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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
sentinig the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our expositioni into four volumes, each reflecting
the iriaterial covered in a semester. Their contents nriay be broadly sum-
marized as follows:

I. Fourier series and integrals.

11. Complex analysis.

III. Measure theory, Lebesgue integration, arid Ililbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions. and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other braniches that arc highlighted. To give a few examples: the dc-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in aim arithmetic
progression; the X-ray and Radon transforms. which arise iii a mmumnher of
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problems in Book I, and reappear in Book LII to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou's
theorem, which guarantees the existence of boundary values of hounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the nuniber of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of "Exercises" that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging "Problems"; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integrationi, together with some exposure to liii-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adriani
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferinan, who taught the first week (successfully
launching the whole project!); Paul Hageistein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses.
and has since taken over the teaching of the second round of the series;
and Daniel Levine, who gave valuable help in proofreading. Last hut not
least, our thanks go to Gerree Pecht, for her consuirirnate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes. and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation's VIGRE program.

Elias M. Stein

Rami Shakarchi

Princeton, New Jersey
August 2002

As with the previous volumes, we are happy to record our great debt
to Daniel Levine. The final version of this book has been much improved
because of his help. He read the entire manuscript with great care and
made valuable suggestions that have been incorporated in the text. We
also wish to take this opportunity to thank Hart Smith and Polain Yung
for proofreading parts of the book.
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Preface to Book IV

Functional analysis, as generally understood, brought with it a change
of focus from the study of functions on everyday geometric spaces such
as R, etc., to the analysis of abstract infinite-dimensional spaces, for
example, functions spaces and Banach spaces. As such it established a
key framework for the development of modern analysis.

Our first goal in this volume is to present the basic ideas of this theory,
with particular emphasis on their connection to harmonic aiialysis. A
second objective is to provide an intro(luction to some further topics to
which any serious student of analysis ought to be exposed: probability
theory, several complex variables and oscillatory integrals. Our choice of
these subjects is guided, in the first instance, by their intrinsic interest.
Moreover, these topics complement and extend ideas in the previous
books in this series, and they serve our overarching goal of making plain
the organic unity that exists between the various parts of analysis.

Underlying this unity is the role of Fourier analysis in its interrelation
with partial differential equations, complex analysis, and number theory.
It is also exemplified by some of the specific questions that arose initially
in the previous volumes and that are taken up again namely, the
Dirichlet problem, ultimately treated by Brownian motion; the Radon
transform, with its connection to Besicovitch sets; nowhere differentiable
functions; and some problems in number theory, now formulated as dis-
tributions of lattice points. We hope that this choice of material will not
only provide a broader view of analysis, hut will also inspire the reader
to pursue the further study of this subject.





I Spaces and Banach Spaces

In this work the assumption of quadratic integrability
will be replaced by the integrahility of The
analysis of these function classes will shed a particu-
lar light on the real and apparent advantages of the
exponent 2; one can also expect that it will provide
essential material for an axiomatic study of function
spaces

F Rie.sz, 1910

At present I propose above all to gather results about
linear operators defined in certain general spaces, no-
tably those that will here be called spaces of type (B,)

S. Banach, 1932

Function spaces, in particular spaces, play a central role in many
questions in analysis. The special importance of spaces may be said
to derive from the fact that they offer a partial but useful generalization
of the fundamental L2 space of square integrable functions.

In order of logical simplicity, the space V comes first since it occurs
already in the description of functions integrable in the Lcbesgue sense
Connected to it via duality is the LOC space of bounded functions, whose
supremurri norm carries over from the more familiar space of continuous
functions. Of independent interest is the L2 space, whose origins are
tied up with basic issues in Fourier analysis. Time intermediate spaces
are in this sense an artifice, although of a rriost inspired and fortuitous
kind. That this is the case will he illustrated by results in the next and
succeeding chapters.

In this chapter we will concentrate on the basic structural facts about
the spaces. Here part of the theory, in particular the study of their
linear functiorials, is best formulated in the more general context of Ba-
nach spaces. An incidental benefit of this more abstract view-point is
that it leads us to the surprising discovery of a finitely a(lditive measure
on all subsets, consistent with Lebesgue measure.
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1 spaces
Throughout this chapter (X, F. denotes a a-finite measure space. X
denotes the underlying space, F the a-algebra of measurable sets, and
the nieasure. If 1 <p < oc, the space F. consists of all complex-
valued rricasurable functions on X that satisfy

(1) <00.

lo simplify the notation, we write LP(X, ii), or or simply U
when the underlying measure space has been specified. Then. if I E

F, we define the U norm of f by

ir \l/P
If IILP(X,F,p) = (J dP(x))

We also abbreviate this to If IILP(x), If 1ILP, or

When p = 1 the space L' (X. F, consists of all integrable functions
on X, and we have shown in Chapter 6 of Book III, that L1 together with
II

IlL' is a complete normed vector space. Also, the case p = 2 warrants
special attention: it is a Hilbert space.

We note here that we encounter the same technical point that we al-
ready discussed iii Book III. The problem is that If lILy = 0 does not
imply that f = 0, but merely f = 0 almost everywhere (for the measure

Therefore, the precise definition of U requires introducing the equiv-
alence relation, in which f and g are equivalent if f = g a.e. Then, U
consists of all equivalence classes of functions which satisfy (1). However,
in practice there is little risk of error by thinking of elements in U as
functions rather than equivalence classes of functions.

The following are some common examples of U spaces.

(a) The case X = and equals Lehesgue measure is often used in
practice. There, we have

If I

(h) Also, one can take X = Z, and equal to the counting measure.
Then, we get the "discrete" version of the spaces. Measurable
functions are simply sequences f of comj)lex numbers,
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arid

/ oo \l/P
If IILP

= (¼

>
fl= —00

When p 2, we recover the familiar sequence space £2 (z).

The spaces [1 are examples of normed vector spaces. The basic prop-
erty satisfied by the norm is the triangle inequality, which we shall prove
shortly.

The range of p which is of interest in most applications is 1 <p < 00,
and later also p = 00. rrhe are at least two reasons why we restrict our
attention to these values of p: when 0 < p < 1, the function

• does
not satisfy the triangle inequality, and moreover, for such p, the space

has no non-trivial bounded linear functionals.' (See Exercise 2.)
When p = 1 the norm 111,1 satisfies the triangle inequality, arid L'

is a complete norrried vector space. When p = 2, this result continues to
hold, although one needs the Cauchy-Schwarz inequality to prove it. In
the same way, for 1 p < oo the proof of the triangle inequality relies on
a generalized version of the Cauchy-Schwarz inequality. This is Holder's
inequality, which is also the key in the duality of the spaces, as we
will see in Section 4.

1.1 The Holder and Minkowski inequalities

If the two exponents p and q satisfy 1 <p, q oo, arid the relation

11-+-=1
p q

holds, we say that p and q are conjugate or dual exponents. Here,
we use the convention 1/00 = 0. Later, we shall sometimes use p' to
denote the conjugate exponent of p. Note that p = 2 is self-dual, that is,
p q = 2; also p = 1,00 corresponds to q 00, 1 respectively.

Theorem 1.1 (Holder) Suppose 1 <p < 00 and 1 <q < oo are conju-
gate exponents. If f LP and g then fg E L' and

IIfgIIL' If 1LPIIgIILQ.

Note. Once we have defined L°° (see Section 2) the corresponding in-
equality for the exponents I and oo will be seen to be essentially trivial.

'We will define what we mean by a bounded linear functional later in the chapter
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The proof of the theorem relies on a simple generalized form of the
arithmetic-geometric mean inequality if A, B � 0, and 0 9 1, then

(2) A9B'°

9 1/2, the inequality (2) states the familiar fact that
the geometric mean of two numbers is majorized by their arithmetic
mean.

To establish (2), we observe first that we may assume B 0, and
replacing A by AB, we see that it suffices to prove that A° OA + (1 —
9). If we let f(x) = x9 — Ox — (1 — 9), then f'(x) = 9(x° — 1). Thus
1(x) increases when 0 <x < 1 and decreases when 1 � x, and we see that
the continuous function f attains a niaxirriuni at x = 1, where f(1) = 0.

Therefore f(A) <0, as desired.

To prove Holder's inequality we argue as follows. If either IfliLy 0

or = 0, then fg 0 a.e. and the inequality is obviously verified.
Therefore. we may assume that neither of these norms vanish, and after
replacing f by 1/111 IILP and g by we may further assume that
Ill II = = I. We now need to prove that llfgIlL'

if we set A = B = and 0 = i/p 50 that I — 0 = 1/q,
then (2) gives

lf(x)g(x)J +

Integrating this inequality yields 1, arid the proof of the HOlder
inequality is complete.

For the case when the equality IIfgliL' If IILP Ig}ILQ holds, see Exer-
cise 3.

We are now ready to prove the triangle imiequality for the norm.

Theorem 1.2 (Minkowski) If 1 p < oc and f,g E L", then f + g E
and if +gIiLP if IILP + IIgIILP.

Pivof. The case p = I is obtained by integrating 1(x) + g(x)i
1f(x)i + When p> 1, we may begin by verifying that f + g e U',
when both f and g belong to Indeed,

11(x) + +

as can be seen by considering separately the cases 1f(x)I and
lf(x)1. Next we note that

11(x) + � lf(x)l 11(x) + + 1(x) +
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If q denotes the conjugate exponeiit of p, then (p — 1 )q = p, so we see

that (1 + belongs to and therefore Holder's inequality applied
to the two ternis on the right-hand side of the above inequality gives

(3) If + Ill +

However, using once again (p — 1)q = p, we get

= Ill

From (3), since p — p/q 1, and because we may suppose that If +
guLP > 0, we find

If + ugh',,

so the proof is finished.

1.2 Completeness of

The triangle inequality makes into a metric space with distance
d(f, g) = If — gIILP. The basic analytic fact is that is complete
in the sense that every Cauchy sequence in the norm It- IILP converges to
an element in U.

Taking limits is a necessity in many problems, and the U spaces would
be of little use if they were not complete. Fortunately, like V and L2,
the general space does satisfy this desirable property.

Theorem 1.3 The space LP(X, is complete in the norm hi-

Proof. The argurrient is essentially the same as for L1 (or L2): see
Section 2. Chapter 2 arid Section 1. Chapter 4 in Book III. Let
he a Caiicliy sequence in U, and consider a subsequence {fflk of

with the following property Ihfnk+1 — Ink for all k � 1.
We now consider the series whose convergence will be seen below

f(x) = (x) + (x) - fflk(x))

and

g(x) = —fnk(x)I,
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and the corresponding partial sums

SK(f)(x) = (x) + (x) - Ink (x))

and

SK(g)(x) = (x)1 + lfnk+1(X) fflk(X)L

The triangle inequality for implies

IILP

+
- fnkIILP

�
Letting K tend to infinity, and applying the monotone convergence thco-
rein proves that f and therefore the series defining g, and hence
the series defining I converges almost everywhere, and f E U.

We now show that f is the desired limit of the sequence Since
(by construction of the telescopic series) the (K — i)th partial sum of
this series is precisely InKy we find that

fnk(x) —* f(x) a.e. x.

To prove that f in as well, we first observe that

If(x) — SK(f)(x)t'3 < [2max(lf(x)I. ISK(f)(x)1W

+

for all K. Then. we may apply the dominated convergence theorem to
get IIfflK — I IILP 0 as K tends to infinity.

Finally, the last step of the proof consists of recalling that is
Cauchy. Given > 0, there exists N so that for all n, m > N we have

— <F/2. If ni< is chosen so that > N, and linK — I <
c/2, then the triangle inequality implies

- � - fnK IILP + IIfuIK - IIILP <F

whenever n> N. This concludes the proof of the theorem.
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1.3 Further remarks

We begin by looking at some possible inclusion relations between the
various spaces. The matter is simple if the underlying space has
finite measure.

Proposition 1.4 If X has finite positive measure, and Po � Pi, then
LP'(X) C LP0(X) and

If IILP0 111 IILP1.

We may assume that Pi > po. Suppose f E Lu', and set F = If 1Po,

G = 1. p = Pi/Po > 1, and i/p + 1/q = 1, in Holder's inequality applied
to F and C. This yields

Po/Pi

In particular, we find that If ILPO <oc. Moreover, by taking the root
of both sides of the above equation, we find that the inequality in the
proposition holds.

However, as is easily seen, such inclusion does not hold when X has
infinite measure. (See Exercise 1). Yet, in an interesting special case the
opposite inclusion does hold.

Proposition 1.5 If X = Z is equipped with counting measure, then the
reverse inclusion holds, namely (Z) c (Z) if Pi• Moreover,
IIIIILP1 � I1fIILPO.

Indeed, if f = {f(n) then 11(n) P0 = I and 1(n)
If IILPo. However

If

If If

2 The case p = 00

Finally, we also consider the limiting case p = oc. The space LOC will
be defined as all fimctions that are "essentially bounded" in the follow-

ing sense. We take the space L°° (X, F, to consist of all (equivalence
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classes of) measurable functions on X. so that there exists a positive
number 0 < M < 00. with

a.e. x.

Then, we define 11111 to be the infimurn of all possible values M
satisfying the above inequality. The quantity Ill is sometimes called
the essential—supremum of f.

We note that with this definition, we have If(x)I ill for a.e. x.
Indeed, if E = {x: f(x)1> If and = fx: f(x)I> Ill +
1/n}, then we have = 0, and E = U hence p(E) 0.

Theorem 2.1 The vector space L°° equipped with is a complete
vector space.

This assertion is easy to verify and is left to the reader. Moreover,
Holder's inequality continues to hold for values of p and q in the larger
range 1 <p, q < 00, once we take p 1 amid q = oc as conjugate expo-
nents, as we mentioned before.

The fact that L°° is a limiting case of when p tends to oc can be
understood as follows.

Proposition 2.2 Suppose f E L°° is supported on a set of finite mea-
sure. Then f for all p < oo, and

If II If asp

Proof. Let E be a measurable subset of X with JL(E) <00, and so
that f vanishes in the complement of E. If 0, then
Ill IILP = 0 arid there is nothing to prove. Otherwise

I/p I/p

= (L dIL) (f Ill IlL

Since p oo, we find that lim If IILP If
On the other hand, given 0, we have

lf(x)I � Ill —€})�6

hence

/ � -
.Jx

Therefore lim c If IILP � If — €, afl(I since F is arbitrary, we
have � hence the limit If lILy exists,
and equals If
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3 Banach spaces
We introduce here a general notion which encompasses the spaces as
specific examples.

First, a normed vector space consists of an underlying vector space V
over a field of scalars (the real or complex numbers), together with a
norm 1 - Ii: V —p that satisfies:

• lvii 0 if and only if V 0.

• = at lvii. whenever a is a scalar and v E V.

• liv + wli � lvii + iwli for all v, w e V.

The space V is said to be complete if whenever is a Cauchy
sequence in V. that is, — Vrn ii —÷ 0 as n, m —p oo, then there exists a
vEVsuch that

A complete normed vector space is called a Banach space. Here
again, we stress the importance of the fact that Cauchy sequences con-
verge to a limit in the space itself, hence the space is "closed" under
limiting operations.

3.1 Examples

The real numbers with the usual absolute value form an initial example
of a Banach space. Other easy examples are with the Euclidean norm,
and more generally a Hubert space with its norm given in terms of its
inner product.

Several further relevant examples are as follows:

EXAMPLE 1. The family of spaces with 1 p oc which we have just
introduced are also important examples of Banach spaces (Theorem 1.3
and Theorem 2.1). Incidentally, L2 is the only Hilbert space in the
family where 1 <p < oo (Exercise 25) arid this in part accounts for
the special flavor of the analysis carried out in L2 as opposed to L1 or
more generally for p 2.

Finally, observe that since the triangle inequality fails in general when
o <p < 1, is not a norm on for this range of p, hence it is not
a Banach space.

EXAMPLE 2. Another example of a Banach space is C({0, 1]), or more
generally C(X) with X a compact set in a metric space, as will he de-
fined in Section 7. By definition, C(X) is the vector space of continuous
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functions on X equipped with the sup-norm 11111 = SUPXEX If(x)I. Com-
pleteness is guaranteed by the fact that the uniform limit of a sequence
of continuous functions is also continuous.

EXAMPLE 3 Two further examples are important in various applications.
The first is the space of all bounded functions on which satisfy
a Holder (or Lipschitz) condition of exponent a with 0 <a < 1,
that is,

sup If(ti)-f(t2)t
It1 —

Observe that f is then necessarily continuous; also the only interesting
case is when a < 1, since a function which satisfies a Holder condition of
exponent a with a> 1 is constant.2

More generally, this space can be defined on it consists of contin-
uous functions f equipped with the norm

1(x) — fMI
Ill = slip If(x)I + sup

Ix —

With this norm, is a Banach space (see also Exercise 29).

EXAMPLE 4. A function f is said to have weak derivatives
in up to order k, if for every multi-index a (ai,.. . , ad) with tat =
a1 + + ad < k, there is a E with

(4)
fKd

dx = f dx

for all smooth functions that have compact support in Here, we
use the multi-index notation

Clearly, the fumictions g0 (when they exist) are unique, and we also write
This definition arises from the relationship (4) which holds

whenever f is itself smooth, and g equals the usual derivative f, as
follows from an integration by parts (see also Section 3.1, Chapter 5 in
Book Ill).

2We have already encountered this space in Book 1, Chapter 2 and Book III. Chapter 7
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The space is the subspace of of all functions that have
weak derivatives up to order k. (The concept of weak derivatives will
reapPear in Chapter 3 in the setting of derivatives in the sense of distri-
butions-) This space is usually referred to as a Sobolev space. A norm
that turns into a Banach space is

If >1 laX fIlLP(Rd).

EXAMPLE 5. Tn the case p = 2, we note in the above example that an
L2 function f belongs to if and only if (1 + belongs

to L2, and that 11(1 + is a Hilbert space norm equivalent
to If

Therefore, if k is any positive number, it is natural to define as
those functions I in L2 for which (1 + belongs to L2, and we
can equip with the norm If = 1(1 +

3.2 Linear functionals and the dual of a Banach space

For the sake of simplicity, we restrict ourselves in this and the following
two sections to Banach spaces over R; the reader will find in Section 6
the slight modifications necessary to extend the results to Banach spaces
over C.

Suppose that B is a Banach space over R equipped with a norm 11 1. A
linear functional is a linear mapping £ from 13 to R, that is, £: B —+
which satisfies

f(cif +øg) = + for all a,fl ER, and f,g E B.

A linear functional £ is continuous if given c > 0 there exists 5> 0 so
that ie(f) — whenever if — 5. Also we say that a linear
functional is bounded if there is M > 0 with <Mill for all f E
B. The linearity of £ shows that these two notions are in fact equivalent.

Proposition 3.1 A linear functional on a Banach space is continuous,
if and only if it is bounded.

Proof The key is to observe that £ is continuous if and only if £ is
continuous at the origin.

Indeed, if f is continuous, we choose e = 1 and g = 0 in the above
definition so that < 1 whenever 11111 for some 5> 0. Hence,
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given any non-zero h, an element of B, we see that has norm equal
to 6, and hence < 1. Thus <Mllhil with M = 1/5.

Conversely, if is bounded it is clearly continuous at the origin. hence
continuous.

The significance of continuous linear functionals iii terms of closed
hyperplanes in B is a noteworthy geometric point to which we return
later on. Now we take up analytic aspects of linear functionals.

The set of all continuous linear functionals over B is a vector space
since we may add linear functionals and multiply theni by scalars:

+ £2)(f) + p2(f) and

This vector space may be equipped with a noriri as follows. The norm
I

of a continuous linear functional e is the infimimiri of all values Al for
which f E 8. From this definition and the linearity
of it is clear that

sup sup = sup
IIfII=' lIfli

The vector space of all continuous linear functionals on 8 equipped
with is called the dual space of B, and is denoted by B*.

Theorem 3.2 The vector space 8* is a Bartach space.

Proof. It is clear that . defines a norm, so we only check that 8*
complete. Suppose that {4j is a Cauchy sequence in 8*. Then, for each
f 8, the sequence is Cauchy, hence converges to a limit, which
we denote by Clearly, the mapping £: f is linear. If M is
so that <M for all ri, we see that

l'(f)l - PTt)(f)I + I& - + Mllfll.

so that in the limit as n oc, we find I � Mllf for all f B.
Thus is bounded. Finally, we must show that converges to in 8*.
Giveii c > 0 choose N so that — <e/2 for all n.m> N. Theii.
if n > N. we see that for all m> N and any I

- I& - + - � I& - +

We can also choose m so large (and dependent on so that we also have
— £m)(f)I clIf 1/2. In the end. we find that for n> N,

— �
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This proves that tie — —* o, as desired.

In general, given a Banach space 8. it is interesting and very useful to
be able to describe its dual 8*. This problem has an essentially complete
answer in the case of the spaces introduced before.

4 The dual space of when 1 <p <00
Suppose that I � P oo and q is the conjugate exponent of p, that is,
1/p + 1/q = 1. The key observation to make is the following: Holder's
inequality shows that every function g E gives rise to a bounded linear
functional on by

(5) £(f)
=

f(x)g(x)

and that iteit Therefore, if we associate g to £ above, then we
find that C (LP)* when 1 � p < oc. The main result in this section
is to prove that when 1 p < oo, every linear functional on is of
the form (5) for some g E This implies that (LP)* = whenever
1 p < oo. We remark that this result is in general not true when p = 00;
the dual of L°° contains L', hut it is larger. (See the end of Section 5.3
below.)

Theorem 4.1 Suppose 1 <p < oo, and I/p + 1/q = 1. Then, with 8=
we have

8* = Lq

in the following sense: For every bounded linear functional £ on there
is a unique so that

t(f)
= f f(x)g(x) for all f E

Moreover, =

This theorem justifies the terminology whereby q is usually called the
dual exponent of p.

The proof of the theorem is based on two ideas. The first, as already
seen, is HOlder's inequality; to which a converse is also needed. The
second is the fact that a linear functional C on 1 <p < oc, leads nat-
urally to a (signed) measure ii. Because of the continuity of £ the measure
ii is absolutely continuous with respect to the underlying measure ,a, and
Our desired function g is then the density function of ji in terms of

We begin with:



14 Chapter 1 L" SPACES AND BANACH SPACES

Lemma 4.2 Suppose 1 p. q oo, are conjugate exponents.

(i) If g E then IIYIILQ = sup I fg.
J

(ii) Suppose g is on all sets of finite measure, and

sup [fg=M<oc.
IIfflLp < I J
f dmpt

Then g E and IIgIILq = M.

For the proof of the lemma, we recall the signum of a real number
defined by

1 ifx>O
sigii(x) = —1 if x <0

0 ifx=0.

Proof We start with (i). If g = 0, there is nothing to prove, so
we may assume that g is not 0 a.e., and hence 0. By Höldefs
inequality, we have that

2 sup fIg.
J

To prove the reverse inequality we consider several cases.

• First, if q 1 and p = oo, we mriay take f(x) = sign g(x). Then, we
have III II 1, and clearly, f fg L•

• Tf I <p,q < oc. then we set f(x) We

observe that If I = 1 since p(q —
I) = q, arid that .1 fg =

• Finally, if q = oo and p = 1. let 0, and E a set of finite posi-
tive measure, where 2 — €. (Such a set exists by the
definition of and the fact that the measure is a-finite.)
Therm, if we take f(x) = XE(x) sign g(x)/ji(E), where xE denotes
the characteristic function of the set E. we see that If IL' = 1, and
also

I = /2(E) fE
2 -
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This completes the proof of part (i).
To prove (ii) we recall3 that we can find a sequence {qn } of simple

functions so that 1g11 (x) g(x) I while g11 (x) g(x) for each x. When
p> 1 (so q < oc), we take sign As be-
fore.

I = I =
'I lIgnhILq

and this does not exceed M. By lemma it follows that f
g E with <Al The direction IgIILQ � M is of course

implied by Holder's inequality.
When p 1 the argument is parallel with the above hut simpler. Here

we take f,t (x) = (sign (x), where is an increasing sequence
of sets of finite rrieasure whose union is X. The details may be left to
the reader.

With the lemma established we turn to the proof of the theorem. It
is simpler to consi(ler first the case when the underlying space has finite
measure. In this case. with the given functional on we can then
define a set function ii by

v(E)

where E is any measurable set. This definition makes sense because XE is

now automatically in since the space has finite measure. We observe
that

(6) Iv(E)I

where c is the norni of the linear functional, taking iiito account the fact
that IIXEIILP =

Now the linearity of e clearly implies that ii is finitely-additive. More-
over, if { } is a countable collection of disjoint measurable sets, and we
put E = E11, then obviously

Thus v(E) = + however 0, as N —* oc,
because of (6) and the assumption p < This shows that ii is couiitahly

3See for instance Section 2 in Chapter 6 of Book 111
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additive and. moreover. (6) also shows us that ii is absolutely continuous
with respect to

We can now invoke the key result about absolutely continuous mea-
sures, the Lebesgue-Radon-Nykodim theorem. (See for example Theo-
rem 4.3, Chapter 6 in Book III.) It guarantees the existence of an in-
tegrable fumctioii g so that i4E) .TE g dp for every measurable set E.
Thus we have = f d,a. The representation 1(f) = f fg c4t then
extends iniinediately to simple functions f. and by a passage to the limit.
to all f E L'3 since the simple functions are dense in 1 <p < oc. (See
Exercise 6.) Also by Lemma 4.2, we see that IgIILq =

To pass from the situation where the measure of X is finite to the
general case, we use an increasing sequence of sets of finite irieasure
that exhaust X, that is, X = According to what we have just
proved, for each n there is an integrable function g71 on (which we
can set to be zero in so that

(7)

whenever f is supported in E71 and f E U. Moreover by conclusion (ii)
of the lemma

Now it is easy to see because of (7) that = a.e. on whenever
'ii � m. Thus g71 (x) g(x) exists for almost every x, and by
Fatou's lemma. As a result we have that 5 fg dp for
each f E U supported in and theii by a simple limiting argument, for
all f U. The fact that < tI.qIl is already contained in Holder's
inequality, and therefore the proof of the theorem is complete.

5 More about linear firnctionals
First we turn to the study of certain geometric aspects of linear function-
als in ternis of the hyperplanes that they define. This will also involve
understanding some elementary ideas about convexity.

5.1 Separation of convex sets

Although our ultimate focus will be omi Banach spaces, we begin by con-
sidering au arbitrary vector space V over the reals. In this general setting
we can define the following notions.

First. a proper hyperplane is a linear subspace of V that arises as
the zero set of a (non-zero) linear functional on V. Alternatively, it is
a linear subspacc of V so that it, together with any vector not in V,
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spans V. Related to this notion is that of an affine hyperplane (which
for brevity we will always refer to as a hyperplane) defined to be a
translate of a proper hyperplane by a vector in V. To put it another
way: H is a hyperplanc if there is a non-zero linear functional P. and a
real number a, so that

H — {v e V: P(v) — a).

Another relevant notion is that of a convex set. The subset K c V is said
to be convex if whenever Vo and v1 are both in K then the straight-line
segment joining them

(8) v(t) (1 —t)vo+tvi, 0 <t � I

also lies entirely in K.

A key heuristic idea underlying our considerations can be enunciated
as the following general principle:

If K is a convex set and K, then K and v0 can be sep-
arated by a hyperplane.

This principle is illustrated in Figure 1.

P(v) a

Figure 1. Separation of a convex set and a point by a hyperplane

The sense in which this is meant is that there is a non-zero linear
functional P and a real number a, so that

P(vo) � a, while F(v) <a if v e K.

To give an idea of what is behind this principle we show why it holds iii
a nice special case. (See also Section 5.2.)

H
V()
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Proposition 5.1 The assertion above is valid if V = and K is con-
vex and open.

Proof. Since we may assimie that K is non-enipty. we can also
that (after a possible translation of K and we have 0 E K.

The key construct used will he that of the Minkowski gauge function p
associated to K, which measures (the inverse of) how far we iiecd to go.
starting front () in the direction of a vector v, to reach tile exterior of K.
The precise definition of p is as follows:

p(v) inf{r : v/v E K}.
r>O

Observe that since we have assumed that the origin is an interior point
of K, for each V E there is an r> 0, 50 that v/v E K Hence p(v) is
well-defined.

Figure 2 below gives an example of a gauge function in the special case
where V and K = (a. h), an open interval that contains the origin.

Figure 2. The gauge function of the interval (a, b) hi R

We note, for example, that if V is normed and K is the unit ball

{ IIvit < I }, then p(v) = IIvlI.

In general, the non-negative function p completely characterizes K in
that

(9) p(u) < I if and only if v E K.

Moreover p has an important sub-linear property:

11o\ J = ap(v), if a � 0, and v E V.
p(vi + v2) +p(v2), if Vi and v2 E V.

a x
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In fact, if v E K then v/(1 — F) E K for sonic 0, since K is open,
which gives that p(v) < 1. Conversely if p(v) < 1, then v (1 — €)v', for
some 0 < 1, and v' E K. Then since v = (1 — €)v' + i 0 this shows
v E K, because 0 E K and K is convex

To verify (10) we merely note that (vi + v2)/fri + r2) belongs to K,
if both Vi/Tj and v2/r2 belong to K, in view of property (8) defining the
convexity of K with t = r2/(r1 + r2) and I — t = r1/(r1 + r2).

Now our proposition will he proved once we find a linear functional £,
so that

(11) £(vo) 1, and P(v) p(v), v E Rd.

This is because < 1, for all v E K by (9). We shall construct iii a
step-by-step manner.

First, such an is already determined in the one-dimensional sub-
space Vo spanned by v0, V0 = {Rvo}, since £(bvo) b€(vo) = b, when
b E R, and this is consistent with (11). Indeed, if b � 0 then p(bvo)
bp(vo) � b€(vo) = €(bv0) by (10) and (9), while (11) is immediate when
h <0.

The next step is to choose any vector v1 linearly independent from VO
and extend to the subspace V1 spanned by no and Vi. Thus we can
make a choice for the value of on v1, €(v1), so as to satisfy (11) if

a€(v1) + b = €(avi + In;0) p(av1 + In;0), for all a. h E JR.

Setting a = 1 and by0 = w yields

€(vi) + €(w) <p(vi + w) for all in E V0,

while setting a —1 implies

—€(v1) + €(w') < p(—vi + w'). for all w' E Vi).

Altogether timeni it is required that for all w, in' E Vo

(12) —p(—vi + w') + f(w') €(vi) p(vi + w) —

Notice that there is a muimber that lies between the two extremes of the
above inequality. This is a consequence of time fact that —p(—v1 + w') +

never exceeds P(Vi + w) — €(w), which itself follows from the fact
that €(w) + €(w') <p(w + w') + w') +p(v1 + w), by (II) 011 V0

and the sub-linearity of p. So a choice of cami be made that is
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consistent with (12) and this allows one to extend £ to V1. In the same
way we can proceed inductively to extend to all of

The argument just given here in this special context will now be car-
ried over in a general setting to give us an important theorem about
constructing linear functionals.

5.2 The Hahn-Banach Theorem

We return to the general situation where we deal with an arbitrary vector
space V over the reals. We assume that with V we are given a real-valued
function p on V that satisfies the sub-linear property (10). However, as
opposed to the example of the gauge function considered above, which
by its nature is non-negative, here we do not assume that p has this
property. In fact, certain p's which mxiay take on negative values are
needed in some of our applications later.

Theorem 5.2 Suppose V0 is a linear subspace of V, and that we are
given a linear functional on V0 that satisfies

<p(v), for all v e 17g.

Then can be extended to a linear functional on V that satisfies

£(v) p(v), for all v e V.

Proof. Suppose V0 V, and pick v1 a vector not in V0. We will first

extend e0 to the subspace V1 spanned by V0 and v1. as we did before.
We can do this by defining a putative extension of Lo, defined oii V1

by £1(avi +w) = +e0(w). whenever w V0 and E

is chosen so that

e1(v) forall yE V1.

However, exactly as above, this happens when

—p(—vi + w') + (v1) p(v1 + w) — fo(w)

for all w, w' E V0.
The right-hand side exceeds the left-hand side because of £0(w') +

p(w' + w) and the sub-linearity of p. Thus an appropriate choice

of (v1) is possible, giving the desired extension of from Vo to V1.

We can think of the extensiomi we have constructed as the key step in

an inductive procedure. This induction, which in general is necessarily
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trans-finite, proceeds as follows. We well-order all vectors in V that do
not belong to V0, and denote this ordering by <. Among these vectors we
call a vector v "extendable" if the linear functional Lo has an extension
of the kind desired to the suhspace spanned by V0, v, and all vectors
<v. What we want to prove is in effect that all vectors not in are
extendable. Assume the contrary, then because of the well-ordering we
can find the smallest v1 that is not extendable. Now if is the space
spanned by V0 and all the vectors <vi, then by assumption extends
to The previous step, with in place of 14) allows us then to extend

to the suhspace spanned by and v1, reaching a contradiction. This
proves the theorem.

5.3 Some consequences

The Hahn-Banach theorem has several direct consequences for Banach
spaces. Here B* denotes the dual of the Banach space B as defined in
Section 3.2, that is, the space of continuous linear functionals on B.

Proposition 5.3 Suppose fo is a given element of B with Ilfoil M.
Then there exists a continuous linear functional F on B so that £(fo) = M
and = 1.

Proof. Define on the one-dimensional subspace {afo}aeJR by
£o(afo) = aM, for each a E IR. Note that if we set p(f) = If II

for every

f B, the function p satisfies the basic sub-linear property (10). We also
observe that

IFo(afo)I = aiM = Ia! IIfoII p(afo),

50 £o(f) p(f) on this subspace. By the extension theorem extends
to an F defined on B with £(f) <p(f) = f E B. Since this
inequality also holds for —f in place of f we get IF(f)I 111th and thus

<1. The fact that > 1 is implied by the defining property
= Ilfoll, thereby proving the proposition.

Another application is to the duality of linear transformations. Sup-
pose B1 and B2 are a pair of Banach spaces, and T is a bounded liii-
ear transformation from B1 to B2. By this we mean that T maps B1
to B2; it satisfies T(afi + /312) = aT(fi) + whenever fi, f2 E B
and a amid /3 are real numbers; and that it has a bound M so that
IIT(f)I1B2 � f for which this inequal-
ity holds is called the norm of T and is denoted by IT! I.

Often a linear transformation is initially given on a dense suhspace. In
this conmiection, the following proposition is very useful.
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Proposition 5.4 Let 82 be a pair of Banach spaces and S C
a dense linear subspace of - Suppose T0 is a linear transformation
from S to 82 that satisfies llb(f)1182 < f

a T to all of so that IT(f)1182 <M11fl181 for all

f 81.

Proof If f e let } he a sequence in S which converges to
f. Then since — 1182 <M11f11 — fm it follows that
{ } is a Cauchy sequence in 82, and hence converges to a liniit,
which we define to he T(f). Note that the definition of T(f) is indepen-
dent of the chosen sequence {fn}, and that the resulting transformation
T has all the required properties.

We now discuss duality of linear transformations. Whenever we have
a linear transfornriation T from a Banach space to another Banacli
space 82, it induces a dual transformation, T* of to that can
be defined as follows.

Suppose £2 E (a continuous linear functional on 82), then =
(L2) E is defined by (Ii) = P 2(7(fI )), whenever Ii e More

succinctly

(13) T*(L2)(fi) = L2(T(fi)).

Theorem 5.5 The operator T* defined by (13) is a bounded linear trans-
form ation from to Its norm IIT* satisfies 11Th IIT* II.

Proof First, if if <1, we have that

IL1 (fi)l 1L2(T(fiMl IIT(fi )h182 11Th.

Thus taking the supremum over all fi E Bi with llfi 1, we see that
the mapping T*(L2) = has norm 11Th.

To prove the reverse inequality we can find for any e > 0 an Ii E
with 1111118 = 1 and IIT(fi)1l82 � 11Th — e. Next, with f2 T(f1) E 82,
by Proposition 5.3 (with 8 82) there is an L2 in so that 118; = 1

hut £2 (12) � lIT II — e. Thus by (13) one has T* (L2 ) (1 i) � 11Th — €. and

smce lhfi = 1, we conclude IIT* (L2) � 11Th — F. This gives 1IT* 11

hIT 11 — for any e > 0, which proves the theorem.

A further quick application of the Hahn-Banachi theoreni is the obser-

vation that in general L' is not the dual of L°° (as opposed to the case
I <p < oo considered iii Theorem 4.1).
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Let us first recall that whenever g E L1, the linear functional f f(f)
given by

(14)

is bOunded on L°°, and its norm )* is r,'. In this way L' can be
viewed as a suhspace of with the L1 norm of g being identical with
its norm as a linear functional. One can. however, produce a continuous
linear functional of L°° not of this form. For simplicity we do this when
the underlying space is with Lebesgue measure.

We let C (leflOte the subspace of consisting of continuous
bounded fund iOfl5 on Define the linear function t0 on C (the 'Dirac
delta") by

fEC.
Clearly if II f E C. Thus by the extension theorem, with
p(f) = If we see that there is a linear functional t on L30, extend-
ing t0. that satisfies t(f) I Ii fit for all f E L°°.

Suppose for a moment that P were of the form (14) for some g E L1.
Since t(f) Po(f) 0 whenever f is a continuous trapezoidal function
that excludes the origin, we would have f fg dx = 0 for such functions f:
by a simple limiting argument this gives j'1 g d.x 0 for all intervals ex-
cluding the origin, and from there for all intervals I. hence the indefi-
riite integrals G(y) g(x) dx vanish, arid therefore G' g = 0 by the
differentiation theorem This gives a contradiction, hence the linear
functional P is riot representable as (14).

5.4 The problem of measure

We now consider an application of the Hahn-Banach theoreiri of a dif-
ferent kind. We present a rather stunning assertion, answering a basic
question of the -'problem of measure." The result states that there is a
finitely-additive5 measure defined on all subsets of WL that agrees with
Lehesgue measure on the measurable sets, and is translation invariant.
We formniulate the theorem in one dimension.

Theorem 5.6 There is an extended-valued non-neqative function rh, de-
fined on all subsets of R with the followinq properties:

(i) th(E1 U = th(E1) + ñr(E2) whenever E1 and E2 are disjoint
subsets of R.

4See for instance 1'heorern 3 11, in Chapter 3 of Book III
5The qualifier "finitely-additive" is crucial
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(ii) ñi(E) = m(E) if E is a measurable set and m denotes the I1ebesque
measure.

(iii) fn(E + h) = ñi(E) for set E and real number Ii.

From (1) we see that rh is finitely additive; however it cannot he countably
additive as the proof of the existence of non-measurable sets shows. (See
Section 3, Chapter 1 in Book III.)

This theorem is a consequence of another result of this kind, dealing
with an extension of the Lebesgue integral. Here the setting is the circle

instead of R, with the former realized as (0, 1]. Thus functions on
can he thought of as functions on (0, 1J, extended to ift by periodicity

with period 1. Tn the same way. translations on induce corresponding
translations on The assertion now is the existence of a generalized
integral (the "Banach integral") defined on all hounded functions on the
circle.

Theorem 5.7 There is a linear functional f 1(f) defined on all
bounded functions f on so that:

(a) 1(f) � 0, if f(x) � 0 for all x.

(b) + fif2) = aI(f1) + /31(f2) for all and 0 real.

(c) 1(f) = 1(x) dx, whenever f is measurable.

(d) l(fh) = 1(f), for all ft e where fh(x) = f(x — h).

The right-hand side of (c) denotes the usual Lebesgue integral.

Proof. The idea is to consider the vector space V of all (real-valued)
hounded functions on R/Z, with Vo the subspace of those functions that
are measurable. We let 1o denote the linear functional given by the
Lebesgue integral, Io(f) = j' f(x) dx for f e V0. The key is to find the
appropriate sub-linear p defluied on V so that

Jo(f) <p(f), for all f E V0.

Banach's ingenious definition of p is as follows: We let A = {ai,. . . }

denote an arbitrary collection of N real numbers. with #(A) = N denot-
ing its cardinality. Given A, we define MA(f) to be the real number

MA(f) =sup
xER
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and set

p(f) = inf{MA(f)},

where the iiifimurn is taken over all finite collections A.
It is clear that p(f) is well-defined, since f is assumed to he hounded;

also p(cf) = cp(f) if c � 0. To prove p(fi + 12) � p(fi) ±p(f2), we find
for each c, finite collections A and B so that

Mn(fi) v(fi) +e and P(f2) +€.

Let C be the collection + }1<i<N,, 1<j< N2 where N1 = #(A). and
N2 = #(B). Now it, is easy to see that

Mc(fi + f2) + Mc(f2).

Next, we note as a general matter that MA (f) is the same as MA' (1')
where f' = f,1 is a translate of f and A' A — ft . Also the averages
corresponding to C arise as averages of translates of the averages corre-
sponding to A and B, so it is easy to verify that

<MA (11) and also Mc(f2) <MB(f2).

Thus

P(fi + 12) � Mc(fi + 12) MA(fl) + MB(f2) � p(fi) + 2€.

Letting e —f 0 proves the sub-linearity of p.

Next if f is Lebesgue measurable (and hence integrable since it is
bounded), then for each A

Io(f) f dx �
f1

MA(f)dx = MA(f),

and hence Io(f) <p(f). Let therefore I he the linear functional extend-
ing 1o from V0 to V, whose existence is guaranteed by Theorem 5.2. It
is obvious from its definition that p(f) <0 if f < 0. this it follows
that 1(f) <0 when f < 0, and replacing f by —f we see that conclu-
Sion (a) holds.

Next we observe that for each real h

(15)
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In fact. for Ii fixed and N giver!, define the set AN to be {h. 2h, 3/i.....
Then the sum that enters in the definition of MA (f — is

N1

N

(f(x + jh) - f(x + (j - I )h)).

arid thus (1 — I

< 2M/N. where M is an tipper bound for Ill.
Since p(f — < — fh) —* 0, as N oc, we see that (15) is
proved This shows that. I(f — fh) <0, for all f and Ii. However. replac-
ing f by fh and then h by —/i, we see that I(fh — f) 0 and thus (d) is
also established, finishing the proof of Theorem 5.7.

As a direct consequence we have the following.

Corollary 5.8 There is a function th defined on all subsets
so that:

(i) ñi(E1 U E2) = rh(E1) + rh(E2) for all disjoint subsets E1 and E2.

(ii) 'rii(E) = m(E) if E is measurable.

(iii) rh(E + h) = ñi(E) for every It in R.

We need oniy take rut(E) l(XE). with I as in Theorem 5.7, where
denotes the characteristic function of E.

We now turn to the proof of 5.6. Let 1j denote the interval
(j,j + I], where 3 E Z. Then we have a partition 13 of R into
(lisjOiflt sets.

For clarity of exposition. we termiporarily relabel the measure rh on
(0, 1] Io given by the corollary arid call it rh0. So whenever E C To we
defined th(E) to be rho(E). More generally, if E C we set rh(E)
Tflo(L — 3)

With these things said. for any set E define rh(E) by

00 00

th(E) = th(En13) = —3).

Thus ñi(E) is given as an extended non-negative number Note that if
E1 and E2 are disjoint so are (E1 fl Ij) —3 and (E2 fl —3. It follows
that ñt(Ei U E2) ni(E1) + ñr( E2). Moreover if F] is measurable then

= and so ñi(E) = m(E).
To prove nlt(E + h) = rh(E), consider first the case Ii = k E Z. This is

an immediate consequence of the definition (16) once one observes that
((E+ k)fl13+k) —(3 + k) = (En13) —3, for allj. k E Z.
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Next suppose 0 < h < 1. We then decompose E fl I, as U with
E n (3,3 + 1 — h] and = E fl (j + I — h, 3 + I]. The point of

this decomposition is that + h remains in but + h is placed
in 13+1. In any case, E = U3 U U3 and the union is disjoint.

Thus using the first additivity property proved above and then (16)
we see that

ñn(E)
=

+

Similarly

nt(E + h)
=

+ Ii) + + h)).

Now both and + h are in hence = + h) by the
translation invariance of th0 awl the definition of ñt on subsets of
Also is in 13 and E7 + h is in i, and their measures agree for the
same reasons. This establishes that rh(E) = ñi(E + h), for 0 < h < 1.
Now combining this with the translation invariance with respect to Z
already proved, we obtain conclusion (iii) of rrheorcmfl 5.6 for all Ii, and
hence the theorem is completely proved.

For the corresponding extension of Lebesgue measure in and other
related results, see Exercise 36 arid Problems 8* and 9*

6 Complex and Banach spaces
We have supposed in Section 3.2 onwards that our and Banach spaces
are taken over the reals. However. the statements and the proofs of
the corresponding theorems for those spaces taken with respect to the
complex scalars are for the most part routine adaptations of the real case.
There are nevertheless several instances that require further comment.
First, in the argument concerning the converse of Ilöldefs inequality
(Lemma 4.2), the defiumition of f should read

f(s) =

where now "sign" denotes the complex version of the signum function,
defined by sign z z/IzI if z 0, and sign 0 0. There are similar oc-
currences with g replaced by

Second, while the Hahn-Bamiach theorem is valid as stated only for real
vector spaces, a version of the complex case (sufficient for the applications
in Section 5.3 where p(f) = If II) can be found in Exercise 33 below.
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7 Appendix: The dual of C(X)
In this appendix, we describe the bounded linear functionals of the space C(X)
of continuous real-valued functions on X To begin with, we assume that X is a
compact metric space Our main result then states that if E C(X)*, then there
exists a finite signed Borel measure (this measure is sometimes referred to as a
Radon measure) so that

=
dji(x) for all f E C(X).

Before proceeding with the argument leading to this result, we collect some basic
facts and definitions

Let X he a metric space with metric d. and assume that X is compact. that is.
every covering of X by open sets contains a finite sub-covering The vector space
C(X) of real-valued continuous functions on X equipped with the sup-norm

lilt = sup f(x)l, I E C(X)
.rEX

is a Banach space over Given a continuous function I on X we define the
support of f. denoted supp(f), as the closure of the set {x e X f(x) O} 6

We recall some simple facts about continuous functions arid open and closed
sets in X that we shall use below

(i) Separation. If A and B are two disjoint closed subsets of X, then there
exists a continuous function f with f = 1 on A, f = 0 on B, and 0 < I < I in the
complements of A and B.

Indeed, one can take for instance

d(x,B)
1(x)

d(x, d(x, d(x, A).

(ii) Partition of unity. If K is a compact set which is covered by finitely many
open sets {Ok then there exist continuous functions for 1 <k < N so
that 0 < l]k � 1, supp(rIk) c °k, and IIk(x) = 1 whenever x E K Moreover,
o 1 for all x E X.

One can argue as follows For each x E K, there exists a ball B(x) centered at x
and of positive radius such that B(x) C for some i Since B(x) covers K.
we can select a I iriite subcovering. say B(x3) For each I k N. let Uk
be the union of all open balls so that B(x3) C clearly K C
By (i) above, there exists a continuous function 0 I so that = I on Uk
and supp(pk) C If we define

7/i 1/2 —p'), . 7/zv —wi) (I —'PN—1)

6This is the common usage of the terminology "support" In Book III, Chapter 2, we
used "support of f" to indicate the set where f(x) 0, which is convenient when dealing
with measurable functions
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then supp(llk) C (9k arid

thus guaranteeing the desired properties

Recall7 that the Borel a-algebra of X, which is denoted by 8x, is the smallest
a-algebra of X that contains the open sets Elements of Bx are called Borel sets.
and a measure defined on Bx is called a Borel measure. if a Borel measure is
finite, that is ii(X) < oc, then it satisfies the following "regularity for
any Borel set E and any e > 0, there are an open set 0 and a closed set F such
that ECOand while FC Eandj,t(E—F)<e.

In general we shall be interested in finite siqued Borel measures on X. that
is, measures which can take on negative values. If is such a measure. and
aiid denote the positive and negative variations of then — and
integration with respect to ji is defined by f f d,u f f — f f Conversely,
if arid /L2 are two finite Borel measures, then = — is a finite signed Borel
measure, and ff = f f — ff d/i2.

We denote by M(X) the space of finite signed Borel measures on X. Clearly,
M(X) is a vector space which can he equipped with the following norm

=

where denotes the total variation of It is a simple fact that M(X) with this
norm is a Banach space

7.1 The case of positive linear functionals
We begin by considering only linear functionals £ . C(X) R which are positive,
that is, £(f) � 0 whenever 1(x) � 0 for all x e X Observe that positive linear
functionals are automatically bounded and that = F(1). Indeed, note that
If(x)I If II, hence 11111 ± I � 0, and therefore

Our main result goes as follows.

Theorem 7.1 Suppose X is a compact metric space and a positive linear func-
tional on C(X). Then there exists a unique finite ('positive) Borel measure so
that

(17) f(x) dp(x) for all f C(X)

Proof. The existence of the measure is proved as follows Consider the
function p on the open subsets of X defined by

p(0) = sup {1(f), where supp(f) C 0. and 0 < f <

7The definitions and results on measure theory needed in this section, in particular the
extension of a prerneasure used in the proof of Theorem 7 1, can be found in Chapter 6
of l3ook III
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and let the function be defined on all subsets of X by

= inf{p(0). where E C 0 and 0 is open}

We contend that /2* is a meti ic exterior measure on X.
Indeed, we clearly must have whenever E1 C E2 Also, if 0 is

open, then = p(O) To show that /2* is countably sub-additive on subsets
of X, we begin by proving that is iii fact sub-additive on open sets {Ok}, that

(00k)

To do so, suppose {Ok is a collection of open sets in X, and let 0 = Ok
If f is any continuous function that satisfies supp(f) C 0 and 0 f < 1, then
by compactness of K = supp(f) we can pick a sub-cover so that (after relabeling
the sets Ok, if necessary) K C U'=n Ok Let he a partition of unity of
{ . (as discussed above in (ii)), this inneans that each is (ofltlnUOus
with 0 71k 1, supp(llk) C Ok and llk(x) 1 for all x E K. hence recalling
that p on open sets. we get

=

where the first inequality follows because sllpp(fnJk) C and 0 < 117k < I 1'ak-
ing the supreniirni over f we find that /2* Ok) /i*(Ok).

We now turn to the proof of the suh-additivity of on all sets Suppose {Ek
is a collection of subsets of X and let E > 0 For each k, pick an open set Ok
SO that Ek C Ok and /L*(Ok) -I- Since 0 = UOk covers U we
must have by (18) that

,z*(IJ Ek) � �
and consequently /2* (U Ek) as desired

The last property we must verify is that /1* is metric, in the sense that if
d(E1. K2) > 0. then U K2) = + Indeed, tile separation con-
dition iniplies that there exist disjoint open sets 01 afl(I 02 50 that E1 C Oi
and C 02 'l'herefore. if 0 is any open subset which contains E1 U K2. then
0 D (On 01) U (On 02). where this union is disjoint. Hence the additivity of
on disjoint open sets, arid its monotoniicity give

� +jt_(0n02) > /2*(Ei) +

sinceKiC(0n01)andE2C(0n02)
since the reverse inequality has already been shown above, this concludes the proof
that /2* is a metric exterior measure.
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By Theorems 1 1 and 1 2 in Chapter 6 of Book Ill, there exists a Borel measure
p on Bx which CXtefl(ls /1* Clearly, p is firute with /L(X) =

We now jrove that this rrieasure satisfies (17) Let f E C(X) Since f can be
written as the difference of two continuous non-negative functions. we can assume
after rescaling. that 0 f(x) < 1 for all x E X The idea now is to slice f, that is.
write I is (OlitilillOUs afl(I relatively small in the sup—norm
More precisely, let A' be a fixed positive integer define = X, awl for every
integer it � 1. let

{x e X 1(x) > (ii — 1)/N}

Thus 0 Now if We define

1/N
f,,(x)= f(x)—(rt— 1)/N

0

then the functions f11 are continuous and they "pile up' to yield f, that is, f =
Since Nf7, = I on I 1, C C and also 0 < Nf7, <

1 we have <f(Nf,,) arid therefore by linearity

(19) <e(f) <

The properties of also imply /L(On±i) < f Nfn djz < ji(O71), hence

(20)

Consequently. combining the inequalities (19) and (20) yields

< 2p(X)

In the limit, as N 00 we conclude that = fl dp as desired

Finally, we prove uniqueness Suppose ,i' is another finite positive Borel rrieasure
on X that satisfies €(f) = Jfdp' for all f E C(X) If 0 is an open set. and
0 I < I with supp(f) C 0, then

= f fdp' = ldp' =

Taking the supremum over f arid recalling the definition of p yields p(0) p'(O).
For the reverse inequality, recall the inner regularity condition satisfied by a finite
Borel measure given > 0, there exists a closed set K so that K C 0, and p'(O —
K) <€ By the separation property (i) note(l above applied to K and Oc, we can
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pick a continuous function f SO that 0< f < 1, supp(f) C 0 and f = 1 on K
Then

+ + ( + + C

Since was arbitrary, we obtain the (leSired inequality, and therefore jt(O) =
for all open sets 0. This implies that = on all Borel sets. and the proof of
the theorem is complete.

7.2 The main result
The main point is to write an arbitrary bounded linear functional on C(X) as the
difference of two positive linear functionals.

Proposition 7.2 Suppose X is a compact metric space and let £ he a bounded
linear functional on C(X). Then there exist positive linear functionals t
so that £ = — . Moreover, iteii = (1) + f (1).

Proof For f E C(X) with f � 0, we define

sup{i(p) 0 < <f}.

Clearly. we have 0< (f) and f >0, then
t(af) = Now suppose that f,g � 0 On the one hand we have +

+ g), because if 0 � < f and 0 < ib g, then 0 + f + g
On the other hand, suppose 0 < f + g, and let = min(p, f) arid = —

Then 0 < <f and 0 < q, and = + + (g)
Taking the supremum over cp, we get r (f + g) <F+(f) + £ (g). We conclude
from the above that + g) = +tE (g) whenever f, g � 0

We can now extend P to a positive linear functional on C(X) as follows Given
an arbitrary functiomi f in C(X) we can write f f+

— f, where ft f � 0,
and define on f by = (ff)

— e(f—) Using the linearity of on non-
negative functions. one checks easily that the definition of is independent
of the decomposition of f into the difference of two non-negative functions From
the definition we see that is positive, arid it is easy to (heck that t is linear
on C(X), and that � I1PII.

Finally, we define £ = —F, and see iminiediately that £ is also a positive
linear functional on C(X)

Now since and r are positive, we have F (1),
therefore + P(1). For the reverse inequality, suppose 0 I Then
2p — 11 < 1, hence � F(2p — 1). By linearity of F, and taking the supremumn
over y we obtain � — £(1) Since f(1) = — £ (1) we get
t(l) + r(l), and the proof is complete

We are now ready to state and prove the main result.

Theorem 7.3 Let X be a compact metric space and C(X) the Banach space of
continuous real-valued functions on X Then, given any bounded linear functional £
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on C(X). there exists a unique finite signed Boiel measure on X so that

=
1(x) for all f E (7(X)

Moreover, = 11ill = liiI(X) In othei words C(X)* is isometric to M(X).

Proof. By the proposition. there exist two positive linear functionals £+ and £
so that e = e4 — Applying Theorem 7 1 to each of these positive linear fiiric-
tionals yields two finite Borel measures fL1 and /L2. If we define = — ff2, then
p is a finite signe(I Borel measure and £(f) = f f

Now we have

f If I 11111

and thus < (X) Since we also have I,ij(X) < (X) + 1t2(X) = (1) +
(1) = we conclude that (X) as desired
To prove uniqueness, suppose f f = f f dp! for some finite signed Borel rnea-

sures and and all I E (7(X) Then if v — ji', one has ffdv = 0, and
consequently. if and ii are the positive and negative variations of f, oiie finds
that the two positive linear functionals defined on (7(X) by e(f) f f and

= 5 / dv are identical By the uniqueness in Theorem 7.1, we conclude
that ii = u, hence v 0 and ji = ,u', as desired.

7.3 An extension
Because of its later application. it is useful to observe that Theorem 7 1 has an
extension when we drop the assumption that the space X is compact here we
define the space (7b(X) of continuous bounded functions 1 on X, with norm
511Pxcx If(x)I.

Theorem 7.4 Suppose X is a metric space and £ a positive linear functional on
Gb(X). For simplicity assume that £ is normalized so that £(1) = 1. Assume also
that for each > 0, there is a compact set C X so that

(21) < sup If(x)I + f Cb(X).
xC K,-

Then there exists a unique finite (positive) Borel measure ji so that

=
f(x) dji(x). for all f E (7b(X)

The extra hypothesis (21) (which is vacuous when X is compact) is a "tightness"
assumption that will he relevant iii Chapter 6. Note that as before 11111

since f(l) = 1. even without the assumption (21)

The proof of this theorem proceeds as that of Theorem 7 1. save for one key
aspect. First we define

p(O) = sup {e(f), where f supp(f) C 0, and 0 < f < 1}.
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The change that is required is in t he proof of the countable sub-additivity of
p. in that the support of f's (in the definition of p(Q)) are now not necessarily
(orripact In fact. suppose 0 = is a countable union of open sets. Let C he
the support of f, arid given a fixed (>0. set K = C fl K1. with K the compact
set arising in (21) Then K is conipact °k covers K Proceeding as
before. we obtain a partition of unity with ii,. supported in °k and

N . N
I

r/k(X) 1, for x E K 1\ow f — fr/k vanishes on K1 Thus by (21)

frf -

and hence

£(f) +(

Since this 1101(15 for each (. we obtain the required sub-additivity of p and thus
of The proof of the theorem can theii be concluded as before

l'lieoreni 7 4 did not require that the metric space X be either complete or
separable however if we make these two further assumptions on X. then the
condition (21) is actually necessary

Indeed, suppose £(f) = f dp., where p. is a positive finite ford measure on X,
which we may assurrie is normalized, p.(X) = 1 Under the assurription that X is
complete and separable, then for each fixed f > 0 there is a compact set K1 so
that p.(K) < . Indeed, let {Ck} be a dense sequence in X Since for each ni
the collection of balls covers X. there is a finite Nm so that if
Ow = 131/m(Ck). then p.(0111) 2 1 — /2hnL.

Take K1 = p.( K1) 2 1 — , also, K7 is closed and totally
bounded. in the sense that for every 8 > 0, the set K1 can be covered by finitely
many balls of radius 8 Since X is complete, K1 must be compact. Now (21)
follows immediately.

8 Exercises

1. Consider I? = with Lebesgue measure Let fcm(x) = if si < 1.
fo(r) = 0 for > 1, also let = if lvi 2 1, = 0 when lxl < 1
Show that

(a) fo if arid only if pci <d

(h) L" if and only if d <pci

(c) What happens if in the definitions of J'o and we replace xl l)y
for < 1, amid .rj (1 by lxl for lxl 2 1?

2. Consider the spaces when 0 <p < oo
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(a) Show that if Ill + guLP If + Itq}ILP for all f and g. then necessarily
p?1

(b) Consider JP(R) where 0 <p < I Show that there arc no hounded linear
functionals on this space In other words. if e is a linear function C
that satisfies

I
M 11111 for all f E and SOITiC M > 0,

then e = 0.

[Hint For (a), prove that if 0 <p < 1 and x, y > 0, then + yP > +
For (b). let F he defined by F(x) = £(Xx), where is the characteristic func-
ti()n of [0, xJ. and consider F(x) — F(y).}

3. If f E and g E both not identically equal to zero, show that equality
holds in Holder's inequality (Theorem 11) if and only if there exist two non-zero
constants a. b � 0 such that a

a space and 0 <p < I

(a) Prove that � Ill Note that q, the conjugate exponent of
p, is negative

(h) Suppose Ii arid 12 are non—negative. 1Ifi + f211 i ? Ill Iii." + 111211

(c) 'I'he function d(f,g) = Ill — for f.g E 17 defines a metric on 17(X)

5. Let X he a measure space Using the argument to prove the completeness
of show that if the sequence converges to f in the norni, then a
subsequence of f almost everywhere

6. Let (X. .F, ii) he a measure space. Show that.

(a) The siniple functions are dense in if p(X) < 00, and;

(h) simple functions are dense in 17(X) for 1 p < 00

[Hint. For (a). use E X <f(x) < M(C+I) } where —j <e < j. and
M = Ill Then consider the functions that equal M€/j on For (b) use
a construction similar to that in (a).]

7. Consider the L" spaces, I <p < 00. Ofl Rd with Lebesgue nieasure. Prove t hat

(a) The family of continuous functions with compact support is dense in 17,
and in fact:

(b) The family of indefinitely differentiable functions with compact support is
dense in
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The cases of L' and L2 are in Theorem 2.4, Chapter 2 of Book III, and Lemma 3 1,
Chapter 5 of Book III

8. Suppose I � p < oo, arid that Rd is equipped with Lehesgue measure Show
that if f E then

Ilf(x + h) — f(x)Ilj.p —* 0 as hi —* 0.

Prove that this fails when p = 00

[Hint: By the previous exercise, the continuous functions with compact support
are dense in U(Rd) for 1 <p < 00 See also Theorem 2 4 and Proposition 2.5 in
Chapter 2 of Book III.]

9. Suppose X is a measure space and I po 00.

(a) Consider L"° fl equipped with

If If + if IlL"

Show that IILPOnLP1 is a norm, and that fl (with this norm) is a
Banach space.

(b) Suppose LPO + is defined as the vector space of measurable functions f
on X that can he written as a sum f = fo + fi with fo E and 1' E LTh.
Consider

= + hi IILP1 },

where the infimum is taken over all decompositions I fo + Jr with fo E
and fi E Show that IILPO+LPI is a norm, and that +

(with this norm) is a Banach space.

(c) Show that C + if P0 p � p1

10. A measure space (X, is separable if there is a countable family of mea.sur-
able subsets so that if E is any measurable set of finite measure, then

for an appropriate subsequence {nk} which depends on E Here denotes the
symmetric difference of the sets A and B, that is,

(a) Verify that Rd with the usual Lebesgue measure is separable.

(b) The space is separable if there exists a countable collection of ele-
ments in that is dense Prove that if the measure space X is
separable, then U is separable when 1 <p < 00.
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In light of the previous exercise. prove the following:

(a) Show that the space (R) is not separable by constructing for each a E R
an E with 111(1 —fhII � 1, if a

(b) Do the same for the dual space of LOC

12. Suppose the measure space (X. ji) is separable as defined in Exercise 10. Let
i <p < oc and I/p + 1/q = 1. A sequence {f7, } with E L" is said to converge
to f E weakly if

(22) f f dji for every g E

(a) Verify that if jf — friIILP 0, then converges to f weakly

(h) Suppose II <00 Then, to verify weak convergence it suffices to
check (22) for a dense subset of functions g in L".

(c) Suppose 1 <p < oc. Show that if IILP <00, then there exists f E
If, and a subsequence {mk } so that converges weakly to f.

Part (c) is known as the of for 1 <p < oc. which fails
when p = I as is seen in the exercise below
[hint: For (b) use Exercise 10 (b)

13. Below are some examples illustrating weak convergence

(a) fn(X) = sin(2irnx) in U([0. 1]). Show that 0 weakly

(b) = in Then —p 0 weakly if p> 1, but not when
p = 1. Here x denotes the characteristic function of [0, 11.

(c) = I +sin(2irnx) in L'([O.lJ). Then —+1 weakly also in L1([0,1]),
I

1, but — does not converge to zero. Compare with Prob-
lem 6 part (d)

14. Suppose X is a measure space, I <p < oo. and suppose { } is a sequence of
functions with IIfnIILP < M < 00.

(a) Prove that if f f weakly.

(b) Show that the above result may fail if p = I

(c) Show that if fi a.e. arid —* f2 weakly, then = f2 a

15. Minkowski's inequality for integrals. Suppose (Xi,;Li) and (X2, /12)
are two measure spaces, and 1 <p oc Show that if f(xi. :2) is measurable on

x X2 and non-negative, then

<f P(Xi) dji2
LP(X
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Extend t his statement to the case when f is complex-valued and the right-hand
side of the inequality is finite.

[Hint For I <p < use a combination of Tlölder's inequality, and its converse
in Lemma 4 2

16. Prove that if E (X). where X is a measure space, j = i,. N, and
i/p3 = 1 with � 1, then

II H fl
This is the multiple Holder inequality

17. The convolution of f and q on equipped with the Lebesgue measure is
defined by

(f * g)(x) - [ f(x - y)g(y) dy

(a) If f I < p < oc, and q E L', then show that for almost every x the
iritegrand f(x — y)g(y) is integrabic in y, hence f * g is well defined. More-
over, f * g E U with

* gilL' 11111 lt9ll 1)

(b) A version of (a) appUes when g is replaced by a finite Bor4 measure ji: if
f E L". with 1 <p < oc, define

(f * = [ f(x -y) d/L(y),

arid show that Ill * l/Ll(Rd)

(c) Prove that 1ff E U and g E Li', where p and q are conjugate exponents, then
f * g E with ill * g
is unifori lily cont imious on R. and if 1 < p < oc. then tini (f * g) (x) =
0

[Hint For (a) arid (b) use the Minkowski inequality for integrals in Exercise 15
For part (c). use Exercise 8

18. We consider the L" spaces with mixed norm, in a spccial case t hat is useful
is several conitvxt s

We take as our underlying space the product space {(x, t)} x R, with the
product measure dl, where and dt are Lebesguie measures oti W' arid E(
respectively We define 14 = ur. with 1 <p < I <r < oc. to be the
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space of equivalence classes of jointly riieasurahle functions f(i, t) for which the
norm

Ill IILP
= (L (L If(x.t)IPdx) dl)

finite (when p < 'X) and r < oc). and an obvious variant when p = oc or r =

(a) Verify that L'1 r with this norm is complete. and hence is a Banach space

(h) Prove the general form of Holder's inequality in this context

f((i xx

wit1i l/p+ 1/p' = 1 and 1/r+ hr1 = 1

(c) Show that if f is iiitegrable over all sets of finite measure. then

IIJIILP7 =sup / f(x,t)g(x,l)dxdt

with the sup taken over all g that are simple and < I

(d) Conclude that the dual space of 1 1 <r < 00

19. Young's inequality. Suppose I <p. q. r < oc Prove the following on

IJIILPIIqIIL' whenever 1/q= l/p+ l/r— I

Here, f * g denotes the convolution of f and g as defined in Exercise 17.
[hint: Assume f, g � 0, and use the decomposition

f(y)q(x = Y)h[f(y)raq(x -
for appropriate a and b, together with Exercise 16 to find that

f f(y)q(x - y) <
(f - y)lr

20. Suppose X is a measure space. 0 <P0 <P < p1 oo, and f E (X) fl
L'7' (X) Then f E JP( X) and

If hlv Ill if t is chose" so that = I +

21. Recall the definition of a convex function (See Problem 4. Chapter 3, in
Book III) Suppose p is a non-negative convex function on R arid f is real-valued
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and integrable on a measure space X, with ji(X) = j Then we have Jensen's
inequality.

Note that if = tV3, 1 <p. then is convex and the above can be obtained
from holder's inequality Another interesting case is

HintS Since is convex, one has, a3 a3 r3). whenever
are real, a3 � 0. and a3 = 1]

22. Another inequality of Young Suppose and ij' are both continuous,
strictly increasing functions on [0, oo) that are inverses of each other. that is.

Let

and

(a) Prove: ab < + W(b) for all a,b � 0

hi particular, if p(x) and u1(y) = with 1 <p < oo and I/p +
1 /q = 1, then WQ get 'I1(y) = yQ/q, aIi(I

A°B1°<OA+(1—O)B forallA.B�Oand0<9<l.

(b) Prove that we have equality in Young's inequality only if b = (that is.

ab the rectangle whose vertices are (0,0). (a, 0), (0. b)
and (a, b), and compare it to areas "under" the curves y = 4(x) and x = 'J'(y) I

23. Let (X, be a measure space arid suppose is a continuous, convex, arid
increasing function on [0, oc), with = 0. Define

= {f measurable: f d/L < oo for sonic M > 0},

and

= M>Ofx
1.

Prove that.

(a) is a vector space.

(b)
1

is a norm

(c) is complete in this norm
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The Banach spaces are called Orlicz spaces Note that in the special case

[hint Observe that if f E then dji = 0. Also, use the
fact that there exists A > 0 so that � At for all t � 0.1

24. Let I <P0 <P1 <30

(a) Consider the Banach space L"° fl V" with norm iifiiL'(rLp' = if IIL'o +
lilt LP1 (See Exercise 9.) Let

— f if0<t<1.(t)_1
tTh ifl<t<oo

Show that with its norm is equivalent to the space fl U' In other
words, there exist A, B > 0, so that

ill < Bill I1LP0nLPI.

(b) Similarly, CoIlsi(Ier the Banach space + with its norm as defined in
Exercise 9 Let

= f du where
= {

Show that L4' with its norm is equivalent to the space U" + U'.

25. Show that a Banach space 8 is a Hilbert space if and only if the parallelogram
law holds

if + gIl2 + Ill — qll2 = 2(111 112 + 119112).

As a consequence, prove that if (W') with the Lehesgue measure is a Hubert
space, then necessarily P = 2.

[Hint: For the first part. in the real case, let g) = (hf + gil2 + Ill — 9112)
1

26. Suppose I <po,pi <oc and i/PU + 1/qo = I and i/pi + 1/qi = 1. Show that
the Banach spaces fl and + L" are duals of each other up t o an
equivalence of noriiis. (See Exercise 9 for the relevant definitions of these spaces.
Also, Problem 5* gives a generalization of this result

27. The purpose of this exercise is to prove that the unit ball in is strictly
COflVVX wheti I <p < oc. in the following sense Here U is the space of real-
Valued functions whose pth power are integrable Suppose ilfoliLP = I1LP = 1.
and let

ft = (I —t)f0+tfi

he the straight-line segment joining the points fo and fi Then lift II r.v < 1 for all
t With 0 <t < 1, unless fo 1'.
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(a) Let f e U and q E I/p + 1/q == 1. with If = I and I Then

f =

only when f(r)

(b) Suppose II'S' = I for some 0 < /' < 1 Find g E IIgIIL(l = so that

f f,igdp — I

and let F(t) = f Observe as a result that l"(t) = 1 for all 0 t 1

Conclude that ft = fo for all 0 < t < I.

(c) Show that the strict convexity fails when p = 1 or p = oc What can be said
about these cases?

A stronger assertion is given in Problem 6*

[Flint To prove (a) show that the case of equality in A°B19 OA + (1 — O)B, for
A, B > 0 and 0 < 0 < 1 holds only whcn A = B

28. Verify the completeness of A(* (gd) and

29. Consider further the spaces

(a) Show that when a > 1 the only functions iii A(*(R(L) are the constants

(h) Motivated by (a), one defines to be the class of functions f on
whose partial derivatives of order less than or equal to k belong to A(* (Rd)
Here k is an integer arid 0 <a < 1 Show that this space, endowed with the
norm

hf liCk

is a Banach space

30. Suppose B is a Banach space and S is a closed linear subspace of B The
suhspace S defines an equivalence relation f g to mean f — g E S If B/S denotes
the collection of these equivalence classes, then show that B/S is a Banach space
with norm 11116/s = inf(hIf'116, 1' 1)

31. is an open subset of then one definition of can l)e taken to be the
quotient l3anach space B/S. as defined in the previous exercise, with B
and S the suhspace of those functions which vanish a.e. on Another possible
space, that we will denote by consists of the closure in of all f
that have compact support in Observe that the natural mapping of to
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has norm equal to 1 uow'ver, this Triapping is in general not surjective
Prove this in the case when Q is the unit hail and k � 1.

32. A Banach space is said to be separable if it contains a countable dense subset
In Exercise 11 we saw an example of a Banach space B that is separable, but where
8* is riot separable Prove, however, that in general when 8* is separable. then B

Note that this gives another proof that in general L1 is not the dual

33. Let V be a vector space over the complex numbers C, and suppose there exists
a real-valued function p on V satisfying

f = if E C. arid V E V.
'l_ p(vl + V2) p(vi) + p(v2). if V

a V a linear functional on V0 which satisfies
<p(f) for all I E Vo, then can be extended to a linear functional £ on V

that satisfies < p(f) for all f E V.
[flint. If u = then Fo(V) = u(v) — iu(iv). Apply Theorem 5.2 to it]

34. Suppose B is a Banach space arid S a closed proper suhspace. arid assume
1(1 S Show that there is a continuous linear functional on 8, so that £(f) = 0

for f E S. and f(fo) = 1 The linear functional can be chosen so that I€jI l/d
where d is the (listance from fo to S

35. A linear functional on a Bariach space B is continuous if arid only if {f E B:
€(f) = 0} is closed

{Hint This is a consequence of Exercise 34.]

36. The results in Sect ion 5.4 can be extended to d-dimensions

(a) Show that there exists an extended-valued non-negative function ñi defined
on all subsets of so that (i) ñì is finitely additive; (ii) ñi(E) = rn(E)
whenever E is Lebesgue measurable, where m is Lebesgue measure, and
ñt(E + h) = ñi(E) for all sets E arid every h E lRd Prove this is as a conse-
quence of (b) below

(h) Show hat t here is an "integral" I, defined on all hounded functions on
so that 1(f) > 0 whenever I ? 0, the map f 1(f) is linear. 1(f)

fkd/-,!1 I dx whenever f is measurable, and = 1(f) where fh(x) f(x —

h). and Ii E

9 Problems

1. The spaces LOC and L' play universal roles with respect to all Banach spaces
in the following sense.
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(a) If B is any separable Banach space. show that it can be realized without
change of norm as a linear suhspace of LOC(Z) Precisely, prove that there
is a linear operator i of B into L°°(Z) so that lii(f) = If lB for all
feB

(h) Each such B can also he realized as a quotient space of L' (Z) That is, there
is a linear surjection P of L' (Z) onto B. so that if S = {x E L1 (Z) P(x) =
0}, then iP(x)IiB lix + yilLl(-,), for each x C L'(Z) This gives an
identification of B (and its norm) with the quotient space L' (Z)/S (and its
norm), as defined in Exercise 30.

Note that similar conclusions hold for L°°(X) and L1(X) if X is a measure space
that contains a countable disjoint collection of measurable sets of positive and
finite measure.
[Hint For (a), let } be a dense set of non-zero vectors in B, and let E

be such that = 1 and = if I C B, set i(f) =
For (b), if x = L'(Z), with liXIiLI(Z) <00, define P by P(x) =

I

2. There is a "generalized limit" L defined on the vector space V of all real
sequences that are bounded, so that:

(i) L is a linear functional on V

(ii) L({Sn}) > 0 if � 0, for all n.

(iii) = if the sequence has a limit

(iii) = for every k � 1.

(iii) = if — 0 for only finitely many n.

[Hint: Let p({sn}) lirn + f
), and extend the linear functional L

defined by L({Sn}) defined on the suhspace consisting of sequences
that have limits

3. Show that the closed unit ball in a Banach space B is compact (that is, if
fri C B, < 1, then there is a subsequence that converges in the norm) if and
only if B is finite dimensional.
{Hint IfS is a closed suhspace of B, then there exists x E B with lxii 1 and the
distance between x and S is greater than 1/2

4. Suppose X is a a-compact measurable metric space, and cb(X) is separable.
where Gb(X) denotes the Banach space of hounded continuous functions on X
with the sup-norm.

(a) If is a bounded sequence in M(X). then there exists a ji C M(X)
and a subsequence {JLflj so that converges to jt in the following
(weak*) sense:

g E C6(X)
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(b) Start with a /to M(X) that is positive, arid for each f L1(1t0) consider
the mapping I fd,uo. This rriapping is an isomnetry of L' (/10) to the
suhspace of A4(X) consisting of signed measures which arc absolutely con-
tinuous with respect to

(c) Hence if {fT1} is a bounded sequence of functions in L1 (Ito), then there
exist a E M(X) and a subsequence } such that the measures djto
converge to /t in the above sense

5* Let X he a measure space Suppose <p and are both continuous, strictly
increasing functions on [0, oc) which are inverses of each other, that is, (<p o
x for all x � 0. Let

= f <p(u) du and
= f du.

Consider the Orlicz spaces Lw (X) and (X) introduced in Exercise 23.

(a) In connection with Exercise 22 the following Holder-like inequality holds

f f e and e Lw.

(h) Suppose there exists c> 0 so that for all t � 0. Then the dual
of is equivalent to 12".

6.* There are generalizations of the parallelogram law for L2 (see Exercise 25) that
hold for These are the Clarkson inequalities:

(a) For 2 <p < oo the statement is that

+ +

(b) For 1 <p < 2 the statement is that

+ +

where 1/p+1/q= 1.

(c) As a result, is uniformly convex when 1 <p < oc. This nicans that
there is a function = = with 0 < 5 < 1, (and 0 as
0), so that whenever 111 IILP = IIIJIILP = 1, then — glk" � c implies that
111i111

This is stronger than the conclusion of strict convexity in Exercise 27
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(d) lJsing the result in (c), prove the followingS SUPPOSC I <p < arid the
sequence fn E converges weakly to f. If IIfnIfLP tIfItL1', then
f7, converges to f strongly, that is, — 0

7* An important notion is that of the equivalence of Banach spaces Suppose
and B2 are a pair of Banach spaces We say that B1 and 82 are equivalent

(also said to be 'isorriorphic") if there is a linear bijectiori 7 between and 82
that is bounded and whose inverse is also bounded Note that any pair of finite-
dimensional Banach spaces are equivalent if and only if their dimensions are the
same.

Suppose now we consider for a general class of X (which contains for
instance, X = with Lebesgue measure) 'I'hen

(a) L7 and are equivalent if and only if p = q

(b) However, for any p with I < j-2 is equivalent with a closed infinite-
dimensioiial subspace of

8. * Ther' is no finitely—additive rotationally—i rivariant measure extending Lebesgue
measure to all subsets of the sphere Sd when d � 2, in distinction to what happens
on the torus lRd/Zd when d � 2 (See Exercise 36) This is due to a remarkable
construction of Hausdorff that uses the fact that the corresponding rotation group
of is non-commutative Tn fact, one can decompose S2 into four disjoint sets
A, B. C and Z so that (i) Z is denumnerable. (ii) A B C. but A (B U C).

Here the notation A1 A2 means that A i can be transformed into A2 via a
rotation

* As a consequence of the previous problem one can show that it is not possible to
extend Lebesgue measure on Rd. d � 3, as a finitely-additive measure on all subsets
of Rd so that it is both translation and rotation invariant (that is, invariant under
Euclideanm motions) This is graphically shown by the l)aradOX"
There is a finite decomposition of the unit ball Di = with the sets
disjoint. and there are corresponding sets E3 that are each obtained from E3 by
a Euclidean motion, with the also disjoint, so that E3 = B2 the ball of
radius 2.



2 Spaces in Harmonic
Analysis

The import alit part playe(1 in Hubert's treatment of
Fredholni theory of integral equations by functions
whose squares are summable is well—known. and it was
inevitable that members of the Götthigen school of
mathematics should be led to set themselves the task
of proving the converse of Parseval's theorem . On
the other hand, efforts made to exten(i these isolated
results to embrace cases in which the known or un-
known index of summa.hility is other than 2, appear
to have failed.

W. 11. Yonnq, 1912

I have proved that two conjugate trigonometric se-
ries are at the same time the Fourier series of JJ) func-
tions. p> I That is, if one is, so is the other. My
proof is uiirelated to the theorem of Young-Hausdorff..

M Riesz, iettei to G II. Hardy, 1923

Some months ago you wrote ' I have proved that
two conjugate . 1/ functions. p> 1' I want the
proof Both 1 and my pupil TitchTnarsh have tried
in vain to prove it

G If Hardy, to M Riesz 1923

The fact that spaces were hound to play a significant role iii bar-
Inonic analysis was understood not long after their introduction. Viewed
from that early perspective, these spaces stood at the nexus between
Fourier series ami complex analysis, this connection having been given
by the Cauchy integral and the related conjugate function. For this rea-
son methods of coniplex function theory predominated in the beginning
stages of the subject, but they had to give way to '-real" methods so as
to allow the extension of much of time theory to higher dimensions

It is the aim of this chapter to show the reader something about both
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of these methods. fri fact, the real-variable ideas that will he introduced
here will also he further exploited in the next chapter, when stud,ying
singular integral operators in

The present chapter is organized as follows. We I)Cgifl with an initial
view of the role of in the context of Fourier series, together with a
related convexity theorem for operators acting on these spaces. Then we
pass to M. Riesz's proof of the L' boimdedness of the hubert transform,
an iconic example of the use of complex analysis in this setting.

