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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core arcas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustratc the wide applicability of ideas of analysis to
other ficlds of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there arc a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-arcas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
ficld (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject,
developed.

We have organized our cxposition into four volumes, cach reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.
1I. Complex analysis.
1II. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions. and elements of probability theory.

However, this listing does not by itsclf give a complete picture of
the many interconncctions that arc presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier scries studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms. which arise in a number of
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problems in Book I, and rcappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the cxistence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in cach of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a serics of “Exercises” that
are ticd directly to the text, and while some arc casy, others may require
more effort. However, the substantial number of hints that are given
should cnable the recader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that cach of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, scries, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great plcasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
sec that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to rccord a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first weck (successfully
launching the whole project!); Paul Hagelstein, who in addition to rcad-
ing part of the manuscript taught scveral weeks of one of the courses.
and has since taken over the teaching of the second round of the serics;
and Daniel Levine, who gave valuable help in proofreading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes. and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we reccived from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein
Rami Shakarchi

Princeton, New Jersey
August 2002

As with the previous volumes, we are happy to record our great debt
to Danicl Levine. The final version of this book has been much improved
because of his help. He read the entire manuscript with great care and
made valuable suggestions that have been incorporated in the text. We
also wish to take this opportunity to thank Hart Smith and Polam Yung
for proofrcading parts of the book.
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Preface to Book IV

Functional analysis, as generally understood, brought with it a change
of focus from the study of functions on everyday gecometric spaces such
as R, RY, etc., to the analysis of abstract infinite-dimensional spaces, for
example, functions spaces and Banach spaces. As such it established a
key framework for the development of modern analysis.

QOur first goal in this volume is to present the basic ideas of this theory,
with particular emphasis on their connection to harmonic analysis. A
second objective is to provide an introduction to some further topics to
which any serious student of analysis ought to be exposed: probability
theory, several complex variables and oscillatory integrals. Our choice of
these subjects is guided, in the first instance, by their intrinsic interest.
Morcover, these topics complement and extend ideas in the previous
books in this series, and they serve our overarching goal of making plain
the organic unity that exists between the various parts of analysis.

Underlying this unity is the role of Fourier analysis in its interrelation
with partial differential equations, complex analysis, and number theory.
It is also exemplified by some of the specific questions that arose initially
in the previous volumes aud that are taken up again here: namely, the
Dirichlet problem, ultimately treated by Brownian motion; the Radon
transform, with its connection to Besicovitch sets; nowhere differentiable
functions; and some problems in number theory, now formulated as dis-
tributions of lattice points. We hope that this choice of material will not
only provide a broader view of analysis, but will also inspire the reader
to pursue the further study of this subject.






1 LP Spaces and Banach Spaces

In this work the assumption of quadratic integrability
will be replaced by the iutegrability of |f(z)|?. The
aunalysis of these function classes will shed a particu-
lar light on the real and apparent advantages of the
exponent 2; one can also expect that it will provide
essential material for an axiomatic study of function
spaces

F Riesz, 1910

At present I propose above all to gather results about

linear operators defined in certain general spaces, no-

tably those that will here be called spaces of type (B)
S. Banach, 1932

Function spaces, in particular LP spaces, play a central role in many
questions in analysis. The special importance of LP spaces may be said
to derive from the fact that they offer a partial but uscful generalization
of the fundamental L2 space of squarc integrable functions.

In order of logical simplicity, the space L' comes first since it occurs
alrcady in the description of functions integrable in the Lebesgue sense
Connected to it via duality is the L™ space of bounded functions, whose
supremum norm carries over from the more familiar space of continuous
functions. Of independent interest is the L? space, whose origins are
tied up with basic issues in Fourier analysis. The intermediate LP spaces
are in this sensc an artifice, although of a most inspired and fortuitous
kind. That this is the casc will be illustrated by results in the next and
succeeding chapters.

In this chapter we will concentrate on the basic structural facts about
the LP spaccs. Here part of the theory, in particular the study of their
linear functionals, is best formulated in the more general context of Ba-
nach spaces. An incidental benefit of this more abstract view-point is
that it leads us to the surprising discovery of a finitely additive measure
on all subscts, consistent with Lebesgue measure.
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1 L? spaces

Throughout this chapter (X, F. u) denotes a o-finite measure space. X
denotes the underlying space, F the o-algebra of measurable sets, and g
the measure. If 1 < p < oc, the space LP( X, F. ) consists of all complex-
valued measurable functions on X that satisfy

1) [X F@)P dulz) < os.

To simplify the notation, we write LP(X, u), or LP(X). or simply LP
when the underlying measure space has been specified. Then. if f €
LP(X,F,u) we define the L? norm of f by

1/p
1|f|1Lp(x,f,,‘)=( L @) du(x)) .

We also abbreviate this to || f||L»(x), [ fllze, or {|f]lp-

When p = 1 the space L}(X.F, i) consists of all integrable functions
on X, and we have shown in Chapter 6 of Book I1I, that L' together with
I| - |l is a complete normed vector space. Also, the case p = 2 warrants
special attention: it is a Hilbert space.

‘We note here that we encounter the same technical point that we al-
ready discussed in Book III. The problem is that | f|/» =0 does not
imply that f = 0, but merely f = 0 almost everywhere (for the mcasure
1). Therefore, the precise definition of LP requires introducing the equiv-
alence rclation, in which f and g are equivalent if f = g a.e. Then, L?
consists of all equivalence classes of functions which satisfy (1). However,
in practice there is little risk of error by thinking of clements in L? as
functions rather than equivalence classes of functions.

The following are some cormmon examples of L? spaces.

(a) The case X = R? and p equals Lebesgue measure is often used in
practice. There, we have

1l = ( L e dx) "

(b) Also, one can take X = Z, and s equal to the counting measure.
Then, we get the “discrete” version of the LP spaces. Measurable
functions are simply sequences f = {an}nez of complex nuinbers,
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o 1/p
Ifller = ( 3 |an|") .

n=—oo

and

When p = 2, we recover the familiar sequence space £2(Z).

The spaces LP are examples of normed vector spaces. The basic prop-
erty satisfied by the norm is the triangle inequality, which we shall prove
shortly.

The range of p which is of interest in most applications is 1 < p < oo,
and later also p = oo. There arc at least two reasons why we restrict our
attention to these values of p: when 0 < p < 1, the function || - ||.» does
not satisfy the triangle inequality, and moreover, for such p, the space
LP has no non-trivial bounded linear functionals.! (See Exercise 2.)

When p =1 the norm || - |1 satisfies the triangle inequality, and L!
is a complete normed vector space. When p = 2, this result continues to
hold, although one needs the Cauchy-Schwarz inequality to prove it. In
the same way, for 1 < p < oo the proof of the triangle inequality relies on
a gencralized version of the Cauchy-Schwarz inequality. This is Hélder’s
inequality, which is also the key in the duality of the L spaces, as we
will sce in Section 4.

1.1 The Holder and Minkowski inequalities

If the two cxponents p and g satisfy 1 < p, ¢ < oo, and the relation

S4+-=1
p q
holds, we say that p and ¢ are conjugate or dual exponents. Here,
we use the convention 1/co = 0. Later, we shall sometimes use p’ to
denote the conjugate cxponent of p. Note that p = 2 is self-dual, that is,
P =q =2; also p = 1, 00 corresponds to g = 00, 1 respectively.

Theorem 1.1 (Hélder) Suppose 1 < p < 0o and 1 < ¢ < oo are conju-
gate exponents. If f € LP and g € L9, then fg € L' and

Ifglle <l fllzellglie-

Note. Once we have defined L™ (sce Section 2) the corresponding in-
equality for the exponents 1 and oo will be seen to be essentially trivial.

'We will define what we mean by a bounded linear functional later in the chapter
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The proof of the theorem relics on a simple generalized form of the
arithmetic-gecometric mean inequality if A, B >0, and 0 <6 < 1, then

(2) A’B'7% <9A+(1-0)B.

Note that when 6 = 1/2, the incquality (2) states the familiar fact that
the geometric mean of two numbers is majorized by their arithmetic
mean.

To cstablish (2), we observe first that we may assumce B # 0, and
replacing A by AB, we sce that it suffices to prove that 4% < A4 + (1 —
6). 1f we let f(x) =z% — 6z — (1 - 9), then f'(zx) = 0(z? ' —1). Thus
f(x) increases when 0 < z < 1 and decreascs when 1 < z, and we see that
the continuous function f attains a maximum at z = 1, where f(1) = 0.
Therefore f(A) < 0, as desired.

To prove Holder’s inequality we arguc as follows. If cither ||f||L» =0
or ||fllLe =0, then fg =0 a.c. and the inequality is obviously verified.
Therefore. we may assume that neither of these norms vanish, and after
replacing f by f/||fll.» and g by g/l|gllrs, we may further assume that
Ifllr.e = llgllLe = 1. We now necd to prove that ||fg||.r < 1.

If we set A =|f(z)P, B =|g(x)|?, and 0 = 1/p so that 1 — 6 =1/q,
then (2) gives

f(@)g(@)] < %If(:v)l” + élg(x)lq.

Integrating this inequality yields || fgl|z < 1, and the proof of the Holder

incquality is complete.
For the case when the cquality || fgllz: = || fllz»]lgllL. holds, see Exer-
cise 3.

We are now ready to prove the triangle inequality for the LP norm.

Theorem 1.2 (Minkowski) If1 <p<oc and f,g € LP, then f+g €
LP and ||f + gllLr < [ fllLr + llgllLe-

Proof.  The case p=1 is obtained by integrating |f(x) + g{z)| <
|f(x)] + |g(z)|. When p > 1, we may begin by verifying that f + g € LP,
when both f and g belong to LP. Indeed,

1F (@) + g(x)P < 22(|f ()P + g()}?),

as can be scen by considering scparately the cases |f(x)| < |g(x)| and
lg(x)| < |f(z)]. Next we note that

If (@) + g(@)P < |f (@) 1f(2) + g(@)P~" + [g(2)| [ f(z) + g(a) [P~



1 LP spaces 5

If ¢ denotes the conjugate exponent of p, then (p —1)g = p, so we sec
that (f + g)P~! belongs to L?, and thercfore Holder’s inequality applied
to the two terms on the right-hand side of the above inequality gives

rell(f + )P lza

@) I +alie < Ul ll(f + 9P e + llgl

However, using once again (p — 1)g = p, we get

I(f +9)P~

From (3), since p — p/q =1, and becausc we may suppose that ||f +
gll» > 0, we find

IS+ gllze <1 flle + ligllez,

so the proof is finished.

1.2 Completeness of LP

The triangle inequality makes LP into a metric space with distance
d(f,g) = ||f — g|l»- The basic analytic fact is that LP is complete
in the sense that cvery Cauchy sequence in the norm || - ||» converges to
an element in LP.

Taking limits is a necessity in many problems, and the L? spaces would
be of little use if they were not complete. Fortunately, like L' and L2,
the general LP space docs satisfy this desirable property.

Theorem 1.3 The space LP(X,F, ) is complete in the norm || - || L.

Proof. The argument is essentially the same as for L! (or L2?): sec
Section 2. Chapter 2 and Section 1. Chapter 4 in Book IIL. Let {f,}3,
be a Cauchy scquence in LP, and consider a subsequence {f,,}52, of
{fn} with the following property |fr,., — faxllLr < 27F for all k> 1.
We now consider the scries whose convergence will be seen below

F@) = fa (@) + > (Fras, (@) = frr ()

k=1

and

9(x) = | fny (2 |+Z|fnk+. ~ fa (@),
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and the corresponding partial sums

K
Sk(f)(@) = fa, (2) + Y (Freer (@) = frr (&)
k=1
and
K
Kk (9)(&) = | fay @] + Y | frsr (&) = Frr(@)]-

k=1

The triangle inequality for LP implies

K
ISk (@) Lr < I fnsllze + D I fnees = Frillze

k=1
K

< fullr + 3275
k=1

Letting K tend to infinity, and applying the monotone convergence theo-
rem proves that [ gP < oc, and therefore the series defining g, and hence
the series defining f converges almost everywhere, and f € LP.

We now show that f is the desired limit of the sequence {f,}. Since
(by construction of the telescopic series) the (K — 1)t partial sum of
this series is precisely fy,, we find that

frr(x) — f(x) ae. z.

To prove that f,, — f in LP as well, we first observe that

[f(z) = Sk (f)(@)P < [2max(|f(x)]- [Sk (f) )]
< 2f(z)f? k() ()P
< 27 g(z)P?,

for all K. Then. we may apply the dominated convergence theorem to
get || fnx — fllzr — 0 as K tends to infinity.

Finally, the last step of the proof consists of recalling that {f,} is
Cauchy. Given e > 0, there cxists N so that for all n,m > N we have
| — finllne < €/2. If ng is chosen so that ng > N, and || fn, — fllLe <
¢/2, then the triangle inequality implies

lfn = fllze < [ fn — an”L” + | frx — f”L" <e€

whenever n > N. This concludes the proof of the theorem.
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1.3 Further remarks

We begin by looking at soine possible inclusion relations between the
various LP spaccs. The matter is simple if the underlying space has
finite measure.

Proposition 1.4 If X has finite positive measure, and po < p, then
LP1(X) C LP°(X) and

1

—7g IfllLee <

1
p(X)1/po W“f“b’l-

We may assume that p; > py. Suppose f € LP', and set F' = |f|Po,
G=1.p=p1/po > 1,and 1/p+ 1/g =1, in Holder’s incquality applied
to F and G. This yiclds

po/p1
||f|111(;)n < (/lflp'> . 'u(X)l—Pu/m.

In particular, we find that || f|| L, < oc. Moreover, by taking the p§" root
of both sides of the above equation, we find that the inequality in the
proposition holds.

However, as is easily seen, such inclusion does not hold when X has
infinite measure. (See Exercise 1). Yet, in an intcresting special case the
opposite inclusion does hold.

Proposition 1.5 If X = Z is equipped with counting measure, then the
reverse inclusion holds, namely LP°(Z) C LP(Z) if po < p1. Moreover,

I fllzer < |1 fllLro-

Indecd, if f = {f(n)}nez, then 3_ | f(n)|P° = || f|7%,, and sup,, | f(n)] <
I £l 1.r0. However

Z |f(n)|P* = Z | F(n)|Po] f (n)|Ps P
< (sup )P,
< 1o -

Thus || fl[zer < || fllzo-

2 The case p = ©

Finally, we also consider the limiting casec p = oc. The space L™ will
be defined as all functions that are “essentially bounded” in the follow-
Ing sense. We take the space L=(X,F, i) to consist of all (cquivalence
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classes of) measurable functions on X. so that there cxists a positive
number 0 < M < oo. with

[fz)l <M  ae z.

Then, we define || f|| 7. (x,7,y) to be the infimum of all possible values M
satisfying the above inequality. The quantity || f]| L= is sometimes called
the essential-supremum of f.

We note that with this definition, we have |f(x)| < ||f|j.~ for a.c. z.
Indeed, if E = {z: |f(@)] > |flli=}, and By = & : f@] > |/ +
1/n}, then we have u(E,) =0, and F = |J E,, hence u(E) = 0.

Theorem 2.1 The vector space L™ equipped with || - ||~ is a complete
vector space.

This assertion is casy to verify and is left to the reader. Morcover,
Holder's inequality continues to hold for values of p and ¢ in the larger
range 1 < p,q < o0, once we take p =1 and ¢ = oc as conjugate expo-
nents, as we mentioned before.

The fact that L™ is a limiting casc of LP when p tends to co can be
understood as follows.

Proposition 2.2 Suppose f € L™ is supported on a set of finite mea-
sure. Then f € LP for all p < 0o, and

Ifllee = W flle  asp— oc.

Proof. Let E be a measurable subsct of X with p(F) < oc, and so
that f vanishes in the complement of E. If u(F) =0, then ||f|lre =
|[fllL» = 0 and there is nothing to prove. Otherwise

1 fllie = ( [ du)”p < ( J stz du)]/p < e (B

Since p(E)Y/? — 1 as p — oo, we find that limsup,_, o || fllze < || fllL<.
On the other hand, given € > 0, we have

p({z: @) = If

L=~ —€}})>48 for some § >0,

hence
[ FPdu > 5(1f = — )
JX

Therefore liminf, . || fllLe > || fllL~ — €, and since € is arbitrary, we
have liminf, .o || fllzr > || f||1.c. Hence the limit lim,_ o || f||z» exists,
and cquals || f{| 7.
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3 Banach spaces

We introduce here a general notion which encompasses the LP spaces as
specific examples.

First, a normed vector space consists of an underlying vector space V'
over a ficld of scalars (the real or complex numbers), together with a
porm | - || : V — R* that satisfics:

e |[v|| = 0 if and only if v = 0.
e |lav] = |a| ||v]|. whenever « is a scalar and v € V.
o |lv+w| <|vf| + ||w] for all v,w € V.

The space V is said to be complete if whenever {v,} is a Cauchy
sequence in V. that is, [|v, — vm|| — 0 as n,m — o0, then there exists a
v € V such that |[v, —v|| — 0 as n — oc.

A complete normed vector space is called a Banach space. Here
again, we stress the importance of the fact that Cauchy sequences con-
verge to a limit in the space itsclf, hence the space is “closed” under
limiting opcrations.

3.1 Examples

The real numbers R with the usual absolute value form an initial example
of a Banach space. Other easy examples are R?, with the Euclidean norm,
and more generally a Hilbert space with its norm given in terms of its
inner product.

Several further relevant examples are as follows:

EXAMPLE 1. The family of LP spaces with 1 < p < oc which we have just
introduced are also important examples of Banach spaces (Theorem 1.3
and Theorem 2.1). Incidentally, L? is the only Hilbert space in the
family LP, where 1 < p < oo (Exercise 25) and this in part accounts for
the special flavor of the analysis carried out in L? as opposed to L' or
more generally LP for p # 2.

