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1

Introduction

Sets

Sets

In the so-called naive set theory, which is sufficient for the purpose of studying abstract algebra, the notion of a set is

not rigorously defined. We describe a set as a well-defined aggregation of objects, which are referred to as members

or elements of the set. If a certain object is an element of a set, it is said to be contained in that set. The elements of a

set can be anything at all, but in the study of abstract algebra, elements are most frequently numbers or mathematical

structures. The elements of a set completely determine the set, and so sets with the same elements as each other are

equal. Conversely, sets which are equal contain the same elements.

For an element and a set , we can say either , that is, is contained in , or , that is, is

not contained in . To state that multiple elements are contained in , we write

.

The axiom of extensionality

Using this notation and the symbol , which represents logical implication, we can restate the definition of

equality for two sets and as follows:

if and only if and .

This is known as the axiom of extensionality.

Comprehensive notation

If it is not possible to list the elements of a set, it can be defined by giving a property that its elements are sole to

possess. The set of all objects with some property can be denoted by . Similarly, the set of

all elements of a set with some property can be denoted by . The colon : here is

read as "such that". The vertical bar | is synonymous with the colon in similar contexts. This notation will appear

quite often in the rest of this book, so it is important for the reader to familiarize himself with this now.

As an example of this notation, the set of integers can be written as , and the set of

even integers can be written as .

Set inclusion

For two sets and , we define set inclusion as follows: is included in, or a subset of, , if and only if

every member of is a member of . In other words,

,

where the symbol denotes "is a subset of".

By the aforementioned axiom of extensionality, one finds that .
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The empty set

One can define an empty set, written , such that , where denotes universal quantification (read as

"for all" or "for every"). In other words, the empty set is defined as the set which contains no elements. The empty

set can be shown to be unique.

Since the empty set contains no elements, it can be shown to be a subset of every set. Similarly, no set but the empty

set is a subset of the empty set.

Proper set inclusion

For two sets and , we can define proper set inclusion as follows: is a proper subset of if and only if

is a subset of , and does not equal . In other words, there is at least one member in not contained

in 

,

where the symbol denotes "is a proper subset of" and the symbol denotes logical and.

Cardinality of sets

The cardinality of a set , denoted by , can be said informally to be a measure of the number of elements in

. However, this description is only rigorously accurate for finite sets. To find the cardinality of infinite sets, more

sophisticated tools are needed.

Set intersection

For sets and , we define the intersection of and by the set which contains all elements which

are common to both and . Symbolically, this can be stated as follows:

.

Because every element of is an element of and an element of , is, by the definition of set

inclusion, a subset of and .

If the sets and have no elements in common, they are said to be disjoint sets. This is equivalent to the

statement that and are disjoint if .

Set intersection is an associative and commutative operation; that is, for any sets , , and ,

and .

By the definition of intersection, one can find that and . Furthermore,

.

One can take the intersection of more than two sets at once; since set intersection is associative and commutative, the

order in which these intersections are evaluated is irrelevant. If are sets for every , we can denote the

intersection of all by

In cases like this, is called an index set, and are said to be indexed by .

In the case of one can either write or

.
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Set union

For sets and , we define the union of and by the set which contains all elements which are in

either or or both. Symbolically,

.

Since the union of sets and contains the elements of and , and

.

Like set intersection, set union is an associative and commutative operation; for any sets , , and ,

and .

By the definition of union, one can find that . Furthermore, .

Just as with set intersection, one can take the union of more than two sets at once; since set union is associative and

commutative, the order in which these unions are evaluated is irrelevant. Let be sets for all . Then the

union of all the is denoted by

For the union of a finite number of sets , that is, one can either write

or abbreviate this as

.

Distributive laws

Set union and set intersection are distributive with respect to each other. That is,

and

.

Cartesian product

The Cartesian product of sets and , denoted by , is the set of all ordered pairs which can be formed

with the first object in the ordered pair being an element of and the second being an element of . This can be

expressed symbolically as

.

Since different ordered pairs result when one exchanges the objects in the pair, the Cartesian product is not

commutative. The Cartesian product is also not associative. The following identities hold for the Cartesian product

for any sets :

,

,

,

.

The Cartesian product of any set and the empty set yields the empty set; symbolically, for any set ,

.

The Cartesian product can easily be generalized to the n-ary Cartesian product, which is also denoted by . The

n-ary Cartesian product forms ordered n-tuples from the elements of sets. Specifically, for sets

,

.

This can be abbreviated as
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.

In the n-ary Cartesian product, each is referred to as the -th coordinate of .

In the special case where all the factors are the same set , we can generalize even further. Let be the set of

all functions . Then, in analogy with the above, is effectively the set of " -tuples" of elements

in , and for each such function and each , we call the -th coordinate of . As one might

expect, in the simple case when for an integer , this construction is equivalent to ,

which we can abbreviate further as . We also have the imporant case of , giving rise to the set of all

infinite sequences of elements of , which we can denote by . We will need this contruction later, in

paticular when dealing with polynomial rings.

Disjoint union

Let and be any two sets. We then define their disjoint union, denoted to be the following: First

create copies and of and such that . Then define . Notice that

this definition is not explicit, like the other operations defined so far. The definition does not output a single set, but

rather a family of sets. However, these are all "the same" in a sense which will be defined soon. In other words, there

exists bijective functions between them.

Luckily, if a disjoint union is needed for explicit computation, one can easily be constructed, for example

.

Set difference

The set difference, or relative set complement, of sets and , denoted by , is the set of elements

contained in which are not contained in . Symbolically,

.

By the definition of set difference, .

The following identities hold for any sets :

,

,

,

,

,

,

,

,

.

The set difference of two Cartesian products can be found as

.
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The universal set and set complements

We define some arbitrary set for which every set under consideration is a subset of as the universal set, or

universe. The complement of any set is then defined to be the set difference of the universal set and that set. That is,

for any set , the complement of is given by . The following identities involving set

complements hold true for any sets and :

De Morgan's laws for sets:

,

,

Double complement law:

,

Complement properties:

,

,

,

,

.

The set complement can be related to the set difference with the identities and

.

Symmetric difference

For sets and , the symmetric set difference of and , denoted by or by , is the set of

elements which are contained either in or in but not in both of them. Symbolically, it can be defined as

More commonly, it is represented as

or as

.

The symmetric difference is commutative and associative so that and

. Every set is its own symmetric-difference inverse, and the empty set

functions as an identity element for the symmetric difference, that is, and .

Furthermore, if and only if .
Set intersection is distributive over the symmetric difference operation. In other words,

.

The symmetric difference of two set complements is the same as the symmetric difference of the two sets:

.
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Notation for specific sets

Commonly-used sets of numbers in mathematics are often denoted by special symbols. The conventional notations

used in this book are given below.

Natural numbers with 0: or 

Natural numbers without 0: 

Integers: 

Rational numbers: 

Real numbers: 

Complex numbers: 

Equivalence relations and congruence classes

We often wish to describe how two mathematical entities within a set are related. For example, if we were to look at

the set of all people on Earth, we could define "is a child of" as a relationship. Similarly, the operator defines a

relation on the set of integers. A binary relation, hereafter referred to simply as a relation, is a binary proposition

defined on any selection of the elements of two sets.

Formally, a relation is any arbitrary subset of the Cartesian product between two sets and so that, for a

relation , . In this case, is referred to as the domain of the relation and is referred to as its

codomain. If an ordered pair is an element of (where, by the definition of , and ),

then we say that is related to by . We will use to denote the set

.

In other words, is used to denote the set of all elements in the codomain of to which some in the

domain in related.

Equivalence relations

To denote that two elements and are related for a relation which is a subset of some Cartesian product

, we will use an infix operator. We write for some and .

There are very many types of relations. Indeed, further inspection of our earlier examples reveals that the two

relations are quite different. In the case of the "is a child of" relationship, we observe that there are some people A,B

where neither A is a child of B, nor B is a child of A. In the case of the operator, we know that for any two

integers exactly one of or is true. In order to learn about relations, we must look at a

smaller class of relations.

In particular, we care about the following properties of relations:

• Reflexivity: A relation is reflexive if for all .

• Symmetry: A relation is symmetric if for all .

• Transitivity: A relation is transitive if for all .

One should note that in all three of these properties, we quantify across all elements of the set .

Any relation which exhibits the properties of reflexivity, symmetry and transitivity is called an

equivalence relation on . Two elements related by an equivalence relation are called equivalent under the

equivalence relation. We write to denote that and are equivalent under . If only one equivalence

relation is under consideration, we can instead write simply . As a notational convenience, we can simply

say that is an equivalence relation on a set and let the rest be implied.



Equivalence relations and congruence classes 7

Example: For a fixed integer , we define a relation on the set of integers such that if and only if

for some . Prove that this defines an equivalence relation on the set of integers.

Proof:

• Reflexivity: For any , it follows immediately that , and thus for all

.

• Symmetry: For any , assume that . It must then be the case that for some

integer , and . Since is an integer, must also be an integer. Thus,

for all .
• Transitivity: For any , assume that and . Then and

for some integers . By adding these two equalities together, we get

, and thus .

Q.E.D.

Remark. In elementary number theory we denote this relation and say a is equivalent to b modulo

p.

Equivalence classes

Let be an equivalence relation on . Then, for any element we define the equivalence class of as

the subset given by

Theorem: 

Proof: Assume . Then by definition, .

• We first prove that . Let be an arbitrary element of . Then by definition of the

equivalence class, and by transitivity of equivalence relations. Thus, and

.
• We now prove that Let be an arbitrary element of . Then, by definition . By transitivity,

, so . Thus, and .

As and as , we have .

Q.E.D.

Partitions of a set

A partition of a set is a disjoint family of sets , , such that .

Theorem: An equivalence relation on induces a unique partition of , and likewise, a partition induces a

unique equivalence relation on , such that these are equivalent.

Proof: (Equivalence relation induces Partition): Let be the set of equivalence classes of . Then, since 

for each , . Furthermore, by the above theorem, this union is disjoint. Thus the set of

equivalence relations of is a partition of .

(Partition induces Equivalence relation): Let be a partition of . Then, define on such that

if and only if both and are elements of the same for some . Reflexivity and symmetry of 

is immediate. For transitivity, if and for the same , we neccesarily have ,

and transitivity follows. Thus, is an equivalence relation with as the equivalence classes.

Lastly obtaining a partition from on and then obtaining an equivalence equation from obviously

returns again, so and are equivalent structures.

Q.E.D.
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Quotients

Let be an equivalence relation on a set . Then, define the set as the set of all equivalence classes of

. In order to say anything interesting about this construction we need more theory yet to be developed. However,

this is one of the most important constructions we have, and one that will be given the much attention throughout the

book.

Functions

Definition

A function is a triplet such that:

• is a set, called the domain of 

• is a set, called the codomain of 

• is a subset of , called the graph of 

In addition the following two properties hold:

1. .

2. .

we write for the unique such that .

We say that is a function from to , which we write:

Example

Let's consider the function from the reals to the reals which squares its argument. We could define it like this:

Remark

As you see in the definition of a function above, the domain and codomain are an integral part of the definition. In

other words, even if the values of don't change, changing the domain or codomain changes the function.

Let's look at the following four functions.

The function:

is neither injective nor surjective (these terms will be defined later).

The function:

is not injective but surjective.

The function:
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is injective but not surjective.

The function:

is injective and surjective

As you see, all four functions have the same mapping but all four are different. That's why just giving the mapping is

insufficient; a function is only defined if its domain and codomain are known.

Image and preimage

For a set , we write for the set of subsets of .

Let . We will now define two related functions.

The image function:

The preimage function:

Note that the image and preimage are written respectively like and its inverse (if it exists). There is however no

ambiguity because the domains are different. Note also that the image and preimage are not necessarily inverse of

one another. (See the section on bijective functions below).

We define , which we call the image of .

For any , we call the support of .

Example

Let's take again the function:

Let's consider the following examples:

Further definitions

Let and . We define by , which we call the

composition of and .

Let be a set. We define the identity function on A as

Properties

Definition: A function is injective if

Lemma: Consider a function and suppose . Then is injective if and only if there exists a 

function with .
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Proof: 

: 

Suppose is injective. As let's define as an arbitrary element of . We can then define a suitable function as follows:

It is now easy to verify that .

:

Suppose there is a function with . Then

. is thus injective.

Q.E.D.
Definition: A function is surjective if

Lemma: Consider a function . Then is surjective if and only if there exists a function 

with .

Proof:

:

Suppose is surjective. We can define a suitable function as follows:

It is now easy to verify that .

:

Suppose there is a function with . Then . Then

. is thus surjective.

Q.E.D.
Definition: A function is bijective if it is both injective and surjective.

Lemma: A function is bijective if and only if there exists a function with 

and . Furthermore it can be shown that such a is unique. We write it and call it the

inverse of .

Proof:

Left as an exercise.

Example: If and are sets such that , there exists an obviously injective function ,

called the inclusion , such that for all .

Example: If is an equivalence relation on a set , there is an obviously surjective function

, called the canonical projection onto , such that for all .

Theorem: Define the equivalence relation on such that if and only if . Then, if

is any function, decomposes into the composition

where is the canonical projection, is the inclusion , and is the bijection for

all .

Proof: The definition of immediately implies that , so we only have to prove that is well

defined and a bijection. Let . Then . This shows that the

value of is independent of the representative chosen from , and so it is well-defined.

For injectivity, we have , so is injective.
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For surjectivity, let . Then there exists an such that , and so by

definition of . Since is arbitrary in , this proves that is surjective.

Q.E.D.

Definition: Given a function , is a

(i) Monomorphism if given any two functions such that , then .

(ii) Epimorphism if given any two functions such that , then .

Theorem: A function between sets is

(i) a monomorphism if and only if it is injective.

(ii) an epimorphism if and only if it is surjective.

Proof: (i) Let be a monomorphism. Then, for any two functions ,

for all . This is the definition if injectivity. For the converse, if

is injective, it has a left inverse . Thus, if for all , compose with on the

left side to obtain , such that is a monomorphism.

(ii) Let be an epimorphism. Then, for any two functions ,

for all and . Assume , that is, that is not

surjective. Then there exists at least one not in . For this choose two functions which

coincide on but disagree on . However, we still have for all . This

violates our assumtion that is an epimorphism. Consequentally, is surjective. For the converse, assume is

surjective. Then the epimorphism property immediately follows.
Q.E.D.

Remark: The equivalence between monomorphism and injectivity, and between epimorphism and surjectivity is a

special property of functions between sets. This not the case in general, and we will see examples of this when

discussing structure-preserving functions between groups or rings in later sections.

Example: Given any two sets and , we have the canonical projections sending 

to , and sending to . These maps are obviously surjective.

In addition, we have the natural inclusions and which are obviously

injective as stated above.

Universal properties

The projections and inclusions described above are special, in that they satisfy what are called universal properties.

We will give the theorem below. The proof is left to the reader.

Theorem: Let be any sets.

(i) Let and . Then there exists a unique function such that

and are simultaneously satisfied. is sometimes denoted .

(ii) Let and . Then there exists a unique function such that

and are simultaneously satifsied.

The canonical projections onto quotients also satisfy a universal property.

Theorem: Define the equivalence relation on and let be any function such that

for all . Then there exists a unique function such that

, where is the canonical projection.
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Binary Operations

Definition

A binary operation on a set is a function . For , we usually write as

. The property that for all is called closure under .

Example: Addition between two integers produces an integer result. Therefore addition is a binary operation on the

integers. Whereas division of integers is an example of an operation that is not a binary operation. is not an

integer, so the integers are not closed under division.

To indicate that a set has a binary operation defined on it, we can compactly write . Such a pair of a

set and a binary operation on that set is collectively called a binary structure. A binary structure may have several

interesting properties. The main ones we will be interested in are outlined below.

Definition: A binary operation on is associative if for all , .

Example: Addition of integers is associative: . Notice however, that

subtraction is not associative. Indeed, .

Definition: A binary operation on is commutative is for all , .

Example: Multiplication of rational numbers is commutative: . Notice that division

is not commutative: while . Notice also that commutativity of multiplication depends on

the fact that multiplication of integers is commutative as well.

Exercise

•• Of the four arithmetic operations, addition, subtraction, multiplication, and division, which are associative?

commutative?

Answer

operation associative commutative

Addition yes yes

Multiplication yes yes

Subtraction No No

Division No No



Linear Algebra 13

Linear Algebra

The reader is expected to have some familiarity with linear algebra. For example, statements such as

Given vector spaces and with bases and and dimensions and , respectively, a linear map

corresponds to a unique matrix, dependent on the particular choice of basis.

should be familiar. It is impossible to give a summary of the relevant topics of linear algebra in one section, so the

reader is advised to take a look at the linear algebra book.

In any case, the core of linear algebra is the study of linear functions, that is, functions with the property

, where greek letters are scalars and roman letters are vectors.

The core of the theory of finitely generated vector spaces is the following:

Every finite-dimensional vector space is isomorphic to for some field and some , called the

dimension of . Specifying such an isomorphism is equivalent to choosing a basis for . Thus, any linear map

between vector spaces with dimensions and and given bases and induces a unique

linear map . These maps are presicely the matrices, and the matrix in question is

called the matrix representation of relative to the bases .

Remark: The idea of identifying a basis of a vector space with an isomorphism to may be new to the reader, but

the basic principle is the same.

Number Theory

As numbers of various number systems form basic units with which one must work when studying abstract algebra,

we will now define the natural numbers and the rational integers as well as the basic operations of addition and

multiplication. Using these definitions, we will also derive important properties of these number sets and operations.

Following this, we will discuss important concepts in number theory; this will lead us to discussion of the properties

of the integers modulo n.

The Peano postulates and the natural numbers

Definition: Using the undefined notions "1" and "successor" (denoted by ), we define the set of natural numbers

without zero , hereafter referred to simply as the natural numbers, with the following axioms, which we call the

Peano postulates:

Axiom 1. 

Axiom 2. 

Axiom 3. 

Axiom 4. 

Axiom 5. 

We can prove theorems for natural numbers using mathematical induction as a consequence of the fifth Peano

Postulate.
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Addition

Definition: We recursively define addition for the natural numbers as a composition using two more axioms; the

other properties of addition can subsequently be derived from these axioms. We denote addition with the infix

operator +.

Axiom 6. 

Axiom 7. 

Axiom 6 above relies on the first Peano postulate (for the existence of 1) as well as the second (for the existence of a

successor for every number).

Henceforth, we will assume that proven theorems hold for all in .

Multiplication

Definition: We similarly define multiplication for the natural numbers recursively, again using two axioms:

Axiom 8. 

Axiom 9. 

Properties of addition

We start by proving that addition is associative.

Theorem 1: Associativity of addition: 

Proof: Base case: By axioms 6 and 7, .

By axiom 6, .

Inductive hypothesis: Suppose that, for , .

Inductive step: By axiom 7, .

By the inductive hypothesis, .

By axiom 7, .

By axiom 7, .

By induction, . QED.

Lemma 1: 

Proof: Base case: 1+1=1+1.

Inductive hypothesis: Suppose that, for , .

Inductive step: By axiom 6, .

By the inductive hypothesis, .

By theorem 1, .

By axiom 6, .

By induction, . QED.

Theorem 2: Commutativity of addition: 

Proof: Base case: By lemma 1, .

Inductive hypothesis: Suppose that, for , .

By axiom 6, .

By theorem 1, .

By the inductive hypothesis, .
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By theorem 1, .

By lemma 1, .

By theorem 1, .

By axiom 6, .

By induction, . QED.

Theorem 3: .

Proof: Base case: Suppose .

By theorem 2, .

By axiom 6, .

By axiom 4, .

Inductive hypothesis: Suppose that, for , .

Inductive step: Suppose .

By axiom 6, .

By theorem 2, .

By theorem 1, .

By the base case, . Thus, .

By the inductive hypothesis, .

By induction, . QED.

Properties of multiplication

Theorem 4: Left-distributivity of multiplication over addition: .

Proof: Base case: By axioms 6 and 9, .

By axiom 8, .

Inductive hypothesis: Suppose that, for , .

Inductive step: By axiom 7, .

By axiom 9, .

By the inductive hypothesis, .

By theorem 1, .

By axiom 9, .

By induction, . QED.

Theorem 5: .

Proof: Base case: By axiom 8, 1(1)=1.

Inductive hypothesis: Suppose that, for , .

Inductive step: By axiom 6, .

By theorem 4, .

By the base case, .

By the inductive hypothesis, .

By axiom 6, .

By induction, . QED.

Theorem 6: .
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Proof: Base case: By axiom 8, .

By axiom 6, .

By axiom 8, .

Inductive hypothesis: Suppose that, , .

Inductive step: By axiom 9, .

By the inductive hypothesis, .

By axiom 6, .

By theorem 1, .

By theorem 2, .

By theorem 1, 

By axiom 9, .

By theorem 1, .

By axiom 6, .

By induction, . QED.