Form this we turn to the real-variable methods, starting with the max-
imal function and its attendant "weak-type" estimate. The importance
of the weak-type space is that it provides a useful substitute for L' when,
as iii many instances, L1 estimates fail. We also study another significant
substitute for L1, the "real" Hardy space It has the advantage that
it is a Banach space and that its dual space (a substitute for is the
space of functions of bounded mean oscillation. This last function space
is itself of wide interest in analysis.

1 Early Motivations
An initial problem considered was that of formulating an U analog of
the basic L2 Parseval relation for functions on [0, 2nrJ. This theorem
states that if = dO denotes the Fourier coefficients of
a function f iii L2([0, 2urI), usually written as

(1) f(O)

then the following fundamental identity holds:

(2) 12
1

dO.

Conversely, if {aTj is a sequence for which the left-hand side of (2) is
finite, then there exists a unique f in L2([0, 2ir}) so that both (1) and (2)
hold. Notice. in particular, if f E L2([0, 2ir]). then its Fourier coefficients
{ a.11} belong to L2(Z) = £2(Z).' The question that arose was: is there an
analog of this result for U when p 2?

Here an important dichotomy between the case p> 2 and p < 2 occurs.
In the first case, whemi f E 2irJ). although f is automatically in
L2({0 2ir}), examples show that no better conclusion than

'See for instance Section 3 in Chapter 4 of Book Ill
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is possible On the other hand, when p < 2 one can see that essentially
there can he no better coitciusion than aft < 00, with q the dual
exponent of p. Analogous restrictions niust he envisaged when the roles
of f and } are reversed.

In fact. what does hold is the Hausdorff-Young inequality:

1/q 2ir 1/p

(3)

1
2ir 1/q 1/

(4)

1 p 2 and i/p + 1/q = 1. (The case q = oo corre-
sponds to the usual L°° norm.) These may be viewed as intermediate
results. between the case p = 2 corresponding to Parseval's theorem, and
its "trivial" case p 1 and q = 00.

A few words about how the inequalities (3) and (4) were first attacked
arc in order, because they contain a useful insight about spaces: often,
the simplest case arises when p (or its dual) is an even integer. Indeed,
when, for example q = 4, a function belonging to L4 is the same as its
square belonging to L2, and this sometimes allows reduction to the easier
situation when p = 2. To see how this works in the present situation, let
us take q = 4 (and p = 4/3) in (3). With f given in we denote by F
the convolution of f with itself,

1F(9)=— /
2ir Jo

By the multiplicative property of Fourier coefficients of convolutions we
have

with the Fourier coefficients of f. Parsevais identity applied to F
then yields

= 1
IF(O)12 dO,
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and Young's inequalitY for convolutions (the periodic analog of Exer—

cisc 19, Chapter 1) gives

j2 < II! IlL

proving (3) when P 4/3 and q 4.

Once the case q 4 has been established, the cases corresponding to
q = 2k. where k is a positive integer. can he hatidled in a similar way.
Flowever the general situation. 2 q oc. corresponding to I p 2.

further ideas.

in contrast to the above ingenious bitt special argument. iii turns out
that there is a general principle of great interest that underlies such
inequalities, which in fact leads to (lirect and abstract proofs of both (3)
and (4). This is the M. Riesz interpolation theorem. Stated succinctly,
it asserts t hat whenever a linear operator satisfies a pair of inequalities
(like (3) for p = 2 and p = I), then automatically the operator satisfies
the corresponding inequalities for the intermediate exponents: here all p
for 1 p 2. arid q with I/p + I/q = 1. The formulation arid proof of
this general theorem will be our first task in the next section.

Before we turn to that, we will describe briefly another initial source for
the role of U in harmonic analysis. one which highlights its connection
with coniplex analysis.

Together with the Fourier series (1) for f in L2, one considers its
"conjugate function" or "allied series", defined by

(5) j(O)
sign(n)

where sign(n) = I if n > 0. sign('n) —1 if n < 0. and sign(n) 0 when
Ti =

The significance of this definition is that

+ iJ(O) + ao) =
n=o

where F(z) is the analytic function in the unit disc fzj < 1
given as the Cauchy integral (projection) of f, namely:

ç2ir

F(z) — I2'JrzJ() C' —Z
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Figure 1. The Cauchy integral F(z) is defined for zI < 1, while f(6) is
(lefihled for z =

Moreover, if f is real-valued (that is = so is f and thus f + a0
and f represent respectively the real and imaginary parts of the boundary
values of the analytic function 2F in the unit disc.

The key L2 i(Icntity linking f and f is a simple consequence of Parse-
vaFs relation:

p2ir p2it

(6) — I If(6)12d0+ aoI2 1 1(6)12 dO.
271J0

An early goal of the subject was the extension of this theory to and
it was also achieved by M. Riesz.

As he tells it. he was led to the discovery of his result when preparing to
administer a 'licenciat" exam to a rather mediocre student. One of the
problems on the exam was to prove (6). To quote Riesz: 'S... However it
was quite obvious that my candidate did not know ParsevaFs theorem.
Before giving hint the problem, I had therefore to think if there was
another way for him to arrive at the required conclusion. I immediately
realized that it was Cauchys theorerri that was at the source of the result.
and this observation led me quite directly to the solution of the general
problem, a question that had longtime occupied

What Riesz had in mind was the followimig argument. If we assume for
simplicity that a0 0. then uiider the (technical) assumption that the
analytic function F is actually continuous iii the closure of the unit disc.
one has by the mean-value theorem (as a simple consequence of Cauchy's

21 ncident ally the conjugate function is the 'syrnunetry-breakiuig" operator relevant to
the divergence of Fourier sei ies considered in Book I
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theorem) applied to the analytic function F2, the identity

(7) I dO 0.

we suppose, as above, that f is real-valued, then by considering the
real part of )2, which is )2 )2, we immediately
get (6). What became clear to Riesz is that when we replace F2 by F2k
in the above, with k a positive integer, and again consider its real part,
the boundedness of f f in where p = 2k follows. Similar but more
involved arguments worked for all p, I <p < oo.

Here, once again, the Riesz interpolation theorem can play a crucial
role. We will present these ideas below in the context where the unit disc
is replaced by the upper half-plane.

2 The Riesz interpolation theorem
Suppose (Pu, qo) and (pr, are two pairs of indices with 1 <pj, q3 � oo,
and assume that

IT(f)!ILQo MOj!JIILPO arid

T is a linear operator. Does it follow that

< for other pairs (p,q)?

We shall see that this inequality will hold with values of p and q de-
termined by a linear expression involving the reciprocals of the indexes
Pu, Pt, qo arid q1. (Linearity in the reciprocals of the exponents already
arises in the relation i/p + i/p' = 1 of dual exponents.)

The precise statement of the theorem requires that we fix some no-
tatiori. Let (X, and (Y, v) he a pair of measure spaces. We shall
abbreviate the norm on (X, p) by writing jf = If tr.P(x.p), and
similarly for the norm for functions on (Y, dv). We will also con-
sider the space + that consists of functions on (X. that can
be written as + Ii, with fj E (X, ii), with a similar definition for

+

Theorem 2.1 Suppose T is a linear mapping from LPO + to +
Assume that T is bounded from LPO to and from to

J < MOIIfIILPO,

<Mii!fIILPl.
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Then 7' is bounded from to

IT(f)IILe Mill II Lp,

whenever the pair (p, q) can be written as

1 1—t t 1 1—t t
—=——+ and —=——----+—
P Po Pi q qo

for some t with 0 t 1. Moreover, the bound M satisfies M <Md_tMf.

We should emphasize that the theorem holds for spaces of complex-
valued functions because the proof of it depends on complex analysis.
Starting with the strip 0 Re(z) I in the complex plane, our oper-
ator 7' will lead us to an analytic fimction so that the hypotheses
IIT(f) 1

Mo till LP0 and IlT(f) <M1 if 1Lri are encoded in the
boundedness of on the boundary lines Re(z) = 0 and Re(z) = 1, re-
spectively. Moreover, the conclusion will follow from the boundedness of

at the point t on the real axis. (See Figure 2.)

Re(z)=0 Re(z)=1

Figure 2. The domain of the function

The analysis of the function will depend on the following lemma.

Lemma 2.2 (Three-lines lemma) Suppose 4(z) is a holomorphic func
tion in the strip S = {z E C: 0 < Re(z) < 1}, that is also continuous
and bounded on the closure of S. If

M0 = sup and M1 = sup 14(1 + iy)I,
yEIR yEIR

then

forallo<t<I.
yER
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The term "three-lines" describes the fact that the size of on the line
Re(z) = t is controlled by its size on the two boundary lines Re(z) 0

and Re(z) = 1. The reader may note that this lemma belongs to the
family of results of the Phragmén-Lindelöf type that were discussed in
Chapter 4, Book 11. As with other assertions of this kind, it is deduced
from the more familiar maximum modulus principle, and it is here that
the global assumption that is bounded throughout the strip is used.
Notice, however, that the size of the assumed global bound of does
not occur in the conclusion. (That some condition on the growth of is
necessary is shown in Exercise 5.)

Proof. We begin by proving the lemma un(ler the assumption that
Mo M1 1 and + iy)j —* 0 as —p oo. In this case,
let M sup where the sup is taken over all z in the closure of
the strip S. We may clearly assume that M > 0, and let z1, z2,... be
a sequence of points in the strip with Al as n —p oo. By the
decay condition imposed on the points z11 cannot go to infinity, hence
there exists z0 in the closure of the strip, so that a subsequence of }

converges to z0. By the maximum modulus principle, z0 cannot be in the
interior of the strip, (unless is constant, in which case the conclusion is
trivial) hence z0 mniust be on its boundary, where < 1 Thus M � 1,
and the result is proved in this special case.

If we only assume now that M0 = M1 = 1, we define

= for each 0.

Since we find that < I on the
lines Re(z) 0 and Re(z) 1. Moreover,

sup
O<x<J

since is hounded. Therefore, by the first case, we know that < I
in the closure of the strip. Letting c —* 0, we see that 1 as desired.

Finally, for arbitrary positive values of M0 and M1, we let
and note that satisfies the condition of the previous

case, that is. is hounded by I on the lines Re(z) = 0 and Re(z) 1.

Thus < 1 in the strip, which completes the proof of the lemma.

To prove the interpolation theorem, we begin by establishing the in-
equality whemi f is a simple function, and it clearly suffices to do so with
1111 = 1. Also. we recall that to show ITf Lq < Mill! it suffices to
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prove, by Lemiria 4.2 in Chapter 1, that

where 1/q + 1/q' 1, and g simple with jq' 1.

For now, we also assurrie that p < oc and q> 1. Suppose f LP is
simple with 1. and define

where =p z
+

Ill \. Po Pt)

and

Yz where q'
(I — z

+
IgI q0 q1

with q'. and denoting the duals of q, and q1 respectively. Then,
we note that ft = f, while

I I if Re(z) 0
1 if Re(z) = 1.

Similarly 1 if Re(z) ()and = 1 if Be(z) = 1, and also
= g. The trick now is to consider

f f where the sets Ek are disjoint and
of finite measure, then is also simple with

fz =

Since g is also simple, themi

With the above notation, we find

=
1

dv).
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so that the function is a holoniorphic function in the strip 0 < Re(z) <
1 that is bounded and continuous in its closure. After an application of
Holder's inequality and using the fact that T is bounded on with
bound M0, we find that if Re(z) 0. then

MoIIfz!ILPo MO.

Similarly we find Mi on the line Re(z) 1. Therefore. by the
three-lines lemma, we conclude that is bounded by on the
line Re(z) = t. Since = f(Tf)g dv, this gives the desired result. at
least when f is simple.

In general, when f E with 1 p < oc, we may choose a sequence
of simple functions in so that — fIILP —p 0 (as in Exercise 6,

Chapter 1). Since
11 LP, find that is a Caiichy

sequence in 11' and if we can show that liii T(f) almost
everywhere, it would follow that we also have

To do this, write f = + where 1U (x) f(x) if f(x)I � I and
0 elsewhere, while = f(x) if f(x)j <1 and 0 elsewhere Simi-
larly, set = + Now assume that Pa � (the case

p <Pi, and since f e it follows that fU E
and 1L e LT-'. Moreover, since f in the L'3 norm, then fU

in the norm and —* IL in the norm. By hypothesis, then
71(fU) T(f U) in and T(fL) in and selecting appro-
priate subsequences we see that
T(f) almost everywhere, which establishes the claim.

It remains to consider the cases q = 1 arid p = 00. In the latter case
then necessarily Pa = Pi oc, arid the hypotheses
and IIT(f) M1 1111! imply the conclusion

by HOlder's inequality (as in Exercise 20 in Chapter 1).
Finally if p < oc and q = 1, then qo = qj = 1, then we may take g

for all z, and argue as in the case when q> I. This completes the proof
of the theorem.

We shall now describe a slightly different hut useful way of stating the
essence of the theorem. Here we assume that our linear operator T is
initially defined on simple functions of X, mapping these to functions
on Y that are integrable on sets of finite measure. We then ask: for
which (p, q) is the operator of type (p, q), in the sense that there is a
bound M so that

(8) JIT(f)IILQ whenever I is simple?
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In this formulation of the question, the useful role of simple functions is
that they arc at once common to all the spaces. Moreover, if (8) holds
then T has a unique extension to all of with the same bound M in (8),
as long as either p < 00; or p = 00 in the case X has finite measure. This
is a consequence of the density of the simple functions in and the
extension argument in Proposition 5.4 of Chapter 1.

With these remarks in mind, we define the Riesz diagram of T to
consist of all all points in the unit square {(x. y) 0 < x < 1, 0 < y < 1}
that arise when we set x = i/p and y 1/q whenever T is of type (p, q).
We then also define as the least M for which (8) holds when x = i/p
and y = i/q.

Corollary 2.3 With T as before:

(a) The Riesz diagram of T is a convex set.

(h) log is a convex function on this set.

Conclusion (a) means that if (x0, i/o) (l/po, i/qo) and (x1, Yi) =
(i/pi, i/qi) are points in the Riesz diagram of T. then so is the line seg-
ment joining them. This is an immediate consequence of Theorem 2.1.
Similarly the convexity of the function log is its convexity on each
line segment, and this follows from the conclusion M guar-
anteed also by Theorem 2.1.

In view of this corollary, the theorem is often referred to as the "Riesz
convexity theorem."

2.1 Some examples

EXAMPLE 1. The first application of Theorerri 2.1 is the Hausdorff-Young
inequality (3). Here X is [0. 2ir} with the normalized Lebesgue measure
dO/(2ir), and Y = Z with its usual counting measure. The mapping T is
defined by T(f) = with

= f dO.

Corollary 2.4 If 1 <p < 2 and I/p + 1/q = 1, then

IIT(f) IILQ(Z) 11111 LP({0,2ir]).

Note that since L2([O, 2irJ) C ([0, 2irJ) and L2(Z) C L°°(Z) we have
L2([0, 27rJ) + L'([O, 2irJ) = L1 ([0, 2ir}), and also L2(Z) + L°°(Z) = L°°(Z).
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The inequality for Po = 2 is a conscqllCIlCe of Parseval's identity.
while the one for = 1, q1 = oo follows from the observation that for
all ri.

p2ir

— f f(0)f do.
2ir

Thus Riesz's theorem guarantees the conclusion when i/p + t,
for any! with This gives alip wit1'

and q related to p by I/p + l/q = 1.

EXAMPLE 2. We next come to the dual Ilausdorif-Yomig inequality (4).
ITere we define the operator T' mapping functions on Z to flurictions on

by

Notice that since LP(Z) c L2(Z) when p < 2. then the above is a well-
defined function on L2([O, 2irfl when } U1(Z). by the unitary char-
acter of Parseval's identity.

Corollary 2.5 if 1 p 2 and i/p + i/q = 1, then

JIT'({a71

The proof is parallel to that of the previous corollary. The case po =
2 is, as has already been mentioned. a consequence of Parseval's

identity, while the case = I and q, oc follows directly from the fact
that

<

An alternative proof of this corollary uses Corollary 2.4 as well as The-
orem 4 1 and Theorem 5.5 in the previous chapter.

EXAMPLE 3. We consider the analog for the Fourier transform. Here
the setting is W1 and the U spaces are taken with respect to the usual
Lebesgue measure. We initially define the Fourier transform (denoted
here by T) on simple functions by

dx.
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Then clearly, Ifha', and T has an extension (by Proposi-
tion 5.4 iii Chapter 1 for instance) to L' (Rd) for which this inequality
continues to hold. Also, T has an extension to as a unitary
mapping. (This is essentially the content of Plancherel's theorem. See
Section 1, Chapter 5 in Book Ill.) Thus in particular IT(f)11L2
for I simple.

The same arguments as before then prove:

Corollary 2.6 If I p 2 and I/p + 1/q 1, then the Fourier trans-
form T has a unique extension to a bounded map from to L',

� If IILP.

We summarize these results by describing in Figure 3 the Riesz dia-
grains for each of the above versions of the Hausdorff-Young theoremni.
The three variants are as follows:

(i) The operator T in Corollary 2.4: the closed triangle 1.

(ii) The operator T' in Corollary 2.5: the closed triangle 11.

(iii) The operator T in Corollary 2.6: the line segment joining (1,0) to
(1/2, 1/2), that is, the common boundary of these two triangles.

More precisely, the results above guarantee the imiequality for the seg-
ment joining (1,0) to (1/2, 1/2) in each of the three cases. Tf we use the
trivial inequality L' 11111 in Example 1 above, we get that the

(1.1)

1/q

(0,

Figure 3. Riesz diagrams for the HausdorfF-Young theorem

0)
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point (0,0) also belongs to the Riesz diagram of T, yielding the closed
triangle I. Similarly, because })11L3c JI{afl}IILI, we obtain the
triangle II for Example 2. Finally, we should note that in Example 3,
the Fourier transform, the Riesz diagram consists of no more than the
segment joining (1,0) to (1/2. 1/2). (See Exercises 2 and 3.)

EXAMPLE 4. Our last illustration is Young's inequality for convolutions
in Rd. It states that whenever f and g are a pair of functions in and

respectively, then the convolution

(f * g)(x) = / f(x - y)g(y) dy
JRd

is well-defined (that is, the function f(x — y)g(y) is integrable for almost
every x). and moreover

If * Ill V

under the assumption that 1/q I/p + 1/r — 1, (with I q oo). One
proof of this has been outlined in Exercise 19 of the previous chapter.
Here we point out that it is also a consequence of the similar special cases
corresponding to p = 1, and p the dual exponent of r. In fact it suffices to
prove (9) for simple functions f and g, and then pass to the general case
by an easy liniiting argument. With this in mind, fix g, and consider
the map T defined by T(f) = f * g. We know (see Exercise 17 (a) in
Chapter 1, where the role of f are g arc interchanged) that IT(f)II L1

MIJfIILI, with M = Also by Holder's inequality, IIT(f)IIL'o
MJIf where 1/r' + 1/i' = 1. Now applying the Riesz interpolation
theorem gives the desired result.

There is of course the parallel situation of the periodic case. For ex-
ample, in one dimension, taking the functions with period 2rr, the con-
volution of f arid g is defined by

p2ir

(f * g)(O) = / f(O -
271 Jo

If we set = 2ir}) with the underlying measure d9/(27r). then one
has again hf * YIILq � but automatically in a larger range
because < hg IlL', whenever F < r.

The Riesz diagrams arc described as follows (Figure 4):
The solid line segment joining (1 — 1/r, 0) to (1, 1/r) represents Young's

inequality for Rd. The closed (shaded) trapezoid represents the inequal-
ity in the periodic case.



(10)

I /q

(0,

(1,1)

(1.)

(1.0)

Im(z) > 0.
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Figure 4. Riesz diagrams for T(f) f * g, with g E

3 The theory of the Hubert transform
We carry out the theory of the "conjugate function," alluded to earlier
in Section 1, but we do it in the parallel framework where the unit circle
and the unit disc are replaced by JR and the upper haJf-plane =
{z x + iy. x E IR, y> 0}, respectively. While the technical details of
the proofs are a little more involved in the latter context, the resulting
formulas are more elegant arid their form leads more directly to important
generalizations iii higher dimensions.

3.1 The L2 formalism

We begin by setting down the basic formalism connecting the Ililbert
transform arid the projection operator arising from the Cauchy integral.
Starting with arm appropriate function f on JR we define its Cauchy inte-
gral by

I
F(z) C(f)(z) = . / dt,

2irr I — z

For the moment we restrict ourselves to f in L2 (R). Then of course the
integral converges for all z = x + iy with y > 0, (because 1/(t — z) is in
L2(R) as a function oft) and F(z) is holoniorphic in the upper half-plane.
We can also represent the Cauchy integral F 1mm terms of the L2 Fourier
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; rt. 3transform i Oi j dS

(11) F(z)
=f Im(z) > 0.

This integral converges because as a function of is in L2(0. oc).
for y > 0. The above representation comes about because of the formula

f =

which holds for Jm(z) > 0. (For more details about these assertions. and
their connection to the Hardy space H2, see Section 2, Chapter 5 in
Book III.)

As is clear from (Ii) and Plancherel's theorem, one has F(x + iy) —÷
P(f)(x). as y —÷ 0, in the L2(R) norm with

P(f)(x)

and x the characteristic function of (0, oo). Thus P is the orthogonal
projection of to the subspace of those f for which = 0 for
almost every < 0. So as in (5) of Section 1, one is led to (lefihie the
Hubert transform II by

(13) H(f)(x)

Some eleirientary facts. following directly from the definitions of P and
II. arc worth noting:

• P + il-I). where I is the identity operator.

• H is unitary on L2. and JIoH H2 —I.

In other words, = and if is invertible with if1 = —II.

We now come to the important realization of the Hubert transforni as
a integral" It caii he stated as follows.

Proposition 3.1 1ff E L2(TR) then

(14) liiii / f(x -
t

3The Fourier trarisforriis iii the definitions below are taken in the L2 sense via
Plaiicherel's theorem
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That is, with H( (f) denoting the integral on the right-hand side above,
we have (1) e for every e > 0. and the asserted
in (14) is in the L2(R) noi•rn.

First. we make a few observations. Note that with z = x + iy. then

(15) = +

where

y2) y2)

are called the Poisson kernel and conjugate Poisson kernel, respec-
tively. Then because of (10). (11) and (15)

(16) Rf * + i(f *

where (f * = j f(x — t)
f *

Next define the reflection p by —x), and observe
that while = since and

are respectively eveii aiid odd functions of x. Also (f'j =
Therefore using (16) with f and we then obtain

17
(f *

=
( )

(f * fC J(

As a result, we obtain that the Fourier transforms of and (taken
in L2) are given by

(18) (&) =
—— -

With this we turn to the proof of the proposition. We note. by (13),
(17), (18). and PlanchereFs theorem. that f * H(f) in the L2 norm.
as c —+ 0 Now consider

- I f(x - t) - (f * = H( (f)(x) - (f * Q, )(x).
t

This difference equals f * where

L\((x) = — for � (
= —Q((x), for IXI<f.
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It is important to observe that (e'x). while (x)} <
A/(1 + x2), since 1/x — x/(x2 + 1) O(i/x3), � i.4 In particular

i is integrahie over and the family of kernels (x) satisfies the
usual size conditions for an approximation to the identity,5 but not the
condition f dx 1. Instead f dx = 0, for all f 0, because

(x) is an odd function of x. As a consequence

(19) f * 0 in the L2 norm. as e 0,

and this gives that H(f) in the L2 norm as i 0.

We recall briefly how (19) can be proved. First

(f * = ff(x t) dt

= f(f(x - et) - (t) dt.

Then by Minkowski's inequality

111 * f Jjf(x - Ft) - dt.

Now, the integral tends to zero with e by the dominated convergence
theorem. This is because lf(x — ft) — f(x)1$L2 and lf(x —
et) — 0 as 0 for each t (For the continuity of the L2
norm used here, see Exercise 8 in Chapter 1.)

Remark. The above argument shows also that IHf(f)J1L2 �
A independent of e and f.

3.2 The theorem

With the elementary properties of the Hubert transform established we
can now turn to our goal: the theorem of M. Riesz. It states that the
Hubert transform is bounded on 1 <p < oo. One way to formulate
this is as follows.

Theorem 3.2 Suppose I <p < oc. Then the Hubert transform H, ini-
tially defined on L2 fl by (13) or (14), satisfies the inequality

(20) IH(f)IILP � APJIIIILP, whenever f e V fl

4We remind the reader of the notation 1(x) = O(q(x)), which means that f(x)t
C a given rdnge.

5A discussion of approximations to the identity can be found, for instance, in Book 111,
Section 2 and Exercise 2 of Chapter 3
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with a bound independent of f. The hubert transform then has a
unique extension to all of satisfying the same bound.6

To have a better appreciation of the nature of this theorem it may
help to see why the conclusions fail for p 1 or p 00. For this. an
explicit calculation does the job. Let I denote the interval (—1. 1), and
f x be the characteristic function of that interval. Now I is an even
function, so its Hubert transform is odd, and in fact a simple calcu-
lation gives 11(f) (x) = (1) (x) = log Hence 11(f) is
unbounded near x = —1 and x = 1, with mild (logarithmic) singularities
there. However H(f)(x) as xI —+ 00, sø it is obvious that H(f)
does not belong to L1.

it is also instructive to consider instead of f = Xi, the odd function
g(x) = Xi (x) — Xi (—x). where 3 (0, i). Theii the Hubert transform
of g equals hI(g)(x) log and is an even function. While 11(g)

is still unbounded (with mild logarithmic singularities at —1, 0 and 1),
it is integrable on R, since H(g)(x) as lxi 00. (See Figure 5.)

Figure 5. Two examples of Hilbert transforixis

6For the general extension principle used, see Proposition 5 4 in Chapter 1

f(x)

r
—1 1

g(x)
I

I

I

I

I

I I

I;
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There is a nice lesson here whose significance will be clear at several

stages later on: namely, if f is (say) a hounded fimction with compact
support on then 1-1(f) is in L' (R) if and only if J' f(x) dx = 0. (See

Exercise 7.)

3.3 Proof of Theorem 3.2

The main idea of the proof was already outlined at the end of Section 1 in
the context of Fourier series and the corresponding theorem for the con-
jugate function. While this proof, which depends on complex analysis,
is elegant, its approach is essentially limited to this operator and can-
not deal with the generalizations of the Hubert transform in the setting
of The "real-variable" theory of those operators will be described in
Section 3 of the iiext chapter.

We turn to the proof of the Theorem 3.2, and in preparation we invoke
two technical devices. The first is very simple and is the realization that
it suffices to prove the theorem for real-valued functions. from which
its extension to complex-valued functions is immediate (with a resuli -
ing bound which is not more than twice the hound for real-valued
functions).
The second device depends on the use of the space of iridefi-

nitely differentiable functions of compact support. There are two useful
facts concerning this space. First, it is dense in and more particu—
larly, if f E L2 fl with p < oo, there is a sequence with
and f both in the L2 and nouns. (This follows from the argu-

meat to solve Exercise 7 in Chapter 1 as well as the references therein.)

For our purposes. a particularly helpful observation is that whenever
f E then its Cauchy integral F(z) = dt extends as a

continuous function on the closure of the upper half-plane, is hounded
there, and moreover satisfies the decay inequality

M
(21) F(z)I< —. z=x+iy,y?0,

I+izt

for an appropriate constant M. The simplest way to prove this is to

use the Fourier transform representation (11). Then the rapid decrease
at infinity off shows that F is continuous amid bounded in the closed
half-plane Moreover the smoothness of f lets us integrate by parts,
giving

1
°'—

1F(z)
= = [- f
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As a result, F(z)1 Mo/Izf, so together with the boundedness of F
the estimate (21) is established. Notice also that the continuity of F
with (11). (16) and (17) yields

(22) 2F(x) = 2 lim F(x + iy) f(x) + iR(f)(x).

It is also important to remark here that if f is real-valued (as we have
assllme(l). then by (14) the hubert transform 11(f) is also real-valued.

With these iriatters out of the way, the main conclusions can be ob-
tained in a few strokes.

Step 1: Gauchy 's theorem. We see first that

(23) j (F(x))k dx = 0. whenever k is an integer. k � 2.

Indeed, if we integrate the analytic function over the contour 'y
in the upper half-plane consisting of the rectangle (see Figure 6) whose
vertices are R + ic, R + iR, —B + iR, and —R + ic, then by
theorem dz 0. Letting and I? —+ oc, also taking into
account the continuity of F and the decay (21) the" gives (23). (Note
also that by (21). we have 11(f) for all p> I.)

-R+iR R+il?

-R+ie R+i€

Figure 6. The rectangle of integration 'y

We now exploit (23). Observe that when k = 2, if we take the real
parts of this identity (using that f and H(f) are real-valued), we have

— (Hf)2) dx = 0. This is essentially the uriitarity of H on L2
that we mentioned previously.

Next we consider other values of k � 2, those when k is even k =
(When k is odd, the identity (23) does not have au immediately useful



68 Chapter 2 L1' SPACES IN HAll MONIC ANALYSIS

consequence.) Suppose, for example, that k = 4. Then the real part
of (23) gives us

ff4 dx _6f f2(Hf)2 dx + f(Hf)4 dx =

As a result,

f dx < 6f f2(Hf)2 dx <6 (f dx) (f(Hf)4

the last majorization following by Schwarz's inequality. Hence

1/2 1/2

(f(Hf)4 dx) 6 (f f4 dx)

which means

I1H(f)11L4 1IL4.

In the same way, if we take p = with F an integer � 1, we obtain

(24) IJH(f)IILP p 2F.

Indeed, the real part of (f + is

where Cr = r = 0.1,...

Hence

f(Hf)2€dx <

ar = Now Holder's inequality (with dual exponents
shows that

f < If

with p = 2F. Thus

�
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Note that this inequality is jointly homogeneous of degree iii
and IIH(f)IILP. Moreover the right-hand side is of degree at most 2t —
2 in IIH(f)IItp. Upon normalizing f so that If = 1, and setting
X we have arX2f_2r. Now either X < 1 or
X � 1. In the second case, then X2t ar)X2'2. As a result

ar <221. In either case X and therefore (24) is proved
with =

To carry out the next step we extend the basic inequality (24), proved
for f E to I that are simple functions. Recall that we have already
defined H(f) whenever I is in L2, and in particular if f is simple. Next,
since such f belongs to L2 fl U, we can find a sequence }, with

f both in the L2 and U norms. As a result,
are Cauchy sequences in both the L2 arid U norms, while H(f)
in the L2 norni. Thus (24) is established when f is simple.

Step 2: Interpolation. Having proved (24) for simple functions arid p
even, we can apply the Riesz interpolation theorem once we have ex-
tended H to complex-valued functions. But this is easily done by setting
H(f1 + if2) = H(f1) + iH(f2), for li arid 12 real-valued. Note that as a
result, the inequality (24) extends to this case, but with replaced by

(By a further argument we can show that the original bound
holds in this case also. See Exercise 8.)

With this in mind Riesz interpolation yields the inequality

IIH(f)IILP

for all p such that 2 < p where £ is any positive integer. This follows
by taking po = 2, P1 = and noting that if i/p = (1 — t)/2 +

then p ranges over the interval 2 p < when t ranges over
0 t 1. Since iriay he taken to be arbitrarily large, we get (20) for
all 2 <p < oc and f simple.

Step 3: Duality. We pass from the case 2 <p < oc to the case 1 <p
2 by duality. This passage is based on the simple identity

p oc 1.00

(25) J f(1-Jg)dx
-30

whenever f arid g belong to arid are now allowed to be complex-
valued. In fact this follows immediately from Plancherel's identity (f, g) =
(f. and the definition (13), which carl be restated as
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One can invoke the abstract duality principle in Theorem 5.5 of Chap-
ter 1 or proceed directly as follows. Restricting attention to f and g
simple, one has by Lemma 4.2 in the previous chapter, with I <p 2,

=

where the supremurn is taken over g simple, with 1, i/p + 1 /q =
1. However, by (25) arid Höldefs inequality, this is equal to

sup <sup

using (20) for q in place of p, arid rioting that 2 <q < 00.

Therefore (20) holds for all p. 1 <p < oo, for all simple fimctions f.
The passage to all f L2 fl and thus to the general result, is by now
a familiar limiting argument.

4 The maximal function and weak-type estimates
Another important illustration of the occurrence of JY spaces is in con-
nection with the maximal function f*. For appropriate functions f given
on the maximal function f* is defined by

f(x) sup
rii(B) JB

where the suprernurn is taken over all balls B containing .r. and TIm (as
well as dy) denote the Lehesgue measure.7

It is a fact hat f* plays a role in a wide variety of questions in analysis,
arid it is there that its inequality

(26) < I <J) < 00.

is of crucial interest.

Before we come to the proof of (26) a few observations are in order.
Firsi, the mapping f f is not linear, hut does satisfy the sub-additive
property that f* f fi +

Next. while (26) obviously holds for p = oo (with = 1). the in-
equality for p 1 fails. This can be seen directly by taking f to he

7An introduction to f*, and a complete proof of (27) below can he found for
in Cliapier 3 of Book III
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the characteristic function of the unit ball B, and noticing that then
(4 � 1/( 1 + xI )". This function clearly fails to he integrahie at infin-

itv. The asserted inequality follows immediately from the fact that for
each x e the ball of radius 1 + centered at .r contains B. There
are also simple examples where the integrability of fails locally. (See
Exercise 12.)

There is nevertheless a very useful substitute for V boundedness
for It is the weak-type inequality: there is a hound A (imidepemidemit
of f). so that

A
(27) m({x: f*(x) > a}) for all a > 0.

\Ve brielly recall the niaiii steps in the proof of (27). If we denote by
{ x : 1* (4 > a}. themi to obtain the above mnajorization for m( it
suffices to have the same for m(K), where K is any compact subset of E().
Now, using the definition of f* we can cover K by a finite collection of
halls B1, 1 dx > a m( for eath i. Tf we then
apply a Vitali covering lemma, we can select a (lisjoint sub-collection of
these balls . . with � 3_dyfl(K) Adding the

above inequalities over the disjoint balls then gives m(K) < If II
which leads to (27).

4.1 The inequality

We turn to the proof of the inequality for the maximmial function. Tt
is formulated as follows.

Theorem 4.1 Suppose f E with 1 <p < cc. Then f*

LP J

p but is independent of f.

Let us first see why f* (x) <cc, for a.e. x, whienever f E L'3. Observe
that we can decompose I = f' + where 1 1(x) = f(x) if f(x)1 > 1,
and f1(x) = 0 elsewhere, also f(x) if f(x)I < I and 0

elsewhere. Tliemi Ii E L' amid E L°°. But clearly f* <fjK +
+ 1, since 1 everywhere. Now from (27) (with f' iii place

of f), we see that is finite almost everywhere. Thus the samne is true
for
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The proof that relies on a more quantitative version of the
argument just given. We strengthen the weak-type inequality (27) by
incorporating in it the houndedness of the mapping f The
stronger version states

(28) rn(fx: fldx, forallo>O.
If I>Q/2

Here A' is a different constant: it can be taken to be 2A. The improve-
merit of (27), (except for a different constant, which is iniessential). is
that here we only integrate over the set where f(x)t > a/2, instead of
the whole of Rd

To prove (28) we write f = + where now Ii (x) = f(x), if f(.x)I >
o/2, and = 1(x) if <a/2. Then f* + + o/2,
since <o/2 for all x. Therefore {x: I *(x) > o} c {x: >
o/2}, and applying the weak-type inequality (27) to f

in place of o) then irmnediately yields (28), with A' = 2A.

Distribution function

We will next need an observation concerning the quantity occurring on
the left-hand side of the inequalities (27) arid (28), which we formulate
more generally as follows. Suppose F is any non-negative measurable
function. Then its distribution function, ,\(a) = is defined for
positive o by

= rn({x: F(x) > a}).

The key point here is that ftr any 0 <p < oc,

f dx
= f do,

Rd 0

and this holds in the extended sense (that is, both sides are simultane-
ously finite and equal, or both sides are infinite).

To see this. consider first the case p = 1. Then the identity is an
immediate consequence of Fubini's theorem, in the setting Rd x
applied to the characteristic function of the set {(x, o) : F(x) > a>
0}. Indeed, integrating the characteristic function first in a then in x
gives fRd

(j0h (x) do) dx, while integrating in the reverse order yields

m({x: F(x) > o}) do, and this shows (29) for p = 1. Finally, let
G(x) = (F(x))P, so {x: G(x) > o} = {x: F(x) > Using (29) for
p = 1 (and G instead of F) then gives the conclusion for general p.
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We also note that

A(a) < I F(x) dx.a

which is Tchebychev's inequality, in fact.

[ F(x)dx � [ F(x)dx < am({x: F(x) > a}),
JIRd

and this proves the assertion. One also sees. more generally, .\(a) <
f(F(x))P dx for p> 0.

We now apply (29) to F(x) f*(x), utilizing (28). Then

dx f da

<A'f fldx)
U

We evaluate the integral on the right-hand side by interchanging the
order of integration. It then becomes

12f(xW'
A/f f(x)1 (j

da = for all t � 0, (with = p/(p —

1)). So the double integral equals Ld f(x)1 dx, which
is If with and this gives (26), proving the the-
orem.

Note. as a result of the above proof. that the constant in (26)
satisfies = O(i/(p — 1)) as p 1.

RemarkS The Hilbert transforiii H(f), like the maximal function
also satisfies a weak-type L1 inequality, a result we will prove in a more
general setting in the niext chapter. in fact, this weak-type inequality
will then he used to prove inequalities for the generalizations of the
1-lilhert transform to Rd, in much the same way as they are used above
for the maximal function.

5 The Hardy space
We now come to the real hardy space which plays a significant
role as another substitute for L' in the context where important
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I? inequalities for p> I break down at p = 1. This space is a Banach
space that is "near" and whose dual space also occurs naturally in
many applications. Moreover, stands in sharp contrast to the space of
weak-type functions considered above- the latter space cannot be made
into a Banach space, nor does it have any hounded linear furictionals.
(See Exercise 15.)

Tire space arose first for d I in the setting of complex analy-
sis as the -'real parts" of the boundary values of functions of the complex
Hardy space ffP, when p 1. The Hardy space in the version of the
upper half-plane, cOnsists of holomorphic functions F on for which

foe
sup /
y>OJ

and whose norm is defined as the of the quantity on the
left-hand side of the above inequality.8

Now, it can be shown that whenever F E I-P, p < oc. then the limit
F'o(.x) + iy) exists iii the norm arid in fact IIFIIHP
IFj)Ij Moreover, when 1 <p < oo, Riesz's theorem can he reinter-

preted to say that 2F0 = f + iH(f) where f is a real-valued function in
LP(R). Conversely, every element F E arises in this way. Thus, when
I <p < oc we see that the Banach space is the same, up to equiva-
lence of norms as (real) The equivalence breaks down at p 1,

since the Hubert transform H is riot hounded on L'. Tins situation led
to the original definition of the space of real-valued functions f
that arise as 2F() = f +11-1(f) where F E 111. Equivalently. f E
if and only if f e L1 (Ia) arid 1-1(f), defined in an appropriate "weak"
sense. also belongs to L1 (IR). (An outline of the proof of these assertions
can he found in Problems 2, 7* and 8*.)

The notion of was later extended to d> I. and various equiv-
alent defining properties were ultimately found. It turns out that the
simplest of these to state, and the most useful in applications, is the
definition in terms of decompositions into "atoms To this we now turn.

5.1 Atomic decomposition of

A bounded measurable function a on is an atom associated to a ball
B C IR'1. if:

(i) a is supported in B, with Ia(x)J < 1/rn(S), for all x; and,

8flie case p = 2 is treated in Section 2, Chapter 5 of Book TIE
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(ii) fkd a(x) dx = 0.

Note that (i) guarantees that for each atom a we have < 1.

The space consists of all L1 functions f that can be written as

(30)

where the ak are atonis and the Ak are scalars with

(31)

Observe that (31) insures that the sum (30) converges in the L' norm.
The infimum of the values I, taken over all possible decompositions
of f of the form (30) is, by definition, the norm of f, written as
If

One can then observe the following properties of

• With the above norm the space is complete, hence is a Banach
space. Tf f belongs to then f belongs to and

f f(x) dx = 0.

• However, the above necessary conditions are far froni sufficient to
imply f E

• The significance of the cancelation condition (ii) was already indi-
cated at the end of Section 3.2. Moreover, if one drops this can-
celation property for atoms, then sums of the kind (30) represent
arbitrary functions in Ll(lRd).

• however, in the opposite direction if f is any LP(Rd) function, 1 <
p. (say) of bounded support that satisfies the caiicelation condition

.f f(x) dx 0, then f belongs to

Proofs of the first three assertions are outlined in Exercises 16, 17. and 18.
The fourth assertion is the deepest of these. Its proof, which follows
below, provides us with valuable insight into the nature of and its
ideas will he exploited in several circumstances later.

We state the result mentioned above.

Proposition 5.1 Suppose f E p> 1, and f has bounded sup-
port. Then f belongs to if and only if 1(x) dx = 0.
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Note that f is automatically in L1, by Holder's inequality (see Proposi-
tion 1.4 in Chapter 1), and the cancelation condition is necessary as has
been pointed out.

To prove the sufficiency we assume that f is supported in a ball B1
of unit radius, amid that f8 If(x)1 dx < 1. These normalizations can be
achieved by a simple change of scale and multiplication of f by au ap-
propriate constant. We next consider a truncated version of the maximal
function f* We define ft by

ft(x) = sup
rn(B) f dy,

where the supremum is taken over all balls B of radius I that contain x.
We note that under our assumptions we have

(32) 1

ft 0 if x B3, where B3 is the ball with same center as B1,
but with radius 3. This is because x B:3 and if x E B with the radius of
B less than or equal to 1, then B imist be disjoint from B1, the support
of f. Titus

L ft (x) dx
= f ft (x) dx < c

by Holder's inequality. However the last integral is finite by Theorem 4.1,
since clearly ft(x) <f*(x)

Now for each a � 1, we consider a basic decomposition off at "height'S
a, carried out with respect to the set Ea = {x: ft(x) > a}. This is a
variant of the important "Calderón-Zygmund decomposition." It will be
a little simpler to carry out the steps when d = 1, and this we do first;
we return to the general case d � 2 immediately afterwards. The reader
who is impatient with the technicalities of the next few pages may want
to glance ahead to the lemma in Section 3.2 of the next chapter, where
a more streamlined version of the decomposition appears.

This decomposition allows us to write f = g + b where

(33) I.qt ca. for an appropriate constant c,9

9Here we continue the practice of using c, etc to denote constants that may not
be the same in different places
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and where b is supported in E0. Iii fact, since, as is easily seen, the set
is open. we can write U where are disjoint open intervals,

and we will be able to construct b so that h = with supported
on Ij and satisfying

(34) fbi(x)dx=O. for allj.

The key observation used in this construction is

(35) forallj.

When m(13) � 1, the inequality (35) is automatic in view of our assump-
tions that f 1(x)! dx 1 and a � 1. Otherwise, writing = (x1, x2)
we note that (35) follows because x1 E and hence <a while

ft(x1) � f(x)Idx.
As a result, if

=
f(x)dx

denotes the mean of f on then rn3! <a. Since I = +
we can write f g + b with

g = +

and

where the 's are defined by b3 = (f — rnj)Xjj, and the designate the
characteristic functions of the indicated sets. Note that on we have
ft(x) a. so that 11(x)! <a for a.e. x on this set by the differentiation
theorem.10 Since the 13 are disjoint, (35) then guarantees that (33) holds,
with c = 1. The cancelation property (34) is also clear because

f = j(f(x) — = — = 0.

With the decomposition f = g + b given for each a, we miow consider
simultaneously all decompositions of this form for a = 21r, k = 0, 1,2

'0See for instance Theorem 1 3 in Chapter 3 of Book III



78 Chapter2 L" SPACES IN HARMONIC ANALYSIS

Thus for each k we can write I = + with hk =
where is supported on open intervals which for fix k are disjoint.

and moreover E2k = {x: ft(x) > while = 0.

Now since is suppOrte(l in the set E2k. arid the sets E2k arc decreas-
ing with m(E2k) 0, as k —p oc. we have that b/c 0 almost everywhere.
as k —* oc. Thus f ae., and

oc

k=O

However.

gk+l _qk bA — —

j i 3

the last identity holds because eachwhere = — !&

1 is contained in exactly one The are supported iii the in-
tervals and by the cancelation properties of and 1 we have

that f dx 0. Also since qk+l — g"J + and
gk+l — gk = — h'1, the disjointness of the intervals shows that

I I

< As a result we will see that the sum

(36)
k.j

will give us an atomic decomposition off. In fact we set J
= and f g° + Now the are atoms (asso-

ciated to the intervals while

= =

= >

however, because in({ft(.r) > o}) is decreasiiig in o.

2km({ft(x) > <2f rn({fT(x) >
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and lieiice sunnning in k we find that < because

f >
—

/ fT(x) dx <

as we saw by (29) and (32). Finally. g° is bounded and supported in 133,
while f g°(x) dx 0 because of the cancelation properties of f and
Hence g° is a multiple of an atoiii. and this yields that (36) is an atomic
(Iccouiposition of f.

To extend the result to general d we need to modify the argument just
given in one point: the appropriate analog of the decomposition of the
opeii set = {.r . ft (x) > } into a disjoint union of open intervals
is its decomposition into a union of (closed) cubes whose interiors are
(Iisjoillt and so that the distance from each cube to is comparable to
the diameter of the cube.11 Tt is also to take the cubes entering
in this union to be dyadic cubes. These cubes are defined as follows.

The dyadic cubes of the are the closed cubes of side-
length 1. whose vertices are points with integral coor(lmates. The dyadic
cubes of the kthl_generation are the cubes of the form where Q is a
cube of the Oth_generatioji. Notice that bisecting the edges of any dyadic
cube of the kth_generation decomposes it into cubes of the (Ic + I
generation whose interiors are disjoint. Observe also that if Q and Q2
are dyadic cubes (of possibly different generations), and their interiors
intersect, thicii either Qi C Q2, or Q2 C Q

The decomposition we need of ant open set into a union of such cubes
is as follows.

Lemma 5.2 Suppose Q C W1 is a non-trivial open set. Then there is
a collection } of dyadic cubes with disjoint interiors so that

and

(37) < d(Qj, çY) < 4 diam(Q3).

Proof. We claim first that every point E belongs to some dyadic
cube for which (37) holds (with in place of Qj).

Let 6 = ft) > 0. Now the dyadic cubes containing have diam-
eters varying over { }, Ic E Z. hence we can find a dyadic cube
Qx which contains with 6/4 <6/2. Now d(Qx. <6 <
4 diam(Qy), since Also

d(Q7, IIC) � 6 — > 6/2 > diani(Qy).

Ihis kind of decomposition already arose in Chapter 1 of Hook III
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thus (37) is proved for Q he the collection of all cubes
obtained as ranges over ft Their union clearly covers hut their

interiors are far from disjoint. To achieve the desired disjointness select
from Q the maximal cubes, that is. those cubes in Q not contained iii
larger cubes of Q. Clearly, by what has been said above, each Q is
contained in a maximal cube and these maximal cubes necessarily have
disjoint interiors The lemma is therefore proved.

With the above lemma. we can redo the decomposition of f in the
setting d � 2. The argument is essentially the same as before except for
some small changes. For a � 1, we apply the lemma to the open set E0 =
{x: ft(x) > a}; therefore we have a (lecomposition I = g + b, with g =

+ and b = bj, with = (1— Now as
in the case d = 1 we see that <Ca. In fact, If I dx .TB Ill dx
for any ball B Q3. We choose B so that it contains a point of
We can do this with a ball whose radius is 5 since d(Q, <
4 If we Choose such a ball and it has radius < 1 (that is,

<1/5), then

1
[lf(x)Idx <a

m(B) JB

and hence <e1a where = Cl. (The ratio e1 is inde-
pendent of 3). Otherwise, if diarn(Q3) � 1/5, the inequality rn3 <c2a
is automatic (with C2 independent of 3), since f f(x)t dx 1 by assump-
tion. and a � 1 In either case, therefore <ca. Next, since each
dyadic cube arising in the decomposition of {x: I t(x) > } must be
a sub-cube of a dyadic cube arising for {x : (x) > } we can proceed
as before to obtain

k.j

with supported in the cube and {x: ft(x) > =
As a result we can write = where = and are

atoms associated to the halls where the ball is defined to be,
for each k and 3, the smallest ball containing the cube Note that

is independent of k and 3 (See Figure 7.)
Finally, since

= > <OC
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Figure 7. The cube and the ball

as above, we have established the atomic decomposition of f, concluding
the proof of the proposition.

5.2 An alternative definition of

A nearly imiriediate consequence of Proposition 5.1 allows us to recast
the atomic decomposition of in a more general form. For any p with
p> 1 we define a p-atom (associated to a ball B) to be a measurable
function a which satisfies:

(i') a is supported in B, and lIaIILP m(B)

(ii') a(x) dx = 0.

We reserve the terminology of "atom" for the atoms defined previously
iii Section 5 1, which correspond to p—atoms for p oo. Note that any
atom is automatically a p-atom.

Corollary 5.3 Fix p> 1. Then p-atom a is in Moreover there
is a bound independent of the atom a, so that

(38)

Note that the proof below yields that = O( l/(p — 1)) as p —* 1. Also,
the requirement p> 1 for the conclusion of the corollary is necessary, as
cain he seen by using the reasoning in Exercise 17.

Proof. One can rescale a p-atom a, associated to a hail B of ra-
dius r, by replacimig a by ar. with ar(x) = r"a(rx). Then clearly ar(x)
is supported where rx E B, that is, x E B = amid the latter ball has
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radius one. Also since in(B1 ) ii L" = d/PIIaII LI' we

have IIUr < m(B1 ) Thus is a p—atom foi the (unit) hail
\!oreover. as has already IX'ell obserVe(l Ijrdf(r.r)IIH1 = If . fbr every
i > 0. Thus (38) has beeii reduced to the case of p—atoiiis associated to
balls of unit radius. Observe that automatically for such p—atoms one

has J I
a(x)

I
< 1, therefore we see that we find ourselves exactly in the

setting of the proof of Proposition 3.1 with f(x) = a(.r). In fact one notes
that what is proved there amounts to (38). with the constant incor—

J)Oratirlg the bound in (26) for the maximal function, since the calcu—
lat ion for ft (x) d.r used to establish (32) shows that this quantity is
bounded l)y cA71Itf II We have already noted that O( l/(p — 1))

as p 1. Because f a. the proof of (38) is complete.

As a result. if f = with p-atolls UA. and < then
f is in and

If �
Conversely, whenever .f it has a decomposition with respect to
(p = atoms and therefore has such a decomposition with respect to
p-atoms. We may summarize this as follows

Jn defining via (30) and (31), we may replace atoms by
p-atoms, p > 1, and obtain an equivalent norm.

5.3 Application to the Hilbert transform

The result below exemplifies the role of the hardy space as an im-
provement over the space L'. In contrast with tile failure of the bound-
edness of the Hubert transform omi L we have that it is hounded frorri

to L'.

Theorem 5.4 If f belongs to the Hardy space (R). then Hf(f) E
L'(R). for every e > 0 Moreover (see (14)) converges in the L1
norm, e 0. Its limit, defined as 11(f), satisfies

II
1—1(f) IlL'

The argunient below illustrates a imice feature of to
show the boundedness of an operator oii it often suffices merely to
verify it for atoms. and this is usually a simple task

Let us first see that for all atoms a, we have

(39) II
H, (a) I! L1 < A.
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with A independent of the atom a and c. Indeed, we can avail ourselves of
i-he translation-invariaiice and scale-invariance of the Hubert transform
to simplify matters even further by restricting ourselves in proving (39)
for the case of atoms associated to the (unit) interval I = [— 1/2, 1/2].
This reduction proceeds, oii the one hand, by recalling that if Ur(X)
ra(rx), then H(ar)(x) = rH(a)(rx): that ar is an atom associated to the
interval 'r I whenever a is supported in I; and that IrF(rx)I1j) (R)

whenever F E L'. On the other hand, the translations
f(x) f(x + h), Ii e conimute with the operator II, as is evident
from (14): also translation clearly preserves atoms arid the radii of their
associated balls.

Thus in proving (39) we may assume that a is an atom associated to
the interval Ixl < 1/2. We will estimate H( (a) (x) differently, according
to whether IxI < 1, (x belongs to the "double" of the support of a), or
I xI > I. In the first case, we have

fp \1/2
<21/2 (1 ) <

\Jlxl�l /

using the Cauchy-Schwarz inequality arid the L2 theory studied earlier.
Next when I,rl > 1 we write (for small F)

fIF(a)(x)__f
X—fl�( —

1 f F 1 11
I a(t)I———I dt

71 [x — t xj

since f a(t) dt = 0. Hence if 'I > 1. then IH(a-)(x)I <c/x2 because
I — < when I.rI � 1 arid I < 1/2. and Ia(t) 1. Therefore

f1r1>l 1H (a)(x) I dx < 2c, and this proves (39) for atoms associated to
the interval {— 1/2. 1/2], and thus for all atoms.

At the same time. the inequality "( (a)(x)I � c/.r2 when I.rI > 1. and
the convergence in the L2 noriii. guaranteed by Proposition 3.1, shows
that (a) converges in the V norm to 11(a). as F 0. for every atom a.

Now if f = is an function with the indicated atomic
decomposition. then by (39)

1111(f)IIL'
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and if we take the jnfimum over atomic decompositions, we obtain

(40) fIH(f)I1L'

f IN + (1— IN). Now since JN
is a finite linear combination of atoms, it is itself a constant multiple of
an atom. So we know that (fN) converges in the L' norm as E 0.

Also.

— He2(f)IILI I —

However, If — IN —* 0, as N —* oo. Thus given 8> 0 and choosmg
first N sufficiently large, then with both and sufficiently small,
we get that (f) — HF2(f)IILI <6, which shows that converges
in the L1 norm. The conclusion asserted by the theorem then follows
from (40), and the proof is complete.

Remark. A more elaborate form of the argument given above shows that
in fact the Hilbert transform maps the Hardy space to itself. This is
outlined in a more general setting in Problem 2 of the next chapter.

6 The space and maximal functions
The real Hardy space also leads to interesting insights regarding
maximal functions. The fact that this might be the case was already
suggested by the use of f* (more precisely, its truncated version ft) in
the proof of Proposition 5.1. In parallel with what we saw for the Hilbert
transform, our goal will he to find a suitable maximal function that maps

to L1. In doing this we must keep in mind the following points.
First, neither f* nior ft can he used as such because by their definitions

both f* and ft involve f only through its absolute value, and therefore
cannot take into account the camicelation properties of f that enter to
exploit the fact that f E

Second, even if one removed the absolute values in the definitions of
these niaximnal functions this would not be enough. because the cut-off
fimct ions involved (the characteristic functions of balls) are not smooth.

It is the iiot ion of nice to the identity," and the re-
sulting family of convolution operators that lead us to t he version of the
maximal function relevant for Recall that if we lix a suitable func-
tion that. for example, is bounded and has compact support, then for
any f E L', if then

(f * —* f(.r). as f 0, for a.e. x.
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under the assumption f dx = 1.

Given this we define the maximal function M corresponding to
the limit above by

(41) M(f)(x) sup (f *

Note that by what we have said it is easy to observe that for every
f Ll(Rd)

If(x)I M(f)(x) <cf*(x), for a.e. x,

where c is a suitable constant.
We shall also want to assume that has some smoothness, as indicated

above. With this in mind we can state our result as follows.

Theorem 6.1 Suppose is a C' f'unction with compact support on
With M defined by (41) we have that M(f) E whenever f E

Moreover

(42)

Before coming to the proof, which is very similar to that of the Hubert
transform, we make some additional remarks.

• In the definition of M we have assumed that the function that
enters has one degree of smoothness. Less could be assumed with
the same result (for example a Holder condition of exponent a
with 0 < a < 1), but some degree of smoothness is necessary. (See
Exercise 22.)

• In fact, the inequality (42) can be reversed. Thus there is a converse
theorem that gives the maximal characterization of This is
formulated in Problem 6*.

Proof. Suppose f is in and f = is an atomic de-
composition. Then clearly M(f) IAkIM(ak), and thus it suffices to
prove (42) when f is an atom a.

In fact, note that with ar defined as ar(x) = r > 0, we have
(ar * = rd(a * and hence M(ar)(x) = rdM(a)(rx). Also
the mapping a i—* M(a) clearly commutes with translations. Therefore
in proving (42) we may assume that the atom a is associated to the unit
ball (centered at the origin).
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Now WC consider two cases: when IxI < 2 and when I.rI > 2. in the
first case clearly M(a)(x) c and hence M(a)(x) dx < c'. in the
second caseS we write —

Y)

dy.

since .f a(y) dy 0. However since xI � 2 and I.vt < 1, we have that x —
� xI /2. Moreover suice E C1 we have that — I

clyt/e c/c. In addition the fact that has compact support implies
that (a * )(x) vanishes unless < A for some bound A, which in
turn meaiis that /(2A). Altogether then

Y)

for those x. As a result M(a)(x)dx < c. Therefore (42) is estab-
lished and the theorem is proved.

6.1 The space BMO

hi the same sense that the real Hardy space (JRd) is a substitute for
L' (Rd), the space is the corresponding natural substitute for
the space

A locally iiitegrable function f on Rd is said to be of bounded mean
oscillation (abbreviated by BMO) if

(43) 511P(3)

where the supremum is taken over all balls B. Here denotes the
iriean-value of f over B, namely

lB = rn(B)
ff(x)dx.

The quantity (43) is taken as the norm in the space BMO, anid is denoted
by If

We first make some observations about the space of BMO functions.

• The null elements of the norm are the constant functions. Thus,
strictly speaking, elements of BMO should be thought of as equiv-
alence classes of functions, modulo constants.
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• Note that if (43) holds with possibly different constants instead
of then f WOu1(1 still he in BMO Indeed, if for all B

1

/rrt(B) JB

then necessarily fR — CR1 < A afl(l hence < 2A. Tt is also
easy to verify that one would ohi am the same space, (with an
equivalence of iorms), if the balls appearing in ("13) - were replaced
by. say, the family of all cubes.

• If f E then it is obvious that f is in BMO. A moore typical
example of a BMO function is f(x) = log lxl. Like the general
BMO funci ion it has the property that it belongs (locally) to every

space, with q < oo. Tt also exemplifies a property shared by
BMO and the space: whenever f(x) belongs to one of these
spaces. then SO does the scaled function f(rx), r > 0. with the
norm remaining unchanged. (For more about the above remarks,
see Exercise 23, and Problems 3 arid 4.)

• The space of real-valued BMO functions forms a lattice, thai is, if
,f and g belong to BMO then so (10 rriin(f. g) arid max(f, g). This is
because is in BMO whenever f is, which in turn follows from the
fact lift — lint if — However, if f E BMO and < ft. it
is not necessarily true that g belongs to BMO.

• From the above, we also deduce that if f E BMO is real-valued, and
1(k) is the truncation of f defined by f(k)(x) f(x), if tf(x)t �
k: f(A')(x) = k if f(x) > k; and —k, if 1(x) <—k, then
{f(k) } is a sequence of bounded BMO functions so that f(k)

If I
for all k 1(k) f for a.e x as Ic —* oc, and hence
ill tti'nvio as Ic

If f is complex—valued, one may apply this to both the real and
imaginary parts of f.

Our focus mow will be on the key fact that BMO is the dual space of
time Hardy space This assertion miieamms that every coritiunuous linear
functional I on can he realized as

(44)
= La

dx. I E

for some element g in BMO, whemi (44) is suitably defined. In fact, a little
care must be exercised when dealing with the pairing (44): for general



88 Chapter 2 LT' SPACES IN JIARMOMC ANALYSIS

f E arid g E BMO, the integral need not converge. See Exercise 24.
Thus we procee(I indirectly, defining f first on a dense suhspace of
This will be the subspace of finite linear combinations of atoms.
Note that every element of is itself a multiple of an atom Also. if

f E the imitegral converges, and tlic ambiguity of the BMO element
g (that is, the additive constant) disappears because 51 dx = 0.

Our basic result theni states:

Theorem 6.2 Suppose g E BMO. Then the linear functional defined
by (44), initially considered for f E has a unique extension to
that satisfies

Conversely, every bounded linear functionaU On can be written as (44)
with g E BMO and

IIYIIBMO

Here stands for the norm of as a linear functional on

Proof. Let us first assume that g e BMO is bounded. Start with a
general f e arid let f = be an atomic decomposition.
Then by the convergence of the sum in the L' norm we get £(f) =

But

f ak(x)g(x) dx
= /

ak is supported iii the ball Bk. However ak(x)J and thus

f g(x) -gBjdx.

Therefore considering all possible decompositions of f then gives

If

under the assumption that g is hounded. Next, if we restrict ourselves to
f (iii particular to f that are bounded) with a general g in BMO,
and let be the truncation of q (as defined above), then the fact that

f (x) 111
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just proved, together with a passage to the limit as k oc using the
dominated convergence theorem, shows that,

I e and g E BMO. Thus the direct conclusion of the the-
orem is established.

To prove the converse we will test the given linear functional on
atoms, and here it will he convenient to test P on p-atoms, with p = 2.

For this purpose fix a ball B and consider the L2 space on B with
flOflfl

1/2

= (f If (x)12 dx)

and let denote the subspace of those f for which f f(x) Lx =
o Note that the ball If < rn(B)112 of consists of exactly the
2-atomims associated to B.

Let us assume our linear functional £ has been normalized so that its
norm is less than or equal to 1. Then restricting ourselves to f
we see that If II � cm(B) 1/21 1 II

a in Corollary 5.3. Thus by the Riesz rep-
resentation theorerri for (or as a simple consequence of the self-
duality of L2 spaces) there is a E LL0, so that £(f) f
f e We also have that cm(B)'/2, because IIPIIL2 <
crn( 8)1/2 as we have seen above. Hence for each ball B we have
a function 9B defined on B. What we want is a single function g
so that for each B, g and differ by a constant on B. To con-
struct this g note that if B1 C B2 then gDi — gB2 is a constant on B1,
since both and give the same linear functional on Now

replace each by = 0B + CR, where the constant CB is so cho-
sen that dx = 0. As a result = on if B1 C B2.

Therefore we cami unambiguously define g on by taking g(x) =
for x E B and B any ball. Now observe that in(B) fg(x) — c131 dx

— c. Therefore g E BMO.
with � c. Since the representation has been established for
f E and all B, it holds for the dense suhspace The proof of the
theorem is therefore concluded.
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7 Exercises

1. Show that an

< for all f E- L".

with Ufl = f(0)( is possible if i/p + 1/q < 1

[I lita Let 1)\ (0) < I)C the Diri( hlet kernel Then I I

as N if p > I and Il)XIILI log N.1

2. The following are sinniple geiieralizat ions of t he lialIs(lorff—Young inequalities

(a) Suppose is an on honorinal sequence on L2(X. p) Assume also that
(x)I < it! for all TI If f then < LI(X).

I <p<2. 1/p-i l/q— I

(b) Suppose f E L" oii the torus Td. and a,7 21r717 dx. a E
I'hen II } I! /.'1(Z1) II! Ii LP(Td). where 1 l/p

3. Check that an inequality of the form 11f1 All [II (holding for all
simple functions f) is possible if and only if I/p —F 1 /q —- 1

[Hint Let f.,(:) r > 0 Then f(e/r)r_d I

4. Prove that another necessary corl(ht ion for the inequality in the previous exer—
is that p < 2 En fact the estimate

f IJ(e)ide < All! Iii.o

can hold only if p 2

tHint Let s a + it. a > 0 Then e
2

Note that 1/2) when a 1. and let I

5. Let be the conformal map of the strip 0 < Re(z) < I to the upper half—plane
defined by ?L'(z) Check that = is continuous on the closure of
he strip 1 on the boundary lines, but is unbounded in the strip

6. Extend the Rics, theorem (in Section 2) to the L7' ' spaces discussed
iii Exei cisc 1 8 of Chapter 1 \Ne assume 'F is a linear I rausformat ion from simple
functions to locally iiitegrable functions Suppose

I1T(f)IILao MoMf II L170 and 117(1)11 11111
f)j

for all simple f Prove that as a consequence IIT(f)I1j.'i Mollfljjj' Where
= ± — + = I -f-. = -F- arid 0 <0 < I

P Pu P7 (p 1 7/ qU (/7 ' "(1 — —
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{lliiit Suppose f and g are a pair of simple functions with hilLy < I arid

hfJiLq' � 1 Define

— f1 f(x,t) rJ(z)—po(z)j j '
t) I

J,P(dx)

where a(z) = i—. = + Note that when z = 0. then f
Also

I ii i)' < 1 and it 1ILP() '0 < 1

Make an analogous definition for and consider f did!]

7. Suppose f is a bounded function on R with compact support 'l'hen 11(f) E

L'(R) if and only ifJfd.r=O
[hint If a = f fd.r. then 1-J(f)(x) + as ri —÷ 00]

8. Suppose T is a bounded linear transformation mapping the space of real-valued
L7' fumictions into itself with

I1T(f)IILP ILl'

(a) Let T' be the extension of T to complex-valued functions T'(f + if2) ==
T(f1) + iT(f2) Then T' has the same hound Mill ii

(b) More generally. fix any N, then

II

part (h), let deiiote a unit vector iii R". and let
1

= . Then f iW f Integrate this inequality
for on the unit sphere

9. Show the identity of the following two (lasses of harniomuc functions u iii the
upper half-plane = 4 z x -F iy, y > O}

(a) The harmonic functions u that are continuous in the closure iR2_. arid that
vanish at infinity (that is, ?i(i.y) 0. if rh + y 00)

(b) The functions representahle as u(.r. y) —= (J * where is the
Poisson kernel and f is a continuous function on that vanishes
at infinity (that is. f(i) 0. as —+ oc)

hunt To show t hat (a) implies (b). let f(.r)= u(x, 0) Then 'D(x, y) = a(x, y) -—

(f * )(x) is harmonic in continuous on vanishes at infinity, and moreover
'D(x, 0) = 0 Thus by the niaxinnum principle. V(x. y) = 0

10. Suppose j' C L"(R) Verify that
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(a) If * Hf lIt.", 1 < p 00

(h) f * f, as y 0. in the U noriri, when I <p < oc

11. Assume f E I <p < oc Prove that

(a) I * H(f) * 'Pu, where H, and are respectively the hubert traris-
foriri. the Poisson kernel and the conjugate Poisson kernel

(h) f * H(f) in the norm, as y 0

(c) (1) —÷ 11(f) in the U norm, as c—' 0

[hint' Verify (a) first for f E L2 by noting that the Fourier transform of both sides
equals

12. Tn Rd, suppose f(x) = xt "(log 1/IxI) if xl < 1/2, f(x) 0 otherwise.
Then observe that f*(x) � "(log if xi 1/2 Hence if 0 <5 I. we
have f E L' but f*(x) is riot integrabic over the unit ball

13. Prove that the basic distribution function inequality (28) for the maximal
function can ebsentially he reversed, that is, there is a constant A so that

rn({x. f*() > a}) � (A/a)f
I

[Hint. Write {x f*(x) > a} as Qj. with Q3 closed cubes satisfy-
ing (37). with Q = For each Q3 let be the sniallest ball so that Q3 C B3,
arid B3 intersects First in(B3) <em(Q3), then Ill dx a. Thus

rn(Q,) � f If(x)j dx Now add in j. arid USC the fact
that {x. lf(x)l > a} C {x f*(x) > a}

14. I)educe the following important consequence from (28) and the previous ex-
ercise Suppose f is an integrable function on and B1. B2 are a pair of halls
with B1 C

(a) f* is integrable on Hi if ill log(1 + Ill) is integrable on B2

(h) In the converse direction, whenever f is integrable on B1 then Ill log( I +
fl) is also integrable there

[1-lint Integrate the inequalities in a. for a 2 11

15. Consider the weak-type space. consisting of all functions f for which m({x
I

> a}) < for sonic A and all a > 0 One nniight hope to define a norm
on this space by takiiig the "norm" of f to be the least A for which the above
inequality holds Denote this quantity by
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(a) Show, however, that N is not a genuine norm; moreover there is no norm
on this space SO that lilt is equivalent with N(f).

(b) Prove alSo that this space has no non-trivial bounded linear functionals

{Hint' Consider R. The function f(x) = 1/Ixi has N(f) 2 But if fN(x) =
+ 1)+ f(x + 2) + + f(x+ N)], then N(fN) � clog N.J

16. Prove that the space H. is complete as follows. Let be a Cauchy sequence
in H Then since {fTl } is also Cauchy in L'. there is an L' function f so that
f = in the 1,1 norm Now for an appropriate sub-sequence {flk}, write

+ ink)

17. Consider the function f defined by i(x) = 1/(x(logx)2) for 0 < x < 1/2 and
i(x) = 0 if x> 1/2. and extended to x < 0 by f(x) = —i(—x). Then f is inte-
grable on R, with f i 0, hence is a multiple of a 1 -atom in the ternunology of
Section 5.2.

Verify that M(f) � log lxi) for xl < 1/2. hence M(i) L'. thus by The-

orem 6.1 we know that i H:..

18. Show that there exists a c> I so that every i E Ll(Rd) can he written as

i(x) = with Akl <CllillLI, where the ak are "faux" atoms: each

ak is supported in a ball Bk; ak (x)1 < I /m( Bk) for all x, but ak does not necessarily
satisfy the caricelation condition (x) dx = 0

[hint: Let i by its average over each dyadic cube of
the nthl_generation Then — ill L' 0 Pick {flk } SO that

+ 1 — <
i/2k, and write f = + — ink)']

19. The following illustrates two senses in which H is near L', but yet different.

(a) Suppose io(x) is a positive decreasing function on (0, oc) that is integrable
on (0. oo) Their show that there is a function i E H: so that li(x)l �
io( xl).

(b) However if i E H.(Rd). and is positive on an open set, then its SiZe must
be "smaller" on that open set than a general integrable function. hi fact,
prove that if i e H, and f � 0 in a ball B1, then i log(1 + .1) must be
integrable over any proper sub-ball Bo C B1

[Flint: For (a) take j'(.r) -= arid find an atomic decomniposition for ,f.
For (b) use Exercise 14. together with the maximal theorem in Section 6. with
positive.]

20. When i E 1) (Re') we know that its Fourier transform i is hounded and
tends to 0 as oc (the Riemann-Lehesgue lemma), hut no better assertion
about t he "smallness" of i can be made (For the analogous result for Fourier
series, see Chapter 3 in Rook ITI) Show, however, that for i E H we have

<AIIiIIHI
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[Hint: Verify this for atoms

21. Prove that if Jf(x)i <A(1 ± ixi)_d_l arid f(x)dx 0. then f E

[Hint While this is elementary, it is a little tricky Write f = 1k. where
fo(x) 1(x) if lxi L 0 elsewhere, and fA(x) f(x)

k � I Let ek f 1k dx. = then Sg = 0 Fix a hounded
function ij supported in < 1, with f dx = I Now write 1(x) = —

(k?/k) -I- Where llk(x) = kx) and frik = 1. The first sum is
clearly a suni of multiples of atoms (which are supported on the balls lxi
2k• 'I'hat the second sum is similar can he seen by rewriting it as Sk(7)k —

tmlk i).]

22. Let f be the atom on R supported in l.rl < 1/2 given by 1(x) = sigii(x) Apply
to 1 the niaximal function defined by

f()(x) = sup 1(1 *

where x is the characteristic function of xi < 1/2 and =
Verify that (x)l � 1/(21x1) if � 1/2 hence L1 Thus the maximal

function defined in terms of cannot he used to characterize the real Hardy
space

23. Verify the following examples related to BMO

(a) log lxi E BMO(W!)

(h) If 1(x) = logx. when x > 0, and = 0 when r 0, then 1

(c) If 5 � 0, (log ixi)e e if and only if < I

[hint With 1(x) = log lxi, note that f(rx) = 1(x) + Cr and so we may assume the
hall B has radius 1 in testing the condition (43) For (b), test f on small intervals
centered at the origin

24. Using Exercises 19 (a) and 23. give exaniiples off E and g E BMO so that
lf(x)g(r)l is riot integrahle over

8 Problems

1. Another way is an improveirieiit over L' is in its weak compactness of
t lie unit ball The following can be proved Suppose } is a sequence in
with if'IiiHI < A Then we cart select a subsequence and find an I E so

hat f f f( r)p(x) dx, as A. -x. for every that is a continuous
function of compact support

This is to he compared with 1', and the failure there of weak compactness as
(lescribe(1 in Exercises 12 and 13 in the previous chapter
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I lint Apply the result in Probleni 4 (c) of the previous chapter to obtain a
clll)seqIleIlce and a finite rneasute so that ,i in the sense
Next use the fact t hat if 'p * E L . for an appropriate p. I hen p is
al)'OlIltelV (OfltiIlllOIls

2. SlIpJ)ose I Tie complex hardy space delitied in Section 5 h)r 1 < p <
the following

(a) If F E ff1). then p F(x i ii;) — Ij)(a) exists in the norm

(b) liFt rn = ,ikoIi

(c) One has = f + iII(f). with f real—valued in L1'(R). and Li' if IL"
\Iot cover, every (and thus I') arises this way This gives a linear isoinor—
phisru (over the reals) of with IY with an equivalence of norms

{Hiiii. There is an outline of the proof Fot each yj > 0. write Pt,, (z) =F(z
hi) and (z) = Fq (z)/(1 — kz). ( > 0 One has that is bounded (see
Section 2. iii Chapter 5. Book Ill) Thus by Exercise 9, (z) — (F1 *

Now using the weak compactness of the unit ball in JJ), (Exercise 12 in Chapter 1).
can find Pp E V so that (i) Fn(x) weakly as and yi 0 Observe that

this breaks dowit for p '-= 1 Conclusion (c) is then essentially a restatement of the
bonndedness of the Hilbert transform for 1 < p < 'c

3. Let P be any non—zero polynomial of degree k in Then f = log I P(x)I is in
BM() and hf linMo < where ek depends only on the degree k of the polynomial

I I int: Verify tile result, fit St when ci = 1 Then use induct ion in I he dimension ami
the following assertion, stated for R2 Suppose f(r. y), (x, y) C R2 is for each y a

function in r, uniformly in y Assume also that this holds when the roles
of a and y are interchanged Then f E

4. Prove the following John-Nirenberg inequalities for every f E BMO(W')

(a) I'br every q < oc there is a bound bq so that

f If - fill' dx <

(b) There are positive con.stanits arid A. so that

sup
I f (/X < A. whenever if iin\lo < I

LI m(13) B

hint: (a) test f against p-atoms. where p is dual to q. For (h) use the hound
= 0(1 /(p — 1)) as p 1 (in (38)) to obtain bq = 0(q), as q oo Then write
= J

5. The Ililbent transform of a bounded function is in BMO Show this in two
(hifferent ways
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(a) Directly: Suppose f is bounded (and belongs to some L". I < p < DC). Then
H(f) E BMO with

<

A not depending on the U norm of f

(h) By duality, using Theorem 3 4

[Hint For (a), fix any ball B. and let B1 he its double Consider separately,
and

6.* The following is the maximal characterization of Suppose 4) belongs
to the Schwartz space S and f 4)(x) dx 0. Let M(f)(x) = supf>0 1(1 * )(x)1,
for f E V Then

(a) f is in if and only if M(f) belongs to L'.

(b) The condition 4) e S caii be relaxed to require only

+

(c) Note two interesting examples, first (4irt) d/2e_1x12/(4t) then
u(x. t) = (f * is the solution of the heat equation = with

initial data u(x, 0) = f(x). Also, = cdt with Cd
=

(t2+1x12) 2

SO that u(x, 1) = (f * is the solution to Laplace's equation Ad-u +
= 0, with initial data u(x, 0) = f(x) (Here F denotes the gamma fumic—

tion.)

7* lip, when p = 1 The results in (a) and (b) of I'roblemn 2 also hold for p = 1,

but require a different proof The analog of (c) is as follows One has 2F0
f + iii(f), where f belongs to the real Hardy space Also If
As a consequence, a necessary and sufficient condition that f E is that both f
and 11(f) are in L1

The conclusions (a) and (h) may be proved by showing that any F E if1 can
be written as F = Fm F2 with E 112 amid = IIFII111' and then using the
corresponding results in jj2

8.* Suppose f E L' (R) Then we can define H(f) E L' (R) in the weak sense to
mean that there exists g E L' so that

f dx
= j dx, for all functions in the Schwartz space

Then we say g = 1-1(f) in the weak sense
As a consequence of Problem 7*, one has that f E if and only if f

and ff(f). taken in the weak sense, also belongs to L' (R)

9* Let be a sequence of elements in so that <Al <oc for all it
Assume that converges to f almost everywhere Then



S Problems 97

(a)

f f fg. as ii oc. for all g continuous with compact support

A corresponding result holds for U. p> 1, but fails for p = 1. See Exercise 14 in
Chapter 1.

The following result illustrates the application of to the theory of corn-
perisated compactness

Suppose A = (A1. .. , Ar,) and B = (B1,. .. 134 are vector fields in W' with
A7. E L2(W') for all i. The divergence of A is defined by

d

(l1V(A) =
k=-1

and the curl of B is the d x d matrix whose ij-entry is

= —

(The derivatives here are taken in the sense of distributions, as in the next chapter.)

If div(A) ()and curl(B) = 0 then AkBk e
This is in contrast with the result that in general, if f, g E L2. then one only has
fg E L'.



Distributions: Generalized
Functions

rue heart of analysis is the concept of function. and
functions 'I)elong to analysis. even if. nowadays. they
occur and anywhere, in and out of math-
ematics, in thought. cognition, even perception

Functions came into being in "modern iiiathe—

inatics, I hat is, in mathematics 'iricc the Renaissance
By a rough (livision into centuries, the 17th and 18th
centuries made preparations, the 19t h cent ury created
functions of one variable, real arni complex. and the
20th century has turtied to functions in several vari-
ables, real and complex

S Bochner. 1969

It was not accidental that the notion of function
generally accepted miow was liNt formulated in the cel-
ebrated niemnoir of Dirichlet (1837) dealing with the
convergence of series, or that the definition
of Riemann's integral in its general foi in appeared in
Riemnann's I-Iabilitationssehrift devoted to trigonomet-
ric series, or that t he theory of sets. one of the most
important developments of nincteent h—cent uiry mnathe—
mnatics, was created by Cantor in his attempts to solve
the problem of the sets of uniqueness for trigonometric
series in iiiore recent times, the integral of Lebesgue
was developed in close connection with the theory of
Fourier series, and the theory of functions
(distributions) with that of 1'ourier integrals

A Zygmund, 1939

The growth of analysis can be traced by the evolut ion of the idea
of what a fuiictioii is The forrmmlation of the notion of "gencralizc(l
functions" (or "distributions" as they are connnonly called) represents a
significant stage in that development with ramifications in many different
areas. Looking back, one can see that this Concept had many antecedents.
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Among these were: Riemanit's formal integration and differentiation of
trigonometric series in his study of uniqueness; the necessity of using
weak solutions in the theory of partial differential equations; and the
pOsSibility of realizing a function (say in as a linear functional on an
appropriate dual space. The importance of distributions derives from the
ease with which this tool pernhits us to carry out formal manipulations.
finessing numerous tecimical issues. While as such it is not a panacea, it
allows us, in instances, to arrive niore quickly at the heart of the
niiat ter.

We divide our treatment of distributions in two parts. First. we set
dOWn the basic properties of general distributions and the rules of their
manipulation. Thus we see that an ordinary function has derivatives of
all orders in the sense of (listributions. Also iii that sense, any function
that does not increase too fast at infinity has a Fourier transforiri.

Next, we study specific distributionis of particular importance. begin-
ning with the principal-value distribution defining the Hilbert transform,
and more general homogeneous distributions. We also consider distribu-
tions that arise as fundamental solutions of partial differential equations.
Finally, we take up the Calderón-Zygmund distributions that occur as
kernels of singular integrals generalizing the Hilbert transform, and for
these we obtaini basic estimates.

1 Elementary properties
Classically a function f (defined on Rd) assigns a (lefinite value f(x)
for each x E For many purposes. it is often convenient to relax this
requirement by allowing f to remain undefined at certain 'exceptional"
points x. This is particularly so when dealing with integration and mea-
sure theory. Thus iii that context a function can be unspecified on a set
of measure zero.1

In contrast to this, a distribution or generalized function F will
not he given b,y assigning values of F at 'most" points, but will instead
he determined by its averages taken with respect to (sniooth) functions.
Thus if we are to think of a functioni f as a distribution F. we determine
F by the quantities

(1) [ dx.

where the range over an appropriate space of functions. There-
fore, in keeping with (1), our starting point in defining a distribution F

1 More precisely, a function is then really an equivalence class of functions that agree
alniost everywhere
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will be to think of F as a linear functional on a suitable space of these
test functions.

