






A BOOK OF
ABSTRACT ALGEBRA

Charles C. Pinter
Professor of Mathematics

Bucknell University

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland Bogota Hamburg

Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris São Paulo Singapore Sydney Tokyo Toronto



This book was set in Times Roman by Santype-Byrd.
The editors were John J. Corrigan and James S. Amar;
the production supervisor was Leroy A. Young.
The drawings were done by VIP Graphics.
The cover was designed by Scott Chelius.
R. R. Donnelley & Sons Company was printer and binder.

A BOOK OF ABSTRACT ALGEBRA

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

1234567890 DODO 8987654321

ISBN 0—07—050130—0

Library of Congress Cataloging in Publication Data

Pinter, Charles C., date
A book of abstract algebra.

Includes index.
1. Algebra, Abstract. I. Title.

QA162.P56 512'.02 81-8420
ISBN 0-07-050130-0 AACR2



To my colleagues in Brazil, especially
Newton da Costa,

Ayda Arruda, and
Elias Alves,

as well as to others. In appreciation of their loyal and valued friendship.





CONTENTS*

Preface

Chapter 1 Why Abstract Algebra? 1

History of Algebra. New Algebras. Algebraic
Structures. Axioms and Axiomatic Algebra.
Abstraction in Algebra.

Chapter 2 Operations 20

Operations on a Set. Properties of Operations.

Chapter 3 The Definition of Groups 26

Groups. Examples of Infinite and Finite Groups.
Examples of Abelian and Nonabelian Groups.
Group Tables.

Chapter 4 Elementary Properties of Groups 36

Uniqueness of Identity and Inverses. Properties of
Inverses.

Direct Product of Groups.

5 Subgroups 45

Definition of Subgroup. Generators and Defining
Relations.

Cayley Diagrams. Center of a Group.

* Italic headings indicate topics discussed in the exercise sections

VII



viii CONTENTS

Chapter 6 Functions 54

Injective, Surjective, Bijective Function. Composite and
Inverse of Functions.

Chapter 7 Groups of Permutations 64

Symmetric Groups. Dihedral Groups.

Chapter 8 Permutations of a Finite Set 75

Decomposition of Permutations into Cycles.
Transpositions. Even and Odd Permutations.
Alternating Groups.

Chapter 9 Isomorphism 86

The Concept of Isomorphism in Mathematics.
Isomorphic and Nonisomorphic Groups.
Cayley's Theorem.

Group Automorphisms.

Chapter 10 Order of Group Elements ioo

Powers/Multiples of Group Elements. Laws of
Exponents. Properties of the Order of Group
Elements.

Chapter 11 Cyclic Groups 109

Finite and Infinite Cyclic Groups. Isomorphism of
Cyclic Groups. Subgroups of Cyclic Groups.

Chapter 12 Partitions and Equivalence Relations 117

Chapter 13 Counting Cosets 123

Lagrange's Theorem and Elementary Consequences.

Number of Conjugate Elements. Group Acting on a Set.
Survey of Groups of Order � 10

Chapter 14 Homomorphisms 132

Elementary Properties of Homomorphism. Normal
Subgroups. Kernel and Range.

Inner Direct Products. Conjugate Subgroups.



CONTENTS ix

Chapter 15 Quotient Groups 143

Quotient Group Construction. Examples and
Applications.

The Class Equation. Induction on the Order of a Group.

Chapter 16 The Fundamental Homomorphism Theorem 153

Fundamental Homomorphism Theorem and Some
Consequences.

The Isomorphism Theorems. The Correspondence Theorem.
Cauchy's Theorem. Sy/ow Subgroups. Sy/ow's Theorem.
Decomposition Theorem for Finite Abel/an Groups.

Chapter 17 Rings: Definitions and
Elementary Properties 165

Commutative Rings. Unity. Invertibles and
Zero-Divisors. Integral Domain. Field.

Chapter 18 Ideals and Homomorphisms 178

Chapter 19 Quotient Rings 187

Construction of Quotient Rings. Examples.
Fundamental Homomorphism Theorem and Some
Consequences. Properties of Prime and Maximal
Ideals.

Chapter 20 Integral Domains 197

Characteristic of an Integral Domain. Properties
of the Characteristic. Finite Fields. Construction
of the Field of Quotients.

Chapter 21 The Integers 205

Ordered Integral Domains. Well-ordering.
Characterization of 7 Up to Isomorphism. Mathematical
Induction. Division Algorithm.

Chapter 22 Factoring into Primes 215

Ideals of 7. Properties of the GCD. Relatively
Prime Integers. Primes. Euclid's Lemma. Unique
Factorization.



x CONTENTS

Chapter 23 Elements of Number Theory 224

Properties of Congruence. Theorems of Fermat and
Euler. Solutions of Linear Congruences. Chinese
Remainder Theorem.

Wilson's Theorem and Consequences. Quadratic Residues.
The Legendre Symbol. Primitive Roots.

Chapter 24 Rings of Polynomials 239

Motivation and Definitions. Domain of Polynomials
over a Field. Division Algorithm.

Polynomials in Several Variables. Field of Polynomial Quotients.

Chapter 25 Factoring Polynomials 251

Ideals of F[x]. Properties of the GCD. Irreducible
Polynomials. Unique factorization.

Euclidean Algorithm.

Chapter 26 Substitution in Polynomials 258

Roots and Factors. Polynomial Functions.
Polynomials over 0. Eisenstein's Irreducibility
Criterion. Polynomials over the Reals. Polynomial
Interpolation.

Chapter 27 Extensions of Fields 270

Algebraic and Transcendental Elements. The
Minimum Polynomial. Basic Theorem on Field
Extensions.

Chapter 28 Vector Spaces 282

Elementary Properties of Vector Spaces. Linear
Independence. Basis. Dimension. Linear
Transformations.

Chapter 29 Degrees of Field Extensions 292

Simple and Iterated Extensions. Degree of an Iterated
Extension.

Field of Algebraic Elements. Algebraic Numbers. Algebraic
Closure.



CONTENTS xi

Chapter 30 Ruler and Compass 301

Constructible Points and Numbers. Impossible
Constructions.

Constructible Angles and Polygons.

Chapter 31 Galois Theory: Preamble 311

Multiple Roots. Root Field. Extension of a Field
Isomorphism.

Roots of Unity. Separable Polynomials. Normal Extensions.

Chapter 32 Galois Theory: The Heart of The Matter 323

Field Automorphisms. The Galois Group. The
Galois Correspondence. Fundamental Theorem of
Galois Theory.

Computing Galois Groups.

Chapter 33 Solving Equations by Radicals 335

Radical Extensions. Abelian Extensions. Solvable
Groups. Insolvability of the Quintic.

Index 347





PREFACE

Once, when I was a student struggling to understand modern algebra, I
was told to view this subject as an intellectual chess game, with convention-
al moves and prescribed rules of play. I was ill served by this bit of extem-
poraneous advice, and vowed never to perpetutate the falsehood that math-
ematics is purely—or primarily—a formalism. My pledge has strongly
influenced the shape and style of this book.

While giving due emphasis to the deductive aspect of modern algebra,
I have endeavored here to present modern algebra as a lively branch of
mathematics, having considerable imaginative appeal and resting on some
firm, clear, and familiar intuitions. I have devoted a great deal of attention
to bringing out the meaningfulness of algebraic concepts, by tracing these
concepts to their origins in classical algebra and at the same time exploring
their connections with other parts of mathematics, especially geometry,
number theory, and aspects of computation and equation-solving.

In an introductory chapter entitiled Why Abstract Algebra?, as well as
in numerous historical asides, concepts of abstract algebra are traced to the
historic context in which they arose. I have attempted to show that they
arose without artifice, as a natural response to particular needs, in the
course of a natural process of evolution. Furthermore, I have endeavored to
bring to light, explicitly, the intuitive content of the algebraic concepts used
in this book. Concepts are more meaningful to students when the students
are able to represent those concepts in their minds by clear and familiar
mental images. Accordingly, the process of concrete concept-formation is
developed with care throughout this book.

XIII



xiv PREFACE

I have deliberately avoided a rigid conventional format, with its suc-
cession of definition, theorem, proof, corollary, example. In my experience,
that kind of format encourages some students to believe that mathematical
concepts have a merely conventional character, and may encourage rote
memorization. Instead, each chapter has the form of a discussion with the
student, with the accent on explaining and motivating.

In an effort to avoid fragmentation of the subject matter into loosely
related definitions and results, each chapter is built around a central theme,
and remains anchored to this focal point. In the later chapters, especially,
this focal point is a specific application or use. Details of every topic are
then woven into the general discussion, so as to keep a natural flow of ideas
running through each chapter.

The arrangement of topics is designed to avoid tedious proofs and
long-winded explanations. Routine arguments are worked into the dis-
cussion whenever this seems natural and appropriate, and proofs to theor-
ems are seldom more than a few lines long. (There are, of course, a few
exceptions to this.) Elementary background material is filled in as it is

needed. For example, a brief chapter on functions precedes the discussion of
permutation groups, and a chapter on equivalence relations and partitions
paves the way for Lagrange's theorem.

This book addresses itself especially to the average student, to enable
him or her to learn and understand as much algebra as possible. In scope
and subject-matter coverage, it is no different from many other standard
texts. It begins with the promise of demonstrating the unsolvability of the
quintic, and ends with that promise fulfilled. Standard topics are discussed
in their usual order, and many advanced and peripheral subjects are intro-
duced in the exercises, accompanied by ample instruction and commentary.

I have included a copious supply of exercises — probably more ex-
ercises than in other books at this level. They are designed to offer a wide
range of experiences to students at different levels of ability. There is some
novelty in the way the exercises are organized: at the end of each chapter,
the exercises are grouped into Exercise Sets, each Set containing about six
to eight exercises and headed by a descriptive title. Each Set touches upon
an idea or skill covered in the chapter.

The first few Exercise Sets in each chapter contain problems which are
essentially computational or manipulative. Then, there are two or three Sets
of simple proof-type questions, which require mainly the ability to put
together definitions and results with understanding of their meaning. After
that, I have endeavored to make the exercises more interesting by arranging
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them so that in each Set a new result is proved, or new light is shed on the
subject of the chapter.

As a rule, all the exercises have the same weight: very simple exercises
are grouped together as parts of a single problem, and conversely, problems
which require a complex argument are broken into several subproblems
which the student may tackle in turn. I have selected mainly problems
which have intrinsic relevance, and are not merely drill, on the premiss that
this is much more satisfying to the student.
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CHAPTER

ONE
WHY ABSTRACT ALGEBRA?

When we open a textbook of abstract algebra for the first time and peruse
thc table of contents, we are struck by the unfamiliarity of almost every
topic we see listed. Algebra is a subject we know well, but here it looks
surprisingly different. What are these differences, and how fundamental are
they?

First, there is a major difference in emphasis. In elementary algebra we
learned the basic symbolism and methodology of algebra; we came to see
how problems of the real world can be reduced to sets of equations and
how these equations can be solved to yield numerical answers. This tech-
nique for translating complicated problems into symbols is the basis for all
further work in mathematics and the exact sciences, and is one of the
triumphs of the human mind. However, algebra is not only a technique, it is
also a branch of learning, a discipline, like calculus or physics or chemistry.
It is a coherent and unified body of knowledge which may be studied
systematically, starting from first principles and building up. So the first
difference between the elementary and the more advanced course in algebra

is that, whereas earlier we concentrated on technique, we will now develop
that branch of mathematics called algebra in a systematic way. Ideas and
general principles will take precedence over problem solving. (By the way,
this does not mean that modern algebra has no applications—quite the
opposite is true, as we will see soon.)

Algebra at the more advanced level is often described as modern or
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abstract algebra. in fact, both of these descriptions are partly misleading.
Some of the great discoveries in the upper reaches of present-day algebra
(for example, the so-called Galois theory) were known many years before
the American Civil War; and the broad aims of algebra today were clearly
stated by Leibniz in the seventeenth century. Thus, "modern" algebra is not
so very modern, after all! To what extent is it abstract? Well, abstraction is
all relative; one person's abstraction is another person's bread and butter.
The abstract tendency in mathematics is a little like the situation of chang-
ing moral codes, or changing tastes in music: What shocks one generation
becomes the norm in the next. This has been true throughout the history of
mathematics.

For example, 1000 years ago negative numbers were considered to be
an outrageous idea. After all, it was said, numbers are for counting: we may
have one orange, or two oranges, oranges at all; but how can we have
minus an orange? The logisticians, or professional calculators, of those days
used negative numbers as an aid in their computations; they considered
these numbers to be a useful fiction, for if you believe in them then every
linear equation ax + b = 0 has a solution (namely x = —h/a, provided
a 0). Even the great Diophantus once described the solution of
4x + 6 = 2 as an absurd number. The idea of a system of numeration which
included negative numbers was far too abstract for many of the learncd
heads of the tenth century!

The history of the complex numbers (numbers which involve \/1) is

very much the same. For hundreds of years, mathematicians refused to
accept them because they couldn't find concrete examples or applications.
(They are now a basic tool of physics.)

Set theory was considered to be highly abstract a few years ago, and so
were other commonplaces of today. Many of the abstractions of modern
algebra are already being used by scientists, engineers, and computer
specialists in their everyday work. They will soon be common fare, respect-
ably "concrete," and by then there will be new "abstractions."

Later in this chapter we will take a closer look at the particular brand
of abstraction used in algebra. We will consider how it came about and why
it is useful.

Algebra has evolved considerably, especially during the past 100 years.
its growth has been closely linked with the development of other branches
of mathematics, and it has been deeply influenced by philosophical ideas on
the nature of mathematics and the role of logic. To help us understand the
nature and spirit of modern algebra, we should take a brief look at its
origins.
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ORIGINS

The order in which subjects follow each other in our mathematical educa-
tion tends to repeat the historical stages in the evolution of mathematics. In
this scheme, elementary algebra corresponds to the great classical age of
algebra, which spans about 300 years from the sixteenth through the eight-
eenth centuries. It was during these years that the art of solving equations
became highly developed and modern symbolism was invented.

The word "algebra"—aljebr in Arabic— was first used by Mohammed
of Kharizm, who taught mathematics in Baghdad during the ninth century.
The word may be roughly translated as "reunion," and describes his
method for collecting the terms of an equation in order to solve it. It is an
amusing fact that the word "algebra" was first used in Europe in quite
another context. In Spain barbers were called algebristas, or bonesetters
(they reunited broken bones), because medieval barbers did bonesetting and
bloodletting as a sideline to their usual business.

The origin of the word clearly reflects the actual content of algebra at
that time, for it was mainly concerned with ways of solving equations. In
fact, Omar Khayyam, who is best remembered for his brilliant verses on
wine, song, love, and friendship which are collected in the Rubaiyat—but
who was also a great mathematician—explicitly defined algebra as the
science of solving equations.

Thus, as we enter upon the threshold of the classical age of algebra, its
central theme is clearly identified as that of solving equations. Methods of
solving the linear equation ax + h 0 and the quadratic ax2 + hc + c = 0

were well known even before the Greeks. But nobody had yet found a
general solution for cubic equations

x3 + ax2 + bx = c

or quartic (fourth-degree) equations

x4 + ax3 + bx2 + cx = d

This great accomplishment was the triumph of sixteenth century algebra.
The setting is Italy and the time is the Renaissance—an age of high

adventure and brilliant achievement, when the wide world was reawakening
after the long austerity of the Middle Ages. America had just been dis-
covered, classical knowledge had been brought to light, and prosperity had
returned to the great cities of Europe. It was a heady age when nothing
seemed impossible and even the old barriers of birth and rank could be
overcome. Courageous individuals set out for great adventures in the far



4 CHAPTER ONE

corners of the earth, while others, now confident once again of the power of
the human mind, were boldly exploring the limits of knowledge in the
sciences and the arts. The ideal was to be bold and many-faceted, to "know
something of everything, and everything of at least one thing." The great
traders were patrons of the arts, the finest minds in science were adepts at
political intrigue and high finance. The study of algebra was reborn in this
lively milieu.

Those men who brought algebra to a high level of perfection at the
beginning of its classical age—all typical products of the Italian
Renaissance—were as colorful and extraordinary a lot as have ever ap-
peared in a chapter of history. Arrogant and unscrupulous, brilliant, flam-
boyant, swaggering, and remarkable, they lived their lives as they did their
work: with style and panache, in brilliant dashes and inspired leaps of the
imagination.

The spirit of scholarship was not exactly as it is today. These men,
instead of publishing their discoveries, kept them as well-guarded secrets to
be used against each other in problem-solving competitions. Such contests
were a popular attraction: heavy bets were made on the rival parties, and
their reputations (as well as a substantial purse) depended on the outcome.

One of the most remarkable of these men was Girolamo Cardan.
Cardan was born in 1501 as the illegitimate son of a famous jurist of the
city of Pavia. A man of passionate contrasts, he was destined to become
famous as a physician, astrologer, and mathematician—and notorious as a
compulsive gambler, scoundrel,, and heretic. After he graduated in medicine,
his efforts to build up a medical practice were so unsuccessful that he and
his wife were forced to seek refuge in the poorhouse. With the help of
friends he became a lecturer in mathematics, and, after he cured the child of
a senator from Milan, his medical career also picked up. He was finally
admitted to the college of physicians and soon became its rector. A brilliant
doctor, he gave the first clinical description of typhus fever, and as his fame
spread he became the personal physician of many of the high and mighty of
his day.

Cardan's early interest in mathematics was not without a practical side.
As an inveterate gambler he was fascinated by what he recognized to be the
laws of chance. He wrote a gamblers' manual entitled Book on Games of
Chance, which presents the first systematic computations of probabilities.
He also needed mathematics as a tool in casting horoscopes, for his fame as
an astrologer was great and his predictions were highly regarded and
sought after. His most important achievement was the publication of a
book called Ars Magna (The Great Art), in which he presented sys-
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tematically all the algebraic knowledge of his time. However, as already
stated, much of this knowledge was the personal secret of its practitioners,
and had to be wheedled out of them by cunning and deceit. The most
important accomplishment of the day, the general solution of the cubic
equation which had been discovered by Tartaglia, was obtained in that
fashion.

Tartaglia's life was as turbulent as any in those days. Born with the
name of Niccolô Fontana about 1500, he was present at the occupation of
Brescia by the French in 1512. He and his father fled with many others into
a cathedral for sanctuary, but in the heat of battle the soldiers massacred
thc hapless citizens even in that holy place. The father was killed, and the
boy, with a split skull and a deep saber cut across his jaws and palate, was
lcft for dead. At night his mother stole into the cathedral and managed to
carry him off; miraculously he survived. The horror of what he had wit-
nessed caused him to stammer for the rest of his life, earning him thc
nickname Tartaglia, "the stammerer," which he eventually adopted.

Tartaglia received no formal schooling, for that was a privilege of rank
and wealth. However, he taught himself mathematics and became one of the
most gifted mathematicians of his day. He translated Euclid and Archi-
medes and may be said to have originated the science of ballistics, for he
wrote a treatise on gunnery which was a pioneering effort on the laws of
falling bodies.

In 1535 Tartaglia found a way of solving any cubic equation of the
form x3 + ax2 = b (that is, without an x term). When he announced his
accomplishment (without giving any details, of course), he was challenged
to an algebra contest by a certain Antonio Fior, a pupil of the celebrated
professor of mathematics Scipio del Ferro. Scipio had already found a
method for solving any cubic equation of the form x3 + ax = b (that is,
without an x2 term), and had confided his secret to his pupil Fior. It was
agreed that each contestant was to draw up 30 problems and hand the list
to his opponent. Whoever solved the greater number of problems would
receive a sum of money deposited with a lawyer. A few days before the
contest, Tartaglia found a way of extending his method so as to solve any
cubic equation. In less than 2 hours he solved all his opponent's problems,
while his opponent failed to solve even one of those proposed by Tartaglia.

For some time Tartaglia kept his method for solving cubic equations to
himself, but in the end he succumbed to Cardan's accomplished powers of
persuasion. Influenced by Cardan's promise to help him become artillery
adviser to the Spanish army, he revealed the details of his method to
Cardan under the promise of strict secrecy. A few years later, to Tartaglia's
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unbelieving amazement and indignation, Cardan published Tartaglia's
method in his book Ars Magna. Even though he gave Tartaglia full credit
as the originator of the method, there can be no doubt that he broke his
solemn promise. A bitter dispute arose between the mathematicians, from
which Tartaglia was perhaps lucky to escape alive. He lost his position as
public lecturer at Brescia, and lived out his remaining years in obscurity.

The next great step in the progress of algebra was made by another
member of the same circle. It was Ludovico Ferrari who discovered the
general method for solving quartic equations—equations of the form

x4 + ax3 + bx2 + cx = d

Ferrari was Cardan's personal servant. As a boy in Cardan's service he
learned Latin, Greek, and mathematics. He won fame after defeating Tar-
taglia in a contest in 1548, and received an appointment as supervisor of tax
assessments in Mantua. This position brought him wealth and influence,
but he was not able to dominate his own violent, blasphemous disposition.
He quarreled with the regent of Mantua, lost his position, and died at the
age of 43. Tradition has it that he was poisoned by his sister.

As for Cardan, after a long career of brilliant and unscrupulous
achievement, his luck finally abandoned him. Cardan's son poisoned his
unfaithful wife and was executed in 1560. Ten years later, Cardan was
arrested for heresy because he published a horoscope of Christ's life. He
spent several months in jail and was released after renouncing his heresy
privately, but lost his university position and the right to publish books. He
was left with a small pension which had been granted to him, for some
unaccountable reason, by the Pope.

As this colorful time draws to a close, algebra emerges as a major
branch of mathematics. It became clear that methods can be found to solve
many different types of equations. In particular, formulas had been dis-
covered which yielded the roots of all cubic and quartic equations. Now the
challenge was clearly out to take the next step, namely to find a formula for
the roots of equations of degree 5 or higher (in other words, equations with
an x5 term, or an x6 term, or higher). During the next 200 years, there was
hardly a mathematician of distinction who did not try to solve this prob-
lem, but none succeeded. Progress was made in new parts of algebra, and
algebra was linked to geometry with the invention of analytic geometry.
But the problem of solving equations of degree higher than 4 remained
unsettled. It was, in the expression of Lagrange, "a challenge to the human
mind."

It was therefore a great surprise to all mathematicians when in 1824 the
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work of a young Norwegian prodigy named Niels Abel came to light. In his
work, Abel showed that there does not exist any formula (in the convention-
al sense we have in mind) for the roots of an algebraic equation whose
degree is 5 or greater. This sensational discovery brings to a close what is
called the classical age of algebra. Throughout this age algebra was con-
ceived essentially as the science of solving equations, and now the outer
limits of this quest had apparently been reached. In the years ahead, algebra
was to strike out in new directions.

THE MODERN AGE

About the time Niels Abel made his remarkable discovery, several math-
ematicians, working independently in different parts of Europe, began rais-
ing questions about algebra which had never been considered before. Their
researches in different branches of mathematics had led them to investigate
"algebras" of a very unconventional kind—and in connection with these
algebras they had to find answers to questions which had nothing to do
with solving equations. Their work had important applications, and was
soon to compel mathematicians to greatly enlarge their conception of what
algebra is about.

The new varieties of algebra arose as a perfectly natural development in
connection with the application of mathematics to practical problems. This
is certainly true for the example we are about to look at first.

The Algebra of Matrices

A matrix is a rectangular array of numbers such as

(2 II —3

k\9 0.5 4

Such arrays come up naturally in many situations, for example, in the
solution of simultaneous linear equations. The above matrix, for instance, is
the matrix of coefficients of the pair of equations

2x+ lly—3z=O

9x + O.Sy + 4z = 0

Since the solution of this pair of equations depends only on the coefficients,
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we may solve it by working on the matrix of coefficients alone and ignoring
everything else.

We may consider the entries of a matrix to be arranged in rows and
columns; the above matrix has two rows which are

(2 11 —3) and (9 0.5 4)

and three columns which are

(2\ (tt\ (—3
I

a 2 x 3 matrix.
To simplify our discussion, we will consider only 2 x 2 matrices in the

remainder of this section.
Matrices are added by adding corresponding entries:

(a (a' b'\ (a+a' b+h'
1+1 1=1\c dj \c dj \c+c d+d

The matrix
0

\0 0

is called the zero matrix and behaves, under addition, like the number zero.
The multiplication of matrices is a little more difficult. First, let us

recall that the dot product of two vectors (a, h) and (a', h') is

(a, b) . (a', b') = ad + bb'

that is, we multiply corresponding components and add. Now, suppose we
want to multiply two matrices A and B; we obtain the product AB as
follows:

The entry in the first row and first column of AB, that is, in this
position

is equal to the dot product of thìe first row of A by the first column of B.
The entry in the first row arid second column of AB, in other words, this
position

HR
is equa! to the dot product of the first row of A by the second column of B.
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And so on. For example,

) 3)
So finally,

(1 2'\(l 1\ (5 1

U oA2 o)U 3
The rules of algebra for matrices are very different from the rules of

"conventional" algebra. For instance, the commutative law of multi-
plication, AB = BA, is not true. Here is a simple example:

(1 l'\ (2 l'\ (2 2'\ (1 i\(i
lAl 1) oAi 1

A B AB BA B A

If A is a real number and A2 = 0, then necessarily A = 0; but this is not
true of matrices. For example,

(1 —'Vi —"\ (0 0

k\1 —iAi 0

A A

that is, A2 = 0 although A 0.

In the algebra of numbers, if AB = AC where A # 0, we may cancel A
and conclude that B = C. In matrix algebra we cannot. For example,

(0 o'\(1 P\ (0 o\ (0 oyo 0
'A' I,1k\i iAi i

A B A C

that is, AB = AC, A 0, yet B C.

The identity matrix

(1 0
1=1

\0 1

corresponds in matrix multiplication to the number 1; for we have
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Al = IA = A for every 2 x 2 matrix A. If A is a number and A2 = 1, we
conclude that A = ± 1. Matrices do not obey this rule. For example,

(1 oyi o'\(i 0

-iAi 1

A A I

that is, A2 = I, and yet A is neither I nor — I.

No more will be said about the algebra of matrices at this point, except
that we must be aware, once again, that it is a new game whose rules are
quite different from those we apply in conventional algebra.

Boolean Algebra

An even more bizarre kind of algebra was developed in the mid-nineteenth
century by an Englishman named George Boole. This algebra—sub-•
sequently named boolean algebra after its inventor—has a myriad of appli-
cations today. It is formally the same as the algebra of sets.

If S is a set, we may consider union and intersection to be operations on
the subsets of S. Let us agree provisionally to write

A+B for AuB

and AB for AnB
(This convention is not unusual.) Then,

A+B=B+A
A (B + C) = B + C

A+Ø=A AØ=Ø
and so on.

These identities are analogous to the ones we use in elementary algebra.
But the following identities are also true, and they have no counterpart in
conventional algebra:

A + C) = (A + B)' (A + C)

A+A=A AA=A
(A+B)A=A (A'B)+A=A

and so on.
This unusual algebra has become a familiar tool for people who work

with electrical networks, computer systems, codes, and so on. It is as differ-
ent from the algebra of numbers as it is from the algebra of matrices.
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Other exotic algebras arose in a variety of contexts, often in connection
with scientific problems. There were "complex" and "hypercomplex" al-
gebras, algebras of vectors and tensors, and many others. Today it is esti-
mated that over 200 different kinds of algebraic systems have been studied,
each of which arose in connection with some application or specific need.

Algebraic Structures

As legions of new algebras began to occupy the attention of mathema-
ticians, the awareness grew that algebra can no longer be conceived merely
as the science of solving equations. It had to be viewed much more broadly
as a branch of mathematics capable of revealing general principles which
apply equally to all known and all possible algebras.

What is it that all algebras have in common? What trait do they share
which lets us refer to all of them as "algebras"? In the most general sense,
every algebra consists of a set (a set of numbers, a set of matrices, a set of
switching components, or any other kind of set) and certain operations on
that set. An operation is simply a way of combining any two members of a
set to produce a unique third member of the same set.

Thus, we are led to the modern notion of algebraic structure. An alge-
braic structure is understood to be an arbitrary set, with one or more
operations defined on it. And algebra, then, is defined to be the study of
algebraic structures.