Theorem 7: Associativity of multiplication: 

Proof: Base case: By axiom 8, .

Inductive hypothesis: Suppose that, for , .

Inductive step: By axiom 9, .

By the inductive hypothesis, .

By theorem 4, .

By axiom 9, .

By induction, . QED.

Theorem 8: Commutativity of multiplication: .

Proof: Base case: By axiom 8 and theorem 5, .

Inductive hypothesis: Suppose that, for , .

Inductive step: By axiom 9, .

By the inductive hypothesis, .

By theorem 6, .

By induction, . QED.

Theorem 9: Right-distributivity of multiplication over addition: .

Proof: By theorems 4 and 7, .

By theorem 7, . QED.
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The integers

The set of rational integers can be constructed from ordered pairs of natural numbers (a, b). We define an

equivalence relation on the set of all such ordered pairs such that

Then the set of rational integers is the set of all equivalence classes of such ordered pairs. We will denote the

equivalence class of which some pair (a, b) is a member with the notation [(a, b)]. Then, for any natural numbers a

and b, [(a, b)] represents a rational integer.

Integer addition

Definition: We define addition for the integers as follows:

Using this definition and the properties for the natural numbers, one can prove that integer addition is both

associative and commutative.

Integer multiplication

Definition: Multiplication for the integers, like addition, can be defined with a single axiom:

Again, using this definition and the previously-proven properties of natural numbers, it can be shown that integer

multiplication is commutative and associative, and furthermore that it is both left- and right-distributive with respect

to integer addition.



18

Group Theory

Group

In this section we will begin to make use of the definitions we made in the section about binary operations. In the

next few sections, we will study a specific type of binary structure called a group. First, however, we need some

preliminary work involving a less restrictive type of binary structure.

Monoids

Definition 1: A monoid is a binary structure satisfying the following properties:

(i) for all .

(ii) There exists an element such that for all .

The element in (ii) is called an identity element of .

Now we have our axioms in place, we are faced with a pressing question; what is our first theorem going to be?

Since the first few theorems are not dependent on one another, we simply have to make an arbitrary choice. We

choose the following:

Theorem 2: The identity element of is unique.

Proof: Assume and are both identity elements of . Then both satisfy condition (ii) in the definition above.

In particular, , proving the theorem. ∎

This theorem will turn out to be of fundamental importance later when we define groups.

Theorem 3: If are elements of for some , then the product is

unambiguous.

Proof: We can prove this by induction. The cases for and are trivially true. Then, assume that the

statement is true for all . Then, the product , inserting parentheses, can be "partitioned"

into . Then, since , both parts of the product have a number

of elements less than or equal to and are thus unambiguous. We compute these products and are left with

which is unambiguous, proving the theorem. ∎
This is about as far as we are going to take the idea of a monoid. We now proceed to groups.

Groups

Definition 4: A group is a monoid that also satisfies the property

(iii) For each , there exists and element such that .

Such an element is called an inverse of . When the operation on the group is understood, we will conveniently

refer to as . In addition, we will gradually stop using the symbol for multiplication when we are

dealing with only one group, or when it is understood which operation is meant, instead writing products by

juxtaposition, .

Remark 5: Notice how this definition depends on Theorem 2 to be well defined. Therefore we could not state this

definition before at least proving uniqueness of the identity element. Alternatively, we could have included the

existence of a distinguished identity element in the definition. In the end, the two approaches are logically

equivalent.
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Theorem 6: The inverse of any element is unique.

Proof: Let and let and be inverses of . Then, . ∎

Thus, we can speak of the inverse of an element, and we will denote this element by . We also observe this nice

property:

Corollary 7: .

Proof: This follows immediately since .

The next couple of theorems may appear obvious, but in the interest of keeping matters fairly rigorous, we allow

ourselves to state and prove seemingly trivial statements.

Theorem 8: Let be a group and . Then .

Proof: The result follows by direct computation:

. ∎

Theorem 9: Let . Then, if and only if . Also, if and only if

.

Proof: We will prove the first assertion. The second is identical. Assume . Then, multiply on the left

and right by to obtain . Secondly, assume . Then, multiply on the left by to obtain

. ∎

Theorem 10: The equation has a unique solution in for any .

Proof: We must show existence and uniqueness. For existence, observe that is a solution in . For

uniqueness, multiply both sides of the equation on the left by to show that this is the only solution. ∎
Notation: Let be a group and . We will often encounter a situation where we have a product

. For these situations, we introduce the shorthand notation if is

positive, and if is negative. Under these rules, it is straightforward to show

and and for all .

Definition 11: (i) The order of a group , denoted or , is the number of elements of if is

finite, and otherwise.

(ii) The order of an element of , similarly denoted or , is defined as the lowest positive integer 

such that if such an integer exists, and otherwise.

Theorem 12: Let be a group and . Then .

Proof: Let the order of be . Then, , being the smallest positive integer such that

this is true. Now, multiply by on the left and on the right to obtain implying .

Thus, we have shown that . A similar argument in the other direction shows that . Thus,

we must have , proving the theorem. ∎
Corollary 13: Let be a group with . Then, .

Proof: By Theorem 7, we have that . ∎

Theorem 14: An element of a group not equal to the identity has order 2 if and only if it is its own inverse.

Proof: Let have order 2 in the group . Then, , so by definition, . Now, assume

and . Then . Since , 2 is the smallest positive integer satisfying

this property, so has order 2. ∎
Definition 15: Let be a group such that for all , . Then, is said to be commutative or

abelian.
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When we are dealing with an abelian group, we will sometimes use so-called additive notation, writing for our

binary operation and replacing with . In such cases, we only need to keep track of the fact that is an

integer while is a group element. We will also talk about the sum of elements rather than their product.

Abelian groups are in many ways nicer objects than general groups. They also admit more structure where ordinary

groups do not. We will see more about this later when we talk about structure-preserving maps between groups.

Definition 16: Let be a group. A subset is called a generating set for if every element in can be

written in terms of elements in .

Now that we have our definitions in place and have a small arsenal of theorems, let us look at three (really, two and a

half) important families of groups.

Multiplication tables

We will now show a convenient way of representing a group structure, or more precisely, the multiplication rule on a

set. This notion will not be limited to groups only, but can be used for any structure with any number of operations.

As an example, we give the group multiplication table for the Klein 4-group . The multiplication table is

structured such that is represented by the element in the " -position", that is, in the intersection of the

-row and the -column.

This next group is for the group of integers under addition modulo 4, called . We will learn more about this

group later.

We can clearly see that and are "different" groups. There is no way to relabel the elements such that the

multiplication tables coincide. There is a notion of "equality" of groups that we have not yet made precise. We will

get back to this in the section about group homomorphisms.

The reader might have noticed that each row in the group table features each element of the group exactly once.

Indeed, assume that an element appeared twice in some row of the multiplication table for . Then there

would exist such that , implying and contradicting the assumption of 

appearing twice. We state this as a theorem:

Theorem 17: Let be a group and . Then .

Using this, the reader can use a multiplication table to find all groups of order 3. He/she will find that there is only

one possibility.
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Problems

Problem 1: Show that , the set of matrices with real entries, forms a group under the operation of

matrix addition.

Problem 2: Let be vector spaces and be the set of linear maps from to . Show that

forms an abelian group by defining .

Problem 3: Let be generated by the elements such that , and

. Show that forms a group. This group is called the group of quaternions, and is a

4-dimensional version of the complex numbers. Are any of the conditions above redundant?

Problem 4: Let be any nonempty set and consider the set . Show that has a natural group structure.

Answer

is the set of functions . Let and define the binary operation

for all . Then is a group with identity such that for all

and inverses for all .∎
Problem 5: Let be a group with two distinct elements and , both of order 2. Show that has a third

element of order 2.

Answer

We consider first the case where . Then and is distinct from and

. If , then and is distinct from and . ∎

Problem 6: Let be a group with one and only one element of order 2. Show that .

Answer

Since the product of two elements generally depends on the order in which we multiply them, the stated product is

not neccesarily well defined. However, it works out in this case.

Since every element of appears once in the product, for every element , the inverse of must appear

somewhere in the product. That, is, unless in which case is its own inverse by Theorem 14. Now,

applying Corollary 13 to the product shows that its order is that same as the order of the product of all elements of

order 2 in . But there is only one such element, , so the order of the product is 2. Since the only element in 

having order 2 is , the equality follows. ∎
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Subgroup

Subgroups

We are about to witness a universal aspect of mathematics. That is, whenever we have any sort of structure, we ask

ourselves: does it admit substructures? In the case of groups, the answer is yes, as we will immediately see.

Definition 1: Let be a group. Then, if is a subset of which is a group in its own right under the

same operation as , we call a subgroup of and write .

Example 2: Any group has at least 2 subgroups; itself and the trivial group . These are called the

improper and trivial subgroups of , respectively.

Naturally, we would like to have a method of determining whether a given subset of a group is a subgroup. The

following two theorems provide this. Since naturally inherits the associativity property from , we only need

to check closure.

Theorem 3: A subset of a group is a subgroup if and only if

(i) is closed under the operation on . That is, if , then ,

(ii) ,

(iii) is closed under the taking of inverses. That is, if , then .

Proof: The left implication follows directly from the group axioms and the definition of subgroup. For the right

implication, we have to verify each group axiom for . Firstly, since is closed, it is a binary structure, as

required, and as mentioned, inherits associativity from G. In addition, has the identity element and inverses,

so is a group, and we are done. ∎

There is, however, a more effective method. Each of the three criteria listed above can be condensed into a single

one.

Theorem 4: Let be a group. Then a subset is a subgroup is and only if .

Proof: Again, the left implication is immediate. For the right implication, we have to verify the (i)-(iii) in the

previous theorem. First, assume . Then, letting , we obtain , taking care of (ii).

Now, since we have so is closed under taking of inverses, satisfying (iii).

Lastly, assume . Then, since , we obtain , so is closed under the

operation of , satisfying (i), and we are done. ∎
All right, so now we know how to recognize a subgroup when we are presented with one. Let's take a look at how to

find subgroups of a given group. The next theorem essentially solves this problem.

Theorem 5: Let be a group and . Then the subset is a subgroup of , denoted 

and called the subgroup generated by . In addition, this is the smallest subgroup containing in the sense that if

is a subgroup and , then .

Proof: First we prove that  is a subgroup. To see this, note that if , then there exists integers

such that . Then, we observe that since

, so is a subgroup of , as claimed. To show that it is the smallest subgroup containing ,

observe that if is a subgroup containing , then by closure under products and inverses, for all

. In other words, . Then automatically since is a subgroup of . ∎
Theorem 6: Let and be subgroups of a group . Then is also a subgroup of .

Proof: Since both and contain the identity element, their intersection is nonempty. Let .

Then and . Since both and are subgroups, we have and .

But then (why?). Thus is a subgroup of . ∎
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Theorem 6 can easily be generalized to apply for any arbitrary intesection where is a subgroup for every

in an arbitrary index set . The reasoning is identical, and the proof of this generalization is left to the reader to

formalize.

Definition 7: Let be a group and be a subgroup of . Then is called a left coset

of . The set of all left cosets of in is denoted . Likewise, is called a

right coset, and the set of all right cosets of in is denoted .

Lemma 8: Let be a group and be a subgroup of . Then every left coset has the same number of elements.

Proof: Let and define the function by . We show that is a bijection. Firstly,

by left cancellation, so is injective. Secondly, let . Then for some

and , so is surjective and a bijection. It follows that , as was to be shown. ∎
Lemma 9: The relation defined by is an equivalence relation.

Proof: Reflexivity and symmetry are immediate. For transitivity, let and . Then ,

so and we are done. ∎
Lemma 10: Let be a group and be a subgroup of . Then the left cosets of partition .

Proof: Note that for some . Since

is an equivalence relation and the equivalence classes are the left cosets of , these

automatically partition . ∎
Theorem 11 (Lagrange's theorem): Let be a finite group and be a subgroup of . Then

.

Proof: By the previous lemmas, each left coset has the same number of elements and every is

included in a unique left coset . In other words, is partitioned by left cosets, each contributing an

equal number of elements . The theorem follows. ∎
Note 12: Each of the previous theorems have analagous versions for right cosets, the proofs of which use identical

reasoning. Stating these theorems and writing out their proofs are left as an exercise to the reader.

Corollary 13: Let be a group and be a subgroup of . Then right and left cosets of have the same

number of elements.

Proof: Since is a left and a right coset we immediately have for all . ∎

Corollary 14: Let be a group and be a subgroup of . Then the number of left cosets of in and the

number of right cosets of in are equal.

Proof: By Lagrange's theorem and its right coset counterpart, we have . We

immediately obtain , as was to be shown. ∎
Now that we have developed a reasonable body of theory, let us look at our first important family of groups, namely

the cyclic groups.

Problems

Problem 1 (Matrix groups): Show that:

i) The group of invertible matrices is a subgroup

of . This group is called the general linear group of order .

ii) The group of orthogonal matrices is a subgroup of

. This group is called the orthogonal group of order .

iii) The group is a subgroup of . This

group is called the special orthogonal group of roder .
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iv) The group of unitary matrices is a subgroup of .

This is called the unitary group of order .

v) The group is a subgroup of . This is

called the special unitary group of order .

Problem 2: Show that if are subgroups of , then is a subgroup of if and only if 

or .

•• Definition of a Subgroup

•• Subgroup Inherits Identity

•• Intersection of Subgroups is a Subgroup

•• Definition of a Coset

•• a Subgroup and its Cosets have Equal Orders

•• a Group is Partitioned by Cosets of Its Subgroup

•• Lagrange's Theorem

•• Definition of a Cyclic Subgroup

• Order of a Cyclic Subgroup Help!

•• Euler's Totient Theorem

•• Definition of a Normal Subgroup

Cyclic groups

Definition

• A cyclic group generated by g is

•

• where 

• Induction shows: 

a Cyclic Group of Order n is Isomorphic to the Integers Moduluo n with

Addition

Theorem

Let C
m 

be a cyclic group of order m generated by g with 

Let be the group of integers modulo m with addition

C
m 

is isomorphic to 

Lemma

Let n be the minimal positive integer such that g
n 

= e

Proof of Lemma

http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Definition_of_a_Subgroup
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Subgroup_Inherits_Identity
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Intersection_of_Subgroups_is_a_Subgroup
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Coset/Definition_of_a_Coset
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Coset/a_Subgroup_and_its_Cosets_have_Equal_Orders
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Coset/a_Group_is_Partitioned_by_Cosets_of_Its_Subgroup
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Lagrange%27s_Theorem
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Cyclic_Subgroup/Definition_of_a_Cyclic_Subgroup
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Cyclic_Subgroup/Order_of_a_Cyclic_Subgroup
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Cyclic_Subgroup/Euler%27s_Totient_Theorem
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup/Normal_Subgroup/Definition_of_a_Normal_Subgroup
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Let i < j. Let i - j = sn + r where 0 ≤ r < n and s,r,n are all integers.

1. 

2. as i - j = sn + r, and g
n 

= e

3. 

4. 
as n is the minimal positive integer such that g

n 
= e

and 0 ≤ r < n

5. 0. and 7.

6. 

Proof

0. Define    

Lemma shows f is well defined (only has one output for each input).

f is homomorphism:

f is injective by lemma

f is surjective as both and has m elements and m is injective

Cyclic groups

In the previous section about subgroups we saw that if is a group with , then the set of powers of ,

constituted a subgroup of , called the cyclic subgroup generated by . In this, section,

we will generalize this concept, and in the process, obtain an important family of groups which is very rich in

structure.

Definition 1: Let be a group with an element such that . Then is called a cyclic group,

and is called a generator of . Alternatively, is said to generate . If there exists an integer such that

, and is the smallest positive such integer, is denoted , the cyclic group of order . If no such

integer exists, is denoted , the infinite cyclic group.

The infinite cyclic group can also be denoted , the free group with one generator. This is foreshadowing for a

future section and can be ignored for now.

Theorem 2: Any cyclic group is abelian.

Proof: Let be a cyclic group with generator . Then if , then and for some

. To show commutativity, observe that and we are

done. ∎
Theorem 3: Any subgroup of a cyclic group is cyclic.

Proof: Let be a cyclic group with generator , and let . Since , in paticular every element

of equals for some . We claim that if the lowest positive integer such that , then

. To see this, let . Then and for unique . Since is

a subgroup and , we must have . Now, assume that . Then

contradicts our assumption that is the least positive integer such that . Therefore, .

Consequently, only if , and and is cyclic, as was to be shown. ∎



Cyclic groups 26

As the alert reader will have noticed, the preceeding proof invoked the notion of division with remainder which

should be familiar from number theory. Our treatment of cyclic groups will have close ties with notions from number

theory. This is no coincidence, as the next few statements will show. Indeed, an alternative title for this section could

have been "Modular arithmetic and integer ideals". The notion of an ideal may not yet be familiar to the reader, who

is asked to wait patiently until the chapter about rings.

Theorem 4: Let with addition defined modulo . That is ,

where . We denote this operation by . Then is a cyclic group.

Proof: We must first show that is a group, then find a generator. We verify the group axioms.

Associativity is inherited from the integers. The element is an identity element with respect to . An

inverse of is an element such that . Thus . Then, ,

and so , and is a group. Now, since , generates 

and so is cyclic. ∎
Unless we explicitly state otherwise, by we will always refer to the cyclic group . Since the argument

for the generator of can be made valid for any integer , this shows that also is cyclic with the generator 

.

Theorem 5: An element is a generator if and only if .

Proof: We will need the following theorem from number theory: If are integers, then there exists integers

such that , if and only if . We will not prove this here. A proof can be found

in the number theory section.

For the right implication, assume that . Then for all , for some integer . In

paticular, there exists an integer such that . This implies that there exists another integer such

that . By the above-mentioned theorem from number theory, we then have . For the

left implication, assume . Then there exists integers such that

, implying that in . Since generates , it must be true that

is also a generator, proving the theorem. ∎
We can generalize Theorem 5 a bit by looking at the orders of the elements in cyclic groups.

Theorem 6: Let . Then, .

Proof: Recall that the order of is defined as the lowest positive integer such that in . Since

is cyclic, there exists an integer such that is minimal and positive. This is the definition of the

least common multiple; . Recall from number theory that

. Thus, , as was to be

proven. ∎
Theorem 7: Every subgroup of is of the form .

Proof: The fact that any subgroup of is cyclic follows from Theorem 3. Therefore, let generate .

Then we see immediately that . ∎

Theorem 8: Let be fixed, and let . Then is a subgroup of generated

by .

Proof: We msut first show that is a subgroup. This is immediate since

. From the proof of Theorem 3, we see that any

subgroup of is generated by its lowest positive element. It is a theorem of number theory that the lowest positive

integer such that for fixed integers and equals the greatest common divisor of 

and or . Thus generates . ∎
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Theorem 9: Let and be subgroups of . Then is the subgroup generated by .

Proof: The fact that is a subgroup is obvious since and are subgroups. To find a generator of

, we must find its lowest positive element. That is, the lowest positive integer such that is both a

multiple of and of . This is the definition of the least common multiple of and , or , and

the result follows. ∎

It should be obvious by now that and , and and are the same groups. This will be made precise in a

later section but can be visualized by denoting any generator of or by .

We will have more to say about cyclic groups later, when we have more tools at our disposal.

Permutation groups

Symmetric groups

Theorem 1: Let be any set. Then, the set of bijections from to itself, , form a group

under composition of functions.

Proof: We have to verify the group axioms. Associativity is fulfilled since composition of functions is always

associative: where the

composition is defined. The identity element is the identity function given by for all . Finally,

the inverse of a function is the function taking to for all . This function exists and is

unique since is a bijection. Thus is a group, as stated. ∎
is called the symmetric group on . When , we write its symmetric group as

, and we call this group the symmetric group on letters. It is also called the group of permutations on 

letters. As we will see shortly, this is an appropriate name.

Instead of , we will use a different symbol, namely , for the identity function in .

When , we can specify by specifying where it sends each element. There are many ways to encode this

information mathematically. One obvious way is to indentify as the unique matrix with value in the

entries and elsewhere. Composition of functions then corresponds to multiplication of matrices. Indeed,

the matrix corresponding to has value in the entries , which is the same as , so the

product has value in the entries . This notation may seem cumbersome. Luckily, there exists a more

convenient notation, which we will make use of.

We can represent any by a matrix . We obviously lose the

correspondence between function composition and matrix multiplication, but we gain a more readable notation. For

the time being, we will use this.

Remark 2: Let . Then the product is the function obtained by first acting with , and

then by . That is, . This point is important to keep in mind when computing products in .

Some textbooks try to remedy the frequent confusion by writing functions like , that is, writing arguments on

the left of functions. We will not do this, as it is not standard. The reader should use the next example and theorem to

get a feeling for products in .
Example 3: We will show the multiplication table for . We introduce the special notation for : 

, , , and

. The multiplication table for is then
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Theorem 4: has order .