Actually, there will be two classes of distributions (each with its space
of test functions) that we will consider: the broader class, which we deal
with first, and which can be defined on any open set of also later,
a narrower class of distributions defined on R", those which are suitably

at infinity, and that arise naturally in the context of Fourier
transforms.

1.1 Definitions

We fix an open set in The test functions for the larger class of
distributions will he the functions that belong to the complex-
valued indefinitely differentiable functions of compact support in In
keeping with a common notation used in this context we denote this
space of test functions as V (or more explicitly as V(cI)). Now if is a
sequence of elements in 'D, and also cc E 'D, we say that } converges to
cc in V, and write cp in V, if the supports of the are contained in
a common compact set and for each multi-index a, one has —*

uniformly in x as m With this in mind we conic to our basic
definition. A distribution F on Q is a complex-valued linear functional

F(p), defined for p that is continuous in the sense that
F(.p) whenever in V. The vector space of distributions

on t1 is denoted by V* (a).

In what follows we shall tend to reserve the upper case letters F,
C,... for distributions, and the lower case letters f, g,... for ordinary
functions. First, we look at a few quick examples of distributions.

EXAMI'LE 1. Ordinary functions. Let / be any locally integrable func-
tion on ft3 Then I defines a distribution F = Ff. according to the
formula (1). Distributions arising this way are of course referred to as
"functions."

EXAMPLE 2. Let a be a (signed) Borel measure on 11 which is finite on
compact subsets of Q (sometimes called a Radon measure). Then

=
cc(x)

2We recall the notation (8/&r)° = + +
&d,and&=al

3By this we rriean that f is measurable and Lebesgue integrable over any coiripact
subset of (Compare this definition with the one in Chapter 3 of l3ook III, where it has
a slightly different meaning)
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js a distribution which, in general, is not a function as above. The special
case, when is the point-mass which assigns total mass of 1 to the origin.
gives the Dirac delta function 5, that is, 5(p) = p(0) (Note, however.
that S is not a functioni!)

Further examples arise from the above by differentiation. In fact, a
key feature of distributions is that, as opposed to ordinary functions,
these can he differentiated any number of times. The derivative
of a distribution generalizes that of a differentiable function. Indeed,
whenever I is a smooth function on and (say) p E then an
integration by parts yields

dx (_1)InI f I dx.

Henice in keeping with (1) we define F as the distribution given by

whenever e

Thus iii particular, if f is a locally integrable function, we can define its
partial derivatives as distributions. A few examples may be useful here.

• Suppose h is the Heaviside function on that is, h(x) 1 for x>
0, and h(x) 0, for x <0. Then dh/dx, taken in the sense of distri-
butions equals the Dirac delta 5. This is because — p'(x) dx =

whenever p E Note however that the usual derivative
of h is zero when x 0. and is undefined at x = 0. So we must he
careful to distinguish the distribution derivative of a function, from
its usual derivative (when it exists). if the function is niot smooth.
(See also Exercises I and 2.)

A higher dinriensional variant of the Heaviside function is given in
Exercise 15.

• Suppose the function f is of class Cc on Q, that is, all the partial
derivatives with <Ic. taken in the usual sense, are continu-
ous on Q. Theni these derivatives of f agree with the corresponding
derivatives taken in the sense of distributionis.

• More generally, suppose f and g are a pair of functions in
ani(l f = g in the sense" as discussed in Section 3.1 of
Chapter 1, or iii Sectioni 3.1, Chapter 5 of Book III. If F and C
are the distributions determined by f aIi(l g respectively, according
to (1), them C.
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1.2 Operations on distributions

As in the case of differentiation, one can carry over various operations on
distributions by transforming the corresponding actions on test funct ions.
We first give some simple examples.

• Whenever belongs to V* and is a function, then we can
define the product F by (ib for every e V.
This agrees with the usual pointwise definition of the product when
F is a function.

• For a distribution on Wt the actions of translations, dilations and
more generally non-singular linear transformations can he defined
by the corresponding actions on test functions via Thus
for the translation operator m. defined for functions by (f)(x)
f(x — /i), h E Rd, the corresponding definition on distributions is:

(F) F(-r_h (p)). for every test function p.

Similarly, for dilations given functions f by the simple rela-
I fa(X) f(ax). a > 0. one defines a

a non-singular linear transformation then
the extensu)1I of fL(x) f(L(.r)) to distributions is given by the
rule P1. = J

del LI - l for every E V

It is importaiit that one can also extend the iiotion of convolution,
defined for appropriate functions on by

(f * g)(.r) / f(x - y)g(?j) dy
iRa

to large classes of distributions.
To begin with, suppose that P is a distribution on W' and v a test

firncf ion. Then there arc two ways that we might define F * t5 (in keeping
with (1) when F is a function) The first is as a function (of x) given by

with — y).
The second is that F * v is the distribution determined by

(F * * with =

Proposition 1.1 Suppo5e P is a distribution and E V. Then

(a) The two definitions of F * i? given above coincide.

(b) The distribution F is a function.



1 Elementary pi opel ties 103

Proof. Let us observe first that F( is continuous in x aiid in
fact hideflnitelv differentiable. Note that if as ii thieii

t'7 (Y) = — v(.ro — y) uniformly iii y. and the same
true for all I)artial derivatives. Therefore 'v in V (as func-

tionS of y) as ii —* and thus by the assmried continuity of F on V
we have that is continuous in .r. Similarly, all corresponding dif-
ference quotients converge arid the result is that is indefinitely
differentiable. with =

Ii remains to prove conclusioii (a), and for this it suffices to show that

(2) f dx = * for each E V.

However since E V. and of course is continuous with compact sup-
port. then it is easily seen that

* p)(x) = — dy Urn 5(e)
.1

where — E—lere the convergence of the
Riemaim sums S(e) to ; "S * is in V. Clearly. 5(e) is finite for each

> 0. arid thus F(Sf) )p(nc). Tience by the coiitiniu-
ity of x a passage to the limit c 0 yields (2). proving the
proposition.

A simple application of the proposition is the observation that every
distribution F in Rd is the limit of functions. We say that a sequence
of distributions converges to a (listributionl P in the weak sense
(or in the sense of distributions), if for every p e V.

Corollary 1.2 Suppose F is a distribution on W'. Then there exists a
sequence { f,, }. with and F in the weak sense.

Pivof. Let } be an approximation to the identity constructed as
follows. Fix a V with dx = I and set nd??)(nr)

Form F * Then by the second conclusion of the proposition.
each F,, is a function. However by the first conclusion

= * for every E V.

Moreover, as is easily verified. in V. Tinis
for each E V, arid the corollary is established.
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1.3 Supports of distributions

We come next to the notion of the support of a distribution. If f is a con-
tinuous function its support is defined as the closure of the set where
f(x) 0. Or put another way, it is the complement of the largest open
set on which f vanishes. For a distribution F we say that F vanishes
in an open set if F(p) = 0. for all test functions V which have their
supports in that open set Thus we define the support of a distribu.-
tion F as the complement of the largest open set on which F vanishes.

This definition is unambiguous because if F vanishes on any collection
of open sets {Oj}jEI, then F vanishes on the UfliOll 0 = In-
deed suppose is a test function supported in the compact set K c 0.
Since 0 covers the compact set K, we may select a sub-cover which (af-
ter possibly relabeling the sets we can write as K C A
regularization applied to the partition of unity obtained in Section 7 in
Chapter 1 yields smooth functions for 1 <k < N so that 0 < I,

N
supp(r/k) C and rlk(x) 1 whenever .r E K. Then

F vanishes on each Ok. Thus
F vanishes on 0 as claimed.4

Note the following simple facts about the supports of distributions.
The supports of and F (with are contained in the
support of F. The support of the Dirac delta function (as well as its
derivatives) is the origin. Finally, F

the supports

F a support is
is and has support C2. Then the support of F * is contained in

Cl +G2.

indeed for each x for which 0, we must have that the support
of F intersects the support of 1/c. Since the support of 'i/c is the set x —
G2 this means that the set C1 and x — have a point, say y, in common.
Because x = y + x — y, while y E C1 and x — y E G2 (since y e x — G12)

we have that x E C1 + C'2, and thus our assertion is established. Note
that the set C1 + is closed because C1 is closed arid (72 is compact.

We can mow extend the definition of convolution to a pair of distribu-
tions if one of them has compact support. Indeed, if F and F1 are given
distributions with F1 having compact support, then we define F * F1 as

4One rriust take care that this notion of support does not coincide with the
port" defined in Chapter 2 of Book III for an integrable function, when such function is
considered as a distribution A further clarification is in Exercise 5
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the distribution (F * F1 = * where is the reflected dis-
tribution given by This extends the definition given
above when F1 = E V. Notice that if C is the support of F1, then
—c is the support of Therefore by the previous proposition *

has compact support and is C°°, hence it belongs to V. The fact that
the mapping (F * Fi has the required continuity in V is then
straightforward and is left to the reader to verify.

Other properties of convolutions that are direct consequences of the
above reasoning are as follows:

• If F1 and F2 have compact support, then F1 * F2 = F2 * F1 (For
this reason we shall sometimes also write F1 * F for F * when
only F1 has conipact support.)

• With 5 the Dirac delta function

F*ö= 6*F= F.

• If F1 has compact support, then for every multi-index a

(F * F1) = * F1 = F *

• If F and F1 have supports C and C1 respectively, and C is com-
pact, then the support of F * F1 is contained in C + C1. (This fol-
lows from the previous proposition and the approximation stated
in part (b) of Exercise 4.)

1.4 Tempered distributions

There are distributions onRd that, roughly speaking, are of at most poly-
nomial growth at infinity. The restricted growth of these distributions
is reflected in the space S of its test functions. This space $ =
of test functions (the Schwartz space5) consists of indefinitely differ-
entiable functions on that are rapidly decreasing at infinity with all
their derivatives. More precisely. we consider the increasing sequence of
norms with N ranging over the positive integers, defined by6

= sup
N

5l'he space S occurred already in Chapters 5 and 6 of Book I
shall use the notation N throughout this chapter This is iiot to be confused

with the U' II
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We define S to consist of all smooth functions such that < for
every N. Moreover. OflC says in S. W}ICHCVCT Lpk — N —*

0, as k oc. for every N.

With this in mind we say that F is a tempered distribution if
it is a linear finictional on S which is continuous in the SCflSC that

—* whenever p in S. We shall write for the vec-
tor space of tempered distributions. Since the test space V = is
contained in S. and convergence in V implies convergence in S. we see
that. any tempered distribution is automatically a (list rihution on in
he previous sense. However the converse is not true. (See Exercise 9).

Tt is worthwhile to miote that V is dense in S in that for every function
E 5, there exists a sequence of functions e V such that in

S as k —+ oc. (See Exercise 10.)

It is also useful to observe that any tempered (listribution is already
controlled by finitely many of the norms

1 II N.

Proposition 1.4 Suppose F is a tempered distribution. i7ten there is a
posilive inteqer N and a constant c> 0, so Ihat

for all E S.

Proof Assume otherwise. Then time conclusion fails arid for each
positive integer ii there is a E S with = 1, while � n.
Take = Then IN as SOOll as n � N. and thus

< 1/2 0 as ri oc, while > —* oc, contradict-
ing the continuity of F.

The following are some simple examples of tempered distributions.

• A distribution F of compact support is also tempered. This follows
from time fact that if C is time support of F, there is aim T/ E V, with
'rj(x) = 1 for all x in a neighborhood of C, hence = if

E V Thus the linear functional F defined on V has an obvious
extension to S given by I" and this gives the correspond-
ing distribution.

• Suppose f is locally integrable on and for some N � 0,

/ If(x)I dx = O(l?N). as
JIxI<fl

Then the distribution corresponidrng to f is tempered Hence in
particular this holds if f E LP(W1) for some p with I <p < oc.
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• Whenever F is tempered so is for all also x'3F(x) is tern-
pered for all multi-index fi � 0.

The last assertion can he generalized as follows: let he any function
on R" which is slowly increasing: this means that for each

as IxI —* oc. for some � 0. Then defined by =
F is tempered.

The properties of convolutions of distributions discussed in Sections 1.2
aiid 1.3 have modifications for tempered distributions. Th proofs of the
assertions below are routine adaptations of previous arguments.

(a) If F is tempered and E S. then F * defined as the function
is and slowly increasing. Moreover the alternate defini-

tion (F * = * for 5, continues to he vali(1 here.
To verify this we need the fact that * e 5, whenever and p
are in S. (See Exercise 11.)

(h) If F is a tempered distribution and F1 is a distribution of compact
support, then F * F1 is also tempered. Note that (F * F1 =

* and to establish the claim we need the implication
that * E 5, if has con ipact support and S. (See Ex-
ercise 12.)

1.5 Fonrier transform

The ixiain interest of tennipered distributions is that this class is mapped
into itself by the Fourier transforni, and this is a reflection of the fact
that the space 5 is also closed under the Fourier transform.

Recall that whenever e 5, its Fourier transform (also sometimes
denoted by is defined as the convergent iiitegral7

= [ dx.
JJRd

The mapping pA is a continuous of S to S whose inverse
is given by the mimapping thy. where

I
In this connection it is useful to keep in mind the simple norm estimates

7For the elementary facts about the Fourier transforrri on S that are used here, see for
example Chapters 5 and 6 of Rook I
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which holds for every E S and every N � 0. (This estimate is itself
immediate from the observation dx <

The multiplication identity

JRd

(which holds for all 5) suggests the definition of the Fourier
transform FA (sometimes denoted by F) for a tempered distribution F.
It is

= for all E S.

From this it follows that the mapping F FA is a bijection of the space
of tempered distributions, with inverse the mapping F Fv, where Fv
is defined by Indeed

F F F" are continuous with con-
vergence of distributions taken in the weak sense, that is, F if

—* F(p), as n oo for all p E S. (This convergence is also said
to be in the sense of tempered distributions.)

Next it is worthwhile to point out that the definition of the Fourier
transform in the general context of tempered distributions is consistent
with (and generalizes) previous definitions given in various particular
settings. Let us take for example the L2 definition via Plancherel's thco-
reni.8 Starting with an f we write F Ff for the correspond-
ing tempered distribution. Now f can he approximated (in the L2 norm)
by a sequence with E S. Thus taken as distributions, —* F
in the weak sense above. Hence —p F also in the weak sense, but
since converges in the L2 norm to f, we see that F is the function f.
Similar arguments hold for f with 1 <p 2, and f defined in

(Rd), I/p + 1 /q = 1, in accordance with the Hausdorff-Young theorem
in Section 2 of the previous chapter.

Let us next remark that the usual formal rules involving differentiation
and multiplication by monomials apply to the Fourier transform in this
general context. Thus, if F e we have

=

SSee Section 1, Chapter 5 in Book III
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because

=

=

=

Similarly = One should also observe that if 1 is
the function that is identically equal to 1, then as tempered distributions

L=6 and 6=1,

and by the above

= while

The following additional properties elucidate the nature of the Fourier
transform in the context of tempered distributions.

Proposition 1.5 Suppose F is a tempered distribution and E S. Then
F * is a slowly increasing C°° function, which when considered as a
tempered distribution satisfies (F * =

Proof The fact that is slowly increasing follows from the
proposition in Section 1.4 together with the observation that for any
function E V and N, <c(1 + and more generally,

<c(1 +

Since (F * = * it follows that (F * = *

On the other hand, = = Thus the de-
sired identity, (F * = is proved because, as is easily
verified. *

Proposition 1.6 1fF is a distribution of compact support then its Fourier
transform is a slowly increasing COO function. In fact, as a func-
tion of one has = where is the element of V given by

= with ij a function in V that equals I in a neighbor-
hood of the support of F.

Proof If we invoke Proposition 1.4, we see immediately that
IN <c'(l + By the same estimate, every difference quotient
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of converges and (1 + I) Therefore
is and slowly increasing. To prove that the function

F it suffices to see I hat

(3) f = for every E S.

We prove this first when p e V.
Now by what we have already seen. the function = is

continuous and certainly has compact support. Thus

j = fRd = SF,

where for each U, is the (finite) sum g(nf). However
S( = with = €d Clearly as c 0, we have

(x) L e
2w =

in the norm. Thus, using Proposition 1.4 again, we gel that 5F —*

Now since 1 in a neighborhood of the support of F. then
= Altogether we have (3) When E V, and to extend this

result to e S it suffices to recall that V is dense in S.

1.6 Distributions with point supports

Unlike continuous functions, distributions can have isolated points as
their support. This is the case of the Dirac delta function and each of its
(lerivatives. That these exarriples represent essentially the general case
of this phenomenon. is contained in the following theorem.

Theorem 1.7 Suppose F is a distribution supported at the origin. Then
F is a finite sum

That is.

= E V.

The argunierit is based on the following.
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Lemma 1.8 Suppose F1 is a distribution supported at the origin that
sabsfies for borne N the following two conditions.

(a) < for all E V.

(b) F1(.r°) = 0, for all l°l < N.

Then F1 = 0.

In fact. let i/ E V. with ii(x) = 0 for lxi � 1. and = 1 when lxi < 1/2,
and write rk(x) = rl(x/e). Then since F1 is supported at the origin.
F1 Moreover, by the same token F1 = (x0) = 0

for all i°i < N, and hence

(o)
= -

a!
x0)

with If R(.r) = — is the remain-
(icr. then lR(x)l and when < N.
however DX 7lf(x)l -1'31 and = 0 if lxi � e. Thus by Leib-
iiitz's rule. < cc, and our assumption (a) gives IF1 c'c,
which yields the desired conclusion upon letting e —k 0.

Proceeding with the proof of the theorem, we now apply the above
lemma to F1 = F — oI<N where N is the index that guaran-
tees the conclusion of Proposition 1.4. while the a0 are choseii so that
a0 Then sin = (_l)10 a!. ifa = 3, and zero
otherwise, we see that F1 0, which proves the theorem.

2 Important examples of distributions
having described the elementary properties of distributions, we now in-
tend to illustrate their occurrence in several areas of analysis

2.1 The Hubert transform and

We consider the function I /x, defined for real x with x 0. As it stands.
this function is riot a distribution on because it is riot integrable near
the origin. However, there is a distribution that can he naturally associ-
ated to the function 1/x. It is defined as the principal value

I dx
—÷ 11111 j p(x) —.

x
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We observe first that the limit exists for every function E S. Assuming
< 1, we write

I dx I dx I dx
(4) j —

= + J
—

xI> I>IxI� £ IxI>1 X

The right most integral clearly converges because of the (rapid) decay
of at infinity. As to the other integral on the right-hand side. we can
write it as

[
Jl�IaI�€ x

because f 0 due to the fact that 1/x is an odd function.J�IXI>f X

However Ra(x) — clxi (with c = sup thus the limit as e
()of the left-hand side of (4) dearly exists. We denote this liiriit as

I dx

It is also evident from the above that

I dxpvj
R x

(where the norm is defined in Section 1.4). and thus

I dx
j

.JR

is a tempered distribution. We denote this distribution by

As the reader may have guessed, the distribution is intimately
connected with the Hubert transform H studied in the previous chapter.
We observe first that

(5) for I ES.

Indeed, according to the definition of and the definition of the
convolution, we have

1 1 .lf dy
— pv(—) * f = lim — j f(x — y) —,
ic x
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arid this limit exists for every x. However Proposition 3.1 of the previous
chapter asserts that the right-hand side also converges in the L2 norm
to 11(f) as e 0, whenever f e Thus the convolution *
f equals the L2 function H(f).

We now give several alternate formulations of The meanings
of the abbreviations used will be explained in the proof of the theorem
below.

Theorem 2.1 The distribution pv( equals:

(a)

1(1 1

2 kx—iO + x+i() -

Also, its Fourier transform equals sign(x).

Regarding (a), note that log xl is a locally integrable function. Here
(log lxi) is its derivative taken as a distribution. Now in that sense

lxi) = — dx, for every E

However the integral is the limit as e 0 of — dx, and
an integration by parts shows that this equals —

f dx + -
IXI�f

Moreover, — = 0(e) since in particular is of class C'. There-
fore — p(—€)J 0 as F —* 0, and we have established (a).

We turn to conclusion (h) and consider for e > 0 the bounded function
1/(x — ic). We will see that as e —p 0. the function 1/(x — ic) converges
to a limit in the sense of distributions, which we denote by 1/(x — iO).
We will also see that 1/(x — iO) = + iir5. Similarly. lim(.0 1/(x +
Ic) = 1/(x + iO) will exist and equals — iirS. To prove this. we are
thus lead to the function

if 1 1 \ x
-1 .+ .1=2\x—zc x+ieJ x2+c2

We clairri first that

x fl\
(6)

2
asc—*0



114 Chapter 3 1)ES'I UI TIONS GENIHALIZEI) FUNCTIONS

in the sense of (listril)utioils.
We are dealing in effect wit 11 the conjugate Poisson kernel

defined in Section 3 1 of the previous chapter. The argument
I here. after the ideiit ities (18). shows that

/
(.r) f (x)

(x) is an odd fmiction of x. This function sat isfies the estimate
(.r)I < A/c. and < Moreover if p E 'D, then

I
CI.FI and is bounded on Therefore

if Ixldx+c/ _+ef
•T i<Ixl

The expression on the right is clearly O(i I log eI) as e 0. and hence
tends to zero we have established (6). Next, recall the iden-
tity (13) in the previous chapi er

= + z x + iy.

where P11(x) is the Poisson kernel By letting y = c> 0. and
taking coniplex conjugates see

I
= irQF(x) +

J. —

Since the form an approxhnatioi i to the identity (see Chapter 3 in
Book 111) or by an argument very similar as the one just given for
we have that O as F 0. Thus

1 -
=J)V(—)+i7rOno x

We may lake complex conjugates of the above identity and also obtain,
as a limit. in the sense of dist rihutions.

1 _ pv(—) —
x

Adding these two gives conclusion (b). Notice that incidentally, we have
obtained the identity

I
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To prove the last statemeiit of the theorem we consider the Fourier
transform of x/(x2 + F2) taken iii the sense of distributions. By (17) in
Section 3 1 of the previous chapter we have that

for all f E L2(R). and this hoMs itt particular for f e S. Substituting
for 1' f (and noting that = we get

(X2 ± c2

A

= ± f2) L
Letting F —+ 0, this yields

/ \A
/ 1 \
(pv— J ((p) 71 .

'\ XI

which shows that (pv is the function and the proof of the
theorem is concluded.

Let us remark that we have seen from the above that the distrihu-
ions I /(x — iO), l/(x + i0). and while different, all agree with
lie firnction 1/.r away from the origin.

2.2 Homogeneous distributions

We pass to the next topic by observing that is a homogeneous
(listribution. To define this notion, recall that a function f defined ott
Rd — {0} is said to he homogeneous of degree A, if = a"f, for every
a > 0. where f0(x) = f(ax). Now the dilation F0 of a distribution F has
heeii defined by duality:

=

where is the dual dilation of that. is. = a We can in-
cidentally define the dual dilation F0 by F° and note that
F0 =

In view of the above, a (listrihutlon F is said to be homogeneous of
degree A, if F0 = for all (2 > 0.

Now the futiction 1/x is clearly homogeneous of degree —1, but what
is significant for us is that the distribution is liomogenous of de-
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gree —1. In fact

1 1 -- dx
a urn J —

X X

—1• I dx 1=a hrnJ pv(—)(p).
° x x

The next to the last identity follows from making the change of vari-
ables x ax and noting that dxix remains unchanged. The reader may
also verify that the distributions 1/(x — iO), 1/(x + iO), and 6 are also
homogenous of degree —1.

There is an important interplay between homogeneous distributions
and the Fourier transform. A hint that this niay be so is the elementary
identity (p0)t\ that holds for all p E S. where Pa and pU are
the dilations of defined earlier. The simplest proposition containing
this idea is the following.

Proposition 2.2 Suppose F is a tempered distribution on lRd that is
homogeneous of degree Then its Fourier transform F'S' is homogeneous
of degree —d —

Remark. The restriction that F be tempered is unnecessary It can
be shown that any homogeneous distribution is automatically tempered.
See Exercise 8 for this result.

To deal with (FA )a we write successively,

= = =
= a_dFa = a_d =

Thus (FA)a as was to he proved.

A particularly interesting exarriple arises if we consider the function
IxIA which is homogeneous of degree and locally integrable if,\> —d.
Let denote the corresponding distribution (for,\ > —d): this is clearly
tempered.

The following identity holds

Theorem 2.3 If --d < <0, then

= with CA =
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Note that the assumption A <0 guarantees that —d — A> —d so that
which defines H_d_A, is again locally integrable.

To prove the theorem we start with the fact that = is its
own Fourier transform. Then since we get (with a

f dx = t_d/2 f dx.
Rd

We now multiply both sides by and integrate over (0, oo), and
then interchange the order of integration. We note that

f dt =

if A > 0 and A > 0, by making the indicated change of variables that
reduces the identity to the case A = 1. Thus using the above identity
with A = irIxJ2, we get

f f dtdx = f dx.
RdO 2d

Similarly, we deal with dt by making the change
of variables t l/t which shows that this integral equals

f td/2+A/2_le_At dt = +

Inserting this in dt dx yields

f dx =
Rd

+ A/2) fRd dx.

and this is our theorem.

The principal value distribution and the HA just considered
have in common the property that these distributions agree with
functions when tested away from the origin. We formulate this notion
in the following definition. We say that a distribution K is regular
if there exists a function k that is C°° in — {0}, so that K(p) =

k(x)p(x) dx for all p E V whose supports are disjoint from the origin.
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We also refer to this by that K is away from the origin,
and calling k the function associated to K - (Note that k is uniquely
determined by K.) One should remark that the function associated to

is 1/x.

Returning to the general case one may observe that the function k is
automatically homogeneous of degree A if the (listribution K is homoge-
neous of degree A. In fact, if E V is supported away from the origin,

while

= a_dJ
= f k0(x)'p(x)dx.

Rd Rd

hence

[ (aAk(x) — = 0
JRd

for all such which means that ka(X) =

The above considerations and examples raise the following two ques-
tions.

Question 1. Given a function k, homogeneous of degree A, and
away from the when does there exist a regular homogeneous dis-
tribution K of degree A such that k is its associated function? If such a
distribution exists, to what extent is it uniquely determined by k?

Question 2. how do we characterize the Fourier transform of such K?

We answer first the second question.

Theorem 2.4 The Fourier transform of a regular homogeneous distri-
bution K of degree A is a regular homogeneous distribution of
—d — A. and conversely.

Proof. We already know from Proposition 2.2 that K" is homoge-
neous of degree —d — A. To prove that agrees with a function
away from the origin, we decompose K = K0 + K1, with K0 supported
near the origin and K1 supported away from the origin!. To do this,
fix a cut-off function r, that is C°°. is supported in I.xI 1, and that
equals 1 on Ixi < 1/2. Write K0 r1K, K1 = (1 — ij)K. Iii particular
K1 is the function (1 — since 1 — vanishes near the origin. Also

Now by Proposition 1.6, is an (everywhere) C°° fumiction. To
prove that is away frommi the origin we observe that by the usual
mnannj)ulations of the Fourier transform valid for tenipered distributions,

(7) =



2 Important examples of distributions 119

Recall that A denotes the Laplacian. A + +
Now when � 1. K1 k. SC) there a hounded hoinogeiieous

function of degree A — 1111 and thus is O( ri A— 31), for ri � 1. Therefore
is for wi � 1 while it is certainly a bounded

function for lxi < 1. hence for N sufficiently large (2N> A + tat + d)
this function belongs to L'(R"). As a result its Fourier transform is
eofltiiillOUS (See Chapter 2 in Book 111.) This shows by (7) that
agrees with a continuous function away from the origin. Since this holds
for every a. it follows from Exercise 2 that Kf' is a function away
from the origin, as desired.

Note that since the inverse Fourier transform is the Fourier transform
followed by reflection, that is, K" = (KA ) t he converse is a conse-
quence of the direction we have just proved.

We now turn to the first question raised above.

Theorem 2.5 Suppose k is a given COC function on — {O} that is
homogeneous of degree A.

(a) if A is not of the form —d — m, with m a non-negative inteqer, then
there exists a unique distribution K homogeneous of degree A that
agrees with k away from the origin.

(b) If A = —d — m, where rn is a non-negative integer, then there exists
a distribution K as in (a) if and only if k satisfies the cancelation
condition

da(x) 0, for all tat = rn.

(c) Every distribution arising in (b) is of the form

K+ CQOy(5.

Proof. We deal first with the question of constructing the distri-
bution K given by k. Note that the function k automatically satisfies
the hound Ik(x)1 Indeed, k(x)/Ixi>' is homogeneous of degree 0
and is bounded on the unit sphere (by continuity of k there), thus it is
bounded throughout lRd — {0}.

So if A> —d, the function k is locally iritegrable on and thus we
Can take K to he the distribution defiuied by k. This local integrability
fails when A < —d.
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In the general case we shall proceed by analytic continuation. Our
starting point is the integral

(8) f(s) =
=

L k(x) lxi dx, with E S.

initially defined for complex s with Re(s)> —d. which we will see con-
tinues to a meromorphic function in the entire complex plane. We will
then ultimately set

=

In fact, for our given homogeneous function k, and any test function
in 5, we note by the above bound on k, that the integral (8) converges
when Re(s)> —d, thus I is analytic in that half-plane. Moreover I
continues to the whole complex plane, with at most simple poles at s =
—d,—d—1,...,—d—m,....

To prove this. write i(s) + Given the rapid decrease
of p at infinity, the integral overlxl > 1 gives an entire furnction of s.
However, for every N > 0,

(9)

f = f
+ f dx,

IxI<1

where R(x) =
—

with =
Now by the homogeneity of k arid the use of polar coordinates, we see

that

dx
=

k(x)x& da(x)) f dr,

with the last integral equalling l/(s + + d). Moreover the remainder
R(x) satisfies

I
R(x)

I clxi and this together with k(x) I � im-
plies that SR(x) dx is analytic in the half-plane Re(s) >
—d—N. -

As a result. for each non-negative integer N, we have that I(s) can be
continued in the half-plane Re(s) > —d — N and can be represented as

I(s)=
I

N



2 examples of distributions 121

in that half-plane, with EN(S) analytic there, and

(0)= (f 1

k(x)x° da(x)).

Now for our given A with A —d, —d — 1.... we need only to take N so
large that A> —d — N, and define the distribution K by setting K(p)
1(A). (See Figure 1.) Moreover, by keeping track of the hounds that
arise, one sees that with M � + 1, A + d + 1),
with the norm II tM defined earlier. Thus K is a tempered distribution.

Re(s)> —d— N

1'
• •

—d—'IV —d—N±1 —d—1 —d

Figure 1. The half-plane Re(s) > —d — N, arid the definition of 1(A)

To verify that K agrees with the function k away from the origin, we
note that whenever vanishes near the origin, the integral i(s) converges
for every complex s and is an entire function. Therefore by (8)

= 1(A) = / dx.
JJRd

This proves the claim.
Next notice that for any a> 0, whenever Re(s)> —d,

= fRd

= a8 f k(x)txt dx =

This follows by the homogeneity of k, and the change of variables x ax.
As a result, = asI(s) wheni Re(s)> —d, and thus by analytic
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coiitniuat iOfl tins Continues to hold at all s at which i(s) is analytic, and
hence at s A. Therefore the distribution K = 1(A) has the asserted
homogeneity. and this t he existence stated in part (a) of the t hco—
rein If we also note that under the cancelation conditions of part (14 of
the tlieoreni one has = (1 whenever = in. OUF argument also proves
the existence in that Case.

We next come to the question of the uniqueness of the distribution K
when A —d, —d — 1 Suppose K and K1 are a pair of regular dis-
riliutioris of degree A, each of which agrees with Ic away from the ori-

gin. Theii D K — K1 is supported at the origin and hence. by Theo-
rem 1.7. 1) for some constants Now on the one hand

because K and K1 are hioinogeiicoiis of degree A. On
the other hand = and as a. result.

a > 0.

We 110W invoke the following simple observation. which we state in a form
that will also be useful later.

Lemma 2.6 Suppose A1. A2 A,1. are distinct real numbeiw and that
for constants and b1, 1 <3 n, we have

+ log.x) = 0 for all .r > 0.

Then a1 = b3 = 0 for all 1 <3 <ii.

For A —d, —d — 1...., we apply the leinmria to A1 = A, A2 = —d.
A3 —d — 1. and so on. and x = a. to obtain D(p) = 0 as desired.
If A —d — in. we get rn proving the relative
uniqueness asserted in conclusion (c) of the theorem.

To prove the lemma we assume, as one may, that is the largest of
the A3 Then multiplying the identity by and letting .r tend to
infinity we see that as well as must vanish Thus we are reduced
to t he case when n is replaced by n — 1, and this induction gives the
lemma.

Finally we show that when A = —d — in and do(x) 0,

for sonic a, with al = rn. then there does niot exist a homogeneous dis-
tril)lltiOfl of degree —d — in that agrees with k(x) away fromni the origin.
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We consider first the case m = 0, and exaniiiie I(s), given by (8), near
s —d, in the special case k(x) = lxl_d. In this case we use (9) with
N 1, which is valid for Re(s) > —d — 1. With R(x) = — this
yields
(10)

= Ad
+ f - dx

+ f w(x)ixiss+d

(Here Ad = 27rd/2/f(d/2) denotes the area of the unit sphere in Wi).
Since the two integrals are analytic when Re(s) > —d — 1, the factor

represents the residue of the pole of as s = —d, and in
particular, as distributions

(s + d)i(s) Ad& as s —d.

We will temporarily call 3 the distribution that arises as the next term
in the expression of i(s) as s —p —d, i(s) + 3 + O(s + d), that is

J = ((s +

This distribution 3, which we shall now write as is given, because

of (10), by

(11) / dx
+ f dx.

lxi Ixi>1 x

We observe the following facts about

(i) It is a tempered (listributiorl. Tiidccd, it is easily verified that

H <cu.
(ii) agrees with the fimction 1/Ixid away from the origin; this is

because when tested with that vanishes near the origin, the term
p(O) disappears from (11).

(iii) 1-lowever, is not lioinogeiieous.

What holds is the identity
(12)

a > 0.
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To prove this note that

= -
lxi lxl<l/a lx lxl>I/a lxi

as a change of variable shows. A comparison of this with the case a = I
immediately yields (12). A consequence of this identity is contained in
the following.

Corollary 2.7 There is no distribution K0 that is homogeneous of de-
gree —d and that agrees with the function i/JxId away from the origin.

If such a K0 existed, then K0
—

[a-a] would he supported at the
origin, arid hence equal to Applying this difference to
pU would yield that

a_d —

a a contradiction with Lemma 2.6 if we take
so that 0.

The result of Corollary 2.7 can he restate(1 as follows, if k is homo-
geneous of degree —d, arid

1

k(x) da(x) 0, then there is rio distri-
bution K homogeneous of degree —d. that agrees with k away from the
origin.

Trideed, write k(x) = + k1 (x), where

c / = /
./1x11

arid c 0. while k1 (x) da(x) = 0. Now if K1 is the distribution
whose associated function is k1. and whose existence is guaranteed by
conclusion (b), then — K1) would be a homogeneous distribution of
degree —d agreeing with away from the origin. This we have seen
is precluded by Corollary 2.7.

Finally, turning to the general case, suppose K is a homogeneous dis-
tribution of degree —d — in, whose associated flmction is k(x). Let K' =

for some with = in and k(x)x° da(x) 0. Then clearly
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K' is homogeneous of degree —d — m + al = —d, while k'(x)
is its associated function. However now

[
which contradicts the special case A = —d considered above. The theo-
rent is therefore completely proved.

Remark 1. The results of the theorems continue to hold with minor
modifications if A, which was assumed to be real, is allowed to be coin-
plex. In this situation the proof of Lemma 2.6 needs a slight additional
argument, which is ifl(licatcd in Exercise 20.

Remark 2. When A = —d with k satisfying the cancelation condition
k(x) da(x) = 0, the resulting distribution K is then a natural gen-

eralization of pv( in considered earlier. Indeed, as we have seen

= f - dx
+ f dx

and this equals the 'principal value"

lim I k(x)'p(x)dx

because k(x) dx = log(1/€) k(x) da(x) 0. Distributions
of this kind, first studied by Mihlin, Calderón and Zygmund, are often
denoted by pv(k).

2.3 Fundamental solutions

Among the rriost significant exainiples of distributions are fundamental
solutions of partial differential equations and derivatives of these funda-
mental solutions. Suppose L is a partial differential operator

L =

with complex constants. A fundamental solution of L is a distri-
but ion F so that

L(F) =6,

where 6 is the Dirac delta function. The importance of a fundamental
solution9 is that it implies that tine operator f T(f) = F * f. mapping

9Note that a fundamental solution is not unique since we can always add to it a solution
of the homogeneous equation L(u) = 0
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V to is an "inverse" to L. One way to interpret this is the statement
that

when acting on V. This holds because as we have seen earlier iii this
chapter, F * f) =

f F * f f.
Now let

be the characteristic polynomial of the operator L. Since, for example
when f belongs to 8, one has (L(f))A J) we might hope to find
such an F by defining it via

F L
takeii in an appropriate sense.

The main problem with this approach in the geiieral case is due to the
zeros of P and the resulting difficulty of defining as a distribution.
However in a number of interesting cases this caii de done quite directly.

We consider first the Laplacian

d
a2

3=1 3

Here and when d � 3 this function is locally in-
tegrahie, and I he required calculation of a fundamental solution is given
by Theorem 2.3. This results in the following.

Theorem 2.8 For � 3, the locally integrable function F defined by
F(.r)

=
is a fundamental solution for the operator A, with

2

This follows by taking —d + 2 (in Theoreiii 2.3), then I' =
1(1) 1, while F(d/2) ((1/2 — 1)I'(d/2 — 1). Therefore equaLs

and hence

(AF)A = 1. which means A? = 6.

The case of two (limerisions leads to the following variant.
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Theorem 2.9 When d = 2. the locally inteqrablc fnn( t?Ofl log lxi a
fundalTlerltal solution of A.

This ftmdamental solution arises when considering the limiting case A
—d + 2 = 0 in Theorem 2 3. It caii he given formally as

I
i&12

but we need to assign a meaning t o this non—convergent ml egral. In fact.

we shall l)e led to the (listribution cOnSidcre(I in (11). We start
with the identity

(14) f dx — fR2

with —2 < A < 0, and CA = l A We examine (14) near A = 0

and use the fact that CA —A/(2ir) + c'A2 as A —* 0, for sonic constant
c'. This follows from the fact that 1'( 1) 1. the function F(s) is smooth
near s = 1. and the identity F(s + 1) sF(s) with s = —A/2. Looking
back at (10) (with s —A — 2). we differentiate both sides of (14) with
respect to A, which is justified by the rapid decay of and After a
multiplication of 1/2ir the result is. upon letting A 0.

2ir JR2

-1
2

dx
+ / -

1. ixi>i lxi j

That is. if we take F = log lxi. then

Now it is clear that lxl25 = 0. because = = 0. Also,

for all = dx. which ineaiis 1x12 equals

the ftmctioii 1. Thus (AF)A 1. and so AF = 5. proving
that F is a funidaineiii-al solutioni for A on

We shall next give an explicit fundamental solution for the heat oper-
ator
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taken over Rd±l. with (x, t) E x L and the Laplacian
in the x-variables, x E IRd. We do this by linking the inhomogeneous
equation L(u) g with the homogeneous initial-value problerri, L(u) = 0

for t > 0 with = f(x) given on

Recall from Chapters 5 arid 6 in Book T that the latter problem is
solved by the heat kernel

where the Fourier transform is taken only in the x-variablcs. This shows
that if f S, then u(x, t) = * f)(x) solves the equation L(u) 0,

while u(x. t) —f 1(x) in S as t 0. Notice also that

= arid f 7-(1(x)dx = 1,
ôt Rd

and is an 'approximation to the identity." (For these properties of
see Chapter 5, Book I and Chapter 3 in Book III.)

Now on define F by

F" 5 if t >0,
0. ift<0.

It follows that F is locally integrable on (and in fact one has
fRd F(x, t) dx dt R), arid so F defines a tempered distribution

on

Theorem 2.10 F is a fundamental solution of L = —

Proof Since = with L' = —
it suffices to see

that which equals

lim f f F(x, t) — t) dx dt.
Rd at

is =
Now F(x, t) = (x) when t > 0, so an integration by parts in the
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x-variahles gives

f f lit

— f (f + dx
R' L� lit

= - f (J + dt) dx
t>F lit

= [
However, because p E 8, one has €) — 0)1 <0(e) uniformly
in x. Therefore

[ = I + 0(e))dx,
JRd

and this tends to 0), since is an approximation to the identity.

An alternate proof can be given by computing the Fourier transform
of F, as in Exercise 21

2.4 Fundamental solution to general partial differential equa-
tions with constant coefficients

We now tackle the general case of any constant coefficient partial dif-
ferential operator L on lIv' by addressing the convergence issues raised
by (13), where a candidate for a fundamental solution F was written as

F
= fRd

with P the characteristic polynomial of the operator L. Ignoring for
a moment the problem of convergence, we note that if E 'D, then we
would have

f f dx,
Rd

and hence after interchanging the order of integration,

(15\ E'I I
JRd
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To circumvent the obstacle that arises in (15) because of possible zerocs
of P. we shift the line of integration in the &j-variahle to avoid aiiy zeroes
of the polynomial p(z) = P(z. c'). where = is fixed. The
result we obtain as follows.

Theorem 2.11 Every constant coefficient (linear) partial differential
equation L on Rd has a fundamental solution

Proof After a possible change of coordinates consisting of a rotation
and multiplication by a constant. we may assume that the characteristic
polynomial of L will be of the form

in —1

= = + >
j-=O

where each is a polynomial of degree at most m — j. A proof that
a general polynomial P can be written in the above form. can he found
for instance iii Section 3, Chapter 5, Book 111, where an earlier version
of the of L appears.

For each the polynomial p(z) 1'(z, has in roots in C, which
can be ordered lexicographically, say (c') We claim that.
we can pick an integer so that:

(i) <m + 1 for all

(ii) If Jm(ei) = then — a(e')I � I for all j = 1... . , rim.

(iii) The function I> n(e) is measurable.

Indeed, for each the polynomial p has in zeroes. so at least one of the
m + i mt ervals {—rn — I + —m — 1 + + I)) (for t 0. .. in)
has the property that it does not contain any of tile imaginary parts of
the zeroes of p. We can then set to be the mid-point of such
interval with the smallest £ having the above property. Condition (ii)
is then automatically satisfied. Finally. Rouclié's theorem10 applied to
small circles around the zeroes of p shows that (c'),. . . , are
continuous functions of and this implies (iii).

So. instead of (15) we now define

(16)
= f f dc'. whenever E V.

tm0See for example Chapter 3 in Rook II
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In the above, the inner integral is taken over the line =
in the complex

To see that F is well defined as a distrihut ion, recall first that since
has compact support then is analytic wit Ii rapid decay on each line
parallel to the real axis, so it suffices to show that P is uniformly bounded
from below on the line of integration. To this end, fix on such line, and
consider the polynomial in one variable q(z) P(e1 + z. c'). Then q is a
polynomial of degree rn with leading coefficient 1, so if , denote
the roots of q, then q(z) = (z — (z — By (ii) above we have
that � I for all j, hence = = IA1 � 1, as desired.
Therefore F defines a distribution.

Finally, the rapid decrease also allows us to differentiate under the in-
tegral sign. so if L' = then the characteristic poly-
nomial of L' is therefore P( Hence

=
=f fI

We can 110W deform the contour of integration back to the real line. so
that

).

which completes the proof of the theorem.

Remark. We obtain from this the following existence theorem: when-
ever f e there exists a u E C30(Rd) so that L(u) f. This is
clear if we take u = F * f, with F the fundairiental solution above.11 It
should also be pointed out that an analogous solvability fails if L is not
constant-coefficient, as is seen in Section 8.3 of Chapter 7.

2.5 Parametrices and regularity for elliptic equations

In many instances it is convenient to replace the notion of a fundamental
solution by a more flexible variant, that of an "approximate fundaniental
solution" or parametrix. Given a differential operator L with constant
coefficients, a parametrix for L is a distribution Q, so that

where the "error" r is in (say) S. In this sense, the difference LQ — is
small,

lLThis result may be cottipared with Section 3 in Chapter 5 of Uook III, where not-
necessarily smooth solutions are foumid by a different mmietliod
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Of particular interest are parametrices that are smooth away from the
origin. Adopting the terminology used earlier, we say that Q is regular
if this distribution agrees with a C°° function away from the origin.

An important class of partial differential operators that have regu-
lar parametrices are the elliptic operators. A given partial differential
operator L = of order m, is said to be elliptic if its char-
acteristic polynomial P satisfies the inequality �
c > 0, and all sufficiently large Note that this is the same as assuming
that Pm, the principal part of P (the part of P which is homogeneous of
degree m), has the property that = 0 only when = 0.

Note, for example, that the Laplacian A is elliptic.

Theorem 2.12 Every elliptic operator has a regular parametrix.

Proof. Observe first by a straightforward inductive argument in k,
that whenever = k and P is any polynomial

1

- L1

where each is a polynomial of degree � — k
Now suppose � whenever � c1, and let 'y be a C°°

function which is equal to I for all large values of and is supported in� Then observe from the above identity that

(17)

Now let Q be the tempered distribution whose Fourier transform is the
(bounded) function Taking up the same argument as in the
proof of Theorem 2.4, we have

=

Because of (17) and Leibnitz's rule, the right-hand side above is clearly
dominated by for � 1; it is also bounded when
1. Thus as soon as 2N + m — > d, this function is integrable, and
therefore being its inverse Fourier transform up to a multi-
plicative constant, is continuous. Since this is true for each we see
that Q agrees with a C°° functiomi away from the origin.

Note moreover that (LQ)A = = I + —

1). By its definition, — I is in V, amid hence — 1 = for some
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r E S. Finally. (LQ)A = I + which nieans LQ = 6+ r, as was to be
shown.

The following variant is useful.

Corollary 2.13 Given any e > 0, the elliptic operator L has a
parametrix that is supported in the ball {x: lxi � c}.

Iii fact. let be a cut-off function in V, that is 1 when lxi <e/2.
and that is supported where lxi e. Set = Q, and observe that

— ?JFL(Q) involves only terms that are derivatives of Th of posi-
tive order, and these vanish when lxi <e/2. The difference is therefore a
C0c function. However, lhL(Q) = + r) = 6 + Altogether, this
gives = 6 + where is a C°° function. Notice that is auto-
matically also supported in lxi <€.

Elliptic operators satisfy the following basic regularity property.

Theorem 2.14 Suppose the partial differential operator L has a regular
parametrix. Assume U is a distribution given in an open set ci C and
L(U) = f, with f a function in ci. Then U is also a C°° function
on ci. In particular, this holds whenever L is elliptic.

Remark. The terminology hypo-elliptic is used to denote operators
for which the above regularity holds. The prefix 'thypo" reflects the
fact that there are non-elliptic operators (for example the heat operator

— Ax) that also have this property as a result of the fact that they
have a regular fundamental solution. However, it should be noted that
for general partial differential operators. hypo-ellipticity fails; a good
example is the wave operator. (See Exercise 22 and Problem 7*.)

Proof of the theorem. It suffices to show that U agrees with a C°°
function on any ball B with C ci. Fix such a ball (say of radius p).
and let B1 be the concentric ball having radius p + e, with f > 0 so small
that B1 c ci. Next, choose a cut-off function in 'D, supported iii ci.
with = 1 in a neighborhood of B1. Define U1 = uiU. Then U1 and
L(U1) = F1 are distributions of compact support in Rd and moreover F1
agrees with a C°° function (that is, f) iii a neighborhood of B1. Thus
F1 agrees in a smaller iieighborhiood of with a function that
has compact support.

We 110W apply the paranietrix sulpporte(l in { lxi } whose exis-
tence is guaranteed by Corollary 2.13. On the one hand,
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and since * U1 = U1 * r( by Proposition 1.1, we have that r( * U1 is a
C0° function in Rd. On the other hand,

—fi)-

Now again. * fi is a COC function, while by Proposition 1.3, * (F1 —

Ii) is supported in the closure of the f-neighborhood of the support of
— fj. Since F'1 — Ii vanishes in a neighborhood of B1 it follows that
* (F1 — fi) vanishes in B. Altogether then U1 is a C0° function on

B. Since U1 ijU and i-,' equals I in B, then U is a COG function in B,
and the theorem is therefore proved.

3 Calderón-Zygmund distributions and estimates
We will now consider an important class of operators that generalize the
Hjlheri, transform and that have a corresponding L1' theory. These arise
as integrals," that is. as convolution operators T given by

(18) '1(f) = f * K.

with K that, are appropriate distributions. Among kernels K of this kind
the first considered were homogeneous distributions of critical degree —d,
similar to those described in Remark 2 at the end of Section 2.2.12
Over time. various generalizations and extensions of these operators have
arisen. Here we want to restrict oar attention to a narrow hut partic-
ularly simple and useful class of such operators, which have tile added
feature that they can be defined either in ternis of (18) or in terms of
the Fourier transform via

(19) =

The reciprocity of the resulting conditions 0fl the kernel K and the mu!-
tiplier in, with in K". can then be seen as a generalization of Theo-
rem 2.4 when ,\ = —d.

3.1 Defining properties

We consider a distribution K that is in the terminology used
in Sections 2.2 and 2.5. This means that for such K there is a function k
that is COG away from the origin so that K agrees with k away from the
origin. Given a K of this kind, we consider the following differential
inequalities for its associated function k,

(20) < for all

however requiring a high degree of smool of k
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Notice that the above for a = 0. implies that the distribution K is tern—

In addition to (20) we forniulate a cancelation condition as follows
Given an integer ii. we say that is a C(hZ)_normalized bump function
if is a function supported in the unit hail and

< 1. all tat

We define l)y (x) for r > 0. Our condition is then that for
some fixed n � 1, there is an A so that

(21) sup )1 < A. for all bump functions
O<r

Proposition 3.1 The following three properties of a distribution K are
eqni ualeni.

(i) K i,s regular and satisfies the differential inequalities (20) together
with the cancelation property (21).

(ii) K is lempered, and rn is a function /,hai is away from
the origin that satisfies

(22) fin all a.

(iii) K is a regular distribution that .satisfies the differential inequali-
ties (20) and is a bounded function.

We refer to kernels K that satisfy these equivalent properties as Calderón-
Zygmund distributionsJ3

The proof will be facilitated by noting the dilation-invariance of the set
of all distributions that satisfy the above conditions. Recall the scaling
of a distribution K as defined in Section 2.1. For each a > 0, the scaled
distribution K° is given by = with p0(x) = With
this we claim that whenever K satisfies (20) and (21). K° satisfies (20)
and (21) with the same bounds. In fact, the fuiictioii associated to K"
is while as the reader may easily verify.
Moreover, if in = then m0 and = rn(ae). so m0
satisfies (22) with the same bounds.

Once this is observed, the proof of the proposition is in the same spirit
as that of Theorem 2.4. and so we will be correspondingly brief. Let us

1We should note that phrases like 'Calderdn-Zygmund operators' or "Calderón-
Zyginund kernels" have been used in many contexts to denote different bitt related ol)jects
iii the theory
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begin by assuming condition (i). We first observe that m is a
function away from the origin. This is done by splitting K as K0 +
where K0 = and K1 = (1 — ij)K (with a cut-off function that
is supported in the unit hail and is equal to 1 when lxi 1/2). and
proceeding as in the proof of Theorem 2.4.

To show that the inequalities (22) are satisfied for rn(e) KA, 0,
we can reduce matters to the case = 1 by the dilation-invariance
pointed out above. Now by Proposition 1.6. and
the latter is K(p) with = Now 'p is a multiple (inde-
pendent of for = 1) of a bump function. so (20)
implies I � c'. The same argument gives

I �
Next, since K1 (1 — r1)K (1 — i1)k is supported where lxi � 1/2,

we have by (7)

=

I lxl+_2Ndx<Do
JIxt�1/2

if 2N> al. Thus when = 1, and therefore combining
estimates for and implies (ii) in the proposition.

To prove that (ii) implies (i), we first assume that m satisfies (22)
and, in addition, has bounded support, but we will make our estimates
independent of the size of the support of in.

Define K(x) = X Then clearly K is a bounded
function on Rd, and in in the sense of distributions. In proving
the differential inequalities (20), it will be sufficient to do this for lxi = 1,
because of the dilation-invariance used earlier. Now write K K0 + K1,
with K3 defined like K with in replaced by in3, where =
and = — ri(e)). Now obviously since 1110
is bounded and is supported in the unit ball. Also in analogy with (7)
arid the previous argument,

(x)1 = C f (c))
Rd

<CaN I

if 2N — > d. Since lxi = 1, these estimates for K0 and K1 yield (20)
for lxi = 1. and thus for all x 0.

To prove the cancelation condition, take n = d + 1. Note first that
so this implies that +



3 Calderón—Zygrnund distributions and 137

whenever ip is a bump function, and as a result

f I
ef C'

for such a normalized bump functions.
However. K(pr) Kr(p) = f Therefore

Irn(e)I f < A. and the condition (21) is established.
To dispense with the hypothesis that m has compact support, consider

the family = with e > 0. Observe that each has

compact support and (22) is satisfied uniformly in i. Set

= I
JRd

Then since —k in pointwise and houndedly as 0, the convergence
is also in the sense of tempered distributions, and this implies the conver-
gence of K in the sense of tempered distributions, with KA = in.
Now the differential inequalities (20) hold for x 0, and uniformly
in €. Thus these estimates hold for K, (more precisely for its associated
function k). Similarly, since the cancelation conditions (21) hold for Kf,
uniformly in e, these conditions hold for K, and thus altogether we see
that (ii) implies (i). We observe that the argument just given shows that
(iii) implies (i). Since (iii) is clearly a consequence of (i) and (ii) together,
all three conditions are equivalent, finishing the proof of the proposition.

The following points may help clarify the nature of the hypotheses
concerning Calderón-Zygmund distributions.

• It is clear that if the cancelation condition holds for
bump functions for a given n, then it also holds with n' > n. In

the other direction. it can he shown that in the presence of (20),
the fact that (21) holds for some n implies that it holds for n = 1,

and thus for all n' � 1. This is sketched in Exercise 32.

• Givemi a function k that satisfies the differential inequalities (20). we
may ask if there is a Calderómi-Zygmund distribution K that has k
as its associated function. The necessary and sufficient condition
on k is that

Sup I k(x)dx <oc.
O<a<b Ja<IxI<b

The proof of this fact is outlined in Exercise 33. Note however
that K is not uniquely determined by k.
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• \'\e make a last remark about the significance of Calderón-Zygmund
distributions in the theory of partial differential equations. It is
that. whenever Q is a parametrix for art elliptic operator L of or-
(icr rn as in Section 2.5. then is a Calderón-Zygmund dis-
tribution, whenever lot < iii This follows immediately from the
eslimate (17) aIt(I the Characterizatu)n of such distributions I)y the
Fourier transform given by assertion (ii) of the proposition.

3.2 The L' theory

The estimates for operators of the form (18) are given by time following
theorem.

Theorem 3.2 Let T he the operator T(f) f K, with K as in Propo-
si/ion 3.1. Then T initially defined for I in S extends to a bounded
operator on for I <p < oc.

This means that for each p. 1 < p < oo, there is a bound so that

(23)

I S. Thins by Proposition 5.4 in Chapter 1 we see that T has a
(unique) extension to all of that satisfies the bound (23) for f E
We break the proof into five steps

Step 1: J,2 estimate. The case p = 2 follows directly from the fact that
(Tf)A = IAKA. (see Proposition 1.5) and that

IITI1II,2 I1(Tf)AIIL2 111111,2 <AIIJItL2.

by PlanchereFs theorem The inequality A is of course a
consequence of Proposition 3.1

Step 2: A variant of atoms. While our operator T does not in general
niiap L1 to itself (as the example in Section 3.2 of time previous chapter
already shows). its LI" theory for 1 < p < oo is bound up with a
type L' estimate, as was the case for time maximal function treated
in Section 4 of Chapter 2. here we arrive at this kind of estimate by
stwlying the action of T on variants of the atoms that are relevant for
the hardy space theory. In the present situation we deal with
the case p = 1 of the p-atoms (specifically excluded from Corollary 5.3
in time previous chapter!).

A 1-atom a associated to a ball B is an L2 function with.
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(i) a is supported in B, and f Ia(x) I dx 1.

(ii) fBa(x)dx=0.

Notice that the L2 norm of a does not enter into the conditions (i) and
(ii) above; the requirement that a e L2 is made only for technical conve-
nience.

For each ball B we will denote by B* its double. that is. the ball
with the same center as B but with twice its radius. The key estimate
involving our operator T and 1-atoms is that there is a bound A so that

(24) iT(a)(x)i dx < A. for all 1-atoms a.

Now (24) will be a consequence of an inequality satisfied by the function
k associated to the distribution kernel K of the operator. namely that
foi all r > (I

(25) 1 k(x — y) — k(x)l dx < A, whenever <r.
JfxI�2r

To see (25), note that by the mean-value theorem.

k(x — y) — k(x)l slip lVk(z)l.

where L is the line segment joining x to x — y. Since lxi � 2r awl �
it follows that z � lxl/2, whenever z e L. Thus the differential ineqimal-
ities (20) for lxi = I show that Ik(x — y) — k(x)i � clxi -d—1 and (25)
follows because r ill>2 lxi —d—1 dx is independent of r (amid is finite).

To deduce (24) from this, observe first that whenever f is in S and is
Supported in the ball B. themi for x B* we have

T(f)(x) J k(x - y)f(.r) dy.

This is so hecalise the distribution K agrees with the function k away
from the origin and here ix — � r. Since k(x — y) is bounded there, a
Passage to the limit shows that the same identity holds if I is supported
in B and is assumed merely to be in L2. So if a is a 1-atom associated
to B and x B*, we have

T(a)(x)
= J k(x — y)a(y) dy /(k(x — y) — k(x))a(y) dy,
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because a(y) dy 0. Therefore.

f f {J Ik(x - y) - dx} a(y)I
B

and (24) is established if we invoke (25) with r the radius of the ball B.

Step 3: The decomposition. We exploit (24) by decomposing any in-
tegrahie function f as a sum of a 'good" function g, for which the L2
theory applies, and an infinite sum of multiples of atoms, for which the
estimate (24) is used.

Lemma 3.3 For each f in L1 (IRd) and a > 0, we can find an open
set E0 and a decomposition f = g + h so that:

(a)

(b) g(x)f ca, for all x.

(c) is a union U Qk of cubes Qk whose interiors are disjoint. More-
over b = >k bk, with each function bk supported in Qk and

f dx cam(Qk), while fQk bk(x) dx =0.

Note that (c) implies that h is supported in hence g(x) = f(x) if
x Observe also that each bk is of the form cam(Qk)ak, where ak
is a 1-atom.

The proof of the lemma is a simplified version of the argument used to
prove Proposition 5.1 in the previous chapter; in particular. here we use
the full maximal function f* instead of the truncated version ft. The
guiding idea is to try to cut the domain of f into the set when If(x)I > a
and its complement. However, as before, we must be more subtle and iii
the present situation cut f according to where f* (x) > a. Thus we take

{x: f* (x) > a}. The conclusion (a) is therefore the weak-type
estimate for f* given in (27) of the previous chapter.

Next, since Ea is open we can write it as Uk Qk, where the Qk arc
closed cubes with disjoint interiors, with the distance of Qk from
comparable to the diameter of Qk. (This is Lemma 5.2 of the previous
chapter.) Now set

mk=
1

f fdx.rn(Qk) Qk
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Thus if is a point of closest to Qk, one has lTItkI < ef
We define g(x) = f(x) for x and g(.r) Ink for x E Qk As a

result If(x)[ for x E because I there. Altogether theii
q(.r)I <co, proving conCluSion (b).

Finally. h(x) = f(x) g(x) is supported in E(, Uk Qk and hence b
where each bk is supported in QA and equals f(x) mk there.

Thus

/ Ibk(x)1 dx f f(x) - mA I dx f If(x)I dx +

Also as before

If(x)f dx ern(Qk)f*(ek) �
hence

f dx <

since ITnkI m. Clearly, f dx = — mk) dx = 0. and so
the decomposition lemma is proved.

One observes that if we were also givemi that f was in then it
would follow that g, h. amid each hk wOllI(l also be in Since the
supports of the hk are disjoint. the sum b = bk would converge not
only in the obvious pointwise sense, hut also in the L2 norm.

Step 4: Weak-type estimate. here we show that

(26) m({x: IT(f)(x)1 >

f E L1 with the bound A independent of f and To do
this we decompose f = g + b according to the lemma and note that

m({x: T(f)(.r)I > o}) m({x: T(g)(x)I >
+ rn({x: IT(h)(x)1 >

because T(f) = T(g) + T(b) Now by inequality and the
L2 estimate for T,

(2)2
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However j' dx = dx +
g(x) = f(x) and g(x)f co. so the first integral on the right is

majorized by i. Also

< �
by conclusion (a) of the lemma As a result

m({x: T(g)(x)J > o/2}) <

rf() deal with T(b) = T(bk), we let Bk denote the smallest ball that
contains Qk, and the double of Bk. We define = U Now,
again by Tchebychev's inequality, for a bounded set S,

m({x E S: IT(b)(x)f > o/2}) < f

T(b) = T(hk), with convergence in the L2 norm.
Now set S fl B, where B is a large ball. Letting the radius of

B tend to infinity then yields

m({x IT(b)(x)1 > a/2}) dx,

because = U BZ implies that C for each k. However
as we have noted, bk is of the form carn(Qk)ak, where ak is a 1-atom
associated to the ball Bk. Hence the estimate (24) gives

rn({x e T(b)(x)J > o/2}) rn(Qk) = ern(E0) <

Finally,

=

cm(Qk) for every k.
Gathering the inequalities for T(g) and T(b) together then shows that

the weak-type estimate (26) is established.
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Step 5: The U inequalities. We now borrow the idea used in Chapter 2
the proof of the U estimates for the maximal function in which the

weak-type inequality is transformed to its more elaborate form, given in
equation (28) of that chapter. In our case the stronger version is
(27)

rn({x: T(f)(x)I > a}) <A (1 / 11 dx + f
I belongs to both t1 and L2. To prove this, we cut f (this time,

iriore simply) into two parts for each a > 0. according to the size of f.
Namely, we set f = 1' + 12 where fi (x) f(x) if f(x)1 > a, and fj(x)
0 otherwise: also f2(x) 1(x) if 1(x) 1 <a, and f2(x) = 0 otherwise.
Then again

rn(flT(f)(x)l > a}) <m({IT(fi)(x)1 > a/2}) +m({IT(f2)(x)l > a/2}).

By the weak-type estimate just. proved.

m({IT(fi)(x)1 > a/2}) = I If Idx.a a

By the L2-boundedness of 1' and Tchebychev's inequality

a/2})
< (2)2 =4f 1112 dx,a a

proving (27).
Now (see (29) in Chapter 2)

/ dx
=

f A(&/P) do,

where rn( {x IT(f) (x)
I
> a }). Therefore, because of (27). the

above integrals are majorized by

A (f° (f fl dx) do
+ f (f 1112 dx) do).

o 0

We have

too p

j - 1/p
( / Ill dx) do 11

1 J 0 J
=
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if p> I where p/(p — 1). Also.

(f
if p< 2. with —p) 'l'hiis we get

<ApJffJIj,p.

with A •p• + Thi9 takes care of the case 1 <p < 2 (the
case p 2 having been settled before).

To pass to the case 2 <p < oc. we use the duality of lip spaces set
forth in Section 4 of the first chapter.

We note that whenever and g are in S then by PlanchereFs theorem

= J f dx.

Here !1 * where (K*)A with in KA Now iii satisfies
the same characterization (22) that rn does, and hence the results above
apply to T*. In particular the identity

(28) /
f and g in L2.

Next with 2 <p < oc. let, q he its dual exponent (I/p + I /q 1),
where now I < q 2. Then. by Lemma 4.2 in Chapter 1.

IIT(f)1IL;? sup

where the suprernum is taken over all g that are simple with fIg If 1.

however

= fffjf LPfJ7 (g)IIL'l � AqIIIIILP,

by Höldefs inequality aiid the boimdedness of T* on L" (1 < q 2).
The result is iiow (23) for all f e S, for I <p < oc. concluding the proof
of the theorem.

We make two closing conirnents about the tlieoreiri just proved
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• The result lea(IS to "interior estimal CS for solutions of elliptic equa-
I ions in terms of based Sobolev spaces As such. these may be
VieWe(l as a qUantitatiVe version of Theorem 2.1 1. This is outlined
in Problem 3.

• The essential properties of K that enter in the proof of the U

tlieoreni are. first, the L2 boundedness via the Fourier transform.
and second. the use of inequality (25). This inequality has nat ii—
ral extensions to a variety of contexts that arise in applications,
in particular where t he lying structui e of W1 is replaced by
another suital)le However, obtaining L2 1)OllfldedIIeSS
iii other settings is more probleinat IC. since in general the Fourier
transform may be unavailing For this. further ideas have I)eefl
developed that use the ahnost—orthogonality principle in Proposi-
tion 7.4 of Chapter 8. hut these will not 1)e pursued here.

4 Exercises

1. Suppose F is a distribution on and F =- f. with f a function in ci. Show
that taken in the sense of distributions, agrees with for each al k

2. The following represent converses to the previous exercise

(a) Suppose f and g are continuous functions on (a. h) C and (taken in

the sense of distributions) agrees with g Show that for every £ E (a. h).
(((x h) — f(.r))/h q(x) as h 0

(b) If f and g ai c merely assumed to be in L1 (a, h) with = g in the sense
of distributions, then f is absolutely continuous and (f(.r —f- Ii) — f(x))/h
g(r) as Ii 0 for a e x

As a result, if f is a continuous but nowhere (liffereni iable function Oil
then the distribution derivative of f is not a locally integlal)Ie function on

any sub-interval

(c) Gencialize (a) as follows Suppose k � I is an integer, and that f is a
continuous function on an open set ci If for each multi index a with al k.

he dist ributiomi f equals a continuous function then f is of (lass

and = q(k as functions. for all at k

Hint To see (a). let j0 c (a, b). I, > 0. and let be a test function on (a. b) SO
that f rj = I With > 0. define S and

f (xo + Im — y) - — dy

'Therm J'f(.r)-f—cp(.r)da' = — f and let 5.h (I
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For (b). show as a first step that. lip to a constant. f equals the indefiiiite
integral of q, almost everywhere. Then use Theorem 3 8 in Chapter 3. Book III,
about the differentiability almost everywhere of an absolutely continuous function

3. Show that a bounded function f satisfies a Lipschitz condition (also
known as a holder condition of exponent 1)

jf(x) — y

f all the first order partial derivatives af/ö.r3, I 3 � d.
belong to in the sense of distributions.
[Hint. Let f * where is an approximation to the identity as in Corol-
lary 1 2 Then E urtiforrnly in n.j

4. Suppose V is a distribution on

(a) There exist f1L C Ccc, each of compact support in so that —* F in the
sense of distributions

(b) If F is supported in the compact set C, then for every c > 0 we can choose
the so that their supports are in the f-neighborhood of C

5. Let f be locally integrable on Rd Then the "support" of f in the measure-
theoretic sense is the set E {x f(x) 0}. Note that E is essentially determined
only rriodulo sets of measure zero.

Show that the support of f, as a distribution, is equal to the intersection of all
closed sets C such that F — C has measure zero.

6. Assume that is a region in defined by c� = {x C R4. Xd > p(x')}. with
x = (x'. Xd) C Rd_m x R, and a C' function Suppose f is a function that is
continuous in and whose first derivatives are also continuous in with flou = 0

Let f he the extension of f to Rd defined by f(x) = f(x) if x C Q. and f(x) = 0

if x 11 Then taken in the sense of distributions, is the function which is

in and zero in
QC (Note that it is not necessarily true that is continuous

[I-lint Show that — dx = J'0 for all functions of compact

support in

7. Show that the distribution I" is tempered if and only if there is an integer N.
and a constant A, so that for all 11 � I.

sup Io(.r)I.
<N

for all C V supported iii xI < I?

8. Suppose F is a homogeneous distribution of Show that F is tempered
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hunt Fix rj E V. 7J(x) I, for < 1, 7/ supported in al <2 Let ijnfr) =
7/(.t/R) Find N SO that Im < Then deduce that �

9. Check that on the real line. f(x) = eX, considered as a distribution, is not
tempered
[Hint. Show that the criterion in Exercise 7 fails for every N.J

10. Verify that V is dense in S.
[Hint Fix E V so that 1 in a neighborhood of the origin. Let ijk(x) = ii(x/k)
and consider =

11. Suppose that , E S

(a) Verify that pi belongs to S

(b) Using the Fourier transform, prove that * p2 E S

(c) Show directly froni the definition of convolution that p1 * E S

12. Prove that if F1 is a distribution of compact support and E S, then F1 * p E
S
Flint For each N, there exists a constant CN so that

kp;IIN GN(1 + Iyt)NIkPIIN I

13. Use the previous exercise to prove that if F1 and F are distributions with F1
having compact support and F being tempere(I then:

(a) F * F1 is tempered, and;

(b) (F * F1 )A = (Fj" is C" and slowly increasing.)

14. Check that 1(x) = is a fundamental solution for
(/2

15. A d-dimensioiial generalization of the identity for the Ilcaviside function is
the identity

with h3(x) = and Ad = denotes the area of the unit sphere
in

[hint When d> 2. write = 2)

16. Consider the complex plane C R2, with z = x + iy.
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(a) Note that the Cauchy—Riemann operator

1/LI .8
2 \dx th-

is elliptic.

(b) Show that the locally integrahle function I /(irz) is a fundamental solution
for 8:

(c) Suppose f is cont inuoiis in and thf 0 in the sense of (list ributiotis
Then f is analytic

[Hint lor (b). use 'I heoreiri 2 9, and note that A = where = (* —

17. Suppose 1(z) is a ineromorphic function on C C Prove

(a) log f(z)[ is locally iiitegrable.

(b) A(log f(z)[) taken in the sense of (hstril)utions is equal to 2ir in3à1 —

2ir Here the are the delta functions placed at the (list met zeroes
of f, itarnely = p(z3). and the are placed at the poles of f, also
rn3 and n4 are the respective multiplicities.

[flint. log [z[ is a fundamental solution of A

18. Prove that a (listributiori F is homogeneous of degree A if and only if

— Al

[Mini F'or the converse, consider = for a > 0. e V Then is

for a > 0. and =

19. Prove the facts about (listribut ions in

(a) Cheri a distribution I'. there exists a (list ribut ion F1 so that

= F
di

(b) Show that F1 is unique modulo an additive constant

[hint Fot (a) fix E V. wit h j p0 = f, and note t hat each y E V can be written
iiiiiquelv as p + a constant a Then define F1 (y)
l'(v) For (b) the fact tha.t d/d.r is elliptic I

20. thiit if A1. . are (list met complex exponents and +
hjcAJ loga) 0 for all r > 0, then (Lj — = 0 for all 1 j a



4 Exercises 149

Hint Proceed as in t lie proof of Lemma 2 6. and use the fact 1 hat I +Z/Lj

is equal to log 1? if — () and that this integral is 0(1) if is real and 0

21. Let I'(x.t) = for t >0. and F(.r,t) 0. when t <0. as in
reni 2. It) Prove directly that

T) = +

where T) E x with dual to .r, and r dual to /
[llixmt Use the two identities

22
j ti I _27r?rldt _

. for >0
j

f dx = for t 0]

22. Suppose f is a locally integrable function defined on R. and let a be the
function defined by u(x. 1) = f(x — /). for (.r, I) E R2. Verify that u, taken as a
distribution, satisfies the Wave equation

82u —

8x2 —

\'lore generally. let F be any distribution on it Construct U (in analogy to f(.r —
t)) as follows if is in R2 = {(x.1)}. set = ))(x)dx
Then U sat isfies

82(1 — a2u
—

Note that U is invariant under the translations (h. Ii), for Ii E it

23. Show that in the function

F(x) = —e
4irIxI

IS a fundamental solution of the operator A — I. The function P is time "Yukawa
potent jaY' in the t heorv of element ary particles in cow rast to the "Newtonian
potential" — 1/(4irIxI), the fundamental solution of A. the function F has a very
rapid decay at infinity and it t hus accounts for time short-range forces in t he theory

[flint: Let F be the inverse Fourier transform of —(1 + 4ir2 I Going to polar
coordinates iii its. one then uses the identity

= 2sin(2irIxI)
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together with I he Fourier transform of t he conjugate Poisson kernel, given by (18)
of the previous chapter]

24. The following statements deal with the uniqueness of the fundamental solu-
tions of the Laplacian.

(a) Up to an additive constant, the unique fundamental solutions of A in Re',
d � 2. that are rotationally invariant, are the ones given in Theorems 2 8
and 2 9

(b) The unique fundamental solution of A in Re', d � 3, that vanishes at infinity
is the one given in Theorem 2 8.

25. A distribution F defined on C R is positive if � 0 for all e V
supported in Q, with � 0 Show that F is positive if and only if = f
for sonic Borel measure on Q that is finite on compact subsets

26. Recall that a real-valued function on (a, h) is convex if f(xo(l — t) + xit)
(1 — t)f(xo) + tf(xi), for XO, Xi E (a, b), 0 < t < 1. (See also Problem 4 in Chap-
ter 3. Book 111.) A function f on ci C is convex if the restriction of f to any
line segment in ci is convex

(a) Suppose f is continuous on (a, b). '['hen it is convex if and only if the
distribution is positive

(h) If f is continuous on ci c Rd. it is convex if and only if for each e =
C Rd the distribution is positive.

[Hint' For (a), let e V, � 0, f dx = 1 and set (x) = c Consider
I

27. Every distribution I" of compact support in Rd is of finite order in the
following sense: for each such F, there exists an integer M and continuous functions
F0 of compact support, so that

F=
<M

Moreover if F is supported in C, then for every t > 0 we may take F0 to he
supported in an E-neigllborhood of C Prove this by carrying out the following
three steps.

(a) Pick N so that for all E 8, and choose M0 so that 2M0>
d + N. Let Q he the inverse Fourier transform of 1/(1 + and
observe that Q is a fundamental solution of (1 — A)M0, and Q is of class
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(b) For each construct corresponding to Q. so that (1 — = (5+ Tf,
where is supported in the of the origin (as in Corol-
lary 2 13). Prove that F * Q1 is a continuous function, using the fact that

(c) Hence F = (I — A)MO * F) — F * rf. and the result is proved wit Ii M =
2M()

28. One can characterize tempered distributions F whose Fourier transforms have
compact support.

We already know by Proposition 1 6 that such au F must in fact he a function
f that is and slowly increasing A precise characterization when d = 1 is given
in the statement below

The Fourier transform of a tempered distribution F is supported in the interval
{—M. MJ if and only F equals a function f that is slowly increasing, and having
an analytic extension to the complex plane as an entire function of exponential type
2irM, that is, for every e > 0, If(z)I <A( zI where z = £ + ig
(Au analogous assertion holds in higher dunensions.)

[hint: Assume F is supported in {—M, M]. Using Exercise 27 allows us to write
F = where are continuous and supported in {—M — Al +
and thus reduce to the case when F is a continuous function -

To prove the converse, consider = where = fe
with E supported in 1 and such that fri = I is of expo-
nential type 2ir6 and is rapidly decreasing on the real axis Thus apply the simpler
version of the result given in Theorem 3 3. Chapter '1 in Book II to the function
fo, and let (5—* 0

29. In this exercise, we consider the L2 Sobolev spaces
space consists of the functions f E L2(Rd) whose derivatives taken

in the sense of distributions, are in for all x1 < in This space is sometimes
denoted by II,,, (Rd) Note that this is the special case for p = 2 of the Sobolev
space given as an example in Section 3 of Chapter 1 However, here we use a
slightly different (but equivalent) norm. which makes a0 into a hubert space

On Li,, we define the inner product

(f,q)m=
In 1< Tn

with (f, q)o = f(x)q(x) dx Then. with the norm 11111 = (f is a
hubert space

(a) Verify that f E if and only if + L2. and that the norms
If and + are equivalent

(h) If m > d/2, then f can be corrected on a set of zero. so that I
heconies continuous and is in fact in for k < m — d/2 This is a version
of the Sobolev embedding theorem.
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[Hint F L1 if < — (1/2

30. The following observation is useful in COflflC( Lion with the L2 of
distributions on

(a) Flie Fourier transform of the distribution log with

Ct 0

(b) Prove the following consequence of (a) Suppose k is a homogeneous fund ion
of degree —d that, is away from the origin and with

f =
k(.r) $0

if K is any (jistrihution that agrees with k away from the origin, then the
Fourier transform of K is not a hounded function Amiot her way of stating
this is that the operator I. by T(p) = K * initially defined fom

E V. dOes not extend to a bounded operator on

31. Suppose k is a function homogenenous of degree —d, not i(Ienl ically equal
to zero. and

f k(j)du(.i) = 0

if K is the principal value distribution dehncd by k. that is. K = pv(k), then K is
a Calderón—Zygrnund distribution but the operator 'I given by Tf f * K is not
bounded on or

The special case of the Efllhcrt U ansforni is in Exercise 7, Chapter 2
[Hint If F V. then = + I ')as 'xj, where -= f
32. The cancelation condition (2 1) for the Calderón—Zygmund (listrihul ions for
some n > I implies the condition for 71 = 1 Show this by first proving the following
fact Whenever K satisfies (20) and (21) for some ii � i. then for every I 3
the distribution K equals the locally integrable fund ion
[hint Tue distribution r3K — is supported at the origin Then use The-
orem 1 .7 to test x1 K — against as r 0 for suit able to conclude that
this difference vanishes i\ext, write any bump function as r)

_1_
-

t ) where ij arid the ame multiples of and
bump functions respectively, and use the above fact

33. Suppose k is a function in — {0}. that satisfies the diffeiential inequal-
ities (20) Theii there is a Calderon—Zygmund distribution K which has k as its
associated fuinction if and only if 511P(}<O<h <5 k( r) < DC

hint In one direction. note that IK(ris — < 2A. where = I if fxj < 1/2,
an(l q F In the other direction. define

f - dj f (IX
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an(1 verify I hat I he conditions (20) and (21) hold for K

34. Suppose H is a Calderón—Zygmund (listribtit ion arid ij belongs to S Verify
that rjK is a ('alderón—Zygnu 111(1 (list ril)UtiOn

5 Problems

1. \ke coiisidei periodic distributions and their Fourier series

(a) The tiot ion of a perio(lic distribution on Rd can be defined in two equivalent
ways

one can consider distril)ut ionS F on which are periodic in the sense
that Th (F) F for all Ii E 71'.

Alternatively. OflV (an cOflsi(ler the continuous linear functionals on
the space of periodic functions on Rd (Here Rd/Z(i denotes the
d—diniensional torus

(b) Note that if p then has a series expansion

2irinp(x) ==

where the Fourier (OeffiCi('IltS = i—'d dx are rapidly decreas-
ing, that is. for every N > 0. < O( — N) l°I - oc

Sirnilai ly. if F is a periodic distribution, arid = F(e denotE' its
Fourier coefficients. then 0n are slowly increasing in the sense that for some
N > 0. Ia21 I

<o(1111N) as ni oc

Moreover, the lotirier series converges to F in the sense of diS-
tributions

[hint To prove the equivalence in (a.). consider the "periodization" operator P
- V(id).

= - h)
hCZY1

Then find E so that P is surjective.
and that. in the same way. its (lila! P is also surjective (here
and denote. respectively, the I wo spaces of distribut ionS described in (a.) ) To
construct -y. pick t. E so that 0 and i' I on {0 .tj < 1. 1 j
and let =

2. Suppose Tf = f * K is a singular integral operator as in Theoreiri 3 2 of Sec-
tion 3 Then the mapping f T(f) is bounded on the hardy space

H to L'
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{Hint Consider flrst a 2-atom a associated to the unit hail B Then for an appropri-
ate constant e (bounded independently of a) we have T(a) — e(a4 + 4)) Here
a 2—atom for the hail Bag!, the double of B, arid 4) satisfies I4)(x)I < (1 -h

4)(x) dx = 0 With this apply Exercise 21 in Chapter 2 Then obtain the analog
for 2-atoms a, after rescahng and translation

3. Prove the following interior estimates for an elliptic operator L of order ut with
constant coefficients.

Suppose 0 and 01 are bounded subsets of with 0 C 01 Assume u and f
are L" functions in with Lu f in 01 in the sense of distributions Then if
1 <p < oc and k is a non-negative integer, we have

1
UIILP(O) � C + IIUIILP(o)

where the derivatives are taken in the sense of distributions.
[Hint. Consider the pararuetrix = given iii Corollary 2 13 which is sup-
ported in xI Here is chosen so that Of C 01, where are the points of
distance < i from 0.