It is important that we be awakened to the full generality of the notion
of algebraic structure. We must make an effort to discard all our precon-
ceived notions of what an algebra is, and look at this new notion of alge-
braic structure in its naked simplicity. Any set, with a rule (or rules) for
combining its elements, is already an algebraic structure. There does not
need to be any connection with known mathematics. For example, consider
the set of all colors (pure colors as well as color combinations), and the
operation of mixing any two colors to produce a new color. This may be
conceived as an algebraic structure. It obeys certain rules, such as the
commutative law (mixing red and blue is the same as mixing blue and red).
In a similar vein, consider the set of all musical sounds with the operation
of combining any two sounds to produce a new (harmonious or dis-
harmonious) combination.

As another example, imagine that the guests at a family reunion have
made up a rule for picking the closest common relative of any two persons
present at the reunion (and suppose that, for any two people at the reunion,
their closest common relative is also present at the reunion). This, too, is an
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algebraic structure: we have a set (namely the set of persons at the reunion)
and an operation on that set (namely the "closest common relative" oper-
ation).

As the general notion of algebraic structure became more familiar (it
was not fully accepted until the early part of the twentieth century), it was
bound to have a profound influence on what mathematicians perceived
algebra to he. In the end it became clear that the purpose of algebra is to
study algebraic structures, and nothing less than that. Ideally it should aim
to be a general science of algebraic structures whose results should have
applications to particular cases, thereby making contact with the older
parts of algebra. Before we take a closer look at this program, we must
briefly examine another aspect of modern mathematics, namely the increas-
ing use of the axiomatic method.

AXIOMS AND MEN

The axiomatic method is beyond doubt the most remarkable invention of
antiquity, and in a sense the most puzzling. It appeared suddenly in Greek
geometry in a highly developed form—already sophisticated, elegant, and
thoroughly modern in style. Nothing seems to have foreshadowed it and it
was unknown to ancient mathematicians before the Greeks. It appears for
the first time in the light of history in that great textbook of early geometry,
Euclid's Elements. Its origins—the first tentative experiments in formal de-
ductive reasoning which must have preceded it—remain steeped in mystery.

Euclid's Elements embodies the axiomatic method in its purest form.
This amazing book contains 465 geometric propositions, some fairly simple,
some of astounding complexity. What is really remarkable, though, is that
the 465 propositions, forming the largest body of scientific knowledge in the
ancient world, are derived logically from only 10 premises which would
pass as trivial observations of common sense. Typical of the premises are
the following:

Things equal to the same thing are equal to each other.
The whole is greater than the part.
A straight line can be drawn through any two points.
All right angles are equal.

So great was the impression made by Euclid's Elements on following gener-
ations that it became the model of correct mathematical form and remains
so to this day.
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It would be wrong to believe there was no notion of demonstrative
mathematics before the time of Euclid. There is evidence that the earliest
geometers of the ancient Middle East used reasoning to discover geometric
principles. They found proofs and must have hit upon many of the same
proofs we find in Euclid. The difference is that Egyptian and Babylonian
mathematicians considered logical demonstration to be an auxiliary pro-
cess, like the preliminary sketch made by artists—a private mental process
which guided them to a result but did not deserve to be recorded. Such an
attitude shows little understanding of the true nature of geometry and does
not contain the seeds of the axiomatic method.

It is also known today that many—maybe most—of the geometric
theorems in Euclid's Elements came from more ancient times, and were
probably borrowed by Euclid from Egyptian and Babylonian sources.
However, this does not detract from the greatness of his work. Important as
are the contents of the Elements, what has proved far more important for
posterity is the formal manner in which Euclid presented these contents.
The heart of the matter was the way he organized geometric facts—
arranged them into a logical sequence where each theorem builds on pre-
ceding theorems and then forms the logical basis for other theorems.

(We must carefully note that the axiomatic method is not a way of
discovering facts but of organizing them. New facts in mathematics are
found, as often as not, by inspired guesses or experienced intuition. To be
accepted, however, they should be supported by proof in an axiomatic
system.)

Euclid's Elements has stood throughout the ages as the model of orga-
nized, rational thought carried to its ultimate perfection. Mathematicians
and philosophers in every generation have tried to imitate its lucid per-
fection and flawless simplicity. Descartes and Leibniz dreamed of orga-
nizing all human knowledge into an axiomatic system, and Spinoza created
a deductive system of ethics patterned after Euclid's geometry. While many
of these dreams have proved to be impractical, the method popularized by
Euclid has become the prototype of modern mathematical form. Since the
middle of the nineteenth century, the axiomatic method has been accepted
as the only correct way of organizing mathematical knowledge.

To perceive why the axiomatic method is truly central to mathematics,
we must keep one thing in mind: mathematics by its nature is essentially
abstract. For example, in geometry straight lines are not stretched threads,
but a concept obtained by disregarding all the properties of stretched
threads except that of extending in one direction. Similarly, the concept of a
geometric figure is the result of idealizing from all the properties of actual
objects and retaining only their spatial relationships. Now, since the objects
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of mathematics are abstractions, it stands to reason that we must acquire
knowledge about them by logic and not by observation or experiment (for
how can one cxperiment with an abstract thought?).

This remark applies very aptly to modern algebra. The notion of alge-
braic structure is obtained by idealizing from all particular, concrete sys-
tems of algebra. We choose to ignore the properties of the actual objects in
a system of algebra (they may be numbers, or matrices, or whatever—we
disregard what they are), and we turn our attention simply to the way they
combine under the given operations. In fact, just as we disregard what the
objects in a system are, we also disregard what the operations do to them.
We retain only the equations and inequalities which hold in the system, for
only these are relevant to algebra. Everything else may be discarded. Fin-
ally, equations and inequalities may be deduced from one another logically,
just as spatial relationships are deduced from each other in geometry.

THE AXIOMATICS OF ALGEBRA

Let us remember that in the mid-nineteenth century, when eccentric new
algebras seemed to show up at every turn in mathematical research, it was
finally understood that sacrosanct laws such as the identities ab = ba and
a(bc) = (ab)c are not inviolable—for there are algebras in which they do not
hold. By varying or deleting some of these identities, or by replacing them
by new ones, an enormous variety of new systems can be created.

Most importantly, mathematicians slowly discovered that all the alge-
braic laws which hold in any system can be derived from a few simple, basic
ones. This is a genuinely remarkable fact, for it parallels the discovery made
by Euclid that a few very simple geometric postulates are sufficient to prove
all the theorems of geometry. As it turns out, then, we have the same
phenomenon in algebra: a few simple algebraic equations offer themselves
naturally as axioms, and from them all other facts may be proved.

These basic algebraic laws are familiar to most high school students
today. We list them here for reference. We assume that A is any set and
there is an operation on A which we designate with the symbol *.

a*h=h*a (1)

If Equation (1) is true for any two elements a and h in A, we say that the
operation is commutative. What it means, of course, is that the value of
a * b (or b * a) is independent of the order in which a and b are taken.

a*(b*c)=(a*h)*c (2)
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If Equation (2) is true for any three elements a, h, and c in A, We say the
operation * is associative. Remember that an operation is a rule for
combining any two elements, so if Want to combine three elements, we
can do so in different ways. If We want to Combine a, b, and c without
changing their order, We may either combine a With the result of combining
b and c, Which produces a * (b * c); or we may first combine a with b, and
then combine the result with c, producing (a * b) * c. The associative law
asserts that these two possible ways of combining three elements (without
changing their order) yield the same result.

There exists an element e in A such that
(3)

e*a=a and a*e=a foreveryainA

If such an element e exists in A, we call it an identity element for the
operation *. An identity element is sometimes called a "neutral" element,
for it may be combined with any element a without altering a. For example,
o is an identity element for addition, and I is an identity element for
multiplication.

For every element a in A, there is an element a ("a inverse")
in A such that (4)

a*a'=e and a'*a=e
If statement (4) is true in a system of algebra, we say that every element has
an inverse with respect to the operation *. The meaning of the inverse
should be clear: the combination of any element with its inverse produces
the neutral element (one might roughly say that the inverse of a "neutral-
izes" a). For example, if A is a set of numbers and the operation is addition,
then the inverse of any number a is (—a); if the operation is multiplication,
the inverse of any a # 0 is 1/a.

Let us assume now that the same set A has a second operation, sym-
bolized by I, as well as the operation *.

a*(b±c)=(a*b)I(a*c) (5)

If Equation (5) holds for any three elements a, b, and c in A, we say that * is

distributive over I. If there are two operations in a system, they must
interact in some way; otherwise there would be no need to consider them
together. The distributive law is the most common way (but not the only
possible one) for two operations to be related to one another.

There are other "basic" laws besides the five we have just seen, but
these are the most common ones. The most important algebraic systems
have axioms chosen from among them. For example, when a mathema-
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tician nowadays speaks of a ring, the mathematician is referring to a set A
with two operations, usually symbolized by + and , having the following
axioms:

Addition is commutative and associative, it has a neutral element coni-
monly symbolized by 0, and every element a has an inverse — a with
respect to addition. Multiplication is associative, has a neutral element 1,
and is distributive over addition.

Matrix algebra is a particular example of a ring, and all the laws of matrix
algebra may be proved from the preceding axioms. However, there are
many other examples of rings: rings of numbers, rings of functions, rings of
code "words," rings of switching components, and a great many more.
Every algebraic law which can be proved in a ring (from the preceding
axioms) is true in every example of a ring. In other words, instead of
proving the same formula repeatedly—once for numbers, once for matrices,
once for switching components, and so on—it is sufficient nowadays to
prove only that the formula holds in rings, and then of necessity it will be
true in all the hundreds of different concrete examples of rings.

By varying the possible choices of axioms, we can keep creating new
axiomatic systems of algebra endlessly. We may well ask: is it legitimate to
study any axiomatic system, with any choice of axioms, regardless of useful-
ness, relevance, or applicability? There are "radicals" in mathematics who
claim the freedom for mathematicians to study any system they wish, with-
out the need to justify it. However, the practice in established mathematics
is more conservative: particular axiomatic systems are investigated on ac-
count of their relevance to new and traditional problems and other parts of
mathematics, or because they correspond to particular applications.

In practice, how is a particular choice of algebraic axioms made? Very
simply: when mathematicians look at different parts of algebra and notice
that a common pattern of proofs keeps recurring, and essentially the same
assumptions need to be made each time, they find it natural to single out
this choice of assumptions as the axioms for a new system. All the import-
ant new systems of algebra were created in this fashion.

ABSTRACTION REVISITED

Another important aspect of axiomatic mathematics is this: when we cap-
ture mathematical facts in an axiomatic system, we never try to reproduce
the facts in full, but only that side of them which is important or relevant in
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a particular context. This process of selecting what is relevant and disregard-
ing everything else is the very essence of abstraction.

This kind of abstraction is so natural to us as human beings that we
practice it all the time without being aware of doing so. Like the Bourgeois
Gentleman in Moliere's play who was amazed to learn that he spoke in
prose, some of us may be surprised to discover how much we think in
abstractions. Nature presents us with a myriad of interwoven facts and
sensations, and we are challenged at every instant to single out those which
are immediately relevant and discard the rest. In order to make our sur-
roundings comprehensible, we must continually pick out certain data and
separate them from everything else.

For natural scientists, this process is the very core and essence of what
they do. Nature is not made up of forces, velocities, and moments of inertia.
Nature is a whole—nature simply is! The physicist isolates certain aspects
of nature from the rest and finds the laws which govern these abstractions.

It is the same with mathematics. For example, the system of the integers
(whole numbers), as known by our intuition, is a complex reality with many
facets. The mathematician separates these facets from one another and
studies them individually. From one point of view the set of the integers,
with addition and multiplication, forms a ring (that is, it satisfies the axioms
stated previously). From another point of view it is an ordered set, and
satisfies special axioms of ordering. On a different level, the positive integers
form the basis of "recursion theory," which singles out the particular way
positive integers may be constructed, beginning with I and adding I each
time.

It therefore happens that the traditional subdivision of mathematics
into subject matters has been radically altered. No longer are the integers
one subject, complex numbers another, matrices another, and so on; in-
stead, particular aspects of these systems are isolated, put in axiomatic form,
and studied abstractly without reference to any specific objects. The other
side of the coin is that each aspect is shared by many of the traditional
systems: for example, algebraically the integers form a ring, and so do the
complex numbers, matrices, and many other kinds of objects.

There is nothing intrinsically new about this process of divorcing
properties from the actual objects having the properties; as we have seen, it
is precisely what geometry has done for more than 2000 years. Somehow, it
took longer for this process to take hold in algebra.

The movement toward axiomatics and abstraction in modern algebra
began about the I 830s and was completed 100 years later. The movement
was tentative at first, not quite conscious of its aims, but it gained
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momentum as it converged with similar trends in other parts of mathemat-
ics. The thinking of many great mathematicians played a decisive role, but
none left a deeper or longer lasting impression than a very young French-
man by the name of Evariste Galois.

The story of Evariste Galois is probably the most fantastic and tragic in
the history of mathematics. A sensitive and prodigiously gifted young man,
he was killed in a duel at the age of 20, ending a life which in its brief span
had offered him nothing but tragedy and frustration. When he was only a
youth his father commited suicide, and Galois was left to fend for himself in
the labyrinthine world of French university life and student politics. He was
twice refused admittance to the École Polytechnique, the most prestigious
scientific establishment of its day, probably because his answers to the
entrance examination were too original and unorthodox. When he pre-
sented an early version of his important discoveries in algebra to the great
academician Cauchy, this gentleman did not read the young student's
paper, but lost it. Later, Galois gave his results to Fourier in the hope of
winning the mathematics prize of the Academy of Sciences. But Fourier
died, and that paper, too, was lost. Another paper submitted to Poisson was
eventually returned because Poisson did not have the interest to read it
through.

Galois finally gained admittance to the École Normale, another focal
point of research in mathematics, but he was soon expelled for writing an
essay which attacked the king. He was jailed twice for political agitation in
the student world of Paris. In the midst of such a turbulent life, it is hard to
believe that Galois found time to create his colossally original theories on
algebra.

What Galois did was to tie in the problem of finding the roots of
equations with new discoveries on groups of permutations. He explained
exactly which equations of degree 5 or higher have solutions of the tradi-
tional kind—and which others do not. Along the way, he introduced some
amazingly original and powerful concepts, which form the framework of
much algebraic thinking to this day. Although Galois did not work ex-
plicitly in axiomatic algebra (which was unknown in his day), the abstract
notion of algebraic structure is clearly prefigured in his work.

In 1832, when Galois was only 20 years old, he was challenged to a
duel. What argument led to the challenge is not clear: some say the issue
was political, while others maintain the duel was fought over a fickle lady's
wavering love. The truth may never be known, but the turbulent, brilliant,
and idealistic Galois died of his wounds. Fortunately for mathematics, the
night before the duel he wrote down his main mathematical results and
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entrusted them to a friend. This time, they weren't lost—but they were only
published 15 years after his death. The mathematical world was not ready
for them before then!

Algebra today is organized axiomatically, and as such it is abstract.
Mathematicians study algebraic structures from a general point of view,
compare different structures, and find relationships between them. This
abstraction and generalization might appear to be hopelessly impractical—
but it is not! The general approach in algebra has produced powerful new
methods for "algebraizing" different parts of mathematics and science, for-
mulating problems which could never have been formulated before, and
finding entirely new kinds of solutions.

Such excursions into pure mathematical fancy have an odd way of
running ahead of physical science, providing a theoretical framework to
account for facts even before those facts are fully known. This pattern is so
characteristic that many mathematicians see themselves as pioneers in a
world of possibilities rather than facts. Mathematicians study structure inde-
pendently of content, and their science is a voyage of exploration through
all the kinds of structure and order which the human mind is capable of
discerning.



CHAPTER

TWO
OPERATIONS

Addition, subtraction, multiplication, division—these and many others are
familiar examples of operations on appropriate sets of numbers.

Intuitively, an operation on a set A is a way of combining any two
elements of A to produce another element in the same set A.

Every operation is denoted by a symbol, such as +, x, or --. In this
book we will look at operations from a lofty perspective; we will discover
facts pertaining to operations generally rather than to specific operations on
specific sets. Accordingly, we will sometimes make up operation symbols
such as * and 0 to refer to arbitrary operations on arbitrary sets.

Let us now define formally what we mean by an operation on a set A.
Let A be any set:

An operation * on A is a rule which assigns to each ordered pair (a, b) of
elements of A exactly one element a * b in A.

There are three aspects of this definition which need to be stressed:

a * b is defined for every ordered pair (a, b) of elements of A. (1)

There are many rules which look deceptively like operations but are not,
because this condition fails. Often a * b is defined for all the obvious
choices of a and b, but remains undefined in a few exceptional cases. For
example, division does not qualify as an operation on the set Ilk of the real
numbers, for there are ordered pairs such as (3, 0) whose quotient 3/0 is
undefined. In order to be an operation on Ilk, division would have to associ-
ate a real number a/b with every ordered pair (a, h) of elements of Ilk. No
exceptions allowed!

a * h must he uniquely defined. (2)

20



OPERATIONS 21

In other words, the value of a * h must be given unambiguously. For exam-
ple, one might attempt to define an operation U on the set l1 of the real
numbers by letting a E b be the number whose square is ab. Obviously this
is ambiguous because 2 fl 8, let us say, may be either 4 or —4. Thus, fl
does not qualify as an operation on

Ifaandbare in A,a*bmust he in A. (3)

This condition is often expressed by saying that A is closed under the
operation *. If we propose to define an operation * on a set A, we must take
care that *, when applied to elements of A, does not take us out of A. For
example, division cannot be regarded as an operation on the set of the
integers, for there are pairs of integers such as (3, 4) whose quotient 3/4 is

not an integer.

On the other hand, division does qualify as an operation on the set of
all the positive real nunthers, for the quotient of any two positive real num-
bers is a uniquely determined positive real number.

An operation is any rule which assigns to each ordered pair of elements
of A a unique element in A. Therefore it is obvious that there are, in
general, many possible operations on a given set A. If, for example, A is a
set consisting of just two distinct elements, say a and h, each operation on A
may be described by a table such as this one:

(x,y) x*y

(a, a)
(a, h)

(b, a)

(h, h)

In the left column are listed the four possible ordered pairs of elements of A,
and to the right of each pair (x, y) is the value of x * y. Here are a few of
the possible operations:

(a,a) a (a,a) a (a,a) b (a,a) b

(a,b) a (a,b) b (a,b) a (a,b) h

(h,a) a (b,a) a (b,a) b (b,a) b

(h,h) a (h,b) b (h,b) a (b,b) a

Each of these tables describes a different operation on A. Each table has
four rows, and each row may be filled with either an a or a b; hence there
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are 16 possible ways of filling the table, Corresponding to 16 possible oper-
ations on the set A.

We have already seen that any operation on a set A comes with Certain
"options." An operation * may be commutative, that is, it may satisfy

a*b=h*a (4)

for any two elements a and b in A. It may be associative, that is, it may
satisfy the equation

(a*b)*c=a*(b*c) (5)

for any three elements a, h, and c in A.
To understand the importance of the associative law, we must re-

member that an operation is a way of combining two elements; so if we
want to combine three elements, we can do so in different ways. If we want
to combine a, h, and c without changing their order, we may either combine
a with the result of combining b and c, which produces a * (b * c); or we
may first combine a with h, and then combine the result with c, producing
(a * b) * c. The associative law asserts that these two possible ways of com-
bining three elements (without changing their order) produce the same
result.

I- or example, the addition of real numbers is associative because
a + (b + c) = (a + h) + c. However, division of real numbers is not associ-
ative: for instance, 3/(4/5) is 15/4, whereas (3/4)/S is 3/20.

If there is an element e in A with the property that

e*a=a and a*e=a foreveryelementainA (6)

then e is called an identity or "neutral" element with respect to the oper-
ation *. Roughly speaking, Equation (6) tells us that when e is combined
with any element a, it does not change a. For example, in the set R of the
real numbers, 0 is a neutral element for addition, and 1 is a neutral element
for multiplication.

If a is any element of A, and x is an element of A such that

a*x=e and x*a=e (7)

then x is called an inverse of a. Roughly speaking, Equation (7) tells us that
when an element is combined with its inverse it produces the neutral el-
ement. For example, in the set P of the real numbers, — a is the inverse of a
with respect to addition; if a #0, then 1/a is the inverse of a with respect to
multiplication.

The inverse of a is often denoted by the symbol a'.
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EXERCISES

Throughout this book, the exercises are grouped into Exercise Sets, each Set being
identified by a letter A, B, C, etc. and headed by a descriptive title. Each Exercise Set
contains six to ten exercises, numbered consecutively. Generally, the exercises in each
Set are independent of each other and may he done separately. However, when the
exercises in a Set are related, with some exercises building on preceding ones, so
they must be done in sequence, this is indicated with a symbol t in the margin to the
left of the heading.

A. Examples of Operations

Which of the following rules are operations on the indicated set? (1 designates the
set of the integers, 0 the rational numbers, and R the real numbers.) For each rule
which is not an operation, explain why it is not.

Example a * b = on the set /.
ah

SOLUTION This is not an operation on /. There are integers a and h such that
(a + h)/ab is not an integer. (For example,

2+3 5

23 6

is not an integer.) Thus, 1 is not dosed under *.

I a * h = on the set 0.
2 a * b = a In b, on the set {x a x > O}.

3 a * h is a root of the equation x2 — a2h2 = 0, on the set 01
4 Subtraction, on the set 1.
S Subtraction, on the set {n a 1: n s 0}.
6

B. Properties of Operations

Each of the following is an operation * on 01 Indicate whether or not
(i) it is commutative,

(ii) it is associative,
(iii) R has an identity element with respect to *
(iv) every x a R has an inverse with respect to *
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Instructions For (i), compute x * y and y * x, and verify whether or not they are
equal. For (ii), compute x * (y * z) and (x * y) * z, and verify whether or not they
are equal. For (iii), first solve the equation x * e = x fore; if the equation cannot be
solved, there is no identity element. If it can be solved, it is still necessary to check
that e * x = x * e = x for any x e Ft. If it checks, then e is an identity element. For
(iv), first note that if there is no identity element, there can be no inverses. If there is
an identity element e, first solve the equation x * x' e for x'; if the equation
cannot be solved, x does not have an inverse. If it can be solved, check to make sure
that x * = x' * x = e If this checks, x' is the inverse of x.

Example x * y = x + y + 1

Associative Commutative identity inverses

NoD YesH NoD Nofl NoD

(i) x * y = x + y + 1; y * x = y + x + I = x + y + I

(Thus, * is commutative.)

(ii) x * (y * z) = x * (y + z + 1) = x + (y + z + 1) + I = x + y + z + 2.
(x * y) * z = (x + y + 1) * z = (x + y + 1) + z + I = x + y + z + 2.

* is associative.)
(iii) Solve x * e = x for e: x * e = x + e + 1 = x; therefore, e = — 1.

Check. x*(—l)=x+(—1)+1=x; (—1)*x=(—I)+x+l=x.
Therefore, — I is the identity element.

(* has an identity element.)

(iv)Solvex*x'=—lforx': x*x'=x+x'+l=—l;therefore
x'=—x—2.Check:x*(—x—2)=x+(—x—2)+ 1=—I;
(—x —2) * x = (—x —2) + x + I = —1. Therefore, —x —2 is the inverse of x
(Every element has an inverse.)

1 x * y = 42 + y2

Commutative Associative identity inverses

YesD Nofl Yesfl NoD Yesfl Nofl YesD Nofl
(i) x * y = 42 + y2; y * x =
(ii) x*(y*z)=x*( )=

(x*y)*z=(
(iii) Solve x * e = x for e. Check
(iv) Solve x * x' = e for x'. Check.

2

Commutative Associative identity inverses

YesD NoD YesD Nofl Yesfl NoD Yesfl NoD
3 x * y = xy

I

Commutative Associative identity inverses

YesD Nofl Yesfl NoD YesD NoD Yesfl Nofl
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4 x*y=x—y
Commutative Associative identity inverses

Yesfl NoD Yesfl NoD YesO NoD YesD NoD
5 x * y = xy + 1

Commutative Associative identity inverses

YesD NoD Yesfl NOD YeSD NOD YesD NoD
6 x * y = max {x, y} = the larger of the two numbers x and y

Commutative Associative identity inverses

YesD NoD YesD NoD YesD NoD YesD NoD
xy7 x*y= x+y+1

Commutative Associative identity inverses

YesD NoD YesD NoD YesD NoD YesD NoD

C. Operations on a Two-Element Set

Let A be the two-element set A = {a, b}.

1 Write the tables of all 16 operations on A (Use the format explained on page 21)

Label these operations 01 to °16• Then:

2 Identify which of the operations 01 to 016 are commutative.
3 Identify which operations, among 01 to 016, are associative.
4 For which of the operations to 016 is there an identity element?
5 For which of the operations 01 to 016 does every element have an inverse?



CHAPTER

THREE
THE DEFINITiON OF GROUPS

One of the simplest and most basic of all algebraic structures is the group. A
group is defined to be a set with an operation (let us call it *) which is
associative, has a neutral element, and for which each element has an
inverse. More formally,

By a group we mean a set G with an operation * which satisfies the
axioms:
(G1) * is associative.
(G2) There is an element e in G such that a *e=a and e*a=afor

every element a in G.
(63) For every element a in G, there is an element a in G such that

a*a' *a=e.
The group we have just defined may be represented by the symbol

KG, *). This notation makes it explicit that the group consists of the set 6
and the operation *. (Remember that, in general, there are other possible
operations on G, so it may not always be clear which is the group's oper-
ation unless we indicate it.) If there is no danger of confusion, we shall
denote the group simply with the letter G.

The groups which come to mind most readily are found in our familiar
number systems. Here are a few examples.

1 is the symbol customarily used to denote the set

{..., —3, —2, —1,0, I,2,3,...}

26
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of the integers. The set Z, with the operation of addition, is obviously a
group. It is called the additive group of the integers and is

represented by the symbol <Z, +>. Mostly, we denote it simply by the
symbol 1.

0 designates the set of the rational numbers (that is, quotients rn/n of
integers, where n 0). This set, with the operation of addition, is called the
additive group of the rational numbers, <0, +>. Most often we denote it
simply by 0.

The symbol l1 represents the set of the real numbers. IL with the
operation of addition, is called the additive group of the real numbers, and is
represented by <IL +), or simply R.

The set of all the nonzero rational numbers is represented by This
set, with the operation of multiplication, is the group or simply
Similarly, the set of all the nonzero real numbers is represented by The
set with the operation of multiplication, is the group <lv, or simply

Finally, 0 + denotes the group of all the positive rational numbers, with
multiplication. denotes the group of all the positive real numbers, with
multiplication.

Groups occur abundantly in nature. This statement means that a great
many of the algebraic structures which can be discerned in natural phe-
nomena turn out to be groups. Typical examples, which we shall examine
later, come up in connection with the structure of crystals, patterns of
symmetry, and various kinds of geometric transformations. Groups are also
important because they happen to be one of the fundamental building
blocks out of which more complex algebraic structures are made.

Especially important in scientific applications are the finite groups, that
is, groups with a finite number of elements. It is not surprising that such
groups occur often in applications, for in most situations of the real world
we deal with only a finite number of objects.

The easiest finite groups to study are those called the groups of integers
modulo n (where n is any positive integer greater than 1). These groups will
be described in a casual way here, and a rigorous treatment deferred until
later.

Let us begin with a specific example, say, the group of integers modulo
6. This group consists of a set of six elements,

{0, 1, 2, 3, 4, 5}

and an operation called addition modulo 6, which may be described as
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follows: Imagine the numbers 0 through 5 as being evenly distributed on
the circumference of a circle. To add two numbers h and k, start with Ii and

0

move clockwise k additional units around the circle: h + k is where you end
up. For example, 3 + 3 = 0, 3 + 5 = 2, and so on. The {0, 1, 2, 3, 4, 5}
with this operation is called the group of integers modulo 6, and is rep-
resented by the symbol

In general, the group of integers modulo n consists of the set

{0,1,2,...,n—1}

with the operation of addition modulo n, which can be described exactly as
previously. Imagine the numbers 0 through n — 1 to be points on the unit
circle, each one separated from the next by an arc of length 2ir/n. To add h

and k, start with h and go clockwise through an arc of k times 2ir/n. The
sum Ii + k will, of course, be one of the numbers 0 through n — 1. From
geometrical considerations it is clear that this kind of addition (by suc-
cessive rotations on the unit circle) is associative. Zero is the neutral element
of this group, and n — h is obviously the inverse of h [for h + (n — h) =
which coincides with 0]. This group, the group of integers modulo n, is

represented by the symbol 74.