Finally, obscrve that since the triangle incquality fails in general when
0<p<1,| | e is not a norm on LP for this range of p, hence it is not
a Banach space.

ExAMPLE 2. Another example of a Banach space is C([0,1]), or more
generally C(X) with X a compact set in a metric space, as will be de-
fined in Section 7. By definition, C(X) is the vector space of continuous
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functions on X equipped with the sup-norm || f|| = sup,c x [f(z)|. Com-
pletencss is guarantecd by the fact that the uniform limit of a sequence
of continuous functions is also continuous.

ExampLE 3 Two further examples are important in various applications.
The first is the space A*(R) of all bounded functions on R which satisfy
a Hélder (or Lipschitz) condition of exponent a with 0 <a <1,
that is,

sup |f (1) — f(t2)] < oo

tAt, |t — tal®

Observe that f is then necessarily continuous; also the only interesting
casc is when « < 1, since a function which satisfies a Holder condition of
exponent a with o > 1 is constant.?

More gencrally, this space can be defined on R it consists of contin-
uous functions f equipped with the norm

|f(z) = f)l
Hf”Aa ay = sup |f(x)| + sup —————.
(RY) TeRdi (@) S r—
With this norm, A%(R¢) is a Banach space (sce also Exercise 29).

EXAMPLE 4. A function f € LP(R%) is said to have weak derivatives
in LP up to order k, if for every multi-index a = (@, ..., aq) with |a| =
a; + -+ ag < k, there is a g, € L? with

(4) /R gal2)plw) do = (-1) /R f(@)0 o) da

for all smooth functions ¢ that have compact support in R¢. Here, we
usc the multi-index notation

gr (2N (2N .. (2\™
T \oz ~ \ 0z, Oxg4 ’

Clearly, the functions g, (when they exist) are unique, and we also write
02 f = go- This definition arises from the relationship (4) which holds
whenever f is itself smooth, and g equals the usual derivative 02 f, as
follows from an integration by parts (sec also Section 3.1, Chapter 5 in
Book III).

2We have already encountered this space in Book 1, Chapter 2 and Book 1. Chapter 7
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The space LE(R?) is the subspace of LP(R?) of all functions that have
weak derivatives up to order k. (The concept of weak derivatives will
reappcar in Chapter 3 in the setting of derivatives in the sense of distri-
butions.) This space is usually referrcd to as a Sobolev space. A norm
that turns L?(R?) into a Banach space is

1 fllLerey = Z 102 71l o (mey -

lal<k

EXAMPLE 5. In the casc p =2, we note in the above example that an
L2 function f belongs to L2(R?) if and only if (1 + |£]2)*/2f(€) belongs
to L2, and that ||(1 + |€]2)*/2f(€)| 12 is a Hilbert space norm equivalent
to || 12 re)-

Thercfore, if k is any positive number, it is natural to dcfine L?c as
those functions f in L2 for which (1 + |£2)*/2f(€) belongs to L?, and we
can equip L2 with the norm | £l ey = (1 + [E2)/2F(€)] 2.

3.2 Linear functionals and the dual of a Banach space

For the sake of simplicity, we restrict ourselves in this and the following
two sections to Banach spaccs over R; the reader will find in Section 6
the slight modifications nccessary to extend the results to Banach spaces
over C.

Suppose that B is a Banach space over R equipped with a norm || - ||. A
linear functional is a linear mapping ¢ from B to R, that is, £ : B — R,
which satisfies

Uaf + Bg) = al(f) + Blg), foralla,feR, and f,g€B.

A linear functional ¢ is continuous if given € > 0 there cxists § > 0 so
that [¢(f) — ¢(g)| < € whenever ||f — g|| < §. Also we say that a lincar
functional is bounded if there is M > 0 with [¢(f)| < M||f|| for all f €
B. The linearity of £ shows that these two notions arc in fact equivalent.

Proposition 3.1 A linear functional on a Banach space is continuous,
if and only if it is bounded.

Proof.  The key is to observe that £ is continuous if and only if £ is
continuous at the origin.

Indeed, if ¢ is continuous, we choose € =1 and g =0 in the above
definition so that |¢(f)] < 1 whenever ||f]| < 8, for some § > 0. Hence,
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given any non-zcro h, an element of B, we sec that §h/||h|| has norm equal
to 4, and hence |[¢(h/||h|)] < 1. Thus |[¢(h)| < M| k| with M = 1/4.

Conversely, if £ is bounded it is clearly continuous at the origin. hence
continuous.

The significance of continuous linear functionals in terms of closed
hyperplanes in B is a noteworthy gecometric point to which we return
later on. Now we take up analytic aspects of lincar functionals.

The sct of all continuous linear functionals over B is a vector space
since we may add linear functionals and multiply them by scalars:

(b +6)(f) =b(f) +(f) and  (af)(f) = al(f).

This vector space may be equipped with a norm as follows. The norm
||€]| of a continuous linear functional ¢ is the infimum of all values M for
which |¢(f)] < M||f|| for all f € B. From this definition and the lincarity
of £ it is clear that

el = sup [6()] = sup e(F)| = If(f)l
f1i< Ifl=1 o 1T

The vector space of all continuous linear functionals on B equipped
with || - || is called the dual space of B, and is denoted by B*.

Theorem 3.2 The vector space B* is a Banach space.

Proof. Tt is clear that || - || defines a norm, so we only check that B* is
complete. Suppose that {£,} is a Cauchy scquence in B*. Then, for cach
f € B, the sequence {£,(f)} is Cauchy, henee converges to a limit, which
we denote by £(f). Clearly, the mapping ¢: f +— £(f) is lincar. If M is
so that ||€,|| < M for all n, we sce that

(N < 1€ = 6NN (N < 1= &)+ M £l

so that in the limit as n — oc, we find |¢(f)] < M||f| for all f € B.
Thus ¢ is bounded. Finally, we must show that ¢, converges to ¢ in B*.
Given ¢ > 0 choose N so that ||€, — #,|| < €/2 for all n.m > N. Then.
if n > N. we scc that for all m > N and any f

l(f - gn)(f” S 1“ - gm)(f)l + |(em - e:z)(f)| S I(e - em)(f” + %“f”

We can also choose m so large (and dependent on f) so that we also have
[(€ = €,,)()] < €|l f]l/2. In the end. we find that for n > N,

(€= £r)(H)] < ellfIl-
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This proves that [|€ — £,]| — 0, as desired.

In general, given a Banach space B. it is interesting and very useful to
be able to describe its dual B*. This problem has an essentially complete
answer in the casc of the L? spaces introduced before.

4 The dual space of I” when 1 < p < oc

Suppose that 1 < p < oo and q is the conjugate exponent of p, that is,
1/p+ 1/q=1. The key observation to make is the following: Hélder’s
inequality shows that every function g € L gives rise to a bounded lincar
functional on LP by

(5) «(f) = /X f(2)g(x) du(z),

and that ||| < ||g||z«- Thercfore, if we associate g to £ above, then we
find that L9 C (LP)* when 1 < p < oc. The main result in this section
is to prove that when 1 < p < 00, every lincar functional on LP is of
the form (5) for some g € L?. This implics that (LP)* = L? whenever
1 < p < 00. We remark that this result is in general not true when p = oo;
the dual of L* contains L!, but it is larger. (See the end of Scction 5.3
below.)

Theorem 4.1 Suppose1 <p < o0, and 1/p+ 1/q =1. Then, with B =
L? we have

B* =1L1,

in the following sense: For every bounded linear functional ¢ on LP there
is a unique g € L? so that

(f)= / f(x)g(z) du(x for all f € LP.

Moreover, ||¢|

5 = llgllra-

This theorem justifies the terminology whereby ¢ is usually called the
dual exponent of p.

The proof of the theorem is based on two ideas. The first, as alrcady
seen, is Holder’s inequality; to which a converse is also needed. The
second is the fact that a lincar functional £ on L?, 1 < p < o0, lcads nat-
urally to a (signed) measure v. Because of the continuity of £ the measure
Vv is absolutely continuous with respect to the underlying measure x4, and
our desired function g is then the density function of v in terms of u.

We begin with:
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Lemma 4.2 Suppose 1 < p.q < 00, are conjugate exponents.

[

(ii) Suppose g is integrable on all sets of finile measure, and

(i) Ifge L9, then ||g||re = sup
[[fllz» <1

sup '/fg‘=M<oo.
fhpp <1
S <imple

Then g € LY, and ||g|jr« = M

For the proof of the lemma, we recall the signum of a real number
dcfined by

1 ifz>0
sign(z) =< —1 ifx <0
0 ifz=0.

Proof.  We start with (i). If g =0, there is nothing to prove, so
we may assume that g is not 0 a.e., and hence ||g||;« # 0. By Holder’s
inequality, we have that

lglze > sup ] / f‘
[Ifller <t

To prove the reverse inequality we consider several cases.

e First, if ¢ = | and p = oo, we may take f(z) = sign g(z). Then, we
have || f||.= =1, and clearly, [ fg =gl

e If 1 < p,g < oc. then we set f(x) = |g(x)|? 'signg(z)/||gl|%,
observe that [|f[[7, = [ |g(x)[@V dp/|lg]7¢ ™" =1 since p(q—
1) =g, and that [ fg = ||gl1e-

e Finally, if ¢ = o0 and p = 1. let € > 0, and E a set of finite posi-
tive measure, where [g(x)| > ||g]lL= — €. (Such a set exists by the
definition of ||g|l~ and the fact that the measure g is o-finite.)
Then, if we take f(x) = xg(x)sign g(x)/u(E), where xp denotes
the characteristic function of the set . we see that || f]|.: =1, and

also
Ufgl——l [ 161> gl
I‘(E) E - > )
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This completes the proof of part (i).
To prove (ii) we recall® that we can find a sequence {g,} of simple
functions so that |g,(x)| < |g(x)| while g,,(x) — g(x) for cach .z:. When

p> 1 (s0 g <c), we take fo(x) = |gn(z)|97" sign g(z)/|lgalls - As be-
fore. || fnllzr = 1. However

/ frg f”“’]l(‘” ~ llgnllLe

and this docs not cxceced M. By Fatou's lemma it follows that [ |g]? <
M9, so g € LY with ||g|[.e <M The direction ||g||p« > M is of coursc
implied by Holder’s incquality.

When p = 1 the argument is parallel with the above but simpler. Here
we take f,(x) = (signg(z))xr, (z), where E,, is an increasing scquence
of sets of finite measurc whose union is X. The details may be left to
the rcader.

With the lemma cstablished we turn to the proof of the thecorem. It
is simpler to consider first the case when the underlying space has finite
mcasurc. In this case. with ¢ the given functional on LP, we can then
define a sct function v by

v(E) = #(xE),

where F' is any measurable set. This definition makes sense because x g is
now automatically in LP since the space has finitc measure. We observe
that

(6) W(E)| < c((E))P,

where ¢ is the norm of the linear functional, taking into account the fact
that [[xgllLr = (u(F))Y/.

Now the lincarity of ¢ clcarly implies that v is finitcly-additive. More-
over, if { £,,} is a countable collection of disjoint mecasurable sets, and we

put E=J>" | E,. Ex = s n,1 En, then obviously

N
XE = XEy T ZXE,.-

n=1

Thus v(E) = u( (Ex)+ Zn L V(Ey). However v(EY) — 0, as N — oc,
because of (6) and thc assumption p < oo. This shows that v is countably

3See for instance Section 2 in Chapter 6 of Book ITT
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additive and. morcover. (6) also shows us that v is absolutely continuous
with respect to p.

We can now invoke the key result about absolutely continuous mea-
sures, the Lebesgue-Radon-Nykodim theorem. (See for example Theo-
rem 4.3, Chapter 6 in Book IIL.) It guarantees the existence of an in-
tegrable function g so that v(F) = f g 9du for cvery mcasurable sct E.
Thus we have ¢(x ) = [ xrgdp. The representation ¢(f) = f fgdu then
extends immediately to simple functions f. and by a passage to the limit.
to all f € L? since the simple functions are dense in LP, 1 < p < oc. (See
Exercise 6.) Also by Lemina 4.2, we sce that ||g||z« = ||£]|.

To pass from the situation where the measure of X is finite to the
genceral case, we usc an increasing sequence { £, } of sets of finite measure
that exhaust X, that is, X = Uﬂ_l E,,. According to what we have just
proved, for cach n there is an integrable function g, on E, (which we
can set to be zero in ES) so that

) () = / fon dp

whenever f is supported in E,, and f € LP. Morcover by conclusion (ii)
of the lemma ||g,||e < ||4]].

Now it is easy to scc because of (7) that g, = g,,, a.e. on E,,, whenever
n >m. Thus lim, . g,(z) = g(z) cxists for almost every z, and by
Fatou’s lemma. ||g||z.« < ||€]|. As a result we have that #(f) = [ fgdpu for
each f € L? supported in E,, and then by a simple limiting argument, for
all f € LP. The fact that ||| <||g|/1s, is alrcady contained in Hélder’s
incquality, and therefore the proof of the theorem is complete.

5 More about linear functionals

First we turn to the study of certain gcometric aspects of linear function-
als in terms of the hyperplanes that they define. This will also involve
understanding some elementary ideas about convexity.

5.1 Separation of convex sets

Although our ultimate focus will be on Banach spaces, we begin by con-
sidering an arbitrary vector space V over the reals. In this general setting
we can define the following notions.

First. a proper hyperplane is a linear subspace of V' that arises as
the zero set of a (non-zero) linear functional on V. Alternatively, it is
a linear subspace of V' so that it, together with any vector not in V,
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spans V. Related to this notion is that of an affine hyperplane (which
for brevity we will always refer to as a hyperplane) defined to be a
translate of a proper hyperplanc by a vector in V. To put it another
way: H is a hyperplane if there is a non-zero linear functional /. and a
real number a, so that

H={veV: {(v)=a}.

Another relevant notion is that of a convex set. The subset K C V is said
to be convex if whenever vy and v; are both in K then the straight-line
segment joining them

(8) v(t)=(1—-tug +tvy, 0<t<1

also lies entirely in K.

A key heuristic idea underlying our considerations can be enunciated
as the following general principle:

If K is a conver set and vy ¢ K, then K and vy can be sep-
arated by a hyperplane.

This principle is illustrated in Figure 1.

H
()

((v)=a

Figure 1. Separation of a convex sct and a point by a hyperplane

The sense in which this is meant is that there is a non-zero linear
functional ¢ and a real number a, so that

f(vg) > a, while ¢(v)<aifvelkK.

To give an idea of what is behind this principle we show why it holds in
a nice special case. (See also Section 5.2.)
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Proposition 5.1 The assertion above is valid if V = R? and K is con-
ver and open.

Proof. Since we may assume that K is non-emipty. we can also
suppose that (after a possible translation of K and vy) we have 0 € K.
The key construct used will be that of the Minkowski gauge function p
associated to K, which measurcs (the inverse of) how far we need to go.
starting from 0 in the direction of a vector v, to reach the exterior of K.
The precise definition of p is as follows:

p(v) = ggg{r v/r e K}.

Observe that since we have assumed that the origin is an interior point
of K, for cach v € RY there is an 7 > 0, so that v/r € K Hence p(v) is
well-defined.

Figure 2 below gives an example of a gauge function in the special case
where V = R and K = (a.b), an open interval that contains the origin.

@ 0 b °

Figure 2. The gauge function of the interval (a,b) in R

We note, for example, that if V is normed and K is the unit ball
{llv] < 1}, then p(v) = |jv|.

In general, the non-negative function p completely characterizes K in
that

(9) p{v) <1 if and ouly if v € K.
Morcover p has an important sub-linear property:

(10) { plav) = ap(v), ifa>0andve V.

p(vy +v2) < plv1) + p(ve), ifvy and vy € V.
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In fact, if v € K then v/(1 —€) € K for some € > 0, since K is open,
which gives that p(v) < 1. Conversely if p(v) < 1, then v = (1 — €)v/, for
some 0 < € <1, and v € K. Then since v = (1 — €)v’ + € - 0 this shows
v € K, because 0 € K and K is convex

To verify (10) we merely note that (vy + ve)/(r1 + r2) belongs to K,
if both vy /r; and vo/r2 belong to K, in view of property (8) defining the
convexity of K with ¢t =ry/(r) +rp) and 1 —t =7, /(ry +72).

Now our proposition will be proved once we find a lincar functional £,
so that

(11) fvg) =1, and f(v)<p(v), wveRL

This is because £(v) < 1, for all v € K by (9). We shall construct £ in a
step-by-step mannecr.

First, such an ¢ is alrcady determined in the one-dimensional sub-
space Vp spanncd by vy, Vo = {Ruvg}, since £(bvg) = bl(vg) = b, when
b€ R, and this is consistent with (11). Indeed, if b > 0 then p(buy) =
bp(vg) > bl(vy) = €(bup) by (10) and (9), while (11) is immediatec when
b<0.

The next step is to choose any vector vy linearly independent from vy
and cxtend ¢ to the subspace V) spanned by vy and v;. Thus we can
make a choice for the value of ¢ on vy, #(v;), so as to satisfy (11) if

al(vy) + b = £(av; + bwy) < pavy + buy), foralla.beR.
Setting a = 1 and bvy = w yiclds
) + b(w) < p(vy +w) for all w e Vp,

while setting a = —1 iinplies

~f(vy) + 6(w') < p(—vy +w'). for all w € Vj.
Altogether then it is required that for all w, w’ € Vj
(12) —p(—vy 4+ ') + £(w') < (v1) < p(r + w) — &(w).
Notice that there is a number that lics between the two extremes of the
above inequality. This is a consequence of the fact that —p(—v, + w’) +
€(w') never exceeds p(vy 4+ w) — ¢(w), which itself follows from the fact

that £(w) 4 ¢(w') < pw+w') < p(—v, +w') + p(vy +w), by (11) on Vp
and the sub-lincarity of p. So a choice of £(v1) can be made that is
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consistent with (12) and this allows one to extend ¢ to V;. In the same
way we can proceed inductively to extend ¢ to all of R?.

