 1.375. Continuing in this manner gives the values
in Table 2.1. After 13 iterations, p;3 = 1.365112305 approximates the root p with an error

|p — pial < |bia — aisl = |1.365234375 — 1.365112305| = 0.000122070.

Since |ay4] < | p|, we have

[p—pi3sl  |bia — ausl
<

<9.0x 1072,
| pl |ai4]
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Table21 ay b, D f(p)
1 1.0 2.0 1.5 2.375
2 1.0 1.5 1.25 —1.79687
3 1.25 1.5 1.375 0.16211
4 1.25 1.375 1.3125 —0.84839
5 1.3125 1.375 1.34375 —0.35098
6 1.34375 1.375 1.359375 —0.09641
7 1.359375 1.375 1.3671875 0.03236
8 1.359375 1.3671875 1.36328125 —0.03215
9 1.36328125 1.3671875 1.365234375 0.000072
10 1.36328125 1.365234375 1.364257813 —0.01605
11 1.364257813 1.365234375 1.364746094 —0.00799
12 1.364746094 1.365234375 1.364990235 —0.00396
13 1.364990235 1.365234375 1.365112305 —0.00194

so the approximation is correct to at least within 10~*. The correct value of p to nine decimal
places is p = 1.365230013. Note that pg is closer to p than is the final approximation p;3.
You might suspect this is true because | f(p9)| < |f(p13)], but we cannot be sure of this
unless the true answer is known. [ ]

The Bisection method, though conceptually clear, has significant drawbacks. It is rel-
atively slow to converge (that is, N may become quite large before | p — py| is sufficiently
small), and a good intermediate approximation might be inadvertently discarded. However,
the method has the important property that it always converges to a solution, and for that
reason it is often used as a starter for the more efficient methods we will see later in this
chapter.

Theorem 2.1 Suppose that f € C[a,b] and f(a) - f(b) < 0. The Bisection method generates a sequence

{pn};2, approximating a zero p of f with

2}1

a
|pn —pl < , when n>1. -

Proof For eachn > 1, we have

1
b, —a, = %(b —a) and p € (a,b,).
Since p, = %(an + b,) for all n > 1, it follows that
1P =0l < 2 (by — a) = 2=
n = -, —a,) = = = =
Pn—P 5 o

Because
1
|pn—pl = (- D5
the sequence {p,}°2 | converges to p with rate of convergence O (zi,,), that is,

1
n = o\=].
p=r+0(5)

It is important to realize that Theorem 2.1 gives only a bound for approximation error
and that this bound might be quite conservative. For example, this bound applied to the
problem in Example 1 ensures only that
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Example 2

Solutions of Equations in One Variable

2-1 .
|P—P9|§T%2X10 ,

but the actual error is much smaller:

|p — pol = |1.365230013 — 1.365234375| ~ 4.4 x 1075,

Determine the number of iterations necessary to solve f(x) = x° + 4x> — 10 = 0 with
accuracy 1073 using a; = 1 and b; = 2.

Solution We we will use logarithms to find an integer N that satisfies
v —pl <27V —a)=27" <107,

Logarithms to any base would suffice, but we will use base-10 logarithms because the toler-
ance is given as a power of 10. Since 27V < 1072 implies thatlog,, 27V < log;, 107 = -3,
we have

—Nlog, ;2 <—-3 and N > ~ 9.96.

logy

Hence, ten iterations will ensure an approximation accurate to within 1073,

Table 2.1 shows that the value of pg = 1.365234375 is accurate to within 104, Again,
it is important to keep in mind that the error analysis gives only a bound for the number of
iterations. In many cases this bound is much larger than the actual number required. [ ]

Maple has a NumericalAnalysis package that implements many of the techniques we
will discuss, and the presentation and examples in the package are closely aligned with this
text. The Bisection method in this package has a number of options, some of which we will
now consider. In what follows, Maple code is given in black italic type and Maple response
in cyan.

Load the NumericalAnalysis package with the command

with(Student[NumericalAnalysis])

which gives access to the procedures in the package. Define the function with
fi=x>+4x>-10

and use

Bisection (f,x = [1,2], tolerance = 0.005)

Maple returns

1.363281250

Note that the value that is output is the same as pg in Table 2.1.
The sequence of bisection intervals can be output with the command

Bisection (f,x = [1,2], tolerance = 0.005, output = sequence)

and Maple returns the intervals containing the solution together with the solution
[1.,2.],[1.,1.500000000], [1.250000000, 1.500000000], [1.250000000, 1.375000000],
[1.312500000, 1.375000000], [1.343750000, 1.375000000], [1.359375000, 1.375000000],
[1.359375000, 1.367187500], 1.363281250

The stopping criterion can also be based on relative error by choosing the option

Bisection (f,x = [1,2], tolerance = 0.005, stoppingcriterion = relative)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.1 The Bisection Method 53

Now Maple returns
1.363281250
The option output = plot given in
Bisection (f,x = [1.25, 1.5], output = plot, tolerance = 0.02)

produces the plot shown in Figure 2.2.

Figure 2.2

4 iteration(s) of the bisection method applied to
fx) =x*+4x2-10
with initial pointse = 1.25 and = 1.5

f(b)
f(p4)
f(a) -

We can also set the maximum number of iterations with the option maxiterations = .
An error message will be displayed if the stated tolerance is not met within the specified
number of iterations.

The results from Bisection method can also be obtained using the command Roots. For
example,

1
Roots < f,x =[1.0,2.0], method = bisection, tolerance = 100’ output = information)

uses the Bisection method to produce the information
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n a, b, DPn f (pn) relative error
1 1.0 2.0 1.500000000  2.37500000  0.3333333333

2 1.0 1.500000000 1.250000000 —1.796875000 0.2000000000

3 1.250000000 1.500000000 1.375000000  0.16210938  0.09090909091
4 1.250000000 1.375000000 1.312500000 —0.848388672 0.04761904762
5 1.312500000 1.375000000 1.343750000 —0.350982668 0.02325581395
6 1.343750000 1.375000000 1.359375000 —0.096408842 0.01149425287

| 7 1.359375000 1.375000000 1.367187500  0.03235578  0.005714285714 |
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The bound for the number of iterations for the Bisection method assumes that the cal-
culations are performed using infinite-digit arithmetic. When implementing the method on
acomputer, we need to consider the effects of round-off error. For example, the computation
of the midpoint of the interval [a,, b, ] should be found from the equation

bn —day

n bn
Pn=a, + — instead of p, = i.

2

The first equation adds a small correction, (b, — a,) /2, to the known value a,,. When b,, —a,
is near the maximum precision of the machine, this correction might be in error, but the
error would not significantly affect the computed value of p,,. However, when b, — a,, is near
the maximum precision of the machine, it is possible for (a, + b,)/2 to return a midpoint
that is not even in the interval [a,, b, ].

The Latin word signum means As a final remark, to determine which subinterval of [a,, b,] contains a root of f, it is

“token” or “sign”. So the signum  better to make use of the signum function, which is defined as

function quite naturally returns

the sign of a number (unless the -1, ifx <O,
number is 0). sgn(x) =10, if x = 0,
1, if x > 0.

The test

sgn (f(an)) sgn (f(pn)) <0 instead of  f(an) f(pn) <O

gives the same result but avoids the possibility of overflow or underflow in the multiplication
of f(ax) and f(pn).

EXERCISE SET 21

1. Use the Bisection method to find p3 for f(x) = /x — cosx on [0, 1].
Let f(x) =3(x+ 1)(x — %)(x — 1). Use the Bisection method on the following intervals to find ps.
a. [—2,1.5] b. [—1.25,2.5]

3. Use the Bisection method to find solutions accurate to within 1072 for x> — 7x> + 14x — 6 = O on
each interval.

a. [0,1] b. [1,3.2] c. [3.2,4]

4. Use the Bisection method to find solutions accurate to within 1072 for x* — 2x> —4x> +4x+4 =0
on each interval.

a. [-2,—-1] b. [0,2] c. [2,3] d. [-1,0]
5. Use the Bisection method to find solutions accurate to within 107> for the following problems.
a. x—27=0 for0<x<l1
b ¢&—x>+3x—2=0 for0<x<1
c. 2xcos(2x)—(x+1)?*=0 for-3<x<-2 and —-1<x<0
d. xcosx—2x>+3x—1=0 for02<x<03 and 12<x<13
6.  Use the Bisection method to find solutions, accurate to within 10~ for the following problems.
a. 3x—e' =0forl <x<2
b. 2x+3cosx—e*=0 for0<x<1
c. x*—4x+4—Inx=0 forl<x<2 and 2<x<4
d. x+1—-2sinmtx=0 for0<x<05 and 05<x<1
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7. a. Sketch the graphs of y = x and y = 2 sinx.

b.  Use the Bisection method to find an approximation to within 10 to the first positive value of
x with x = 2sinx.

8. a. Sketch the graphs of y = x and y = tanx.
b.  Use the Bisection method to find an approximation to within 107 to the first positive value of
x with x = tanx.
9. a. Sketch the graphs of y = ¢* — 2 and y = cos(e* — 2).
b.  Use the Bisection method to find an approximation to within 1073 to a value in [0.5, 1.5] with
e — 2 = cos(e* —2).
10.  Let f(x) = (x +2)(x+ 1)>x(x — 1)*(x — 2). To which zero of f does the Bisection method converge
when applied on the following intervals?
a. [—1.5,2.5] b. [-0.5,2.4] c. [-05,3] d. [-3,-0.5]
11.  Let f(x) = (x +2)(x + Dx(x — 1)*(x — 2). To which zero of f does the Bisection method converge
when applied on the following intervals?

a. [-3,2.5] b. [-25,3] c. [—1.75,1.5] d. [-1.5,1.75]
12.  Find an approximation to +/3 correct to within 10~* using the Bisection Algorithm. [Hint: Consider
f) =x*~-3]

13.  Find an approximation to /25 correct to within 10~* using the Bisection Algorithm.

14. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation
with accuracy 1073 to the solution of x> +x —4 = 0 lying in the interval [1, 4]. Find an approximation
to the root with this degree of accuracy.

15. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation
with accuracy 10~ to the solution of x> —x — 1 = 0 lying in the interval [1, 2]. Find an approximation
to the root with this degree of accuracy.

16. Let f(x) =(x— D" p=1,andp, =1+ 1/n. Show that | f(p,)| < 10~ whenever n > 1 but that
|p — pal < 1073 requires that n > 1000.

17.  Let{p,} be the sequence defined by p, = Y ;_,
Pn1) = 0.

18. The function defined by f(x) = sinwx has zeros at every integer. Show that when —1 < a < 0 and
2 < b < 3, the Bisection method converges to
a. 0, if a+b<2 b. 2, if a+b>2 c. 1, if a+b=2

19. A trough of length L has a cross section in the shape of a semicircle with radius r. (See the accom-
panying figure.) When filled with water to within a distance & of the top, the volume V of water is

% . Show that { p,, } diverges even though lim,,_, o ( p,, —

V =L[0.57+* — r*arcsin(h/r) — h(* — h*)'?].

S AT
4\w/

Suppose L =10ft, r =1 ft, and V = 12.4 ft*. Find the depth of water in the trough to within 0.01 ft.

20. A particle starts at rest on a smooth inclined plane whose angle 6 is changing at a constant rate

E=w<0.
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At the end of ¢ seconds, the position of the object is given by

o g oWl — gt ) .
x(t) =—=—"-| ——— —sinwt .
2w? 2

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 107>, the rate @ at which 6 changes.

Assume that g = 32.17 ft/s%.
’\&

0(2)

2.2 Fixed-Point Iteration

A fixed point for a function is a number at which the value of the function does not change
when the function is applied.

Definition 2.2 The number p is a fixed point for a given function g if g(p) = p. [ ]

In this section we consider the problem of finding solutions to fixed-point problems
Fixed-point results occur in many  and the connection between the fixed-point problems and the root-finding problems we
areas of mathematics, andarea  yyjgh to solve. Root-finding problems and fixed-point problems are equivalent classes in the

major tool of economists for following sense:
proving results concerning

equilibria. Although the idea
behind the technique is old, the
terminology was first used by the
Dutch mathematician A g(x) = x— f(x) or as g(x) =x4+ 3f(x).
L. E. J. Brouwer (1882-1962) in
the early 1900s.

e Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at
p in a number of ways, for example, as

e Conversely, if the function g has a fixed point at p, then the function defined by
f&x) =x—g)
has a zero at p.

Although the problems we wish to solve are in the root-finding form, the fixed-point
form is easier to analyze, and certain fixed-point choices lead to very powerful root-finding
techniques.

We first need to become comfortable with this new type of problem, and to decide

when a function has a fixed point and how the fixed points can be approximated to within
a specified accuracy.

Example 1 Determine any fixed points of the function g(x) = x> — 2.
Solution A fixed point p for g has the property that
p=g(p)=p*—2 whichimpliesthat 0=p>* —p—2=(p+ D(p—2).

A fixed point for g occurs precisely when the graph of y = g(x) intersects the graph of
y = x, so g has two fixed points, one at p = —1 and the other at p = 2. These are shown in
Figure 2.3. [ ]
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Figure 2.3
The following theorem gives sufficient conditions for the existence and uniqueness of
a fixed point.
Theorem 2.3 (i) Ifg € Cla,b] and g(x) € [a,b] for all x € [a, b], then g has at least one fixed
point in [a, b].
(i) If, in addition, g’(x) exists on (a, b) and a positive constant k < 1 exists with
g x)| <k, forallx e (a,b),
then there is exactly one fixed point in [a, b]. (See Figure 2.4.) [
Figure 2.4
YA
y=x
L ,
: I
|
! l
r=gp) T ! !
|
|
! Ty = gx)
ol Vo I
a P b X

Proof

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then
g(a) > aand g(b) < b. The function h(x) = g(x) —x is continuous on [a, b], with

h(a) =g(a)—a>0 and hb) =gb)—>b<0.
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The Intermediate Value Theorem implies that there exists p € (a, b) for which
h(p) = 0. This number p is a fixed point for g because

0=h(p) =g(p) —p implies that g(p) =p.

(ii) Suppose, in addition, that |g’(x)| < k < 1 and that p and ¢ are both fixed points
in [a, b]. If p # g, then the Mean Value Theorem implies that a number & exists
between p and ¢, and hence in [a, b], with

g(p) —g@) — (&),
P—q

Thus

Ip—ql=1g(p) —g@l=1gEIlp—ql <klp—ql <|p—ql,

which is a contradiction. This contradiction must come from the only supposition,
p # q. Hence, p = g and the fixed point in [a, b] is unique. = = ow

Example 2  Show that g(x) = (x> — 1)/3 has a unique fixed point on the interval [—1, 1].

Solution The maximum and minimum values of g(x) for x in [—1, 1] must occur either
when x is an endpoint of the interval or when the derivative is 0. Since g’(x) = 2x/3, the
function g is continuous and g’(x) exists on [—1, 1]. The maximum and minimum values
of g(x) occuratx = —1,x = 0,orx = 1. But g(—1) = 0, g(1) = 0, and g(0) = —1/3,

so an absolute maximum for g(x) on [—1, 1] occurs at x = —1 and x = 1, and an absolute
minimum at x = 0.
Moreover
, 2x 2
lg' ()] = e forallx € (—1,1).

So g satisfies all the hypotheses of Theorem 2.3 and has a unique fixed pointin [—1,1]. m

For the function in Example 2, the unique fixed point p in the interval [—1, 1] can be
determined algebraically. If

2
p—1 2
p=g(p) = 7 then p"—3p—1=0,

which, by the quadratic formula, implies, as shown on the left graph in Figure 2.4, that
1
p= 5(3 —+/13).

Note that g also has a unique fixed point p = %(3 + \/E) for the interval [3,4].
However, g(4) = 5and ¢g'(4) = % > 1, so g does not satisfy the hypotheses of Theorem 2.3
on [3,4]. This demonstrates that the hypotheses of Theorem 2.3 are sufficient to guarantee
a unique fixed point but are not necessary. (See the graph on the right in Figure 2.5.)
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Figure 2.5
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Example 3 Show that Theorem 2.3 does not ensure a unique fixed point of g(x) = 37 on the interval
[0, 1], even though a unique fixed point on this interval does exist.

Solution g'(x) = —37*1In3 < 0 on [0, 1], the function g is strictly decreasing on [0, 1]. So
1
g(l) = 3 <gx)<1=g), for 0=<x=<1.

Thus, for x € [0, 1], we have g(x) € [0, 1]. The first part of Theorem 2.3 ensures that there
is at least one fixed point in [0, 1].
However,

¢ (0) = —1n3 = —1.098612289,

s0 |g'(x)] £ 1 on (0, 1), and Theorem 2.3 cannot be used to determine uniqueness. But g is
always decreasing, and it is clear from Figure 2.6 that the fixed point must be unique. =

Figure 2.6

y=3"
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Figure 2.7

Solutions of Equations in One Variable

Fixed-Point Iteration

We cannot explicitly determine the fixed point in Example 3 because we have no way to
solve for p in the equation p = g(p) = 37P. We can, however, determine approximations
to this fixed point to any specified degree of accuracy. We will now consider how this can
be done.

To approximate the fixed point of a function g, we choose an initial approximation py
and generate the sequence { p,}.2, by letting p, = g(p,—1), for each n > 1. If the sequence
converges to p and g is continuous, then

p=lim p, = lim g(p,—1) = g<lim Pn—l) =g(p),
n—oo n—oo n— 00

and a solution to x = g(x) is obtained. This technique is called fixed-point, or functional
iteration. The procedure is illustrated in Figure 2.7 and detailed in Algorithm 2.2.

y=x
, y = g(x)
ps=g(p2) P2z

2= g(py)

(29 (P2 ) p2=g(p) (P2 p2)
(pov pl)

3= g(p2)

(pllpl) (P01 P1) p1= g(pO) (plrpl)

1= g(po)

y =g

=Y

Po b1 P2

=Y

P1 P3 P2 Po

(a) (b)

Fixed-Point Iteration

To find a solution to p = g(p) given an initial approximation py:

INPUT initial approximation py; tolerance TOL; maximum number of iterations Nj.
OUTPUT  approximate solution p or message of failure.
Step 1 Seti=1.
Step 2 Whilei < N, do Steps 3-6.
Step 3 Setp = g(py). (Compute p;.)

Step 4 1If |p — po| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step5 Seti=i+1.
Step 6 Setpy=p. (Update py.)
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2.2 Fixed-Point Iteration 61

Step 7 OUTPUT (‘The method failed after N iterations, Ny =, Ny);
(The procedure was unsuccessful.)
d STOP. [ |

The following illustrates some features of functional iteration.

lllustration  The equation x> +4x?> — 10 = 0 has a unique root in [1, 2]. There are many ways to change
the equation to the fixed-point form x = g(x) using simple algebraic manipulation. For
example, to obtain the function g described in part (c), we can manipulate the equation
x* +4x? — 10 = 0 as follows:

1 1
4> =10 —x%, so x2=Z(10—x3), and x::tz(IO—x3)'/2.

To obtain a positive solution, g3(x) is chosen. It is not important for you to derive the
functions shown here, but you should verify that the fixed point of each is actually a solution
to the original equation, x> + 4x> — 10 = 0.

_ W3 442 1/2
@ x=g@)=x—x>—4x*+10 (b x=g2(x)=<1x—0—4x>

1 1/2
© x=gi@) =-(10 -2} _ :( 10)
0 x=g®=5(10-x @ x=50=(177

x4+ 4xr - 10

© x=g5()=x—

With py = 1.5, Table 2.2 lists the results of the fixed-point iteration for all five choices of g.

Table22 (@) ) © ) ©)

0 1.5 1.5 1.5 1.5 1.5
1 —0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 —469.7 (—8.65)]/2 1.345458374 1.364957015 1.365230014
4 1.03 x 108 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012

10 1.365410062 1.365230014

15 1.365223680 1.365230013

20 1.365230236

25 1.365230006

30 1.365230013

The actual root is 1.365230013, as was noted in Example 1 of Section 2.1. Comparing the
results to the Bisection Algorithm given in that example, it can be seen that excellent results
have been obtained for choices (c), (d), and (e) (the Bisection method requires 27 iterations
for this accuracy). It is interesting to note that choice (a) was divergent and that (b) became
undefined because it involved the square root of a negative number. U
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Although the various functions we have given are fixed-point problems for the same
root-finding problem, they differ vastly as techniques for approximating the solution to the
root-finding problem. Their purpose is to illustrate what needs to be answered:

® Question: How can we find a fixed-point problem that produces a sequence that reliably
and rapidly converges to a solution to a given root-finding problem?

The following theorem and its corollary give us some clues concerning the paths we
should pursue and, perhaps more importantly, some we should reject.

Theorem 2.4 (Fixed-Point Theorem)

Let g € C[a,b] be such that g(x) € [a,b], for all x in [a, b]. Suppose, in addition, that
¢’ exists on (a, b) and that a constant 0 < k < 1 exists with

|g'(x)| <k, forallx € (a,b).
Then for any number py in [a, b], the sequence defined by
pn=8(pn-1), n=1,

converges to the unique fixed point p in [a, b]. [ ]

Proof Theorem 2.3 implies that a unique point p exists in [a, b] with g(p) = p. Since g
maps [a, b] into itself, the sequence { p,};2, is defined for all n > 0, and p,, € [a, b] for all

n. Using the fact that |g’(x)| < k and the Mean Value Theorem 1.8, we have, for each n,
[Pn =Pl = 18(Pa—1) — (P = 18 EDl Pu—1 — Pl < k| pu_y — pl,
where &, € (a, b). Applying this inequality inductively gives
|Pw = pl < kIpa-t = pl < K| paa —pl < - < K"|po = pl. (2.4)

Since 0 < k < 1, we have lim,,_, o k" = 0 and

lim |p, —p| < lim k"|py — p| = 0.

n— 00 n— oo
Hence { p,};2, converges to p. = = ow

Corollary 2.5 1f g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using p,
to approximate p are given by

| pn — p| < K" max{py — a,b — po} (2.5)

and
[pn —pl < l_klpl—pol, forall n=>1. (2.6)
| |

Proof Because p € [a, b], the first bound follows from Inequality (2.4):
|pn —pl < k" po — pl < K" max{po — a,b — po}.
For n > 1, the procedure used in the proof of Theorem 2.4 implies that

[ Pnt1 — Pnl = 18(pn) — 8(Pu=D| < klpn — pp—1l < -+ < k" p1 — pol.
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Thus form >n > 1,
| P — Pnl = | Pm — Pm—1 + Pm—1 — =+ + Put1 — Pal
< |pm = Pm=tl + [ Pm—t = Pm—2| + -+ | Pnr1 — Pal
< k"' p1—pol + k"2 p1 — pol + - -+ + K" p1 — pol
=K'\p1 —pol (1 +k+ K+ + k"),

By Theorem 2.3, lim,,—, 00 P = P, SO

m—n—1 00
[P = pal = lim_[py —pal < lim K"[pyr—pol ) K <K'Ipr—pol ) K.
i=0 i=0

But )2, k' is a geometric series with ratio k and 0 < k < 1. This sequence converges to
1/(1 — k), which gives the second bound:

n

1 -k

|p—pul < | p1 — pol. " = o=

Both inequalities in the corollary relate the rate at which { p,}° ; converges to the bound
k on the first derivative. The rate of convergence depends on the factor k”. The smaller the
value of k, the faster the convergence, which may be very slow if k is close to 1.

lllustration  Let us reconsider the various fixed-point schemes described in the preceding illustration in
light of the Fixed-point Theorem 2.4 and its Corollary 2.5.

(a) For g(x) = x — x> — 4x? + 10, we have g;(1) = 6 and g;(2) = —12, so g; does
not map [1,2] into itself. Moreover, g (x) = 1 — 3x* — 8x, so |g|(x)| > 1 for all x
in [1,2]. Although Theorem 2.4 does not guarantee that the method must fail for this
choice of g, there is no reason to expect convergence.

(b) With g>(x) = [(10/x) — 4x]'/2, we can see that g» does not map [1, 2] into [1, 2], and
the sequence { p,};2, is not defined when py = 1.5. Moreover, there is no interval
containing p ~ 1.365 such that |g} (x)| < 1, because |g5(p)| = 3.4. There is no reason
to expect that this method will converge.

(¢) For the function g3(x) = (10 — x*)'/2, we have
3
gy(x) = —sz(lO —x)72 <0 on[l,2],

so g3 is strictly decreasing on [1,2]. However, |g5(2)] ~ 2.12, so the condition
|g5(x)| <k < 1 fails on [1,2]. A closer examination of the sequence { p,}°°, starting
with py = 1.5 shows that it suffices to consider the interval [1, 1.5] instead of [1, 2]. On

this interval it is still true that g/3 (x) < 0 and g is strictly decreasing, but, additionally,

1< 128~ g5(15) < ga() < ga(1) = 1.5,

for all x € [1, 1.5]. This shows that g3 maps the interval [1, 1.5] into itself. It is also
true that |g5(x)| < [g5(1.5)] ~ 0.66 on this interval, so Theorem 2.4 confirms the
convergence of which we were already aware.

(d) For g4(x) = (10/(4 + x))"/?, we have

< 0.15, forall xe][l,2].

/ — _5 5
8401 = ‘m(4+x)3/2 = V1067
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The bound on the magnitude of g (x) is much smaller than the bound (found in (c))
on the magnitude of g5 (x), which explains the more rapid convergence using gi.
(e) The sequence defined by
) x4+ 4x2 - 10
X)=X— ——F"7—
&5 3x% + 8x

converges much more rapidly than our other choices. In the next sections we will see
where this choice came from and why it is so effective. ]

From what we have seen,

® Question: How can we find a fixed-point problem that produces a sequence that reliably
and rapidly converges to a solution to a given root-finding problem?

might have

e Answer: Manipulate the root-finding problem into a fixed point problem that satisfies the
conditions of Fixed-Point Theorem 2.4 and has a derivative that is as small as possible
near the fixed point.

In the next sections we will examine this in more detail.

Maple has the fixed-point algorithm implemented in its NumericalAnalysis package.
The options for the Bisection method are also available for fixed-point iteration. We will
show only one option. After accessing the package using with(Student[ NumericalAnalysis)):
we enter the function

3 4+ 4x% — 10)

£=7 3x2 + 8x

and Maple returns
X +4x2— 10
3x2 + 8x
Enter the command

FixedPointIteration(fixedpointiterator = g, x = 1.5, tolerance = 1078, output = sequence,
maxiterations = 20)

and Maple returns

1.5,1.373333333, 1.365262015, 1.365230014, 1.365230013

EXERCISE SET 22

1.  Use algebraic manipulation to show that each of the following functions has a fixed point at p precisely
when f(p) = 0, where f(x) = x* +2x> —x — 3.
x+3—x > 1/2

a g=0C+x-— 2x2)1/4 b. &)= ( 2
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x+3\" 3xt+2x2 +3
¢ gw=(5-5 I P |

2. a. Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let py = 1
and p,41 = g(pn), forn =0,1,2,3.

b.  Which function do you think gives the best approximation to the solution?

3. The following four methods are proposed to compute 21'/3. Rank them in order, based on their
apparent speed of convergence, assuming po = 1.

a _ 20p,-1 + 21/p%_, b . B p, =21
o Pn 21 . Pn Pn—1 3]7%71
_ Pa_y —21pus 21\ "2
C. DPn=DPn-1— 172|7—21 d. p,= p—l
n— n—

4.  The following four methods are proposed to compute 7'/3

speed of convergence, assuming py = 1.

. Rank them in order, based on their apparent

70\’ Pha =7
a Py =pai <1 + $) b. p.=p.1— 271
n—1 n—
S 5
P =7 P -7
¢ Pu=pag — oL d p,=p, P!
Pn Pn—1 5pi_, Pn Pn—1 12

5. Useafixed-point iteration method to determine a solution accurate to within 10~2 for x* —3x>—3 =0
on [1,2]. Use py = 1.

6. Use a fixed-point iteration method to determine a solution accurate to within 1072 forx* —x — 1 =0
on [1,2]. Use py = 1.

7. Use Theorem 2.3 to show that g(x) = 7 + 0.5sin(x/2) has a unique fixed point on [0, 27r]. Use
fixed-point iteration to find an approximation to the fixed point that is accurate to within 1072, Use
Corollary 2.5 to estimate the number of iterations required to achieve 102 accuracy, and compare
this theoretical estimate to the number actually needed.

8.  Use Theorem 2.3 to show that g(x) = 27 has a unique fixed point on [%, 1]. Use fixed-point iteration
to find an approximation to the fixed point accurate to within 10~*. Use Corollary 2.5 to estimate the
number of iterations required to achieve 10~ accuracy, and compare this theoretical estimate to the
number actually needed.

9.  Use a fixed-point iteration method to find an approximation to /3 that is accurate to within 107%.
Compare your result and the number of iterations required with the answer obtained in Exercise 12
of Section 2.1.

10.  Use a fixed-point iteration method to find an approximation to +/25 that is accurate to within 107%.
Compare your result and the number of iterations required with the answer obtained in Exercise 13
of Section 2.1.

11.  For each of the following equations, determine an interval [a, b] on which fixed-point iteration will
converge. Estimate the number of iterations necessary to obtain approximations accurate to within
1073, and perform the calculations.

2—e +x* 5
= b. = — 2
a x 3 =0 +
¢ x=(e/3)"? d x=5*
e. x=6"" f. x=0.5(sinx + cosx)

12.  For each of the following equations, use the given interval or determine an interval [a, ] on which
fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approxima-
tions accurate to within 107>, and perform the calculations.

a. 2+4sinx—x=0 use[2,3] b. xX*—-2x—5=0 use[2,3]
c. 3x?—e"=0 d. x—cosx=0

13.  Find all the zeros of f (x) = x* + 10 cos x by using the fixed-point iteration method for an appropriate

iteration function g. Find the zeros accurate to within 1074,
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14.  Use a fixed-point iteration method to determine a solution accurate to within 10~* for x = tanx, for
xin [4,5].

15.  Use afixed-point iteration method to determine a solution accurate to within 1072 for 2 sin 7x+x = 0
on [1,2]. Use pg = 1.

16. Let A be a given positive constant and g(x) = 2x — Ax?.

a.  Show that if fixed-point iteration converges to a nonzero limit, then the limit is p = 1/A, so the
inverse of a number can be found using only multiplications and subtractions.

b. Find an interval about 1/A for which fixed-point iteration converges, provided p, is in that
interval.

17. Find a function g defined on [0, 1] that satisfies none of the hypotheses of Theorem 2.3 but still has a
unique fixed point on [0, 1].
18. a. Show that Theorem 2.2 is true if the inequality |g'(x)| < k is replaced by g'(x) < k, for all
x € (a, b). [Hint: Only uniqueness is in question.]
b.  Show that Theorem 2.3 may not hold if inequality |g'(x)| < k is replaced by g'(x) < k. [Hint:
Show that g(x) = 1 — x2, for x in [0, 1], provides a counterexample.]

19. a. Use Theorem 2.4 to show that the sequence defined by
1

Xp = ZXp—1 + , forn>1,
2 Xn—1

converges to /2 whenever xy > /2.
b. Use the factthat 0 < (xo —+/2)? whenever x, * /2 to show that if 0 < xo < +/2, thenx; > +/2.

Use the results of parts (a) and (b) to show that the sequence in (a) converges to /2 whenever
xo > 0.

20. a. Show thatif A is any positive number, then the sequence defined by
1

Xp = ZXp—1 +
2 2)6,1,1

, forn>1,

converges to /A whenever xo > 0.
b.  What happens if xyp < 0?

21. Replace the assumption in Theorem 2.4 that “a positive number k < 1 exists with |g'(x)| < k” with
“g satisfies a Lipschitz condition on the interval [a, b] with Lipschitz constant L < 1.” (See Exercise
27, Section 1.1.) Show that the conclusions of this theorem are still valid.

22.  Suppose that g is continuously differentiable on some interval (c,d) that contains the fixed point
p of g. Show that if |g’(p)| < 1, then there exists a § > 0 such that if |py — p| < §, then the
fixed-point iteration converges.

23.  An object falling vertically through the air is subjected to viscous resistance as well as to the force
of gravity. Assume that an object with mass m is dropped from a height sy and that the height of the
object after ¢ seconds is

mg

m’g ki
—kt/m
PRREVERLE

s(t) = s9 —

where g = 32.17 ft/s? and k represents the coefficient of air resistance in Ib-s/ft. Suppose sy = 300 ft,
m =0.251b, and k = 0.1 Ib-s/ft. Find, to within 0.01 s, the time it takes this quarter-pounder to hit the
ground.

24. Letg € C'[a,b] and p be in (a, b) with g(p) = p and |g'(p)| > 1. Show that there exists a § > 0 such
thatif O < |py — p| < §,then |py — p| < |p1 — pl| . Thus, no matter how close the initial approximation
Do is to p, the next iterate p, is farther away, so the fixed-point iteration does not converge if py # p.
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23

Isaac Newton (1641-1727) was
one of the most brilliant scientists
of all time. The late 17th century
was a vibrant period for science
and mathematics and Newton’s
work touched nearly every aspect
of mathematics. His method for
solving was introduced to find
aroot of the equation

v} — 2y — 5 = 0. Although he
demonstrated the method only for
polynomials, it is clear that he
realized its broader applications.

Joseph Raphson (1648-1715)
gave a description of the method
attributed to Isaac Newton in
1690, acknowledging Newton as
the source of the discovery.
Neither Newton nor Raphson
explicitly used the derivative in
their description since both
considered only polynomials.
Other mathematicians,
particularly James Gregory
(1636-1675), were aware of the
underlying process at or before
this time.
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Newton's Method and Its Extensions

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method.

Newton’s Method

If we only want an algorithm, we can consider the technique graphically, as is often done in
calculus. Another possibility is to derive Newton’s method as a technique to obtain faster
convergence than offered by other types of functional iteration, as is done in Section 2.4. A
third means of introducing Newton’s method, which is discussed next, is based on Taylor
polynomials. We will see there that this particular derivation produces not only the method,
but also a bound for the error of the approximation.

Suppose that f € C?[a, b]. Letpy € [a, b] be an approximation to p such that f'( py) #
0 and | p — po| is “small.” Consider the first Taylor polynomial for f(x) expanded about p,
and evaluated at x = p.

(p — po)?

f(p)= f(po)+ (p—po) f'(po) + Tf”(é(p)),

where £(p) lies between p and py. Since f(p) = 0, this equation gives

(p — po)?

0= f(po) + (P —po) f'(po) + Tf”(é*(p))-

Newton’s method is derived by assuming that since | p — py| is small, the term involving
(p — po)? is much smaller, so

0~ f(po)+ (p—po)f (po)-

Solving for p gives

f(po)
S (po)

p = po—

This sets the stage for Newton’s method, which starts with an initial approximation pg
and generates the sequence { p,}5, by

f(pn—l)

- , forn>1.
f(pn—l)

Pn = Pn—-1 — (2.7

Figure 2.8 on page 68 illustrates how the approximations are obtained using successive
tangents. (Also see Exercise 15.) Starting with the initial approximation py, the approx-
imation p; is the x-intercept of the tangent line to the graph of f at (po, f(po)). The
approximation p; is the x-intercept of the tangent line to the graph of f at (py, f(p;)) and
so on. Algorithm 2.3 follows this procedure.
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Figure 2.8
YA

Slopef"(p) /-y = /(x)

(P, /(pd)

Slopef”(po)

X

(Po.f(Po)

Newton'’s

To find a solution to f(x) = 0 given an initial approximation py:

INPUT initial approximation py; tolerance TOL; maximum number of iterations Np.
OUTPUT  approximate solution p or message of failure.
Step 1 Seti=1.
Step 2 While i < Ny do Steps 3-6.
Step 3 Setp =po — f(po)/f'(po). (Compute p;.)

Step4 1If |p — py| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step5 Seti=i+1.
Step 6 Setpy=p. (Update py.)

Step 7 OUTPUT (‘The method failed after Ny iterations, Ny =’, Ny);
(The procedure was unsuccessful.)
STOP. -

The stopping-technique inequalities given with the Bisection method are applicable to
Newton’s method. That is, select a tolerance ¢ > 0, and construct py, . .. py until

Ipv — py-1l <&, (2.8)
M < e, DN ;é 0, (29)
[Py
or
[f(pw)] < e. (2.10)
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Example 1

Figure 2.9

Note that the variable in the
trigonometric function is in
radian measure, not degrees. This
will always be the case unless
specified otherwise.

Table 2.3
n Pn
0 0.7853981635
1 0.7071067810
2 0.7602445972
3 0.7246674808
4 0.7487198858
5 0.7325608446
6 0.7434642113
7 0.7361282565
Table 2.4

Newton’s Method
n Pn
0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 69

A form of Inequality (2.8) is used in Step 4 of Algorithm 2.3. Note that none of the inequal-
ities (2.8), (2.9), or (2.10) give precise information about the actual error | py — p|. (See
Exercises 16 and 17 in Section 2.1.)

Newton’s method is a functional iteration technique with p,, = g(p,—;), for which

f(pnfl)
f/(pn—l)

In fact, this is the functional iteration technique that was used to give the rapid convergence
we saw in column (e) of Table 2.2 in Section 2.2.

It is clear from Equation (2.7) that Newton’s method cannot be continued if f/(p,_;) =
0 for some 7. In fact, we will see that the method is most effective when f” is bounded away
from zero near p.

8(Pn-1) = Pn-1— , for n>1. (2.11)

Consider the function f(x) = cosx—x = 0. Approximate aroot of f using (a) a fixed-point
method, and (b) Newton’s Method

Solution (a) A solution to this root-finding problem is also a solution to the fixed-point
problem x = cosx, and the graph in Figure 2.9 implies that a single fixed-point p lies in
[0, /2]

y = COSx

=
SIEE
<Y

Table 2.3 shows the results of fixed-point iteration with po = 7 /4. The best we could
conclude from these results is that p ~ 0.74.

(b) To apply Newton’s method to this problem we need f’(x) = — sinx — 1. Starting
again with py = /4, we generate the sequence defined, for n > 1, by

f(pn—l) _ COSPp—1 — Pn—1

DPn = DPn—1 — = Pn-1 - .
" " f(p;fl) " —Smpy—1 — 1

This gives the approximations in Table 2.4. An excellent approximation is obtained with
n = 3. Because of the agreement of p; and ps we could reasonably expect this result to be
accurate to the places listed. [ ]

Convergence using Newton’s Method

Example 1 shows that Newton’s method can provide extremely accurate approximations
with very few iterations. For that example, only one iteration of Newton’s method was
needed to give better accuracy than 7 iterations of the fixed-point method. It is now time to
examine Newton’s method more carefully to discover why it is so effective.
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The Taylor series derivation of Newton’s method at the beginning of the section points
out the importance of an accurate initial approximation. The crucial assumption is that the
term involving (p — po)? is, by comparison with | p — po|, so small that it can be deleted.
This will clearly be false unless py is a good approximation to p. If py is not sufficiently
close to the actual root, there is little reason to suspect that Newton’s method will converge
to the root. However, in some instances, even poor initial approximations will produce
convergence. (Exercises 20 and 21 illustrate some of these possibilities.)

The following convergence theorem for Newton’s method illustrates the theoretical
importance of the choice of py.

Theorem 2.6 Let f € C?[a,b]. If p € (a,b) is such that f(p) = 0 and f'(p) # 0, then there exists a
8 > 0 such that Newton’s method generates a sequence {p,}>2, converging to p for any

initial approximation pg € [p — §,p + 8]. [ ]

Proof The proofis based on analyzing Newton’s method as the functional iteration scheme
Pn = &(pn—1), forn > 1, with

&)
f'(x)
Letk be in (0, 1). We first find an interval [p — §, p 4 §] that g maps into itself and for which
lg(x)| <k, forallx € (p—38,p+9).
Since f’is continuous and f'(p) # 0, part (a) of Exercise 29 in Section 1.1 implies

that there exists a §; > 0, such that f'(x) # 0 forx € [p — 81,p + 81] C [a, b]. Thus g is
defined and continuous on [p — 81, p + 8;]. Also

SO0 = O f0)f®)
[f'(x)]? [P’

forx € [p — 81,p + 811, and, since f € C?a, b, we have g € Cl[p —81,p+ 61l
By assumption, f(p) =0, so

gx) =x —

g =1-

, f»f"(p)
=—— "~ =0
$P) =T or

Since g’ is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 implies that
there exists a §, with 0 < § < §;, and

g @) <k, forall xel[p—38p-+3]

It remains to show that g maps [p — 8,p + 8] into [p — 8, p+58]. Ifx € [p — §,p + 61,
the Mean Value Theorem implies that for some number £ between x and p, |g(x) — g(p)| =
lg'&)lx — pl. So

lg(x) — pl = [g&x) — g(p)| = 1g'E)llx — p| < klx —p| < |x —pl.

Since x € [p — §, p + 8], it follows that |[x — p| < § and that |g(x) — p| < §. Hence, g maps
[p—38,p+38]into [p —&,p +§].

All the hypotheses of the Fixed-Point Theorem 2.4 are now satisfied, so the sequence
{Pn}i2,, defined by

f(pnfl)
f/(pn—l) ’

converges to p for any pg € [p — §,p + 5]. = = om

Pn=8(Pn-1) =Pn-1 — forn > 1,
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Theorem 2.6 states that, under reasonable assumptions, Newton’s method converges
provided a sufficiently accurate initial approximation is chosen. It also implies that the con-
stant k that bounds the derivative of g, and, consequently, indicates the speed of convergence
of the method, decreases to O as the procedure continues. This result is important for the
theory of Newton’s method, but it is seldom applied in practice because it does not tell us
how to determine §.

In a practical application, an initial approximation is selected and successive approx-
imations are generated by Newton’s method. These will generally either converge quickly
to the root, or it will be clear that convergence is unlikely.

The Secant Method

Newton’s method is an extremely powerful technique, but it has a major weakness: the need
to know the value of the derivative of f at each approximation. Frequently, f”(x) is far more
difficult and needs more arithmetic operations to calculate than f (x).