3
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Often when working with finite groups, it is useful to draw up an
"operation table." For example, the operation table of 4 is

+012345
001234511234502234501334501244501235501234

The basic format of this table is as follows,

+012345
0

2

3

4

5

with one row for each element of the group, and one column for each
element of the group. Then 3 + 4, for example, is located in the row of 3
and the column of 4. In general, any finite group <G, *> has a table

* y

x x*y

The entry in the row of x and the column of y is x * y.

Let us remember that the commutative law is not one of the axioms of
group theory, hence the identity a * b = b * a is not true in every group. If
the commutative law holds in a group G, such a group is called a com-
mutative group or, more commonly, an abelian group. Abelian groups are
named after the mathematician Niels Abel, who was mentioned in Chapter
1, and who was a pioneer in the study of groups. All the examples of groups



30 CHAPTFR THREE

mentioned up to now are abelian groups, but here is an example which is
not.

Let G be the group which consists of the six matrices

/i o\ (0 i\ 1 0 1

1=1 1 A=I I B=I
\0 1) \1 01 \—1 —l

"—1 / 1 0
c=1 I D=( I\ 0 11 \. 1 0,1 \—l —1

with the operation of matrix multiplication which was explained on page 8.
This group has the following operation table, which should be checked:

JAB C DK
I JAB CDK
AA 1 CBKD
B B KDA IC
C CDK IA B
DDC 1KB A
KKBADC I

In linear algebra it is shown that the multiplication of matrices is associ-
ative. (The details are simple.) It is clear that I is the identity element of this
group, and by looking at the table one can see that each of the six matrides
in {1, A, B, C, D, K} has an inverse in {I, A, B, C, D, K}. (For example, B
is the inverse of D, A is the inverse of A, and so on). Thus, G is a group!
Now, we observe that AB = C and BA = K, SO 6 is not commutative.

EXERCISES

A. Examples of Abelian Groups

Prove that each of the following sets, with the indicated operation, is an abelian
group

Instructions. Proceed as in Chapter 2, Exercise B.

1 x * y = x + y + 1< (k a fixed constant), on the set R of the real numbers.

2 i * y = , on the set {x e R: x 0}.



THF DEFINITION OF GROUPS 31

3 x * y = x + y + xy, on the set{x e x —1}.

xy + I

B. Groups on the Set R x R

The symbol R x R represents the set of all ordered pairs (x, y) of real numbers.
R x R may therefore be identified with the set of all the points in the plane. Which
of the following subsets of x with the indicated operation, is a group? Which is
an abelian group?

Instructions. Proceed as in the preceding exercise. To find the identity element,
which in thesc problems is an ordered pair (e1, e2) of real numbers, solve the equa-
tion (a, b) * (e1, e2) = (a, b) for e1 and e2. To find the inverse (a', b') of (a, b), solve
the equation (a, b) * (a', b') = (e1, e2) for a' and h'. [Remember that (x, y) = (x', y') if
and only ifx = x' andy = y'.]

I (a, b) * ft. d) = (ad + he, hd), on the set y) e x y O}.

2 (a,b)*(c,d)=(ac,bc+d),ontheset x x O}

3 Same operation as in part 2, but on the set l1 x R.
4 (a, I,) * (c, d) = (ac — bd, ad + be), on the set R x R with the origin deleted
5 Consider the operation of the preceding problem on the set l1 x l1 Is this a
group? Explain

C. Groups of Subsets of a Set

if A and B are any two sets, their symmetric d(fference is the set A + B defined as

It is perfectly clear that A + B = B + A; hence this operation is commutative
it is also associative, as the accompanying pictorial representation suggests: Let the
union of A, B, and C be divided into seven regions as illustrated.

A + B = (A — B) c (B — A)

The shaded area is A + B
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A + B consists of the regions 1,4, 3, and 6.

B + C consists of the regions 2,3,4, and 7.

A + (B + C) consists of the regions 1, 3, 5, and 7.

(A + B) + C consists of the regions 1, 3, 5, and 7.

Thus, A + (B + C) = (A + B) + C.
If D is a set, then the power set of D is the set P,, of all the subsets of D. That is,

= {A : A D}

The operation + is to be regarded as an operation on Prove the following:

1. There is an identity element with respect to the operation +, which is:_________
2. Every subset A of D has an inverse with respect to +, which is: Thus,

+)isagroup!
3. Let D be the three-element set D = b, c}. List the elements of PD. (For exam-
ple, one element if {a}, another is {a, b}, and so on. Do not forget the empty set and
the whole set D.) Then write the operation table for +>

D. A Checkerboard Game
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Our checkerboard has only four squares, numbered 1, 2, 3, and 4. There is a single
checker on the board, and it has four possible moves:

V: Move vertically; that is, move from ito 3, or from 3 to 1, or from 2 to 4, or from
4 to 2.

H: Move horizontally, that is, move from 1 to 2 or vice versa, or from 3 to 4 or vice
versa.

D Move diagonally, that is, move from 2 to 3 or vice versa, or move from I to 4 or
vice versa.

I. Stay put.

We may consider an operation on the set of these four moves, which consists of
performing moves successively For example, if we move horizontally and then
vertically, we end up with the same result as if we had moved diagonally:

11* V=D

if we perform two horizontal moves in succession, we end up where we started:
H * II = I. And so on. If G = { it, II, D, I}, and * is the operation we have just
described, write the table of G.

* I VHD
I

H
D

Granting associativity, explain why <G, *) is a group.

K A Coin Game

Imagine two coins on a table, at positions A and B. In this game there are eight
possible moves:

M1 : Flip over the coin at A. : Flip coin at A; then switch.
Flip over the coin at B. M6: Flip coin at B; then switch.
Flip over both coins. : Flip both coins; then switch.
Switch the coins. I: Do not change anything.

We may consider an operation on the set {I, M1, ..., M,}, which consists of
performing any two moves in succession. For example, if we switch coins, then flip
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over the coin at A, this is the same as first flipping over the coin at B, then
switching:

M4 * = M2 * M4 =

If G = {I, M1, ..., M7} and is the operation we have just described, write the table
of<G, *>.

* 1 M1 M2 M3 M4 M5 M6 M7
I

Granting associativity, explain why <G' *) is a group. Is it commutative? If not,
show why not.

F. Groups in Binary Codes

The most basic way of transmitting information is to code it into strings of Os and
Is, such as 0010111, 1010011, etc. Such strings are called binary words, and the
number of Os and is in any binary word is called its length. All information may be
coded in this fashion

When information is transmitted, it is sometimes received incorrectly. One of
the most important purposes of coding theory is to find ways of detecting errors, and
correcting errors of transmission

If a word a = a1a2 is sent, but a word b = b1b2 is received (where
the a1 and the are Os or Is), then the error pattern is the word e = e1e2 where

10 ifa,•=b1

With this motivation, we define an operation of adding words, as follows: If a and b
are both of length I, we add them according to the rules

0+0=0 1+1=0 0+1=1 1+0=1
If a and b are both of length n, we add them by adding corresponding digits. That is

(let us introduce commas for convenience),

(a1,a2 aj+(b1,h2,.
Thus, the sum of a and b is the error pattern e.

For example,



THF DFFINITION OF GROUPS 35

0010110 10100111

+0011010 +11110111

=0001100 =01010000

The symbol IEP will designate the set of all the binary words of length n. We will
prove that the operation of word addition has the following properties on W:

I. It is commutative.
2. It is associative.
3 There is an identity element for word addition.
4 Every word has an inverse under word addition.

First, we verify the commutative law for words of length 1:

0+1 = 1=1+0

1.Showthat(a1,a2, ,aj-i.-(b1,b2, . ,bj=(b1,b2,...,bj+(a1,a2,.
2. To verify the associative law, we first verify it for words of length 1:

I + (1 + I) = 1 + 0 = I = 0 + 1 = (I + I) + 1

I + (1 + 0) = I + I = 0 = 0 + 0 = (1 + 1) + 0

Check the remaining six cases.

3. Show that (a1 aj+[(b1, ..., bj+(c1 cj]=[(a1 aj+(b1, ...,
(c1 cj.
4. The identity element of W, that is, the identity element for adding words of length
fl, is.

5. The inverse, with respect to word addition, of any word (a1 is:
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Is it possible for a group to have two different identity elements? Well,
suppose e1 and e2 are identity elements of some group G. Then

e1 * e2 = e2 because e1 is an identity element, and

e1 * e2 = e1 because e2 is an identity element

Therefore

e1 = e2

This shows that in every group there is exactly one identity element.
Can an element a in a group have two different inverses? Well, if and

02 are both inverses of a, then

* (a * a2) = * e = a1

and (a1*a)*a2=e*a2=a2
By the associative law, a1 * (a * a2) = (a1 * a) * a2, hence = a2. This
shows that in every group, each element has exactly one inverse.

Up to now we have used the symbol * to designate the group oper-
ation. Other, more commonly used symbols are + and ("plus" and
"multiply"). When + is used to denote the group operation, we say we are
using additive notation, and we refer to a b as the sum of a and b.
(Remember that a and b do not have to be numbers and therefore "sum"
does not, in general, refer to adding numbers.) When is used to denote the

36
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group operation, we say we are using multiplicative notation; we usually
write ab instead of a h, and call ab the product of a and h. (Once again,
remember that "product" does not, in general, refer to multiplying num-
bers.) Multiplicative notation is the most popular because it is simple and
saves space. In the remainder of this book multiplicative notation will be
used except where otherwise indicated. In particular, when we represent a
group by a letter such as G or H, it will be understood that the group's
operation is written as multiplication.

There is common agreement that in additive notation the identity el-
ement is denoted by 0, and the inverse of a is written as —a. (It is called the
negative of a.) In multiplicative notation the identity element is e and the
inverse of a is written as a 1 ("a inverse"). It is also a tradition that + is
to be used only for commutative operations.

The most basic rule of calculation in groups is the cancelation law,
which allows us to cancel the factor a in the equations ab = ac and ha = ca.

This will be our first theorem about groups.

Theorem 1 If G is a group and a, b, c are elements of G, then

(i) ab = ac implies h = c and
(ii) ha = ca implies b = c

It is easy to see why this is true: if we multiply (on the left) both sides
of the equation ab = ac by a1, we get b = c. In the case of ha = ca, we
multiply on the right by a This is the idea of the proof; now here is the
proof:

Suppose ab = ac

Then a'(ab) = a1(ac)

By the associative law, (a'a)h = (a1a)c

that is, eb = ec

Thus, finally, b = c

Part (ii) is proved analogously.
In general, we cannot cancel a in the equation ab = ca. (Why not?)

Theorem 2 If G is a group and a, b are elements of G, then

ab=e implies a=b1 and b—a'
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The proof is very simple: if ab = e, then ab = aa -1, so by the cancela-
tion law, b = Analogously, a =

This theorem tells us that if the product of two elements is equal to e,
these elements are inverses of each other. In particular, if a is the inverse of
b, then b is the inverse of a.

The next theorem gives us important information about computing
inverses.

Theorem 3 If G is a group and a, h are elements of G, then

(i) (ab)' = b'a' and
(ii) (a1)1 =a

The first formula tells us that the inverse of a product is the product of
the inverses in reverse order. The next formula tells us that a is the inverse
of the inverse of a. The proof of (i) is as follows:

(ab)(lf 'a1) = a[(hb')a'] by the associate law

=a[ea'] becausebb' =e

= aa1

=c
Since the product of ab and b 'a1 is equal to e, it follows by Theorem 2
that they are each other's inverses. Thus, = b 1a The proof of
(ii) is analogous but simpler: aa1 = e, so by Theorem 2 a is the inverse of
a1, that is, a = (a')1.

The associative law states that the two products a(bc) and (ab)c are
equal; for this reason, no confusion can result if we denote either of these
products by writing abc (without any parentheses), and call abc the product
of these three elements in this order.

We may next define the product of any four elements a, b, c, and d in G
by

abcd = a(hcd)

By successive uses of the associative law we find that

a(hc)d = ah(cd) = (ah)(cd) = (ab)cd

Hence the product abcd (without parentheses, but without changing the
order of its factors) is defined without ambiguity.



ELEMFNTARY PROPERTIES OF GROUPS 39

In general, any two products, each involving the same factors in the
same order, are equal. The net effect of the associative law is that parenth-
eses are redundant.

Having made this observation, we may feel free to use products of
several factors, such as a1a2 without parentheses, whenever it is

convenient. Incidentally, by using the identity (ab)1 = b1a1 repeatedly,
we find that

I —1 .. —1—1a1

a finite group, the number of elements in G is called the order of
G. It is customary to denote the order of G by the symbol

IGI

EXERCISES

Remark on notation. In the exercises below, the exponential notation is used in
the following sense: if a is any element of a group G, then a2 means aa, a3 means
aaa, and, in general, is the product of n factors of a, for any positive integer n

A. Solving Equations in Groups

Let a, b, c, and x be elements of a group G. In each of the following, solve for x in
terms of a, b, and c.

Example x2=h and x5=e

From the first equation, h =
Squaring, b2 =
Multiplying on the left by x,

xh2=xx4=x5=e (N0TE:x5=ewasgiven.)

Multiplying on the right side by (h2)',

xb2(b2)' =

Thereforr x = (b2)

I avb = C
2 x2h=xa'c
3 t2a=htc' and acv=xac
4a'c2=b and x3=e
5x2=a2 and x5=e
6 (xav)3=bx and



40 CHAPTER FOUR

B. Rules of Algebra in Groups

For each of the following rules, either prove that it is true in every group G, or give
a counterexample to show that it is false in some groups. (All the counterexamples
you need may be found in the group of matrices {I, A, B, C, D, K} described on
page 30.)

I Ifx2=e,thenx=e.
2 If x2 a2, then x = a

3 (ah)2 = a2h2

4 If t2 = then v = e

5 For every v e G, there is some y a G such that x = y2. (This is the same as saying
that every element of G has a "square root.")
6 For any two elements x and y in G, there is an element z in G such that y = xz.

C. Elements which Commute

If a and h are in G and ab = ha, we say that a and h commute. Assuming that a and
h commute, prove the following.

I a' andb' commute.
2 a and b 'commute (HiNT: First show that a = b 'ah.)

3 a commutes with ah.
4 a2 commutes with h2
5 -' commutes with xhx ',for any x a G.
6 Prove:ah=ha if aha' =h.

(The abbreviation ill stands for "if and only if." Thus, first prove that (/'
ah = ha, then aba -' = h. Next, prove that if aba -'= b, then ab = ba Proceed
roughly as in Exercise Set A. Thus, assuming ah = ha, solve for h. Next, assuming
aha ' = h, solve for ab.)

7 Prove:ab=ha if aha'V'=e.

t D. Group Elements and Their Inverses'

Let G be a group. Let a, h, c denote elements of G, and let e be the neutral element
of G. Prove the following.

Non-. When the exercises in a Set are related, with some exercises building on pre-
ceding ones, so they must he done in sequence, this is indicated with a symbol t in the margin
to the left of the heading
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1 If ab = e, then ha = e. (HINT: See Theorem 2.)

2 lfahc=e,thencah=eandhca=e.
3 State a generalization of parts 1 and 2.
4 Ifxay=a', then
5 a = a if aa = e. (That is, a is its own inverse iffa2 = e.)

6 Then ah=c if abc=e.
7 Let a, b, and c each be equal to its own inverse. If ab = c, then hc = a and ca = h.

8 If abc is its own inverse, then hca is its own inverse, and cab is its own inverse.
9 Let a and b each be equal to its own inverse. Then ha is the inverse of ab.

t E. Counting Elements and Their Inverses

Let G be a finite group, and let S be the set of all the elements of G which are not
equal to their own inverse. That is, S = {x a G : x }. The set S can be divided

up into pairs so that each element is paired off with its own inverse. Prove the
following:

I In any finite group G, the number of elements not equal to their own inverse is an
even number.

2 The number of elements of G equal to their own inverse is odd or even, depending
on whether the number of elements in G is odd or even.
3 If the order of G is even, there is at least one element x in G such that x e and
x =

In parts 4 to 6, let G be a finite ahelian group, say, G = {e, a1 , a2 }.

Prove:

5 If there is no element x e in G such thatx = x1, then a1 a2 = e.

6 If there is exactly onex5é em G such thatx =x', then a1 a2 = x.
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t F. Constructing Small Groups

In each of the following, let G be any group. Let e denote the neutral element of G.

I If a, b are any elements of G, prove each of the following:
(i) Ifa2=a,thena=e.
(ii) Ifab = a, then h = e.

(iii) Ifab = I,, then a = e.

2 Explain why every row of a group table must contain each element of the group
exactly once. (I TINT Suppose x appears twice in the row of a.

Yi Y2

a x x

Now use the cancelation law for groups.)
3 There is exactly one group on any set of three distinct elements, say the set {e, a,
h}. Indeed, keeping in mind parts 1 and 2 above, there is only one way of completing
the following table. Do so! You need not prove associativity.

ea h

e e a b

a a
hb

4 There is exactly one group G of four elements, say G = {e, a, b, c} satisfying the
additional property that xx = e for every x e G. Using only part I, above, complete
the following group table of G.

e a b c

e e a b c

a a
bb
c c

5 There is exactly one group G of four elements, say G = {e, a, b, c}, such that
= e for some x e in G, and yy e for some y e G (say, aa = e and hh e)

Complete the group table of G, as in the preceding exercise.
6 Use Exercise E3 to explain why the groups in parts 4 and 5 are the only possible
groups of four elements (except for renaming the elements with different symbols).
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G. Direct Products of Groups

If G and II are any two groups, their direct product is a new group, denoted by
G x H, and defined as follows: G x H consists of all the ordered pairs (x, y) where x
is in G and y is in H. That is,

GxH={(x,y):xeG and yeH}
The operation of G x H consists of multiplying corresponding components:

(x, y) (x', y') = (xx', yy')

If G and H are denoted additively, it is customary to also denote G x H additively:

(x, y) + (x', y') = (x + x', y + y')

I Prove that G x H is a group by checking the three group axioms, (Gi) to (G3):

(GI) (x1, Yi )[(x2, y2)(x3, y3)] =

[(x1, Yt )(x2, y2)](x3, =

(G2) Let eG be the identity element of G, and eH the identity element of H. The
identity element of G x H? is

________.

Check.
(G3) For each (a, b) e G x H, the inverse of(a, h) is: . Check.

2 List the elements of x 73, and write its operation table. (NOTE: There are six
elements, each of which is an ordered pair. The notation is additive.)
3 If G and H are abelian, prove that G x H is abelian.
4 Suppose the groups G and H both have the following property:

Every element of the group is its own inverse.

Prove that G x H also has this property.

H. Powers and Roots of Group Elements

Let G be a group, and a, b e G. For any positive integer n, we define & by

n factors

If there is an element x e G such that a = x2, we say that a has a square root in G.
Similarly, if a = y3 for some y e G, we say a has a cube root in G. In general, a has
an nth root in G ila = f for some z E G. Prove the following:

1 (bab ')" = 1, for every positive integer n. Prove by induction. (Remember
that to prove a formula such as this one by induction, you first prove it for n = 1;

next you prove that it is true for n = k, then it must be true for n = k + 1. You
may conclude that it is true for every positive integer n.)
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2 If ab = ha, then = for every positive integer n. Prove by induction.
3 If xax = e, then = cC. Prove by induction.
4 If a3 = e, then a has a square root. (HINT Try a2.)
5 If a2 = e, then a has a cube root.
6 1fa1 has acube root, so does a.
7 If x2ax = a', then a has a cube root. (HINT: Show that xax is a cube root of
a

8 If xax = b, then ab has a square root.
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SUBGROUPS

Let G be a group, and S a nonempty subset of G. It may happen (though it
doesn't have to) that the product of every pair of elements of S is in S. if it
happens, we say that S is closed with respect to multiplication. Then, it may
happen that the inverse of every element of S is in S. In that case, we say
that S is closed with respect to inverses. If both these things happen, we call
S a subgroup of G.

When the operation of G is denoted by the symbol +, the wording of
these definitions must be adjusted: if the sum of every pair of elements of S
is in S is closed with respect to addition. If the negative of
every element of S is in 5, we say that S is closed with respect to negatives. If
both these things happen, S is a subgroup of G.

For example, the set of all the even integers is a subgroup of the additive
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group 1 of the integers. Indeed, the sum of any two even integers is an even
integer, and the negative of any even integer is an even integer.

As another example, Q* (the group of the nonzero rational numbers,
under multiplication) is a subgroup of (the group of the nonzero real
numbers, under multiplication). Indeed, ar c because every rational
number is a real number. Furthermore, the product of any two rational
numbers is rational, and the inverse (that is, the reciprocal) of any rational
number is a rational number.

An important point to be noted is this: if S is a subgroup of G, the
operation of S is the same as the operation of G. In other words, if a and h
are elements of S, the product ab computed in S is precisely the product ab
computed in G.

For example, it would be meaningless to say that <0*, is a subgroup
of <Ii, +>; for although it is true that Q* is a subset of the operations
on these two groups are different.

The importance of the notion of subgroup stems from the following
fact: i/ G is a group and S is a subgroup of G, then S itself is a group.

It is easy to see why this is true. To begin with, the operation of G,
restricted to elements of 5, is certainly an operation on S. It is associative:
for if a, b, and care in 5, they are in G (because S G); but G is a group, so
a(hc) = (ab)c. Next, the identity element e of G is in S (and continues to be an
identity element in 5): for S is nonempty, so S contains an element a; but S
is closed with respect to inverses, so S also contains a 1; thus, S contains
aa 1 = e, because S is closed with respect to multiplication. Finally, every
element of S has an inverse in S because S is closed with respect to inverses.
Thus, S is a group!

One reason why the notion of subgroup is useful is that it provides us
with an easy way of showing that certain things are groups. Indeed, if 6 is
already known to be a group, and S is a subgroup of 6, we may conclude
that S is a group without having to check all the items in the definition of
"group." This conclusion is illustrated by the next example.

Many of the groups we use in mathematics are groups whose elements
are functions. In fact, historically, the first groups ever studied as such were
groups of functions.

represents the set of all functions from R to that is, the set of all
real-valued functions of a real variable. In calculus we learned how to add
functions: if f and g are functions from to R, their sum is the function
f+ g given by:

[f+ g](x) =f(x) + g(x) for every real number x
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Clearly, f + g is again a function from P to P, and is uniquely determined
byf and g.

S(P), with the operation + for adding functions, is the group <F(P),
+ >, or simply The details are simple, but first, let us remember what

it means for two functions to be equal. 1ff and g are functions from l1 to P,
then f and g are equal (that is, f = g) if and only if f(x) = g(x) for every real
number x. In other words, to be equal f and g must yield the same value
whcn applied to any real number x.

To check that + is associative, we must show that f+ [g + h] =
[f+ + Ii, for any three functionsf, g, and h in .39P). This means that for
any real number x, {f+ [g + h]}(x) = {[f+ g] + h}(x). Well,

{f+ + h]}(x) =f(x) + [q + h](x) =f(x) + g(x) + h(x)

and {[f+ g] + h}(x) has the same value.
The neutral element of F(P) is the function (9 given by

(9(x) = 0 for every real number x

To show that & +f=fone must show that [(9 +f](x) =f(x) for every real
number x. This is true because [0 +f](x) = 0(x) +f(x) = 0 +f(x) =f(x).

Finally, the inverse of any functionf is the function —f given by

[—f](x) = —f(x) for every real number x

One perceives immediately thatf + [—f] = 0, for every functionf
'6(P) represents the set of all continuous functions from P to P. Now,

'6(P), with the operation +, is a subgroup of because we know from
calculus that the sum of any two continuous functions is a continuous
function, and the negative —f of any continuous function f is a continuous
function. Because any subgroup of a group is itself a group, we may con-
clude that '6(P), with the operation +, is a group. It is denoted by
<'6(P), +>, or simply '6(P).

represents the set of all the differentiable functions from P to P. It
is a subgroup of .F(P) because the sum of any two differentiable functions is
differentiable, and the negative of any differentiable function is differ-
entiable. Thus, with the operation of adding functions, is a group,
denoted by +>, or simply

By the way, in any group G the one-element subset {e}, containing only
the neutral element, is a subgroup. It is closed with respect to multiplication
because ee = e, and closed with respect to inverses because e' = e. At the
other extreme, the whole group G is obviously a subgroup of itself. These
two examples are, respectively, the smallest and largest possible subgroups
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of G. They are called the trivial subgroups of G. All the other subgroups of
G are called proper subgroups.

Suppose G is a group and a, b, and c are elements of G. Define S to be
the subset of G which contains all the possible products of a, b, c, and their
inverses, in any order, with repetition of factors permitted. (Thus, typical
elements of S would be abac 1, c 1a 'hhc, and so on.) It is easy to see that
S is a subgroup of G: for if two elements of S are multiplied together, they
yield an element of 5, and the inverse of any element of S is an element of S.
For example, the product of aba and cb 1ac is abacb 1ac, and the inverse
of is a'cha'. S is called the subgroup ofG generated by a, b, and

If a1, ..., an are any finite number of elements of G, we may define the
subgroup generated by a1, ..., a,, in the same way. In particular, if a is a
single element of G, we may consider the subgroup generated by a. This
subgroup is designated by the symbol <a)', and is called a cyclic subgroup of
6; a is called its generator. Note that <a> consists of all the possible
products of a and a for example a 1aaa 1 and aaa 'aa However,
since factors of a -' cancel factors of a, there is no need to consider products
involving both a and a 1 side by side. Thus, <a> contains

a, aa, aaa

aswellasaa' =e.
If the operation of G is denoted by +, the same definitions can be given'

with "sums" instead of " products."
In the group of matrices whose table appears on page 30, the sub-

group generated by D is <D> = {I, B, D} and the subgroup generated by A
is <A> = {I, (The student should check the table to verify this.).Ih fact,
the entire group 6 of that example is generated by the two elements A and
B

If a group G is generated by a single element a, we call G a cyclic group,
and write G = <a>. For example, the additive group 4 is cyclic. (What is
its generator?)

Every finite group G is generated by one or more of its elements (obvi-
ously). A set of equations, involving only the generators and their inverses,
is called a set of defining equations for G if these equations completely
determine the multiplication table of 6.

For example, let 6 be the group {e, a, b, b2, ab, ab2} whose generators
a and h satisfy the equations

a2=e h3=e ha=ab2 (*)
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These three equations do indeed determine the multiplication table of 6. To
see this, note first that the equation ba = ab2 allows us to switch powers of
a with powers of b, bringing powers of a to the left, and powers of b to the
right. For example, to find the product of ab and ab2, we compute as
follows:

(ah)(ab2) = abab2 = aab2b2 = a2b4

= ab2

But by (*), a2 = e and h4 = h3b = b, so finally, (ab)(ab2) = b. All the entries
in the table of G may be computed in the same fashion.

When a group is determined by a set of generators and defining equa-
tions, its structure can be efficiently represented in a diagram called a
Cayley diagram. These diagrams are explained in Exercise G.

EXERCISES

A. Recognizing Subgroups

In each of the following, determine whether or not H is a subgroup of G. (Assume
that the operation of H is the same as that of G.)

Instructions. If H is a subgroup of 6, show that both conditions in the definition of
"subgroup" are satisfied If H is not a subgroup of 6, explain which condition fails.

Example 6 = R*, the multiplicative group of the real numbers.

H={2":neZ} His NI isnotO asubgroupofG.

(i)

(Note that in this example the operation of 6 and H is multiplication. In the
next problem, it is addition.)

IG=<R,+),H={loga:aeQ,a>O}. HisD isnotO asubgroupofG.
2G=<R,+),H={logn:neZ,n>O}. HisD isnotfl asubgroupofG.
3G=<R,+>,H={xeR:tanxeQ}. Hisfl isnotO asubgroupofG.
HINT Use the following formula from trigonometry:

tan x + tan y
tan (x + y) =

1 — tan x tan y

4G=<R*, ),H={2n3m:m,ne7L}. Hisfl isnotO asubgroupofG.
5 6 = <R x +>, H = {(x,y): y = 2x}. H is fl is not 0 a subgroup ofG.