The argument just given here in this special context will now be car-
ried over in a gencral setting to give us an important theorem about
constructing lincar functionals.

5.2 The Hahn-Banach Theorem

We return to the general situation where we deal with an arbitrary vector
space V over the reals. We assumne that with V' we are given a real-valued
function p on V that satisfies the sub-lincar property (10). However, as
opposed to the example of the gauge function considered above, which
by its nature is non-negative, here we do not assume that p has this
property. In fact, certain p’s which may take on necgative values are
nceded in some of our applications later.

Theorem 5.2 Suppose Vy is a linear subspace of V, and that we are
given a linear functional £y on Vy that satisfies

lo(v) < p(v), forallveV,.
Then £y can be extended to a linear functional £ on V that satisfies
L(v)<plv), forallveV.

Proof. Suppose Vg # V, and pick vy a vector not in V. We will first
extend £ to the subspace V) spanned by Vg and v;. as we did before.
We can do this by defining a putative extension ¢, of ¢y, defined on V;
by 41 (av, + w) = afi{vy) + fo{w). whenever w € Vg and « € R, if £,(v,)
is chosen so that

6 (v) < p(v), forallve V.
However, cxactly as above, this happens when
—p(—v1 + ') + bo(w') < £r(v1) < p(vy + w) — fo(w)

for all w, w’' € V.

The right-hand side exceeds the left-hand side because of fo(w’) +
Zo(w) < p(w' + w) and the sub-linearity of p. Thus an appropriate choice
of ¢,(v,) is possible, giving the desired extension of 4, from Vj to V.

We can think of the extension we have constructed as the key step in
an inductive procedure. This induction, which in general is necessarily
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trans-finite, proceeds as follows. We well-order all vectors in V' that do
not belong to Vy, and denote this ordering by <. Among these vectors we
call a vector v “extendable” if the linear functional ¢y has an extension
of the kind desired to the subspace spanned by Vg, v, and all vectors
< v. What we want to prove is in effect that all vectors not in V are
extendable. Assume the contrary, then because of the well-ordering we
can find the smallest v; that is not extendable. Now if V{ is the space
spanned by Vp and all the vectors < vy, then by assumption /g extends
to Vy. The previous step, with V{ in place of V; allows us then to extend
£, to the subspace spanned by Vj and v, reaching a contradiction. This
proves the theorem.

5.3 Some consequences

The Hahn-Banach theorem has several direct consequences for Banach
spaces. Here B* denotes the dual of the Banach space B as defined in
Section 3.2, that is, the space of continuous linear functionals on B.

Proposition 5.3 Suppose fy is a given element of B with | fol = M.
Then there exists a continuous linear functional ¢ on B so that £(fo) = M
and ||4||g- = 1.

Proof. Define ¢y on the one-dimensional subspace {afo}acr by
to(afo) = aM, for each a € R. Note that if we sct p(f) = || f]| for every
f € B, the function p satisfies the basic sub-linear property (10). We also
observe that

€o(afo)| = |a|M = |all| foll = p(afo),

so £o(f) < p(f) on this subspace. By the extension thcorem ¢y extends
to an ¢ defined on B with £(f) < p(f) = ||f]|, for all f € B. Since this
inequality also holds for —f in place of f we get [¢(f)| < ||f]|, and thus
l¢||g- < 1. The fact that ||£||g~ > 1 is implied by the defining property
¢(fo) = || foll, thereby proving the proposition.

Another application is to the duality of linear transformations. Sup-
pose B; and B, are a pair of Banach spaces, and T is a bounded lin-
ear transformation from B; to Bs. By this we mean that T maps B;
to By; it satisfies T'(af) + Bf2) = oT(f1) + BT (f2) whenever fi, fo € B
and o and B arc real numbers; and that it has a bound M so that
IT(f)|ls, < M||f||s, for all f € B,. The least M for which this incqual-
ity holds is called the norm of T and is denoted by ||T||.

Often a linear transformation is initially given on a dense subspace. In
this connection, the following proposition is very useful.
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Proposition 5.4 Let By, By be a pair of Banach spaces and S C By
a dense linear subspace of By. Suppose Ty is a linear transformation
from S to By that satisfies || To(f)lB, < M| fllB, for all f € S. Then Ty

has a unique extension T to all of By so that || T(f)|s, < M| fliB, for all
f € B;.

Proof. If f € By, let {fn} be a sequence in S which converges to
f. Then since |To(fa) — To(fu)lls, < M| fr — fmls, it follows that
{To(frn)} is a Cauchy sequence in By, and hence converges to a limit,
which we define to be T'(f). Note that the definition of 7°(f) is indepen-
dent of the chosen sequence { f,,}, and that the resulting transformation

T has all the required propertics.

‘We now discuss duality of lincar transformations. Whenever we have
a lincar transformation 7' from a Banach space B; to another Banach
space Ba, it induces a dual transformation, 7* of B} to B, that can
be defined as follows.

Suppose ¢ € B3, (a continuous lincar functional on Bj), then ¢, =
T*(¢2) € By, is defined by £;(fi) = ¢2(T(f1)), whenever fy € B;. More
succinctly

(13) T*(€2)(f1) = €2(T(f1))-

Theorem 5.5 The operator T* defined by (13) is a bounded linear trans-
formation from By to BY. Its norm || T*| satisfies |T'|| = |T*|.

Proof. First, if || fi]ls, < 1, we have that

16 (f0)] = 1L(T)) < LT, < 1]l IT

Thus taking the supremum over all f; € By with || fi]|5, < 1, we see that
the mapping fo — T*(¢2) = £1 has norm < ||T|.

To prove the reverse incquality we can find for any € > 0 an f) € B,
with || f1llz, =1 and [|T(f1)llB, = ||T]| — €. Next, with fo = T(f1) € Ba,
by Proposition 5.3 (with B = Ba) therc is an £3 in B so that ||{z[|5; = 1
but €(f2) > ||T|| — . Thus by (13) one has T*(€2)(f1) > ||T|| — €. and
since || fills, = 1, we conclude || T*(€2)||5: > ||T|| — €. This gives || 7| >
|IT|| — € for any € > 0, which proves the theorcm.

A further quick application of the Halin-Banach theorem is the obser-
vation that in general L! is not the dual of L™ (as opposed to the case
1 < p < oo considered in Theorem 4.1).
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Let us first recall that whenever g € L', the linear functional f — #(f)
given by

(14) fmzfmw

is bounded on L™, and its norm ||¢||(;,=)- is ||g|l;,:. In this way L! can be
viewed as a subspace of (L>°)*, with the L' norm of g being identical with
its norm as a linear functional. One can. however. produce a continuous
linear functional of L™ not of this form. For simplicity we do this when
the underlying space is R with Lebesgue measure.

We let C denote the subspace of L°°(R) consisting of continuous
bounded functions on R. Define the linear function ¢y on C (the “Dirac
delta”) by

to(f) = £(0). fec.

Clearly [4o(f)] < ||fll7.=, f € C. Thus by the extension theorem, with
p(f) = |f]|z<. we sce that there is a linear functional £ on L, extend-
ing ¢y. that satisfies [¢(f)| < ||f]| .=, for all f € L°°.

Suppose for a moment that ¢ were of the form (14) for some g € L!.
Since £(f) = ¢o(f) = 0 whenever f is a continuous trapezoidal function
that excludes the origin, we would have f fgdx = 0 for such functions f:
by a simple limiting argument this gives f ; 9dx =0 for all intervals ex-
cluding the origin. and from there for all intervals 7. Hence the indefi-
nite integrals G(y) = [ g(z) dz vanish, and therefore G’ = g = 0 by the
differentiation theorem # This gives a contradiction, hence the lincar
functional ¢ is not represcntable as (14).

5.4 The problem of measure

We now consider an application of the Hahn-Banach theorem of a dif-
ferent kind. We present a rather stunning assertion, answering a basic
question of the “problem of measure.” The result states that there is a
finitely-additive® measure defined on all subsets of R¢ that agrees with
Lebesgue measure on the measurable sets, and is translation invariant.
We formulate the theorem in one dimension.

Theorem 5.6 There is an extended-valued non-negative function 1, de-
fined on all subsets of R with the following properties:
(i) m(E, U Ey) = m(E,) + m(E2) whenever E1 and E, are disjoint
subsets of R.

4Sce for instance Theorem 3 11, in Chapter 3 of Book 111
5The qualifier “finitely-additive” is crucial
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(ii) m(E) = m(E) if E is a measurable sct and m denotes the Lebesque
measure.

(ili) m(E + h) = m(E) for every set E and real number h.

From (i) we see that 7 is finitely additive; however it cannot be countably
additive as the proof of the existence of non-measurable sets shows. (See
Section 3, Chapter 1 in Book III.)

This theorem is a consequence of another result of this kind, dealing
with an extension of the Lebesgue integral. Here the setting is the circle
R/Z. instead of R, with the former realized as (0, 1]. Thus functions on
R/Z can be thought of as functions on (0, 1], extended to R by periodicity
with period 1. In the same way. translations on R induce corresponding
translations on R/Z. The assertion now is the existence of a generalized
integral (the “Banach integral”) defined on all bounded functions on the
circle.

Theorem 5.7 There is a linear functional f— I(f) defined on all
bounded functions f on R/Z so that:

(a) I(f) >0, if f(x) >0 for all x.

(b) I(afy + Bf2) = al(f1) + BI(f2) for all « and B real.
(c) I(f) = J f(x)dz, whencver f is measurable.

(d) I(fn) = I(f). for all h € R where fy(z) = f(z — h).

The right-hand side of (c) denotes the usual Lebesguce integral.

Proof. The idea is to consider the vector space V of all (real-valued)
bounded functions on R/Z, with Vj the subspace of those functions that
arc mcasurable. We let Iy denote the lincar functional given by the
Lebesgue integral, In{f) = fol f(z)dx for f € Vi. The key is to find the
appropriate sub-linear p defined on V so that

Io(f) <p(f), forall fe V.

Banach’s ingenious definition of p is as follows: We let A = {a),...,an}
denote an arbitrary collection of N real numbers. with #(A) = N denot-
ing its cardinality. Given A, we define M4(f) to be the real number

N
Ma(f) = sup (]—i,-;f(.v +aj)) ,
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and set

p(f) = nf{Ma(f)},

where the infimum is taken over all finite collections A.
It is clear that p(f) is well-defined. since f is assumed to be bounded;

also p(cf) = ep(f) if ¢ > 0. To prove p(f1 + f2) < p(f1) + p(f2), we find
for each ¢, finite collections A and B so that

Ma(f1) <p(fr)+e and Mp(f2) <p(f2)+e.

Let C be the collection {a; + bj}i<i<n,, 1<j<n, Where Ny = #(A). and
Ny = #(B). Now it is casy to sec that

Mc(f1+ f2) < Mc(fi) + Mc(f2).

Next, we note as a general matter that M4 (f) is the samc as M4/ (f')
where f' = f; is a translate of f and A’ = A —h . Also the averages
corresponding to C arisc as averages of translates of the averages corre-
sponding to A and B, so it is casy to verify that

Mc(fi) < Ma(fr) and also  Mc(f2) < Mp(f2).

Thus

p(fi + f2) < Mc(fi + f2) < Ma(fi) + Mp(f2) < p(f1) + p(f2) + 2€.

Letting € — 0 proves the sub-lincarity of p.

Next if f is Lebesgue measurable (and hence integrable since it is
bounded), then for each A

1 N 1
h(f) = /0 (Z f(r+aj)) dz < /0 Ma(f)dz = Ma(f),
j=1

and hence Iy(f) < p(f). Let therefore I be the linear functional extend-
ing Iy from V; to V, whose existence is guaranteed by Theorem 5.2. It
is obvious from its definition that p(f) < 0 if f < 0. From this it follows
that I(f) <0 when f <0, and replacing f by —f we sce that conclu-
sion (a) holds.

Next we obscrve that for each real h

(15) p(f — fn) <0.
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In fact. for h fixed and N given, define the set Ay to be {h.2h, 3h.. ... Nh}.
Then the sum that enters in the definition of M4, (f — fr) is

1

Mz

fx+jh)—f(z+ (G- 1h)).
j::'l

and thus |Ma, (f — fn)] < 2M/N. where M is an upper bound for |f].
Since p(f — frn) < Ma(f — fa) = 0, as N — oc, we sce that (15) is
proved This shows that I(f — fi) <0, for all f and h. However. replac-
ing f by f and then h by —h, we see that I(f, — f) < 0 and thus (d) is
also cstablished, finishing the proof of Theorem 5.7.

As a direet consequence we have the following.

Corollary 5.8 There is a non-negative function m defined on all subsets
of R/Z so that:

(i) m(E| U Ey) = m(Ey) + m(E>2) for all disjoint subsets E; and Es.
(ii) m(E) = m(E) if £ is measurable.
(iii) m(E + h) = m(E) for every h in R.

We nced only take 7(E) = I(xg). with I as in Theorem 5.7, where x g
denotes the characteristic function of E.

We now turn to the proof of Theorem 5.6. Let Z; denote the interval
(j.j+ 1], where j € Z. Then we have a partition U;.c:_oc T, of R into
disjoint sets.

For clarity of exposition. we temporarily rclabel the measure m on
(0,1] = I given by the corollary and call it 1715. So whenever E C Zp we
defined m(F) to be 7ig(F). More gencrally, if £ C I; we set m(E) =
mo(E ~ j)

With these things said. for any sct E define m(F) by

o o0

(16) m(E)= Y m(ENL)= > m((ENT))—j).

j—=—oc J=—"

Thus 7(F) is given as an extended non-negative number Note that if
E, and Ej arc disjoint so are (E, NZ;) — j and (E, NZ;) — j. It follows
that M (E) U Fy) = (k) + m(Fs). Moreover if F is measurable then
m(E NZ;) =m(ENZ;) and so m(E) = m(E).

To prove (£ + h) = m(E), cousider first the case h = k € Z. This is
an immediate consequence of the definition (16) once one observes that
(E+k)NT4k)—(j+k)=(ENTI;)—j, forall 3. k€ Z.
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Next suppose 0 < h < 1. We then decompose ENT; as E; U E;-’ , with
Ej= EN(j,j+1—h] and Ef/ =EN(j+1—h,j+1]. The point of
thlb decomposition is that E’ + h remains in Z; but E” + h is placed
in Z,41. In any casc, E'=J; E’ U, EY, and thL un1on is disjoint.

Thus using the first additivity propcrty proved above and then (16)
we sce that

Z E/ _I_m(E//))
Similarly
m(E+h)= Y (m(E}+h)+m(E] +h).
j=—0oc

Now both FE} and E} + h arc in Z;. hence m(E}) = m(E} 4 h) by the
translation invariance of mg and the definition of 7 on subscts of Z;.
Also E} isin Z; and EY + his in Zj;1, and their measures agrec for the
same rcasons. This establishes that m(E) = m(E + h), for 0 < h < 1.
Now combining this with the translation invariance with respect to Z
alrcady proved, we obtain conclusion (iii) of Theorem 5.6 for all h, and
hence the theorem is completely proved.

For the corresponding extension of Lebesgue measure in R¢ and other
related results, sec Exercise 36 and Problems 8* and 9*.

6 Complex LP and Banach spaces

We have supposed in Section 3.2 onwards that our L? and Banach spaces
are taken over the reals. However. the statements and the proofs of
the corresponding theorems for those spaces taken with respect to the
complex scalars are for the most part routine adaptations of the real casc.
There are nevertheless several instances that require further comment.
First, in the argument concerning the converse of Ildlder’s incquality
(Lemma 4.2), the definition of f should read

1(2) = lg(@)]" ”‘*”—”(—)

where now “sign”™ denotes the complex version of the signum function,
defined by sign z = z/|z| if 2 # 0, and sign0 = 0. There are similar oc-
currences with g replaced by g,,.

Second, while the Hahn-Banach theorern is valid as stated ouly for real
vector spaces, a version of the complex case (sufficient for the applications
in Scetion 5.3 where p(f) = ) can be found in Excrcise 33 below.
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7 Appendix: The dual of C(X)

In this appendix, we describe the bounded linear functionals of the space C(X)
of continuous real-valued functions ou X To begin with, we assume that X is a
compact metric space Our main result then states that if £ € C(X)", then there
exists a fimite signed Borel measire jo (this measure is sometimes referred to as a
Radon ncasure) so that

o°hH = /x f(x)du(z) for all f € C(X).

Before proceeding with the argument leading to this result, we collect some basic
facts and definitions

Let X be a metric space with metric d. and assume that X is compact. that is.
every covering of X by open scts contains a finite sub-covering The vector space
C(X) of real-valued continuous functions on X equipped with the sup-norm

Il = sup [f(z)]., feC(X)
reX

is a Banach space over R Given a continuous function f on X we define the
support of f. denoted supp(f). as the closurc of the set {z € X : f(z) # 0} ©

We recall some simple facts about continuous functions and open and closed
sets in X that we shall use below

(i) Separation. If A and B are two disjoint closed subscts of X, then there
exists a continuous function f with f =1on 4, f =0o0n B,and 0 < f < 1in the
complements of A and B.

Indeed, one can take for instance

d(z, B)

@) = AT de By

where d(z, B) = infy¢ g d(z, y), with a similar definition for d(x, A).

(ii) Partition of unity. If K is a compact set which is covered by finitely many
open scts {Ok },’X=l, then there exist continuous functions m for 1 <k < N so
that 0 < nx < 1, supp(7x) C Ok, and sz=| nk(x) = 1 whenever £ € K Moreover,
0<Yr ml(z) <lforallzeX.

