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The Real And Complex Number Systems

Integers

1.1 Prove that there is no largest prime.

Proof : Suppose p is the largest prime. Then p!+1 is NOT a prime. So,
there exists a prime q such that

q |p! + 1 ⇒ q |1

which is impossible. So, there is no largest prime.

Remark: There are many and many proofs about it. The proof that we
give comes from Archimedes 287-212 B. C. In addition, Euler Leonhard
(1707-1783) find another method to show it. The method is important since
it develops to study the theory of numbers by analytic method. The reader
can see the book, An Introduction To The Theory Of Numbers by
Loo-Keng Hua, pp 91-93. (Chinese Version)

1.2 If n is a positive integer, prove the algebraic identity

an − bn = (a− b)
n−1∑
k=0

akbn−1−k

Proof : It suffices to show that

xn − 1 = (x− 1)
n−1∑
k=0

xk.
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Consider the right hand side, we have

(x− 1)
n−1∑
k=0

xk =
n−1∑
k=0

xk+1 −
n−1∑
k=0

xk

=
n∑

k=1

xk −
n−1∑
k=0

xk

= xn − 1.

1.3 If 2n − 1 is a prime, prove that n is prime. A prime of the form
2p − 1, where p is prime, is called a Mersenne prime.

Proof : If n is not a prime, then say n = ab, where a > 1 and b > 1. So,
we have

2ab − 1 = (2a − 1)
b−1∑
k=0

(2a)k

which is not a prime by Exercise 1.2. So, n must be a prime.

Remark: The study of Mersenne prime is important; it is related
with so called Perfect number. In addition, there are some OPEN prob-
lem about it. For example, is there infinitely many Mersenne nem-
bers? The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 13-15. (Chinese Version)

1.4 If 2n + 1 is a prime, prove that n is a power of 2. A prime of the
form 22m

+ 1 is called a Fermat prime. Hint. Use exercise 1.2.

Proof : If n is a not a power of 2, say n = ab, where b is an odd integer.
So,

2a + 1
∣∣2ab + 1

and 2a + 1 < 2ab + 1. It implies that 2n + 1 is not a prime. So, n must be a
power of 2.

Remark: (1) In the proof, we use the identity

x2n−1 + 1 = (x + 1)
2n−2∑
k=0

(−1)k xk.
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Proof : Consider

(x + 1)
2n−2∑
k=0

(−1)k xk =
2n−2∑
k=0

(−1)k xk+1 +
2n−2∑
k=0

(−1)k xk

=
2n−1∑
k=1

(−1)k+1 xk +
2n−2∑
k=0

(−1)k xk

= x2n+1 + 1.

(2) The study of Fermat number is important; for the details the reader
can see the book, An Introduction To The Theory Of Numbers by
Loo-Keng Hua, pp 15. (Chinese Version)

1.5 The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, ... are defined by the recur-
sion formula xn+1 = xn + xn−1, with x1 = x2 = 1. Prove that (xn, xn+1) = 1
and that xn = (an − bn) / (a− b) , where a and b are the roots of the quadratic
equation x2 − x− 1 = 0.

Proof : Let d = g.c.d. (xn, xn+1) , then

d |xn and d |xn+1 = xn + xn−1 .

So,
d |xn−1 .

Continue the process, we finally have

d |1 .

So, d = 1 since d is positive.
Observe that

xn+1 = xn + xn−1,

and thus we consider
xn+1 = xn + xn−1,

i.e., consider
x2 = x + 1 with two roots, a and b.

If we let
Fn = (an − bn) / (a− b) ,
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then it is clear that

F1 = 1, F2 = 1, and Fn+1 = Fn + Fn−1 for n > 1.

So, Fn = xn for all n.

Remark: The study of the Fibonacci numbers is important; the reader
can see the book, Fibonacci and Lucas Numbers with Applications
by Koshy and Thomas.

1.6 Prove that every nonempty set of positive integers contains a small-
est member. This is called the well–ordering Principle.

Proof : Given (φ 6=) S (⊆ N) , we prove that if S contains an integer
k, then S contains the smallest member. We prove it by Mathematical
Induction of second form as follows.

As k = 1, it trivially holds. Assume that as k = 1, 2, ...,m holds, consider
as k = m + 1 as follows. In order to show it, we consider two cases.

(1) If there is a member s ∈ S such that s < m + 1, then by Induction
hypothesis, we have proved it.

(2) If every s ∈ S, s ≥ m + 1, then m + 1 is the smallest member.
Hence, by Mathematical Induction, we complete it.

Remark: We give a fundamental result to help the reader get more. We
will prove the followings are equivalent:

(A. Well–ordering Principle) every nonempty set of positive integers
contains a smallest member.

(B. Mathematical Induction of first form) Suppose that S (⊆ N) ,
if S satisfies that

(1). 1 in S

(2). As k ∈ S, then k + 1 ∈ S.

Then S = N.

(C. Mathematical Induction of second form) Suppose that S (⊆ N) ,
if S satisfies that

(1). 1 in S

(2). As 1, ..., k ∈ S, then k + 1 ∈ S.
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Then S = N.

Proof : (A ⇒ B): If S 6= N, then N − S 6= φ. So, by (A), there exists
the smallest integer w such that w ∈ N − S. Note that w > 1 by (1), so we
consider w − 1 as follows.

Since w − 1 /∈ N − S, we know that w − 1 ∈ S. By (2), we know that
w ∈ S which contadicts to w ∈ N − S. Hence, S = N.

(B ⇒ C): It is obvious.
(C ⇒ A): We have proved it by this exercise.

Rational and irrational numbers

1.7 Find the rational number whose decimal expansion is 0.3344444444....

Proof: Let x = 0.3344444444..., then

x =
3

10
+

3

102
+

4

103
+ ... +

4

10n
+ .., where n ≥ 3

=
33

102
+

4

103

(
1 +

1

10
+ ... +

1

10n
+ ..

)
=

33

102
+

4

103

(
1

1− 1
10

)
=

33

102
+

4

900

=
301

900
.

1.8 Prove that the decimal expansion of x will end in zeros (or in nines)
if, and only if, x is a rational number whose denominator is of the form 2n5m,
where m and n are nonnegative integers.

Proof: (⇐)Suppose that x = k
2n5m , if n ≥ m, we have

k5n−m

2n5n
=

5n−mk

10n
.

So, the decimal expansion of x will end in zeros. Similarly for m ≥ n.
(⇒)Suppose that the decimal expansion of x will end in zeros (or in

nines).
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For case x = a0.a1a2 · · · an. Then

x =

∑n
k=0 10n−kak

10n
=

∑n
k=0 10n−kak

2n5n
.

For case x = a0.a1a2 · · · an999999 · · · . Then

x =

∑n
k=0 10n−kak

2n5n
+

9

10n+1
+ ... +

9

10n+m
+ ...

=

∑n
k=0 10n−kak

2n5n
+

9

10n+1

∞∑
j=0

10−j

=

∑n
k=0 10n−kak

2n5n
+

1

10n

=
1 +

∑n
k=0 10n−kak

2n5n
.

So, in both case, we prove that x is a rational number whose denominator is
of the form 2n5m, where m and n are nonnegative integers.

1.9 Prove that
√

2 +
√

3 is irrational.

Proof: If
√

2 +
√

3 is rational, then consider(√
3 +

√
2
)(√

3−
√

2
)

= 1

which implies that
√

3−
√

2 is rational. Hence,
√

3 would be rational. It is
impossible. So,

√
2 +

√
3 is irrational.

Remark: (1)
√

p is an irrational if p is a prime.

Proof : If
√

p ∈ Q, write
√

p = a
b
, where g.c.d. (a, b) = 1. Then

b2p = a2 ⇒ p
∣∣a2 ⇒ p |a (*)

Write a = pq. So,

b2p = p2q2 ⇒ b2 = pq2 ⇒ p
∣∣b2 ⇒ p |b . (*’)

By (*) and (*’), we get
p |g.c.d. (a, b) = 1

which implies that p = 1, a contradiction. So,
√

p is an irrational if p is a
prime.

6



Note: There are many and many methods to prove it. For example, the
reader can see the book, An Introduction To The Theory Of Numbers
by Loo-Keng Hua, pp 19-21. (Chinese Version)

(2) Suppose a, b ∈ N. Prove that
√

a+
√

b is rational if and only if, a = k2

and b = h2 for some h, k ∈ N.

Proof : (⇐) It is clear.
(⇒) Consider (√

a +
√

b
)(√

a−
√

b
)

= a2 − b2,

then
√

a ∈ Q and
√

b ∈ Q. Then it is clear that a = h2 and b = h2 for some
h, k ∈ N.

1.10 If a, b, c, d are rational and if x is irrational, prove that (ax + b) / (cx + d)
is usually irrational. When do exceptions occur?

Proof: We claim that (ax + b) / (cx + d) is rational if and only if ad = bc.
(⇒)If (ax + b) / (cx + d) is rational, say (ax + b) / (cx + d) = q/p. We

consider two cases as follows.
(i) If q = 0, then ax+ b = 0. If a 6= 0, then x would be rational. So, a = 0

and b = 0. Hence, we have
ad = 0 = bc.

(ii) If q 6= 0, then (pa− qc) x+(pb− qd) = 0. If pa−qc 6= 0, then x would
be rational. So, pa− qc = 0 and pb− qd = 0. It implies that

qcb = qad ⇒ ad = bc.

(⇐)Suppose ad = bc. If a = 0, then b = 0 or c = 0. So,

ax + b

cx + d
=

{
0 if a = 0 and b = 0
b
d

if a = 0 and c = 0
.

If a 6= 0, then d = bc/a. So,

ax + b

cx + d
=

ax + b

cx + bc/a
=

a (ax + b)

c (ax + b)
=

a

c
.

Hence, we proved that if ad = bc, then (ax + b) / (cx + d) is rational.
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1.11 Given any real x > 0, prove that there is an irrational number
between 0 and x.

Proof: If x ∈ Qc, we choose y = x/2 ∈ Qc. Then 0 < y < x. If x ∈ Q,
we choose y = x/

√
2 ∈ Q, then 0 < y < x.

Remark: (1) There are many and many proofs about it. We may prove
it by the concept of Perfect set. The reader can see the book, Principles
of Mathematical Analysis written by Walter Rudin, Theorem 2.43,
pp 41. Also see the textbook, Exercise 3.25.

(2) Given a and b ∈ R with a < b, there exists r ∈ Qc, and q ∈ Q such
that a < r < b and a < q < b.

Proof : We show it by considering four cases. (i) a ∈ Q, b ∈ Q. (ii)
a ∈ Q, b ∈ Qc. (iii) a ∈ Qc, b ∈ Q. (iv) a ∈ Qc, b ∈ Qc.

(i) (a ∈ Q, b ∈ Q) Choose q = a+b
2

and r = 1√
2
a +

(
1− 1√

2

)
b.

(ii) (a ∈ Q, b ∈ Qc) Choose r = a+b
2

and let c = 1
2n < b−a, then a+c := q.

(iii) (a ∈ Qc, b ∈ Q) Similarly for (iii).
(iv) (a ∈ Qc, b ∈ Qc) It suffices to show that there exists a rational

number q ∈ (a, b) by (ii). Write

b = b0.b1b2 · · · bn · ··

Choose n large enough so that

a < q = b0.b1b2 · · · bn < b.

(It works since b− q = 0.000..000bn+1... ≤ 1
10n )

1.12 If a/b < c/d with b > 0, d > 0, prove that (a + c) / (b + d) lies
bwtween the two fractions a/b and c/d

Proof: It only needs to conisder the substraction. So, we omit it.

Remark: The result of this exercise is often used, so we suggest the
reader keep it in mind.

1.13 Let a and b be positive integers. Prove that
√

2 always lies between
the two fractions a/b and (a + 2b) / (a + b) . Which fraction is closer to

√
2?

Proof : Suppose a/b ≤
√

2, then a ≤
√

2b. So,

a + 2b

a + b
−
√

2 =

(√
2− 1

) (√
2b− a

)
a + b

≥ 0.
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In addition,(√
2− a

b

)
−
(

a + 2b

a + b
−
√

2

)
= 2

√
2−

(
a

b
+

a + 2b

a + b

)
= 2

√
2− a2 + 2ab + 2b2

ab + b2

=
1

ab + b2

[(
2
√

2− 2
)

ab +
(
2
√

2− 2
)

b2 − a2
]

≥ 1

ab + b2

[(
2
√

2− 2
)

a
a√
2

+
(
2
√

2− 2
)( a√

2

)2

− a2

]
= 0.

So, a+2b
a+b

is closer to
√

2.

Similarly, we also have if a/b >
√

2, then a+2b
a+b

<
√

2. Also, a+2b
a+b

is closer

to
√

2 in this case.

Remark: Note that

a

b
<
√

2 <
a + 2b

a + b
<

2b

a
by Exercise 12 and 13.

And we know that a+2b
a+b

is closer to
√

2. We can use it to approximate
√

2.
Similarly for the case

2b

a
<

a + 2b

a + b
<
√

2 <
a

b
.

1.14 Prove that
√

n− 1 +
√

n + 1 is irrational for every integer n ≥ 1.

Proof : Suppose that
√

n− 1 +
√

n + 1 is rational, and thus consider(√
n + 1 +

√
n− 1

)(√
n + 1−

√
n− 1

)
= 2

which implies that
√

n + 1−
√

n− 1 is rational. Hence,
√

n + 1 and
√

n− 1
are rational. So, n − 1 = k2 and n + 1 = h2, where k and h are positive
integer. It implies that

h =
3

2
and k =

1

2

which is absurb. So,
√

n− 1 +
√

n + 1 is irrational for every integer n ≥ 1.
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1.15 Given a real x and an integer N > 1, prove that there exist integers
h and k with 0 < k ≤ N such that |kx− h| < 1/N. Hint. Consider the N +1
numbers tx− [tx] for t = 0, 1, 2, ..., N and show that some pair differs by at
most 1/N.

Proof : Given N > 1, and thus consider tx− [tx] for t = 0, 1, 2, ..., N as
follows. Since

0 ≤ tx− [tx] := at < 1,

so there exists two numbers ai and aj where i 6= j such that

|ai − aj| <
1

N
⇒ |(i− j) x− p| < 1

N
, where p = [jx]− [ix] .

Hence, there exist integers h and k with 0 < k ≤ N such that |kx− h| < 1/N.

1.16 If x is irrational prove that there are infinitely many rational num-
bers h/k with k > 0 such that |x− h/k| < 1/k2. Hint. Assume there are
only a finite number h1/k1, ..., hr/kr and obtain a contradiction by apply-
ing Exercise 1.15 with N > 1/δ, where δ is the smallest of the numbers
|x− hi/ki| .

Proof : Assume there are only a finite number h1/k1, ..., hr/kr and let
δ = minr

i=1 |x− hi/ki| > 0 since x is irrational. Choose N > 1/δ, then by
Exercise 1.15, we have

1

N
< δ ≤

∣∣∣∣x− h

k

∣∣∣∣ < 1

kN

which implies that
1

N
<

1

kN

which is impossible. So, there are infinitely many rational numbers h/k with
k > 0 such that |x− h/k| < 1/k2.

Remark: (1) There is another proof by continued fractions. The
reader can see the book, An Introduction To The Theory Of Numbers
by Loo-Keng Hua, pp 270. (Chinese Version)

(2) The exercise is useful to help us show the following lemma. {ar + b : a ∈ Z, b ∈ Z} ,
where r ∈ Qc is dense in R. It is equivalent to {ar : a ∈ Z} , where r ∈ Qc is
dense in [0, 1] modulus 1.
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Proof : Say {ar + b : a ∈ Z, b ∈ Z} = S, and since r ∈ Qc, then by Ex-
ercise 1.16, there are infinitely many rational numbers h/k with k > 0 such
that |kr − h| < 1

k
. Consider (x− δ, x + δ) := I, where δ > 0, and thus choos-

ing k0 large enough so that 1/k0 < δ. Define L = |k0r − h0| , then we have
sL ∈ I for some s ∈ Z. So, sL = (±) [(sk0) r − (sh0)] ∈ S. That is, we have
proved that S is dense in R.

1.17 Let x be a positive rational number of the form

x =
n∑

k=1

ak

k!
,

where each ak is nonnegative integer with ak ≤ k − 1 for k ≥ 2 and an > 0.
Let [x] denote the largest integer in x. Prove that a1 = [x] , that ak =
[k!x] − k [(k − 1)!x] for k = 2, ..., n, and that n is the smallest integer such
that n!x is an integer. Conversely, show that every positive rational number
x can be expressed in this form in one and only one way.

Proof : (⇒)First,

[x] =

[
a1 +

n∑
k=2

ak

k!

]

= a1 +

[
n∑

k=2

ak

k!

]
since a1 ∈ N

= a1 since
n∑

k=2

ak

k!
≤

n∑
k=2

k − 1

k!
=

n∑
k=2

1

(k − 1)!
− 1

k!
= 1− 1

n!
< 1.

Second, fixed k and consider

k!x = k!
n∑

j=1

aj

j!
= k!

k−1∑
j=1

aj

j!
+ ak + k!

n∑
j=k+1

aj

j!

and

(k − 1)!x = (k − 1)!
n∑

j=1

aj

j!
= (k − 1)!

k−1∑
j=1

aj

j!
+ (k − 1)!

n∑
j=k

aj

j!
.
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So,

[k!x] =

[
k!

k−1∑
j=1

aj

j!
+ ak + k!

n∑
j=k+1

aj

j!

]

= k!
k−1∑
j=1

aj

j!
+ ak since k!

n∑
j=k+1

aj

j!
< 1

and

k [(k − 1)!x] = k

[
(k − 1)!

k−1∑
j=1

aj

j!
+ (k − 1)!

n∑
j=k

aj

j!
.

]

= k (k − 1)!
k−1∑
j=1

aj

j!
since (k − 1)!

n∑
j=k

aj

j!
< 1

= k!
k−1∑
j=1

aj

j!

which implies that

ak = [k!x]− k [(k − 1)!x] for k = 2, ..., n.

Last, in order to show that n is the smallest integer such that n!x is an
integer. It is clear that

n!x = n!
n∑

k=1

ak

k!
∈ Z.

In addition,

(n− 1)!x = (n− 1)!
n∑

k=1

ak

k!

= (n− 1)!
n−1∑
k=1

ak

k!
+

an

n

/∈ Z since
an

n
/∈ Z.

So, we have proved it.
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(⇐)It is clear since every an is uniquely deermined.

Upper bounds

1.18 Show that the sup and the inf of a set are uniquely determined whenever
they exists.

Proof : Given a nonempty set S (⊆ R) , and assume sup S = a and
sup S = b, we show a = b as follows. Suppose that a > b, and thus choose
ε = a−b

2
, then there exists a x ∈ S such that

b <
a + b

2
= a− ε < x < a

which implies that
b < x

which contradicts to b = sup S. Similarly for a < b. Hence, a = b.

1.19 Find the sup and inf of each of the following sets of real numbers:

(a) All numbers of the form 2−p + 3−q + 5−r, where p, q, and r take on all
positive integer values.

Proof : Define S = {2−p + 3−q + 5−r : p, q, r ∈ N}. Then it is clear that
sup S = 1

2
+ 1

3
+ 1

5
, and inf S = 0.

(b) S = {x : 3x2 − 10x + 3 < 0}

Proof: Since 3x2−10x+3 = (x− 3) (3x− 1) , we know that S =
(

1
3
, 3
)
.

Hence, sup S = 3 and inf S = 1
3
.

(c) S = {x : (x− a) (x− b) (x− c) (x− d) < 0} , where a < b < c < d.

Proof: It is clear that S = (a, b)∪(c, d) . Hence, sup S = d and inf S = a.

1.20 Prove the comparison property for suprema (Theorem 1.16)

Proof : Since s ≤ t for every s ∈ S and t ∈ T, fixed t0 ∈ T, then s ≤ t0
for all s ∈ S. Hence, by Axiom 10, we know that sup S exists. In addition,
it is clear sup S ≤ sup T.

Remark: There is a useful result, we write it as a reference. Let S and T
be two nonempty subsets of R. If S ⊆ T and sup T exists, then sup S exists
and sup S ≤ sup T.
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Proof : Since sup T exists and S ⊆ T, we know that for every s ∈ S, we
have

s ≤ sup T.

Hence, by Axiom 10, we have proved the existence of sup S. In addition,
sup S ≤ sup T is trivial.

1.21 Let A and B be two sets of positive numbers bounded above, and
let a = sup A, b = sup B. Let C be the set of all products of the form xy,
where x ∈ A and y ∈ B. Prove that ab = sup C.

Proof : Given ε > 0, we want to find an element c ∈ C such that ab−ε <
c. If we can show this, we have proved that sup C exists and equals ab.

Since sup A = a > 0 and sup B = b > 0, we can choose n large enough
such that a − ε/n > 0, b − ε/n > 0, and n > a + b. So, for this ε′ = ε/n,
there exists a′ ∈ A and b′ ∈ B such that

a− ε′ < a′ and b− ε′ < b′

which implies that

ab− ε′ (a + b− ε′) < a′b′ since a− ε′ > 0 and b− ε′ > 0

which implies that

ab− ε

n
(a + b) < a′b′ := c

which implies that
ab− ε < c.

1.22 Given x > 0, and an integer k ≥ 2. Let a0 denote the largest integer
≤ x and, assumeing that a0, a1, ..., an−1 have been defined, let an denote the
largest integer such that

a0 +
a1

k
+

a2

k2
+ ... +

an

kn
≤ x.

Note: When k = 10 the integers a0, a1, ... are the digits in a decimal
representation of x. For general k they provide a representation in
the scale of k.

(a) Prove that 0 ≤ ai ≤ k − 1 for each i = 1, 2, ...
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Proof : Choose a0 = [x], and thus consider

[kx− ka0] := a1

then
0 ≤ k (x− a0) < k ⇒ 0 ≤ a1 ≤ k − 1

and

a0 +
a1

k
≤ x ≤ a0 +

a1

k
+

1

k
.

Continue the process, we then have

0 ≤ ai ≤ k − 1 for each i = 1, 2, ...

and

a0 +
a1

k
+

a2

k2
+ ... +

an

kn
≤ x < a0 +

a1

k
+

a2

k2
+ ... +

an

kn
+

1

kn
. (*)

(b) Let rn = a0 + a1k
−1 + a2k

−2 + ... + ank
−n and show that x is the sup

of the set of rational numbers r1, r2, ...

Proof : It is clear by (a)-(*).

Inequality

1.23 Prove Lagrange’s identity for real numbers:(
n∑

k=1

akbk

)2

=

(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
−

∑
1≤k<j≤n

(akbj − ajbk)
2 .

Note that this identity implies that Cauchy-Schwarz inequality.

Proof : Consider(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
=

∑
1≤k,j≤n

a2
kb

2
j =

∑
k=j

a2
kb

2
j +
∑
k 6=j

a2
kb

2
j =

n∑
k=1

a2
kb

2
k +
∑
k 6=j

a2
kb

2
j

15



and (
n∑

k=1

akbk

)(
n∑

k=1

akbk

)
=

∑
1≤k,j≤n

akbkajbj =
n∑

k=1

a2
kb

2
k +

∑
k 6=j

akbkajbj

So,(
n∑

k=1

akbk

)2

=

(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
+
∑
k 6=j

akbkajbj −
∑
k 6=j

a2
kb

2
j

=

(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
+ 2

∑
1≤k<j≤n

akbkajbj −
∑

1≤k<j≤n

a2
kb

2
j + a2

jb
2
k

=

(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
−

∑
1≤k<j≤n

(akbj − ajbk)
2 .

Remark: (1) The reader may recall the relation with Cross Product
and Inner Product, we then have a fancy formula:

‖x× y‖2 + |< x, y >|2 = ‖x‖2 ‖y‖2 ,

where x, y ∈ R3.

(2) We often write

< a, b >:=
n∑

k=1

akbk,

and the Cauchy-Schwarz inequality becomes

|< x, y >| ≤ ‖x‖ ‖y‖ by Remark (1).

1.24 Prove that for arbitrary real ak, bk, ck we have(
n∑

k=1

akbkck

)4

≤

(
n∑

k=1

a4
k

)(
n∑

k=1

b2
k

)2( n∑
k=1

c4
k

)
.

16



Proof : Use Cauchy-Schwarz inequality twice, we then have(
n∑

k=1

akbkck

)4

=

( n∑
k=1

akbkck

)2
2

≤

(
n∑

k=1

a2
kc

2
k

)2( n∑
k=1

b2
k

)2

≤

(
n∑

k=1

a4
k

)2( n∑
k=1

c4
k

)(
n∑

k=1

b2
k

)2

=

(
n∑

k=1

a4
k

)(
n∑

k=1

b2
k

)2( n∑
k=1

c4
k

)
.

1.25 Prove that Minkowski’s inequality:(
n∑

k=1

(ak + bk)
2

)1/2

≤

(
n∑

k=1

a2
k

)1/2

+

(
n∑

k=1

b2
k

)1/2

.

This is the triangle inequality ‖a + b‖ ≤ ‖a‖+‖b‖ for n−dimensional vectors,
where a = (a1, ..., an) , b = (b1, ..., bn) and

‖a‖ =

(
n∑

k=1

a2
k

)1/2

.

Proof : Consider

n∑
k=1

(ak + bk)
2 =

n∑
k=1

a2
k +

n∑
k=1

b2
k + 2

n∑
k=1

akbk

≤
n∑

k=1

a2
k +

n∑
k=1

b2
k + 2

(
n∑

k=1

a2
k

)1/2( n∑
k=1

b2
k

)1/2

by Cauchy-Schwarz inequality

=

( n∑
k=1

a2
k

)1/2

+

(
n∑

k=1

b2
k

)1/2
2

.

17



So, (
n∑

k=1

(ak + bk)
2

)1/2

≤

(
n∑

k=1

a2
k

)1/2

+

(
n∑

k=1

b2
k

)1/2

.

1.26 If a1 ≥ ... ≥ an and b1 ≥ ... ≥ bn, prove that(
n∑

k=1

ak

)(
n∑

k=1

bk

)
≤ n

(
n∑

k=1

akbk

)
.

Hint.
∑

1≤j≤k≤n (ak − aj) (bk − bj) ≥ 0.

Proof : Consider

0 ≤
∑

1≤j≤k≤n

(ak − aj) (bk − bj) =
∑

1≤j≤k≤n

akbk + ajbj −
∑

1≤j≤k≤n

akbj + ajbk

which implies that ∑
1≤j≤k≤n

akbj + ajbk ≤
∑

1≤j≤k≤n

akbk + ajbj. (*)

Since ∑
1≤j≤k≤n

akbj + ajbk =
∑

1≤j<k≤n

akbj + ajbk + 2
n∑

k=1

akbk

=

( ∑
1≤j<k≤n

akbj + ajbk +
n∑

k=1

akbk

)
+

n∑
k=1

akbk

=

(
n∑

k=1

ak

)(
n∑

k=1

bk

)
+

n∑
k=1

akbk,

we then have, by (*)(
n∑

k=1

ak

)(
n∑

k=1

bk

)
+

n∑
k=1

akbk ≤
∑

1≤j≤k≤n

akbk + ajbj. (**)

18



In addition,∑
1≤j≤k≤n

akbk + ajbj

=
n∑

k=1

akbk + na1b1 +
n∑

k=2

akbk + (n− 1) a2b2 + ... +
n∑

k=n−1

akbk + 2an−1bn−1 +
∑
k=n

akbk

= n

n∑
k=1

akbk + a1b1 + a2b2 + ... + anbn

= (n + 1)
n∑

k=1

akbk

which implies that, by (**),(
n∑

k=1

ak

)(
n∑

k=1

bk

)
≤ n

(
n∑

k=1

akbk

)
.

Complex numbers

1.27 Express the following complex numbers in the form a + bi.

(a) (1 + i)3

Solution: (1 + i)3 = 1 + 3i + 3i2 + i3 = 1 + 3i− 3− i = −2 + 2i.

(b) (2 + 3i) / (3− 4i)

Solution: 2+3i
3−4i

= (2+3i)(3+4i)
(3−4i)(3+4i)

= −6+17i
25

= −6
25

+ 17
25

i.

(c) i5 + i16

Solution: i5 + i16 = i + 1.

(d) 1
2
(1 + i) (1 + i−8)

Solution: 1
2
(1 + i) (1 + i−8) = 1 + i.

1.28 In each case, determine all real x and y which satisfy the given
relation.
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(a) x + iy = |x− iy|
Proof : Since |x− iy| ≥ 0, we have

x ≥ 0 and y = 0.

(b) x + iy = (x− iy)2

Proof : Since (x− iy)2 = x2 − (2xy) i− y2, we have

x = x2 − y2 and y = −2xy.

We consider tow cases: (i) y = 0 and (ii) y 6= 0.
(i) As y = 0 : x = 0 or 1.

(ii) As y 6= 0 : x = −1/2, and y = ±
√

3
2

.

(c)
∑100

k=0 ik = x + iy

Proof : Since
∑100

k=0 ik = 1−i101

1−i
= 1−i

1−i
= 1, we have x = 1 and y = 0.

1.29 If z = x+ iy, x and y real, the complex conjugate of z is the complex
number z̄ = x− iy. Prove that:

(a) Conjugate of (z1 + z2) = z̄1 + z̄2

Proof : Write z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i (y1 + y2)

= (x1 + x2)− i (y1 + y2)

= (x1 − iy1) + (x2 − iy2)

= z̄1 + z̄2.

(b) z1z2 = z̄1z̄2

Proof : Write z1 = x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1x2 − y1y2) + i (x1y2 + x2y1)

= (x1x2 − y1y2)− i (x1y2 + x2y1)

and

z̄1z̄2 = (x1 − iy1) (x2 − iy2)

= (x1x2 − y1y2)− i (x1y2 + x2y1) .
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So, z1z2 = z̄1z̄2

(c) zz̄ = |z|2

Proof : Write z = x + iy and thus

zz̄ = x2 + y2 = |z|2 .

(d) z + z̄ =twice the real part of z

Proof : Write z = x + iy, then

z + z̄ = 2x,

twice the real part of z.

(e) (z − z̄) /i =twice the imaginary part of z

Proof : Write z = x + iy, then

z − z̄

i
= 2y,

twice the imaginary part of z.

1.30 Describe geometrically the set of complex numbers z which satisfies
each of the following conditions:

(a) |z| = 1

Solution: The unit circle centered at zero.

(b) |z| < 1

Solution: The open unit disk centered at zero.

(c) |z| ≤ 1

Solution: The closed unit disk centered at zero.

(d) z + z̄ = 1

Solution: Write z = x + iy, then z + z̄ = 1 means that x = 1/2. So, the
set is the line x = 1/2.

(e) z − z̄ = i
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Proof : Write z = x + iy, then z − z̄ = i means that y = 1/2. So, the set
is the line y = 1/2.

(f) z + z̄ = |z|2

Proof : Write z = x + iy, then 2x = x2 + y2 ⇔ (x− 1)2 + y2 = 1. So, the
set is the unit circle centered at (1, 0) .

1.31 Given three complex numbers z1, z2, z3 such that |z1| = |z2| = |z3| =
1 and z1 +z2 +z3 = 0. Show that these numbers are vertices of an equilateral
triangle inscribed in the unit circle with center at the origin.

Proof : It is clear that three numbers are vertices of triangle inscribed in
the unit circle with center at the origin. It remains to show that |z1 − z2| =
|z2 − z3| = |z3 − z1| . In addition, it suffices to show that

|z1 − z2| = |z2 − z3| .

Note that
|2z1 + z3| = |2z3 + z1| by z1 + z2 + z3 = 0

which is equivalent to

|2z1 + z3|2 = |2z3 + z1|2

which is equivalent to

(2z1 + z3) (2z̄1 + z̄3) = (2z3 + z1) (2z̄3 + z̄1)

which is equivalent to
|z1| = |z3| .

1.32 If a and b are complex numbers, prove that:

(a) |a− b|2 ≤
(
1 + |a|2

) (
1 + |b|2

)
Proof : Consider(

1 + |a|2
) (

1 + |b|2
)
− |a− b|2 = (1 + āa)

(
1 + b̄b

)
− (a− b)

(
ā− b̄

)
= (1 + āb)

(
1 + ab̄

)
= |1 + āb|2 ≥ 0,

22



so, |a− b|2 ≤
(
1 + |a|2

) (
1 + |b|2

)
(b) If a 6= 0, then |a + b| = |a| + |b| if, and only if, b/a is real and

nonnegative.

Proof : (⇒)Since |a + b| = |a|+ |b| , we have

|a + b|2 = (|a|+ |b|)2

which implies that
Re (āb) = |a| |b| = |ā| |b|

which implies that
āb = |ā| |b|

which implies that
b

a
=

āb

āa
=
|ā| |b|
|a|2

≥ 0.

(⇐) Suppose that
b

a
= k, where k ≥ 0.

Then
|a + b| = |a + ka| = (1 + k) |a| = |a|+ k |a| = |a|+ |b| .

1.33 If a and b are complex numbers, prove that

|a− b| = |1− āb|

if, and only if, |a| = 1 or |b| = 1. For which a and b is the inequality
|a− b| < |1− āb| valid?

Proof : (⇔) Since

|a− b| = |1− āb|
⇔
(
ā− b̄

)
(a− b) = (1− āb)

(
1− ab̄

)
⇔ |a|2 + |b|2 = 1 + |a|2 |b|2

⇔
(
|a|2 − 1

) (
|b|2 − 1

)
= 0

⇔ |a|2 = 1 or |b|2 = 1.
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By the preceding, it is easy to know that

|a− b| < |1− āb| ⇔ 0 <
(
|a|2 − 1

) (
|b|2 − 1

)
.

So, |a− b| < |1− āb| if, and only if, |a| > 1 and |b| > 1. (Or |a| < 1 and
|b| < 1).

1.34 If a and c are real constant, b complex, show that the equation

azz̄ + bz̄ + b̄z + c = 0 (a 6= 0, z = x + iy)

represents a circle in the x− y plane.

Proof : Consider

zz̄ − b

−a
z̄ − b̄

−a
z +

b

−a

[(
b

−a

)]
=
−ac + |b|2

a2
,

so, we have ∣∣∣∣z − ( b

−a

)∣∣∣∣2 =
−ac + |b|2

a2
.

Hence, as |b|2 − ac > 0, it is a circle. As −ac+|b|2
a2 = 0, it is a point. As

−ac+|b|2
a2 < 0, it is not a circle.

Remark: The idea is easy from the fact

|z − q| = r.

We square both sides and thus

zz̄ − qz̄ − q̄z + q̄q = r2.

1.35 Recall the definition of the inverse tangent: given a real number t,
tan−1 (t) is the unique real number θ which satisfies the two conditions

−π

2
< θ < +

π

2
, tan θ = t.

If z = x + iy, show that

(a) arg (z) = tan−1
(

y
x

)
, if x > 0
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Proof : Note that in this text book, we say arg (z) is the principal argu-
ment of z, denoted by θ = arg z, where −π < θ ≤ π.

So, as x > 0, arg z = tan−1
(

y
x

)
.

(b) arg (z) = tan−1
(

y
x

)
+ π, if x < 0, y ≥ 0

Proof : As x < 0, and y ≥ 0. The point (x, y) is lying on S = {(x, y) : x < 0, y ≥ 0} .
Note that −π < arg z ≤ π, so we have arg (z) = tan−1

(
y
x

)
+ π.

(c) arg (z) = tan−1
(

y
x

)
− π, if x < 0, y < 0

Proof : Similarly for (b). So, we omit it.

(d) arg (z) = π
2

if x = 0, y > 0; arg (z) = −π
2

if x = 0, y < 0.

Proof : It is obvious.

1.36 Define the folowing ”pseudo-ordering” of the complex numbers:
we say z1 < z2 if we have either

(i) |z1| < |z2| or (ii) |z1| = |z2| and arg (z1) < arg (z2) .
Which of Axioms 6,7,8,9 are satisfied by this relation?

Proof : (1) For axiom 6, we prove that it holds as follows. Given z1 =
r1e

i arg(z1), and r2e
i arg(z2), then if z1 = z2, there is nothing to prove it. If

z1 6= z2, there are two possibilities: (a) r1 6= r2, or (b) r1 = r2 and arg (z1) 6=
arg (z2) . So, it is clear that axiom 6 holds.

(2) For axiom 7, we prove that it does not hold as follows. Given z1 = 1
and z2 = −1, then it is clear that z1 < z2 since |z1| = |z2| = 1 and arg (z1) =
0 < arg (z2) = π. However, let z3 = −i, we have

z1 + z3 = 1− i > z2 + z3 = −1− i

since
|z1 + z3| = |z2 + z3| =

√
2

and

arg (z1 + z3) = −π

4
> −3π

4
= arg (z2 + z3) .

(3) For axiom 8, we prove that it holds as follows. If z1 > 0 and z2 > 0,
then |z1| > 0 and |z2| > 0. Hence, z1z2 > 0 by |z1z2| = |z1| |z2| > 0.

(4) For axiom 9, we prove that it holds as follows. If z1 > z2 and z2 > z3,
we consider the following cases. Since z1 > z2, we may have (a) |z1| > |z2| or
(b) |z1| = |z2| and arg (z1) < arg (z2) .

As |z1| > |z2| , it is clear that |z1| > |z3| . So, z1 > z3.
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As |z1| = |z2| and arg (z1) < arg (z2) , we have arg (z1) > arg (z3) . So,
z1 > z3.

1.37 Which of Axioms 6,7,8,9 are satisfied if the pseudo-ordering is
defined as follows? We say (x1, y1) < (x2, y2) if we have either (i) x1 < x2 or
(ii) x1 = x2 and y1 < y2.

Proof: (1) For axiom 6, we prove that it holds as follows. Given x =
(x1, y1) and y = (x2, y2) . If x = y, there is nothing to prove it. We consider
x 6= y : As x 6= y, we have x1 6= x2 or y1 6= y2. Both cases imply x < y or
y < x.

(2) For axiom 7, we prove that it holds as follows. Given x = (x1, y1) ,
y = (x2, y2) and z = (z1, z3) . If x < y, then there are two possibilities: (a)
x1 < x2 or (b) x1 = x2 and y1 < y2.

For case (a), it is clear that x1 + z1 < y1 + z1. So, x + z < y + z.
For case (b), it is clear that x1 + z1 = y1 + z1 and x2 + z2 < y2 + z2. So,

x + z < y + z.
(3) For axiom 8, we prove that it does not hold as follows. Consider

x = (1, 0) and y = (0, 1) , then it is clear that x > 0 and y > 0. However,
xy = (0, 0) = 0.

(4) For axiom 9, we prove that it holds as follows. Given x = (x1, y1) ,
y = (x2, y2) and z = (z1, z3) . If x > y and y > z, then we consider the
following cases. (a) x1 > y1, or (b) x1 = y1.

For case (a), it is clear that x1 > z1. So, x > z.
For case (b), it is clear that x2 > y2. So, x > z.

1.38 State and prove a theorem analogous to Theorem 1.48, expressing
arg (z1/z2) in terms of arg (z1) and arg (z2) .

Proof : Write z1 = r1e
i arg(z1) and z2 = r2e

i arg(z2), then

z1

z2

=
r1

r2

ei[arg(z1)−arg(z2)].

Hence,

arg

(
z1

z2

)
= arg (z1)− arg (z2) + 2πn (z1, z2) ,

where

n (z1, z2) =


0 if − π < arg (z1)− arg (z2) ≤ π

1 if − 2π < arg (z1)− arg (z2) ≤ −π
−1 if π < arg (z1)− arg (z2) < 2π

.
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1.39 State and prove a theorem analogous to Theorem 1.54, expressing
Log (z1/z2) in terms of Log (z1) and Log (z2) .

Proof : Write z1 = r1e
i arg(z1) and z2 = r2e

i arg(z2), then

z1

z2

=
r1

r2

ei[arg(z1)−arg(z2)].

Hence,

Log (z1/z2) = log

∣∣∣∣z1

z2

∣∣∣∣+ i arg

(
z1

z2

)
= log |z1| − log |z2|+ i [arg (z1)− arg (z2) + 2πn (z1, z2)] by xercise 1.38

= Log (z1)− Log (z2) + i2πn (z1, z2) .

1.40 Prove that the nth roots of 1 (also called the nth roots of unity)
are given by α, α2, ..., αn, where α = e2πi/n, and show that the roots 6= 1
satisfy the equation

1 + x + x2 + ... + xn−1 = 0.

Proof : By Theorem 1.51, we know that the roots of 1 are given by
α, α2, ..., αn, where α = e2πi/n. In addition, since

xn = 1 ⇒ (x− 1)
(
1 + x + x2 + ... + xn−1

)
= 0

which implies that

1 + x + x2 + ... + xn−1 = 0 if x 6= 1.

So, all roots except 1 satisfy the equation

1 + x + x2 + ... + xn−1 = 0.

1.41 (a) Prove that |zi| < eπ for all complex z 6= 0.

Proof : Since
zi = eiLog(z) = e− arg(z)+i log|z|,
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we have ∣∣zi
∣∣ = e− arg(z) < eπ

by −π < arg (z) ≤ π.

(b) Prove that there is no constant M > 0 such that |cos z| < M for all
complex z.

Proof : Write z = x + iy and thus,

cos z = cos x cosh y − i sin x sinh y

which implies that
|cos x cosh y| ≤ |cos z| .

Let x = 0 and y be real, then

ey

2
≤ 1

2

∣∣ey + e−y
∣∣ ≤ |cos z| .

So, there is no constant M > 0 such that |cos z| < M for all complex z.

Remark: There is an important theorem related with this exercise. We
state it as a reference. (Liouville’s Theorem) A bounded entire function
is constant. The reader can see the book, Complex Analysis by Joseph
Bak, and Donald J. Newman, pp 62-63. Liouville’s Theorem can
be used to prove the much important theorem, Fundamental Theorem of
Algebra.

1.42 If w = u + iv (u, v real), show that

zw = eu log|z|−v arg(z)ei[v log|z|+u arg(z)].

Proof : Write zw = ewLog(z), and thus

wLog (z) = (u + iv) (log |z|+ i arg (z))

= [u log |z| − v arg (z)] + i [v log |z|+ u arg (z)] .

So,
zw = eu log|z|−v arg(z)ei[v log|z|+u arg(z)].
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1.43 (a) Prove that Log (zw) = wLog z +2πin.

Proof : Write w = u + iv, where u and v are real. Then

Log (zw) = log |zw|+ i arg (zw)

= log
[
eu log|z|−v arg(z)

]
+ i [v log |z|+ u arg (z)] + 2πin by Exercise1.42

= u log |z| − v arg (z) + i [v log |z|+ u arg (z)] + 2πin.

On the other hand,

wLogz + 2πin = (u + iv) (log |z|+ i arg (z)) + 2πin

= u log |z| − v arg (z) + i [v log |z|+ u arg (z)] + 2πin.

Hence, Log (zw) = wLog z +2πin.

Remark: There is another proof by considering

eLog(zw) = zw = ewLog(z)

which implies that
Log (zw) = wLogz + 2πin

for some n ∈ Z.

(b) Prove that (zw)α = zwαe2πinα, where n is an integer.

Proof : By (a), we have

(zw)α = eαLog(zw) = eα(wLogz+2πin) = eαwLogze2πinα = zαwe2πinα,

where n is an integer.

1.44 (i) If θ and a are real numbers, −π < θ ≤ π, prove that

(cos θ + i sin θ)a = cos (aθ) + i sin (aθ) .

Proof : Write cos θ + i sin θ = z, we then have

(cos θ + i sin θ)a = za = eaLogz = ea[log|eiθ|+i arg(eiθ)] = eiaθ

= cos (aθ) + i sin (aθ) .
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Remark: Compare with the Exercise 1.43-(b).

(ii) Show that, in general, the restriction −π < θ ≤ π is necessary in (i)
by taking θ = −π, a = 1

2
.

Proof : As θ = −π, and a = 1
2
, we have

(−1)
1
2 = e

1
2
Log(−1) = e

π
2
i = i 6= −i = cos

(
−π

2

)
+ i sin

(
−π

2

)
.

(iii) If a is an integer, show that the formula in (i) holds without any
restriction on θ. In this case it is known as DeMorvre’s theorem.

Proof : By Exercise 1.43, as a is an integer we have

(zw)a = zwa,

where zw = eiθ. Then(
eiθ
)a

= eiθa = cos (aθ) + i sin (aθ) .

1.45 Use DeMorvre’s theorem (Exercise 1.44) to derive the trigino-
metric identities

sin 3θ = 3 cos2 θ sin θ − sin3 θ

cos 3θ = cos3 θ − 3 cos θ sin2 θ,

valid for real θ. Are these valid when θ is complex?

Proof : By Exercise 1.44-(iii), we have for any real θ,

(cos θ + i sin θ)3 = cos (3θ) + i sin (3θ) .

By Binomial Theorem, we have

sin 3θ = 3 cos2 θ sin θ − sin3 θ

and
cos 3θ = cos3 θ − 3 cos θ sin2 θ.
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For complex θ, we show that it holds as follows. Note that sin z = eiz−e−iz

2i

and cos z = eiz+e−iz

2
, we have

3 cos2 z sin z − sin3 z = 3

(
eiz + e−iz

2

)2(
eiz − e−iz

2i

)
−
(

eiz − e−iz

2i

)3

= 3

(
e2zi + e−2zi + 2

4

)(
eiz − e−iz

2i

)
+

e3zi − 3eiz + 3e−iz − e−3zi

8i

=
1

8i

[
3
(
e2zi + e−2zi + 2

) (
ezi − e−zi

)
+
(
e3zi − 3eiz + 3e−iz − e−3zi

)]
=

1

8i

[(
3e3zi + 3eiz − 3e−iz − 3e−3zi

)
+
(
e3zi − 3eiz + 3e−iz − e−3zi

)]
=

4

8i

(
e3zi − e−3zi

)
=

1

2i

(
e3zi − e−3zi

)
= sin 3z.

Similarly, we also have

cos3 z − 3 cos z sin2 z = cos 3z.

1.46 Define tan z = sin z/ cos z and show that for z = x + iy, we have

tan z =
sin 2x + i sinh 2y

cos 2x + cosh 2y
.
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Proof : Since

tan z =
sin z

cos z
=

sin (x + iy)

cos (x + iy)
=

sin x cosh y + i cos x sinh y

cos x cosh y − i sin x sinh y

=
(sin x cosh y + i cos x sinh y) (cos x cosh y + i sin x sinh y)

(cos x cosh y − i sin x sinh y) (cos x cosh y + i sin x sinh y)

=

(
sin x cos x cosh2 y − sin x cos x sinh2 y

)
+ i
(
sin2 x cosh y sinh y + cos2 x cosh y sinh y

)
(cos x cosh y)2 − (i sin x sinh y)2

=
sin x cos x

(
cosh2 y − sinh2 y

)
+ i (cosh y sinh y)

cos2 x cosh2 y + sin2 x sinh2 y
since sin2 x + cos2 x = 1

=
(sin x cos x) + i (cosh y sinh y)

cos2 x + sinh2 y
since cosh2 y = 1 + sinh2 y

=
1
2
sin 2x + i

2
sinh 2y

cos2 x + sinh2 y
since 2 cosh y sinh y = sinh 2y and 2 sin x cos x = sin 2x

=
sin 2x + i sinh 2y

2 cos2 x + 2 sinh2 y

=
sin 2x + i sinh 2y

2 cos2 x− 1 + 2 sinh2 y + 1

=
sin 2x + i sinh 2y

cos 2x + cosh 2y
since cos 2x = 2 cos2 x− 1 and 2 sinh2 y + 1 = cosh 2y.

1.47 Let w be a given complex number. If w 6= ±1, show that there exists
two values of z = x+ iy satisfying the conditions cos z = w and −π < x ≤ π.
Find these values when w = i and when w = 2.

Proof : Since cos z = eiz+e−iz

2
, if we let eiz = u, then cos z = w implies

that

w =
u2 + 1

2u
⇒ u2 − 2wu + 1 = 0

which implies that

(u− w)2 = w2 − 1 6= 0 since w 6= ±1.

So, by Theorem 1.51,

eiz = u = w +
∣∣w2 − 1

∣∣1/2
eiφk , where φk =

arg (w2 − 1)

2
+

2πk

2
, k = 0, 1.

= w ±
∣∣w2 − 1

∣∣1/2
e

i

(
arg(w2−1)

2

)
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So,

ix−y = i (x + iy) = iz = log

∣∣∣∣∣w ± ∣∣w2 − 1
∣∣1/2

ei
arg(w2−1)

2

∣∣∣∣∣+i arg

w ±
∣∣w2 − 1

∣∣1/2
e

i

(
arg(w2−1)

2

)
Hence, there exists two values of z = x+iy satisfying the conditions cos z = w
and

−π < x = arg

w ±
∣∣w2 − 1

∣∣1/2
e

i

(
arg(w2−1)

2

) ≤ π.

For w = i, we have

iz = log
∣∣∣(1±√2

)
i
∣∣∣+ i arg

((
1±

√
2
)

i
)

which implies that

z = arg
((

1±
√

2
)

i
)
− i log

∣∣∣(1±√2
)

i
∣∣∣ .

For w = 2, we have

iz = log
∣∣∣2±√3

∣∣∣+ i arg
(
2±

√
3
)

which implies that

z = arg
(
2±

√
3
)
− i log

∣∣∣2±√3
∣∣∣ .

1.48 Prove Lagrange’s identity for complex numbers:∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣
2

=
n∑

k=1

|ak|2
n∑

k=1

|bk|2 −
∑

1≤k<j≤n

(
akb̄j − ājbk

)2
.

Use this to deduce a Cauchy-Schwarz ineqality for complex numbers.

Proof : It is the same as the Exercise 1.23; we omit the details.

1.49 (a) By eqating imaginary parts in DeMoivre’s formula prove that

sin nθ = sinn θ
{
(n
1 ) cotn−1 θ − (n

3 ) cotn−3 θ + (n
5 ) cotn−5 θ −+...

}
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Proof : By Exercise 1.44 (i), we have

sin nθ =

[n+1
2 ]∑

k=1

(
n
2k−1

)
sin2k−1 θ cosn−(2k−1) θ

= sinn θ


[n+1

2 ]∑
k=1

(
n
2k−1

)
cotn−(2k−1) θ


= sinn θ

{
(n
1 ) cotn−1 θ − (n

3 ) cotn−3 θ + (n
5 ) cotn−5 θ −+...

}
.

(b) If 0 < θ < π/2, prove that

sin (2m + 1) θ = sin2m+1 θPm

(
cot2 θ

)
where Pm is the polynomial of degree m given by

Pm (x) =
(
2m+1
1

)
xm −

(
2m+1
3

)
xm−1 +

(
2m+1
5

)
xm−2 −+...

Use this to show that Pm has zeros at the m distinct points xk = cot2 {πk/ (2m + 1)}
for k = 1, 2, ...,m.

Proof : By (a),

sin (2m + 1) θ

= sin2m+1 θ
{(

2m+1
1

) (
cot2 θ

)m − (2m+1
3

) (
cot2 θ

)m−1
+
(
2m+1
5

) (
cot2 θ

)m−2 −+...
}

= sin2m+1 θPm

(
cot2 θ

)
, where Pm (x) =

m+1∑
k=1

(
2m+1
2k−1

)
xm+1−k. (*)

In addition, by (*), sin (2m + 1) θ = 0 if, and only if, Pm (cot2 θ) = 0. Hence,
Pm has zeros at the m distinct points xk = cot2 {πk/ (2m + 1)} for k =
1, 2, ...,m.

(c) Show that the sum of the zeros of Pm is given by

m∑
k=1

cot2 πk

2m + 1
=

m (2m− 1)

3
,
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and the sum of their squares is given by

m∑
k=1

cot4 πk

2m + 1
=

m (2m− 1) (4m2 + 10m− 9)

45
.

Note. There identities can be used to prove that
∑∞

n=1 n−2 = π2/6 and∑∞
n=1 n−4 = π4/90. (See Exercises 8.46 and 8.47.)

Proof : By (b), we know that sum of the zeros of Pm is given by

m∑
k=1

xk =
m∑

k=1

cot2 πk

2m + 1
= −

(
−
(
2m+1
3

)(
2m+1
1

) ) =
m (2m− 1)

3
.

And the sum of their squares is given by

m∑
k=1

x2
k =

m∑
k=1

cot4 πk

2m + 1

=

(
m∑

k=1

xk

)2

− 2

( ∑
1≤i<j≤n

xixj

)

=

(
m (2m− 1)

3

)2

− 2

((
2m+1
5

)(
2m+1
1

))

=
m (2m− 1) (4m2 + 10m− 9)

45
.

1.50 Prove that zn− 1 =
∏n

k=1

(
z − e2πik/n

)
for all complex z. Use this

to derive the formula
n−1∏
k=1

sin
kπ

n
=

n

2n−1
.

Proof : Since zn = 1 has exactly n distinct roots e2πik/n, where k =
0, ..., n − 1 by Theorem 1.51. Hence, zn − 1 =

∏n
k=1

(
z − e2πik/n

)
. It

implies that

zn−1 + ... + 1 =
n−1∏
k=1

(
z − e2πik/n

)
.
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So, let z = 1, we obtain that

n =
n−1∏
k=1

(
1− e2πik/n

)
=

n−1∏
k=1

[(
1− cos

2πk

n

)
− i

(
sin

2πk

n

)]

=
n−1∏
k=1

(
2 sin2 πk

n

)
− i

(
2 sin

πk

n
cos

πk

n

)

=
n−1∏
k=1

2

(
sin

πk

n

)(
sin

πk

n
− i cos

πk

n

)

= 2n−1

n−1∏
k=1

(
sin

πk

n

)(
cos

(
3π

2
+

πk

n

)
+ i sin

(
3π

2
+

πk

n

))

= 2n−1

n−1∏
k=1

(
sin

πk

n

)
ei( 3π

2
+πk

n )

=

[
2n−1

n−1∏
k=1

(
sin

πk

n

)]
e
∑n−1

k=1
3π
2

+πk
n

= 2n−1

n−1∏
k=1

(
sin

πk

n

)
.

36



Some Basic Notations Of Set Theory

References

There are some good books about set theory; we write them down. We
wish the reader can get more.

1. Set Theory and Related Topics by Seymour Lipschutz.
2. Set Theory by Charles C. Pinter.
3. Theory of sets by Kamke.
4. Naive set by Halmos.

2.1 Prove Theorem 2.2. Hint. (a, b) = (c, d) means {{a} , {a, b}} =
{{c} , {c, d}} . Now appeal to the definition of set equality.

Proof : (⇐) It is trivial.
(⇒) Suppose that (a, b) = (c, d) , it means that {{a} , {a, b}} = {{c} , {c, d}} .

It implies that

{a} ∈ {{c} , {c, d}} and {a, b} ∈ {{c} , {c, d}} .

So, if a 6= c, then {a} = {c, d} . It implies that c ∈ {a} which is impossible.
Hence, a = c. Similarly, we have b = d.

2.2 Let S be a relation and let D (S) be its domain. The relation S is
said to be

(i) reflexive if a ∈ D (S) implies (a, a) ∈ S,
(ii) symmetric if (a, b) ∈ S implies (b, a) ∈ S,
(iii) transitive if (a, b) ∈ S and (b, c) ∈ S implies (a, c) ∈ S.
A relation which is symmetric, reflexive, and transitive is called an equiv-

alence relation. Determine which of these properties is possessed by S, if S
is the set of all pairs of real numbers (x, y) such that

(a) x ≤ y

Proof : Write S = {(x, y) : x ≤ y} , then we check that (i) reflexive, (ii)
symmetric, and (iii) transitive as follows. It is clear that D (S) = R.

1



(i) Since x ≤ x, (x, x) ∈ S. That is, S is reflexive.
(ii) If (x, y) ∈ S, i.e., x ≤ y, then y ≤ x. So, (y, x) ∈ S. That is, S is

symmetric.
(iii) If (x, y) ∈ S and (y, z) ∈ S, i.e., x ≤ y and y ≤ z, then x ≤ z. So,

(x, z) ∈ S. That is, S is transitive.

(b) x < y

Proof : Write S = {(x, y) : x < y} , then we check that (i) reflexive, (ii)
symmetric, and (iii) transitive as follows. It is clear that D (S) = R.

(i) It is clear that for any real x, we cannot have x < x. So, S is not
reflexive.

(ii) It is clear that for any real x, and y, we cannot have x < y and y < x
at the same time. So, S is not symmetric.

(iii) If (x, y) ∈ S and (y, z) ∈ S, then x < y and y < z. So, x < z wich
implies (x, z) ∈ S. That is, S is transitive.

(c) x < |y|
Proof : Write S = {(x, y) : x < |y|} , then we check that (i) reflexive, (ii)

symmetric, and (iii) transitive as follows. It is clear that D (S) = R.
(i) Since it is impossible for 0 < |0| , S is not reflexive.
(ii) Since (−1, 2) ∈ S but (2,−1) /∈ S, S is not symmetric.
(iii) Since (0,−1) ∈ S and (−1, 0) ∈ S, but (0, 0) /∈ S, S is not transitive.

(d) x2 + y2 = 1

Proof : Write S = {(x, y) : x2 + y2 = 1} , then we check that (i) reflexive,
(ii) symmetric, and (iii) transitive as follows. It is clear that D (S) = [−1, 1] ,
an closed interval with endpoints, −1 and 1.

(i) Since 1 ∈ D (S) , and it is impossible for (1, 1) ∈ S by 12 + 12 6= 1, S
is not reflexive.

(ii) If (x, y) ∈ S, then x2 +y2 = 1. So, (y, x) ∈ S. That is, S is symmetric.
(iii) Since (1, 0) ∈ S and (0, 1) ∈ S, but (1, 1) /∈ S, S is not transitive.

(e) x2 + y2 < 0

Proof : Write S = {(x, y) : x2 + y2 < 1} = φ, then S automatically sat-
isfies (i) reflexive, (ii) symmetric, and (iii) transitive.

(f) x2 + x = y2 + y

Proof : Write S = {(x, y) : x2 + x = y2 + y} = {(x, y) : (x− y) (x + y − 1) = 0} ,
then we check that (i) reflexive, (ii) symmetric, and (iii) transitive as follows.
It is clear that D (S) = R.
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(i) If x ∈ R, it is clear that (x, x) ∈ S. So, S is reflexive.
(ii) If (x, y) ∈ S, it is clear that (y, x) ∈ S. So, S is symmetric.
(iii) If (x, y) ∈ S and (y, z) ∈ S, it is clear that (x, z) ∈ S. So, S is

transitive.

2.3 The following functions F and G are defined for all real x by the
equations given. In each case where the composite function G ◦ F can be
formed, give the domain of G◦F and a formula (or formulas) for (G ◦ F ) (x) .

(a) F (x) = 1− x, G (x) = x2 + 2x

Proof : Write

G ◦ F (x) = G [F (x)] = G [1− x] = (1− x)2 + 2 (1− x) = x2 − 4x + 3.

It is clear that the domain of G ◦ F (x) is R.

(b) F (x) = x + 5, G (x) = |x| /x if x 6= 0, G (0) = 0.

Proof : Write

G ◦ F (x) = G [F (x)] =

{
G (x + 5) = |x+5|

x+5
if x 6= −5.

0 if x = −5.

It is clear that the domain of G ◦ F (x) is R.

(c) F (x) =

{
2x, if 0 ≤ x ≤ 1

1, otherwise,
G (x) =

{
x2, if 0 ≤ x ≤ 1
0, otherwise.

Proof : Write

G ◦ F (x) = G [F (x)] =


4x2 if x ∈ [0, 1/2]
0 if x ∈ (1/2, 1]

1 if x ∈ R− [0, 1]
.

It is clear that the domain of G ◦ F (x) is R.

Find F (x) if G (x) and G [F (x)] are given as follows:

(d) G (x) = x3, G [F (x)] = x3 − 3x2 + 3x− 1.

Proof : With help of (x− 1)3 = x3 − 3x2 + 3x − 1, it is easy to know
that F (x) = 1− x. In addition, there is not other function H (x) such that
G [H (x)] = x3 − 3x2 + 3x− 1 since G (x) = x3 is 1-1.

(e) G (x) = 3 + x + x2, G [F (x)] = x2 − 3x + 5.
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Proof : Write G (x) =
(
x + 1

2

)2
+ 11

4
, then

G [F (x)] =

(
F (x) +

1

2

)2

+
11

4
= x2 − 3x + 5

which implies that
(2F (x) + 1)2 = (2x− 3)2

which implies that
F (x) = x− 2 or − x + 1.

2.4 Given three functions F, G, H, what restrictions must be placed on
their domains so that the following four composite functions can be defined?

G ◦ F, H ◦G, H ◦ (G ◦ F ) , (H ◦G) ◦ F.

Proof : It is clear for answers,

R (F ) ⊆ D (G) and R (G) ⊆ D (H) .

Assuming that H ◦ (G ◦ F ) and (H ◦G) ◦ F can be defined, prove that
associative law:

H ◦ (G ◦ F ) = (H ◦G) ◦ F.

Proof : Given any x ∈ D (F ) , then

((H ◦G) ◦ F ) (x) = (H ◦G) (F (x))

= H (G (F (x)))

= H ((G ◦ F ) (x))

= (H ◦ (G ◦ F )) (x) .

So, H ◦ (G ◦ F ) = (H ◦G) ◦ F.

2.5 Prove the following set-theoretic identities for union and intersec-
tion:
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(a) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C.

Proof : For the part, A∪(B ∪ C) = (A ∪B)∪C : Given x ∈ A∪(B ∪ C) ,
we have x ∈ A or x ∈ B ∪ C. That is, x ∈ A or x ∈ B or x ∈ C. Hence,
x ∈ A∪B or x ∈ C. It implies x ∈ (A ∪B)∪C. Similarly, if x ∈ (A ∪B)∪C,
then x ∈ A ∪ (B ∪ C) . Therefore, A ∪ (B ∪ C) = (A ∪B) ∪ C.

For the part, A∩(B ∩ C) = (A ∩B)∩C : Given x ∈ A∩(B ∩ C) , we have
x ∈ A and x ∈ B∩C. That is, x ∈ A and x ∈ B and x ∈ C. Hence, x ∈ A∩B
and x ∈ C. It implies x ∈ (A ∩B) ∩ C. Similarly, if x ∈ (A ∩B) ∩ C, then
x ∈ A ∩ (B ∩ C) . Therefore, A ∩ (B ∩ C) = (A ∩B) ∩ C.

(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) .

Proof : Given x ∈ A∩ (B ∪ C) , then x ∈ A and x ∈ B ∪C. We consider
two cases as follows.

If x ∈ B, then x ∈ A ∩B. So, x ∈ (A ∩B) ∪ (A ∩ C) .
If x ∈ C, then x ∈ A ∩ C. So, x ∈ (A ∩B) ∪ (A ∩ C) .
So, we have shown that

A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C) . (*)

Conversely, given x ∈ (A ∩B) ∪ (A ∩ C) , then x ∈ A ∩ B or x ∈ A ∩ C.
We consider two cases as follows.

If x ∈ A ∩B, then x ∈ A ∩ (B ∪ C) .
If x ∈ A ∩ C, then x ∈ A ∩ (B ∪ C) .
So, we have shown that

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) . (**)

By (*) and (**), we have proved it.

(c) (A ∪B) ∩ (A ∪ C) = A ∪ (B ∩ C)

Proof : Given x ∈ (A ∪B) ∩ (A ∪ C) , then x ∈ A ∪ B and x ∈ A ∪ C.
We consider two cases as follows.

If x ∈ A, then x ∈ A ∪ (B ∩ C) .
If x /∈ A, then x ∈ B and x ∈ C. So, x ∈ B ∩ C. It implies that

x ∈ A ∪ (B ∩ C) .
Therefore, we have shown that

(A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C) . (*)
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Conversely, if x ∈ A ∪ (B ∩ C) , then x ∈ A or x ∈ B ∩ C. We consider
two cases as follows.

If x ∈ A, then x ∈ (A ∪B) ∩ (A ∪ C) .
If x ∈ B ∩C, then x ∈ A∪B and x ∈ A∪C. So, x ∈ (A ∪B)∩ (A ∪ C) .
Therefore, we have shown that

A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C) . (*)

By (*) and (**), we have proved it.

(d) (A ∪B) ∩ (B ∪ C) ∩ (C ∪ A) = (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)

Proof : Given x ∈ (A ∪B) ∩ (B ∪ C) ∩ (C ∪ A) , then

x ∈ A ∪B and x ∈ B ∪ C and x ∈ C ∪ A. (*)

We consider the cases to show x ∈ (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C) as follows.
For the case (x ∈ A):
If x ∈ B, then x ∈ A ∩B.
If x /∈ B, then by (*), x ∈ C. So, x ∈ A ∩ C.
Hence, in this case, we have proved that x ∈ (A ∩B)∪(A ∩ C)∪(B ∩ C) .
For the case (x /∈ A):
If x ∈ B, then by (*), x ∈ C. So, x ∈ B ∩ C.
If x /∈ B, then by (*), it is impossible.
Hence, in this case, we have proved that x ∈ (A ∩B)∪(A ∩ C)∪(B ∩ C) .
From above,

(A ∪B) ∩ (B ∪ C) ∩ (C ∪ A) ⊆ (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)

Similarly, we also have

(A ∩B) ∪ (A ∩ C) ∪ (B ∩ C) ⊆ (A ∪B) ∩ (B ∪ C) ∩ (C ∪ A) .

So, we have proved it.

Remark: There is another proof, we write it as a reference.

Proof : Consider

(A ∪B) ∩ (B ∪ C) ∩ (C ∪ A)

= [(A ∪B) ∩ (B ∪ C)] ∩ (C ∪ A)

= [B ∪ (A ∩ C)] ∩ (C ∪ A)

= [B ∩ (C ∪ A)] ∪ [(A ∩ C) ∩ (C ∪ A)]

= [(B ∩ C) ∪ (B ∩ A)] ∪ (A ∩ C)

= (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C) .
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(e) A ∩ (B − C) = (A ∩B)− (A ∩ C)

Proof : Given x ∈ A ∩ (B − C) , then x ∈ A and x ∈ B − C. So, x ∈ A
and x ∈ B and x /∈ C. So, x ∈ A ∩B and x /∈ C. Hence,

x ∈ (A ∩B)− C ⊆ (A ∩B)− (A ∩ C) . (*)

Conversely, given x ∈ (A ∩B)− (A ∩ C) , then x ∈ A∩B and x /∈ A∩C.
So, x ∈ A and x ∈ B and x /∈ C. So, x ∈ A and x ∈ B − C. Hence,

x ∈ A ∩ (B − C) (**)

By (*) and (**), we have proved it.

(f) (A− C) ∩ (B − C) = (A ∩B)− C

Proof : Given x ∈ (A− C) ∩ (B − C) , then x ∈ A− C and x ∈ B − C.
So, x ∈ A and x ∈ B and x /∈ C. So, x ∈ (A ∩B)− C. Hence,

(A− C) ∩ (B − C) ⊆ (A ∩B)− C. (*)

Conversely, given x ∈ (A ∩B)−C, then x ∈ A and x ∈ B and x /∈ C. Hence,
x ∈ A− C and x ∈ B − C. Hence,

(A ∩B)− C ⊆ (A− C) ∩ (B − C) . (**)

By (*) and (**), we have proved it.

(g) (A−B) ∪B = A if, and only if, B ⊆ A

Proof : (⇒) Suppose that (A−B)∪B = A, then it is clear that B ⊆ A.
(⇐) Suppose that B ⊆ A, then given x ∈ A, we consider two cases.
If x ∈ B, then x ∈ (A−B) ∪B.
If x /∈ B, then x ∈ A−B. Hence, x ∈ (A−B) ∪B.
From above, we have

A ⊆ (A−B) ∪B.

In addition, it is obviously (A−B) ∪B ⊆ A since A−B ⊆ A and B ⊆ A.

2.6 Let f : S → T be a function. If A and B are arbitrary subsets of S,
prove that

f (A ∪B) = f (A) ∪ f (B) and f (A ∩B) ⊆ f (A) ∩ f (B) .
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Generalize to arbitrary unions and intersections.

Proof : First, we prove f (A ∪B) = f (A) ∪ f (B) as follows. Let y ∈
f (A ∪B) , then y = f (a) or y = f (b) , where a ∈ A and b ∈ B. Hence,
y ∈ f (A) ∪ f (B) . That is,

f (A ∪B) ⊆ f (A) ∪ f (B) .