Proof: This follows from a counting argument. We can specify a unique element in by specifying where each

is sent. Also, any permutation can be specified this way. Let . In choosing we

are completely free and have choices. Then, when choosing we must choose from 

, giving a total of choices. Continuing in this fashion, we see that for we must choose from

, giving a total of choices. The total number of ways in which

we can specify an element, and thus the number of elements in is then

, as was to be shown. ∎

Theorem 5: is non-abelian for all .

Proof: Let be the function only interchanging 1 and 2, and

be the function only interchanging 2 and 3. Then

and . Since , is not abelian. ∎

Definition 6: Let such that for some . Then is called an -cycle, where is the

smallest positive such integer. Let be the set of integers such that . Two cycles are called

disjoint if . Also, a 2-cycle is called a transposition.

Theorem 7: Let . If , then .

Proof: For any integer such that but we have

. A similar argument holds for but

. If , we must have . Since , we

have now exhausted every , and we are done. ∎
Theorem 8: Any permutation can be represented as a composition of disjoint cycles.

Proof: Let . Choose an element and compute . Since is finite

of order , we know that exists and . We have now found a -cycle including . Since

, this cycle may be factored out , obtaining . Repeat this process,

which terminates since is finite, and we have contructed a composition of disjoint cycles which equal . ∎
Now that we have shown that all permuations are just compositions of disjoint cycles, we can introduce the ultimate

shorthand notation for permutations. For an -cycle , we can show its action by choosing any element 

and writing .

Theorem 9: Any -cycle can be represented as a composition of transpositions.

Proof: Let . Then, (check this!),

omitting the composition sign . Interate this process to obtain . ∎

Note 10: This way of representing as a product of transpositions is not unique. However, as we will see now, the

"parity" of such a representation is well defined.
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Definition 11: The parity of a permutation is even if it can be expressed as a product of an even number of

transpositions. Otherwise, it is odd. We define the function if is even and if is

odd.

Lemma 12: The indentity has even parity.

Proof: Observe first that for . Thus the minimum number of transpositions neccesary to

represent is 2: . Now, assume that for any representation using less than transpositions must

be even. Thus, let . Now, since in paticular , we must have 

for some . Since disjoint transpositions commute, and where

, it is always possible to configure the transpositions such that the first two transpositions are either

, reducing the number of transposition by two, or . In

this case we have reduced the number of transpositions involving by 1. We restart the same process as above.

with the new representation. Since only a finite number of transpositions move , we will eventually be able to

cancel two permutations and be left with transpositions in the product. Then, by the induction hypothesis,

must be even and so is even as well, proving the lemma. ∎Theorem 13: The parity of a permutation, and thus the function, is well-defined.

Proof: Let and write as a product of transposition in two different ways: .

Then, since has even parity by Lemma 11 and . Thus, , and

, so has a uniquely defined parity, and consequentially is well-defined. ∎
Theorem 14: Let . Then, .

Proof: Decompose and into transpositions: , . Then has

parity given by . If both are even or odd, is even and indeed

. If one is odd and one is even, is odd and again

, proving the theorem. ∎

Lemma 15: The number of even permutations in equals the number of odd permutations.

Proof: Let be any even permutation and a transposition. Then has odd parity by Theorem 14. Let be

the set of even permutations and the set of odd permutations. Then the function given by

for any and a fixed transposition , is a bijection. (Indeed, it is a transposition in !)

Thus and have the same number of elements, as stated. ∎
Definition 16: Let the set of all even permutations in be denoted by . is called the alternating group on

letters.

Theorem 17:  is a group, and is a subgroup of of order .

Proof: We first show that is a group under composition. Then it is automatically a subgroup of . That is

closed under composition follows from Theorem 14 and associativity is inherited from . Also, the identity

permutation is even, so . Thus is a group and a subgroup of . Since the number of even and odd

permutations are equal by Lemma 14, we then have that , proving the theorem. ∎

Theorem 18: Let . Then is generated by the 3-cycles in .

Proof: We must show that any even permutation can be decomposed into 3-cycles. It is sufficient to show that this is

the case for pairs of transpositions. Let be distinct. Then, by some casework,

i) ,

ii) , and

iii) ,

proving the theorem. ∎
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In a previous section we proved Lagrange's Theorem: The order of any subgroup divides the order of the parent

group. However, the converse statement, that a group has a subgroup for every divisor of its order, is false! The

smallest group providing a counterexample is the alternating group , which has order 12 but no subgroup of

order 6. It has subgroups of orders 3 and 4, corresponding respectively to the cyclic group of order 3 and the Klein

4-group. However, if we add any other element to the subgroup corresponding to , it generates the whole group

. We leave it to the reader to show this.

Dihedral Groups

The lines represent the reflection symmetries of a

regular hexagon

Illustration of the elements of the dihedral group

as rotations and reflections of a stop sign.

The dihedral groups are the symmetry groups of regular polygons. As

such, they are subgroups of the symmetric groups. In general, a regular

-gon has rotational symmetries and reflection symmetries.

The dihedral groups capture these by consisting of the associated

rotations and reflections.

Definition 19: The dihedral group of order , denoted , is the

group of rotations and reflections of a regular -gon.

Theorem 20: The order of is precisely .

Proof: Let be a rotation that generates a subgroup of order in

. Obviously, then captures all the pure rotations of a regular

-gon. Now let be any rotation in The rest of the elements can

then be found by composing each element in with . We get a

list of elements . Thus,

the order of is , justifying its notation and proving the

theorem. ∎
Remark 21: From this proof we can also see that is a

generating set for , and all elements can be obtained by writing

arbitrary products of and and simplifying the expression

according to the rules , and . Indeed,

as can be seen from the figure, a rotation composed with a reflection is

new reflection.

http://en.wikibooks.org/w/index.php?title=File%3AHexagon_Reflections.png
http://en.wikibooks.org/w/index.php?title=File%3ADihedral8.png
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Homomorphism

We are finally making our way into the meat of the theory. In this section we will study structure-preserving maps

between groups. This study will open new doors and provide us with a multitude of new theorems.

Up until now we have studied groups at the "element level". Since we are now about to take a step back and study

groups at the "homomorphism level", readers should expect a sudden increase in abstraction starting from this

section. We will try to ease the reader into this increase by keeping one foot at the "element level" throughout this

section.

From here on out the notation will denote the identity element in the group unless otherwise specified.

Group homomorphisms

Definition 1: Let and be groups. A homomorphism from to is a function 

such that for all ,

.

Thus, a homomorphism preserves the group structure. We have included the multiplication symbols here to make

explicit that multiplication on the left hand side occurs in , and multiplication on the right hand side occurs in 

.

Already we see that this section is different from the previous ones. Up until now we have, excluding subgroups,

only dealt with one group at a time. No more! Let us start by deriving some elementary and immediate consequences

of the definition.

Theorem 2: Let be groups and a homomorphism. Then . In other words, the

identity is mapped to the identity.

Proof: Let . Then, , implying that is the identity in , proving

the theorem. ∎

Theorem 3: Let be groups and a homomorphism. Then for any ,

. In other words, inverses are mapped to inverses.

Proof: Let . Then implying that , as

was to be shown. ∎
Theorem 4: Let be groups, a homomorphism and let be a subgroup of . Then

is a subgroup of .

Proof: Let . Then and .

Since , , and so is a subgroup of . ∎
Theorem 5: Let be groups, a homomorphism and let be a subgroup of . Then

is a subgroup of .

Proof: Let . Then , and since is a subgroup,

. But then, , and so is a

subgroup of . ∎
From Theorem 4 and Theorem 5 we see that homomorphisms preserve subgroups. Thus we can expect to learn a lot

about the subgroup structure of a group by finding suitable homomorphisms into .

In particular, every homomorphism has associated with it two important subgroups.

Definition 6: A homomoprhism is called an isomorphism if it is bijective and its inverse is a homomorphism. Two

groups are called isomorphic if there exists an isomorphism between them, and we write to denote " is

isomorphic to ".
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Theorem 7: A bijective homomorphism is an isomorphism.

Proof: Let be groups and let be a bijective homomorphism. We must show that the inverse

is a homomorphism. Let . then there exist unique such that and

. Then we have since is a homomorphism. Now apply to all equations.

We obtain , and , so is a

homomorphism and thus is an isomorphism. ∎
Definition 8: Let be groups. A homomorphism that maps every element in to is called a trvial

homomorphism (or zero homomorphism), and is denoted by 

Definition 9: Let be a subgroup of a group . Then the homomorphism given by is

called the inclusion of into . Let be a group isomorphic to a subgroup of a group . Then the

isomorphism induces an injective homomorphism given by ,

called an imbedding of into . Obviously, .

Definition 10: Let be groups and a homomorphism. Then we define the following

subgroups:

i) , called the kernel of , and

ii) , called the image of .

Theorem 11: The composition of homomorphisms is a homomorphism.

Proof: Let be groups and and homomorphisms. Then

is a function. We must show it is a homomorphism. Let . Then

, so is

indeed a homomorphisms. ∎
Theorem 12: Composition of homomorphisms is associative.

Proof: This is evident since homomorphisms are functions, and composition of functions is associative. ∎

Corollary 13: The composition of isomorphisms is an isomorphism.

Proof: This is evident from Theorem 11 and since the composition of bijections is a bijection. ∎

Theorem 14: Let be groups and a homomorphism. Then is injective if and only if

.

Proof: Assume and . Then

, implying that . But by assumption

then , so is injective. Assume now that and . Then there

exists another element such that . But then . Since both and map

to , is not injective, proving the theorem. ∎
Corollary 15: Inclusions are injective.

Proof: The result is immediate. Since for all , we have . ∎

The kernel can be seen to satisfy a universal property. The following theorem explains this, but it is unusually

abstract for an elementary treatment of groups, and the reader should not worry if he/she cannot understand it

immediately.
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Commutative diagram showing the universal

property of kernels.

Theorem 16: Let be groups and a group

homomorphism. Also let be a group and a

homomorphism such that . Also let

is the inclusion of into . Then there

exists a unique homomorphism such that

.
Proof: Since , by definition we must have

, so exists. The commutativity then

forces , so is unique. ∎
Definition 17: A commutative diagram is a pictorial presentation of a

network of functions. Commutativity means that when several routes of function composition from one object lead

to the same destination, the two compositions are equal as functions. As an example, the commutative diagram on

the right describes the situation in Theorem 16. In the commutative diagrams (or diagrams for short, we will not

show diagrams which no not commute) shown in this chapter on groups, all functions are implicitly assumed to be

group homomorphisms. Monomorphisms in diagrams are often emphasized by hooked arrows. In addition,

epimorphims are often emphasized by double headed arrows. That an inclusion is a monomorphism will be proven

shortly.

Remark 18: From the commutative diagram on the right, the kernel can be defined completely without reference to

elements. Indeed, Theorem 16 would become the definition, and our Definition 10 i) would become a theorem. We

will not entertain this line of thought in this book, but the advanced reader is welcome to work it out for him./herself.

Automorphism Groups

In this subsection we will take a look at the homomorphisms from a group to itself.

Definition 19: A homomorphism from a group to itself is called an endomorphism of . En endomorphism

which is also an isomorphism is called an automorphism. The set of all endomorphisms of is denoted ,

while the set of all automorphisms of is denoted .

Theorem 20: is a monoid under composition of homomorphisms. Also, is a submonoid which

is also a group.

Proof: We only have to confirm that is closed and has an identity, which we know is true. For ,

the identity homomorphism is an isomorphism and the composition of isomorphisms is an

isomorphism. Thus is a submonoid. To show it is a group, note that the inverse of an automorphism is an

automorphism, so is indeed a group. ∎

Groups with Operators

An endomorphism of a group can be thought of as a unary operator on that group. This motivates the following

definition:

Definition 21: Let be a group and . Then the pair is called a group with operators. 

is called the operator domain and its elements are called the homotheties of . For any , we introduce the

shorthand for all . Thus the fact that the homotheties of are endomorphisms can be

expressed thus: for all and , .

Example 22: For any group , the pair is trivially a group with operators.

Lemma 23: Let be a group with operators. Then can be extended to a submonoid of such

that the structure of is identical to .

http://en.wikibooks.org/w/index.php?title=File%3ADiagramkernel.png
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Proof: Let include the identity endomorphism and let be a generating set. Then is closed under

compositions and is a monoid. Since any element of is expressible as a (possibly empty) composition of elements

in , the structures are identical. ∎

In the following, we assume that the operator domain is always a monoid. If it is not, we can extend it to one by

Lemma 23.

Definition 24: Let and be groups with operators with the same operator domain. Then a

homomorphism is a group homomorphism such that for all and

, we have .

Definition 25: Let be a group with operators and a subgroup of . Then is called a stable

subgroup (or a -invariant subgroup) if for all and , . We say that  respects the

homotheties of . In this case is a sub-group with operators.

Example 26: Let be a vector space over the field . If we by denote the underlying abelian group under

addition, then is a group with operators, where for any and , we define 

. Then the stable subgroups are precisely the linear subspaces of (show this).

Problems

Problem 1: Show that there is no nontrivial homomorphism from to .

Normal subgroups and Quotient groups

In the preliminary chapter we discussed equivalence classes on sets. If the reader has not yet mastered this notion,

he/she is advised to do so before starting this section.

Normal Subgroups

Recall the definition of kernel in the previous section. We will exhibit an interesting feature it possesses. Namely, let

be in the coset . Then there exists a such that for all

. This is easy to see because a coset of the kernel includes all elements in that are mapped to a paticular

element. The kernel inspires us to look for what are called normal subgroups.

Definition 1: A subgroup is called normal if for all . We may sometimes write

to emphasize that is normal in .

Theorem 2: A subgroup is normal if and only if for all .

Proof: By the definition, a subgroup is normal if and only if since conjugation is a bijection. The

theorem follows by multiplying on the right by . ∎
We stated that the kernel is a normal subgroup in the introduction, so we had better well prove it!

Theorem 3: Let be any homomorphism. Then is normal.

Proof: Let and . Then , so , proving

the theorem. ∎
Theorem 4: Let be groups and a group homomorphism. Then if is a normal subgroup of

, then is normal in .

Proof: Let and . Then since is normal in

, and so , proving the theorem. ∎
Theorem 5: Let be groups and a group homomorphism. Then if is a normal subgroup of

, is normal in .
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Proof: Let And . Then if such that , we have

for some since is normal.

Thus for all and so is normal in . ∎
Corollary 6: Let be groups and a surjective group homomorphism. Then if is a normal

subgroup of , is normal in .

Proof: Replace with in the proof of Theorem 5. ∎

Remark 7: If is a normal subgroup of and is a normal subgroup of , it does not necessarily imply

that is a normal subgroup of . The reader is invited to display a counterexample of this.

Theorem 8: Let be a group and be subgroups. Then

i) If is normal, then is a subgroup of .

ii) If both and are normal, then is a normal subgroup of .

iii) If and are normal, then is a normal subgroup of .

Proof: i) Let be normal. First, since for each , there exists such that , so

. To show is a subgroup, let . Then

for some since is normal, and so is a

subgroup.
ii) Let and . Then since both and are normal, there exists such

that . It follows that and so is

normal.

iii) Let and . Then since H is normal, and similarly . Thus

and it follows that is normal. ∎

Examples of Normal Subgroups

In the following, let be any group. Then has associated with it the following normal subgroups.

i) The center of , denoted , is the subgroup of elements which commute with all others.

. That is a normal subgroup is easy to verify and is left

to the reader.

ii) The commutator subgroup of , denoted or , is the subgroup generated by the subset

where for all . For , we introduce the

shorthand . Then we have , such that for any product of commutators

where all elements are in , we have

, and so is normal.
Remark 9: We can iterate the commutator subgroup construction and define and

for all . We will not use the commutator subgroup in future results in this

book, so for us it is merely a curiosity.



Normal subgroups and Quotient groups 36

Equivalence Relations on Groups

Why are normal subgroups important? In the preliminary chapter we discussed equialence relations and the

associated set of equivalence classes. If is a group and is an equivalence relation, when does admit a

group structure? Of course we have to specify the multiplication on . We will do so now.

Definition 10: Let be a group and is an equivalence relation on , we define multiplication on the

equivalence classes in such that for all ,

This is indeed the only natural way to do it. Take the two equivalence classes, choose representatives, compute their

product and take its equivalence class. The alert reader will have only one thing on his/her mind: is this well defined?

For a general equivalence relation, the answer is no. The reader is invited to come up with an example. What is more

interesting is when is it well defined? By the definition above, we obviously need the projection map

defined by to be a homomorphism. We can in fact condense the requirements down to

two, both having to do with cancellation laws.

Theorem 11: Let be a group and an equivalence relation on . Then is a group under the natural

multiplication if and only if for all 

.

Proof: Assume is a group. Since , the property follows from the cancellation laws in

. Assume now that the property holds. Then its multiplication rule is well defined, and must verify that is

a group. Let , then associativity is inherited from :

.

The identity in is the equivalence class of , :

.

Finally, the inverse of is :

.

So really defines a group structure, proving the theorem. ∎

We will call an equivalence relation  compatible with if is a group. Then, is called the

quotient group of by . Also, as an immediate consequence, this makes into a

homomorphism, but not just any homomorphism! It satisfies a universal property!

Commutative diagram showing the universal

property satisfied by the projection

homomorphism.

Theorem 12: Let be en equivalence relation compatible with ,

and a group homomorphism such that

. Then there exists a unique

homomorphism such that .

Proof: In the preliminary chapter on set theory, we showed the

corresponding statement for sets, so we know that exists as a

function between sets. We have to show that it is a homomorphism.

This follows immediately: since by commutativity,

we have

. As

stated already, shows uniqueness, proving the

theorem. ∎
Lemma 13: Let be an equivalence relation on a group such that

. Then is a subgroup of and .

http://en.wikibooks.org/w/index.php?title=File%3ADiagramquotient.png
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Proof: First off, is nonempty since . Let . Then by multiplying on the

left by . Then since we have by the same argument. Applying transitivity gives 

. Finally, multiplying on the left by gives , giving and so is a subgroup.

Assume for . Then implying . Thus . Now assume

. Then and so and finally .

Assume . Then since is a subgroup, we have and so . Finally, assume

. Then . Since in paticular , this implies , completing the proof. ∎

The mirror version using right cosets and the equivalence relation and

is completely analogous. Stating the theorem and writing out the proof is

left to the reader as an exercise.

We have showed how an equialence relation defines a subgroup of . In fact the equivalence classes are all cosets

of this subgroup. We will now go the other way, and show how a subgroup defines an equivalence relation on .

Lemma 14: Let be a subgroup of a group . Then,

i) is an equivalence relation such that 

for all .

ii) is an equivalence relation such that 

for all .

Proof: We will prove i). The proof for ii) is similar and is left as an exercise for the reader.

The fact that is an equivalence relation and that was proven in the section on

subgroups. Assume . Then for all , such that

. Now assume , Then such that ,

completing the proof. ∎
Theorem 15: For every equivalence relation on G such that , there exists a unique

subgroup of such that are precisely the left cosets of .

Proof: This follows from Lemma 13 and Lemma 14.

Again, the mirror statement is completely analogous. Stating the theorem is left to the reader as an exercise.

Quotients with respect to Normal Subgroups

Lemma 16: An equivalence relation on is compatible with if and only if is a normal subgroup

of .

Proof: Assume is compatible, and . Then , and compatibility gives us

, and so . Since is arbitrary, we obtain for all and

so is normal. Assume now that is normal. Then ,

and for all . Using this, we obtain

and similarily for the right hand case, so 

is compatible with . ∎
Definition 17: When an equivalence relation is given by specifying a normal subgroup , the quotient group with

respect to this equivalence relation is denoted . We then refer to as the quotient of with respect to

, or modulo . Note that this complies with previous definitions of this notation.

Multiplication in is given as before as , with identity and 

for all .

Definition 18: Let be a normal subgroup of . Then we define the projection homomorphism

by for all .
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Theorem 19: A subgroup is normal if and only if it is the kernel of some homomorphism.

Proof: We have already covered the left implication. For the right implication, assume is normal. Then is

a group and we have the projection homomorphism as defined above. Since for all we

have , and so is the kernel of a homomorphism. ∎
Theorem 20: Let be groups, a homomorphism and a normal subgroup of such that

. Then there exists a unique homomorphism such that .

Proof: This follows from Theorem 12 by letting . ∎

The Isomorphism Theorems

Commutative diagram showing the first

isomorphism theorem. is an isomorphism.

Theorem 21 (First Isomorphism Theorem): Let be groups

and a homomorphism. Then .

Proof: From Theorem 20 we have that there exists a unique

homomorphism such that . We

have to show that is an isomorphism when we corestrict to .

This is immediate, since by

Lemma 13, so that is injective, and for any there is a

such that so that it is surjective

and therefore an isomorphism. ∎
Lemma 22: Let be a group, a subgroup and a normal subgroup of . Then is a normal

subgroup of .