Set U = with a function that is I near hut vanishes outside 01.
Then

<rn

and what is important is that the vanishes in Now U + Cf * U = *

where S This gives

= * — + *

As has been pointed out, are Calderóu-Zygrnund distributions whenever �
m, so the same is true for Then using Theorem 3.2. the result follows

4* Let P(.r) he aiiy real polynomial in and k a homogeneous function of
degree —d with J'k k(x) do(x) = 0

(a) One can define the telnpere(l distribution pv = K by

I iP(x)= him j e

(b) Then the Fourier transform of K is a bounded function (with bound inde-
pendent of t lie coefficients of P)

5. Let Q he a fixed real-valued polynomial on Consider the distributions
initially defined for Re(s) > 0 by

= f where ES
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Then I(s)(tp) has a merornorphic continuation to the whole complex s-plane, with
poles at most at s = —k/rn, where m is a positive integer determined by Q, and k
is any positive integer The order of the poles do not exceed d

6.* As a of the results in Problem 5*, one may prove the following.

(a) Suppose L = a non-zero partial differential operator on
with a0 complex constants. Then L has a tempered fundamental solution.
As an immediate corollary we also have

(b) Suppose P is a complex-valued polynomial on Rd 'l'hen there exists a
tempered distribution F that agrees with 1/P where P(x) 0

In fact. let P be the characteristic polynomial of L arid apply the result of the
previous problem to Q = Suppose I(s) has a of order r at s = 1, then
define the tempered distribution F by

pJ)

Consequently, PF = 1. and the inverse Fourier transform of F is the desired fun-
damental solution of L

7•* Suppose L = a partial differential operator on Rd, with a0
complex constants Then L is hypo-elliptic if and only if for each 0

P denotes the characteristic polynomial of L

8.* We describe several fundamental solutions of the wave operator

0= —

where (x, t) E R and =
1

We let be the forward open cone = {(x. t) 1> IxI}. and F_ = —r÷, the
backward cone For each s with Re(s) > —1 we define the function F8 by

( / 2 2\s/2 t' I'
(29) F8(x,t) = — X ,, , 1 +

I) otherwise

flere = 28 1 dir�Y I' (s/2 + 1) Then s has an analytic continu-
at iOn in the complex ,s plane as an ent ire (tempered) distribution-valued function
Moreover, one can prove that F+ = Fs1q__d+1 is a fundamental solution of 0

Note that F , obtained from F+ by mapping I —t, is also a fundamental
solution, and F+ and F_ are supported itt and I' respectively In a(ldition,
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if d is O(Id and d � 3. then vanishes for s = —d -1— 1. 50 1)0th arid F_ arc
supported oii the boundary of their cones, which is a reflection of the Fluygens
principle

Finally, a third fundamental sohition Fj) of interest given by

A I
T2+l(

with the limit taken iii the sense of distribution, and r) representing the (lual
variables to (.r, t) The fuindamenial solutions I"_. arid F0 are each }iorno—
geneous of degree —2. and invariant under the Lorenitz group of linear transfor—
niations of dcicrminant I that preserves r4 Also each fundamental solution of
Li with t hese invariance properties can be written as (-1 ± C2 F + caFb, wit Ii
Cj



4 Applications of the Baire
Category Theorem

We see the profound difference that lies between sets
of the two categories. this difference lies not within
deuurnerabihty, nor within density, since a set of the
first category can have the power of the continuum and
can also be dense in any interval one considers. but it
is in sonic sense a coriibinauon of these two prece(Img
tiotions

il Rain', 1899

Tn the late nineteenth century, Baire ml roduced in his doctoral disser-
tation a notion of size for subsets of the real line which has since provided
rriany fascinating results In fact, his careful study of functions led him to
the definition of the first arid second category of sets. Roughly speaking.
sets of the first category are "small," while sets of the second category
are In this sense the complement of a set of the first category is

Over time the Baire category theorem has beemi applied to metric
spaces in different arid more abstract settings. Its noteworthy use has
been to show that a number of phenomena in analysis. found first in
specific counter-examples. are in fact generic occurrences.

This chapter is organized as follows. We begin by stating arid proving
the Baire category theorem, and then proceed with the presentation of
a variety of interesting applications. We start with the result about
continuous functions which Baire proved in his thesis: a pointwise limit
of continuous functions has itself points of continuity. Also.
we shall PFOVC the existence of a continuous hut nowhere differentiable
fiiiiction. as well as the existence of a continuous function with Fourier
Series diverging at a point, by showing that the category theorem allows
ins to see that such functions are indeed generic. We also deduce from

theorem two further general results. tIne open mapping and closed
graph theorems, aml provide in each case an example of their use. Fimially,
we apply the category theorem to Show that a Besicovitch-Kakeya set is
generic in a natural class of subsets of
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1 The Baire category theorem
Although Baire proved his theorem on the real line, his result actually
holds in the more general setting of complete metric spaces. For the
purpose of the applications we have in mind it is better to have access to
this niore general formulation right away. Fortunately, the proof of the
theorem remains very simple and elegant.

To state the main result. we begin with a list of definitions. Let X he
a metric space with metric d, carrying the natural topology induced by
d. In other words, a set 0 in X is open if for every x E 0 there exists
r> 0 SO that Br(X) C 0, where Br(X) denotes the open hail centered at,
x and of radius r,

Br(s) = {y E X: d(x,y) <r}.

By definition, a set is closed if its complement is open.
We define the interior E° of a set E C X to he the union of all open

sets contained in E. Also, the closure E of E is the intersection of all
closed sets containing E. Since one checks easily that the union of any
collection of open sets is open, and the intersection of any collection of
closed sets is closed, we see that E° is the "largest" open set contained
in E, and E is the "smallest" closed set containing E.

Suppose E is a subset of X. We say that the set E is dense iii X if
E X. Also, the set E is nowhere dense if the interior of its closure is
empty, (E)° = 0. For instance, any point in is nowhere dense in
Also, the Cantor set is nowhere dense in R, hut the rationals Q are riot
since Q = R. We niote here that in general E is closed and nowhere dense
if arid only 0 = EC is open and dense.

We now describe the central notion of category due to Baire. and the
dichotomy it introduces.

• A set E c X is of the first category in X if E is a countable union
of nowhere dense sets in X. A set of the first category is sometimes
said to he 'meager." A set E that is not of the first category in X
is referred to as being of the second category in X.

• A set E c X is defined to he generic if its complement is of the
first category.

Thus the idea of category is to describe "smallness" in purely topological
terms (involving closures, interiors, etc.) It reflects the idea that elements
of a set of the first category are to be thought of as "exceptional," while
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those of a generic set are to be considered "typical.' Connected with this
is the fact that a countable union of sets of the first category is of the
first category. while the countable intersection of generic sets is a generic
set. Also we record here the useful fact that any open denise set is generic
(this follows from our remark earlier).

In general relying on on&s intuition about the category of sets requires
a little caution. For instance, there is no link between this notion and
that of Lebesgue measure. Indeed, there are sets in [0. 1] of the first
category that are of ful1 measure, arid hence uncountable and dense. By
the same token. there are generic sets of measure zero. (Some examples
are discussed in Exercise 1.)

The main result of Baire is that "the continuum is of the second cate-
gory." The key ingredient used inn his argument is the fact that the real
line is complete. This is the main reason why his theorem immediately
carries over to the case of a complete metric space.

Theorem 1.1 Every complete metric space X is of the second category
in itself, that is, X cannot be written as the countable union of nowhere
dense sets.

Corollary 1.2 In a complete metric space, a generic set is dense.

Proof of the theorem. We argue by contradiction. and assume that X
is a countable union of nowhere dense sets

(1) X=UF0.
ii= 1

By replacing each by its closure, we may assume that each is
closed. It now suffices to find a point x E X with x U

Since F1 is closed and nowhere dense, hence not all of X, there exists an
open ball B1 of some radius r1 > 0 whose closure B1 is entirely contained
in Ff.

Since is closed and nowhere dense. the ball B1 cannot be entirely
contained in F2. otherwise would have a non-empty interior. Since F2
is also closed, there exists a ball B2 of some radius r2 > 0 whose closure
B2 is contained in B1 and also in Clearly, we may choose r2 so that
r2 <ri/2.

Continuing in this fashioni, we obtain a sequence of balls } with
the following properties:

(i) The radius of tends to 0 as n oc.
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(ii) H,, c
(iii) F7, fl is empty.

Choose aiiv poiIit in B,,. Then. {,r,, } is a Cauchy sequence be-
cause of properties (i) and (ii) above. Since X is complete. this sequence
converges to a. limit which we denote by .x. By (ii) WC see that x E
for each ri, and hence a' for all n by (iii). This contradicts (1). and
the proof of the Baire category I hcorem is coniplete.

To prove the corollary, we argue by contradiction and assume that
E C X is generic but not dense. Then there exist s a closed ball B entirely
contained in F". Since F is generic WC ('all write F" F7, where
each F,, is nowhere dense, hence

1

is clear that F,, fl B is nowhere dense, hence I lie above contradicts
Theorem Li applied to the complete metric space B, and the corollary
is proVe(1.

The theorem act ually extends to certain cases of metric spaces that are
not coiriplete, in particular to open subsets of a complete metric space.
To be precise, suppose we are given a subset X0 of a con iplete metric
space X. Then X0 is itself a metric space, inheriting its metric from X
by restricting the metric on X to X0. The fact is that if X0 is u.n open
subset of X. then the conclusion of the theorem holds for it; that is, X0
cannot he written as a countable union of sets I hat are nowhere dense
(in X0). See Exercise 3. A simple example is given by the open interval
(0, 1) with tIle usual nietric.

1.1 Continuity of the limit of a sequence of continuous functions

Suppose X is a complete metric space. {f,, } is a sequence of continuous
complex—valued functions on X. and that the limit

him f,, (x) = f(x)

exists for each .r X. It is well known that if the limit is imiforrim in a',
then the limiting functiomi f is also continuous. In general, when the limit
is just poiutwise. we may ask. xmist f have at least one point of conti-
nuity? We answer this question affirmatively with a simple application
of the category theorem.
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Theorem 1.3 Suppose that } is a sequence of continuous complex-
valued functions on a complete metric space X. and

limf11(x) = f(x)

exists for every x E X. Then, the set of points where f is continuous is
a generic set in X In other words, the set of points where f is discon-
tinuous is of the first category.

Therefore is iii fact continuous at points of X.

show that the set V of discontinuities of f is of the first category,
we use a characterization of points of continuity of iii terms of u.s
oscillations More precisely, we (lefine the oscillation of the function f
at a point .r by

osc(f)(.r) = where = f(y) — f(z)1.

The limit exists since the quantity w(f) (r, x) decreases with r. In par-
ticular, we see that osc(f)(x) <f if there exists a ball B centered at x
so that — f(z)I <e whenever y, z E B. Two rriore observations are
in order:

(i) osc(f)(x) () if and only if f is continuous at x.

(ii) The set E, {x E X osc(f)(x) < c} is open.

Property (i) follows inimediately from the definition of coiitiriuity. For (ii),
we note that if x E Ef. there is an r > 0 so that (x) —

f(z)I <e. Consequently. if e 13r/2(1). theii E because

sup — f(z)I < sup — f(z)I
yzCB7(x)

Lemma 1.4 Suppose } is a sequence of continuous functions on a
complete metric space X. and (.r) —÷ f(x) for cue/i. .r as n —* oc. Then,
given an open ball B C X and > 0, there exists an open ball 13o C B
(2nd an integer m � 1 so that — for all x E B0.

Proof Let V denote a closed ball contained iii B. Note that V is
itself a complete metric space. I)efine

Ee{.rEY: SUJ)1f3(X)—J'h(X)I<f}.
j,k�P
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Then. since (x) converges for every x E X. we must have

Moreover, each Ft is closed since it is the intersection of sets of the
type {x E Y — €} which are closed by the continuity of
f3 and fk. Therefore. by Theorem 1.1 applied to the complete metric
space Y. some set in the union (2). say must contain an open ball

By construction,

sup f3(x) — fk(X)I E whenever x E Bo,
j,k>rn

and letting k ten(l to infinity we find that (.r) — f(x)j for all x E
B0. This proves the lemma.

To finish the proof of rflleorem 1.3. we define

{x E X osc(f)(x) � 1/n},

in other words. with 1/n in the notation of (ii) above.
Then, by our observation (i), we have

UFn,
ii = I

where we recall that V is the set of discontirmities of f. The theorem
will be proved if we can show that each is nowhere dense.

Fix n � 1. Since F11 is closed, we must show that it has empty interior.
Assume on the contrary. that B is an open hail with B C Then. if
we set l/4n in the lemma, we find that there is an open ball B0 C B,
and an integer rn � 1 so that

(3) 1f111(x) f(x)j l/4n. for all x E B0.

By the continuity of fm, we may timid a bail B' C B0 so that

(4) Ifm(y) — < 1/4n. for all y. z E B'.

Then, the triangle inequality implies

— f(z)1 c 1(y) — fm(Y)1 + — + — f(z)I
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if y, z E B', the first and third terms are hounded by 1/4n because of
condition (3). The middle term is also bounded by 1/4n due to (4).
Therefore

— f(z)1 < whenever y, z E B'.

Consequently, if x' denotes the center of B', we have osc(f)(x') < 1/n
which contradicts the fact that .x' E F71. This concludes the proof of the
theorem.

1.2 Continuous functions that are nowhere differentiable

Our next application of the category theorem is to the problem of the
existence of a continuous function that is nowhere differentiable.

Our first answer to this question appeared iii Chapter 4 of Book 1 where
we showed that time complex-valued function f given by the following
lacunary Fourier series

f(x) = with 0 < 1
n=O

is continuous but nowhere differentiable. Moreover, a slight change in
the proof shows that both the real and imaginary parts of f are also
nowhere differentiable. Other examples arose in Chapter 7 of Book III,
in the context of the von Koch and space-filling curves.

Here, we prove the existence of such functions by showing that they
are generic in an appropriate complete metric space. The space we have
in mind consists of all real-valued continuous functions on [0, 1], which
we denote by

X=C({0,1]).

This vector space is equipped with the sup-norm

11111= sup lf(x)i.
xE[O. 1j

Together with this norm, C({0, 1J) is a complete normed vector space (a
Banach space). The completeness follows because the uniform limit of a
sequence of continuous functions is necessarily continuous. Finally, the
metric d on X is chosen to be d(f, g) = hf — gil, and hence (X, d) is a
coniplete metric space.

Theorem 1.5 The set of functions in C([0, 1]) that are nowhere differ-
entiable is generic.
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We must show that the set V, of contmuous functions iii [0. 1] that are
diffcreiitiable at least at one point, is of the first category. To this end,
we let denote the set of all continuous functions so that there exists
0 � < I with

1(x) — f(x*) <
— for all x E [0. 1].

These sets arc related to V by the inclusion

V c EN.

To prove the theorem it suffices to show I hat for each N, the set EN is
nowhere denise. This will be achieved by showing successively.

(i) EN is a closed set.

(ii) the interior of EN is empty.

Thus U EN is of the first category, hence so is the set V.

Proof of property (i)
Suppose that {f71} is a sequence of functions in EN so that if In — fit

0. We must show that f e EN. Let be a point in [0, 1] for which (5)
holds with f replaced by We may choose a subsequence } that
converges to a limit in [0. 1]. which we denote by Thou.

f(x) - f(f)f < 1(x) - (.r)f + (x) - (x*)i + - f(x*)f.

On the one hand. since — fff —k 0, we see that given 0, there
exists K > 0 so that whenever Ic > K the first and third terms together
are < c On tine other hand, we may estimate the nuiddle term by

(x) - (x) - )i + - 171k
(x*)i

applying the fact that Ev twice yields

(x) - <Nfx - + Ni4 - x*i.

Putting all these estimates together. we obtaiii

f(x) - f(x*)i + Nfx - + - x*i

for all Ic > K. Letting k tend to infinity, and recalling that x* we
get

f(x)_f(x*)i
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Since c is arbitrary. we conclude that f E EN. and (i) is proved.

Proof of property (ii)
To show that EN has no interior, let P denote the suhspace of C([O. 1])

i-hat consists of all continuous piecewise-linear functions. Also. for each
Al > 0, let 'PM C 'P denote the set of all continuous piecewise-linear func-
tions, each of whose line segments have slopes either � A! or < —Al.
Functions in PM aic naturally called "zig-zag'S functions. Note the key
fact that PM is disjoint from EN if M> N.

Lemma 1.6 For every It-I > 0. the set PM of zig-zag functions is dense
in C([O, 1]).

Proof. It is plain t hat given c > 0 and a continuous fimctiori f,
there exists a function g E 'P so that f is
contiiuious on the compact set [0, 1] it imist he uniformly continuous,
and there exists 6 > 0 so that 1(x) — <e whenever ix — yi <6 Tf
we choose ii so large that, 1/n < 6, and define g as a linear fimction on
each interval [k/n. (k + 1)/nj for k 0, .. , ii — I with g(k/n) =
g((k + 1)/n) = f((k + 1)/n), we see at once that hf — <e.

Tt now suffices to see how to approximate 9 øfl [0, 1] by zig-zag functions
in Ph,,. Indeed, if g is given by ax + b for 0 < x < I/n, consider
the two segTnents

and

Then. beginning at g(0). we travel on a line segment of slope +M until
we intersect Then, we reverse direction and travel on a line segment
of slope — M until we intersect (see Figure 1).

We obtain Ii E PM so that

<h(x) for all 0 <x < 1/n,

arid therefore ih(.r) — g(x)h < i in [0. 1/n].
Theii. we begin at h( I/n) and repeat this argument on the interval

[1/n. 2/nj. Continuing in this fashion. we obtaimi a fimction 11 E with
1/i -— gil c Hence — < 2. arid thie lemma is proved.

We deduce at once from this lemma that EN has no interior points.
Indeed, given ally f E EN and i > 0. we first choose a fixed A!> N.
Then, there exists h E PAl so that If — h EN
Since A! > N. Therefore, no open ball around f is entirely contained
iii winch is the (leSil'e(I ('OflclliSiOIi. Theorem 1 .5 is J)roved.



166 4 APPLICATIONS OF' THE BAIRE CATEGORY THEOREM

2 The uniform boundedness principle
Next, we turn to another corollary of Baire's theorem, one that itself has
many applications. The main conclusion we find is that if a sequence of
continuous linear functionals is pointwise hounded on a set, then
this sequence must in fact he hounded.

Theorem 2.1 Suppose that B is a Banach space, and £ is a collection
of continuous linear functionals on B.

(1) If supjEr <00 for each f B, then

sup <00.
eEL

(ii) This conclusion also holds if we only assume that I€(f)1
for all f in some set of the second category.

We note that the collection £ need not he countable.

Proof It suffices to show (ii) since by Baire's theorem. B is of the
second category. So suppose that < oo for all f E E, where
E is of the second category.

For each positive integer M, (lefifle

EM = {f E B: sup <M}.

1/n

Figure 1. Approximation by PM
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Then, the hypothesis in the theorem guarantees that

E= U
M=1

Moreover, each is closed, since it can be written as an intersection
EAT where = {f: <M} is closed by the con-
tinuity of L Since E is of the second category, some EM must have
non-empty interior, say when M = M0. In other words, there exists
fo E B. and r > (I so that Br(f0) C Hence for all £ E £ we have

<Mo whenever If — foil <r.

As a result. for all < r. and all £ £ we have

+ fo)li + lie(—fo)Il 2M0,

and this implies the conclusion (ii) in the theorem.

2.1 Divergence of Fourier series

We now consider the problem of the existence of a continuous function
whose Fourier series diverges at a point.

In Book I we gave an explicit construction of a function with this
property. The main idea there was to break the symmetry inherent in
the Fourier series of the sawtooth function.

The solution we present here, which relies on a simple application
of the uniform boundedness principle, provides only the existence of a
conitinuous function with diverging Fourier series. However, we also learn
that. in fact, a generic set of continuous functiouis have this property.

Let B = C( [—ri-, nj) be the Baniach space of continuous complex-valued
functions on {—nr. ni-j with the usual sup-norm 11111 lf(x)l.
The Fourier coefficients of f B are defined by

1
p7r

f(n) — I f(x)exdx, for all n E Z.
2ir

and the Fourier series of f is

f (x)
71= —00
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Also. the £\ partial sum of this Fourier series is defined by

—

We saw in Book I an elegant expression for these partial sums in terms
of convolutions, namely

S\'(f)(.r) = (f *

where

N
/ sin[(N+ l/2)xJ

e
2

H

is the Diriclilet kernel, and

(f * g)(r) / f(y)g(x - y)dy = f f(x - y)g(y)dy

is I lie convolution on the circle.

Theorem 2.2 Let B denote the Banach space of continuous functions
on [—71.71] with the sup-norm.

(i) Given any point .x0 E [—71. nJ, there is a continuous function whose
Fourier series diverges at x0.

(ii) In fact, the set of continuous functions whose Fourier series diverge
on a dense in [—nr. nr] is generic in B.

For a stronger versioii of these results, see Problem 3.

We begin with (1). and assume without loss of generality that x0 = 0.

Let 1N denote the linear functional on B defined by

1
= = I2n

If (i) were not true. then sUpN < for every f E B. Moreover, if
we knew that each is continuous. the uniform boundedness principle
would then imply that II&vII < The proof of (i) will thus be
complete if we can show that each eN is continuous yet ICN as N
teTl(IS to infinity
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Now. is continuous for each N, Since

1
pir

V1v(f)I I If(-y)I IDiv(y)I dy271J

1JNIIIII.

where we have defined

1

I IJ-)N(Y)IdY.
2rr

In fact. the norm of the linear functional is precisely equal to the
integral

Lemma 2.3 1[eiv II = LN for all N � 0.

Proof. We already know from the above that lieN II LN. prove
the reverse inequality, it suffices to find a sequence of continuous functions

{fj, } SO that IIfk II < I, and eN (fk) —* as k —p To do so, first let g
denote the function equal to 1 when DN is positive arid —1 when is
negative. Then g is measurable, < 1. and

1
pir

— — I g(—y)DN(y)dy
271J

where we used the fact that DN is even, hence g(y) = g(—y). Clearly.
there exists a sequence of continuous functions {fk} with —1 fk(x) 1

for all —ir <x < and so that

pir

]—7r

As a result. we find that as k —* oc, while IIfkII < 1. hence

II II � as desired.

The proof of part (i) in the theorem will be complete if we caii show
that II = tends to iuifinity as N oc. This is precisely the content
of our fiuial lemma.

Lemma 2.4 is a constant e.> () so that LN � clog N.

Proof Since sin < I for all y. and sin y is an odd function, we
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see that'

sin(N + l/2)yj
dy

.0 1/

I Slnx�cI dx
Jo x
N- I

SlflXfd

N—i

>c>
1

jsinxfdx.
k=()

However, for all k we have sin xf dx = sin xI dx, so that

LN � � clogN.
k-=O

as was to be shown.

The proof of (ii) in Theorem 2.2 is immediate. Indeed, part (ii) of the
uniform boundedness principle, together with what we have just shown.
guarantees that the set of continuous functions f for which
SUPN Sjv(f)(O)f <oc is of the first category. and consequently, the set
of functions whose Fourier series converges at the origin is also of the
first category. Therefore the set of fmictions whose Fourier series di-
verges at the origin is generic. Similarly, if {x1 .X2,. . .} is any countable
collection of points in [—7r, 71]. then for each j, the set F3 of continuous
functions whose Fourier series diverge at is also generic. Hence the
set which consists of continuous functions whose Lourmer series
diverge at every point x1, x2...., is also generic, and the proof of the
theorem is complete.

3 The open mapping theorem
Let X and Y be Banach spaces with norms

• x and
1 1

y respectively.
and T: X Y a mapping. Observe that T is continuous if and only if
{x E X: T(i') e 0) is open in X whenever 0 is open iii Y. This holds
regardless of whether T is linear or riot. In particular. if T has an inverse
8: Y X that is also continuous, the above observation applied to S

In this calculation, the value of the constant c may change from line to line
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shows that the image by T of aiiy open set iii X is open in Y. A mapping
T that rriaps open sets to open sets is called an open mapping.

We recall that a mapping T: X V is surjective if T(X) = Y, and
injective if T(x) = T(y) implies x = y. Also, T is bijective if it is both
surjective arid injective.

A bijective mapping has an inverse : Y X defined as follows: if
y E Y, then is the unique element x E X so that T(x) = y. This
definition is unarribiguous precisely because T is surjective and injective.
In general, if T is linear, then the inverse T' is also linear, but T1
riced not be continuous. However, by the previous observation, we see
that will he continuous if T is an open mapping. The next result
says that surjectivity guarantees openness.

Theorem 3.1 Suppose X and Y are /3anach spaces, and T: X —p V is
a continuous linear transformation. If T is surjective, then T is an open
mapping.

Proof. We denote by Bx (x, r) and By(y, r) the open halls of radius r
centere(l at x e X arid y E V respectively, and we write simply Bx (r)
and By(r) for the open balls centered at the origin. Since T is linear,
it suffices to show that T(Bx (1)) contains an open ball centered at the
origin.

_________

First, we prove the weaker statement that T(Bx(1)) contains an open
ball centered at the origin. To see this. note that since T is surjective,
we must have

= U T(Bx(n)).

By the Baire category theorem,_not all the sets T(Bx (n)) can be nowhere
dense, so for some n, the set T(Bx (mm)) must contain an interior point.
As a result of the fact that T is linear, this implies that

T(Bx(1)) D By(yo,F)

for some e Y, arid e > 0. By definition of the closure, we may pick
a point Yr T(xj) where x1 E Bx(1) and IIYi — yolk' <e/2. Then, if
y E By(e/2), we find that y — y' belongs to T(Bx (1)), and writing y =
T(x1) + y — y T(Bx(2)). Therefore, the ball By(e/2)
is contained in T(Bx (2)). Using once again the fact that T is linear, we
see that By(c/4) is contained in T(Bx (1)), and this proves the weaker
claim. In fact, replacing T by (4/c)T, we may assume that

T(Bx(1)) D By(1),
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and consequently

(7) for all k.

Next, we strengthen the result and show that in fact

(8) T(Bx(1)) D By(1/2).

Indeed, let y e By(1/2). and by (7) with k 1, select a point xl E
(1/2) so that y — T(x1) E By(1/22). Then, by (7) again, applied with

k = 2, we may find X2 E Bx(1/22) so that y — T(x1) — T(r2) E B(1/23).
Continuing this process, we obtain a sequence of points {x1 - X2,. . .} SO
that I.rk lix < i/2k Since X is complete. the sum r1 + x2 +•-- con-
verges to a limit, x E X with lIxil < = 1. Moreover, since we
have

y — T(xi) —-•• — T(xk) E

and T is contrnu()us. we find in the limit that, T(x) = y. This implies (8),
which then clearly implies that (1)) contains an open ball centered
at the origimi

We gat her two interesting corollaries to this theorem.

Corollary 3.2 If X and Y are Banach spaces, and T: X —* V is a con-
tinuous bijective linear transformation, then the inverse ?' V —* X
of 7' is also continuous. ifence there are constants c, C > 0 with

cIIfIIx IT(f)lly <CIlfIIx for all f E X.

This follows immediately fromni the discussion precedmg Theoi cnn 3.1.

Recall that two norms • and Ii 112 on a vector space V are said to
be equivalent, if there are constants e, C > Oso that

cjIvII2 < IlvlIi < C11v112 for all v E V.

Corollary 3.3 Suppose the vector space V is equipped with two norms
IHIi and 11-112- If

IIvIIi C11v112 for all v E V,

and V is complete with respect to both norms, then and 112 are
equivalent.

Indeed, the hypothesis implies that the identity niappmg I (V, II - 112)

(V.
If - Ii) is continuous, and since it is clearly hijective, its inverse I:

(V.11 - Iii) (V.11 112) is also continuous. Hence cit vu2 lint1 for sonic
e> 0 and all v E V.
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3.1 Decay of Fourier coefficients of L'-functions

We return to the Fourier series discussed in Section 2.1 for an interesting
application of the open mapping theorem. Recall the Riernann-Lehesgue
leitima, which states

liin If(n)I=O,

if f L' ([—iv. iv]), where f(n) denotes the 11th Fourier coefficient of f.2
A natural question that arises is the following: given any sequence of
complex numbers {afl}flEz that vanishes at infinity, that is, —* 0 as
ni oc, does there exist f e L'([—iv. iv]) with J(n) for all n?

To reformulate this question in terms of Bariach spaces, we let =
L'([—iv. iv]) equipped with the /2-norm. and B2 denote the vector space
of all sequences } of complex numbers with Oas ni —* oo. The
space B2 is equipped with the usual sup-norm i{a,1 } tar,
which clearly iriakes B2 into a Banach space.

Then. we ask whether the mapping T: B1 B2 defined by

T(f) = {J(n)} nEZ

is surjective
The answer to this is negative.

Theorem 3.4 The mappinq T: B1 —* 82 given by T(f) = {f(n)} is lin-
ear, continuous and injectzve, but not surjeetive.

Therefore, there are sequences of complex numbers that vanish at in-
finity and that are not the Fourier coefficients of L1 -functions.

Proof We first note that T is clearly linear, and also continuous
with If 111* Moreover, T is injective since T(f) = 0 implies
that f(n) = 0 for all n, which theii implies3 that f = 0 in L'. If T were
surjective, then Corollary 3.2 would imply that there is a constant c> 0
that satisfies

(9) CIIfIIL1 f
f = DN the N' h Dirichiet kernel given by Djy =

and recall from Lemma 2.4 that I1DN1I L' = 00 as
N oo, we fiuid that (9) is violated as N tends to infinity, which is our
(lesired contradiction.

2See for instance Problem 1 in Chapter 2 of Book III
result can be found in Theorem 3 1 in Chapter 4 of Book III
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4 The closed graph theorem
Suppose X and V are two Banach spaces, with norms It tx and

1 II

respectively, and T: X V is a linear map. The graph of T is defined
as a subset of X x V by

GT={(x,y)EXxY: y=T(x)}.

The linear map T is closed if its graph is a closed subset in X x V. In

other words, T is closed if whenever ci X and C Y are two
converging sequences iii X and V respectively, say x and —÷

and if = then T(x) = y.

Theorem 4.1 Suppose X and V are two Banach spaces. If T: X —+ Y
is a closed linear map, then T is continuous.

Proof Since the graph of T is a closed subspacc of the Banach
space X x Y with the norm J(x, Y)Jtxx = IxJIx + the graph G7
is itself a Banach space. Consider the two projections Px : G(T) —* X
and Py : G(T) —+ Y defined by

Px(x, T(x)) = x and Py(x, T(x)) = T(x).

The mappings and Py are continuous and linear. Moreover, Px is
bijective, hence its inverse is continuous by Corollary 3.2. Since
T = Py o we conclude that T is continuous, as was to be shown.

4.1 Grothendieck's theorem on closed subspaces of JY

As an application of the closed graph theorem, we prove the following
result:

Theorem 4.2 Let (X, .F, /1) be a finite measure space, that is, p(X) <
oo. Suppose that:

(i) E is a closed subspace of LP(X, 1k), for some 1 p < oo, and

(ii) E is contained in LOC (X, ,u).

Then E is finite dimensional.

Since E C L°°, and X has finite measure, we find that E C L2 with

I!! IIL2 <CtIfIJLoo whenever f E.
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The essential idea in the proof of the theorem is to reverse this inequality.
and then use the hubert space structure of L2.

Equipped with the E is a Banach space since it is a closed
subspace of U(X, it). Let

1 E

denote the identity mapping 1(f) = f. Then, E is linear and closed.
indeed, suppose that f in E and —* g in LOC. Then, there
exists a subsequence of } that converges almost everywhere to f (see
Exercise 5 in Chapter 1), and therefore f g almost everywhere, as
desired. By the closed graph theorem there is an M > 0 50 that

(10) If Mill IILP for all I E E.

Lemma 4.3 Under the assumptions of the theorem, there exists A > 0
so that

Ill AIIIIIL2 for all f E E.

Proof Tf I � p 2, then Holder's inequality with the conjugate
exponents r = 2/p and r* = 2/(2 — p) yields

p/2

f (1
112) (fi)

Since X has finite rrieasure, we see after taking roots in the above.
that there is some B > 0 SO that 11111 < I II L2 for all f E. Together
with (10), this proves the lemma when I <p < 2.

When 2 <p < oo, we note first that � Ill II
2lf(x)12, and in-

tegrating this inequality gives

: P : p—2 : 2
J LP — J J L2

If we now use (10). arid assume that 11111 0, we find that for some
A >0, we have <AIIfII/,2 whenever fEE, arid the proof of the
lemiria is complete.

We now return to the proof of Theorem 4.2. Suppose .. , is an
orthonormmmal set in L2 of functions in E, and let B denote the unit ball
in
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For each ( E let (jfj(i). By construction we have
IIf 111.2 1, arid the lemma gives IIf < A. Hence for each (, there
exists a measurable set X (that is. =
so that

(11)

By first taking a countable dense subset of points in and then using
the continuity of the mapping (.r). we see that (11) implies

(12) 1f (x)
I

A for all .r E X', arid all (e

where X' is a set of full measure in X. From this, we claim that

(13) A2 for all .x E X'.

Indeed, it suffices to establish this inequality when the left-hand side is
non-zero. Then, if we let a- = amid set =
then by (12) we find that for all .r E X"

<A.

that is. a A, as we clainied.
Finally, integrating (13), and recalling that { .fi f,, } is orthonior-

nnal, we find ii < A2, and therefore. the dimension of must be finite.

Remark. Problem 6 shows that the space L°' in the theorem cannot
be replaced by any for 1 < q < oo.

5 Besicovitch sets
Iii Section 4 '1, Chapter 7 of Book IlL we constructed an exaniple of a
Besicovitch set (or "Kakeya set") in that is. a compact set with
two-dimensional Lebcsguie measure zero that contains a umiit line segment
in every direction. We recall that this set was obtained as a union of
Iinitely many rotations of a specific set: one that is given as a union of
line segments joining points from a Cantor-like set on the line {y = O} to
another Cantor-like set on the line {y = 1 }. Our goal here is to present
an ingenious idea of Körner that proves the existence of Besicovitch sets
rising the Baire category theorem; in fact. it is shown that in time right
metric space, such sets are generic.
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The st artiiig point of the analysis is an appropriate complete metric
space of sets iii Suppose A is a subset of and 6 > 0. We define
the 6-neighborhood of A by

{x d(.r, A) <6}. where d(.x. A) = —

Then, if A and B are subsets of we del inc the Hausdorif distance1
between A and B by

(list(A,B) = inf{6: B C Ae aiid Ac B5}.

shall restrict our attention to compact subsets of 1ft2. The distance d
1 lien satisfies the following properties.

Suppose A, B and C are non-empty compact subsets of

(i) dist(A, B) = 0 if and only if A = B.

(ii) dist(A. B) dist(B. A).

(iii) dist(A. C) < dist(A. B) + dist(B. C).

(iv) The set of compact subsets of equipped with the Tlausdorff
distance is a complete metric space.

Verification of (i). (ii), arid (iii) can be left to the reader, while the proof
of (iv), which is a little more intricate, is deferred to the end of this
section.

We now restrict our attention to the compact subsets of the square
[—1/2. 1/2] x [0. 1] which consist of a union of line segments joining points
from L0 {—1/2 <x < 1/2. y = O} to points on L1 {—1/2 x
1/2. y l} and spanning all possible directions. More precisely, let
denote the set of closed subsets K of the square Q = [— 1/2. 1/2] x [0, 1]
with the following properties:

(i) K is a union of line segments joining a point of L0 to a point
of L1.

(ii) For every angle 0 E [—rr/4. ir/4J there exists a line segmnemit e in K
making au oriented angle of 0 with the y-axis

Simple limiting arguments then show that is a closed subset of the
metric space of all compact subsets in with the metric d, and conse-
quently with the Hausdorif distance is a complete metric space.

Our aimmi is to prove tile following:

bucideritally, t his distance already arose in Chapter 7 of Book III
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Theorem 5.1 The collection of sets in K: of two-dimensional Lebesgue
measure zero generic.

In particular. this collection is non-empty, and in fact dense.
Loosely stated. the key to the argument is to show that sets K in K:

whose horizontal slices {x: (x, y) E K} have 'small" Lebesgue measure
are generic. The argument is best carried out by using a "thickened"
version KT' of K.

To this end, given 0 < I/o < 1 and i > owe define K:(yo, €) as the collec-
tion of all conripact subsets K in K: with the property that there exists
0 so that the K1' satisfies: for every y E [I/o — I/o + €}
the horizontal slice {.x: (x, y) E K1' } has one-dimensional Lehesgue mea-
sure less than 10€, that is,

(14) mi({x: (x, y) E K11}) < 10€, for all y E [I/o — I/o +

Lemma 5.2 For each fixed I/o and €, the collection of sets K:(yo, e) is
open and dense in K:.

To prove that K:(yo, c) is open, suppose K K:(yo, e) and pick so that
K1' satisfies the condition above. Suppose K' E K: with dist(K, K') <
ri/2. This nrieans in particular that K' C and the triangle inequal-
ity then shows that (K')1'!2 C K1'. Therefore

mi ({x: (x, y) E (K')1'12}) mi({x: (x, y) E K1'}) <10€,

and as a result K' E K:(yo, e), as was to be shown.
To establish the rest of the lemnria, we need to show that if K E K: arid

5 > 0, there exists K' E K:(y0, e) so that dist(K, K') <5. The set K' will
be given as the union of two sets A and A'. The set A will be constructed
by picking line segments e in K, and looking at the corresponding angular
sector obtained by rotating the line segment by a small angle around
its intersection with y This will result in two solid triangles with a
vertex on y = I/O, arid we shall try to control the length of the intersection
of these triangles with any line segment parallel to the x-axis (Figure 2).

More precisely, if N is a positive integer, we can consider the partition
of the interval [—ir/4. ir/4J defined by

for

choice of 10 for the constant appearing in (14) is of no particular significance;
in(loed, smaller constants would have done as well
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Then the angles are uniformly spaced in [—7r/4, ir/4J and the N inter-
vals defined by

— +ir/(2N)},

cover {—ir/4, ir/4J. Moreover each of these sub-intervals has length equal

to ir/(2N).

If we use 0) to denote the line segment joining {y O} to {y = 1}
that passes through the point (x, Yo) and which makes an oriented angle 0
with the y-axis, then for each as defined above, by property (ii) of
the set K there exists a number —1/2 < 1/2 so that

0 N consider the compact set

Sn = U

Each therefore consists of (at most) two closed triangles with vertex
at the point (xv, ye). Now let

N

A=

If N � e/5 (for a large enough constant c). then the sets that are
not entirely contained in the square Q can be translated slightly to the
left or right so that the resulting set A belongs to Q, and moreover so
that every point in A is at a distance less than 5 from a point in K; that
is A C K5.

Y = Yo

=0

Figure 2. Rotation of £(x, 0) around its intersection with y Yo
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however it is iiot necessarily true t hat every point of K is close to A.
Since in defiuiing A we have dealt only with some of the lines that
iriake lip K. remedy this we add a finite set of lines to obtain a set A'
that is close to K in the }-Tausdorff metric. In more detail. recall that K
is itself a union of lines, K U e, and let e5 be the 6-neighborhood of
Then U is an open cover of K and thus we can select a finite subcover

of K. We define A' = and set

K'=AuA'.

Observe first that K' K;. Note next that by its definition, A' C K, hut
(A')6 D K. Therefore (KF)e D K. Also Ka D K'. since K6 A as we
have seen, and K6 D K A'. This shows that dist(K'. K) 6.

We next estimate mi({x : (x,y) E for i/o — F y � I/o + C, by
adding the corresponding estimates with K' replaced by A aiid A'. Note
that for fixed y the set {x (.r, y) E A } consists of N intervals arising
from the intersection of the horizontal line at height y, with the N triar'-
gles that have their vertices at height Yo• By a simple trigonometric argu-
memit, since y — < and the magnitudes of the angles at the vertices
are 7r/(2N), each corresponding interval of has length <8c/N +
Thus

mi({x: E (K')71}) <8c + 2r1N

Next A' consists of M line segments, so t he set {x (.x, y) A' } con-
sists of M points, and therefore the set {x : (x, y) e is the union
of 114 intervals of length this has measure Altogether then

y) E (K')°}) < & + + N) an(l we get estimate (14)
for K' if we take < F/(M + tV). This completes the proof of the lemma.

\'Ve can now proceed with the final argument in the proof of the theo-
rem. For each in, consider the set

= fl K;(rn/M.1/M).
rn=-1

Each is open and dense. and moreover if K E each slice of K
along any 0 y 1 has one-dimensional Lebesgue measure that is

0(1 /ilI). Since open demise sets are generic, amid the countable inter-
section of generic sets is generic, the set

M=1
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is generic in arid by the above observation if K E then each slice
{x: (x, y) e K} (0 y < 1) has Lehesgue measure 0, hence Fii-

bini's theorem implies that K has two-dimensional Lehesgue measure
equal to 0. This completes the proof of Theorem 5.1.

We conclude this section with the proof of property (iv) of the Haus-
dorif distance, the completeness of the metric.

Suppose is a sequence of (non-empty) corripact subsets that is
Cauchy with respect to the Haussdorff distance: let A11 = Ak an(l
A A is non-empty, compact, arid A11 —* A.

Given c > 0 there exists N1 so that dist(A11, < for all n, i-n � N1.
As a result, it is clear that whenever n � N1. then Ak c
hence C This implies

(15) Ac whenever n � N1.

Since each A11 is non-empty and compact, arid since
A is non-empty and compact, and moreover dist(A71, A) 0.

lfl(leed, if dist(A71, A) did not converge to zero, then there would ex-
ist f() > 0, an increasing sequence of positive integers, and points

E Alik so that d(xflk, A) > Since {xTIk } C A1, which is compact,
we may assume (after picking a subsequence and relabe1ing if neces-
sary) that {xflk } converges to a limit, say x. which would clearly satisfy
d(x, A) > But for every M, we have E AM for all sufficiently
large nk, and since AM is compact, we iriust have x E AM, thus x E A.
This contradicts the fact that d(x. A) � (0, hence (liSt(A71. A) 0.

Returning to our proof of (iv), pick N2 so that A) < for all
n � N2. This implies that C for n � N2, therefore

(16) C whenever n � N2.

Combining (15) arid (16) yields the inequality dist (A71, A) <2€ whenever
a > max(Ni, N2). which implies A71 —f A. and that concludes the proof.

6 Exercises

1. Below are some exarriples of generic sets arid sets of the first category

(a) Let i denote an ernimeratioli of the rational numbers in IR. and con-
sider the sets

= (x1 — f and U = fl U,1

Show that U is generic but has Lebesgue measure zero
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(b) Use a Cantor-like set (as described, for example, in Exercise 4. Chapter 1
of Book Ill) to give an example of a subset of the first category that has
full Lebesgue measure in [0, lj. Note that automatically this subset will be
uncountable and dense. Also. its complement is generic and has measure
zero, giving an alternative to the set U in (a).

2. Suppose P is a closed subset and 0 an open subset of a complete metric space.

(a) Show that P is of the first category if and only if F has empty interior

(h) Show that 0 is of the first category if and only if 0 is empty

(c) Consequently, prove that F is generic if and only if F = X; and 0 is generic
if and only if contains no interior

[hint For (a), argue by contradiction, assuming that a closed ball B is contained
in F Apply the category theorem to the complete metric space B.j

3. Show that the conclusion of the Baire category theorem continues to hold if X0
is a metric space that arises as an open subset of a complete metric space X
[Hint Apply the Baire category theorem to the closure of X0 in X

4. Prove that every continuous function on [0. 1] can be approximated uniformly
by continuous nowhere differentiable functions. Do so by either:

(a) using Theorem 1.5

(b) using oniiy the fact that a continuous nowhere differentiable function exists

5. Let X be a complete metric space. We recall that a set is a C5 in X if it is a
countable intersection of open sets. Also, a set is an in X if it is a countable
union of closed sets.

(a) Show that a dense G5 is generic

(b) Hence a countable dense set is an but not a G5.

(c) Prove the following partial converse to (a). If F is a generic set, then there
exists F0 C F with E0 a dense C5

6. The function

1 0 if x is irrationalf(x)=< . .
I /q if x = p/q is rational and expressed in lowest form

is continuous precisely at the irrationals. In contrast to this, prove that there is
no function on ]R that is continuous precisely at the rationals
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[Hint Show that the set of points where a function is continuous is a (see the
Proof of Theorem 1 3), and apply Exercise 5

7. Let P be a subset of [0, 1]. and let I be any closed non-trivial interval in [0, 1].

(a) Suppose P is of the first category in [0, 1]. Show that for every I, the set
K fl I is of the first category in I

(b) Suppose K is generic in [0. 1J Show that for every 1, the set K fl I is generic
in I

(c) Construct a set P in [0. 11 so that for all 1. the set K fl! is neither of the
first category nor generic in 1

[Hint. Consider the Cantor set in [0. 1]: then in each open interval of its complement
place a scaled copy of the Cantor set; continue this process indefinitely. For a
related measure theoretic result, see Exercise 36 in Chapter 1 of Book 111.]

8. A Hamel basis for a vector space X is a collection 7-1 of vectors in X, such
that aiiy x E X can be written as a unique finite linear combination of elements
in 7-1

Prove that a Banach space cannot have a countable Hamel basis
[Hint Show that otherwise the Banach space would he of the first category in
itself]

9. Consider 1]) with Lehesgue measure. Note that if f E U with p> 1,
then f E V Show that the set of I E 1) so that f If, is generic

A more general result can he found in Problem 1

Consider the set EN = {f E f Ill < for all intervals I}
Note that each EN is closed and that C UN EN Finally, show that EN is
nowhere dense by considering Jo + q where g(x) = with 0 < (5< 1 — i/p.]

10. Consider (a). with 0 <a < 1. Show that the set of nowhere differentiable
functions is a generic set in

Note however that functions corresponding to the case a = 1, that is, Lipschitz
functions, are almost everywhere differentiable. (See Exercise 32 in Chapter 3 of
Book 111.)

11. Consider the Banach space X = C([0. 1]) over the reals, with the sup-norm
oii X Let M he the collection of functions that are not monotonic (increasing
or decreasing) in any interval [a, b]. where 0 < a < h < 1. Prove that M is generic
in X.
[Hint Let M1a.51 denote the subset of X consisting of functions that are not
monotonic in [a, b] Then M{a,b] is dense in X, while Mla&i is closed.]

12. Suppose X, Y and Z are Bariach spaces, and T. X x Y Z is a mapping
such that:
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(i) For each F X, the mapping y) is linear arid continuous on V

(ii) For each y E Y. the mapping x '1 (x. is linear and continuous on X

Prove t hat T is (jointly) ('OntirlilollS on X x V. and in fa t.

IIT(x, y)t!x C tIstIx

for sonie C > 0 and all x E X and y F Y

13. Let (X. .F. be a measure space, and let } a sequence of functions
in L7>( X, We know from Exercise 12 in Chapter 1. that if 1 < p < oc. and

< oc, then some subsequence of {f,1 } converges weakly in U. In
other words, there exist a subsequence } of and an f E U, so that if q
denotes the conjugate exponent of p. that is I/p -1- 1/q = 1. then

j dp(x) f f(x)q(.r) for every g F

More generally. we say that a sequence } in U is weakly bounded if

sup <oc for all g F V

Prove that if 1 < p < oc, and {f71 } is a sequence of functions in U that is weakly
bounded, then

sup ttfntILn' < C)C

in particular this holds if } converges weakly in

[Hint' Apply the uniform I)oundedness principle to djt(x).]

14. Suppose X is a complete metric space with respect to a metric d, and T
X ----s X a continuous function An element x4 in X is universal for '1 if the orbit
set is dense iii X Here = To'!' o' o T denotes ii compositions
of '1

Show that the set of universal elements for T in X is either empty or generic
[Hint Suppose is universal for T. let } he a dense set of elements in X.
and let I'j = {x F X y,) < I/k for TI � N} Show that k N
is open and dense.J

15. Let 13 denote the closure of the unit ball in W'. and consider the metric space C
of compact subsets of 13 with the Hausdorif distance (See Section 3 ) Show that
he following two collections are gelleri('

(a) The subsets of Lebesgue mnmeasure zero

(b) 'I'he subsets that are nowhere dense
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flint For (a) show that the collect ion of sets C so that rrt(C) < 1/u is open and
dense. In fact for such a set, C' D where are disjoint open cubeS so
that Q, > I — 1/n Now shrink the Q3 For (b) fix an opein set 0 and show
that the collection C0 of sets in C that contain 0 is closed and nowhere denise

7 Problems

1. Let / : —' 82 be a bounded hinean U ansfornnation of a Bana.ch space B, to a
Banach space 82

(a) Prove that either T is surjectivc. or the image T(81) is of the first category
11182

(b) As a consequence. prove the following Suppose (X. is a finite measure
space. aind 1 p1 < < oc One has of course (X) C 12" (X) Show
that (X) is a set of the first category in 12" (X) (except in the trivial
case for which each element of L" belongs to 172).

[Hint For (a). assimie that i'(B,) is of the second category and use an argument
similar to the proof of Theorem 3 1 to show that the image under T of a ball
centered at the origin of comitains a ball centered at the origin in 82.]

2. For each integer fl 2. let denote the set of real numbers a so that there
exists infinitely many distinct fractions p/q SO that

Ix - <1/qT'

Show that.

(a) A,, is a generic set in

(b) E-towever, the llausdorff dimension of A,, equals 2/n

(c) Tlence n > 2. where an denotes the Lebesgue measure

'I'he elements of A >2 A,, are called the Liouville numbers While it is not
difficult to see that every elenienit of A is transcendental, it is a deeper fact that
the same holds for each element of when a > 2 (Note that in the case a = 2,

the set A consists of the irrationals

3. Consider the I3anach space 8 of continuous functions on t he circle (with the
sup-norm) Prove that tine set of f in B whose Fourier series diverges in a generic
set on the circle, is itself a generic set in B
[Flint Choose dense in [0. 1]. let = {f E 8 Sv(f)(.ri)I = oc}. and
E = Then E is generic For cacti f E K, define =- {x: ISN(f)(x)I >
a some N } Show that nO,, is generic]

4. Let denote tIne open unit disc in the conmiplex plane, and let A he tine Banach
space of all continuous complex—valued functions on D that are liolomorphic Oil
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equipped with the sup-norrri Then, the space of functions in A which cannot. be
extended analytically past any point of t he boundary of is generic. To prove
this statement establish the following

(a) The set AN {f E A f(e'°) f(1)j NIOI} is closed

(b) AN is nowhere dense

[ITint. For (b) use the function fo(z) = (1 — 2)112 and consider f + do

5. Let I = [0. 1] denote the unit interval, and the vector space of all smooth
functions on I equipped with the metric d given by

1

where = A function f E C°°(1) is analytic at a point XQ E
I, if its Taylor series

(n)

n!
—

converges in a neighborhood of to the function f The function f is said to be
singular at XO if its Taylor series diverges at XO

(a) Show that d) is a complete metric space.

(b) Prove that the set of functions in that are singular at every point is
generic

[hint: For (b). consider the set FK of smooth functions f that satisfy
KTi for some and all n, arid show that FK is closed arid nowhere dense.]

6. The space L'° in Theorem 4 2 cannot he replaced by any with 1 <q < cc
In fact there exists a closed infinite dimensional suhspace of L1 ([0, 1]) consisting
of functions that belong to for all 1 q < cc
[Hint One may use Exercise 19 in the next chapter]

As an application of Exercise 14, let N denote the vector space of entire func-
tions. that is, the set of functions that are holomorphic in all of C Given a compact
subset K of the complex plane arid f E N. let 11111K 511PZCK f(z)j. If denotes
the closed disc centered at the origin and of radius n. define

d(f,g) =
1

whenever f.g E N

Then d is a metric, and N is a complete metric space with respect to d. Also,
f) —p 0 if and only if converges to f uniformly on every coniipact subset

of C
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Birkhoffs theorem (Probleni 5. Chapter 2, Book II) states that there exists an
entire function F so that the set {F(z + is dense in N. Also, MacLane's
theorem (see the end of the same problem in Book Ii) says that there is an entire
function C so that the set of its derivatives is dense in N.

By Exercise 14, the set of functions in '7-1 with either of these properties is generic
in N, hence the set of entire functions with both properties is also generic



5 Rudiments of Probability
Theory

The whole of my work in probability theory together
with Khinchin. in general the whole first period of my
work in this theory was marked by the fact that we
employed methods worked out in the metric theory of
functions Such topics as con(lu ions for the applica—
l)ility of the law of large numbers or a condition for
convergence of a series of i iidependent random van—
ables essentially involved niethods forged in the gen-
eral theory of trigonometric series

A N Kolrnoqorov, ca 1987

One owes to Steinhaus tlte definition of independent
functions, whether there are finitely or infinitely many.
It follows front this definition, first published here,
t hat certain systems of orthogonal functions . (in-
cluding) those of Rademnacher, consist of independent
functions

M Kac, 1936

The simplest way to introduce the basic concepts of probability theory
is to begin by considering Bernoulli t rials (for example, coin flips) and
inquire as to what happens in the limit as the number of trials tends to
infinity. Essential here is the idea of independent events that is subsumed
in the more elaborate notion of mutually indepeiident random variables.1

The case of Bernoulli trials where each flip has probability 1/2 can
he translated as the study of the Rademacher functions. As we will
see, the properties of these mutually independent functions lead to some
remarkable consequences for randoiri series. In J)art icular, when a formal
Fourier series is randomized by the Rademacher functions there is then
the following striking instance of the "zero-one law": either almost every

We prefei to use the ici niiiiology 'fiinctioii" instead of "random variable" in much of
what follows
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resulting series corresponds to an JY function for every p < oc, or almost
none is the Fourier series of an V fuiiction.

From this special set of independent functions we turn to the aspects
of the general theory. and our focus is on the behavior of sums of more
general independent functions. In the first instance, when these functions
are identically distributed (and square integrable) we obtain the
limit theorem" iii this more extended setting. We also see that there is a
close link with the ergodic theorem, and this allows us to prove one form
of the of large numbers."

Next we consider independent functions that are not necessarily iden-
tically distributed. Here the maui property that is exploited is that the
corresponding sums form a sequence" In fact, an interesting
case of this was seen in the analysis of sums involving Radernacher func-
tions Of importance at this point is the maximal theorem for martingale
sequences, akin to the maximal theorem in Chapter 2.

We conclude this chapter by returning to Bernoulli trials, now inter-
preted as a random walk on the line. It is natural to consider the anal-
ogous random walks iii d dimniemisions. For these we find some striking
differences between the cases d < 2 and d � 3, in terms of their recur-
rence properties

1 Bernoulli trials
An examination of some questions related to coin flips give the easiest
examples of some of the concepts of probability theory.

1.1 Coin flips

We begin by considering the simplest gambling game. Two players, A
and B, decide t,o flip a fair coin N times. Each time the coin comes up

player A wins one dollar; each time the coin comiics up "tails"
player A loses a dollar. Since each flip has two possible outcomes, there
arc 2N possible sequences of outcomes for their game. If we take into
account the resulting possibilities, a question that arises is: what are
(say) player A's chances of winning. and in particular, his chances of
winning k dollars, for some

To answer this question we first fonualize the above situatiomi and
nit roduce some terminology whose more general usage will occur later
The 2N possible scenarios (or under consideration can be
thought of as points in the N—fold product of the two-point space
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= {O. 1}. with 0 standing for heads arid 1 for tails. That is,

= {x = (x1,... ,XN). with x3 = 0 or 1 for each 3, 1 j N}.

If we assume that flipping heads or tails, at the flip, is equally proba-
ble (and hence each has probability 1/2) for every n, we are then quickly
led to the following definitions: The space is our underlying 'prob-
ability space"; on it there is a measure m, the "probability measure"
which assigns measure to each point of and = 1. We
note that if denotes the collection of events for which the flip is
heads, = {x e = O}, then rn(E71) 1/2 for all 1 <n < N;
also m with n m. The latter
identity reflects the fact that the outcomes of the and mth flips are
"independent."

We also riced to consider certain functions on our probability space. (In
the parlance of probability theory, functions on probability spaces are of-
ten referred to as random variables; we prefer to retain the designation
"functions.") We define the function to be the amount player A wins
(or losses) at the flth flip, that is, 1 if 0, and = —1 if

= 1, where x (x1,. .. The sum

SN(X) = S(x)
fl= I

gives the total winnings (or losses) of player A after N flips.

Next, let us get an idea of what is the probability that S(x) k, for
a given integer k. If a given point x E has N1 zeroes and N2 ones
among its coordinates, (that is, player A has N1 wins and N2 losses),
then of course S(x) = k means k = N1 — N2, while N1 + N2 N. Thus

N1 =(N+k)/2 and N2=(N—k)/2,

and k has the same parity as N. To proceed further, we assume that N
is even, the case of N odd is similar. (See Exercise 1.)

Thus in our probability space one has as many points x for which
8(x) = Ic as ways one can choose N1 zeroes when making N choices
among either 0 or 1. This number is the binomial coefficient

(N'\ N! N!
= N1!(N—N1)!
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As a result, since each point carries measure 2 N, we have that

—k

k 2 1k 2 1

What can we say about the relative size of these numbers as k varies
from —N to N, (with k even)? The smallest values of (1) arc attained
at the end-points, k = —N or k = N, with m({x: S(x) = N})
S(x) = —N}) = 2 As k varies from —N to 0 (with k even), m({x:
S(x) = k}) increases, and then decreases as k increases from () to N.
This is because

m({x: S(x)=k+2}) — N—k
rn({x: S(x)=k}) N+k-F2'

and the right-hand side is greater than 1 or less than 1 according to
whether k —2 or k � 0, respectively. Thus clearly (1) attains its max-
imum value at k 0, and this is

2
N!

((N/2)!)2

By Stirling's formula (more about this below), this quantity is approxi-
mately which is much larger than the minimum value 2N•

With this, we leave these elementary considerations and begin to deal
with the questions of probability theory that arise when we pass to the
lirriiting situation N —+ 00.

1.2 The case N = oc

Here we take our probability space to be the infinite product of copies
of Z2, which is written as and which we denote more simply as X.
That is,

X each the
of the partial products (in turn from each of the factors

Z2) above as follows. A set E is a cylinder set in X whenever there is a
(finite) N and a set E' e so that x E E if and only if (Xi,. • , XN) E
E'. With this definition the collection of cylinder sets together with their
finite unions and intersections, aiid complements, forms an algebra on X.
The maui point now is that the function in defined first on these sets
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by m(E) = mN(E'). (where TflN = in is the measure on described
iii the previous section) extends to a measure on the a-—algebra of sets
geiieratecl by the cylinder sets. Clearly m(X) = 1. (In tins connection.
the reader may consult Exci cises 14 and 15 in Chapter 6 of Book III.)

More generally consider a pair (X. in). where we are given a a-algebra
of subsets of X (the sets. or 'evenits') and a measure rn
on this a--algebra. with rn(X) 1. Adopting the terminology USC(1 pre-
viously. we refer to X as a probability space and in as a probability
measure. In this context, one uses the termmology to
mean lost everywhere."

Returning to the case X with the product measure defined
above, we can extend to it the functions for all I < ii < oc. This
means that we take = I — where x (x1 . .) amid

0 or 1, for each n. functions may also be viewed as set-
ting up a correspondence between X and the interval [0. 1], with the
measure in then identified with Lehesgue rrieasure on this interval. In
fact, consider tue mapping D : X [0, 1] given by

(2) D:(xi,.

The correspondence D becomes a bijection from X to [0, 1] if we reniove
the denumnerable sets Z1 and Z2 respectively fromii X and [0, 1], with Z1
consisting of all points in X Whose coordinates are all 0 or all I after a
finite number of places: and Z2 consists of all dyadic rationaLs (points
in [0. lJ of the form f/2"1. with f and in integers). Moreover, note that
if E C X is the cylinder set E = {x : = a3, 1 <j < N} where the
a3 are a given finite set of 0's amid l's, then m(E) = 2 Moreover.

D maps E to the dyadic interval with £ -'a3. Of
course this interval has Lebesgue nneasure 2—N• From this observation,
the assertions about the correspondence of X with [0. lJ follow easily.

The i(lentification of X with [0. 1] allows us to write the functions
also as functions of I E [0. 1] (each undefined on a finite set). thus we shall
write (x) or r,1(t) intercliaiigeably (with x E X, or t E [0, 1]). Note that
ri(t) 1 for 0<1< 1/2. and r1(I) —1, for 1/2< t <1. Also if we
extend r1 to JR by making it periodic of period 1. then r1 1t).
The functions } on [0. 1) are the Rademacher functions.

Time critical property enjoyed by these functions is their mnmutual mdc—
pendence. defined as follows. Given a probability space (X, iii), we say
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Figure 1. The Rademaclier functions r1 aiid r2

that. a sequence of real-valued measurable2 functions on X are
mutually independent if for any sequence of Borel sets in

(3) E

=
m({x: f,1(x) E B71}).

Similarly, we say that a collection of sets {E7, } are mutually independent
if their characteristic functions are mutually independent. There is of
course a similar definition of mutual independence if we are given only a
finite collection ,fiv of functions or a finite collection E1, • ., EN
of sets. Note that for a pair of sets arid this notion coincides with
what has been previously encountered. However a collection of functions
(or sets) riced not be mutually independent, even if they are pair-wise
so. (See Exercise 2.) Also, note that if fi,.. . , are (say) hounded and
mutually independent functions, then the integral of their product equals
the product of their integrals,

(4) f fi(x)- = (L fi(x)dm) (L fn(X)thfl).

This follows by first verifying time identity directly when the are finite
linear combinations of characteristic functions and then passing to the
limit.

A general way that independent functions arise is as follows. Suppose
our probability space (X, rn) is a product of probability spaces

2A11 functions (arid sets) that arise are henceforth assumed to he inea.surable Also we
keep to the assumption that our functions (random variables) are real-valued, except in
Section 7 and Section 2 6 onwards
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n 1, 2, - with in equal to the product measure of the Assume
that the function defined for x E X. depends only on the
ordinate of x, that is (x) (xv), where each is given on and
x = (x,, x2,... , . .). Then the functions } are mutually indepen-
dent. i() see this set {x: (x) BTL} with

E C Then = {x: E is
a cylinder set with m(ETI) Hence it is clear that for each N

in E11) ft ft
n=1. n=l

Letting N oo gives (3), proving our assertion. This obviously applies
to the Rademacher functions, showing their mutual independence.

Incidentally, this example of mutually independent random variables
in a way represents the general situation (See Exercise 6.)

1.3 Behavior of as N —+ oc, first results

After these preliminaries we are ready to consider the behavior of

11=1

which represents player A 's winnings after N flips. It turns out that
the order of magnitude of SN, as N oo, is essentially much smaller
thami N. A hint of what is to he expected comes from the following
observation.

Proposition 1.1 For each integer N � 1,

(3) JISNIIL2 =

This proposition follows from the fact that is an orthonormal
system on L2({O. 1]). Indeed, we have that .rc:- dt = 0 because each

is equal to 1 on a set of measure 1/2, and equal to —1 on a set of
measure also 1/2. Moreover, by their mutual independence and (4). we
have

/ if
.10

In addition, we obviously have df 1. Therefore

N 2 N
= > Ian 12,

n=I L2
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and the assertion follows by taking I for 1 <n < N.

Note: The sequence } is far from complete in L2({O. l}). See Exer-
cises 13 and 16.

As an immediate consequence we have the convergence of the averages
SN/N to 0 "in probability." The relevant definition is as follows. One
says that a sequence of functions converges to f in probability,
if for every 0,

m({x: IfN(x) — f(x)I > f}) 0 as N —>

Corollary 1.2 SN/N converges to 0 in probability.

In fact,

rn({ISN(x)/NI > €}) = > €N}) � e2N2
fIsN(x)t2dm,

by Tchebychev's inequality. Hence m({x: Sjv(x)/N1 > c}) � 1/(€2N),
and the corollary is proved. It is to be noted that by the same argument
one gets the better result that —* 0 in probability as N oo,
as long as a> 1/2. A stronger version of this conclusion is given in
Corollary 1.5 below.

1.4 Central limit theorem

The identity (5) suggests that the way to look more carefully at SN for
large N is to normalize it and consider instead Studying the
limit of this quantity in the appropriate sense leads us to the central
limit theorem. This is expressed in terms of the notion of distribution
measure of a function, defined as follows. Whenever f is a (real-valued)
function on a probability space (X, in), its distribution measure is defined
to he the unique (Borel) measure P = on that satisfies

p(B) = m({x: f(x) E B}) for all Borel sets B C

Note that a distribution measure is automatically a probability measure
on R, since p(R) = 1. Incidentally the distribution measure is closely
related to the distribution function A that appeared in Section 4.1 of
Chapter 2, because

= m({x: If(x)I > a}) =

31n measure theory, this notion is usually referred to as "convergence in measure."
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The argument used there to prove (29) can also be applied to estab-
lish the following assertions. First, f is mtegrable 011 X precisely when
fO IJ d,u(t) < oc. and then f(x) dm I Similarly, f is in
LP(X,nt) exactly when is finite and this quantity equals

More generally, if C is a non-negative contnmous function on IR (or
continuous and houmled). then

(6) 1 G(f)(x) drn — I G(t) d1i(t)
ix •JIR

See Exercise 12.

We say (using the parlance of probability theory) that f has a mean if
f is iiitegrable, and its mean m0 (also called its expectation) is defined

mo
—

dm

if f is aLso square integrable on X. the we define its variance a2 by

a2 = I — mo)2drn.
ix

In particular, if m0 = 0. then

if t2

A measure that arises naturally in this context is the Gaussian
(or normal distribution), the measure on R whose density function is

that is.

ph
1 2

v((a,b)) = / '2dt.

More generally, the normal measure with variance a2 is the one given by

va2((a,b))
jb I__e_t2R2U2)dt.

a
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1.5 Statement and proof of the theorem

We can now come to Dc Moivre's theorem, the central limit theorem in
I he special context of coin flips, it states that. the distribution measure
of converges to the normal distribution in the following sense.

Theorem 1.3 For each a <b, we have

h —t2/2
rri({x' dt,

In proving t his result we consider first the case when we restrict ourselves
to N even; the limit when N is restricted to be odd is. except for small
changes, treated the same way. Joining the two cases will give the desired
result.

Proof. According to (1). with k 2r, r an integer, arid a <fi.

m( {.r a < SN (x) < fl}) Pr, where (N/2±i)'(N/2 r)''
o<2r<B

Hence

a < Sw(x)/NV2 <b}) — P1.

aN' 12<2r<b]V'12

With a arid b fixed, this means that the r's are restricted by r = 0(N112).
We claim that under this restriction

(7) (1 + 0(1/N112)) as N oo.

To verify this we use a version of Stirling's formula,4 which we state as

N! = N N

It k)llows from this that

P — 1 1 1 +0(1/NV2)
— (1 + (1— I

Now log(1 + x) = — .r2/2 + 0(1x13). as x 0. so if

IN
Ar +2r/N).

4See for instance '1 heorem 2 3 in Appendix A, Book II The error terriis 0(1/N' /2)
can be impioved, but even a weaker bound would suffice for our purpose
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i\ f2r
+ r +

—

+ since r 0(N1/2)

Hence Ar + A_r = + O(N—'12), arid because

/ /

we have the asserted result (7).

\ N/2—r+I/2
LT — r

N) —L

Now c_2t2 O(e_212/N112) if t E {r/N'/2, (r + 1)/N'/2J, again
because r = 0(N'/2). Therefore

(r+1)/N112I f dt(1 + O(N1/2)).

Taking (7) into account we see that as a result

a < SN(x)/N112 <b}) =
aN"2 <2r<bN'/2

pb/2
2 e_212 dt +

Ja/2
1

Ia
dt +

upon making the change of variables t t/2. Letting N —* oo gives our
(lesired conclusion.

— 2 _272

r r+1
N'!2 p.11/2

Figure 2. Approximating the integral of a Gaussian
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1 .6 Random series

A striking illustration of randomness inherent in the Rademacher func-
tions is the observation that, although the series 1/n diverges, the
series (±)1/n converges for all" choices of ± signs, where
the + signs for the different n's are chosen independently and with equal
probability.

A precise and more general formulation is as follows.

Theorem 1.4

(a) Suppose 2 <00. Then for almost every t [0, 1], the se-
ries converges.

(b) However if 2 diverges, then diverges for
almost all t E [0,1].

Note. The fact that these conclusions must hold almost everywhere (if
they hold on sets of positive measure) is a particular case of the "zero-one
law." More about this in Section 2.3.

To prove the theorem, recall that } is an orthonormal sequence
2 . 2 Nin L ([0, 1]). Thus if

I
<00, the sequence

converges in the L2 norm, as N 00, to a function f e L2([0, 1]). For
this f it is convenient to write

oc N

I and set SN(f) =

To prove the almost everywhere convergence of the SN. we bring in
averaging operators that average over dyadic intervals, which are defined
as follows. For each positive integer n the dyadic intervals of length
are the sub-intervals of [0, 1] of the form

,
with 0 F <

These obviously form a disjoint covering of [0, 1] (except for the origin)
Now for each f that is integrable over [0, 1], and every ri, set

E 1, and I is a dyadic interval of length n. (Note that
is not defined for t 0. but this is immaterial.)

For the fimctions f that arise as above (as L2 limits of finite linear
combinations of the rn), there is the basic identify

(8) EN(f) = SN(f) for all N.
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To prove this note first that = if N > n. In fact. when N �
ii. each r,, is constant on every dyadic interval of length 2N• Also

-= 0 if n > N, since the integral of on each dyadic interval of
length 2 A vaiiishes. These facts are easily reduced to the case 7! = I by
using the identity (2T1_h/). Thus we have shown that (8) holds
foi any finite linear combination of the Rademacher functions Heiicc

S\ (f) EN(S.,,(f)), if ii � N. and a passage to the limit, as n —*

establishes (8).
Now by tile Lebesgue differentiation theorem5 lim1'v_ (f)(t) exists

and equals f(t) at all point S of the Lebesgue set of J', and hence almost
everywhere Thus by (8) the series converges almost everywhere, and
part (a) is proved.

Before we turn to the convci se. part (b), we digress to strengthen
the conclusion obtained in Section 1.3. There we c'onsi(lered the sums
SN (t) (t) and showed that, SN/N 0 in probability. This
initial conclusion is itself implied by the "strong law of large numbers,"
which in this case takes the following form.

Corollary 1.5 Let SN(t) Then SN(t)/N 0, as N
oc for almost every t. In fact, 1/2, then SN 0 for almost
every 1.

Proof Fix 1/2 <fi < and let a,1 and n0. Clearly
< CX. Set Then. by summation by parts,

setting = 0. we get

SN(t) =
n=l n—i

= —

= SNbN + —

111

N - IHowever — — b0. and i — = — 1

0(N3) while the convergence of the series (t) for almost all t
guarantees that (/)1 = 0(1) for almost every t. As a result, for those 1.
SN(t) = 0(N3) and this implies SN(t)/N° 0 for almost all t, proving
the corollary.

for example Theorem 1 3 and its corollaries in Chdpter 3, I3ook III
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We now turn to the proof of part (h) of the theorem. It is based on
I he following lemriina

Lemma 1.6 Suppose F is a subset of [0, 1] with in(E) > 0. Then there
is a c> 0 and a positive inteqer N0 so that if F is any finite sum of the
form

F(t) aflrfl(t)
Ti �

then

/ F(t)12d1�e
L n>N0

Besides the orthogomiality of the { } already used. the proof requires a
St ronger orthogonality. which again exploits the mutual independence of
the Radeinacher functions.

For each ordered pair (n, m). with n < m. define pn,m(t) r,1 (t)fni(t).
Then the collection is an orthonormal sequence in L2([0, 1]).
see this, consider m'(t) dl. When (n. m) = (n', in') the in-
tegral clearly equals 1. Now if (it, in) (it', in'), but n or m equals n'
or rn' (in any order). then we see that the integral vanishes by the or-
thogonality of the } Finally, if neither ii or in equals n' or m'. thieni
we apply ("1) to the four mutually independent functions rrn, amid

establishing the assertion.

Assuiriiiig that F is any finite sum of the form (1), we have

(F(t))2 = + 2 anainrn(t)rm(t).
fl n<Tfl

hence

(9) / (F(t))2 dt = m(E)
a n<m

with = FE dt dt. Thus by the orthog-
onality of the } and Bessel's inequality.6 m(E) 1.

Hence for any lixed 6 > 0 (a will be chosen momentarily), there is an N0
so that < < 6. We apply this with Sehiwarz's imiequmality to
the last term 011 the right-hand side of (9). restrictmg ourselves to F's of

6For I3esseFs inequality. see Section 2 1 in Chapter 4 of I3ook III
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the form F(t) = The result is that this term is bomided
by

I \1/2
2 (anam)2) 81/2 <261/2

n�No

If we choose 6 so that 261,/2 m(E)/2, then from (9) we get

/ IF(t)I2dt�
n>N()

and the lemma is proved with c = m(E)/2.

To conclude the proof of part (b) of Theorem 1.4 we suppose the
opposite, that {Spv (t)} converges in a set of positive measure. Then
this sequence is uniformly hounded on a set of positive measure, and
that means that there is an M and a set E. with rn(E) > 0, so that

(t) < Al for all N if t e E As a result there is an so that, for
all N � one has <M' whenever I e E.

The lemma guarantees that (M')2 for all N, and
letting N —p oc gives us that converges. This establishes the con-
tradiction and finishes the proof of the theorem.

1.7 Random Fourier series

The ideas above can also be used to obtain remarkable results about
random Fourier series. that is, Fourier series on [0. 27r] of the form

To parametrize the choices of ± signs in terms of the Rademacher func-
tionis. we need to re-index these functions so that their indices range
over Z. For this reason, it is convenient to change notation and write Pa
for the functions defined by p11(t) 1(t), if n � 0, arid (t) r
if n <0, with n e Z. We allow the coefficients to he complex, so that
here we deal with complex-valued functions.

Theorem 1.7
(a) If I the function

(10)
n=—c'o
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belongs to LP({0, 2irJ) for every p <

(h) then for almost every t E [0, 1] the series (10)
is not the Fourier series of an integrable function.

The proof is based on inequality, which like Lemma 1.6 is a
further exploitation of the independence of the Rademacher functions.

00 2Suppose } are complex numbers with
I

<oo. Let
F(t) = with F taken as the L2 limit on L2([0, lj) of
the partial sums.

Lemma 1.8 For each p < oc there is a bound so that

IIFIILP � ApIIFIIL2,

for all F E L"([O, 1]) of the form F(t)

Tt clearly suffices to prove the corresponding statement when the are

assumed real and have been normalized SO that = = 1.

Now observe that the defining property (3) shows that whenever

is a sequence of mutually independent (real-valued) functions, so is the
sequence with } any sequence of continuous functions from

to R. As a result the functions are mutually independent.
Thus if FN(t) = then
(11)

f dt
L

ea(t)) dt
=

dt).

However, dt = since each takes values +1 or —1

on sets of measure 1/2 respectively. Also, cosli(x) ex2 for real x, as a
comparison of their power series clearly shows. Hence

N

/ [f <e.

n=—N

A similar inequality holds with the replaced by —afl. Altogether then

f
dt �

A simple passage to the limit, as N —* oo, then gives that is in-

F't"tegrable over [0, 1], and e '' dt <2e. However for each p there is a
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constant so that uT' < C13&1 for all a � 0. Thus < and the
lemma is proved with

We turn now to the proof of part (a) of the theorem. We may assume
that 1, and set F(t) f,(0), with = and 0
fixed. Now

p1 pi

j0 0

0 E [0. 2irJ gives

p2ir pl

j J0 0

0

t E [0. 1]. and this is what was to be proved.

To prove the converse, part (h) in the theorem, suppose that for a
set E1 C [0. 1] of positive measure we have ft (9) E L1 ([0. 2ir]), whenever
t E E1. Since every function in V ([0, 2ir}) has a Fourier series that is
Cesàro sumniable almost everywhere, it then follows that there is a set
E C [0, 1] x [0, 2irJ of positive two-dimensional measure. and an M so
that

(12) sup iuiv(ft)(O)i M for each (t,0) E E
N

Hew 0N is the Cesàro sum given by

I ni/N). however, by Fubini's theorem, (12) holds for at least one 00, and
all t e E. where in(E) > 0. Now write + with and

real, then apply Lemma 1.6. Thus there is an M' and an N0 so that

sup < A!',
IV0<InI<N

and letting N —* shows that converges. Similarly
converges and the theorem is proved.

1.8 Bernoulli trials

M�mny of the results in Sections 1.1 to 1.5 that were proved above continue
to 1101(1 ifl modified forimi when the equal probabilities of heads and tails
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are replaced by probabilities p and q, with p + q = 1 and 0 <p < 1. This
more general situation is often referred to as that of Bernoulli trials.

To consider it we begin by replacing the probability measure on by
the measure that arises as the product measure on where for each
factor Z2 {0. 1} the point 0 is assigned measure p arid the point I is
assigned measure q. (Incidentally, when p 1/2, then under the mapping
D —p [0, 1}, the measure now corresponds to a singular measure

on [0, 1]. For this, see Problerri 1.)

in this setting the law of large numbers takes the forni that SN/N
p — q as in Corollaries 1.2 and 1.5. The proof of the analog of the first
corollary can he carried out in much the same way as before. The variant
of the second corollary requires some further ideas arid is dealt with in
a general context in the next section. In addition, a modification of the
proof of Theorem 1.3 gives its analog

a
SN(X) —N(p — q)

<b}
i

dt

as N —* oo, where a2 = 1 — (p — q)2.

This result is subsumed in the general form of the central limit theorem
proved in the last part of the next section.

2 Sums of independent random variables
Our aim in this section is to put in a more general arid abstract form
sonic of the results for coin flips and Bernoulli trials dealt with in the
first section. To begin with, we shall present a version of the law of large
numbers.

2.1 Law of large numbers and ergodic theorem

Here we deduce a general form of this law from the ergodic theorem.7 An-
other version. derived from the theory of mnartingales, will he presented
in Section 2.2 below.

A sequence (fo, Ii, . . . , of functions is said to be identically
distributed if the distribution measures of (as defined in See-
tiori 1.4) are independent of ri, that is, the measures m({x: e B})
are the same for all n for every Borel set B. If the sequence { } is

7A treatment of the ergodic theorem needed here can he found in Section 5* of Chap-
ter 6 in Uook III
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ideiitically distributed and if fo has a mean (equal to mo), then of course
all have a mean that equals 1110 The first main theorem is as follows.

Theorem 2.1 Suppose } is a sequence of functions that are mutually
independent, are identically distributed, and have mean m0. Then

(x) m0 for almost every x E X, as N oc.

The possibility of reducing this theorem to the ergodic theorem depends
on the device of replacing the sequence { } by another sequence that is
"equirneasurahle' with the first, in the following sense.

Given functions fi fiv, their joint distribution measure is de-
fined as the measure on t hat satisfies for all Borel sets B C RN

= m({x: (fi(x),.. . ,fzv(x)) E B}.

Now suppose {git} is a sequence on a (possibly different) probability
space (Y, nt*). Then we say that {f1, } and } have the same joint
distribution if for every N. we have

111 i .IN(B) p'q1, gv (B) for all Borel sets B C RN.

With this (lefiflitiOn in hand we come to the space Y that is relevant
here. It is the infinite product Y = I?3. where each R3 is IR.
On each we consider the measure the coirimnoni distribution measure
of the Define m* to be the corresponding product nteasure on Y.

We also consider the shift 'r: V —p Y, given by r(y) = (Yn+i if

y Finally we take for the {g,j the coordinate functions on V
given by .qn(y) y

Everything will now be a consequence of the following four steps.

Observation 1. g71(r(y)) Yn+i (y) for all ii � 0; hence gn(y) = y).

Observation 2. r is measure-preserving and ergodic.

i N-IConclusion 1. hmN_ (y) = for almost every y E Y.

Conclusion 2. m0. for almost every x e X.