Onc can argue as follows For each r € K, there exists a ball B(x) centered at x
and of positive radius such that B(r) C O; for some i Since |J, o, B(x) covers K.
we can select a finite subcovering, say U;ﬁ_ 1 B(z;) Foreach 1 <k < N.let Uy
be the union of all open balls B(x;) so that B(a;) C Ok, clearly K C U,’f_l Us.
By (i) above. there exists a continuous function 0 < @x < I so that ¢ = 1 on Ux
and supp(px) C Ok If we define

m=¢1, m=pl —¢1), v =pn(1-¢1) (1 —pn-1)

6This is the common usage of the terminology “support ” In Book 111, Chapter 2, we
used “support of f” to indicate the set where f(z) # 0, which is convenient when dealing
with measurable functions
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then supp(mx) C Ok and
m+ - +ov=1—(1—-¢1) (1—en),

thus guaranteeing the desired properties

Recall” that the Borel o-algebra of X, which is denoted by Bx, is the smallest
o-algebra of X that contains the open sets Elements of Bx are called Borel sets.
and a measure defined on By is called a Borel measure. If a Borel measure is
finite. that is u(X) < oc, then it satisfies the following “regularity property”- for
any Borel set E and any € > 0, there are an open set O and a closed set F such
that E C O and p(O — E) <e¢, while F C E and u(E — F) < e.

In general we shall be interested in finite signed Borel measures on X. that
is, nieasures which can take on negative values. If y is such a measure. and p*
and p  denote the positive and negative variations of u, then p = u* — u~, and
integration with respect to pis defined by [ fdu = [ fdut — [ fdu~. Conversely,
if p1 and po are two finite Borel measures, then g = pu; — po is a finite signed Borel
measure, and [ fdp = [ fdp1 — [ fdpa.

We dcenote by M(X) the space of finite signed Borel measures on X. Clearly,
M(X) is a vector space which can be equipped with the following norm

lell = el(X),

where |u| denotes the total variation of p. 1t is a simple fact that M(X) with this
norm is a Banach space

7.1 The case of positive linear functionals

We begin by considering only lincar functionals € . C{X) — R which are positive,
that is, £(f) > 0 whenever f(z) >0 for all z € X Obscrve that positive linear
functionals arc automatically bounded and that ||¢]] = #(1). Indeed, note that
[f(x)] < |Ifll, hence ||f]] £ f > 0, and thercfore |£(f)| < #(1)| fll

Our main result goes as follows.
Theorem 7.1 Suppose X is a compact metric space and € a positive linear func-

tional on C(X). Then there exists a unigue finite (positive) Borel measure i so
that

(17) o) = /X fe)dulz)  for all f € C(X)

Proof.  The existence of the measure p is proved as follows Consider the
function p on the open subscts of X defined by

p(O) = sup {#(f), where supp(f) C O.and 0 < f <1},

"The definitions and results on measure theory needed in this section, in particular the
extension of a premeasure used i the proof of Theorem 7 1, can be found in Chapter 6
of Book 111
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and let the function p. be defined on all subsets of X by
s (E) = inf{p(O). where E C O and O is open}

We contend that p. is a metiic exterior measure on X.

Indeed, we clearly must have p.(E1) < u.(E») whenever E1 C E» Also, if O is
open, then p.(O) = p(O) To show that p. is countably sub-additive on subsets
of X, we begin by proving that p. is in fact sub-additive on open sets {Oy}, that
is,

(1) - (U ok> < 3 (00,
h—1

k—1

To do so, suppose {Ox}22 | is a collection of open scts in X, and let O = [ J;2 ; Ok

1f f is any continnous function that satisfies supp(f) C O and 0 < f <1, then
by compactness of K = supp(f) we can pick a sub-cover so that (after relabeling
the sets O, if necessary) K C Up_, Ox  Let {nx}2_, be a partition of unity of
{01, .On} (as discussed above in (ii)), this means that each 7 is continuous
with 0 < nx < 1, supp(nx) C Ok and Z,’:’:l Ne(z) = 1 forall £ € K. Hence recalling
that p. = p on open sets. we get

N N 20
€Y= 0m) <Y 1lO) < 1l Ok).
k—1 k-1

k=1

where the first inequality follows becanse supp(fin) C O and 0 < fge <1 Tak-
ing the supremum over f we find that p. (U, Ok) < 375 1 (Ok).

We now turn to the proof of the sub-additivity of j. on all scts Suppose {Ex}
is a collection of subsets of X and let € >0 For cach k, pick an open set Oy
s0 that Ex C Ok and g, (Of) < e (Ex) + €27F  Sinee O = UJ Ok covers |J Fi. we
must have by (18) that

el Br) S pa(0) S 37 pa(O0) S Y pa(Bie) + e
k k

and consequnently p. (I Ex) < >, p2.(Fx) as desired

The last properly we must verify is that p, is wetric, in the sense that if
d(E\. F2) > 0. then p.(F1 U FE) = po(E1) + pa(E2) Indeed, the separation con-
dition iniplies that there exist disjoint open sets O1 and O so that E; C O
and F» C Oz Therefore. if O is any open subset which contains £y U Fa. then
O > (0ONO;)U(ONO3). where this union is disjoint. Hence the additivity of ji.
on disjoint open sets, and its nionotonicity give

1:(O0) > 11 (ONOY) + 11-(O N O2) > pu(E1) + juu(F2).
since F1 C (ONOy) and E2 C (ONO2) So u.(Fi1 U E2) > i (E1) + p-(FE2), and

since the reverse inequality has already been shown above, this concludes the proof
that p. is a metric exterior 1necasure.
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By Theorems 11 and 12 in Chapter 6 of Book 111, there exists a Borel measure
p on Bx which extends . Clearly, p is finite with p(X) = €(1)

We now prove that this measure satisfies (17) Let f € C(X) Since f can be
written as the difference of two continuous non-negative functions. we can assume
after rescaling. that 0 < f(x) < 1 for all z € X The idea now is to slice f, that is.
write f = Y fn where cach f,, is continuous and relatively small in the sup-norm
More precisely, let N be a fixed positive integer. define Oy = X, and for every
integer n > 1. let

O,={reX f(z)>((n-1)/N}

Thus On D Onsr and On1 = @ Now if we define

1/N if r € Ony,
f't(":): f(-t)_(n_l)/N ifJ'EO,,—O,,H,
0 ifz € Oy.

then the functions f,, are coutinuous and they “pile up” to yield f, that is, f =
Z;:’__] fn Since Nf, =1on Oy 1,supp(Nfn) C O, C Op_1.andalso0 < Nf, <
1 we have p(0,,.1) < HN f,,) < p(Os—1). and therefore by linearity

N
(19) Z On1 <£’(f)<—Zu (On-1)

The properties of N fn also imply (4(Ons1) < [ N fndp < 1(On), hence
(20) Z/—L(On-‘-l) < //dﬂ << le On
n—I n=1

Cousequently. combining the imequalities (19) and (20) yields

2p(X)
e

Iaf)— [ran] <

In the limit as N — oo we conclude that €(f) = [ f du as desired

Finally, we prove uniqueness Suppose ' is another finite positive Borel measure
on X that satisfies ¢(f) = [ fdy' for all f € C(X) If O is an open set. and
0 < f <1 with supp(f) C O, then

€)= [raw = [ rau< /O Ldy' = /(0)

Taking the supremum over f and recalling the definition of u yiclds p{OQ) < p'(O).
For the reverse inequality. recall the inner regularity condition satisfied by a finite
Borel neasure given e > 0, there exists a closed set K so that K C O, and p'(O —
K) < € By the separation property (i) noted above appliced to K and O°, we can



32 Chapter 1 LY SPACES AND BANACH SPACES

pick a continnous function f so that 0 < f <, supp(f)C O and f=1on K
Then

#'(0)Su'(KHfS/deﬂ'+(sf(f)+(5/t(0)+(

Since ¢ was arbitrary, we obtain the desired inequality, and therefore u(Q) = i'(O)
for all open sets O. This implies that p = p’ on all Borel sets. and the proof of
the theoren is complete.

7.2 The main result

The main point is to write an arbitrary bounded linear functional on C(X) as the
diffcrence of two positive linear functionals.

Proposition 7.2 Suppose X is a compact metric space and let ¢ be a bounded
linear functional on C(X). Then there exist positive linear functionals €* and ¢~
s0 that £ = £t — ¢ . Moreover, |[¢|| = €7 (1) + ¢ (1).

Proof Tor f € C(X) with f > 0, we define

7(f) =sup{f(¢) 0<p < f}

Clearly. we have 0 < €(f) < ||2|lIf]] and £(f) < ¢ (f) Ifa >0 and f >0, then
" (af) = af™(f). Now suppose that f,g >0 On the one hand we have £*(f) +
(@) 0T (f+g), because if 0 < p< fand 0< P < g, then 0< p+ Y < f+g
On the other hand, suppose 0 < ¢ < f + g, and let 1 = min(yp, ) and 2 = ¢ —
@1. Then 0 < 1 < f and 0 < ¢ < g, and () = €(p1) + U(p2) < () + 01 (g)
Taking the supremum over ¢, we get €7 (f +g) < €Y(f)+£'(g). We conclude
from the above that £¥(f + g) = € (f) + ¢ (g) whenever f,g > 0

We can now extend ¢ to a positive lincar functional on C(X) as follows Given
an arbitrary function f in C{X) we can write f = f* — f~, where f¥.f~ >0,
and define ¢* on f by £¥(f) = £*(f*) — ¢+ (f~) Using the linearity of #~ on non-
negative functions. one checks casily that the definition of £¥(f) is independent
of the decomposition of f into the difference of two non-negative functions From
the definition we sce that £% is positive. and it is easy to check that 7 is linear
on C(X), and that [|€F] < ||€]-

Finally, we define ¢~ = ¢~ — ¢, and see immediately that ¢~ is also a positive
linear functional on C(X)

Now since ¢* and £~ arc positive. we have [[¢!] = ¢*(1) and [|€7] = ¢ (1),
therefore ||€]| < €7(1) + €7 (1). For the reverse inequality, suppose 0 < ¢ < 1 Then
{12¢ — 1] < 1, hence ||¢]] > ¢(2¢ — 1). By lincarity of ¢, and taking the supremum
over ¢ we obtain ||€]] > 2¢7(1) — £(1) Since #(1) = £Y(1) — €7 (1) we get ||¢] >
£7(1) + ¢~ (1), and the proof is complete

We are now recady to statc and prove the main result.

Theorem 7.3 Let X be a compact metric space and C(X) the Banach space of
continuous real-valued functions on X Then, given any bounded linear functional ¢
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on C(X). there crists a unique finite signed Borel measure p on X so that
of) = / f(x@)dp(ey  for all f € C(X)
X

Moreover, ||#]] = ||t = [u|(X) In other words C(X)* is isometric to M(X).

Proof. By the proposition. there exist two positive linear functionals ¢* and £~
so that £ = ¢ — ¢~. Applying Theorem 7 1 to cach of these positive linear func-
tionals yields two finite Borel measures p1 and po. If we define p = py — p2, then
u is a finite signed Borel measure and ¢(f) = [ fdu

Now we have

()| < / \Fldl] < 11 (X,

and thus ||€]] < |p|(X) Since we also have |p|(X) < pi{X) + pe(X) =£7(1) +
£ (1) = ||| we conclude that ||€]] = |p|(X) as desired

To prove uniqueness, suppose f fdp= f f dyt’ for some finite signed Borel mea-
sures ¢ and p', aud all f € C(X) Then if v=p— ', one has [ fdv =0, and
consequently. if v1 and v are the positive and negative variations of f, onc finds
that the two positive linear functionals defined on C(X) by ¢°(f) = [ fdv? and
¢~ (f)=f fdv™ are identical By the uniquencss in Theorem 7.1, we conclude
that v~ = v~ , hence v = 0 and p = 4/, as desired.

7.3 An extension

Because of its later application. it is useful to observe that Theorem 7 1 has an
extension when we drop the assumption that the space X is compact Here we
define the space Cp(X) of continuous bounded functions f on X, with norm || f}| =
sup,¢ x |f(z)].

Theorem 7.4 Suppose X is a metric space and £ a positive linear functional on
Co(X). For simplicity assume that ¢ is normalized so that £(1) = 1. Assume also
that for each ¢ > 0, there is a compact set K. C X so that

(21) [e(f)I < sup [f@)] +ellfll.  forall f € Cy(X).
rC K¢
Then there cxists a unique finite (positive) Borel measure u so that
(40 = [ f@)duta).  for all f € CoX)
X

The extra hypothesis (21) (which is vacuous when X is compact) is a “tightness”
assuimption that will be relevant in Chapter 6. Note that as before [#(f)] < ||fll
since #(1) = 1. even without the assumption (21)

The proof of this theorem proceeds as that of Theorem 7 1. save for one key
aspect. First we define

p(O) = sup {4(f), where f € Cp(X), supp(f) C O,and 0 < f < 1}.
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The change that is required is in the proof of the countable sub-additivity of
p. in that the support of f’s (in the definition of p(O)) are now not necessarily
compact In fact. suppose O = |J;=, Ok is a countable union of open sets. Let C be
the support of f, and given a fixed ¢ > 0. set K = C N K. with K, the compact
set arising in (21) Then K is compact and [Jio.; Ok covers K Proceeding as
before. we obtain a partition of unity T}k};:/_l, with 7 supported in Op and
Z,:‘_, m(z) =1, forze K Now f—>;" | fre vanishes on K. Thus by (21)

N
]f(f) - lUm)| <e
A=1
and henee
6N <Y p(O) +¢
k-1

Since this holds for each ¢. we obtain the required sub-additivity of p and thns
of . The proof of the thcorem can then be concluded as before

Theorem 74 did not require that the metric space X be either complete or
separable Ilowever if we make these two further assumptions on X. then the
condition (21) is actually necessary

Indeed, suppose £(f) = f ¢ [ du, where p is a positive finite Borel measure on X,
which we may assume is normalized, £(X) =1 Under the assumnption that X is
complete and separable, then for each fixed € > 0 there is a compact set K. so
that p(K{) <e. Indeed, let {ck} be a densc sequence in X Since for cach m
the collection of balls {By/m(ce)}i> 1 covers X. there is a finite N, so that if
O = UkNT, By/m(ck). then p(Om) > 1—c/2™.

Take Kc=[Ne;Om Then p(Kc) > 1—¢, also, K. is closed and totally
bounded. in the scnse that for every é > 0, the set K, can be covered by finitely
many balls of radins § Since X is complete, K. must be compact. Now (21)
follows immediately.

8 Exercises

1. Consider I> = I’(R?) with Lebesguc measure Lot fo(r) = |x| @ if |z| < 1.
fo(a) =0 for |z] > 1, also let fo (o) = [2|7% if |v| > 1. foc(z) =0 when |z] < 1
Show that

(a) fo € L? if and only if pa < d

(b) fx € LP if and only if d < pax

(¢) What happens if in the definitions of fo and fx we replace [z|™* by
|| ¢/(log(2/|z])) for |x] < 1, and |of * by |£] */(log(2|z])) for |z| > 1?

2. Consider the spaces LP(RY). when 0 < p < 0o
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(a) Show that if [|f +gller < ||fllLe + llgllLe for all f and g. then necessarily
p21

(b) Consider LP(R) where 0 < p <1 Show that there are no bounded linear
functionals on this space In other words. if ¢ is a linear function LP(R) — C
that satisfics

(N < M| fllLnxy forall f € LP(R) and some M > 0,
then € = 0.

[Hint For (a), prove that if 0<p <1 and z,y >0, then 22 + 3 > (z + )
For (b). let F be defined by F(r) = €(xz), where x. is the characteristic func-
tion of [0, z]. and consider F(z) — F(y).]

3. If f€ L? and g € L9, both not identically equal to zero, show that equality
holds in Holder’s incquality (‘Theorem 1 1) if and only if there exist two non-zero
constants a.b > 0 such that a|f(z)|” = blg(z)|? forae z

4. Suppose X is a measure space and 0 < p< 1

(a) Prove that ||fgll,r > ||fllzrllgllre Note that g, the conjugate exponent of
p, 1s negative

(b) Suppose fi1 and f2 arc non-negative. Then || fi + falli» > [|fillee + || f2ller

(c) The function d(f,g) = ||f = g||}.» for f.g € L? defines a metric on LP(X)

5. Let X be a measure space Using the argument to prove the completencss
of L?(X), show that if the sequence {fn} converges to f in the L? norm, then a
subsequence of {f,} converges to f alinost everywhere

6. Let (X.F, i) be a measure space. Show that.
(a) The simple functions are dense in L% (X) if u(X) < oc, and;
(b) The simple functions are dense in LP(X) for 1 < p < oo

[Hint. For (a), use F¢; = {x € X A_]Ig < flz) < w} where —j < ¢ < j. and
M =||f||L= Then consider the functions f; that equal M£/j on k¢, For (b) use
a construction similar to that in (a).]

7. Consider the LP spaces, 1 < p < 00. on R? with Lebesgue measure. Prove that

(a) The family of continuous functions with compact support is dense in L?,
and in fact:

(b) The family of indefinitely differentiable functions with compact support is
densc in L?
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The cases of L' and L? are in Theorem 2.4, Chapter 2 of Book 111, and Lemma 3 1,
Chapter 5 of Book III

8. Suppose 1 < p < o0, and that R? is equipped with Lebesgue measure  Show
that if f € L?(R"), then

f(z+h) - f(@)l1r -0 as|h| - 0.

Prove that this fails when p = oo

[Hint: By the previous exercise, the continuous functions with compact support
are dense in LP(R?) for 1 < p < oo See also Theorem 2 4 and Proposition 2.5 in
Chapter 2 of Book 111

9. Suppose X is a measurc space and 1 < py < p; < oc.

(a) Consider LP® N LP! equipped with

[fllzronrrs = [[fllLro + [1fllLr

Show that || - ||Lronrpr is @ norm, and that LP? N LP' (with this norm) is a
Banach space.