Proof: Let and . Then since and is a subgroup and

since , and is normal in . Thus and is

normal in . ∎
Theorem 23 (Second Isomorphism Theorem): Let be a group, a subgroup and a normal subgroup of

. Then .

Proof: Define by for all . is surjective since any element in 

can be written as with and , so . We also have that

and so by the first

isomorphism theorem. ∎
Lemma 24: Let be a group, and let be normal subgroups of such that . Then 

is a normal subgroup of .

Proof: Let and . Then for some since is normal. Thus

, showing that is normal in . ∎
Theorem 25 (Third Isomorphism Theorem) Let be a group, and let be normal subgroups of such

that . Then .

Proof: Let be given by . This is well defined and surjective since

, and is a homomorphism. Its kernel is given by

, so by the first isomorphism

theorem, . ∎

http://en.wikibooks.org/w/index.php?title=File%3AFirstIsoThm.png


Normal subgroups and Quotient groups 39

Theorem 26 (The Correspondence Theorem): Let be a group and be a normal subgroup. Now let

and . Then is an order-preserving

bijection from to .

Proof: We must show injectivity and surjectivity. For injectivity, note that if , then

, so if such that , then

, proving injectivity. For surjectivity, let . Then

, so that , and , proving surjectivity. Lastly, since

implies that , the bijection is order-preserving. ∎
Note 27: The correspondence Theorem is sometimes called The Forth Isomorphism Theorem.

Theorem 28: Let from Theorem 26. Then is normal if and only if is normal in , and

then .

Proof: Since is surjective, normal implies normal. Assume that is normal. Then

and so is normal since it is the preimage of a normal subgroup. To show the isomorphism,

let be given by a composition of projections: . Then

, so by the first

isomorphism teorem, . ∎

Corollary 29: Let be a group and a normal subgroup. Then for any there exists a unique

subgroup such that and . Also, is normal in if and only if is

normal in .

Proof: From Theorem 26 we have that the projection is a bijection, and since 

for all , we have . The second part follows from Theorem 28. ∎

Simple Groups

Definition 30: A group is called simple is it has no non-trivial proper normal subgroups.

Example 31: Every cyclic group , where is prime, is simple.

Definition 32: Let be a group and a normal subgroup. is called a maximal normal subgroup if for any

normal subgroup of , we have .

Theorem 33: Let be a group and a normal subgroup. Then is a maximal normal subgroup if and only if

the quotient is simple.

Proof: By Theorem 26 and Theorem 28, has a nontrivial normal subgroup if and only if there exists a proper

normal subgroup of such that . That is, is not maximal if ans only if is not

simple. The theorem follows. ∎
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Problems

Problem 1: Recall the unitary and special unitary groups from the section about subgroups. Define the projective

unitary group of order as the group . Similarily, define the projective special

unitary group of order as .

i) Show that 

ii) Using the second isomorphism theorem, show that .

Products and Free Groups

During the preliminary sections we introduced two important constructions on sets: the direct product and the

disjoint union. In this section we will construct the analogous constructions for groups.

Product Groups

Definition 1: Let and be groups. Then we can define a group structure on the direct product of the

sets and as follows. Let . Then we define the multiplication componentwise:

. This structure is called the direct product of and .

Remark 2: The product group is a group, with identity and inverses . The

order of is .

Theorem 3: Let and be groups. Then we have homomorphisms and

such that and for all . These are called

the projections on the first and second factor, respectively.

Proof: The projections are obviously homomorphisms since they are the identity on one factor and the trivial

homomorphism on the other. ∎

Corollary 4: Let and be groups. Then and .

Proof: This follows immediately from plying the first isomorphism theorem to Theorem 3 and using that

and . ∎

Theorem 5: Let and be groups. Then and are normal subgroups of .

Proof: We prove the theorem for . The case for is similar. Let and .

Then . ∎

Commutative diagram showing the universal

property satisfied by the direct product.

We stated that this is an analogous construction to the direct product of

sets. By that we mean that it satiesfies the same universal property as

the direct product. Indeed, to be called a "product", a construction

should have to satisfy this universal property.

Theorem 6: Let and be groups. Then if is a group with

homomorphisms and , then there

exists a unique homomorphism such that

and .

Proof: By the construction of the direct product, is a homomorphism if and only if 

and are homomorphisms. Thus defined by is one

homomorphism satisfying the theorem, proving existence. By the commutativity condition this is the only such

homomorphism, proving uniqueness. ∎

http://en.wikibooks.org/w/index.php?title=File%3AProdGrp.png
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Products of Cyclic Groups

Theorem 7: The order of an element is .

Proof: The lowest positive number such that is the smallest number such that

and for integers . It follows that divides both and and is the smallest such

number. This is the definition of the least common divider. ∎
Theorem 8: is isomorphic to if and only if and are relatively prime.

Proof: We begin with the left implication. Assume . Then is cyclic, and so there

must exist an element with order . By Theorem 7 we there must then exist a generator in

such that . Since each factor of the generator must generate its group, this

implies , and so , meaning that and are relatively prime. Now assume

that and are relatively prime and that we have generators of and of . Then since

, we have and so . this implies that generates

, which must then be isomorphic to a cyclic group of order , im particular . ∎
Theorem 9 (Characterization of finite abelian groups): Let be an abelian group. Then there exists prime

numbers and positive integers , unique up to order, such that

Proof: A proof of this theorem is currenly beyond our reach. However, we will address it during the chapter on

modules. ∎

Subdirect Products and Fibered Products

Definition 10: A subdirect product of two groups and is a proper subgroup of such that the

projection homomorphisms are surjective. That is, and .

Example 11: Let be a group. Then the diagonal is a subdirect product of

with itself.

Definition 12: Let , and be groups, and let the homomorphisms and be

epimorphisms. The fiber product of and  over , denoted , is the subgroup of given

by .

In this subsection, we will prove the equivalence between subdirect products and fiber products. Specifically, every

subdirect product is a fiber product and vice versa. For this we need Goursat's lemma.

Theorem 13 (Goursat's lemma): Let and be groups, and a subdirect product of and

. Now let and . Then can be identified with a normal subgroup of , and

with a normal subgroup of , and the image of when projecting on is the graph of an

isomorphism .

Proof:
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Further Reading

More on the automorphism groups of finite abelian groups. Some results require theory of group actions and ring

theory, which is developed in a later section.

http:/ / arxiv. org/ pdf/ math/ 0605185v1. pdf

Free Groups

In order to properly define the free group, and thereafter the free product, we need some preliminary definitions.

Definition 10: Let be a set. Then a word of elements in is a finite sequence of elements of ,

where the positive integer is the word length.

Definition 11: Let and be two words of elements in . Define the

concatenation of the two words as the word .

Now, we want to make a group consisting of the words of a given set , and we want this group to be the most

general group of this kind. However, if we are to use the concatenation operation, which is the only obvious

operation on two words, we are immediately faced with a problem. Namely, deciding when two words are equal.

According to the above, the length of a product is the sum of the lengths of the factors. In other words, the length

cannot decrease. Thus, a word of length multiplied with its inverse has length at least , while the identity word,

which is the empty word, has length . The solution is an algorithm to reduce words into irreducible ones. These

terms are defined below.

Definition 12: Let be any set. Define the set as the set of words of powers of elements of . That is, if

and , then .

Definition 13: Let . Then we define a reduction of as follows. Scan the word from

the left until the first pair of indices such that is encountered, if such a pair exists. Then

replace with . Thus, the resulting word is . If no such

pair exists, then and the word is called irreducible.

It should be obvious if with length , then will be irreducible. The details of the proof is left to

the reader.

Definition 14: Define the free group on a set as follows. For each word of length , let

the reduced word . Thus is the subset of irreducible words. As for the binary

operation on , if have lengths and respectively, define as the completely

reduced concatenation .
Theorem 15:  is a group.

Proof:

Example 16: We will concider free groups on 1 and 2 letters. Let and . Then

with .

such that for any and for

any . Example product: .

http://arxiv.org/pdf/math/0605185v1.pdf
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Group Presentations

In this subsection we will breifly introduce another method used for defining groups. This is by prescribing a group

presentation.

Definition 17: Let be a group and a subgroup. Then define the normal closure of in as the

intersection of all normal subgroups in containing H. That is, if is the normal closure of , then

.

Definition 18: Let be a set and . Let be the normal closure of in and define the

group . The elements of are called generators and the elements of are called

relators. If is a group such that , then is said to be a presentation of .

The Free Product

Using the previously defined notion of a group presentation, we can now define another type of group product.

Defintion : Let and be groups with presentations and . Define the free product of 

and , denoted , as the group with the presentation .

Remark : Depending on the context, spesifically if we only deal with abelian groups, we may require the free

product of abelian groups to be abelian. In that case, the free product equals the direct product. This is another

example of abelian groups being better behaved than nonabelian groups.

Lemma : The free product includes the component groups as subgroups.

Remark : The free product is not a product in the sense discussed previously. It does not satifsy the universal

property other products do. Instead, it satisfies the "opposide", or dual property, obtained by reversing the direction

of all the arrows in the commutative diagram. We usually call a construction satisfying this universal property a

coproduct.

Problems

Problem 1: Let and be groups of relatively prime orders. Show that any subgroup of is the

product of a subgroup of with a subgroup of .

Answer

Coming soon. ∎
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Group actions on sets

In this section, we will encounter most important application of group theory. This is the notion of an action on some

object. Over-generalizing slightly, we only care about groups because they act on things.

Group Actions

There are two equivalent ways to define a group action. We will present both, then prove their equivalence.

Definition 1a: Let be a group and a set. Then a group action (or just action) of on is a binary

operation such that for any and any ,

i) 

ii) 

Definition 1b: Let be a group and a set. Then a group action (or just action) of on is a

homomorphism .

Theorem 2: Definitions 1a and 1b are equivalent.

Proof: We must show that for each binary operationas in Definition 1a there is a unique homomorphism as in

Definition 1b and vice versa. Given the binary operation, define the permutation given by

. Then for

all and . Thus is a homomorphism . Now, given a homomorphism , define a

binary operation by . Then and

. Thus is a binary operation satisfying the

axioms in Definition 1a, and we are done. ∎
Example 3: Let be a group. Then acts on itself by left multiplication, that is, for any

.

Example 4: Let be a group with a any subgroup. Then acts on the left cosets by left

multiplication, that is, for any .

Definition 5: A set which is acted on by a group is called a -set.

Definition 6: Let be a group acting on a set . Then the action of is said to be

i) faithfull if is the only element in such that for all , and

ii) free if is the only element in such that for any element in .

Remark 7: A group acting on itself by left multiplication is a free action. Thus is it also faithfull.

Definition 8: Let be a -set. The action is called transitive if for any , there exists a sich

that .

Remark 9: We see that the actions in Example 3 and Example 4 are transitive.

Definition 10: Let be a -set and . Define the orbit of to be the set 

.

Definition 11: Let be a -set and . Define the equivalence relation

. (Check that this is an equivalence relation!) Then is

called the orbit space of with respect to , and we write .

Remark 12: Since the action is obviously transitive on each orbit, to "understand" group actions we only have to

understand transitive actions.

Definition 13: Let be a -set. The stabilizer of is the set .

Lemma 14: Let be a -set and let . Then is a subgroup of .
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Proof: Since , . Let . Then , so

. Finally, , so . Thus is a

subgroup of . ∎
Lemma 15: Let be a -set, , and . Then .

Proof: Let . Then ,

showing . To show , note that and follow the same arugment,

obtaining . ∎
A -set is an algebraic structure, and as in any situation where we have several instances of a structure, we cannot

resist the temptation to introduce maps between them.

Definition 16: Let and be -sets with binary operations and respectively. Then a function

is called an equivariant function if for all . is called an

isomorphism if is bijective.

Lemma 17: Compositions of equivariant functions are equivariant.

Proof: Trivial. ∎

Theorem 18: Every transitive action of on a set is isomorphic to left multiplication on , where

for any .

Proof: By Lemma 15, the stabilizers of any two elements in an orbit are conjugate and so isomorphic. Thus the

chosen element is arbitrary. Let by for all . Then if ,

we have , so and and so is well-defined. Now let

be defined by . If , then , so

and showing that is well-defined. Since and are obviously inverses of each

other, this shows that is a bijection. To prove equivariance, observe that

. ∎
Corollary 19 (orbit stabilizer theorem): Let be a -set and the orbit of . Then

.

Proof: Indeed, from Theorem 18 and Lagrange's theorem we obtain . ∎

Definition 20: The orbit of where is a -set is said to be trivial if . Let denote

the set of elements of whose orbits are trivial. Equivalently, .

Lemma 21: Let be a finite set and be a group acting on . Next, let be a set containing exactly one

element from each nontrivial orbit of the action. Then, .

Proof: Since the orbits partition , the cardinality of is the sum of cardinalities of the orbits. All the trivial orbits

are contained in , so . By Corollary 19, , proving the lemma.

∎

Definition 22: A -group is a group whose order is a finite power of a prime integer .

Corollary 23: Let be a -group acting on a set . Then .

Proof: Since is a -group, divides for each with defined as in Lemma 21. Thus

. ∎
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Group Representations

Linear group actions on vector spaces are especially interesting. These have a special name and comprise a subfield

of group theory on their own, called group representation theory. We will only touch slightly upon it here.

Definition 24: Let be a group and be a vector space over a field . Then a representation of on is a

map such that

i) given by , , is linear in over .

ii) 

iii) for all , .

V is called the representation space and the dimension of , if it is finite, is called the dimension or degree of the

representation.

Remark 25: Equivalently, a representation of on is a homomorphism . A

representation can be given by listing and , .

As a representation is a special kind of group action, all the concepts we have introducd for actions apply for

representations.

Definition 26: A representation of a group on a vector space is called faithful or effective if

is injective.
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Rings

Rings

This section builds upon and expands the theory covered in the previous chapter on groups. The reader is strongly

advised to master the material presented in the sections up to and including Products and Free Groups before

continuing.

Motivation

The standard motivation for the study of rings is as a generalization of the set of integers with addition and

multiplication, in order to study integer-like structures in a more general and less restrictive setting. However, we

will also present the following motivation for the study of rings, based on the theory of Abelian groups.

Let and be Abelian groups. Then the set (Please don't pay much attention to the subscript

for now.) of group homomorphisms naturally forms an abelian group in the following way. If

, define for all . It should be obvious where

each addition is taking place. In particular, we can consider the set of

endomorphisms of . That is, the set of homomorphisms from to itself. This set is obviously a group from the

above discussion, but it is also closed under composition. By endowing the set with the operations of

addition, , and composition, , we note that it has the following properties:
i) It is an Abelian group under addition.

ii) It is a monoid under multiplication.

iii) Addition distributes over composition.

Indeed, for the third property, note that if and , then

and . The following

material is a generalization of this situation.

Introduction to Rings

Definition 1: A ring is a set with two binary operations and that satisfies the following

properties:

For all 

i) is an abelian group.

ii) is a monoid.

The definition of ring homomorphism does not include the existence of 1.

iii) is distributive over :

1) 

2) 

We will denote the additive identity in a ring by or if the ring is understood. Similarily, we denote the

multiplicative identity by or when the ring is understood. We'll often use juxtaposition in place of , i.e., 

for .
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Remark 2: Some authors do not require their rings to have a multiplicative identity element. We will call a ring

without an idenitity a rng. Pseudo-rings is another term used for rings without unity. Authors who do not require a

multiplicative identity usually call a ring a ring with unity. Unless otherwise stated, we will assume that in

our rings. A major part of noncommutaive ring theory was developed without assuming every ring has an identity

element.

Example 3: The reader is already familiar with several examples of rings. For instance and with the

usual addition and multiplication operations. We have a familiy of finite rings given by the sets for integer

with addition and multiplication defined modulo . Finally we have an example of a rng given by the sets

for integer with the usual addition and multiplication. The reader is invited to confirm the ring axioms

for these examples.

Let us now prove some very basic properties about rings. This is analogous to what we did for groups when we first

introduced them.

Theorem 4: Let be a ring, and let . Then the following are true:

1. If , then .

2. The equation has a unique solution.

3.

4.

5.

6.

Proof: (1), (2), and (3) all strictly concern addition, and are all previous results from being a group. The

other three parts all concern both addition and multiplication (since 0 and - are additive concepts), so as a proof

strategy we expect to use the distributive law in some way to link the two operations. For (4), observe that

. But then by (1), 0a=0. For (5), Note that

. For (6) note that

. ∎
Remark 5: Take another look at the examples in Example 3. Notice that for all those rings, multiplication is a

commutative opration. However, the axioms say nothing about this. Thus we should expect to find counter-examples

to this.

Definition 6: A ring is called commutative if multiplication is commutative.

Example 7: An example of a non-commutative ring is the set of square matrices with real

coefficients under standard addition and multiplication of matrices, where is an integer. The reader can

easily check this for and conclude that it holds for all other (why?).

Theorem 8: A ring has a unique multiplicative identity.

Proof: During our brief discussion of monoids earlier, we showed that in any monoid the identity is unique. Since a

ring sans addition is a monoid, this applies here. ∎

Example 9: The singleton set with addition and multiplication defined by and is a

ring, called the trivial ring or the zero ring. Note that in the trivial ring, . The reader is invited to show that

in a ring if and only if it is the trivial ring.

If the reader has tried to construct some of the rings , he/she may have realised that certain non-zero elements

have product zero. We formalize this concept as follows.

Definition 10: Let be a ring and . is called a left(resp.right)-zero-divisor if there exists a

such that  .

Lemma 11: Let be a ring with . Define the function given by for all

. Then is injective if and only if is not a left-zero-divisor.
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Proof: Assume is not a left-zero-divisor, and assume we have for some 

. This implies , giving since is not a left-zero-divisor, so is injective.

Conversely, assume is a left-zero-divisor. Then there exists a such that and

, so is not injective. ∎
Remark 12: Thus, multiplication by is left-cancellative if and only if is not a zero-divisor. The reader is

invited to state and prove the equivalent lemma for right-zero-divisors.

Example 13: are all examples of commutative rings without zero divisors. These rings motivate the

next definition.

Definition 14: Let be a commutative ring without zero divisors. Then is called an integral domain.

Just like Definition 14, the majority of special types of rings will be motivated by properties of .

Example 15:

1. The set of functions on with pointwise addition and multiplication is a ring.

2. More generally, if is a ring, the set of functions from to itself is also a ring.

3. The set with function composition for multiplication is not a ring since the statement

is not true in general.

4. The set of integrable functions on the real numbers, , is a rng under pointwise addition and multiplication

given by convolution: . This rng is important to the study of linear systems

and differential equations. If the reader has enough calculus under his/her belt, he/she reader is invited to show

that it does not have an identity, and that it is commutative.

5. The set of Gaussian integers with standard addition and multiplication is a ring.

Definition 16: Let be a ring. An element is a unit and is invertible if there is an element such

that . The set of all units is denoted by .

Exercise 17: Prove that is a group under multiplication.

Exercise 18:: Show that a zero-divisor is not a unit.

Theorem 19: (Cancellation Law for Integral Domains): Let be an integral domain, and let be

nonzero. Then if and only if .

Proof: Evidently if . To see the other direction, we rearrange the equality as . But

then . Since is nonzero, and contains no zero divisors, it must be the case that ,

which is to say that .

Definition 20: A ring is a division ring or skew field if all non-zero elements are units, i.e. if it forms a group

under multiplication with its nonzero elements.

Definition 21: A field is a commutative division ring. Alternatively, a field is a ring where is an

abelian group under multiplication. As another alternative, a field is an integral domain where all non-zero elements

are invertible.

As stated before, integral domains are easy to work with because they are so close to being fields. In fact, the next

theorem shows just how close the two are:

Theorem 22: Let be a finite integral domain. Then is a field.

Proof: Let be nonzero and let . Clearly is a subset of . From the cancellation

law, we can see that (since if two elements and are equal, then ). But then . So

then there must be some such that . So is a unit.

Of course proving that a set with two operations satisfy all of the ring axioms can be tedious. So, just as we did for

groups, we note that if we're considering a subset of something that's already a ring, then our job is easier.



Rings 50

Definition 23: A subring of a ring is a subset of that is also a ring (under the same two operations as for

) and . We denote " is a subring of " by . Note many mathematicians do not require

rings or subrings to have an identity.

Theorem 24: Let be a subset of a ring . Then if and only if for all ,

1. ,

2. ,

3. .

Example 25:

1. .

2. The trivial ring is a subring of every ring.

3. The set of Gaussian integers is a subring of the complex numbers .

Ring Homomorphisms

Just as with groups, we can study homomorphisms to understand the similarities between different rings.

Homomorphisms

Definition

Let R and S be two rings. Then a function is called a ring homomorphism or simply

homomorphism if for every , the following properties hold:

In other words, f is a ring homomorphism if it preserves additive and multiplicative structure.

Furthermore, if R and S are rings with unity and , then f is called a unital ring homomorphism.

Examples

1. Let be the function mapping . Then one can easily check that is a

homomorphism, but not a unital ring homomorphism.

