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The Real And Complex Number Systems

Integers

11 Prove that there is no largest prime.

Proof: Suppose p is the largest prime. Then p!+ 1 is NOT a prime. So,
there exists a prime ¢ such that

glpl+1=¢q|1

which is impossible. So, there is no largest prime.

Remark: There are many and many proofs about it. The proof that we
give comes from Archimedes 287-212 B. C. In addition, Euler Leonhard
(1707-1783) find another method to show it. The method is important since
it develops to study the theory of numbers by analytic method. The reader
can see the book, An Introduction To The Theory Of Numbers by
Loo-Keng Hua, pp 91-93. (Chinese Version)

12 If n is a positive integer, prove the algebraic identity

n—1
a"—b"=(a—Db) Z akprih
k=0
Proof: It suffices to show that
n—1
" —1=(zx—-1)) 2"
k=0



Consider the right hand side, we have

n—1 n—1 n—1
(.CL' . 1) xk — karl o $k
k=0 k=0 k=0
n n—1
::jg:itk-— $k
k=1 k=0
=z" -1

13 If 2" — 1 is a prime, prove that n is prime. A prime of the form
2P — 1, where p is prime, is called a Mersenne prime.

Proof: If n is not a prime, then say n = ab, where a > 1 and b > 1. So,
we have

S

-1
20 _1=(29—1)) (29"
0

=
Il

which is not a prime by Exercise 1.2. So, n must be a prime.

Remark: The study of Mersenne prime is important; it is related
with so called Perfect number. In addition, there are some OPEN prob-
lem about it. For example, is there infinitely many Mersenne nem-
bers? The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 13-15. (Chinese Version)

14 If 2" + 1 is a prime, prove that n is a power of 2. A prime of the

form 22" + 1 is called a Fermat prime. Hint. Use exercise 1.2.

Proof: If n is a not a power of 2, say n = ab, where b is an odd integer.
So,
20 +1[2%° + 1

and 2% +1 < 2% 4 1. It implies that 2" + 1 is not a prime. So, n must be a
power of 2.

Remark: (1) In the proof, we use the identity

2n—2
P L= (1) Y (-1 b
k=0



Proof: Consider

2n—2 2n—2 2n—2
r+1 —1)Fak = —1)F gkt 4 L
(
k=0 k=0 k=0
2n—1 2n—2
= (MR > (-t
k=1 k=0
— $2n+1 + 1

(2) The study of Fermat number is important; for the details the reader
can see the book, An Introduction To The Theory Of Numbers by
Loo-Keng Hua, pp 15. (Chinese Version)

15 The Fibonacci numbers 1,1, 2, 3,5, 8,13, ... are defined by the recur-
sion formula x,,; = x, + x,_1, with ; = 5 = 1. Prove that (x,,2,41) =1
and that x,, = (a™ — b") / (a — b) , where a and b are the roots of the quadratic
equation 2 —x — 1 = 0.

Proof: Let d = g.c.d. (x,,x,41), then
d|z, and d |z 11 = Ty + Tpq -
So,
d ’xn—l .

Continue the process, we finally have
djl.

So, d = 1 since d is positive.
Observe that
Tpt1 = Tn + Tp-1,

and thus we consider
xn—i—l — xn _'_xn—l’
i.e., consider

22 = x4+ 1 with two roots, a and b.

If we let
F,=@ -b)/(a—0),

3



then it is clear that
Fr=1 F,=1, and F,,y = F, + F,,_; for n > 1.

So, F,, = z,, for all n.

Remark: The study of the Fibonacci numbers is important; the reader
can see the book, Fibonacci and Lucas Numbers with Applications
by Koshy and Thomas.

].6 Prove that every nonempty set of positive integers contains a small-
est member. This is called the well-ordering Principle.

Proof: Given (¢ #)S(C N), we prove that if S contains an integer
k, then S contains the smallest member. We prove it by Mathematical
Induction of second form as follows.

As k = 1, it trivially holds. Assume that as k = 1,2, ..., m holds, consider
as k =m + 1 as follows. In order to show it, we consider two cases.

(1) If there is a member s € S such that s < m + 1, then by Induction
hypothesis, we have proved it.

(2) If every s € S, s > m+ 1, then m + 1 is the smallest member.

Hence, by Mathematical Induction, we complete it.

Remark: We give a fundamental result to help the reader get more. We
will prove the followings are equivalent:

(A. Well-ordering Principle) every nonempty set of positive integers
contains a smallest member.

(B. Mathematical Induction of first form) Suppose that S (C N),

it S satisfies that
(1). 1in S
(2). Aske S, thenk+1€S.

Then S = N.

(C. Mathematical Induction of second form) Suppose that S (C N),
it S satisfies that

(1). 1in S
(2). As1,....k €S, then k+ 1€ S.



Then S = N.

Proof: (A= B): If S # N, then N — S # ¢. So, by (A), there exists
the smallest integer w such that w € N — S. Note that w > 1 by (1), so we
consider w — 1 as follows.

Since w —1 ¢ N — S, we know that w — 1 € S. By (2), we know that
w € S which contadicts to w € N — S. Hence, S = N.

(B = C): It is obvious.

(C = A): We have proved it by this exercise.

Rational and irrational numbers

1.7 Find the rational number whose decimal expansion is 0.3344444444....
Proof: Let x = 0.3344444444..., then

3 3 4 4
:U:E+1—02+1—03+...+W+.., where n > 3
:§+i(1+i+...+i+..>
102 103 10 107
_ 33 4 1
_1_02+1_03(1—1i0)
_ 33 4
~ 107 " 900
~ 301
= 500"

1.8 Prove that the decimal expansion of x will end in zeros (or in nines)
if, and only if, x is a rational number whose denominator is of the form 2"5™,
where m and n are nonnegative integers.

Proof: (<)Suppose that z = 5%, if n > m, we have

kj5n7m B 5n7mk
ongn10n

So, the decimal expansion of z will end in zeros. Similarly for m > n.
(=)Suppose that the decimal expansion of z will end in zeros (or in

nines).




For case x = ag.ajas - - - a,,. Then

_ ZZ:O 10”_kak _ ZZ:O 10""‘“%

v 10 ongn
For case x = ag.ajas - - - a,999999 - - - . Then
B ZZ:O 10"‘kak 9
B 2n5n 1onrt T e T
S o 10" Fay, 9
= — 1077
5 1o
7=0
B 2n5n 107
B 1+ ZZZO 10n_k(lk
B 2n5n '

So, in both case, we prove that x is a rational number whose denominator is
of the form 2"5™, where m and n are nonnegative integers.

1.9 Prove that /2 + v/3 is irrational.
Proof: If v2+ /3 is rational, then consider

(V3 v3) (V- v2) =1

which implies that V3 — /2 is rational. Hence, V3 would be rational. Tt is
impossible. So, v/2 + v/3 is irrational.

Remark: (1),/p is an irrational if p is a prime.
Proof: If \/p € Q, write \/p = {, where g.c.d. (a,b) = 1. Then
b2p:a2:>p‘a2:>p|a (*)
Write a = pq. So,
V’p=p*q* =V =pg® = p|b® = plb. (*)

By (*) and (*'), we get
plg.cd.(a,b) =1

which implies that p = 1, a contradiction. So, ,/p is an irrational if p is a
prime.



Note: There are many and many methods to prove it. For example, the
reader can see the book, An Introduction To The Theory Of Numbers
by Loo-Keng Hua, pp 19-21. (Chinese Version)

(2) Suppose a,b € N. Prove that y/a+ /b is rational if and only if, a = k>
and b = h? for some h,k € N.

Proof: (<) It is clear.
(=) Consider

(Va+ Vo) (Va-vb) =a* =12,

then v/a € Q and Vb € Q. Then it is clear that a = h? and b = h? for some
hkeN.

1.10 If a, b, ¢, d are rational and if x is irrational, prove that (ax + ) / (cz + d)
is usually irrational. When do exceptions occur?

Proof: We claim that (ax + b) / (cz + d) is rational if and only if ad = bc.

(=)If (ax +b) / (cx +d) is rational, say (ax +b)/(cx+d) = q/p. We
consider two cases as follows.

(i) If ¢ = 0, then ax+b = 0. If a # 0, then x would be rational. So, a =0
and b = 0. Hence, we have

ad =0 = bc.

(ii) If ¢ # 0, then (pa — qc) x+ (pb — qd) = 0. If pa—qc # 0, then = would

be rational. So, pa — qc = 0 and pb — gd = 0. It implies that

qchb = qad = ad = be.
(«<)Suppose ad = be. If a =0, then b =0 or ¢ = 0. So,

ax+b_ Oifa=0and b=0
cr+d gifa:Oandc:O'

If @ # 0, then d = bc/a. So,

ct+d cr+bc/a  c(ax+b)

ar+b  ar+b alax+b) a

Hence, we proved that if ad = be, then (az + b) / (cx + d) is rational.



].].1 Given any real x > 0, prove that there is an irrational number
between 0 and x.

Proof: If z € Q°, we choose y = z/2 € Q°. Then 0 < y < z. If z € Q,
we choose y = 2/v/2 € Q, then 0 < y < .

Remark: (1) There are many and many proofs about it. We may prove
it by the concept of Perfect set. The reader can see the book, Principles
of Mathematical Analysis written by Walter Rudin, Theorem 2.43,
pp 41. Also see the textbook, Exercise 3.25.

(2) Given a and b € R with a < b, there exists r € Q°, and ¢ € @ such
that a <r <band a < q <b.

Proof: We show it by considering four cases. (i) a € @, b € Q. (ii)
aceQ,beQc (ili)aeQbe Q. (iv) a € Q° be Q"
i) (a€e@,beQ) Chooseq:%%andr:\/iia—i-(l—\%)b.

(
(ii) (a € Q, b € Q°) Choose r = “T“Lb and let ¢ = 2% < b—a, then a+c:=q.
(

iii) (a € Q¢ b € @) Similarly for (iii).
(iv) (a € Q° b € Q°) It suffices to show that there exists a rational
number g € (a,b) by (ii). Write

b=bo.biby---b, -
Choose n large enough so that
a<q:bo.blb2~~bn<b.

(It works since b — g = 0.000..000b,41... < 157)

1.12 If a/b < ¢/d with b > 0, d > 0, prove that (a+c¢)/(b+d) lies
bwtween the two fractions a/b and ¢/d

Proof: It only needs to conisder the substraction. So, we omit it.

Remark: The result of this exercise is often used, so we suggest the
reader keep it in mind.

]. . ].3 Let a and b be positive integers. Prove that /2 always lies between
the two fractions a/b and (a + 2b) / (a + b) . Which fraction is closer to v/2?

Proof: Suppose a/b < \/5, then a < v/20b. So,
2—-1 2b —
a+2b_\/§_(\/_ )(\/_b a)>

a+b a-+b -



In addition,

(\/_—§>_<a+2b_\/§) :2\/—_(g+a+2b)

b a-+b +b
o e
= v [(2VE-2)abs (2v2-2) 1 -]
>ab+b2 [<2f >\/§+<2‘/§_2> (%) —a2]

=0.

So, “fbb is closer to v/2.
Similarly, we also have if a/b > \/_ then ‘”21’ < V2. Also, ‘”zb is closer

0 v/2 in this case.
Remark: Note that

Qb 2b
a4 <V2< ot — by Exercise 12 and 13.
b a+b

And we know that 2£2 is closer to v/2. We can use it to approximate V2.
a+b

Similarly for the case

2 2
b a+b \/§ a

< < < -
a a+b b

1.14 Prove that v/n — 1+ /n + 1 is irrational for every integer n > 1.

Proof: Suppose that v/n — 1+ v/n + 1 is rational, and thus consider

<\/n+1+\/n—1> (\/n+1—\/n—1):

which implies that v/n + 1 — +/n — 1 is rational. Hence, v/n + 1 and v/n — 1
are rational. So, n —1 = k? and n + 1 = h?, where k and h are positive

integer. It implies that
3 1
h = 5 and k’ = 5

which is absurb. So, vn — 1+ /n + 1 is irrational for every integer n > 1.




]. . ].5 Given areal x and an integer N > 1, prove that there exist integers
h and k with 0 < & < N such that |kz — h| < 1/N. Hint. Consider the N +1
numbers tx — [tz] for t = 0,1,2,..., N and show that some pair differs by at
most 1/N.

Proof: Given N > 1, and thus consider tz — [tz] for t = 0,1,2,..., N as
follows. Since
0 <tx—[tx] :=a; <1,

so there exists two numbers a; and a; where 7 # j such that

1 1
4 = 03] < - = (0= ) = p| < . where p = [jz] - [iz].

Hence, there exist integers h and k with 0 < £ < N such that |kx — h| < 1/N.

1 . 16 If x is irrational prove that there are infinitely many rational num-
bers h/k with k& > 0 such that |z — h/k| < 1/k? Hint. Assume there are
only a finite number hy/ky, ..., h./k,. and obtain a contradiction by apply-
ing Exercise 1.15 with N > 1/0, where § is the smallest of the numbers

Proof: Assume there are only a finite number hy/ky, ..., h,/k, and let
0 = min]_, |x — h;/k;] > 0 since z is irrational. Choose N > 1/4, then by
Exercise 1.15, we have

! <6< h < !
NSRS EN
which implies that
1 1
N kN

which is impossible. So, there are infinitely many rational numbers h/k with
k > 0 such that |z — h/k| < 1/k2.

Remark: (1) There is another proof by continued fractions. The
reader can see the book, An Introduction To The Theory Of Numbers
by Loo-Keng Hua, pp 270. (Chinese Version)

(2) The exercise is useful to help us show the following lemma. {ar +b:a € Z,b € Z},
where 7 € Q° is dense in R. It is equivalent to {ar : a € Z} , where r € Q¢ is
dense in [0, 1] modulus 1.

10



Proof: Say {ar+b:a€ Z,b€ Z} = S, and since r € Q°, then by Ex-
ercise 1.16, there are infinitely many rational numbers h/k with k& > 0 such
that |kr — k| < +. Consider (z — 6,z + §) := I, where § > 0, and thus choos-
ing ko large enough so that 1/kg < §. Define L = |kor — hg|, then we have
sL € I for some s € Z. So, sL = (£) [(sko) r — (shg)] € S. That is, we have
proved that S is dense in R.

1. 17 Let = be a positive rational number of the form

n
Qg

T = H,
k=1
where each ay is nonnegative integer with a; < k — 1 for £ > 2 and a,, > 0.
Let [z] denote the largest integer in z. Prove that a; = [z], that ap =
[klx] — k[(k — 1)lz] for k = 2,...,n, and that n is the smallest integer such
that n!z is an integer. Conversely, show that every positive rational number
x can be expressed in this form in one and only one way.

Proof: (=)First,

n ap,
“t )
k=2

7] =

n
ag

k!
k=2

=a; + since a; € N

n

o —~ap _x~k—1 1 11
_alsmce;ES QT_;W_E_1_5<1

Second, fixed k and consider

n n

k—1
k!x:k!Zi{:k!Z%Mﬁk! S U
=17

1
Jj=1 J: j:k+1]'
and
n k—1 n
a; s .
(b= Dle = (k=113 = (k= D13+ (b= DI
Jj=1 j=1 j=k

11



So,

k—1 n
[kla] = [klzi{mkw! 3 “—{]
Jj=1 J: j=k+1 J:

k—1 n
a; a;
:klg ﬁ+aksincek:! E 2 <1

1
j=1 j=k+1 J:

and

<

j=1 ij=k

k[(k - 1)l2] = k [(k—1)!zi{+(k—1)! Y %]

k— n
:k(k—l)!zaf?since (k—1)! a,—]‘<1
j=1 J: j=k 7
k—1

_ )
=k i
j=1
which implies that
ar, = [Klz] — k[(k — 1)lz] for k =2,...,n.

Last, in order to show that n is the smallest integer such that nlx is an
integer. It is clear that
n
Qg
lr = nl -
nle = n! Z I €.
k=1

In addition,

k!
k=1
n la a
k n
k=1

So, we have proved it.

12



(«<=)It is clear since every a,, is uniquely deermined.

Upper bounds

1.18 Show that the sup and the inf of a set are uniquely determined whenever
they exists.

Proof: Given a nonempty set S(C R), and assume supS = a and
supS = b, we show a = b as follows. Suppose that a > b, and thus choose
€= aT’b, then there exists a x € S such that

a-+b
2

b <

=a—e<r<a

which implies that
b<ux

which contradicts to b = sup S. Similarly for a < b. Hence, a = .
1.19 Find the sup and inf of each of the following sets of real numbers:

(a) All numbers of the form 277 + 3794 5", where p, ¢, and r take on all
positive integer values.

Proof: Define S = {2774+ 377457 : p,q,r € N}. Then it is clear that
supS:%—l—%jLé, and inf S = 0.

(b) S ={z:32* —10x + 3 < 0}

Proof: Since 322 — 10z +3 = (z — 3) (3z — 1), we know that S = (3,3) .
Hence, sup S = 3 and inf S = %

(c)S={z:(r—a)(x—0b)(x—c)(xr—d) <0}, wherea < b<c<d.
Proof: It is clear that S = (a,b)U(c,d) . Hence, sup S = d and inf S = a.
120 Prove the comparison property for suprema (Theorem 1.16)

Proof: Since s <t for every s € S and t € T, fixed ty € T, then s < t;
for all s € S. Hence, by Axiom 10, we know that sup S exists. In addition,
it is clear sup .S < supT.

Remark: There is a useful result, we write it as a reference. Let S and T’
be two nonempty subsets of R. If S C T and sup T exists, then sup .S exists
and sup S <supT.

13



Proof: Since sup T exists and S C T, we know that for every s € .S, we
have
s <supT.

Hence, by Axiom 10, we have proved the existence of sup S. In addition,
sup S < sup7 is trivial.

1.21 Let A and B be two sets of positive numbers bounded above, and
let a = sup A, b = sup B. Let C be the set of all products of the form xy,
where z € A and y € B. Prove that ab = supC.

Proof: Given ¢ > 0, we want to find an element ¢ € C' such that ab—e <
c. If we can show this, we have proved that sup C' exists and equals ab.

Since sup A = a > 0 and sup B = b > 0, we can choose n large enough
such that a —e/n > 0, b—¢/n > 0, and n > a + b. So, for this &' = ¢/n,
there exists a’ € A and ' € B such that

a—¢e <adandb—¢& <V
which implies that
ab—¢ (a+b—¢)<at sincea—e >0and b—& >0

which implies that

ab—%(a+b)<a’b’ =

which implies that
ab—¢ <c.

1.22 Given x > 0, and an integer k > 2. Let a¢ denote the largest integer
< x and, assumeing that ag, ay, ..., a,_1 have been defined, let a, denote the
largest integer such that

TR R
a — =+ ..+ —=<uz.
Ok T k2 kn =
Note: When k£ = 10 the integers ag, a,... are the digits in a decimal
representation of x. For general £ they provide a representation in
the scale of k.

(a) Prove that 0 <a; <k —1foreachi=1,2,..

14



Proof: Choose ag = [z], and thus consider
[kx — kag] := ay

then
0<k(z—a)<k=0<aq <k-1

and
_'_Cll <r<a +CL1+1
ag + — — 4+ —.
TR ST Tk
Continue the process, we then have
0<aq;<k—1foreachi=1,2,..

and

PO g By e Ly
ag + — + — —<zr<ag+—+—=+..+—+—.
Tk k2 o Ok R kn ' kn

(b) Let 7, = ap + a k™' + agk™2 + ... + a,k~™ and show that z is the sup
of the set of rational numbers rq, 79, ...

Proof: It is clear by (a)-(*).
Inequality

123 Prove Lagrange’s identity for real numbers:
n 2 n n
<Z akbk) = (Z ai) (Z bz) — Z (akbj — ajbk)Q .
k=1 k=1 k=1 1<k<j<n

Note that this identity implies that Cauchy-Schwarz inequality.

Proof: Consider

<i ai) (ibi) = Z apb? = Zaka—irZa%bQ Zakbz—l—Zakbz
h—1 k=1

1<k,j<n k#j k#j

15



and

(Z akbk> (Z akbk> = Z akbkajbj = Z aibi + Z akbkajbj
k=1 k=1

1<k,j<n k=1 k]
So,
n 2 n n
(Y] = (3oet) (o08) + Sowons - T
k=1 k=1 k=1 k] k]
. Z) (sz 2 Y abap - Y @+ a
k=1 k=1 1<k<j<n 1<k<j<n
= Z ai) (Z bi — Z (akbj — ajbk)2 .
k=1 k=1 1<k<j<n

Remark: (1) The reader may recall the relation with Cross Product
and Inner Product, we then have a fancy formula:

lz > ylI* + 1< 2,y >* = Jll* yll*,

where z,y € R3.
(2) We often write

n
<a,b>= Zakbk,

k=1

and the Cauchy-Schwarz inequality becomes

|<z,y>] < |[lz][ [yl by Remark (1).

1.24 Prove that for arbitrary real ay, b, ¢, we have
k=1 k=1 k=1 k=1

16
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Proof: Use Cauchy-Schwarz inequality twice, we then have

<Z akbkck> = <Z akbkck>
k=1 k=1

A
RS
ES
ngh

S}

E

(@)

o
~__—
(Y]
7~
o~
Il
A
>
o
N———
[\]

125 Prove that Minkowski’s inequality:
" 1/2 N 1/2 n 1/2
k=1 k=1 k=1

This is the triangle inequality ||a + b|| < ||a||+||b|| for n—dimensional vectors,
where a = (aq, ...,a,), b= (b1, ...,b,) and

Jall = (Z) N

k=1

Proof: Consider

(ay, + b)* = iai +ib§ +2iakbk
k=1 k=1

n

k=1 k=1
n n n /2 /., 1/2
< Z a; + Z bi + 2 (Z ai) (Z bi) by Cauchy-Schwarz inequality
k=1 k=1 k=1 k=1



So,

3
3

1/2 1/2 n 1/2
( (ax + bkz>2) < ( ai) + (Z bi) :
k=1 k=1 k=1

126 Ifag >...>a, and by > ... > b,, prove that

(3 (5e) (3]

Hint. Zl<]<k<n (ar, — a;) (b, — bj) = 0.

Proof: Consider

0 < Z ak - CLJ bk - b]> = Z akbk + ajbj — Z akbj + ajbk

1<j<k<n 1<5<k<n 1<5<k<n

which implies that

Z akbj + ajbk < Z akbk + ajbj~ <*>

1<j<k<n 1<j<k<n
Since
n
E akbj + ajbk = E &kbj + &jbk + 2 E akbk
1<j<k<n 1<j<k<n k=1
n n
= E akbj + ajbk + E CLkbk + E akbk
1<j<k<n k=1 k=1

we then have, by (*)

(Z ak> <Z bk> + Z agby < Z arby + a;b;. (**)
k=1 k=1

k=1 1<5<k<n

18



In addition,

Z akbk + ajbj

1<j<k<n

= Z apbr + na by + Z apby + (n — 1) aobs + ... + Z arbr + 2a,_1b,—1 + Z aiby,

- nZakbk + aiby + agby + ... + a,b,

k=1
n

k=1

which implies that, by (**),

(32e) (352) =+ ()

Complex numbers

1.27 Express the following complex numbers in the form a + b:.
(a) (1+1i)°

Solution: (1+4)>=1+3i+32+#=1+3i—3—i= -2+ 2i.
(b) (2+31) /(3 — 44)

243i _ (243)(3+40) _ —6+17i _ —6 | 17,
3—4i — (3—4i)(3+41) 25 25 1 25

Solution:
(c) i° + i'®
Solution: % + 6 =i + 1.

(d) 2 (1+4)(1+i®)

Solution: 3 (1+14)(1+i %) =1+

1.28 In each case, determine all real z and y which satisfy the given
relation.
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(a) x4 iy = | — iy|

Proof: Since |z —iy| > 0, we have
x> 0and y =0.

(b) z + iy = (z — iy)?

Proof: Since (z —iy)® = 2% — (2zy) i — 32, we have
r=2"—y®and y = —2zy.

We consider tow cases: (i) y = 0 and (ii) y # 0.
(i) Asy=0:xz=0or 1.
(i) Asy #0: 2= —1/2, and y = +¥.

(c) ilgozoo i* =+ iy

Proof: Since Y, i* = % =1 =1, wehave z =1 and y = 0.
1.29 If z = x4y, x and y real, the complex conjugate of z is the complex
number zZ = x — iy. Prove that:

(a) Conjugate of (z1 + 22) = Z; + 2o
Proof: Write z; = x1 + iy, and 2y = x5 + 1ys, then

21+ 22 = (X1 + x2) + 1 (Y1 + y2)
= (z1+22) — i (Y1 + 12)
= (21 —iy1) + (22 — iy2)

(b) zZ122 = 2129

Proof: Write z; = x1 + iy; and zo = 29 + iys, then

122 = (T129 — Y1y2) + @ (21y2 + T2y1)
= (1122 — Y1y2) — 1 (T1Y2 + T2y1)

and
Z1Zy = (1 — 1) (22 — iyo)

= (z172 — Y1y2) — @ (T1Y2 + T2Y1) -
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SO, Z1R9 = 2122
(c) 22 = |z

Proof: Write z = z 4 iy and thus

(d) z + z =twice the real part of z
Proof: Write z = = + iy, then

z+ZzZ =2z,

twice the real part of z.
(e) (z — z) /i =twice the imaginary part of z

Proof: Write z = x + iy, then

Z—Z
— =2y,
1

twice the imaginary part of z.

1.30 Describe geometrically the set of complex numbers z which satisfies
each of the following conditions:

(a) [2] =1

Solution: The unit circle centered at zero.

(b) |z| <1

Solution: The open unit disk centered at zero.
(c) [z <1

Solution: The closed unit disk centered at zero.
(d) z+z=1

Solution: Write z = = + iy, then z + Z = 1 means that x = 1/2. So, the
set is the line x = 1/2.

() z—z=1
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Proof: Write z = x + iy, then z — Z = ¢ means that y = 1/2. So, the set
is the line y = 1/2.

() z+2 = |2

Proof: Write z = 2 + iy, then 2z = 22 +y® < (z — 1)* + 12 = 1. So, the
set is the unit circle centered at (1,0).

1.31 Given three complex numbers 21, 29, 23 such that |z;| = |za] = |23| =
1 and z; + 29 + 23 = 0. Show that these numbers are vertices of an equilateral
triangle inscribed in the unit circle with center at the origin.

Proof: It is clear that three numbers are vertices of triangle inscribed in
the unit circle with center at the origin. It remains to show that |z; — 23| =
|z9 — 23| = |23 — 21| . In addition, it suffices to show that

|Zl — 22| = |ZQ — Zg’ .

Note that
|221 +23| = |223 +Zl| by 21+ 29 + 23 = 0

which is equivalent to
1221 4 23|° = |223 + 21 °
which is equivalent to
(221 + 23) (221 + 23) = (223 + 21) (223 + 21)

which is equivalent to
21| = |zs] -

1.32 If @ and b are complex numbers, prove that:
(a) la —b)* < (1+ |a\2) (1+ \b|2)
Proof: Consider
(L+Jal®) (1+[b]%) = |a = b = (1 +aa) (1 +bb) — (a —b) (a — b)
= (1 +ab) (1+ ab)
=1 +ab]* >0,
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so, la—b* < (1+|af*) (1+ [b]?)

(b) If @ # 0, then |a+b| = |a| + |b] if, and only if, b/a is real and
nonnegative.

Proof: (=)Since |a + b| = |a| + |b|, we have
ja+ 0" = (la| + [b])*

which implies that
Re (ab) = [a] [b] = [a] [b]

which implies that

ab = |al |b|
which implies that
b ab |a||b|
- = —— = ) 2 O
a aa ]a|

(<) Suppose that

ézk, where k£ > 0.
a

Then
la+b] = |a+ ka| = (1 + k) |a| = |a|] + Kk |a| = |a| + |b] .

1.33 If @ and b are complex numbers, prove that
la —b| = |1 — ab|
if, and only if, |a| = 1 or |b|] = 1. For which @ and b is the inequality
la —b] < |1 — ab| valid?
Proof: (<) Since
la —b] = |1 — ab
& (a—1b) (a—b)=(1—ab) (1— ab)
& laf* + |0 =1 + |a|” [b]"
& ('~ 1) (b~ 1) =0
e laf’=1or [b*=1.
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By the preceding, it is easy to know that
la—b| < |l—abl <0< (Ja*—1) (]p]* - 1).

So, |a —b| < |1 —ab| if, and only if, |a| > 1 and |b] > 1. (Or |a| < 1 and
b < 1).

1.34 If a and ¢ are real constant, b complex, show that the equation
azZ +bz+bz+c=0 (a#0,z =2+ iy)

represents a circle in the x — y plane.

Proof: Consider

b b b [( b) —ac + |b]?
22— —Z— —2Z+ — — = 3 )
—a —a —a |\ —a a
so, we have
( b ) > —ac+ b
z—|— )| = .
—a a2

2
Hence, as \b|2 —ac > 0, it is a circle. As % = 0, it is a point. As
2
_“ca# < 0, it is not a circle.
Remark: The idea is easy from the fact
|z —q|=r.

We square both sides and thus

22— qZ—qz+qq=r1>

1.35 Recall the definition of the inverse tangent: given a real number ¢,
tan~! (¢) is the unique real number 6 which satisfies the two conditions

—g<9<—|—g, tanf = t.

If 2 = x + iy, show that
(a) arg (z) = tan™ (£),if 2 > 0
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Proof: Note that in this text book, we say arg (z) is the principal argu-
ment of z, denoted by # = arg z, where —7w < 0 < 7.

So, as x > 0, argz = tan"* (£) .

(b) arg (z) = tan™' (¥) + 7, if 2 < 0,y > 0

Proof: Asz < 0,and y > 0. The point (z,y) islyingon S = {(x,y) : x <0, y > 0}.
Note that —7 < argz < 7, so we have arg (z) = tan* () + 7.

(c) arg (z) =tan™' (%) — 7, if 2 <0,y <0
Proof: Similarly for (b). So, we omit it.

(d) arg(z) = Fifx =0,y > 0; arg(z) = -5 if x =0, y <0.

Proof: It is obvious.

1.36 Define the folowing ”pseudo-ordering” of the complex numbers:
we say 21 < 2z if we have either

(i) |21] < |z2f or (ii) |21 = 22| and arg (21) < arg(22).

Which of Axioms 6,7,8,9 are satisfied by this relation?

Proof: (1) For axiom 6, we prove that it holds as follows. Given z; =
ret@8() and ree'®8(22) then if 2, = 2o, there is nothing to prove it. If
21 # 23, there are two possibilities: (a) r; # ry, or (b) r; = ry and arg (z1) #
arg (z2) . So, it is clear that axiom 6 holds.

(2) For axiom 7, we prove that it does not hold as follows. Given z; =1

and zp = —1, then it is clear that z; < z3 since |2z1] = |22] = 1 and arg (z1) =

0 < arg (z2) = m. However, let z3 = —i, we have
nt+zm=1—i>2+2z3=—-1—1

since

‘21+Z3| = ‘22+23| :\/§

and
s 3m
arg (21 + 23) = Ty T T Ae (22 + 23) .

(3) For axiom 8, we prove that it holds as follows. If z; > 0 and 2z, > 0,
then |z;| > 0 and |22| > 0. Hence, 2122 > 0 by |z122| = |21] |22| > 0.

(4) For axiom 9, we prove that it holds as follows. If z; > 25 and z5 > z3,
we consider the following cases. Since z; > z2, we may have (a) |z1| > |z2] or
(b) [21] = |2] and arg (21) < arg (z).

As |z1]| > |22], it is clear that |2z;| > |z3|. So, 21 > z3.
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As |z1| = |22| and arg(z;1) < arg(z2), we have arg(z;) > arg(z3). So,
21 > Z3.

1.37 Which of Axioms 6,7,8,9 are satisfied if the pseudo-ordering is
defined as follows? We say (x1,y1) < (x2,y2) if we have either (i) x; < x or
(i) x1 = 22 and y; < Y.

Proof: (1) For axiom 6, we prove that it holds as follows. Given z =
(x1,91) and y = (x9,y9) . If x = y, there is nothing to prove it. We consider
x £y As x # y, we have x1 # x5 or y; # ys. Both cases imply x < y or
y < .

(2) For axiom 7, we prove that it holds as follows. Given = = (z1,11),
y = (z2,92) and z = (21, 23) . If 2 < y, then there are two possibilities: (a)
x1 < xg or (b) x1 = x9 and y; < yo.

For case (a), it is clear that z1 + 21 < y; + 21. So, x + 2 < y + 2.

For case (b), it is clear that z1 + z; = y; + 21 and z3 + 29 < ya + 22. So,
rT+z<y+z.

(3) For axiom 8, we prove that it does not hold as follows. Consider
x = (1,0) and y = (0,1), then it is clear that > 0 and y > 0. However,
xy = (0,0) = 0.

(4) For axiom 9, we prove that it holds as follows. Given x = (x1,),
y = (x9,y2) and z = (21,23). If x > y and y > 2, then we consider the
following cases. (a) x1 > y1, or (b) x; = y.

For case (a), it is clear that z1 > 2z;. So, z > 2.

For case (b), it is clear that x5 > y5. So, z > z.

1.38 State and prove a theorem analogous to Theorem 1.48, expressing
arg (z1/z2) in terms of arg (z1) and arg (zz) .

Proof: Write z; = r1e'®2() and zy = r9e?®8(*2)  then

A1 Eei[arg(zl)—arg(zz)]‘
) )
Hence,
z
arg <2_1> = arg (1) — arg (22) + 27 (21, 22),
2
where

0if —7m <arg(z)—arg(z) <7
n(z1,20) =4 1if =27 <arg(z) —arg(z) < —7 .
—lif T < arg(z) —arg(z2) < 27
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1.39 State and prove a theorem analogous to Theorem 1.54, expressing
Log (z1/z2) in terms of Log (z1) and Log (z3) .

Proof: Write z; = r1e'®2() and zy = r9e®8(*2)  then

A Eei[arg(zl)—arg(w)]_
Z2 )
Hence,
Log (z1/z) = log ‘é‘ +iarg (ﬂ)
Z9 Z9

= log |z1| — log|2a| + @ [arg (z1) — arg (z2) + 27n (21, 22)] by xercise 1.38
= Log (z1) — Log (z2) +i2mn (21, 22) .

1.40 Prove that the nth roots of 1 (also called the nth roots of unity)

are given by a,a?,...,a", where a = €™/, and show that the roots # 1

satisfy the equation
l+z+22+.. +2" =0

Proof: By Theorem 1.51, we know that the roots of 1 are given by

a,a?, ..., a", where a = €2/ In addition, since

" =1= (-1 (1+z+”+..+2"") =0
which implies that
l+o+22+. 42" =0ifx #1.
So, all roots except 1 satisfy the equation

l+x+22+... +2" =0

1.41 (a) Prove that |2*| < e for all complex z # 0.

Proof: Since

S — 67,Log(z) — e arg(z)+7,log|z|’
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we have '
|Z1‘ _ 6—arg(z) < e
by —m < arg (z) < .

(b) Prove that there is no constant M > 0 such that |cosz| < M for all
complex z.

Proof: Write z = x + iy and thus,
cos z = cosx coshy — isinzsinh y
which implies that

|cos z cosh y| < |cos z|.

Let x = 0 and y be real, then

voo1
% < 5 le¥ +e7¥| < |cosz].

So, there is no constant M > 0 such that |cos z| < M for all complex z.

Remark: There is an important theorem related with this exercise. We
state it as a reference. (Liouville’s Theorem) A bounded entire function
is constant. The reader can see the book, Complex Analysis by Joseph
Bak, and Donald J. Newman, pp 62-63. Liouville’s Theorem can

be used to prove the much important theorem, Fundamental Theorem of
Algebra.

1.42 If w = u +4v (u,v real), show that

LW — ot log|z|—v arg(z) e’L[U log|z|+u arg(z)] .

Proof: Write 2 = ¢“£29(2) and thus

wlLog (z) = (u+ ) (log |z| +iarg (z))
= [ulog |z| —varg (2)] +i[vlog|z| + uwarg(z)].

So,

LW — ol log|z|—v arg(z) e’L[U log|z|+u arg(z)] .
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1.43 (a) Prove that Log (") = wLog z +2min.

Proof: Write w = u + iv, where u and v are real. Then

Log (2*) =log |2*| +iarg (2*)
= log [e“log|z|*varg(z)} +i[vlog|z| + uwarg (z)] + 2min by Exercisel.42
=ulog|z| —varg(z) + i [vlog|z| + varg (z)] + 2min.

On the other hand,

wLogz + 2min = (u + iv) (log |z| + i arg (2)) + 2win

=ulog|z| —varg (z) +i[vlog|z| + uarg (z)] + 2min.

Hence, Log (z*) = wLog z +2min.

Remark: There is another proof by considering

eLog(z“’) — LW — 6wLog(z)
which implies that
Log (2) = wLogz + 2min

for some n € Z.

(b) Prove that (z%)” = z%%e?™" where n is an integer.
Proof: By (a), we have

w ) ) .
(Zw)oc _ eaLog(z ) — 6a(wLogz+27rzn) _ eawL092627r2na — Zaw€2mna’

where n is an integer.

1.44 (i) If # and a are real numbers, —7 < § < 7, prove that

(cosf + isinf)* = cos (af) + isin (af) .

Proof: Write cosf + isinf = z, we then have

eiG

+iarg(ei‘9)] _ piab

(cos@ + isinf)® = 2% = e*L97 = ellos e

= cos (afl) + isin (ad) .
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Remark: Compare with the Exercise 1.43-(b).

(ii) Show that, in general, the restriction —m < 6 < 7 is necessary in (i)

by taking § = —m, a = 3.

Proof: As § = —m, and a = %, we have

(_1)% = e2lool-1) = 30 # —1 = cos (?) + 2sIn <_77T) .

(iii) If a is an integer, show that the formula in (i) holds without any
restriction on . In this case it is known as DeMorvre’s theorem.

Proof: By Exercise 1.43, as a is an integer we have
(Zw)a — Zwa’
where 2% = ¢, Then

(e)" = e = cos (af) + isin (af) .

1.45 Use DeMorvre’s theorem (Exercise 1.44) to derive the trigino-
metric identities
sin 30 = 3 cos® fsin § — sin® §

cos 30 = cos®  — 3 cos O sin? 4,
valid for real 6. Are these valid when 6 is complex?

Proof: By Exercise 1.44-(iii), we have for any real 6,
(cosf +isin ) = cos (30) +isin (36) .
By Binomial Theorem, we have
sin 30 = 3 cos? @ sin§ — sin® 4

and
cos 360 = cos®H — 3cosfsin? 6.
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For complex 0, we show that it holds as follows. Note that sinz = %
eiz+€7iz
2

) ) eiz + e—iz 2 eiz - e—iz eiz _ 6—7Lz 3
2 3
3cos“ zsinz —sin® z = 3 - -\

2 21 21

and cos z = , we have

6—322

_ 3 6221' + 6—222' + 2 eiz _ e—iz N 6321' _ Beiz + Be—iz _
B 4 2i 8i
— % [3 (€2zz’ + 6—221' + 2) (ezi _ e—zi) + (6321' _ 361',2 + 36—1'2 _
= l 3% 4 3¢ — 3¢ — 37 + (€3 — 3¢ + 3¢ —
81
4 24 —3zi
T G )
— % 6322 673&')
= sin 3z

Similarly, we also have

cos® z — 3cos zsin? z = cos 3z.

1.46 Define tan z = sin z/ cos z and show that for z = x + iy, we have

sin 2z + 4 sinh 2y

tanz = .
cos 2x + cosh 2y
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Proof: Since

; sinz  sin(x +1dy) sinxzcoshy + icosxzsinhy
anzg = = =
cosz  cos(x+iy) coszcoshy —isinxsinhy

_ (sinxcoshy + i cosxsinhy) (cos x coshy + isin x sinh y)

~ (cos x coshy — isin x sinh y) (cos x cosh y + i sin x sinh y)

(sin x cos x cosh? y — sin x cos z sinh? y) +1 (sin2 x cosh y sinh y + cos? o cosh y sinh y)

(cos  coshy)? — (isinz sinh y)?

sinz cos (cosh2 y — sinh? y) +i(coshysinhy) Ly ,
= 5 — % since sin“x + cos®x =1
cos? x cosh” y + sin” x sinh” y
sinx cosx) + ¢ (cosh y sinh
= ( )+ ( 2y v) since cosh?y = 1 + sinh?y
cos?z + sinh” y

%sin2x+%sinh2y i _ . . )
= — since 2 cosh y sinh y = sinh 2y and 2sin x cos x = sin 2x
cos? x + sinh” y

sin 2z + i sinh 2y

2cos? x + 2sinh?y
sin 2z + 4 sinh 2y

2cos2x — 1+ 2sinh?y + 1
sin 2x + ¢ sinh 2y

= c0s 22 + cosh 2y since cos2x = 2cos’x — 1 and 2sinh? y + 1 = cosh2y.

1.47 Let w be a given complex number. If w # 41, show that there exists
two values of z = x + iy satisfying the conditions cosz = w and —7 < z < 7.
Find these values when w = 7 and when w = 2.

1z —1iz . . . .
e rte +2€ , if we let €”* = wu, then cosz = w implies

Proof: Since cosz =
that
u? +1

= —2uwu+1=0
2u

w =
which implies that
(u—w)* =w?—1%#0 since w # +1.
So, by Theorem 1.51,
arg (w?—1) 27k
1/2 g ( )

i h —
e'?*, where ¢y, 5 5

e”:u:w%—‘wz—l‘

(== w21)>
:wﬂ:|w2—1}1/26< ’
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So,

‘arg(wzfl

wi‘w2—1’1/2e’ 2

ir—y =i (x +1y) =iz = log

Hence, there exists two values of 2z = x+iy satisfying the conditions cos z = w
and

2

[ arg w21)>
—7 < x = arg wi‘wz—l‘lme( <.

For w = i, we have
z’z:log‘(li\/i)i
which implies that

z:arg(<1i\/§>i>—ilog‘(liﬂ)i‘.

+iarg((1j:\/§)i)

For w = 2, we have
1z = log’?ﬂ: \/3‘ +rarg <2j: \/§>
which implies that

z:arg<2:|:\/§>—ilog‘2:|:\/§’.

1.48 Prove Lagrange’s identity for complex numbers:

n 2 n n
Zakbk = Z|ak|22|bk|2 — Z (akBj —ajbk)2.
k=1 k=1

k=1 1<k<j<n
Use this to deduce a Cauchy-Schwarz ineqality for complex numbers.

Proof: It is the same as the Exercise 1.23; we omit the details.

1.49 (a) By eqating imaginary parts in DeMoivre’s formula prove that

sinng = sin” 6 { (}) cot” " 6 — (§) cot™ > 0 + (2) cot" 0 — +...}

33

+iarg | w+ |w2 — 1}1/26i<

arg(w27l

>>

2



Proof: By Exercise 1.44 (i), we have
(4]
sinnf = Z (5_1) sin?*~1 9 cos"~(F1) g
k=1
2]

= sin" (%_1) cot" (k=D g

+

N

T
I

=sin" 6 {(}) cot” "6 — (§) cot™ 0 + (2) cot" 0 — +...} .

(b) If 0 < 6 < /2, prove that
sin (2m + 1) 0 = sin”**' 0P, (cot® 6)
where P, is the polynomial of degree m given by

Pm (.CL’) — (%erl) T (ngrl) xmfl + (ngrl) xmf2 — 4

Use this to show that P, has zeros at the m distinct points 2y = cot? {7k/ (2m + 1)}
for k=1,2,....m.

Proof: By (a),
sin (2m + 1) 6

—sin2" 19 { (741 (cot20)" — (3*1) (cot?0) "+ (274 (cot2 )" — .}
m+1

= sin®"*! 9P, (cot® ), where P, (z) = Z (GrAl) am ok, (*)

2k—1
k=1

In addition, by (*), sin (2m + 1) 6 = 0 if, and only if, P, (cot? #) = 0. Hence,
P,, has zeros at the m distinct points x, = cot? {wk/(2m + 1)} for k =
1,2,....m.

(c) Show that the sum of the zeros of P, is given by

i 2 Tk m(2m — 1)
co =
— 2m +1

3 Y
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and the sum of their squares is given by

Zm: ok ~ m(2m —1) (4m® + 10m — 9)
O om1 T 45 '

Note. There identities can be used to prove that > °- n~? = 72/6 and
S0 n~t =7%/90. (See Exercises 8.46 and 8.47.)
Proof: By (b), we know that sum of the zeros of P,, is given by

-\ -GE")) _mEem-1)
> _; 2m+1 _<(§m+1)>_ 3 '

k=1

And the sum of their squares is given by

—_ (2{;Ik) —-2 (1;2:; auxj>
m(2m — 1) 2 B (2m+1)

(") -2 ((%m“))
m (2m — 1) (4m? + 10m — 9)
45 '

1.50 Prove that 2 — 1 = | ( 27”’“/”) for all complex z. Use this

to derive the formula .
—~ . krm n
H sin — = )
n 2n—1

k=1

Proof: Since 2" = 1 has exactly n distinct roots e?™*/" where k =

0,..,n — 1 by Theorem 1.51. Hence, 2" — 1 = [[,_, (z —e*™*/") It
implies that

n—1

Il 41 = H (z — 62”““/”) .
k=1
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So, let z = 1, we obtain that

i) )

k=1 k=1

n—1
H <2 sin —) (2 sin — cos —)
k=
IT ( 7) 7)
= sin — sm — —1COS —
n
k=
I ( )( (545 v (T 7))
=2 sm— +2sin| — + —
n 2 n

k=1
n—1
. 7Tk n—1 3w | 7k
[2" ! H (sm —) eXk=1 2 T%
n
k=1
n—1
_ . 7k
= o1 H (sm —)
n
k=1
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Some Basic Notations Of Set Theory

References

There are some good books about set theory; we write them down. We
wish the reader can get more.

1. Set Theory and Related Topics by Seymour Lipschutz.
2. Set Theory by Charles C. Pinter.

3. Theory of sets by Kamke.

4. Naive set by Halmos.

2.1 Prove Theorem 2.2. Hint. (a,b) = (¢,d) means {{a},{a,b}} =
{{c},{c,d}}. Now appeal to the definition of set equality.

Proof: (<) It is trivial.
(=) Suppose that (a,b) = (¢, d) , it means that {{a}, {a,b}} = {{c},{c,d}}.
It implies that

{a} € {{c}, {c,d}} and {a,b} € {{c},{c, d}}.

So, if a # ¢, then {a} = {c,d} . It implies that ¢ € {a} which is impossible.
Hence, a = c. Similarly, we have b = d.

2.2 Let S be a relation and let D (S) be its domain. The relation S is
said to be

(i) reflexive if a € D (S) implies (a,a) € 5,

(ii) symmetric if (a,b) € S implies (b,a) € S,

(iii) transitive if (a,b) € S and (b, c¢) € S implies (a,c) € S.

A relation which is symmetric, reflexive, and transitive is called an equiv-
alence relation. Determine which of these properties is possessed by .S, if S
is the set of all pairs of real numbers (x,y) such that

(a) z <y

Proof: Write S = {(z,y) : * <y}, then we check that (i) reflexive, (ii)
symmetric, and (iii) transitive as follows. It is clear that D (S) = R.
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(i) Since x < z, (x,z) € S. That is, S is reflexive.

(ii) If (z,y) € S, ie., v < gy, then y < x. So, (y,x) € S. That is, S is
symmetric.

(iii) If (x,y) € S and (y,2) € S, ie, x <y and y < z, then < 2. So,
(x,2) € S. That is, S is transitive.

(b) z <y

Proof: Write S = {(z,y) : * <y}, then we check that (i) reflexive, (ii)
symmetric, and (iii) transitive as follows. It is clear that D (S) = R.

(i) It is clear that for any real z, we cannot have z < x. So, S is not
reflexive.

(ii) It is clear that for any real x, and y, we cannot have r < y and y < x
at the same time. So, S is not symmetric.

(iii) If (z,y) € S and (y,z) € S, then 2 < y and y < z. So, z < z wich
implies (x, z) € S. That is, S is transitive.

(c) <yl

Proof: Write S = {(z,y) : x < |y|}, then we check that (i) reflexive, (ii)
symmetric, and (iii) transitive as follows. It is clear that D (S) = R.

(i) Since it is impossible for 0 < |0], S is not reflexive.

(ii) Since (—1,2) € S but (2,—1) ¢ S, S is not symmetric.

(iii) Since (0, —1) € S and (—1,0) € S, but (0,0) ¢ S, S is not transitive.

(d) 2 +y* =1

Proof: Write S = {(x,y) : 22 + y* = 1}, then we check that (i) reflexive,
(ii) symmetric, and (iii) transitive as follows. It is clear that D (S) = [—1,1],
an closed interval with endpoints, —1 and 1.

(i) Since 1 € D (S), and it is impossible for (1,1) € S by 12+ 12 #1, S
is not reflexive.

(i) If (z,y) € S, then 22 +y* = 1. So, (y,z) € S. That is, S is symmetric.

(iii) Since (1,0) € S and (0,1) € S, but (1,1) ¢ S, S is not transitive.

(e) x> +y* <0

Proof: Write S = {(z,y) : 2> + y*> < 1} = ¢, then S automatically sat-
isfies (i) reflexive, (ii) symmetric, and (iii) transitive.

() 22 + 2=y’ +y

Proof: Write S = {(z,y) : 2*+z =9’ +y} = {(2,y) : (x —y) (x +y — 1) =0},
then we check that (i) reflexive, (ii) symmetric, and (iii) transitive as follows.
It is clear that D (S) = R.



(i) If x € R, it is clear that (z,x) € S. So, S is reflexive.

(ii) If (z,y) € S, it is clear that (y,z) € S. So, S is symmetric.

(iii) If (z,y) € S and (y,z) € S, it is clear that (z,z) € S. So, S is
transitive.

2.3 The following functions F' and G are defined for all real x by the
equations given. In each case where the composite function G o F' can be
formed, give the domain of Go F' and a formula (or formulas) for (G o F) (z) .

(a) F(z)=1—z,G(z) =2*+ 2z
Proof: Write

GoF(z)=G[F(z)]=G[l—z]=(1-2)42(1—2)=2>—4z+ 3.

It is clear that the domain of G o F' () is R.
(b) F(z)=x+5,G(z)=|z|/xif 2 #£0, G(0) =0.
Proof: Write

G(x+5) =12l if £ 5,

z+5

GoF(x)IG[F(xﬂ:{ 0if o = —5.

It is clear that the domain of G o F' () is R.

2z, if 0 <z <1 - 22, if0<z<1
(c) F(x) = { 1, otherwise, () = { 0, otherwise.
Proof: Write

4a*if w € [0,1/2]
GoF(x)=G[F(x)] = 0if x € (1/2,1]
lifz € R—10,1]
It is clear that the domain of G o F' () is R.
Find F (z) if G (x) and G [F (z)] are given as follows:
(d) G(x) =2 GI[F (x)] = 2> — 32® + 3z — 1.

Proof: With help of (z —1)® = 23 — 322 4+ 3z — 1, it is easy to know
that F'(x) = 1 — . In addition, there is not other function H (x) such that
G|H (z)] = 2% — 32 + 3z — 1 since G (z) = 27 is 1-1.

(e) G(x) =3+ x+ 22 G[F(z)]=2*—3x+5.
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Proof: Write G (z) = (z + %)2 + &, then

GF (z)] = <F(x)+%) +1741:x2—3x+5

which implies that
(2F (z) +1)* = (22 — 3)°

which implies that
F(x)=2—-2o0r —x+ 1.

2.4 Given three functions F, G, H, what restrictions must be placed on
their domains so that the following four composite functions can be defined?

GoF, HoG, Ho(GoF), (HoG)oF.

Proof: It is clear for answers,

R(F)C D(G) and R(G) C D (H).

Assuming that H o (Go F) and (H o G) o F' can be defined, prove that
associative law:

Ho(GoF)=(HoG)oF.

Proof: Given any z € D (F), then
(HoG)oF)(x) = (HoG)(F(r))
= H (G (F(x)))
= H((GoF)(x))
=(Ho(GoF))(x).
So, Ho(GoF)=(HoG)oF.

25 Prove the following set-theoretic identities for union and intersec-
tion:



(a) AU(BUC) = (AUB)UC, AN(BNC) =(ANB)NC.

Proof: For the part, AU(BUC) = (AU B)UC : Givenx € AU(BUC),
we have v+ € Aorx € BUC. Thatis, x € Aor x € B or ¢ € C. Hence,
x € AUB or x € C. It implies x € (AU B)UC. Similarly, if z € (AU B)UC,
then z € AU (BUC). Therefore, AU(BUC) = (AUB)UC.

For the part, AN(BNC) = (AN B)NC : Givenz € AN(BNC), we have
r€Aandx € BNC. Thatis,z € Aand x € Band x € C. Hence, x € ANB
and z € C. It implies x € (AN B) N C. Similarly, if z € (AN B) N C, then
r € AN(BNC). Therefore, AN(BNC)=(ANB)NC.

(b) AN(BUC)=(ANB)U(ANC).

Proof: Givenx € AN(BUC), then z € A and x € BUC. We consider
two cases as follows.

Ifxe B, thenz e ANB. So,z€ (ANB)U(ANC).

IfxeC thenze ANC. So,z € (ANB)U(ANC).

So, we have shown that

AN(BUC)C (ANB)U(ANC). (*)

Conversely, given x € (ANB)U(ANC),thenx € ANBorxz e ANC.
We consider two cases as follows.

Ifxe ANB,thenz e AN(BUC).

Ifxre ANC,thenxz e AN(BUCQ).

So, we have shown that

(ANB)U(ANC)CAN(BUCQ). (**)
By (*) and (**), we have proved it.

(¢) (AuB)n(ALC) =AU BNC)

Proof: Given z € (AUB)N(AUC), thenx € AUB and z € AUC.
We consider two cases as follows.

Ifx€e A thenx e AU(BNCO).

If 2 ¢ A then v € B and ¢ € C. So, + € BN C. It implies that
reAU(BNCO).

Therefore, we have shown that

(AUB)N(AUC)C AU(BNC). (*)
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Conversely, if € AU(BNC), then z € A or x € BN C. We consider
two cases as follows.
Ifxe A thenx e (AUB)N(AUC).
Ifz € BNC,thenz € AUBandz € AUC. So,z € (AUB)N(AUC).
Therefore, we have shown that
AU(BNC)C(AuB)N(AUC). (*)

By (*) and (**), we have proved it.
(d) (AUB)N(BUC)N(CUA)=(ANB)U(ANC)U(BNC)
Proof: Givenz € (AUB)N(BUC)N(CUA), then

re€AUBand z € BUC and x € CU A. (*)

We consider the cases to show x € (AN B)U(ANC)U (BNC) as follows.

For the case (z € A):

If x € B, then x € AN B.

If x ¢ B, then by (*), z € C. So, z € ANC.

Hence, in this case, we have proved that x € (AN B)U(ANC)U(BNC).

For the case (z ¢ A):

If z € B, then by (*), z € C. So, z € BN C.

If x ¢ B, then by (*), it is impossible.

Hence, in this case, we have proved that x € (AN B)U(ANC)U(BNC).

From above,

(AUB)N(BUC)N(CUA) C(ANB)UANC)u(BNC)
Similarly, we also have
(ANB)UANCYU(BNC)C(AUB)N(BUC)N(CUA).

So, we have proved it.

Remark: There is another proof, we write it as a reference.

Proof: Consider

(AUB)N(BUC)N(CUA)

[(AUuB)N(BUC)|N(CUA)
=[BUANC)N(CUA)
=[BN(CUAJU[ANC)N(CUA)]

[(B CYU(BNA)JUANC)
=(ANB)UANCYU(BNCO).



(e) AN(B—C)=(ANB) - (ANC)

Proof: Given x € AN(B—-C),thenz € Aandx € B—C. So, x € A
and x € Band z ¢ C. So, z € AN B and x ¢ C. Hence,

re(ANB)-CC(ANB)—-(ANC). (*)

Conversely, given z € (ANB)—(ANC),thenz € ANBandz ¢ ANC.
So,z € Aand x € Band z ¢ C. So, z € A and z € B — C. Hence,

e AN(B—-C0C) (**)
By (*) and (**), we have proved it.
HH(A-C)n(B-C)=(AnB)-C

Proof: Givenz € (A-C)N(B—C),thenz € A—C and z € B— C.
So,x € Aand x € B and x ¢ C. So, z € (AN B) — C. Hence,

(A-C)n(B—-C)C (ANB) - C. ()

Conversely, given x € (AN B)—C, thenz € Aand z € B and x ¢ C. Hence,
r€A—Cand x € B— C. Hence,

(ANB)—-CC(A-C)Nn(B-0C). (*%)
By (*) and (**), we have proved it.
(g) (A= B)UB = Aif and only if, BC A

Proof: (=) Suppose that (A — B)U B = A, then it is clear that B C A.
(<) Suppose that B C A, then given x € A, we consider two cases.

If x € B, thenz € (A— B)UB.

If ¢ B, then z € A — B. Hence, x € (A— B)UB.

From above, we have

AC(A-B)UB.
In addition, it is obviously (A — B)U B C A since A— B C A and B C A.

26 Let f: S — T be a function. If A and B are arbitrary subsets of S,
prove that

fAUB) = f(A)U f(B) and f(ANB) C f(A)Nf(B).
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Generalize to arbitrary unions and intersections.

Proof: First, we prove f(AUB) = f(A) U f(B) as follows. Let y €
f(AUB), then y = f(a) or y = f(b), where a € A and b € B. Hence,
ye f(A)U f(B). That is,

fAUB)C f(A)Uf(B).
Conversely, if y € f(A)U f(B), then y = f(a) or y = f(b), where a € A
and b € B. Hence, y € f (AU B). That is,

fA)Uf(B)Cf(AUB).

So, we have proved that f (AU B) = f(A)U f (B).

For the part f(ANB) C f(A)Nf(B): Lety € f(ANDB), then y =
f(z),wherex € ANB. Hence,y € f(A)andy € f(B).Thatis, f (AN B) C
fA)Nf(B).

For arbitrary unions and intersections, we have the following facts, and
the proof is easy from above. So, we omit the detail.

f (Uier Ai) = Uier f (A;), where I is an index set.

And
f(MierA;) € Nierf (A;), where I is an index set.

Remark: We should note why the equality does NOT hold for the case
of intersection. for example, consider A = {1,2} and B = {1,3}, where

f(l)=1and f(2)=2and f(3) =2.
fAnB)=f({1h) ={1} c {2 c f({L.2hnf({L3}) = f(A)N[f(B).

27 Let f: S — T be a function. If Y C T, we denote by f~1(Y) the
largest subset of S which f maps into Y. That is,

ffY)={r:zeSand f(x) €Y}.

The set f~!(Y) is called the inverse image of Y under f. Prove that the
following for arbitrary subsets X of S and Y of T'.

(&) x c F1 (X))



Proof: Given x € X, then f(z) € f(X). Hence, z € f~1[f(X)] by
definition of the inverse image of f (X) under f. So, X C f~'[f (X)].

Remark: The equality may not hold, for example, let f (z) = 2% on R,
and let X = [0, 00), we have

FHF(X)] = f[[0,00)] = R.

(b) rrvrycy

Proof: Given y € f(f~'(Y)), then there exists a point x € f~'(Y)
such that f(z) = y. Since z € f~1(Y), we know that f(x) € Y. Hence,
y €Y. So, f(f7 (Y)Y

Remark: The equality may not hold, for example, let f (z) = 2? on R,
and let Y = R, we have

FF) =f(R)=[0,00) C R.

() ffAMUYe] = fH (V) U f (V)

Proof: Given z € f~![Y; UY;], then f(z) € Y; UYs. We consider two
cases as follows.

If f(z) €Yy, thenze f71(Y]).So,z e f~H(Y)U f(YVa).

If f(z) ¢ Yy, ie, f(x) € Yo, then z € f71(Y3). So, z € f1 (Y1) U
(Y.

From above, we have proved that

MUY, c ) u (). (*)

Conversely, since f~1(¥;) € £~} [¥; UY3] and =1 (V) € f~1[¥; UY3),
we have

FrM)Ufi(Y,) S finuYs). (**)
From (*) and (**), we have proved it.
(d) [ MiNY] =1 (Y)nfH(Ya)

Proof: Given z € f~1 (Y1) N f~1(Ys), then f(z) € Y} and f(x) € Ya.
So, f (z) € Y1 NY,. Hence, z € f~1[Y; NY5]. That is, we have proved that

)N () € f iyl (*)
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Conversely, since f~! [Y1 NYo] € f71 (Y1) and f71[Y1NYs] C f7(Va),
we have
fimny ] cfi)nf(Ya). (**)
From (*) and (**), we have proved it.
(e) f[FAT=Y)=5—f(Y)
Proof: Given z € f~1 (T'—Y), then f(x) € T —Y. So, f(x) ¢ Y. We
want to show that z € S— f~!(Y). Suppose NOT, then = € f~! (V') which

implies that f (z) € Y. That is impossible. Hence, z € S — f~1(Y). So, we
have

T -Y)SS—f(Y). (*)
Conversely, given x € S— f~1(Y), thenz ¢ f~1 (V). So, f (z) ¢ Y. That

is, f(x) €T —Y. Hence, z € f~1 (T —Y). So, we have
S—frY)CfH(T-Y). (**)

From (*) and (**), we have proved it.
(f) Generalize (c¢) and (d) to arbitrary unions and intersections.

Proof: We give the statement without proof since it is the same as (c)
and (d). In general, we have

F T (Uierdi) = Uier f 1 (A)).
and
S (Mierds) = Mier f 1 (A)).
Remark: From above sayings and Exercise 2.6, we found that the
inverse image f~! and the operations of sets, such as intersection and union,
can be exchanged. However, for a function, we only have the exchange of

f and the operation of union. The reader also see the Exercise 2.9 to get
more.

2.8 Refer to Exercise 2.7. Prove that f[f~' (Y)] =Y for every subset Y’
of T'if, and only if, "= f (S5) .

Proof: (=) It is clear that f(S) C T. In order to show the equality, it
suffices to show that T C f(S). Consider f~!(T) C S, then we have

FUHD) S f(S).
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By hyppothesis, we get T C f (.5).

(<) Suppose NOT, i.e., f[f~'(Y)] is a proper subset of Y for some
Y C T by Exercise 2.7 (b). Hence, there is a y € Y such that y ¢
FIfH(Y)]. Since Y C f(S) =T, f(z) =y for some z € S. It implies that
z € f1(Y). So, f(z) € f[f 1 (Y)] which is impossible by the choice of y.
Hence, f[f~* (Y)] =Y for every subset Y of T.

29 Let f : S — T be a function. Prove that the following statements
are equivalent.

(a) f is one-to-one on S.

(b) f(ANB) = f(A)N f(B) for all subsets A, B of S.

(c) f71[f (A)] = A for every subset A of S.

(d) For all disjoint subsets A and B of S, the image f (A) and f (B) are
disjoint.

(e) For all subsets A and B of S with B C A, we have

f(A=B)=[f(A)—[f(B).

Proof: (a) = (b) : Suppose that f is 1-1 on S. By Exercise 2.6, we
have proved that f(ANB) C f(A) N f(B) for all A,B of S. In order to
show the equality, it suffices to show that f(A)Nf(B) C f(ANB).

Given y € f(A)N f(B), then y = f(a) and y = f(b) where a € A
and b € B. Since f is 1-1, we have a = b. That is, y € f(ANB). So,
fANF(B)C f(ANB).

(b) = (c) : Suppose that f (AN B) = f(A)N f(B) for all subsets A, B
of S. If A # f~'[f (A)] for some A of S, then by Exercise 2.7 (a), there is
an element a ¢ A and a € f~![f (A)]. Consider

¢ = f(An{a}) = f(A) N f({a}) by (b) (*)

Since a € f~1[f (A)], we have f (a) € f (A) which contradicts to (*). Hence,
no such a exists. That is, f~![f (A)] = A for every subset A of S.

(¢) = (d) : Suppose that f~'[f(A)] = A for every subset A of S. If
AN B = ¢, then Consider

p=ANB
= AN (B)]
=1 (f(A) N f(B)) by Exercise 2.7 (d)
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which implies that f (A) N f(B) = ¢.
(d) = (e) : Suppose that for all disjoint subsets A and B of S, the image
f(A) and f (B) are disjoint. If B C A, then since (A — B) N B = ¢, we have

f(A=B)nf(B)=¢
which implies that
f(A=B)C f(A) - f(B). (**)

Conversely, we consider if y € f(A) — f(B), then y = f (z), where x € A
and = ¢ B. It implies that xt € A — B. So, y = f (v) € f(A— B). That is,

f(A) = f(B)S f(A-B). (**%)

By (**) and (***), we have proved it.

(d) = (a) : Suppose that f (A — B) = f (A)— f (B) for all subsets A and
B of S with B C A. If f(a) = f(b), consider A = {a,b} and B = {b}, we
have
f(A=B)=¢
which implies that A = B. That is, a = b. So, f is 1-1.
2.10 Prove that if A"B and B™C, then A™C.

Proof: Since A™B and B~C, then there exists bijection f and g such
that
f:A—Bandg: B — C.

So, if we consider go f: A — C, then A™C since g o f is bijection.
211 1f {1,2,...,n} ~{1,2,...,m}, prove that m = n.

Proof: Since {1,2,...,n} “{1,2,...,m}, there exists a bijection function

fAL2,..,n}—{1,2,...,m}.

Since f is 1-1, then n < m. Conversely, consider f~! is 1-1 to get m < n. So,
m = n.

2.12 If S is an infinite set, prove that S contains a countably infinite
subset. Hint. Choose an element a; in S and consider S — {a;} .
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Proof: Since S is an infinite set, then choose a; in S and thus S — {a,}
is still infinite. From this, we have S — {a4, .., a,} is infinite. So, we finally
have

{a1,...;an, ...} (CS)
which is countably infinite subset.
2.13 Prove that every infinite set S contains a proper subset similar to S.
Proof: By Exercise 2.12, we write § = S U {z1,...,Tp, ...} , where SN
{z1,....;xp, ...} = ¢ and try to show
S U {.1'2, cery Ly } )
as follows. Define

f:SU{zg, tn, ..} = S =SU{zy,....T0,...}

by 3
f(m)z{ rifresS

x; if v =m0

Then it is clear that f is 1-1 and onto. So, we have proved that every infinite
set S contains a proper subset similar to S.

Remark: In the proof, we may choose the map

f:SU {TNi1y ey Ty} — S = SU {z1, .0y, ..}

f(x):{ vifzeS

ZT; if = Ti+N ’

2.14 If A is a countable set and B an uncountable set, prove that B — A
is similar to B.

Proof: In order to show it, we consider some cases as follows. (i) BNA =
¢ (ii) BN A is a finite set, and (iii) B N A is an infinite set.

For case (i), B— A = B. So, B — A is similar to B.

For case (ii), it follows from the Remark in Exercise 2.13.

For case (iii), note that B N A is countable, and let C'= B — A, we have
B=CU(BNA). We want to show that

(B—A)"BeCCUBNA.
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By Exercise 2.12, we write ' = C U D, where D is countably infinite and
CND = ¢. Hence,

C"CU(BNA) & (éuD)~ [éu(Du(BmA))]
& (CUD)~<CUD’)

where D’ = DU(B N A) which is countably infinite. Since (é U D) N (C’ U D')

is clear, we have proved it.

2. 15 A real number is called algebraic if it is a root of an algebraic
equation f(x) = 0, where f(z) = a9 + ez + ... + a,2" is a polynomial
with integer coefficients. Prove that the set of all polynomials with integer
coefficients is countable and deduce that the set of algebraic numbers is also
countable.

Proof: Given a positive integer N (> 2), there are only finitely many
eqautions with

n+Z|ak|:N, where a;, € Z. (*)
k=1

Let Sy ={f: f(z) = ap+ a1z + ... + a,a" satisfies (*)}, then Sy is a finite
set. Hence, U°,S, is countable. Clearly, the set of all polynomials with
integer coefficients is a subset of Uy2,S,,. So, the set of all polynomials with
integer coefficients is countable. In addition, a polynomial of degree k has at
most k roots. Hence, the set of algebraic numbers is also countable.

2.16 Let S be a finite set consisting of n elements and let 7" be the
collection of all subsets of S. Show that 7" is a finite set and find the number
of elements in 7.

Proof: Write S = {x1,...,x,}, then T" =the collection of all subsets of
S. Clearly, T is a finite set with 2" elements.

217 Let R denote the set of real numbers and let S denote the set
of all real-valued functions whose domain in R. Show that S and R are not
equinumrous. Hint. Assume S™R and let f be a one-to-one function such
that f (R) = S.If a € R, let g, = f (a) be the real-valued function in S which
correspouds to real number a. Now define h by the equation h (z) = 1+g, (z)
if z € R, and show that h ¢ S.
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Proof: Assume S™R and let f be a one-to-one function such that f (R) =
S.Ifa € R, let g, = f (a) be the real-valued function in S which correspouds
to real number a. Define h by the equation h (z) =1+ g, (z) if z € R, then

h:f(b)ng

which implies that
h(b) =1+ gy (b) = go (b)
which is impossible. So, S and R are not equinumrous.

Remark: There is a similar exercise, we write it as a reference. The
cardinal number of C'[a, b] is 2%, where Ry = # (N).