50 CHAPTER FIVE

6G=<RxR,+>,H={(x,y):x2+y2>O}. HisJ isnotD asubgroup
of G.

7 Let C and D be sets, with C c I). Prove that is a subgroup of P0. (See Chapter
3, Exercise C.)

B. Subgroups of Groups of Functions

In each of the following, show that H is a subgroup of G.

Example G = <5(R), +),H = {feS(R):f(O)=O}

(i) Suppose f, g e H; then f(O) = 0 and g(0) = 0, so [1+ g](0) =
f(O) + g(0) = 0 + 0 = 0. Thus,f+ g a H.

(ii) 1ff a H, thenf(0) = 0. Thus, [—f](O) = —f(O) = —o = 0, —f a H.

I G=<5(R), +),H={fa5(R): f(x)=Oforeveryxa[O, l]}
2 G = <5(R), +), H = {f a 5(R): f(—x) = —f(x)}
3 G = <5(R), +),H = {fa .5(R): fis periodicofperiod m}

REMARK: A function f is said to be periodic of period a if there is a number a, called
the period off, such thatf(x) =f(x + na) for every x a R and n a 7

4

G = <2(R), +), H = {fa 2(R). df/dxisconstant}
6 G = <5(R), +), H = {fa 5(R): f(x) a 7 for every x a R}

C. Subgroups of Abelian Groups

In the following exercises, let G be an abelian group.

I If H = {x a G: x = x'}, that is, H consists of all the elements of G which are
their own inverses, prove that H is a subgroup of G
2 Let n be a fixed integer, and let H = {x a G: x" = e}. Prove that H is a subgroup
of G

3 Let H = {x a G: x = y2 for some y a G}, that is, let H be the set of all the
elements of G which have a square root. Prove that H is a subgroup of G.
4 Let H be a subgroup of G, and let K={xaG:x2aH}. Prove that K is a
subgroup of G.
5 Let H be a subgroup of G, and let K consist of all the elements x in G such that
some power of x is in H. That is, K = {x a G: for some integer n > 0, a H}.
Prove that K is a subgroup of G.
6 Suppose H and K are subgroups of G, and define HK as follows:

HK={xy:xaH and yaK}
Prove that HK is a subgroup of G.
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7 Explain why parts 4—6 are not true if G is not abelian.

D. Subgroups of an Arbitrary Group

Let G be a group. Prove the following:

I If H and K are subgroups of a group G, prove that H n K is a subgroup of G.
(Rememberthatxeff n K if xeH and xeK).
2 Let H and K be subgroups of G. If H K, then H is a subgroup of K.
3 By the center of a group G we mean the set of all the elements of G which
commute with every element of G, that is,

C = {a e G: ax = xa for every x e G}

Prove that C is a subgroup of G. (HINT: If we wish to assume xy = yx and prove
xy' =y'x,itisbesttoprovefirstthatyxf' =x)
4 Let C' = {a e G: (ax)2 = (xa)2 for every x e G}. Prove that C' is a subgroup of G.
5 Let G be a finite group, say a group with n elements, and let S be a nonempty
subset of G. Suppose e e 5, and that S is closed with respect to multiplication. Prove
that S is a subgroup of G. (HINT: It remains to prove that G is closed with respect to
inverses. Let G = {a1 one of these elements is e. If a, a G, consider the
distinct elements a,a1, a1a2

6 Let G be a group, and f: G—* G a function. A period of f is any element a in G
such that f(x) =f(ax) for every x a G. Prove: The set of all the periods of f is a
subgroup of G.

7 Let H be a subgroup of G, and let K={xeG:xax' eH for every aeH}
ProveS

(a) K is a subgroup of G;
(b) His a subgroup of K.

8 Let G and H be groups, and G x H their direct product.
(a) Prove that {(x, e): x a G} is a subgroup of G x H.
(b) Prove that {(x, x): x a G} is a subgroup of G x G.

E. Generators of Groups

I List all the cyclic subgroups of <7ZIO, +>.
2 Show that is generated by 2 and 5.
3 Describe the subgroup of generated by 6 and 9.
4 Describe the subgroup of 72 generated by 10 and 15.
5 Show that 7 is generated by 5 and 7.
6 Show that x is a cyclic group. Show that 73 x 74 is a cyclic group.
7 Show that x 74 is not a cyclic group, but is generated by (1, 1) and (1, 2).
8 Suppose a group G is generated by two elements a and h. If ah = ha, prove that G
is abelian.
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F. Groups Determined by Generators and Defining Equations

1 Let G be the group {e, a, b, b2, ab, ab2} whose generators satisfy: a2 = e, h3 = e,

ha = ab2. Write the table of G.

2 Let G be the group {e, a, h, h2, h3, ab, ab2, ab3} whose generators satisfy: a2 = e,
1,4 = e, ha = ab3. Write the table of G. (G is called the dihedral group D4.)

3 Let G be the group {e, a, h, h2, 1,3, ab, ab2, ab3} whose generators satisfy: a4 = e,

a2 = 1,2, ha = ab3. Write the table of G. (G is called the quaternion group.)

4 Let G be the commutative group {e, a, b, c, ab, he, ac, abc} whose generators
satisfy: a2 = 1,2 = c2 = e. Write the table of G.

G. Cayley Diagrams

Every finite group may be represented by a diagram known as a Cayley diagram. A
Cayley diagram consists of points joined by arrows.

There is one point for every element of the group.
The arrows represent the result of multiplying by a generator.

For example, if G has only one generator a (that is, G is the cyclic group <a>), then
the arrow —. represents the operation "multiply by a":

e—÷ a—÷ a2--.

If the group has two generators, say a and b, we need two kinds of arrows, say----.
and —*, where ----÷ means "multiply by a," and --. means "multiply by b."

For example, the group G = {e, a, h, 1,2 ab, ab2} where a2 = e,
1,3 = e, and

ba = ab2 (see page 48) has the following Cayley diagram:

means "multiply by b"

means "multiply bya"

Moving in the forward direction of the arrow --. means multiplying by b,

x —÷- xb

whereas moving in the backward direction of the arrow means multiplying by h 1:



x

x by b" is understood to mean multiplying on the right by h:
it means xb, not bx.) It is also a convention that if a2 = e (hence a = a '), then no
arrowhead is used:

x xa

for if a = a ',then multiplying by a is the same as multiplying by a
The Cayley diagram of a group contains the same information as the group's

table. For instance, to find the product (abXab2) in the figure on page 52, we start at
ab and follow the path corresponding to ab2 (multiplying by a, then by b, then again
by h), which is

This path leads to h, hence (ab)(ah2) = h.

As another example, the inverse of ab2 is the path which leads from ab2 back to
e. We note instantly that this is ha.

A point-and-arrow diagram is the Cayley diagram of a group if it has the
following two properties: (a) For each point x and generator a, there is exactly one
a-arrow starting at x, and exactly one a-arrow ending at x; furthermore, at most one
arrow goes from x to another point y. (b) If two different paths starting at x lead to
the same destination, then these two paths, starting at any point y, lead to the same
destination.

Cayley diagrams are a useful way of finding new groups.

Write the table of the groups having the following Cayley diagrams: (REMARK:
You may take any point to represent e, because there is perfect symmetry in a
Cayley diagram. Choose e, then label the and proceed.)

I. 2. 3. —.—----s-.C)
4. fl 5. 6.
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FUNCTiONS

The concept of a function is one of the most basic mathematical ideas and
enters into almost every mathematical discussion. A function is generally
defined as follows: If A and B are sets, then a function from A to B is a rule
which to every element x in A assigns a unique element y in B. To indicate
this connection between x and y we usually write y f(x), and we call y
the image of x under the function f.

There is nothing inherently mathematical about this notion of function.
For example, imagine A to be a set of married men and B to be the set of
their wives. Let f be the rule which to each man assigns his wife. Then f is
a perfectly good function from A to B; under this function, each wife is the
image of her husband. (No pun is intended.)

Take care, however, to note that if there were a bachelor in A then f
would not qualify as a function from A to B; for a functidn from A to B
must assign a value in B to every element of A, without exception. Now,

54
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suppose the members of A and B are Ashanti, among whom polygamy is
common; in the land of the Ashanti, f does not necessarily qualify as a
function, for it may assign to a given member of A several wives. If f is a
function from A to B, it must assign exactly one image to each element of
A.

If is a function from A to B it is customary to describe it by writing

f: A —* B

Thc set A is called the domain of f. The range of f is the subset of B which
consists of all the images of elements of A. In the case of the function
illustrated here, {a, b, c} is the domain of f, and {x, y} is the range of f

(z is not in the range off). Incidentally, this function f may be represented
in the simplified notation

(a h cf=(\X X 3)

This notation is useful whenever A is a finite set: the elements of A are
listed in thc top row, and beneath each element of A is its image.

It may perfectly well happen, if f is a function from A to B, that two
or more elements of A have the same image. For example, if we look at the
function immediately above, we observe that a and b both have the same
image x. If f is a function for which this kind of situation does not occur,
then f is called an infective function. Thus,

Definition I A function f : A —* B is called infective if each element of B is
the image of no more than one element of A.

A
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The intended meaning, of course, is that each element y in B is the
image of no two distinct elements of A. So if

y= f(x1)= f(x2)

that is, x1 and x2 have the same image y, we must require that x1 be equal
to x2. Thus, a convenient definition of "injective" is this: a function
f: A — B is infective if and only if

f(x1) =f(x2) implies x1 = x2

If f is a function from A to B, there may be elements in B which are
not images of elements of A. If this does not happen, that is, if every
element of B is the image of some element of A, we say that f is surf ective.

Definition 2 A function f : A —* B is called surjective if each element of B is
the image of at least one element of A.

B

This is the same as saying that B is the range of f.
Now, suppose that f is both injective and surjective. By Definitions 1

and 2, each element of B is the image of at least one element of A, and no
more than one element of A. So each element of B is the image of exactly
one element of A. In this case, f is called a Infective function, or a one-to-
one correspondence.

Definition 3 A function f: A —> B is called bjjective if it is both infective and

surfective.

A B
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It is obvious that under a bijective function, each element of A has exactly
one "partner" in B and each element of B has exactly one partner in A.

The most natural way of combining two functions is to form their
"composite." The idea is this: suppose f is a function from A to B, and g
is a function from B to C. We apply f to an element x in A and get an
element y in B; then we apply g to y and get an element z in C. Thus, z is

obtained from x by applying f and g in succession. The function which

A

consists of applying f and g in succession is a function from A to C, and is
called the composite of f and g. More precisely,

Let f: A —> B and g: B —p C he functions. The composite function de-
noted by g of is afunction from A to C defined as follows:

[g of](x) = g(f(x)) for every x e A

For example, consider once again a set A of married men and the set B of
their wives. Let C be the set of all the mothers of members of B. Let
f: A —> B be the rule which to each member of A assigns his wife, and
g : B —> C the rule which to each woman in B assigns her mother. Then
g o f is the "mother-in-law function," which assigns to each member of A
his wife's mother:

A • i-B
Wife Mother

Mother-in-law

For another, more conventional, example, let f and g be the following
functions from lt to It f(x) = 2x; g(x) = x + 1. (In other words, f is the
rule "multiply by 2" and g is the rule "add I. ") Their composites are the
functionsg of and f o ggiven by

[f og](x)=f(g(x))=2(x+ I)

and [gof](x)=g(f(x))=2x+ I
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f o g and g of are different: f o g is the rule "add I, then multiply by 2,"
whereas g of is the rule "multiply by 2 and then add 1 ."

It is an important fact that the composite of two injective functions is
injective, the composite of two surjective functions is surjective, and the
composite of two bijective functions is bijective. In other words, if
J : A —* B and g: B —* Care functions, then the following are true:

If f and g are infective, then g of is infective.
If f and g are surf ective, then g o f is surf ective.

1ff andg are bifective, then g of is bifective.

Let us tackle each of these claims in turn. We will suppose that f and g are
injective, and prove that g o f is injective. (That is, we will prove that if
[g = [g of](y), then x = y.)

Suppose [g of](x) = [g of](y), that is,

g(f(x)) = g(f(y))

Because g is injective, we get
f(x) =fty)

and because [is injective,
x=y

Next, let us suppose that f and g are surjective, and prove that g o f is

surjective. What we need to show here is that every element of C is g of of
some element of A. Well, if z e C, then (because g is surjective) z = g(y) for
some y e B; but f is surjective, soy =f(x) for some x e A. Thus,

z = g(y) = g(f(x)) = [g o f](x)

Finally, if f and g are bijective, they are both injective and surjective. By
what we have already proved, g o f is injective and surjective, hence bijec-
tive.

A function f from A to B may have an inverse, but it doesn't have to.
The inverse off, if it exists, is a function ("f inverse") from B to A
such that

x=f'(y) ifandonlyif

A

y = f(x)
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Roughly speaking, if f carries x to y then f 1 carries y to x. For instance,
returning (for the last time) to the example of a set A of husbands and the
set B of their wives, if f: A —* B is the rule which to each husband assigns
his wife, then f1 : B—> A is the rule which to each wife assigns her
husband:

Wife

Husband

If we think of functions as rules, then f - is the rule which undoes what-
ever f does. For instance, if f is the real-valued function f(x) = 2x, then

J the function 1(x) = x/2 [or, if preferred, f '(y) = y/2]. Indeed,
the rule "divide by 2" undoes what the rule "multiply by 2" does.

"Multiply by 2"

x

"Divide by 2"

Which functions have inverses, and which others do not? If f, a func-
tion from A to B, is not injective, it cannot have an inverse; for "not
injective" means there are at least two distinct elements x1 and x2 with the
same image y:

.

xi•
y

—>. f
f_i

Clearly, x1 =f'(y) and x2 =f1(y) sof'(y) is ambiguous (it has two
different values), and this is not allowed for a function.

If f, a function from A to B, is not surjective, there is an element y in B
which is not an image of any element of A; thus f - '(y) does not exist. So

1 cannot be a function from B (that is, with domain B) to A.
It is therefore obvious that if f - exists, f must be injective and

surjective, that is, bijective. On the other hand, if f is a bijective function
from A to B, its inverse clearly exists and is determined by the rule that if
y =f(x) then 13,) = x.
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Furthermore, it is easy to see that the inverse of f is also a bijective
function. To sum up:

A function f: A —÷ B has an inverse if and only if it is bijective.

In that case, the inverse f is a bijectivefunctionfrorn B to A.

EXERCISES

A. Examples of Injective and Surjective Functions

Each of the following is a functionf: R. Determine
(a) whether or notf is injective, and
(h) whether or not (is surjective.

Prove your answer in either case.

Example 1 f(x) = 2x

f is infective.

PROOF Supposef(a) =f(h), that is

2a = 2b

Then a= b
Thereforef is injective.

(is surf ective.

PROOF Take any element y e ft Then y = 2(y/2) =f(y/2).
Thus, every y e ft is equal tof(x) for x = y/2.
Therefore (is surjective.

Example 2 /(v) =

[is not infective.

PROOF By exhibiting a counterexample:f(2) = 4 =f(—2), although 2 —2.

(is not surf ective.
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PROOF By exhibiting a counterexample: — 1 is not equal tof(x) for any x e It

1 f(v) = 3x + 4
2 f(x) = x3 + 1

3 f(x) = I x

4 f(x) = — 3x

x if x is rational
c2x if x is irrational

12x if x is an integer

j x otherwise
7 Determine the range of each of the functions in parts 1 to 6.

B. Functions on R and 1

Determine whether each of the following functions is or is not (a) injective, and (h)
surjective. Proceed as in Exercise A.

I f. l1--. (0, cc), defined byf(x) = e'.

2 f: (0, 1)—. R, defined byf(x) = tan x.

3 f: /, defined byf(x) = the least integer greater than or equal to x.

5 Find a bijective function f from the set Z of the integers to the set F of the even
integers.

C. Functions on Arbitrary Sets and Groups

Determine whether each of the following functions is or is not (a) injective, (h)
surjective. Proceed as in Exercise A.

In parts I to 3 A and B are sets, and A x B denotes the set of all the ordered
pairs (x, y) as x ranges over A and y over B.

1 f: A x B—. A, defined byf(x, y) = x.

2 f: A x B—. B x A, defined byf(x, y) = (y, x).

3 f: B—. A x B, defined byf(x) = (x, b), where b is a fixed element of B.

4 G is a group, a e G, andf: G—. G is defined byf(x) = ax.

5 G is a group andf: G—. G is defined byf(x) = x

6 G is a group andf: G-. G is defined byf(x) = x2.

D. Composite Functions

Find the composite function, as indicated.
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1 f: I1 is defined byf(x) = sin x.
g: R is defined by g(x) =?.

Findf o g and g of
2 A and B are sets;f: A x B—' B x A is given byf(x, y) = (y, x).

g: B x A—' B is given by g(y, x) = y.
Findg of.

3f:(O, l)—'Risdefinedbyf(x)= l/x.
g: R—' l1 is defined by g(x) = in x.

Find q o
4 In school, Jack and Sam exchanged notes in a code f which consisted of spelling
every word backwards and interchanging every letter s with t. Alternatively, they
used a code g which interchanged the letters a with o, i with u, e with y, and s with t.
Describe the codesf o g and g of Are they the same?
5 A = {a, h, c, d};f and g are functions from A to A; in the tabular form described
on page 55, they are given by

(a b c (a h c d
f=I\a c a c,i \b a b a

Givef o g and g ofin the same tabular form.
6 6 is a group, and a and b are elements of 6.

f: G—÷ G is defined byf(x) = ax.
g: 6—' 6 is defined by g(x) = bx.

Findf ogandg of
7 Indicate the domain and range of each of the composite functions you found in
parts I to 6.

E. Inverses of Functions

Each of the following functionsf is bijective. Describe its inverse.

1 f: (0, cc)—' (0, co), defined byf(x) = l/x.
2 f: l1 —' (0, cc), defined byf(x) =?.
3 f: R—' R, defined byf(x) = x3 + I.

4 f: R, defined byf(x) =
{2x if x is rational

3x if x is irrational

(a h c d

1 2 4

6 6 is a group, a a 6, andf. 6—' 6 is defined byf(x) = ax.
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F. Functions on Finite Sets

I The members of the UN Peace Committee must choose, from among themselves,
a presiding officer of their committee. For each member x, let f(x) designate that
member's choice for officer. If no two members vote alike, what is the range off?

2 Let A be a finite set. Explain why any injective function f: A A is necessarily
surjective. (Look at part 1.)
3 If A is a finite set, explain why any surjective function f: A —. A is necessarily
injective.

4 Are the statements in parts 3 and 4 true when A is an infinite set? If not, give a
counterexample.
S If A has n elements, how many functions are there from A to A? 1-low many
bijective functions are there from A to A?

G. Some General Properties of Functions

ln parts I to 3, let A, B, and C be sets, and letf: A —> B and g: B—> C be functions.

I Prove that if g ofis injective, thenfis injective.
2 Prove that if g ofis surjective, then g is surjective.
3 Parts I and 2, together, tell us that if g of is bijective, then f is injective and g is
surjective. Is the converse of this statement true: 1ff is injective and g surjective, is
q f bijective? (If "yes," prove it; if"no," give a counterexample.)
4 Letf A -> B and g: B—> A be functions. Suppose that y ==f(x) iffx = g(y). Prove
thatfis bijective, and g
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SEVEN
GROUPS OF PERMUTATIONS

In this chapter we continue our discussion of functions, but we confine our
discussions to functionsfrom a set to itself In other words, we consider only
functions f: A —÷ A whose domain is a set A and whose range is in the
same set A.

To begin with, we note that any two functions f and g (from A to A)
are equal if and only if f(x) = g(x) for every element x in A.

If f and g are functions from A to A, their composite f o g is also a
function from A to A. We recall that it is the function defined by

[f o g](x) =f(g(x)) for every x in A (I)

It is a very important fact that the composition of functions is associative.
Thus, if f, g, and h are three functions from A to A, then

f o (g o h) = (f o g) o h

To prove that the functions f o (g o h) and (f 0 g) 0 h are equal, one must
show that for every element x in A,

o [go h]}(x)= {[f 0 0 h}(x)

We get this by repeated use of Equation 1:

{f o [g o h]}(x) =f([g o h](x)) =f(g(h(x)))

= [f 0 g](h(x)) = {[f 0 g] o h}(x)

64
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By a permutation of a set A we mean a bijective function from A to A,
that is, a one-to-one correspondence between A and itself. In elementary
algebra we learned to think of a permutation as a rearrangement of the
elements of a set. Thus, for the set { 1, 2, 3, 4, 5}, we may consider the
rearrangement which changes (1, 2, 3, 4, 5) to (3, 2, 1, 5, 4); this rearrange-
ment may be identified with the function

1 >3
2

3 >1
4 >5
5

which is obviously a one-to-one correspondence between the set
{1, 2, 3, 4, 5} and itself. It is clear, therefore, that there is no real difference
between the new definition of permutation and the old. The new definition,
however, is more general in a very useful way since it allows us to speak of
permutations of sets A even when A has infinitely many elements.

In Chapter 6 we saw that the composite of any two bijective functions
is a bijective function. Thus, the composite of any two permutations of A is a
permutation of A. It follows that we may regard the operation o of com-
position as an operation on the set of all the permutations of A. We have just
seen that composition is an associative operation. Is there a neutral element
for composition?

For any set A, the identity function on A, symbolized by CA or simply e,
is the function x —. x which carries every element of A to itself. That is, it is
defined by

e(x) = x for every element x e A

It is easy to see that c is a permutation of A (it is a one-to-one correspon-
dence between A and itself); and if f is any other permutation of A, then

foef and tof=f
The first of these equations asserts that [f o c](x) =f(x) for every element x
in A, which is quite obvious, since [f o e](x) =f(C(x)) =f(x). The second
equation is proved analogously.

We saw in Chapter 6 that the inverse of any bijective function exists
and is a bijective function. Thus, the inverse of any permutation of A is a
permutation of A. Furthermore, if f is any permutation of A and r is its
inverse, then

ftcf=c and fof1zc
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The first of these equations asserts that for any element x in A,

that is,f1(f(x)) = x:

I

x f(x)

ft
This is obviously true, by the definition of the inverse of a function. The
second equation is proved analogously.

Let us recapitulate: The operation o of composition of functions quali-
fies as an operation on the set of all the permutations of A. This operation
is associative. There is a permutation such that c of=f andf c a =f for
any permutation f of A. Finally, for every permutation f of A there is
another permutationf' of A such thatf cf' = a andft of= & Thus,
the set of all the permutations of A, with the operation c of composition, is a
group.

For any set A, the group of all the permutations of A is called the
symmetric group on A, and it is represented by the symbol For any
positive integer n, the symmetric group on the set (1, 2, 3 n} is called
the symmetric group on n elements, and is denoted by

Let us take a look at S3. First, we list all the permutations of the set
{1, 2, 3}:

/1 2 3\ 2 3

2 3 2

2 3

1 2 1

This notation for functions was explained on page 55; for example,

(1 2 3

1 2

is the function such that /3(1) = 3, /3(2) = 1, and /3(3) = 2. A more graphic
way of representing the same function would be

(1 2 3

1 2
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The operation on elements of S3 is composition. To find cc o /3, we note that

[cc /3}(3) = cc(/3(3)) = cc(2) = 3

rhus,

(1 2 3'\

1
3)/

Note that in cc /3, /3 is applied first and cc next. A graphic way of re-
presenting this is:

123
/3=

3

2

The other combinations of elements of S3 may be computed in the
same fashion. The student should check the following table, which is the
table of the group S3:

eecc/JyöiccccyflKö
flfl,cöccey

öyeic/3
ic,cflccöye

By a group of permutations we mean any group 5A or or any
subgroup of one of these groups. Among the most interesting groups of
permutations are the groups of symmetries of geometric figures. We will see
how such groups arise by considering the group of symmetries of tile square.

We may think of a symmetry of the square as any way of moving a
square to make it coincide with its former position. Every time we do this,
vertices will coincide with vertices, so a symmetry is completely described
by its effect on the vertices.



The most obvious symmetries are obtained by rotating the square clockwise
about its center P, through angles of 90°, 1800, and 270°, respectively. We
indicate each symmetry as a permutation of the vertices; thus a clockwise
rotation of 90° yields the symmetry

(i 2 3 4

3 4 1

for this rotation carries vertex I to 2, 2 to 3, 3 to 4, and 4 to 1. Rotations of
180° and 270° yield the following symmetries, respectively:

(i 2 3 4
and R3=I

\4 1 2 3

The remaining symmetries are flips of the square about its axes A, B, C, and

For example, when we flip the square about the axis A, vertices 1 and 3 stay
put, but 2 and 4 change places; so we get the symmetry

R4
= a

In the same way, the other flips are

234
432

(i 2 3 4
= I

\3 2 1 4

(1 2 3 4
= I

\2 1 4 3

68 CHAPTER 5EvEN

Let us number the vertices as in the following diagram:

(1 2 3 4
=

\3 4 1 2
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and

1'! 2 3 4

3 2 1

One last symmetry is the identity

/1 2 3 4

2 3 4

which leaves the square as it was.
The operation on symmetries is composition: R, o is the result of

first performing R1, and then R1. For example, R1 o R4 is the result of first
flipping the square about its axis A, then rotating it clockwise 90°:

(1 2 3 4\ /1 2 3 4
R1oR4=I lol

\2 3 4 1) \1 4 3 2

/'l 2 3 4\

1 4

Thus, the net effect is the same as if the square had been flipped about its
axis C.

The eight symmetries of the square form a group under the oper-
ation o of composition, called the group of symmetries of the square.

For every positive integer n 3, the regular polygon with n sides has a
group of symmetries, symbolized by which may be found as we did
here. These groups are called the dihedral groups. For example, the group of
the square is D4, the group of the pentagon is D5, and so on.

Every plane figure which exhibits regularities has a group of sym-
metries. For example, the following figure, has a group of symmetries con-

sisting of two rotations (180° and 360°) and two flips about the indicated
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axes. Artificial as well as natural objects often have a surprising number of
symmetries.

Far more complicated than the plane symmetries are the symmetries of
objects in space. Modern-day crystallography and crystal physics, for exam-
ple, rely very heavily on knowledge about groups of symmetries of three-
dimensional shapes.

Groups of symmetry are widely employed also in the theory of electron
structure and of molecular vibrations. In elementary particle physics, such
groups have been used to predict the existence of certain elementary parti-
cles before they were found experimentally!

Symmetries and their groups arise everywhere in nature: in quantum
physics, flower petals, cell division, the work habits of bees in the hive,
snowflakes, music, and Romanesque cathedrals.

EXERCISES

A. Computing Elements of S5

I Consider the following permutationsf, g, and Ii in S6:

(i 2 3 4 5 6\ (i 2 3 4 5 6

1 3 5 4 2) 3 1 6 5 4

h
(1 2 3 4 5 6

1 6 4 5 2

Compute the following:

2 3 4 5 6) g_i=(l 2 3 4 5 6)

2 3 4 5 6)

jcg=Q 2 3 4 5 6) 2 3 4 5 6)

3 ii -'11_I =
4 of' =

5 g ci ci =
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B. Examples of Groups of Permutations

I Let G be the subset of 54 consisting of the permutations

(i 2 3 4'\ (i 2 3 4

2 3 4) 1k\2 1 4 3

(1 2 3 4'\ (1 2 3 4

4 1 2) h_k4 3 2 1

Show that G is a group of permutations, and write its table.

f g h

2 List the elements of the cyclic subgroup of generated by

(I 2 3 4 5 6

3 4 1 6 5

3 Find a four-element abelian subgroup of 54. Write its table.
4 The subgroup of 55 generated by

(1 2 3 4 5'\ (1 2 3 4 5

1 3 4 s) 2 4 5 3

has six elements. List them, then write the table of this group:

(1 2 3 4 5

\l 2 3 4 5

(1 2 3 4 5

1 3 4 5

(1 2 3 4 5'\ o a f g h k 1

2 4 5 3) —

h=(1 2 3 4 5)

k=(1 2 3 4 5)

1 2 3 4 5
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C. Groups of Permutations of R

In each of the following, A is a subset of R and G is a set of permutations of A. Show
that G is a subgroup of 5A' and write the table of G.