(b) Suppose LP® + LP! is defined as the vector space of measurable functions f
on X that can be written as a sum f = fo + f1 with fo € LP? and f; € L.P'.
Consider

1Fllro 40 = inf {[[follLre + I /illLr1 },

where the infimum is taken over all decompositions f = fo + fi with fo €
LP% and fi € LP'. Show that || ||Lro4rr»1 is a norm, and that LP° + LP!
(with this norm) is a Banach space.

(c) Show that LP C LP° + LP! if po < p < m

10. A measure space (X, i) is separable if there is a countable family of measur-
able subsets {Fx}%<, so that if E is any measurable set of finite measure, then

wWENE,,)—0 ask—0

for an appropriate subsequence {nx} which depends on £ Here AAB denotcs the
symmetric difference of the sets A and B, that is,

AAB = (A-B)U (B — A).

(a) Verify that R? with the usual Lebesgue measure is separable.

(b) The space LP(X) is separable if therc exists a countable collection of ele-
ments {fr}az; in L? that is dense Prove that if the measure space X is
separable, then LP is separable when 1 < p < o0.
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11. In light of the previous exercise. prove the following:

(a) Show that the space L>(R) is not separable by constructing for each a € R
an fo € L™, with [[fo — foll > 1, ifa #b

(b) Do the same for the dual space of L™ (R).

12. Suppose the measure space (X.u) is separable as defined in Exercise 10. Let
1<p<ocand 1/p+1/g=1. A sequence {f,} with f, € L? is said to converge
to f € L? weakly if

(22) /f,.g dip — /fg dp  for every g € L9

(a) Verify that if || f — fa]lL» — 0, then f, converges to f weakly

(b) Suppose sup,, [|fullrr < o0 Then, to verify weak convergence it snffices to
check (22) for a dense subset of functions g in L.

(c) Suppose 1 < p < oc. Show that if sup,, || f»|L» < co, then there exists f €
I”, and a subsequence {rn} so that f,, converges weakly to f.

Part (c) is known as the “weak compactness”™ of L? for 1 < p < oc. which fails
when p = 1 as is seen in the exercise below

[Hint: For (b) use Exercise 10 (b) ]

13. Below arc somne examples illustrating weak convergence
(a) fa(z) =sin(2xnz) in L”([0.1]). Show that f, — 0 weakly

(b) falx) = n'Px(nz) in LP(R) Then f, — 0 weakly if p > 1, but not when
p = 1. Here x denotes the characteristic function of [0, 1].

(¢) fo(zx) =1+ sin(2rnz) in L'([0.1]). Then f, — 1 weakly also in L'([0, 1]),
[[frllzr = 1, but || fn — 1]|z1 does not converge to zero. Compare with Prob-
lem 6 part (d)

14. Supposc X is a measure space, 1 < p < 20. and suppose {f»} is a sequence of
functions with || f|lzr < M < oco.

(a) Prove that if f,, — f ae then f, — f weakly.
(b) Show that the above result may fail if p = 1

(¢) Show that if f,, — f1 a.c. and fn — fo weakly, then fi = fo ae

15. Minkowski’s inequality for integrals. Suppose (Xi,j1) and (X2, u2)
are two measure spaces, and 1 < p < oo Show that if f(z1.r2) is measurable on
X1 x X» and non-negative, then

/ e, z2) dusa < / 1f (@172 llLe xoy dito

LP(X,)
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FExtend this statement to the case when f is complex-valued and the right-hand
side of the incquality is finite.

[Hint For 1 < p < oc, use a combination of Holder’s incquality, and its converse
in Lemma 4 2 ]

16. Prove that if f; € LPi(X). where X is a mecasure space, 3 =1,. N, and
Z;Nzl 1/p; = 1 with p;, > 1, then

N N
WTT il < TT 000 ee
j-1 =1

This is the multiple Holder inequality

17. The convolution of f and g on k? equipped with the Lebesgue measure is
defined by

(F2)e) = [ fe=paw)y

(a) If feL?P, 1<p<oc,and g€ L', then show that for almost every z the
integrand f(x — y)g(y) is integrable in y, hence f x g is well defined. More-
over, f*xg € L? with

W *gller <NSflreligller

(b) A version of (a) applies when g is replaced by a finite Borel measure g: if
f € L?. with 1 < p < oc, define

(i) = [ 1= ) duto),

and show that || f * g|[re < [|f]lLe|p](RY).

(¢) Prove thatif f € I.” and g € LY, where p and ¢ arc conjugate exponents. then
S *xg € L> with |[f*g|lo= <|[fll.rllgllre Moreover. the convolution f x g
is uniformly continuons on R. and if 1 < p < oc. then lim,_(f * g)(x) =
0

[Hint For (a) and (b) use the Minkowski inequality for integrals in Exercisce 15
For part (c¢). usc Exercise 8]

18. We counsider the L? spaces with mixed norm, in a special case that is useful
is several contexts

We take as our nnderlying space the product space {(z,t)} = R? x R, with the
prodnct measure drdt, where dr and dt are Lebesgue measures on RY and R
respectively  We define Li(L2) = LP7. with 1 <p < o0, | <7 <oc. to be the
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space of cquivalence classes of jointly measurable functions f(«,t) for which the

1l = ( /ﬁ ( / d If(r-t)I’dJr)'L’ dt)+

is finite (when p < 20 and r < oc). and an obvious variant when p = oc or r =

norim

(a) Verify that L” " with this norm is complete. and hence is a Banach space

(b) Prove the gencral form of Hélder’s inequality in this context

[, 1rteogte0ldzde <1l gl o
1% xR

with 1/p+1/p'=Tand 1/r+ /1" =1

(¢) Show that if f is integrable over all sets of finite measure. then

I/llcs - = sup

/ Sz, t)g(z, t) dedt],
JREXK

with the sup taken over all g that are simple and ||g| ;- ,» <1

(d) Conclude that the dual space of LP" is L””’I, fl<p<oc,and 1 <r < oo

19. Young’s inequality. Suppose 1 < p.q.r < oc Prove the following on R?

If *gllee < |[flleellgllr  whenever 1/g=1/p+1/r—1

Here, f % g denotes the convolution of f and g as defined in Exercise 17.
[Hint: Assume f,g > 0, and use the decomposition

fwele - ) = F)°9= - )’ @) 9z~ y)'"]
for appropriate a and b, together with Excrcise 16 to find that

1

\ [ 16t =) dy’ < I gl ( [15wPige- y)rdy)" ]

20. Suppose X is a measure spacc. 0 < po <p < p1 <00, and f € LP°(X)nN
L”Y(X) Then f € LP(X) and
Iflee < Ifllee 1fLm,  if tis chosen so that % =Lty

t
Py r1

21. Recall the definition of a convex function (Sce Problem 4. Chapter 3, in
Book IIT ) Suppose y is a non-negative convex function on R and f is real-valued
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and integrable on a measure spacc X, with g(X) =1 Then we have Jensen’s

¢</deu) S/Xsa(f)du

Note that if (/) = [t|P, 1 < p. then ¢ is convex and the above can be obtained

from 1I8lder’s inequality Another interesting case is p(t) = e*'.

inequality.

. . . N
[Hint- Since ¢ is convex, one has, (3 ) <3 ;’_, a;¢(r,;). whenever a;,
. . . N —

arercal, a; > 0. and 377, a, = 1]

22. Another inequality of Young Suppose p and ¢ arc both continuous,
strictly increasing functions on [0, 00) that are inverscs of cach other. that is.
(poy)(z)=xforallz >0 Let

d(z) = /OI pu)du and T(r)= /()r W(u)du

(a) Prove: ab < ®(a) + ¥(b) for all a,b >0

In particular, if @(z) = zP~" and ¥(y) = y?~ ! with 1 <p < oo and 1/p +
1/q = 1, then we get ®(z) = 2P /p, ¥(y) = y?/q, and

A’B'"° <9A+(1-6)B forall AB>0and0<6<I.
(b) Prove that we have equality in Young’s inequality only if b = p(a) (that is.

a = (b)).

[Hint Consider the arca ab of the rectangle whose vertices are (0, 0). (a,0), (0.b)
and (a,b), and couipare it to areas “under” the curves y = ®(z) and z = ¥(y) |

23. Let (X, ) be a measure space and suppose $(t) is a continuous, convex, and
increasing function on [0, oc), with (0) = 0. Define

L® = {f measurable : / &(|f(z)|/M)dp < > for some M > 0},
X

and

Iflle = inf /X‘P(If(:c)l/M)dug 1.

M>0

Prove that.
(a) L® is a vector space.
(b)Y || |lre is a norm

(¢) L® is complete in this norm
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The Banach spaces L% are called Orlicz spaces Note that in the special case
o(t) = t?.1<p<oc.then L® = [P

[Hint Observe that if f € L®. then limyx-.o Jx ®(f|/N)ydu = 0. Also, use the
fact that there exists A > 0 so that ®(¢) > At for all ¢ > 0]

24. Let 1 <po<p1 <

(a) Consider the Banach space LPY N LPY with norm || f||zrorr = || fllzro +
Wfll»1 (See Exercise 9.) Let

o f0<t<1.
<I)(t)*{t"' if 1 <t<oo

Show that L® with its norin is equivalent to the space LP N LP' In other
words, there exist A. B > 0, so that

AHfHI,Pum,m S ||f||L4> S BHf“LPUﬂLPl .

(b) Similarly, consider the Banach space LP® 4+ LP' with its norm as defined in
Exercise 9 Let

t -1
u f0<u<1.
Y(t) = /(; Y(u)du  where yY(u) = { W' if 1 < < co.

Show that LY with its norm is equivalent to the space LP0 4 LP!.

25. Show that a Banach space B is a Hilbert space if and only if the parallelogram
law holds

17+ gl + 15 = gll* = 20171 + llglf*)-

As a consequence, prove that if LP(R?) with the Lebesgue measure is a Hilbert
space, then necessarily p = 2.

[Hint: For the first part. in the real case, let (f,g) = 2(|lf + gl®> + I — gll*) ]

26. Suppose 1 < po,p1 < oc and 1/py + 1/qo = 1 and 1/py + 1/q1 = 1. Show that
the Banach spaces LP° N LP' and LY + L9 are duals of each other up to an
equivalence of norms. (Sce Exercise 9 for the relevant definitions of these spaces.
Also, Problem 5° gives a generalization of this result )

27. The purpose of this exercise is to prove that the unit ball in LP is strictly
convex when I < p < oc. in the following sense Here LP is the space of real-

valued functions whose p*™" power are integrable Suppose ||follzr = [|fillLr = 1.
and let

fi=(=tfo+th

be the straight-line segment joining the points fo and fi Then || fi||r» < 1 for all
t with 0 < ¢ < 1, unless fo = fi.
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(a) Let fe LPandg € L7, 1/p+1/q=1.with|fjl.» =l and lglira =1 Then

/fqdﬂ=l

only when f(r) = sigug(z){q(w)r"'

(b) Suppose [\ fir|l.r =1 for some 0 <t <1 Vind g € LY, ||g|]jLe = 1. so that

/ frgdu—1

and let F(t) = [ fegdp Observe as a result that J7(¢) = 1 forall 0 <# <1
Conclude that f; = fo for all 0 < ¢ < 1.

(¢) Show that the strict convexity fails when p =1 or p = oo What can be said
about these cases?

A stronger asscrtion is given in Problem 6*

[Hint To prove (a) show that the case of equality in A°B'7% <0A + (1 — 0)B, for
A, B >0and 0 <0< 1holds only when 4 = B

28. Verify the completeness of A*(R?) and L2(R?).

29. Consider further the spaces A% (R?).

(a) Show that when a > 1 the only functions in A*(RY) are the constants

(b) Motivated by (a), onc defines C* (R?) to be the class of functions f on R?
whosc partial derivatives of order less than or equal to k belong to A (RY)
Here k is an integer and 0 < o <1 Show thal this space, endowed with the

norm
HETEDY

B'<k

o3
x

A(‘(R‘l) *

is a Banach space

30. Supposc B is a Banach space and S is a closed lincar subspace of B The
subspace S defines an cquivalence relation f ~ gtomean f — g € S 1fB/S denotes
the collection of these equivalence classes, then show that B/S is a Banach space
with vorn [|f|ls/s = inf(lf'lls, [~ f)

31. If 2 is an open subset of R? then one definition of L?(S2) can be taken to be the
quotient Banach space B/S. as defined in the previous exercise, with B = Li(R"’)
and S the subspace of those functions which vanish a.e. on € Another possible
space, that we will denote by L2(2°), consists of the closure in LE(R?) of all f
that have compact support in & Observe that the natural mapping of L‘,’:(QO) to
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L2(S) has norm cqual to 1 However, this mapping is in general not surjective
Prove this in the case when €2 is the unit ball and & > 1.

32. A Banach space is said to be separable if it contains a countable dense subset
In Exercise 11 we saw an example of a Banach space B that is scparable, but where
B* is not separable Prove, however, that in general when B is separable. then B
is separable Note that this gives another proof that in general L' is not the dual
of L™.

33. Let V be a vector space over the complex numbers C, and suppose there exists
a real-valued function p on V satisfying

plav) = |a|p(v), ifoaeC.andv eV,
p(v1 +v2) < p(n) +plve). ifvy and v €V

Prove that if V4 is a subspace of V and ¢ a lincar functional on Vj which satisfies
[€o( )} < p(f) for all f € Vo, then £y can be extended to a linear functional £ on V
that satisfies |#(f)| < p(f) for all f € V.

[Hint If u = Re(fp). then fo(v) = u(v) — iu(iv). Apply Theorem 5.2 to u ]

34. Suppose B is a Banach space and S a closed proper subspace. and assume
fo ¢ 8§ Show that there is a continuous linear functional ¢ on B, so that ¢(f) =0
for f € 8. and ¢(fo) =1 The lincar functional £ can be chosen so that |[€]] = 1/d
where d is the distance from fo to S

35. A lincar functional £ on a Banach space B is continuous if and only if {f € B:
¢(f) = 0} is closed
[Hint This is a consequence of Fxercise 34.]

36. The results in Section 5.4 can be extended to d-dimensions

(a) Show that there exists an extended-valued non-negative function 7 defined
on all subscts of K¢ so that (i) 7 is finitely additive; (i) m(E) = m(E)
whenever F is Lebesgue measurable, where m is Lebesgue measure. and
m(E + h) = m(E) for all sets E and every h € R? Prove this is as a conse-
quence of (b) below

(b) Show that therc is an “integral” I, defined on all bounded functions on
R?/Z%, so that I(f) > 0 whenever f > 0, the map f +— I(f) is lincar. I(f) =
flkd/'/ﬂ [ dz whenever f is measurable, and I(f,) = I(f) where fr(2) = f(« —

h). and h € R

9 Problems

}- The spaces L and L' play universal roles with respect to all Banach spaces
In the following sense.
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(a) If B is any scparable Banach space. show that it can be realized without
change of norm as a lincar subspace of L>(Z) Prccisely, prove that there
is a lincar operator i of B into L>(Z) so that ||i(f)||Lsz) = [|f|ls for all
feB

(b) Each such B can also be realized as a quotient space of L'(Z) That is, there
is a lincar surjection P of L'(Z) onto B. so that if S = {x € L'(Z) P(z) =
0}, then ||P(z)|s = infyes |z + yllL1(z), for each z € L'(Z) This gives an
identification of B (and its norm) with the quoticnt space L'(Z)/S (and its
normy}, as defined in Exercise 30.

Note that similar conclusions hold for L*°(X) and L'(X) if X is a measure space
that contains a countable disjoint collection of measurable sets of positive and
finite measure.

[Hint For (a), let {fn} be a dense sct of non-zero vectors in B, and let ¢, €
B be such that [|¢,.]ig+ =1 and #o(fn) = ||fall If f € B, set i(f) = {£n( )}
For (b), if z = {zn} € L'(Z), with 3-°°_ |zn| = |zl 1 () < 00, define P by P(x) =
2 xnfa/fall]

2. There is a “generalized limit” L defined on the vector space V' of all real
sequences {s,}3°.1 that are bounded, so that:

(i) L is a linear functional on V
(ii) L{{sn}) > 0if s, >0, for all n.
(i) L({sn}) = limn_oo $n if the sequence {s,} has a limit
(iii) L({sn}) = L({sn+k}) for every k > 1.
(iii) L({sn}) = L({sn'}) if sn — $7, # O for only finitely many n.

[Hint: Let p({sn}) = limsup,_, . (2*—*°2) and extend the linear functional L
defined by L({s»}) = limn_oc $». defined on the subspace consisting of sequences
that have limits |

3. Show that the closed unit ball in a Banach space B is compact (that is, if
Jn € B, ||fa]l €1, then there is a subsequence that converges in the norm) if and
only if B is finite dimensional.

[Hint* If S is a closed subspace of B, then there exists € B with ||z|| = 1 and the
distance between = and S is greater than 1/2]

4. Suppose X is a o-compact measurable metric space, and Cy(X) is separable.
where Cp(X) denotes the Banach space of bounded continnous functions on X
with the sup-norm.

(a) If {un}52; is a bounded sequence in M(X). then there exists a p € M(X)
and a subsequence {un;}521, so that u,; converges to u in the following
{weak™) scnse:

/ g(2) dpn () — / g(z) du(x), for all g € Cy(X)
X X
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(b) Start with a po € M(X) that is positive, and for each f € Ll(po) consider
the mapping f+— fduo. This mapping is an isometry of L'(yo) to the
subspace of M(X) consisting of signed mcasures which are absolutely con-
tinuous with respect to po

(¢) Hence if {f.} is a bounded scquence of functions in L'(po), then there
exist a 4 € M(X) and a subscquence {f,, } such that the measures fn;duo
converge to p in the above sense

5. Let X be a measure space Suppose ¢ and ¥ are both continuous, strictly
increasing functions on [0, oc) which are inverses of each other, that is, (¢ o y)(z) =
z for all > 0. Let

®(z) = /Ox pu)du and Y(z)= /OI P(u) du.