Proof: First, # (R) = 2% < # (C'[a,b]) by considering constant func-
tion. Second, we consider the map

f:Cla,b] = P(Q x Q), the power set of @ x @

by
flo) ={(z,y) € @ xQ:x € a,b] andy < ¢ (x)}.
Clearly, f is 1-1. It implies that # (C'[a,b]) < # (P (Q x Q)) = 2%°.
So, we have proved that # (C'[a,b]) = 2%,

Note: For notations, the reader can see the textbook, in Chapter 4, pp
102. Also, see the book, Set Theory and Related Topics by Seymour
Lipschutz, Chapter 9, pp 157-174. (Chinese Version)

2.18 Let S be the collection of all sequences whose terms are the integers
0 and 1. Show that S is uncountable.

Proof: Let E be a countable subet of S, and let F consists of the se-
quences Si, .., Sp,.... We construct a sequence s as follows. If the nth digit
in s, is 1, we let the nth digit of s be 0, and vice versa. Then the sequence
s differes from every member of E in at least one place; hence s ¢ E. But
clearly s € S, so that F is a proper subset of S.

We have shown that every countable subset of S is a proper subset of S.
It follows that S is uncountable (for otherwise S would be a proper subset
of S, which is absurb).

Remark: In this exercise, we have proved that R, the set of real numbers,
is uncountable. It can be regarded as the Exercise 1.22 for £ = 2. (Binary
System).
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2.19 Show that the following sets are countable:

(a) the set of circles in the complex plane having the ratiional radii and
centers with rational coordinates.

Proof: Write the set of circles in the complex plane having the ratiional
radii and centers with rational coordinates, {C (z,;¢,) : x, € Q x Q and ¢, € Q} :=
S. Clearly, S is countable.

(b) any collection of disjoint intervals of positive length.

Proof: Write the collection of disjoint intervals of positive length, {I : I is an interval of positiv
S. Use the reason in Exercise 2.21, we have proved that S is countable.

220 Let f be a real-valued function defined for every x in the interval
0 < z < 1. Suppose there is a positive number M having the following
property: for every choice of a finite number of points i, xs, ..., x, in the
interval 0 < z <1, the sum

[f (@) + o+ f ()| < M.

Let S be the set of those z in 0 < z < 1 for which f (z) # 0. Prove that S
is countable.

Proof: Let S, = {x €[0,1] : |f (z)] > 1/n}, then S, is a finite set by
hypothesis. In addition, S = U2 ,.S,. So, S is countable.

2.21 Find the fallacy in the following ”proof” that the set of all intervals
of positive length is countable.

Let {z1,xs,...} denote the countable set of rational numbers and let I
be any interval of positive length. Then I contains infinitely many rational
points x,,, but among these there will be one with smallest index n. Define
a function F' by means of the eqaution F' (I) = n if x,, is the rational number
with smallest index in the interval /. This function establishes a one-to-one
correspondence between the set of all intervals and a subset of the positive
integers. Hence, the set of all intervals is countable.

Proof: Note that F' is not a one-to-one correspondence between the set
of all intervals and a subset of the positive integers. So, this is not a proof.
In fact, the set of all intervals of positive length is uncountable.

Remark: Compare with Exercise 2.19, and the set of all intervals of
positive length is uncountable is clear by considering {(0,z) : 0 < z < 1}.
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2.22 Let S denote the collection of all subsets of a given set T'. Let f : S —

R be a real-valued function defined on S. The function f is called additive
if f(AUB) = f(A)+ f(B) whenever A and B are disjoint subsets of 7. If
f is additive, prove that for any two subsets A and B we have

fAUB) = f(A)+ f(B—-A)

and

f(AUB) = f(A)+f(B)-f(ANDB).

Proof: Since AN(B—A)=¢and AUB=AU(B— A), we have
f(AUB) = f(AU(B—A)) = f(A) + [(B-A). (*)

In addition, since(B — A)N(ANB)=¢and B=(B—-A)U(ANB), we
have
fB)=F((B=A)U(ANB))=[f(B-A)+[f(ANB)

which implies that
f(B—=A)=f(B)-f(ANB) (**)
By (*) and (**), we have proved that

fAUB) = f(A)+f(B) - f(ANB).

2.23 Refer to Exercise 2.22. Assume f is additive and assume also that
the following relations hold for two particular subsets A and B of T :

fAUB) = f(A)+ f(B) - f(A) f(B)
and
f(ANB) = f(A)[(B)
and
f(A)+ f(B) # [(T),

where A’ =T — A, B' =T — B. Prove that these relations determine f (T'),
and compute the value of f (7).
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Proof: Write

F(T)=fA)+ f(A) = F(B)+ f(B),

then

8 _
~ Q
< —~ =
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Do~
o=z
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g= 17
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which implies that

[F (TP = [ (A)+ £ (B) + 2 £ (T) +2[f (4) + f (B)] =0

which implies that

0

f(A)+ f(B).So,z=2since z #a by f(A) + f(B)# f(T).

2~ (a+2)z+20=0= (z—a)(r—2)

where a
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Charpter 3 Elements of Point set Topology

Open and closed sets in R! and R?

3.1 Prove that an open interval in R is an open set and that a closed interval is a
closed set.

proof: 1. Let (a,b) be an open interval in R!, and let x € (a,b). Consider
min(x — a,b —x) := L. Then we have B(x,L) = (x—L,x+ L) < (a,b). That is, x is an
interior point of (a,b). Since x is arbitrary, we have every point of (a,b) is interior. So,
(a,b) is openin R!.

2. Let [a,b] be a closed interval in R!, and let x be an adherent point of [a,b]. We want
to show x € [a,b]. If x ¢ [a,b], then we have x < a or x > b. Consider x < a, then

B 45E) N [ab] = (54, X4y [a.b] = §

which contradicts the definition of an adherent point. Similarly for x > b.
Therefore, we have x € [a,b] if x is an adherent point of [a,b]. That is, [a,b] contains
its all adherent points. It implies that [a,b] is closed in R'.

3.2 Determine all the accumulation points of the following sets in R' and decide
whether the sets are open or closed (or neither).

(a) All integers.

Solution: Denote the set of all integers by Z. Let x € Z, and consider
(B(x, L) — {x}) NS = ¢. So, Z has no accumulation points.

However, B(x, %) NS = {x} # ¢. So Z contains its all adherent points. It means that
Z is closed. Trivially, Z is not open since B(x,r) is not contained in Z for all » > 0.

Remark: 1. Definition of an adherent point: Let S be a subset of R”, and x a point in
R", x is not necessarily in S. Then x is said to be adherent to S if every n —ball B(x)
contains at least one point of S. To be roughly, B(x) N S # ¢.

2. Definition of an accumulation point: Let S be a subset of R”, and x a point in R”,
then x is called an accumulation point of S if every n —ball B(x) contains at least one point
of § distinct from x. To be roughly, (B(x) — {x}) NS # ¢. That is, x is an accumulation

point if, and only if, x adheres to S — {x}. Note that in this sense,
(B(x) = {x}) NS = B(x) N (S—<{x}).

3. Definition of an isolated point: If x € S, but x is not an accumulation point of S, then
x is called an isolated point.

4. Another solution for Z is closed: Since R — Z = U,ez (n,n+ 1), we know that R — Z
is open. So, Z is closed.

5. In logics, if there does not exist any accumulation point of a set S, then S is
automatically a closed set.

(b) The interval (a,b].

solution: In order to find all accumulation points of (a, ], we consider 2 cases as
follows.

1. (a,b] : Letx € (a,b], then (B(x,r) — {x}) N (a,b] #+ ¢ for any » > 0. So, every
point of (a, b] is an accumulation point.

2. R' — (a,b] = (-0,a] U (b,) : For points in (b,) and (—,a), it is easy to know
that these points cannot be accumulation points since x € (b,0) orx € (—,a), there



exists an n —ball B(x,ry) such that (B(x,rx) — {x}) N (a,b] = ¢. For the point a, it is easy
to know that (B(a,r) — {a}) N (a,b] # ¢. That is, in this case, there is only one
accumulation point a of (a, b].

So, from 1 and 2, we know that the set of the accumulation points of (a,b] is [a,b].

Since a ¢ (a,b], we know that (a, b] cannot contain its all accumulation points. So,
(a,b] is not closed.

Since an n —ball B(b,r) is not contained in (a, b] for any » > 0, we know that the point
b is not interior to (a,b]. So, (a,b] is not open.

(¢) All numbers of the form 1/n, (n = 1,2,3,...).

Solution: Write the set {1/n : n = 1,2,...} =<1,1/2,1/3,...,1/n,...} =S.
Obviously, 0 is the only one accumulation point of S. So, S is not closed since S does not

contain the accumulation point 0. Since 1 € S, and B(1,r) is not contained in S for any
r > 0, S'is not open.

Remark: Every point of {1/n : n = 1,2,3,...} is isolated.
(d) All rational numbers.

Solutions: Denote all rational numbers by Q. It is trivially seen that the set of
accumulation points is R!.

So, Q is not closed. Consider x € Q, any n —ball B(x) is not contained in Q. That is, x
is not an interior point of Q. (In fact, every point of Q is not an interior point of Q. ) So,

0 is not open.
(e) All numbers of the form 27" + 5, (m,n = 1,2,...).
Solution: Write the set
Qs mimn=12,. =ure{lysmLism Lism 1 o.—g

2 4 27
-yl 11,1 1, 1
Sty ey e U
.1 1.1 1,1

R A T
........................................................ U
{3+ 535+ 3roee g g bk U

So, we find that §' = {3 : n = 1,2,...} U{zr : m = 1,2,...} U {0}. So, S'is not
closed since it does not contain 0. Since % € S, and B(<,r) is not contained in S for any
r > 0, S 1is not open.

Remark: By (1)-(3), we can regard them as three sequences

{% + S—M}::O, {% + 5—’”}::0 and {2—1" + 5"”}::0, respectively.

And it means that for (1), the sequence {57 }"—" moves % Similarly for others. So, it is
easy to see why % is an accumulation point of {% + 5""}::0. And thus get the set of all

accumulation points of {27 + 5" : m,n = 1,2,..}.
(f) All numbers of the form (-1)" + (1/m), (m,n = 1,2,...).
Solution: Write the set of all numbers (-1)" + (1/m), (m,n = 1,2,...) as

ok} oo d) =



And thus by the remark in (e), it is easy to know that S = {1,—1}. So, S is not closed
since 8" & S. Since 2 € S, and B(2,r) is not contained in S for any » > 0, S is not open.

(g) All numbers of the form (1/n) + (1/m), (m,n = 1,2,...).
Solution: Write the set of all numbers (1/n) + (1/m), (m,n = 1,2,...) as
{1+ Um}y" P U112+ Um0 U U{lUn+ Um}"—7 U....= S.

We find that ' = {1/n : n € N} U{l/m : m € Ny U{0} =<{1/n : n € Ny U{0}. So, S'is
not closed since §" & S. Since 1 € S, and B(1,r) is not contained in S for any » > 0, S is
not open.

(h) All numbers of the form (=1)"/[1 + (1/n)], (n = 1,2,...).
Soluton: Write the set of all numbers (—=1)"/[1 + (1/n)], (n = 1,2,...) as

k=00 k=0
1 } { -1 } _
U4 — = S.
1 1
{ 1+ 2%k ) k=1 I+ 2k-1 J k=1

We find that ' = {-1,1}. So, Sis not closed since §' & S. Since *71 € S, and B(’Tl,r) is
not contained in S for any » > 0, S is not open.

3.3 The same as Exercise 3.2 for the following sets in R?.
(a) All complex z such that |z| > 1.

Solution: Denote {z € C : |z|> 1} by S. Itis easy to know that S’ = {z € C : |z}> 1}.
So, S is not closed since 8" & S. Letz € S, then |z| > 1. Consider B(z, ‘Z‘T_l) C S, so every
point of S is interior. That is, S is open.

(b) All complex z such that |z| > 1.

Solution: Denote {z € C : |z}> 1} by S. Itis easy to know that S' = {z € C : |z}> 1}.
So, S'is closed since §" & S. Since 1 € S, and B(1,r) is not contained in S for any » > 0, S
1s not open.

(¢) All complex numbers of the form (1/n) + (i/m), (m,n = 1,2,...).

Solution: Write the set of all complex numbers of the form (1/n) + (i/m),
(m,n=1,2,...)as

(43 u{d w5 o u{F g v

We know that 8" = {1/n : n = 1,2,...} U<i/m : m = 1,2,...} U {0}. So, S is not closed
since ' & S. Since 1 +i € S, and B(1 + i,r) is not contained in S for any » > 0, S is not
open.

(d) 4ll points (x,y) such that x> + y*> < 1.

Solution: Denote {(x,y) : x2 +y% < 1} by S. We know that
S’ = {(x,y) : x> +y? < 1}. So, Sis not closed since S’ & S. Letp = (x,y) € S, then
x% +y? < 1. It is easy to find that » > 0 such that B(p,r) < S. So, S is open.

(e) All points (x,y) such that x > 0.

Solution: Write all points (x,y) such thatx > 0 as {(x,y) : x > 0} := S. Itis easy to
know that S’ = {(x,y) : x > 0}. So, S'is not closed since S’ & S. Letx € S, then it is easy
to find . > 0 such that B(x,»,) < S. So, S is open.

(f) All points (x,y) such that x > 0.
Solution: Write all points (x,y) such that x > 0 as {(x,y) : x > 0} := §. It is easy to



know that S’ = {(x,y) : x > 0}. So, S'is closed since S’ < §. Since (0,0) € S, and
B((0,0),r) is not contained in S for any » > 0, S is not open.

3.4 Prove that every nonempty open set S in R! contains both rational and irratonal
numbers.

proof: Given a nonempty open set Sin R!'. Let x € S, then there exists » > 0 such that
B(x,r) < Ssince Sis open. And in R!, the open ball B(x,7) = (x — r,x + ). Since any
interval contains both rational and irrational numbers, we have S contains both rational and
irrational numbers.

3.5 Prove that the only set in R' which are both open and closed are the empty set
and R! itself. Is a similar statement true for R*?

Proof: Let S be the set in R!, and thus consider its complement 7 = R' — S. Then we
have both S and T are open and closed. Suppose that S + R! and S = ¢, we will show that
it is impossible as follows.

Since S # R!, and S # @,then T = ¢ and T # R'. Choose so € Sand ¢y € T, then we
consider the new point % whichisin Sor T'since R = SUT. If % € S, we say
% = s1,otherwise, we say % =

Continue these steps, we finally have two sequences named {s,} < Sand {t,} < T.
In addition, the two sequences are convergent to the same point, say p by our construction.
So, we get p € Sand p € T since both S and T are closed.

However, it leads us to get a contradiction since p € SN T = ¢. Hence S = R! or

S =¢.
Remark: 1. In the proof, the statement is true for R”".
2. The construction is not strange for us since the process is called Bolzano Process.

3.6 Prove that every closed set in R is the intersection of a countable collection of
open sets.

proof: Given a closed set S, and consider its complement R! — S which is open. If
R!' — § = ¢, there is nothing to prove. So, we can assume that R! — S = ¢.

Letx € R!' — 8, then x is an interior point of R! — S. So, there exists an open interval
(a,b) such that x € (a,b) < R' — S. In order to show our statement, we choose a smaller
interval (ay, by) so that x € (ax,by) and [ay,by] < (a,b) < R! — S. Hence, we have

Rl - S = UXERI—S [ax, bx]
which implies that
S=R"- Useri-s [ax,bx]
= mxeR]—S (Rl - [aX5bx])
= N7 (R! — [an,b,]) (by Lindelof Convering Theorem).

Remark: 1. There exists another proof by Representation Theorem for Open Sets on
The Real Line.

2. Note that it is true for that every closed set in R! is the intersection of a countable
collection of closed sets.

3. The proof is suitable for R” if the statement is that every closed set in R” is the

intersection of a countable collection of open sets. All we need is to change intervals into
disks.



3."7 Prove that a nonempty, bounded closed set S in R! is either a closed interval, or
that S can be obtained from a closed interval by removing a countable disjoint collection of
open intervals whose endpoints belong to S.

proof: If S is an interval, then it is clear that S is a closed interval. Suppose that S is not
an interval. Since S(# ¢) is bounded and closed, both sup S and inf S are in S. So, R! — S
= [inf§,sup ST — S. Denote [infS,sup S] by I. Consider R' — S is open, then by
Representation Theorem for Open Sets on The Real Line, we have
=/-S
which implies that
S=1-U"=Ip,.

m=1

That is, S can be obtained from a closed interval by removing a countable disjoint
collection of open intervals whose endpoints belong to S.

Open and closed sets in R”

3.8 Prove that open n —balls and n —dimensional open intervals are open sets in R".

proof: Given an open n —ball B(x,r). Choose y € B(x,r) and thus consider
B(y,d) < B(x,r), where d = min(jx — y|,» — |x — »|). Then y is an interior point of B(x,r).
Since y is arbitrary, we have all points of B(x,r) are interior. So, the open n —ball B(x,r) is
open.

Given an n —dimensional open interval (ay,b,) x (az,b3) X...x(an,bn) = I. Choose
x = (x1x2,...,x,) € I and thus consider » = min'=}(r;), where r; = min(x; — a;,b; — x;).
Then B(x,r) < I. That is, x is an interior point of /. Since x is arbitrary, we have all points
of I are interior. So, the n —dimensional open interval / is open.

3.9 Prove that the interior of a set in R" is open in R".

Proof: Let x € intS, then there exists » > 0 such that B(x,7) < S. Choose any point of
B(x,r), say y. Then y is an interior point of B(x,r) since B(x, ) is open. So, there exists
d > 0 such that B(y,d) < B(x,r) < S. So y is also an interior point of S. Since y is
arbitrary, we find that every point of B(x,r) is interior to S. That is, B(x,») < intS. Since x
is arbitrary, we have all points of intS are interior. So, intS is open.

Remark: 1 It should be noted that S is open if, and only if § = intS.
2. int(intS) = intS.
3.1If S < T, then intS < intT.

3.10 If S < R", prove that intS is the union of all open subsets of R" which are
contained in S. This is described by saying that intS is the largest open subset of S.

proof: It suffices to show that intS = U,cs A, where A4 is open. To show the statement,
we consider two steps as follows.

1. (€) Let x € intS, then there exists » > 0 such that B(x,r) < S. So,

x € B(x,r) € Uycs A. That is, intS < Uycs A.

2. (2) Letx € Uycs 4, then x € A for some open set A(< §). Since A4 is open, x is an
interior point of 4. There exists » > 0 such that B(x,r) £ 4 < S. So x is an interior point
of S, i.e., x € intS. Thatis, Uycs A < intS.

From 1 and 2, we know that intS = U4cg A, where A4 is open.

Let T be an open subset of S such that intS < T. Since intS = Uycs A, where A4 is open,



we have intS € T < Uycs A which implies intS = T by intS = U4cs A. Hence, intS is the
largest open subset of S.

3.11 If S and T are subsets of R", prove that
(intS) N (intT) = int(SN T) and (intS) U (intT) < int(SU T).

Proof: For the part (intS) N (intT) = int(S N T), we consider two steps as follows.
1. (©) Since intS < S and intT < T, we have (intS) N (intT) < SN T which implies
that (Note that (intS) N (intT) is open.)
(intS) N (intT) = int((intS) N (intT)) < int(SN T).
2.(2)SinceSNT < SandSNT < T, we have int(SN T) < intS and
int(SNT) < intT. So,

int(SNT) < (intS) N (intT).
From 1 and 2, we know that (intS) N (intT) = int(SN 7).
For the part (intS) U (intT) < int(SU T), we consider (intS) < S and (intT) < T. So,

(intS) U (intT) < SUT
which implies that (Note that (intS) U (intT) is open.)
int((intS) U (intT)) = (intS) U (imtT) < int(SU T).
Remark: It is not necessary that (intS) U (intT) = int(SU T). For example, let S = Q,
and T = Q¢, then intS = ¢, and intT = ¢. However, int(SU T) = intR' = R.
3.12 Let S denote the derived set and S the closure of a set S in R". Prove that
(a) ' is closed in R"; that is (S')' < §'.

proof: Let x be an adherent point of §’. In order to show §' is closed, it suffices to
show that x is an accumulation point of §. Assume x is not an accumulation point of S, i.e.,
there exists d > 0 such that

Bx,d) —{x})NS = ¢.
Since x adheres to S', then B(x,d) N S" # ¢. So, there exists y € B(x,d) such thaty is an
accumulation point of S. Note that x # y, by assumption. Choose a smaller radius d so that

B(y,d) < B(x,d) — {x} and B(n,d) N S + ¢.
It implies
¢+ B,d) NS S (B(x,d) - {x}) NS = ¢ by (*)

which is absurb. So, x is an accumulation point of S. That is, S’ contains all its adherent
points. Hence S’ is closed.

b)IfS<T, thenS < T.

Proof: Let x € §', then (B(x,7) — {x}) NS # ¢ for any » > 0. It implies that
(B(x,r) —{x})N T # ¢ for any r > 0 since S < T. Hence, x is an accumulation point of 7.
Thatis,x € T'. So,S' < T'.

(©(SUT) =suUT

Proof: For the part (SU T)' = S’ U T', we show it by two steps.
1.Since S SUTand T < SUT, wehave S' < (SUT) and T' < (SU T)' by (b).
So,

SUT <UD
2.Letx € (SUT), then (B(x,r) — {x}) N (SUT) # ¢. That s,



(Blx,r) ={xp) NS U (B, 1) =) NT) # ¢.
So, at least one of (B(x,r) — {x}) NS and (B(x,r) — {x}) N Tis not empty. If
(B(x,r) = {x})NS # ¢, thenx € §'. And if (B(x,7) —<{x}) N T + ¢, thenx € T'. So,

SUT) cSUT.

From 1 and 2, we have (SUT) = S' U T.

Remark: Note that since (SU T) = 8" U T", we have c/(SU T) = ¢l(S) U cl(T),
where c/(S) is the closure of S.

@@ =5

Proof: Since S = SUS', then () = (SUS') = S U(S") = S since (S') < S’ by
(a).

(e) S is closed in R".

Proof: Since (:9)’ = §' < Sby (d), then S cantains all its accumulation points. Hence, S
is closed.

Remark: There is another proof which is like (a). But it is too tedious to write.

(0 S is the intersection of all closed subsets of R" containing S. That is, S is the
smallest closed set containing S.

Proof: It suffices to show that S = N o5 4, where 4 is closed. To show the statement,
we consider two steps as follows.

1. (<) Since S is closed and S < S, then Nyo5 4 < S.

2.(2) Letx € S, then B(x,7) N S # ¢ for any » > 0. So, if 4 2 S, then
B(x,r) N4 # ¢ for any » > 0. It implies that x is an adherent point of 4. Hence if 4 2 S,
and A4 is closed, we have x € 4. Thatis, x € Nyos 4. S0, S S Nyos 4.

From 1 and 2, we have S = Nyas 4.

LetS < T < S, where T'is closed. Then S = N5 4 < T. It leads us to get 7 = S.
That is, S is the smallest closed set containing S.

Remark: In the exercise, there has something to remeber. We list them below.
Remark 1.IfSC T, thenS < T.
2.IfS< T, thenS < T.
3.5=SUS"
4. S is closed if, and only if S’ < S.
5. Sis closed.
6. S is the smallest closed set containing S.

3.13 Let S and T be subsets of R". Prove that cI(SNT) < cl(S) N cl(T) and that
SNcl(T) < cl(SNT) if S is open, where cl(S) is the closure of S.

Proof: Since SNT < SandSNT < T, thencl(SNT) < cl(S) and,

cd(SNT) < cl(T). So, cl(SNT) < cl(S) N cl(T).
Given an open set S, and let x € SN cl(T), then we have



1.x € Sand S is open.
= B(x,d) < S for some d > 0.

B(x,r)NS 2 B(x,r)ifr <d.
B(x,r)NS 2 B(x,d) ifr > d.
and
2.x € cl(T)
= B(x,r)N T # ¢ for any r > 0.
From 1 and 2, we know
Bx,n»NESNT)=@Bx,n»NS) NT=Bx,r)NT =+ ¢ifr <d.
Bx,nNSNT)=@Bx,»»NS) NT=Bx,dNT=+ ¢ifr>d.
So, it means that x is an adherent point of S N 7. That is, x € ¢/(SN T). Hence,
SNcl(T) < cl(SNT).
Remark: It is not necessary that c/(SN T) = cI(S) N cl(T). For example, S = Q and
T=0¢thencl(SNT) = ¢ and cl(S) N cl(T) = R.

Note. The statements in Exercises 3.9 through 3.13 are true in any metric space.

3.14 4 set Sin R is called convex if, for every pair of points x and y in S and every
real 0 satisfying 0 < 0 < 1, we have Ox + (1 — 0)y € S. Interpret this statement
geometrically (in R? and R*) and prove that

(a) Every n —ball in R" is convex.

Proof: Given an n —ball B(p,r), and let x, y € B(p,r). Consider Ox + (1 — 0)y, where
0<6<1.
Then

[60x + (1 -0)y—pl = [0x—p)+ (1 -0)(y—p) |l
<Ollx—pl+A-60)ly-pl
<Or+(1-0)r
=7
So, we have Ox + (1 —0)y € B(p,r) for 0 < 6 < 1. Hence, by the definition of convex,
we know that every n —ball in R" is convex.
(b) Every n —dimensional open interval is convex.

Proof: Given an n —dimensional open interval / = (a;,b;) X...x(an,bs). Letx, y € I,
and thus write x = (x,x2,...,x,) and y = (y1,V2,...¥»). Consider
Ox+(1—-0)y=©0x;1+(1—-0)y,0x,+(1 =0)ys,...,0x, + (1 —0)y,) where 0 < 0 < 1.
Then

a; < O0x;+(1-0)y; < b;, wherei = 1,2,..,n.

So, we have Ox + (1 —0)y € I for 0 < 6 < 1. Hence, by the definition of convex, we

know that every n —dimensional open interval is convex.

(c) The interior of a convex is convex.

Proof: Given a convex set S, and let x, y € intS. Then there exists » > 0 such that
B(x,r) < S, and B(y,r) < S. Consider Ox + (1 —0)y := p € S, where 0 < 0 < 1, since S
1S convex.



Claim that B(p,r) < S as follows.

Let ¢ € B(p,r), We want to find two special points ¥ € B(x,r), and y € B(y,r) such
that ¢ = 60X + (1 — 0)y.

Since the three n —balls B(x,r), B(y,r), and B(p,r) have the same radius. By
parallelogram principle, we letX = g + (x —p), and y = ¢ + (y — p), then
lx=%l = lg—pll <r,and [[§ -yl = lg-pl <7

It implies that X € B(x,r), and y € B(y,r). In addition,

0% + (1 - )7
=0(g+&-p)+(1-0)g+-p))

Since X, y € S, and S is convex, then g = 0x + (1 — 0)y € S. It implies that B(p,r) < S
since ¢ is arbitrary. So, we have proved the claim. That is, for 0 < 0 < 1,
Ox+ (1 -0)y = p € intSifx, y € intS, and S is convex. Hence, by the definition of
convex, we know that the interior of a convex is convex.

(d) The closure of a convex is convex.

Proof: Given a convex set S, and letx, y € S. Consider 0x + (1 — 0)y := p, where
0 <6 < 1, and claim that p € §, i.e., we want to show that B(p,») N S # ¢.
Suppose NOT, there exists » > 0 such that

B(p,r)NS = ¢.
Sincex, y € S, then B(x, ) NS # ¢ and B(, L) NS # ¢. And let¥ € B(x, %) N S and
y € B(y,Z) N S. Consider

10+ (1 =8)7) —pll = 16 + (1 =8)7) — (6x + (1 - )y) ||

< [18% - 6x]| + (1 = B)7 — (1 - O)y]
||9)~c—9x+éx—9x|| +

A=) (1 =B+ (1 =By - (1 -0yl

< BT -x[ + (1 =B)[F -yl +18 - 61l + Iyl

A

L +10 = 01Clxll + 1y 1)

<r
if we choose a suitable number 0, where 0 < 0 < 1.

Hence, we have the point 60X + (1 — 0)y € B(p,r). Note that X, y € S and S is convex,
we have 0% + (1 — 8)7 € S. It leads us to get a contradiction by (*). Hence, we have proved
the claim. That is, for0 < 0 < 1, @x+ (1 —=0)y = p € Sifx, y € S. Hence, by the
definition of convex, we know that the closure of a convex is convex.

3.15 Let F be a collection of sets in R", and let S = Uyer A and T = Nyer A. For each
of the following statements, either give a proof or exhibit a counterexample.

(a) If x is an accumulation point of T, then x is an accumulation point of each set A in
F.

Proof: Let x be an accumulation point of 7, then (B(x,r) — {x}) N T # ¢ for any
r > 0. Note that for any 4 € F, we have T < A. Hence (B(x,r) — {x}) N4 # ¢ for any
r > 0. That is, x is an accumulation point of 4 for any 4 € F.

The conclusion is that If x is an accumulation point of 7' = N4er 4, then x is an
accumulation point of each set 4 in F.



(b) If x is an accumulation point of S, then x is an accumulation point of at least one set
AinF.

Proof: No! For example, Let S = R”, and F be the collection of sets consisting of a
single point x (¢ R"). Then it is trivially seen that S = Ucr A. And if x is an accumulation
point of S, then x is not an accumulation point of each set 4 in F.

3.16 Prove that the set S of rational numbers in the inerval (0, 1) cannot be
expressed as the intersection of a countable collection of open sets. Hint: Write
S = {x1,x2,...}, assume that S = N=F Sy, where each Sy, is open, and construct a
sequence {Qn} of closed intervals such that Q,.1 < Qn < S» and such that x, & Q,.
Then use the Cantor intersection theorem to obtain a contradiction.

Proof: We prove the statement by method of contradiction. Write S = {x;,x5,...}, and
assume that S = Nf=7 Sy, where each S; is open.

Since x; € S, there exists a bounded and open interval /; < S such that x; € ;.
Choose a closed interval O < [; such that x; ¢ Q). Since Q; is an interval, it contains
infinite rationals, call one of these, x,. Since x, € S5, there exists an open interval I, < S,
and I, < Q,. Choose a closed interval O, < I, such thatx, ¢ Q,. Suppose O, has been
constructed so that

1. O, is a closed interval.

2. Qn < Q,,,l < S,

3.x, & O
Since Q, is an interval, it contains infinite rationals, call one of these, x,.;. Since
Xur1 € Syi1, there exists an open interval 7,,,; < S,+1 and 1,,,; € Qn. Choose a closed
interval 0,1 < [,,4; such thatx,.; € Q1. So, O, satisfies our induction hypothesis, and

the construction can process.
Note that

1. For all n, Q, is not empty.

2. For all n, O, is bounded since /; is bounded.

3. Qn+1 < Qn-
4.x, & QOn.

Then N’=F° O, # ¢ by Cantor Intersection Theorem.
Since O, < S», N=F On < NP S, = S. So, we have
SO On) =M On * ¢
which is absurb since S N (N2=F On) = ¢ by the factx, ¢ Q,. Hence, we have proved that
our assumption does not hold. That is, S the set of rational numbers in the inerval (0, 1)

cannot be expressed as the intersection of a countable collection of open sets.
Remark: 1. Often, the property is described by saying Q is not an G5 —set.
2. It should be noted that Q¢ is an G5 —set.

3. For the famous Theorem called Cantor Intersection Theorem, the reader should
see another classical text book, Principles of Mathematical Analysis written by Walter
Rudin, Theorem 3.10 in page 53.

4. For the method of proof, the reader should see another classical text book, Principles
of Mathematical Analysis written by Walter Rudin, Theorem 2.43, in page 41.



Covering theorems in R”
3.17If S < R", prove that the collection of isolated points of S is countable.

Proof: Denote the collection of isolated points of S by F. Let x € F, there exists an
n —ball (B(x,ry) — {x}) NS = ¢. Write Q" = {x1,x2,...}, then there are many numbers in
Q" lying on B(x,r.) — {x}. We choose the smallest index, say m = m(x), and denote x by
Xm.

So, F = {x, : m € P}, where P( N), a subset of positive integers. Hence, F is
countable.

3.18 Prove that the set of open disks in the xy —plane with center (x,x) and radius
x > 0, x rational, is a countable covering of the set {(x,y) : x > 0,y > 0}.

Proof: Denote the set of open disks in the xy —plane with center (x,x) and radius x > 0
by S. Choose any point (a,b), where a > 0, and b > 0. We want to find an 2 —ball
B((x,x),x) (€ §) which contains (a,b). It suffices to find x € Q such that
| (x,x) — (a,b) | < x. Since

(e, x) = (@,b)] < x < ||[(x,x) = (a,b)]|* < x> o x2=2(a+b)x+ (a®+b?) <0.
Since x2 — 2(a + b)x + (a + b?) = [x — (a + b)]* — 2ab, we can choose a suitable rational
number x such that x2 — 2(a + b)x + (a® + b?) < 0 since a > 0, and b > 0. Hence, for any
point (a,b), where a > 0, and b > 0, we can find an 2 —ball B((x,x),x) (€ §) which
contains (a,b).

That is, S is a countable covering of the set {(x,y) : x > 0, y > 0}.

Remark: The reader should give a geometric appearance or draw a graph.

3.19 The collection Fof open intervals of the form (1/n,2/n), wheren = 2,3,..., is an
open covering of the open interval (0,1). Prove (without using Theorem 3.31) that no
finite subcollection of F covers (0,1).

Proof: Write F as {(3,1),(3,%),...,(5,%),... . Obviously, F is an open covering
of (0,1). Assume that there exists a finite subcollection of F covers (0, 1), and thus write
them as F' = {(3-, 5~ )s---., (5> 7 )} Choose p € (0,1) so that p < min;<<(5-). Then
p & (5-,-5), where 1 < i < k. It contracdicts the fact F' covers (0, 1).

Remark: The reader should be noted that if we use Theorem 3.31, then we cannot get
the correct proof. In other words, the author T. M. Apostol mistakes the statement.

3.20 Give an example of a set S which is closed but not bounded and exhibit a
coubtable open covering F such that no finite subset of F covers S.

Solution: Let S = R!, then R! is closed but not bounded. And let
F={(n,n+2):n e Z, then F is a countable open covering of S. In additon, it is
trivially seen that no finite subset of ' covers S.

3.21 Given a set S in R" with the property that for every x in S there is an n —ball B(x)
such that B(x) N S is coubtable. Prove that S is countable.

Proof: Note that ¥ = {B(x) : x € S} forms an open covering of S. Since S € R”, then
there exists a countable subcover F'(C F) of S by Lindelof Covering Theorem. Write
F' = {B(x,) : n € N}. Since
S=85N (UneN B(xn)) = Unen (SﬂB(xn))a
and
S N B(xy) is countable by hypothesis.



Then S is countable.

Remark: The reader should be noted that exercise 3.21 is equivalent to exercise 3.23.
3.22 Prove that a collection of disjoint open sets in R" is necessarily countable. Give an
example of a collection of disjoint closed sets which is not countable.

Proof: Let F be a collection of disjoint open sets in R”, and write Q" = {x1,X2,... ;.
Choose an open set S(= ¢) in F, then there exists an n —ball B(y,r) < S. In this ball, there
are infinite numbers in Q. We choose the smallest index, say m = m(y). Then we have
F =4S, : m € P < N} which is countable.

For the example that a collection of disjoint closed sets which is not countable, we give
it as follows. Let G = {{x} : x € R"}, then we complete it.

3.23 Assume that S < R". A point x in R" is said to be condensation point of S if every
n —ball B(x) has the property that B(x) N S is not countable. Prove that if S is not
countable, then there exists a point x in S such that x is a condensation point of S.

Proof: It is equivalent to exercise 3.21.

Remark: Compare with two definitions on a condensation point and an accumulation
point, it is easy to know that a condensation point is an accumulation point. However, am
accumulation point is not a condensation point, for example, S = {l/n : n € N}. We have
0 is an accumulation point of S, but not a condensation point of S.

3.24 Assume that S  R" and assume that S is not countable. Let T denote the set of
condensation points of S. Prove that

(a) S — T is countable.

Proof: If S — 7 is uncountable, then there exists a point x in § — 7 such that x is a
condensation point of S — T by exercise 3.23. Obviously, x(€ §) is also a condensation
point of S. It implies x € T. So, we have x € SN T which is absurb since x € §—T.

Remark: The reader should regard T as a special part of S, and the advantage of T’
helps us realize the uncountable set S( R"). Compare with Cantor-Bendixon Theorem
in exercise 3.25.

(b) S N T is not countable.

Proof: Suppose SN T is countable, then S = (SN 7) U (S — T) is countable by (a)
which is absurb. So, S N 7 is not countable.

(c) T'is a closed set.

Proof: Let x be an adherent point of 7, then B(x,») N T # ¢ for any » > 0. We want to
show x € T. That is to show x is a condensation point of S. Claim that B(x,r) N S is
uncountable for any » > 0.

Suppose NOT, then there exists an n —ball B(x,d) N S which is countable. Since x is an
adherent point of 7, then B(x,d) N T #+ ¢. Choose y € B(x,d) N T so that B(y,0) < B(x,d)
and B(y,0) N S is uncountable. However, we get a contradiction since

B(y,0)NS (is uncountable) C B(x,d)NS (is countable).

Hence, B(x,7) N S is uncountable for any » > 0. That is, x € 7. Since T contains its all
adherent points, 7 is closed.

(d) T contains no isolated points.

Proof: Let x € T, and if x is an isolated point of 7, then there exists an n —ball B(x, d)
such that B(x,d) N T = {x}. On the other hand, x € T means that (B(x,d) — {x}) N Sis



uncountable. Hence, by exercise 3.23, we know that there exists y € (B(x,d) — {x}) NS
such that y is a condensation point of (B(x,d) — {x}) N S. So, y is a condensation point of
S. It implies y € T. It is impossible since

l.y(x) eT.

2.y € B(x,d).

3. Blx,d) N T = {x}.
Hence, x is not an isolated point of 7, if x € 7. That is, T contains no isolatd points.

Remark: Use exercise 3.25, by (¢) and (d) we know that 7 is perfect.

Note that Exercise 3.23 is a special case of (b).

3.25 4 setin R is called perfect if S' = S, that is, if S is a closed set which contains
no isolated points. Prove that every uncountable closed set F in R" can be expressed in the

form F = AU B, where A is perfect and B is countable (Cantor-Bendixon theorem).
Hint. Use Exercise 3.24.

Proof: Let F be a uncountable closed set in R”. Then by exercise 3.24,
F=NT)UF—-T), where T is the set of condensation points of . Note that since F'is
closed, T < F by the fact, a condensation point is an accumulation point. Define
FNT=Aand F—-T = B, then B is countable and A(= T) is perfect.

Remark: 1. The reader should see another classical text book, Principles of
Mathematical Analysis written by Walter Rudin, Theorem 2.43, in page 41. Since the
theorem is famous, we list it below.

Theorem 2.43 Let P be a nonempty perfect set in RX. Then P is uncountable.

Theorem (Modeﬁed 2.43) Let P be a nonempty perfect set in a complete separable
metric space. Then P is uncountable.

2. Let S has measure zero in R'. Prove that there is a nonempty perfect set P in R! such
that PN S = ¢.

Proof: Since S has measure zero, there exists a collection of open intervals {/;} such
that

S < Uland D I < L.

Consider its complement (U7} )¢ which is closed with positive measure. Since the
complement has a positive measure, we know that it is uncountable. Hence, by
Cantor-Bendixon Theorem, we know that

(UI)¢ = AU B, where 4 is perfect and B is countable.
So, let A = P, we have prove it.

Note: From the similar method, we can show that given any set S in R! with measure
0 < d < oo, there is a non-empty perfect set P such that PN S = ¢. In particular, S = Q,
S =the set of algebraic numbers, and so on. In addition, even for cases in R¥, it still holds.

Metric Spaces

3.26 In any metric space (M,d) prove that the empty set ¢ and the whole set M are both
open and closed.

proof: In order to show the statement, it suffices to show that M is open and closed
since M — M = ¢. Let x € M, then for any » > 0, By(x,7) € M. That is, x is an interior



point of M. Sinc x is arbitrary, we know that every point of M is interior. So, M is open.
Let x be an adherent point of M, it is clearly x € M since we consider all points lie in
M. Hence, M contains its all adherent points. It implies that M is closed.

Remark: The reader should regard the statement as a common sense.

3.27 Consider the following two metrics in R" :

di(x,y) = maxigglx; = yil, da(r,y) = 2 b = il
In each of the following metric spaces prove that the ball B(a;r) has the geometric
appearance indicated.:

(a) In (R?,d,), a square with sides parallel to the coordinate axes.

Solution: It suffices to consider the case B((0,0),1). Let x = (x1,x2) € B((0,0),1),
then we have

|X1| < 1, and |X2| < 1.

So, it means that the ball B((0,0), 1) is a square with sides lying on the coordinate axes.
Hence, we know that B(a;r) is a square with sides parallel to the coordinate axes.

(b) In (R?,d>), a square with diagonals parallel to the axes.

Solution: It suffices to consider the case B((0,0),1). Let x = (x1,x2) € B((0,0),1),
then we have

|)C1 +XQ| < 1.

So, it means that the ball B((0,0),1) is a square with diagonals lying on the coordinate
axes. Hence, we know that B(a;r) is a square with diagonals parallel to the coordinate
axes.

(c) A cube in (R3,d).
Solution:It suffices to consider the case B((0,0,0),1). Let
x = (x1,x2,x3) € B((0,0,0),1), then we have
|X1| < 1, |)C2| < 1, and |X3| < 1.

So, it means that the ball B((0,0,0),1) is a cube with length 2. Hence, we know that
B(a;r) is a cube with length 2a.

(d) An octahedron in (R3,d>).

Solution: It suffices to consider the case B((0,0,0),1). Let
x = (x1,x2,x3) € B((0,0,0),1), then we have

|X1 + X2 +x3| < 1.

It means that the ball B((0,0,0), 1) is an octahedron. Hence, B(a;r) is an octahedron.

Remark: The exercise tells us one thing that B(a;7) may not be an n —ball if we
consider some different matrices.

3.28 Let dy and d, be the metrics of Exercise 3.27 and let || x — y|| denote the usual

Euclidean metric. Prove that the following inequalities for all x and y in R" :
di(x,y) < llx =yl < da(x,y) and dr(x,y) < Jnl|lx =yl < ndi(x,y).

Proof: List the definitions of the three metrics, and compare with them as follows.



1. dl(x,y) = maXlSiSnlxi _yi|'

i=n 12
2. Ix-yl = (T i-y0)?)
3. dy(x.y) = 2 - il:

Then we have

(@)
) 1/2
d)(x,y) = maxixi = yi| = (maxbei - )
i-n 12
< (Z(Xi —yi)2> = ”x_J/H-
i=1
(b)
i—n 12
Ix =yl = (Z(xi —yl-)2>
=1
i=n 2 12 i=n
= |:<in —yi|> ] = D b=yl = da(xy).
i=1 =1
(c)
i 12 i—n 12
Jillx =yl = ﬁ(Z(xi—y»z) = <n Z(x[—y»z)
i=1 i=1
2 12
< {n(n[rlgggqxi —y,-|:| )} = l’lrll’<l_a;X|xi - Vil
= di(x,y).
(d)
i=n 2 i=n
[dx(x,)] = <Z|x,~—y,-|> =D =) + D 2k =yl — vl
=1 i=1 1<i<j<n
<D ri—y)?+(m—-1)) (xi—y) by d. P.> G. P.
i=1 i=1
=n Z(xi -i)’
=1
= nlx-yl*.
So,

dr(x,y) < Jnlx =yl
From (a)-(d), we have proved these inequalities.
Remark: 1. Let M be a given set and suppose that (M, d) and (M, d) are metric spaces.

We define the metrics d and d are equivalent if, and only if, there exist positive constants
a, [ such that

ad(x,y) < d(x,y) < Bd(x,y).
The concept is much important for us to consider the same set with different metrics. For



example, in this exercise, Since three metrics are equivalent, it is easy to know that
(R*,dy), (R*,d,), and (R%,|. ||) are complete. (For definition of complete metric space,
the reader can see this text book, page 74.)

2. It should be noted that on a finite dimensional vector space X, any two norms are
equivalent.

3.29 If (M,d) is a metric space, define d'(x,y) = %. Prove that d' is also a metric
for M. Note that 0 < d'(x,y) < 1 forall x, y in M.

Proof: In order to show that d' is a metric for M, we consider the following four steps.
(1) Forx € M, d'(x,x) = 0 since d(x,x) = 0.

(2) Forx # y, d'(x,y) = % > 0 since d(x,y) > 0.

(3) Forx,y € M, d'(x,y) = 7o = -2 — g(y, x)

1+d(x,y) 1+d(y.x)
(4) Forx,y,z € M,
/ __dxy) . 1
TN = Taeyy ~ T T dey)
<1 1 since d(x,y) < d(x,z) + d(z,y)

= 1+d(x,z) +d(zy)

d(x,z) +d(z,y)

1 +d(x,z) +d(z,y)
dez) . dy)

~ 1+d(x,z)+d(z,y) 1 +d(x,z) +d(z,y)

derz) . dz.y)
~ 1+dkx,z)  1+d(zy)
=d(x,z)+d(zy)

Hence, from (1)-(4), we know that d' is also a metric for M. Obviously,
0 <d(x,y) <1forallx, yin M.

Remark: 1. The exercise tells us how to form a new metric from an old metric. Also,
the reader should compare with exercise 3.37. This is another construction.

2. Recall Discrete metric d, we find that given any set nonempty S, (S,d) is a metric
space, and thus use the exercise, we get another metric space (S,d’), and so on. Hence,
here is a common sense that given any nonempty set, we can use discrete metric to form
many and many metric spaces.

3.30 Prove that every finite subset of a metric space is closed.

Proof: Let x be an adherent point of a finite subet S = {x; : i = 1,2,...,n} of a metric
space (M,d). Then for any » > 0, B(x,r) NS + ¢. If x ¢ S, then By/(x,8) NS = ¢ where
0 = miNi<y<, d(x;,x;. ) It is impossible. Hence, x € S. That is, S contains its all adherent
points. So, S is closed.

3.31 In a metric space (M, d) the closed ball of radius r > 0 about a point a in M is the
set B(a;r) ={x : d(x,a) < r}.
(a) Prove that B(a;r) is a closed set.

Proof: Let x € M — B(a;r), then d(x,a) > r. Consider B(x,5), where § = %,
then if y € B(x,5), we have d(y,a) > d(x,a) - d(x,y) > d(x,a) - & = ‘“T>> r. Hence,
B(x,06) = M — B(a;r). Thatis, every point of M — B(a; r) is interior. So, M — B(a;r) is
open, or equivalently, B(a;r) is a closed set.



(b) Give an example of a metric space in which B(a;r) is not the closure of the open
ball B(a;r).

Solution: Consider discrete metric space M, then we have <let X € M)

The closure of B(a; 1) = {a}
and
B(a;1) = M.
Hence, if we let {a} is a proper subset of M, then B(a; 1) is not the closure of the open ball
B(a;1).
3.32 In a metric space M, if subsets satisfy A € S < A, where A is the closure of 4,

then A is said to be dense in S. For example, the set Q of rational numbers is dense in R. If
A is dense in S and if S is dense in T, prove that A is dense in T.

_ Proof: Since 4 is dense in S and §'is dense in 7, we have A > Sand S 2 T. Then
A 2 T. Thatis, A is dense in T.

3.33 Refer to exercise 3.32. A metric space M is said to be separable if there is a
countable subset A which is dense in M. For example, R' is separable becasue the set Q of
rational numbrs is a countable dense subset. Prove that every Euclidean space R* is
separable.

Proof: Since OF is a countable subset of R¥, and O = R¥, then we know that R¥ is
separable.

3.34 Refer to exercise 3.33. Prove that the Lindelof covering theorem (Theorem 3.28)
is valid in any separable metric space.

Proof: Let (M, d) be a separable metric space. Then there exists a countable subset
S = {x, : n € Ny(€ M) which is dense in M. Given a set A < M, and an open covering F
of A. Write P = {B(Xn,7m) : Xn € S, rm € Q}.

Claim that if x € M, and G is an open set in M which contains x. Then
x € B(xp,rm) < G for some B(x,,7n) < P.

Since x € G, there exists B(x,ry) < G for some r, > 0. Note that x € c/(S) since S is
dense in M. Then, B(x,r«/2) NS # ¢. So, if we choose x, € B(x,rv/2)NSand r, € O
with /2 < rn,, < ry/3, then we have

x € B(xn,7m)
and
B(xn,rm) S B(x,7yx)
since if y € B(xn,7m), then
dy,x) < d(y,xn) + d(xn,x)

Iy
< rmt+
)

r_x rx
< =+ =
3 2

<rx

So, we have prvoed the claim x € B(x,,7n) € B(x,rx) < G or some B(x,,rn) € P.

Use the claim to show the statement as follows. Write 4 < Uger G, and let x € A, then
there is an open set G in F such that x € G. By the claim, there is B(x,,7n) = Bpm in P
such that x € B,.» € G. There are, of course, infinitely many such B,.,, corresponding to
each G, but we choose only one of these, for example, the one of smallest index, say
g = q(x). Then we have x € B, < G.



The set of all B, obtained as x varies over all elements of 4 is a countable collection
of open sets which covers 4. To get a countable subcollection of /' which covers 4, we
simply correlate to each set B, one of the sets G of F which contained B ). This
complete the proof.

3.35 Refer to exercise 3.32. If A is dense in S and B is open in S, prove that
B < cl(A N B), where cl(A N B) means the closure of A N B.
Hint. Exercise 3.13.
Proof: Since 4 is dense in S and Bis openin S, 4 2 Sand SN B = B. Then
B=SNB
C ANB, Bisopenin S
C cl(ANB)
by exercise 3.13.
3.36 Refer to exercise 3.32. If each of A and B is dense in S and if B is open in S, prove
that A N B is dense in S.
Proof: Since
cl(A N B), Bisopen
2 cl(4) N B by exercise 3.13
D SN Bsince A4 is dense in §
= B since B is open in S
then
clANB) 2B
which implies
cdANB)=>S
since B is dense in S.
3.37 Given two metric spaces (S1,d,) and (S»,d>), a metric p for the Cartesian
product S x S, can be constructed from dy x d, in may ways. For example, if x = (x1,x7)

andy = (y1,y2) are in Sy x S», let p(x,y) = di(x1,y1) + d2(x2,y2). Prove that p is a
metric for S| x S, and construct further examples.

Proof: In order to show that p is a metric for S; x §,, we consider the following four
steps.
p(1) Forx = (x1,x3) € 81 x 82, p(x,x) = di(x1,x1) +da(x2,x2) =0+0 = 0.
(2) Forx # y, p(x,y) = di(x1,y1) + da(x2,y2) > O since if p(x,y) = 0, thenx; = y;
and x, = y,.
(3) Forx,y € S; xS,
p(x,y) = di(x1,y1) + da2(x2,32)
=di(y1,x1) + d2(y2,x2)
= p(n,x).
(4) For x,y,z € S| x 82,
p(x,y) = di(x1,y1) + da(x2,y2)
<di(x1,z1) +di(z1,y1) + d2(x2,22) + da2(22,72)
= [di(x1,21) + d2(x2,22)] + [d1(z1,01) + d2(22,12) ]
< p(x,z) + p(z,).



Hence from (1)-(4), we know that p is a metric for S; x S5.
For other metrics, we define

pl(x,y) = adl(xl,yl) + ﬂdg()Cz,yz) for Ot,ﬁ > 0.
dy(x2,)2)

1+ dz(Xz,yz)

and so on. (The proof is similar with us by above exercises.)

pa(x,y) = di(x1,y1) +

Compact subsets of a metric space

3.38 Assume S € T < M. Then Sis compact in (M, d) if, and only if, S is compact in
the metric subspace (T,d).

Proof: Suppose that S is compact in (M,d). Let F = {Oa : Ogisopenin T } be an
open covering of S. Since O, is open in 7, there exists the corresponding G, which is open
in M such that G, N T = O,. It is clear that {G,} forms an open covering of S. So there is
a finite subcovering {G1,...,G,} of S since S is compact in (M, d). That is, S < U Gy.
It implies that

S=TNS
< TN (U Gr.)
= Uit (TN Gy)
= U]]z’f Ok(e F)
So, we find a fnite subcovering {O1,...,0,} of §. That is, S is compact in (7,d).

Suppose that S is compact in (7,d). Let G = {Ga : G4 1s open in M} be an open
covering of S. Since G, N T := O is open in 7, the collection {O,} forms an open
covering of S. So, there is a finite subcovering {O;,...,0,} of S since S is compact in
(T,d). Thatis, S < Ukt Oy. It implis that

S c Uk 0, < Ut Gy
So, we find a finite subcovering {G1,...,G,} of S. That is, S is compact in (M, d).

Remark: The exercise tells us one thing that the property of compact is not changed,
but we should note the property of being open may be changed. For example, in the
2 —dimensional Euclidean space, an open interval (a, b) is not open since (a,b) cannot
contain any 2 —ball.

3.39 If Sis a closed and T is compact, then S N T is compact.

Proof: Since 7 is compact, T is closed. We have SN T is closed. Since SN T < T, by
Theorem 3.39, we know that SN 7 is compact.

3.40 The intersection of an arbitrary collection of compact subsets of M is compact.

Proof: Let F = {T : T is compacet in M}, and thus consider Ny T, where F' < F.

We have Ny Tis closed. Choose S € F'. then we have Ny T < S. Hence, by
Theorem 3.39 N, T is compact.

3.41 The union of a finite number of compact subsets of M is cmpact.

Proof: Denote {7} is a compact subset of M : k = 1,2,..n} by S. Let F' be an open
covering of U=# T. If there does NOT exist a finite subcovering of U%# Ty, then there
does not exist a finite subcovering of 7, for some 7;, € S. Since F'is also an open
covering of 7T}, it leads us to get T, is not compact which is absurb. Hence, if F' is an open

covering of U= T}, then there exists a finite subcovering of U= T. So, Uk! Ty is



compact.

3.42 Consider the metric space Q of rational numbers with the Euclidean metric of
R'. Let S consists of all rational numbers in the open interval (a,b), where a and b are
irrational. Then S is a closed and bounded subset of Q which is not compact.

Proof: Obviously, Sis bounded. Letx € Q0 — S, thenx < a, orx > b. If x < a, then
Bo(x,d) = (x—d,x+d)N QO < O -8, where d = a — x. Similarly, x > b. Hence, x is an
interior point of Q — S. That is, Q — S is open, or equivalently, S is closed.

Remark: 1. The exercise tells us an counterexample about that in a metric space, a
closed and bounded subset is not necessary to be compact.

2. Here is another counterexample. Let M be an infinite set, and thus consider the
metric space (M, d) with discrete metric d. Then by the fact B(x, 1/2) = {x} forany x € M,
we know that F = {B(x,1/2) : x € M} forms an open covering of M. It is clear that there
does not exist a finite subcovering of M. Hence, M is not compact.

3.In any metric space (M, d), we have three equivalent conditions on compact which
list them below. Let S < M.

(a) Given any open covering of S, there exists a finite subcovering of S.
(b) Every infinite subset of S has an accumulation point in S.
(c) Sis totally bounded and complete.

4. It should be note that if we consider the Euclidean space(R”,d), we have four
equivalent conditions on compact which list them below. Let § < R".

Remark (a) Given any open covering of S, there exists a finite subcovering of S.
(b) Every infinite subset of S has an accumulation point in S.
(c) S'is totally bounded and complete.
(d) S is bounded and closed.

5. The concept of compact is familar with us since it can be regarded as a extension of
Bolzano — Weierstrass Theorem.

Miscellaneous properties of the interior and the boundary

If A and B denote arbitrary subsets of a metric space M, prove that:
343 intA = M — cl(M - A).

Proof: In order to show the statement, it suffices to show that M — intd = cl(M — A).

1. (€) Letx € M — int4, we want to show that x € cl(M — A4), i.e.,

Bx,r)N(M—-A) # ¢ for all » > 0. Suppose B(x,d) N (M —A) = ¢ for some d > 0. Then
B(x,d) < A which implies that x € intA. It leads us to get a conradiction since

x € M —intA. Hence, if x € M — intA, thenx € cl(M — A). That is,

M —intA < cl(M — A).

2.(2) Letx € cl(M — A), we want to show that x € M — intA, i.e., x is not an interior
point of 4. Suppose x is an interior point of 4, then B(x,d) < A for some d > 0. However,
since x € cl(M — A), then B(x,d) N (M — A) + ¢. It leads us to get a conradiction since
B(x,d) < A. Hence, ifx € c/(M — A), thenx € M — intA. Thatis, cl(M — A) 2 M — intA.

From 1 and 2, we know that M — intA = c/(M — A), or equvilantly,
intA =M-—cl(M—-A).



3.44 int(M —A) = M — A.
Proof: Let B = M — A, and by exercise 3.33, we know that
M —intB = cl(M - B)
which implies that
intB= M- cl(M - B)
which implies that
inttM —A) = M —cl(A).
3.45 int(intA) = intA.
Proof: Since S is open if, and only if, S = intS. Hence, Let S = int4, we have the
equality int(intd) = intA.
3.46
(a) int(N", 4;) = N2, (intA;), where each A; < M.
Proof: We prove the equality by considering two steps.
(1) (€) Since N, A; < A; foralli = 1,2,...,n, then int(N", 4;) < intA; for all
i=1,2,...,n. Hence, int(N", 4;) < NL, (intd;).

(2) () Since intd; < A;, then N, (int4;) < N, A;. Since N2, (intd;) is open, we
have

From (1) and (2), we know that int(N2, 4;) = N2, (int4;).
Remark: Note (2), we use the theorem, a finite intersection of an open sets is open.

Hence, we ask whether an infinite intersection has the same conclusion or not.
Unfortunately, the answer is NO! Just see (b) and (c) in this exercise.

(b) int(Nger A) S Nuer (intAd), if F is an infinite collection of subsets of M.

Proof: Since Nycr A < A forall A € F. Then int(Nyep A) < intA forall 4 € F.
Hence, int(Nyer A) S Nuer (intA).

(c) Give an example where eqaulity does not hold in (b).

Proof: Let F={(5L, 1) : n € N}, then int(Nyer A) = ¢, and Nyer (intd) = {0}. So,

we can see that in this case, int(N4cr A) is a proper subset of N4er (intA). Hence, the
equality does not hold in (b).

Remark: The key to find the counterexample, it is similar to find an example that an
infinite intersection of opens set is not open.

3.47

(@) Uger (intd) < int(Uyer A).

Proof: Since intA € A, Uger (intd) S Uyger A. We have Uyer (intd) < int(Uger A)
since U e (intA) is open.

(b) Give an example of a finite collection F' in which equality does not hold in (a).

Solution: Consider F' = {Q, Q¢}, then we have intQ U intQ¢ = ¢ and
int(QU Q°) = intR' = R'. Hence, (intQ) U (intQ¢) = ¢ is a proper subset of
int(Q U Q¢) = R'. That is, the equality does not hold in (a).

3.48



(a) int(0A) = ¢ if A is open or if A is closed in M.

Proof: (1) Suppose that 4 is open. We prove it by the method of contradiction. Assume

that int(0A) + ¢, and thus choose
x € int(0A)
int(cl(4) N cl(M - A4))
int(cl(A) N (M —A4))
int(cl(A)) N int(M — A) since int(SN T) = int(S) N int(T).

Since
x € int(cl(A)) = B(x,r1) S cl(A) =AU A’
and
x € inttM—-A) = B(x,r,) S M—A4 = A°¢
we choose r = min(ry,7,), then B(x,r) € (AU A') NA¢ = A' N A¢. However,
xeA andx ¢ A = B(x,r) N A * ¢ for this r.

Hence, we get a contradiction since

B(x,r) N4 = ¢ by (*)
and

B(x,r) N A # ¢ by (**).

That is, int(0A) = ¢ if A is open.
(2) Suppose that A4 is closed, then we have M — 4 is open. By (1), we have

int(o(M —A)) = ¢.
Note that

OM—-A4)=clM—-A4A)NclM—-(M-A4))
cl(M—-A)Ncl4d)

= 04
. Hence, int(04) = ¢ if 4 is closed.

(b) Give an example in which int(CA) = M.

Solution: Let M = R!, and 4 = Q, then
04 = cl(A) Ncl(M —A4) = cl(Q) Ncl(Q°) = R'. Hence, we have R! = int(04) = M.

3.49 IfintA = intB = ¢ and if A is closed in M, then int(A U B) = ¢.

Proof: Assume that int(4 U B) # ¢, then choose x € int(4 U B), then there exists
B(x,r) € AU B for some r > 0. In addition, since int4 = ¢, we find that B(x,r) & A.
Hence, B(x,7) N (B —A4) + ¢. It implies B(x,7) N (M — A) # ¢. Choose
y € B(x,r) N (M — A), then we have

y € B(x,r) = B(y,&1) < B(x,r), where 0 < g; < r

and
yveM-A = B(y,e,) € M- A, forsome g, > 0.
Choose ¢ = min(gy,¢;), then we have
B(y,e) < Blx,r) N (M —A4)
C (AUB)NAe
c B.

kk



That is, intB + ¢ which is absurb. Hence, we have int(4 U B) = ¢.

3.50 Give an example in which intA = intB = ¢ but int(4A U B) = M.

Solution: Consider the Euclidean sapce (R',|.|). Let 4 = Q, and B = Q¢, then
intA = intB = ¢ but int(4 U B) = R!.

35104 = cl(A)Ncl(M—A) and 04 = O(M — A).

Proof: By the definition of the boundary of a set, it is clear that
0A = cl(4) N cl(M — A). In addition, 04 = cl(A) N cl(M — A), and

OM—-A)=clM—-A)NclM—-(M-A4)) = cl(M—-A4) Ncl(4). Hence, we have
0A = 0(M—A).

Remark: It had better regard the exercise as a formula.

3.52If cl(4) N cl(B) = ¢, then 0(4 U B) = 04 U OB.

Proof: We prove it by two steps.

(1) (€) Letx € 6(4 U B), then for all » > 0,

Bx,r)N(AUB) + ¢ = [Blx,r) NA]U [Bx,r) N B] + ¢
and
Bx,r)N[(AUB)] # ¢ = B(x,r) NA°N B + ¢
Note that at least one of [B(x,7) N A] and [B(x,») N B] is not empty. Without loss of
generality, we say [B(x,7) N 4] # ¢. Then by (*), we have for all » > 0,
B(x,r) N4 # ¢, and B(x,r) N A¢ # ¢.

That is, x € 04. Hence, we have proved 0(4 U B) < 04 U 0B.
(2) (2) Letx € 04 U 0B. Without loss of generality, we let x € 0A4. Then

B(x,r)NA # ¢, and B(x,r) N A¢ + ¢.
Since B(x,7) N A + ¢, we have
B(x,r)N(AUB) = (B(x,r)NA)U (B(x,r) N B) + ¢.

Claim that B(x,7) N [(4 U B)‘] = B(x,r) N A¢ N B¢ # ¢. Suppsoe NOT, it means that
B(x,r) N A¢ N B¢ = ¢. Then we have

B(x,r) € 4 = B(x,r) < cl(4)
and

B(x,r) € B = B(x,r) < cl(B).
It implies that by hypothesis, B(x,r) < c/(4) N c/(B) = ¢ which is absurb. Hence, we have
proved the claim. We have proved that

B(x,r) N (AU B) # ¢ by(**).
and
B(x,r) N[(AUB)] # ¢.
That is, x € d(4 U B). Hence, we have proved (4 U B) 2 04 U 0OB.
From (1) and (2), we have proved that (4 U B) = 04 U 0B.
Supplement on a separable metric space

Definition (Base) A collection {V,} of open subsets of X is said to be a base for X if the
following is true: For every x € X and every open set G < X such that x € G, we
have

x € Vy € G for some a.



In other words, every open set in X is the union of a subcollection of {V,}.
Theorem Every separable metric space has a countable base.

Proof: Let (M,d) be a separable metric space with S = {x1,...,xs,... }
satistying c/(S) = M. Consider a collection {B(x;, %) : i,k € N}, then given any
x € M and x € G, where G is open in X, we have B(x,0) < G for some 6 > 0.
Since § is dense in M, we know that there is a set B(x;, %) for some i, k, such that

x € B(x;, %) < B(x,0) < G. So, we know that M has a countable base.
Corollary R*, where k € N, has a countable base.

Proof: Since R* is separable, by Theorem 1, we know that R* has a countable
base.

Theorem Every compact metric space is separable.
Proof: Let (K,d) be a compact metric space, and given a radius 1/n, we have
K c U, B(xE"), 1/n>.

LetS = {xf") 2 i,n € N}, then it is clear S is countable. In order to show that S is

dense in K, given x € K, we want to show that x is an adherent point of S.
Consider B(x,0) for any 6 > 0, there is a point xl(") in S such that

B(xl(”), 1/n> < B(x,0) since 1/n — 0. Hence, we have shown that B(x,0) N S # ¢.
That is, x € ¢/(S) which implies that K = cI(S). So, we finally have K is separable.

Corollary Every compact metric space has a countable base.
Proof: It is immediately from Theorem 1.

Remark This corallary can be used to show that Arzela-Ascoli Theorem.



Limits And Continuity

Limits of sequence
4.1 Prove each of the following statements about sequences in C.
(a)z" » 0if |z| < 1; {z"} diverges if |z| > 1.
Proof: For the part: z” — 0 if |z| < 1. Given & > 0, we want to find that there exists a
positive integer N such that as n > N, we have
|z" - 0] < &.
Note that log|z| < 0 since |z| < 1, hence if we choose a positive integer N > [long] +1,
then as n > N, we have
lz" = 0] < &.
For the part: {z"} diverges if |z] > 1. Assume that {z"} converges to L, then given
& = 1, there exists a positive integer N| such that as n > N;, we have

lz" = L| < 1(= ¢)
= |z|" < 1+|L].
However, note that log|z| > 0 since |z| > 1, if we choose a positive integer
N > max([log‘zll + |L|] + 1,N1>, then we have
ZY > 1+ |L]
which contradicts (*). Hence, {z"} diverges if |z| > 1.

Remark: 1. Given any complex number z € C — {0}, lim,«|z|"" = 1.

1/n

2. Keep lim-w(n!) ™ = oo in mind.

3. In fact, {z"} is unbounded if |z| > 1. (= {z"} diverges if |z| > 1.) Since given
M > 1, and choose a positive integer N = [log‘le] + 1, then |z|" > M.
(b) If z, —» 0 and if {c,} is bounded, then {c,z,} — 0.

Proof: Since {c,} is bounded, say its bound M, i.e., |c,| < M foralln € N. In
addition, since z, — 0, given £ > 0, there exists a positive integer N such that as n > N,
we have

Iz, — 0| < e/M
which implies that as n > N, we have
lcnzn| < M)zy| < €.
That is, lim,-x cyz, = 0.
(c) z"/n! - 0 for every complex z.

Proof: Given a complex z, and thus find a positive integer N such that |z| < N/2.
Consider (let » > N).

= %>((N+l)(§\n’iv2)“'n>‘5 F[CORRTRERS

n!
Hence, z"/n! - 0 for every complex z.

Remark: There is another proof by using the fact Z;il a, converges which implies

. o8] n .
a, - 0. Since Zn=1 < converges by ratio test for every complex z, then we have



z"/n! - 0 for every complex z.
(d)Ifa, = Vn?>+2 —n, thena, - 0.
Proof: Since

0<a,= n2+2—n=43%forallneN,

Jn2+2 +n

and lim,. 1/n = 0, we have a, - 0 as n - oo by Sandwich Theorem.

4.2 I apr = (ape1 + an)/2 forall n > 1, show that a, - (a1 + 2a»)/3. Hint:
Api2 —Apyl = %(an - an+1)-

Proof: Since a,.; = (a1 +an)/2 foralln > 1, we have b,,; = —b,/2, where
b, = a,.1 —an. So, we have

by = (_Tl)nbl - 0asn - .

Consider

n+l n
Ao —ay = by = _71 D by = (%)(anﬂ —ai)
k=2 k=1
which implies that

3an+1 ) _ay +2612
bn + (—2 =5

So we have
an — (a; + 2a,)/3 by (*).

431f0 <x; <landifx,, =1-,1—-x, forallm > 1, prove that {x,} is a

decreasing sequence with limit 0. Prove also that x,,,/x, — %

Proof: Claim that 0 < x, < 1 for all n € N. We prove the claim by Mathematical
Induction. As n = 1, there is nothing to prove. Suppose that » = k holds, 1.e., 0 < x; < 1,
thenasn = k+ 1, we have

0 < xp1 = 1—- 1 —x; < 1by induction hypothesis.

So, by Mathematical Induction, we have proved the claim. Use the claim, and then we
have

Xpr1 —Xn = (1 =xp) — J1—x, = x"();"_l) < 0since 0 < x, < 1.
(1=x)"+(1 —x,)
So, we know that the sequence {x,} is a decreasing sequence. Since 0 < x, < 1 for all
n € N, by Completeness of R, (That is, a monotonic sequence in R which is bounded is
a convergent sequence.) Hence, we have proved that {x,} is a convergent sequence,
denoted its limit by x. Note that since

Xp1 = 1= 1 —x, foralln € N,
we have x = limy-eo X,y = limpsee 1 — J1 —x, = 1 — 41 —x which implies x(x — 1) = 0.
Since {x,} is a decreasing sequence with 0 < x, < 1 for all » € N, we finally have x = 0.
For proof of x,.,1/x, - +. Since

o 1-J1-x ]
e

then we have



xn+1:1_\/1_x” _)1

Xn Xn b

Remark: In (*), it is the derivative of 1 — /1 —x at the point x = 0. Of course, we can
prove (*) by L-Hospital Rule.