Conversely, if y ∈ f (A) ∪ f (B) , then y = f (a) or y = f (b) , where a ∈ A
and b ∈ B. Hence, y ∈ f (A ∪B) . That is,

f (A) ∪ f (B) ⊆ f (A ∪B) .

So, we have proved that f (A ∪B) = f (A) ∪ f (B) .
For the part f (A ∩B) ⊆ f (A) ∩ f (B) : Let y ∈ f (A ∩B) , then y =

f (x) , where x ∈ A∩B. Hence, y ∈ f (A) and y ∈ f (B) . That is, f (A ∩B) ⊆
f (A) ∩ f (B) .

For arbitrary unions and intersections, we have the following facts, and
the proof is easy from above. So, we omit the detail.

f (∪i∈IAi) = ∪i∈If (Ai) , where I is an index set.

And
f (∩i∈IAi) ⊆ ∩i∈If (Ai) , where I is an index set.

Remark: We should note why the equality does NOT hold for the case
of intersection. for example, consider A = {1, 2} and B = {1, 3} , where
f (1) = 1 and f (2) = 2 and f (3) = 2.

f (A ∩B) = f ({1}) = {1} ⊆ {1, 2} ⊆ f ({1, 2})∩ f ({1, 3}) = f (A)∩ f (B) .

2.7 Let f : S → T be a function. If Y ⊆ T, we denote by f−1 (Y ) the
largest subset of S which f maps into Y. That is,

f−1 (Y ) = {x : x ∈ S and f (x) ∈ Y } .

The set f−1 (Y ) is called the inverse image of Y under f. Prove that the
following for arbitrary subsets X of S and Y of T.

(a) X ⊆ f−1 [f (X)]
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Proof : Given x ∈ X, then f (x) ∈ f (X) . Hence, x ∈ f−1 [f (X)] by
definition of the inverse image of f (X) under f. So, X ⊆ f−1 [f (X)] .

Remark: The equality may not hold, for example, let f (x) = x2 on R,
and let X = [0,∞), we have

f−1 [f (X)] = f−1 [[0,∞)] = R.

(b) f (f−1 (Y )) ⊆ Y

Proof : Given y ∈ f (f−1 (Y )) , then there exists a point x ∈ f−1 (Y )
such that f (x) = y. Since x ∈ f−1 (Y ) , we know that f (x) ∈ Y. Hence,
y ∈ Y. So, f (f−1 (Y )) ⊆ Y

Remark: The equality may not hold, for example, let f (x) = x2 on R,
and let Y = R, we have

f
(
f−1 (Y )

)
= f (R) = [0,∞) ⊆ R.

(c) f−1 [Y1 ∪ Y2] = f−1 (Y1) ∪ f−1 (Y2)

Proof : Given x ∈ f−1 [Y1 ∪ Y2] , then f (x) ∈ Y1 ∪ Y2. We consider two
cases as follows.

If f (x) ∈ Y1, then x ∈ f−1 (Y1) . So, x ∈ f−1 (Y1) ∪ f−1 (Y2) .
If f (x) /∈ Y1, i.e., f (x) ∈ Y2, then x ∈ f−1 (Y2) . So, x ∈ f−1 (Y1) ∪

f−1 (Y2) .
From above, we have proved that

f−1 [Y1 ∪ Y2] ⊆ f−1 (Y1) ∪ f−1 (Y2) . (*)

Conversely, since f−1 (Y1) ⊆ f−1 [Y1 ∪ Y2] and f−1 (Y2) ⊆ f−1 [Y1 ∪ Y2] ,
we have

f−1 (Y1) ∪ f−1 (Y2) ⊆ f−1 [Y1 ∪ Y2] . (**)

From (*) and (**), we have proved it.

(d) f−1 [Y1 ∩ Y2] = f−1 (Y1) ∩ f−1 (Y2)

Proof : Given x ∈ f−1 (Y1) ∩ f−1 (Y2) , then f (x) ∈ Y1 and f (x) ∈ Y2.
So, f (x) ∈ Y1 ∩ Y2. Hence, x ∈ f−1 [Y1 ∩ Y2] . That is, we have proved that

f−1 (Y1) ∩ f−1 (Y2) ⊆ f−1 [Y1 ∩ Y2] . (*)
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Conversely, since f−1 [Y1 ∩ Y2] ⊆ f−1 (Y1) and f−1 [Y1 ∩ Y2] ⊆ f−1 (Y2) ,
we have

f−1 [Y1 ∩ Y2] ⊆ f−1 (Y1) ∩ f−1 (Y2) . (**)

From (*) and (**), we have proved it.

(e) f−1 (T − Y ) = S − f−1 (Y )

Proof : Given x ∈ f−1 (T − Y ) , then f (x) ∈ T − Y. So, f (x) /∈ Y. We
want to show that x ∈ S− f−1 (Y ) . Suppose NOT, then x ∈ f−1 (Y ) which
implies that f (x) ∈ Y. That is impossible. Hence, x ∈ S − f−1 (Y ) . So, we
have

f−1 (T − Y ) ⊆ S − f−1 (Y ) . (*)

Conversely, given x ∈ S−f−1 (Y ) , then x /∈ f−1 (Y ) . So, f (x) /∈ Y. That
is, f (x) ∈ T − Y. Hence, x ∈ f−1 (T − Y ) . So, we have

S − f−1 (Y ) ⊆ f−1 (T − Y ) . (**)

From (*) and (**), we have proved it.

(f) Generalize (c) and (d) to arbitrary unions and intersections.

Proof : We give the statement without proof since it is the same as (c)
and (d). In general, we have

f−1 (∪i∈IAi) = ∪i∈If
−1 (Ai) .

and
f−1 (∩i∈IAi) = ∩i∈If

−1 (Ai) .

Remark: From above sayings and Exercise 2.6, we found that the
inverse image f−1 and the operations of sets, such as intersection and union,
can be exchanged. However, for a function, we only have the exchange of
f and the operation of union. The reader also see the Exercise 2.9 to get
more.

2.8 Refer to Exercise 2.7. Prove that f [f−1 (Y )] = Y for every subset Y
of T if, and only if, T = f (S) .

Proof : (⇒) It is clear that f (S) ⊆ T. In order to show the equality, it
suffices to show that T ⊆ f (S) . Consider f−1 (T ) ⊆ S, then we have

f
(
f−1 (T )

)
⊆ f (S) .
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By hyppothesis, we get T ⊆ f (S) .
(⇐) Suppose NOT, i.e., f [f−1 (Y )] is a proper subset of Y for some

Y ⊆ T by Exercise 2.7 (b). Hence, there is a y ∈ Y such that y /∈
f [f−1 (Y )] . Since Y ⊆ f (S) = T, f (x) = y for some x ∈ S. It implies that
x ∈ f−1 (Y ) . So, f (x) ∈ f [f−1 (Y )] which is impossible by the choice of y.
Hence, f [f−1 (Y )] = Y for every subset Y of T.

2.9 Let f : S → T be a function. Prove that the following statements
are equivalent.

(a) f is one-to-one on S.
(b) f (A ∩B) = f (A) ∩ f (B) for all subsets A, B of S.
(c) f−1 [f (A)] = A for every subset A of S.
(d) For all disjoint subsets A and B of S, the image f (A) and f (B) are

disjoint.
(e) For all subsets A and B of S with B ⊆ A, we have

f (A−B) = f (A)− f (B) .

Proof : (a) ⇒ (b) : Suppose that f is 1-1 on S. By Exercise 2.6, we
have proved that f (A ∩B) ⊆ f (A) ∩ f (B) for all A, B of S. In order to
show the equality, it suffices to show that f (A) ∩ f (B) ⊆ f (A ∩B) .

Given y ∈ f (A) ∩ f (B) , then y = f (a) and y = f (b) where a ∈ A
and b ∈ B. Since f is 1-1, we have a = b. That is, y ∈ f (A ∩B) . So,
f (A) ∩ f (B) ⊆ f (A ∩B) .

(b) ⇒ (c) : Suppose that f (A ∩B) = f (A) ∩ f (B) for all subsets A, B
of S. If A 6= f−1 [f (A)] for some A of S, then by Exercise 2.7 (a), there is
an element a /∈ A and a ∈ f−1 [f (A)] . Consider

φ = f (A ∩ {a}) = f (A) ∩ f ({a}) by (b) (*)

Since a ∈ f−1 [f (A)] , we have f (a) ∈ f (A) which contradicts to (*). Hence,
no such a exists. That is, f−1 [f (A)] = A for every subset A of S.

(c) ⇒ (d) : Suppose that f−1 [f (A)] = A for every subset A of S. If
A ∩B = φ, then Consider

φ = A ∩B

= f−1 [f (A)] ∩ f−1 [f (B)]

= f−1 (f (A) ∩ f (B)) by Exercise 2.7 (d)
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which implies that f (A) ∩ f (B) = φ.

(d) ⇒ (e) : Suppose that for all disjoint subsets A and B of S, the image
f (A) and f (B) are disjoint. If B ⊆ A, then since (A−B)∩B = φ, we have

f (A−B) ∩ f (B) = φ

which implies that
f (A−B) ⊆ f (A)− f (B) . (**)

Conversely, we consider if y ∈ f (A) − f (B) , then y = f (x) , where x ∈ A
and x /∈ B. It implies that x ∈ A−B. So, y = f (x) ∈ f (A−B) . That is,

f (A)− f (B) ⊆ f (A−B) . (***)

By (**) and (***), we have proved it.

(d) ⇒ (a) : Suppose that f (A−B) = f (A)−f (B) for all subsets A and
B of S with B ⊆ A. If f (a) = f (b) , consider A = {a, b} and B = {b} , we
have

f (A−B) = φ

which implies that A = B. That is, a = b. So, f is 1-1.

2.10 Prove that if A˜B and B˜C, then A˜C.

Proof : Since A˜B and B˜C, then there exists bijection f and g such
that

f : A → B and g : B → C.

So, if we consider g ◦ f : A → C, then A˜C since g ◦ f is bijection.

2.11 If {1, 2, ..., n} ˜ {1, 2, ...,m} , prove that m = n.

Proof : Since {1, 2, ..., n} ˜ {1, 2, ...,m} , there exists a bijection function

f : {1, 2, ..., n} → {1, 2, ...,m} .

Since f is 1-1, then n ≤ m. Conversely, consider f−1 is 1-1 to get m ≤ n. So,
m = n.

2.12 If S is an infinite set, prove that S contains a countably infinite
subset. Hint. Choose an element a1 in S and consider S − {a1} .
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Proof : Since S is an infinite set, then choose a1 in S and thus S − {a1}
is still infinite. From this, we have S − {a1, .., an} is infinite. So, we finally
have

{a1, ..., an, ...} (⊆ S)

which is countably infinite subset.

2.13 Prove that every infinite set S contains a proper subset similar to S.

Proof : By Exercise 2.12, we write S = S̃ ∪ {x1, ..., xn, ...} , where S̃ ∩
{x1, ..., xn, ...} = φ and try to show

S̃ ∪ {x2, ..., xn, ...} ˜S

as follows. Define

f : S̃ ∪ {x2, ..., xn, ...} → S = S̃ ∪ {x1, ..., xn, ...}

by

f (x) =

{
x if x ∈ S̃

xi if x = xi+1
.

Then it is clear that f is 1-1 and onto. So, we have proved that every infinite
set S contains a proper subset similar to S.

Remark: In the proof, we may choose the map

f : S̃ ∪ {xN+1, ..., xn, ...} → S = S̃ ∪ {x1, ..., xn, ...}

by

f (x) =

{
x if x ∈ S̃

xi if x = xi+N
.

2.14 If A is a countable set and B an uncountable set, prove that B −A
is similar to B.

Proof : In order to show it, we consider some cases as follows. (i) B∩A =
φ (ii) B ∩ A is a finite set, and (iii) B ∩ A is an infinite set.

For case (i), B − A = B. So, B − A is similar to B.
For case (ii), it follows from the Remark in Exercise 2.13.
For case (iii), note that B ∩A is countable, and let C = B −A, we have

B = C ∪ (B ∩ A) . We want to show that

(B − A) ˜B ⇔ C˜C ∪ (B ∩ A) .
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By Exercise 2.12, we write C = C̃ ∪D, where D is countably infinite and
C̃ ∩D = φ. Hence,

C˜C ∪ (B ∩ A) ⇔
(
C̃ ∪D

)
˜
[
C̃ ∪ (D ∪ (B ∩ A))

]
⇔

(
C̃ ∪D

)
˜
(
C̃ ∪D′

)
where D′ = D∪(B ∩ A) which is countably infinite. Since

(
C̃ ∪D

)
˜
(
C̃ ∪D′

)
is clear, we have proved it.

2.15 A real number is called algebraic if it is a root of an algebraic
equation f (x) = 0, where f (x) = a0 + a1x + ... + anx

n is a polynomial
with integer coefficients. Prove that the set of all polynomials with integer
coefficients is countable and deduce that the set of algebraic numbers is also
countable.

Proof : Given a positive integer N (≥ 2) , there are only finitely many
eqautions with

n +
n∑

k=1

|ak| = N, where ak ∈ Z. (*)

Let SN = {f : f (x) = a0 + a1x + ... + anx
n satisfies (*)} , then SN is a finite

set. Hence, ∪∞n=2Sn is countable. Clearly, the set of all polynomials with
integer coefficients is a subset of ∪∞n=2Sn. So, the set of all polynomials with
integer coefficients is countable. In addition, a polynomial of degree k has at
most k roots. Hence, the set of algebraic numbers is also countable.

2.16 Let S be a finite set consisting of n elements and let T be the
collection of all subsets of S. Show that T is a finite set and find the number
of elements in T.

Proof : Write S = {x1, ..., xn} , then T =the collection of all subsets of
S. Clearly, T is a finite set with 2n elements.

2.17 Let R denote the set of real numbers and let S denote the set
of all real-valued functions whose domain in R. Show that S and R are not
equinumrous. Hint. Assume S˜R and let f be a one-to-one function such
that f (R) = S. If a ∈ R, let ga = f (a) be the real-valued function in S which
correspouds to real number a. Now define h by the equation h (x) = 1+gx (x)
if x ∈ R, and show that h /∈ S.
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Proof : Assume S˜R and let f be a one-to-one function such that f (R) =
S. If a ∈ R, let ga = f (a) be the real-valued function in S which correspouds
to real number a. Define h by the equation h (x) = 1 + gx (x) if x ∈ R, then

h = f (b) = gb

which implies that
h (b) := 1 + gb (b) = gb (b)

which is impossible. So, S and R are not equinumrous.

Remark: There is a similar exercise, we write it as a reference. The
cardinal number of C [a, b] is 2ℵ0 , where ℵ0 = # (N) .

Proof : First, # (R) = 2ℵ0 ≤ # (C [a, b]) by considering constant func-
tion. Second, we consider the map

f : C [a, b] → P (Q×Q) , the power set of Q×Q

by
f (ϕ) = {(x, y) ∈ Q×Q : x ∈ [a, b] and y ≤ ϕ (x)} .

Clearly, f is 1-1. It implies that # (C [a, b]) ≤ # (P (Q×Q)) = 2ℵ0 .
So, we have proved that # (C [a, b]) = 2ℵ0 .

Note: For notations, the reader can see the textbook, in Chapter 4, pp
102. Also, see the book, Set Theory and Related Topics by Seymour
Lipschutz, Chapter 9, pp 157-174. (Chinese Version)

2.18 Let S be the collection of all sequences whose terms are the integers
0 and 1. Show that S is uncountable.

Proof : Let E be a countable subet of S, and let E consists of the se-
quences s1, .., sn, .... We construct a sequence s as follows. If the nth digit
in sn is 1, we let the nth digit of s be 0, and vice versa. Then the sequence
s differes from every member of E in at least one place; hence s /∈ E. But
clearly s ∈ S, so that E is a proper subset of S.

We have shown that every countable subset of S is a proper subset of S.
It follows that S is uncountable (for otherwise S would be a proper subset
of S, which is absurb).

Remark: In this exercise, we have proved that R, the set of real numbers,
is uncountable. It can be regarded as the Exercise 1.22 for k = 2. (Binary
System).
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2.19 Show that the following sets are countable:

(a) the set of circles in the complex plane having the ratiional radii and
centers with rational coordinates.

Proof : Write the set of circles in the complex plane having the ratiional
radii and centers with rational coordinates, {C (xn; qn) : xn ∈ Q×Q and qn ∈ Q} :=
S. Clearly, S is countable.

(b) any collection of disjoint intervals of positive length.

Proof : Write the collection of disjoint intervals of positive length, {I : I is an interval of positive length and any two intervals are disjoint} :=
S. Use the reason in Exercise 2.21, we have proved that S is countable.

2.20 Let f be a real-valued function defined for every x in the interval
0 ≤ x ≤ 1. Suppose there is a positive number M having the following
property: for every choice of a finite number of points x1, x2, ..., xn in the
interval 0 ≤ x ≤ 1, the sum

|f (x1) + ... + f (xn)| ≤ M.

Let S be the set of those x in 0 ≤ x ≤ 1 for which f (x) 6= 0. Prove that S
is countable.

Proof : Let Sn = {x ∈ [0, 1] : |f (x)| ≥ 1/n} , then Sn is a finite set by
hypothesis. In addition, S = ∪∞n=1Sn. So, S is countable.

2.21 Find the fallacy in the following ”proof” that the set of all intervals
of positive length is countable.

Let {x1, x2, ...} denote the countable set of rational numbers and let I
be any interval of positive length. Then I contains infinitely many rational
points xn, but among these there will be one with smallest index n. Define
a function F by means of the eqaution F (I) = n if xn is the rational number
with smallest index in the interval I. This function establishes a one-to-one
correspondence between the set of all intervals and a subset of the positive
integers. Hence, the set of all intervals is countable.

Proof : Note that F is not a one-to-one correspondence between the set
of all intervals and a subset of the positive integers. So, this is not a proof.
In fact, the set of all intervals of positive length is uncountable.

Remark: Compare with Exercise 2.19, and the set of all intervals of
positive length is uncountable is clear by considering {(0, x) : 0 < x < 1} .
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2.22 Let S denote the collection of all subsets of a given set T. Let f : S →
R be a real-valued function defined on S. The function f is called additive
if f (A ∪B) = f (A) + f (B) whenever A and B are disjoint subsets of T. If
f is additive, prove that for any two subsets A and B we have

f (A ∪B) = f (A) + f (B − A)

and
f (A ∪B) = f (A) + f (B)− f (A ∩B) .

Proof : Since A ∩ (B − A) = φ and A ∪B = A ∪ (B − A) , we have

f (A ∪B) = f (A ∪ (B − A)) = f (A) + f (B − A) . (*)

In addition, since(B − A)∩ (A ∩B) = φ and B = (B − A)∪ (A ∩B) , we
have

f (B) = f ((B − A) ∪ (A ∩B)) = f (B − A) + f (A ∩B)

which implies that

f (B − A) = f (B)− f (A ∩B) (**)

By (*) and (**), we have proved that

f (A ∪B) = f (A) + f (B)− f (A ∩B) .

2.23 Refer to Exercise 2.22. Assume f is additive and assume also that
the following relations hold for two particular subsets A and B of T :

f (A ∪B) = f (A′) + f (B′)− f (A′) f (B′)

and
f (A ∩B) = f (A) f (B)

and
f (A) + f (B) 6= f (T ) ,

where A′ = T −A, B′ = T −B. Prove that these relations determine f (T ) ,
and compute the value of f (T ) .
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Proof : Write

f (T ) = f (A) + f (A′) = f (B) + f (B′) ,

then

[f (T )]2 = [f (A) + f (A′)] [f (B) + f (B′)]

= f (A) f (B) + f (A) f (B′) + f (A′) f (B) + f (A′) f (B′)

= f (A) f (B) + f (A) [f (T )− f (B)] + [f (T )− f (A)] f (B) + f (A′) f (B′)

= [f (A) + f (B)] f (T )− f (A) f (B) + f (A′) f (B′)

= [f (A) + f (B)] f (T )− f (A) f (B) + f (A′) + f (B′)− f (A ∪B)

= [f (A) + f (B)] f (T )− f (A) f (B) + [f (T )− f (A)] + [f (T )− f (B)]

− [f (A) + f (B)− f (A ∩B)]

= [f (A) + f (B) + 2] f (T )− f (A) f (B)− 2 [f (A) + f (B)] + f (A ∩B)

= [f (A) + f (B) + 2] f (T )− 2 [f (A) + f (B)]

which implies that

[f (T )]2 − [f (A) + f (B) + 2] f (T ) + 2 [f (A) + f (B)] = 0

which implies that

x2 − (a + 2) x + 2a = 0 ⇒ (x− a) (x− 2) = 0

where a = f (A) + f (B) . So, x = 2 since x 6= a by f (A) + f (B) 6= f (T ) .
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Charpter 3 Elements of Point set Topology

Open and closed sets in R1 and R2

3.1 Prove that an open interval in R1 is an open set and that a closed interval is a
closed set.
proof: 1. Let a,b be an open interval in R1, and let x  a,b. Consider

minx  a,b  x : L. Then we have Bx,L  x  L,x  L  a,b. That is, x is an
interior point of a,b. Since x is arbitrary, we have every point of a,b is interior. So,
a,b is open in R1.
2. Let a,b be a closed interval in R1, and let x be an adherent point of a,b. We want

to show x  a,b. If x  a,b, then we have x  a or x  b. Consider x  a, then
Bx, a  x2   a,b   3x  a2 , x  a2   a,b  

which contradicts the definition of an adherent point. Similarly for x  b.
Therefore, we have x  a,b if x is an adherent point of a,b. That is, a,b contains

its all adherent points. It implies that a,b is closed in R1.
3.2 Determine all the accumulation points of the following sets in R1 and decide

whether the sets are open or closed (or neither).
(a) All integers.
Solution: Denote the set of all integers by Z. Let x  Z, and consider

Bx, x12   x  S  . So, Z has no accumulation points.
However, Bx, x12   S  x  . So Z contains its all adherent points. It means that

Z is closed. Trivially, Z is not open since Bx, r is not contained in Z for all r  0.
Remark: 1. Definition of an adherent point: Let S be a subset of Rn, and x a point in

Rn, x is not necessarily in S. Then x is said to be adherent to S if every n ball Bx
contains at least one point of S. To be roughly, Bx  S  .
2. Definition of an accumulation point: Let S be a subset of Rn, and x a point in Rn,

then x is called an accumulation point of S if every n ball Bx contains at least one point
of S distinct from x. To be roughly, Bx  x  S  . That is, x is an accumulation
point if, and only if, x adheres to S  x. Note that in this sense,
Bx  x  S  Bx  S  x.
3. Definition of an isolated point: If x  S, but x is not an accumulation point of S, then

x is called an isolated point.
4. Another solution for Z is closed: Since R  Z  nZ n,n  1, we know that R  Z

is open. So, Z is closed.
5. In logics, if there does not exist any accumulation point of a set S, then S is

automatically a closed set.
(b) The interval a,b.
solution: In order to find all accumulation points of a,b, we consider 2 cases as

follows.
1. a,b : Let x  a,b, then Bx, r  x  a,b   for any r  0. So, every

point of a,b is an accumulation point.
2. R1  a,b  ,a  b, : For points in b, and ,a, it is easy to know

that these points cannot be accumulation points since x  b, or x  ,a, there



exists an n ball Bx, rx such that Bx, rx  x  a,b  . For the point a, it is easy
to know that Ba, r  a  a,b  . That is, in this case, there is only one
accumulation point a of a,b.
So, from 1 and 2, we know that the set of the accumulation points of a,b is a,b.
Since a  a,b, we know that a,b cannot contain its all accumulation points. So,

a,b is not closed.
Since an n ball Bb, r is not contained in a,b for any r  0, we know that the point

b is not interior to a,b. So, a,b is not open.
(c) All numbers of the form 1/n, (n  1,2, 3, . . . .
Solution:Write the set 1/n : n  1,2, . . .  1,1/2, 1/3, . . . , 1/n, . . . : S.

Obviously, 0 is the only one accumulation point of S. So, S is not closed since S does not
contain the accumulation point 0. Since 1  S, and B1, r is not contained in S for any
r  0, S is not open.
Remark: Every point of 1/n : n  1,2, 3, . . . is isolated.
(d) All rational numbers.
Solutions: Denote all rational numbers by Q. It is trivially seen that the set of

accumulation points is R1.
So, Q is not closed. Consider x  Q, any n ball Bx is not contained in Q. That is, x

is not an interior point of Q. In fact, every point of Q is not an interior point of Q. So,
Q is not open.
(e) All numbers of the form 2n  5m, (m,n  1,2, . . . .
Solution:Write the set
2n  5m : m,n  1,2, . .   m1m  12  5m, 14  5m, . . . , 12n  5m, . . . : S

  12  15 ,
1
2  1

52 , . . . ,
1
2  1

5m , . . . 

 14  15 ,
1
4  1

52 , . . . ,
1
4  1

5m , . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 12n  15 ,
1
2n  1

52 , . . . ,
1
2n  1

5m . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1

    2

    3

So, we find that S   1
2n : n  1,2, . . .   

1
5m : m  1,2, . . .   0. So, S is not

closed since it does not contain 0. Since 1
2  S, and B

1
2 , r is not contained in S for any

r  0, S is not open.
Remark: By (1)-(3), we can regard them as three sequences

1
2  5m

m1

m
, 1
4  5m

m1

m
and 1

2n  5m
m1

m
, respectively.

And it means that for (1), the sequence 5mm1
m moves 1

2 . Similarly for others. So, it is
easy to see why 1

2 is an accumulation point of 
1
2  5mm1

m. And thus get the set of all

accumulation points of 2n  5m : m,n  1,2, . . .
(f) All numbers of the form 1n  1/m, (m,n  1,2, . . . .
Solution:Write the set of all numbers 1n  1/m, (m,n  1,2, . . .  as

1  1
m m1

m
 1  1

m m1

m
: S.



And thus by the remark in (e), it is easy to know that S  1,1. So, S is not closed
since S  S. Since 2  S, and B2, r is not contained in S for any r  0, S is not open.
(g) All numbers of the form 1/n  1/m, (m,n  1,2, . . . .
Solution:Write the set of all numbers 1/n  1/m, (m,n  1,2, . . .  as

1  1/mm1
m  1/2  1/mm1

m . . .1/n  1/mm1
m . . . : S.

We find that S  1/n : n  N  1/m : m  N  0  1/n : n  N  0. So, S is
not closed since S  S. Since 1  S, and B1, r is not contained in S for any r  0, S is
not open.
(h) All numbers of the form 1n/1  1/n, (n  1,2, . . . .
Soluton:Write the set of all numbers 1n/1  1/n, (n  1,2, . . .  as

1
1  1

2k k1

k

 1
1  1

2k1 k1

k

: S.

We find that S  1,1. So, S is not closed since S  S. Since 1
2  S, and B

1
2 , r is

not contained in S for any r  0, S is not open.
3.3 The same as Exercise 3.2 for the following sets in R2.
(a) All complex z such that |z|  1.
Solution: Denote z  C : |z| 1 by S. It is easy to know that S  z  C : |z| 1.

So, S is not closed since S  S. Let z  S, then |z|  1. Consider Bz, |z|12   S, so every
point of S is interior. That is, S is open.
(b) All complex z such that |z|  1.
Solution: Denote z  C : |z| 1 by S. It is easy to know that S  z  C : |z| 1.

So, S is closed since S  S. Since 1  S, and B1, r is not contained in S for any r  0, S
is not open.
(c) All complex numbers of the form 1/n  i/m, (m,n  1,2, . . . .
Solution:Write the set of all complex numbers of the form 1/n  i/m,

(m,n  1,2, . . .  as

1  i
m m1

m
 1

2  i
m m1

m
. . . 1

n  i
m m1

m
. . . : S.

We know that S  1/n : n  1,2, . . .   i/m : m  1,2, . . .  0. So, S is not closed
since S  S. Since 1  i  S, and B1  i, r is not contained in S for any r  0, S is not
open.
(d) All points x,y such that x2  y2  1.
Solution: Denote x,y : x2  y2  1 by S. We know that

S  x,y : x2  y2  1. So, S is not closed since S  S. Let p  x,y  S, then
x2  y2  1. It is easy to find that r  0 such that Bp, r  S. So, S is open.
(e) All points x,y such that x  0.
Solution:Write all points x,y such that x  0 as x,y : x  0 : S. It is easy to

know that S  x,y : x  0. So, S is not closed since S  S. Let x  S, then it is easy
to find rx  0 such that Bx, rx  S. So, S is open.
(f) All points x,y such that x  0.
Solution:Write all points x,y such that x  0 as x,y : x  0 : S. It is easy to



know that S  x,y : x  0. So, S is closed since S  S. Since 0,0  S, and
B0,0, r is not contained in S for any r  0, S is not open.
3.4 Prove that every nonempty open set S in R1 contains both rational and irratonal

numbers.
proof: Given a nonempty open set S in R1. Let x  S, then there exists r  0 such that

Bx, r  S since S is open. And in R1, the open ball Bx, r  x  r,x  r. Since any
interval contains both rational and irrational numbers, we have S contains both rational and
irrational numbers.

3.5 Prove that the only set in R1 which are both open and closed are the empty set
and R1 itself. Is a similar statement true for R2?
Proof: Let S be the set in R1, and thus consider its complement T  R1  S. Then we

have both S and T are open and closed. Suppose that S  R1 and S  , we will show that
it is impossible as follows.
Since S  R1, and S  , then T   and T  R1. Choose s0  S and t0  T, then we

consider the new point s0t02 which is in S or T since R  S  T. If s0t0
2  S, we say

s0t0
2  s1,otherwise, we say s0t0

2  t1.
Continue these steps, we finally have two sequences named sn  S and tm  T.

In addition, the two sequences are convergent to the same point, say p by our construction.
So, we get p  S and p  T since both S and T are closed.
However, it leads us to get a contradiction since p  S  T  . Hence S  R1 or

S  .
Remark: 1. In the proof, the statement is true for Rn.
2. The construction is not strange for us since the process is called Bolzano Process.
3. 6 Prove that every closed set in R1 is the intersection of a countable collection of

open sets.
proof: Given a closed set S, and consider its complement R1  S which is open. If

R1  S  , there is nothing to prove. So, we can assume that R1  S  .
Let x  R1  S, then x is an interior point of R1  S. So, there exists an open interval

a,b such that x  a,b  R1  S. In order to show our statement, we choose a smaller
interval ax,bx so that x  ax,bx and ax,bx  a,b  R1  S. Hence, we have

R1  S  xR1S ax,bx
which implies that

S  R1  xR1S ax,bx
 xR1S R1  ax,bx
 n1n R1  an,bn (by Lindelof Convering Theorem).

Remark: 1. There exists another proof by Representation Theorem for Open Sets on
The Real Line.
2. Note that it is true for that every closed set in R1 is the intersection of a countable

collection of closed sets.
3. The proof is suitable for Rn if the statement is that every closed set in Rn is the

intersection of a countable collection of open sets. All we need is to change intervals into
disks.



3.7 Prove that a nonempty, bounded closed set S in R1 is either a closed interval, or
that S can be obtained from a closed interval by removing a countable disjoint collection of
open intervals whose endpoints belong to S.
proof: If S is an interval, then it is clear that S is a closed interval. Suppose that S is not

an interval. Since S  is bounded and closed, both sup S and inf S are in S. So, R1  S
 infS, supS  S. Denote infS, supS by I. Consider R1  S is open, then by
Representation Theorem for Open Sets on The Real Line, we have

R1  S  m1m Im
 I  S

which implies that
S  I  m1m Im.

That is, S can be obtained from a closed interval by removing a countable disjoint
collection of open intervals whose endpoints belong to S.

Open and closed sets in Rn

3.8 Prove that open n balls and n dimensional open intervals are open sets in Rn.
proof: Given an open n ball Bx, r. Choose y  Bx, r and thus consider

By,d  Bx, r, where d  min|x  y|, r  |x  y|. Then y is an interior point of Bx, r.
Since y is arbitrary, we have all points of Bx, r are interior. So, the open n ball Bx, r is
open.
Given an n dimensional open interval a1,b1  a2,b2 . . .an,bn : I. Choose

x  x1,x2, . . . ,xn  I and thus consider r  mini1inri, where ri  minxi  ai,bi  xi.
Then Bx, r  I. That is, x is an interior point of I. Since x is arbitrary, we have all points
of I are interior. So, the n dimensional open interval I is open.
3.9 Prove that the interior of a set in Rn is open in Rn.
Proof: Let x  intS, then there exists r  0 such that Bx, r  S. Choose any point of

Bx, r, say y. Then y is an interior point of Bx, r since Bx, r is open. So, there exists
d  0 such that By,d  Bx, r  S. So y is also an interior point of S. Since y is
arbitrary, we find that every point of Bx, r is interior to S. That is, Bx, r  intS. Since x
is arbitrary, we have all points of intS are interior. So, intS is open.
Remark: 1 It should be noted that S is open if, and only if S  intS.
2. intintS  intS.
3. If S  T, then intS  intT.

3.10 If S  Rn, prove that intS is the union of all open subsets of Rn which are
contained in S. This is described by saying that intS is the largest open subset of S.
proof: It suffices to show that intS  AS A, where A is open. To show the statement,

we consider two steps as follows.
1.  Let x  intS, then there exists r  0 such that Bx, r  S. So,

x  Bx, r  AS A. That is, intS  AS A.
2.  Let x  AS A, then x  A for some open set A S. Since A is open, x is an

interior point of A. There exists r  0 such that Bx, r  A  S. So x is an interior point
of S, i.e., x  intS. That is, AS A  intS.
From 1 and 2, we know that intS  AS A, where A is open.
Let T be an open subset of S such that intS  T. Since intS  AS A, where A is open,



we have intS  T  AS A which implies intS  T by intS  AS A. Hence, intS is the
largest open subset of S.
3.11 If S and T are subsets of Rn, prove that
intS  intT  intS  T and intS  intT  intS  T.
Proof: For the part intS  intT  intS  T, we consider two steps as follows.
1.  Since intS  S and intT  T, we have intS  intT  S  T which implies

that Note that intS  intT is open.
intS  intT  intintS  intT  intS  T.

2.  Since S  T  S and S  T  T, we have intS  T  intS and
intS  T  intT. So,

intS  T  intS  intT.
From 1 and 2, we know that intS  intT  intS  T.
For the part intS  intT  intS  T, we consider intS  S and intT  T. So,

intS  intT  S  T
which implies that Note that intS  intT is open.

intintS  intT  intS  intT  intS  T.

Remark: It is not necessary that intS  intT  intS  T. For example, let S  Q,
and T  Qc, then intS  , and intT  . However, intS  T  intR1  R.
3.12 Let S denote the derived set and S the closure of a set S in Rn. Prove that

(a) S is closed in Rn; that is S  S.
proof: Let x be an adherent point of S. In order to show S is closed, it suffices to

show that x is an accumulation point of S. Assume x is not an accumulation point of S, i.e.,
there exists d  0 such that

Bx,d  x  S  .     *
Since x adheres to S, then Bx,d  S  . So, there exists y  Bx,d such that y is an
accumulation point of S. Note that x  y, by assumption. Choose a smaller radius d so that

By,d  Bx,d  x and By,d  S  .
It implies

  By,d  S  Bx,d  x  S   by (*)
which is absurb. So, x is an accumulation point of S. That is, S contains all its adherent
points. Hence S is closed.
(b) If S  T, then S  T.
Proof: Let x  S, then Bx, r  x  S   for any r  0. It implies that

Bx, r  x  T   for any r  0 since S  T. Hence, x is an accumulation point of T.
That is, x  T. So, S  T.

(c) S  T  S  T

Proof: For the part S  T  S  T, we show it by two steps.
1. Since S  S  T and T  S  T, we have S  S  T and T  S  T by (b).

So,
S  T  S  T

2. Let x  S  T, then Bx, r  x  S  T  . That is,



Bx, r  x  S  Bx, r  x  T  .
So, at least one of Bx, r  x  S and Bx, r  x  T is not empty. If
Bx, r  x  S  , then x  S. And if Bx, r  x  T  , then x  T. So,

S  T  S  T.
From 1 and 2, we have S  T  S  T.

Remark: Note that since S  T  S  T, we have clS  T  clS  clT,
where clS is the closure of S.

(d) S   S.

Proof: Since S  S  S, then S   S  S  S  S  S since S  S by
(a).
(e) S is closed in Rn.

Proof: Since S   S  S by (d), then S cantains all its accumulation points. Hence, S
is closed.
Remark: There is another proof which is like (a). But it is too tedious to write.
(f) S is the intersection of all closed subsets of Rn containing S. That is, S is the

smallest closed set containing S.
Proof: It suffices to show that S  AS A, where A is closed. To show the statement,

we consider two steps as follows.
1.  Since S is closed and S  S , then AS A  S .
2.  Let x  S , then Bx, r  S   for any r  0. So, if A  S, then

Bx, r  A   for any r  0. It implies that x is an adherent point of A. Hence if A  S,
and A is closed, we have x  A. That is, x  AS A. So, S  AS A.
From 1 and 2, we have S  AS A.
Let S  T  S , where T is closed. Then S  AS A  T. It leads us to get T  S .

That is, S is the smallest closed set containing S.
Remark: In the exercise, there has something to remeber. We list them below.

Remark 1. If S  T, then S  T.
2. If S  T, then S  T .
3. S  S  S.
4. S is closed if, and only if S  S.
5. S is closed.
6. S is the smallest closed set containing S.

3.13 Let S and T be subsets of Rn. Prove that clS  T  clS  clT and that
S  clT  clS  T if S is open, where clS is the closure of S.
Proof: Since S  T  S and S  T  T, then clS  T  clS and,

clS  T  clT. So, clS  T  clS  clT.
Given an open set S , and let x  S  clT, then we have



1. x  S and S is open.
 Bx,d  S for some d  0.


Bx, r  S  Bx, r if r  d.
Bx, r  S  Bx,d if r  d.

and
2. x  clT

 Bx, r  T   for any r  0.
From 1 and 2, we know

Bx, r  S  T  Bx, r  S  T  Bx, r  T   if r  d.
Bx, r  S  T  Bx, r  S  T  Bx,d  T   if r  d.

So, it means that x is an adherent point of S  T. That is, x  clS  T. Hence,
S  clT  clS  T.
Remark: It is not necessary that clS  T  clS  clT. For example, S  Q and

T  Qc, then clS  T   and clS  clT  R1.
Note. The statements in Exercises 3.9 through 3.13 are true in any metric space.

3.14 A set S in Rn is called convex if, for every pair of points x and y in S and every
real  satisfying 0    1, we have x  1  y  S. Interpret this statement
geometrically (in R2 and R3 and prove that
(a) Every n ball in Rn is convex.
Proof: Given an n ball Bp, r, and let x, y  Bp, r. Consider x  1  y, where

0    1.
Then

x  1  y  p  x  p  1  y  p
 x  p  1  y  p
 r  1  r
 r.

So, we have x  1  y  Bp, r for 0    1. Hence, by the definition of convex,
we know that every n ball in Rn is convex.
(b) Every n dimensional open interval is convex.
Proof: Given an n dimensional open interval I  a1,b1 . . .an,bn. Let x, y  I,

and thus write x  x1,x2, . . . ,xn and y  y1,y2, . . .yn. Consider
x  1  y  x1  1  y1,x2  1  y2, . . . ,xn  1  yn where 0    1.
Then

ai  xi  1  yi  bi, where i  1,2, . . ,n.
So, we have x  1  y  I for 0    1. Hence, by the definition of convex, we

know that every n dimensional open interval is convex.
(c) The interior of a convex is convex.
Proof: Given a convex set S, and let x, y  intS. Then there exists r  0 such that

Bx, r  S, and By, r  S. Consider x  1  y : p  S, where 0    1, since S
is convex.



Claim that Bp, r  S as follows.
Let q  Bp, r, We want to find two special points x  Bx, r, and y  By, r such

that q  x  1  y.
Since the three n balls Bx, r, By, r, and Bp, r have the same radius. By

parallelogram principle, we let x  q  x  p, and y  q  y  p, then
x  x  q  p  r, and y  y  q  p  r.
It implies that x  Bx, r, and y  By, r. In addition,

x  1  y
 q  x  p  1  q  y  p
 q.

Since x, y  S, and S is convex, then q  x  1  y  S. It implies that Bp, r  S
since q is arbitrary. So, we have proved the claim. That is, for 0    1,
x  1  y  p  intS if x, y  intS, and S is convex. Hence, by the definition of
convex, we know that the interior of a convex is convex.
(d) The closure of a convex is convex.
Proof: Given a convex set S, and let x, y  S . Consider x  1  y : p, where

0    1, and claim that p  S , i.e., we want to show that Bp, r  S  .
Suppose NOT, there exists r  0 such that

Bp, r  S  .     *
Since x, y  S , then Bx, r2   S   and By,

r
2   S  . And let x  Bx,

r
2   S and

y  By, r2   S. Consider
x  1   y  p  x  1   y  x  1  y

 x  x  1   y  1  y


x  x  x  x 

1   y  1   y  1   y  1  y

 x  x  1   y  y  |  |x  y
 r
2  |  |x  y

 r
if we choose a suitable number , where 0    1.
Hence, we have the point x  1   y  Bp, r. Note that x, y  S and S is convex,

we have x  1   y  S. It leads us to get a contradiction by (*). Hence, we have proved
the claim. That is, for 0    1, x  1  y  p  S if x, y  S . Hence, by the
definition of convex, we know that the closure of a convex is convex.
3.15 Let F be a collection of sets in Rn, and let S  AF A and T  AF A. For each

of the following statements, either give a proof or exhibit a counterexample.
(a) If x is an accumulation point of T, then x is an accumulation point of each set A in

F.
Proof: Let x be an accumulation point of T, then Bx, r  x  T   for any

r  0. Note that for any A  F, we have T  A. Hence Bx, r  x  A   for any
r  0. That is, x is an accumulation point of A for any A  F.
The conclusion is that If x is an accumulation point of T  AF A, then x is an

accumulation point of each set A in F.



(b) If x is an accumulation point of S, then x is an accumulation point of at least one set
A in F.
Proof: No! For example, Let S  Rn, and F be the collection of sets consisting of a

single point x  Rn. Then it is trivially seen that S  AF A. And if x is an accumulation
point of S, then x is not an accumulation point of each set A in F.

3.16 Prove that the set S of rational numbers in the inerval 0,1 cannot be
expressed as the intersection of a countable collection of open sets. Hint: Write
S  x1,x2, . . ., assume that S  k1k Sk, where each Sk is open, and construct a
sequence Qn of closed intervals such that Qn1  Qn  Sn and such that xn  Qn.
Then use the Cantor intersection theorem to obtain a contradiction.
Proof:We prove the statement by method of contradiction. Write S  x1,x2, . . ., and

assume that S  k1k Sk, where each Sk is open.
Since x1  S1, there exists a bounded and open interval I1  S1 such that x1  I1.

Choose a closed interval Q1  I1 such that x1  Q1. Since Q1 is an interval, it contains
infinite rationals, call one of these, x2. Since x2  S2, there exists an open interval I2  S2
and I2  Q1. Choose a closed interval Q2  I2 such that x2  Q2. Suppose Qn has been
constructed so that

1. Qn is a closed interval.
2. Qn  Qn1  Sn1.
3. xn  Qn.

Since Qn is an interval, it contains infinite rationals, call one of these, xn1. Since
xn1  Sn1, there exists an open interval In1  Sn1 and In1  Qn. Choose a closed
interval Qn1  In1 such that xn1  Qn1. So, Qn1 satisfies our induction hypothesis, and
the construction can process.
Note that

1. For all n, Qn is not empty.
2. For all n, Qn is bounded since I1 is bounded.
3. Qn1  Qn.
4. xn  Qn.

Then n1n Qn   by Cantor Intersection Theorem.
Since Qn  Sn, n1n Qn  n1n Sn  S. So, we have

S  n1n Qn  n1n Qn  
which is absurb since S  n1n Qn   by the fact xn  Qn. Hence, we have proved that
our assumption does not hold. That is, S the set of rational numbers in the inerval 0,1
cannot be expressed as the intersection of a countable collection of open sets.
Remark: 1. Often, the property is described by saying Q is not an G set.
2. It should be noted that Qc is an G set.
3. For the famous Theorem called Cantor Intersection Theorem, the reader should

see another classical text book, Principles of Mathematical Analysis written by Walter
Rudin, Theorem 3.10 in page 53.
4. For the method of proof, the reader should see another classical text book, Principles

of Mathematical Analysis written by Walter Rudin, Theorem 2.43, in page 41.



Covering theorems in Rn

3.17 If S  Rn, prove that the collection of isolated points of S is countable.
Proof: Denote the collection of isolated points of S by F. Let x  F, there exists an

n ball Bx, rx  x  S  . Write Qn  x1,x2, . . ., then there are many numbers in
Qn lying on Bx, rx  x. We choose the smallest index, say m  mx, and denote x by
xm.
So, F  xm : m  P, where P N, a subset of positive integers. Hence, F is

countable.
3.18 Prove that the set of open disks in the xy plane with center x,x and radius

x  0, x rational, is a countable covering of the set x,y : x  0,y  0.
Proof: Denote the set of open disks in the xy plane with center x,x and radius x  0

by S. Choose any point a,b, where a  0, and b  0. We want to find an 2 ball
Bx,x,x  S which contains a,b. It suffices to find x  Q such that
x,x  a,b  x. Since

x,x  a,b  x  x,x  a,b2  x2  x2  2a  bx  a2  b2  0.
Since x2  2a  bx  a2  b2  x  a  b2  2ab, we can choose a suitable rational
number x such that x2  2a  bx  a2  b2  0 since a  0, and b  0. Hence, for any
point a,b, where a  0, and b  0, we can find an 2 ball Bx,x,x  S which
contains a,b.
That is, S is a countable covering of the set x,y : x  0, y  0.

Remark: The reader should give a geometric appearance or draw a graph.
3.19 The collection Fof open intervals of the form 1/n, 2/n, where n  2,3, . . . , is an

open covering of the open interval 0,1. Prove (without using Theorem 3.31) that no
finite subcollection of F covers 0,1.
Proof:Write F as  12 , 1, 

1
3 ,

2
3 , . . . , 

1
n , 2n , . . . . Obviously, F is an open covering

of 0,1. Assume that there exists a finite subcollection of F covers 0,1, and thus write
them as F   1n1 ,

1
m1 , . . . . , 

1
nk ,

1
mk . Choose p  0,1 so that p  min1ik

1
ni . Then

p   1ni ,
1
mi , where 1  i  k. It contracdicts the fact F covers 0,1.

Remark: The reader should be noted that if we use Theorem 3.31, then we cannot get
the correct proof. In other words, the author T. M. Apostol mistakes the statement.
3.20 Give an example of a set S which is closed but not bounded and exhibit a

coubtable open covering F such that no finite subset of F covers S.
Solution: Let S  R1, then R1 is closed but not bounded. And let

F  n,n  2 : n  Z, then F is a countable open covering of S. In additon, it is
trivially seen that no finite subset of F covers S.
3.21 Given a set S in Rn with the property that for every x in S there is an n ball Bx

such that Bx  S is coubtable. Prove that S is countable.
Proof: Note that F  Bx : x  S forms an open covering of S. Since S  Rn, then

there exists a countable subcover F F of S by Lindelof Covering Theorem.Write
F  Bxn : n  N. Since

S  S  nN Bxn  nN S  Bxn,
and

S  Bxn is countable by hypothesis.



Then S is countable.
Remark: The reader should be noted that exercise 3.21 is equivalent to exercise 3.23.
3.22 Prove that a collection of disjoint open sets in Rn is necessarily countable. Give an

example of a collection of disjoint closed sets which is not countable.
Proof: Let F be a collection of disjoint open sets in Rn, and write Qn  x1,x2, . . . .

Choose an open set S  in F, then there exists an n ball By, r  S. In this ball, there
are infinite numbers in Qn. We choose the smallest index, say m  my. Then we have
F  Sm : m  P  N which is countable.
For the example that a collection of disjoint closed sets which is not countable, we give

it as follows. Let G  x : x  Rn, then we complete it.
3.23 Assume that S  Rn. A point x in Rn is said to be condensation point of S if every

n ball Bx has the property that Bx  S is not countable. Prove that if S is not
countable, then there exists a point x in S such that x is a condensation point of S.
Proof: It is equivalent to exercise 3.21.
Remark: Compare with two definitions on a condensation point and an accumulation

point, it is easy to know that a condensation point is an accumulation point. However, am
accumulation point is not a condensation point, for example, S  1/n : n  N. We have
0 is an accumulation point of S, but not a condensation point of S.

3.24 Assume that S  Rn and assume that S is not countable. Let T denote the set of
condensation points of S. Prove that
(a) S  T is countable.
Proof: If S  T is uncountable, then there exists a point x in S  T such that x is a

condensation point of S  T by exercise 3.23. Obviously, x S is also a condensation
point of S. It implies x  T. So, we have x  S  T which is absurb since x  S  T.
Remark: The reader should regard T as a special part of S, and the advantage of T

helps us realize the uncountable set S Rn. Compare with Cantor-Bendixon Theorem
in exercise 3.25.
(b) S  T is not countable.
Proof: Suppose S  T is countable, then S  S  T  S  T is countable by (a)

which is absurb. So, S  T is not countable.
(c) T is a closed set.
Proof: Let x be an adherent point of T, then Bx, r  T   for any r  0. We want to

show x  T. That is to show x is a condensation point of S. Claim that Bx, r  S is
uncountable for any r  0.
Suppose NOT, then there exists an n ball Bx,d  S which is countable. Since x is an

adherent point of T, then Bx,d  T  . Choose y  Bx,d  T so that By,  Bx,d
and By,  S is uncountable. However, we get a contradiction since

By,  S is uncountable  Bx,d  S is countable .
Hence, Bx, r  S is uncountable for any r  0. That is, x  T. Since T contains its all
adherent points, T is closed.
(d) T contains no isolated points.
Proof: Let x  T, and if x is an isolated point of T, then there exists an n ball Bx,d

such that Bx,d  T  x. On the other hand, x  T means that Bx,d  x  S is



uncountable. Hence, by exercise 3.23, we know that there exists y  Bx,d  x  S
such that y is a condensation point of Bx,d  x  S. So, y is a condensation point of
S. It implies y  T. It is impossible since

1. y x  T.
2. y  Bx,d.
3. Bx,d  T  x.

Hence, x is not an isolated point of T, if x  T. That is, T contains no isolatd points.
Remark: Use exercise 3.25, by (c) and (d) we know that T is perfect.
Note that Exercise 3.23 is a special case of (b).

3.25 A set in Rn is called perfect if S  S, that is, if S is a closed set which contains
no isolated points. Prove that every uncountable closed set F in Rn can be expressed in the
form F  A  B, where A is perfect and B is countable (Cantor-Bendixon theorem).
Hint. Use Exercise 3.24.
Proof: Let F be a uncountable closed set in Rn. Then by exercise 3.24,

F  F  T  F  T, where T is the set of condensation points of F. Note that since F is
closed, T  F by the fact, a condensation point is an accumulation point. Define
F  T  A and F  T  B, then B is countable and A T is perfect.
Remark: 1. The reader should see another classical text book, Principles of

Mathematical Analysis written by Walter Rudin, Theorem 2.43, in page 41. Since the
theorem is famous, we list it below.
Theorem 2.43 Let P be a nonempty perfect set in Rk. Then P is uncountable.
Theorem Modefied 2.43 Let P be a nonempty perfect set in a complete separable

metric space. Then P is uncountable.
2. Let S has measure zero in R1. Prove that there is a nonempty perfect set P in R1 such

that P  S  .
Proof: Since S has measure zero, there exists a collection of open intervals Ik such

that
S  Ik and |Ik |  1.

Consider its complement Ikc which is closed with positive measure. Since the
complement has a positive measure, we know that it is uncountable. Hence, by
Cantor-Bendixon Theorem, we know that

Ikc  A  B, where A is perfect and B is countable.
So, let A  P, we have prove it.
Note: From the similar method, we can show that given any set S in R1 with measure

0  d  , there is a non-empty perfect set P such that P  S  . In particular, S  Q,
S the set of algebraic numbers, and so on. In addition, even for cases in Rk, it still holds.

Metric Spaces
3.26 In any metric space M,d prove that the empty set  and the whole set M are both

open and closed.
proof: In order to show the statement, it suffices to show that M is open and closed

since M  M  . Let x  M, then for any r  0, BMx, r  M. That is, x is an interior



point of M. Sinc x is arbitrary, we know that every point of M is interior. So, M is open.
Let x be an adherent point of M, it is clearly x  M since we consider all points lie in

M. Hence, M contains its all adherent points. It implies that M is closed.
Remark: The reader should regard the statement as a common sense.
3.27 Consider the following two metrics in Rn :
d1x,y  max1in|xi  yi |, d2x,y  i1

in|xi  yi |.
In each of the following metric spaces prove that the ball Ba; r has the geometric

appearance indicated:
(a) In R2,d1, a square with sides parallel to the coordinate axes.

Solution: It suffices to consider the case B0,0, 1. Let x  x1,x2  B0,0, 1,
then we have

|x1 |  1, and |x2 |  1.
So, it means that the ball B0,0, 1 is a square with sides lying on the coordinate axes.
Hence, we know that Ba; r is a square with sides parallel to the coordinate axes.
(b) In R2,d2, a square with diagonals parallel to the axes.

Solution: It suffices to consider the case B0,0, 1. Let x  x1,x2  B0,0, 1,
then we have

|x1  x2 |  1.
So, it means that the ball B0,0, 1 is a square with diagonals lying on the coordinate
axes. Hence, we know that Ba; r is a square with diagonals parallel to the coordinate
axes.
(c) A cube in R3,d1.

Solution:It suffices to consider the case B0,0, 0, 1. Let
x  x1,x2,x3  B0,0, 0, 1, then we have

|x1 |  1, |x2 |  1, and |x3 |  1.
So, it means that the ball B0,0, 0, 1 is a cube with length 2. Hence, we know that
Ba; r is a cube with length 2a.
(d) An octahedron in R3,d2.

Solution: It suffices to consider the case B0,0, 0, 1. Let
x  x1,x2,x3  B0,0, 0, 1, then we have

|x1  x2  x3 |  1.
It means that the ball B0,0, 0, 1 is an octahedron. Hence, Ba; r is an octahedron.
Remark: The exercise tells us one thing that Ba; r may not be an n ball if we

consider some different matrices.
3.28 Let d1 and d2 be the metrics of Exercise 3.27 and let x  y denote the usual

Euclidean metric. Prove that the following inequalities for all x and y in Rn :
d1x,y  x  y  d2x,y and d2x,y  n x  y  nd1x,y.

Proof: List the definitions of the three metrics, and compare with them as follows.



1. d1x,y  max1in|xi  yi |.

2. x  y  i1
inxi  yi2

1/2
.

3. d2x,y  i1
in|xi  yi |.

Then we have
(a)

d1x,y  max1in
|xi  yi |  max

1in
|xi  yi |2

1/2

 
i1

in

xi  yi2
1/2

 x  y.

(b)

x  y  
i1

in

xi  yi2
1/2

 
i1

in

|xi  yi |
2 1/2


i1

in

|xi  yi |  d2x,y.

(c)

n x  y  n 
i1

in

xi  yi2
1/2

 n
i1

in

xi  yi2
1/2

 n n max
1in

|xi  yi |
2 1/2

 nmax
1in

|xi  yi |

 d1x,y.
(d)

d2x,y2  
i1

in

|xi  yi |
2


i1

in

xi  yi2  
1ijn

2|xi  yi ||xj  yj |

 
i1

in

xi  yi2  n  1
i1

in

xi  yi2 by A. P. G. P.

 n
i1

in

xi  yi2

 nx  y2.
So,

d2x,y  n x  y.
From (a)-(d), we have proved these inequalities.
Remark: 1. Let M be a given set and suppose that M,d and M,d  are metric spaces.

We define the metrics d and d are equivalent if, and only if, there exist positive constants
,  such that

dx,y  dx,y  dx,y.
The concept is much important for us to consider the same set with different metrics. For



example, in this exercise, Since three metrics are equivalent, it is easy to know that
Rk,d1, Rk,d2, and Rk,.  are complete. (For definition of complete metric space,
the reader can see this text book, page 74.)
2. It should be noted that on a finite dimensional vector space X, any two norms are

equivalent.

3.29 If M,d is a metric space, define dx,y  dx,y
1dx,y . Prove that d

 is also a metric
for M. Note that 0  dx,y  1 for all x, y in M.
Proof: In order to show that d is a metric for M, we consider the following four steps.
(1) For x  M, dx,x  0 since dx,x  0.
(2) For x  y, dx,y  dx,y

1dx,y  0 since dx,y  0.
(3) For x,y  M, dx,y  dx,y

1dx,y  dy,x
1dy,x  dy,x

(4) For x,y, z  M,

dx,y  dx,y
1  dx,y  1  1

1  dx,y

 1  1
1  dx, z  dz,y since dx,y  dx, z  dz,y

 dx, z  dz,y
1  dx, z  dz,y

 dx, z
1  dx, z  dz,y 

dz,y
1  dx, z  dz,y

 dx, z
1  dx, z 

dz,y
1  dz,y

 dx, z  dz,y
Hence, from (1)-(4), we know that d is also a metric for M. Obviously,

0  dx,y  1 for all x, y in M.
Remark: 1. The exercise tells us how to form a new metric from an old metric. Also,

the reader should compare with exercise 3.37. This is another construction.
2. Recall Discrete metric d, we find that given any set nonempty S, S,d is a metric

space, and thus use the exercise, we get another metric space S,d, and so on. Hence,
here is a common sense that given any nonempty set, we can use discrete metric to form
many and many metric spaces.
3.30 Prove that every finite subset of a metric space is closed.
Proof: Let x be an adherent point of a finite subet S  xi : i  1,2, . . . ,n of a metric

space M,d. Then for any r  0, Bx, r  S  . If x  S, then BMx,  S   where
  min1ijn dxi,xj.  It is impossible. Hence, x  S. That is, S contains its all adherent
points. So, S is closed.
3.31 In a metric space M,d the closed ball of radius r  0 about a point a in M is the

set B a; r x : dx,a  r.
(a) Prove that B a; r is a closed set.

Proof: Let x  M  B a; r, then dx,a  r. Consider Bx,, where   dx,ar
2 ,

then if y  Bx,, we have dy,a  dx,a  dx,y  dx,a    dx,ar
2  r. Hence,

Bx,  M  B a; r. That is, every point of M  B a; r is interior. So, M  B a; r is
open, or equivalently, B a; r is a closed set.



(b) Give an example of a metric space in which B a; r is not the closure of the open
ball Ba; r.
Solution: Consider discrete metric space M, then we have let x  M

The closure of Ba; 1  a
and

B a; 1  M.
Hence, if we let a is a proper subset of M, then B a; 1 is not the closure of the open ball
Ba; 1.
3.32 In a metric space M, if subsets satisfy A  S  A , where A is the closure of A,

then A is said to be dense in S. For example, the set Q of rational numbers is dense in R. If
A is dense in S and if S is dense in T, prove that A is dense in T.
Proof: Since A is dense in S and S is dense in T, we have A  S and S  T. Then

A  T. That is, A is dense in T.
3.33 Refer to exercise 3.32. A metric space M is said to be separable if there is a

countable subset A which is dense in M. For example, R1 is separable becasue the set Q of
rational numbrs is a countable dense subset. Prove that every Euclidean space Rk is
separable.
Proof: Since Qk is a countable subset of Rk, and Q k  Rk, then we know that Rk is

separable.

3.34 Refer to exercise 3.33. Prove that the Lindelof covering theorem (Theorem 3.28)
is valid in any separable metric space.
Proof: Let M,d be a separable metric space. Then there exists a countable subset

S  xn : n  N M which is dense in M. Given a set A  M, and an open covering F
of A. Write P  Bxn, rm : xn  S, rm  Q.
Claim that if x  M, and G is an open set in M which contains x. Then

x  Bxn, rm  G for some Bxn, rm  P.
Since x  G, there exists Bx, rx  G for some rx  0. Note that x  clS since S is

dense in M. Then, Bx, rx/2  S  . So, if we choose xn  Bx, rx/2  S and rm  Q
with rx/2  rm  rx/3, then we have

x  Bxn, rm
and

Bxn, rm  Bx, rx
since if y  Bxn, rm, then

dy,x  dy,xn  dxn,x
 rm  rx2
 rx
3  rx2

 rx
So, we have prvoed the claim x  Bxn, rm  Bx, rx  G or some Bxn, rm  P.
Use the claim to show the statement as follows. Write A  GF G, and let x  A, then

there is an open set G in F such that x  G. By the claim, there is Bxn, rm : Bnm in P
such that x  Bnm  G. There are, of course, infinitely many such Bnm corresponding to
each G, but we choose only one of these, for example, the one of smallest index, say
q  qx. Then we have x  Bqx  G.



The set of all Bqx obtained as x varies over all elements of A is a countable collection
of open sets which covers A. To get a countable subcollection of F which covers A, we
simply correlate to each set Bqx one of the sets G of F which contained Bqx. This
complete the proof.
3.35 Refer to exercise 3.32. If A is dense in S and B is open in S, prove that

B  clA  B, where clA  B means the closure of A  B.
Hint. Exercise 3.13.
Proof: Since A is dense in S and B is open in S, A  S and S  B  B. Then

B  S  B
 A  B, B is open in S
 clA  B

by exercise 3.13.
3.36 Refer to exercise 3.32. If each of A and B is dense in S and if B is open in S, prove

that A  B is dense in S.
Proof: Since

clA  B, B is open
 clA  B by exercise 3.13
 S  B since A is dense in S
 B since B is open in S

then
clA  B  B

which implies
clA  B  S

since B is dense in S.
3.37 Given two metric spaces S1,d1 and S2,d2, a metric  for the Cartesian

product S1  S2 can be constructed from d1  d2 in may ways. For example, if x  x1,x2
and y  y1,y2 are in S1  S2, let x,y  d1x1,y1  d2x2,y2. Prove that  is a
metric for S1  S2 and construct further examples.
Proof: In order to show that  is a metric for S1  S2, we consider the following four

steps.
(1) For x  x1,x2  S1  S2, x,x  d1x1,x1  d2x2,x2  0  0  0.
(2) For x  y, x,y  d1x1,y1  d2x2,y2  0 since if x,y  0, then x1  y1

and x2  y2.
(3) For x,y  S1  S2,

x,y  d1x1,y1  d2x2,y2
 d1y1,x1  d2y2,x2
 y,x.

(4) For x,y, z  S1  S2,
x,y  d1x1,y1  d2x2,y2

 d1x1, z1  d1z1,y1  d2x2, z2  d2z2,y2
 d1x1, z1  d2x2, z2  d1z1,y1  d2z2,y2
 x, z  z,y.



Hence from (1)-(4), we know that  is a metric for S1  S2.
For other metrics, we define

1x,y : d1x1,y1  d2x2,y2 for ,  0.

2x,y : d1x1,y1 
d2x2,y2

1  d2x2,y2
and so on. (The proof is similar with us by above exercises.)

Compact subsets of a metric space

3.38 Assume S  T  M. Then S is compact in M,d if, and only if, S is compact in
the metric subspace T,d.
Proof: Suppose that S is compact in M,d. Let F  O : O is open in T be an

open covering of S. Since O is open in T, there exists the corresponding G which is open
in M such that G  T  O. It is clear that G forms an open covering of S. So there is
a finite subcovering G1, . . . ,Gn of S since S is compact in M,d. That is, S  k1kn Gk.
It implies that

S  T  S
 T  k1kn Gk. 
 k1kn T  Gk
 k1kn Ok F.

So, we find a fnite subcovering O1, . . . ,On of S. That is, S is compact in T,d.
Suppose that S is compact in T,d. Let G  G : G is open in M be an open

covering of S. Since G  T : O is open in T, the collection O forms an open
covering of S. So, there is a finite subcovering O1, . . . ,On of S since S is compact in
T,d. That is, S  k1kn Ok. It implis that

S  k1kn Ok  k1kn Gk.
So, we find a finite subcovering G1, . . . ,Gn of S. That is, S is compact in M,d.
Remark: The exercise tells us one thing that the property of compact is not changed,

but we should note the property of being open may be changed. For example, in the
2 dimensional Euclidean space, an open interval a,b is not open since a,b cannot
contain any 2 ball.
3.39 If S is a closed and T is compact, then S  T is compact.
Proof: Since T is compact, T is closed. We have S  T is closed. Since S  T  T, by

Theorem 3.39, we know that S  T is compact.
3.40 The intersection of an arbitrary collection of compact subsets of M is compact.
Proof: Let F  T : T is compacet in M , and thus consider TF T, where F  F.

We have TF T is closed. Choose S  F. then we have TF T  S. Hence, by
Theorem 3.39 TF T is compact.
3.41 The union of a finite number of compact subsets of M is cmpact.
Proof: Denote Tk is a compact subset of M : k  1,2, . .n by S. Let F be an open

covering of k1kn Tk. If there does NOT exist a finite subcovering of k1kn Tk, then there
does not exist a finite subcovering of Tm for some Tm  S. Since F is also an open
covering of Tm, it leads us to get Tm is not compact which is absurb. Hence, if F is an open
covering of k1kn Tk, then there exists a finite subcovering of k1kn Tk. So, k1kn Tk is



compact.

3.42 Consider the metric space Q of rational numbers with the Euclidean metric of
R1. Let S consists of all rational numbers in the open interval a,b, where a and b are
irrational. Then S is a closed and bounded subset of Q which is not compact.
Proof: Obviously, S is bounded. Let x  Q  S, then x  a, or x  b. If x  a, then

BQx,d  x  d,x  d  Q  Q  S, where d  a  x. Similarly, x  b. Hence, x is an
interior point of Q  S. That is, Q  S is open, or equivalently, S is closed.
Remark: 1. The exercise tells us an counterexample about that in a metric space, a

closed and bounded subset is not necessary to be compact.
2. Here is another counterexample. Let M be an infinite set, and thus consider the

metric space M,d with discrete metric d. Then by the fact Bx, 1/2  x for any x  M,
we know that F  Bx, 1/2 : x  M forms an open covering of M. It is clear that there
does not exist a finite subcovering of M. Hence, M is not compact.
3.In any metric space M,d, we have three equivalent conditions on compact which

list them below. Let S  M.
(a) Given any open covering of S, there exists a finite subcovering of S.
(b) Every infinite subset of S has an accumulation point in S.
(c) S is totally bounded and complete.
4. It should be note that if we consider the Euclidean spaceRn,d, we have four

equivalent conditions on compact which list them below. Let S  Rn.
Remark (a) Given any open covering of S, there exists a finite subcovering of S.

(b) Every infinite subset of S has an accumulation point in S.
(c) S is totally bounded and complete.
(d) S is bounded and closed.

5. The concept of compact is familar with us since it can be regarded as a extension of
Bolzano Weierstrass Theorem.

Miscellaneous properties of the interior and the boundary
If A and B denote arbitrary subsets of a metric space M, prove that:
3.43 intA  M  clM  A.
Proof: In order to show the statement, it suffices to show that M  intA  clM  A.
1.  Let x  M  intA, we want to show that x  clM  A, i.e.,

Bx, r  M  A   for all r  0. Suppose Bx,d  M  A   for some d  0. Then
Bx,d  A which implies that x  intA. It leads us to get a conradiction since
x  M  intA. Hence, if x  M  intA, then x  clM  A. That is,
M  intA  clM  A.
2.  Let x  clM  A, we want to show that x  M  intA, i.e., x is not an interior

point of A. Suppose x is an interior point of A, then Bx,d  A for some d  0. However,
since x  clM  A, then Bx,d  M  A  . It leads us to get a conradiction since
Bx,d  A. Hence, if x  clM  A, then x  M  intA. That is, clM  A  M  intA.
From 1 and 2, we know that M  intA  clM  A, or equvilantly,

intA  M  clM  A.



3.44 intM  A  M  A .
Proof: Let B  M  A, and by exercise 3.33, we know that

M  intB  clM  B
which implies that

intB  M  clM  B
which implies that

intM  A  M  clA.

3.45 intintA  intA.
Proof: Since S is open if, and only if, S  intS. Hence, Let S  intA, we have the

equality intintA  intA.
3.46
(a) inti1n Ai  i1n intAi, where each Ai  M.

Proof:We prove the equality by considering two steps.
(1)  Since i1n Ai  Ai for all i  1,2, . . . ,n, then inti1n Ai  intAi for all

i  1,2, . . . ,n. Hence, inti1n Ai  i1n intAi.
(2)  Since intAi  Ai, then i1n intAi  i1n Ai. Since i1n intAi is open, we

have
i1n intAi  inti1n Ai.

