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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.
I1. Complex analysis.
ITI. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.



FOREWORD ib'e

We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; and
Daniel Levine, who gave valuable help in proof-reading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein
Rami Shakarchi

Princeton, New Jersey
August 2002

In this third volume we establish the basic facts concerning measure
theory and integration. This allows us to reexamine and develop further
several important topics that arose in the previous volumes, as well as to
introduce a number of other subjects of substantial interest in analysis.
To aid the interested reader, we have starred sections that contain more
advanced material. These can be omitted on first reading. We also want
to take this opportunity to thank Daniel Levine for his continuing help in
proof-reading and the many suggestions he made that are incorporated
in the text.

November 2004
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Introduction

I turn away in fright and horror from this lamentable
plague of functions that do not have derivatives.
C. Hermite, 1893

Starting in about 1870 a revolutionary change in the conceptual frame-
work of analysis began to take shape, one that ultimately led to a vast
transformation and generalization of the understanding of such basic ob-
jects as functions, and such notions as continuity, differentiability, and
integrability.

The earlier view that the relevant functions in analysis were given by
formulas or other “analytic” expressions, that these functions were by
their nature continuous (or nearly so), that by necessity such functions
had derivatives for most points, and moreover these were integrable by
the accepted methods of integration — all of these ideas began to give
way under the weight of various examples and problems that arose in
the subject, which could not be ignored and required new concepts to
be understood. Parallel with these developments came new insights that
were at once both more geometric and more abstract: a clearer under-
standing of the nature of curves, their rectifiability and their extent; also
the beginnings of the theory of sets, starting with subsets of the line, the
plane, etc., and the “measure” that could be assigned to each.

That is not to say that there was not considerable resistance to the
change of point-of-view that these advances required. Paradoxically,
some of the leading mathematicians of the time, those who should have
been best able to appreciate the new departures, were among the ones
who were most skeptical. That the new ideas ultimately won out can
be understood in terms of the many questions that could now be ad-
dressed. We shall describe here, somewhat imprecisely, several of the
most significant such problems.

XV
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1 Fourier series: completion

Whenever f is a (Riemann) integrable function on [—7, 7] we defined in
Book I its Fourier series f ~ > a,e™* by

(1) an = [ fw)e da,

:27T o

and saw then that one had Parseval’s identity,

o0

>l =5 [ l@)P d

n=-—o00 -

However, the above relationship between functions and their Fourier
coefficients is not completely reciprocal when limited to Riemann inte-
grable functions. Thus if we consider the space R of such functions with
its square norm, and the space ¢2(Z) with its norm,! each element f in
R assigns a corresponding element {a,,} in £?(Z), and the two norms are
identical. However, it is easy to construct elements in ¢?(Z) that do not
correspond to functions in R. Note also that the space £?(Z) is complete
in its norm, while R is not.? Thus we are led to two questions:

(i) What are the putative “functions” f that arise when we complete
R? In other words: given an arbitrary sequence {a,} € ¢?(Z) what
is the nature of the (presumed) function f corresponding to these
coefficients?

(ii) How do we integrate such functions f (and in particular verify (1))?

2 Limits of continuous functions

Suppose {fn} is a sequence of continuous functions on [0, 1]. We assume
that lim,,—, o fn(x) = f(z) exists for every x, and inquire as to the nature
of the limiting function f.

If we suppose that the convergence is uniform, matters are straight-
forward and f is then everywhere continuous. However, once we drop
the assumption of uniform convergence, things may change radically and
the issues that arise can be quite subtle. An example of this is given by
the fact that one can construct a sequence of continuous functions { f,,}
converging everywhere to f so that

I'We use the notation of Chapter 3 in Book I.
2See the discussion surrounding Theorem 1.1 in Section 1, Chapter 3 of Book I.
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(a) 0 < fu(z) <1 forall z.
(b) The sequence f,(z) is montonically decreasing as n — oo.

(c) The limiting function f is not Riemann integrable.?

However, in view of (a) and (b), the sequence fol fn(x) dz converges to
a limit. So it is natural to ask: what method of integration can be used
to integrate f and obtain that for it

1 1
/ f(x)dz = lim fo(z)dz?
0 n—oo 0
It is with Lebesgue integration that we can solve both this problem
and the previous one.

3 Length of curves

The study of curves in the plane and the calculation of their lengths
are among the first issues dealt with when one learns calculus. Suppose
we consider a continuous curve I' in the plane, given parametrically by
I'={(x(t),y(t)}, a <t <b, with z and y continuous functions of t. We
define the length of T in the usual way: as the supremum of the lengths
of all polygonal lines joining successively finitely many points of I', taken
in order of increasing t. We say that I' is rectifiable if its length L is
finite. When x(t) and y(t) are continuously differentiable we have the
well-known formula,

b
(@) L= / () + (7 (1)) 2 a.

The problems we are led to arise when we consider general curves.
More specifically, we can ask:

(i) What are the conditions on the functions z(t) and y(¢) that guar-
antee the rectifiability of I'?

(ii) When these are satisfied, does the formula (2) hold?

The first question has a complete answer in terms of the notion of func-
tions of “bounded variation.” As to the second, it turns out that if z and
y are of bounded variation, the integral (2) is always meaningful; how-
ever, the equality fails in general, but can be restored under appropriate
reparametrization of the curve I'.

3The limit f can be highly discontinuous. See, for instance, Exercise 10 in Chapter 1.
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There are further issues that arise. Rectifiable curves, because they
are endowed with length, are genuinely one-dimensional in nature. Are
there (non-rectifiable) curves that are two-dimensional? We shall see
that, indeed, there are continuous curves in the plane that fill a square,
or more generally have any dimension between 1 and 2, if the notion of
fractional dimension is appropriately defined.

4 Differentiation and integration

The so-called “fundamental theorem of the calculus” expresses the fact
that differentiation and integration are inverse operations, and this can
be stated in two different ways, which we abbreviate as follows:

b
(3) F(b) — Fla) = / F'(a) de,

(@) & [ 1wa= s

For the first assertion, the existence of continuous functions F' that are
nowhere differentiable, or for which F’(x) exists for every x, but F’ is
not integrable, leads to the problem of finding a general class of the F' for
which (3) is valid. As for (4), the question is to formulate properly and
establish this assertion for the general class of integrable functions f that
arise in the solution of the first two problems considered above. These
questions can be answered with the help of certain “covering” arguments,
and the notion of absolute continuity.

5 The problem of measure

To put matters clearly, the fundamental issue that must be understood
in order to try to answer all the questions raised above is the problem
of measure. Stated (imprecisely) in its version in two dimensions, it
is the problem of assigning to each subset E of R? its two-dimensional
measure mq(F), that is, its “area,” extending the standard notion defined
for elementary sets. Let us instead state more precisely the analogous
problem in one dimension, that of constructing one-dimensional measure
my = m, which generalizes the notion of length in R.

We are looking for a non-negative function m defined on the family of
subsets ¥ of R that we allow to be extended-valued, that is, to take on
the value +00. We require:



5. The problem of measure Xix

(a) m(E) =b—a if E is the interval [a,b], a < b, of length b — a.
(b) m(E) =77, m(E,) whenever E = J -, E,, and the sets E,, are
disjoint.
Condition (b) is the “countable additivity” of the measure m. It implies
the special case:

(b") m(E1 U E2) = m(E1) + m(E?) if Ey and Es are disjoint.

However, to apply the many limiting arguments that arise in the theory
the general case (b) is indispensable, and (b’) by itself would definitely
be inadequate.

To the axioms (a) and (b) one adds the translation-invariance of m,
namely

(¢) m(E + h) =m(FE), for every h € R.

A basic result of the theory is the existence (and uniqueness) of such
a measure, Lebesgue measure, when one limits oneself to a class of rea-
sonable sets, those which are “measurable.” This class of sets is closed
under countable unions, intersections, and complements, and contains
the open sets, the closed sets, and so forth.*

It is with the construction of this measure that we begin our study.
From it will flow the general theory of integration, and in particular the
solutions of the problems discussed above.

A chronology
We conclude this introduction by listing some of the signal events that
marked the early development of the subject.

1872 — Weierstrass’s construction of a nowhere differentiable function.

1881 — Introduction of functions of bounded variation by Jordan and
later (1887) connection with rectifiability.

1883 — Cantor’s ternary set.

1890 — Construction of a space-filling curve by Peano.
1898 — Borel’s measurable sets.

1902 — Lebesgue’s theory of measure and integration.
1905 — Construction of non-measurable sets by Vitali.

1906 — Fatou’s application of Lebesgue theory to complex analysis.

4There is no such measure on the class of all subsets, since there exist non-measurable
sets. See the construction of such a set at the end of Section 3, Chapter 1.






1 Measure Theory

The sets whose measure we can define by virtue of the
preceding ideas we will call measurable sets; we do
this without intending to imply that it is not possible
to assign a measure to other sets.

FE. Borel, 1898

This chapter is devoted to the construction of Lebesgue measure in R?
and the study of the resulting class of measurable functions. After some
preliminaries we pass to the first important definition, that of exterior
measure for any subset E of R%. This is given in terms of approximations
by unions of cubes that cover E. With this notion in hand we can
define measurability and thus restrict consideration to those sets that
are measurable. We then turn to the fundamental result: the collection
of measurable sets is closed under complements and countable unions,
and the measure is additive if the subsets in the union are disjoint.

The concept of measurable functions is a natural outgrowth of the
idea of measurable sets. It stands in the same relation as the concept
of continuous functions does to open (or closed) sets. But it has the
important advantage that the class of measurable functions is closed
under pointwise limits.

1 Preliminaries

We begin by discussing some elementary concepts which are basic to the
theory developed below.

The main idea in calculating the “volume” or “measure” of a subset
of R? consists of approximating this set by unions of other sets whose
geometry is simple and whose volumes are known. It is convenient to
speak of “volume” when referring to sets in R%; but in reality it means
“area” in the case d = 2 and “length” in the case d = 1. In the approach
given here we shall use rectangles and cubes as the main building blocks
of the theory: in R we use intervals, while in R? we take products of
intervals. In all dimensions rectangles are easy to manipulate and have
a standard notion of volume that is given by taking the product of the
length of all sides.
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Next, we prove two simple theorems that highlight the importance of
these rectangles in the geometry of open sets: in R every open set is a
countable union of disjoint open intervals, while in R?, d > 2, every open
set is “almost” the disjoint union of closed cubes, in the sense that only
the boundaries of the cubes can overlap. These two theorems motivate
the definition of exterior measure given later.

We shall use the following standard notation. A point z € R? consists
of a d-tuple of real numbers

x=(x1,22,...,24), x; €R fori=1,...,d.

Addition of points is componentwise, and so is multiplication by a real
scalar. The norm of x is denoted by |z| and is defined to be the standard
Euclidean norm given by

) = (a2 4 - +22) %

The distance between two points = and y is then simply |z — y|.
The complement of a set E in R? is denoted by E° and defined by

E°={zxcR?:2¢E}.

If E and F are two subsets of R, we denote the complement of F in F
by

E-F={zecR':zcEandz¢F}.
The distance between two sets F and F' is defined by
d(E,F) =inf |z — y|,
where the infimum is taken over all x € ' and y € F.
Open, closed, and compact sets
The open ball in R? centered at x and of radius 7 is defined by
B.(z)={yeR%: |y —z| < r}.

A subset E C R? is open if for every x € E there exists r > 0 with
B, (z) C E. By definition, a set is closed if its complement is open.

We note that any (not necessarily countable) union of open sets is
open, while in general the intersection of only finitely many open sets
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is open. A similar statement holds for the class of closed sets, if one
interchanges the roles of unions and intersections.

A set E is bounded if it is contained in some ball of finite radius.
A bounded set is compact if it is also closed. Compact sets enjoy the
Heine-Borel covering property:

e Assume E is compact, E C |, O, and each O, is open. Then
there are finitely many of the open sets, O4,, Oqa,,- -, Oay, Such
that B C (J}, O,

In words, any covering of a compact set by a collection of open sets
contains a finite subcovering.

A point z € R? is a limit point of the set E if for every » > 0, the ball
B, (z) contains points of E. This means that there are points in E which
are arbitrarily close to =. An isolated point of F is a point x € E such
that there exists an 7 > 0 where B,.(x) N E is equal to {z}.

A point z € F is an interior point of F if there exists r > 0 such
that B, (z) C E. The set of all interior points of E is called the interior
of E. Also, the closure E of the E consists of the union of E and all
its limit points. The boundary of a set F, denoted by JF, is the set of
points which are in the closure of E but not in the interior of E.

Note that the closure of a set is a closed set; every point in F is a
limit point of E; and a set is closed if and only if it contains all its limit
points. Finally, a closed set F is perfect if E does not have any isolated
points.

Rectangles and cubes

A (closed) rectangle R in R is given by the product of d one-dimensional
closed and bounded intervals

R= [a17b1] X [a27b2] X X [ad7bd]7
where a; < b; are real numbers, j = 1,2,...,d. In other words, we have
R={(z1,...,14) € R?: a; <z; <b; forallj=1,2,...,d}.

We remark that in our definition, a rectangle is closed and has sides
parallel to the coordinate axis. In R, the rectangles are precisely the
closed and bounded intervals, while in R? they are the usual four-sided
rectangles. In R? they are the closed parallelepipeds.

We say that the lengths of the sides of the rectangle R are b; —
ai,...,bqg — aq. The volume of the rectangle R is denoted by |R|, and
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RQ

RB
Figure 1. Rectangles in R, d =1,2,3

is defined to be
B = (by — ar) - (ba — aa).
Of course, when d =1 the “volume” equals length, and when d = 2 it
equals area.
An open rectangle is the product of open intervals, and the interior of
the rectangle R is then

(al,bl) X (ag,bg) X o+ X (ad,bd).

Also, a cube is a rectangle for which by —a; = by —ag = -+ = bg — aq.
So if @ C R? is a cube of common side length ¢, then |Q| = ¢<.

A union of rectangles is said to be almost disjoint if the interiors of
the rectangles are disjoint.

In this chapter, coverings by rectangles and cubes play a major role,
so we isolate here two important lemmas.

Lemma 1.1 If a rectangle is the almost disjoint union of finitely many
other rectangles, say R = Ufcvzl Ry, then

N
Rl = |Rul.
k=1
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Proof.  We consider the grid formed by extending indefinitely the
sides of all rectangles Ry, ..., Ry. This construction yields finitely many
rectangles Rl, R RM, and a partition Jq, ..., Jy of the integers between
1 and M, such that the unions

M
R:URj and Rk:URj, fork=1,...,N
JE€Jk

—_

j=

are almost disjoint (see the illustration in Figure 2).

R

Ry

R2 R 1 1:22

Figure 2. The grid formed by the rectangles Ry,

For the rectangle R, for example, we see that |R| = Zj\il |R;|, since
the grid actually partitions the sides of R and each RJ— consists of taking
products of the intervals in these partitions. Thus when adding the
volumes of the ]:Zj we are summing the corresponding products of lengths
of the intervals that arise. Since this also holds for the other rectangles
Rq,..., Ry, we conclude that

Mo N ) N
IRI=D IR =D IR =D |Rsl.
k=1j€Jx k=1

Jj=1

A slight modification of this argument then yields the following;:
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Lemma 1.2 If R, Ry,..., Ry are rectangles, and R C Ui\le Ry, then

N
IRl < Z | Ry |.
k=1

The main idea consists of taking the grid formed by extending all sides
of the rectangles R, Ry, ..., Ry, and noting that the sets corresponding
to the Ji (in the above proof) need not be disjoint any more.

We now proceed to give a description of the structure of open sets in
terms of cubes. We begin with the case of R.

Theorem 1.3 FEvery open subset O of R can be writen uniquely as a
countable union of disjoint open intervals.

Proof. For each x € O, let I, denote the largest open interval contain-
ing x and contained in O. More precisely, since O is open, x is contained
in some small (non-trivial) interval, and therefore if

a, =inf{la <z:(a,2) CO} and b, =sup{b>uz: (z,b) C O}

we must have a, < x < b, (with possibly infinite values for a, and b,).
If we now let I, = (ay, b,), then by construction we have x € I, as well
as I, C O. Hence

0= ] L.

z€O

Now suppose that two intervals I, and I, intersect. Then their union
(which is also an open interval) is contained in O and contains z. Since
I, is maximal, we must have (I, U I,) C I, and similarly (I, U I,) C I,.
This can happen only if I, = I,; therefore, any two distinct intervals in
the collection Z = {I,, },co must be disjoint. The proof will be complete
once we have shown that there are only countably many distinct intervals
in the collection Z. This, however, is easy to see, since every open interval
I, contains a rational number. Since different intervals are disjoint, they
must contain distinct rationals, and therefore 7 is countable, as desired.

Naturally, if O is open and O = U;il I;, where the I;’s are disjoint
open intervals, the measure of O ought to be 2;11 |1;|. Since this rep-
resentation is unique, we could take this as a definition of measure; we
would then note that whenever O; and Qs are open and disjoint, the mea-
sure of their union is the sum of their measures. Although this provides
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a natural notion of measure for an open set, it is not immediately clear
how to generalize it to other sets in R. Moreover, a similar approach in
higher dimensions already encounters complications even when defining
measures of open sets, since in this context the direct analogue of The-
orem 1.3 is not valid (see Exercise 12). There is, however, a substitute
result.

Theorem 1.4 Every open subset O of R?, d > 1, can be written as a
countable union of almost disjoint closed cubes.

Proof. We must construct a countable collection Q of closed cubes
whose interiors are disjoint, and so that O = UQe 0 @-

As a first step, consider the grid in R¢ formed by taking all closed cubes
of side length 1 whose vertices have integer coordinates. In other words,
we consider the natural grid of lines parallel to the axes, that is, the grid
generated by the lattice Z¢. We shall also use the grids formed by cubes
of side length 2= obtained by successively bisecting the original grid.

We either accept or reject cubes in the initial grid as part of Q accord-
ing to the following rule: if @) is entirely contained in O then we accept
Q; if Q intersects both O and O°¢ then we tentatively accept it; and if Q)
is entirely contained in O¢ then we reject it.

As a second step, we bisect the tentatively accepted cubes into 2¢ cubes
with side length 1/2. We then repeat our procedure, by accepting the
smaller cubes if they are completely contained in O, tentatively accepting
them if they intersect both O and OF¢, and rejecting them if they are
contained in O°. Figure 3 illustrates these steps for an open set in R2.

Step 1 Step 2

Figure 3. Decomposition of O into almost disjoint cubes
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This procedure is then repeated indefinitely, and (by construction)
the resulting collection Q of all accepted cubes is countable and consists
of almost disjoint cubes. To see why their union is all of O, we note
that given = € O there exists a cube of side length 2~V (obtained from
successive bisections of the original grid) that contains x and that is
entirely contained in O. Either this cube has been accepted, or it is
contained in a cube that has been previously accepted. This shows that
the union of all cubes in Q covers O.

Once again, if O = U;); R; where the rectangles I?; are almost dis-
joint, it is reasonable to assign to O the measure Z]Oil |R;|. This is
natural since the volume of the boundary of each rectangle should be 0,
and the overlap of the rectangles should not contribute to the volume
of O. We note, however, that the above decomposition into cubes is
not unique, and it is not immediate that the sum is independent of this
decomposition. So in R?, with d > 2, the notion of volume or area, even
for open sets, is more subtle.

The general theory developed in the next section actually yields a
notion of volume that is consistent with the decompositions of open sets
of the previous two theorems, and applies to all dimensions. Before we
come to that, we discuss an important example in R.

The Cantor set

The Cantor set plays a prominent role in set theory and in analysis in
general. It and its variants provide a rich source of enlightening examples.

We begin with the closed unit interval Cy = [0,1] and let C; denote
the set obtained from deleting the middle third open interval from [0, 1],
that is,

Cy = [0,1/3] U[2/3,1].

Next, we repeat this procedure for each sub-interval of C7; that is, we
delete the middle third open interval. At the second stage we get

Co = 1[0,1/9] U[2/9,1/3] U[2/3,7/9] U[8/9,1].

We repeat this process for each sub-interval of Co, and so on (Figure 4).
This procedure yields a sequence Ci, k =0,1,2,... of compact sets
with

CoDC1 D200 DC,DCky1 D+
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Co
L |
I 1
0 1
Cy
| {
0 1/3 2/3 1
Cy
: :
0 19 2/9 23 7/9 8/9
Cs
(- )
I j

Figure 4. Construction of the Cantor set

The Cantor set C is by definition the intersection of all C}’s:

C= ﬁ Ck.
k=0

The set C is not empty, since all end-points of the intervals in Cj, (all k)
belong to C.

Despite its simple construction, the Cantor set enjoys many interest-
ing topological and analytical properties. For instance, C is closed and
bounded, hence compact. Also, C is totally disconnected: given any
x,y € C there exists z ¢ C that lies between x and y. Finally, C is per-
fect: it has no isolated points (Exercise 1).

Next, we turn our attention to the question of determining the “size”
of C. This is a delicate problem, one that may be approached from
different angles depending on the notion of size we adopt. For instance,
in terms of cardinality the Cantor set is rather large: it is not countable.
Since it can be mapped to the interval [0,1], the Cantor set has the
cardinality of the continuum (Exercise 2).