The first observatiomi is immediate.
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That is measure preserving means that. rn* (E)) m* (F) for
every (measurable) set F C Y. Since Y is a product space. it suffices to
verify this for all cylinder sets F, and then a simple limiting argument
proves this for the general set E If F is a cylinder set, F depends
only on the first N coordinat es, for some N. This means that F

x with F' a subset of and Tn*(E) =
where is the N-fold product of on the first N factors. However

r'(E) = R0 x F" x
j=N fi

with (y',.. . , E F" if and only if . . , E F', where Yn+i =
y,, forO <n < N — 1. Thus m*(r_I(E)) = X F") =
and the assertiomi (r 1(E)) rn* (F) is proved.

The eigodicity of r follows from the fact that is mixing.8 which
means

limrn*(r_TI(E) fl F) = m*(E)rn*(F)

for all pairs of F, F c V.
f() prove the mixing property it suffices, as bcfoi e, to assume that both

F and F are cylinder sets. So, for a sufficiently large N we have that
F = F' x and F = F' x Rj, where both F' and F' are
subsets of Hj—() Now. as above if n � 1,

n—I oo

(E) = fl x E" < fi
j=O j—N+n

where F" is the subset of I that corresponds to F'. Thus if
n>N

T"(E)flF=F'XHRjxE"x H R3.
j=N j=JV4n

As a result Tt(E) n F) m*(E)m*( F) whenever n > N aml (13)
is established.

It follows immediately from (13), when taking F = E, that if F is an
invariant set. that is (E) = F almost everywhere, then m* (F) =

8Also referred to as see Chapter 6 in Uook III
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(in (E))2, so m* (E) 0 or (E) 1. Thus there is rio proper subset
of X invariant under 'r, arid t}iis means that is ergodic, so our second
observation is established.

Now the function is integrable on Y since

/ Igo(y)I / tYol f tfo(x)1 drn(x)

because is the distribution measure of Jo that is integrable. We can
now apply the ergodic theorem in Corollary 5.6 of Chapter 6, Book ITT,
which gives us the first conclusion with mo = gç dm4 fx fo drn.

To deduce the second conclusion we riced the following lemmas.

Lemma 2.2 If } and {gpq} have the same joint distribution, then so
do the sequences and Here . , fiv),

(g) (si,. .. , and each is a continuous function from Riv
toIL

To see this, note that if B C JRN is a Borel set, and ..
then B' = is also a Borel set in so if f = (fi,. .. , and
g (gi.. . - then /IfCB') and
I arid g have the same joint distribution we must have /if(B)
and the leninna is proved.

Lemma 2.3 If {FN} and {GN} have the same joint distribution, then
FN (x) m0 almost everywhere as N 00 if and only if GN (y)
almost everywhere as N —* 00.

To prove this lemma, note that if we define EN,k {x : sup1 �N —

I
1/k}. then FN m0 alniost everywhere if arid only if —p

1. as N —* oc, for each k. If = {y supr>N Gr(X) — iriol l/k},
then and this leads to our desired result.

N i N—iOnce we take 'l)N(ti tN)
i N—Iand GN(y) = we see that the lemmas complete the proof

of the theorem.

2.2 The role of martingales

We shall now look at sirius of independent functions (random variables)
from a different angle and relate these sums to the notion of nnartingales.
The basic (leIinitiOJl required is that of the conditional expectation of
a function f with respect to a a sub-algebra A of the a-algebra M of



2 Sunis of independent random variables 209

measurable sets of X Tn fact, for the sake of brevity of terminology. in
what follows we drop the adjective "a" and use "algebra" and sub-algebra
to rneaii a-algebra arid a sub-algebra, respectively.

Suppose A is a given such sub-algebra. We say that a function F on X
is measurable with respect to A (or A-rrieasurable) if F—1 (B) E A for
all Borel subsets B of R The algebra A is said to be determined by F,
sometimes written A = Ac', if A is the smallest algebra with respect to
which F is measurab'e: that is, = {F' (B)}, as B ranges over the
Borel sets of

Given an integrable function f on X and a sub-algebra A. then EA(f),
also sometimes written as E(f A). is the unique function F described by
flue proposition below. It is called the conditional expectation of f
with respect to A.

Proposition 2.4 Given an integrable function I and a sub-algebra A of
M. there is a unique9 function F so that:

(i) F is A-measurable.

(ii) fAFdrn=fAfdm for any setAEA.
Tn general, one may think of the conditional expectation as the "best
guess" of the function f given the knowledge of A. A simple example to
keep in mind is EA(f) = given in Section 1.6 above. In that case,
A is the (finite) algebra generated by the dyadic intervals of length
on [0,1].

Proof. We denote by rn' the restriction of the measure rn to A.
Define a (a-finite) signed measure ii on A by v(A) f dm, for A E A.
Then since ii is clearly absolutely continuous with respect to m', the
Lebesgue-Radon-Nikodym theorem1° guarantees that there is a function
Ji' that is A-measurable so that v(A) = Fdm' = fA F dm. Given the
definition of ii, the existence of the required F is therefore established.
Its uniqueness is clear because if G is A-measurable and fA G dm = 0 for
every A E A, then necessarily G = 0.

Once the algebra A is fixed, we shall not always indicate the depen-
dence of the conditional expectation on the algebra, but write it simply
as E instead of EA.

There are a niumber of elementary observations about conditional cx-
pectationis E that are direct consequences of the defining proposition for
F = E(f). We leave these for the reader to verify.

9Uniqueness, of course, means determined up to a set of measure zero
'0See for example Theorem 4 3 in Chapter 6 of Book III
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• The mapping f is linear

• drn = f din, and 1) = 1

• E(f) � 0 if f � 0. and EU1)! � E(f) if 1.

• = E. and iii part icular E(f) f if f is A—measurable.

• Th(gf) = qE(f). if g is bounded and A—measurable.

Two other noteworthy properties of E are corit ained in t11C following.

Lemma 2.5

(a) 1ff e L2. then L2and IITE(f)11L2 If

(b) 1ff. g E L2, then E(f)g drn fE(g) din.

Note. The conclusion (b) of the lemma, together with the property
JE shows that is an orthogonal projection on the Hubert space

L2(X. in).

Proof. To establish (a) observe that if q is bounded and A-measurable.
then by the proposition above. gf din E(gf) din = gJE(f) drn.
But

If sup / gE(f)drn,
q Jx

where q ranges over hounded A-measurable functions with ffgffL2 1 (see
Lemma 4.2 in Chapter 1). because of the fact that E(f) is A-measurable.
Moreover gf < for such g. gives conclusion (a).

Next observe that JE(g)f drn din = Z(g)E(f) dm.
whenever g is bounded. By syrnrnet ry in J and g this gives conclusion (b)
when both f and g are bounded. and by the continuity in (a) the result
extends to f and g in L2.

After these preliminaries, we arc ready for the task at hand. We noW
assume we are given an increasing sequence of sub-algebras of M. that
is. we have

and to each sub—algebra we attach its conditional expectation,

= for n 0, 1, 2
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The increasing character of the sequence Art implies that expectation
operators forni an increasing sequence in the sense that

EnEm for all n.m.

Indeed, if m � n, then C so g Em(f) is arid
consequently g. In the other case, if n m, and A E then

[f Iin in
where the second equality follows from the fact that A is also
measurable. Therefore the definition of conditional expectation implies
that = En(f).

With this we arrive at the crucial definition. Having fixed our increas-
ing family of algebras {Arr} arid the rcsu1ting conditional expectations,
we say that a sequence {sn } of integrahie fimctions on X forms a mar-
tingale sequence if for all k and n,

(14) = whenever k < n.

r\ote that by this definition, each 5k is automatically Ak-measurable.
Tf the sequence is finite (and consists of s1,. . . then this is

equivalent with Sk Ek(Sm). for all k m. An important class of mar-
tingale sequences are those that are complete. This means that there
is an integrahie function so that 5k = Ek for all k.

The fundamental connection between sums of independent random
variables and martingales is contained iii the following assertion.

Proposition 2.6 Suppose ffA.} is a sequence of integrable functions that
are mutually independent and each have mean zerv. Then there is an
increasing family Ar, of sub-algebras so that with res peel to these

fk is a martingale sequence.

To see this. we require further terminology. Let } he a sequence of
sub-algebras of M that are not assunried to he increasing. these
are said to be mutually independent if for every N,

m(fl B3) = fi m( B3) for all choices B3 e

Notice that if are the sub-algebras determined by the f1', then the
fact that } are imitually independent is equivalent to the functions
{ fn} being mutually independent, according to the definition giveil in (3).
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Now starting with our independent functions Jo. we de-
fine to be the algebra generated by Af() U A1 U U A1 It is use-
fiil to have the short-hand B3 to denote the algebra generated by
Bo U U U Thus we have set V=0 Our claim is that

V Af, and are mutually independent. This is an immediate con-
sequence of the following lemma.

Lemma 2.7 Suppose are mutually independent algebras.
Then Jor each k <ii, the algebras and are mutually inde-
pendent.

See Exercise 7.

Now clearly {A71 } is an increasing sequence of algebras and Ek(Je)
J,. if k � e, since each Jt is also Ak-measurable. We next observe that
Ek(Je) 0 jfk < L Indeed, recall first that F = is Ak-measurable
and

[ F dm = [ h din, for every set Ak E Ak.
JAk JAk

fAk
dm Je dm — Tn(XAk) dm =0,

by the independence of Ak and A19, and the fact that the mean of fe is
zero. Hence F = 0. Finally for k n

+•.•+Jk)+Ek(Jk+1
Jo+ "+fkSk.

Thus (14) holds and the proposition is proved.

Having reached this point, we are ready to use the ideas of rnartingalcs
to extend the results of Section 1.6.

Theorem 2.8 Suppose Jo .. are independent functions that are
square integrable, and that each has mean zerv, and variance
Assume that

n=O

Then Jk converges (as n oo) almost everywhere.
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A corollary of this where we only assume that the } are hounded,
gives the strong law of large numbers in this setting.

Corollary 2.9 If <oo, then for each a> 1/2

—p 0 almost everywhere as n —p oc.

Note that here, unlike in Theorem 2.1, we have not assumed that the
are identically distributed. On the other hand, we have made a more

restrictive assumption in requiring square integrability.

We begin the proof of the theorem by noting that under its assump-
tions the sequence = converges in the L2 norm, as it —p
Indeed, since the are mutually independent and dm = 0, then
by (4) they are mutually orthogonal. Hence by Pythagoras' theorem,
if m < n, — = lIfkII = 0, as n,m
oc. Thus s7, converges to a limit (call it in the L2 norm. Using (14)
and the fact that each is continuous in the L2 norm by Lemma 2.5,
we arrive at

= for all n.

Our desired result now follows from a basic maximal theorem for mar-
tingales and its corollary, which gives convergence almost everywhere.

Theorem 2.10 Suppose is an integrable function, and =
where the are conditional expectations for an increasing family }

of sub-algebras of M. Then:

(a) m({x: sIL(x)I > a}) � for every a > 0.

(b) if converqes in the L' norm as n —÷ oc, then it also converges
almost everywhere to the same limit.

Note. The assumption in part (b) is in reality redundant because if =
with E Li, then autonniatically converges in the L1 norm;

but iii general this limit need not be (See Exercise 27.) However
in the situation in which we apply the theorem, we know already that

in the L2 norm, hence also in the L1 norm.

For the proof of part (a) we may assume that is non-negative,
for otherwise we may proceed with

I
instead of and then obtain

the result once we observe that
I I). For fixed a, let

A = {x: > a}. Then we can partition A = U=0 where
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ATI is the set where n is the first time that > a. That is = {x
> a. but Sk(X) < a, for k < n}. Note that A71 E Also,

f din f dm f din = f dm
A ri=O

> a
ji

din

am(A).

The identity fA din f4 drn follows from the definition of
the conditional expectation E11 Thus

(15) ni(A) < f dm. with A {x > a}.

arid part (a) is proved. (The reader might find it instructive to com-
pare (15) with a corresponding estimate for the Ilardy-Littlewood max-
imal function in equation (28) of Chapter 2.)

To prove (b), assume first that in the L' Remark
that we always have — — sk) + 8k — if it � k, because
then We will show that if {x: —

> 2a}. then m(AQ) 0 for every a > 0. and this assures our
conclusion about the existence of the limit. Now with a given, let 0

he arbitrary. choose k so large that Isk — it < €. Then

urn sup — < sup sk)I + 5k —
n?k

If {x — sk)(x)1 > a} and {x : sk(X) —
a}. themu

+

By part (a) applied to — Sk instead of we get €/a Also
TchebychcVs inequality gives c/a. Altogether then rn(A0)
2€/a. and since e was arbitrary we have )=0, which holds for ev-
ery a. proving the result under the additional hypothesis that Coil-

verges to iii the L' norm. Dropping that assuiription we can define
to be the limit of the sequence } in the L1 norm which was as-

sumed to exist Then by (14) and the continuity of Ek on the V normmi.
we get 5k = and we are back to the previous sitnatiomi with 4
in place to The theorem is therefore completely proved.

The corollary then follows by the same argument used in the proof of
Corollary 1.5.



2 Sunis of independent raiido iii variables 215

2.3 The zero-one law

The kernel of tire idea is the observation that if A1 arid A2 are two
independent algebras, and the set A belongs simultaneously to 1)0th A1
and A2. then necessarily rn( A) = 0 or rri(A) = 1

Indeed, in this situation, m(A) m(A fl A) = m(A)rn(A) by mdc-
pendence, which proves the assertion. This idea is elaborated in Kol-

zero-one law that we now formulate.

Suppose A0. A1 A,,... is a sequence of sub-algebras of M, that
are riot necessarily increasing. With Ak denoting the algebra-'
generated by we define the tail algebra to be

flVAk.
n0 k=n

Theorem 2.11 If the algebras A0, A1.... , Afl,... are mutually indepen-
dent then every element of the tail algebra has either measure zero or one.

Proof. Let B denote the tail algebra. Note that Ar is automatically
independent from by Lemma 2.7. Hence each Ar is inde-
pendent of B, arid thus the algebras B and B are rriutually independent!
Therefore as observed above, every element of B has measure zero or one.

A snnj)le consequence is the following.

Corollary 2.12 Suppose Jo. In.. . . , fr,,... are mutually independent
functions. The set where fk has measure zero or one.

Proof. Set ALE. Then these algebras are independent. Now
with and a fixed positive integer n0. we have by the
Cauchy criterion that

fl {x : — < all n,rri � r}.
P=l r=n0

Since {x: — < 1/i. all n,m > r} E Ak whenever
r � we conclude that the set of convergence is a tail set. as desired.

2.4 The central limit theorem

We generalize the special case of tins theorem given in Section 1.4. con-
fleeting its proof in an elegant way with tire Fourier transform.

11 Recall that we are usiiig a short-hand for "a-algebra"
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The setting is as follows. On our probability space (X, Tn) we are given
a sequence Ii. 12,...., of identically distributed, square iiitegrablc. and
mutually independent functions (raiidoni variables) that each have mean
in0 arid variance a2

NTheorem 2.13 Let SN = Under the above conditions

a < SN Nm0
<b})

1
d

asN—*oc,foreacha<b.

In proving the theorem we can immediately reduce to the case where
the mean m0 is zero. by replacing by f11 — mn0 for each n. Suppose
now that p. is the common distribution measure of the that is the
distribution measure of SN/N1!2 and is the distribution measure of
the Gaussian with mean zero and variance a2. We consider the Fourier
transforms of these measures, called their characteristic functions. In
the case of it is given by

=L dp.(t),

with similar formulas12 for TIN and
Note first that can he computed explicitly. It is given by the

formula13

=

The proof of the theorem can now he presented in three relatively easy
steps:

(i) The identity = for each N.

(ii) The fact that ,âN (c), for each as N —÷ oc.

(iii) The resulting consequence that ,uN((a, b)) —* ((a. b)), as N
for all intervals (a, b).

be consistent with our previous usage of the Fourier transform, we have kept the
factor 2ir in the exponential, which is not the usual practice in probability theory

13See for instance Chapter 5 in Rook I
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Now if p is the common distribution of the then as we noted in (6),
for any G R —* that is (say) continuous and hounded we have

ç p00

/ G(t)d/L(t).
-00

in particular, taking G(t) e - with real, we have

= I din.
ix

Similarly c din. however SN(x) =
titus by the mutual independence of the

din
= (f dirt)

(Note here the similarity with equation (11).) The identity (i) is therefore

To carry out the second step we prove the following.

Lemma 2.14 = 1 — + o(l/N), as N —* oc.

Proof. indeed, when is fixed

= 1 — — + EN(t)

with EN (t) = O(t2/N), but also EN (t) = O(t3/N3/2). Integrating this
in t, we get

222 00

= I — + f EN(t) dp(t).

00 2 302because in0 = f t d,u(t) =0, arid a = t dp(t). The lemma will
be proved as soon as we see that 50030

EN(t) d/L(t) = o(i/N). However,
the integral in question can be divided into a part where t2 <FNN. arid
a complementary part where t2 � fNN. Here we choose €N to tend to
zero as N oo, while N N oc; (for example, the choice

= N112 will do.) Now for the first part

f EN(t) dt = 0 (f t3/N312 dP(t))
t2<€NN

=0

=
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In ad(litioII. for the second part we can estimate

EN(t)dI = ü t2dIL(t)) o(1/N).

having thus proved the lemnia we see that

(i — +

and this converges to completing step (ii)

To finish the proof of the theorem we need the following lemma. We
say that a measure is continuous if each point has measure zero.

Lemma 2.15 Suppose N 1.2...., and ii are non-negative fi-
nite measures on and that ii is continuous. Assume that ftjv

as N —÷ oc. for each E IR. b)) v(a, b) for alla <b.

Proof. We prove first that

(16) as N oc

for any that is and has compact support. where we have USed the
notation /Lw(p) = d/JN(t) and fl dv(t).

that since ,v(°) then the convergent sequence

ditrv(t) must be hounded. As a result, for sorrie M we have
it'! for all N and aLso < Al.

Next. the function can be represented by it.s inverse Fourier traits-
form = e where is necessarily in
the Schwai tz space S. This shows that

J d/IN(t) fJR JR

by applying theorem to f djirç (t) which is
tilied by the rapid decrease of Similarly. f dv f
Then since poiiitwise and houndedly we obtain (16).

Now for (a, b) fixed, let he a sequence of positive funct ions with
and (t) X((,h)(t) for every I as 0. Then

fLIv((a,h)) > —* as N —* oo.
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As a result. urn (a, b) � and letting e 0 gives

� ii((a,h)).

Similarly, let he a sequence of C°° functions SO that �
and (1) X{a,h] (C) for every t, as e —÷ 0. Then by the sarrie reason-
ing, liin supN ,UN((a. b)) v({a, bJ) = v((a, b)), by the Continuity of ii.
Thus i he lemma is proved, and with it the theorem is established, once
we take v = Vu2.

Another way to put the conclusion of the theorem is in terms of weak
convergence of measures. We say that a sequence of probability iricasures
{,UN } converges weakly to the probability measure v, if (16) holds for
all continuous functions that arc bounded on R.

Corollary 2.16 If is the distribution measure of(SN — Nrrio)/N"2,
then eonverqes weakly to ii =

We note first I hat (16) holds for any function that is continuous and
has compact support. Indeed such a can he uniformly approximated
by a sequeiice } of functions of compact support.14 Now

— = — — — + —

Now the sum of the first two terms on the right-hand side is niajorized
by 2 SUPt — (')I• and this can be iiiade small by choosing e con-
veiiiently. Oiice t is chosen we need oniy let N oo and apply (16)
for

1See for example the proof of Lenima 4 10 in Chapter 3 of Rook 111

a b

Figure 3. The functions and in Lemma 2.15
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To pass to whose support is not compact, we note that

(17) <

where F(R) —* 0 as R oc, and JR is the interval ti <1?. Tn fact if is
continuous with 0 T1R(t) I for ti <R/2. then /IN(XIR) �
/LJv(T1R) —> v(1JR), as N oc. Hence � 1 — v(1 —

but u(l — Ti!?) f(R) 0. as B oc so (17) holds.
Now suppose is a given continuous and bounded function on

We can assume that 0 � < 1. For each B. let be a continuous
function with pR(t) = p(t) for ti II, but p1?(t) = 0 for ti � 21?, while
0 pR(t) � everywhere.

Then � +

� /LN('0R)

Therefore lirn � + e(R), and letting B oo gives
Urn ply However

� urn plv(coR) = v(coj?) —p v(p) as B oc.

Thus ILN(W) proving the corollary.

2.5 Random variables with values in W'

Up to this point, with the exception of Section 1.7. our functions have
been assumed to be real-valued. However, for many purposes it is useful
to extend the theory to the setting where the functions take their values
in (arid in particular, to complex-valued functions, which corresponds
to the case d = 2). Often this extension is rather routine. In what follows,
we will limit ourselves to a formulation of the d-dimcnsional version of
the central limit theorem. First, some notation.

Suppose f is an function on (X. rn). We write it in coor-
dinates as f = f(2) f(d)). where each 1(k) is real-valued. The
distribution measure of f is the non-negative Borel measure ,i on
defined by

m(f'(B)) = m({x: f(x) E B}), for each Borel set B c IR°'.

Of course 1, so p is a probability measure.
/2

The function f is said to the integrable if ft fck)12)

is integrable. Square integrability of f is defined similarly. When
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f is iritegrable then its mean (or expectation) is defined as the vector
(k) . (k) (k)= (m0 ). with rn0 = f

f is square integrable, the covariance matrix of f is the d x d
matrix } with

— —

Note that = — ) (t3 — dji(t), and this matrix is sym-
metric and non-negative. It has a (unique) square root a which is sym-
metric and non-negative, and thus we write a2 for the covariance matrix
of f.

Next, we say that the sequence of functions, Ii,.. . ,

are mutually independent if the algebras

A71 = = (B), all Borel sets B in Rd}

arc mutually independent. Notice that this implies that for each vec-
tor = , E Rd the scalar-valued functions ft,... ,

where = + . + + . are mutually indepen-
dent.

Two other preliminary matters. Given an random variable
(function) f, its characteristic function is the d-dimensional Fourier
transform = .fRd 'djt(t), E Rd, where is the distribution
measure of f. Of course = din.

Also adapting a previous terminology, if {1uN} is a sequence of proba-
bility measures on Rd, arid ii is another probability measure on Rd, then
we say that /tN ii weakly if

I I
JRd

for all continuous and hounded functions on Rd.

We now come to the theorem. We suppose that our sequence { } of
functions are mutually independent, that they are identically

distributed and are square integrable with mean zero. If denotes the
common covariance matrix, we assume that a is invertible, arid write
a1 for its inverse.

Let #N be the distribution measure of and be the
measure on given by

1 1
= (27r)d/2(deta) jC 2 dx



222 Chapter 5 RLDIMENTS OF PROBABILITY THEORY

for all Borel sets B c W'.

Theorem 2.17 Under the above conditions on }, the measures
N

as in the case of real-valued functions,
showing first the analog of (16) for sniooth functions with compact sup-
port. and then proceeding as in Corollary 2.16 for continuous functions.
The calculation of the characteristic firnction of the Gaussian is given in
Exercise 32.

Remark. The following generalization can be deduced by a slight mod-
ification of the proof of Theorem 2.17. Suppose } satisfies the condi-
tions of the theoreni, t > 0, and define

[NI]

SN,!
n—I

(Here {xJ denotes the integer part of x.) Theii, the distribution measure
of SN,! converges weakly to as N oc. In fact, if 0 < s <t, then
the distribution measure of SN,! — converges weakly to as
N—*oo.

2.6 Random walks

The coin tossing (or sums of Rademacher functions) considered in See-
tirni 1.1 can be thought of as representing a random walk on the real
line. This walk caii be described as follows.

One starts at the origin, then moves along a straight line with steps of
unit length; each step taken has equal probability of going to the right or
left, with different steps having independent probabilities. The position
after the step is given by Notice that the values of
are always integers.

Iii we will consider a particular version of a random walk, giving
the simplest generalization of the above. It starts at the origiii. and the
position of the step is obtained frorui the previous step by irioving
a unit length in a direction of one of the coordinate axes. and (10mg
this with equal probability. (that is probability 1/(2d)). The passage at
each step will be assumed to he independent of the previous steps. We
formalize this situation as follows.

Let Z2d be the set of 2d points in labeled by {±c1, ±e2 ....+ed}.
where e3 = (0.... , 0, 1,0 0) with I in the h coordinate and 0 else-
where. Assign to the measure that gives weight 1 /(2d) to each of its
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points. Let X = he the infinite product of copies of Z2d, endowed
with the product measure. and call this measure in Thus X consists
of points x where each E Z2d. Now define r0 (.r) x11 for
each n. So (x) is one of the ±c3. for each ii. and therefore in fact
takes its values in the lattice of Also } are mutually inde-
pendent functions. since (;) depends oniy on the nth coordinate of x.
Note finally that each has iiieari zero and the identity as its covariance
matrix.

lhe Sills

=

represent our random walk. in that x labels a possible path and s11 (.r)
gives the position of this path at the step. It is convenient to set

() for all .r.

- —
— — —

- — —

()

Figure 4. The random walk in dimension two

Here we examine only one of the interesting properties exhibited by
this random walk. It illustrates a significant dichotomy between the case
of dimensioni d < 2 arid d � 3

Theorem 2.18 For the above random walk:

(a) Ifd = 1 or 2, the random walk is recurrent in the sense that almost
all paths return to the origin for infinitely many n.
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(h) If d � 3, then almost every path returns to the origin at most a
finite number of times. Moreover, there is a positive probability
that the path never returns to the origin.

In fact, when d = I or 2. the random walk visits almost surely every point
of infinitely often. However, when d � 3. one has = oc
almost surely. The proofs of these further conclusions are outlined in
Exercises 34 and 35.

Proof. Let be the common distribution measure of each of the
Then is the measure on JRd. concentrated at the points ±e1. ±e2..
±ed, assigning measure 1/(2d) to each of these points. Let Pn be the
distribution measure of Like the measure is clearly supported
on

If

= m({x =
kEZd

is the characteristic function of and

= m({x: =
kEZd

that of then by the independence argument used
previously several times. (See for instance (Ii).) Moreover, as is easily
seen

= + ... +

However (c), like is periodic with periods e1, e2... ,ed, and thus
for each n

(18) m({x: O})
= f =

where Q is the fundamental cube defined by Q = —1/2 1/2,
3=1 d}.

As a result of all of this we assert that.

(19) = O}) f
Note first that 1, so the integrand on the right-hand side is always
rioii-negative (or +oo). The claim is that 1)0th sides are simultaneously
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infinite, or finite and equal. In fact multiplying both sides of (18) by
r < 1, and summing gives

sn(x) = 0})
= 1 1

and letting r I then yields (19).
Now since

1 — = 1 — (cos + + cos

2712
=

1 — � ci if C2 E Q, for suitable positive constants c1 and
c2, we can conclude that the integral

f

d 1 d when d � 3. This means that
rrt({x: (x) = 0}) diverges or converges depending on whether

d < 2 or d � 3.

The above has the following interpretation. Let Ami = {x: (x) =
and its characteristic function. Then #(x) (x) is the
number of times the path x visits the origin. Thus #(x) din is the
expected number of times all paths visit the origin. However

00 00

#(x) din = >m({x: Sa(X) = 0}) =

so if d � 3 this expectation is finite, and therefore almost all paths returii
to the origin only a finite number of times, proving the first part of
conclusion (h) of the theorem.

While the expectation is infinite when d < 2, this, by itself, does not
show that almost all paths return infinitely often to the origin. That
we will now see. To proceed we define Fk to be the set of paths where
sk(x) 0 for the first time

= {x: sk(X) = 0,hut s,(x) 0 for 1 < k}.

(Here we set F1 = 0.) Since the Fk are disjoint. < 1. We
shall see that for d = 1 or 2 in fact m(Fk) 1, which means that
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almost all paths return to the origin at least once. This is in contrast
wit Ii d > 3 where < 1 which means that for a set of positive
probability. the paths never return to the origin

We pi ove these assertions by showing first

(2()) = for all n � 1.
I <k <ii

Tit fact, Ul<k<fl(Fk fl An), where this union is disjoint. Therefore

= fl Afl). However

fl fl {x — sk(x) = 0}.

hence fl — sk(x) 0}) since the sets
and {x: — = 0} {x: re(x) O} arc clearly mdc-
pendent However

rn({x: — Sk(X) 0}) m({x: 0})

by the shift-invariance of the measure on the product space (We
have already observed this kind of invariance in Section 2.1 in a (hifferent
setting.) Thus m(FA fl giving us (20)

Tf we set. A(r) Ffr) = 0 < r < 1.
then (20) can he interpreted to say A(r) = A(r)F(r) + 1. that is P(r) =
I — I /Afr). First, when d < 2, since the series diverges,
then A(r) oc as r 1, which gives P(1) = 1, and
proves that almost all paths return to the origin at least once. Sec-
ondly, when d � 3, since the series converges, we deduce
that F(1) < 1. hence there is a set of positive probability
where paths iiever return to the origin.

For the case d 2. to prove infinite recurrence we define for each � 1

{x: s71(x) 0, hut = 0, E — 1 times, for 1 <k < n}.

(Here we set = Xote that F11. and
means that almost every path returns to the origin at least times.
Then by argument very similar to that giving (20) we get when e � 2

'(F) (F—I)
( )

1 <k<n

So if is defined by theii
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which by iteration yields = (E(l)(r))e. Letting r 1 then gives
= 1, so almost all paths return to the origin at least t

times. Since this holds for all £ � 1, conclusion (a) of the theorem is also
proved.

It. is interesting to ask what happens to our randorri walk, when the
time interval between successive steps is taken to be 1/n, the paths are
re-scaled by a factor 1/n I/2• arid we then pass to the limit n oc in
accordance with the central limit theorem. The answer is that in this
way we are led to Brownian motion This important topic will be our
next subject.

3 Exercises
N1. Consider SN(x) = with N odd

(a) Calculate m({x SN(X) = k}), and show that as k varies over the integers,
the maximum is attained at k = —1 and k = 1

(h) Adapt the proof when N is even to show that for odd N,

a < <b}) as N oo

2. Find three functions fi. f2, and so that any pair are mutually independent.
but the three are not.
[Hint Let Ii = 12 r2. and express f3 in ternis of ri and r2.J

3. The collection } of mutually independent functions on [0, 1] cannot he much
enlarged and still remain irurtually independent In fact, prove that if we adjoin
a function f to the collection then the resulting collection is also mutually
independent only when f is constant
[Flint. See also Exercise 16

4. Suppose ji and v are two finite measures on a space X that agree on a collection
of sets C If C contains X and is closed under finite intersections, then show that

= ii On the a-algebra generated by C
[Hint The equality bL = v holds on finite unions of sets in C because

/L(UCj) — nC3)+

+ +(_I)k
j—i
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5. Prove that the Rd_valued functions fi. . , are mutually independent if
and only if their joint distribution measure equals the product of the individual
distribution measures:

/1fi f,, = x as measures on = x

[Flint. Check the equality on cylinder sets in and use the previous exercise

6. Suppose } is a sequence of mutually independent functions on the probability
space (X, m) Prove that there exists a probability space (X', in'), with X' an
infinite product, X' = probability spaces, arid m' the product
measure of the so that the following holds there are functions {gn } on
so that and {gn} have the same joint distributions, but each function gn
(lepends only on the nth coordinate of X'

[Hint: Take mm) = (X, in) for each n and define gn in terms of the ac-
cordingly, and use the previous exercise.]

7. Show that if , are mutually independent algebras, then for each k <Ti,
the algebras arid are mutually independent.

Prove this by noting the following First, use induction to show that if B3 E 83.
then B0 fl- - fl Bk is independent of B E B,,, and consider the two
finite measures /L(E) = rn(E fl B) and v(E) rn(E)m(F3), and the collection C of
sets that are of the form E = B0 fl . .. fl Bk, where E 133 Then apply Exercise 4.

8. Verify the following further facts about probability distribution measures

(a) Suppose f = (In, , 1k) with each f3 an functioni Let p he the
probability distribution measure of f. and let be a linear transformation
of to itself. Suppose that p is the probability distribution measure of I
Then the distribution measure of L(f) is where /Lf,(A) = p(L1A) for
every Borel set A C

(h) Suppose the distribution measure of f3 is Gaussian with covariance matrix
1 <j <k Assume also that the are mutually independent Then

the distribution measure of Ci ft + .. + ckfk is Gaussian with covanance
matrix + . +

[hint: For (b), compute the Fourier transforms (the characteristic functions) of
the measures in question

9. Consider the space Rd) of square-integrable functions on the
probability space P). A closed subspace of this space is called a Gaus-
sian subspace if it is spanned by a sequence } of mniutually independent func-
tions. each having a Gaussian distribution measure with mean zero, and covari-
ance

Prove that if F1, F2, , F,, are mutually orthogonal elements of then they
are mutually independent Note that the converse of this is immediate.
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[flint. Consider the case when is finite-dimensional, arid is spanned by ft.. , fzv
One may suppose, after multiplication by appropriate scalars. that the arid F3
each have L2 norm equal to I So there exists an orthogonal linear transformation
L so that L(f3) = F3 Then apply Exercises 5 and 8

10. Consider the following two types of convergence of a sequence } to a limit
f on a probability space

(i) f almost everywhere.

(ii) f in terms of weak convergence of their distribution measures.

Prove that (i) implies (ii), hut that this implication cannot be reversed.
[lliiit Recall that if is continuous and hounded, then f f where

is the distribution measure of 1. arid apply the dominated convergence theorem

11. On [0, 1} with Lehesgue measure, construct a function f whose distribution
measure is normal

I S 12/2
[Hint Consider the 'error function Erf(x) = f e dl and its inverse
function.]

12. Prove the identity (6), which says that if G is a non-negative continuous
function on (or continuous and bounded), and f is a real-valued measurable
function (on a probability space (X. m)) with distribution measure = then

G(f)(x) din
= f G(t) d/L(t)

[hint' Note that if f is bounded, their G(k/n) m({k/n < f < (k + l)/n}) con-
verges to both integrals as ii oo.J

13. The Rademacher sequence is far from complete on L2([0, 1]) In fact it
cannot be completed by adjoining any finite collection of functions. Prove this in
two ways.

(a) By considering the functions {rnrm} for rr <in

(b) By using tire L'3 inequality of Lemma 1.8

See also Exercise 16

14. Consider the power series

= = F(z,I),

where 2 = oc and urn sup Ian 1.
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Show that for almost every t, the function I-'(z. t) cannot be analytically con-
tinued outside the unit disc
[hint Argue as in Iheorem 1 7 part (h) using Abel surniniation rather than Cesàro
summation

15. Show that the L2([O. 1]) span of } can be characterized as the suhspace
of L2 consisting of those f for which

EN(f) = SN(f). for all N,

where EN are the conditional expectations corresponding to the dyadic intervals
of length 2 N

16. A natural completion of the collection of Ra(lenlacher functions are the 'Walsh—
Paley functions One defines this collection on [0, 1], denoted by {wr1 }. in the

following way
First one sets wo(t) -= 1, wi(t) rj(t). w2(t) = r2(t) and w3(t) = ri(1)12(t).

More generally. if n � 1, n = + 2h2 + ± 2A, where 0 < ki < < k,, then

one defines

,1(t).

lii particular W2r I =

(a) Prove that { is a complete orthonormal system on
(

[() 1])

(b) Verify the following additional interesting property of the Walsh—Paley func-

tions they are the contmuous characters of the compact abelia.n group

(thought of as the product of the two-point abelian groups Z2).

[I lint Equip the group with the addition .r + y defined by (r + = x3 -F-

mod 2 if £ = (xj) and y = Then rk(r i- q) = rA (x)rk(y)
Consider also the "E)irichlet kernel" Kv(t) and show that if

N = 2", then KN(t) -= (1 + r3(t)). hence 1(2" (1) = 2" if 0 < t < 2" and 0
otherwise As a result, using the convolution Jf(y)Kv(x + y) dy, note that if

f then E,1 (f). where was defined in Section 1 6
See also Problem 2*

17. The iiic'quality in Ia'rnina 1 8 may he strengthened as follows Let F(i')
a,r,, (I). wit Ii real arid = I Theti

(a) J'1
F

dt for all 0 <p

(b) As a result, for sonic e > 0. e'
2

[hint Part (a) implies that in({I
I
F(t)I > cr}) <2e1L2_1L0 Choose /t = arid

obtain (b) with c < 1/4
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18. Prove that there exists an f in L"([O. 27rj). for all p < oc. f
so that = oc. for all q < 2 hence the Hausdorff—Young ineqiiahty in Sec-
tion 2 1 of Chapter 2 fails for p> 2
[Flint Use Iheorem 1 7

19. Suppose I'(t) = with <

(a) Prove diiectly that there exists a constant A so that

iFii, < AhiFiiL2

(b) Show as a result that there is a constant A' so that ii I'iiL2 <

(c) Conclude that p < Fiji . for I < p < oc

[Flint For (a) write out dl as a sum and use the orthogonality of r,i(/)rm (I)
For (b) use inequality. For (c) use Lemma 1.8

20. Suppose } is a sequence of subsets of the probability space X

(a) If in ( < oc. then m(lim sup.,, ,,,, Ar,) = 0. where urn sup1 A,, is de-
fined as fl1 Ak.

(h) However if = oc. and the sets are mutually independent.
then A,-,) =

This dichotomy is often referred to as the Borel-Cantelhi lemma. (See also Book 11

hint Iii till' case (b), iii = (1 — m(Ai. )).J

21. Except for a countal)le set (the dyadic rationals) it is possible to assign a
unique dyadic expansion to each real fluml)er a in [0. 1J. that is.

Given such a number a let #Tv(a) denote the iniinher of 1's that appear among
the first, N terms in the dyadic expansion of a We say that a is normal. if its
(lyadic expansion contains a density of l's equal to the density of 0's. that is.

lim = 1/2.

(a) Prove that (with respect to the Lebesgiie measure) almost every number in
[0. 11 is normal

(b) More generally, given an integer q � 2 consider the q-expansion of a real
miumber a hi [0. 1],

(21) with ,q—l
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Again, ignoring a countable subset, this expansion is unique For a given real
number o arid for each 0 <p < q — 1. define N(n) to equal the number
of js with 0 < 3 N for which x3 = p in the q-expansion of a A number
that satisfies

=

for every 0 <p < q — 1 is said to be normal to base q
Show that almost all real numbers in [0, 1] satisfy this property

Consider tile infinite product fJ with each factor given the uniform mea-
sure Under (21) the product measure corresponds to the Lebesgue measure on
[0. 1] Now apply the law of large numbers as in Theorem 2 1J

22. A sequence of functions on X is called a (discrete) stationary
process if for every N the joint probability distribution of fT . fr—i, . , ft i 'v is
independent of r.

Consider the probability space Y constructed as in the proof of Theorem 2.1.
Show that whenever the sequence } is a stationary process. then it has the same
joint distribution as the sequence {g0(yfl (y))}, where go is a suitable function on V
and -r is the shift. hence the ergodic theorem is equally applicable iii this more
general situation.

23. Prove that the conditions in Theorem 2 1 are sharp in the following sense. if
are mutually independent and identically distributed, but Ifo(x)I din

c, then for almost every x, the averages * f71 (x) fail to converge to a limit
as N oc

[hint Let = {x. (x)I > n} The sets are independent. However,
EflQrn(Afl) Ifo(x)f > n}) Ifo(x)1 din oc Then use Ex-
ercise 20

24. The following are examples of conditional expectations.

(a) Suppose X = U is a finite (or countable) partition of X, with > 0
whenever A be the algebra generated by the sets }.
Then EA(f)(x) fdm whenever x E

(h) Let X X1 x X2, with the measure in on X being the product of the
mnea.sures on Let A = {A x X2}, where A ranges over arbitrary
measurable sets of X1 Then EA(f)(xi . £2) = fx2 f(xi, y) dm2(y).

25. In the following four exercises } will denote a iriartingale sequence corre-
sporiding to the increasing sequence of algebras arid their conditional expecta-
tions

E L2 Then converges in L2.

[Hint Note that if = Sn — then the are mutually orthogonal and
— Sf) = >1)_I 1k 1
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26. Prove the following

(a) If E then E U, and
1

(b) Conversely, if { } is martingale and sup11 II p.r' < oo. then there exists
E U, so that Sn = En(S,c). When 1 <p < 00

(c) Show. however, that the conclusion in (b) may fail when p = 1.

[hint' For (a) argue as in the proof of Lemma 2 5(a) Fbr (b). use Lemma 2.5 and
also the weak compactness of p> 1, as in Exercise 12 in Chapter 1. For (c),
let X = [0, 1} with Lebesgue measure, arid consider (x) = 211 for 0 < x < 2
s71(x) = 0 otherwise

27. Suppose that s integrahie on X.

(a) Show that converges in the L' norm as it —* oc.

(b) Moreover in L' if and only if is measurable with respect to the
algebra =

[Hint: For (a) use Exercises 23 and 26 (a) Then urn = and use the
previous exercise]

28. Suppose that = E L'.

(a) Show that

m({x' >a})
n a

(b) Prove as a result II ISnhIlLP if E and 1 <p 00.

[Hint For (a), note that when � 0 this is a consequence of (15). To deduce (h)
adapt the argument in the proof of Theorem 4 1 in Chapter 2 for the maximal
function I

29. The results for real-valued martinigale sequences } discussed in Section 2 2
go through if we assume that the take their values in Rd Verify in particular
that the following consequences of identity (14) hold'

(a) Ski Ek(Isnl), jfk < n

(b) m({.r > o}) (x)I>o dx

Here f denotes the Euclidean norm in Rd.
[HintS 'Tb prove (a), note that (5k, v) = Ek((Sn, v)), where ( , ) is the inner product
on Re', and v is any fixed vector in Rd Then take the supremum over unit vectors v
The conclusion (b) is a consequence of (a) and part (a) of Exercise 28.]
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30. 'I'he ideas regarding COfl(lit jonal expectations extend to spaces (X, m) whose
total measures are not necessarily finite Consider the following example X =

it h in the Lehesgue measure For each n E Z. let he the algebra geiierated by
all dyadic cubes of side—length The dyadic cul)es are the open cubes, whose
verti( es ate points of 2_flZd. and have side—length 2 Clearly C for
all n Let f be integrable on and set = (f). with

= I din
rn(Q)

whenever x Q. with Q a dyadic cube of length 2 "

(a) Show that the maximal inequality in 'lheorem 2 1 0 extends to this case

(b) 1ff > 0. then < f
the T{ardy—Littlewood maximal function discussed iii Chapter 2.

(c) Show by example that the converse inequality <c' L (f)(x)
fails ProVe however that a substitute result holds

in({x f*() > a}) < ciin({.r > e2a})
EZ

for all a > 0 Here Li and C2 are appropriate constants

31. Let { and v be probability measures on Rd. Prove the following arc
equivalent as N oc

(a) —÷ all E

(b) 'I weakly

(c) In R, jljv ((a, h)) v((a, h)) for all open intervals (a, b). if we assume the
measure v is continuous

(d) In W'. piv(O) ii(O) for all open sets 0, if we assume the measure ii is
absolutely continuous with respect to Lebesgue measure

[Flint' In R, the equivalence of (a). (h) and (c) is implicit in the argument given
in the proofs of Lennna 2 1 5 and Corollary 2 16 To show that (a) implies (d) in
the case when 0 is an open cube, generalize the argument given in the text to
Then, prove that the analog of (d) holds for closed cubes Finally, use the fact.
tlia.t any open set is an airriost (hsjoint tinion of closed cubes To show that (d)
implies (b). approximate a con! inuous function of compact support uniformly
by step functions that are constant on cubes

32. 'l'he proof of Theorem 2 17 requires t he following calcimlat ion Suppose a is a
strictly positive definite synunetric mniatrix with a 1 denoting its inverse. Let Va2

be t lie measure on Rd with density equal to ( . x E Then
=
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I-lint Verify this by making an orthogonal change of variables that puts a- in a
diagonal form reduces the d—dimensional integral in question to a product of
corresponding 1—diti iensional integrals

33. For the d-dimerisional random walk considered in Section 2 6. find
tile limit of the distribution measures of 5n )/n /2 as n 00.

34. if k is a lattice point in Zd and d = 1 or 2, show that for almost every path.
the random walk visits k infinitely often, that is.

m({x . .s-71(x) k for infinitely many n} = 1.

[1-lint There exists to so that rn({se( = —k}) > 0 Tf the conclusion fails, then
there exists i() SO that k, for all ii > ro}) > () Then note that

0. all it � to + ro} = —k} n — k,all n > to ± ro}.

arid that the sets on the right—hand side are independent

35. Prove that if d � 3. then the random walk satisfies = 00 airriost
everywhere

[hint. Tt is sufficient to prove that for any fixed 1? > 0 the set

B = <R}

has measure 0. To this end. for each lattice point k. define

B(k, t) = {x s,(x) = k. arid (a-) = k for infinitely many n}

Clearly, BC But d >3, so m(B(k,t)) = 0).]

4 Problems

1. In the context of Bernoulli trials with probabilities 0 <p, q < 1. where p -f q =
I. let I) —p [0. I}. be given by

D(r) = if x= (xi.

Under this mapping the rrieasure goes to the measure that can he written
Symbolically as a 'ltiesz product,' = + (p — dl The meaning
of this is as follows For each N, let

=
f 11(1 1 (p—q)rn(s))ds.

one can show that
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(a) Each Fjsj is increasing on [0, 1]

(b) = 0. = I

(c) 1"N converges uniformly to a function F. as N 0G.

(d) = dF. in the sense that jip((a, b)) = F(b) — F(a)

(e) If p 1/2, then is completely singular (that is dF/dt = 0 almost every-
where.)

[Hint: Show that if 1 = (a, b) is a dyadic interval of length a = and
b = + and N � n, then

1N(b) — FN(a) =

where is the number of zeroes in the first n terms of the dyadic expansion of
£/272, and is the number of l's, with riØ + rh = n

2.* There is an analogy between the Waish-Paley expansion (see Exercise 16) and
the Fourier expansion, that is, between and {e In this anal-
ogy the Rademacher functions rk W2k— correspond to the lacunary frequencies

{ In fact, the following is known

(a) if eke'2° is an L2([0, 2irJ) function, then it belongs to for every
p < 00.

(b) If eke° is the Fourier series of an integrable function, it belongs to
L2, arid hence to for every p < 00

(c) This function belongs to LOC if arid only if <00

(d) From (c) it follows that the conclusion (a) of Theorem 1.7 does not neces-
sarily extend to p = 00.

3. The following is a general form of the central limit theorem. Suppose fi... ,

are square integrahie mutually independent functions on X, and assume for sun-
plicity that each has mean equal to 0. Let un be the distribution measure of In,
and the variance. Set = The critical assumption is that for every
(>0

urn
Sfl

k—i LI�(Sn

Under these conditions the distribution measures of -i-- .1k converge weakly
to the normal distribution ii with variance 1

4,* Suppose } are identically distributed, square integrahle. mutually indepen-
dent, have each mean 0 and variance 1 Let = 1k. Then for a.e. x

lim sup = 1
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This is the law of the "iterated logarithm"

5. An interesting variant of t he random walk in Rd (often referred to as a "random
flight") arises if the motion of unit distance at the step is allowed to be in any
direction (of the unit sphere) More precisely

sn=fj+. +fn,

where the are mutually independent, amid each is uniformly distributed on
the unit sphere Sd_i C Rd The underlying probability space is (lefined as the infi-
ijite product X = Si' where each = 1 with the usual surface measure
normnaliied to have integral 1.

(a) if is the distribution measure of each connect with Bessel fine-
tions.

(h) What is the covariance matrix?

(c) What is the limiting distribution of

{IIint Show that = F(d/2)(i by using the formulas
in Problem 2, Chapter 6 of Book I.]



6 An Introduction to Brownian
Motion

Norhert Wiener a precocious genius whose feeling
for physics arid appreciation of Lebesgue integration
was so deep that he was the first to understand the
necessity of and the proper context for a rigorous def-
inition of Brownian motion. which lie then devised.
going on to initiate the fundamentally important the-
ory of stochastic integrals, who, however, was so unfa-
miliar with the standard probability techniques even
at elementary levels that his methods were so clum—
sily indirect that some of his own doctoral students
did riot realize that his Brownian motion process had
independent increments: who was the first to offer a
general definition of potential theoretic capacity, who,
however, published his probabilistic and potential the-
oretic triumphs in a little—known journal, with the re-
sult that this work remained unknown until too late
to have its deserved influence

J L. Doob, 1992

Between the 1 9th arid 20th centuries there was a change in the scientific
view of the natural world. The belief in the ultimate regularity and pre-
dictability of nature gave way to the recognition of a degree of inherent
irregularity, uncertainty, and randomness. No mathematical construct
better encompasses this idea of randomness, nor has wider general inter-
est, than the process of Brownian motion.

While there are different ways of constructing the Brownian motion
1)rocess. the approach we have chosen attempts to see the Browniian paths
in W1 as limits of random walk paths, appropriately rescaled. The aria-
lytic problem that then must be dealt with is the question of convergence
of the measures induced by these random walks to the 'Wicnier measure"
on the space P of paths.

A remarkable application of Browniani motion is to the solution of
Dirichlet's problem in a general setting.' It is based on the following

See also the previous discussion for the disc in terms of Fourier series in Rook I, iii
relation to conformal mappings in Rook 11, and the use of l)irichlet's piinciple in Book III
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insight that goes back to Kakutani. Namely, whenever 1?. is a hounded
region in .r a fixed point in it, and E a subset of then the
prObal)ility that a Browniari path starting at x exits R. at E, is the
"harmonic measure' of E with respect to x.

A key to understanding this approach is the notion of a -'stopping
time.' basic example here is the first time that the path starting
at x hits the l)Ollfldary. Tncidentally, st opping times were already used
implicitly in the proof of the mnartingale maximal t}ieorem in the previous
chapter.

One also needs to conic to grips with the 'strong Markov" property of
Brownian rriotion. which essentially states that if the Brownian motion
process is restarted after a stopping time, the result is an equivalent
Browitian motion. The application of this Markov property is a little
intricate, and it is best understood in terms of an identity that involves
two stopping times.

1 The Framework
Here we begin by sketching the framework of our construction of Brown-
ian niotion. At first we describe the situation somewhat arid
j)ostpoTie to Sections 2 and 3 below the exact definitions arid statements.

We recall the random walk in Rd studied in the previous chapter (in
Section 2.6). It is given by a sequence where

=

wit Ii (x) for each x in the probability space This probability
space carries the probability measure rn, which is the product measure
on In this random walk we visit points in moving from a point
to one of its neighbors in steps of unit "time" and

Next we consider the rectilinear paths obtained by joining these suc-
cessive points, and then rescale both time arid distance. so that between
two consecutive steps the elapsed time is I/N and the traversed distance
is I/N112, all in accordance with our experience with the central limit
theorem. That is, for each N we consider

(N) 1 (JVI — []VtJ)(I) St (x) + N'!2
I <k<{Ntj

Now for each N, is a stochastic process, that is. for 0 < t < oc,
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is a function (random variable) on a fixed probability space (here.

Our goal is the proper formulation and proof of the assertion that we
have the convergence

(2) 5, B, as N ()C,

where B, is the Brownian motion process in

SC) to proceed we need first to set down the properties that characterize
this process. Brownian motion B, is defined in ternis of a probability
space (ci, P), with P its probability measure and w denoting a typical
point in ci. We suppose that for each 1, 0 � t < oc. the function B, is
(lefined on ci and takes values in Rd. The Brownian motion process
B, B, (w) is then assumed to satisfy 0 almost everywhere and:

B-i The increments are independent, that is, if 0 t1 <t2 <'.
then B,1, B,2 — B,1, ..., — are mutually independent.

B-2 The increments B, are Gaussian with covariance hI and
mean zero,2 for each 0 < t < oo. Here I is the d x d identity matrix.

B-3 For almost every w E ci, the path t B,(w) is continuous for 0
t<oc.

Note that in particular, B, is normally distributed with meami zero and
covariance tI.

Now it will turn out that this process can be realized in a canonical way
iii terms of a natural choice of the probability space ci. This probability
space, denoted by 'P, is the space of continuous paths in W' starting at
the origin: it consists of the continuous functions t p(t) from [0. oc)
to Rd with p(0) = 0.

Since, by assumption B-3. for almost every w e ci the function t
B, (w) is such a continuous patTi, we get an inclusion i : ci —÷ 'P and then
the probability measure P gives us, as we will see. a corresponding mea-
sure W (the measure") on 'P.3

One can in fact reverse the logic of these implications. starting with
the space 'P and a probability measure W given omi it. Froni this, one
can define a process B, on 'P with

(3) = p(t).

2Iii the notation of the previous chapter the increments have distribution vhf
' More precisely. the inclusion i is defined on a subset of c� of full measure
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We then say that the measure W on 'P is a Wiener measure if the
process 13t defined by (3) satisfies the properties of Brownian motion set
down in B-i, B-2 and B-3 above Thus the existence of a Wiener measure
is tantamount to the existence of Browniaii motion. In fact, we will focus
on constructing a Wiener measure and then relabel and designate it
by Moreover we will see that such a Wiener measure on 'P is unique.
and so we speak of Wiener measure.

Now returning to the randorri walks and their scalings given in (1), we
have defined for each x E a continuous path t defined for

o < t < oc. Thus the probability measure in on induces a probability
measure 11N on 'P via

IiN(A) = rn({x E E A}),

where A is any Borel subset of paths in 'P. With this, our goal is the

following assertion:

The measures /1N converge weakly to the Wiener measure W
as N oo.

Notice that it is not claimed that the convergence in (2) is anything like
pointwise almost everywhere, hut only a statement essentially weaker in
appearance in terms of convergence of induced measures.4

2 Technical Preliminaries
With 'P denoting the collection of continuous paths t F—* p(t) from [0, oo)
to such that p(O) = 0, we endow 'P with a metric with respect to which

convergence is equivalent to uniform convergence oii compact subsets of
[0.oc).

For two such paths, p and p' in'P, we set

sup
O<t<n

and

d(p.p')
=

Then it is easily verified that d is a metric on 'P. We record here some

simple properties of d, whose proofs miiay he left to the reader:

4Since and Bt are defined on different probability spaces, poiritwise almost ev-
erywhere convergence would not be meaningful It is also to be noted that the rectilinear
paths corresponding to are a subset of zero W-measure of 'P
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• have d(pk, p) 0. as A' —f if and oiiiy if pj, p uniformly
on compact SUbsetS of [0. DC).

• The space 'P is coniplete with respect to the metric d

• P is separable

(See also Exercise 2.)
We next consider the Bore! sets B of P, oMined as the a-algebra

of subsets of P general ed by t he open sets. Since P is separable, the
a-algebra B is the same as the a-algebra generated by I he open balls
in P.

A useful class of elementaiy sets in B is that of the cyluidrical sets.
defined as follows. For cacTi sequence 0 < t1 < < tk, and a Borel
set A in Rdk Rd x . x W' (that. is, k factors W'). then

{p C P: (p(t1). p(12),. .. , C A}

is called a cylindrical set.5 We denote by C the a-algebra of P generated
by these sets (as k ranges over all positive integers and A over all Borel
sets iii

Lemma 2.1 The a-algebra C is the same as the a-algebra B of ford

Proof If 0 is art open set in Rdk. theii clearly

{p e P : (p(t1), •. p(tA)) C 0}

is open in P. arid hence this set belongs to B. As a result, cylindrical
sets are in B, thus C C B.

To see the reverse inclusion, note that for any fixed n and a arid a given
patTi P

I
p(t) — po(t) < a } is the same as the

coriesponding set where the supreinuni is restricted to the tin [0. nJ that
are rational, and hence this set is in C. It is then not too difficult to see
that for any 6> 0. the ball {p e P: d(p. Po) <6} is in C. Since open
balls generate B we have B C C, and the leirirna is established.

We will now consider probability measures 011 P. and in what follows
these will always be assumed to be Borel measures, that is. defined
on the Borel subsets B of P. For any such measure p.. and any choice

5This terminology is used to distinguish it from "cylinder sets" that appear in product
spaces
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0 < 11 <t2 we define the section .1k) of to he the
rrieasure on given by

(4) EP: (p(ti). p(t2) p(tk)) E A})

for any Borel set A in
It follows from Lerrima 2.1 and Exercise 4 in the previous chapter that

two measures jt and ii on 'P are identical if 12 .1 V(hi ,t2, jlk) for

all () ti t2 < since they then agree on all cylindrical sets
(arid the intersection of two cylindrical set is also a cylindrical set). The
converse, that if v their all their sections agree, is obviously true.

We will he concerned with a sequence {/LN } of measures on 'P, arid
the question whether this sequence converges weakly, that is, whether
there exists another probability measure SO that

(5) f —p f as N —* oo, for every I E
i-p

here Gb('P) denotes the contmuous hounded functions on 'P.
A particular feature of our metric space P that does not allow certain

compactness arguments to apply in regard to (5) is that P is not a-
compact. (See Exercise 3.) This is the reason for the significance of the
following lemnia. of Prokhorov.

Suppose X is a metric space. Assunie i hat {/tp%i } is a sequence of
probability measures on X. arid that this sequence is tight in the sense
that for each e > 0, there is a conipact set K( C X so that

(6) <e, for all N.

In other words. the measures /1N assign a probability of at least 1 — to
K, for all N.

Lemma 2.2 If {ItN } is tight, then there is a subsequence {ILNA } that
Converqes weakly to a probability measure on X.

Proof. For each compact set arising in (6) with 1/in. we
construct a countable collection of Vm C Gh(X) so that:

(i) The functions gIK11,,, with g E 'Dm, are dense inn

(ii) Iti(x)1 = lcj(x)1, if g E Din.
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The Drn can be obtained as follows. Since is compact, and
C(Kiim) are both separable. (See Exercise 4.) Now if {g} is a count-
able dense subset of we can extend each defined on
to a function defined on X by the Tietzc extension principle. (See
Exercise 5.) The resulting collection of functions is taken to he Dm.

Now since V = U=1 Vm is a countable collection of fimctions in
we can use the usual diagonalization procedure to find a sub-

sequence of the measures }, which we relabel as }, so that

/IN(g) =

converges to a limit as N —p oc, for each g E V.
Next we fix f and write

ILN(f) PN(f — g) + /-LN(g).

Now given any in we can find g E Vm. so that (f — 1/rn if
x E Therefore, with . denoting the sup-norm on X, we have

K11rn 1<1/rn

rn in
1 if

J,in m\ ml

where we have used (ii) above. From this it is clear that

hmsup/LN(f) — liminf1ujv(f) 0(1/rn),
N—÷oo

and since in was arbitrary, the conclusion is that, I-EN (f) exists.
This defines a linear functional on Gb(X) by

Em /LN(f).

Now we note that f satisfies the requirements of Theorem 7.4 in Chap-
ter 1. In fact, given > 0, if we choose as in the definition of tightness,
then

L, ill +
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so the inequality (6) implies

< sup If(x)I + €11111,

and thus the same estimate holds for satisfying the hypothesis (21)
of the relevant theorem in Chapter 1. This yields that the linear func-
tional £ is representable by a me&sure p, and since we then have /1N (1)
,a(f) for all f Cb(X), we see that p weakly.

Corollary 2.3 Suppose the sequence of probability measures is
(t1 ,tk)tzght, and for each 0 t1 t2 <... the measures con-

verge weakly to a measure pt,, ,tk, as N —+ oo. Then the sequence {pN }
converges weakly to a measure jt, and moreover ,tk) = ILt1.

Proof. First, by Lemma 2.2, there is a subsequence {/lNm } that
converges weakly to a measure p. Next, ,tk) weakly.
In fact, if ,tk is the continuous mapping from P to RkdI that as-
signs to p E P the point (p(t1), p(t2),.. . , E then, by defini-
tion, .tk)(A) p((irtl ,tk )_1 A) for ally Borel set A c As a
result

I ,tk)

JRdk

for any f E with a similar identity with p replaced by PNrn.
From this, and the weak convergence of to p, it follows that ,tk)

Pt,,
We now observe that the full sequence {PN } must converge weakly

to p. Suppose the contrary. Then there is another sequence and a
hounded continuous function f on 2, so that f f converges to a
limit that is not equal to f f dp. Now using Lemma 2.2 again, there is
a further subsequence {PN" } and a rrieasure v, so that converges
weakly to ii, while ii p. However by the previous argument we have
v(t, .tk) ,tk) for all choices of 0 < t1 <t2 < ... <tb. Therefore
v = p, and f f dji f f dv. This contradiction completes the proof of
the corollary.

In applying the lemma and its corollary it will be necessary to prove
that appropriate subsets K of the path space P are compact. The fol-
lowing gives a sufficient condition for this whemi K is closed. (It can be
shown to be necessary. See Exercise 6.)
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Lemma 2.4 A closed set K C P is compact if for each positive T there
is a positive bounded function h wT(h), defined for h E (0, 1] with

0 as h 0, and so that

(7) sup sup p(t + h) — p(t)J < w1(h), for h e (0, 1].
pEK O<t<T

The condition (7) implies tlia.t the functions on K are equicontinuous oii
each interval [0, T}. The lemma then essentially follows from the Arzela-
Ascoli criterion. (Recall, this criterion was used in a special setting in
Section 3, Chapter 8 of Book II.)

3 Construction of Brownian motion
We now prove the existence of the probability measure W on P that
satisfies the following: if we define the process on the probability
space ('P,W) l)y

p(t), for p E 'P,

then verifies the defining properties B-i, B-2 and B-3 of Brownian mo-
tion set down at the beginning of this chapter (with (P, W) playing the
role of P)). Note that if we are assured of the existence of such a W,
the measure W(ti .t2, .tic) is the distribution measure of .. .

Therefore. by Exercise 8 in Chapter 5, this distribution measure is de-
termined by properties B-i and B-2, hence with this data the Wiener
rrieasurc W is uniquely determined, as in the remarks following the proof
of Lemma 2.1.

To construct W we return to the random walk } discussed at the
beginning of this chapter, with its attached probability space rn).
Now for each e Z2d there is a path t (.x) given by (1). This
gives an injection : 'P. If PN denotes the image of (the
collection of random walk paths scaled by the factor N 1/2) then PN
is clearly a closed subset of P. Now via the product measure Tfl on

induces a Borel probability measure on P, which is supported on
PN. by the identity /1N(A) = (An PN)). (Note that fl
is a cylinder set in the product space whenever A is a cylindrical set
in P.)

Theorem 3.1 The measures /LN on P converqe weakly to a measure as
N —* oc. This limit is the Wiener measure W.
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There are two steps iii the proof. The first, that the sequence satisfies
the tightness condition, is a little intricate. The second. that then 11N
converges to the Wiener measure, is more direct. The second step is
based on the central limit theorem.

For the first, step. the following lemma is key. Tt is a consequence of
the martingale properties of surris of independent raridoni variables dealt
with in the previous chapter Consider the unsealed random walk

s71(x) =
1< k <0

This is in (I) with N = 1 and t = ii.

Lemma 3.2 We have as oc.

(8) sup m({x sup Isk(x)I > =
n>1 k<n

for every p � 2.

Remark. In the first application below it suffices to have the conclusion
for sonic p such that p> 2.

To prove the lerrirria we apply the martingale maximal theorem of the
previous chapter (Theorem 2.10, in the form that it takes in Exercise 29,
part (b)) to the stopped sequence {4} defined as = 5k if k n, 4 =

if k � n, arid = With supk<fl Ski = supk 141 we then

rn({x: 4 > < [ ISnI dm.

Multiplying both sides by p& and integrating, using an argument
similar to the one used in Section 4.1 of Chapter 2 yields

f(4)Pdm < P1 fIs0Idrn.

Now, the Khinchin inequality of Lemma 1.8 iii the previous chapter,
applied to the more general setting described in Exercise 10 gives

A
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Thus

1 A'
> a}) �

Setting = ,\n"2 and recalling that IsflhJL2 &'2 completes the proof
of the lerrirna.

Let us now prove that the sequence } converges weakly to a inca-
sure For this we use Corollary 2.3, and begin by showimig that the
sequence {11N } is tight, that is, for every f > 0 there is a compact subset

of P so that <F for all N.
To this end we will invoke Lemma 2.4 and first consider the situa-

tion for T = 1. We fix 0 < a < 1/2, throughout the rest of the proof of
the theorem. Then with our given we will see that we can select a
sufficiently large constant c1 SO that

(10) m( {x: sup —
I

> c6a for sonic 8 < 1 }) <€.
0<t<i, 0<h<ö

Therefore if we define

{x: sup — all 6
0<t<i, 0<h<5

and

{p : sup Ip(t + Ii) — C16a all 6 l}.
O<t<1, 0<h<ö

then m( ) )C) ((K(1 ) )C) < Note also that then (7) is satisfied
for K = T = 1. and wi(S) = eiSa, and hence is compact.

In proving (10), let us first consider the analog of this set but with 6
fixed. and 6 of the form S 2k, with k a non-negative integer. We then
decompose the interval [0, 1] via the 2k + 1 partition poinits {t3}. where

j6 = 32 with 0 <3 Next. observe that for any function f
defined on [0. 1 + 8], we have

sup Jf(t + It) — f(t)1 < 2mnax{ sup If(t3 + Ii) — f(t3)I}.
0</<1 0<h<5 3

Thus with f(t) and any fixed > 0,

in({ sup > u}) sup >0<t<i, 2— — 3=0 — —
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1-lowever rn({x: SUPO<h<5 — > a/2}) equals the same quan-
tity with t3 replaced by 0, that is, it equals

(N)m({x: sup Sh I
> a/2}),

and this itself equals m({x: > (a/2)N1/2}). These as-
sertions follow from the definition (I) and the "stationarity" of the ran-
dom walk: the fact that the joint probability distribution of

tm±n) is independent of m, for all m � 1 and n � 0. (Recall that
{ } are defined in Section 2.6 of the previous chapter.)

Thus by Lemma 3.2, if we take = a/(261 12), then N112 =
and

m({x: sup 1/2)
P)

O<t<i, O<h<ö 26

Here p is at our (hsposal. We now set a = c1Sa, with a fixed 0 <a < 1/2.
Then the 0 term becomes with b —I + — a)p. Therefore,
since a < 1/2 we can intake b strictly positive by choosing p large enough,
and then fix p. To summarize, with 6 = 2 we have proved

rrt({x: sup — � e6a}) = 0
O<t<1,

Now each 6, with 0 < 6 < 1, lies between 2—k+1 and for some integer
k � 0. Thus when we take the union of the corresponding sets and add
their measures (summing over k) we get a total measure that is
and this is less than e if is large enough. So we have obtained our
desired conclusion (10).

in the sanie way we can prove the following analog of this conclusion:
for any T> 0, and > 0. there is a constant Cy sufficiently large so
that m((K(T))L) < Ey, where

= {x: sup — all 6 < 1 }.
O<t<T, 0<h<6

This can be restated as follows. If

K(T) = {p E P: sup Ip(t + h) — � all 6 < 1},
O<Ii<6

then < fy.
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Therefore. if we let T raiige over the positive integers, set =
and K then we have RN (Kr) c. and thus by the corn-
pactiless of K guaranteed by Lemma 2.4, 1 he tightness of the sequence
{,'N } will l)e established.

Now to show I hat the measure converges weakly it suffices. by Corol-
lary 2 3, to show that for each 0 � tk. the measures

.1,,) converge weakly to the putative measure How-
ever the central limit theorem (Theorem 2. 1 7 of the previous chapter
together with Exercise 1 below) shows that the distribution measures
of — converge weakly to the Gaussian measure (see
Exercise 1). Moreover. since

= + - + -
Exercise 8 (a) iii the previous chapter shows that the distribution mea-

(N) (N) (N)sures of the vectors of random variables (S1 , ,. . . , ) converge
weakly to the presumed measure 1k) as N —* oc. Thus the se-
quence {RJv } converges weakly to a nieasiire and this measure is then
the desired Wiener measure W. and this completes the proof of the the-
orert i

Our construction of Brownian motion was done in terms of the limit of
scalings of the simple randoiri walk I rented in Sect iOfl 2.6 of the previous
chapter. However the Brownian motion process can also be obtained as
a correspondmg sealing limit of more general random walks. as follows.

Let Ii be sequence of identically distributed mutually
independent, square integrahic gd_valued functions on a prol)ahility space
(X. rn), each having mean zero and the identity as its covariance niatrix.
Define, as in (1).

(N) — I (iVt — {]VtJ)
— fk +

N1!2

and let /LN be the corresponding measures on P induced via the measure
in on X. The result is themi tha.t N } converges weakly to the Wiener
measure W as N —p oc.

Iii this general setting the result is known as the Donsker invariance
principle. The modifications needed for a proof of this generalization
are outlined in Problem 2 A particularly striking example of the con-
vergetice to the Browriian motion process then arises if we choose the
{ } occurring in the prOCeSS of "randommi flight" discussed in Problemri 5
in thie previous chapter.
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4 Some further properties of Brownian motion
We describe now several interesting properties enjoyed by the Browniari
motion process. In general it is useful to think of this process as either in
terms of an abstract realization on P) satisfying conditions B-i,
B-2 arid B-3, or its concrete realization on ('P, W) with W the Wiener
measure, given in terms of = p(t), where w is ideiitified with p.
More about this identification can be found in Exercises 8 arid 9 below.
It will also be convenient to augment the Borel o-algehra of P by all
subsets of Borel sets of W-measure zero.6

We begin by observing three simple but significant invariance state-
merits. (Another synimetry of Brownian motion is described in Exer-
cise 13.)

Theorem 4.1 The following are also Brownian motion processes:

(a) for every fixed 6> 0.

(b) whenever a is an orthogonal linear transformation on Rd.

(c) — whenever ao � 0 is a constant.

We riced only check that these new processes satisfy the con(litlonIs B-I,
B-2, and B-3 defining Brownian motion. Thus the assertion (a) of the
theorem is clear once we observe that for any function f, the covariance
matrix of 6_h/2f is 6_1 times the covariance matrix of f. The asser-
tioni (b) is also obvious once we note that the covariance matrix of o(f)
is the sannie as that of f; and that if . . , f11,... are mutually indepen-
(lent SO are o(f i ), 0(12) ) Finally (c) is ininriediate from the
definition of Brownian motion.

The next result concerns the regularity of the paths of Brownian irio-
tiomi. The conclusion is that aliriost all paths satisfy a holder condition
of exponent a, with a < 1/2: this fails however when a > 1/2. (This fail-
nrc extends to the critical case a = 1/2. hut this is discussed separately
in Exercise 14.) Moreover, almniost every path is nowhere differentiable.
The conclusions are subsumed in the theorem below.

Theorem 4.2 With W the Wiener measure on 'P we have:

(a) If 0 < a < 1/2 and 7'> 0, then, with respect to W almost every
path p satisfies

p(t + h) —
sup < DC.

0<t<'f, O</i<1 no

6This is the completion of the measure space as outlined in Exercise 2, Chapter 6 of
Book III
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(b) On the other hand, if a> 1/2, then for almost every path p

p(t+h) —
hmsup = oc. for every t � 0.

The first conclusion is implicit in our construction of Brownian motion.
Indeed, suppose is the set arising in the proof of Theorem 3.1.
Then we have seen that (K(T)) > 1 — for every N. Thus the same
holds for the weak limit of the {/IN}. Hence W(K(T)) � 1 — €. But by
the definition of K(T) we have the inequality in (a) for every p E K(T).
Since e is arbitrary, the first conclusion holds.

To prove the second conclusion we fix an a> 1/2, and a positive integer
so that dk(a — 1/2)> 1.

Now, for any positive integer n, note that if there is a to E [0, ij so
that

(11) sup <A
O<h<(k+1)/n —

then there is an integer jo, 0 jo � n — 1 so that

-amax P1 1—pI-----— J

1<zt<k ii J \ n J

where Ck 2(k + By renaming A. we may proceed assuming Gk =
1. Thus if we let denote the set of path p where (ii) holds, then

c with

But the k sets {p e — }, 1 � k are
mutually independent: also the measures of these sets are the same as
and vary. hence

= (W{p El': Ip(1/n)t <An a})k

Thus < = n(W{p E p(l/n)I however,
by the scaling property (a) of the previous theorem

W{p EE 1': p(l/n)1 An = W{p E 2:
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However p(l) has a Gaussian as its distribution measure. Thus the last
quantity is as ii —p oc. As a result

=

and this converges to zero as n —* oc. Thus for every positive A, the set
of p where (11) holds has measure converging to zero as n oo because
a> 1/2. This establishes conclusion (b) of the theorem.

At this point, it may be worthwhile to recall the variety of ways a
nowhere differentiable function has arisen in different settings in these
Volumes. First, as a specific example of a lacunary Fourier series in
Book T; next as a von Koch fractal, in Book III; further as the generic
continuous function via the Baire category theorem in Chapter 4; and
iiow lastly as almost every Brownian path.

One last remark. Given our construction it is intuitively tempting to
think of ahnost every Brownian path as the "limit" of ant appropriate
collection of random walk paths (paths in PN with N —* oc). However it
is not clear how to make such art idea precise. Despite this, the following
less satisfactory substitute is a direct consequence of Theorem 3.1.

Let q E P he any fixed path. Suppose e> 0 and 0 t2 < ...
are given. We consider the open set

<1, 1 <j

of paths close to q, and set = fl 'PN, the bundle of corresponding
random walk paths Then

(12) m({x E E
0(N)}) W(0F), as N 00.

In fact, (12) is merely a restaterrient of the assertion W(05) as
N oc. This follows because 11N W weakly. using Exercise 7, since
it is easily checked that W(05 — = 0.

5 Stopping times and the strong Markov property
The goal of the rest of this chapter is to exhibit the remarkable role of
Browntiami motion in the solution of the Dirichilet problem. A general
setting for this problem is as follows.

We are given a bounded open set 1?. in IRd and a continuous function
f on the boumdary = 'R. — 'I?.. Then the issue is that of finding a
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function U, continuous on IZ, harmonic in that is Au 0, and with
the boundary condition = 1.

The connection of this question with Brownian motion arises when we
fix a point .x E 1?. and consider Brownian motion starting at x, that is,
the process Bf = x + B1. Now for each w e we consider the first time
t = -r(w) = yx(w), when the Brownian motion path t Bf(w) exits
(in particular, = E

x +

Then the resulting induced measure = /2 011 given by

P({w: C E})

(also called "harmonic measure") leads to the solution of the problem:
under appropriate restrictions on the set R

u(x)= I
J93Z

is the desired harmonic function.
Now the function w will be seen to be a 'stopping and

we begin by discussing this iiotion. which arose iniphcitly when we proved
the maximal tlieorerri for martingale sequences in Theorem 2. 1() of the
previous chapter.

5.1 Stopping times and the Blumenthal zero-one law

Suppose {s,, is a niartingale sequence associated to the increasitig
sequence of u—algebras on the J)rol)abihty space (X, m). Then
an integer-valued function -r : x r(x) is a stopping time if jx
'n} C for all ri � 0, or equivalently if {x : -r(x) n} C for all n

Figure 1. Path exiting at time r -r(w)
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We note here the basic fact that if (say) r(x) < N < oc for all x. then

(13) f (x) (x) dirt.

Indeed, the left—hand side is fA s11(x) dx, with A11 {x : =
n}. However, by the martingale property (that is. (14) in the previous
chapter) dx = IA SN(.C) dx. an(l summing over 'n gives (13)
above.

Similarly, for a subset A. we say that the integer-valued function x
r(.r) defined on A is a stopping time relative to A if {x E A : r(x) =
n} c for all n. In this case ST(X)(x) dx = fA Sw(x) dx. When this
is applied to A = {x > then this yields essentially the
iriaxirrial inequality (15) in the previous chapter.

Martingales are relevant to Brownian motion because that process is a
cont inuous version of a martingale in the following sense. For each t � 0,
let A1 he the a-algebra generated by all functions 0 s t, that is,
he smallest a-algebra containing the for all 0 s t.7 Then we

have:

(a) For any sequence 0 < t0 <t1 <- < ... the sequence

{ is a inartingale relative to the a-algebras {A,,,

(h) lor almost every w. the path (w) is contirnious in t.

Now (a) follows imniediately frorri the proof of Proposition 2.6 in the
previous chapter an(l the fact that the process B1 has independent in-
cremerits, with each B1 having mean zero. Also, (b) is the condition B-3
arising in the definition of Brownian motion.

At this point, because it will be useful below, we remark that the max-
imal inequality (9) irnrriediately leads to tire Brownian motion inequality:

(14) P({w SUJ) IB,(w)I >
0<1<1

for all T > 0 and > 0.

Iii analogy with the discrete case above we say that a mion-miegative
function w is a stopping time if {w: -r(w) t} e A1 for every
t >0.

7To be precise. is the generated by all functions 0 < s < t. together
Wit Ii all subsets of sets of measure zero See also the previous footnote
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Now suppose 1Z is a bounded open set of Rd and define the first "exit
for the path = x + to he

= = inf{t � 0, Bf(w) IZ}

Also define the "strict" exit time = by

inf{t > 0.

Proposition 5.1 Both TX and are stopping times.

We note that both r and are well-defined, that is, finite almost ev-
erywhere, because almost every path ultimately exits the bounded open
set (See Exercise 14)

Proof For simplicity of notation we take x = 0; we can then recover
the general case by reducing to the situation where 1?. is replaced by
7?. — x. Now for any open set (9 in Rd define TQ(W) inf{t � 0. E

O}. Then, up to a set of measure zero,

{TQ(w) <t} E

r<t

where the union is taken over all the indicated rationals r. This is because
a continuous path is in 0 before time t if and only if it is in 0 at
some rational time r, with r < t. Thus {TQ(w) <t} E A1. Next let

= {x: d(x,7?f) < 1/n}. If t> 0, then

(15) <t} = <t},

because a path exits 7?. by time t, if and only if it is in before time t,
for every n. Therefore, for t> 0 we have {T(w) <t} e A1. However
{T(w) = 0} is the empty set or depending on whether x E 7?. or not.
Thus is a stopping tune.

Note that = TX(w) > 0 for all w if x e 7?. while = TX(w) =
0, for x 7?.. Therefore the only difference between and TX can occur
when x is on the boundary, 87?. = 7?. — 7?.. We notice that as above, when

� t} E A1.

But then = 0} fl1 A1. Given the increasing character of the
a-algebra A1, it is natural to denote fl1 A1 by So the proposition
follows from the lemma below.



5 Stopping times and the strong \'larkov property 257

Lemma 5.2 A0.

The proof of this simple looking fact is however a little indirect. The
conclusion, that any set A E is trivial (is either of measure 0 or
1), is referred to as BlumenthaFs zero-one law (A generalization is given
in Exercise 16.)

As a result. for each x in the boundary of 1?. we have the dichotomy:
{ (w) — O} has measure I or 0. Iii the former case, the point x is called
a regular point at the boundary. In brief, a boundary point is regular,
if almost all paths starting at that point are outside 1?. for arbitrarily
small positive times. This property plays a crucial role in the Dirichiet
problem for R..

Proof of the lemma. Fix a hounded continuous function f on and
a sequence 0 ti <t2 < ..• For any 6 > 0, set

fo = f(Bti+o — — ., —

If A is any set in then A E A5, for 6> 0. Then by the independence
of the above increments from B5, we see that

[fsdP=P(A) [fsdP.
JA

Thus by continuity of the paths we can let 8 0 and obtain

JA

Now any hounded continuous function g on can be written in the
form g(x1.. .. , = f(x1, x2 — x1,. . . , — Xk_1) where f is another
such function. As a result

[g(Bt1 Bjk)dP=P(A) ,Btk)dP.
in

Hence by a passage to the limit, this holds if g is the characteristic
function of a Borel set of Thus P(A fl E) = P(A)P(E) whenever E
is a cylindrical set. From this, we deduce the same equality for any Borel
set E by using Exercise 4 in the previous chapter. Therefore P(A) =
P(A)2, which implies P(A) = 0 or P(A) = 1. Since A was an arbitrary
subset of Ao±, the lerrinria, arid also the proposition, are proved.

Note. Lastly, it will be important below to remark that the stopping
time rr(w) is jointly measurable in x arid w. This follows from

{(x,w): r'(w)>p}= fl {w:
n=1 r<p,rEQ



258 Chapter 6 AN IVI'ROJ)UCTION TO BI{OWNEAN

where = {a : d(.c.'W) > 1/n}.

5.2 The strong Markov property

Suppose a is a stopping time (relative to the a-algebras {A1}1>0). We
can define the collection to be the collection of sets A. such that
A fl <t} E A1. for all t � 0 One notes that in fact is a a-
algebra: that = if a is
measurable with respect to Aa. (See also Exercise 18.)