I A is the set of all xc R such that x #0, 1. G = {a,f, g}, wheref(x) = l/(l — x)
and g(x) = (x — l)/x.
2 A is the set of all the nonzero real numbers. G = {a, f, g, h}, where f(x) = I/x,
g(x)= —x,andh(x)= —1/x.

3 A is the set of all the real numbers 0, 1. G = {a, g, h, j, k}, where
f(x) = 1 — x, g(x) = 1/x, h(x) = 1/(1 — x),j(x) = (x — I)/x, and k(x) = X/(X — 1).

4 A is the set of all the real numbers x f 0, 1, 2. G is the subgroup of 5A generated

byf(x) = 2 — x and g(x) = 2/x. (G has eight elements. List them, and write the table
of G.)

t D. A Cyclic Group of Permutations

For each integer n, by:fjx) = x + n. Prove the following:

I For each integer is a permutation of IR, that e

2fnofrnfn+m and
3

4 Prove that G is cyclic (Indicate a generator of G.)

t E. A Subgroup of

For any pair of real numbers a 0 and h, define a functionfa b as follows:

fa, b(X) = ax + h

1 Prove thatfa. b is a permutation of that is,fa i' C

2 Prove thatfab °fd fac.ad+b.
3 Prove =fl/a, -b/tv
4

Let G of symmetries of the regular hexagon. List the elements of G
(there are 12 of them), then write the table of G.
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etc.
2 Let G be the group of symmetries of the rectangle. List the elements of G (there
are four of them), and write the table of G.
3 List the symmetries of the letter Z and give the table of this group of symmetries.
Do the same for the letters V and H.
4 List the symmetries of the following shape, and give the table of their group.

(Assume that the three arms are of equal length, and the three central angles are
equal.)

(I
k2

234"\
1 3 4)

(1
'\l

234'\
2 4 3)

(1

k2

234'\
1 4 3)

(1
'\3

234
4 1 2

(1 2 3 4'\

3 1 2)
(1 2 3 4'\

4 2 i)
(i 2 3 4'\

3 2 1)
(1 2 3 4

2 3 4

d

R0
(1

2 3 4 5 6"

— 1 2 3 4 5 6)

fi 2 3 4 5 6"
R2=(\3

4 5 6 I 2)

23456
34561
23456R3 = (1

G. Symmetries of Polynomials

Consider the polynomial p = (x1 — x2)2 + (x3 — x4)2. It is unaltered when the sub-
scripts undergo any of the following permutations:
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For example, the first of these permutations replaces p by

(x2 — + (x3 — x4)2

the second permutation replaces p by (x1 — x2)2 + (x4 — x3)2; and so on. The sym-
metries of a polynomial p are all the permutations of the subscripts which leave p
unchanged They form a group of permutations.

List the symmetries of each of the following polynomials, and write their group
table.

I p=x1x2+x2x3
2 p = (x1 — — x3)(x1 — x3)

3 p = x1x2 + x2x3 + x1x3

4 p = (x1 — — x4)

H. Properties of Permutations of a Set A

1 Let A be a set and a a A. Let G be the subset of SA consisting of all the permu-
tationsf of A such thatf(a) = a. Prove that G is a subgroup of 5A•
2 1ff is a permutation of A and a a A, we say that f moves a iff(a) a Let A be an
infinite set, and let G be the subset of 5A which consists of all the permutationsf of A
which move only afinite number of elements of A. Prove that G is a subgroup of
3 Let A be a finite set, and B a subset of A. Let G be the subset of 5A consisting of
all the permutations f of A such that f(x) a B for every x a B. Prove that G is a
subgroup of SA.
4 Give an example to show that the conclusion of part 3 is not necessarily true if A
is an infinite set.
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EIGHT
PERMUTATIONS OF A FINITE SET

Permutations of finite sets are used in every branch of mathematics—for
example, in geometry, in statistics, in elementary algebra—and they have a
myriad of applications in science and technology. Because of their practical
importance, this chapter will be devoted to the study of a few special
properties of permutations of finite sets.

If n is a positive integer, consider a set of n elements. It makes no
difference which specific set we consider, just as long as it has n elements; so
let us take the set { 1, 2 n}. We have already seen that the group of all
the permutations of this set is called the symmetric group on n elements and
is denoted by In the remainder of this chapter, when we say permutation
we will invariably mean a permutation of the set {l, 2, ..., n} for an arbi-
trary positive integer n.

One of the most characteristic activities of science (any kind of science)
is to try to separate complex things into their simplest component parts.
This intellectual "divide and conquer" helps us to understand complicated
processes and solve difficult problems. The savvy mathematician never
misses the chance of doing this whenever the opportunity presents itself. We
will see now that every permutation can be decomposed into simple parts
called "cycles," and these cycles are, in a sense, the most basic kind of
permutations.

75
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We begin with an example: take, for instance, the permutation

(1 2 3 4 5 6 7 8 9

1 6 9 8 2 4 5 7

and look at how f moves the elements in its domain:

Notice how f decomposes its domain into three separate subsets, so that, in
each subset, the elements are permuted cyclically so as to form a closed
chain. These closed chains may be considered to be the component parts of
the permutation; they are called "cycles." (This word will be carefully de-
fined in a moment.) Every permutation breaks down, just as this one did,
into separate cycles.

Let a1, a2, ..., be distinct elements of the set {1, 2,..., n}. By the
cycle (a1a2 ... aj we mean the permutation

a1 —> a2 —÷ a3 —> —>

of{1,2,...,n}whichcarriesa1toa2,a2toa3
while leaving all the remaining elements of {1, 2 n} fixed.

For instance, in S6. the cycle (1426) is the permutation

(1 2 3 4 5 6

6 3 2 5 1

In S5. the cycle (254) is the permutation

(1 2 3 4 5

5 3 2 4

Because cycles are permutations, we may form the composite of two
cycles in the usual manner. The composite of cycles is generally called their
product and it is customary to omit the symbol a For example, in 55,
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/1 2 3 4 "1 2 3 4 5
(245)(124)=(\I 4 3 5 2) \2 4 3 1 5

(1 2 3 4 5

5 3 1 2

Actually, it is very easy to compute the product of two cycles by reasoning
in the following manner: Let us continue with the same example,

(2 4 5)(1 2 4)

or /3

Remember that the permutation on the right is applied first, and the permu-
tation on the left is applied next. Now,

/3 carries I to 2, and or carries 2 to 4, hence or/I carries 1 to 4;
/3 carries 2 to 4, and or carries 4 to 5, hence or/I carries 2 to 5;
/3 leaves 3 fixed and so does or, hence or/I leaves 3 fixed;
/3 carries 4 to 1 and or leaves 1 fixed, so or/I carries 4 to 1
/3 leaves 5 fixed and or carries 5 to 2, hence or/i carries 5 to 2.

If (a1a2 . . . a,) is a cycle, the integer s is called its length; thus,
(a1a2 a,) is a cycle of length s. For example, (1532) is a cycle of length 4.

If two cycles have no elements in common they are said to be disjoint.
For example, (132) and (465) are disjoint óycles, but (132) and (453) are not
disjoint. Disjoint cycles commute: that is, if (a1 ... a,) and (b1 ... h,) are
disjoint, then

(a1 . . . a,)(h1 . . . b,) = (b1 . . . bj(a1 . . a,)

or /3 /3 or

It is easy to see why this is true: or moves the a's but not the h's, while /3
moves the h's but not the a's. Thus, if /3 carries h1 to then or/I does the
same, and so does /Jcx. Similarly, if cx carries ah to ak then /Ioc does the same,
and so does or/I.

We are now ready to prove what was asserted at the beginning of this
chapter: Every permutation can be decomposed into cycles—in fact, into
disjoint cycles. More precisely.

Theorem 1 Every permutation is either the identity, a single cycle, or a
product of disjoint cycles.
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We begin with an example, because the proof uses the same technique
as the example. Consider the permutation

/1 2 3 4 5 6

4 5 2 1 6

and let us write f as a product of disjoint cycles. We begin with I and note
that

I I I

We have come a complete circle and found our first cycle, which is (135).
Next, we take the first number which hasn't yet been used, namely 2. We see
that

I I2 —p4 2

again we have come a complete circle and found another cycle, which is
(24). The only remaining number is 6, which f leaves fixed. We are done:

f= (135)(24)

The proof for any permutation f follows the same pattern as the exam-
ple. Let a1 be the first number in {1 n} such that f(a1) # a1. Let
a2 = 1(a1), a3 =f(a2), and so on in succession until we come to our first
repetition, that is, until f(ak) is equal to one of the numbers a1, a2,

Say = a1. Ifa, is not a1, we have

a1—a2---'
-)

so a1 is the image of two elements, ak and a1 - which is impossible because

f is bijective. Thus, a1 = a1, and therefore f(ak) = a1. We have come a
complete circle and found our first cycle, namely (a1a2 •.. aj.

Next, let b1be the first number which has not yet been examined and
such that f(b1) b1. We let h2 f(b1), b3 = f(b2), and proceed as before
to obtain the next cycle, say (b1 .. b1). Obviously (b1 is disjoint from
(a1 .. an). We continue this process until all the numbers in { I n} have
been exhausted.

Incidentally, it is easy to see that this product of cycles is unique, except
for the order of the factors.

Now our curiosity may prod us to ask: once a permutation has been
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written as a product of disjoint cycles, has it been simplffied as much as
possible? Or is there some way of simplifying it further?

A cycle of length 2 is called a transposition. In other words, a transpo-
sition is a cycle (a,a1) which interchanges the two numbers a, and a1. It is a
fact both remarkable and trivial that every cycle can be expressed as a
product of one or more transpositions. In fact,

(a1a2 • (14 (ara3)(ara2)(aral)

which may be verified by direct computation. For example,

(12345) = (54)(53)(52)(51)

However, there is more than one way to write a given permutation as a
product of transpositions. For example, (12345) may also be expressed as a
product of transpositions in the following ways,

(12345) = (15)(14)(13)(12)

(12345) = (54)(52)(51)(14)(32)(41)

as well as in many other ways.
Thus, every permutation, after it has been decomposed into disjoint

cycles, may be broken down further and expressed as a product of transpo-
sitions. However, the expression as a product of transpositions is not
unique, and even the number of transpositions involved is not unique.

Nevertheless, when a permutation it is written as a product of transpo-
sitions, one property of this expression is unique: the number of transpo-
sitions involved is either always even, or always odd. (This fact will be
proved in a moment.) For example, we have just seen that (12345) can be
written as a product of four transpositions and also as a product of six
transpositions; it can be written in many other ways, but always as a
product of an even number of transpositions. Likewise, (1234) can be de-
composed in many ways into transpositions, but always an odd number of
transpositions.

A permutation is called even if it is a product of an even number of
transpositions, and odd if it is a product of an odd number of transpo-
sitions. What we are asserting, therefore, is that every permutation is unam-
biguously either odd or even.

This may seem like a pretty useless fact—but actually the very opposite
is true. A number of great theorems of mathematics depend for their proof
(at that crucial step when the razor of logic makes its decisive cut) on none
other but the distinction between even and odd permutations.
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We begin by showing that the identity permutation, c, is an even per-
mutation.

Theorem 2 No matter how c is written as a product of transpositions, the
number of transpositions is even.

Let t1, t2, ..., t,,, be in transpositions, and suppose that

(*)

We aim to prove that can be rewritten as a product of in — 2 transpositions.
We will then be done: for if a were equal to a product of an odd number of
transpositions, and we were able to rewrite this product repeatedly, each
time with two fewer transpositions, then eventually we would get a equal to
a single transposition (ab), and this is impossible.

Let x be any numeral appearing in one of the transpositions t2
Let tk = (xa), and suppose tk is the last transposition in (*) (reading from left
to right), in which x appears:

C = tit2 tk tk+j

= (xa) x does not
appear here

Now, tk is a transposition which is either equal to (xa), or else one or
both of its components are different from x and a. This gives four pos-
sibilities, which we now treat as four separate cases.

Case! tk 1 = (xa).

Then tk_ ltk = (xa)(xa), which is equal to the identity permutation.
Thus, tk_ it/c may be removed without changing (*). As a result, a is a
product of in — 2 transpositions, as required.

Case!!

Then t/c -
J
t/c = (xh)(xa)

But (xb)(xa) = (xa)(ab)

We replace t/c - t/c by (xa)(ab) in (*). As a result, the last occurrence of x is
one position further left than it was at the start.

Case !I! t/c_ = (ca), where c x, a.

Then 4 4 = (ca)(xa)
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But (ca)(xa) = (xc)(ca)

We replace tkltk by (xc)(ca) in (*), as in Case II.

CaseIV

tk tk = (bc)(xa)

But (bc)(xa) = (xa)(bc)

We replace tk_ Itk by (xa)(bc) in (*), as in Cases II and III.

In Case I, we are done. In Cases II, III, or IV, we repeat the argument
one or more times. Each time, the last appearance of x is one position
further left than the time before. This must eventually lead to Case I. For
otherwise, we end up with the last (hence the only) appearance of x being in
t1. This cannot be: for if t1 = (xa) and x does not appear mt2 tm, then

4x) = a, which is impossible!
Our conclusion is contained in the next theorem.

Theorem 3 If ii Sn, then it cannot be both an odd permutation and an even
permutation.

Suppose it can be written as the product of an even number of transpo-
sitions, and differently as the product of an odd number of transpositions.
Then the same would be true foriC'. Butc = it o m1: thus, writingif1 as
a product of an even number of transpositions and it as a product of an odd
number of transpositions, we get an expression for c as a product of an odd
number of transpositions. This is impossible by Theorem 2.

The set of all the even permutations in is a subgroup of It is

denoted by An, and is called the alternating group on the set {l, 2 n}.

EXERCISES

A. Practice in Multiplying and Factoring Permutations

I Compute each of the following products in S9. (Write your answer as a single
permutation.)

(a) (145)(37)(682) (b) (17)(628)(9354)

(c) (71825)(36)(49) (d) (12)(347)
(e) (147)(1678)(74132)

(f) (6148)(2345)(12493)
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2 Write each of the following permutations inS9 as a product of disjoint cycles:

Il 2 3 4 5 6 7 8 9\ (1 2 3 4 5 6 7 8 9(b)ç749238165
(1 2 3 4 5 6 7 8 9\ /1 2 3 4 5 6 7 8 9(c)ç795312486)

3 Express each of the following as a product of transpositions in S8.

(a) (137428) (b) (416)(8235)

(c) (123)(456)(1574) (d) it=C

4 If cz = (3714), /3 = (123), and y = (24135) in express each of the following as a
product of disjoint cycles:

(a)oL1/3 (b)7'cc (d)/i2ccy (f)y3oLt
(g)/31y

5 In write (12345) in five different ways as a cycle, and in five different ways as a
product of transpositions.
6 In S5, express each of the following as the square of a cycle (that is, express

a cycle):
(a) (132) (b) (12345) (c) (13)(24)

B. Powers of Permutations

If it is any permutation, we write it o = o = it3, etc. The convenience of
this notation is evident

1 Compute x ?, where

(i) = (123) (ii) = (1234) (iii) = (123456).

In the following problems, let be a cycle of length s, say = (a1a2 ... a5).

2 Describe all the distinct powers of flow many are there?
3 Find the inverse of and show that 1 = I

Prove each of the following:

is a cycle ifs is odd.
5 Ifs is odd, is the square of some cycle of length s. (Find it.)

6 Ifs is even, say s = 2,', then 22 is the product of two cycles of length t. (Find them.)
7 Ifs is a multiple of k, say s = ki, then ? is the product of k cycles of length t.
8 Ifs is a prime number, every power of 2 is a cycle.
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C. Even and Odd Permutations

1 Determine which of the following permutations is even, and which is odd.

(a)ir=( : (b)(7l864)

(c) (12)(76)(345) (d) (1276)(3241)(78l2)

(e) (123)(2345)(1357)

Prove each of the following:

2 (a) The product of two even permutations is even.
(h) The product of two odd permutations is even.
(c) The product of an even permutation and an odd permutation is odd.

3 (a) A cycle of length 1 is even if! is odd.
(b) A cycle of length 1 is odd if! is even.
(c) A cycle of length 1 is odd or even depending on whether! — I is odd or even.

4 (a) If cc and /3 are cycles of length 1 and m, respectively, then cc/i is even or odd
depending on whether I + in — 2 is even or odd.

(b) If it = /31 where each /3, is a cycle of length 1,, then it is even or odd
depending on whether + 12 + + — r is even or odd.

D. Disjoint Cycles

In each of the following, let cc and /3 be disjoint cycles, say

and

Prove each of the following:

1 For every positive integer n, (cc/3)n =

2 Ifcc/3=e,thencc=aandfl=e.
3 If (cc/I)' = a, then cc' = a and /3' = a (where t is any positive integer). [Use (2).]

4 Find a transposition y such that cc/ly is a cycle.

5 Let y be the same transposition as in the preceding exercise Show that xy/3 and
ycc/3 are cycles.

6 Let cc and /3 be cycles (not necessarily disjoint) If cc2 = /12, then cc = /3.

t E. Conjugate Cycles

Prove each ofthefollowing in Sn:

I Let cc = (a1 .. and /3 = (h, ... b5) be cycles of the same length, and let it be
any permutation. If it(a,) = h, for i = I a, then itcciC = /3.

If cc is any cycle and it any permutation, nccit called a conjugate of cc
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2 If cx and /3 are any two cycles of the same length s, there is a permutation it e
such that /3 = 7EX7t1.

3 Conclude: Any two cycles of the same length are conjugates of each other.
4 If ca and /3 are disjoint cycles, then and ir/3iL' are disjoint cycles.
5 Let a' be a product ; of t disjoint cycles of lengths 1,, respectively.
Then irair 'is also a product of t disjoint cycles of lengths 1,, ...,
6 Let oc, and ca2 be cycles of the same length. Let /3, and /32 be cycles of the same
length. Let ca, and /3, be disjoint, and let ca2 and /32 be disjoint. There is a permu-
tation it e such that cz,f3, = itcx2/32x.

t F. Order of Cycles

Prove each ofthefoiiowing in

1 Ifcz ==(a, "a5) is a cycle of lengths, then? =e, = a, =e. Iscck
for any positive integer k c s? (Explain.)

If ca is any permutation, the least positive integer n such that? = a is called the
order of ca.

2 If ca = (a, a5) is any cycle of length s, the order of ca is s.

3 Find the order of each of the following permutations:
(a) (12)(345) (h) (12)(3456)
(c) (1234X567890)

4 What is the order of ca/I, if ca and /1 are disjoint cycles of lengths 4 and 6,
respectively? (Explain why. Use the fact that disjoint cycles commute.)
5 What is the order of ca/i, if ca and /3 are disjoint cycles of lengths r and s, respec-
tively. (Venture a guess, explain, but do not attempt a rigorous proof.)

t C. Even/Odd Permutations in Subgroups of S,,

Prove each of the following in Sn:

I Let ca,,. .,; be even permutations, and /3 an odd permutation. Then ca,/3
are r distinct odd permutations. (See Exercise C2.)
2 If /3k, .. , are odd permutations, then /3,/I,, are r distinct even
permutations.
3 In there are the same number of odd permutations as even permutations.
(HINT: Use part I to prove that the number of even permutations is � the number
of odd permutations. Use part 2 to prove the reverse of that inequality.)
4 The set of all the even permutations is a subgroup of (It is denoted by An and
is called the alternating group on n symbols)
5 Let H be any subgroup of H contains only even permutations, or H
contains the same number of odd as even permutations. (Use parts 1 and 2.)
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t H. Generators of An and Sn

Remember that in any group G, a set S of elements of G is said to generate G if every
element of G can be expressed as a product of elements in S and inverses of elements
in S. (See page 48.)

1 Prove that the set T of all the transpositions in 5,, generates 5,,.
2 Prove that the set T1 = {(12), (13) (ln)} generates 5,,.
3 Prove that every even permutation is a product of one or more cycles of length 3.
[HINT: (l3)(12) = (123); (12)(34) = (321)(134)] Conclude that the set U of all cycles
of length 3 generates A,,.

4 Prove that the set U1 = {(l23), (124) (12n)} generates A,,. [HINT: (abc) =
(lca)(lah), (lab) = (1b2)(12a)(l2b), and (1b2) = (12h)2.]

5 The pair of cycles (12) and
(1 "n)(12)(l = (23);(12)(23)(12) = (13).]

6 If is any cycle of length n, and /1 is any transposition, then J3} generates 5,,.
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Human perception, as well as the "perception" of so-called intelligent
machines, is based on the ability to recognize the same structure in different
guises. It is the faculty for discerning, in diffrrent objects, the same re-
lationships between their parts.

The dictionary tells us that two things are "isomorphic" if they have the
same structure. The notion of isomorphism—of having the same structure—
is central to every branch of mathematics and permeates all of abstract
reasoning. It is an expression of the simple fact that objects may be different
in substance but identical in form.

In geometry there are several kinds of isomorphism, the simplest being
congruence and similarity. Two geometric figures are congruent if there
exists a plane motion which makes one figure coincide with the other; they
are similar if there exists a transformation of the phine, magnifying or
shrinking lengths in a fixed ratio, which (again) makes one figure coincide
with the other.

These two figures are congruent These two figures are similar
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We do not even need to venture into mathematics to meet some simple
examples of isomorphism. For instance, the two palindromes

MADAM ROTOR
A and 0
MAD ROT

are different, but obviously isomorphic; indeed, the first one coincides with
the second if we replace M by R, A by 0, and D by T.

Here is an example from applied mathematics: A flow network is a set
of points, with arrows joining some of the points. Such networks are used to
represent flows of cash or goods, channels of communication, electrical
circuits, and so on. The flow networks (A) and (B), below, are different, but

Network (A) Network (B)

can be shown to be isomorphic. Indeed, (A) can be made to coincide with
(B) if we superimpose point 1 on point 6, point 2 on point 5, point 3 on
point 8, and point 4 on point 7. (A) and (B) then coincide in the sense of
having the same points joined by arrows in the same direction. Thus, net-
work (A) is transformed into network (B) if we replace points 1 by 6, 2 by 5, 3
by 8, and 4 by 7. The one-to-one correspondence which carries out this
transformation, namely,

/1 2 3 4

\6 5 8 7

is called an isomorphism from network (A) to network (B), for it transforms
(A) into (B).

Incidentally, the one-to-one correspondence

/MAD
xx\ROT
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is an isomorphism between the two palindromes of the preceding example,
for it transforms the first palindrome into the second.

Our next and final example is from algebra. Consider the two groups
G1 and G2 described below:

The operation of G1 is The operation of G2 is
denoted by + denoted by•

Table of G1 Table of G2

+ 012
0012 eeab
1 120 aabe2201 bbea

G1 and G2 are different, but isomorphic. Indeed, if in G1 we replace 0 by e,
1 by a, and 2 by b, then G1 coincides with G2, the table of G1 being
transformed into the table of G2. In other words, the one-to-one corre-
spondence

1 2

(1 1 1

a b

transforms G1 to G2. It is called an isomorphism from G1 to G2. Finally,
because there exists an isomorphism from G1 to G2, G1 and G2 are isomor-
phic to each other.

In general, by an isomorphism between two groups we mean a one-to-
one correspondence between them which transforms one of the groups into
the other. If there exists an isomorphism from one of the groups to the
other, we say they are isomorphic. Let us be more specific:

If G1 and G2 are any groups, an isomorphism from G1 to G2 is a

one-to-one correspondence f from G1 to G2 with the following property:

For every pair of elements a and b in G1,

If f(a) = a' andf(h) = h', then f(ab) = a'b'
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In other words, if f matches a with a' and b with b', it must match ab with
a'h'.

It is easy to see that if f has this property it transforms the table of G1 into
the table of G2

... ab
For every x

replaeex byf(x)

G2 b'

a' •.. a'b'

See Property (*)

There is another, equivalent way of looking at this situation: If two
groups G1 and G2 are isomorphic, we can say the two groups are actually
the same, except that the elements of G1 have different names from the
clements of G2. G1 becomes exactly if we rename its elements. The
function which does the renaming is an isomorphism from G1 to G2. Thus,
in our last example, if 0 is renamed e, I is renamed a, and 2 is renamed b,
G1 becomes exactly G2, with the same table. (Note that we have also
renamed the operation: it was called + in G1 and in G2.)

By the way, Property (*) may be written more concisely as follows:

f(ab) =f(a)f(b)

So we may sum up our definition of isomorphism in the following way:

(**)

Definition Let G1 and G2 he groups. A bijective function f: G1 G2 with
the property that for any two elements a and b in G1,

f(ab) =f(a)f(b) (**)

is called an isomorphism from G1 to G2.
If there exists an isomorphism from G1 to G2, we say that G1 is isomor-

phicto G2.
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If there exists an isomorphism f from G1 to G2, in other words, if G1
is isomorphic to G2, we symbolize this fact by writing

to be read, "G1 is isomorphic to G2."

How does one recognize if two groups are isomorphic? This is an important
question, and not quite so easy to answer as it may appear. There is no way
of spontaneously recognizing whether two groups G1 and 62 are isomor-
phic. Rather, the groups must be carefully tested according to the above
definition.

G1 and 62 are isomorphic if there exists an isomorphism from 61 to
62. Therefore, the burden of proof is upon us to find an isomorphism from
61 to 62, and show that it is an isomorphism. In other words, we must go
through the following steps:

I. Make an educated guess, and come up with a functionf: —> 62 which
looks as though it might be an isomorphism.

2. Check that f is infective and surjective (hence bijective).
3. Check that f satisfies the identity

f(ab) =f(a)f(h)

Here's an example: l1 is the group of the real numbers with the oper-
ation of addition. lV is the group of the positive real numbers with the
operation of multiplication. It is an interesting fact that P and lV are
isomorphic. To see this, let us go through the steps outlined above:

I. The educated guess: The exponential function f(x) = ex is a function
from P to which, if we recall its properties, might do the trick.

2. f is injective: Indeed, if f(a) =f(b), that is, ea = eb, then, taking the
natural log on both sides, we get a = h.

f is surjective: Indeed, if y e that is, if y is any positive real
number, then y = =f(ln y); thus, y =f(x) for x = In y.

3. It is well known that = eb, that is,

. f(h)

Incidentally, note carefully that the operation of P is +, whereas the
operation of is . That is the reason we have to use + on the left side of
the preceding equation, and on the right side of the equation.

How does one recognize when two groups are not isomorphic? In practice it
is usually easier to show that two groups are not isomorphic than to show
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they are. Remember that if two groups are isomorphic they are replicas of
each other; their elements (and their operation) may be named differently,
but in all other respects they are the same and share the same properties.
Thus, if a group has a property which group 62 does not have (or vice
versa), they are not isomorphic! Here are some examples of properties to
look out for:

1. Perhaps G1 is commutative, and G2 is not.
2. Perhaps G1 has an element which is its own inverse, and G2 does not.
3. Perhaps is generated by two elements whereas 62 is not generated by

any choice of two of its elements.
4. Perhaps every element of is the square of an element of G1, whereas

G2 does not have this property.

This list is by no means exhaustive; it merely illustrates the kind of things
to be on the lookout for. Incidentally, the kind of properties to watch for
are properties which do not depend merely on the pames assigned to indi-
vidual elements; for instance, in our last example, 0 e G1 and 0 62, but
nevertheless G1 and 62 are isomorphic.

Finally, let us state the obvious: if and 62 cannot be put in one-to-
one correspondence (say, G1 has more elements that G2), clearly they

cannot be isomorphic.
In the early days of modern algebra the word "group" had a different

meaning from the meaning it has today. In those days a group always
meant a group of permutations. The only groups mathematicians used were
groups whose elements were permutations of some fixed set and whose
operation was composition.

There is something comforting about working with tangible, concrete
things, such as groups of permutations of a set. At all times we have a clear
picture of what it is we are working with. Later, as the axiomatic method
reshaped algebra, a group came to mean any set with any associative oper-
ation having a neutral element and allowing each element an inverse. The
new notion of group pleases mathematicians because it is simpler and more
lean and sparing than the old notion of groups of permutations; it is also
more general because it allows many new things to be groups which are not
groups of permutations. However, it is harder to visualize, precisely because
so many different things can be groups.