However, from the point of view of “length” the size of C is small.
Roughly speaking, the Cantor set has length zero, and this follows from
the following intuitive argument: the set C is covered by sets Cj, whose
lengths go to zero. Indeed, C}, is a disjoint union of 2¥ intervals of length
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37", making the total length of Cj equal to (2/3)*. But C C Cy for all
k, and (2/3)* — 0 as k tends to infinity. We shall define a notion of
measure and make this argument precise in the next section.

2 The exterior measure

The notion of exterior measure is the first of two important concepts
needed to develop a theory of measure. We begin with the definition and
basic properties of exterior measure. Loosely speaking, the exterior mea-
sure m,, assigns to any subset of R? a first notion of size; various examples
show that this notion coincides with our earlier intuition. However, the
exterior measure lacks the desirable property of additivity when taking
the union of disjoint sets. We remedy this problem in the next section,
where we discuss in detail the other key concept of measure theory, the
notion of measurable sets.

The exterior measure, as the name indicates, attempts to describe
the volume of a set E by approximating it from the outside. The set
FE is covered by cubes, and if the covering gets finer, with fewer cubes
overlapping, the volume of F should be close to the sum of the volumes
of the cubes.

The precise definition is as follows: if E is any subset of R?, the
exterior measure! of E is

1) m. () =inf " 10,

where the infimum is taken over all countable coverings E C U;; Q; by
closed cubes. The exterior measure is always non-negative but could be
infinite, so that in general we have 0 < m,(F) < oo, and therefore takes
values in the extended positive numbers.

We make some preliminary remarks about the definition of the exterior
measure given by (1).

(1) It is important to note that it would not suffice to allow finite sums
in the definition of m,(E). The quantity that would be obtained if one
considered only coverings of E by finite unions of cubes is in general
larger than m.(E). (See Exercise 14.)

(ii) One can, however, replace the coverings by cubes, with coverings
by rectangles; or with coverings by balls. That the former alternative

ISome authors use the term outer measure instead of exterior measure.
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yields the same exterior measure is quite direct. (See Exercise 15.) The
equivalence with the latter is more subtle. (See Exercise 26 in Chapter 3.)

We begin our investigation of this new notion by providing examples
of sets whose exterior measures can be calculated, and we check that
the latter matches our intuitive idea of volume (length in one dimension,
area in two dimensions, etc.)

EXAMPLE 1. The exterior measure of a point is zero. This is clear once
we observe that a point is a cube with volume zero, and which covers
itself. Of course the exterior measure of the empty set is also zero.

EXAMPLE 2. The exterior measure of a closed cube is equal to its volume.
Indeed, suppose Q is a closed cube in R%. Since @ covers itself, we must
have m.(Q) < |Q|. Therefore, it suffices to prove the reverse inequality.

We consider an arbitrary covering ) C Uj; Q; by cubes, and note
that it suffices to prove that

(2) QI <> sl
j=1

For a fixed € > 0 we choose for each j an open cube S; which contains @,
and such that |S;| < (1+ €)|Q;|. From the open covering U;';l S; of the
compact set (), we may select a finite subcovering which, after possibly
renumbering the rectangles, we may write as @ C | =1 S;. Taking the
closure of the cubes S}, we may apply Lemma 1.2 to conclude that [Q| <

Z;\f:l |S;]. Consequently,

N e’
RQI< (146> 151 <1+ 1@l
j=1 j=1

Since € is arbitrary, we find that the inequality (2) holds; thus |Q] <
m.(Q), as desired.

EXAMPLE 3. If @ is an open cube, the result m.(Q) = |Q| still holds.
Since @ is covered by its closure @, and |Q| = |Q|, we immediately see
that m.(Q) < |Q|. To prove the reverse inequality, we note that if Qg is
a closed cube contained in @, then m.(Qo) < m.(Q), since any covering
of @ by a countable number of closed cubes is also a covering of Qg (see
Observation 1 below). Hence |Qp| < m.(Q), and since we can choose Qg
with a volume as close as we wish to |Q|, we must have |Q| < m.(Q).
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EXAMPLE 4. The exterior measure of a rectangle R is equal to its volume.
Indeed, arguing as in Example 2, we see that |R| < m.(R). To obtain the
reverse inequality, consider a grid in R¢ formed by cubes of side length
1/k. Then, if Q consists of the (finite) collection of all cubes entirely
contained in R, and Q' the (finite) collection of all cubes that intersect
the complement of R, we first note that R C UQG(QUQ,) Q. Also, asimple
argument yields

> IQI<IRI.

QEQ

Moreover, there are O(k?~!) cubes? in Q’, and these cubes have volume
k™%, so that 35,0, |Q] = O(1/k). Hence

> 1QI< IRl +0(1/k),

Qe(QUQ)

and letting k tend to infinity yields m.,(R) < |R|, as desired.

EXAMPLE 5. The exterior measure of R? is infinite. This follows from
the fact that any covering of R? is also a covering of any cube Q C R¢,
hence |Q| < m.(R?). Since Q can have arbitrarily large volume, we must
have m,(R%) = cc.

EXAMPLE 6. The Cantor set C has exterior measure 0. From the con-
struction of C, we know that C C C}, where each C} is a disjoint union
of 2% closed intervals, each of length 37%. Consequently, m.(C) < (2/3)*
for all k, hence m.,(C) = 0.

Properties of the exterior measure

The previous examples and comments provide some intuition underlying
the definition of exterior measure. Here, we turn to the further study of
m, and prove five properties of exterior measure that are needed in what
follows.

First, we record the following remark that is immediate from the def-
inition of my:

2We remind the reader of the notation f(z) = O(g(z)), which means that |f(z)| <
C|g(x)| for some constant C' and all  in a given range. In this particular example, there
are fewer than Ck%~1 cubes in question, as k — oo.
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e For every € > 0, there exists a covering F C Uji1 Q; with

> me(Qy) < ma(E) +e.

Jj=1

The relevant properties of exterior measure are listed in a series of
observations.

Observation 1 (Monotonicity) If By C Ea, then m.(E1) < m.(Es2).

This follows once we observe that any covering of Fo by a countable
collection of cubes is also a covering of Fj.

In particular, monotonicity implies that every bounded subset of R¢
has finite exterior measure.

Observation 2 (Countable sub-additivity) If F = U;il E;, then
E) < Zj:l m.(Ej)
First, we may assume that each m.(FE;) < oo, for otherwise the in-

equality clearly holds. For any € > 0, the definition of the exterior mea-
sure yields for each j a covering F; C U;ozl Qr,; by closed cubes with

> €
> 1Qul < mulE)) + 55
k=1

Then, F C U;Okzl Qr,; is a covering of E by closed cubes, and therefore

E) < Z|Qk,j ZZ Q. ;1
ik 1 k=1

S (nim )

Since this holds true for every e > 0, the second observation is proved.

Observation 3 If E C R%, then m.(E) = inf m.(O), where the infi-
mum is taken over all open sets O containing E.
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By monotonicity, it is clear that the inequality m.(E) < inf m,(O)

holds. For the reverse inequality, let € > 0 and choose cubes @; such
that £ C (J;2, Qj, with

S 1Q) < ma(B) + .
j=1

Let QI’) denote an open cube containing @;, and such that \Q?\ <1Q;| +
/291, Then O = U;’il Q?— is open, and by Observation 2

< Zm*(QO = Z QO
j=1 j=1
<) (IQ]‘| + %%)
j=1
< ZIQJH

<my(E) +e.
Hence inf m,(0) < m.(E), as was to be shown.
Observation 4 If F = FE1 U Es, and d(E1, Es) > 0, then
m(E) = my(E1) + m.(E2).

By Observation 2, we already know that m.(E) < m.(E1) + m.(Es),
so it suffices to prove the reverse inequality. To this end, we first select §
such that d(FEq, F3) > ¢ > 0. Next, we choose a covering E C U(;il Q; by
closed cubes, with Z;’;l |Q;] < m.(E)+e. We may, after subdividing
the cubes @);, assume that each @); has a diameter less than 4. In this
case, each (Q; can intersect at most one of the two sets F; or Fs. If we
denote by J; and J the sets of those indices j for which @); intersects
FE4 and Es, respectively, then J; N Jy is empty, and we have

E, C UQj as well as  Ey C UQj.

j€J1 j€J2
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Therefore,

ma(Br) +ma(B2) < ) 1Qs1+ Y 1@l

JjeJ1 JjE€J2

<) 1Ql
j=1
<m.(E)+e.

Since € is arbitrary, the proof of Observation 4 is complete.

Observation 5 If a set E is the countable union of almost disjoint cubes
E= U;}il Q,, then

=) 1@l
j=1

Let Q; denote a cube strictly contained in Q; such that |Q;| < |Q;| +
e/ 27 where € is arbitrary but fixed. Then, for every N, the cubes
Ql, Qg, ey Q N are disjoint, hence at a finite distance from one another,
and repeated applications of Observation 4 imply

N ~ N _ N
m., (U Qj) =D 1Q > Z Q)] —€/27) .
j=1 j=1 j=1

Since U;V:1 Qj C FE, we conclude that for every integer N,

N
> 1@, —«
j=1

In the limit as N tends to infinity we deduce >°77, |Q;| < m.(E) +e
for every € > 0, hence Z _11Q;] < m.(E). Therefore, combined with
Observation 2, our result proves that we have equality.

This last property shows that if a set can be decomposed into almost
disjoint cubes, its exterior measure equals the sum of the volumes of the
cubes. In particular, by Theorem 1.4 we see that the exterior measure of
an open set equals the sum of the volumes of the cubes in a decomposi-
tion, and this coincides with our initial guess. Moreover, this also yields
a proof that the sum is independent of the decomposition.
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One can see from this that the volumes of simple sets that are cal-
culated by elementary calculus agree with their exterior measure. This
assertion can be proved most easily once we have developed the requisite
tools in integration theory. (See Chapter 2.) In particular, we can then
verify that the exterior measure of a ball (either open or closed) equals
its volume.

Despite observations 4 and 5, one cannot conclude in general that if
FE4 U E5 is a disjoint union of subsets of R?, then

(3) m*(El U EQ) = m*(El) + m*(EQ)

In fact (3) holds when the sets in question are not highly irregular or
“pathological” but are measurable in the sense described below.

3 Measurable sets and the Lebesgue measure

The notion of measurability isolates a collection of subsets in R? for
which the exterior measure satisfies all our desired properties, including
additivity (and in fact countable additivity) for disjoint unions of sets.

There are a number of different ways of defining measurability, but
these all turn out to be equivalent. Probably the simplest and most
intuitive is the following: A subset E of R? is Lebesgue measurable,
or simply measurable, if for any € > 0 there exists an open set O with
E C O and

m«(O — E) <e.

This should be compared to Observation 3, which holds for all sets E.
If E is measurable, we define its Lebesgue measure (or measure)
m(E) by

m(E) = m.(E).

Clearly, the Lebesgue measure inherits all the features contained in Ob-
servations 1 - 5 of the exterior measure.

Immediately from the definition, we find:
Property 1 Every open set in R% is measurable.

Our immediate goal now is to gather various further properties of
measurable sets. In particular, we shall prove that the collection of
measurable sets behave well under the various operations of set theory:
countable unions, countable intersections, and complements.
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Property 2 If m.(F) =0, then E is measurable. In particular, if F' is
a subset of a set of exterior measure 0, then F' is measurable.

By Observation 3 of the exterior measure, for every € > 0 there ex-
ists an open set O with £ C O and m.(O) <e. Since (O —F) C O,
monotonicity implies m,(O — E) < ¢, as desired.

As a consequence of this property, we deduce that the Cantor set C in
Example 6 is measurable and has measure 0.

Property 3 A countable union of measurable sets is measurable.

Suppose FE = U;il E;, where each E; is measurable. Given € > 0, we
may choose for each j an open set O; with E; C O; and
m.(O; — E;) < €/27. Then the union O = U]Oi1 Oj isopen, £ C O, and
(O—-F)C U(;il(@j — Ej), so monotonicity and sub-additivity of the
exterior measure imply

(O — Egi (O; — Ej) <e

Property 4 Closed sets are measurable.

First, we observe that it suffices to prove that compact sets are mea-
surable. Indeed, any closed set F' can be written as the union of compact
sets, say F' = Uzozl F N By, where By, denotes the closed ball of radius &
centered at the origin; then Property 3 applies.

So, suppose F' is compact (so that in particular m,(F) < co), and let
€ > 0. By Observation 3 we can select an open set O with FF C O and
m.(O) < m.(F)+e€. Since F is closed, the difference O — F' is open,
and by Theorem 1.4 we may write this difference as a countable union
of almost disjoint cubes

O—F:UQj.
j=1

For a fixed N, the finite union K = Uj.vzl Q, is compact; therefore
d(K,F) > 0 (we isolate this little fact in a lemma below). Since (K U
F) C O, Observations 1, 4, and 5 of the exterior measure imply

my(O) > my(F) + m.(K)

- N
F)+Zm*(Qj).
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Hence Z _1 My (@) <my(O) —m.(F) <¢, and this also holds in the
limit as N tends to infinity. Invoking the sub-additivity property of the
exterior measure finally yields

j=1

as desired.

We digress briefly to complete the above argument by proving the
following.

Lemma 3.1 If F is closed, K is compact, and these sets are disjoint,
then d(F, K) > 0.

Proof. Since F is closed, for each point x € K, there exists d, > 0 so
that d(x, F') > 30,. Since |J, ¢ j Bas, () covers K, and K is compact, we

may find a subcover, which we denote by ijzl Bas,(x5). If we let 0 =
min(dy,...,0n), then we must have d(K,F) > ¢ > 0. Indeed, if z € K
and y € F, then for some j we have |z; — x| < 20;, and by construction
|y — x| > 39;. Therefore

ly — x| = |y — @] = |z; — 2] = 30; = 20; =6,

and the lemma is proved.

Property 5 The complement of a measurable set is measurable.

If E' is measurable, then for every positive integer n we may choose an
open set O,, with E C O,, and m..(O,, — E) < 1/n. The complement O,
is closed, hence measurable, which implies that the union S = Uzozl (0
is also measurable by Property 3. Now we simply note that S C E°, and

(B¢ =5) C(On - E),

such that m.(E°—S) < 1/n for all n. Therefore, m,(E—S) =0, and
— S is measurable by Property 2. Therefore £E° is measurable since
it is the union of two measurable sets, namely S and (E¢ — S).

Property 6 A countable intersection of measurable sets is measurable.
This follows from Properties 3 and 5, since

Ne-(Us) -

j=1



3. Measurable sets and the Lebesgue measure 19

In conclusion, we find that the family of measurable sets is closed under
the familiar operations of set theory. We point out that we have shown
more than simply closure with respect to finite unions and intersections:
we have proved that the collection of measurable sets is closed under
countable unions and intersections. This passage from finite operations
to infinite ones is crucial in the context of analysis. We emphasize, how-
ever, that the operations of uncountable unions or intersections are not
permissible when dealing with measurable sets!

Theorem 3.2 If Fq, Fs,..., are disjoint measurable sets, and E =
U=, Ej then

m(E) = Zm(Ej).

j=1

Proof.  First, we assume further that each Ej; is bounded. Then, for
each j, by applying the definition of measurability to E%, we can choose
a closed subset F; of E; with m.(E; — F;) <€/2/. For each fixed N,

the sets Fi,..., Fyn are compact and disjoint, so that m (U;\le Fj> =

Zj‘v:1 m(F}). Since U;'V:1 F; C E, we must have

N N
m(E) > m(Fy) =Y m(E;) -«
j=1 J=1
Letting N tend to infinity, since € was arbitrary we find that
oo
m(E) =Y m(E).
j=1

Since the reverse inequality always holds (by sub-additivity in Observa-
tion 2), this concludes the proof when each E; is bounded.

In the general case, we select any sequence of cubes {Qx}>, that
increases to R, in the sense that Q C Q1 for all k > 1 and U;O:l Qr =
R?. We then let S; = Q; and Si = Q) — Qr_1 for k > 2. If we define
measurable sets by E; = E; NSk, then

E=|JEx
7.k

The union above is disjoint and every E;j is bounded. Moreover E; =
U:‘;l Ej i, and this union is also disjoint. Putting these facts together,
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and using what has already been proved, we obtain
m(B) =Y m(Ejx) =YY m(Ejx) =Y m(E)),
gk Jj k J
as claimed.

With this, the countable additivity of the Lebesgue measure on mea-
surable sets has been established. This result provides the necessary
connection between the following:

e our primitive notion of volume given by the exterior measure,
e the more refined idea of measurable sets, and
e the countably infinite operations allowed on these sets.

We make two definitions to state succinctly some further consequences.

If By, Es,,...is a countable collection of subsets of R? that increases
to E in the sense that Ey C Epy for all k, and E = Uzozl Ey, then we
write By ' E.

Similarly, if F1, Es, ... decreases to E in the sense that Fy D Ejy for
all k, and E =, Ex, we write By, \, E.

Corollary 3.3 Suppose Ey, Es, ... are measurable subsets of RY.
(i) If Ex, /" E, then m(E) = limy_.o m(EnN).
(ii) If Ex "\ E and m(Ey) < oo for some k, then

m(E) = lim m(En).

N—oo

Proof.  For the first part, let G; = E1, Go = E3 — FE1, and in gen-
eral Gy, = Ey — Ey_1 for k > 2. By their construction, the sets G are
measurable, disjoint, and E = UZo:1 Gy. Hence

E) =3 = i 3G i (U ).
k

and since UkN:1 Gy = En we get the desired limit.
For the second part, we may clearly assume that m(F;) < co. Let
Gy = E, — Ej41 for each k, so that

E1=EUGG1<;
k=1
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is a disjoint union of measurable sets. As a result, we find that

N—-1
m(Ey) = m(E) + lim 3" (m(Ee) ~ m(Besn))
k=1

=m(E) +m(Er) — A}iinoom(EN).

Hence, since m(E7) < oo, we see that m(E) = limy_.o m(Ey), and the
proof is complete.

The reader should note that the second conclusion may fail without
the assumption that m(Ejy) < oo for some k. This is shown by the simple
example when E,, = (n,00) C R, for all n.

What follows provides an important geometric and analytic insight
into the nature of measurable sets, in terms of their relation to open and
closed sets. Its thrust is that, in effect, an arbitrary measurable set can
be well approximated by the open sets that contain it, and alternatively,
by the closed sets it contains.

Theorem 3.4 Suppose E is a measurable subset of R%. Then, for every
e>0:

(i) There exists an open set O with E C O and m(O — E) <e.
(ii) There exists a closed set F' with F C E and m(E — F) <.

(iii) If m(E) is finite, there exists a compact set K with K C E and
m(E—K) <e.

(iv) If m(FE) is finite, there exists a finite union F = U;VZI Q; of closed
cubes such that

m(EAF) <e.

The notation EAF stands for the symmetric difference between the
sets E and F, defined by EAF = (E — F) U (F — E), which consists of
those points that belong to only one of the two sets F or F.

Proof. Part (i) is just the definition of measurability. For the second
part, we know that F°¢ is measurable, so there exists an open set O with
E¢C Oand m(O — E°) <e. If welet F = Q¢ then F is closed, F C E,
and E — F = O — E°. Hence m(E — F) < € as desired.

For (iii), we first pick a closed set F' so that ' C E and m(E — F) <
€/2. For each n, we let B,, denote the ball centered at the origin of radius
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n, and define compact sets K,, = F N B,,. Then F — K, is a sequence
of measurable sets that decreases to E — F, and since m(E) < oo, we
conclude that for all large n one has m(E — K,,) < e.

For the last part, choose a family of closed cubes {Q; };‘;1 so that

Ecl|J@ and ) Qi <m(E)+e/2.
j=1

j=1

Since m(E) < oo, the series converges and there exists N > 0 such that
N
Z;.;N+1 Q;| <e/2. If F = Uj:1 Q;, then

m(EAF)=m(E —F)+m(F —E)

s
J=N+1 j=1
< Qi+ D 1Qs - m(E)

j=N+1 j=1
<e.

Invariance properties of Lebesgue measure

A crucial property of Lebesgue measure in R? is its translation-invariance,
which can be stated as follows: if E is a measurable set and h € R?, then
the set £, =E+h={x+h:z € E} is also measurable, and m(FE +
h) =m(FE). With the observation that this holds for the special case
when F is a cube, one passes to the exterior measure of arbitrary sets
E, and sees from the definition of m, given in Section 2 that m.(Ey) =
m.(F). To prove the measurability of E} under the assumption that E
is measurable, we note that if O is open, O D E, and m.(O — E) < ¢,
then Oy, is open, Oy, D Ej, and m. (O, — Ey) < e.

In the same way one can prove the relative dilation-invariance of
Lebesgue measure. Suppose § > 0, and denote by JF the set {dz :
z € E}. We can then assert that dE is measurable whenever E is,
and m(0E) = §%m(FE). One can also easily see that Lebesgue mea-
sure is reflection-invariant. That is, whenever E is measurable, so is
—E={—2: 2 € E} and m(—E) = m(E).

Other invariance properties of Lebesgue measure are in Exercise 7
and 8, and Problem 4 of Chapter 2.
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o-algebras and Borel sets

A o-algebra of sets is a collection of subsets of R? that is closed under
countable unions, countable intersections, and complements.

The collection of all subsets of R? is of course a o-algebra. A more
interesting and relevant example consists of all measurable sets in R%,
which we have just shown also forms a o-algebra.

Another og-algebra, which plays a vital role in analysis, is the Borel
o-algebra in R?, denoted by Bga, which by definition is the smallest o-
algebra that contains all open sets. Elements of this o-algebra are called
Borel sets.