Consider the Orlicz spaces L¥(X) and LY (X) introduced in Exercise 23.

(a) In connection with Exercise 22 the following Hélder-like inequality holds

/lfg| <C|fll.ellgllv for some C >0, and all f € L* and g € LY.

(b) Suppose there exists ¢ > 0 so that $(2t) < ¢®(¢t) for all ¢ > 0. Then the dual
of L% is equivalent to LY.

6." There are generalizations of the parallelogram law for L? (see Exercise 25) that
hold for LP. These are the Clarkson inequalities:

(a) For 2 < p < oo the statement is that

P

AZe + llglls

f+g|” f-g|” 1
2 =32

L

(b) For 1 < p < 2 the statement is that

f+a]* +HL:£q

1
; < 5 (F1Es + llglzs)”,

‘f+g
2

L

where 1/p+1/¢g=1.

(¢) As a result, L? is uniformly convex when 1 < p < oc. This means that
there is a function & = 6(¢) = p(e), with 0 < § < 1, (and 6(¢) — 0 as ¢ —
0), so that whencver ||f|lr = ||g]lr =1, then ||f — g||L.r > ¢ implies that
|54 <1-6

This is stronger than the conclusion of strict convexity in Exercise 27
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(d) Using the result in (¢), prove the following: suppose 1 < p < . and the
sequence {fn}, fn € LP. converges weakly to f. If ||fuller — || f]lzr, then
fr converges to f strongly, that is, ||fn — fllLr = 0 as n — o0

7.* An important notion is that of the cquivalence of Banach spaces Sunppose
By and B2 are a pair of Banach spaces We say that By, and B, are equivalent
(also said to be “isomorphic”) if there is a lincar bijection 7' between B, and B2
that is bonnded and whose inverse is also bounded Note that any pair of finite-
dimensional Banach spaces are equivalent if and only if their dimensions are the
same.

Suppose now we consider LP(X} for a gencral class of X (which contains for
instance, X = R? with Lebesgue measure) Then

(a) L? and L7 are cquivalent if and only if p = ¢

(b) However, for any p with 1 < p < oc, .2 is equivalent with a closed infinite-
dimensional snbspace of L?

8." Therec is no finitely-additive rotationally-invariant measure extending Lebesgue
measure to all subsets of the sphere §¢ when d > 2, in distinction to what happens
on the torus R¢/Z* when d > 2 (Sec Excrcisc 36) This is dne to a remarkable
construction of Hausdorff that uses the fact that the corresponding rotation group
of 8% is non-commutative Tn fact, one can decompose S? into four disjoint sets
A, B. C and Z so that (i) Z is demumerable. (ii) A~ B~ C.but A~ (BUC).

Here the notation A ~ A, mecans that A; can be transformed into Az via a
rotation

9.™ As a consequence of the previous problem one can show that it is not possible to
extend Lebesgne measure on R, d > 3, as a finitely-additive measure on all subsets
of R? so that it is both translation and rotation invariant (that is, invariant under
Euclidean motions) This is graphically shown by the “Banach-Tarski paradox”

There is a finite decomposition of the unit ball 3, = U;V=1 E;, with the sets E,
disjoint. and there are corresponding sets I, that arc each obtained from £, by
a Enclidean motion, with the E; also disjoint. so that U;V=1 E; = By the ball of
radius 2.



2 L? Spaces in Harmonic
Analysis

The important part played in Hilbert’s treatment of
Fredholm theory of integral equations by functions
whose squares are suimmable is well-known. and it was
inevitable that members of the Géttingen school of
mathematics should be led to set themselves the task
of proving the converse of Parseval’s theorem . On
the other hand, efforts made to extend these isolated
results to embrace cases in which the known or un-
known index of summability is other than 2, appear
to have failed .

W. I1. Young, 1912

. T have proved that two conjngate trigonometric se-
ries are at the sae time the Fourier series of LP func-
tions, p>1 That is, if one is, so is the other. My
proof is nnrelated to the theorem of Young-Hansdorff..

M Riesz, letter to G H. Hardy, 1923

3

Some months ago you wrote I have proved that
two conjugate . LP? functions. p > 1" [ wanl the
proof Both 1 and my pupil Titchmarsh have tried
in vain to prove it .”

G H Hardy, letter tlo M Riesz 1923

The fact that LP spaces were bound to play a significant role in har-
monic analysis was understood not long after their introduction. Viewed
from that early perspective, these spaces stood at the nexus between
Fourier series and complex analysis, this connection having been given
by the Cauchy integral and the rclated conjugate function. For this rea-
son methods of complex function theory predominated in the beginning
stages of the subject, but they had to give way to “rcal” methods so as
to allow the extension of much of the theory to higher dimensions

It is the aim of this chapter to show the reader something about both
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of these methods. In fact, the real-variable idecas that will be introduced
here will also be further exploited in the next chapter, when studying
singular intcgral opcrators in R4,

The present chapter is organized as follows. We begin with an initial
view of the role of LP in the context of Fourier series, together with a
related convexity theorem for operators acting on these spaces. Then we
pass to M. Ricsz’s proof of the LP bonndedness of the Hilbert transform,
an iconic example of the use of complex analysis in this sctting.

Form this we turn to the rcal-variable methods, starting with the max-
imal function and its attendant “wcak-type” estimate. The importance
of the weak-type space is that it provides a useful substitute for L' when,
as in many instances, L! estimates fail. We also study another significant
substitute for L!, the “real” Hardy spacc H!. It has the advantage that
it is a Banach space and that its dual space (a substitute for L>) is the
space of functions of bounded mean oscillation. This last function space
is itself of wide interest in analysis.

1 Early Motivations

An initial problem considered was that of formulating an L? analog of
the basic L2 Parscval relation for functions on [0,2x]. This theorem
states that if @, = o Oz" f(6)e~*"? df denotes the Fouricr cocfficients of

a function f in L2([0, 2n]), usually written as

o

(1) fO)~ Y ane™,

n=—oc

then the following fundamental identity holds:

0 1 27T
(2) > |an|2=g/0 |£(6)]2 d8.

n=-—2oC

Conversely. if {a,} is a sequence for which the left-hand side of (2) is
finite, then there exists a unique f in L2([0,27]) so that both (1) and (2)
hold. Notice. in particular, if f € L2([0.27]). then its Fourier cocfficients
{a,.} belong to L?(Z) = ¢2(Z).' The question that arosc was: is there an
analog of this resnlt for LP when p # 27

Here an important dichotomy between the case p > 2 and p < 2 occurs.
In the first case, when f € LP([0,27]). although f is automatically in
L2([0,27]), examples show that no better conclusion than Y |a,|? < oo

1S¢e for instance Scction 3 in Chapter 4 of Book III



1 Early Motivations 49

is possible On the other hand, when p < 2 one can see that cssentially
there can be no better conclusion than 3 |a,|? < o0, with g the dual
cxponent of p. Analogous restrictions must be envisaged when the roles
of f and {a.} arc reversed.

In fact. what does hold is the Hausdorff-Young inequality:

2r 1/p
®) (Stautr) < (55 [ vropas)

and its “dual”

1/q

@ (s [ r@ras) < (L),

both valid when 1 <p <2 and 1/p+1/g=1. (The case ¢ = oo corre-
sponds to the usual L* norm.) These may be viewed as intermediate
results. between the case p = 2 corresponding to Parseval’s theorem, and
its “trivial” case p =1 and q = oo.

A few words about how the incqualitics (3) and (4) were first attacked
arc in order, because they contain a useful insight about LP spaces: often,
the simplest case arises when p (or its dual) is an even integer. Indeed,
when, for example q = 4, a function belonging to L* is the same as its
square belonging to L2, and this sometimes allows reduction to the easier
situation when p = 2. To see how this works in the present situation, let
us take ¢ = 4 (and p = 4/3) in (3). With f given in LP, we denote by F
the convolution of f with itself,

1

27
F0) =5 | f(0—p)f(e) dep.

By the multiplicative property of Fourier coefficients of convolutions we
have

FO)~ Y aie™,

n=—o

with {a,} the Fourier coefficients of f. Parseval's identity applied to F
then yields

3 lanlt = o~ / T\ F@)
n 271_ o )
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and Young’s inequality for convolutions (the periodic analog of Exer-
cise 19, Chapter 1) gives

IFll ez < LI

proving (3) when p =4/3 and ¢ = 4.

Once the case ¢ = 4 has becn cstablished, the cases corresponding to
g = 2k. where & is a positive integer. can be handled in a similar way.
However the general situation. 2 < ¢ < oc. corresponding to 1 < p < 2.
involves further ideas.

In contrast to the above ingenious but special argument. in turns out
that there is a general principle of great interest that underlies such
incqualities. which in fact leads to direct and abstract proofs of both (3)
and (4). This is the M. Ricsz interpolation theorem. Stated succinctly,
it asserts that whencver a lincar opcrator satisfics a pair of inequalitics
(like (3) for p = 2 and p = 1), then automatically the operator satisfics
the corresponding incqualities for the iutermediate exponents: herc all p
for 1 <p < 2. and ¢ with 1/p+ 1/g = 1. The formulation and proof of
this general theorem will be our first, task in the next section.

Before we turn to that, we will describe briefly another initial sonrce for
the role of L? in harmonic analysis. onc which highlights its connection
with complex analysis.

Together with the Fouricr series (1) for f in L?, one considers its
“conjugate function” or “allied serics™, defined by

=, sign(n)
(5) fO)~ Y —Fane™,
n=- oc
where sign(n) = 1 if n > 0. sign(n) = —1 if n < 0. and sign(n) = 0 when
n =02

The significance of this definition is that

l(f(e) +if(6) +a0) ~ ) ane™’ = F(e”),

2
n=0

where F(z) = > anz™ is the analytic function in the unit disc [z] < 1
given as the Cauchy integral (projection) of f, namely:

2n
F(z)= L -Lo)—i(:w do.

2mt J, €Y —z
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Figure 1. The Cauchy integral F'(z) is defined for |z| < 1, while f(6) is
defined for z = ¢.

Morcover, if f is real-valued (that is a, = @-5), sois f and thus f + ag
and f represent respectively the real and imaginary parts of the boundary
values of the analytic function 2F in the unit disc.

The key L? identity linking f and f is a simple consequence of Parse-
val's relation:

1 2w

2
©) FOR @+l = 5 [ 11607 .

2r Jg
An carly goal of the subject was the extension of this theory to LP, and
it was also achicved by M. Riesz.

As he tells it. he was led to the discovery of his result when preparing to
administer a “licenciat” exam to a rather mediocre student. One of the
problems on the exam was to prove (6). To quote Riesz: “ ... However it,
was quite obvious that my candidate did not know Parseval’s theorem.
Before giving him the problem, 1 had thercfore to think if there was
another way for him to arrive at the required conclusion. 1 immediately
realized that it was Cauchy’s theorem that was at the sonrce of the result.
and this observation led me quite directly to the solution of the general
problem, a question that had longtime occupied me.”

What Riesz had in mind was the following argument. If we assume for
simplicity that ap = 0. then under the (technical) assumption that the
analytic function F' is actually continnous in the closure of the unit disc.
one has by the mcan-value theorem (as a simple consequence of Cauchy’s

?Incidentally the conjugate function is the ‘symetry-breaking” operator relevant to
the divergence of Fourier seties considered in Book 1
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theorem) applied to the analytic function F2, the identity

(7) ! %F 9))2do =0
o ), (F(e))"dé = 0.
If we suppose, as above, that f is real-valued, then by considering the
rcal part of 4(F(e®))2, which is (f(e%))? — (f(€'®))?, we immediately
get (6). What became clear to Ricsz is that when we replace F? by F2¢
in the above, with k£ a positive integer, and again consider its rcal part,
the boundedness of f — f in LP, where p = 2k follows. Similar but more
involved arguments worked for all p, 1 < p < oco.
Herc, once again, the Ricsz interpolation theorem can play a crucial
role. We will present these ideas below in the context where the unit disc
is replaced by the upper half-planc.

2 The Riesz interpolation theorem

Suppose (pp, go) and (p1, q1) are two pairs of indices with 1 < p;,¢; < oo,
and assume that

1T e < Mollflleo and  [[T(f)|lzae < M| fllzr

where T is a lincar operator. Does it follow that
1T(Hllre < M| fllz», for other pairs (p,q)?

We shall sec that this inequality will hold with values of p and ¢ de-
termined by a lincar expression involving the reciprocals of the indexes
Do: P1, go and q;. (Lincarity in the reciprocals of the exponents already
arises in the relation 1/p+1/p’ = 1 of dual exponents.)

The precise statement of the theorem requires that we fix some no-
tation. Let (X,u) and (Y,v) be a pair of measurc spaces. We shall
abbreviate the LP norm on (X, ) by writing || f(lz» = [[f|[7r(x ), and
similarly for the L? norm for functions on (Y,dv). We will also con-
sider the space LP® + LPt that consists of functions on (X.u) that can
be written as fo + fi, with f; € LP/(X, 1), with a similar definition for
L+ L9,

Theorem 2.1 Suppose T is a linear mapping from LP° + LP' to L% +
LY. Assume that T is bounded from LP° to L% and from LP' to L%

IT()llcew < Myl fllLeo,

IT()ller < Myl fllzer-
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Then T is bounded from LP to L9,
IT(H)llze < M||f

whenever the pair (p,q) can be written as

1 1-t t 1 1-—1¢ t
= +— and —=—4—

p Po n q qo q

for somet with0 <t < 1. Moreover, the bound M satisfies M < Mé_tM]‘.

|Lp,

We should emphasize that the theorem holds for LP spaces of complex-
valued functions because the proof of it depends on complex analysis.
Starting with the strip 0 < Re(z) <1 in the complex plane, our oper-
ator T' will lead us to an analytic function ®, so that the hypotheses
IT(F)llLse < Mol fllro and | T(f}|Lar < Mil|f|lLr1 are encoded in the
boundedness of ® on the boundary lines Re(z) = 0 and Re(z) = 1, re-
spectively. Moreover, the conclusion will follow from the boundedness of
® at the point ¢ on the real axis. (See Figure 2.)

Re(z) =1

e = A e — o —

Figure 2. The domain of the function ®

The analysis of the function ® will depend on the following lemma.

Lemma 2.2 (Three-lines lemma) Suppose ®(z) is a holomorphic func
tion in the strip S = {z € C: 0 < Re(z) < 1}, that is also continuous
and bounded on the closure of S. If

My = sup |®(iy)] and M; =sup|P(1 + iy)],
y€ER yER

then

sup |®(t +iy)| < My 'M{, forall0<t<1.
yER



54 Chapter 2 L¥ SPACES IN HARMONIC ANALYSIS

The term “threc-lines” describes the fact that the size of @ on the line
Re(z) =t is controlled by its size on the two boundary lines Re(z) =0
and Re(z) = 1. The rcader may note that this lemma belongs to the
family of results of the Phragmén-Lindelof type that were discussed in
Chapter 4, Book II. As with other assertions of this kind. it is deduced
from the more familiar maximum modulus principle. and it is here that
the global assumption that ® is bounded throughout the strip is used.
Notice, however, that the size of the assnmed global bound of © does
not occur in the conclusion. (That some condition on the growth of ® is
nccessary is shown in Exercise 5.)

Proof. We begin by proving the lemma under the assumption that
My =M, =1 and supg<,<, |®(z+iy)| — 0 as |y| — co. In this case,
let M = sup|®(z)| where the sup is taken over all z in the closure of
the strip S. We may clearly assume that M > 0, and let 2y, z2,... be
a scquence of points in the strip with |®(z,)| — M as n — oco. By the
dccay condition imposed on @, the points z,, cannot go to infinity. hence
there exists zg in the closure of the strip, so that a subsequence of {z,}
converges to zg. By the maximum modulus principle, zg cannot be in the
interior of the strip, (unless ® is constaut, in which case the conclusion is
trivial) hence zp must be on its boundary, where || <1 Thus M <1,
and the resnlt is proved in this special casc.

If we only assnme now that My = M, = 1, we define

®(z) = @(z)e‘(zz_l), for cach € > 0.

Since eleHin)® 1] = pe(@*~1=y*+2i2y) e find that |®.(z)] <1 on the
lines Re(z) = 0 and Re(z) = 1. Morcover,

sup |®(z+iy)| —0 aslyl — cc,
0<z<1

since ® is bounded. Thercfore, by the first case, we know that |®.(z)| < 1
in the closire of the strip. Letting ¢ — 0, we sce that |®| < 1 as desired.
Finally, for arbitrary positive values of My and M;, we let ®(z) =
MZ M *®(z). and notc that & satisfies the condition of the previous
case, that is. ® is bounded by 1 on the lines Re(z) = 0 and Re(z) = 1.
Thus [®| < 1 in the strip, which completes the proof of the lemma.

To prove the interpolation thcorem, we begin by cstablishing the in-
cquality when f is a simple function, and it clearly suffices to do so with
I fll» = 1. Also. we recall that to show [|Tf||Le < M| f|lL» it suffices to
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2 The Riesy interpolation theorem

prove. by Lemma 4.2 in Chapter 1, that

} / (T f)gdv

where 1/¢+1/¢’ =1, and g simple with ||g||, . = 1.