4.4 Two sequences of positive integers {a, } and {b,} are defined recursively by taking
a; = b; = 1 and equating rational and irrational parts in the equation

an + bnﬁ = (an,l + b,,,“/f)z forn > 2.
Prove that a2 — 2b2 = 1 for all n > 2. Deduce that a,/b, - 2 through values > /2, and
that 2b,/a, — /2 through values < 2.
Proof: Note a, + b2 = (a,,_l + b,,_h/f)Z for n > 2, we have
an = a2, +2b2_, forn > 2,and
bn = 2an_1b,,_1 for n > 2
since if 4,B,C, and D € Nwith4+BJ2 = C+ D2, then4d = C, and B = D.
Claim that a2 — 2b2 = 1 for all n > 2. We prove the claim by Mathematical
Induction. As n = 2, we have by (*)
a3 —2b2 = (a? +2b2)* —2(2a;b1)* = (1 +2)* = 2(2)* = 1. Suppose that as n = k(> 2)
holds, i.e., a? — 2b% = 1, thenas n = k + 1, we have by (*)
afy = 2b} = (a} +2b7)" — 2Qaxby)’
= a} + 4b} — 4aib?
2
= (aj —2b7)
= 1 by induction hypothesis.
Hence, by Mathematical Induction, we have proved the claim. Note that aZ — 2b3 = 1 for

all n > 2, we have
a\2 1)
() - (5) =22

(an)zzz—L<2.

an a2

Hence, limy- §*- = J2 by lim,e bl—n = 0 from (*) through values > /2, and
limymee 222 = /2 by lim,-e &= = 0 from (*) through values < /2.

Remark: From (*), we know that {a,} and {b, } is increasing since {a,} < N and
{b,} < N. Thatis, we have lim,..a, = o, and lim,-. b, = .

and

4.5 A real sequence {x,} satisfies 7x,;; = x5 + 6 forn > 1. If x| = %, prove that the
sequence increases and find its limit. What happens if x; = 3 orifx; = -2

Proof: Claim that if x; = %, then 0 < x, < 1 for all » € N. We prove the claim by
Mathematical Induction. Asn =1, 0 < x; = % < 1. Suppose that n = k holds, 1.e.,
0 <x, <1, thenasn = k+ 1, we have

3
t6 _ 146
77

Hence, we have prove the claim by Mathematical Induction. Since
xX3=Tx+6 =(x+3)(x—1)(x—-2), then

0 < xpy1 = = 1 by induction hypothesis.



X3 +6
T -
X3 —Tx, +6

= S

> 0since 0 < x, < 1foralln € N.

Xp+l —Xn = Xn

It means that the sequence {x,} (strictly) increasing. Since {x, } is bounded, by
completeness of R, we know that he sequence {x,} is convergent, denote its limit by x.
Since
3
X = }lilg-xn+l = }lllg xn;-6 = x3;—65

we find that x = -3, 1, or 2. Since 0 < x, < 1 forall » € N, we finally have x = 1.

Claim that if x; = %, then 1 < x, < 2 for all » € N. We prove the claim by
Mathematical Induction. As n = 1, there is nothing to prove. Suppose n = k holds, i.e.,
l <x; <2, thenasn = k+ 1, we have

X3 +6 3
< Xpyp = "7 < 27+6 =2.

Hence, we have prove the claim by Mathematical Induction. Since
x}=Tx+6=(x+3)x—-1)(x-2), then

_ 146
b= 7

X3 +6
Xnyl —Xn = 7 — Xn
_ X3 —=Txa+6

7

<0Osincel <x, <2foralln € N.

It means that the sequence {x,} (strictly) decreasing. Since {x,} is bounded, by
completeness of R, we know that he sequence {x, } is convergent, denote its limit by x.
Since

3

. . X+ 6 3

x = limx,;; = lim =2 :x+6’
n—o0 n—o0

7 7
we find that x = -3, 1, or 2. Since 1 < x, < 2 forall n € N, we finally have x = 1.
Claim that if x; = 3, thenx, > 3 forall n € N. We prove the claim by

Mathematical Induction. As n = 1, there is nothing to prove. Suppose n = k holds, i.e.,

xp > =, thenasn = k+ 1,

3
3146 (3) +6
Xy = T > S— = >3 3

Hence, we have proved the claim by Mathematical Induction. If {x,} was convergent,

say its limit x. Then the possibilities for x = -3, 1, or 2. However, x, > % foralln € N.

So, {x,} diverges if x| = 5.

Remark: Note that in the case x; = 5/2, we can show that {x,} is increasing by the
same method. So, it implies that {x, } is unbounded.

4.6 If |a,| < 2 and |au2 — apet| < §laz,; —a3| forall n > 1, prove that {a,}
converges.

Proof: Let a,,; — an = by, then we have |b,.1| < +[bal|@nes + an| < 5 |ba|, since
la,| < 2 foralln > 1. So, we have |b,;1| < (%)n|b1|. Consider (Let m > n)



am — an| = |(am - am—l) + (am—l - am—2) +.. -+(an+l - an)|
< |bmet| +...Hbu|

< |b1|[(%)m_2 +...+(%)HJ,

: : k :
then {a,} is a Cauchy sequence since Z(%) converges. Hence, we know that {a, } is a
convergent sequence.

Remark: In this exercise, we use the very important theorem, every Cauchy sequence
in the Euclidean space R is convergent.

4.7 In a metric space (S,d), assume that x, - x and y, - y. Prove that
d(xnayn) - d(xay)

Proof: Since x, - x and y, — y, given ¢ > 0, there exists a positive integer N such
that as n > N, we have

d(xn,x) < €/2 and d(yn,y) < &/2.
Hence, as n > N, we have
[d(xn,yn) = dx,y)| < |d(xn,x) +d(Vn,p)|
d(xn,x) +dyn,y) < €2 +¢/2
=¢&.
So, it means that d(x,,y,) — d(x,y).

4.8 Prove that in a compact meric space (S,d), every sequence in S has a subsequence
which converges in S. This property also implies that S is compact but you are not required
to prove this. (For a proof see either Reference 4.2 or 4.3.)

Proof: Given a sequence {x,} < S, and let 7 = {x;,x2,... . If the range of 7 is finite,
there is nothing to prove. So, we assume that the range of 7 is infinite. Since S is compact,
and 7 < S, we have T has a accumulation point x in S. So, there exists a point y, in T such
that B(y,x) < <. It implies that y, — x. Hence, we have proved that every sequence in S

has a subsequence which converges in S.

Remark: If every sequence in S has a subsequence which converges in S, then S is
compact. We give a proof as follows.

Proof: In order to show S is compact, it suffices to show that every infinite subset of §
has an accumulation point in S. Given any infinite subset 7" of S, and thus we choose
{x»} < T (of course in S). By hypothesis, {x,} has a subsequence {x,, > which converges
in S, say its limit x. From definition of limit of a sequence, we know that x is an
accumulation of 7. So, S is compact.

4.9 Let 4 be a subset of a metric space S. If 4 is complete, prove that 4 is closed. Prove
that the converse also holds if S is complete.

Proof: Let x be an accumulation point of 4, then there exists a sequence {x, } such that
x» — x. Since {x,} is convergent, we know that {x, } is a Cauchy sequence. And 4 is
complete, we have {x,} converges to a point y € 4. By uniqueness, we know x = y € A4.
So, 4 contains its all accumulation points. That is, 4 is closed.

Suppose that S is complete and 4 is closed in S. Given any Cauchy sequence
{x»} < A, we want to show {x, } is converges to a point in 4. Trivially, {x,} is also a
Cauchy sequence in S. Since S is complete, we know that {x,} is convergent to a point x in
S. By definition of limit of a sequence, it is easy to know that x is an adherent point of 4.
So, x € A since 4 is closed. That is, every Cauchy sequence in A4 is convergent. So, 4 is



complete.
Supplement
1. Show that the sequence

@)

A Gy on - Y

Proof: Let a and b be positive integers satisfying @ > b > 1. Then we have
alb < alb! < (a+b)! < (ab)!.
So, if we let f{n) = (2n)!, then we have, by (*)

Cm)!t f(n)! <_1 9
Cn+ D (fn)Rn+1))! ~ 2n+1 '
Hence, we know that lim..c 2 = 0

@n+t

2. Show that
an=(1+L1)(1+2 ---1+m - el2asn > o,
() () g

where [x] means Gauss Symbol.

Proof: Since

X - %xz <log(l +x) <ux, forallx € (-1,1)

we have
k=[Jn] i L7 N2 k=[Jn] i k=[Jn] i
Z 7—5(7> Slogan = Z 10g(1+7) < Z 7
k=1 k=1 k=1
Consider i2 < n < (i + 1)?, then by Sandwish Theorem, we know that
lim loga, = 1/2
which implies that a, - e'? as n - .
3. Show that (n!)""" > Jn foralln € N. (= (n)"" > wasn - «.)

Proof: We prove it by a special method following Gauss’ method. Consider
n! = ]_ ooooooooo k ooooooooo n

and thus let f{k) = k(n — k+ 1), it is easy to show that f{k) > f(1) = n for all
k=1,2,...,n. So, we have prove that

(n!)2 > n"
which implies that
)" > Jn.
Remark: There are many and many method to show (n!)™" — coasn - «. We do not

give a detail proofs about it. But We method it as follows as references.
(a) By A.P.> G.P., we have

1/n

o1
n ~ \n!



22:1 @
n

and use the fact if {a, } converges to a, then so is {—}

1/n

(b) Use the fact, by Mathematical Induction, (n!) ™ > n/3 for all n.

(c) Use the fact, 4%/n! - 0 as n - o for any real 4.
(d) Consider p(n) = (2-)"", and thus taking logp(n).

(e) Use the famuos formula, a, are positive for all n.

Antl
dap

lim inf 2L < lim inf(a,)"" < lim sup(a,)"" < lim sup
and let a, = (2-).
(f) The radius of the power series Zzio ’,i—f 1S 0.
(g) Ue the fact, (1 +1/n)" < e < (1 + 1/n)""", then e(n"e™) < n! < e(n"'e™).
(h) More.
Limits of functions
Note. In Exercise 4.10 through 4.28, all functions are real valued.

4.10 Let f'be defined on an opne interval (a,b) and assume x € (a,b). Consider the
two statements

() limyo[f(x + h) — f(x)| = 0;
(b) limyolfCx + 1) — flx — h)| = 0.

Prove that (a) always implies (b), and give an example in which (b) holds but (a) does
not.

Proof: (a) Since
lhig)l[f(x+h) -fx)] =0« lhig)ljf(x—h) —fx)| =0,
we consider
fx+h)—fx—h)
= |(flx + h) = fTx)) + (fx) = flx = 1))
< |fix+h)—fx)|+|f(x) -fix—h)| > 0ash - 0.

So, we have

lhir{)ljf(x+h) —fix—h)| = 0.

(b) Let
x| ifx # 0,
x =
Sx) { 1ifx =0.

Then

lhirgljf(0+h) -fl0-h)| =0,
but

lhin(r)llf(O +h)-f0)] = lhiIIOI||h| -1 =1
So, (b) holds but (a) does not.

Remark: In case (b), there is another example,



. Ul if x # 0,
x:
& 0ifx = 0.

The difference of two examples is that the limit of [g(0 + /#) — g(0)| does not exist as &
tends to 0.

4.11 Let f'be defined on R?. If

lim flx,y) =L
(x,y)*(a,b)ﬂ y)

and if the one-dimensional lim,-,f{(x,y) and lim,.; f(x,)) both exist, prove that
lim|:1imf(x,y):| ~ tim[ limAx,) ] = L.
xX=a| ysh y-bL x=a
Proof: Since lim, )., 5 fx,y) = L, then given & > 0, there exists a 6 > 0 such that as
0 < |(x,y) —(a,b)| < 6, we have
fle,y) —L| < €/2,
which implies
lim|f(x,y) — L| =
y=b

which implies

1@ﬂmw—L‘sgzﬁ0<mwo—m¢N<5
y%

lim

xX—=a

< &2if0 < |(x,») - (a,b)] < &.

limf(x,y) — L
y=b
Hence, we have proved lim,q|lim,_;(x,y) — L| < &/2 < &. Since ¢ is arbitrary, we have

1mg@J)—L‘:o
y-b

g
which implies that
= 0.

lim lian flx,y) — L

X>d yo,
So, lim,,[lim,;f(x,y)] = L. The proof of lim,_,[lim..,f(x,y)] = L is similar.

Remark: 1. The exercise is much important since in mathematics, we would encounter
many and many similar questions about the interchange of the order of limits. So, we
should keep the exercise in mind.

2. In the proof, we use the concept: [lim,..f{x)| = 0 if, and only if lim,.,f{x) = 0.

3. The hypothesis f{x,y) - L as (x,y) - (a,b) tells us that every approach form these
points (x,y) to the point (a, b), f(x,y) approaches to L. Use this concept, and consider the
special approach from points (x,y) to (x,b) and thus from (x,5) to (a,b). Note that since
lim,, f(x,y) exists, it means that we can regrad this special approach as one of approaches
from these points (x,)) to the point (a,b). So, it is natural to have the statement.

4. The converse of statement is not necessarily true. For example,
x+yifx=0o0ry=0
fx,y) = )
1 otherwise.

Trivially, we have the limit of f{x,)) does not exist as (x,y) — (0,0). However,



) 0ifx =0, ) 0ify =0,
limf(x,y) = and limf{(x,y) =
«V"Of( ») { lifx = 0. x*of( ») { lLify = 0.

lig| limft.) | = lip[ lim At ] =

In each of the preceding examples, determine whether the following limits exist and
evaluate those limits that do exist:

11m|:11mf(x y):| tig[ lim /i) | tim flw,).

x~0 (x)~(0,0)
Now consider the functions f'defined on R? as follows:
(a) flx,y) =
Proof: 1. Since(x + 0)

. —y L = -1 lfy * 0
limf(x,y) = 11m2— = Y
x0 =0 x? 4y lify =0,
we have
lyl_{%l[llmﬂx y):|
2. Since (y # 0)
2 _ 4,2 2 = 1ifx # 0,
limflx,y) = lim 55— = { x* o
=0 =0 x2 + y? lifx=20
we have
lig| lim/Cx.y) | =

3.((x,y) # (0,0)) Letx = rcosf and y = rsin6, where 0 < 6 < 27, and note that
(x,y) » (0,0) & r - 0. Then
_y
(xy)»(omﬂ V) = (xy)»(OO) x2 +y?
. r2(cos20 — sin’6)
= lim 5
r-0 v

= cos26 — sin’0.
So, if we choose 8 = 7 and 6 = 7/2, we find the limit of f{x,y) does not exist as
(x,y) = (0,0).
Remark: 1. This case shows that
! = tip| tipfx) | + tigltip/e) ] = -
2. Obviously, the limit of f{xx,y) does not exist as (x,y) - (0,0). Since if it was, then
by (*), (**), and the preceding theorem, we know that

g ti) | = gty

which is absurb.



(b) fry) = =2 if (v,y) # (0,0), (0,0) = 0.

Proof: 1. Since (x # 0)

()"
hmf(x y) = lim = 0 for all y,
S0 () + (=)’
we have
lylzlol[hmf(x y):|
2. Since (y # 0)
2
11mf(x y) = () = 0 for all x,

o @)* + (- )
we have
%g}}[glfglﬂxa)d :| =
3. ((x,y) # (0,0)) Let x = rcosf and y = rsin, where 0 < § < 2z, and note that
(x,y) » (0,0) & r - 0. Then

2
fey) = ()
b 2 2
()" + (x—y)
- r4 cos26sin’0
4 cos20sin’0 + 2 — 2r2 cosHsinf
cos26sin’0
c0s20sin2@ + 1=2cosOsind °

72
- 0ifr-20
X,
f y){ 1 if0 =nrn/d4or0 = 5r/4.

Hence, we know that the limit of f{x,)) does not exists as (x,y) — (0,0).

(c) flx,y) = +sin(xy) if x # 0, f0,y) =
Proof: 1. Since (x # 0)

So,

. o1 _
limflx,y) = lim + sin(xy) =
we have

11m|:11mf(x y) :|

»=0

2. Since (y # 0)

‘ lim, <+ sin(xy) = 0 ifx = 0,
limfCx,y) = . .
y0 lim,,oy = 0ifx = 0,

we have
lim| lim/Cx.y) | =

3.((x,y) # (0,0)) Letx = rcosf and y = rsin6, where 0 < 6 < 27, and note that
(x,y) » (0,0) & r - 0. Then



rcos6

rsinf ifx = rcosf = 0.

0ifr - 0,
0ifr - 0.

So, we know that lim, ,,y(0,0) f(x,y) = 0.

L__sin(72cos@sinf) if x = rcosh + 0,
fx,y) =

Remark: In (*) and (**), we use the famuos limit, that is,

lim SIDX —
0 X )
There are some similar limits, we write them without proofs.

(a) limw tsin(1/¢) = 1.
(b) lim,oxsin(1/x) = 0.
(©) limyo S0 = <, if b # 0.

@A) - { (x + ) sin(1/x) sin(1/y) if x # O and y % 0,
0 ifx=0ory=0.
Proof: 1. Since (x # 0)
3 (x + y)sin(1/x) sin(1/y) = xsin(1/x) sin(1/y) + ysin(1/x) sin(1/y) ify = 0
fler) = 0ify =0

we have if y # 0, the limit f{x,)) does not exist as x - 0, and if y = 0, lim,of(x,y) = 0.
Hence, we have (x + 0, y # 0)

lylg)l[l)clz{)l fx, y)} does not exist.
2. Since (y # 0)

(x +y)sin(1/x) sin(1/y) = xsin(1/x) sin(1/y) + ysin(1/x) sin(1/y) ifx = 0
MM =9 giex = 0

we have if x # 0, the limit f{x,») does not exist as y — 0, and if x = 0, lim,_of(x,y) = 0.
Hence, we have (x + 0, y # 0)

1i1101|:1i1’{)1 fx, y):| does not exist.
x> y
3. ((x,y) # (0,0)) Consider

M) < x+ylifx #0andy # O,
x,y)| <
4 Oifx=0o0ry =0.

we have
lim X, = 0.
(x,y)»(o,O)ﬂ ¥)
sinx—siny -
(e)f(x y) = tanx—tany if tanx + tany,

cos3x  iftanx = tany.

Proof: Since we consider the three approaches whose tend to (0,0), we may assume
that x,y € (—n/2,7/2). and note that in this assumption, x = y < tanx = tany. Consider
1. (x = 0)



sinx—siny

lim,,o =——— = cosy ifx # y.
llmf(x,y) _ 0 tanx—tany y y
=0 1 ifx = y.
So,
| tim/) | = 1.
2.0 #0)
lim, o SRS cosx if x # 3.
hmf(x,y) _ -0 tanx—tany y
=0 cos3x ifx = y.
So,

lim|:limf(x,y):| 1.
x-0 [ y-0

3.Letx = rcosf and y = rsin6), where 0 < 6 < 27, and note that
(x,y) » (0,0) & r - 0. Then

lil’nrﬁ() sin(rcos0)—sin(rsinf)

lim ﬂx,y) — tan(rcos 6)—tan(rsin )
(=00 lim, o cos?(rcos@) if cosf = siné.

if cos@ =+ sinf.

3 1 if cos@ # sinf, by L-Hospital Rule.
1 if cos@ = sin6.
So, we know that lim, (0,0, f(x,y) = 1.

Remark: 1. There is another proof about (e)-(3). Consider
sinx — siny = ZCos(x ry ) sin(x —J )

2 2
and
_ sin sin
tanx —tany = 5% — ﬁ,
then
sinx —siny _ ©€08(5=)cosxcosy
tanx —tany cos(%)
So,
. COS(H—J) COSxCOSsy .
lim  fxy) = limy.)(0,0) W =1lifx #y,
00y Y

lim(x,y)—»(0,0) Cos3x = 1 lfx = y'
That is, lim, ;)(0,0)f(x,y) = 1.

2. In the process of proof, we use the concept that we write it as follows. Since its proof

is easy, we omit it. If
Lifx =
lim f(x,y){ Y

(xp)-(ab) Lifx #y

or



lim f{x,y) =

Lifx+0andy + 0,
(xy)~(a,b)

Lifx=0ory=0.

then we have

lim flx,y) = L.
(x,y)—*(a,b)f( y)

4.121fx e [0, 1] prove that the following limit exists,
fim[ im cos™ (i) |
and that its value is 0 or 1, according to whether x is irrational or rational.
Proof: If x is rational, say x = ¢/p, where g.c.d.(¢q,p) = 1, then p!x € N. So,
lim cos?'(m!nx) = { Lifm = p,
e 0ifm < p.
Hence,
lim| lim cos>(m!zx) | = 1.
If x is irrational, then m!x ¢ N for all m € N. So, cos?(m!nx) < 1 for all irrational x.
Hence,

lim cos*"(m!nx) = 0 = lim[lim cosZ”(m!nx)] = 0.
Nn—>00 m—oo L n—>o0

Continuity of real-valued functions

4.13 Let f'be continuous on [a,b] and let f{x) = 0 when x is rational. Prove that
fix) = 0 forevery x € [a,b].

Proof: Given any irrational number x in [a, b], and thus choose a sequence {x,} < QO
such that x, - x as n - o. Note that f{x,) = 0 for all n. Hence,

0 = 1im0
= lim/G)
= f(}qugxn> by continuity of fat x
= fx).
Since x is arbitrary, we have shown f{x) = O for all x € [a,b]. That is, fis constant 0.

Remark: Here is another good exercise, we write it as a reference. Let f be continuous
on R, and if f{x) = f{x?), then fis constant.

Proof: Since f(—x) = f((—x)2> = f(x?) = f{x), we know that fis an even function. So,
in order to show f'is constant on R, it suffices to show that f'is constant on [0,). Given
any x € (0,), since f(x?) = f(x) for all x € R, we have f(x'?") = f(x) for all n. Hence,

fw) = lim/tx)
= lim/(x!2")
= f(}lilg‘gxl/zn> by continuity of fat 1
= f(1) since x * 0.

So, we have f(x) = f{1) = c forall x € (0,%0). In addition, given a sequence
{x»} < (0,0) such that x, — 0, then we have



¢ = lime

= limfGxn)
= f(}ggx,,) by continuity of fat 0
= f(0)

From the preceding, we have proved that f'is constant.

4.14 Let f'be continuous at the point a = (ay,a,,...,a,) € R". Keep az,as,...,a, fixed
and define a new function g of one real variable by the equation

gx) = flx,as,...,an).
Prove that g is continuous at the point x = a,. (This is sometimes stated as follows: A
continuous function of n variables is continuous in each variable separately.)

Proof: Given &€ > 0, there exists a o > 0 such thatas y € B(a;6) N D, where D is a
domain of f; we have

) -fa)| < e.
So, as |x — a;| < &, which implies |(x,a2,...,a,) — (a1,a2,...,a,)| <, we have
lg(x) —g(a1)| = [fix,az,...,ax) —flai,az,...,a,)| < €.
Hence, we have proved g is continuous at x = a

Remark: Here is an important example like the exercise, we write it as follows. Let
i R" - R", and w; : (x1,X2,...,%X,) = (0,.,x,..,0). Then 7; is continuous on R" for
1 <j < n. Note that r; is called a projection. Note that a projection P is sometimes
defined as P? = P.

Proof: Given any point a € R" ,and given € > 0, and choose 0 = &, then as
x € B(a;6), we have

|mj(x) —mi(a)| = |x;—aj] < |[x—al| <6 =¢eforeachl <j<n
Hence, we prove that 7;(x) is continuous on R” for 1 <j < n.

4.15 Show by an example that the converse of statement in Exercise 4.14 is not true in
general.

Proof: Let

x+yifx=0o0ry=0
fx,y) = :
1 otherwise.
Define g;(x) = f{x,0) and g2(y) = f(0,y), then we have
limg, (x) = 0 = g1(0)
and
limg>(y) = 0 = £2(0).

So, g1(x) and g,(y) are continuous at 0. However, f'is not continuous at (0,0) since
li%lﬂx,x) =1+ 0= £0,0).

Remark: 1. For continuity, if /is continuous at x = a, then it is NOT necessary for us
to have

lim/0x) = fla)



this is because a can be an isolated point. However, if a is an accumulation point, we then
have

Jf1s continuous at a if, and only if, limf(x) = f(a).

4.16 Let £, g, and / be defined on [0, 1] as follows:
fix) = g(x) = h(x) = 0, whenever x is irrational;
flix) = 1 and g(x) = x, whenever x is rational;
h(x) = 1/n, if x is the rational number m/n (in lowest terms);
h(0) = 1.

Prove that f'is not continuous anywhere in [0, 1], that g is continuous only at x = 0, and
that /4 is continuous only at the irrational points in [0, 1].

Proof: 1. Write
o - { ifx & R-0)N[0,1)
lifx e QN[0,1].

Givenanyx € (R—Q)N|[0,1], andy € QN [0,1], and thus choose {x,} < O N[0,1]
such that x, — x, and {y,} < (R— Q) N[0,1] such that y, — y. If fis continuous at x,

then
1 = limfCx,)
= f(}qugxn> by continuity of fat x
= fx)
=0
which is absurb. And if fis continuous at y, then
0 = limf(y.)
= f(}qgrg yn> by continuity of fat y

=)
=1
which is absurb. Hence, f'is not continuous on [0, 1].
2. Write

xifx e ONJ[0,1].

Givenany x € (R— Q) N[0,1], and choose {x,} < QN [0, 1] such that x, - x. Then
X

0ifx e (R—0)NJ0,1],
g(x) = {

= limx,

= limg(xn)

= limg(limx, ) by continuity of g at x
= g(x)

-0

which is absurb since x is irrational. So, f'is not continous on (R — Q) N [0, 1].
Given any x € QN [0,1], and choose {x,} < (R— Q) N[0,1] such thatx, - x. If g is



continuous at x, then
0

= limg(xn)
= g(LLrgxn> by continuity of fat x
= g(x)
= X.
So, the function g may be continuous at 0. In fact, g is continuous at 0 which prove as
follows. Given ¢ > 0, choose 0 = &, as |x| < J, we have
lg(x) —g(0)] = |g(x)| < |x| < &(= 6). So, g is continuous at 0. Hence, from the preceding,
we know that g is continuous only at x = 0.
3. Write
lifx =0,
h(x) = < 0ifx e (R-0)N[0,1],
I/nifx = m/n, g.c.d.(m,n) = 1.

Consider @ € (0,1) and given € > 0, there exists the largest positive integer N such that
N <1/e. LetT = {x : h(x) > ¢}, then

7o {0,13 ULx t h(x) = 13 ULx : A(x) = 172}...U{x : h(x) = I/N} ife < 1,
) pifes L.

Note that 7' 1s at most a finite set, and then we can choose a 6 > 0 such that
(a—0,a+ 6) — {a}contains no points of 7 and (a« — 5,a + ) < (0,1). So, if
x € (a-0,a+96)—{a}, we have h(x) < ¢. It menas that
limh(x) = 0.
Hence, we know that /4 is continuous atx € (0,1) N (R — Q). For two points x = 1, and
y = 0, it is clear that 4 is not continuous at x = 1, and not continuous at y = 1 by the

method mentioned in the exercise of part 1 and part 2. Hence, we have proved that 4 is
continuous only at the irrational points in [0, 1].

Remark: 1. Sometimes we call f Dirichlet function.
2. Here is another proof about g, we write it down to make the reader get more.
Proof: Write

w - 4 Vifxe ®R-0n[0.1],
EY 7N xifxe on(o.].

Given a € (0,1], and if g is continuous at @, then given 0 < ¢ < q, there existsa d > 0
such thatasx € (¢ —d,a+9) < [0,1], we have

g(x) —g(a)| < &.
Ifa e R—Q, choose 0 < 6' <dsothata+o6' € Q. Thena+6' € (a—J,a+ ) which
implies |g(a +6') —g(a)| = |gla+d")| = a+ ' < & < a. Butit is impossible.
Ifa € Q, choose 0 < 6' <dsothata+do' € R—Q. a+0' € (a—8,a+ ) which
implies |g(a + 6') — g(a)| = |-a|] = a < & < a. But it is impossible.
Ifa = 0, given € > 0 and choose 6 = ¢, thenas 0 < x < §, we have
lg(x) —g(0)] = |g(x)| < |x| = x < &(= 9). It means that g is continuous at 0.

4.17 For each x € [0,1], let f{x) = x if x is rational, and let f{x) = 1 —x if x is



irrational. Prove that:
(a) f{fix)) = x forall x in [0, 1].

Proof: If x is rational, then f{f(x)) = f({x) = x. And if x is irrarional, so is
1 —x(e [0,1]). Then f{f(x)) = f{ll —x) = 1 - (1 —x) = x. Hence, f{f(x)) = x for all x in
[0, 1]

(b) fix) + f{1 —x) = 1 forall x in [0, 1].

Proof: If x is rational, sois 1 —x € [0,1]. Then f{x) +f({1 —x) =x+ (1 —x) = 1. And
if x is irrarional, so is 1 —x(€ [0,1]). Then flx) + f{l —x) = (1 —=x)+1—-(1 —x) = 1.
Hence, f{x) + f{1 —x) = 1 for all x in [0, 1].

(c) f1is continuous only at the point x = %

Proof: If fis continuous at x, then choose {x,} < Q and {y,} < Q¢ such that x, — x,
and y, — x. Then we have, by continuity of fat x,

Sy = flimen ) = lim /) = liman = x
and
f) = fQimyn) = limfvn) = liml=yn = 1-x
So, x = 1/2 1s the only possibility for /. Given &€ > 0, we want to find a 6 > 0 such that as
xe€ (12-0,12+06) < [0,1], we have

flx) —f(172)] = |fix) — 12| < e.
Choose (0 <)0 < g¢sothat (1/2—-6,1/2+6) < [0,1], then as
xe€ (12-0,12+06) < [0,1], we have

fx) =12 =x-12| <o <¢gifx € Q,
) =12 = (1 =x)=12| = [112-x| < § < gifx € Q°.
Hence, we have proved that f'is continuous at x = 1/2.

(d) fassumes every value between 0 and 1.

Proof: Given a € [0,1], we want to find x € [0, 1] such that f{x) = a. If a € Q, then
choose x = a, we have f(x = a) = a. Ifa € R— Q, then choosex = 1 —a(e R—-Q), we
have fx =1-a)=1-(1-a) = a.

Remark: The range of fon [0, 1] is [0, 1]. In addition, f'is an one-to-one mapping
since if f{x) = f(y), then x = y. (The proof is easy, just by definition of 1-1, so we omit it.)

(e) flx +y) — flx) — f(y) is rational for all x and y in [0, 1].

Proof: We prove it by four steps.

l.Ifxe Qandy € Q, thenx +y € Q. So,

fx+y) =flx) =fy) =x+y-x-y=0¢e 0.

2.Ifx e Qandy € Q¢, thenx +y € Q¢. So,

Sax+y)=f) =fy) =1 -(x+p)]-x-(1-y) =-2x € 0.
3.Ifx e Q¢andy € Q, thenx +y € Q¢. So,

Sx+y)=f)—fy) =[1-Gx+y]-10-x)-y=-2y €0
4.1fx e Q°andy € Q°, thenx+y € Q°orx+y € Q. So,



[1-G+»]-0-x)-(1-y)=-1€Qifx+ye 0,

Sx+y) = flx) = fv) = { x+y)-(1-x)-(1-y)=-=2€Qifx+ye Q.

Remark: Here is an interesting question about functions. Let f : R —{0,1} - R. Iff

satisfies that
Slx) + f( —1 ) =1+x,

Proof: Let ¢(x) = %1, then we have ¢2(x) = —I-, and ¢3(x) = x. So,
S0+ /(EFL) = A0 +/9(x)) = 1 +x

_ x3-x2-1
then f(x) = D)

which implies that
S9x)) +fg*(x)) = 1+ ¢(x)
and
S@*(x) +f1$°(x)) = f1g*(x)) +flx) = 1+ ¢*(x).

So, by (*), (**), and (***), we ﬁnally have

fx) = [ +x = ¢(x) + ¢*(x)]

_x—xr-1
2x(x—1) °

4.18 Let fbe defined on R and assume that there exists at least one x in R at which f
is continuous. Suppose also that, for every x and y in R, f'satisfies the equation

S +y) = fx) +fy).

Prove that there exists a constant a such that f{x) = ax for all x.

Proof: Let f be defined on R and assume that there exists at least one x in R at which f
is continuous. Suppose also that, for every x and y in R, f'satisfies the equation

fx+y) = fx) +y).

Prove that there exists a constant a such that f{x) = ax for all x.

Proof: Suppose that f'is continuous at xy, and given any » € R. Since
fix+y) = fix) + f{y) for all x, then

fx) = fly —x0) + f(r), where y = x — r + x,.
Note that y - xo < x — r, then
limf(x) = limAy — xo) +f(r)
= limf(y —xo) +f(r)

Y=xo
= f{(r) since f'is continuous at x.

So, f'is continuous at . Since r is arbitrary, we have f'is continuous on R. Define f{1) = a,
and then since f{x + y) = f{x) + f{v), we have

A =f(% +..+%)m_ﬁmes
- k)
- () - 8

kk

Hskok



In addition, since f{—1) = —f{(1) by f{0) = 0, we have
f(_l) - K% - ﬁi_ﬁ)m—times
_ —1
= ()

1 f(l) b
:>]<_> JN_J *
[hus we have

S = fm +.. . +1Um), o = nf(1/m) = &A1) by (*) and (**) *x
So, given any x € R, and thus choose a sequence {x,} < Q withx, — x. Then
Sy = f(lim)
= limf{x,) by continuity of fon R
= limx,f(1) by (**)

n—oo

= xf(1)

= dax.

Remark: There is a similar statement. Suppose that f{x + y) = f{x)f(y) for all real x
and y.

(1) If f1is differentiable and non-zero, prove that f{x) = e<*, where c is a constant.

Proof: Note that f{0) = 1 since f{x +y) = f{x)f(y) and f'is non-zero. Since f'is
differentiable, we define f'(0) = ¢. Consider

ﬂx+ h})l _ﬂx) Zﬂx)fw —>f(x)f(0) — Cf(X) as h - 0,

we have for every x € R, f'(x) = ¢f(x). Hence,
flx) = Ade~.
Since f{0) = 1, we have 4 = 1. Hence, f(x) = e, where c is a constant.
Note: (i) If for every x € R, f'(x) = cf(x), then f{x) = Ae.
Proof: Since /'(x) = cf(x) for every x, we have for every x,
[ () = cftx)]e = 0 = [eAx)] = 0.

We note that by Elementary Calculus, e=*f{(x) is a constant function 4. So, f{x) = 4de*
for all real x.

(i1) Suppose that f(x +y) = f(x)f(y) for all real x and y. If f{x¢) > 0 for some x,, then
flx) > 0 for all x.

Proof: Suppose NOT, then f{a) = 0 for some a. However,

0 < flxg) = flxo—a+a) = flxo—a)fla) = 0.
Hence, f{x) > 0 for all x.

(ii1) Suppose that f{x + y) = fix)A(y) for all real x and y. If fis differentiable at x, for
some xo, then fis differentiable for all x. And thus, f{x) € C*(R).

Proof: Since



fx+h)—fx)  fixo+h+x—x0)—flxo+x—x0)
h B h

Zﬂx—xo)ﬂxo +h})l —ftxo) - flx —x0)f (x0) as h - 0,

we have f'(x) is differentiable and /' (x) = f{x — x¢)f'(xo) for all x. And thus we have
flx) € C*(R).
(iv) Here is another proof by (iii) and Taylor Theorem with Remainder term R, (x).

Proof: Since fis differentiable, by (iii), we have /™ (x) = (¥ (0))"f(x) for all x.
Consider x € [-r,7], then by Taylor Theorem with Remainder term R,(x),

Ax) = Zf( (0) x* + R,(x), where R,(x) = {(n?(f)? xl, & e (0,x) or € (x,0),

Then

n+l)
Row)] = | £

(O)"AE)
(n+1)!

_ | gon™t
| (m+ 1)

M, where M = max [f(x)]

XE rr

- Qasn — oo.

Hence, we have for every x € [, 7]

= e, where ¢ := f'(0).
Since r is arbitrary, we have proved that f{x) = e for all x.
(2) If fis continuous and non-zero, prove that f{x) = e*, where c is a constant.
Proof: Since f(x + y) = f(x)f(y), we have
_ 1 1 _ 1 n 1 o 1/n
0 < A1) =f(3 +t3)  =f(3) =/(5) =AD *
and (note that {-1) = (1) by A0) = 1,)
_ A =1 -1 —_ =1 1Y _ ~1/n )
0 <f(—1) —f(T +.”+T>n—times _v/(T> 31(?) —f(l) *
1) =1k voh) S =0T ey

So, given any x € R, and thus choose a sequence {x,} < Q with x, - x. Then



Sy = f(lim)
= limf{x,) by continuity of /
= limA1)"™ by (**)
= )"
= e, where logf(1) = c.

Note: (i) We can prove (2) by the exercise as follows. Note that f{x) > 0 for all x by
the remark (1)-(ii) Consider the composite function g(x) = logf{x), then
glx+y) = logfix +y) = logflx)(y) = logflx) +logf(y) = g(x) + g(y). Since log and
are continuous on R, its composite function g is continuous on R. Use the exercise, we
have g(x) = cx for some c. Therefore, f({x) = es™) = e,

(i1) We can prove (2) by the remark (1) as follows. It suffices to show that this f'is
differentiable at 0 by remark (1) and (1)-(iii). Sincef(4-) = f(1) " then for every real r,
f(r) = [f(1)]" by continuity of /. Note that lim,, <52~ exists. Given any sequence {7, }
with », — 0, and thus consider

N B (O T 00) R R [0 S
rn=0 n n n
we have f'is differentiable at x = 0. So, by remark (1), we have f{x) = e.

exists,

(3) Give an example such that f'is not continuous on R.

Solution: Consider g(x + y) = g(x) + g(v) for all x,y. Then we have g(q) = gg(1),
where g € Q. By Zorn’s Lemma, we know that every vector space has a basis
{ve : @ € I;. Note that {v, : a € [} is an uncountable set, so there exists a convergent
sequence {s,} S {vq : @ € I}. Hence, S := ({vq : @ € I} — {su},_ ;) U=} isanew
basis of R over Q. Given x,y € R, and we can find the same N such that

N N
X = qu andy = Zpkvk, where v, € S
k=1 k=1

Define the sume

N
x4y = D (it qi)vi
pa

By uniqueness, we define g(x) to be the sum of coefficients, i.e.,

N
g(x) = D qx.
k=1

Note that
g(3+) = lforalln = limg(3) =1
and
ST” - 0asn - ©

Hence, g is not continuous at x = 0 since if it was, then



1= lime(5)
= g(}}ﬂ% “%”) by continuity of g at 0

= g(0)

=0
which is absurb. Hence, g is not continuous on R by the exercise. To find such f; it suffices
to consider f{x) = es™),

Note: Such g (or /) is not measurable by Lusin Theorem.

4.19 Let f'be continuous on [a,b] and define g as follows: g(a) = f(a) and, for
a < x < b, let g(x) be the maximum value of f'in the subinterval [a,x]. Show that g is
continuous on [a,b].

Proof: Define g(x) = max{f(¢) : t € [a,x]}, and choose any point ¢ € [a,b], we want
to show that g is continuous at c. Given ¢ > 0, we want to find a 6 > 0 such that as
x € (c—90,c+96)NJa,b], we have

g(x) —g(o)| < e.
Since f'is continuous at x = ¢, then there exists a 6’ > 0 such that as
x € (c=0',c+38")N]a,b], we have

fle) — €2 < flx) < fle) +&/2.
Consider two cases as follows.
(1) max{f(¢) : t € [a,c+6']N[a,b]} = f(p1), where p; < c-0'.
Asx € (¢c—-0',c+98")N[a,b], we have g(x) = fp:) and g(c) = f(p1).
Hence, |g(x) — g(c)| = 0.
(2) max{f(¢) : t € [a,c+6']N[a,b]} = f(p1), where p; > c—0'.
Asx € (c—=0',c+98") N[a,b], we have by (¥) flc) —&/2 < g(x) < flc) + &€/2.
Hence, |g(x) — g(c)| < e.
So, if we choose 6 = &', then forx € (¢ —8,¢+96) N [a,b],

g(x) —g(c)| < by (1) and (2).
Hence, g(x) is continuous at c¢. And since c is arbitrary, we have g(x) is continuous on
[a,b]

Remark: It is the same result for min{f{(¢) : ¢ € [a,x]} by the preceding method.

4.20 Let f1,...,fm be m real-valued functions defined on R”. Assume that each f; is
continuous at the point @ of S. Define a new function f'as follows: For each x in S, f(x) is
the largest of the m numbers f;(x),...,fn(x). Discuss the continuity of f at a.

Proof: Assume that each f} is continuous at the point a of S, then we have (f; + f;) and
[fi — ;] are continuous at a, where 1 < i,j < m. Since max(a,b) = w, then
max(f1,/2) is continuous at a since both (f; + f2) and |1 — f2| are continuous at a. Define
fx) = max(fi,...fn), use Mathematical Induction to show that f{x) is continuous at

x = a as follows. As m = 2, we have proved it. Suppose m = k holds, i.e., max(fi,...f;) is
continuous at x = a. Thenas m = k+ 1, we have

max(f1,.. .fie1) = max[max(fi,... i), e ]
is continuous at x = a by induction hypothesis. Hence, by Mathematical Induction, we
have prove that f'is continuos at x = a.
It is possible that fand g is not continuous on R whihc implies that max(f, g) is
continuous on R. For example, let f{x) = 0ifx € O, and f{x) = 1 ifx € Q¢ and g(x) = 1



ifx € O, and g(x) = 0ifx € Q°.
Remark: It is the same rusult for min(fi,...f,) since max(a,b) + min(a,b) = a + b.
4.21 Letf : § - R be continuous on an open set in R”, assume that p € §, and assume

that f{p) > 0. Prove that there is an n —ball B(p;r) such that f{x) > 0 for every x in the
ball.

Proof: Since (p €)S is an open set in R”, there exists a §; > 0 such that B(p,6,) < S.

Since f(p) > 0, given ¢ = @ > 0, then there exists an n —ball B(p;d,) such that as
x € B(p;92) NS, we have

@zﬂp)—g <flx) < flp)+e= @
Let 6 = min(01,0,), thenasx € B(p;0), we have
flx) > ) >0
5 )

Remark: The exercise tells us that under the assumption of continuity at p, we roughly
have the same sign in a neighborhood of p, if f(p) > 0 <0r fp) < O.)

4.22 Let f be defined and continuous on a closed set S in R. Let
A={x:xeSandfix) =0}.
Prove that 4 is a closed subset of R.

Proof: Since 4 = f71({0}), and f'is continous on S, we have 4 is closed in S. And
since S is closed in R, we finally have 4 is closed in R.

Remark: 1. Roughly speaking, the property of being closed has Transitivity. That is,
in(M,d)letS <€ T < M, if Sis closed in 7, and T is closed in M, then S is closed in M.

Proof: Let x be an adherent point of S in M, then By(x,7) NS # ¢ for every r > 0.
Hence, By/(x,7) N T + ¢ for every r > 0. It means that x is also an adherent point of 7" in
M. Since T is closed in M, we find that x € T. Note that since By/(x,7) NS # ¢ for every
r>0,wehave (S < 7)

Br(x,r)NS = Bulx,ryNT)NS =Bulx,r)y N(SNT) = By(x,r) NS # ¢.
So, we have x is an adherent point of S in 7. And since S is closed in 7, we have x € S.

Hence, we have proved that if x is an adherent point of S in M, then x € S. That is, S is
closed in M.

Note: (1) Another proof of remark 1, since S is closed in 7, there exists a closed subset
U in Msuch that S = UN T, and since T is closed in M, we have S is closed in M.

(2) There is a similar result, in (M,d) let S € T < M, if Sis open in 7, and 7 is open
in M, then S is open in M. (Leave to the reader.)

2. Here is another statement like the exercise, but we should be cautioned. We write it
as follows. Let fand g be continuous on (S,d;) into (7,d,). Let 4 = {x : fix) = g(x)},
show that A4 is closed in S.

Proof: Let x be an accumulation point of 4, then there exists a sequence {x,} < 4
such that x, - x. So, we have f(x,) = g(x,) for all n. Hence, by continuity of fand g, we
have

) = fQlimoen) = limflen) = limg(ra) = g(limx) = gx).
Hence, x € A. That is, 4 contains its all adherent point. So, A4 is closed.



Note: In remark 2, we CANNOT use the relation
Sx) —gx)

are not necessarily defined on the metric space (7,d>).

since the difference

4.23 Given a function f : R - R, define two sets 4 and B in R? as follows:
A =L(xy) 1y <)},
B =A{(xy) 1y >fx)}.
and Prove that f'is continuous on R if, and only if, both A and B are open subsets of R?.
Proof: (=) Suppose that f'is continuous on R. Let (a,b) € A4, then f{a) > b. Since f'is

continuous at a, then given &€ = ﬂa;_b > 0, there exists a (¢ >)0 > 0 such that as
Ix —a| < 0, we have

ROXD _ ftay ¢ < flw) < fla) +&. *

Consider (x,y) € B((a,b);5), then |x — a\z + 1y - b|2 < 02 which implies that
L x—a| <8 = fx) > Why(*)and

2.[y—b|<5:>y<b+5<b+gzw.

Hence, we have f(x) > y. That is, B((a,b);0) < A. So, A is open since every point of A4 is
interior. Similarly for B.

(<) Suppose that 4 and B are open in R?. Trivially, (a,f(a) — €/2) = p; € A, and
(a,fla) + €/2) := p, € B. Since 4 and B are open in R?, there exists a (¢/2 >)é > 0 such
that

B(p1,0) < A and B(p,,0) < B.
Hence, if (x,y) € B(p1,9), then
(x—a)’ + (v — (fa) —&2))* < 62 and y < flx).
So, it implies that
x—al <o, |yv—fla) + /2] <5, andy < f(x).
Hence, as |x —a| < 0, we have
-0 <y—fla)+¢/2
= fla)-0—-¢€/2 <y < flx)
= fla) —¢ <y < fix)
= fla) — ¢ < flx). ok
And if (x,y) € B(p,,8), then
x—a)’ + (- (fa) +&2))* < 62 and y > flx).
So, it implies that
x—al <o, |yv—fla) —€/2] <5, andy > f(x).
Hence, as |x —a| < 0, we have
fix) <y <fla)y+¢€2+6 < fla) +e¢. otk
So, given & > 0, there exists a 0 > 0 such that as |x — a| < 0, we have by (**) and (***)
fla) — & < flx) < fla) + &.

That is, f'is continuous at a. Since a is arbitrary, we know that f'is continuous on R.

4.24 et fbe defined and bounded on a compact interval Sin R. If T < §, the



number
QAT) = sup{flx) ~fy) 1 %y € T}
is called the oscillation (or span) of fon 7. If x € S, the oscillation of fat x is defined to
be the number
odx) = ,1,1}0119/(3()“;}1) Nn>Ss).
Prove that this limit always exists and that w/(x) = 0 if, and only if, fis continuous at x.

Proof: 1. Note that since f'is bounded, say |[f{x)| < M for all x, we have
fx) =f)| < 2M for all x,y € S. So, Q«T), the oscillation of f'on any subset 7 of S,
exists. In addition, we define g(h) = QA{B(x;4) N S). Note that if 7} < T>(< S), we have
QAT,) < QAT>). Hence, the oscillation of fat x, wAx) = lim;.o+g(h) = g(0 +) since g is
an increasing function. That is, the limit of QB (x;/#) N S) always exists as & — 0*.

2. (=) Suppose that w(x) = 0, then given & > 0, there exists a 6 > 0 such that as
h € (0,0), we have

g(h)| = g(h) = QUB(x;h) N S) < &l2.
That is, as 4 € (0,6), we have
sup{f(¢t) —f(s) : t,s € B(x;h) NS} < &/2
which implies that
-2 <flt)—fix) <easte (x—5,x+5)NS.
So,ast e (x—9,x+ ) NS. we have
)~ fx)] < .

That is, f'is continuous at x.

(<) Suppose that fis continous at x, then given & > 0, there exists a 6 > 0 such that as
te (x—0,x+0)NS, we have

[ft) — fx)| < &/3.
So,ast,s € (x—0,x+0) NS, we have
) —fs)| < [ft) —fx)| + [flx) —f(s)| < &/3+¢/3 =2¢/3
which implies that
sup{(t) = f(s) : t,s € (x—=0,x+0) NS} <2¢/3 < e.
So,as h € (0,0), we have
Q(B(x;h) NS) =sup{(t) —fls) : t,s € x-6,x+5) NS} < e&.

Hence, the oscillation of fatx, w/x) = 0.

Remark: 1. The compactness of S is not used here, we will see the advantage of the
oscillation of f'in text book, Theorem 7.48, in page 171. (On Lebesgue’s Criterion for
Riemann-Integrability.)

2. One of advantage of the oscillation of f'is to show the statement: Let f'be defined on
[a,b] Prove that a bounded /' does NOT have the properties:

f'is continuous on Q N [a,b], and discontinuous on (R — Q) N [a, b].
Proof: Since w/(x) = 0 if, and only if, f'is continuous at x, we know that w/(r) > 0 for
r € (R-0)Nla,b]. DefineJy, = {r : o{r) > 1/n}, then by hypothesis, we know that
U, Jim = (R—0Q) N [a,b]. Itis easy to show that Jy, is closed in [a,b]. Hence,
int[cl(Jy,)] = int(Jy),) = ¢ for all n € N. It means that J,,, is nowhere dense for all
n € N. Hence,



[a,b] = (Uszy J1m) U (Q N [a,b])
is of the firse category which is absurb since every complete metric space is of the second
category. So, this f cannot exist.

Note: 1 The Boundedness of f can be removed since we we can accept the concept
o > 0.

2. (Jy, 1s closed in [a, b]) Given an accumulation point x of J,,,, if x & J,,, we have
ox) < 1/n. So, there exists a 1 —ball B(x) such that Q(B(x) N [a,b]) < 1/n. Thus, no
points of B(x) can belong to Jy,,, contradicting that x is an accumulation point of J;,,.
Hence, x € J,, and Jy,, is closed.

3. (Definition of a nowhere dense set) In a metric space (M, d), let 4 be a subset of M,
we say 4 is nowhere dense in M if, and only if 4 contains no balls of M, (< int(4) = ¢).

4. (Definition of a set of the first category and of the second category) A set 4 in a
metric space M is of the first category if, and only if, 4 is the union of a countable number
of nowhere dense sets. A set B is of the second category if, and only if, B is not of the first
category.

5. (Theorem) A complete metric space is of the second category.

We write another important theorem about a set of the second category below.

(Baire Category Theorem) A nonempty open set in a complete metric space is of the
second category.

6. In the notes 3,4 and 5, the reader can see the reference, A First Course in Real
Analysis written by M. H. Protter and C. B. Morrey, in pages 375-377.

4.25 Let f'be continuous on a compact interval [a,b]. Suppose that f'has a local
maximum at x; and a local maximum at x,. Show that there must be a third point between
x1 and x, where f has a local minimum.

Note. To say that f'has a local maximum at x; means that there is an 1 —ball B(x;) such
that f{x) < f(x,) for all x in B(x;) N [a,b]. Local minimum is similarly defined.

Proof: Let x, > x;. Suppose NOT, i.e., no points on (x;,x,) can be a local minimum
of f. Since fis continuous on [x;,x;], then inf{f{x) : x € [x1,x2]} = f{x;) or flx) by
hypothesis. We consider two cases as follows:

(1) If inf{f{x) : x € [x1,x2]} = f{x1), then

(1) f{x) has a local maximum at x; and
(i1) flx) > flx;) for all x € [x1,x3].
By (i), there exists a 6 > 0 such that x € [x;,x; +0) < [x1,x2], we have
(1i1) f{x) < flx1).
So, by (ii) and (iii), as x € [x1,x; +J), we have
Sfx) = flxr)
which contradicts the hypothesis that no points on (x;,x,) can be a local minimum of f.

(2) If inf{f(x) : x € [x1,x2]} = fx1), it is similar, we omit it.

Hence, from (1) and (2), we have there has a third point between x; and x, where f has
a local minimum.

4.26 Let f'be a real-valued function, continuous on [0, 1], with the following property:
For every real y, either there is no x in [0, 1] for which f{x) = y or there is exactly one such
x. Prove that f'is strictly monotonic on [0, 1].



Proof: Since the hypothesis says that f'is one-to-one, then by Theorem*, we know that f
is trictly monotonic on [0, 1].

Remark: (Theorem*) Under assumption of continuity on a compact interval, 1-1 is
equivalent to being strictly monotonic. We will prove it in Exercise 4.62.

4.27 Let fbe a function defined on [0, 1] with the following property: For every real
number y, either there is no x in [0, 1] for which f{x) = y or there are exactly two values of
x in [0, 1] for which f(x) = y.

(a) Prove that f'cannot be continuous on [0, 1].

Proof: Assume that fis continuous on [0, 1], and thus consider max . ;1/{(x) and
min,,11/(x). Then by hypothesis, there exist exactly two values a; < a, € [0,1] such
that f{a;) = flaz) = max,,/(x), and there exist exactly two values b, < b, € [0, 1]
such that f{b1) = f(b2) = min, 1 /(x).

Claim that a; = 0 and a, = 1. Suppose NOT, then there exists at least one belonging
to (0,1). Without loss of generality, say a; € (0,1). Since fhas maximum ata; € (0,1)
and a, € [0,1], we can find three points p;, p,, and p3 such that

l.p1 <ai <p2 <p;<ay,
2. fip1) < flar), flp2) < flar), and f(p3) < flaz).
Since f{a;) = f(a,z), we choose a real number 7 so that
fip1) <r<flay) = r=flq1), where q; € (pi,a;) by continuity of f.
f(p2) <r < flay) = r = flq2), where g, € (a;,p>) by continuity of f.
fp3) <r < flay) > r = flgs), where g3 € (p3,a,) by continuity of 1.
which contradicts the hypothesis that for every real number y, there are exactly two values
of x in [0, 1] for which f{x) = y. Hence, we know that a; = 0 and @, = 1. Similarly, we
alsohave by = 0and b, = 1.
So, max ,11/(x) = min,cp;;/(x) which implies that fis constant. It is impossible.
Hence, such f'does not exist. That is, fis not continuous on [0, 1].
(b) Construct a function f which has the above property.
Proof: Consider [0,1] = (Q°N[0,1]) U (QN[0,1]), and write
ono,1] = {xy,x2,...,Xn,... r. Define
1. fix2u-1) = flxon) = n,
2. flx) = xifx € (0,1/2) N Q¢,
3.fx) = 1 —xifx € (1/2,1) N Q°.
Then if x = y, then it is clear that f{x) = f(y). That is, f'is well-defined. And from
construction, we know that the function defined on [0, 1] with the following property: For

every real number y, either there is no x in [0, 1 ] for which f{x) = y or there are exactly
two values of x in [0, 1] for which f{x) = y.

Remark: {x : fis discontinuous at x} = [0,1]. Given a € [0,1]. Note that since
fix) e Nforallx e QN [0,1] and Q is dense in R, for any 1 —ball B(a;7) N (O N [0,1]),
there is always a rational number y € B(a;r) N (Q N [0,1]) such that |f(y) — fla)| = 1.

(c) Prove that any function with this property has infinite many discontinuities on
[0,1].

Proof: In order to make the proof clear, property 4 of f means that



for every real number y, either there is no x in [0, 1] for which f{x) = y or

there are exactly two values of x in [0, 1] for which f{x) = y

Assume that there exist a finite many numbers of discontinuities of £, say these points
X1,...,Xn. By property A, there exists a unique y; such that f{x;) = f(y;) for 1 <i < n.
Note that the number of the set
S = ({x1,-xar U{pis. .oy U {x : flx) = f0), and fix) = f{1)} ) is even, say 2m
We remove these points from S, and thus we have 2m + 1 subintervals, say /;,

1 <j < 2m+ 1. Consider the local extremum in every /;, 1 <j < 2m + 1 and note that
every subinterval /;, 1 <j < 2m + 1, has at most finite many numbers of local extremum,
say #({t € [; : f{x) is the local extremum} = {t@,..,t%’}) = p;. And by property 4,
there exists a unique s,((j) such that f(t,?’) = f(s,?’) for 1 < k < p;. We again remove these

points, and thus we have removed even number of points. And odd number of open
intervals 1s left, call the odd number 2g — 1. Note that since the function f'is monotonic in
every open interval left, R;, 1 </ < 2g — 1, the image of f on these open interval is also an
open interval. If R, N R, # ¢, say R, = (a1,a;) and R, = (b1,b,) with (without loss of
generality) a; < by < a < by, then

R, = R, by property A.

(Otherwise, b, is only point such that f{x) = f{(b,), which contradicts property 4.) Note
that given any R,, there must has one and only one R, such that R, = R,. However, we
have 2¢g — 1 open intervals is left, it is impossible. Hence, we know that f'has infinite many
discontinuities on [0, 1].

4.28 In each case, give an example of a real-valued function f, continuous on S and
such that f{S) = T, or else explain why there can be no such f :

(@) S =(0,1), T=(0,1].
Solution: Let

2x if x € (0,1/2],
fx) = . :
1ifx e (1/2,1).

b)S=1(,1), T=(0,1)U(1,2).

Solution: NO! Since a continuous functions sends a connected set to a connected set.
However, in this case, S is connected and 7 is not connected.

(¢c) S = R!, T = the set of rational numbers.

Solution: NO! Since a continuous functions sends a connected set to a connected set.
However, in this case, S is connected and 7' is not connected.

() S =1[0,11U[2,3], T = {0,1}.

Solution: Let
0ifx € [0,1],
Sx) = .
1ifx € [2,3].

(€)S=1[0,1]x[0,1], T = R2.

Solution: NO! Since a continuous functions sends a compact set to a compact set.
However, in this case, S is compact and 7" is not compact.



®HS=1[0,1]x[0,1],T = (0,1) x (0,1).

Solution: NO! Since a continuous functions sends a compact set to a compact set.
However, in this case, S is compact and 7 is not compact.

(g)S=1(0,1)x(0,1),T = R?.
Solution: Let
flx,y) = (cotmx,cotmy).
Remark: 1. There is some important theorems. We write them as follows.
(Theorem A) Let f : (S,ds) — (T,dr) be continuous. If X is a compact subset of S,
then f(X) is a compact subset of 7.

(Theorem B) Let /' : (S,ds) » (T,dr) be continuous. If X is a connected subset of S,
then f(X) is a connected subset of 7.

2. In (g), the key to the example is to find a continuous function f: (0,1) - R which is
onto.

Supplement on Continuity of real valued functions

Exercise Suppose that f{x) : (0,00) - R, is continuous with a < f{x) < b for all
x € (0,0), and for any real y, either there is no x in (0,%) for which f{x) = y or
there are finitely many x in (0,) for which f{x) = y. Prove that lim,. f{x) exists.

Proof: For convenience, we say property 4, it means that for any real y, either
there is no x in (0, ) for which f{x) = y or there are finitely many x in (0,) for
which f(x) = y.

We partition [a, b] into n subintervals. Then, by continuity and property 4, as x
is large enough, f{x) is lying in one and only one subinterval. Given ¢ > 0, there
exists N such that 2/N < ¢. For this N, we partition [a,b] into N subintervals, then
there is a M > 0 such that as x,y > M

[fx) —fy)| < 2/N < e.

So, lim.o f{x) exists.
Exercise Suppose that f{x) : [0,1] - R is continunous with f{0) = f{(1) = 0. Prove that

(a) there exist two points x; and x; such that as |x; — x,| = 1/n, we have
flx1) = flxz) # 0 for all n. In this case, we call 1/n the length of horizontal strings.

Proof: Define a new function g(x) = f{x + +) — flx) : [0,1 — +]. Claim that
there exists p € [0,1 — 1] such that g(p) = 0. Suppose NOT, by Intermediate
Value Theorem, without loss of generality, let g(x) > 0, then

g0 +g(4) +.+g(1-L) =) >0

which is absurb. Hence, we know that there exists p € [0,1 — -] such that

g(p) = 0. That is,
(L) 1)

So, we have 1/n as the length of horizontal strings.
(b) Could you show that there exists 2/3 as the length of horizontal strings?

Proof: The horizontal strings does not exist, for example,



x, ifx € [0,+]
fix) = —x+%, ifxe[%,i] .

4
x—1,ifx € [3,1]

Exercise Suppose that f{x) : [a,b] - R is a continuous and non-constant function. Prove
that the function f cannot have any small periods.

Proof: Say f'is continuous at ¢ € [a,b], and by hypothesis that fis
non-constant, there is a point p € [a,b] such that |f{q) — f{p)| = M > 0. Since f'is
continuous at ¢, then given € = M, there is a 6 > 0 such that as
x e (qg—0,9+9)N][a,b], we have

[fx) =Alg)| < M.
If f'has any small periods, then in the set (¢ — 8,q + 0) N [a, b], there is a point
re(qg—9,9+09)N|[a,b]suchthat f{r) = f(p). It contradicts to (*). Hence, the
function f cannot have any small periods.

Remark 1. There is a function with any small periods.
Solution:The example is Dirichlet function,
0, ifx € Q¢
fx) = : :
I, ifxe Q
Since f{x + g) = f(x), for any rational g, we know that /' has any small periods.

2. Prove that there cannot have a non-constant continuous function which has
two period p, and g such that ¢g/p is irrational.

Proof: Since ¢/p is irrational, there is a sequence { 4> }(S Q) such that
4 _ 9 | 1
2N R
So, f'has any small periods, by this exercise, we know that this f cannot a
non-constant continuous function.

= |pgn — qpn| < |%| - OQasn - .

Note: The inequality is important; the reader should kepp it in mind. There are
many ways to prove this inequality, we metion two methods without proofs. The
reader can find the proofs in the following references.

(1) An Introduction To The Theory Of Numbers written by G.H. Hardy and
E.M. Wright, charpter X, pp 137-138.

(2) In the text book, exercise 1.15 and 1.16, pp 26.

3. Suppose that f{x) is differentiable on R prove that if f has any small periods,
then f'is constant.

Proof: Given ¢ € R, and consider
fle +p;z —flo) _ 0 for all n.

where p, is a sequence of periods of function such that p, - 0. Hence, by
differentiability of f, we know that f'(¢) = 0. Since c is arbitrary, we know that
f(x) = 0 on R. Hence, f'is constant.

Continuity in metric spaces



In Exercises 4.29 through 4.33, we assume that f : S — T 'is a function from one metric
space (S, ds) to another (7,dr).

4.29 Prove that f1s continuous on S if, and only if,
f1(intB) < int(f~'(B)) for every subset B of T.

Proof: (=) Suppose that f'is continuous on S, and let B be a subset of 7. Since
int(B) < B, we have f~!(intB) < f~'(B). Note that /! (intB) is open since a pull back of
an open set under a continuous function is open. Hence, we have

int[f~'(intB)] = f'(intB) < int(f'(B)).

That is, /! (intB) < int(f~'(B)) for every subset B of 7.

(<) Suppose that -1 (intB) < int(f"!(B)) for every subset B of T. Given an open subset
uc 1), i.e., intU = U, so we have

SHU) = 1 ntU) < int(f71(U)).

In addition, int(f"'(U)) < f~1(U) by the fact, for any set 4, intA is a subset of 4. So, fis
continuous on S.

4.30 Prove that f'is continuous on § if, and only if,
fcl(A4)) < cl(f(4)) for every subset 4 of S.

Proof: (=) Suppose that f'is continuous on S, and let 4 be a subset of S. Since
fA) < cl(f(4)), then (4 C)f 1 (f(4)) < f'(cl(f(4))). Note that /1 (c/(f(4))) is closed
since a pull back of a closed set under a continuous function is closed. Hence, we have
cl(4) < cllf ' (cl(flA)))] = /' (cl(f(4)))
which implies that

Acl(4)) < fIf1(cl(Td)))] < cl(fl4)).
(<) Suppose that f{cl(4)) < cl(f(4)) for every subset 4 of S. Given a closed subset
C(c T), and consider /' (C) as follows. Define /! (C) = 4, then
Sel(F(C))) = flcl(4))
< cl(fld)) = cl(fiF1(C)))
c cl(C) = Csince C'is closed.
So, we have by (f(c/(4)) < C)
cl(4) < 1 (flcl(4))) = f1(C) = 4

which implies that 4 = f~!(C) is closed set. So, f'is continuous on S.

4.31 Prove that f1s continuous on S if, and only if, fis continuous on every compact
subset of S. Hint. If x, - p in S, the set {p,x;,x2,... } is compact.

Proof: (=) Suppose that f'is continuous on S, then it is clear that f'is continuous on
every compact subset of S.

(<) Suppose that f'is continuous on every compact subset of S, Given p € S, we
consider two cases.

(1) p 1s an isolated point of S, then f'is automatically continuous at p.

(2) p is not an isolated point of S, that is, p is an accumulation point p of S, then there
exists a sequence {x,}(<)S with x, - p. Note that the set {p,x1,x,,... } is compact, so we
know that f'is continuous at p. Since p is arbitrary, we know that f'is continuous on S.

Remark: If x, - pin S, the set {p,x1,x2,...} is compact. The fact is immediately



from the statement that every infinite subset {p,x;,x2,... } of has an accumulation point in

{p,xl,xg,...}.

4.32 A function f: 8§ = Tis called a closed mapping on S if the image f{4) is closed
in T for every closed subset 4 of S. Prove that f'is continuous and closed on S if, and only
if,

flcl(4)) = cl(f(4)) for every subset 4 of S.

Proof: (=) Suppose that f'is continuous and closed on S, and let 4 be a subset of S.
Since 4 < cl(A4), we have f(4) < f(cl(4)). So, we have
cl(fl4)) < cl(f(cl(4))) = f(cl(A4)) since fis closed.
In addition, since f{4) < cl(f(4)), we have A < f1(f(4)) < f'(cl(f{4))). Note that
f1(cl(f(A))) is closed since f'is continuous. So, we have
cl(4) < cl(f(cl(fl4)))) = [ (cl(4)))
which implies that
Acl(4)) < fif1(cl(fi4)))) < cl(fi4)).
From (*) and (**), we know that f{cl(4)) = cl(f(A)) for every subset 4 of S.
(<) Suppose that f{cl(4)) = cl(f(4)) for every subset 4 of S. Gvien a closed subset C
of S, i.e., c/(C) < C, then we have
AC) = fel(€)) = cl(C)).
So, we have f{C) is closed. That is, f'is closed. Given any closed subset B of 7, i.e.,
cl(B) < B, we want to show that /7! (B) is closed. Since f"!(B) := 4 < S, we have
Ael(f1(B))) = fcl(4)) = cl(fl4)) = cl(fif(B))) < cl(B) = B
which implies that
Al(f1(B))) € B = cl(f'(B)) < [ (Al (B)))) < f(B).
That is, we have cl/(f"'(B)) < f'(B). So, f1(B) is closed. Hence, fis continuous on S.

4.33 Give an example of a continuous fand a Cauchy sequence {x,} in some metric
space S for which {f{(x,)} is not a Cauchy sequence in 7.

Solution: Let S = (0,1], x, = I/nforalln € N, and f = 1/x : § - R. Then it is clear
that f'is continous on S, and {x,} is a Cauchy sequence on S. In addition, Trivially,
{f(x») = n} is not a Cauchy sequence.

Remark: The reader may compare the exercise with the Exercise 4.54.

4.34 Prove that the interval (-=1,1) in R! is homeomorphic to R!. This shows that
neither boundedness nor completeness is a topological property.

Proof: Since f(x) = tan(5-) : (-1,1) - R is bijection and continuous, and its
converse function f~!(x) = arctanx : R - (—1,1). Hence, we know that f'is a Topologic
mapping. (Or say f'is a homeomorphism). Hence, (-1, 1) is homeomorphic to R!.

Remark: A function fis called a bijection if, and only if, fis 1-1 and onto.

4.35 Section 9.7 contains an example of a function f, continuous on [0, 1], with
A10,1]) = [0,1] x[0,1]. Prove that no such f'can be one-to-one on [0, 1].

Proof: By section 9.7, let f: [0,1] - [0,1] x [0, 1] be an onto and continuous function.
If fis 1-1, then so is its converse function f~!. Note that since fis a 1-1 and continous
function defined on a compact set [0, 1], then its converse function /! is also a continous

kk



function. Since f{[0,1]) = [0,1] x [0, 1], we have the domain of /! is [0, 1] x [0, 1] which
is connected. Choose a special point y € [0,1] x [0, 1] so that /' (y) := x € (0,1).
Consider a continous function g = ([0 1}x[0,11-¢ » then

g :[0,1]x[0,1] =<y} - [0,x) U (x, 1] which is continous. However, it is impossible
since [0,1] x [0,1] — {y} is connected but [0,x) U (x, 1] is not connected. So, such f cannot
exist.

Connectedness

4.36 Prove that a metric space S is disconnected if, and only if there is a nonempty
subset 4 of S, 4 # S, which is both open and closed in S.

Proof: (=) Suppose that S is disconnected, then there exist two subset 4, B in S such
that

1.4, Bareopenin S, 2.4 # pand B # ¢, 3.ANB =¢,and4. AUB = S.

Note that since 4, B are openin S, we have 4 = S— B, B = §— A4 are closed in S. So, if S
is disconnected, then there is a nonempty subset 4 of S, 4 # S, which is both open and
closed in S.

(<) Suppose that there is a nonempty subset 4 of S, 4 # S, which is both open and
closed in S. Then we have S — 4 := B is nonempty and B is open in S. Hence, we have two
sets A, B in S such that

1.4, Bareopenin $, 2.4 + gand B + ¢, 3.ANB = ¢, and4. AUB = §S.
That is, S is disconnected.

4.37 Prove that a metric space S is connected if, and only if the only subsets of S which
are both open and closed in S are empty set and S itself.