The definition of the Borel o-algebra will be meaningful once we have
defined the term “smallest,” and shown that such a o-algebra exists and
is unique. The term “smallest” means that if S is any o-algebra that
contains all open sets in R?, then necessarily Bga C S. Since we observe
that any intersection (not necessarily countable) of o-algebras is again a
o-algebra, we may define Bra as the intersection of all o-algebras that
contain the open sets. This shows the existence and uniqueness of the
Borel o-algebra.

Since open sets are measurable, we conclude that the Borel o-algebra
is contained in the o-algebra of measurable sets. Naturally, we may ask
if this inclusion is strict: do there exist Lebesgue measurable sets which
are not Borel sets? The answer is “yes.” (See Exercise 35.)

From the point of view of the Borel sets, the Lebesgue sets arise as
the completion of the g-algebra of Borel sets, that is, by adjoining all
subsets of Borel sets of measure zero. This is an immediate consequence
of Corollary 3.5 below.

Starting with the open and closed sets, which are the simplest Borel
sets, one could try to list the Borel sets in order of their complexity. Next
in order would come countable intersections of open sets; such sets are
called Gy sets. Alternatively, one could consider their complements, the
countable union of closed sets, called the F,, sets.?

Corollary 3.5 A subset E of R? is measurable
(i) if and only if E differs from a Gs by a set of measure zero,
(ii) 4f and only if E differs from an F, by a set of measure zero.

Proof. Clearly E is measurable whenever it satisfies either (i) or (ii),
since the F,, G, and sets of measure zero are measurable.

3The terminology Gs comes from German “Gebiete” and “Durschnitt”; F, comes from
French “fermé” and “somme.”
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Conversely, if E is measurable, then for each integer n > 1 we may
select an open set O,, that contains E, and such that m(O,, — E) < 1/n.
Then S =(),—, O, is a G5 that contains E, and (S — E) C (0,, — E)
for all n. Therefore m(S — E) < 1/n for all n; hence S — E has exterior
measure zero, and is therefore measurable.

For the second implication, we simply apply part (ii) of Theorem 3.4
with € = 1/n, and take the union of the resulting closed sets.

Construction of a non-measurable set

Are all subsets of R? measurable? In this section, we answer this question
when d =1 by constructing a subset of R which is not measurable.*
This justifies the conclusion that a satisfactory theory of measure cannot
encompass all subsets of R.

The construction of a non-measurable set A/ uses the axiom of choice,
and rests on a simple equivalence relation among real numbers in [0, 1].

We write x ~ y whenever x — y is rational, and note that this is an
equivalence relation since the following properties hold:

e 1 ~ z for every x € [0, 1]
o if x ~y, then y ~ x
o ifz ~yandy~ z then z ~ z.

Two equivalence classes either are disjoint or coincide, and [0, 1] is the
disjoint union of all equivalence classes, which we write as

0,1] =&

Now we construct the set ' by choosing exactly one element x, from
each &,, and setting N' = {z,}. This (seemingly obvious) step requires
further comment, which we postpone until after the proof of the following
theorem.

Theorem 3.6 The set N is not measurable.

The proof is by contradiction, so we assume that A is measurable. Let
{ri}s2, be an enumeration of all the rationals in [—1, 1], and consider
the translates

N =N +7g.

4The existence of such a set in R implies the existence of corresponding non-measurable
subsets of R for each d, as a consequence of Proposition 3.4 in the next chapter.
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We claim that the sets N}, are disjoint, and
(4) 0,1 ¢ [JMNe c[-1,2].
k=1

To see why these sets are disjoint, suppose that the intersection
Ni NN is non-empty. Then there exist rationals i # r, and « and
B with xo 4+ 7, = x5 + 7173 hence

Lo —Tp =Tk —Tk-

Consequently o # 3 and x, — g is rational; hence x, ~ xg, which con-
tradicts the fact that A/ contains only one representative of each equiv-
alence class.

The second inclusion is straightforward since each N, is contained in
[—1, 2] by construction. Finally, if 2 € [0, 1], then 2 ~ z,, for some «, and
therefore x — x, = 7, for some k. Hence = € NV}, and the first inclusion
holds.

Now we may conclude the proof of the theorem. If N" were measurable,
then so would be N, for all k, and since the union | J;_ ; Ny is disjoint,
the inclusions in (4) yield

1<) mNg) < 3.
k=1

Since N}, is a translate of N, we must have m(N) = m(N) for all k.
Consequently,

1§im(]\/’)§3.

This is the desired contradiction, since neither m(N’) = 0 nor m(N) > 0
is possible.

Axiom of choice

That the construction of the set A/ is possible is based on the following
general proposition.

e Suppose F is a set and {E,} is a collection of non-empty subsets
of E. (The indexing set of a’s is not assumed to be countable.)
Then there is a function « — z, (a “choice function”) such that
Ty € E,, for all a.
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In this general form this assertion is known as the axiom of choice.
This axiom occurs (at least implicitly) in many proofs in mathematics,
but because of its seeming intuitive self-evidence, its significance was
not at first understood. The initial realization of the importance of
this axiom was in its use to prove a famous assertion of Cantor, the
well-ordering principle. This proposition (sometimes referred to as
“transfinite induction”) can be formulated as follows.

A set F is linearly ordered if there is a binary relation < such that:

(a) <z forall z €FE.
(b) If z,y € F are distinct, then either x < y or y < z (but not both).

(¢c) fx <yandy <z, then z < z.

We say that a set E can be well-ordered if it can be linearly ordered in
such a way that every non-empty subset A C F has a smallest element
in that ordering (that is, an element g € A such that zy <z for any
other x € A).

A simple example of a well-ordered set is Z, the positive integers with
their usual ordering. The fact that Z* is well-ordered is an essential part
of the usual (finite) induction principle. More generally, the well-ordering
principle states:

e Any set E can be well-ordered.

It is in fact nearly obvious that the well-ordering principle implies the
axiom of choice: if we well-order E, we can choose x,, to be the smallest
element in E,, and in this way we have constructed the required choice
function. It is also true, but not as easy to show, that the converse impli-
cation holds, namely that the axiom of choice implies the well-ordering
principle. (See Problem 6 for another equivalent formulation of the Ax-
iom of Choice.)

We shall follow the common practice of assuming the axiom of choice
(and hence the validity of the well-ordering principle).® However, we
should point out that while the axiom of choice seems self-evident the
well-ordering principle leads quickly to some baffling conclusions: one
only needs to spend a little time trying to imagine what a well-ordering
of the reals might look like!

5It can be proved that in an appropriate formulation of the axioms of set theory, the
axiom of choice is independent of the other axioms; thus we are free to accept its validity.
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4 Measurable functions

With the notion of measurable sets in hand, we now turn our attention
to the objects that lie at the heart of integration theory: measurable
functions.

The starting point is the notion of a characteristic function of a set
E, which is defined by

(z) = 1 ifzekF,
XEXT) =\ 0 ifz¢E.

The next step is to pass to the functions that are the building blocks of
integration theory. For the Riemann integral it is in effect the class of
step functions, with each given as a finite sum

N
(5) = arxa,
k=1

where each Ry is a rectangle, and the aj are constants.

However, for the Lebesgue integral we need a more general notion, as
we shall see in the next chapter. A simple function is a finite sum

N
(6) f=> arxs,
k=1

where each E} is a measurable set of finite measure, and the aj are
constants.

4.1 Definition and basic properties

We begin by considering only real-valued functions f on R?, which we
allow to take on the infinite values +o00 and —oo, so that f(z) belongs
to the extended real numbers

—o00 < f(z) < 0.

We shall say that f is finite-valued if —oo < f(z) < oo for all z. In
the theory that follows, and the many applications of it, we shall almost
always find ourselves in situations where a function takes on infinite
values on at most a set of measure zero.
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A function f defined on a measurable subset E of R? is measurable,
if for all a € R, the set

fHl=00,0)) ={z € E: f(z) <a}

is measurable. To simplify our notation, we shall often denote the set
{z € E: f(z) < a} simply by {f < a} whenever no confusion is possible.

First, we note that there are many equivalent definitions of measurable
functions. For example, we may require instead that the inverse image of
closed intervals be measurable. Indeed, to prove that f is measurable if
and only if {x : f(z) < a} = {f < a} is measurable for every a, we note
that in one direction, one has

{f <a}=[{f <a+1/k},

k=1

and recall that the countable intersection of measurable sets is measur-
able. For the other direction, we observe that

{f<a}=|J{f <a—1/k}.
k=1

Similarly, f is measurable if and only if {f > a} (or {f > a}) is measur-
able for every a. In the first case this is immediate from our definition
and the fact that {f > a} is the complement of {f < a}, and in the sec-
ond case this follows from what we have just proved and the fact that
{f <a}={f >a}° A simple consequence is that —f is measurable
whenever f is measurable.

In the same way, one can show that if f is finite-valued, then it is
measurable if and only if the sets {a < f < b} are measurable for every
a,b € R. Similar conclusions hold for whichever combination of strict or
weak inequalities one chooses. For example, if f is finite-valued, then it
is measurable if and only if {a < f < b} for all a,b € R. By the same
arguments one sees the following:

Property 1 The finite-valued function f is measurable if and only if
f~1(O) is measurable for every open set O, and if and only if f~(F) is
measurable for every closed set F'.

Note that this property also applies to extended-valued functions, if we
make the additional hypothesis that both f~!(co) and f~1(—oc0) are
measurable sets.
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Property 2 If f is continuous on R?, then f is measurable. If f is mea-
surable and finite-valued, and ® is continuous, then ® o f is measurable.

In fact, ® is continuous, so ®~!((—00,a)) is an open set O, and hence
(®o f)"1((—00,a)) = f~H(O) is measurable.

It should be noted, however, that in general it is not true that
f o @ is measurable whenever f is measurable and @ is continuous. See
Exercise 35.

Property 3 Suppose {f,}52, is a sequence of measurable functions.
Then

sup fn(z), inf f,(x), limsup, fu(x) and liminf f,(x)

n—o0 n—00
are measurable.

Proving that sup,, f,, is measurable requires noting that {sup,, f, > a} =
U,,{fn > a}. This also yields the result for inf,, f,(z), since this quantity

equals — sup,, (= fn(2)).
The result for the limsup and liminf also follows from the two obser-
vations

n—oo

limsup f,,(z) = inf{sup f,} and liminf f,(z) = sup{inf f,}.
k n>k n—o00 k n>k

Property 4 If {f,}52 is a collection of measurable functions, and

lim f,(z) = f(z),

n—oo
then f is measurable.

Since f(z) = limsup,,_, . fn(z) = liminf, . fn(z), this property is a
consequence of property 3.

Property 5 If f and g are measurable, then
(i) The integer powers f¥, k > 1 are measurable.
(ii)) f+ g and fg are measurable if both f and g are finite-valued.

For (i) we simply note that if k is odd, then {f* > a} = {f > a'/*}, and
if k is even and @ > 0, then {f* > a} = {f > a'/*} U {f < —a'/*}.
For (ii), we first see that f + g is measurable because

{(f+g>a}=J{f >a=r}n{g>r},

reQ
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with Q denoting the rationals.
Finally, fg is measurable because of the previous results and the fact
that

fg=l(F+97 ~ (F ~9)°)

We shall say that two functions f and ¢ defined on a set E are equal
almost everywhere, and write

flx)=g(x) ae z€E,

if the set {z € E: f(x) # g(z)} has measure zero. We sometimes ab-
breviate this by saying that f =g a.e. More generally, a property or
statement is said to hold almost everywhere (a.e.) if it is true except on
a set of measure zero.

One sees easily that if f is measurable and f = g a.e., then g is measur-
able. This follows at once from the fact that {f < a} and {g < a} differ
by a set of measure zero. Moreover, all the properties above can be re-
laxed to conditions holding almost everywhere. For instance, if {f,,}22
is a collection of measurable functions, and

lim f,(xz) = f(z) ae.,

n—oo

then f is measurable.

Note that if f and ¢ are defined almost everywhere on a measurable
subset £ C RY, then the functions f + g and fg can only be defined on
the intersection of the domains of f and g. Since the union of two sets of
measure zero has again measure zero, f + g is defined almost everywhere
on K. We summarize this discussion as follows.

Property 6 Suppose f is measurable, and f(x) = g(z) for a.e. x. Then
g is measurable.

In this light, Property 5 (ii) also holds when f and g are finite-valued
almost everywhere.

4.2 Approximation by simple functions or step functions

The theorems in this section are all of the same nature and provide
further insight in the structure of measurable functions. We begin by
approximating pointwise, non-negative measurable functions by simple
functions.
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Theorem 4.1 Suppose f is a non-negative measurable function on R?,
Then there exists an increasing sequence of non-negative simple functions
{pr}2, that converges pointwise to f, namely,

pe(@) < pria(z)  and  lim gy (z) = f(z), for all z.

Proof. We begin first with a truncation. For N > 1, let @y denote
the cube centered at the origin and of side length N. Then we define

f(x) if z € Qn and f(z) < N,
Fy(x) = N ifzeQn and f(z) > N,
0 otherwise.

Then, F(x) — f(x) as N tends to infinity for all . Now, we partition
the range of Fiy, namely [0, N], as follows. For fixed N, M > 1, we define

14 +1

Then we may form

Fn () = Z % XEq p (7).
V4

Each Fy s is a simple function that satisfies 0 < Fy(x) — Fy,m(z) <
1/M for all . If we now choose N = M = 2% with k > 1 integral, and
let ¢ = Fhr or, then we see that 0 < Fys(z) — ¢p(z) < 1/2F for all z,
{pk} is increasing, and this sequence satisfies all the desired properties.

Note that the result holds for non-negative functions that are extended-
valued, if the limit +oo is allowed. We now drop the assumption that f
is non-negative, and also allow the extended limit —oo.

Theorem 4.2 Suppose f is measurable on R%. Then there exists a se-
quence of simple functions {¢r}3>, that satisfies

lop(@)] < [pptr(z)|  and  lim @(z) = f(x), for all x.

k—o0

In particular, we have |k (x)| < |f(z)] for all x and k.

Proof. We use the following decomposition of the function f: f(x) =
f(x) — f~(x), where

(@) = max(f(2),0) and £ (2) = max(—f(),0).
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Since both fT and f~ are non-negative, the previous theorem yields
two increasing sequences of non-negative simple functions {ga,(cl)(x)},;";l
and {gp,(f) (z)}72, which converge pointwise to fT and f~, respectively.
Then, if we let

on(@) = oV (2) — o2 (x),

we see that ¢y, (x) converges to f(z) for all z. Finally, the sequence {|pk|}
is increasing because the definition of f+, f~ and the properties of <p,(€1)
and ¥ imply th

py  1mply that

low(@)| = o () + oD (@).

We may now go one step further, and approximate by step functions.
Here, in general, the convergence may hold only almost everywhere.

Theorem 4.3 Suppose f is measurable on R%. Then there exists a se-
quence of step functions {1y}, that converges pointwise to f(x) for
almost every x.

Proof. By the previous result, it suffices to show that if F is a
measurable set with finite measure, then f = yg can be approximated
by step functions. To this end, we recall part (iv) of Theorem 3.4,
which states that for every e there exist cubes @q,...,Qn such that

m(EA U;V 1 Q) < e. By considering the grid formed by extending the
51des of these cubes, we see that there exist almost disjoint rectangles
R1,..., Ry such that UJ Q= UJ 1 R By taking rectangles R; con-
talned in R], and slightly smaller in size, we find a collection of disjoint
rectangles that satisfy m(EA U]A/il R;) < 2e. Therefore

M
= ZXR
j=1

except possibly on a set of measure < 2e¢. Consequently, for every k > 1,
there exists a step function 1 (x) such that if

then m(Ey) < 27F. If we let Fx = U] k41 Bjand F' = ﬂK 1 Fi, then
m(F) = 0 since m(Fx) <275 and ¢ (x) — f(z) for all x in the com-
plement of F', which is the desired result.
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4.3 Littlewood’s three principles

Although the notions of measurable sets and measurable functions rep-
resent new tools, we should not overlook their relation to the older con-
cepts they replaced. Littlewood aptly summarized these connections in
the form of three principles that provide a useful intuitive guide in the
initial study of the theory.

(i) Every set is nearly a finite union of intervals.
(ii) Every function is nearly continuous.

(iii) Every convergent sequence is nearly uniformly convergent.

The sets and functions referred to above are of course assumed to
be measurable. The catch is in the word “nearly,” which has to be
understood appropriately in each context. A precise version of the first
principle appears in part (iv) of Theorem 3.4. An exact formulation of
the third principle is given in the following important result.

Theorem 4.4 (Egorov) Suppose {fi}72, is a sequence of measurable
functions defined on a measurable set E with m(E) < co, and assume
that fr — f a.e on E. Given ¢ >0, we can find a closed set A C E
such that m(E — A.) < e and fr, — f uniformly on A..

Proof. 'We may assume without loss of generality that fi(z) — f(x)
for every x € E. For each pair of non-negative integers n and k, let

E} ={x € E:|fj(z)— f(z)| <1/n, forall j > k}.

Now fix n and note that Ef! C E}!,;, and £}’ /" F as k tends to infinity.
By Corollary 3.3, we find that there exists k,, such that m(E — E} ) <
1/2™. By construction, we then have

|fj(x) — f(z)| <1/n  whenever j >k, and z € E} .

We choose N so that Y 7 27" < €/2, and let

We first observe that

m(E — A.) < Z m(E — EY ) <e¢/2.
n=N
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Next, if § > 0, we choose n > N such that 1/n < d, and note that = €
A, implies z € E} . We see therefore that |f;(z) — f(z)| < whenever
j > kn. Hence fi converges uniformly to f on A..

Finally, using Theorem 3.4 choose a closed subset A, C A, with m(A6 —
Ac) <€/2. As a result, we have m(FE — A.) < ¢ and the theorem is
proved.

The next theorem attests to the validity of the second of Littlewood’s
principle.

Theorem 4.5 (Lusin) Suppose f is measurable and finite valued on E
with E of finite measure. Then for every € > 0 there exists a closed set
F., with

F.CE, and m(E—-F)<e

and such that f

F. 18 continuous.

By f|r. we mean the restriction of f to the set F.. The conclusion of
the theorem states that if f is viewed as a function defined only on F¢,
then f is continuous. However, the theorem does not make the stronger
assertion that the function f defined on F is continuous at the points of
F..

Proof.  Let f, be a sequence of step functions so that f, — f a.e.
Then we may find sets E,, so that m(E,) < 1/2"™ and f, is continuous
outside FE,. By Egorov’s theorem, we may find a set A./3 on which
fn — [ uniformly and m(E — A./3) < €/3. Then we consider

F/:Ae/?;_ UEn

n>N

for N so large that ) .\ 1/2" < ¢/3. Now for every n > N the function
fn is continuous on F’; thus f (being the uniform limit of {f,}) is also

continuous on F’. To finish the proof, we merely need to approximate
the set F’ by a closed set F. C F’ such that m(F’' — F,) < ¢/3.

5* The Brunn-Minkowski inequality

Since addition and multiplication by scalars are basic features of vector
spaces, it is not surprising that properties of these operations arise in a
fundamental way in the theory of Lebesgue measure on R?. We have al-
ready discussed in this connection the translation-invariance and relative
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dilation-invariance of Lebesgue measure. Here we come to the study of
the sum of two measurable sets A and B, defined as

A+B={zeR?: z=2a'+2" with 2’ € A and 2" € B}.

This notion is of importance in a number of questions, in particular in
the theory of convex sets; we shall apply it to the isoperimetric problem
in Chapter 3.

In this regard the first (admittedly vague) question we can pose is
whether one can establish any general estimate for the measure of A + B
in terms of the measures of A and B (assuming that these three sets
are measurable). We can see easily that it is not possible to obtain an
upper bound for m(A + B) in terms of m(A) and m(B). Indeed, simple
examples show that we may have m(A) = m(B) = 0 while m(A + B) >
0. (See Exercise 20.)

In the converse direction one might ask for a general estimate of the
form

m(A+ B)* = ca (m(A)* +m(B)7),

where « is a positive number and the constant ¢, is independent of A
and B. Clearly, the best one can hope for is ¢, = 1. The role of the
exponent « can be understood by considering convex sets. Such sets
A are defined by the property that whenever x and y are in A then
the line segment joining them, {xt + y(1 —¢) : 0 <t < 1}, also belongs
to A. If we recall the definition AA = {\z, = € A} for X\ > 0, we note
that whenever A is convex, then A+ AA = (14 A\)A. However, m((1 +
A)A) = (1+ A\)¥m(A), and thus the presumed inequality can hold only
if (14 A\)4* > 14 X9 for all A > 0. Now

(7) (a+0)7">a”+b" ify>1anda,b>0,

while the reverse inequality holds if 0 <~ < 1. (See Exercise 38.) This
yields @ > 1/d. Moreover, (7) shows that the inequality with the expo-
nent 1/d implies the corresponding inequality with « > 1/d, and so we
are naturally led to the inequality

(8) m(A+ B)Y% > m(A)V? 4 m(B)/?

Before proceeding with the proof of (8), we need to mention a technical
impediment that arises. While we may assume that A and B are mea-
surable, it does not necessarily follow that then A 4+ B is measurable.
(See Exercise 13 in the next chapter.) However it is easily seen that this
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difficulty does not occur when, for example, A and B are closed sets, or
when one of them is open. (See Exercise 19.)