It was therefore a great revelation when, about 100 years ago, Arthur
Cayley discovered that every group is isomorphic to a group of permutations.
Roughly, this means that the groups of permutations are actually all the
groups there are! Every group is (or is a carbon copy of) a group of



92 CHAPTER NINE

permutations. This great result is a classic theorem of modern algebra. As a
bonanza, its proof is not very difficult.

Cayley's Theorem Every group is isomorphic to a group of permutations.

Let G be a group; we wish to show that G is isomorphic to a group of
permutations. The first question to ask is, "What group of permutations?
Permutations of what set?" (After all, every permutation must be a permu-
tation of some fixed set.) Well, the one set we have at hand is the set G, so
we had better fix our attention on permutations of G. The way we match up
elements of G with permutations of G is quite interesting:

With each element a in G we associate a function ira: G —> G defined
by

ira(X) = ax

In other words, ita is the function whose rule may be described by the words
"multiply on the left by a." We will now show that ira is a permutation of

I. ira is infective: Indeed, if ira(xi) = ira(x2), then ax1 = ax2, so by the can-
celation law, x1 = x2.

2. ira is surf ective: For if y 6 G, then y = = Thus, each y
in G is equal to ira(x) for x = a 'y.

3. Since ira is an injective and surjective function from G to G, ira is a
permutation of G.

Let us remember that we have a permutation for each element a in G; for
example, if b and c are other elements in G, irb is the permutation "multiply
on the left by b," ire, is the permutation "multiply on the left by c," and so
on. In general, let G* denote the set of all the permutations ira as a ranges
over all the elements of G:

= {ir: a G}

Observe now that G* is a set consisting of permutations of G—but not
necessarily all the permutations of G. In Chapter 7 we used the symbol S6
to designate the group of all the permutations of G. We must show now
that G* is a subgroup of for that will prove that G* is a group of
permutations.
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To prove that G* is a subgroup of S6, we must show that G* is closed
with respect to composition, and closed with respect to inverses. That is, we
must show that if ma and 7b are any elements of G*, their composite °

is also in G*; and if ma is any element of G*, its inverse is in G*.
First, we claim that if a and b are any elements of G, then

ma ° = mab

To show that ma mb and mab are the same, we must show that they have
the same effect on every element x; that is, we must prove the identity
[ma ° mb](x) = mab(x). Well, [ma ° mb](x) = ma(mb(x)) = ma(bx) = a(hx) =
(ab)x = mab (x). Thus, ma mb = mab; this proves that the composite of any
two members ma and of C? is another member mab of G*. Thus, G* is
closed with respect to composition.

It is easy to see that me is the identity function: indeed,

me (x) = ex = x

In other words, me is the identity element of SG.
Finally, by (***),

ma ma_I = maa_1 = me

So by Theorem 2 of Chapter 4, the inverse of ma i5 ma_I. This proves that the
inverse of any member ma of G* is another member ma-l of G*. Thus, G* is
closed with respect to inverses.

Since G* is closed with respect to composition and inverses, G* is a
subgroup of SG.

We are now in final lap of our proof. We have a group of permu-
tations G*, and it remains only to show that G is isomorphic to G*. To do
this, we must find an isomorphism f: G —> C?. Let f be the function

f(a) = ma

In other words, f matches each element a in G with the permutation ma in
G*. We can quickly show that f is an isomorphism:

I. f is infective: Indeed, if f(a) = f(b) then ma = mb. Thus, ma (e) = (e), that
is, ae = be, so, finally, a = b.

2. j is surf ective: Indeed, every element of G* is some ma, and ma =f(a).
3. Lastly,f(ab) = mab = ma ° mb =f(a) c f(h).

Thus, f is an isomorphism, and so G G*.
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EXERCISES

A. Isomorphism Is an Equivalence Relation among Groups

The following three facts about isomorphism are true for all groups:

1. Every group is isomorphic to itself.
2.

3

Fact 1 asserts that for any group G, there exists an isomorphism from G to G.

Fact 2 asserts that, if there is an isomorphismffrom G1 to G2, there must be
some isomorphism from G2 to G1. Well, the inverse off is such an isomorphism.

Fact 3 asserts that, if there are isomorphismsf : G1 G2 and g: G2 G3, there
must be an isomorphism from to G3. One can easily guess that g of is such an
isomorphism The details of facts 1, 2, and 3 are left as exercises.

1 Let G be any group. If a: G—> G is the identity function, c(x) = x, show that a is an
isomorphism.
2 Lct G1 and G2 be groups, and f: G1 —* G2 an isomorphism. Show that

G1 is an isomorphism [HINTS Review the discussion of inverse functions at the
end of Chapter 6 Then, for arbitrary elements a, b e G1, let c =f(a) and d =f(b).
Note that a Show =f_i(c)f_i(d)]

3 Let G1, G2, and G3 be groups, and letf: and g: G2—÷G3 be isomor-

phisms Prove that g G1 —* G3 is an isomorphism.

B. Elements Which Correspond under an Isomorphism

Recall that an isomorphismffrom G1 to G2 is a one-to-one correspondence between
G1 and G2 satisfying f(ah) =f(a)f(h). f matches every element of G1 with a corre-
sponding element of G2. It is important to note that:

(i) f matches the neutral element of G1 with the neutral element of G2.
(ii) 1ff matches an element x in G1 with y in G2, then, i

with That is,ifx4—÷y, then
(iii) f matches a generator of G1 with a generator of G2

G1

The details of these statements are now left as an exercise. Let G1 and G2 be groups,
and let[: G2 bean isomorphism.
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I If e1 denotes the neutral element of G1 and e2 denotes the neutral element of G2,
prove that f(e1) = e2 [HINT: In any group, there is exactly one neutral element;
show thatf(e1) is the neutral element of G2.]
2 Prove that for each element a in G1, f(a') = [f(a)]'. (HINT: You may use
Theorem 2 of Chapter 4.)

3 If G1 is a cyclic group with generator a, prove that G2 is also a cyclic group, with
generator f(a).

C. Isomorphism of Some Finite Groups

In each of the following, G and H are finite groups. Determine whether or not
G H. Prove your answer in either case.

To find an isomorphism from G to H will require a little ingenuity For exam-
ple, if G and H are cyclic groups, it is clear that we must match a generator a of G
with a generator h of H; that is,f(a) = b. Thenf(aa) = bh,f(aaa) = bbb, and so on.
If G and H are not cyclic, we have other ways: for example, if G has an element
which is its own inverse, it must be matched with an element of H having the same
property. Often, the specifics of a problem will suggest an isomorphism, if we keep
our eyes open.

To prove that a specific one-to-one correspondence f: G—> H is an isomor-
phism, we may check that it transforms the table of G into the table of H.

1 G is the checkerboard game group of Chapter 3, Exercise D. H is the group of the
complex numbers {i, — i, I, — I } under multiplication.
2 G is the same as in part 1. H = 4.
3 G is the group of subsets of a two-element set. (See Chapter 3, Exercise C) H is
as in part 1.
4 G is 53. H is the group of matrices described on page 30 of the text.
5 G is the coin game group of Chapter 3, Exercise E. H is D4, the group of
symmetries of the square.
6 G is the group of symmetries of the rectangle. H is as in part 1.

D. Separating Groups into Isomorphism Classes

Each of the following is a set of four groups. In each set, determine which groups are
isomorphic to which others. Prove your answers, and use Exercise A3 where con-
venient.

14 Z2xZ2 P2 V

[P2 denotes the group of subsets of a two-element set. (See Chapter 3, Exercise C.) V
denotes the group of the four complex numbers {i, 1, — 1} with respect to
multiplication.]
253 4 Z3xZ2

denotes the group {l, 2, 3, 4, 5, 6} with multiplication modulo 7. The product
modulo 7 of a and h is the remainder of ab after division by 7.]
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34 P3 Z2xZ2xZ2 D4

(D4 is the group of symmetries of the square.)
4 The groups having the following Cayley diagrams.

A
I!. Isomorphism of Infinite Groups

1 Let E designate the group of all the even integers, with respect to addition. Prove
that Z E.

2 Let G be the group n a Z} with respect to multiplication. Prove that G Z.
(Remember that the operation of 1 is addition.)
3 Prove that C R x R.
4 We have seen in the text that Ft is isomorphic to RF. Prove that Ft is not
isomorphic to R* (the multiplicative group of the nonzero real numhers). (HINT:
Consider the properties of the number — I in Ft*. Does Ft have any element with
those properties?)
5 Prove that I is not isomorphic to 0.
6 We have seen that Ft However, prove that 0 is not isomorphic to
is the multiplicative group of positive rational numbers.)

F. Isomorphism of Groups Given by Generators and Defining Equa-
tions

If a group G is generated, say, by a, h, and c, then a set of equations involving a, h,
and c is called a set of defining equations for G if these equations completely deter-
mine the table of G. (See end of Chapter 5.) If G' is another group, generated by
elements a', b', and c' satisfying the same defining equations as a, h, and c, then if
has the same table as G (because the tables of G and G' are bompletely determined
by the defining equations, which are the same for G as for G').

Consequently, if we know generators and defining equations for two groups G
and G', and if we are able to match the generators of G with those of G' so that the
defining equations are the same, we may conclude that G C.

Prove that the following pairs of groups G, G' are isomorphic.

1 G = the subgroup of S4 generated by (24) and (1234); G' = {e, a, b, b2, b3, ah,
ah2, ab3} where a2 = e, = e, and ha = ab3.

2 G=53;G'={e,a,h,ah,aba,abah}wherea2=e,b2=e,andbab=aba.
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3 G = D4; C = {e, a, h, ab, aba, (ah)2, ha, hah} where a2 = b2 = e and (ah)4 = e.

4 0 = x 12 x 0' = {e, a, b, c, ab, ac, bc, abc} where a2 = h2 = c2 = e and
(ah)2 = (bc)2 = (ac)2 = e.

C. Isomorphic Groups on the Set

Prove that the following groups are isomorphic.

I 0 is the set {x & x — 1} with the operation x * y = x + y + xy. Show that
J(x) = x — I is an isomorphism from P]K to 0. Thus, or 0.

2 G is the set of the real numbers with the operation x * y = x + y + 1. Find an
isomorphismf: R—> G.

3 0 is the set of the nonzero real numbers with the operation x * y = xy/2. Show
thatf(v) = 2x is an isomorphism from or to 0.
4 Show thatf(x, y) = (— l)5x is an isomorphism from FEF x 12 to R*. (REMARK: To
combine elements of R + x one multiplies first components, adds second com-
ponents.) Conclude that or x 12.

H. Some General Properties of Isomorphism

1 Let GandHbegroups.ProvethatG x x 0.

3 Let 0 be any group. Prove that 0 is abelian ill the functionf(x) = is an
isomorphism from 0 to 0
4 Let 0 be any group, with its operation denoted multiplicatively. Let H be a group
with the same set as 0 and let its operation be defined by x * y = y x (where is

the operation of 0). Prove that 0 H.

5 Let c be a fixed element of G. Let H be a group with the same set as 0, and with
the operation x * y = xcy Prove that the functionf(x) = c 1x is an isomorphism
from G to H.

I. Group Automorphisms

If G is a group, an automorphism of 0 is an isomorphism from 0 to 0. We have seen
(Exercise Al) that the identity function e(x) = x, is an automorphism of 0 However,
many groups have other automorphisms besides this obvious one.

I Verify that

(0 1 2 3 4 5

5 4 3 2 1

is an automorphism of 726.
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2 Verify that

(0 1 2 3 4

1 2

3 4

2 1

3 and a is of is an
of

G a G a permu-
tation of G. Prove the set

Aut(G)

of all the automorphisms of G is a subgroup of Sf1. (Remember that the operation is
composition.)

J. Regular Representation of Groups

By Cayley's theorem, every group G is isomorphic to a group G* of permutations of
G. Recall that we match each element a in G with the permutation Tha defined by
7ta(X) = at, that is, the rule "multiply on the left by a." We let G* = a a
with the operation of composition it is a group of permutations, called the left
regular representation of G. (It is called a "representation" of G because it is isomor-
phic to G.)

Instead of using the permutations we could just as well have used the
permutations Pa defined by pjx) = xa, that is, "multiply on the right by a." The
group G0 {pa a a G} is called the right regular representation of G.

If G is commutative, there is no difference between right and left multiplication,
so G* and are the same, and are simply called the regular representation of G.
Also, if the operation of G is denoted by +, the permutation corresponding to a is
"add a" instead of "multiply by a."

Example The regular representation of 73 consists of the following permutations:

ito
=

that is, the identity permutation

Jr1

=
that is, the rule "add 1"

= (2 0 1)
that is, the rule "add 2"
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The regular representation of 4 has the following table:

° it0 it1 it2

it1 it1 it2 it0

The function

1 2)
it0 it1 it2

is easily seen to be an isomorphism from 4 to its regular representation.

Find the right and left regular representation of each of the following groups, and
compute their tables. (If the group is ahelian,find its regular representation)

I the group of subsets of a two-element set. (See Chapter 3, Exercise C.)

2 4
3 The group G of matrices described on page 30 of the text.



CHAPTER

TEN
ORDER OF GROUP ELEMENTS

Let G be an arbitrary group, with its operation denoted multiplicatively.
Exponential notation is a convenient shorthand: for any positive integer n,
we will agree to let

a

n times

n times

and a0=e
Take care to observe that we are considering only integer exponents, not
rational or real exponents. Raising a to a positive power means multiplying
a by itself the given number of times. Raising a to a negative power means
multiplying a' by itself the given number of times. Raising a to the power
o yields the group's identity element.

These are the same conventions used in elementary algebra, and they
lead to the same familiar "laws of exponents."

Theorem I: Laws of Exponents If (i is a group and a e G, the following
identities hold for all integers in and n:
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(I) aman =
(ii) (amy =

(iii)

These laws are very easy to prove when in and n are positive integers.
Indeed,

(I) am&=aa aa

m times n times

(ii) (amy = amam . .. am = aa a= amn

n times mn times

Next, by definition a = a a
- = (a - I )". Finally, since the inverse of

a product is the product of the inverses in reverse order,

To prove Theorem I completely, we need to check the other cases,
where each of the integers in and n is allowed to be zero or negative. This
routine case-by-case verification is left to the student as Exercise A at the
end of this chapter.

In order to delve more deeply into the behavior of exponents we must
usc an elementary but very important property of the integers: From el-
ementary arithmetic we know that we can divide any integer by any posi-
tive integer to get an integer quotient and an integer remainder. The re-
mainder is nonnegative and less than the dividend. For example, 25 may be
divided by 8, giving a quotient of 3, and leaving a remainder of I:

25 = 8 x 3 + 1
q r

Similarly, —25 may be divided by 8, with a quotient of —4 and a remainder
of 7:

—25 = 8 x (—4) + 7

q r

This important principle is called the division algorithm. In its precise form,
it may be stated as follows:

Theorem 2: Division Algorithm If in and n are integers and n is positive,
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there exist unique integers q and r such that

m=nq+r and OCrcn

We call q the quotient, and r the remainder, in the division of m by n.
At this stage we will take the division algorithm to be a postulate of the

system of the integers. Later, in Chapter 19, we will turn things around,
starting with a simpler premise and proving the division algorithm from it.

Let G be a group, and a an element of G. Let us observe that

if there exists a nonzero integer m such that am = e, then there exists a
positive integer n such that = e.

Indeed, if atm = e where m is negative, then am = (am)-! = e' = e. Thus,
am = e where —m is positive. This simple observation is crucial in our
next definition. Let G be an arbitrary group, and a an element of G:

Definition If there exists a nonzero integer m such that am = e, then the order
of the element a is defined to be the least positive integer n such that a" = e.

If there does not exist any nonzero integer m such that am = e, we say
that a has order infinity.

Thus, in any group G, every element has an order which is either a
positive integer or infinity. If the order of a is a positive integer, we say that
a has finite order; otherwise, a has infinite order. For example, let us glance
at S3, whose table appears on page 67. (It is customary to use exponential
notation for composition: for instance, /3 /3 = /32, /3 o /3 o /3 = /33, and so
on.) The order of or is 2, because or2 = a and 2 is the smallest positive integer
which satisfies that equation. The order of /3 is 3, because /33 = a, and 3 is
the lowest positive power of /3 equal to a. It is clear, similarly, that y has
order 2, 6 has order 3, and K has order 2. What is the order of a?

It is important to note that one speaks of powers of a only when the
group's operation is called multiplication. When we use additive notation,
we speak of multiples of a instead of powers of a. The positive multiples of a
are a, a + a, a + a + a, and so on, while the negative multiples of a are —a,
(—a) + (—a), (—a) + (—a) + (—a), and so on. In 4, the number 2 has
order 3, because 2 + 2 + 2 = 0, and no smaller multiple of 2 is equal to 0.
Similarly, the order of 3 is 2, the order of 4 is 3, and the order of 5 is 6.

In Z, the number 2 has infinite order, because no nonzero multiple of 2
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is equal to 0. As a matter of fact, in Z, every nonzero number has infinite
order.

The main fact about the order of elements is given in the next two
theorems. In each of the following theorems, G is an arbitrary group and a
is any element of CL

Theorem 3: Powers of a, if a has finite order If the order of a is n, there are
exactly n different powers of a, namely

a°, a, a2, a3

What this theorem asserts is that every positive or negative power of a
is equal to one of the above, and the above are all different from one
another.

Before going on, remember that the order of a is n, hence

a" = e

and n is the smallest positive integer which satisfies this equation.
Let us begin by proving that every power of a is equal to one of the

powers a°, a, a2 a" Let am be any power of a. Use the division
algorithm to divide m by n:

m=nq+r
Then am = + r = = = = ar

Thus, am = if, and r is one of the integers 0, 1, 2, ..., n — 1.

Next, we will prove that a°, a1, a2, ..., a" are all different. Suppose
not; suppose if = a5, where r and s are distinct integers between 0 and
a — I. Either r < s or s < r, say s < r. Then 0 s < r < n, and conse-
quently,

0cr—s<n (*)

But ar = a', hence ar(as)_ I = a5(a5)

Therefore, aras = e

so ar_s=e

However, this is impossible, because by (*), r — s is a positive integer less
than n, whereas n (the order of a) is the smallest positive integer such that
a" = e.

This proves that we cannot have ar = if where r s. Thus, a°, a1,
a2 a" 1 are all different!
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Theorem 4: Powers of a, if a has infinite order If a has order infinity, then all
the powers of a are different. That is, if r and s are distinct integers, then
ar as.

Let r and s be integers, and suppose ar = as.

Then =a'(a')_'

hence

But a has order infinity, and this means that am is not equal to e for any
integer m except 0. Thus, r — s = 0, SO r = s.

This chapter concludes with a technical property of exponents, which is
of tremendous importance in applications.

If a is an element of a group, the order of a is the least positive integer n
such that = e. But there are other integers, say t, such that at = e. How
are they related to n? The answer is very simple:

Theorem 5 Suppose an element a in a group has order n. Then at = e if t is a
multiple of n ("t is a multiple of n" means that t = nqfor some integer q).

If t nq, then at = a" = (a")" = = e. Conversely, suppose at = e.

Divide t by n using the division algorithm:

t=nq+r 0(r<n
Then

e = a' = = (a"ya' = e"a' = a'

Thus, ar = e, where 0 zC r < n. If r 0, then r is a positive integer less than
n, whereas n is the smallest positive integer such that a" = e. Thus r = 0, and
therefore t = nq.

If a is any element of a group, we will denote the order of a by

ord(a)

EXERCISES

A. Laws of Exponents

Let G be a group and a e G.
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I Prove that am& = in the following cases:
(i) in = 0 (ii) in < 0 and n > 0 (iii) in <0 and n <0

2 Prove that (am)n = amn in the following cases:
(i)m =0 (ii)n = 0 (iii)ni cOand n >0 (iv)ni > Oand n <0

(v) in <0 and n <0
3 Prove that (ar' = a" in the following cases:

(I) n=0 (ii) n<0

B. Examples of Orders of Elements

I What is the order of 10 in 725?

2 Whatistheorderof6inl16?
3 What is the order of

(1 2 3 4 5 6

1 3 2 5 4

inS6?
4 What is the order of 1 in R* ? What is the order of 1 in R?
5 If A is the set of all the real numbers x # 0, 1, 2, what is the order of

2
f(x) =

2—x

in SA?

6 Can an element of an infinite group have finite order? Explain
7 In list all the elements (a) of order 2; (b) of order 3; (c) of order 4; (d) of order
6

C. Elementary Properties of Order

Let a, b, and c be elements of a group G. Prove the following:

1 Ord(a)=1 if a=e
2 If ord(a) = n, then = (a'j_

3 If a" = e where k is odd, then the order of a is odd.
4 Ord(a) = ord(bab').
5 The order of is the same as the order of a.
6 The order of ah is the same as the order of ba. [HINT: If

(bar = baba ha = e

x

then a is the inverse of x. Thus, ax = e.]

7 Ord(abc) = ord(cab) = ord(bca)
8 Let x + a1a2 a product of the same factors, permuted cy-
clically. (That is, y = + a1 ,.) Then ord(x) = ord(y).
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D. Further Properties of Order

Let a be any element of a group G. Prove the following:

I If a" = e where p is a prime number, then a has order p.
2 The order of a" is a divisor (factor) of the order of a.
3 If ord(a) = kin, then ord(a") = in.

4 If ord(a) = n where n is odd, then ord(a2) = n.

5 If a has order n, and ar = a5, then n is a factor of r — s.

6 If a is the only element of order k in G, then a is in the center of G. (HINT. Use
Exercise C4. Also, see Chapter 4, Exercise C6.)

7 If the order of a is not a multiple of in, then the order of a" is not a multiple of in.
(HINTS Use part 2.)

8 If ord(a) = ink and ark = e, then r is a multiple of in.

t E. Relationship between ord(ah), ord(a), and ord(h)

Let a and b be elements of a group G. Let ord(a) = in and ord(h) = n; lcm(m, n)
denotes the least common multiple of in and n. Prove the following:

1 If a and b commute, then ord(ab) is a divisor of lcm(m, n).

2 If in and n are relatively prime, then no power of a can be equal to any power of b
(except for e). (REMARK: Two integers are said to be relatively prime if they have no
common factors except ± 1.) (HINT: Use Exercise D2.)
3 If in and n are relatively prime, then the products (0 iC in, 0 (j ( ii) are
all distinct

4 Let a and h commute. If in and n are relatively prime, then ord(ab) = inn. (HINT:
Use part 2.)
5 Let a and h commute. There is an element c in G whose order is lcm(m, n). (HINT
Use part 4, above, together with Exercise D3. Let c be a certain power of a.)
6 Give an example to show that part 1 is not true if a and h do not commute.

Thus, there is no simple relationship between ord(ab), ord(a), and ord(b) if a and b
fail to commute

t F. Orders of Powers of Elements

Let a be an element of order 12 in a group G.

1 What is the smallest positive integer k such that a8" = e? (HINT: Use Theorem 5
and explain carefully!)
2 What is the order of a8?
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3 What are the orders of a9, a'°, a5?
4 Which powers of a have the same order as a? [That is, for what values of k is
ord(a") = 12?]

5 Let a be an element of order m in any group G. What is the order of a"? (Look at
the preceding examples, and generalize. Do not prove.)
6 Let a be an element of order m in any group G. For what values of k is
ord(a") = m? (Look at the preceding examples. Do not prove)

t G. Relationship between ord(a) and ord(aC)

From elementary arithmetic we know that every integer may be written uniquely as
a product of prime numbers. Two integers m and n are said to be relatively prime if
they have no prime factors in common. (For example, 15 and 8 are relatively prime.)
Here is a useful fact If m and n are relatively prime, and m is a factor of nk, then m
is a factor of k. (Indeed, all the prime factors of m are factors of nk but not of n,
hence are factors of k.)

Let a be an element of order n in a group G. Prove the following:

I If m and n are relatively prime, then atm has order n. (HINT: If amk = e, use
Theorem 5 and explain why n must be a factor of k.)
2 If am has order n, then m and n are relatively prime. [HINT: Assume m and n have
a common factor q> 1, hence we can write m = m'q and n = n'q Explain why
(amy = e, and proceed from there.]
3 Conclude from parts 1 and 2 that: ord(am) = n if n and m are relatively prime
4 Let 1 be the least common multiple of m and n. Let I/rn = k. Explain why = e.

5 Prove If (am)t = e, then n is a factor of mt. (Thus, mt is a common multiple of m
and ii Conclude that

I

6 Use parts 4 and 5 to prove that the order of atm is [lcm(m, n)]/m

t H. Relationship between the Order of a and the Order of any kth
Root of a

Let a denote an element of a group G.

I Let a have order 12. Prove that if a has a cube root, say a = h3 for some h e G,
then b has order 36. {HINT: Show that b36 = e; then show that for each factor k of
36, b" = e is impossible. [Example: If h'2 = e, then b'2 = (b3)4 = a4 = e.] Derive
your conclusion from these facts.}
2 Let a have order 6. If a has a fourth root in G, say a = b4, what is the order of
3 Let a have order 10. If a has a sixth root in G, say a = b6, what is the order of h?
4 Let a have order n, and suppose a has a kth root in G, say a = b". Explain why the
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order of h is a factor of nk, Let

ord(b) =

5 Prove that n and / are relatively prime. [HINT: Suppose n and / have a common
factor q > 1. Then n = cm' and / = qi', so

qn'k n'k
ord(b) = =

qi /

Thus = a (why?) Draw your conclusion from these facts.]

Thus, if a has order n and a has a kth root b, then b has order nk//, where n and / are
relatively prime.

6 Let a have order n. Let k be an integer such that every prime factor of k is a factor
of n. Prove: If a has a kth root b, then ord(b) = nk.
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CYCLIC GROUPS

If G is a group and a e G, it may happen that every element of G is a power
of a. In other words, G may consist of all the powers of a, and nothing else:

G = n e

In that case, G is called a cyclic group, and a is called its generator. We write

G = <a>

and say that G is the cyclic group generated by a.
If G = <a> is the cyclic group generated by a, and a has order n, we say

that G is a cyclic group of order n. We will see in a moment that, in that
case, G has exactly n elements. If the generator of G has order infinity, we
say that G is a cyclic group of order infinity. In that case, we will see that G
has infinitely many elements.

The simplest example of a cyclic group is 1, which consists of all the
multiples of 1. (Remember that in additive notation we speak of "multiples"
instead of "powers.") 1 is a cyclic group of order infinity; its generator is 1.
Another example of a cyclic group is 4, which consists of all the multiples
of 1, added modulo 6.4 is a cyclic group of order 6; 1 is a generator of 4,
but 4 has another generator too. What is it?

Suppose <a> is a cyclic group whose generator a has order n. Since <a>

109
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is the set of all the powers of a, it follows from Theorem 3 of Chapter 10
that

<a> = {e, a, a2, ...,

if we compare this group with 4, we notice a remarkable resemblance!

For one thing, they are obviously in one-to-one correspondence:

<a> = {a°, a', a2, ..., a"'}

4={0, 1, 2, ...,n—1}

In other words, the function

f(i) =

a one-to-one correspondence from Zn to <a>. But this function has an
additional property, namely

f(i +j) = = =f(i)f(j)

Thus,f is an isornorphisin from to <a>. In conclusion,

4 <a>

Let us review this situation in the case where a has order infinity. In this
case, by Theorem 4 of Chapter 10,

<a> = { ..., a2, a,

a one-to-one correspondence between this group and Z:

<a>={..., a2, a',a°,a',a2,...}

I I III
Z={...,—2, —1, 0, 1, 2, ...}

In other words, the function

f(i) =

a one-to-one correspondence from 1 to <a>. As before, f is an isomor-
phism, and therefore

Z <a>

What we have just proved is a very important fact about cyclic groups;
let us state it as a theorem.
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Theorem 1: Isomorphism of Cyclic Groups

(i) For every positive integer n, every cyclic group of order n is isomorphic to

4. Thus, any two cyclic grouØ of order n are isomorphic to each other.
(ii) Every cyclic group of order infinity is isomorphic to 1, and therefore any

two cyclic groups of order infinity are isomorphic to each other.