Proof: (=) Suppose that S is connected. If there exists a subset 4 of S such that
1.4 # ¢, 2. A is a proper subset of S, 3. 4 is open and closed in S,
then let B = S — A, we have
1.4, Bareopenin S, 2.4 +# pand B+ ¢, 3. ANB=¢,and4. A UB = S.

It is impossible since S is connected. So, this 4 cannot exist. That is, the only subsets of §
which are both open and closed in S are empty set and S itself.

(<) Suppose that the only subsets of S which are both open and closed in S are empty
set and S itself. If S is disconnected, then we have two sets 4, B in S such that

1.4, Bareopenin S, 2.4 + gand B + ¢, 3.ANB = ¢, and4. AUB = S.

It contradicts the hypothesis that the only subsets of § which are both open and closed in §
are empty set and S itself.

Hence, we have proved that S is connected if, and only if the only subsets of S which
are both open and closed in S are empty set and S itself.

4.38 Prove that the only connected subsets of R are
(a) the empty set,

(b) sets consisting of a single point, and

(c) intervals (open, closed, half-open, or infinite).

Proof: Let S be a connected subset of R. Denote the symbol #(A4) to be the number of
elements in a set 4. We consider three cases as follows. (a) #(S) = 0, (b) #(S) = 1, (¢)
#(S) > 1.

For case (a), it means that S = ¢, and for case (b), it means that S consists of a single
point. It remains to consider the case (c). Note that since #(S) > 1, we have infS # supS.



Since S < R, we have S < [inf§,supS]. (Note that we accept that infS = —oo or
supS = o0.) If S is not an interval, then there exists x € (infS,supS) such thatx ¢ S.
(Otherwise, (infS,supS) < S which implies that S is an interval.) Then we have

l.(—o,x) NS :=A4isopenin§

2. (x,+0) NS := BisopeninS

3.AUB = §.

Claim that both 4 and B are not empty. Asume that 4 is empty, then every s € S, we have
s > x > infS. By the definition of infimum, it is impossible. So, 4 is not empty. Similarly

for B. Hence, we have proved that S is disconnected, a contradiction. That is, S is an
interval.

Remark: 1. We note that any interval in R is connected. It is immediate from Exercise
4.44. But we give another proof as follows. Suppose there exists an interval S is not
connceted, then there exist two subsets 4 and B such that

1.4, Bareopenin S, 2.4 + pand B + ¢, 3.ANB =¢,and4. AUB = S.
Since 4 + ¢ and B + ¢, we choose a € 4 and b € B, and let a < b. Consider
¢ = sup{4 N [a,b]l}.
Note that ¢ € cl(4) = A implies that ¢ ¢ B. Hence, we have a < ¢ < b. In addition,
c ¢ B = cl(B), then there exists a Bs(c;0) N B = ¢. Choose
d € Bs(c;0) = (¢c—0,c+09) NS so that
l.c<d<band2.d ¢ B.
Then d ¢ A. (Otherwise, it contradicts ¢ = sup{4 N [a,b]}. Note that

d € [a,b] < S = AU B which implies that d € 4 or d € B. We reach a contradiction since
d ¢ Aandd ¢ B. Hence, we have proved that any interval in R is connected.

2. Here is an application. Is there a continuous function /' : R - R such that
AQ) < O, and Q) < 07

Ans: NO! If such fexists, then both f{Q) and f{Q¢) are countable. Hence, f(R) is
countable. In addition, f{R) is connected. Since f{R) contains rationals and irrationals, we
know f(R) is an interval which implies that f{R) is uncountable, a cotradiction. Hence, such
f does not exist.

4.39 Let X be a connected subset of a metric space S. Let Y be a subset of S such that
X € Y < cl(X), where c/(X) is the closure of X. Prove that Y is also connected. In
particular, this shows that c/(X) is connected.

Proof: Given a two valued function fon ¥, we know that fis also a two valued
function on X. Hence, f'is constant on X, (without loss of generality) say f = 0 on X.
Consider p € Y — X, it ,means that p is an accumulation point of X. Then there exists a
dequence {x,} < X such thatx, - p. Note that f{x,) = 0 for all n. So, we have by
continuity of fon Y,

fw) = fQlimxn) = lim/ix) = 0.
Hence, we have f'is constant 0 on Y. That is, Y is conneceted. In particular, c/(X) is
connected.

Remark: Of course, we can use definition of a connected set to show the exercise. But,
it is too tedious to write. However, it is a good practice to use definition to show it. The
reader may give it a try as a challenge.



4.40 If x is a point in a metric space S, let U(x) be the component of S containing x.
Prove that U(x) is closed in S.

Proof: Let p be an accumulation point of U(x). Let f'be a two valued function defined
on U(x) U {p}, then fis a two valud function defined on U(x). Since U(x) is a component
of S containing x, then U(x) is connected. That is, f'is constant on U(x), (without loss of
generality) say /= 0 on U(x). And since p is an accumulation point of U(x), there exists a
sequence {x,} < U(x) such that x, - p. Note that f{x,,) = 0 for all n. So, we have by
continuity of fon U(x) U {p},

f®) = f(limx,) = limAx,) = 0.
So, U(x) U {p} is a connected set containing x. Since U(x) is a component of S containing

x, we have U(x) U {p} < U(x) which implies that p € U(x). Hence, U(x) contains its all
accumulation point. That is, U(x) is closed in S.

4.41 Let S be an open subset of R. By Theorem 3.11, S is the union of a countable
disjoint collection of open intervals in R. Prove that each of these open intervals is a
component of the metric subspace S. Explain why this does not contradict Exercise 4.40.

Proof: By Theorem 3.11, S = U;., 1,, where /;isopeninRand ;N 1; = ¢ if i # ;.
Assume that there exists a /,, such that 7,, is not a component 7 of S. Then T — I, is not
empty. So, there exists x € T— I, and x € I, for some n. Note that the component U(x) is
the union of all connected subsets containing x, then we have

TUI, <€ Ux).
In addition,
Ux)cT
since 7T is a component containing x. Hence, by (*) and (**), we have I, < T. So,
InUI, < T. Since T'is connected in R!, T itself is an interval. So, int(T) is still an interval
which is open and containing 7, U /,. It contradicts the definition of component interval.
Hence, each of these open intervals is a component of the metric subspace S.

Since these open intervals is open relative to R, not S, this does not contradict Exercise
4.40.

4.42 Givena compact S in R with the following property: For every pair of points a
and b in S and for every € > 0 there exists a finite set of points {xo,xy,...,Xx,} in S with
xo = a and x, = b such that

|lxi —xi1 || < efork =1,2,..,n.
Prove or disprove: S is connected.

Proof: Suppose that S is disconnected, then there exist two subsets 4 and B such that
1.4, Bareopenin S, 2. A # pand B # ¢, 3. ANB =¢,and4. AUB = S.

Since 4 # ¢ and B # ¢, we choose a € A4, and b € A4 and thus given ¢ = 1, then by
hypothesis, we can find two points a; € 4, and b, € B such that ||a; — b,| < 1. For a,,
and b;, given € = 1/2, then by hypothesis, we can find two points a, € 4, and b, € B
such that ||a; — b, || < 1/2. Continuous the steps, we finally have two sequence {a,} < 4
and {b,} < Bsuch that ||a, — b,| < 1/n for all n. Since {a,} < A4, and {b,} < B, we
have {a,} < Sand {b,} < Sby S = 4 U B. Hence, there exist two subsequence

{an,} < Aand {b,,} < Bsuchthata, — x, and b,, - y, where x, y € S since S is
compact. In addition, since 4 is closed in S, and B is closed in S, we have x € 4 and

y € B. On the other hand, since ||a, — b, || < 1/n for all n, we have x = y. That is,
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A N B # ¢ which contradicts (*)-3. Hence, we have prove that S is connected.

Remark: We given another proof by the method of two valued function as follows. Let
fbe a two valued function defined on S, and choose any two points @, b € S. If we can
show that f{a) = f(b), we have proved that f'is a constant which implies that S is
connected. Since f'is a continuous function defined on a compact set S, then f'is uniformly
on S. Thus, given 1 > ¢ > 0, there existsad > 0 such thatas |[x —y| <, x, y € S, we
have [f(x) —f(y)| < € < 1 = fix) = f{y). Hence, for this 9, there exists a finite set of
points {x¢,X1,...,X, in S with xg = a and x, = b such that

lxy —xi1 || <6 fork=1,2,..,n.
So, we have fla) = f(xo) = fix1) =...= flxn) = f(b).
4.43 Prove that a metric space S is connected if, and only if, every nonempty proper
subset of § has a nonempty boundary.
Proof: (=) Suppose that S is connected, and if there exists a nonempty proper subset U
of S such that 0U = ¢, then let B = cl(S — U), we have (define c/(U) = A)
1.A # ¢. B+ ¢since S—U # ¢,
22AUB = c(U)Ucl(S-U)2UUS-U) =S
=>S5S=A4AUB,
3.A4NB = cl(U) Ncl(S-U) = oU = ¢,
and
4. Both 4 and B are closed in S = Both 4 and B are open in S.

Hence, S is disconnected. That is, if S is connected, then every nonempty proper subset of
S has a nonempty boundary.

(<) Suppose that every nonempty proper subset of S has a nonempty boundary. If S is
disconnected, then there exist two subsets 4 and B such that

1.4, Bareclosedin S, 2.4 + ¢and B + ¢, 3.ANB =¢,and4. AUB = S.
Then for this 4, 4 is a nonempty proper subset of S with (c/(4) = 4, and cl/(B) = B)
oA =cllA)Ncl(S-A) =clA)Ncl(B)y=ANB = ¢

which contradicts the hypothesis that every nonempty proper subset of S has a nonempty
boundary. So, S is connected.

4.44. Prove that every convex subset of R” is connected.

Proof: Given a convex subset S of R”, and since for any pair of points a, b, the set
{1-0)a+0b:0<0<1} =TcS,ie,g:[0,1] > Tbyg@) =(1-0)a+0bisa
continuous function such that g(0) = a, and g(1) = b. So, § is path-connected. It implies
that S is connected.

Remark: 1. In the exercise, it tells us that every n —ball is connected. (In fact, every
n —ball is path-connected.) In particular, as n = 1, any interval (open, closed, half-open, or
infinite) in R is connected. For n = 2, any disk (open, closed, or not) in R? is connected.

2. Here is a good exercise on the fact that a path-connected set is connected. Given
[0,1] x [0,1] := S, and if T is a countable subset of S. Prove that S — T'is connected. (In
fact, S — T is path-connected.)

Proof: Given any two points a and b in S — 7, then consider the vertical line L passing
through the middle point (@ + b)/2. Let 4 = {x : x € L N S}, and consider the lines form
a to A, and from b to 4. Note that 4 is uncountable, and two such lines (form a to 4, and



from b to A) are disjoint. So, if every line contains a point of 7, then it leads us to get 7'is
uncountable. However, 7' is countable. So, it has some line (form a to 4, and from b to A4)
isin S — 7. So, it means that S — 7 is path-connected. So, S — T is connected.

4.45 Given a function f: R" > R™ which is 1-1 and continuous on R”". If 4 is open
and disconnected in R”, prove that f{4) is open and disconnected in f{R").

Proof: The exercise is wrong. There is a counter-example. Let f : R — R?

(cos(3Z= — L), 1 —sin(3Z — L)) ifx > 0

f _ 1+x 1+

X T : 27nx T :
(COS(% — 7),—1 + Sll’l(ﬁ — 7)) ifx <0

Remark: If we restrict n,m = 1, the conclusion holds. That is, Let /' : R - R be
continuous and 1-1. If 4 is open and disconnected, then so is f{4).

Proof: In order to show this, it suffices to show that f maps an open interval / to
another open interval. Since f'is continuous on /, and / is connected, f{/) is connected. It
implies that f{/) is an interval. Trivially, there is no point x in / such that f{x) equals the
endpoints of f{/). Hence, we know that f{/) is an open interval.

Supplement: Here are two exercises on Homeomorphism to make the reader get more
and feel something.

I.Letf: E < R - R. If {(x,f{x)) : x € E} is compact, then fis uniformly continuous
on E.

Proof: Let {(x,f(x)) : x € E} = S, and thus define g(x) = (/(x) = x,f(x)) : E - S.
Claim that g is continuous on E. Consider 4 : S - E by h(x,f(x)) = x. Trivially, A4 is 1-1,
continuous on a compact set S. So, its inverse function g is 1-1 and continuous on a
compact set E. The claim has proved.

Since g is continuous on £, we know that f'is continuous on a compact set £. Hence, f
is uniformly continuous on E.

Note: The question in Supplement 1, there has another proof by the method of
contradiction, and use the property of compactness. We omit it.

2.Letf: (0,1) » R. If {(x,f{x)) : x € (0,1)} is path-connected, then f'is continuous
on (0,1).

Proof: Let a € (0, 1), then there is a compact interval (a €)[a;,az] < (0,1). Claim

that the set
{(x,f(x)) : x € [ay,a2]} = S is compact.

Since S is path-connected, there is a continuous function g : [0,1] — S such that
2(0) = (a1,flay)) and g(1) = (az,f(az)). If we can show g([0,1]) = S, we have shown
that S is compact. Consider /# : S - R by h(x,f(x)) = x; h is clearly continuous on S. So,
the composite function 20 g : [0,1] - R is also continuous. Note that 4 o g(0) = a;, and
hog(l) = a,, and the range of / o g is connected. So, [a;,a>] < h(g([0,1])). Hence,
2([0,1]) = S. We have proved the claim and by Supplement 1, we know that fis
continuous at a. Since a is arbitrary, we know that f'is continuous on (0, 1).

Note: The question in Supplement 2, there has another proof directly by definition of
continuity. We omit the proof.

4.46 Let 4 = {(xy) :0<x<1,y=sinl/x}, B={(xy):y=0, —1<x <0},
and let S = 4 U B. Prove that S is connected but not arcwise conneceted. (See Fig. 4.5,



Section 4.18.)

Proof: Let f be a two valued function defined on S. Since 4, and B are connected in S,
then we have

fl4) = a, and f(B) = b, where {a,b} = {0,1}.
Given a sequence {x, (< 4) withx, - (0,0), then we have
a = limf(x,) = ](lnig)lxn) by continuity of / at 0
= f(0,0)
= b.
So, we have f'is a constant. That is, S is connected.
Assume that S is arcwise connected, then there exists a continuous function
g :[0,1] - Ssuch that g(0) = (0,0) and g(1) = (1,sin1). Given € = 1/2, there exists a
0 > 0 such that as [f| < J, we have

lg(®) —gO)[| = llg®| < 1/2.
Let N be a positive integer so that —— < &, thus let (53—,0) = p and (W,O) = q.
Define two subsets U and V as follows:

U= {(x,y) DX > #} Ng(g.rl)

={Gy x< 2L} nglla.p))

Then we have

(D). UUV =g(g,p]), 2). U=+ ¢,sincep € Uand V # ¢, since g € V,

(3). UNV = ¢ by the given set A, and (*)
Since {(x,y) : x > %} and {(x,y) : x < %} are open in R?, then U and V are open in
g([g,p]). So, we have

(4). Uis open in g([g,p]) and V is open in g([¢,p]).
From (1)-(4), we have g([¢,p]) is disconnected which is absurb since a connected subset
under a continuous function is connected. So, such g cannot exist. It means that S is not
arcwise connected.

Remark: This exercise gives us an example to say that connectedness does not imply
path-connectedness. And it is important example which is worth keeping in mind.

4.47 Let F = {F,F>,...} be a countable collection of connected compact sets in R”"
such that F;,; < Fy for each k > 1. Prove that the intersection N2, F is connected and
closed.

Proof: Since F; is compact for each k£ > 1, F is closed for each £ > 1. Hence,
N, Fr = F is closed. Note that by Theorem 3.39, we know that F' is compact. Assume
that £ is not connected. Then there are two subsets 4 and B with

lA+¢,B+¢.2.ANB=¢.3.AUB =F. 4. A,B are closed in F.

Note that 4, B are closed and disjoint in R”. By exercise 4.57, there exist U and V' which
are open and disjoint in R" such that 4 < U, and B < V. Claim that there exists /' such
that F, < U U V. Suppose NOT, then there exists x; € F, — (U U V.) Without loss of
generality, we may assume that x; ¢ Fy,;. So, we have a sequence {x;} < F; which
implies that there exists a convergent subsequence {x;, , say limy, o0 X5y = X. It is
clear that x € F for all £ since x is an accumulation point of each F. So, we have



xeF=Ng, Fr=AUB<S UUV

which implies that x is an interior point of U U V since U and V are open. So,

B(x;6) < UU V for some 0 > 0, which contradicts to the choice of x;. Hence, we have
proved that there exists F; such that Fy € UU V. Let C = UN Fy, and D = V' N Fy, then
we have

1.C+¢sinced < Uand 4 < Fy, and D + ¢ since B < Vand B < F}.
2.CND=UNnF)NINF)cUNV=4¢.
3.CUD=UNF)UWVNFy) = Fy.

4. Cis open in F; and D is open in F; by C, D are open in R".

Hence, we have Fy is disconnected which is absurb. So, we know that F = N2, Fy is
connected.

4.48 Let Sbe an open connected set in R”. Let T be a component of R” — S. Prove
that R” — T is connected.

Proof: If S is empty, there is nothing to proved. Hence, we assume that S is nonempty.

Write R" — § = Uyerr—s U(x), where U(x) is a component of R” — §. So, we have
R" = SU (Usern—s U(x)).
Say T'= U(p), for some p. Then
R"—T = SU (Usepr_s-r U(x)).

Claim that c/(S) N U(x) # ¢ for all x € R" — § — T. If we can show the claim, given
a,b € R" — T, and a two valued function on R” — T. Note that c/(S) is also connected. We
consider three cases. (1) a € S, b € U(x) for some x. (2) a,b € S. (3) a € U(x),
b e UX).

For case (1), let ¢ € cl(S) N U(x), then there are {s,} < Sand {u,} < U(x) with
s, - cand u, — ¢, then we have

fa) = limfisn) = f(limsn) = fe) = f(limun) = limfun) = fib)
which implies that f{a) = f(b).

For case (2), it is clear fla) = f(b) since S itself is connected.
For case (3), we choose s € S, and thus use case (1), we know that

fa) = fs) = f(b).
By case (1)-(3), we have f'is constant on R” — 7. That is, R” — T is connected.
It remains to show the claim. To show c/(S) N U(x) # ¢ forallx € R" - S—T, i.e., to
show that forallx e R" - S-T,
c(S)NUK) = (SUS) N Ux)
=S"NUKx)

*+ .
Suppose NOT, i.e., for some x, S’ N U(x) = ¢ which implies that U(x) < R" — cl(S)
which is open. So, there is a component V" of R” — cl(S) contains U(x), where V is open by
Theorem 4.44. However, R" — cl(S) < R" — S, so we have V is contained in U(x).
Therefore, we have U(x) = V. Note that U(x) < R" — S, and R" — S is closed. So,
cl(U(x)) < R" —§. By definition of component, we have c/(U(x)) = U(x), which is
closed. So, we have proved that U(x) = V is open and closed. It implies that U(x) = R" or
¢ which is absurb. Hence, the claim has proved.

4.49 Let (S,d) be a connected metric space which is not bounded. Prove that for every



a in S and every r > 0, the set {x : d(x,a) = r} is nonempty.
Proof: Assume that {x : d(x,a) = r} is empty. Denote two sets {x : d(x,a) < r} by 4
and {x : d(x,a) > r} by B. Then we have
1.4 # ¢ sincea € A and B # ¢ since S is unbounded,
2.ANB = ¢,
3.AUB = §,
4. A = B(a;r) is open in S,
and consider B as follows. Since {x : d(x,a) < r}isclosedin S, B =S —<{x : d(x,a) < r}
is open in S. So, we know that S is disconnected which is absurb. Hence, we know that the
set {x : d(x,a) = r} is nonempty.
Supplement on a connected metric space

Definition Two subsets 4 and B of a metric space X are said to be separated if both
ANcl(B) =¢andcl(4) N B = ¢.

A set E € Xis said to be connected if £ is not a union of two nonempty separated
sets.

We now prove the definition of connected metric space is equivalent to this definiton
as follows.

Theorem A set £ in a metric space X is connected if, and only if £ is not the union of
two nonempty disjoint subsets, each of which is open in E.

Proof: (=) Suppose that £ is the union of two nonempty disjoint subsets, each
of which is open in E, denote two sets, U and V. Claim that

UNncl(V) =cl(U)ynV = ¢.
Suppose NOT, i.e., x € UN cl(V). That is, there is a 6 > 0 such that
Bx(x,0) NE = Bp(x,0) < Uand Bx(x,0) NV + ¢
which implies that
Bx(x,0) NV = Bx(x,0) N (VNE)
= Bx(x,0)NE)NV
cunvbv=4¢,

a contradiction. So, we have U N cl(V) = ¢. Similarly for c/(U) NV = ¢. So, X is
disconnected. That is, we have shown that if a set £ in a metric space X is
connected, then £ is not the union of two nonempty disjoint subsets, each of which
is open in E.

(<) Suppose that E is disconnected, then £ is a union of two nonempty
separated sets, denoted £ = 4 U B, where 4 N cl(B) = cl/(4) N B = ¢. Claim that 4
and B are open in E. Suppose NOT, it means that there is a point x(€¢ 4) which is
not an interior point of 4. So, for any ball Bg(x,r), there is a correspounding
x, € B, where x, € Bg(x,r). It implies that x € ¢/(B) which is absurb with
ANcl(B) = ¢. So, we proved that 4 is open in E. Similarly, B is open in E. Hence,
we have proved that if £ is not the union of two nonempty disjoint subsets, each of
which is open in E, then E in a metric space X is connected.

Exercise Let A and B be connected sets in a metric space with 4 — B not connected and
suppose 4 — B = C; U C, where c/(C;) N C, = Cy Ncl(Cy) = ¢. Show that
B U C is connected.



Proof: Assume that B U C is disconnected, and thus we will prove that C; is
disconnected. Consider, by c/(C;) N C, = C; N cl(Cy) = ¢,

CiNncC;uAnNB)]=CiNncl(ANB) (€ CiNcl(B))
and
cd(C)N[CUUANB)] =c(Ci)NANB) (€ cl(Cy)NB)

we know that at least one of (*) and (**) is nonempty by the hypothesis A4 is
connected. In addition, by (*) and (**), we know that at leaset one of

CiNcl(B)
and
c(Cy)NB

is nonempty. So, we know that C; is disconnected by the hypothesis B is connected,
and the concept of two valued function.
From above sayings and hypothesis, we now have

1. B is connected.
2. C; is disconnected.
3. BU C; is disconnected.

Let D be a component of B U C; so that B < D; we have, let
(BUC))-D =E(< (),

DNcl(E) =cl(D)NE=¢
which implies that
c(EYN(A—-E)=¢,andcl(A-E)NE = ¢.
So, we have prove that 4 is disconnected wich is absurb. Hence, we know that
B U C; is connected.

Remark We prove that c/(4 —E)NE = cl(E) N (4 —E) = ¢ as follows.
Proof: Since
DNclE) = ¢,
we obtain that
c(E)yN(A-E)
=c(E)YN[(DUC)UANB)]
cl(E)N[(DUC,y)UB]
c(EyYN(DUC,)since B< D
cl(E)YNCysince DN CI(E) = ¢
cl(C1) N Cy since E < Cy
.

In

N

And since
c(D)NE = ¢,
we obtain that
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cdA-E)NE
= c[(DUC,)UMNB)INE
c[(DUC)UBINE
cl(DUCy)NEsince BS D
cl(C)NEsincecl(D)NE = ¢
cl(Cy) N Cy since E < Cy
= ¢

N

N

Exercise Prove that every connected metric space with at least two points is uncountable.

Proof: Let X be a connected metric space with two points a and b, where
a + b. Defineaset4, = {x : d(x,a) > r}yand B, = {x : d(x,a) < r}. Itis clear
that both of sets are open and disjoint. Assume X is countable. Let
re @, @ :|, it guarantee that both of sets are non-empty. Since

[@, @ ] is uncountable, we know that there is a 6 > 0 such that

As U Bs = X. It implies that X is disconnected. So, we know that such X is
countable.

Uniform continuity

4.50 Prove that a function which is uniformly continuous on § is also continuous on S.

Proof: Let f be uniformly continuous on S, then given ¢ > 0, there exists a0 > 0 such

that as d(x,y) < 0, x and y in S, then we have

d(fx),f(y)) < .

Fix y, called a. Then given ¢ > 0, there exists a 6 > 0 such that as d(x,a) < J, x in S,
then we have

d(f(x),fla)) < e.

That is, f'is continuous at a. Since a is arbitrary, we know that f'is continuous on S.
451 If f{x) = x? for x in R, prove that f'is not uniformly continuous on R.

Proof: Assume that f'is uniformly continuous on R, then given ¢ = 1, there exists a
0 > 0 such that as [x — y| < 6, we have

[fx) =f)] < 1.

Choosex = y+ £, (= |x —y| < ), then we have
5 2
) /)l = [ov+ () ‘<1.
When we choose y = +, then
3V - ol
‘1+<2> —1+<2)<1

which is absurb. Hence, we know that f'is not uniformly continuous on R.

Remark: There are some similar questions written below.

1. Here is a useful lemma to make sure that a function is uniformly continuous on
(a,b), but we need its differentiability.

(Lemma) Let f : (a,b) < R — R be differentiable and |[f'(x)| < M for all x € (a,b).
Then fis uniformly continuous on (a,b), where a, b may be too.



Proof: By Mean Value Theorem, we have
) /)| = If @) — v, where z € (x,y) or (y,x)
< M|x — y| by hypothesis.
Then given ¢ > 0, there is a 0 = &/M such that as |x —y| < 0, x,y € (a,b), we have

[fx) = /)| < & by (*).

Hence, we know that f'is uniformly continuous on (a, b).

Note: A standard example is written in Remark 2. But in Remark 2, we still use
definition of uniform continuity to practice what it says.

2. sinx is uniformly continuous on R.

Proof: Given ¢ > 0, we want to find a 6 > 0 such that as |x — y| < 6, we have
|sinx — siny| < e.
Since sinx — siny = 2cos(5>) sin(5>), [sinx| < |x|, and [cosx| < 1, we have
sinx — siny| < |x — y|
So, if we choose 0 = ¢, then as |[x —y| < 6, it implies that
|sinx —siny| < €.
That is, sinx is uniformly continuous on R.

Note: [sinx —siny| < |x — y| for all x,y € R, can be proved by Mean Value Theorem

as follows.
proof: By Mean Value Theorem, sinx — siny = (sinz)'(x — y); it implies that
|sinx — siny| < |x —y|.

3. sin(x?) is NOT uniformly continuous on R.

Proof: Assume that sin(x?) is uniformly continuous on R. Then given ¢ = 1, there is a

0 > 0 such that as [x —y| < 6, we have
sin(x?) — sin(y?)| < 1.

Consider

nﬂ+%—m= 2 < —L _(>0),

Inm + % + J/nr 4 /nm

and thus choose N = |: L :| + 1(> I ) which implies
(45) (49)
Nn—i—% —JNr < 6.
So, choose x = [N + 4 and y = J/Nr, then by (*), we have
_ _ T _ ~|ginZ | =
[flx) —f»)] |sm(N7r+ 2) sm(Nn)| | sin % | 1 <1

which is absurb. So, sin(x?) is not uniformly continuous on R.

4. Jx is uniformly continuous on [0, ).

Proof: Since |ﬁ - | < Jlx—y| forall x,y € [0,), then given ¢ > 0, there exists

ad = & such that as [x — y| < 0, x,y € [0,0), we have

|Vx = | <fx-y <V ==

So, we know that ,/x is uniformly continuous on [0, o).



Note: We have the following interesting results:. Prove that, forx > 0, y > 0,

k—yPPif0<p <1,
P —yP| < .
phx—=y|xP Tt +yr1)if1 < p < 0.

Proof: (As 0 < p < 1) Without loss of generality, let x > y, consider
fx) = (x—y)? —xP +yP, then

fx) = p[(x—y)"’f1 —xl’*lj > 0, note thatp — 1 < 0.
So, we have f'is an increasing function defined on [0, o) for all given y > 0. Hence, we
have f(x) > f{0) = 0. So,
x -y < (x—y)ifx>y>0
which implies that
e =yl < =yl
forx >0,y >0.
Ps: The inequality, we can prove the case p = 1/2 directly. Thus the inequality is not
surprising for us.
(As 1 < p < o) Without loss of generality, let x > y, consider
xP —yP = (pzP1)(x — y), where z € (y,x), by Mean Value Theorem.
< px?~'(x — y), note thatp — 1 > 0,
< pOert +yP ) (x - y)
which implies
P = yP| < ple = y|Gert + )
forx >0,y >0.
5. In general, we have
. is uniformly continuous on [0, ), if » € [0,1],
! is NOT uniformly continuous on [0,), if r > 1,
and
o is uniformly continuous on [0,), if » € [0,1],
sm') = is NOT uniformly continuous on [0,), if 7 > 1.
Proof: (x) As r = 0, it means that x” is a constant function. So, it is obviuos. As

r € (0,1], then given ¢ > 0, thereisad = € > 0 such thatas |x — y| < 8, x,y € [0,),
we have

Ix" —y"] < |x —y|” by note in the exercise
<o
= &.
So, x” is uniformly continuous on [0,), if » € [0,1].
As r > 1, assume that x” is uniformly continuous on [0, ), then given & = 1 > 0,
there exists a 6 > 0 such that as |x — y| < 6, x,y € [0,0), we have

"=y < 1.
By Mean Value Theorem, we have (letx = y +6/2, y > 0)



X' =yt =z (x —y)
> ry1(512).
So, if we choose y > (& ﬁ, then we have
x'—yr>1
which is absurb with (*). Hence, x" is not uniformly continuous on [0, ).

Ps: The reader should try to realize why x” is not uniformly continuous on [0, ), for
r > 1. The ruin of non-uniform continuity comes from that x is large enough. At the same
time, compare it with theorem that a continuous function defined on a compact set K is
uniflormly continuous on K.

(sinx”) As r = 0, it means that x” is a constant function. So, it is obviuos Asr e (0,1],
given ¢ > 0, thereisa d = ¢ > 0 such that as |x — y| < 8, x,y € [0,0), we have

|smx’—s1ny’|=‘2cos(x ery )sm( )V )‘

< =y

< |x — y|" by the note in the Remark 4.
<o
= €.
So, sinx" is uniformly continuous on [0, ), if » € [0,1].
As r > 1, assume that sinx” is uniformly continuous on [0,), then given ¢ = 1, there
isad > Osuch thatas |x —y| <, x,y € [0,00), we have

|sinx” — siny”| < 1.
: 1/ .
Consider a sequence {(mr +7) "~ (nm) ULt s easy to show that the sequence tends to

0 asn - o. So, there exists a positive integer N such that [x —y| < §, x = (nm + %)W
y = (n)'". Then
sinx” —siny” = 1
which contradicts (**). So, we know that sinx” is not uniformly continuous on [0, ).
Ps: For {(mr + %)m - (mr)l/r = x, - 0asn - 0, here is a short proof by using
L-Hospital Rule.
Proof: Write

1/r
Xp = (nn + ”) — ()"

(mr)l/r|:(1 + 5)1/} - 1:|

[(1+§)”"—1}

(nﬂ_)fl/r

and thus consider the following limit



(1+Lx)1/r_1
O

im
X—00 (xn_ ) -1/r
, -
= lim %x%‘l (1 - 21_x> by L-Hospital Rule.

= 0.

Hence x, - Oasn — .
6. Here is a useful criterion for a function which is NOT uniformly continuous defined
a subset 4 in a metric space. We say a function f'is not uniformly continuous on a subset 4

in a metric space if, and only if, there exists &9 > 0, and two sequences {x,} and {y,}
such that as

Li_l:gxn —Vn = 0
which implies that
fxn) —frn)| = &o for n is large enough.

The criterion is directly from the definition on uniform continuity. So, we omit the
proof.

4.52 Assume that /1s uniformly continuous on a bounded set S in R". Prove that /'
must be bounded on S.

Proof: Since f'is uniformly continuous on a bounded set S in R”, given € = 1, then
there exists a 0 > 0 such that as ||[x — y|| < 8, x,y € S, we have

d(f(x),f(y)) < 1.

Consider the closure of S, cl(S) is closed and bounded. Hence cI(S) is compact. Then for
any open covering of c/(S), there is a finite subcover. That is,

cl(S) S Usears) B(x;6/2),
= cl(S) < UK B(x;6/2), where x; € cI(S),
= S € UK B(xy;6/2), where x; € cl(S).

Note that if B(x;6/2) NS = ¢ for some k, then we remove this ball. So, we choose
Vi € B(x;;0/2) NS, 1 < k < n and thus we have

B(x;6/2) < B(yg;6)for 1 < k <n,
since let z € B(xy;6/2),
lz=yell < llz=xell + llxx = yell < 8/2+68/2 = 6.
Hence, we have
S < UK B(y; 8), where y, € S.
Given x € S, then there exists B(y;0) for some k such that x € B(y;9). So,
d(fix).flxr)) <1 = fix) € B(fy); 1)
Note that U= B(f(y,); 1) is bounded since every B(f(y); 1) is bounded. So, let B be a

bounded ball so that U= B(f(y);1) < B. Hence, we have every x € S, f(x) € B. That is,
fis bounded.

Remark: If we know that the codomain is complete, then we can reduce the above
proof. See Exercise 4.55.

4.53 Let fbe a function defined on a set S in R” and assume that f{S) < R™. Let g be
defined on f{S) with value in R¥, and let & denote the composite function defined by



h(x) = g[f(x)] ifx € S. If fis uniformly continuous on § and if g is uniformly continuous
on f{S), show that % is uniformly continuous on S.

Proof: Given ¢ > 0, we want to find a § > O such that as [|[x —y| . < 3, x,y € S, we
have

[2() = RO I = 1g(Tx)) — gl < e.
For the same ¢, since g is uniformly continuous on f{S), then there exists a 6’ > 0 such
that as [|f(x) —f(¥) |l p» < &', we have

Ig(x)) = gD < &.

For this ¢', since fis uniformly continuous on S, then there exists a § > 0 such that as
x =yl gn < 8, X,y € S, we have

Hf(x) _f(y) ||Rm <o
So, given &€ > 0, thereis a 6 > 0 such that as |[[x — y|| .. < 9, x,y € S, we have
[AGx) =h() | < e

That is, 4 is uniformly continuous on S.

Remark: It should be noted that (Assume that all functions written are continuous)
(1) (uniform continuity) ° (uniform continuity) = uniform continuity.

: . : o NOT unif tinuity,
(2) (unlform cont1nu1ty> ° (NOT uniform cont1nu1ty> = @) HiHorm CONHRU, of

(b) uniform continuity.

: o : o NOT unif tinuity,
3) <NOT uniform cont1nu1ty> ° (umform cont1nu1ty> = @) HIHoTm CONHRUY, of

(b) uniform continuity.

: o . o NOT unif tinuity,
4) <NOT uniform cont1nu1ty> ° (NOT uniform cont1nu1ty> = @) HiHorn COntRuy, of

(b) uniform continuity.

For (1), it is from the exercise.

For (2), (a) let f{x) = x, and g(x) = x2, x € R = flg(x)) = f(x?) = x2.
(b) let flx) = J/x, and g(x) = x2, x € [0,0) = flg(x)) = fx?) = x.
For (3), (a) let f{x) = x2, and g(x) = x, x € R = flg(x)) = f(x) = x>~
(b) let flx) = x?, and g(x) = J/x, x € [0,%0) = flg(x)) = AAJx) = x.
For (4), (a) let f{x) = x2, and g(x) = x3, x € R = flg(x)) = flix®) = xC.
(b) let flx) = 1/x, and g(x) = —=.x € (0,1) = fig(x)) :/(%) s

Note. In (4), we have x” is not uniformly continuous on (0, 1), for » < 0. Here is a
proof.

Proof: Let » < 0, and assume that x” is not uniformly continuous on (0, 1). Given
¢ =1, thereisa é > 0 such that as [x —y| < 6, we have
"=y < 1. *
Letx, = 2/n, and y, = 1/n. Then x, — y, = 1/n. Choose n large enough so that 1/n < §.
So, we have



=) -G

r
— (%) |27 = 1| - o, asn — cosince r < 0,

which is absurb with (*). Hence, we know that x” is not uniformly continuous on (0, 1), for
r<0.

Ps: The reader should try to realize why x” is not uniformly continuous on (0, 1), for
r < 0. The ruin of non-uniform continuity comes from that x is small enough.

4.54 Assume f: S - Tisuniformly continuous on S, where S and 7" are metric
spaces. If {x,} is any Cauchy sequence in S, prove that {f{x,)} is a Cauchy sequence in 7.
(Compare with Exercise 4.33.)

Proof: Given ¢ > 0, we want to find a positive integer N such that as n,m > N, we
have

d(f(xn),flxm)) < €.

For the same ¢, since fis uniformly continuous on S, then there is a 6 > 0 such that as
d(x,y) < 0, x,y € S, we have

d(f(x),f(y)) < e.

For this §, since {x,} is a Cauchy sequence in S, then there is a positive integer N such
that as n,m > N, we have

d(xn,xm) < 0.
Hence, given € > 0, there is a postive integer N such that as n,m > N, we have

d(f(xn),f(xm)) < €.
That is, {f{x,)} is a Cauchy sequence in T.

Remark: The reader should compare with Exercise 4.33 and Exercise 4.55.

4.55 Let f S = Tbe a function from a metric space S to another metric space 7.
Assume that f'is uniformly continuous on a subset 4 of S and let 7 is complete. Prove that
there is a unique extension of fto c/(4) which is uniformly continuous on c/(4).

Proof: Since cl(A4) = AU A/, it suffices to consider the case x € 4" — A. Since
x € A' — A, then there is a sequence {x,} < 4 with x, - x. Note that this sequence is a
Cauchy sequence, so we have by Exercise 4.54, {f(x,)} is a Cauchy sequence in 7 since f’
is uniformly on 4. In addition, since 7 is complete, we know that {f{x,)} is a convergent
sequence, say its limit L. Note that if there is another sequence {x,} < 4 with X, - x,
then {f(X,)} is also a convergent sequence, say its limit L'. Note that {x,} U {X,} is still a
Cauchy sequence. So, we have

d(L,L") < d(L,f(xn)) +d(f(xn),/(Xn)) + d(f(Xn),L') > 0asn - oo.
So, L = L'. That is, it is well-defined for g : cl(4) — T by the following
fix)ifx € 4,
g(x) = . . ,
lim fix,) if x € A" — 4, where x, - x.

So, the function g is a extension of f'to c/(A4).
Claim that this g is uniformly continuous on c/(4). That is, given € > 0, we want to
find a 6 > 0 such that as d(x,y) < 0, x,y € cl(4), we have

d(g(x),g(v)) < &.

Since f'is uniformly continuous on 4, for & = ¢/3, there isa é' > 0 such that as



d(x,y) < 8, x,y € A, we have
d(fix).f(y)) < €.
Letx,y € cl(4), and thus we have {x,} < 4 withx, - x, and {y,} < 4 withy, - y.
Choose 6 = 6'/3, then we have
d(x,,x) < 6'/3 and d(y,,y) < 6'/3 asn > N
So, as d(x,y) < 6 = 6'/3, we have (n > N))
d(xn,yn) < dxn,x) +dx,y) +dy,yn) < 8'/3+6'13+06'/3 =46".
Hence, we have as d(x,y) < 9, (n > Ny)
d(g(x),g(n)) < d(g(x),/(xn)) + d(fxn),fyn)) + d(fyn)./(¥))
< d(g(x).flxn)) + & +d(fyn),g())
And since limy« f(x,) = g(x), and lim,-« f(y») = g(y), we can choose N > N such that
d(g(x),f(xn)) < & and

d(flvn),g()) < €.
So, as d(x,y) < 9, (n > N) we have

d(g(x),g(y)) < 3¢’ = g by (*).
That is, g is uniformly on cl(A4).
It remains to show that g is a unique extension of f'to c/(4) which is uniformly
continuous on c/(4). If there is another extension / of f'to c/(4) which is uniformly
continuous on c¢/(4), then givenx € A" — A, we have, by continuity, (Say x, - x)

hx) = h(limx, ) = limh(x,) = limfx,) = limg(xa) = g(limx, ) = g(x)
which implies that 2(x) = g(x) for allx € A’ — A. Hence, we have h(x) = g(x) for all
x € cl(4). That is, g is a unique extension of f'to c/(4) which is uniformly continuous on
cl(4).

Remark: 1. We do not require that 4 is bounded, in fact, 4 is any non-empty set in a
metric space.

2. The exercise is a criterion for us to check that a given function is NOT uniformly
continuous. For example, let /' : (0,1) - R by f{x) = 1/x. Since f{0 +) does not exist, we
know that fis not uniformly continuous. The reader should feel that a uniformly continuous
is sometimes regarded as a smooth function. So, it is not surprising for us to know the
exercise. Similarly to check f{x) = x2,x € R, and so on.

3. Here is an exercise to make us know that a uniformly continuous is a smooth
function. Let /' : R — R be uniformly continuous, then there exist a, f > 0 such that

[fx)] < alx| + B.
Proof: Since f'is uniformly continuous on R, given € = 1, there is a 0 > 0 such that as
Ix —y| < 6, we have

[flx) = /)| < L.
Given any x € R, then there is the positive integer N such that N6 > |x| > (N —1)0. If
x > 0, we consider

vo=0,y1 =062, y,=0,....yanv-1 = N6 — g,yzzv = X.

Then we have



[fx) - A0)| < Zlf(yzk) — Y2+ [fae1) =)
)

< 2N by (*)
which implies that

)] < 28 + [R0)|
sz(uig)+mmmmwupr—n5

< Zfx| + 2+ [f0))).
Similarly for x < 0. So, we have proved that |f{x)| < a|x| + B for all x.

4.56 1n a metric space (S,d), let 4 be a nonempty subset of S. Define a function
f4 1 S > R by the equation
fa(x) = inf{d(x,y) : y € A}
for each x in S. The number f;(x) is called the distance from x to A4.

(a) Prove that f; is uniformly continuous on S.
(b) Prove that cl(4) = {x :x e Sand fy(x) = O}.

Proof: (a) Given ¢ > 0, we want to find a 6 > 0 such that as d(x;,x;) < 9, x1,x2 € S,
we have

[fa(x1) = falx2)| < &
Consider (x1,x3,y € 5)
d(x1,y) < d(x1,x2) +d(x2,y), and d(x2,y) < d(x1,x2) +d(x1,)
So,
inf{d(x,y) : y € 4y < d(x1,x;) + inf{d(x,,y) : y € A} and
inf{d(x,,y) : v € A} < d(x1,x2) +inf{d(x;,y) : y € 4}
which implies that
Ja(x1) = fa(x2) < d(x1,x2) and f4(x2) — fa(x1) < d(x1,x2)
which implies that
[faGx1) = fa(x2)] < d(x1,x2).
Hence, if we choose 6 = ¢, then we have as d(x;,x,) < 0, x1,x, € S, we have
o) = fa(x)] < &
That is, f4 1s uniformly continuous on S.
(b) Define K = {x :x € Sand fy(x) = 0}, we want to show c/(4) = K. We prove it

by two steps.
(S) Letx € cl(A4), then B(x;r) N A + ¢ for all » > 0. Choose y; € B(x; 1/k) N A4, then
we have

inf{d(x,y) : yve Ay <d(x,y;) > 0ask - .
So, we have f;(x) = inf{d(x,y) : y € A} = 0. So, cl(4) < K.

(2) Letx € K, then f;(x) = inf{d(x,y) : y € A} = 0. That is, given any ¢ > 0, there
is an element y; € A such that d(x,y:) < €. Thatis, y, € B(x;€) N A. So, x is an adherent
point of 4. That is, x € cl(4). So, we have K < cl(4).

From above saying, we know that cl(4) = {x :x e Sand f4(x) = O}.

Remark: 1. The function f; often appears in Analysis, so it is worth keeping it in mind.



In addition, part (b) comes from intuition. The reader may think it twice about distance 0.

2. Here is a good exercise to pratice. The statement is that suppose that K and F are
disjoint subsets in a metric space X, K is compact, F'is closed. Prove that there exists a
0 > O such that d(p,q) > 6 if p € K, g € F. Show that the conclusion is may fail for two
disjoint closed sets if neither is compact.

Proof: Suppose NOT, i.e., for any 6 > 0, there exist ps € K, and g5 € F such that
d(ps,qs) < 6. Let 6 = 1/n, then there exist two sequence {p,} < K, and {¢,} < F such
that d(pn,q.) < 1/n. Note that {p,} < K, and K is compact, then there exists a
subsequence {py, } with lim,,.p,, = p € K. Hence, we consider d(ps,,qn,) < - to geta
contradiction. Since

d(pnkﬂp) + d(Pa‘]nk) S d(pnkgan) S l’lLk’

then let n; - oo, we have lim, . ¢g,, = p. That is, p is an accumulation point of ' which
implies that p € F. So, we get a contradiction since K N F' = ¢. That is, there exists a
0 > Osuchthatd(p,q) > d6ifp € K, q € F.

We give an example to show that the conclusion does not hold. Let
K={(,0) : x € Ry and F = {(x,1/x) : x > 0}, then K and F are closd. It is clear that
such 6 cannot be found.

Note: Two disjoint closed sets may has the distance 0, however; if one of closed sets is
compact, then we have a distance 6 > 0. The reader can think of them in R”, and note that
a bounded and closed subsets in R” is compact. It is why the example is given.

4.57 n a metric space (S,d), let A and B be disjoint closed subsets of S. Prove that
there exists disjoint open subsets U and V" of S such that 4 € Uand B < V. Hint. Let
g(x) = f4(x) — f3(x), in the notation of Exercise 4.56, and consider g~!'(—o0,0) and
g1(0,+00).

Proof: Let g(x) = f4(x) — f5(x), then by Exercixe 4.56, we have g(x) is uniformly
continuous on S. So, g(x) is continuous on S. Consider g=!' (-, 0) and g~!(0,+), and
note that 4, B are disjoint and closed, then we have by part (b) in Exercise 4.56,

gx) < 0ifx € 4 and
gx) > 0ifx € B.
So, we have 4 € g71(-0,0) := U, and B < g7'(0,+x) = V.
Discontinuities

4.58 Locate and classify the discontinuities of the functions f'defined on R! by the
following equations:

(a) flx) = sinx/x ifx = 0, f{0) = 0.

Solution: fis continuous on R — {0}, and since lim,.o 21 = 1, we know that fhas a
removable discontinuity at 0.

(b) f(x) = e ifx + 0, f{0) = 0.

Solution: 1'is continuous on R — {0}, and since lim,_¢+ ¢'* = oo and lim,_o- e'* = 0,
we know that f'has an irremovable discontinuity at 0.

() flx) = e  +sinl/xifx = 0, f{0) = 0.

Solution: f'is continuous on R — {0}, and since the limit f{x) does not exist as x - 0,
we know that f'has a irremovable discontinuity at 0.




(d) fix) = 1/(1 —e'™) if x # 0, f0) = 0.

Solution: f'is continuous on R — {0}, and since lim,_¢+ e¢!* = o0 and lim,_¢- e'* = 0,
we know that f'has an irremovabel discontinuity at 0. In addition, {0 +) = 0 and
f(0—) = 1, we know that f has the lefthand jump at 0, f{0) — /{0 —) = —1, and f'is

continuous from the right at 0.
4.59 Locate the points in R? at which each of the functions in Exercise 4.11 is not
continuous.

(a) By Exercise 4.11, we know that f{x,y) is discontinuous at (0,0), where

xr—y* .
flx,y) = Tyt if (x,y) = (0,0), and £{0,0) = 0.
Let g(x,y) = x2 —y?, and A(x,y) = x? + y? both defined on R? — {(0,0)}, we know that g
and % are continuous on R? — {(0,0)}. Note that # + 0 on R> — {(0,0)}. Hence, f = g/h is
continuous on R? — {(0,0)}.

(b) By Exercise 4.11, we know that f{x,y) is discontinuous at (0,0), where

5 if (x,y) # (0,0), and {0,0) = 0.
+(x-)
Let g(x,y) = (xp)%, and h(x,y) = (xv)* + (x — »)? both defined on R2 — {(0,0)}, we know
that g and 4 are continuous on R? — {(0,0)}. Note that # + 0 on R? — {(0,0)}. Hence,

f = g/h is continuous on R? — {(0,0)}.

(c) By Exercise 4.11, we know that f{x,y) is continuous at (0,0), where
fx,y) = Lsin(xy) if x # 0, and f0,y) = y,
since limy ,).(0,0)f(x,y) = 0 = f{0,0). Let g(x,y) = 1/x and h(x,y) = sin(xy) both defined

on R? — {(0,0)}, we know that g and % are continuous on R — {(0,0)}. Note that 2z = 0
on R? — {(0,0)}. Hence, ' = g/h is continuous on R* — {(0,0)}. Hence, fis continuous on
R2.

(d) By Exercise 4.11, we know that f{x,y) is continuous at (0,0), where
fy) (x +y)sin(l/x)sin(1/y) ifx # O and y # 0,
X,y) =
4 0 ifx=0ory=0.

since lim, ,).(0,0)/(x,y) = 0 = f(0,0). It is the same method as in Exercise 4.11, we know

that f'is discontinuous at (x,0) for x # 0 and f'is discontinuous at (0,y) for y # 0. And it is
clearly that f'is continuous at (x,)), where x # 0 and y # 0.

(e) By Exercise 4.11, Since

sinx—siny -
B fanz—iany ’ if tanx # tany,
f(‘xby) - . )
cos’x  iftanx = tany.

we rewrite
COS (%) COSXx COSy

fxy) = cos(5-)

cos’x  if tanx = tany.

if tanx # tany

We consider (x,y) € (—n/2,7/2) x (—n/2,7/2), others are similar. Consider two cases (1)
x =y, and (2) x # y, we have
(1) (x = y) Since lim, ). f(x,y) = cos’a = fla,a). Hence, we know that f'is



continuous at (a,a).
(2) (x # ) Since x # y, it implies that tanx # tany. Note that the denominator is not 0
since (x,y) € (—n/2,7n/2) x (—r/2,7/2). So, we know that fis continuous at (a,b), a + b.
So, we know that f'is continuous on (-n/2,7/2) x (—r/2,7/2).

Monotonic functions

4.60 Let f'be defined in the open interval (a,b) and assume that for each interior point x
of (a,b) there exists a 1 —ball B(x) in which fis increasing. Prove that f'is an increasing
function throughout (a, b).

Proof: Suppose NOT, i.e., there exist p,q with p < ¢ such that f{p) > f(¢q). Consider
[p,q](S (a,b)), and since for each interior point x of (a,b) there exists a 1 —ball B(x) in
which fis increasing. Then [p,q] S Usep, g B(x;0x), (The choice of balls comes from the

hypothesis). It implies that [p,q] < U}, B(xs;6.) = B,. Note thatif B; £ B;, we remove
such B; and make one left. Without loss of generality, we assume that x; <..< x,.
Ap) < flx1) <...< flxn) < flg)

which is absurb. So, we know that fis an increasing function throughout (a,b).

4.61 Let f'be continuous on a compact interval [a, b] and assume that f'does not have a
loacal maximum or a local minimum at any interior point. (See the note following Exercise
4.25.) Prove that f must be monotonic on [a, b].

Proof: Since f'is continuous on [a,b], we have
Ir%ag)i]f(x) = f(p), where p € [a,b] and

n?irbl]f(x) = flq), where g € [a,b].

So, we have {p,q} = {a,b} by hypothesis that / does not have a local maximum or a local
minimum at any interior point. Without loss of generality, we assume that p = a, and
g = b. Claim that f'is decreasing on [a, b] as follows.

Suppose NOT, then there exist x,y € [a,b] with x < y such that f{x) < f{y). Consider
[x,y] and by hyothesis, we know that f];, ,; has the maximum at y, and f[(,,; has the
minimum at y. Then it implies that there exists B(y;0) N [x,y] such that fis constant on
B(y;0) N [x,y], which contradicts to the hypothesis. Hence, we have proved that f'is
decreasing on [a,b].

4.62 1t f'is one-to one and continuous on [a, b], prove that f must be strictly
monotonic on [a,b]. That is, prove that every topological mapping of [a,/] onto an
interval [c,d] must be strictly monotonic.

Proof: Since f'is continuous on [a,b], we have
rr%a)bc]f(x) = f(p), where p € [a,b] and
x€la,

II[liIl}]f(x) = flq), where g € [a,b].

Assume that p € (a,b), then there exists a 6 > 0 such that f{y) < f(p) for all
yve((p-90,p+09) < [a,b]. Choosey; € (x—0,x) and y, € (x,x + ), then we have by
1-1, f(y1) < fix) and f()») < flx). And thus choose 7 so that

f1) <r < flx) = flz1) = r, where z; € (y;,x) by Intermediate Value Theorem,
fOn) < r < flx) = flzo) = r, where z, € (x,),) by Intermediate Value Theorem,
which contradicts to 1-1. So, we know that p € {a,b}. Similarly, we have g € {a,b}.



Without loss of generality, we assume that p = a and g = b. Claim that fis strictly
decreasing on [a,b].

Suppose NOT, then there exist x,y € [a,b], with x < y such that f{x) < f(y). ("="
does not hold since f'is 1-1.) Consider [x,y] and by above method, we know that f]}, ,; has
the maximum at y, and f[[,,; has the minimum at y. Then it implies that there exists
B(y;0) N [x,y] such that f'is constant on B();0) N [x,y], which contradicts to 1-1. Hence,
for any x < y(e [a,b]), we have f{x) > f{y). ("=" does not hold since fis 1-1.) So, we
have proved that f'is strictly decreasing on [a, b].

Reamrk: 1. Here is another proof by Exercise 4.61. It suffices to show that 1-1 and
continuity imply that /' does not have a local maximum or a local minimum at any interior
point.

Proof: Suppose NOT, it means that f has a local extremum at some interior point x.
Without loss of generality, we assume that f has a local minimum at the interior point x.
Since x is an interior point of [a, b], then there exists an open interval
(x—0,x+0) < [a,b] such that f{y) > f(x) forall y € (x — 0,x + §). Note that fis 1-1, so
we have f(y) > f{x) forall y € (x —9,x + ) — {x}. Choose y; € (x — ) and
y2 € (x,x +0), then we have f(y;) > f(x) and f(y,) > f{x). And thus choose 7 so that

fy1) > r> flx) = f(lp) = r, where p € (y1,x) by Intermediate Value Theorem,

fO2) > r> flx) = flq) = r, where g € (x,y,) by Intermediate Value Theorem,
which contradicts to the hypothesis that fis 1-1. Hence, we have proved that 1-1 and
continuity imply that /'does not have a local maximum or a local minimum at any interior
point.

2. Under the assumption of continuity on a compact interval, one-to-one is
equivalent to being strictly monotonic.

Proof: By the exercise, we know that an one-to-one and continuous function defined
on a compact interval implies that a strictly monotonic function. So, it remains to show that
a strictly monotonic function implies that an one-to-one function. Without loss of
generality, let f'be increasing on [a,b], then as f{x) = f{y), we must have x = y since if
x <y, then f{x) < f{y) and if x > y, then f{x) > f(y). So, we have proved that a strictly
monotonic function implies that an one-to-one function. Hence, we get that under the
assumption of continuity on a compact interval, one-to-one is equivalent to being strictly
monotonic.

4.63 Let /fbe an increasing function defined on [a,b] and let x,..,x, be n points in
the interior such that a < x; < x; <...< x, < b.

(a) Show that -7 [flx; +) — flxy —)] < fib—) — fla+).

Proof: Let a = xo and b = x,,,1; since fis an increasing function defined on [a,b], we
know that both f{x; +) and f{x; —) exist for 1 < k < n. Assume that y; € (x4, x41), then

we have f(y;) > flix, +) and f{x;—1) > f(v«—1). Hence,
D [k +) = foee )1 < Do) —fier))
k=1 k=1

< fn) =fo)
<flb-)-fla+).

(b) Deduce from part (a) that the set of dicontinuities of fis countable.



Proof: Let D denote the set of dicontinuities of /. Consider
Dy = {x € [a,b] : flx+)—fx-) > &}, then D = U°_; D,. Note that #(D,,) < o, so
we have D is countable. That is, the set of dicontinuities of f'is countable.

(c) Prove that f'has points of continuity in every open subintervals of [a,b].

Proof: By (b), f'has points of continuity in every open subintervals of [a, ], since
every open subinterval is uncountable.

Remark: (1) Here is another proof about (b). Denote O = {xi,...,Xxs,... }, and let x be
a point at which f'is not continuous. Then we have f{x +) — flx —) > 0. (If x is the end
point, we consider f{x +) — f{x) > 0 or f{x) — f{x —) > 0) So, we have an open interval /
such that 7, N f([a,b]) = {f{x)}. The interval /, contains infinite many rational numbers,
we choose the smallest index, say m = m(x). Then the number of the set of discontinuities
of fon [a,b] is a subset of N. Hence, the number of the set of discontinuities of f'on [a,b]
is countable.

(2) There is a similar exercise; we write it as a reference. Let f be a real valued function
defined on [0, 1]. Suppose that there is a positive number M having the following
condition: for every choice of a finite number of points x,..,x, in [0, 1], we have
-M < 2; x; < M. Prove that S : {x € [0,1] : f{lx) # 0} is countable.

Proof: Consider S, = {x € [0,1] : [f{x)| = 1/n}, then it is clear that every S, is
countable. Since S = U;>, S, we know that S is countable.

4.64 Give an example of a function f, defined and strictly increasing on a set S in R,
such that /! is not continuous on £{S).

Solution: Let
xifx € [0,1),
Sx) = .
1ifx = 2.

Then it is clear that fis strictly increasing on [0, 1], so f'has the incerse function

gy xifx € [0,1),
S { 2ifx = 1.

which is not continuous on f{S) = [0,1].
Remark: Compare with Exercise 4.65.

4.65 Let f'be strictly increasing on a subset S of R. Assume that the image f{.S) has one
of the following properties: (a) f{S) is open; (b) fS) is connected; (c) f(S) is closed. Prove
that f must be continuous on S.

Proof: (a) Given a € §, then f(a) € f(S). Given ¢ > 0, we wan to find a 6 > 0 such
that asx € B(a;6) NS, we have |[f(x) — fla)| < €. Since f(S) is open, then there exists
B(fla),e') < f(S), where &' < &.

Claim that there exists a 6 > 0 such that f{B(a;6) N S) < B(f(a),&'). Choose
y1 = fla) —€'/2and y, = fla) + €'/2, then y; = f{x;) and y, = f(x;), we have
X1 < a < X, since fis strictly increasing on S. Hence, for x € (x;,x2) N S, we have
flx1) < flx) < flxy) since fis strictly increasing on S. So, f{x) € B(f{a),&’). Let
0 = min(a — x1,x, —a), then B(a;0) NS = (a—0,a+6) NS < (x1,x2) NS which implis
that f(B(a;6) N S) < B(fla),&'). (€ B(f(a),&))

Hence we have prove the claim, and the claim tells us that f'is continuous at a. Since a
is arbitrary, we know that f'is continuous on S.



(b) Note that since f{S) < R, and f{(S) is connected, we know that f{(.S) is an interval /.
Given a € S, then fla) € 1. We discuss 2 cases as follows. (1) f{a) is an interior point of /.
(2) fla) 1s the endpoint of /.

For case (1), it is similar to (a). We omit the proof.

For case (2), it is similar to (a). We omit the proof.

So, we have proved that f'is continuous on S.

(c) Given a € S, then fla) € f(S). Since f(S) is closed, we consider two cases. (1) f(a)
is an isolated point and (2) f{a) is an accumulation point.

For case (1), claim that a is an isolated point. Suppose NOT, there is a sequence
{x»} < Swithx, - a. Consider {x,}  , = {x : x» < a} U{x : x, > a}, and thus we
may assume that {x : x, < a} = {a,} is a infinite subset of {x,} . Since f'is
monotonic, we have lim,-«f(x,) = fla —). Since f{S) is closed, we have fa —) € f(S).
Therefore, there exists b € f(S) such that fla —) = f(b) < fla).

Iff(b) = fla), then b = a since fis strictly increasing. But is contradicts to that f{a) is
isolated. On the other hand, if f{b) < f(a), then b < a since fis strictly increasing. In
addition, fla,) < fla —) = f(b) implies that a, < b. But is contradicts to that a, - a.

Hence, we have proved that a is an isolated point. So, f'is sutomatically continuous at
a.

For case (2), suppose that f{a) is an accumulation point. Then B(f(a); &) N A(S) # ¢ and
B(f(a); €) has infinite many numbers of points in f{S). Choose y;, y» € B(f(a);&) NAS)
with y; < y,, then f{x;) = y1, and f{x,) = y,. And thus it is similar to (a), we omit the
proof.

So, we have proved that f'is continuous on S by (1) and (2).

Remark: In (b), when we say fis monotonic on a subset of R, its image is also in R.
Supplement.

It should be noted that the discontinuities of a monotonic function need not be isolated.
In fact, given any countable subset £ of (a,b), which may even be dense, we can
construct a function f, monotonic on (a,b), discontinuous at every point of £, and at
no other point of (a,b). To show this, let the points of £ be arranged in a sequence {x, },
n=1,2,...Let {c,} be a sequence of positive numbers such that ) _ ¢, converges. Define

fx) =D enla<x<b)
Xn<x

Note: The summation is to be understood as follows: Sum over those indices # for whcih
Xn» < x. If there are no points x, to the left of x, the sum is empty; following the usual
convention, we define it to be zero. Since absolute convergence, the order in which the
terms are arranged is immaterial.

Then f{x) is desired.

The proof that we omit; the reader should see the book, Principles of Mathematical
Analysis written by Walter Rudin, pp 97.

Metric space and fixed points

4.66 Let B(S) denote the set of all real-valued functions which are defined and
bounded on a nonempty set S. If f € B(S), let

Al = Sung(X)l-
The number ||f]| is called the " sup norm "of f.



(a) Provet that the formula d(f,g) = ||f— g|| defines a metric d on B(S).

Proof: We prove that d is a metric on B(S) as follows.
(D) Ifd(f,g) =0, ie., |f—gll = supses/fix) —g(x)| =0 > |fix) — g(x)| forallx € S.
So, we have f = gon S.
(2)Iff= gonS, then [f(x) —g(x)| = 0 forallx € S. Thatis, ||f—g| = 0 = d(f,g2).
(3) Given f,g € B(S), then
d(f.g) = |-zl

igglﬂx) —g(x)|

ilelglg(x) = fx)|

= llg -/l
= d(g./).
(4) Given f,g,h € B(S), then since

fx) = g(x)| < [ftx) = h(x)| + |h(x) — g(x)],
we have

)~ g1 < (suplft) = o)1) + (suplh(o) - g1 )

< lf=nl+lnr-gl
which implies that

If-gll = Suglf(X) —g()| < f Al +1A-gl.
So, we have prove that d is a metric on B(S).

(b) Prove that the metric space (B(S),d) is complete. Hint: If {f,} is a Cauchy

sequence in B(S), show that {f,(x)} is a Cauchy sequence of real numbers for each x in S.

Proof: Let {f,} be a Cauchy sequence on (B(S),d), That is, given € > 0, there is a
positive integer N such that as m,n > N, we have

d,g) = fo —full = leelsplﬁz(x) — fu@)] < &.

So, for every point x € S, the sequence {f,(x)}(S R) is a Cauchy sequence. Hence, the
sequence {f,(x)} is a convergent sequence, say its limit f{x). It is clear that the function
f(x) is well-defined. Let ¢ = 1 in (*), then there is a positive integer N such that as

m,n > N, we have

fr(x) —fu(x)| < 1, forallx € S.
Letm —» oo, and n = N, we have by (**)
[fv(x) —=flx)] < 1, forallx € §
which implies that
)| < 1+ |fv(x)], forallx € S.
Since |[fy(x)| € B(S), say its bound M, and thus we have
fx)| < 1+M, forallx € S

which implies that f{x) is bounded. That is, f{x) € (B(S),d). Hence, we have proved that
(B(S),d) is a complete metric space.

Remark: 1. We do not require that S is bounded.

2. The boundedness of a function f cannot be remove since sup norm of f'is finite.

3k



3. The sup norm of £, often appears and is important; the reader should keep it in mind.

And we will encounter it when we discuss on sequences of functions. Also, see Exercise
4.67.

4. Here is an important theorem, the reader can see the definition of uniform
convergence in the text book, page 221.

4.67 Refer to Exercise 4.66 and let C (S) denote the subset of B(S) consisting of all
funtions continuous and bounded on S, where now S is a metric space.

(a) Prove that C(S) is a closed subset of B(S).

Proof: Let f'be an adherent point of C(S), then B(f;r) N C(S) # ¢ for all » > 0. So,
there exists a sequence {f,(x)} such that f, > fasn - . So, given &' > 0, there is a
positive integer N such that as n > N, we have

Athif) = W =1 = suplfs) ~f0)] < &'
So, we have

fnvx) —flx)| < . forall x € S.
Given s € S, and note that fy(x) € C(S), so for this &', there exists a 6 > 0 such that as
x—s] <9, x,s € §, we have
[fiv(x) = fin(s)| < €.
We now prove that fis continuous at s as follows. Given ¢ > 0, and let ¢’ = &/3, then there
isa o > Osuch thatas [x —s| < J, x,s € S, we have

[fx) = fAs)| = [fx) =fv()] + [fv(x) = ()] + [fv(s) = fs)]
< &/3 + ¢€/3 + €/3 by (*) and (**)
= €.
Hence, we know that f'is continuous at s, and since s is arbitrary, we know that f'is
continuous on S.

(b) Prove that the metric subspace C(S) is complete.

Proof: By (a), we know that C(S) is complete since a closed subset of a complete
metric space is complete.

Remark: 1. In (b), we can see Exercise 4.9.

2. The reader should see the text book in Charpter 9, and note that Theorem 9.2 and
Theorem 9.3.

4.68 Refer to the proof of the fixed points theorem (Theorem 4.48) for notation.

(a) Prove that d(p,p,) < d(x,f(x))a"/(1 —a).
Proof: The statement is that a contraction f'of a complete metric space S has a unique
fixed point p. Take any point x € S, and consider the sequence of iterates:

x, flx), f(f(x)),...

That is, define a sequence {p,} inductively as follows:

Po =X, ppe1 = flpn)n =0,1,2,...
We will prove that {p,} converges to a fixed point of /. First we show that {p,} is a
Cauchy sequence. Since f'is a contraction (d(f(x),f(y)) < ad(x,y), 0 < a < 1 for all
x,y € S), we have

d@ui,pn) = d(f(pn).fPr-1)) < ad(pn.pu-1),



s0, by induction, we find

dpni1,pn) < a"d(p1,po) = a"d(x,f(x)).
Use the triangel inequality we find, for m > n,

m—1
d(pm,pn) < Z d(pkﬂ ,pk)
k=n

m—1
< d(x.flx) ) at
k=n

— a’” — g™
- d(x,f(x)) 1 -«
an
< d(x,f(x)) T—q
Since a” —» 0 as n - o, we know that {p, } is a Cauchy sequence. And since S is
complete, we have p, - p € S. The uniqueness is from the inequality,

d(f(x).f¥)) < ad(x,y).

From (*), we know that (let m — o)
d(p,pn) < d(x,f(x)) loi"a .

This inequality, which is useful in numberical work, provides an estimate for the
distance from p, to the fixed point p. An example is given in (b)

(b) Take f{x) = %(x +2/x), S = [1,+). Prove that f'is contraction of S with
contraction constant & = 1/2 and fixed point p = /2. Form the sequence {p,} starting wth
X = po = 1 and show that |p, — /2 | < 2.

Proof: First, f{x) —f(y) = 3 (x +2/x) = + (v +2/y) = L[(x —y) + 2(5-)], then we

have
[e-n+2(55) ]|

c-n(1-4))
< %|x—y] since |1—%| <1

[fx) = )| =

3
-1

So, f'is a contraction of S with contraction constant @ = 1/2. By Fixed Point Theorem, we
know that there is a unique p such that f(p) = p. That is,

%(p+ %) =p=>p= J2. (- J2 is not our choice since S = [1,+0).)
By (a), it is easy to know that

pn—ﬁ|S27”

Remark: Here is a modefied Fixed Point Theorem: Let f be function defined on a
complete metric space S. If there exists a N such that d(f¥(x) — fN(y)) < ad(x,y) for all
x,y € S, where 0 < o < 1. Then fhas a unique fixed point p € S.

Proof: Since /" is a contraction defined on a complete metric space, with the
contraction constant @, with 0 < a < 1, by Fixed Point Theorem, we know that there
exists a unique point p € S, such that



M) =p
= () = fp)
= () = fp).
That is, f{(p) is also a fixed point of fV. By uniqueness, we know that f{p) = p. In addition,
if there is p' € S such that f(p') = p'. Then we have

) =/p")=p,..../N(p') =..= p'. Hence, we have p = p'. That is, f'has a unique
fixed point p € S.

4.69 Show by counterexample that the fixed-point theorem for contractions need not
hold if either (a) the underlying metric space is not complete, or (b) the contraction
constant ¢ > 1.

Solution: (a) Let ' = %(1 +x) :(0,1) = R, then |[f(x) —f(y)| = %\x—y|. So, fis a
contraction on (0, 1). However, it has no any fixed point since if it has, say this point p, we
get+(1+p)=p=>p=1¢ (0,1).

(b) Letf'= (1 +x) : [0,1] - R, then |f{x) — f{y)| = |x —»|. So, fis a contraction with
the contraction constant 1. However, it has no any fixed point since if it has, say this point
p, wegetl+p=p=1=0, acontradiction.