To circumvent the problem of the derivative evaluation in Newton’s method, we intro-
duce a slight variation. By definition,

/ . f(X) - f(pn— )
f'(pp—1) = lim EACANAS =ty
X=pp_1 X — Pu_1
If p,_, is close to p,,_1, then

FPn—2) = f(Pu-1) _ f(Put) = f(Pn2)
Pn—2 — Pn—1 Pn—1 — Pn-2 ’

f/(pnfl) ~

Using this approximation for f'(p,—;) in Newton’s formula gives

f(pn—l)(pn—] _pn—Z)
f(pnfl) - f(pan) ’

the Latin word secan, which This technique is called the Secant method and is presented in Algorithm 2.4. (See

means to cut. The secant method ~ Figure 2.10.) Starting with the two initial approximations pg and p;, the approximation p; is

uses a secant line, a line joining the x-intercept of the line joining (po, f (po)) and (p1, f(p1)). The approximation pj3 is the

two points that cut the curve, to x-intercept of the line joining (pi, f(p1)) and (p2, f(p2)), and so on. Note that only one

approximate a root. function evaluation is needed per step for the Secant method after p, has been determined.
In contrast, each step of Newton’s method requires an evaluation of both the function and
its derivative.

Pn = Pn-1 — (212)

The word secant is derived from

Figure 2.10

y =/ y

<Y

Ps P1
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CHAPTER 2

Example 2

Table 2.5
Secant
n Pn
0 0.5
1 0.7853981635
2 0.7363841388
3 0.7390581392
4 0.7390851493
5 0.7390851332
Newton
n Pn
0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Solutions of Equations in One Variable

Secant

To find a solution to f(x) = 0 given initial approximations py and p;:

INPUT initial approximations py, p;; tolerance TOL; maximum number of iterations Nj.
OUTPUT  approximate solution p or message of failure.
Step 1 Seti =2,

qo = f(po);
q1 = f(p1).

Step 2 While i < Ny do Steps 3-6.
Step 3 Setp =pi —qi(p1 —po)/(q1 — qo). (Compute p;.)

Step4 1If |p — pi| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Seti=i+1.
Step 6 Setpy=p; (Update po,qo,pi-qi1.)

qo = 415
pPL=Dp;
q1 = f(p).

Step 7 OUTPUT (‘The method failed after Ny iterations, Ny =, Ny);
(The procedure was unsuccessful.)
STOP. -

The next example involves a problem considered in Example 1, where we used New-
ton’s method with py = 7 /4.

Use the Secant method to find a solution to x = cosx, and compare the approximations
with those given in Example 1 which applied Newton’s method.

Solution In Example 1 we compared fixed-point iteration and Newton’s method starting
with the initial approximation py = 7 /4. For the Secant method we need two initial ap-
proximations. Suppose we use py = 0.5 and p; = 7 /4. Succeeding approximations are
generated by the formula

(pn—l —Pn—z)(COSPn—l - pn—l)

, forn>2.
(COSPn—l _pnfl) - (COSPn—z _pn72)

Pn = Pn—1 —
These give the results in Table 2.5. [

Comparing the results in Table 2.5 from the Secant method and Newton’s method, we
see that the Secant method approximation ps is accurate to the tenth decimal place, whereas
Newton’s method obtained this accuracy by ps. For this example, the convergence of the
Secant method is much faster than functional iteration but slightly slower than Newton’s
method. This is generally the case. (See Exercise 14 of Section 2.4.)

Newton’s method or the Secant method is often used to refine an answer obtained by
another technique, such as the Bisection method, since these methods require good first
approximations but generally give rapid convergence.
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The Method of False Position

Each successive pair of approximations in the Bisection method brackets a root p of the
equation; that is, for each positive integer 7, a root lies between a, and b,,. This implies that,
for each n, the Bisection method iterations satisfy

1
n <z n_bn’
| pn — pl 2Ia |

which provides an easily calculated error bound for the approximations.

Root bracketing is not guaranteed for either Newton’s method or the Secant method.
In Example 1, Newton’s method was applied to f(x) = cosx — x, and an approximate root
was found to be 0.7390851332. Table 2.5 shows that this root is not bracketed by either pg
o a technique that uses results and p; or p; and p,. The Secant method approximations for this problem are also given in
that are known to be false, butin ~ 1able 2.5. In this case the initial approximations py and p; bracket the root, but the pair of

The term Regula Falsi, literally a
false rule or false position, refers

some specific manner, to obtain approximations p3 and p4 fail to do so.

convergence to a true result. False The method of False Position (also called Regula Falsi) generates approximations
position problems can be found in the same manner as the Secant method, but it includes a test to ensure that the root is
on the Rhind papyrus, which always bracketed between successive iterations. Although it is not a method we generally
dates from about 1650 B.C.E. recommend, it illustrates how bracketing can be incorporated.

First choose initial approximations py and p; with f(po) - f(p1) < 0. The approxi-
mation p; is chosen in the same manner as in the Secant method, as the x-intercept of the
line joining ( po, f(po)) and (p1, f(p1)). To decide which secant line to use to compute p3,
consider f(p2) - f(p1), or more correctly sgn f(p;) - sgn f(p1).

e If sgn f(p2)-sgn f(p1) < 0, then p; and p, bracket a root. Choose p3 as the x-intercept
of the line joining (p;, f(p1)) and (p2, f(p2)).

e If not, choose pj3 as the x-intercept of the line joining ( pg, f(po)) and (p2, f(p2)), and
then interchange the indices on py and p;.

In a similar manner, once pj is found, the sign of f(ps3) - f(p>) determines whether we
use p, and p3 or p3 and p; to compute p4. In the latter case a relabeling of p, and p; is
performed. The relabeling ensures that the root is bracketed between successive iterations.
The process is described in Algorithm 2.5, and Figure 2.11 shows how the iterations can
differ from those of the Secant method. In this illustration, the first three approximations
are the same, but the fourth approximations differ.

Figure 2.11

Secant Method Method of False Position

y =/ y=/
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False Position

To find a solution to f(x) = 0 given the continuous function f on the interval [ pg, p1]
where f(po) and f(p;) have opposite signs:

INPUT initial approximations py, p;; tolerance TOL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure.
Step 1 Seti =2,
g0 = f(po);
q1 = f(p).
Step 2 While i < Ny do Steps 3-7.
Step 3 Setp =pi —qi(p1 —po)/(q1 — qo). (Compute p;.)
Step4 1If |p — pi| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.
Step5 Seti=i+1;
q=f(p).
Step 6 1Ifg-q; < Othensetpy=p;
q0 = 41-
Step 7 Setp, =p;
q1 =4

Step 8 OUTPUT (‘Method failed after Ny iterations, Ny =", Np);
(The procedure unsuccessful.)
STOP. [ ]

Example 3  Use the method of False Position to find a solution to x = cos x, and compare the approx-
imations with those given in Example 1 which applied fixed-point iteration and Newton’s
method, and to those found in Example 2 which applied the Secant method.

Solution 'To make a reasonable comparison we will use the same initial approximations as

in the Secant method, that is, po = 0.5 and p; = /4. Table 2.6 shows the results of the

method of False Position applied to f (x) = cosx —x together with those we obtained using

the Secant and Newton’s methods. Notice that the False Position and Secant approximations

agree through p3 and that the method of False Position requires an additional iteration to

obtain the same accuracy as the Secant method. [ ]
Table 2.6 False Position Secant Newton

n P Pa P

0 0.5 0.5 0.7853981635

1 0.7853981635 0.7853981635 0.7395361337

2 0.7363841388 0.7363841388 0.7390851781

3 0.7390581392 0.7390581392 0.7390851332

4 0.7390848638 0.7390851493 0.7390851332

5 0.7390851305 0.7390851332

6 0.7390851332
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The added insurance of the method of False Position commonly requires more calcula-
tion than the Secant method, just as the simplification that the Secant method provides over
Newton’s method usually comes at the expense of additional iterations. Further examples
of the positive and negative features of these methods can be seen by working Exercises 17
and 18.

Maple has Newton’s method, the Secant method, and the method of False Position
implemented in its NumericalAnalysis package. The options that were available for the
Bisection method are also available for these techniques. For example, to generate the
results in Tables 2.4, 2.5, and 2.6 we could use the commands

with(Student|NumericalAnalysis])

f :=cos(x) —x

b4
Newton ( f.x= 10 tolerance = 10_8, output = sequence, maxiterations = 20)

T
Secant (f,x = [0.5, m] , tolerance = 10_8, output = sequence, maxiterations = 20)
and

b4
FalsePosition ( f.x= [0.5, m] ,tolerance = 1078, output =sequence, maxiterations:ZO)

EXERCISE SET 23

1. Let f(x) =x* —6and py = 1. Use Newton’s method to find p,.
. Let f(x) = —x* — cosx and py = —1. Use Newton’s method to find p,. Could py = 0 be used?
3. Let f(x) =x> — 6. With py = 3 and p; = 2, find ps.
a. Use the Secant method.
b.  Use the method of False Position.
¢. Which of a. or b. is closer to v/6?
4. Let f(x) = —x*> — cosx. Withpy = —1 and p; = 0, find ps.

a. Use the Secant method. b.  Use the method of False Position.

5. Use Newton’s method to find solutions accurate to within 10~* for the following problems.
a. xX*—-2x2-5=0, [L4] b. X¥*+3x>—-1=0, [-3,-2]
c. x—cosx=0, [0,7/2] d. x—08-02sinx=0, [0,7/2]

6. Use Newton’s method to find solutions accurate to within 10~ for the following problems.
& +2* +2cosx—6=0 forl <x<?2

In(x—1)4+cos(x—1)=0 forl3<x<2

2xcos2x —(x —2)?=0 for2<x<3and3<x<4

x—22—-Ilnx=0 forl<x<2ande<x<4

& —3x*=0 forO<x<land3<x<5

sinx —e* =0 forO0<x<13<x<4and6<x<7

- p &0 TR

7. Repeat Exercise 5 using the Secant method.
8. Repeat Exercise 6 using the Secant method.
9. Repeat Exercise 5 using the method of False Position.
10. Repeat Exercise 6 using the method of False Position.
11.  Use all three methods in this Section to find solutions to within 1073 for the following problems.
a. 3xef=0 forl<x<?2

b. 2x+3cosx—e*=0 forO0<x<1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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12.  Use all three methods in this Section to find solutions to within 107 for the following problems.
a. x*—4x+4—Inx=0 forl <x<2andfor2<x<4
b. x4+ 1—-2sinzx=0 forO<x<1/2andforl/2 <x<1

13.  Use Newton’s method to approximate, to within 107, the value of x that produces the point on the
graph of y = x? that is closest to (1, 0). [Hint: Minimize [d(x)]?, where d(x) represents the distance
from (x, x?) to (1, 0).]

14.  Use Newton’s method to approximate, to within 10~%, the value of x that produces the point on the
graph of y = 1/x that is closest to (2, 1).

15. The following describes Newton’s method graphically: Suppose that f’(x) exists on [a, b] and that
f'(x) # Oon [a, b]. Further, suppose there exists one p € [a, b] suchthat f(p) = 0, andletp, € [a, b]
be arbitrary. Let p; be the point at which the tangent line to f at (po, f(po)) crosses the x-axis. For
each n > 1, let p, be the x-intercept of the line tangent to f at (p,—1, f(pn—1)). Derive the formula
describing this method.

16.  Use Newton’s method to solve the equation

0= ! + Lo i ! 2 ith py =
= -+ —x" —xsinx — —~cos2x, Wi =_.
5 T g% —xsinx— X Po=3

Iterate using Newton’s method until an accuracy of 1073 is obtained. Explain why the result seems
unusual for Newton’s method. Also, solve the equation with py = 57 and py = 107.

17.  The fourth-degree polynomial
fx) =230x" + 18x + 9x* —221x — 9

has two real zeros, one in [—1, 0] and the other in [0, 1]. Attempt to approximate these zeros to within
10~° using the

a. Method of False Position

b.  Secant method

c. Newton’s method

Use the endpoints of each interval as the initial approximations in (a) and (b) and the midpoints as
the initial approximation in (c).

18. The function f(x) = tanwx — 6 has a zero at (1/7)arctan6 ~ 0.447431543. Let po = 0 and
p1 = 0.48, and use ten iterations of each of the following methods to approximate this root. Which
method is most successful and why?

a. Bisection method
b.  Method of False Position
c. Secant method

19. The iteration equation for the Secant method can be written in the simpler form

— f(pnfl)pn72 - f(Pan)pnfl
' FPu) = f(pa2)

Explain why, in general, this iteration equation is likely to be less accurate than the one given in
Algorithm 2.4.

20. Theequation x> — 10 cos x = 0 has two solutions, +1.3793646. Use Newton’s method to approximate
the solutions to within 10~> with the following values of p.

a. po=—100 b. po=—50 ¢ po=-25
d. p,=25 e. po=50 £ po =100

21. The equation 4x* — & — ¢™* = 0 has two positive solutions x; and x,. Use Newton’s method to
approximate the solution to within 10~3 with the following values of p.
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2.3 Newton’s Method and Its Extensions 77

a. po= —10 b. Po = =5 C. po= -3
d. p():—l €. p():O f. ])0:1
g po= 3 h. Po = 5 i. Po = 10

22.  Use Maple to determine how many iterations of Newton’s method with py = /4 are needed to find
aroot of f(x) = cosx — x to within 1071,
23.  The function described by f(x) = In(x*> + 1) — e%** cos x has an infinite number of zeros.
a. Determine, within 107, the only negative zero.
b. Determine, within 107, the four smallest positive zeros.
c¢. Determine a reasonable initial approximation to find the nth smallest positive zero of f. [Hint:
Sketch an approximate graph of f.]
d.  Use part (c) to determine, within 1075, the 25th smallest positive zero of f.
24.  Find an approximation for A, accurate to within 10~*, for the population equation

435,000
1,564,000 = 1,000,000¢* + ———— (&*

- D,
discussed in the introduction to this chapter. Use this value to predict the population at the end of the
second year, assuming that the immigration rate during this year remains at 435,000 individuals per
year.

25.  The sum of two numbers is 20. If each number is added to its square root, the product of the two sums
is 155.55. Determine the two numbers to within 1074,

26. The accumulated value of a savings account based on regular periodic payments can be determined
from the annuity due equation,

p .
A= 7[(1 + )" —1].

In this equation, A is the amount in the account, P is the amount regularly deposited, and i is the rate
of interest per period for the n deposit periods. An engineer would like to have a savings account
valued at $750,000 upon retirement in 20 years and can afford to put $1500 per month toward this
goal. What is the minimal interest rate at which this amount can be invested, assuming that the interest
is compounded monthly?

27. Problems involving the amount of money required to pay off a mortgage over a fixed period of time
involve the formula

p -
A=—l=(0+D ",

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the
amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that a
30-year home mortgage in the amount of $135,000 is needed and that the borrower can afford house
payments of at most $1000 per month. What is the maximal interest rate the borrower can afford to
pay?

28. A drug administered to a patient produces a concentration in the blood stream given by c(t) = Ate™"/3
milligrams per milliliter, ¢ hours after A units have been injected. The maximum safe concentration
is 1 mg/mL.

a.  What amount should be injected to reach this maximum safe concentration, and when does this
maximum occur?

b.  Anadditional amount of this drug is to be administered to the patient after the concentration falls
to 0.25 mg/mL. Determine, to the nearest minute, when this second injection should be given.

c.  Assume that the concentration from consecutive injections is additive and that 75% of the amount
originally injected is administered in the second injection. When is it time for the third injection?

29. Let f(x) = 3% —7.5%,
a. Use the Maple commands solve and fsolve to try to find all roots of f.
b. Plot f(x) to find initial approximations to roots of f.
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c. Use Newton’s method to find roots of f to within 1071°,
d. Find the exact solutions of f(x) = 0 without using Maple.
30. Repeat Exercise 29 using f(x) = 2% — 3. 7%+,
31. The logistic population growth model is described by an equation of the form

Py =—"*
T 1l —ce M’

where P, c, and k > 0 are constants, and P(¢) is the population at time ¢. P, represents the limiting
value of the population since lim,_,, P(#) = P,. Use the census data for the years 1950, 1960, and
1970 listed in the table on page 105 to determine the constants Py, ¢, and & for a logistic growth model.
Use the logistic model to predict the population of the United States in 1980 and in 2010, assuming
t = 0 at 1950. Compare the 1980 prediction to the actual value.
32. The Gompertz population growth model is described by

P(t) = Pe™ ",
where Py, c, and k > 0 are constants, and P(¢) is the population at time . Repeat Exercise 31 using
the Gompertz growth model in place of the logistic model.

33. Player A will shut out (win by a score of 21-0) player B in a game of racquetball with probability

p_ltr( _p» Y
T2 1—p+p?) ~°

where p denotes the probability A will win any specific rally (independent of the server). (See
[Keller, J], p. 267.) Determine, to within 1073, the minimal value of p that will ensure that A will shut
out B in at least half the matches they play.

34. Inthedesign of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting
to negotiate two types of obstacles. One type of failure is called hang-up failure and occurs when the
vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The
other type of failure is called nose-in failure and occurs when the vehicle descends into a ditch and
its nose touches the ground.

The accompanying figure, adapted from [Bek], shows the components associated with the nose-
in failure of a vehicle. In that reference it is shown that the maximum angle « that can be negotiated by
a vehicle when 8 is the maximum angle at which hang-up failure does not occur satisfies the equation

Asinacosa + Bsin?a — Ccosa — Esina = 0,
where
A=lsinp, B= lcosf;, C= (h+0.5D)sinp; —0.5Dtan g,
and E = (h+ 0.5D)cos B, —0.5D.

a. Itis stated that when / = 89 in., h =49 in., D = 55 in., and B, = 11.5°, angle « is approximately
33°. Verify this result.

b. Find « for the situation when /, , and B, are the same as in part (a) but D = 30 in.

DI2

X

~—_ ~=— \B;
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2.4 Error Analysis for Iterative Methods 19

2.4 Error Analysis for Iterative Methods

In this section we investigate the order of convergence of functional iteration schemes and,
as a means of obtaining rapid convergence, rediscover Newton’s method. We also consider
ways of accelerating the convergence of Newton’s method in special circumstances. First,
however, we need a new procedure for measuring how rapidly a sequence converges.

Order of Convergence

Definition 2.7  Suppose { p,}°2, is a sequence that converges to p, with p, # p for all n. If positive constants
A and o exist with

lim | Pnv1 — Pl _
n—~o0 | p, — p|*

then { p,}>°, converges to p of order «, with asymptotic error constant A. [

An iterative technique of the form p,, = g(p,—1) is said to be of order « if the sequence
{pa}i2, converges to the solution p = g(p) of order a.

In general, a sequence with a high order of convergence converges more rapidly than a
sequence with a lower order. The asymptotic constant affects the speed of convergence but
not to the extent of the order. Two cases of order are given special attention.

(i) Ifa =1 (and A < 1), the sequence is linearly convergent.
(ii) If @ = 2, the sequence is quadratically convergent.

The next illustration compares a linearly convergent sequence to one that is quadrati-
cally convergent. It shows why we try to find methods that produce higher-order convergent
sequences.

lllustration  Suppose that { p,}2, is linearly convergent to 0 with

lim |pn+1| —-05

n—oo | Pn |

and that { p,}°, is quadratically convergent to 0 with the same asymptotic error constant,

fim Pl s,

n—0o0 |l~7n|2

For simplicity we assume that for each n we have

el o5 ana Pell g5
| Pal Pl

For the linearly convergent scheme, this means that
|pn = Ol = | pul & 0.5 pui] & (0.5)%| pual = -+ ~ (0.5)"| pol,
whereas the quadratically convergent procedure has
|Pn = Ol = [Pal & 05551 > & (0.5)[0.5|Pu—2 "1 = (0.5)* [Pyl
~ (0.5°10.5) P31 = (0.5) pu-3]°
- (0.5 ol
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Table 2.7

Theorem 2.8

Solutions of Equations in One Variable

Table 2.7 illustrates the relative speed of convergence of the sequences to O if | py| = |po| = 1.

Linear Convergence Quadratic Convergence
Sequence { p,}32, Sequence { p,}o2,

n 0.5)" 0.5)"!

1 5.0000 x 107! 5.0000 x 107!
2 2.5000 x 107! 1.2500 x 107!
3 1.2500 x 107! 7.8125 x 1073
4 6.2500 x 1072 3.0518 x 1073
5 3.1250 x 1072 4.6566 x 10710
6 1.5625 x 1072 1.0842 x 107"
7 7.8125 x 1073 5.8775 x 107%°

The quadratically convergent sequence is within 1073% of 0 by the seventh term. At least

126 terms are needed to ensure this accuracy for the linearly convergent sequence. U

Quadratically convergent sequences are expected to converge much quicker than those
that converge only linearly, but the next result implies that an arbitrary technique that
generates a convergent sequences does so only linearly.

Let g € Cla, b] be such that g(x) € [a, b], for all x € [a, b]. Suppose, in addition, that g’ is
continuous on (a, b) and a positive constant k < 1 exists with

g x)| <k, forallx e (a,b).
If g'(p) # 0, then for any number py # p in [a, b], the sequence
pn=8(pp-1), forn=>1,
converges only linearly to the unique fixed point p in [a, b]. [ ]
Proof We know from the Fixed-Point Theorem 2.4 in Section 2.2 that the sequence con-

verges to p. Since g’ exists on (a, b), we can apply the Mean Value Theorem to g to show
that for any n,

Prt1 —P = &(pn) — &(p) = &' (&N (pn — P)s

where &, is between p, and p. Since { p,}72 , converges to p, we also have {§,}7> ) converging
to p. Since g’ is continuous on (a, b), we have

lim ¢'(&,) = ¢'(p).
n—0o0

Thus

Pn+1 —

lim P~ tim ¢'6) = ¢'(p) and

n—00 p, —p n—00 n—00 |pn —p|

lim |pn+1 _p| — |g/(p)|'

Hence, if g’(p) # 0, fixed-point iteration exhibits linear convergence with asymptotic error
constant |g'(p)|. .
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Theorem 2.8 implies that higher-order convergence for fixed-point methods of the form
g(p) = p can occur only when g’(p) = 0. The next result describes additional conditions
that ensure the quadratic convergence we seek.

Thearem 2.9 Let p be a solution of the equation x = g(x). Suppose that ¢’(p) = 0 and g” is continuous
with |g”(x)| < M on an open interval I containing p. Then there exists a § > 0 such that,
for pg € [p — 8,p + 6], the sequence defined by p, = g(p,—1), when n > 1, converges at
least quadratically to p. Moreover, for sufficiently large values of n,

M 2
[Pni1 — Pl < Elpn -pl~ u

Proof Choose kin (0, 1) and § > 0 such that on the interval [p —§, p+§], contained in I, we
have |g'(x)| < k and g” continuous. Since |g’(x)| < k < 1, the argument used in the proof
of Theorem 2.6 in Section 2.3 shows that the terms of the sequence {p,}32,, are contained

in [p — 8, p + 6]. Expanding g(x) in a linear Taylor polynomial for x € [p — §, p + &] gives

g’ (&)
2

gx) =g(p)+ g (p)(x—p)+ (x —p)?,

where £ lies between x and p. The hypotheses g(p) = p and g’(p) = 0 imply that

g"'(&)
g0 =p+ = -p)>.
In particular, when x = p,,,
g" (&)
Pt = 8(pa) = p+ === (px -p)
with &, between p,, and p. Thus,
g" (&)
Pnil —p = (pn — D).

2

Since |g'(x)] <k < lon[p—6,p+ 8] and g maps [p — 8, p + §] into itself, it follows from
the Fixed-Point Theorem that { p,}32 ) converges to p. But &, is between p and p,, for each
n, so {£,}°2, also converges to p, and

i [P — 0l 18" (P
m 5 = .
n—oc | py — pl 2

This result implies that the sequence { p,}22, is quadratically convergent if g”(p) # 0 and
of higher-order convergence if g”’(p) = 0.

Because g” is continuous and strictly bounded by M on the interval [p — 8, p + §], this
also implies that, for sufficiently large values of n,

M 2
Ipn+1—p|<3|pn—p|- .

Theorems 2.8 and 2.9 tell us that our search for quadratically convergent fixed-point
methods should point in the direction of functions whose derivatives are zero at the fixed
point. That is:

e For a fixed point method to converge quadratically we need to have both g(p) = p, and
g'(p)=0.
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The easiest way to construct a fixed-point problem associated with a root-finding prob-
lem f(x) = 0 1is to add or subtract a multiple of f(x) from x. Consider the sequence

Pn = 8&(pu—1), forn=>1,

for g in the form

gx) =x—d(x)f(x),

where ¢ is a differentiable function that will be chosen later.
For the iterative procedure derived from g to be quadratically convergent, we need to
have ¢’(p) = 0 when f(p) = 0. Because

g0 =1-¢' W fx) — f()px),
and f(p) = 0, we have

gp=1=¢'(pfp)—f(Pe(p)=1—-9¢"(p)-0— f'(Ped(p)=1— f(po(p),

and ¢'(p) = 0ifand only if ¢(p) = 1/f'(p).
If we let ¢ (x) = 1/f'(x), then we will ensure that ¢(p) = 1/f’(p) and produce the
quadratically convergent procedure
p —g(p )_p f(pn—l)
n — n—1) — Pn—1 — — -
f,(pnfl)
This, of course, is simply Newton’s method. Hence

e If f(p) = 0and f'(p) # 0, then for starting values sufficiently close to p, Newton’s
method will converge at least quadratically.

Multiple Roots

In the preceding discussion, the restriction was made that f'( p) # 0, where p is the solution
to f(x) = 0. In particular, Newton’s method and the Secant method will generally give
problems if f'(p) = 0 when f(p) = 0. To examine these difficulties in more detail, we
make the following definition.

Definition 2.10 A solution p of f(x) = 0 is a zero of multiplicity m of f if for x # p, we can write

f(x) = (x — p)"q(x), where lim,_, , g(x) # 0. n

:?;ﬁ:ly;?iilyd’; Zflsfdl fZ o In essence, g(x) represents that portion of f(x) that does not contribute to the zero of

F() = (= p)"g (1), where f. The following result gives a means to easily identify simple zeros of a function, those
q(p) #0. that have multiplicity one.

Theorem 2.11 The function f € C'[a,b] has a simple zero at p in (a,b) if and only if f(p) = 0, but
f'(p) #0. u

Proof If f has a simple zero at p, then f(p) = 0 and f(x) = (x — p)q(x), where
lim,_,, g(x) # 0. Since f € C'[a,b],

f'(p)= ll_l}}l) fl&) = )lci_)H;[q(X) + (@ —p)g @] = )1(1_13, q(x) #0.

Conversely, if f(p) = 0, but f'(p) # 0, expand f in a zeroth Taylor polynomial about p.
Then

f@) = f(p)+ fEM)&x—p =&—pfEX),
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2.4 Error Analysis for Iterative Methods 83

where £ (x) is between x and p. Since f € C'[a, b],

lim f¢@) = £'(limé)) = £'(p) £0,

x—p X—p
Letting g = f' o & gives f(x) = (x — p)g(x), where lim,_, , g(x) # 0. Thus f has a simple
zero at p- = = =

The following generalization of Theorem 2.11 is considered in Exercise 12.

Theorem 2.12 The function f € C™[a, b] has a zero of multiplicity m at p in (a, b) if and only if

O=f(p=rP=rf'"(p=--=f""p, bu ") #0. m

The result in Theorem 2.12 implies that an interval about p exists where Newton’s
method converges quadratically to p for any initial approximation py = p, provided that p
is a simple zero. The following example shows that quadratic convergence might not occur
if the zero is not simple.

Example 1 Let f(x) = ¢ —x — 1. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that
Newton’s method with py = 1 converges to this zero but not quadratically.

Table 2.8 Solution (a) We have
n Pn

0 L0 f@=e—x—1, floo=e—1 and  f"(x) = ",

1 0.58198 50

2 0.31906

3 0.16800 fO)=e"—0-1=0, Fl0)y=e"—1=0 and f7(0)=¢"=1.

4 0.08635 o o

5 0.04380 Theorem 2.12 implies that f has a zero of multiplicity 2 at x = 0.

g 88??82 (b) The first two terms generated by Newton’s method applied to f with py = 1 are

8 0.005545 F(po) e—2

- =po— =1- ~ (0.58198,

9 27750 x 1073 Pr=Po =000 e—1
10 1.3881 x 1073
11 6.9411 x 107* and
13 1.7416 x 107* D2 =Dp1 — f/(pl) ~ 0.58198 — — ~ 0.31906.
14 8.8041 x 107 f'(pv) 0.78957
15 4.2610 x 107 The first sixteen terms of the sequence generated by Newton’s method are shown in Table
16 1.9142 x 107 2.8. The sequence is clearly converging to 0, but not quadratically. The graph of f is shown

in Figure 2.12. [ ]
Figure 2.12
Sx) 4
1 =+
o2 1,e—2)
(717 e_l)
-1
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84 CHAPTER 2 = Solutions of Equations in One Variable

One method of handling the problem of multiple roots of a function f is to define

J )
p(x) o)
If p is a zero of f of multiplicity m with f(x) = (x — p)"¢(x), then
) — @ — p)"q(x)
m(x —p)"~'q(x) + (x — p)"q'(x)
— x—p) 900

mq(x) + (x — p)q'(x)

also has a zero at p. However, g(p) # 0, so

a(p) _ !
mq(p) + (p—p)q'(p) m

#0,

and p is a simple zero of (x). Newton’s method can then be applied to w(x) to give

p J®)/f'®)
W' (x) L/ = [f OIS OB/Lf 01

gx) =x—

which simplifies to

0w
[f'@P? = f)fx)

If g has the required continuity conditions, functional iteration applied to g will be
quadratically convergent regardless of the multiplicity of the zero of f. Theoretically, the
only drawback to this method is the additional calculation of f”(x) and the more laborious
procedure of calculating the iterates. In practice, however, multiple roots can cause serious
round-off problems because the denominator of (2.13) consists of the difference of two
numbers that are both close to 0.

gx) = (2.13)

Example 2 In Example 1 it was shown that f(x) = ¢* — x — 1 has a zero of multiplicity 2 at x = 0 and
that Newton’s method with pg = 1 converges to this zero but not quadratically. Show that the
modification of Newton’s method as given in Eq. (2.13) improves the rate of convergence.

Solution Modified Newton’s method gives

n P 1= po — J (po) f'(po) _ . _(e=2—1D
LT (0 = F(po) 7 (p0) e— 1 —(e—2)e
—2.3421061 x 107!

—8.4582788 x 1073 This is considerably closer to O than the first term using Newton’s method, which was
—1.1889524 x 1073 0.58918. Table 2.9 lists the first five approximations to the double zero at x = 0. The results
—6.8638230 x 107° were obtained using a system with ten digits of precision. The relative lack of improvement
—2.8085217 x 1077 in the last two entries is due to the fact that using this system both the numerator and the
denominator approach 0. Consequently there is a loss of significant digits of accuracy as
the approximations approach 0. [ ]

Table 2.9

~ —2.3421061 x 107!,

AW =

The following illustrates that the modified Newton’s method converges quadratically
even when in the case of a simple zero.

lllustration In Section 2.2 we found that a zero of f(x) = x> + 4x> — 10 = 0 is p = 1.36523001.
Here we will compare convergence for a simple zero using both Newton’s method and the
modified Newton’s method listed in Eq. (2.13). Let
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2.4 Error Analysis for Iterative Methods 85

P +4pa_, — 10

5 ,  from Newton’s method
3pn_] + Spn—l

W pp=pp1—

and, from the Modified Newton’s method given by Eq. (2.13),

(P2 +4p2_, —1003p2_, + 8pu_1)
Gp2_ + 82— (P2, +4p2_, — 10)(6p,—1 +8)

(iii) Pn = Pn-1 —

With pg = 1.5, we have

Newton’s method

p1 = 1.37333333, p, =1.36526201, and p3 = 1.36523001.
Modified Newton’s method

p1 = 1.35689898, p, = 1.36519585, and p3 = 1.36523001.

Both methods are rapidly convergent to the actual zero, which is given by both methods as
p3. Note, however, that in the case of a simple zero the original Newton’s method requires
substantially less computation. 0

Maple contains Modified Newton’s method as described in Eq. (2.13) in its Numerical-
Analysis package. The options for this command are the same as those for the Bisection
method. To obtain results similar to those in Table 2.9 we can use

with(Student[NumericalAnalysis])
fi=e—x—1
ModifiedNewton ( f.x = 1.0, t0lerance = 10_10, output = sequence, maxiterations = 20)

Remember that there is sensitivity to round-off error in these calculations, so you might
need to reset Digits in Maple to get the exact values in Table 2.9.

EXERCISE SET 24

1. Use Newton’s method to find solutions accurate to within 1073 to the following problems.
a. xX*—2xe*+e =0, forO0<x<1
b. cos(x++2) +x(x/2++2) =0, for—2<x<-—1
e X=32Q ) +3x@4 )-8 =0, forO0<x<l1
d. ¥ +3(n2)%e* — (In8)e*” — (In2)> =0, for—1<x<0

2. Use Newton’s method to find solutions accurate to within 10> to the following problems.
a. 1 —4xcosx+2x2+cos2x=0, for0<x<1
b. X2+6x°+%*—2x*—6x2+1=0, for-3<x<-2
c. sin3x+3e Fsinx —3e Fsin2x—e ¥ =0, for3<x<4
d. & —27x° +27x*" — 92 =0, for3<x<5

3. Repeat Exercise 1 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 1?7
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86 CHAPTER 2 = Solutions of Equations in One Variable

4. Repeat Exercise 2 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 27

5. Use Newton’s method and the modified Newton’s method described in Eq. (2.13) to find a solution
accurate to within 107 to the problem

e + 1.441€* — 2.079¢* —0.3330 =0, for —1 <x <O.

This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations.
Compare the solutions to the results in 1(d) and 2(d).

6.  Show that the following sequences converge linearly to p = 0. How large must n be before |p, — p| <

5x 10722
1 1
a p,=-, n>1 b. Pn= n>1
n n
7. a. Show that for any positive integer k, the sequence defined by p, = 1/n* converges linearly to
p=0.

b.  For each pair of integers k and m, determine a number N for which 1/N* < 107",
8. a. Show that the sequence p, = 10~2" converges quadratically to 0.

Show that the sequence p,, = 10~"" does not converge to 0 quadratically, regardless of the size
of the exponent k > 1.

9. a. Construct a sequence that converges to 0 of order 3.
b.  Suppose o« > 1. Construct a sequence that converges to 0 zero of order .

10. Suppose p is a zero of multiplicity m of f, where £ is continuous on an open interval containing
p- Show that the following fixed-point method has g’(p) = 0:

mf (x)
gy =x— ———.
S
11.  Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly

to 0.

12.  Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.11 to show that f has
a zero of multiplicity m at p if and only if

0=f(p)=f(p)=-=f""(p), but f"(p)#0.

13.  The iterative method to solve f(x) = 0, given by the fixed-point method g(x) = x, where

_ _ f(Pn—l) f”(pnfl) f(Pnfl)
Pn = g(pn—l) =DPn-1—

F(Pa) 2 (Pat) L' (Put)

has g'(p) = g”(p) = 0. This will generally yield cubic (¢ = 3) convergence. Expand the analysis of
Example 1 to compare quadratic and cubic convergence.

2
] , forn=1,2,3,...,

14. It can be shown (see, for example, [DaB], pp. 228-229) that if {p,};°, are convergent Secant
method approximations to p, the solution to f(x) = 0, then a constant C exists with |p,+; — p| =
C |p» — pl |pa—1 — p| for sufficiently large values of n. Assume {p,} converges to p of order «, and
show that & = (1 + +/3) /2. (Note: This implies that the order of convergence of the Secant method
is approximately 1.62).

25 Accelerating Convergence

Theorem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We now
consider a technique called Aitken’s A% method that can be used to accelerate the conver-
gence of a sequence that is linearly convergent, regardless of its origin or application.
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25 Accelerating Convergence 87

Aitken’s A? Method
Alexander Aitken (1895-1967)
[o¢]

used this technique in 1926 to Suppose { p,}o2, is a linearly convergent sequence with limit p. To motivate the construction
accelerate the rate of convergence  of a sequence {p, }2, that converges more rapidly to p than does { p,,}°2,, let us first assume

of aseries in a paper on algebraic  that the signs of p, — p, pus1 — p, and p,4» — p agree and that 7 is sufficiently large that
equations [Ai]. This process is
similar to one used much earlier Pn+1 — P ~ Pnt2 — P

Pn—P  DPnt1—P

by the Japanese mathematician
Takakazu Seki Kowa

(1642-1708). Then
(Pus1 —P)* & (Pus2 = P)(Pn — D),
SO
Pt — 2Pui1D + P> X PusaPu — (Pu + Pui2)p + P
and

(Pnt2 + Pn = 2Dns )P X PuiaPn — Pisr-

Solving for p gives

Pn+2Pn — pﬁ.t,_l
Pn+2 — 2Pn+l +pn

Adding and subtracting the terms p?> and 2p,p,.; in the numerator and grouping terms
appropriately gives

pA PnPn+2 — 2pnpn+l +Pi _pi_»,_] + anpn-H _pﬁ
Pn+2 — 2pn+1 +pn

_ Pa(Pusa = 2puyt +P0) — (Do) — 2PaPui1 + D)
Pny2 — 2pn+1 +pn

Table 2.10
N R = pn— (pn+1 _pn)2
b b ! Pnt2 = 2Pnt1 + Pn
1 0.54030 0.96178
2 0.87758 0.98213 Aitken’s A2 method is based on the assumption that the sequence { Dn},, defined by
3 0.94496 0.98979
4096891 0.99342 . (Pust — pu)?
5 098007 099541 Ly PPN (2.14)
6 098614 ! ! !
7 0.98981 converges more rapidly to p than does the original sequence { p,}72,,.

Example 1 The sequence { p,}oc , where p, = cos(1/n), converges linearly to p = 1. Determine the

first five terms of the sequence given by Aitken’s A? method.

Solution In order to determine a term p, of the Aitken’s A% method sequence we need to
have the terms p,, p,+1, and p,4, of the original sequence. So to determine ps we need
the first 7 terms of {p,}. These are given in Table 2.10. It certainly appears that {p,}52
converges more rapidly to p = 1 than does {p,};2,. [ ]

The A notation associated with this technique has its origin in the following definition.
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Definition 2.13  For a given sequence { p,}°, the forward difference Ap, (read “delta p,”) is defined by
Apn = Pn+1 — Pn> for n > 0.
Higher powers of the operator A are defined recursively by

Afp, = A(A*'p,),  fork > 2. -

The definition implies that

A*py = A(Put1 = Pn) = APust — AP = (Put2 — Put1) — (Put1 — Pn)-

So Azp,l = pns2 — 2Pns1 + pn, and the formula for p,, given in Eq. (2.14) can be written as

(Apn)?

T, forn > 0. (2.15)

lan =DPn—

To this point in our discussion of Aitken’s A% method, we have stated that the sequence
{Dn}>2,, converges to p more rapidly than does the original sequence { p,}22,, but we have
not said what is meant by the term “more rapid” convergence. Theorem 2.14 explains and
justifies this terminology. The proof of this theorem is considered in Exercise 16.

Theorem 2.14  Suppose that { p,}°2, is a sequence that converges linearly to the limit p and that

. Pn+1 — P
lim — < 1.
n—oo pn —p

Then the Aitken’s A% sequence {Dn}2,, converges to p faster than { p,}°°, in the sense that

ﬁn_p
m
n=00 pp — p

=0. ]

Steffensen’s Method

Johan Frederik Steffensen . . . . S .
(1873-1961) wrote an influential By applying a modification of Aitken’s A% method to a linearly convergent sequence ob-

book entitled Interpolation in tained frorp fixed-point iteration, we can acceleratF: the convergence to qugdratig. This

1927 procedure is known as Steffensen’s method and differs slightly from applying Aitken’s
A? method directly to the linearly convergent fixed-point iteration sequence. Aitken’s A?
method constructs the terms in order:

po, p1=8(po), p2=g(p1), po=1{A*}(po),
p3=g(p2), p1={ANpD,...,

where {A?} indicates that Eq. (2.15) is used. Steffensen’s method constructs the same
first four terms, po, p1, p2, and po. However, at this step we assume that pg is a better
approximation to p than is p, and apply fixed-point iteration to py instead of p,. Using this
notation, the sequence is
0 0 0 0 0 1 0 1 1
py p =g, Py =g pi =181 =i

Every third term of the Steffensen sequence is generated by Eq. (2.15); the others use
fixed-point iteration on the previous term. The process is described in Algorithm 2.6.
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Steffensen’s

To find a solution to p = g(p) given an initial approximation py:

INPUT initial approximation py; tolerance TOL; maximum number of iterations Nj.
OUTPUT  approximate solution p or message of failure.
Step 1 Seti=1.
Step 2 While i < N; do Steps 3-6.
Step 3 Setpi =g(po); (Computep™")
p2=g(p1); (Compute py™")
P =po— (p1—p0)*/(p2 = 2p1 +po). (Compute py.)

Step 4 1If |p — po| < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step5 Seti=i+1.
Step 6 Setpy =p. (Update py.)

Step 7 OUTPUT (‘Method failed after N iterations, Ny =, Ny);
(Procedure completed unsuccessfully.)
STOP. ]

Note that A%p, might be 0, which would introduce a O in the denominator of the next
iterate. If this occurs, we terminate the sequence and select pg'_l) as the best approximation.

lllustration  To solve x* + 4x> — 10 = 0 using Steffensen’s method, let x> + 4x> = 10, divide by x + 4,
and solve for x. This procedure produces the fixed-point method

10 \'?
g(x)Z(m) .

We considered this fixed-point method in Table 2.2 column (d) of Section 2.2.

Agplymg Steffensen’s procedure with py = 1.5 gives the values in Table 2.11. The iterate
= 1.365230013 is accurate to the ninth decimal place. In this example, Steffensen’s
method gave about the same accuracy as Newton’s method applied to this polynomial.