If G is any group and a e G, it is easy to see that

(i) the product of any two powers of a is a power of a; for =
Furthermore,

(ii) the inverse of any power of a is a power of a, because (cC) ' = a - It
therefore follows that

(iii) the set of all the powers of a is a subgroup of G.

This subgroup is called the cyclic subgroup of G generated by a. It is obvi-
ously a cyclic group, and therefore we denote it by <a>. If the element a has
order n, then, as we have seen, <a> contains the n elements {e, a, a2,

andhas
infinitely many elements.

For example, in Z, <2> is the cyclic subgroup of Z which consists of all
the multiples of 2. In Z15, <3> is the cyclic subgroup {O, 3, 6, 9, 12} which
contains all the multiples of 3. In S3, (/1> = {c, /3, ö}, and contains all the
powers of /3.

Can a cyclic group, such as /, have a subgroup which is not cyclic? This
question is of great importance in our understanding of cyclic groups. Its
answer is not obvious, and certainly not self-evident:

Theorem 2 Every subgroup of a cyclic group is cyclic.

Let G = <a> be a cyclic group, and let H be any subgroup of G. We
wish to prove that H is cyclic.

Now, G has a generator a; and when we say that H is cyclic, what we
mean is that H too has a generator (call it b), and H consists of all the
powers of b. The gist of this proof, therefore, is to find a generator of H, and
then check that every element of H is a power of this generator.

Here is the idea: G is the cyclic group generated by a, and H is a
subgroup of G. Every element of H is therefore in G, which means that
every element of H is some power of a. The generator of H which we are
searching for is therefore one of the powers of a—one of the powers of a
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which happens to be in H; but which one? Obviously the lowest one! More
accurately, the lowest positive power of a in H.

Let m be the smallest positive integer such that atm e H. We will show
that every element of H is a power of am, hence am is a generator of H.

Let at be any element of H. Divide t by m using the division algorithm:

t=mq+r
Then at = =

Solving for ar, ar = =

But atm e H and at c H, thus e H.
It follows that ar e H. But r cm and m is the smallest positive integer

such that e H. So r = 0, and therefore t = mq.

We conclude that every element at e H is of the form a' = that is,
a power of atm. Thus, H is the cyclic group generated by am.

This chapter ends with a final comment regarding the different uses of
the word "order" in algebra.

Let G be a group; as we have seen, the order of an element a in G is the
least positive integer n such that

a is infinity if there is no such n.)
Earlier, we defined the order of the group G to be the number of ele-

ments in G. Remember that the order of G is denoted by I G I.
These are two separate and distinct definitions, not to be confused with

one another. Nevertheless, there is a connection between them: Let a be an
element of order n in a group. By Chapter 10, Theorem 3, there are exactly
n different powers of a, hence <a> has n elements. Thus,

If ord(a)=n then I<a>I=n

That is, the order of a cyclic group is the same as the order of its generator.

And now, carefully, here is the proof:
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EXERCISES

A. Examples of Cyclic Groups

I List the elements of<6> in Z16.
2 List the elements of <f> in S6, where

(1 2 3 4 5 6

1 3 2 5 4

3 Describe the cyclic subgroup <4> in
4 Iff(x) = x + 1, describe the cyclic subgroup <1> of
5 Iff(x) = x + 1, describe the cyclic subgroup <1> of .F(R).
6 Show that — 1, as well as 1, is a generator of Z. Are there any other generators of
Z? Explain! What are the generators of an arbitrary infinite cyclic group <a>?
7 Is R* cyclic? Try to prove your answer.

(HINT: Ifk < 1, then k> 1c2> Ic3>.,.;

ifk>1,thenk<k2<k3<....)

Prove each of the following:

C. Generators of Cyclic Groups

P k2—.— k I.

J

S —5-—————

k

B. Elementary Properties of Cyclic Groups

1 If G is a group of order n, G is cyclic if G has an element of order n.
2 Every cyclic group is abelian. (HINT: Show that any two powers of a commute.)
3 If G = <a> and b e G, the order of h is a factor of the order of a.
4 In any cyclic group of order n, there are elements of order Ic for every integer Ic
which divides n.
S Let G be an abelian group of order inn, where in and n are relatively prime. If G
has an element of order in and an element of order n, G is cyclic. (See Chapter 10,
Exercise E4.)

6 Let <a> be a cyclic group of order n. If n and in are relatively prime, then the
functionf(x) = Xm is an automorphism of <a>. (HINT: Use Exercise B3, and Chapter
10, Theorem 5.)

For any positive integer n, let 0(n) denote the number of positive integers less than n
and relatively prime to n. For example, 1, 2, 4, 5, 7, and 8 are relatively prime to 9,
so 0(9) = 6. Let a have order n. and prove the following:
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I d is a generator of <a> if r and n are relatively prime. (HINT: See Chapter 10,
Exercise G3.)
2 <a> has ç5(n) different generators. [Use (1).]
3 For any factor m of n, let Cm = {x E <a>: xm = e} Cm is a subgroup of <a>.

4 Cm has exactly m elements. (HINT: Use Exercise B4.)

5 An element x in <a> has order in if x is a generator of Cm.
6 There are 0(m) elements of order in in <a>. [Use (I) and (5).]
7 Let n = ink. ci has order in if r = ki where I and in are relatively prime. (HINT: See
Chapter 10, Exercise G3.)
8 If c is any generator of <a>, then {Cr: r is relatively prime to n} is the set of all the
generators of <a>.

D. Elementary Properties of Cyclic Subgroups of Groups

Let G be a group and let a, h e G. Prove the following:

I

2 Suppose a is a power of b, say a = If Then b is equal to a power of a if
<a> = <h>.

3 Suppose a e <b>. Then <a> = <h> if a and h have the same order
4 Let ord(a) = n, and h = a". Then <a> = <h> if n and k are relatively prime.
5 Let ord(a) = n, and suppose a has a kth root, say a = h". Then <a> = <h> if k and
n are relatively prime.

6 Any cyclic group of order inn has a unique subgroup of order n.

K Direct Products of Cyclic Groups

Let G and H be groups, with a E G and h e H. Prove the following:

I If (a, h) is a generator of G x H, then a is a generator of G and b is a generator of
H.

2 If G x H is a cyclic group, then G and H are both cyclic.
3 The converse of part 2 is false. (Give an example to demonstrate this.)
4 Let ord(a) = in and ord(b) = n. The order of (a, b) in G x H is the least common
multiple of in and n. (HINT: Use Chapter 10, Theorem 5. Nothing else is needed!)
5 Conclude from part 4 that if in and n are relatively prime, then (a, h) has order inn.
(HINT: If two numbers are relatively prime, their least common multiple is equal to
their product.)
6 Suppose (c, d) a G x H, where c has order in and d has order n. If in and n are not
relatively prime (hence have a common factor q > 1), then the order of (c, d) is less
than inn.
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7 Conclude from parts 5 and 6 that: <a> x <b> is cyclic if ord(a) and ord(b) are
relatively prime.
8 Let G be an abelian group of order inn, where m and n are relatively prime. If G
has an element a of order in and an element b of order n, then G <a> x <b>.
(HINT: See Chapter 10, Exercise E3.)

9 Let <a> be a cyclic group of order inn, where in and n are relatively prime. Then
x

t F. kth Roots of Elements in a Cyclic Group

Let <a> be a cyclic group of order n. For any integer k, we may askS which elements
in <a> have a kth root? The exercises which follow will answer this question.

1 Let a have order 10 For what integers k (0 C k C 12), does a have a kth root?
For what integers k (0 C k C 12), does a6 have a kth root?

Let k and n be any integers, and let gcd(k, n) denote the greatest common
divisor of k and n. A linear combination of k and n is any expression ck + dn where
c and d are integers. It is a simple fact of number theory (the proof is given on page
218), that an integer mis equal to a linear combination of k and n Him is a multiple
of gcd(k, n). Use this fact to prove the following, where a is an element of order n in
a group G.

2 If in is a multiple of gcd(k, n), then atm has a kth root in <a>. [HINT: Compute atm,
and show that atm = for some aC E <a>.]

3 If atm has a kth root in <a>, then in is a multiple of gcd(k, n). Thus, atm has a kth
root in <a> if gcd(k, n) is a factor of in.
4 a has a kth root in <a> if k and n are relatively prime.
5 Let p be a prime number.

(i) If n is not a multiple of p, then every element in <a> has a pth root.
(ii) If n is a multiple of p, and atm has a pth root, then in is a multiple of p. (Thus,

the only elements in <a> which have pth roots are e, a", a2", etc.)
6 The set of all the elements in <a> having a kth root is a subgroup of <a>. (Prove
this.) Explain why this subgroup is cyclic, say <atm>. What is this value of in? (Use
part 3.)



CHAPTER

TWELVE
PARTITIONS AND EQUIVALENCE
RELATIONS

Imagine emptying a jar of coins onto a table and sorting them into separate
piles, one with the pennies, one with the nickels, one with the dimes, one
with the quarters and one with the half-dollars. This is a simple example of
partitioning a set. Each separate pile is called a class of the partition; the
jarful of coins has been partitioned into five classes.

Here are some other examples of partitions: The distributor of farm-
fresh eggs usually sorts the daily supply according to size, and separates the
eggs into three classes called "large," "medium," and "small."

The delegates to the Democratic national convention may be classified
according to their home state, thus falling into 50 separate classes, one for
each state.

A student files class notes according to subject matter; the notebook
pages are separated into four distinct categories, marked (let us say) "al-
gebra," "psychology," "English," and "American history."

Every time we file, sort, or classify, we are performing the simple act of
partitioning a set. To partition a set A is to separate the elements of A into
nonempty subsets, say A1, A2, A3, etc., which are called the classes of the
partition.

116
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Any two distinct classes, say A1 and A3, are disjoint, which means they have
no elements in common. And the union of the classes is all of A.

Instead of dealing with the process of partitioning a set (which is awk-
ward mathematically), it is more convenient to deal with the result of par-
titioning a set. Thus, {A1, A2, A3, A4}, in the illustration above, is called a
partition of A. We therefore have the following definition:

A partition of a set A is a family : i e J} of nonempty subsets of A
which are mutually disjoint and whose union is all of A.

The notation {A1 : i e I} is the customary way of representing a family
of sets {A,, A3, ... } consisting of one set A1 for each index i in I. (The
elements of I are called indkes; the notation {A1 : i e I} may be read: the
family of sets A1, as i ranges over I.)

Let {A1 : i G i} be a partition of the set A. We may think of the indices
i, j, k, ... as labels for naming the classes A1, A3, Ak Now, in practical
problems, it is very inconvenient to insist that each class be named once
and only once. It is simpler to allow repetition of indexing whenever con-
venienCe dictates. For example, the partition illustrated previously might
also be represented like this, where A1 is the same class as A5, A2 is the
same as A6, and A3 is the same as A7.

As we have seen, any two distinct classes of a partition are disjoint; this
is the same as saying that if two classes are not disjoint, they must be equal.
The other condition for the classes of a partition of A is that their union
must be equal to A; this is the same as saying that every element of A lies in
one of the classes. Thus, we have the following, more explicit definition of
partition:

By a partition of a set A we mean a family {A1 : i e I} of nonempty
subsets of A such that
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(i) If any two classes, say and have a common element x (that is,
are not disjoint), then A1 =

A lies in one of the classes.

We now turn to another elementary concept of mathematics. A relation
on a set A is any statement which is either true or false for each ordered
pair (x, y) of elements of A. Examples of relations, on appropriate sets, are

= y," "x cy," "x is parallel to y," "x is the offspring of y," and so on.
An especially important kind of relation on sets is an "equivalence re-
lation." Such a relation will usually be represented by the symbol so

that x y may be read "x is equivalent to y." Here is how equivalence
relations are defined:

By an equivalence relation on a set A we mean a relation which is

Reflexive: that is, x x for every x in A;
Symmetric: that is, if x y, then y x; and
Transitive: that is, if x y and y z, then x z.

The most obvious example of an equivalence relation is equality, but there
are many other examples, as we shall be seeing soon. Some examples from
our everyday exØerience are: "x weighs the same as y," "x is the same color
as y," "x is synonymous with y," and so on.

Equivalence relations also arise in a natural way out of partitions.
Indeed, if : i e I} is a partition of A, we may define an equivalence
relation on A be letting x y iff x and y are in the same class of the
partition.

In other words, we call two elements "equivalent" if they are members of
the same class. It is easy to see that this relation is an equivalence
relation on A. Indeed, x x because x is in the same class as x; next, if x
and y are in the same class, then y and x are in the same class; finally, if x
and y are in the same class, and y and z are in the same class, then x and z
are in the same class. Thus, is an equivalence relation on A; it is called
the equivalence relation determined by the partition : i e I}.

e%f
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Let be an equivalence relation on A, and x an element of A. The Set
of all the elements equivalent to x is called the equivalence class of x, and is
denoted by [x]. In symbols,

[x] = {y e A : y x}

A useful property of equivalence classes is this:

Lemma If x y, then [x] = [y].

In other words, if two elements are equivalent, they have the same equival-
ence class. The proof of this lemma is fairly obvious: for if x y, then the
elements equivalent to x are the same as the elements equivalent to y.

For example, let us return to the jarful of coins we discussed earlier. If
A is the set of coins in the jar, call any two coins "equivalent" if they have
the same value: thus, pennies are equivalent to pennies, nickels are equival-
ent to nickels, and so on. If x is a particular nickel in A, then [x], the
equivalence class of x, is the class of all the nickels in A. If y is a particular
dime, then [y] is the pile of all the dimes; and so forth. There are exactly
five distinct equivalence classes. If we apply the lemma to this example, it
states simply that if two coins are equivalent (that is, have the same value),
they are in the same pile. By the way, the five equivalence classes obviously
form a partition of A; this observation is expressed in the next theorem.

Theorem If is an equivalence relation on A, the family of all the equival-
ence classes, that is, {[x] : x e A}, is a partition of A.

This theorem states that if is an equivalence relation on A and we
sort the elements of A into distinct classes by placing each element with the
ones equivalent to it, we get a partition of A.

To prove the theorem, we observe first that each equivalence class is a
nonempty subset of A. (It is nonempty because x x, so x e [x]). Next, we
need to show that any two distinct classes are disjoint—or, equivalently,
that if two classes [x] and [y] have a common element, they are equal.
Well, if [x] and [y] have a common element ii, then u x and u y. By
the symmetric and transitive laws, x y. Thus, [x] = [y] by the lemma.

Finally, we must show that every element of A lies in some equivalence
class. This is true because x e [x]. Thus, the family of all the equivalence
classes is a partition of A.

When is an equivalence relation on A and A is partitioned into its
equivalence classes, we call this partition the partition determined by the
equivalence relation
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The student may have noticed by now that the two concepts of parti-
tion and equivalence relation, while superficially different, are actually twin
aspects of the same structure on sets. Starting with an equivalence relation
on A, we may partition A into equivalence classes, thus getting a partition
of A. But from this partition we may retrieve the equivalence relation, for
any two elements x and y are equivalent iff they lie in the same class of the
partition.

Going the other way, we may begin with a partition of A and define an
equivalence relation by letting any two elements be equivalent iff they lie in
the same class. We may then retrieve the partition by partitioning A into
equivalence classes.

As a final example, let A be a set of poker chips of various colors, say
red, blue, green, and white. Call any two chips "equivalent" if they are the
same color. This equivalence relation has four equivalence classes: the set of
all the red chips, the set of blue chips, the set of green chips, and the set of
white chips. These four equivalence classes are a partition of A.

Conversely, if we begin by partitioning the set A of poker chips into
four classes according to their color, this partition determines an equival-
ence relation whereby chips are equivalent iff they belong to the same class.
This is precisely the equivalence relation we had previously.

A final comment is in order. In general, there are many ways of par-
titioning a given set A; each partition determines (and is determined by)
exactly one spec jfic equivalence relation on A. Thus, if A is a set of three
elements, say a, b, and c, there are five ways of partitioning A, as indicated
by the accompanying illustration. Under each partition is written the equiv-
alence relation determined by that partition.

a " a

b
C C

a

a " c

Once again, each partition of A determines, and is determined by, exactly
one equivalence relation on A.

C'_'/C
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EXERCISES

A. Examples of Partitions

Prove that each of the following is a partition of the indicated set. Then describe the
equivalence relation associated with that partition.

1 For each integer r e {0, 1, 2, 3, 4}, let Ar be the set of all the integers which leave a
remainder of r when divided by 5. (That is, x e Ar ill x = Sq + r for some integer q.)
Prove: {A0, A1, A2, A3, A4} isapartitionofZ.
2 For each integer n, let Prove is a
partition of 0.
3 For each rational number r, let Ar = {(rn, n) e Z x 7: rn/n = r}. Prove that
{Ar : r e 0} is a partition of 7 x 7.
4 For r E {0, 1, 2 9}, let Ar be the set of all the integers whose units digit (in
decimal notation) is equal to r. Prove: {A0, A1, A2 A9} is a partition of 71.

5 For any rational number x, we can write x = q + n/rn where q is an integer and
0 n/rn < 1. Call n/rn the fractional part of x. For each rational r a {x :0 x <
let Ar = {x a 0 :the fractional part of x is equal to r}. Prove: {Ar :0 r .c 1} is a
partition of 0.
6 For each r a let Ar = {(x, y) a x IR: x — y = r}. Prove: {Ar: r a R} is a par-
tition of II x

B. Examples of Equivalence Relations

Prove that each of the following is an equivalence relation on the indicated set. Then
describe the partition associated with that equivalence relation.

1

2

3 Let [x] denote the greatest integer (x. In R, let a h ill [a] = [hi.
4 In 7, let rn n Him — n is a multiple of 10.
5

6 In ffi(R), letf-.- g ifff(0) = g(0).

7 In F(R), letf-.- g ifff(x) = g(x) for all x> c, where c is some fixed real number.
8 If C is any set, denotes the set of all the subsets of C. Let D c C. In let

A B if A n I) = B n D.
9 In l1 x IR, let (a, b) '—' (c, d) iffa2 + b2 = c2 + d2.

10 InlR,leta'-.'hiffa/baQ.
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C. Equivalence Relations and Partitions of R x R

In parts 1 to 3, {Ar: r e is a family of subsets of x R. Prove it is a partition,
describe the partition geometrically, and give the corresponding equivalence re-
lation.

1 Foreachre
R, Ar = {(x, y): x2 + y2 = r2}.

In parts 4 to 6, an equivalence relation on Ft x Ft is given. Prove it is an equivalence
relation, describe it geometrically, and give the corresponding partition.

4 (x, y) (u, v) if ax2 + by2 = au2 + by2 (where a, b > 0)
5 (x, y) (u, v) if x + y = u + v
6 (x, y) v) iffx2 —y = u2 — v

D. Equivalence Relations on Groups

Let G be a group. In each of the following, a relation on G is defined. Prove it is an
equivalence relation Then describe the equivalence class of e.

1 IfHisasubgroupofG,leta'-hifab' eH.
2 If H is a subgroup of G, let a h if a 'b e H. Is this the same equivalence
relation as in part I? Prove your answer.
3 Leta b if there is an xc G such thata = xbx'.
4 Let a b if there is an integer k such that a" = h".

5 Let a b iffab' commutes with every x e G.
6 Let a b ifab 'is a power of c (where c is a fixed element of G).

E. General Properties of Equivalence Relations and Partitions

I Let {A,: i e I} be a partition of A. Let : j e J} be a partition of B. Prove that
{A1 x (i,j) ci X J} is a partition of A x B.
2 Let -'-- be the equivalence relation corresponding to the above partition of A, and
let be the equivalence relation corresponding to the partition of B. Describe the
equivalence relation corresponding to the above partition of A x B.
3 Letf: A—4 B be a function. Define by: a -S.- h ifff(a) =f(h). Prove that is

an equivalence relation on A. Describe its equivalence classes.
4 Let f: A B be a surjective function, and let {B,: i e I} be a partition of B.
Prove that {f'(B,) : i a I} is a partition of A. If is the equivalence relation
corresponding to the partition of B, describe the equivalence relation corresponding
to the partition of A. [REMARK: For any C B,f'(C) = {x a A a C}.]
5 Let and 2 be distinct equivalence relations on A. Define 3 by: a h if
a h and a 2 b. Prove that is an equivalence relation on A. If [x]1 denotes
the equivalence class of x for (i = 1, 2, 3), prove that [x]3 = [x]1 n [x]2.
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THIRTEEN
COUNTING COSETS

Just as there are great works in art and music, there are also great creations
of mathematics. "Greatness," in mathematics as in art, is hard to define, but
the basic ingredients are clear: a great theorem should contribute substan-
tial new information, and it should be unexpected! That is, it should reveal
something which common sense would not naturally lead us to expect. The
most celebrated theorems of plane geometry, as may be recalled, come as a
complete surprise; as the proof unfolds in simple, sure steps and we reach
the conclusion—a conclusion we may have been skeptical about, but which
is now established beyond a doubt—we feel a certain sense of awe not
unlike our reaction to the ironic or tragic twist of a great story.

In this chapter we will consider a result of modern algebra which, by all
standards, is a great theorem. It is something we would not likely have
foreseen, and which brings new order and simplicity to the relationship
between a group and its subgroups.

We begin by adding to our algebraic tool kit a new notion—a concep-
tual tool of great versatility which will serve us well in all the remaining
chapters of this book. It is the concept of a coset.

Let (i be a group, and H a subgroup of G. For any element a in G, the
symbol

aH
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denotes the set of all products ah, as a remains fixed and h ranges over H.
aH is called a left coset of H in G.

In similar fashion,

Ha

denotes the set of all products ha, as a remains fixed and h ranges over H.
Ha is called a right coset of H in G.

In practice, it will make no difference whether we use left cosets or right
cosets, just as long as we remain consistent. Thus, from here on, whenever
we use cosets we will use right cosets. To simplify our sentences, we will say
coset when we mean "right coset."

When we deal with cosets in a group G, we must keep in mind that
every coset in G is a subset of G. Thus, when we need to prove that two
cosets Ha and Hh are equal, we must show that they are equal sets. What
this means, of course, is that every element x e Ha is in Hb, and conversely,
every element y e Hb is in Ha. For example, let us prove the following
elementary fact:

IfaeHh,thenHa=Hb (*)

We are given that a e Hb, which means that a = h1b for some h1 e H. We
need to prove that Ha = Hb.

Let x e Ha; this means that x = h2a for some h2 e H. But a = h11,, so

x = 172 a = (h2 h1)h, and the latter is clearly in Hb. This proves that every
x e Ha is in Hb; analogously, we may show that every y e Hb is in Ha, and
therefore Ha = Hb.

The first major fact about cosets now follows. Let G be a group and let
H be a fixed subgroup of G:

Theorem I The family of all the cosets Ha, as a ranges over (J, is a partition
of G.

G

First, we must show that any two cosets, say Ha and Hh, are either
disjoint or equal. If they are disjoint, we are done. If not, let x e Ha n Hb.
Because x e Ha, x = h1a for some h1 e H. Because x e HI,, x = h2b for
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some h2 e H. Thus, h1a = h2 h, and solving for a, we have

a = (hj'h2)b

Thus,

a e Hb

It follows from (*) that Ha = Hb.
Next, we must show that every element c e G is in one of the cosets of

H. But this is obvious, because c = ec and e e H; therefore,

c = ec e Hc

Thus, the family of all the cosets of H is a partition of G!

Before going on, it is worth making a small comment: A given coset,
say Hb, may be written in more than one way. By (*), (1 a is any element in
Hb, then Hb is the same as Ha. Thus, for example, if a coset of H contains n
different elements a1, a2, ..., ;, it may be written in n different ways,

Han.

The next important fact about cosets concerns finite groups. Let G be a
finite group, and H a subgroup of G. We will show that all the cosets of H
have the same number of elements! This fact is a consequence of the next
theorem.

Theorem 2 If Ha is any coset of H, there is a one-to-one correspondence from
H to Ha.

The most obvious function from H to Ha is the one which, for each
h e H, matches h with ha. Thus, letf: H —> Ha be defined by

f(h) = ha

Remember that a remains fixed whereas h varies, and check that f is injec-

tive and surjective.

f is infective: Indeed, iff(h1) =f(h2), then h1a = h2a, and therefore h1 = h2.

f is surf ective, because every element of Ha is of the form ha for some h e H,
and ha =f(h).

Thus,f is a one-to-one correspondence from H to Ha, as claimed.
By Theorem 2, any coset Ha has the same number of elements as H,

and therefore all the cosets have the same number of elements!
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G

Let us take a careful look at what we have proved in Theorems 1 and 2.
Let G be a finite group and H any subgroup of G. G has been partitioned
into cosets of H, and all the cosets of H have the same number of elements
(which is the same as the number of elements in H). Thus, the number of
elements in G is equal to the number of elements in H, multiplied by the
number of distinct cosets of H. This statement is known as Lagrange's theor-
em. (Remember that the number of elements in a group is called the group's
order.)

Theorem 3: Lagrange's theorem Let G be afinite group, and H any subgroup
of G. The order of G is a multiple of the order of H.

In other words, the order of any subgroup of a group G is a divisor of
the order of G.

For example, if G has 15 elements, its proper subgroups may have
either 3 or 5 elements. If G has 7 elements, it has no proper subgroups, for 7
has no factors other than I and 7. This last example may be generalized:

Let G be a group with a prime number p of elements. If a e G where
a e,thentheorderofaissomeintegerm 1. But then thecyclicgroup
<a> has m elements. By Lagrange's theorem, m must be a factor of p. But p
is a prime number, and therefore m = p. It follows that <a> has p elements,
and is therefore all of G! Conclusion:

Theorem 4 If G is a group with a prime number p of elements, then G is a
cyclic group. Furthermore, any element a e in G is a generator of G.

Theorem 4, which is merely a consequence of Lagrange's theorem, is
quite remarkable in itself. What it says is that there is (up to isomorphism)
only one group of any given prime order p. For example, the only group (up
to isomorphism) of order 7 is the only group of order 11 is Z1 and so
on! So we now have complete information about all the groups whose
order is a prime number.

By the way, if a is any element of a group G, the order of a is the same
as the order of the cyclic subgroup <a>, and by Lagrange's theorem this
number is a divisor of the order of G. Thus,
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Theorem 5 The orderof any element of a finite group divides the order of the
group.

Finally, if 6 is a group and H is a subgroup of G, the index of H in 6 is
the number of cosets of H in G. We denote it by (G: H). Since the number
of elements in G is equal to the number of elements in H, multiplied by the
number of cosets of H in G,

order of 6
(6: H) =

order of H

EXERCISES

A. Examples of Cosets in Finite Groups

In each of the following, H is a subgroup of 6. List the cosets of H. For each coset,
list the elements of the coset.

Example G=Z4,H={O,2}.

(REMARK: If the operation of G is denoted by + , it is customary to write H + x
for a coset, rather than Hx.) The cosets of H in this example are:

H = H + 0 = H + 2 = {O, 2} and H + I = H + 3 = {I, 3}

I

2 G=53,H={s,cz}
3 G=115,H=(5>
4 G=D4,H={R0,R4} (ForD4,seepage69.)
5 G=54,H=A4 (ForA4,seepage8l.)
6 Indicate the order and index of each of the subgroups in parts I to 5.

B. Examples of Cosets in Infinite groups

Describe the cosets of the following subgroups.

1 The subgroup <3> of Z.
2 The subgroup Z of R.
3 The subgroup H = : n e Z} R*.

4 The subgroup <4> of lR*.

5 ThesubgroupH={(x,y) x IR.

6 For any positive integer m, what is the index of<m) in Z?
7 Find a subgroup of IR* whose index is equal to 2.
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C. Elementary Consequences of Lagrange's Theorem

Let G be a finite group. Prove the following:

1 If G has order n, then x" = e for every x in G.

2 Let G have order pq, where p and q are primes. Either G is cyclic, or every element
x e in G has order p or q.
3 Let G have order 4. Either G is cyclic, or every element of G is its own inverse.
Conclude that every group of order 4 is abelian
4 If G has an element of order p and an element of order q, where p and q are
distinct primes, then the order of G is a multiple of pq.
5 If G has an element of order k and an element of order in, then

I G I is a multiple
of lcm(k, in) [lcm(k, in) is the least common multiple of k and in].
6 Let p be a prime number. In any finite group, the number of elements of order p is
a multiple of p — I.