From (1) and (2), we know that inti1n Ai  i1n intAi.

Remark: Note (2), we use the theorem, a finite intersection of an open sets is open.
Hence, we ask whether an infinite intersection has the same conclusion or not.
Unfortunately, the answer is NO! Just see (b) and (c) in this exercise.
(b) intAF A  AF intA, if F is an infinite collection of subsets of M.
Proof: Since AF A  A for all A  F. Then intAF A  intA for all A  F.

Hence, intAF A  AF intA.
(c) Give an example where eqaulity does not hold in (b).
Proof: Let F 1n , 1n  : n  N, then intAF A  , and AF intA  0. So,

we can see that in this case, intAF A is a proper subset of AF intA. Hence, the
equality does not hold in (b).
Remark: The key to find the counterexample, it is similar to find an example that an

infinite intersection of opens set is not open.
3.47
(a) AF intA  intAF A.
Proof: Since intA  A, AF intA  AF A. We have AF intA  intAF A

since AF intA is open.
(b) Give an example of a finite collection F in which equality does not hold in (a).
Solution: Consider F  Q,Qc, then we have intQ  intQc   and

intQ  Qc  intR1  R1. Hence, intQ  intQc   is a proper subset of
intQ  Qc  R1. That is, the equality does not hold in (a).
3.48



(a) intA   if A is open or if A is closed in M.
Proof: (1) Suppose that A is open. We prove it by the method of contradiction. Assume

that intA  , and thus choose
x  intA
 intclA  clM  A
 intclA  M  A
 intclA  intM  A since intS  T  intS  intT.

Since
x  intclA  Bx, r1  clA  A  A

and
x  intM  A  Bx, r2  M  A  Ac     *

we choose r  minr1, r2, then Bx, r  A  A  Ac  A  Ac. However,
x  A and x  A  Bx, r  A   for this r.     **

Hence, we get a contradiction since
Bx, r  A   by (*)

and
Bx, r  A   by (**).

That is, intA   if A is open.
(2) Suppose that A is closed, then we have M  A is open. By (1), we have

intM  A  .
Note that

M  A  clM  A  clM  M  A
 clM  A  clA
 A

. Hence, intA   if A is closed.
(b) Give an example in which intA  M.
Solution: Let M  R1, and A  Q, then

A  clA  clM  A  clQ  clQc  R1. Hence, we have R1  intA  M.
3.49 If intA  intB   and if A is closed in M, then intA  B  .
Proof: Assume that intA  B  , then choose x  intA  B, then there exists

Bx, r  A  B for some r  0. In addition, since intA  , we find that Bx, r  A.
Hence, Bx, r  B  A  . It implies Bx, r  M  A  . Choose
y  Bx, r  M  A, then we have

y  Bx, r  By,1  Bx, r, where 0  1  r
and

y  M  A  By,2  M  A, forsome 2  0.
Choose   min1,2, then we have

By,  Bx, r  M  A
 A  B  Ac

 B.



That is, intB   which is absurb. Hence, we have intA  B  .
3.50 Give an example in which intA  intB   but intA  B  M.
Solution: Consider the Euclidean sapce R1, |. |. Let A  Q, and B  Qc, then

intA  intB   but intA  B  R1.
3.51 A  clA  clM  A and A  M  A.
Proof: By the definition of the boundary of a set, it is clear that

A  clA  clM  A. In addition, A  clA  clM  A, and
M  A  clM  A  clM  M  A  clM  A  clA. Hence, we have
A  M  A.
Remark: It had better regard the exercise as a formula.
3.52 If clA  clB  , then A  B  A  B.
Proof:We prove it by two steps.
(1)  Let x  A  B, then for all r  0,

Bx, r  A  B    Bx, r  A  Bx, r  B  
and

Bx, r  A  Bc    Bx, r  Ac  Bc       *
Note that at least one of Bx, r  A and Bx, r  B is not empty. Without loss of
generality, we say Bx, r  A  . Then by (*), we have for all r  0,

Bx, r  A  , and Bx, r  Ac  .
That is, x  A. Hence, we have proved A  B  A  B.
(2)  Let x  A  B. Without loss of generality, we let x  A. Then

Bx, r  A  , and Bx, r  Ac  .
Since Bx, r  A  , we have

Bx, r  A  B  Bx, r  A  Bx, r  B  .     **
Claim that Bx, r  A  Bc  Bx, r  Ac  Bc  . Suppsoe NOT, it means that
Bx, r  Ac  Bc  . Then we have

Bx, r  A  Bx, r  clA
and

Bx, r  B  Bx, r  clB.
It implies that by hypothesis, Bx, r  clA  clB   which is absurb. Hence, we have
proved the claim. We have proved that

Bx, r  A  B   by(**).
and

Bx, r  A  Bc  .
That is, x  A  B. Hence, we have proved A  B  A  B.
From (1) and (2), we have proved that A  B  A  B.

Supplement on a separable metric space
Definition (Base) A collection V of open subsets of X is said to be a base for X if the

following is true: For every x  X and every open set G  X such that x  G, we
have

x  V  G for some .



In other words, every open set in X is the union of a subcollection of V.
Theorem Every separable metric space has a countable base.

Proof: Let M,d be a separable metric space with S  x1, . . . ,xn, . . . 
satisfying clS  M. Consider a collection Bxi, 1k  : i,k  N, then given any
x  M and x  G, where G is open in X, we have Bx,  G for some   0.
Since S is dense in M, we know that there is a set Bxi, 1k  for some i, k, such that
x  Bxi, 1k   Bx,  G. So, we know that M has a countable base.

Corollary Rk, where k  N, has a countable base.
Proof: Since Rk is separable, by Theorem 1, we know that Rk has a countable

base.
Theorem Every compact metric space is separable.

Proof: Let K,d be a compact metric space, and given a radius 1/n, we have
K  i1

p B xi
n, 1/n .

Let S  xi
n : i,n  N , then it is clear S is countable. In order to show that S is

dense in K, given x  K, we want to show that x is an adherent point of S.
Consider Bx, for any   0, there is a point xi

n in S such that
B xi

n, 1/n  Bx, since 1/n  0. Hence, we have shown that Bx,  S  .
That is, x  clS which implies that K  clS. So, we finally have K is separable.

Corollary Every compact metric space has a countable base.
Proof: It is immediately from Theorem 1.

Remark This corallary can be used to show that Arzela-Ascoli Theorem.



Limits And Continuity

Limits of sequence
4.1 Prove each of the following statements about sequences in C.
(a) zn  0 if |z|  1; zn diverges if |z|  1.
Proof: For the part: zn  0 if |z|  1. Given   0, we want to find that there exists a

positive integer N such that as n  N, we have
|zn  0|  .

Note that log|z|  0 since |z|  1, hence if we choose a positive integer N  log|z|  1,
then as n  N, we have

|zn  0|  .
For the part: zn diverges if |z|  1. Assume that zn converges to L, then given

  1, there exists a positive integer N1 such that as n  N1, we have
|zn  L|  1 

 |z|n  1  |L|.     *
However, note that log|z|  0 since |z|  1, if we choose a positive integer
N  max log|z|1  |L|  1,N1 , then we have

|z|N  1  |L|
which contradicts (*). Hence, zn diverges if |z|  1.
Remark: 1. Given any complex number z  C  0, limn|z|1/n  1.

2. Keep limnn!1/n   in mind.
3. In fact, zn is unbounded if |z|  1. ( zn diverges if |z|  1. ) Since given

M  1, and choose a positive integer N  log|z|M  1, then |z|N  M.

(b) If zn  0 and if cn is bounded, then cnzn  0.
Proof: Since cn is bounded, say its bound M, i.e., |cn |  M for all n  N. In

addition, since zn  0, given   0, there exists a positive integer N such that as n  N,
we have

|zn  0|  /M
which implies that as n  N, we have

|cnzn |  M|zn |  .
That is, limn cnzn  0.
(c) zn/n!  0 for every complex z.
Proof: Given a complex z, and thus find a positive integer N such that |z|  N/2.

Consider (let n  N).
zn
n!  zN

N!
znN

N  1N  2   n  zN
N!

1
2

nN
 0 as n  .

Hence, zn/n!  0 for every complex z.
Remark: There is another proof by using the factn1

 an converges which implies
an  0. Sincen1

 zn
n! converges by ratio test for every complex z, then we have



zn/n!  0 for every complex z.

(d) If an  n2  2  n, then an  0.
Proof: Since

0  an  n2  2  n  2
n2  2  n

 1n for all n  N,

and limn 1/n  0, we have an  0 as n   by Sandwich Theorem.

4.2 If an2  an1  an/2 for all n  1, show that an  a1  2a2/3. Hint:
an2  an1  1

2 an  an1.

Proof: Since an2  an1  an/2 for all n  1, we have bn1  bn/2, where
bn  an1  an. So, we have

bn1  1
2

n
b1  0 as n  .     *

Consider

an2  a2 
k2

n1

bk  12 
k1

n

bk  1
2 an1  a1

which implies that

bn  3an1
2  a1  2a2

2 .

So we have
an  a1  2a2/3 by (*).

4.3 If 0  x1  1 and if xn1  1  1  xn for all n  1, prove that xn is a
decreasing sequence with limit 0. Prove also that xn1/xn  1

2 .

Proof: Claim that 0  xn  1 for all n  N. We prove the claim byMathematical
Induction. As n  1, there is nothing to prove. Suppose that n  k holds, i.e., 0  xk  1,
then as n  k  1, we have

0  xk1  1  1  xk  1 by induction hypothesis.
So, byMathematical Induction, we have proved the claim. Use the claim, and then we
have

xn1  xn  1  xn  1  xn  xnxn  1
1  xn2  1  xn

 0 since 0  xn  1.

So, we know that the sequence xn is a decreasing sequence. Since 0  xn  1 for all
n  N, by Completeness of R, (That is, a monotonic sequence in R which is bounded is
a convergent sequence.) Hence, we have proved that xn is a convergent sequence,
denoted its limit by x. Note that since

xn1  1  1  xn for all n  N,
we have x  limn xn1  limn 1  1  xn  1  1  x which implies xx  1  0.
Since xn is a decreasing sequence with 0  xn  1 for all n  N, we finally have x  0.
For proof of xn1/xn  1

2 . Since

lim
x0

1  1  x
x  1

2     *

then we have



xn1
xn 

1  1  xn
xn  1

2 .

Remark: In (*), it is the derivative of 1  1  x at the point x  0. Of course, we can
prove (*) by L-Hospital Rule.
4.4 Two sequences of positive integers an and bn are defined recursively by taking

a1  b1  1 and equating rational and irrational parts in the equation

an  bn 2  an1  bn1 2
2
for n  2.

Prove that an2  2bn2  1 for all n  2. Deduce that an/bn  2 through values  2 , and
that 2bn/an  2 through values  2 .

Proof: Note an  bn 2  an1  bn1 2
2 for n  2, we have

an  an12  2bn12 for n  2, and
bn  2an1bn1 for n  2

    *

since if A,B,C, and D  N with A  B 2  C  D 2 , then A  C, and B  D.
Claim that an2  2bn2  1 for all n  2. We prove the claim byMathematical

Induction. As n  2, we have by (*)
a22  2b22  a12  2b12

2  22a1b12  1  22  222  1. Suppose that as n  k 2
holds, i.e., ak2  2bk2  1, then as n  k  1, we have by (*)

ak12  2bk12  ak2  2bk2
2  22akbk2

 ak4  4bk4  4ak2bk2

 ak2  2bk2
2

 1 by induction hypothesis.
Hence, byMathematical Induction, we have proved the claim. Note that an2  2bn2  1 for
all n  2, we have

an
bn

2
 1

bn

2
 2  2

and
2bn
an

2
 2  2

an2
 2.

Hence, limn an
bn  2 by limn 1

bn  0 from (*) through values  2 , and
limn 2bn

an  2 by limn 1
an  0 from (*) through values  2 .

Remark: From (*), we know that an and bn is increasing since an  N and
bn  N. That is, we have limn an  , and limn bn  .
4.5 A real sequence xn satisfies 7xn1  xn3  6 for n  1. If x1  1

2 , prove that the
sequence increases and find its limit. What happens if x1  3

2 or if x1 
5
2 ?

Proof: Claim that if x1  1
2 , then 0  xn  1 for all n  N. We prove the claim by

Mathematical Induction. As n  1, 0  x1  1
2  1. Suppose that n  k holds, i.e.,

0  xk  1, then as n  k  1, we have

0  xk1 
xk3  6
7  1  6

7  1 by induction hypothesis.

Hence, we have prove the claim byMathematical Induction. Since
x3  7x  6  x  3x  1x  2, then



xn1  xn  xn3  6
7  xn

 xn3  7xn  6
7

 0 since 0  xn  1 for all n  N.
It means that the sequence xn (strictly) increasing. Since xn is bounded, by
completeness of R, we know that he sequence xn is convergent, denote its limit by x.
Since

x  limn xn1  limn
xn3  6
7  x3  6

7 ,

we find that x  3,1, or 2. Since 0  xn  1 for all n  N, we finally have x  1.
Claim that if x1  3

2 , then 1  xn  2 for all n  N. We prove the claim by
Mathematical Induction. As n  1, there is nothing to prove. Suppose n  k holds, i.e.,
1  xk  2, then as n  k  1, we have

1  1  6
7  xk1 

xk3  6
7  23  6

7  2.

Hence, we have prove the claim byMathematical Induction. Since
x3  7x  6  x  3x  1x  2, then

xn1  xn  xn3  6
7  xn

 xn3  7xn  6
7

 0 since 1  xn  2 for all n  N.
It means that the sequence xn (strictly) decreasing. Since xn is bounded, by
completeness of R, we know that he sequence xn is convergent, denote its limit by x.
Since

x  limn xn1  limn
xn3  6
7  x3  6

7 ,

we find that x  3,1, or 2. Since 1  xn  2 for all n  N, we finally have x  1.
Claim that if x1  5

2 , then xn 
5
2 for all n  N. We prove the claim by

Mathematical Induction. As n  1, there is nothing to prove. Suppose n  k holds, i.e.,
xk  5

2 , then as n  k  1,

xk1 
xk3  6
7 

 52 
3
 6
7  173

56  3  5
2 .

Hence, we have proved the claim byMathematical Induction. If xn was convergent,
say its limit x. Then the possibilities for x  3,1, or 2. However, xn  5

2 for all n  N.
So, xn diverges if x1  5

2 .

Remark: Note that in the case x1  5/2, we can show that xn is increasing by the
same method. So, it implies that xn is unbounded.
4.6 If |an |  2 and |an2  an1 |  1

8 |an1
2  an2 | for all n  1, prove that an

converges.
Proof: Let an1  an  bn, then we have |bn1 |  1

8 |bn ||an1  an | 
1
2 |bn |, since

|an |  2 for all n  1. So, we have |bn1 |   12 
n|b1 |. Consider (Let m  n)



|am  an |  |am  am1  am1  am2 . . .an1  an|
 |bm1 | . . .|bn |

 |b1 | 1
2

m2
. . . 1

2
n1

,     *

then an is a Cauchy sequence since 12 
k converges. Hence, we know that an is a

convergent sequence.
Remark: In this exercise, we use the very important theorem, every Cauchy sequence

in the Euclidean space Rk is convergent.
4.7 In a metric space S,d, assume that xn  x and yn  y. Prove that

dxn,yn  dx,y.
Proof: Since xn  x and yn  y, given   0, there exists a positive integer N such

that as n  N, we have
dxn,x  /2 and dyn,y  /2.

Hence, as n  N, we have
|dxn,yn  dx,y|  |dxn,x  dyn,y|

 dxn,x  dyn,y  /2  /2
 .

So, it means that dxn,yn  dx,y.
4.8 Prove that in a compact meric space S,d, every sequence in S has a subsequence

which converges in S. This property also implies that S is compact but you are not required
to prove this. (For a proof see either Reference 4.2 or 4.3.)
Proof: Given a sequence xn  S, and let T  x1,x2, . . . . If the range of T is finite,

there is nothing to prove. So, we assume that the range of T is infinite. Since S is compact,
and T  S, we have T has a accumulation point x in S. So, there exists a point yn in T such
that Byn,x  1

n . It implies that yn  x. Hence, we have proved that every sequence in S
has a subsequence which converges in S.
Remark: If every sequence in S has a subsequence which converges in S, then S is

compact.We give a proof as follows.
Proof: In order to show S is compact, it suffices to show that every infinite subset of S

has an accumulation point in S. Given any infinite subset T of S, and thus we choose
xn  T (of course in S). By hypothesis, xn has a subsequence xkn which converges
in S, say its limit x. From definition of limit of a sequence, we know that x is an
accumulation of T. So, S is compact.
4.9 Let A be a subset of a metric space S. If A is complete, prove that A is closed. Prove

that the converse also holds if S is complete.
Proof: Let x be an accumulation point of A, then there exists a sequence xn such that

xn  x. Since xn is convergent, we know that xn is a Cauchy sequence. And A is
complete, we have xn converges to a point y  A. By uniqueness, we know x  y  A.
So, A contains its all accumulation points. That is, A is closed.
Suppose that S is complete and A is closed in S. Given any Cauchy sequence

xn  A, we want to show xn is converges to a point in A. Trivially, xn is also a
Cauchy sequence in S. Since S is complete, we know that xn is convergent to a point x in
S. By definition of limit of a sequence, it is easy to know that x is an adherent point of A.
So, x  A since A is closed. That is, every Cauchy sequence in A is convergent. So, A is



complete.
Supplement

1. Show that the sequence

limn
2n!!

2n  1!!  0.

Proof: Let a and b be positive integers satisfying a  b  1. Then we have
a!b  a!b!  a  b!  ab!.     *

So, if we let fn  2n!, then we have, by (*)
2n!!

2n  1!!  fn!
fn2n  1! 

1
2n  1  0.

Hence, we know that limn 2n!!
2n1!!  0.

2. Show that

an  1  1n 1  2n    1   n 
n  e1/2 as n  ,

where x means Gauss Symbol.
Proof: Since

x  12 x
2  log1  x  x, for all x  1,1

we have


k1

k n 
k
n 

1
2

k
n

2
 logan  

k1

k n 

log 1  kn  
k1

k n 
k
n

Consider i2  n  i  12, then by Sandwish Theorem, we know that
limn logan  1/2

which implies that an  e1/2 as n  .

3. Show that n!1/n  n for all n  N. ( n!1/n   as n  . )

Proof: We prove it by a special method following Gauss’ method. Consider
n!  1         k         n
 n   n  k  1      1

and thus let fk : kn  k  1, it is easy to show that fk  f1  n for all
k  1,2, . . . ,n. So, we have prove that

n!2  nn

which implies that
n!1/n  n .

Remark: There are many and many method to show n!1/n   as n  . We do not
give a detail proofs about it. But We method it as follows as references.
(a) By A.P. G.P. , we have

k1
n 1

k
n  1

n!
1/n



and use the fact if an converges to a, then so is
k1

n
ak

n .

(b) Use the fact, byMathematical Induction, n!1/n  n/3 for all n.
(c) Use the fact, An/n!  0 as n   for any real A.
(d) Consider pn   n!nn 

1/n, and thus taking logpn.
(e) Use the famuos formula, an are positive for all n.

lim inf an1an  lim infan1/n  lim supan1/n  lim sup an1an
and let an   n!nn .
(f) The radius of the power seriesk0

 xk
k! is .

(g) Ue the fact, 1  1/nn  e  1  1/nn1, then ennen  n!  enn1en.
(h) More.

Limits of functions
Note. In Exercise 4.10 through 4.28, all functions are real valued.
4.10 Let f be defined on an opne interval a,b and assume x  a,b. Consider the

two statements
(a) limh0|fx  h  fx|  0;
(b) limh0|fx  h  fx  h|  0.
Prove that (a) always implies (b), and give an example in which (b) holds but (a) does

not.
Proof: (a) Since

lim
h0
|fx  h  fx|  0  lim

h0
|fx  h  fx|  0,

we consider
|fx  h  fx  h|

 |fx  h  fx  fx  fx  h|
 |fx  h  fx|  |fx  fx  h|  0 as h  0.

So, we have
lim
h0
|fx  h  fx  h|  0.

(b) Let

fx 
|x| if x  0,
1 if x  0.

Then
lim
h0
|f0  h  f0  h|  0,

but
lim
h0
|f0  h  f0|  lim

h0
||h|  1|  1.

So, (b) holds but (a) does not.
Remark: In case (b), there is another example,



gx 
1/|x| if x  0,
0 if x  0.

The difference of two examples is that the limit of |g0  h  g0| does not exist as h
tends to 0.

4.11 Let f be defined on R2. If
lim

x,ya,b
fx,y  L

and if the one-dimensional limxa fx,y and limyb fx,y both exist, prove that

limxa limyb fx,y  lim
yb

limxa fx,y  L.

Proof: Since limx,ya,b fx,y  L, then given   0, there exists a   0 such that as
0  |x,y  a,b|  , we have

|fx,y  L|  /2,
which implies

lim
yb
|fx,y  L|  lim

yb
fx,y  L  /2 if 0  |x,y  a,b|  

which implies

limxa limyb fx,y  L  /2 if 0  |x,y  a,b|  .

Hence, we have proved limxa|limybx,y  L|  /2  . Since  is arbitrary, we have

limxa limyb fx,y  L  0

which implies that

limxa limyb fx,y  L  0.

So, limxalimyb fx,y  L. The proof of limyblimxa fx,y  L is similar.

Remark: 1. The exercise is much important since in mathematics, we would encounter
many and many similar questions about the interchange of the order of limits. So, we
should keep the exercise in mind.
2. In the proof, we use the concept: |limxa fx|  0 if, and only if limxa fx  0.
3. The hypothesis fx,y  L as x,y  a,b tells us that every approach form these

points x,y to the point a,b, fx,y approaches to L. Use this concept, and consider the
special approach from points x,y to x,b and thus from x,b to a,b. Note that since
limyb fx,y exists, it means that we can regrad this special approach as one of approaches
from these points x,y to the point a,b. So, it is natural to have the statement.
4. The converse of statement is not necessarily true. For example,

fx,y 
x  y if x  0 or y  0
1 otherwise.

Trivially, we have the limit of fx,y does not exist as x,y  0,0. However,



lim
y0
fx,y 

0 if x  0,
1 if x  0.

and lim
x0
fx,y 

0 if y  0,
1 if y  0.

lim
x0

lim
y0
fx,y  lim

y0
lim
x0
fx,y  1.

In each of the preceding examples, determine whether the following limits exist and
evaluate those limits that do exist:

lim
x0

lim
y0
fx,y ; lim

y0
lim
x0
fx,y ; lim

x,y0,0
fx,y.

Now consider the functions f defined on R2 as follows:

(a) fx,y  x2y2

x2y2 if x,y  0,0, f0,0  0.

Proof: 1. Since(x  0)

lim
x0
fx,y  lim

x0

x2  y2
x2  y2 

y2

y2  1 if y  0,

1 if y  0,

we have

lim
y0

lim
x0
fx,y  1.

2. Since (y  0)

lim
y0
fx,y  lim

y0

x2  y2
x2  y2 

x2
x2  1 if x  0,

1 if x  0,
    **

we have

lim
x0

lim
y0
fx,y  1.

3. (x,y  0,0) Let x  rcos and y  r sin, where 0    2, and note that
x,y  0,0  r  0. Then

lim
x,y0,0

fx,y  lim
x,y0,0

x2  y2
x2  y2

 lim
r0

r2cos2  sin2
r2

 cos2  sin2.
So, if we choose    and   /2, we find the limit of fx,y does not exist as
x,y  0,0.
Remark: 1. This case shows that

1  lim
x0

lim
y0
fx,y  lim

y0
lim
x0
fx,y  1

2. Obviously, the limit of fx,y does not exist as x,y  0,0. Since if it was, then
by (*), (**), and the preceding theorem, we know that

lim
x0

lim
y0
fx,y  lim

y0
lim
x0
fx,y

which is absurb.



(b) fx,y  xy2

xy2xy2
if x,y  0,0, f0,0  0.

Proof: 1. Since (x  0)

lim
x0
fx,y  lim

x0

xy2

xy2  x  y2
 0 for all y,

we have

lim
y0

lim
x0
fx,y  0.

2. Since (y  0)

lim
y0
fx,y  lim

y0

xy2

xy2  x  y2
 0 for all x,

we have

lim
x0

lim
y0
fx,y  0.

3. (x,y  0,0) Let x  rcos and y  r sin, where 0    2, and note that
x,y  0,0  r  0. Then

fx,y  xy2

xy2  x  y2

 r4 cos2 sin2
r4 cos2 sin2  r2  2r2 cos sin

 cos2 sin2
cos2 sin2  12cos sin

r2
.

So,

fx,y
 0 if r  0
1 if   /4 or   5/4.

Hence, we know that the limit of fx,y does not exists as x,y  0,0.
(c) fx,y  1

x sinxy if x  0, f0,y  y.
Proof: 1. Since (x  0)

lim
x0
fx,y  lim

x0
1
x sinxy  y     *

we have

lim
y0

lim
x0
fx,y  0.

2. Since (y  0)

lim
y0
fx,y 

limy0 1x sinxy  0 if x  0,
limy0 y  0 if x  0,

we have

lim
x0

lim
y0
fx,y  0.

3. (x,y  0,0) Let x  rcos and y  r sin, where 0    2, and note that
x,y  0,0  r  0. Then



fx,y 
1

rcos sinr2 cos sin if x  rcos  0,
r sin if x  rcos  0.


0 if r  0,
0 if r  0.

    **

So, we know that limx,y0,0 fx,y  0.

Remark: In (*) and (**), we use the famuos limit, that is,
lim
x0

sinx
x  1.

There are some similar limits, we write them without proofs.
(a) limt t sin1/t  1.
(b) limx0 x sin1/x  0.
(c) limx0 sinax

sinbx  a
b , if b  0.

(d) fx,y 
x  y sin1/x sin1/y if x  0 and y  0,
0 if x  0 or y  0.

Proof: 1. Since (x  0)

fx,y 
x  y sin1/x sin1/y  x sin1/x sin1/y  y sin1/x sin1/y if y  0
0 if y  0

we have if y  0, the limit fx,y does not exist as x  0, and if y  0, limx0 fx,y  0.
Hence, we have (x  0, y  0)

lim
y0

lim
x0
fx,y does not exist.

2. Since (y  0)

fx,y 
x  y sin1/x sin1/y  x sin1/x sin1/y  y sin1/x sin1/y if x  0
0 if x  0

we have if x  0, the limit fx,y does not exist as y  0, and if x  0, limy0 fx,y  0.
Hence, we have (x  0, y  0)

lim
x0

lim
y0
fx,y does not exist.

3. (x,y  0,0) Consider

|fx,y| 
|x  y| if x  0 and y  0,
0 if x  0 or y  0.

we have
lim

x,y0,0
fx,y  0.

(e) fx,y 
sinxsiny
tanxtany , if tanx  tany,

cos3x if tanx  tany.
Proof: Since we consider the three approaches whose tend to 0,0, we may assume

that x,y  /2,/2. and note that in this assumption, x  y  tanx  tany. Consider
1. (x  0)



lim
x0
fx,y 

limx0 sinxsiny
tanxtany  cosy if x  y.

1 if x  y.

So,

lim
y0

lim
x0
fx,y  1.

2. (y  0)

lim
y0
fx,y 

limy0 sinxsiny
tanxtany  cosx if x  y.

cos3x if x  y.

So,

lim
x0

lim
y0
fx,y  1.

3. Let x  rcos and y  r sin, where 0    2, and note that
x,y  0,0  r  0. Then

lim
x,y0,0

fx,y 
limr0 sinrcossinr sin

tanrcostanr sin if cos  sin.

limr0 cos3rcos if cos  sin.


1 if cos  sin, by L-Hospital Rule.
1 if cos  sin.

So, we know that limx,y0,0 fx,y  1.

Remark: 1. There is another proof about (e)-(3). Consider
sinx  siny  2cos x  y

2 sin x  y
2

and

tanx  tany  sinx
cosx 

siny
cosy ,

then
sinx  siny
tanx  tany 

cos xy2 cosxcosy
cos xy2 

.

So,

lim
x,y0,0

fx,y 
limx,y0,0

cos xy
2 cosxcosy

cos xy
2

 1 if x  y,

limx,y0,0 cos3x  1 if x  y.

That is, limx,y0,0 fx,y  1.

2. In the process of proof, we use the concept that we write it as follows. Since its proof
is easy, we omit it. If

lim
x,ya,b

fx,y 
L if x  y
L if x  y

or



lim
x,ya,b

fx,y 
L if x  0 and y  0,
L if x  0 or y  0.

then we have
lim

x,ya,b
fx,y  L.

4.12 If x  0,1 prove that the following limit exists,
limm limn cos

2nm!x ,

and that its value is 0 or 1, according to whether x is irrational or rational.
Proof: If x is rational, say x  q/p, where g.c.d. q,p  1, then p!x  N. So,

limn cos
2nm!x 

1 if m  p,
0 if m  p.

Hence,
limm limn cos

2nm!x  1.

If x is irrational, then m!x  N for all m  N. So, cos2nm!x  1 for all irrational x.
Hence,

limn cos
2nm!x  0  limm limn cos

2nm!x  0.

Continuity of real-valued functions
4.13 Let f be continuous on a,b and let fx  0 when x is rational. Prove that

fx  0 for every x  a,b.
Proof: Given any irrational number x in a,b, and thus choose a sequence xn  Q

such that xn  x as n  . Note that fxn  0 for all n. Hence,
0  limn 0

 limn fxn

 f limn xn by continuity of f at x

 fx.
Since x is arbitrary, we have shown fx  0 for all x  a,b. That is, f is constant 0.
Remark: Here is another good exercise, we write it as a reference. Let f be continuous

on R, and if fx  fx2, then f is constant.

Proof: Since fx  f x2  fx2  fx, we know that f is an even function. So,
in order to show f is constant on R, it suffices to show that f is constant on 0,. Given
any x  0,, since fx2  fx for all x  R, we have fx1/2n  fx for all n. Hence,

fx  limn fx

 limn fx
1/2n

 f limn x
1/2n by continuity of f at 1

 f1 since x  0.
So, we have fx  f1 : c for all x  0,. In addition, given a sequence
xn  0, such that xn  0, then we have



c  limn c

 limn fxn

 f limn xn by continuity of f at 0

 f0
From the preceding, we have proved that f is constant.
4.14 Let f be continuous at the point a  a1,a2, . . . ,an  Rn. Keep a2,a3, . . . ,an fixed

and define a new function g of one real variable by the equation
gx  fx,a2, . . . ,an.

Prove that g is continuous at the point x  a1. (This is sometimes stated as follows: A
continuous function of n variables is continuous in each variable separately.)
Proof: Given   0, there exists a   0 such that as y  Ba;  D, where D is a

domain of f, we have
|fy  fa|  .     *

So, as |x  a1 |  , which implies |x,a2, . . . ,an  a1,a2, . . . ,an|  , we have
|gx  ga1|  |fx,a2, . . . ,an  fa1,a2, . . . ,an|  .

Hence, we have proved g is continuous at x  a1
Remark: Here is an important example like the exercise, we write it as follows. Let

j : Rn  Rn, and j : x1,x2, . . . ,xn  0, . ,xj, . . , 0. Then j is continuous on Rn for
1  j  n. Note that j is called a projection. Note that a projection P is sometimes
defined as P2  P.
Proof: Given any point a  Rn ,and given   0, and choose   , then as

x  Ba;, we have
|jx  ja|  |xj  aj |  x  a     for each 1  j  n

Hence, we prove that jx is continuous on Rn for 1  j  n.

4.15 Show by an example that the converse of statement in Exercise 4.14 is not true in
general.
Proof: Let

fx,y 
x  y if x  0 or y  0
1 otherwise.

Define g1x  fx, 0 and g2y  f0,y, then we have
lim
x0
g1x  0  g10

and
lim
y0
g2y  0  g20.

So, g1x and g2y are continuous at 0. However, f is not continuous at 0,0 since
lim
x0
fx,x  1  0  f0,0.

Remark: 1. For continuity, if f is continuous at x  a, then it is NOT necessary for us
to have

limxa fx  fa



this is because a can be an isolated point. However, if a is an accumulation point, we then
have

f is continuous at a if, and only if, limxa fx  fa.

4.16 Let f, g, and h be defined on 0,1 as follows:
fx  gx  hx  0, whenever x is irrational;
fx  1 and gx  x, whenever x is rational;
hx  1/n, if x is the rational number m/n (in lowest terms);
h0  1.

Prove that f is not continuous anywhere in 0,1, that g is continuous only at x  0, and
that h is continuous only at the irrational points in 0,1.
Proof: 1. Write

fx 
0 if x  R  Q  0,1,
1 if x  Q  0,1.

Given any x  R  Q  0,1, and y  Q  0,1, and thus choose xn  Q  0,1
such that xn  x, and yn  R  Q  0,1 such that yn  y. If f is continuous at x,
then

1  limn fxn

 f limn xn by continuity of f at x

 fx
 0

which is absurb. And if f is continuous at y, then
0  limn fyn

 f limn yn by continuity of f at y

 fy
 1

which is absurb. Hence, f is not continuous on 0,1.
2. Write

gx 
0 if x  R  Q  0,1,
x if x  Q  0,1.

Given any x  R  Q  0,1, and choose xn  Q  0,1 such that xn  x. Then
x

 limn xn
 limn gxn

 limg limn xn by continuity of g at x

 gx
 0

which is absurb since x is irrational. So, f is not continous on R  Q  0,1.
Given any x  Q  0,1, and choose xn  R  Q  0,1 such that xn  x. If g is



continuous at x, then
0

 limn gxn

 g limn xn by continuity of f at x

 gx
 x.

So, the function g may be continuous at 0. In fact, g is continuous at 0 which prove as
follows. Given   0, choose   , as |x|  , we have
|gx  g0|  |gx|  |x|   . So, g is continuous at 0. Hence, from the preceding,
we know that g is continuous only at x  0.
3. Write

hx 
1 if x  0,
0 if x  R  Q  0,1,
1/n if x  m/n, g.c.d. m,n  1.

Consider a  0,1 and given   0, there exists the largest positive integer N such that
N  1/. Let T  x : hx  , then

T 
0,1  x : hx  1  x : hx  1/2. . .x : hx  1/N if   1,
 if   1.

Note that T is at most a finite set, and then we can choose a   0 such that
a  ,a    acontains no points of T and a  ,a    0,1. So, if
x  a  ,a    a, we have hx  . It menas that

limxa hx  0.

Hence, we know that h is continuous at x  0,1  R  Q. For two points x  1, and
y  0, it is clear that h is not continuous at x  1, and not continuous at y  1 by the
method mentioned in the exercise of part 1 and part 2. Hence, we have proved that h is
continuous only at the irrational points in 0,1.
Remark: 1. Sometimes we call f Dirichlet function.
2. Here is another proof about g, we write it down to make the reader get more.
Proof:Write

gx 
0 if x  R  Q  0,1,
x if x  Q  0,1.

Given a  0,1, and if g is continuous at a, then given 0    a, there exists a   0
such that as x  a  ,a    0,1, we have

|gx  ga|  .
If a  R  Q, choose 0     so that a    Q. Then a    a  ,a   which

implies |ga    ga|  |ga  |  a      a. But it is impossible.
If a  Q, choose 0     so that a    R  Q. a    a  ,a   which

implies |ga    ga|  |a|  a    a. But it is impossible.
If a  0, given   0 and choose   , then as 0  x  , we have

|gx  g0|  |gx|  |x|  x   . It means that g is continuous at 0.
4.17 For each x  0,1, let fx  x if x is rational, and let fx  1  x if x is



irrational. Prove that:
(a) ffx  x for all x in 0,1.
Proof: If x is rational, then ffx  fx  x. And if x is irrarional, so is

1  x 0,1. Then ffx  f1  x  1  1  x  x. Hence, ffx  x for all x in
0,1.
(b) fx  f1  x  1 for all x in 0,1.
Proof: If x is rational, so is 1  x  0,1. Then fx  f1  x  x  1  x  1. And

if x is irrarional, so is 1  x 0,1. Then fx  f1  x  1  x  1  1  x  1.
Hence, fx  f1  x  1 for all x in 0,1.
(c) f is continuous only at the point x  1

2 .

Proof: If f is continuous at x, then choose xn  Q and yn  Qc such that xn  x,
and yn  x. Then we have, by continuity of f at x,

fx  f limn xn  limn fxn  limn xn  x

and
fx  f limn yn  limn fyn  limn 1  yn  1  x.

So, x  1/2 is the only possibility for f. Given   0, we want to find a   0 such that as
x  1/2  , 1/2    0,1, we have

|fx  f1/2|  |fx  1/2|  .
Choose 0    so that 1/2  , 1/2    0,1, then as
x  1/2  , 1/2    0,1, we have

|fx  1/2|  |x  1/2|     if x  Q,
|fx  1/2|  |1  x  1/2|  |1/2  x|     if x  Qc.

Hence, we have proved that f is continuous at x  1/2.
(d) f assumes every value between 0 and 1.
Proof: Given a  0,1, we want to find x  0,1 such that fx  a. If a  Q, then

choose x  a, we have fx  a  a. If a  R  Q, then choose x  1  a R  Q, we
have fx  1  a  1  1  a  a.
Remark: The range of f on 0,1 is 0,1. In addition, f is an one-to-one mapping

since if fx  fy, then x  y. (The proof is easy, just by definition of 1-1, so we omit it.)
(e) fx  y  fx  fy is rational for all x and y in 0,1.
Proof:We prove it by four steps.
1. If x  Q and y  Q, then x  y  Q. So,

fx  y  fx  fy  x  y  x  y  0  Q.
2. If x  Q and y  Qc, then x  y  Qc. So,

fx  y  fx  fy  1  x  y  x  1  y  2x  Q.
3. If x  Qc and y  Q, then x  y  Qc. So,

fx  y  fx  fy  1  x  y  1  x  y  2y  Q.
4. If x  Qc and y  Qc, then x  y  Qc or x  y  Q. So,



fx  y  fx  fy 
1  x  y  1  x  1  y  1  Q if x  y  Qc,
x  y  1  x  1  y  2  Q if x  y  Q.

Remark: Here is an interesting question about functions. Let f : R  0,1  R. If f
satisfies that

fx  f x  1x  1  x,

then fx  x3x21
2xx1 .

Proof: Let x  x1
x , then we have 2x  1

x1 , and 3x  x. So,

fx  f x  1x  fx  fx  1  x     *

which implies that
fx  f2x  1  x     **

and
f2x  f3x  f2x  fx  1  2x.     ***

So, by (*), (**), and (***), we finally have
fx  1

2 1  x  x  
2x

 x3  x2  1
2xx  1 .

4.18 Let f be defined on R and assume that there exists at least one x0 in R at which f
is continuous. Suppose also that, for every x and y in R, f satisfies the equation

fx  y  fx  fy.
Prove that there exists a constant a such that fx  ax for all x.
Proof: Let f be defined on R and assume that there exists at least one x0 in R at which f

is continuous. Suppose also that, for every x and y in R, f satisfies the equation
fx  y  fx  fy.

Prove that there exists a constant a such that fx  ax for all x.
Proof: Suppose that f is continuous at x0, and given any r  R. Since

fx  y  fx  fy for all x, then
fx  fy  x0  fr, where y  x  r  x0.

Note that y  x0  x  r, then
limxr fx  limxr fy  x0  fr

 limyx0 fy  x0  fr

 fr since f is continuous at x0.
So, f is continuous at r. Since r is arbitrary, we have f is continuous on R. Define f1  a,
and then since fx  y  fx  fy, we have

f1  f 1
m . . 1m mtimes

 mf 1
m

 f 1
m  f1

m     *



In addition, since f1  f1 by f0  0, we have
f1  f 1

m . . 1
m mtimes

 mf 1m

 f 1
m  f1

m     *’

Thus we have
f nm   f1/m . . .1/mntimes  nf1/m  n

m f1 by (*) and (*’)     **
So, given any x  R, and thus choose a sequence xn  Q with xn  x. Then

fx  f limn xn

 limn fxn by continuity of f on R

 limn xnf1 by (**)

 xf1
 ax.

Remark: There is a similar statement. Suppose that fx  y  fxfy for all real x
and y.
(1) If f is differentiable and non-zero, prove that fx  ecx, where c is a constant.
Proof: Note that f0  1 since fx  y  fxfy and f is non-zero. Since f is

differentiable, we define f0  c. Consider
fx  h  fx

h  fx fh  f0h  fxf0  cfx as h  0,

we have for every x  R, fx  cfx. Hence,
fx  Aecx.

Since f0  1, we have A  1. Hence, fx  ecx, where c is a constant.
Note: (i) If for every x  R, fx  cfx, then fx  Aecx.
Proof: Since fx  cfx for every x, we have for every x,

fx  cfxecx  0  ecxfx  0.
We note that by Elementary Calculus, ecxfx is a constant function A. So, fx  Aecx
for all real x.
(ii) Suppose that fx  y  fxfy for all real x and y. If fx0  0 for some x0, then

fx  0 for all x.
Proof: Suppose NOT, then fa  0 for some a. However,

0  fx0  fx0  a  a  fx0  afa  0.
Hence, fx  0 for all x.
(iii) Suppose that fx  y  fxfy for all real x and y. If f is differentiable at x0 for

some x0, then f is differentiable for all x. And thus, fx  CR.
Proof: Since



fx  h  fx
h  fx0  h  x  x0  fx0  x  x0

h

 fx  x0
fx0  h  fx0

h  fx  x0fx0 as h  0,

we have fx is differentiable and fx  fx  x0fx0 for all x. And thus we have
fx  CR.
(iv) Here is another proof by (iii) and Taylor Theorem with Remainder term Rnx.
Proof: Since f is differentiable, by (iii), we have fnx  f0nfx for all x.

Consider x  r, r, then by Taylor Theorem with Remainder term Rnx,

fx 
k0

n fk0
k! xk  Rnx, where Rnx :

fn1
n  1! x

n1,   0,x or  x, 0,

Then

|Rnx| 
fn1
n  1! x

n1

 f0n1f
n  1! xn1

 f0rn1

n  1! M, where M  max
xr,r

|fx|

 0 as n  .
Hence, we have for every x  r, r

fx 
k0

 fk0
k! xk

 f0 
k0


f0xk

k!

 ecx, where c : f0.
Since r is arbitrary, we have proved that fx  ecx for all x.
(2) If f is continuous and non-zero, prove that fx  ecx, where c is a constant.
Proof: Since fx  y  fxfy, we have

0  f1  f 1n . . . 1n ntimes
 f 1n

n
 f 1n  f11/n     *

and (note that f1  f11 by f0  1, )
0  f1  f 1n . . . 1n ntimes

 f 1n
n
 f 1

n  f11/n     *’

f mn   f
1
n . . . 1n mtimes

 f 1n
m
 f1

m
n by (*) and (*’)     **

So, given any x  R, and thus choose a sequence xn  Q with xn  x. Then



fx  f limn xn

 limn fxn by continuity of f

 limn f1
xn by (**)

 f1x

 ecx, where log f1  c.

Note: (i) We can prove (2) by the exercise as follows. Note that fx  0 for all x by
the remark (1)-(ii) Consider the composite function gx  log fx, then
gx  y  log fx  y  log fxfy  log fx  log fy  gx  gy. Since log and f
are continuous on R, its composite function g is continuous on R. Use the exercise, we
have gx  cx for some c. Therefore, fx  egx  ecx.
(ii) We can prove (2) by the remark (1) as follows. It suffices to show that this f is

differentiable at 0 by remark (1) and (1)-(iii). Sincef mn   f1
m
n then for every real r,

fr  f1r by continuity of f. Note that limr0 a
rbr
r exists. Given any sequence rn

with rn  0, and thus consider

lim
rn0

frn  f0
rn  f1rn  1

rn  f1rn  1rn
rn exists,

we have f is differentiable at x  0. So, by remark (1), we have fx  ecx.
(3) Give an example such that f is not continuous on R.
Solution: Consider gx  y  gx  gy for all x,y. Then we have gq  qg1,

where q  Q. By Zorn’s Lemma, we know that every vector space has a basis
v :   I. Note that v :   I is an uncountable set, so there exists a convergent
sequence sn  v :   I. Hence, S : v :   I  snn1

    snn n1
 is a new

basis of R over Q. Given x,y  R, and we can find the same N such that

x 
k1

N

qkvk and y 
k1

N

pkvk, where vk  S

Define the sume

x  y :
k1

N

pk  qkvk

By uniqueness, we define gx to be the sum of coefficients, i.e.,

gx :
k1

N

qk.

Note that
g sn
n  1 for all n  limn g

sn
n  1

and
sn
n  0 as n  

Hence, g is not continuous at x  0 since if it was, then



1  limn g
sn
n

 g limn
sn
n by continuity of g at 0

 g0
 0

which is absurb. Hence, g is not continuous on R by the exercise. To find such f, it suffices
to consider fx  egx.
Note: Such g (or f) is not measurable by Lusin Theorem.
4.19 Let f be continuous on a,b and define g as follows: ga  fa and, for

a  x  b, let gx be the maximum value of f in the subinterval a,x. Show that g is
continuous on a,b.
Proof: Define gx  maxft : t  a,x, and choose any point c  a,b, we want

to show that g is continuous at c. Given   0, we want to find a   0 such that as
x  c  ,c    a,b, we have

|gx  gc|  .
Since f is continuous at x  c, then there exists a   0 such that as
x  c  ,c    a,b, we have

fc  /2  fx  fc  /2.     *
Consider two cases as follows.
(1) maxft : t  a,c    a,b  fp1, where p1  c  .
As x  c  ,c    a,b, we have gx  fp1 and gc  fp1.
Hence, |gx  gc|  0.
(2) maxft : t  a,c    a,b  fp1, where p1  c  .
As x  c  ,c    a,b, we have by (*) fc  /2  gx  fc  /2.
Hence, |gx  gc|  .
So, if we choose   , then for x  c  ,c    a,b,

|gx  gc|   by (1) and (2).
Hence, gx is continuous at c. And since c is arbitrary, we have gx is continuous on
a,b.
Remark: It is the same result for minft : t  a,x by the preceding method.
4.20 Let f1, . . . , fm be m real-valued functions defined on Rn. Assume that each fk is

continuous at the point a of S. Define a new function f as follows: For each x in S, fx is
the largest of the m numbers f1x, . . . , fmx. Discuss the continuity of f at a.
Proof: Assume that each fk is continuous at the point a of S, then we have fi  fj and

|fi  fj | are continuous at a, where 1  i, j  m. Since maxa,b  ab|ab|
2 , then

maxf1, f2 is continuous at a since both f1  f2 and |f1  f2 | are continuous at a. Define
fx  maxf1, . . . fm, useMathematical Induction to show that fx is continuous at
x  a as follows. As m  2, we have proved it. Suppose m  k holds, i.e., maxf1, . . . fk is
continuous at x  a. Then as m  k  1, we have

maxf1, . . . fk1  maxmaxf1, . . . fk, fk1
is continuous at x  a by induction hypothesis. Hence, byMathematical Induction, we
have prove that f is continuos at x  a.
It is possible that f and g is not continuous on R whihc implies that maxf,g is

continuous on R. For example, let fx  0 if x  Q, and fx  1 if x  Qc and gx  1



if x  Q, and gx  0 if x  Qc.
Remark: It is the same rusult for minf1, . . . fm since maxa,b  mina,b  a  b.
4.21 Let f : S  R be continuous on an open set in Rn, assume that p  S, and assume

that fp  0. Prove that there is an n ball Bp; r such that fx  0 for every x in the
ball.
Proof: Since p S is an open set in Rn, there exists a 1  0 such that Bp,1  S.

Since fp  0, given   fp
2  0, then there exists an n ball Bp;2 such that as

x  Bp;2  S, we have
fp
2  fp    fx  fp    3fp

2 .

Let   min1,2, then as x  Bp;, we have

fx  fp
2  0.

Remark: The exercise tells us that under the assumption of continuity at p, we roughly
have the same sign in a neighborhood of p, if fp  0 or fp  0.

4.22 Let f be defined and continuous on a closed set S in R. Let
A  x : x  S and fx  0 .

Prove that A is a closed subset of R.
Proof: Since A  f10, and f is continous on S, we have A is closed in S. And

since S is closed in R, we finally have A is closed in R.
Remark: 1. Roughly speaking, the property of being closed has Transitivity. That is,

in M,d let S  T  M, if S is closed in T, and T is closed in M, then S is closed in M.
Proof: Let x be an adherent point of S in M, then BMx, r  S   for every r  0.

Hence, BMx, r  T   for every r  0. It means that x is also an adherent point of T in
M. Since T is closed in M, we find that x  T. Note that since BMx, r  S   for every
r  0, we have (S  T)

BTx, r  S  BMx, r  T  S  BMx, r  S  T  BMx, r  S  .
So, we have x is an adherent point of S in T. And since S is closed in T, we have x  S.
Hence, we have proved that if x is an adherent point of S in M, then x  S. That is, S is
closed in M.
Note: (1) Another proof of remark 1, since S is closed in T, there exists a closed subset

U in Msuch that S  U  T, and since T is closed in M, we have S is closed in M.
(2) There is a similar result, in M,d let S  T  M, if S is open in T, and T is open

in M, then S is open in M. (Leave to the reader.)
2. Here is another statement like the exercise, but we should be cautioned. We write it

as follows. Let f and g be continuous on S,d1 into T,d2. Let A  x : fx  gx,
show that A is closed in S.
Proof: Let x be an accumulation point of A, then there exists a sequence xn  A

such that xn  x. So, we have fxn  gxn for all n. Hence, by continuity of f and g, we
have

fx  f limn xn  limn fxn  limn gxn  g limn xn  gx.

Hence, x  A. That is, A contains its all adherent point. So, A is closed.



Note: In remark 2, we CANNOT use the relation
fx  gx

since the difference "" are not necessarily defined on the metric space T,d2.
4.23 Given a function f : R  R, define two sets A and B in R2 as follows:

A  x,y : y  fx,
B  x,y : y  fx.

and Prove that f is continuous on R if, and only if, both A and B are open subsets of R2.
Proof: () Suppose that f is continuous on R. Let a,b  A, then fa  b. Since f is

continuous at a, then given   fab
2  0, there exists a    0 such that as

|x  a|  , we have
fa  b
2  fa    fx  fa  .     *

Consider x,y  Ba,b;, then |x  a|2  |y  b|2  2 which implies that

1. |x  a|    fx  fa  b
2 by (*) and

2. |y  b|    y  b    b    fa  b
2 .

Hence, we have fx  y. That is, Ba,b;  A. So, A is open since every point of A is
interior. Similarly for B.
() Suppose that A and B are open in R2. Trivially, a, fa  /2 : p1  A, and

a, fa  /2 : p2  B. Since A and B are open in R2, there exists a /2   0 such
that

Bp1,  A and Bp2,  B.
Hence, if x,y  Bp1,, then

x  a2  y  fa  /22  2 and y  fx.
So, it implies that

|x  a|  , |y  fa  /2|  , and y  fx.
Hence, as |x  a|  , we have

   y  fa  /2
 fa    /2  y  fx
 fa    y  fx
 fa    fx.     **

And if x,y  Bp2,, then
x  a2  y  fa  /22  2 and y  fx.

So, it implies that
|x  a|  , |y  fa  /2|  , and y  fx.

Hence, as |x  a|  , we have
fx  y  fa  /2    fa  .     ***

So, given   0, there exists a   0 such that as |x  a|  , we have by (**) and (***)
fa    fx  fa  .

That is, f is continuous at a. Since a is arbitrary, we know that f is continuous on R.

4.24 Let f be defined and bounded on a compact interval S in R. If T  S, the



number
fT  supfx  fy : x,y  T

is called the oscillation (or span) of f on T. If x  S, the oscillation of f at x is defined to
be the number

fx  limh0 fBx;h  S.

Prove that this limit always exists and that fx  0 if, and only if, f is continuous at x.

Proof: 1. Note that since f is bounded, say |fx|  M for all x, we have
|fx  fy|  2M for all x,y  S. So, fT, the oscillation of f on any subset T of S,
exists. In addition, we define gh  fBx;h  S. Note that if T1  T2 S, we have
fT1  fT2. Hence, the oscillation of f at x, fx  limh0 gh  g0  since g is
an increasing function. That is, the limit of fBx;h  S always exists as h  0.
2.  Suppose that fx  0, then given   0, there exists a   0 such that as

h  0,, we have
|gh|  gh  fBx;h  S  /2.

That is, as h  0,, we have
supft  fs : t, s  Bx;h  S  /2

which implies that
 /2  ft  fx  /2 as t  x  ,x    S.

So, as t  x  ,x    S. we have
|ft  fx|  .

That is, f is continuous at x.
 Suppose that f is continous at x, then given   0, there exists a   0 such that as

t  x  ,x    S, we have
|ft  fx|  /3.

So, as t, s  x  ,x    S, we have
|ft  fs|  |ft  fx|  |fx  fs|  /3  /3  2/3

which implies that
supt  fs : t, s  x  ,x    S  2/3  .

So, as h  0,, we have
fBx;h  S  supt  fs : t, s  x  ,x    S  .

Hence, the oscillation of f at x, fx  0.

Remark: 1. The compactness of S is not used here, we will see the advantage of the
oscillation of f in text book, Theorem 7.48, in page 171. (On Lebesgue’s Criterion for
Riemann-Integrability.)
2. One of advantage of the oscillation of f is to show the statement: Let f be defined on

a,b Prove that a bounded f does NOT have the properties:
f is continuous on Q  a,b, and discontinuous on R  Q  a,b.

Proof: Since fx  0 if, and only if, f is continuous at x, we know that fr  0 for
r  R  Q  a,b. Define J1/n  r : fr  1/n, then by hypothesis, we know that
n1 J1/n  R  Q  a,b. It is easy to show that J1/n is closed in a,b. Hence,
intclJ1/n  intJ1/n   for all n  N. It means that J1/n is nowhere dense for all
n  N. Hence,



a,b  n1 J1/n  Q  a,b
is of the firse category which is absurb since every complete metric space is of the second
category. So, this f cannot exist.
Note: 1 The Boundedness of f can be removed since we we can accept the concept

  0.
2. (J1/n is closed in a,b) Given an accumulation point x of J1/n, if x  J1/n, we have

fx  1/n. So, there exists a 1 ball Bx such that fBx  a,b  1/n. Thus, no
points of Bx can belong to J1/n, contradicting that x is an accumulation point of J1/n.
Hence, x  J1/n and J1/n is closed.

3. (Definition of a nowhere dense set) In a metric space M,d, let A be a subset of M,
we say A is nowhere dense in M if, and only if A contains no balls of M, ( intA   ).

4. (Definition of a set of the first category and of the second category) A set A in a
metric space M is of the first category if, and only if, A is the union of a countable number
of nowhere dense sets. A set B is of the second category if, and only if, B is not of the first
category.
5. (Theorem) A complete metric space is of the second category.
We write another important theorem about a set of the second category below.
(Baire Category Theorem) A nonempty open set in a complete metric space is of the

second category.
6. In the notes 3,4 and 5, the reader can see the reference, A First Course in Real

Analysis written by M. H. Protter and C. B. Morrey, in pages 375-377.
4.25 Let f be continuous on a compact interval a,b. Suppose that f has a local

maximum at x1 and a local maximum at x2. Show that there must be a third point between
x1 and x2 where f has a local minimum.
Note. To say that f has a local maximum at x1 means that there is an 1 ball Bx1 such

that fx  fx1 for all x in Bx1  a,b. Local minimum is similarly defined.
Proof: Let x2  x1. Suppose NOT, i.e., no points on x1,x2 can be a local minimum

of f. Since f is continuous on x1,x2, then inffx : x  x1,x2  fx1 or fx2 by
hypothesis. We consider two cases as follows:
(1) If inffx : x  x1,x2  fx1, then

(i) fx has a local maximum at x1 and
(ii) fx  fx1 for all x  x1,x2.

By (i), there exists a   0 such that x  x1,x1    x1,x2, we have
(iii) fx  fx1.

So, by (ii) and (iii), as x  x1,x1  , we have
fx  fx1

which contradicts the hypothesis that no points on x1,x2 can be a local minimum of f.
(2) If inffx : x  x1,x2  fx1, it is similar, we omit it.
Hence, from (1) and (2), we have there has a third point between x1 and x2 where f has

a local minimum.
4.26 Let f be a real-valued function, continuous on 0,1, with the following property:

For every real y, either there is no x in 0,1 for which fx  y or there is exactly one such
x. Prove that f is strictly monotonic on 0,1.



Proof: Since the hypothesis says that f is one-to-one, then by Theorem*, we know that f
is trictly monotonic on 0,1.
Remark: (Theorem*) Under assumption of continuity on a compact interval, 1-1 is

equivalent to being strictly monotonic. We will prove it in Exercise 4.62.

4.27 Let f be a function defined on 0,1 with the following property: For every real
number y, either there is no x in 0,1 for which fx  y or there are exactly two values of
x in 0,1 for which fx  y.
(a) Prove that f cannot be continuous on 0,1.
Proof: Assume that f is continuous on 0,1, and thus consider maxx0,1 fx and

minx0,1 fx. Then by hypothesis, there exist exactly two values a1  a2  0,1 such
that fa1  fa2  maxx0,1 fx, and there exist exactly two values b1  b2  0,1
such that fb1  fb2  minx0,1 fx.
Claim that a1  0 and a2  1. Suppose NOT, then there exists at least one belonging

to 0,1. Without loss of generality, say a1  0,1. Since f has maximum at a1  0,1
and a2  0,1, we can find three points p1, p2, and p3 such that

1. p1  a1  p2  p3  a2,
2. fp1  fa1, fp2  fa1, and fp3  fa2.

Since fa1  fa2, we choose a real number r so that
fp1  r  fa1  r  fq1, where q1  p1,a1 by continuity of f.
fp2  r  fa1  r  fq2, where q2  a1,p2 by continuity of f.
fp3  r  fa2  r  fq3, where q3  p3,a2 by continuity of f.

which contradicts the hypothesis that for every real number y, there are exactly two values
of x in 0,1 for which fx  y. Hence, we know that a1  0 and a2  1. Similarly, we
also have b1  0 and b2  1.
So, maxx0,1 fx  minx0,1 fx which implies that f is constant. It is impossible.

Hence, such f does not exist. That is, f is not continuous on 0,1.
(b) Construct a function f which has the above property.
Proof: Consider 0,1  Qc  0,1  Q  0,1, and write

Q  0,1  x1,x2, . . . ,xn, . . . . Define
1. fx2n1  fx2n  n,
2. fx  x if x  0,1/2  Qc,
3. fx  1  x if x  1/2, 1  Qc.

Then if x  y, then it is clear that fx  fy. That is, f is well-defined. And from
construction, we know that the function defined on 0,1 with the following property: For
every real number y, either there is no x in 0,1 for which fx  y or there are exactly
two values of x in 0,1 for which fx  y.
Remark: x : f is discontinuous at x  0,1. Given a  0,1. Note that since

fx  N for all x  Q  0,1 and Q is dense in R, for any 1 ball Ba; r  Q  0,1,
there is always a rational number y  Ba; r  Q  0,1 such that |fy  fa|  1.
(c) Prove that any function with this property has infinite many discontinuities on

0,1.
Proof: In order to make the proof clear, property A of f means that



for every real number y, either there is no x in 0,1 for which fx  y or

there are exactly two values of x in 0,1 for which fx  y
Assume that there exist a finite many numbers of discontinuities of f, say these points

x1, . . . ,xn. By property A, there exists a unique yi such that fxi  fyi for 1  i  n.
Note that the number of the set
S : x1, . . . ,xn  y1, . . . ,yn  x : fx  f0, and fx  f1 is even, say 2m
We remove these points from S, and thus we have 2m  1 subintervals, say Ij,
1  j  2m  1. Consider the local extremum in every Ij, 1  j  2m  1 and note that
every subinterval Ij, 1  j  2m  1, has at most finite many numbers of local extremum,
say # t  Ij : fx is the local extremum  t1

j, . . , tpj
j  pj. And by property A,

there exists a unique sk
j such that f tk

j  f sk
j for 1  k  pj. We again remove these

points, and thus we have removed even number of points. And odd number of open
intervals is left, call the odd number 2q  1. Note that since the function f is monotonic in
every open interval left, Rl, 1  l  2q  1, the image of f on these open interval is also an
open interval. If Ra  Rb  , say Ra  a1,a1 and Rb  b1,b2 with (without loss of
generality) a1  b1  a2  b2, then

Ra  Rb by property A.
(Otherwise, b1 is only point such that fx  fb1, which contradicts property A. ) Note
that given any Ra, there must has one and only one Rb such that Ra  Rb. However, we
have 2q  1 open intervals is left, it is impossible. Hence, we know that f has infinite many
discontinuities on 0,1.
4.28 In each case, give an example of a real-valued function f, continuous on S and

such that fS  T, or else explain why there can be no such f :
(a) S  0,1, T  0,1.
Solution: Let

fx 
2x if x  0,1/2,
1 if x  1/2, 1.

(b) S  0,1, T  0,1  1,2.
Solution: NO! Since a continuous functions sends a connected set to a connected set.

However, in this case, S is connected and T is not connected.
(c) S  R1, T  the set of rational numbers.
Solution: NO! Since a continuous functions sends a connected set to a connected set.

However, in this case, S is connected and T is not connected.
(d) S  0,1  2,3, T  0,1.
Solution: Let

fx 
0 if x  0,1,
1 if x  2,3.

(e) S  0,1  0,1, T  R2.
Solution: NO! Since a continuous functions sends a compact set to a compact set.

However, in this case, S is compact and T is not compact.



(f) S  0,1  0,1,T  0,1  0,1.
Solution: NO! Since a continuous functions sends a compact set to a compact set.

However, in this case, S is compact and T is not compact.
(g) S  0,1  0,1,T  R2.
Solution: Let

fx,y  cotx, coty.
Remark: 1. There is some important theorems. We write them as follows.
(Theorem A) Let f : S,ds  T,dT be continuous. If X is a compact subset of S,

then fX is a compact subset of T.
(Theorem B) Let f : S,ds  T,dT be continuous. If X is a connected subset of S,

then fX is a connected subset of T.
2. In (g), the key to the example is to find a continuous function f : 0,1  R which is

onto.
Supplement on Continuity of real valued functions

Exercise Suppose that fx : 0,  R, is continuous with a  fx  b for all
x  0,, and for any real y, either there is no x in 0, for which fx  y or
there are finitely many x in 0, for which fx  y. Prove that limx fx exists.

Proof: For convenience, we say property A, it means that for any real y, either
there is no x in 0, for which fx  y or there are finitely many x in 0, for
which fx  y.

We partition a,b into n subintervals. Then, by continuity and property A, as x
is large enough, fx is lying in one and only one subinterval. Given   0, there
exists N such that 2/N  . For this N, we partition a,b into N subintervals, then
there is a M  0 such that as x,y  M

|fx  fy|  2/N  .
So, limx fx exists.

Exercise Suppose that fx : 0,1  R is continunous with f0  f1  0. Prove that
(a) there exist two points x1 and x2 such that as |x1  x2 |  1/n, we have

fx1  fx2  0 for all n. In this case, we call 1/n the length of horizontal strings.
Proof: Define a new function gx  fx  1

n   fx : 0,1  1
n . Claim that

there exists p  0,1  1
n  such that gp  0. Suppose NOT, by Intermediate

Value Theorem, without loss of generality, let gx  0, then
g0  g 1

n . . .g 1  1n  f1  0

which is absurb. Hence, we know that there exists p  0,1  1
n  such that

gp  0. That is,
f p  1n  fp.

So, we have 1/n as the length of horizontal strings.
(b) Could you show that there exists 2/3 as the length of horizontal strings?
Proof: The horizontal strings does not exist, for example,



fx 
x, if x  0, 14 

x  1
2 , if x  

1
4 ,

3
4 

x  1, if x   34 , 1

.

Exercise Suppose that fx : a,b  R is a continuous and non-constant function. Prove
that the function f cannot have any small periods.

Proof: Say f is continuous at q  a,b, and by hypothesis that f is
non-constant, there is a point p  a,b such that |fq  fp| : M  0. Since f is
continuous at q, then given   M, there is a   0 such that as
x  q  ,q    a,b, we have

|fx  fq|  M.     *
If f has any small periods, then in the set q  ,q    a,b, there is a point
r  q  ,q    a,b such that fr  fp. It contradicts to (*). Hence, the
function f cannot have any small periods.

Remark 1. There is a function with any small periods.
Solution:The example is Dirichlet function,

fx 
0, if x  Qc

1, if x  Q
.

Since fx  q  fx, for any rational q, we know that f has any small periods.
2. Prove that there cannot have a non-constant continuous function which has

two period p, and q such that q/p is irrational.
Proof: Since q/p is irrational, there is a sequence  qnpn  Q such that

qn
pn 

q
p  1

pn2
 |pqn  qpn |  p

pn  0 as n  .

So, f has any small periods, by this exercise, we know that this f cannot a
non-constant continuous function.
Note: The inequality is important; the reader should kepp it in mind. There are

many ways to prove this inequality, we metion two methods without proofs. The
reader can find the proofs in the following references.
(1) An Introduction To The Theory Of Numbers written by G.H. Hardy and

E.M. Wright, charpter X, pp 137-138.
(2) In the text book, exercise 1.15 and 1.16, pp 26.
3. Suppose that fx is differentiable on R prove that if f has any small periods,

then f is constant.
Proof: Given c  R, and consider

fc  pn  fc
pn  0 for all n.

where pn is a sequence of periods of function such that pn  0. Hence, by
differentiability of f, we know that fc  0. Since c is arbitrary, we know that
fx  0 on R. Hence, f is constant.

Continuity in metric spaces



In Exercises 4.29 through 4.33, we assume that f : S  T is a function from one metric
space S,dS to another T,dT.

4.29 Prove that f is continuous on S if, and only if,
f1intB  intf1B for every subset B of T.

Proof: () Suppose that f is continuous on S, and let B be a subset of T. Since
intB  B, we have f1intB  f1B. Note that f1intB is open since a pull back of
an open set under a continuous function is open. Hence, we have

intf1intB  f1intB  intf1B.
That is, f1intB  intf1B for every subset B of T.
() Suppose that f1intB  intf1B for every subset B of T. Given an open subset

U T, i.e., intU  U, so we have
f1U  f1intU  intf1U.

In addition, intf1U  f1U by the fact, for any set A, intA is a subset of A. So, f is
continuous on S.

4.30 Prove that f is continuous on S if, and only if,
fclA  clfA for every subset A of S.

Proof: () Suppose that f is continuous on S, and let A be a subset of S. Since
fA  clfA, then A f1fA  f1clfA. Note that f1clfA is closed
since a pull back of a closed set under a continuous function is closed. Hence, we have

clA  clf1clfA  f1clfA
which implies that

fclA  ff1clfA  clfA.
() Suppose that fclA  clfA for every subset A of S. Given a closed subset

C T, and consider f1C as follows. Define f1C  A, then
fclf1C  fclA

 clfA  clff1C
 clC  C since C is closed.

So, we have by (fclA  C)
clA  f1fclA  f1C  A

which implies that A  f1C is closed set. So, f is continuous on S.

4.31 Prove that f is continuous on S if, and only if, f is continuous on every compact
subset of S. Hint. If xn  p in S, the set p,x1,x2, . . .  is compact.
Proof: () Suppose that f is continuous on S, then it is clear that f is continuous on

every compact subset of S.
() Suppose that f is continuous on every compact subset of S, Given p  S, we

consider two cases.
(1) p is an isolated point of S, then f is automatically continuous at p.
(2) p is not an isolated point of S, that is, p is an accumulation point p of S, then there

exists a sequence xnS with xn  p. Note that the set p,x1,x2, . . .  is compact, so we
know that f is continuous at p. Since p is arbitrary, we know that f is continuous on S.
Remark: If xn  p in S, the set p,x1,x2, . . .  is compact. The fact is immediately



from the statement that every infinite subset p,x1,x2, . . .  of has an accumulation point in
p,x1,x2, . . . .

4.32 A function f : S  T is called a closed mapping on S if the image fA is closed
in T for every closed subset A of S. Prove that f is continuous and closed on S if, and only
if,

fclA  clfA for every subset A of S.