These results can be seen in the Illustration at the end of Section 2.4. O
Table 2.11 k pgo pﬁ") p;")

0 1.5 1.348399725 1.367376372

1 1.365265224 1.365225534 1.365230583

2 1.365230013

From the Illustration, it appears that Steffensen’s method gives quadratic convergence
without evaluating a derivative, and Theorem 2.14 states that this is the case. The proof of
this theorem can be found in [He2], pp. 90-92, or [IK], pp. 103-107.
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Theorem 2.15 Suppose that x = g(x) has the solution p with g’(p) # 1. If there exists a § > 0 such
that g € C3[p — 8,p + 8], then Steffensen’s method gives quadratic convergence for any
po € [p—38,p+34l. m

Steffensen’s method can be implemented in Maple with the NumericalAnalysis pack-
age. For example, after entering the function

10
x+4
the Maple command

g =

Steffensen( fixedpointiterator = g,x = 1.5, tolerance = 1073, output = information,
maxiterations = 20)

produces the results in Table 2.11, as well as an indication that the final approximation has
a relative error of approximately 7.32 x 10710,

EXERCISE SET 25

1. The following sequences are linearly convergent. Generate the first five terms of the sequence {p,}
using Aitken’s A2 method.
a. po=05 p,=Q—e1+p2 )/3, n>1
b. po=075 p,= (132 n>1
c. po=05  p,=3"1, n>1
d. po=05, p,=cosp,_;, n>1

2. Consider the function f(x) = €% +3(In2)?e* — (In 8)e** — (In 2)3. Use Newton’s method with p, = 0
to approximate a zero of f. Generate terms until | p,; — p,| < 0.0002. Construct the sequence {p,}.
Is the convergence improved?

3. Letg(x) =cos(x—1)and pg)) = 2. Use Steffensen’s method to find p(()l).
Let g(x) = 1 + (sinx)? and péo) = 1. Use Steffensen’s method to find p(()l) and p(()z).

5.  Steffensen’s method is applied to a function g(x) using pf)o) = 1and pg)) = 3 to obtain p(()” = 0.75.

What is p*?
6. Steffensen’s method is applied to a function g(x) using p(()o) = land pﬁo) = +/2to obtain p(()l) = 2.7802.
What is p?

7.  Use Steffensen’s method to find, to an accuracy of 1074, the root of x> —x — 1 = 0 that lies in [1, 2],
and compare this to the results of Exercise 6 of Section 2.2.

8. Use Steffensen’s method to find, to an accuracy of 104, the root of x — 2=* = 0 that lies in [0, 1],
and compare this to the results of Exercise 8 of Section 2.2.

9.  Use Steffensen’s method with py = 2 to compute an approximation to +/3 accurate to within 104,
Compare this result with those obtained in Exercise 9 of Section 2.2 and Exercise 12 of Section 2.1.

10.  Use Steffensen’s method with p, = 3 to compute an approximation to ~/25 accurate to within 1074,
Compare this result with those obtained in Exercise 10 of Section 2.2 and Exercise 13 of Section 2.1.

11.  Use Steffensen’s method to approximate the solutions of the following equations to within 107,
a. x=(2— ¢ +x?)/3, where g is the function in Exercise 11(a) of Section 2.2.
b. x = 0.5(sinx + cosx), where g is the function in Exercise 11(f) of Section 2.2.
c. x=(e/3)"/?, where g is the function in Exercise 11(c) of Section 2.2.
d. x=57", where g is the function in Exercise 11(d) of Section 2.2.

12.  Use Steffensen’s method to approximate the solutions of the following equations to within 1073,
a. 2+ sinx —x = 0, where g is the function in Exercise 12(a) of Section 2.2.

b. x3—2x —5 =0, where g is the function in Exercise 12(b) of Section 2.2.
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26 Zeros of Polynomials and Miiller's Method 91

c. 3x? — e =0, where g is the function in Exercise 12(c) of Section 2.2.
d. x —cosx =0, where g is the function in Exercise 12(d) of Section 2.2.

13.  The following sequences converge to 0. Use Aitken’s A2 method to generate {p, } until |p,| < 5x 1072

1 1
a. pn:Z, n>1 b. pnzn—z,

14. A sequence {p,} is said to be superlinearly convergent to p if

limM:O

n=00 | py — pl
a. Show thatif p, — p of order « for & > 1, then {p,} is superlinearly convergent to p.

b.  Show thatp, = n—l,l is superlinearly convergent to O but does not converge to 0 of order « for any
o> 1.

15.  Suppose that { p,} is superlinearly convergent to p. Show that

li |pn+l _pnl
im ———
n—oe | py — pl

=1.

16. Prove Theorem 2.14. [Hint: Let 6, = (pur1 — p)/(pu — p) — X, and show that lim,,_,», 6, = 0. Then
express (Dny1 — p)/(p, — p) in terms of §,,, 8,41, and A.]

17.  Let P,(x) be the nth Taylor polynomial for f(x) = e* expanded about xy = 0.
a. For fixed x, show that p, = P,(x) satisfies the hypotheses of Theorem 2.14.
b. Letx = 1, and use Aitken’s A2 method to generate the sequence py, . . . , Dg.
c. Does Aitken’s method accelerate convergence in this situation?

2.6 Zeros of Polynomials and Miiller's Method

A polynomial of degree n has the form
P(x) = apx" + @y X"+ arx + a,
where the a;’s, called the coefficients of P, are constants and a,, # 0. The zero function,

P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree.

Algebraic Polynomials

Theorem 2.16 (Fundamental Theorem of Algebra)

If P(x) is a polynomial of degree n > 1 with real or complex coefficients, then P(x) = 0
has at least one ( possibly complex) root. [ ]

Although the Fundamental Theorem of Algebra is basic to any study of elementary
functions, the usual proof requires techniques from the study of complex function theory.
The reader is referred to [SaS], p. 155, for the culmination of a systematic development of
the topics needed to prove the Theorem.

Example 1 Determine all the zeros of the polynomial P(x) = x> — 5x> 4+ 17x — 13.

Solution 1t is easily verified that P(1) =1 —5+ 17 — 13 = 0. so x = 1 is a zero of P and
(x — 1) is a factor of the polynomial. Dividing P(x) by x — 1 gives

P(x) = (x — D(x? — 4x + 13).
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Carl Friedrich Gauss
(1777-1855), one of the greatest
mathematicians of all time,
proved the Fundamental Theorem
of Algebra in his doctoral
dissertation and published it in
1799. He published different
proofs of this result throughout
his lifetime, in 1815, 1816, and as
late as 1848. The result had been
stated, without proof, by Albert
Girard (1595-1632), and partial
proofs had been given by Jean
d’Alembert (1717-1783), Euler,
and Lagrange.

Corollary 2.17

Corollary 2.18

William Horner (1786-1837) was
a child prodigy who became
headmaster of a school in Bristol
at age 18. Horner’s method for
solving algebraic equations

was published in 1819 in the
Philosophical Transactions of the
Royal Society.

Theorem 2.19
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Solutions of Equations in One Variable

To determine the zeros of x2 — 4x + 13 we use the quadratic formula in its standard form,
which gives the complex zeros

—(—4) /(=492 —4(1)(13)  4+/-36
B 2

2(1)

=243i

Hence the third-degree polynomial P(x) has three zeros, x; = 1, x, = 2 — 3i, and
X, =2+ 3i. ]

In the preceding example we found that the third-degree polynomial had three distinct
zeros. An important consequence of the Fundamental Theorem of Algebra is the following
corollary. It states that this is always the case, provided that when the zeros are not distinct
we count the number of zeros according to their multiplicities.

If P(x) is a polynomial of degree n > 1 with real or complex coefficients, then there exist
unique constants xj, xp, . . ., X, possibly complex, and unique positive integers my, my, . . .,
my, such that 3% m; = n and

P(x) = an(x — x)" (x —x2)™ - -+ (x — x)™. u

By Corollary 2.17 the collection of zeros of a polynomial is unique and, if each zero
x; is counted as many times as its multiplicity m;, a polynomial of degree n has exactly n
Zeros.

The following corollary of the Fundamental Theorem of Algebra is used often in this
section and in later chapters.

Let P(x) and Q(x) be polynomials of degree at most n. If x, x5, ..., x¢, with k > n, are
distinct numbers with P(x;) = Q(x;) fori = 1,2,...,k, then P(x) = Q(x) for all values
of x. [ |

This result implies that to show that two polynomials of degree less than or equal to n
are the same, we only need to show that they agree at n 4 1 values. This will be frequently
used, particularly in Chapters 3 and 8.

Horner’s Method

To use Newton’s method to locate approximate zeros of a polynomial P(x), we need to
evaluate P(x) and P’(x) at specified values. Since P(x) and P’(x) are both polynomials,
computational efficiency requires that the evaluation of these functions be done in the nested
manner discussed in Section 1.2. Horner’s method incorporates this nesting technique, and,
as a consequence, requires only n multiplications and » additions to evaluate an arbitrary
nth-degree polynomial.

(Horner's Method)
Let

P(x) = apx" + a1 X" "+ -+ arx + ao.
Define b,, = a,, and
fork=n—-1,n-2,...

by = ay + bry1xo0, ,1,0.



Paolo Ruffini (1765-1822) had
described a similar method which
won him the gold medal from the
Italian Mathematical Society for
Science. Neither Ruffini nor
Horner was the first to discover
this method; it was known in
China at least 500 years earlier.

Example 2

The word synthetic has its roots
in various languages. In standard
English it generally provides the
sense of something that is “false”
or “substituted”. But in
mathematics it takes the form of
something that is “grouped
together”. Synthetic geometry
treats shapes as whole, rather
than as individual objects, which
is the style in analytic geometry.
In synthetic division of
polynomials, the various powers
of the variables are not explicitly
given but kept grouped together.
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Then by = P(xp). Moreover, if
0() = byx""" + by x" P+ + byx + by,
then

P(x) = (x — x0)Q(x) + by. ]

Proof By the definition of Q(x),
(x —x0)Q(x) + by = (x — x0) (byx"~" + -+ 4+ byx + b1) + by
= (bpx" + by X"+ bpx® + byx)
— (buxox™" 4 -+ - 4 byxox + bixo) + by
= byx" + byt — byxo)x" ™ + - + (b1 — baxo)x + (bo — bixo).
By the hypothesis, b, = a, and by — by 1x9 = ai, SO

(x —x0)Q(x) + by = P(x) and by = P(xp). " = o=

Use Horner’s method to evaluate P(x) = 2x* — 3x% 4+ 3x — 4 at xy = —2.

Solution  When we use hand calculation in Horner’s method, we first construct a table,
which suggests the synthetic division name that is often applied to the technique. For this
problem, the table appears as follows:

Coefficient  Coefficient  Coefficient Coefficient Constant
of x* of x3 of x2 of x term
Xo=—2 as =2 az =0 a; = -3 a =3 ag = —4
b4)€0 =—4 b3)€0 =8 bz)Co =-10 ble =14
by =2 by =—4 by=5 by =-7 by =10
So,
P(x) = (x +2)(2x> — 4x* + 5x — 7) + 10. n

An additional advantage of using the Horner (or synthetic-division) procedure is that,
since

P(x) = (x — x0)Q(x) + bo,
where
Q) = b X"+ by X" 24 4 box + by,
differentiating with respect to x gives
P'(x) = Q(x) + (x —x0)Q'(x)

and P'(x9) = Q(xp). (2.16)

When the Newton-Raphson method is being used to find an approximate zero of a polyno-
mial, P(x) and P’(x) can be evaluated in the same manner.
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Example 3 Find an approximation to a zero of
P(x) = 2x* — 3x* +3x — 4,

using Newton’s method with xyp = —2 and synthetic division to evaluate P(x,) and P’(x,)
for each iterate x,,.

Solution With xo = —2 as an initial approximation, we obtained P(—2) in Example 1 by
Xp = —2 2 0 -3 3 —4
—4 8 -10 14
2 —4 5 -7 10 = P(-2).

Using Theorem 2.19 and Eq. (2.16),
Q(x) =2x* —4x* +5x—7 and P'(=2) = Q(-2),

so P’(—2) can be found by evaluating Q(—2) in a similar manner:

xp=—2 2 —4 5 -7
—4 16 —42
2 -8 21 —49 =Q0(-2)=P(-2)
and
P P 10
o=y 200 P05 10706,
P’ (x0) Q(xo) —49
Repeating the procedure to find x, gives
—1.796 2 0 -3 3 —4
—3.592 6.451 —6.197 5.742
2 —3.592 3451 -3.197 1.742 = P(xy)
—3.592 12.902 —29.368
2 —7.184 16.353 —32.565 = Q0(xy) = P'(x1).

So P(—1.796) = 1.742, P'(—1.796) = Q(—1.796) = —32.565, and

1.742
X = —1796 — ———— ~ —1.7425.
—32.565
In a similar manner, x3; = —1.73897, and an actual zero to five decimal places is —1.73896.
Note that the polynomial Q(x) depends on the approximation being used and changes
from iterate to iterate. u

Algorithm 2.7 computes P(xg) and P’(xp) using Horner’s method.
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Horner’s

To evaluate the polynomial

P(xX) = ax" + a1 X" + -+ aix + ap = (x — x0)Q(x) + by

and its derivative at xg:

INPUT degree n; coefficients ag, ay, . . . , a,; Xo.
OUTPUT y = P(xp);z = P'(x0).

Step 1 Sety =a,; (Compute b, for P.)
z=a,. (Computeb,_; for Q.)

Step2 Forj=n—1,n—-2,...,1
sety = xoy +a;; (Compute b; for P.)
z=x0z+y. (Compute b;_; for Q.)

Step 3 Sety = xgy +ag. (Compute by for P.)

Step 4 OUTPUT (y,z);
STOP. -

If the Nth iterate, x, in Newton’s method is an approximate zero for P, then
P(x) = (x —xy)0(x) +bp = (x —xy)O(x) + Plxy) = (x — xn)Q(x),

S0 x — xy is an approximate factor of P(x). Letting X; = xy be the approximate zero of P
and Q;(x) = Q(x) be the approximate factor gives

P(x) ~ (x — X)) Q1 (%).

We can find a second approximate zero of P by applying Newton’s method to Q; (x).

If P(x) is an nth-degree polynomial with n real zeros, this procedure applied repeatedly
will eventually result in (n — 2) approximate zeros of P and an approximate quadratic factor
Q-2 (x). At this stage, Q,,—>(x) = 0 can be solved by the quadratic formula to find the last
two approximate zeros of P. Although this method can be used to find all the approximate
zeros, it depends on repeated use of approximations and can lead to inaccurate results.

The procedure just described is called deflation. The accuracy difficulty with deflation
is due to the fact that, when we obtain the approximate zeros of P(x), Newton’s method is
used on the reduced polynomial QO (x), that is, the polynomial having the property that

P(x) ~ (x —X)(x —X2) - - (x — X)) Qr (x).

An approximate zero X1 of Q; will generally not approximate a root of P(x) = 0 as well
as it does a root of the reduced equation QO (x) = 0, and inaccuracy increases as k increases.
One way to eliminate this difficulty is to use the reduced equations to find approximations x»,
X3, ..., % to the zeros of P, and then improve these approximations by applying Newton’s
method to the original polynomial P(x).

Complex Zeros: Miiller's Method

One problem with applying the Secant, False Position, or Newton’s method to polynomials
is the possibility of the polynomial having complex roots even when all the coefficients are
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Theorem 2.20

Miiller’s method is similar to the
Secant method. But whereas the
Secant method uses a line
through two points on the curve
to approximate the root, Miiller’s
method uses a parabola through
three points on the curve for the
approximation.

Solutions of Equations in One Variable

real numbers. If the initial approximation is a real number, all subsequent approximations
will also be real numbers. One way to overcome this difficulty is to begin with a complex
initial approximation and do all the computations using complex arithmetic. An alternative
approach has its basis in the following theorem.

If z = a+biis acomplex zero of multiplicity m of the polynomial P(x) with real coefficients,
then 7 = a — bi is also a zero of multiplicity m of the polynomial P(x), and (x> — 2ax +
a® 4+ b*)™ is a factor of P(x). n

A synthetic division involving quadratic polynomials can be devised to approximately
factor the polynomial so that one term will be a quadratic polynomial whose complex roots
are approximations to the roots of the original polynomial. This technique was described
in some detail in our second edition [BFR]. Instead of proceeding along these lines, we
will now consider a method first presented by D. E. Miiller [Mu]. This technique can be
used for any root-finding problem, but it is particularly useful for approximating the roots
of polynomials.

The Secant method begins with two initial approximations p, and p; and determines
the next approximation p; as the intersection of the x-axis with the line through ( po, f (po))
and (py, f(p1)). (See Figure 2.13(a).) Miiller’s method uses three initial approximations,
Po,P1, and p,, and determines the next approximation p3 by considering the intersection

of the x-axis with the parabola through (po, f(po)), (p1, f(p1)), and (p2, f(p2)). (See
Figure 2.13(b).)

Figure 2.13
Y A Y A
~
Do )z P2 X Do P P2 Ps\ X
S S
(@) (b)
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The derivation of Miiller’s method begins by considering the quadratic polynomial
P@) =a(x —p2)’ +b(x —p2) +¢

that passes through (po, f(po)), (p1, f(p1)), and (p2, f(p2)). The constants a, b, and ¢
can be determined from the conditions

F(po) = alpo — p2)* + b(po — p2) + ¢, (2.17)

f(p1) =alpr —p2)* +b(p1 — p2) +c., (2.18)
and

fp)=a-0*+b-04+c=c (2.19)
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to be

c=f(p2), (2.20)

_ (po — p)?Lf(p1) — f(p)] — (p1 — p2)*[f(po) — f(p2)]
(po —p2)(p1 —p2)(po — p1)

b

, (2.21)

and

o= =PI (po) = f(p2)] = (po = p)Lf (p1) = f(p2)]
(po —p2)(p1 —p2)(Po — p1) '
To determine p3, a zero of P, we apply the quadratic formula to P(x) = 0. However, because

of round-off error problems caused by the subtraction of nearly equal numbers, we apply
the formula in the manner prescribed in Eq (1.2) and (1.3) of Section 1.2:

—2c
pP3—Ppr= .
b+ /b? — dac
This formula gives two possibilities for p3, depending on the sign preceding the radical term.
In Miiller’s method, the sign is chosen to agree with the sign of b. Chosen in this manner,

the denominator will be the largest in magnitude and will result in p; being selected as the
closest zero of P to p,. Thus

(2.22)

2c
By ()P = dac

where a, b, and c are given in Egs. (2.20) through (2.22).

Once p; is determined, the procedure is reinitialized using p, p», and p3 in place of p,
P1,and p; to determine the next approximation, p,4. The method continues until a satisfactory
conclusion is obtained. At each step, the method involves the radical +/b* — 4ac, so the
method gives approximate complex roots when b*> — 4ac < 0. Algorithm 2.8 implements
this procedure.

Miiller’s

To find a solution to f(x) = O given three approximations, po, p1, and ps:

INPUT  pog,p1,p2; tolerance TOL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure.

Step 1 Sethy = p, — po;
hy = p2 —p1;
81 = (f(p1) — f(po))/hi;
8 = (f(p2) — f(p1)/ha;
d = (8, — 61)/(hy + hy1);
i=3.

Step 2 While i < Ny do Steps 3-7.

Step 3 b =6, + hod,
D=%*—-4 f( pz)d)l/ 2. (Note: May require complex arithmetic.)
Step4 If|b—D| < |b+D|thensetE=b+ D
elseset E =b — D.

Step5 Seth=—2f(p)/E;
p=p2+h
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Step 6 If |h| < TOL then
OUTPUT (p); (The procedure was successful.)

STOP.
Step 7 Setpy = pi; (Prepare for next iteration.)
P1 = D2
P2 =p;
hi = p1 — po;
hy =p2 — p1;

81 = (f(p1) — f(po))/hi;
82 = (f(p2) — f(pD)/ha;
d = (8 — 81)/(ha + hy);
i=i+1.
Step 8 OUTPUT (‘Method failed after Ny iterations, Ny =", Np);

(The procedure was unsuccessful.)
STOP. ]

lllustration  Consider the polynomial f(x) = x* — 3x> 4+ x?> + x + 1, part of whose graph is shown in
Figure 2.14.

Figure 2.14
Ay
3 <4
y=x4—3x3 +x2+x+ 1
2 +
-1
-1 1 w 3 X
_1 <4
Three sets of three initial points will be used with Algorithm 2.8 and TOL = 107> to
approximate the zeros of f. The first set will use pyp = 0.5, p;y = —0.5, and p, = 0. The
parabola passing through these points has complex roots because it does not intersect the
x-axis. Table 2.12 gives approximations to the corresponding complex zeros of f.
Table 2.12 po =05, py=—05, pr=0
i Di f(pi
3 —0.100000 + 0.888819i —0.01120000 + 3.014875548i
4 —0.492146 4 0.447031i —0.1691201 — 0.7367331502i
5 —0.352226 4 0.484132i —0.1786004 + 0.0181872213i
6 —0.340229 + 0.443036i 0.01197670 — 0.0105562185i
7 —0.339095 + 0.446656i —0.0010550 + 0.000387261i
8 —0.339093 + 0.446630i 0.000000 + 0.000000i
9 —0.339093 + 0.446630i 0.000000 + 0.000000i
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Table 2.13 gives the approximations to the two real zeros of f. The smallest of these uses
po = 0.5, p; = 1.0, and p, = 1.5, and the largest root is approximated when py = 1.5,
P11 = 2.0, andpz =2.5.

Table213 ' _ 05 5 =10, po=15 po=15 p =20, p,=25
i pi f(pi) i pi f(pi)
3 1.40637 —0.04851 3 2.24733 —0.24507
4 1.38878 0.00174 4 2.28652 —0.01446
5 1.38939 0.00000 5 2.28878 —0.00012
6 1.38939 0.00000 6 2.28880 0.00000
7 2.28879 0.00000
The values in the tables are accurate approximations to the places listed. O

We used Maple to generate the results in Table 2.12. To find the first result in the table,
define f(x) with

fi=x—->x =3+ +x+1
Then enter the initial approximations with
p0:=0.5;pl :=—-0.5;p2 :=0.0
and evaluate the function at these points with
FO:=f(p0); f1:= f(pl); f2:= f(p2)
To determine the coefficients a, b, c, and the approximate solution, enter
c:= f2;
((PO = p2P - (f1= £2) = (pl = p2)* - (SO - f2))
(p0 —=p2) - (pl = p2) - (p0 —pl)
o (1= p2) - (fO = 2) = (p0 = p2) - (f1 = f2))
(p0 —=p2) - (pl = p2) - (p0 = pl)
2c

b+(#@))vb2—4a~c

This produces the final Maple output

b=

p3:=p2—

—0.1000000000 + 0.88881944181
and evaluating at this approximation gives f'(p3) as
—0.0112000001 4 3.0148755481

This is our first approximation, as seen in Table 2.12.

The illustration shows that Miiller’s method can approximate the roots of polynomials
with a variety of starting values. In fact, Miiller’s method generally converges to the root of a
polynomial for any initial approximation choice, although problems can be constructed for
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100 CHAPTER 2 = Solutions of Equations in One Variable

which convergence will not occur. For example, suppose that for some i we have f(p;) =
f(pix1) = f(pi+2) # 0. The quadratic equation then reduces to a nonzero constant
function and never intersects the x-axis. This is not usually the case, however, and general-
purpose software packages using Miiller’s method request only one initial approximation
per root and will even supply this approximation as an option.

EXERCISE SET 26

1. Find the approximations to within 10~ to all the real zeros of the following polynomials using
Newton’s method.

a. f(x)=x*-2x*-5

b. fx)=x>4+3>-1

C. f(x):x3—x—1

d fo=x*+2*-x-3

e. f(x)=x>+4001x>+4.002x + 1.101
f. f)=x—x*+2x-32+x—4

2. Find approximations to within 107> to all the zeros of each of the following polynomials by first
finding the real zeros using Newton’s method and then reducing to polynomials of lower degree to
determine any complex zeros.

a.  f(x)=x*+5x—9x> —85x — 136

b.  f(x) =x*—2x3 — 12x% + 16x — 40

e fO)=x*+x+3>+2x+2

d  f@)=x+11x*-21x —10x* —21x -5
e. f(x)=16x*+ 88x> + 159x2 + 76x — 240
f. f)=x*—4x>-3x4+5

g f)=x*—2—4?+4x+4

h. f()=x*—7x>+14x—-6

Repeat Exercise 1 using Miiller’s method.
Repeat Exercise 2 using Miiller’s method.

Use Newton’s method to find, within 1073, the zeros and critical points of the following functions.
Use this information to sketch the graph of f.

a  f(x)=x—-9?+12 b. f)=x*-2x"-5x>+12x-5

6. f(x)=10x>—8.3x% +2.295x — 0.21141 = 0 has a root at x = 0.29. Use Newton’s method with an
initial approximation xy = 0.28 to attempt to find this root. Explain what happens.

Use Maple to find a real zero of the polynomial f(x) = x* + 4x — 4.
Use Maple to find a real zero of the polynomial f(x) = x> — 2x — 5.

9.  Use each of the following methods to find a solution in [0.1, 1] accurate to within 10~ for
600x* — 550x* +200x> — 20x — 1 = 0.

a. Bisection method c. Secant method e. Miiller’s method

b. Newton’s method d. method of False Position
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2.6 Zeros of Polynomials and Miiller's Method 101

10. Two ladders crisscross an alley of width W. Each ladder reaches from the base of one wall to some
point on the opposite wall. The ladders cross at a height H above the pavement. Find W given that
the lengths of the ladders are x; = 20 ft and x, = 30 ft, and that H = 8 ft.

X2

X1

i
e—w—

11. A can in the shape of a right circular cylinder is to be constructed to contain 1000 cm®. The circular
top and bottom of the can must have a radius of 0.25 cm more than the radius of the can so that the
excess can be used to form a seal with the side. The sheet of material being formed into the side of
the can must also be 0.25 cm longer than the circumference of the can so that a seal can be formed.
Find, to within 10~*, the minimal amount of material needed to construct the can.

12. In 1224, Leonardo of Pisa, better known as Fibonacci, answered a mathematical challenge of John of
Palermo in the presence of Emperor Frederick II: find a root of the equation x* + 2x + 10x = 20. He
first showed that the equation had no rational roots and no Euclidean irrational root—that is, no root

in any of the forms a + «/l;, ﬁ + «/l;, Vvazx \/l;, or ./ ﬁ + \/l;, where a and b are rational numbers.
He then approximated the only real root, probably using an algebraic technique of Omar Khayyam
involving the intersection of a circle and a parabola. His answer was given in the base-60 number

system as
14 (L) +7(2 2+42 ! 3+33 ! 4+4 ! 5+40 LY
60 60 60 60 60 60) -

How accurate was his approximation?
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2.7 Survey of Methods and Software

In this chapter we have considered the problem of solving the equation f(x) = 0, where
f is a given continuous function. All the methods begin with initial approximations and
generate a sequence that converges to a root of the equation, if the method is successful.
If [a,b] is an interval on which f(a) and f(b) are of opposite sign, then the Bisection
method and the method of False Position will converge. However, the convergence of these
methods might be slow. Faster convergence is generally obtained using the Secant method
or Newton’s method. Good initial approximations are required for these methods, two for
the Secant method and one for Newton’s method, so the root-bracketing techniques such
as Bisection or the False Position method can be used as starter methods for the Secant or
Newton’s method.

Miiller’s method will give rapid convergence without a particularly good initial approx-
imation. It is not quite as efficient as Newton’s method; its order of convergence near a root
is approximately o = 1.84, compared to the quadratic, « = 2, order of Newton’s method.
However, it is better than the Secant method, whose order is approximately o = 1.62, and
it has the added advantage of being able to approximate complex roots.

Deflation is generally used with Miiller’s method once an approximate root of a poly-
nomial has been determined. After an approximation to the root of the deflated equation has
been determined, use either Miiller’s method or Newton’s method in the original polynomial
with this root as the initial approximation. This procedure will ensure that the root being
approximated is a solution to the true equation, not to the deflated equation. We recom-
mended Miiller’s method for finding all the zeros of polynomials, real or complex. Miiller’s
method can also be used for an arbitrary continuous function.

Other high-order methods are available for determining the roots of polynomials. If
this topic is of particular interest, we recommend that consideration be given to Laguerre’s
method, which gives cubic convergence and also approximates complex roots (see [Ho],
pp- 176-179 for a complete discussion), the Jenkins-Traub method (see [JT]), and Brent’s
method (see [Bre]).

Another method of interest, Cauchy’s method, is similar to Miiller’s method but avoids
the failure problem of Miiller’s method when f(x;) = f(x;+1) = f(xi+2), for some i. For
an interesting discussion of this method, as well as more detail on Miiller’s method, we
recommend [YG], Sections 4.10, 4.11, and 5.4.

Given a specified function f and a tolerance, an efficient program should produce an
approximation to one or more solutions of f(x) = 0, each having an absolute or relative
error within the tolerance, and the results should be generated in a reasonable amount
of time. If the program cannot accomplish this task, it should at least give meaningful
explanations of why success was not obtained and an indication of how to remedy the cause
of failure.

IMSL has subroutines that implement Miiller’s method with deflation. Also included
in this package is a routine due to R. P. Brent that uses a combination of linear interpolation,
an inverse quadratic interpolation similar to Miiller’s method, and the Bisection method.
Laguerre’s method is also used to find zeros of a real polynomial. Another routine for finding
the zeros of real polynomials uses a method of Jenkins-Traub, which is also used to find
zeros of a complex polynomial.

The NAG library has a subroutine that uses a combination of the Bisection method,
linear interpolation, and extrapolation to approximate a real zero of a function on a
given interval. NAG also supplies subroutines to approximate all zeros of a real poly-
nomial or complex polynomial, respectively. Both subroutines use a modified Laguerre
method.
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The netlib library contains a subroutine that uses a combination of the Bisection and
Secant method developed by T. J. Dekker to approximate a real zero of a function in the
interval. It requires specifying an interval that contains a root and returns an interval with
a width that is within a specified tolerance. Another subroutine uses a combination of the
bisection method, interpolation, and extrapolation to find a real zero of the function on the
interval.

MATLAB has aroutine to compute all the roots, both real and complex, of a polynomial,
and one that computes a zero near a specified initial approximation to within a specified
tolerance.

Notice that in spite of the diversity of methods, the professionally written packages
are based primarily on the methods and principles discussed in this chapter. You should be
able to use these packages by reading the manuals accompanying the packages to better
understand the parameters and the specifications of the results that are obtained.

There are three books that we consider to be classics on the solution of nonlinear
equations: those by Traub [Tr], by Ostrowski [Os], and by Householder [Ho]. In addition,
the book by Brent [Bre] served as the basis for many of the currently used root-finding
methods.
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Interpolation and Polynomial Approximation

Introduction

A census of the population of the United States is taken every 10 years. The following
table lists the population, in thousands of people, from 1950 to 2000, and the data are also
represented in the figure.

Year | 1950 | 1960 | 1970 | 1980 | 1990 | 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(1) 4
3x 108 +
[
[ )
[ )
2x 108 L °
c
i) o
©
= o
o
@]
a
1x 108 +
1950 1960 1970 1980 1990 2000!
Year

In reviewing these data, we might ask whether they could be used to provide a rea-
sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of
this type can be obtained by using a function that fits the given data. This process is called
interpolation and is the subject of this chapter. This population problem is considered
throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of

Section 3.5.
105

2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



106 CHAPTER 3 =

Interpolation and Polynomial Approximation

31

Figure 3.1

Theorem 3.1

Karl Weierstrass (1815-1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.
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Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

P,(x) = apx" + ap 1 X"+ -+ aix + aq,

where n is a nonnegative integer and ay, .. .,a, are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

v=fw e
AT
7Ly =)

T =)

Q —_
@_-
=Y

(Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a, b]. Foreach € > 0, there exists a polynomial
P(x), with the property that

|f(x) — Px)| <e, forallxin[a,b]. [ ]

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165-172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about xy = 0 for f(x) = €.
Since the derivatives of f(x) are all ¢*, which evaluated at xy = O gives 1, the Taylor
polynomials are
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2 2 3
X X X
Very little of Weierstrass’s work Pyx)=1, Pix)=1+4+x, Px)=14x+—, Pis(x)=14+x+—+ —,
was published during his lifetime, 2 2 6
but his lectures, particularly on 2 o3 X 2 o3 ¥ X3
 functi Pax)=1+x+=+=+>=, and Ps(x)=1+x+—+—+—+—.
tl?e tb‘eory ?t functions, had . B 6 24 ) 6 24 120
51gn1hcant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the
higher-degree polynomials, the error becomes progressively worse as we move away from

Z€ero.)

Figure 3.2
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Although better approximations are obtained for f(x) = ¢* if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f(x) = 1/x expanded about xop = 1 to
approximate f(3) = 1/3. Since

f) =x7" f)=—x2 f'x)=(-D)*2-x7,
and, in general,
FO@) = (=Dfkx

the Taylor polynomials are

n (k) 1 n
P =Y Qa1 = S eta -t
k=0 )

k
k=0

To approximate f(3) = 1/3 by P,(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f(3) = 1/3 by P, (3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n ‘0‘ 1 ‘
P | 1| -1

W [ N
w
R
(o)
B
)
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For the Taylor polynomials all the information used in the approximation is concentrated
at the single number xo, so these polynomials will generally give inaccurate approximations
as we move away from x. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to xq. For ordinary computational
purposes it is more efficient to use methods that include information at various points. We
consider this in the remainder of the chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes, but for the derivation of numerical
techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct
points (xo, yo) and (x1,y;) is the same as approximating a function f for which f(xg) = yo
and f(x;) = y; by means of a first-degree polynomial interpolating, or agreeing with, the
values of f at the given points. Using this polynomial for approximation within the interval
given by the endpoints is called polynomial interpolation.

Define the functions
X — X X — X9

and L;(x) = .
X0 — X1 X1 — Xo

Lo(x) =

The linear Lagrange interpolating polynomial through (x¢, yo) and (x,y;) is

X —

X — X X0
P(x) = Lo(x) f(x0) + L1 (x) f(x1) = Hf(XO) + xOf(xl)-

X —
Note that
Lo(xo) =1, Lo(x;) =0, Li(xo) =0, and L;(x;) =1,
which implies that
P(xo) =1- f(x0) +0- f(x1) = f(x0) = yo
and
Px1) =0 f(xo) +1- f(x1) = fx1) =y

So P is the unique polynomial of degree at most one that passes through (xg,yo) and
(x1,y1)-

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (5, 1).

Solution 1In this case we have

Lw=2"2="t6"5 ad Lw="2=1u-2
= = —_—— —_ an = = = — N
=5 s T3 W=5_773"
SO
PO = —x(r—5) 44 s—2) T=—2x+ 2 p lx— 2= —at6
X) = 3x 3x = 3X 3 3X 3— X .
The graph of y = P(x) is shown in Figure 3.3. [ ]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.1 Interpolation and the Lagrange Polynomial 109

Figure 3.3

To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n + 1 points

(x0, f(x0)), (x1, F X)),y Gony f(XR)).

(See Figure 3.4.)

Figure 3.4

<Y

In this case we first construct, for each k = 0,1,...,n, a function L, 4 (x) with the
property that L, x(x;) = 0 when i # k and L, x(xx) = 1. To satisfy L, x(x;) = O for each
i # k requires that the numerator of L, 4 (x) contain the term

(x=x0)(x —x1) - (X = X)) (X = Xpge1) -+ - (6 — X30).

To satisfy L, x (xx) = 1, the denominator of L, x(x) must be this same term but evaluated at
x = x. Thus

(x —x0) - (¢ — X)) (X — X)) -+ - (6 — Xp)

L, = .
) = ) (k= X ) 0k —Xean) - G — 1)

A sketch of the graph of a typical L, x (when n is even) is shown in Figure 3.5.
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Figure 3.5

Theorem 3.2

The interpolation formula named
for Joseph Louis Lagrange
(1736-1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736-1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

The symbol [ is used to write
products compactly and parallels
the symbol ), which is used for
writing sums.

Example 2
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Interpolation and Polynomial Approximation

L, (x) &
1 T /\
T~ N\ . SN N .
~ =t t f— — >
X0 Xy e Xpg X X1 Xp-1 Xy X

The interpolating polynomial is easily described once the form of L, is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

If x9,x1,...,x, are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

J ) = P,
This polynomial is given by

foreachk =0,1,...,n.

P@) = &) Luo() + -+ + ) Lun®) = Y f )Lk (), (3.1)

k=0
where, foreachk =0,1,...,n,

(x—x0)(x —x1) - (X — 1) (X — Xpq1) - - (6 — X5)
(ox — x0) (e — x1) =+ - Ok — Xp—1) Ok — Xp1) « -+ (X — Xp)

Ly (x) = (3.2

n

1—[ (x —x;)
= _— [
o (o — xi)
i#k
We will write L, ; (x) simply as Ly (x) when there is no confusion as to its degree.

(a) Use the numbers (called nodes) xo = 2, x; = 2.75, and x, = 4 to find the second
Lagrange interpolating polynomial for f(x) = 1/x.

(b) Use this polynomial to approximate f(3) = 1/3.

Solution (a) We first determine the coefficient polynomials Ly(x), L;(x), and L,(x). In
nested form they are

(x—=275x—4) _ 2

Ly(x) = o250 -4 g(x —275)(x — 4),
I == 16 NVx—4
10 =G e - 3¢ PE:
and
Ly = $Z2CZ279 2 275,

4—-2)4—-25 5
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Also, f(x) = f(2) =1/2, f(x1) = f(2.75) = 4/11,and f(x2) = f(4) = 1/4, s0
2
P() =Y fOa)L(x)
k=0
Rl

1
= (=275 —4) — 1

x=2)x—4) + %(x —2)(x —2.75)

_ 1o 35x n 49
22 88" 44’
(b) An approximation to f(3) = 1/3 (see Figure 3.6) is
9 105 49 29

22 88 44 88

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about xy = 1 could be used to reasonably approximate f(x) = 1/x
atx = 3. [

FB3)=PQ3) =

Figure 3.6

<Y

The interpolating polynomial P of degree less than or equal to 3 is defined in Maple
with

P :=x — interp([2,11/4,4],[1/2,4/11,1/4],x)

, 1 1 4 1
X — interp Z,Z,4 13177 , X

To see the polynomial, enter
P(x)
1, 35 49
22 38 44
Evaluating P(3) as an approximation to f(3) = 1/3, is found with
evalf(P(3))

0.3295454545
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The interpolating polynomial can also be defined in Maple using the CurveFitting package
and the call Polynomiallnterpolation.

The next step is to calculate a remainder term or bound for the error involved in
approximating a function by an interpolating polynomial.

Theorem 3.3  Suppose xo, X1, . . ., X, are distinct numbers in the interval [a, b] and f € C"*'[a, b]. Then,
for each x in [a, b], a number & (x) (generally unknown) between xo, xy, . . ., X,,, and hence
in (a, b), exists with

e EW)
f&x) =Pk + f—(x—xO)(x—x1)~-~(x—xn), (3.3)
(n+ 1!
There are other ways that the where P(x) is the interpolating polynomial given in Eq. (3.1). [ ]

error term for the Lagrange

polynomial can be expressed, but

this is the most useful form and Proof Note first that if x = x;, forany k = 0,1,...,n, then f(x;) = P(x;), and choosing
the one that most closely agrees ¢,y arbitrarily in (a, b) yields Eq. (3.3).

ith the standard Taylor . .
W ThE StAneaTe T If x # x, forall k =0, 1,.. ., n, define the function g for ¢ in [a, b] by
polynomial error form.

(t—x0)(@ —x1) - (t —xp)
(x—x0)(x —x1) -+ (x — x,)

g0y = f@® =P —[f(x) = P(x)]

= f(t) = P(t) — [f(x) — P(¥)] 1‘[((—“
=0

X;)
Since f € C"*'[a, b], and P € C*®[a, b], it follows that g € C"*'[a, b]. For t = x;, we have

¢k = £(0) — P) — Lf(x) — P(o)] ]"[ ST 0 1w - P] 0 =0,

Moreover,

g = f@) — P() — [f@) — P % = f(@) = P(x) = [f(x) = P()] = 0.
i=0 !

Thus g € C"a,b], and g is zero at the n + 2 distinct numbers x, xg, Xy, ...,X,. By
Generalized Rolle’s Theorem 1.10, there exists a number & in (a, b) for which g"+V (&) = 0.
So

S —x)
__ _(n+1) _ g+l _ p+D) _
— " (E) = 1 (E) — PO () — [ () — POOT s []:([) <x—x:'>l_; (34

However P(x) is a polynomial of degree at most 7, so the (n+ 1)st derivative, P+ (x),
is identically zero. Also, []/_,[(f — x;)/(x — x;)] is a polynomial of degree (n + 1), so

1_[ t—x) _ |: - :| "1 + (lower-degree terms in 7),
i Hizo (x —x;)

and

dmtt (= x;) n+ D!

drm+1 s x—x) [l —x)
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Equation (3.4) now becomes

_ D ey B (n+ D!
0=7"")—-0—-[f(x) P(X)]—l_[?:()(x )
and, upon solving for f(x), we have
(n+1) n
f(x)ZP(X)‘I‘ﬂH(x—x,) = = =

n+D!

The error formula in Theorem 3.3 is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay-
lor polynomial. The nth Taylor polynomial about xy concentrates all the known information
at xo and has an error term of the form

FOD(E ) ntl
W(X —x0)"".

The Lagrange polynomial of degree n uses information at the distinct numbers xg, x1, . . .,
X, and, in place of (x — x)", its error formula uses a product of the n + 1 terms (x — Xxo),
(x—x1),...,(x —x,):

SO EW@)
(n+ 1)

(x —x0)(x — x1) - -+ (x — xn).

Example 3 InExample 2 we found the second Lagrange polynomial for f(x) = 1/x on [2,4] using the
nodes xp = 2, x; = 2.75, and x, = 4. Determine the error form for this polynomial, and
the maximum error when the polynomial is used to approximate f(x) for x € [2,4].

Solution Because f(x) = x~', we have
flx)=—x2 f'o)=2x3, and f"(x) = —6x""
As a consequence, the second Lagrange polynomial has the error form
/" EX@)
3!

The maximum value of (£(x))~* on the interval is 2=* = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial
35 49

g =(x—2)(x—275)(x —4) =x> — sz + X = 2.

(x—x0)(x—x)D)(x—2x2) = —(é(x))_4(x—2)(x—2.75)(x—4), for £(x) in (2,4).

Because

35 49 35 49 1
Dx<3—Zx2+7x—22>=3x2—?x+?=§(3x—7)(2x—7),

the critical points occur at

7 7 25 7 7 9
x=—-,withg|=z)=—, and x=—,withg|=)=——.
3 3 108 2 2 16

Hence, the maximum error is

J"EX) 91_3 o
— ‘_ S35~ 0.00586. n

1
[(x —x0)(x —x1)(x —x2)| < 6.6 ‘_R
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The next example illustrates how the error formula can be used to prepare a table of
data that will ensure a specified interpolation error within a specified bound.