4.770 Let f 8 - Sbe a function from a complete metric space (5,d) into itself.
Assume there is a real sequence {a,} which converges to 0 such that

d(f"(x),/"(v)) < a,d(x,y) foralln > 1 and all x,y in S, where /" is the nth iterate of f; that
is,
S1(x) = fx), fri(x) = fif" (x)) forn > 1.
Prove that f'has a unique point. Hint. Apply the fixed point theorem to f for a suitable m.
Proof: Since a, » 0, given ¢ = 1/2, then there is a positive integer N such that as
n > N, we have
la,| < 1/2.
Note that a, > 0 for all n. Hence, we have

AN (), () < %d(x, y) for x,y in S.

That is, fN(x) is a contraction defined on a complete metric space, with the contraction
constant 1/2. By Fixed Point Theorem, we know that there exists a unique point p € S,
such that

M) =p
= iV (p)) = fp)
= N(fp)) = fp).

That is, f(p) is also a fixed point of /V. By uniqueness, we know that f{p) = p. In addition,
if there is p' € Ssuch that f(p') = p'. Then we have

) =/p")=p,..../Np') =..= p'. Hence, we have p = p'. That is, f'has a unique
fixed point p € S.

4.71 vLet f S - Sbe a function from a metric space (5, d) into itself such that
d(fx),fy)) < d(x,y)

where x # y.
(a) Prove that f'has at most one fixed point, and give an example of such an f with no
fixed point.



Proof: If p and p' are fixed points of f where p + p’, then by hypothesis, we have
d(p,p") = d(fp).f(p")) < d(p.p")

which is absurb. So, fhas at most one fixed point.
Letf: (0,1/2) - (0,1/2) by f{x) = x2. Then we have
[fGe) =fW)l = 2 =32 = [k +ylx =y < e =yl
However, f'has no fixed point since if it had, say its fixed point p, then
pP=p=>p=1¢(0,12)orp=0 ¢ (0,1/2).
(b) If S is compact, prove that f'has exactly one fixed point. Hint. Show that
g(x) = d(x,f(x)) attains its minimum on S.

Proof: Let g = d(x,f(x)), and thus show that g is continuous on a compact set S as
follows. Since

d(x,fx)) = d(x,y) +d(y.y)) + d(f(y).fx))
< dx,y) +d./(y)) +d(x,y)
= 2d(x,y) +d(.fy))
= d(x,f(x)) —d(y.f(y)) < 2d(x,y)
and change the roles of x, and y, we have
d(y.fy)) — d(x,fx)) < 2d(x,y)
Hence, by (*) and (**), we have

ig(x) —g()| = |d(x,f(x)) —d(y.f(¥))| < 2d(x,y) forall x,y € S.
Given € > 0, there exists a 0 = &/2 such that as d(x,y) < 9, x,y € S, we have

g(x) —g()| < 2d(x,y) < & by (**¥).
So, we have proved that g is uniformly continuous on S.
So, consider min,esg(x) = g(p), p € S. We show that g(p) = 0 = d(p,f(p)). Suppose
NOT, i.e., f{(p) + p. Consider

d(f*(p).fw)) < d(fp).p) = &)
which contradicts to g(p) is the absolute maximum. Hence, g(p) = 0 & p = f(p). That is,
fhas a unique fixed point in S by (a).
(c)Give an example with S compact in which f'is not a contraction.

Solution: Let S = [0,1/2], and f = x> : S - S. Then we have
2 =y =k +ylx =yl < -yl
So, this f'is not contraction.

Remark: 1. In (b), the Choice of g is natural, since we want to get a fixed point. That
is, f{x) = x. Hence, we consider the function g = d(x,f{(x)).

2. Here is a exercise that makes us know more about Remark 1. Let /: [0,1] - [0, 1]
be a continuous function, show that there is a point p such that f(p) = p.

Proof: Consider g(x) = f(x) — x, then g is a continuous function defined on [0, 1].
Assume that there is no point p such that g(p) = 0, that is, no such p so that f{(p) = p. So,
by Intermediate Value Theorem, we know that g(x) > 0 forall x € [0,1], or g(x) < 0
for all x € [0, 1]. Without loss of generality, suppose that g(x) > 0 for all x € [0, 1] which
is absurb since g(1) = f{1) — 1 < 0. Hence, we know that there is a point p such that
Ap) = p.

k3k

kokosk



3. Here is another proof on (b).

Proof: Given any point x € S, and thus consider {f*(x)} < S. Then there is a
convergent subsequence {/"®(x)}, say its limit p, since S is compact. Consider

o o} o)
=d (}{1}2 S0 (x)], }{1}2 VAR (x)) by continuity of fat p
= Limd (P91 (x), 10 (x))

and

d(f O+ (x), P (x)) <...< d(P[ED )] AFED(0)]).
Note that
limd(P [0 @) LA D))

= d(Jim AU A )
— d(ﬁ[}(iﬂrgfh(kfl)(x) },][kirgﬂ(kfl)(x) :D by continuity of /> and f'at p
= d(f*(p)./1p)).

So, by (1)-(3), we know that
fp.fp)) < d(f*(p).fp)) = p = fp)
by hypothesis
d(f(x),fy)) < d(x,y)
where x # y. Hence, f has a unique fixed point p by (a) in Exercise.
Note. 1. If x, - x, and y, —» y, then d(x,,y,) - d(x,y). That s,
limd(ri,ya) = d(limxlimy. ).
Proof: Consider
d(xn,yn) < d(xn,x) +d(x,y) +d(,y,) and
d(x,y) < d(x,xn) +d(xXn,yn) +d(yn,y),
then
ld(xn,yn) — d(x,p)| < dx,xn) +d(y,yn) = 0.
So, we have prove it.

2. The reader should compare the method with Exercise 4.72.

4.72 Assume that f'satisfies the condition in Exercise 4.71. If x € S, let py = x,
Pnst = flpn), and ¢, = d(py,pus1) forn > 0.

(a) Prove that {c, } is a decreasing sequence, and let ¢ = limc,.

Proof: Consider
Cnt1 — Cn = AdPur1,Pns2) — dPn,Pui1)
= d(fpn):f 1)) — dPn,pni1)
< d@n,pnr1) —dPn,pui1)
=0,
so {cx} is a decreasing sequence. And {c,} has a lower bound 0, by Completeness of R,
we know that {c,} is a convergent sequence, say ¢ = limc,.



(b) Assume there is a subsequence {py(,); which converges to a point g in S. Prove that

c = d(q.fq)) = dfg).N1f(9)]).
Deduce that g is a fixed point of fand that p,, - g¢.

Proof: Since limy«pyn) = ¢, and limy..c, = ¢, we have limy-« ¢4,y = ¢. So, we
consider
¢ = limey)

= lim d(pk(n),pk(n)+1 )

n—>0

= imd(Pi), /i)
= d(¢.q))
and
dPiin>Prny+1) < dPiey-1:Pkm) == dPr1))oS* Prr1)))s
we have

¢ = d(q./1q)) < Uimd(f{piu-1)):/* Pr-1))) = d(fg).1*(q)).
So, by (*) and hypoethesis
d(f(x),f(y)) < d(x,y)
where x # y, we know that ¢ = f(q) (3 ¢ = 0, in fact, this ¢ is a unique fixed point.).
In order to show that p, - p, we consider (let m > k(n))

dpm,q) = dpm.f1q)) < dPm-1,9) <..< dPrx),9)

So, given ¢ > 0, there exists a positive integer N such that as n > N, we have

dPiwy»q) < €.
Hence, as m > k(N), we have

d(pm.q) < &.
That is, p, - p.



Derivatives

Real-valued functions

In each following exercise assume, where mecessary, a knowledge of the formulas for
differentiating the elementary trigonometric, exponential, and logarithmic functions.

5.1 Assume that f1s said to satisfy a Lipschitz condition of order o at c if there
exists a positive number M (which may depend on ¢) and 1 —ball B(c) such that

[fx) = fe)| < Mpx —c|*
whenever x € B(c), x # c.

(a) Show that a function which satisfies a Lipschitz condition of order « is continuous
at cif a > 0, and has a derivative at c if a > 1.

Proof: 1. Asa > 0, given € > 0, thereisa o < (s/M)l/“ such that as
x € (c—-90,c+06) < B(c), we have
fx) = fle)| < Mlx — c|* < Mo* = e.
So, we know that f'is continuous at c.
2. Asa > 1, consider x € B(c), and x # ¢, we have

f(x) f(C)

<Mpx—c|*' > 0asx - c.

So, we know that fhas a derivative at ¢ with f'(¢) = 0.

Remark: It should be note that (a) also holds if we consider the higher dimension.
(b) Given an example of a function satisfying a Lipschitz condition of order 1 at ¢ for
which f'(¢) does not exist.

Solution: Consider
el =lell = b =<,
we know that |x| is a function satisfying a Lipschitz condition of order 1 at 0 for which
f(0) does not exist.

5.2 In each of the following cases, determine the intervals in which the function f'is
increasing or decreasing and find the maxima and minima (if any) in the set where each f'is
defined.

(@) flx) =x*+ax+b, x € R.

Solution: Since /'(x) = 3x2 4+ a on R, we consider two cases: (i) @ > 0, and (ii) a < 0.

(1) As a > 0, we know that f'is increasig on R by /' > 0 on R. In addition, if f'has a
local extremum at some point ¢, then f'(¢) = 0. It implies that « = 0 and ¢ = 0. That is,
f(x) = x3 + b has a local extremum at 0. It is impossible since x3 does not. So, we know
that /'has no maximum and minimum.

(i) Asa < 0, since /' = 3x2+a = 3<x — J-a/3 ) (x + J—a/3 ), we know that
(—0,—y=a3] [-y=ai3,J=ai3 | [J-a/3,+w)
>0

S )
<0 >0

which implies that

(—0,—J=al3] [-J-al3,=al3 | [J-a/3,+x)

fx) -
/ N\ /



Hence, fis increasing on (—oo,— ,/—a/3 ] and [ ,/—a/3 ,+), and decreasing on
[— J—al3, . J—al3 :| In addition, if fhas a local extremum at some point ¢, then f'(¢) = 0.
It implies that ¢ = £ ,/—a/3 . With help of (*), we know that f{x) has a local maximum
f(— J—a/3 )and a local minimumf(,/—a/3 )

(b) flx) = log(x*> —9), |x| > 3.

Solution: Since f'(x) = —*5, [x| > 3, we know that

(—0,-3) (3,+x)

@y
which implies that
o (=00,-3) (3,+)
AR

Hence, fis increasing on (3,+), and decreasing on (—o,—3). It is clear that f cannot have
local extremum.

(©) fix) =xBx-1)" 0<x< 1.

Solution: Since f'(x) = 261)° (7x—1), 0 < x < 1, we know that

3X1/3
[0,1/7] [1/7,1]

/& : >0 <0
which implies that
[0,1/7] [1/7,1]
fx) - : *x
/ N\

Hence, we know that fis increasing on [0, 1/7], and decreasing on [1/7,1]. In addition, if f
has a local extremum at some interior point ¢, then f'(¢) = 0. It implies that ¢ = 1/7. With
help of (**), we know that f'has a local maximum f{1/7), and two local minima f{0), and
AD).

Remark: fhas the absolute maximum f{1/7), and the absolute minima
A0) = A1) = 0.

(d) flx) = (sinx)/xifx = 0, f{0) =1, 0 < x < 7/2.

Sulotion: Since f'(x) = cosx*=5* as 0 < x < 7/2, and f4(0) = 0, in addition,
f(x) - 0asx - 0* by L-Hospital Rule, we know that

- [0,7/2]
f@)~§0
which implies that
- [0,7/2] o
Sx) N : (**%)

Hence, we know that fis decreasing on [0, 7/2]. In addition, note that there is no interior

point ¢ such that f'(¢) = 0. With help of (***), we know that f'has local maximum £{0),
and local minimum f{r/2).

Remark: 1. Here is a proof on f,(0) : Since



lim Sinx =1 _ pj, —2(8inx/2)"
x->0* x=0+ X

0,
we know that f,(0) = 0.
2. f'has the absolute maximum f{0), and the absolute minimum f{7/2).

5.3 Find a polynomial f'of lowest possible degree such that
fxr) = ay, flxa) = az, f/(x1) = by, f/(x2) = by

where x; # x; and a;, a,, by, b, are given real numbers.

Proof: It is easy to know that the lowest degree is at most 3 since there are 4 unknows.
The degree is depends on the values of a;, a,, by, bs.

54 Define fas follows: f{x) = e"* if x # 0, 0) = 0. Show that
(a) f'is continuous for all x.

Proof: In order to show f'is continuous on R, it suffices to show fis continuous at 0.
Since

X L 1 1&2__ B
i) = tim(£)" =0 = 10),
we know that fis continuous at 0.
(b) /™ is continuous for all x, and /™ (0) = 0, (n = 1,2,...)

Proof: In order to show /) is continuous on R, it suffices to show ) is continuous at
0. Note that

fim 2

x—>to €
Claim that for x # 0, we have fV(x) = e"**P5,(1/x), where Ps,(¢) is a real polynomial of
degree 3n foralln = 1,2,.... Asn = 0, fO(x) = fix) = e 1" = e" 1" Py(1/x), where
Py(1/x) is a constant function 1. So, as n = 0, it holds. Suppose that n = £ holds, i.e.,
f®(x) = e '’ Py(1/x), where P3(t) is a real polynomial of degree 3k. Consider
n=k+1, we have

SED @) = (D) *
= (e‘”sz3k(1/x))/ by induction hypothesis

3 2
-e {2 (][R AW
Since [2£3P3(¢)] — [2P,(¢)] is a real polynomial of degree 3k + 3, we define
[263P3i(¢)] — [£2P5,(¢)] = P3ii3(2), and thus we have by (*¥)
SED(x) = e Py (1/x).

So, as n = k+ 1, it holds. Therefore, by Mathematical Induction, we have proved the
claim.

Use the claim to show that /0(0) = 0, (n = 1,2,...) as follows. As n = 0, it is trivial
by hypothesis. Suppose that n = & holds, i.e., f®(0) = 0. Thenasn = k+ 1, we have

= 0, where p(x) is any real polynomial. *



SO -
= “—~* by induction hypothesis

e*”szgk(l/x)
X

LoD ey s — 17x)
e

_ (M)(:_;) ~ 0ast - 40 ( & x > 0) by (¥).

SO &) —f®(0)
x—0

el
Hence, /&1 (0) = 0. So, by Mathematical Induction, we have proved that /7 (0) = 0,
n=12,.)
Since

lim/) (x) = lime=15" Py, (1/x)

— i P3n(1/x)
- &13)1 el/x2

we know that /") (x) is continuous at 0.

Remark: 1. Here is a proof on (*). Let P(x) be a real polynomial of degree n, and
choose an even number 2N > n. We consider a Taylor Expansion with Remainder as
follows. Since for any x, we have

2N+ L et 2N+
et = > —x + Gt 2)' x2N#2 > Z_xk
then
P(X) P(X)

0<

- Qasx » too

2N+1

since deg(P(x)) = n < deg(Z
proved

. ) = 2N + 1. By Sandwich Theorem, we have

lim L)

x-too € x

= 0.

2. Here is another proof on /' (0) = 0, (n = 1,2,...). By Exercise 5.15, it suffices to
show that lim,_o /" (x) = 0. For the part, we have proved in this exercise. So, we omit the
proof. Exercise 5.15 tells us that we need not make sure that the derivative of fat 0. The
reader should compare with Exercise 5.15 and Exercise 5.5.

3. In the future, we will encounter the exercise in Charpter 9. The Exercises tells us one
important thing that the Taylor’s series about 0 generated by f converges everywhere
on R, but it represents f only at the origin.

5.5 Define £, g, and & as follows: f{0) = g(0) = h(0) = 0 and, if x % 0,
flx) = sin(1/x), g(x) = xsin(1/x), hA(x) = x?sin(1/x). Show that

(@) f'(x) = —=1/x%>cos(1/x), if x # 0; f'(0) does not exist.



Proof: Trivially, /' (x) = —1/x2cos(1/x), if x # 0. Let {xn = ﬁ}, and thus
n(2n+5

consider
Sxn) —f0)  sin(1/x,)
x,—0 Xn
Hence, we know that /(0) does not exist.

(b) g'(x) = sin(1/x) — 1/xcos(1/x), if x # 0; g'(0) does not exist.

:n(2n+%> —> 0asn — oo,

Proof: Trivially, g’(x) = sin(1/x) — 1/xcos(1/x), ifx # 0. Let {xn = € 1+,> }, and
T n >
{yn = 53—}, we know that
gxn)—g0) _ . /1 _
=0 —sm(xn> = 1foralln
and

gn)—g0) . /1 _
=0 = sm<yn> = 0 for all n.

Hence, we know that g'(0) does not exist.
(¢) h'(x) = 2xsin(1/x) — cos(1/x), if x # 0; A'(0) = 0; lim,_o /' (x) does not exist.
Proof: Trivially, 4'(x) = 2xsin(1/x) — cos(1/x), if x = 0. Consider
‘ h(x) — h(0)
x—0

= Jesin(l/x)| < |x| > 0asx — 0,

so we know that 4'(0) = 0. In addition, let {xn =0 1+1> }, and {y, = 57—}, we have
T n >
B (xn) = —2—— and i'(ys) = —1 for all n.
(2n+ 1)

Hence, we know that lim,_o4'(x) does not exist.

5.6 Derive Leibnitz’s formula for the nth derivative of the product 4 of two functions
fand g :

n) — n\ k) o(n—k ny — l’l—'
ho = kz(;(k)f( )g(=h)(x), where (}) = oo
Proof: We prove it by mathematical Induction. As n = 1, it is clear since

h' = f'g+ g'f. Suppose that n = k holds, i.e., h®) = Zfzo(j’?)ﬁ)g("ff)(x). Consider
n =k+1, we have



hUD = (B®) = [i(};)ﬁ)g(w)(xq

j=0

(O[Dg% (x)]'

M~

J

(DN + [f0gED T}
=0

]
RN o

S (I IID] + SO

/=

k . .
300 (OV0ID] + g

3 (DIl + flksg®

(j=0 %

n ’f‘ol (k) [ Dgh] + fO gkt
i

k-1
= S [E + (&) Junghn] + flehg) 4 0l
=0

-1
— Z(/Igjf)[f(jﬂ)g(kfj)] + fkrD) g(0) 4 £10) gkt D)
Jj=0
k1

= 2 _(O[Hgh].
j=0

So, as n = k+ 1, it holds. Hence, by Mathematical Induction, we have proved the
Leibnitz formula.

Remark: We use the famous formula called Pascal Theorem:(?]) = () + (%,,),
where 0 < k < n.

5.7 Let f'and g be two functions defined and having finite third-order derivatives /"' (x)
and g"'(x) for all x in R. If f(x)g(x) = 1 for all x, show that the relations in (a), (b), (c),
and (d) holds at those points where the denominators are not zero:

(a) f (x)/flx) + g'(x)/g(x) = 0.
Proof: Since f{x)g(x) = 1 for all x, we have /g + g'f = 0 for all x. By hypothesis, we
have
fg+gf
g

which implies that

= 0 for those points where the denominators are not zero

S @)Ifx) + g'(x)/g(x) = 0.

(b) /" ()/f'(x) = 2f ()/fix) — g"(x)/g'(x) = 0.

Proof: Since f'g + g'f = 0 for all x, we have (fg +g'f)' = f'g+2f'g' +g"f = 0. By
hypothesis, we have



_ flg+2fg +g'f

/g
f/ g/ g//
= +2= 4
g I
4 g(f)
! f/ "
=L -2l - 8 by (a)
for g
S f'(X)g”(X) [ '
© Fo 3 Teorm 3o T ew
Proof: By (b), we have (f'g +2f' g’ + g”f) 0=/"g+3f"g+3fg" +fg". By
hypothesis, we have
f//g+ 3 /g/ 4 3f7g// +fg///
/g
1" / ! 1"
ANEY SN 4 g LB
f e W

-G (f )+3g”< )+ (7)
_ L 3L 3122w,

f VA /4
(@) L0 3 (1 )2 _ w3 (g”oo 2
IS 1) 7@ 2\ gW

Proof: By (c), we have % & 3(f Le' ) Since
I rg g
7R

Il
|—
1

2
we know that Z— — % = %|:

ﬁ)z _ (g_” }

7 ( 7 7 which implies that
JO NN G4 )2 _ w3 (g”(x>

/) 2 /@) do 2\ ¢w

Note. The expression which appears on the left side of (d) is called the Schwarzian
derivative of f at x.

(e) Show that f'and g have the same Schwarzian derivative if
g(x) = [af(x) + b]/(cf(x) + d), where ad — bc + 0.
Hint. If ¢ # 0, write (af + b)/(cf+d) = (a/c) + (bc — ad)/[c(cf+ d)], and apply part
(d).

Proof: If ¢ = 0, we have g = 4f+ £ So, we have



g 3(2'®Y
gx) 2 (g’(X) )
A, 3(ﬁ%w>2

<f(x) 2\ 4f(x)
S ;(m)
S (x) fx) )

So, fand g have the same Schwarzian derivative.
Ifc # 0, write g = (af + b)/(cf+d) = (alc) + (bc — ad)/[c(cf+ d)], then

(cg—a)[ bclad)(cﬂ d)} — 1 since ad — be # 0.
LetG = cg—a, and F = ( bcla —)(cf+d), then GF = 1. It implies that by (d),

F_/// (F// ) _ GH/ ( GH )
F 2 G’

! c 2
F"_3 qu_<gm)/_;[umﬂﬂJ

! i - c
F 2 F ( bc—ad )f

which implies that

B 3 7\ 2

_7_7(7)
cg/// 3 (¢ N 2

3%

So, f'and g have the same Schwarzian derivative.

5.8 Let f1, f>, g1, g2 be functions having derivatives in (a,b). Define F by means of
the determinant

Silx)  fa(x)

F(x) =
O~ 0w e

,ifx € (a,b).

(a) Show that F'(x) exists for each x in (a,b) and that

Fix) = fikx)  fr(x) MPAORNECON]
gi(x) ga(x) gi(x) gr(x)
Hx) folx)

Proof: Since F(x) =
gi(x) g(x)

F' = figa +f1g5 — 281 — /28]

= (fig2 = frg1) + (figh — f28))
fix) fo(x) Silx)  falx)
gi1(x) g2(x) gix) ghx) |

‘ = f1g> — f>g1, we have




(b) State and prove a more general result for nth order determinants.

Proof: Claim that if

fll f12 fln
F(x) _ f21 f‘22 on ’
fnl ﬁzZ fnn
then
S S S Ju Sz S Su Sz S
Fl(x) = o S S | S S S | [ 2 S
St Sz oo S Jor Sz oo S S Sz oo S

We prove it by Mahematial Induction. As n = 2, it has proved in (a). Suppose that n = k
holds, consider n = k+ 1,

Ju  fioo oo fikn
fa o o fua

!

fk+11 fk+12 fk+1k+1
Jiz oo fuen Ju o fu

=DMl o (=) DD L
Jio oo Suen S oo S
=....(The reader can write it down by induction hypothesis).
Hence, by Mathematical Induction, we have proved it.

Remark: The reader should keep it in mind since it is useful in Analysis. For example,
we have the following Theorem.

(Theorem) Suppose that f,g, and % are continuous on [a, b], and differentiable on
(a,b). Then there is a & € (a,b) such that

f(&) &) h)

fa) gla) h(a) | =0.

fb) g(b) h(b)
Proof: Let

fx) glx) h(x)
F(x) = | fla) gla) h(a) |,
fb) g(b) h(b)
then it is clear that F(x) is continuous on [a, b] and differentiable on (a,b) since the

operations on determinant involving addition, substraction, and multiplication without
division. Consider

F(a) = F(b) =0,
then by Rolle’s Theorem, we know that



F'(&) =0, where & € (a,b),
which implies that

f©&) &' n()
fla) gla) ha) |=0.
Jb) g(b) h(b)

(Application- Generalized Mean Value Theorem) Suppose that fand g are
continuous on [a,b], and differentiable on (a,b). Then there is a & € (a,b) such that

[f(6) - fla)]g'(§) = 1 (S)gb) —gla)].
Proof: Let 4(x) = 1, and thus by (*), we have

f(&) g¢ o
fla) g@) 1 | =0,
fb) gb) 1

which implies that

| @) g || SO £©)
fb)  g(b) fla)  gla)

‘:o

which implies that
[f(b) - fla)]g'(§) = 1 (S)gb) —gla)].

Note: Use the similar method, we can show Mean Value Theorem by letting
g(x) = x, and A(x) = 1. And from this viewpoint, we know that Rolle’s Theorem, Mean
Value Theorem, and Generalized Mean Value Theorem are equivalent.

5.9 Given n functions f1,...,fn, €ach having nth order derivatives in (a,b). A
function W, called the Wronskian of f1,...,f,, is defined as follows: For each x in (a,b),
W(x) is the value of the determinant of order » whose element in the kth row and mth
column isf(,f_l)(x), where k = 1,2,..,nand m = 1,2,...,n. [The expressionf(,,?)(x) 1S
written for f,,(x). ]

(a) Show that ' (x) can be obtained by replacing the last row of the determinant
defining W(x) by the nth derivatives /" (x),..../% (x).

Proof: Write

S /2 oo Jn

oo |h A A

f(n 1) f(n 1) f(n 1)
and note that if any two rows are the same, its determinant is 0; hence, by Exercise 5.8-(b),
we know that




N /> N

S g e
f(ln) 2n) ﬁzn)

(b) Assuming the existence of »n constants cy,...,c,, not all zero, such that
cifi(x) +...cafn(x) = 0 for every x in (a,b), show that W(x) = 0 for each x in (a,b).

W(x) =

Proof: Since ¢ f1(x) +...cafn(x) = 0 for every x in (a,b), where cy,...,c,, not all
zero. Without loss of generality, we may assume c¢; # 0, we know that
c]f(lk)(x) +. ..cnﬁ,k)(x) = 0 for every x in (a,b), where 0 < k < n. Hence, we have

i A S
L R

f(ln—l) 2n—l) ﬁln—l)

W(x)

=0
since the first column is a linear combination of other columns.

Note. A set of functions satisfing such a relation is said to be a linearly dependent set
on (a,b).

(c) The vanishing of the Wronskian throughout (a,b) is necessary, but not sufficient.
for linear dependence of f1,...,f,. Show that in the case of two functions, if the Wronskian
vanishes throughout (a, ) and if one of the functions does not vanish in (a,b), then they
form a linearly dependent set in (a,b).

Proof: Let fand g be continuous and differentiable on (a,b). Suppose that f{x) # O for
all x € (a,b). Since the Wronskian of fand g is 0, for all x € (a,b), we have

fg'—fg=0forallx € (a,b).
Since f(x) # 0 for all x € (a,b), we have by (*),

fg/f_zfg ~0 > (%)/ = 0 forall x € (a,b).

Hence, there is a constant ¢ such that g = ¢f for all x € (a,b). Hence, {f,g} forms a
linearly dependent set.

Remark: This exercise in (b) is a impotant theorem on O.D.E. We often write (b) in
other form as follows.

(Theorem) Let f1,..,f, be continuous and differentiable on an interval /. If
W(fi,....fa)(to) # 0 for some ¢y € I, then {f,..,f»} is linearly independent on /

Note: If {f1,..,fx} is linearly independent on /, It is NOT necessary that
W(f1,....fa)(to) # 0 for some ¢y € I. For example, f{t) = #2|¢|, and g(¢) = £3. It is easy to
check {f,g} is linearly independent on (—1,1). And W(f,g)(¢) = O forall t € (—1,1).

Supplement on Chain Rule and Inverse Function Theorem.

The following theorem is called chain rule, it is well-known that let f be defined on an
open interval S, let g be defined on f{S), and consider the composite function g o f defined
on S by the equation



g o flx) = g(fx)).
Assume that there is a point ¢ in S such that f{c) is an interior point of f{.S). If fis
differentiable at ¢ and g is differentiable at f{c), then g o f'is differentiable at ¢, and we
have

gof(c) = g (fle)f ().
We do not give a proof, in fact, the proof can be found in this text book. We will give
another Theorem called The Converse of Chain Rule as follows.

(The Converse of Chain Rule) Suppose that f, g and u are related so that
flx) = g(u(x)). If u(x) is continuous at xo, f'(xo) exists, g'(u(x()) exists and not zero.
Then u'(x) is defined and we have

f'(xo) = g'(ulxo))u'(xo).

Proof: Since f'(x() exists, and g'(u(x()) exists, then

Sx) = flxo) +f(x0)(x —x0) + o(]x — xo]) *
and
g(ux)) = g(ulxo)) + g (ulxo))(ux) — ulxo)) + o(ju(x) — u(xo)|). o
Since flx) = g(u(x)), and f(xo) = g(u(xo)), by (*) and (**), we know that
u(x) = ulxg) + %(}C —x0) + o(|x —x¢|) + o(|u(x) — u(xo)|). *kk

Note that since u(x) 1s continuous at x,, we know that o(Ju(x) — u(xo)|) - 0 asx — xo.
So, (***) means that u'(x) is defined and we have

S(x0) = g'(u(xo))u'(x0).
Remark: The condition that g’'(u(x()) is not zero is essential, for example, g(x) = 1 on
(-1,1) and u(x) = |x|, where xo = 0.

(Inverse Function Theroem) Suppose that f'is continuous, strictly monotonic function
which has an open interval / for domain and has range J. (It implies that
flg(x)) = x = g(f{x)) on its corresponding domain.) Assume that x is a point of J such
that ' (g(xo)) is defined and is different from zero. Then g'(x() exists, and we have

' 1
(x0) = ——.
&0 Flelxo))
Proof: It is a result of the converse of chain rule note that
flg(x)) = x.

Mean Value Theorem

5.10 Given a function defined and having a finite derivative in (a,b) and such that
lim,;- f(x) = +oo. Prove that lim,,- /' (x) either fails to exist or is infinite.

Proof: Suppose NOT, we have the existence of lim,_,- /' (x), denoted the limit by L.
So, given ¢ = 1, there isa o > 0 such that as x € (b — ,b) we have

[fel < ||+ 1. *
Consider x,a € (b —06,b) with x > a, then we have by (*) and Mean Value Theorem,
[fx) = fla)| = [f'(§)(x — a)| where & € (a,x)
< (Ll + Dlx —a|
which implies that



o)l = [Aa)| + (L] + 1)d
which contradicts to lim,_,- f{x) = +oo.
Hence, lim,.,- ' (x) either fails to exist or is infinite.

5. 1 1 Show that the formula in the Mean Value Theorem can be written as follows:

flat h;)l =D _ p(x + om),

where 0 < 0 < 1.

Proof: (Mean Value Theorem) Let fand g be continuous on [a,b] and differentiable
on (a,b). Then there exists a & € (a,b) such that f(b) — fla) = f(&)(b — a). Note that
E=a+0(b—-a), where 0 < 6 < 1. So, we have proved the exercise.

Determine 6 as a function of x and 4, and keep x # 0 fixed, and find lim;_( 6 in each
case.

(a) flx) = x>

Proof: Consider

f(“h})l_ﬂx) - (“hf):_xz = 2x+h=20x+0h) = f(x+0h)

which implies that
0 =1/2.
Hence, we know that lim;_,0 = 1/2.

(b) flx) = x3.

Proof: Consider

f(X+h})l—f(x) _ (x+h]):_x3 = 3x2 + 3xh + h? = 3(x + 0h)* = f (x + Oh)

which implies that

—3x £ J9x2 + 9xh + 3h2
3h
Since 0 < 6 < 1, we consider two cases. (1) x > 0, (ii) x < 0.
(1) Asx > 0, since

0 =

—3x £ J9x2 + 9xh + 3h?
3h

0<6-= <1,

we have
—3x++ 9x2+9xh+3 1?2
3h

—3x+4/ 9x2+9xh+3h2
3h

0 if A > 0, and 4 is sufficiently close to 0,

if h < 0, and 4 is sufficiently close to 0.

Hence, we know that lim,_, 6 = 1/2 by L-Hospital Rule.
(i1) As x < 0, we have

—3x—/ 9x2+9xh+3h?
3h
0 =
—3x—/ 9x2+9xh+3h2
3h

if & > 0, and 4 is sufficiently close to 0,
if & < 0, and 4 is sufficiently close to 0.

Hence, we know that lim,_,60 = 1/2 by L-Hospital Rule.
From (i) and (ii), we know that as x # 0, we have lim,_,0 = 1/2.



Remark: For x = 0, we can show that lim;_¢0 = g as follows.

Proof: Since
+ /34?2

0<0= 3 <1,
we have
3r2 . Bh 3.
0 - 3 —3—h—Tlfh>0,
32 _ BBh _ 3.
3 _W_Tlfh<0'

Hence, we know that lim,_( 0 =

(c) flx) = e~.

Proof: Consider

3
3

Sl + h})l —fx) _ e”hh— et — ovh = f(x + Oh)
which implies that

o logehT‘1
h
Hence, we know that lim;_o6 = 1/2 since
=1
limé = lim —& &
h-0 h-0 h
_ i eth—e" + 1 ) -
- 1}111101 e —1) by L-Hospital Rule.
Note thate” = 1 + h + hTZ + o(h?)
++h+o(l)
= lm "
=0 1+ 2 +o(h)
= 1/2.
(d) fix) = logx, x > 0.
Proof: Consider
fath) —f) logl+%)
h B h - x+6h

which implies that
L —log(l+4)
 L(og(1+4))
Since log(1 +¢) = ¢t — % + o(#?), we have




lim6 = lim *

L-1(&) +o((H)))
h

7<——7<—> R @D)
) 1) +o((4)")
T ) 4 o((1))
B 7-1—0(1)
e T L)+ o(h)
= 1/2.

5.12 Take f{x) = 3x* —2x3 —x?> + 1 and g(x) = 4x3 — 3x? — 2x in Theorem 5.20. Show
that /' (x)/g’'(x) is never equal to the quotient [/{1) — f{0)]/[g(1) — g(0)] if 0 < x < 1. How
do you reconcile this with the equation

fb)-fa) _ f(x1)
gb)—gla)  g'(x1)’

obtainable from Theorem 5.20 whenn = 1?

a<x <b,

Solution: Note that

2 _6y—0 — _ (41, (1L _ (41 _ (1L 1, /1L
12x% —6x -2 12|:x (4+ 48):||:x (4 48):|,where(0<4+ 43 < 1.

So, when we consider
AD-f0) _
g(1) —g(0)
and
f(x) = 12x3 — 6x2 — 2x = xg'(x) = x(12x2 — 6x — 2),
we CANNOT write /' (x)/g’'(x) = x. Otherwise, it leads us to get a contradiction.

Remark: It should be careful when we use Generalized Mean Value Theorem, we
had better not write the above form unless we know that the denominator is not zero.

5.13 In each of the following special cases of Theorem 5.20, taken = 1, ¢ = a, x = b,
and show that x| = (a + b)/2.

(a) flx) = sinx, g(x) = cosx;
Proof: Since, by Theorem 5.20,
(sina — sinb)[—sin(x;)] = |:2cos( ath s1n( > —b ) :| [—sin(x;)]

= (cosa —cosbh)(cosxy)

[ 2s1n( atbh sin(aT_b> }(cosxl),

we find that if we choose x; = (a + b)/2, then both are equal.

(b) fx) = e, glx) = e
Proof: Since, by Theorem 5.20,
(e*—e)(—e™) = (e —eP)(em),

we find that if we choose x; = (a + b)/2, then both are equal.

Can you find a general class of such pairs of functions f'and g for which x; will always
be (a + b)/2 and such that both examples (a) and (b) are in this class?



Proof: Look at the Generalized Mean Value Theorem, we try to get something from
the equality.

@) -f0)]g (451 ) = [g(@) - g@®))f (452),
if f(x), and g(x) satisfy following two conditions,
(1) f'(x) = g(=x) and g'(x) = —f(-x)

(if) (@) - )| #(~452 ) | = [et@) - g0))[ e(-452) |,

then we have the equality (*).

and

5.14 Given a function f defined and having a finite derivative /' in the half-open
interval 0 < x < 1 and such that |[/'(x)| < 1. Define a, = f(1/n) forn = 1,2,3,..., and
show that lim,-. a, exists.

Hint. Cauchy condition.

Proof: Consider n > m, and by Mean Value Theorem,
\an — am| = [f(1/n) — 1/m)| = [f’(p)]|% - %| < |% _ %|

then {a,} is a Cauchy sequence since {1/n} is a Cauchy sequence. Hence, we know that
lim~0 @, exists.

5.15 Assume that f'has a finite derivative at each point of the open interval (a, b).
Assume also that lim,../'(x) exists and is finite for some interior point ¢. Prove that the
value of this limit must be f'(¢).

Proof: It can be proved by Exercise 5.16; we omit it.
5.16 Let fbe continuous on (a,b) with a finite derivative /' everywhere in (a,b),

expect possibly at ¢. If lim,..f'(x) exists and has the value 4, show that '(¢) must also
exist and has the value A4.

Proof: Consider, for x + c,

f(x ) ﬂc) = f'(&) where & € (x,c) or (¢c,x) by Mean Value Theorem,

since limxﬁcf(x) exists, given € > 0, thereisa d > 0 such thatasx € (¢ —0d,c +98) — {c},
we have

A-e<f(x)<A+e.
So, if we choose x € (¢ —d,c+0) — {c} in (¥), we then have

A< LMD _piey g
That is, f'(c) exists and equals A.

Remark: (1) Here is another proof by L-Hospital Rule. Since it is so obvious that we
omit the proof.

(2) We should be noted that Exercise 5.16 implies Exercise 5.15. Both methods
mentioned in Exercise 5.16 are suitable for Exercise 5.15.

5.17 Let f'be continuous on [0, 1], f{0) = 0, f'(x) defined for each x in (0, 1). Prove
that if /' is an increasing function on (0, 1), then so is too is the function g defined by the

equation g(x) = f(x)/x.
Proof: Since /' is an increasing function on (0, 1), we know that, for any x € (0, 1)



o)~ 8 =y OZIOL iy p() > 0 where & € (0.).
So, let x > y, we have

gx) —g(y) = g'(@)(x-y), wherey < z < x
_f (Z)ZZ 2—]‘(2) (x— )

> 0 by (¥)
which implies that g is an increasing function on (0, 1).

5.18 Assume f'has a finite derivative in (a,b) and is continuous on [a,b] with
fla) = f(b) = 0. Prove that for every real A there is some c in (a,b) such that

f(C) = Mc).
Hint. Apply Rolle’s Theorem to g(x)f(x) for a suitable g depending on A.
Proof: Consider g(x) = f(x)e ™, then by Rolle’s Theorem,
gla) — g(b) = g'(c)(a—b), where ¢ € (a,b)
=0
which implies that

f(e) = Mfc).

Remark: (1) The finding of an auxiliary function usually comes from the equation that
we consider. We will give some questions around this to get more.

(2)There are some questions about finding auxiliary functions; we write it as follows.
(1) Show that e” > r¢.

Proof: (STUDY) Since logx is a strictly increasing on (0,0), in order to show
e™ > ¢, it suffices to show that
rwloge = loge™ > logn® = elogn
which implies that

loge log
e - m -

Consider f{x) = <2~ : [¢,), we have

1) = ﬂ < 0 where x € (e,).

loge

So, we know that f{(x) is strictly decreasmg on [e,»). Hence, > 10,%” . That is,

e’ > me.

(11) Show that e > 1 + x for all x € R.

Proof: By Taylor Theorem with Remainder Term, we know that

C
e =1+x+ %xz, for some c.

So, we finally have e > 1 + x for all x € R.

Note: (a) The method in (i1) tells us one thing, we can give a theorem as follows. Let
f € C?*([a,b]), and f@"(x) exists and /> (x) > 0 on (a,b). Then we have

2n-1

fx) > Zﬂ )(a).



Proof: By Generalized Mean Value Theorem, we complete it.

(b) There are many proofs about that e* > 1 + x for all x € R. We list them as a
reference.

(b-1) Let f{x) = e* — 1 —x, and thus consider the extremum.
(b-2) Use Mean Value Theorem.
(b-3) Sincee* -1 > 0 forx > 0 and e* — 1 < 0 for x < 0, we then have

x 0
f (e — 1)dt > 0 and f (e — 1)dt < 0.
0 X
So,e¥ > 1+xforallx € R.

(ii1) Let f'be continuous function on [a, ], and differentiabel on (a,b). Prove that there
exists a ¢ € (a,b) such that

f(c) = ﬂc) ﬂa)

Proof: (STUDY) Since f'(c) = 2979 we con51der ()b -c) - (flc) - fla)).
Hence, we choose g(x) = (f(x) — f{a))(b — x), then by Rolle’s Theorem,
gla) — g(b) = g'(c)(a—b) where ¢ € (a,b)
which implies thatf (c) = 2922

(iv) Let f'be a polynomial of degree n, if f > 0 on R, then we have
f+f +..4 > 0onR.

Proof: Let g(x) = f+ f +..+/®), then we have
g—g = f> 0onR since fis a polynomial of degree n.
Consider A(x) = g(x)e™, then /' (x) = (g'(x) — g(x))e™ < 0 on R by (*). It means that /

is a decreasing function on R. Since lim,..»A(x) = 0 by the fact g is still a polynomial,
then 4(x) > 0 on R. That is, g(x) > 0 on R.

(v) Suppose that f'is continuous on [a,b], fla) = 0 = f(b), and
x2f'(x) + 4xf'(x) + 2f(x) > 0 for all x € (a,b). Prove that f{x) < 0 on [a,b].

Proof: (STUDY) Since x2f"(x) + 4xf' (x) + 2/(x) = [x2f(x)]" by Leibnitz Rule, let
g(x) = x2f(x), then claim that g(x) < 0 on [a,b].

Suppose NOT, there is a point p € (a,b) such that g(p) > 0. Note that since f{a) = 0,
and f(b) = 0, So, g(x) has an absolute maximum at ¢ € (a,b). Hence, we have g'(c) = 0.
By Taylor Theorem with Remainder term, we have

glx) =glc)+g'(c)x—c) + H(é) (x — c) where & € (x,c) or (c,x)

> g(c) since g'(c) = 0, and g"(x) > 0forallx € (a,b)
> 0 since g(c) is absolute maximum.
So,
x*f(x) = *flc) > 0
which is absurb since let x = a in (**).
(Vl) Suppose that f'is continuous and differentiable on [0, ), and
limyo f'(x) + f{x) = 0, show that lim,.. f(x) = 0.

Proof: Since lim,.«f (x) + f{x) = 0, then given ¢ > 0, there is M > 0 such that as
x > M, we have

3k



—e<f(x)+flx) <e.
So, as x > M, we have
[—ge* + geM + geMfAM)] = —ee*
< [e'ftx)]’
< ge* = [ge* — geM + eeMfIM)]' .
If we let —ge* + geM + geMfIiM) = g(x), and ge* — geM + geMf(M) = h(x), then we have
g'(x) < [e0)] < W' (x)
and
gM) = eVfAM) = h(M).
Hence, for x > M,
—ge* + geM + geMfiM) = g(x)
< e*f(x)
< h(x) = ge* — geM + geMf(M)
It implies that, for x > M,
— &+ e*[eeM + geMfIM)] < flx) < € — e*[eeM — geMfIM)]
which implies that
lim f(x) = 0 since ¢ is arbitrary.

Note: In the process of proof, we use the result on Mean Value Theorem. Let £, g, and
h be continuous on [a, b] and differentiable on (a,b). Suppose fla) = g(a) = h(a) and
f(x) < g'(x) < h'(x)on (a,b). Show that f{x) < g(x) < h(x) on [a,b].
Proof: By Mean Value theorem, we have
[g(x) —fx)] - [g(a) - Aa)] = g(x) — fTx)
= g'(¢) —f(c), where ¢ € (a,x).
< 0 by hypothesis.
So, f{x) < g(x) on [a,b]. Similarly for g(x) < A(x) on [a,b]. Hence, f(x) < g(x) < h(x)
on [a,b].
(vii) Let f{x) = a;sinx +...+a,sinnx, where a; are real for i = 1,2,..n. Suppose that
[f(x)| < |x| for all real x. Prove that |a; +..+na,| < 1.

Proof: Let x > 0, and by Mean Value Theorem, we have
[flx) =f0)| = |[f(x)| = |a;sinx +...+a,sinnx|
= |f'(¢)x|, where ¢ € (0,x)
= |(a)cosc +...+na, cosnc)x|
< |x| by hypothesis.
So,
lajcosc +...+naycosnc| < 1
Note that as x - 0%, we have ¢ - 0*; hence, |a; +..+na,| < 1.

Note: Here are another type:
(a) [sin®x — sin?y| < |x — y| for all x, .
(b) [tanx — tany| > |x — y| for all x,y € (-5, F).

(viii) Letf: R — R be differentiable with /' (x) > ¢ for all x, where ¢ > 0. Show that



there is a point p such that f{p) = 0.
Proof: By Mean Vaule Theorem, we have

fx) = 0) +/ (x1)x > f0) +exifx >0
= fl0) +/(x2)x < A0) +cxifx <O.
So, as x large enough, we have f{x) > 0 and as x is smalle enough, we have f{x) < 0. Since
fis differentiable on R, it is continuous on R. Hence, by Intermediate Value Theorem,
we know that there is a point p such that f{(p) = 0.

(3) Here is another type about integral, but it is worth learning. Compare with (2)-(vii).
If

co + % +...+ nc_:1 = (0, where c; are real constants fori = 1,2,..n.

Prove that ¢( +...+c,x" has at least one real root between 0 and 1.

Proof: Suppose NOT, i.e., (i) flx) = co +...+c,x" > 0 for all x € [0, 1] or (ii)
fix) < Oforallx € [0,1].

In case (i), consider

1
0 < joﬂx)dx= co+%+...+ncﬁ =0

which is absurb. Similarly for case (i1).
So, we know that ¢( +...+c,x" has at least one real root between 0 and 1.

5.19. Assume fis continuous on [, b] and has a finite second derivative /' in the

open interval (a,b). Assume that the line segment joining the points 4 = (a,f{a)) and
B = (b,f(b)) intersects the graph of fin a third point P different from 4 and B. Prove that

f'(c¢) = 0 for some ¢ in (a,b).
Proof: Consider a straight line equation, called g(x) = fla) + %(}C —a). Then
h(x) = flx) — g(x), we knwo that there are three point x = a, p and b such that
h(a) = h(p) = h(b) = 0.
So, by Mean Value Theorem twice, we know that there is a point ¢ € (a,b) such that
h'(c) =0
which implies that /'(c) = 0 since g is a polynomial of degree at least 1.

5.20 If f'has a finite third derivative /' in [a,b] and if
fa) = f'(a) = fib) = f(b) =0,
prove that f'(c) = 0 for some c in (a, b).
Proof: Since f{a) = f(b) = 0, we have f(p) = 0 where p € (a,b) by Rolle’s
Theorem. Since f/'(a) = f'(p) = 0, we have f'(q1) = 0 where g, € (a,p) and since

f(p) =f(b) =0, we have /'(¢q2) = 0 where g, € (p,b) by Rolle’s Theorem. Since
f'(q1) =f'(q2) = 0, we have f"'(¢) = 0 where ¢ € (q1,92) by Rolle’s Theorem.

5.21 Assume fis nonnegative and has a finite third derivative /"' in the open interval
(0,1). If f{x) = 0 for at least two values of x in (0, 1), prove that /"'(¢) = 0 for some ¢ in
(0,1).

Proof: Since f{x) = 0 for at least two values of x in (0, 1), say fla) = f(b) = 0, where
a,b € (0,1). By Rolle’s Theorem, we have /' (p) = 0 where p € (a,b). Note that f'is
nonnegative and differentiable on (0, 1), so both f{a) and f(b) are local minima, where a
and b are interior to (a,b). Hence, f'(a) = f(b) = 0.



Since f'(a) = f(p) = 0, we have f'(q;) = 0 where ¢, € (a,p) and since
f(p) =f(b) =0, we have f'(¢q2) = 0 where g, € (p,b) by Rolle’s Theorem. Since
f'(q1) = f"(gq2) = 0, we have f"'(¢) = 0 where ¢ € (q1,92) by Rolle’s Theorem.

5.22 Assume fhas a finite derivative in some interval (a,+o).
(a) If fix) » 1 and f'(x) - casx — +0, prove that ¢ = 0.
Proof: Consider f{x + 1) — f{x) = f'(v) where y € (x,x + 1) by Mean Value Theorem,

since
lim ftx) = 1
which implies that
lim[fx+ 1) = fix)] = 0
which implies that (x - +00 & y - 400)
limf () = 0 = Jim /1)
Since f'(x) - ¢ as x - 4o, we know that ¢ = 0.

Remark: (i) There is a similar exercise; we write it as follows. If f{x) - L and
f(x) » casx - +oo, prove that ¢ = 0.

Proof: By the same method metioned in (a), we complete it.

(i1) The exercise tells that the function is smooth; its first derivative is smooth too.
(b) If f'(x) > 1 asx — +oo, prove that f{x)/x - 1 as x - +oo.

Proof: Given ¢ > 0, we want to find M > 0 such thatasx > M

Jx)

— 1| < e.

Since f'(x) —» 1 asx — +oo, then given &' = £, there is M' > 0 such that as x > M', we
have
F@ 1< £ = <1+£ *
By Taylor Theorem with Remainder Term,
fx) = M) +f(E)(x - M)
= flx) —x = fIM) + (&) - Dx = f (&M,
then for x > M,

29| |80 | ey £ | .

M) |, e £ M| by (*
s‘ “ +3+(1+3)‘ L | by (%)
Choose M > 0 such that as x > M > M', we have
ﬂ])\c/l)‘<£and‘%/‘<—8/3 . otk
3 (1+£)
Combine (**) with (***), we have proved that given ¢ > 0, there is a M > 0 such that as
x > M, we have

X

JON

< E&.

That is, limy..e 22 = 1.



Remark: If we can make sure that f{x) — o as x - +o, we can use L-Hopital Rule.
We give another proof as follows. It suffices to show that f{x) - o asx - +oo.

Proof: Since f'(x) - 1 asx — +oo, then given ¢ = 1, there is M > 0 such that as
x > M, we have

Fx)|<1+1=2,
Consider
Jx) = fM) + f1(E)(x — M)
by Taylor Theorem with Remainder Term, then
lim f{x) = +oo since f'(x) is bounded for x > M.

(¢) If/'(x) - 0 as x » +oo, prove that f{x)/x - 0 asx - +oo.
Proof: The method metioned in (b). We omit the proof.

Remark: (i) There is a similar exercise; we write it as follows. If /' (x) - L asx —» +o,
prove that f{x)/x - L as x - +oo. The proof is mentioned in (b), so we omit it.

(11) It should be careful that we CANNOT use L-Hospital Rule since we may not have
the fact f{x) - o asx — +o0. Hence, L-Hospital Rule cannot be used here. For example, f
is a constant function.

5.23 Let 4 be a fixed positive number. Show that there is no function f'satisfying the
following three conditions: f'(x) exists for x > 0, f(0) = 0, f'(x) > & forx > 0.

Proof: It is called Intermediate Value Theorem for Derivatives. (Sometimes, we
also call this theorem Darboux.) See the text book in Theorem 5.16.

(Supplement) 1. Suppose that @ € R, and f'is a twice-differentiable real function on
(a,0). Let My, M,, and M, are the least upper bound of |f{x)|, |/'(x)|, and |f" (x)],
respectively, on (a,0). Prove that M3 < 4M,M,.

Proof: Consider Taylor’s Theorem with Remainder Term,
_ L") 5712
fla+2h) = fla) +f(a)(2h) + 2—!(2h) , where i > 0.
then we have
/(@) = 5 [fla +2h) = fl@)] = /" (Eh
which implies that

Jf(a)| = %""th => M, < %-ﬁ-th.

Since g(h) = % + hM, has an absolute maximum at /% , hence by (*), we know that
M3 < AMyM,.

Remark:
2. Suppose that f'is a twice-differentiable real function on (0,), and /" is bounded on
(0,0), and f{x) - 0 asx — c. Prove that f'(x) - 0 asx - oo.

Proof: Since M? < 4M,M, in Supplement 1, we have prove it.

3. Suppose that f'is real, three times differentiable on [—1, 1], such that f{(—1) = 0,
A0) =0, f(1) =1, and f(0) = 0. Prove that /3 (x) > 3 for some x € (—1,1).

Proof: Consider Taylor’s Theorem with Remainder Term,



3)
SOe) x3, where ¢ € (x,0) or (0,x),

!
fx) = f0)+/(0)x + @xz + 3
Then let x = £1, and subtract one from another, we get
f3(e1) +fP(cy) = 6, where ¢; and ¢, in (—1,1).
So, we have prove /@) (x) > 3 for some x € (-1,1).
524 1th > 0and if /'(x) exists (and is finite) for every x in (@ — h,a + h), and if fis
continuous on [a — h,a + h], show that we have:

(a)

Na+h) ;ﬂ""” — Fla+0h) +f(a-0n).0<0<I:
Proof: Let g(h) = fla+ h) — fla — h), then by Mean Vaule Theorem, we have

g(h) —g(0) = g(h)
= g'(Oh)h, where 0 < 0 < 1

= [f'(a+0h) +f(a—0h))h

which implies that
fla+h) ;f(“_h) =f'(a+6h)+f(a—6h),0 <6 < 1.

(b)
fla+h) —2f§la) +fla—h) — fla+Ah) —f(a—Ah),0 < A < 1.

Proof: Let g(h) = fla+ h) — 2f(a) + fla — h), then by Mean Vaule Theorem, we have

g(h) —g(0) = g(h)
= g'(Ah)h, where 0 < A < 1

= [f'(a+ Ah) —f(a—Ah)]h

which implies that
j(a+h)—2f§la) + fla—h) = fla+Ah) —f(a—2h),0 < A< 1.

(c) If /' (a) exists, show that.
1a) = lhillolf(a +h) - 2];1(51) +fla—h)

Proof: Since
i fa+h) = 2fa) + fla—h)
750 h?
= lim Sla+h) 2‘hf (@=%) 1, L-Hospital Rule
flat+h) —f(a)  [fla)=f(a=h)
2 2

= lim
-0

= %(2f/(a)) since /"' (a) exists.

= f"(a).
Remark: There is another proof by using Generalized Mean Value theorem.
Proof: Let g,(h) = fla+ h) — 2f(a) + fla — h) and g,(h) = h?, then by Generalized

Mean Value theorem, we have



[g1(h) — £1(0)]g2(0h) = g (6h)[g2(h) — g2(0)]
which implies that

fla+h)-2fa)+fla—h) _ f(a+6h)—f(a—0h)
h? B

20h
Hence,
j(a +h)— 2f(a) + fla—h)
h—>0
f(a+ 6h) f(a 0h)
= Jm 26h

= f"(a) since f"'(a) exists.

(d) Give an example where the limit of the quotient in (¢) exists but where /" (a) does
not exist.

Solution: (STUDY) Note that in the proof of (c) by using L-Hospital Rule. We know
that |x| is not differentiable at x = 0, and |x| satisfies that

\O+h| \O hl _ f(0+h) —1(0—h)
h—>0 2h
So, let us try to find a function f so that f'(x) = |x|. So, consider its integral, we know that

) L ifx>0
X) =
2 ifx < 0

Remark: (i) There is a related statement; we write it as follows. Suppose that f defined
on (a,b) and has a derivative at ¢ € (a,b). If {x,} < (a,c) and {y,} < (c,b) with such
that (x, —y») - 0 asn — . Then we have

f(c) = hmf(y;z i)

n—oo

Hence, we complete it.

Proof: Since f'(¢) exists, we have

fn) = fle) +f(e)yn—c) +o(yn—c) *
and

flxn) = fle) +f(c)xn — ) + o(xn — ). *?
If we combine (*) and (*’), we have

Bt —ros G- s .

Note that

)%}n”%xc x”—_xcn|<lforalln,
we have

lim

n—o0

i o(yn—c) yn—c o(xn—c¢) x,—c
_hm|: Yn—C Yn—Xn + Xn—C Yn—Xn

EECRCEDY

Xn VYn —Xn

= 0.
which implies that, by (**)



fr(c) — },H%}f(yn) ﬂx") .

yn_xn

(i1) There is a good exercise; we write it as follows. Let /' € C*(a,b), and ¢ € (a,b).
For small |i| such that c + & € (a,b), write

fle+h) = fle) +f(c+0(h)h)h
where 0 < 6 < 1. Show that if /'(c) # 0, then lim,_0(h) = 1/2.

Proof: Since /' € C?*(a,b), by Taylor Theorem with Remainder Term, we have
!
fle+h)—flc) =f(c)h+ %hz, where & € (c,h) or (h,c)

= f'(c + 0(h)h)h by hypothesis.
So,

100D /@) 4y _ 1)
o 00 = T

and let 7 - 0, we have £ - ¢ by continuity of /" at c. Hence,
lhinge(h) = 1/2 since f'(c) + 0.

Note: We can modify our statement as follows. Let /' be defined on (a,b), and
c € (a,b). For small |h| such that c + & € (a,b), write

fle+h) = fle)+f(c+0Oh)h)h
where 0 < 6 < 1. Show that if /'(¢) # 0, and O(—x) = 0(x) for x € (a — h,a + h), then
limy_o0(h) = 1/2.

Proof: Use the exercise (c), we have

7'0) = tim KD —2j(c) +flc—h)
f(0+0(h)h) —f(c=0(=m)h)

h—>0 p by hypothesis
i GRS 9(h)2)(hf)" }fc O 20(hy since O(—x) = O(x) forx € (a—h,a+ h).

Since /" (c) # 0, we finally have lim;_o0(h) = 1/2.

5.25 Let f'have a finite derivatiive in (a,b) and assume that ¢ € (a,b). Consider the
following condition: For every € > 0, there exists a 1 —ball B(c;0), whose radius o
depends only on € and not on ¢, such that if x € B(c;d), and x # ¢, then

f(x) f(c) —f(e)| <.

Show that /' is continuous on (a, b) if this condition holds throughout (a, ).

Proof: Given ¢ > 0, we want to find a 6 > 0 such that as d(x,y) < 6, x,y € (a,b), we
have

) -f ) <&

Choose any point y € (a,b), and thus by hypothesis, given &' = ¢/2, there is a 1 —ball
B(y;6), whose radius 6 depends only on &' and not on y, such that if x € B(y;5), and
x # y, then,

ﬂx) f(y) —fO)| <el2 =¢.

Note that y € B(x,0), so, we also have



ﬂ—x))c :{,(y) —f(x)

<gR=¢

Combine (*) with (*”), we have

') =/ < e
Hence, we have proved f' is continuous on (a, b).
Remark: (i) The open interval can be changed into a closed interval; it just need to

consider its endpoints. That is, /' is continuous on [a, 5] if this condition holds throughout
[a,b]. The proof is similar, so we omit it.

(i1) The converse of statement in the exercise is alos true. We write it as follows. Let /'
be continuous on [a,b], and € > 0. Prove that there exists a d > 0 such that

ﬂx) f(c) —7(c)

<é

whenever 0 < |x —c¢| < 6, a < x,¢,< b.

Proof: Given ¢ > 0, we want to find a 06 > 0 such that

ﬂx) f(c) —7(c)

<é

whenever 0 < |x —c¢| < 8, a < x,¢ < b. Since f is continuous on [a,b], we know that ' is
uniformly continuous on [a,b]. That is, given ¢’ = & > 0, there is a & > 0 such that as
d(x,y) < 6, we have

/') =/ < e
Consider d(x,c) < 0, x € [a,b], then by (*), we have

f(x) f(c) —f ()| = |[f(x")—f(c)| < € by Mean Value Theorem

where d(x',x) < 6. So, we complete it.

Note: This could be expressed by saying that f'is uniformly differentiable on [a,b] if f
is continuous on [a, b].

5.26 Assume fhas a finite derivative in (a,b) and is continuous on [a,b], with
a < flx) < bforall xin [a,b] and |f'(x)| < @ < 1 for all x in (a,b). Prove that f'has a
unique fixed point in [a,b].

Proof: Given any x,y € [a,b], thus, by Mean Value Theorem, we have
[fx) = fO)| = [f' (2)[}x = y| < afx — y| by hypothesis.
So, we know that f'is a contraction on a complete metric space [a,b]. So, fhas a unique
fixed point in [a, b].

5.27 Give an example of a pair of functions f'and g having a finite derivatives in (0, 1),
such that

m )

) glx)

but such that lim,._,o g,(( . does not exist, choosing g so that g'(x) is never zero.

2

Proof: Let f{x) = sin(1/x) and g(x) = 1/x. Then it is trivial for that g’(x) is never zero.

In addition, we have

lim =% Jx) =0, and hm S ) does not exist.
0 g(x) 0 g'(x)



Remark: In this exercise, it tells us that the converse of L-Hospital Rule is NOT
necessary true. Here is a good exercise very like L-Hospital Rule, but it does not! We
write it as follows.

Suppose that /' (a) and g'(a) exist with g'(a) # 0, and f{a) = g(a) = 0. Prove that

(CO R A )
ey g) gl

Proof: Consider
po SO ) -fa) ) A/ - a)

T g(r) vt g() —gla) ¥ [gbr) - g(@)/(x - a)

_ f(a)

g'(a)

Note: (i) It should be noticed that we CANNOT use L-Hospital Rule since the
statement tells that f'and g have a derivative at a, we do not make sure of the situation of
other points.

since /'(a) and g'(a) exist with g'(a) # 0.

(i1) This holds also for complex functions. Let us recall the proof of L-Hospital Rule,
we need use the order field R; however, C is not an order field. Hence, L-Hospital Rule
does not hold for C. In fact, no order can be defined in the complex field since i2 = —1.

Supplement on L-Hospital Rule

We do not give a proof about the following fact. The reader may see the book named A
First Course in Real Analysis written by Protter and Morrey, Charpter 4, pp 88-91.

Theorem (2) Let fand g be continuous and differentiable on (a,b) with g’ # 0 on (a, b).
0

If
limf(x) =0= lirg}g(x) = 0 and
ALY
o gy 7
then
m LX)
o glx)

Remark: 1. The size of the interval (a, b) is of no importance; it suffices to
have g’ # 0 on (a,a + 8), for some 6 > 0.

2. (*) is a sufficient condition, not a necessary condition. For example,
flx) = x2, and g(x) = sin 1/x both defined on (0, 1).

3. We have some similar results: x - a™; x > a; x - +o(& 1/x - 07);
x - —oo(e 1/x - 07).

Theorem (<) Let fand g be continuous and differentiable on (a,b) with g’ + 0 on

(a,b). If
lim f(x) = oo = limg(x) = o0 and
@)
wat gllx) 7

then



m )
L glx)

Remark: 1. The proof is skilled, and it needs an algebraic identity.

2. We have some similar results: x - a™; x - a; x » +o(< 1/x - 01);
x - —oo(e 1/x - 07).

3. (*) is a sufficient condition, not a necessary condition. For example,
flx) = x + sinx, and g(x) = x.

Theorem (O. Stolz) Suppose that y, - o, and {y,} is increasing. If

s Xn = X1 _
}zllg Yn — Vn-1 L, (OI’ + OO)
then
}lggy = L. (or + o)

Remark: 1. The proof is skilled, and it needs an algebraic identity.

2. The difference between Theorem 2 and Theorem 3 is that x is a continuous
varibale but x, is not.

Theorem (Taylor Theorem with Remainder) Suppose that f'is a real function defined on
[a,b]. If f*(x) is continuous on [a, b], and differentiable on (a,b), then (let

x,c € [a,b], with x # ¢) there is a X, interior to the interval joining x and ¢ such
that

fx) = Pf(x)+fg i))'( e

where
Px) —Zﬂ (C) c)k.

Remark: 1. As n = 1, it is exactly Mean Value Theorem.

2. The part
f(n+1)(x)
(n+1)!
is called the remainder term.

(x=e)"" = Ru(x)

3. There are some types about remainder term. (Lagrange, Cauchy, Berstein,

etc.)
Lagrange
Ru(x) = %(x )"
Cauchy
Ry(r) = L0 +n?(x — D [(1-0)"(x - )™, where 0 < 0 < 1.
Berstein

Ru(x) = -k jj(x — )" D ()t



5.28 Prove the following theorem:
Let fand g be two functions having finite nth derivatives in (a,b). For some interior

point ¢ in (a,b), assume that f{c) = f'(c¢) =...= f*"V(c) = 0, and that
g(c) = g'(c) =...= g""V(c) = 0, but that g (x) is never zero in (a,b). Show that
CORLI )

o gx)  g™(e)’
NOTE. /™ and g™ are not assumed to be continuous at c.
Hint. Let

F@) = ftn) - £ S0,

define G similarly, and apply Theorem 5.20 to the functions F and G.
Proof: Let

Fo) = ) - L2 - o

and
() -
G) = gr) - EZE (e ey
then inductively,

F®(x) = f®(x) - (n{(n;(i)k)! (x = )"

and note that
F®(c)=0forallk =0,1,..,n—3, and F""2(c) = —f"(c).
Similarly for G Hence, by Theorem 5.20, we have
n—2
(k) (k)
[F(x) Er -0 }[wa(xl)] - [F<””(x1)][G(x) - G- c)"}
k=0 )

k=0

where x| between x and ¢, which implies that

g D)) = [P Ge)]g)]-

Note that since g is never zero on (a,b); it implies that there exists a § > 0 such that
every g® is never zero in (¢ — 8,¢ + 6) — {c}, where k = 0,1,2...,n. Hence, we have, by
(*)s
n—1)
lim —— Jx) = lim ]«1&
X—C g(X) X=C g(n— )(-xl)
n—1) _ {(n-1)
= lim S D) = /D) since x - ¢(= x; - ¢)
X|—¢ g(n—l)(xl) _ g(n—l)(c)
i D@D = () — )
17 (gD (xy) — g (e))/ (e = ¢)
_ /()

g™ (c)

since /") exists and g exists(+ 0) on (a,b).

Remark: (1) The hint is not correct from text book. The reader should find the
difference between them.

(2) Here ia another proof by L-Hospital Rule and Remark in Exercise 5.27.

Proof: Since g is never zero on (a,b), it implies that there exists a & > 0 such that



every g® is never zero in (¢ — 8,¢ + 6) — {c}, where k = 0,1,2...,n. So, we can apply
(n — 1) —times L-Hospital Rule methoned in Supplement, and thus get

S&) o S0
lxl—l:lg g(x) x—»c g(n 1)(x)
i L@ = 00 e)
x—»c g(n 1)(X) g(n 1)(0)
(@) — ()~ o)
H QD@ - g D) o)

n)
_ S since /") exists and g exists(+ 0) on (a,b).
g"(c)

5.29 Show that the formula in Taylor’s theorem can also be written as follows:
AR (C) b, - -x)""
ﬂx)_z C) + (}’l—l)' ﬂ (X1),
where x, is interior to the 1nterval joining x and c. Let 1 — 0 = (x —x;)/(x — ¢). Show that
0 < 0 < 1 and deduce the following form of the remainder term (due to Cauchy):
(1-0)""(x~
(n—1)!
Hint. Take G(¢) = ¢ in the proof of Theorem 5.20.

Proof: Let

c)nf(”)[Gx +(1=0)c].

n—1
Foy=3 S k;{,(t) (- ), and G(t) = 1,
k=0 ’

and note that

Fi(1) = ({;n_)(?), (="

then by Generalized Mean Value Theorem, we have

[F(x) = F(OIIG'(x1)] = [G(x) = G(O)][F (x1)]

which implies that

) — Zf( (C) —e)f = %(}C—M)n
_ f(n)(e)(cnt(i)_! 2 (x—¢)"(1-6)", where x; = 0x + (1 - 0)c.

So, we have prove that
n—1 /)
fwy = 2D oyt v r ),
k=0

where

Roi(x) = f(")(e’(cn“i), ) (x — ¢y(1 - 0)", where x, = 0x + (1 - 0)c

is called a Cauchy Remainder.

Supplement on some questions.
1. Let f'be continuous on [0, 1] and differentiable on (0, 1). Suppose that f{0) = 0 and



[f'(x)] < [fx)] for x € (0,1). Prove that f'is constant.
Proof: Given any x; € (0, 1], by Mean Value Theorem and hypothesis, we know that

[flx1) = f0)| = x1lf' (x2)| < x1[flx2)|, where x; € (0,x1).
So, we have

x| < x1 e xalfixn)| < M(xy « « +xn), where x,1 € (0,x,), and M = sup [f{x)|
x€la,b]

Since M(x; + « *x,) - 0, as n - oo, we finally have f{x;) = 0. Since x, is arbirary, we find
that f{x) = O on [0, 1].

2. Suppose that g is real function defined on R, with bounded derivative, say |g'| < M.
Fix & > 0, and define f{x) = x + £g(x). Show that fis 1-1 if ¢ is small enough. (It implies
that f'is strictly monotonic.)

Proof: Suppose that f{x) = f(y), i.e., x + gg(x) = y + £g(y) which implies that

v —x| = ¢lg(y) — g(x)| < eM]y — x| by Mean Value Theorem, and hypothesis.
So, as ¢ is small enough, we have x = y. That s, fis 1-1.

Supplement on Convex Function.

Definition(Convex Function) Let f'be defined on an interval /, and given 0 < 4 < 1,
we say that f'is a convex function if for any two points x,y € I,

SAx+ (1 -2)y) < Hx) + (1 =) Y).

For example, x? is a convex function on R. Sometimes, the reader may see another weak
definition of convex function in case A = 1/2. We will show that under continuity, two
definitions are equivalent. In addition, it should be noted that a convex function is not
necessarily continuous since we may give a jump on a continuous convex function on its
boundary points, for example, f{x) = x is a continuous convex function on [0, 1], and
define a function g as follows:

gx) =x,1fx € (0,1) and g(1) = g(0) = 2.
The function g is not continuous but convex. Note that if —f'is convex, we call f'is concave,

vice versa. Note that every increasing convex function of a convex function is convex. (For
example, if f'is convex, so is ¢/.) It is clear only by definition.