With the above considerations in mind we can state the main result.

Theorem 5.1 Suppose A and B are measurable sets in R? and their
sum A+ B is also measurable. Then the inequality (8) holds.

Let us first check (8) when A and B are rectangles with side lengths
{aj};l:l and {bj};l:l, respectively. Then (8) becomes

J 1/d J 1/d J 1/d
(9) <H(aj+by‘)> Z(H%‘) +<Hbj> :

j=1 j=1

which by homogeneity we can reduce to the special case where a; +
b; =1 for each j. In fact, notice that if we replace a;,b; by Aja;, A;b;,
with A; > 0, then both sides of (9) are multiplied by (AjAg---Ag)Y/%.
We then need only choose \j = (a; +b;)~'. With this reduction, the
inequality (9) is an immediate consequence of the arithmetic-geometric
inequality (Exercise 39)

1/d
a:j) , forall z; >0:

we add the two inequalities that result when we set x; = a; and z; = b;,
respectively.

We next turn to the case when each A and B are the union of finitely
many rectangles whose interiors are disjoint. We shall prove (8) in this
case by induction on the total number of rectangles in A and B. We
denote this number by n. Here it is important to note that the desired
inequality is unchanged when we translate A and B independently. In
fact, replacing A by A+ h and B by B + h/ replaces A+ Bby A+ B+
h + R, and thus the corresponding measures remain the same. We now
choose a pair of disjoint rectangles Ry and Rs in the collection making up
A, and we note that they can be separated by a coordinate hyperplane.
Thus we may assume that for some j, after translation by an appropriate
h, Ry liesin A_ = AN{z; <0},and Ry in Ay = AN{0 < z,}. Observe
also that both A and A_ contain at least one less rectangle than A does,
and A=A_UA,.

We next translate B so that B = BN {z; <0} and By = BN {x; >
0} satisfy

m(Bx) m(Ag)

m(B) — m(A4)
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However, A+ B D (A4 + B4) U (A_ + B_), and the union on the right
is essentially disjoint, since the two parts lie in different half-spaces.
Moreover, the total number of rectangles in either A} and By, or A_
and B_ is also less than n. Thus the induction hypothesis applies and

> (m(AD)Y 4+ m(B)YN) " + (m(A )4 4 m(B_)/)*

()T s [ ()]

= (m(4)4 +m(B)/)",

— m(Ay) +m(A)

which gives the desired inequality (8) when A and B are both finite
unions of rectangles with disjoint interiors.

Next, this quickly implies the result when A and B are open sets of
finite measure. Indeed, by Theorem 1.4, for any € > 0 we can find unions
of almost disjoint rectangles A. and B, such that A, C A, B, C B, with
m(A) < m(A.) + € and m(B) < m(B.) + €. Since A+ B D A. + B, the
inequality (8) for A, and B, and a passage to a limit gives the desired
result. From this, we can pass to the case where A and B are arbitrary
compact sets, by noting first that A + B is then compact, and that if
we define A° = {z : d(x, A) < €}, then A® are open, and A° \, A as € —
0. With similar definitions for B¢ and (A 4 B)¢, we observe also that
A+ B C A° + B° C (A + B)?*:. Hence, letting ¢ — 0, we see that (8) for
A€ and B¢ implies the desired result for A and B. The general case,
in which we assume that A, B, and A 4+ B are measurable, then follows
by approximating A and B from inside by compact sets, as in (iii) of
Theorem 3.4.

6 Exercises

1. Prove that the Cantor set C constructed in the text is totally disconnected and
perfect. In other words, given two distinct points z,y € C, there is a point z ¢ C
that lies between = and y, and yet C has no isolated points.

[Hint: If 2,y € C and |z — y| > 1/3", then 2 and y belong to two different intervals
in Ck. Also, given any x € C there is an end-point yx of some interval in C}, that
satisfies = # yx and |z — yx| < 1/3%]

2. The Cantor set C can also be described in terms of ternary expansions.
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(a) Every number in [0, 1] has a ternary expansion
(oo}
xr = Z ak3_k, where ax = 0,1, or 2.
k=1

Note that this decomposition is not unique since, for example, 1/3 = >°7° , 2/3F.

Prove that = € C if and only if = has a representation as above where every
ar is either 0 or 2.

(b) The Cantor-Lebesgue function is defined on C by
F(z) = Z ;}—k if o =37 ar3™", where br = ay/2.
k=1

In this definition, we choose the expansion of z in which ax = 0 or 2.

Show that F is well defined and continuous on C, and moreover F'(0) = 0 as
well as F'(1) = 1.

(c) Prove that F : C — [0, 1] is surjective, that is, for every y € [0, 1] there exists
z € C such that F(z) = y.

(d) One can also extend F' to be a continuous function on [0, 1] as follows. Note
that if (a,b) is an open interval of the complement of C, then F(a) = F(b).
Hence we may define F' to have the constant value F'(a) in that interval.

A geometrical construction of F' is described in Chapter 3.

3. Cantor sets of constant dissection. Consider the unit interval [0, 1], and
let € be a fixed real number with 0 < £ < 1 (the case & = 1/3 corresponds to the
Cantor set C in the text).

In stage 1 of the construction, remove the centrally situated open interval in
[0, 1] of length £. In stage 2, remove two central intervals each of relative length &,
one in each of the remaining intervals after stage 1, and so on.

Let C¢ denote the set which remains after applying the above procedure indefi-
nitely.®

a) Prove that the complement of C¢ in [0, 1] is the union of open intervals of
3
total length equal to 1.

(b) Show directly that m.(C¢) = 0.

[Hint: After the k'" stage, show that the remaining set has total length = (1 — £)* ]

4. Cantor-like sets. Construct a closed set C so that at the k™ stage of the
construction one removes 2° ! centrally situated open intervals each of length ¢,
with

O+ 200+ -+ 2571 < 1.

6The set we call C¢ is sometimes denoted by C1_¢ .
2
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(a) If £; are chosen small enough, then >3 257'¢; < 1. In this case, show

that m(C) > 0, and in fact, m(C) =1 — >_3°, 28714

(b) Show that if 2 € C, then there exists a sequence of points {x,}5; such
that x, ¢ C, ye‘g rn, — x and x, € I,, where I,, is a sub-interval in the
complement of C with |I,| — 0.

(c) Prove as a consequence that Cis perfect, and contains no open interval.

(d) Show also that C is uncountable.

5. Suppose FE is a given set, and O, is the open set:
On={x: d(z,E) <1/n}.
Show:
(a) If E is compact, then m(E) = limp—oo m(Oy).

(b) However, the conclusion in (a) may be false for E closed and unbounded; or
FE open and bounded.

6. Using translations and dilations, prove the following: Let B be a ball in R? of
radius . Then m(B) = vdrd, where vg = m(B1), and B; is the unit ball, B; =
{zeR?: |z| <1}

A calculation of the constant vgq is postponed until Exercise 14 in the next
chapter.

7. If § = (01,...,04) is a d-tuple of positive numbers d; > 0, and F is a subset of
R?, we define 6F by

O0F = {(011,...,0azq) : where (z1,...,z4) € E}.
Prove that JE is measurable whenever E is measurable, and

8. Suppose L is a linear transformation of R%. Show that if E is a measurable
subset of R, then so is L(E), by proceeding as follows:

(a) Note that if F is compact, so is L(E). Hence if E is an F,, set, so is L(E).

(b) Because L automatically satisfies the inequality
|L(z) = L(z")| < M|z — 2|

for some M, we can see that L maps any cube of side length ¢ into a
cube of side length cgM¥{, with cq = 2v/d. Now if m(E) =0, there is a
collection of cubes {Q;} such that £ C |J; Q;, and >, m(Q;) <e. Thus
ms«(L(E)) < e, and hence m(L(E)) = 0. Finally, use Corollary 3.5.
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One can show that m(L(E)) = | det L| m(E); see Problem 4 in the next chapter.

9. Give an example of an open set O with the following property: the boundary
of the closure of O has positive Lebesgue measure.

[Hint: Consider the set obtained by taking the union of open intervals which are
deleted at the odd steps in the construction of a Cantor-like set.]

10. This exercise provides a construction of a decreasing sequence of positive
continuous functions on the interval [0, 1], whose pointwise limit is not Riemann
integrable.

Let € denote a Cantor-like set obtained from the construction detailed in Exer-
cise 4, so that in particular m(é) > 0. Let F denote a piecewise-linear and contin-
uous function on [0, 1], with F; = 1 in the complement of the first interval removed
in the construction of é, F1 = 0 at the center of this interval, and 0 < Fy(z) < 1 for
all z. Similarly, construct F> = 1 in the complement of the intervals in stage two of
the construction of (f, with F» = 0 at the center of these intervals, and 0 < F» < 1.
Continuing this way, let f, = Fi - F» -+ F,, (see Figure 5).

Fy

Fy

| c 0 c A\ C 0 |
! ~ J ~ J ~ J 1

Figure 5. Construction of {F,,} in Exercise 10

Prove the following:

(a) Foralln>1 and all z € [0,1], one has 0 < fp(z) <1 and fn(z) > frnt1(z).
Therefore, f,(x) converges to a limit as n — oo which we denote by f(z).
(b) The function f is discontinuous at every point of C.
[Hint: Note that f(z) =1 if 2 € C, and find a sequence of points {z,} so
that z, — z and f(z,) = 0.]

Now [ fn(z)dz is decreasing, hence [ fn converges. However, a bounded func-
tion is Riemann integrable if and only if its set of discontinuities has measure zero.
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(The proof of this fact, which is given in the Appendix of Book I, is outlined in
Problem 4.) Since f is discontinuous on a set of positive measure, we find that f
is not Riemann integrable.

11. Let A be the subset of [0, 1] which consists of all numbers which do not have
the digit 4 appearing in their decimal expansion. Find m(A).

12. Theorem 1.3 states that every open set in R is the disjoint union of open
intervals. The analogue in R, d > 2, is generally false. Prove the following:

(a) An open disc in R? is not the disjoint union of open rectangles.

[Hint: What happens to the boundary of any of these rectangles?]

(b) An open connected set 2 is the disjoint union of open rectangles if and only
if € is itself an open rectangle.

13. The following deals with G5 and F, sets.

(a) Show that a closed set is a Gs and an open set an F,.

[Hint: If F' is closed, consider O, = {z : d(z, F) < 1/n}]

(b) Give an example of an F, which is not a Gs.

[Hint: This is more difficult; let F' be a denumerable set that is dense.]

(c) Give an example of a Borel set which is not a Gs nor an Fj.

14. The purpose of this exercise is to show that covering by a finite number of
intervals will not suffice in the definition of the outer measure m..
The outer Jordan content J,(E) of a set E in R is defined by

N
J.(E) =inf >[I,
j=1

where the inf is taken over every finite covering E C U;-V:1 1;, by intervals I;.

(a) Prove that J.(E) = J.(E) for every set E (here E denotes the closure of

(b) Exhibit a countable subset E C [0, 1] such that J.(E) = 1 while m.(E) = 0.

15. At the start of the theory, one might define the outer measure by taking
coverings by rectangles instead of cubes. More precisely, we define

m(E) = inf Y |Ryl,
j=1
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where the inf is now taken over all countable coverings E C [J;Z, R; by (closed)
rectangles.

Show that this approach gives rise to the same theory of measure developed in
the text, by proving that m.(E) = m=(E) for every subset E of R%.

[Hint: Use Lemma 1.1.]

16. The Borel-Cantelli lemma. Suppose {Fx}72; is a countable family of
measuable subsets of R? and that

m(Ex) < 0o.

NgE

b
Il

1
Let

E = {z € R? : 2 € Ey, for infinitely many k}
= limsup(Ey).

k—o0
(a) Show that E is measurable.
(b) Prove m(E) = 0.

[Hint: Write £ = (7", Uys,, Ex]

17. Let {fn} be a sequence of measurable functions on [0, 1] with | f,(z)| < oo for
a.e x. Show that there exists a sequence ¢, of positive real numbers such that

f"i(m) — 0 a.e. T
Cn

[Hint: Pick ¢, such that m({z : |fn(z)/cn] > 1/n}) < 27", and apply the Borel-
Cantelli lemma.]

18. Prove the following assertion: Every measurable function is the limit a.e. of a
sequence of continuous functions.

19. Here are some observations regarding the set operation A + B.
(a) Show that if either A and B is open, then A + B is open.
(b) Show that if A and B are closed, then A 4+ B is measurable.

(¢) Show, however, that A + B might not be closed even though A and B are
closed.

[Hint: For (b) show that A + B is an Fy set.]

20. Show that there exist closed sets A and B with m(A) = m(B) = 0, but m(A +
B) > 0:
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(a) In R, let A =C (the Cantor set), B = C/2. Note that A+ B D [0, 1].

(b) In R?, observe that if A= T x {0} and B = {0} x I (where I = [0, 1]), then
A+B=1x1I.

21. Prove that there is a continuous function that maps a Lebesgue measurable
set to a non-measurable set.

[Hint: Consider a non-measurable subset of [0, 1], and its inverse image in C by the
function F' in Exercise 2.]

22. Let x[o,1] be the characteristic function of [0,1]. Show that there is no every-
where continuous function f on R such that

f(x) = X[,1)(x)  almost everywhere.

23. Suppose f(z,y) is a function on R? that is separately continuous: for each
fixed variable, f is continuous in the other variable. Prove that f is measurable
on R?.

[Hint: Approximate f in the variable x by piecewise-linear functions f, so that
fn — f pointwise.]

24. Does there exist an enumeration {r,}5>; of the rationals, such that the
complement of

(@
/N
=

3
|
S|~
5
3
+
S|
——

3
Il
—

in R is non-empty?

[Hint: Find an enumeration where the only rationals outside of a fixed bounded
interval take the form r,, with n = m? for some integer m.]

25. An alternative definition of measurability is as follows: E is measurable if for
every € > 0 there is a closed set I’ contained in E with m.(E — F) < e. Show that
this definition is equivalent with the one given in the text.

26. Suppose A C F C B, where A and B are measurable sets of finite measure.
Prove that if m(A) = m(B), then E is measurable.

27. Suppose E; and E» are a pair of compact sets in R? with F; C Es, and let
a =m(E1) and b = m(E2). Prove that for any ¢ with a < ¢ < b, there is a compact
set E with By C E C E2 and m(E) = c.

[Hint: As an example, if d =1 and E is a measurable subset of [0, 1], consider
m(E NJ0,t]) as a function of ¢.]
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28. Let E be a subset of R with m.(E) > 0. Prove that for each 0 < o < 1, there
exists an open interval I so that

m«(ENI)>am.(I).

Loosely speaking, this estimate shows that E contains almost a whole interval.

[Hint: Choose an open set O that contains E, and such that m.(E) > am.(O).
Write O as the countable union of disjoint open intervals, and show that one of
these intervals must satisfy the desired property.]

29. Suppose E is a measurable subset of R with m(E) > 0. Prove that the
difference set of F, which is defined by

{z€R: z=2a —y for some z,y € E},

contains an open interval centered at the origin.
If E contains an interval, then the conclusion is straightforward. In general, one
may rely on Exercise 28.

[Hint: Indeed, by Exercise 28, there exists an open interval I so that m(ENI) >
(9/10) m(I). If we denote E NI by Ep, and suppose that the difference set of Eq
does not contain an open interval around the origin, then for arbitrarily small a the
sets Fg, and Eo + a are disjoint. From the fact that (Eo U (Eo +a)) C (I U (I 4+ a))
we get a contradiction, since the left-hand side has measure 2m(Ep), while the
right-hand side has measure only slightly larger than m(I).]

A more general formulation of this result is as follows.

30. If E and F are measurable, and m(E) > 0, m(F) > 0, prove that
E+F={z+y:2€E, € F}

contains an interval.

31. The result in Exercise 29 provides an alternate proof of the non-measurability
of the set N studied in the text. In fact, we may also prove the non-measurability
of a set in R that is very closely related to the set A/

Given two real numbers x and y, we shall write as before that  ~ y whenever
the difference x — y is rational. Let N* denote a set that consists of one element in
each equivalence class of ~. Prove that AN™* is non-measurable by using the result
in Exercise 29.

[Hint: If N is measurable, then so are its translates Ny = N + r,,, where {r, }nZ;
is an enumeration of Q. How does this imply that m(N™) > 0? Can the difference
set of A" contain an open interval centered at the origin?]

32. Let A denote the non-measurable subset of I = [0,1] constructed at the end
of Section 3.

(a) Prove that if £ is a measurable subset of A/, then m(E) = 0.
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(b) If G is a subset of R with m.(G) > 0, prove that a subset of G is non-
measurable.

[Hint: For (a) use the translates of F by the rationals.]

33. Let N denote the non-measurable set constructed in the text. Recall from the
exercise above that measurable subsets of A/ have measure zero.

Show that the set N* = I — N satisfies m.(N°) = 1, and conclude that if E; =
N and Es = N°, then

m*(El) + m*(EQ) # Mo (El U EQ):

although F; and F»> are disjoint.

[Hint: To prove that m.(N°) = 1, argue by contradiction and pick a measurable
set U such that U C I, N° C U and m.(U) < 1—€]

34. Let C; and C2 be any two Cantor sets (constructed in Exercise 3). Show that
there exists a function F': [0,1] — [0, 1] with the following properties:

(i) F is continuous and bijective,
ii) F' is monotonically increasin,
Yy g
(iii) F maps C; surjectively onto Cs.

[Hint: Copy the construction of the standard Cantor-Lebesgue function.]

35. Give an example of a measurable function f and a continuous function ® so
that f o ® is non-measurable.
[Hint: Let ®:C; — C2 as in Exercise 34, with m(C1) > 0 and m(C2) =0. Let
N C C1 be non-measurable, and take f = xo(n).]

Use the construction in the hint to show that there exists a Lebesgue measurable
set that is not a Borel set.

36. This exercise provides an example of a measurable function f on [0, 1] such
that every function g equivalent to f (in the sense that f and g differ only on a
set of measure zero) is discontinuous at every point.

(a) Construct a measurable set E C [0,1] such that for any non-empty open
sub-interval I in [0, 1], both sets E NI and E° N I have positive measure.

(b) Show that f = xg has the property that whenever g(x) = f(z) a.e x, then
g must be discontinuous at every point in [0, 1].

[Hint: For the first part, consider a Cantor-like set of positive measure, and add in
each of the intervals that are omitted in the first step of its construction, another
Cantor-like set. Continue this procedure indefinitely.]

37. Suppose I is a curve y = f(z) in R?, where f is continuous. Show that
m(I') = 0.
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[Hint: Cover I' by rectangles, using the uniform continuity of f.]

38. Prove that (a+b)” > a” +b” whenever v > 1 and a,b > 0. Also, show that
the reverse inequality holds when 0 < v < 1.

[Hint: Integrate the inequality between (a 4 ¢)”~! and 7! from 0 to b.]

39. Establish the inequality

T1+ -+ xq

yi > (z1---zq)/?  forallm; >0,j=1,...,d

(10)

by using backward induction as follows:
(a) The inequality is true whenever d is a power of 2 (d = 2%, k > 1).

(b) If (10) holds for some integer d > 2, then it must hold for d — 1, that is,
one has (y1 + -+ ya—1)/(d—1) > (y1---ya—1)" @V for all y; > 0, with
j=1,....,d—1.

[Hint: For (a), if k > 2, write (x1 + - - - + o) /2" as (A + B)/2, where A = (21 +
oo+ @or-1)/2%71, and apply the inequality when d = 2. For (b), apply the in-
equality to z1 = y1,...,Zd—1 = Ya—1 and zq = (y1 + -+ + ya—1)/(d — 1).]

7 Problems

1. Given an irrational x, one can show (using the pigeon-hole principle, for exam-
ple) that there exists infinitely many fractions p/q, with relatively prime integers
p and q such that

However, prove that the set of those € R such that there exist infinitely many
fractions p/q, with relatively prime integers p and ¢ such that

is a set of measure zero.
[Hint: Use the Borel-Cantelli lemma.]

2. Any open set € can be written as the union of closed cubes, so that Q = JQ,;
with the following properties
(i) The Q,’s have disjoint interiors.

(ii) d(Qj,2°) ~ side length of @Q);. This means that there are positive constants
¢ and C so that ¢ <d(Q;,02°)/(Q;) < C, where £(Q;) denotes the side
length of Q;.
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3. Find an example of a measurable subset C of [0, 1] such that m(C) = 0, yet the
difference set of C' contains a non-trivial interval centered at the origin. Compare
with the result in Exercise 29.

[Hint: Pick the Cantor set C'=C. For a fixed a € [—1,1], consider the line y =
z 4 a in the plane, and copy the construction of the Cantor set, but in the cube
Q = [0,1] x [0,1]. First, remove all but four closed cubes of side length 1/3, one at
each corner of @; then, repeat this procedure in each of the remaining cubes (see
Figure 6). The resulting set is sometimes called a Cantor dust. Use the property
of nested compact sets to show that the line intersects this Cantor dust.]

/ N JI_/

/ [ |/

. ]

/ AT
/ /

Figure 6. Construction of the Cantor dust

4. Complete the following outline to prove that a bounded function on an interval
[a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.
This argument is given in detail in the appendix to Book I.

Let f be a bounded function on a compact interval J, and let I(c,7) denote
the open interval centered at c of radius r > 0. Let osc(f, ¢c,r) = sup |f(z) — f(y)|,
where the supremum is taken over all z,y € J N I(c,r), and define the oscillation
of f at ¢ by osc(f,¢) = lim,—o osc(f,c,r). Clearly, f is continuous at ¢ € J if and
only if osc(f,c) = 0.