Example 4 Suppose a table is to be prepared for the function f(x) = &, for x in [0, 1]. Assume the
number of decimal places to be given per entry is d > 8 and that the difference between
adjacent x-values, the step size, is k. What step size /& will ensure that linear interpolation
gives an absolute error of at most 107 for all x in [0, 1]?

Solution Let xp, x1, . . . be the numbers at which f is evaluated, x be in [0,1], and suppose
J satisfies x; < x < x;j;1. Eq. (3.3) implies that the error in linear interpolation is

@ @
@ —pwi= 158 0 g = EE

2! |(x = x)[1(x = x40

The step size is h, so x; = jh, xj+1 = (j + 1)h, and

|f () = P()| <

&)
%I(x —Jjm(x =G+ Dh)|.

Hence

max;e[o,u eE

F) =P < ——5="— max|(x—jm)(x =G+ Dh)
<5, max N =ji =G+ Dh.

Consider the function g(x) = (x — jh)(x — (j + 1)h), for jh < x < (j + 1)h. Because

g,(x):(X—(f+1)h)+(x—jh):2<x_jh_g>’

the only critical point for g is at x = jh + h/2, with g(jh + h/2) = (h/2)* = h*/4.

Since g(jh) = 0 and g((j + 1)) = 0, the maximum value of |g'(x)| in [jk, (G + 1)A]
must occur at the critical point which implies that

|f () = P(x)| <

: 80l < =
— max X — s — .
2ysiegn S0 =274 T g

Consequently, to ensure that the the error in linear interpolation is bounded by 1079, it is

sufficient for / to be chosen so that

h2
% <10°°. This implies that & < 1.72 x 1073,

Because n = (1 — 0)/h must be an integer, a reasonable choice for the step size is
h = 0.001. ]

EXERCISE SET 3.1

1.  For the given functions f(x), letxy = 0, x; = 0.6, and x, = 0.9. Construct interpolation polynomials
of degree at most one and at most two to approximate f(0.45), and find the absolute error.

a. f(x) =cosx c. f)=Ihx+1)
b. fx)=+14+x d. f(x)=tanx
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2.  Forthe given functions f (x), letxy = 1,x; = 1.25,and x, = 1.6. Construct interpolation polynomials
of degree at most one and at most two to approximate f(1.4), and find the absolute error.

a. f(x) =sinmx c. fx) =log,,(Bx—1)
b. fx)=+vx—1 d. f(x)=e*—x

3. Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.
4. Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.

5.  Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a.  f(84)if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091

b f(=1)if £(=0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) = 0.33493750,
£(0) = 1.10100000

¢ £(0.25)if £(0.1) = 0.62049958, f(0.2) = —0.28398668, f(0.3) = 0.00660095, f(0.4) =
0.24842440

d. f(0.9)if f£(0.6) = —0.17694460, f(0.7) = 0.01375227, £(0.8) = 0.22363362, f(1.0) =
0.65809197

6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a.  f(043)if f(0) =1, £(0.25) = 1.64872, £(0.5) = 2.71828, £(0.75) = 4.48169
b. f(0)if f(=0.5) = 1.93750, f(—-0.25) = 1.33203, f(0.25) = 0.800781, f(0.5) = 0.687500

c. f(0.18)if £(0.1) = —0.29004986, f(0.2) = —0.56079734, f(0.3) = —0.81401972, f(0.4) =
—1.0526302

d. f(0.25) if f(=1) = 0.86199480, f(—0.5) = 0.95802009, f(0) = 1.0986123, f(0.5) =
1.2943767

7. The data for Exercise 5 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f(x)=xlnx
b.  f(x) =x*+4.001x% + 4.002x + 1.101
c. f(x)=xcosx—2x>+3x—1
d. f(x)=sin(e* —2)

8.  The data for Exercise 6 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the casesn = 1 and n = 2.
a. f(x)=e*
b. f)=x*-x+x>—x+1
e f(x)=x*cosx—3x
d fx) =In("+2)

9. Let P5(x) be the interpolating polynomial for the data (0, 0), (0.5,y), (1, 3), and (2, 2). The coefficient
of x* in P3(x) is 6. Find y.

10. Let f(x) = /x — x% and P,(x) be the interpolation polynomial on xo = 0, x; and x, = 1. Find the

largest value of x; in (0, 1) for which f(0.5) — P,(0.5) = —0.25.

11.  Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-
mial approximation to f(1.09). The function being approximated is f(x) = log,(tanx). Use this
knowledge to find a bound for the error in the approximation.

f(1.00) =0.1924  £(1.05) = 0.2414  f(1.10) =0.2933  f(1.15) = 0.3492

12.  Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic
to approximate cos 0.750 using the following values. Find an error bound for the approximation.

c0s0.698 = 0.7661 ¢c0s0.733 =0.7432 c0s0.768 = 0.7193  cos 0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the
actual error and the error bound.
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13.  Construct the Lagrange interpolating polynomials for the following functions, and find a bound for
the absolute error on the interval [xg, x,,].

a.  f(x)=e*cos3x, x=0,x=03,x=06n=2
b. f(x) =sin(nx), x =2.0,x;, =24,x, =2.6,n=2
c. f@=Ihx, x=lLx=1Lxn=13x3=14n=3
d. f(x)=cosx+sinx, xo=0,x,=025x=05x=10,n=3
14. Let f(x) =¢€", for0 <x <2.
a. Approximate f(0.25) using linear interpolation with xo = 0 and x; = 0.5.
b.  Approximate f(0.75) using linear interpolation with xo = 0.5 and x; = 1.
c. Approximate f(0.25) and f(0.75) by using the second interpolating polynomial with x, = 0,
x; =1,and x, = 2.
d. Which approximations are better and why?
15. Repeat Exercise 11 using Maple with Digits set to 10.
16. Repeat Exercise 12 using Maple with Digits set to 10.

17.  Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 1079,
Determine a bound for the step size for this table. What choice of step size would you make to ensure
that x = 10 is included in the table?

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use Lagrange interpolation to approximate the population in the years 1940, 1975,
and 2020.
b.  The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28
days after birth. The first sample was reared on young oak leaves, whereas the second sample was
reared on mature leaves from the same tree.

a. Use Lagrange interpolation to approximate the average weight curve for each sample.

b.  Find an approximate maximum average weight for each sample by determining the maximum
of the interpolating polynomial.

Day ‘ 0 ‘ 6 ‘ 10 ‘ 13 ‘ 17 ‘ 20 ‘ 28
Sample 1 average weight (mg) | 6.67 | 17.33 | 42.67 | 37.33 | 30.10 | 29.31 | 28.74
Sample 2 average weight (mg) | 6.67 | 16.11 | 18.89 | 15.00 | 10.56 | 9.44 | 8.89

20. In Exercise 26 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where erf(x) is
the normal distribution error function defined by

erf(x) = 2 /X e dt
VTl '

a.  Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10~* for erf(x;),
where x; = 0.2i, fori =0,1,...,5.

b.  Use both linear interpolation and quadratic interpolation to obtain an approximation to erf( %).
Which approach seems most feasible?

21.  Prove Taylor’s Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let

(l’ _ xo)n-H
(x — xg)"+! ?

8 =f@® — PO —[f(x) —P®]-

where P is the nth Taylor polynomial, and use the Generalized Rolle’s Theorem 1.10.]
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3.2 Data Approximation and Neville’s Method 117

22. Showthat max |g(x)| = h?/4, where g(x) = (x — jh)(x — (j + Dh).

XjSX=Xjq |

23. The Bernstein polynomial of degree n for f € C[0, 1] is given by
" (n k
Bn — - k 1— nfk’
W=y <k>f <n>" (1-x)
k=0
where (f) denotes n!/k!(n — k)!. These polynomials can be used in a constructive proof of the
Weierstrass Approximation Theorem 3.1 (see [Bart]) because lim B,(x) = f(x), foreachx € [0, 1].

a. Find B;(x) for the functions

i f(x)=x ii. f(x)=1

b. Show that for each k < n,
n—1 _ k n
k—=1) " \n)\k)

c.  Use part (b) and the fact, from (ii) in part (a), that

n

1= Z (Z)xk(l —x)" % foreach n,

k=0
to show that, for f(x) = x2,

n—1 , 1
B,(x)=—)x"+ —x.
n n

d. Use part (c) to estimate the value of n necessary for |B,, (x) — x2| < 107° to hold for all x in
[0, 1].

3.2 Data Approximation and Neville's Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now illustrate a practical application of interpolation in
such a situation.

lllustration Table 3.2 lists values of a function f at various points. The approximations to f(1.5)
obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2
x f The most appropriate linear polynomial uses xo = 1.3 and x; = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

1.0 0.7651977

13 0.6200860 (15— 1.6) (15— 13)
1.6 0.4554022 Pi(1.5) = mf(1-3) + mf(lﬁ)
1.9 0.2818186 ’ ’ ) ’
22 0.1103623 (L5-1.6) (15-1.3)
= —(0.6200860 ——(0.4554022) = 0.5102968.
13-16)" )t 16-13)" )

Two polynomials of degree 2 can reasonably be used, one with xo = 1.3, x; = 1.6, and
x; = 1.9, which gives
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PaLs) (1.5 —1.6)(1.5 — 1.9) (0.6200860) (1.5-1.3)(1.5 - 1.9) (04554022)
(13— 1.6)(13 - 1.9) (1.6 — 1.3)(1.6 — 1.9)

(1.5 — 1.3)(1.5 — 1.6)
(1.9 — 1.3)(1.9 — 1.6)

(0.2818186) = 0.5112857,

and one with xo = 1.0, x; = 1.3, and x, = 1.6, which gives 132(1.5) = 0.5124715.

In the third-degree case, there are also two reasonable choices for the polynomial. One
withxg = 1.3, x; = 1.6, x, = 1.9, and x3 = 2.2, which gives P3(1.5) = 0.5118302.

The second third-degree approximation is obtained with xo = 1.0, x; = 1.3, x, = 1.6,
and x3 = 1.9, which gives P3(1.5) = 0.5118127. The fourth-degree Lagrange polynomial
uses all the entries in the table. With xo = 1.0, x; = 1.3, x, = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is P4(1.5) = 0.5118200.

Because P5(1.5), 133(1.5), and P4(1.5) all agree to within 2 x 107> units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

IP1(1.5) — f(1.5)] ~ 1.53 x 1073,
|P>(1.5) — f(1.5)] ~ 5.42 x 107%,
IP,(1.5) — f(1.5)| ~ 6.44 x 107*,
|P3(1.5) — f(1.5)] = 2.5 x 107°,
|P5(1.5) — f(1.5)| ~ 1.50 x 107,
|P4(1.5) — £(1.5)] ~ 7.7 x 107°.

Although P5(1.5) is the most accurate approximation, if we had no knowledge of the actual
value of f(1.5), we would accept P4(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be
applied here because we have no knowledge of the fourth derivative of f. Unfortunately,
this is generally the case. g

Neville’'s Method

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply,
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,
and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4 Let f be a function defined at x¢,x, X2, ...,X,, and suppose that m;, my, ..., my are k
distinct integers, with 0 < m; < n for each i. The Lagrange polynomial that agrees with
f(x) at the k points X, , Xy, - . . , Xy, is denoted Py, sy, my (X). [ |

Example 1 Suppose that xo = 1, x; = 2, xp, = 3, x3 = 4, x4 = 6, and f(x) = €. Determine the
interpolating polynomial denoted P, 4(x), and use this polynomial to approximate f(5).
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Solution This is the Lagrange polynomial that agrees with f(x) at x; = 2, x, = 3, and
x4 = 6. Hence

G=HE=6) , G=DE=6) 5 x=Da=3)

P20 =500 T6-26-60° T 6-26-3

So

=(5—3)(5—6)62+ G-296-6 5, 6-26-3)

TP = 5e-6  T6-26-6° T6-26-3

| 1
_ Eez LA 586 ~ 218.105. -

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Theorem 3.5 Let f be defined at xo, x1, . .., x;, and let x; and x; be two distinct numbers in this set. Then

(x = x)Po1,. j-tj+1,..x(X) — (X = x)Po1,. i-tit1,...k(X)
(xi — x;)

Px) =

is the kth Lagrange polynomial that interpolates f at the k + 1 points xg, X1, . . . , Xx. [ ]

..........

and Q(x) are polynomials of degree k — 1 or less, P(x) is of degree at most k.
First note that Q(x;) = f(x;), implies that

Pxy) = (i —x)00) — (6 —x)0(x;)  (x; — j; PO = f(),
]

Xi — )Cj (x,- —

Similarly, since Q(x;) = f(x;), we have P(x;) = f(x;).
In addition, if 0 < r < k and r is neither i nor j, then Q(x,) = Q(x,) = f(x,).So

O =)0 — (@ — Q) _ (i —x)
Px,) = ! = = f o) = fx).
Xi — Xj ()C,' - .Xj)
But, by definition, Py ;. x(x) is the unique polynomial of degree at most k that agrees with
f atxo,xi,...,x.. Thus, P = Py k- T

Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

Py = [(x —x1)Py — (x — x2)P1],

[(x —x0)P1 — (x — x1)Py], Pir=
X1 — Xo X2 — X1

Poi2 = [(x —x0)P12 — (x —x2)Po 1],

X2 —Xo

and so on. They are generated in the manner shown in Table 3.3, where each row is completed
before the succeeding rows are begun.
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Table 3.3 o P
X1 P, P 0,1
X2 Py P Po,12
X3 P Pys Pios Po123
X4 Py P34 P34 Pio3a Poi1234

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points x; with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.

To avoid the multiple subscripts, we let Q; ;(x), for 0 < j < i, denote the interpolating
polynomial of degree j on the (j + 1) numbers x;_j, X;_j41, . . ., X;—1, X;; that is,

Eric Harold Neville (1889-1961)
gave this modification of the
Lagrange formula in a paper

published in 1932.[N]
Qij = Pijijs1,..i-1i-

Using this notation provides the Q notation array in Table 3.4.

Table 3.4 o Po = Qoo
X Py =01 Py, = Q1,1
X Py = 0sp Py =0 Poi2 =012
X3 P3 = 039 Py = 03 Pio3z =032 Poi23 = 033
X4 Py = Q49 P34 = Qa4 P34 = Qan Pio3a =043 Po1234 = Qaa

Example 2  Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville’s method to
the data by constructing a recursive table of the form shown in Table 3.4.

Table 35 Solution Letxyp = 1.0, x; = 1.3, x, = 1.6, x3 = 1.9, and x4 = 2.2, then Qg = f(1.0),
Q1o = f(1.3), 00 = f(1.6), O30 = f(1.9), and Q49 = [f(2.2). These are the five

* F polynomials of degree zero (constants) that approximate f(1.5), and are the same as data
1.0 0.7651977 given in Table 3.5.
1.3 0.6200860 Calculating the first-degree approximation Q1 1(1.5) gives
1.6 0.4554022
1.9 0.2818186 ~ (x—=x0)Q10 — (x —x1)Qop
22 0.1103623 Qi(15) = X1 — X0

_ (15=1.0)010 — (1.5 =1.3)0pp

B 1.3-1.0

0.5(0.6200860) — 0.2(0.7651977
= ( ) ( ) = 0.5233449.
0.3
Similarly,
1.5 — 1.3)(0.4554022) — (1.5 — 1.6)(0.6200860
021(1.5) = ( N ) = ( N ) = 0.5102968,

16— 1.3
0s1(1.5) = 05132634, and Q4,(1.5) = 0.5104270.
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3.2 Data Approximation and Neville’s Method 121

The best linear approximation is expected to be 0, because 1.5 is between x; = 1.3
and x, = 1.6.
In a similar manner, approximations using higher-degree polynomials are given by

1.5 -1.0)(0.5102968) — (1.5 — 1.6)(0.5233449
022(15) = ¢ ) 1; io ) ) _ 05124715,

032(1.5) =0.5112857, and Q42(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown in
Table 3.6. [ ]

Table36 |, 07651977
13 06200860  0.5233449
16 04554022 05102968 05124715
19 02818186 05132634 05112857 05118127
22 01103623 05104270  0.5137361 05118302  0.5118200

If the latest approximation, Q4 4, was not sufficiently accurate, another node, xs, could
be selected, and another row added to the table:

x5 QOso QOs1 QOs2 0Os3 Osa Oss.

Then Q44, Os 4, and Qs 5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose
value at 2.5 is —0.0483838, and the next row of approximations to f(1.5) is

2.5 —0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.

The NumericalAnalysis package in Maple can be used to apply Neville’s method for
the values of x and f(x) = y in Table 3.6. After loading the package we define the data
with

xy :=[[1.0,0.7651977],[1.3, 0.6200860], [1.6, 0.4554022], [1.9,0.2818186]]
Neville’s method using this data gives the approximation at x = 1.5 with the command
p3 := Polynomiallnterpolation(xy, method = neville, extrapolate = [1.5])

The output from Maple for this command is

POLYINTERP([[1.0,0.7651977],[1.3,0.6200860], [1.6,0.45540221,[1.9,0.2818186]],
method = neville, extrapolate = [1.5], INFO)

which isn’t very informative. To display the information, we enter the command
NevilleTable(p3,1.5)

and Maple returns an array with four rows and four columns. The nonzero entries corre-
sponding to the top four rows of Table 3.6 (with the first column deleted), the zero entries
are simply used to fill up the array.

To add the additional row to the table using the additional data (2.2, 0.1103623) we
use the command
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p3a := AddPoint(p3,[2.2,0.1103623])
and a new array with all the approximation entries in Table 3.6 is obtained with

NevilleTable(p3a, 1.5)

Example 3 Table 3.7 lists the values of f(x) = Inx accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximate f(2.1) = In 2.1 by completing the Neville
Table 3.7 table.

i X; In x;

Solution Because x — xp = 0.1, x — x; = —0.1, x — x, = —0.2, and we are given
0 2.0 0.6931 Qoo = 0.6931, Qo = 0.7885, and 0, = 0.8329, we have
1 2.2 0.7885 | 0.1482
223 0839 011 = — [(0.1)0.7885 — (—0.1)0.6931] = ——= = 0.7410
’ 0.2 0.2
and
1 0.07441
Or1 = 01 [(—0.1)0.8329 — (—0.2)0.7885] = =0.7441.
The final approximation we can obtain from this data is
1 0.2276
01 = —[(0.1)0.7441 — (—0.2)0.7410] = ——— = 0.7420.
0.3 03
These values are shown in Table 3.8. [ |
Table 3.8 Xi X — X QOio 0Oil Oin
0 2.0 0.1 0.6931
1 2.2 —0.1 0.7885 0.7410
2 2.3 —-0.2 0.8329 0.7441 0.7420

In the preceding example we have f(2.1) = In2.1 = 0.7419 to four decimal places,
so the absolute error is

| £(2.1) — P>(2.1)] = 0.7419 — 0.7420] = 10~*.

However, f'(x) = 1/x, f"(x) = —1/x%,and f"(x) = 2/x>, so the Lagrange error formula
(3.3) in Theorem 3.3 gives the error bound

U 2.1
@D = ReDI= #(}c —x0)(x — x1)(x — x2)
Y oo 0002 - .
B '3(5(2.1))3 (0.1 (=0.1)( 0-2)‘ < 3 =83 %107

Notice that the actual error, 104, exceeds the error bound, 8.3 x 1075, This apparent
contradiction is a consequence of finite-digit computations. We used four-digit rounding
arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This
caused our actual errors to exceed the theoretical error estimate.

e Remember: You cannot expect more accuracy than the arithmetic provides.

Algorithm 3.1 constructs the entries in Neville’s method by rows.
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Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n + 1 distinct numbers xy, . . ., x,, at the
number x for the function f:

INPUT numbers x, xg, X1, . . ., X,; values f(xp), f(x1),..., f(x,) as the first column

00,0, 01,05- - > 0np of O.
OUTPUT  the table Q with P(x) = Q-

Step1 Fori=1,2,...,n
forj=1,2,...,i
(x —xi—) Qi j—1 — (x = x)Qi—1,j—1

Xi — xi—j

set Q,'J' =

Step 2 OUTPUT (Q);
STOP. [ ]

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qii — Qi—1,i-1]l < €

can be used as a stopping criterion, where ¢ is a prescribed error tolerance. If the inequality is
true, Q;; is areasonable approximation to f (x). If the inequality is false, a new interpolation
point, x;, is added.

EXERCISE SET 3.2

1.  Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f(84)if f(8.1) =16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091

b. f(—%) if f(—0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) = 0.33493750,
f(0) = 1.10100000

c. f(0.25) if f(0.1) = 0.62049958, f(0.2) = —0.28398668, f(0.3) = 0.00660095, f(0.4) =
0.24842440

d. f(0.9)if £(0.6) = —0.17694460, f(0.7) = 0.01375227, £(0.8) = 0.22363362, f(1.0) =
0.65809197

2. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a.  f(043)if f(0) =1, £(0.25) = 1.64872, £(0.5) = 2.71828, f(0.75) = 4.48169
b. f(0)if f(—0.5) = 1.93750, f(—0.25) = 1.33203, f(0.25) = 0.800781, f(0.5) = 0.687500

c. f(0.18)if £(0.1) = —0.29004986, f(0.2) = —0.56079734, £(0.3) = —0.81401972, f(0.4) =
—1.0526302

d. f(0.25) if f(—1) = 0.86199480, f(—0.5) = 0.95802009, f(0) = 1.0986123, f(0.5) =
1.2943767

3. Use Neville’s method to approximate +/3 with the following functions and values.

a. f(x) =3"andthe valuesxo = —2,x; = —1,x, =0,x3 = l,and x4 = 2.

b. f(x) = /x and the values xo = 0, x; = 1, x, = 2, x3 = 4, and x4 = 5.

c. Compare the accuracy of the approximation in parts (a) and (b).

4. Let P;(x) be the interpolating polynomial for the data (0,0), (0.5,y), (1,3), and (2,2). Use Neville’s
method to find y if P5(1.5) = 0.
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124 CHAPTER 3 = Interpolation and Polynomial Approximation

5. Neville’s method is used to approximate f(0.4), giving the following table.

Xo = 0 PO =1
X]:0.25 P1:2 PQ]:2.6
x =0.5 P, P, Py 1o

X3 = 0.75 P3 =8 P2.3 =24 P1’2,3 =2.96 P0,1.2’3 =3.016

Determine P, = f(0.5).
6. Neville’s method is used to approximate f(0.5), giving the following table.

Xo = 0 Po =0
X1 = 0.4 P] =28 PO,l =35
Xy = 0.7 P2 P]‘z P0,1,2 = %

Determine P, = f(0.7).
7. Suppose x; = j, forj =0, 1, 2, 3 and it is known that

Poyl(x) =2x+ l, PO,Q(X) =x-+ l, and P1!2’3(2.5) =3.

Find PO,I,Z,B (25)
8. Suppose x; =j, forj =0, 1, 2, 3 and it is known that

P()‘l (.X) =x+ 1, P|'2(x) =3x — 1, and P1,2’3(1.5) = 4

Find Po,|,2,3(1.5).

9. Neville’s Algorithm is used to approximate f(0) using f(—2), f(—1), f(1), and f(2). Suppose
f(—1) was understated by 2 and f(1) was overstated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f(0).

10. Neville’s Algorithm is used to approximate f(0) using f(—2), f(—1), f(1), and f(2). Suppose
f(—1) was overstated by 2 and f(1) was understated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f(0).

11. Construct a sequence of interpolating values y, to f(1 + V10), where f@) = (A +x»7! for

—5 < x < 5,asfollows: Foreachn = 1,2,...,10,leth = 10/nand y, = P,(1 + m), where P, (x)
is the interpolating polynomial for f(x) at the nodes xg’),xf”), o, x™ and x;") = —5 + jh, for each
j=0,1,2,...,n. Does the sequence {y,} appear to converge to f(1 + M)?
Inverse Interpolation Suppose f € C![a,b], f'(x) # 0 on [a,b] and f has one zero p in [a, b].
Let xo,...,x,, be n + 1 distinct numbers in [a, b] with f(x;) = yi, for each k = 0,1,...,n. To
approximate p construct the interpolating polynomial of degree n on the nodes yy, .. .,y, for f~'.
Since yy = f(x) and 0 = f(p), it follows that f~'() = x; and p = f~!(0). Using iterated
interpolation to approximate f~!(0) is called iterated inverse interpolation.

12.  Use iterated inverse interpolation to find an approximation to the solution of x — e™ = 0, using the
data
X ‘ 0.3 ‘ 0.4 ‘ 0.5 ‘ 0.6
e | 0.740818 ‘ 0.670320 ‘ 0.606531 ‘ 0.548812

13.  Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.
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3.3 Divided Differences 125

Suppose that P, (x) is the nth Lagrange polynomial that agrees with the function f at
the distinct numbers xg, xp, . . ., x,. Although this polynomial is unique, there are alternate
algebraic representations that are useful in certain situations. The divided differences of f
with respect to xg, xi, . . . , X,, are used to express P,(x) in the form

Pp(x) = aop + a1(x — x0) + ar(x —x0)(x —x1) + - +a,(x —x0) - - - (x = Xp—1), (3.5)

for appropriate constants ag,ay,. . .,a,. To determine the first of these constants, ay, note
that if P, (x) is written in the form of Eq. (3.5), then evaluating P, (x) at xq leaves only the
constant term ao; that is,

ap = P,(xo) = f(x0).

As in so many areas, Tsaac Similarly, when P(x) is evaluated at x{, the only nonzero terms in the evaluation of
Newton is prominent in the study ~ Pn(x1) are the constant and linear terms,

of difference equations. He
developed interpolation formulas Jfxo) + a1(xr — x0) = Pp(x1) = f(x1);

as early as 1675, using his A

SO
notation in tables of differences.
He took a very general approach a f (1) — f (x0) (3.6)
. N . 1= . .
to the difference formulas, so X1 — Xo
explicit examples that he
produced, including Lagrange’s We now introduce the divided-difference notation, which is related to Aitken’s A?
formulas, are often known by notation used in Section 2.5. The zeroth divided difference of the function f with respect
other names. to x;, denoted f[x;], is simply the value of f at x;:
flxil = f(x). (3.7)

The remaining divided differences are defined recursively; the first divided difference
of f with respect to x; and x;; is denoted f[x;, x;+1] and defined as

Flxixie1] = M (3.8)

Xit1 — Xi
The second divided difference, f[x;,xii1,Xi12], is defined as

S, Xiz2] — flxi, xie1]

Xig2 — X

Sl Xip1, xip2] =
Similarly, after the (k — 1)st divided differences,
SIxi Xip 1, X2, - Xipr—1] and f g1, Xig2, - s Xigek—15 Xigk ]
have been determined, the kth divided difference relative to x;, x;1 1, Xi12, . .., Xi1k 1S

(i1, Xigos - oo Xk ] — flx Xigts - o -5 Xigk—1]
FIXi Xit1s - oo s Xipkm1, Xipa] = P Xies oo oo Xigkd = FIG Xiss oo Xkt ] (3.9)
Xitk — Xi

The process ends with the single nth divided difference,

_ SIxx, ] = flxo, X, X0 ]
Xy — X0 '

f[.X(),X],. .. ,xn]

Because of Eq. (3.6) we can write a; = f[xp,x1], just as ag can be expressed as ay =
f(x0) = flxo]. Hence the interpolating polynomial in Eq. (3.5) is

Py(x) = flxol + flxo, x1](x — x0) + az2(x — x0) (x — x1)

+ -4 a,(x—x0)(x —x1) - (X —x,-1).
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126 CHAPTER 3 = Interpolation and Polynomial Approximation

As might be expected from the evaluation of ay and a;, the required constants are

ar = flxo,x1,%2, ..., X],

for each k = 0,1,...,n. So P,(x) can be rewritten in a form called Newton’s Divided-
Difference:

Py(x) = flxol + Z Slxo, x1, . x](r = x0) - - - (0 — xe—1). (3.10)

k=1

The value of f[xg,x1,...,x] is independent of the order of the numbers x, xi, . . ., Xk, as
shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one
fifth difference can also be determined from these data.

Table 3.9
First Second Third
x f ) divided differences divided differences divided differences
Xo flxol
_ Sl /T
Sflxo,x1] = Y —x
% flnl Flrosx,xp] = L0xl = flo.ul
X2 — Xp
flranml = w flxo, X1, %2, x3] = f[xl,xz,x;] :){[xo’xl’xﬂ
X2 flxl o Flx, %o, x5] = S, x3] = flxi,x] 300
1s 5 T e
X3 — X
flx,x3] = w Fln X, 0, ] = f[xz,x3,X;] :J{[xl,xz,xﬂ
5 i T = fenl = Sl o
‘ T X4 — X
Flrssx] = w flx2,x3, x4, x5] = f[x;,x4,x;] :)]:[xz,x3,x4]
X. Sflxal 43 FLxs, x4, 5] = Slxa, xs] = flxs, x4] ST
¢ 4 33 A4y A5 |\ =— —————————————
Fee g = L1l =l e
wxsl ==
Xs flxs]

Newton’s Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)
distinct numbers x, X1, . . . , X,, for the function f:

INPUT  numbers xo, x1, . .., X,; values f(xo), f(x1),..., f(x,) as Foo,Fi0,...,Fuo-
OUTPUT  the numbers Fog, Fy 1, ..., F,, where

n i—1
Pyx) =Foo+ Y Fu[[&c—x). (Fuiis flxo.xr,....x1)
i=1 j=0

Step1 Fori=1,2,...,n
Forj=1,2,...,i

Fijo1—Fi_1j-1
set Fij = % (Fij = flxizs- . xl)
i i—j
Step 2 OUTPUT (F()’(), Fl,la e Fn,n);
STOP. [ ]
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3.3 Divided Differences 127

The form of the output in Algorithm 3.2 can be modified to produce all the divided
differences, as shown in Example 1.

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and

Table 3.10 reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.
X fx Solution The first divided difference involving xo and x; is
1.0 0.7651977 flx1]— flxo]  0.6200860 — 0.7651977
1.3 0.6200860 Slxo,x1]1 = = = —0.4837057.
X1 — X0 1.3—-1.0
1.6 0.4554022
1.9 0.2818186 The remaining first divided differences are found in a similar manner and are shown in the
22 0.1103623 fourth column in Table 3.11.
Table 3.1 i Xi Slx] Sflxicx] Sflxica, xim1,x] flxics, .5 xi] flxicas oo xi]
0 1.0 0.7651977
—0.4837057
1 1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
2 1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
3 1.9 0.2818186 0.0118183
—0.5715210

4 22 0.1103623

The second divided difference involving xo, x;, and x; is

fIx1,x2] — flxo0,x1] _ —0.5489460 — (—0.4837057)  _0.1087339.
X2 — Xo 1.6 — 1.0

The remaining second divided differences are shown in the 5th column of Table 3.11.
The third divided difference involving xy, x1, X2, and x3 and the fourth divided difference
involving all the data points are, respectively,
Slxr,x2,x3] — flxo,x1,x2]  —0.0494433 — (—0.1087339)

X3 — Xo B 1.9 - 1.0
= 0.0658784,

flxo,x1,x] =

Sflxo,x1,%2,x3] =

and
f[x X XA X ] _ f[xl,XQ,X3,)C4] — f[xo,xl,xz,xﬂ _ 0.0680685 — 0.0658784
05 A15A2,A3,A4] — X4 — X0 - 22-1.0

= 0.0018251.

All the entries are given in Table 3.11.
The coefficients of the Newton forward divided-difference form of the interpolating
polynomial are along the diagonal in the table. This polynomial is

Pa(x) = 0.7651977 — 0.4837057(x — 1.0) — 0.1087339(x — 1.0)(x — 1.3)
+0.0658784(x — 1.0)(x — 1.3)(x — 1.6)
+0.0018251(x — 1.0)(x — 1.3)(x — 1.6)(x — 1.9).

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Table 3.6 for Example
2 of Section 3.2, as it must because the polynomials are the same. [ ]
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128 CHAPTER 3 = Interpolation and Polynomial Approximation

We can use Maple with the NumericalAnalysis package to create the Newton Divided-
Difference table. First load the package and define the x and f(x) = y values that will be
used to generate the first four rows of Table 3.11.

xy :=[[1.0,0.7651977],[1.3,0.6200860], [1.6, 0.4554022],[1.9,0.2818186]]
The command to create the divided-difference table is
p3 := Polynomiallnterpolation(xy, independentvar = ‘x’, method = newton)
A matrix containing the divided-difference table as its nonzero entries is created with the
DividedDifferenceTable(p3)
We can add another row to the table with the command
p4 := AddPoint(p3,[2.2,0.1103623])

which produces the divided-difference table with entries corresponding to those in
Table 3.11.
The Newton form of the interpolation polynomial is created with

Interpolant(p4)

which produces the polynomial in the form of P4(x) in Example 1, except that in place of
the first two terms of P4 (x):

0.7651977 — 0.4837057(x — 1.0)

Maple gives this as 1.248903367 — 0.4837056667x.
The Mean Value Theorem 1.8 applied to Eq. (3.8) when i = 0,

fx) — fxo)

X1 — Xo

Sflxo,x1] =

implies that when f’ exists, f[xp,x;] = f'(&) for some number & between xy and x;. The
following theorem generalizes this result.

Theorem 3.6  Suppose that f € C"[a,b] and x¢, x1, . . ., X, are distinct numbers in [a, b]. Then a number &
exists in (a, b) with
AG)

f[x()’x]’""xn]: N u
n!

Proof Let
gx) = f(x) — Pp(x).

Since f(x;) = P,(x;) foreachi =0, 1,...,n, the function g has n+ 1 distinct zeros in [a, b].
Generalized Rolle’s Theorem 1.10 implies that a number £ in (a, b) exists with g™ (&) = 0,
o)

0= f") — P ).
Since P, (x) is a polynomial of degree n whose leading coefficient is f[xo, x1, . .., X,],
P,(I”)(x) = n!f[x0, X1, .., %,
for all values of x. As a consequence,

7@

Vl’ = = =

f['x07-x17' .. ’-xn] ==
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3.3 Divided Differences 129

Newton’s divided-difference formula can be expressed in a simplified form when the
nodes are arranged consecutively with equal spacing. In this case, we introduce the notation
h = x4 —x;,foreachi =0,1,...,n — 1 and let x = xy 4 sh. Then the difference x — x;
isx —x; = (s — i)h. So Eq. (3.10) becomes

Py(x) = Py(xo + sh) = fLxol + sh flxo,x1] + (s — DA’ flxo,x1,x2]
4+t s(s—=1)--- (s —n+ DA flxo, x15- -, Xn]
= flol + ) s(s =1+ (s — k+ DA flxo, 1,0,
k=1
Using binomial-coefficient notation,

s _s(s—1)~--(s—k+1)
<k>_ k! ’

we can express P, (x) compactly as

n

P,(x) = P,(xo + sh) = flxo] + <2>k!hkf[xo,x,-, R (3.11)
k=1

Forward Differences

The Newton forward-difference formula, is constructed by making use of the forward
difference notation A introduced in Aitken’s A% method. With this notation,

— 1 1
fleonl = LT Ly po) =+ Af (o)
X1 — X0 h h
1A — A 1
flxo,x1, %] = o |: f ) ; f(xO):I = ﬁAZf(xo),
and, in general,
1
flxo,xi, ..., ;] = WAkf(xd

Since f[xo] = f(x0), Eq. (3.11) has the following form.

Newton Forward-Difference Formula

Pa(0) = fxo)+ ) (;Z) AF £ (x0) (3.12)
k=1

Backward Differences

If the interpolating nodes are reordered from last to first as x,,, x,_p, . .., Xp, We can write
the interpolatory formula as

Pn(x) = f[xn] + f[xnvxn—l](x _xn) + f[xn’xn—lvxn—Z](x _xn)(x _xn—l)
+ o S X0l — X)) (X — X)) - (0 — Xp).
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130 CHAPTER 3 = Interpolation and Polynomial Approximation

If, in addition, the nodes are equally spaced with x = x,, + sh and x = x; + (s +n —i)h,
then

Pn(x) = Pn(-xn + Sh)
= fxa] + SAf Xy Xne1] + 55 + DA f Xy Xym1 X2 ] + -
+s(s+1)---(s+n— DA flx,,...,x].

This is used to derive a commonly applied formula known as the Newton backward-
difference formula. To discuss this formula, we need the following definition.

Definition 3.7  Given the sequence {p,}>°, define the backward difference Vp, (read nabla p,) by
VP =Py — pn-1, forn>1.
Higher powers are defined recursively by

Vip, = V(V¥p,), fork > 2. -
Definition 3.7 implies that

1 1
Flons X1 = 3V F )y fDins X1, X2] = @Wf(xn),

and, in general,

1
S Xn—ts .o X = vaf(xn)-

Consequently,

s(s+1)
2

s(s+1)---(s+n—
n!

Pp(x) = flxal + sV f () + Vi) + -+ 1)V"f(xn)-

If we extend the binomial coefficient notation to include all real values of s by letting

(—s)_ —s(=s =1 (—=s—k+1) —( 1)ks(s—i—l)'u(s—i—k—l)
k - — \— )

k! k!

then
Po(x) = flx ]+ (=1 <_1S>Vf(xn)+(—l)2(_2s) V2F () 4+ (=1)" (:f) V" £ (%)

This gives the following result.

Newton Backward-Difference Formula

Py@) = flx ]+ Z(—l)"(‘,f> vk £ ) (3.13)

k=1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.3 Divided Differences 131

lllustration The divided-difference Table 3.12 corresponds to the data in Example 1.

Table 3.12 First divided Second divided Third divided Fourth divided
differences differences differences differences
1.0 0.7651977
—0.4837057
1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
1.6 0.4554022 —0.0494433 99935351
—0.5786120 0.0680685
1.9 0.2818186 0.0118183
—05715210

22 01103623

Only one interpolating polynomial of degree at most 4 uses these five data points, but we
will organize the data points to obtain the best interpolation approximations of degrees 1,
2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for the
given value of x.

If an approximation to f(1.1) is required, the reasonable choice for the nodes would
bexg = 1.0, x; = 1.3, x, = 1.6, x3 = 1.9, and x4, = 2.2 since this choice makes the
earliest possible use of the data points closest to x = 1.1, and also makes use of the fourth
divided difference. This implies that 4 = 0.3 and s = %, so the Newton forward divided-
difference formula is used with the divided differences that have a solid underline (__ ) in
Table 3.12:

Ps(1.1) = P4(1.0 + %(0.3))

1 1/ 2
= 07651977 + 2 (0.3)(~0.4837057) + <—§> (0.3)2(—0.1087339)

! ( %> ( é) (0.3)%(0.0658784)
+ 373\ 73 . .

+1 2Y (22 (8 0.3)*(0.0018251
3(5)(5)(3)“”- )

= 0.7196460.

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we
would again like to make the earliest use of the data points closest to x. This requires using
the Newton backward divided-difference formula with s = —% and the divided differences
in Table 3.12 that have a wavy underline (____). Notice that the fourth divided difference
is used in both formulas.

P4(2.0) = P4 (2.2 - %(0.3))

=0.1103623 — §(0.3)(—0.5715210) — % (%) (0.3)%(0.0118183)
2 (1> <f> (0.3)3(0.0680685) — 2 <1> (f) (Z) (0.3)*(0.0018251)
3\3/\3/)" ' 3\3/\3/)\3)"" :
= 0.2238754. O
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Centered Differences

The Newton forward- and backward-difference formulas are not appropriate for approximat-
ing f (x) when x lies near the center of the table because neither will permit the highest-order
difference to have xg close to x. A number of divided-difference formulas are available for
this case, each of which has situations when it can be used to maximum advantage. These
methods are known as centered-difference formulas. We will consider only one centered-
difference formula, Stirling’s method.

For the centered-difference formulas, we choose xy near the point being approximated
and label the nodes directly below xg as x1, x2, . . . and those directly above as x_j,x_5,. ...
With this convention, Stirling’s formula is given by

h
Py(x) = Papi1 (x) = flxol + %(f[x_l,xo] + flxo,x1]) + 2R flx_1, x0, 1] (3.14)

2 3
s(s* = Dh
+ Tf[xfbxfl:xo»xl] + flx—1,%0, X1, X2])
James Stirling (1692—1770)
2,2 2 2 2\1.2m

published this and numerous +o s = DT =4 (57— (m = DR flxoms e Xm]
other formulas in Methodus S(S2 —1)--- (sz _ mz)h2m+1
Differentialis in 1720. + (flxomets s Xl + s e oo s X1 D),

Techniques for accelerating the 2
convergence of various series are  if B = 2m 4 1 is odd. If n = 2m is even, we use the same formula but delete the last line.

included in this work. The entries used for this formula are underlined in Table 3.13.
Table 3.13 Firstdivided  Second divided  Third divided Fourth divided
X fx) differences differences differences differences
X2 f [x_2]
Slx_2,x4]
X1 Slx] Slx—2,x-1,%0]
Sfx_1,x0] SIx_2, 21, %0, x1]
Xo M Sx—1, X0, x1] Slx—2,x_1,%0,%1, %]
S x0,x1] Sx_1, X0, x1, X2]
X1 Sflxl S xo, x1,x2]
Sx1,x2]
X2 f [x2]

Example 2 Consider the table of data given in the previous examples. Use Stirling’s formula to approx-
imate f(1.5) with xy = 1.6.

Solution To apply Stirling’s formula we use the underlined entries in the difference
Table 3.14.

Table 3.14 First divided  Second divided  Third divided  Fourth divided

X f(x) differences differences differences differences

1.0 0.7651977

—0.4837057
1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
1.9 0.2818186 0.0118183
—0.5715210

22 0.1103623
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The formula, with 7 = 0.3, xg = 1.6, and s = —%, becomes

f(1.5) =~ Py (1.6 + (—%) (0.3))

1\ /03
= 0.4554022 + (_§> (7) ((—0.5489460) + (—0.5786120))

2
+ (—%) (0.3)%(—0.0494433)

2
+ % (-%) ((—%) — 1) (0.3)%(0.0658784 4 0.0680685)

2 2
+ <_%> <<—%) - 1) (0.3)*(0.0018251) = 0.5118200. .

Most texts on numerical analysis written before the wide-spread use of computers have
extensive treatments of divided-difference methods. If a more comprehensive treatment of
this subject is needed, the book by Hildebrand [Hild] is a particularly good reference.