In studying the Dirichict problem we shall riced, in addition to the
stopping time T (the first exit time from another stopping time a.
What happens wheii Brownian motion is restarted after time a is the
subject of the "strong Markov one version of which is con-
tained in the following.

Theorem 5.3 Suppose is a Brvwnian motion and a is a stopping
time. Then the process defined by

B7(w) = —

is also a l3rownian motion. Moreover is independent of

Tn other words. if a Brownian motion is stopped at time a(w), then the
process which is appropriately restarted is also a Brownian motion that
is now independent of the past

Proof. We have already noted that if a(w) is a constant, a(w)
a0, then — is a Browiiian motion (see Theorem 4.1), so tile
assertion in the theorem holds in this case.

Next assume that a is discrete, that, is, it takes on only a countable set
of values Ut < < < .... Also suppOse 0< t1 </2 <
are fixed. Let us use the temporary notation

..B,k)
B* = , Bc...
B * 71) 71) 7) 1) T)

— — . . —

wit Ii all these bold-face vectors taking values in Rh'. Now if E is a Borel
set in then

{w:B* anda=af}

8A corresponding independence when is an arbitrary positive constant is character-
i4tic of a 'Markov" process
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So

with the union clearly disjoint.
However if A e then A fl {a =

a = is constant throughout. we see that the measure of {w:
B* E E}nA equals

E)rn(Afl{a

because A fl {a ae} E and this set is independent of {B E E}.
However P(B E E) = P(B E E), arid we obtain that

(16) P({w : B* E E. w E A}) P({w: B E E})P(A).

Now using (16) when A = shows that B* satisfies the conditions B-I
and B-2 of Brownian motion. Also B-3 is obvious. Finally, using (16) for
any A C gives the desired independence of B* from

Turning to the case of general stopping time a. we approximate it by
a sequence {a0') } of stopping times, so that each takes on oniy a
countable set of values as above, and

(1) \ a(w), as n —* oc, for every w: and

(ii) c
For each n define = k

if a(w) for
k so that k2 -n < (k + 1)2 Then < t}

{a E Ak2-7L C Thus is a stopping time.
Also suppose that A C then A fl {a < }

A e Tints (ii) is established
* .ow let be the analog of with a replaced by a . arid let

B*(n) = . , Suppose A C (then A C Then
by what we have proved in the discrete case

E E, w E A}) = P(B e E)P(A).

A passage to the limit then shows that (16) holds for the general a. This
limiting argmnent is carried out in two steps using exercises from the
previous chapter. First, by Exercises 10 arid 31 part (d), since B*(n)
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converges pointwise to B*, we have that (16) holds whenever E is an
open set. To conclude that such equality holds for all Borel sets E. we
apply Exercise 4 in the previous chapter.

For any given stopping time u, let us write Ba for the function w
Ba(w)(W). We note that the argument above, where we approximate the
stopping time, also shows that Ba is Aq-rneasurable. (See Exercise 18.)

5.3 Other forms of the strong Markov Property

Another version of the strong Markov property involves integration of
functions defined on all paths. To describe this we need a little additional
notation. We define to he the space of all paths, that is, all continuous
functions from [0, oc) to The space 'P differs from the space 'P
considered earlier, in that in the latter all paths start at the origin.
We can write each j in P as a pair (p, x) with p E x E where
p = — and x = So we have P = P x and every function
f on P can be written as = Ii x), with Ii a function on the
product x TRd. Moreover, 'P inherits a metric from the metrics on 'P
and Rd, and a corresponding class of Borel subsets.

We shall also use the short-hand that the path t '—* B1(w) will be des-
ignated by B (w); similarly the path t will be written as

(w); also the paths t — that appear in
Theorem 5.3 will be represented as B* (w). With these definitions our
result is as follows.

Theorem 5.4 Let f be a bounded Borel function on the space P of all
paths. Then
(17)

f f (w)) dP(w)
= ff I (B (w) + dP(w)

Proof. We write (p, x) as above; then (17) becomes

(18)

f f' (W(w), dP(w) =

ff ft (B (w), dP(w)

since = +
We consider first functions ft of the product form ft = 12 with
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fi (p, x) 12 (P)f3 (x). Then the right-hand side of (18) is

ff2(B (w))dP(w) X

However f2(B (w)) = f2(B*(w)) dP(w). since by Theorem 5.3
is also a Brownian motion and so has the same distribution measures

as Also. by the independence guaranteed by that theorem (and the
fact that is An-measurable) we see that the product

f12(B*(w))dP(w) x

equals

dP(w),

which is the left-hand side of (18).
To pass to the case of general f we may argue as follows. Let

and ii denote the measures on P defined by ,u(E), (respectively v(E)).
as the left-hand side, (respectively the right-hand side) of (18) whenever
f is the characteristic function of E, with E any Borel set in 'P. Then
what we have already proved implies that ji(E) = v(E) for all Borel
sets of the form E = E2 x E3. with E2 C P and E3 C According to
Exercise 4 in the previous chapter, this identity then extends to the u-
algebra generated by these sets, and hence to all Borel sets of P, because
this u-algebra contains the open sets. Finally, because any hounded Borel
function on 'P is the hounded poititwise limit of finite linear combinations
of characteristic functions of Borel sets, we see that (18) holds for all those
11 arid the theorem is proved.

The final version of the strong Markov property we present is the
statement closest to the immediate application to the Dirichlet problem.
It involves two stopping times a and 'r, with a r, where T is the exit
time for the hounded open set R. Let us recall that y + B,(w),
and inf{t � 0, We define the stopped process

= y +

where I A = rnin(t, If y = 0 we drop the subscript y iii the
above definitionis.
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Theorem 5.5 Suppose o and 'r are stoppinq times with a(w) r(w) for
all w. If F is a bounded Borel function on then for every t � 0

(19) f F dP(w)
= ff F dP(w')

where y(w') =

Proof. Start with the left-hand side of (19) It equals

f F dP(w) + f F

= f F dP(w) + f F dP(w)

+12.

We will first look at

= f F dP(w).

Consider the following real-valued function on paths:

F

Here we define for any path the quantity inf{s � 0. p(s)
In particular, note that if B (w). then = Now. given w
set (w). Then

f (u)) = F XT(w) u(w)>t

indeed, note that

(w)) = inf{s � 0: = T(W) —

This is true because the path B (w) exits at time and therefore
the paUi exits at tinie — o(w). Therefore

f (w)) = F H)

which is the integrand in 11 . so we can apply (17) to get

11
= f / f + B (w)) dP(w) dP(w').

ci. ci
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But flOW note that the nitegiaiid in the above equals

F (B(J) * Bt(w))

To coiicliide the calculation of it suffices to note that the quantity
r + B equals )(w). and so

Ii
= ff F + Bt(w))

ci ci

= J J F
(w)) dP(w')

ci ci

= J J F
dP(w) dP(w').

ci ci

We now look at the second jut egral 12 defined by

12 / F (BT(W)(w)) dP(w).

Here we define a real—valued function on paths

= F

Setting = (w) gives

(w)) = F

For the characteristic function the argument is the same as above.
For the first part (that is. the component F(.. )), note that gives
the time of exit of R of the path and p(-r(p)) the value (iii where
the path exits. Siiice both (w) and B (w) exit at the sanie point
ill space (although at different times. namely, -r(w) — a(w) and re-
spectively) we get the above. Therefore by (17)

'2
= ff g + B (w)) dP(w').

ci ci

Now note that

g + B (w)) = F +



264 Chapter 6 AN INTHODUCTION TO BROWNIAN MOTION

hence

'2
=ff g + B dP(w) dP(J)

ci ci

= ff F + dP(w)dP(J)
ci ci

= ff F
ci ci

Therefore. putting the two integrals for and J2 together yields

+12 ff F dP(w) dP(w'),

which completes the proof of (19).

Final remark. With almost rio change in the argument one can prove
generalizations of the two theorems above in which the left-hand side
of (17) and (19) are integrated over any set A in Aa. instead of ft
The result corresponding to (17) may then be rephrased in terms of
conditional expectations to read:

= f f(B (w) +x)dP(w)
ci

The conclusion corresponding to (19) is

f F dP(w)
= f f F dP(w)

whenever A E

6 Solution of the Dirichiet problem
Recall the definitions given at the beginning of Section 5. Here IZ is a
bounded open set in IRd, and for each x e we define as the measure
on the boundary 87?. of 7?., given by

px(E) = P({w: e

with rx(w) the first exit time of the path Here E ranges over the
Borels sets of 81?., which itself is a compact subset of
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For a continuous function f on 87?. we defined

(20) u(x) = I f(y)dpz(y), when x e

in fact Borel measurable) since

u(x)
= f f(x + dP(w),

and Tx(w) is jointly measurable, as noted at the end of Section 5.1.

The maui theorem is as follows.

Theorem 6.1 If u is defined by (20), then:

(a) u is a harmonic function in 7?..

(b) u(x) —* f(y), as x —* y, for x E 7?., if y is a regular point of 87?..

Proof. To establish (a) we fix x E 7?. and let S denote a sphere
centered at x together with its interior ball is contained in 7?.. We will
prove the mean-value property

(21) u(x) = I u(y) dm(y).
is

where rn is the standard measure on the sphere, normalized to have total
mass 1. To prove (21) let a be the stopping time defined as the first time

hits S.

Figure 2. Brownian motion stopping on S and then 87?.

We claim that for any continuous function C on S we have

(22) f )(wl))
= f G(y) dm(y).

87?.

7?.
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To see this. consider the case where x = 0. and note that the left-hand
Si(1C (lefilieS a coiitinuous linear functional on the continuous fuiictions
on S. and hence is of the form fe,. G(y) for some measure ji on S.
By 1 he rotation invariance of the Browiiian motion it follows that /i is

rotation—invariant and hence by Problem 4 in Chapter 6. Book TTI, we
have p = in.

Suppose = BfATJ is the stopped process. Note that
)(wI) = y(wi) e S. because a. path starting at x meets S before it

meets 8R.
We now invoke (19). If we take F to he any continuous hounded

ext ension of f to all of and let t we obi am

(23)

// (w2))
= J (w))

The right-hand side of (23) above equals while the left-hand side
equals

dP(w1).

Finally, since we can apply (22) with u = C and de-
duce that

I u(y(wi)) dP(wi) [u(y) dm(y).
is

This complet es the proof of the meami-value identity (21), and from this it
follows that u is harmonic. [lie ideas behiiiid the proof of this well-known
fact are sumniarized in Exercise 19

To prove conclusion (b). we establish first that if y E amid y is
regular, then

(24) urn forall5>0.
x—+y

in fact, P({Bf E 7?. all t < 0, is continuous in x, because
at each w for which is continuous, the characteristic function of
{ Bf E 7?. all e < t <5} at w converges to the characteristic functiomi of

E 7?, all < t <ó} at as x y However the fimctions P({ E

7?. all I 6}) are decreasing as e \ 0. The limit is

P({w:
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and is thus upper semi-continuous in x. Hence lint > 6})
p({yY > 8}) = 0. since y is a regular point. Thus (24) is established. As
a consequence we have for s> 0 and e > 0 given,

(25) P({w: — > s}) <f

if x is sufficiently close to y E OR.. In fact, by the maximal inequality (14)
we can find a 5 > 0, so that P({w: SUPt<ö IBt(w)I > s/2}) <€/2, since
IBa = c5112. Also by (24), if x is sufficiently close to y, P({rX >

S}) � c/2. As a result, if .ir is sufficiently close to y, (25) holds.
Now

u(x) - f(y)
=

f (1(Y') - f(y)) dI?(y')
= f + f = + '2.

c)R2

Here OR.I is the set of y' in OR. so that ly' — <s and is the
complementary set in OR.. Now the points y' E OR. are of the form y'

while ,ix(OR.2) = P({w: — > s}). Thus by (25) we
see that ,LX(OR,2) < e if x is sufficiently close to y. So the contribution
of '2 is majorized by 2 slip If O(€). 1(y') I <c
if Iy — < s and s is srriall enough, so the contribution of can be
made less thani €. Altogether this shows that u(x) — f(y) is inajorized
by a multiple of for x sufficiently close to y. Since e was arbitrary, the
second assertion of the theoreiri is proved.

Our final result is a very useful sufficient condition for the regularity
of a boundary point. A (truncated) cone F is the open set

F {y E lRd: <a(y <5}.

Here is a unit vector, 1. 8> 0 arc fixed. arid y . is the inner
product between y arid The vector 'y determines the directioni of the
cone, and the constant gives the size of the aperture

Proposition 6.2 Suppose x E OR. and x + F is disjoint fivrn R., for
some truncated cone F. Then x is a point.

Proof. We assume x = 0, and consider the set A of Brownian paths
starting at the origin that enter F for an infinite sequence of times tending
to zero. Let An Urk Brk (w) E where rk is an enumeration
of the positive rationals. Then A = However e

A E Ao+ = A0, by the zero-one law. So rn(A) 0 or
rii(A) = 1, and we show that in fact m(A) = 1. Assume the contrary, that
is ni(A) = 0. By the rotation invariance of Browiiian motion, the same
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Figure 3. 'Iftuncated cone at x disjoint from 1?.

result would hold for arty rotation of our truncated cone, and finitely
many such rotations cover the ball of radius 8, with the origin excluded,
while every path enters that ball at arbitrarily small times. This is a
contradiction.

Now returning to our boundary point x, if x + F is disjoint from
then there are, for each w, arbitrarily small times for which B1 (w) e F,
and hence Thus x is regular.

In view of the above we say that a hounded open set 1?. satisfies the
outside cone condition, if whenever x E there is a truncated
cone F, so that x + F is disjoint from Our final result generalizes
the theorem proved by very different methods in Chapter 5, Book III
only for the special case of two dimensions.

Corollary 6.3 Suppose the bounded open set IZ satisfies the outside cone
condition. Assume f is a given continuous function on Then there
is a unique function u that is continuous in 7Z, harmonic in 1Z, and such
that = f.

Proof. Theorem 6.1 arid Proposition 6.2 show that u is continuous
in 1?. and f. The uniqueness is a consequence of the well-known
maximum principle.9

7 Exercises

1. Show that if t > 0. then the distribution measure of converges weakly
to the Gaussian Ut with mean zero and variance t as N oo More generally, if
1> s > 0, then the distribution measure of — converges weakly to the
Gaussian 11t_s with mean zero arid covariance matrix (t — s)I
[Hint Using the notation in the renniark following Theorem 2 17 in Chapter 5, and

(Nt-[Nt})setting fk = tk, one has — tNt}j I I

9See for exainiple Corollary 4 4 in Chapter 5 of Book III

x+F

8R.
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2. Let (P. d) 1)e the nictric space dehned in Section 2 Verify

(a) The space is complete

(h) The space is separable

[lint For (h). let ci. ,Cd be a basis for lv'. and consider the polynoniials
p(t) = eipj(t) + + where the p3 have rational coefficients

3. Show that the metric space (P. d) is not (7-cornJ)act

[Hint Assume the contrary Then the Baire category theorem implies that there
exists a compact set that has a non—empty interior As a result theie exists an open
ball whose closure is compact However, consider for example the ball of radius 1
centered at 0. and a sequence of continuous piecewise linear functions {fTL } with

1. = 0. when x � 1/nj

4. Suppose X is a compact metric space Show that.

(a) X is separable

(b) C(X) is separable

Hint For each rn, find a finite collect ion 8m of open balls, each of ra(lills 1/rn, so
that the collection 8m covers X For (a) take the centers of the balls in U 8m
For (h). consider } the partition of unity corresponding to the covering of X
by (as giveit. for example, in Chapter 1) Show that the finite linear conibina—
tions of the with rational coefficients are dense in C(X)

5. Let X be a metric space. K C X a compact subset. and f a contimious function
on K There there is a continuous function F on X. so that

k[K = and slip IF(x)I = sup If(x)1
xEX cCK

[Ilint The argument given in Lemma '1.11, Chapter 5 of Book III for X = can

be copied over in this general setting

6. Suppose K is a compact subset of P Show that for each T > 0, there exists a
function wy(h). defined for h E (0, 1] with w-r(h) 0 as h 0 and such that

sup sup [p(I + h) — p(t)[ wi (h), for /i e (0. 1]
PC K O<i< 1

[Flint: Fix T > 0 and > () Each p is uniformly continuous on closed intervals.
so there exists = > 0 so that 511P0<t<T Ip(' + Ii) — p(f)I whenever 0 <
Ii Now use the fact that since K is compact. the covering K C E P
d(p', p) < } has a finite subcover

7. Suppose ,uN —' !t weakly Show as a result
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(a) linlirifN > for any open set 0.

(h) lim1v fiN (0) = ji(0). 0 an OJ)Cfl set, if j40 — 0) = 0

[Hint = where 0 < f < 1 and supp(f) C 0}.J

8. Given the Wiener measure W in P, we have a realization of Browniari motion
(satisfying B-i, B-2 and B-3) with = p(t). ci = P. and P = W Conversely.
suppose we start with } satisfying B-i. B-2 and B-3. For any cylindrical set C =
{p E 'P (p(t), . . , E A} in P. define W°(C) P(jw: (w), , (w))
A}). Verify that W°, initially defined on the cylindrical sets, extends to the Wiener
measure on P

9. This exercise deals with the degree to which the Brownian motion process is
uniquely determined by the properties B-i, B-2 and B-3.

Let us say that such a process is 'strict" if in addition to the above it satisfies
the following two conditions

(i) = (W2) for all t implies = W2.

(ii) The collection of immeasurable sets of (11,?) is exactly which is the
c—algebra generated by the with t < oc

Now given any Brownian motion process on (ci, P) it induces a strict process
P#) as follows Let denote the collection of equivalence classes on Ii

under the equivalence relation wi if (wi) (W2) for all t We also denote
by {w} the equivalence class to which w belongs. On define Br({w}) = Bt(w),
and P#({A}) = P(A) if A Verify.

(a) is a strict Brownian motion on (ci#, p#)

(b) The process ('P, W) constructed in Section 3 is a strict Browniaii motion.

(c) If (Bk', cii, P') and (B?, Q2 P2) are a pair of Brownian motion processes,
then up to subsets of sets of measure zero, there is a hijection (111 )#

so that = (pl)#(A) and

10. Prove the following version of Khinchin's inequality (Lemma 1.8 in the pre-
vious chapter) Suppose {fTh} are identically distributed functions that
are bounded, have mean zero, and are mutually independent. Then for any p < 00,
we have

1/2

[Hint: One can reduce to the case d = 1 Assuming 12 1, write f =

f and use = 1 + u + 0(u2) if Iul <M. The result is that the first
integral above is mnajorized by fl(l + M for all n

11. Prove time following variant of Lemma 3 2 Suppose is a sequence of
i(lentically distributed, mutually independent, functions on a probability
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',pace (X, in) each having mean hero and the identity as its covariance matrix If

= fir, then

lini sup m({x sup i.sk(x)i > = for p> 0
U .,c 1<k<n

[i-lint: If denotes the distribution measure of and = An1-'2, then the
right-hand side of (9) equals * With A 2 1 fix M 2 1 and write
this last integral as the sum of two terms A1 +A 1 .IXM> t>A Using the

fact that 5 dm -= 1, the first term is O(A1 — M) By the central limit theorem

Urn7 A' ti = 0 (A 1

ft>A tie_1t12!2d1) so the limit of the

secon(I term is also O(A I

12. Prove that almost everywhere

iBt(w)i = as t DC.

foi every > 0 This is the analog of the strong law of large numbers given in
Corollary 2.9 of the previous chapter.

[Hint If denotes SUPO<t<T I then the maximal inequality (14) gives

W({B > a}) < *iiBi tiLl = (iJ___ if P,7 = {Bk > then we have
W(EA) = 0

13. If B1 is a Brownian motion process then so is B',

[hint Note the continuity of almost all paths of at the origin follows from the
previous exercise To verify property B-2. use Exercise 29 in the previous chapter.]

14. Show that lim = oo almost everywhere, hence almost all Brow-
man paths are not Holder 1/2

Also show that lim = oo almost everywhere, hence almost all
Browniarm paths exit every ball

[Hint By the previous exercise it suffices to check the result when 1 0. Consider
(1 = I Then

W({iB,7 — }) = 1 f e du. if fi>
ui>y

Thus

— B2 -k > 2
�11k

Now choose uk oo so slowly that e -( = DC and apply the Borel-Cantelli
lemma (Exercise 20 in the previous chapter)]
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15. Calculate the (joint) probability (listribution measure of (B,1 . B,2. .

Use Exer ise 8 (a) in the previous chapter

16. Show that the following generalization of the fact that A0 =- Ao holds if we
define to be then = A,

IT. The previous exercise gives the right-continuity of the collection {AJ Prove
the following left-continuity for every I > 0. = A, , where A,— is the a-algebra
generated by all for < t

Consider first cylindrical sets in A,

18. Let a be a stopping time Show that

(a.) a is

(b) (w) is

(c) Aa is the a—algebra deternuxied by the stopped process B, with B, (w)

[Hint: For (a). note tha.t < fl {a(w) < t} —= {a(w) < t) } l'or (b),
show first that for any l3orel subset P of and > 0. one has { c
E} fl {a < t} E whenever a takes on only discrete values 'l'hen approximate a
by as in the proof of Theorem 5 3 1

19. Let u be a bounded ford nieasurable function on a bounded open set 7Z c
Suppose that u satisfies the irieaii-value property on spheres, that is, (21)

(a) Show that if B is a ball contained in and centered at a. then

a(y)dy.
rti(B) j1,

where in is the Lebesgue measure on

(b) As a result. the function is continuous in 1? and the argument in Sec—
ion '11, Chapter 5 of Book Ill shows that the function 71 is harmonic in 7Z

I"or (h). show that lo ally, = (a * where is a smoot 1i radial
function supported on an appropriately small ball and with f — 1

1

20. An hounded open set 1Z has a Lipschitz boundary if can he covered
l)V finitely many halls, so that for each such ball B, the set fl B can (possibly
after a rotation arid translation) be written as Xd = . Xd_1). where is a
function that satisfies a Lipschitz condition

Verify that if 1Z lia.s a Lipschiitz boundary, then it satisfies the outside cone
condition Thus, in particular. if is of class C1 (in the sense of Section 4 in
Chapter 7) then 1Z satisfies the outside comic condition.
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So in these cases the Dirichiet problem is uniquely solvable

21. Suppose and 7Z2 are open and bounded in Re'. with C Let
and denote the harmonic measures of and respectively, as defined at

the beginning of Section 5 Show that the following generalwation of the mean—
value property (21) holds whenever r E 'Ri. then

V F

=
J dl?

in the sense that ( F) -= "(JR j4 ( F) d1if (y) for dily Borel set F C (flZ2

8 Problems

1. '1'he condition of continuity of Brownian paths B—3 is in effect a consequence of
properties B—I and 13—2 This is implied by the following general theorem.

Suppose that for each t � 0, we are given an function F, = F1(x) on the space
(X,rn). Assume that — < eIti — > i/p. and I <p < DC
['hen there is a "corrected so that for each t. F, F, (almost everywhere with
respect to rn), and so that t I'- F, (x) is continuous for all t � 0. for almost every
7 E X Moreover the functions I F, (x) satisfy a Lipschitz condition of order
if — i/p

2. The proof of the Donisker invariance principle follows along the same lines as the
proof of Theorem 3 1. Let Ii. . , . be a sequence of identically distribute(1
mutually independent square integrable functions on a probability space
(X. in), each having mean zero and the identity as its covariance matrix Define

— 1 (iVi. — [NiJ)
N'!'2 fk+_N1/2

I <k < Nt

and let } be the coit esponding measures on 'P induced via I he measure in on
x

(a) Instead of Lemma 3 2 use 1'xercise 11 to show that fot T = L q > () and
a > 0. there exists 0 < < I and an integer N,, so that for all 0 < / < 1 one
has

rn({x sup — > a}) < for all N > N0
0<h<ô

(h) Deduce from the above that for all 'I' > 0. c > 0. and a > () there is a > 0
so that

Sill) — > a}) < for all PV 2 1

O<t<l

(e) Use the inequality in (b) to show that the sequence {/Lv } is tight
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(d) Conclude as before that, {pN} converges weakly to W

3. There are a number of other constructions of Browriian motion besides the one
given in this chapter A particularly elegant approach is based on simple Hubert
space ideas

On P) consider a sequence } of independent, identically distributed W'-
valued functions with Gaussian distribution of mean zero arid covariance matrix
equal to the identity Observe that the sequence } is an orthonormal sequence
of L2(cI, Rd). Let 7-1 denote the closed subspace of L2(Q, Rd) sPanned by }.

Observe that 7-1 is a separable infinite dimensional Ililbert space Hence there
is a unitary correspondence U between L2({O. oc), dx) arid 7-1 Let B1 = U(xt)
where Xt is the characteristic function of the interval [0, 1]. Then, each B1 can be
corrected as in Problem 1, so that the process {B1 } becomes Brownian motion In
this connection see also Exercise 9 in Chapter 5

Note that for instance, if = thieii B1 — = [c, (1) —

with — t — s

4* In the previous chapter, we noted that recurrence results for the (discrete)
random walks depend on the dimension d, and in particular, whether d < 2 or
d 3 (see Theorem 2 18 in Chapter 5 and the remark that follows it)

One can establish the following results for the (continuous) Brownian motion
B1 in Rd

(a) If d = 1, Brownian motion hits, almost surely, every point infinitely often.
in the sense that for each x E R and for any t11 > 0,

P({w : B1 (w) = x for some I � tø}) = 1.

Thus B1 is pointwise recurrent in R

(b) If d � 2. then for every point x E W'. Brownian motion almost surely never
hits that point, that is,

P({w : 131(w) = £ for sonic I > 0}) = 0

So, in this case. Browriian motion is not pointwise recurrent.

(c) However if d = 2. then B1 is recurrent in every neighborhood of every point.
thai is. if D is any open disc with positive radius, and > 0. then

P({w . B,(w) E D for sorrie t � to}) = I

(d) Finally, when d � 3, Brownian motion is transient, that is. it escapes to
infinity in the sense that

P('(w lini IB1(w)J oc}) =
I
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5•* The law of the iterated logarithm describes the amplitude of the oscillations
of Brownian motion as t oc and t 0 if B1 is an li-valued Browriiau motion
process, then for alniost all w

.

lim 5111) 1, hm inf

_________________

— 1
log log t t

By Exercise 13, time inversion implies that for almost all w

131(w) .

_________

urn sup 1. bin in f —1.

6.* There is a converse to Theorem 6 1 when d � 2 if u(x) —* f(y) as x y with
i E R, for each continuous funetiori f, then y is a regular point
[Hint: If y is not regular, then, using Problem 4* (b). show that — >
0}) 1, heiice P({1 — � > 1/2 for some 5 > 0 If denotes the sphere
centered at q of radius F <5, use the strong Markov property to prove that there
exists e fl 1?. so that — > 5})> 1/2. Then, consi(Iermg any con-
tiriuous function 0 < f < I on 1Z with f(y) = 1, and f(z) 0 whenever z — � 5,
leads to a contra(hction.J

7* A simple example of a non-regular point arises when we remove from an open
ball its center, with the center then becoming a non-regular point A more inter-
esting example of a non-regular point is given by Lebesgue's thorn with its cusp
at t he origin.

Suppose d � 3, and consider the ball B {x E lxl <i} from which we re-
move the set

.Xd) eR 0< < 1, f(xi)}.

here f is continuous and f(x) > 0 if x > 0. If 1(x) decreases sufficiently rapidly
as x 0. then the origin is non-regular for the set B — E Clearly, can he
modified so that its boundary is smooth except at the origin



7 A Glimpse into Several
Complex Variables

In dealing with the existence of solutions of partial (hf-
ferential equal ions it was (list Ornary during t1ie nine-
teenth century and it still is today in many applica—
tionis. to appeal to the theorerni of Cauchy—Kowalewski.
which guarantees the existence of analytic solut ions
for analyt ic partial differential equal ions On the other
hand a deeper un(lerstanding of the nature of solu-
tions requires the admission of non—analytic functions
in equations and solutions. For large classes of equa-
tions this extension of the range of equation and sohi—
lion has been carrie(1 out 'ince the beginning of this
century in particular ixiuchi attention has been given
to linear partial differential equations and systems of
such IJniformly the experience of the investigated
types has shown that speaking of existence in the
local sense — there always were solutions, indeed.
smooth solutions, proVi(led the equations were 51111)0th
enough It was therefore a matter of considerable siir-
prise to this author, to discover that this inference i'
in general erroneous

If Lewy, 11)57

When we go beyond the introductory parts of the subject. what is
striking is the extent to which the study of analysis iii several
variables differs from that of one variable. Among the new features
that arise are. the autorriatic analytic contmuation of functions front
certain domains to larger domains: the crucial role of the tangential
Cauchy—Rien iann opera tors: and the significance of (complex) convexity
properties of boumlarics of domains.

Eveti though the subject has developed far exploiting these concepts,
it is our purpose here to give the reader only a first look at these ideas.

1 Elementary properties
The definition and elementary properties of analytic (or liolomorphic")
functions in C'1 are straight—fot ward adapt ations of the corresponding
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notions for the case ii = 1. We start with a bit of notation. For any

z0 = (z?.. .. , 4) and r (r1,. . . , with > 0, we denote by
IP, (z°) the polydisc given by the product

We will also set t.o l)e the corresponding product of boundary
circles

We also write for the monomial where o (cr1

with non—itegati ye integers.

We shall see below that for any continuous function f on an opeii set 1�,
the following conditions, defining the aiialyticity of f, are equivalent:

(i) The function f satisfies the Cauchy-Riemann equations

(1) forj=1,...,n

(taken in the sense of distributions). JTere

Of i/Of Of\
and z3=x3+iyj.withi3.y3ER.

(ii) For each z0 E and 1 < k < ii, the function

I 0 0= j ZA.
{ 1

is analytic in zk (in the one-variable sense) for zk in sonic neigh-
borhood of 4.

(iii) For any polydisc ?r(Z0) whose closure lies in 11 we have the Cauchy

integral representation

(2) f(z)
=

for z E Pr(Z0).

(iv) For each z° E 11, the functioii f has a power series cxpansioii f(z) =
a0 (z — zo)0 that converges absolutely and uniformly in a neigh-

borhood of z°.
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Proposition 1.1 For a continuous function f given in an open set
the conditions (i) to (iv) above are equivalent.

Proof. To see why (i) implies (ii), let A he the Laplacian on

with z3 = x3 + iy3, arid where is thus i(lentified with 1R212. Note that
then

where and so 1ff satis-
fies (i) (in the sense of distributions), then in fact Af = 0. From the
ellipticity of the operator A arid its resulting regularity (see Section 2 5
of Chapter 3) we see that f is in C°°, and in particular in C1. Thus
the Cauchy-Riemanu equations are satisfied in the usual sense and (ii)
is established.

______

Now suppose z E Pr(Z0), with TPr(Z°) C ft Then if (ii) holds we can
apply the one-variable Cauchy integral formula in the first variable, with
z2, z3 fixed, to obtain

1 ff(z)=— ,
2nrz — Z1

Next, using the Cauchy integral formula in the second variable to repre-
sent f(ci, Z2.. . . , zn) with z3,. . . , fixed, gives

1 1 1f(z)
2 I dc'2d(1.

(2irz) '1ICi—z?I=ri JI(2—41=r2 (c2 — — z1)

Continuing this way yields assertion (iii).
To obtain (iv) as a consequence of (iii), note that

— 1

This series converges for z E Pr(Z°) and (E Gr(Z0), since then Izk —
41 < — 41 = for all k. So if we take Fr(Z0) with Pr(Z°) C 11, and
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insert for each k the series in formula (2) we get 1(z)

a result Al where =
• and

M sup
(ECT (z°)

Thus the series converges uniformly and absolutely if z E ' (z°) and
< ra, for all k 1 n.
To complete the proof of the proposition, note that (iv) implies (i)

as follows. If — converges absolutely for all z near z0, we
can choose a z' near z0. so that 4 — 4 0 for each k with I <k <n,
and thus converges with p = (p1,. . . , pa), Pa 4 — 4 > 0.
Thus for any z E we can differentiate the series term by term and
see that in particular f is in C1 in that polydisc and satisfies the usual
Cauchiy-Riemann equations there. Since this is valid for each z0 E it
follows that f is of class C1 throughout and satisfies (1) in the usual
sense. A fortiori property (i) holds. and the proof of the proposition is
concluded.

Two additional remarks are in order. First, the requirement in (i)
that f he continuous can be weakened. In particular, if f is merely
locally integrable and satisfies (i) in the sense of distributions then f can
be corrected on a set of measure zero so as to become continuous (and
thus by the above, analytic).

Second, a more diflicult equivalence is that it suffices to have asser-
tion (ii) without the a priori assumption that f he (jointly) continuous.
See Problem 1*.

Another aspect of analysis in that is essentially unchanged from
the case of one variable is the following feature of analytic identity.

Proposition 1.2 Suppose f and g are a pair of holomorphic functions
in a region1 and f and g agree in a neighborhood of a point z0 e ft
Then f and g agree throughout ci.

Proof. We may assurnie that g = 0. If we fix any point z' E ft
it suffices to prove that f(z') = 0. Using the pathwisc connectedness
of we cant fluid a sequence of points z1 . , zN = z' in and polydiscs

(zk), for 0 k � N, so that

'Recall that a region is defined to he au open auid connected set
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(a) IPrh(Zk) C

Now if f vanishes in a neighborhood of zk. it must necessarily vanish
in all of (This little fact is estabhshecl in Exercise 1.) Thus f
vanishes in aiid by (h), it vanishes in i-I) if it vanishes
in (zk). Hence. by an induction oii k. we arrive at the conclusion
that the fund ion f vanishes on IP, N (z and therefore f(z') 0. and
the proposition is proved.

2 Hartogs' phenomenon: an example
As soon as we get past the elementary properties of holorriorphic func-
tions of several variables, we find new phenomena for which there are no
analogs in the case of one variable. This is highlighted by the following
striking exarriple.

We let 11 he the region in n � 2, lying between two concentric
spheres. take in particular = {z E p < Izi < I }, for sonic fixed
0 <p < 1.

Theorem 2.1 Suppose I" is holomorphic in = {z E C". p < IzI < I },
for fixed p, 0 < p < 1. Then F can be analytically continued into
the ball {zEC'1: zI<1}.

Here we give a simple arid elementary proof of this. IJsing more sophis-
ticated arguments we shall see below that this property of
continuation holds under very general circumstances.

The quick proof we have in mind is based on a primitive example of
this continuation, which we give in the case of C2. Suppose

K1 {(zi. z2) tzi I < a. and 1Z21 h1 }

K2 = {(z1,z2) : IziI = a. and h2 < Iz2I < h1}.

Lemma 2.2 If the funLtion F is holomorphic in a region C that con-
tains the union K1 U K2 then F extends analytically to an open set C
containing the product set

(3) {(zi.z2): HI <a, b2 Iz21 <h1}.
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I

K1

1)1

K2

a Izi

Figure 1. 0 contains the shaded region

See Figure 1 for an illustration of the sets K1. K2 and their product.
Proof. Consider the integral

1 [ F(ç,z2)
2K1 (1 —

which is well-defined for small positive e, when (zr. z2) is iii a neighbor-

hood 0 of the l)roduct set (3). In fact then the variable of integration
ranges over a neighborhood of K2. where F is analytic and hence contin-
uous. Moreover I(zj. z2) is analytic in 0, since it is visibly analytic in z1
for fixed z2 when z1 < a + and z2 is near tile set b2 Z2

I

< b1: also it
is analytic in z2 (for fixed Zi) in that set, by virtue of the analyticity of F.
Finally when (z1. Z2) is itear the set K1, then I (z1. z2) F(zi. z2) by the
Cauchy integral formula, and thus I provides the desired continuation
of F.

We give the proof of the theorem in he case ii 2, and start when

p < I / Here we let K1 {Izi
I

<a1, z2I = b1 } and K2 = {Izi
a1. b2 < Iz2I with a1 h1, p < a1,b1 < and b2 = 0. (See

Figure 2.)

Then K1 and K2 both belong to ft and according to the lemma, F

continues to the product {Izi IZ2I < which together
with covers the entire unit ball.

When 1/ < p < 1. we use the same idea, hut 110W carry out the
argument by descending in a finite number of steps the staircase in the

(I z1 , 1) plane whose corners are denoted l)y (Ok, $k). (See Figure 3.)
We take flu = p, oi (1 — )

1/2 = (1 — p2)'!2. and more generally
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Z2

Figure 2. The case where p <

p2 — = 1 — 1— k(1 —p2), k(1 —

p2).
We start at k 1 and stop as soon as 1 — k(1 — p2) <0 for k = N,

with N the sniaflest integer > 1/(1 p2). With this we choose (ak, bk)
so that ak <ak, bk > 13k with iiear (ak,13k), yet aN 1. bN = 0.

Now let Rk = {p < JzJ <1} U <1; bk 1z21}. As above, the lemma

gives a continuation of F into a neighborhood of Using the lemma

again (this time with a ak. b1 = bk, h2 bk +-i) gives a continuation
of F from a neighborhood of Rk to a neighborhood of 1• Now
RN = {Izl <1}, and so we are done.

The corresponding argument in dimension � 3 is similar to that of
n 2, and is left to the interested reader to work out.

We mention one immediate application of the previous theorem: a
holomorphic function in n> 1, cannot have au isolated singularity:
nor can it have an isolated zero. Tn fact we need only apply Theorem 2.1
to an appropriate pair of concentric balls. centered at the purported sin-
gularity. The fact that a zero of f cannot he isolated follows from the
previous conclusion applied to the function 1/f. A uriore extensive as-
sertion holds, namely if f is holomorphic in and vanishes somewhere,
its zero set must reach the boundary of ft (See Exercise 4.) Also the
nature of the zero set of f near a point where f vanishes can he de-
scribed quite precisely by the Weierstrass preparation theorem, discussed
in Problem 2*.

Finally, notice that holomorphic functions inside the unit ball { z < I }
cannot necessarily be extended outside the ball, as the simple example

K1

K2

p 1
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Z2 I

f (z) = 1/(z1 — 1) shows. In fact, we shall see later that the "convex-
ity" of the boundary of plays a crucial role in determining whether a
function can he extended past its boundary.

3 Hartogs' theorem: the inhomogeneous Cauchy-Riemann
equations
Having seen some simple examples of automatic analytic continuation,
we now come to the general situation. The method that will be used
here, and that turns out to be useful in a number of questions in com-
plex analysis, is the study of solutions of the system of inhomogeneous
Cauchy-Riemann equations

forj:=1,...,n,
aZi

where the arc given fuiictioris.
The wide applicability of solutions of these equations results froni the

following necessity. Often one wishes to construct a holornorphic func-
tion F with certain desired properties. A first approximation F1 can he
found that enjoys these properties, hut with that function not usually
holomorphic. The extent to which it fails to satisfy that requirement is
given by the non-vanishing of 8F1 for 1 <3 n. Now if we
could find an appropriately well-chosen u that solves = then
we could correct our F1 by subtracting u froni it. Tn the case below, the
"good" choice of it will be the one that has compact support (assuming
the have compact support).

(ctk.

Izi I

Figure 3. Staircase
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In considering (4). we look first at the one-dimensional case, which is

(5) = f(z). where + anti z x ± lyE C1.

One can state right away a solution to this prol)lem. It is given by

(6) u(z) 1 / dm(ç) I / dm(()

wit Ii the Lchesgue nicasure in C1 Alternatively, we can write v
f * with = 1 /(irz). The precise statement regarding (5) and (6)
is t he following assertion.

Proposition 3.1 Suppose f is continuous and has compact support onC.
'I 'hen:

(a) u given by (6) is also continuous and satisfies (5) in the sense of
distributions.

(b) If f is in the Ck, k > 1. then ,o is ii, and u satisfies (5) in
the usual sense.

(c) If u is any C1 function of compact support. then u is already of the
form (6); mfact

u =

Proof Note first that

u(z + h) - -1 [ f(z + It - - f(z - ()lIJc1 (
and t hat this tends t 0 zero as Ii 0, by the uniforni continuity of f
and the fact that the fund iou I /( i5 integrable over compact sets in C'.
If f is in the class Ck, k � 1. an easy elaboration of this shows that we
can differentiate under the integral sign in (6) and fluid that any partial
derivative of u of order k is represented in the same way iii terms of
partial dci ivat ives of f.

Next we use the fact that ( z) = I /( irz) is a fundamental solution
of the operator This ineaiis that in the sense of distributions

= with the Dirac delta function at the origin (See Exercise 16
in Chapter 3 ) So using the formalism of distributions, as in Chapter 3.
we have

* = *
=

*
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The first set of equalities means that f, since f * = f, and so
assertions (a) and (h) are 110W proved. Using the equality of the second
and third niembers above (with u in place of f) gives u = u * = * 1.
and this is assertion (c).

When we turn to the inhomogeneous Cauchy-Riemami equations (5)
for fl > 2, there is an immediate difference that is obvious: the s cannot
he given "arbitrarily" but satisfy a necessary consistency condition

(7)
dZk

Moreover, it turns out that now the assumption that the fj have compact
support implies the existence of a solution of compact support. The result
is contained in the following proposition.

Proposition 3.2 Suppose n � 2. If 1 <j <n, are functions of class
Ck' of compact support that satisfy (7), then there exists a function u
of class Gk and of compact support that satisfies the inhomogeneous
Gauchy- Riemann equations (4) •2

Proof Write z where z' = (z1 E and set

1 1 / din(ç)
(8) u(z) — —()

71k c

Then by the previous proposition = However by differenti-
atiiig wider the integral sign (whichi is easily justified) we see that for
I <j<n—1

L)u 1 1 , dm(()=
— / (z . — ()71 Jçi ÔZj

1 f / dm(()
71'

= f3(z'.

'Flie next-to-last step results froni the consistency condition (7). and the
last step is a consequence of part (c) of Proposition 3.1. Therefore ii
solves (4).

Next. since the have compact support. there is a fixed IL so that
the vanish whieii IzI > R for all j. Thus by Proposition 1.1. u is
holomorphic in I > R, so by (8). u also vaiiishies there. Since the latter

21n the case k — 0. the identities (7) and (4) are taken in the sense of distributions
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is an open subset of the connected set zI > II, Proposition 1.2 implies
that u vanishes when I zJ > I?, and all our assertions are proved.

A few remarks may help clarify the nature of the solutions provided
by the previous propositions.

• As opposed to the higher-dimensional case. when n 1 it is not
possible in general to solve (4) with a function u of compact sup-
port, given f of compact support. In fact it is easily seen that
a necessary condition for the existence of such a solution is that
ic, 1(z) dm(z) 0. The full necessary and sufficient conditions are
described in Exercise 7.

• When n � 2, the solution given by (8) is the unique solution which
has compact support. This is evident because the difference of
two solutions is a holorriorphic function on all of Similarly.
when n 1, the solution u given by (6) is the unique one for which
u(z) —* 0, as Izi —* 00.

The sirriple facts that we have proved about solutions of the inhomo-
geneous Cauchy-Riernann equations in the whole space allow us to
obtain a general form of Hartog's principle illustrated by Theorem 2.1.
This can be formulated as follows.

Theorem 3.3 Suppose c� is a hounded region in n � 2, and K is a
compact subset of such that — K is connected. Then any function F4,
analytic in — K has an analytic continuation into ft

This means that there is an analytic fimction F on so that F = F0

To prove the theorem observe first that there exists f > 0, so that
the open set = {z: d(z, <e} is at a positive distance from K.
Note that then (11 fl Of) C — K). Next we can construct a cut-off
function3 so that = 0 for z in a neighborhood of K, while ui(z) = 1

for z E Of. With this function we define F1 in by

— I for z E — K
Pi(z) —

0 for zEK.

The function F1 is in ft While F1 gives an extension to of kj),
this extension is of course not aiialytic. But by how much does it fail to
have this property? To answer this, we define by

(9)
=

forj = 1,...,n.

3Note that C2 instead of C'° would do for the rest of this proof
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Note that the are COC functions in ci. and automatically satisfy
the consistency conditions (7) there. Moreover the vanish near the
boundary of ci (in particular for z E fl 11) because of the analyticity
of F0. Thus the can be extended to be zero outside ci so that now
the extended are and satisfy (7) in the whole of We call the
extended fj by the same name. We 110W correct the error given by (9)
using Proposition 3.2 to find a function u of compact support so that

= for all j, and take F F1 — u.
Note that F is holomorphic in ci (since 0, 1 <3 <n, there).

We will next see that F agrees with F0 in an appropriate open subset of
ci — K, which is the same as saying that u vanishes in that open set.

To describe the open set hi question we find the smallest R so that
ci C { R}. Then clearly there is a z0 E ôci with Iz°I = R. We set

Bf (z°) {z lz — z°I <€}, arid will see that ci fl is an open set
in ci — K where u vanishes. (See Figure 4.)

Figure 4. The function u vanishes in ci fl

IzI = R

The fact that ci fl Bf is an open non-empty set in ci — K is imme(li-
ate since Bf c arid hence B( is disjoint from K; also if ci fl were
empty. z0 could not be a boundary point of ci. In addition, u is holomor-
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phic in (iiiore generally in since the f3 vanish there. Moreover.
U is zero in {IzI > R} SinCe ZI is analytic there. this set is connected,
and u vanishes outside a compact set. 1'inally. Be fl {JzI > R} is clearly
a iion-erripty open set of /3, Therefore u vanishes t hroughout and
in particular in fl This shows that F and F0 agree on au open set
of Q — K. and since tile latter set is connected, they agree throughout.

K. The theorem is therefore Proved.

4 A boundary version: the tangential Cauchy-Riemann
equations
We have just seen that if a holomorphic function is given in a (con-
nected) neighborhood of the boundary of a region in n � 2. then it
exten(ls to tile whole region. Since the neighborhood on which k0 is given
caui in principle be arbitrarily narrow, it is natural to ask what happens
in the limiting situation where F0 is given only oui the boundary OQ of
To answer this we rriust answer the question: what firnct ions giveTi

only on é%� extend to holomorphic functions in all of Q?
We shall formulate this pi oblem pu ecisely and solve it in the context of

regions with sufficiently smooth boundaries. We begin by reviewing the
relevant definitions and elenientary background fact s that are nee(led for

We start in the setting of Rd and later pass to Ctm by identifying the
latter space with the former when d 2n. Now suppose we are given a
region in iRd. A defining function p of Q is a real-valued function
oui so that

p(x) <0, when x E
p(x) = 0. when x E OQ.

( p(x) > 0. when .x E

For any integer k � I the boundary of is said to be of class Ck if
has a defining function p which satisfies

• p E

• Vp(x)I > 0. whenever x E OQ.

The boundary is au example of a hypersurface of class More
generally we shall say that M is a (local) hypersurface of class if
there is a real—valued Ck function p. defined on a ball B C Rd. so that
Al = {x E B: p(x) = 0}. and iVp(.r)I > 0 whenever x e A!

For a region whose boimdary is of class Ck one knows that near
any boundary point can be realized as a More precisely,
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fixing any point of reference r0 E i%l and making an appropriate alfine-
linear change of coordinates (in fact a translation aiid rotation of
then. by the implicit function theorem. we can achieve the following:
With the new coordinate system written as £ = (x', xd) where x' E 1

and £d E R. the iiiitial reference point x0 corresponds to (0.0) and near
= (0,0) the region and its boundary are given by

J Xd >
DQ: = p(x).

Tlere is a function defined iiear the origin in W' We can also ar-
range matters SO that (iii addition to p(O) 0), one has
0. which means that the tangent plane to at the origin is the hyper-
plane Xd = 0. (See Figure 5.)

Figure 5. The set and its boundary iii the coordinate system (x', £d)

in this coordinate system. because p(x', p(.r')) 0, we have

= p(x', Xd) —

tXd + (1 — df
.Jo

—

with a(x) = -- I + (1 — dt. In other words, p(x) =
a a function. Also a(x) > 0 if x is suffi-

ciently close to the reference point since theii <0, in view of the
fact that c)/d.rd points Inwards" with respect to ft

Now p is another defining function for ft Then near
we again have /(x) ô(x)(p(.r') — £d) and thins

(11) = cp. where c(x) > 0
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and c is of class

Next we recall that a vector field X on can be viewed as a first-order
linear differential operator of the form

X(f)

with (a1 (x), a2(x)... . . , the "vector" corresponding to the point
E This vector field is tangential at if

X(p) = 0, whenever x

Because of (11) and Leihnitz's rule, this definition does not depend on
the choice of the defining function of ft

Next we fix an £ with £ < Ic. Then, any function fo defined on is
said to he of class C' if there is an extension f of fo to so that f is
of class on Rd. Now if X is a tangential vector field and f and f' are
any two extensions of ía, then as is easily seen X(f')Ioc�. (See
Exercise 8.) So in this sense we may speak of the action of a tangential
vector field on functions (lefmed only on

We now pass to the complex space that we identify with Rd, d = 2ri.
We do this by writing z e z (z1,. . . = + 1 <j <n,
and then setting x = (x1 x271) E with x3, 1 <j <n, as before.
and = Yj' for 1 � j � n. Vector fields on can now be written as

E
(Here it is necessary to allow the coefficients to be complex-valued.) Such
a vector field is called a Cauchy-Riemann vector field. if b3 = 0 for
all j. that is, X is of the form

x = 8

Equivalently, X is a Cauchy-Rienianmi vector field if it annihilates all
holomorph ic functions.
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Given a region (with C" boundary) then the above Cauchy-Riernann
vector field X is tangential if

= 0. where p3(z) =

Now near any fixed z0 E at least one of the p3(z°), 1 3 <n, must
he non-zero, since fVp(z°)J > 0; for simplicity we may assume 3 = n.
Then the n — I vector fields

a a 1<j<n—1
Z3

are linearly independent and span the tangential vector
fields near Z° (up to multiplication by functions).

Without making the particular choice 3 = n one notes that the n(n —
1)12 vector fields

a aPkPjm
0z3

span the tangential Cauchy-Riemann vector fields (globally), but of course
are not linearly independent.

There is a way of expressing this neatly by using the language of dif-
ferential forms. Suppose u is a complex-valued function. Then we can
abbreviate the equations I,, for I 3 n, by

L = f,

with and f the "one-forms"4 defined by -d2j and
respectively. Now for any one-form w = we define the two-
form Ow by

Ow
=

w3 A

=
1<k,j<n

=
- A d,

4More precisely, (0, 1)-forms
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since A = A in this formalism.

With this notation tile inhomogeneous Cauchy—Riemann equations (4)
can he written as 3u f. and the consistency condition (7) is the same as

= 0. Moreover a function is annihilated by the tangential Cauchy-
Rieriiann vector fields ((12) or (13)) exactly when

(14) OF() = 0.

So whenever F0 is the restriction to Oci of a function of class C' (f') that
is holomorphic in ci, it must satisfy these tangential Callchy—Rienlann
equations. The remarkable fact is that, broadly speaking, the converse
of this holds. This is the thrust of Bochner's theorem.

Theorem 4.1 Assume ci is a bounded region in whose boundary is
of (la,ss C3, and suppose the complement of Q is connected. If F0 is a
function of class C3 on 8ci that satisfies the tangential C'aachy-l?iemann
equations, then there is a holomorphie function F in ci that is continuous
in, ci, so that = Po.

fact that sonic cominectedness property is required for both this arid
the previous theorem can be seen in Exercise 10.

The proof of this theorem is in the same spirit as the previous one,
hut, the details are different. The function Ph of class C3(aQ) can. by
definition, be thought of as a function of class C3 oui the whole space.
Now F0 satisfies the tangential Cauchy-Riemnann equations, and we can
modify it (without changing its restriction to so that the modified
fuiictiori F1 is of class C2 and

(15) = 0.

This niodification is achieved by taking F1 = F0 — ap, where a is a suit-
able C2 function. Indeed. already satisfies the tangential Cauchy-
Riemnann equations. An independent Cauchy-Riemammn vector field (that
is miot tangential) is given by N, with

N(f) =

In fact. we note that
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Thus if we set a = N(Fo)/N(p) near the boundary of ci and extend a
strictly away from the boundary to be zero, then (15) is achieved because
of (14).

now define the one-form f in Q by f = HF,. Then f is continuous
on is of class C' (Q), vanishes on IKI, and satisfies öf 0 in the inte-
nor of We can now extend f to (keeping the same name) so that
f 0 outside of Then f satisfies 9f 0 in (at least in the sense
of distributions). This would be evident, if we supposed that F0 and
were of class C4 instca(l of class C3. In the latt er case an athlitional
argument is needed (see Exercise 6 in Chapter 3). We can now invoke
Proposition 3.2 to obtain a continuous function 'U so that, Ôu = f arid
moreover a has compact support. Since u is holomorphic on

QC
and this

set is connected, it follows that u vanishes throughout ç1C
and by conti-

nuity it vanishes on aci. Finally, take F = F1 — u, then F is hioloinorphic
in continuous in and = 1'\ completing the proof
of the theorenri

TI, the case n 1. there are no tangential Cauchy-Rieniann equations
and the conditions on F0 are global in nature. See Exercise 12.

By a (lifferent argument one can reduce the degree of regularity in-
volved on See Problem 3*,

Given the nature of the conditions I hat are sufficient when n > '1. it
is natural to ask if there is in fact a "loc,al" version of the extension
t heorenri just proved. For this to be possible. the formulation of such a
result must distinguish on which "side" of the boundary this continuation
holds. The exairiple of the "inside" of the sphere. where continuatiomi
takes place as opposed to tine "outside" where it fails, suggests that a
convexity property might he involved. This is indeed the case because of
he complex structure of as we will see when we examine the local

nature of time boundary of a region

5 The Levi form
Let us briefiy glance back to the situation iii We will see that, near
any boundary point the region can be put in a very simple canonical
forum. We already rioted earlier that near .r0, in the appropriate coordi-
nates. we can represent Q as {.rd > w(.r')}. Now if we introduce new co-
ordinates £d). by = — p(x'), = x,j, 1 <3 <d (with
inverse Xd = + .r3 = 1 <3 < d) we obtain that locally 11 is
now represented by the half-space > 0, and by the hyperplane

=0.
However to be applicable to the study of holomorphic functions
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the new coordinates that we can allow (that is, the change of vari-
ables that is permissible) must be given by liolomorphic functions, so
our choices are more restricted. The coordinates that result from such
changes of variables (starting with the standard coordinates about a fixed
point z°) will he called holomorphic coordinates. Here we assume
that is of class C2, and use the notation z3 = + iyj.

Proposition 5.1 Near any point z0 e we can introduce holomorphie
coordinates (zi,. .. , centered at z0 so that

(16)
>

AiIziI2 + E(z)}.

Here the are real numbers, and E(z) + + o(1z12), as

z 0; also is a linear function of x1,.. . ,x71_i,yi, . . 1, and
D is a real number.

A few remarks may help to clarify the nature of the cannonical represen-
tation (16).

• By making a further change of scale
—+ Sj z3. 6j 0. we carl set

the to be either 1, —1 or 0.

• The number of that are positive, negative or zero (the signature
of the quadratic form) is a hiolomorphic invariant as we will see
below.

• It can be seen from (16) that it is natural to assign the variables
z1,. .. , "weight 1" and the variable "weight 2," which, dis-
regarding the error term, makes the expression homogeneous of
weight 2. This homogeneous vcrsion of (16) gives us the "half-
space' U that we consider further in the Appendix to this chapter.

• If we had assumed that was of class C3. then the error estimate
o(1z12) would be improved to O(IzI3). as Z 0.

Proof of the proposition. As iii (10). we see that we can introduce
complex coordinates (with an affine complex linear change of variables)
so that near z0 the set 11 is given by

IIii(Zn) >

5f(z) = o(fzJ2) as z 0 means that If(z)I/1z12 0, as Izi 0
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with z = (z', Zn), z' = (zi. Zn_i), and z3 x3 + iy3. We can also
arrange matters so that 0) = 0 and

a a a
1 j it — 1.

Using Taylor's expansion of 'p at the origin up to order 2 we see that

1<j,k<n—1

+
1<j,k<n -1

+o(1ZJ2), as z

Here 133k = I3kj and is a (real) linear function of the variables x1,...,
Xn_1 and .. , Yn—i' with D a real number.

Next we introduce the (global) holomorphic change of coordinates
— 2i <j,k<n— 1 and ck = Zk, for I <k <n — 1. Then

= + and thus in these
new coordinates (where we immediately relabel the ('s as z's) the func-
tion 'p becomes I3ikZiZk + Tne(Z') + + o(1z12).

Next, a unitary mapping (in the z1,... , variables) allows us to
diagonalize the ilermitian forni and 'p becomes

+ + + o(1z12)

with the eigenvalues of the quadratic form. This proves
the proposition.

The Ilcrmnitian matrix { } that appears implicitly above,
j k 1<j,k<n—1

or its diagonalized version the form in (16), A31z312. is referred to
as the Levi form of (at the boundary point z°.) A more intrinsic def-
inition comes about by noticing that the vectors 1 <j <it — 1,

are tangent to at ZO. If p(Z) = 'p(z'. Xn) — then the corresponding
quadratic form is

1<j,k<n

restricted to the vectors that are tangential at z0. Note
also that these tangent vectors forrmn a complex subspace (of complex
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dmieiision n — 1) of the full tangent space (which has real diinensioii
2ri —1)

Now let p' be allot her definuig fuiictioii for ft Then p' = ep with e > 0.
and we assume e is of class C2 Then by Leibniz's rule.

'2' 2>:

p = () there. and also = 1) beCause ();k
i', tan-

gent ial. Thus the signal ure of the form (18) is independent of the choice
of defining function.

Finally let, z = w be a biholomorphic mapping defined near the
origin (with 0), giving us a new holomorpliic coorolinate system
(w1 w.v) in the neighborhood of 20. Then by holomorpliicity the
diffei elitial of maps tangent vectors at z0 of the form 0k to

tangent vectors of the fonri a (lefinling fumction

of ( then p' ( z)) p" ( z) is another (lefi ib ig function of near z0
and we can conclude by the above that the signature of (18) is invariant
un(ler holomorphic hijections.

With regard to the above, one says that a boundary point E is

pseudo-convex if the form is non-negative, and strongly pseudo-
convex if that fornri is strictly positive definite. A region is pseudo-
convex if every boundary p01111 of Q has this property.

A good illustration is given by the unit ball {IzI < I }. If WO take
p(z) = 1212 — I to he its defining function, we see that at every boundary
point the Levi form corresponds to the identity matrix, and hence the
unit ball is strongly pseudo—convex.

Pseudo-convexity may be thought of as the complex analytic analog for
n > 1 of the standard (real) Convexity jfl for the latter see Exercise 26
in Chapter 3 and the problems in Chapter 3 of Book III. The nature of
tile Levi form at z0 turns out to have iniportant miplications for the
I)ehavior of holornorphic functions defined iii Q near 20. In particular,
we shall next see some interesting consequences that follow if one of the
eigcnvalues of the Levi form is strict ly positive.

6 A maximum principle
A noteworthy imphicatioii of the partial positivity of the Levi forni is thie
fohlowimig "local" maximum J)rinciple in n � 2. which has no analog
in the case ii = 1.
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Suppose we are given a region with boundary of class C2, arid B
is an open hail centered at some point z0 e 8ft Assume that at each
z E fl B at least one eigcnvalue of the Levi form is strictly positive.

Theorem 6.1 In the above circumstances there exists a (smaller) ball
B' C B, centered at z0, SO that whenever F is a holomorphic function
on fl B that is continuous on fl B, then

(19) sup IF(z)i < sup IF(z)I.
zE8QflH

A counter-example of assertion (19) in the case n 1 is outlined in Ex-
ercise 16.

Proof. We consider first the special situation when z0 0 arid is
given in the canonical form (16). We may assume that > 0.

We write z where z" = (z2,. . e and we
consider points of the form (0,0, We denote by B Br the ball
of radius r Cefltere(l at the origin and prove that whenever 0 <
cr2, with r sufficiently small, then at these special points we have the
prelirrunary conclusion

(20) 1E(z)t.

ITere c is a constant to be chosen below (c min(1, A1/2) will do).
This will be proved by considering the complex one-dimensional slice

passing through the point (0,0. Indeed, let {z1 . (Zi , 0, E

fl Br}. It is obvious that is an open set containing the point
(0,0. iyn). We note the following key fact: if r is sufficiently small, then

(21) If z1 E Of�i then (21,0. iy71) E fl Br

Indeed, if z1 is on the boundary of the slice then either (Zi , 0. is

on the boundary of or (z1. 0, is on the boundary of 8r (or both
alternatives hold). in fact the second alternative is riot possible, because
if it held, then it would imply that zi 12 + r2. Since cr2 this
yields Izi 2 r2 — c2r4 � 3r2/4, if we take c < 1 and r < 1/2 Moreover
since any such point must he in we must have that � Ai zi 12 +
o(Izi 2) arid therefore cr2 � + o(r2), which is riot possible if we
take c < A1 /2 and r is sufficiently sniall. Since now the second alternative
has been ruled out, we have established (21).

Now for fixed, we define f(zi) = F(zi , 0, Then f is a holo-
morphic function in z1 on the slice and is continuous on Since
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0 e the usual maximum principle implies

IF(0.0,iy,1)I 11(0)1 < sup If(zi)I = sup If(zi)I < sup IF(z)1.

because of (21). Therefore the claim in (20) is established.
We will pass from this particular estimate to the general situation by

showing that for every point z E Q sufficiently close to the boundary
of ft we can find an appropriate coordinate system so that with respect
to it the point z is given by (0.0, and thus the conclusion (20) holds
for z. This is done as follows.

First, for every point z E sufficiently close to there is a (unique)
point ir(z) E Of I which is nearest to z and irioreover, the vector from ir(z)
to z is perpendicular to the tangent plane at ir(z). Now at each ir(z) E DQ
we can introduce a coordinate system leading to the description (17) of
near ir(z). We also observe that the mapping from the initial ambient
coordinates of to those appearing in (17) is affine linear and preserves
Euclidean distances. Because of the orthgonality of the vector from ir(z)
to z to the tangent plane, the point z has coordinates (0,0. iyrL) in this
coordinate system, and in fact I z — ir(z) I =

With B the initial ball centered at z0, we will define B' Ba(z°) to
be the ball of radius 6 centered at z°. That radius will be determined by
another radius r, so that 6 with the constant specified below.
We will have () < 1, and ultimately take r (and hence 6) sufficiently
small.

We can assume that is the largest eigcnvalue appearing in (17) and
since Of I is of class C2, the quantity A1 varies continuously with the base
point ir(z). We denote by the inflmum of these and in parallel
with the special case treated above we set = min(l.

We then note that if z E fl B5 and we take r sufficiently small, then:

• Iz — ir(z)j <6, and.

• Br(ii(Z)) C B.

In fact if z e B5 (z°). then z0 E Of I implies that d( z, Of I) < 6, which
gives Iz — ir(z)} <6.

Secondly

SO if (E Br(7t(Z)), then IC — <r while Iz — mr(z)I <.6, and Iz —
z°1 <6 (since z B5). This means that K — z°t <r + 26, and hence

E B, if r (and then 6 = are sufficiently small.
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We can now return to the argument leading to the proof of the special
case (20). With the ball Br(ir(z)) playing the role of Br above, we see
as before that we obtain (20) by the maximum principle, because for
z E Q fl B we have > 2 + o(1z12), Zi 0 with an "o" term that
is uniform as z (and hence mr(z)) varies. (This uniformity is a consequence
of the fact that the corresponding term in the Taylor development
of in (17) is uniform, by virtue of the fact that p is of class C2.)

All this shows that if we take r sufficiently small, and = then
for z E B6(z0) B' the conclusion of the theorem holds.

The implication of the theorem, and its proof, are valid in a more gen-
eral setting where the boundary is replaced by a local hypersurface.
This can he formulated as follows.

Suppose M is a local C2 hypersurface given in a ball B with a defining
function p, so that M = {z E B: p(z) = 0}. Set = {z E B: p(z) <
0}.

Corollary 6.2 Suppose the Levi form, as given by (18), has at least one
strictly positive eigenvalue for each z M. Under these circumstances,
for every z0 E M there is a ball B' centered at z0 so that whenever F is
holomorphic in ft and continuous in IL U M we have

(22) sup IF(z)I sup IF(z)I.
zEcl_flB' ZEM

The theorem we have just proved tells us that when an cigenvalue of
the Levi form is positive, the control of the restriction of a holomorphic
function to a small piece of the boundary gives us a corresponding control
of the function in an interior region. This is a strong hint that for such
boundaries a local version of Bochner's theorem (Theorem 4.1) should
be valid. Our proof of this will he based on a remarkable extension of
the Wcicrstrass approximation theoreni, to which we now turn.

7 Approximation and extension theorems
The classical Weierstrass approximation theorem can be restated to as-
sert: given a continuous function f on a compact segment of the real
axis in C', then f can be uniformly approximated by polynomials in
z = x + iy. The general question we will deal with is as follows. Suppose
M is a (local) hypersurface in Ci'. Given a continuous function F on M,
can F be approximated on M by polynomials Pe in zi, Z2,. . . ,

Note that if n> 1, the restriction to M of each necessarily satisfies
the tangential Caucliy-Riemann equations, arid so F would necessarily
have to satisfy these equations in at least some "weak" sense. We shall
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110W see that this necessary condition is indeed sufficient. That is the
thrust of the Baouendi-Trcves approximation theorem stated below.

We suppose we are given a C2 local hypersiirface Al in C'1, defined
near 2° E Al. which after a complex affine-linear change of coordmatcs.
the point z0 has been brought to the origin and Al is represented near
z0 as a graph

(23) Al {z (z',z11) :

If we set p(z) = — withy11 the tangential Cauchy-
RieTilami vector fields are spanned by

(9 8
23

with P3 and in particular — i), where we define
= Titus we can write the corresponding i angential Cauchy-

equations as

wit Ii

(24) L3(f) = — where a3 Pj/Pn.

In the coordinates (z', x.,,) on M, these become L3(f) = —

Next, we define the transpose of natricly, by

= —
—

2 8x11

so that

f and are C1 functions, with one of them having coni—
pact support. (We use the shorthand dz'dx11 to designate Lebesgue inca-
sure on x In view of the above we say that a continuous func-
tion f satisfies the taiigential Cauchy-Riemann equations iii the weak
sense if

/ dz'dx =
'xk
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for all that are in C' and whose support is sufficiently small Our
theorem is then as follows:

Theorem 7.1 Suppose M C is a hypersurface of class C2 as above.
Given a point z0 E M, there are open balls B' and B, centered at z0, with
B C B, so that: if F is a continuous function in M fl B that satisfies
the tangential £'auchy-Riemann equations in the weak sense, then F can
be uniformly approximated on It'! fl B by polynomials in Z1, z2,. . . , -

Two remarks may help to clarify the nature of the conclusion asserted
above.

• The theorem holds for all Ti � 1. In the case n = 1 there are of
course no tangential Cauchy-Rieniami equations so the conclusion
is valid without, further assumptions on F. Note however that
in general the scope of this theorem imist be local in nature. A
simple illustration of this arises already when n = I and Al is the
boundary of the unit disc. See also Exercise 12.

• Note that for n > 1, there are rio requirements on a Levi form
related to Al.

Proof. We shall first take B small enough SO thai, in B, tire hy-
persurface It! has been represented by M = p(z', )} where z0
corresponds to the origin. Besides 0) 0. we can also suppose that,
the partial derivatives I 3 < n, and 1 3 n — 1, vanish at
the origin.

Now for each u E sufficiently close to the origin we define the
slice of Al to be the n-dimensional sub-manifold given by

= {z : = p(z', x71). with z' = x' + iu}.

We let = be the mapping identifying the neighborhood of the
origin with M, given by = (x' + iu,

x IR = R". Observe that M is fibered by the collec-
tion {M,, Now for fixed u, the Jacobian of the mapping x
that is. is the complex n x Ti matrix given by I + A(x), where the en-
tries of A(x) are zero, except in the last row, and in that row we have the
vector So A(0)=0, and
We shall need to shrink the ball B further so that A(x) < 1/2. on this
ball, where

- denotes the matrix-norm.
Now with u fixed, the map carries the Lehesgue measure on to

a measure (with complex density) = 3(x) dx on defined by

f f(z) = f dx, where 3(x) = det
114,,
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for every continuous function f with sufficiently small support.
Next take B' any ball with the same center as B hut strictly interior

to it. Define x to be a smooth (say C1) cut-off function which is 1 on
a neighborhood of B', and vanishes when x B. With this, define for
each u E W'_' (close to the origin), and e > 0. the function F by

(25) n/2 f
Here we use theshorthand w2 = +..- ifw = (w1,. . . ,w.11) E

We should remark at this point that, like the classical approximation
theorem, the argument below comes down to the fact that the functions

form an "approximation to the identity" in •6

The have the following three properties:

(i) Each is an entire function of ( E

(ii) Whenever (E and B', the converge uniformly to
as f —÷ 0.

(iii) For each u, — = 0, uniformly for ( E B'.

The first property is clear, since is an entire function in (,
and the integration in z is taken over a compact set.

For the second property note that z E and (= + E if
z = and = with = Therefore

(z - - = - ) + -
= ((1 + - + O(Ix -

Now making our initial ball B smaller if necessary (which of course de-
creases the size of B'), we can guarantee that whenever z and ( arc
iriB

(26) c>O,

once we take into account that < 1/2. Thus the exponential ap-
pearing in (25) can be written as + o
Thus = I + II, with

= f n/2 f dx

6For the classical theorerri, see for instance Theorem 1 13 in Chapter 5 of Book I
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and

II [
I

I +A(.r). Now
after a change of variables v = x — the first integral is handled by the
following observation.

Lemma 7.2 If A is an n x n complex matrix with constant coefficients
and tAll < I then for every e > 0

(27) det(I + A) f dv 1.

Corollary 7.3 If f is a continuous function of compact support, then

det(J± A)
f

e —* 0.

To prove the lernitia note that Re( ((I + A)v)2) � — It vt2 � vt2.
with c> 0, so that the integral in (27) converges. A change of scale
reduces the identity to the case c = 1. Now if A is real, a further change
of variables v' (I + A)v (which is invertible since It Alt < I) reduces this
case to the standard Gaussian integral. Finally, we pass to the general
situation by analytic continuation, noting that the left-hand side of (27)
is holomorphic in the entries of A, whenever ttAlt < 1. The corollary then
follows from the usual arguments about approximations of the identity as
in Section 4, Chapter 2 in Book I and Section 2 in Chapter 3 of Book III.

Now the term II is dominated by a multiple of ch/2IvI3e_c'1v12 dv =
cc112, as is seen by a change of scale. Thus property (ii) is proved.

Up to this point, we have riot used the fact that F satisfies the tangen-
tial Cauchy-Rieniann equations. it is iii the proof of property (iii) that
this is crucial. We begin by considering the case where F is assumed to
be in class Later we will see how to lift this restriction. We recall
that the tangential Cauchy-Riemann vector field is given by (24).

Lemma 7.4 Suppose f is a C1 function on M. Then

(28) fdzi3

for alll <j <n—I.
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Proof. Recall that (x) (x' + in. + + in. xv)) and
from before we have that det = i + Also. recall that p(z)

— hence, for 1 <j < ii — 1, OflC has

L—0 pjc() 2

—

+
i (1 +

and therefore

f L3(f) f +

2[ Of I OpOf
I

£7Z3 UZJ

where we simplify the writing by sometimes omit ting frorri the formit-
las. Now, starting from the left-hand side of (28)

(/ f(z)drnn(z)) (f. ML .

f/Of Of\ . . I /'Of Of

= J
+ (1 + - if

where we have used an integration by parts and the fact that f has
compact support to obtain the second integral on the right-hand side.
Using the fact that f has compact support again, we also note t hat

0= 1 th3

[ (Of Of \ . I (Of Of'\
= / ( + 1 (1 + — j Px, ( -a—-- +

\OXj &YnJ \UXn uy111

where oiice again we have integrated by parts to obtain the last integral
Combining the two results above we find that

f f(z)drnu(z))
diij \

(Of OpOf\
= —2i + (1

\ 0Z3 0Z3 J
I Op(Of Of

— 2 +
\

2f Of . I OpOf
i

1
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which is (28).

Now set Then

L
— = I ds

j0 Ds
= /1

f(z) ds

f102
(

ds,

because of Leiriina 7.4. Now L3(f) since
is holomorphic in z. and L3(F) = 0 by assumption. How-

ever is supported at a positive distance from B'. So if ( E B', the
inequality (26) guarantees that

— O(e'2e C'/C) as 0

for some c' > 0. and the property (iii) is established, under the assump-
lion that F E C1.

To complete the proof of the theorem note that a combination of (ii)
and (iii) shows that converges uniformly to F when ( E M fl B'. Now
each Ff9, being an entire function of (. caii be uniformly approximated
by polynomials in (for ( in the set B'. Altogether then. F can
be uniformly approximated by polynomials on M fl B and the theorem
is proved ui that case.

To pass to I he general case note that what we have shown in (28) is that
when f is of class C1. u = (0,... ,0. 0 0). and v = (0,. .. ,0, v3.
0 0) then

2 f
(29) F(U =

- / J
L3(f)J(x)dxdy3.

vj

To extend (29) to the case where f is merely continuous, and L3 (f) (taken
ill the sense of distributions) is also contiinious, a limiting argument
with (29), as it stands. will not suffice. This is because the
definition of (f) requires an integration over x while iii (29)

we only integrate over x lit To get around this we observe first (still
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assuming f E C1 arid has compact support) that (28) implies

(30) -f =
ay3

- /
2

for any C' function i' on having compact support. Now at this
stage we can pass to an arbitrary continuous f of compact support (by
approximating such f uniformly by C1 functions) and see that (30) holds
for f that are merely continuous and of compact support.

As a result we have that

(31) - J dxdy' =
OyJ

=

L3 (f) is taken in the sense of distributions (assuming that L3 (f)
is continuous).

Now set = where is defined by ü = (i/i. • 0,

Yn—i). Here = 1 if v3 u3, and vanishes if y3 �
— Ô or 113 � + in addition c51. As a result note that

for any continuous function g

I
—J

asS—÷0,

since is the difference of two approximations to the identity centered
at a3 and v3, respectively.

Also = where = 1. making an
approximation to the identity in Inserting these in (31) and let-
tiiig ó —* 0 shows that the left-hand side of (31) converges to — F',
while the right-hand side converges to L3(f) dx d113, and (29)
is proved. The rest of the argument then continues as before. and the
proof of the theorem is now complete.

The approximation theorem just proved, together with the maximum
principle in Section 6 lead directly to the famous Lewy extension theorem.
Here again A'! is a C2 hiypersurface given in a ball B. with A! { z E
B, p(z)=0}. ={xEB. p(z)<0}.
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Theorem 7.5 Suppose that the Levi form (18) has at least one strictly
positive eigenvalue for each z E M. Then for each z0 E M, there is a
ball B' centered at z0 so that whenever F0 is a continuous function on
M that satisfies the tangential equations in the weak
sense, there exists an F which is holomorphic in fl B', continuous in

fl B' and so that F(z) = Fo(z) for z E M fl B'.

To prove the theorem we first use Theorem 7.1 to find a ball B1 cen-
tered at z0 so that F0 can be uniformly approximated (on M fl B1) by
polynomials {pn(Z)}. Then we invoke the corollary to Theorem 6.1 to
find a ball B' so that (22) holds (with B1 in place of B). Therefore the

also converge uniformly in n B'. The limit of this sequence, F,
is then holomorphic there. continuous in fl B', and gives the desired
extension of F0.

8 Appendix: The upper half-space
In this appendix we want to illustrate sonic of the concepts discussed in the present
chapter, as viewed in terms of a special model region. We will oniy sketch the
proofs of the results, leaving the details to the interested reader, and providing
sonic further relevant ideas in Exercises 1 7 to 19

The region we have in mind is the upper half-space U in given by

U = {z E : > Iz'12},

and its boundary

(32) = {z E C", iz'12},

with z = (z', zn), and z' = (Zi. . . —1). It is prompted by the canonical forrri (16)
The region U in C", ii> 1, plays a role similar to the upper half-plane iii C' The
definitions suggest that can be thought of as the "classical" variable, while z'
is the "new" variable that comes about when n> I. As in the case n = 1, the
region U is holomorphically eqinvalenit with the unit ball {w E C" wi < 1 } via
a fractional linear transformation. namely

i—z,, 2ZZk
= = . k = 1,. . .11 — 1,

z+Zn

as the reader may easily verify.
This mapping also extends to a correspondence of the boundaries, except that

the "south-pole" of the unit ball (0, . ,0, —I) corresponds to the point at infinity
of The analysis of the region U is enriched by a number of symmetries it
enjoys

The boundary of U, which by (32) is parametrized by (Z', x car-
ries a natural measure dli dm(Z', with the latter being Lebesgue measure
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on 1 x R More precisely, if F0 is a function on 811. and (lesignates the
corresponding function on 1 x

/ /2 /+i1z
I ) =- F1(z

then by definition

/ Fodl3= I
JÔU

8.1 Hardy space
In analogy with C'. we consider the Hardy space H2(U), which consists of all
functions holornorphic in U. that satisfy

supf
e>() 01.1

R)r those F the number II J(2(U) is defined as the square root of the above supre—
nmim It will be (onvenlent to abbreviate F(z'. —f- by and sorneti,,ies
also use the same symbol fo, the restrict ion of F( to LIU.

Theorem 8.1 Suppose I 1J2(U) Then, when restrü ted to z E 811, the limit

urn =-
c—

exists in the j2 (811. d8) norm. Also

II' =- IIF0II/2(OU).

For several below we use the following observation

Lemma 8.2 Suppose 13, and B2 are two open balls in with C B2 Then,
wheneeer f is holomorphic in

SUP If(z')12 <cf f(w')I2drn(w')
H2

Indeed for suff,cier,tlv small Ô, whenever z' E B, then C since f is
harmonic in 2 the mea,,—value property and the Caucliy—Sclwarz inequality

es

If(z/)12 < 1 f lf(w')l2 dm(w'),

proving the

The proof of the theonem can be giveii by the Fourier transform representation of
each F E H2(U) in analogy with the case a = 1 treated in Chapter 3 of Book LIT
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We define the space of furict ions f(z'.A), with E x that are
jointly measurable, holomorphic in z' e for aliriost every .X. and for which

= f f f(z'. dm(z') dA <

One can show that with this norm the space 3-1 is complete and hence a 1-lilbert
space (see Exercises 18 and 19). With this, ('very I" E 1!2(U) can be represented

(33)
= f with f E fl.

Proposition 8.3 1ff E 'l-(, then the integral in (33) eonverqes absolutely and uni-
formly for (z', lyinq in compact subsets of U, and F e 112(U) Gonversely any
F E 1-12(U) can be written as (33) for some f E 3-1

In fact if (z'. belongs to a compact subset of U, we may suppose that
Im(zn) > + for some > 0 will also restrict z' to range in a ball
B1, with B1 c 32, and take the radius 32 so small that > 111,112 + €/2.
if w' E 32.

Now by the Cauchy-Schwarz inequality the absolute value of the integral in (33)
is estimated by

If(z'. —c/2)
1/2

e dA)
1/2

Tnvoking tile lemniria we get as an estimate for this

(fec
f f(w'. dm(w') dA)

1/2
= (/1(1/2(1111

This shows that the integral converges absolutely arid uniformly when z' E B1 and
> + c, and thus uniformly on any compact subset of U. Thus F is

holornorphic in U Observe next that for F given by (33). FF(z) = F(z', ± is
given in ternis off1. with f1(Z',A) Now for fixed Z'. PlanchereFs
theorem in the variable shows t hat

±jIZ'12)I2dXn
= J If

Integrating in z' gives

IF112d5=

By the same token, — d/3 = hf1 — f' 0 as 0 Thus F1
converges in to a limit F0 given by (33) with un IZ'12 Moreover

(34) IlF011L2(iuu) = IIFhln2(u) = If lit.
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Conversely, suppose F e 112(U). One observes that whenever z' is restricted to a
compact subset of

IF(z'. + <

(here we use Lemma 8 2 and also follow the reasoning used in the case n = I to
study in Section 2 of Chapter 5 in Book III ) We set !'?(z) = +
fr)(l — i5zTj2 Then for each z', the function is in JJ2 of the half-space

> So we may define A) by

= fe

noting that the right-hand side is independent of Yn, if Yn > by Cauchy's
theorem Also then b? is represented by (33) with f and E ?-L

Now letting 5 0 and using (34) we see that (z) is given by (33), with
in place of f, and that E 1-1 Finally, since (z) = F(z', + w),

we have that (z', A) f(z', and using (34) again with e 0 gives us
the representation (33) for our given F E ff2(U) The theorem is thus proved.