Theorem(Equivalence) Under continuity, two definitions are equivalent.

Proof: It suffices to consider if

f(x;r;v) < Sx) ;f(y)

then
fAx+ (0 -1)y) M)+ -A)f(y) forall0 < A < 1.
Since (*) holds, then by Mathematical Induction, it is easy to show that

](.x1 +...+X2n> < f(.x1)+...+f(X2n)
2 = 2 -

Claim that

f(%) < fxn) +'r'l'+ﬂx”) foralln € N.

Using Reverse Induction, let x, = ~-==%=L then

kk



X1 +...+x i X1 +... X1 X
f( 7 n>_f< 7. +_n>

n

= fxn)

< Sx) +',,'l'+ﬂx”) by induction hypothesis.
So, we have

/(xl +.. X, ) f(xl)+ +ﬂxn 1)

n—1 n—1
Hence, we have proved (**). Given a rational number m/n € (0,1), where
g.c.d.(m,n) = 1; we choose x = x| =...= xp, and y := x,,11 =...= X,, then by (**), we
finally have

n—m mf(x n—m
(n%x+( n)y)S f’S)_'_( n)f(y)z%f(X)*‘(l—%)f(Y) Hkk

Given A € (0,1), then there is a sequence {¢, (S Q) such that g, - A asn - o. Then
by continuity and (**%*), we get

SAx+ (1 =-2)y) < Hx) + (1 = V) ).

Remark: The Reverse Induction is that let S € N and § has two properties:(1) For
everyk > 0,2 e Sand(2)k € Sandk—1 € N, thenk—1 € S. Then S = N.

(Lemma) Let f'be a convex function on [a, b], then fis bounded.

Proof: Let M = max(f{a),f(b)), then every pointz € I, write z = aA + (1 — 1)b, we
have

fz) = flar + (1 = A)b) < Mla) + (1 = A)f(b) < M.

In addition, we may write z = "*b — t, where ¢ is chosen so that z runs through [a,b]. So,

we have
f(a+b)_2 a—é—b t)+% a+b+t)

CONCIOECIONE

2f(a2Lb) - M :=m < fz).
Hence, we have proved that f'is bounded above by M and bounded below by m.

which implies that

which implies that

(Theorem) If /' : 1 — R is convex, then f'satisfies a Lipschitz condition on any closed
interval [a,b] < int(I). In addition, f'is absolutely continuous on [a, b] and continuous on
int(I).

Proof: We choose (> 0) so that [a — &,b + £](< int(])). By preceding lemma, we
know that f'is bounded, say m < f{x) < M on [a — &,b + £]. Given any two points x, and y,
with a < x < y < b We consider an auxiliary point z = y + ¢, and a suitable A = 2=,
theny = Az + (1 — A)x. So,

J) =z + (1 = Dx) < M2) + (1 = Dflx) = A[f(z) = flx)] +fTx)

which implies that

) = fx) < AM—m) < L2 (M- m).

Change roles of x and y, we finally have



fy) —fx)| < K|y — x|, where K = M;m

That is, f'satisfies a Lipschitz condition on any closed interval [a,b].

We call that f'is absolutely continuous on [a, b] if given any ¢ > 0, thereisad > 0
such that for any collection of {(a;,b;)}_, of disjoint open intervals of [a,b] with
ZZ:I b; —a; < 8, we have

D Ib) - fla)| < e
k=1

Clearly, the choice 6 = ¢/K meets this requirement. Finally, the continuity of f on int(/) is
obvious.

(Theorem) Let fbe a differentiable real function defined on (a,b). Prove that f'is
convex if and only if /' is monotonically increasing.

Proof: (=) Suppose fis convex, and given x < y, we want to show that f'(x) < f'(y).
Choose s and ¢ such that x < u < s < y, then it is clear that we have

f) ~f) _ ) —fw) _ f0) —As)
u-—Xx - S—Uu - y—==s :

Lets —» y~, we have by (*)
u) —flx
A2 < 1)
which implies that, let u - x*

f &) <fO).
(<) Suppose that /' is monotonically increasing, it suffices to consider A = 1/2, if
x <y, then
Sx) + /) _/(x+y ) _ ) - A5H)T+ ) -A55)]
2 2 2
= S5 €0) ~/(62)], where &1 < &
< 0.

Similarly for x > y, and there is nothing to prove x = y. Hence, we know that f'is convex.

(Corollary 1) Assume next that /" (x) exists for every x € (a,b), and prove that fis
convex if and only if //(x) > 0 for all x € (a,b).

Proof: (=) Suppose that f'is convex, we have shown that /' is monotonically increasing.
So, we know that /" (x) > 0 for all x € (a,b).

(<) Suppose that /" (x) > 0 for all x € (a,b), it implies that /' is monotonically
increasing. So, we know that f'is convex.

(Corollary 2) Let 0 < B < a, then we have
1/B ,x a N la
(wﬂ +...+[y,,|ﬁ> - ([yl| 4.yl )
= n

n

Proof: Let p > 1, and since (x?)" = p(p — 1)x*2 > 0 for all x > 0, we know that
flx) = x? is convex. So, we have (let p = %)

<x1 +.. X, )wﬂ o X
n - n

by



f<X1 +.h.+x,, ) < Sxy) +-ﬁ-+f(xn) '

Choose x; = [y,-|ﬁ, where i = 1,2,..,n. Then by (*), we have

(Ly1|ﬂ+.h.+|yn|”>‘ (w oyl )“‘”

(Corollary 3) Define
r r N\ Ur
M (y) = (b“' +','l'+b}”| ) , where r > 0.

Then M,(y) is a monotonic function of » on (0, ). In particular, we have

Mi(y) < Ma(y),

that is,

IR AR ([y1|2 oyl )”2
n - n

Proof: It is clear by Corollary 2.
(Corollary 4) By definition of M,(y) in Corollary 3, we have
UmM, () = (1]« + pa) " = Mo()

and

lim M, ) = max(val;... bal) = Mao(y)

: i etoal” N
Proof: 1. Since M, (y) = (T> , taking log and thus by Mean Value
Theorem, we have

log("H50) 0 (L)X vl logli
r=0 (n)zizlbji‘

, where 0 < 7' < r.

So,
log ‘yl‘r+’«1»«+\y‘»1\")
IimM,(y) = lime—
r—0* ’(y) -0+

() Do bl sl
= lime (,,)ZHW

r-0%*

> el
K og|y;
. i=1 !

=e n

= (1] + = )™

2. Asr > 0, we have

r 1/r
{[maxuyl';;’ly”')] } < My(y) < {Imax(ifs- ... aD] "

which implies that, by Sandwich Theorem,
lim M, (y) = max(V1},....[val)

1/r ~ 1.

(Imequality 1) Let f'be convex on [a,b], and let ¢ € (a,b). Define

since lim, (1)



I(x) = fla) + LD (g,
then f(x) > I(x) for all x € [c,b].

Proof: Consider x € [c,d], then ¢ = =5 2 x, we have

fe) = §§ aﬂa)+ =)

which implies that
i) = flay + LD=ND (o gy — ),

(Inequality 2) Let /' be a convex function defined on (a,b). Leta < s <t < u < b,
then we have

O -As) _ fw)-fs) _ fa) — A1)
t—s - u—=s )

- u—t

Proof: By definition of convex, we know that

fx) Sﬂs)+1%(x—s),x € [s,u] *
and by inequality 1, we know that
fls) + %(x—s) < flx), x € [t,u]. ok

So, as x € [t,u], by (*) and (**), we finally have
S -As) _ fw) ~£s)
u—-s -

r—s -

Similarly, we have

fw) ~fls) _ flw) ~A0)
u—=s - u—t -
Hence, we have
A=) - fu) =fs) _ f) =f)

t—s - u—=s - u-—t

Remark: Using abvoe method, it is easy to verify that if f'is a convex function on (a,b),
then /" (x) and f, (x) exist for all x € (a,b). In addition, if x < y, where x,y € (a,b), then
we have

fo) < fix) S LO0) <00
That is, f, (x) and /" (x) are increasing on (a,b). We omit the proof.

(Exercise 1) Let f{x) be convex on (a,b), and assume that f'is differentiable at
c € (a,b), we have

I(x) = fle) + /() (x — ) < flx).

That is, the equation of tangent line is below f{x) if the equation of tangent line exists.

Proof: Since f'is differentiable at ¢ € (a,b), we write the equation of tangent line at c,
I(x) = fle) +f(e)(x - o).
Define
Sls) —fle)

§—C

f%whereb>t>c,

m(s) = where a < s < ¢ and m(t) =

then it is clear that

m(s) < f'(¢c) < m()
which implies that



(x) = fle) +f'(e)(x — ¢) < flx).

(Exercise 2) Let f : R — R be convex. If fis bounded above, then f'is a constant
function.

Proof: Suppose that f'is not constant, say f(a) + f(b), where a < b. If f(b) > fla), we
consider

S&x) =Ab) _ fb) —fla)
x—>b - b—a

, Where x > b
which implies that as x > b,
fix) > W(}C—b) + f(b) - +o0as x > +o©

And if f(b) < fla), we consider
f&) ~fla) _ fb) ~fla)
X—a = b-a

, where x < a

which implies that as x < a,

) = W(x—a) +fla) » +o0as x —» —.

So, we obtain that f'is not bouded above. So, f must be a constant function.
(Exercise 3) Note that e* is convex on R. Use this to show that 4. P.> G.P.
Proof: Since (¢*)" = e* > 0 on R, we know that e* is convex. So,

e < w, wherex; e R, i =1,2,...,n.

So,lete¥ =y, > 0, fori = 1,2,...,n. Then

(1 - e o) < LE W0
Vector-Valued functions
5.30 If a vector valued function f'is differentiable at ¢, prove that
/(€) = lim 5-[fle + ) = flo)].
Conversely, if this limit exists, prove that fis differentiable at c.

Proof: Write f = (f1,...,f») : S(€ R) - R", and let ¢ be an interior point of S. Then if
fis differentiable at ¢, each f; is differentiable at c. Hence,

lim - [f(c + 1) —f(e)]
(fl (c+h)=file)  fale+h) —fulc) )
) )

= lim
-0

= (limfl(chh})l —fi(e) .

h-0
= (1(©),.-.fu(€))
=f(©).

Conversly, it is obvious by above.

hmf"(c + h})l _ﬂ(c) )

h-0

<.y

Remark: We give a summary about this. Let /' be a vector valued function defined on
S. Write f: S(€ R") - R™, cis a interior point.

f = (f1,...,fn) 1s differentiable at ¢ < each f; is differentiable at c,
and



f = (f1,...,fn) 1s continuous at ¢ < each f; is continuous at c.
Note: The set S can be a subset in R”, the definition of differentiation in higher
dimensional space makes (*) holds. The reader can see textbook, Charpter 12.

5.31 A vector-valued function f'is differentiable at each point of (a,b) and has constant
norm ||f]|. Prove that f{z) - f(¢) = 0 on (a,b).

Proof: Since (f,f) = ||f]|* is constant on (a,b), we have (.} = 0 on (a,b). It implies
that 2(f,f') = 0 on (a,b). Thatis, f(¢) - f'(t) = 0 on (a,b).

Remark: The proof of (f,g)" = (f',g) + {f,g') is easy from definition of differentiation.
So, we omit it.

5.32 A vector-valued function fis never zero and has a derivative /' which exists and is
continuous on R. If there is a real function A such that f'(¢) = A(¢)f(¢) for all ¢, prove that
there is a positive real function u and a constant vector ¢ such that f{¢) = u(t)c for all ¢.

Proof: Since f'(z) = A(t)f(¢) for all #, we have
(A1 @), ... fu(@) = () = LOA) = ADf1@), ..., A1)

which implies that

LD = A(¢) since fis never zero.
fi(?)
Note that 2% is a continuous function from R to R for each i = 1,2,...,n, since f' is

Ji(®)
continuous on R, we have, by (¥)

;igg dr = [ 2t = fio) = %e“” fori = 1,2,...,n.

So, we finally have

A1) = (fi(0),....1n(0))
— ex(z)(f (a) Jn(a) )

1
eA(a) IRRRE e/l(a)

= u(t)c
where u(t) = X0 and e = (450 5

Supplement on Mean Value Theorem in higher dimensional space.

In the future, we will learn so called Mean Value Theorem in higher dimensional
space from the text book in Charpter 12. We give a similar result as supplement.

Suppose that f'is continuous mapping of [a,b] into R” and f'is differentiable in (a,b).
Then there exists x € (a,b) such that
1f0) = fa)ll < (b= a)llf ().
Proof: Let z = f(b) — fla), and define ¢(x) = f{x) - z which is a real valued function

defined on (a,b). It is clear that ¢(x) is continuous on [a, b] and differentiable on (a,b).
So, by Mean Value Theorem, we know that

d(b) — ¢(a) = ¢'(x)(b—a), where x € (a,b)

which implies that
6(b) = ¢(a)| = |9'(x)(b - a)|
< |IA(b) = fla)||l¢'(x) || (b — a) by Cauchy-Schwarz inequality.



So, we have
1) -fla)l < b-a)|f ().

Partial derivatives
5.33 Consider the function f deﬁned on R? by the following formulas:

flx,y) = 2+y2 if (x,y) # (0,0) f(0,0) = 0.

Prove that the partial derivatives D f(x,y) and D,f{(x,y) exist for every (x,y) in R? and
evaluate these derivatives explicitly in terms of x and y. Also, show that f'is not continuous
at (0,0).

Proof: It is clear that for all (x,y) # (0,0), we have

Dif(x,y) = 2— and Dof(x,y) = x———2
Ty (% +y2)°

2 2

For (x,y) = (0,0), we have
. ﬂx,O) —ﬂ0,0) —
Dif0,0) = lxlg)l x—0 =0

Similarly, we have
D,f(0,0) = 0.
In addition, let y = x and y = 2x, we have
lirglj(x,x) =12 # lirglf(x,Zx) = 2/5.
Hence, f'is not continuous at (0,0).

Remark: The existence of all partial derivatives does not make sure the continuity of f.
The trouble with partial derivatives is that they treat a function of several variables as a
function of one variable at a time.

5.34 Let f'be defined on R? as follows
f(xy) y 2+y2 lf(xny)#:(o O) f(O 0)_0

Compute the first- and second-order partial derivatives of f at the origin, when they exist.

Proof: For (x,y) # (0,0), it is clear that we have

_ 4n? _xt—dx2y?
Df(x,y) = —( 3 )2 and D,f(x,y) = +y2)2
and for (x,y) = (0,0), we have
D1f(0,0) = f(x 0) f(O 0) — 0, Dof(0,0) = f(0 y) f(0 0 _ 4

Hence,

D1/(0,0) = lim DJ(xO))C ’())ﬂo 0 _y,

Df(0,0) = lim 20 = 22/(0.0)

= lim 2 does not exist,
0 X

Df10.0) = lim 202 =DJ0.0)
’ 50 y—=0
and



hm = 0.

Daaf0.0)  tig 02— D100
y— y»Oy

Remark: We do not give a detail computation, but here are answers. Leave to the
reader as a practice. For (x,y) # (0,0), we have

4y3(y? — 3x2
D1 fx,y) = LJ
(x2 +y?)
4xy?(3x2 — y?)
D f(x,y) =
T
4xy?(3x2 — y?)
Dy f(x,y) =
) =
and
2012 _ 2y
Daofle,y) = 4x2y(y?* — 3x ).

(2 + %)’
complex-valued functions

5.35 Let S be an open set in C and let $* be the set of complex conjugates Z, where
z € 8. If fis defined on S, define g on S* as follows: g(z) = f(z), the complex conjugate
of f{z). If fis differentiable at ¢, prove that g is differentiable at ¢ and that g'(¢) = f'(¢).

Proof: Since ¢ € S, we know that c is an interior point. Thus, it is clear that ¢ is also an
interior point of $*. Note that we have

the conjugate of (f( ?) f(c) ) = %
z)—g(c - -
- 28280 by o) - o).
Note that z - ¢(& z —» ¢), so we know that if f'is differentiable at ¢, prove that g is
differentiable at ¢ and that g'(¢) = f'(¢).

5.36 (1) In each of the following examples write f = u + iv and find explicit formulas
for u(x,y) and v(x,y) : ( These functions are to be defined as indicated in Charpter 1.)

(a) flz) = sinz,
Solution: Since e”” = cosz + isinz, we know that

sinz = %[(ey +e7)sinx + i(e’ — e) cosx]

from sinz = % So, we have
e +e¥)sinx
u(r.y) = L)
and
ey —eV)cosx
Wry) = Lme)eosr

(b) f(z) = cosz,
Solution: Since e” = cosz + isinz, we know that
Cosz = %[(e‘y + e’)cosx + (e? — e¥)sinx]

from cosz =

eiz + e*iz
2

. So, we have



(e? +e¥)cosx

u(x,y) = <8
and
V(xy) = (e - ;y)sinx'
(©)fz) = [z,

1/2, we know that

u(x,y) = (x? +y?)

Solution: Since |z| = (x? +)?)
12

and
v(x,y) = 0.
(D) fz) =z,
Solution: Since z = x — iy, we know that
u(x,y) =x
and
v(x,y) = -y

(e) flz) = argz, (z # 0),
Solution: Since argz € R, we know that
u(x,y) = arg(x + iy)
and
v(x,y) = 0.

(D fz) = Log z, (z # 0),
Solution: Since Log z = log|z| + iarg(z), we know that

u(x,y) = log(x* +y2)"?
and

v(x,y) = arg(x + iy).
(@) fz) = €7,

Solution: Since e7* = ¢®*)+(2%)  we know that
u(x,y) = e’ cos(2xy)
and
v(x,y) = e~ sin(2xy).

(h) f(z) = z%, (a complex, z # 0).
Solution: Since z* = e%/°¢Z then we have (let a = o + iay)
Z0 = e(a]+ia2)(log|z\+iargz)
— (@i logll-as argz)+i(ay logllay argz)
So, we know that
u(x,y) = e logk-aarez cog(a, loglz| + a argz)

e log(x2+y2)”2—f12 arg(x+iv) cos <a2 log(x2 + yz) 12

+ aarg(x + iy))



and

e?1logkl-marez gin (g, loglz| + ) argz)

— i log( ) P arg(xtiv) sin(az log(x? +32)" + ay arg(x + iJ’)>.

v(x,y)

(i1) Show that © and v satisfy the Cauchy -Riemanns equation for the following values
ofz : All zin (a), (b), (g); no z in (c), (d), (e); all z except real z < 0 in (f), (h).

Proof: (a) sinz = u + iv, where

(e + e¥)sinx (e —e?)cosx

u(x,y) = 3 and v(x,y) = 5
So,
Uy = Vy = (e + Zy)cosx forallz = x + iy
and
Uy = —vy = (e” = e)sinx forall z = x + iy.

2

(b) cosz = u + iv, where

eV +e’)cosx eV —eY)sinx
u(ry) = LFEIOX gy ) = (22 )SI0X

So,
_ (e +e¥)sinx
2

Uy = Vy = forallz = x +iy.

and
(e —e?)cosx
2

Uy = —Vy = forallz = x +iy.

(¢) |z| = u + iv, where
u(x,y) = (x? +y2)1/2 and v(x,y) = 0.
So,

-12

Uy =x(x>+y*)" " =v,=0ifx =0,y = 0.

and

-12

uy =y +y*) " =-v,=0ifx# 0, y = 0.

So, we know that no z makes Cauchy-Riemann equations hold.

(d) Z = u + iv, where

u(x,y) = x and v(x,y) = —y.
So,
uy =1+ -1=v,.

So, we know that no z makes Cauchy-Riemann equations hold.

(e) argz = u + iv, where

— 7 < u(x,y) = arg(x? + )" < 7 and v(x,y) = 0.

Note that



(1) arctan(y/x), ifx > 0,y € R
2)r/2, ifx =0,y >0

u(x,y) = < (3) arctan(y/x) + 7, ifx < 0, y > 0

(4) arctan(y/x) — 7, ifx < 0, y < 0
(5) —n/2,ifx =0,y <O0.

and
ve = v, = 0.

So, we know that by (1)-(5), for (x,y) # (0,0)

_ Y

U =72 12
and for (x,y) ¢ {(x,y) : x < 0,y = 0}, we have
__ x

Hence, we know that no z makes Cauchy-Riemann equations hold.

Remark: We can give the conclusion as follows:

_ _ Y
(argz), = iy for (x,y) # (0,0)

and

(argz), = = iyz for (x,y) ¢ {(x,y) : x <0,y = 0}.

(f) Log z = u + iv, where

u(x,y) = log(x? +y2)1/2 and v(x,y) = arg(x? +y2)1/2.

Since
y = 2 — anduy = —=—
x2+y x2+y
and
Ve = ﬁ for (x,y) = (0,0) and v, = xszyz for (x,y) ¢ {(x,y) : x <0,y =0},

we know that all z except real z < 0 make Cauchy-Riemann equations hold.

Remark: Log z is differentiable on C — {(x,y) : x < 0,y = 0} since Cauchy-Riemann
equations along with continuity of u, + ivy, and u, + iv,.

(g) e = u + iv, where

u(x,y) = e’ cos(2xy) and v(x,y) = e’ sin(2xy).
So,
uy = v, = 2e¥ 7’ [x(cos2xy) — y(sin2xy)] for all z = x + iy.
and
Uy, = —vy = —2e* 7 [y(cos2xy) + x(sin2xy)] for all z = x + iy.

Hence, we know that all z make Cauchy-Riemann equations hold.

(h) Since z* = e*227 and ¢7 is differentiable on C, we know that, by the remark of (f),
we know that z¢ is differentiable for all z except real z < 0. So, we know that all z except
real z < 0 make Cauchy-Riemann equations hold.

( In part (h), the Cauchy-Riemann equations hold for all z if & is a nonnegative integer,



and they hold for all z # 0 if a is a negative integer.)
Solution: It is clear from definition of differentiability.
(iii) Compute the derivative /' (z) in (a), (b), (f), (g), (h), assuming it exists.
Solution: Since f'(z) = uy + ivy, if it exists. So, we know all results by (ii).

5.37 Write f = u + iv and assume that f'has a derivative at each point of an open disk D
centered at (0,0). If au? + bv? is constant on D for some real a and b, not both 0. Prove
that f'is constant on D.

Proof: Let au? + bv? be constant on D. We consider three cases as follows.
1.Asa = 0,b # 0, then we have
v2 is constant on D
which implies that
vy = 0.

If v = 0 on D, it is clear that f'is constant.

Ifv # 0 on D, thatis vy, = 0 on D. So, we still have fis contant.
2.Asa #= 0,b = 0, then it is similar. We omit it.

3. Asa # 0,b # 0, Taking partial derivatives we find

auuy + bvv, = 0 on D.
and
auuy, + bvv, = 0 on D.
By Cauchy-Riemann equations the second equation can be written as we have
—auvy + bvu, = 0 on D.
We consider (1)(vy) + (2)(ux) and (1)(ux) + (2)(vx), then we have
bv(vZ+ui) =0
and
au(vZ+u2) =0
which imply that
(au? + bv?)(vZ + u?) = 0.

If au? + bv? = ¢, constant on D, where ¢ # 0, then vZ + u2 = 0. So, f'is constant.

If au? + bv? = ¢, constant on D, where ¢ = 0, then if there exists (x,y) such that
vZ+u? # 0, then by (3) and (4), u(x,y) = v(x,y) = 0. By continuity of vZ + u?, we know
that there exists an open region S(S D) such that u = v = 0 on S. Hence, by Uniqueness
Theorem, we know that f'is constant.

Remark: In complex theory, the Uniqueness theorem is fundamental and important.
The reader can see this from the book named Complex Analysis by Joseph Bak and
Donald J. Newman.



Functions of Bounded Variation and Rectifiable Curves
Functions of bounded variation

6.1 Determine which of the follwoing functions are of bounded variation on [0, 1].
(a) flx) = x?sin(1/x) ifx # 0, f{0) = 0.
(b) flx) = Jx sin(1/x) ifx # 0, f{0) = 0.
Proof: (a) Since
f(x) = 2xsin(1/x) — cos(1/x) forx € (0,1] and /'(0) = 0,

we know that f'(x) is bounded on [0, 1], in fact, [/'(x)| < 3 on [0, 1]. Hence, f'is of
bounded variation on [0, 1].

(b) First, we choose 7 + 1 be an even integer so that —-

Z(n+1)

< 1, and thus consider a

partition P = {O = Xg, X| =

we have

_ 1 | _ 1 _
, X2 = 2% seees Xn = n%axn-%—l - (n+1)%,xn+2 - 1}9 then

N\a|~

n+2 n

D ALl = 2@(2 ,/1/k>.

k=1 k=1

Since D J1/k diverges to +oo, we know that f'is not of bounded variation on [0, 1].

6.2 A function /, defined on [a, b], is said to satisfy a uniform Lipschitz condition of
order a > 0 on [a,b] if there exists a constant M > 0 such that |f{x) — f{y)| < M]x — y|* for
all x and y in [a,b]. (Compare with Exercise 5.1.)

(a) If fis such a function, show that @ > 1 implies f'is constant on [a, b], whereas
a = 1 implies f'is of bounded variation [a, b].
Proof: As a > 1, we consider, for x # y, where x,y € [a,b],
OS lf(x)_f()}ﬂ < x — afl.
=l M=y
Hence, f'(x) exists on [a,b], and we have f(x) = 0 on [a,b]. So, we know that fis

constant.
As a = 1, consider any partition P = {a = x, X1,..., Xxn» = b}, we have

D M <MD g —xi] = M(b - a).
1 k=1

=
That is, fis of bounded variation on [a, b].

(b) Give an example of a function f'satisfying a uniform Lipschitz condition of order
a < 1 on [a,b] such that fis not of bounded variation on [a, b].

Proof: First, note that x* satisfies uniform Lipschitz condition of order a, where
0 < a < 1. Choosing 8 > 1 such that a8 < 1 and let M = D, - since the series

k=1 %P
converges. So, we have 1 = 437" L.
Define a function fas follows. We partition [0, 1] into infinitely many subsintervals.
Consider
_11 11
M 158 M 28>
And in every subinterval [x;,x;;1], where i = 0,1,...., we define

1
p SERS

<~

xo =0, x; —xo — X1 = Xn —Xp-1 =



_ _Xit X Da
foy = (o= 2] ),

. . . . . . ) o
then fis a continuous function and is not bounded variation on [0, 1] since ) 1 (ﬁ k%)

diverges.

In order to show that f'satisfies uniform Lipschitz condition of order &, we consider
three cases.

() Ifx,y € [xi,xi1], and x,y € [x;, 5= ] orx,y € [*54 x;,], then

) =) = =] < e =y
(2)Ifx,y € [xi,xi1], and x € [x;, “5%- ] ory € [F540 x;, ], then there is a
z € [x;, =5 ] such that {y) = f(z). So,
[fx) =fW)] = [fx) =f)] < x* =z < v —z|* < e —p|"
(3)Ifx € [x;,xi1] and y € [xj,xj.1], where i > j.

Ifx € [x;, 2517, then there is a z € [x;, 222 ] such that f{y) = f(z). So,
2

T2
[fx) = )| = flx) =f2)| < x* —z%] < e — 2" < e —y[".

XitXis]

Similarly for x € [=5*,x;1].

Remark: Here is another example. Since it will use Fourier Theory, we do not give a
proof. We just write it down as a reference.

Z k
TOEDIES
k=1

(c) Give an example of a function f'which is of bounded variation on [a, 5] but which
satisfies no uniform Lipschitz condition on [a,b].

Proof: Since a function satisfies uniform Lipschitz condition of order o > 0, it must be

continuous. So, we consider
3 xifx € [a,b)
M= ititx— b
Trivially, fis not continuous but increasing. So, the function is desired.

Remark: Here is a good problem, we write it as follows. If f'satisfies
[fx) = fy)| < KJx —y|"* for x € [0,1], where f0) = 0.
define

9 it x e (0,1]

13

0ifx = 0.

glx) =

Then g satisfies uniform Lipschitz condition of order 1/6.

Proof: Note that if one of x, and y is zero, the result is trivial. So, we may consider
0 <y <x <1 as follows. Consider

2) — g = |22~ [

x13 y1/3

A0 S L ) )

x1/3 x1/3 x1/3 y1/3

) )|, () )

x173 x173 x173 yl/3

IA

+




For the part

V()N (CON |
YB3 T B | T B [ftx) = /)]
< ILB]x -y 2 by hypothesis
X
< Kjx —y|"*p—y| P sincex >x -y > 0
= Kpr =",
For another part % - % , we consider two cases.
(1) x > 2y which implies thatx > x—y >y > 0,
S SO | | 61—y
B yIa | el (xy)m
(x _J’)m : 13 _ 153 173
< [f(y)] W since |x!13 —y!B3| < |x —y| "~ forallx,y > 0
13 :
< [fv)| (X);T since (x — )" < x13
1
< MOI| 515
|
<K Il = by hypothesis
< K|S
< KJx —y|”6 since y < x — .
(2) x < 2y which implies thatx >y > x -y > 0,
) 10| oy | 2=
X3 yia| o)l (xy)m
(x_y)m : 13 _ 4,173 13
< [f(y)] W since |x!° —y!B3| < |x —y| "~ forallx,y > 0
Xy
3 =) .
< [f(y)] B since x > y
=)'
< K|y|”2 y2+ by hypothesis
< Kpe — y| " — y|'? sincey > x -y
= Kpe =",

So, by (A)-(C), (*) tells that g satisfies uniform Lipschitz condition of order 1/6.

Note: Here is a general result. Let 0 < 8 < a < 2. If fsatisfies
f(x) = f)| < Kjx —y|* for x € [0,1], where f{0) = 0.
define



9 ifx e (0,1]

xﬂ

0ifx =0.

Then g satisfies uniform Lipschitz condition of order o — . The proof is similar, so we
omit it.

glx) =

6.3 Show thata polynomial f'is of bounded variation on every compact interval [a, b].
Describe a method for finding the total variation of fon [a, b] if the zeros of the derivative
[ are known.

Proof: If fis a constant, then the total variation of fon [a,b] is zero. So, we may
assume that f'is a polynomial of degree n > 1, and consider /'(x) = 0 by two cases as
follows.

(1) If there is no point such that /' (x) = 0, then by Intermediate Value Theorem of
Differentiability, we know that /'(x) > 0 on [a,b], or f(x) < 0 on [a,b]. So, it implies
that /'is monotonic. Hence, the total variation of f'on [a, b] is [f(b) — f(a)].

(2) If there are m points such that /'(x) = 0, say
a=x9<x1 <Xy <...<xXm < b =x,4, where 1 < m < n, then we know the monotone
property of function f. So, the total variation of fon [a,b] is

m+1

D W) = flxi)|:
i=1

Remark: Here is another proof. Let f be a polynomial on [a,b], then we know that /' is
bounded on [a, b] since /' is also polynomial which implies that it is continuous. Hence, we
know that f'is of bounded variation on [a, b].

6.4 A nonempty set S of real-valued functions defined on an interval [a, b] is called a
linear space of functions if it has the following two properties:

(a) If f € S, then ¢f € § for every real number c.

(b)Iffe Sandg € S, thenf+ g € S.

Theorem 6.9 shows that the set V of all functions of bounded variation on [a,b] is a
linear space. If S is any linear space which contains all monotonic functions on [a,b],
prove that V' < S. This can be described by saying that the functions of bounded
variation form the samllest linear space containing all monotonic functions.

Proof: It is directlt from Theorem 6.9 and some facts in Linear Algebra. We omit the
detail.

6.5 Let fbe a real-valued function defined on [0, 1] such that f{0) > 0, f{x) # x for all
x, and f{x) < f{y) wheneverx < y. Let 4 = {x : flx) > x}. Prove that sup4 € A4, and that

1) > 1.
Proof: Note that since f{0) > 0, 4 is not empty. Suppose that sup4 = a ¢ 4, i.e.,
fla) < asince f(x) # x for all x. So, given any ¢, > 0, then there is a b, € A4 such that

a—e&n < by
In addition,
b, < f(by) since b, € A.
So, by (*) and (**), we have (let g, —» 0%),
a < fla™) (< f{a)) since fis monotonic increasing.
which contradicts to f{a) < a. Hence, we know that supA4 € 4.



Claim that 1 = supA4. Suppose NOT, that is, a < 1. Then we have
a < fla) < f(1) < 1.
Since a = sup A, consider x € (a,f(a)), then
fix) <x
which implies that
flat) <a
which contradicts to a < f{a). So, we know that supA4 = 1. Hence, we have proved that
A1) > 1.
Remark: The reader should keep the method in mind if we ask how to show that

f(1) > 1 directly. The set 4 is helpful to do this. Or equivalently, let f be strictly increasing
on [0, 1] with f{0) > 0. If f{1) < 1, then there exists a point x € [0, 1] such that f{x) = x.

6.6 1f fis defined everywhere in R!, then f'is said to be of bounded variation on
(—oo,+m0) if fis of bounded variation on every finite interval and if there exists a positive
number M such that V{a,b) < M for all compact interval [a,b]. The total variation of f'on
(—o0,+0) is then defined to be the sup of all numbers V/{a,b), —0 < a < b < +oo, and
denoted by V/(—o0,+o0). Similar definitions apply to half open infinite intervals [a,+o0) and
(—o0,b].

(a) State and prove theorems for the inifnite interval (—oo,+00) analogous to the
Theorems 6.7, 6.9, 6.10, 6.11, and 6.12.
(Theorem 6.7*%) Let f : R - R be of bounded variaton, then f'is bounded on R.
Proof: Given any x € R, thenx € [0,a] orx € [a,0]. Ifx € [0,a], then fis bounded
on [0, a] with
[f)] = [0)[ + Vi(0,a) = [RO)[ + Vy(~0, +o0).
Similarly for x € [a,0].

(Theorem 6.9%) Assume that f, and g be of bounded variaton on R, then so are thier
sum, difference, and product. Also, we have

Vig(=00,+00) < VA(—00,+00) + Vg (—00,+00)
and
Vig(—00,4+0) < AV [(—00,+00) + BV¢(—00,+0),
where 4 = supyer|g(x)| and B = sup,er|f(x)].
Proof: For sum and difference, given any compact interval [a,b], we have
Vig(a,b) < VAa,b) + Vg(a,b),
< V{(=0,+0) + Vg(—00,+0)
which implies that
Virg(=00,+00) < V(—00,+00) + Vg (—00,+00).
For product, given any compact interval [a,b], we have (let A(a,b) = Sup.cpqp1lg(x)|,
and B(a,b) = Supxe[a,b]lf(x)’)a
Vig(a,b) < A(a,b)V{a,b) + B(a,b)Ve(a,b)
< AV{(—00,+0) + BV y(—00,+0)
which implies that



Vig(—00,+00) < AV{(—00,+0) + BV y(—00,+0).

(Theorem 6.10%) Let f'be of bounded variation on R, and assume that f'is bounded
away from zero; that is, suppose that there exists a positive number m such that
0 <m < |f{x)| forallx € R. Then g = 1/fis also of bounded variation on R, and

V(—o00,+0)
m? '
Proof: Given any compacgt interval [a,b], we have

VAa,b V (=00, +00
Ve(a,b) < f(m2 ) < f(mz )

Ve(—00,+00) <

which implies that
Vg(—00,+00) < —Vf(_OO;+OO) )
m

(Theorem 6.11%) Let f'be of bounded variation on R, and assume that ¢ € R. Then f'is
of bounded variation on (-, ¢] and on [¢,+0) and we have

Vi{(—o,40) = VA (—0,c) + V/c,+»).

Proof: Given any a compact interval [a,b] such that ¢ € (a,b). Then we have
VAa,b) = VAa,c) + VAc,b).
Since
Va,b) < V)(—o0,+0)
which implies that
VAa,c) < V{—oo,+0) and V{c,b) < Vo0, +00),
we know that the existence of V/(—oo,c) and V{c,+o0). That is, fis of bounded variation on
(—o0,c] and on [¢,+).
Since
Vda,c) + Vic,b) = VAa,b) < V/{~ow,+00)
which implies that
Vi(—oo,c) + Ve, +0) < V/{(—o0,+x0),
and
Via,b) = V{a,c) + VAc,b) < Vi(-0,c) + Vi(c,+)
which implies that
Vi(—0,+0) < V{—owo,c) + Vc,+©),
we know that
Vi(—oo,40) = V/{(—0,c) + V/c,+©).

(Theorem 6.12*%) Let f'be of bounded variation on R. Let V(x) be defined on (—oo,x] as
follows:

V(x) = V/{(~oo,x) if x € R, and V(~) = 0.
Then (i) V is an increasing function on (—o,+%) and (ii) ¥ — f'is an increasing function on
(—o0,+0).

Proof: (i) Let x < y, then we have V(y) — V(x) = VAx,y) = 0. So, we know that V'is
an increasing function on (—o0,+00).

(ii) Let x < y, then we have (V' —f)(y) — (V =N (x) = Vx,y) — (fy) —fx)) = 0. So,



we know that V' — fis an increasing function on (—oo,+o).

(b) Show that Theorem 6.5 is true for (—o0,+00) if “monotonic” is replaced by “bounded
and monotonic.” State and prove a similar modefication of Theorem 6.13.

(Theorem 6.5%) If f'is bounded and monotonic on (-, +x), then fis of bounded
variation on (—oo,+00).

Proof: Given any compact interval [a,b], then we have V/(a,b) exists, and we have
Via,b) = |[f(b) — fla)|, since fis monotonic. In addition, since fis bounded on R, say
[fx)| < M for all x, we know that 2M is a upper bounded of V(a,b) for all a,b. Hence,
V(—o0,+o0) exists. That is, fis of bounded variation on R.

(Theorem 6.13*) Let f'be defined on (—o0,+0), then f'is of bounded variation on
(—oo,+0) if, and only if, f'can be expressed as the difference of two increasing and
bounded functions.

Proof: Suppose that f'is of bounded variation on (—o,+x), then by Theorem 6.12*, we
know that

f =V- (V_f)a

where J and V' — fare increasing on (—o0,+0). In addition, since f'is of bounded variation
on R, we know that " and f'is bounded on R which implies that J' — f'is bounded on R. So,
we have proved that if fis of bounded variation on (—o0,+0) then f'can be expressed as the
difference of two increasing and bounded functions.

Suppose that f'can be expressed as the difference of two increasing and bounded
functions, say f = f1 — f>, Then by Theorem 6.9*, and Theorem 6.5*, we know that fis of
bounded variaton on R.

Remark: The representation of a function of bounded variation as a difference of two
increasing and bounded functions is by no mean unique. It is clear that Theorem 6.13*
also holds if ”increasing” is replaced by ”strictly increasing.” For example,
f=(fi+g)— (f> +g), where g is any strictly increasing and bounded function on R. One
of such g is arctanx.

6.7 Assume that f'is of bounded variation on [a, b] and let
P = {x¢,x1,...,x0} € pla,b].
As usual, write Afy = flxi) — flxi1), k = 1,2,...,n. Define
A(P) = {k : Ay > 0}, B(P) = {k : Afy < 0}.
The numbers

pa,b) = sup{ Z Afi : P € [p[a,b]}

ked(P)
and

nfa,b) = sup{ D IAfil P e p[a,b]}

keB(P)

are called respectively, the positive and negative variations of f'on [a,b]. For each x in
(a,b]. Let V(x) = VAa,x), p(x) = pda,x), n(x) = nfa,x), and let
V(a) = p(a) = n(a) = 0. Show that we have:

(a) V(x) = p(x) + n(x).



Proof: Given a partition P on [a,x], then we have

DA = DM+ D IAf
k=1

keA(P) keB(P)
= D M+ D IMil
keA(P) keB(P)

which implies that (taking supermum)
V(x) = p(x) + n(x).

Remark: The existence of p(x) and g(x) is clear, so we know that (*) holds by
Theorem 1.15.

(b) 0 < p(x) < V(x)and 0 < n(x) < V(x).
Proof: Consider [a,x], and since

V) = D A = D 1M,

k=1 keA(P)
we know that 0 < p(x) < V(x). Similarly for 0 < n(x) < V(x).
(c) p and n are increasing on [a, b].

Proof: Let x,y in [a,b] with x < y, and consider p(y) — p(x) as follows. Since

P = D Az DY, M

keA(P), [a,y] keA(P), [ax]
we know that

() = px).

That is, p is increasing on [a, b]. Similarly for n.
(d) flx) = fla) + p(x) — n(x). Part (d) gives an alternative proof of Theorem 6.13.
Proof: Consider [a,x], and since
fo) = flay =D M= D M+ D A
k=1 keA(P) keB(P)

which implies that

o) =fa)+ DMl = D A

keB(P) keA(P)
which implies that f(x) = f(a) + p(x) — n(x).
(e) 2p(x) = V(x) + flix) = fla), 2n(x) = V(x) — flx) + fla).
Proof: By (d) and (a), the statement is obvious.
(f) Every point of continuity of fis also a point of continuity of p and of ».

Proof: By (e) and Theorem 6.14, the statement is obvious.
Curves

6.8 Let fand g be complex-valued functions defined as follows:
) = e ift € [0,1], g(¢) = 2™ if t € [0,2].
(a) Prove that fand g have the same graph but are not equivalent according to defintion



in Section 6.12.

Proof: Since {f(¢t) : t € [0,1]} = {g(¢) : ¢t € [0,2]} = the circle of unit disk, we know
that f'and g have the same graph.

If fand g are equivalent, then there is an 1-1 and onto function ¢ : [0,2] — [0,1] such
that

(1) = g().
That is,
e ) = cos2m(P(t)) + isin2n(P(2)) = e*™* = cos2nt + isin2rt.
In paticular, ¢(1) = c € (0,1). However,
flc) = cos2mc +isin2xc = g(1) = 1
which implies that ¢ € Z, a contradiction.

(b) Prove that the length of g is twice that of /.

Proof: Since
the length of g = Iz|g’(t)|dt =4r
and
the length of / = [ ;Jf(t) dt = 27,
we know that the length of g is twice that of /.

6.9 Let fbe rectifiable path of length L defined on [a,b], and assume that f'is not
constant on any subinterval of [a,b]. Let s denote the arc length function given by

s(x) = Ada,x)ifa <x < b, s(a) = 0.
(a) Prove that s~! exists and is continuous on [0, L].

Proof: By Theorem 6.19, we know that s(x) is continuous and strictly increasing on
[0,L]. So, the inverse function s~! exists since s is an 1-1 and onto function, and by
Theorem 4.29, we know that s~! is continuous on [0,L].

(b) Define g(¢) = f[s~'(¢)] if ¢ € [0,L] and show that g is equivalent to f. Since
f(t) = g[s(¢)], the function g is said to provide a representation of the graph of /' with arc
length as parameter.

Proof: t is clear by Theorem 6.20.

6.10 Let fand g be two real-valued continuous functions of bounded variation defined
on [a,b], with 0 < f{x) < g(x) for each x in (a,b), fla) = g(a), f(b) = g(b). Let h be the
complex-valued function defined on the interval [a,2b — a] as follows:

h(t) =t+if(t), ifa<t<b
=2b—-t+ig2b—1t), ifb <t <2b-a.
(a) Show that /4 describes a rectifiable curve I'.

Proof: It is clear that / is continuous on [a,2b — a]. Note that ¢, fand g are of bounded
variation on [a,b], so Aj,(a,2b — a) exists. That is, 4 is rectifiable on [a,2b — a].

(b) Explain, by means of a sketch, the geometric relationship between f, g, and 4.

Solution: The reader can give it a draw and see the graph lying on x — y plane is a



closed region.
(c) Show that the set of points

§={(xy) ra<x<b flx) <y<gk)}
in a region in R? whose boundary is the curve T

Proof: It can be answered by (b), so we omit it.

(d) Let H be the complex-valued function defined on [a,2b — a] as follows:
Ht) =t - %i[g(t) A, ifa<t<b
—2b—t+ %i[g(Zb—t) —f2b-1)],ifb<t<2b-a.
Show that H describes a rectifiable curve I'g which is the boundary of the region
So = {(x,y) 1a <x < b, flx) —gx) <2y < g(x) —flx)}.

Proof: Let F(t) = 5-[g(¢) —f(t)] and G(r) = +-[g(t) — f()] defined on [a,b]. It is
clear that F(¢) and G(t) are of bounded variation and continuous on [a, b] with
0 < F(x) < G(x) foreachx € (a,b), F(b) = G(b) =0, and F(b) = G(b) = 0. In
addition, we have

H(t) =t+iF(t), ifa<t<b
=2b—t+iGRb—1t), ifb<t<2b-a.
So, by preceding (a)-(c), we have prove it.

(e) Show that, Sy has the x —axis as a line of symmetry. (The region S is called the
symmetrization of S with respect to x —axis.)

Proof: It is clear since (x,y) € Sy < (x,—y) € Sy by the fact
Sfx) —g(x) < 2y < g(x) = flx).
(f) Show that the length of I'y does not exceed the length of T".

Proof: By (e), the symmetrization of S with respect to x —axis tells that
Ap(a,b) = Ay(b,2b — a). So, it suffices to show that A,(a,2b —a) > 2Ayx(a,b).
Choosing a partition P, = {xo = a,...,x, = b} on [a,b] such that

2AH(a,b) — &< 2AH(P1)

3w+ Lo - Le-oen ]}
i=1

= > {46 —xe) + (- @) ~ (- ) )}
i=1

and note that b —a = (2b — a) — b, we use this P; to produce a partition
P, =P ULxy=b, xps1 =b+ (Xn—Xp-1)5...,X2, = 2b—a} on [a,2b — a]. Then we have



2n
Ap(P2) = Z”h(xi) —h(xi) ||

i=1
n 2n
= D MAGe) = A L+ D AGe) = hlxi) |
i=1 i=n+1
1/2

n 2n
=3[0 —xe)? + (o) — M) ]+ D [ —xe)? + (g) - gxi))? ]
i=1

i=n+1

B Z{[(xl _x"’l)z + (flx:) _f(xifl))zjl/z + |:(xi —)Cifl)2 + (g(x;) —g(xifl))zjl/z} *k
i1

From (*) and (**), we know that
2Ap(a,b) — & < 2Ap(P1) < Ap(P3) HoAk
which implies that
Ap(a,2b—a) = 2Ag(a,b) < Ay(a,2b - a).
So, we know that the length of I'y does not exceed the length of I'.

Remark: Define x; —x;-; = a;, fix;) —fix—1) = b;, and g(x;) — g(xi-1) = ¢;, then we
have

2\ 12 12 12
(4a% + (b; — i) ) <(a?+b?) "+ (a?+c?)".
Hence we have the result (***).

Proof: It suffices to square both side. We leave it to the reader.
Absolutely continuous functions

A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b]
if for every € > 0, there is a 6 > 0 such that

D I —fla)| < &
k=1

for every n disjoint open subintervals (ay, b;) of [a,b], n = 1,2,..., the sum of whose
lengths) " (bx — ay) is less than 6.

Absolutely continuous functions occur in the Lebesgue theory of integration and
differentiation. The following exercises give some of their elementary properties.

6.11 Prove that every absolutely continuous function on [a, b] is continuous and of
bounded variation on [a, b].

Proof: Let f'be absolutely continuous on [a,b]. Then ¢ > 0, there is a 6 > 0 such that

D b)) —flaw)| < e
k=1

for every n disjoint open subintervals (ay, b;) of [a,b], n = 1,2,..., the sum of whose
lengthszz=l(bk —ay) is less than 0. So, as |x —y| < 8, where x,y € [a,b], we have
fx) —f)| < e

That is, f'is uniformly continuous on [a,b]. So, fis continuous on [a,b].
In addition, given any € = 1, there exists a 6 > 0 such that as ZZ:1 (b —ay) <0,

where (ay, by)'s are disjoint open intervals in [a,b], we have



D WAk —flan)| < 1.
k=1

For this 9, and let K be the smallest positive integer such that K(6/2) > b — a. So, we
partition [a, b] into K closed subintervals, i.e.,
P=Xyo=a,y1=a+0/2,.....yk1 = a+ (K—-1)(8/2), yk = b}. So, it is clear that fis
of bounded variation [y;,y:11], where i = 0,1,...,K. It implies that fis of bounded
variation on [a, b].

Note: There exists functions which are continuous and of bounded variation but
not absolutely continuous.

Remark: 1. The standard example is called Cantor-Lebesgue function. The reader
can see this in the book, Measure and Integral, An Introduction to Real Analysis by
Richard L. Wheeden and Antoni Zygmund, pp 35 and pp 115.

2. If we wrtie “absolutely continuous” by ABC, ”continuous” by C, and ”bounded
variation” by B, then it is clear that by preceding result, ABC implies B and C, and B and
C do NOT imply ABC.

6.12 Prove that f1s absolutely continuous if it satisfies a uniform Lipschitz condition
of order 1 on [a, b]. (See Exercise 6.2)

Proof: Let f'satisfy a uniform Lipschitz condition of order 1 on [a,b], i.e.,
[f(x) —fy)| £ Mlx —y| where x,y € [a,b]. Then given € > 0, there is a 8 = &/M such that
as Zzzl(bk —ay) < 8, where (ay,by)'s are disjoint open subintervals on [a,b], k = 1,..,n,
we have

D IAb) ~fa)| < D Mby - ay]
k=1 k=1

= > M(bi - ay)
k=1

< M6
=&
Hence, fis absolutely continuous on [a,b].

6.13 1t fand g are absolutely continunous on [a, b], prove that each of the following
is also: [f], ¢f (c constant), f+ g, '+ g; also f/g if g is bounded away from zero.

Proof: (1) (|f] is absolutely continuous on [a,b]): Given ¢ > 0, we want to find a
0 > 0, such that as ZZ:I (by — ax) < 8, where (ay,by)'s are disjoint open intervals on
[a,b], we have

D IOl - faw)|| < &
k=1

Since f'is absolutely continunous on [a,b], for this g, there is a & > 0 such that as
22:1(bk —ay) < 8, where (ay,by)'s are disjoint open intervals on [a,b], we have

D b)) —flaw)| < &
k=1

which implies that (1*) holds by the following

1*



b - an)ll < D_Iftbi) ~faw)| < e.
k=1 k=1

So, we know that |f| is absolutely continuous on [a, b].

(2) (cf'is absolutely continuous on [a,b]): If ¢ = 0, it is clear. So, we may assume that
c # 0. Given ¢ > 0, we want to find a 6 > 0, such that as Zzzl(bk —ay) < 0, where

(ar, bk)’s are disjoint open intervals on [a,b], we have
D Jeflbe) — eflan)| < e.
k=1

Since f'is absolutely continunous on [a,b], for this &, there is a & > 0 such that as
Zzzl(bk —ay) < 0, where (ak,bk)’s are disjoint open intervals on [a,b], we have

n

D Ak — fla)| < ele|

k=1
which implies that (2*) holds by the following

D leftbe) — cftan)| = le] D_Ifbi) — flaw)| < .
k=1

k=1
So, we know that c¢f'is absolutely continuous on [a, b].

(3) (f+ g is absolutely continuous on [a,b]): Given € > 0, we want to finda é > 0,
such that as ZZ:] (b — ay) < 8, where (ay, bi)'s are disjoint open intervals on [a,b], we
have

DI+ 2)be) - (F+ g)(aw)| < e.
k=1

Since f'and g are absolutely continunous on [a, b], for this &, there is a > 0 such that as
2221 (bx — ay) < 8, where (ay, by)'s are disjoint open intervals on [a,b], we have

D IAbi) — faw)| < el2 and D _|g(be) — glaw)| < &/2
k=1 k=1
which implies that (3*) holds by the following
DI+ be) - (F+ )(aw)
k=1

- Z]f(bk) — flay) + g(by) — g(ay)|
=1

< Y IAb) —faw)| + D _Jg(be) - glar)|
k=1 k=1

< €.
So, we know that /+ g is absolutely continuous on [a, b].
(4) (f - g is absolutely continuous on [a,b].): Let My = sup,c,5/f(x)| and
Mg = sup,cr.p1lg(x)|. Given & > 0, we want to find a 6 > 0, such that as
22:1(bk —ay) < 8, where (ay,by)'s are disjoint open intervals on [a,b], we have

2*

3*



DU+ 2)be) - (F+g)an)] < & 4
k=1

Since fand g are absolutely continunous on [a, b], for this &, there is a 6 > 0 such that as
22:1(bk —ay) < 8, where (ay,by)'s are disjoint open intervals on [a,b], we have

k_Z]Jf(bk) _ﬂak)’ < m and k_zllg(bk) —g(ak)’ < m

which implies that (4*) holds by the following
D)0 - (- )an)]
k=1

= Y b (g(be) - glan)) + glan) (Aby) — flaw))|
k=1

< M_,-;g(bk) - g(ay)| + M, ;wbw —flay)|

< eMy n eMg
2(Mp+1) 2(Mg+ 1)
< e&.

Remark: The part shows that /" is absolutely continuous on [a,b], where n € N, if fis
absolutely continuous on [a, b].

(5) (f/g is absolutely continuous on [a, b]): By (4) it suffices to show that 1/g is
absolutely continuous on [a,b]. Since g is bounded away from zero, say 0 < m < g(x) for
all x € [a,b]. Given € > 0, we want to find a 6 > 0, such that as Zzzl(bk —ay) <0,

where (ay, by)'s are disjoint open intervals on [a,b], we have
D 1) (o) - (Ug)a)| < . 5+
k=1

Since g is absolutely continunous on [a, b], for this €, there is a 0 > 0 such that as
22:1(bk —ay) < &8, where (ay,by)'s are disjoint open intervals on [a,b], we have

D lg(by) - glay)| < m*e
k=1
which implies that (4*) holds by the following
> (L) (B) - (1/g)(ar)]
k=1

n
k=1

L ek — gav)]
k=1

< E&.

g(by) — glax)
g(bi)glar)




Supplement on lim sup and lim inf

Introduction

In order to make us understand the information more on approaches of a given real
sequence {an}, ,, We give two definitions, thier names are upper limit and lower limit. It
is fundamental but important tools in analysis. We do NOT give them proofs. The reader
can see the book, Infinite Series by Chao Wen-Min, pp 84-103. (Chinese Version)

Definition of limit sup and limit inf

Definition Given a real sequence {an}_,, we define
bn = sup{am : m > n}
and
cn = inf{am : m > n}.

Example {1+ (-1)"}", ={0,2,0,2,...}, so we have
bn = 2and ¢, = 0 for all n.

Example {(-1)"n}~, = {-1,2,-3,4,...}, so we have
bn = 4+ and ¢, = —oo for all n.

Example {-n}~, = {-1,-2,-3,...}, sowe have
bn = —nand ¢, = —oo for all n.

Proposition  Given a real sequence {as},_,, and thus define b, and cn as the same as
before.
1 bp# -0, and cy # 0 Vn € N,
2 If there is a positive integer p such that b, = +oo, then by = +00 Vn € N.
If there is a positive integer g such that cq = —oo, then ch = —0 Vn € N.
3 {bn} is decreasing and {cn} is increasing.

By property 3, we can give definitions on the upper limit and the lower limit of a given
sequence as follows.

Definition Given a real sequence {a,} and let b, and c, as the same as before.
(1) If every by € R, then
inf{by, : n € N}
is called the upper limit of {a,}, denoted by
lim sup an.

That is,

limsupan = infbn.

—00 n

If every b, = 400, then we define
lim supan = +o.

(2) If every cn € R, then
sup{cn : n € N}
is called the lower limit of {a,}, denoted by



lim infay.
N—o0
That is,
liminfa, = SupCa.

If every ¢, = —oo, then we define
liminfa, = —oo.
N—o0

Remark The concept of lower limit and upper limit first appear in the book (Analyse
Alge’brique) written by Cauchy in 1821. But until 1882, Paul du Bois-Reymond
gave explanations on them, it becomes well-known.

Example {1+ (-1)"}", ={0,2,0,2,...}, so we have
bhn =2andc, = 0foralln
which implies that
limsupa, = 2and liminfa, = 0.

Example {(-1)"n} ", = {-1,2,-3,4,...}, so we have
bn = +o0and ¢y = —oo for all n
which implies that
lim supan = +o and lim infa, = —oo.

Example {-n}~, = {-1,-2,-3,...}, sowe have
bn = —nand ¢, = —o forall n
which implies that
limsupa, = —0 and lim infa, = —oo.

Relations with convergence and divergence for upper (lower) limit

Theorem Let {a,} be a real sequence, then {a,} converges if, and only if, the upper
limit and the lower limit are real with

lim supan = lim infa, = liman.
Theorem Let {an} be a real sequence, then we have
(1) limpeo SUPpa@n = 40 < {an} has no upper bound.

(2) limp.e SUpan = —0 < forany M > 0, there is a positive integer ny such
that as n > ng, we have
an < -M.,
(3) limn. supan = a if, and only if, (a) given any ¢ > 0, there are infinite
many numbers n such that
a—&g < an
and (b) given any ¢ > 0, there is a positive integer no such that as n > ny, we have
dn < a-+é&.

Similarly, we also have
Theorem Let {an} be a real sequence, then we have



(1) limpe infan = —0 < {an} has no lower bound.
(2) limpe infan = 400 < forany M > 0, there is a positive integer ng such
that as n > ng, we have
an > M.
(3) limn. infa, = aif, and only if, () given any ¢ > 0, there are infinite
many numbers n such that
a+ & > an
and (b) given any ¢ > 0, there is a positive integer no such that as n > ny, we have
dn > a-—é&.

From Theorem 2 an Theorem 3, the sequence is divergent, we give the following
definitios.

Definition Let {an} be a real sequence, then we have

(1) If limy. SUpan = —oo, then we call the sequence {a,} diverges to —oo,
denoted by

lima, = —o.

(2) If limy. infa, = 400, then we call the sequence {a,} diverges to +oo,
denoted by

liman = +o.
Theorem Let {an} be areal sequence. If a is a limit point of {an}, then we have
liminfa, < a < |limsupan.
Some useful results
Theorem Let {an} be a real sequence, then

(1) limpoe infan < limpoe SUpan.

(2) limpoo inf(—an) = —limp.e supan and limpoe sup(—an) = —limp.o infa,
(3) Ifeverya, > 0, and 0 < limp. infan < limpy. SUpan < +o0, then we
have
limsup-+ = —2L1 — and liminfL = — 1
nia SUP 3, limn.. infay o 0 8n o [impLe SUPan

Theorem Let {an} and {bn}be two real sequences.
(1) If there is a positive integer ng such that a, < by, then we have

liminfa, < lim infb, and lim supan < lim supbn.

(2) Suppose that —o < limp.s infan, limp.e infby, limp.. Supan,
limpoe SUPp bR < +oo, then

lim infan + lim infby
< liminf(an + bn)
im infan + lim supbn (or lim supan + lim infby )

li
n-
li
n-
<l
n-
li
n

im supan + lim supbn.



In particular, if {a,} converges, we have

lim sup(an + bn) = liman + lim supbn
and

liminf(an + bn) = liman + lim infbx.

(3) Suppose that —o < limp.s infan, limp.e infby, limp.. Supan,
limp. SUpbn < +o0, and an > 0, by > 0 Vn, then

(lim infa, ) (lim infb,)
< lim inf(anbn)
< (lim infan ) (Jim supbn ) (or (fim infbn ) (Jim supan ))
< lim sup(anbn)
< (lim supas ) (lim supby ).
In particular, if {a,} converges, we have
lim sup(anbn) = (ILLrQ an> lim sup by
and
lim inf(an + bn) = (liman ) lim infby.

Theorem Let {an} be a positive real sequence, then
H H an+]_ H H 1/n H 1/n H an+]_
lim inf =3 = < lim inf(an)™" < lim sup(an)™" < lim sup 2

Remark We can use the inequalities to show

] 1/n
lim M _ e,
n—-oo

Theorem Let {an} be a real sequence, then

lim infa, < lim inf 3% |im, supM < lim supan.
N—o0 N—00 n n—o0 n n—oo

Exercise Letf : [a,d] - R be a continuous function, and {an} is a real sequence. If f is
increasing and for every n, limn.. infan, limy.. supan € [a,d], then
lim supf(an) = f(lim supan ) and lim inff(a,) = f(lim infa, ).
Remark: (1) The condition that f is increasing cannot be removed. For
example,
fx) = Ix,
and

4 — 1/k if k is even
“7 ] -1-1kifkis odd.
(2) The proof is easy if we list the definition of limit sup and limit inf. So, we
omit it.
Exercise Let {an} be a real sequence satisfying anp < an + ap for all n, p. Show that
{2~} converges.
Hint: Consider its limit inf.



Remark: The exercise is useful in the theory of Topological Entorpy.
Infinite Series And Infinite Products
Sequences

8.1 (a) Given a real-valed sequence {an} bounded above, let u, = sup{ax : k > n}.
Then un N\, and hence U = limn.. Un is either finite or —co. Prove that
U = limsupan = lim(sup{ax : k = n}).

Proof: It is clear that u, \, and hence U = limn. un is either finite or —oo.
If U = —0, then given any M > 0, there exists a positive integer N such that as n > N,
we have

Un < -M

which implies that, asn > N, a, < -M. So, limy.an = —oo. That is, {an} is not bounded
below. In addition, if {an} has a finite limit supreior, say a. Then given € > 0, and given
m > 0, there exists an integer n > m such that

an >a—¢
which contradicts to lim,-.. an = —oo. From above results, we obtain
U = lim supan
in the case of U = —co.

If U is finite, then given ¢ > 0, there exists a positive integer N such that asn > N, we
have

U<up<U-+es.

So,asn > N, up < U+ ¢ which implies that,asn > N, an < U + &. In addition, given
g >0, and m > 0, there exists an integer n > m,

U — 8/ < an
by U < un = sup{ax : k > n} if n > N. From above results, we obtain
U = lim supan
in the case of U is finite.

(b)Similarly, if {an} is bounded below, prove that
V = liminfa, = lim(inf{ax : k = n}).

Proof: Since the proof is similar to (a), we omit it.

If U and V are finite, show that:
(c) There exists a subsequence of {a,} which converges to U and a subsequence which
convergesto V.

Proof: Since U = lim supn-« an by (a), then
(i) Given ¢ > 0, there exists a positive integer N such that as n > N, we have
an < U+e.
(ii) Given ¢ > 0, and m > 0, there exists an integer P(m) > m,
U-¢ < apm.
Hence, {apm) - Is a convergent subsequence of {a,} with limit U.
Similarly for the case of V.



(d) If U =V, every subsequnce of {a,} converges to U.
Proof: By (a) and (b), given &€ > 0, then there exists a positive integer N; such that as
n > N, we have
an<U+eg
and there exists a positive integer N, such that as n > N,, we have
U-¢ < an.
Hence, as n > max(N,N,), we have
U-¢g<an<U+e
That is, {an} is a convergent sequence with limit U. So, every subsequnce of {an}
converges to U.

8.2 Given two real-valed sequence {an} and {b,} bounded below. Prove hat
(@) lim supn-w(@n + bn) < lim supn-«an + lim supn-« bn.

Proof: Note that {a,} and {b,} bounded below, we have lim supn.«an = +o 0or is
finite. And lim supn-. bn = +o0 or is finite. It is clear if one of these limit superior is +oo,
S0 we may assume that both are finite. Let a = lim supn-«an and b = lim supn-« bn. Then
given ¢ > 0, there exists a positive integer N such that as n > N, we have

an+by,<a+b+eg/2

In addition, let ¢ = lim supn-«(an + bn), where ¢ < +owo by (*). So, for the same ¢ > 0, and

given m = N there exists a positive integer K such that as K > N, we have
c—¢l2 < aK+bK.
By (*) and (**), we obtain that
c—¢l2 <ak+bxk <a+b+el2
which implies that
c<a+b
since ¢ is arbitrary. So,
lim ﬁgg(an +bn) < lim supan + lim sup by.

n—oo

Remark: (1) The equality may NOT hold. For example,
an = (-1)" and b, = (-1)™.
(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on process of proof.

(b) lim supn-w(@nbn) < (lim supn-x an)(lim supn- bn) if an > 0, b, > 0 for all n, and
if both lim supn-« an and lim supn-- by are finite or both are infinite.

Proof: Let lim supn-.an = a and lim supn-. bn = b. It is clear that we may assume
that a and b are finite. Given ¢ > 0, there exists a positive integer N such thatas n > N,
we have

anbnh < (@a+é&)(b+¢e) =ab+e(@a+b+e).

In addition, let ¢ = lim supn-«(anbn), where ¢ < +o0 by (*). So, for the same ¢ > 0, and
given m = N there exists a positive integer K such that as K > N, we have

cC—¢< aK+bK.
By (*) and (**), we obtain that
C—eg<ak+bxk<a+b+e@+b+eg)

**

**



which implies that
c<a+hb
since ¢ is arbitrary. So,

lim ﬁﬂg(anbn) < (Iim ﬁggan) (Iim sup bn).

n—oo
Remark: (1) The equality may NOT hold. For example,
ap = 1/nifnisoddand a, = 1if niseven.
and
bn = 1lifnisoddand b, = 1/nif niseven.

(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on the process of the proof.

(3) The reader should be noted that if letting A, = logan and B, = logbn, then by (a)
and logx is an increasing function on (0, +), we have proved (b).

8.3 Prove that Theorem 8.3 and 8.4.
(Theorem 8.3) Let {an} be a sequence of real numbers. Then we have:
@) lim infrwan < lim supn.« an.

Proof: If lim supn.«an = +oo, then it is clear. We may assume that
lim supn»an < +o0. Hence, {an} is bounded above. We consider two cases: (i)
lim supn.»an = @, where a is finite and (ii) lim supn-.an = —oo.

For case (i), if lim inf_. a, = —oo, then there is nothing to prove it. We may assume
that lim inf,..an = @', where a’ is finite. By definition of limit superior and limit inferior,
given ¢ > 0, there exists a positive integer N such that asn > N, we have

a' —¢el2 <an<a+éel2

which implies that @’ < a since ¢ is arbitrary.

For case (ii), since lim supn-an = —oo, we have {a,} is not bounded below. If
lim inf,.-an = —oo, then there is nothing to prove it. We may assume that
liminf..an = @', where a’ is finite. By definition of limit inferior, given ¢ > 0, there
exists a positive integer N such that as n > N, we have

a' —¢l2 < apn
which contradicts that {a, } is not bounded below.

So, from above results, we have proved it.

(b) The sequence converges if and only if, lim supn..an and lim inf,.. a, are both
finite and equal, in which case limp.an = lim infr.c@n = lim SUpPn-« an.

Proof: (=)Given {an} a convergent sequence with limit a. So, given & > 0, there
exists a positive integer N such that as n > N, we have
a—-¢<ap<a+e.
By definition of limit superior and limit inferior, a = lim infy.an = lim SUpn-« an.
(<)By definition of limit superior, given ¢ > 0, there exists a positive integer N; such
that as n > N, we have
apnh < a-+é¢

and by definition of limit superior, given & > 0, there exists a positive integer N, such that
asn > N, we have



a—¢ < an.
So, as n > max(Ny,N;), we have

a—-g<ap<a+e.
That is, limp.xan = a.

(c) The sequence diverges to +o if and only if, lim infr.an = lim SUPn-w @n = +o0.

Proof: (=)Given a sequence {an} with limy..an = +o. So, given M > 0, there is a

positive integer N such that as n > N, we have
M < an.

It implies that {an} is not bounded above. So, lim supn.«an = +o. In order to show that
lim inf,..an = +o00. We first note that {an} is bounded below. Hence, lim infn...an # —oo.
So, it suffices to consider that lim inf,.. an is not finite. (So, we have
liminfp..an = +00.). Assume that lim inf,.an = a, where a is finite. Then given ¢ = 1,
and an integer m, there exists a positive K(m) > m such that

akm <a+1
which contradicts to (*) if we choose M = a + 1. So, lim inf,_ a, is not finite.
(d) The sequence diverges to —oo if and only if, lim infy.can = lim supp.wan = —oo.
Proof: Note that, lim supn-»(—an) = —lim infp.. an. So, by (c), we have proved it.

(Theorem 8.4)Assume that an < b, foreachn = 1,2,.... Then we have:
lim infa, < lim infb, and lim supan < lim supbn.

Proof: If lim inf,...bn = 400, there is nothing to prove it. So, we may assume that
lim infy.co by < +00. That is, lim infn., by = —o0 or b, where b is finite.

For the case, lim infn... bn = —oo, it means that the sequence {an} is not bounded
below. So, {b,} is also not bounded below. Hence, we also have lim infn.. an = —o.

For the case, lim inf,..bn = b, where b is finite. We consider three cases as follows.

(i) if lim inf,.an = —oo, then there is nothing to prove it.

(it) if lim infy..an = a, where a is finite. Given ¢ > 0, then there exists a positive
integer N such thatasn > N

a—¢el2 <an<bn<b+el2

which implies that a < b since ¢ is arbitrary.

(iii) if lim infy.c an = +o0, then by Theorem 8.3 (a) and (c), we know that
limp. an = 400 which implies that limy... by, = +00. Also, by Theorem 8.3 (c), we have
lim infpo by = +00 which is absurb.

So, by above results, we have proved that lim inf,..an < lim infp.. bn.

Similarly, we have lim supn-«an < lim supn-. bn.