2. If we define , then we can see that is a unital homomorphism.

3. The zero homomorphism is the homomorphism which maps ever element to the zero element of its codomain.

Theorem: Let and be integral domains, and let be a nonzero homomorphism. Then is

unital.

Proof: . But then by cancellation, .

In fact, we could have weakened our requirement for R a small amount (How?).

Theorem: Let be rings and a homomorphism. Let be a subring of and a subring of

. Then is a subring of and is a subring of . That is, the kernel and image of a

homomorphism are subrings.

Proof: Proof omitted.

Theorem: Let be rings and be a homomorphism. Then is injective if and only if

.
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Proof: Consider as a group homomorphism of the additive group of .

Theorem: Let be fields, and be a nonzero homomorphism. Then is injective, and

.

Proof: We know since fields are integral domains. Let be nonzero. Then

. So . So (recall you were asked to

prove units are nonzero as an exercise). So .

Isomorphisms

Definition

Let be rings. An isomorphism between and is an invertible homomorphism. If an isomorphism exists,

and are said to be isomorphic, denoted . Just as with groups, an isomorphism tells us that two

objects are algebraically the same.

Examples

1. The function defined above is an isomorphism between and the set of integer scalar matrices of size 2,

.

2. Similarly, the function mapping where is an isomorphism.

This is called the matrix representation of a complex number.

3. The Fourier transform defined by is an isomorphism mapping

integrable functions with pointwise multiplication to integrable functions with convolution multiplication.

Excercise: An isomorphism from a ring to itself is called an automorphism. Prove that the following functions are

automorphisms:

1.

2. Define the set , and let
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Ideals

Motivation

In ../Rings/ we saw that the set of even integers was a subring of the integers.

We can also see very easily that the integers are a subring of the rational numbers under the usual

operations of addition and multiplication.

The even integers, when taken as a subring of the integers have a property that the integers when taken as a subring

of the rationals do not. The even integers taken as a subring of the rationals also lack this property.

The property is that the even integers, taken as a subring of the integers, absorb multiplication. Let's call the even

integers for ease of notation.

Consider the following: For all , we can see by the definition of that for some .

For all see that .

In English, regardless of which even integer is chosen, multiplying it by any integer will give us a different even

integer.

Definition of an Ideal

Definition: Given a ring , a subset is said to be a left ideal of if it absorbs multiplication from the

left; that is, if .

Definition: Given a ring , a subset is said to be a right ideal of if it absorbs multiplication from the

right; that is, if .

Definition: We define an ideal to be something that is both a left ideal and a right ideal. We also require that

is a subgroup of .

We write as shorthand for this.

To verify that a subset of a ring is an ideal, it is only necessary to check that it is closed under subtraction and that it

absorbs multiplication; this is because of the subgroup criterion from Abstract_Algebra/Group_Theory/Subgroup.

Definition: An ideal is proper if .

Definition: An ideal is trivial if I={0}.

Lemma: An ideal is proper if and only if .

Proof: If then so .

The converse is obvious.

Theorem: In a division ring, the only proper ideal is trivial.

Proof: Suppose we have an ideal in a division with a nonzero element a. Take any element b in our division ring.

Then a
-1

b is in the division ring as well, and aa
-1

b = b is in the ideal. Therefore, it is not a proper ideal.

Definition: Let S be a nonempty subset of a ring R. Then the ideal generated S is defined to be the smallest ideal in

R containing S, which would be the intersection of all such ideals. We can characterize this ideal by the collection of

all finite sums

And one can easily verify that this is an ideal, and that all ideals containing S must contain this ideal. If it is

commutative, then one can simply characterize it as

http://en.wikibooks.org/w/index.php?title=../Rings/
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Subgroup
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The ideal generated by a single element a is called a principal ideal. If the ring is commutative, it consists of all

elements of the ring of the form ra where r is any element in the ring.

Example: Let be the ring of integers. The principal ideal is the subset of consisting of positive and

negative multiples of . For example is the subset of even integers. Then one can view the factor ring 

simply as the set under addition and multiplication modulo .

Operations on Ideals

Given a collection of ideals we can generate other ideals. For instance it is easy to check that the intersection of any

family of ideals is again an ideal. We write this simply as .

Given any set we can construct the smallest ideal of containing which we denote by . It is

determined by , though often we can be more explicit than this.

If is a collection of ideals we can determine the sum, written , as the smallest ideal containing all the

ideals . One can check explicitly that its elements are finite sums of the form .

Finally if are two ideals in one can determine the ideal-theoretic product as the smallest ideal containing

the set-theoretic product . Note that the ideal-theoretic product is in general strictly larger

than the set-theoretic product, and that it simply consists of finite sums of the form where 

Example: Let and the principal ideals in just given. Then one can check explicitly that

, where r is the lcm of m and n. Moreover , and where

s is the hcf of m and n. Observe that if and only if s = mn if and only if m and n are

co-prime if and only if .

Homomorphisms and Ideals

Rings, like groups, have factor objects that are kernels of homomorphisms. Let be a ring

homomorphism. Let us determine the structure of the kernel of f which is defined to be all elements which map to

the identity.

If a and b are in the kernel of f, i.e. , and r is any element of R, then

,

,

.

Therefore is an ideal of R.

Also note that the homomorphism will be a monomorphism i. e. it is injective or one-to-one when the kernel consists

only of the identity element.

We also have the following

Theorem: If the only proper ideal of R is the trivial ideal {0}, then if f is a homomorphism from R to S, and it does

not map all elements of R to the identity in S, then it is injective.

Proof: The kernel of the homomorphism must be an ideal, and since the only ideals are R and the trivial ideal, one of

these two must be the kernel. However, since not all elements of R map to the identity of S, R is not the kernel, so

the trivial ideal must be.

Since this condition is satisfied for all division rings, it is true for all division rings.
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The construction of factor rings in the next section will prove that there exists a homomorphism with I as its kernel

for any ideal I.

Factor Rings

Definition: Given a ring and an ideal , the ring of cosets of , r+I where r is within R, is written

, where each coset is defined to be the set {r+i|i is an element of I}, and by Lagrange's theorem, it partitions R.

This set of cosets, called the factor ring (or quotient ring) of modulo is a ring with addition defined the same

way as one would define it for groups (since the ring is a group under addition), and with multiplication defined as

follows:

• .

To show that this is independent of the choice of a and b (or, the operations are well-defined), suppose that a' and b'

are elements of the same respective coset. Then a'=a+j and b'=b+k for some element j,k within I. Then

a'b'=ab+ak+jb+jk and since ak, jb, and jk are elements of I, a'b' and ab must belong to the same coset, so ab+I=a'b'+I.

Obviously the cosets form a group under addition because of what was proved earlier about factor groups, and

furthermore the factor ring forms an abelian group under addition because the ring forms an abelian group under

addition. Since the product rs+I is analogous to the multiplication in the ring, it obviously has all the properties of a

ring. Furthermore, if the ring is commutative, then the factor ring will also be commutative.

Observe that there is a canonical ring homomorphism determined by , called the

projection map. We record some properties of this homomorphism in the next section of the isomorphism theorems.

Ring Isomorphism Theorems

We have already proved the isomorphism theorems for groups. Now we can use analogous arguments to prove the

isomorphism theorems for rings, substitution the notion of "normal subgroups" with ideals.

Factor Theorem

Let I be an ideal of a ring R, Let be the usual homomorphism from R to R/I. Now let f be a

homomorphism from R to S. Observe that if is a ring homomorphism, then the composition

is a ring homomorphism such that (because

). This characterizes all such morphisms in the following

sense
Factor Theorem: Let be a ring homomorphism such that . Then there is a unique

homomorphism such that . Furthermore, is an epimorphism if and only if is an

epimorphism, is a monomorphism if and only if its kernel is I.

Proof We prove it the same way we did for groups. Define to be . To see that this is well-defined,

let a+I=b+I, and so that a-b is an element of I, so that so that . Now is a

homomorphism, implying that is also. The proofs of the additional statements can be carried over from the proofs

of the additional statements of the factor theorem from groups.
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First Isomorphism Theorem

Let R be a ring, and let f be a homomorphism from R to S with kernel K. Then the image of f is isomorphic to R/K.

Proof

Using the factor theorem, we can find a homomorphism from R/K to S, and since the kernel is the same as the ideal

used in forming the quotient group, and since the f is an epimorphism over its image, this homomorphism is an

isomorphism.

Second Isomorphism Theorem

Let R be a ring, let I be an ideal, and let S be a subring.

1.1. S+I, the set of all s+i with s within S and i within I, is a subring of R.

2.2. I is an ideal of S+I.

3.3. The intersection of S and I is an ideal of S.

4. (S+I)/I is isomorphic to .

Proof

1.1. It can be verified that it contains 1, and is closed under multiplication.

2.2. Of course, since I is an ideal of R, then it must be an ideal under any subring.

3.3. From a similar argument for groups, it can only contain elements of I, but restricted to S, so it must be an ideal of

S.

4. Let be a function restricted to the domain S, and define . It is obvious that its

kernel is and that its image is (S+I)/I.

Third Isomorphism Theorem

Let I be an ideal of a ring R, and let J be an ideal of the same ring R that contains I. J/I is an ideal of R/I, and R/J is

isomorphic to (R/I)/(J/I).

Proof Define the function to be which is well-defined because since I is

an ideal that is within J. This is also obviously a homomorphism. Its kernel is all elements that map onto J, and is

thus all a+I such that a is within J, or J/I. Moreover, its image is R/J, and so we can use the first isomorphism

theorem to prove the result.

Correspondence Theorem

Let I be an ideal of a ring R. Define the function to map the set of rings and ideals containing I to the set of rings

and ideals of R/I, where = the set of all cosets x+I where x is an element of X. This function is one-to-one,

and the image of rings or ideals containing I are rings or ideals within R/I.

Proof Define the function f from rings or ideals containing I to the rings or ideals of R/I, by f(A)=A/I. We have

already proved the correspondence for addition because rings form an abelian group under addition. Thus, we need

only to check for multiplication. Suppose S is a subring of R containing I. S/I is obviously closed under addition and

subtraction. For multiplication, suppose that x and y are elements of S. Then (x+I)(y+I)=xy+I which is also an

element of S/I, proving that it is closed under multiplication. The identity 1 is within S, and we have it that 1+I is

also within S/I. Thus, S/I is a subring of R/I. Now suppose that S/I is a subring of R/I. Then it is also obvious that S

is closed under addition and subtraction and multiplication, proving that S is a subring of R. Now suppose that J is an

ideal of R containing I. Then by the third isomorphism theorem, J/I is an ideal of R/I. Now suppose that J/I is an

ideal of R/I. Let r be any element of R, and let j be any element of J. Then since J/I is an ideal of R/I, (r+I)(j+I)=rj+I

must be an element of J/I. This indicates that rj must be an element of J, proving that J is an ideal of R.
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Chinese Remainder Theorem

Definitions

Definition: Two elements are said to be congruent in an ideal if and only if they belong to the same coset in

R/I. This is true when a-b is within I. Write to mean that is congruent to modulo .

Lemma: Given an ideal , a subset of a ring , the congruence class modulo of an element 

is if and only if . To see this, simply note that means ; plugging in gives

.

Definition: Two natural numbers are relatively prime when ax+by=1 for integers x and y. We do the same for rings -

two ideals I and J are relatively prime when ai+bj=1 for ring elements a, b, and for an element i within I and an

element j within J. In other words, two ideals are relatively prime if their sum contains the identity element i. e. if I+J

is the whole ring R.

We will now prove the

Chinese Remainder Theorem

Let R be a ring, and let be n pairwise (i. e. when considering any two pairs) relatively prime ideals.

1. Let a be a number from 1 to n. There exists an element r within R that is within all ideals such that ,

and such that 

2. Let be elements of R. Then there exists an element r within R such that for all

i=1,2,3,...,n.

3. Let I be the intersection of the ideals. Another element of R, s satisfies for all i=1,2,3,...,n if and

only if .

4. R/I is isomorphic to the product ring 

Proof

1. Since and (i>1) are relatively prime, there will exist an elements and (i>1) such that

. This implies that . Now we expand this product on the left side. All terms of

the product other than belong to while itself belongs the set S of all finite sums of

products with . Thus, it can be written in the form b+a=1, where b is an element of ,

and where a is an element of S. Then and for i>1.

Prime and Maximal Ideals

There are two important classes of ideals in a ring - Prime and Maximal.

Definition: An ideal is prime if it satisfies:

for any ideals A and B such that AB is a subset of I , implies A is in I or B is in I.

Definition: An ideal is maximal if it is proper (i.e. and it satisfies:

That is, there are no proper ideals between and .

The following Lemma is important for many results, and it makes essential use of Zorn's Lemma (or equivalently the

Axiom of Choice)

Lemma: Every non-invertible element of a ring is contained in some maximal ideal

Proof: Suppose is the non-invertible element. Then the first observation is that is a proper ideal, for if 

, then in particular so contradiction the assumption. Let be the set of proper ideals 

in containing ordered by inclusion. The first observation implies that is non-empty, so to apply Zorn's
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Lemma we need only show that every increasing set of ideals contains an upper-bound. Suppose is such an

increasing set, then the least upper bound is as this is the smallest ideal containing each ideal. If one checks that the

union is an ideal, then this must be . To show it's proper, we need only show for all . But this follows precisely

because each is proper.

Therefore by Zorn's Lemma there is a maximal element of . It is clearly maximal for if were any ideal

satisfying then would be an element of , and by maximality of we would have 

whence .

Properties of rings may be naturally restated in terms of the ideal structure. For instance

Proposition: A commutative ring is an Integral Domain if and only if is a prime ideal.

Proof: This follows simply because .

This explains why an Integral Domain is also referred to as a Prime Ring. Similarly, we may give a necessary and

sufficient condition for a ring to be a field :

Proposition: A commutative ring is a Field if and only if is a maximal ideal (that is there are no proper

ideals)

Proof: We only need to show that every element is invertible. Suppose not then by Lemma ... is

contained in some (proper) maximal ideal, a contradiction.

Corollary: An ideal is maximal if and only if is a field.

Proof: By the previous Proposition we know is a field if and only if its only proper ideal is . By the

correspondence theorem (...) this happens if and only if there are no proper ideals containing .

Corollary: The kernel of a homomorphism f from R to S is a maximal ideal when S is a field. The proof of this

follows from the first isomorphism theorem because S is isomorphic to R/ker f.

It's also clear that

Lemma: An ideal is prime if and only if is an integral domain.

Proof: Write for the element of corresponding to the equivalence class . Clearly every element of

can be written in this form.

 where the second equivalence

follows directly because is prime.

This follows in exactly the same way.

Corollary: The kernel of a homomorphism f from R to S is a prime ideal when S is an integral domain. The proof of

this follows from the first isomorphism theorem because S is isomorphic to R/ker f.

Lemma: A maximal ideal is also prime.

Proof: Suppose is a maximal ideal, and . Suppose further that . Then the ideal is

an ideal containing and , so is strictly larger than . By maximality . So

.

Alternatively, we can use the above two results, and the fact that all fields are integral domains to prove this.
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Glossary

Please see the extensive Wikipedia:Glossary of ring theory.

Integral domains

Integral Domains

Motivation: The concept of divisibility is central to the study of ring theory. Integral domains are a useful tool for

studying the conditions under which concepts like divisibility and unique factorization are well-behaved. In fact,

they are very important for polynomial rings as well.

The integral domain was already defined before on the page on rings. We provide the definition again for reference.

Definition An integral domain is a commutative ring with such that for all , the statement

implies either or .

An equivalent definition is as follows:

Definition Given a ring , a zero-divisor is an element such that such that

.

Definition An integral domain is a commutative ring with and with no non-zero zero-divisors.

Remark An integral domain has a useful cancellation property: Let be an integral domain and let 

with . Then implies . For this reason an integral domain is sometimes called a cancellation

ring.

Examples:

1. The set of integers under addition and multiplication is an integral domain. However, it is not a field since the

element has no multiplicative inverse.

2. The set trivial ring {0} is not an integral domain since it does not satisfy .

3. The set of congruence classes of the integers modulo 6 is not an integral domain because in

.

Theorem: Any field is an integral domain.

Proof: Suppose that is a field and let . If for some in , then multiply by to

see that . cannot, therefore, contain any zero divisors.

Thus, is an integral domain. 

Definition If is a ring, then the set of polynomials in powers of with coefficients from is also a ring, called

the polynomial ring of and written . Each such polynomial is a finite sum of terms, each term being of the

form where and represents the -th power of . The leading term of a polynomial is defined as

that term of the polynomial which contains the highest power of in the polynomial.

Remark A polynomial equals if and only if each of its coefficients equals .

Theorem: Let be an integral domain and let be the ring of polynomials in powers of whose coefficients

are elements of . Then is an integral domain if and only if is.

Proof If commutative ring is not an integral domain, it contains two non-zero elements and such that

. Then the polynomials and are non-zero elements of and .

Thus if is not an integral domain, neither is .

Now let be an integral domain and let and be polynomials in . If the polynomials are both 

non-zero, then each one has a non-zero leading term, call them and . That these are the leading terms of 

polynomials and means that the leading term of the product of these polynomials is . Since

http://en.wikipedia.org/wiki/Glossary_of_ring_theory
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is an integral domain and , . This means, by the Remark above, that the product is not zero either. This means that 

an integral domain.

Unique Factorization Domains, Principal Ideal Domains, and Euclidean

Domains

Unique Factorization Domains, Prime Ideal Domains, and Euclidean Domains are ideas that work only on integral

domains.

Some definitions

• Two ring elements a and b are associates if a=ub for some unit u.

• A nonzero nonunit a is irreducible if it cannot be expressed as a=bc where b and c are both nonunits.

•• a divides b if b=ar for some r within R. When this happens, we write a|b.

• A nonzero nonunit is prime when a|bc implies that a|b or a|c.

Theorem: If a is prime, then a is irreducible.

Let a be prime, and let a=bc, so that either a|b or a|c. Without loss of generality, assume that a|b, so that b=ad for

some element d. Then you can factor a=bc into a=adc, implying that cd=1, or that c is a unit.

Now that we have proven that all prime elements are irreducible, is the converse true? The answer to that is no, for

we can easily obtain counterexamples to it. However, we will prove a sufficient and necessary condition for all

irreducible elements to be prime.

Unique Factorization Domains

Definition: Let R be an integral domain. If the following two conditions hold:

1. If a is nonzero, then a=up
1
p

2
...p

n 
where u is a unit, and p

i 
are irreducible.

2. Let a=uq
1
q

2
...q

m 
be another factorization of irreducibles. Then n = m and after a suitable re-ordering, each p

i 
and

q
i 
are associates.

Then we call (the integral domain) R a unique factorization domain (UFD).

The converse to the above theorem holds true in a UFD.

Theorem: In a UFD, all irreducibles are prime.

Proof

Let a|bc, where a is irreducible. Then ad=bc for some element d. Taking the factorization, a = ud
1
d

2
...d

l 
=

vb
1
b

2
...b

m
wc

1
c

2
...c

n 
= bc where u, v, and w are units. Because it is a UFD, a must be an associate of some b

i 
or c

i
,

implying that a|b or a|c.

The following theorem provides a sufficient and necessary condition for an integral domain R to be an integral

domain.

Theorem:

1. Let R be a UFD. R satisfies the following ascending chain condition on principal ideals: let be a

sequence of elements of R such that the principal ideals satisfy the condition that

. Then there exists an N such that for all n>N, all the are the same.

2.2. If an integral domain R satisfies the ascending chain condition, then every nonzero element can be factored into

irreducible elements, meaning that it satisfies the first condition for being a UFD.

3.3. If, in addition to satisfying the ascending chain condition, all irreducible elements are prime, then the integral

domain is a UFD.

Proof
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1. Consider a sequence of elements of R such that . Then obviously

for all natural numbers n, since . Then due to unique factorization, all the factors of

are associates of the factors , counting multiplicity of factors. Therefore, the number of non-unit factors

is a decreasing sequence on the whole numbers. However, has finitely many factors, so there is an N such that

for all n>N, all the factors are associates, meaning that all the are also the same.
2. Clearly any nonzero irreducible can be factored into irreducibles, which is itself. Otherwise, let 

be a product of nonunits. If this is not a product of irreducibles, then suppose that one of them is not irreducible,

say . Then obviously so the principal ideals satisfy the relations . We can factor in

the same way, to obtain as a product of nonunits. Thus, if cannot be factored into irreducibles, we

can get an increasing chain of principal ideals, meaning that it does not satisfy the

ascending chain condition.
3. Let where r and s are units and each and are irreducible, and thus

prime. Since divides a, it divides one of the factors, and after suitably re-arranging the second factorization,

can divide . However, is irreducible, so they must be associates, and thus can be factored out and

replaced by a unit. We can continue this process until there are no factors left, at which point we conclude that all

the factors are associates.