Proof: () Suppose that f is continuous and closed on S, and let A be a subset of S.
Since A  clA, we have fA  fclA. So, we have

clfA  clfclA  fclA since f is closed.     *
In addition, since fA  clfA, we have A  f1fA  f1clfA. Note that
f1clfA is closed since f is continuous. So, we have

clA  clf1clfA  f1clfA
which implies that

fclA  ff1clfA  clfA.     **
From (*) and (**), we know that fclA  clfA for every subset A of S.
() Suppose that fclA  clfA for every subset A of S. Gvien a closed subset C

of S, i.e., clC  C, then we have
fC  fclC  clfC.

So, we have fC is closed. That is, f is closed. Given any closed subset B of T, i.e.,
clB  B, we want to show that f1B is closed. Since f1B : A  S, we have

fclf1B  fclA  clfA  clff1B  clB  B
which implies that

fclf1B  B  clf1B  f1fclf1B  f1B.
That is, we have clf1B  f1B. So, f1B is closed. Hence, f is continuous on S.
4.33 Give an example of a continuous f and a Cauchy sequence xn in some metric

space S for which fxn is not a Cauchy sequence in T.
Solution: Let S  0,1, xn  1/n for all n  N, and f  1/x : S  R. Then it is clear

that f is continous on S, and xn is a Cauchy sequence on S. In addition, Trivially,
fxn  n is not a Cauchy sequence.
Remark: The reader may compare the exercise with the Exercise 4.54.

4.34 Prove that the interval 1,1 in R1 is homeomorphic to R1. This shows that
neither boundedness nor completeness is a topological property.
Proof: Since fx  tan x2  : 1,1  R is bijection and continuous, and its

converse function f1x  arctanx : R  1,1. Hence, we know that f is a Topologic
mapping. (Or say f is a homeomorphism). Hence, 1,1 is homeomorphic to R1.
Remark: A function f is called a bijection if, and only if, f is 1-1 and onto.

4.35 Section 9.7 contains an example of a function f, continuous on 0,1, with
f0,1  0,1  0,1. Prove that no such f can be one-to-one on 0,1.
Proof: By section 9.7, let f : 0,1  0,1  0,1 be an onto and continuous function.

If f is 1-1, then so is its converse function f1. Note that since f is a 1-1 and continous
function defined on a compact set 0,1, then its converse function f1 is also a continous



function. Since f0,1  0,1  0,1, we have the domain of f1 is 0,1  0,1 which
is connected. Choose a special point y  0,1  0,1 so that f1y : x  0,1.
Consider a continous function g  f1|0,10,1y , then
g : 0,1  0,1  y  0,x  x, 1 which is continous. However, it is impossible
since 0,1  0,1  y is connected but 0,x  x, 1 is not connected. So, such f cannot
exist.

Connectedness
4.36 Prove that a metric space S is disconnected if, and only if there is a nonempty

subset A of S, A  S, which is both open and closed in S.
Proof: () Suppose that S is disconnected, then there exist two subset A, B in S such

that
1. A, B are open in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.

Note that since A, B are open in S , we have A  S  B, B  S  A are closed in S. So, if S
is disconnected, then there is a nonempty subset A of S, A  S, which is both open and
closed in S.
() Suppose that there is a nonempty subset A of S, A  S, which is both open and

closed in S. Then we have S  A : B is nonempty and B is open in S. Hence, we have two
sets A, B in S such that

1. A, B are open in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.
That is, S is disconnected.
4.37 Prove that a metric space S is connected if, and only if the only subsets of S which

are both open and closed in S are empty set and S itself.
Proof: () Suppose that S is connected. If there exists a subset A of S such that

1. A  , 2. A is a proper subset of S, 3. A is open and closed in S,
then let B  S  A, we have

1. A, B are open in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.
It is impossible since S is connected. So, this A cannot exist. That is, the only subsets of S
which are both open and closed in S are empty set and S itself.
() Suppose that the only subsets of S which are both open and closed in S are empty

set and S itself. If S is disconnected, then we have two sets A, B in S such that
1. A, B are open in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.

It contradicts the hypothesis that the only subsets of S which are both open and closed in S
are empty set and S itself.
Hence, we have proved that S is connected if, and only if the only subsets of S which

are both open and closed in S are empty set and S itself.

4.38 Prove that the only connected subsets of R are
(a) the empty set,
(b) sets consisting of a single point, and
(c) intervals (open, closed, half-open, or infinite).
Proof: Let S be a connected subset of R. Denote the symbol #A to be the number of

elements in a set A. We consider three cases as follows. (a) #S  0, (b) #S  1, (c)
#S  1.
For case (a), it means that S  , and for case (b), it means that S consists of a single

point. It remains to consider the case (c). Note that since #S  1, we have infS  supS.



Since S  R, we have S  infS, supS. (Note that we accept that infS   or
supS  . ) If S is not an interval, then there exists x  infS, supS such that x  S.
(Otherwise, infS, supS  S which implies that S is an interval.) Then we have

1. ,x  S :  A is open in S
2. x,  S :  B is open in S

3. A  B  S.
Claim that both A and B are not empty. Asume that A is empty, then every s  S, we have
s  x  infS. By the definition of infimum, it is impossible. So, A is not empty. Similarly
for B. Hence, we have proved that S is disconnected, a contradiction. That is, S is an
interval.
Remark: 1. We note that any interval in R is connected. It is immediate from Exercise

4.44. But we give another proof as follows. Suppose there exists an interval S is not
connceted, then there exist two subsets A and B such that

1. A, B are open in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.
Since A   and B  , we choose a  A and b  B, and let a  b. Consider

c : supA  a,b.
Note that c  clA  A implies that c  B. Hence, we have a  c  b. In addition,
c  B  clB, then there exists a BSc;  B  . Choose
d  BSc;  c  ,c    S so that

1. c  d  b and 2. d  B.
Then d  A. (Otherwise, it contradicts c  supA  a,b. Note that
d  a,b  S  A  B which implies that d  A or d  B. We reach a contradiction since
d  A and d  B. Hence, we have proved that any interval in R is connected.
2. Here is an application. Is there a continuous function f : R  R such that

fQ  Qc, and fQc  Q ?
Ans: NO! If such f exists, then both fQ and fQc are countable. Hence, fR is

countable. In addition, fR is connected. Since fR contains rationals and irrationals, we
know fR is an interval which implies that fR is uncountable, a cotradiction. Hence, such
f does not exist.

4.39 Let X be a connected subset of a metric space S. Let Y be a subset of S such that
X  Y  clX, where clX is the closure of X. Prove that Y is also connected. In
particular, this shows that clX is connected.
Proof: Given a two valued function f on Y, we know that f is also a two valued

function on X. Hence, f is constant on X, (without loss of generality) say f  0 on X.
Consider p  Y  X, it ,means that p is an accumulation point of X. Then there exists a
dequence xn  X such that xn  p. Note that fxn  0 for all n. So, we have by
continuity of f on Y,

fp  f limn xn  limn fxn  0.

Hence, we have f is constant 0 on Y. That is, Y is conneceted. In particular, clX is
connected.
Remark: Of course, we can use definition of a connected set to show the exercise. But,

it is too tedious to write. However, it is a good practice to use definition to show it. The
reader may give it a try as a challenge.



4.40 If x is a point in a metric space S, let Ux be the component of S containing x.
Prove that Ux is closed in S.
Proof: Let p be an accumulation point of Ux. Let f be a two valued function defined

on Ux  p, then f is a two valud function defined on Ux. Since Ux is a component
of S containing x, then Ux is connected. That is, f is constant on Ux, (without loss of
generality) say f  0 on Ux. And since p is an accumulation point of Ux, there exists a
sequence xn  Ux such that xn  p. Note that fxn  0 for all n. So, we have by
continuity of f on Ux  p,

fp  f limn xn  limn fxn  0.

So, Ux  p is a connected set containing x. Since Ux is a component of S containing
x, we have Ux  p  Ux which implies that p  Ux. Hence, Ux contains its all
accumulation point. That is, Ux is closed in S.
4.41 Let S be an open subset of R. By Theorem 3.11, S is the union of a countable

disjoint collection of open intervals in R. Prove that each of these open intervals is a
component of the metric subspace S. Explain why this does not contradict Exercise 4.40.
Proof: By Theorem 3.11, S  n1 In, where Ii is open in R and Ii  Ij   if i  j.

Assume that there exists a Im such that Im is not a component T of S. Then T  Im is not
empty. So, there exists x  T  Im and x  In for some n. Note that the component Ux is
the union of all connected subsets containing x, then we have

T  In  Ux.     *
In addition,

Ux  T     **
since T is a component containing x. Hence, by (*) and (**), we have In  T. So,
Im  In  T. Since T is connected in R1, T itself is an interval. So, intT is still an interval
which is open and containing Im  In. It contradicts the definition of component interval.
Hence, each of these open intervals is a component of the metric subspace S.
Since these open intervals is open relative to R, not S, this does not contradict Exercise

4.40.

4.42 Given a compact S in Rm with the following property: For every pair of points a
and b in S and for every   0 there exists a finite set of points x0,x1, . . . ,xn in S with
x0  a and xn  b such that

xk  xk1   for k  1,2, . . ,n.
Prove or disprove: S is connected.
Proof: Suppose that S is disconnected, then there exist two subsets A and B such that

1. A, B are open in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.     *
Since A   and B  , we choose a  A, and b  A and thus given   1, then by
hypothesis, we can find two points a1  A, and b1  B such that a1  b1  1. For a1,
and b1, given   1/2, then by hypothesis, we can find two points a2  A, and b2  B
such that a2  b2  1/2. Continuous the steps, we finally have two sequence an  A
and bn  B such that an  bn  1/n for all n. Since an  A, and bn  B, we
have an  S and bn  S by S  A  B. Hence, there exist two subsequence
ank  A and bnk  B such that ank  x, and bnk  y, where x, y  S since S is
compact. In addition, since A is closed in S, and B is closed in S, we have x  A and
y  B. On the other hand, since an  bn  1/n for all n, we have x  y. That is,



A  B   which contradicts (*)-3. Hence, we have prove that S is connected.
Remark:We given another proof by the method of two valued function as follows. Let

f be a two valued function defined on S, and choose any two points a, b  S. If we can
show that fa  fb, we have proved that f is a constant which implies that S is
connected. Since f is a continuous function defined on a compact set S, then f is uniformly
on S. Thus, given 1    0, there exists a   0 such that as x  y  , x, y  S, we
have |fx  fy|    1  fx  fy. Hence, for this , there exists a finite set of
points x0,x1, . . . ,xn in S with x0  a and xn  b such that

xk  xk1   for k  1,2, . . ,n.
So, we have fa  fx0  fx1 . . . fxn  fb.
4.43 Prove that a metric space S is connected if, and only if, every nonempty proper

subset of S has a nonempty boundary.
Proof: () Suppose that S is connected, and if there exists a nonempty proper subset U

of S such that U  , then let B  clS  U, we have (define clU  A
1. A  . B   since S  U  ,

2. A  B  clU  clS  U  U  S  U  S
 S  A  B,

3. A  B  clU  clS  U  U  ,
and

4. Both A and B are closed in S  Both A and B are open in S.
Hence, S is disconnected. That is, if S is connected, then every nonempty proper subset of
S has a nonempty boundary.
() Suppose that every nonempty proper subset of S has a nonempty boundary. If S is

disconnected, then there exist two subsets A and B such that
1. A, B are closed in S, 2. A   and B  , 3. A  B  , and 4. A  B  S.

Then for this A, A is a nonempty proper subset of S with (clA  A, and clB  B)
A  clA  clS  A  clA  clB  A  B  

which contradicts the hypothesis that every nonempty proper subset of S has a nonempty
boundary. So, S is connected.
4.44. Prove that every convex subset of Rn is connected.
Proof: Given a convex subset S of Rn, and since for any pair of points a, b, the set

1  a  b : 0    1 : T  S, i.e., g : 0,1  T by g  1  a  b is a
continuous function such that g0  a, and g1  b. So, S is path-connected. It implies
that S is connected.
Remark: 1. In the exercise, it tells us that every n ball is connected. (In fact, every

n ball is path-connected.) In particular, as n  1, any interval (open, closed, half-open, or
infinite) in R is connected. For n  2, any disk (open, closed, or not) in R2 is connected.
2. Here is a good exercise on the fact that a path-connected set is connected. Given

0,1  0,1 : S, and if T is a countable subset of S. Prove that S  T is connected. (In
fact, S  T is path-connected.)
Proof: Given any two points a and b in S  T, then consider the vertical line L passing

through the middle point a  b/2. Let A  x : x  L  S, and consider the lines form
a to A, and from b to A. Note that A is uncountable, and two such lines (form a to A, and



from b to A) are disjoint. So, if every line contains a point of T, then it leads us to get T is
uncountable. However, T is countable. So, it has some line (form a to A, and from b to A)
is in S  T. So, it means that S  T is path-connected. So, S  T is connected.

4.45 Given a function f : Rn  Rm which is 1-1 and continuous on Rn. If A is open
and disconnected in Rn, prove that fA is open and disconnected in fRn.
Proof: The exercise is wrong. There is a counter-example. Let f : R  R2

f 
cos 2x1x 


2 , 1  sin

2x
1x 


2  if x  0

cos 2x1x 

2 ,1  sin

2x
1x 


2  if x  0

Remark: If we restrict n,m  1, the conclusion holds. That is, Let f : R  R be
continuous and 1-1. If A is open and disconnected, then so is fA.
Proof: In order to show this, it suffices to show that f maps an open interval I to

another open interval. Since f is continuous on I, and I is connected, fI is connected. It
implies that fI is an interval. Trivially, there is no point x in I such that fx equals the
endpoints of fI. Hence, we know that fI is an open interval.
Supplement: Here are two exercises on Homeomorphism to make the reader get more

and feel something.
1. Let f : E  R  R. If x, fx : x  E is compact, then f is uniformly continuous

on E.
Proof: Let x, fx : x  E  S, and thus define gx  Ix  x, fx : E  S.

Claim that g is continuous on E. Consider h : S  E by hx, fx  x. Trivially, h is 1-1,
continuous on a compact set S. So, its inverse function g is 1-1 and continuous on a
compact set E. The claim has proved.
Since g is continuous on E, we know that f is continuous on a compact set E. Hence, f

is uniformly continuous on E.
Note: The question in Supplement 1, there has another proof by the method of

contradiction, and use the property of compactness. We omit it.
2. Let f : 0,1  R. If x, fx : x  0,1 is path-connected, then f is continuous

on 0,1.
Proof: Let a  0,1, then there is a compact interval a a1,a2  0,1. Claim

that the set
x, fx : x  a1,a2 : S is compact.

Since S is path-connected, there is a continuous function g : 0,1  S such that
g0  a1, fa1 and g1  a2, fa2. If we can show g0,1  S, we have shown
that S is compact. Consider h : S  R by hx, fx  x; h is clearly continuous on S. So,
the composite function h  g : 0,1  R is also continuous. Note that h  g0  a1, and
h  g1  a2, and the range of h  g is connected. So, a1,a2  hg0,1. Hence,
g0,1  S. We have proved the claim and by Supplement 1, we know that f is
continuous at a. Since a is arbitrary, we know that f is continuous on 0,1.
Note: The question in Supplement 2, there has another proof directly by definition of

continuity. We omit the proof.

4.46 Let A  x,y : 0  x  1, y  sin1/x, B  x,y : y  0,  1  x  0,
and let S  A  B. Prove that S is connected but not arcwise conneceted. (See Fig. 4.5,



Section 4.18.)
Proof: Let f be a two valued function defined on S. Since A, and B are connected in S,

then we have
fA  a, and fB  b, where a,b  0,1.

Given a sequence xn A with xn  0,0, then we have

a  limn fxn  f limn0 xn by continuity of f at 0

 f0,0
 b.

So, we have f is a constant. That is, S is connected.
Assume that S is arcwise connected, then there exists a continuous function

g : 0,1  S such that g0  0,0 and g1  1, sin1. Given   1/2, there exists a
  0 such that as |t|  , we have

gt  g0  gt  1/2.     *
Let N be a positive integer so that 1

2N  , thus let  1
2N , 0 : p and

1
2N1 , 0 : q.

Define two subsets U and V as follows:
U  x,y : x  p  q

2  gq,p

V  x,y : x  p  q
2  gq,p

Then we have
(1). U  V  gq,p, (2). U  , since p  U and V  , since q  V,
(3). U  V   by the given set A, and (*)

Since x,y : x  pq
2  and x,y : x  pq

2  are open in R2, then U and V are open in
gq,p. So, we have

(4). U is open in gq,p and V is open in gq,p.
From (1)-(4), we have gq,p is disconnected which is absurb since a connected subset
under a continuous function is connected. So, such g cannot exist. It means that S is not
arcwise connected.
Remark: This exercise gives us an example to say that connectedness does not imply

path-connectedness. And it is important example which is worth keeping in mind.
4.47 Let F  F1,F2, . . .  be a countable collection of connected compact sets in Rn

such that Fk1  Fk for each k  1. Prove that the intersection k1 Fk is connected and
closed.
Proof: Since Fk is compact for each k  1, Fk is closed for each k  1. Hence,

k1 Fk : F is closed. Note that by Theorem 3.39, we know that F is compact. Assume
that F is not connected. Then there are two subsets A and B with

1.A  , B  . 2. A  B  . 3. A  B  F. 4. A,B are closed in F.
Note that A, B are closed and disjoint in Rn. By exercise 4.57, there exist U and V which
are open and disjoint in Rn such that A  U, and B  V. Claim that there exists Fk such
that Fk  U  V. Suppose NOT, then there exists xk  Fk  U  V. Without loss of
generality, we may assume that xk  Fk1. So, we have a sequence xk  F1 which
implies that there exists a convergent subsequence xkn, say limkn xkn  x. It is
clear that x  Fk for all k since x is an accumulation point of each Fk. So, we have



x  F  k1 Fk  A  B  U  V
which implies that x is an interior point of U  V since U and V are open. So,
Bx;  U  V for some   0, which contradicts to the choice of xk. Hence, we have
proved that there exists Fk such that Fk  U  V. Let C  U  Fk, and D  V  Fk, then
we have

1. C   since A  U and A  Fk, and D   since B  V and B  Fk.
2. C  D  U  Fk  V  Fk  U  V  .
3. C  D  U  Fk  V  Fk  Fk.

4. C is open in Fk and D is open in Fk by C,D are open in Rn.
Hence, we have Fk is disconnected which is absurb. So, we know that F  k1 Fk is
connected.

4.48 Let S be an open connected set in Rn. Let T be a component of Rn  S. Prove
that Rn  T is connected.
Proof: If S is empty, there is nothing to proved. Hence, we assume that S is nonempty.

Write Rn  S  xRnS Ux, where Ux is a component of Rn  S. So, we have
Rn  S  xRnS Ux.

Say T  Up, for some p. Then
Rn  T  S  xRnST Ux.

Claim that clS  Ux   for all x  Rn  S  T. If we can show the claim, given
a,b  Rn  T, and a two valued function on Rn  T. Note that clS is also connected. We
consider three cases. (1) a  S, b  Ux for some x. (2) a,b  S. (3) a  Ux,
b  Ux.
For case (1), let c  clS  Ux, then there are sn  S and un  Ux with

sn  c and un  c, then we have
fa  limn fsn  f limn sn  fc  f limn un  limn fun  fb

which implies that fa  fb.
For case (2), it is clear fa  fb since S itself is connected.
For case (3), we choose s  S, and thus use case (1), we know that

fa  fs  fb.
By case (1)-(3), we have f is constant on Rn  T. That is, Rn  T is connected.
It remains to show the claim. To show clS  Ux   for all x  Rn  S  T, i.e., to

show that for all x  Rn  S  T,
clS  Ux  S  S  Ux

 S  Ux
 .

Suppose NOT, i.e., for some x, S  Ux   which implies that Ux  Rn  clS
which is open. So, there is a component V of Rn  clS contains Ux, where V is open by
Theorem 4.44. However, Rn  clS  Rn  S, so we have V is contained in Ux.
Therefore, we have Ux  V. Note that Ux  Rn  S, and Rn  S is closed. So,
clUx  Rn  S. By definition of component, we have clUx  Ux, which is
closed. So, we have proved that Ux  V is open and closed. It implies that Ux  Rn or
 which is absurb. Hence, the claim has proved.
4.49 Let S,d be a connected metric space which is not bounded. Prove that for every



a in S and every r  0, the set x : dx,a  r is nonempty.
Proof: Assume that x : dx,a  r is empty. Denote two sets x : dx,a  r by A

and x : dx,a  r by B. Then we have
1. A   since a  A and B   since S is unbounded,

2. A  B  ,
3. A  B  S,

4. A  Ba; r is open in S,
and consider B as follows. Since x : dx,a  r is closed in S, B  S  x : dx,a  r
is open in S. So, we know that S is disconnected which is absurb. Hence, we know that the
set x : dx,a  r is nonempty.

Supplement on a connected metric space
Definition Two subsets A and B of a metric space X are said to be separated if both

A  clB   and clA  B  .
A set E  X is said to be connected if E is not a union of two nonempty separated
sets.

We now prove the definition of connected metric space is equivalent to this definiton
as follows.
Theorem A set E in a metric space X is connected if, and only if E is not the union of

two nonempty disjoint subsets, each of which is open in E.
Proof: () Suppose that E is the union of two nonempty disjoint subsets, each

of which is open in E, denote two sets, U and V. Claim that
U  clV  clU  V  .

Suppose NOT, i.e., x  U  clV. That is, there is a   0 such that
BXx,  E  BEx,  U and BXx,  V  

which implies that
BXx,  V  BXx,  V  E

 BXx,  E  V
 U  V  ,

a contradiction. So, we have U  clV  . Similarly for clU  V  . So, X is
disconnected. That is, we have shown that if a set E in a metric space X is
connected, then E is not the union of two nonempty disjoint subsets, each of which
is open in E.

() Suppose that E is disconnected, then E is a union of two nonempty
separated sets, denoted E  A  B, where A  clB  clA  B  . Claim that A
and B are open in E. Suppose NOT, it means that there is a point x A which is
not an interior point of A. So, for any ball BEx, r, there is a correspounding
xr  B, where xr  BEx, r. It implies that x  clB which is absurb with
A  clB  . So, we proved that A is open in E. Similarly, B is open in E. Hence,
we have proved that if E is not the union of two nonempty disjoint subsets, each of
which is open in E, then E in a metric space X is connected.

Exercise Let A and B be connected sets in a metric space with A  B not connected and
suppose A  B  C1  C2 where clC1  C2  C1  clC2  . Show that
B  C1 is connected.



Proof: Assume that B  C1 is disconnected, and thus we will prove that C1 is
disconnected. Consider, by clC1  C2  C1  clC2  ,

C1  clC2  A  B  C1  clA  B  C1  clB     *
and

clC1  C2  A  B  clC1  A  B  clC1  B     **
we know that at least one of (*) and (**) is nonempty by the hypothesis A is
connected. In addition, by (*) and (**), we know that at leaset one of

C1  clB
and

clC1  B
is nonempty. So, we know that C1 is disconnected by the hypothesis B is connected,
and the concept of two valued function.

From above sayings and hypothesis, we now have
1. B is connected.
2. C1 is disconnected.
3. B  C1 is disconnected.

Let D be a component of B  C1 so that B  D; we have, let
B  C1  D  E C1,

D  clE  clD  E  
which implies that

clE  A  E  , and clA  E  E  .
So, we have prove that A is disconnected wich is absurb. Hence, we know that
B  C1 is connected.

Remark We prove that clA  E  E  clE  A  E   as follows.
Proof: Since

D  clE  ,
we obtain that

clE  A  E
 clE  D  C2  A  B
 clE  D  C2  B
 clE  D  C2 since B  D
 clE  C2 since D  clE  

 clC1  C2 since E  C1
 .

And since
clD  E  ,

we obtain that



clA  E  E
 clD  C2  A  B  E
 clD  C2  B  E
 clD  C2  E since B  D
 clC2  E since clD  E  

 clC2  C1 since E  C1
 .

Exercise Prove that every connected metric space with at least two points is uncountable.
Proof: Let X be a connected metric space with two points a and b, where

a  b. Define a set Ar  x : dx,a  r and Br  x : dx,a  r. It is clear
that both of sets are open and disjoint. Assume X is countable. Let
r  da,b

4 , da,b2 , it guarantee that both of sets are non-empty. Since
da,b
4 , da,b2 is uncountable, we know that there is a   0 such that

A  B  X. It implies that X is disconnected. So, we know that such X is
countable.

Uniform continuity
4.50 Prove that a function which is uniformly continuous on S is also continuous on S.
Proof: Let f be uniformly continuous on S, then given   0, there exists a   0 such

that as dx,y  , x and y in S, then we have
dfx, fy  .

Fix y, called a. Then given   0, there exists a   0 such that as dx,a  , x in S,
then we have

dfx, fa  .
That is, f is continuous at a. Since a is arbitrary, we know that f is continuous on S.
4.51 If fx  x2 for x in R, prove that f is not uniformly continuous on R.
Proof: Assume that f is uniformly continuous on R, then given   1, there exists a

  0 such that as |x  y|  , we have
|fx  fy|  1.

Choose x  y  
2 , ( |x  y|  , then we have

|fx  fy|  y  
2

2
 1.

When we choose y  1
 , then

1  
2

2
 1  

2  1

which is absurb. Hence, we know that f is not uniformly continuous on R.
Remark: There are some similar questions written below.
1. Here is a useful lemma to make sure that a function is uniformly continuous on

a,b, but we need its differentiability.
(Lemma) Let f : a,b  R  R be differentiable and |fx|  M for all x  a,b.

Then f is uniformly continuous on a,b, where a,b may be .



Proof: ByMean Value Theorem, we have
|fx  fy|  |fz||x  y|, where z  x,y or y,x

 M|x  y| by hypothesis.     *
Then given   0, there is a   /M such that as |x  y|  , x,y  a,b, we have

|fx  fy|  , by (*).
Hence, we know that f is uniformly continuous on a,b.
Note: A standard example is written in Remark 2. But in Remark 2, we still use

definition of uniform continuity to practice what it says.
2. sinx is uniformly continuous on R.
Proof: Given   0, we want to find a   0 such that as |x  y|  , we have

|sinx  siny|  .
Since sinx  siny  2cos xy2  sin xy2 , |sinx|  |x|, and |cosx|  1, we have

|sinx  siny|  |x  y|
So, if we choose   , then as |x  y|  , it implies that

|sinx  siny|  .
That is, sinx is uniformly continuous on R.
Note: |sinx  siny|  |x  y| for all x,y  R, can be proved byMean Value Theorem

as follows.

proof: ByMean Value Theorem, sinx  siny  sin zx  y; it implies that
|sinx  siny|  |x  y|.

3. sinx2 is NOT uniformly continuous on R.

Proof: Assume that sinx2 is uniformly continuous on R. Then given   1, there is a
  0 such that as |x  y|  , we have

|sinx2  siny2|  1.     *
Consider

n  
2  n 


2

n  
2  n

 
4 n

 0,

and thus choose N  
42

 1  
42

which implies

N  
2  N  .

So, choose x  N  
2 and y  N , then by (*), we have

|fx  fy|  sin N  
2  sinN   sin 2  1  1

which is absurb. So, sinx2 is not uniformly continuous on R.
4. x is uniformly continuous on 0,.

Proof: Since x  y  |x  y| for all x,y  0,, then given   0, there exists
a   2 such that as |x  y|  , x,y  0,, we have

x  y  |x  y|    .
So, we know that x is uniformly continuous on 0,.



Note:We have the following interesting results:. Prove that, for x  0, y  0,

|xp  yp | 
|x  y|p if 0  p  1,

p|x  y|xp1  yp1 if 1  p  .

Proof: (As 0  p  1) Without loss of generality, let x  y, consider
fx  x  yp  xp  yp, then

fx  p x  yp1  xp1  0, note that p  1  0.
So, we have f is an increasing function defined on 0, for all given y  0. Hence, we
have fx  f0  0. So,

xp  yp  x  yp if x  y  0
which implies that

|xp  yp |  |x  y|p

for x  0, y  0.
Ps: The inequality, we can prove the case p  1/2 directly. Thus the inequality is not

surprising for us.
(As 1  p  Without loss of generality, let x  y, consider

xp  yp  pzp1x  y, where z  y,x, byMean Value Theorem.
 pxp1x  y, note that p  1  0,
 pxp1  yp1x  y

which implies
|xp  yp |  p|x  y|xp1  yp1

for x  0, y  0.
5. In general, we have

xr
is uniformly continuous on 0,, if r  0,1,
is NOT uniformly continuous on 0,, if r  1,

and

sinxr 
is uniformly continuous on 0,, if r  0,1,
is NOT uniformly continuous on 0,, if r  1.

Proof: (xr) As r  0, it means that xr is a constant function. So, it is obviuos. As
r  0,1, then given   0, there is a   1/r  0 such that as |x  y|  , x,y  0,,
we have

|xr  yr |  |x  y|r by note in the exercise
 r

 .
So, xr is uniformly continuous on 0,, if r  0,1.
As r  1, assume that xr is uniformly continuous on 0,, then given   1  0,

there exists a   0 such that as |x  y|  , x,y  0,, we have
|xr  yr |  1.     *

ByMean Value Theorem, we have (let x  y  /2, y  0)



xr  yr  rzr1x  y
 ryr1/2.

So, if we choose y   2r 
1
r1 , then we have

xr  yr  1
which is absurb with (*). Hence, xr is not uniformly continuous on 0,.
Ps: The reader should try to realize why xr is not uniformly continuous on 0,, for

r  1. The ruin of non-uniform continuity comes from that x is large enough. At the same
time, compare it with theorem that a continuous function defined on a compact set K is
uniflormly continuous on K.
(sinxr) As r  0, it means that xr is a constant function. So, it is obviuos. As r  0,1,

given   0, there is a   1/r  0 such that as |x  y|  , x,y  0,, we have

|sinxr  sinyr |  2cos xr  yr
2 sin xr  yr

2
 |xr  yr |
 |x  y|r by the note in the Remark 4.
 r

 .
So, sinxr is uniformly continuous on 0,, if r  0,1.
As r  1, assume that sinxr is uniformly continuous on 0,, then given   1, there

is a   0 such that as |x  y|  , x,y  0,, we have
|sinxr  sinyr |  1.     **

Consider a sequence n  
2 

1/r  n1/r , it is easy to show that the sequence tends to

0 as n  . So, there exists a positive integer N such that |x  y|  , x  n  
2 

1/r,
y  n1/r. Then

sinxr  sinyr  1
which contradicts (**). So, we know that sinxr is not uniformly continuous on 0,.

Ps: For n  
2 

1/r  n1/r : xn  0 as n  0, here is a short proof by using
L-Hospital Rule.
Proof:Write

xn  n  
2

1/r
 n1/r

 n1/r 1  1
2n

1/r
 1


1  1

2n 
1/r  1

n1/r

and thus consider the following limit



limx
1  1

2x 
1/r  1

x1/r
, 0
0

 limx
1/r
2 x 1r 1 1  1

2x

1
r 1
by L-Hospital Rule.

 0.
Hence xn  0 as n  .
6. Here is a useful criterion for a function which is NOT uniformly continuous defined

a subset A in a metric space. We say a function f is not uniformly continuous on a subset A
in a metric space if, and only if, there exists 0  0, and two sequences xn and yn
such that as

limn xn  yn  0

which implies that
|fxn  fyn|  0 for n is large enough.

The criterion is directly from the definition on uniform continuity. So, we omit the
proof.

4.52 Assume that f is uniformly continuous on a bounded set S in Rn. Prove that f
must be bounded on S.
Proof: Since f is uniformly continuous on a bounded set S in Rn, given   1, then

there exists a   0 such that as x  y  , x,y  S, we have
dfx, fy  1.

Consider the closure of S, clS is closed and bounded. Hence clS is compact. Then for
any open covering of clS, there is a finite subcover. That is,

clS  xclS Bx;/2,
 clS  k1kn Bxk;/2, where xk  clS,
 S  k1kn Bxk;/2, where xk  clS.

Note that if Bxk;/2  S   for some k, then we remove this ball. So, we choose
yk  Bxk;/2  S, 1  k  n and thus we have

Bxk;/2  Byk;for 1  k  n,
since let z  Bxk;/2,

z  yk  z  xk  xk  yk  /2  /2  .
Hence, we have

S  k1kn Byk;, where yk  S.
Given x  S, then there exists Byk; for some k such that x  Byk;. So,

dfx, fxk  1  fx  Bfyk; 1
Note that k1kn Bfyk; 1 is bounded since every Bfyk; 1 is bounded. So, let B be a
bounded ball so that k1kn Bfyk; 1  B. Hence, we have every x  S, fx  B. That is,
f is bounded.
Remark: If we know that the codomain is complete, then we can reduce the above

proof. See Exercise 4.55.

4.53 Let f be a function defined on a set S in Rn and assume that fS  Rm. Let g be
defined on fS with value in Rk, and let h denote the composite function defined by



hx  gfx if x  S. If f is uniformly continuous on S and if g is uniformly continuous
on fS, show that h is uniformly continuous on S.
Proof: Given   0, we want to find a   0 such that as x  yRn  , x,y  S, we

have
hx  hy  gfx  gfy  .

For the same , since g is uniformly continuous on fS, then there exists a   0 such
that as fx  fyRm  , we have

gfx  gfy  .
For this , since f is uniformly continuous on S, then there exists a   0 such that as
x  yRn  , x,y  S, we have

fx  fyRm  .
So, given   0, there is a   0 such that as x  yRn  , x,y  S, we have

hx  hy  .
That is, h is uniformly continuous on S.
Remark: It should be noted that (Assume that all functions written are continuous)

(1) uniform continuity  uniform continuity  uniform continuity.

(2) uniform continuity  NOT uniform continuity 
(a) NOT uniform continuity, or

(b) uniform continuity.

(3) NOT uniform continuity  uniform continuity 
(a) NOT uniform continuity, or

(b) uniform continuity.

(4) NOT uniform continuity  NOT uniform continuity 
(a) NOT uniform continuity, or

(b) uniform continuity.

For (1), it is from the exercise.
For (2), (a) let fx  x, and gx  x2, x  R  fgx  fx2  x2.
(b) let fx  x , and gx  x2, x  0,  fgx  fx2  x.

For (3), (a) let fx  x2, and gx  x, x  R  fgx  fx  x2.
(b) let fx  x2, and gx  x , x  0,  fgx  f x   x.

For (4), (a) let fx  x2, and gx  x3, x  R  fgx  fx3  x6.
(b) let fx  1/x, and gx  1

x ,x  0,1  fgx  f 1
x  x .

Note. In (4), we have xr is not uniformly continuous on 0,1, for r  0. Here is a
proof.
Proof: Let r  0, and assume that xr is not uniformly continuous on 0,1. Given

  1, there is a   0 such that as |x  y|  , we have
|xr  yr |  1.     *

Let xn  2/n, and yn  1/n. Then xn  yn  1/n. Choose n large enough so that 1/n  .
So, we have



|xr  yr |  2
n

r
 1

n
r

 1
n

r
|2r  1|  , as n   since r  0,

which is absurb with (*). Hence, we know that xr is not uniformly continuous on 0,1, for
r  0.
Ps: The reader should try to realize why xr is not uniformly continuous on 0,1, for

r  0. The ruin of non-uniform continuity comes from that x is small enough.

4.54 Assume f : S  T is uniformly continuous on S, where S and T are metric
spaces. If xn is any Cauchy sequence in S, prove that fxn is a Cauchy sequence in T.
(Compare with Exercise 4.33.)
Proof: Given   0, we want to find a positive integer N such that as n,m  N, we

have
dfxn, fxm  .

For the same , since f is uniformly continuous on S, then there is a   0 such that as
dx,y  , x,y  S, we have

dfx, fy  .
For this , since xn is a Cauchy sequence in S, then there is a positive integer N such
that as n,m  N, we have

dxn,xm  .
Hence, given   0, there is a postive integer N such that as n,m  N, we have

dfxn, fxm  .
That is, fxn is a Cauchy sequence in T.
Remark: The reader should compare with Exercise 4.33 and Exercise 4.55.

4.55 Let f : S  T be a function from a metric space S to another metric space T.
Assume that f is uniformly continuous on a subset A of S and let T is complete. Prove that
there is a unique extension of f to clA which is uniformly continuous on clA.
Proof: Since clA  A  A, it suffices to consider the case x  A  A. Since

x  A  A, then there is a sequence xn  A with xn  x. Note that this sequence is a
Cauchy sequence, so we have by Exercise 4.54, fxn is a Cauchy sequence in T since f
is uniformly on A. In addition, since T is complete, we know that fxn is a convergent
sequence, say its limit L. Note that if there is another sequence x n  A with x n  x,
then fx n is also a convergent sequence, say its limit L. Note that xn  x n is still a
Cauchy sequence. So, we have

dL,L  dL, fxn  dfxn, fx n  dfx n,L  0 as n  .
So, L  L. That is, it is well-defined for g : clA  T by the following

gx 
fx if x  A,

limn fxn if x  A  A, where xn  x.

So, the function g is a extension of f to clA.
Claim that this g is uniformly continuous on clA. That is, given   0, we want to

find a   0 such that as dx,y  , x,y  clA, we have
dgx,gy  .

Since f is uniformly continuous on A, for   /3, there is a   0 such that as



dx,y  , x,y  A, we have
dfx, fy  .

Let x,y  clA, and thus we have xn  A with xn  x, and yn  A with yn  y.
Choose   /3, then we have

dxn,x  /3 and dyn,y  /3 as n  N1
So, as dx,y    /3, we have (n  N1)

dxn,yn  dxn,x  dx,y  dy,yn  /3  /3  /3  .
Hence, we have as dx,y  , (n  N1)

dgx,gy  dgx, fxn  dfxn, fyn  dfyn, fy
 dgx, fxn    dfyn,gy

    *

And since limn fxn  gx, and limn fyn  gy, we can choose N  N1 such that
dgx, fxn   and
dfyn,gy  .

So, as dx,y  , (n  N) we have
dgx,gy  3   by (*).

That is, g is uniformly on clA.
It remains to show that g is a unique extension of f to clA which is uniformly

continuous on clA. If there is another extension h of f to clA which is uniformly
continuous on clA, then given x  A  A, we have, by continuity, (Say xn  x)

hx  h limn xn  limn hxn  limn fxn  limn gxn  g limn xn  gx
which implies that hx  gx for all x  A  A. Hence, we have hx  gx for all
x  clA. That is, g is a unique extension of f to clA which is uniformly continuous on
clA.
Remark: 1. We do not require that A is bounded, in fact, A is any non-empty set in a

metric space.
2. The exercise is a criterion for us to check that a given function is NOT uniformly

continuous. For example, let f : 0,1  R by fx  1/x. Since f0  does not exist, we
know that f is not uniformly continuous. The reader should feel that a uniformly continuous
is sometimes regarded as a smooth function. So, it is not surprising for us to know the
exercise. Similarly to check fx  x2,x  R, and so on.
3. Here is an exercise to make us know that a uniformly continuous is a smooth

function. Let f : R  R be uniformly continuous, then there exist ,  0 such that
|fx|  |x|  .

Proof: Since f is uniformly continuous on R, given   1, there is a   0 such that as
|x  y|  , we have

|fx  fy|  1.     *
Given any x  R, then there is the positive integer N such that N  |x|  N  1. If
x  0, we consider

y0  0, y1  /2, y2  , . . . ,y2N1  N  
2 ,y2N  x.

Then we have



|fx  f0|  
k1

N

|fy2k  fy2k1|  |fy2k1  fy2k2|

 2N by (*)
which implies that

|fx|  2N  |f0|

 2 1  |x|  |f0| since |x|  N  1

 2 |x|  2  |f0|.

Similarly for x  0. So, we have proved that |fx|  |x|   for all x.

4.56 In a metric space S,d, let A be a nonempty subset of S. Define a function
fA : S  R by the equation

fAx  infdx,y : y  A
for each x in S. The number fAx is called the distance from x to A.
(a) Prove that fA is uniformly continuous on S.
(b) Prove that clA  x : x  S and fAx  0 .

Proof: (a) Given   0, we want to find a   0 such that as dx1,x2  , x1,x2  S,
we have

|fAx1  fAx2|  .
Consider (x1,x2,y  S)

dx1,y  dx1,x2  dx2,y, and dx2,y  dx1,x2  dx1,y
So,

infdx1,y : y  A  dx1,x2  infdx2,y : y  A and
infdx2,y : y  A  dx1,x2  infdx1,y : y  A

which implies that
fAx1  fAx2  dx1,x2 and fAx2  fAx1  dx1,x2

which implies that
|fAx1  fAx2|  dx1,x2.

Hence, if we choose   , then we have as dx1,x2  , x1,x2  S, we have
|fAx1  fAx2|  .

That is, fA is uniformly continuous on S.
(b) Define K  x : x  S and fAx  0 , we want to show clA  K. We prove it

by two steps.
() Let x  clA, then Bx; r  A   for all r  0. Choose yk  Bx; 1/k  A, then

we have
infdx,y : y  A  dx,yk  0 as k  .

So, we have fAx  infdx,y : y  A  0. So, clA  K.
() Let x  K, then fAx  infdx,y : y  A  0. That is, given any   0, there

is an element y  A such that dx,y  . That is, y  Bx;  A. So, x is an adherent
point of A. That is, x  clA. So, we have K  clA.
From above saying, we know that clA  x : x  S and fAx  0 .

Remark: 1. The function fA often appears in Analysis, so it is worth keeping it in mind.



In addition, part (b) comes from intuition. The reader may think it twice about distance 0.
2. Here is a good exercise to pratice. The statement is that suppose that K and F are

disjoint subsets in a metric space X, K is compact, F is closed. Prove that there exists a
  0 such that dp,q   if p  K, q  F. Show that the conclusion is may fail for two
disjoint closed sets if neither is compact.
Proof: Suppose NOT, i.e., for any   0, there exist p  K, and q  F such that

dp,q  . Let   1/n, then there exist two sequence pn  K, and qn  F such
that dpn,qn  1/n. Note that pn  K, and K is compact, then there exists a
subsequence pnk with limnk pnk  p  K. Hence, we consider dpnk ,qnk   1

nk to get a
contradiction. Since

dpnk ,p  dp,qnk   dpnk ,qnk   1
nk ,

then let nk  , we have limnk qnk  p. That is, p is an accumulation point of F which
implies that p  F. So, we get a contradiction since K  F  . That is, there exists a
  0 such that dp,q   if p  K, q  F.
We give an example to show that the conclusion does not hold. Let

K  x, 0 : x  R and F  x, 1/x : x  0, then K and F are closd. It is clear that
such  cannot be found.
Note: Two disjoint closed sets may has the distance 0, however; if one of closed sets is

compact, then we have a distance   0. The reader can think of them in Rn, and note that
a bounded and closed subsets in Rn is compact. It is why the example is given.

4.57 In a metric space S,d, let A and B be disjoint closed subsets of S. Prove that
there exists disjoint open subsets U and V of S such that A  U and B  V. Hint. Let
gx  fAx  fBx, in the notation of Exercise 4.56, and consider g1, 0 and
g10,.
Proof: Let gx  fAx  fBx, then by Exercixe 4.56, we have gx is uniformly

continuous on S. So, gx is continuous on S. Consider g1, 0 and g10,, and
note that A, B are disjoint and closed, then we have by part (b) in Exercise 4.56,

gx  0 if x  A and
gx  0 if x  B.

So, we have A  g1, 0 : U, and B  g10, : V.

Discontinuities
4.58 Locate and classify the discontinuities of the functions f defined on R1 by the

following equations:
(a) fx  sinx/x if x  0, f0  0.
Solution: f is continuous on R  0, and since limx0 sinxx  1, we know that f has a

removable discontinuity at 0.
(b) fx  e1/x if x  0, f0  0.
Solution: f is continuous on R  0, and since limx0 e1/x   and limx0 e1/x  0,

we know that f has an irremovable discontinuity at 0.
(c) fx  e1/x  sin1/x if x  0, f0  0.
Solution: f is continuous on R  0, and since the limit fx does not exist as x  0,

we know that f has a irremovable discontinuity at 0.



(d) fx  1/1  e1/x if x  0, f0  0.

Solution: f is continuous on R  0, and since limx0 e1/x   and limx0 e1/x  0,
we know that f has an irremovabel discontinuity at 0. In addition, f0   0 and
f0   1, we know that f has the lefthand jump at 0, f0  f0   1, and f is
continuous from the right at 0.
4.59 Locate the points in R2 at which each of the functions in Exercise 4.11 is not

continuous.
(a) By Exercise 4.11, we know that fx,y is discontinuous at 0,0, where

fx,y  x2  y2
x2  y2 if x,y  0,0, and f0,0  0.

Let gx,y  x2  y2, and hx,y  x2  y2 both defined on R2  0,0, we know that g
and h are continuous on R2  0,0. Note that h  0 on R2  0,0. Hence, f  g/h is
continuous on R2  0,0.
(b) By Exercise 4.11, we know that fx,y is discontinuous at 0,0, where

fx,y  xy2

xy2  x  y2
if x,y  0,0, and f0,0  0.

Let gx,y  xy2, and hx,y  xy2  x  y2 both defined on R2  0,0, we know
that g and h are continuous on R2  0,0. Note that h  0 on R2  0,0. Hence,
f  g/h is continuous on R2  0,0.
(c) By Exercise 4.11, we know that fx,y is continuous at 0,0, where

fx,y  1
x sinxy if x  0, and f0,y  y,

since limx,y0,0 fx,y  0  f0,0. Let gx,y  1/x and hx,y  sinxy both defined
on R2  0,0, we know that g and h are continuous on R2  0,0. Note that h  0
on R2  0,0. Hence, f  g/h is continuous on R2  0,0. Hence, f is continuous on
R2.
(d) By Exercise 4.11, we know that fx,y is continuous at 0,0, where

fx,y 
x  y sin1/x sin1/y if x  0 and y  0,
0 if x  0 or y  0.

since limx,y0,0 fx,y  0  f0,0. It is the same method as in Exercise 4.11, we know
that f is discontinuous at x, 0 for x  0 and f is discontinuous at 0,y for y  0. And it is
clearly that f is continuous at x,y, where x  0 and y  0.
(e) By Exercise 4.11, Since

fx,y 
sinxsiny
tanxtany , if tanx  tany,

cos3x if tanx  tany.
,

we rewrite

fx,y 
cos xy

2 cosxcosy

cos xy
2

if tanx  tany

cos3x if tanx  tany.
.

We consider x,y  /2,/2  /2,/2, others are similar. Consider two cases (1)
x  y, and (2) x  y, we have
(1) (x  y) Since limx,ya,a fx,y  cos3a  fa,a. Hence, we know that f is



continuous at a,a.
(2) (x  y) Since x  y, it implies that tanx  tany. Note that the denominator is not 0

since x,y  /2,/2  /2,/2. So, we know that f is continuous at a,b, a  b.
So, we know that f is continuous on /2,/2  /2,/2.

Monotonic functions
4.60 Let f be defined in the open interval a,b and assume that for each interior point x

of a,b there exists a 1 ball Bx in which f is increasing. Prove that f is an increasing
function throughout a,b.
Proof: Suppose NOT, i.e., there exist p,q with p  q such that fp  fq. Consider

p,q a,b, and since for each interior point x of a,b there exists a 1 ball Bx in
which f is increasing. Then p,q  xp,q Bx;x, (The choice of balls comes from the
hypothesis). It implies that p,q  k1n Bxn;n : Bn. Note that if Bi  Bj, we remove
such Bi and make one left. Without loss of generality, we assume that x1 . . xn.

.fp  fx1 . . . fxn  fq
which is absurb. So, we know that f is an increasing function throughout a,b.
4.61 Let f be continuous on a compact interval a,b and assume that f does not have a

loacal maximum or a local minimum at any interior point. (See the note following Exercise
4.25.) Prove that f must be monotonic on a,b.
Proof: Since f is continuous on a,b, we have

max
xa,b

fx  fp, where p  a,b and

min
xa,b

fx  fq, where q  a,b.

So, we have p,q  a,b by hypothesis that f does not have a local maximum or a local
minimum at any interior point. Without loss of generality, we assume that p  a, and
q  b. Claim that f is decreasing on a,b as follows.
Suppose NOT, then there exist x,y  a,b with x  y such that fx  fy. Consider

x,y and by hyothesis, we know that f|x,y has the maximum at y, and f|a,y has the
minimum at y. Then it implies that there exists By;  x,y such that f is constant on
By;  x,y, which contradicts to the hypothesis. Hence, we have proved that f is
decreasing on a,b.

4.62 If f is one-to one and continuous on a,b, prove that f must be strictly
monotonic on a,b. That is, prove that every topological mapping of a,b onto an
interval c,d must be strictly monotonic.
Proof: Since f is continuous on a,b, we have

max
xa,b

fx  fp, where p  a,b and

min
xa,b

fx  fq, where q  a,b.

Assume that p  a,b, then there exists a   0 such that fy  fp for all
y  p  ,p    a,b. Choose y1  x  ,x and y2  x,x  , then we have by
1-1, fy1  fx and fy2  fx. And thus choose r so that
fy1  r  fx  fz1  r, where z1  y1,x by Intermediate Value Theorem,
fy2  r  fx  fz2  r, where z2  x,y2 by Intermediate Value Theorem,

which contradicts to 1-1. So, we know that p  a,b. Similarly, we have q  a,b.



Without loss of generality, we assume that p  a and q  b. Claim that f is strictly
decreasing on a,b.
Suppose NOT, then there exist x,y  a,b, with x  y such that fx  fy. (""

does not hold since f is 1-1.) Consider x,y and by above method, we know that f|x,y has
the maximum at y, and f|a,y has the minimum at y. Then it implies that there exists
By;  x,y such that f is constant on By;  x,y, which contradicts to 1-1. Hence,
for any x  y a,b, we have fx  fy. ("" does not hold since f is 1-1.) So, we
have proved that f is strictly decreasing on a,b.
Reamrk: 1. Here is another proof by Exercise 4.61. It suffices to show that 1-1 and

continuity imply that f does not have a local maximum or a local minimum at any interior
point.
Proof: Suppose NOT, it means that f has a local extremum at some interior point x.

Without loss of generality, we assume that f has a local minimum at the interior point x.
Since x is an interior point of a,b, then there exists an open interval
x  ,x    a,b such that fy  fx for all y  x  ,x  . Note that f is 1-1, so
we have fy  fx for all y  x  ,x    x. Choose y1  x   and
y2  x,x  , then we have fy1  fx and fy2  fx. And thus choose r so that

fy1  r  fx  fp  r, where p  y1,x by Intermediate Value Theorem,
fy2  r  fx  fq  r, where q  x,y2 by Intermediate Value Theorem,

which contradicts to the hypothesis that f is 1-1. Hence, we have proved that 1-1 and
continuity imply that f does not have a local maximum or a local minimum at any interior
point.
2. Under the assumption of continuity on a compact interval, one-to-one is

equivalent to being strictly monotonic.
Proof: By the exercise, we know that an one-to-one and continuous function defined

on a compact interval implies that a strictly monotonic function. So, it remains to show that
a strictly monotonic function implies that an one-to-one function. Without loss of
generality, let f be increasing on a,b, then as fx  fy, we must have x  y since if
x  y, then fx  fy and if x  y, then fx  fy. So, we have proved that a strictly
monotonic function implies that an one-to-one function. Hence, we get that under the
assumption of continuity on a compact interval, one-to-one is equivalent to being strictly
monotonic.

4.63 Let f be an increasing function defined on a,b and let x1, . . ,xn be n points in
the interior such that a  x1  x2 . . . xn  b.
(a) Show thatk1

n fxk   fxk   fb   fa .

Proof: Let a  x0 and b  xn1; since f is an increasing function defined on a,b, we
know that both fxk  and fxk  exist for 1  k  n. Assume that yk  xk,xk1, then
we have fyk  fxk  and fxk1  fyk1. Hence,


k1

n

fxk   fxk   
k1

n

fyk  fyk1

 fyn  fy0
 fb   fa .

(b) Deduce from part (a) that the set of dicontinuities of f is countable.



Proof: Let D denote the set of dicontinuities of f. Consider
Dm  x  a,b : fx   fx   1

m , then D  m1 Dm. Note that #Dm  , so
we have D is countable. That is, the set of dicontinuities of f is countable.
(c) Prove that f has points of continuity in every open subintervals of a,b.
Proof: By (b), f has points of continuity in every open subintervals of a,b, since

every open subinterval is uncountable.
Remark: (1) Here is another proof about (b). Denote Q  x1, . . . ,xn, . . . , and let x be

a point at which f is not continuous. Then we have fx   fx   0. (If x is the end
point, we consider fx   fx  0 or fx  fx   0) So, we have an open interval Ix
such that Ix  fa,b  fx. The interval Ix contains infinite many rational numbers,
we choose the smallest index, say m  mx. Then the number of the set of discontinuities
of f on a,b is a subset of N. Hence, the number of the set of discontinuities of f on a,b
is countable.
(2) There is a similar exercise; we write it as a reference. Let f be a real valued function

defined on 0,1. Suppose that there is a positive number M having the following
condition: for every choice of a finite number of points x1, . . ,xn in 0,1, we have
M  i1

n xi  M. Prove that S : x  0,1 : fx  0 is countable.

Proof: Consider Sn  x  0,1 : |fx|  1/n, then it is clear that every Sn is
countable. Since S  n1 Sn, we know that S is countable.
4.64 Give an example of a function f, defined and strictly increasing on a set S in R,

such that f1 is not continuous on fS.
Solution: Let

fx 
x if x  0,1,
1 if x  2.

Then it is clear that f is strictly increasing on 0,1, so f has the incerse function

f1x 
x if x  0,1,
2 if x  1.

which is not continuous on fS  0,1.
Remark: Compare with Exercise 4.65.
4.65 Let f be strictly increasing on a subset S of R. Assume that the image fS has one

of the following properties: (a) fS is open; (b) fS is connected; (c) fS is closed. Prove
that f must be continuous on S.
Proof: (a) Given a  S, then fa  fS. Given   0, we wan to find a   0 such

that as x  Ba;  S, we have |fx  fa|  . Since fS is open, then there exists
Bfa,  fS, where   .
Claim that there exists a   0 such that fBa;  S  Bfa,. Choose

y1  fa  /2 and y2  fa  /2, then y1  fx1 and y2  fx2, we have
x1  a  x2 since f is strictly increasing on S. Hence, for x  x1,x2  S, we have
fx1  fx  fx2 since f is strictly increasing on S. So, fx  Bfa,. Let
  mina  x1,x2  a, then Ba;  S  a  ,a    S  x1,x2  S which implis
that fBa;  S  Bfa,. ( Bfa,)
Hence we have prove the claim, and the claim tells us that f is continuous at a. Since a

is arbitrary, we know that f is continuous on S.



(b) Note that since fS  R, and fS is connected, we know that fS is an interval I.
Given a  S, then fa  I. We discuss 2 cases as follows. (1) fa is an interior point of I.
(2) fa is the endpoint of I.
For case (1), it is similar to (a). We omit the proof.
For case (2), it is similar to (a). We omit the proof.
So, we have proved that f is continuous on S.
(c) Given a  S, then fa  fS. Since fS is closed, we consider two cases. (1) fa

is an isolated point and (2) fa is an accumulation point.
For case (1), claim that a is an isolated point. Suppose NOT, there is a sequence

xn  S with xn  a. Consider xnn1
  x : xn  a  x : xn  a, and thus we

may assume that x : xn  a : an is a infinite subset of xnn1
 . Since f is

monotonic, we have limn fxn  fa . Since fS is closed, we have fa   fS.
Therefore, there exists b  fS such that fa   fb  fa.
If fb  fa, then b  a since f is strictly increasing. But is contradicts to that fa is

isolated. On the other hand, if fb  fa, then b  a since f is strictly increasing. In
addition, fan  fa   fb implies that an  b. But is contradicts to that an  a.
Hence, we have proved that a is an isolated point. So, f is sutomatically continuous at

a.
For case (2), suppose that fa is an accumulation point. Then Bfa;  fS   and

Bfa; has infinite many numbers of points in fS. Choose y1, y2  Bfa;  fS
with y1  y2, then fx1  y1, and fx2  y2. And thus it is similar to (a), we omit the
proof.
So, we have proved that f is continuous on S by (1) and (2).
Remark: In (b), when we say f is monotonic on a subset of R, its image is also in R.

Supplement.
It should be noted that the discontinuities of a monotonic function need not be isolated.

In fact, given any countable subset E of a,b, which may even be dense, we can
construct a function f, monotonic on a,b, discontinuous at every point of E, and at
no other point of a,b. To show this, let the points of E be arranged in a sequence xn,
n  1,2, . . .Let cn be a sequence of positive numbers such that cn converges. Define

fx 
xnx

cn a  x  b

Note: The summation is to be understood as follows: Sum over those indices n for whcih
xn  x. If there are no points xn to the left of x, the sum is empty; following the usual
convention, we define it to be zero. Since absolute convergence, the order in which the
terms are arranged is immaterial.
Then fx is desired.
The proof that we omit; the reader should see the book, Principles of Mathematical

Analysis written by Walter Rudin, pp 97.

Metric space and fixed points

4.66 Let BS denote the set of all real-valued functions which are defined and
bounded on a nonempty set S. If f  BS, let

f  sup
xS
|fx|.

The number f is called the " sup norm "of f.



(a) Provet that the formula df,g  f  g defines a metric d on BS.
Proof: We prove that d is a metric on BS as follows.
(1) If df,g  0, i.e., f  g  supxS|fx  gx|  0  |fx  gx| for all x  S.

So, we have f  g on S.
(2) If f  g on S, then |fx  gx|  0 for all x  S. That is, f  g  0  df,g.
(3) Given f,g  BS, then

df,g  f  g
 sup

xS
|fx  gx|

 sup
xS
|gx  fx|

 g  f
 dg, f.

(4) Given f,g,h  BS, then since
|fx  gx|  |fx  hx|  |hx  gx|,

we have

|fx  gx|  sup
xS
|fx  hx|  sup

xS
|hx  gx|

 f  h  h  g
which implies that

f  g  sup
xS
|fx  gx|  f  h  h  g.

So, we have prove that d is a metric on BS.
(b) Prove that the metric space BS,d is complete. Hint: If fn is a Cauchy

sequence in BS, show that fnx is a Cauchy sequence of real numbers for each x in S.
Proof: Let fn be a Cauchy sequence on BS,d, That is, given   0, there is a

positive integer N such that as m,n  N, we have
df,g  fn  fm  sup

xS
|fnx  fmx|  .     *

So, for every point x  S, the sequence fnx R is a Cauchy sequence. Hence, the
sequence fnx is a convergent sequence, say its limit fx. It is clear that the function
fx is well-defined. Let   1 in (*), then there is a positive integer N such that as
m,n  N, we have

|fnx  fmx|  1, for all x  S.     **
Let m  , and n  N, we have by (**)

|fNx  fx|  1, for all x  S
which implies that

|fx|  1  |fNx|, for all x  S.
Since |fNx|  BS, say its bound M, and thus we have

|fx|  1  M, for all x  S
which implies that fx is bounded. That is, fx  BS,d. Hence, we have proved that
BS,d is a complete metric space.
Remark: 1. We do not require that S is bounded.
2. The boundedness of a function f cannot be remove since sup norm of f is finite.



3. The sup norm of f, often appears and is important; the reader should keep it in mind.
And we will encounter it when we discuss on sequences of functions. Also, see Exercise
4.67.
4. Here is an important theorem, the reader can see the definition of uniform

convergence in the text book, page 221.
4.67 Refer to Exercise 4.66 and let CS denote the subset of BS consisting of all

funtions continuous and bounded on S, where now S is a metric space.
(a) Prove that CS is a closed subset of BS.
Proof: Let f be an adherent point of CS, then Bf; r  CS   for all r  0. So,

there exists a sequence fnx such that fn  f as n  . So, given   0, there is a
positive integer N such that as n  N, we have

dfn, f  fn  f  sup
xS
|fnx  fx|  .

So, we have
|fNx  fx|  . for all x  S.     *

Given s  S, and note that fNx  CS, so for this , there exists a   0 such that as
|x  s|  , x, s  S, we have

|fNx  fNs|  .     **
We now prove that f is continuous at s as follows. Given   0, and let   /3, then there
is a   0 such that as |x  s|  , x, s  S, we have

|fx  fs|  |fx  fNx|  |fNx  fNs|  |fNs  fs|
 /3  /3  /3 by (*) and (**)
 .

Hence, we know that f is continuous at s, and since s is arbitrary, we know that f is
continuous on S.
(b) Prove that the metric subspace CS is complete.
Proof: By (a), we know that CS is complete since a closed subset of a complete

metric space is complete.
Remark: 1. In (b), we can see Exercise 4.9.
2. The reader should see the text book in Charpter 9, and note that Theorem 9.2 and

Theorem 9.3.

4.68 Refer to the proof of the fixed points theorem (Theorem 4.48) for notation.
(a) Prove that dp,pn  dx, fxn/1  .
Proof: The statement is that a contraction f of a complete metric space S has a unique

fixed point p. Take any point x  S, and consider the sequence of iterates:
x, fx, ffx, . . .

That is, define a sequence pn inductively as follows:
p0  x, pn1  fpn n  0,1, 2, . . .

We will prove that pn converges to a fixed point of f. First we show that pn is a
Cauchy sequence. Since f is a contraction (dfx, fy  dx,y, 0    1 for all
x,y  S), we have

dpn1,pn  dfpn, fpn1  dpn,pn1,



so, by induction, we find
dpn1,pn  ndp1,p0  ndx, fx.

Use the triangel inequality we find, for m  n,

dpm,pn  
kn

m1

dpk1,pk

 dx, fx
kn

m1

k

 dx, fx 
n  m
1  

 dx, fx n
1   .     *

Since n  0 as n  , we know that pn is a Cauchy sequence. And since S is
complete, we have pn  p  S. The uniqueness is from the inequality,
dfx, fy  dx,y.
From (*), we know that (let m  )

dp,pn  dx, fx n
1   .

This inequality, which is useful in numberical work, provides an estimate for the
distance from pn to the fixed point p. An example is given in (b)
(b) Take fx  1

2 x  2/x, S  1,. Prove that f is contraction of S with
contraction constant   1/2 and fixed point p  2 . Form the sequence pn starting wth
x  p0  1 and show that pn  2  2n.

Proof: First, fx  fy  1
2 x  2/x 

1
2 y  2/y 

1
2 x  y  2

yx
xy , then we

have

|fx  fy|  1
2 x  y  2 y  x

xy

 1
2 x  y 1 

2
xy

 1
2 |x  y| since 1 

2
xy  1.

So, f is a contraction of S with contraction constant   1/2. By Fixed Point Theorem, we
know that there is a unique p such that fp  p. That is,

1
2 p  2p  p  p  2 . (  2 is not our choice since S  1,. )

By (a), it is easy to know that
pn  2  2n.

Remark: Here is a modefied Fixed Point Theorem: Let f be function defined on a
complete metric space S. If there exists a N such that dfNx  fNy  dx,y for all
x,y  S, where 0    1. Then f has a unique fixed point p  S.
Proof: Since fN is a contraction defined on a complete metric space, with the

contraction constant , with 0    1, by Fixed Point Theorem, we know that there
exists a unique point p  S, such that



fNp  p
 ffNp  fp
 fNfp  fp.

That is, fp is also a fixed point of fN. By uniqueness, we know that fp  p. In addition,
if there is p  S such that fp  p. Then we have
f2p  fp  p, . . . , fNp . . p. Hence, we have p  p. That is, f has a unique
fixed point p  S.

4.69 Show by counterexample that the fixed-point theorem for contractions need not
hold if either (a) the underlying metric space is not complete, or (b) the contraction
constant   1.
Solution: (a) Let f  1

2 1  x : 0,1  R, then |fx  fy| 
1
2 |x  y|. So, f is a

contraction on 0,1. However, it has no any fixed point since if it has, say this point p, we
get 12 1  p  p  p  1  0,1.

(b) Let f  1  x : 0,1  R, then |fx  fy|  |x  y|. So, f is a contraction with
the contraction constant 1. However, it has no any fixed point since if it has, say this point
p, we get 1  p  p  1  0, a contradiction.

4.70 Let f : S  S be a function from a complete metric space S,d into itself.
Assume there is a real sequence an which converges to 0 such that
dfnx, fny  ndx,y for all n  1 and all x,y in S, where fn is the nth iterate of f; that
is,

f1x  fx, fn1x  ffnx for n  1.
Prove that f has a unique point. Hint. Apply the fixed point theorem to fm for a suitable m.
Proof: Since an  0, given   1/2, then there is a positive integer N such that as

n  N, we have
|an |  1/2.

Note that an  0 for all n. Hence, we have
dfNx, fNy  12 dx,y for x,y in S.

That is, fNx is a contraction defined on a complete metric space, with the contraction
constant 1/2. By Fixed Point Theorem, we know that there exists a unique point p  S,
such that

fNp  p
 ffNp  fp
 fNfp  fp.

That is, fp is also a fixed point of fN. By uniqueness, we know that fp  p. In addition,
if there is p  S such that fp  p. Then we have
f2p  fp  p, . . . , fNp . . p. Hence, we have p  p. That is, f has a unique
fixed point p  S.

4.71 Let f : S  S be a function from a metric space S,d into itself such that
dfx, fy  dx,y

where x  y.
(a) Prove that f has at most one fixed point, and give an example of such an f with no

fixed point.



Proof: If p and p are fixed points of f where p  p, then by hypothesis, we have
dp,p  dfp, fp  dp,p

which is absurb. So, f has at most one fixed point.
Let f : 0,1/2  0,1/2 by fx  x2. Then we have

|fx  fy|  |x2  y2 |  |x  y||x  y|  |x  y|.
However, f has no fixed point since if it had, say its fixed point p, then
p2  p  p  1  0,1/2 or p  0  0,1/2.
(b) If S is compact, prove that f has exactly one fixed point. Hint. Show that

gx  dx, fx attains its minimum on S.
Proof: Let g  dx, fx, and thus show that g is continuous on a compact set S as

follows. Since
dx, fx  dx,y  dy, fy  dfy, fx

 dx,y  dy, fy  dx,y
 2dx,y  dy, fy
 dx, fx  dy, fy  2dx,y     *

and change the roles of x, and y, we have
dy, fy  dx, fx  2dx,y     **

Hence, by (*) and (**), we have
|gx  gy|  |dx, fx  dy, fy|  2dx,y for all x,y  S.     ***

Given   0, there exists a   /2 such that as dx,y  , x,y  S, we have
|gx  gy|  2dx,y   by (***).

So, we have proved that g is uniformly continuous on S.
So, consider minxS gx  gp, p  S. We show that gp  0  dp, fp. Suppose

NOT, i.e., fp  p. Consider
df2p, fp  dfp,p  gp

which contradicts to gp is the absolute maximum. Hence, gp  0  p  fp. That is,
f has a unique fixed point in S by (a).
(c)Give an example with S compact in which f is not a contraction.
Solution: Let S  0,1/2, and f  x2 : S  S. Then we have

|x2  y2 |  |x  y||x  y|  |x  y|.
So, this f is not contraction.
Remark: 1. In (b), the Choice of g is natural, since we want to get a fixed point. That

is, fx  x. Hence, we consider the function g  dx, fx.
2. Here is a exercise that makes us know more about Remark 1. Let f : 0,1  0,1

be a continuous function, show that there is a point p such that fp  p.
Proof: Consider gx  fx  x, then g is a continuous function defined on 0,1.

Assume that there is no point p such that gp  0, that is, no such p so that fp  p. So,
by Intermediate Value Theorem, we know that gx  0 for all x  0,1, or gx  0
for all x  0,1. Without loss of generality, suppose that gx  0 for all x  0,1 which
is absurb since g1  f1  1  0. Hence, we know that there is a point p such that
fp  p.



3. Here is another proof on (b).
Proof: Given any point x  S, and thus consider fnx  S. Then there is a

convergent subsequence fnkx, say its limit p, since S is compact. Consider

dfp,p  d f lim
k
fnkx , lim

k
fnkx

 d lim
k
ffnkx, lim

k
fnkx by continuity of f at p

 lim
k
dfnk1x, fnkx     1

and
dfnk1x, fnkx . . . df2fnk1x, ffnk1x.     2

Note that
lim
k
df2fnk1x, ffnk1x

 d lim
k
f2fnk1x, lim

k
ffnk1x

 d f2 lim
k
fnk1x , f lim

k
fnk1x by continuity of f2 and f at p

 df2p, fp.     3
So, by (1)-(3), we know that

fp, fp  df2p, fp  p  fp
by hypothesis

dfx, fy  dx,y
where x  y. Hence, f has a unique fixed point p by (a) in Exercise.
Note. 1. If xn  x, and yn  y, then dxn,yn  dx,y. That is,

limn dxn,yn  d limn xn, limn yn .