< M|flleellgll Lo

For now, we also assume that p < oc and ¢ > 1. Suppose f € L? is
simple with || f||.» = 1. and dcfine

S
/]

1-— z
o= IfPOL where A(z)=p ( " p—) ,
1

Po

and

R 1—
9. = |g|b(z)i where 6(2) = q, ( 7 - + i/) s
g % @

with ¢’ ¢f, and ¢} denoting the duals of q, qg, and ¢; respectively. Then,
we note that f; = f, while

If:llzro =1 if Re(z) =0
£l =1 if Re(z) =1

Similarly [|g.|, ., = 1ifRe(z) = 0and ||g. ||, = 1if Re(z) = 1, and also
g1 = g. The trick now is to consider

B(z) = / (T.)g: dv.

Since f is a finitc sum. f = ) axx g, where the sets Ey are disjoint and
of {inite mecasure, then f, is also simple with

Qg
= E ak| " = x5, -
.fz I k| lak|XEk

Since g = > bjx; is also simple, then

b.
_ E |18(2z) 3
9= = |b]| ‘b]|XPj

With the above notation, we find

. b
P(z) = E PARCINLOR N (/T '-.du).
( ) < | 7\' | J‘ 1akl |bjl (XEk)Xl'J
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so that the function @ is a holomorphic function in the strip 0 < Re(z) <
1 that is bounded and continuous in its closure. After an application of
Holder’s inequality and using the fact that T is bounded on LP° with
bound Mg, we find that if Re(z) = 0. then

1@(2)] < I TfellLeollgzll, oy < Mollfellro = Mo.

Similarly we find |®(z)| < My on the linc Re(z) = 1. Therefore. by the
three-lines lemma, we conclude that @ is bounded by Mi“‘M% on the
line Re(z) =t. Since ®(t) = [(T f)gdv, this gives the desired result. at
least when f is simple.

In general, when f € L? with 1 < p < oc, we may choose a sequence
{fn} of simple functions in LP so that ||f, — f|lL» — O (as in Excrcise 6,
Chapter 1). Since || T(fr)llne < M||frllLe, we find that T(f,,) is a Cauchy
sequence in L? and if we can show that lim, .. T(f,) = T(f) almost
cverywhere, it would follow that we also have || T(f)||L« < M||fllzr-

To do this, write f = fU + fL, where fV(z) = f(z) if |f(z)| > 1 and
0 elsewhere, while fX(z) = f(z) if |f(z)] < 1 and O elsewherc Simi-
larly, set f, = fV + fL. Now assume that pg < py (the case py > p, is
parallel). Then py < p < p;, and since f € LP, it follows that fU e LPo
and fL € LP'. Morcover, since f, — f in the LP norm, then fV — fU
in the L” norm and ff — f%L in the LP* norm. By hypothesis, then
T(fY) - T(fY) in L% and T(fL) — T(fF) in L9, and selecting appro-
priate subsequences we sec that T(f,) = T(fY) + T(fL) converges to
T(f) almost everywhere, which establishes the claim.

It remains to consider the cases ¢ = 1 and p = co. In the latter case
then necessarily pg = p1 = oc, and the hypotheses | T(f)|| s < Mol fllL=<
and |[T(f)|[re < My||f||r.~ imply the conclusion

IT(F)llre < My~ M| fliL

by Holder's inequality (as in Exercise 20 in Chapter 1).

Finally if p < oc and g = 1, then g9 = ¢1 = 1, then we may take g, = g
for all z, and argue as in the case when g > 1. This completes the proof
of the theorem.

We shall now describe a slightly different but useful way of stating the
essence of the theorem. Here we assume that our linear operator T is
initially defined on simple functions of X, mapping these to functions
on Y that are integrable on sets of finite measure. We then ask: for
which (p,q) is the operator of type (p,q), in the sense that there is a
bound M so that

(8) IT(HHllLe < M| fllLr, whenever f is simple?
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In this formulation of the question, the uscful role of simple functions is
that they arc at once common to all the LP spaces. Moreover. if (8) holds
then T has a unique extension to all of LP, with the same bound M in (8),
as long as either p < 20; or p = 20 in the case X has finite measure. This
is a consequence of the density of the simple functions in LP. and the
extension argument in Proposition 5.4 of Chapter 1.

With these remarks in mind, we definc the Riesz diagram of T to
consist of all all points in the unit square {(z.y): 0<z <1, 0<y <1}
that arise when we set z = 1/p and y = 1/g whenever T is of type (p, q).
We then also define M ,, as the least M for which (8) holds whenz = 1/p
and y = 1/q.

Corollary 2.3 With T as before:
(a) The Riesz diagram of T is a convex set.

(b) log My is a convex function on this set.

Conclusion (a) means that if (zo,y0) = (1/po,1/qo) and (z1,41) =
(1/p1,1/q1) are points in the Riesz diagram of T'. then so is the line seg-
ment joining them. This is an immediate consequence of Theorem 2.1.
Similarly the convexity of the function log M, , is its convexity on each
line segment, and this follows from the conclusion M < M&"‘Mf guar-
anteed also by Theorem 2.1.

In view of this corollary, the theorem is often referred to as the “Riesz
convexity theorem.”

2.1 Some examples

ExaMPLE 1. The first application of Theorem 2.1 is the Hausdorfl-Young
inequality (3). Here X is [0.2n] with the normalized Lebesgue measure

df/(2x), and Y = Z with its usual counting measure. The mapping T is
defined by T(f) = {an}, with

1 2 -
n=— f)e™*™" df.
o= [ 1O
Corollary 2.4 If1<p<2andl1/p+1/q=1, then

NT(fHzazy < I fllreco.2x))-

Note that since L2([0,2x]) C L'(]0,2x]) and L?(Z) C L>®(Z) we have
L%([0, 2x]) + L'([0,27]) = L*(]0, 27]), and also L?(Z) + L>®(Z) = L>(Z).
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The incquality for pg = go = 2 is a consequence of Parseval’s identity.
while the one for p; = 1, ¢1 = oo follows from the observation that for
all n.

ol < 5= [ 150} a0.

Thus Ricesz’s theorem guarantees the conclusion when 1/p = % +t,
1/q= Qz—t) for any { with 0 <1 < 1. This gives all p with 1 <p < 2.
and g related to p by 1/p+1/g = 1.

EXAMPLE 2. We next come to the dual Hausdorff-Young inequality (4).
Here we define the operator 77 mapping functions on Z to functions on
[0.27] by

TI {(l"}) Z an (’1710

n=—x

Notice that since LP(Z) C L?(Z) when p < 2. then the above is a well-
defined function on L2([0,27]) when {a,,} € LP(Z). by the unitary char-
acter of Parscval’s identity.

Corollary 2.5 If1<p<2and1/p+1/q=1, then

IT"({an )l Laqo,2x)) < H{an 1o (z)-

The proof is parallel to that of the previous corollary. The case pg =
go = 2 is, as has alrcady becn mentioned. a consequence of Parsceval’s
identity, while the case p; = 1 and ¢; = oc follows directly from the fact
that

o<k

< z lan].

n= -o

=<
E : (ln(}”le

n=-xc

An alternative proof of this corollary nses Corollary 2.4 as well as The-
orermn 4 1 and Theorem 5.5 in the previous chapter.

EXAMPLE 3. We consider the analog for the Fourier transform. Here
the sctting is R? and the LP spaces are taken with respect to the usual
Lebesgue measure. We initially define the Fourier transform (denoted
here by T') on simple functions by

1) = [ et e
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Then clearly, |T(f)|L~ < ||fllr1, and T has an extension (by Proposi-
tion 5.4 in Chapter 1 for instance) to L!(R¢) for which this inequality
continues to hold. Also, 7" has an extension to L?(R%) as a unitary
mapping. {This is essentially the content of Plancherel’s theorem. See
Section 1, Chapter 5 in Book I11.) Thus in particular ||T(f)|zz < ||fllzz,
for f simple.

The samne arguments as before then prove:

Corollary 2.6 If1<p<2and1l/p+1/q=1, then the Fourier trans-
form T has a unique extension to a bounded map from LP to L9, with

NT(AH)lee <N Fllee-

We summarize these results by describing in Figure 3 the Ricsz dia-
grams for cach of the above versions of the Hausdorfi-Young theorcm.
The threc variants are as follows:

(i) The operator T in Corollary 2.4: the closed triangle 1.
(if) The operator T' in Corollary 2.5: the closed triangle I1.

(iii) The operator T in Corollary 2.6: the line segment joining (1,0) to
(1/2,1/2), that is, the common boundary of thesc two triangles.

(1.1)
(l‘l)/,’
1/q o I1
/// 1
(0,0) 1/p (1.0)

Figure 3. Riesz diagrams for the Hausdorfl-Young theorcm

More preciscly, the results above guarantee the inequality for the seg-
ment joining (1,0) to (1/2,1/2) in each of the three cases. If we use the
trivial inequality || fllLr < ||fllz=~ in Example 1 above, we get that the
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point (0,0) also belongs to the Ricsz diagram of T, yielding the closed
triangle I. Similarly, because ||T'({a.})||L=~ < |[{an}llL1, we obtain the
triangle II for Example 2. Finally, we should note that in Example 3,
the Fourier transform, the Riesz diagram consists of no more than the
scgment joining (1,0) to (1/2,1/2). (Sce Exercises 2 and 3.)

ExAMPLE 4. Our last illustration is Young’s inequality for convolutions
in R9. Tt states that whenever f and g arc a pair of functions in LP and
L7 respectively, then the convolution

(f*g)(z)= fk , flx—y)g(y) dy

is well-defined (that is, the function f(x — y)g(y) is intcgrable for almost
cvery ). and moreover

(9) I *gllize < IIfllzrllglle

under the assumption that 1/g = 1/p+1/r — 1, (with 1 < ¢ < 00). One
proof of this has been outlined in Exercise 19 of the previous chapter.
Here we point out that it is also a consequence of the similar special cases
corresponding to p = 1, and p the dual exponent of 7. In fact it suffices to
prove (9) for simple functions f and g, and then pass to the general case
by an casy limiting argument. With this in mind, fix g, and consider
the map 7 defined by T(f) = f *g. We know (sce Exercise 17 (a) in
Chapter 1, where the role of f arc g arc interchanged) that ||T(f)|| <
M| fllL1, with M = ||g|l.-- Also by Holder’s inequality, ||7°(f)|lr~ <
M||f)| -+, where 1/7" +1/r = 1. Now applying the Riesz interpolation
theorem gives the desired result.

There is of course the parallel situation of the periodic case. For ex-
ample, in one dimension, taking the functions with period 27, the con-
volution of f and g is defined by

1 2r
(f*9)0) =5 [ J(O—¢)g(e)dp.
T Jo
If we set LP = LP([0,2x]) with the underlying measure d/(2). then one
has again [|f % g|lLe < || fll#]lgllL-- but automatically in a larger range
because ||g||- < |lg|lLr, whenever 7 < r.

The Riesz diagrams arce described as follows (Figure 4):

The solid line segment joining (1 — 1/7,0) to (1, 1/r) represents Young’s
inequality for RZ. The closed (shaded) trapezoid represents the inequal-
ity in the periodic case.
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(1,1)

1/q .
(1.4)

0.0 a-Lo 15 10

Figure 4. Ricsz diagrams for T(f) = f x g, with g € L”

3 The L? theory of the Hilbert transform

We carry out the theory of the “conjugate function,” alluded to earlicr
in Section 1, but we do it in the parallel framework where the unit circle
and the unit disc are replaced by R and the upper half-planc R2 =
{z=z+1iy. z € R, y > 0}, respectively. While the technical dctails of
the proofs are a little morc involved in the latter context, the resulting
formulas arc more elegant and their form leads more directly to important
generalizations in higher dimensions.

3.1 The L? formalism

We begin by sctting down the basic formalism connecting the Hilbert
transform and the projection operator arising from the Cauchy integral.
Starting with an appropriate function f on R we define its Cauchy inte-
gral by

(10) F(z)=C(f)(z) = Ej_r;/_ tift—)z dt, Im(z)>0.

For the moment we restrict ourselves to f in L?(R). Then of course the
integral converges for all z = z + iy with y > 0, (because 1/(t — z) is in
L?(R) as a function of t) and F(z) is holomorphic in the upper half-plane.
We can also represent the Cauchy integral F' in terms of the L? Fourier
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transform f of f as®
(11) F(z)= / = f(e)e*™=¢d¢,  Im(z) > 0.
0

This integral converges becanse ¢~2"%¢ as a function of £ is in L?(0.cc).
for y > 0. The above representation comes about because of the formula

(12) / e?ﬂ’izf df _ 1
0

2miz’

which holds for Im(z) > 0. (For more details about these asscrtions. and
their connection to the Hardy space H?, sec Section 2, Chapter 5 in
Book I11.)

As is clear from (11) and Plancherel’s theorem, one has F(x + iy) —
P(f)(z). as y — 0, in the L2(R) norm with

PN = [ FOxem=<ae

and x the characteristic function of (0,00). Thus P is the orthogonal
projection of L#(R) to the subspace of those f for which f(&) =0 for
almost every £ < 0. So as in (5) of Section 1, onc is led to define the
Hilbert transform I7 by

¢ -
. 2o SI8N(E) o
(13) (@) = [ fo™E e g
-0

Some clementary facts. following directly from the definitions of P and
H. arc worth noting:

o P = 2(I+iH). where I is the identity opcrator.

e M is unitary on L2, and Ho H = H* = —1I.
In other words, |H(f)||r2 = || fll12, and H is invertible with H=' = —H.

We now come to the important realization of the Hilbert transform as
a “singular integral > It can be stated as follows.

Proposition 3.1 If f € L?(R) then
(14) H(f)(x)= ]ilI(l)% f(’L'—t)g2

Jit>e t

3The Fourier transforms in the definitions below are taken in the L2 sense, via
Plancherel’s theorem
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That is, with H (f) denoting the integral on the right-hand side above,
we have H (f) € L2(R) for every € > 0. and the convergence asserted
in (14) is in the L*(R) norm.

First. we make a few observations. Note that with z = & + {y. then

] 1 .
(13) s Py(x) +iQy(x)
where
) = Y ) - £
Py(.l) = m and Qy(.?) = m

are called the Poisson kernel and conjugate Poisson kernel, respec-
tively. Then becanse of (10). (11) and (15)

a6 [ HOTEd = 17+ P + i+ Qo).

where (f *Py)(x) = [ fx — t)Py(t)dt = [ f(t)Py(z — t)dt. with simi-
lar formulas for f * Q.

Next define the reflection ¢ — ™ by o~(x) = p(—z), and observe
that (f * Py)™~ = [~ x Py, while (f * Qy)~ = —(f~ * Q,), since Py and
Q, arc respectively even and odd functions of z. Also (f~) = ( .
Therefore using (16) with f and f~ we then obtain

(FxP)(r) =[5, fl@)ePminte2mibildg

(]7) (f * Q’J J; j f 6 27ri.t§c—27ry|§|sigt;(£) df

As a result, we obtain that the Fourier transforms of P, and Q, (taken
in L?) are given by

73;(5) —  e-2mylél

(18) é\y(ﬁ) — e—27ry|£|§iglinﬁ.

With this we turn to the proof of the proposition. We note. by (13),
(17), (18). and Plancherel’s theorem. that f x Q. — H(f) in the L2 norm.
as ¢ — 0 Now consider

L f(l—t)d—f—(f * Qe)(r) = H (f)(x) = (f * Qo)(x).

n |tj>e
This difference equals f * A,. where

Afz) = ﬁ - Q. (x), for |z] > €
= -9 (x), for |z| < e.
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It is important to observe that A (z) = ¢"'A,(e™ ). while |A;(z)] <
A/(1 + z?), since 1/r — z/(x? 4+ 1) = O(1/x3), if |z| > 1.* In particular
A, is integrable over R and the family of kerncls A, (x) satisfies the
usual size conditions for an approximation to the identity,® but not the
condition [ Ac(z)dz = 1. Instead [ A (x)dz =0, for all € # 0, because
A (z) is an odd function of . As a consequence

(19) f*Ac— 0 inthe L? norm. as € — 0,

and this gives that H.(f) — H(f) in the L? norm, as € — 0.
We recall briefly how (19) can be proved. First

(f* D)) = [ fle — (1) dt = [ (Fz— 1) — f(@)Delt) de
- / (f(z— et) — f(2))A(t) d.

Then by Minkowski’s inequality

If % Aclizz < j If(x — et) — f(z)||p2]AL(t)] dt.

Now, the integral tends to zero with ¢ by the dominated convergence
theorem. This is because ||f(z — et) — f(z)llr2 < 2||flir2. and || f{xz —
€t) — f(x)|lL2 — 0 as e = 0 for each ¢t (For the continuity of the L?
norm uscd here, sce Exercise 8 in Chapter 1.)

Remark. The above argument shows also that [|[Hc(f)|l12 < Allf|lL2
with A independent of € and f.

3.2 The L? theorem

With the elementary properties of the Hilbert transform established we
can now turn to our goal: the thcorcm of M. Riesz. It states that the
Hilbert transform is bounded on LP. 1 < p < oo. One way to formulate
this is as follows.

Theorem 3.2 Suppose 1 < p < oc. Then the Hilbert transform H, ini-
tially defined on L? N LP by (13) or (14), satisfies the incquality

(20) NH(Le < ApllfllLe, whenever f € L?NLP,

“We remind the reader of the notation f(z) = O(g(x)), which means that |f(z)| <
Clg{zx}| for some constant C and all z in a given range.

5 A discussion of approximations to the identity can be found, for instance, in Book 111,
Section 2 and Exercise 2 of Chapter 3
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with a bound A, independent of f. The Hilbert transform then has a
unique extension to all of LP satisfying the same bound.%

To have a better appreciation of the naturc of this thcorem it may
help to sce why the conclusions fail for p =1 or p = oc. For this. an
explicit calculation does the job. Let I denote the interval (—1.1), and
f = x1 be the characteristic function of that interval. Now f is an even
function, so its Hilbert transform is odd, and in fact a simple calcu-
lation gives FI(f)(z) = lime_o Hc(f)(x) = £ loglr+1 Hence H(f) is
unbounded near x = —1 and .c =1, with mlld (logarithmic) singularities
there. However H(f)(x) ~ F as |x| — oc, so it is obvious that H(f)
docs not belong to L.