Prove the following assertions:

(a) For every e¢ > 0, the set of points ¢ in J such that osc(f,c) > € is compact.

(b) If the set of discontinuities of f has measure 0, then f is Riemann integrable.

[Hint: Given € >0 let Ac = {c € J:osc(f,c) > e}. Cover Ac by a finite
number of open intervals whose total length is < e. Select an appropriate
partition of J and estimate the difference between the upper and lower sums
of f over this partition.]
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(c) Conversely, if f is Riemann integrable on J, then its set of discontinuities
has measure 0.
[Hint: The set of discontinuities of f is contained in |J,, A1/,. Choose a
partition P such that U(f, P) — L(f, P) < ¢/n. Show that the total length
of the intervals in P whose interior intersect Al/n is < e

5. Suppose FE is measurable with m(FE) < oo, and
E=F1UFE>, EiNE;=0.

If m(E) = m«(E1) + m«(E2), then E1 and E> are measurable.
In particular, if £ C @, where @ is a finite cube, then F is measurable if and
only if m(Q) = m«(E) +m.(Q — E).

6." The fact that the axiom of choice and the well-ordering principle are equivalent
is a consequence of the following considerations.

One begins by defining a partial ordering on a set E to be a binary relation <
on the set F that satisfies:

i) x<zforallz € FE.

(i)

(ii) If x <y and y < z, then z = y.
(iii) fx <y and y < z, then z < z.

If in addition z <y or y < x whenever z,y € E, then < is a linear ordering of E.

The axiom of choice and the well-ordering principle are then logically equivalent
to the Hausdorff maximal principle:

Every non-empty partially ordered set has a (non-empty) mazimal
linearly ordered subset.

In other words, if E is partially ordered by <, then E contains a non-empty subset
F which is linearly ordered by < and such that if F' is contained in a set G also
linearly ordered by <, then F' = G.

An application of the Hausdorff maximal principle to the collection of all well-
orderings of subsets of £ implies the well-ordering principle for E. However, the
proof that the axiom of choice implies the Hausdorff maximal principle is more
complicated.

7.* Consider the curve I' = {y = f(x)} in R?, 0 <z < 1. Assume that f is twice
continuously differentiable in 0 < z < 1. Then show that m(I' +T') > 0 if and only
if I' + I" contains an open set, if and only if f is not linear.

8." Suppose A and B are open sets of finite positive measure. Then we have
equality in the Brunn-Minkowski inequality (8) if and only if A and B are convex
and similar, that is, there are a § > 0 and an h € R? such that

A=6B+h.



2 Integration Theory

...amongst the many definitions that have been succes-
sively proposed for the integral of real-valued functions
of a real variable, I have retained only those which, in
my opinion, are indispensable to understand the trans-
formations undergone by the problem of integration,
and to capture the relationship between the notion of
area, so simple in appearance, and certain more com-
plicated analytical definitions of the integral.

One might ask if there is sufficient interest to oc-
cupy oneself with such complications, and if it is not
better to restrict oneself to the study of functions that
necessitate only simple definitions.... As we shall see
in this course, we would then have to renounce the
possibility of resolving many problems posed long ago,
and which have simple statements. It is to solve these
problems, and not for love of complications, that I
have introduced in this book a definition of the inte-
gral more general than that of Riemann.

H. Lebesgue, 1903

1 The Lebesgue integral: basic properties and conver-
gence theorems

The general notion of the Lebesgue integral on R? will be defined in a
step-by-step fashion, proceeding successively to increasingly larger fam-
ilies of functions. At each stage we shall see that the integral satisfies
elementary properties such as linearity and monotonicity, and we prove
appropriate convergence theorems that amount to interchanging the in-
tegral with limits. At the end of the process we shall have achieved a
general theory of integration that will be decisive in the study of further
problems.

We proceed in four stages, by progressively integrating;:
1. Simple functions
2. Bounded functions supported on a set of finite measure

3. Non-negative functions
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4. Integrable functions (the general case).

We emphasize from the onset that all functions are assumed to be mea-
surable. At the beginning we also consider only finite-valued functions
which take on real values. Later we shall also consider extended-valued
functions, and also complex-valued functions.

Stage one: simple functions
Recall from the previous chapter that a simple function ¢ is a finite sum

N

(1) p(r) = arXe, (),
k=1

where the E) are measurable sets of finite measure and the a; are con-
stants. A complication that arises from this definition is that a simple
function can be written in a multitude of ways as such finite linear com-
binations; for example, 0 = yg — xg for any measurable set E of finite
measure. Fortunately, there is an unambiguous choice for the represen-
tation of a simple function, which is natural and useful in applications.

The canonical form of ¢ is the unique decomposition as in (1), where
the numbers a; are distinct and non-zero, and the sets Fj are disjoint.

Finding the canonical form of ¢ is straightforward: since ¢ can take
only finitely many distinct and non-zero values, say c1,...,cy, we may
set F, = {z : ¢(x) = ¢}, and note that the sets F}, are disjoint. There-
fore ¢ = 22/[:1 ckXF, is the desired canonical form of ¢.

If ¢ is a simple function with canonical form ¢(z) = 22/121 crXr, (T),
then we define the Lebesgue integral of ¢ by

M

/ o(x)dr = ckm(Fy).
R4

k=1

If E is a measurable subset of R? with finite measure, then ¢(z)xg(z)
is also a simple function, and we define

/E plo)do = [ olax(z) de

To emphasize the choice of the Lebesgue measure m in the definition of
the integral, one sometimes writes

| et@yam(a)
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for the Lebesgue integral of . In fact, as a matter of convenience, we
shall often write [ ¢(x)dz or simply [ ¢ for the integral of ¢ over R

Proposition 1.1 The integral of simple functions defined above satisfies
the following properties:

(i) Independence of the representation. If p = Zszl aLXE, 5 any rep-
resentation of @, then

[e=

(ii) Linearity. If ¢ and 1 are simple, and a,b € R, then

[wrswr=a [ o1 [

(iii) Additivity. If E and F are disjoint subsets of R® with finite mea-

Sun 6, then
/ / / ‘
EUF E F

(iv) Monotonicity. If ¢ <1 are simple, then

[os [

(v) Triangle inequality. If ¢ is a simple function, then so is ||, and

o< [l

Proof. The only conclusion that is a little tricky is the first, which
asserts that the integral of a simple function can be calculated by us-
ing any of its decompositions as a linear combination of characteristic
functions.

Suppose that ¢ = Z,]c\;l arXE,, where we assume that the sets E}, are
disjoint, but we do not suppose that the numbers a, are distinct and non-
zero. For each distinct non-zero value a among the {a} we define E/, =
\J Ex, where the union is taken over those indices k such that a; = a.
Note then that the sets E/ are disjoint, and m(E.) = > m(E})), where

akm(Ek).

N
k=1
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the sum is taken over the same set of k’s. Then clearly ¢ = > axp:,
where the sum is over the distinct non-zero values of {ay}. Thus

N
/go = Zam(E(’l) =Y aym(Ey).

k=1

Next, suppose ¢ = Zivzl arXE,, where we no longer assume that the Ej,
are disjoint. Then we can “refine” the decomposition Uévzl FE by finding
sets Ef, Ej,...,E* with the property that Uszl E), = U?zl E5; the
sets E7 (j =1,...,n) are mutually disjoint; and for each k, Ej = UE;‘,
where the union is taken over those £; that are contained in Ej. (A proof
of this elementary fact can be found in Exercise 1.) For each j, let now

= > ak, with the summation taken over all k such that Ej contains
E%. Then clearly ¢ = S =1 jXE* However, this is a decomposition
already dealt with above because the E7 are disjoint. Thus

[e=YamEn =3 3 am(E;) = 3 am(s)

EkDE*

and conclusion (i) is established.

Conclusion (ii) follows by using any representation of ¢ and %, and
the obvious linearity of (i).

For the additivity over sets, one must note that if £ and F' are disjoint,
then

XEUF = XE + XF,

and we may use the linearity of the integral to see that fEUF P = fE p+
Jr e
If n > 01is a simple function, then its canonical form is everywhere non-
negative, and therefore f 1 > 0 by the definition of the integral. Applying
this argument to ¢ — ¢ gives the desired monotonicity property.
Finally, for the triangle inequality, it suffices to write ¢ in its canonical
form ¢ = Zivzl arX g, and observe that

N
ol = laxlxs, (@)
k=1

Therefore, by the triangle inequality applied to the definition of the in-
tegral, one sees that

/-

N
<> farlm(B) = [ el

k=1

N
St
k=1
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Incidentally, it is worthwhile to point out the following easy fact: when-
ever f and g are a pair of simple functions that agree almost everywhere,
then [ f = [ g. The identity of the integrals of two functions that agree
almost everywhere will continue to hold for the successive definitions of
the integral that follow.

Stage two: bounded functions supported on a set of finite
measure

The support of a measurable function f is defined to be the set of all
points where f does not vanish,

supp(f) = {xz : f(z) # 0}.

We shall also say that f is supported on a set E, if f(z) = 0 whenever
Since f is measurable, so is the set supp(f). We shall next be interested
in those bounded measurable functions that have m(supp(f)) < oc.

An important result in the previous chapter (Theorem 4.2) states the
following: if f is a function bounded by M and supported on a set E, then
there exists a sequence {¢,} of simple functions, with each ¢,, bounded
by M and supported on E, and such that

on(z) — f(x) for all .

The key lemma that follows allows us to define the integral for the class
of bounded functions supported on sets of finite measure.

Lemma 1.2 Let f be a bounded function supported on a set E of finite
measure. If {on}0% 1 is any sequence of simple functions bounded by M,
supported on E, and with p,(x) — f(z) for a.e. x, then:

(i) The limit Um | @, exists.

(ii) If f =0 a.e., then the limit lim /gon equals 0.

Proof. The assertions of the lemma would be nearly obvious if we
had that ¢, converges to f uniformly on F. Instead, we recall one of
Littlewood’s principles, which states that the convergence of a sequence
of measurable functions is “nearly” uniform. The precise statement lying
behind this principle is Egorov’s theorem, which we proved in Chapter 1,
and which we apply here.
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Since the measure of FE is finite, given € > 0 Egorov’s theorem guar-
antees the existence of a (closed) measurable subset A, of E such that
m(E — A.) <e, and ¢, — f uniformly on A.. Therefore, setting I,, =
f pn, we have that

L — L] < /E (@) — o (@) da

- /A @) = pule)] d + / (@) — pm(@)| do

E—-A.

< [ 1on@) — om(@)ldo+ 20 m(E - 4
A

€

S/ |on(x) — om(x)| dx + 2Me.

e

By the uniform convergence, one has, for all x € A, and all large n and
m, the estimate |p,(x) — pm(2)| < €, so we deduce that

|1y, — Im| < m(E)e+2Me  for all large n and m.

Since € is arbitrary and m(FE) < oo, this proves that {I,} is a Cauchy
sequence and hence converges, as desired.

For the second part, we note that if f = 0, we may repeat the argument
above to find that |I,,| < m(E)e + Me, which yields lim,, . I, =0, as
was to be shown.

Using Lemma 1.2 we can now turn to the integration of bounded func-
tions that are supported on sets of finite measure. For such a function f
we define its Lebesgue integral by

/f(x) dex = lim [ ¢, (x)dz,

n—oo
where {p,} is any sequence of simple functions satisfying: |p,| < M,
each ¢, is supported on the support of f, and ¢, (z) — f(z) for a.e.
as n tends to infinity. By the previous lemma, we know that this limit
exists.

Next, we must first show that f f is independent of the limiting se-
quence {p,} used, in order for the integral to be well-defined. There-
fore, suppose that {1} is another sequence of simple functions that is
bounded by M, supported on supp(f), and such that ¢, (z) — f(z) for
a.e. x as n tends to infinity. Then, if 7, = ¢, — ¥, the sequence {n,}
consists of simple functions bounded by 2M, supported on a set of fi-
nite measure, and such that 7, — 0 a.e. as n tends to infinity. We may
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therefore conclude, by the second part of the lemma, that f Nn — 0asn
tends to infinity. Consequently, the two limits

lim [ gu(x)de and  lim [ ¢,(x)dz

n—oo n—oo

(which exist by the lemma) are indeed equal.

If E is a subset of R with finite measure, and f is bounded with
m(supp(f)) < oo, then it is natural to define

/E fla)do = [ fle)e(o)do.

Clearly, if f is itself simple, then f f as defined above coincides with
the integral of simple functions studied earlier. This extension of the def-
inition of integration also satisfies all the basic properties of the integral
of simple functions.

Proposition 1.3 Suppose f and g are bounded functions supported on
sets of finite measure. Then the following properties hold.

(i) Linearity. If a,b € R, then

/(af+bg):a/f+b/g.

(ii) Additivity. If E and F are disjoint subsets of R, then

Juw?= et 0

(iii) Monotonicity. If f < g, then

[r<f>

(iv) Triangle inequality. |f| is also bounded, supported on a set of finite

measure, and
’/f’ §/|f|~
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All these properties follow by using approximations by simple functions,
and the properties of the integral of simple functions given in Proposi-
tion 1.1.

We are now in a position to prove the first important convergence
theorem.

Theorem 1.4 (Bounded convergence theorem) Suppose that {f,}
is a sequence of measurable functions that are all bounded by M, are
supported on a set E of finite measure, and f,(x) — f(x) a.e. x asn —
0o. Then f is measurable, bounded, supported on E for a.e. x, and

/|fn—f|—>0 as n — oo.

/fnﬂ/f as n — oo.

Proof. From the assumptions one sees at once that f is bounded by M
almost everywhere and vanishes outside F, except possibly on a set of
measure zero. Clearly, the triangle inequality for the integral implies
that it suffices to prove that [|f, — f| — 0 as n tends to infinity.

The proof is a reprise of the argument in Lemma 1.2. Given € > 0, we
may find, by Egorov’s theorem, a measurable subset A, of E such that
m(E — A.) < e and f, — f uniformly on A.. Then, we know that for
all sufficiently large n we have |f,,(z) — f(x)| < e for all z € A.. Putting
these facts together yields

Consequently,

/Ifn(w)—f(fﬂ)ldwﬁ Aelfn(x)—f(x)Idx+/]5AeIfn(:r)—f(x)Idx
<em(E)+2M m(E — A,)

for all large n. Since € is arbitrary, the proof of the theorem is complete.

We note that the above convergence theorem is a statement about the
interchange of an integral and a limit, since its conclusion simply says

lim fn:/ lim f,.

A useful observation that we can make at this point is the following: if
f > 0is bounded and supported on a set of finite measure £ and f =0,
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then f =0 almost everywhere. Indeed, if for each integer k > 1 we set
Ey ={x € E: f(z) > 1/k}, then the fact that k=1 xg, (z) < f(z) implies

') < / /.

by monotonicity of the integral. Thus m(Fx) =0 for all k, and since
{z: f(z) > 0} = Uy, Ek, we see that f =0 almost everywhere.

Return to Riemann integrable functions

We shall now show that Riemann integrable functions are also Lebesgue
integrable. When we combine this with the bounded convergence theo-
rem we have just proved, we see that Lebesgue integration resolves the
second problem in the Introduction.

Theorem 1.5 Suppose f is Riemann integrable on the closed interval
[a,b]. Then f is measurable, and

R c
(z) de = f(z) dz,
[a,b] [a,b]
where the integral on the left-hand side is the standard Riemann integral,
and that on the right-hand side is the Lebesgue integral.

Proof. By definition, a Riemann integrable function is bounded, say
|f(z)| < M, so we need to prove that f is measurable, and then establish
the equality of integrals.

Again, by definition of Riemann integrability,! we may construct two
sequences of step functions {pr} and {¢} that satisfy the following
properties: |pr(z)| < M and |[¢(x)| < M for all z € [a,b] and k > 1,

p1(x) < po(x) < - < f < e <aha(a) < Y (x),

and
R R R
(2) lim or(z)dr = lim i (z)dx = f(z)dx.
k=00 Jla,b] k=00 Jla,b] [a,b]
Several observations are in order. First, it follows immediately from their
definition that for step functions the Riemann and Lebesgue integrals
agree; therefore

(3)R L R L
/[ ou(w) de = /[ o(z)dz  and be@de= [ pu(a)de

a,b] a,b] [a,b] [a,b]

1See also Section 1 of the Appendix in Book 1.
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for all £ > 1. Next, if we let

B() = lim pp() and  P(r) = lim gy (o),

k—o0

we have ¢ < f < . Moreover, both ¢ and 1 are measurable (being the
limit of step functions), and the bounded convergence theorem yields

c c
lim or(r)dr = / o(x) dx
[

k—oo Ji4,5] ab]
and
c Lo
lim V() de = Y(x) de.
k=00 Ja,b] [a.b]

This together with (2) and (3) yields

l: ~
/[ (B(x) — B(x)) dx = 0,

a,b)

and since ¥y, — @ > 0, we must have ¢ — @ > 0. By the observation
following the proof of the bounded convergence theorem, we conclude
that w @ =0 a.e., and therefore ¢ = 1/) f a.e., which proves that f
is measurable. Fmally, since ¢ — f almost everywhere, we have (by
definition)

L L

lim or(z)dr = fz)dx

k—oo Jia,p] [a,b]

and by (2) and (3) we see that f[ oy f(@)do = f[a p f (%) dz, as desired.

Stage three: non-negative functions

We proceed with the integrals of functions that are measurable and non-
negative but not necessarily bounded. It will be important to allow
these functions to be extended-valued, that is, these functions may take
on the value +00 (on a measurable set). We recall in this connection the
convention that one defines the supremum of a set of positive numbers
to be +oo if the set is unbounded.

In the case of such a function f we define its (extended) Lebesgue

integral by
[ #ards =sw [ o) da,
g
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where the supremum is taken over all measurable functions g such that
0<g<f, and where g is bounded and supported on a set of finite
measure.

With the above definition of the integral, there are only two possible
cases; the supremum is either finite, or infinite. In the first case, when
[ f(z) dz < oo, we shall say that f is Lebesgue integrable or simply
integrable.

Clearly, if F is any measurable subset of R? and f > 0, then fxg is
also positive, and we define

/E fla)do = [ fle)e(o)do.

Simple examples of functions on R? that are integrable (or non-integrable)
are given by

lx| = if x| <1,

ﬁ@ﬁ:{o if |2 > 1.

1

— . allzeR%
1+ |x|@

F.(x)

Then f, is integrable exactly when a < d, while F, is integrable exactly
when a > d. See the discussion following Corollary 1.10 and also Exer-
cise 10.

Proposition 1.6 The integral of non-negative measurable functions en-
joys the following properties:

(i) Linearity. If f,g > 0, and a,b are positive real numbers, then

Jorvw=a[1+0[s

(ii) Additivity. If E and F are disjoint subsets of RY, and f > 0, then

Juw? = Jet 0t

(iii) Monotonicity. If 0 < f < g, then

[r<f>
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(iv) If g is integrable and 0 < f < g, then f is integrable.
(v) If f is integrable, then f(x) < oo for almost every x.
(vi) If [ f=0, then f(z) =0 for almost every x.

Proof. Of the first four assertions, only (i) is not an immediate
consequence of the definitions, and to prove it we argue as follows. We
take a = b = 1 and note that if ¢ < f and ¢ < g, where both ¢ and v are
bounded and supported on sets of finite measure, then ¢ + ¢ < f + g,
and ¢ + 1 is also bounded and supported on a set of finite measure.

Consequently
[t+[a< [0

To prove the reverse inequality, suppose n is bounded and supported on a
set of finite measure, and n < f + g. If we define n; () = min(f(z), n(z))
and 1y = 1 — 11, we note that

m<f and 7 <g.

Moreover both 71,72 are bounded and supported on sets of finite mea-
sure. Hence

o= fimsw= s fe 1+ ]

Taking the supremum over 7 yields the required inequality.

To prove the conclusion (v) we argue as follows. Suppose Ej = {x :
f(x) > k}a and Fo, = {$ : f(l') = OO} Then

/f>/&mf>mmmx

hence m(Ey) — 0 as k — oo. Since Ej, \, Fo, Corollary 3.3 in the pre-
vious chapter implies that m(E) = 0.
The proof of (vi) is the same as the observation following Theorem 1.4.

We now turn our attention to some important convergence theorems
for the class of non-negative measurable functions. To motivate the re-
sults that follow, we ask the following question: Suppose f, >0 and
fn(z) — f(z) for almost every z. Is it true that [ f,dx — [ fdz ? Un-
fortunately, the example that follows provides a negative answer to this,
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and shows that we must change our formulation of the question to obtain
a positive convergence result.
Let

f(x)—{ n if0<z<1/n,

0 otherwise.

Then f,(z) — 0 for all z, yet [ f,(x)dz =1 for all n. In this particular
example, the limit of the integrals is greater than the integral of the limit
function. This turns out to be the case in general, as we shall see now.

Lemma 1.7 (Fatou) Suppose {f,} is a sequence of measurable func-
tions with f, > 0. If lim, . fn(z) = f(x) for a.e. x, then

fgliminf/fn.

Proof. Suppose 0 < g < f, where g is bounded and supported on a
set E of finite measure. If we set g, (z) = min(g(z), fn(z)), then g, is
measurable, supported on E, and g, (z) — g(z) a.e., so by the bounded

convergence theorem
/gn - /g'

By construction, we also have g, < fn, so that [ g, < [ f,, and therefore

/ggliminf/fn.