Proof: Consider
dxn,yn  dxn,x  dx,y  dy,yn and
dx,y  dx,xn  dxn,yn  dyn,y,

then
|dxn,yn  dx,y|  dx,xn  dy,yn  0.

So, we have prove it.
2. The reader should compare the method with Exercise 4.72.
4.72 Assume that f satisfies the condition in Exercise 4.71. If x  S, let p0  x,

pn1  fpn, and cn  dpn,pn1 for n  0.
(a) Prove that cn is a decreasing sequence, and let c  limcn.
Proof: Consider

cn1  cn  dpn1,pn2  dpn,pn1
 dfpn, fpn1  dpn,pn1
 dpn,pn1  dpn,pn1
 0,

so cn is a decreasing sequence. And cn has a lower bound 0, by Completeness of R,
we know that cn is a convergent sequence, say c  limcn.



(b) Assume there is a subsequence pkn which converges to a point q in S. Prove that
c  dq, fq  dfq, ffq.

Deduce that q is a fixed point of f and that pn  q.
Proof: Since limn pkn  q, and limn cn  c, we have limn ckn  c. So, we

consider
c  limn ckn
 limn dpkn,pkn1

 limn dpkn, fpkn 

 dq, fq
and

dpkn,pkn1  dpkn1,pkn  . . . dfpkn1 , f2pkn1 ,
we have

c  dq, fq  limn dfpkn1 , f
2pkn1   dfq, f2q.     *

So, by (*) and hypoethesis
dfx, fy  dx,y

where x  y, we know that q  fq  c  0, in fact, this q is a unique fixed point. .
In order to show that pn  p, we consider (let m  kn)

dpm,q  dpm, fq  dpm1,q . . dpkn,q
So, given   0, there exists a positive integer N such that as n  N, we have

dpkn,q  .
Hence, as m  kN, we have

dpm,q  .
That is, pn  p.



Derivatives
Real-valued functions

In each following exercise assume, where mecessary, a knowledge of the formulas for
differentiating the elementary trigonometric, exponential, and logarithmic functions.

5.1 Assume that f is said to satisfy a Lipschitz condition of order  at c if there
exists a positive number M (which may depend on c) and 1 ball Bc such that

|fx  fc|  M|x  c|

whenever x  Bc, x  c.
(a) Show that a function which satisfies a Lipschitz condition of order  is continuous

at c if   0, and has a derivative at c if   1.

Proof: 1. As   0, given   0, there is a   /M1/ such that as
x  c  ,c    Bc, we have

|fx  fc|  M|x  c|  M  .
So, we know that f is continuous at c.
2. As   1, consider x  Bc, and x  c, we have

fx  fc
x  c  M|x  c|1  0 as x  c.

So, we know that f has a derivative at c with fc  0.
Remark: It should be note that (a) also holds if we consider the higher dimension.
(b) Given an example of a function satisfying a Lipschitz condition of order 1 at c for

which fc does not exist.
Solution: Consider

||x|  |c||  |x  c|,
we know that |x| is a function satisfying a Lipschitz condition of order 1 at 0 for which
f0 does not exist.
5.2 In each of the following cases, determine the intervals in which the function f is

increasing or decreasing and find the maxima and minima (if any) in the set where each f is
defined.
(a) fx  x3  ax  b, x  R.
Solution: Since fx  3x2  a on R, we consider two cases: (i) a  0, and (ii) a  0.
(i) As a  0, we know that f is increasig on R by f  0 on R. In addition, if f has a

local extremum at some point c, then fc  0. It implies that a  0 and c  0. That is,
fx  x3  b has a local extremum at 0. It is impossible since x3 does not. So, we know
that f has no maximum and minimum.
(ii) As a  0, since f  3x2  a  3 x  a/3 x  a/3 , we know that

fx :
, a/3   a/3 , a/3  a/3 ,
 0  0  0

which implies that

fx :
, a/3   a/3 , a/3  a/3 ,
  

.     *



Hence, f is increasing on , a/3  and  a/3 ,, and decreasing on
 a/3 , a/3 . In addition, if f has a local extremum at some point c, then fc  0.
It implies that c   a/3 . With help of (*), we know that fx has a local maximum
f  a/3 and a local minimum f a/3 .

(b) fx  logx2  9, |x|  3.
Solution: Since fx  2x

x29 , |x|  3, we know that

fx :
,3 3,
 0  0

which implies that

fx :
,3 3,
 

.

Hence, f is increasing on 3,, and decreasing on ,3. It is clear that f cannot have
local extremum.

(c) fx  x2/3x  14, 0  x  1.

Solution: Since fx  2x13

3x1/3 7x  1, 0  x  1, we know that

fx :
0,1/7 1/7, 1
 0  0

which implies that

fx :
0,1/7 1/7, 1
 

.     **

Hence, we know that f is increasing on 0,1/7, and decreasing on 1/7, 1. In addition, if f
has a local extremum at some interior point c, then fc  0. It implies that c  1/7. With
help of (**), we know that f has a local maximum f1/7, and two local minima f0, and
f1.
Remark: f has the absolute maximum f1/7, and the absolute minima

f0  f1  0.
(d) fx  sinx/x if x  0, f0  1, 0  x  /2.
Sulotion: Since fx  cosx xtanxx2 as 0  x  /2, and f 0  0, in addition,

fx  0 as x  0 by L-Hospital Rule, we know that

fx :
0,/2
 0

which implies that

fx :
0,/2


.     (***)

Hence, we know that f is decreasing on 0,/2. In addition, note that there is no interior
point c such that fc  0. With help of (***), we know that f has local maximum f0,
and local minimum f/2.
Remark: 1. Here is a proof on f 0 : Since



lim
x0

sinx  1
x  lim

x0
2sinx/22

x  0,

we know that f 0  0.
2. f has the absolute maximum f0, and the absolute minimum f/2.
5.3 Find a polynomial f of lowest possible degree such that

fx1  a1, fx2  a2, fx1  b1, fx2  b2
where x1  x2 and a1, a2, b1, b2 are given real numbers.
Proof: It is easy to know that the lowest degree is at most 3 since there are 4 unknows.

The degree is depends on the values of a1, a2, b1, b2.

5.4 Define f as follows: fx  e1/x2 if x  0, f0  0. Show that
(a) f is continuous for all x.
Proof: In order to show f is continuous on R, it suffices to show f is continuous at 0.

Since

lim
x0
fx  lim

x0
1
e

1/x2
 0  f0,

we know that f is continuous at 0.
(b) fn is continuous for all x, and fn0  0, (n  1,2, . . . )
Proof: In order to show fn is continuous on R, it suffices to show fn is continuous at

0. Note that

lim
x

px
ex  0, where px is any real polynomial.     *

Claim that for x  0, we have fnx  e1/x2P3n1/x, where P3nt is a real polynomial of
degree 3n for all n  1,2, . . . . As n  0, f0x  fx  e1/x2  e1/x2P01/x, where
P01/x is a constant function 1. So, as n  0, it holds. Suppose that n  k holds, i.e.,
fkx  e1/x2P3k1/x, where P3kt is a real polynomial of degree 3k. Consider
n  k  1, we have

fk1x  fkx

 e1/x2P3k1/x
 by induction hypothesis

 e1/x2 2 1
x

3
P3k 1

x  1
x

2
P3k 1

x .

    **

Since 2t3P3kt  t2P3k t is a real polynomial of degree 3k  3, we define
2t3P3kt  t2P3k t  P3k3t, and thus we have by (**)

fk1x  e1/x2P3k31/x.
So, as n  k  1, it holds. Therefore, byMathematical Induction, we have proved the
claim.
Use the claim to show that fn0  0, (n  1,2, . . . ) as follows. As n  0, it is trivial

by hypothesis. Suppose that n  k holds, i.e., fk0  0. Then as n  k  1, we have



fkx  fk0
x  0  fkx

x by induction hypothesis

 e1/x2P3k1/x
x

 tP3kt
et2

(let t  1/x)

 tP3kt
et

et
et2

 0 as t   (  x  0) by (*).

Hence, fk10  0. So, byMathematical Induction, we have proved that fn0  0,
(n  1,2, . . . ).
Since

lim
x0
fnx  lim

x0
e1/x2P3n1/x

 lim
x0

P3n1/x
e1/x2

 lim
t

P3nt
et

et
et2

 0 by (*)
 fn0,

we know that fnx is continuous at 0.
Remark: 1. Here is a proof on (*). Let Px be a real polynomial of degree n, and

choose an even number 2N  n. We consider a Taylor Expansion with Remainder as
follows. Since for any x, we have

ex  
k0

2N1
1
k! x

k  ex,0
2N  2! x

2N2  
k0

2N1
1
k! x

k,

then

0  Px
ex  Px

k0
2N1 1

k! xk
 0 as x  

since degPx  n  deg k0
2N1 1

k! xk  2N  1. By Sandwich Theorem, we have
proved

lim
x

Px
ex  0.

2. Here is another proof on fn0  0, (n  1,2, . . . ). By Exercise 5.15, it suffices to
show that limx0 fnx  0. For the part, we have proved in this exercise. So, we omit the
proof. Exercise 5.15 tells us that we need not make sure that the derivative of f at 0. The
reader should compare with Exercise 5.15 and Exercise 5.5.
3. In the future, we will encounter the exercise in Charpter 9. The Exercises tells us one

important thing that the Taylor’s series about 0 generated by f converges everywhere
on R, but it represents f only at the origin.

5.5 Define f, g, and h as follows: f0  g0  h0  0 and, if x  0,
fx  sin1/x, gx  x sin1/x, hx  x2 sin1/x. Show that
(a) fx  1/x2 cos1/x, if x  0; f0 does not exist.



Proof: Trivially, fx  1/x2 cos1/x, if x  0. Let xn  1
 2n 12

, and thus

consider
fxn  f0
xn  0

 sin1/xn
xn   2n  12   as n  .

Hence, we know that f0 does not exist.
(b) gx  sin1/x  1/xcos1/x, if x  0; g0 does not exist.

Proof: Trivially, gx  sin1/x  1/xcos1/x, if x  0. Let xn  1
 2n 12

, and

yn  1
2n , we know that

gxn  g0
xn  0

 sin 1
xn  1 for all n

and
gyn  g0
yn  0

 sin 1
yn  0 for all n.

Hence, we know that g0 does not exist.
(c) hx  2x sin1/x  cos1/x, if x  0; h0  0; limx0 hx does not exist.
Proof: Trivially, hx  2x sin1/x  cos1/x, if x  0. Consider

hx  h0
x  0  |x sin1/x|  |x|  0 as x  0,

so we know that h0  0. In addition, let xn  1
 2n 12

, and yn  1
2n , we have

hxn  2
2n  1

2 
and hyn  1 for all n.

Hence, we know that limx0 hx does not exist.

5.6 Derive Leibnitz’s formula for the nth derivative of the product h of two functions
f and g :

hn 
k0

n

knfkgnkx, where kn  n!
k!n  k! .

Proof:We prove it by mathematical Induction. As n  1, it is clear since
h  fg  gf. Suppose that n  k holds, i.e., hk  j0

k jkfjgkjx. Consider
n  k  1, we have



hk1  hk   
j0

k

jkfjgkjx



j0

k

jkfjgkjx



j0

k

jkfj1gkj   fjgkj1 


j0

k1jkfj1gkj   fk1g0

j1
k jkfjgkj1   f0gk1


j0

k1jkfj1gkj   fk1g0

j0
k1

j1
k fj1gkj   f0gk1


j0

k1

jk  j1
k fj1gkj   fk1g0  f0gk1


j0

k1

j1
k1 fj1gkj   fk1g0  f0gk1


j0

k1

jkfj1gkj .

So, as n  k  1, it holds. Hence, byMathematical Induction, we have proved the
Leibnitz formula.
Remark:We use the famous formula called Pascal Theorem:k1n1  kn  k1n ,

where 0  k  n.
5.7 Let f and g be two functions defined and having finite third-order derivatives fx

and gx for all x in R. If fxgx  1 for all x, show that the relations in (a), (b), (c),
and (d) holds at those points where the denominators are not zero:
(a) fx/fx  gx/gx  0.
Proof: Since fxgx  1 for all x, we have fg  gf  0 for all x. By hypothesis, we

have
fg  gf
fg  0 for those points where the denominators are not zero

which implies that
fx/fx  gx/gx  0.

(b) fx/fx  2fx/fx  gx/gx  0.
Proof: Since fg  gf  0 for all x, we have fg  gf  fg  2fg  gf  0. By

hypothesis, we have



0  fg  2fg  gf
fg

 f
f  2

g
g  g

g f
f

 f
f  2

f
f 

g
g by (a).

(c) fx
fx

 3 f
xgx
fxgx

 3 f
x
fx 

gx
gx

 0.
Proof: By (b), we have fg  2fg  gf  0  fg  3fg  3fg  fg. By

hypothesis, we have

0  fg  3fg  3fg  fg
fg

 f
f  3 f

g
fg  3 g



g  fg


fg

 f
f  3f g

fg  3g 1
g  g f

fg

 f
f  3

f
f  3

fg
fg 

g
g by (a).

(d) fx
fx

 3
2

fx
fx

2
 gx

gx
 3

2
gx
gx

2
.

Proof: By (c), we have f

f 
g

g  3 f
f 

fg

fg . Since

f
f  f

g
fg  f

f
f
f  f

f
g
g

 f
f

f
f  g

g

 1
2

f
f  g

g
f
f  g

g by (b)

 1
2

f
f

2
 g

g
2
,

we know that f


f 
g

g  3
2

f

f
2
 g

g
2
which implies that

fx
fx

 3
2

fx
fx

2
 gx

gx
 3

2
gx
gx

2
.

Note. The expression which appears on the left side of (d) is called the Schwarzian
derivative of f at x.
(e) Show that f and g have the same Schwarzian derivative if

gx  afx  b/cfx  d, where ad  bc  0.
Hint. If c  0, write af  b/cf  d  a/c  bc  ad/ccf  d, and apply part

(d).
Proof: If c  0, we have g  a

d f 
b
d . So, we have



gx
gx 

3
2

gx
gx

2


a
d fx
a
d fx

 32

a
d fx
a
d fx

2

 fx
fx 

3
2

fx
fx

2

.

So, f and g have the same Schwarzian derivative.
If c  0, write g  af  b/cf  d  a/c  bc  ad/ccf  d, then

cg  a 1
bc  ad cf  d  1 since ad  bc  0.

LetG  cg  a, and F   1
bcad cf  d, then GF  1. It implies that by (d),

F
F 

3
2

F
F

2
 G

G 
3
2

G

G

2

which implies that

F
F 

3
2

F
F

2

 c
bcad f

 c
bcad f

 32
 c
bcad f

 c
bcad f

2

 f
f 

3
2

f
f

2

 G

G 
3
2

G

G

2

 cg
cg 

3
2

cg
cg

2

 g
g 

3
2

g
g

2
.

So, f and g have the same Schwarzian derivative.

5.8 Let f1, f2, g1, g2 be functions having derivatives in a,b. Define F by means of
the determinant

Fx 
f1x f2x
g1x g2x

, if x  a,b.

(a) Show that Fx exists for each x in a,b and that

Fx 
f1 x f2 x
g1x g2x


f1x f2x
g1 x g2 x

.

Proof: Since Fx 
f1x f2x
g1x g2x

 f1g2  f2g1, we have

F  f1 g2  f1g2  f2 g1  f2g1

 f1 g2  f2 g1  f1g2  f2g1 


f1 x f2 x
g1x g2x


f1x f2x
g1 x g2 x

.



(b) State and prove a more general result for nth order determinants.
Proof: Claim that if

Fx 

f11 f12 . . . f1n
f21 f22 . . . f2n
. . . . . . . . . . . .
fn1 fn2 . . . fnn

,

then

Fx 

f11 f12 . . . f1n

f21 f22 . . . f2n
. . . . . . . . . . . .
fn1 fn2 . . . fnn



f11 f12 . . . f1n
f21 f22 . . . f2n

. . . . . . . . . . . .
fn1 fn2 . . . fnn

. . .

f11 f12 . . . f1n
f21 f22 . . . f2n
. . . . . . . . . . . .
fn1 fn2 . . . fnn

.

We prove it by Mahematial Induction. As n  2, it has proved in (a). Suppose that n  k
holds, consider n  k  1,

f11 f12 . . . f1k1
f21 f22 . . . f2k1
. . . . . . . . . . . .
fk11 fk12 . . . fk1k1



 1k11fk11
f12 . . . f1k1
. . . . . . . . .
fk2 . . . fkk1

. .1k1k1fk1k1
f11 . . . f1k
. . . . . . . . .
fk1 . . . fkk



 . . . . (The reader can write it down by induction hypothesis).
Hence, byMathematical Induction, we have proved it.
Remark: The reader should keep it in mind since it is useful in Analysis. For example,

we have the following Theorem.
(Theorem) Suppose that f,g, and h are continuous on a,b, and differentiable on

a,b. Then there is a   a,b such that
f g h
fa ga ha
fb gb hb

 0.

Proof: Let

Fx 
fx gx hx
fa ga ha
fb gb hb

,

then it is clear that Fx is continuous on a,b and differentiable on a,b since the
operations on determinant involving addition, substraction, and multiplication without
division. Consider

Fa  Fb  0,
then by Rolle’s Theorem, we know that



F  0, where   a,b,
which implies that

f g h
fa ga ha
fb gb hb

 0.     *

(Application- Generalized Mean Value Theorem) Suppose that f and g are
continuous on a,b, and differentiable on a,b. Then there is a   a,b such that

fb  fag  fgb  ga.

Proof: Let hx  1, and thus by (*), we have
f g 0
fa ga 1
fb gb 1

 0,

which implies that


f g
fb gb


f g
fa ga

 0

which implies that
fb  fag  fgb  ga.

Note: Use the similar method, we can showMean Value Theorem by letting
gx  x, and hx  1. And from this viewpoint, we know that Rolle’s Theorem, Mean
Value Theorem, and Generalized Mean Value Theorem are equivalent.

5.9 Given n functions f1, . . . , fn, each having nth order derivatives in a,b. A
function W, called theWronskian of f1, . . . , fn, is defined as follows: For each x in a,b,
Wx is the value of the determinant of order n whose element in the kth row and mth
column is fmk1x, where k  1,2, . . ,n and m  1,2, . . . ,n. [The expression fm0x is
written for fmx. ]
(a) Show that Wx can be obtained by replacing the last row of the determinant

defining Wx by the nth derivatives f1
nx, . . . , fnnx.

Proof:Write

Wx 

f1 f2 . . . fn
f1 f2 . . . fn

. . . . . . . . . . . .
f1
n1 f2

n1 . . . fnn1

,

and note that if any two rows are the same, its determinant is 0; hence, by Exercise 5.8-(b),
we know that



Wx 

f1 f2 . . . fn
. . . . . . . . . . . .
f1
n2 f2

n2 . . . fnn2

f1
n f2

n . . . fnn

.

(b) Assuming the existence of n constants c1, . . . ,cn, not all zero, such that
c1f1x . . .cnfnx  0 for every x in a,b, show that Wx  0 for each x in a,b.
Proof: Since c1f1x . . .cnfnx  0 for every x in a,b, where c1, . . . ,cn, not all

zero. Without loss of generality, we may assume c1  0, we know that
c1f1

kx . . .cnfnkx  0 for every x in a,b, where 0  k  n. Hence, we have

Wx 

f1 f2 . . . fn
f1 f2 . . . fn

. . . . . . . . . . . .
f1
n1 f2

n1 . . . fnn1

 0
since the first column is a linear combination of other columns.
Note. A set of functions satisfing such a relation is said to be a linearly dependent set

on a,b.
(c) The vanishing of the Wronskian throughout a,b is necessary, but not sufficient.

for linear dependence of f1, . . . , fn. Show that in the case of two functions, if the Wronskian
vanishes throughout a,b and if one of the functions does not vanish in a,b, then they
form a linearly dependent set in a,b.
Proof: Let f and g be continuous and differentiable on a,b. Suppose that fx  0 for

all x  a,b. Since the Wronskian of f and g is 0, for all x  a,b, we have
fg  fg  0 for all x  a,b.     *

Since fx  0 for all x  a,b, we have by (*),
fg  fg
f2  0  g

f



 0 for all x  a,b.

Hence, there is a constant c such that g  cf for all x  a,b. Hence, f,g forms a
linearly dependent set.
Remark: This exercise in (b) is a impotant theorem on O.D.E. We often write (b) in

other form as follows.
(Theorem) Let f1, . . , fn be continuous and differentiable on an interval I. If

Wf1, . . . , fnt0  0 for some t0  I, then f1, . . , fn is linearly independent on I
Note: If f1, . . , fn is linearly independent on I, It is NOT necessary that

Wf1, . . . , fnt0  0 for some t0  I. For example, ft  t2|t|, and gt  t3. It is easy to
check f,g is linearly independent on 1,1. And Wf,gt  0 for all t  1,1.

Supplement on Chain Rule and Inverse Function Theorem.
The following theorem is called chain rule, it is well-known that let f be defined on an

open interval S, let g be defined on fS, and consider the composite function g  f defined
on S by the equation



g  fx  gfx.
Assume that there is a point c in S such that fc is an interior point of fS. If f is
differentiable at c and g is differentiable at fc, then g  f is differentiable at c, and we
have

g  fc  gfcfc.
We do not give a proof, in fact, the proof can be found in this text book. We will give
another Theorem called The Converse of Chain Rule as follows.
(The Converse of Chain Rule) Suppose that f, g and u are related so that

fx  gux. If ux is continuous at x0, fx0 exists, gux0 exists and not zero.
Then ux0 is defined and we have

fx0  gux0ux0.

Proof: Since fx0 exists, and gux0 exists, then
fx  fx0  fx0x  x0  o|x  x0 |     *

and
gux  gux0  gux0ux  ux0  o|ux  ux0|.     **

Since fx  gux, and fx0  gux0, by (*) and (**), we know that

ux  ux0 
fx0
gux0

x  x0  o|x  x0 |  o|ux  ux0|.     ***

Note that since ux is continuous at x0, we know that o|ux  ux0|  0 as x  x0.
So, (***) means that ux0 is defined and we have

fx0  gux0ux0.

Remark: The condition that gux0 is not zero is essential, for example, gx  1 on
1,1 and ux  |x|, where x0  0.
(Inverse Function Theroem) Suppose that f is continuous, strictly monotonic function

which has an open interval I for domain and has range J. (It implies that
fgx  x  gfx on its corresponding domain.) Assume that x0 is a point of J such
that fgx0 is defined and is different from zero. Then gx0 exists, and we have

gx0  1
fgx0

.

Proof: It is a result of the converse of chain rule note that
fgx  x.

Mean Value Theorem
5.10 Given a function defined and having a finite derivative in a,b and such that

limxb fx  . Prove that limxb fx either fails to exist or is infinite.
Proof: Suppose NOT, we have the existence of limxb fx, denoted the limit by L.

So, given   1, there is a   0 such that as x  b  ,b we have
|fx|  |L|  1.     *

Consider x,a  b  ,b with x  a, then we have by (*) andMean Value Theorem,
|fx  fa|  |fx  a| where   a,x

 |L|  1|x  a|
which implies that



|fx|  |fa|  |L|  1
which contradicts to limxb fx  .
Hence, limxb fx either fails to exist or is infinite.

5.11 Show that the formula in theMean Value Theorem can be written as follows:
fx  h  fx

h  fx  h,

where 0    1.
Proof: (Mean Value Theorem) Let f and g be continuous on a,b and differentiable

on a,b. Then there exists a   a,b such that fb  fa  fb  a. Note that
  a  b  a, where 0    1. So, we have proved the exercise.
Determine  as a function of x and h, and keep x  0 fixed, and find limh0  in each

case.

(a) fx  x2.
Proof: Consider

fx  h  fx
h  x  h2  x2

h  2x  h  2x  h  fx  h

which implies that
  1/2.

Hence, we know that limh0   1/2.
(b) fx  x3.
Proof: Consider

fx  h  fx
h  x  h3  x3

h  3x2  3xh  h2  3x  h2  fx  h

which implies that

  3x  9x2  9xh  3h2
3h

Since 0    1, we consider two cases. (i) x  0, (ii) x  0.
(i) As x  0, since

0    3x  9x2  9xh  3h2
3h  1,

we have

 
3x 9x29xh3h2

3h if h  0, and h is sufficiently close to 0,
3x 9x29xh3h2

3h if h  0, and h is sufficiently close to 0.

Hence, we know that limh0   1/2 by L-Hospital Rule.
(ii) As x  0, we have

 
3x 9x29xh3h2

3h if h  0, and h is sufficiently close to 0,
3x 9x29xh3h2

3h if h  0, and h is sufficiently close to 0.

Hence, we know that limh0   1/2 by L-Hospital Rule.
From (i) and (ii), we know that as x  0, we have limh0   1/2.



Remark: For x  0, we can show that limh0   3
3 as follows.

Proof: Since

0     3h2
3h  1,

we have

 
3h2
3h  3 h

3h  3
3 if h  0,

 3h2
3h  3 h

3h  3
3 if h  0.

Hence, we know that limh0   3
3 .

(c) fx  ex.
Proof: Consider

fx  h  fx
h  exh  ex

h  exh  fx  h

which implies that

 
log eh1

h
h .

Hence, we know that limh0   1/2 since

lim
h0

  lim
h0

log eh1
h

h
 lim

h0
ehh  eh  1
heh  1

by L-Hospital Rule.

Note that eh  1  h  h22  oh2

 lim
h0

1
2  h  o1
1  h

2  oh
 1/2.

(d) fx  logx, x  0.
Proof: Consider

fx  h  fx
h 

log1  h
x 

h  1
x  h

which implies that

 
h
x  log1  h

x 
h
x log1  h

x 
.

Since log1  t  t  t2
2  ot2, we have



lim
h0

  lim
h0

h
x  h

x  1
2 

h
x 

2  o  hx 
2

h
x

h
x  1

2 
h
x 

2  o  hx 
2

 lim
h0

1
2 

h
x 

2  o  hx 
2

 hx 
2  1

2 
h
x 

3  o  hx 
3

 lim
h0

1
2  o1

1  1
2 

h
x   o hx 

 1/2.

5.12 Take fx  3x4  2x3  x2  1 and gx  4x3  3x2  2x in Theorem 5.20. Show
that fx/gx is never equal to the quotient f1  f0/g1  g0 if 0  x  1. How
do you reconcile this with the equation

fb  fa
gb  ga  fx1

gx1
, a  x1  b,

obtainable from Theorem 5.20 when n  1?
Solution: Note that

12x2  6x  2  12 x  1
4  11

48 x  1
4 

11
48 , where (0  1

4  11
48  1).

So, when we consider
f1  f0
g1  g0  0

and
fx  12x3  6x2  2x  xgx  x12x2  6x  2,

we CANNOT write fx/gx  x. Otherwise, it leads us to get a contradiction.
Remark: It should be careful when we use Generalized Mean Value Theorem, we

had better not write the above form unless we know that the denominator is not zero.
5.13 In each of the following special cases of Theorem 5.20, take n  1, c  a, x  b,

and show that x1  a  b/2.
(a) fx  sinx, gx  cosx;
Proof: Since, by Theorem 5.20,

sina  sinb sinx1  2cos a  b
2 sin a  b

2  sinx1

 cosa  cosbcosx1

 2sin a  b
2 sin a  b

2 cosx1,

we find that if we choose x1  a  b/2, then both are equal.
(b) fx  ex, gx  ex.
Proof: Since, by Theorem 5.20,

ea  ebex1   ea  ebex1 ,
we find that if we choose x1  a  b/2, then both are equal.
Can you find a general class of such pairs of functions f and g for which x1 will always

be a  b/2 and such that both examples (a) and (b) are in this class?



Proof: Look at the Generalized Mean Value Theorem, we try to get something from
the equality.

fa  fbg a  b
2  ga  gbf a  b

2 ,     *

if fx, and gx satisfy following two conditions,
(i) fx  gx and gx  fx

and
(ii) fa  fb f  a  b2  ga  gb g  a  b2 ,

then we have the equality (*).
5.14 Given a function f defined and having a finite derivative f in the half-open

interval 0  x  1 and such that |fx|  1. Define an  f1/n for n  1,2, 3, . . . , and
show that limn an exists.
Hint. Cauchy condition.
Proof: Consider n  m, and byMean Value Theorem,

|an  am |  |f1/n  f1/m|  |fp| 1n 
1
m  1

n 
1
m

then an is a Cauchy sequence since 1/n is a Cauchy sequence. Hence, we know that
limn an exists.
5.15 Assume that f has a finite derivative at each point of the open interval a,b.

Assume also that limxc fx exists and is finite for some interior point c. Prove that the
value of this limit must be fc.
Proof: It can be proved by Exercise 5.16; we omit it.

5.16 Let f be continuous on a,b with a finite derivative f everywhere in a,b,
expect possibly at c. If limxc fx exists and has the value A, show that fc must also
exist and has the value A.
Proof: Consider, for x  c,

fx  fc
x  c  f where   x,c or c,x byMean Value Theorem,     *

since limxc fx exists, given   0, there is a   0 such that as x  c  ,c    c,
we have

A    fx  A  .
So, if we choose x  c  ,c    c in (*), we then have

A    fx  fc
x  c  f  A  .

That is, fc exists and equals A.
Remark: (1) Here is another proof by L-Hospital Rule. Since it is so obvious that we

omit the proof.
(2) We should be noted that Exercise 5.16 implies Exercise 5.15. Both methods

mentioned in Exercise 5.16 are suitable for Exercise 5.15.
5.17 Let f be continuous on 0,1, f0  0, fx defined for each x in 0,1. Prove

that if f is an increasing function on 0,1, then so is too is the function g defined by the
equation gx  fx/x.
Proof: Since f is an increasing function on 0,1, we know that, for any x  0,1



fx  fxx  fx  fx  f0x  0  fx  f  0 where   0,x.     *

So, let x  y, we have
gx  gy  gzx  y, where y  z  x

 fzz  fz
z2 x  y

 0 by (*)
which implies that g is an increasing function on 0,1.
5.18 Assume f has a finite derivative in a,b and is continuous on a,b with

fa  fb  0. Prove that for every real  there is some c in a,b such that
fc  fc.
Hint. Apply Rolle’s Theorem to gxfx for a suitable g depending on .
Proof: Consider gx  fxex, then by Rolle’s Theorem,

ga  gb  gca  b, where c  a,b
 0

which implies that
fc  fc.

Remark: (1) The finding of an auxiliary function usually comes from the equation that
we consider. We will give some questions around this to get more.
(2)There are some questions about finding auxiliary functions; we write it as follows.
(i) Show that e  e.
Proof: (STUDY) Since logx is a strictly increasing on 0,, in order to show

e  e, it suffices to show that
 loge  loge  loge  e log

which implies that
loge
e  log

 .
Consider fx  logx

x : e,, we have

fx  1  logx
x2  0 where x  e,.

So, we know that fx is strictly decreasing on e,. Hence, logee  log
 . That is,

e  e.

(ii) Show that ex  1  x for all x  R.
Proof: By Taylor Theorem with Remainder Term, we know that

ex  1  x  ec2 x
2, for some c.

So, we finally have ex  1  x for all x  R.
Note: (a) The method in (ii) tells us one thing, we can give a theorem as follows. Let

f  C2n1a,b, and f2nx exists and f2nx  0 on a,b. Then we have

fx  
k0

2n1 fka
k! .



Proof: By Generalized Mean Value Theorem, we complete it.
(b) There are many proofs about that ex  1  x for all x  R. We list them as a

reference.
(b-1) Let fx  ex  1  x, and thus consider the extremum.
(b-2) UseMean Value Theorem.
(b-3) Since ex  1  0 for x  0 and ex  1  0 for x  0, we then have


0

x
et  1dt  0 and 

x

0
et  1dt  0.

So, ex  1  x for all x  R.
(iii) Let f be continuous function on a,b, and differentiabel on a,b. Prove that there

exists a c  a,b such that

fc  fc  fa
b  c .

Proof: (STUDY) Since fc  fcfa
bc , we consider fcb  c  fc  fa.

Hence, we choose gx  fx  fab  x, then by Rolle’s Theorem,
ga  gb  gca  b where c  a,b

which implies thatfc  fcfa
bc .

(iv) Let f be a polynomial of degree n, if f  0 on R, then we have
f  f . .fn  0 on R.

Proof: Let gx  f  f . .fn, then we have
g  g  f  0 on R since f is a polynomial of degree n.     *

Consider hx  gxex, then hx  gx  gxex  0 on R by (*). It means that h
is a decreasing function on R. Since limx hx  0 by the fact g is still a polynomial,
then hx  0 on R. That is, gx  0 on R.
(v) Suppose that f is continuous on a,b, fa  0  fb, and

x2fx  4xfx  2fx  0 for all x  a,b. Prove that fx  0 on a,b.
Proof: (STUDY) Since x2fx  4xfx  2fx  x2fx by Leibnitz Rule, let

gx  x2fx, then claim that gx  0 on a,b.
Suppose NOT, there is a point p  a,b such that gp  0. Note that since fa  0,

and fb  0, So, gx has an absolute maximum at c  a,b. Hence, we have gc  0.
By Taylor Theorem with Remainder term, we have

gx  gc  gcx  c  g

2! x  c2, where   x,c or c,x

 gc since gc  0, and gx  0 for all x  a,b
 0 since gc is absolute maximum.

So,
x2fx  c2fc  0     **

which is absurb since let x  a in (**).

(vi) Suppose that f is continuous and differentiable on 0,, and
limx fx  fx  0, show that limx fx  0.
Proof: Since limx fx  fx  0, then given   0, there is M  0 such that as

x  M, we have



   fx  fx  .
So, as x  M, we have

ex  eM  eMfM  ex

 exfx

 ex  ex  eM  eMfM.
If we let ex  eM  eMfM  gx, and ex  eM  eMfM  hx, then we have

gx  exfx  hx
and

gM  eMfM  hM.
Hence, for x  M,

 ex  eM  eMfM  gx
 exfx
 hx  ex  eM  eMfM

It implies that, for x  M,
   exeM  eMfM  fx    exeM  eMfM

which implies that
limx fx  0 since  is arbitrary.

Note: In the process of proof, we use the result onMean Value Theorem. Let f,g, and
h be continuous on a,b and differentiable on a,b. Suppose fa  ga  ha and
fx  gx  hx on a,b. Show that fx  gx  hx on a,b.
Proof: ByMean Value theorem, we have

gx  fx  ga  fa  gx  fx
 gc  fc, where c  a,x.
 0 by hypothesis.

So, fx  gx on a,b. Similarly for gx  hx on a,b. Hence, fx  gx  hx
on a,b.
(vii) Let fx  a1 sinx . . .an sinnx, where ai are real for i  1,2, . .n. Suppose that

|fx|  |x| for all real x. Prove that |a1 . .nan |  1.
Proof: Let x  0, and byMean Value Theorem, we have

|fx  f0|  |fx|  |a1 sinx . . .an sinnx|
 |fcx|, where c  0,x
 |a1 cosc . . .nan cosncx|
 |x| by hypothesis.

So,
|a1 cosc . . .nan cosnc|  1

Note that as x  0, we have c  0; hence, |a1 . .nan |  1.
Note: Here are another type:
(a) |sin2x  sin2y|  |x  y| for all x,y.
(b) |tanx  tany|  |x  y| for all x,y   

2 ,

2 .

(viii) Let f : R  R be differentiable with fx  c for all x, where c  0. Show that



there is a point p such that fp  0.
Proof: ByMean Vaule Theorem, we have

fx  f0  fx1x  f0  cx if x  0
 f0  fx2x  f0  cx if x  0.

So, as x large enough, we have fx  0 and as x is smalle enough, we have fx  0. Since
f is differentiable on R, it is continuous on R. Hence, by Intermediate Value Theorem,
we know that there is a point p such that fp  0.
(3) Here is another type about integral, but it is worth learning. Compare with (2)-(vii).

If
c0  c12 . . . cn

n  1  0, where ci are real constants for i  1,2, . .n.

Prove that c0 . . .cnxn has at least one real root between 0 and 1.
Proof: Suppose NOT, i.e., (i) fx : c0 . . .cnxn  0 for all x  0,1 or (ii)

fx  0 for all x  0,1.
In case (i), consider

0  
0

1
fxdx  c0  c12 . . . cn

n  1  0

which is absurb. Similarly for case (ii).
So, we know that c0 . . .cnxn has at least one real root between 0 and 1.

5.19. Assume f is continuous on a,b and has a finite second derivative f in the
open interval a,b. Assume that the line segment joining the points A  a, fa and
B  b, fb intersects the graph of f in a third point P different from A and B. Prove that
fc  0 for some c in a,b.

Proof: Consider a straight line equation, called gx  fa  fbfa
ba x  a. Then

hx : fx  gx, we knwo that there are three point x  a, p and b such that
ha  hp  hb  0.

So, by Mean Value Theorem twice, we know that there is a point c  a,b such that
hc  0

which implies that fc  0 since g is a polynomial of degree at least 1.
5.20 If f has a finite third derivative f in a,b and if

fa  fa  fb  fb  0,
prove that fc  0 for some c in a,b.
Proof: Since fa  fb  0, we have fp  0 where p  a,b by Rolle’s

Theorem. Since fa  fp  0, we have fq1  0 where q1  a,p and since
fp  fb  0, we have fq2  0 where q2  p,b by Rolle’s Theorem. Since
fq1  fq2  0, we have fc  0 where c  q1,q2 by Rolle’s Theorem.

5.21 Assume f is nonnegative and has a finite third derivative f in the open interval
0,1. If fx  0 for at least two values of x in 0,1, prove that fc  0 for some c in
0,1.
Proof: Since fx  0 for at least two values of x in 0,1, say fa  fb  0, where

a,b  0,1. By Rolle’s Theorem, we have fp  0 where p  a,b. Note that f is
nonnegative and differentiable on 0,1, so both fa and fb are local minima, where a
and b are interior to a,b. Hence, fa  fb  0.



Since fa  fp  0, we have fq1  0 where q1  a,p and since
fp  fb  0, we have fq2  0 where q2  p,b by Rolle’s Theorem. Since
fq1  fq2  0, we have fc  0 where c  q1,q2 by Rolle’s Theorem.

5.22 Assume f has a finite derivative in some interval a,.
(a) If fx  1 and fx  c as x  , prove that c  0.
Proof: Consider fx  1  fx  fy where y  x,x  1 byMean Value Theorem,

since
limx fx  1

which implies that
limxfx  1  fx  0

which implies that (x    y  )
limx f

y  0  limy fy

Since fx  c as x  , we know that c  0.
Remark: (i) There is a similar exercise; we write it as follows. If fx  L and

fx  c as x  , prove that c  0.
Proof: By the same method metioned in (a), we complete it.
(ii) The exercise tells that the function is smooth; its first derivative is smooth too.
(b) If fx  1 as x  , prove that fx/x  1 as x  .
Proof: Given   0, we want to find M  0 such that as x  M

fx
x  1  .

Since fx  1 as x  , then given   
3 , there is M  0 such that as x  M, we

have
|fx  1|  

3  |fx|  1  
3     *

By Taylor Theorem with Remainder Term,
fx  fM  fx  M

 fx  x  fM  f  1x  fM,
then for x  M,

fx
x  1  fM

x  |f  1|  fM

x

 fM
x  

3  1  
3

M

x by (*)

    **

Choose M  0 such that as x  M  M, we have
fM
x  

3 and
M

x  /3
1  

3 
.     ***

Combine (**) with (***), we have proved that given   0, there is a M  0 such that as
x  M, we have

fx
x  1  .

That is, limx fx
x  1.



Remark: If we can make sure that fx   as x  , we can use L-Hopital Rule.
We give another proof as follows. It suffices to show that fx   as x  .
Proof: Since fx  1 as x  , then given   1, there is M  0 such that as

x  M, we have
|fx|  1  1  2.

Consider
fx  fM  fx  M

by Taylor Theorem with Remainder Term, then
limx fx   since fx is bounded for x  M.

(c) If fx  0 as x  , prove that fx/x  0 as x  .
Proof: The method metioned in (b). We omit the proof.
Remark: (i) There is a similar exercise; we write it as follows. If fx  L as x  ,

prove that fx/x  L as x  . The proof is mentioned in (b), so we omit it.
(ii) It should be careful that we CANNOT use L-Hospital Rule since we may not have

the fact fx   as x  . Hence, L-Hospital Rule cannot be used here. For example, f
is a constant function.
5.23 Let h be a fixed positive number. Show that there is no function f satisfying the

following three conditions: fx exists for x  0, f0  0, fx  h for x  0.
Proof: It is called Intermediate Value Theorem for Derivatives. (Sometimes, we

also call this theorem Darboux.) See the text book in Theorem 5.16.
(Supplement) 1. Suppose that a  R, and f is a twice-differentiable real function on

a,. Let M0, M1, and M2 are the least upper bound of |fx|, |fx|, and |fx|,
respectively, on a,. Prove that M1

2  4M0M2.

Proof: Consider Taylor’s Theorem with Remainder Term,

fa  2h  fa  fa2h  f

2! 2h2, where h  0.

then we have
fa  1

2h fa  2h  fa  f
h

which implies that

|fa|  M0
h  hM2  M1 

M0
h  hM2.     *

Since gh : M0
h  hM2 has an absolute maximum at M0

M2
, hence by (*), we know that

M1
2  4M0M2.

Remark:
2. Suppose that f is a twice-differentiable real function on 0,, and f is bounded on

0,, and fx  0 as x  . Prove that fx  0 as x  .
Proof: Since M1

2  4M0M2 in Supplement 1, we have prove it.
3. Suppose that f is real, three times differentiable on 1,1, such that f1  0,

f0  0, f1  1, and f0  0. Prove that f3x  3 for some x  1,1.
Proof: Consider Taylor’s Theorem with Remainder Term,



fx  f0  f0x  f
0
2! x2  f

3c
3! x3, where c  x, 0 or 0,x,

Then let x  1, and subtract one from another, we get
f3c1  f3c2  6, where c1 and c2 in 1,1.

So, we have prove f3x  3 for some x  1,1.

5.24 If h  0 and if fx exists (and is finite) for every x in a  h,a  h, and if f is
continuous on a  h,a  h, show that we have:
(a)

fa  h  fa  h
h  fa  h  fa  h, 0    1;

Proof: Let gh  fa  h  fa  h, then byMean Vaule Theorem, we have
gh  g0  gh

 ghh, where 0    1
 fa  h  fa  hh

which implies that
fa  h  fa  h

h  fa  h  fa  h, 0    1.

(b)
fa  h  2fa  fa  h

h  fa  h  fa  h, 0    1.

Proof: Let gh  fa  h  2fa  fa  h, then byMean Vaule Theorem, we have
gh  g0  gh

 ghh, where 0    1
 fa  h  fa  hh

which implies that
fa  h  2fa  fa  h

h  fa  h  fa  h, 0    1.

(c) If fa exists, show that.

fa  lim
h0

fa  h  2fa  fa  h
h2

Proof: Since

lim
h0

fa  h  2fa  fa  h
h2

 lim
h0

fa  h  fa  h
2h by L-Hospital Rule

 lim
h0

fa  h  fa
2h  f

a  fa  h
2h

 1
2 2f

a since fa exists.

 fa.

Remark: There is another proof by using Generalized Mean Value theorem.
Proof: Let g1h  fa  h  2fa  fa  h and g2h  h2, then by Generalized

Mean Value theorem, we have



g1h  g10g2 h  g1 hg2h  g20
which implies that

fa  h  2fa  fa  h
h2  fa  h  fa  h

2h
Hence,

lim
h0

fa  h  2fa  fa  h
h2

 lim
h0

fa  h  fa  h
2h

 fa since fa exists.

(d) Give an example where the limit of the quotient in (c) exists but where fa does
not exist.
Solution: (STUDY) Note that in the proof of (c) by using L-Hospital Rule. We know

that |x| is not differentiable at x  0, and |x| satisfies that

lim
h0

|0  h|  |0  h|
2h  0  lim

h0

f0  h  f0  h
2h

So, let us try to find a function f so that fx  |x|. So, consider its integral, we know that

fx 
x2
2 if x  0
 x22 if x  0

Hence, we complete it.
Remark: (i) There is a related statement; we write it as follows. Suppose that f defined

on a,b and has a derivative at c  a,b. If xn  a,c and yn  c,b with such
that xn  yn  0 as n  . Then we have

fc  limn
fyn  fxn
yn  xn .

Proof: Since fc exists, we have
fyn  fc  fcyn  c  oyn  c     *

and
fxn  fc  fcxn  c  oxn  c.     *’

If we combine (*) and (*’), we have
fyn  fxn
yn  xn  fc  oyn  cyn  xn  oxn  cyn  xn .     **

Note that
yn  c
yn  xn  1 and xn  c

yn  xn  1 for all n,

we have

limn
oyn  c
yn  xn  oxn  cyn  xn

 limn
oyn  c
yn  c

yn  c
yn  xn  oxn  cxn  c

xn  c
yn  xn

 0.
which implies that, by (**)



fc  limn
fyn  fxn
yn  xn .

(ii) There is a good exercise; we write it as follows. Let f  C2a,b, and c  a,b.
For small |h| such that c  h  a,b, write

fc  h  fc  fc  hhh
where 0    1. Show that if fc  0, then limh0 h  1/2.
Proof: Since f  C2a,b, by Taylor Theorem with Remainder Term, we have

fc  h  fc  fch  f

2! h2, where   c,h or h,c

 fc  hhh by hypothesis.
So,

fc  hh  fc
h h  f

2! ,

and let h  0, we have   c by continuity of f at c. Hence,
lim
h0

h  1/2 since fc  0.

Note:We can modify our statement as follows. Let f be defined on a,b, and
c  a,b. For small |h| such that c  h  a,b, write

fc  h  fc  fc  hhh
where 0    1. Show that if fc  0, and x  x for x  a  h,a  h, then
limh0 h  1/2.
Proof: Use the exercise (c), we have

fc  lim
h0

fc  h  2fc  fc  h
h2

 lim
h0

fc  hh  fc  hh
h by hypothesis

 lim
h0

fc  hh  fc  hh
2hh 2h since x  x for x  a  h,a  h.

Since fc  0, we finally have limh0 h  1/2.
5.25 Let f have a finite derivatiive in a,b and assume that c  a,b. Consider the

following condition: For every   0, there exists a 1 ball Bc;, whose radius 
depends only on  and not on c, such that if x  Bc;, and x  c, then

fx  fc
x  c  fc  .

Show that f is continuous on a,b if this condition holds throughout a,b.
Proof: Given   0, we want to find a   0 such that as dx,y  , x,y  a,b, we

have
|fx  fy|  .

Choose any point y  a,b, and thus by hypothesis, given   /2, there is a 1 ball
By;, whose radius  depends only on  and not on y, such that if x  By;, and
x  y, then ,

fx  fy
x  y  fy  /2  .     *

Note that y  Bx,, so, we also have



fx  fy
x  y  fx  /2       *’

Combine (*) with (*’), we have
|fx  fy|  .

Hence, we have proved f is continuous on a,b.
Remark: (i) The open interval can be changed into a closed interval; it just need to

consider its endpoints. That is, f is continuous on a,b if this condition holds throughout
a,b. The proof is similar, so we omit it.
(ii) The converse of statement in the exercise is alos true. We write it as follows. Let f

be continuous on a,b, and   0. Prove that there exists a   0 such that
fx  fc
x  c  fc  

whenever 0  |x  c|  , a  x,c, b.
Proof: Given   0, we want to find a   0 such that

fx  fc
x  c  fc  

whenever 0  |x  c|  , a  x,c  b. Since f is continuous on a,b, we know that f is
uniformly continuous on a,b. That is, given     0, there is a   0 such that as
dx,y  , we have

|fx  fy|  .     *
Consider dx,c  , x  a,b, then by (*), we have

fx  fc
x  c  fc  |fx  fc|   byMean Value Theorem

where dx,x  . So, we complete it.
Note: This could be expressed by saying that f is uniformly differentiable on a,b if f

is continuous on a,b.
5.26 Assume f has a finite derivative in a,b and is continuous on a,b, with

a  fx  b for all x in a,b and |fx|    1 for all x in a,b. Prove that f has a
unique fixed point in a,b.
Proof: Given any x,y  a,b, thus, byMean Value Theorem, we have

|fx  fy|  |fz||x  y|  |x  y| by hypothesis.
So, we know that f is a contraction on a complete metric space a,b. So, f has a unique
fixed point in a,b.
5.27 Give an example of a pair of functions f and g having a finite derivatives in 0,1,

such that

lim
x0

fx
gx  0,

but such that limx0 fx
gx

does not exist, choosing g so that gx is never zero.

Proof: Let fx  sin1/x and gx  1/x. Then it is trivial for that gx is never zero.
In addition, we have

lim
x0

fx
gx  0, and lim

x0

fx
gx does not exist.



Remark: In this exercise, it tells us that the converse of L-Hospital Rule is NOT
necessary true. Here is a good exercise very like L-Hospital Rule, but it does not! We
write it as follows.
Suppose that fa and ga exist with ga  0, and fa  ga  0. Prove that

limxa
fx
gx  fa

ga .

Proof: Consider

limxa
fx
gx  limxa

fx  fa
gx  ga  limxa

fx  fa/x  a
gx  ga/x  a

 fa
ga since f

a and ga exist with ga  0.

Note: (i) It should be noticed that we CANNOT use L-Hospital Rule since the
statement tells that f and g have a derivative at a, we do not make sure of the situation of
other points.
(ii) This holds also for complex functions. Let us recall the proof of L-Hospital Rule,

we need use the order field R; however, C is not an order field. Hence, L-Hospital Rule
does not hold for C. In fact, no order can be defined in the complex field since i2  1.

Supplement on L-Hospital Rule
We do not give a proof about the following fact. The reader may see the book named A

First Course in Real Analysis written by Protter and Morrey, Charpter 4, pp 88-91.
Theorem ( 00 ) Let f and g be continuous and differentiable on a,b with g  0 on a,b.

If
lim
xa
fx  0  lim

xa
gx  0 and

lim
xa

fx
gx  L,

    *

then

lim
xa

fx
gx  L.

Remark: 1. The size of the interval a,b is of no importance; it suffices to
have g  0 on a,a  , for some   0.

2. (*) is a sufficient condition, not a necessary condition. For example,
fx  x2, and gx  sin1/x both defined on 0,1.

3. We have some similar results: x  a; x  a; x   1/x  0;
x   1/x  0.

Theorem (  ) Let f and g be continuous and differentiable on a,b with g  0 on
a,b. If

lim
xa
fx    lim

xa
gx   and

lim
xa

fx
gx  L,

    *

then



lim
xa

fx
gx  L.

Remark: 1. The proof is skilled, and it needs an algebraic identity.
2. We have some similar results: x  a; x  a; x   1/x  0;

x   1/x  0.
3. (*) is a sufficient condition, not a necessary condition. For example,

fx  x  sinx, and gx  x.
Theorem (O. Stolz) Suppose that yn  , and yn is increasing. If

limn
xn  xn1
yn  yn1  L, (or  )

then
limn

xn
yn  L. (or  )

Remark: 1. The proof is skilled, and it needs an algebraic identity.
2. The difference between Theorem 2 and Theorem 3 is that x is a continuous

varibale but xn is not.
Theorem (Taylor Theorem with Remainder) Suppose that f is a real function defined on

a,b. If fnx is continuous on a,b, and differentiable on a,b, then (let
x,c  a,b, with x  c) there is a x, interior to the interval joining x and c such
that

fx  Pfx 
fn1x
n  1! x  c

n1,

where

Pfx :
k0

n fkc
k! x  ck.

Remark: 1. As n  1, it is exactlyMean Value Theorem.
2. The part

fn1x
n  1! x  c

n1 : Rnx

is called the remainder term.
3. There are some types about remainder term. (Lagrange, Cauchy, Berstein,

etc.)
Lagrange

Rnx 
fn1x
n  1! x  c

n1.

Cauchy

Rnx 
fn1c  x  c

n! 1  nx  cn1, where 0    1.

Berstein

Rnx  1
n! c

x
x  tnfn1tdt



5.28 Prove the following theorem:
Let f and g be two functions having finite nth derivatives in a,b. For some interior

point c in a,b, assume that fc  fc . . . fn1c  0, and that
gc  gc . . . gn1c  0, but that gnx is never zero in a,b. Show that

limxc
fx
gx  fnc

gnc
.

NOTE. fn and gn are not assumed to be continuous at c.
Hint. Let

Fx  fx  x  cn2fnc
n  2! ,

define G similarly, and apply Theorem 5.20 to the functions F and G.
Proof: Let

Fx  fx  fnc
n  2! x  c

n2

and

Gx  gx  gnc
n  2! x  c

n2

then inductively,

Fkx  fkx  fnc
n  2  k! x  c

n2k

and note that
Fkc  0 for all k  0,1, . . ,n  3, and Fn2c  fnc.

Similarly for G. Hence, by Theorem 5.20, we have

Fx 
k0

n2
Fk
k! x  c

k Gn1x1  Fn1x1 Gx 
k0

n2
Gk

k! x  ck

where x1 between x and c, which implies that
fxgn1x1  fn1x1gx.     *

Note that since gn is never zero on a,b; it implies that there exists a   0 such that
every gk is never zero in c  ,c    c, where k  0,1, 2. . . ,n. Hence, we have, by
(*),

limxc
fx
gx  limxc

fn1x1
gn1x1

 limx1c
fn1x1  fn1c
gn1x1  gn1c

since x  c x1  c

 limx1c
fn1x1  fn1c/x1  c
gn1x1  gn1c/x1  c

 fnc
gnc

since fn exists and gn exists 0 on a,b.

Remark: (1) The hint is not correct from text book. The reader should find the
difference between them.
(2) Here ia another proof by L-Hospital Rule and Remark in Exercise 5.27.
Proof: Since gn is never zero on a,b, it implies that there exists a   0 such that



every gk is never zero in c  ,c    c, where k  0,1, 2. . . ,n. So, we can apply
n  1 times L-Hospital Rule methoned in Supplement, and thus get

limxc
fx
gx  limxc

fn1x
gn1x

 limxc
fn1x  fn1c
gn1x  gn1c

 limxc
fn1x  fn1c/x  c
gn1x  gn1c/x  c

 fnc
gnc

since fn exists and gn exists 0 on a,b.

5.29 Show that the formula in Taylor’s theorem can also be written as follows:

fx 
k0

n1 fkc
k! x  ck  x  cx  x1n1

n  1! fnx1,

where x1 is interior to the interval joining x and c. Let 1    x  x1/x  c. Show that
0    1 and deduce the following form of the remainder term (due to Cauchy):

1  n1x  cn

n  1! fnx  1  c.

Hint. Take Gt  t in the proof of Theorem 5.20.
Proof: Let

Ft 
k0

n1 fkt
k! x  tk, and Gt  t,

and note that

Ft  fnt
n  1! x  t

n1

then by Generalized Mean Value Theorem, we have
Fx  FcGx1  Gx  GcFx1

which implies that

fx 
k0

n1 fkc
k! x  ck  fnx1

n  1! x  x1
n

 fnx  1  c
n  1! x  cn1  n, where x1  x  1  c.

So, we have prove that

fx 
k0

n1 fkc
k! x  ck  Rn1x,

where

Rn1x 
fnx  1  c

n  1! x  cn1  n, where x1  x  1  c

is called a Cauchy Remainder.
Supplement on some questions.

1. Let f be continuous on 0,1 and differentiable on 0,1. Suppose that f0  0 and



|fx|  |fx| for x  0,1. Prove that f is constant.
Proof: Given any x1  0,1, by Mean Value Theorem and hypothesis, we know that

|fx1  f0|  x1|fx2|  x1|fx2|, where x2  0,x1.
So, we have
|fx1|  x1   xn|fxn1|  Mx1   xn, where xn1  0,xn, and M  sup

xa,b
|fx|

Since Mx1   xn  0, as n  , we finally have fx1  0. Since x1 is arbirary, we find
that fx  0 on 0,1.
2. Suppose that g is real function defined on R, with bounded derivative, say |g |  M.

Fix   0, and define fx  x  gx. Show that f is 1-1 if  is small enough. (It implies
that f is strictly monotonic.)
Proof: Suppose that fx  fy, i.e., x  gx  y  gy which implies that
|y  x|  |gy  gx|  M|y  x| byMean Value Theorem, and hypothesis.

So, as  is small enough, we have x  y. That is, f is 1-1.
Supplement on Convex Function.

Definition(Convex Function) Let f be defined on an interval I, and given 0    1,
we say that f is a convex function if for any two points x,y  I,

fx  1  y  fx  1  fy.

For example, x2 is a convex function on R. Sometimes, the reader may see another weak
definition of convex function in case   1/2. We will show that under continuity, two
definitions are equivalent. In addition, it should be noted that a convex function is not
necessarily continuous since we may give a jump on a continuous convex function on its
boundary points, for example, fx  x is a continuous convex function on 0,1, and
define a function g as follows:

gx  x, if x  0,1 and g1  g0  2.
The function g is not continuous but convex. Note that if f is convex, we call f is concave,
vice versa. Note that every increasing convex function of a convex function is convex. (For
example, if f is convex, so is ef. ) It is clear only by definition.
Theorem(Equivalence) Under continuity, two definitions are equivalent.
Proof: It suffices to consider if

f x  y2  fx  fy2     *

then
fx  1  y  fx  1  fy for all 0    1.

Since (*) holds, then byMathematical Induction, it is easy to show that

f x1 . . .x2n2n  fx1 . . .fx2n 2n .

Claim that

f x1 . . .xnn  fx1 . . .fxnn for all n  N.     **

Using Reverse Induction, let xn  x1...xn1
n1 , then



f x1 . . .xnn  f x1 . . .xn1n  xnn
 fxn

 fx1 . . .fxn
n by induction hypothesis.

So, we have

f x1 . . .xn1n  1  fx1 . . .fxn1n  1 .

Hence, we have proved (**). Given a rational number m/n  0,1, where
g.c.d. m,n  1; we choose x : x1 . . . xm, and y : xm1 . . . xn, then by (**), we
finally have

f mx
n  n  my

n  mfxn  n  mfy
n  m

n fx  1 
m
n fy.     ***

Given   0,1, then there is a sequence qn Q such that qn   as n  . Then
by continuity and (***), we get

fx  1  y  fx  1  fy.

Remark: The Reverse Induction is that let S  N and S has two properties:(1) For
every k  0, 2k  S and (2) k  S and k  1  N, then k  1  S. Then S  N.
(Lemma) Let f be a convex function on a,b, then f is bounded.
Proof: Let M  maxfa, fb, then every point z  I, write z  a  1  b, we

have
fz  fa  1  b  fa  1  fb  M.

In addition, we may write z  ab
2  t, where t is chosen so that z runs through a,b. So,

we have
f a  b2  12 f

a  b
2  t  12 f

a  b
2  t

which implies that
2f a  b2  f a  b2  t  f a  b2  t  fz

which implies that
2f a  b2  M : m  fz.

Hence, we have proved that f is bounded above by M and bounded below by m.
(Theorem) If f : I  R is convex, then f satisfies a Lipschitz condition on any closed

interval a,b  intI. In addition, f is absolutely continuous on a,b and continuous on
intI.
Proof:We choose  0 so that a  ,b   intI. By preceding lemma, we

know that f is bounded, say m  fx  M on a  ,b  . Given any two points x, and y,
with a  x  y  bWe consider an auxiliary point z  y  , and a suitable   yx

yx ,
then y  z  1  x. So,

fy  fz  1  x  fz  1  fx  fz  fx  fx
which implies that

fy  fx  M  m  y  x M  m.
Change roles of x and y, we finally have



|fy  fx|  K|y  x|, where K  M  m
 .

That is, f satisfies a Lipschitz condition on any closed interval a,b.
We call that f is absolutely continuous on a,b if given any   0, there is a   0

such that for any collection of ai,bii1
n of disjoint open intervals of a,b with

k1
n bi  ai  , we have


k1

n

|fbi  fai|  .

Clearly, the choice   /K meets this requirement. Finally, the continuity of f on intI is
obvious.
(Theorem) Let f be a differentiable real function defined on a,b. Prove that f is

convex if and only if f is monotonically increasing.
Proof: () Suppose f is convex, and given x  y, we want to show that fx  fy.

Choose s and t such that x  u  s  y, then it is clear that we have
fu  fx
u  x  fs  fus  u  fy  fsy  s .     *

Let s  y, we have by (*)
fu  fx
u  x  fy

which implies that, let u  x
fx  fy.

() Suppose that f is monotonically increasing, it suffices to consider   1/2, if
x  y, then

fx  fy
2  f x  y2 

fx  f xy2   fy  f xy2 
2

 x  y
4 f1  f2, where 1  2

 0.
Similarly for x  y, and there is nothing to prove x  y. Hence, we know that f is convex.
(Corollary 1) Assume next that fx exists for every x  a,b, and prove that f is

convex if and only if fx  0 for all x  a,b.
Proof: () Suppose that f is convex, we have shown that f is monotonically increasing.

So, we know that fx  0 for all x  a,b.
() Suppose that fx  0 for all x  a,b, it implies that f is monotonically

increasing. So, we know that f is convex.
(Corollary 2) Let 0    , then we have

|y1 | . . .|yn |
n

1/

 |y1 | . . .|yn |
n

1/

Proof: Let p  1, and since xp  pp  1xp2  0 for all x  0, we know that
fx  xp is convex. So, we have (let p  

 )

x1 . . .xn
n

/
 x1

/ . . .xn/
n     *

by



f x1 . . .xnn  fx1 . . .fxnn .

Choose xi  |yi |, where i  1,2, . . ,n. Then by (*), we have
|y1 | . . .|yn |

n
1/

 |y1 | . . .|yn |
n

1/
.

(Corollary 3) Define

Mry  |y1 |r . . .|yn |r
n

1/r
, where r  0.

Then Mry is a monotonic function of r on 0,. In particular, we have
M1y  M2y,

that is,

|y1 | . . .|yn |
n  |y1 |2 . . .|yn |2

n
1/2

.

Proof: It is clear by Corollary 2.
(Corollary 4) By definition of Mry in Corollary 3, we have

lim
r0
Mry  |y1 |   |yn |1/n : M0y

and
limrMry  max|y1 |, . . . , |yn | : My

Proof: 1. Since Mry  |y1 |r...|yn |r
n

1/r
, taking log and thus byMean Value

Theorem, we have
log |y1 |r...|yn |r

n  0
r  0 

 1n i1
n |yi |r

 log|yi |
 1n i1

n |yi |r
 , where 0  r  r.

So,

lim
r0
Mry  lim

r0
e
log

y1
r...|yn |r
n
r

 lim
r0
e

1
n i1

n
yi
r log yi

1
n i1

n
yi
r

 e
i1

n
log yi

n

 |y1 |   |yn |1/n.
2. As r  0, we have

max|y1 |, . . . , |yn |r
n

1/r
 Mry  max|y1 |, . . . , |yn |r1/r

which implies that, by Sandwich Theorem,
limrMry  max|y1 |, . . . , |yn |

since limr 1n 
1/r  1.

(Inequality 1) Let f be convex on a,b, and let c  a,b. Define



lx  fa  fc  fac  a x  a,
then fx  lx for all x  c,b.
Proof: Consider x  c,d, then c  xc

xa a  ca
xa x, we have

fc  x  c
x  a fa 

c  a
x  a fx

which implies that

fx  fa  fc  fac  a x  a  lx.

(Inequality 2) Let f be a convex function defined on a,b. Let a  s  t  u  b,
then we have

ft  fs
t  s  fu  fsu  s  fu  ftu  t .

Proof: By definition of convex, we know that

fx  fs  fu  fsu  s x  s, x  s,u     *
and by inequality 1, we know that

fs  ft  fst  s x  s  fx, x  t,u.     **

So, as x  t,u, by (*) and (**), we finally have
ft  fs
t  s  fu  fsu  s .

Similarly, we have
fu  fs
u  s  fu  ftu  t .

Hence, we have
ft  fs
t  s  fu  fsu  s  fu  ftu  t .

Remark: Using abvoe method, it is easy to verify that if f is a convex function on a,b,
then f x and f x exist for all x  a,b. In addition, if x  y, where x,y  a,b, then
we have

f x  f x  f y  f y.
That is, f x and f x are increasing on a,b. We omit the proof.
(Exercise 1) Let fx be convex on a,b, and assume that f is differentiable at

c  a,b, we have
lx  fc  fcx  c  fx.

That is, the equation of tangent line is below fx if the equation of tangent line exists.
Proof: Since f is differentiable at c  a,b, we write the equation of tangent line at c,

lx  fc  fcx  c.
Define

ms  fs  fc
s  c where a  s  c and mt  ft  fc

t  c where b  t  c,

then it is clear that
ms  fc  mt

which implies that



lx  fc  fcx  c  fx.

(Exercise 2) Let f : R  R be convex. If f is bounded above, then f is a constant
function.
Proof: Suppose that f is not constant, say fa  fb, where a  b. If fb  fa, we

consider
fx  fb
x  b  fb  fab  a , where x  b

which implies that as x  b,

fx  fb  fab  a x  b  fb   as x  

And if fb  fa, we consider
fx  fa
x  a  fb  fab  a , where x  a

which implies that as x  a,

fx  fb  fab  a x  a  fa   as x  .

So, we obtain that f is not bouded above. So, f must be a constant function.
(Exercise 3) Note that ex is convex on R. Use this to show that A.P. G.P.
Proof: Since ex  ex  0 on R, we know that ex is convex. So,

e
x1...xn

n  ex1 . . .exnn , where xi  R, i  1,2, . . . ,n.
So, let exi  yi  0, for i  1,2, . . . ,n. Then

y1   yn1/n 
y1 . . .yn

n .

Vector-Valued functions
5.30 If a vector valued function f is differentiable at c, prove that

fc  lim
h0

1
h fc  h  fc.

Conversely, if this limit exists, prove that f is differentiable at c.
Proof:Write f  f1, . . . , fn : S R  Rn, and let c be an interior point of S. Then if

f is differentiable at c, each fk is differentiable at c. Hence,
lim
h0

1
h fc  h  fc

 lim
h0

f1c  h  f1c
h , . . . , fnc  h  fnch

 lim
h0

f1c  h  f1c
h , . . . , lim

h0

fnc  h  fnc
h

 f1 c, . . . , fn c
 fc.

Conversly, it is obvious by above.
Remark: We give a summary about this. Let f be a vector valued function defined on

S. Write f : S Rn  Rm, c is a interior point.
f  f1, . . . , fn is differentiable at c  each fk is differentiable at c,     *

and



f  f1, . . . , fn is continuous at c  each fk is continuous at c.

Note: The set S can be a subset in Rn, the definition of differentiation in higher
dimensional space makes (*) holds. The reader can see textbook, Charpter 12.
5.31 A vector-valued function f is differentiable at each point of a,b and has constant

norm f. Prove that ft  ft  0 on a,b.
Proof: Since f, f  f2 is constant on a,b, we have f, f  0 on a,b. It implies

that 2f, f  0 on a,b. That is, ft  ft  0 on a,b.
Remark: The proof of f,g  f,g  f,g is easy from definition of differentiation.

So, we omit it.
5.32 A vector-valued function f is never zero and has a derivative f which exists and is

continuous on R. If there is a real function  such that ft  tft for all t, prove that
there is a positive real function u and a constant vector c such that ft  utc for all t.
Proof: Since ft  tft for all t, we have

f1 t, . . . , fn t  ft  tft  tf1t, . . . ,tfnt
which implies that

fit
fit  t since f is never zero.     *

Note that fi
t
fit

is a continuous function from R to R for each i  1,2, . . . ,n, since f is
continuous on R, we have, by (*)


a

x f1 t
f1t

dt  
a

x
tdt  fit 

fia
e a

et for i  1,2, . . . ,n.

So, we finally have
ft  f1t, . . . , fnt

 et f1a
e a

, . . . , fna
e a

 utc
where ut  et and c  f1a

ea
, . . . , fna

ea
.

Supplement on Mean Value Theorem in higher dimensional space.
In the future, we will learn so calledMean Value Theorem in higher dimensional

space from the text book in Charpter 12. We give a similar result as supplement.
Suppose that f is continuous mapping of a,b into Rn and f is differentiable in a,b.