EXERCISE SET 33

1. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.
a.  f(84)if f(8.1) =16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091
b.  f(0.9) if £(0.6) = —0.17694460, f(0.7) = 0.01375227, £(0.8) = 0.22363362, f(1.0) =
0.65809197
2. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.
a.  f(043)if £(0) =1, £(0.25) = 1.64872, £(0.5) = 2.71828, £(0.75) = 4.48169
b. f(0)if f(-0.5) = 1.93750, f(—0.25) = 1.33203, f(0.25) = 0.800781, f(0.5) = 0.687500
3. Use Newton the forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.
a. f (—%) if £(—=0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) = 0.33493750,
f(0) = 1.10100000
b.  f(0.25) if £(0.1) = —0.62049958, f(0.2) = —0.28398668, f(0.3) = 0.00660095, f(0.4) =
0.24842440
4. Use the Newton forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.
a. f(043)if £(0) =1, £(0.25) = 1.64872, f(0.5) = 2.71828, f(0.75) = 4.48169
b.  f(0.18)if £(0.1) = —0.29004986, f(0.2) = —0.56079734, f(0.3) = —0.81401972, f(0.4) =
—1.0526302
5. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.
a. f(—1/3)if f(—0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) = 0.33493750,
f(0) = 1.10100000
b.  f(0.25) if £(0.1) = —0.62049958, f(0.2) = —0.28398668, f(0.3) = 0.00660095, f(0.4) =
0.24842440
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6. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f(043)if £(0) =1, £(0.25) = 1.64872, f(0.5) = 2.71828, £(0.75) = 4.48169

b. f(0.25) if f(—1) = 0.86199480, f(—0.5) = 0.95802009, f(0) = 1.0986123, f(0.5) =
1.2943767

7. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree three for the unequally
spaced points given in the following table:

—0.1 | 5.30000
0.0 | 2.00000
0.2 | 3.19000
0.3 | 1.00000

b. Add f(0.35) = 0.97260 to the table, and construct the interpolating polynomial of degree four.

8. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the unequally
spaced points given in the following table:

x fx)
0.0 | —6.00000
0.1 | —5.89483
0.3 | —=5.65014
0.6 | —5.17788
1.0 | —4.28172

&

Add f(1.1) = —3.99583 to the table, and construct the interpolating polynomial of degree five.
9. a. Approximate f(0.05) using the following data and the Newton forward-difference formula:

x |00 02 |04 |06 |03
£G0 | 100000 | 122140 | 149182 | 1.82212 | 222554

b.  Use the Newton backward-difference formula to approximate f(0.65).
c.  Use Stirling’s formula to approximate f(0.43).
10.  Show that the polynomial interpolating the following data has degree 3.
x ‘—2‘—1‘ 0‘ 1‘ 2‘ 3
f(x)‘ 1‘ 4‘11‘16‘13‘—4

11. a. Show that the cubic polynomials
Px)=3-2(x+1D+0x+ D+ x+ DxE)x—1)
and
0() = —1+4(x+2) =30 +2)x+ D)+ x+2)x + D)

both interpolate the data

b.  Why does part (a) not violate the uniqueness property of interpolating polynomials?
12. A fourth-degree polynomial P(x) satisfies A*P(0) = 24, A3P(0) = 6, and A?P(0) = 0, where
AP(x) = P(x + 1) — P(x). Compute A2P(10).
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13.  The following data are given for a polynomial P(x) of unknown degree.
x [0 1]2
P | 2| -1]4

Determine the coefficient of x> in P(x) if all third-order forward differences are 1.
14. The following data are given for a polynomial P(x) of unknown degree.

X ‘0‘1‘ 2‘ 3
P(x)\4\9\15\18

Determine the coefficient of x> in P(x) if all fourth-order forward differences are 1.

15. The Newton forward-difference formula is used to approximate f(0.3) given the following data.

X ‘ 0.0‘ 0.2‘ 04| 0.6

|
£ | 150 | 210 [ 300 | 510

Suppose it is discovered that f(0.4) was understated by 10 and f(0.6) was overstated by 5. By what
amount should the approximation to f(0.3) be changed?

16. For a function f, the Newton divided-difference formula gives the interpolating polynomial
16
P3(x) = 1+ 4x + 4x(x — 0.25) + ?x(x —0.25)(x = 0.5),

on the nodes xo = 0, x; = 0.25, x, = 0.5 and x3 = 0.75. Find f(0.75).
17.  For a function f, the forward-divided differences are given by

xo =0.0 S xol
Slx0,x1]

x; =04 Sl Slxo, x1,x%2] = %
SIx1,x] =10

Xy = 0.7 f[XZ] =6

Determine the missing entries in the table.

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use appropriate divided differences to approximate the population in the years
1940, 1975, and 2020.

b.  The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. Given
P.(x) = flxo] + flx0,x11(x — x0) + a2 (x — x0) (x — x1)
+az(x —xo)(x —x)(x —x2) + -
+ ap(x — x)(x —x1) -+ (X — X1),s

use P, (x,) to show that a; = f[xg, x1,X2].
20. Show that

SOV EW)
Sxo X1, X, X] = W,
for some & (x). [Hint: From Eq. (3.3),
(n+1)
f(x) = Py(x) + M(X —X0) -+ (X — x).

(n+ !
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21.

Interpolation and Polynomial Approximation

Considering the interpolation polynomial of degree n + 1 on xg, Xy, . . ., X,, X, we have

J @) =Pup () = Ppy(x) + flxo, X1, ..o, X, X](x — X0) -+ - (X — x).]

Let io,il,. .

Sflxo, x1, ..

data {X(),Xl, ..

.,1, be a rearrangement of the integers 0,1,...,n. Show that f[x;, x;, ..., x,] =
.s X,]. [Hint: Consider the leading coefficient of the nth Lagrange polynomial on the
X} = Xigs Xips o, 1]

34

The Latin word osculum, literally
a “small mouth” or “kiss”, when
applied to a curve indicates that it
just touches and has the same
shape. Hermite interpolation has
this osculating property. It
matches a given curve, and its
derivative forces the interpolating
curve to “kiss” the given curve.

Definition 3.8

Charles Hermite (1822-1901)
made significant mathematical
discoveries throughout his life in
areas such as complex analysis
and number theory, particularly
involving the theory of equations.
He is perhaps best known for
proving in 1873 that e is
transcendental, that is, it is not
the solution to any algebraic
equation having integer
coefficients. This lead in 1882 to
Lindemann’s proof that 7 is also
transcendental, which
demonstrated that it is impossible
to use the standard geometry
tools of Euclid to construct a
square that has the same area as a
unit circle.

Theorem 3.9
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Hermite Interpolation

Osculating polynomials generalize both the Taylor polynomials and the Lagrange polyno-
mials. Suppose that we are given n + 1 distinct numbers xg, X, . . ., X, in [a, b] and nonneg-
ative integers myg, my, . .., m,, and m = max{mgy, my, ..., m,}. The osculating polynomial
approximating a function f € C™[a,b] at x;, for each i = 0, ..., n, is the polynomial of
least degree that has the same values as the function f and all its derivatives of order less
than or equal to m; at each x;. The degree of this osculating polynomial is at most

M:im,ﬁ—n
i=0

because the number of conditions to be satisfied is ) ;_, m; + (n + 1), and a polynomial of
degree M has M + 1 coefficients that can be used to satisfy these conditions.

Let xo,x1,...,x, be n + 1 distinct numbers in [a,b] and for i = 0,1,...,n let m; be a
nonnegative integer. Suppose that f € C"[a, b], where m = maxo<;<, m;.

The osculating polynomial approximating f is the polynomial P(x) of least degree
such that

d*P(x)  d*f(x)
dek dxk

, foreachi=0,1,...,n and k=0,1,...,m;. ]

Note that when n = 0, the osculating polynomial approximating f is the mgth Taylor
polynomial for f at xop. When m; = 0 for each i, the osculating polynomial is the nth
Lagrange polynomial interpolating f on xo, Xy, . . ., Xy.

Hermite Polynomials

The case whenm; = 1,foreachi =0, 1, ..., n, gives the Hermite polynomials. For a given
function f, these polynomials agree with f at xo, x1,...,x,. In addition, since their first
derivatives agree with those of f, they have the same “shape” as the function at (x;, f(x;)) in
the sense that the rangent lines to the polynomial and the function agree. We will restrict our
study of osculating polynomials to this situation and consider first a theorem that describes
precisely the form of the Hermite polynomials.

If f € C'[a,b] and xq, .. .,x, € [a,b] are distinct, the unique polynomial of least degree
agreeing with f and f’ at xo, . ..,x, is the Hermite polynomial of degree at most 2n + 1
given by

Hyp1 () = Y FO)H, () + Y £/ () H, (),

j=0 j=0
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Hermite gave a description of a where, for L, ;(x) denoting the jth Lagrange coefficient polynomial of degree n, we have

general osculatory polynomial in

a letter to Carl W. Borchardt in Hnj(x) =[1—2(x— ‘xj)Ll/l ~(X')]L2 (x) and I’_‘In () = (x — x~)L2 (X).
1878, to whom he regularly sent ’ NI J I

his new results. His , Moreover, if f € C**?[a, b], then

demonstration is an interesting

application of the use of complex (x— x0)2 (= xn)2

integration techniques to solve a S&) = Hypp1 (x) + 2n+2)! f(2n+2) (&),

real-valued problem.

for some (generally unknown) £(x) in the interval (a, b). [ |

Proof First recall that

0, ifi#j,
Ln,j(xi) = e #]
1, ifi=j.
Hence when i # j,
H,;(x) =0 and  H,;(x) =0,

whereas, for each i,

Hy () = [1 =20 —x)L, ;)] -1 =1 and H,i(x) = (x; —x;) - 12 = 0.

Asa consequence

Hyp1 () = Y f) -0+ f) - 14+ f/(x) -0 = f(x),
j=0 j=0
J#

so Hy,41 agrees with f at xp,xp,...,x,.
To show the agreement of H}, 41 With f " at the nodes, first note that L, ;(x) is a factor

of H,’l’j(x), SO H,/,’j(x,-) = 0 when i # j. In addition, when i = j we have L, ;(x;) = 1, so
H, (x)) = =2L, ;(x;) 'L,i,-(xi) + [1 = 20x; — xp)L;, ;(x)12L, i (X)) Ly, ;(x7)
= 2L/ ,(x) + 2L, ,(x;) = 0.
Hence, H,’l‘j(x,-) =0 foralliandj.
Finally,
H, () = Ly (5) + (6 — x7)2L0 () L, 5 (x7)
= Ly j() L j(x0) + 205 — )Ly, ;(x)],

SO FAI,’” (x;) =0ifi #jand f]r’l’i(x,-) = 1. Combining these facts, we have

Hyp 0 =) f@) -0+ f'05) -0+ f/0) - 1= f/(x).
j=0 j=0
J#i
Therefore, Ha,11 agrees with f and H;, | with f" at xo,x1,. .., X,.
The uniqueness of this polynomial and the error formula are considered in
Exercise 11. n o= om
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Example 1 Use the Hermite polynomial that agrees with the data listed in Table 3.15 to find an approx-
imation of f(1.5).

0 1.3 0.6200860 —0.5220232
1 1.6 0.4554022 —0.5698959
2 1.9 0.2818186 —0.5811571

Solution 'We first compute the Lagrange polynomials and their derivatives. This gives

@—x)x—x) 50, 175 152 , 100 175
L = = — _— _ L = —x— —
200 = e T 9" ot 2000 = "gmr =g
(x—x)x—x)  —100 , 320 247 , —200 320
L = frd —_X = —, L — _,
2 = o e ) - 9 C T T g 2100 = —g—x+ 5
and
@—x)x—x) 50 , 145 104 , 100 145
L = = — _— _, L = —— X — —.
2 o m—x) 9 T 9 T 2200 = 57X = =5

The polynomials H, ;(x) and H, j(x) are then

50 175 152\
Ha(x) = [1 —2(x — 1.3)(—=5)] (?ﬂ —5xt T)
50 175 152)\2
= (10x —12) [ =22 — x4 = ,
(10 )<9x g ¥ 9)

() = 1 —100 2 320 247\’
X) = . X —_——X - — ,
2,1 9 5
Hya(r) = 1002 — ) 0, 145 104 :
X) = — X — X" — —X - ,
22 9 9 9
o) = (x — 1.3) (22 175+1522
20x) = (x . 9 X 9 X 9 s
A —100 320 247\’
() = (x — 1.6) (sz L3, T) ’
and
A 50 145 1042
() = (x— 1.9) (EXZ BRI T) |
Finally

Hs(x) = 0.6200860H,,(x) + 0.4554022H, ; (x) + 0.2818186H,, (x)
— 0.5220232H, (x) — 0.5698959H, | (x) — 0.5811571H,,(x)
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and
Hs(1.5) = 0.6200860 4 + 0.4554022 o4 + 0.2818186 >
S 27) " gr) " 81
4 -32 -2
—0.5220232 { —— ) — 0.5698959 ( —— ) — 0.5811571 [ —
405 405 405
= 0.5118277,
a result that is accurate to the places listed. [ ]

Although Theorem 3.9 provides a complete description of the Hermite polynomials, it
is clear from Example 1 that the need to determine and evaluate the Lagrange polynomials
and their derivatives makes the procedure tedious even for small values of n.

Hermite Polynomials Using Divided Differences

There is an alternative method for generating Hermite approximations that has as its basis
the Newton interpolatory divided-difference formula (3.10) at xo, x1, . . . , x,, that is,

Py(x) = flxol + Y flxo, X1, ., (x = x0) -+ (x — xe1).

k=1

The alternative method uses the connection between the nth divided difference and the nth
derivative of f, as outlined in Theorem 3.6 in Section 3.3.

Suppose that the distinct numbers xy, x1, . . ., X, are given together with the values of
f and f’ at these numbers. Define a new sequence zg, z1, - - - , 22+1 DY

20i = 2041 = X;, foreachi=0,1,...,n,

and construct the divided difference table in the form of Table 3.9 that uses zo, z1, . - ., Z2n41-

Since zp; = zpi+1 = x; foreach i, we cannot define f[zy;, z2;+1] by the divided difference
formula. However, if we assume, based on Theorem 3.6, that the reasonable substitution in
this situation is f[z2;,z2i+1] = f'(z2:) = f'(x;), we can use the entries

F'Gxo)s £/ s ()

in place of the undefined first divided differences

flzo,z21], flz2, 23], - - - flzon, 22n41]-

The remaining divided differences are produced as usual, and the appropriate divided differ-
ences are employed in Newton’s interpolatory divided-difference formula. Table 3.16 shows
the entries that are used for the first three divided-difference columns when determining
the Hermite polynomial Hs(x) for xg, x;, and x,. The remaining entries are generated in the
same manner as in Table 3.9. The Hermite polynomial is then given by

2n+1

Hyp1(0) = flzol + Y flaos- -2l = 20)(x = 21) -+ (x = Z1).

k=1

A proof of this fact can be found in [Pow], p. 56.
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Table 3.16 First divided Second divided
z f(@ differences differences
20 = Xo flzol = f(x0)
flzo,z1] = f'(xo)
a=x0  flal= f(x) Flzo,21,20] = T2l = flzo 21l
flza] = flz] T
flz,nl= ———7—
e flz, 3] = flz1,22]
2 =X flz2l = f@x) fla, 53] = %
flza,z3] = f'(x)
3 =X flzzl = f(x) flza,z3, 4] = %52[22,23]
. —
Flzszil = Sflzal = flzs]
ame flza,zs] — flz3,24]
4 =X flzal = f(x) flzz,z4,25] = %
5 T 43
flzanzs1 = f'(x2)
5 =X flzsl = f(x)
Example 2 Use the data given in Example 1 and the divided difference method to determine the Hermite

polynomial approximation at x = 1.5.

Solution The underlined entries in the first three columns of Table 3.17 are the data given
in Example 1. The remaining entries in this table are generated by the standard divided-
difference formula (3.9).

For example, for the second entry in the third column we use the second 1.3 entry in
the second column and the first 1.6 entry in that column to obtain

0.4554022 — 0.6200860
1.6 —1.3

= —0.5489460.

For the first entry in the fourth column we use the first 1.3 entry in the third column and the
first 1.6 entry in that column to obtain

—0.5489460 — (—0.5220232)
1.6-13

= —0.0897427.

The value of the Hermite polynomial at 1.5 is

Hs(1.5) = f[1.3]+ f/(1.3)(1.5 — 1.3) + f[1.3,1.3,1.6](1.5 — 1.3)2
+ f[1.3,1.3,1.6,1.6](1.5 — 1.3)*(1.5 — 1.6)
+ f11.3,1.3,1.6,1.6,1.9](1.5 — 1.3)(1.5 — 1.6)*

+ f[1.3,1.3,1.6,1.6,1.9,1.9](1.5 — 1.3)%(1.5 — 1.6)*(1.5 — 1.9)
= 0.6200860 + (—0.5220232)(0.2) + (—0.0897427)(0.2)*
+0.0663657(0.2)*(—0.1) + 0.0026663(0.2)*(—0.1)?

+ (—0.0027738)(0.2)>(—0.1)>(—0.4)
=0.5118277.
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Table3.17 {3 (16200860

—0.5220232
13 0.6200860 —0.0897427

o —0.5489460 0.0663657

1.6 0.4554022 —0.0698330 0.0026663

o —0.5698959 0.0679655 —0.0027738
1.6 0.4554022 —0.0290537 0.0010020

- —0.5786120 0.0685667

1.9  0.2818186 —0.0084837

T —0.5811571

1.9  0.2818186

The technique used in Algorithm 3.3 can be extended for use in determining other
osculating polynomials. A concise discussion of the procedures can be found in [Pow],
pp. 53-57.

Hermite Interpolation

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1)
distinct numbers xo, . . ., x,, for the function f:

INPUT numbers xg, x1, .. ., X,; values f(xg),..., f(x,) and f'(xp), ..., f'(x,).
OUTPUT  the numbers Qo g, Q115 - - - » Q2nr1.20+1 Where
H(x) = Qo0 + Q1.1(x —x0) + Q22(x — x0)* + Q33(x — x0)*(x — x1)
+Qaa(x — x0)(x —x1)> + - -
+Qonr12001(x — X0)2(x — x)% -+ (X — Xym1)? (% — x).
Step 1 Fori=0,1,...,ndo Steps 2 and 3.

Step 2 Setzy; = x;;
2i+1 = Xi;
Oaip = f(x);
Oriv10 = f(x);
Qoiy11 = f'(x).

Step 3 If i # 0 then set

Osi1 = Oip — Q2i—1,0‘
22i — 22i-1
Step4 Fori=2,3,...,2n+1
. . Qi j—1—Qi—1,j-1
forj=2,3,...,isetQ; j = ———"—.
Zi — Zi—j
Step 5 OUTPUT (Qo0, Q1,15 - - » Qong1,2041);
STOP [ |

The NumericalAnalysis package in Maple can be used to construct the Hermite coef-
ficients. We first need to load the package and to define the data that is being used, in this
case, x;, f(x;), and f’(x;) fori =0, 1,...,n. This is done by presenting the data in the form
[xi, f(x:), f'(x;)]. For example, the data for Example 2 is entered as

xy :=[[1.3,0.6200860, —0.5220232], [1.6,0.4554022, —0.5698959],
[1.9,0.2818186, —0.5811571]]
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Then the command
hS := Polynomiallnterpolation(xy, method = hermite, independentvar = x’)

produces an array whose nonzero entries correspond to the values in Table 3.17. The Hermite
interpolating polynomial is created with the command

Interpolant(hS))

This gives the polynomial in (almost) Newton forward-difference form

1.29871616— 0.5220232x — 0.08974266667 (x— 1.3)> + 0.06636555557 (x—1.3)*(x — 1.6)
+ 0.002666666633(x — 1.3)%(x — 1.6)% — 0.002774691277(x — 1.3)%(x — 1.6)*(x — 1.9)

If a standard representation of the polynomial is needed, it is found with
expand(Interpolant(hS))

giving the Maple response

1.001944063 — 0.0082292208x — 0.2352161732x> — 0.01455607812x°
+0.02403178946x* — 0.002774691277x°

EXERCISE SET 34

1. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.

a x| fW | S b. x f@o | fw
8.3 17.56492 | 3.116256 0.8 | 0.22363362 | 2.1691753
8.6 | 18.50515 | 3.151762 1.0 | 0.65809197 | 2.0466965

¢« x | fw® | f® d.  «x f) W
—-0.5 —0.0247500 | 0.7510000 0.1 —0.62049958 | 3.58502082
—0.25 0.3349375 | 2.1890000 0.2 | —0.28398668 | 3.14033271
0 1.1010000 | 4.0020000 0.3 0.00660095 | 2.66668043

0.4 0.24842440 | 2.16529366

2.  Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.

a x| f@ | f b x| o [ f®
0 1.00000 | 2.00000 —0.25 | 1.33203 0.437500
0.5 | 2.71828 | 5.43656 0.25 | 0.800781 | —0.625000
¢ X fo | fw d x| fo | f
0.1 | —0.29004996 | —2.8019975 -1 0.86199480 | 0.15536240
0.2 | —0.56079734 | —2.6159201 —0.5 | 0.95802009 | 0.23269654
0.3 | —0.81401972 | —2.9734038 0 1.0986123 0.33333333

0.5 | 1.2943767 0.45186776
3. Thedatain Exercise 1 were generated using the following functions. Use the polynomials constructed
in Exercise 1 for the given value of x to approximate f(x), and calculate the absolute error.
a. f(x) =xInx; approximate f(8.4).
b. f(x) =sin(e* —2); approximate f(0.9).
ce.  f(x)=x>+4001x>+4.002x + 1.101; approximate f(—1/3).
d. f(x) =xcosx —2x>+3x—1; approximate f(0.25).
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4. The datain Exercise 2 were generated using the following functions. Use the polynomials constructed
in Exercise 2 for the given value of x to approximate f(x), and calculate the absolute error.

a. f(x) =e*; approximate f(0.43).

b. f(x)=x*—x*+x*—x+1; approximate f(0).
¢.  f(x) =x*cosx —3x; approximate f(0.18).

d. f(x) =In(e*+2); approximate f(0.25).
a

Use the following values and five-digit rounding arithmetic to construct the Hermite interpolating
polynomial to approximate sin 0.34.

X ‘ sin x ‘ D, sinx = cosx
0.30 | 0.29552 0.95534
0.32 | 0.31457 0.94924
0.35 | 0.34290 0.93937

b. Determine an error bound for the approximation in part (a), and compare it to the actual error.
c. Addsin0.33 = 0.32404 and cos 0.33 = 0.94604 to the data, and redo the calculations.
6. Let f(x) =3xe" — €.
a. Approximate f(1.03) by the Hermite interpolating polynomial of degree at most three using
xo = 1 and x; = 1.05. Compare the actual error to the error bound.

b. Repeat (a) with the Hermite interpolating polynomial of degree at most five, using xy = 1,
x; = 1.05, and x, = 1.07.
7.  Use the error formula and Maple to find a bound for the errors in the approximations of f(x) in parts
(a) and (c) of Exercise 3.
8.  Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 4.
9. The following table lists data for the function described by f(x) = P Approximate f(1.25) by

using Hs(1.25) and H5(1.25), where Hs uses the nodes xo = 1, x; = 2, and x, = 3; and H; uses the
nodes xy = 1 and x; = 1.5. Find error bounds for these approximations.

x f) =" | f(x) = 0.2xe"
Xo=Xo=1 | 1.105170918 | 0.2210341836
X =15 1252322716 |  0.3756968148
X =2 1.491824698 | 0.5967298792
=3 2459603111 |  1.475761867

10. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 | 225 | 383 | 623 | 993

Speed 75 77 80 74 72

a. Use a Hermite polynomial to predict the position of the car and its speed when r = 10 s.

Use the derivative of the Hermite polynomial to determine whether the car ever exceeds a
55 mi/h speed limit on the road. If so, what is the first time the car exceeds this speed?

What is the predicted maximum speed for the car?

11. a. Show that H,(x) is the unique polynomial of least degree agreeing with f and f’ at xo, . . ., X,.
[Hint: Assume that P(x) is another such polynomial and consider D = H,,,; — P and D’ at
X0s X1, - vy X
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b.  Derive the error term in Theorem 3.9. [Hint: Use the same method as in the Lagrange error
derivation, Theorem 3.3, defining

(t—x0)? -+ (1 — x,)?
(x —x0)% -+ (x — x,)?

8(t) = f(t) — Hoppr (1) —

[f(x) = Hanr1 (0)]

and using the fact that g’(¢) has (2n + 2) distinct zeros in [a, b].]
12.  Letzp = x¢, 21 = X0, 22 = X1, and z3 = x;. Form the following divided-difference table.

20 =x0 flzo]l = f(x0)
flzo.z1] = f'(x0)
z=x0 flal= f(xo) flzo05 21, 22]
flz1, 2] Slz0,21, 22, 23]
2 =X Sflzal = f(x) Sflz1, 22, 23]
flzz, 3] = f'(x1)
z=x1 flzl=f(x)

Show that the cubic Hermite polynomial H;(x) can also be written as f[zo] + f[z0,z1]1(x — x0) +
flz0, 21, 22](x — x0)* + flz0s 21, 22, 23] (x — X0)* (x — x1).

3.5 Cubic Spline Interpolation’

The previous sections concerned the approximation of arbitrary functions on closed intervals
using a single polynomial. However, high-degree polynomials can oscillate erratically, that
is, a minor fluctuation over a small portion of the interval can induce large fluctuations
over the entire range. We will see a good example of this in Figure 3.14 at the end of this
section.

An alternative approach is to divide the approximation interval into a collection of
subintervals and construct a (generally) different approximating polynomial on each sub-
interval. This is called piecewise-polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, which
consists of joining a set of data points

{(x0, f(x0)), (x1s f(x1))s ooy Qs f ()}

by a series of straight lines, as shown in Figure 3.7.

A disadvantage of linear function approximation is that there is likely no differ-
entiability at the endpoints of the subintervals, which, in a geometrical context, means
that the interpolating function is not “smooth.” Often it is clear from physical condi-
tions that smoothness is required, so the approximating function must be continuously
differentiable.

An alternative procedure is to use a piecewise polynomial of Hermite type. For example,
if the values of f and of f’ are known at each of the points xyp < x; < -+ < x,, a cubic
Hermite polynomial can be used on each of the subintervals [xo, x1], [x1,x2], . . ., [Xn—1,Xn]
to obtain a function that has a continuous derivative on the interval [xg, x;,].

"The proofs of the theorems in this section rely on results in Chapter 6.
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Xo

Xj+1 Xj+2

Isaac Jacob Schoenberg
(1903-1990) developed his work
on splines during World War II
while on leave from the
University of Pennsylvania to
work at the Army’s Ballistic
Research Laboratory in
Aberdeen, Maryland. His original
work involved numerical
procedures for solving
differential equations. The much
broader application of splines to
the areas of data fitting and
computer-aided geometric design
became evident with the
widespread availability of
computers in the 1960s.

The root of the word “spline” is
the same as that of splint. It was
originally a small strip of wood
that could be used to join two
boards. Later the word was used
to refer to a long flexible strip,
generally of metal, that could be
used to draw continuous smooth
curves by forcing the strip to pass
through specified points and
tracing along the curve.
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To determine the appropriate Hermite cubic polynomial on a given interval is simply
a matter of computing H3(x) for that interval. The Lagrange interpolating polynomials
needed to determine Hs are of first degree, so this can be accomplished without great
difficulty. However, to use Hermite piecewise polynomials for general interpolation, we
need to know the derivative of the function being approximated, and this is frequently
unavailable.

The remainder of this section considers approximation using piecewise polynomials
that require no specific derivative information, except perhaps at the endpoints of the interval
on which the function is being approximated.

The simplest type of differentiable piecewise-polynomial function on an entire interval
[x0, x, ] is the function obtained by fitting one quadratic polynomial between each successive
pair of nodes. This is done by constructing a quadratic on [xp, x; ] agreeing with the function
at xo and x;, another quadratic on [x}, x,] agreeing with the function at x; and x;, and so
on. A general quadratic polynomial has three arbitrary constants—the constant term, the
coefficient of x, and the coefficient of x>—and only two conditions are required to fit the
data at the endpoints of each subinterval. So flexibility exists that permits the quadratics to
be chosen so that the interpolant has a continuous derivative on [xy, x,,]. The difficulty arises
because we generally need to specify conditions about the derivative of the interpolant at
the endpoints xy and x,. There is not a sufficient number of constants to ensure that the
conditions will be satisfied. (See Exercise 26.)

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants, so there is sufficient flexibility in the cubic spline pro-
cedure to ensure that the interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative. The construction of the cubic spline does not,
however, assume that the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes. (See Figure 3.8.)
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Figure 3.8

S(x) 4

Sj(xj+1) :f(xj+1) = Sj+1(xj+l)
S]{(ijrl) = S]I'+1(xj+1)
S]{/(ijrl) = S]{:rl(xﬁl)

f f f f f f —t—F—>
Xo X1 X2 Xj Xj+1 Xj+2 Xp—2 Xp-1 X, X
Definition 3.10 Given a function f defined on [a,b] and a set of nodes ¢ = x < x < --+ <
X, = b, a cubic spline interpolant S for f is a function that satisfies the following
conditions:

(a) S(x) is a cubic polynomial, denoted S;(x), on the subinterval [x;,x;4;] for each

A natural spline has no conditions j=0,1,...,n—1;

imposed for the direction at its .

endpoints, so the curve takes the (b) Sj(xj) = f(xj) and Sj(xjﬂ) = f(xf+1) foreachj=0,1,....n—1;
shape of a straight line after it (©  Sit1(xj41) = Sj(xj11) foreachj = 0,1,...,n — 2; (Implied by (b).)
passes through the interpolation , , .

points nearest its endpoints. The (d) Sj+1 (Xj+1) = Sj (Xj+1) foreachj =0,1,....n -2

name derives from the fact that (e) S]/'CH (ijrl) = S]/'/(ijrl) foreachj =0,1,...,n—2;

this is the natural shape a flexible . . . .
strip assumes if forced to pass (f) One of the following sets of boundary conditions is satisfied:

through specified interpolation .
points with no additional i) S"(xg) =8"(x,) =0 (natural (or free) boundary);

constraints. (See Figure 3.9.) () S'(xo) = f'(xo) and S'(x,) = f'(x,) (clamped boundary). u

Although cubic splines are defined with other boundary conditions, the conditions given
in (f) are sufficient for our purposes. When the free boundary conditions occur, the spline is
g called a natural spline, and its graph approximates the shape that a long flexible rod would
Figure 3.9 assume if forced to go through the data points {(xo, f (x0)), (x1, £ (x1)), ..., (Xu, f ()}

In general, clamped boundary conditions lead to more accurate approximations because
they include more information about the function. However, for this type of boundary
condition to hold, it is necessary to have either the values of the derivative at the endpoints
or an accurate approximation to those values.

Example 1 Construct a natural cubic spline that passes through the points (1,2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

So(x) = ag + bo(x — 1) + co(x — 1)* + do(x — 1)°,
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Clamping a spline indicates that
the ends of the flexible strip are
fixed so that it is forced to take a
specific direction at each of its
endpoints. This is important, for
example, when two spline
functions should match at their
endpoints. This is done
mathematically by specifying the
values of the derivative of the
curve at the endpoints of the
spline.
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and the other for [2, 3], denoted
S1@) = a1 +bi(x = 2) + c1(x = 2)* +di(x — 2)°.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2=f()=ap, 3= f2)=ay+bo+co+d,
S5=fB)=a+by+ci+d.

3=fQ2)=a, and

Two more come from the fact that S;(2) = S{(2) and S;(2) = S7(2). These are

So(2) =812 bo+2co + 3dy = by and So(2)=8{(2): 2co+6dy =2c;

The final two come from the natural boundary conditions:
So()=0: 2¢=0 and

S{3)=0: 2¢;+6d, =0.

Solving this system of equations gives the spline

24 32— D+ (=13 forx e [1,2]

Sx) =
343 —2)+3(x—2)2— ;(x —2)%, forx € [2,3]

Construction of a Cubic Spline

As the preceding example demonstrates, a spline defined on an interval that is divided into n
subintervals will require determining 4n constants. To construct the cubic spline interpolant
for a given function f, the conditions in the definition are applied to the cubic polynomials

S;i(x) = a; + bj(x — x;) +¢j(x — xj)2 +dj(x — xj)3,

for eachj = 0,1,...,n — 1. Since S;(x;) = a; = f(x;), condition (c) can be applied to
obtain

a1 = Sin (1) = Sj(41) = a5+ bj (51 — %) + GG — )7 + (1 — x)°,
foreachj =0,1,...,n—2.
The terms x;;; — x; are used repeatedly in this development, so it is convenient to
introduce the simpler notation
hj = Xjr1 = x;,
foreachj =0,1,...,n— 1. If we also define a, = f(x,), then the equation
ajr1 = aj + bk + ¢;h; + d;h} (3.15)

holds foreachj =0,1,...,n — 1.
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In a similar manner, define b, = S’(x,) and observe that
S/(x) = bj + 2¢;(x — x;) + 3d;(x — x;)°
implies ij(xj) = bj, foreachj =0,1,...,n — 1. Applying condition (d) gives
bjv1 = by + 2chy + 3d;h3, (3.16)
foreachj =0,1,...,n— 1.
Another relationship between the coefficients of §; is obtained by defining ¢, =
S”(x,)/2 and applying condition (e). Then, foreachj =0,1,...,n — 1,
Cit1 = Cj + 3djhj (317)

Solving for d; in Eq. (3.17) and substituting this value into Egs. (3.15) and (3.16) gives,
foreachj =0,1,...,n — 1, the new equations

h?
aj1 = aj + bjhj + gj(zcj +¢jt1) (3.18)
and
bj+1 :bj+hj(6‘j+Cj+1). (319)

The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of equation (3.18), first for b;,

1 hj
by = (@1 — @) = Q6+ ), (3.20)
J

and then, with a reduction of the index, for b;_. This gives

hj—l
b = (aj —aj_) — T(2Cj—1 +¢)).

b1

Substituting these values into the equation derived from Eq. (3.19), with the index reduced
by one, gives the linear system of equations

3
hi—icj—1 + 2(hj—1 + hj)cj + hjcjy1 = E(aj-&—] —a;) — (aj — aj—1), (3.21)

3
'j hjfl
foreachj = 1,2,...,n— 1. This system involves only the {cj}]’.‘=0 as unknowns. The values
of {hj};;ol and {a;};_ are given, respectively, by the spacing of the nodes {x;}/_, and the
values of f at the nodes. So once the values of {c;}]_ are determined, it is a simple matter

to find the remainder of the constants {bj};'z_()l from Eq. (3.20) and {cz’j};’:_o1 from Eq. (3.17).

Then we can construct the cubic polynomials {S; (x)}‘;';ol.

The major question that arises in connection with this construction is whether the values
of {¢;}_ can be found using the system of equations given in (3.21) and, if so, whether
these values are unique. The following theorems indicate that this is the case when either of
the boundary conditions given in part (f) of the definition are imposed. The proofs of these
theorems require material from linear algebra, which is discussed in Chapter 6.
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Natural Splines

Theorem 3.11 1If fisdefinedata = xp < x; < - -+ < x,, = b, then f has a unique natural spline interpolant
S on the nodes xp, X1, . . ., X,; that is, a spline interpolant that satisfies the natural boundary

conditions S”(a) = 0 and S”(b) = 0. [

Proof The boundary conditions in this case imply that ¢, = §”(x,)/2 = 0 and that
0= 5"(x0) = 2co + 6do(x0 — x0),

so ¢g = 0. The two equations ¢y = 0 and ¢, = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where A is the (n + 1) x
(n 4+ 1) matrix

1 0 0 0
ho 2(hy + hy) hy
0.. h. 2(h + )  h.. :
A: . .'". "'~. .."--' "'.: B
’ ” ’ .'"... 0
N .., ’ hn—Z 2(”’7[—2 + hn—l.). - hn—l
0 e 0 0 1
and b and x are the vectors
_ 0 _
%(612 —a) — %(al — ap) o
Cl
b = : and x=| .
ﬁ(an - an—l) - ﬁ(an—l - an—Z) C:n
0

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear
system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a
unique solution for ¢y, ¢y, . . .

,Cn. n n -

The solution to the cubic spline problem with the boundary conditions S”(xg) =
S”(x,) = 0 can be obtained by applying Algorithm 3.4.

Natural Cubic Spline

To construct the cubic spline interpolant S for the function f, defined at the numbers
X < X1 < -+ < Xy, satisfying §” (xp) = §”(x,,) = 0:

INPUT  n;x0,x1,..., Xp3a0 = f(x0), a1 = f(x1),....an = f(xa).

OUTPUT qj,b;,cj,dj fOI‘j = 0, 1, R 1.

™
J
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(Note: S(x) = Sj(x) = a; + bj(x — xj) + ¢j(x — xj)2 +di(x — xj)3forxj <x < Xj41.)

Step1 Fori=0,1,...,n— 1seth; =x; 1 —x;.
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Step2 Fori=1,2,...,n— 1set

3
o= h—i(ai+1 —a;) — E(Qi —aj-1).
Step 3 Setly=1; (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)
o = 0;
20 = 0.
Step4 Fori=1,2,...,.n—1
setl; = 2(xip1 — Xi—1) — hi—1iiz1;
wi = hi/l;
zi = (i — hi-1zi-1) /1.
Step 5 Setl,=1;
2, = 05
¢, =0.
Step6 Forj=n—1,n—2,...,0
set ¢j = zj — WjCj+1;
bj = (aj11 — ap)/h; — hj(cjp1 +2¢7)/3;
dj = (¢j41 — ¢j)/Bhy).
Step 7 OUTPUT (q;, bj,cj,d; forj=0,1,...,n—1);
STOP. ]

Example 2 At the beginning of Chapter 3 we gave some Taylor polynomials to approximate the expo-
nential f(x) = ¢*. Use the data points (0, 1), (1,¢), (2,€?), and (3, ¢?) to form a natural
spline S(x) that approximates f(x) = e*.

Solution Wehaven =3, hg=h, =h = 1,a0=1,a, = e, a» = €%, and a3 = €. So the
matrix A and the vectors b and x given in Theorem 3.11 have the forms

100 0 0 co
|1t 4 10 | 3 —2e+1) a
A=10 1 4 1|0 P=|3@3 2224 |0 ™ X=1,

00 0 1 0 c3

The vector-matrix equation Ax = b is equivalent to the system of equations

co =0,
co+4dci+c= ?a(e2 —2e+1),
c1+4c+c3 = 3(e3 —2¢+ e),

C3 =0.

This system has the solution ¢y = ¢3 = 0, and to 5 decimal places,

1 1
¢ = g(—e3 +6¢>—9¢+4) ~0.75685, and ¢ = g(4e3 —9¢% 4+ 6¢ — 1) &~ 5.83007.
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Solving for the remaining constants gives

bo = (a1 —ap) — " e + 2c0)
= —(@a —ag) — < (c C
0 hO 1 0 3 1 0
1
=(—1)— E(—e3 + 6% — 9e + 4) ~ 1.46600,
b= )= ey w20
= —a —a — —(C C
1 hl 2 1 3 2 1
2 1 3 2
=(e"—e) — E(2e + 3e” — 12¢ +7) &~ 2.22285,
1 h
by = h—2(03 —ap) — ?2(03 +2¢5)
1
=(e3—e2)—1—5(8e3—18e2+126—2)%8.80977,

1 1
dy = 3—ho(c1 —co) = E(—e3 + 6¢* — 9e + 4) ~ 0.25228,

1

1
dy = 3_hl(c2 —c) = g(e3 — 3¢ + 3¢ — 1) ~ 1.69107,

and

1 1
d) = 3—]12(C3 —c) = E(—4e3 +9¢% — 6e + 1) ~ —1.94336.

The natural cubic spine is described piecewise by

1 + 1.46600x + 0.25228x3, forx € [0, 1],
S(x)=12.71828 + 2.22285(x — 1) + 0.75685(x —1)> +1.69107(x —1)*, forx € [1,2],
7.38906 + 8.80977(x —2) + 5.83007(x —2)? —1.94336(x —2)*, forx € [2,3].

The spline and its agreement with f(x) = e¢* are shown in Figure 3.10. [ ]

Figure 3.10

y
e3]

02
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The NumericalAnalysis package can be used to create a cubic spline in a manner similar
to other constructions in this chapter. However, the CurveFitting Package in Maple can also
be used, and since this has not been discussed previously we will use it to create the natural
spline in Example 2. First we load the package with the command

with(CurveFitting)
and define the function being approximated with
f=x—¢

To create a spline we need to specify the nodes, variable, the degree, and the natural end-
points. This is done with

sn =t — Spline([[0.,1.0],[1.0, £ (1.0)],[2.0, £(2.0)],[3.0, f(3.0)]], ¢, degree = 3,

endpoints = ‘natural’)

Maple returns

t — CurveFitting:-Spline([[0., 1.0],[1.0, f(1.0)],[2.0, f(2.0)],[3.0, £ (3.0)]], ¢,
degree = 3, endpoints = 'natural’)

The form of the natural spline is seen with the command
sn(t)

which produces

1. + 1.46599872 + 0.25228483 t <10
0.495432 + 2.22285¢ + 0.756853( — 1.0)2 + 1.691071(¢ — 1.0)3 t <20
—10.230483 + 8.809770¢ + 5.830067(1 — 2.0)> — 1.943356(t — 2.0)*  otherwise

Once we have determined a spline approximation for a function we can use it to
approximate other properties of the function. The next illustration involves the integral
of the spline we found in the previous example.

Illustration To approximate the integral of f(x) = ¢* on [0, 3], which has the value

3
/ ¢ dx =e’ — 1 220.08553692 — 1 = 19.08553692,
0

we can piecewise integrate the spline that approximates f on this integral. This gives

3 1
/ S(x) = f 1 + 1.46600x 4 0.25228x> dx
0 0
2
+ / 2.71828 + 2.22285(x — 1) + 0.75685(x — 1)> + 1.69107(x — 1)® dx
1

3
+ f 7.38906 + 8.80977(x — 2) + 5.83007(x — 2)* — 1.94336(x — 2)° dx.
2
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Integrating and collecting values from like powers gives

3 2 o 1
/ Sx) =[x + 1.46600— + 0.25228 —
0 2 4 1,

—+0.75685 +1.69107

—1)? —_1)3 1472
+ [2.71828(x—1) 1+2.22285 (x 21) (x 31) (x—1) ]
1

+ 5.83007 —1.94336

—2)2 _2)3 P 3
+17.38906(r—2) + 8.80977 X =2 x—=2) (x—2)
2 3 4 ,

1
= (1 +2.71828 4 7.38906) + 3 (1.46600 + 2.22285 + 8.80977)

1 1
+ 3 (0.75685 + 5.83007) + I (0.25228 4 1.69107 — 1.94336)
= 19.55229.
Because the nodes are equally spaced in this example the integral approximation is

simply

3 1 1 1
/ S(x)dx = (aO‘l‘al+a2)+E(b0+b1+b2)+§(CO+C1+C2)+Z(d0+d1+d2)~ (3.22)
0

O

If we create the natural spline using Maple as described after Example 2, we can then
use Maple’s integration command to find the value in the Illustration. Simply enter

int(sn(t),t =0..3)

19.55228648

Clamped Splines

Example 3 In Example 1 we found a natural spline S that passes through the points (1,2), (2,3),
and (3,5). Construct a clamped spline s through these points that has s'(1) = 2 and
s'(3)=1.