8.4 I each an > 0, prove that
NP T L U _ Un _ g ani1
lim inf == < lim inf(an)™ < lim sup(an)™ < lim sup =3*-.

—00

Proof: By Theorem 8.3 (a), it suffices to show that
)" and Jim sup(an) ™" < lim sup L.

i inf Anel T
Jim inf 3+ < Jim inf(an i
We first prove

. 1/n . An+1
lim sup(an) ™ < lim sup =3



If lim supn-.. - = +oo, then it is clear. In addition, since &L is positive,
lim SUPnow 221 # —o0. SO, we may assume that lim supn... <& = a, where a is finite.
Given ¢ > 0, then there exists a positive integer N such that as n > N, we have

dni1
an <a+ég

which implies that
anw < an(@+¢)*, wherek = 1,2,....
So,
(ana) T < (an) W (a+g) WF
which implies that
lim sup(any) ¥ < lim sup(ay) ¥ (a + £) ¥

a+e.
So,
Lim sup(an.) ™ < a

since ¢ is arbitrary. Note that the finitely many terms do NOT change the value of limit
superiror of a given sequence. So, we finally have

H 1/n I a.n 1

im sup(an)™ < & = Jim sup =37
Similarly for

C Al i 1n
lim inf === < lim inf(an) ™"

Remark: These ineqaulities is much important; we suggest that the reader keep it mind.
At the same time, these inequalities tells us that the root test is more powerful than the

ratio test. We give an example to say this point. Given a series
1.1 .1 1 1 1

2 T3 T ar Ty teton Y gt
where
a1 = (%)n and ap, = (%)n n=12,...
with
lim sup(an)*" = % <1
and

im i dnil H anil _
lim inf 3= =0, lim sup == = +o.

8.5 Let an = n"/n!. Show that limn.« an.1/an = € and use Exercise 8.4 to deduce that

i n —

Proof: Since

ang _ (n+1)"t 1\
an T T(n+L)inn -(1+h) -

by Exercise 8.4, we have

: in




Remark: There are many methods to show this. We do NOT give the detailed proof.
But there are hints.

(1) Taking log on (Q—A)U”, and thus consider
Llogl og ) - [ logxdx = 1
n(ogn+...+ogn> joogxx :

(2) Stirling’s Formula:
n! = n"e"/2zne, where 6 € (0,1).
Note: In general, we have
. I'x+1)
lim ——~ =1,
X2He xXe ™ 2mX
where I'(x) is the Gamma Function. The reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 192-195.

(3) Note that (1 + )* 7~ eand (L + 1) \_ e on (0,%). So,

(1+%>n <ec< <1+%>n+l

e(n"e™) < n! < g(n™le ™),

which implies that

(4) Using O-Stolz’s Theorem: Let liMp.cyn = +0 and yn . If

lim Xl — X0 _ 5 \where a is finite or + oo,
n—o0 yn+1 yn

then

Xn _
lim g =2
Let X, = log+ +...+log & and y, = n.

Note: For the proof of O-Stolz’s Theorem, the reader can see the book, An
Introduction to Mathematical Analysis by Loo-Keng Hua, pp 195. (Chinese Version)

(5) Note that, if {a,} is a positive sequence with limp..an = @, then

(@ +--an) > aasn - .

Takinga, = (1 ++)", then

e = (3) () -

Note: For the proof, it is easy from the Exercise 8.6. We give it a proof as follows. Say
lim.can = a. Ifa =0, thenby A.P.> G.P., we have

(@1« - an)" < 21t Hn g by Exercise 8.6.

So, we consider a + 0 as follows. Note that logan, — loga. So, by Exercise 8.6,

loga; +...+loga
98 +.. 77008  joga

)1/n

which implies that (a; - - -an - a.

8.6 Let {an} be real-valued sequence and let on = (a; +...+an)/n. Show that
liminfa, < liminfon < lim supon < lim supan.

Proof: By Theorem 8.3 (a), it suffices to show that
liminfa, < liminfoq and lim supon < lim supan.



We first prove
limsupon < lim supan.
If lim supn-an = +o0, there is nothing to prove it. We may assume that

lim supn-«an = —oo or @, where a is finite.
For the case, lim supn.«an = —oo, then by Theorem 8.3 (d), we have

liman = —o.
So, given M > 0, there exists a positive integer N such that as n > N, we have
an < -M.
Letn > N, we have
_ (ap +...+an) +..+an
n

_adp +...+an
= A +

ay +.r.l.+aN N ( n = N )(—M)

ang1 t...+an
n

IA

which implies that
limsupon < -M.
Since M is arbitrary, we finally have
limsupon = —.
For the case, lim supn-an = a, where a is finite. Given ¢ > 0, there exists a positive
integer N such thatas n > N, we have
dn < a-+eé.

Let n > N, we have

(a; +...+an) +..+an
O-n = n
a; +...+an ans1 ... +Han
n + n

a1+.r.].+aN i (nBN>(a+8)

AN

which implies that
limsupon <a+e
which implies that
limsupon < a
since ¢ is arbitrary.

Hence, from above results, we have proved that lim supn-«on < lim supn.« an.
Similarly for lim infp.c an < lim inf. on.

Remark: We suggest that the reader keep it in mind since it is the fundamental and
useful in the theory of Fourier Series.

8.7 Find lim supn-« an and lim inf,_. an if an is given by

(@) cosn

Proof: Note that, {a+ bz : a,b € Z} isdense in R. By cosn = cos(n + 2kr), we
know that

limsup cosn = 1and lim inf cosn = 1.



Remark: The reader may give it a try to show that

limsup sinn = 1 and lim infsinn = 1.
(b) (1 + +)cosnzx
Proof: Note that

<1+%>cosn7r{ lifn =2k

—lifn=2k-1
So, it is clear that

lim sup(l + %) cosnz = 1and lim inf(l + %) cosnzr = —1.
(c) nsin £

Proof: Note thatas n = 1 + 6k, nsin &= = (1 + 6k)sin %, and as n = 4 + 6Kk,
n = —(4 + 6k)sin Z-. So, it is clear that

lim supnsin 0Z — 4o and lim infnsin
Nn—oo 3 N—o0

=
(d) sin £ cos 7
Proof: Note that sin £ cos X2 = 2sinnz = 0, we have
i in D7 o5 N _ [im inf sin DZ cos DT —
lim sup sin 5 C0S 5 lim inf sin 5 C0S 5 0.
(e) (-1)"n/(L +n)"

Proof: Note that

lim(-1)"n/(1 +n)" = 0,
we know that

lim sup(=1)"n/(1 + n)" = lim inf(-1)"n/(1 + n)" = 0.
(f) 5-15)

Proof: Note that

Lifn=3k+1
2
3

3-[4]

So, it is clear that

ifn=3k+2 ,wherek =0,1,2,....
0ifn =3k

i n_[nij_-2 iminf -0 | =
lim sup 3 [ 3 } 3 and lim inf 3 [ 3 } 0.
Note. In (f), [x] denoted the largest integer < X.

8.8 Let an=2/n— ZL 1/Jk . Prove that the sequence {an} converges to a limit p
in the interval 1 < p < 2.

Proof: Consider | 1/JK := S, and j2x—1’2dx = Th, then

limd, exists, where dy = Sn — Th
by Integral Test. We denote the limit by d, then



0<d<1 *
by Theorem 8.23 (i). Note that {d, — f(n)} is a positive increasing sequence, so we have
d> 0. **
Since
Th=2/n-2

which implies that

LL@(M —ZWE) = lima, =2-d =p.
k=1
By (*) and (**), we have proved that 1 < p < 1.

Remark: (1) The use of Integral Test is very useful since we can know the behavior
of a given series by integral. However, in many cases, the integrand may be so complicated
that it is not easy to calculate. For example: Prove that the convergence of

#, where p > 1.

HXZ: n(logn)®

Of course, it can be checked by Integral Test. But there is the Theorem called Cauchy
Condensation Theorem much powerful than Integral Test in this sense. In addition, the
reader can think it twice that in fact, Cauchy condensation Theorem is equivalent to
Integral Test.

(Cauchy Condensation Theorem)Let {an} be a positive decreasing sequence. Then

D " an converges if, and only if, D 2%a,« converges.
n=1 k=0
Note: (1) The proof is not hard; the reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 61-63.

(2) There is an extension of Cauchy Condensation Theorem (Oskar Schlomilch):
Suppose that {ax} be a positive and decreasing sequence and {my}(< N) is a sequence. If

there exists a ¢ > 0 such that
0 < Mo — M1 < c(my,g — my) forall k,

then
D" ay converges if, and only if, Y (M1 — Mi)am,.
k=1 k=0
Note: The proof is similar with Cauchy Condensation Theorem, so we omit it.

(2) There is a similar Theorem, we write it as a reference. Ift > a, f(t) isa
non-negative increasing function, then as x > a, we have

> ) - [t

asn=<x

Proof: The proof is easy by drawing a graph. So, we omit it.

< f(x).

P.S.: The theorem is useful when we deal with some sums. For example,
f(t) = logt.
Then



D logn—xlogx +x—1| < logx.
1<n=<x
In particular, as x € N, we thus have
nlogn—n+1—-logn < logn! < nlogn—n+1+logn
which implies that
nnflefn+1 < n! < nn+1e—n+1.

In each of Exercise 8.9. through 8.14, show that the real-valed sequence {an} is
convergent. The given conditions are assumed to hold for all n > 1. In Exercise 8.10
through 8.14, show that {a,} has the limit L indicated.

89 [an| < 2, |ans2 — @nga| < %|aﬁ+1 - a%|
Proof: Since
|an2 — ans| < %|a%+1 - a%|

= %laml - an”an+1 + an|
%|an+1 — an| since |an| < 2

we know that
|%ﬂ_&ﬂ§(%>ﬁh2_%|§(%>n%

k

[k — an| < D Jany — Ansja
j=1

k 1 n+j—4
< JZl(E)

< (%)n_z — 00asn — oo,

So,

Hence, {a,} is a Cauchy sequence. So, {an} is a convergent sequence.

Remark: (1) If |an:1 —an| < bn forall n € N, and Db, converges, then > a,
converges.

Proof: Since the proof is similar with the Exercise, we omit it.

(2) In (1), the condition )_ b, converges CANNOT omit. For example,

(i) Leta, = sin(3>2, , L) Or
(ii) an is defined as follows:

ar=1a,=1/2, a3 =0, a4 = 1/4, a5 = 1/2, ag = 3/4, a; = 1, and so on.

810 a;>0,a, >0, ap2 = (anan+1)1/2a L= (ala%)l/g-

Proof: If one of a; or a, is 0, then a, = 0 for all n > 2. So, we may assume that
a; # 0and a; + 0. So, we have a, = 0 for all n. Let by, = -, then

bne1 = 1/,/bn foralln

which implies that



b1 = (bl)(?ly - lasn - oo.
Consider
M7ty = T17, (by) ™"
which implies that

213
12 —-2/3
<a1 az) an = ( 1 )

bn+l

which implies that

- 1/3
liman,1 = (a;a3)™".

Remark: There is another proof. We write it as a reference.

Proof: If one of a; or a, is 0, thena, = 0 for all n > 2. So, we may assume that

a, + 0and a, = 0. So, we have a, + 0 forall n. Leta, > a;. Since ans2 = (@nan.1)?,

then inductively, we have
a; <az <...<ag1 <...<ag, <...<ag < as.
So, both of {a,,} and {a,n_1} converge. Say
Hm a,, = X and !quI‘o anm1 =Y.
Note thata; + Oanda, + 0, sox = 0, andy # 0. In addition, x = y by
ani2 = (anani1)™. Hence, {an} converges to x.
By an2 = (@nan:1)"?, and thus
1_[Jn:laj2+2 = Hjnzlajajﬂ = (ala%an+1)HF:_12aj2+2
which implies that
Ans18f., = 2185
which implies that
. N N 2\ 1/3
liman = x = (aia3) .
Aopndon_:
8.11a; =2 a, =8, agu = +(@zn +az1), Qo2 = 22t L =4,

Proof: First, we note that
Qonit = % > [@mami by A.P.> G.P.
forn e N. So, by as,, = 22221 gnd (¥),

azn+1

dondan—
iz = g, 2 < J@xdxn-1 < az foralln e N.

Hence, by Mathematical Induction, it is easy to show that
s <ag <...<amp <...<ap <...<as < az
for all n € N. It implies that both of {a,,} and {a,,_1} converge, say
Lim a,, = X and !HQ anm1 =Y.

With help of a1 = 4 (azn + az-1), we know that x = y. In addition, by apn,, = 222,
a; = 2, and a, = 8, we know that x = 4.

8.12a; = 5%, 3a,1 = 2+a}, L = 1. Modify a; to make L = 2.

Proof: By Mathematical Induction, it is easy to show that
-2 <ap<1foralln.



So,
3@ —an) =a3-3a,+2>0
by (*)and f(x) = x3 —=3x+2 = (X — 1)%(x+2) > 0 on [-2,1]. Hence, {an} isan
increasing sequence with a upper bound 1. So, {an} is a convergent sequence with limit L.
So, by 3a,.1 = 2 + a,
L3-3L+2=0
which implies that
L=1or -2
So,L =1sinca, /anda; = -3/2.
In order to make L = -2, it suffices to leta; = -2, then a, = -2 for all n.

8.13a; = 3, Ay = &) | = /3.

3+an

Proof: By Mathematical Induction, it is easy to show that
an > /3 forall n.
So,
3-a?
3+ an <0

which implies that {a,} is a decreasing sequence. So, {an} is a convergent sequence with
limit L by (*). Hence,

dpnyl —an =

L 3a+L)
- 3+4L

L=+/3.

which implies that

So, L = /3 since a, > /3 forall n.

8.14 a, — 222, where by = by = 1, by = by + by, L = 255

Hint. Show that bn,,bn — b2,; = (—1)n+1 and deduce that |an — ans1| < n7?, if n > 4.

Proof: By Mathematical Induction, it is easy to show that
bns2bn — b2, = (-1)™ forall n

and
bn >N |f n>4
Thus, (Note that b, + 0 for all n)

1 1 .
S N+ D) < o2 ifn > 4.

n+l
@t — an| = | Loz _ Do | _ ‘ (1)

bn+1 bn bnbn+1

So, {an} is a Cauchy sequence. In other words, {a,} is a convergent sequence, say
limy.o by = L. Then by by, = bn + byy1, we have

bn+2 bn
e = =0 4]
bn+l bn+1
which implies that (Note that (0 =)L > 1 since a, > 1 for all n)
-1
L = t 1
which implies that
L _1+/5

2



So,L = “f since L > 1.

Remark: (1) The sequence {bn} is the famous sequence named Fabonacci sequence.
There are many researches around it. Also, it is related with so called Golden Section,

£1 - 0.618....

(2) The reader can see the book, An Introduction To The Theory Of Numbers by G.
H. Hardy and E. M. Wright, Chapter X. Then it is clear by continued fractions.

(3) There is another proof. We write it as a reference.

Proof: (STUDY) Since by;2 = bn + bpy1, we may think
Xn+2 — Xn + Xn+1’
and thus consider x> = x + 1. Say « and S are roots of x> = x + 1, with a < B. Then let
_proa
Fn - ﬂ —a [

we have
Fn = bn.
So, it is easy to show that L = % We omit the details.

Note: The reader should be noted that there are many methods to find the formula of
Fabonacci sequence like F,. For example, using the concept of Eigenvalues if we can
find a suitable matrix.

Series
8.15 Test for convergence (p and q denote fixed rela numbers).
@ X, ner
Proof: By Root Test, we have
lim sup(g—f])lm =1/e < 1.
So, the series converges.
(b) 3-, ,(logn)®

Proof: We consider 2 cases: (i) p > 0, and (ii) p < 0.

For case (i), the series diverges since (logn)P does not converge to zero.

For case (ii), the series diverges by Cauchy Condensation Theorem (or Integral
Test.)

(c) X, ,p"nP (p > 0)
Proof: By Root Test, we have
i n -\ ln
limsup(B5 )" = p.
So, asp > 1, the series diverges, and as p < 1, the series converges. For p = 1, itis clear
that the series > n diverges. Hence,

D p™P converges if p € (0,1)
n=1
and



D" p'ne diverges if p & [1,0).

n=1
(d) X, wiw 0 <a<p)
Proof: Note that 1= = = —~. We con5|der 2cases: ()p>1and (i)p < 1.

For case (i), by Limit Comparison Test with -3-,

n—oo

1
lim 02T =1
W
the series converges.
For case (ii), by Limit Comparison Test with -,
1
lim =5 = 1,
nP
the series diverges.
(e) Z(::l n*l*l/n
Proof: Since n-1-1" > n-1 for all n, the series diverges.
(f) Zn,“,n—fqn (0O<qg<p
Proof: Note that -~ qn = pn . ( ST . We consider 2 cases: (i) p > 1and (ii) p < 1.
For case (i), by Limit Comparison Test with W’

the series converges.
For case (ii), by Limit Comparison Test with pn ,
1

lim P — 1
n—oo L !
pn
the series diverges.

0 1
(@) 220t TrogcTmy

Proof: Since

; 1 _
i nlog(1+1/n)

we know that the series diverges.

()=, e
n=2 (logn)'°9"
Proof: Since the identity alo9b = bloga  we have
(|Ogn)|09n = nlog logn

> n2asn > no.

So, the series converges.

() xr, Toandos o

Proof: We consider 3 cases: (i) p <0, (ii)0 < p < 1 and (iii) p > 1.



For case (i), since

1 > 1 >
nlogn(log logn)® ~ nlogn forn =3,

we know that the series diverges by the divergence of
For case (ii), we consider (choose ng large enough)

© 1
n=3 nlogn

o0

Z _ . 2i _ __1 zw: 1
2ilog2i(log log2!)®  log2 &= j(logjlog2)”

J=no
ZOO 1
> - 7
~ & j(logj)”

then, by Cauchy Condensation Theorem, the series diverges since >~ —1— diverges

j=no j(logj)®
by using Cauchy Condensation Theorem again.
For case (iii), we consider (choose ng large enough)

0

Y21 i 1
2ilog2i(log log2/)?  log2 & j(logjlog2)°®

i=no

o0

1
=22 Jogilog2)?

i=no

<4y L
,-zznoj(logj)p

then, by Cauchy Condensation Theorem, the series converges since ij'ino J. (Iogj)p
converges by using Cauchy Condensation Theorem again.

Remark: There is another proof by Integral Test. We write it as a reference.

Proof: It is easy to check that f(x) = nglogx)p is continous, positive, and
decreasing to zero on [a,) where a > 0 for each fixed p. Consider

J.oo dX _ J.oo ﬂ
a X|OgX(|Og Iogx)p log loga yP
which implies that the series converges if p > 1 and diverges if p < 1 by Integral Test.

(J) Z::3<W> log logn

) log logn

Proof: Let a, = ( L

log logn forn > 3and by, = 1/n, then
an

log logn
(rghen)
bn log logn

= p—(ylogy—eY) _, Lop,
So, by Limit Comparison Test, the series diverges.

) X, (JT+nZ —n)
Proof: Note that

Jl1+n? —n= 1 > L
JI+nZ+n ~ (1+J/2)n

for all n.

So, the series diverges.



00 1 L
OZm (- 4)
Proof: Note that

1 1 \__1 n 1
() n%p<vn1 1+,/¥>'

So, as p < 1/2, the series converges and as p > 1/2, the series diverges by Limit
Comparison Test.

(m) > (¥ -1)"
Proof: With help of Root Test,
1/n

lim sup[ ()" -1)"]"" = 0(< 1),

the series converges.
m>- ne(n+1 -2/ +/n-1)
Proof: Note that
(¥l -2/ +/n—1)
_ 1 |: n? :|
ns? | (Wm+h+D)(m+/mh=-1)(\n=T+/n+1) |

So, as p < 1/2, the series converges and as p > 1/2, the series diverges by Limit
Comparison Test.

8.16 Let S = {nj,ny,...} denote the collection of those positive integers that do not
involve the digit 0 is their decimal representation. (For example, 7 € Sbut 101 ¢ S.)
Show that Zf:l 1/ny converges and has a sum less than 90.

Proof: Define Sj = {the j — digit number } (< S). Then #S; = 9 and S = U, S;. Note

that
0l
E l/nk < 10

kESj

So,

g Uny < 121 o = 9.

In addition, it is easy to know that Zle 1/ny # 90. Hence, we have proved that Zf:l 1/ny
converges and has a sum less than 90.

8.17 Given integers aj,ay,...suchthatl <a, <n-1, n=23,... Show that the
sum of the series >~ an/n! is rational if and only if there exists an integer N such that
an = n—1forall n > N. Hint: For sufficency, show that Z:;z(n —1)/nlis a telescoping
series with sum 1.

Proof: («<)Assume that there exists an integer N such thata, = n— 1 foralln > N.
Then



7
AN

o0 o0
an _ an an
Z n n! +Z n!
n=1 n=1 n=N
N-1 0 l
_ an n-—
- n! +Z n!
n=1 n=N
N-1 © 1 l
Sa.x
— —+ —_— =
| _ | |
e~ nl & (n-1)! nl
N-1 1
dn
=) oy 1 Q.
n! (N-=1)! Q

[N

n=
(=)Assume that ZL an/n! is rational, say % where g.c.d.(p,q) = 1. Then
- a
p! n—fl‘ e Z
n=1

Thatis, p! Y.~ 2 e Z. Note that

n=p+1 n!
oo

* |
pgz%gp! ”n——!lzﬁzlsincelsansn—l-
n=p+1 n=p+1

So,apn =n-1foralln > p+ 1. Thatis, there exists an integer N such that a, = n—1 for
alln > N.

Remark: From this, we have proved that e is irrational. The reader should be noted that
we can use Theorem 8.16 to show that e is irrational by considering e~. Since it is easy,
we omit the proof.

8.18 Let p and q be fixed integers, p > q > 1, and let

pn n k+1
Z Z -1
X n — 1 ’ S n = ( k)
k=gn+1 k=1

() Use formula (8) to prove that limp.. xn = log(p/q).
Proof: Since

n

Z% = Iogn+r+0(%>,

k=1
we know that

pn gn
SED I SO
k=1 k=1
= log(p/q) + O(%)

which implies that limn... X, = log(p/q).
(b) When g = 1,p = 2, show that s, = X, and deduce that

® n+1
> % = log2.
n=1

Proof: We prove it by Mathematical Induction as follows. As n = 1, it holds
trivially. Assume that n = m holds, i.e.,



consider n = m + 1 as follows.

2(m+1)
Xm+1 = Z %
k=(m+1)+1
_ 1 1 1
XMy Tt 2m+1 T 2m+2
= Som + 1 1

2m+1  2m+2
= So(m+1)-

So, by Mathematical Induction, we have proved that s,, = xn for all n.
By son = xn for all n, we have

. 0 (_1)k+l .
limsan = = log2 = limxn.
k=1

k

(c) rearrange the series in (b), writing alternately p positive terms followed by q
negative terms and use (a) to show that this rearrangement has sum

log2 + % log(p/q).

Proof: We prove it by using Theorem 8.13. So, we can consider the new series
>, & as follows:

[t ) (o - i)

Then
n
Sn = Zak
k=1
2np np nq
-yl 51 vy1
k=1 k k=1 2k k=1 2k

So,
limSn = log2 + % log(p/q)
by Theorem 8.13.

Remark: There is a reference around rearrangement of series. The reader can see the
book, Infinite Series by Chao Wen-Min, pp 216-220. (Chinese Version)

(d) Find the sum of 3~ " (-1)™*(1/(3n - 2) — 1/(3n - 1)).
Proof: Write



n
Sn = E(_l)m( 7 T

n n
_ R 1 L 1
S Sy

n n
N 311 N qy3k2 1
B k2=1:( 2 3k Z( 2 3k -2

1
n
- _ k-1__ 1 Can3k2 1
= 2D 3K 1+Z(1) 3K 2}
L k=1 k=1
o i (D) -an (—1)*
N k 3k
L k=1 k=1
[ 3
et (—1)1
L k=1 k 3 k=1 k
3 + +
k=1 k 3 k=1 k
L2
3 log 2.

So, the series has the sum % log 2.

Remark: There is a refernece around rearrangement of series. The reader can see the
book, An Introduction to Mathematical Analysis by Loo-Keng Hua, pp 323-325.
(Chinese Version)

8.19 Let cn = an + ibn, where a, = (-1)"//n, by = 1/n2. Show that _ c, is
conditioinally convergent.

Proof: It is clear that D c, converges. Consider
2lerl = 2t - XA 2 A
Hence, Y |cn| diverges. That is, D _ cn is conditioinally convergent.

Remark: We say Y_ ¢, converges if, and only if, the real part > a, converges and the
imaginary part >_ b, converges, where ¢, = an + ibn.

8.20 Use Theorem 8.23 to derive the following formulas:
@ >, 2 = Llog’n +A+ o( logn ) (Ais constant)

Proof: Let f(x) = "% define on [3,), then f'(x) = = '°9X < 0on[3,0). So, itis
clear that f(x) is a positive and continuous function on [3, oo) with

limfoo) = im 129X _ Jim L — 0 by L-Hospital Rule.
So, by Theorem 8.23, we have



n n
3 —IOE K _ I Io)g(;x dx + C + o( logn ) where C is a constant
3
k=3
logn
n

= % log®n — % log®3 + C + O( ) where C is a constant

which implies that

z”:logk 1| Iogn
K = 0g’n+A+0 ,

k=1

292 _ 1 log?3 is a constant.

where A = C +

Proof: Let f(x) = xlogx defined on [2,), then f'(x) = _<xlogx> (1 +1logx) < 0on

[2,00). So, it is clear that f(x) is a positive and continuous function on [3, ), with
limf(x) = lim 1 __o
© Xlogx

So, by Theorem 8.23, we have
n n
Zkll :I dx +C+O( 1 ),WhereCisaconstant
~ ogk 2> xlogx nlogn

= log logn + B + O( 1 ) where C is a constant
nlogn

where B = C — log log 2 is a constant.
8.211fo<a<1,s>1, define¢(s,a) = X7 (n+a)™.

(a) Show that this series converges absolutely for s > 1 and prove that

k
s, 1) = ks¢(s) ifk = 1,2,...
;¥<k> 4

where {(s) = {(s,1) is the Riemann zeta function.
Proof: First, it is clear that {(s,a) converges absolutely fors > 1. Consider

Sc ) - T3 ke

h=1 n=0




(b) Prove that >~ (-1)"'/ns = (1 - 21)¢(s) if s > 1.

Proof: Let {Sn = ij‘:l (—i_ﬂl} and thus consider its subsequence {S,} as follows:

2n n
S,=S'L_» 1
3 ,21:1 ,z_;(zns

2n n

=1 =1

which implies that
limSzn = (1= 212)(s).
Since {Sn} converges, we know that {S,,} also converges and has the same value. Hence,

i(—l)”_llns = (1 =25)¢(s).
n=1

8.22 Givena convergent series Y an, where each a, > 0. Prove that D /annP
converges if p > 1/2. Give a counterexample for p = 1/2.

Proof: Since
aan‘2p > Jan® = Jain-p,
we have »_ /annP converges if p > 1/2 since
D " aq converges and ) n-2 converges if p > 1/2.

For p = 1/2, we consider a, = —L—, then
n(logn)

Z an converges by Cauchy Condensation Theorem

and

Z Jann1?2 = Z - Igg - diverges by Cauchy Condensation Theorem.

8.23 Given that > an diverges. Prove that > na, also diverges.

Proof: Assume ) na, converges, then its partial sum 22:1 kay is bounded. Then by
Dirichlet Test, we would obtain

Z(ka@(%) = > ay converges

which contradicts to D a, diverges. Hence, D _ na, diverges.

8.24 Given that > an converges, where each a, > 0. Prove that

1/2
Z(anaml)

also converges. Show that the converse is also true if {a,} is monotonic.

Proof: Since
dn + adns1

1/2
) > (anans1)

1/2
Z(anaml)

we know that



converges by > an converges.
Conversly, since {an} is monotonic, it must be decreasing since Y an converges. So,
an > ap forall n. Hence,
(anans1)Y? > an forall n.

So, 3" an converges since Y (anan.1 )" converges.

8.25 Given that Y an converges absolutely. Show that each of the following series
also converges absolutely:

(@) 2_ad
Proof: Since ) an converges, then a, - 0 asn — oo. So, given ¢ = 1, there exists a
positive integer N such that as n > N, we have
lan] < 1
which implies that
ai < |an| forn > N.
So, Y_aj converges if >_|an| converges. Of course, > _ aZ converges absolutely.

(b) 2 1= (ifnoa, = -1)

Proof: Since )_|an| converges, we have lim,..an = 0. So, there exists a positive
integer N such that as n > N, we have

1/2 < |1+ an.
Hence, asn > N,
dn
1+an < 2lan|

which implies that Z| li;n | converges. So, Z%{;n converges absolutely.
af
(C) 1+af

Proof: It is clear that
aj 2
< aj.
1+a2 — "
converges absolutely.

aj
1+a?

By (a), we have proved that >_

8.26 Determine all real values of x for which the following series converges.
- 1 1 sinnx
Z(l + ? ++W>T
n=1

Proof: Consider its partial sum
i L+3+..+1)

K sinkx

k=1
as follows.

As x = 2mr, the series converges to zero. So it remains to consider X # 2mr as
follows. Define

a, = 2 k

1+1 4.+
k

and



by = sinkx,

then
o 1+ 3+t +ggr 1+3+4g
Ak+1 — Ak K+ 1 K
_ K1+ 5+ 4+ 20) - k+DA+ 5 +..+1)
k(k+ 1)
_ -+ +40) -0
k(k+1)
and
n
Zbk‘ < | = lx ‘
= sm(;)

So, by Dirichlet Test, we know that

OO . (1+4L 4+ 4+L
Zakbkzz( +2:(r Jrk)Sil‘lkx
k=1

k=1

converges.
From above results, we have shown that the series converges for all x € R.

8.27. Prove that following statements:
(a) D_anbn converges if >_ an converges and if Y (b — bns1) converges absolutely.

Proof: Consider summation by parts, i.e., Theorem 8.27, then
n n
D &bk = Anbraa = D Ac(bii = bi).
k=1 k=1

Since Y an converges, then |A,| < M for all n. In addition, by Theorem 8.10, limn_... by
exists. So, we obtain that

(1). limAnbn,1 exists
and

(2)- D A1 = b )] < MD b — by < M D Jbs — byl.
k=1 k=1 k=1
(2) implies that

n
(3). ) Ax(bye — by) converges.

k=1
By (1) and (3), we have shown that 3", | axby converges.

Remark: In 1871, Paul du Bois Reymond (1831-1889) gave the result.

(b) > anbn converges if > an has bounded partial sums and if > (bn — bny1) converges
absolutely, provided that b, -~ 0asn — oo.

Proof: By summation by parts, we have

n n
Z akby = Anbpig — ZAk(bm - by).
pa)

k=1
Since b, > 0asn - o« and Y an has bounded partial sums, say |An| < M for all n. Then



Q). !\LrQAnbn+1 exists.
In addition,

n n 00
(2)- D _JAk(bres = bi)] < M D foies = bi] <MD Jby — byl.
k=1 k=1 k=1
(2) implies that

n
(3). D Ac(bie1 — by) converges.

By (1) and (3), we have shown that Z:=1 axby converges.

Remark: (1) The result is first discovered by Richard Dedekind (1831-1916).

(2) There is an exercise by (b), we write it as a reference. Show the convergence of the

. w  (=1)[¥]
series >,

PN
Proof: Leta, = <2 and by =

k2/3
ot 1)[ L it suffices to show that {,a =Sy } is bounded sequence. Given
neN, there eXIStSj e Nsuchthatj? <N < (j + 1) Consider
Sh=a;+a+az+ay+...+ag +ag +....+as +... 432 +...+an

then in order to show the convergence of

k1/3 !

3az + 5a4 + 7ais + 9a6 +. +(4k — 1)a(2k)2_1 + (4k + 1)a(2k)2 Ifj =2k, k>2
<
- 3as + 5a4 + 7a15 + 9a15 +. +(4k - 3)8.(2k_2)2 Ifj =2k-1, k>3
then as n large enough,
. - (—3ay +5a4) + (~7ags + 9ass) +...+(—(4k — D)agy, + (4k + 1)agy,: )
(~3as + 5a4) + (~7ags + 9ass) +...+(—(4k — 5)ay 2 + (4k = 3)ap ,)2 )

which implies that as n large enough,

o0

S”SZZa(ZJ')2 Z @ 4/3 =M
=2 2j)

=2

Similarly, we have
M, < S, foralln

By (*) and (**), we have shown that {3"' , a, = Sn } is bounded sequence.
Note: (1) By above method, it is easy to show that

3~ O
k=1 kP
converges forp > 1/2. For 0 < p < 1/2, the series diverges by
(n2)P +...+(n2+2n)p T m2+n)® T 2+n)? T m+n® T on+l >

(,1)['09 k]
k

(2) There is a similar question, show the divergence of the series 3"

Proof: We use Theorem 8.13 to show it by inserting parentheses as follows. We insert
parentheses such that the series 3 20— 1’ L forms 3 (-1)*by. If we can show 37(~1)b,

**



. _ 2y [logk] ; .
diverges, then " “2— also diverges. Consider

b = %J“-'er%rr’

where
(1). [logm] =N
(2). [loglm—-1)] = N-1 = [loge(m—-1)] = N
(3). [log(m+r)] =N
4. [logm+r+1)] =N+1= [log™+L] =N

By (2) and (4),

m+Tr+l >m-1=r+1>mifmis large enough.

By (1) and (3),
2m >r.
So, as k large enough (< m is large enough),

b > itk = = Loy (%),

It implies that Z(—l)"bk diverges since by does NOT tends to zero as k goes infinity.So,

; _ 1y [logk] ;
we have proved that the series 3" 2" diverges.

(3) There is a good exercise by summation by parts, we write it as a reference.
Assume that 3" axby converges and b,/ with limn..bs = . Show that b Y"" ay
converges.

Proof: First, we show that the convergence of 3" ay by Dirichlet Test as follows.
Since b, oo, there exists a positive integer no such that as n > ng, we have b, > 0. So,

o0
we have { L } is decreasing to zero. So
n=1

bn+n0
o0 o0
> = 2@nben)( 52 )
kel kel ko

converges by Dirichlet Test.
For the convergence of an:;n a, letn > ng, then

bn Z dx = Z akbk%
k=n k=n k
and define ¢, = ayby and dy = E—E Note that {dy} is decreasing to zero. Define
Ck = Z;‘:l cj and thus we have

m m
bn kZ:ak = kZ:akbkg—E
=n =n

m
= > (Cx - Cic)di
k=n

m-1

= > Cu(dk — dis1) + Cnlin — Cri_y0ln.

k=n

So,



bn Z g = Z akbk%
k=n k=n K
= Z Ck(dk — dk+l) + Coodoo - Cn—ldn
k=n

= Z Ci(dg — dis1) — Cpadn

k=n

by C. = limy.,, Cy and limy_,, dx = 0. In order to show the existence of limn.. bn Z:;n ay

it suffices to show the existence of limn.« Z:’:n Ck(dy — dis1). Since the series
> Cildy — dir) exists, limn., - Ci(di — di1) = 0. From above results, we have
proved the convergence of limn.. by Z:;n ay
Note: We also show that limn_. by, Zf:n ax = 0 by preceding sayings.
Supplement on the convergence of series.

(A) Show the divergence of > 1/k. We will give some methods listed below. If the
proof is easy, we will omit the details.

(1) Use Cauchy Criterion for series. Since it is easy, we omit the proof.
(2) Just consider

1.,1.,.1 1 1 1 n1_1
l+2+3+4+...+2n21+2+24+..+2 on
=1+%—>oo.
Remark: We can consider
9 , 90
“(2+ 10 ) (11+ +100 Tzl 95+ 300 ©

Note: The proof comes from Jing Yu.

(3) Use Mathematical Induction to show that

1 1 1 3
k—1+k+k+1 > kIfk23.

Then

1., 1.,1., 1.1 3,3,3
l+2+3+4+5+6+....21+3+6+9+

Remark: The proof comes from Bernoulli.

(4) Use Integral Test. Since the proof is easy, we omit it.

(5) Use Cauchy condensation Theorem. Since the proof is easy, we omit it.
(6) Euler Summation Formula, the reader can give it a try. We omit the proof.

(7) The reader can see the book, Princilpes of Mathematical Analysis by Walter
Rudin, Exercise 11-(b) pp 79.

Suppose an > 0, Sy = aj +...+an, and Y_ an diverges.
(a) Prove that 3 47 diverges.

Proof If a, > 0asn — oo, then by Limit Comparison Theorem, we know that

1+a diverges. If {an} does not tend to zero. Claim that =2 does not tend to zero.



Suppose NOT, it means that limpy_.« %gn = 0. That is,
lim —L
Moo ] 4 an
which contradicts our assumption. So, > - — diverges by claim.

(b) Prove that

=0=lima,=0
N—oo

an+1 aN+k SN
+.. >1-
SN+1 SN+k - SN+k
and deduce that 3 g™ diverges.

Proof: Consider

aANs ANtk < Ans1 +.. ANk Sn
+...+ > =1- ,
SN+l SN+k - SN+k SN+k
then >_ £ diverges by Cauchy Criterion with (*).

Remark: Leta, = 1, then 3 5= = 3 1/n diverges.
(c) Prove that

an o _1 1
Sg — Sn—l Sn

SN|IS

and deduce that 3 % converges.

Proof: Consider

1 _ L — L > dn
Sn-1 Sn Sn-1Sn T S

and

Z S converges by telescoping series with SN,
n-1 n

So, > ¢ converges.
(d) What can be said about

and
1+nan Zl+nan

Proof: For 3 2 :asan = 1 forall n, the series 3 5o~ = 3 51— diverges. As
0ifn = k2
T Llifn=k2
the series ) - ma = D T converges.
For 3~ 23— : Consider
an _ 1 1
1+n%a, L +n2 7 n?’
SO D ;28— converges.
(8) ConS|der > sint diverges.
Proof: Since
inL
lim 20—,
n—o0

the series Y + diverges by Limit Comparison Theorem.



Remark: In order to show the series > _sin < diverges, we consider Cauchy Criterion

as follows.
nsin(2—1n> < sin( . 1 T ) +...+sin(n—1n>

and givenx € R, forn =10,1,2,..., we have
[sinnx| < n|sinx]|.

So,

in 1 ; 1 ; 1
sin5 < sm(n+1> +...+sm(n+n>
for all n. Hence, Y_sin ¥ diverges.

Note: There are many methods to show the divergence of the series D _sin +. We can
use Cauchy Condensation Theorem to prove it. Besides, by (11), it also owrks.

(9) O-Stolz’s Theorem.
Proof: Let Sp = Zj”:l Ji and Xn = logn. Then by O-Stolz’s Theorem, it is easy to see

limSn = co.
(10) Since ITy_;1 + + diverges, the series > 1/k diverges by Theorem 8.52.

(11) Lemma: If {an} is a decreasing sequence and > an converges. Then
limp.onan = 0.

Proof: Since a, — 0 and {an} is a decreasing sequence, we conclude that a, > 0.
Since Y_ an converges, given ¢ > 0, there exists a positive integer N such thatasn > N,
we have

an +..+ank < gfl2forallk e N
which implies that
(k+ 1D)anx < €/2since an \,.
Letk = n, thenasn > N, we have
(n+1)az, < €2
which implies that as n > N
2(n+1)ay < ¢
which implies that
LL@ZnaZn = 0 since !]iman =0. *
Similarly, we can show that
!Lrg(Zn + 1Dagn = 0. fakad
So, by (*) adn (**), we have proved that limy..na, = 0.

Remark: From this, it is clear that D _ + diverges. In addition, we have the convergence
of > n(an — ans«). We give it a proof as follows.

Proof: Write



n
Sh = Z k(ak — ak1)
=)

n
= ) a— N,
k=1

then
LiIQ Sp exists

since
n

m

|
N—o0

ay exists and Lim nan = 0.
k=1

(B) Prove that ) + diverges, where p is a prime.
Proof: Given N, let py,...,pk be the primes that divide at least one integer< N. Then

- 1 ‘ 1 1

]

by (1-x)™ < e2if0 < x < 1/2. Hence, Y + diverges since > + diverges.

Remark: There are many proofs about it. The reader can see the book, An
Introduction To The Theory Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese
Version)

(C) Discuss some series related with 3, Sk,
STUDY: (1) We have shown that the series ) sin + diverges.
(2) The series D_sin(na + b) diverges where a = nz foralln € Zand b € R.

Proof: Suppose that D _ sin(na + b) converges, then limn... sin(na + b) = 0. Hence,
limn.w[sin[(n + 1)a+ b] —sin(na + b)| = 0. Consider
Isin[(n + 1)a + b] —sin(na + b)|

= |2cos(na+ b+ %) sin(%) |
= |2[cos(na + b)cos(%) —sin(na + b)sin(%) } sin(%) |
which implies that



lim|sin[(n + 1)a + b] — sin(na + b)|

= [lim sin[(n + 1)a + b] —sin(na + b) |

n—oo

lim sup 2[cos(na + b)cos(%) —sin(na + b)sin(%) J ‘ ‘sin(%) ‘

= ‘LL@O sup 2[cos(na + b)cos(%) } ‘ ‘sin(%) ‘
= |sina|] # O
which is impossible. So, D sin(na + b) diverges.

Remark: (1) By the same method, we can show the divergence of > cos(na + b) if
a=+nrforallne Zandb € R.

(2) The reader may give it a try to show that,
s op+l

p
sin—=b .
D cos(na+b) = —2— sm(a + Bb)
e sin & 2
and
p s optl
. sin—==b
D sin(na+b) = —2— cos(a + Rb)
— sin 2 2
by considering Zﬁzo e'(a+b) However, it is not easy to show the divergence by (*) and
(**)_
(3) The series 3 Sk converges conditionally.
Proof: First, it is clear that % converges by Dirichlet’s Test since
H 1
> sink| < ‘ T

partial sums as follows: Since
3n+3

n
sink | _ sin3k+1 sin3k + 2 sin3k + 3
|| - Sojsigdict | g2 . |

. In order to show that the divergence of 3|k |, we consider its

3k+1 3k+2 3k+3

and note that there is one value is bigger than 1/2 among three values [sin3k + 1],
|sin3k + 2|, and |sin3k + 3|. So,

3n+3 n

Z‘%‘z 3k+3

k=1 k=0
which implies the divergence of | Sk |,

Remark: The series is like Dirichlet Integral j: sinx dx, Also, we know that Dirichlet
Integral converges conditionally.

(4) The series 3" 2" diverges for any r  R.

Proof: We prove it by three cases as follows.

(@) Asr < 0, we have
|sink|" 1
Z T Z k'

So, 3~ P diverges in this case.
(b) AsO < r <1, we have



|sink|" sink|
2 Tk ° 2 Tk
inkl™ - . .
So, >~ L L diverges in this case by (3).
(c)Asr > 1, we have

3n+3 n . . .
Z smk Z lsin3k + 1|" N lsin3k + 2|" N lsin3k + 3|"
- 3k+1 3k+2 3k+3
r
S S (3)
- 3k+3°
k=0

So, 3" M diverges in this case.
(5) The series Y~ Sk where p € N, converges.
Proof: We will prove that there is a positive integer M(p) such that

i sin? 1k

k=1

So, if we can show (*), then by Dirichlet’s Test, we have proved it. In order to show (*),

we claim that sin?*~*k can be written as a linear combination of sink, sin3k, ...,

sin(2p — 1)k. So,
n

< M(p) for all n.

H 2p—1k _ ‘
) n n
< |a] Zsink +...Hap|| D sin(2p - 1)k‘
k=1
|a1| |a2p| — = M(p) by Theorem 8.30.
|sin | |s in=£=

We show the claim by Mathematical Inductlon as follows. As p = 1, it trivially holds.
Assume that as p = s holds, i.e.,

S
sin®k = > ajsin(2j — 1)k
j=1
thenasp = s+ 1, we have



sin®*k = sin?k(sink)*™*

S
— sin2k<2 ajsin(2j — 1)k> by induction hypothesis

=1

= > ay[sin?ksin(2j — 1)k]

=1

_ i a,-[—l = 02032k sin(2j — 1)k]

=1

S S
= %[ a;sin(2j —1)k—Zajc032ksin(2j —1)k}
j

j=1 =1

S S
= % {Z a;sin(2j — 1)k — % > ayfsin(2j + 1)k + sin(2j - 3)k]}

j=1 j=1
which is a linear combination of sink, ..., sin(2s + 1)k. Hence, we have proved the claim
by Mathematical Induction.

Remark: By the same argument, the series

n
Z cos2-1k
k=1

is also bounded, i.e., there exists a positive number M(p) such that
n

D "Jcos?1k| < M(p).
k=1

= Fn(x), then {Fn(x)} is boundedly convergent on R.

(6) Define >, Sk
Proof: Since Fn(x) is a periodic function with period 27, and F,(x) is an odd function.

So, it suffices to consider Fn(x) is defined on [0, z]. In addition, F (0) = 0 for all n.
Hence, the domain | that we consider is (0, z]. Note that S'”"X j cosktdt. So,

Fn(X) = Z sir|1(kx
k=1

X n

= | > cosktdt
"0

_esin(n+ $)t—sin()t dt
Jo 2sin($)t

Y jLUAS 2L j*(w}] . _%)(sin(n+%)t)dt_g
<[ e [ ) Gn(re )03

which implies that
(3% gint t—2sini
jo 2tsm (sm(n ) 2 >t>dt

FacOl < | t dt‘ +

n 7r




1 . o . .
For the part “[ngz)X S'T”tdt‘ : Since IO St dt converges, there exists a positive M; such

that
< My for all x € I and for all n.

($)x
J

Slntdt
0 t

For the part “ ( )(sm(n + 4 )t)dt‘ Consider

L(‘gé.i:“: )Gin(n=1)e

t—2sin
< I —dtsmcet—Zsm >0onl
0

2tsin +

2tsin 2
t—23|n L t—2sint
< | ———2dt:= M;since I|m.—2 =
jo 2tsin & 2 S0 2tsin L

Hence,

IFa(X)| < My + My + £ > for all x € I and for all n.

So, {Fn(x)} is uniformly bounded on I. It means that {Fn(x)} is uniformly bounded on R.
In addition, since

Fico = [ Stac [1( 2290 Y ain(n s 4 ))an- %,

fixed x € I, we have
_[ %dt exists.
0

and by Riemann-Lebesgue Lemma, in the text book, pp 313,

im [, (g ) (5o )0

So, we have proved that
limFn(x) = j S'ntdt X where x € (0, 7].

Hence, {Fn(x)} is pointwise convergent on I. It means that {F,(x)} is pointwise
convergent on R.

Remark: (1) For definition of being boundedly convergent on a set S, the reader can
see the text book, pp 227.

(2) In the proof, we also shown the value of Dirichlet Integral

“sint gy _ &
IO g dt=7

by letting x = .
(3) There is another proof on uniform bound. We write it as a reference.

Proof: The domain that we consider is still (0,7z]. Let § > 0, and consider two cases as
follows.
(@) x > 0 > 0 : Using summation by parts,



IA

+

- sinkx
2

n
1 sinkx
n+1§ k

(et )

1 1 1 1
< — + 1-
~n+l S|n(%) S|n(%) ( n+1>

n
k=1

__1
sin($)
(b) 0 < x <5 :LetN = [1], consider two cases as follows.
Asn < N, then
n -
S'T(kx < x| < Njx| < 1
k=1
and asn > N, then
n
sinkx
k=1 K
N-1 K n ink
< sinkx | sinkx
k=1 k k=N k
n -
<1+ SIrILkX by (*)
k=N
1\ sink 1 N sink b 11
sinkx 1 sinkx o 1
e k| TN k|7 (ZS'”JX>(k+1 k)‘
k=1 k=1 k=N \_j=1
by summation by parts
1 1 1l __1 1
=1+ (n+1)sin3 * Nsin - +<N n+1>sin§
2
=1+ —5c—.
[+]sin %

Note that lim,_¢+ ——2— = 4. So, we may choose a 5’ = § such that

[%]sin%

— 2 <sforall 0,0’
sint = x e @5,

By preceding sayings, we have proved that {Fn(x)} is uniformly bounded on I. It means
that {Fn(x)} is uniformly bounded on R.

(D) In 1911, Otto Toeplitz proves the following. Let {a,} and {x»} be two sequences
such that an > 0 for all n with limn.., z2% = 0 and limy-.. X, = x. Then

A1 X1 +...+anXp

m=a+ v =*
Proof: Let Sy = > acand T = X, Xy, then
lim ot = Tn iy BnetXmed _ iy = x
n—oo Sn+1 — Sn n—oo arH_j_ n—oo

So, by O-Stolz’s Theorem, we have prove it.

Remark: (1) Let an = 1, then it is an extension of Theorem 8.48.
(2) Show that



sing +...+sin 4

lim = 0.
oo ] 4+ E
Proof: Write
sin +...+sin & _ ($)1sin6 +...+(+)nsin &
1+...+1 1+...+1 '

the by Toeplitz’s Theorem, we have proved it.

(E) Theorem 8.16 emphasizes the decrease of the sequence {an}, we may ask if we
remove the condition of decrease, is it true? The answer is NOT necessary. For example,
let

n+1
an =1+ %.@ 0)

(F) Some questions on series.
(1) Show the convergence of the series 2;11 lognsin L.

Proof: Since nsini < 1 forall n, lognsini < 0 for all n. Hence, we consider the
new series

o0

. = in1/n
—Iognsml = Iog&
- ~lognsin 3 log

n=1

as follows. Let a, = log =22 and by, = log(1+ %), then

lim&n - 1
N—o0 bn 6

dib<d L

by ex > 1 + x for all x € R. From the convergence of > by, we have proved that the
convergence of Y an by Limit Comparison Test.

In addition,

(2) Suppose that an € R, and the series >~ a3 converges. Prove that the series
> 2 converges absolutely.

Proof: By A.P.> G.P., we have
af+
2
which implies that Z:’:l 2o converges absolutely.

= 1%

Remark: We metion that there is another proof by using Cauchy-Schwarz inequality.
the difference of two proofs is that one considers an, and another considers the partial
sums S.

Proof: By Cauchy-Schwarz inequality,

n 2 n n
a
(%) < (5)(z#)
k=1 k=1 k=1
which implies that Z;il 20 converges absolutely.

Double sequences and series

8.28 Investigate the existence of the two iterated limits and the double limit of the



double sequence f defined by the followings. Answer. Double limit exists in (a), (d), (e),
(9). Both iterated limits exists in (a), (b), (h). Only one iterated limit exists in (c), (e).
Neither iterated limit exists in (d), (f).

(@) f(p,q) =

Proof: It is easy to know that the double limit exists with limp 4. f(p,q) = 0 by
definition. We omit it. In addition, limp..f(p,q) = 0. So, limg-..(limp-.. f(p,q)) = 0.
Similarly, limp..(limg-. f(p,q)) = 0. Hence, we also have the existence of two iterated
limits.

(b) f(p,q) = pq

Proof: Let q = np, then f(p,q) = 1. Itimplies that the double limit does not exist.

However, limp..f(p,q) = 1, and limg.»f(p,q) = 0. So, limg-«(limp-»f(p,q)) = 1, and
liMpo(limg-e f(p, q)) = 0.

1P
(C) f(p,CI) = p+qp
LP

Proof: Let g = np, then f(p,q) = 4. Itimplies that the double limit does not exist.
In addition, limg-. f(p,q) = 0. So, limp-(limg-f(p,q)) = 0. However, since
limp... f(p, q) does not exist, limg-.(limp- f(p,q)) does not exist.

(@) f(p,a) = 1 (3 + )

Proof: It is easy to know limp 4 f(p,q) = 0. However, limg... f(p,q) and limp-. f(p,q)
do not exist. So, neither iterated limit exists.

(&) f(p,a) = -

Proof: It is easy to know limp 4. f(p,q) = 0. In addition, limq.f(p,q) = 0. So,
limp.o (limg-e f(p,q)) = 0. However, since limp.. f(p,q) does not exist,
lim g (limp-e f(p, q) ) does not exist.

() f(p.a) = (-1)*"

Proof: Let p = ng, then f(p,q) = (=1)™™. It means that the double limit does not
exist. Also, since limp.. f(p,q) and limg. f(p,q) do not exist, limg-..(limp-. f(p,q)) and
limp-o(limg-e f(p, q)) do not exist.

(9) f(p,q) = <3~

Proof: Since [f(p,q)| < &, then limp g f(p,q) = 0, and limp..(limg-..f(p,q)) = 0.
However, since {cosp : p € N} dense in [-1,1], we know that limg-..(limp-. f(p,q)) does
not exist.

(h) f(p.q) = 37 sind

qZ

Proof: Rewrite
00 .. OH1
psin 5 sin 5~

f(p.q) = —=
q25|n2—1IO
in-L sin( 4L
and thus let p = nq, f(p,q) = sm;;;‘:f”q) . It means that the double limit does not exist.

2nq

&2 since sinx~x as x — 0. S0, liMg-.(limp-f(p,q)) = L.

However, limp- f(p,q) = %



sin -3 gin &L

Also, limg... f(p,q) = Iimqﬂw(psin 2—1p> (%) = 0 since [sinx| < 1. So,

8.29 Prove the following statements:

(a) A double series of positive terms converges if, and only if, the set of partial sums is
bounded.

Proof: (=)Suppose that Zm’n f(m,n) converges, say Zm’n f(m,n) = A;, then it means
that limp 4. S(p,q) = A1. Hence, given ¢ = 1, there exists a positive integer N such that as
p,g > N, we have

Is(p, Q)| < |A1] + 1.
So, let A, = max<{s(p,q) : 1 < p,q < N}, we have |s(p,q)| < max(A1,A;) forall p,q.
Hence, we have proved the set of partial sums is bounded.
(<)Suppose that the set of partial sums is bounded by M, i.e., if

S ={s(p,q) : p,q € N}, thensupS := A < M. Hence, given ¢ > 0, then there exists a
s(p1,q1) € S such that

A—-¢& <s(p1,0q1) <A
Choose N = max(p1,q1), then
A—¢g <s(p,q) <Aforallp,qg>N
since every term is positive. Hence, we have proved limp .- S(p,q) = A. That is,
2= f(m,n) converges.

(b) A double series converges if it converges absolutely.

Proof: Let sy (p,q) = .0, > [f(m,n)|and sa(p,q) = >0, >°F f(m,n), we want

to show that the existence of limp - S2(p,q) by the existence of limpg-.S1(p,q) as
follows.

Since limp g-S1(p, ) exists, say its limit a. Then limp... S1(p,p) = a. It implies that
limp. S2(p, p) converges, say its limit b. So, given ¢ > 0, there exists a positive integer N
such thatas p,q > N

|s1(p,p) —s1(0,9)| < &2

and
Is2(N,N) —b| < &/2.
So,asp>q >N,
[s2(p,q) — b| = [[s2(N,N) — b] + [s2(p,q) — s2(N,N)]|

< &l2 +s2(p.q) — s2(N,N)|

< &l2+s1(p,p) —S1(N,N)

< &l2+¢l2

= ¢&.
Similarly for g > p > N. Hence, we have shown that

Jim s2(p,q) = b.
That is, we have prove that a double series converges if it converges absolutely.
(©) X2, 8™+ converges.

Proof: Let f(m,n) = e~ then by Theorem 8.44, we have proved that



—(m?+n? i —(m?+n?) _ -m? -n?
D mn €M) converges since 35 M = 37 ey e,

Remark: 377, , e = 37 e 37 e = (2

e2-1

8.30 Asume that the double series 3 _a(n)x™ converges absolutely for |x| < 1. Call

its sum S(x). Show that each of the following series also converges absolutely for x| < 1
and has sum S(x) :

Za(n) T x” : ZA(n)x” where A(n) = Za(d)

djn
Proof: By Theorem 8.42,

EZaUDWm::EZam)EZXW::EZam)lxkniﬂﬂ<<L
m,n n=1 m=1 n=1 B

So, ZL a(n) converges absolutely for x| < 1 and has sum S(x).

Since every term in Zm La(n)xm™, the term appears once and only once in
Z:zl A(n)x". The converse also true. So, by Theorem 8.42 and Theorem 8.13, we know
that

fiAmyn=§:mmwm=suy
n=1 m,n

8.31 If a is real, show that the double serles Z (m+in)~® converges absolutely if,
and only if, @ > 2. Hint. Lets(p,q) = 1|m + |n| ~*. The set
{m+in:m= 1,2,...p,n =12,...,p}

consists of p2 complex numbers of which one has absolute value ¥2, three satisfy
|1+ 2i] < |m+in| < 22, five satisfy |1 + 3i| < |m +in| < 32, etc. Verify this
geometricall and deduce the inequlity

a/2 2I‘1 1 <s < 2n —
Z (p.p) Z I
Proof: Since the hint is tr|V|aI, we omlt the proof of hint. From the hint, we have

- <s(p.p) = m+in@ <y —2n=1_
23(«7) 2:2:

2
m=1 n=1 n=1 (1 nz)a

Thus, it is clear that the double series > (m +in)™ converges absolutely if, and only if,
a > 2.

8.32 (a) Show that the Cauchy product of Z:zo(—l)"”/,/n +1 with itself is a
divergent series.

Proof: Since



D* D™
Z Jk+1 Jn—k+1

_ 1
e kz(; Jk+1Jn-k+1

and let f(k) = J(n—k+ D(k+ 1) = [~(k—2)° + (22)" < 22 fork = 0,1,...,n
Hence,

n

1
cnl =
il ;Jk+1\/n—k+l

_ 2n+1)
- n+2
That is, the Cauchy product of " (-1)™*/J/n+ T with itself is a divergent series.

(b) Show that the Cauchy product of 7, (-1)™/(n + 1) with itself is the series

> T (e d o)

- 2asn - oo.

Proof: Since

_ (-1)
- k; n—Kk+1)(k+1)

n
_ 1 1 1
B n§n+2(k+1+n—k+l)

|
N
-
N—

we have

n=0 n=0 k=0
_on (D" 1 1
‘2§ n+2(1+2+ +n+1>
B (_1)n+l l l
‘an1 n+1 (“2+ n

(c) Does this converge ? Why?

Proof: Yes by the same argument in Exercise 8.26.

8.33 Given two absolutely convergent power series, say Z:;O anX" and Z.io bnX
having sums A(x) and B(x), respectively, show that Z‘::O cnX" = A(X)B(x) where



n
Cn = ) &bk
k=0

Proof: By Theorem 8.44 and Theorem 8.13, it is clear.
Remark: We can use Mertens’ Theorem, then it is clear.
8.34 A series of the form >~ an/n* is called a Dirichlet series. Given two absolutely

convergent Dirichlet series, say >~ an/n®and > ba/ns, having sums A(s) and B(s),
respectively, show that Z:;lcn/nS = A(s)B(s), where ¢cn = de agbng-

Proof: By Theorem 8.44 and Theorem 8.13, we have
(Z an/ns> (Z bn/ns> = (Z Cn>
n=1 n=1 n=1

Cn = Y agdbyq(n/d)~

din
== aghyq
djn
= Cn/ns.

where

So, we have proved it.

8.35¢(s) = >, 1/n%, s > 1, show that {?(s) = 3~ d(n)/n®, where d(n) is the
number of positive divisors of n (including 1 and n).

Proof: It is clear by Exercise 8.34. So, we omit the proof.

Ces’aro summability
8.36 Show that each of the following series has (C,1) sum O :
@1-1-14+1+1-1-1+1+1——++---

Proof: Itis clear that |s; +...+Sn| < 1 for all n, where s, means that the nth partial sum
of given series. So,
| S1 + .+Sn |

IA

1

n

which implies that the given series has (C, 1) sum
(b)%—1+7+7—1+7+7—1++—---

Proof: Itis clear that |s; +...+sn| < 3 for all n, where s, means that the nth partial
sum of given series. So,
Si+...+Sn| o 1
n - 2n
which implies that the given series has (C,1) sum 0.
(C) cosX + €c0S3X + COS5X + « « « (x real, X = mx).

Proof: Let s, = cosx +...+cos(2n — 1)x, then



n
Snh = Zcos(Zk— 1)x
=1
_ sin2nx
2sinx
So,
>asi| | X sin2ix
n B 2nsinx

| sinnxsin(n + 1)x
2nsinxsinx

2n(sinx)?

which implies that the given series has (C,1) sum 0.
8.37 Given a series > _ ay, let

n

n n
Sn= D A th = Y kay, on = % Sy.
k=1 k=1

k=1
Prove that:

@ty = (n+1)sph —non
Proof: Define Sp = 0, and thus

n
tn = Z kak
P}
n
= Z K(Sk — Sk_1)
P}

n n
= Z ks — Z KSk_1
k=1 k=1

n n-1
= Z ksy — Z(k + 1)Sk
k=1 k=1

= Z ksx — Z(k +1)sx + (n+ 1)sy
k=1

k=1

n
= (n+1)sn— D s
k=1

= (n+1)Sh) — non.

(b) If >_an is (C,1) summable, then > an converges if, and only if, t, = o(n) as

n - oo.
Proof: Assume that D an converges. Then limp... Sy exists, say its limit a. By (a), we

have

t
L R

Then by Theorem 8.48, we also have limn.. on = a. Hence,



S T

Im 7 = Im "5=8n —on
— lim D+l _ i
= im "= limsn - liman
= a—a

which ist, = o(n) asn - oo.
Conversely, assume that t, = o(n) as n — oo, then by (a), we have
n_tn n
n+t1n " n+1°
which implies that (note that limn_. o exists by hypothesis)

n = Sn

t n
lims, = lim n_1n , c
n n+1 N " ny1”"

_ n tn n
=lmo g im g+ im - limon
= 0+l || On
N—oo
= limon

That is, D _ an converges.
(c) D an is (C,1) summable if, and only if, > ta/n(n + 1) converges.
Proof: Consider

[ :S_n_ On
nin+1) N n+1
_ Gn—(n—l)Gn,l_ O'n
n n+1
_ _n n—1
T he1%nT T 90t

which implies that

n
Zk(k+1) n+1°

(:>)Suppose that > an is (C,1) summable, i.e., limg... on exists. Then
liMnoo Zk ) k(k+1) exists by (*).

(<)Suppose that limp_e Zk L k(k D exists. Then limy... o exists by (*). Hence, > an
is (C,1) summable.

8.38 Given a monotonic {an} of positive terms, such that limy..an = 0. Let

n n n
Sn= D Un = Y (-D)a, vo = D (-1)'s.
k=1 k=1 k=1
Prove that:
(a) Vn = %Un + (—l)nSn/z

Proof: Define s; = 0, and thus consider



n

Un = D (1)

k=1

= > (D"~ Sk1)
k=1

n n
= D D s+ D (D) sy
k=1 k=1

= DD+ Y (Dfsic+ (D)™ sy
k=1 k=1

= 2vp + (-1)™s,
which implies that

Vi = %un +(=1)"sn/2.

(b) 3= ,(-1)"sn is (C,1) summable and has Ces’aro sum £ >~ (-1)"an.

Proof: First, limn.. Un exists since it is an alternating series. In addition, since

limpwan = 0, we know that limn... Sn/n = 0 by Theorem 8.48. Hence,
VMo _ Un o q\"Sn >
A 2n+(1) N Oasn — oo.

Consider by (a),

Z::l Vi %(2:4 uk) + %<Z:=1(_1)ksk>
n - n

_; Uk v
_ k=1 n
B on 2n
1 .
= 5 Hmu
- %Z(—l)”an
n=1

by Theorem 8.48.
© X D"A+4+..+%) = -logJ2 (C,1).
Proof: By (b)and 37 2~ = —log2, it is clear.
Infinite products

8.39 Determine whether or not the following infinite products converges. Find the
value of each convergent product.

@I, (1~ +5)
Proof: Consider
2 (=1 (n+2)
nn+1)  nnh+1) '

we have



>

2 7 k=D(k+2)
2(1_k(k+1))_H k(k + 1)

_1.42.53.6 .. (n-1)(n+2)
2:.33-:44.5 nin+1)
_n+2
3n
which implies that
n(n+1) 3

(o) [T ,(1-n"?)

Proof: Consider

-1 1
1_n2— (n r)"(1n+ )

we have

n

. o1 k=1)(k+1)
Ik:z[(l—kz)—l_[ &

k=2

which implies that

[Ja-n2 =12
n=2

(©) I, 52
Proof: Consider
nd—1 _ (=112 +n+1)
n+1  (+1N"2-n+1)
_ (n-1)((n2+n+1)
+)[(n-1)2+(n-1)+1]
we have (let f(k) = (k—1)* + (k—1) + 1),

K1 211[ (k—1)(K2 + Kk + 1)
w2 KB+l k+D[k-1)7+ (k-1) +1]
_2n2+n+1
3 nin+1)

which implies that

ﬁn3—1 2
nd+1 3
n=2

)1 ,@+z@)if|z| < 1.

Proof: Consider

n
[[1+29 = @+)@+22) - - (1 +22Y)
k=0



which implies that

n
A-2)[]1+2® =1-z2"
k=0
which implies that (if |z| < 1)
n

on+l
Hl+z<2k):1—2( L o1 _asnow
k=0

1-z 1-z
So,

o0

@y = -1
[[a+z®) = 1.

n=0

8.40 If each partial sum s, of the convergent series D _ an is not zero and if the sum
itself is not zero, show that the infinite product a; H:iz(l — an/sy-1) converges and has the
value 3~ an.

Proof: Consider

n n
Sk-1 +a
ai H(l +au/Sk1) = ax H %
k=2 k=2
- S
_ k
=& H Sk-1
k=2
= Sr] i :EE:: Ein * ().

So, the infinite product a; [ ], (1 — an/sn-1) converges and has the value 3~ a.

8.41 Find the values of the following products by establishing the following identities
and summing the series:

@[1,Q-55)=2>" 2"

Proof: Consider

1 1 _2n—1 _ 1 2n-1
2n_2 2n_2 22n—1_1’
we have
" 1 T ko1
H( _2k—2):1k_2[§2k—1—1

_ 1
=1+...+ =

n
_ 1

k-1
o 2
n

--o%" 1



So,

(b) H::;Z (1 + n21—1 ) - 22:10:1 n(n1+1) '

Proof: Consider

1 _ 2 _
R M M (n—lr)]?n+1)’
we have
ll:zl( ) 1_[(k 1)(k+1)
_2n+1
_ 1
_2<1_ n+1>
Zk(k+1)
So,
- _ 1
B( - T&in(n+1)

= 2.

8.42 Determine all real x for which the product ]_[::1 cos(x/2") converges and find the
value of the product when it does converge.

Proof: If x #+ mz, where m € Z, then sm + 0 for all n € N. Hence,

2"sin X X . ;
K Ky _ _sinx__ _ sinx
Hcos(x/Z ) = hgn i X Hcos(xlz = Jrsin & AX.

If X = mz, wherem € Z. Thenasm = O, |t is clear that the product converges to 1. So,
we consider m = 0 as follows. Since x = mz, choosing n large enough, i.e.,asn > N so
that sin - + 0. Hence,

N-1 n
H cos(x/2) = [ Jcos(x/2) | ] cos(x/2¥)
k1 kel kN

N-1 .
_ o Sin(x/2N-1)
[ [ eos02) 5 amy

and note that
sin(x/2N-1) sin(x/2N-1)

oo pn-Nelgin(x/2n) — x/2N-1

Hence,

o0 . N-1 N-1
[ Jcosxi2¥) = % [ Jcosxi2%).
k=1 k=1



So, by above sayings, we have prove that the convergence of the product for all x € R.

8.43 (a) Leta, = (-1)"/yn forn = 1,2,... Show that | [(1 + an) diverges but that
D" an converges.

Proof: Clearly, > a, converges since it is alternating series. Consider

That is, H:;z 1 + a diverges to zero.

(b) Letaz g = —-1/J/n, az = 1/ /0 + Unforn =1,2,... Show that [ [(1 + an)
converges but > _ aj diverges.

Proof: Clearly, )" an diverges. Consider

2n
[J1+a=@+a)@+as)@+as) - (1+az)
k=2

=3(1+ag)(l+ag) -+ +(1+az,)

_gf1-—L )...(1-—L_
_3(1 2ﬁ> (1 nJﬁ>
[[1+ac=(+a)@+as)@+an) -« (1+aum)l+azmi)

~a(1- g ) (1-55 ) (- )

By (*) and (**), we know that

and

[ J@ +an) converges
since ]_[::2(1 - ﬁ) converges.

8.44 Assume that a, > 0 for each n = 1,2,... Assume further that



Aony2 azn
— < a < forn=1,2,...
1 + a2n+2 2n+l 1 + aZn

show that [ ], (1 + (~1)*a,) converges if, and only if, 3-" (~1)“a, converges.
Proof: First, we note that if -2 > b, then (1+a)(1-b) > 1, andifb > Lic then
1> (1-b)(1+c). Hence, by hypothesis, we have
1< (@+axn)(l-azmu)

and
1> (1+az2)(d—azm).
(<)Suppose that Z:’zl(—l)kak converges, then limy_.,ax = 0. Consider Cauchy
Condition for product,
|(1+ (-1)"ap ) (1+ (-1)"%ap.2) « (1 + (-1)*%apiq) — 1] forq = 1,2,3,....
Ifp+1=2m, and g = 2, then
|(1+ (1) apa) (1 + (-1)"%ap2) « + «(1+ (-1)P%ap.q) — 1
= |(1+azm)(1 —azm1) «+ «(1+aomszr) — 1
< 1+azm—1by (*)and (**)
= ayy — O.
Similarly for other cases, so we have proved that ]_[f:l(l + (—1)"ak> converges by
Cauchy Condition for product.

(=)This is a counterexample as follows. Let an = (—1)”[ (exp % - 1} > 0 for all

n, then it is easy to show that

dons2

don
<a < forn=1,2,...
1 + a2n+2 2n+1

1+a2n

In addition,

n n k n k
1+ (—1)ka = exp& = exp( &> - exp(—log2) asn - oo.
L€ )= 11w g 2R

However, consider

n
D (@ — azc1)
1

IR 1) =

_kz;[exp(m> exp(mﬂ

- n 1 1 € =1 L

- kz;exp(bk)(m + k1 ) where by (m \/ﬁ>

n
1 1
> exp(-1 + - o0asn — oo.
2ot (m 1 )
So, by Theorem 8.13, we proved the divergence of Z:’zl(—l)"ak.