Then there exists x  a,b such that
fb  fa  b  afx.

Proof: Let z  fb  fa, and define x  fx  z which is a real valued function
defined on a,b. It is clear that x is continuous on a,b and differentiable on a,b.
So, byMean Value Theorem, we know that

b  a  xb  a, where x  a,b
which implies that

|b  a|  |xb  a|
 fb  faxb  a by Cauchy-Schwarz inequality.



So, we have
fb  fa  b  afx.

Partial derivatives
5.33 Consider the function f defined on R2 by the following formulas:

fx,y  xy
x2  y2 if x,y  0,0 f0,0  0.

Prove that the partial derivatives D1fx,y and D2fx,y exist for every x,y in R2 and
evaluate these derivatives explicitly in terms of x and y. Also, show that f is not continuous
at 0,0.
Proof: It is clear that for all x,y  0,0, we have

D1fx,y  y
y2  x2

x2  y22
and D2fx,y  x

x2  y2

x2  y22
.

For x,y  0,0, we have

D1f0,0  limx0
fx, 0  f0,0

x  0  0.

Similarly, we have
D2f0,0  0.

In addition, let y  x and y  2x, we have
lim
x0
fx,x  1/2  lim

x0
fx, 2x  2/5.

Hence, f is not continuous at 0,0.
Remark: The existence of all partial derivatives does not make sure the continuity of f.

The trouble with partial derivatives is that they treat a function of several variables as a
function of one variable at a time.
5.34 Let f be defined on R2 as follows:

fx,y  y x
2  y2
x2  y2 if x, ,y  0,0, f0,0  0.

Compute the first- and second-order partial derivatives of f at the origin, when they exist.
Proof: For x,y  0,0, it is clear that we have

D1fx,y 
4xy3

x2  y22
and D2fx,y 

x4  4x2y2  y4

x2  y22

and for x,y  0,0, we have

D1f0,0  limx0
fx, 0  f0,0

x  0  0, D2f0,0  limy0
f0,y  f0,0

y  0  1.

Hence,

D1,1f0,0  limx0
D1fx, 0  D1f0,0

x  0  0,

D1,2f0,0  limx0
D2fx, 0  D2f0,0

x  0  lim
x0

2
x does not exist,

D2,1f0,0  limy0
D1f0,y  D1f0,0

y  0  0,

and



D2,2f0,0  limy0
D2f0,y  D2f0,0

y  0  lim
y0

0
y  0.

Remark: We do not give a detail computation, but here are answers. Leave to the
reader as a practice. For x,y  0,0, we have

D1,1fx,y 
4y3y2  3x2
x2  y23

,

D1,2fx,y 
4xy23x2  y2
x2  y23

,

D2,1fx,y 
4xy23x2  y2
x2  y23

,

and

D2,2fx,y 
4x2yy2  3x2
x2  y23

.

complex-valued functions
5.35 Let S be an open set in C and let S be the set of complex conjugates z, where

z  S. If f is defined on S, define g on S as follows: gz  fz, the complex conjugate
of fz. If f is differentiable at c, prove that g is differentiable at c and that gc  fc.
Proof: Since c  S, we know that c is an interior point. Thus, it is clear that c is also an

interior point of S. Note that we have

the conjugate of fz  fc
z  c  fz  fc

z  c

 gz  gc
z  c by gz  fz.

Note that z  c z  c, so we know that if f is differentiable at c, prove that g is
differentiable at c and that gc  fc.
5.36 (i) In each of the following examples write f  u  iv and find explicit formulas

for ux,y and vx,y : ( These functions are to be defined as indicated in Charpter 1.)
(a) fz  sin z,
Solution: Since eiz  cos z  i sin z, we know that

sin z  1
2 e

y  ey sinx  iey  eycosx

from sin z  eizeiz
2i . So, we have

ux,y  ey  ey sinx
2

and

vx,y  ey  eycosx
2 .

(b) fz  cos z,
Solution: Since eiz  cos z  i sin z, we know that

cos z  1
2 e

y  eycosx  ey  ey sinx

from cos z  eizeiz
2 . So, we have



ux,y  ey  eycosx
2

and

vx,y  ey  ey sinx
2 .

(c) fz  |z|,

Solution: Since |z|  x2  y21/2, we know that
ux,y  x2  y21/2

and
vx,y  0.

(d) fz  z,
Solution: Since z  x  iy, we know that

ux,y  x
and

vx,y  y.

(e) fz  arg z, (z  0),
Solution: Since arg z  R, we know that

ux,y  argx  iy
and

vx,y  0.

(f) fz  Log z, (z  0),
Solution: Since Log z  log|z|  iargz, we know that

ux,y  logx2  y21/2

and
vx,y  argx  iy.

(g) fz  ez2 ,
Solution: Since ez2  ex2y2i2xy, we know that

ux,y  ex2y2 cos2xy
and

vx,y  ex2y2 sin2xy.

(h) fz  z, ( complex, z  0).
Solution: Since z  eLog z, then we have (let   1  i2)

z  e1i2log|z|iarg z

 e1 log|z|2 arg zi2 log|z|1 arg z.
So, we know that

ux,y  e1 log|z|2 arg z cos2 log|z|  1 arg z
 e1 logx2y21/22 argxiy cos 2 logx2  y21/2  1 argx  iy



and
vx,y  e1 log|z|2 arg z sin2 log|z|  1 arg z

 e1 logx2y21/22 argxiy sin 2 logx2  y21/2  1 argx  iy .

(ii) Show that u and v satisfy the Cauchy -Riemanns equation for the following values
of z : All z in (a), (b), (g); no z in (c), (d), (e); all z except real z  0 in (f), (h).
Proof: (a) sin z  u  iv, where

ux,y  ey  ey sinx
2 and vx,y  ey  eycosx

2 .

So,

ux  vy 
ey  eycosx

2 for all z  x  iy

and

uy  vx 
ey  ey sinx

2 for all z  x  iy.

(b) cos z  u  iv, where

ux,y  ey  eycosx
2 and vx,y  ey  ey sinx

2 .

So,

ux  vy  
ey  ey sinx

2 for all z  x  iy.

and

uy  vx 
ey  eycosx

2 for all z  x  iy.

(c) |z|  u  iv, where
ux,y  x2  y21/2 and vx,y  0.

So,
ux  xx2  y21/2  vy  0 if x  0, y  0.

and
uy  yx2  y21/2  vx  0 if x  0, y  0.

So, we know that no z makes Cauchy-Riemann equations hold.
(d) z  u  iv, where

ux,y  x and vx,y  y.
So,

ux  1  1  vy.
So, we know that no z makes Cauchy-Riemann equations hold.
(e) arg z  u  iv, where

   ux,y  argx2  y21/2   and vx,y  0.
Note that



ux,y 

(1) arctany/x, if x  0,y  R
(2) /2, if x  0,y  0

(3) arctany/x  , if x  0, y  0
(4) arctany/x  , if x  0, y  0

(5)  /2, if x  0,y  0.

and
vx  vy  0.

So, we know that by (1)-(5), for x,y  0,0
ux  y

x2  y2

and for x,y  x,y : x  0,y  0, we have
uy  x

x2  y2 .

Hence, we know that no z makes Cauchy-Riemann equations hold.
Remark: We can give the conclusion as follows:

arg zx 
y

x2  y2 for x,y  0,0

and
arg zy  x

x2  y2 for x,y  x,y : x  0,y  0.

(f) Log z  u  iv, where
ux,y  logx2  y21/2 and vx,y  argx2  y21/2.

Since
ux  x

x2  y2 and uy 
y

x2  y2

and
vx  y

x2  y2 for x,y  0,0 and vy 
x

x2  y2 for x,y  x,y : x  0,y  0,

we know that all z except real z  0 make Cauchy-Riemann equations hold.
Remark: Log z is differentiable on C  x,y : x  0,y  0 since Cauchy-Riemann

equations along with continuity of ux  ivx, and uy  ivy.
(g) ez2  u  iv, where

ux,y  ex2y2 cos2xy and vx,y  ex2y2 sin2xy.
So,

ux  vy  2ex2y2xcos2xy  ysin2xy for all z  x  iy.
and

uy  vx  2ex2y2ycos2xy  xsin2xy for all z  x  iy.
Hence, we know that all z make Cauchy-Riemann equations hold.
(h) Since z  eLog z, and ez is differentiable on C, we know that, by the remark of (f),

we know that z is differentiable for all z except real z  0. So, we know that all z except
real z  0 make Cauchy-Riemann equations hold.
( In part (h), the Cauchy-Riemann equations hold for all z if  is a nonnegative integer,



and they hold for all z  0 if  is a negative integer.)
Solution: It is clear from definition of differentiability.
(iii) Compute the derivative fz in (a), (b), (f), (g), (h), assuming it exists.
Solution: Since fz  ux  ivx, if it exists. So, we know all results by (ii).
5.37 Write f  u  iv and assume that f has a derivative at each point of an open disk D

centered at 0,0. If au2  bv2 is constant on D for some real a and b, not both 0. Prove
that f is constant on D.
Proof: Let au2  bv2 be constant on D. We consider three cases as follows.
1. As a  0,b  0, then we have

v2 is constant on D
which implies that

vvx  0.
If v  0 on D, it is clear that f is constant.
If v  0 on D, that is vx  0 on D. So, we still have f is contant.
2. As a  0,b  0, then it is similar. We omit it.
3. As a  0,b  0, Taking partial derivatives we find

auux  bvvx  0 on D.     1
and

auuy  bvvy  0 on D.
By Cauchy-Riemann equations the second equation can be written as we have

 auvx  bvux  0 on D.     2
We consider 1vx  2ux and 1ux  2vx, then we have

bvvx2  ux2  0     3
and

auvx2  ux2  0     4
which imply that

au2  bv2vx2  ux2  0.     5
If au2  bv2  c, constant on D, where c  0, then vx2  ux2  0. So, f is constant.
If au2  bv2  c, constant on D, where c  0, then if there exists x,y such that

vx2  ux2  0, then by (3) and (4), ux,y  vx,y  0. By continuity of vx2  ux2, we know
that there exists an open region S D such that u  v  0 on S. Hence, by Uniqueness
Theorem, we know that f is constant.
Remark: In complex theory, the Uniqueness theorem is fundamental and important.

The reader can see this from the book named Complex Analysis by Joseph Bak and
Donald J. Newman.



Functions of Bounded Variation and Rectifiable Curves
Functions of bounded variation

6.1 Determine which of the follwoing functions are of bounded variation on 0,1.
(a) fx  x2 sin1/x if x  0, f0  0.
(b) fx  x sin1/x if x  0, f0  0.

Proof: (a) Since
fx  2x sin1/x  cos1/x for x  0,1 and f0  0,

we know that fx is bounded on 0,1, in fact, |fx|  3 on 0,1. Hence, f is of
bounded variation on 0,1.
(b) First, we choose n  1 be an even integer so that 1


2 n1

 1, and thus consider a

partition P  0  x0, x1  1

2
, x2  1

2 2
, . . . , xn  1

n 2
, xn1  1

n1 2
, xn2  1 , then

we have


k1

n2

|fk |  2 2
 

k1

n

1/k .

Since 1/k diverges to , we know that f is not of bounded variation on 0,1.

6.2 A function f, defined on a,b, is said to satisfy a uniform Lipschitz condition of
order   0 on a,b if there exists a constant M  0 such that |fx  fy|  M|x  y| for
all x and y in a,b. (Compare with Exercise 5.1.)
(a) If f is such a function, show that   1 implies f is constant on a,b, whereas

  1 implies f is of bounded variation a,b.
Proof: As   1, we consider, for x  y, where x,y  a,b,

0  |fx  fy||x  y|  M|x  y|1.

Hence, fx exists on a,b, and we have fx  0 on a,b. So, we know that f is
constant.
As   1, consider any partition P  a  x0, x1, . . . , xn  b, we have


k1

n

|fk |  M
k1

n

|xk1  xk |  Mb  a.

That is, f is of bounded variation on a,b.

(b) Give an example of a function f satisfying a uniform Lipschitz condition of order
  1 on a,b such that f is not of bounded variation on a,b.
Proof: First, note that x satisfies uniform Lipschitz condition of order , where

0    1. Choosing   1 such that   1 and let M  k1
 1

k since the series
converges. So, we have 1  1

M k1
 1

k .
Define a function f as follows. We partition 0,1 into infinitely many subsintervals.

Consider
x0  0, x1  x0  1

M
1
1 , x2  x1 

1
M

1
2 , . . . , xn  xn1 

1
M

1
n , . . . .

And in every subinterval xi,xi1, where i  0,1, . . . . , we define



fx  x  xi  xi12

,

then f is a continuous function and is not bounded variation on 0,1 sincek1
 1

2M
1
k



diverges.
In order to show that f satisfies uniform Lipschitz condition of order , we consider

three cases.
(1) If x,y  xi,xi1, and x,y  xi, xixi12  or x,y   xixi12 ,xi1, then

|fx  fy|  |x  y |  |x  y|.
(2) If x,y  xi,xi1, and x  xi, xixi12  or y   xixi12 ,xi1, then there is a

z  xi, xixi12  such that fy  fz. So,
|fx  fy|  |fx  fz|  |x  z |  |x  z|  |x  y|.

(3) If x  xi,xi1 and y  xj,xj1, where i  j.
If x  xi, xixi12 , then there is a z  xi, xixi12  such that fy  fz. So,

|fx  fy|  |fx  fz|  |x  z |  |x  z|  |x  y|.
Similarly for x   xixi12 ,xi1.

Remark: Here is another example. Since it will use Fourier Theory, we do not give a
proof. We just write it down as a reference.

ft 
k1

 cos3kt
3k

.

(c) Give an example of a function f which is of bounded variation on a,b but which
satisfies no uniform Lipschitz condition on a,b.
Proof: Since a function satisfies uniform Lipschitz condition of order   0, it must be

continuous. So, we consider

fx 
x if x  a,b
b  1 if x  b.

Trivially, f is not continuous but increasing. So, the function is desired.
Remark: Here is a good problem, we write it as follows. If f satisfies

|fx  fy|  K|x  y|1/2 for x  0,1, where f0  0.
define

gx 
fx
x1/3
if x  0,1

0 if x  0.

Then g satisfies uniform Lipschitz condition of order 1/6.
Proof: Note that if one of x, and y is zero, the result is trivial. So, we may consider

0  y  x  1 as follows. Consider

|gx  gy|  fx
x1/3

 fy
y1/3

 fx
x1/3

 fy
x1/3

 fy
x1/3

 fy
y1/3

 fx
x1/3

 fy
x1/3

 fy
x1/3

 fy
y1/3

.     *



For the part
fx
x1/3

 fy
x1/3

 1
x1/3 |

fx  fy|

 K
x1/3 |

x  y|1/2 by hypothesis

 K|x  y|1/2|x  y|1/3 since x  x  y  0
 K|x  y|1/6.     A

For another part fy
x1/3
 fy

y1/3
, we consider two cases.

(1) x  2y which implies that x  x  y  y  0,
fy
x1/3

 fy
y1/3

 |fy| x
1/3  y1/3

xy1/3

 |fy| x  y
1/3

xy1/3
since |x1/3  y1/3 |  |x  y|1/3 for all x,y  0

 |fy| x1/3
xy1/3

since x  y1/3  x1/3

 |fy| 1
y1/3

 K |y|
1/2

|y|1/3
by hypothesis

 K|y|1/6

 K|x  y|1/6 since y  x  y.     B
(2) x  2y which implies that x  y  x  y  0,

fy
x1/3

 fy
y1/3

 |fy| x
1/3  y1/3

xy1/3

 |fy| x  y
1/3

xy1/3
since |x1/3  y1/3 |  |x  y|1/3 for all x,y  0

 |fy| x  y
1/3

y2/3
since x  y

 K|y|1/2 x  y1/3

y2/3
by hypothesis

 K|y|1/6|x  y|1/3

 K|x  y|1/6|x  y|1/3 since y  x  y
 K|x  y|1/6.     C

So, by (A)-(C), (*) tells that g satisfies uniform Lipschitz condition of order 1/6.
Note: Here is a general result. Let 0      2. If f satisfies

|fx  fy|  K|x  y| for x  0,1, where f0  0.
define



gx 
fx
x if x  0,1

0 if x  0.

Then g satisfies uniform Lipschitz condition of order   . The proof is similar, so we
omit it.

6.3 Show that a polynomial f is of bounded variation on every compact interval a,b.
Describe a method for finding the total variation of f on a,b if the zeros of the derivative
f are known.
Proof: If f is a constant, then the total variation of f on a,b is zero. So, we may

assume that f is a polynomial of degree n  1, and consider fx  0 by two cases as
follows.
(1) If there is no point such that fx  0, then by Intermediate Value Theorem of

Differentiability, we know that fx  0 on a,b, or fx  0 on a,b. So, it implies
that f is monotonic. Hence, the total variation of f on a,b is |fb  fa|.
(2) If there are m points such that fx  0, say

a  x0  x1  x2 . . . xm  b  xm1, where 1  m  n, then we know the monotone
property of function f. So, the total variation of f on a,b is


i1

m1

|fxi  fxi1|.

Remark: Here is another proof. Let f be a polynomial on a,b, then we know that f is
bounded on a,b since f is also polynomial which implies that it is continuous. Hence, we
know that f is of bounded variation on a,b.

6.4 A nonempty set S of real-valued functions defined on an interval a,b is called a
linear space of functions if it has the following two properties:
(a) If f  S, then cf  S for every real number c.
(b) If f  S and g  S, then f  g  S.
Theorem 6.9 shows that the set V of all functions of bounded variation on a,b is a

linear space. If S is any linear space which contains all monotonic functions on a,b,
prove that V  S. This can be described by saying that the functions of bounded
variation form the samllest linear space containing all monotonic functions.
Proof: It is directlt from Theorem 6.9 and some facts in Linear Algebra. We omit the

detail.

6.5 Let f be a real-valued function defined on 0,1 such that f0  0, fx  x for all
x, and fx  fy whenever x  y. Let A  x : fx  x. Prove that supA  A, and that
f1  1.
Proof: Note that since f0  0, A is not empty. Suppose that supA : a  A, i.e.,

fa  a since fx  x for all x. So, given any n  0, then there is a bn  A such that
a  n  bn.     *

In addition,
bn  fbn since bn  A.     **

So, by (*) and (**), we have ( let n  0),
a  fa  fa since f is monotonic increasing.

which contradicts to fa  a. Hence, we know that supA  A.



Claim that 1  supA. Suppose NOT, that is, a  1. Then we have
a  fa  f1  1.

Since a  supA, consider x  a, fa, then
fx  x

which implies that
fa  a

which contradicts to a  fa. So, we know that supA  1. Hence, we have proved that
f1  1.
Remark: The reader should keep the method in mind if we ask how to show that

f1  1 directly. The set A is helpful to do this. Or equivalently, let f be strictly increasing
on 0,1 with f0  0. If f1  1, then there exists a point x  0,1 such that fx  x.

6.6 If f is defined everywhere in R1, then f is said to be of bounded variation on
, if f is of bounded variation on every finite interval and if there exists a positive
number M such that Vfa,b  M for all compact interval a,b. The total variation of f on
, is then defined to be the sup of all numbers Vfa,b,   a  b  , and
denoted by Vf,. Similar definitions apply to half open infinite intervals a, and
,b.
(a) State and prove theorems for the inifnite interval , analogous to the

Theorems 6.7, 6.9, 6.10, 6.11, and 6.12.
(Theorem 6.7*) Let f : R  R be of bounded variaton, then f is bounded on R.
Proof: Given any x  R, then x  0,a or x  a, 0. If x  0,a, then f is bounded

on 0,a with
|fx|  |f0|  Vf0,a  |f0|  Vf,.

Similarly for x  a, 0.
(Theorem 6.9*) Assume that f, and g be of bounded variaton on R, then so are thier

sum, difference, and product. Also, we have
Vfg,  Vf,  Vg,

and
Vfg,  AVf,  BVg,,

where A  supxR|gx| and B  supxR|fx|.
Proof: For sum and difference, given any compact interval a,b, we have

Vfga,b  Vfa,b  Vga,b,
 Vf,  Vg,

which implies that
Vfg,  Vf,  Vg,.

For product, given any compact interval a,b, we have (let Aa,b  supxa,b|gx|,
and Ba,b  supxa,b|fx|),

Vfga,b  Aa,bVfa,b  Ba,bVga,b
 AVf,  BVg,

which implies that



Vfg,  AVf,  BVg,.

(Theorem 6.10*) Let f be of bounded variation on R, and assume that f is bounded
away from zero; that is, suppose that there exists a positive number m such that
0  m  |fx| for all x  R. Then g  1/f is also of bounded variation on R, and

Vg, 
Vf,

m2 .

Proof: Given any compacgt interval a,b, we have

Vga,b 
Vfa,b
m2 

Vf,
m2

which implies that

Vg, 
Vf,

m2 .

(Theorem 6.11*) Let f be of bounded variation on R, and assume that c  R. Then f is
of bounded variation on ,c and on c, and we have

Vf,  Vf,c  Vfc,.

Proof: Given any a compact interval a,b such that c  a,b. Then we have
Vfa,b  Vfa,c  Vfc,b.

Since
Vfa,b  Vf,

which implies that
Vfa,c  Vf, and Vfc,b  Vf,,

we know that the existence of Vf,c and Vfc,. That is, f is of bounded variation on
,c and on c,.
Since

Vfa,c  Vfc,b  Vfa,b  Vf,
which implies that

Vf,c  Vfc,  Vf,,     *
and

Vfa,b  Vfa,c  Vfc,b  Vf,c  Vfc,
which implies that

Vf,  Vf,c  Vfc,,     **
we know that

Vf,  Vf,c  Vfc,.

(Theorem 6.12*) Let f be of bounded variation on R. Let Vx be defined on ,x as
follows:

Vx  Vf,x if x  R, and V  0.
Then (i) V is an increasing function on , and (ii) V  f is an increasing function on
,.
Proof: (i) Let x  y, then we have Vy  Vx  Vfx,y  0. So, we know that V is

an increasing function on ,.
(ii) Let x  y, then we have V  fy  V  fx  Vfx,y  fy  fx  0. So,



we know that V  f is an increasing function on ,.
(b) Show that Theorem 6.5 is true for , if ”monotonic” is replaced by ”bounded

and monotonic.” State and prove a similar modefication of Theorem 6.13.
(Theorem 6.5*) If f is bounded and monotonic on ,, then f is of bounded

variation on ,.
Proof: Given any compact interval a,b, then we have Vfa,b exists, and we have

Vfa,b  |fb  fa|, since f is monotonic. In addition, since f is bounded on R, say
|fx|  M for all x, we know that 2M is a upper bounded of Vfa,b for all a,b. Hence,
Vf, exists. That is, f is of bounded variation on R.

(Theorem 6.13*) Let f be defined on ,, then f is of bounded variation on
, if, and only if, f can be expressed as the difference of two increasing and
bounded functions.
Proof: Suppose that f is of bounded variation on ,, then by Theorem 6.12*, we

know that
f  V  V  f,

where V and V  f are increasing on ,. In addition, since f is of bounded variation
on R, we know that V and f is bounded on R which implies that V  f is bounded on R. So,
we have proved that if f is of bounded variation on , then f can be expressed as the
difference of two increasing and bounded functions.
Suppose that f can be expressed as the difference of two increasing and bounded

functions, say f  f1  f2, Then by Theorem 6.9*, and Theorem 6.5*, we know that f is of
bounded variaton on R.
Remark: The representation of a function of bounded variation as a difference of two

increasing and bounded functions is by no mean unique. It is clear that Theorem 6.13*
also holds if ”increasing” is replaced by ”strictly increasing.” For example,
f  f1  g  f2  g, where g is any strictly increasing and bounded function on R. One
of such g is arctanx.

6.7 Assume that f is of bounded variation on a,b and let
P  x0,x1, . . . ,xn  þa,b.

As usual, write fk  fxk  fxk1, k  1,2, . . . ,n. Define
AP  k : fk  0, BP  k : fk  0.

The numbers

pfa,b  sup 
kAP

fk : P  þa,b

and

nfa,b  sup 
kBP

|fk | : P  þa,b

are called respectively, the positive and negative variations of f on a,b. For each x in
a,b. Let Vx  Vfa,x, px  pfa,x, nx  nfa,x, and let
Va  pa  na  0. Show that we have:
(a) Vx  px  nx.



Proof: Given a partition P on a,x, then we have


k1

n

|fk |  
kAP

|fk |  
kBP

|fk |

 
kAP

fk  
kBP

|fk |,

which implies that (taking supermum)
Vx  px  nx.     *

Remark: The existence of px and qx is clear, so we know that (*) holds by
Theorem 1.15.
(b) 0  px  Vx and 0  nx  Vx.
Proof: Consider a,x, and since

Vx  
k1

n

|fk |  
kAP

|fk |,

we know that 0  px  Vx. Similarly for 0  nx  Vx.
(c) p and n are increasing on a,b.
Proof: Let x,y in a,b with x  y, and consider py  px as follows. Since

py  
kAP, a,y

fk  
kAP, a,x

fk,

we know that
py  px.

That is, p is increasing on a,b. Similarly for n.
(d) fx  fa  px  nx. Part (d) gives an alternative proof of Theorem 6.13.
Proof: Consider a,x, and since

fx  fa 
k1

n

fk  
kAP

fk  
kBP

fk

which implies that
fx  fa  

kBP
|fk |  

kAP

fk

which implies that fx  fa  px  nx.
(e) 2px  Vx  fx  fa, 2nx  Vx  fx  fa.
Proof: By (d) and (a), the statement is obvious.
(f) Every point of continuity of f is also a point of continuity of p and of n.
Proof: By (e) and Theorem 6.14, the statement is obvious.

Curves
6.8 Let f and g be complex-valued functions defined as follows:

ft  e2it if t  0,1, gt  e2it if t  0,2.
(a) Prove that f and g have the same graph but are not equivalent according to defintion



in Section 6.12.
Proof: Since ft : t  0,1  gt : t  0,2  the circle of unit disk, we know

that f and g have the same graph.
If f and g are equivalent, then there is an 1-1 and onto function  : 0,2  0,1 such

that
ft  gt.

That is,
e2it  cos2t  i sin2t  e2it  cos2t  i sin2t.

In paticular, 1 : c  0,1. However,
fc  cos2c  i sin2c  g1  1

which implies that c  Z, a contradiction.
(b) Prove that the length of g is twice that of f.
Proof: Since

the length of g  
0

2
|gt|dt  4

and

the length of f  
0

1
|ft|dt  2,

we know that the length of g is twice that of f.

6.9 Let f be rectifiable path of length L defined on a,b, and assume that f is not
constant on any subinterval of a,b. Let s denote the arc length function given by
sx  fa,x if a  x  b, sa  0.

(a) Prove that s1 exists and is continuous on 0,L.
Proof: By Theorem 6.19, we know that sx is continuous and strictly increasing on

0,L. So, the inverse function s1 exists since s is an 1-1 and onto function, and by
Theorem 4.29, we know that s1 is continuous on 0,L.
(b) Define gt  fs1t if t  0,L and show that g is equivalent to f. Since

ft  gst, the function g is said to provide a representation of the graph of f with arc
length as parameter.
Proof: t is clear by Theorem 6.20.
6.10 Let f and g be two real-valued continuous functions of bounded variation defined

on a,b, with 0  fx  gx for each x in a,b, fa  ga, fb  gb. Let h be the
complex-valued function defined on the interval a, 2b  a as follows:

ht  t  ift, if a  t  b
 2b  t  ig2b  t, if b  t  2b  a.

(a) Show that h describes a rectifiable curve .
Proof: It is clear that h is continuous on a, 2b  a. Note that t, f and g are of bounded

variation on a,b, so ha, 2b  a exists. That is, h is rectifiable on a, 2b  a.
(b) Explain, by means of a sketch, the geometric relationship between f, g, and h.
Solution: The reader can give it a draw and see the graph lying on x  y plane is a



closed region.
(c) Show that the set of points

S  x,y : a  x  b, fx  y  gx
in a region in R2 whose boundary is the curve .
Proof: It can be answered by (b), so we omit it.
(d) Let H be the complex-valued function defined on a, 2b  a as follows:

Ht  t  12 igt  ft, if a  t  b

 2b  t  12 ig2b  t  f2b  t, if b  t  2b  a.

Show that H describes a rectifiable curve 0 which is the boundary of the region
S0  x,y : a  x  b, fx  gx  2y  gx  fx.

Proof: Let Ft  1
2 gt  ft and Gt 

1
2 gt  ft defined on a,b. It is

clear that Ft and Gt are of bounded variation and continuous on a,b with
0  Fx  Gx for each x  a,b, Fb  Gb  0, and Fb  Gb  0. In
addition, we have

Ht  t  iFt, if a  t  b
 2b  t  iG2b  t, if b  t  2b  a.

So, by preceding (a)-(c), we have prove it.
(e) Show that, S0 has the x axis as a line of symmetry. (The region S0 is called the

symmetrization of S with respect to x axis.)
Proof: It is clear since x,y  S0  x,y  S0 by the fact

fx  gx  2y  gx  fx.

(f) Show that the length of 0 does not exceed the length of .
Proof: By (e), the symmetrization of S with respect to x axis tells that

Ha,b  Hb, 2b  a. So, it suffices to show that ha, 2b  a  2Ha,b.
Choosing a partition P1  x0  a, . . . ,xn  b on a,b such that

2Ha,b    2HP1

 2
i1

n

xi  xi12  1
2 f  gxi 

1
2 f  gxi1

2 1/2


i1

n

4xi  xi12  f  gxi  f  gxi12
1/2

    *

and note that b  a  2b  a  b, we use this P1 to produce a partition
P2  P1  xn  b, xn1  b  xn  xn1, . . . ,x2n  2b  a on a, 2b  a. Then we have



hP2 
i1

2n

hxi  hxi1


i1

n

hxi  hxi1 
in1

2n

hxi  hxi1


i1

n

xi  xi12  fxi  fxi12
1/2

in1

2n

xi  xi12  gxi  gxi12
1/2


i1

n

xi  xi12  fxi  fxi12
1/2
 xi  xi12  gxi  gxi12

1/2
    **

From (*) and (**), we know that
2Ha,b    2HP1  hP2     ***

which implies that
Ha, 2b  a  2Ha,b  ha, 2b  a.

So, we know that the length of 0 does not exceed the length of .
Remark: Define xi  xi1  ai, fxi  fxi1  bi, and gxi  gxi1  ci, then we

have

4ai2  bi  ci
2 1/2

 ai2  bi2
1/2  ai2  ci2

1/2.
Hence we have the result (***).
Proof: It suffices to square both side. We leave it to the reader.
Absolutely continuous functions

A real-valued function f defined on a,b is said to be absolutely continuous on a,b
if for every   0, there is a   0 such that


k1

n

|fbk  fak|  

for every n disjoint open subintervals ak,bk of a,b, n  1,2, . . . , the sum of whose
lengthsk1

n bk  ak is less than .

Absolutely continuous functions occur in the Lebesgue theory of integration and
differentiation. The following exercises give some of their elementary properties.

6.11 Prove that every absolutely continuous function on a,b is continuous and of
bounded variation on a,b.
Proof: Let f be absolutely continuous on a,b. Then   0, there is a   0 such that


k1

n

|fbk  fak|  

for every n disjoint open subintervals ak,bk of a,b, n  1,2, . . . , the sum of whose
lengthsk1

n bk  ak is less than . So, as |x  y|  , where x,y  a,b, we have
|fx  fy|  .

That is, f is uniformly continuous on a,b. So, f is continuous on a,b.
In addition, given any   1, there exists a   0 such that ask1

n bk  ak  ,
where ak,bks are disjoint open intervals in a,b, we have




k1

n

|fbk  fak|  1.

For this , and let K be the smallest positive integer such that K/2  b  a. So, we
partition a,b into K closed subintervals, i.e.,
P  y0  a, y1  a  /2, . . . . ,yK1  a  K  1/2, yK  b. So, it is clear that f is
of bounded variation yi,yi1, where i  0,1, . . . ,K. It implies that f is of bounded
variation on a,b.
Note: There exists functions which are continuous and of bounded variation but

not absolutely continuous.
Remark: 1. The standard example is called Cantor-Lebesgue function. The reader

can see this in the book,Measure and Integral, An Introduction to Real Analysis by
Richard L. Wheeden and Antoni Zygmund, pp 35 and pp 115.
2. If we wrtie ”absolutely continuous” by ABC, ”continuous” by C, and ”bounded

variation” by B, then it is clear that by preceding result, ABC implies B and C, and B and
C do NOT imply ABC.

6.12 Prove that f is absolutely continuous if it satisfies a uniform Lipschitz condition
of order 1 on a,b. (See Exercise 6.2)
Proof: Let f satisfy a uniform Lipschitz condition of order 1 on a,b, i.e.,

|fx  fy|  M|x  y| where x,y  a,b. Then given   0, there is a   /M such that
ask1

n bk  ak  , where ak,bks are disjoint open subintervals on a,b, k  1, . . ,n,
we have


k1

n

|fbk  fak|  
k1

n

M|bk  ak |


k1

n

Mbk  ak

 M
 .

Hence, f is absolutely continuous on a,b.

6.13 If f and g are absolutely continunous on a,b, prove that each of the following
is also: |f|, cf (c constant), f  g, f  g; also f/g if g is bounded away from zero.
Proof: (1) (|f| is absolutely continuous on a,b): Given   0, we want to find a

  0, such that ask1
n bk  ak  , where ak,bks are disjoint open intervals on

a,b, we have


k1

n

||fbk|  |fak||  .     1*

Since f is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  

which implies that (1*) holds by the following




k1

n

||fbk|  |fak||  
k1

n

|fbk  fak|  .

So, we know that |f| is absolutely continuous on a,b.
(2) (cf is absolutely continuous on a,b): If c  0, it is clear. So, we may assume that

c  0. Given   0, we want to find a   0, such that ask1
n bk  ak  , where

ak,bks are disjoint open intervals on a,b, we have


k1

n

|cfbk  cfak|  .     2*

Since f is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  /|c|

which implies that (2*) holds by the following


k1

n

|cfbk  cfak|  |c|
k1

n

|fbk  fak|  .

So, we know that cf is absolutely continuous on a,b.
(3) (f  g is absolutely continuous on a,b): Given   0, we want to find a   0,

such that ask1
n bk  ak  , where ak,bks are disjoint open intervals on a,b, we

have


k1

n

|f  gbk  f  gak|  .     3*

Since f and g are absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  /2 and 
k1

n

|gbk  gak|  /2

which implies that (3*) holds by the following


k1

n

|f  gbk  f  gak|


k1

n

|fbk  fak  gbk  gak|

 
k1

n

|fbk  fak| 
k1

n

|gbk  gak|

 .
So, we know that f  g is absolutely continuous on a,b.
(4) (f  g is absolutely continuous on a,b. ): Let Mf  supxa,b|fx| and

Mg  supxa,b|gx|. Given   0, we want to find a   0, such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have




k1

n

|f  gbk  f  gak|  .     4*

Since f and g are absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  
2Mg  1

and 
k1

n

|gbk  gak|  
2Mf  1

which implies that (4*) holds by the following


k1

n

|f  gbk  f  gak|


k1

n

|fbkgbk  gak  gakfbk  fak|

 Mf
k1

n

|gbk  gak|  Mg
k1

n

|fbk  fak|


Mf

2Mf  1


Mg

2Mg  1
 .

Remark: The part shows that fn is absolutely continuous on a,b, where n  N, if f is
absolutely continuous on a,b.
(5) (f/g is absolutely continuous on a,b): By (4) it suffices to show that 1/g is

absolutely continuous on a,b. Since g is bounded away from zero, say 0  m  gx for
all x  a,b. Given   0, we want to find a   0, such that ask1

n bk  ak  ,
where ak,bks are disjoint open intervals on a,b, we have


k1

n

|1/gbk  1/gak|  .     5*

Since g is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|gbk  gak|  m2

which implies that (4*) holds by the following


k1

n

|1/gbk  1/gak|


k1

n gbk  gak
gbkgak

 1
m2 k1

n

|gbk  gak|

 .



Supplement on lim sup and lim inf
Introduction

In order to make us understand the information more on approaches of a given real
sequence ann1

 , we give two definitions, thier names are upper limit and lower limit. It
is fundamental but important tools in analysis. We do NOT give them proofs. The reader
can see the book, Infinite Series by Chao Wen-Min, pp 84-103. (Chinese Version)

Definition of limit sup and limit inf
Definition Given a real sequence ann1

 , we define
bn  supam : m ≥ n

and
cn  infam : m ≥ n.

Example 1  −1nn1
  0,2, 0, 2, . . ., so we have

bn  2 and cn  0 for all n.

Example −1nnn1
  −1,2,−3,4, . . . , so we have

bn   and cn  − for all n.

Example −nn1
  −1,−2,−3, . . . , so we have

bn  −n and cn  − for all n.

Proposition Given a real sequence ann1
 , and thus define bn and cn as the same as

before.
1 bn ≠ −, and cn ≠  ∀n ∈ N.
2 If there is a positive integer p such that bp  , then bn   ∀n ∈ N.

If there is a positive integer q such that cq  −, then cn  − ∀n ∈ N.
3 bn is decreasing and cn is increasing.

By property 3, we can give definitions on the upper limit and the lower limit of a given
sequence as follows.
Definition Given a real sequence an and let bn and cn as the same as before.

(1) If every bn ∈ R, then
infbn : n ∈ N

is called the upper limit of an, denoted by
limn→ supan.

That is,
limn→ supan  inf

n
bn.

If every bn  , then we define
limn→ supan  .

(2) If every cn ∈ R, then
supcn : n ∈ N

is called the lower limit of an, denoted by



limn→ infan.

That is,
limn→ infan  sup

n
cn.

If every cn  −, then we define
limn→ infan  −.

Remark The concept of lower limit and upper limit first appear in the book (Analyse
Alge’brique) written by Cauchy in 1821. But until 1882, Paul du Bois-Reymond
gave explanations on them, it becomes well-known.

Example 1  −1nn1
  0,2, 0, 2, . . . , so we have

bn  2 and cn  0 for all n
which implies that

lim supan  2 and lim infan  0.

Example −1nnn1
  −1,2,−3,4, . . . , so we have

bn   and cn  − for all n
which implies that

lim supan   and lim infan  −.

Example −nn1
  −1,−2,−3, . . . , so we have

bn  −n and cn  − for all n
which implies that

lim supan  − and lim infan  −.

Relations with convergence and divergence for upper (lower) limit
Theorem Let an be a real sequence, then an converges if, and only if, the upper

limit and the lower limit are real with
limn→ supan  limn→ infan  limn→ an.

Theorem Let an be a real sequence, then we have
(1) limn→ supan    an has no upper bound.
(2) limn→ supan  −  for any M  0, there is a positive integer n0 such

that as n ≥ n0, we have
an ≤ −M.

(3) limn→ supan  a if, and only if, (a) given any   0, there are infinite
many numbers n such that

a −   an

and (b) given any   0, there is a positive integer n0 such that as n ≥ n0, we have
an  a  .

Similarly, we also have
Theorem Let an be a real sequence, then we have



(1) limn→ infan  −  an has no lower bound.
(2) limn→ infan    for any M  0, there is a positive integer n0 such

that as n ≥ n0, we have
an ≥ M.

(3) limn→ infan  a if, and only if, (a) given any   0, there are infinite
many numbers n such that

a    an

and (b) given any   0, there is a positive integer n0 such that as n ≥ n0, we have
an  a − .

From Theorem 2 an Theorem 3, the sequence is divergent, we give the following
definitios.
Definition Let an be a real sequence, then we have

(1) If limn→ supan  −, then we call the sequence an diverges to −,
denoted by

limn→ an  −.

(2) If limn→ infan  , then we call the sequence an diverges to ,
denoted by

limn→ an  .

Theorem Let an be a real sequence. If a is a limit point of an, then we have
limn→ infan ≤ a ≤ limn→ supan.

Some useful results
Theorem Let an be a real sequence, then

(1) limn→ infan ≤ limn→ supan.
(2) limn→ inf−an  − limn→ supan and limn→ sup−an  − limn→ infan
(3) If every an  0, and 0  limn→ infan ≤ limn→ supan  , then we

have
limn→ sup 1

an
 1

limn→ infan
and limn→ inf 1

an
 1

limn→ supan
.

Theorem Let an and bnbe two real sequences.
(1) If there is a positive integer n0 such that an ≤ bn, then we have

limn→ infan ≤ limn→ infbn and limn→ supan ≤ limn→ supbn.

(2) Suppose that −  limn→ infan, limn→ infbn, limn→ supan,
limn→ supbn  , then

limn→ infan  limn→ infbn

≤ limn→ infan  bn

≤ limn→ infan  limn→ supbn (or limn→ supan  limn→ infbn )

≤ limn→ supan  bn

≤ limn→ supan  limn→ supbn.



In particular, if an converges, we have
limn→ supan  bn  limn→ an  limn→ supbn

and
limn→ infan  bn  limn→ an  limn→ infbn.

(3) Suppose that −  limn→ infan, limn→ infbn, limn→ supan,
limn→ supbn  , and an  0, bn  0 ∀n, then

limn→ infan limn→ infbn

≤ limn→ infanbn

≤ limn→ infan limn→ supbn (or limn→ infbn limn→ supan )

≤ limn→ supanbn

≤ limn→ supan limn→ supbn .

In particular, if an converges, we have
limn→ supanbn  limn→ an limn→ supbn

and
limn→ infan  bn  limn→ an limn→ infbn.

Theorem Let an be a positive real sequence, then
limn→ inf an1

an
≤ limn→ infan1/n ≤ limn→ supan1/n ≤ limn→ sup an1

an
.

Remark We can use the inequalities to show

limn→
n!1/n

n  1/e.

Theorem Let an be a real sequence, then
limn→ infan ≤ limn→ inf a1 . . .an

n ≤ limn→ sup a1 . . .an
n ≤ limn→ supan.

Exercise Let f : a,d → R be a continuous function, and an is a real sequence. If f is
increasing and for every n, limn→ infan, limn→ supan ∈ a,d, then

limn→ sup fan  f limn→ supan and limn→ inf fan  f limn→ infan .

Remark: (1) The condition that f is increasing cannot be removed. For
example,

fx  |x|,
and

ak 
1/k if k is even

−1 − 1/k if k is odd.

(2) The proof is easy if we list the definition of limit sup and limit inf. So, we
omit it.

Exercise Let an be a real sequence satisfying anp ≤ an  ap for all n, p. Show that
 an

n  converges.
Hint: Consider its limit inf.



Remark: The exercise is useful in the theory of Topological Entorpy.

Infinite Series And Infinite Products
Sequences

8.1 (a) Given a real-valed sequence an bounded above, let un  supak : k ≥ n.
Then un ↘ and hence U  limn→ un is either finite or −. Prove that

U  limn→ supan  limn→supak : k ≥ n.

Proof: It is clear that un ↘ and hence U  limn→ un is either finite or −.
If U  −, then given any M  0, there exists a positive integer N such that as n ≥ N,

we have
un ≤ −M

which implies that, as n ≥ N, an ≤ −M. So, limn→ an  −. That is, an is not bounded
below. In addition, if an has a finite limit supreior, say a. Then given   0, and given
m  0, there exists an integer n  m such that

an  a − 
which contradicts to limn→ an  −. From above results, we obtain

U  limn→ supan

in the case of U  −.
If U is finite, then given   0, there exists a positive integer N such that as n ≥ N, we

have
U ≤ un  U  .

So, as n ≥ N, un  U   which implies that, as n ≥ N, an  U  . In addition, given
′  0, and m  0, there exists an integer n  m,

U − ′  an

by U ≤ un  supak : k ≥ n if n ≥ N. From above results, we obtain
U  limn→ supan

in the case of U is finite.
(b)Similarly, if an is bounded below, prove that

V  limn→ infan  limn→infak : k ≥ n.

Proof: Since the proof is similar to (a), we omit it.
If U and V are finite, show that:
(c) There exists a subsequence of an which converges to U and a subsequence which

converges to V.
Proof: Since U  lim supn→ an by (a), then
(i) Given   0, there exists a positive integer N such that as n ≥ N, we have

an  U  .
(ii) Given   0, and m  0, there exists an integer Pm  m,

U −   aPm.
Hence, aPm is a convergent subsequence of an with limit U.

Similarly for the case of V.



(d) If U  V, every subsequnce of an converges to U.
Proof: By (a) and (b), given   0, then there exists a positive integer N1 such that as

n ≥ N1, we have
an  U  

and there exists a positive integer N2 such that as n ≥ N2, we have
U −   an.

Hence, as n ≥ maxN1,N2, we have
U −   an  U  .

That is, an is a convergent sequence with limit U. So, every subsequnce of an
converges to U.

8.2 Given two real-valed sequence an and bn bounded below. Prove hat
(a) lim supn→an  bn ≤ lim supn→ an  lim supn→ bn.

Proof: Note that an and bn bounded below, we have lim supn→ an   or is
finite. And lim supn→ bn   or is finite. It is clear if one of these limit superior is ,
so we may assume that both are finite. Let a  lim supn→ an and b  lim supn→ bn. Then
given   0, there exists a positive integer N such that as n ≥ N, we have

an  bn  a  b  /2.     *
In addition, let c  lim supn→an  bn, where c   by (*). So, for the same   0, and
given m  N there exists a positive integer K such that as K ≥ N, we have

c − /2  aK  bK.     **
By (*) and (**), we obtain that

c − /2  aK  bK  a  b  /2
which implies that

c ≤ a  b
since  is arbitrary. So,

lim sup
n→

an  bn ≤ lim sup
n→

an  lim sup
n→

bn.

Remark: (1) The equality may NOT hold. For example,
an  −1n and bn  −1n1.

(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on process of proof.

(b) lim supn→anbn ≤ lim supn→ anlim supn→ bn if an  0, bn  0 for all n, and
if both lim supn→ an and lim supn→ bn are finite or both are infinite.

Proof: Let lim supn→ an  a and lim supn→ bn  b. It is clear that we may assume
that a and b are finite. Given   0, there exists a positive integer N such that as n ≥ N,
we have

anbn  a  b    ab  a  b  .     *
In addition, let c  lim supn→anbn, where c   by (*). So, for the same   0, and
given m  N there exists a positive integer K such that as K ≥ N, we have

c −   aK  bK.     **
By (*) and (**), we obtain that

c −   aK  bK  a  b  a  b  



which implies that
c ≤ a  b

since  is arbitrary. So,

lim sup
n→

anbn ≤ lim sup
n→

an lim sup
n→

bn .

Remark: (1) The equality may NOT hold. For example,
an  1/n if n is odd and an  1 if n is even.

and
bn  1 if n is odd and bn  1/n if n is even.

(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on the process of the proof.

(3) The reader should be noted that if letting An  logan and Bn  logbn, then by (a)
and logx is an increasing function on 0,, we have proved (b).

8.3 Prove that Theorem 8.3 and 8.4.

(Theorem 8.3) Let an be a sequence of real numbers. Then we have:
(a) lim infn→ an ≤ lim supn→ an.

Proof: If lim supn→ an  , then it is clear. We may assume that
lim supn→ an  . Hence, an is bounded above. We consider two cases: (i)
lim supn→ an  a, where a is finite and (ii) lim supn→ an  −.

For case (i), if lim infn→ an  −, then there is nothing to prove it. We may assume
that lim infn→ an  a′, where a′ is finite. By definition of limit superior and limit inferior,
given   0, there exists a positive integer N such that as n ≥ N, we have

a′ − /2  an  a  /2
which implies that a′ ≤ a since  is arbitrary.

For case (ii), since lim supn→ an  −, we have an is not bounded below. If
lim infn→ an  −, then there is nothing to prove it. We may assume that
lim infn→ an  a′, where a′ is finite. By definition of limit inferior, given   0, there
exists a positive integer N such that as n ≥ N, we have

a′ − /2  an

which contradicts that an is not bounded below.
So, from above results, we have proved it.
(b) The sequence converges if and only if, lim supn→ an and lim infn→ an are both

finite and equal, in which case limn→ an  lim infn→ an  lim supn→ an.

Proof: ()Given an a convergent sequence with limit a. So, given   0, there
exists a positive integer N such that as n ≥ N, we have

a −   an  a  .
By definition of limit superior and limit inferior, a  lim infn→ an  lim supn→ an.

()By definition of limit superior, given   0, there exists a positive integer N1 such
that as n ≥ N1, we have

an  a  
and by definition of limit superior, given   0, there exists a positive integer N2 such that
as n ≥ N2, we have



a −   an.
So, as n ≥ maxN1,N2, we have

a −   an  a  .
That is, limn→ an  a.

(c) The sequence diverges to  if and only if, lim infn→ an  lim supn→ an  .

Proof: ()Given a sequence an with limn→ an  . So, given M  0, there is a
positive integer N such that as n ≥ N, we have

M ≤ an.     *
It implies that an is not bounded above. So, lim supn→ an  . In order to show that
lim infn→ an  . We first note that an is bounded below. Hence, lim infn→ an ≠ −.
So, it suffices to consider that lim infn→ an is not finite. (So, we have
lim infn→ an  . ). Assume that lim infn→ an  a, where a is finite. Then given   1,
and an integer m, there exists a positive Km  m such that

aKm  a  1
which contradicts to (*) if we choose M  a  1. So, lim infn→ an is not finite.

(d) The sequence diverges to − if and only if, lim infn→ an  lim supn→ an  −.

Proof: Note that, lim supn→−an  − lim infn→ an. So, by (c), we have proved it.

(Theorem 8.4)Assume that an ≤ bn for each n  1,2, . . . . Then we have:
limn→ infan ≤ limn→ infbn and limn→ supan ≤ limn→ supbn.

Proof: If lim infn→ bn  , there is nothing to prove it. So, we may assume that
lim infn→ bn  . That is, lim infn→ bn  − or b, where b is finite.

For the case, lim infn→ bn  −, it means that the sequence an is not bounded
below. So, bn is also not bounded below. Hence, we also have lim infn→ an  −.

For the case, lim infn→ bn  b, where b is finite. We consider three cases as follows.
(i) if lim infn→ an  −, then there is nothing to prove it.
(ii) if lim infn→ an  a, where a is finite. Given   0, then there exists a positive

integer N such that as n ≥ N
a − /2  an ≤ bn  b  /2

which implies that a ≤ b since  is arbitrary.
(iii) if lim infn→ an  , then by Theorem 8.3 (a) and (c), we know that

limn→ an   which implies that limn→ bn  . Also, by Theorem 8.3 (c), we have
lim infn→ bn   which is absurb.

So, by above results, we have proved that lim infn→ an ≤ lim infn→ bn.
Similarly, we have lim supn→ an ≤ lim supn→ bn.

8.4 If each an  0, prove that
limn→ inf an1

an
≤ limn→ infan1/n ≤ limn→ supan1/n ≤ limn→ sup an1

an
.

Proof: By Theorem 8.3 (a), it suffices to show that
limn→ inf an1

an
≤ limn→ infan1/n and limn→ supan1/n ≤ limn→ sup an1

an
.

We first prove
limn→ supan1/n ≤ limn→ sup an1

an
.



If lim supn→
an1
an  , then it is clear. In addition, since an1

an is positive,
lim supn→

an1
an ≠ −. So, we may assume that lim supn→

an1
an  a, where a is finite.

Given   0, then there exists a positive integer N such that as n ≥ N, we have
an1
an

 a  

which implies that
aNk  aNa  k, where k  1,2, . . . .

So,
aNk

1
Nk  aN

1
Nk a  

k
Nk

which implies that
lim
k→

supaNk
1

Nk ≤ lim
k→

supaN
1

Nk a  
k

Nk

 a  .
So,

lim
k→

supaNk
1

Nk ≤ a

since  is arbitrary. Note that the finitely many terms do NOT change the value of limit
superiror of a given sequence. So, we finally have

limn→ supan1/n ≤ a  limn→ sup an1
an

.

Similarly for
limn→ inf an1

an
≤ limn→ infan1/n.

Remark: These ineqaulities is much important; we suggest that the reader keep it mind.
At the same time, these inequalities tells us that the root test is more powerful than the
ratio test. We give an example to say this point. Given a series

1
2  1

3  1
22  1

32 . . . 1
2n  1

3n . . .

where

a2n−1  1
2

n
, and a2n  1

3
n
, n  1,2, . . .

with

limn→ supan1/n  1
2  1

and
limn→ inf an1

an
 0, limn→ sup an1

an
 .

8.5 Let an  nn/n!. Show that limn→ an1/an  e and use Exercise 8.4 to deduce that
limn→

n
n!1/n  e.

Proof: Since
an1
an

 n  1n1n!
n  1!nn  1  1

n
n
→ e,

by Exercise 8.4, we have
limn→an1/n  limn→

n
n!1/n  e.



Remark: There are many methods to show this. We do NOT give the detailed proof.
But there are hints.

(1) Taking log on  n!
nn 

1/n, and thus consider
1
n log 1

n . . . log n
n → 

0

1
logxdx  −1.

(2) Stirling’s Formula:
n!  nne−n 2n e 

12n , where  ∈ 0,1.

Note: In general, we have

limx→
Γx  1

xxe−x 2x
 1,

where Γx is the Gamma Function. The reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 192-195.

(3) Note that 1  1
x 

x ↗ e and 1  1
x 

x1 ↘ e on 0,. So,

1  1
n

n
 e  1  1

n
n1

which implies that
enne−n  n!  enn1e−n.

(4) Using O-Stolz’s Theorem: Let limn→ yn   and yn ↗. If
limn→

xn1 − xn
yn1 − yn

 a, where a is finite or  ,

then
limn→

xn
yn

 a.

Let xn  log 1
n . . . log n

n and yn  n.
Note: For the proof of O-Stolz’s Theorem, the reader can see the book, An

Introduction to Mathematical Analysis by Loo-Keng Hua, pp 195. (Chinese Version)
(5) Note that, if an is a positive sequence with limn→ an  a, then

a1   an1/n → a as n → .
Taking an  1  1

n 
n, then

a1   an1/n  nn

n!
1/n

1  1
n → e.

Note: For the proof, it is easy from the Exercise 8.6. We give it a proof as follows. Say
limn→ an  a. If a  0, then by A.P.≥ G.P. , we have

a1   an1/n ≤ a1 . . .an
n → 0 by Exercise 8.6.

So, we consider a ≠ 0 as follows. Note that logan → loga. So, by Exercise 8.6,
loga1 . . . logan

n → loga
which implies that a1   an1/n → a.

8.6 Let an be real-valued sequence and let n  a1 . . .an/n. Show that
limn→ infan ≤ limn→ infn ≤ limn→ supn ≤ limn→ supan.

Proof: By Theorem 8.3 (a), it suffices to show that
limn→ infan ≤ limn→ infn and limn→ supn ≤ limn→ supan.



We first prove
limn→ supn ≤ limn→ supan.

If lim supn→ an  , there is nothing to prove it. We may assume that
lim supn→ an  − or a, where a is finite.

For the case, lim supn→ an  −, then by Theorem 8.3 (d), we have
limn→ an  −.

So, given M  0, there exists a positive integer N such that as n ≥ N, we have
an ≤ −M.     *

Let n  N, we have

n 
a1 . . .aN . .an

n
 a1 . . .aN

n  aN1 . . .an
n

≤ a1 . . .aN
n  n − N

n −M

which implies that
limn→ supn ≤ −M.

Since M is arbitrary, we finally have
limn→ supn  −.

For the case, lim supn→ an  a, where a is finite. Given   0, there exists a positive
integer N such that as n ≥ N, we have

an  a  .
Let n  N, we have

n 
a1 . . .aN . .an

n
 a1 . . .aN

n  aN1 . . .an
n

≤ a1 . . .aN
n  n − N

n a  

which implies that
limn→ supn ≤ a  

which implies that
limn→ supn ≤ a

since  is arbitrary.
Hence, from above results, we have proved that lim supn→n ≤ lim supn→ an.
Similarly for lim infn→ an ≤ lim infn→n.

Remark: We suggest that the reader keep it in mind since it is the fundamental and
useful in the theory of Fourier Series.

8.7 Find lim supn→ an and lim infn→ an if an is given by

(a) cosn

Proof: Note that, a  b : a,b ∈ Z is dense in R. By cosn  cosn  2k, we
know that

limn→ sup cosn  1 and limn→ inf cosn  −1.



Remark: The reader may give it a try to show that
limn→ sup sinn  1 and limn→ inf sinn  −1.

(b) 1  1
n cosn

Proof: Note that

1  1
n cosn 

1 if n  2k
−1 if n  2k − 1

.

So, it is clear that
limn→ sup 1  1

n cosn  1 and limn→ inf 1  1
n cosn  −1.

(c) n sin n
3

Proof: Note that as n  1  6k, n sin n
3  1  6k sin 

3 , and as n  4  6k,
n  −4  6k sin 

3 . So, it is clear that
limn→ supn sin n

3   and limn→ infn sin n
3  −.

(d) sin n
2 cos n

2

Proof: Note that sin n
2 cos n

2  1
2 sinn  0, we have

limn→ sup sin n
2 cos n

2  limn→ inf sin n
2 cos n

2  0.

(e) −1nn/1  nn

Proof: Note that
limn→−1

nn/1  nn  0,

we know that
limn→ sup−1nn/1  nn  limn→ inf−1nn/1  nn  0.

(f) n
3 − 

n
3 

Proof: Note that

n
3 −

n
3 

1
3 if n  3k  1
2
3 if n  3k  2

0 if n  3k

, where k  0,1, 2, . . . .

So, it is clear that
limn→ sup n

3 −
n
3  2

3 and limn→ inf n
3 −

n
3  0.

Note. In (f), x denoted the largest integer ≤ x.

8.8 Let an  2 n − ∑k1
n 1/ k . Prove that the sequence an converges to a limit p

in the interval 1  p  2.

Proof: Consider∑k1
n 1/ k : Sn and 

1

n
x−1/2dx : Tn, then

limn→ dn exists, where dn  Sn − Tn

by Integral Test. We denote the limit by d, then



0 ≤ d  1     *
by Theorem 8.23 (i). Note that dn − fn is a positive increasing sequence, so we have

d  0.     **
Since

Tn  2 n − 2
which implies that

limn→ 2 n −∑
k1

n

1/ k  limn→ an  2 − d  p.

By (*) and (**), we have proved that 1  p  1.
Remark: (1) The use of Integral Test is very useful since we can know the behavior

of a given series by integral. However, in many cases, the integrand may be so complicated
that it is not easy to calculate. For example: Prove that the convergence of

∑
n2


1

nlognp , where p  1.

Of course, it can be checked by Integral Test. But there is the Theorem called Cauchy
Condensation Theorem much powerful than Integral Test in this sense. In addition, the
reader can think it twice that in fact, Cauchy condensation Theorem is equivalent to
Integral Test.

(Cauchy Condensation Theorem)Let an be a positive decreasing sequence. Then

∑
n1



an converges if, and only if, ∑
k0



2ka2k converges.

Note: (1) The proof is not hard; the reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 61-63.

(2) There is an extension of Cauchy Condensation Theorem (Oskar Schlomilch):
Suppose that ak be a positive and decreasing sequence and mk⊆ N is a sequence. If
there exists a c  0 such that

0  mk2 − mk1 ≤ cmk1 − mk for all k,
then

∑
k1



ak converges if, and only if, ∑
k0



mk1 − mkamk .

Note: The proof is similar with Cauchy Condensation Theorem, so we omit it.
(2) There is a similar Theorem, we write it as a reference. If t ≥ a, ft is a

non-negative increasing function, then as x ≥ a, we have

∑
a≤n≤x

fn − 
a

x
ftdt ≤ fx.

Proof: The proof is easy by drawing a graph. So, we omit it.
P.S.: The theorem is useful when we deal with some sums. For example,

ft  log t.
Then



∑
1≤n≤x

logn − x logx  x − 1 ≤ logx.

In particular, as x ∈ N, we thus have
n logn − n  1 − logn ≤ logn! ≤ n logn − n  1  logn

which implies that
nn−1e−n1 ≤ n! ≤ nn1e−n1.

In each of Exercise 8.9. through 8.14, show that the real-valed sequence an is
convergent. The given conditions are assumed to hold for all n ≥ 1. In Exercise 8.10
through 8.14, show that an has the limit L indicated.

8.9 |an |  2, |an2 − an1 | ≤ 1
8 |an1

2 − an
2 |.

Proof: Since
|an2 − an1 | ≤ 1

8 |an1
2 − an

2 |

 1
8 |an1 − an ||an1  an |

≤ 1
2 |an1 − an | since |an |  2

we know that

|an1 − an | ≤ 1
2

n−1
|a2 − a1 | ≤ 1

2
n−3

.

So,

|ank − an | ≤ ∑
j1

k

|anj − anj−1 |

≤ ∑
j1

k
1
2

nj−4

≤ 1
2

n−2
→  as n → .

Hence, an is a Cauchy sequence. So, an is a convergent sequence.
Remark: (1) If |an1 − an | ≤ bn for all n ∈ N, and∑ bn converges, then∑ an

converges.
Proof: Since the proof is similar with the Exercise, we omit it.
(2) In (1), the condition∑ bn converges CANNOT omit. For example,
(i) Let an  sin ∑k1

n 1
k Or

(ii) an is defined as follows:
a1  1, a2  1/2, a3  0, a4  1/4, a5  1/2, a6  3/4, a7  1, and so on.

8.10 a1 ≥ 0, a2 ≥ 0, an2  anan1
1/2, L  a1a2

21/3.

Proof: If one of a1 or a2 is 0, then an  0 for all n ≥ 2. So, we may assume that
a1 ≠ 0 and a2 ≠ 0. So, we have an ≠ 0 for all n. Let bn  an1

an , then
bn1  1/ bn for all n

which implies that



bn1  b1
−1
2

n

→ 1 as n → .
Consider

j2
n1bj  j1

n bj
−1/2

which implies that

a1
1/2a2

−2/3an1  1
bn1

2/3

which implies that
limn→ an1  a1a2

21/3.

Remark: There is another proof. We write it as a reference.
Proof: If one of a1 or a2 is 0, then an  0 for all n ≥ 2. So, we may assume that

a1 ≠ 0 and a2 ≠ 0. So, we have an ≠ 0 for all n. Let a2 ≥ a1. Since an2  anan1
1/2,

then inductively, we have
a1 ≤ a3 ≤. . .≤ a2n−1 ≤. . .≤ a2n ≤. . .≤ a4 ≤ a2.

So, both of a2n and a2n−1 converge. Say
limn→ a2n  x and limn→ a2n−1  y.

Note that a1 ≠ 0 and a2 ≠ 0, so x ≠ 0, and y ≠ 0. In addition, x  y by
an2  anan1

1/2. Hence, an converges to x.
By an2  anan1

1/2, and thus
j1

n aj2
2  j1

n ajaj1  a1a2
2an1j1

n−2aj2
2

which implies that
an1an2

2  a1a2
2

which implies that
limn→ an  x  a1a2

21/3.

8.11 a1  2, a2  8, a2n1  1
2 a2n  a2n−1, a2n2 

a2na2n−1
a2n1 , L  4.

Proof: First, we note that
a2n1 

a2n  a2n−1
2 ≥ a2na2n−1 by A.P.≥ G.P.     *

for n ∈ N. So, by a2n2 
a2na2n−1

a2n1 and (*),
a2n2 

a2na2n−1
a2n1

≤ a2na2n−1 ≤ a2n1 for all n ∈ N.

Hence, by Mathematical Induction, it is easy to show that
a4 ≤ a6 ≤. . .≤ a2n2 ≤. . .≤ a2n1 ≤. . .≤ a5 ≤ a3

for all n ∈ N. It implies that both of a2n and a2n−1 converge, say
limn→ a2n  x and limn→ a2n−1  y.

With help of a2n1  1
2 a2n  a2n−1, we know that x  y. In addition, by a2n2 

a2na2n−1
a2n1 ,

a1  2, and a2  8, we know that x  4.
8.12 a1  −3

2 , 3an1  2  an
3, L  1. Modify a1 to make L  −2.

Proof: By Mathematical Induction, it is easy to show that
− 2 ≤ an ≤ 1 for all n.     *



So,
3an1 − an  an

3 − 3an  2 ≥ 0
by (*) and fx  x3 − 3x  2  x − 12x  2 ≥ 0 on −2,1. Hence, an is an
increasing sequence with a upper bound 1. So, an is a convergent sequence with limit L.
So, by 3an1  2  an

3,
L3 − 3L  2  0

which implies that
L  1 or − 2.

So, L  1 sinc an ↗ and a1  −3/2.
In order to make L  −2, it suffices to let a1  −2, then an  −2 for all n.

8.13 a1  3, an1 
31an

3an
, L  3 .

Proof: By Mathematical Induction, it is easy to show that
an ≥ 3 for all n.     *

So,

an1 − an 
3 − an

2

3  an
≤ 0

which implies that an is a decreasing sequence. So, an is a convergent sequence with
limit L by (*). Hence,

L  31  L
3  L

which implies that
L   3 .

So, L  3 since an ≥ 3 for all n.

8.14 an  bn1
bn

, where b1  b2  1, bn2  bn  bn1, L  1 5
2 .

Hint. Show that bn2bn − bn1
2  −1n1 and deduce that |an − an1 |  n−2, if n  4.

Proof: By Mathematical Induction, it is easy to show that
bn2bn − bn1

2  −1n1 for all n
and

bn ≥ n if n  4
Thus, (Note that bn ≠ 0 for all n)

|an1 − an |  bn2
bn1

− bn1
bn

 −1n1

bnbn1
≤ 1

nn  1  1
n2 if n  4.

So, an is a Cauchy sequence. In other words, an is a convergent sequence, say
limn→ bn  L. Then by bn2  bn  bn1, we have

bn2
bn1

 bn
bn1

 1

which implies that (Note that 0 ≠L ≥ 1 since an ≥ 1 for all n)
L  1

L  1

which implies that

L  1  5
2 .



So, L  1 5
2 since L ≥ 1.

Remark: (1) The sequence bn is the famous sequence named Fabonacci sequence.
There are many researches around it. Also, it is related with so called Golden Section,

5 −1
2  0.618. . . .

(2) The reader can see the book, An Introduction To The Theory Of Numbers by G.
H. Hardy and E. M. Wright, Chapter X. Then it is clear by continued fractions.

(3) There is another proof. We write it as a reference.
Proof: (STUDY) Since bn2  bn  bn1, we may think

xn2  xn  xn1,
and thus consider x2  x  1. Say  and  are roots of x2  x  1, with   . Then let

Fn 
n − n

 −  ,

we have
Fn  bn.

So, it is easy to show that L  1 5
2 . We omit the details.

Note: The reader should be noted that there are many methods to find the formula of
Fabonacci sequence like Fn. For example, using the concept of Eigenvalues if we can
find a suitable matrix.

Series
8.15 Test for convergence (p and q denote fixed rela numbers).
(a)∑n1

 n3e−n

Proof: By Root Test, we have

limn→ sup n3

en
1/n

 1/e  1.

So, the series converges.
(b)∑n2

 lognp

Proof: We consider 2 cases: (i) p ≥ 0, and (ii) p  0.
For case (i), the series diverges since lognp does not converge to zero.
For case (ii), the series diverges by Cauchy Condensation Theorem (or Integral

Test.)
(c)∑n1

 pnnp (p  0)

Proof: By Root Test, we have

limn→ sup pn

np

1/n
 p.

So, as p  1, the series diverges, and as p  1, the series converges. For p  1, it is clear
that the series∑ n diverges. Hence,

∑
n1



pnnp converges if p ∈ 0,1

and



∑
n1



pnnp diverges if p ∈ 1,.

(d)∑n2
 1

np−nq (0  q  p)

Proof: Note that 1
np−nq  1

np
1

1−nq−p . We consider 2 cases: (i) p  1 and (ii) p ≤ 1.
For case (i), by Limit Comparison Test with 1

np ,

limn→

1
np−nq

1
np

 1,

the series converges.
For case (ii), by Limit Comparison Test with 1

np ,

limn→

1
np−nq

1
np

 1,

the series diverges.
(e)∑n1

 n−1−1/n

Proof: Since n−1−1/n ≥ n−1 for all n, the series diverges.
(f)∑n1

 1
pn−qn (0  q  p)

Proof: Note that 1
pn−qn  1

pn
1

1− q
p

n . We consider 2 cases: (i) p  1 and (ii) p ≤ 1.