Principal Ideal Domains

Definition: a principal ideal domain (PID) is an integral domain such that every ideal can be generated by a single

element (i. e. every ideal is a principal ideal).

Theorem: All PIDs are UFDs.

Proof:

Suppose we have an ascending chain of principal ideals and let I be the union .

Obviously I is an ideal, and is a principal ideal because it is in a PID. Therefore, it is generated by a single element,

. Since , for some N. Then if , then we have , so it satisfies the

ascending chain condition of principal ideals.

Let an element be irreducible. If , then would be a unit, so (a) must be a proper ideal. If there is no

maximal proper ideal containing (a), then the ascending chain condition would not be satisfied, so we can conclude

that there is a maximal ideal proper ideal I containing (a) (Note: This does not require the Zorn's lemma or axiom of

choice, since we did not use the theorem on maximal ideals). This ideal must be a principal ideal (b), but since

, b|a, and since is irreducible, b must either be a unit or an associate of a. Since (b) is a proper ideal, b

must not be a unit, so it must be an associate of . Therefore, (a)=(b), so (a) is maximal. However, all maximal

ideals are clearly prime, so (a) is a prime ideal, which implies that is prime.

Theorem: A UFD is a PID if and only if every nontrivial prime ideal is maximal.

Proof:

Suppose R is a PID, so that consequently, it is a UFD. Let (a) be an ideal of R, which in turn must be contained in a

maximal proper ideal (b) due to the ascending chain condition (Note: again, this does not make use of Zorn's

lemma). Since , b|a. Since is irreducible, b must either be a unit or an associate of . However, since

(b) is a proper ideal, it must not be a unit, so it must be an associate of . Therefore, (a)=(b), so (a) is maximal.

Conversely,



Integral domains 61

Euclidean Domains

Definition: An integral domain R is a Euclidean domain (ED) if there is a function f from the nonzero elements of

R to the whole numbers such that for any element and any nonzero element b, that a=bq+r for some

and such that f(r)<f(b) or such that r=0.

Note: In an ED, the Euclidean algorithm to find the greatest common divisor is applicable.

Theorem: All EDs are PIDs.

Proof:

Suppose we have an ideal of R. If it contains only 0, then it is principal. Otherwise, it contains elements other than 0.

Then f(I), the image of I under f, is a nonempty set of nonnegative integers. Choose the minimum x of this set, and

consider an element b within I which mapped to this x. Let a be another element of I, and there exists 

such that a=qb+r and such that either f(r)<f(b) or r=0. Since both a and b belong to I, r must also belong to I since

r=a-qb. However, f(b) is the minimum, so it must be less than or equal to f(r). Thus, r must be 0, so a=qb, proving

that b is the generator of the principal ideal (b).

Fraction Fields

We know from experience that we arrive at the idea of fractions by merely considering the idea of the quotient of

two integers. The motivation behind this is simply to arrive at a multiplicative inverse for every non-zero element.

Thus, we can consider an integral domain R and construct its field of fractions. However, we can also try to make

this work for any commutative ring, even if it has zero divisors other than 0. There is a slight alteration required

because we cannot define when bd=0. Thus, we must place restrictions in case b and d are zero divisors in the

case of multiplication. In this case, it is called the localization of a ring.

Definitions

A multiplicative subset of a commutative ring R is a subset that does not contain 0, does contain 1, and is closed

under multiplication. Some examples of multiplicative sets are the set of nonzero elements of an integral domain, the

set of elements of a commutative ring that are not zero divisors, and R\P where P is a prime ideal of the commutative

ring R.

Let S be a multiplicative subset. We will consider the Cartesian product R×S. Define the equivalence relation on this

product: (a,b)~(c,d) whenever there exists an s such that s(ad-bc)=0.

If it is an integral domain, then (a,b) could be regarded as a/b. Now to check that this is an equivalence relation, it is

obvious that it is reflexive and symmetric. To prove that it is transitive, let (a,b)~(c,d) and let (c,d)~(e,f). Then there

are elements s and t within S such that s(ad-bc)=0 and such that t(cf-de)=0. This implies that stfad-stfbc=0 and that

sbtcf-sbtde=0. Adding the two, we get stfad-sbtde=0, or std(af-be)=0, implying that (a,b)~(e,f).

We can thus use these equivalence classes to define the fraction: is the equivalence class containing (a,b).

Now we set this to be a ring. First, we define addition to be and multiplication to be

. The additive identity is and the additive inverse is . The multiplicative identity is simply .

Now we prove below that it is indeed a ring:
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Theorem

The set of fractions with addition and multiplication as defined is a commutative ring, and if R is an integral domain,

then the fractions are also. And if additionally S is R\{0}, then the set of fractions is a field.

Proof

First, we note that

1.

2.

3. and therefore 

, from which follows that is a group.

It is abelian because of the definition of the sum in S and R is commutative.

Furthermore, is a monoid because

1.

2. and , where two (not difficult) intermediate steps are left to the reader.

And, also the distributive laws hold, because

and

, which shows that we have indeed found a ring.

The ring is commutative because of the definition of the product in S R is commutative.

Let now R be an integral domain, and let . Then, because of and since ,

. But since R was

assumed to be an integral domain, and since , the last statement is exactly equivalent to

, which is in turn equivalent to

, and this is equivalent to

, which shows that the fraction set is an integral domain if R is one.

Let's assume now that S = R \ {0}, and let , where the last equivalence is due to (*) and

, where the last equivalence is in turn due to the

fact that R is an integral domain and S does not contain zero. Then due to the fact that R is an integral

domain, and thereofore since S = R \ {0}, and . But since ,

we have and and therefore, by noting that we have assumed R to be commutative, we have that

every element of R\{0} is invertible.

From this follows that the set of fractions is indeed a field, because we have already checked all field axioms, QED.
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Polynomial Rings

Although there is a theory of non-commutative polynomial rings, it presents some difficulties and will not be treated

on this page. Thus, we will work only with commutative rings for their polynomial rings.

The degree of a polynomial is defined to be n. If R is a field, and f and g are

polynomials of R[X], then we can divide f by g to get f=gq+r. However, we can also do this for any arbitrary ring if

the leading coefficient of g is 1.
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Fields

Fields

We will first define a field.

Definition. A field is a non empty set with two binary operations and such that has commutative

unitary ring structure and satisfy the following property:

This means that every element in except for has a multiplicative inverse.

Essentially, a field is a commutative division ring.

Examples:

1. (rational, real and complex numbers) with standard and operations have field structure. These are

examples with infinite cardinality.

2. , the integers modulo where is a prime, and and are mod is a family of finite fields.

Fields and Homomorphisms

Definition (embedding)

An embedding is a ring homomorphism from a field to a field . Since the kernel of a

homomorphism is an ideal, a field's only ideals are and the field itself, and , we must have the

kernel equal to , so that is injective and is isometric to its image under . Thus, the embedding deserves its

name.

Field Extensions

Definition (Field Extension and Degree of Extension)

• Let F and G be fields. If and there is an embedding from F into G, then G is a field extension of F.

• Let G be an extension of F. Consider G as a vector space over the field F. The dimension of this vector space is

the degree of the extension, . If the degree is finite, then is a finite extension of , and is of

degree over F.
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Examples (of field extensions)

• The real numbers can be extended into the complex numbers 

• Similarly, one can add the imaginary number to the field of rational numbers to form the field of Gaussian

integers.

Theorem (Existence of Unique embedding from the integers into a field)

Let F be a field, then there exists a unique homomorphism 

Proof: Define such that , etc. This provides the relevant homomorphism.

Note: The Kernel of is an ideal of . Hence, it is generated by some integer . Suppose for some

then and, since is a field and so also an integral domain, or

. This cannot be the case since the kernel is generated by and hence must be prime or equal 0.

Definition (Characteristic of Field)

The characteristic of a field can be defined to be the generator of the kernel of the homomorphism, as described in

the note above.

Algebraic Extensions

Definition (Algebraic Elements and Algebraic Extension)

• Let be an extension of then is algebraic over if there exists a non-zero polynomial

such that 

• is an algebraic extension of if is an extension of , such that every element of is algebraic over

.

Definition (Minimal Polynomial)

If is algebraic over then the set of polynomials in which have as a root is an ideal of . This is a

principle ideal domain and so the ideal is generated by a unique monic non-zero polynomial, . We define the

to be the minimal polynomial.

Splitting Fields

Definition (Splitting Field)

Let be a field, and are roots of . Then a smallest Field Extension of which

contains is called a splitting field of over .

Finite Fields

Theorem (Order of any finite field)

Let F be a finite field, then for some prime p and .

proof: The field of integers mod is a subfield of where is the characteristic of . Hence we can view as

a vector space over . Further this must be a finite dimensional vector space because is finite. Hence any

can be expressed as a linear combination of members of with scalers in and any such linear

combination is a member of . Hence .
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Theorem (every member of F is a root of )

let be a field such that , then every member is a root of the polynomial .

proof: Consider as a the multiplicative group. Then by la grange's theorem .

So multiplying by gives , which is true for all , including .

Theorem (roots of are distinct)

Let be a polynomial in a splitting field over then the roots are distinct.

Splitting Fields and Algebraic Closues

Splitting Fields

Let F be a field and p(x) be a nonconstant polynomial in F(x). We already know that we can find a field extension of

F that contains a root of p(x). However, we would like to know whether an extension E of F containing all of the

roots of p(x) exists. In other words, can we find a field extension of F such that p(x) factors into a product of linear

polynomials? What is the "smallest" extension containing all the roots of p(x)?

Let F be a field and be a nonconstant polynomial in F[x]. An extension field E

of F is a splitting field of p(x) if there exist elements in E such that and

in E[x].

A polynomial  splits in E if it is the product of linear factors in E[x].

Example 1: Let be in . Then p(x) has irreducible factors and .

Therefore, the field is a splitting field for p(x).

Example 2: Let be in . Then p(x) has a root in the field . However, this field is

not a splitting field for p(x) since the complex cube roots of 3, are not in .

Splitting Fields Theorem Let p(x) F(x) be a nonconstant polynomial. Then there exists a splitting field E for p(x).

Proof. We will use mathematical induction on the degree of p(x). If , then p(x) is a linear polynomial

and . Assume that the theorem is true for all polynomials of degree k with and let

. We can assume that p(x) is irreducible; otherwise, by our induction hypothesis, we are done. There

exists a field K such that p(x) has a zero in K. Hence, , where . Since

, there exists a splitting field of q(x) that contains the zeros of p(x) by

our induction hypothesis. Consequently,

is a splitting field of p(x).

The question of uniqueness now arises for splitting fields. This question is answered in the affirmative. Given two

splitting fields K and L of a polynomial , there exists a field isomorhpism that

preserves F. In order to prove this result, we must first prove a lemma.

Lemma Theorem Let be an isomorphism of fields. Let K be an extension field of E and be

algebraic over E with minimal polynomial p(x). Suppose that L is an extension field of F such that is root of the

polynomial in F[x] obtained from p(x) under the image of . Then extends to a unique isomorhpism

such that and agrees with on E.

Lemma Proof. If p(x) has degree n, then we can write any element in as a linear combination of

. Therefore, the isomorphism that we are seeking must be
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,

where

is an element in . The fact that is an isomorphism could be checked by direct computation; however, it is

easier to observe that is a composition of maps that we already know to be isomorphisms.

We can extend to be an isomorphism from E[x] to F[x], which we will also denote by , by letting

.

This extension agrees with the original isomorphism , since constant polynomials get mapped to

constant polynomials. By assumption, ; hence, maps onto . Consequently,

we have an isomorphism . We have isomorphisms

and , defined by evaluation at and ,

respectively. Therefore, is the required isomorphism.
Now write and , where the degrees of f(x) and g(x) are less than

the degrees of p(x) and q(x), respectively. The field extension K is a splitting field for f(x) over E(α), and L is a

splitting field for g(x) over F(β). By our induction hypotheses there exists an isomorphism such that

agrees with on E(α). Hence, there exists an isomorphism such that agrees with on

E.
Corollary Let p(x) be a polynomial in F[x]. Then there exists a splitting field K of p(x) that is unique up to

isomorphism.

Algebraic Closures

Given a field F, the question arises as to whether or not we can find a field E such that every polynomial p(x) has a

root in E. This leads us to the following theorem.

Theorem 21.11 Let E be an extension field of F. The set of elements in E that are algebraic over F form a field.

Proof. Let be algebraic over F. Then is a finite extension of F. Since every element of

is algebraic over , and are all algebraic over F. Consequently, the set of

elements in E that are algebraic over F forms a field.

Corollary 21.12 The set of all algebraic numbers forms a field; that is, the set of all complex numbers that are

algebraic over  makes up a field.

Let E be a field extension of a field F. We define the algebraic closure of a field F in E to be the field consisting of

all elements in E that are algebraic over F. A field F is algebraically closed if every nonconstant polynomial in F[x]

has a root in F.

Theorem 21.13 A field F is algebraically closed if and only if every nonconstant polynomial in F[x] factors into

linear factors over F[x].

Proof. Let F be an algebraically closed field. If is a nonconstant polynomial, then p(x) has a zero in

F, say α. Therefore, must be a factor of p(x) and so , where deg

. Continue this process with to find a factorization

,

where deg . The process must eventually stop since the degree of p(x) is finite.

Conversely, suppose that every nonconstant polynomial p(x) in F[x] factors into linear factors. Let be such

a factor. Then . Consequently, F is algebraically closed.

Corollary 21.14 An algebraically closed field F has no proper algebraic extension E.
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Proof. Let E be an algebraic extension of F; then . For , the minimal polynomial of α is .

Therefore, and .

Theorem 21.15 Every field F has a unique algebraic closure.

It is a nontrivial fact that every field has a unique algebraic closure. The proof is not extremely difficult, but requires

some rather sophisticated set theory. We refer the reader to [3], [4], or [8] for a proof of this result.

We now state the Fundamental Theorem of Algebra, first proven by Gauss at the age of 22 in his doctoral thesis.

This theorem states that every polynomial with coefficients in the complex numbers has a root in the complex

numbers. The proof of this theorem will be given in Abstract Algebra/Galois Theory.

Theorem 21.16 (Fundamental Theorem of Algebra) The field of complex numbers is algebraically closed.

http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Galois_Theory
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Vector Spaces

Vector Spaces

Definition

Definition (Vector Space)

Let F be a field. A set V with two binary operations: + (addition) and (scalar multiplication), is called a

Vector Space if it has the following properties:

1. forms an abelian group

2. for and 

3. for and 

4.

5.

The scalar multiplication is formerly defined by , where .

Elements in F are called scalars, while elements in V are called vectors.

Some Properties of Vector Spaces

1.

2.

3.

Proofs:

1.

2. We want to show that , but

3. Suppose such that , then 
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Modules

Motivation

Let G be an abelian group under addition. We can define a sort of multiplication on G by elements of by writing

for and . We can extend this to the case where n is negative by writing

. We would, however, like to be able to define a sort of multiplication of a group

by an arbitrary ring.

Definition

Definition 1 (Module)

Let R be a ring and M an abelian group. We call M a left R-module if there is a function

, called a scalar multiplication, satisfying

1. ,

2. , and

3.

for all .

We call R the ring of scalars of M.

Note: We can also define a right R-module analogously by using a function . In

particular the third property then reads:

Note that the two notions coincide if R is a commutative ring, and in this case we can simply say that M is an

R-module.

Definition 2: Given any ring R, we can define it's opposite ring, , having the same elements and addition

operation as R, but opposite multiplication. Their multiplication rules are related by . In contrast to

group theory, there is no reason in general for a ring to be isomorphic to its opposite ring.

The obervant reader will have noticed that the scalar multiplication in a left R-module M is simply a ring

homomorphism such that for all . We leave it as an

excercise to verify that the scalar multiplication in a right R-module is a ring homomorphism

. Thus a right R-module is simply a left R
op

-module. As a consequence of this, all the

results we will formulate for left R-modules are automatically true for right R-modules as well. There are no

assumptions that the module is unital, namely that 1m = m for all m in M.
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Examples of Modules

1. Any ring R is trivially an R-module over itself. More interestingly, any left ideal I of R is also a left R-module with

the obvious scalar multiplication. In addition, if I is a two-sided ideal of R, then the quotient ring is an

R-module with the induced scalar multiplication .

2. If R is a ring, then the set of matrices with entries in R is an R-module under componentwise

addition and scalar multiplication. More generally, for any set X, the set of functionf from X to R, with or

without finite support, is an R-module in an obvious way.

3. The k-modules over a field k are simply the k-vector spaces.

4. As was shown in the introduction of this chapter, any abelian group is a -module in a natural way. ("Natural"

here has a rigorous mathematical meaning which will be explained later.

5. Let S be a subring of a ring R. Then R is an S-module in a natural way. We can extend this as follows. Let S,R be

rings and a ring homomorphism. Then R is an S-module with scalar multiplication and

for all .

6. Any matrix ring of a ring R is a R-module under componentwise scalar multiplication.

7. Any polynomial ring of a ring R is an R-module with the obvious scalar multiplication.

8. If S is a subring of a ring R, then any left R-module is also a left S-module with the restricted scalar multiplication.

We will treat this more generally later.

Submodules

Definition 3: (Submodule)

Given a left -module a submodule of is a subset satisfying

1.1. N is a subgroup of M, and

2. for all and all we have .

The second condition above states that submodules are closed under left multiplication by elements of ; it is

implicit that they inherit their multiplication from their containing module; must be the restriction

of .

Example 4: Any module M is a submodule of itself, called the improper submodule, and the zero submodule

consisting only of the additive identity of M, called the trivial submodule.

Example 5: A left ideal I is a submodule of R viewed as an S-module, where S is any (not neccesarily proper)

subring of R.

Lemma 6: Let M be a left R-module. Then the following are equivalent.

i) N is a submodule of M

ii) If and for all , then .

iii) If and , then .

Proof: i) => iii): and are in by the second property, then by the first property of

Definition 3.

iii) => ii): Follows by induction on .

ii) => i): Let , , then for arbitrary be have , proving 

is a subgroup. Now let , then for arbitrary , , proving property 2 in Definition 3. ∎

The lemma gives an alternative characterisation of submodules, and those sets closed onder linear combinations of

elements.
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Analogously to the case of vector spaces, we have ways of creating new subspaces from old ones. The rest of this

subsection will be concerned with this.

Lemma 7: Let M be a left R-module, and let N and L be submodules of M. Then is a submodule in M, and

it is the largest submodule contained in both N in L.

Proof: Let and . Then and since N and L are

submodules, so and is a submodule of M. Now, assume that S is a submodule of M

contained in N and L. Then any must be in both N and L and therefore in such that ,

proving the lemma. ∎
Now, as the reader should expect at this point, given submodules N and L of M, the union is in general not

a submodule. In fact, we have the following lemma:

Lemma 8: Let M be a left R-module and let N and L be submodules. Then is a submodule if and only if

or .

Proof: The left implication is obvious. For the right implication, assume is a submodule of M. Then if

and , then , which implies that or . Assume without

loss of generality that . Then, since N is a submodule, we must have ,

proving . ∎

Definition 9: Let M be a left R-module, and let be submodules for . Then define their sum,

.

Definition 9 has a straightforward extension to sums over arbitrary index sets. This definition is left for the reader to

state. We will only need the finite case in this chapter.

Lemma 10: Let M be a left R-module and let N and L be submodules. Then is a submodule of M, and it is

the smallest submodule containing both N and L.

Proof: It is straightforward to see that is a submodule. To see that it is the smallest submodule containing

both N and L, let S be a submodule containing both N and L. Then for any and , we

must have . But this the the same as saying that , proving the lemma. ∎

With Lemma 7 and Lemma 10 established, we can state the main result of this subsection.

Definition 11: Let M be a left R-module. Then let be the set of submodules ordered by set inclusion.

Lemma 12: Let M be a left R-module. Then forms a lattice, the join of being given by

and their meet by .

Proof: Most of the work is already done. All that remains is to check assosiativity, the absorption axioms and the

idempotency axioms. The associativity is trivially satisfied, and

for all . As for absorption, We have to check

and for all , but this is also trivially true. Lastly, we

obviously have and for all , so we are done. ∎
Corollary 13: Let M be a left R-module. Then is a modular lattice.

Note: Recall that is modular if and only if whenever such that , we have

.

Proof: Let such that . Since , we have for some ,

such that . Thus and . On the other hand, we have

and , so . ∎
Definition 14: Let M be a left R-module. A submodule N is called maximal if whenever L is a submodule satisfying

, then or .
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Theorem 15: Every submodule of a left R-module is contained in a maximal submodule.

Proof: Let N be a submodule, and let . Then S is a poset under set inclusion.

Let be a chain in S, and note that is a submodule containing each , such

that U is an upper bound for the chain. Then, since each chain in S has an upper bound, by Zorn's Lemma S has a

maximal element, P, say. P is obviously an ideal containing N. By the definition of S, P is also a maximal submodule

of M, proving the theorem. ∎

Generating Modules

Given a subset of a left -module , we define the left submodule generated by to be the smallest

submodule (w.r.t. set containment) of that contains . It is denoted by for a reason which will become

clear in a moment.