Taking the supremum over all g yields the desired inequality.

In particular, we do not exclude the cases f f =o00,orliminf,, . f, =
0.

We can now immediately deduce the following series of corollaries.

Corollary 1.8 Suppose f is a non-negative measurable function, and
{fn} a sequence of non-negative measurable functions with f,(x) < f(z)
and fn(x) — f(x) for almost every x. Then

i [ [

Proof.  Since f,(z) < f(z) a.e x, we necessarily have [ f, < [ f for

all n; hence
limsup/fng/f.
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This inequality combined with Fatou’s lemma proves the desired limit.

In particular, we can now obtain a basic convergence theorem for the
class of non-negative measurable functions. Its statement requires the
following notation.

In analogy with the symbols " and \, used to describe increasing and
decreasing sequences of sets, we shall write

fn /1
whenever {f,}22 is a sequence of measurable functions that satisfies
fo(x) < fny1(z) aez,alln>1 and nlL)H;o fulz) = f(z) aex.
Similarly, we write f,, \, f whenever

fo(x) = for1(z) aez,alln>1 and lim fu(z) = f(x) aex.

Corollary 1.9 (Monotone convergence theorem) Suppose {f,} is
a sequence of non-negative measurable functions with f, /" f. Then

Jn = [

The monotone convergence theorem has the following useful conse-
quence:

Corollary 1.10 Consider a series Y -, ap(x), where ai(z) > 0 is mea-
surable for every k > 1. Then

/gak(x)dfﬂ—g;/ak(x)dm.

If "0, [an(z) dx is finite, then the series Y, ap(x) converges for
a.e. .

Proof. Let fo(z) =3 ,_, ar(z) and f(z) = >, ax(z). The func-
tions f, are measurable, f,(z) < fno4+1(x), and f,(x) — f(z) as n tends

to infinity. Since
[8=3 [astrae
k=1
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the monotone convergence theorem implies

Z/ d.’L‘—/ZGk

If Y [ar < oo, then the above implies that ), ay(z) is integrable,
and by our earlier observation, we conclude that >, ax(x) is finite
almost everywhere.

We give two nice illustrations of this last corollary.

The first consists of another proof of the Borel-Cantelli lemma (see
Exercise 16, Chapter 1), which says that if Ej, Fs,... is a collection
of measurable subsets with Y m(Ej) < oo, then the set of points that
belong to infinitely many sets Ej has measure zero. To prove this fact,
we let

ak(.fE) = XEj ("E)a

and note that a point x belongs to infinitely many sets Ej if and only
if ZZO 1 ak = 0o0. Our assumption on »_ m(FE}j) says precisely that
Yooy [an(z dx < 00, and the corollary implies that >, ax(x) is finite
except p0851bly on a set of measure zero, and thus the Borel-Cantelli
lemma is proved.

The second illustration will be useful in our discussion of approxima-
tions to the identity in Chapter 3. Consider the function

if x #0,
otherwise.

1
= [z[¥FT
) =
ro-{ 7
We prove that f is integrable outside any ball, || > €, and moreover

€’

/ flz)dx < — C for some constant C' > 0.
|z|>€

Indeed, if we let Ay = {z € R?: 2%¢ < |2| < 2F*+1e}, and define
> 1

= Zak(az) where  ag(z) = WXM(:B),
k=0

then we must have f(z) < g(z), and hence [ f < [g. Since the set Ay
is obtained from A = {1 < |z| < 2} by a dilation of factor 2¥¢, we have
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by the relative dilation-invariance properties of the Lebesgue measure,
that m(Ag) = (28¢)¥m(A). Also by Corollary 1.10, we see that

= m(A = (2ke)d C
/g = Z (zk(ﬁ)dk-zl =m(A) Z (2(1%)3“ =
k=0 e

0

where C' = 2m(A). Note that the same dilation-invariance property in

fact shows that
/ dr 1/ dx
|z|>e |‘r|d+1 € Jiz|>1 |x|d+1‘

See also the identity (7) below.

Stage four: general case

If f is any real-valued measurable function on R? we say that f is
Lebesgue integrable (or just integrable) if the non-negative measur-
able function |f| is integrable in the sense of the previous section.

If f is Lebesgue integrable, we give a meaning to its integral as follows.
First, we may define

f(z) = max(f(2),0) and [~ (2)=max(—f(z),0),

so that both f* and f~ are non-negative and f+ — f~ = f. Since f* <
|f], both functions f* and f~ are integrable whenever f is, and we then
define the Lebesgue integral of f by

Ji-frJr

In practice one encounters many decompositions f = f; — fo, where
f1, fo are both non-negative integrable functions, and one would expect
that regardless of the decomposition of f, we always have

[i=[n-[r

In other words, the definition of the integral should be independent of the
decomposition f = f; — fo. To see why this is so, suppose f = g1 — g2
is another decomposition where both ¢g; and g are non-negative and
integrable. Since f; — fo = g1 — g2 we have f1 + g2 = g1 + fo2; but both
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sides of this last identity consist of positive measurable functions, so the
linearity of the integral in this case yields

[ fo fos [

Since all integrals involved are finite, we find the desired result

[ e fo o

In considering the above definitions it is useful to keep in mind the
following small observations. Both the integrability of f, and the value
of its integral are unchanged if we modify f arbitrarily on a set of measure
zero. It is therefore useful to adopt the convention that in the context
of integration we allow our functions to be undefined on sets of measure
zero. Moreover, if f is integrable, then by (v) of Proposition 1.6, it is
finite-valued almost everywhere. Thus, availing ourselves of the above
convention, we can always add two integrable functions f and g, since
the ambiguity of f + g, due to the extended values of each, resides in a
set of measure zero. Moreover, we note that when speaking of a function
f, we are, in effect, also speaking about the collection of all functions
that equal f almost everywhere.

Simple applications of the definition and the properties proved previ-
ously yield all the elementary properties of the integral:

Proposition 1.11 The integral of Lebesgue integrable functions is lin-
ear, additive, monotonic, and satisfies the triangle inequality.

We now gather two results which, although instructive in their own
right, are also needed in the proof of the next theorem.

Proposition 1.12 Suppose f is integrable on R®. Then for every e > 0:

(i) There exists a set of finite measure B (a ball, for example) such

that
/ fl<e
Bc

(ii) There is a 6 > 0 such that

/ |f| <€ whenever m(E) <.
B
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The last condition is known as absolute continuity.

Proof. By replacing f with |f| we may assume without loss of gener-
ality that f > 0.

For the first part, let By denote the ball of radius NV centered at the
origin, and note that if fy(x) = f(x)xpy(z), then fx >0 is measur-
able, fy(z) < fni1(z), and limy_o fn(z) = f(x). By the monotone
convergence theorem, we must have

dm [ 1= [ 1

In particular, for some large N,

Oé/f_/fXBN<ev

and since 1 — xpy = X B, this implies fBC f < e, as we set out to prove.
N

For the second part, assuming again that f > 0, welet fy(z) = f(x)xEy
where

Ey ={z: f(z) <N}

Once again, fy > 0 is measurable, fy(z) < fy41(z), and given € > 0
there exists (by the monotone convergence theorem) an integer N > 0

such that
/(f —[n) < %

We now pick § > 0 so that N§ < €/2. If m(E) < ¢, then

/Ef=/E<f—fN>+/EfN
S/(f—fN)+/EfN

< [ (f=fn)+Nm(E)

< -+

= €.

M\m\

This concludes the proof of the proposition.

Intuitively, integrable functions should in some sense vanish at infinity
since their integrals are finite, and the first part of the proposition at-
taches a precise meaning to this intuition. One should observe, however,
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that integrability need not guarantee the more naive pointwise vanishing
as |z| becomes large. See Exercise 6.

We are now ready to prove a cornerstone of the theory of Lebesgue
integration, the dominated convergence theorem. It can be viewed as a
culmination of our efforts, and is a general statement about the interplay
between limits and integrals.

Theorem 1.13 Suppose { f,} is a sequence of measurable functions such
that fn(z) — f(z) a.e. z, as n tends to infinity. If |fn(z)| < g(x), where
g is integrable, then

/|fn—f|—>0 as n — oo,

[tom 1 wnow.

Proof.  For each N >0 let Exy ={x: |z]| <N, g(x) < N}. Given
€ > 0, we may argue as in the first part of the previous lemma, to see
that there exists N so that fEC g < €. Then the functions f,xg, are

N

and consequently

bounded (by N) and supported on a set of finite measure, so that by the
bounded convergence theorem, we have

/ |fn — fl <e€,  for all large n.
En

Hence, we obtain the estimate

Ju=n= [ n-ne [ s

N

S[Ean—fIﬂL?/E g

N
<e+ 2 =3¢

for all large n. This proves the theorem.

Complex-valued functions

If f is a complex-valued function on R, we may write it as

f(x) = u(z) +iv(z),
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where u and v are real-valued functions called the real and imaginary
parts of f, respectively. The function f is measurable if and only if both u
and v are measurable. We then say that f is Lebesgue integrable if the
function | f(x)| = (u(x)? + v(z)?)'/? (which is non-negative) is Lebesgue
integrable in the sense defined previously.

It is clear that

[u(@)] < |f(@)] and  fo(z)] < |f(z)]-

Also, if a,b > 0, one has (a + b)'/? < a'/? +b'/2, so that

[f ()] < u(@)] + [o(z)].

As a result of these simple inequalities, we deduce that a complex-valued
function is integrable if and only if both its real and imaginary parts are
integrable. Then, the Lebesgue integral of f is defined by

/f(:v) dr = /u(m) dx+i/'v(x) dx.

Finally, if E is a measurable subset of R%, and f is a complex-valued
measurable function on F, we say that f is Lebesgue integrable on F if
fxE is integrable on R¢, and we define fE f= ffXE-

The collection of all complex-valued integrable functions on a mea-
surable subset £ C R? forms a vector space over C. Indeed, if f and g
are integrable, then so is f + g, since the triangle inequality gives |(f +
9)(z)| < |f(z)| + |g(z)|, and monotonicity of the integral then yields

/Ef+g|§/E|f+/Elg|<oo-

Also, it is clear that if a € C and if f is integrable, then so is af. Finally,
the integral continues to be linear over C.

2 The space L! of integrable functions

The fact that the integrable functions form a vector space is an impor-
tant observation about the algebraic properties of such functions. A
fundamental analytic fact is that this vector space is complete in the
appropriate norm.
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For any integrable function f on R? we define the norm? of f,

1= Ul = 1w = [ 1)l d

The collection of all integrable functions with the above norm gives a
(somewhat imprecise) definition of the space L'(R%). We also note that
|l =0 if and only if f =0 almost everywhere (see Proposition 1.6),
and this simple property of the norm reflects the practice we have al-
ready adopted not to distinguish two functions that agree almost every-
where. With this in mind, we take the precise definition of L'(R?) to be
the space of equivalence classes of integrable functions, where we define
two functions to be equivalent if they agree almost everywhere. Often,
however, it is convenient to retain the (imprecise) terminology that an
element f € L'(R?) is an integrable function, even though it is only an
equivalence class of such functions. Note that by the above, the norm
||l of an element f € L*(RY) is well-defined by the choice of any inte-
grable function in its equivalence class. Moreover, L*(R9) inherits the
property that it is a vector space. This and other straightforward facts
are summarized in the following proposition.

Proposition 2.1 Suppose f and g are two functions in L*(R%).
() Nlofllzseey = lal [1£lzs g for all a € C.
(i) 1+ gllacasy < 170 oo ey + Nl ey

(iii) [|f]lz1(ray = O if and only if f =0 a.e.

(iv) d(f.g) = If — gllL1(re) defines a metric on L*(R?).

In (iv), we mean that d satisfies the following conditions. First, d(f,g) >
0 for all integrable functions f and ¢, and d(f,g) =0 if and only if f =g
a.e. Also, d(f,g) =d(g, f), and finally, d satisfies the triangle inequality

d(f,9) <d(f,h) +d(h,g), forall f,g,h € L (R?).

A space V' with a metric d is said to be complete if for every Cauchy
sequence {zx} in V (that is, d(xg,z¢) — 0 as k,{ — o) there exists
x € V such that limy_,, zx =  in the sense that

d(zg,x) — 0, ask — oo.

Our main goal of completing the space of Riemann integrable functions
will be attained once we have established the next important theorem.

2Tn this chapter the only norm we consider is the L'-norm, so we often write || f|| for
[Ifll1. Later, we shall have occasion to consider other norms, and then we shall modify
our notation accordingly.
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Theorem 2.2 (Riesz-Fischer) The vector space L' is complete in its
metric.

Proof. Suppose {f,} is a Cauchy sequence in the norm, so that || f,, —
fml|l — 0as n,m — oco. The plan of the proof is to extract a subsequence
of {fn} that converges to f, both pointwise almost everywhere and in
the norm.

Under ideal circumstances we would have that the sequence {f,} con-
verges almost everywhere to a limit f, and we would then prove that the
sequence converges to f also in the norm. Unfortunately, almost every-
where convergence does not hold for general Cauchy sequences (see Exer-
cise 12). The main point, however, is that if the convergence in the norm
is rapid enough, then almost everywhere convergence is a consequence,
and this can be achieved by dealing with an appropriate subsequence of
the original sequence.

Indeed, consider a subsequence {f,,}?2; of {f,} with the following

property:
||fnk+1 _fnkH §27k, for all kK > 1.
The existence of such a subsequence is guaranteed by the fact that || f,, —

fml|l < € whenever n,m > N(e), so that it suffices to take ny = N(27%).
We now consider the series whose convergence will be seen below,

[(@) = o (@) + ) (Fugir () = [ (2))

]2

>
Il

1

and
9(z) = | fn, (z)| + Z | iy () = fy (2],
k=1

and note that

/|fn1|+Z/|fnk+1fnk|</|fnl|+22_k<oo
k=1 k=1

So the monotone convergence theorem implies that g is integrable, and
since |f| < g, hence so is f. In particular, the series defining f converges
almost everywhere, and since the partial sums of this series are precisely
the f,, (by construction of the telescopic series), we find that

for (@) = f(z) ae. z.
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To prove that f,, — fin L' as well, we simply observe that |f — f,.,| < ¢
for all k, and apply the dominated convergence theorem to get | f,, —
fllzr — 0 as k tends to infinity.

Finally, the last step of the proof consists in recalling that {f,} is
Cauchy. Given ¢, there exists N such that for all n,m > N we have
| fr — fmll < €/2. If ny is chosen so that ny > N, and || fn, — f]| < €/2,
then the triangle inequality implies

[fn = FIF < [ fn = frll + [ fn = fIl <€

whenever n > N. Thus {f,} has the limit f in L!, and the proof of the
theorem is complete.

Since every sequence that converges in the norm is a Cauchy sequence
in that norm, the argument in the proof of the theorem yields the fol-
lowing.

Corollary 2.3 If {f,}°2, converges to f in L', then there erists a sub-
sequence { fn, 172, such that

fon (@) — f(z) ae. x.

We say that a family G of integrable functions is dense in L! if for any
f € L' and € > 0, there exists g € G so that ||f — g||;1 < e. Fortunately
we are familiar with many families that are dense in L', and we describe
some in the theorem that follows. These are useful when one is faced
with the problem of proving some fact or identity involving integrable
functions. In this situation a general principle applies: the result is often
easier to prove for a more restrictive class of functions (like the ones in
the theorem below), and then a density (or limiting) argument yields the
result in general.

Theorem 2.4 The following families of functions are dense in L'(R%):
(i) The simple functions.
(ii) The step functions.

(iii) The continuous functions of compact support.

Proof. Let f be an integrable function on R?. First, we may assume
that f is real-valued, because we may approximate its real and imaginary
parts independently. If this is the case, we may then write f = f+ — f—,
where f*, f~ >0, and it now suffices to prove the theorem when f > 0.
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For (i), Theorem 4.1 in Chapter 1 guarantees the existence of a se-
quence {¢x} of non-negative simple functions that increase to f point-
wise. By the dominated convergence theorem (or even simply the mono-
tone convergence theorem) we then have

If —wkllrr =0  ask — oo.

Thus there are simple functions that are arbitrarily close to f in the L'
norm.

For (ii), we first note that by (i) it suffices to approximate simple
functions by step functions. Then, we recall that a simple function is
a finite linear combination of characteristic functions of sets of finite
measure, so it suffices to show that if E is such a set, then there is a
step function v so that ||xg — ¢||r: is small. However, we now recall
that this argument was already carried out in the proof of Theorem 4.3,
Chapter 1. Indeed, there it is shown that there is an almost disjoint
family of rectangles {R;} with m(EA UJN; R;) < 2e. Thus xg and ¢ =
Zj xg,; differ at most on a set of measure 2¢, and as a result we find
that ||XE — ’(ﬁHL1 < 2e.

By (ii), it suffices to establish (iii) when f is the characteristic function
of a rectangle. In the one-dimensional case, where f is the characteristic
function of an interval [a, ], we may choose a continuous piecewise linear
function g defined by

w1 fa<e<h
IT=9 0 ifr<a—corz>0b+e,

and with ¢ linear on the intervals [a —€,a] and [b,b+ ¢]. Then ||f —
gllrr < 2e. In d dimensions, it suffices to note that the characteristic
function of a rectangle is the product of characteristic functions of inter-
vals. Then, the desired continuous function of compact support is simply
the product of functions like g defined above.

The results above for L (R?) lead immediately to an extension in which
R? can be replaced by any fixed subset E of positive measure. In fact
if F is such a subset, we can define L!(E) and carry out the arguments
that are analogous to L'(R?). Better yet, we can proceed by extending
any function f on F by setting f = f on E and f = 0 on E*, and defining
I flle ey = ||fHL1(Rd). The analogues of Proposition 2.1 and Theorem 2.2
then hold for the space L'(E).
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Invariance Properties

If f is a function defined on R%, the translation of f by a vector h € R?
is the function f},, defined by fr(z) = f(x — h). Here we want to examine
some basic aspects of translations of integrable functions.

First, there is the translation-invariance of the integral. One way to
state this is as follows: if f is an integrable function, then so is f;, and

(4) fle—h)dz = f(x)dx.
Rd Rd

We check this assertion first when f = xg, the characteristic function
of a measurable set E. Then obviously f, = xg,, where E, = {z + h:
x € E}, and thus the assertion follows because m(E}) = m(E) (see Sec-
tion 3 in Chapter 1). As a result of linearity, the identity (4) holds for
all simple functions. Now if f is non-negative and {¢, } is a sequence of
simple functions that increase pointwise a.e to f (such a sequence exists
by Theorem 4.1 in the previous chapter), then {(¢,)r} is a sequence of
simple functions that increase to fj pointwise a.e, and the monotone con-
vergence theorem implies (4) in this special case. Thus, if f is complex-
valued and integrable we see that [y, |f(z — h)|dx = [;,|f(2)| dz, which
shows that f, € LY(R?) and also ||f,|| = || f||. From the definitions, we
then conclude that (4) holds whenever f € L.

Incidentally, using the relative invariance of Lebesgue measure under
dilations and reflections (Section 3, Chapter 1) one can prove in the same
way that if f(x) is integrable, so is f(dx), 6 > 0, and f(—=x), and
(5)

54 f(0x)dr = f(x)dx, while f(=z)dz =
d Rd

Rd R L

f(z)dz.

R L

We digress to record for later use two useful consequences of the above
invariance properties:

(i) Suppose that f and g are a pair of measurable functions on R so
that for some fixed x € RY the function y — f(z — y)g(y) is integrable.
As a consequence, the function y — f(y)g(x — y) is then also integrable
and we have

(6) flx—y)gy)dy= [ f(y)glz—y)dy.
Rd Rd

This follows from (4) and (5) on making the change of variables which
replaces y by x — y, and noting that this change is a combination of a
translation and a reflection.
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The integral on the left-hand side is denoted by (f * g)(z) and is de-
fined as the convolution of f and g. Thus (6) asserts the commutativity
of the convolution product.

(ii) Using (5) one has that for all € > 0

d d
(7) / —za = e_a+d/ 2 Whenever a > d,
|z|>e |$| |z|>1 |‘T|
and
d d
(8) / —xa = e“”‘d/ —xa whenever a < d.
|| <e |z| lz|<1 |z
It can also be seen that the integrals fl I>1 ﬁ and fz|<1 Tale |a (respec-

tively, when a > d and a < d) are finite by the argument that appears
after Corollary 1.10.

Translations and continuity

We shall next examine how continuity properties of f are related to the
way the translations f; vary with h. Note that for any given z € R?, the
statement that f5(z) — f(z) as h — 0 is the same as the continuity of
f at the point z.

However, a general f which is integrable may be discontinuous at ev-
ery x, even when corrected on a set of measure zero; see Exercise 15.
Nevertheless, there is an overall continuity that an arbitrary f € L*(R9)
enjoys, one that holds in the norm.

Proposition 2.5 Suppose f € L'(R?). Then
lfn— fllx =0 as h— 0.

The proof is a simple consequence of the approximation of integrable
functions by continuous functions of compact support as given in The-
orem 2.4. In fact for any € > 0, we can find such a function g so that
If —gll < e Now

fn—=f="(gn—9)+ (fn —9n) — (f — 9).