8.45 A complex-valued sequence {f(n)} is called multiplicative if f(1) = 1 and if
f(mn) = f(m)f(n) whenever m and n are relatively prime. (See Section 1.7) It is called
completely multiplicative if

f(1) = L and if f{(mn) = f(m)f(n) for all m and n.

**



(a) If {f(n)} is multiplicative and if the series Y f(n) converges absolutely, prove that
D f) = [ [{1+ 1o +f(d) +.. ),
n=1 k=1

where py denote the kth prime, the product being absolutely convergent.

Proof: We consider the partial product P, = ]_[L”:l{l + f(pk) + f(p2) +... } and show
that P — - f(n) asm — oo. Writing each factor as a geometric series we have

Pm = [ [41+ (o) +f(PE) +...},
k=1

a product of a finite number of absolutely convergent series. When we multiple these series
together and rearrange the terms such that a typical term of the new absolutely convergent
series is

f(n) = f(p1*) - - -f(pfi), where n = p3* - - -pfr,
and each a; > 0. Therefore, we have

Pm = > _f(n),
1

where Zl Is summed over those n having all their prime factors < pm. By the unique
factorization theorem (Theorem 1.9), each such n occors once and only once in Zl.
Substracting Py, from ZL f(n), we get

D () —Pm =) ()= D_f(n) = D_f(n)
n=1 n=1 1 2

where Zz is summed over those n having at least one prime factor > pm. Since these n
occors among the integers > pm, we have

if(n) ~Pnm
n=1

Asm - oo the last sum tends to 0 because 3" f(n) converges, so Pn — >~ f(n).

To prove that the product converges absolutely we use Theorem 8.52. The product has
the form [ [(1 + ax), where

< D[],

n>pm

ai = f(pi) + f(pE) +.....
The series D _|ax| converges since it is dominated by Z::1|f(n)|. Thereofore, [ (1 + ax)
also converges absolutely.

Remark: The method comes from Euler. By the same method, it also shows that there
are infinitely many primes. The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese Version)

(b) If, in addition, {f(n)} is completely multiplicative, prove that the formula in (a)

becomes
fny=[]-—L—.
; ll:l[ 1 —f(px)

Note that Euler’s product for {(s) (Theorem 8.56) is the special case in which f(n) = n-s,
Proof: By (a), if {f(n)} is completely multiplicative, then rewrite



0

1+f(p) +f(P) +... = D_[f(p)]"

n=0

_ 1
1-1f(pw)

since [f(px)| < 1 for all py. (Suppose NOT, then [f(p)| > 1 = [f(pD)| = If(pr)|" > 1

contradicts to limp... f(n) = 0.).

Hence,
f(n) = 1
; H 1 —f(px)

8.46 This exercise outlines a simple proof of the formula {(2) = #2/6. Start with the
inequality sinx < x < tanx, valid for 0 < x < #/2, taking recipocals, and square each
member to obtain

1

cot?x < S < 1 + cot?x.

Now put x = kz/(2m + 1), where k and m are integers, with 1 < k < m, and sum on k to

obtain
) (2m+1) 2
E cot 2m+1< E k2<m+§ cot 2m+l

Use the formula of Exercise 1.49(c) to deduce the ineqaulity

_ 2 m 2
m(2m 1)72 < Z % < 2m(m + 1)72
32m+1) k 32m+1)
Now let m — oo to obtain (2) = =2/6.
Proof: The proof is clear if we follow the hint and Exercise 1.49 (c), so we omit it.

8.47 Use an argument similar to that outlined in Exercise 8.46 to prove that
{(4) = n4190.

Proof: The proof is clear if we follow the Exercise 8.46 and Exercise 1.49 (c), so we
omit it.

Remark: (1) From this, it is easy to compute the value of £(2s), where
s € {n : n € N}. In addition, we will learn some new method such as Fourier series and
so on, to find the value of Riemann zeta function.

(2) Ther is an open problem that {(2s — 1), wheres € {ne N : n > 1}.



Sequences of Functions

Uniform convergence

9.1 Assume that f,, — f uniformly on S and that each f, is bounded on
S. Prove that {f,} is uniformly bounded on S.

Proof: Since f, — f uniformly on S, then given ¢ = 1, there exists a
positive integer ng such that as n > ng, we have

|fu(x) — f(2)| <1forall z €S. (*)
Hence, f (x) is bounded on S by the following

|f (2)] < |fno ()] +1 < M (ng) + 1 for all z € S.

(**)
where |f,, (x)] < M (ng) for all z € S.
Let |fi ()] < M (1), ..., |frg—1 ()] < M (nog—1) for all z € S, then by
(*) and (*%),

|fo (@) <1+ |f(2)] < M (ng)+ 2 for all n > nyg.
So,

|fu ()| < M for all x € S and for all n
where M = max (M (1),.... M (ng — 1), M (ng) + 2) .

Remark: (1) In the proof, we also shows that the limit function f is
bounded on S.

(2) There is another proof. We give it as a reference.

Proof: Since Since f,, — f uniformly on S, then given ¢ = 1, there exists
a positive integer ng such that as n > ngy, we have

|fo () = fogk ()| < 1forall z € Sand k=1,2,.
So, forall z € S, and k=1,2, ...

| frok (2)] <14 [frg ()] < M (no) +1

(*)
where | f,, (z)] < M
Let |f1 ()] < M

(ng) for all x € S.
(1) 4oy [frg—1 (z)] < M (ng — 1) for all x € S, then by
(*),

|fu ()| < M for all x € S and for all n

1



where M = max (M (1), ..., M (ng — 1), M (ng) +1).
9.2 Define two sequences { f,} and {g,} as follows:

1
fn(x):x(l—l——) ifreR n=12,..,
n

(z) = % if x =0 or if x is irrational,
In \T) = b+ < if z is rational, say x = %, b > 0.
Let hy, (z) = fn (z) gn (x).
(a) Prove that both {f,,} and {g,} converges uniformly on every bounded

interval.

Proof: Note that it is clear that

lim f,(x) = f(z) ==, forallz € R

and

lim g, (z) = g (v) =

0 if x = 0 or if x is irrational,
n—oo

b if x is ratonal, say x = £,0 > 0.

In addition, in order to show that {f,} and {g,} converges uniformly
on every bounded interval, it suffices to consider the case of any compact
interval [—M, M], M > 0.

Given € > 0, there exists a positive integer N such that as n > N, we
have

M 1
— <cecand — <e.
n n
Hence, for this £, we have as n > N
M
o (2) — f (2)] = ‘f‘ <X Ccforallz e [—M, M|
n n
and 1
lgn (z) — g (2)] < = < e forall x € [-M, M].
n

That is, we have proved that {f,} and {g,} converges uniformly on every
bounded interval.

Remark: In the proof, we use the easy result directly from definition
of uniform convergence as follows. If f, — f uniformly on S, then f, — f
uniformly on T for every subset 7" of S.
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(b) Prove that h, (z) does not converges uniformly on any bounded in-
terval.

Proof: Write

e () z 1—|—%) if x =0 or x is irrational
" a4+ 2 (1414 L) if ¢ is rational, say x = ¢

Then

lim by, () = h(z) = 0 }f T = 0 or  is 1rrat10na£ll
n—00 a if z is rational, say x =

Hence, if h, (z) converges uniformly on any bounded interval I, then h,, (x)
converges uniformly on [c,d] C I. So, given € = max (|c|, |d]) > 0, there is a

positive integer N such that as n > N, we have

hn (z) — h (z)]
{ %1_|_ }_|m|‘1+1|1f1‘€Qc [Cd]OI"QS'—O
141 —|—bn)‘ freQ@nled, z=4%

max (|c|, |d]) >

which implies that (z € [c, d] NQ°orz =0)

2], max(|d], |d])

1
o (e ) > 2114 2] >
n n n n
which is absurb. So, h, () does not converges uniformly on any bounded
interval.
93 Assume that f,, — f uniformly on S, g, — f uniformly on S.
(a) Prove that f,, + g, — f + ¢ uniformly on S.

Proof: Since f, — f uniformly on S, and g, — f uniformly on S, then
given £ > 0, there is a positive integer N such that as n > N, we have

|fo () — f(2)] < % forallz € S

and .
Hence, for this €, we have as n > N,

[ (@) + gn () = [ (2) = g (@) < [fo (2) = [ (2)] + |gn () — g (2)]

<egforall z € S.



That is, f, + g» — f + g uniformly on S.

Remark: There is a similar result. We write it as follows. If f, — f
uniformly on S, then cf,, — ¢f uniformly on S for any real c. Since the proof
is easy, we omit the proof.

(b) Let hy, (x) = fu () gn(x), h(z) = f(z)g(x), if z € S. Exercise 9.2
shows that the assertion h,, — h uniformly on S is, in general, incorrect.
Prove that it is correct if each f, and each g, is bounded on S.

Proof: Since f,, — f uniformly on S and each f, is bounded on S, then
f is bounded on S by Remark (1) in the Exercise 9.1. In addition, since
gn — ¢ uniformly on S and each g, is bounded on S, then g, is uniformly
bounded on S by Exercise 9.1.

Say |f (z)| < My for all z € S, and |g,, (x)| < M, for all x and all n. Then
given € > 0, there exists a positive integer N such that as n > N, we have

|fn(£L‘)—f(ZL‘)| < m for alla:E S

and

€
— ——— for all
|9n () 9(3?)’<2(M1+1) orallz € S

which implies that as n > N, we have

o () = b ()| = [ [ () gn () = [ () g ()]
= [[fu (@) = [ (@)][gn ()] + [f ()] [gn () — g (2)]]
< |fu (@) = (@) gn (@) + |f ()] lgn (2) — g (2)]

15 g
< My + My————
2(My+1)" 2" T2 (M +1)
<€+8
2 "2

for all z € S. So, h,, — h uniformly on S.

9.4 Assume that f,, — f uniformly on S and suppose there is a constant
M > 0 such that |f, (z)] < M for all  in S and all n. Let g be continuous
on the closure of the disk B (0; M) and define h, (x) = g[f. (z)], h(x) =
glf (x)],if x € S. Prove that h,, — h uniformly on S.



Proof: Since g is continuous on a compact disk B (0; M), g is uniformly
continuous on B (0; M). Given € > 0, there exists a § > 0 such that as
|z —y| < 9, where z,y € S, we have

9 () =g (y)] <e. ()

For this ¢ > 0, since f,, — f uniformly on S, then there exists a positive
integer N such that as n > N, we have

|fo (x) — f(x)] <6 for all x € S. (*%)

Hence, by (*) and (**), we conclude that given ¢ > 0, there exists a positive
integer N such that as n > N, we have

lg (fn () —g(f(x))] <eforall zes.

Hence, h,, — h uniformly on S.

9.5 (a) Let fp,(z) =1/(nx+1)if 0 <z <1,n=1,2,.. Prove that {f,}
converges pointwise but not uniformly on (0,1).

Proof: First, it is clear that lim,,_, f, () = 0 for all z € (0,1) . Supppos
that {f,} converges uniformly on (0,1). Then given ¢ = 1/2, there exists a
positive integer N such that as n > N, we have

\fn(x)—f(x)|:’ < 1/2 for all z € (0,1).

1+ nx

So, the inequality holds for all = € (0,1). It leads us to get a contradiction
since

1 1
<§forall$€(0,1):> lim =1<1/2.

1+ Nz a—0+ 1+ Nz
That is, {f,} converges NOT uniformly on (0,1).

(b) Let g, (x) =2/ (ne+1)if 0 <2 < 1,n=1,2,... Prove that g, — 0
uniformly on (0,1).

Proof: First, it is clear that lim,, . g, (x) = 0 for all x € (0,1). Given
€ > 0, there exists a positive integer N such that as n > N, we have

I/n<e



which implies that
1

1
:p+n

T
1+ nx

1
< =<e.
n

o (@) =51 =

So, g, — 0 uniformly on (0,1).

9.6 Let f, () = a™. The sequence {f, (z)} converges pointwise but not
uniformly on [0, 1]. Let g be continuous on [0, 1] with g (1) = 0. Prove that
the sequence {g (x) 2"} converges uniformly on [0, 1] .

Proof: It is clear that f, (z) = 2™ converges NOT uniformly on [0, 1]
since each term of {f, (z)} is continuous on [0, 1] and its limit function

o 0ifx €[0,1)
- lifzx=1.

is not a continuous function on [0, 1] by Theorem 9.2.
In order to show {g(x)z"} converges uniformly on [0, 1], it suffices to
shows that {g (z) 2"} converges uniformly on [0,1). Note that

lim g (z)2" =0 for all z € [0, 1).

n—oo

We partition the interval [0, 1) into two subintervals: [0,1—4d] and (1 —4,1).
As x €[0,1—0]: Let M = max,cpq|g ()|, then given £ > 0, there is a
positive integer N such that as n > N, we have

M(1-0)"<e¢
which implies that for all z € [0,1 — 4],
lg(x)a™ =0 < M [z"| < M (1-9)" <e.

Hence, {g (z) 2"} converges uniformly on [0,1 — ¢].
As x € (1 —4,1) : Since g is continuous at 1, given £ > 0, there exists a
d > 0 such that as |z — 1| < ¢, where x € [0, 1], we have

l9(x) =g ()] =]g(z) = 0] =g (z)] <e
which implies that for all z € (1 —4§,1),

g (z) 2" = 0] < |g(z)| <e.

6



Hence, {g (z) ™} converges uniformly on (1 —4,1).

So, from above sayings, we have proved that the sequence of functions
{g () 2™} converges uniformly on [0, 1].

Remark: It is easy to show the followings by definition. So, we omit the
proof.

(1) Suppose that for all z € S, the limit function f exists. If f, — f
uniformly on S; (C 5), then f, — f uniformly on S, where # (S — 5;) <
+00.

(2) Suppose that f, — f uniformly on S and on 7. Then f,, — f uni-
formly on SUT.

9.7 Assume that f,, — f uniformly on S and each f,, is continuous on S.
If z € S, let {x,} be a sequence of points in S such that z,, — x. Prove that

fo(@n) = f (2).
Proof: Since f,, — f uniformly on S and each f,, is continuous on S, by

Theorem 9.2, the limit function f is also continuous on S. So, given € > 0,
there is a § > 0 such that as |y — x| < 0, where y € S, we have

F@) —f@) <3

For this 0 > 0, there exists a positive integer N; such that as n > Ny, we
have
|z, — x| <.

Hence, as n > Ny, we have

f (o) = f @) < 5. (*)

In addition, since f,, — f uniformly on S, given ¢ > 0, there exists a
positive integer N > N; such that as n > N, we have

fo (2) — f (2)] < % forall z € S

which implies that
€



By (*) and (**), we obtain that given ¢ > 0, there exists a positie integer N
such that as n > N, we have

(o (@n) = f ()] = | (n) = f (@) + | f (20) = f (2)]

L E
2 2
=E.

That is, we have proved that f, (z,) — f (z).

9.8 Let {fn} be a seuqnece of continuous functions defined on a compact
set S and assume that {f,} converges pointwise on S to a limit function f.
Prove that f,, — f uniformly on S if, and only if, the following two conditions
hold.:

(i) The limit function f is continuous on S.

(ii) For every € > 0, there exists an m > 0 and a § > 0, such that n > m
and | fx (x) — f (z)| < ¢ implies |frin (x) — f ()] < € for all z in S and all
k=1,2,..

Hint. To prove the sufficiency of (i) and (ii), show that for each zg in S
there is a neighborhood of B (z() and an integer k (depending on xy) such
that

\fi () — f(z)] <dif z € B(xg).
By compactness, a finite set of integers, say A = {ky, ..., k;-} , has the property
that, for each = in S, some k in A satisfies |f () — f (x)| < 0. Uniform
convergence is an easy consequences of this fact.

Proof: (=) Suppose that f, — f uniformly on S, then by Theorem
9.2, the limit function f is continuous on S. In addition, given ¢ > 0, there
exists a positive integer NV such that as n > N, we have

|fu(z) — f(x)| <eforalxes

Let m = N, and § = ¢, then (ii) holds.

(<) Suppose that (i) and (ii) holds. We prove fy — f uniformly on S as
follows. By (ii), given € > 0, there exists an m > 0 and a § > 0, such that
n > m and |fi (z) — f (x)| < 6 implies |fxin (x) — f(z)] < € for all z in S
and all k =1,2,...

Consider | fy(zo) (o) — f (20)| < 6, then there exists a B (zo) such that as
x € B(x9) NS, we have

| fiao) () = f ()| <0

8



by continuity of fi(,) () — f (x) . Hence, by (ii) as n > m
| fe@oyin () — [ (2)] < e if 2 € B(x0) N S. ()

Note that S is compact and S = U,eg (B () NS), then S = Uy_, (B (zx) N S).
So, let N =max!_, (k(x,) +m), as n > N, we have

|fo(z) — f(z)| <eforalxzes

with help of (*). That is, f, — f uniformly on S.

9.9 (a) Use Exercise 9.8 to prove the following theorem of Dini: If
{fn} is a sequence of real-valued continuous functions converginf
pointwise to a continuous limit function f on a compact set S, and
if f,(x) > foi1(z) for each z in S and every n=1,2,..., then f, — f
uniformly on S.

Proof: By Exercise 9.8, in order to show that f, — f uniformly on 5,
it suffices to show that (ii) holds. Since f, (z) — f(x) and f,11 (z) < f, (2)
on S, then fixed x € 9, and given ¢ > 0, there exists a positive integer
N (z) = N such that as n > N, we have

ngn(l‘)—f(l’) <E.
Choose m = 1 and § = ¢, then by f,11(x) < f,(x), then (ii) holds. We

complete it.

Remark: (1) Dini’s Theorem is important in Analysis; we suggest the
reader to keep it in mind.

(2) There is another proof by using Cantor Intersection Theorem.
We give it as follows.

Proof: Let g, = f, — f, then g, is continuous on 5, g, — 0 pointwise on
S, and g, () > gny1 (z) on S. If we can show g, — 0 uniformly on S, then
we have proved that f, — f uniformly on S.

Given € > 0, and consider S, := {z : g, (x) > €}. Since each g, (z) is
continuous on a compact set S, we obtain that S,, is compact. In addition,
Snt1 € S, since g, () > gny1 () on S. Then

NS, # ¢ (*)



if each S, is non-empty by Cantor Intersection Theorem. However (*)
contradicts to g, — 0 pointwise on S. Hence, we know that there exists a
positive integer N such that as n > N,

Sp = ¢.
That is, given € > 0, there exists a positive integer N such that as n > N,
we have
lgn () — 0] < e.
So, g, — 0 uniformly on S.

(b) Use he sequence in Exercise 9.5(a) to show that compactness of S is
essential in Dini’s Theorem.

Proof: Let f,(z) = ﬁ, where z € (0,1). Then it is clear that each
fn (x) is continuous on (0,1), the limit function f (x) = 0 is continuous on
(0,1),and f,41 (z) < f,, (z) forall x € (0,1) . However, f,, — f not uniformly
on (0,1) by Exercise 9.5 (a). Hence, compactness of S is essential in Dini’s
Theorem.

9.10 Let fn () = nx (1 — 2*)" for z real and n > 1. Prove that {f,}
converges pointwsie on [0, 1] for every real ¢. Determine those ¢ for which the
convergence is uniform on [0, 1] and those for which term-by-term integration
on [0, 1] leads to a correct result.

Proof: It is clear that f, (0) — 0 and f, (1) — 0. Consider xz € (0,1),
then |1 — 2% :=r < 1, then

lim f, (z) = lim n"x = 0 for any real c.

Hence, f, — 0 pointwise on [0, 1].
Consider

o) =ne (1= at)" n= 1) (5o - ),

1
V2n—1"

then each f, has the absolute maximum at x,, =
As ¢ < 1/2, we obtain that

o (@)] < [ S ()]

n¢ 1 "
_ 1—
\/2n—1< 2n—1)

1 n
= o3 n 1- — 0 as n — oo. (*)
2n —1 2n —1

10




In addition, as ¢ > 1/2, if f,, — 0 uniformly on [0, 1], then given ¢ > 0, there
exists a positive integer N such that as n > N, we have

|fn (x)] < e for all z € [0, 1]

which implies that as n > N,

| [ (zn)| <
which contradicts to
— ife=1/2
li — V2e ) Kok
Jn fo () { S ife>1/2 )

From (*) and (**), we conclude that only as ¢ < 1/2, the seqences of
functions converges uniformly on [0, 1] .
In order to determine those ¢ for which term-by-term integration on [0, 1],

we consider
n

/0 f”(x)d$:2(n+1)

/Olf(x)dx:/()l()dx:().

Hence, only as ¢ < 1, we can integrate it term-by-term.

and

9.11 Prove that > 2" (1 — ) converges pointwise but not uniformly on
[0,1], whereas > (—1)" 2" (1 — x) converges uniformly on [0,1]. This illus-
trates that uniform convergence of > f,, () along with pointwise con-
vergence of > |f, (z)] does not necessarily imply uniform conver-

gence of > |f, (x)].
Proof: Let s, (z) = ;_ 2" (1 —x) =1— 2", then

1if z € [0,1)
S”(x)_){ 0if o =1

Hence, Y 2™ (1 — ) converges pointwise but not uniformly on [0, 1] by The-
orem 9.2 since each s, is continuous on [0, 1].

Let g, (x) = 2™ (1 — z), then it is clear that g, (x) > g,11 () for all x €
0,1], and g, () — 0 uniformly on [0, 1] by Exercise 9.6. Hence, by Dirich-
let’s Test for uniform convergence, we have proved that > (—1)" 2™ (1 — x)
converges uniformly on [0, 1] .

11



9.12 Assume that g, 41 () < g, (x) for each  in T and each n = 1,2, ...,
and suppose that g, — 0 uniformly on 7. Prove that ) (—1)"Jrl gn () con-
verges uniformly on 7.

Proof: It is clear by Dirichlet’s Test for uniform convergence.

9.13 Prove Abel’s test for uniform convergence: Let {g,} be a sequence
of real-valued functions such that g,.; (z) < g, (z) for each x in T" and for
every n = 1,2, ... If {g,} is uniformly bounded on 7" and if >, f,, (x) converges
uniformly on T, then > f,, (x) g, (z) also converges uniformly on 7.

Proof: Let F, () =Y ,_, fi (x). Then

su(@) =Y fi (@) gu (2) = Fugr (2)+) (Fu (2) = Fi (2)) (grs1 (2) — g1 (2))

and hence if n > m, we can write

n

$n (€)= (2) = (Fo (2) = F (2)) g (2)+ Y (Fo (2) = Fi (2)) (grsr () = g1 (2))

k=m+1
Hence, if M is an uniform bound for {g,}, we have
|50 (2) = $m ()] < M|, (2) = F ()| +2M ) |Fy(2) = Fi (2)] . (%)
k=m+1

Since > f,, (x) converges uniformly on T, given £ > 0, there exists a positive
integer N such that as n > m > N, we have

|F, () — By (2)] < forallz € T (**)

5

M+1

By (*) and (**), we have proved that as n > m > N,
|sp () — s (z)| < e forallz € T

Hence, > f,. (z) gn () also converges uniformly on 7.

Remark: In the proof, we establish the lemma as follows. We write it
as a reference.

12



(Lemma) If {a,} and {b,} are two sequences of complex numbers, define

n

An = Zak.

k=1

Then we have the identity

Z arby, = Ananrl - Z Ay (bk+1 - bk) (1>
k=1 k=1

= Auby + i (A, — Ay) (brpr — b . (id)

k=1

Proof: The identity (i) comes from Theorem 8.27. In order to show
(ii), it suffices to consider

bny1 = by + Z bry1 — br.

k=1

9.14 Let f, (x) = x/ (1 + na?) ifx € R,n = 1,2, ... Find the limit function
f of the sequence {f,} and the limit function g of the sequence {f} .

(a) Prove that f’(z) exists for every x but that f'(0) # ¢ (0). For what
values of z is f' (z) = g (x)?

Proof: Tt is easy to show that the limit function f = 0, and by f/ (x) =

1-—na?
(nay?e Ve have

. litz=0
A fu (@) = g(x) = { 0ifz#0 -
Hence, f’(x) exists for every z and f'(0) = 0 # ¢ (0) = 1. In addition, it is
clear that as x # 0, we have f' (z) =g ().

(b) In what subintervals of R does f,, — f uniformly?

Proof: Note that
1 + na?

2

> Vn|z|

13



by A.P. > G.P. for all real z. Hence,

1
<
~ 2yn

which implies that f,, — f uniformly on R.

x
1+ nax?

(¢) In what subintervals of R does f/ — ¢ uniformly?

. —nx2 - . s .
Proof: Since each f; = ( 11+:;)2 is continuous on R, and the limit function

g is continuous on R — {0}, then by Theorem 9.2, the interval I that we
consider does not contains 0. Claim that f/ — ¢ uniformly on such interval
I = [a,b] which does not contain 0 as follows.

Consider

2 1 1

~ 14+ n22 = na?’

‘ 1 —nx
(14 na?)’
so we know that f/ — ¢ uniformly on such interval I = [a, b] which does not
contain 0.

9.15 Let f, (z) = (1/n)e ™" if x € R, n = 1,2, ... Prove that f, — 0
uniformly on R, that f/ — 0 pointwise on R, but that the convergence of
{f/} is not uniform on any interval containing the origin.

Proof: It is clear that f,, — 0 uniformly on R, that f| — 0 pointwise
on R. Assume that f; — 0 uniformly on [a, b] that contains 0. We will prove
that it is impossible as follows.

We may assume that 0 € (a, b) since other cases are similar. Given ¢ = %,
then there exists a positive integer N’ such that as n > max (N ' %) =N
(= & <b), we have

1
\f (x)—0|<gfor all z € [a, b]

n

which implies that

Nz 1
QW <3 for all z € [a, D]
which implies that, let © = =,
2 1
e e

which is absurb. So, the convergence of {f/} is not uniform on any interval
containing the origin.
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9.16 Let {f,} be a sequence of real-valued continuous functions defined
on [0, 1] and assume that f,, — f uniformly on [0, 1]. Prove or disprove

1-1/n 1
li " dr = dzx.
im fn (x)dz /0 f(z)dz

n—oo 0

Proof: By Theorem 9.8, we have
1

lim fo () dx :/0 f(z)dz. (*)

n—oo 0

Note that {f,} is uniform bound, say |f,, (z)| < M for all x € [0, 1] and all
n by Exercise 9.1. Hence,

1
/ fo (x)dx
1-1/n

Hence, by (*) and (**), we have

M
n

< 0. (*%)

1-1/n 1
li " dx = dx.
i fu () dz / f (z) de

n—oo 0

9.17 Mathematicinas from Slobbovia decided that the Riemann integral
was too complicated so that they replaced it by Slobbovian integral, de-
fined as follows: If f is a function defined on the set ) of rational numbers
in [0, 1], the Slobbovian integral of f, denoted by S (f), is defined to be the

limit .
1 k
()= Jm 23S (%)

whenever the limit exists. Let {f,} be a sequence of functions such that
S (fn) exists for each n and such that f,, — f uniformly on Q. Prove that
{S (fn)} converges, that S (f) exists, and S (f,) — S (f) as n — oc.

Proof: f, — f uniformly on @), then given £ > 0, there exists a positive
integer N such that as n > m > N, we have

o () = [ ()] <¢/3 (1)

15



and

So, if n>m > N,

which implies that {S (f,,)} converges since it is a Cauchy sequence. Say its
limit S.
Consider, by (1) asn > N,

() 40 <3l ()

Jj=1

which implies that

1< j 1o~ . (j 1<
[%?ﬂ(%)]*/gé%;f(%) 2 (3)] ver
which implies that, let k — 0o
S(f)—2/3 < m p%Zf(%) (fu) + /3 3)
and i
S(fa) —€/3 < lim in %Z () < S(fa)+e/3 (4)
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which implies that

. k .
. 1 J o1 J
;}L%S“%Zf(ﬁ —,}E&mfng(%)

=1 j=1
<1mw1§yzi—ﬁﬂ+»MM12fi-ﬂU)

T |k—oo P k = k " k—o0 k =1 k "

< = by (3) and (4

<e (5)

Note that (3)-(5) imply that the existence of S (f). Also, (3) or (4) implies
that S (f) = S. So, we complete the proof.

9.18 Let f,, (x) =1/ (1+n?2?) if 0 <z <1,n=1,2,... Prove that {f,}
converges pointwise but not uniformly on [0, 1] . Is term-by term integration
permissible?

Proof: It is clear that

lim f, (z) =0

n—oo

for all x € [0,1]. If {f,} converges uniformly on [0, 1], then given ¢ = 1/3,
there exists a positive integer N such that as n > N, we have

which implies that

|fn ()] < 1/3 for all z € [0, 1]
_L1

1
“(N) 23

which is impossible. So, {f,} converges pointwise but not uniformly on [0, 1] .

Since {f, (z)} is clearly uniformly bounded on [0, 1], i.e., |f,(z)] < 1
for all z € [0,1] and n. Hence, by Arzela’s Theorem, we know that the
sequence of functions can be integrated term by term.

9.19 Prove that Y - z/n® (1 + nz?) converges uniformly on every finite
interval in R if o > 1/2. Is the convergence uniform on R?

Proof: By A.P. > G.P., we have

x
n® (1 + nx?)

< — for all x.
2n*T2
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So, by Weierstrass M-test, we have proved that > >, z/n® (1 + nz?) con-
verges uniformly on R if a > 1/2. Hence, > 7 x/n® (1 + nz?) converges
uniformly on every finite interval in R if v > 1/2.

9.20 Prove that the series > >~ ((—1)" /y/n)sin (1 + (z/n)) converges
uniformly on every compact subset of R.

Proof: It suffices to show that the series >~ | ((—=1)" //n)sin (1 + (z/n))
converges uniformly on [0, a] . Choose n large enough so that a/n < 1/2, and
therefore sin (1 + (HLH)) <sin (14 £) for all z € [0,a] . So, if we let f, (z) =
(=1)" /y/nand g, (z) =sin (1 + £) , then by Abel’s test for uniform con-
vergence, we have proved that the series > | ((—1)" /y/n)sin (1 + (x/n))

converges uniformly on [0, al .

Remark: In the proof, we metion something to make the reader get
more. (1) since a compact set K is a bounded set, say K C [—a, a], if we can
show the series converges uniformly on [—a, a], then we have proved it. (2)
The interval that we consider is [0, a] since [—a, 0] is similar. (3) Abel’s test
for uniform convergence holds for n > N, where N is a fixed positive
integer.

9.21 Prove that the series >~ (z*"™'/ (2n + 1) — 2"/ (2n + 2)) con-
verges pointwise but not uniformly on [0, 1] .

Proof: We show that the series converges pointwise on [0, 1] by con-
sidering two cases: (1) = € [0,1) and (2) = = 1. Hence, it is trivial. De-
fine f(z) =307, (z*/ (2n + 1) — 2"/ (2n + 2)), if the series converges

uniformly on [0, 1], then by Theorem 9.2, f(x) is continuous on [0, 1].
However,

Llog (1 +2) ifz €[0,1)
— 2 )
f(x)—{ log2ifz=1

Hence, the series converges not uniformly on [0, 1].

Remark: The function f (x) is found by the following. Given x € [0, 1),

then both
E 2" = d= E A ——
1 —¢2 an 2 2(1—1)

converges uniformly on [0, z] by Theorem 9.14. So, by Theorem 9.8, we
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have

And as x =1,

I
c\
8
N —
7 N
[u—
|-
~
[a—
+ |~
~
~
|
N| —

()

Z (x> (2n + 1) — 2"/ (2n + 2))

S
S+l 2
= (-1
= Z T by Theorem8.14.
n

3
o

g2 by Abel’s Limit Theorem.

9.22 Prove that ) a, sinnx and ) b, cosnx are uniformly convergent on
R if > |a,| converges.

Proof: It is trivial by Weierstrass M-test.

9.23 Let {a,} be a decreasing sequence of positive terms. Prove that
the series > a, sinnz converges uniformly on R if, and only if, na, — 0 as

n — oQ.

Proof: (=

) Suppose that the series ) a, sinnz converges uniformly on

R, then given ¢ > 0, there exists a positive integer N such that as n > N,

we have

Choose © =

2n—1

E ay sin kx

k=n

<e. (*)

1

%, then sin sz < sinkx < sinl. Hence, as n > N, we always

2
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have, by (*)

2n—1 2n—1
(e >) E a sin kx| = E ay sin kx
k=n k=n
2n—1 1
> E Qay, SIN 3 since ay > 0 and ag ™\,
k=n

1.1
= (5 sin 5) (2nas,) .

That is, we have proved that 2nas, — 0 as n — oo. Similarly, we also have
(2n — 1) agn—1 — 0 as n — o0. So, we have proved that na, — 0 as n — oo.

(<) Suppose that na, — 0 as n — oo, then given € > 0, there exists a
positive integer ny such that as n > ng, we have

2(r+1)

In order to show the uniform convergence of > ° | a,sinnz on R, it suffices
to show the uniform convergence of > 7  a,sinnz on [0,7]. So, if we can
show that as n > ng

(*)

Ina,| = na, <

n-+p

E ay, sin kx

k=n+1

<eforallz €[0,n], and allpe N

then we complete it. We consider two cases as follows. (n > ng)
Asz € [0 %p} then

’n

n—+p n—+p
Z apsin kx| = Z ay sin kx
k=n+1 k=n+1
n+p
< Z apkr by sinkxr < kx if x >0
k=n+1
n—+p
= Z (kay) x
k=n-+1
€ pT «
S 5rrnn+p ¥
< E.
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And as x € [ni 7Ti| , then

n-+p

E ay sin kx

k=m-+1

< Z ay sin kx +

k=n+1

, Where m = [q
x

m

20, .
< Z agkr + — ;1 by Summation by parts
S sin £

€ 2am+1
2(r+1) sin £

<

2
mx + 2am+1ﬁ by i <sinzifx € [0, E]
x T

£
P —
~2(r+1) 2

£
<5 s+, 1
_2(7T+1)7T+ g1 (m+1)
S
2 9 (r+ 1)

<E.

Hence, Y7 | a, sinnz converges uniformly on R.

Remark: (1) In the proof (<), if we can make sure that na, \, 0, then
we can use the supplement on the convergnce of series in Ch8, (C)-
(6) to show the uniform convergence of Yo" | a,sinnz =Y " | (na,) (3222)
by Dirichlet’s test for uniform convergence.

(2)There are similar results; we write it as references.

(a) Suppose a, \, 0, then for each o € (0,%), Yo apcosnz and

> >, apsinnz converges uniformly on [a, 27 — o] .
Proof: The proof follows from (12) and (13) in Theorem 8.30 and
Dirichlet’s test for uniform convergence. So, we omit it. The reader

can see the textbook, example in pp 231.

(b) Let {a,} be a decreasing sequence of positive terms. >~ a, cosnz
uniformly converges on R if and only if >~ | a, converges.

Proof: (=) Suppose that Y ° | a, cosnz uniformly converges on R, then
let © = 0, then we have Y~  a, converges.

(<) Suppose that >~ | a, converges, then by Weierstrass M-test, we
have proved that > >° | a, cos nxz uniformly converges on R.

21



9.24 Given a convergent series » >, a,. Prove that the Dirichlet series
> > ayn~® converges uniformly on the half-infinite interval 0 < s < +o0.
Use this to prove that lim, o+ > o0 a,n™* = > 07 | ay,.

Proof: Let f, (s) = > ;_, ar and g, (s) = n~%, then by Abel’s test for
uniform convergence, we have proved that the Dirichlet series > >~ | a,n~*
converges uniformly on the half-infinite interval 0 < s < +oo. Then by

Theorem 9.2, we know that lim, o+ > -, a,n™* =3 > a,.

9.25 Prove that the series ( (s) = Y 2, n~* converges uniformly on every
half-infinite interval 1 + h < s < +00, where h > 0. Show that the equation

5= - BT

ns

n=1

is valid for each s > 1 and obtain a similar formula for the kth derivative
¢® (s).
Proof: Since n=* < n~(*M for all s € [1 + h, 00), we know that ¢ (s) =

> o, n~® converges uniformly on every half-infinite interval 1+h < s < +00
by Weierstrass M-test. Define T,, (s) = > _;_, k7%, then it is clear that

1. For each n, T, (s) is differentiable on [1 + h, c0),

2
2. lim T, (2) = —.

n—00 §)

And

log k
3. T (s) =— Z Ok converges uniformly on [1 4 h, o)
k=1
by Weierstrass M-test. Hence, we have proved that

¢ (s) = _Z logn

ns

n=1
by Theorem 9.13. By Mathematical Induction, we know that

o0

log n
n=1
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0.1 Supplement on some results on Weierstrass M-
test.

1. In the textbook, pp 224-223, there is a surprising result called Space-
filling curve. In addition, note the proof is related with Cantor set in
exercise 7. 32 in the textbook.

2. There exists a continuous function defined on R which is nowhere
differentiable. The reader can see the book, Principles of Mathematical
Analysis by Walter Rudin, pp 154.

Remark: The first example comes from Bolzano in 1834, however, he
did NOT give a proof. In fact, he only found the function f : D — R that
he constructed is not differentiable on D' (C D) where D’ is countable and
dense in D. Although the function f is the example, but he did not find the
fact.

In 1861, Riemann gave

g (x) = Z sin (:2 x)

as an example. However, Reimann did NOT give a proof in his life until
1916, the proof is given by G. Hardy.
In 1860, Weierstrass gave

h(z) = Za”cos(b”mc), bisodd, 0 <a <1, and ab > 1+ 377?,
n=1

until 1875, he gave the proof. The fact surprises the world of Math, and
produces many examples. There are many researches related with it until
now 2003.

Mean Convergence

9.26 Let f, (z) = n3/2ze %", Prove that {f,} converges pointwise to 0
on [—1,1] but that l.i.m., . fn # 0 on [—1,1].

Proof: It is clear that {f,} converges pointwise to 0 on [—1,1], so it

23



remains to show that [.i.m., . f, # 0 on [—1,1]. Consider

1
/ f2(x)dx = 2/ n*z2e 2" dy since f2(x) is an even function on [—1,1]

V2n
= E/ y26_y2dy by Change of Variable, let y = v2nz
0

\/in 2
_ ﬁ/{) yi ()

\/E’I’L \/577, 5
_ / e_y dy
0 0

VT since / e dr = ﬁ by Exercise 7. 19.
44/2 0 2

S0, 1.i.Mp oo frn £ 0 on [—1,1].

1 -
_2\/§ Y

—

9.27 Assume that {fn} converges pointwise to f on [a,b] and that
Li.Mup—oo fn = g On [a,b]. Prove that f = g if both f and g are continuous
on [a,b].

Proof: Since l.i.m., . fn = g on [a,b], given g = there exists a ny

2k 9
such that
1
/\fn,c )|pdx<2,wherep>0
Define
/ fo (6 — g (O,
then

a. hy, (z) / asx /
b. hy () < hppyr ()
c. hy () <1 for all m and all x.

So, we obtain h,, (z) — h(x) as m — oo, h(z) /asz /', and

h(z) - Z O —g O dt S asz

k=m+17%
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which implies that

h(z+t)—h(z) - b (2 4+ t) — Ay, (2)
- t

for all m. (*)

Since h and h,, are increasing, we have b’ and h/ exists a.e. on [a, b] . Hence,
by (*)

m

i (@) = Y | for () =g (D < B (2) ace. on [a,b]

k=1
which implies that

Z | fu, (t) — g (t)]” exists a.e. on [a,b].
k=1

So, fu. (t) — ¢(t) a.e. on [a,b]. In addition, f, — f on [a,b]. Then we

conclude that f = g a.e. on [a b] . Since f and g are continuous on [a, b], we

have
/ |f —gldz=0

which implies that f = g on [a, b] . In particular, as p = 2, we have f = g.

Remark: (1) A property is said to hold almost everywhere on a set
S (written: a.e. on S) if it holds everywhere on S except for a set of measurer
zero. Also, see the textbook, pp 254.

(2) In this proof, we use the theorem which states: A monotonic function
h defined on [a,b], then h is differentiable a.e. on [a,b]. The reader can
see the book, The reader can see the book, Measure and Integral (An
Introduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 113.

(3) There is another proof by using Fatou’s lemma: Let {fy} be a
measruable function defined on a measure set F. If f, > ¢ a.e. on E and

¢ € L(E), then
/ khrn inf f;, < hm inf / fr-

Proof: It suffices to show that f,, () — ¢(t) a.e. on [a,b]. Since
Li.Mp—oo fn = g on [a,b], and given € > 0, there exists a ny such that

b ) 1
JAE IR
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which implies that

m

b m
[l alar <> 5
@ k=1

k=1

which implies that, by Fatou’s lemma,
b m b m
/ lim infz | fon — g dz < lim inf/ Z | fon — g|” dz
a m—0o0 —1 m—0o0 a 1
=3 [ gfde <
k=174

That is,

p o0
| 31w =gl <

k=1
which implies that

Z | frn — g!z < 00 a.e. on [a,b]
k=1

which implies that f,,, — g a.e. on [a,b].

Note: The reader can see the book, Measure and Integral (An In-
troduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 75.

(4) There is another proof by using Egorov’s Theorem: Let {f;} be a
measurable functions defined on a finite measurable set E with finite limit
function f. Then given € > 0, there exists a closed set F'(C FE), where
|E — F| < ¢ such that

fr — f uniformly on F.

Proof: If f # g on [a,b], then h := |f — g| # 0 on [a,b]. By continuity
of h, there exists a compact subinterval [c, d] such that |f — g| # 0. So, there
exists m > 0 such that h = |f — g| > m > 0 on [¢,d]. Since

b
/ | fo — g|*dz — 0 as n — oo,
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we have

d
/ |fo —g/>dz — 0 as n — oco.

then by Egorov’s Theorem, given ¢ > 0, there exists a closed susbet F' of
[c,d], where |[c,d] — F| < € such that

fn — f uniformly on F'

which implies that
0= lim ]fn—g|2dx
n—oo F

—/ lim |f, — g|° dz

Fn—>oo

=/|f—gl2da:2m2|F|
F

which implies that |F'| = 0. If we choose ¢ < d—c, then we get a contradiction.
Therefore, f = g on [a,b].

Note: The reader can see the book, Measure and Integral (An In-
troduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 57.

9.28 Let f,, (z) =cos"z if 0 <z <.

(a) Prove that l.i.m.,—oofn, = 0 on [0,7] but that {f, (7)} does not
converge.

Proof: It is clear that {f, (m)} does not converge since f, (7) = (—1)".
It remains to show that l.i.m., .. fn = 0 on [0, 7] . Consider cos®” x := g, ()
on [0, 7], then it is clear that {g, (x)} is boundedly convergent with limit

function

[ 0ifxe(0,m)

| lifz=0o0rm °
Hence, by Arzela’s Theorem,

T

lim cos™ xdx = / g(z)dx =0.
0

n—oo 0

S0, 1.i.Mp— oo fr =0 on [0, 7] .
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(b) Prove that {f,} converges pointwise but not uniformly on [0, 7/2] .
Proof: Note that each f, (z) is continuous on [0,7/2], and the limit
function
o 0if z € (0,7/2]
- lifx=0

Hence, by Theorem9.2, we know that {f,} converges pointwise but not
uniformly on [0, 7/2].

9.29 Let f,(x) =0if 0 <x <1/nor2/n<z<1, andlet f, (z) =n if
1/n < x < 2/n. Prove that {f,} converges pointwise to 0 on [0, 1] but that
LiM.p—oofn # 0 on [0,1].

Proof: It is clear that {f,} converges pointwise to 0 on [0, 1]. In order
to show that [.i.m.,, . fn # 0 on [0, 1], it suffices to note that

1
/ fn () dz =1 for all n.
0

Hence, 1.i.m.p— 0o frn 7 0 on [0, 1] .

Power series

9.30 If r is the radius of convergence if Y a,, (z — 29)" , where each a,, # 0,
show that

. (02% . Gy,
lim inf <r < lim sup )
n— o0 Ap41 n—0o0 An+1
Proof: By Exercise 8.4, we have
1 < 1 1
<r= = < )
lim,, o0 SUp | “25 limy, oo SUp @™ limy,_o inf |#25
n n
Since
1 .. an
= lim inf |——
hmnﬂoo sup aZ-H e an+1
n
and
1 .
= lim sup ,
hmnﬁoo Hlf dntl n—oo an+1
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we complete it.

9.31 Given that two power series ) a,z" has radius of convergence 2.
Find the radius convergence of each of the following series: In (a) and (b), k
is a fixed positive integer.

(a) 3ong an2”

Proof: Since

1
2= : ()
lim,, o SUp ]anll/"
we know that the radius of > > aFz" is

) n — F
hmn—>oo sup |a’lr€z| " (llmn_@o sup |an|1/n>

(b) Soorg anz"™
Proof: Consider

lim sup |anzk" ‘ ln

n—oo

= lim sup |a,|"" |2|F < 1
n—oo

which implies that

. 1/k
|z| < ( 1/n> — 9l/k by (*)

lim,, o0 SUD |ay|

So, the radius of Y>> a,zk" is 21/*.
o) n2
(C) Zn:O anz
Proof: Consider
Sl

/n
= lim sup |a,|"/" |2|"
n—oo

lim sup |a,z"

and claim that the radius of > 7 anz" is 1 as follows.
If |z] < 1, it is clearly seen that the series converges. However, if |z] > 1,

lim sup |an|1/" 7}1—{20 inf |2]" < nh_)rgo sup |an|1/n K

n—oo
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which impliest that
I/n |2|" = 400.

lim sup |a,|
n—oo
so, the series diverges. From above, we have proved the claim.

932 Given a power series Y  a,x™ whose coefficents are related by an
equation of the form

an + Aan_1+ Ba, o =0 (n=2,3,...).
Show that for any x for which the series converges, its sum is

ap + (a1 + Aag)
1+ Ax + Ba?

Proof: Consider

Z (an + Aap_1 + Ba, o) x" =0

n=2

which implies that

o0 o0 o
g a,x" + Az E an_12" ' + Bx? E U2z 2 =0
n=2 n=2 n=2

which implies that
Z apx” + Az Z a,x"™ + Bx? Z anx™ = ag + a1x + Aapx
n=0 n=0 n=0

which implies that

ia xn_ao—i—(al—l—Aao)x
— " 14 Ax+ Bx?

Remark: We prove that for any = for which the series converges, then
1+ Az + Bx? # 0 as follows.
Proof: Consider

[e.9]

(1 + Ax + Ba:Q) Z a,x" = ap + (a1 + Aap) z,

n=0
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if = A(#£0) is aroot of 1 + Az + Ba?, and Y - a,\" exists, we have
1+ AN+ BX =0 and ag + (a; + Aag) A = 0.

Note that a; + Aag # 0, otherwise, ag = 0(= a; = 0), and therefore, a,, =
0 for all n. Then there is nothing to prove it. So, put A\ = aljrajao into
1+ AN+ BX?2 =0, we then have

a% = apas.

Note that ag # 0, otherwise, a; = 0 and as = 0. Similarly, a; # 0, otherwise,
we will obtain a trivial thing. Hence, we may assume that all a,, # 0 for all
n. So,

a3 = ajas.

And it is easy to check that a, = ao/\in for all n > N. Therefore, Y a,\" =
> ap diverges. So, for any x for whcih the series converges, we have 1+ Az +
Bx? #0.

9.33 Let fz)=e V" if 2 #£0, f(0)=0.
(a) Show that f™ (0) exists for all n > 1.
Proof: By Exercise 5.4, we complete it.

(b) Show that the Taylor’s series about 0 generated by f converges ev-
erywhere on R but that it represents f only at the origin.

Proof: The Taylor’s series about 0 generated by f is

n=0 n=0
So, it converges everywhere on R but that it represents f only at the origin.

Remark: It is an important example to tell us that even for functions
f € C*(R), the Taylor’s series about ¢ generated by f may NOT represent
f on some open interval. Also see the textbook, pp 241.

9.34 Show that the binomial series (14 z)* = > 0 (%)™ exhibits the
following behavior at the points x = +£1.

(a) If z = —1, the series converges for a« > 0 and diverges for a < 0.
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Proof: If x = —1, we consider three cases: (i) o < 0, (ii) @ = 0, and (iii)
a > 0.
(i) As o < 0, then

e}

@ =Y elez e lamnd )

n!
n=0

n

say a, = (—1)" w, then a,, > 0 for all n, and

In__ —a(atl---(catn-1) > —a > 0 for all n.
1/n (n—1)!
Hence, > 0 o (%) (—1)" diverges.
(ii) As a = 0, then the series is clearly convergent.
(iii) As a > 0, define a,, =n (—1)" (%), then

Uit 7% 5 1 if > [a] + 1. (*)
ay, n

It means that a,, > 0 for all n > [a]+1 or a,, < 0 for all n > [a]+ 1. Without
loss of generality, we consider a,, > 0 for all n > [a] 4 1 as follows.
Note that (*) tells us that

Gy > Gpy1 > 0= lim a, exists.

and
n, = py1 = a(=1)" ()
So,
m . 1 m
Z (_1) (n) - a Z (an - an—i—l) .
n=[a]+1 n=[a]+1

By Theorem 8.10, we have proved the convergence of the series > >~ /(&) (=1)".

(b) If z = 1, the series diverges for o < —1, converges conditionally for «
in the interval —1 < a < 0, and converges absolutely for a > 0.

Proof: If © = 1, we consider four cases as follows: (i) a < —1, (ii)
—1<—-a<0, (ili) a=0, and (iv) a > 0:

a(a—1)~~1;b(!a—n+1) Then

(i) As a < —1, say a, =

—a(—a+1)---(—a+n-1)
n!

la,| = > 1 for all n.
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So, the series diverges.
(i) As —1 < a <0, say a, = olazl)lo=ntl) Then g, = (—=1)"b,, where

n:

b — —a(—oz+1)~7-l|- (—a+n—-1) - 0.

with ;
n—q
ntl <1lsince —1<—-a<0
b, n

which implies that {b,} is decreasing with limit L. So, if we can show L = 0,
then > a, converges by Theorem 8.16.

Rewrite
- a+1
b, = 1—
(-)

k=1

and since Y QT“ diverges, then by Theroem 8.55, we have proved L = 0.
In order to show the convergence is conditionally, it suffices to show the
divergence of > b,. The fact follows from

b, —a(—a+1)---(—a+n—1)
1/n (n—1)!

> —a > 0.

(iii) As a = 0, it is clearly that the series converges absolutely.
(iv) As a > 0, we consider »_ |(%)| as follows. Define a, = ()], then
An+1 n—ao

= <lifn>[o]+1.
a, n+1

It implies that na, — (n+1)a, = aa, and (n+1)a,41 < na,. So, by

Theroem 8.10,
1
n — n 1 n
E = — E na, — (n+1)a

converges since lim,, ., na, exists. So, we have proved that the series con-
verges absolutely.

9.35 Show that > anz™ converges uniformly on [0, 1] if Y a,, converges.
Use this fact to give another proof of Abel’s limit theorem.

Proof: Define f, () = a, on [0,1], then it is clear that > f, (z) con-
verges uniformly on [0, 1] . In addition, let g, () = 2", then g, (z) is unifom-
rly bouned with g,,41 (z) < g, (z) . So, by Abel’s test for uniform convergence,
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> an,x™ converges uniformly on [0, 1] . Now, we give another proof of Abel’s
Limit Theorem as follows. Note that each term of ) a,z™ is continuous
on [0, 1] and the convergence is uniformly on [0, 1], so by Theorem 9.2, the
power series is continuous on [0, 1]. That is, we have proved Abel’s Limit

Theorem:
lim Z a,x" = Z G-

r—1—

9.36 If each a, > 0 and ) a, diverges, show that >  a,z" — +oo as
x — 17. (Assume ) a,z" converges for |z| < 1.)

Proof: Given M > 0, if we can find a y near 1 from the left such that
> any™ > M, then for y < x < 1, we have

M < Zany" < Zanx".
That is, lim, ;- Y ap,2"™ = +00.
Since > a,, diverges, there is a positive integer p such that

p
> ap>2M > M. (*)

k=1

Define f, (z) = >_,_, axx®, then by continuity of each f,,, given 0 < & (< M),
there exists a d,, > 0 such that as x € [J,, 1), we have

n

Zak—e<iakxk<iak+5 (**)
k=1 k=1

k=1

By (*) and (**), we proved that as y = ¢,

M < iak —e< iakyk.
k=1 k=1

Hence, we have proved it.

937 If each a, > 0 and if lim, ;- > a,2™ exists and equals A, prove
that > a, converges and has the sum A. (Compare with Theorem 9.33.)

Proof: By Exercise 9.36, we have proved the part, Y a, converges. In
order to show Y a, = A, we apply Abel’s Limit Theorem to complete it.
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9.38 For each real t, define f; (z) = xe™/(e*—1) if z € R, © # 0,
fe(0)=1.

(a) Show that there is a disk B (0;d) in which f; is represented by a power
series in x.

n

Proof: First, we note that <= = Y>> oy =P (@), then p (0) =1 #
0. So, by Theorem 9. 26, there exists a disk B (0;0) in which the reciprocal
of p has a power series exapnsion of the form

I
<
N
—~
~
~—
8
3

(b) Define Py (t), P (t), P2 (t), ..., by the equation

’I’L

ft(x):ZPn() ,if x € B(0;9),

and use the identity

[e.9]

Z n'_emzp

=0

to prove that B, (t) = >_,_, (%) P, (0)t"~*.

Proof: Since

oo

" T
=) P, (t)—=¢"
Z ()n‘ eegﬁ—l7

n=0
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and
x

et —1°

fole) = Y Pa(0) 5 =

So, we have the identity

[e.9]

" e "
P (t) — = ey " P, (0) -
! o !

n=0
Use the identity with e = >">° L2 then we obtain
P, (t) Z”: "k P (0)
nl ~ (n— k) Kl
1 . n n—k
= > WA
" k=0
which implies that
Po(t)=) ()P (0)t" ™"
k=0

This shows that each function P, is a polynomial. There are the Bernoulli
polynomials. The numbers B, = F,(0) (n = 0,1,2,...) are called the
Bernoulli numbers. Derive the following further properties:

(¢) Bo=1,Bi=-1 S0 (1) B,=0,ifn=2,3,...

Proof: Sincel = 1@, where p (z) :== Y07 ) =20, and - == 2> | P, (0) 5.
S p(z) (n+1) p(z)
07
1
l=p(x
@y ()
=2 D PO
— (n+1)! — n!
Yo
n=0
where
1 n
Cn = (+*) P (0)
(n+ 1)l =~



So,
BOZP[)(O):CQ:l,
Ci—F (0 1
Blzpl(O):lTO():—g, byC’lz(]

and note that C,, = 0 for all n > 1, we have

0= Cn—l
1 n—1
- (RO
T k=0
1 n—1
= (%) By, for all n > 2.
n!

B
Il

0

(d) P (t) =nP,—1(t),ifn=1,2,..
Proof: Since

n

Pr(t) =2 (i) P (0) (n— k)"

k=0
n—1
=Y (P 0) (n— k)
k=0
T L kl(n—k)N "
k=0
n—1
_ (n—1)! (n—1)—k
= nk;‘(n—l—k;)'Pk(O)t
k=0
n—1
— 03" (1) P (0) £
k=0

() Po(t+1)— P, (t) =nt"tifn=1,2,..
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Proof: Consider

o0

fisr (@) = fi (@) = D[P (t+1) = P (0] =7 by (b)
= 2e"™ by f; (x) = ze"/ (" = 1)
= 2 (n+1)t"(n+1)|,

soasn=1,2,..., we have

P,(t+1)— P, (t) =nt"".

(f) Poi—p) =~ P )
Proof: Note that
fe(=x) = fii(2),

Z nu ZP (1-1) nl

n

so we have

Hence, P, (1 —t) = (=1)" P, (t).
(g) Bans1 =0ifn=1,2,.

Proof: With help of (e ) and (f), let t = 0 and n = 2k + 1, then it is clear
that B2k+1 =0if k= ]. 2

m)ﬁ+2”+m+%k—nnzﬁﬂ%§%ﬁ@(n:ZSW)

Proof: With help of (e), we know that

Bopa (t41) = P (1)

="
n+1

which implies that

Py (k)= P
1" 4+2"+ 4 (k1) = 1 (k) = Pt (0)
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Remark: (1) The reader can see the book, Infinite Series by Chao
Wen-Min, pp 355-366. (Chinese Version)

(2) There are some special polynomials worth studying, such as Legen-
gre Polynomials. The reader can see the book, Essentials of Ordinary
Differential Equations by Ravi P. Agarwal and Ramesh C. Gupta.
pp 305-312.

(3) The part (h) tells us one formula to calculte the value of the finite
seriesd ;" | k™. There is an interesting story from the mail that Fermat,
pierre de (1601-1665) sent to Blaise Pascal (1623-1662). Fermat
used the Mathematical Induction to show that

nn+1l)---(n+p+1)
p+2 '

D kk+1)-(k+p) = (*)

In terms of (*), we can obtain another formula on ;" | k".
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Limit sup and limit inf.

Introduction

In order to make us understand the information more on approaches of a given real
sequence {a,} ., we give two definitions, thier names are upper limit and lower limit. It

n=1°

is fundamental but important tools in analysis.

Definition of limit sup and limit inf

o0
n=1°

Definition Given a real sequence {a,} we define
b, = sup{am : m > n}
and

cn = inf{a, : m > n}.

Example {1+ (-1)"}" =40,2,0,2,...}, so we have
b, =2 and ¢, = 0 for all n.

Example {(-1)"n}_ = {-1,2,-3,4,...}, so we have

b, = +oo and ¢, = —oo for all n.

Example {-n} _, = {-1,-2,-3,...}, so we have
b, = —n and ¢, = —oo for all n.

0
n=1°

Proposition Given a real sequence {a, } and thus define b, and ¢, as the same as

before.

1 b, + -0, andc, + © Vn € N.

2 If there is a positive integer p such that b, = 400, then b, = +o0 Vn € N.
If there is a positive integer g such that ¢, = —oo, thenc, = —0 Vn € N.

3 {b,} is decreasing and {c,} is increasing.

By property 3, we can give definitions on the upper limit and the lower limit of a given
sequence as follows.

Definition Given a real sequence {a,} and let b, and c, as the same as before.
(1) If every b, € R, then
inf{b, : n € N}
is called the upper limit of {a, }, denoted by
lim supa,.
That is,
lim supa, = infb,.

If every b, = 40, then we define
lim supa, = +oo.

(2) If every ¢, € R, then
sup{c, : n € N}
is called the lower limit of {a, }, denoted by
ng infa,.



That is,
lim infa, = supc,.
n—0 n

If every ¢, = —, then we define

lim infa, = —oo.
n—o0

Remark The concept of lower limit and upper limit first appear in the book (Analyse
Alge’brique) written by Cauchy in 1821. But until 1882, Paul du Bois-Reymond
gave explanations on them, it becomes well-known.

Example {1+ (-1)"}" = 0,2,0,2,...}, so we have
b, =2andc, = 0foralln
which implies that
lim supa, = 2 and lim infa, = 0.
Example {(-1)"n}_ = {-1,2,-3,4,...}, so we have
b, = +oand ¢, = —co for all n
which implies that
lim supa, = +o and lim infa, = —x.
Example {-n} = {-1,-2,-3,...}, so we have
b, = —nand ¢, = —oo for all n
which implies that

lim supa, = —o© and lim infa, = —oo.

Relations with convergence and divergence for upper (lower) limit

Theorem Let {a,} be a real sequence, then {a,} converges if, and only if, the upper
limit and the lower limit are real with

lim supa, = lim infa, = lima,.
Theorem Let {a,} be a real sequence, then we have
(1) limy-e supa, = + < {a,; has no upper bound.

(2) limy-e supa, = —0 < for any M > 0, there is a positive integer n, such
that as n > n(, we have

an S _M.

(3) lim,~ supa, = a if, and only if, (a) given any ¢ > 0, there are infinite
many numbers 7 such that

a—¢ < an
and (b) given any ¢ > 0, there is a positive integer n( such that as n > ny, we have
an, < a+e.
Similarly, we also have
Theorem Let {a,} be a real sequence, then we have
(1) limy- infa, = —© < {a,} has no lower bound.

(2) limy infa, = +00 < for any M > 0, there is a positive integer ny such



that as n > n(, we have
an > M.
(3) lim- infa, = a if, and only if, (a) given any ¢ > 0, there are infinite
many numbers # such that
a+e>ay
and (b) given any ¢ > 0, there is a positive integer n, such that as n > ny, we have
an > a—¢.

From Theorem 2 an Theorem 3, the sequence is divergent, we give the following
definitios.

Definition Let {a,} be a real sequence, then we have

(1) If lim~» supa, = —oo, then we call the sequence {a,} diverges to —oo,
denoted by

lima, = —o.

n—o0

(2) If lim,~ infa, = 400, then we call the sequence {a,} diverges to +o,
denoted by

lima, = +oo.
Theorem Let {a,} be a real sequence. If a is a limit point of {a, }, then we have

lim infa, < a < lim supa,.
n—oo n—>o0

Some useful results

Theorem Let {a,} be a real sequence, then

(1) limye infa, < lim,.. supan.

(2) limye inf(—a,) = —lim,-« supa, and lim,-. sup(—a,) = —lim,-. infa,
(3) Ifevery a, > 0, and 0 < lim,- infa, < lim,-. supa, < +oo, then we
have
I Lo 1 andliminft = —1
e SUP g, lim, infa, and e g, lim, supa,

Theorem Let {a,} and {b, }be two real sequences.
(1) If there is a positive integer n¢ such that a, < b,, then we have

lim infa, < lim infb, and lim supa, < lim supb,.
(2) Suppose that —o < lim-« infa,, lim,-« infb,, lim,.. supa,,
lim;~s supb, < +o0, then
lim infa, + lim infb,

< }gg inf(a, + by)

IA

lim infa, + lim sup b, (or lim supa, + lim infb, )

IA

lim sup(an + bn)

IA

lim supa, + lim sup b,.
In particular, if {a,} converges, we have
lim sup(an + ba) = lima, + lim sup b,



and
}lilg inf(a, + b,) = }lLrgan + }lgg infb,.

(3) Suppose that —o < lim- infa,, lim,.. infb,, lim,-» supa,,
lim,~s supb, < 400, and a, > 0, b, > 0 Vn, then

(lim infa ) (Jim infb..)
< lim inf(a,by)
< (lim infa, ) (lim supb, ) (or (lim infb, ) (lim supa, ))
< lim sup(anbn)
< (lim supas ) (Jim supb» ).
In particular, if {a,} converges, we have
lim sup(asby) = (lima, ) lim supb,
and
lim inf(a, + b,) = (lima, ) lim infb,.

Theorem Let {a,} be a positive real sequence, then

a

ml < fim i Un
ol < lim infla,)

< < Zntl
lim inf < lim sup(a,) ™ < lim sup a4

Remark We can use the inequalities to show

1 1/n
lim ) e,

n—o0

Theorem Let {a,} be a real sequence, then

.. .. edl+...4a
lim infa, < lim inf T
n—o0 n—oo

. aj +...+as .
< — = <
p = lmsup——5— < limsupa,.

Exercise Letf: [a,d] —» R be a continuous function, and {a, } is a real sequence. If fis
increasing and for every n, lim,.. infa,, lim,.» supa, € [a,d], then

lim supf(a,) = f(lim supa, ) and lim inff(a,) = f(lim infa, ).

Remark: (1) The condition that f'is increasing cannot be removed. For
example,

Sfx) = |xl,

{ 1k if k is even
ap =

and

-1 - 1/kif k 1s odd.

(2) The proof is easy if we list the definition of limit sup and limit inf. So, we
omit it.
Exercise Let {a,} be a real sequence satisfying a,., < a, + a, for all n, p. Show that
{4~} converges.
Hint: Consider its limit inf.



Something around the number e

1. Show that the sequence {(1 + +)"} converges, and denote the limit by e.

Proof: Since
() = 2w
=0

:1+n.L+M<L>2+__ n(n—l) (1)

n n

=1+1+2,(1 5 )+t (1 1)---(1—%) 1

1,1 1
§1+1+2+22+ +2(n_1)

+...

=3,
and by (1), we know that the sequence is increasing. Hence, the sequence is convergent.
We denote its limit e. That is,
: L\" _
lim(1+ 5 )" =

Remark: 1. The sequence and e first appear in the mail that Euler wrote to Goldbach.
It is a beautiful formula involving

em™+1=0.
: I
2. Use the exercise, we can show that )~ -I- = e as follows.

Proof: Letx, = (1 + 1)", and letk > n, we have

1+1+—(1 k)+ +—(1 --(1—%)53%

which implies that ( let k£ - o)

On the other hand,

So, by (2) and (3), we finally have

3. e is an irrational number.

Proof: Assume that e is a rational number, say e = p/q, where g.c.d. (p,g) = 1. Note

that g > 1. Consider
(g")e = (q!)< ﬁ)

=<q!)< %)Hq!)(Z%),
0o k=g+1 "

and since (q!)(ZZ:O %) and (g!)e are integers, we have (‘J!)(Z};ﬁl %) is also an
integer. However,

M- 2

b
Il



- — g!
(q!><2 %) -2 5

k=q+1

q

-1

q
<1,

a contradiction. So, we know that e is not a rational number.

0
n(n!) ’

4. Here is an estimate aboute = > - + where 0 < 6 < 1. ( In fact, we know

that e = 2.71828 18284 59045 ....)
Proof: Since e = Y~ -, we have

O<e—x, = Z %, where x, = Z%
k=0

k=n+1

1 1 1
=+ D) (“ 712 Ve )+ 3) +)

1 1 1
< 1
S r D) <1+ P n+2)? +>

< 1 .n+2
T (n+1)! n+l
1 . n+2 1
< since < =
n(n!) n+1)> "

So, we finally have

n
1 0
e = —— + —>— where 0 < 0 < 1.
; k! n(n!)
Note: We can use the estimate dorectly to show e is an irrational number.
2. For continuous variables, we have the samae result as follows. That is,
: 1Y _
xl—lvg 1+ 7) =e.

Proof: (1) Since (1 + 1)" - e asn — oo, we know that for any sequence {a,> < N,
with a, — oo, we have

lim(1+ -1 )anze.

n-00 anp

(2) Given a sequence {x, with x, - +o0, and define a, = [x,], then
ap, < xp, < ap+ 1, then we have

(1 + an1+ 1 )a" < (1 +%>x" < (1 +a—1n a"H.

1 an—) 1 an+1_) -
(1+an+1) eand (1+2) e as x — +o0 by (5)

Since

we know that



: 1\ _

nllI}}o 1+ ﬁ) = e.

Since {x,} is arbitrary chosen so that it goes infinity, we finally obtain that
lim(1++) =e.

(3) In order to show (1 + L) - e asx - —oo, we let x = —, then
1YY" 1 \7

(1+3) =(+)

()
y—1
-1
_ Y 1
- (H;v—l) (Hy—l)'
Note that x - —o(& y - +0), by (6), we have shown that

L\ 1
e = lim(1+ ) (1+ )
Y00 y_] y—]

= lim(1+1)"

X—>—00

3. Prove that as x > 0, we have(l + +)" is strictly increasing, and (1 + +)™" is
dstrictly ecreasing.

Proof: Since, by Mean Value Theorem

1
+1

<log(1+4) = log(x + 1) - log(x) = % < L forallx > 0,
we have
[xlog(l + %) T = 10g<1 + %) - H#l > 0 forallx > 0
and
[(x+ 1)10g<1 + %)T = 10g<1 + %) - % < 0 forall x > 0.
Hence, we know that
xlog(l + %) is strictly increasing on (0, )
and
(x+ 1)10g<1 + %) is strictly decreasing on (0, 0).
It implies that

x x+1
(1 + %) is strictly increasing (0,%), and (1 + %) : is strictly decreasing on (0,).

Remark: By exercise 2, we know that

lim(1+4) =e=lim(1+1)",

X—>-+00 X—+00

4. Follow the Exercise 3 to find the smallest @ such that (1 + +)™ > e and strictly
decreasing for all x € (0,0).

Proof: Let f{x) = (1 + +)™, and consider
log/lx) = (x+a)log(1++) = gl),

Let us consider



' _ 1\ _ x+a
g'(x) —10g<1+ x) T

<1

= —log(l —=y) + [y + (1 —a)y*]5
=Y v+ —ap?] D
k=1 k=0

% —a)y2 + (% —a)y3 +...+(% —a)y” +...

It is clear that for a > 1/2, we have g'(x) < 0 for all x € (0,%0). Note that for a < 1/2,
if there exists such a so that fis strictly decreasing for all x € (0,00). Then g'(x) < 0 for
all x € (0,0). However, it is impossible since

g'x) = (——a)y +(——a>y +.. +(——a>y"+...

—>7—a>0asy—>1

So, we have proved that the smallest value of a is 1/2.

1
-y’ l+x

e |‘<»

Remark: There is another proof to show that (1 + %)XHQ is strictly decreasing on
(0,00).

Proof: Consider 4(¢) = 1/¢t, and two points (1,1) and (1 + 1, = ) lying on the graph
From three areas, the idea 1s that

The area of lower rectangle < The area of the curve < The area of trapezoid

So, we have
e = ) < D) < () - 6 Dt )
Consider
[T =[0 D™ PreCt e D - 6D (65 ]

< 0 by (7);

hence, we know that (1 + %)”1/2 is strictly decreasing on (0, ).

Note: Use the method of remark, we know that (1 + 1) is strictly increasing on
(0,0).