1t is also instructive to consider instead of f = xj, the odd function
g9(x) = xs(x) — x4 (— 'r) where J = (0,1). Then the Hilbert transform

of g cquals H(g)(z) = L log lTi and is an even function. While H(g)
is still unbounded (w1th mild logdrlthmlc singularities at —1, 0 and 1),
it is integrable on R, since H(g)(x) ~ as |x| — oo. (See Flgurc 5.)

7712 k]

fl=)
- H(f)(r)~ &
| ; as || — oc
Y H 2 i T 2
9(z)
—

Figure 5. Two examples of Hilbert transforms

SFor the general extension principle used, see I’roposition 5 4 in Chapter 1
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There is a nice lesson herc whose significance will be clear at several
stages later on: namely. if f is (say) a bounded function with compact
support on R, then H(f) is in LY(R) if and only if [ f(x)dz =0. (Sce
Excrcise 7.)

3.3 Proof of Theorem 3.2

The main idea of the proof was already outlined at the end of Section 1 in
the context of Fourier series and the corresponding theorem for the con-
jugate function. While this proof, which depends on complex analysis,
is clegant, its approach is essentially limited to this operator and can-
not dcal with the gencralizations of the Hilbert transform in the setting
of R? The “real-variable” theory of those operators will be described in
Section 3 of the next chapter.

We turn to the proof of the Theorem 3.2, and in preparation we invoke
two technical devices. The first is very simple and is the realization that
it suffices to prove the theorem for real-valued functions. from which
its extension to complex-valued functions is imrediate (with a result-
ing bound which is not more than twice the bound A, for real-valued
functions).

The sccond device depends on the use of the space C§°(R) of indefi-
nitely differentiable functions of compact support. There are two useful
facts concerning this space. First, it is dense in LP(R), and more particu-
larly, if f € L2 N LP, with p < oo, there is a sequence { f,} with f, € C§°,
and f, — f both in the L? and L? norms. (This follows from the argu-
ment to solve Exercise 7 in Chapter 1 as well as the references therein.)

For our purposes. a particularly helpful obscrvation is that whenever
f € C§°(R) then its Cauchy integral F(z) = ﬁ fx f(—fz) dt extends as a
continuous function on the closure of the upper half-plane, is bounded

there, and morcover satisfies the decay inequality

. . M
(21) S T

z=x+1y, y >0,

for an appropriate constant M. The simplest way to prove this is to
use the Fourier transforra representation (11). Then the rapid decrease
at infinity of f shows that F is continuous and bounded in the closed
half-planc R? . Morcover the smoothness of f lets us integrate by parts,
giving

3 1 ocd(e‘z?rizf) . _ 1 oc omize 1 .
Py =g [ 25 fgds = o |- [ e de - o)
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As a result, |F(2)] < My/|z], so together with the boundedness of F
the estimate (21) is established. Notice also that the continuity of F
with (11). (16) and (17) yiclds

(22) 2F(z) = 2 lim F(z +iy) = f(z) +iH(f)(@).

It is also important to remark here that if f is real-valued (as we have
assumed). then by (14) the Hilbert transform H(f) is also real-valued.

With these matters out of the way, the main conclusions can be ob-
tained in a few strokes.

Step 1: Cauchy’s theorem. We see first that

(23) / (F(z))*dz = 0. whenever k is an integer. k > 2.

-

Indeed, if we integrate the analytic function (F(z))* over the contour y
in the upper half-plane consisting of the rectangle (sce Figure 6) whose
vertices are B +1e¢, R+ iR, —R+ iR, and —R + i¢, then by Cauchy's
theorem fw(F (2))¥dz = 0. Letting € — 0 and R — oc, also taking into
account the continuity of F' and the decay (21) then gives (23). (Note
also that by (21). we have H(f) € LP for all p > 1.)

—R+iRR R+iR

—R+ie R+ ie

Figure 6. The rectangle of integration vy

We now exploit (23). Obscrve that when k = 2, if we take the real
parts of this identity (using that f and H(f) arc real-valued), we have
JZ (f2— (Hf)?)dz = 0. This is essentially the unitarity of H on L?
that we mentioned previously.

Next we consider other values of k > 2, those when k is even k = 24.
(When k is odd, the identity (23) does not have an immediately useful
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conscquence.) Suppose, for cxample, that £ = 4. Then the real part
of (23) gives us

/f“dx—ﬁ/fQ(Hf)2dx+/(Hf)4dx=O.

As a result,

1/2 1/2
/(Hf)4dxSG/fz(HdewSG(/f“dw) (/(Hf)4dx) )

the last majorization following by Schwarz’s inequality. Hence
1/2 1/2
(fore) " e(f )"

WH(f)llza < 62| £ s

which means

In the same way, if we take p = 2¢, with ¢ an integer > 1, we obtain

(24) 1H( e < Apllfllee, p=2C
Indeed, the real part of (f +iH(f))%* is

14
Zer(Hf)%_Qrcr, where ¢, = (-1)¢" gf), r=0.1,...,¢.

r=0

Hence
14
/(Hf)% dz < Zar/}dr(Hf)?t—?r de,
r=1

2¢ 2()

with a, = (gﬁ ) Now Hélder’s incquality (with dual exponents 5. 5,75~

shows that

/ PR dr < | fI I,

with p = 2¢. Thus

4
IH(HIZ < alFIFIHEIF
r=1
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Note that this inequality is jointly homogeneous of degree 2¢ in || f]|1»
and ||H(f)||r»- Moreover the right-hand side is of degrec at most 2¢ —
2 in ||[H(f)||»- Upon normalizing f so that || f|lz» =1, and setting
X =||H(f)||» we have X2%¢ < Zle arX%-2r Now cither X <1 or
X > 1. In the second case, then X2¢ < (Zle a,)X%~2. As a result
X2< Zf:] a, < 22 1n either case X < 2¢, and therefore (24) is proved
with A, = 2P/2,

To carry out the next step we extend the basic inequality (24), proved
for f € C§°, to f that are simple functions. Recall that we have alrcady
defined H(f) whenever f is in L?, and in particular if f is simple. Next,
since such f belongs to L? N LP, we can find a sequence {f,}, with f, €
Cg°, so that f, — f both in the L? and L? norms. As a result, {H(fa)}
are Cauchy sequences in both the L? and LP norms, while H(f,,) — H(f)
in the L? norm. Thus (24) is established when f is simple.

Step 2: Interpolation. Having proved (24) for simple functions and p
even, we can apply the Riesz interpolation theorem once we have ex-
tended H to complex-valued functions. But this is easily done by setting
H(fy +if2) = H(f1) +iH(f2), for f1 and f, real-valued. Note that as a
result, the inequality (24) extends to this case, but with A4, replaced by
2A,. (By a further argument we can show that the original bound A4,
holds in this case also. Sec Exercise 8.)

With this in mind Riesz interpolation yields the inequality

IH(Hllr < ApllfllLe

for all p such that 2 < p < 2¢, where £ is any positive integer. This follows
by taking po = go = 2, p1 = q1 = 2¢ and noting that if 1/p = (1 —1¢)/2 +
t/(2¢), then p ranges over the interval 2 < p < 2¢, when { ranges over
0 <t < 1. Since ¢ may be taken to be arbitrarily large, we get (20) for
all 2 < p < oc and f simple.

Step 3: Duality. We pass from the case 2 <p <octothecasel <p <
2 by duality. This passage is based on the simple identity

(25) / (H[)gdz = — / 1(Hg) dz

—o0
whenever f and g belong to L?(R) and are now allowed to be complex-
valued. In fact this follows iinmediately from Plancherel’s identity (f, g) =
(f.§), and the definition (13), which can be restated as

2 = S8 ).

1
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One can invoke the abstract duality principle in Theoremn 5.5 of Chap-

ter 1 or proceed directly as follows. Restricting attention to f and g
simple, onc has by Lemma 4.2 in the previous chapter, with 1 <p < 2,

k]

H( e = sup

f H(f)gds

where the supremum is taken over g simple, with {|gjj,.« < 1,1/p+1/¢ =
1. However, by (25) and Holder's inequality, this is equal to

/ fH(g)dx

sup < Sl;PHfHLvllmllm <A flleeAqs

using (20) for ¢ in place of p, and noting that 2 < ¢ < 0.

Therefore (20) holds for all p. 1 < p < o0, for all simple functions f.
The passage to all f € L2 N LP, and thus to the gencral result, is by now
a familiar limiting argument.

4 The maximal function and weak-type estimates

Another important illustratiou of the occurrence of LP spaces is in con-
nection with the maximal function f*. For appropriate functions f given
on R¢, the maximal function f* is defined by

(@) = sup —s /B F@)ldy,

rehl3

where the supremum is taken over all balls B containing r. and m (as
well as dy) denote the Lebesgue measure.”

It is a fact that f* plays a role in a wide varicty of questions in analysis,
and it is there that its L? incquality

(26) 1/ llr < Apllfllze, 1 <p< o0

is of crucial interest.

Before we come to the proof of (26) a few observations are in order.
First, the mapping f — f* is not lincar, but does satisfy the sub-additive
property that f* < ff + f5, whenever f = f1 + fo.

Next. while (26) obviously holds for p = oo (with A, = 1). the in-
cquality for p =1 fails. This can be scen directly by taking f to be

7An introduction to f*, and a complete proof of (27) below can be found for instance
in Chapter 3 of Book 1L
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the characteristic function of the unit ball B, and noticing that then
) >1/(1+ |#[)¢. This function clearly fails to be integrable at infin-
itv. The asserted inequality follows immediately from the fact that for
cach r € RY the ball of radius 1 + |z| centered at . contains B. There
arc also simple examples where the integrability of f* fails locally. (See
Excreise 12.)

There is nevertheless a very useful substitute for L' boundedness
for f. Tt is the weak-type incquality: there is a bound A (independent
of f). so that

A
(27) ﬂl({.[,’ : f*(.'l.') > a}) < Z”J‘”LL(R(!). for all @ > 0.

We br icIly recall the main steps in the proof of (27). 1f we denote by E,, =
{x: ) > a}, then to obtain the above majorization for m(F,) it
sufﬁcos t() havc the same for m(K), where K is any compact subset, of E,.
Now, using the definition of f* we can cover K by a finite collection of
balls By, Bs. ..., By with sz |f(x)| dz > am(DB;). for each i. If we then
apply a Vitali covering lemma, we can solecl, a digjoint sub-collection of
these balls B;,. By,. . ... B;, with ZJ L, m(B;;) >37m(K). Adding the

above inequalities over the disjoint balls then gives m(K) < i(;” fllevs
which leads to (27).

4.1 The L? inequality

We turn to the proof of the LP incquality for the maximal function. Tt
is formulated as follows.

Theorem 4.1 Suppose f € LP(R?) with1 < p < oc. Then f* € LP(RY),
and (26) holds, namely

1 lle < ApllfllLr-

The bound A, depends on p but is independent of f.

Let us first sce why f*(x) < oo, for a.e. z, Whenever f € LP. Observe
that we can decompose f = f) + foo, where fi(z) = f(z) if |f(z)] > 1,
and f(x) = 0 elsewhere, also foo(z) = f() if |f(z)] < 1 and fe(x)=10
clsewhere. Then f, € L' and foo € L®. But clearly f* < ff + f2 <
fi +1, since |foe ()] < 1 cverywhere. Now from (27) (with fi in place
of f), we sce that f} is finite almost everywhere. Thus the same is true
for f*.
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The proof that f* € LP relics on a more quantitative version of the
argument just given. We strengthen the weak-type inequality (27) by
incorporating in it the L> boundedness of the mapping f+— f*. The
stronger version states

/

(28) m({z: f*(z)>a}) < -A—/ |fldz, for all & > 0.
@ J|fi>a/2

Herc A’ is a different constant: it can be taken to be 2A4. The improve-
ment of (27), (except for a different constant, which is inessential). is
that here we only integrate over the set where [f(z)] > /2, instead of
the whole of R

To prove (28) we write f = fi + foc, where now f1(z) = f(z), if | f(z)| >
0/2, and foo(2) = f(z) i |f()] < a/2. Then f* < i + f2, < f; +a/2,
since [foc(z)] < /2 for all z. Thercfore {z: f*(z) >a}Cc{z: ff >
a/2}, and applying the weak-type incquality (27) to f, in place of f
(and /2 in place of o) then immediately yiclds (28), with A’ = 2A4.

Distribution function

We will next need an observation concerning the quantity occurring on
the left-hand side of the inequalities (27) and (28), which we formulate
more generally as follows. Suppose F is any non-negative measurable
function. Then its distribution function, A(a) = Ar(a) is defined for
positive a by

Ma) =m{{z: F(z) > a}).

The key point here is that for any 0 < p < oc,

(29) /Rd(F(x))pdw - /°° Ma'/?) da,

0
and this holds in the extended sense (that is, both sides are simultane-
ously finite and equal, or both sides are infinitc).

To sce this. consider first the casc p = 1. Then the identity is an
immediate consequence of Fubini’s theorem, in the setting RY x R+,
applied to the characteristic function of the set {(z,a): F(z) > a >
0}. Indced, integrating the characteristic function first in o then in z
gives fou ( foﬁ @ du) dx, while integrating in the reverse order yields

f(fo m({x: F(z) > a})da, and this shows (29) for p = 1. Finally, let
G(z) = (F(z))?, s0 {zx : G(z) > a} = {z: F(z) > a'/P}. Using (29) for
p =1 (and G instcad of F) then gives the conclusion for general p.
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We also note that

Aa) < / F(x)dr.

R

Q=

which is Tchebychev’s inequality. In fact.

/ F(r)dr > / F(z)dr <am({z: F(z) > a}),
Rd

JF(z)>x

and this proves the assertion. One also secs. more generally, A(a) <
L [(F(z))Pdr for p > 0.

P

We now apply (29) to F(x) = f*(z), utilizing (28). Then

/Rd(f*(:c))” dr = /UOC AMat/P) da

o0
SA'/ o~ /P (/ |f|dx> da.
0 |f1>al/r/2

We evaluate the integral on the right-hand side by interchanging the
order of integration. It then becomes

12f(=)f?
’ -1/p
A /Rdlf(:r)l (/0 a da> dzx.

However, ifp > 1, fot a~ P da = aytt~/P forallt > 0, (witha, = p/(p —
1)). So the double integral equals A’a,2P~! f;&d |f(@)||f(z)|P~" dx, which
is AB||f|I7,, with (AB = A’ap2P~ '), and this gives (26), proving the the-
orem.

Note. as a result of the above proof. that the constant A, in (26)
satisfies A, = O(1/(p—1)) as p — 1.

Remark. The Hilbert transformmn H(f), like the maximal function f*,
also satisfies a weak-type L! inequality. a result we will prove in a more
gencral sctting in the next chapter. In fact, this weak-type inequality
will then be used to prove LP inequalities for the generalizations of the
Hilbert transform to R¢, in much the same way as they are used above
for the maximal function.

5 The Hardy space H!

We now come to the real Hardy space HL(R?), which plays a significant
role as another substitute for L1(R?), in the context where important
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LP inequalities for p > 1 break down at p = 1. This space is a Banach
space that is “ncar” L', and whose dual space also occurs naturally in
many applications. Morcover, H! stands in sharp contrast to the space of
weak-type functions considered above: the latter space cannot be made
into a Banach space, nor docs it have any bounded lincar functionals.
(Sce Exercise 15.)

The space H)(R?) arosc first for d = 1 in the setting of complex analy-
sis as the “real parts” of the boundary values of functions of the complex
Hardy space H?, when p = 1. The Hardy spacc HP, in the version of the
upper half-plane, consists of holomorphic functions £ on R? for which

¢
sup/ |F(x + iy)|P dr < o0.
y>0 o

th_root of the quantity on the

and whose norm || F||y», is defined as the p
left-hand side of the above inequality.®

Now, it can be shown that whenever F € HP, p < oc. then the limit
Fy(x) = limy_.g I7(> + iy) cxists in the LP(R) norm and in fact || F||g» =
| Foll1.»(r). Moreover, when 1 < p < oo, Riesz’s thecorem can be reinter-
preted to say that 2Fy = f+ iH(f) where f is a real-valued function in
LP(R). Conversely, cvery clement 7 € HP arises in this way. Thus, when
1 < p < oc we sce that the Banach space 7P is the same, up to equiva-
lence of norms as (real) L?(R). The cquivalence breaks down at p = 1,
since the Hilbert transform H is not bounded on L. This situation led
to the original definition of HL(R): the space of rcal-valued functions f
that arisc as 2Fy = f + iH(f) where F' € H!. Equivalently. f € H!(R)
if and only if f € L'(R) and H(f), dcfined in an appropriate “wecak”
sensc. also belongs to L'(R). (An outline of the proof of these assertions
can be found in Problems 2, 7*. and 8*.)

The notion of H! was later extended to RY, d > 1, and various equiv-
alent defining properties were ultimately found. Tt turns out that the
simplest of these to state, and the most useful in applications. is the
definition in terms of decompositions into “atoms ™ To this we now turn.

5.1 Atomic decomposition of H}

A bounded measurable function a on R¥ is an atom associated to a ball
B C R if:

(i) ais supported in B, with |a(z)| < 1/m(B), for all z; and,

¥The case p = 2 is treated in Section 2, Chapter 5 of Book IT1
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(ii) [gaa(z)dz =0.
Note that (i) guarantees that for cach atom a we have ||a|| 1 (ze) < 1.

The space H!(R?) consists of all