However, ||fn — grnll = If — gll < €, while since g is continuous and has
compact support we have that clearly

low —oll = [ lote = 1)~ gla)lds 0 asn—o.
R

So if |h| < 0, where 0 is sufficiently small, then ||g, — g|| <€, and as a
result || fr, — f|| < 3¢, whenever |h| < 4.
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3 Fubini’s theorem

In elementary calculus integrals of continuous functions of several vari-
ables are often calculated by iterating one-dimensional integrals. We
shall now examine this important analytic device from the general point
of view of Lebesgue integration in R?, and we shall see that a number of
interesting issues arise.

In general, we may write R? as a product

R?=R%4 x R%  where d = dy + ds, and dy, dy > 1.

A point in R? then takes the form (x,7), where z € R% and y € R%.
With such a decomposition of R? in mind, the general notion of a slice,
formed by fixing one variable, becomes natural. If f is a function in
R x R, the slice of f corresponding to y € R% is the function f¥ of
the 2 € R% variable, given by

fy(x> = f(a:,y)

Similarly, the slice of f for a fixed z € R is f.(y) = f(z,y).
In the case of a set E C R* x R% we define its slices by

EV={zcR%: (r,y) € B} and FE,={yecR®: (z,y)cE}.

See Figure 1 for an illustration.

R

x R%

Figure 1. Slices EY and E, (for fixed z and y) of a set F

3.1 Statement and proof of the theorem

That the theorem that follows is not entirely straightforward is clear
from the first difficulty that arises in its formulation, involving the mea-
surability of the functions and sets in question. In fact, even with the
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assumption that f is measurable on R?, it is not necessarily true that
the slice fY is measurable on R% for each y; nor does the corresponding
assertion necessarily hold for a measurable set: the slice Y may not
be measurable for each y. An easy example arises in R? by placing a
one-dimensional non-measurable set on the z-axis; the set E in R? has
measure zero, but £Y is not measurable for y = 0. What saves us is that,
nevertheless, measurability holds for almost all slices.

The main theorem is as follows. We recall that by definition all inte-
grable functions are measurable.

Theorem 3.1 Suppose f(x,y) is integrable on R4 x R4, Then for al-
most every y € R

(i) The slice fY is integrable on R,
ii) The function defined by [, fY(x)dx is integrable on R%.
Rd1

Moreover:

(iii) /Rd2 < » f(z,y) dx) dy = » I

Clearly, the theorem is symmetric in  and y so that we also may conclude
that the slice f, is integrable on R? for a.e. . Moreover, fRd2 f=(y) dy

is integrable, and
/ < fz,y) dy) de= [ f.
Rd1 Rd2 Rd

In particular, Fubini’s theorem states that the integral of f on R? can
be computed by iterating lower-dimensional integrals, and that the iter-
ations can be taken in any order

/ ( f(x,y)d:v> dy = / ( f(fv,y>dy> o= [ 1
R92 Ré1 R41 Rd2 R4

We first note that we may assume that f is real-valued, since the
theorem then applies to the real and imaginary parts of a complex-valued
function. The proof of Fubini’s theorem which we give next consists of a
sequence of six steps. We begin by letting F denote the set of integrable
functions on R? which satisfy all three conclusions in the theorem, and
set out to prove that L1(R%) C F.

We proceed by first showing that F is closed under operations such
as linear combinations (Step 1) and limits (Step 2). Then we begin to



3. Fubini’s theorem it

construct families of functions in F. Since any integrable function is the
“limit” of simple functions, and simple functions are themselves linear
combinations of sets of finite measure, the goal quickly becomes to prove
that Yz belongs to F whenever E is a measurable subset of R? with
finite measure. To achieve this goal, we begin with rectangles and work
our way up to sets of type G5 (Step 3), and sets of measure zero (Step 4).
Finally, a limiting argument shows that all integrable functions are in F.
This will complete the proof of Fubini’s theorem.

Step 1. Any finite linear combination of functions in F also belongs
to F.

Indeed, let {fx}2_, C F. For each k there exists a set Ay C R% of
measure 0 so that fY is integrable on R% whenever y ¢ Aj. Then, if
A= UkN:1 Ay, the set A has measure 0, and in the complement of A,
the y-slice corresponding to any finite linear combination of the fj is
measurable, and also integrable. By linearity of the integral, we then
conclude that any linear combination of the fi’s belongs to F.

Step 2. Suppose {fr} is a sequence of measurable functions in F so
that fp /' f or fi \. f, where f is integrable (on R?). Then f € F.

By taking —f; instead of fj if necessary, we note that it suffices to
consider the case of an increasing sequence. Also, we may replace fj
by fr — f1 and assume that the fi’s are non-negative. Now, we observe
that an application of the monotone convergence theorem (Corollary 1.9)
yields

(9) lim fk(ﬂf,y)dxdy:/ f(z,y) dz dy.
R4 Rd

k—o0

By assumption, for each k there exists a set A, C R%, so that fiis
integrable on R% whenever y ¢ Ay. If A =[], Ay, then m(4) =0 in
R?%, and if y ¢ A, then fi is integrable on R for all k, and, by the
monotone convergence theorem, we find that

ak(y) = fi(x)dz increases to a limit  g(y) = fY¥(x) dx
Rdl Rdl

as k tends to infinity. By assumption, each gx(y) is integrable, so that
another application of the monotone convergence theorem yields

(10) / a(y)dy — | gly)dy ask— oco.
Rd2 Rd2
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By the assumption that fi € F we have

/ gk(y)dy=/ fe(x,y) dx dy,
Rd2 Rd

and combining this fact with (9) and (10), we conclude that

/g(y)dy— f(z,y)dz dy.
Rd2 Rd

Since f is integrable, the right-hand integral is finite, and this proves that
g is integrable. Consequently g(y) < co a.e. y, hence f¥ is integrable for
a.e. y, and

/( f(fv,y)dw) dy= [ f(z,y)dzdy.
Rd2 Ré1 Rd

This proves that f € F as desired.

Step 3. Any characteristic function of a set F that is a G5 and of finite
measure belongs to F.

We proceed in stages of increasing order of generality.
(a) First suppose E is a bounded open cube in R, such that E = Q; x

Q2, where ), and @ are open cubes in R% and R, respectively. Then,
for each y the function yg(z,y) is measurable in z, and integrable with

g(y) :/ XE(%?J) dx{ |C>(2)1| if y € Qo,
Ré1

otherwise.

Consequently, g = |Q1|xq, is also measurable and integrable, with

/ o(y) dy = Q1] |Qel.
RA2

Since we initially have [p, xg(z,y)dzdy = |E| =|Q1]||Q2|, we deduce
that xg € F.

(b) Now suppose E is a subset of the boundary of some closed cube.
Then, since the boundary of a cube has measure 0 in RY, we have
fRd Xe(z,y) dxdy = 0.

Next, we note, after an investigation of the various possibilities, that
for almost every v, the slice EY has measure 0 in R%, and therefore if
9(y) = [pa, xB(x,y) dz we have g(y) =0 for a.e. y. As a consequence,
Jgas 9(y) dy = 0, and therefore xp € F.
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(¢) Suppose now FE is a finite union of closed cubes whose interiors are
disjoint, E = Uf:l Q. Then, if Q) denotes the interior of Qj, we may
write xp as a linear combination of the x5, and xa, where Ay is a
subset of the boundary of Q for k =1,..., K. By our previous analysis,
we know that xg, and x4, belong to F for all &k, and since Step 1
guarantees that F is closed under finite linear combinations, we conclude
that xg € F, as desired.

(d) Next, we prove that if E is open and of finite measure, then xg €
F. This follows from taking a limit in the previous case. Indeed, by
Theorem 1.4 in Chapter 1, we may write E as a countable union of
almost disjoint closed cubes

E={]JQ,
j=1

Consequently, if we let fi, = Z?:l XQ;, then we note that the functions
fx increase to f = x g, which is integrable since m(F) is finite. Therefore,
we may conclude by Step 2 that f € F.

(e) Finally, if E' is a G5 of finite measure, then xp € . Indeed, by
definition, there exist open sets 01, O,, ..., such that

Ok.

D)

E =

k=1

Since E' has finite measure, there exists an open set Oy of finite measure
with £ C Oq. If we let

k
Or=0oN ()0,
j=1

then we note that we have a decreasing sequence of open sets of finite
measure Q1 D Oy D -+ with

s Qo
k=1

Therefore, the sequence of functions fi = xo, decreases to f = xg, and
since xo, € F for all k by (d) above, we conclude by Step 2 that xg
belongs to F.

Step 4. If E has measure 0, then xg belongs to F.
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Indeed, since F is measurable, we may choose a set G of type Gs with

E C G and m(G) = 0 (Corollary 3.5, Chapter 1). Since xg € F (by the
previous step) we find that

/]Rd2 (/Rdl Xc (@) d“’) dy = /Rd xe = 0.

/ xc(x,y)dx =0 for a.e. y.
R41

Therefore

Consequently, the slice GY has measure 0 for a.e. y. The simple obser-
vation that EY C GY then shows that EY has measure 0 for a.e. y, and
Jgar XxB(2,y) de = 0 for a.e. y. Therefore,

/ </ xE(x,y)dx> dy—U—/ XE>
RdQ R’il ]Rd

and thus yg € F, as was to be shown.

Step 5. If E is any measurable subset of R? with finite measure, then
X g belongs to F.

To prove this, recall first that there exists a set of finite measure G of
type Gs, with E C G and m(G — E) = 0. Since

XE = XG — XG-E;

and F is closed under linear combinations, we find that yp € F, as
desired.

Step 6. This is the final step, which consists of proving that if f is
integrable, then f € F.

We note first that f has the decomposition f = f+ — f~, where both f*
and f~ are non-negative and integrable, so by Step 1 we may assume
that f is itself non-negative. By Theorem 4.1 in the previous chapter,
there exists a sequence {¢y } of simple functions that increase to f. Since
each ¢y, is a finite linear combination of characteristic functions of sets
with finite measure, we have ¢, € F by Steps 5 and 1, hence f € F by
Step 2.

3.2 Applications of Fubini’s theorem

Theorem 3.2 Suppose f(x,y) is a non-negative measurable function on
R x R, Then for almost every y € R%:
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(i) The slice fY is measurable on R,
(ii) The function defined by [nq, f¥(x)dx is measurable on R%z

Moreover:
(iii) / < flx,y) dx) dy = f(z,y) dz dy in the extended sense.
RdQ ]Rdl Rd

In practice, this theorem is often used in conjunction with Fubini’s
theorem.? Indeed, suppose we are given a measurable function f on R?
and asked to compute f]Rd f- To justify the use of iterated integration, we
first apply the present theorem to |f|. Using it, we may freely compute
(or estimate) the iterated integrals of the non-negative function |f|. If
these are finite, Theorem 3.2 guarantees that f is integrable, that is,
[ |f] < oo. Then the hypothesis in Fubini’s theorem is verified, and we
may use that theorem in the calculation of the integral of f.

Proof of Theorem 3.2. Consider the truncations

| f(z,y) if|(z,y)] < kand f(z,y) <k,
T, y) = { 0 otherwise.

Each f is integrable, and by part (i) in Fubini’s theorem there exists a
set By, C R% of measure 0 such that the slice f{(z) is measurable for all
y € Ef. Then, if we set E = |, Ej, we find that f¥(x) is measurable for
all y € E° and all k. Moreover, m(E) = 0. Since f / fY, the monotone
convergence theorem implies that if y ¢ F, then

fk(ﬂ’),y)d.’lf / f(l‘,y)d.f as k — oo.
R R%1

Again by Fubini’s theorem, fRdl fx(z,y) dr is measurable for all y € E°,
hence so is fRdl f(z,y) dz. Another application of the monotone conver-
gence theorem then gives

a [ ([ sewas)a— [ ([ s

By part (iii) in Fubini’s theorem we know that

(12) /Rd ( y fk(:v,y)dx) dy = » fx-

3Theorem 3.2 was formulated by Tonelli. We will, however, use the short-hand of
referring to it, as well as Theorem 3.1 and Corollary 3.3, as Fubini’s theorem.
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A final application of the monotone convergence theorem directly to fi
also gives

(13) / P
R4 R4

Combining (11), (12), and (13) completes the proof of Theorem 3.2.

Corollary 3.3 If E is a measurable set in R4 x R, then for almost
every y € R% the slice

EY={zcRY: (x,y) € E}

is a measurable subset of R, Moreover m(EY) is a measurable function
of y and

m(E) = /R m(EY) dy.

This is an immediate consequence of the first part of Theorem 3.2 applied
to the function yg. Clearly a symmetric result holds for the z-slices in
R%:,

We have thus established the basic fact that if E is measurable on
R% x R% then for almost every y € R% the slice EY is measurable in
R? (and also the symmetric statement with the roles of = and y inter-
changed). One might be tempted to think that the converse assertion
holds. To see that this is not the case, note that if we let N denote a
non-measurable subset of R, and then define

E=[0,1] x N C R xR,

we see that

By 0,1 ifyeN,
N 0 ifygN.

Thus EY is measurable for every y. However, if F were measurable, then
the corollary would imply that E, = {y € R: (z,y) € E} is measurable
for almost every x € R, which is not true since E, is equal to A for all
z € [0,1].

A more striking example is that of a set F in the unit square [0, 1] x
[0, 1] that is not measurable, and yet the slices EY and E, are measurable
with m(EY) =0 and m(E,) =1 for each z,y € [0,1]. The construction
of E is based on the existence of a highly paradoxical ordering < of
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the reals, with the property that {z : = < y} is a countable set for each
y € R. (The construction of this ordering is discussed in Problem 5.)
Given this ordering we let

E = {(z,y) € [0,1] x [0, 1], with z < y}.

Note that for each y € [0,1], EY = {x : < y}; thus EY is countable and
m(EY) = 0. Similarly m(FE,) = 1, because E, is the complement of a
denumerable set in [0,1]. If E were measurable, it would contradict the
formula in Corollary 3.3.

In relating a set E to its slices F, and EY, matters are straightforward
for the basic sets which arise when we consider R? as the product R% x
R% . These are the product sets £ = E; x E,, where E; C R%

Proposition 3.4 If E = E; x Ey is a measurable subset of R?, and
m.(E2) > 0, then E;y is measurable.

Proof. By Corollary 3.3, we know that for a.e. y € R% the slice
function

(XEl ><E2>y(‘r) = XE (‘T)XEQ (y)

is measurable as a function of x. In fact, we claim that there is some
y € E5 such that the above slice function is measurable in x; for such a
y we would have xg, x g, (2,y) = xg, (z), and this would imply that E;
is measurable.

To prove the existence of such a y, we use the assumption that m,(Es) >
0. Indeed, let F denote the set of y € R% such that the slice EY is
measurable. Then m(F°¢) =0 (by the previous corollary). However,
Es N F is not empty because m,(E2 N F) > 0. To see this, note that
Ey = (E2N F)J(E2N F), hence

0< m*(Eg) < m*<E2 ﬂF) +m*(E2 ﬂFc> = m*(Eg ﬂF),

because F5 N F¢ is a subset of a set of measure zero.

To deal with a converse of the above result, we need the following
lemma.

Lemma 3.5 If By C R" and Ey C R%, then
m*(El X EZ) S m*<E1) m*<E2)a

with the understanding that if one of the sets E; has exterior measure
zero, then m,(Ey x Ey) = 0.
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Proof. Let € > 0. By definition, we can find cubes {Q;}$2, in R%:
and {Q}}22, in R9 such that

FEi C U Qk, and Ey5 C U QZ
k=1 /=1
and
D IQkl <mu(Br) +e and > |Qy < m.(Ea) +e
k=1 =1

Since Ey X By C |y =y @ X @, the sub-additivity of the exterior mea-
sure yields

Ey x Es) Z|QkXQz|

k=1

(S (S

< (m.(By) + ) (ma (B2) + o).
If neither F; nor 5 has exterior measure 0, then from the above we find
m*<E1 X EQ) S m*(El) m*(Eg) + O(E),

and since € is arbitrary, we must have m.(F1 x E2) < m.(F1) m.(E2).

If for instance m.(F;) = 0, consider for each positive integer j the
set B3 = F>N{y € R%: |y| <j}. Then, by the above argument, we
find that m.(Ey, x E3) = 0. Since (Ey X E}) / (E1 x E3) as j — 00, we
conclude that m.(E; x Eg) = 0.

Proposition 3.6 Suppose E; and E are measurable subsets of R and
R% | respectively. Then E = Eq x Ey is a measurable subset of R*. More-
over,

m(E) = m(Ey) m(Ea),

with the understanding that if one of the sets E; has measure zero, then
m(E) = 0.

Proof. It suffices to prove that F is measurable, because then the
assertion about m(E) follows from Corollary 3.3. Since each set E; is
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measurable, there exist sets G; C R% of type Gs, with G; D E; and
m«(Gj — Ej) =0 for each j =1,2. (See Corollary 3.5 in Chapter 1.)
Clearly, G = G x G5 is measurable in R% x R% and

(Gl X Gg) — (El X Ez) C ((Gl — El) X Gg) U (Gl X (GQ — Eg)) .

By the lemma we conclude that m,(G — E) = 0, hence E is measurable.

As a consequence of this proposition we have the following.

Corollary 3.7 Suppose [ is a measurable function on R% . Then the
function f defined by f(x,y) = f(z) is measurable on R x R,

Proof. 'To see this, we may assume that f is real-valued, and recall
first that if « € R and F; = {x € R4 : f(z) < a}, then E; is measurable
by definition. Since

{<‘T>y> € Rdl X Rdz : f(a?,y) < a} = F; X Rdz,

the previous proposition shows that { f(z, y) < a} is measurable for each
a € R. Thus f(z,y) is a measurable function on R% x R as desired.

Finally, we return to an interpretation of the integral that arose first in
the calculus. We have in mind the notion that f f describes the “area”
under the graph of f. Here we relate this to the Lebesgue integral and
show how it extends to our more general context.

Corollary 3.8 Suppose f(z) is a non-negative function on RY, and let
A={(z,9) eRI*xR: 0<y< f(z)}.
Then:

(i) f is measurable on R? if and only if A is measurable in R,

(ii) If the conditions in (i) hold, then

f(z)dx =m(A).
Rd

Proof. If f is measurable on R%, then the previous proposition guar-
antees that the function

F(z,y) =y — f(z)
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is measurable on Rt so we immediately see that A = {y > 0} N {F <
0} is measurable.

Conversely, suppose that A is measurable. We note that for each
x € R4 the slice A, = {y € R: (x,5) € A} is a closed segment, namely
A, =10, f(z)]. Consequently Corollary 3.3 (with the roles of x and y
interchanged) yields the measurability of m(A,) = f(x). Moreover

m(A) = / vale,y) dedy = / m(Ay)de = [ f(z)dr,

R1 Rd1
as was to be shown.

We conclude this section with a useful result.

Proposition 3.9 If f is a measurable function on R?, then the function
f(z,y) = f(z —y) is measurable on R? x RY.

By picking E = {z € R?: f(2) < a}, we see that it suffices to prove
that whenever E is a measurable subset of R?, then E = {(z,y): 2 —y €
E} is a measurable subset of R? x R<.

Note first that if O is an open set, then O is also open. Taking count-
able intersections shows that if E is a Gs set, then so is E. Assume
now that m(Ey) = 0 for each k, where Ej, = E N By, and By, = {|y| < k}.
Again, take O to be open in R%, and let us calculate m(O N By). We
have that x5~p5, = Xo(z — y)XB, (y). Hence

m(On By) = / Yo(@ — y)xs, (v) dy de

:/</Xo(xy) dx> X5, (y) dy

= m(O) m(By),

by the translation-invariance of the measure. Now if m(E) = 0, there is
a sequence of open sets O,, such that £ C O,, and m(O,,) — 0. Tt follows
from the above that Ej C O,, N By, and m(@n N By) — 0 in n for each
fixed k. This shows m(E}) = 0, and hence m(E) = 0. The proof of the
proposition is concluded once we recall that any measurable set F can
be written as the difference of a G5 and a set of measure zero.

4* A Fourier inversion formula

The question of the inversion of the Fourier transform encompasses in
effect the problem at the origin of Fourier analysis. This issue involves
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establishing the validity of the inversion formula for a function f in terms
of its Fourier transform f, that is,

(14) fO=[ fla)e " da,

R4

(1) fla)= | fE©emtde.

We have already encountered this problem in Book I in the rudimen-
tary case when in fact both f and f were continuous and had rapid (or
moderate) decrease at infinity. In Book II we also considered the ques-
tion in the one-dimensional setting, seen from the viewpoint of complex
analysis. The most elegant and useful formulations of Fourier inversion
are in terms of the L? theory, or in its greatest generality stated in the
language of distributions. We shall take up these matters systematically
later.* It will, nevertheless, be enlightening to digress here to see what
our knowledge at this stage teaches us about this problem. We intend to
do this by presenting a variant of the inversion formula appropriate for
L', one that is both simple and adequate in many circumstances.

To begin with, we need to have an idea of what can be said about the
Fourier transform of an arbitrary function in L!(R%).

Proposition 4.1 Suppose f € L*(RY). Then f defined by (14) is con-
tinuous and bounded on RY.

In fact, since |f(z)e~2m¢| = | f(x)|, the integral representing f con-
verges for each ¢ and supgcga 1f(6)] < Jga 1f (@) dz = || fI|. To verify the
continuity, note that for every z, f(x)e™2™¢ — f(z)e27%% as & — &,
where & is any point in R?; hence f(¢) — f(&) by the dominated con-
vergence theorem.