For case (i), by Limit Comparison Test with 1
pn ,

limn→

1
pn−qn

1
pn

 1,

the series converges.
For case (ii), by Limit Comparison Test with 1

pn ,

limn→

1
pn−qn

1
pn

 1,

the series diverges.
(g)∑n1

 1
n log11/n

Proof: Since
limn→

1
n log1  1/n  1,

we know that the series diverges.

(h)∑n2
 1

lognlogn

Proof: Since the identity alogb  bloga, we have
lognlogn  nlog logn

≥ n2 as n ≥ n0.
So, the series converges.

(i)∑n3
 1

n lognlog lognp

Proof: We consider 3 cases: (i) p ≤ 0, (ii) 0  p  1 and (iii) p  1.



For case (i), since
1

n lognlog lognp ≥ 1
n logn for n ≥ 3,

we know that the series diverges by the divergence of∑n3
 1

n logn .
For case (ii), we consider (choose n0 large enough)

∑
jn0


2j

2j log2jlog log2jp  1
log2 ∑

jn0


1

jlog j log2p

≥ ∑
jn0


1

jlog jp ,

then, by Cauchy Condensation Theorem, the series diverges since∑jn0

 1
jlog jp diverges

by using Cauchy Condensation Theorem again.
For case (iii), we consider (choose n0 large enough)

∑
jn0


2j

2j log2jlog log2jp  1
log2 ∑

jn0


1

jlog j log2p

≤ 2∑
jn0


1

jlog j log2p

≤ 4∑
jn0


1

jlog jp ,

then, by Cauchy Condensation Theorem, the series converges since∑jn0

 1
jlog jp

converges by using Cauchy Condensation Theorem again.
Remark: There is another proof by Integral Test. We write it as a reference.
Proof: It is easy to check that fx  1

x logxlog logxp is continous, positive, and
decreasing to zero on a, where a  0 for each fixed p. Consider


a

 dx
x logxlog logxp  

log loga

 dy
yp

which implies that the series converges if p  1 and diverges if p ≤ 1 by Integral Test.

(j)∑n3
 1

log logn

log logn

Proof: Let an  1
log logn

log logn
for n ≥ 3 and bn  1/n, then

an
bn

 n 1
log logn

log logn

 e−y logy−ey → .
So, by Limit Comparison Test, the series diverges.

(k)∑n1
 1  n2 − n

Proof: Note that
1  n2 − n  1

1  n2  n
≥ 1

1  2 n
for all n.

So, the series diverges.



(l)∑n2
 np 1

n−1
− 1

n

Proof: Note that

np 1
n − 1

− 1
n

 1
n 3

2 −p
n

n − 1
1

1  n−1
n

.

So, as p  1/2, the series converges and as p ≥ 1/2, the series diverges by Limit
Comparison Test.

(m)∑n1
 n1/n − 1

n

Proof: With help of Root Test,

limn→ sup n1/n − 1
n 1/n

 0 1,

the series converges.
(n)∑n1

 np n  1 − 2 n  n − 1

Proof: Note that
np n  1 − 2 n  n − 1

 1
n 3

2 −p
n 3

2

n  n  1 n  n − 1 n − 1  n  1
.

So, as p  1/2, the series converges and as p ≥ 1/2, the series diverges by Limit
Comparison Test.

8.16 Let S  n1,n2, . . .  denote the collection of those positive integers that do not
involve the digit 0 is their decimal representation. (For example, 7 ∈ S but 101 ∉ S. )
Show that∑k1

 1/nk converges and has a sum less than 90.

Proof: Define Sj  the j − digit number ⊆ S. Then #Sj  9j and S  j1
 Sj. Note

that

∑
k∈Sj

1/nk  9j

10j−1 .

So,

∑
k1



1/nk ≤ ∑
j1


9j

10j−1  90.

In addition, it is easy to know that∑k1
 1/nk ≠ 90. Hence, we have proved that∑k1

 1/nk

converges and has a sum less than 90.

8.17 Given integers a1,a2, . . . such that 1 ≤ an ≤ n − 1, n  2,3, . . . Show that the
sum of the series∑n1

 an/n! is rational if and only if there exists an integer N such that
an  n − 1 for all n ≥ N. Hint: For sufficency, show that∑n2

 n − 1/n! is a telescoping
series with sum 1.

Proof: ()Assume that there exists an integer N such that an  n − 1 for all n ≥ N.
Then



∑
n1


an
n! ∑

n1

N−1
an
n! ∑

nN


an
n!

∑
n1

N−1
an
n! ∑

nN


n − 1

n!

∑
n1

N−1
an
n! ∑

nN


1

n − 1! −
1
n!

∑
n1

N−1
an
n!  1

N − 1! ∈ Q.

()Assume that∑n1
 an/n! is rational, say q

p , where g.c.d. p,q  1. Then

p!∑
n1


an
n! ∈ Z.

That is, p!∑np1
 an

n! ∈ Z. Note that

p!∑
np1


an
n! ≤ p!∑

np1


n − 1

n!  p!
p!  1 since 1 ≤ an ≤ n − 1.

So, an  n − 1 for all n ≥ p  1. That is, there exists an integer N such that an  n − 1 for
all n ≥ N.

Remark: From this, we have proved that e is irrational. The reader should be noted that
we can use Theorem 8.16 to show that e is irrational by considering e−1. Since it is easy,
we omit the proof.

8.18 Let p and q be fixed integers, p ≥ q ≥ 1, and let

xn  ∑
kqn1

pn
1
k , sn ∑

k1

n
−1k1

k .

(a) Use formula (8) to prove that limn→ xn  logp/q.
Proof: Since

∑
k1

n
1
k  logn  r  O 1

n ,

we know that

xn ∑
k1

pn
1
k −∑

k1

qn
1
k

 logp/q  O 1
n

which implies that limn→ xn  logp/q.
(b) When q  1,p  2, show that s2n  xn and deduce that

∑
n1


−1n1

n  log2.

Proof: We prove it by Mathematical Induction as follows. As n  1, it holds
trivially. Assume that n  m holds, i.e.,



s2m ∑
k1

2m
−1k1

k  ∑
km1

2m
1
k  xm

consider n  m  1 as follows.

xm1  ∑
km11

2m1
1
k

 xm − 1
m  1  1

2m  1  1
2m  2

 s2m  1
2m  1 −

1
2m  2

 s2m1.
So, by Mathematical Induction, we have proved that s2n  xn for all n.

By s2n  xn for all n, we have

limn→ s2n ∑
k1


−1k1

k  log2  limn→ xn.

(c) rearrange the series in (b), writing alternately p positive terms followed by q
negative terms and use (a) to show that this rearrangement has sum

log2  1
2 logp/q.

Proof: We prove it by using Theorem 8.13. So, we can consider the new series
∑k1
 ak as follows:

ak  1
2k − 1p  1 . . . 1

2kp − 1 − 1
2k − 1q . . . 1

2kq
Then

Sn ∑
k1

n

ak

∑
k1

2np
1
k −∑

k1

np
1
2k −∑

k1

nq
1
2k

 log2np    O 1
n − 1

2 lognp − 
2  O 1

n − 1
2 lognq − 

2  O 1
n

 log2np − logn pq  O 1
n

 log2 p
q  O 1

n .

So,
limn→ Sn  log2  1

2 logp/q

by Theorem 8.13.
Remark: There is a reference around rearrangement of series. The reader can see the

book, Infinite Series by Chao Wen-Min, pp 216-220. (Chinese Version)

(d) Find the sum of∑n1
 −1n11/3n − 2 − 1/3n − 1.

Proof: Write



Sn  ∑
k1

n

−1k1 1
3k − 2 −

1
3k − 1

 ∑
k1

n

−1k 1
3k − 1 ∑

k1

n

−1k1 1
3k − 2

 −∑
k1

n

−13k−1 1
3k − 1 −∑

k1

n

−13k−2 1
3k − 2

 − ∑
k1

n

−13k−1 1
3k − 1 ∑

k1

n

−13k−2 1
3k − 2

 − ∑
k1

3n
−1k

k −∑
k1

n
−13k

3k

 − ∑
k1

3n
−1k

k − 1
3 ∑

k1

n
−1k

k

 ∑
k1

3n
−1k1

k − 1
3 ∑

k1

n
−1k1

k

→ 2
3 log2.

So, the series has the sum 2
3 log2.

Remark: There is a refernece around rearrangement of series. The reader can see the
book, An Introduction to Mathematical Analysis by Loo-Keng Hua, pp 323-325.
(Chinese Version)

8.19 Let cn  an  ibn, where an  −1n/ n , bn  1/n2. Show that∑ cn is
conditioinally convergent.

Proof: It is clear that∑ cn converges. Consider

∑|cn | ∑ 1
n2  1

n4 ∑ 1
n 1  1

n2 ≥ ∑ 1
n

Hence,∑|cn | diverges. That is,∑ cn is conditioinally convergent.

Remark: We say∑ cn converges if, and only if, the real part∑ an converges and the
imaginary part∑ bn converges, where cn  an  ibn.

8.20 Use Theorem 8.23 to derive the following formulas:

(a)∑k1
n logk

k  1
2 log2n  A  O logn

n (A is constant)

Proof: Let fx  logx
x define on 3,, then f′x  1−logx

x2  0 on 3,. So, it is
clear that fx is a positive and continuous function on 3,, with

limx→ fx  limx→
logx

x  limx→
1
x  0 by L-Hospital Rule.

So, by Theorem 8.23, we have



∑
k3

n
logk

k  
3

n logx
x dx  C  O logn

n , where C is a constant

 1
2 log2n − 1

2 log23  C  O logn
n , where C is a constant

which implies that

∑
k1

n
logk

k  1
2 log2n  A  O logn

n ,

where A  C  log2
2 − 1

2 log23 is a constant.

(b)∑k2
n 1

k logk  loglogn  B  O 1
n logn (B is constant)

Proof: Let fx  1
x logx defined on 2,, then f′x  − 1

x logx

2
1  logx  0 on

2,. So, it is clear that fx is a positive and continuous function on 3,, with
limx→ fx  limx→

1
x logx  0.

So, by Theorem 8.23, we have

∑
k2

n
1

k logk  
2

n dx
x logx  C  O 1

n logn , where C is a constant

 log logn  B  O 1
n logn , where C is a constant

where B  C − log log2 is a constant.

8.21 If 0  a ≤ 1, s  1, define s,a  ∑n0
 n  a−s.

(a) Show that this series converges absolutely for s  1 and prove that

∑
h1

k

 s, h
k  kss if k  1,2, . . .

where s  s, 1 is the Riemann zeta function.
Proof: First, it is clear that s,a converges absolutely for s  1. Consider

∑
h1

k

 s, h
k ∑

h1

k

∑
n0


1

n  h
k 

s

∑
h1

k

∑
n0


ks

kn  hs

∑
n0



∑
h1

k
ks

kn  hs

 ks∑
n0



∑
h1

k
1

kn  hs

 ks∑
n0


1

n  1s

 kss.



(b) Prove that∑n1
 −1n−1/ns  1 − 21−ss if s  1.

Proof: Let Sn  ∑j1
n −1j−1

js , and thus consider its subsequence S2n as follows:

S2n ∑
j1

2n
1
js − 2∑

j1

n
1

2js

∑
j1

2n
1
js − 21−s∑

j1

n
1
js

which implies that
limn→ S2n  1 − 21−ss.

Since Sn converges, we know that S2n also converges and has the same value. Hence,

∑
n1



−1n−1/ns  1 − 21−ss.

8.22 Given a convergent series∑ an, where each an ≥ 0. Prove that∑ an n−p
converges if p  1/2. Give a counterexample for p  1/2.

Proof: Since
an  n−2p

2 ≥ ann−2p  an n−p,

we have∑ an n−p converges if p  1/2 since

∑ an converges and ∑ n−2p converges if p  1/2.

For p  1/2, we consider an  1
nlogn2 , then

∑ an converges by Cauchy Condensation Theorem

and

∑ an n−1/2 ∑ 1
n logn diverges by Cauchy Condensation Theorem.

8.23 Given that∑ an diverges. Prove that∑ nan also diverges.

Proof: Assume∑ nan converges, then its partial sum∑k1
n kak is bounded. Then by

Dirichlet Test, we would obtain

∑kak 1
k ∑ ak converges

which contradicts to∑ an diverges. Hence,∑ nan diverges.

8.24 Given that∑ an converges, where each an  0. Prove that

∑anan1
1/2

also converges. Show that the converse is also true if an is monotonic.
Proof: Since

an  an1
2 ≥ anan1

1/2,

we know that

∑anan1
1/2



converges by∑ an converges.
Conversly, since an is monotonic, it must be decreasing since∑ an converges. So,

an ≥ an1 for all n. Hence,
anan1

1/2 ≥ an1 for all n.
So,∑ an converges since∑anan1

1/2 converges.

8.25 Given that∑ an converges absolutely. Show that each of the following series
also converges absolutely:

(a)∑ an
2

Proof: Since∑ an converges, then an → 0 as n → . So, given   1, there exists a
positive integer N such that as n ≥ N, we have

|an |  1
which implies that

an
2  |an | for n ≥ N.

So,∑ an
2 converges if∑|an | converges. Of course,∑ an

2 converges absolutely.

(b)∑ an
1an

(if no an  −1)

Proof: Since∑|an | converges, we have limn→ an  0. So, there exists a positive
integer N such that as n ≥ N, we have

1/2  |1  an |.
Hence, as n ≥ N,

an
1  an

 2|an |

which implies that∑ an
1an

converges. So,∑ an
1an

converges absolutely.

(c)∑ an2

1an2

Proof: It is clear that
an

2

1  an
2 ≤ an

2.

By (a), we have proved that∑ an2

1an2
converges absolutely.

8.26 Determine all real values of x for which the following series converges.

∑
n1



1  1
2 . . . 1

n
sinnx

n .

Proof: Consider its partial sum

∑
k1

n 1  1
2 . . . 1

k 
k sinkx

as follows.
As x  2m, the series converges to zero. So it remains to consider x ≠ 2m as

follows. Define

ak 
1  1

2 . . . 1
k

k
and



bk  sinkx,
then

ak1 − ak 
1  1

2 . . . 1
k  1

k1
k  1 −

1  1
2 . . . 1

k
k


k1  1

2 . . . 1
k  1

k1  − k  11  1
2 . . . 1

k 
kk  1


k

k1 − 1 
1
2 . . . 1

k 
kk  1  0

and

∑
k1

n

bk ≤ 1
sin x

2 
.

So, by Dirichlet Test, we know that

∑
k1



akbk ∑
k1

 1  1
2 . . . 1

k 
k sinkx

converges.
From above results, we have shown that the series converges for all x ∈ R.
8.27. Prove that following statements:
(a)∑ anbn converges if∑ an converges and if∑bn − bn1 converges absolutely.

Proof: Consider summation by parts, i.e., Theorem 8.27, then

∑
k1

n

akbk  Anbn1 −∑
k1

n

Akbk1 − bk.

Since∑ an converges, then |An | ≤ M for all n. In addition, by Theorem 8.10, limn→ bn

exists. So, we obtain that
(1). limn→Anbn1 exists

and

(2). ∑
k1

n

|Akbk1 − bk| ≤ M∑
k1

n

|bk1 − bk | ≤ M∑
k1



|bk1 − bk |.

(2) implies that

(3). ∑
k1

n

Akbk1 − bk converges.

By (1) and (3), we have shown that∑k1
n akbk converges.

Remark: In 1871, Paul du Bois Reymond (1831-1889) gave the result.
(b)∑ anbn converges if∑ an has bounded partial sums and if∑bn − bn1 converges

absolutely, provided that bn → 0 as n → .
Proof: By summation by parts, we have

∑
k1

n

akbk  Anbn1 −∑
k1

n

Akbk1 − bk.

Since bn → 0 as n →  and∑ an has bounded partial sums, say |An | ≤ M for all n. Then



(1). limn→Anbn1 exists.

In addition,

(2). ∑
k1

n

|Akbk1 − bk| ≤ M∑
k1

n

|bk1 − bk | ≤ M∑
k1



|bk1 − bk |.

(2) implies that

(3). ∑
k1

n

Akbk1 − bk converges.

By (1) and (3), we have shown that∑k1
n akbk converges.

Remark: (1) The result is first discovered by Richard Dedekind (1831-1916).
(2) There is an exercise by (b), we write it as a reference. Show the convergence of the

series∑k1
 −1 k

k .

Proof: Let ak 
−1 k

k2/3 and bk  1
k1/3 , then in order to show the convergence of

∑k1
 −1 k

k , it suffices to show that ∑k1
n ak : Sn is bounded sequence. Given

n ∈ N, there exists j ∈ N such that j2 ≤ N  j  12. Consider
Sn  a1  a2  a3  a4 . . .a8  a9 . . . .a15 . . .aj2 . . .an

≤
3a3  5a4  7a15  9a16 . .4k − 1a2k2−1  4k  1a2k2 if j  2k, k ≥ 2

3a3  5a4  7a15  9a16 . .4k − 3a2k−22 if j  2k − 1, k ≥ 3

then as n large enough,

Sn ≤
−3a4  5a4  −7a16  9a16 . . . −4k − 1a2k2  4k  1a2k2

−3a4  5a4  −7a16  9a16 . . . −4k − 5a2k−22  4k − 3a2k−22

which implies that as n large enough,

Sn ≤ 2∑
j2



a2j2  2∑
j2


1

2j4/3 : M1     *

Similarly, we have
M2 ≤ Sn for all n     **

By (*) and (**), we have shown that ∑k1
n ak : Sn is bounded sequence.

Note: (1) By above method, it is easy to show that

∑
k1


−1 k

kp

converges for p  1/2. For 0  p ≤ 1/2, the series diverges by
1

n2p . . . 1
n2  2np ≥ 2n  1

n2  np ≥ 2n  1
n2  np ≥ 2n  1

n  12p ≥
2n  1
n  1  1.

(2) There is a similar question, show the divergence of the series∑k1
 −1logk

k .

Proof: We use Theorem 8.13 to show it by inserting parentheses as follows. We insert
parentheses such that the series∑ −1logk

k forms∑−1kbk. If we can show∑−1kbk



diverges, then∑ −1logk

k also diverges. Consider

bk  1
m . . . 1

m  r ,     *
where

(1). logm  N
(2). logm − 1  N − 1  logem − 1  N
(3). logm  r  N
(4). logm  r  1  N  1  log mr1

e   N

.

By (2) and (4),
m  r  1

e  m − 1  r  1 ≥ m if m is large enough.
By (1) and (3),

2m ≥ r.
So, as k large enough ( m is large enough),

bk ≥ r  1
m  r ≥

m
3m  1

3 by (*).

It implies that∑−1kbk diverges since bk does NOT tends to zero as k goes infinity.So,
we have proved that the series∑ −1logk

k diverges.

(3) There is a good exercise by summation by parts, we write it as a reference.
Assume that∑k1

 akbk converges and bn ↗ with limn→ bn  . Show that bn∑kn
 ak

converges.
Proof: First, we show that the convergence of∑k1

 ak by Dirichlet Test as follows.
Since bn ↗ , there exists a positive integer n0 such that as n  n0, we have bn  0. So,
we have 1

bnn0 n1


is decreasing to zero. So

∑
k1



akn0 ∑
k1



akn0bkn0 
1

bkn0

converges by Dirichlet Test.
For the convergence of bn∑kn

 ak, let n  n0, then

bn∑
kn



ak ∑
kn



akbk
bn
bk

and define ck  akbk and dk  bn
bk

. Note that dk is decreasing to zero. Define
Ck  ∑j1

k cj and thus we have

bn∑
kn

m

ak ∑
kn

m

akbk
bn
bk

∑
kn

m

Ck − Ck−1dk

∑
kn

m−1

Ckdk − dk1  Cmdm − Cn−1dn.

So,



bn∑
kn



ak ∑
kn



akbk
bn
bk

∑
kn



Ckdk − dk1  Cd − Cn−1dn

∑
kn



Ckdk − dk1 − Cn−1dn

by C  limk→Ck and limk→ dk  0. In order to show the existence of limn→ bn∑kn
 ak,

it suffices to show the existence of limn→ ∑kn
 Ckdk − dk1. Since the series

∑kn
 Ckdk − dk1 exists, limn→ ∑kn

 Ckdk − dk1  0. From above results, we have
proved the convergence of limn→ bn∑kn

 ak.

Note: We also show that limn→ bn∑kn
 ak  0 by preceding sayings.

Supplement on the convergence of series.
A Show the divergence of∑ 1/k. We will give some methods listed below. If the

proof is easy, we will omit the details.
(1) Use Cauchy Criterion for series. Since it is easy, we omit the proof.
(2) Just consider

1  1
2  1

3  1
4 . . . 1

2n ≥ 1  1
2  2 1

4 . . .2n−1 1
2n

 1  n
2 → .

Remark: We can consider
1  1

2 . . . 1
10  1

11 . . . 1
100 . . .≥ 1  9

10  90
100 . . .

Note: The proof comes from Jing Yu.
(3) Use Mathematical Induction to show that

1
k − 1  1

k  1
k  1 ≥

3
k if k ≥ 3.

Then
1  1

2  1
3  1

4  1
5  1

6 . . . .≥ 1  3
3  3

6  3
9 . . .

Remark: The proof comes from Bernoulli.
(4) Use Integral Test. Since the proof is easy, we omit it.
(5) Use Cauchy condensation Theorem. Since the proof is easy, we omit it.
(6) Euler Summation Formula, the reader can give it a try. We omit the proof.
(7) The reader can see the book, Princilpes of Mathematical Analysis by Walter

Rudin, Exercise 11-(b) pp 79.
Suppose an  0, Sn  a1 . . .an, and∑ an diverges.

(a) Prove that∑ an
1an

diverges.

Proof: If an → 0 as n → , then by Limit Comparison Theorem, we know that
∑ an

1an
diverges. If an does not tend to zero. Claim that an

1an
does not tend to zero.



Suppose NOT, it means that limn→
an

1an
 0. That is,

limn→
1

1  1
an

 0  limn→ an  0

which contradicts our assumption. So,∑ an
1an

diverges by claim.

(b) Prove that
aN1
SN1

. . . aNk
SNk

≥ 1 − SN
SNk

and deduce that∑ an
Sn

diverges.

Proof: Consider
aN1
SN1

. . . aNk
SNk

≥ aN1 . . .aNk
SNk

 1 − SN
SNk

,     *

then∑ an
Sn

diverges by Cauchy Criterion with (*).

Remark: Let an  1, then∑ an
Sn

 ∑ 1/n diverges.

(c) Prove that
an
Sn

2 ≤
1

Sn−1
− 1

Sn

and deduce that∑ an
Sn2

converges.

Proof: Consider
1

Sn−1
− 1

Sn
 an

Sn−1Sn
≥ an

Sn
2 ,

and

∑ 1
Sn−1

− 1
Sn

converges by telescoping series with 1
Sn

→ 0.

So,∑ an
Sn2

converges.

(d) What can be said about

∑ an
1  nan

and ∑ an
1  n2an

?

Proof: For∑ an
1nan

: as an  1 for all n, the series∑ an
1nan

 ∑ 1
1n diverges. As

an 
0 if n ≠ k2

1 if n  k2
,

the series∑ an
1nan

 ∑ 1
1k2 converges.

For∑ an
1n2an

: Consider
an

1  n2an
 1

1
an  n2 ≤

1
n2 ,

so∑ an
1n2an

converges.

(8) Consider∑ sin 1
n diverges.

Proof: Since

limn→
sin 1

n
1
n

 1,

the series∑ 1
n diverges by Limit Comparison Theorem.



Remark: In order to show the series∑ sin 1
n diverges, we consider Cauchy Criterion

as follows.
n sin 1

2n ≤ sin 1
n  1 . . . sin 1

n  n
and given x ∈ R, for n  0,1, 2, . . . , we have

|sinnx| ≤ n|sinx|.
So,

sin 1
2 ≤ sin 1

n  1 . . . sin 1
n  n

for all n. Hence,∑ sin 1
n diverges.

Note: There are many methods to show the divergence of the series∑ sin 1
n . We can

use Cauchy Condensation Theorem to prove it. Besides, by (11), it also owrks.
(9) O-Stolz’s Theorem.
Proof: Let Sn  ∑j1

n 1
j and Xn  logn. Then by O-Stolz’s Theorem, it is easy to see

limn→ Sn  .

(10) Since k1
n 1  1

k diverges, the series∑ 1/k diverges by Theorem 8.52.

(11) Lemma: If an is a decreasing sequence and∑ an converges. Then
limn→ nan  0.

Proof: Since an → 0 and an is a decreasing sequence, we conclude that an ≥ 0.
Since∑ an converges, given   0, there exists a positive integer N such that as n ≥ N,
we have

an . .ank  /2 for all k ∈ N
which implies that

k  1ank  /2 since an ↘.
Let k  n, then as n ≥ N, we have

n  1a2n  /2
which implies that as n ≥ N

2n  1a2n  
which implies that

limn→ 2na2n  0 since limn→ an  0.     *

Similarly, we can show that
limn→2n  1a2n1  0.     **

So, by (*) adn (**), we have proved that limn→ nan  0.
Remark: From this, it is clear that∑ 1

n diverges. In addition, we have the convergence
of∑ nan − an1. We give it a proof as follows.

Proof: Write



Sn ∑
k1

n

kak − ak1

∑
k1

n

ak − nan1,

then
limn→ Sn exists

since

limn→ ∑
k1

n

ak exists and limn→ nan  0.

B Prove that∑ 1
p diverges, where p is a prime.

Proof: Given N, let p1, . . . ,pk be the primes that divide at least one integer≤ N. Then

∑
n1

N
1
n ≤ 

j1

k

1  1
pj

 1
pj

2 . . .


j1

k
1

1 − 1
pj

≤ exp ∑
j1

k
2
pj

by 1 − x−1 ≤ e2x if 0 ≤ x ≤ 1/2. Hence,∑ 1
p diverges since∑ 1

n diverges.

Remark: There are many proofs about it. The reader can see the book, An
Introduction To The Theory Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese
Version)

C Discuss some series related with∑ sink
k .

STUDY: (1) We have shown that the series∑ sin 1
k diverges.

(2) The series∑ sinna  b diverges where a ≠ n for all n ∈ Z and b ∈ R.

Proof: Suppose that∑ sinna  b converges, then limn→ sinna  b  0. Hence,
limn→|sinn  1a  b − sinna  b|  0. Consider

|sinn  1a  b − sinna  b|

 2cos na  b  a
2 sin a

2
 2 cosna  bcos a

2 − sinna  b sin a
2 sin a

2
which implies that



limn→|sinn  1a  b − sinna  b|

 limn→ sinn  1a  b − sinna  b

 limn→ sup2 cosna  bcos a
2 − sinna  b sin a

2 sin a
2

 limn→ sup2 cosna  bcos a
2 sin a

2
 |sina| ≠ 0

which is impossible. So,∑ sinna  b diverges.

Remark: (1) By the same method, we can show the divergence of∑ cosna  b if
a ≠ n for all n ∈ Z and b ∈ R.

(2) The reader may give it a try to show that,

∑
n0

p

cosna  b 
sin p1

2 b
sin b

2
sin a  p

2 b     *

and

∑
n0

p

sinna  b 
sin p1

2 b
sin b

2
cos a  p

2 b     **

by considering∑n0
p einab. However, it is not easy to show the divergence by (*) and

(**).

(3) The series∑ sink
k converges conditionally.

Proof: First, it is clear that∑ sink
k converges by Dirichlet’s Test since

|∑ sink| ≤ 1
sin 1

2
. In order to show that the divergence of∑ sink

k , we consider its
partial sums as follows: Since

∑
k1

3n3
sink

k ∑
k0

n
sin3k  1

3k  1  sin3k  2
3k  2  sin3k  3

3k  3

and note that there is one value is bigger than 1/2 among three values |sin3k  1|,
|sin3k  2|, and |sin3k  3|. So,

∑
k1

3n3
sink

k ≥ ∑
k0

n 1
2

3k  3

which implies the divergence of∑ sink
k .

Remark: The series is like Dirichlet Integral 
0

 sinx
x dx. Also, we know that Dirichlet

Integral converges conditionally.

(4) The series∑ |sink|r

k diverges for any r ∈ R.

Proof: We prove it by three cases as follows.
(a) As r ≤ 0, we have

∑ |sink|r
k ≥ ∑ 1

k .

So,∑ |sink|r

k diverges in this case.
(b) As 0  r ≤ 1, we have



∑ |sink|r
k ≥ ∑ |sink|

k .

So,∑ |sink|r

k diverges in this case by (3).
(c) As r  1, we have

∑
k1

3n3
|sink|r

k ∑
k0

n
|sin3k  1|r

3k  1  |sin3k  2|r
3k  2  |sin3k  3|r

3k  3

≥ ∑
k0

n  1
2 

r

3k  3 .

So,∑ |sink|r

k diverges in this case.

(5) The series∑ sin2p−1k
k , where p ∈ N, converges.

Proof: We will prove that there is a positive integer Mp such that

∑
k1

n

sin2p−1k ≤ Mp for all n.     *

So, if we can show (*), then by Dirichlet’s Test, we have proved it. In order to show (*),
we claim that sin2p−1k can be written as a linear combination of sink, sin3k, . . . ,
sin2p − 1k. So,

∑
k1

n

sin2p−1k  ∑
k1

n

a1 sink  a2 sin3k . . .ap sin2p − 1k

≤ |a1 |∑
k1

n

sink . . .|ap |∑
k1

n

sin2p − 1k

≤ |a1 |
sin 1

2

. . . |ap |
sin 2p−1

2

: Mp by Theorem 8.30.

We show the claim by Mathematical Induction as follows. As p  1, it trivially holds.
Assume that as p  s holds, i.e.,

sin2s−1k ∑
j1

s

aj sin2j − 1k

then as p  s  1, we have



sin2s1k  sin2ksink2s−1

 sin2k ∑
j1

s

aj sin2j − 1k by induction hypothesis

∑
j1

s

ajsin2k sin2j − 1k

∑
j1

s

aj
1 − cos2k

2 sin2j − 1k

 1
2 ∑

j1

s

aj sin2j − 1k −∑
j1

s

aj cos2k sin2j − 1k

 1
2 ∑

j1

s

aj sin2j − 1k − 1
2 ∑

j1

s

ajsin2j  1k  sin2j − 3k

which is a linear combination of sink, . . . , sin2s  1k. Hence, we have proved the claim
by Mathematical Induction.

Remark: By the same argument, the series

∑
k1

n

cos2p−1k

is also bounded, i.e., there exists a positive number Mp such that

∑
k1

n

|cos2p−1k| ≤ Mp.

(6) Define∑k1
n sinkx

k : Fnx, then Fnx is boundedly convergent on R.

Proof: Since Fnx is a periodic function with period 2, and Fnx is an odd function.
So, it suffices to consider Fnx is defined on 0,. In addition, Fn0  0 for all n.
Hence, the domain I that we consider is 0,. Note that sinkx

k  
0

x
cosktdt. So,

Fnx ∑
k1

n
sinkx

k

 
0

x
∑
k1

n

cosktdt

 
0

x sinn  1
2 t − sin 1

2 t
2sin 1

2 t
dt

 
0

x sinn  1
2 t

t dt  
0

x 1
2sin t

2
− 1

t sin n  1
2 t dt − x

2

 
0

n 1
2 x sin t

t dt  
0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt − x

2
which implies that

|Fnx| ≤ 
0

n 1
2 x sin t

t dt  
0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt  

2 .



For the part 
0

n 1
2 x sin t

t dt : Since 
0

 sin t
t dt converges, there exists a positive M1 such

that


0

n 1
2 x sin t

t dt ≤ M1 for all x ∈ I and for all n.

For the part 
0

x t−2sin t
2

2t sin t
2

sinn  1
2 tdt : Consider


0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt

≤ 
0

x t − 2sin t
2

2t sin t
2

dt since t − 2sin t
2  0 on I

≤ 
0

 t − 2sin t
2

2t sin t
2

dt : M2 since lim
t→0

t − 2sin t
2

2t sin t
2

 0.

Hence,
|Fnx| ≤ M1  M2  

2 for all x ∈ I and for all n.

So, Fnx is uniformly bounded on I. It means that Fnx is uniformly bounded on R.
In addition, since

Fnx  
0

n 1
2 x sin t

t dt  
0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt − x

2 ,

fixed x ∈ I, we have


0

 sin t
t dt exists.

and by Riemann-Lebesgue Lemma, in the text book, pp 313,

limn→ 0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt  0.

So, we have proved that

limn→Fnx  
0

 sin t
t dt − x

2 where x ∈ 0,.

Hence, Fnx is pointwise convergent on I. It means that Fnx is pointwise
convergent on R.

Remark: (1) For definition of being boundedly convergent on a set S, the reader can
see the text book, pp 227.

(2) In the proof, we also shown the value of Dirichlet Integral


0

 sin t
t dt  

2
by letting x  .

(3) There is another proof on uniform bound. We write it as a reference.
Proof: The domain that we consider is still 0,. Let   0, and consider two cases as

follows.
(a) x ≥   0 : Using summation by parts,



∑
k1

n
sinkx

k ≤ 1
n  1 ∑

k1

n
sinkx

k  ∑
k1

n

∑
j1

k

sin jx 1
k  1 −

1
k

≤ 1
n  1

1
sin 2 

 1
sin 2 

1 − 1
n  1

 1
sin 2 

.

(b) 0  x ≤  : Let N   1
x , consider two cases as follows.

As n  N, then

∑
k1

n
sinkx

k ≤ n|x|  N|x| ≤ 1     *

and as n ≥ N, then

∑
k1

n
sinkx

k

≤ ∑
k1

N−1
sinkx

k  ∑
kN

n
sinkx

k

≤ 1  ∑
kN

n
sinkx

k by (*)

≤ 1  1
n  1 ∑

k1

n
sinkx

k  1
N ∑

k1

N−1
sinkx

k  ∑
kN

n

∑
j1

k

sin jx 1
k  1 −

1
k

by summation by parts

≤ 1  1
n  1 sin x

2
 1

N sin x
2
 1

N −
1

n  1
1

sin x
2

 1  2
 1

x  sin x
2

.

Note that limx→0
2

 1
x  sin x

2
 4. So, we may choose a ′   such that

2
 1

x  sin x
2
≤ 5 for all x ∈ 0,′.

By preceding sayings, we have proved that Fnx is uniformly bounded on I. It means
that Fnx is uniformly bounded on R.

D In 1911, Otto Toeplitz proves the following. Let an and xn be two sequences
such that an  0 for all n with limn→

1
a1...an  0 and limn→ xn  x. Then

limn→
a1x1 . . .anxn

a1 . . .an
 x.

Proof: Let Sn  ∑k1
n ak and Tn  ∑k1

n akxk, then

limn→
Tn1 − Tn
Sn1 − Sn

 limn→
an1xn1

an1
 limn→ xn1  x.

So, by O-Stolz’s Theorem, we have prove it.
Remark: (1) Let an  1, then it is an extension of Theorem 8.48.
(2) Show that



limn→
sin . . . sin 

n
1 . . . 1

n
 .

Proof: Write
sin . . . sin 

n
1 . . . 1

n

 1

1 1sin . . . 1
n n sin 

n

1 . . . 1
n

,

the by Toeplitz’s Theorem, we have proved it.

E Theorem 8.16 emphasizes the decrease of the sequence an, we may ask if we
remove the condition of decrease, is it true? The answer is NOT necessary. For example,
let

an  1
n  −1n1

2n .  0

F Some questions on series.
(1) Show the convergence of the series∑n1

 logn sin 1
n .

Proof: Since n sin 1
n  1 for all n, logn sin 1

n  0 for all n. Hence, we consider the
new series

∑
n1



− logn sin 1
n ∑

n1



log sin1/n
1/n

as follows. Let an  log sin1/n
1/n and bn  log 1  1

n2 , then

limn→
an
bn

 1
6 .

In addition,

∑ bn ≤ ∑ 1
n2

by ex ≥ 1  x for all x ∈ R. From the convergence of∑ bn, we have proved that the
convergence of∑ an by Limit Comparison Test.

(2) Suppose that an ∈ R, and the series∑n1
 an

2 converges. Prove that the series
∑n1
 an

n converges absolutely.

Proof: By A.P.≥ G.P. , we have
an

2  1
n2

2 ≥ an
n

which implies that∑n1
 an

n converges absolutely.

Remark: We metion that there is another proof by using Cauchy-Schwarz inequality.
the difference of two proofs is that one considers an, and another considers the partial
sums Sn.

Proof: By Cauchy-Schwarz inequality,

∑
k1

n
|an |
k

2

≤ ∑
k1

n

ak
2 ∑

k1

n
1
k2

which implies that∑n1
 an

n converges absolutely.

Double sequences and series
8.28 Investigate the existence of the two iterated limits and the double limit of the



double sequence f defined by the followings. Answer. Double limit exists in (a), (d), (e),
(g). Both iterated limits exists in (a), (b), (h). Only one iterated limit exists in (c), (e).
Neither iterated limit exists in (d), (f).

(a) fp,q  1
pq

Proof: It is easy to know that the double limit exists with limp,q→ fp,q  0 by
definition. We omit it. In addition, limp→ fp,q  0. So, limq→limp→ fp,q  0.
Similarly, limp→limq→ fp,q  0. Hence, we also have the existence of two iterated
limits.

(b) fp,q  p
pq

Proof: Let q  np, then fp,q  1
n1 . It implies that the double limit does not exist.

However, limp→ fp,q  1, and limq→ fp,q  0. So, limq→limp→ fp,q  1, and
limp→limq→ fp,q  0.

(c) fp,q  −1pp
pq

Proof: Let q  np, then fp,q  −1p

n1 . It implies that the double limit does not exist.
In addition, limq→ fp,q  0. So, limp→limq→ fp,q  0. However, since
limp→ fp,q does not exist, limq→limp→ fp,q does not exist.

(d) fp,q  −1pq 1
p  1

q 

Proof: It is easy to know limp,q→ fp,q  0. However, limq→ fp,q and limp→ fp,q
do not exist. So, neither iterated limit exists.

(e) fp,q  −1p

q

Proof: It is easy to know limp,q→ fp,q  0. In addition, limq→ fp,q  0. So,
limp→limq→ fp,q  0. However, since limp→ fp,q does not exist,
limq→limp→ fp,q does not exist.

(f) fp,q  −1pq

Proof: Let p  nq, then fp,q  −1n1q. It means that the double limit does not
exist. Also, since limp→ fp,q and limq→ fp,q do not exist, limq→limp→ fp,q and
limp→limq→ fp,q do not exist.

(g) fp,q  cosp
q

Proof: Since |fp,q| ≤ 1
q , then limp,q→ fp,q  0, and limp→limq→ fp,q  0.

However, since cosp : p ∈ N dense in −1,1, we know that limq→limp→ fp,q does
not exist.

(h) fp,q  p
q2 ∑n1

q sin n
p

Proof: Rewrite

fp,q 
p sin q

2p sin q1
2p

q2 sin 1
2p

and thus let p  nq, fp,q 
sin 1

2n sin q1
2nq

nq sin 1
2nq

. It means that the double limit does not exist.

However, limp→ fp,q  q1
2q since sinx~x as x → 0. So, limq→limp→ fp,q  1

2 .



Also, limq→ fp,q  limq→ p sin 1
2p

sin q
2p sin q1

2p

q2  0 since |sinx| ≤ 1. So,

limp→limq→ fp,q  0.

8.29 Prove the following statements:
(a) A double series of positive terms converges if, and only if, the set of partial sums is

bounded.
Proof: ()Suppose that∑m,n fm,n converges, say∑m,n fm,n  A1, then it means

that limp,q→ sp,q  A1. Hence, given   1, there exists a positive integer N such that as
p,q ≥ N, we have

|sp,q| ≤ |A1 |  1.
So, let A2  maxsp,q : 1 ≤ p,q  N, we have |sp,q| ≤ maxA1,A2 for all p,q.
Hence, we have proved the set of partial sums is bounded.

()Suppose that the set of partial sums is bounded by M, i.e., if
S  sp,q : p,q ∈ N, then supS : A ≤ M. Hence, given   0, then there exists a
sp1,q1 ∈ S such that

A −   sp1,q1 ≤ A.
Choose N  maxp1,q1, then

A −   sp,q ≤ A for all p,q ≥ N
since every term is positive. Hence, we have proved limp,q→ sp,q  A. That is,
∑m,n fm,n converges.

(b) A double series converges if it converges absolutely.
Proof: Let s1p,q  ∑m1

p ∑n1
q |fm,n| and s2p,q  ∑m1

p ∑n1
q fm,n, we want

to show that the existence of limp,q→ s2p,q by the existence of limp,q→ s1p,q as
follows.

Since limp,q→ s1p,q exists, say its limit a. Then limp→ s1p,p  a. It implies that
limp→ s2p,p converges, say its limit b. So, given   0, there exists a positive integer N
such that as p,q ≥ N

|s1p,p − s1q,q|  /2
and

|s2N,N − b|  /2.
So, as p ≥ q ≥ N,

|s2p,q − b|  |s2N,N − b  s2p,q − s2N,N|
 /2  |s2p,q − s2N,N|
 /2  s1p,p − s1N,N
 /2  /2
 .

Similarly for q ≥ p ≥ N. Hence, we have shown that
limp,q→ s2p,q  b.

That is, we have prove that a double series converges if it converges absolutely.
(c)∑m,n e−m2n2 converges.

Proof: Let fm,n  e−m2n2, then by Theorem 8.44, we have proved that



∑m,n e−m2n2 converges since∑m,n e−m2n2  ∑m e−m2∑n e−n2 .

Remark:∑m,n1
 e−m2n2  ∑m1

 e−m2∑n1
 e−n2  e

e2−1

2
.

8.30 Asume that the double series∑m,n anxmn converges absolutely for |x|  1. Call
its sum Sx. Show that each of the following series also converges absolutely for |x|  1
and has sum Sx :

∑
n1



an xn

1 − xn , ∑
n1



Anxn, where An ∑
d|n

ad.

Proof: By Theorem 8.42,

∑
m,n

anxmn ∑
n1



an∑
m1



xmn ∑
n1



an xn

1 − xn if |x|  1.

So,∑n1
 an xn

1−xn converges absolutely for |x|  1 and has sum Sx.
Since every term in∑m,n anxmn, the term appears once and only once in

∑n1
 Anxn. The converse also true. So, by Theorem 8.42 and Theorem 8.13, we know

that

∑
n1



Anxn ∑
m,n

anxmn  Sx.

8.31 If  is real, show that the double series∑m,nm  in− converges absolutely if,
and only if,   2. Hint. Let sp,q  ∑m1

p ∑n1
q |m  in|−. The set

m  in : m  1,2, . . .p,n  1,2, . . . ,p
consists of p2 complex numbers of which one has absolute value 2 , three satisfy
|1  2i| ≤ |m  in| ≤ 2 2 , five satisfy |1  3i| ≤ |m  in| ≤ 3 2 , etc. Verify this
geometricall and deduce the inequlity

2−/2∑
n1

p
2n − 1

n ≤ sp,p ≤ ∑
n1

p
2n − 1

n2  1/2 .

Proof: Since the hint is trivial, we omit the proof of hint. From the hint, we have

∑
n1

p
2n − 1
n 2  ≤ sp,p ∑

m1

p

∑
n1

p

|m  in|− ≤ ∑
n1

p
2n − 1

1  n2/2 .

Thus, it is clear that the double series∑m,nm  in− converges absolutely if, and only if,
  2.

8.32 (a) Show that the Cauchy product of∑n0
 −1n1/ n  1 with itself is a

divergent series.
Proof: Since



cn ∑
k0

n

akbn−k

∑
k0

n
−1k

k  1
−1n−k

n − k  1

 −1n∑
k0

n
1

k  1 n − k  1

and let fk  n − k  1k  1  −k − n
2 

2
  n2

2 
2 ≤ n2

2 for k  0,1, . . . ,n.
Hence,

|cn | ∑
k0

n
1

k  1 n − k  1

≥ 2n  1
n  2 → 2 as n → .

That is, the Cauchy product of∑n0
 −1n1/ n  1 with itself is a divergent series.

(b) Show that the Cauchy product of∑n0
 −1n1/n  1 with itself is the series

2∑
n1


−1n1

n  1 1  1
2 . . . 1

n .

Proof: Since

cn ∑
k0

n

akbn−k

∑
k0

n
−1n

n − k  1k  1

 −1n∑
k0

n
1

n  2
1

k  1  1
n − k  1

 2−1n

n  2 ∑
k0

n
1

k  1 ,

we have

∑
n0



cn ∑
n0

 2−1n

n  2 ∑
k0

n
1

k  1

 2∑
n0


−1n

n  2 1  1
2 . . . 1

n  1

 2∑
n1


−1n1

n  1 1  1
2 . . . 1

n .

(c) Does this converge ? Why?
Proof: Yes by the same argument in Exercise 8.26.
8.33 Given two absolutely convergent power series, say∑n0

 anxn and∑n0
 bnxn,

having sums Ax and Bx, respectively, show that∑n0
 cnxn  AxBx where



cn ∑
k0

n

akbn−k.

Proof: By Theorem 8.44 and Theorem 8.13, it is clear.
Remark: We can use Mertens’ Theorem, then it is clear.

8.34 A series of the form∑n1
 an/ns is called a Dirichlet series. Given two absolutely

convergent Dirichlet series, say∑n1
 an/ns and∑n1

 bn/ns, having sums As and Bs,
respectively, show that∑n1

 cn/ns  AsBs, where cn  ∑d|n adbn/d.

Proof: By Theorem 8.44 and Theorem 8.13, we have

∑
n1



an/ns ∑
n1



bn/ns  ∑
n1



Cn

where
Cn ∑

d|n
add−sbn/dn/d−s

 n−s∑
d|n

adbn/d

 cn/ns.
So, we have proved it.

8.35 s  ∑n1
 1/ns, s  1, show that 2s  ∑n1

 dn/ns, where dn is the
number of positive divisors of n (including 1 and n).

Proof: It is clear by Exercise 8.34. So, we omit the proof.

Ces’aro summability
8.36 Show that each of the following series has C, 1 sum 0 :
(a) 1 − 1 − 1  1  1 − 1 − 1  1  1 − −     .
Proof: It is clear that |s1 . . .sn | ≤ 1 for all n, where sn means that the nth partial sum

of given series. So,
s1 . . .sn

n ≤ 1
n

which implies that the given series has C, 1 sum 0.
(b) 1

2 − 1  1
2  1

2 − 1  1
2  1

2 − 1   −   .

Proof: It is clear that |s1 . . .sn | ≤ 1
2 for all n, where sn means that the nth partial

sum of given series. So,
s1 . . .sn

n ≤ 1
2n

which implies that the given series has C, 1 sum 0.
(c) cosx  cos3x  cos5x     (x real, x ≠ m).
Proof: Let sn  cosx . . .cos2n − 1x, then



sn ∑
j1

n

cos2k − 1x

 sin2nx
2sinx .

So,
∑j1

n sj

n 
∑j1

n sin2jx
2n sinx

 sinnx sinn  1x
2n sinx sinx

≤ 1
2nsinx2 → 0

which implies that the given series has C, 1 sum 0.
8.37 Given a series∑ an, let

sn ∑
k1

n

ak, tn ∑
k1

n

kak, n  1
n ∑

k1

n

sk.

Prove that:
(a) tn  n  1sn − nn

Proof: Define S0  0, and thus

tn ∑
k1

n

kak

∑
k1

n

ksk − sk−1

∑
k1

n

ksk −∑
k1

n

ksk−1

∑
k1

n

ksk −∑
k1

n−1

k  1sk

∑
k1

n

ksk −∑
k1

n

k  1sk  n  1sn

 n  1sn −∑
k1

n

sk

 n  1sn − nn.

(b) If∑ an is C, 1 summable, then∑ an converges if, and only if, tn  on as
n → .

Proof: Assume that∑ an converges. Then limn→ sn exists, say its limit a. By (a), we
have

tn
n  n  1

n sn − n.
Then by Theorem 8.48, we also have limn→n  a. Hence,



limn→
tn
n  limn→

n  1
n sn − n

 limn→
n  1

n limn→ sn − limn→n

 1  a − a
 0

which is tn  on as n → .
Conversely, assume that tn  on as n → , then by (a), we have

n
n  1

tn
n  n

n  1 n  sn

which implies that (note that limn→n exists by hypothesis)
limn→ sn  limn→

n
n  1

tn
n  n

n  1 n

 limn→
n

n  1 limn→
tn
n  limn→

n
n  1 limn→n

 1  0  1  limn→n

 limn→n

That is,∑ an converges.

(c)∑ an is C, 1 summable if, and only if,∑ tn/nn  1 converges.

Proof: Consider
tn

nn  1  sn
n −

n
n  1

 nn − n − 1n−1
n − n

n  1
 n

n  1 n − n − 1
n n−1

which implies that

∑
k1

n
tk

kk  1  n
n  1 n.     *

()Suppose that∑ an is C, 1 summable, i.e., limn→n exists. Then
limn→ ∑k1

n tk
kk1 exists by (*).

()Suppose that limn→ ∑k1
n tk

kk1 exists. Then limn→n exists by (*). Hence,∑ an

is C, 1 summable.
8.38 Given a monotonic an of positive terms, such that limn→ an  0. Let

sn ∑
k1

n

ak, un ∑
k1

n

−1kak, vn ∑
k1

n

−1ksk.

Prove that:
(a) vn  1

2 un  −1nsn/2.

Proof: Define s0  0, and thus consider



un ∑
k1

n

−1kak

∑
k1

n

−1ksk − sk−1

∑
k1

n

−1ksk ∑
k1

n

−1k1sk−1

∑
k1

n

−1ksk ∑
k1

n

−1ksk  −1n1sn

 2vn  −1n1sn

which implies that
vn  1

2 un  −1nsn/2.

(b)∑n1
 −1nsn is C, 1 summable and has Ces’aro sum 1

2 ∑n1
 −1nan.

Proof: First, limn→ un exists since it is an alternating series. In addition, since
limn→ an  0, we know that limn→ sn/n  0 by Theorem 8.48. Hence,

vn
n  un

2n  −1n sn
2n → 0 as n → .

Consider by (a),
∑k1

n vk
n 

1
2 ∑k1

n uk  1
2 ∑k1

n −1ksk
n


∑k1

n uk

2n  vn
2n

→ 1
2 limn→ uk

 1
2 ∑

n1



−1nan

by Theorem 8.48.
(c)∑n1

 −1n1  1
2 . . . 1

n   − log 2 C, 1.

Proof: By (b) and∑n1
 −1n

n  − log2, it is clear.

Infinite products
8.39 Determine whether or not the following infinite products converges. Find the

value of each convergent product.

(a)n2
 1 − 2

nn1

Proof: Consider

1 − 2
nn  1  n − 1n  2

nn  1 ,

we have




n2

n

1 − 2
kk  1 

n2

n
k − 1k  2

kk  1

 1  4
2  3

2  5
3  4

3  6
4  5    

n − 1n  2
nn  1

 n  2
3n

which implies that


n2



1 − 2
nn  1  1

3 .

(b)n2

1 − n−2

Proof: Consider

1 − n−2  n − 1n  1
nn ,

we have


k2

n

1 − k−2 
k2

n
k − 1k  1

kk

 n  1
2n

which implies that


n2



1 − n−2  1/2.

(c)n2
 n3−1

n31

Proof: Consider
n3 − 1
n3  1  n − 1n2  n  1

n  1n2 − n  1

 n − 1n2  n  1
n  1 n − 12  n − 1  1

we have (let fk  k − 12  k − 1  1),


k2

n
k3 − 1
k3  1 

k2

n
k − 1k2  k  1

k  1 k − 12  k − 1  1

 2
3

n2  n  1
nn  1

which implies that


n2


n3 − 1
n3  1  2

3 .

(d)n0

1  z2n  if |z|  1.

Proof: Consider


k0

n

1  z2k  1  z1  z2   1  z2n 



which implies that

1 − z
k0

n

1  z2k  1 − z2n1

which implies that (if |z|  1)


k0

n

1  z2k  1 − z2n1

1 − z → 1
1 − z as n → .

So,


n0



1  z2n   1
1 − z .

8.40 If each partial sum sn of the convergent series∑ an is not zero and if the sum
itself is not zero, show that the infinite product a1 n2


1 − an/sn−1 converges and has the

value∑n1
 an.

Proof: Consider

a1
k2

n

1  ak/sk−1  a1
k2

n
sk−1  ak

sk−1

 a1
k2

n
sk

sk−1

 sn →∑ an ≠ 0.

So, the infinite product a1 n2

1 − an/sn−1 converges and has the value∑n1

 an.

8.41 Find the values of the following products by establishing the following identities
and summing the series:

(a)n2

1 − 1

2n−2   2∑n1
 2−n.

Proof: Consider
1 − 1

2n − 2  2n − 1
2n − 2  1

2
2n − 1

2n−1 − 1 ,

we have


k2

n

1 − 1
2k − 2


k2

n
1
2

2k − 1
2k−1 − 1

 2−n−1
k2

n
2k − 1

2k−1 − 1

 2−n−12n − 1
 2−n−12n−1 . . .1

 1 . . . 1
2n−1

∑
k1

n
1

2k−1

 2∑
k1

n
1
2k .



So,


n2



1 − 1
2n − 2  2∑

n1



2−n

 2.

(b)n2
 1  1

n2−1  2∑n1
 1

nn1 .

Proof: Consider
1  1

n2 − 1  n2

n2 − 1  nn
n − 1n  1 ,

we have


k2

n

1  1
k2 − 1 

k2

n
kk

k − 1k  1

 2 n
n  1

 2 1 − 1
n  1

 2∑
k1

n
1

kk  1 .

So,


n2



1  1
n2 − 1  2∑

n1


1

nn  1

 2.

8.42 Determine all real x for which the productn1
 cosx/2n converges and find the

value of the product when it does converge.
Proof: If x ≠ m, where m ∈ Z, then sin x

2n ≠ 0 for all n ∈ N. Hence,


k1

n

cosx/2k 
2n sin x

2n

2n sin x
2n

k1

n

cosx/2k  sinx
2n sin x

2n
→ sinx

x .

If x  m, where m ∈ Z. Then as m  0, it is clear that the product converges to 1. So,
we consider m ≠ 0 as follows. Since x  m, choosing n large enough, i.e., as n ≥ N so
that sin x

2n ≠ 0. Hence,


k1

n

cosx/2k 
k1

N−1

cosx/2k
kN

n

cosx/2k


k1

N−1

cosx/2k
sinx/2N−1

2n−N1 sinx/2n

and note that

limn→
sinx/2N−1

2n−N1 sinx/2n


sinx/2N−1
x/2N−1 .

Hence,


k1



cosx/2k 
sinx/2N−1

x/2N−1 
k1

N−1

cosx/2k.



So, by above sayings, we have prove that the convergence of the product for all x ∈ R.
8.43 (a) Let an  −1n/ n for n  1,2, . . . Show that1  an diverges but that

∑ an converges.

Proof: Clearly,∑ an converges since it is alternating series. Consider


k2

2n

1  ak 
k2

2n

1  −1k

k

 1  1
2

1 − 1
3

1  1
4

   1 − 1
2n − 1

1  1
2n

≤ 1  1
2

1 − 1
4

1  1
4

   1 − 1
2n

1  1
2n

 1  1
2

1 − 1
4    1 − 1

2n     *

and note that


k2

n

1 − 1
2k : pn

is decreasing. From the divergence of∑ 1
2k , we know that pn → 0. So,


k2



1  ak  0.

That is,k2
 1  ak diverges to zero.

(b) Let a2n−1  −1/ n , a2n  1/ n  1/n for n  1,2, . . . Show that1  an
converges but∑ an diverges.

Proof: Clearly,∑ an diverges. Consider


k2

2n

1  ak  1  a21  a31  a4   1  a2n

 31  a31  a4   1  a2n

 3 1 − 1
2 2

   1 − 1
n n

    *

and


k2

2n1

1  ak  1  a21  a31  a4   1  a2n1  a2n1

 3 1 − 1
2 2

   1 − 1
n n

1 − 1
n  1

    **

By (*) and (**), we know that

1  an converges

sincek2
n 1 − 1

k k
converges.

8.44 Assume that an ≥ 0 for each n  1,2, . . . Assume further that



a2n2
1  a2n2

 a2n1 
a2n

1  a2n
for n  1,2, . . .

Show thatk1
 1  −1kak converges if, and only if,∑k1

 −1kak converges.

Proof: First, we note that if a
1a  b, then 1  a1 − b  1, and if b  1c

c , then
1  1 − b1  c. Hence, by hypothesis, we have

1  1  a2n1 − a2n1     *
and

1  1  a2n21 − a2n1.     **
()Suppose that∑k1

 −1kak converges, then limk→ ak  0. Consider Cauchy
Condition for product,

1  −1p1ap1 1  −1p2ap2   1  −1pqapq − 1 for q  1,2, 3, . . . .
If p  1  2m, and q  2l, then

1  −1p1ap1 1  −1p2ap2   1  −1pqapq − 1
 |1  a2m1 − a2m1   1  a2m2l − 1|
≤ 1  a2m − 1 by (*) and (**)
 a2m → 0.

Similarly for other cases, so we have proved thatk1
 1  −1kak converges by

Cauchy Condition for product.
()This is a counterexample as follows. Let an  −1n exp −1n

n − 1 ≥ 0 for all
n, then it is easy to show that

a2n2
1  a2n2

 a2n1 
a2n

1  a2n
for n  1,2, . . .

In addition,


k1

n

1  −1kak 
k1

n

exp −1k

k
 exp ∑

k1

n
−1k

k
→ exp− log2 as n → .

However, consider

∑
k1

n

a2k − a2k−1

∑
k1

n

exp 1
2k

− exp −1
2k − 1

∑
k1

n

expbk 1
2k

 1
2k − 1

, where bk ∈ −1
2k − 1

, 1
2k

≥ ∑
k1

n

exp−1 1
2k

 1
2k − 1

→  as n → .

So, by Theorem 8.13, we proved the divergence of∑k1
 −1kak.

8.45 A complex-valued sequence fn is called multiplicative if f1  1 and if
fmn  fmfn whenever m and n are relatively prime. (See Section 1.7) It is called
completely multiplicative if

f1  1 and if fmn  fmfn for all m and n.



(a) If fn is multiplicative and if the series∑ fn converges absolutely, prove that

∑
n1



fn 
k1



1  fpk  fpk
2 . . . ,

where pk denote the kth prime, the product being absolutely convergent.
Proof: We consider the partial product Pm  k1

m
1  fpk  fpk

2 . . .  and show
that Pm → ∑n1

 fn as m → . Writing each factor as a geometric series we have

Pm 
k1

m

1  fpk  fpk
2 . . . ,

a product of a finite number of absolutely convergent series. When we multiple these series
together and rearrange the terms such that a typical term of the new absolutely convergent
series is

fn  fp1
a1    fpm

am , where n  p1
a1   pm

am ,
and each ai ≥ 0. Therefore, we have

Pm ∑
1

fn,

where∑1 is summed over those n having all their prime factors ≤ pm. By the unique
factorization theorem (Theorem 1.9), each such n occors once and only once in∑1.
Substracting Pm from∑n1

 fn, we get

∑
n1



fn − Pm ∑
n1



fn −∑
1

fn ∑
2

fn

where∑2 is summed over those n having at least one prime factor  pm. Since these n
occors among the integers  pm, we have

∑
n1



fn − Pm ≤ ∑
npm

|fn|.

As m →  the last sum tends to 0 because∑n1
 fn converges, so Pm → ∑n1

 fn.
To prove that the product converges absolutely we use Theorem 8.52. The product has

the form1  ak, where
ak  fpk  fpk

2 . . . .
The series∑|ak | converges since it is dominated by∑n1

 |fn|. Thereofore,1  ak
also converges absolutely.

Remark: The method comes from Euler. By the same method, it also shows that there
are infinitely many primes. The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese Version)

(b) If, in addition, fn is completely multiplicative, prove that the formula in (a)
becomes

∑
n1



fn 
k1


1

1 − fpk
.

Note that Euler’s product for s (Theorem 8.56) is the special case in which fn  n−s.
Proof: By (a), if fn is completely multiplicative, then rewrite



1  fpk  fpk
2 . . .  ∑

n0



fpk
n

 1
1 − fpk

since |fpk|  1 for all pk. (Suppose NOT, then |fpk| ≥ 1  |fpk
n|  |fpk|n ≥ 1

contradicts to limn→ fn  0. ).
Hence,

∑
n1



fn 
k1


1

1 − fpk
.

8.46 This exercise outlines a simple proof of the formula 2  2/6. Start with the
inequality sinx  x  tanx, valid for 0  x  /2, taking recipocals, and square each
member to obtain

cot2x  1
x2  1  cot2x.

Now put x  k/2m  1, where k and m are integers, with 1 ≤ k ≤ m, and sum on k to
obtain

∑
k1

m

cot2 k
2m  1  2m  12

2 ∑
k1

m
1
k2  m ∑

k1

m

cot2 k
2m  1 .

Use the formula of Exercise 1.49(c) to deduce the ineqaulity
m2m − 12

32m  12 ∑
k1

m
1
k2  2mm  12

32m  12

Now let m →  to obtain 2  2/6.
Proof: The proof is clear if we follow the hint and Exercise 1.49 (c), so we omit it.

8.47 Use an argument similar to that outlined in Exercise 8.46 to prove that
4  4/90.

Proof: The proof is clear if we follow the Exercise 8.46 and Exercise 1.49 (c), so we
omit it.

Remark: (1) From this, it is easy to compute the value of 2s, where
s ∈ n : n ∈ N. In addition, we will learn some new method such as Fourier series and
so on, to find the value of Riemann zeta function.

(2) Ther is an open problem that 2s − 1, where s ∈ n ∈ N : n  1.



Sequences of Functions
Uniform convergence

9.1 Assume that fn → f uniformly on S and that each fn is bounded on
S. Prove that {fn} is uniformly bounded on S.

Proof : Since fn → f uniformly on S, then given ε = 1, there exists a
positive integer n0 such that as n ≥ n0, we have

|fn (x)− f (x)| ≤ 1 for all x ∈ S. (*)

Hence, f (x) is bounded on S by the following

|f (x)| ≤ |fn0 (x)|+ 1 ≤ M (n0) + 1 for all x ∈ S. (**)

where |fn0 (x)| ≤ M (n0) for all x ∈ S.
Let |f1 (x)| ≤ M (1) , ..., |fn0−1 (x)| ≤ M (n0 − 1) for all x ∈ S, then by

(*) and (**),

|fn (x)| ≤ 1 + |f (x)| ≤ M (n0) + 2 for all n ≥ n0.

So,
|fn (x)| ≤ M for all x ∈ S and for all n

where M = max (M (1) , ...,M (n0 − 1) , M (n0) + 2) .

Remark: (1) In the proof, we also shows that the limit function f is
bounded on S.

(2) There is another proof. We give it as a reference.

Proof : Since Since fn → f uniformly on S, then given ε = 1, there exists
a positive integer n0 such that as n ≥ n0, we have

|fn (x)− fn+k (x)| ≤ 1 for all x ∈ S and k = 1, 2, ...

So, for all x ∈ S, and k = 1, 2, ...

|fn0+k (x)| ≤ 1 + |fn0 (x)| ≤ M (n0) + 1 (*)

where |fn0 (x)| ≤ M (n0) for all x ∈ S.
Let |f1 (x)| ≤ M (1) , ..., |fn0−1 (x)| ≤ M (n0 − 1) for all x ∈ S, then by

(*),
|fn (x)| ≤ M for all x ∈ S and for all n

1



where M = max (M (1) , ...,M (n0 − 1) , M (n0) + 1) .

9.2 Define two sequences {fn} and {gn} as follows:

fn (x) = x

(
1 +

1

n

)
if x ∈ R, n = 1, 2, ...,

gn (x) =

{
1
n

if x = 0 or if x is irrational,
b + 1

n
if x is rational, say x = a

b
, b > 0.

Let hn (x) = fn (x) gn (x) .

(a) Prove that both {fn} and {gn} converges uniformly on every bounded
interval.

Proof : Note that it is clear that

lim
n→∞

fn (x) = f (x) = x, for all x ∈ R

and

lim
n→∞

gn (x) = g (x) =

{
0 if x = 0 or if x is irrational,

b if x is ratonal, say x = a
b
, b > 0.

In addition, in order to show that {fn} and {gn} converges uniformly
on every bounded interval, it suffices to consider the case of any compact
interval [−M, M ] , M > 0.

Given ε > 0, there exists a positive integer N such that as n ≥ N, we
have

M

n
< ε and

1

n
< ε.

Hence, for this ε, we have as n ≥ N

|fn (x)− f (x)| =
∣∣∣x
n

∣∣∣ ≤ M

n
< ε for all x ∈ [−M, M ]

and

|gn (x)− g (x)| ≤ 1

n
< ε for all x ∈ [−M, M ] .

That is, we have proved that {fn} and {gn} converges uniformly on every
bounded interval.

Remark: In the proof, we use the easy result directly from definition
of uniform convergence as follows. If fn → f uniformly on S, then fn → f
uniformly on T for every subset T of S.
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(b) Prove that hn (x) does not converges uniformly on any bounded in-
terval.

Proof : Write

hn (x) =

{
x
n

(
1 + 1

n

)
if x = 0 or x is irrational

a + a
n

(
1 + 1

b
+ 1

bn

)
if x is rational, say x = a

b

.

Then

lim
n→∞

hn (x) = h (x) =

{
0 if x = 0 or x is irrational
a if x is rational, say x = a

b

.

Hence, if hn (x) converges uniformly on any bounded interval I, then hn (x)
converges uniformly on [c, d] ⊆ I. So, given ε = max (|c| , |d|) > 0, there is a
positive integer N such that as n ≥ N, we have

max (|c| , |d|) > |hn (x)− h (x)|

=

{ ∣∣x
n

(
1 + 1

n

)∣∣ = |x|
n

∣∣1 + 1
n

∣∣ if x ∈ Qc ∩ [c, d] or x = 0∣∣ a
n

(
1 + 1

b
+ 1

bn

)∣∣ if x ∈ Q ∩ [c, d] , x = a
b

which implies that (x ∈ [c, d] ∩Qc or x = 0)

max (|c| , |d|) >
|x|
n

∣∣∣∣1 +
1

n

∣∣∣∣ ≥ |x|
n
≥ max (|c| , |d|)

n

which is absurb. So, hn (x) does not converges uniformly on any bounded
interval.

9.3 Assume that fn → f uniformly on S, gn → f uniformly on S.

(a) Prove that fn + gn → f + g uniformly on S.

Proof : Since fn → f uniformly on S, and gn → f uniformly on S, then
given ε > 0, there is a positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| < ε

2
for all x ∈ S

and
|gn (x)− g (x)| < ε

2
for all x ∈ S.

Hence, for this ε, we have as n ≥ N,

|fn (x) + gn (x)− f (x)− g (x)| ≤ |fn (x)− f (x)|+ |gn (x)− g (x)|
< ε for all x ∈ S.

3



That is, fn + gn → f + g uniformly on S.

Remark: There is a similar result. We write it as follows. If fn → f
uniformly on S, then cfn → cf uniformly on S for any real c. Since the proof
is easy, we omit the proof.

(b) Let hn (x) = fn (x) gn (x) , h (x) = f (x) g (x) , if x ∈ S. Exercise 9.2
shows that the assertion hn → h uniformly on S is, in general, incorrect.
Prove that it is correct if each fn and each gn is bounded on S.

Proof : Since fn → f uniformly on S and each fn is bounded on S, then
f is bounded on S by Remark (1) in the Exercise 9.1. In addition, since
gn → g uniformly on S and each gn is bounded on S, then gn is uniformly
bounded on S by Exercise 9.1.

Say |f (x)| ≤ M1 for all x ∈ S, and |gn (x)| ≤ M2 for all x and all n. Then
given ε > 0, there exists a positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| < ε

2 (M2 + 1)
for all x ∈ S

and
|gn (x)− g (x)| < ε

2 (M1 + 1)
for all x ∈ S

which implies that as n ≥ N, we have

|hn (x)− h (x)| = |fn (x) gn (x)− f (x) g (x)|
= |[fn (x)− f (x)] [gn (x)] + [f (x)] [gn (x)− g (x)]|
≤ |fn (x)− f (x)| |gn (x)|+ |f (x)| |gn (x)− g (x)|

<
ε

2 (M2 + 1)
M2 + M1

ε

2 (M1 + 1)

<
ε

2
+

ε

2
= ε

for all x ∈ S. So, hn → h uniformly on S.