Remark. By the completeness of 1-( given in Exercise 19 we see that H2(U) is
also a Hilbert space

We now ask

Which k() e L2(OU) arise as lim( F e H2(U) ?

When n> I the tangential Cauchy-Riemann operators provide the answer. If
F0 is given on recall that = Fo(z', + ilz'12) is the corresponding
function on x 1t In this setting the vector fields given by

j=1, ,n—l,

form a basis for the tangential Cauchy-Ricmann vector fields, as is given by (24).
with p(z) z'j2 — Note that in this case = —L3 So here a function
C E x R) satisfies the tangential Cauchy-Riemann equations Ii, (G) = 0,

3 1, . n — 1, in tile weak sense, if

(35) = 0, 1 <3 <n—i.

for all that are (say) COC and have compact support.

Proposition 8.4 An Po in L2(aU) arises from an F E H2(U) as in Theorem 8 1
if and only if satisfies the tangential C'auchy-Riemann equations in the weak
sense

Proof. First, assume that F E 112(U) Then since F, is holomorphic in a
neighborhood of U, the function satisfies L3 = 0 in the usual sense The fact
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that in the L2(8U) norm (which is the same as —+ in x R))
then implies that satisfies (35) with G =

Conversely. G is in 1 x 1R). and set

(36) q(z'.A) = fe

Also choose Then by Planchereis theoreni in the
variable,

f G(z'. (XTL) =
— f g(z'. A)27ri 2(—A)

for almost every z' Integrating in z' then shows that

-' xR
=

= —

So if C satisfies (35) it follows that

g(z',A) — dm(z') = 0

for almost every A. and this means that

/ 2irIz'12Aj , ) / /

j f(z.A) (z)dni(z)=0.
J"n—l 0Z3

where f(z'. A) = g(z'. which itself implies that f(z'. A) satisfies the
Cauchy-Riemaun equations in C" 1 the weak sense. for alniiost every A But we
saw in Section 1 that this shows that the functions f(z', A) are holomorphic in z'
Now (36) and the Fourier inversion formula shows that

ff Ig(z',A)I2dm(z')dA
= ff

2

are both finite. Also, with given by (33). we have G(z', = E(z'. ± ilz'12)
Finally, because f(z', A)12e - 13A12 2 dm(z') <oc for almost every A, then
necessarily f(z'. A) = 0 for those A that are negative Thus we have given C as

F as mi (33), and f E 7-1. The propositioni is therefore proved

8.2 Cauchy integral
The Cauchy integral7 in U can be defined as follows For each z, in we set

7A iso referred to as the Cauchy-Szegö integral
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wit Ii z (z'. zn). u = (w'. wn) and

ZI = + + 1 —1.

Note that I (z, in) is l1O1()mOrphic in z, conjugate holornorphic in in. and r(z, z) =
— = —p(z). with p the defining function for U used earlier

Next. we define

S( z, ii;) = r ( z, w)— . where =

Observe that S(z. w) = S(w, z), and that for each w e U, the function z I S(z. w)
is in H2(U) Also for each Z C U. the function it, S(z. w) is in L2(aU) We define
the Cauchy integral C(f) of a function f on U by

(37) C(f)(Z) S(z, w)f(w) d8(w), z E U.

The reproducing property of C is what interests us here

Theorem 8.5 Suppose F e I!2(U), and let F0 - urn1 in Theorem 8 1

Then

(38) ('(].jt)(Z) = F(Z)

The key lemma. used is an observation giving a reproducing identity for a related
space of entire functions on C" We consider the holornorphic functions f on

for which

f,1—1

2

drn(z') <

where A > 0 i' fixed.

Lemma 8.6 Por f as above, we have

(39) 1(z')
=

KA(Z',w')f(w')e 12 dm(w')

with KA(z'. w') = w'

Proof In fact, consider first the case when 4A 1, and z' = () (39),
which states f(0) = 11 12 dnt(w'), is a simple consequence of the
mean—value property of f (taken on spheres in centered at the origin) and
the fact that e

12 dm(z') = 1

We now apply this uleritity to w' f(Z' ± u for fixed Z' Ihe result

is then (39) when 4A = I A simple rescaling argument then gives (39) in general.

Turning to the proof of the theorem. we observe that

S(Z, w)
= f A" dA,
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since AA = (n — l)'A whenever Re(A) > 0. So. at least formally.

f S(z. w)Fo(w)

I I . I / 2 n j w) I= i ; l'o(w .tt, -t-
I

)A e drrt(w
.10

But u.s have seen

- / 2iriA(u, ) I
1-o(w , ± = f(w , A)

Now insert this in the above, recalling that i(z, w) = — z' and that.

f -1 A) 4irAIii' 2
drn(w') = f(z'. A) The result is that

f S(z.w)Fo(w)d/3(w) = fDli

which by (33) is what we want to obtain.
To riiake this argument rigorous, we proceed as in the proof of Theorem 8 1, with

the improved function F Then all 1 he integrals in quest ion converge
absolutely, and therefore the interchanges of integration are justified This gives
the reproducing property (38) for instead of F' Then we let. 6 0, and next

0, giving (38) for any F E f!2(U)

8.3 Non-solvability
We will use the Cauchy integral C to illuminate a basic example of Lewy of a
non—solvable partial differential equation

Here we look at U in C2. with its boundary paranietrized by C x We consider
the tangential Cauchy-Riemann vector field L = L1 = — izi i—. and show that
in order for L(U) = f to he even locally solvable, the function f must satisfy a
strinigenit necessary condit ion For purposes of the statement of the result, it will
be more convement to deal with

— C) (9
L = -—-- +

dx2

instead of L (To revert hack to L then one needs only to replace f by its coniju-
gate)

We consider the Cauchy integral (37). written now as acting on functions on
C x identified with 8ZA in C2. If f is such a function then (37) takes the form

(40) f S(z. U2 + iIwi I2)f(wi , U2) dm(wi , U2)
CxR

We can extend (40) to define 1 he Cauchy integral when f is a distribution (say of
compact support), by setting

C(f)(z) = (f,S(z,n2 +ilWlI)), z EU



Chapter 7 A GLIMPSE INTO SEVERAL VARIABLES

here ( . ) is a pairing between the distribution f and the function (wi . U2)

S(z. u2 + ilwi 12). with z fixed The necessary condition is then

(41) C(f)(z) has an analytic to (2 neighborhood of 0

Note that this property (lepends only on the behavior of f near the origin Indeed.
if fi agrees with f near the origin, then C(f — fi) is automatically holorriorphic
near the origin, because visibly S(z, w) is holornorphic for z in a small neighborhood
of the origin, with w staying outside a given neighborhood of the origin in

Theorem 8.7 Suppose U is a distribution defined on C x R, so that L(U) = f in
a neighborhood of the origin Then (41) must hold

Proof Assume first that U has compact support. and L((J) = f everywhere.
Then

C(f)(z) = S(z. U2 + ulwi 12)) = (7(U), S(z, U2 + ifwi

= —(U,L(S(z,u2 +iIwiI2)))
=0.

since T(S(z. U2 + iIwi = 0, because to S(z, w) is conjugate holoniorphic. Thus
trivially C(f)(z) is holoinorphic everywhere.

If U does not have compact support and L(U) = f only in a neighborhood of the
origin, then replace Uby qU, with r, a cut-off function that is 1 near the origin
With U' = rjU. then L(U') = f' everywhere, so C(f') = 0 hut C(f — f') is analytic
near the origin because f — f' vanishes near the origin of C x R. Therefore (41)
holds.

We give a particular example Take the function

L/2 1/2
P(zl,z2) = e212) e = F(z2).

It is easy to verify that P is holomnorphic in the half—plane Im(z2) > 0, continuous
(in fact COC) in time closure, and rapidly decreasing as a function of (Zi, Z2) E U.
ITowever it is clearly not holomorphic in a neighborhood of the origin

Now set f = that is. in the C x R coordinates, f(zi. X2) F(z2 + iIzi 12).
however C(f) = P by Theorem 8.3 —

Thus we have reached the conclusion that L(U) = f is not locally solvable near
the origin, even though this particular f is a function

9 Exercises

1. Suppose f is holomnorphic in a polydisc fPr(Z0). and assume that f vanishes in
a neighborhood of z0 Then f = 0 throughout
[Hint Expand f(z) = OQ (z — in using Proposition 11. and note
that all are zero

2. Show that
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(a) If f is holomorphic in a pair Pa(z°) and of polydiscs centered at z°
with a (ai. , and T (Ti... , m), then f extends to he holoinor-
phic in Pr(Z°), wherever r = (ri. . rIL) and r3 < 1 <3 < n, for
some 0 < 0 < 1.

(b) If S = { s (Si, . s71), s3 = log r3, where f is holorriorphic in },
then S is ii COnVeX set

[Hint. Consider — z°) that represents f both in Pa(z°) and

3. Given any open subset of C', construct a holomorphic function f in Q that
cannot he continued analytically outside ft
[Hint Given any sequence of points in which does riot have a limit point
in there exists an analytic function in 11 vanishing exactly at those z,.]

4. Suppose is a bounded region in n > 1, and f is holornorphic in ft
Suppose Z, the zero set of f, is non-empty Then Z intersects that is, Z fl
is not empty.
[Hint Let w be a point in Let z0 E Z be a point furthest from w. Define 'y to
be the unit vector in the direction from to w, and let v be another unit vector
so that both ii and iv are perpendicular to 'y. Consider the one-variable function

given by = f(z° — + Then for f > 0, the function does
not vanish in a fixed neighborhood of = 0

5. Suppose f is continuous and has compact support in C'.

(a) Show that u = 1 * J in Proposition 3 1 belongs to Lip(a), for every a < 1.

(b) Show that u is riot necessarily in C'

[Hint. For (b) consider f(z) = but modified away from the origin to
have compact support.]

6. Verify the identity in C'

(DF/a()(c)dU
2irz ir ((—z)

for appropriate regions Q arid C' functions F this identity to give an alter-
native proof of Proposition 3.1

7. Prove the following. The necessary arid sufficient condition that the solution
u(z) = f of = f in C', have compact support when f has
compact support, is that

= 0. for all n >0.
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Flint In one direction. note that = z"f(z). For the converse, observe
that for large z. 71(z) with =

8. Suppose fl is a region in W' with a defining function p that is of class Ck.

(a) If I" is a function defined on and F = 0 on 8Q, show that = up.
with a E

(h) Suppose F1 on I Show that if X is any tangential vector field theii

[Hint Write F1 — = up

9. Verify that the extension I" given by Theorem '1 1 is the unique solution to the
Dirichlet problem for fl with boundary data Fo.

10. L the region {z E C71 p < Izi < 1} to show that the connectedness hy-
potheses in Theorem 3 3 and Theorem '1.1 are necessary.

11. That the connectediness properties in the hypotheses of 'I'heorenns 3 3 and 4 1
are related can be as follows. Suppose 11 is a bounded region with C1
boundary. For c > 0. let be the "collar defined by {z . d(z. 8f 1) < and
let = fL fl fl Then for sufficiently small the following are equivalent

(i) fl is connected,

(ii) ci. iS connected.

(iii) is connected.

[Hint: For instance to see Why (ii) or (iii) irniplies (i), suppose P1 and P2 are two
points in Q7, and let and l'2 denote the connected components of which
contain P1 arid P2 respectively Connect P1 to a point Qi on L)f I n T1, and P2 to
a point Q2 on I fl Since is connected one can then connect Qi to Q2 by
a path in ff

Conversely, to show that (i) implies (iii) for example. let A he a point in 11 and
B a point in f If and P1 belong to 8f1, let he any path starting at A
traveling in ci. passing through I-b, then traveling in ending at B Similarly, let

be path connecting A to B passing through P1 These paths can be constructed
because both ci and f1C

are connected Then. since is simply-connected, deform
the path yo into and denote such transformation by s.' with 1) < s I 'l'o
conclude, consider the intersection of with OfI

12. Let ci be a simply connected bounded region in C1 with a boundary of class C'
Suppose Fj> is a given continuous function on Show that a necessary and
sufficient colidit ion that there is an F. holornorphic in I, continuous on ci so that
F -= Fo on is that z'tFo(z) dz = 0, for mm = 0, 1.2.
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Hint One direction is ('lear frorri Cauchy's theorem For the converse define
(z) = according to whether z E Q or z E Now the hypothe-

sis implies that = 0, z Also !'(z) — z (if( E
z E ft the segment [z. (} is normal to the tangent line of at (, and i is the re-
flection of z across that line That is, = (. z E The convergence asserted

is related to the expression of the delta function given by iir6 = (—!-— --
2 x-,-zt)

in Section 2 of Chapter 3

13. Show that with an additional change of variables, that is. introducing complex
coordinates, the canonical representations (16) an(1 (17) of the boundary can be
simplified to state

=
± o(lz'12), for z' 0.

Hint Consider the change of variables z,1 — Zn(Ci Zi + + +
z3, 1 < J < n — 1. for suitable constants c1, . —

14. The fact that when n = I there are no local holomorphic invariants at bound-
ary points is indicated by the following fact Suppose is a curve in C1.
Then for every Z° e 'y, there is a holomorphic hijection of a neighborhood of

to a neighborhood of the origin, so that is the curve {y = p(x)}, with
= x 0

I-lint Suppose q = 02X2 + + aA,rk + o(xk) as £ 0, and consider (1) defined

by '(Z) = Z + i 2a3

15. Consider the hypersurface M in C3 given by Iv! = {Tnn(z3) = IziI2 — 1z212}.
Show that A! has the reniarkable property that- any hiolomorphic function F' defined
in a neighborhood of Iv! continues analytically into all of C3
[Hint Use Theorem 7 5 to find a fixed ball B centered at the origin so that I"
continues into all of B Then rescale.]

16. That the maximum principle of 'I'heorem 6 1 does not hold in the case ii
can he seen as follows Start with f(&°) E C'°, so that f � 0, f(&°) = 0 for lOt <
ir/2. f(&°) = I for 3ir/4 < 101 Write =
G(Z) = and FN(Z) = Verify that is continuous in the
closed disc IZI 1, IPNV°)I = 1, foi < ir/2 bitt � in the
closed disc, for two positive constants ci and (:2.
[Hint G(Z) = 'u + iv where u(r. 0) = f * F',. with P the Poisson kernel.]

17. Verify the following

(a) The inverse of the of U to the unit ball given in the Appendix is
.n—1
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(h) For each ((,t) E C"' x R consider the following 'traTlslation" on C". r((.t)
given by

r(çt)(z, = (z' + + t + 2i(z'

Then r((.j) maps U arid O1A to themselves, respectively. Composing these
mappings leads to the composition formula

(ct) ((',t') = ((+(',t+t'+21m((.(')).

Under this law C" 1 x becomes the "Heisenherg group"

(c) U (as well as alA) is invariant under the "non-isotropic" dilations (z'. z,,)
ö >0.

(d) Both U and 81,1 are invariant under the mappings (z', (u(z'). zn),
where u is a unitary mapping of C'1

18. Define to be the space of functions f holornorphic in C"1, for which

If(z)12e drn(z) If <oc.

Show that.

(a) fly. is trivial if A <0.

(b) is complete iii the indicated norm. so is a Hilbert space

(c) Define PA(f)(z) = I w) =
(4A)" ui

Then is the orthogonal projection of 2dm(w)) to

Show that convergence in the norm NA implies uniform convergence on
coinipact subsets of C"'. using Lemma 8 2

19. Prove.

(d) The space 7-1 in Section 8 1. is complete. and hence is a Hubert space.

(b) Show that the Cauchy integral f C(f) gives the orthogonal projection
from L2(OU, dfl) to the linear space of functions F0 that arise as lim, .o

F H2(U)

[hint- For (a), use the previous exercise.]
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10 Problems
The prohienis below are not intended as exercises for the reader but are
irieant iiistcad as a guide to further results in the subject. Sources in
the literature for each of the problems can be found in the 'Notes and
References" section.

Suppose f = f(zi, , is defined in a region C and for each j. 1
j <n. the function f is holomnorphic in z3 with the other variables fixed. Then
f is holomorphic in This was shown at the start of the chapter when f is
continuous, and the point of this problem is that no condition on f is required
besides the analyticity in each separate variable

An important ingredient in the proof of this result is ann application of the Baire
category theorem.

2.* Assume f is holomorphic in a neighborhood of the origin and f(0) = 0. Let
1(z) = z° be the power series expansion of f valid near the origin. The order
of the zero (at z = 0) is the integer k that is the smallest at, for which

a linear change of variables, we can write 1(z) = e(z) P(z) near the
origin, where + +ao(z') with and
while ak_I (0) = ao(O) = 0. This result is the Weierstrass preparation
theorem.

[Hint: Assume that our coordinate system (z'. E C is such that 1(0,
Then by Rouché's theorem we cain choose n > 0, so that Zk f(z'. Zk) has k

zeroes inside the disc tzkt <r, but is non-vanishing on the boundary, for all Iz'I <e.
Let 'yi(z'), 'y2(Z), . , be an arbitrary ordering of these zeroes. Then the
syrnnietric functions ai(z') = a2(z) = . . are

holomorphic in z', for Iz'I < This follows since the sums sm(z') =
1 <mm <k, have this property because they are given by the formula

1 f
w dw

2irz f(z ,w)

Now we need only take ak 3(z') = (—1)3u3(z'), and the result holds for P(z) =
+ ak_l(z)zk +. + ao(z').J

3•* The original proof of Theorem 4 1 represented F in terms of by
theorem via the integral." The result then held for !'b merely
of class C'

4. * We are concerned with the problem

thi = 1' on

where Q is a bounded region in with COC boundary and f is given in with
= 0 there

(a) If is pseudo-convex, and I E C°°(cI) then there is n E that solves (42)
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(b) The mormal' solution (if it exist';) is defined as the (unique) solution v in
for which

f uFdrn(z) = 0

for all F that are holomorphic in and are in L2 there For that are
stiongly pseudo-convex (and many other classes of whenever f E (cI),
the normal solution u also belongs to This results from the st udy
of the problem

5* Domains of holomorphy. A domain of holornorphy is a region with the
property that there exists a holomorphie function F SO that for every z0 E
the function F cannot be contmued into some ball centered at If is a
domain of holornorphy and has boundary of class C2, then fI is pseudo-convex, by
Theorem 7.5 Conversely, it (an be shown that if Q is pseudo-convex, then it is a
domain of holomorphy

6." The converse to Theorem 8.7 holds If f is a distribution with compact support
so that C(f)(z) is analytic iiear z = 0 then L(U) = f is locally solvable near the
origin

This is proved by finding a kernel K so that the convolution operator T(f) =
f K on the Heisenherg group is a relative inverse to L in the sense that LT(f) =
f C(f) Then write f = f — C(f) + C(f) = fi 4 12, with Ii f - C(f) and
f2 = C(f) We can solve L(Ui) = fi by what has just been asserted, and we
can solve L(Uti2) = 12 locally by the Caucliy-Kowaleski theoremii, since 12 is real-
analytic at the origin



8 Oscillatory Integrals in
Fourier Analysis

The origin of my devotion to these problems is after I
attended in 1839 Nichol's Senior Natural Philosophy
class, I had hecoriie filled with the utmost admira-
tion for the splendor and poetry of Fourier.. I asked
Nichol if he thought I could read Fourier I-fe replied
'perhaps TTe thought the book a work of most iran-
scendent merit. So Ofl the 1st of May. I took Fourier
out of the University Library. and in a fortnight I had
mastered it gone right through it.

W Thompson (Kelvin), 1840

This result might also have been obtained from the
integral U in its original shape, namely,

cos(x3 — nx) dx If Li be the positive value of
x which renders — nx a minimum, we have Xi

n Let the integral U he divided into three parts,
by integrating separately from x = 0 to x = xi — a,
from x = — a to x = Xi + b. and from x = Xi + b
to x = oo. then make ii infinite.

C C. Stokes, 1850

The study of oscillatory integrals arid their asymptotics has been a
vital part of harmonic analysis from the beginnings of the subject The
Fourier transform arid the attendant Bessel functions provided initial
examples of such oscillatory integrals. One should also note the study of
asymptotics in the early works of Airy, Lipschitz, Stokes. and Rierrianri.
In the work of the last two, the principle of stationary phase appears,
if only implicitly; for Stokes it was iii a reexamination of Airy's integral
and for Ricmann it was iii the calculation of certain Fourier series. This
principle was then used more generally by Kelvin in an 1887 paper on
water waves. The application of these ideas to number theory and lattice
point problems was initiated in the first quarter of the next century by
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Voronoi and van der Corput, among others
Given this long history it is an interesting fact that oniy relatively re-

cently (1967) (lid OflC realize the possibility of restriction theorems for the
Fourier transform. and the relation of the above mentioned asymptotics
to differentiation theory and maximal functions had to wait another ten
years to come to light.

Here we present an iiitroduction to the development of sonic of these
ideas. Of importance to us is the bearing of certain geometric consider-
ations (involving curvature) on the decay of the Fourier trallsforTrl and
these are explained by the behavior of oscillatory integrals.

Two pillars of the theory are: averaging operators, and restriction
theorems for the Fourier transforni. Once we have described sonic basic
facts about these, we apply the results of the restriction theorerris to
partial differential equations of type. We also reexamine
the Radon transform. emphasiLing its coirtiriori traits with the averaging
operator. Finally, we turn to the problem of counting lattice points and
see what the ideas of oscillatory integrals teach us.

I An illustration
We begin with a simple example that hints at the role of curvature in
harmonic analysis. The setting is with d = 3, and we consider the
averaging operator A that gives for each function f its average over
the sphere of radius I centered at x. It can he written as

A(f)(x) = f(x - y) da(y),

with da the induced Lebesgue measure on the sphere S2 = {x E

1 }. (See Book ITT. Chapter 6 for the definition arid properties
of da.)

The unexpected fact about the operator A is that it smooths f in
several senses, the simplest one being that when f theii A(f)
will have first derivatives also in L2. This is expressed in the inequality

(1) j 1,2,3.
f2

More precisely, this estimate states that for f e L2, the convolution
(f * du), which is itself an L2 function (see for instance Exercise 17 in

Chapter 1), has first derivatives taken in the sense of distributions that
are L2 functions arid that satisfy (1).
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Now these assertions are a direct consequence of a corresponding esti-
mate for the Fourier transform da of the measure da, namely

= L da(x).

In the present case one knows da explicitly:

)
—

from which it is evident1 that

(2) <c(1 +

Now simple manipulations of distributions and their Fourier transforms
(see Section 1.5 in Chapter 3) show that (f * fda, and

=

so (1) follows froiri (2) and Plancherel's theorem.

Tile results above have extensions to d dimensions for all d> 1. We
define the averaging operator A in Jftd by

A(f) fSd1 f(x - y) da(y),

with do- the induced measure on the unit sphere Sd_i. We also recall
the Sobolev space described in Section 3.1 of Chapter 1.

Proposition 1.1 The mapping f A(f) is bounded from L2(IR") to
with k =

Note that if d is odd (and hence k is integral), this means

The proof of that proposition relies on properties of Bessel functions
which we do not prove here. However, these may be found in Book I,

1This formula follows by integrating over S2, using polar coordinates; see Chapter 6
in Book 111
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Chapter 6. Problem 2, arid Book II. Appendix A. In any case. we will see
below that these results can he deduced without the use of the theory of
Bessel functions.

Proof. The proposition is a consequence of the identity

(3) =

where = da(x). and 3m is the Bessel function of or-
der m hi turn this is just another version of the formula for the Fourier
transform of a radial function 1(x) = fo (lxi). given by = F(
with

(4) F(p) = 2rp_d/2+i f 'Jd/2-1 dr,

from which (3) follows by a simple limiting argument. From (3) we obtain
the key decay estimate

(5) as 00.

Tnideed, (3) is deducible from (3) and the asymptotic behavior of the
Bessel functions that guarantees that Jrn (r) = O(r1/2) as r 00.

Once (5) is established the proof of the proposition is finished via
Plaiicherel's theorem as in the case d = 3.

The following comments may help put the result iii perspective.

• Tt is natural to ask if it is some special feature of the sphere among
hypersurfaces (for instance, its symmetry with respect to rotations)
hat. guarantee 1 he crucial decay estimate (5). or does that phe-

nomenon hold in more general circumstances for hypersurfaces lvi?
We will see below that the analog of (5) is true when an appropriate
"curvature" of M is iton-vanishing

• Moreover, simple examples show that anything like (5) fails corn-
plet ely when Jtl is (Exercise 2). and more generally. whatever
decay one might hope for da(e) is linked to the degree to which the
curvature of A! does riot vanish.

• One can also observe that the degree of smoothing k = (d — 1 )/2
asserted in Proposition 1.1 can only happen in the context of L2,
and not for p 2. (A result in this direction is outlined in
Exercise 7)
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• Finally, it is interesting to remark that when d 3 the averaging
operator furnishes the solution of the wave equation t)

(x,t) e JR3 x JR with u(x,O) = 0 and = 1(x).
The solution for time t = 1 is given by u(x, 1) = A(f)(x), and for
other times it can he obtained by rescaling. (See Chapter 6 in
Book 1, where A is denoted by M.)

2 Oscillatory integrals
Certain basic facts about oscillatory integrals will allow us to generalize
the decay estimate (5) we have obtained for the sphere. What we have
in mind are the integrals of the form

(6) [(A)
= fRd

arid the question of their behavior for large A.
The function 1 is called the phase arid the amplitude. In what

follows we assume that both the phase and the parameter A are real-
valued, hut may be allowed to be complex-valued.2

rihlere is a basic principle underlying the analysis, that of stationary
phase: iii so far as the derivative (or gradient) of the phase is non-
vanishing, the integral is rapidly decreasing iii A (and thus negligible);
thus the main contribution of (6) comes from those points x where the
gradient of vanishes: SO when d = 1 these are the x for which 0.

The first observation along these lines is merely an extension of a
simple estiniate for the Fourier transform (effectively the case =

and A = We assume here that and arc functions.
and that has compact support.

Proposition 2.1 Suppose > c> 0 for all x in the support of
Then for every N � 0

11(A)1 whenever A > 0.

Proof. We consider the following vector field

=

2llowever iii some circumstances it is of interest to allow or \ to be corriplex valued
This arises iii particular when d = I aiid (and are analytic and the integral (6) is
treated by deforming contours of integration, a.s in Appendix A of Book II
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with a (a1 ad) = Then the transpose V of L is given by

L1(f) = = (af).

Because of our assumption on V4, the a3 and all their partial derivatives
are each bounded on the support of

Now observe that = therefore L" = for every
positive integer N. Thus

[(A) / = f.Rd Rd

Taking absolute values in the last integral gives II(A)I � cN,\_1V for pos-
itive A, thus proving the proposition.

The next two assertions are limited to dimension one, where we can ob-
taini more precise COIIC1US1OflS with simpler hypotheses. In this situation
it, is appropriate to consider first the integral Ji given by

b

(7) 11(A) f dx,

where a and h are any real numbers. Thus in (7) there is no amplitude
l/ present, (or put another way, = (x)). Here we assurrie only
that is of class C2, arid is monotonic (increasing or decreasing),
while 14'(x) I � I in the interval [a, bJ.

Proposition 2.2 In, the above situation, <e,\, all A> 0, with
c=3.

What is important here is not the specific value of c, but that it is
independent of the length of the interval [a. bJ. Note that the order of
decrease in A cannot he improved, as the simple example x, and
11(A) = — shows.

Proof. The proof uses the operator L that occurred in the previous
proposition We may assume > 0 on [a, hj, because the case when

<0 follows by taking complex conjugates. So L = and

Lt(f) = hence

11(A)
= f = +
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and now (because we do not have an amplitude that vanishes at the
end-points) there are boundary terms. Since (x) I � 1, these two terms
contribute a total majorized by 2/A. But the integral on the right-hand
side is clearly bounded by

fILt(l)Idx=
1/h

dx.

However is monotonic and continuous while > 1, so
does not change sign in the interval [a. bJ. Therefore

çb d(l'\ fbd(1\ I

Ja Ja =

Altogether then Ii � 3/A and the proposition is proved.

Remark. If in the above proposition we assumed that
I � 1). then we could get Ill (A) I <c(Ap)'. This is obvi-

oiis on replacing 1� by and A by in the proposition.

Next we ask what happens to 11(A) when 1'(xo) = 0 for some xo, if
we make the assumption that the critical point x0 is non-degenerate
in the sense that 0. A good indication of what we may expect
comes from the case 1(x) = x2 (where the critical point is the origin).
Here one has

= c0A112 +O(1A1312). as A oo.

and more generally

(8) + 0

for every N � 0. To see (8) we start with the formula for the Fourier
transform of the Gaussian that states

f dx = fR R

Now since both sides have aiialytic continuations for Re(s) > 0, the pass-
ing to the limit, s = —iA/ir yields

f dx
= f
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2 NSo the expansion = + O(IuI +
) gives us (8) with ck =

(jr) (0). This indicates that a decrease of order O(A— h/2) can
he expected when the phase has a critical point which is non-degenerate.

There is a version of Proposition 2.2 for the second derivative that
takes this observation into account: it is the following estimate of van
der Corput. Here is again supposed to be of class C2 in the interval
[a. b], hut iiow we assume that � 1 throughout the interval.

Proposition 2.3 Under the above assumptions, and with Ii (A) given
by (7) we have

(9) 1[1(A)1 <c'A112 for all,\ > 0, with c' 8.

Again, it is not the exact value of c' that matters. but that it is inidepen-
dent of [a, bJ.

Proof. We may assume that � 1 throughout the interval. be-
cause the case < —1 follows from this by taking complex conju-
gates. Now � I implies that is strictly increasing, so if has
a critical point in [a, bJ, it, can have only one. Assume .ro is such a critical
point and break the interval [a, bJ in three the first is cent-
tered at x0 and is [xo — 6. X() + 6] with 6 choseii momentarily. The other
two make up the complement and are [a, x0 — 6] and [ro + 6, b]. Now the
first interval has length 26, so trivially the integral taken over that in-
terval contributes at most 26. On the interval [ro + 6. h] we observe that

� 6 (because � 1) and so by Proposition 2.2 arid the remark
that follows it, the integral contributes at most 3/(6A); similarly for the
interval [a, xo — 6]. Thus altogether (A) is l)y 26 + 6/(SA),
and upon choosing 6 ,\_1/2 we get (9). Note that if '1 has no critical
poiiits in [a, bl and/or one of the three mt ervals is smaller than indicated.
then each of the estimates holds a fortiori, and hence also the conclusion.

There is a siiniilar conclusion when an amplitude th is present. We
suppose is of class C' in the interval [a, b}.

Corollary 2.4 Assume satisfies the hypotheses of Proposition 2.3.
Then

b

(10) / <cb,A112.

where =8 (i dx +



2 Oscillatory integrals 329

Proof. Let 3(x) f du We integrate by parts, using 3(a) =
0. Then

dx
— f dx +

and the result follows, because < 8.A 1/2 for each x, by the propo-
sition.

As an illustration. we give a quick proof of the Bessel function estimate

(11) 3111(r) = as r oc

when rn is a fixed integer. We have (see, for instance. Section 4 iii
Chapter 6. Book I) that

1
— I
271

Here r, sinx, and = Now break the interval
[0, 271] into two parts, according to whether sin xI � I or cos xI �
I / The first part consists of two sub-intervals to which we may
apply the corollary, giving a contribution of O(r1/2). The second part
is the sum of three sub-intervals to which one can apply a version of
Proposition 2.2 (analogous to the corollary), and this gives a contribution
of O(r1) = O(r1/2). as r oo.

In diniension d greater than 1. the fact is that there are analogs of
the strict estimates given by Propositions 2.2 and 2 3. However, there is
a workable version of the second derivative test of Proposition 2.3 that
can he established. We now take this up and then apply it below

We consider phase arid amplitude functions and that are and
we suppose that has compact support. We form the d x d Hessian
matrix of given by { } . arid abbreviated as V21.

I<j.k<d

The main assumption will he that

(12) 0 on the support of

Proposition 2.5 Suppose (12) holds. Then

(13) 1(A)
= f dx O(A_d/2) as A oo.
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We estimate J(,\) via I(,\)12 = I(A)1()t) This simple trick allows us to
brmg in the Hessian of (that is. second derivatives) in terms of first
derivatives of differences of au idea that has many variants.

Before we exploit this artifice we must take a precaution. we will
assume that the support of is sufficiently small, in particular. that it
lies in a hail of fixed radius where will be chosen in terms of Once
the estimate (13) has been proved for such we can obtain (13) for
general as a finite sum of these estimates. by using a partition of unity
to cover the support of the original

Now

= f f dxduj.
Rd Rd

Here we niake the chauige of variables y = x + u (with x fixed). that is,
u y — x. Then the double integral becomes

f f u)

u) u/(x + is a function of compact support. No-
tice that i/'(x, u) is supported where

I at � 2f. since both x an(l y are
restricted to range in the same ball of radius e. Therefore we have
I' Pt) 12 = J,\ (u) du. where

JA(U)
= fRd

We claim that

(14) IJA(U)l CN(AIUI)N, for every N � 0.

This is in the spirit of Proposition 2.1. and the proof of (14) follows the
approach of that proposition.

We use the vector field

and its transpose L' given by Lt(f) = — V. (af). Here

— b
a - + u) - - b12

with b = + u) —
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We have

(13) ibi + u) — ui,

if ui is sufficiently small, in particular if ui 2f.3
The upper estimate ibi Jul is clear since is smooth. For the

lower estimate observe that by Taylor's theorem, + u) — =
u + O(fuJ2). However our assumption (12) means that the lin-

ear transformation represented by is invertible, so �
cJuJ for some c> 0. Therefore (15) is established if c has been taken small
enough. Observe also that ui, for all a, and hence, using (15)
we see that

(16) <c01u11 for all a,

and as a result u))I cN(AJuJ)_N for every positive inte-

ger N.
However,

JA(U)
=

f u)) dx,
Rd

and thus by (16), we have Jx(u)I � cw(AJuI) N, proving (14).
With this estimate established we take N = 0, and N = d + I in (14)

and see that

J1(A)J2 du L (1 +
=

as is evident by rescaling the last integral. This proves (13) and the
proposition.

For later applications, it is of interest to elaborate sonic aspects of
Proposition 2.5.

(i) The conclusion requires only that is of class and i,1' of class
In fact, as the patient reader may verify, in the estimate JI(A)J

A depends only on the norm of 1, the
norm of the lower hound for and the diameter of the
support of ?I,'.

3llere we use the notation X Y and X Y to denote the fact that X <cY and
e1Y < X <cY respectively, for appropriate constants C
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Similarly, the hoimd CN appearing in Proposition 2.1 depends only on
the norm of the CAT norm of a lower bound for and
the diameter of the support of t'.

(ii) There is a version of Proposition 2.5 in which we assume only that
the rank of the Hessian of is greater than or equal to in, 0 < m
on the support of In that case the conclusioii is

(17) = as

This may be deduced from the case m d, already established. Oiie
proceeds as follows. For each x0, the symmetric matrix can
be diagonahzed by mtroducnig (via a rotation) a new coordinate sys-
tem x (x'. .r") e x so that when restricted to

has a non-vanishing deterrriinant. hence for a small open ball 13
centered at a'0, the same is true for wiieii a' E B. Now for
each fixed a" E W' m we use the proposition (where d = in) to obtain

I J a") dx'I <A)tnhhl2, with supported in B. Af-
er integrating in a" and summing over finitely niany such balls that

cover the support of th, we obtain (17).

3 Fourier transform of surface-carried measures
We will now study surface-carried measures and their Fourier transforms.
Our goal is a generalization of the estimate (5), which we had seen in
the case of the sphere.

Recahl from Section 4 of the previous chapter that given a point a'0 on
a C"° hypersimrface4 Al we dealt with a new coordinate system centered
at a'0 (given via a translation and rotation of the initial coordinates).
written as a' = (x'S Xd) e x so that in a ball centered at a'°. the
surface M is represented as

(18) Al = {(a".xd) E B: .rd =

where B is the corresponding ball centered at the origin. We can also
amrange matters so that the function which is satisfies = 0.
and

Now this representation gives a defining function Pi of A'l, with Pi (a') =
— a'd. Among the various possible defining functions of Al near a'0.

we miow choose one, p, which is iiormalized by the condition IVpI = 1
on Al. This can be achieved by setting p = pi/IVpi mmear Al. With such

4l'he thrust of the requirement is that M is of class for sufficiently large k;
later we will be more specific about how large k must be takeui
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a normalized defining function, the curvature form of M at x E M
(also known as the second fundamental form) is the form

(19)
1<k,j<d k 3

restricted to vectors >
the,. that are tangent to M at x. The reader

might note here the parallel between the curvature just described in terms
of a quadratic form given by the defining function, and its complex analog
(the Levi form) that was important in the previous chapter.

It is straightforward to verify that this form does not depend on the
choice of a normalized defining function.

Now reverting to (18) and using = 0 we see that

I <k,j<d—1

and the curvature form is represented by the (d — 1) x (d — 1) matrix

{ } {a,,}, 1 k,j d — 1. Now if we make an appropriate

rotation in the x' e space and relabel the coordinates accordingly
we have

= +

The eigenvalues are called the principal curvatures of M (at x°) and
their product (the determinant of the matrix) is the total curvature or
Gauss curvature of M.5

Notice that there is an implicit choice of signs (or "orientation") that
has been made. The signs of the principal curvatures can be reversed if
we use —p instead of p as the defining function of M.

We mention briefly several examples.

EXAMI'LE 1. The unit sphere iii W'. If we start with pi = 1x12 — 1

as a defining function, then p = is "normalized." All the principal
curvatures are equal to 1.

EXAMPLE 2. The parabolic hyperboloid {x3 = — in This
hypersurface has non-vanishing principal curvatures of opposite sign at
each point.

5There is a neat geometric interpretation of the Gauss curvature in terms of "Gauss
map." see Problem 1
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EXAMPLE 3. The circular cone = Ix'12. xd 0} in Rd This hy-
persurface has d — 2 identical iion-vanishing principal curvatures at each
point calculations involved are outlined in Exercise 9.

Next we consider the induced Lehesgue measure on M, the measure da
that has the following property: for aiiy continuous function f on A! with
compact support

I Fdx
—÷o 2€

here F is a continuous extension of f into a neighborhood of Al and
{ x : d(x, Al) < €} is the "collar' of points at distance < from M. Now,
as is well-known (see also Exercise 8). in our coordinate system da =
(1 + I )

1/2 dx', iii the sense that

(20) f fda
M Rd1

With this we can say that a measure is a surface-carried measure
on Al with smooth density if d1i is of the form dp = where is
a flinction of compact support.

We now have all the ingredients necessary to state the main result
concerning the Fourier transform of d,i defined by

dli.

Note that d,t(e) is bounded on since the measure is finite.

Theorem 3.1 Suppose the hypersuiface M has non-vanishing Gauss
curvature at each point of the support of dji. Then

(21) Idii(e)I = O(I&I 1)/2) as

Corollary 3.2 If M has at least in non-vanishing principal curvatures
at each point of the support of d1i. then

= -711/2) as —+

First some preliminary remarks. We can assume that the support
of is centered in a sufficiently small ball (so that in particular the
representation (18) of Al holds in it). because we can always write a
given as a finite sum of of that type. Next. all our estimates can
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he made in the coordinate system used in (18) since the transformations
of the x-space used iii that change of coor(linates involves only a
translation and a rotation. The Fourier transform theii undergoes
a multiplication by a factor of absolute value 1 (a character) and the
same rotation in the variable. Thus the estimate (21) is unchanged.

Now because of (20) we have

(22)
= f dx',

with = e W1 and the function with compact support
given by

= +

We divide the space into two parts: the "critical" region, the cone
I Cdt � cIC'l, where c can be taken to he any fixed positive constant; and
the subsidiary region. lC(/l <clC'I, but here we need to assunnie that in
fact c is small.

In the first region we may suppose that Cd is positive, since the case
when Cd is negative follows by complex conjugation, or can be done
similarly, arid we write the exponent in the Fourier transform as

—2iri(x' . + =

with the choice of A = 27rCd, and = —p(x') — Observe that
= aiid hence if the support of up is sufficiently small (which

rneauis we are sufficiently close to x°), the determinant of the Hessian of
is non-vanishing. This is because of the corresponding property of p that,
represents the non-vanishing of t he curvature of Al. Note also that
has, for any fixed N, a norm that is uniformly hounded as ranges
over the set I&dI � clC'I. We can now apply Proposition 2.5 (with
in place of Rd) and get

d—I d—I
= = O() =

since here edt � cIC't
In the complementary region Cdt we write A 2ii-IC'I, and

— Note that
I
= 1, while <1/2

if c is so small that < 1/2 throughout the support of uP. So if
we invoke Proposition 2.1, the fact that � 1/2 yields for each
positive N,

= =
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when is iii the second region. Takiiig N � completes the proof of
the theorem.

The corollary can he proved by the same argument if one uses the
estimate (17) instead of (13).

Suppose that is a bounded region whose boundary Al satisfies
the hypothesis of Theorem 3.1. If xci is the characteristic function of
then its Fourier transform has a decay that is one order better than that
of the corresponding surface-carried measure on its boundary.

Corollary 3.3 If M = has non-vanishing Gauss curvature at each
point, then

= as oc.

Proof. Using an appropriate partition of unity we caii write

Xci =

with each a COC function of compact support; is supported in
the interior of while each I <j < N, is supported in a small
neighborhood of the boundary in which the boundary is given as (18).
Now since = it is clear that is rapidly decreasing.
Next consider any for 1 <j < N. in analogy with (22), this
has the form

f (x', Cd) dx' dxd,
Xd>Ip(X')

which is. after changing variables so that xd = u +

(23) f Cd) dx'
Rd-I

where Cd) = u + ,o(x')) du. Note that 'I'(x', Cd)
is a function in x' of compact support, uuiiforrnly in Cd. When
edt <ctC'l. the argument proceeds as before, giving an estimate 0(tCt_1v)
for each N � 0 To deal with the situation when Cdt � ctC'I write

= —__1 f u + du.
du

and integrate by parts. giving us an additional decay of 0(1 /tCdl) =
0(1/IC!) in (23). This proves the corollary.
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Remark. In view of the comments following the proof of Proposition 2.5,
we see that the results of this section hold if the C°° assumption we made
about M is replaced by the requirement that M is only of class Cd+2.

4 Return to the averaging operator
We consider here a more general averaging operator. Given a hyper-
surface M in Rd and a surface-carried measure dJL = with smooth
density of compact support, we set

(24) A(f)(x)
= f f(x - y) d;z(y).6

We shall prove that under the proper assumptions on M, the operator A
regularizes f as a mapping from L2(W') to and in addition that
it f in the sense that it takes LP(Rd) to for some
q > p, if 1 <P < 00.

Theorem 4.1 Suppose the Gauss curvature is non-vanishing at each
point x E M in the support of dp. Then

(a) The map A given by (24) takes L2(W') to with k =

(h) The map extends to a bounded linear transformation from
to with p = and q = d + 1.

Corollary 4.2 The Riesz diagram ('see Section 2 in Chapter 2) of the
map A is the closed triangle in the (l/p, l/q) plane whose vertices are
(0,0), (1,1) and

In fact, the L" boundedness asserted in this corollary is optimal, as
is seen iii Exercise 6.

Corollary 4.3 If we only assume that M has at least m non-vanishing
principal curvatures, then the same conclusions hold with k = m/2, and
p= q=rri+2.

The proof of part (a) in the theorem is the same as that for the sphere
once we invoke the decay (21), which implies that (I + is

hounded. Hemice

11(1 + 11L2

= 11(1 +

= cIIfIlL2.

6IIere we have omitted a normalizing factor in the definition of A, since the density
is not necessarily positive
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1/q

(0,0)

Figure 1. Riesz diagram of the Trial) A in Corollary '1 2

proof of part (b) corribines two aspects of the operator A via in-
terpolation, somewhat akin to the proof of the Hausdorff—Youiig theorem
in Section 2 of Chapter 2. First, there is an L1 estimate. The in-
equality involved is nierely one of size, involving only the absolute value
of our functions, hut in order to get t o it we have to the op-
erator A by "integratmg" it (of order 1) This estimate does not. depend
on the curvature of M.

Second. there is an L2 L2 estirriate. It comes. like part (a) of the
theoreni, via PlarichereFs theorerri together with Theorem 3.1. and it
allows us t o the operator A by essentially of
degree The operator interrriediate between the improved arid the
worsened operators is A itself, and the resulting intermediate estiniate is
then conclusion (b).

The scheme of the proof we have outlined in fact occurs in a number
of situations. carry it out we need a version of the Riesz interpola-
tion theorem in which the operator in question is allowed to vary. The
proper framework for this is an analytic family of operators defined
as follows.7

For each s in the strip S {o Re(s) b} we assume we are given
a linear mapping taking siniple functions on Rd to functions on
that are locally integrable We also suppose that for any pair of simple

.1)

lip

7IIere we state the results for the space IR" with Lehesgue measure The same ideas
(dU be carried over to the setting of more general mea.sure sptaes as iii Theorem 2 1 in
Chapter 2
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functions f and g, the function

[ T8(f)gdx
.JRd

is continuous and hounded in S and analytic in the interior of S. We
further assume the two boundary estimates

IITa+it(f)lILao

and

�
Proposition 4.4 With the above assumptions,

MIII IILP.

for any e with a c b, where c = (1 — 6)a + Ob and 0 � 6 1; and

1 1—0 6 1 1—0 0
+— and +—.

p p1 q qo qi

Once we have formulated this result, we in fact observe that we can prove
it by essentially the same argument as in Section 2 in Chapter 2.

We write s = a(1 — z) + bz, so z . and the strip S is thereby
transformed into the strip 0 Re(z) 1. For .f and g given simple
functions. we write and = where we define

= p + and s(s) q (y + We then check that

[
is continuous and bounded in the strip S and analytic in the interior.
We then apply the three-lines lemma to arid obtain the desired
conclusion as iii the proof of Theorem 2.1 in Chapter 2

Returning to the averaging operator A. we shall assume (as we ixiay)
that the support of d1i has been chosen to lie in a ball for which Al is
given in coordinates by (18).

Now the operators we will consider are convolution operators

=
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defined initially for Re(s) > 0, with

(25) K8 = —

The following explains the several terms appearing iii the definition of

• The factor equals s(s + 1) • (s +

The purpose of the product s(s + 1) •• (s + N) will be clear mo-
mentarily, and the factor & is there to iriitigate the growth of that
polynomial as Tm(s) oo. Here N is fixed with N �

• The function equals us_i when u > 0 and equals 0 when
u<0.

• + with the density of =

We note first that when Re(s) > 0, the function is iritegrable over
Our main claim is then the following.

Proposition 4.5 The Fourier transform is analytically continu-
able into the half-plane — Re(s) and satisfies

(26) SUp 1K8 I � M in the strip — Re(s) 1.

This is based on the following one-dimensional Fourier transform calcu-
lation. We suppose that F is a C°° function on R with compact support,
and let

(27) is(P) = s(s + 1) ... (s + N) f F(u)e du. p E R.

Lemma 4.6 Is(p) initially given above for Re(s) > 0, has an analytic
continuation into the half-space Re(s) > —N — 1. Also

(a) c8(1 + when —N — 1 < Re(s) 1.

(b) Io(p) = N!F(0).

here c8 is at most of polynomial growth in Tm(s) and it depends only on
the norm ofF and the support ofF.

The reader should note that wheii when p = 0, we are dealing with the
analytic continuation of a homogerious distribution, much in the
same way as in Section 2.2 in Chapter 3.
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Proof. Write = (d)N+Is+N Then an
(N + 1)-fold integration by parts yields

00 N+1

's(P) (_1)N+1 f ?Ls+N du,

from which the analytic continuation of to the half-space Re(s)>
—N — 1 is evident. It also proves the estimate (a) when p is bounded,
for example when <1.

The proof of the size estimate (a) when > 1 is similar hut requires
a little more care. We break the range of integration in (27) into two
parts, essentially according to ulpI I or 'uf p1 > 1. We suppose T/ is a C°°
cut-off function on R with ij(u) = 1 if ui 1/2, and = 0 if IuI � 1,
and insert ri(up) or 1 — in the integral (27).

When we insert we write the resulting integral as

00 N+1
(_l)N+1 f

and so it is dominated by a constant multiple of

(1 + f with a = Re(s).

Since a + N> —1 this quantity is itself dominated by the product (1 +
which is (1 + since we have assumed � 1.

When we insert 1 — i)(up) we write the resulting integral as

00 k

s(s+ f
where k is chosen so that Re(s) <k. Then, except for a factor that does
not depend on p (and is a polynomial in s), the integral equals

f
k

— du.

Since F has support in some interval ui <A, it is easily verified that
the above is dominated by a multiple of du, which is

because a = Re(s) <k; that yields the bound required in (a).
Finally, the integration by parts we have used also shows that

Is(p) = —(s + 1) . . . (s + N) f du,
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so setting 0 gives conclusion (h), since F(0) is equal to the integral
d —2lri7J

— .10
(F(?t)c P) du. The lemma is therefore proved.

We return to Proposition 4.5 Looking back at (25) we see that when
Re(s) > 0, making the change of variables u = — yields

= f — dx

(28) f0 1

u + dx' du

=

with

F(u) f u + dx'.
Rd-I

in the formula (27) for
However, by Theorem 3.1 (essentially the estimates we have for the

integrals in (22)) it follows that fF(u)J < e(1 + with the same
order of decay in for any derivative of F with respect to u. Therefore
by conclusion (a) of the leirima we get that

+ +

which yields (26). Note that in the strip <Re(s) < 1, we have
< ee and is at most of polynomial growth in Tm(s).

Proposition 4.5 is therefore proved.

We 110W return to the operators and apply our analysis of the ker-
nels K8.

Suppose f and g are a pair of simple functions on The fact that
these are iii L2 al1ows us to use the Fourier transforn1 and Planeherel's
theorem. So if we set no(s) f dx for Re(s) > 0, then

=
* K4gdx

= .Ld
*

= /
So the proposition amid Schwarz's inequality show that GO(S) is contin-
uous and bounded on the strip — Re(s) 1 afl(I analytic iii the



R'srri t ion theorenoi

intci ior It is also apparent by the proposition that

sup IT a_i <

Next, clearly IKh(x)I < It!. for Re(s) 1. Thus

sup

However, by (28) and conclusion (b) of the lemma, = and
thus

T0(f) N!A(f).

We can therefore apply the interpolation theorem, Proposition 4.4. Here
b=1, and c=O. Alsopo=qo=2,p1=1,

oc. However O=(1—6)a+Gb SO Since we

get I/p = similarly 1/q giving us the desired result for the
operator A.

5 Restriction theorems
We come to a second significant application of oscillatory integrals. here
we focus on the possibility of restricting the Fourier transform of a funic-
tli)n to a lower dimensional surface. The background for this is as follows

5.1 Radial functions

To start with, the Fourier transform f of an L' function is continuous
(see Section 4* in Chapter 2, Book 111) while by the Ilausdorff-Young
theorem, f belongs to if f E for 1 <p < 2. arid 1/q + i/p = 1.

Now Ii' fund ions are in general determined only almost everywhere.
Thins (without further examination) this suggests that the Fourier trans-
form of an function. 1 <p < 2, cannot in general he meaningfully
defined on a lower dimensional subset, and this is indeed the case when
p=2.

The first hint that things might in fact he quite different is the obser-
vationi that for certaimi p. 1 <p < 2, whenever f is radial and in L'1 and
d � 2, therm its Fourier transform is continuous away fronmi the origin.

Proposition 5.1 Suppose f E LP(JRd) is a radial function. Then I is
continuous for 0 whenever 1 <p < 2d/(d + I).
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Note the sequence of exponents 1. ... that tends to 2 as

Proof. Suppose 1(x) = fo(IxI). Then = with F defined
by (4). namely.

(29) F(p) f dr

We can make the simplifying assumption that f vanishes in the unit
ball (thus the integral above is taken for r � 1) because an function
supported in a hail is automatically in L1 and its Fourier transform is
then continuous.

We also restrict p = to a bounded interval excluding the origin, and
note that then the integral in (29) converges absolutely and uniformly
in p. In fact the integral is dominated by a constant multiple of

(30) f
since t'Jd/2— Au"2 if u > 0. as we have already seen. Now let q
be the exponent dual to p. (i/p + i/q = 1), and write

1' d 1 d—1 d—1
r / — ' =r r

Then by Holder's inequality the integral (30) is majorized by the product
of an and an norm. The factor is

DC 1/p

(!
while the second factor is

(fC

and this is finite if d — I — q < —1, which means q > 2d/(d — 1).

arid thus p < 2d/(d + i). The asserted convergence of (30) therefore
proves the continuity in p of F iii (29) and establishes the proposition.

An examination of the proof shows the range i p < 2d/(d + 1) can-
not he exten(led.

We now turn to the question of what happens when f is riot assumed
to be radial.
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5.2 The problem

Let us fix a (local) hypersurface M in One can then phrase the re-
striction problem for Al as follows. Suppose dji is a given surface-carried
measure. dji with smooth non-negative density of compact sup-
port. For a given 1 <p < 2, does there exist a q (not necessarily the dual
exponent to p) so that the a priori inequality below

Ir \1/q
(31)

UM

holds?
By this we mean the inequality (31) is to be valid for an appropriate

dense class of functions f in with the bound c in(lependent off. If the
answer to the question is affiririative we say that the (LP, restriction
holds for M.

Here is what we can assert about this problem.

1. Non-trivial results of the kind (31) are possible only if M has some
degree of curvature.

2. Suppose M has non-zero Gauss curvature at each point (in par-
ticular when M is the sphere). Then one is led to guess that
the correct range for (31) to be valid is 1 p < 2d/(d + 1) and
q p' with I/p' + i/p = 1. Note the end-points of this rela-
tion, q oc when p = 1, and q —* 2d/(d + 1) when p —÷ 2d/(d + 1).
When d = 2 this guess is indeed correct; the proof is outlined in
Problem 4.

3. For d � 3 it is still not known whether the expected result holds,
but an interesting part, corresponding to q = 2 (and hence for q �
2) is settled. This is what we now address.

5.3 The theorem

Here we prove the following result.

Theorem 5.2 Suppose M has non-zero Gauss curvature at each point
of the support of c4L. Then the restriction inequality (31) holds for q = 2

andp=

Note here that we have another sequence of exponents 1,

tending to 2.
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The proof starts with several quick ol)servations. Let. 1?. denote the
1 estriction Operator

L
which is mu iallv defined to map continuous functions f of compact sup—
port on to contmuous functions on Al. Consider also the "dual
fl1appiiig coni iimous fund loris F on Al to continuous functions on
defined by

= f
We note that au interchange of integration the duality identity

(32) ('R(f). = (1

where = f(x)q(x)dx and fM
Now we consider the composition We have

f {f

f * k. with

There is then the following relatioii between bounds for R* arid R?IZ.

Proposition 5.3 For a given p with p > 1, the three norm estimates
below equivalent:

(1) L2(M d;t) < clii IIIP(JR")

(ii)
f
IZ*(F)jI <CIII'11L2(Afdp), where I/p + i/p' I.

(iii) IIlZ*lZ(f)I!LJ/(Rd)

The equivalence of (i) and (ii) follows directly from the duality of
spaces and the general (luality theorem (Theorem 4. 1 and Proposition 5.3
in Chapter 1).

We assume (i) (or (ii)) then this implies (iii) once we apply (ii) with
F=='JZ(f).
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Conversely, we know by (32) that,

Hence if (iii) holds, then (7Z(f), < by Holder's in-
equality. This gives (i) and the proposition is proved.

From this proposition, we see that to establish the theorem we have
to show that the operator R,*R. is bounded from to
with p = The argument is very much like that for the averaging
operator A, except here inverted via the Fourier transform

In fact, here the analytic family of operators we consider is given
by

where k8 is defined by k8(x) K8(—.x), and K8 is given initially by (25),
and with exten(Ied in the strip — Re(s) I by Proposition 4.5.

Recall that = so S0(f) = N!R*R,(f) by (33). But
when Re(s) = 1

IIS8(f)11L2 �
since I(i E and sup1 II

K1

Also. when Re(s) = then E L"° by (26) in Proposition 4.5, since
= K8(—x). Thus

sup �
Finally, it is easily verified (again using Proposition 4.5) that

S8(f)gdx is continuous, arid is hounded in the strip <Re(s) <
1 and analytic iii the interior, whenever f and g are in (Rd) (and
in particular when f and g are simple). We therefore can the
interpolation theorem (Proposition 4.4) to S8. In this case a = —
b = 1. and c = 0. 50 0 = (1 — 0)a +Ob implies that 0 = Also here
po=1.q0=oo,andp1

So I/p = + gives I/p 1 — 0 + 0/2 = 1 — 0/2 and as a result
i/p = Similarly l/q = + = 0/2. and 1/q = I — i/p = lip'.
Therefore S0 = N!R,*7Z maps to and by the equivalence guaran-
teed by Proposition 5.3, the theorenri is proved.
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Corollary 5.4 Under the assumptions of the theorem, the restriction
inequality (31) holds for 1 p < and q < p'.

This follows by combining the critical case p q 2 (a conse-
quence of the theorem arid Holder's inequality) with the trivial case
p = 1. q = oc via the Riesz interpolation theoreni.

The key to the theorem is of course the decay of the Fourier transform
of the surface-carried measure This is highlighted by the following
assertion which is clear upon reexamination of the proof of the theorem.

Here we deal with a hypersurface M, where we make no explicit as-
surnptions about its curvature. The measures d/L considered will be of
the form as before.

Corollary 5.5 Suppose that for some 8> 0, we have

= as —p oc, for all measures of the above form.

Then the restriction property (31) holds for p = q 2.

In particular, if we assume M has in nori-vanishing principal curva-
tures, then using the corollary in Section 3, we get this conclusion for

2m-f-4

6 Application to some dispersion equations
Dispersion equations have, broadly speaking, the property that as time
varies, their solutions conserve some form of mass or energy (for example,
the L2 norm), yet these solutions disperse, in the sense that their sup-
norms decay as time increases. In what follows we will see how the ideas
we have discussed in this chapter apply to some equations of this kind.
both linear and non-linear.

6.1 The Schrödinger equation

Typical of linear equations of the dispersion kind is the irnagiiiary-time
Schrödinger equation

(34)

for u(x. t), and (x, t) e x = 1, with its Cauchy problem of de-
terinining a solution of (34) with initial data f, that is,

(35) u(x,0)=f(x).
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d 82 dHere A = is the Laplacian oil

If we proceed formally, we are led to define the operators eitA by

(36) =

where A denotes the Fourier transform in the x-variahle, and one expects
that u(x, t) = is the solution of the problem (34) and (35).
That this is so can he seen in two different contexts, the first of which is
in the setting of the Schwartz space S of testing functions.

Proposition 6.1 For each t:

(i) eitA maps S to S.

(ii) If we set u(x,t) = eitA(f)(x), with f 8, then u is a C°° function

of (x, t) that satisfies (34) and (35).

(iii) = f * if t 0, where =

(iv) � Ill
Proof. That eitA maps S to S is clear because the multiplier

has the property that each derivative in is of at most polynomial in-
crease. Next, the Fourier inversion formula gives

u(x.t)
= fRd

The rapid decrease of f guarantees that the function u is C°° in the x
and t variables. The fact that then u satisfies (34) is clear since the
action of brings down a factor of which is the same factor
that results from the application of A.

The conclusion (iii) is a consequence of the identity

(37) = t 0

when both bounded functions = and
are viewed as tempered distributions, and the usual relation between con-
volutioris and Fourier transforrris as in Chapter 3.

To prove (37) we start with the familiar identity for Gaussians

= when u > 0.

Here we are dealing with rapidly decreasing functions and the Fourier
transform is taken in, say, the L1 sense. We now write u = arid we
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extend the above identity by analytic continuation to complex s a + it,
with a > 0, since the functions in question are still rapidly decreasing.
Thus

Finally, if t is fixed, t 0, then letting a 0, the functions on the left-
hand side and right-hand side converge pointwise and houndedly (and
hence in the sense of tempered distributions) to and
respectively. Therefore (37) is established. Finally

If * If IlL'

and the proposition is proved.

We look again at the operator given by (36), hul now in the
context of L2.

Proposition 6.2 For each t:

(i) The operator is unitary on

(ii) For every f, the mapping I. &tA(f) is continuous in the L2(R'1)
71077fl.

(iii) 1ff E L2(W1), then u(x. t) = satisfies (34) in the sense
of distributions.

Proof. Conclusion is irnrricdiate from Planclierel's theorem, since
the multiplier has absolute value one. Now if f C L2(R'1),
then clearly e

t —* t0. so (ii) follows again from Plancherel's tineoreiri.
To prove the third conclusion we use the short-hand £

—
arid C — — for its transpose. Conclusion (iii) asserts that when-
ever is a function on x R of compact support, then

ff
f E S, then (38) holds for such f. because then u(.r, t) = (f)(x)

satisfies £(u) = 0 in the usual sense, as we have seen. For general f C
approximate f in L2 (Rd) by a sequence } with f,, e S. Then be-
cause of conclusion (i) we may pass to the limit and obtain (38) for amy
f C L2(W'), finishing the proof of the propositioii.



6 A PP' lOfi I () some (INpersu)n eqilat 351

We remark that the decay estimate (iv) in the first proposition can he
extended to read

itA r —d(I/p—1/2) r
C j < t J

if 1/q -F i/p 1. and I p 2, with This in fact is
a direct consequence of the Riesz interpolation theorem (see Theorem 2 1

in Chapter 2) when we combine the cases corresponding to p = I and p
2. in the propositions ai)Ove. Another way to see (39) is to realize that
he operator &tA is a disguised version of a rescaled Fourier t ransform.

and thus (39) is a restatement of the Hausdorff—Young theorem. This is
outlined in Exercise 12

Now the decay estimates (39) raise the question whether one can see
any decrease for large time, when time initial data is merely assumed to
he in L2. Given the unitarity of the best one can hope for is an
overall, or average, decay in both x aiid t. Thus one is led to ask whether
an estimate of the kind

(40) IIu(r, cII,fIf

is possible (say for q < ac).
By a simple scaling argunient we can see that (40) can hold only with

the exponent q Indeed, if 'a(x. 1) eitA(f)(x), replace f by
where f(6x), and u by with u(Sx.62t), and 6> 0.
Then is a solution of (34) with corresponding initial data That is.

= Thus if (40) held. we would have IUSIILq(Rd+1) �
eIlfo for all 6 > 0. with c indepemident of 6. But II L2(k') =

df2 d+2
while = ö and so6 q

c'6 (1/2 for all 6 > 0, which is possible oniy when that is, q
2(1+4

One should notice that q = is exactly the (dual) exponent arising
in the restriction result in Theorem 5.2 (that is. i/p + l/q = 1. with
p = when we are in instead of is no accident as we
will now see.

Theorem 6.3 If t) = with f e then (40) holds
when q =

Results of this kind are called Strichartz estimates. We will see that
in fact this tlieoreni is a direct consequence of the results in Section 5.

We consider the Fourier transform now on the space = x =
{ (x, ) }, relabeling the variable t as Xd+j. In the correspoll(hng dual
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space (also the dual variables arc denoted by with
dual to x arid dual to In this dual space we take M to he the
paraboloid given by

M = =

where + +
On M we define the non-negative measure d/L where
is the Lebesgue measure on and is a function of compact

support that equals I for ÷ 1) e M and < 1. (As a result =
+

Since the paraboloid M has a non-zero Gauss curvature, we can apply
the restriction theorerri, in particular its dual statement given in Proposi-
tion 5.3, with in place of Re'. This assertion deals with the operator

f
and then guarantees that

CIlkjIL2(M,dp).

Now let us take = Then we see that (F) =
because we have set Xd+1 t, = and on M we have ed+1

As a result

(41)

whenever f is supported in the unit ball. This is the essence of the result
and from it the theorem follows easily.

In fact, if we replace f by = f(5x), and u by u(Sx,
then, as we have seen above. (41) also holds with the same bound. How-
ever = and now the support of is the ball

<5. So allowing 5 to be arbitrarily large shows that (41) is valid
whenever f is in L2 and f has compact support. Since such I are dense
in L2, a simple limiting argument establishes (41) for all f E
proving the theoremni.

6.2 Another dispersion equation

We now digress briefly to touch on another dispersion equation and sketch
certaimi aspects that are parallel with the Schrödinger equation.
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We have in mind the cubic equation on x

8tt ô3tt

with its initial value problem u(x. 0) = f(x)
We can write the solution operator f (f), with

Again this operator maps S to S for each t and is unitary on L2(IR).
Note one difference with the Sclirödinger equation: Here we can en-

visage solutions u that are real-valued, which is not possible for the
equation (34), where the solutions need to be complex-valued because of
the coefficient i/i.

When t 0, we can write

ci —

forfES,

where the kernel is given in terms of the Airy integral

Ai(u) = f27r R

In fact, since = J'R
the change of variables

v3/3, = shows that

Kt(x) =

Now one knows that

(42) 5
I <

for all u. From the first of these inequalities we get the dispersion esti-
mate

�
There is also an analog of Theorem 6.3.

8The convergence of this integral and the estiiriates stated below can he found in
Appendix A of Book I I There these are carried out using complex analysis The results
needed can also he obtained by the methods in Section 2 of this chapter, and are outlined
in Exercise 13
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Theorem 6.4 The solution (f) satisfies

<CIII with q — 8.

The proof of this is result is parallel with that of the previous theorem
and reduces 10 a restriction theoreni on for the cubic

F — =

According to Corollary 5.5, what is needed is an estilrlate for
where dp. is a smooth measure carried on the cubic curve F. The desired
estimate can he rephrased as follows.

Lemma 6.5 Let di, where is a COC func-
tion of compact support. Then

= as oc.

Proof. First note that in fact

1/3

The first integral is obviously 1/3) For the second term we use
the second derivative test (Proposition 2 3 and Corollary 2.4) noting that
the second derivative of the phase exceeds so this
term is also O( I&2 which proves that [(c) O(

I

- We apply
this result when Ie2 I � c'Iei I. where e' is a suitably small constant, giving
1(e) = in this case.

in the case when > (i/c')1e2I, we apply the first derivative test
(Proposition 2.1) noting that there the first derivative of the phase ex-
ceeds a multiple of Thus = I') = A conibi-
nation of these two cases yields the lemma.

We can now invoke Corollary 5.5 with 6 -= 1/3 and obtain

II1Z(f) IIL2(F) <dli II

<CIIFIIL2(1),

for p = = and i/p + 1/q = 1, so q = 8 The estimate for themi

theorem.

There arc also corresponding space-time estimates for sohitions of the
WaVe equation in terms of its initial data. See Problem 5.
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6.3 The non-homogeneous Schrödinger equation

We return to the imaginary-time Schrödinger equation and now consider
the non-homogeneous problem

(43)

with F given. Here we require

(44) a(x,O)=()

Tt is easy to write down a formal solution to this problem by integrating
the corresponding equation when A is replaced by a scalar. This leads
to the solutioii operator

(45) S(F)(x. t) if s) ds.

Here ci(1 s) indicates that for each t and s the operator
has been applied to F(x, s) as a function of x. The use of formula (45)
can be justified in several different settings. The simplest is the following.

Proposition 6.6 Suppose F is a COC function on x R of compact
support. Thcn S(F) is a C°° function that satisfies (43) and (44).

Proof. Write F = eitAG(., t) with G(x, t) i s) ds. Now
F(.. s) is in the Schwartz space S(Rd) for each s and depends smoothly
on s. Thus the same is true for G(., s) and then for S(F)(., s), so this
function is COC. Now differentiate both sides of the identity

e_itA(S(F))(.. t) i / s) ds.

with respect to t.
The left-hand side gives e_itA (—iA + S(F)(., t). The right-hand

side yields t). After composing with we see that

(_iA
+

S(P)(.,t) = iF(.. t),

as was to be proved. Note that it is obvious that S(F)(., 0) = 0.

The corresponding result in the L2 setting is detailed in Exercise 14.
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We come to the key estimate for the operator S. It arises from the
question of proving an estimate of the form

(46) I1S(F) xIR) Fit xIR)

where q = Here q is the exponent for which u E x R). when-
ever u(x, t) = eitA(f)(x), with I L2. Again, a simple scaling argument
(which we leave to the reader) shows that (46) can hold only if p =
the dual exponent of q.

Theorem 6.7 The estimate (46) holds if q = and p =.
This means that S, initially defined on C°° functions F of compact sup-
port, satisfies (46) with c independent of F, and hence has a unique
extension to a bounded operator from LP(W' x ]R) to x Ift) for
which (46) is valid.

To prove the theorem we first make two simplifications. To begin with,
we replace the operator S by given by

t) = i s) ds,

and next, to avoid issues of convergence, we replace s+ by where

Sf(F)(x,t) = if
We will prove that

(47) <citFitLP(RdXR)

with c independent of e. Once (47) is established then (46) will follow
easily.

The advantage of (and Sf) over S is that now we are dealing with
convolutions on the space IRd x Ift. For the kernel t) is formally

when t > 0, and 0 when t <0.
We prove (47) by the same method used in Theorem 4.1 and in the

restriction theorem. We embed in an analytic family of operators,
}, with the complex variable ranging over the half-plane —1 Re(z).

The operator will be first given when d/2 — 1 <Re(z) as a convolution,
= f * with the locally ititegrable kernel

2

efilQ\ ( #\ f \ —ft#z
k ) ) — d/2C +.

(4irit) /
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Here t > 0 and 0 otherwise, while 'y(z) = and the
factor -y(z) is bounded in any strip a < Rc(z) b, because F(z1+1)

1z1) as zI —* oc, by formula. We note that the Fourier
transform of on x R (as a tempered distribution) is the function

7(z) f dt

+ +

This is because of (37) and the fact that

f dt = F(z + whenever Re(A) > 0,

as is seen by verifying the formula first when A > 0.
Next, if e is fixed with i > 0, then is, by the above, a bounded func-

tion of E Rd x R as long as —1 <Re(z). This Fourier multiplier
defines as a bounded operator on L2(Rd x R) whenever —1 <Re(z),
and gives a continuation of initially defined for d/2 — 1 <Re(z). We
also observe that is bounded independently of when Re(z) = —1,

and therefore

(49) IJTZ(F)11L2(RIxR) when Re(z) = —1,

with e independent of E.
Now the kernel given by (48) is clearly a bounded function on

x R when Re(z) d/2, with a bound independent of e. Thus

(50) <cIIFIILI, when Re(z) d/2,

with c again independent of f.
The interpolation theorem (Proposition 4.4) yields

first for simple functions, and then by a passage to the limit for all F
that are C°'—' of compact support. Again the hound is independent of €.
We also recognize that

when acting on functions of compact support.
In fact. by taking the Fourier transform in the x-variahle we see that

t) = i s) ds.
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Then the Fourier transform in the t variable gives

= i dt)

= i(€ — +

which establishes (51), and hence (47).
We now finish the proof by modifying P So that F(x, s) = 0 when

s 0 Hence from (47), when we let e 0, we get

(L / dxdt)
1/q

Changing t into —t (arid s into —s) gives us a parallel inequality, but with
the integration iii t now taken over (—oc. 0). Adding these two finally
yields (46) and the theorem is proved.

A final fact about the action of the solving operator S on the space
JP(Rd x R) is as follows.

Proposition 6.8 1fF E IY(R" x R) then S(F) can be corrected (that is,
redefined on a set of measure zerv) so that for each t, S(F)(•. t) belongs
to and, moreover, the map I S(F)(., t) is continuous in the

norm.

This is based on the inequality

/3

f e s)

with c independent of the finite numbers and
In fact. (52) is esseni ially the dual statement of (40) in Theorem 6.3.

We let g be any element of with IlgIIL2(Rd) < 1. Then by the
unitarity of we have

f CL
F(r. s)g(r) ds

= f (/ s)v(x. s)

where c(x,s) = So by (40), � e and
inequaJi ty gives

L1
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and since g was arbitrary, this suffices to establish (52).
Next, since S(F)(x. 1) = e s) ds. taking 0 and fi

/ in (52). we see that for each t the functioii S(F)(•. s) belongs to
and

(53) sup IIS(

F a sequence { F71 } of func-
I ions of compact support. Themi for each n. S(F71 ) (., t) is clearly contin—
itous in t in the L2(W1) norm. Since by (33)

SUP IIS(F)(, 1) — S(F71)(.. <cliP — FutiLe 0.

the continuity iii t carries over to S(F)(., t) and the proposition is proved.

6.4 A critical non-linear dispersion equation

now consider the non—linear problem

I _
(54) j8t

(u(x. 0) = f(x).

Here a is a non-zero real Tlurrther amid the exponent A is greater thami 1.
Besides its relative simplicity, the interest of the equation (34) is that
its solution has two noteworthy conservation properties, namely that
the dx, and the "energy" — dx are
conserved over tinie. (See Exercise 15.)

We shall deal in particular with the initial-value problem for f in
In this setting there is a "critical" expoiient A, the one for

which the problem is scale-invariant. More precisely, suppose u is any
solution of (54) wit h initial data f. Then we seek an exponent a so that
Oau(öx. 62t) also solves the equation (54), (with initial data for
all > 0 the linear case a 0 of course any a will do, hut in the
present situation this requires d + 2 = Aa. Now if we also want the L2
norm of the iiiitial data to be invariant under these scalings then we need
a = d/2, and as a result A 1 + 4/d.

We should observe a related significant fact about the critical expo-
nent A we have q Ap, where q and p are the dual exponents arising in
our estimates (Theorems 6.3 and 6.7). This is time case because q

_2df4r— —
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Incideiitally, one notices that the exact value of the coefficient a in (54)
is not significant; what matters is its sign. since it can be replaced by ±1
via the fixed scaling (x. t) alt).

After these preliminaries we can now state the main result. Given an
f E L2(Rd), we will say that a function u in x is a strong
solution of (54) if

(i) u satisfies the differential equation in the sense of distributions.

(ii) For each t, the function u(.. t) belongs to L2(W'), the mapping
I u(., I) is continuous in the norm, and u(., 0) f.

We can also envisage solutions u that are given only for time t with
<a, for some fixed 0 < a < oo. In that case we assume u is in x

{Jtl <a}) and consider u as a distribution on the open set x {ItI <
a } C x R, and define a strong solution in the same way as above.

The theorem below guarantees the solution of our problerri under two
scenarios. First for all times t, if the initial data is small enough. Second,
for all initial data f, for a finite time interval.

Theorem 6.9 Suppose .A, p and q are as above.

(i) There is an 0 so that whenever if <€ then there exists
a strong solution of (54).

(ii) Given any f e there is an a> 0, (depending on f), so
that (54) has a strong solution for ti <a.

The proof exemplifies the use of fixed-point arguments in non-linear prob-
lerns.

Suppose no = &tA(f). As will be seen, the problem reduces to find-
ing u so that

(55) u = + no.

The existence of u is obtained by a classical iteration argument, the
existence of a fixed point of a suitable contraction mapping M.

We consider first the alternative (i) of the theorem and here the map-
ping M will he defined on the underlying space

B = {u E x IR), with 1IUIILQ 5},

with S fixed below.
The mapping M will he given by

M(u) = +
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For an appropriate choice of 8. and then a choice of implying 11111
we will see that

(a) lvi iriaps B to itself.

(b) IIM(u) — — VI}Lq for u,v e B.

In fact, � + To estimate the first
term we use Theorem 6.7, and this gives

� -
since q pA. So if huM <5, then 01 IIS( u) <8/2, as long as

<5/2, which is the case if 5 is small enough.
However by Theoreni 6.3, cc, since <f. Thus M <

5/2, if cc < 8/2. and with this choice of in terms of 8, property (a) is
proved.

Next

IIM(u) - = Jul
-

IulA lu — VIA vIJLP.

However, as is easily verified

IItLIA1U - <cAlu - vI(luJ +

for any pair of complex numbers a and v. Thus

- VIA 1vl1Lp cxhI(u - v)(JuJ +

Disregarding the constant CA, the power of the term on the right is

I In — + We estiniate this by using Holder's inequality
with exponents A and A' = A/(A — 1). Since Ap = q and A'(A — l)p = q

we see that this integral is majorized by

1/A 1/A'

(fin - via) (f(JuI + = In - II ku +

Taking root gives

IIM(u) - - II Jul + lviii
1)

and we only iieed to choose S SO that 1/2 to obtain (b).
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Next define ui, U2.. . . , . . . successively accordmg to 11k±1 .M(nk).
k 0, 1, 2 Then, since no E B, it follows from (a) that each Uk E
B. Also by property (b) we have Iuk±j — Uk < 311 Uk — uk_I and

hence IIUk+1 — tiklJLq � IN'i —
Therefore the sequence {uk } converges in the norm to a u E B. amid

hence u = M(u) = 1u) + u0, since = .A4(uA). To see that
u is a distribution solution of (54) we ixiust verify that.

(56)
xR

for every that is COG and has compact support, with C —3 — A.
However, by Proposit ion 6.6.

(57) =

if is a C°° function of compact support. We now approximate an arbi-
trary F in x by a sequence {F,L } of C°" functions of compact
support. Since Theorem 6.7 implies that —k S(F) in the norm,
the identity (37) for the holds also for F E U Thus we may ap-
ply (37) to F aIuI" tu and use Proposition 6.2 part (iii) to conclude
that (36) is valid, because u = S(F) + no

Next, applying Proposition 6.8 to F a shows that for each t,
the function u(.. t) belongs to L2(W') and t u(.. t) is continuous in the
L2 norm. Obviously n( , 0) = f(.) so the proof that u is a strong solution
is complete.

in the second alternative, where we do not assume 11111 <€. we instead
choose a positive constant a so that

/ p p \ l/q
(JJ <8/2.
\ I

Such a choice of a. which depends on f, is possible since E x
li). We then proceed as iii the previous alternative with the imderstand-
ing that now B consists of functions on x { < a} (of iiorifl 8).
Note that t), for ti < a, depends only on F( , s) for si <a, so
all inequalities used are still valid in this context, and t he proof cami be
carried out as before.

lIie uniqueness of the solution of (54) and its contimious dependence
on its initial data is outlined in Exercise 17.
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7 A look back at the Radon transform
We now link the averaging operator studied in Section 4 with the Radon
traiisform, pointing out certain striking affinities between these two, and
formulating a common generalization.

Some elementary properties of the Radon transform were set down
in Book T, where one can find an indication of its early interest. Of
further significance is its role in the theory of Besicovitch-Kakeya sets.
There, an L2 smoothness property for d � 3, somewhat akin to that
of averaging operators, is responsible for the continuity of measures of
hyperplane sections asserted iii Chapter 7 of Book III. Moreover the
existence of Besicovitch sets may he said to he possible because when
d = 2 the smoothing in L2 is exactly of critical order 1/2; in addition.
this property of the Radon transform allowed one to see that Besicovitch
sets iii Rd, d = 2, must have 1-lausdorif dimension 2.

7.1 A variant of the Radon transform

Recall that in the Radon transform 1?. is defined by

/ f
J'p, -f

where (t,'y) e JR x 8d—1 and is the affine hyperplane {x : x = t}
The smoothing property of we have in mind can be stated most

easily when d = 3 as the identity

(58) f f dtdu(x) = If(x)t2dx.
k3

This is a direct consequence of the observation that 'y) = f(A'y).
with 1Z(f)(A, 'y) denoting the Fourier transform in I of 'y) (with
dual variable and f denoting the usual 3-dimensional Fourier trans-
form of f.

To pursue this point a little further we consider briefly a simple
earized" variant of the Radon transform that, unlike is directly given
as a mapping of functions of JRd to functions of This variant is deter-
mimied once one fixes a non-degenerate bilinear form B on
amid is denoted by

= f — B(x',y'))dy',



364 Chapter 8 OSCILLATORY INTEGRALS IN FOURIER ANALYSIS

where we have set x = (x', xd) E R x R.
So can be written as

/ j,
J

with denoting the affine hyperplane {(y', Yd) Yd = Xd — B(x', y')}.
The integration measure on is taken to be dy', the Lebesgue measure
On Rd—I.