One can assert a little more than the boundedness of f; namely, one
has f(€) — 0 as |¢| — oo, but not much more can be said about the
decrease at infinity of f. (See Exercises 22 and 25.) As a consequence,
for general f € L'(R%) the function f is not in L*(R?), and the presumed
formula (15) becomes problematical. The following theorem evades this
difficulty and yet is useful in a number of situations.

Theorem 4.2 Suppose f € LY(R?) and assume also that f € L*(R%).
Then the inversion formula (15) holds for almost every x.

An immediate corollary is the uniqueness of the Fourier transform
on L.

4The L? theory will be dealt with in Chapter 5, and distributions will be studied in
Book IV.
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Corollary 4.3 Suppose f(f) =0 for all. Then f =0 a.e.

The proof of the theorem requires only that we adapt the earlier argu-
ments carried out for Schwartz functions in Chapter 5 of Book I to the
present context. We begin with the “multiplication formula.”

Lemma 4.4 Suppose f and g belong to L*(RY). Then

5 f(&)g(€)de = 5 F)aly) dy

Note that both integrals converge in view of the proposition above. Con-
sider the function F(&,y) = g(€)f(y)e 2™ defined for (£,y) € R? x
R?% = R24, Tt is measurable as a function on R?? in view of Corollary 3.7.
We now apply Fubini’s theorem to observe first that

| [ irewidea= [ ia@nas [ 1)dn <.

Next, if we evaluate f]Rd fRd (&,y) d€ dy by writing it as fRd (f]Rd (&) dE) y
we get the left-hand side of the desired equality. Evaluating the double

integral in the reverse order gives as the right-hand side, proving the
lemma.

Next we consider the modulated Gaussian, g(§) = 6_”5|£‘262””'§, where
for the moment § and z are fixed, with § > 0 and € R%. An elementary
calculation gives®

i) :/ ¢~mOIE 2mile—y)€ ge — §=d/2—nlo—v*/5
Rd

which we will abbreviate as Ks(z —y). We recognize K5 as a “good
kernel” that satisfies:

(i) Ks(y)dy = 1.
Rd

(ii) For each n > 0, Ks(y)dy — 0 as 6 — 0.
lyI>n

Applying the lemma gives

(16) /Rd F(&)e el 2mizg ge /Rd F)Ks(x —y)dy

5See for example Chapter 6 in Book I.
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Note that since f € L'(R4), the dominated convergence theorem shows
that the left-hand side of (16) converges to fRd f({)ez’”"]”'é d€ as § — 0, for
each x. As for the right-hand side, we make two successive change of vari-
ables y — y + z (a translation), and y — —y (a reflection), and take into
account the corresponding invariance of the integrals (see equations (4)
and (5)). Thus the right-hand side becomes [, f(z — y)Ks(y) dy, and
we will prove that this function converges in the L'-norm to f as § — 0.
Indeed, we can write the difference as

As(e) = [ Fle— 9)Es) dy - fla) = / (F(z—y) — f(2))Ks(y) dy,
Rd Rd

because of property (i) above. Thus

Aa)| < [ 1@ =) = £ Ks(o) dy

We can now apply Fubini’s theorem, recalling that the measurability
of f(x) and f(z —y) on R% x R? are established in Corollary 3.7 and
Proposition 3.9. The result is

1860 < [ U6y = FIRs(0) do. where £,(0) = fa =)

Now, for given € > 0 we can find (by Proposition 2.5) > 0 so small such
that || f, — f|| < € when |y| <. Thus

||A5|Se+/ 1y — FIEs)dy < e+ 2071 [ Ksy)dy.
ly|>n ly|>n

The first inequality follows by using (i) again; the second holds because
\fy = fIl < Ifyll + | £l = 2| fI|. Therefore, with the use of (ii), the com-
bination above is < 2e¢ if § is sufficiently small. To summarize: the right-
hand side of (16) converges to f in the L'-norm as § — 0, and thus
by Corollary 2.3 there is a subsequence that converges to f(z) almost
everywhere, and the theorem is proved.

Note that an immediate consequence of the theorem and the proposi-
tion is that if f were in L!, then f could be modified on a set of measure
zero to become continuous everywhere. This is of course impossible for
the general f € L'(RY).

5 Exercises

1. Given a collection of sets F1, Fy, ..., F,, construct another collection Fy', Fy ... Fx,
with N = 2" — 1, so that | J}_, Fr = U;V=1 F}; the collection {F}'} is disjoint; also
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Fp = UF;‘CFk F;, for every k.

[Hint: Consider the 2" sets F{ N Fy N --- N F}, where each F}, is either F} or Ff.]

2. In analogy to Proposition 2.5, prove that if f is integrable on R% and § > 0,
then f(dz) converges to f(x) in the L'-norm as § — 1.

3. Suppose f is integrable on (—m, 7] and extended to R by making it periodic of
period 27. Show that

@ [ 1@

where [ is any interval in R of length 2.

[Hint: I is contained in two consecutive intervals of the form (km, (k + 2)).]

4. Suppose f is integrable on [0, b], and
b
g(x):/@dt for 0 <z <b.

Prove that g is integrable on [0,b] and
b b
/ g(z) dx :/ f(t)dt.
0 0

5. Suppose F is a closed set in R, whose complement has finite measure, and let
0(x) denote the distance from x to F, that is,

0(z) =d(z,F) =inf{|z —y|: ye€ F}.

Consider

_ 3(y)
I(x) —/R|$7y|2 dy.

(a) Prove that § is continuous, by showing that it satisfies the Lipschitz condi-
tion

[6(x) = d(y)| < |z —yl.

(b) Show that I(z) = oo for each x ¢ F.

(c) Show that I(z) < oo for a.e. x € F. This may be surprising in view of the
fact that the Lispshitz condition cancels only one power of |z — y| in the
integrand of I.
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[Hint: For the last part, investigate [, I(x)dx.]
6. Integrability of f on R does not necessarily imply the convergence of f(z) to 0

as r — OQ.

(a) There exists a positive continuous function f on R so that f is integrable
on R, but yet limsup,_, . f(z) = co.

(b) However, if we assume that f is uniformly continuous on R and integrable,
then lim;| o f(x) = 0.

[Hint: For (a), construct a continuous version of the function equal to n on the

segment [n,n 4 1/n®), n > 1]

7. Let T CRY X R, ' = {(z,y) € R* xR : y = f(x)}, and assume f is measurable
on R?. Show that I' is a measurable subset of R**! and m(I") = 0.

8. If f is integrable on R, show that F(z) = [“__ f(t)dt is uniformly continuous.

9. Tchebychev inequality. Suppose f > 0, and f is integrable. If o > 0 and
E. = {z: f(z) > a}, prove that

mWJSé/ﬁ

10. Suppose f >0, and let Fox = {z: f(z) > 2"} and Fy = {z: 2" < f(z) <
2]““}. If f is finite almost everywhere, then

U Fe={f) >0},

k=—o0

and the sets Fj, are disjoint.
Prove that f is integrable if and only if

Z 2"m(Fy) < oo,  if and only if Z 25 m(Eyr) < oo.
k=—o0 k=—o0

Use this result to verify the following assertions. Let

e o
ﬂ@:{lﬂ if 2| < 1, and ﬂ@:{\ﬂ if 2| > 1,

0 otherwise, 0 otherwise.

Then f is integrable on R? if and only if a < d; also g is integrable on R if and
only if b > d.

11. Prove that if f is integrable on RY, real-valued, and fE f(x)dz >0 for ev-
ery measurable E, then f(x) >0 a.e.z. As a result, if [, f(x)dz =0 for every
measurable E, then f(z) =0 a.e.
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12. Show that there are f € L'(R?) and a sequence {f,} with f, € L'(R%) such
that

If = fallLr =0,

but f,(z) — f(x) for no z.

[Hint: In R, let f,, = x1,,, where I,, is an appropriately chosen sequence of intervals
with m(I,) — 0.]

13. Give an example of two measurable sets A and B such that A+ B is not
measurable.

[Hint: In R? take A = {0} x [0,1] and B = N x {0}.]

14. In Exercise 6 of the previous chapter we saw that m(B) = vqr?, whenever B
is a ball of radius r in R? and vg = m(B1), with By the unit ball. Here we evaluate
the constant vg4.

(a) For d = 2, prove using Corollary 3.8 that

1
vy = 2/ (1—2*)"? dx,

-1
and hence by elementary calculus, that vo = 7.

(b) By similar methods, show that
1
Vg = 2’Ud,1 / (1 — 1‘2)(d71)/2 dx.
0

(¢) The result is

ad/2

T TR

Another derivation is in Exercise 5 in Chapter 6 below. Relevant facts about the
gamma and beta functions can be found in Chapter 6 of Book II.

15. Consider the function defined over R by

—-1/2 .
f(z):{x if0<z<1,

0 otherwise.

For a fixed enumeration {ry,}5=; of the rationals Q, let

F(z) = 22_"]”(:10 —Tn).
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Prove that F' is integrable, hence the series defining F' converges for almost every
x € R. However, observe that this series is unbounded on every interval, and in
fact, any function F' that agrees with F' a.e is unbounded in any interval.

16. Suppose f is integrable on R, If § = (81,...,d4) is a d-tuple of non-zero real
numbers, and

Fo(x) = f(6z) = f(r1, ..., 0aza),

show that f? is integrable with

/ f5<x>dx:|61|—1--~|5d|—1/ f(z) dz.
RA RA

17. Suppose f is defined on R? as follows: f(z,y) =a,if n <2z <n+1andn <
y<n+1l,(n>0); f(z,y) =—arifn<z<n+landn+1<y<n+2 (n>0);
while f(z,y) =0 elsewhere. Here a, =", ., br, with {bx} a positive sequence
such that Y 72 br = s < co. B

(a) Verify that each slice f¥ and f, is integrable. Also for all z, [ fz(y)dy =0,
and hence [ ([ f(z,y)dy) dz =0.

(b) However, ffy(:v) dr=ao if 0 <y <1, and ffy(:c) dr = an —an_1 if n <
y <n+1with n > 1. Hence y — [ fY(z)dx is integrable on (0, 00) and

/(/f(x,y)dx) dy = s,

(c) Note that [, . |f(z,y)|dzdy = oco.

18. Let f be a measurable finite-valued function on [0, 1], and suppose that | f(z) —
f(y)| is integrable on [0, 1] x [0,1]. Show that f(z) is integrable on [0, 1].

19. Suppose f is integrable on RY. For each a > 0, let E, = {x : |f(z)| > a}.
Prove that

[ r@ide = [ m(ea) do.

20. The problem (highlighted in the discussion preceding Fubini’s theorem) that
certain slices of measurable sets can be non-measurable may be avoided by re-
stricting attention to Borel measurable functions and Borel sets. In fact, prove the
following;:

Suppose E is a Borel set in R?. Then for every y, the slice EY is a Borel set in
R.
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[Hint: Consider the collection C of subsets E of R? with the property that each
slice EY is a Borel set in R. Verify that C is a o-algebra that contains the open
sets.]

21. Suppose that f and ¢ are measurable functions on R¢.

(a) Prove that f(z — y)g(y) is measurable on R?%.

(b) Show that if f and g are integrable on R¢, then f(z — y)g(y) is integrable
on R4,

(c) Recall the definition of the convolution of f and g given by

(F+9)@) = [ 1=y

Show that f * g is well defined for a.e. x (that is, f(z — y)g(y) is integrable
on R? for a.e. x).

(d) Show that f * g is integrable whenever f and g are integrable, and that
||f*9||L1(Rd) < ||f||L1(JRd) HQHLI(Rd):
with equality if f and g are non-negative.

(e) The Fourier transform of an integrable function f is defined by

fO=] fl@)e ™ da.

Rd

Check that f is bounded and is a continuous function of £&. Prove that for
each ¢ one has

22. Prove that if f € L*(R?) and
fe) = / fla)e™ ™" du,
Rd

then f(¢) — 0 as |€] — oo. (This is the Riemann-Lebesgue lemma.)
[Hint: Write f(£) = 3 Jpalf(2) = f(z — €)]e > dx, where &' = %\E%’ and use
Proposition 2.5.]

23. As an application of the Fourier transform, show that there does not exist a
function I € L*(R?) such that

f+xI=f forall fc L'(R?).
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24. Consider the convolution
(Fx9)@) = [ 1o =)o) dy.
R

(a) Show that f * g is uniformly continuous when f is integrable and g bounded.

(b) If in addition g is integrable, prove that (f * g)(z) — 0 as |z| — oc.

25. Show that for each € > 0 the function F(§)
of an L' function.

[Hint: With Ks(z) = e 12 /55=4/2 congider fx) = [~ Ks(z)e ™57t ds. Use
Fubini’s theorem to prove f € L'(RY), and

= m is the Fourier transform

f(g):/ e IEN g o ge—1 do,

0

and evaluate the last integral as 7~ “I'(e)
defined by T'(s) = [ e "t~ " dt]

m. Here I'(s) is the gamma function

6 Problems

1. If f is integrable on [0, 27|, then f027T f(z)e ™™ dz — 0 as |n| — oco.
Show as a consequence that if E is a measurable subset of [0, 27], then

m(E)

/COS2(nl’+un)dZ’—>7, as n — 0o
B 2

for any sequence {u, }.
[Hint: See Exercise 22.]

2. Prove the Cantor-Lebesgue theorem: if
oo oo
Z An(z) = Z(an cosnx + by, sin nz)
n=0 n=0

converges for = in a set of positive measure (or in particular for all x), then a,, — 0
and b, — 0 as n — oo.

[Hint: Note that A, (z) — 0 uniformly on a set E of positive measure.]

3. A sequence {f} of measurable functions on R¢ is Cauchy in measure if for
every € > 0,

m{z:|fu(z) — fe(z)] >€}) =0 ask,l— oco.
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We say that {fx} converges in measure to a (measurable) function f if for every
€e>0

m({z:|fe(z) = f(x)]|>€}) =0 ask — co.

This notion coincides with the “convergence in probability” of probability theory.

Prove that if a sequence {fx} of integrable functions converges to f in L', then
{fr} converges to f in measure. Is the converse true?

We remark that this mode of convergence appears naturally in the proof of
Egorov’s theorem.

4. We have already seen (in Exercise 8, Chapter 1) that if F is a measurable set
in R%, and L is a linear transformation of R? to R?, then L(E) is also measurable,
and if F has measure 0, then so has L(F). The quantitative statement is

m(L(E)) = |det(L)| m(E).

As a special case, note that the Lebesgue measure is invariant under rotations.
(For this special case see also Exercise 26 in the next chapter.)
The above identity can be proved using Fubini’s theorem as follows.

(a) Consider first the case d =2, and L a “strictly” upper triangular transfor-
mation ' = x + ay, ¥’ = y. Then

Xoe)(@,y) = xe(L ' (2,y) = xe(z — ay,y).

mE) = [ ([xet-onn ) a
/RXR (/XE(w,y) dm) dy

= m(E),

Hence

by the translation-invariance of the measure.

(b) Similarly m(L(E)) = m(E) if L is strictly lower triangular. In general, one
can write L = L1ALo, where L; are strictly (upper and lower) triangular
and A is diagonal. Thus m(L(E)) = |det(L)|m(E), if one uses Exercise 7
in Chapter 1.

5. There is an ordering < of R with the property that for each y € R the set
{z € R: z <y} is at most countable.

The existence of this ordering depends on the continuum hypothesis, which
asserts: whenever S is an infinite subset of R, then either S is countable, or S has
the cardinality of R (that is, can be mapped bijectively to R).5

6This assertion, formulated by Cantor, is like the well-ordering principle independent
of the other axioms of set theory, and so we are also free to accept its validity.
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[Hint: Let < denote a well-ordering of R, and define the set X by X = {y €
R : the set {z : x < y} is not countable}. If X is empty we are done. Otherwise,
consider the smallest element 7 in X, and use the continuum hypothesis.]



3 Differentiation and Integration

The Maximal Problem:

The problem is most easily grasped when stated
in the language of cricket, or any other game in which
a player compiles a series of scores of which an average
is recorded.

G. H. Hardy and J. E. Littlewood, 1930

That differentiation and integration are inverse operations was already
understood early in the study of the calculus. Here we want to reexamine
this basic idea in the framework of the general theory studied in the
previous chapters. Our objective is the formulation and proof of the
fundamental theorem of the calculus in this setting, and the development
of some of the concepts that occur. We shall try to achieve this by
answering two questions, each expressing one of the ways of representing
the reciprocity between differentiation and integration.

The first problem involved may be stated as follows.

e Suppose f is integrable on [a,b] and F is its indefinite integral
F(x) = ff fly)dy. Does this imply that F is differentiable (at
least for almost every ), and that F/ = f ?

We shall see that the affirmative answer to this question depends
on ideas that have broad application and are not limited to the one-
dimensional situation.

For the second question we reverse the order of differentiation and
integration.

e What conditions on a function F on [a, b] guarantee that F'(z) ex-
ists (for a.e. x), that this function is integrable, and that moreover

b
F(b)—F(a):/ F'(z)dzx ?

While this problem will be examined from a narrower perspective than
the first, the issues it raises are deep and the consequences entailed are
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far-reaching. In particular, we shall find that this question is connected
to the problem of rectifiability of curves, and as an illustration of this
link, we shall establish the general isoperimetric inequality in the plane.

1 Differentiation of the integral

We begin with the first problem, that is, the study of differentiation of
the integral. If f is given on [a,b] and integrable on that interval, we let

F(x):/xf(y)dy, a<z<hbh.

To deal with F’(z), we recall the definition of the derivative as the limit
of the quotient

F(z+h) — F(x)
h

when h tends to 0.

We note that this quotient takes the form (say in the case h > 0)

1 x+h 1
i twa= g [ s,

where we use the notation I = (z,x + h) and |I| for the length of this
interval. At this point, we pause to observe that the above expression
is the “average” value of f over I, and that in the limit as |I| — 0,
we might expect that these averages tend to f(z). Reformulating the
question slightly, we may ask whether

) 1
Jm, gy S0 a= 1@

holds for suitable points x. In higher dimensions we can pose a similar
question, where the averages of f are taken over appropriate sets that
generalize the intervals in one dimension. Initially we shall study this
problem where the sets involved are the balls B containing x, with their
volume m(B) replacing the length |I| of I. Later we shall see that as a
consequence of this special case similar results will hold for more general
collections of sets, those that have bounded “eccentricity.”

With this in mind we restate our first problem in the context of R,
for all d > 1.
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Suppose f is integrable on R?. Is it true that

/ fly)dy = f(x), for ae. z?

m(B) — 0

The limit is taken as the volume of open balls B containing
x goes to 0.

We shall refer to this question as the averaging problem. We remark
that if B is any ball of radius r in R?, then m(B) = vgr¢, where vy is
the measure of the unit ball. (See Exercise 14 in the previous chapter.)

Note of course that in the special case when f is continuous at = , the
limit does converge to f(z). Indeed, given € > 0, there exists 6 > 0 such
that |f(z) — f(y)| < € whenever |z — y| < d. Since

5 L f0dy = [ (@) = r

we find that whenever B is a ball of radius < §/2 that contains x, then

1
10 iy [ < s [0 - sl <

as desired.

The averaging problem has an affirmative answer, but to establish that
fact, which is qualitative in nature, we need to make some quantitative
estimates bearing on the overall behavior of the averages of f. This will
be done in terms of the maximal averages of | f|, to which we now turn.

1.1 The Hardy-Littlewood maximal function

The maximal function that we consider below arose first in the one-
dimensional situation treated by Hardy and Littlewood. It seems that
they were led to the study of this function by toying with the question
of how a batsman’s score in cricket may best be distributed to maximize
his satisfaction. As it turns out, the concepts involved have a universal
significance in analysis. The relevant definition is as follows.

If f is integrable on R?, we define its maximal function f* by

P =sw s [ Ifwldn oz e R,
zeB m

where the supremum is taken over all balls containing the point z. In

other words, we replace the limit in the statement of the averaging prob-

lem by a supremum, and f by its absolute value.
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The main properties of f* we shall need are summarized in a theorem.
Theorem 1.1 Suppose f is integrable on R, Then:

(i) f* is measurable.

(ii) f*(z) < oo for a.e. x.

(iii) f* satisfies

(1) m({z € RY: f*(2) > a}) < = [|fllor(me)

SRS

Jor all o> 0, where A= 3", and || f| 11 (re) = [ga |f(z)| dz.

Before we come to the proof we want to clarify the nature of the main
conclusion (iii). As we shall observe, one has that f*(z) > |f(z)| for a.e.
x; the effect of (iii) is that, broadly speaking, f* is not much larger than
|f|. From this point of view, we would have liked to conclude that f* is
integrable, as a result of the assumed integrability of f. However, this
is not the case, and (iii) is the best substitute available (see Exercises 4
and 5).

An inequality of the type (1) is called a weak-type inequality be-
cause it is weaker than the corresponding inequality for the L!-norms.

Indeed, this can be seen from the Tchebychev inequality (Exercise 9 in
Chapter 2), which states that for an arbitrary integrable function g,

1
m{z: |gx)] > a}) < o lgllLt ey,  for all a > 0.

We should add that the exact value of A in the inequality (1) is unim-
portant for us. What matters is that this constant be independent of «
and f.

The only simple assertion in the theorem is that f* is a measurable
function. Indeed, the set E, = {x € R : f*(x) > a} is open, because if
T 