Solution Let

s0(x) = ag + bo(x — 1) + co(x — 1)> + do(x — 1)°,
be the cubic on [1, 2] and the cubic on [2, 3] be

si) =a; +b(x =2) +c1(x =2 +di (x — 2)°.

Then most of the conditions to determine the 8 constants are the same as those in Example
1. That is,

2=f(I)=ayp, 3=fQ)=ao+by+co+dy, 3=f(2) =ay, and
5=f@)=a+b+c +d.
50(2) =51(2) 1 by +2co + 3do = by and 55(2) =s7(2) 1 2co+6dy = 2¢;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



154 CHAPTER 3 = Interpolation and Polynomial Approximation

However, the boundary conditions are now
so(l)=2: by=2 and s;3)=1: b +2c+3d =1.
Solving this system of equations gives the spline as

242D = 36— D+ 3 — D3, forx € [1,2]

SW=05, 3r—2) + 20— 2)? — 2(x —2)%, forx € [2,3]

In the case of general clamped boundary conditions we have a result that is similar to
the theorem for natural boundary conditions described in Theorem 3.11.

Theorem 3.12 If f is defined ata = xy < x| < --- < x, = b and differentiable at a and b, then f has a
unique clamped spline interpolant S on the nodes xo, X, . . . , x,; that is, a spline interpolant
that satisfies the clamped boundary conditions S'(a) = f'(a) and S'(b) = f'(D). [

Proof Since f'(a) = §'(a) = S'(x9) = by, Eq. (3.20) with j = 0 implies
, 1 ho
fl@) = —(a1 —ag) — — (2co + c1).
ho 3
Consequently,
3 7
2hoco + hoc1 = h—(m —ap) —3f(a).
0

Similarly,
f/(b) =b, =by_1 + ha_1(Che1 + ),
so Eq. (3.20) with j = n — 1| implies that

a, — Q,_ hy,—
f(b) = lh—‘ — 17‘(2@_1 + ) 4 hy1 (Caor + )
n—1

ay — dy—1 hn—l
= T + T(Cn—l + 2cp),

and

3
hp—1Cp—1 + 201, = 3f/(b) - h_(an — ap_1).
n—1

Equations (3.21) together with the equations

3 ,
2hoco + hocy = h—o(al —ap) —3f (a)

and

hn—lcn—l + 2hn—lcn = Sf/(b) - (an - an—l)

hnfl
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determine the linear system Ax = b, where

2ho ho 0..::: .............................. 0
he 2hg+h) b g
0. hi.. 20 +h) . :
A= : L S
: s 2+ )
O et 20 By 2h, 4
K %(01 —ap) —3f'(a)
;,3—1(612 —ap) — %(al — agp) o
C1l
b = : , and x=| .
%(CI" - anfl) - &(CI",l - an72) C:n
3f/(b) = 32 (an — an-1)

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
C0,Cly-..,Cp. = = =

The solution to the cubic spline problem with the boundary conditions S’(xp) = f’(xo)
and S’ (x,) = f'(x,) can be obtained by applying Algorithm 3.5.

Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers xy <
X < -+ < Xy, satisfying §'(xg) = f'(xp) and S’'(x,) = f'(x,):

INPUT  n; x0,X1,...,%:5 a0 = f(x0), a1 = f(x1),...,a, = f(x); FPO = f'(x0);
FPN = f'(x,).

OUTPUT aj,bj,cj,dj fOI‘j = 0, 1, cee,— 1.
(Note: S(x) = S;j(x) = a; + bj(x — xj) + ¢;j(x — xj)2 +dj(x — xj)3 Jorx; <x < xj11.)
Step1 Fori=0,1,...,n—1seth; =x;1 — x.

Step 2 Setag=3(a; — ap)/ho — 3FPO;
o, = 3FPN — 3(a, — ap—1)/hu—1.

Step3 Fori=1,2,...,n—1

seta; = 3(ai+1 —a;) — i(ai —ai_1).
hi i-1
Step 4 Setly =2hy; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)
o = 0.5;
20 = ap/lo.
Step5 Fori=1,2,...,n—1
setl; = 2(xip1 — Xi—1) — hi— i1
wi = hi/l;
zi = (0 — hi—1zi—1) /1.
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Step 6 Setl,=h,_1(2— pp_1);
in = (an - hn—lzn—l)/ln;
Cyp = Zp.

Step7 Forj=n—1,n—-2,...,0
setc; = zj — UjCj+1;
bj = (aj11 — aj)/hj — hj(cjp1 +2¢))/3;
dj = (¢j+1 — ¢))/ Bhy).
Step8 OUTPUT (Clj,bj,Cj,dj forj =0,1,...,I’l— 1),
STOP.

Example 4 Example 2 used a natural spline and the data points (0, 1), (1, ¢), (2, €?), and (3, ¢*) to form
a new approximating function S(x). Determine the clamped spline s(x) that uses this data
and the additional information that, since f’(x) = ¢, so f'(0) = 1 and f'(3) = €°.

Solution As in Example 2, we haven =3, hg = hj =hy = 1,a0 =0, a; = e, ay = €2,

and a3 = e3. This together with the information that f'(0) = 1 and f’(3) = ¢’ gives the
the matrix A and the vectors b and x with the forms

210 0 3e—2) co
|1t 4 10 |3 —2e+1) _a
A=10 1 4 1" P= |32 40| ™ X=1,

0 0 1 2 3e? 3

The vector-matrix equation Ax = b is equivalent to the system of equations

2co 4+ ¢4 = 3(e — 2),
co+4ci +cr =3 —2e+1),
c1+4c+c3= ?a(e3 —2 + e),

¢y + 2¢3 = 36

Solving this system simultaneously for ¢y, c;, ¢ and c3 gives, to 5 decimal places,
o= %(Ze3 — 12¢* + 42¢ — 59) = 0.44468,
¢ = %(—4(33 + 24¢* — 39¢ + 28) = 1.26548,
= %(14e3 — 39¢% 4 24¢ — 8) = 3.35087,
ey = %(—76»3 +42¢" — 12¢ + 4) = 9.40815.
Solving for the remaining constants in the same manner as Example 2 gives
by = 1.00000, b; =2.71016, by, =7.32652,

and

dy = 0.27360, d; =0.69513, d, =2.01909.
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This gives the clamped cubic spine

1 4+ x + 0.44468x2 + 0.27360x3, ifo<x <1,
s(x) = {2.71828 + 2.71016(x —1) + 1.26548(x —1)2 4+ 0.69513(x —1)3, if1 <x < 2,
7.38906 + 7.32652(x —2) + 3.35087(x —2)% +2.01909(x —2)3, if2 <x < 3.

The graph of the clamped spline and f(x) = e are so similar that no difference can be
seen. [

We can create the clamped cubic spline in Example 4 with the same commands we
used for the natural spline, the only change that is needed is to specify the derivative at the
endpoints. In this case we use

sn =t — Spline ([[0.,1.0], [1.0, £(1.0)], [2.0, f(2.0)],[3.0, £ (3.0)]], ¢, degree = 3,
endpoints = [1.0, 63'0])

giving essentially the same results as in the example.
We can also approximate the integral of f on [0, 3], by integrating the clamped spline.
The exact value of the integral is

3
/ e dx = e — 1 220.08554 — 1 = 19.08554.
0

Because the data is equally spaced, piecewise integrating the clamped spline results in the
same formula as in (3.22), that is,

3 1
f S0 dx = @+ +a) + 5o+ by +b)
0

1 1
+ 3(00 +c1 4 )+ Z(do +d) + d).

Hence the integral approximation is

3
1
/ s(x) dx = (1 42.71828 + 7.38906) + 5(1 +2.71016 + 7.32652)
0

+ %(0.44468 + 1.26548 + 3.35087) + %(0.27360 +0.69513 4 2.01909)
= 19.05965.
The absolute error in the integral approximation using the clamped and natural splines are
Natural : [19.08554 — 19.55229| = 0.46675
and
Clamped : [19.08554 — 19.05965| = 0.02589.

For integration purposes the clamped spline is vastly superior. This should be no surprise
since the boundary conditions for the clamped spline are exact, whereas for the natural
spline we are essentially assuming that, since f”(x) = %,

0=5"0)~ f'0)=e'=1 and 0=S5"3)~ f'(3) = e ~ 20.

The next illustration uses a spine to approximate a curve that has no given functional
representation.
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lllustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11

Table 3.18
x [09[13[19 [2.1]26/30[39[4.4 [47 [50[60 [7.0[80 [92 [10.5[11.3|11.6[120[12.6/13.0[13.3
Fo[13]1.5185]2.1]2.6/27|2.4]2.15]2.05|2.1]225]2.3]2.25 | 1.95] 1.4] 09] 07| 06 0.5 0.4] 0.25

Figure 3.12

/

6 7 8,9-10 11 12 13 | «x

|
—

Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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Table 3.19 5 a b, : 4
0 0.9 1.3 5.40 0.00 —-0.25
1 1.3 1.5 0.42 —0.30 0.95
2 1.9 1.85 1.09 1.41 —2.96
3 2.1 2.1 1.29 —0.37 —0.45
4 2.6 2.6 0.59 —1.04 0.45
5 3.0 2.7 —0.02 —0.50 0.17
6 39 24 —0.50 —-0.03 0.08
7 4.4 2.15 —0.48 0.08 1.31
8 4.7 2.05 —0.07 1.27 —1.58
9 5.0 2.1 0.26 —0.16 0.04
10 6.0 2.25 0.08 —0.03 0.00
11 7.0 2.3 0.01 —0.04 —0.02
12 8.0 2.25 —0.14 —0.11 0.02
13 9.2 1.95 —0.34 —0.05 —0.01
14 10.5 1.4 —0.53 —0.10 —0.02
15 11.3 0.9 —0.73 —0.15 1.21
16 11.6 0.7 —0.49 0.94 —0.84
17 12.0 0.6 —0.14 —0.06 0.04
18 12.6 0.5 —0.18 0.00 —0.45
19 13.0 0.4 —0.39 —0.54 0.60
20 13.3 0.25
Figure 3.13
NACHIY
4
3 /ﬂ“\'
2 > ~
1
. 4 .
1 2 3 5 X

For comparison purposes, Figure 3.14 gives an illustration of the curve that is generated using
a Lagrange interpolating polynomial to fit the data given in Table 3.18. The interpolating
polynomial in this case is of degree 20 and oscillates wildly. It produces a very strange
illustration of the back of a duck, in flight or otherwise.
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Figure 3.14

To use a clamped spline to approximate this curve we would need derivative approxima-
tions for the endpoints. Even if these approximations were available, we could expect little
improvement because of the close agreement of the natural cubic spline to the curve of the
top profile. O

Constructing a cubic spline to approximate the lower profile of the ruddy duck would
be more difficult since the curve for this portion cannot be expressed as a function of x, and
at certain points the curve does not appear to be smooth. These problems can be resolved
by using separate splines to represent various portions of the curve, but a more effective
approach to approximating curves of this type is considered in the next section.

The clamped boundary conditions are generally preferred when approximating func-
tions by cubic splines, so the derivative of the function must be known or approximated
at the endpoints of the interval. When the nodes are equally spaced near both end-
points, approximations can be obtained by any of the appropriate formulas given in
Sections 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably
more difficult.

To conclude this section, we list an error-bound formula for the cubic spline with
clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57-58.

Theorem 3.13 Let f € C*[a,b] with max,<.<p | f® (x)| = M. If S is the unique clamped cubic spline

interpolant to f with respect to the nodes a = xp < x; < --- < x, = b, then for all x in
[a, B],
SM 4
[f(x) —SX)| < ﬁogléa{l(xjﬂ—x,) ) n

A fourth-order error-bound result also holds in the case of natural boundary conditions,
but it is more difficult to express. (See [BD], pp. 827-835.)

The natural boundary conditions will generally give less accurate results than the
clamped conditions near the ends of the interval [xo,x,] unless the function f happens
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to nearly satisfy f”(xo) = f”(x,) = 0. An alternative to the natural boundary condition
that does not require knowledge of the derivative of f is the not-a-knot condition, (see
[Deb2], pp. 55-56). This condition requires that S/ (x) be continuous at x| and at x,,_;.

EXERCISE SET 35

1. Determine the natural cubic spline S that interpolates the data f(0) =0, (1) = 1, and f(2) = 2.
Determine the clamped cubic spline s that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and
satisfies s'(0) = s'(2) = 1.

3. Construct the natural cubic spline for the following data.

a. b. «x S
8.3 | 17.56492 0.8 | 0.22363362
8.6 | 18.50515 1.0 | 0.65809197
c. X ‘ fx) d. x S
—-0.5 —0.0247500 0.1 | —0.62049958
—0.25 0.3349375 0.2 | —0.28398668
0 1.1010000 0.3 0.00660095
0.4 0.24842440

4. Construct the natural cubic spline for the following data.

a  x f b. x fx)
0 1.00000 —0.25 | 1.33203
0.5 | 2.71828 0.25 | 0.800781
c. X fx) d. X ‘ f(x)
0.1 | —0.29004996 -1 0.86199480
0.2 | —0.56079734 —0.5 | 0.95802009
0.3 | —0.81401972 0 1.0986123

0.5 | 1.2943767
5.  Thedatain Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate f(x) and f’(x), and calculate the actual error.
a. f(x) =xlnx; approximate f(8.4) and f'(8.4).
b. f(x) =sin(e* —2); approximate f(0.9) and f(0.9).
¢ f(x)=x’+4.001x* +4.002x + 1.101; approximate f(—1) and f'(—1).
d. f(x) =xcosx —2x>+3x—1; approximate f(0.25) and f'(0.25).
6. The datain Exercise 4 were generated using the following functions. Use the cubic splines constructed
in Exercise 4 for the given value of x to approximate f(x) and f’(x), and calculate the actual error.
a. fx)= > approximate f(0.43) and f'(0.43).
b. f(x)=x*—x*+x>—x+1; approximate £(0)and f'(0).
c¢. f(x) =x*cosx —3x; approximate f(0.18) and f’(0.18).
d. f(x)=In(e*+2); approximate f(0.25) and f'(0.25).
7.  Construct the clamped cubic spline using the data of Exercise 3 and the fact that
a. f’(8.3) =3.116256 and f'(8.6) = 3.151762
b. f/(0.8) =2.1691753 and f’(1.0) = 2.0466965
c. f'(—0.5) =0.7510000 and f'(0) = 4.0020000
d. f'(0.1) =3.58502082 and f'(0.4) = 2.16529366
8.  Construct the clamped cubic spline using the data of Exercise 4 and the fact that
a. f’(0) =2and f'(0.5) = 5.43656
b. f’(—0.25) = 0.437500 and f’(0.25) = —0.625000
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c. f(0.1) = —2.8004996 and f'(0) = —2.9734038
d. f'(—1) =0.15536240 and f’(0.5) = 0.45186276
9. Repeat Exercise 5 using the clamped cubic splines constructed in Exercise 7.
10. Repeat Exercise 6 using the clamped cubic splines constructed in Exercise 8.
11. A natural cubic spline S on [0, 2] is defined by

S So(x) = 1+42x — X3, if 0<x<l,
X) =
Si(x) =24+bx—D+cx—D>+dx—1)3, if l<x<?2.

Find b, ¢, and d.
12. A clamped cubic spline s for a function f is defined on [1, 3] by

s() = so() =3 — 1D +2(x— 1> — (x—1)3, if 1 <x<2,
T s =a+bx—2)+e(x -2 +dx—2)3, if 2<x<3.

Given f'(1) = f'(3), find a, b, ¢, and d.
13. A natural cubic spline S is defined by

S = So(x) =1+ B(x — 1) = D(x — 1)?, if 1<x<2,
S =14+b(-2) - 3G -22+dx—2)}, if2<x<3.

If S interpolates the data (1, 1), (2, 1), and (3,0), find B, D, b, and d.
14. A clamped cubic spline s for a function f is defined by

- so(x) = 1+ Bx + 2x% — 23, if0<x<l,
s(x) =
s10)=14+bx—1)—4x—-D>+7x—1)3, if 1<x<2.

Find f7(0) and f'(2).

15.  Construct a natural cubic spline to approximate f(x) = cosmwx by using the values given by f(x) at
x =0,0.25,0.5,0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to fol cosTxdx =
0. Use the derivatives of the spline to approximate f’(0.5) and f”(0.5). Compare these approximations
to the actual values.

16.  Construct a natural cubic spline to approximate f (x) = e~ * by using the values given by f (x) atx = 0,
0.25, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to fol etdx=1-1/e.
Use the derivatives of the spline to approximate f'(0.5) and f”(0.5). Compare the approximations to
the actual values.

17. Repeat Exercise 15, constructing instead the clamped cubic spline with f/(0) = f'(1) = 0.

18. Repeat Exercise 16, constructing instead the clamped cubic spline with f'(0) = —1, f/(1) = —e™".

19. Suppose that f(x) is a polynomial of degree 3. Show that f(x) is its own clamped cubic spline, but
that it cannot be its own natural cubic spline.

20. Suppose the data {x;, f(x;))}"_, lie on a straight line. What can be said about the natural and clamped
cubic splines for the function f? [Hint: Take a cue from the results of Exercises 1 and 2.]

21.  Given the partition xo = 0, x; = 0.05, and x, = 0.1 of [0, 0.1], find the piecewise linear interpolating
function F for f(x) = e*. Approximate j;)m e* dx with foo'l F(x) dx, and compare the results to the
actual value.

22. Let f € C*[a,b), and let the nodes a = xy < x; < --- < X, = b be given. Derive an error estimate
similar to that in Theorem 3.13 for the piecewise linear interpolating function F. Use this estimate to
derive error bounds for Exercise 21.

23. Extend Algorithms 3.4 and 3.5 to include as output the first and second derivatives of the spline at the
nodes.

24. Extend Algorithms 3.4 and 3.5 to include as output the integral of the spline over the interval [xo, x,].

25.  Given the partition xo = 0, x; = 0.05, x, = 0.1 of [0,0.1] and f(x) = e
a.  Find the cubic spline s with clamped boundary conditions that interpolates f.

b.  Find an approximation for foo‘l e* dx by evaluating foo‘l s(x) dx.
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c.  Use Theorem 3.13 to estimate maxo<y<o1 | f (x) — s(x)| and

0.1

0.1
f&) dx — / s(x) dx
0

0
d. Determine the cubic spline S with natural boundary conditions, and compare S(0.02), s(0.02),
and " = 1.04081077.

26. Let f be defined on [a, b], and let the nodes a = xy < x; < x, = b be given. A quadratic spline
interpolating function S consists of the quadratic polynomial

So(x) = a + bo(x — x0) + co(x —x0)*  on [xg, 1]
and the quadratic polynomial
S1(x) = ay + bi(x —x1) + c1(x —x1)°  on [x,x,],

such that
i S(o) = f(x0),S(x1) = f(x1), and S(x2) = f(x2),
ii. Se CI[X(),Xz].
Show that conditions (i) and (ii) lead to five equations in the six unknowns ay, by, co, a1, b1, and c;.
The problem is to decide what additional condition to impose to make the solution unique. Does the
condition S € C?[xy, x,] lead to a meaningful solution?
27. Determine a quadratic spline s that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and satisfies
s'(0) = 2.
28. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use natural cubic spline interpolation to approximate the population in the years
1940, 1975, and 2020.
b.  The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?
29. A cartraveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 | 225 | 383 | 623 | 993
Speed 75 77 80 74 72

a. Use a clamped cubic spline to predict the position of the car and its speed when ¢t = 10 s.

b.  Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed limit
on the road; if so, what is the first time the car exceeds this speed?

c¢.  What is the predicted maximum speed for the car?

30. The 2009 Kentucky Derby was won by a horse named Mine That Bird (at more than 50:1 odds)
in a time of 2:02.66 (2 minutes and 2.66 seconds) for the 1i—mile race. Times at the quarter-mile,
half-mile, and mile poles were 0:22.98, 0:47.23, and 1:37.49.

a.  Use these values together with the starting time to construct a natural cubic spline for Mine That
Bird’s race.

b.  Use the spline to predict the time at the three-quarter-mile pole, and compare this to the actual
time of 1:12.09.

c.  Use the spline to approximate Mine That Bird’s starting speed and speed at the finish line.

31. Itis suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28 days
after birth. The first sample was reared on young oak leaves, whereas the second sample was reared
on mature leaves from the same tree.

a. Use a natural cubic spline to approximate the average weight curve for each sample.
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b.  Find an approximate maximum average weight for each sample by determining the maximum
of the spline.
Day 0 6 10 13 17 20 28
Sample 1 average weight (mg) | 6.67 | 17.33 | 42.67 | 37.33 | 30.10 | 29.31 | 28.74
Sample 2 average weight (mg) | 6.67 | 16.11 | 18.89 | 15.00 | 10.56 | 9.44 | 8.89
32. The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants.
The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the
three clamped cubic splines.
S
O Slope—% Slope 3 Slope-4
8
; Slope 1 A Bl ™~ / / - — \\
5 // N / ] \\\ Slope%
4 ] / ~N \ <
3 - —
2 Curve 1 Curve 2 Curve 3 Slope—%
1
5 10 15 20 2% 0 x
Curve 1 Curve 2 Curve 3
i X S (x) I ioox S ) fle) i x J(x) fGa)
0 1 3.0 1.0 0o 17 4.5 3.0 0 277 4.1 0.33
1 2 3.7 1 20 7.0 1 28 43
2 5 3.9 2 23 6.1 2 29 4.1
3 6 4.2 3 24 5.6 3 30 3.0 -1.5
4 7 5.7 4 25 5.8
5 8 6.6 5 27 52
6 10 7.1 6 277 4.1 —4.0
7 13 6.7
8 17 4.5 —0.67
33. Repeat Exercise 32, constructing three natural splines using Algorithm 3.4.

3.6
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Parametric Curves

None of the techniques developed in this chapter can be used to generate curves of the form
shown in Figure 3.15 because this curve cannot be expressed as a function of one coordinate
variable in terms of the other. In this section we will see how to represent general curves
by using a parameter to express both the x- and y-coordinate variables. Any good book



Figure 3.15

Example 1

Table 3.20
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on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)

A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (xo, ¥o), (x1,¥1), - .., (Xn,¥,) in the order given is to use
a parameter ¢ on an interval [#, #,], with ty < #; < --- < t,, and construct approximation
functions with

x; =x(t;) and y; =y(t), foreachi=0,1,...,n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{t;}_, equally spaced in [0,1], which gives the data in Table 3.20.

i 0 1 2 3 4
i 0 0.25 0.5 0.75 1
xi -1 0 1 0 1
yi 0 1 0.5 0 ~1

This produces the interpolating polynomials
x() = (((64r = E2)r+60)t — 4)r—1 and y() = (((-Fr+48) 1 — 4O r+11)1.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation. [ ]
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Figure 3.16

A successful computer design
system needs to be based on a
formal mathematical theory so
that the results are predictable,
but this theory should be
performed in the background so
that the artist can base the design
on aesthetics.
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(x(9), (1))

Parametric Hermite and spline curves can be generated in a similar manner, but these
also require extensive computational effort.

Applications in computer graphics require the rapid generation of smooth curves that
can be easily and quickly modified. For both aesthetic and computational reasons, changing
one portion of these curves should have little or no effect on other portions of the curves.
This eliminates the use of interpolating polynomials and splines since changing one portion
of these curves affects the whole curve.

The choice of curve for use in computer graphics is generally a form of the piece-
wise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial is completely
determined by specifying its endpoints and the derivatives at these endpoints. As a conse-
quence, one portion of the curve can be changed while leaving most of the curve the same.
Only the adjacent portions need to be modified to ensure smoothness at the endpoints. The
computations can be performed quickly, and the curve can be modified a section at a time.

The problem with Hermite interpolation is the need to specify the derivatives at
the endpoints of each section of the curve. Suppose the curve has n + 1 data points
(x(t0),y(®0)), ..., (x(t)),¥y(t,)), and we wish to parameterize the cubic to allow complex
features. Then we must specify x'(¢;) and y'(¢;), for each i = 0, 1,...,n. This is not as
difficult as it would first appear, since each portion is generated independently. We must
ensure only that the derivatives at the endpoints of each portion match those in the adjacent
portion. Essentially, then, we can simplify the process to one of determining a pair of cubic
Hermite polynomials in the parameter ¢, where fyp = 0 and #; = 1, given the endpoint data
(x(0),y(0)) and (x(1),y(1)) and the derivatives dy/dx (at t = 0) and dy/dx (att = 1).

Notice, however, that we are specifying only six conditions, and the cubic polynomials
in x(¢) and y(¢) each have four parameters, for a total of eight. This provides flexibility
in choosing the pair of cubic Hermite polynomials to satisfy the conditions, because the
natural form for determining x(¢) and y(¢) requires that we specify x'(0), x'(1), y'(0), and
y'(1). The explicit Hermite curve in x and y requires specifying only the quotients

/ /
dy o YO _ya
dx x'(0) x'(1)
By multiplying x'(0) and y'(0) by a common scaling factor, the tangent line to the curve
at (x(0), y(0)) remains the same, but the shape of the curve varies. The larger the scaling

dy
d =@=1
an dx( )
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factor, the closer the curve comes to approximating the tangent line near (x(0),y(0)). A
similar situation exists at the other endpoint (x(1), y(1)).

To further simplify the process in interactive computer graphics, the derivative at an
endpoint is specified by using a second point, called a guidepoint, on the desired tangent
line. The farther the guidepoint is from the node, the more closely the curve approximates
the tangent line near the node.

In Figure 3.17, the nodes occur at (xg,yo) and (x;,y;), the guidepoint for (xg,yo) is
(x0 + 0, Yo + Po), and the guidepoint for (xy,y;) is (x; — «1,y1 — B1). The cubic Hermite
polynomial x(#) on [0, 1] satisfies

x(0) =xy, x(1)=x;, X0)=0ap and x'(1)=o.

Figure 3.17
'Y

(xo + 00, ¥0 + Bo)

(x1— a1 — B

(X0 ¥0)
(x1, 1)

<Y

The unique cubic polynomial satisfying these conditions is
x(1) = [2000 — x1) + (@0 + a1’ + [B(x1 — x0) — (a1 + 200) 1> + aot + %0 (3.23)
In a similar manner, the unique cubic polynomial satisfying
y©0) =yo, y)=yi, YO =p, and y(l)=p
is
Y(®) = 1200 — 1) + (Bo + BDIE + B = yo) = (B1 +2B0)18% + ot +y0.  (3.24)

Example 2 Determine the graph of the parametric curve generated Eq. (3.23) and (3.24) when the end
points are (xg,yo) = (0,0) and (x;,y;) = (1,0), and respective guide points, as shown in
Figure 3.18 are (1, 1) and (0, 1).

Solution The endpoint information implies that xo = 0, x; = 1, yo = 0, and y; = 0, and
_Guidepointg_ the guide points at (1, 1) and (0, 1) imply that g = 1, ¢y = 1, Bp = 1, and B; = —1. Note

©.1) “ /,’ D that the slopes of the guide lines at (0,0) and (1, 0) are, respectively
1 1
N @z—zl and &2—2—1
/// \\\ (240] 1 (03] 1
, Nodes
e N » Equations (3.23) and (3.24) imply that for ¢ € [0, 1] we have
©.9) wy =
Figure 3.18 XM =20-D+A+DIF+[B3O0-0—1A+2- DI +1-14+0=1
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168 CHAPTER 3 =
and
YO =[20=0)+ (1 + (=N +[BO—-0) = (=14+2-DIF +1-1+0=—+1.
This graph is shown as (a) in Figure 3.19, together with some other possibilities of curves
produced by Eqgs. (3.23) and (3.24) when the nodes are (0,0) and (1,0) and the slopes at
these nodes are 1 and —1, respectively. [ ]
Figure 3.19
Y A Y A
1,1)
101 A, 1) 1T A
. (0.75,025)
1 2 X 1 2 X
() (b)
YA YA
2,2
2+ o 2+
1+ //// N \ 1+
(0.5, 0.5)
/// \\777// e //’
7, /// 1
~ y — A
14 e 14 N
' @>1 . @)
(©) (d)
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Pierre Etienne Bézier
(1910-1999) was head of design
and production for Renault
motorcars for most of his
professional life. He began his
research into computer-aided
design and manufacturing in
1960, developing interactive tools
for curve and surface design, and
initiated computer-generated
milling for automobile modeling.

The Bézier curves that bear his
name have the advantage of being
based on a rigorous mathematical
theory that does not need to be
explicitly recognized by the
practitioner who simply wants to
make an aesthetically pleasing
curve or surface. These are the
curves that are the basis of the
powerful Adobe Postscript
system, and produce the freehand
curves that are generated in most

sufficiently powerful computer
graphics packages.
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The standard procedure for determining curves in an interactive graphics mode is to first
use a mouse or touchpad to set the nodes and guidepoints to generate a first approximation
to the curve. These can be set manually, but most graphics systems permit you to use your
input device to draw the curve on the screen freehand and will select appropriate nodes and
guidepoints for your freehand curve.

The nodes and guidepoints can then be manipulated into a position that produces an
aesthetically pleasing curve. Since the computation is minimal, the curve can be determined
so quickly that the resulting change is seen immediately. Moreover, all the data needed to
compute the curves are imbedded in the coordinates of the nodes and guidepoints, so no
analytical knowledge is required of the user.

Popular graphics programs use this type of system for their freehand graphic representa-
tions in a slightly modified form. The Hermite cubics are described as Bézier polynomials,
which incorporate a scaling factor of 3 when computing the derivatives at the endpoints.
This modifies the parametric equations to

x(t) = [2(xp — x1) + 3(ap + otl)]t3 + [3(x1 — x9) — 3(a1 + 20(0)]t2 + 3apt + xp, (3.25)
and
y(@) = [2(vo — 1) + 3(Bo + BN + 301 — yo) — 3(B1 + 2Bo)1t* + 3ot + yo, (3.26)

for 0 <t < 1, but this change is transparent to the user of the system.
Algorithm 3.6 constructs a set of Bézier curves based on the parametric equations in
Egs. (3.25) and (3.26).

Bézier Curve

To construct the cubic Bézier curves Co,. ..
sented by

, Cy—1 in parametric form, where C; is repre-

(0, y1(0) = (@) +al’t +a 1 + a8, by + bVt + b1 + b1,

for 0 <t < 1, as determined by the left endpoint (x;,y;), left guidepoint &, y;’), right

1

endpoint (x;41,i+1), and right guidepoint (x;, ;,y;, ) foreachi =0,1,...,n —1:
INPUT 15 (%0,0): - - - » (s YD (g5 Vg ) s Qi 1o V)3 (07 ) e s (05 3)-
OUTPUT  coefficients {a’,a\’,a}’,a’, b, b, b, by, for 0 < i < n—1).
Step 1 Foreachi=0,1,...,n— 1do Steps 2 and 3.
Step 2 Set ag) = X;;

by = yi;

a =30 —x);

by =307 =y

ag) =30 +x .y — 2xi+);

b =30+ yiy — 27

a’ = xiy — x4 35— 3x

i1
by = yie1 —yi + 3y = 3y
Step3 OUTPUT (... a® b0, b, b2, b,
Step 4 STOP. ]
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Three-dimensional curves are generated in a similar manner by additionally specifying
third components zp and z; for the nodes and zo+yy and z; — y; for the guidepoints. The more
difficult problem involving the representation of three-dimensional curves concerns the loss
of the third dimension when the curve is projected onto a two-dimensional computer screen.
Various projection techniques are used, but this topic lies within the realm of computer
graphics. For an introduction to this topic and ways that the technique can be modified for
surface representations, see one of the many books on computer graphics methods, such as
[FVFH].

EXERCISE SET 3.6

1. Let (xo,y0) = (0,0) and (x;,y1) = (5,2) be the endpoints of a curve. Use the given guide-
points to construct parametric cubic Hermite approximations (x(#), y(#)) to the curve, and graph the

approximations.
a. (1,1)and (6,1) c. (1,1)and (6,3)
b. (0.5,0.5) and (5.5, 1.5) d. (2,2)and (7,0)

Repeat Exercise 1 using cubic Bézier polynomials.

3.  Construct and graph the cubic Bézier polynomials given the following points and guidepoints.
a. Point (1, 1) with guidepoint (1.5, 1.25) to point (6, 2) with guidepoint (7, 3)
b.  Point (1, 1) with guidepoint (1.25, 1.5) to point (6,2) with guidepoint (5, 3)

c.  Point (0,0) with guidepoint (0.5, 0.5) to point (4, 6) with entering guidepoint (3.5, 7) and exiting
guidepoint (4.5, 5) to point (6, 1) with guidepoint (7,2)

d. Point (0,0) with guidepoint (0.5, 0.5) to point (2, 1) with entering guidepoint (3, 1) and exiting
guidepoint (3, 1) to point (4,0) with entering guidepoint (5, 1) and exiting guidepoint (3, —1)
to point (6, —1) with guidepoint (6.5, —0.25)

4.  Use the data in the following table and Algorithm 3.6 to approximate the shape of the letter /.

i ‘ Xi ‘ Vi ‘ o; ‘ Bi ‘ 0‘,{ ‘ ﬁ,/
0 3 6 | 33| 65

1 2 2 1281|3025 25
2 6 6 | 58| 505058
3 5 2 55|22 1]45 |25
4165 |3 6.4 | 2.8

5. Suppose a cubic Bézier polynomial is placed through (ug, vo) and (us, v3) with guidepoints (i, v,)
and (uy, v7), respectively.

a. Derive the parametric equations for u(¢) and v(f) assuming that
u0) =up, u(l)=us, w0 =u—uyp, w(l)=us—u
and
v(0) =1y, v(1)=wv3, V() =v; —vy, V(1)=0v3— .
b. Let f(i/3) = u;, fori = 0,1,2,3 and g(i/3) = v;, fori = 0,1,2,3. Show that the Bernstein

polynomial of degree 3 in ¢ for f is u(#) and the Bernstein polynomial of degree three in # for g
is v(t). (See Exercise 23 of Section 3.1.)
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3.7 Survey of Methods and Software

In this chapter we have considered approximating a function using polynomials and piece-
wise polynomials. The function can be specified by a given defining equation or by pro-
viding points in the plane through which the graph of the function passes. A set of nodes
X0, X1, ..,X, 1S given in each case, and more information, such as the value of various
derivatives, may also be required. We need to find an approximating function that satisfies
the conditions specified by these data.

The interpolating polynomial P(x) is the polynomial of least degree that satisfies, for
a function f,

P(x;)) = f(x;), foreachi=0,1,...,n.

Although this interpolating polynomial is unique, it can take many different forms. The
Lagrange form is most often used for interpolating tables when #n is small and for deriving
formulas for approximating derivatives and integrals. Neville’s method is used for eval-
uating several interpolating polynomials at the same value of x. Newton’s forms of the
polynomial are more appropriate for computation and are also used extensively for deriv-
ing formulas for solving differential equations. However, polynomial interpolation has the
inherent weaknesses of oscillation, particularly if the number of nodes is large. In this case
there are other methods that can be better applied.

The Hermite polynomials interpolate a function and its derivative at the nodes. They
can be very accurate but require more information about the function being approximated.
When there are a large number of nodes, the Hermite polynomials also exhibit oscillation
weaknesses.

The most commonly used form of interpolation is piecewise-polynomial interpolation.
If function and derivative values are available, piecewise cubic Hermite interpolation is
recommended. This is the preferred method for interpolating values of a function that is
the solution to a differential equation. When only the function values are available, natural
cubic spline interpolation can be used. This spline forces the second derivative of the spline
to be zero at the endpoints. Other cubic splines require additional data. For example, the
clamped cubic spline needs values of the derivative of the function at the endpoints of the
interval.

Other methods of interpolation are commonly used. Trigonometric interpolation, in
particular the Fast Fourier Transform discussed in Chapter 8, is used with large amounts
of data when the function is assumed to have a periodic nature. Interpolation by rational
functions is also used.

If the data are suspected to be inaccurate, smoothing techniques can be applied, and
some form of least squares fit of data is recommended. Polynomials, trigonometric functions,
rational functions, and splines can be used in least squares fitting of data. We consider these
topics in Chapter 8.

Interpolation routines included in the IMSL Library are based on the book A Practical
Guide to Splines by Carl de Boor [Deb] and use interpolation by cubic splines. There
are cubic splines to minimize oscillations and to preserve concavity. Methods for two-
dimensional interpolation by bicubic splines are also included.

The NAG library contains subroutines for polynomial and Hermite interpolation, for
cubic spline interpolation, and for piecewise cubic Hermite interpolation. NAG also contains
subroutines for interpolating functions of two variables.

The netlib library contains the subroutines to compute the cubic spline with various
endpoint conditions. One package produces the Newton’s divided difference coefficients for
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a discrete set of data points, and there are various routines for evaluating Hermite piecewise
polynomials.

MATLAB can be used to interpolate a discrete set of data points, using either nearest
neighbor interpolation, linear interpolation, cubic spline interpolation, or cubic interpola-
tion. Cubic splines can also be produced.

General references to the methods in this chapter are the books by Powell [Pow] and
by Davis [Da]. The seminal paper on splines is due to Schoenberg [Scho]. Important books
on splines are by Schultz [Schul], De Boor [Deb2], Dierckx [Di], and Schumaker [Schum)].
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Numercal Differentiation and Integration

Introduction

A sheet of corrugated roofing is constructed by pressing a flat sheet of aluminum into one
whose cross section has the form of a sine wave.

A corrugated sheet 4 ft long is needed, the height of each wave is 1 in. from the center
line, and each wave has a period of approximately 27 in. The problem of finding the length
of the initial flat sheet is one of determining the length of the curve given by f(x) = sinx
from x = 0 in. to x = 48 in. From calculus we know that this length is

48 48
L= [ i+ gwra= [ VT o an
0 0

so the problem reduces to evaluating this integral. Although the sine function is one of
the most common mathematical functions, the calculation of its length involves an elliptic
integral of the second kind, which cannot be evaluated explicitly. Methods are developed in
this chapter to approximate the solution to problems of this type. This particular problem
is considered in Exercise 25 of Section 4.4 and Exercise 12 of Section 4.5.

We mentioned in the introduction to Chapter 3 that one reason for using alge-
braic polynomials to approximate an arbitrary set of data is that, given any continuous
function defined on a closed interval, there exists a polynomial that is arbitrarily close to
the function at every point in the interval. Also, the derivatives and integrals of polyno-
mials are easily obtained and evaluated. It should not be surprising, then, that many
procedures for approximating derivatives and integrals use the polynomials that
approximate the function.

173
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Numerical Differentiation and Integration

41

Difference equations were used
and popularized by Isaac Newton
in the last quarter of the 17th
century, but many of these
techniques had previously been
developed by Thomas Harriot
(1561-1621) and Henry Briggs
(1561-1630). Harriot made
significant advances in navigation
techniques, and Briggs was the
person most responsible for the
acceptance of logarithms as an
aid to computation.

Example 1
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Numerical Differentiation

The derivative of the function f at x is

fxo+h) — f(xo)
p )

y .
Xo) = lim

S (x0) lim

This formula gives an obvious way to generate an approximation to f’(xg); simply compute

fxo+h) — f(xo)
h

for small values of . Although this may be obvious, it is not very successful, due to our
old nemesis round-off error. But it is certainly a place to start.

To approximate f'(xo), suppose first that xo € (a,b), where f € C?[a,b], and that
x1 = xo + h for some h # 0 that is sufficiently small to ensure that x; € [a, b]. We construct
the first Lagrange polynomial Py (x) for f determined by xj and x,;, with its error term:

700 = Pos ) + ETEZI) e
_ f(xo)(x_—th —h) n J o+ hZ(x —X) (- xO)(xz— xo — h) FIEW).
for some & (x) between x( and x;. Differentiating gives
£ = fxo+ h})l U ACONN D, [(x = xO)(xz— X0 — h) f“(é(x))]
_ St h})l — f(xo) n 2(x —)260) — hf”(é(x))
L TN ) o).

2
Deleting the terms involving & (x) gives

SO0+ 1) = fxo)

[l ~ .

One difficulty with this formula is that we have no information about D, f” (£ (x)), so the
truncation error cannot be estimated. When x is xo, however, the coefficient of D, f” (& (x))
is 0, and the formula simplifies to

fo+h) — fxo) h ,

7 3 17 &).

For small values of 4, the difference quotient [ f (xo + &) — f(x0)]/h can be used to

approximate f’(xo) with an error bounded by M|h|/2, where M is a bound on | f”(x)| for x

between xy and x + 4. This formula is known as the forward-difference formula if 7 > 0
(see Figure 4.1) and the backward-difference formula if # < 0.

f'(x) =

“.1)

Use the forward-difference formula to approximate the derivative of f(x) = Inxatxy = 1.8
using - = 0.1, 2 = 0.05, and & = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

F(1.8+h) — f(1.8)
h
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Figure 4.1
" Slope f'(xo)
S + h) = f(xo)
Slope ——————
h
XIO X0 1" h Vx
with 2 = 0.1 gives
In1.9—1Inl. .641 — 0.58778667
nl9—1InlS8 _ 0.64185389 — 0.5877866 — 0.5406722.
0.1 0.1
Because f”(x) = —1/x? and 1.8 < £ < 1.9, a bound for this approximation error is
hf” h 0.1
1@l = 1Al < = 0.0154321.
2 282 2(1.8)2
The approximation and error bounds when 4 = 0.05 and # = 0.01 are found in a similar
manner and the results are shown in Table 4.1.
Table 4.1 , s+ F(1.84h) — f(1.8) Ih

' h 2(1.8)?
0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since f'(x) = 1/x, the exact value of f’(1.8) is 0.555, and in this case the error bounds are
quite close to the true approximation error. [ ]

To obtain general derivative approximation formulas, suppose that {xo, xj, ..., x,} are
(n + 1) distinct numbers in some interval I and that f € C"*'(I). From Theorem 3.3 on
page 112,

(x —x0) - (x — xp)

wrnr e,

f0) =) fELx) +

k=0
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for some £(x) in I, where L; (x) denotes the kth Lagrange coefficient polynomial for f at
X0, X1, - - .  X,. Differentiating this expression gives

x=x0) - (x=x) ] L
[ = Zf(xk)Lk(xHD [ D ]f< E@)
G0 02 8y g g oy,

(n+ 1!