Note that the mapping x is an injective mapping from Rd to the
set of affine hyperplanes on R'1, and this mapping is surjective on the col-
lection of hyperplanes that are not perpendicular to the hyperplane M0.
Since the excepted collection of hyperplanes is a lower-dimensional sub-
set, then, broadly speaking, can be thought of as a substitute for

Now let us revert to the simplest case, d 3, where an analog of (58)

r 2 p
(59) / dx = CB I lf(x)12 dx,

Ox3

which we prove when f is (say) a smooth function with compact support.
To see (59) consider the Fourier transform in the x3-variable (with

its dual variable), that is, is given by

f dy',
R2

where here f denotes the Fourier transform in the x3-variahle. Sun-

ilarly,
A

(x', (also taking the Fourier transform in the
x3-variable) is given by

f dy'.

However, B(x', y') = C(x') . y' for some invertible linear transformation C
on R2. Therefore, introducing the new variable = u, with u E R2.
we have y') = u y' and I det(C)1 dx' du. So an application
of Plancherel's theorem in R2 leads to

fR2
dx'

= Idet(C)I L
hence, integrating in and applying Plancherel's theorem again, but
this tinie in the x3-variable, yields (59).
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If we consider au appropriately localized version of 'R-B, then using
the above it is easy to see that

<

Corresponding results for general d, when d is odd, giving L2 smoothing
of order (d — 1)/2 can be obtained in the same way. The steps leading
to these conclusions are outlined in Exercises 18 and 19.

7.2 Rotational curvature

We have learned from the above considerations that there seems to be a
parallel between the averaging operator A and the Radon transform
in terms of their smoothing properties. Each of these operators is of the
form

[J
where for each x E we have a manifold (that depends smoothly
on x) over which we integrate. In the case of A it is = x + M, and in
the case of R,B it is = {y = (y', xd — B(x", y')), y' E However,
paradoxically, the key feature of A was the curvature of M, while in the
case of RB the corresponding manifolds are hyperplanes and have
no curvature. So how arc we to see them as different manifestations
of the same phenomenon? Another issue is the question of having a
diffeomorphic-invariant formulation for the conclusions regarding these
operators. This question arises naturally, because the spaces L2, and

are (at least locally) invariant under diffeomorphism.

What unifies the above examples is a common rotational curvature
that takes into account not only the (possible) curvature of each fixed

but how the evolve (or "rotate") as x varies. This concept can
be formulated as follows.

We start with a function p = p(x, y) given on a ball in Rd x Rd (a
"double" definiuig function), and assign to it its rotational matrix M,
defined as the (d + 1) x (d + 1) matrix given by

8Y1
op

Ox1

a2p
aY3aXk

()Xd
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We define the rotational curvature of p, denoted by rotcurv(p), as the
determinant of the matrix .M.

rotcurv(p) = det(M).

Our basic condition is that where p 0, theit rotcurv(p) 0. This
clearly implies y) 0 there. Hence if M7 {y : p(x, y) 0}. each

is a hypersurface in that in fact depends smoothly on x.
We then note the following properties of rotational curvature that are
straight-forward to verify.

1. If p(x, y) p(.x — y). the translation-invariant case, then = x +
Jib. here one also has the condition that rotcurv(p) 0 is equivalent
with the non-vanishing of the Gauss curvature of M0.

2. in ilie case of R,B, we take p(x, y) Yd — Xd + B(x', y'), and then
rotcurv(p) 0 is equivalent to B being non-degenerate.

3. If p'(x. y) a(x, y)p(x, y), with a(x, y) 0, then p' is another defining
function for and rotcurv(p') = ahl+lrotcurv(p) whenever p = 0.

4. The invariance of rotational curvature under local diffeomorphisms
can be stated this way: Suppose .x (x) and y are a pair of
(local) diffeorriorphisnis on R" and set p'(x. y) = W2(y)). Then
rotcurv(p') = Ji whenever p'(x. y) = 0, where and

are the ,Tacohian determinants of 'I' anid respectively.

With these notions in hand we can come to the regularity theorem for
the general form of the Radon transform.

We assume we are given a double defining funiction p as above with
rotcurv(p) 0. We set {y: p(x,y) 0}. For each x we let

he the induced Lebesgue measure on and define
ibo(x. where is some fixed C"° function on Rd x Rd of com-
pact support. Given this, we define the general averaging operator A
by

(60) A(f)(x) /
f on Rd that are (say) continuous with compact

support.

Theorem 7.1 The operator A extends to a bounded linear map of L2(W')
to with k =
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It should be pointed out that the averaging operator A of Section 4 is
translation—invariant, and the Radon transform is partially so; it is
translation-invariaiit with respect to the x3-variahle. So in both cases
the Fourier transform can be used. however in the general situation the
Fourier transform is unavailable and we must proceed differently.

There will he two steps. The first will use an oscillatory integral op-
erator that partly subsi itutes for the Fourier transforni and Plancherel's
theorem. The second is an L2 estimate, obtained via a dyadic decom-
position of parts. that further serves to implement
this approach.

7.3 Oscillatory integrals

We turn to the first idea. We consider an operator (depending on a
positive parameter A) of the form

= fRd

Here and are a pair of C°° functions on x W1, the latter assumed
to have compact support. The phase is supposed to he real-valued,
arid the key assumption is that its imxcd Hessian

(61) det{
8XkÔY3

is non-vanishing on the support of ?b.

Proposition 7.2 Under the above assumptions we have IITxII <
A > 0, with

•
denoting the norm of the operator acting on L2(Rd).

For us the importance of this proposition is the consequence it has for
a corresponding oscillatory integral that involves the defining function p.
We set

(62) f (x, Yo, y)f(y) dy0 dy
RXRd

There the integration is over (go, y) E x The function is again a
C°° function with compact support in all variables, but the noteworthy
further assumption is that is supported away frormi Yo = 0.

Corollary 7.3 Assume that the double defininq function p satisfies the
condition rotcurv(p) 0 on the set where p = 0. Then

IISAII
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Note. We have an extra gain 1/2 over what can he said for

The proof of the proposition is in many ways like that of the scalar
version. Proposition 2.5 in Section 2, so we will be brief. As before, we
begin by taking the precaution that is supported in a small ball. Now
if T is au operator on L2, then IIT*T11 = 11Th2, where T* denotes the
adjoint of T.9

However is given by the kernel K(x, y) = y), that is,
TA(f)(x) = 5 K(x, y)f(y) dy, so is given by the kernel K(x, y) and

is given by the kernel

M(x. y)
= f K(z. x)K(z, y) dz

= f y, z) dz,

with 'iI,'(x, y, z) = y). The crucial point will be like (14).
namely,

IM(x,y)I — p1)_N for every N � 0.

Here, with z = (zi,. . . . E

dL (1) = — , where

— — — 1(z,y))(a) - a - -
Now because n = x — y is sufficiently small in view of the support as-
sumptions iriade on u/p, we see as before that at Ix — y1' and

Ix — for all a. Thus

IM(x.
<

LN y, z)

dz

—

91n this connection, see for instance Exercise 19, in Chapter 4 of Book III
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However, then

f - dy,

where M°(u) = + and by Minkowski's inequality

� fM0(u)du.

However f M°(u) du if in the estimate for M° the N is taken

to he greater than d. As a result and the proposition is
proved.

We turn now to the corollary. The link between the rotational curva-
ture of p and the phase in the proposition occurs in passing from
to With = (x0, x) E R x = Rd+l and (yo, y) e x =

we set

xoyop(x,y).

Then, as is evident,

= rotdurv(p).

Now define FA(xo,x) by

(63) x)
= f x, yo, y)f(y) dy0 dy

= f (x0, X, y)f(y) dyo dy

with (1, x, yo, y) = y). and having compact support that is
disjoint from x0 = 0 or I/o = 0.

This means that SA(f)(x) FA(1, x).

To proceed we need the following little calculus lemma. valid for any
function g which is of class C' iii an interval I of leiigtli one. Suppose

U0 E I, then

(64) Ig(uo)12 � 2 (f du
+ f

g'(u)12 du).
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Indeed. for any U E I. one has g( = g( a) ± J g'(r) dr. So by Schwarzs
me(Iuahty

lg(uo)12 2 (Ig(u)12
+ f dr).

and an integration in u ranging over I then yields (64).
We apply this inequality with I = [1.2]. a0 = I and q(u) = FA(u.x)

(that is. a is the variable .r0). Since = SA(f)(x). we therefore
have after an integration in x E Rd

J ISA(f)(x)12d1 < 2(1

+ I
The first term on the right-hand side of t he inequality is dominated by a
multiple of 1)

12 dy. as we see by applymg the proposition
(with Rd. 1 in place of since has compact support in

however the second term is more problematic, because differentiation
in X() in (63) brings down an extra factor of We get around this by
observing that

Yo

and then iiitcgi ating by parts in the variable in (63). We note that
because of the support property of the variable ho is bounded away
from 0. and the differentiation iii ho falls only on the smooth functions
of the integrand, and not f(y) since it is independent of Yo•

This shows that the second term also satisfies t he desired estimate,
establish i rig the corollary.

7.4 Dyadic decomposition

We now conic to the dyadie decomposition of the operators A. Whiemi we
lix ally Schwartz function h on R that is noririalized by h(p) dp 1,

then we kmiow (see Exercise 8) that for any smooth hypersurface Al in
with defining fmictioni p. arid any continuous function f on Rd of compact
support,

f h(p(.r)/)f(x)dx
=

with (icr the induced Lebesgume measure on M.
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As a result (see (60))

A(f)(x)
= f limi' f h th(x,y)f(y)dy

f

where y) is a C°° function of compact support given by y) =
and =

Now choose to be a C°° function on R with 'y supported in ui
1, and = I if < 1/2, and let h(p) = du. Then by
the Fourier inversion theorem h(p) dp I, and also f du
F1 h(p/c).

Next write 2 r, with r a positive integer, and = 'y(u) +
— 1tt)). Letting r oo we have

I = 7(U) +

with rj(u) 7(u) — 'y(u/2). and is supported in 1/2 uI <2.
As a result of the above, we can write, whenever f is continuous,

00 r

A(f)(x) =

Ak(f)(x) f y)f(y) du dy
x

(with a similar formula for A0, but with replaced by 'y(u)). The
limit here exists for each .r.

We now make the following observations about the operators Ak (f).
the first of which is self-evident.

(a) Ak(f) is a C00 function of compact support for each f E L2(W').

(b) We have the estimates

(66) IIAk(f)11L2 f 2.

In fact, if we rriake the change of variables 2_/cu = themi

(67) Ak(f)(x) = 2k f y)f(y) dy0 dy,
JR x
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with x0. y) = which, in light of (62), equals

2!CSA(f)(x).

where A = Thus the inequality (66) is an immediate consequence
of Corollary 7.3. since is supported away from zero.

(c) We have the following strong "almost-orthogonality" of the collection
{Ak}: there is an integer in > so that whenever 1k — it � in,

(68) IIAkA(f)11L2

for each N � 0. A similar assertion holds for

To verify (c) we make a simple estimate of the size of the kernel of the
operator A straight-forward calculation yields that its kernel is
given by
(69)

K(x, y) = 2k23 f x,

y) j j is
similar). Write the exponent in (69) as

2rri(23vp(z,y) — 2"up(z,x)) = iAT(z),

with A = 27r23 and = vp(z. y) — up(z, x). Recall that because
of the support properties of ri we have 1/2 � <2 and 1/2 2

As a result � c' > 0 if 3 — k � in, for some fixed in that is large
enough, (because � c, while x)I < 1/c for a constant
c that is small enough).

We iiow can invoke Proposition 2.1 to estiiriatc x. y) dz,
and as a result obtain that for each N � 0

K(x.y)I CN22323

� with N' = N — 2.

Since K also has fixed compact support, the estimate (68) for AkA is
therefore established. Of course a parallel argument works for
and property (c) is proved.

(d) Our last assertion concerns the operators ) = which

we denote by Note that like has a kernel that is and
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has compact support. The satisfy estimates very similar to those
for {Ak}. In fact,

and

(71) jfk—il > m.

(a) * (a)There is a parallel estimate for (Ak ) . Here of course denotes
the operator norm on L2(]Rd).

Looking at (67) we see that carrying out the differentiation on
Ak(f) yields a finite sum of terms like Ak (but with modified mul-
tiplied by factors that do not exceed 2/dat. Thus (70) and (71) are direct
consequences of assertions (b) and (c) above.

7.5 Almost-orthogonal sums

Since we have appropriate control of the norms of the different pieces Ak
making up A, we now put these together by using a general almost-
orthogonality principle.

We consider a sequence {Tk} of bounded operators on L2(Rd) and we
assume we are given positive constants a(k), with —oo < k < oo, so that
the sum is finite, that is, A = a(k) <00.

Proposition 7.4 Assume that

lITk77lI <a2(k —i) and <a2(k —i).

Then for every r,

(72)

The thrust of this proposition is of course that the hound A is indepen-
dent of r.

Proof. We write T = Tk and recall that 11T112 IITT* 1. Since
TT* is seif-adjoint we may use this identity repeatedly to obtain

I

(TT* )Th (at least when it is of the form n = 28 for sonic integer s). Now

(TT*)n=
Z,,22,
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We make two estimates for the norm of each term iii the above sum.
First

<a2(ii — i2)a(i3 — i4) —

which is obtained by associating the product as
Next

<A2a2 (i2 — i3)a2 (i4 — i5) —

which is obtained by associating the product as
(T* and using the fact that and arc both bounded
by A. Taking the geometric mean of these estimates yields

IiTiiI72 It
Aa(ii —i2)a(i2

Now we sum this first in ii, then and so on. until obtaining

a further factor of A each time, because A = a(k). When we suni
111 WC Use the fact that there are r + 1 terms in the sum. The result
is then + 1). Taking the root and letting n —* 00

gives (72) and the proposition

7.6 Proof of Theorem 7.1

We consider first the case when the dimension d is odd, and thus the
fraction (d — 1)/2 is integral. The case when d is even is slightly more
complicated, and will be dealt with separately.

In this first case we must show that whenever tat < (d — 1)/2. and
f e the derivative exists in the sense of distributiomis, is

an L2 function, and the mapping f is bounded on

For each r we consider

where Tk = =

Now because of (70) and (71) we see that the hypotheses in Proposi-
tiomi 7.4 are satisfied with in fact o(k) = cN2_tkIN. (and in particular for
N = 1). Thus

(73) tat
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However, by (70) for (Y = 0, the sum converges in the L2 norni
as r oo to A(f), (since the latter also converges pointwise to A(f)).
and heiice in the sense of distributions Thus Ak(f) also con-
verges iii the sense of distributions as r —* oo but since this sum is uni-
forrnly in L2 as r varies, the limit is also in L2

Finally then we have

<All! l1L2,

whenever f is continuous and of compact support and < (d — 1 )/2,
with d odd. Hence Theorem 7.1 is proved in this case.

Now we consider the case when d is even. Here we need to involve the
"fractional derivative" operator Ds, defined on the Schwartz space S by
its action as a multiplier on the Fourier transform, namely

(1 +

Note that IIDS(f) — If II
where a = Re(s), whenever f is in S. We

also iieed to observe that if Re(s) m is a positive integer, then

(74) I 11L2,

to I <?fl

Indeed, this follows directly from the inequality (1 + )m/2 <

C1 E TRd and Plancherel's theorem.
Now as above for the case when d is odd, it will suffice to prove

that

r
(75) <

with the bound c independent of r. To this end, consider the family of
operators P, depending on the complex parameter s. defined by

(76) =

for f E L2(Rd) (in particular for simple f). As we have already noted, for
such f the Ak (f) are iii S SO (76) is well-defined and TS (1) is itself iii S.
Moreover, whenever g E L2, (in particular, if it is a simple function) then
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by Plancherel's theorem

= [ Ts(f)gdx
JRd

+

where each Fk belongs to S. Hence is analytic (in fact entire) in s.
and by Schwarz's inequality, bounded in any strip a < Re(s) <b.

Next

(77) sup �
In fact, by (74) and (76) it suffices to see that

<MItfIIL2, for tat
k=()

But this is proved like (73) by using estimates (70) and (71) for =
together with the almost-orthogoriality proposition in Sec-

tion 7.5.
Similarly, one shows that

(78) sup <MIIIIIL2.

Finally, we apply the analytic interpolation given by Proposition 4.4.
Here the strip is a Re(s) < b, with a —1/2, b 1/2 and c = 0, while
Pu = Pi = qi = 2. The result is then

ilK .t
-' ti) [2 lvi i

which in view of the definition (76) is the estimate (75). This completes
the proof of the theorem.

Remark. The L" boundedness result of Theorem 4.1 (b) and Corol-
lary 4.2 extends to this setting. The proof is outlined in Exercise 20.

8 Counting lattice points
In this last section we will see the relevance of oscillatory integrals to
some questions related to number theory.
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8.1 Averages of arithmetic functions

The arithmetic functions we have in mind are r2(k). the number of rep-
resentations of k as the sum of two squares, and d(k). the number of
divisors of k. Even a cursory examination of the size of these functions
as k oo reveals a high degree of irregularity, so that it is not possible
to capture by siniple analytic expressions the essential behavior of these
functions for large k.

Tn fact, it is an elementary observation that r2(k) = 0 and d(k) =
2, each for infinitely many k. while given any A> 0, one has r2(k) �
(log for infinitely niany k, and the same is true for d(k).tU

In this context an inspired idea was to inquire instead as to the average
behavior of these arithmetic functions. That this might he a fruitful
question is already indicated by the observation of Gauss: the average
value of r2(k) is 71. This means that r2(k) ir, as oo.

in more detail, we have the following result.

Proposition 8.1 r2(k) = 7rp + as ji —* oc.

The proof depends on the realization that r2(k) represents the
number of lattice points in the disc of radius R with R2 = in fact,
with Z2 denoting the lattice points in R2, that is, the points in with
integral coordinates, then r2(k) = #{(ni, n2) E : k = + nfl, and
hence

#{(fll,fl2) E Z2: R2}.
k=()

So if N(R) is the quantity above, then the proposition is equivalent to

(79) N(R) = irR2 + 0(R), as R 00.

To prove this we write DR for the closed disc {x E R}, and let
DR he the rectangular region that is the union of unit squares centered
at points n E Z2 with n E DR, that is,

DR= U (S+n),
nI<R, nE:Z2

with S = {x = (x1,x2) : —1/2 < 1/2, i 1.2}.

10For the elementary facts about r2(k) and d(k) stated here, including the asymptotic

formula (81), see, for example, Chapter 8 in Book I and Chapter 10 in Book II
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i311

Since the squares S + N are mutually disjoint and each has area 1, we
see that m(DR) = N(J?). However

(80) DR_2 1/2 C DR C 1/2

In fact if x E S+n with ni <I?, then <2-1/2 + tnt <R+2'12, so
C 1/2. reverse inclusion can he proved the same way. It

follows from (80) that

and hence

m(DR_2 1/2) rn(DR) <rn(D11 21/2).

ir(R—2112)2 N(R) 1/2)2

provmg that N(1?) = 0(1?).

There is a siiriilar but soiiiewhat more intricate statement for the av-
erages of the divisor function. Dirichlet's theorem asserts:

(81) = + — + as p. oc.

where 'y is Euler's constant.

Figure 2. The region
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Again this is a consequence of counting lattice points in the plane:
the left-hand side of (81) is the number of lattice points (n1 , fl2), with
it,, n2 > 0 that lie on or below the hyperbola x1x2 = p."

Both (79) and (81) raise the question of what are the true sizes of
the error terms appearing in these asymptotic statements. Like other
important questions of this kind in number theory, these problems have
a long history involving much effort, but yet remain unsolved. It will he
our purpose here to show only how the first results that go beyond (79)
and (81) can be obtained by the help of ideas treated iii this chapter.

8.2 Poisson summation formula

Indispensable for ally further insight into these problems is the applica-
tion of the Poisson sumnriation formula. We state this identity here in
the general context of Rd, but with a restricted hypothesis sufficient for
our applications.'2

Proposition 8.2 Suppose f belongs to the Schwartz space S(Rd). Then

(82) 1(n) J(n).
flEZd

here denotes the collection of lattice points in Rd. the points with
integral coordinates, and f is the Fourier tranisform of f.

For the proof consider two sums

f(x + n) and
nEZd nEZ"

Both are rapidly converging series (since f and I are in S(Rd)), arid hence
both these sunis are continuous functions. Moreover each is periodic.
that is, each is unchanged when x is replaced by x + in, for any in E V'.
For the sum f(x + it) this is clear, because replacing x by x + m
merely reshuffles the sum. Also the second suni is unchanged. because
of the periodicity of for each n E Zd. Moreover both sums have
the same Fourier coefficients. To see this, let Q be the fundamental cube

''That there might be some connection between the averages r2(k) and d(k) is sug-
gested by the fact that r2(k) = 4(d1 (k) — d3(k)), for k � 1, where d1 arid d3 are respec-
tively the iiuniiber of divisors of k 1 mod 4 or 3 mod 4

'2Other settings for the formula can be found in Chapter in Book I, and Chapter 4
in, Book IT
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Q={xeW1: 0<x3 1, Then

J f(x + n)) dx = f dx
Q Ti Q+n

= I

since UflEZ(' (Q + n) is a partition of into cubes {Q + n}flEzd. More-
over

1
X dx =

because fQ
X dx = 1 if n = rn, and is 0 otherwise. Since

f(x + n) have the same Fourier coefficients, these

functions must be equal,'3and setting x = 0 gives us (82).

Next let us see what happens to the surrimation formula (82) when we

apply it first to the case of a radial function on 1(x) = fo(IxI), that
is in S, and then we try it with XR• the characteristic function of the

disc DR.

Using the formula (4) in Section 1 we obtain

00

(83) fo(}nI)
nEZ2 0 k1

once we gather together the terms for which = k. Here Fo(p) =

27rf0 Jo(27rpr)fo(r)rdr, arid we note that J0(0) = 1.

If we could apply this formula to the case when f is xR, (the obstacle

is that of course XII is not smooth), and use the fact that rJ1 (r) =

aJo(a) da. which is outlined in Exercise 23. this would give us Hardy's

identity

N(R) = + R i1

Note that since (u) is of order u oo (see (11)), the series

does not converge absolutely. and this is the harrier in trying to ap-

ply (83), even if one is guaranteed the (conditional) convergence of the

'3See, for instance, Exercise 16 in Chapter 6 of Book III
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series. Nevertheless, since each term of the series is O(R 1/2), it might be
hoped that the error term, N(R) — irR2. is roughly of the order 0(R'/2),
and this is what is conjectured.14

Here we prove the following weaker assertion that is, however, an im-
provement over (79).

Theorem 8.3 N(R) = + 0(R2/3), as R —* oo.

Proof. We replace the characteristic function x R by a regularized
version as follows. We fix a non-negative function p that is C°°,
is supported in the unit disc, and has dx = 1. We set po(x) =

and let

XR,6 = XR *

Thexi clearly XR,6 is a C°° firnction of compact support and hence the
summation formula (82) applies to it. Notice that =
and = 7rR2.

As a result, if we define N5(R) = xR,o(n), then the summation
formula yields

N5(R) + XR(fl)(P(STt).

We now estimate the sum above by breaking it into two parts as

O<InI�1/5

For the first sum we use the fact that

XR(n)1 = IJi = O(R21nJ312),
nj

by what has been said above, and that = 0(1). This gives

=
O<tnI<1/5 \.

= f jxf312 dx)
Ixl< 1/5

=

14More precisely the guess is that the error term is O(H112 +f) for every 0 See also
Problem 6
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Similarly,

since = O(1nL1S'). (In fact is rapidly decreasing.) Thus
this suni is also O(R1128112). We conclude therefore that

(84) N5(R) = + O(R1"251"2).

however there is a simple relation between R) and N(R), namely

(85) N5(R—S) N(R)

This in turn follows from the observation that

XR

The inequality on the right-hand side, Xn(.x) I xn+o(x — dy,
is clear because x E and S implies x — y E DR+5. Similarly for
the inequality on the left-hand side.

Finally by (84), we have ± 5) = 711?2 + + 0(118)
and analogously (R — 8) 7rR2 + 0(R1 1/2) + 0(115). Altogether
then. (85) yields thai,

J'J(R) = 7rR2 + + 0(118).

By choosing S = we make both 0 terms above equai, and this
gives

N(R) +

The theorem is therefore proved.

The approach to Theorem 8.3. leads to a wide generalization in which
the disc in R2 is replaced by au appropriate convex set in W1.

Recall that a set Q is convex if whenever x and x' are in Q, so is the line
segment joining them. Suppose in addition that is a bounded set with
C2 boundary (in the sense of Sectioui 4 in Chapter 7) Then whenever p
is a defining function for ft the second fundamental form (19) is positive
semi-definite. (In fact, assuming the contrary. we can find a point on
the boundary and coordinates (x1,. .. , centered at this point, so that
•1d is iii the direction of the inward normal, and the quadratic forum has
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an eigenvaluc < 0 in the direction x1 Hence near the origin iii this
coordinate system, the intersection of Q with time plane determined by
the and axes is then given by {xd > + o(4)}. which is clearly
miot convex, contradicting the convexity of

With this in niind. we say that Q is strongly convex when tile
quadratic form (19) is strictly positive definite at each point of the bound-
ary of ft We denote by the dilated set {J?x: x E and write
NJ? = #{lattice points iii

Theorem 8.4 Suppose is a bounded domain in Rd with sufficiently
smooth boundaiy.'5 Assume that is strongly convex and 0 E Il. Then

= R

The proof follows closely the argument for Theoremni 8.3.

Proof. Let x denote time characteristic function of and XR that
of so XR(r) = With p a non-negative C°° function sup-
ported in the unit ball that satisfies f p(x) dx = 1, we set

We let X'M X/? * (ps, and set,

NJ?,o = XIM(TL).

Now, by the summation formula (82)

= R5rn(Q) +
n$O

since = = and = 1.

however = 0 4*L) by Corollary 3.3. Thus

Xn(n) = =

0

Now we break the sum as + For

the first term we use the fact that = arid we es-

timate that sum by (for example by comniparing it with
d—1 d+1

I.ri 2 dx).

'3The proof will show that suffices See the remark at the end of Section 3
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The second term leads to (Irt for any r > 0,
since is rapidly decreasing. Choosing r sufficiently large. say r = d/2

gives in the same way the estimate 0 for this part of the
sum. Hence

(86) +

Next we observe that for an appropriate c> 0

(87) NR+eö.ö.

This inequality follows frorri

XR-cö,ö � XR

The inequality on the right-hand side.

XR(X) f Xfl+c6(X — dy,

is a consequence of the geometric observation that there is a e> 0, so
that whenever R � 1, and < 1,

(88) .x in and 5 imply that x — y E (R + cS)ft

The proof of this geometrical fact about the convexity of is outlined
in Exercise 21.

The inequality XI? is seen in the same way.

Now a combination of (86) and (87) show that

NH = + 0 +

d—1 / 2d\
If we now choose S = R then both 0 terms are 0 arid

the theorem is proved.

8.3 Hyperbolic measure

We turn to the improvement of (81) for the divisor problem that is anal-
ogous to Theorem 8.3.
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Theorem 8.5

(89) d(k) = plogp + — 1)/L + as

Now as nuich as we might wish to follow the lines of the proof of The-
orem 8.3, there are serious obstacles that seem to stand in the way. In
fact, if is the characteristic function of the region

(90) {(x1,x2) x1x2 <p, x1 > 0, and x2 > 0},

which consists of the area on or below the hyperbola XIX2 then
indeed

=
k=i nEZ2

However the other side of the Poisson summation formula (82) for f =
is problematic as it stands. In fact, dx = oo, and for the
same reason the integral giving each term is not well-defined.

A further issue is that the main term in (89) is ji log ,i, while a simple
scaling of the region (90) would suggest rather a term linear in Con-
nected with this is the mysterious occurrence of Euler's constant in the
subsidiary term.

Now the essence of our analysis of lattice points in DR (and formulas
like (83)) are the facts about Fourier transforms of radial functions iii
two dimensions, which iii turn depend on the Fourier transform of the
invariant measure of the circle. In parallel to this we seek the analog
where instead of radial functions we consider functions invariant under
"hyperbolic dilations" (x1, x2) (dxi, S > 0, and a correspond-
ing invariant measure in R2 supported on the hyperbola xi x2 = 1.

We begin with the hyperbolic measure on R2. denoted by dtj, and
which is defined by the integration formula

-'Cj an
j f(x) = j f(u, 1/u)

Ja2 U

valid for every continuous function f of compact support. Alternatively
fOC d

XE(U,l/U)
0 U

16ftecalI the correspondence p = H2 when comparing this with the result for lattice
points in DR
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for every Borel set E in wil h the integral taken in the extended
sense. r\ote that the measure 13 is invariant under the scalings (Il. X2)

for
Now the linear functional f f(u. I/u) is well-defined for f E

S in view of the rapid convergence of the integral, and moreover this
convergence shows that the measure 1) can he considered by this formula
to he a tempered distribution. We seek to determine the Fourier t rans-
form of this distribution, and matters will (lepend on a pair of oscillatory
integrals and -. These are given formally by

=
Jo U

Since these integrals (10 not converge absolutely (either at 0 or at infinity)
they must be considered as al)propriate limits after truncation.

For this purpose we pick to he a non-negative function on [0, oc)
with ii(u) 0 for small u. and = 1 if ii > 1, arid set
We then define the convergent integral

0 U

with a similar definition for 3b(A). To begin with we take 0 < a, b < 1/2.

Proposition 8.6 For each 0, the limit ex-
ists. Moreover, uniformly in a and b, we have:

(i) = +0 (IAI_3/2_N), for At � 1/2

and for every N � 0, with c0, Ci,.. . , appropriate constants.

(ii) =0 (log 1/tAt), for At 1/2.

Proof We divide the integral into three parts as follows. Let a he
a function so that a(u) = I when 3/4 u 4/3. and a is supported
in [1/2.2]. Set 8 = 1 — a so is supported where u 3/4 or u � 4/3.
Then split as I + Ii + III, where

= 1/2

=

and

III
= f4/3 U



8 Counting latticv points 387

Here we have written for u + 1/u.
Now we observe that = 0, while > 0 for all u, so that u = 1

is the (only) critical point of 1. Also. since 1(l) 2, we are led to make
the change of variables = u + 1/u 2 + x2. Solving the quadratic
equations involved gives

u—i x2 x(4+x2)112
U112 2 2

which shows that u x is a smooth bijectiori of the intervals [1/2, 2]
with [—2 -1/2, 21/2].

Making the indicated change of variables, we see that the integral II
becomes

/ dx,

with a a C°° function of compact support. We now invoke the asymptotic
formula (8) to obtain

II c2iA + 0

for every N � 0.
Next,, to (leal with the integral 1, we write

1 d
L

—

Then arid for every integer N � 1

p3/4 d
(91) I

= J() U

Let us first consider the case N 1. Since = I — i/u2, and
1 = u2/(u2 — 1). integration by parts shows

1
r3/4 dI —----- I du

where th (u) = — 1), and th is smooth.
Carrying out the differentiation leads to two terms. First, if the deriva-

tive falls on (u), the resulting contribution to I is certainly
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For the second, if the derivative falls on the contribution is also
0(1 SjflCC (ha (u))' = 0(1/a), and (u) is supported on [0, a]. This
shows that I =

For N> 1 we use (91) again, and carry out the integration by parts
N times. Now at each step we get a gain of a factor of u arid a possible
loss of a factor of the latter occurring when ha is differentiated.
So altogether this shows that I = O(lAj") for each positive integer N.
The integral III is similar to that of I, as can be seen by transforming
it by the rnappmg ii 1/u. So we also have III = and hence
conclusion (i) of the proposition is proved.

Next, when Al 1/2, since II is obviously hounded, we need only
estimate I and III. Thrning to I we write as before

1
3/4 dI = f

— 1

— iA]0

But the first term is majorized by a multiple of

1

IA' (1 + du 0(1),
10

while the second term can he written

p3/4 d

j + 0(1),
IA

which is clearly 0 + 0(1) = 0(log 1/lA 1). The estimate for III
is similar, so conclusion (ii) is established.

To prove the convergence of as a, b —* 0, note that the integral II
is independent of a and b. Now consider I arid recall that it depends
oniy on a. We have

Ia — Ia' — ha'(U))ø(U) _,

arid the integrand is supported only on (0, mnax(a, a')). Now as before

'a — Ia' f — ha' (u) du
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and an integration by parts shows that this difference is 0 max(a, a'))
Since A is fixed. A 0, this tends to zero with a and a'. and so Ia tends
to a limit as a —* 0. The term III is treated similarly, and hence
tends to a limit, proving the proposition.

A similar result holds for except for one change.

Corollary 8.7 The conclusions for are the same as those for
stated in Proposition 8.6, except that (i) should be modified to read that
uniformly in a, b,

(i') = for IA! � 1/2, for every N � 0.

The only change occurs in the treatment of II, namely j
where now = u — 1/u. In this case '1'(u) = I + 1/u2 > 1, and there
is no critical point. So Proposition 2.1 implies that II 0(IAI_N) for
every N � 0, and then conclusion (i') follows by the arguments we have
used for I and III previously.

Remarks. Two further observations about are straight-forward
consequences of the arguments given above.

1. and 3 are both continuous in A if A 0.

2. The unifoririity of the estimates (i), (i') and (ii) holds in the wider
range 0 < a < Do, 0 < b < oc, with the only change being that in the
asymptotic formula in (i) the constants ck may depend on a and b, but
are still uniformly bounded. For example, when a 1/2 but now b is
unrestricted, then in the term II, a(u) is replaced by a(u)ri(1/(bu)),
which is still uniformly smooth when h � 1/2. Tn I, the function (u) is
replaced by /31(u)1?(1/(bu)) with the same effect. This reasoning clearly
applies when both a and b are large.

8.4 Fourier transforms

We now come to the Fourier transform of Ij. It is convenient at this point

to change our notation slightly, so that a general point (x1, x2) of will
now he denoted instead by (x, y). and similarly the dual variable in
will be denoted by
We divide the plane into its four proper quadrants Qj, Q2, and

(together with the x an(1 y axes) with Qi = {(x, y): x > 0 and y>
0},Q2={(x,y): x<Oandy>0}andsooii.

17This will reduce the burden of subscripts in some of our formulas
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Proposition 8.8 The Fourier transform (taken as a tempered distri-
bution) is a continuous function when 0 and is given by

inQ1.
inQ2.
in
in

Proof. We approximate tj by the finite measures given by

f
f c f E 8, so the inca-

sures converge to 13 in tine sense of tempered distril)utlons. Now

f (u)r/( (1/u)
0 U

Suppose first ij) is in Qi and therefore 0 and 0. Keeping
fixed, we make the change of variables u Then + ri/u
beconies + 1/n), while 11f(U) = ri(u/€) is transformed to ?la(U),
with a = while r/((1/u) becomes with b
Also, the measure is unchanged. So

in the first quadrant, with analogous formulas in the other three quad-
rants.

Now the coiiclusions (i), (ii), and (i') of Proposition 8.6 and its corollary
show that

1/2 for I&riI � 1/2.
for 1/2,

uniformly in e. Moreover, for each with 0, converges
to a limit as f 0. This sulhces to show that converges iii the sense of
teinipered distributions to the function 13 given by ri). This
is because the above estimates imply that

/ [hg. foranygES,
.1R2 ./

by the dominated convergence theorem. Thus the proposition is proved.
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We next study the Fourier tranisform of functions that are in-
variant under the dilationis (r, y) —* (&r. y). with 5 > 0. We state the
nesult for a restricted class of sniootli functions of the type that is needed
below, although the niain identities hold for broader classes of functions.
We will that. f is of the form f(.r. y) = fo(xy) in the first quad-
rant, and vaiiishes in the other three quadrants. The finniction fo will be
assumed to be a function with compact support on (0. oc). Functionis

f of this form are never integrable on the whole of R2 (unless fo = 0)
but since they are boirnded, they are of course tempered distributions.

Theorem 8.9 Let f be the Fourier transform of f(x. y) = fo(xy). Then
f is a continuous function where 0. It is given by

(92) 2 f '12p)fo(p2)p dp

for E Qi. In Q2, and it is given by the analoqous formulas,
with replaced by 3(—'), and respectively.

Proof. We approximate f by IF. with fF(x,y)

Then each isa COC function of compact support. and clearly ff —* f
iii the sense of tempered distributions.

Now

j(
= / ' (y) dxdy.

We introduce new variables (n, p) iii the first quadrant with x = up,
y = and observe that

p a
— L p 1 '8(u,p) \

which has a determinant equal to 2p/u. Therefore dx dy =

2 f f (PU)T/F(P/U)P dp.

Again, if q) is in the first quadrant and if we make the change of

variables u (nj/c) 112u, then we have

q) = 2f
1/2 1/2

withi now a = and b =
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The analogous formulas for hold when rj) are in the second,
third and fourth quadrants. So the fact that converges in the seiise of
tempered distributions to the limit f given by (92) then follows by the
same reasoning used in the proof of Proposition 8.8.

Corollary 8.10 The Fourier transforms L and f satisfy the following
estimate, uniformly in c:

(94) when � 1/2,

for every N � 0.

This is a consequence of the asymptotic behavior of 3± (A) for A as
given in Proposition 8 6 and its corollary together with the fact that

c is for every N � 0, since fo(p2)p is
a function with compact support in (0, oc).

8.5 A summation formula

Here we obtain the hyperbolic analog of the summation formula (83). It
will be convenient now to put together the oscillatory integrals for the
four quadrants and write 3 for

3(A) = 2 +r(A) +3(-A)) 18

Again fo is a C3° function with compact support iii (0, oo).

Theorem 8.11

(95) f(logP + dp +

where

f
Proof. We apply the Poisson summation formula

=

to the approximating functions and theii pass to the limit as e 0.

Now the sum on the left-hand side is clearly takeii over a hounded set of

'8The expression of 3 in terms of Bessel-like functions is given in Problem 7
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lattice points since 10(u) has compact support in (0. oo). Thus, gathering
together the (in, n) for which rnn k gives the left-hand side of the
formula.

Now divide the sum on the right-hand side in two parts. One part
taken over those (in, n) for which mu 0, arid the other part taken over
those (in, n) where either in = 0. or it = 0, or both, m = n 0.

By the theorem and Corollary 8.10, we see first that

lim f((m,n)= J(m,n).

since the series are dominated by the convergent series mnL2.
Next, gathering together those (in, mm) for which mnj k, gives us

J(m,n) =

because of formula (92).
It remains to evaluate the limit as f 0 of

(96)
rn n=0

Now, one part of (96) is f€(m, which, by the Poisson summation
formula (this time in its one-dimensional form) equals

However ff(x, y) = arid L is supported in the first quad-
rant, so this sum is

frn=1

Upon making the change of variables my y in the integral and inter-
changing the summation and integration (which is easily justified), we
see that the sum becomes

f
with kE(y) = when we take 0 < 1. (Note that themi

1 ifm� 1.)
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claim that if CO = 4, then

(97) kf(y) = log(y/i) + + co + O(c/y) as F 0.

and this estimate is uniforni as long as y ranges over a compact subset
of(0.n).

To see this we divide the sum (y) in two parts where the sum-
mation is taken over m with in y/e. and the complementary Part.
Since r1f(y/rn) = i1(y/(fm)) 1 when in y/€. that part of the sum is

1/rn which equals log(y/i) + + O(F/y) by the defining prop-
erty of Euler's

On the other hand,

- / = ° (r =

because = O( 1/u2). which in turn follows since is
compactly supported iii (0, oc). As a result (97) is established with

du diicoJ
I u o U

By symmetry we also get

ii)
= f

k( given by (97).

It remains to evaluate 0), which is the excess of f, (in, 0) +
Jf(0, m) over >rnfl0 f(rn, n).

However.

f(0.0)= [

f dy.

with = 9. as a simple change of variables shows.

T9See. for instance. Proposition 3 10 in Chapter 8 of Book I
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Now divide the integration in x into four parts where both x/e arid
y/(fx) are � 1: where one is � 1, but the other is < 1: and where both
are < 1. The first part gives logy — 2log f, since ri(x/f) =
1 and 1 there. Next if x/i I but y/(ex) � I the inte-
gral is ij(x/e) = = CO. A similar evaluation holds when
y/(ex) < 1 and x/e> 1. Finally the last range of x's is empty when F is
sufficiently small since x <c implies y/(fx) > 1. whenever e < y and y is
hounded away from 0. Thus

(98) (y) = log y — log 2c + 2c0.

Altogether then

fOC(2ke
—

rnn=O 0

and because of (97) and (98) this converges to y + 2'y)fo(y) dy as
0. Theorem 8.11 is therefore proved.

We come now to the proof of the main theorem, whose conclusion is
stated in (89). Here we would like to apply the sunni formula (95) to
fo = the characteristic function of the interval (0, However this
ftmction does not have the smoothness required for the validity of (95).
We are guided instead by the reasoning used in the proofs of Theorems 8.3
and 8.4 that suggest we regularize in an appropriate way.

To proceed, let us note that in the sense that Theorem 8.3 arid (89)
in Theorem 8.5 are parallel, we have to think of /2 as playing the role
of R2. Tndeed, setting = will lead us to the proper choices below.
With this in mind we want to replace by a function which is

defined so that effectively x,1,o(t) = I if 0 < t ji, that is, 1

if 0 � p < R = and moreover so that decreases smoothly
to zero in R < p < 1? + S. Here S is the quantity R113 that arises in the
proof of Theorem 8.3.

To give the precise definition of we fix a C'° function on [0, lJ so

that 0 1. with = 0 near the origin and = 1 near 1. We define

(
for 1 p

(

Now consider time summi formula (95) with fo(n) = Then the in-
tegral terni on the right-hand side is p + dp, which is
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equal to

/1
1/3

J (log p + dp + 0(1) +0 (J log p

because R2 = ;i and (R + ö)2 (11 + 1/3)2 = + Thus the
integral equals

(99) plog/2 + — +

We now estimate each teriri that arises in the
sum Ofl the right-hand side of (95) with = We make two
estimates for this term, with II /21/2:

(a) 0(R'12/k314) and

(b)

To see this consider the main contribution to 3(A) for large as given
via (i) and (i') in Proposition 8.6 and its corollary. This is the term

Thus for its contribution we need to estimate

(100)

a
we may integrate by parts in (100) and

see that (100) is majorized by a multiple of

H R+5

(J dp + JR p"2

because xp,o(p2) = 1 for I <p < R, and = 0(1/6) for 1?

p < R + 6. This gives us the estimate = 0(k3/4R'/2)
and this is (a) above. If instead we integrate by parts twice we see
that (100) is majorized by a multiple of

2

a3/2f dp.

However = 0(1) when 0 p 1; it is cp512 when

1 <p < R: and 0(R'/262) when R < p < R +6. So we obtain the
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hound of the form (0(1) + R'/28') for (100).
Thus we have established the bouiids (a) and (b) for the iiiain contri-
bution coming froiri the first term in (i) of Proposition 8.6. The other
terms in the asymptotic series give obviously smaller contributions, and
we need oniy go as far as N 1 in the formula (i), because then the error
term will contribute less then either (a) or (b) Thus the estimates (a)
and (b) have been established for the individual terms of the series on
the right-hand side of (95).

Our conclusion is then that modulo an error term that is log

we have

(101) /Llog/1 + (27 —

+0 +
\ 1<k<1/52

Now it is a simple fact that

= as r oo, if a> —1,
I <k<r

and

d(k)k° as r —p if a < —1.
i<k

(The proof of this is outlined iii Exercise 22.) Taking r 1/S2
and a = —3/4 or a = —5/4, the above shows that the 0 term in (101)
is majorized by a multiple of

(R112R213 + log I? 2R213logR.

Now if we set N6(R) = n), with it = then (101) states
that

(102) N5(R) = R2 log 112 + (27 — 1)R2 + 0(R2"3 log R).

However by the way has been defined it is clear that

X(R—o)2,ö

with ,i = J?2. Thus
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If we look back at (102) we see this implies

d(k) = ,ilog,i + (27— +

since = and ö R"3. Therefore our main result is now estab-
lished.

9 Exercises

1. Use spherical coordinates to show that in Rd

fSd_
= Cd f — n2) du,

with Cd the area of the unit sphere Sd -2 Rd_I Then deduce formula (3) from
Problem 2 in Chapter 6, Book I.

2. Let the hypersurface M contain a neighborhood of a hyperplane (for example
{Xd = O}) Show that in this case as oc for any e > 0.

3. Principle of stationary phase when d = 1. Consider

1(A)
=

dx,

where is a C°° function of compact support and x = 0 is the only critical point
of '1 in the support of while 0. Then for every positive integer N,

iA4(O)
1(A)

= e
(ao + aiA1 + + aNA) + O(A_N_ 1/2)

as A oo

The ak are determined by 4"(O) and In par-
1/2

ticular ao

Prove this in two steps

(a) Consider first the special case when p(x) = x2 dealt with by (8).

(b) Pass to the case of general by a change of variables that brings p(x) to
x2 or —x2.

4. Suppose is of class C" in an interval [a, bJ with k � 2. Assume that �
1 throughout the interval. Prove the following generalization of Proposition 2 3

cb
I —1/k

e dX<CkA
Ja
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[Hint Suppose = 0, and argue by induction as in the proof of Propo-
sition 2 3.]

5. Consider the curve -y(t) = (t. jk) in with k an integer � 2. Its curvature
vanishes nowhere when k = 2 and only at the origin, of order k — 2. when k> 2
Let d/L he defined by f d1i = f(t. dt, where is a function of
compact support. and w(O) 0 'I'hen prove.

(a) = 1/k)

(b) However, this decay estimate is optimal, that is. �
is large

[Hint. For (a) use Exercise 4. For (b) consider for example the case when k is even
and verify that f00 dx = CA(1 —

6. Show that the (L'1, V') results for the averaging operator A given by Corol-
lary 4.2 are optimal by proving the following (in, say, the case of the sphere in
R3)

(a) Suppose 1(x) vanishes for small x and 1(x) � lxi_r. for lxl � I Then ob-
serve A(f)(x) � —, and thus we must always have q � p. This restriction
corresponds to the side of the triangle joining (0,0) and (1, 1)

(b) Next let I = XB6, where is the ball of radius 6. Note that if 6 is small
� for ii — lxii <6/2 So llfllLP while ilA(f)lILQ > 6261/q

Hence the inequality IA(f)iij.q implies 2 + 1/q � 3/p, which cor-
responds to the side of the triangle joining (3/4.1/4) and (1,1)

(c) For the third inequality, use duality and (b)

7. By refining the argument given in Exercise 6 (h) ()fl() (San show that the smooth-
ing of degree (d — 1)/2 asserted in Proposition 1.1 fails when p 2

In the case p < 2 and d = 3, this can be seen by taking 6 > 0 small and setting
f = where = and is a non-negative smooth function of compact
support. Here while 1ILP 66' hence the inequality

< fails for small delta when p < 2.

[Hint: if > 0 is sufficiently small, then 62 and 6. whenever
ii —lxii

8. Let M be a (local) hypersurface given in coordinates (x', Xd) E ad—I x as
{ Xd = p(x') } Suppose F is any continuous function of small support defined in a
a neighborhood of M and set f = FIAI

(a) Show that lim F dx exists and equals fRd 1 f(x', +
dx'. This limit defines the induced Lebesgue measure da and

equals fda



ChapterS OSCILLATORY INTEGRALS IN FOURIER ANALYSIS

(b) Suppose p is any defining function of M Show that

I I , I dcr
lim— / l'dx= j 1—

—.o 2- JA! IVpI

(c) Suppose h is a Schwartz function on R with h(u) du = I Then

iimt'f h(p/)Fdx=f
f—.O

[Hint: For (c), assume h is even and let 1(t) = F(x) dx. Then

h(p/t)Fdx = f du = 1 f (u/t)h'(u/) du

Now use the fact that — uh'(u) du 1/2 and —' as a 0.]

9. Observe the following Eiiclidean-invariance properties of the principal curva-
tures of a hypersurface M in For each /t consider the translate A/ + h of
M: also for each rotation r of the rotated surface r(M). and for each 8 E R,

0, the dilated surface 8M Denote by the principal curvatures of M
at x

(a) Show that — h)}, {A3(r'(x))}. and {82A3(x/8)} are the principal
curvatures of Al -F h, r(M), 5M at the points x ± Ii, r(x) and Ox. respec-
tively

(b) Consider the cone = x 0} with defining function p = Ix'12 —

x there are d — 2 principal curvatures that equal
2 and one that vanishes.

10. Let fo(r) r 0 < 8 < 1, when r � 2. and fo(r) 0 otherwise.

(a) Prove that f IJk(27rpr)Ifo(1)dr = oo for every p> 0

(b) Show as a result that, if p � 2d/(d ± 1), then (31) cannot hold for any q
when Al is the sphere

11. One cait prove that the condition q K (p-f) p' for (li, re-

striction cannot hold in a larger range. by the following argument given in the case
d=2

(a) Suppose the inequality (31) holds for sortie p and q Show that as a result

f < for small 6
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(h) Next choose — when q(u) = I if ui � I. That
is. doniinates the characteristic function of a rectangle of approximate
side lengths (5 and that fits inside the armulus I — 6 1. Use this
to obtain a contradiction q> p' by letting (5 0

12. Connect the operator and the Fourier transform as follows. Let ru1 he

the multiplication operator in, f(x) 1(x)

(a) Show that when I = 1/47r.

(h) Generalize this identity to any I 0 by rescaling

13. Let Ai(u) = dv.

(a) Show that this limit exists for every u E Il'.

(h) Prove that iAi(u)i < c(1 +

(c) Moreover, show that Ai(u) is rapidly decreasing as a oc, for a> 0

[Hint Write + ru. and apply the estimates in Section 2. Foi (a) use the
fact that oc as in oo For (b), use the fact that N1'(r)I � when
tnt < while > when tnt >

14. Suppose E x and S(I")(x, 1) = i . s) ds Prove that:

(a) For each t, S( F)( , I) E L2(W'), and

iiS(fl( , t) ii 111 2iiFiiL2(Rt xz)

(b) If F(.. t) = I), then

iiG(0. t1) — G(0. I — xk)

(c) As a result. I E(0, I) is continuous in the L2(IRd) norm

[Hint For (a) and (h) use the unitarity of arid Schwarz's inequality For (c).
approximate P by furict ions of compact support, using (h) and (c).]

15. Suppose a is a smooth solution of (54) that decays sufliciently quickly as xi
oo Show that both J'kd ui2 dx, and — dx arc independent of

[Hint. For the first, note that J'R(J Au v dx = uAv dx For the second, observe
that Vat2 dx = — hd + dx.]
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16. The following is a converse of Propositions 6.6 and 6 8. Suppose u( , 1) is
in L2(Rd) for each t. with t ." u( , t) continuous in the iY norm. and u( 0) = 0.

Assume that — = F as distributions, with F E x R). Then show
that u = S(F)
[Hint Use the following fact If H(.. t) is in L2(lRd) for each t. with t II( , t)
continuous in the L2 norini, H( ,O) = 0, arid = 0 in the sense of (listributions,
then 1-f = 0 Apply this to II( . t) = e . t) — S(F)( ,

17. A solution u of the non-linear Schrödinger equation (54) is uniquely determined
by its initial data f Moreover the solution (lepends continuously on this data
These are two features of the of the problem and can be stated
as follows. Assume = and q =

(a) Suppose u arid v are two strong solutions defined for itt <a, having the
same initial data f E L2(Rd) Show that u = v.

(h) Given f E L2(Rd), prove that there are 0 and a > 0 (depending on 1) so
that if If — L2 < €, arid u and v are strong solutions of (54) with initial
data f and g respectively, then

lu — vliLq —

Here = x <a}).

[hint Adapt the argument in Theorem 6 9, and for (a) proceed as follows note
that for small > 0

< (5 and

I

I
lu — liILq � iiM(u) — —

with V = x {i'i <e}), and so a = v for 0 < t <e. Now use the t-translation
invariance to apply the sanie argument for u( , t ± and v( . t + é), and 50 Ofl

(b) note that by choosing a and e sufficiently small <(5/4 arid
then <(5/2, where V = x <a}) Now the iteration argu-
ment shows that the solutions u and v satisfy lull lvii Lq < (5. Also lu — vii Lq

— v)
11

+ — But 1

u — v) ii'.i flu —

VIIL'l, so this (b).]

18. Consider the Radon transform 7ZH defined by

= f — R(x',y'))dy'

x = (x'. .rd) E x R. where B is a fixed non-degenerate bilinear form on W' -i x
Rd I We write B(x', y') = C(x') . y', and assume that the dimension d is odd

Verify that:



9 Exercises 403

(a) II

2

= CBIIIIIL2 for every I 8, with CB

(h) If is the (formal) adjoint of then = with B*(x,y) =
—B(x.y) Also B =

(c) Deduce from (a) and (b) the inversion formula

1. a \d1
(1— 1 = CJ3f.
\ OXdJ

19. We take the Radon transform as in the previous exercise (with the di-
mension d odd) and consider a localized version of it, given by

=

where and ij' are a pair of functions of compact support. Show that:

(a)

(f) is a finite linear combination of terms of the form
with 0 < f � al

(c) Deduce from the above and part (a) of the previous exercise that f (1)
is a bounded linear transformation from L2 to

20. The averaging operator from Section 7 satisfies the J1P, conclusions stated
for the operator A in Corollary 4 2 Prove this by proceeding according to the
following steps.

First, recall that A with Ak given by (65) in Section 7 4, with the
sum convergent in the L2 norm. Now fix r and consider

= (1 —

Note that 'lb = — and so it will suffice to make V —* estimates for 'lb
hat arc independent of r Now prove:

(a) 1lL2(Rd) if Re(s) =

(h) S MIIIIILI(Rd) if Re(s) = I.

Once (a) and (b) have been established, an interpolation via Proposition 4.4 yields

IITO(f)IILQ <

with p = and q = d + 1, and this leads to the desired conclusion.
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{Hint Part (a) follows front the estimates (70) and (71) for a = 0. and the almost-
orthogonality argument, Proposition 7.4 To prove (h) note that it suffices to
prove that (1 — 21 -

2 has a bounded Fourier transform if

Re(s) = 1 Let v be the (lual variable to v We assume first
I

< 1 Let k11 be the
integer for which 2k0 I /jvl < 2k0-F 1 Now

+
A--I k<k0 k>k0

In the first sum. write = I + 0(lulIcl), arid recall that is supported in
1/2 < H <2, thus

=0 2_ks2k) +0 2 ku)IuI Iuldu).
k<k0 k<k0 k<k0

where e = Ilowever >k<k0 2—ks2k is 0(1/Il _21 if Re(s) = 1, while the
second term above is (when Re(s) = 1)

= 0(IvI) f ku)IIuI du = 0(IvI) 2A = 0(1)
J k<k0

Finally for the second surri, >k0' integrate by parts. writing as

to obtain a sum that is 0 2_k) = 0(2 A0/IvI) = 0(1)
If vt > 1, take = 0, aII(1 argue similarly

21. Suppose is a bounded open convex set with 0 E ci and with C2 boundary.
Then there is a constant c> 0 so that whenever R 2 1 and 6 < 1, then x E
and <6 implies x + y E (1? + c6)ci

One may reduce to the case R = I by rescaling To see, for example, that
there is a jz so that .r + y = (1 + whenever .r E and I vi < for 6 sufficiently
small. proceed as follows By a Euclidean change of variables, introduce new
('OOr(IiIlates so that 3' has been rnoVe(l to (0. 0) E R"— x R. and near that point
is given by Xd > p(X'). with 0(0) = 0 and = 0 Then by convexity of
the point corresponding to the initial origin is given by (z'. z,j) with zd 2 ei > 0
Also x + y E (1 + is equivalent with

Yd f /U5Zd

l+1th 1+p6

Since IYdI < 6. the left-hand side is > as soon as p 2 2/Ci Fix such a /L
Now the right-hand side is dominated by

2 2

A
ji5z <A' (6+ (p6)

— l±,zu5



10 Problems 405

and we need only choose 6 < C2//1, for appropriately small c2.J

22. Prove the following two estimates for r DC

(a) = logr) if a> —1

(b) = 0 I I log r) if a < —1.

[Hint. Write

= (mn)° =
k>r mn>r n

= ü

23. Prove that r.Ji(r) = aJo(a) by verifying the following

(a) = (Jo(r) — J2(i))

(h) (r) = (.Jo(r) + J2(r))

The above shows that + J1(r) = rJo(r). so f (r.Ji(r)) = proving
the assertion.

[hint- Recall that = s'n dO For (a), differentiate in r under
the integral sign (b), write = 20) and integrate by parts.]

10 Problems
The problems below are nol intended as exercises for the reader but are
meant instead as a guide to further results in the subject. Sources in
the literature for each of the problems can he found in the "Notes and
References" section.

Suppose Al is a local hypersurface in In a neighborhood of a point E A!
one can choose a smooth vector field ii, defined in this neighborhood restricted
to A!, so that v(x) is a unit normal vector of M at each x E M (There are two
choices of t his vector field. determined up to a sign) The niap x v(x) from Al
to (with 1 the unit sphere in is called the Gauss map.

One can prove that the Gauss curvature of M near is non-vanishing if and
only if the Gauss niap is a diffeomorphism near XO Moreover, if doAl and
are the induced Lebesgue rnieasures of Al arid Sd_l. and (dusi -i the pull-back
of dast_ to Al defined by

f f f(v
M
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then KdrrM = with K the absolute value of the Gauss curvature

2.* The spherical maximal function. Define

At(f)(x) = a(
f(x - ty)

for each t 0, and fl*(f)(x) = IAt(f)(x)I. Then

II.4*(f)IILP if p> d/(d — 1) and d 2 2

As a result, if f E U, p> d/(d — 1), then limt .o An(f)(x) f(x) a e. Simple
examples show that this fails if p d/(d — 1)

A hint that there may be estimates for SUPt IAt(f)1 (and in particular that the
result holds for p = 2 and d 2 3) is the following simple observation for d 2 3

II sup 11L2 < CIIIIIL2.
1<t<2

To establish this, one notes that

f2
2

dxds <C 1111112

by using Theorem 3 1 However 5UP1<t<2 jAt(f)1 ds + IA1 (f)(x)1,
hence the assertion follows by using Schwartz's inequality.

Refinements of this argument prove the result for supt>o At p = 2 and
d 2 3, and then also for p> d/(d — 1) Further ideas are needed for the case
d=2

3•* There is a variant of Problem 2 that applies to the wave equation
Suppose u solves = for (x, t) Rd x R, with u(x, 0) = 0, and 0) =

1(x) If f we observe that 1(x) in the L2(Rd) norm as t —* 0. One
can show that exists and equals f(x) a.e. if I E p> 2d/(d + 1).

4* The restriction phenomenon (inequality (31)) is valid in R2, for the full range
1 <p < 4/3
[Hint. One may dualize the assertion as in the proof of Theorem 5.2 Consider the
operator defined by

= f
The desired result then becomes the inequality

<
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when q = 3p' arid I p < 4. Now the key point is that if we consider the singular
measure dv = then the convolution xi * xi is actually an absohutely continuous
measure f dx with density f. a locally integrable function on R2 This fact reflects
the assUme(I curvature of M. Indeed, it can be shown that f E IY(1R2). with

= + 1. whenever FE and I p 4, and Ill IlL' and
I <p < 4. Now if this is so, then

2 2 A(F) (v(-x)) = (xi * xi) (-x) = f(x).

and by the Hausdorff-Youuug inequality.

II(1Z*(F))2IILr/ llIlljr'

and this proves the assertion since 2r' = 3p'

An analog of Theorem 6.3 for the wave equation is as follows. Let u(x, 1) be
the solution of the wave equation Au for (x, t) E x R, with initial data

5 u(x,0) = 0

= f(x).

Then < C if q = and d � 3.

The following further results are known about E( II) = N(R) — irR2. the error
term appearing in Theorem 8.3.

(a) 'I'he Hardy series converges for each I? � 0, and
its sum equals E( R) whenever R k"2, for any positive integer k

(b) The error E(R) is on the average a multiple of H112 in the sense that

jr
E(R)2RdR = er3 +

for some c> 0 and every ( > 0.

(c) However, E(R) is not exactly O(R"2) since

IE(R)IJim sup D1/2 =
II

(d) It has been proved that E(Jl) = E), for certain a, 1/2 < a < 2/3. A
relatively recent result of this kind is for a 131/208.

The oscillatory integral can be identified in terms of Bessel functions of
the second and third kind One has that

= 4K0(2A) — 2irYo(2A),
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where Ym arid are respectively Neumann and Macdonald functions

8. Consider the error terni in the divisor problem

1/4

It is given for p not an integer by the convergent series

—21/2 d(k) /2) + V1

For there are estimates, analogous to those for E in Problem 6, with =
H) arid /3 = ci/2



Notes and References

Chapter 1
The first citat ion is taken from the article [40] by F Riesz, while the second is
a translation from an excerpt of Banach's book [3]

General sources for topics in this chapter are Hewitt and Stromberg [23),
Yosida [59], and Folland [18]

For Problem 7*, we refer, for instance, to the book [9] by Carothers. while
results related to the Clarkson inequalities in Problem 6* can be found in Chap-
ter 4 of hewitt and Stromberg [23). For a treatment of Orlicz spaces, see Rao
and Ren [39]. Finally, in Wagon [57] the reader will find further information on
the ideas described in Problems 8* an(1 9.

Chapter 2
The first citation is taken from Young's article [60]. The second citation. tranis-
lated from the French, is am extract of a letter from M Riesz to Hardy. The last
cit ation is an extract from a letter from Hardy to M Riesz Both are cited in
Cartwright [10]. In addition, this reference also contains the M. citation
in the text in Section 1

For the theory of the conjugate function on the circle, analogous to the Hilbert
transformni on the real line, see Chapter VII of Zygmund [61), arid Katznelson [31]
The theory of and BMO is treated in Stein [45] where other sources in the
literature can be found

For Problem 6* see for example Chapter III in Stein [45].
The proof of the result in Problem 7 can be carried out by complex methods

using Blaschke products. For the details of this approach in the analogous sit-
nation when the upper half-plane is replaced by the unit disc, see Chapter Vii
in Zygmnund [61] An alternate approach by real methods is, for example, in
Chapter ITT of Stein and Weiss [47].

Problem 9* is a result of Jones and Journé, which can he found in [28], while
the reader can consult Coifman et al [38] for results related to Problem 10*

Chapter 3
The first citation is taken from Bochner [7], while the second conies from the
preface of Zygmund [61].

The foundations of distribution theory can he found in the work of Schwartz [41].
A further in depth source for distribution theory is Gelfand and Shilov [20],

which is the first volume of a series of hooks on the topic.
Formulations of Theoremni 3 2 that are more general. because they require less

regularity of the kernels of the operators, mnmay he found in Stein [44], Chapter 2,
and Stein [45], Chapter 1

For Problems 5* amid 6* see Bernstein and Gelfand [4], and Atiyah [1] In fact,
Hörmander [26] is also relevant for Problems and 7*

Finally, for Problem 8*, see for instance Folland [17], where other references
may be found, in particular the original work of M. Riesz, Methée, and others.
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Chapter 4
The citation is a translation taken froni the original work of Baire [2].

The proof of the existence of Besicovit ch sets using the Baire category theorem
was originally given in Körner [34].

The concept of a universal element defined in Exercise 14 and also discussed in
Problem 7* comes originally from ergodic theory and the study of dynamnica] sys-
temns. For a good survey regarding universality, and also t he related hypercyclic
operators see Grosse-Erdinanin's article [21].

Chapter 5
The first citation is taken from an article by Shiryaev on Kolmogorov that ap-
pears in Kolmoqorov in Peispective, History of Mathematics, Volume 20, Airier-
ican Mathematical Society, 2000. The second citation is an excerpt of a transla-
tion from [29]

There are iriany good texts for general probability theory and stochastic pro-
cesses. For instance, the reader may consult Doob [13], Durrett [14] and Koralov
and Sinai [33].

For more information on the Walsh-Paley functions in Exercise 16 and Prob-
lem 2*, the reader may turn to Schipp et al. [42] The reader will also find
some information on lacunary series relevant for Problem 2*. in Sections 6 to 8,
Chapter V in Volume 1 of Zygmund [61].

Chapter 6
Doobs' citation is from a review of Masani's book, Norbert Wiener. This review
appeared in the Bulletin of the American Mathematical Society, Volume 27,
Number 2, October 1992.

The following are general sources for material on Brownian motion: Billings-
ley [5] and [6], Durrett [14], Karatza.s and Shreve [30], Stroock [52], Koralov and
Siiiai [33], and cinlar [11]

For problems 4* and 7* see Durrett [14] or Karatias and Shreve [30].

Chapter 7
Lewy's citation is from [37].
Relevant references for the topics discussed in this chapter, as well as the gen-

eral theory of several complex variables, are Cunning and Rossi [22]. Hörrnander [25],
and Krantz [35].

The approximation result in Theorem 7.1 can he found, for example in Boggess [8],
Baoucndi et al. [13] or Treves [56]

For further information on the theory of Caucliy-Riemriamin equations and
extensions of some results discussed in this chapter. the reader may turn to
Boggess [8].

More about analysis Ofl the tipper half-space U treated in the Appendix and
its relation to the Heisenberg group can be found in Stein [45], Chapters XII
and XIII

For Problems I and 2. see for instance Gunning and Rossi [22] or Krantz [35]
— Problem 3* is in Chapter 2 of Chen and Shaw [12]. while the theory of the
3-Neumann equation in Problem 4* can be found in Folland and Kohn [19], and
Chen aiid Shaw [12]
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Finally, for domains of holomorphy in Problem 5* see, for instance, Chap-
ter 2 in Hörmander [25], or Chapters 3 and 4 in Chen and Shaw [12], while for
Problem 6*, see for instance Chapter XIII in Stein [45]

Chapter 8
The epigraph (1840) from Kelvin is taken from [54], while the epigraph of Stokes
is taken from [48]

Some general references for topics covered iii Sections 1 to 5 and 7 of this
chapter are Sogge [43] and Stein [45], Chapters 8 11. We have omitted any
discussion of the important topic of Fourier integral operators. Au introduction
to this subject is in Sogge [43], Chapter 6, where further references may be found.

Early work on dispersion equations was by done by Segal, Strichartz [51],
Cinibre and Velo, and Strauss [49]. A systematic survey and exposition of the
subject is iii Tao [53]. where further references to the literature may be found

Sources for the results on lattice points in Section 8 are Landau [36], Part 8,
Titchunarsh [55], Chapter 12; Illawka [24], and Iwaniec and Kowalski [27], Chap-
ter 4.

For more about the Gauss map discussed in Problem 1* see, for example,
Kobayashi and Nomizu [32], Sections 2 and 3.

A treatment of the spherical maximal fund ion caui be found in Stein and
Wainger [46] for d � 3 and Sogge [43] for d = 2.

For Problem 4*, the restriction theorem when d = 2, see Stein [45], Section 5
in Chapter 9.

The result in Problem 5*, in a more general form, is in Strichartz [51].
For the results (a)—(c) in Problem 6* concerning r2(k), see Landau [36] The

exponent = 131/208 is due to M. N. Huxley.
The identification of 3 with Bessel-type functions in Problem 7* can be de-

duced from formulas (15) and (25) in Erdélyi [16], and Sections 6.21 and 6.22
in Watson [58]. With the aid of these formulas one can connect Proposition 8.8
and Theorem 8.9 in this chapter with Theorem 1 in Strichartz [50], amid formulas
in Sections 2.6—2.9 in Gelfand and Shilov [20]

The identity for in Problem 8* goes back to Voronoi and in fact predates
Hardy's identity for r2(k).
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Symbol Glossary

The page nuirihers on the right indicate the first time the symbol or
notation is defined or used. As usual, Z. Q, and C denote the integers,
the rationals, the reals, and the complex numbers respectively.

liii LP(X)' II•I1

ii . lip
7

8

C(X) 9

A° 10

ii
13* 12

Bx 29

M(X) 29

Ch(X) 33
V-'° + 36
AL\B 36

ii ILP r 38

40
42
61

H(f) 62

Q1, 63

64
66

72

75
75

ft 76
86

100

100

2

2

U space

norm

space
L°° norm or essential-supremiim
Continuous functions on X with the sup-
norm
holder space of exponent ü
Soholev space
Dual space of B
Borel sets of X
Finite signed Borel measures on X
Bounded functions in C(X)
Sum of and
Syrrimetric difference of A and B
Mixed space and mixed norm
Orlicz space
Functions whose kth derivative are in A°
Upper half-plane
Ililbert transform of f
Poisson and conjugate Poisson kernels
o notation
Space of indefinitely differentiable functions
with compact support on R
Distribution function of F
Real Hardy space

(Wi) normni
Truncated maximal function
Bounded mean oscillation (or BMO) norm
Smooth functions with compact support
in or test finictions
Partial derivatives aiid related functionsa!
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Ck.

S

1111N

5*

pv(

A(j
8 8

(9Z

0

77N

DC

rn0, a2

EA(f), E(f IA). E

Fr(z0)
C1 (z0)

a

U
J-12(U)

Wave operator
5-ncighhorhood of A
N-fold product of Z2
Infinite product of Z2
Radernacher functions

squares
Number of divisors of k
Hyperbolic measure

100
101
101
105
105

106

111
119
123

148, 277
155

177
189

191

192
196
196

209

240

254
277
277

291

300
307
308
331

Space of distributions on
Dirac delta
Functions of class Ck on
Schwartz space, or test functions
Sup-norm for derivatives up to order
N
Space of tempered distributions
Principal value
Laplacian operator
Area of unit sphere in W'
Derivative with respect to and z

Mean or expectation, and variance
Gaussian distribution with mean zero
and variance a2
Conditional expectation of f with re-
spect to A
Continuous paths iii Rd starting at the
origin
Stopping time
Polydisc in
Boundary circles of Fr(Zo)
Caiichy-Ricmann operator
Tangential Cauchy-Riemann operator
Upper half-space in
Hardy space on U
X <cY arid c - 1y < X <cY for some
c>0
Rotational curvature
Number of ways k is a sum of two

rotcurv(p)
T2 (k)

d(k)

366
377

385
385



Index

Relevant items that also arose in Book I, Book TI or Book III are listed
in this index, preceded by the numerals I, IT or III, respectively.

hump function, 135
L" norm, 2
ö-neighborhood, 177
0 notation, 64; (111)12

afflne hyperplane, 17
algebra, 209

tail, 215
allied series, 50
almost surely, 192
alinost-orthogonality, 372
amplitude, 325; (1)3; (11)323
analytic family of operators, 338
analytic identity, 279
approximation to the identity, 64,

(1)49, (111)109
atomic decomposition, 74
atoms, 74

1-atom, 138
p-atoms, 81
"faux", 93

averaging operator, 322, 323, 366

Banach integral, 24
Banach space, 9

equivalent, 46
Banach-Tarski paradox, 46
Baouendi-Treves approximation

theorem, 300
Bernoulli trials, 205
Besicovitch set, 176, (111)360, 362,

374
bijective mapping, 171
Blumenthal's zero-one law, 257
BMO, 86
Bochner's theorem, 292
Bochner-Martinelli integral, 319
Borel

a--algebra, 29; (111)23, 267

measure, 29, 242, (111)269
sets, 29, 242; (111)23, 267

Borel-Cantelli lemma, 231; (111)42,
63

bounded mean oscillation, 86
Brownian motion, 227, 240

recurrent, 274
transient, 274

Calderón-Zygmund
decomposition, 76
distributions, 135

cancelation condition, 135
category

first, 158

second, 158
Cauchy integral

representation, 277
upper half-space, 312

Cauchy-Riemann
equations, 277; (11)12
tangential weak sense, 300
operator, 148
vector field, 290
tangential, 291

Cauchy-Szegö integral, 311
central limit theorem, 195, 220
characteristic

function, 216, 221; (111)27

polynomial, 126; (111)221, 258
Clarkson inequalities, 45
class Civ, (1)44

function, 101, 290
hypersurface, 288

closed linear map, 174
closure of a set, 158
complete normed vector space, 5
conditional expectation, 209
cone, 267
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backward. 155
forward, iriS
outside condition, 268

conjugate
exponents, 3
function. 50
l'oisson kernel, 63; (111)255

convergence in probability, 195
convex set, 17, 382, (111)35
convolution; (1)44. 139. 239. (111)74.

94. 253
distributions, 102
functions, 38, 60

covariance matrix, 221
critical point, 327. (11)326
curvature

form, 333
Gauss, 333
principal, 333
rotational, 366
total, 333

cylinder set, 191; (111)316
cylindrical set, 242

defining function, 288
dense set, 158
(lifferential form. 291
Dirac delta function. 23, 101:

(111)110, 285
Dirichiet

kernel, 90. (1)37, (111)179
problem. 264; (1)20, 28. 64. 170;

(11)212, 215. 216: (111)230
dispersion equations, 348

non—i i near. 359
(I istance

llausdorfr. 177. (111)345
distribution. 99, 100

convolution. 102
derivative. 101
finite order. 150
function, 72
fundamental solution, 125
Gaussian, 196
homogeneous, 115
joint, 206
measure, 195, 220
normal, 196
periodic, 153

positive, 150
principal value, 111
regular. 117. 132
support, 104
tempered, 106
weak sense convergence. 103

domain of holomorphy, 320
Donsker invariance principle, 250
dual

exponents. 3
space, 1 2
transformation, 22

dyadic intervals. 199

elliptic differential operator, 132
equivalence. 41
equivalent Banach spaces, 46
ergodic, 208; (1)111; (111)294
error function, 229
essent ial-suprernumn. 8
event. 192
expectation conditional, 209
exponential type. 151; (11)112

Fourier coefficients, 48; (1)16, 34.
(111)170

Fourier series, (1)34, (11)101.
(liT) 171

conjugate function, 50
decay of coefficients, 173
diverging at a point, 167
periodic distributions. 153
random. 202

Fourier transform. (1)134, 136, 181;
(11)111

surface-carried measure, 334
tempered distribution, 108

fractional derivative. 375
function

analytic in 276
class Ck. 101

convolution, 38. 60
Dirac delta, 101. (111)110
expectation, 196
gauge, 18
liolomon phic in Ci', 276
homogeneous. 115
mean, 196
measurable, 209. (111)28
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mutual independence, 193
nowhere differentiable, 163, 233,

(111)154. 383
Rademacher, 192
slowly increasing. 107
support, 28. 104. 146. (111)53
variance, 196
Walsh-Paley, 230

165
fundamental solution. I 25

gauge function, 18
Gauss

curvature, 333
map, 405

Gaussian; (1)135, 181, (111)88

distribution, 196
subspace. 228

generalized function. 99
generic set. 158
graph of a linear mniap. 174

Hahn-Banach Theorem, 20, 43
liamel basis, 183
hardy space. 73, 308; (111)174, 203,

213
harmonic measure, 254
hlartog's phenomenon. 280
Hausdorif distance, 177, (111)345
1-Iausdorff-Young inequality, 49, 57.

90
heat

kernel. 128. (1)120, 146, 209,
(111) 111

operator. 127, 133
1-Ieaviside function, 101, (111)285
Heisenberg group, 318
Hessian matrix. 329
Hubert transform. 62, (111)220, 255
Holder

condition. 10, (1)43
inequality, 3. 35, 38. 39
converse, 14

holotnorphic coordinates. 294
Huygens' principle, 156. (1)193
hyperbolic measure, 385
hyperplane, 17

affine, 17
proper, 16

hypersurface. 288
class Crc, 288

hypo-elliptic, 133

i(lefltiCally distributed functions, 205
injective mapping. 171
interior of a set, 158, (111)3
invariance principle (Donsker), 250
invariant set, 207, (111)302
iterated logarithm. 237. 275

Jensen's inequality. 40
.John-Nirenberg inequalities, 95
joint distribution, 206

Khinchin's inequality, 203

Laplacian. 119, 126, (1)20, 149, 185;

(11)27. (111)230

lattice points, 377, 379

law of large numbers, 213
law of the iterated logarithm. 237.

275
Lebesgue's thorn, 275
Levi form. 295
Lewy

example, 313
extension theorem, 306

linear functional, 11, (111)181
bounded. 11
continuous, 11

linear transformation
bounded, 21

Liouville numbers. 185
Lipschitz

boundary, 272
condition, 10, 146, (1)82. (111)90.

147, 151, 330, 362

niartingale sequence, 211
coniplete, 211

niiaximnal function, 70, 76, 85,
(111)100, 261

spherical, 406
maximum principle, 296, (1)92.

(111)235

meager set, 158
mean, 196
measurable, 209
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measure
Borel, 29, 242
continuous. 218
harmonic, 254
hyperbolic, 385
Radon. 28, 100

Mirikowski inequality, '1
for integrals, 37

mixed norm, 38
mixing, 207; (111)305
multiplier, 134: (111)220
mutual independence. 193

function, 193
sub-algebras, 211

non-linear dispersion equation. 359
norm, 9. 21

of a continuous linear functional,
12

normal
distribution, 196
number, 231, (111)318

normed vector space, 3, 9

nowhere dense set, 158
nowhere differentiable function, 163.

253, (1)113, 126: (111)154, 383

open mapping, 171
open mapping theorem. 171, (11)92
Orlicz space, 41. 45
oscillation of a function, 161; (1)288
outside cone condition, 268

parallelogram law. 41, 45; (111)176
parametrix, 131
partition of unity, 28
path. 223
periodizat ion operator. 153
phase. 325, (1)3. (11)323

Poisson

kernel, 63: (1)37. 55, 149. 210,
(11)67, 78. 109. 113. 216,
(111)111. 171, 217

conjugate. 63. (1)149; (IJ)78, 113;
(111)255

Poisson summation formula, 379.
(1)134 156. 165, 174, (T1)118

polydisc, 277
principal

curvatures. 333
value, ill

probability
convergence, 195
measure, 192, 195

weak convergence, 219
space, 192

process

stationary, 232

stochastic, 239

stopped, 261
Prokhorov's lemma, 243
proper hyperplane, 16
pseudo-convex, 296

strongly, 296

Rademacher functions, 192
Radon

measure, 28. 100
transform, 363, (1)200, 203;

(111)363

random

flight, 237
Fourier series. 202
variable, 190
walk. 222
recurrent, 223

recurrent
Brownian motion
neighborhood, 274
pointwise, 274
random walk, 223

reflection, 63
regular

distribution, 117, 132
point, 257

restriction (Lv, V), 345
Riemari n-Lebesgue lemma. 93;

(1)80: (111)94
Riesz

convexity theorem, 57
diagram. 57
interpolation theoremni, 52
product, 235

rotational
curvature. 366
matrix, 365

Schrödinger equation, 348
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Schwartz space, 105, (1)134, 180
second fu ndarnental form, 333
section, 243
separable

space, 36
Banach space, 43
measure space, 36

set
Borel, 29, 242
closure, 158, (11)6
convex, 17, 382; (11)107
cylinder, 191; (111)316
cylindrical, 242
dense, 158
first category, 138
generic, 158
interior. 158; (11)6
invariant, 207
meager, 158
nowhere 158
second category, 138
strongly convex, 383

signature, 294
signum, 14
singular integral, 62, 134
Sobolev

embedding. 131, (111)257
Space. 11. 151

spherical maximal function, 406
stationary

process, 232
stationary phase, 323. 398; (11)326
stochastic process. 239
stopped process. 261
stopping time, 254, 255
Strichartz estimates, 351
strong Markov property, 258
st rong solution. 360
strongly convex set. 383
strongly pseudo-convex. 296
sub-algebra. 209
support

distribution, 104
function, 104; (111)53
of a function, 28, 146

surface-carried measure. 334
smooth density, 334

surjective mapping, 171

tail algebra, 215

tangential
Cauchy-Rienriann vector field, 291
vector field, 290

Tchehychev inequality, 73. (111)91
tempered distribution. 106
test functions, 100. 105
three-lines lemma, 33. 339, (11)133
Tietze extension principle, 269
tight, 33. 243
total curvature, 333
type (of an operator). 56

uniformly convex, 45
imiversal element, 184
upper

half-plane, 61
half-space, 307

van der Corput inequality, 328
variance, 196, (1)160
vector field, 290

Walsh-Paley functions, 230
wave operator. 155
weak

boundedness, 184
compactness of L", 37
convergence. 37, 221, 243;

(III) 198
weak sense

continuity. 108
convergence, 103
derivative, 101
derivative in Ii, 10
tangential Canchy-Riemanmn

equations. 300
weak* convergence, 44
weak-type, 92
weak-type inequality, 71; (111)101
Weierstrass approxi nniationi theorem.

299, (1)34, 63, 144. 163
Weierstrass preparation theorem,

282, 319
Wiener measure. 240, 241

Young's inequality. 39. 40, 60
Yukawa potential, 149

zero-one law, 199, 215
zig-zag function, 165
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