9.4 Assume that fn → f uniformly on S and suppose there is a constant
M > 0 such that |fn (x)| ≤ M for all x in S and all n. Let g be continuous
on the closure of the disk B (0; M) and define hn (x) = g [fn (x)] , h (x) =
g [f (x)] , if x ∈ S. Prove that hn → h uniformly on S.
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Proof : Since g is continuous on a compact disk B (0; M) , g is uniformly
continuous on B (0; M) . Given ε > 0, there exists a δ > 0 such that as
|x− y| < δ, where x, y ∈ S, we have

|g (x)− g (y)| < ε. (*)

For this δ > 0, since fn → f uniformly on S, then there exists a positive
integer N such that as n ≥ N, we have

|fn (x)− f (x)| < δ for all x ∈ S. (**)

Hence, by (*) and (**), we conclude that given ε > 0, there exists a positive
integer N such that as n ≥ N, we have

|g (fn (x))− g (f (x))| < ε for all x ∈ S.

Hence, hn → h uniformly on S.

9.5 (a) Let fn (x) = 1/ (nx + 1) if 0 < x < 1, n = 1, 2, ... Prove that {fn}
converges pointwise but not uniformly on (0, 1) .

Proof : First, it is clear that limn→∞ fn (x) = 0 for all x ∈ (0, 1) . Supppos
that {fn} converges uniformly on (0, 1) . Then given ε = 1/2, there exists a
positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| =
∣∣∣∣ 1

1 + nx

∣∣∣∣ < 1/2 for all x ∈ (0, 1) .

So, the inequality holds for all x ∈ (0, 1) . It leads us to get a contradiction
since

1

1 + Nx
<

1

2
for all x ∈ (0, 1) ⇒ lim

x→0+

1

1 + Nx
= 1 < 1/2.

That is, {fn} converges NOT uniformly on (0, 1) .

(b) Let gn (x) = x/ (nx + 1) if 0 < x < 1, n = 1, 2, ... Prove that gn → 0
uniformly on (0, 1) .

Proof : First, it is clear that limn→∞ gn (x) = 0 for all x ∈ (0, 1) . Given
ε > 0, there exists a positive integer N such that as n ≥ N, we have

1/n < ε

5



which implies that

|gn (x)− g| =
∣∣∣∣ x

1 + nx

∣∣∣∣ =

∣∣∣∣ 1
1
x

+ n

∣∣∣∣ < 1

n
< ε.

So, gn → 0 uniformly on (0, 1) .

9.6 Let fn (x) = xn. The sequence {fn (x)} converges pointwise but not
uniformly on [0, 1] . Let g be continuous on [0, 1] with g (1) = 0. Prove that
the sequence {g (x) xn} converges uniformly on [0, 1] .

Proof : It is clear that fn (x) = xn converges NOT uniformly on [0, 1]
since each term of {fn (x)} is continuous on [0, 1] and its limit function

f =

{
0 if x ∈ [0, 1)
1 if x = 1.

is not a continuous function on [0, 1] by Theorem 9.2.
In order to show {g (x) xn} converges uniformly on [0, 1] , it suffices to

shows that {g (x) xn} converges uniformly on [0, 1). Note that

lim
n→∞

g (x) xn = 0 for all x ∈ [0, 1).

We partition the interval [0, 1) into two subintervals: [0, 1−δ] and (1− δ, 1) .
As x ∈ [0, 1− δ] : Let M = maxx∈[0,1] |g (x)| , then given ε > 0, there is a

positive integer N such that as n ≥ N, we have

M (1− δ)n < ε

which implies that for all x ∈ [0, 1− δ] ,

|g (x) xn − 0| ≤ M |xn| ≤ M (1− δ)n < ε.

Hence, {g (x) xn} converges uniformly on [0, 1− δ] .
As x ∈ (1− δ, 1) : Since g is continuous at 1, given ε > 0, there exists a

δ > 0 such that as |x− 1| < δ, where x ∈ [0, 1] , we have

|g (x)− g (1)| = |g (x)− 0| = |g (x)| < ε

which implies that for all x ∈ (1− δ, 1) ,

|g (x) xn − 0| ≤ |g (x)| < ε.

6



Hence, {g (x) xn} converges uniformly on (1− δ, 1) .
So, from above sayings, we have proved that the sequence of functions

{g (x) xn} converges uniformly on [0, 1] .

Remark: It is easy to show the followings by definition. So, we omit the
proof.

(1) Suppose that for all x ∈ S, the limit function f exists. If fn → f
uniformly on S1 (⊆ S) , then fn → f uniformly on S, where # (S − S1) <
+∞.

(2) Suppose that fn → f uniformly on S and on T. Then fn → f uni-
formly on S ∪ T.

9.7 Assume that fn → f uniformly on S and each fn is continuous on S.
If x ∈ S, let {xn} be a sequence of points in S such that xn → x. Prove that
fn (xn) → f (x) .

Proof : Since fn → f uniformly on S and each fn is continuous on S, by
Theorem 9.2, the limit function f is also continuous on S. So, given ε > 0,
there is a δ > 0 such that as |y − x| < δ, where y ∈ S, we have

|f (y)− f (x)| < ε

2
.

For this δ > 0, there exists a positive integer N1 such that as n ≥ N1, we
have

|xn − x| < δ.

Hence, as n ≥ N1, we have

|f (xn)− f (x)| < ε

2
. (*)

In addition, since fn → f uniformly on S, given ε > 0, there exists a
positive integer N ≥ N1 such that as n ≥ N, we have

|fn (x)− f (x)| < ε

2
for all x ∈ S

which implies that

|fn (xn)− f (xn)| < ε

2
. (**)

7



By (*) and (**), we obtain that given ε > 0, there exists a positie integer N
such that as n ≥ N, we have

|fn (xn)− f (x)| = |fn (xn)− f (xn)|+ |f (xn)− f (x)|

<
ε

2
+

ε

2
= ε.

That is, we have proved that fn (xn) → f (x) .

9.8 Let {fn} be a seuqnece of continuous functions defined on a compact
set S and assume that {fn} converges pointwise on S to a limit function f.
Prove that fn → f uniformly on S if, and only if, the following two conditions
hold.:

(i) The limit function f is continuous on S.
(ii) For every ε > 0, there exists an m > 0 and a δ > 0, such that n > m

and |fk (x)− f (x)| < δ implies |fk+n (x)− f (x)| < ε for all x in S and all
k = 1, 2, ...

Hint. To prove the sufficiency of (i) and (ii), show that for each x0 in S
there is a neighborhood of B (x0) and an integer k (depending on x0) such
that

|fk (x)− f (x)| < δ if x ∈ B (x0) .

By compactness, a finite set of integers, say A = {k1, ..., kr} , has the property
that, for each x in S, some k in A satisfies |fk (x)− f (x)| < δ. Uniform
convergence is an easy consequences of this fact.

Proof : (⇒) Suppose that fn → f uniformly on S, then by Theorem
9.2, the limit function f is continuous on S. In addition, given ε > 0, there
exists a positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| < ε for all x ∈ S

Let m = N, and δ = ε, then (ii) holds.
(⇐) Suppose that (i) and (ii) holds. We prove fk → f uniformly on S as

follows. By (ii), given ε > 0, there exists an m > 0 and a δ > 0, such that
n > m and |fk (x)− f (x)| < δ implies |fk+n (x)− f (x)| < ε for all x in S
and all k = 1, 2, ...

Consider
∣∣fk(x0) (x0)− f (x0)

∣∣ < δ, then there exists a B (x0) such that as
x ∈ B (x0) ∩ S, we have ∣∣fk(x0) (x)− f (x)

∣∣ < δ

8



by continuity of fk(x0) (x)− f (x) . Hence, by (ii) as n > m∣∣fk(x0)+n (x)− f (x)
∣∣ < ε if x ∈ B (x0) ∩ S. (*)

Note that S is compact and S = ∪x∈S (B (x) ∩ S) , then S = ∪p
k=1 (B (xk) ∩ S) .

So, let N = maxp
i=1 (k (xp) + m) , as n > N, we have

|fn (x)− f (x)| < ε for all x ∈ S

with help of (*). That is, fn → f uniformly on S.

9.9 (a) Use Exercise 9.8 to prove the following theorem of Dini: If
{fn} is a sequence of real-valued continuous functions converginf
pointwise to a continuous limit function f on a compact set S, and
if fn (x) ≥ fn+1 (x) for each x in S and every n = 1, 2, ..., then fn → f
uniformly on S.

Proof : By Exercise 9.8, in order to show that fn → f uniformly on S,
it suffices to show that (ii) holds. Since fn (x) → f (x) and fn+1 (x) ≤ fn (x)
on S, then fixed x ∈ S, and given ε > 0, there exists a positive integer
N (x) = N such that as n ≥ N, we have

0 ≤ fn (x)− f (x) < ε.

Choose m = 1 and δ = ε, then by fn+1 (x) ≤ fn (x) , then (ii) holds. We
complete it.

Remark: (1) Dini’s Theorem is important in Analysis; we suggest the
reader to keep it in mind.

(2) There is another proof by using Cantor Intersection Theorem.
We give it as follows.

Proof : Let gn = fn− f, then gn is continuous on S, gn → 0 pointwise on
S, and gn (x) ≥ gn+1 (x) on S. If we can show gn → 0 uniformly on S, then
we have proved that fn → f uniformly on S.

Given ε > 0, and consider Sn := {x : gn (x) ≥ ε} . Since each gn (x) is
continuous on a compact set S, we obtain that Sn is compact. In addition,
Sn+1 ⊆ Sn since gn (x) ≥ gn+1 (x) on S. Then

∩Sn 6= φ (*)

9



if each Sn is non-empty by Cantor Intersection Theorem. However (*)
contradicts to gn → 0 pointwise on S. Hence, we know that there exists a
positive integer N such that as n ≥ N,

Sn = φ.

That is, given ε > 0, there exists a positive integer N such that as n ≥ N,
we have

|gn (x)− 0| < ε.

So, gn → 0 uniformly on S.

(b) Use he sequence in Exercise 9.5(a) to show that compactness of S is
essential in Dini’s Theorem.

Proof : Let fn (x) = 1
1+nx

, where x ∈ (0, 1) . Then it is clear that each
fn (x) is continuous on (0, 1) , the limit function f (x) = 0 is continuous on
(0, 1) , and fn+1 (x) ≤ fn (x) for all x ∈ (0, 1) . However, fn → f not uniformly
on (0, 1) by Exercise 9.5 (a). Hence, compactness of S is essential in Dini’s
Theorem.

9.10 Let fn (x) = ncx (1− x2)
n

for x real and n ≥ 1. Prove that {fn}
converges pointwsie on [0, 1] for every real c. Determine those c for which the
convergence is uniform on [0, 1] and those for which term-by-term integration
on [0, 1] leads to a correct result.

Proof : It is clear that fn (0) → 0 and fn (1) → 0. Consider x ∈ (0, 1) ,
then |1− x2| := r < 1, then

lim
n→∞

fn (x) = lim
n→∞

ncrnx = 0 for any real c.

Hence, fn → 0 pointwise on [0, 1] .
Consider

f ′n (x) = nc
(
1− x2

)n−1
(2n− 1)

(
1

2n− 1
− x2

)
,

then each fn has the absolute maximum at xn = 1√
2n−1

.

As c < 1/2, we obtain that

|fn (x)| ≤ |fn (xn)|

=
nc

√
2n− 1

(
1− 1

2n− 1

)n

= nc− 1
2

[√
n

2n− 1

(
1− 1

2n− 1

)n]
→ 0 as n →∞. (*)
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In addition, as c ≥ 1/2, if fn → 0 uniformly on [0, 1] , then given ε > 0, there
exists a positive integer N such that as n ≥ N, we have

|fn (x)| < ε for all x ∈ [0, 1]

which implies that as n ≥ N,

|fn (xn)| < ε

which contradicts to

lim
n→∞

fn (xn) =

{ 1√
2e

if c = 1/2

∞ if c > 1/2
. (**)

From (*) and (**), we conclude that only as c < 1/2, the seqences of
functions converges uniformly on [0, 1] .

In order to determine those c for which term-by-term integration on [0, 1] ,
we consider ∫ 1

0

fn (x) dx =
nc

2 (n + 1)

and ∫ 1

0

f (x) dx =

∫ 1

0

0dx = 0.

Hence, only as c < 1, we can integrate it term-by-term.

9.11 Prove that
∑

xn (1− x) converges pointwise but not uniformly on
[0, 1] , whereas

∑
(−1)n xn (1− x) converges uniformly on [0, 1] . This illus-

trates that uniform convergence of
∑

fn (x) along with pointwise con-
vergence of

∑
|fn (x)| does not necessarily imply uniform conver-

gence of
∑
|fn (x)| .

Proof : Let sn (x) =
∑n

k=0 xk (1− x) = 1− xn+1, then

sn (x) →
{

1 if x ∈ [0, 1)
0 if x = 1

.

Hence,
∑

xn (1− x) converges pointwise but not uniformly on [0, 1] by The-
orem 9.2 since each sn is continuous on [0, 1] .

Let gn (x) = xn (1− x) , then it is clear that gn (x) ≥ gn+1 (x) for all x ∈
[0, 1] , and gn (x) → 0 uniformly on [0, 1] by Exercise 9.6. Hence, by Dirich-
let’s Test for uniform convergence, we have proved that

∑
(−1)n xn (1− x)

converges uniformly on [0, 1] .
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9.12 Assume that gn+1 (x) ≤ gn (x) for each x in T and each n = 1, 2, ...,
and suppose that gn → 0 uniformly on T. Prove that

∑
(−1)n+1 gn (x) con-

verges uniformly on T.

Proof : It is clear by Dirichlet’s Test for uniform convergence.

9.13 Prove Abel’s test for uniform convergence: Let {gn} be a sequence
of real-valued functions such that gn+1 (x) ≤ gn (x) for each x in T and for
every n = 1, 2, ... If {gn} is uniformly bounded on T and if

∑
fn (x) converges

uniformly on T, then
∑

fn (x) gn (x) also converges uniformly on T.

Proof : Let Fn (x) =
∑n

k=1 fk (x) . Then

sn (x) =
n∑

k=1

fk (x) gk (x) = Fng1 (x)+
n∑

k=1

(Fn (x)− Fk (x)) (gk+1 (x)− gk (x))

and hence if n > m, we can write

sn (x)−sm (x) = (Fn (x)− Fm (x)) gm+1 (x)+
n∑

k=m+1

(Fn (x)− Fk (x)) (gk+1 (x)− gk (x))

Hence, if M is an uniform bound for {gn} , we have

|sn (x)− sm (x)| ≤ M |Fn (x)− Fm (x)|+ 2M
n∑

k=m+1

|Fn (x)− Fk (x)| . (*)

Since
∑

fn (x) converges uniformly on T, given ε > 0, there exists a positive
integer N such that as n > m ≥ N, we have

|Fn (x)− Fm (x)| < ε

M + 1
for all x ∈ T (**)

By (*) and (**), we have proved that as n > m ≥ N,

|sn (x)− sm (x)| < ε for all x ∈ T.

Hence,
∑

fn (x) gn (x) also converges uniformly on T.

Remark: In the proof, we establish the lemma as follows. We write it
as a reference.
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(Lemma) If {an} and {bn} are two sequences of complex numbers, define

An =
n∑

k=1

ak.

Then we have the identity

n∑
k=1

akbk = Anbn+1 −
n∑

k=1

Ak (bk+1 − bk) (i)

= Anb1 +
n∑

k=1

(An − Ak) (bk+1 − bk) . (ii)

Proof : The identity (i) comes from Theorem 8.27. In order to show
(ii), it suffices to consider

bn+1 = b1 +
n∑

k=1

bk+1 − bk.

9.14 Let fn (x) = x/ (1 + nx2) if x ∈ R, n = 1, 2, ... Find the limit function
f of the sequence {fn} and the limit function g of the sequence {f ′n} .

(a) Prove that f ′ (x) exists for every x but that f ′ (0) 6= g (0) . For what
values of x is f ′ (x) = g (x)?

Proof : It is easy to show that the limit function f = 0, and by f ′n (x) =
1−nx2

(1+nx2)2
, we have

lim
n→∞

f ′n (x) = g (x) =

{
1 if x = 0
0 if x 6= 0

.

Hence, f ′ (x) exists for every x and f ′ (0) = 0 6= g (0) = 1. In addition, it is
clear that as x 6= 0, we have f ′ (x) = g (x) .

(b) In what subintervals of R does fn → f uniformly?

Proof : Note that
1 + nx2

2
≥
√

n |x|
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by A.P. ≥ G.P. for all real x. Hence,∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ 1

2
√

n

which implies that fn → f uniformly on R.

(c) In what subintervals of R does f ′n → g uniformly?

Proof : Since each f ′n = 1−nx2

(1+nx2)2
is continuous on R, and the limit function

g is continuous on R − {0} , then by Theorem 9.2, the interval I that we
consider does not contains 0. Claim that f ′n → g uniformly on such interval
I = [a, b] which does not contain 0 as follows.

Consider ∣∣∣∣ 1− nx2

(1 + nx2)2

∣∣∣∣ ≤ 1

1 + nx2
≤ 1

na2
,

so we know that f ′n → g uniformly on such interval I = [a, b] which does not
contain 0.

9.15 Let fn (x) = (1/n) e−n2x2
if x ∈ R, n = 1, 2, ... Prove that fn → 0

uniformly on R, that f ′n → 0 pointwise on R, but that the convergence of
{f ′n} is not uniform on any interval containing the origin.

Proof : It is clear that fn → 0 uniformly on R, that f ′n → 0 pointwise
on R. Assume that f ′n → 0 uniformly on [a, b] that contains 0. We will prove
that it is impossible as follows.

We may assume that 0 ∈ (a, b) since other cases are similar. Given ε = 1
e
,

then there exists a positive integer N ′ such that as n ≥ max
(
N ′, 1

b

)
:= N

(⇒ 1
N
≤ b), we have

|f ′n (x)− 0| < 1

e
for all x ∈ [a, b]

which implies that ∣∣∣∣2 Nx

e(Nx)2

∣∣∣∣ < 1

e
for all x ∈ [a, b]

which implies that, let x = 1
N

,
2

e
<

1

e

which is absurb. So, the convergence of {f ′n} is not uniform on any interval
containing the origin.
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9.16 Let {fn} be a sequence of real-valued continuous functions defined
on [0, 1] and assume that fn → f uniformly on [0, 1] . Prove or disprove

lim
n→∞

∫ 1−1/n

0

fn (x) dx =

∫ 1

0

f (x) dx.

Proof : By Theorem 9.8, we have

lim
n→∞

∫ 1

0

fn (x) dx =

∫ 1

0

f (x) dx. (*)

Note that {fn} is uniform bound, say |fn (x)| ≤ M for all x ∈ [0, 1] and all
n by Exercise 9.1. Hence,∣∣∣∣∫ 1

1−1/n

fn (x) dx

∣∣∣∣ ≤ M

n
→ 0. (**)

Hence, by (*) and (**), we have

lim
n→∞

∫ 1−1/n

0

fn (x) dx =

∫ 1

0

f (x) dx.

9.17 Mathematicinas from Slobbovia decided that the Riemann integral
was too complicated so that they replaced it by Slobbovian integral, de-
fined as follows: If f is a function defined on the set Q of rational numbers
in [0, 1] , the Slobbovian integral of f, denoted by S (f) , is defined to be the
limit

S (f) = lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
,

whenever the limit exists. Let {fn} be a sequence of functions such that
S (fn) exists for each n and such that fn → f uniformly on Q. Prove that
{S (fn)} converges, that S (f) exists, and S (fn) → S (f) as n →∞.

Proof : fn → f uniformly on Q, then given ε > 0, there exists a positive
integer N such that as n > m ≥ N, we have

|fn (x)− f (x)| < ε/3 (1)
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and
|fn (x)− fm (x)| < ε/2. (2)

So, if n > m ≥ N,

|S (fn)− S (fm)| =

∣∣∣∣∣ limk→∞

1

k

k∑
j=1

(
fn

(
j

k

)
− fm

(
j

k

))∣∣∣∣∣
= lim

k→∞

1

k

∣∣∣∣∣
k∑

j=1

(
fn

(
j

k

)
− fm

(
j

k

))∣∣∣∣∣
≤ lim

k→∞

1

k

k∑
j=1

ε/2 by (2)

= ε/2

< ε

which implies that {S (fn)} converges since it is a Cauchy sequence. Say its
limit S.

Consider, by (1) as n ≥ N,

1

k

k∑
j=1

[
fn

(
j

k

)
− ε/3

]
≤ 1

k

k∑
j=1

f

(
j

k

)
≤ 1

k

k∑
j=1

[
fn

(
j

k

)
+ ε/3

]
which implies that[

1

k

k∑
j=1

fn

(
j

k

)]
− ε/3 ≤ 1

k

k∑
j=1

f

(
j

k

)
≤

[
1

k

k∑
j=1

fn

(
j

k

)]
+ ε/3

which implies that, let k →∞

S (fn)− ε/3 ≤ lim
k→∞

sup
1

k

k∑
j=1

f

(
j

k

)
≤ S (fn) + ε/3 (3)

and

S (fn)− ε/3 ≤ lim
k→∞

inf
1

k

k∑
j=1

f

(
j

k

)
≤ S (fn) + ε/3 (4)
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which implies that∣∣∣∣∣ limk→∞
sup

1

k

k∑
j=1

f

(
j

k

)
− lim

k→∞
inf

1

k

k∑
j=1

f

(
j

k

)∣∣∣∣∣
≤

∣∣∣∣∣ limk→∞
sup

1

k

k∑
j=1

f

(
j

k

)
− S (fn)

∣∣∣∣∣+
∣∣∣∣∣ limk→∞

inf
1

k

k∑
j=1

f

(
j

k

)
− S (fn)

∣∣∣∣∣
≤ 2ε

3
by (3) and (4)

< ε. (5)

Note that (3)-(5) imply that the existence of S (f) . Also, (3) or (4) implies
that S (f) = S. So, we complete the proof.

9.18 Let fn (x) = 1/ (1 + n2x2) if 0 ≤ x ≤ 1, n = 1, 2, ... Prove that {fn}
converges pointwise but not uniformly on [0, 1] . Is term-by term integration
permissible?

Proof : It is clear that

lim
n→∞

fn (x) = 0

for all x ∈ [0, 1] . If {fn} converges uniformly on [0, 1] , then given ε = 1/3,
there exists a positive integer N such that as n ≥ N, we have

|fn (x)| < 1/3 for all x ∈ [0, 1]

which implies that ∣∣∣∣fN

(
1

N

)∣∣∣∣ =
1

2
<

1

3

which is impossible. So, {fn} converges pointwise but not uniformly on [0, 1] .
Since {fn (x)} is clearly uniformly bounded on [0, 1] , i.e., |fn (x)| ≤ 1

for all x ∈ [0, 1] and n. Hence, by Arzela’s Theorem, we know that the
sequence of functions can be integrated term by term.

9.19 Prove that
∑∞

n=1 x/nα (1 + nx2) converges uniformly on every finite
interval in R if α > 1/2. Is the convergence uniform on R?

Proof : By A.P. ≥ G.P., we have∣∣∣∣ x

nα (1 + nx2)

∣∣∣∣ ≤ 1

2nα+ 1
2

for all x.
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So, by Weierstrass M-test, we have proved that
∑∞

n=1 x/nα (1 + nx2) con-
verges uniformly on R if α > 1/2. Hence,

∑∞
n=1 x/nα (1 + nx2) converges

uniformly on every finite interval in R if α > 1/2.

9.20 Prove that the series
∑∞

n=1 ((−1)n /
√

n) sin (1 + (x/n)) converges
uniformly on every compact subset of R.

Proof : It suffices to show that the series
∑∞

n=1 ((−1)n /
√

n) sin (1 + (x/n))
converges uniformly on [0, a] . Choose n large enough so that a/n ≤ 1/2, and
therefore sin

(
1 +

(
x

n+1

))
≤ sin

(
1 + x

n

)
for all x ∈ [0, a] . So, if we let fn (x) =

(−1)n /
√

n and gn (x) = sin
(
1 + x

n

)
, then by Abel’s test for uniform con-

vergence, we have proved that the series
∑∞

n=1 ((−1)n /
√

n) sin (1 + (x/n))
converges uniformly on [0, a] .

Remark: In the proof, we metion something to make the reader get
more. (1) since a compact set K is a bounded set, say K ⊆ [−a, a] , if we can
show the series converges uniformly on [−a, a] , then we have proved it. (2)
The interval that we consider is [0, a] since [−a, 0] is similar. (3) Abel’s test
for uniform convergence holds for n ≥ N, where N is a fixed positive
integer.

9.21 Prove that the series
∑∞

n=0 (x2n+1/ (2n + 1)− xn+1/ (2n + 2)) con-
verges pointwise but not uniformly on [0, 1] .

Proof : We show that the series converges pointwise on [0, 1] by con-
sidering two cases: (1) x ∈ [0, 1) and (2) x = 1. Hence, it is trivial. De-
fine f (x) =

∑∞
n=0 (x2n+1/ (2n + 1)− xn+1/ (2n + 2)) , if the series converges

uniformly on [0, 1] , then by Theorem 9.2, f (x) is continuous on [0, 1] .
However,

f (x) =

{
1
2
log (1 + x) if x ∈ [0, 1)

log 2 if x = 1
.

Hence, the series converges not uniformly on [0, 1] .

Remark: The function f (x) is found by the following. Given x ∈ [0, 1),
then both

∞∑
n=0

t2n =
1

1− t2
and

1

2

∞∑
n=0

tn =
1

2 (1− t)

converges uniformly on [0, x] by Theorem 9.14. So, by Theorem 9.8, we

18



have ∫ x

0

∞∑
n=0

t2n − 1

2

∞∑
n=0

tn =

∫ x

0

1

1− t2
− 1

2 (1− t)
dt

=

∫ x

0

1

2

(
1

1− t
+

1

1 + t

)
− 1

2

(
1

1− t

)
dt

=
1

2
log (1 + x) .

And as x = 1,

∞∑
n=0

(
x2n+1/ (2n + 1)− xn+1/ (2n + 2)

)
=

∞∑
n=0

1

2n + 1
− 1

2n

=
∞∑

n=0

(−1)n+1

n + 1
by Theorem8.14.

= log 2 by Abel’s Limit Theorem.

9.22 Prove that
∑

an sin nx and
∑

bn cos nx are uniformly convergent on
R if

∑
|an| converges.

Proof : It is trivial by Weierstrass M-test.

9.23 Let {an} be a decreasing sequence of positive terms. Prove that
the series

∑
an sin nx converges uniformly on R if, and only if, nan → 0 as

n →∞.

Proof : (⇒) Suppose that the series
∑

an sin nx converges uniformly on
R, then given ε > 0, there exists a positive integer N such that as n ≥ N,
we have ∣∣∣∣∣

2n−1∑
k=n

ak sin kx

∣∣∣∣∣ < ε. (*)

Choose x = 1
2n

, then sin 1
2
≤ sin kx ≤ sin 1. Hence, as n ≥ N, we always
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have, by (*)

(ε >)

∣∣∣∣∣
2n−1∑
k=n

ak sin kx

∣∣∣∣∣ =
2n−1∑
k=n

ak sin kx

≥
2n−1∑
k=n

a2n sin
1

2
since ak > 0 and ak ↘

=

(
1

2
sin

1

2

)
(2na2n) .

That is, we have proved that 2na2n → 0 as n → ∞. Similarly, we also have
(2n− 1) a2n−1 → 0 as n →∞. So, we have proved that nan → 0 as n →∞.

(⇐) Suppose that nan → 0 as n → ∞, then given ε > 0, there exists a
positive integer n0 such that as n ≥ n0, we have

|nan| = nan <
ε

2 (π + 1)
. (*)

In order to show the uniform convergence of
∑∞

n=1 an sin nx on R, it suffices
to show the uniform convergence of

∑∞
n=1 an sin nx on [0, π] . So, if we can

show that as n ≥ n0∣∣∣∣∣
n+p∑

k=n+1

ak sin kx

∣∣∣∣∣ < ε for all x ∈ [0, π] , and all p ∈ N

then we complete it. We consider two cases as follows. (n ≥ n0)

As x ∈
[
0, π

n+p

]
, then∣∣∣∣∣

n+p∑
k=n+1

ak sin kx

∣∣∣∣∣ =

n+p∑
k=n+1

ak sin kx

≤
n+p∑

k=n+1

akkx by sin kx ≤ kx if x ≥ 0

=

n+p∑
k=n+1

(kak) x

≤ ε

2 (π + 1)

pπ

n + p
by (*)

< ε.
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And as x ∈
[

π
n+p

, π
]
, then∣∣∣∣∣

n+p∑
k=n+1

ak sin kx

∣∣∣∣∣ ≤
m∑

k=n+1

ak sin kx +

∣∣∣∣∣
n+p∑

k=m+1

ak sin kx

∣∣∣∣∣ , where m =
[π
x

]
≤

m∑
k=n+1

akkx +
2am+1

sin x
2

by Summation by parts

≤ ε

2 (π + 1)
(m− n) x +

2am+1

sin x
2

≤ ε

2 (π + 1)
mx + 2am+1

π

x
by

2x

π
≤ sin x if x ∈

[
0,

π

2

]
≤ ε

2 (π + 1)
π + 2am+1 (m + 1)

<
ε

2
+ 2

ε

2 (π + 1)

< ε.

Hence,
∑∞

n=1 an sin nx converges uniformly on R.

Remark: (1) In the proof (⇐), if we can make sure that nan ↘ 0, then
we can use the supplement on the convergnce of series in Ch8, (C)-
(6) to show the uniform convergence of

∑∞
n=1 an sin nx =

∑∞
n=1 (nan)

(
sin nx

n

)
by Dirichlet’s test for uniform convergence.

(2)There are similar results; we write it as references.

(a) Suppose an ↘ 0, then for each α ∈
(
0, π

2

)
,
∑∞

n=1 an cos nx and∑∞
n=1 an sin nx converges uniformly on [α, 2π − α] .

Proof: The proof follows from (12) and (13) in Theorem 8.30 and
Dirichlet’s test for uniform convergence. So, we omit it. The reader
can see the textbook, example in pp 231.

(b) Let {an} be a decreasing sequence of positive terms.
∑∞

n=1 an cos nx
uniformly converges on R if and only if

∑∞
n=1 an converges.

Proof: (⇒) Suppose that
∑∞

n=1 an cos nx uniformly converges on R, then
let x = 0, then we have

∑∞
n=1 an converges.

(⇐) Suppose that
∑∞

n=1 an converges, then by Weierstrass M-test, we
have proved that

∑∞
n=1 an cos nx uniformly converges on R.
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9.24 Given a convergent series
∑∞

n=1 an. Prove that the Dirichlet series∑∞
n=1 ann

−s converges uniformly on the half-infinite interval 0 ≤ s < +∞.
Use this to prove that lims→0+

∑∞
n=1 ann

−s =
∑∞

n=1 an.

Proof : Let fn (s) =
∑n

k=1 ak and gn (s) = n−s, then by Abel’s test for
uniform convergence, we have proved that the Dirichlet series

∑∞
n=1 ann

−s

converges uniformly on the half-infinite interval 0 ≤ s < +∞. Then by
Theorem 9.2, we know that lims→0+

∑∞
n=1 ann

−s =
∑∞

n=1 an.

9.25 Prove that the series ζ (s) =
∑∞

n=1 n−s converges uniformly on every
half-infinite interval 1 + h ≤ s < +∞, where h > 0. Show that the equation

ζ ′ (s) = −
∞∑

n=1

log n

ns

is valid for each s > 1 and obtain a similar formula for the kth derivative
ζ(k) (s) .

Proof : Since n−s ≤ n−(1+h) for all s ∈ [1 + h,∞), we know that ζ (s) =∑∞
n=1 n−s converges uniformly on every half-infinite interval 1+h ≤ s < +∞

by Weierstrass M-test. Define Tn (s) =
∑n

k=1 k−s, then it is clear that

1. For each n, Tn (s) is differentiable on [1 + h,∞),

2. lim
n→∞

Tn (2) =
π2

6
.

And

3. T ′
n (s) = −

n∑
k=1

log k

ks
converges uniformly on [1 + h,∞)

by Weierstrass M-test. Hence, we have proved that

ζ ′ (s) = −
∞∑

n=1

log n

ns

by Theorem 9.13. By Mathematical Induction, we know that

ζ(k) (s) = (−1)k
∞∑

n=1

(log n)k

ns
.
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0.1 Supplement on some results on Weierstrass M-
test.

1. In the textbook, pp 224-223, there is a surprising result called Space-
filling curve. In addition, note the proof is related with Cantor set in
exercise 7. 32 in the textbook.

2. There exists a continuous function defined on R which is nowhere
differentiable. The reader can see the book, Principles of Mathematical
Analysis by Walter Rudin, pp 154.

Remark: The first example comes from Bolzano in 1834, however, he
did NOT give a proof. In fact, he only found the function f : D → R that
he constructed is not differentiable on D′ (⊆ D) where D′ is countable and
dense in D. Although the function f is the example, but he did not find the
fact.

In 1861, Riemann gave

g (x) =
∞∑

n=1

sin (n2πx)

n2

as an example. However, Reimann did NOT give a proof in his life until
1916, the proof is given by G. Hardy.

In 1860, Weierstrass gave

h (x) =
∞∑

n=1

an cos (bnπx) , b is odd, 0 < a < 1, and ab > 1 +
3π

2
,

until 1875, he gave the proof. The fact surprises the world of Math, and
produces many examples. There are many researches related with it until
now 2003.

Mean Convergence

9.26 Let fn (x) = n3/2xe−n2x2
. Prove that {fn} converges pointwise to 0

on [−1, 1] but that l.i.m.n→∞fn 6= 0 on [−1, 1] .

Proof : It is clear that {fn} converges pointwise to 0 on [−1, 1] , so it
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remains to show that l.i.m.n→∞fn 6= 0 on [−1, 1] . Consider∫ 1

−1

f 2
n (x) dx = 2

∫ 1

0

n3x2e−2n2x2

dx since f 2
n (x) is an even function on [−1, 1]

=
1√
2

∫ √
2n

0

y2e−y2

dy by Change of Variable, let y =
√

2nx

=
1

−2
√

2

∫ √
2n

0

yd
(
e−y2

)
=

1

−2
√

2

[
ye−y2

∣∣∣√2n

0
−
∫ √

2n

0

e−y2

dy

]

→
√

π

4
√

2
since

∫ ∞

0

e−x2

dx =

√
π

2
by Exercise 7. 19.

So, l.i.m.n→∞fn 6= 0 on [−1, 1] .

9.27 Assume that {fn} converges pointwise to f on [a, b] and that
l.i.m.n→∞fn = g on [a, b] . Prove that f = g if both f and g are continuous
on [a, b] .

Proof : Since l.i.m.n→∞fn = g on [a, b] , given εk = 1
2k , there exists a nk

such that ∫ b

a

|fnk
(x)− g (x)|p dx ≤ 1

2k
, where p > 0

Define

hm (x) =
m∑

k=1

∫ x

a

|fnk
(t)− g (t)|p dt,

then

a. hm (x) ↗ as x ↗
b. hm (x) ≤ hm+1 (x)

c. hm (x) ≤ 1 for all m and all x.

So, we obtain hm (x) → h (x) as m →∞, h (x) ↗ as x ↗, and

h (x)− hm (x) =
∞∑

k=m+1

∫ x

a

|fnk
(t)− g (t)|p dt ↗ as x ↗
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which implies that

h (x + t)− h (x)

t
≥ hm (x + t)− hm (x)

t
for all m. (*)

Since h and hm are increasing, we have h′ and h′m exists a.e. on [a, b] . Hence,
by (*)

h′m (x) =
m∑

k=1

|fnk
(t)− g (t)|p ≤ h′ (x) a.e. on [a, b]

which implies that

∞∑
k=1

|fnk
(t)− g (t)|p exists a.e. on [a, b] .

So, fnk
(t) → g (t) a.e. on [a, b] . In addition, fn → f on [a, b] . Then we

conclude that f = g a.e. on [a, b] . Since f and g are continuous on [a, b] , we
have ∫ b

a

|f − g| dx = 0

which implies that f = g on [a, b] . In particular, as p = 2, we have f = g.

Remark: (1) A property is said to hold almost everywhere on a set
S (written: a.e. on S) if it holds everywhere on S except for a set of measurer
zero. Also, see the textbook, pp 254.

(2) In this proof, we use the theorem which states: A monotonic function
h defined on [a, b] , then h is differentiable a.e. on [a, b] . The reader can
see the book, The reader can see the book, Measure and Integral (An
Introduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 113.

(3) There is another proof by using Fatou’s lemma: Let {fk} be a
measruable function defined on a measure set E. If fk ≥ φ a.e. on E and
φ ∈ L (E) , then ∫

E

lim
k→∞

inf fk ≤ lim
k→∞

inf

∫
E

fk.

Proof : It suffices to show that fnk
(t) → g (t) a.e. on [a, b] . Since

l.i.m.n→∞fn = g on [a, b] , and given ε > 0, there exists a nk such that∫ b

a

|fnk
− g|2 dx <

1

2k
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which implies that ∫ b

a

m∑
k=1

|fnk
− g|2 dx <

m∑
k=1

1

2k

which implies that, by Fatou’s lemma,∫ b

a

lim
m→∞

inf
m∑

k=1

|fnk
− g|2 dx ≤ lim

m→∞
inf

∫ b

a

m∑
k=1

|fnk
− g|2 dx

=
∞∑

k=1

∫ b

a

|fnk
− g|2 dx < 1.

That is, ∫ b

a

∞∑
k=1

|fnk
− g|2 dx < 1

which implies that

∞∑
k=1

|fnk
− g|2 < ∞ a.e. on [a, b]

which implies that fnk
→ g a.e. on [a, b] .

Note: The reader can see the book, Measure and Integral (An In-
troduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 75.

(4) There is another proof by using Egorov’s Theorem: Let {fk} be a
measurable functions defined on a finite measurable set E with finite limit
function f. Then given ε > 0, there exists a closed set F (⊆ E) , where
|E − F | < ε such that

fk → f uniformly on F.

Proof : If f 6= g on [a, b] , then h := |f − g| 6= 0 on [a, b] . By continuity
of h, there exists a compact subinterval [c, d] such that |f − g| 6= 0. So, there
exists m > 0 such that h = |f − g| ≥ m > 0 on [c, d] . Since∫ b

a

|fn − g|2 dx → 0 as n →∞,
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we have ∫ d

c

|fn − g|2 dx → 0 as n →∞.

then by Egorov’s Theorem, given ε > 0, there exists a closed susbet F of
[c, d] , where |[c, d]− F | < ε such that

fn → f uniformly on F

which implies that

0 = lim
n→∞

∫
F

|fn − g|2 dx

=

∫
F

lim
n→∞

|fn − g|2 dx

=

∫
F

|f − g|2 dx ≥ m2 |F |

which implies that |F | = 0. If we choose ε < d−c, then we get a contradiction.
Therefore, f = g on [a, b] .

Note: The reader can see the book, Measure and Integral (An In-
troduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 57.

9.28 Let fn (x) = cosn x if 0 ≤ x ≤ π.

(a) Prove that l.i.m.n→∞fn = 0 on [0, π] but that {fn (π)} does not
converge.

Proof : It is clear that {fn (π)} does not converge since fn (π) = (−1)n .
It remains to show that l.i.m.n→∞fn = 0 on [0, π] . Consider cos2n x := gn (x)
on [0, π] , then it is clear that {gn (x)} is boundedly convergent with limit
function

g =

{
0 if x ∈ (0, π)
1 if x = 0 or π

.

Hence, by Arzela’s Theorem,

lim
n→∞

∫ π

0

cos2n xdx =

∫ π

0

g (x) dx = 0.

So, l.i.m.n→∞fn = 0 on [0, π] .
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(b) Prove that {fn} converges pointwise but not uniformly on [0, π/2] .

Proof : Note that each fn (x) is continuous on [0, π/2] , and the limit
function

f =

{
0 if x ∈ (0, π/2]

1 if x = 0
.

Hence, by Theorem9.2, we know that {fn} converges pointwise but not
uniformly on [0, π/2] .

9.29 Let fn (x) = 0 if 0 ≤ x ≤ 1/n or 2/n ≤ x ≤ 1, and let fn (x) = n if
1/n < x < 2/n. Prove that {fn} converges pointwise to 0 on [0, 1] but that
l.i.m.n→∞fn 6= 0 on [0, 1] .

Proof : It is clear that {fn} converges pointwise to 0 on [0, 1] . In order
to show that l.i.m.n→∞fn 6= 0 on [0, 1] , it suffices to note that∫ 1

0

fn (x) dx = 1 for all n.

Hence, l.i.m.n→∞fn 6= 0 on [0, 1] .

Power series

9.30 If r is the radius of convergence if
∑

an (z − z0)
n , where each an 6= 0,

show that

lim
n→∞

inf

∣∣∣∣ an

an+1

∣∣∣∣ ≤ r ≤ lim
n→∞

sup

∣∣∣∣ an

an+1

∣∣∣∣ .
Proof : By Exercise 8.4, we have

1

limn→∞ sup
∣∣∣an+1

an

∣∣∣ ≤ r =
1

limn→∞ sup |an|
1
n

≤ 1

limn→∞ inf
∣∣∣an+1

an

∣∣∣ .
Since

1

limn→∞ sup
∣∣∣an+1

an

∣∣∣ = lim
n→∞

inf

∣∣∣∣ an

an+1

∣∣∣∣
and

1

limn→∞ inf
∣∣∣an+1

an

∣∣∣ = lim
n→∞

sup

∣∣∣∣ an

an+1

∣∣∣∣ ,
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we complete it.

9.31 Given that two power series
∑

anz
n has radius of convergence 2.

Find the radius convergence of each of the following series: In (a) and (b), k
is a fixed positive integer.

(a)
∑∞

n=0 ak
nz

n

Proof : Since

2 =
1

limn→∞ sup |an|1/n
, (*)

we know that the radius of
∑∞

n=0 ak
nz

n is

1

limn→∞ sup |ak
n|

1/n
=

1(
limn→∞ sup |an|1/n

)k
= 2k.

(b)
∑∞

n=0 anz
kn

Proof : Consider

lim
n→∞

sup
∣∣anz

kn
∣∣1/n

= lim
n→∞

sup |an|1/n |z|k < 1

which implies that

|z| <

(
1

limn→∞ sup |an|1/n

)1/k

= 21/k by (*).

So, the radius of
∑∞

n=0 anz
kn is 21/k.

(c)
∑∞

n=0 anz
n2

Proof : Consider

lim sup
∣∣∣anz

n2
∣∣∣1/n

= lim
n→∞

sup |an|1/n |z|n

and claim that the radius of
∑∞

n=0 anz
n2

is 1 as follows.
If |z| < 1, it is clearly seen that the series converges. However, if |z| > 1,

lim
n→∞

sup |an|1/n lim
n→∞

inf |z|n ≤ lim
n→∞

sup |an|1/n |z|n

29



which impliest that
lim

n→∞
sup |an|1/n |z|n = +∞.

so, the series diverges. From above, we have proved the claim.

9.32 Given a power series
∑

anx
n whose coefficents are related by an

equation of the form

an + Aan−1 + Ban−2 = 0 (n = 2, 3, ...).

Show that for any x for which the series converges, its sum is

a0 + (a1 + Aa0) x

1 + Ax + Bx2
.

Proof : Consider
∞∑

n=2

(an + Aan−1 + Ban−2) xn = 0

which implies that

∞∑
n=2

anx
n + Ax

∞∑
n=2

an−1x
n−1 + Bx2

∞∑
n=2

an−2x
n−2 = 0

which implies that

∞∑
n=0

anx
n + Ax

∞∑
n=0

anx
n + Bx2

∞∑
n=0

anx
n = a0 + a1x + Aa0x

which implies that

∞∑
n=0

anx
n =

a0 + (a1 + Aa0) x

1 + Ax + Bx2
.

Remark: We prove that for any x for which the series converges, then
1 + Ax + Bx2 6= 0 as follows.

Proof : Consider(
1 + Ax + Bx2

) ∞∑
n=0

anx
n = a0 + (a1 + Aa0) x,
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if x = λ (6= 0) is a root of 1 + Ax + Bx2, and
∑∞

n=0 anλ
n exists, we have

1 + Aλ + Bλ2 = 0 and a0 + (a1 + Aa0) λ = 0.

Note that a1 + Aa0 6= 0, otherwise, a0 = 0 (⇒ a1 = 0) , and therefore, an =
0 for all n. Then there is nothing to prove it. So, put λ = −a0

a1+Aa0
into

1 + Aλ + Bλ2 = 0, we then have

a2
1 = a0a2.

Note that a0 6= 0, otherwise, a1 = 0 and a2 = 0. Similarly, a1 6= 0, otherwise,
we will obtain a trivial thing. Hence, we may assume that all an 6= 0 for all
n. So,

a2
2 = a1a3.

And it is easy to check that an = a0
1

λn for all n ≥ N. Therefore,
∑

anλ
n =∑

a0 diverges. So, for any x for whcih the series converges, we have 1+Ax+
Bx2 6= 0.

9.33 Let f (x) = e−1/x2
if x 6= 0, f (0) = 0.

(a) Show that f (n) (0) exists for all n ≥ 1.

Proof : By Exercise 5.4, we complete it.

(b) Show that the Taylor’s series about 0 generated by f converges ev-
erywhere on R but that it represents f only at the origin.

Proof : The Taylor’s series about 0 generated by f is

∞∑
n=0

f (n) (0)

n!
xn =

∞∑
n=0

0xn = 0.

So, it converges everywhere on R but that it represents f only at the origin.

Remark: It is an important example to tell us that even for functions
f ∈ C∞ (R) , the Taylor’s series about c generated by f may NOT represent
f on some open interval. Also see the textbook, pp 241.

9.34 Show that the binomial series (1 + x)α =
∑∞

n=0 (α
n) xn exhibits the

following behavior at the points x = ±1.

(a) If x = −1, the series converges for α ≥ 0 and diverges for α < 0.

31



Proof : If x = −1, we consider three cases: (i) α < 0, (ii) α = 0, and (iii)
α > 0.

(i) As α < 0, then

∞∑
n=0

(α
n) (−1)n =

∞∑
n=0

(−1)n α (α− 1) · · · (α− n + 1)

n!
,

say an = (−1)n α(α−1)···(α−n+1)
n!

, then an ≥ 0 for all n, and

an

1/n
=
−α (−α + 1) · · · (−α + n− 1)

(n− 1)!
≥ −α > 0 for all n.

Hence,
∑∞

n=0 (α
n) (−1)n diverges.

(ii) As α = 0, then the series is clearly convergent.
(iii) As α > 0, define an = n (−1)n (α

n) , then

an+1

an

=
n− α

n
≥ 1 if n ≥ [α] + 1. (*)

It means that an > 0 for all n ≥ [α]+1 or an < 0 for all n ≥ [α]+1. Without
loss of generality, we consider an > 0 for all n ≥ [α] + 1 as follows.

Note that (*) tells us that

an > an+1 > 0 ⇒ lim
n→∞

an exists.

and
an − an+1 = α (−1)n (α

n) .

So,
m∑

n=[α]+1

(−1)n (α
n) =

1

α

m∑
n=[α]+1

(an − an+1) .

By Theorem 8.10, we have proved the convergence of the series
∑∞

n=0 (α
n) (−1)n .

(b) If x = 1, the series diverges for α ≤ −1, converges conditionally for α
in the interval −1 < α < 0, and converges absolutely for α ≥ 0.

Proof : If x = 1, we consider four cases as follows: (i) α ≤ −1, (ii)
−1 < −α < 0, (iii) α = 0, and (iv) α > 0 :

(i) As α ≤ −1, say an = α(α−1)···(α−n+1)
n!

. Then

|an| =
−α (−α + 1) · · · (−α + n− 1)

n!
≥ 1 for all n.
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So, the series diverges.
(ii) As −1 < α < 0, say an = α(α−1)···(α−n+1)

n!
. Then an = (−1)n bn, where

bn =
−α (−α + 1) · · · (−α + n− 1)

n!
> 0.

with
bn+1

bn

=
n− α

n
< 1 since − 1 < −α < 0

which implies that {bn} is decreasing with limit L. So, if we can show L = 0,
then

∑
an converges by Theorem 8.16.

Rewrite

bn =
n∏

k=1

(
1− α + 1

k

)
and since

∑
α+1

k
diverges, then by Theroem 8.55, we have proved L = 0.

In order to show the convergence is conditionally, it suffices to show the
divergence of

∑
bn. The fact follows from

bn

1/n
=
−α (−α + 1) · · · (−α + n− 1)

(n− 1)!
≥ −α > 0.

(iii) As α = 0, it is clearly that the series converges absolutely.
(iv) As α > 0, we consider

∑
|(α

n)| as follows. Define an = |(α
n)| , then

an+1

an

=
n− α

n + 1
< 1 if n ≥ [α] + 1.

It implies that nan − (n + 1) an = αan and (n + 1) an+1 < nan. So, by
Theroem 8.10, ∑

an =
1

α

∑
nan − (n + 1) an

converges since limn→∞ nan exists. So, we have proved that the series con-
verges absolutely.

9.35 Show that
∑

anx
n converges uniformly on [0, 1] if

∑
an converges.

Use this fact to give another proof of Abel’s limit theorem.

Proof : Define fn (x) = an on [0, 1] , then it is clear that
∑

fn (x) con-
verges uniformly on [0, 1] . In addition, let gn (x) = xn, then gn (x) is unifom-
rly bouned with gn+1 (x) ≤ gn (x) . So, by Abel’s test for uniform convergence,
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∑
anx

n converges uniformly on [0, 1] . Now, we give another proof of Abel’s
Limit Theorem as follows. Note that each term of

∑
anx

n is continuous
on [0, 1] and the convergence is uniformly on [0, 1] , so by Theorem 9.2, the
power series is continuous on [0, 1] . That is, we have proved Abel’s Limit
Theorem:

lim
x→1−

∑
anx

n =
∑

an.

9.36 If each an > 0 and
∑

an diverges, show that
∑

anx
n → +∞ as

x → 1−. (Assume
∑

anx
n converges for |x| < 1.)

Proof : Given M > 0, if we can find a y near 1 from the left such that∑
any

n ≥ M, then for y ≤ x < 1, we have

M ≤
∑

any
n ≤

∑
anx

n.

That is, limx→1−
∑

anx
n = +∞.

Since
∑

an diverges, there is a positive integer p such that

p∑
k=1

ak ≥ 2M > M. (*)

Define fn (x) =
∑n

k=1 akx
k, then by continuity of each fn, given 0 < ε (< M) ,

there exists a δn > 0 such that as x ∈ [δn, 1), we have

n∑
k=1

ak − ε <
n∑

k=1

akx
k <

n∑
k=1

ak + ε (**)

By (*) and (**), we proved that as y = δp

M ≤
p∑

k=1

ak − ε <

p∑
k=1

aky
k.

Hence, we have proved it.

9.37 If each an > 0 and if limx→1−
∑

anx
n exists and equals A, prove

that
∑

an converges and has the sum A. (Compare with Theorem 9.33.)

Proof : By Exercise 9.36, we have proved the part,
∑

an converges. In
order to show

∑
an = A, we apply Abel’s Limit Theorem to complete it.
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9.38 For each real t, define ft (x) = xext/ (ex − 1) if x ∈ R, x 6= 0,
ft (0) = 1.

(a) Show that there is a disk B (0; δ) in which ft is represented by a power
series in x.

Proof : First, we note that ex−1
x

=
∑∞

n=0
xn

(n+1)!
:= p (x) , then p (0) = 1 6=

0. So, by Theorem 9. 26, there exists a disk B (0; δ) in which the reciprocal
of p has a power series exapnsion of the form

1

p (x)
=

∞∑
n=0

qnx
n.

So, as x ∈ B (0; δ) by Theorem 9.24.

ft (x) = xext/ (ex − 1)

=

(
∞∑

n=0

(xt)n

n!

)(
∞∑

n=0

xn

(n + 1)!

)

=
∞∑

n=0

rn (t) xn.

(b) Define P0 (t) , P1 (t) , P2 (t) , ..., by the equation

ft (x) =
∞∑

n=0

Pn (t)
xn

n!
, if x ∈ B (0; δ) ,

and use the identity

∞∑
n=0

Pn (t)
xn

n!
= etx

∞∑
n=0

Pn (0)
xn

n!

to prove that Pn (t) =
∑n

k=0 (n
k) Pk (0) tn−k.

Proof : Since

ft (x) =
∞∑

n=0

Pn (t)
xn

n!
= etx x

ex − 1
,
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and

f0 (x) =
∞∑

n=0

Pn (0)
xn

n!
=

x

ex − 1
.

So, we have the identity

∞∑
n=0

Pn (t)
xn

n!
= etx

∞∑
n=0

Pn (0)
xn

n!
.

Use the identity with etx =
∑∞

n=0
tn

n!
xn, then we obtain

Pn (t)

n!
=

n∑
k=0

tn−k

(n− k)!

Pk (0)

k!

=
1

n!

n∑
k=0

(n
k) Pk (0) tn−k

which implies that

Pn (t) =
n∑

k=0

(n
k) Pk (0) tn−k.

This shows that each function Pn is a polynomial. There are the Bernoulli
polynomials. The numbers Bn = Pn (0) (n = 0, 1, 2, ...) are called the
Bernoulli numbers. Derive the following further properties:

(c) B0 = 1, B1 = −1
2
,
∑n−1

k=0 (n
k) Bk = 0, if n = 2, 3, ...

Proof : Since 1 = p(x)
p(x)

, where p (x) :=
∑∞

n=0
xn

(n+1)!
, and 1

p(x)
:=
∑∞

n=0 Pn (0) xn

n!
.

So,

1 = p (x)
1

p (x)

=
∞∑

n=0

xn

(n + 1)!

∞∑
n=0

Pn (0)
xn

n!

=
∞∑

n=0

Cnx
n

where

Cn =
1

(n + 1)!

n∑
k=0

(
n+1
k

)
Pk (0) .
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So,
B0 = P0 (0) = C0 = 1,

B1 = P1 (0) =
C1 − P0 (0)

2
= −1

2
, by C1 = 0

and note that Cn = 0 for all n ≥ 1, we have

0 = Cn−1

=
1

n!

n−1∑
k=0

(n
k) Pk (0)

=
1

n!

n−1∑
k=0

(n
k) Bk for all n ≥ 2.

(d) P ′
n (t) = nPn−1 (t) , if n = 1, 2, ...

Proof : Since

P ′
n (t) =

n∑
k=0

(n
k) Pk (0) (n− k) tn−k−1

=
n−1∑
k=0

(n
k) Pk (0) (n− k) tn−k−1

=
n−1∑
k=0

n! (n− k)

k! (n− k)!
Pk (0) t(n−1)−k

=
n−1∑
k=0

n
(n− 1)!

k! (n− 1− k)!
Pk (0) t(n−1)−k

= n
n−1∑
k=0

(
n−1
k

)
Pk (0) t(n−1)−k

= nPn−1 (t) if n = 1, 2, ...

(e) Pn (t + 1)− Pn (t) = ntn−1 if n = 1, 2, ...
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Proof : Consider

ft+1 (x)− ft (x) =
∞∑

n=0

[Pn (t + 1)− Pn (t)]
xn

n!
by (b)

= xext by ft (x) = xext/ (ex − 1)

=
∞∑

n=0

(n + 1) tn
xn+1

(n + 1)!
,

so as n = 1, 2, ..., we have

Pn (t + 1)− Pn (t) = ntn−1.

(f) Pn (1− t) = (−1)n Pn (t)

Proof : Note that
ft (−x) = f1−t (x) ,

so we have
∞∑

n=0

(−1)n Pn (t)
xn

n!
=

∞∑
n=0

Pn (1− t)
xn

n!
.

Hence, Pn (1− t) = (−1)n Pn (t) .

(g) B2n+1 = 0 if n = 1, 2, ...

Proof : With help of (e) and (f), let t = 0 and n = 2k +1, then it is clear
that B2k+1 = 0 if k = 1, 2, ...

(h) 1n + 2n + ... + (k − 1)n = Pn+1(k)−Pn+1(0)
n+1

(n = 2, 3, ...)

Proof : With help of (e), we know that

Pn+1 (t + 1)− Pn+1 (t)

n + 1
= tn

which implies that

1n + 2n + ... + (k − 1)n =
Pn+1 (k)− Pn+1 (0)

n + 1
(n = 2, 3, ...)
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Remark: (1) The reader can see the book, Infinite Series by Chao
Wen-Min, pp 355-366. (Chinese Version)

(2) There are some special polynomials worth studying, such as Legen-
gre Polynomials. The reader can see the book, Essentials of Ordinary
Differential Equations by Ravi P. Agarwal and Ramesh C. Gupta.
pp 305-312.

(3) The part (h) tells us one formula to calculte the value of the finite
series

∑m
k=1 kn. There is an interesting story from the mail that Fermat,

pierre de (1601-1665) sent to Blaise Pascal (1623-1662). Fermat
used the Mathematical Induction to show that

n∑
k=1

k (k + 1) · · · (k + p) =
n (n + 1) · · · (n + p + 1)

p + 2
. (*)

In terms of (*), we can obtain another formula on
∑m

k=1 kn.
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Limit sup and limit inf.
Introduction

In order to make us understand the information more on approaches of a given real
sequence ann1

 , we give two definitions, thier names are upper limit and lower limit. It
is fundamental but important tools in analysis.

Definition of limit sup and limit inf
Definition Given a real sequence ann1

 , we define
bn  supam : m  n

and
cn  infam : m  n.

Example 1  1nn1
  0,2, 0, 2, . . ., so we have

bn  2 and cn  0 for all n.

Example 1nnn1
  1,2,3,4, . . . , so we have

bn   and cn   for all n.

Example nn1
  1,2,3, . . . , so we have

bn  n and cn   for all n.

Proposition Given a real sequence ann1
 , and thus define bn and cn as the same as

before.
1 bn  , and cn   n  N.
2 If there is a positive integer p such that bp  , then bn   n  N.
If there is a positive integer q such that cq  , then cn   n  N.

3 bn is decreasing and cn is increasing.
By property 3, we can give definitions on the upper limit and the lower limit of a given

sequence as follows.
Definition Given a real sequence an and let bn and cn as the same as before.

(1) If every bn  R, then
infbn : n  N

is called the upper limit of an, denoted by
limn supan.

That is,
limn supan  infn bn.

If every bn  , then we define
limn supan  .

(2) If every cn  R, then
supcn : n  N

is called the lower limit of an, denoted by
limn infan.



That is,
limn infan  supn cn.

If every cn  , then we define
limn infan  .

Remark The concept of lower limit and upper limit first appear in the book (Analyse
Alge’brique) written by Cauchy in 1821. But until 1882, Paul du Bois-Reymond
gave explanations on them, it becomes well-known.

Example 1  1nn1
  0,2, 0, 2, . . . , so we have

bn  2 and cn  0 for all n
which implies that

lim supan  2 and lim infan  0.

Example 1nnn1
  1,2,3,4, . . . , so we have

bn   and cn   for all n
which implies that

lim supan   and lim infan  .

Example nn1
  1,2,3, . . . , so we have

bn  n and cn   for all n
which implies that

lim supan   and lim infan  .

Relations with convergence and divergence for upper (lower) limit
Theorem Let an be a real sequence, then an converges if, and only if, the upper

limit and the lower limit are real with
limn supan  limn infan  limn an.

Theorem Let an be a real sequence, then we have
(1) limn supan    an has no upper bound.
(2) limn supan    for any M  0, there is a positive integer n0 such

that as n  n0, we have
an  M.

(3) limn supan  a if, and only if, (a) given any   0, there are infinite
many numbers n such that

a    an
and (b) given any   0, there is a positive integer n0 such that as n  n0, we have

an  a  .

Similarly, we also have
Theorem Let an be a real sequence, then we have

(1) limn infan    an has no lower bound.
(2) limn infan    for any M  0, there is a positive integer n0 such



that as n  n0, we have
an  M.

(3) limn infan  a if, and only if, (a) given any   0, there are infinite
many numbers n such that

a    an
and (b) given any   0, there is a positive integer n0 such that as n  n0, we have

an  a  .

From Theorem 2 an Theorem 3, the sequence is divergent, we give the following
definitios.
Definition Let an be a real sequence, then we have

(1) If limn supan  , then we call the sequence an diverges to ,
denoted by

limn an  .

(2) If limn infan  , then we call the sequence an diverges to ,
denoted by

limn an  .

Theorem Let an be a real sequence. If a is a limit point of an, then we have
limn infan  a  limn supan.

Some useful results
Theorem Let an be a real sequence, then

(1) limn infan  limn supan.
(2) limn infan   limn supan and limn supan   limn infan
(3) If every an  0, and 0  limn infan  limn supan  , then we

have
limn sup

1
an  1

limn infan
and limn inf

1
an  1

limn supan
.

Theorem Let an and bnbe two real sequences.
(1) If there is a positive integer n0 such that an  bn, then we have

limn infan  limn infbn and limn supan  limn supbn.
(2) Suppose that   limn infan, limn infbn, limn supan,

limn supbn  , then
limn infan  limn infbn

 limn infan  bn

 limn infan  limn supbn (or limn supan  limn infbn )
 limn supan  bn
 limn supan  limn supbn.

In particular, if an converges, we have
limn supan  bn  limn an  limn supbn



and
limn infan  bn  limn an  limn infbn.

(3) Suppose that   limn infan, limn infbn, limn supan,
limn supbn  , and an  0, bn  0 n, then

limn infan limn infbn
 limn infanbn

 limn infan limn supbn (or limn infbn limn supan )
 limn supanbn

 limn supan limn supbn .
In particular, if an converges, we have

limn supanbn  limn an limn supbn
and

limn infan  bn  limn an limn infbn.

Theorem Let an be a positive real sequence, then
limn inf

an1
an  limn infan

1/n  limn supan
1/n  limn sup

an1
an .

Remark We can use the inequalities to show

limn
n!1/n
n  1/e.

Theorem Let an be a real sequence, then
limn infan  limn inf

a1 . . .an
n  limn sup

a1 . . .an
n  limn supan.

Exercise Let f : a,d  R be a continuous function, and an is a real sequence. If f is
increasing and for every n, limn infan, limn supan  a,d, then

limn sup fan  f limn supan and limn inf fan  f limn infan .

Remark: (1) The condition that f is increasing cannot be removed. For
example,

fx  |x|,
and

ak 
1/k if k is even

1  1/k if k is odd.

(2) The proof is easy if we list the definition of limit sup and limit inf. So, we
omit it.

Exercise Let an be a real sequence satisfying anp  an  ap for all n, p. Show that
 ann  converges.

Hint: Consider its limit inf.



Something around the number e
1. Show that the sequence 1  1

n 
n converges, and denote the limit by e.

Proof: Since

1  1n
n


k0

n

kn
1
n

k

 1  n  1n  nn  12!
1
n

2
. . nn  1   1n!

1
n

n

 1  1  1
2! 1  1n . . . 1n! 1  1n    1  n  1n

 1  1  12  1
22 . . 1

2n1
. . .

 3,

    1

and by (1), we know that the sequence is increasing. Hence, the sequence is convergent.
We denote its limit e. That is,

limn 1  1n
n
 e.

Remark: 1. The sequence and e first appear in the mail that Euler wrote to Goldbach.
It is a beautiful formula involving

ei  1  0.

2. Use the exercise, we can show thatk0
 1

k!  e as follows.

Proof: Let xn  1  1
n 

n, and let k  n, we have

1  1  1
2! 1  1k . . 1n! 1  1k   1  n  1k  xk

which implies that ( let k   )

yn :
i0

n
1
i!  e.     2

On the other hand,
xn  yn     3

So, by (2) and (3), we finally have


k0


1
k!  e.     4

3. e is an irrational number.
Proof: Assume that e is a rational number, say e  p/q, where g.c.d. p,q  1. Note

that q  1. Consider

q!e  q! 
k0


1
k!

 q! 
k0

q
1
k!  q! 

kq1


1
k! ,

and since q! k0
q 1

k! and q!e are integers, we have q! kq1
 1

k! is also an
integer. However,



q! 
kq1


1
k!  

kq1

 q!
k!

 1
q  1  1

q  1q  2 . . .

 1
q  1  1

q  1
2
. . .

 1
q

 1,
a contradiction. So, we know that e is not a rational number.
4. Here is an estimate about e  k0

n 1
k! 


nn! , where 0    1. ( In fact, we know

that e  2.71828 18284 59045 . . . . )
Proof: Since e  k0

 1
k! , we have

0  e  xn  
kn1


1
k! , where xn 

k0

n
1
k!

 1
n  1! 1  1

n  2  1
n  2n  3 . . .

 1
n  1! 1  1

n  2  1
n  22

. . .

 1
n  1! 

n  2
n  1

 1
nn! since

n  2
n  12

 1
n .

So, we finally have

e 
k0

n
1
k! 


nn! , where 0    1.

Note:We can use the estimate dorectly to show e is an irrational number.
2. For continuous variables, we have the samae result as follows. That is,

lim
x

1  1x
x
 e.

Proof: (1) Since 1  1
n 

n  e as n  , we know that for any sequence an  N,
with an  , we have

limn 1  1
an

an
 e.     5

(2) Given a sequence xn with xn  , and define an  xn, then
an  xn  an  1, then we have

1  1
an  1

an
 1  1

xn
xn
 1  1

an
an1
.

Since

1  1
an  1

an
 e and 1  1

an
an1

 e as x   by (5)

we know that



limn 1 
1
xn

xn
 e.

Since xn is arbitrary chosen so that it goes infinity, we finally obtain that
limx 1 

1
x

x
 e.     6

(3) In order to show 1  1
x 

x  e as x  , we let x  y, then

1  1x
x
 1  1

y
y

 y
y  1

y

 1  1
y  1

y1
1  1

y  1 .

Note that x   y  , by (6), we have shown that

e  limy 1  1
y  1

y1
1  1

y  1

 limx 1 
1
x

x
.

3. Prove that as x  0, we have1  1
x 

x is strictly increasing, and 1  1
x 

x1 is
dstrictly ecreasing.
Proof: Since, byMean Value Theorem

1
x  1  log 1  1x  logx  1  logx  1

  1
x for all x  0,

we have

x log 1  1x

 log 1  1x  1

x  1  0 for all x  0

and

x  1 log 1  1x

 log 1  1x  1x  0 for all x  0.

Hence, we know that
x log 1  1x is strictly increasing on 0,

and
x  1 log 1  1x is strictly decreasing on 0,.

It implies that

1  1x
x
is strictly increasing 0,, and 1  1x

x1
is strictly decreasing on 0,.

Remark: By exercise 2, we know that

limx 1 
1
x

x
 e  limx 1 

1
x

x1
.

4. Follow the Exercise 3 to find the smallest a such that 1  1
x 

xa  e and strictly
decreasing for all x  0,.
Proof: Let fx  1  1

x 
xa, and consider

log fx  x  a log 1  1x : gx,

Let us consider



gx  log 1  1x  x  a
x2  x

  log1  y  y  1  ay2 1
1  y , where 0  y 

1
1  x  1


k1

 yk
k  y  1  ay2

k0



yk

 1
2  a y

2  1
3  a y

3 . . . 1
n  a yn . . .

It is clear that for a  1/2, we have gx  0 for all x  0,. Note that for a  1/2,
if there exists such a so that f is strictly decreasing for all x  0,. Then gx  0 for
all x  0,. However, it is impossible since

gx  1
2  a y

2  1
3  a y

3 . . . 1
n  a yn . . .

 1
2  a  0 as y  1

.

So, we have proved that the smallest value of a is 1/2.

Remark: There is another proof to show that 1  1
x 

x1/2 is strictly decreasing on
0,.
Proof: Consider ht  1/t, and two points 1,1 and 1  1

x , 1
1 1x

lying on the graph
From three areas, the idea is that

The area of lower rectangle  The area of the curve  The area of trapezoid
So, we have

1
1  x  1

x
1

1  1
x

 log 1  1x  1
2x 1  1

1  1
x

 x  12
1

xx  1 .     7

Consider

1  1x
x1/2 

 1  1x
x1/2

log 1  1x  x  12
1

xx  1
 0 by (7);

hence, we know that 1  1
x 

x1/2 is strictly decreasing on 0,.
Note: Use the method of remark, we know that 1  1

x 
x is strictly increasing on

0,.