We again have a problem estimating the truncation error unless x is one of the numbers
x;. In this case, the term multiplying D,[ f +D (&(x))] is 0, and the formula becomes

n (n+1)
ﬂm=§)umﬂm+f @@”Hu ), (4.2)
P (n+1)!
k#/
which is called an (# + 1)-point formula to approximate f'(x;).

In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al-
though the number of functional evaluations and growth of round-off error discourages this
somewhat. The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.

Because
Lo(x) = = x)(x = %) , wehave Lj(x) = Cadtd R )
(xo — x1) (X0 — x2) (xo — x1) (X0 — X2)
Similarly,
, 2x — xg — X , 2x — xp — X1
L = d L = .
1) (x1 — x0)(x1 — x2) o 2() (x2 — x0) (X2 — x1)
Hence, from Eq. (4.2),
Tee — ij_xl_ Z)CJ—X()—xz ]
S 09) = (o) [(Xo —x1)(xo —Xz)} + ) |:(x1 — x0)(x1 — x2)
2
Y~ X0~ 0 Lo ey T -
+f(ﬁ[@r—mxm—x)}+6f @»Lyn ), (4.3)
k#j

for each j = 0, 1, 2, where the notation &; indicates that this point depends on x;.

Three-Point Formulas

The formulas from Eq. (4.3) become especially useful if the nodes are equally spaced, that
is, when

x1=xo+h and x, =x9+2h, forsomeh #O0.

We will assume equally-spaced nodes throughout the remainder of this section.
Using Eq. (4.3) with x; = xo,x; = xo + h, and x, = xo + 2h gives

L[ 3 , 1 R
f(xo) = W [—Ef(xo) +2f(x) — Ef(xz):| + ?f (o).

Doing the same for x; = x| gives

1 1 "o
[—Ef(xo) + Ef(xz)] - gf ¢,

S =

floa) =

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.1 Numerical Differentiation 177

and for x; = x2,

LI , 3 R
f(xz)_ﬁl:if(XO)_ f(x1)+§f(x2)]+?f (&).

Since x; = x9 + h and x, = xp + 2h, these formulas can also be expressed as

, I 3 1 R
fo) =+ |:_§f(x0) +2f (0 +h) — 5 fxo +2h)} + 3/ G,

1 1 NI
[—Ef(xo) + Ef(xo + ):| - Ef ¢,

=1

flo+h) =
and
, 111 3 h? 3)
[ +2h) = 7 Ef(xo) —2f(xo+h) + zf(xo +2h) |+ ?f (é2).
As a matter of convenience, the variable substitution xq for xy + % is used in the middle

equation to change this formula to an approximation for f’(xg). A similar change, x; for
X + 2h, is used in the last equation. This gives three formulas for approximating f”(xo):

1 K2
f(xo) = 23 00) +4F 0o+ 1) — f o + 2] + ?fw)(éo),

1 h?
f(xo) = G =M+ flo+ )] - gf“)(sl),

and

1 h?
F'@o0) = - [f 0o = 2h) = 4f (xo = ) + 3 (xo)] + ?f(s)(ifz)-

Finally, note that the last of these equations can be obtained from the first by simply replacing
h with —h, so there are actually only two formulas:

Three-Point Endpoint Formula

, 1 h? 3)
® fi(xo) = E[_Sf(x()) +4fxo+h) — flxo+2h)]+ ?f (%0), (4.4)
where & lies between xy and xy + 2h.

Three-Point Midpoint Formula
, 1 h? 3)
® f'(xo) = E[f(onrh) — flo—h)]— gf (é1), (4.5)

where &; lies between xy — h and xy + h.

Although the errors in both Eq. (4.4) and Eq. (4.5) are O(h?), the error in Eq. (4.5) is
approximately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides of
xo and Eq. (4.4) uses data on only one side. Note also that f needs to be evaluated at only two
points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 on page 178
gives an illustration of the approximation produced from Eq. (4.5). The approximation in
Eq. (4.4) is useful near the ends of an interval, because information about f outside the
interval may not be available.
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Figure 4.2

Slope /" (xo)

Slope 5[ /(v + ) — (o — )]

=

S)
=
=

<)

=

o
+
=
<Y

Five-Point Formulas

The methods presented in Egs. (4.4) and (4.5) are called three-point formulas (even though
the third point f (xp) does not appear in Eq. (4.5)). Similarly, there are five-point formulas
that involve evaluating the function at two additional points. The error term for these for-
mulas is O(h*). One common five-point formula is used to determine approximations for
the derivative at the midpoint.

Five-Point Midpoint Formula

1 h
o fl(x) = T2 L 6o = 21) = 8f (xo = 1) + 8 (xo + ) — f(xo + 2] + %f“)(é),
(4.6)

where £ lies between xy — 2k and xy + 2h.

The derivation of this formula is considered in Section 4.2. The other five-point formula is
used for approximations at the endpoints.

Five-Point Endpoint Formula

1
. F/(0) = 525 (x0) + 48 (o + 1) =36 (3o + 2)
4
+ 16 f (xo + 3h) — 3 f(xo + 4h)] + %f@ &), 4.7
where & lies between x and xy + 4h.

Left-endpoint approximations are found using this formula with 2 > 0 and right-endpoint
approximations with 2 < 0. The five-point endpoint formula is particularly useful for the
clamped cubic spline interpolation of Section 3.5.

Example 2  Valuesfor f(x) = xe* are given in Table 4.2. Use all the applicable three-point and five-point
formulas to approximate f’(2.0).
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Table 4.2 Solution The data in the table permit us to find four different three-point approximations.
) We can use the endpoint formula (4.4) with 2 = 0.1 or with 7 = —0.1, and we can use the

* fl midpoint formula (4.5) with 4 = 0.1 or with & = 0.2.

1.8 10.889365 Using the endpoint formula (4.4) with 1 = 0.1 gives

1.9 12.703199 1

2.0 14.778112 —[=3£(2.0) +4f(2.1) — f(2.2] = 5[—3(14.778112) + 4(17.148957)

2.1 17.148957 0.2

292 19.855030 — 19.855030)] = 22.032310,

and with & = —0.1 gives 22.054525.
Using the midpoint formula (4.5) with 2 = 0.1 gives

1
5L/ @D = f(19)] = 5(17.148957 — 12.7703199) = 22.228790,

and with 4 = 0.2 gives 22.414163.
The only five-point formula for which the table gives sufficient data is the midpoint
formula (4.6) with & = 0.1. This gives

%[f(ls) —8£(1.9) +8f(2.1) — f(22)] = %[10.889365 — 8(12.703199)

+ 8(17.148957) — 19.855030]
= 22.166999

If we had no other information we would accept the five-point midpoint approximation using
h = 0.1 as the most accurate, and expect the true value to be between that approximation
and the three-point mid-point approximation that is in the interval [22.166,22.229].
The true value in this case is f/(2.0) = (2 + 1)e? = 22.167168, so the approximation
errors are actually:
Three-point endpoint with 7 = 0.1: 1.35 x 107';
Three-point endpoint with 7 = —0.1: 1.13 x 107;
Three-point midpoint with 7 = 0.1: —6.16 x 107%;
Three-point midpoint with & = 0.2: —2.47 x 107;
Five-point midpoint with 4 = 0.1: 1.69 x 10~%. [
Methods can also be derived to find approximations to higher derivatives of a function
using only tabulated values of the function at various points. The derivation is algebraically
tedious, however, so only a representative procedure will be presented.

Expand a function f in a third Taylor polynomial about a point xy and evaluate at xo+h
and xo — h. Then

/ 1 " 2 1 " 3 1 4) 4
fo+h) = f(xo) + f(xo)h + Ef (xo)h” + gf (xo)h” + ﬂf Eh
and
/ 1 " 2 1 " 3 1 ) 4
fo—h) = f(xo) — f (xo)h+ Ef (xo)h” — gf (xo)h” + ﬁf E_Dh",

where xo —h <& | <xg <& <xo+h
If we add these equations, the terms involving f’(x) and — f”(xg) cancel, so

_ " 2 1 4) “4) 4
fo+h) + fxo—h) =2f(x0) + f (x0)h +ﬂ[f €D+ fE-Dln.
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Solving this equation for f”(xg) gives

1 h?
1 (xo) = L (o = ) = 2f (o) + f (o + )] = ﬁ[f“‘)@l) + fPEDL (4.8)

Suppose f@ is continuous on [xg — /,xo + h]. Since [ f@ (&) + f@ (£_))] is between
@) and f@(£_)), the Intermediate Value Theorem implies that a number £ exists
between &; and &_1, and hence in (xo — &, xo + h), with

1
rY®=51r%en+ 1]
This permits us to rewrite Eq. (4.8) in its final form.

Second Derivative Midpoint Formula
1 h?
. (o) = 35 1f (o = h) = 2f (x0) + f (o + )] = 5 FH©), (4.9)

for some &, where xo — h < & < xo + h.
If £@ is continuous on [xo — &, xo + K] it is also bounded, and the approximation is O (h?).

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of
f(x) = xe* at x = 2.0. Use the second derivative formula (4.9) to approximate f”(2.0).

Table 4.3 Solution The data permits us to determine two approximations for f”(2.0). Using (4.9)
X fx) with & = 0.1 gives

1.8 10.889365 1

1.9 12.703199 ——[f(1.9) —2f(2.0) + f(2.1)] = 100[12.703199 — 2(14.778112) + 17.148957]
2.0 14.778112 0.01

2.1 17.148957 = 29.593200,

2.2 19.855030

and using (4.9) with 7 = 0.2 gives

0—1)4[]0(1.8) —2£(2.0) + £(2.2)] = 25[10.889365 — 2(14.778112) + 19.855030]

= 29.704275.

Because f”(x) = (x + 2)e¥, the exact value is f”(2.0) = 29.556224. Hence the actual
errors are —3.70 x 1072 and —1.48 x 1071, respectively. ]

Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. To illustrate the situation, let us examine the three-point midpoint formula Eq. (4.5),

(o) = h - g
S o) = [ o+ 1) = flxo = )] = =S (6,

more closely. Suppose that in evaluating f(xo + &) and f(xo — h) we encounter round-off
errors e(xo + h) and e(xo — h). Then our computations actually use the values f(xo + /)
and f (xo — h), which are related to the true values f(xo + /) and f(xo — h) by
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fo+h) = fxo+h)+e@xo+h) and f(xo—h)= f(xo—h)+e(xo— h).

The total error in the approximation,
fo+h) = fo—h) _eto+h) —eto—h) K
2h B 2h 6

is due both to round-off error, the first part, and to truncation error. If we assume that the
round-off errors e(xy & /) are bounded by some number ¢ > 0 and that the third derivative
of f is bounded by a number M > 0, then

1 (x0) — O,

faot+h—feo—h| _
2h -

h2
f'(xo0) — + gM

S| ™

To reduce the truncation error, h2M /6, we need to reduce A. But as & is reduced, the round-
off error £ /h grows. In practice, then, it is seldom advantageous to let 4 be too small, because
in that case the round-off error will dominate the calculations.

lllustration  Consider using the values in Table 4.4 to approximate f(0.900), where f(x) = sinx. The
true value is cos 0.900 = 0.62161. The formula

£(0.900 + h) — £(0.900 — h)
2h ’

with different values of &, gives the approximations in Table 4.5.

£(0.900) ~

Table 4.4 sin x N sinx Table 4.5 Approximation
h to f7(0.900) Error

0.800 0.71736 0.901 0.78395

0.001 0.62500 0.00339
0.850 0.75128 0.902 0.78457

0.002 0.62250 0.00089
0.880 0.77074 0.905 0.78643

0.005 0.62200 0.00039
0.890 0.77707 0.910 0.78950

0.010 0.62150 —0.00011
0.895 0.78021 0.920 0.79560

0.020 0.62150 —0.00011
0.898 0.78208 0.950 0.81342
0.899 0.78270 1.000 0.84147 0.050 0.62140 —0.00021

0.100 0.62055 —0.00106

The optimal choice for i appears to lie between 0.005 and 0.05. We can use calculus to
verify (see Exercise 29) that a minimum for

2

w=+"n
ethy=-+—M,
n e

occurs at h = J3¢/M, where

M= max |f”(x)]= max |cosx|=cos0.8~ 0.69671.
x€[0.800,1.00] x€[0.800,1.00]

Because values of f are given to five decimal places, we will assume that the round-off
error is bounded by ¢ = 5 x 107°. Therefore, the optimal choice of & is approximately

3(0.000005
p= 330000005 g,
0.69671
which is consistent with the results in Table 4.6. O
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Keep in mind that difference
method approximations might be
unstable.

Numerical Differentiation and Integration

In practice, we cannot compute an optimal /4 to use in approximating the derivative, since
we have no knowledge of the third derivative of the function. But we must remain aware
that reducing the step size will not always improve the approximation. (]

We have considered only the round-off error problems that are presented by the three-
point formula Eq. (4.5), but similar difficulties occur with all the differentiation formulas.
The reason can be traced to the need to divide by a power of /. As we found in Section 1.2
(see, in particular, Example 3), division by small numbers tends to exaggerate round-off
error, and this operation should be avoided if possible. In the case of numerical differenti-
ation, we cannot avoid the problem entirely, although the higher-order methods reduce the
difficulty.

As approximation methods, numerical differentiation is unstable, since the small values
of h needed to reduce truncation error also cause the round-off error to grow. This is the first
class of unstable methods we have encountered, and these techniques would be avoided if it
were possible. However, in addition to being used for computational purposes, the formulas
are needed for approximating the solutions of ordinary and partial-differential equations.

EXERCISE SET 4.1

1.
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Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a x| S0 [ fW® b x| S0 | SW®
0.5 | 0.4794 0.0 | 0.00000
0.6 | 0.5646 0.2 | 0.74140
0.7 | 0.6442 0.4 | 1.3718

Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a x| f® | f® b x| f® | f'®
—0.3 | 1.9507 1.0 | 1.0000
=02 | 2.0421 1.2 | 1.2625
—0.1 | 2.0601 1.4 | 1.6595

The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exer-
cise 1, and find error bounds using the error formulas.

a. f(x)=sinx b. fx)=e¢ —2x*+3x—1

The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exer-
cise 2, and find error bounds using the error formulas.

a.  f(x) =2cos2x —x b. fx)=x*Inx+1
Use the most accurate three-point formula to determine each missing entry in the following tables.
a  x f@ b x| f® [ f®
1.1 9.025013 8.1 | 16.94410
1.2 11.02318 8.3 | 17.56492
1.3 13.46374 8.5 | 18.19056
14 16.44465 8.7 | 18.82091
e x Jf &) ‘ 1) d x S @) ‘ 1)
29 | —4.827866 2.0 | 3.6887983
3.0 | —4.240058 2.1 | 3.6905701
3.1 | —3.496909 2.2 | 3.6688192
3.2 | —2.596792 2.3 | 3.6245909
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Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x| f® | f®
—0.3 | —0.27652
-02 | —-0.25074
—0.1 | —-0.16134
0 0
¢ x| f0 | [fW
1.1 | 1.52918
1.2 | 1.64024
1.3 | 1.70470
L4 | 171277

b.

x| | S
7.4 | —68.3193

7.6 | —71.6982

7.8 | =75.1576

8.0 | —78.6974

x| fe W
=27 0.054797

=25 0.11342

-23 0.65536

=2.1 0.98472

The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exer-
cise 5, and find error bounds using the error formulas.
a.  f(x)=e* b.
¢  f(x)=xcosx —x*sinx d.

f(x) =xInx

f(x) =2(nx)?+ 3sinx

The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exer-
cise 6, and find error bounds using the error formulas.
a.  f(x) =e* —cos2x b.

c. f(x) =xsinx +x*cosx d.

fO) =InGx+2) - x+1)?

f(x) = (cos3x)? —

Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a  x fx) J'(x) b. X fx) J'(x)
2.1 | —1.709847 —3.0 | 9.367879
22 | —1.373823 —2.8 | 8.233241
23 | —1.119214 —2.6 | 7.180350
24 | —0.9160143 —2.4 | 6.209329
2.5 | —0.7470223 —2.2 | 5.320305
2.6 | —0.6015966 —2.0 | 4513417

Use the formulas given in this section to determine, as accurately as possible, approximations for each

missing entry in the following tables.

a Jf) J')
1.05 | —1.709847
1.10 | —1.373823
.15 | —1.119214
120 | —0.9160143
1.25 | —0.7470223
1.30 | —0.6015966

b.

x J ) J'(x)
—3.0 | 16.08554
—2.8 | 12.64465
—2.6 9.863738
—24 7.623176
2.2 5.825013
—-2.0 4.389056

The data in Exercise 9 were taken from the following functions. Compute the actual errors in Exer-
cise 9, and find error bounds using the error formulas and Maple.

fx) =3+ x?

a. f(x)=tanx

b.

The data in Exercise 10 were taken from the following functions. Compute the actual errors in Exer-
cise 10, and find error bounds using the error formulas and Maple.

a. f(x) =tan2x

Use the following data and the knowledge that the first five derivatives of f are bounded on [1, 5] by
2,3, 6, 12 and 23, respectively, to approximate f'(3) as accurately as possible. Find a bound for the

€rror.

X

‘ 1

b.

‘ 3

f)=e*—1+x

4|3

fx) ‘ 2.4142 ‘ 2.6734 ‘ 2.8974 ‘ 3.0976 ‘ 3.2804
Repeat Exercise 13, assuming instead that the third derivative of f is bounded on [1, 5] by 4.
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15. Repeat Exercise 1 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 3.

16. Repeat Exercise 5 using four-digit chopping arithmetic, and compare the errors to those in
Exercise 7.

17. Repeat Exercise 9 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 11.

18.  Consider the following table of data:
X ‘ 0.2 ‘ 0.4 ‘ 0.6 ‘ 0.8 ‘ 1.0
fx) ‘ 0.9798652 ‘ 0.9177710 ‘ 0.808038 ‘ 0.6386093 ‘ 0.3843735

a.  Use all the appropriate formulas given in this section to approximate f’(0.4) and f”(0.4).
b.  Use all the appropriate formulas given in this section to approximate f’(0.6) and f”(0.6).

19. Let f(x) = cosmx. Use Eq. (4.9) and the values of f(x) at x = 0.25, 0.5, and 0.75 to approximate
f"(0.5). Compare this result to the exact value and to the approximation found in Exercise 15 of

Section 3.5. Explain why this method is particularly accurate for this problem, and find a bound for
the error.

20. Let f(x) = 3xe® — cosx. Use the following data and Eq. (4.9) to approximate f”(1.3) with 7 = 0.1
and with 7 = 0.01.

X ‘ 1.20 ‘ 1.29 ‘ 1.30 ‘ 1.31 ‘ 1.40
fx) \ 11.59006 \ 13.78176 \ 14.04276 \ 14.30741 \ 16.86187

Compare your results to f”(1.3).
21. Consider the following table of data:

X ‘ 0.2 ‘ 0.4 ‘ 0.6 ‘ 0.8 ‘ 1.0
Fx) \ 0.9798652 \ 0.9177710 \ 0.8080348 \ 0.6386093 \ 0.3843735

a. Use Eq. (4.7) to approximate f'(0.2).
b. Use Eq. (4.7) to approximate f’(1.0).
c. Use Eq. (4.6) to approximate f'(0.6).

22. Derive an O(h*) five-point formula to approximate f’(xo) that uses f(xo — k), f(xo), f(xo + h),
f(xo + 2h), and f(xo + 3h). [Hint: Consider the expression A f (xo — h) + Bf (xo + h) + Cf(xo +
2h) + D f (xo + 3h). Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.]

23.  Use the formula derived in Exercise 22 and the data of Exercise 21 to approximate f’(0.4) and f’(0.8).

24. a. Analyze the round-off errors, as in Example 4, for the formula

S+ h) — fxo)

f'(x) = Y

h
Ef”(%'o)-

b.  Find an optimal & > O for the function given in Example 2.

25. In Exercise 10 of Section 3.4 data were given describing a car traveling on a straight road. That
problem asked to predict the position and speed of the car when ¢ = 10 s. Use the following times and
positions to predict the speed at each time listed.

Time [0] 3| 5| 8| 10| 13
Distance | 0 | 225 | 383 | 623 | 742 | 993

26. Inacircuit with impressed voltage £(¢) and inductance L, Kirchhoff’s first law gives the relationship

di
E(t)=L— +Ri,
) 7 + Ri
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where R is the resistance in the circuit and i is the current. Suppose we measure the current for several
values of ¢ and obtain:

¢ 100 | 101 | 102 | 103 | 10
i 310|312 314|318 | 324

where ¢ is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the
resistance is 0.142 ohms. Approximate the voltage £(¢) when ¢ = 1.00, 1.01, 1.02, 1.03, and 1.04.

All calculus students know that the derivative of a function f at x can be defined as

fa+h) - f®)
4 = 1 —_—.
f® e h
Choose your favorite function f, nonzero number x, and computer or calculator. Generate approxi-
mations f, (x) to f'(x) by

Jx+107) — fx)

fi0) = o

s

forn =1,2,...,20, and describe what happens.

"

Derive a method for approximating f”(xo) whose error term is of order #? by expanding the function
f in a fourth Taylor polynomial about xy and evaluating at xy &= 4 and xy & 2h.
Consider the function

2

w=5+"y
ethy=—+ —M,
n 6

where M is a bound for the third derivative of a function. Show that e(/) has a minimum at /3¢/M.

4.2

Lewis Fry Richardson
(1881-1953) was the first person
to systematically apply
mathematics to weather
prediction while working in
England for the Meteorological
Office. As a conscientious
objector during World War I, he
wrote extensively about the
economic futility of warfare,
using systems of differential
equations to model rational
interactions between countries.
The extrapolation technique that
bears his name was the
rediscovery of a technique with
roots that are at least as old as
Christiaan Hugyens
(1629-1695), and possibly
Archimedes (287-212 B.C.E.).
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Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while using low-
order formulas. Although the name attached to the method refers to a paper written by
L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much older.
An interesting article regarding the history and application of extrapolation can be found
in [Joy].

Extrapolation can be applied whenever it is known that an approximation technique
has an error term with a predictable form, one that depends on a parameter, usually the step
size h. Suppose that for each number & # 0 we have a formula N, (k) that approximates an
unknown constant M, and that the truncation error involved with the approximation has the
form

M — Ni(h) = Kih + Kol? + Ksh® + - - -

for some collection of (unknown) constants K, K>, K3, . ...
The truncation error is O(h), so unless there was a large variation in magnitude among
the constants K, K>, K3, ...,

M —N;(0.1) ~ 0.1K;, M — N;(0.01) ~ 0.01K;,

and, in general, M — Ny(h) =~ K|h .

The object of extrapolation is to find an easy way to combine these rather inaccu-
rate O(h) approximations in an appropriate way to produce formulas with a higher-order
truncation error.
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Suppose, for example, we can combine the N;(h) formulas to produce an O(h*)
approximation formula, N, (h), for M with

M — Ny(h) = Kol + K3k + -+ -,
for some, again unknown, collection of constants IA(Z, k3, .... Then we would have
M —N»(0.1) ~ 0.01K>, M — N,(0.01) ~ 0.0001K5,

and so on. If the constants K; and kz are roughly of the same magnitude, then the N, (k)
approximations would be much better than the corresponding N, (/) approximations. The
extrapolation continues by combining the N, (k) approximations in a manner that produces
formulas with O(A?) truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the O(h)
formula for approximating M

M =N,(h) +Kih+Kh+Kh+---. (4.10)

The formula is assumed to hold for all positive &, so we replace the parameter / by half its
value. Then we have a second O(h) approximation formula

M =N h +Kh+Kh2+Kh3+ (4.11)
=Nl 5 15 2y 3% . .
Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K; and gives

2 3
M =N, (g) + [N1 (g) —Nl(h)] +K, (% —h2> +K; <% —h3> +0. (4.12)

Define
No(h) =N —h + —h — h |

Then Eq. (4.12) is an O(h*) approximation formula for M:

Ko 3K

M = No(h) — ==h ... 4.13
»(h) 2 ) (4.13)

Example 1 In Example 1 of Section 4.1 we use the forward-difference method with 2 = 0.1 and
h = 0.05 to find approximations to f’(1.8) for f(x) = In(x). Assume that this formula has
truncation error O(h) and use extrapolation on these values to see if this results in a better
approximation.

Solution In Example 1 of Section 4.1 we found that
with h = 0.1: f/(1.8) ~ 0.5406722, and with i = 0.05: f'(1.8) ~ 0.5479795.
This implies that
N1(0.1) = 0.5406722 and N;(0.05) = 0.5479795.
Extrapolating these results gives the new approximation
N>(0.1) = N;(0.05) + (N;(0.05) — N;(0.1)) = 0.5479795 + (0.5479795 — 0.5406722)
= (0.555287.

The h = 0.1 and & = 0.05 results were found to be accurate to within 1.5 x 1072 and
7.7 x 1073, respectively. Because f'(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate
to within 2.7 x 107%, [
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Extrapolation can be applied whenever the truncation error for a formula has the form

m—1
DKk + O,

j=1

for a collection of constants K; and when ) < ap < a3 < -+ < a,. Many formulas used
for extrapolation have truncation errors that contain only even powers of £, that is, have the
form

M = Ny (h) + Kih* + Kb + K3h + - - - . (4.14)

The extrapolation is much more effective than when all powers of / are present because the
averaging process produces results with errors O(h?), O(h*), O(h®), ..., with essentially
no increase in computation, over the results with errors, O(h), o>, 0, ....

Assume that approximation has the form of Eq. (4.14 ). Replacing & with h/2 gives the
O(h?) approximation formula

mM=n, (" +Kh2+1<h4+1(h6+
~\2 Y4 T 6 T e

Subtracting Eq. (4.14) from 4 times this equation eliminates the /> term,

3M = |4N h Ny(h K i )+ K i h®
—|: 1<E>_ 1()]—!— z(z— >+ 3<E_ >+

Dividing this equation by 3 produces an O(h*) formula

1 h K (nt )\ Ky (K5S¢
M==|4N/ (=) -NW) |+ = - -1 —|=-nh
3[ 1(2> 1():|+3(4 )+3 T +

Defining
Nh——14Nh Nh——Nh lNh Ni(h
2(h) §|: 1(5)_ 1()] ]<§>+§|: 1(5)_ 1()]’

produces the approximation formula with truncation error O(h*):
n 5h®
M =N(h) —K,— —Ks3— +---. 4.15
2(h) — K> 1 T (4.15)
Now replace % in Eq. (4.15) with /2 to produce a second O(h*) formula

h h 5hS
M=N(=)-K— —-Ks— —---.
2 64 1024

Subtracting Eq. (4.15 ) from 16 times this equation eliminates the 4* term and gives

1500 = | 168, ( Na(h) +K15h6—|—
- 2 2 2 3 64 .

Dividing this equation by 15 produces the new O(h%) formula

M= l1en, (© Na(h) +Kh6+
15 \2 2 ? 64

We now have the O(h®) approximation formula
Ns(h) = ! 16N, h Ny(h) | =N, h + ! N h Ny (h)
T IR i B U ANTE R ) U
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Continuing this procedure gives, for each j = 2,3, ..., the O(h*/) approximation

h N;_1(h/2) — N;_{(h
N = Ny <§)+ 2042 ~Na )

Table 4.6 shows the order in which the approximations are generated when

M = N;(h) + Kih* + Kbt + Ko + - - - . (4.16)

It is conservatively assumed that the true result is accurate at least to within the agreement
of the bottom two results in the diagonal, in this case, to within |[N3(h) — N4(h)|.

Table 4.6 0(/’12) 0(/’!4) 0(]’16) 0(/’18)
1: Ny(h)
2: Ni(%) 3: No(h)
4: Ni(4) 5: My(%) 6: N3(h)
7: Ni(%) 8: Ny(%) 9: Ny(%) 10: Ny (h)

Example 2 Taylor’s theorem can be used to show that centered-difference formula in Eq. (4.5) to
approximate f’(xg) can be expressed with an error formula:

’ _ 1 h h h2 " h4 5)
f(xO)—ﬂ[f(xOJr ) — flxo— )]—gf (xO)—mf (x0) — -+~ .

Find approximations of order O(h?), O(h*), and O(h®) for f'(2.0) when f(x) = xe* and
h=0.2.

Solution The constants K; = — " (x9)/6, K» = — f® (x9)/120, - - -, are not likely to be
known, but this is not important. We only need to know that these constants exist in order
to apply extrapolation.

We have the O(h?) approximation

1 .
f'(x0) = Ny(h) — Efm(xo) - mf( )(x0) — -+, 4.17)

where
1
Ni(h) = E[f(x() +h) — flxo— M)l
This gives us the first O(h?) approximations

1
N1(0.2) = a[f(Z.Z) — f(1.8)] = 2.5(19.855030 — 10.889365) = 22.414160,
and
1
N1(0.1) = E[f(ll) — f(1.9)] = 5(17.148957 — 12.703199) = 22.228786.

Combining these to produce the first O(h*) approximation gives

1
N>(0.2) = N;(0.1) + §(N1 (0.1) — N1(0.2))

1
= 22.228786 + 5(22.228786 — 22.414160) = 22.166995.
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To determine an O(h%) formula we need another O(h*) result, which requires us to find the
third O(h*) approximation

1
N1(0.05) = m[f(2.05) — f(1.95)] = 10(15.924197 — 13.705941) = 22.182564.
We can now find the O(h*) approximation

1
N,(0.1) = N;(0.05) + g(Nl(0.0S) — N;(0.1))

1
= 22.182564 + 5(22.182564 —22.228786) = 22.167157.
and finally the O(h®) approximation
1
N3(0.2) = N>(0.1) + E(Nz(o.l) — N1(0.2))

1
=22.167157 + E(22.167157 — 22.166995) = 22.167168.

We would expect the final approximation to be accurate to at least the value 22.167 because
the N,(0.2) and N3(0.2) give this same value. In fact, N3(0.2) is accurate to all the listed
digits. [ ]

Each column beyond the first in the extrapolation table is obtained by a simple av-
eraging process, so the technique can produce high-order approximations with minimal
computational cost. However, as k increases, the round-off error in N (h/2*) will generally
increase because the instability of numerical differentiation is related to the step size //2*.
Also, the higher-order formulas depend increasingly on the entry to their immediate left in
the table, which is the reason we recommend comparing the final diagonal entries to ensure
accuracy.

In Section 4.1, we discussed both three- and five-point methods for approximating
f'(xp) given various functional values of f. The three-point methods were derived by
differentiating a Lagrange interpolating polynomial for f. The five-point methods can be
obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to
more easily derive these formulas, as illustrated below.

lllustration  Suppose we expand the function f in a fourth Taylor polynomial about xy. Then

1 1
F) =f(x0) + f(x0)(x — xo) + zf//(xo)(x —x0)? + gfw(xo)(x — X)?
1 1
- ﬁf(“) (x0) (x — x0)* + mf“) &) (x — x0)°,

for some number & between x and xy. Evaluating f at xo + 4 and xy — h gives

1 1
fxo+h) =fxo) + £ (xo)h + Ef”(xo)hz + gfw(xo)h3
1 1
_ @ 4 ) 5
5 f Y Gl + o FOEDh (4.18)

and

1 1
fxo—h) =f(x0) — ' (xo)h + Ef”(xo)hz - gf”’(x())lf
1 1
@ Ry ) 5
+ 53/ ot = oo f &I, (4.19)

where xg —h < & < xg <& <xo+h.
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Subtracting Eq. (4.19) from Eq. (4.18) gives a new approximation for f'(x).

W w
fxo+h) — fxo—h) =2hf (x0) + ?f/”(xo) + m[f@(sl) + fOE)]L (4.20)

which implies that

1 h? n*
f(xo) = G0+ = Flo =M = gf”’(xo) - m[f“)(a) + fOE).

If f®is cgntinuous on [xg — h,xo + h], the Intermediate Value Theorem 1.11 implies that
anumber & in (xo — &, xo + h) exists with

[fOED) + FOE)].

R —

@ =

As a consequence,we have the O(h?) approximation

1 h2 h* -
f'(xo) = Sl G0+ = fxo =] — gfw(xo) - ﬁf@@). (4.21)

Although the approximation in Eq. (4.21) is the same as that given in the three-point for-
mula in Eq. (4.5), the unknown evaluation point occurs now in f©, rather than in .
Extrapolation takes advantage of this by first replacing % in Eq. (4.21) with 24 to give the
new formula

(0) = ~ 2h oy — g 61" o @ 422
S o) = L (o +2h) = fxo = 2] = == 7 (x0) = 155 /7€), (4.22)

where é is between xo — 2h and xo + 2h.

Multiplying Eq. (4.21) by 4 and subtracting Eq. (4.22) produces
2 1
3f (x) = }—l[f(xO +h) — flxo—h)]— E[f(xo +2h) — f(xo — 2h)]
h ) /2 2h* ) f
- %f &)+ Ef &).

Even if f ®) is continuous on [xy — 2k, xy + 2A], the Intermediate Value Theorem 1.11
cannot be applied as we did to derive Eq. (4.21) because here we have the difference of
terms involving . However, an alternative method can be used to show that f© () and
F® (&) can still be replaced by a common value f© (£). Assuming this and dividing by 3
produces the five-point midpoint formula Eq. (4.6) that we saw in Section 4.1

1 h
f(xo) = Ta LS 6o = 21) = 8f (xo = h) + 8 (¥o +h) — f (xo +21)] + %f“)(é). O

Other formulas for first and higher derivatives can be derived in a similar manner. See,
for example, Exercise 8.

The technique of extrapolation is used throughout the text. The most prominent appli-
cations occur in approximating integrals in Section 4.5 and for determining approximate
solutions to differential equations in Section 5.8.
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EXERCISE SET 4.2

1. Apply the extrapolation process described in Example 1 to determine N;(/), an approximation to
f'(x0), for the following functions and stepsizes.

a. fx)=Inxx=10hrh=04 c. f(x)=2"sinx,x =1.05h=04
b. f(x)=x+ex%=00,h=04 d. fKx) =x3cosx,xg =23, h=04
Add another line to the extrapolation table in Exercise 1 to obtain the approximation N, (/).
Repeat Exercise 1 using four-digit rounding arithmetic.

Repeat Exercise 2 using four-digit rounding arithmetic.

AN ol

The following data give approximations to the integral

b4
M:/ sin x dx.
0

h h h
Ni(h) = 1.570796, N, <5> = 1.896119, N, <Z> = 1974232, N, <§> = 1.993570.

Assuming M = N, (h) + K| 1> + Kxh* 4+ K3h® + K4h® + O(h'?), construct an extrapolation table to
determine Ny (h).

6. The following data can be used to approximate the integral

37/2
M = / cosx dx.
0

h
Ny (h) = 2.356194, N, (§> = —0.4879837,

h h
N, (Z) = —0.8815732, N, <§) = —0.9709157.

Assume a formula exists of the type given in Exercise 5 and determine N4(h).

7.  Show that the five-point formula in Eq. (4.6) applied to f(x) = xe* at xo = 2.0 gives N»(0.2) in Table
4.6 when h = 0.1 and N,(0.1) when & = 0.05.

8.  The forward-difference formula can be expressed as

1 h h?
fl(xo) = ﬁ[f(xo +h) — fxo)] — Ef”(xo) - Efm(xo) + o).

Use extrapolation to derive an O(h*) formula for f'(xy).
9.  Suppose that N (h) is an approximation to M for every & > 0 and that

M =N(h) + Kih+ KR + Kk + - -,

for some constants K;, K3, K3, .... Use the values N(h), N (%), and N (%) to produce an O(h*)
approximation to M.

10.  Suppose that N (k) is an approximation to M for every & > 0 and that
M =Nh) + K\l? + Kh* + Kb + - -+,

for some constants K|, K3, K3, .... Use the values N(h), N (%), and N (%) to produce an O(h°)
approximation to M.

11. In calculus, we learn that e = limy_,o(1 + #)'/".

a. Determine approximations to e corresponding to 2 = 0.04, 0.02, and 0.01.

b. Use extrapolation on the approximations, assuming that constants Kj, K, ... exist with
e = (14+n""+Kh+ Kh> + Ksh® + - - -, to produce an O(h*) approximation to e, where
h =0.04.

c¢. Do you think that the assumption in part (b) is correct?
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12. a. Show that

24 n\ M
lim (7> =e.
h—0 \ 2 —h

b.  Compute approximations to e using the formula N (h) = (%) l/h, for h = 0.04, 0.02, and 0.01.

Assume that e = N (h) + K h + Kyh? + K3h? + - - - . Use extrapolation, with at least 16 digits of
precision, to compute an O(h*) approximation to e with & = 0.04. Do you think the assumption
is correct?

d. Show that N(—h) = N(h).
e. Use part (d) to show that K; = K3 = K5 = - -- = 0 in the formula

e=Nh) + Kih+ Koh* + K Kuh* + Ksh™ + - -
so that the formula reduces to
e:N(h)+K2h2+K4h4+K6h6+ .

f. Use the results of part (e) and extrapolation to compute an O(h°) approximation to e with
h =0.04.

13.  Suppose the following extrapolation table has been constructed to approximate the number M with
M = N,(h) + K\I* + K>h* + K3h®:

Ny (k)
h
N <5> Ny (h)
N; h N h N5 (h
I (Z) ) (§> 3(h)

a. Show that the linear interpolating polynomial Py (h) through (h2, N, (k)) and (h?/4,N;(h/2))
satisfies Py ;(0) = N,(h). Similarly, show that P ,(0) = N,(h/2).

b.  Show that the linear interpolating polynomial Py, (/) through (h*, N, (h)) and (h*/16, N2 (h/2))
satisfies Py, (0) = N3 (h).

14.  Suppose that N; (k) is a formula that produces O(h) approximations to a number M and that

M=NGh) +Kh+Kh+- -,

for a collection of positive constants Ki, K, .... Then N;(h), Ny(h/2), Ni(h/4), ... are all lower
bounds for M. What can be said about the extrapolated approximations N, (h), N3(h),...?

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit circle
were used by Archimedes before 200 B.C.E. to approximate 7, the circumference of a semicircle.
Geometry can be used to show that the sequence of inscribed and circumscribed semiperimeters {p; }
and {P;}, respectively, satisfy

pr = ksin (%) and P; = ktan (%) R

with p, < m < Py, whenever k > 4.
a.  Show that p, = 2+/2 and P, = 4.
b.  Show that for k > 4, the sequences satisty the recurrence relations

2py Py
Py = » and  py = /piPu.
k

c. Approximate 7 to within 10~ by computing p; and P, until P, — p;, < 107*.
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d. Use Taylor Series to show that

1N\ 7/
”—””?(%) ‘E(%) i
» 73 12+2n5 n*
L (Y
I 15 \k

e. Use extrapolation with 7 = 1/k to better approximate .

and

4.3 Elements of Numerical Integration

The need often arises for evaluating the definite integral of a function that has no explicit
antiderivative or whose antiderivative is not easy to obtain. The basic method involved in
approximating f[ f’ f (x) dx is called numerical quadrature. It uses asum ) :_,a; f (x;) to
. b

approximate [ f (x) dx.

The methods of quadrature in this section are based on the interpolation polynomials
given in Chapter 3. The basic idea is to select a set of distinct nodes {x, . . .,x,} from the
interval [a, b]. Then integrate the Lagrange interpolating polynomial

Pyx) =Y fO)Li(x)

i=0

and its truncation error term over [a, b] to obtain

’ 'y JUEw)
[ rwa= [ > et dx+/ i
n 1 b n
=) aft)+—— / (@ —x) f"V(EW)) dx,
; n+ D! J, ,1:!

where &(x) is in [a, b] for each x and
b
a; = / Li(x)dx, foreachi=0,1,...,n

The quadrature formula is, therefore,

b n
/ ) dx~ " aif (),
a i=0

with error given by

1 b~
_ v £+
E(f) = nr Dl 1)!/a i|=0| (= x;) f(E (X)) dx.

Before discussing the general situation of quadrature formulas, let us consider formulas
produced by using first and second Lagrange polynomials with equally-spaced nodes. This
gives the Trapezoidal rule and Simpson’s rule, which are commonly introduced in calculus
courses.
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The Trapezoidal Rule

To derive the Trapezoidal rule for approximating fa b fx)dx,letxo =a,xy,=b,h=b—a
and use the linear Lagrange polynomial:

P = )+ e )
Then
/abf(x) dx=/x0 [((f) )+ 2 1)}
+ %‘/le FE@)(x — x0)(x — x1) dx. 4.23)

The product (x — xp) (x — x;) does not change sign on [xp, x; ], so the Weighted Mean Value
Theorem for Integrals 1.13 can be applied to the error term to give, for some & in (xg, x),

X1 X1
/ FE@) @ —x0)(x —x1) dx = f”(S)/ (x — x0) (x — x1) dx
X0 X0

3 x|
= f"(&) [% - —(XI —;XO)xz +XOX1x]x0
h3 "
= —gf ).

When we use the term rrapezoid ~ Consequently, Eq. (4.23) implies that
we mean a four-sided figure that b (x (x — ) X1 5

aQ o aQ e i < "
has at least two of its sides / f(x) dx = |:—f( 0) + —M— f( 1)j| _ _f (;;:)
parallel. The European term for a 2(xo 2(x1 X0 12
this figure is trapezium. To further

confuse the issue, the European (x1 — xo) h ”
I = ——F—[fo) + fxD] = = 7).
word trapezoidal refers to a 2 12

four-sided figure with no sides Using the notation & = x; — xg gives the following rule:
equal, and the American word for
this type of figure is trapezium. Trapezoidal Rule:

b h h3
/ @) dx = E[f()m) + [l — Ef”(é)-

This is called the Trapezoidal rule because when f is a function with positive values,
fa b f(x) dx is approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3
Y A
y=/&)
Y = Py(x)
a= Xg x3=b x
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The error term for the Trapezoidal rule involves f”, so the rule gives the exact
result when applied to any function whose second derivative is identically zero, that is, any
polynomial of degree one or less.