The existence of such a submodule comes from the fact that an intersection of -modules is again an -module:

Consider the set of all submodules of containing . Since contains , we see that is non-empty.

The intersection of the modules in clearly contains and is a submodule of . Further, any submodule of

containing also contains the intersection. Thus .

Assuming that is unitary, the elements of have a simple description;

.

That is, every element of can be written as a finite left linear combination of elements of . This equality can

be justified by double inclusion: First, any submodule containing must contain all left -linear combinations of

elements of since modules are closed under addition and left multiplication by elements of . Thus,

. Secondly, the set of all such linear combinations forms a

submodule of containing (use and ) and hence it contains .

Generating Submodules by Ideals

Consider any ring , left ideal , and left -module . One can think of as a subring of 

(non-unitary when ) and hence is an -module using the regular multiplication by elements of .

If we consider the set we obtain a submodule of . This

follows from our discussion of generated submodules. However, since is not unitary, it is not necessary that

.

Thus, we may consider the quotient module . Clearly this is an -module but it is also an module

under the obvious action.

Proposition

Given an -module and ideal of , the module is an -module with

multiplication .

proof.

To show that this is well defined, we observe that if then and hence

since . Thus,
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which proves that the action of on is well defined. It follows now that is an 

-module simply because it is an -module.

Quotient Modules

Recall that any subgroup of an abelian group allows one to construct an equivalence relation; for

,

.

Cosets of , equivalence classes under the relation above, can then be endowed with a group structure, derived

from the original group, and is given the name M/N. The sum of two cosets and

is simply .

Lemma 16 Let M be a left R-module and N be a submodule. Then M/N, defined above, is a left R-module.

Proof: M/N is obviously an abelian group, so we just have to check that it has a well-defined R-action. Let 

and . Then we define . The distributivity and associativity properties of the

action are inherited from M, so we just need well-definedness. Let with . Then

since N is a submodule, and we are done. ∎

Module Homomorphisms

Like all algebraic structures, we can define maps between modules that preserve their algebraic operations.

Definition (Module Homomorphism)

An -module homomorphism is a function from to satisfying

1. (it is a group homomorphism), and

2.

When a map between two algebraic structures satisfies these two properties then it called an -linear map.

Definition (Kernel, Image)

Given a module homomorphism the kernel of is the set

and the image of is the set

.

The kernel of is the set of elements in the domain that are sent to zero by . In fact, the kernel of any module

homomorphism is a submodule of . It is clearly a subgroup, from group theory, and it is also closed under

multiplication by elements of : for .

Similarly, one can show that the image of is a submodule of .
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Hypercomplex numbers

Hypercomplex numbers are numbers that use the square root of -1 to create more than 1 extra dimension.

The most basic Hypercomplex number is the one used most often in vector mathematics, the Quaternion, which

consists of 4 dimensions. Higher dimensions are diagrammed by adding more roots to negative 1 in a predefined

relationship.

Quaternions

A Quaternion consists of four dimensions, one real and the other 3 imaginary. The imaginary dimensions are

represented as i, j and k. Each imaginary dimension is a square root of -1 and thus it is not on the normal number

line. In practice, the i, j and k are all orthogonal to each other and to the real numbers. As such, they only intersect at

the origin (0,0i, 0j, 0k).

The basic form of a quaternion is:

•

where a, b, c and d are real number coefficients.

For a quaternion the relationship between i, j and k is defined in this simple rule:

•

From this follows:

• , 

• , 

• , 

As you may have noticed, multiplication is not commutative in hyperdimensional mathematics.

They can also be represented as a 1 by 4 matrix in the form

real i j k

1 1 1 1

...

...

The quaternion is a 4 dimensional number, but it can be used to diagram three dimensional vectors and can be used

to turn them without the use of calculus.

see also: Wikipedia's Article on Quaternion 
[1]

http://en.wikipedia.org/wiki/Quaternion
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Octonion

8-dimensional. See: Wikipedia's Article on Octonion 
[2]

Sedenions

16-dimensional. See: Wikipedia's Article on Sedenion 
[3]

References

[1] http:/ / en. wikipedia. org/ wiki/ Quaternion

[2] http:/ / en. wikipedia. org/ wiki/ Octonion

[3] http:/ / en. wikipedia. org/ wiki/ Sedenion

Matroids

A matroid is an algebraic construct that is related to the notion of independence.

Matroids are an abstraction of several combinatorial objects, among them graphs and matrices. The word matroid

was coined by Whitney in 1935 in his landmark paper "On the abstract properties of linear dependence". In defining

a matroid Whitney tried to capture the fundamental properties of dependence that are common to graphs and

matrices. Almost simultaneously, Birkhoff showed that a matroid can be interpreted as a geometric lattice. Maclane

showed that matroids have a geometric representation in terms of points, lines, planes, dimension 3 spaces etc. Often

the term combinatorial geometry is used instead of simple matroids. However, combinatorial geometry has another

meaning in mathematical literature. Rank 3 combinatorial geometries are frequently called linear spaces. Matroids

are a unifying concept in which some problems in graph theory, design theory, coding theory, and combinatorial

optimization become simpler to understand.

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Sedenion
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Sedenion
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Algebras

Algebras

In this section we will talk about structures with three operations. These are called algebras. We will start by defining

an algebra over a field, which is a vector space with a bilinear vector product. After giving some examples, we will

then move to a discussion of quivers and their path algebras.

Algebras over a Field

Definition 1: Let a field, and let be an -vector space on which we define the vector product

. Then is called an algebra over provided that is a ring, where is the vector

space addition, and if for all and ,

1. ,

2. and ,

3. .

The dimension of an algebra is the dimension of as a vector space.

Remark 2: The appropriate definition of a subalgebra is clear from Definition 1. We leave its formal statement to

the reader.

Definition 2: If is a commutative ring, is called a commutative algebra. If it is a division ring, is

called a division algebra. We reserve the terms real and complex algebra for algebras over and , respectively.

The reader is invited to check that the following examples really are examples of algebras.

Example 3: Let be a field. The vector space forms a commutative -algebra under componentwise

multiplication.

Example 4: The quaternions is a 4-dimensional real algebra. We leave it to the reader to show that it is not a

2-dimensional complex algebra.

Example 5: Given a field , the vector space of polynomials is a commutative -algebra in a natural way.

Example 6: Let be a field. Then any matrix ring over , for example , gives rise to an 

-algebra in a natural way.

Quivers and Path Algebras

Naively, a quiver can be understood as a directed graph where we allow loops and parallell edges. Formally, we have

the following.

Definition 7: A quiver is a collection of four pieces of data, ,

1. is the set of vertices of the quiver,

2. is the set of edges, and

3. are functions associating with each edge a source vertex and a target vertex, respectively.

We will always assume that is nonempty and that and are finite sets.

Example 8: The following are the simplest examples of quivers:

1. The quiver with one point and no edges, represented by .
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2. The quiver with point and no edges, .

3. The linear quiver with points, .

4. The simplest quiver with a nontrivial loop, .

Definition 9: Let be a quiver. A path in is a sequence of edges where

for all . We extend the domains of and and define and

. We define the length of the path to be the number of edges it contains and write . With

each vertex of a quiver we associate the trivial path with and . A nontrivial

path with is called an oriented loop at .
The reason quivers are interesting for us is that they provide a concrete way of constructing a certain family of

algebras, called path algebras.

Definition 10: Let be a quiver and a field. Let denote the free vector space generated by all the paths of

. On this vector space, we define a vector porduct in the obvious way: if and are

paths with , define their product by concatenation: . If ,

define their product to be . This product turns into an -algebra, called the path algebra of .

Lemma 11: Let be a quiver and field. If contains a path of length , then is infinite

dimensional.

Proof: By a counting argument such a path must contain an oriented loop, , say. Evidently is a linearly

independent set, such that is infinite dimensional.

Lemma 12: Let be a quiver and a field. Then is infinite dimensional if and only if contains an

oriented loop.

Proof: Let be an oriented loop in . Then is infinite dimensional by the above argument. Conversely,

assume has no loops. Then the vertices of the quiver can be ordered such that edges always go from a lower to a

higher vertex, and since the length of any given path is bounded above by , there dimension of is

bounded above by .

Lemma 13: Let be a quiver and a field. Then the trivial edges form an orthogonal idempotent set.

Proof: This is immediate from the definitions: if and .

Corollary 14: The element is the identity element in .

Proof: It sufficed to show this on the generators of . Let be a path in with and .

Then . Similarily, .

To be covered:

- General R-algebras
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Boolean algebra

Boolean Algebra

Boolean algebra is a deductive mathematical system closed over the values zero and one (false and true). A binary

operator " " defined over this set of values accepts a pair of ator accepts two boolean inputs and produces a single

boolean output (the logical AND of the two inputs).

For any given algebra system, there are some initial assumptions, or postulates that the system follows. You can

deduce additional rules, theorems, and other properties of the system from this basic set of postulates:

Closure. The boolean system of closed with respect to a binary operator if for every pair of boolean values. It

produces a boolean result. For example, logical AND is closed in the boolean system because it accepts only boolean

operands and produces only boolean results.

Commutativity. A binary operator " " is said to be commutative if for all possible boolean values

A and B.

Associativity. A binary operator " " is said to be associative if

for all boolean values A, B, and C.

Distribution. Two binary operators " " and "%" are distributive if

for all boolean values A, B, and C.

Identity. A boolean value I is said to be the identity element with respect to some binary operator " " if 

Inverse. A boolean value I is said to be the inverse element with respect to some binary operator " " if 

and (i.e., B is the opposite value of A in a boolean system).

For our purposes, we will base boolean algebra on the following set of operators and values:

The two possible values in the boolean system are zero and one. Often we will call these values false and true

(respectively).

The symbol " " represents the logical AND operation; e.q., is the result of logically ANDing the boolean

values A and B. When using single letter variable names, this text will drop the " " symbol; Therefore, AB also

represents the logical AND of the variables A and B (we will also call this the product<\i> of A and B).

The symbol "+" represents the logical OR operation; e.g., A + B is the result of logical ORing the boolean values A

and B. (We will also call this the sum of A and B.)

Logical complement, negation, or not, is a unary operator. This text will use the (') symbol to denote logical

negation. For example, A ' denotes the logical NOT of A.

If several different operators appear in a single boolean expression, the result of the expression depends on the 

precedence of the operators. We'll use the following precedences (from highest to lowest) for the boolean operators: 

parenthesis, logical NOT, logical AND, then logical OR. The logical AND and OR operators are left associative. If 

two operators with the same precedence are adjacent, you must evaluate them from left to right. The logical NOT
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operation is right associative, although it would produce the same result using left or right associativity since it is a

unary operator.

We will also use the following set of postulates:

P1 Boolean algebra is closed under the AND, OR, and NOT operations.

P2 The identity element with respect to is one and + is zero. There is no identity element with respect to logical

NOT.

P3 The and + operators are commutative.

P4 and + are distributive with respect to one another. That is, and

P5 For every value A there exists a value A' such that and . This value is the logical

complement (or NOT) of A.

P6 and + are both associative. That is, and .
You can prove all other theorems in boolean algebra using these postulates. This text will not go into the formal

proofs of these theorems, however, it is a good idea to familiarize yourself with some important theorems in boolean

algebra. A sampling include:

Th1: A + A = A

Th2: 

Th3: A + 0 = A

Th4: 

Th5: 

Th6: A + 1 = 1

Th7: 

Th8: 

Th9: 

Th10: 

Th11: 

Th12: 

Th13: 

Th14: 

Th15: 

Th16: 

Theorems seven and eight above are known as DeMorgan's Theorems after the mathematician who discovered them.The theorems above appear in pairs. Each pair (e.g. Th1 & Th 2, Th3 & Th4, etc.) form a dual. An important

principle in the boolean algebra system is that of duality. Any valid expression you can create using the postulates

and theorems of boolean algebra remains valid if you interchange the operators and constants appearing in the

expression. Specifically, if you exchange the and + operators and swap the 0 and 1 values in an expression. you

will wind up with an expression that obeys all the rules of boolean algebra. This does not mean the dual expression

computes the same values, it only means that both expressions are legal in the boolean algebra system. Therefore,

this is an easy way to generate a second theorem for any fact you prove in the boolean algebra system.

Although, we will not be proving any theorems for the sake of boolean algebra in this text, we will use these

theorems to show that two boolean equations are identical. This is an important operation when attempting to

produce canonical representations of a boolean expression or when simplifying a boolean expression.
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Boolean Functions and Truth Tables

A boolean expression is a sequence of zeros, ones, and literals separated by boolean operators. A literal is a primes

(negated) or unprimed variable name. For our purposes, all variable names will be a single alphabetic character. A

boolean function is a specific boolean expression; we will generally give boolean functions the name "F" with a

possible subscript. For example, consider the following boolean:

This function computes the logical AND of A and B and then logically ORs this result with C. If A=1, B=O, and

C=1, then returns the value one .

Another way to represent a boolean function is a via a truth table. The previous chapter used truth tables to represent

the AND and OR functions. Those truth tables took the forms:

Table 6: AND Truth Table

Table 7: OR Truth Table

For binary operators and twp input variables, this form of a truth table is very natural and convenient. However,

reconsider the boolean function above. That function has three input variables, not two. Therefore, one cannot

use the truth table format given above. Fortunately, it is still very easy to construct truth tables for three or more

variables, The following example shows one way to do this for functions of three or four variables:
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Clifford Algebras

In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible

generalizations of the complex numbers and quaternions. The theory of Clifford algebras is intimately connected

with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a

variety of fields including geometry and theoretical physics. They are named for the English geometer William

Clifford.

Some familiarity with the basics of multilinear algebra will be useful in reading this section.

Introduction and basic properties

Specifically, a Clifford algebra is a unital associative algebra which contains and is generated by a vector space V

equipped with a quadratic form Q. The Clifford algebra Cℓ(V,Q) is the "freest" algebra generated by V subject to the

condition
1

If the characteristic of the ground field K is not 2, then one can rewrite this fundamental identity in the form

where <u, v> = Q(u + v) − Q(u) − Q(v) is the symmetric bilinear form associated to Q. This idea of "freest" or "most

general" algebra subject to this identity can be formally expressed through the notion of a universal property (see

below).

Clifford algebras are closely related to exterior algebras. In fact, if Q = 0 then the Clifford algebra Cℓ(V,Q) is just the

exterior algebra Λ(V). For nonzero Q there exists a canonical linear isomorphism between Λ(V) and Cℓ(V,Q)

whenever the ground field K does not have characteristic two. That is, they are naturally isomorphic as vector spaces,

but with different multiplications (in the case of characteristic two, they are still isomorphic as vector spaces, just not

naturally). Clifford multiplication is strictly richer than the exterior product since it makes use of the extra

information provided by Q. More precisely, they may be thought of as quantizations of the exterior algebra, in the

same way that the Weyl algebra is a quantization of the symmetric algebra.

Quadratic forms and Clifford algebras in characteristic 2 form an exceptional case. In particular, if char K = 2 it is

not true that a quadratic form is determined by its symmetric bilinear form, or that every quadratic form admits an

orthogonal basis. Many of the statements in this article include the condition that the characteristic is not 2, and are

false if this condition is removed.

Universal property and construction

Let V be a vector space over a field K, and let Q : V → K be a quadratic form on V. In most cases of interest the field

K is either R or C (which have characteristic 0) or a finite field.

A Clifford algebra Cℓ(V,Q) is a unital associative algebra over K together with a linear map i : V → Cℓ(V,Q) defined

by the following universal property: Given any associative algebra A over K and any linear map j : V → A such that

j(v)
2 

= Q(v)1 for all v ∈ V

(where 1 denotes the multiplicative identity of A), there is a unique algebra homomorphism f : Cℓ(V,Q) → A such

that the following diagram commutes (i.e. such that f o i = j):
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Working with a symmetric bilinear form <·,·> instead of Q (in characteristic not 2), the requirement on j is

j(v)j(w) + j(w)j(v) = <v, w> for all v, w ∈ V.

A Clifford algebra as described above always exists and can be constructed as follows: start with the most general

algebra that contains V, namely the tensor algebra T(V), and then enforce the fundamental identity by taking a

suitable quotient. In our case we want to take the two-sided ideal I
Q 

in T(V) generated by all elements of the form

for all 

and define Cℓ(V,Q) as the quotient

Cℓ(V,Q) = T(V)/I
Q.

It is then straightforward to show that Cℓ(V,Q) contains V and satisfies the above universal property, so that Cℓ is

unique up to isomorphism; thus one speaks of "the" Clifford algebra Cℓ(V, Q). It also follows from this construction

that i is injective. One usually drops the i and considers V as a linear subspace of Cℓ(V,Q).

The universal characterization of the Clifford algebra shows that the construction of Cℓ(V,Q) is functorial in nature.

Namely, Cℓ can be considered as a functor from the category of vector spaces with quadratic forms (whose

morphisms are linear maps preserving the quadratic form) to the category of associative algebras. The universal

property guarantees that linear maps between vector spaces (preserving the quadratic form) extend uniquely to

algebra homomorphisms between the associated Clifford algebras.

Basis and dimension

If the dimension of V is n and {e
1
,…,e

n
} is a basis of V, then the set

is a basis for Cℓ(V,Q). The empty product (k = 0) is defined as the multiplicative identity element. For each value of

k there are n choose k basis elements, so the total dimension of the Clifford algebra is

Since V comes equipped with a quadratic form, there is a set of privileged bases for V: the orthogonal ones. An

orthogonal basis in one such that

where <·,·> is the symmetric bilinear form associated to Q. The fundamental Clifford identity implies that for an

orthogonal basis

This makes manipulation of orthogonal basis vectors quite simple. Given a product of distinct

orthogonal basis vectors, one can put them into standard order by including an overall sign corresponding to the

number of flips needed to correctly order them (i.e. the signature of the ordering permutation).

If the characteristic is not 2 then an orthogonal basis for V exists, and one can easily extend the quadratic form on V

to a quadratic form on all of Cℓ(V,Q) by requiring that distinct elements are orthogonal to one another

whenever the {e
i
}'s are orthogonal. Additionally, one sets

.

http://en.wikibooks.org/w/index.php?title=File:CliffordAlgebra-01.png
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The quadratic form on a scalar is just Q(λ) = λ
2
. Thus, orthogonal bases for V extend to orthogonal bases for

Cℓ(V,Q). The quadratic form defined in this way is actually independent of the orthogonal basis chosen (a

basis-independent formulation will be given later).

Examples: Real and complex Clifford algebras

The most important Clifford algebras are those over real and complex vector spaces equipped with nondegenerate

quadratic forms.

Every nondegenerate quadratic form on a finite-dimensional real vector space is equivalent to the standard diagonal

form:

where n = p + q is the dimension of the vector space. The pair of integers (p, q) is called the signature of the

quadratic form. The real vector space with this quadratic form is often denoted R
p,q

. The Clifford algebra on R
p,q 

is

denoted Cℓ
p,q

(R). The symbol Cℓ
n
(R) means either Cℓ

n,0
(R) or Cℓ

0,n
(R) depending on whether the author prefers

positive definite or negative definite spaces.

A standard orthonormal basis {e
i
} for R

p,q 
consists of n = p + q mutually orthogonal vectors, p of which have norm

+1 and q of which have norm −1. The algebra Cℓ
p,q

(R) will therefore have p vectors which square to +1 and q

vectors which square to −1.

Note that Cℓ
0,0

(R) is naturally isomorphic to R since there are no nonzero vectors. Cℓ
0,1

(R) is a two-dimensional

algebra generated by a single vector e
1 

which squares to −1, and therefore is isomorphic to C, the field of complex

numbers. The algebra Cℓ
0,2

(R) is a four-dimensional algebra spanned by {1, e
1
, e

2
, e

1
e

2
}. The latter three elements

square to −1 and all anticommute, and so the algebra is isomorphic to the quaternions H. The next algebra in the

sequence is Cℓ
0,3

(R) is an 8-dimensional algebra isomorphic to the direct sum H ⊕ H called Clifford biquaternions.

One can also study Clifford algebras on complex vector spaces. Every nondegenerate quadratic form on a complex

vector space is equivalent to the standard diagonal form

where n = dim V, so there is essentially only one Clifford algebra in each dimension. We will denote the Clifford

algebra on C
n 

with the standard quadratic form by Cℓ
n
(C). One can show that the algebra Cℓ

n
(C) may be obtained as

the complexification of the algebra Cℓ
p,q

(R) where n = p + q:

.

Here Q is the real quadratic form of signature (p,q). Note that the complexification does not depend on the signature.

The first few cases are not hard to compute. One finds that

Cℓ
0
(C) = C

Cℓ
1
(C) = C ⊕ C

Cℓ
2
(C) = M

2
(C)

where M
2
(C) denotes the algebra of 2×2 matrices over C.

It turns out that every one of the algebras Cℓ
p,q

(R) and Cℓ
n
(C) is isomorphic to a matrix algebra over R, C, or H or

to a direct sum of two such algebras. For a complete classification of these algebras see classification of Clifford

algebras.

http://en.wikibooks.org/w/index.php?title=Complex_number
http://en.wikibooks.org/w/index.php?title=Complex_number
http://en.wikibooks.org/w/index.php?title=Quaternion
http://en.wikibooks.org/w/index.php?title=Complexification
http://en.wikibooks.org/w/index.php?title=Matrix_algebra
http://en.wikibooks.org/w/index.php?title=Classification_of_Clifford_algebras
http://en.wikibooks.org/w/index.php?title=Classification_of_Clifford_algebras
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Properties

Relation to the exterior algebra

Given a vector space V one can construct the exterior algebra Λ(V), whose definition is independent of any quadratic

form on V. It turns out that if F does not have characteristic 2 then there is a natural isomorphism between Λ(V) and

Cℓ(V,Q) considered as vector spaces (and there exists an isomorphism in characteristic two, which may not be

natural). This is an algebra isomorphism if and only if Q = 0. One can thus consider the Clifford algebra Cℓ(V,Q) as

an enrichment (or more precisely, a quantization, cf. the Introduction) of the exterior algebra on V with a

multiplication that depends on Q (one can still define the exterior product independent of Q).

The easiest way to establish the isomorphism is to choose an orthogonal basis {e
i
} for V and extend it to an

orthogonal basis for Cℓ(V,Q) as described above. The map Cℓ(V,Q) → Λ(V) is determined by

Note that this only works if the basis {e
i
} is orthogonal. One can show that this map is independent of the choice of

orthogonal basis and so gives a natural isomorphism.

If the characteristic of K is 0, one can also establish the isomorphism by antisymmetrizing. Define functions f
k 

: V ×

… × V → Cℓ(V,Q) by

where the sum is taken over the symmetric group on k elements. Since f
k 

is alternating it induces a unique linear map

Λ
k
(V) → Cℓ(V,Q). The direct sum of these maps gives a linear map between Λ(V) and Cℓ(V,Q). This map can be

shown to be a linear isomorphism, and it is natural.

A more sophisticated way to view the relationship is to construct a filtration on Cℓ(V,Q). Recall that the tensor

algebra T(V) has a natural filtration: F
0
 ⊂ F1

 ⊂ F2
 ⊂ … where F

k 
contains sums of tensors with rank ≤ k. Projecting

this down to the Clifford algebra gives a filtration on Cℓ(V,Q). The associated graded algebra

is naturally isomorphic to the exterior algebra Λ(V). Since the associated graded algebra of a filtered algebra is

always isomorphic to the filtered algebra as filtered vector spaces (by choosing complements of F
k 

in F
k+1 

for all k),

this provides an isomorphism (although not a natural one) in any characteristic, even two.

Grading

The linear map on V defined by preserves the quadratic form Q and so by the universal property of

Clifford algebras extends to an algebra automorphism

α : Cℓ(V,Q) → Cℓ(V,Q).

Since α is an involution (i.e. it squares to the identity) one can decompose Cℓ(V,Q) into positive and negative

eigenspaces

where Cℓi
(V,Q) = {x ∈ Cℓ(V,Q) | α(x) = (−1)

i
x}. Since α is an automorphism it follows that

where the superscripts are read modulo 2. This means that Cℓ(V,Q) is a Z
2
-graded algebra (also known as a

superalgebra). Note that Cℓ0
(V,Q) forms a subalgebra of Cℓ(V,Q), called the even subalgebra. The piece Cℓ1

(V,Q) is

called the odd part of Cℓ(V,Q) (it is not a subalgebra). This Z
2
-grading plays an important role in the analysis and

application of Clifford algebras. The automorphism α is called the main involution or grade involution.

http://en.wikibooks.org/w/index.php?title=Exterior_algebra
http://en.wikibooks.org/w/index.php?title=Natural_isomorphism
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Remark. In characteristic not 2 the algebra Cℓ(V,Q) inherits a Z-grading from the canonical isomorphism with the

exterior algebra Λ(V). It is important to note, however, that this is a vector space grading only. That is, Clifford

multiplication does not respect the Z-grading only the Z
2
-grading. Happily, the gradings are related in the natural

way: Z
2 

= Z/2Z. The degree of a Clifford number usually refers to the degree in the Z-grading. Elements which are

pure in the Z
2
-grading are simply said to be even or odd.

If the characteristic of F is not 2 then the even subalgebra Cℓ0
(V,Q) of a Clifford algebra is itself a Clifford algebra.

If V is the orthogonal direct sum of a vector a of norm Q(a) and a subspace U, then Cℓ0
(V,Q) is isomorphic to

Cℓ(U,−Q(a)Q), where −Q(a)Q is the form Q restricted to U and multiplied by −Q(a). In particular over the reals this

implies that

for q > 0, and

for p > 0.

In the negative-definite case this gives an inclusion Cℓ
0,n−1

(R) ⊂ Cℓ
0, n

(R) which extends the sequence

R ⊂ C ⊂ H ⊂ H⊕H ⊂ …

Likewise, in the complex case, one can show that the even subalgebra of Cℓ
n
(C) is isomorphic to Cℓ

n−1
(C).

Antiautomorphisms

In addition to the automorphism α, there are two antiautomorphisms which play an important role in the analysis of

Clifford algebras. Recall that the tensor algebra T(V) comes with an antiautomorphism that reverses the order in all

products:

.

Since the ideal I
Q 

is invariant under this reversal, this operation descends to an antiautomorphism of Cℓ(V,Q) called

the transpose or reversal operation, denoted by x
t
. The transpose is an antiautomorphism: . The

transpose operation makes no use of the Z
2
-grading so we define a second antiautomorphism by composing α and

the transpose. We call this operation Clifford conjugation denoted 

Of the two antiautomorphisms, the transpose is the more fundamental.
3

Note that all of these operations are involutions. One can show that they act as ±1 on elements which are pure in the

Z-grading. In fact, all three operations depend only on the degree modulo 4. That is, if x is pure with degree k then

where the signs are given by the following table:

k mod 4 0 1 2 3

+ − + −
(−1)

k

+ + − −
(−1)

k(k−1)/2

+ − − +
(−1)

k(k+1)/2

http://en.wikibooks.org/w/index.php?title=Antiautomorphism
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Clifford Algebras 87

The Clifford scalar product

When the characteristic is not 2 the quadratic form Q on V can be extended to a quadratic form on all of Cℓ(V,Q) as

explained earlier (which we also denoted by Q). A basis independent definition is

where <a> denotes the scalar part of a (the grade 0 part in the Z-grading). One can show that

where the v
i 
are elements of V — this identity is not true for arbitrary elements of Cℓ(V,Q).

The associated symmetric bilinear form on Cℓ(V,Q) is given by

One can check that this reduces to the original bilinear form when restricted to V. The bilinear form on all of

Cℓ(V,Q) is nondegenerate if and only it is nondegenerate on V.

It is not hard to verify that the transpose is the adjoint of left/right Clifford multiplication with respect to this inner

product. That is,

and

Structure of Clifford algebras

In this section we assume that the vector space V is finite dimensional and that the bilinear form of Q is non-singular.

A central simple algebra over K is a matrix algebra over a (finite dimensional) division algebra with center K. For

example, the central simple algebras over the reals are matrix algebras over either the reals or the quaternions.

• If V has even dimension then Cℓ(V,Q) is a central simple algebra over K.

• If V has even dimension then Cℓ0
(V,Q) is a central simple algebra over a quadratic extension of K or a sum of two

isomorphic central simple algebras over K.

• If V has odd dimension then Cℓ(V,Q) is a central simple algebra over a quadratic extension of K or a sum of two

isomorphic central simple algebras over K.

• If V has odd dimension then Cℓ0
(V,Q) is a central simple algebra over K.

The structure of Clifford algebras can be worked out explicitly using the following result. Suppose that U has even

dimension and a non-singular bilinear form with discriminant d, and suppose that V is another vector space with a

quadratic form. The Clifford algebra of U+V is isomorphic to the tensor product of the Clifford algebras of U and

(−1)
dim(U)/2

dV, which is the space V with its quadratic form multiplied by (−1)
dim(U)/2

d. Over the reals, this implies

in particular that

These formulas can be used to find the structure of all real Clifford algebras; see the classification of Clifford

algebras.
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In this section we assume that V is finite dimensional and the bilinear form of Q is non-singular.

The Clifford group Γ is defined to be the set of invertible elements x of the Clifford algebra such that

for all v in V. This formula also defines an action of the Clifford group on the vector space V that preserves the norm

Q, and so gives a homomorphism from the Clifford group to the orthogonal group. The Clifford group contains all

elements r of V of nonzero norm, and these act on V by the corresponding reflections that take v to v − <v,r>r/Q(r)

(In characteristic 2 these are called orthogonal transvections rather than reflections.)

Many authors define the Clifford group slightly differently, by replacing the action xvα(x)
−1 

by xvx
−1

. This produces

the same Clifford group, but the action of the Clifford group on V is changed slightly: the action of the odd elements

Γ
1 

of the Clifford group is multiplied by an extra factor of −1. This action used here has several minor advantages: it

is consistent with the usual superalgebra sign conventions, elements of V correspond to reflections, and in odd

dimensions the map from the Clifford group to the orthogonal group is onto, and the kernel is no larger than K
*
.

Using the action α(x)vx
−1 

instead of xvα(x)
−1 

makes no difference: it produces the same Clifford group with the same

action on V.

The Clifford group Γ is the disjoint union of two subsets Γ
0 

and Γ
1
, where Γ

i 
is the subset of elements of degree i.

The subset Γ
0 

is a subgroup of index 2 in Γ.

If V is finite dimensional with nondegenerate bilinear form then the Clifford group maps onto the orthogonal group

of V and the kernel consists of the nonzero elements of the field K. This leads to exact sequences

In arbitrary characteristic, the spinor norm Q is defined on the Clifford group by

It is a homomorphism from the Clifford group to the group K
* 

of non-zero elements of K. It coincides with the

quadratic form Q of V when V is identified with a subspace of the Clifford algebra. Several authors define the spinor

norm slightly differently, so that it differs from the one here by a factor of −1, 2, or −2 on Γ
1
. The difference is not

very important.

The nonzero elements of K have spinor norm in the group K
*2 

of squares of nonzero elements of the field K. So

when V is finite dimensional and non-singular we get an induced map from the orthogonal group of V to the group

K
*
/K

*2
, also called the spinor norm. The spinor norm of the reflection of a vector r has image Q(r) in K

*
/K

*2
, and

this property uniquely defines it on the orthogonal group. This gives exact sequences:

Note that in characteristic 2 the group {±1} has just one element.

Spin and Pin groups

In this section we assume that V is finite dimensional and its bilinear form is non-singular. (If K has characteristic 2

this implies that the dimension of V is even.)

The Pin group Pin
V

(K) is the subgroup of the Clifford group Γ of elements of spinor norm 1, and similarly the Spin

group Spin
V

(K) is the subgroup of elements of Dickson invariant 0 in Pin
V

(K). When the characteristic is not 2,

these are the elements of determinant 1. The Spin group usually has index 2 in the Pin group.

Recall from the previous section that there is a homomorphism from the Clifford group onto the orthogonal group. 

We define the special orthogonal group to be the image of Γ
0
. If K does not have characteristic 2 this is just the

http://en.wikibooks.org/w/index.php?title=Dickson_invariant
http://en.wikibooks.org/w/index.php?title=Special_orthogonal_group
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group of elements of the orthogonal group of determinant 1. If K does have characteristic 2, then all elements of the

orthogonal group have determinant 1, and the special orthogonal group is the set of elements of Dickson invariant 0.

There is a homomorphism from the Pin group to the orthogonal group. The image consists of the elements of spinor

norm 1 ∈ K
*
/K

*2
. The kernel consists of the elements +1 and −1, and has order 2 unless K has characteristic 2.

Similarly there is a homomorphism from the Spin group to the special orthogonal group of V.

In the common case when V is a positive or negative definite space over the reals, the spin group maps onto the

special orthogonal group, and is simply connected when V has dimension at least 3. Warning: This is not true in

general: if V is R
p,q 

for p and q both at least 2 then the spin group is not simply connected and does not map onto the

special orthogonal group. In this case the algebraic group Spin
p,q 

is simply connected as an algebraic group, even

though its group of real valued points Spin
p,q

(R) is not simply connected. This is a rather subtle point, which

completely confused the authors of at least one standard book about spin groups.

Spinors

Suppose that p+q=2n is even. Then the Clifford algebra Cℓ
p,q

(C) is a matrix algebra, and so has a complex

representation of dimension 2
n
. By restricting to the group Pin

p,q
(R) we get a complex representation of the Pin

group of the same dimension, called the spinor representation. If we restrict this to the spin group Spin
p,q

(R) then it

splits as the sum of two half spin representations (or Weyl representations) of dimension 2
n-1

.

If p+q=2n+1 is odd then the Clifford algebra Cℓ
p,q

(C) is a sum of two matrix algebras, each of which has a

representation of dimension 2
n
, and these are also both representations of the Pin group Pin

p,q
(R). On restriction to

the spin group Spin
p,q

(R) these become isomorphic, so the spin group has a complex spinor representation of

dimension 2
n
.

More generally, spinor groups and pin groups over any field have similar representations whose exact structure

depends on the structure of the corresponding Clifford algebras: whenever a Clifford algebra has a factor that is a

matrix algebra over some division algebra, we get a corresponding representation of the pin and spin groups over

that division algebra. For examples over the reals see the article on spinors.

Applications

Differential geometry

One of the principal applications of the exterior algebra is in differential geometry where it is used to define the

bundle of differential forms on a smooth manifold. In the case of a (pseudo-)Riemannian manifold, the tangent

spaces come equipped with a natural quadratic form induced by the metric. Thus, one can define a Clifford bundle in

analogy with the exterior bundle. This has a number of important applications in Riemannian geometry.

Physics

Clifford algebras have numerous important applications in physics. Physicists usually consider a Clifford algebra to

be an algebra spanned by matrices γ
1
,…,γ

n 
called Dirac matrices which have the property that

where η is the matrix of a quadratic form of signature (p,q) — typically (1,3) when working in Minkowski space.

These are exactly the defining relations for the Clifford algebra Cl
1,3

(C) (up to an unimportant factor of 2), which by

the classification of Clifford algebras is isomorphic to the algebra of 4 by 4 complex matrices.

The Dirac matrices were first written down by Paul Dirac when he was trying to write a relativistic first-order wave

equation for the electron, and give an explicit isomorphism from the Clifford algebra to the algebra of complex

matrices. The result was used to define the Dirac equation. The entire Clifford algebra shows up in quantum field

theory in the form of Dirac field bilinears.
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Footnotes

1. Mathematicians who work with real Clifford algebras and prefer positive definite quadratic forms (especially

those working in index theory) sometimes use a different choice of sign in the fundamental Clifford identity. That

is, they take v
2 

= −Q(v). One must replace Q with −Q in going from one convention to the other.

2. The opposite is true when uses the alternate (−) sign convention for Clifford algebras: it is the conjugate which is

more important. In general, the meanings of conjugation and transpose are interchanged when passing from one

sign convention to the other. For example, in the convention used here the inverse of a vector is given by

while in the (−) convention it is given by .
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Further Abstract Algebra

Quaternions

The set of Quaternions is an algebraic structure first studied by the Irish mathematician William Rowan Hamilton,

in the hopes of constructing a generalization for complex numbers. When first discovered, quaternions generated a

lot of excitement among mathematicians and physicists alike, for it was hoped that quaternions would provide a

"unified theory" of mechanics and electromagnetism. Although these hopes proved to be unfounded, quaternions are

still considered interesting as well as useful mathematical entities.

Definition

A Quaternion is an ordered 4-tuple , where . A quaternion is often denoted as

(Observe the analogy with complex numbers). The set of all quaternions is denoted by

.

It is straightforward to define component-wise addition and scalar multiplication on , making it a real vector

space.

The rule for multiplication was a product of Hamilton's ingenuity. He discovered what are known as the

Bridge-stone Equations:

From the above equations alone, it is possible to derive rules for the pairwise multiplication of , , and :

(positive cyclic permutations)

(negative cyclic permutations).

Using these, it is easy to define a general rule for multiplication of quaternions. Because quaternion multiplication is

not commutative, is not a field. However, every nonzero quaternion has a multiplicative inverse (see below), so

the quaternions are an example of a non-commutative division ring. It is important to note that the non-commutative

nature of quaternion multiplication makes it impossible to define the quotient of two quaternions and 

unambiguously, as the quantities and are generally different.

Like the more familiar complex numbers, the quaternions have a conjugation, often denoted by a superscript star:

. The conjugate of the quaternion is . As is the case for

the complex numbers, the product is always a positive real number equal to the sum of the squares of the

quaternion's components. Using this fact, it is fairly easy to show that the multiplicative inverse of a general

quaternion is given by

where division is defined since is a scalar. Note that, unlike in the complex case, the conjugate of a

quaternion can be written as a polynomial in :

.

The quaternions are isomorphic to the Clifford algebra Cℓ
2
(R) and the even subalgebra of Cℓ

3
(R).

http://en.wikipedia.org/wiki/en:William_Rowan_Hamilton


Quaternions 92

Pauli Spin Matrices

Quaternions are closely related to the Pauli spin matrices of Quantum Mechanics. The Pauli matrices are often

denoted as

, , 

(Where is the well known quantity of complex numbers)

The 2×2 identity matrix is sometimes taken as . It can be shown that , the real linear span of the matrices ,

, and , is isomorphic to the set of all quaternions, . For example, take the matrix product below:

Or, equivalently:

All three of these matrices square to the negative of the identity matrix. If we take , , ,

and , it is easy to see that the span of the these four matrices is "the same as" (that is, isomorphic to) the set

of quaternions .

Exercise

1. Using the Bridge-stone equations, explicitly state the rule of multiplication for general quaternions, that is, given

and , give the components of their product
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Category theory

Category theory is the study of categories, which are collections of objects and morphisms (or arrows), or from one

object to another. It generalizes many common notions in Algebra, such as different kinds of products, the notion of

kernel, etc. See Category Theory for additional information.

Definitions & Notations

Definition 1: A category consists of

A set of objects.

For any , a set of morphisms from to .

These obey the following axioms:

There is a notion of composition. If , and , then

and are called a composable pair. Their composition is a morphism .

Composition is associative. whenever the composition is defined.

For any object , there is an identity morphism such that if are objects,

and , then and .

Definition 2: A morphism has associated with it two functions and called domain and codomain

respectively, such that if and only if and . Thus two morphisms

are composable if and only if .

Remark 3: Unless confusion is possible, we will usually not specify which Hom-set a given morphism belongs to.

Also, unless several categories are in play, we will usually not write , but just " is an object". We

may write to implicitly indicate the Hom-set belongs to. We may also omit the composition symbol,

writing simply for .

Basic Properties

Lemma 4: Let be an object of a category. The the identity morphism for is unique.

Proof: Assume and are identity morphisms for . Then .

Example 5: We present some of the simplest categories:

i) is the empty category, with no objects and no morphisms.

ii) is the category containging only a single object and its identity morphism. This is the trivial category.

iii) is the category with two objects, and , their identity morphisms, and a single morphism

.

iv) We can also have a category like , but where we have two morphisms with

. Then and are called parallel morphisms.

v) is the category with three objects . We have , and

.
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Some examples of categories

• : the category whose objects are sets and whose morphisms are maps between sets.

• : the category whose objects are finite sets and whose morphisms are maps between finite sets.

• The category whose objects are open subsets of and whose morphisms are continuous (differentiable,

smooth) maps between them.

•• The category whose objects are smooth (differentiable, topological) manifolds and whose morphisms are smooth

(differentiable, continuous) maps.

• Let be a field. Then we can define : the category whose objects are vector spaces over and

whose morphisms are linear maps between vector spaces over .

• : the category whose objects are groups and whose morphisms are homomorphisms between groups.

In all the examples given thus far, the objects have been sets with the morphisms given by set maps between them.

This is not always the case. There are some categories where this is not possible, and others where the category

doesn't naturally appear in this way. For example:

• Let be any category. Then its opposite category is a category with the same objects, and all the arrows

reversed. More formally, a morphism in from an object to is a morphism from to in .

• Let be any monoid. Then we can define a category with a single object, with morphisms from that object to

itself given by elements of with composition given by multiplication in .

• Let be any group. Then we can define a category with a single object, with morphisms from that object to

itself given by elements of with composition given by multiplication in .

• Let be any small category, and let be any category. Then we can define a category whose objects are

functors from to and whose morphisms are natural transformations between the functors from to .

• : the category whose objects are small categories and whose morphisms are functors between small

categories.
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Lattice theory

A lattice is a poset such that each pair of elements has a unique least upper bound and a unique greatest lower

bound.
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