Simpson’s Rule

Simpson’s rule results from integrating over [a, b] the second Lagrange polynomial with
equally-spaced nodes xo = a, x, = b, and x; = a + h, where h = (b — a)/2. (See

Figure 4.4.)
Figure 4.4
'Y
y=f&)
Y = Pyx)
a= Xo xll Xp=0b =x
Therefore
b 20 (x—x)(x (x — x0) (x —
d =
Z:f“)x .A)[um—mxm—ng(” e xwal—@rﬂ‘)
(x — x0) (x — x1)
d
(X2 — x0) (X2 — x1) f(xz)] *
+f““_““”:““_”ﬁw@u»a.
X0

Deriving Simpson’s rule in this manner, however, provides only an O(h*) error term involv-
ing f®. By approaching the problem in another way, a higher-order term involving f®
can be derived.

To illustrate this alternative method, suppose that f is expanded in the third Taylor
polynomial about x;. Then for each x in [xg, x;], a number & (x) in (xp, x,) exists with

// " “)
f 2 f6(x1)(x_x1)3+f ;i(x))

f) = fe)+fane—x)+ —x)"+ (c—xp)*

and

" 4
/ f(X)dxz[f(xl)(x—xl)_{_&( _ 1)2+f (x 1)( )3
X0 —

f" ()

Y

.Xz X
afmﬂ +%/wﬂWHm@—mfﬂ.@M)
X0 X0
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Because (x — x;)* is never negative on [xg,x;], the Weighted Mean Value Theorem for
Integrals 1.13 implies that

| (e @ x @ x
ol ARG % /XO (x— x) dr = fT(g‘)(x —x1>5L,

for some number & in (xg, x7).
However, h = x, — x; = x1 — Xxp, SO

(o —x)? = (0 —x)* = (p —x)* — (g —x1)* =0,
whereas
(2 —x) = (o —x)’ =217 and (o —x)° — (v —x1)” = 2K°.
Consequently, Eq. (4.24) can be rewritten as

f(4)($1) 5
0 .

X2 h3
/ FO0 =200 + ") +
x0

If we now replace f”(x;) by the approximation given in Eq. (4.9) of Section 4.1, we

have
/Xz dx =2h )+h3{1[ —2 + ]_h2 @ }+f(4)(§1)h5
xof(x) x = 2hf(x T2 Fxo) —2f(x1) + f(x) ﬁf (&) P
_ﬁ[f(x)+4f(x)—|—f(x )]_h_s lf(4)(;§)_lf(4)(é:)
= 3 0 1 2 1213 2 5 1 .

It can be shown by alternative methods (see Exercise 24) that the values &, and &, in this

expression can be replaced by a common value £ in (xg, x2). This gives Simpson’s rule.
Thomas Simpson (1710-1761)

was a self-taught mathematician . R
who supported himself during his Slmpson s Rule:

cu.rly ycu}rs as a weaver. His' . Y A i

primary interest was probability / fx) dx = =[f(x0) +4f(x1) + fx2)] — _f(4) é&).

theory, although in 1750 he X0 3 90

published a two-volume calculus

book entitled The Doctrine and The error term in Simpson’s rule involves the fourth derivative of f, so it gives exact

Application of Fluxions. results when applied to any polynomial of degree three or less.

2
Example 1 Compare the Trapezoidal rule and Simpson’s rule approximations to / S () dx when f(x)
0
is
(@ x* (b) x* © @+
d 14+x2 (e) sinx & &

Solution On [0, 2] the Trapezoidal and Simpson’s rule have the forms
2
Trapezoid: / fx)de~ f(0)+ f(2) and
0

2
Simpson’s: / fx) dx =~ %[f(O) +4f£0)+ f2)]
0
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Table 4.7

Definition 4.1

The improved accuracy of
Simpson’s rule over the
Trapezoidal rule is intuitively
explained by the fact that
Simpson’s rule includes a
midpoint evaluation that provides
better balance to the
approximation.

The open and closed terminology
for methods implies that the open
methods use as nodes only points
in the open interval, (a, b) to
approximate /H/’ f(x)dx. The
closed methods include the points
a and b of the closed interval

[a, b] as nodes.
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When f(x) = x* they give
2
Trapezoid: / f(x)dx~0*4+2>=4 and
0
; ? Lo 2,92 8
Simpson’s: f(x)dxwg[(o )+4-1742 ]:5.
0

The approximation from Simpson’s rule is exact because its truncation error involves @,
which is identically O when f(x) = x2.
The results to three places for the functions are summarized in Table 4.7. Notice that

in each instance Simpson’s Rule is significantly superior. [ ]
(@) (b) (© (d (e ®

fx) x2 x4 x4+ D! 1+ x2 sinx e

Exact value 2.667 6.400 1.099 2.958 1.416 6.389

Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389

Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

Measuring Precision

The standard derivation of quadrature error formulas is based on determining the class of
polynomials for which these formulas produce exact results. The next definition is used to
facilitate the discussion of this derivation.

The degree of accuracy, or precision, of a quadrature formula is the largest positive integer
n such that the formula is exact for x*, foreachk =0, 1, ..., n. ]

Definition 4.1 implies that the Trapezoidal and Simpson’s rules have degrees of preci-
sion one and three, respectively.
Integration and summation are linear operations; that is,

b b b
/ (af %) + Bg(x)) dx = Ot[ Jf(x)dx + ﬁ/ g(x) dx

and

D af)+ BN =aY fe)+BY g,

i=0 i=0 i=0

for each pair of integrable functions f and g and each pair of real constants o and S. This
implies (see Exercise 25) that:

e The degree of precision of a quadrature formula is n if and only if the error is zero for
all polynomials of degree k = 0, 1, ..., n, but is not zero for some polynomial of degree
n+ 1.

The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-
Cotes formulas. There are two types of Newton-Cotes formulas, open and closed.
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Figure 4.5

Theorem 4.2

Roger Cotes (1682-1716) rose
from a modest background to
become, in 1704, the first
Plumian Professor at Cambridge
University. He made advances in
numerous mathematical areas
including numerical methods for
interpolation and integration.
Newton is reputed to have said of
Cotes ...if he had lived we might
have known something.
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Numerical Differentiation and Integration

Closed Newton-Cotes Formulas

The (n+ 1)-point closed Newton-Cotes formula uses nodes x; = xo +ih, fori =0,1,...,n,
where xo = a, x, = b and h = (b — a)/n. (See Figure 4.5.) It is called closed because the
endpoints of the closed interval [a, b] are included as nodes.

=Y

The formula assumes the form

b n
/ f dem Yy aif (),
a i=0

where
Xn Xp M e
a,-:/ L,-(x)dx:/ HM
X0 X0 =0 (-xi - -x])
J#

The following theorem details the error analysis associated with the closed Newton-
Cotes formulas. For a proof of this theorem, see [IK], p. 313.

Suppose that > a; f (x;) denotes the (n + 1)-point closed Newton-Cotes formula with
Xo = a,x, = b,and h = (b — a)/n. There exists & € (a, b) for which

hn+3f(n+2) (S) n

Y @t —1)---(t —n) dt,

b n
/ f@ydx=Y"aif(x)+
a i=0

if nis even and f € C"*?[a, b], and

hn+2f(n+1)(§-) n

Dl tit—1)---(t —n) dt,

b n
f )y de=>"aif(x)+
4 i=0

ifnisoddand f € C"*'[qa, b]. ™
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Note that when n is an even integer, the degree of precision is n + 1, although the
interpolation polynomial is of degree at most n. When 7 is odd, the degree of precision is
only n.

Some of the common closed Newton-Cotes formulas with their error terms are listed.
Note that in each case the unknown value £ lies in (a, b).

n = 1: Trapezoidal rule
x| h h3
/ J@ dx=SLf (o) + f)] = 5 /7€), where xp <§ <. (4.25)
X0
n = 2: Simpson’s rule

X h hS
/ @) dx = 31f (o) +4f () + f ()] - 9—Of<4’<s>, where xp < & < x,.
’ (4.26)

n = 3: Simpson’s Three-Eighths rule

5 3h 3
/ £ de = S1700) 43700 4370+ Fa] - 30 YO, @)
X0

where xp < & < x3.

n=4:

X4 2h 8n’
/ G dx = 27 f (o) +32f () + 12f (02) +32f (63) + 7 f ()] — %f(“(é‘),
X0

where xp < & < x4. (4.28)

Open Newton-Cotes Formulas

The open Newton-Cotes formulas do not include the endpoints of [a, b] as nodes. They use
the nodes x; = xo + ih, foreachi =0,1,...,n,where h = (b—a)/(n+2) and xo = a+ h.
This implies that x,, = b — h, so we label the endpoints by setting x_; = @ and x,,41 = b,
as shown in Figure 4.6 on page 200. Open formulas contain all the nodes used for the
approximation within the open interval (a, b). The formulas become

b Xn+1 n
| rwar= [ rw s Yare.
¢ i=0

xX_]

where

b
a,~=/ L;(x) dx.
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Figure 4.6

Y A

<Y

a=x_q Xy X1 Xo X, X,1=2>

The following theorem is analogous to Theorem 4.2; its proof is contained in [IK],
p- 314.

Theorem 4.3  Suppose that Y . a; f(x;) denotes the (n + 1)-point open Newton-Cotes formula with
X_1 =a,X,+1 =b,and h = (b — a)/(n + 2). There exists & € (a, b) for which

hn+3 f(n+2) (E)

1
2 —_ DREEY —_—
o) » t“¢—1)---(t —n) dt,

b n
f )y de=>"aif(x)+
a i=0
if nis even and f € C"*?[a, b], and

hn+2 (n+1)
/f(x)dx_Zaf(x,)+ (f+1)'($) ] t(t—1)~-~(t—n)dt,

ifnisodd and f € C"'[a,b]. -

Notice, as in the case of the closed methods, we have the degree of precision compar-
atively higher for the even methods than for the odd methods.

Some of the common open Newton-Cotes formulas with their error terms are as
follows:

n = (: Midpoint rule
X1 h3
/ fx) dx =2hf(x) + ?f”(é), where x_; < £ < xj. (4.29)
x_1
n=1:

& 3h 3,
f f(x)dx = 7[f(?€o)+f()€1)]+ Tf (§), where x_; <& <x. (430
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3 4h 143 @
/ fx) dx = ?[Zf(xO) — f&x) +2f ()] + ?f é), (4.31)
X_1
where x_| <& < x3.

n=3:

*4 5h 95
/ FO0 dx = 2 IHLf (o) + f ) + f(x2) + 11f ()] + mhsf(‘”(é), (4.32)
X—1

where x| <& < x4.

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)—(4.28)
and (4.29)—(4.32) when approximating

/4
/ sinx dx = 1 —+/2/2 ~ 0.29289322.
0

Solution For the closed formulas we have

4
no1. TP [sino +sin %] ~ 0.27768018
8
n=2: (”SL [sin 0 -+ 4sin % 4 sin %] ~ 0.29293264
3(7/12
n=3 (’Té ) [sinO + 3sin % 43 sin% +sin %] ~ 0.29291070
2(7/16)
n—

3
i |:7sin0—|—32sinf—6 n 123in%+325in1—76r +7sin %] ~ 0.29289318

and for the open formulas we have

n=0: 20t/8) [sin %] ~ 0.30055887

g 2D T 2]~ 029798754
n= sin — 4+ sin — | = 0.
2 L 12 6
4(/16) [ T bia 37
n=2: MO G T _in T 4 2sin % | ~ 0.29285866
3 L 16 8 16
5m@/200 [, . = 1 . 3w Lo
=3 ————— | 11 sin — + sin — +sin — + 11sin — | &~ 0.29286923
" 2w | Mgttty T 5
Table 4.8 summarizes these results and shows the approximation errors. [ ]
Table 4.8 " 0 1 ) 3 4
Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318
Error 0.01521303 0.00003942 0.00001748 0.00000004
Open formulas 0.30055887 0.29798754 0.29285866 0.29286923
Error 0.00766565 0.00509432 0.00003456 0.00002399
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EXERCISE SET 43

1. Approximate the following integrals using the Trapezoidal rule.

1 0.5 2
a. f x*dx b. / dx
0.5 o x—4

15 1
[ / X nx dx d. / x2e* dx
1 0

1.6 035
2x 2
. dx f. d
¢ /1 x2—4 /0 4™
/4 /4
g / xsinx dx h. / ¥ sin 2x dx
0 0
2.  Approximate the following integrals using the Trapezoidal rule.
025 0
a. / (cosx)* dx b. f xIn(x+ 1) dx
—0.25 —0.5
1.3 e+1 1
c f ((sinx)* — 2xsinx + 1) dx d. f dx
0.75 e xInx

Find a bound for the error in Exercise 1 using the error formula, and compare this to the actual error.
Find a bound for the error in Exercise 2 using the error formula, and compare this to the actual error.
Repeat Exercise 1 using Simpson’s rule.

Repeat Exercise 2 using Simpson’s rule.

Repeat Exercise 3 using Simpson’s rule and the results of Exercise 5.

Repeat Exercise 4 using Simpson’s rule and the results of Exercise 6.

L XN R W

Repeat Exercise 1 using the Midpoint rule.

10. Repeat Exercise 2 using the Midpoint rule.

11.  Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9.

12. Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10.

13.  The Trapezoidal rule applied to foz f(x) dx gives the value 4, and Simpson’s rule gives the value 2.
What is f(1)?

14.  The Trapezoidal rule applied to foz f(x) dx gives the value 5, and the Midpoint rule gives the value 4.
What value does Simpson’s rule give?

15.  Find the degree of precision of the quadrature formula

/:f(x)dx=f(—\f>+f(?).

16. Leth = (b—a)/3,x0 = a,x; = a+ h, and x, = b. Find the degree of precision of the quadrature
formula

b 9 3
/ F)dx = PG + Jhf ).

17. The quadrature formula f—]| f@) dx = cof(—1) + ¢1 £(0) + 2 f(1) is exact for all polynomials of
degree less than or equal to 2. Determine cy, ¢y, and ¢;.

18. The quadrature formula foz f@) dx = cof(0) + c1 £ (1) + c2f(2) is exact for all polynomials of
degree less than or equal to 2. Determine ¢y, ¢, and c;.

19. Find the constants ¢y, ¢, and x; so that the quadrature formula

1
/ FO) dr = cof ) + 1 f ()
0

has the highest possible degree of precision.
20. Find the constants xo, X1, and ¢, so that the quadrature formula

1
1
/ fx) dx = Ef(xo) +o fx)
0

has the highest possible degree of precision.
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4.4 Composite Numerical Integration 203

21. Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of
the approximations consistent with the error formulas? Which of parts (d) and (e) give the better

approximation?
0.1 /2
a. V1+4+xdx b. / (sinx)? dx
0 0

15 10 |

c. / e dx d. / —dx
1.1 1 X
55 1 10 1 1

e. / —dx —l—/ —dx f. / X3 dx
1 X 55 X 0

22.  Given the function f at the following values,

X ‘ 1.8 ‘ 2.0 ‘ 2.2 ‘ 2.4 ‘ 2.6

fx) ‘ 3.12014 ‘ 4.42569 ‘ 6.04241 ‘ 8.03014 ‘ 10.46675

approximate || 12_56 f (%) dx using all the appropriate quadrature formulas of this section.

23.  Suppose that the data of Exercise 22 have round-off errors given by the following table.

X ‘ 1.8 ‘ 2.0 ‘ 2.2 ‘ 2.4 ‘ 2.6
Error in f(x) ‘ 2x107° ‘ —2x107° ‘ —09 x 107 ‘ —09 x 107 ‘ 2 x 107

Calculate the errors due to round-off in Exercise 22.

24. Derive Simpson’s rule with error term by using

/ F) dx = ag f (xo) + ar f(x1) + ar f (x2) + kfP ().

Find ay, a,, and a, from the fact that Simpson’s rule is exact for f(x) = x" when n = 1,2, and 3.
Then find k by applying the integration formula with f(x) = x*.

25. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of
precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degree k = 0, 1,...,n,
but E(P(x)) # 0 for some polynomial P(x) of degree n + 1.

26. Derive Simpson’s three-eighths rule (the closed rule with n = 3) with error term by using
Theorem 4.2.

27.  Derive the open rule with n = 1 with error term by using Theorem 4.3.

4.4 Composite Numerical Integration

The Newton-Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equally-spaced nodes, a procedure that is inaccurate over large
Piecewise approximation is often  intervals because of the oscillatory nature of high-degree polynomials.
effective. Recall that this was In this section, we discuss a piecewise approach to numerical integration that uses the
used for spline interpolation. low-order Newton-Cotes formulas. These are the techniques most often applied.

Example 1 Use Simpson’s rule to approximate f04 e dx and compare this to the results obtained

by adding the Simpson’s rule approximations for f02 €* dx and f; e dx. Compare these

approximations to the sum of Simpson’s rule for fol e dx, |, ]2 e* dx, f; e* dx, and f; e* dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



204 CHAPTER 4 = Numerical Differentiation and Integration

Solution Simpson’s rule on [0, 4] uses & = 2 and gives
4
x 2 9 2 4
e dx ~ §(€ + 4e” + €") = 56.76958.
0
The exact answer in this case is ¢* — ¢® = 53.598135, and the error —3.17143 is far larger

than we would normally accept.
Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] uses & = 1 and gives

4 2 4
/e"dx:/e’“dx—i—/ e dx
0 0 2

(eo +4de + ez) + % (e2 +4¢° + 64)

%

(eo +de +2e% + 46 + 64)
= 53.86385.

The error has been reduced to —0.26570.
For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rule four times with
h= % giving

4 1 2 3 4
/exdxzfe"dx—i—/ exdx—i—/ e"dx—i—/ e dx
0 0 1 2 3

é(eo + 4¢'/2 +e) + é (e+4e3/2 +ez)

I

(& + 47 + &%) + é (¢ + 4’ + %)

N =

+

1
=% (eo +4e'? 42 + 4% +26% + 477 + 263 + 47 + 84)
= 53.61622.

The error for this approximation has been reduced to —0.01807. [ ]

b
To generalize this procedure for an arbitrary integral / f(x) dx, choose an even

integer n. Subdivide the interval [a, b] into n subintervals, and apply Simpson’s rule on
each consecutive pair of subintervals. (See Figure 4.7.)

Figure 4.7

,y/ N

<Y

a=Xg X2 Xgj—2 X1 Xy b=x,
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4.4 Composite Numerical Integration 205

With i = (b — a)/n and x; = a + jh, foreachj = 0,1, ...,n, we have

n/2

/ f(x)dx—z f(x)dx

— X2j—-2

n/2

5
Z{ [f (xaj-2) + 4 (62j-1) + f (02 )] — Of“)(s,)},

for some &; with xp;_» < & < x;, provided that f € C*a,b]. Using the fact that for each
j=12,...,(n/2) — 1 we have f(x,;) appearing in the term corresponding to the interval
[x2j—2,%2;] and also in the term corresponding to the interval [x;;, x2;42], we can reduce

this sum to
b h (n/2)—1 n/2 s n/2

f F@dx= 2| fe)+2 Y, fea)+4) a0+ @) | =5 Zf“”(s,
“ j=1 =1 -

The error associated with this approximation is

5 n/2

__h_ [OOFFS
E(f)= 90,-:Z.f &),

where xp;_» < & < xpj, foreachj=1,2,...,n/2.
If f € C*[a, b], the Extreme Value Theorem 1.9 implies that £ assumes its maximum
and minimum in [a, b]. Since

min fP @) < f9E) < max P,

x€la,b]
we have
n n/2
- @) < “ _ )
5 min fO0) = ;:f &) = 5 max fY@
and
2 n/2
min [P0 =23 fYE) = max fO).
j 1

By the Intermediate Value Theorem 1.11, there is a u € (a, b) such that

n/2

2
4) — = @) (g,
7w = n E f (éj)

j=1
Thus

5 n/2

E(f) = Z o) = —@nf“”(u)

or, since h = (b — a)/n,

E(f) = 1 20 h“f(‘“( ).

These observations produce the following result.
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206 CHAPTER 4 = Numerical Differentiation and Integration

Theorem 4.4 Let f € C*[a,b], n be even, h = (b — a)/n, and x; = a + jh, for each j = 0, 1,...,n.
There exists a i € (a, b) for which the Composite Simpson’s rule for n subintervals can
be written with its error term as

b h (n/2)—1 n/2 b—a ,
/a f@dv= 2| f@)+2 ,; f(xz,->+4j§f(x2j_1>+f(b> ST FO).

Notice that the error term for the Composite Simpson’s rule is O(h*), whereas it was
O(h®) for the standard Simpson’s rule. However, these rates are not comparable because for
standard Simpson’s rule we have & fixed at # = (b — a)/2, but for Composite Simpson’s
rule we have & = (b — a)/n, for n an even integer. This permits us to considerably reduce
the value of & when the Composite Simpson’s rule is used.

Algorithm 4.1 uses the Composite Simpson’s rule on n subintervals. This is the most
frequently used general-purpose quadrature algorithm.

Composite Simpson’s Rule
To approximate the integral / = fab f ) dx:

INPUT endpoints a, b; even positive integer n.
OUTPUT  approximation XI to I.
Step 1 Seth = (b —a)/n.

Step 2 Set XIO = f(a) + f(b);
XI1 =0; (Summation of f(x2;—1).)
XI2 =0. (Summation of f(x2;).)

Step3 Fori=1,...,n—1do Steps 4 and 5.
Step4 SetX =a+ih.

Step 5 1If i is even then set XI2 = XI2 + f(X)
else set XI1 = XI1 + f(X).

Step 6 Set XI = h(XI0 +2 - XI2 + 4 - XI1)/3.

Step 7 OUTPUT (XI);
STOP. .

The subdivision approach can be applied to any of the Newton-Cotes formulas. The
extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof.
The Trapezoidal rule requires only one interval for each application, so the integer n can be
either odd or even.

Theorem 4.5 Let f € C?[a,b], h = (b — a)/n, and X; = a+ jh, foreachj = 0,1,...,n. There exists
a i € (a,b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as

b h n—1 b—
/af(x)dx=§ f@+2) " f&)+ fb) —Tahzf”(u). u

j=1
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Figure 4.8
YA
/ y=/fx)
A~ D\~ X,
A
a=xg X Xii1 X x,.1 b=x, x
For the Composite Midpoint rule, n» must again be even. (See Figure 4.9.)
Figure 4.9
DAY
y =/t
o ‘/\"\-
a=x_4 )Ico X1 I I xzj,l)lczj Xoi41 I x,,,lxl,, b=x,11 X

Theorem 46 Let f € C?*[a,b], nbe even, h = (b — a)/(n + 2), and x; = a+ (j + 1h for each
j=—1,0,...,n+ 1. There exists a u € (a, b) for which the Composite Midpoint rule
for n + 2 subintervals can be written with its error term as

n/2

f FOydy =21 f) + —hzf”( ). "

Jj=0

Example 2 Determine values of 4 that will ensure an approximation error of less than 0.00002 when
approximating fon sin x dx and employing
(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (@) The error form for the Composite Trapezoidal rule for f(x) = sinx on [0, 7]
is

y h?
_f( )| = SN (—sinp)| = —|sm,u|
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To ensure sufficient accuracy with this technique we need to have
nh’ | sin | < T .00002
——|sin — < 0. .
2 =
Since h = 7 /n implies that n = 7 /h, we need
3

12n?

3

12(0.00002)

1/2
< 0.00002 which implies that n > < ) ~ 359.44.

and the Composite Trapezoidal rule requires n > 360.

(b) The error form for the Composite Simpson’s rule for f(x) = sinx on [0, 7] is

| sinul.

180

aht
180

‘1801“‘”( )' '—smu

To ensure sufficient accuracy with this technique we need to have

4 h4
T sin) < 25 < 0.00002.
180 180

Using again the fact that n = 7 /h gives
5

T
180n4

5 1/4
<0.00002  which implies that n > (W) ~ 17.07.

So Composite Simpson’s rule requires only n > 18.
Composite Simpson’s rule with n = 18 gives

2i—1
/smxdx~— ZZsm( )+4Zs <(J )”> = 2.0000104.
0

This is accurate to within about 10~ because the true value is — cos(7r) — (— cos(0)) = 2.
[

Composite Simpson’s rule is the clear choice if you wish to minimize computation.
For comparison purposes, consider the Composite Trapezoidal rule using & = /18 for the
integral in Example 2. This approximation uses the same function evaluations as Composite
Simpson’s rule but the approximation in this case

17 .
/Osmxdx~l 2Zsm(18>+smo+smn =;T_6 Zj;sin <’1£8) — 1.9949205.

is accurate only to about 5 x 1073,
Maple contains numerous procedures for numerical integration in the NumericalAnal-
ysis subpackage of the Student package. First access the library as usual with

with(Student[NumericalAnalysis])

The command for all methods is Quadrature with the options in the call specifying the
method to be used. We will use the Trapezoidal method to illustrate the procedure. First
define the function and the interval of integration with

fi=x—sinlx); a:=00; b:=nx
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4.4 Composite Numerical Integration 209

After Maple responds with the function and the interval, enter the command

Quadrature( f (x),x = a..b, method = trapezoid, partition = 20, output = value)
1.995885973

The value of the step size & in this instance is the width of the interval b — a divided by the
number specified by partition = 20.

Simpson’s method can be called in a similar manner, except that the step size & is
determined by b — a divided by twice the value of partition. Hence, the Simpson’s rule
approximation using the same nodes as those in the Trapezoidal rule is called with

Quadrature( f (x),x = a..b, method = simpson, partition = 10, output = value)
2.000006785
Any of the Newton-Cotes methods can be called using the option
method = newtoncotes[open,n] or method = newtoncotes[closed,n]

Be careful to correctly specify the number in partition when an even number of divisions
is required, and when an open method is employed.

Round-Off Error Stability

In Example 2 we saw that ensuring an accuracy of 2 x 10~ for approximating foﬂ sin x dx
required 360 subdivisions of [0, ] for the Composite Trapezoidal rule and only 18 for
Composite Simpson’s rule. In addition to the fact that less computation is needed for the
Simpson’s technique, you might suspect that because of fewer computations this method
would also involve less round-off error. However, an important property shared by all the
composite integration techniques is a stability with respect to round-off error. That is, the
round-off error does not depend on the number of calculations performed.

To demonstrate this rather amazing fact, suppose we apply the Composite Simpson’s
rule with n subintervals to a function f on [a, b] and determine the maximum bound for the
round-off error. Assume that f(x;) is approximated by f (x;) and that

Numerical integration is expected
to be stable, whereas numerical

differentiation is unstable.

f(x) = f(x)+e, foreach i=0,1,...,n,

where e; denotes the round-off error associated with using f (x;) to approximate f (x;). Then
the accumulated error, e(h), in the Composite Simpson’s rule is

h (n/2)—1 n/2
e(h) = 3 eo+2 ; 62j+4j2:;32j71+en

h (n/2)—1 n/2
< 3| leol +2 ,_Zl |ezj|+4;|e2j_1|+|en|

If the round-off errors are uniformly bounded by ¢, then

e(h)g§[8+2(g—1>8+4(g)8+8]=§3n8:nh8.
Butnh =b —a, so

e(h) < (b—a)e,
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210 CHAPTER 4 = Numerical Differentiation and Integration

a bound independent of & (and n). This means that, even though we may need to divide
an interval into more parts to ensure accuracy, the increased computation that is required
does not increase the round-off error. This result implies that the procedure is stable as &
approaches zero. Recall that this was not true of the numerical differentiation procedures
considered at the beginning of this chapter.

EXERCISE SET 44

1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following

integrals.
2 2
a. / xlnxdx, n=4 b. / Xefdx, n=4
12 ) -2
C. / ——dx, n=6 d. / x’cosxdx, n=6
0 )Cz +4 0
2 3y
e. / e sin3xdx, n=38 f. / ———dx, n=28
0 1 x2 —+ 4
5 1 37/8
8 ———dx, n=2~8 h. / tanxdx, n=28
8 3 /x2—4 0

2. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following

integrals.
0.5 0.5
a. / cos’xdx, n=4 b. / xInx+Ddx, n=6
—-0.5 —-0.5
1.75 e+2
c. / (six —2xsinx+Ddxy, n=8 d. / dx, n=38
. xInx

75
Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.

Use the Composite Simpson’s rule to approximate the integrals in Exercise 2.

Use the Composite Midpoint rule with n + 2 subintervals to approximate the integrals in Exercise 1.
Use the Composite Midpoint rule with n 4 2 subintervals to approximate the integrals in Exercise 2.
Approximate foz x?In(x? + 1) dx using h = 0.25. Use

a. Composite Trapezoidal rule.

N RW

b. Composite Simpson’s rule.
¢.  Composite Midpoint rule.
8. Approximate [, x2¢™ dx using h = 0.25. Use
a. Composite Trapezoidal rule.
b. Composite Simpson’s rule.
c.  Composite Midpoint rule.
9. Suppose that f(0) = 1, f(0.5) = 2.5, f(1) = 2, and f(0.25) = f(0.75) = «. Find « if the
Composite Trapezoidal rule with n = 4 gives the value 1.75 for f()] fx) dx.

10.  The Midpoint rule for approximating fjl f(x) dx gives the value 12, the Composite Midpoint rule
with n = 2 gives 5, and Composite Simpson’s rule gives 6. Use the fact that f(—1) = f(1) and
f(=0.5) = f£(0.5) — 1 to determine f(—1), f(—0.5), £(0), £(0.5), and f(1).

11. Determine the values of n and / required to approximate

2
/ e sin 3x dx
0

to within 1074, Use

a. Composite Trapezoidal rule.
b. Composite Simpson’s rule.
¢.  Composite Midpoint rule.
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4.4 Composite Numerical Integration 21

12. Repeat Exercise 11 for the integral fO” x? cos x dx.
13. Determine the values of n and & required to approximate

2
/ dx
0 X+4

to within 107> and compute the approximation. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c¢.  Composite Midpoint rule.
14. Repeat Exercise 13 for the integral flz xInx dx.
15. Let f be defined by

X411, 0<x=<0.l1,
F) = {1.001 +0.03(x — 0.1) + 0.3(x — 0.1)2 +2(x — 0.1)}>, 0.1 <x <02,
1.009 + 0.15(x — 0.2) +0.9(x — 0.2)> +2(x — 0.2)>, 02 <x <0.3.

a. Investigate the continuity of the derivatives of f.

b.  Use the Composite Trapezoidal rule with n = 6 to approximate f00'3 f (%) dx, and estimate the
error using the error bound.

c.  Use the Composite Simpson’s rule with n = 6 to approximate f00'3 f (x) dx. Are the results more
accurate than in part (b)?

16. Show that the error E( f) for Composite Simpson’s rule can be approximated by

1’14
_ " b _ " .
180[f b) = (@]
[Hint: Y% £ (&)(2h) is a Riemann Sum for [7 £ (x) dx.]
17. a. Derive an estimate for E( f) in the Composite Trapezoidal rule using the method in Exercise 16.
b. Repeat part (a) for the Composite Midpoint rule.
18.  Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 12.
19. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 14.
20. In multivariable calculus and in statistics courses it is shown that

/oo ! =D&/ gy —
— ¢ =1,
—o00 OA/2T

for any positive o. The function

1 2
fx) = e~ (1/DG/0)
O 4T

is the normal density function with mean p = 0 and standard deviation o. The probability that a
randomly chosen value described by this distribution lies in [a, b] is given by fa b f (x) dx. Approximate
to within 10> the probability that a randomly chosen value described by this distribution will lie in
a. [—o0,0] b. [—20,20] c. [—30,30]

21. Determine to within 10° the length of the graph of the ellipse with equation 4x> + 9y = 36.

22. A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined
by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the
following table.

Time ‘0 ‘6 ‘12 ‘18 ‘24 ‘30 ‘36 ‘42 ‘48‘54‘60‘66‘72 ‘78 ‘84
Speed\124\134\148\156\147\133\121\109\99\85\78\89\104\116\123

How long is the track?
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23. A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a function
of the velocity v. The relationship between the resistance R, velocity v, and time 7 is given by the

equation
v(t)
m
(= [
v(ty) R(u)

Suppose that R(v) = —v./v for a particular fluid, where R is in newtons and v is in meters/second. If
m = 10 kg and v(0) = 10 m/s, approximate the time required for the particle to slow to v = 5 m/s.

24. To simulate the thermal characteristics of disk brakes (see the following figure), D. A. Secrist and
R. W. Hornbeck [SH] needed to approximate numerically the “area averaged lining temperature,” 7,
of the brake pad from the equation

)
/ T(r)r6, dr

) ’
/ r6, dr

where r, represents the radius at which the pad-disk contact begins, r, represents the outside radius
of the pad-disk contact, 6, represents the angle subtended by the sector brake pads, and T(r) is the
temperature at each point of the pad, obtained numerically from analyzing the heat equation (see
Section 12.2). Suppose 7, = 0.308 ft, ryp = 0.478 ft, 6, = 0.7051 radians, and the temperatures given
in the following table have been calculated at the various points on the disk. Approximate 7.

T =

rfo T@HCH rdy TEHCEH rd T CH

0.308 640 0.376 1034 0.444 1204
0.325 794 0.393 1064 0.461 1222
0.342 885 0.410 1114 0.478 1239
0.359 943 0.427 1152

Brake disk

25.  Find an approximation to within 10~ of the value of the integral considered in the application opening
this chapter:

48
v 1+ (cosx)? dx.
0

26. The equation

A | —2p
—e dt =045
,/0 V2
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can be solved for x by using Newton’s method with

f) = / Tl g 04
0 V2w

and
1 2
f/ ()C) — P /2‘
V2
To evaluate f at the approximation p;, we need a quadrature formula to approximate
/pk Le”z/z dr.
0 /27

a. Find a solution to f(x) = 0 accurate to within 107> using Newton’s method with py = 0.5 and
the Composite Simpson’s rule.

b. Repeat (a) using the Composite Trapezoidal rule in place of the Composite Simpson’s rule.

45 Romberg Integration

In this section we will illustrate how Richardson extrapolation applied to results from the
Composite Trapezoidal rule can be used to obtain high accuracy approximations with little
computational cost.

In Section 4.4 we found that the Composite Trapezoidal rule has a truncation error of
order O(h?). Specifically, we showed that for & = (b — a)/n and x; = a+ jh we have

n—1

’ h (b —a) " ()
fa fydv= 51 f(@a) +2j;f(xj) IO | - 2.

for some number w in (a, b).
By an alternative method it can be shown (see [RR], pp. 136-140), thatif f € C*[a, b],
the Composite Trapezoidal rule can also be written with an error term in the form

b n—1
f f(x) dx = g F@+2) f)+ fb) |+ Kih* + Koh* + Ksh® + -+, (4.33)
a j=1

where each K; is a constant that depends only on %~V (a) and f@~V(b).
Recall from Section 4.2 that Richardson extrapolation can be performed on any
approximation procedure whose truncation error is of the form

m—1
Kk 4 0,
j=1

for a collection of constants K; and when @) < a < a3 < -+ < a,. In that section we
gave demonstrations to illustrate how effective this techniques is when the approximation
procedure has a truncation error with only even powers of £, that is, when the truncation
error has the form.

m—1
> K+ o).
j=1
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Werner Romberg (1909-2003) Because the Composite Trapezoidal rule has this form, it is an obvious candidate for
devised this procedure for extrapolation. This results in a technique known as Romberg integration.

improving the accuracy of the To approximate the integral fab f (x) dx we use the results of the Composite Trapezoidal
rule with n = 1,2,4,8, 16, ..., and denote the resulting approximations, respectively, by
Ri1, R21, R3 1, etc. We then apply extrapolation in the manner given in Section 4.2, that is,

we obtain O(h*) approximations R, R32, R4, etc., by

Trapezoidal rule by eliminating
the successive terms in the
asymptotic expansion in 1955.

1
Rip = Ri1 + g(Rk,l —Ri_11), fork=2,3,...
Then O(h®) approximations Rj 3, R4 3, Rs 3, etc., by
1
Ri3 =Ry + E(Rk,z —Ri_1p), fork=3,4,....

In general, after the appropriate Ry j_; approximations have been obtained, we determine
the O(h?/) approximations from

1 ..
—_I(Rk,j—l —Ry_1,j-1), fork=j,j+1,...

Rij=Rij1+ pY]

Example 1  Use the Composite Trapezoidal rule to find approximations to foﬂ sinx dx withn = 1,2, 4,
8, and 16. Then perform Romberg extrapolation on the results.
The Composite Trapezoidal rule for the various values of n gives the following approx-
imations to the true value 2.

Ry = %[sinO +sinm] = 0;

Ryy = % [sinO + 2sin % + sinn] — 1.57079633;
x[ . .7 4 . 3w .
= [sm0+2<smz +sm5 + sin T) +sm7ri| = 1.89611890;

8
- |:sin0 +2 (sin T opsin .o sin X 4sin 7—”) + sinn] — 1.97423160;
16 8 4 4 8
Rsy == [sinO n 2(sin T opsin T4 4sin 2 4 sin 15—”) + sin n} — 1.99357034.
32 16 8 8 16
The O(h*) approximations are

1 1
Rop =Ray+ 3 (Roy = Rip) =2.09439511; Rys =Ry + 3Ry — Ray) = 2.00455976;

Rip =R4; + %(RM — R31) =2.00026917; Rs», =Rs; + %(Ril — R41) = 2.00001659;
The O(h®) approximations are

R33 = Rso + %(Riz — Ry3) = 1.99857073; Ru3 = Ran+ 1—15(R4,2 — R35) = 1.99998313;
Rs3 = Rsp + %(Rs,z — R4p) = 1.99999975.

The two O(h®) approximations are

1 1
Ria = Rist = (Ris—R33) = 200000355:  Rsa = Rsyto= (Rs3—Raz) = 200000001,
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and the final O(h'?) approximation is

1
Rss = Rs4 + ﬁ(RSA — R44) = 1.99999999.

These results are shown in Table 4.9. [
Table 49
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999

Notice that when generating the approximations for the Composite Trapezoidal rule
approximations in Example 1, each consecutive approximation included all the functions
evaluations from the previous approximation. That is, R; ; used evaluations at 0 and 7, R; |
used these evaluations and added an evaluation at the intermediate point 7 /2. Then Rz
used the evaluations of R, ; and added two additional intermediate ones at 7 /4 and 37 /4.
This pattern continues with R4 using the same evaluations as R3; but adding evaluations
at the 4 intermediate points /8, 37/8, 57/8, and 77/8, and so on.

This evaluation procedure for Composite Trapezoidal rule approximations holds for an
integral on any interval [a, b]. In general, the Composite Trapezoidal rule denoted Ry 1
uses the same evaluations as Ry, but adds evaluations at the 2k=2 intermediate points.
Efficient calculation of these approximations can therefore be done in a recursive manner.

To obtain the Composite Trapezoidal rule approximations for fa b f)dx, let by =
(b —a)/my = (b—a)/2""'. Then

h b —
Ry = 2@ + f0)] = (2—“)[f<a> + O

and
h
Ry = g[f(a) + f(b)+2f(a+h)l.

By reexpressing this result for R, ; we can incorporate the previously determined approxi-
mation R

b—a)
4

(b—a
2

1
Ry = |:f(a) +fD)+2f (a + >i| = E[Rl,] + hy f(a+ hy)].

In a similar manner we can write

1
R3; = E{RZ,I + ol f(a+h3) + fla+3h3)1}

and, in general (see Figure 4.10 on page 216), we have

)

1
Rey =5 | Ricia+hir 3 f (a+ Qi=Dhy) |, (4.34)

i=1

foreach k = 2,3,...,n. (See Exercises 14 and 15.)
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Figure 4.10
VA Y A Y A
Ry IO Ry 10 Ry VIO
Clz b .'x al T b } ‘Iz T T T b ;
Extrapolation then is used to produce O(h,%j ) approximations by
1 ..
Rij =Ry -1+ m(Rk,j—l —Ri1,j-1), fork=j,j+1,...
as shown in Table 4.10.
Table10 4 o) o@) o) o) 0 (1}")
1 Rl,]
2 Ry, Ry,
3 R3 R;, R3;3
4 R4 R4 Ry3 Rys
n Rn,l Rn,2 Rn,3 Rn,4 e Rn,n

The effective method to construct the Romberg table makes use of the highest order
of approximation at each step. That is, it calculates the entries row by row, in the order
Ri1, Ry1, Rap, R3 1, R332, R33, etc. This also permits an entire new row in the table to be
calculated by doing only one additional application of the Composite Trapezoidal rule. It
then uses a simple averaging on the previously calculated values to obtain the remaining
entries in the row. Remember

e (Calculate the Romberg table one complete row at a time.

Example 2 Add an additional extrapolation row to Table 4.10 to approximate fon sin x dx.

Solution 'To obtain the additional row we need the trapezoidal approximation

k= D7 | _ 1 99839336
32 o ’

24
1 T .
Ry = E Rs1 + E ki] sin
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The values in Table 4.10 give
1 1
R¢r =Re1 + §(R6’1 — Rs1) = 1.99839336 + 5(1.99839336 — 1.99357035)
= 2.00000103;

1 1
Re3 =Re2 + E(Ré’z — Rs53) = 2.00000103 + 3(2.00000103 —2.00001659)

= 2.00000000;
1
R6,4 = R6!3 + a(R6,3 — R5q3) = 200000000,
1
R6,5 = R6,4 + E(RGA - R5’4) = 2.00000000;

and Rgs = Rgs + ﬁ(R@s — Rs5) = 2.00000000. The new extrapolation table is shown
in Table 4.11. ]

Table 4.11 0

1.57079633 2.09439511

1.89611890 2.00455976 1.99857073

1.97423160 2.00026917 1.99998313 2.00000555

1.99357034 2.00001659 1.99999975 2.00000001 1.99999999

1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000

Notice that all the extrapolated values except for the first (in the first row of the second
column) are more accurate than the best composite trapezoidal approximation (in the last row
of the first column). Although there are 21 entries in Table 4.11, only the six in the left column
require function evaluations since these are the only entries generated by the Composite
Trapezoidal rule; the other entries are obtained by an averaging process. In fact, because
of the recurrence relationship of the terms in the left column, the only function evaluations
needed are those to compute the final Composite Trapezoidal rule approximation. In general,
R;.1 requires 1 4 25~ function evaluations, so in this case 1 42 = 33 are needed.

Algorithm 4.2 uses the recursive procedure to find the i