D. Further Elementary Consequences of Lagrange's Theorem

Let G be a finite group, and let H and K be subgroups of G. Prove the following:

1 Suppose H K (therefore H is a subgroup of K). Then (G : H) = (G : K)(K : H)
2 The order of H n K is a common divisor of the order of H and the order of K
3 Let H have order in and K have order n, where in and n are relatively prime. Then
HnK ={e}.
4 Suppose H and K are not equal, and both have order the same prime number p.
Then H n K = {e}.

5 Suppose H has index p and K has index q, where p and q are distinct primes.
Then the index ofHnK is a multiple of pq.
6 If G is an abelian group of order n, and in is an integer such that in and n are
relatively prime, then the function f(x) = C is an automorphism of G.

E. Elementary Properties of Cosets

Let G be a group, and H a subgroup of G. Let a and h denote elements of G.
Prove the following:

I Ha=HbiffalY'eH.
2 Ha=HiffaeH.
3 If aH = Ha and bH = Hb, then (ab)H = H(ah).

4 IfaH=Ha,thena'H=HC'.
S If (ab)H = (ac)H, then hH = cH.

6 The number of right cosets of H is equal to the number of left cosets of H.
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7 If J is a subgroup of G such that J = H n K, then for any a e G, Ja = Ha n Ka.
Conclude that if H and K are of finite index in G, then their intersection H n K is
also of finite index in G.

Theorem 5 of this chapter has a useful converse, which is the following:

Cauchy's theorem If G is a finite group, and p is a prime divisor of I G , then 6 has
an element of order p.

For example, a group of order 30 must have elements of orders 2, 3 and 5.
Cauchy's theorem has an elementary proof, which may be found on page 340.

In the next few exercise sets, we will survey all possible groups whose order is
10. By Theorem 4 of this chapter, if 6 is a group with a prime number p of

elements, then 6 74,. This takes care of all groups of orders 2, 3, 5, and 7. In
Exercise G6, page 152, it will be shown that if 6 is a group with p2 elements
(where p is a prime), then G 74,2 or 6 74, x 74,. This will take care of all groups
of orders 4 and 9. The remaining cases are examined in the next three exercise sets.

t F. Survey of All Six-Element Groups

Let G be any group of order 6. By Cauchy's theorem,\G has an element a of order 2
and an element h of order 3. By Chapter 10, Exercise E3, the elements

e, a, h, h2, ah, ah2

are all distinct; and since 6 has only six elements, these are all the elements in 6.
Thus, ha is one of the elements e, a, b, b2, ab, or ah2

1 Prove that ha cannot be equal to either e, a, h, or b2. Thus, ha = ab or ha = ab2.

Either of these two equations completely determines the table of 6. (See the
discussion at the end of Chapter 5.)

2 Ifba = ab, prove that 6
3

It follows that 4 and 53 are (up to isomorphism), the only possible groups of
order 6.

t G. Survey of All 10-Element Groups

Let 6 be any group of order 10.

1 Reason as in Exercise F to show that 6 = {e, a, b, b2, h3, b4, ah, ab2, ah3, ab4},
where a has order 2 and h has order 5.
2 Prove that ha cannot be equal to e, a, h, b2, b3, or h4.
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3 Prove that if ha = ah, then G

4 If ha = ah2, prove that ha2 = a2h4, and conclude that h = h4. This is impossible
because h has order 5, hence ba ab2. (HINT: The equation ha = ab2 tells us that
we may move a factor a from the right to the left of a factor h, but in so doing, we
must square h. To prove an equation such as the preceding one, move all factors a
to the left of all factors b.)

5 If ha = ab3, prove that ha2 = a2b9 = a2b4, and conclude that h = b4. This is
impossible (why?); hence ha ab3.

6 Prove that if ba = ab4, then G D5 (where D5 is the group of symmetries of the
pentagon).

Thus, the only possible groups of order 10 (up to isomorphism), are and D5.

t H. Survey of All Eight-Element Groups

Let G be any group of order 8. If G has an element of order 8, then G 4. Let us
assume now that G has no element of order 8; hence all the elements e in G have
order 2 or 4.

1 If every x e in G has order 2, let a, b, c be three such elements. Prove that
G = {e, a, b, c, ab, hc, ac, ahc}. Conclude that G Z2 x x Z2.

In the remainder of this exercise set, assume G has an element a of order 4. Let
H = <a> = {e, a, a2. a3}. If h e G is not in H, then the coset Hh = {h. ah. a2h. a3h}.
By Lagrange's theorem, G is the union of He = Hand Hh; hence

G = {e, a, a2, a3, b, ab, a2b, a3b}

2 Assume there is in Hh an element of order 2 (Let h be this element.) If ba = a2h,

prove that b2a = a4b2, hence a = a4, which is impossible. (Why?) Conclude that
either ha = ah or ha = a3h.

3 Let b be as in part 2. Prove that if ba = ab, then G 74 x
4 Let h be as in part 2. Prove that if ba = a3h, then G D4.

5 Now assume the hypothesis in part 2 is false. Then h, ab, a2b, and a3b all have
order 4. Prove that h2 = a2. (HINT: What is the order of b2? What element in G has
the same order?)
6 Prove: If ha = ah, then (a3b)2 = e, contrary to the assumption that ord(cz3b) = 4.

If ba = a2h, then a = h4a = e, which is impossible. Thus, ha = a3h.

7 The equations a4 = = e, a2 = b2, and ha = a3h completely determine the table
of G. Write this table. (G is known as the quaternion group Q.)

Thus, the only groups of order 8 (up to isomorphism) are 4, 4 x
4 x 4, 1)4, and Q.

t Conjugate Elements

If a e G, a conjugate of a is any element of the form xax ', with x e G. (Roughly
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speaking, a conjugate of a is any product consisting of a sandwiched between any
element and its inverse.) Prove each of the following:

I The relation "a is equal to a conjugate of b" is an equivalence relation in G.
(Write a h for "a is equal to a conjugate of h.")

This relation — partitions any group G into classes called conjugacy classes.
(The conjugacy class of a is [a] = {xax ' : x e G}.)

For any element a e G, the centralizer of a, denoted by Ca, is the set of all the
elements in G which commute with a. That is,

Ca = {x a G : xa = ax} = {x a G : = a}

Prove:

2 For any a a G, Ca is a subgroup of G.
3 iffxy' commuteswithaiffxy' a Ca.
4 = iffCax = CaY. (HINT: Use Exercise El.)

5 There is a one-to-one correspondence between the set of all the conjugates of a
and the set of all the cosets of Ca. (HINT: Use part 4.)
6 The number of distinct conjugates of a is equal to (G : Ca), the index of Ca in G.
Thus, the size of every conjugacy class is afactor of I G I.

t J. Group Acting on a Set

Let A be a set, and let G be any subgroup of G is a group of permutations of A;
we say it is a group acting on the set A. Assume here that G is a finite group. If u a A,
the orbit of u (with respect to G) is the set

0(u) = {g(u) : g a G}

1 Define a relation '—j on A by: u v if g(u) = v for some g a G. Prove that '—' is an
equivalence relation on A, and that the orbits are its equivalence classes.

If u A, the stabilizer ofu is the set G : g(u) = u}, that is, the set of all
the permutations in G which leave u fixed.

2 Prove that is a subgroup of G.
3 Let x = (1 2)(3 4)(5 6) and /3 = (2 3) in S6. Let G be the following subgroup of S6:
G = {a, x, /3, x/3, cz[Joç flcx/3, (cxfl)2}. Find 0(1), 0(2), 0(5), G1, G2, G4, G5.
4 Letf, g a G. Prove that f and g are in the same coset of if f(u) = g(u). (HINT:
Use Exercise El.)
5 Use part 4 to show that the number of elements in 0(u) is equal to the index of
in G. [HINT: Iff(u) = v, match the coset off with v.]
6 Conclude from part 5 that the size of every orbit (with respect to G) is a factor of
the order of G. In particular, iff a 5A' the length of each cycle of f is a factor of the
order off in
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FOURTEEN
HOMOMORPHISMS

We have seen that if two groups are isomorphic, this means there is a
one-to-one correspondence between them which transforms one of the
groups into the other. Now if G and H are any groups, it may happen that
there is a function which transforms G into H although this function is not a
one-to-one correspondence. For example, 4 is transformed into 13 by

(0 1 2 3 4 5

I 2 0 I 2

as we may verify by comparing their tables:

012341234523450345014501250123

5

0 Replace

I
xbyf(x)

2

3

4

012012
1 2 0 1 2120120201201012012120120

2 0 1 2 0 1

+ 012345 +

0

2

3

4

5

0

2

0

2

Eliminate duplicate
information

(For example, 2 + 2 =
appears four separate

times in this table.)

+ 012
0012
1 1202201
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If G and H are any groups, and there is a functionf which transforms G
into H, we say that H is a homomorphic image of G. The function f is called
a homomorphism from G to H. This notion of homomorphism is one of the
skeleton keys of algebra, and this chapter is devoted to explaining it and
defining it precisely.

First, let us examine carefully what we mean by saying that "f trans-
forms G into H." To begin with,f must be a function from G onto H; but
that is not all, becausef must also transform the table of G into the table of
H. To accomplish this, f must have the following property: for any two
elcments a and Ii in G,

if f(a) = a' and f(h) = b', then f(ah) = a'b' (*)

Graphically,

if a

I
and b

then ab "

Condition (*) may be written more succinctly as follows:

f(ab) = f(a)f(b) (**)

Thus,

Definition If G and H are groups, a homomorphism from G to H is a function
f: G—> H such that for any two elements a and b in G,

f(ab) =f(a)f(b)

If there exists a homomorphism from G onto H, we say that H is a homomor-
p11k image of G.

Groups have a very important and privileged relationship with their
homomorphic images, as the next few examples will show.

Let P denote the group consisting of two elements, e and o, with the
table

+ eo
e e o

o o e
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We call this group the parity group of even and odd numbers. We should
think of e as "even" and o as "odd." and the table as describing the rule for
adding even and odd numbers. For example, even + odd = odd, odd +
odd = even, and so on.

The function 1: 1 —÷ P which carries every even integer to e and every
odd integer to o is clearly a homomorphism from I to P. This is easy to
check because there are only four different cases: for arbitrary integers r
and s, r and s are either both even, both odd, or mixed. For example, if r
and s are both odd, their sum is even, sof(r) = o,f(s) = o, andf(r + s) = e.

Since e = 0 + 0,

f(r+s)=f(r)+f(s)
This equation holds analogously in the remaining three cases; hence f is a
homomorphism. (Note that the symbol + is used on both sides of the
above equation because the operation, in I as well as in P, is denoted by

It follows that P is a homomorphic image of I!
Now, what do P and 1 have in common? P is a much smaller group

than 7, therefore it is not surprising that very few properties of the integers
are to be found in P. Nevertheless, one aspect of the structure of 7 is
retained absolutely intact in P, namely the structure of the odd and even
numbers. (The fact of being odd or even is called the parity of integers.) In
other words, as we pass from 7 to P we deliberately lose every aspect of the
integers except their parity; their parity alone (with its arithmetic) is re-
tained, and faithfully preserved.

Another example will make this point clearer. Remember that D4 is the
group of the symmetries of the square. Now, every symmetry of the square

/2
/

______/

//
I \ /

I
either interchanges the two diagonals here labeled 1 and 2, or leaves them
as they were. In other words, every symmetry of the square brings about
one of the permutations
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(I 2'\ (1 2
I I or I

\2 1) \1 2

of the diagonals.
For each e D4, let be the permutation of the diagonals pro-

duced by R1. Then f is clearly a homomorphism from D4 onto Indeed, it
is clear on geometrical grounds that when we perform the motion R1 fol-
lowed by the motion on the square, we are, at the same time, carrying
out the followed on the diagonals. Thus,

o RÔ of(R1)

it follows that S2 is a homomorphic image of D4. Now, is a smaller
group than D4, and therefore very few of the features of D4 are to be found
in Nevertheless, one aspect of the structure of D4 is retained absolutely
intact in namely the diagonal motions. Thus, as we pass from D4 to
we deliberately lose every aspect of plane motions except the motions of the
diagonals; these alone are retained and faithfully preserved.

A final example may be of some help; it relates to the group 13"
described in Chapter 3, Exercise E. Here, briefly, is the context in which this
group arises: The most basic way of transmitting information is to code it
into strings of Os and is, such as 0010111, 1010011, etc. Such strings are
called binary words, and the number of Os and 1 s in any binary word is
called its length. The symbol 13" designates the group consisting of all
binary words of length n, with an operation of addition described in Chap-
ter 3, Exercise E.

Consider the function f: 1EV —> which consists of dropping the last
two digits of every seven-digit word. This kind of function arises in many
practical situations: for example, it frequently happens that the first five
digits of a word carry the message while the last two digits are an error
check. Thus,f separates the message from the error check.

It is easy to verify that f is a homomorphism, hence is a homomor-
phic image of lB7. As we pass from lB7 to lBs, the message component of
words in lB7 is exactly preserved while the error check is deliberately lost.

These examples illustrate the basic idea inherent in the concept of a
homomorphic image. The cases which arise in practice are not always so
clear-cut as these, but the underlying idea is still the same: In a homomor-
phic image of G, some aspect of G is isolated and faithfully preserved while
all else is deliberately lost.

The next theorem presents two elementary properties of homomor-
phisms.
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Theorem I Let G and H be groups, and f: G —p H a homomorphism. Then
(i) f(e) = e, and
(ii) f(a - 1) = [f(a)] 1 for every element a c G.

In the equationf(e) = e, the letter e on the left refers to the neutral element
in G, whereas the letter e on the right refers to the neutral element in H.

To prove (i), we note that in any group,

if yy=y then y=e
(Use the cancelation law on the equation yy = ye.) Now,f(e)f(e) =f(ee) =
f(e), hencef(e) = e.

To prove (ii), note that f(a)f(a 1) = f(aa ')= f(e). But f(e) = e, so

f(a)f(a 1) = e. It follows by Theorem 2 of Chapter 4 that f(a 1) is the
inverse off(a), that is,f(a ')= [f(a)]

Before going on with our study of homomorphisms, we must be intro-
duced to an important new Concept. If a is an element of a group G, a
conjugate of a is any element of the form xax where x e G. For example,
the conjugates of or in S3 are

/3 ° or ° = 7

y or = K

ö ° or ° (5-1 = K

K ° or ° K1 = 7

as well as or itself, which may be written in two ways, as c c or c or as
or o or o If H is any subset of a group G, we say that H is closed with
respect to conjugates if every conjugate of every element of H is in H.
Finally,

Definition Let H be a subgroup of a group G. H is called a normal subgroup
of (J it is closed with respect to conjugates; that is,

jorany aeH and xeG xax'eH

(Note that according to this definition, a normal subgroup of G is any
nonempty subset of G which is closed with respect to products, with respect
to inverses, and with respect to conjugates.)
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We now return to our discussion of homomorphisms.

Definition Let f: G —> H be a homomorphism. The kernel off is the set K of
all the elements of G which are carried by f onto the neutral element of H.
That is,

K = {x e G: f(x) = e}

Theorem 2 Letf: G—÷ H be a homomorphism.
(i) The kernel off is a normal subgroup of G, and
(ii) The range off is a subgroup of H.

Let K denote the kernel of f If a, b e K, this means thatf(a) = e and
f(b) = e. Thus,f(ab) =f(a)f(b) = ee = e, hence ab e K.

IfaeK,thenf(a)=e.Thus,f(a')=[f(a)]1=e'=e,soa'eK.
Finally, if a e K and x e G, then f(xax') = f(x)f(a)f(x 1) =

f(x)f(a)[f(x)]1 = e, which shows that xax e K. Thus, K is a normal
subgroup of G.

Now we must prove part (ii). If f(a) and f(b) are in the range off, then
their product f(a)f(b) =f(ab) is also in the range off

If f(a) is in the range off, its inverse is [f(a)] =f(a I), which is also
in the range off Thus, the range off is a subgroup of H.

1ff is a homomorphism, we represent the kernel of f and the range off
with the symbols

ker(f) and ran(f)

EXERCISES

A. Examples of Homomorphisms of Finite Groups

I Consider the functionf: 4 —. 4 given by

(0 1 2 3 4 5 6 7

1 2 3 0 1 2 3

Verify that f is a homomorphism, find its kernel K, and list the cosets of K
[REMARK: To verify that f is a homomorphism, you must show that f(a + b) =
f(a) +f(b) for all choices of a and b in 4; there are 64 choices. This may be
accomplished by checking that f transforms the table of 4 to the table of 4, as on
page 132.]
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2. Consider the function f: 53 —s 73 given by

2 /1 7 c5 K

1 0 1 0 1

Verify thatf is a homomorphism, find its kernel K, and list the cosets of K.
3. Find a homomorphism f: 75, and indicate its kernel. (Do not actually
verify thatf is a homomorphism.)
4 Imagine a square as a piece of paper lying on a table. The side facing you is side
A The side hidden from view is side B. Every motion of the square either inter-

changes the two sides (that is, side B becomes visible and side A hidden) or leaves
the sides as they were. In other words, every motion R1 of the square brings about
one of the permutations

(A B\ (A B

A B)
or

A

of the sides; call it g(R,). Verify that g: D4 is a homomorphism, and give its
kernel.

5 Every motion of the regular hexagon brings about a permutation of its diagonals,
labeled 1, 2, and 3. For each R, a D6, letf(R1) be the permutation of the diagonals

2 3

produced by R1. Argue informally (appealing to geometric intuition) to explain why
f: D6 —4 53 is a homomorphism. Then complete the following:

(1 2 3 4 5 6\ (1 2 3 4 5 6\
2345 6)a 3456

(That is, find the value of f on all 12 elements of D6.)

B = {1, 2}, complete the following:
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h= 0 {1} {2} {3} {1,2} {1,3} {2,3} A

For any A and B a A, argue as in Chapter 3, Exercise C to show that h is a
homomorphism.

B. Examples of Homomorphisms of Infinite Groups

Prove that each of the following is a homomorphism, and describe its kernel.

1 The function 0 : 11 given by 0(f) =f(O).
2 The function 0: —÷ F(R) given by 0(f) =f'. 9(R) is the group of differ-
entiable functions from to lR;f' is the derivative off
3 The functionf: II x R —p given byf(x, y) = x + y.
4 The functionf: defined byf(x) = lxi.

_____

S The functionf : —. RF defined byf(a + bi) = + h2.
6 Let G be the multiplicative group of all 2 x 2 matrices

(a b

kc d

satisfying ad — bc 0. Let f: G —÷ 11* be given by f(A) = determinant of
A = ad — hc.

C. Elementary Properties of Homomorphisms

Let G, H, and K be groups. Prove the following:

1 If f: G H and g: H —. K are homomorphisms, then their composite g of:
G —. K is a homomorphism.
2 1ff: G —÷ H is a homomorphism with kernel K, thenf is injective iff K = {e}.

3 If f: G —. H is a homomorphism and K is any subgroup of G, then
f(K) = {J(x): x a K} is a subgroup of H.
4 1ff: G —. H is a homomorphism and J is any subgroup of H, then

f'(J)={xeG:f(x)eJ}
is a subgroup of G. Furthermore, kerf f '(J).
S 1ff: G —÷ H is a homomorphism with kernel K, and J is a subgroup of 6, letfj
designate the restriction off to J. (In other is the same function asf except
that its domain is restricted to J.) Prove that = J n K.
6 For any group 6, the functionf: G —. G defined byf(x) = e is a homomorphism.
7 For any group G, {e} and 6 are homomorphic images of 6.
8 The functionf: G —÷ G defined byf(x) = x2 is a homomorphism if G is abelian.
9 The functionsf1(x, y) = x andf2(x, y) = y, from 6 x H to G and H, respectively,
are homomorphisms.
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D. Basic Properties of Normal Subgroups

In the following, let G denote an arbitrary group.

I Find all the normal subgroups (a) of S3 (b) of D4.

Prove the following:

2 Every subgroup of an abelian group is normal.
3 The center of any group G is a normal subgroup of G.
4 Let H be a subgroup of G. H is normal if it has the following property: For all a
and h in G, ah e H if ba e H.

5 Let H be a subgroup of G. H is normal if all = Ha for every a e G.

6 Any intersection of normal subgroups of G is a normal subgroup of G.

I!. Further Properties of Normal Subgroups

Let G denote a group, and H a subgroup of G. Prove the following:

I If H has index 2 in G, then H is normal. (HINT: IJse Exercise D5.)

2 Suppose an element a e G has order 2. Then <a> is a normal subgroup of G ifa
is in the center of G.

3 If a is any clement of G, <a> is a normal subgroup of G if a has the following

property: For any x e G, there is a positive integer k such that xa = akx.

4 In a group G, a commutator is any product of the form aba 'b where a and b
are any elements of G If a subgroup H of G contains all the commutators of G, then
H is normal.

5 If H and K are subgroups of G, and K is normal, then HK is a subgroup of G
(HK denotes the set of all products hk as h ranges over H and k ranges over K.)
6 Let S be the union of all the cosets Ha such that Ha = all. Then S is a normal
subgroup of G.

F. Homomorphism and the Order of Elements

1ff: G H is a homomorphism, prove each of the following:

1 For each element a e G, the order off(a) is a divisor of the order of a.
2 The order of any element h e in the range of f is a common divisor of I G

I

and

1111. [Use (1).]

3 If the range off has n elements, then f e kerf for every x e G
4 m be an integer such that m and I H

I

are relatively prime. For any x e G, if
xm e kerf, then x e kerf
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5 Let the range of f have m elements. If a a G has order n, where m and n are
relatively prime, then a is in the kernel of f [Use (1).]

6 Let p be a prime. If H has an element of order p, then G has an element of order p.

G. Properties Preserved under Homomorphism

A property of groups is said to be "preserved under homomorphism" if, whenever a
group a has that property, every homomorphic image of G does also. In this
exercise set, we will survey a few typical properties preserved under homomorphism.
1ff: G —p H is a homomorphism of G onto H, prove each of the following:

1 If G is abelian, then H is abelian.
2 If G is cyclic, then H is cyclic.

3 If every element of G has finite order, then every element of H has finite order.
4 If every element of G is its own inverse, every element of H is its own inverse.
5 If every element of G has a square root, then every element of H has a square
root.

6 If G is finitely generated, then H is finitely generated. (A group is said to be
"finitely generated" if it is generated by finitely many of its elements.)

t H. Inner Direct Products

If G is any group, let H and K be normal subgroups of G such that H n K = {e}.
Prove the following:

I Let h1 and h2 be any two elements of H, and k1 and k2 any two elements of K.

h1k1 = h2 k2 implies h1 = h2 and k1 =

(HINT:Ifh1k1 =h2k2,thenh'h1 aHnKandk2kr' eHnK.Explainwhy.)
2 For any h a H and k a K, hk = kh. (HINT: hk = kh iffhkh1k' = e. Use the fact
that H and K are normal.)

3 Now, make the additional assumption that G = HK, that is, every x in G can be
written as x = hk for some h a H and k a K. Prove that the function Ø(h, k) = hk is

an isomorphism from H x K onto G.

We have thus proved the following: If H and K are normal subgroups of G, such
that H n K = {e} and G = HK, then G H x K. G is sometimes called the inner
direct product of H and K.

+ I. Conjugate Subgroups

Let H be a subgroup of G. For any a a G, let aHa' = {axa' : x a H}; aHa' is
called a conjugate of H. Prove the following:
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1 Foreach an G,aHa' is asubgroupofG.
2 For each an G, H aHa'.
3 H is a normal subgroup of G if H = aHa' for every an G.

In the remaining exercises of this set, let G be a finite group. By the normalizer of H
we mean the set N(H) = {a n G: axa1 n H for every x n H}.

4 If a n N(H), then aHa ' = H. (Remember that G is now a finite group.)
5 N(H) is a subgroup of G.
6 H c N(H) Furthermore, H is a normal subgrouç of N(H)

In (7) —(10), let N = N(H).

7 Foranya, he G,aHa' = hHh' iffa!*' eN iffNa = Nb.

8 There is a one-to-one correspondence between the set of conjugates of H and the
set of cosets of N. (Thus, there are as many conjugates of H as cosets of N.)

9 H has exactly (G: N) conjugates. In particular, the number of distinct conjugates
of H is adivisoroflGl.
10 Let K be any subgroup of G, let K* = {Na: a e K}, and let

':aeK}
Argue as in (8) to prove that XK is in one-to-one correspondence with K*. Conclude
that the number of elements in is a divisor of I K I.
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QUOTIENT GROUPS

In Chapter 14 we learned to recognize when a group H is a homomorphic
image of a group G. Now we will make a great leap forward by learning a
method for actually constructing all the homomorphic images of any group.
This is a remarkable procedure, of great importance in algebra. In many
cases this construction will allow us to deliberately select which properties
of a group G we wish to preserve in a homomorphic image, and which
other properties we wish to discard.

The most important instrument to be used in this construction is the
notion of a normal subgroup. Remember that a normal subgroup of G is
any subgroup of G which is closed with respect to conjugates. We begin by
giving an elementary property of normal subgroups.

Theorem 1 If H is a normal subgroup of G, then aH = Ha for every a e G.

(In other words, there is no distinction between left and right cosets for a
normal subgroup.)

Indeed, if x is any element of aH, then x = ah for some he H. But His
closed with respect to conjugates, hence aha' e H. Thus, x = ah =
(aha 1)a is an element of Ha. This shows that every element of aH is in Ha;
analogously, every element of Ha is in aH. Thus, aH = Ha.

Let G be a group and let H be a subgroup of G. There is a way of

143
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combining cosets, called coset multiplication, which works as follows: the
coset of a, multiplied by the of b, is defined to he the coset of ab. In
symbols.

Hb = H(ab)

This definition is deceptively simple, for it conceals a fundamental difficulty.
Indeed, it is not at all clear that the product of two cosets Ha and Hb,
multiplied together in this fashion, is uniquely defined. Remember that Ha
may be the same coset as Hc (this happens if c is in Ha), and, similarly, Hb
may be the same coset as Hd. Therefore, the product Ha Hb is the same as
the product Hc Hd. Yet it may easily happen that H(ab) is not the same
coset as H(cd). Graphically,

Hb = H(ab)
II U t

Hc' Hd = H(cd)

For example, if G = 53 and H = {e, then

H/i = y} = Hy

Ho = {o, i4 = Hic

and yet

H(/1 o 0) = He H/i = H(y o

Thus, coset multiplication does not work as an operation on the cosets of
H = {c, in S3. The reason is that, although H is a subgroup of 53, H is
not a normal subgroup of 53. If H were a normal subgroup, coset multi-
plication would work. The next theorem states exactly that!

Theorem 2 Let H he a normal subgroup of G. If Ha = Hc and Hb = Hd,
then H(ah) = H(cd).

If Ha = Hc then a e Hc, hence a = h1c for some h1 H. If Hb = Hd,
then b e Hd, hence b = h2 d from some h2 e H. Thus,

ab = h1ch2 d = h1(ch2)d

But ch2 e cH = Hc (the last equality is true by Theorem 1). Thus, ch2 = h3 c

for some h3 e H. Returning to ab,

ah = h1(ch2)d = h1(h3c)d = (h1h3)(cd)

and this last element is clearly in H(cd).
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We have shown that ab e H(cd). Thus, by (*) in Chapter 13,

H(ab) = H(cd).
We are now ready to proceed with the construction promised at the

beginning of this chapter. Let G be a group and let H be a normal subgroup
of G. Think of the set which consists of all the cosets of H. This set is
conventionally deno,ted by the symbol G/H. Thus, if Ha, Hb, Hc, ... are

cosets of H, then

G/H={Ha,Hh,Hc,...}

We have just seen that coset multiplication is a valid operation on this set.
In fact,

Theorem 3 G/H with coset multiplication is a group.

Coset multiplication is associative, because

Ha (Hb . Hc) = H(bc) = Ha(bc) = H(ab)c

= Hc = (Ha . Hb) Hc

The identity element of G/H is H = He, for Ha
Ha Ha for every coset Ha.

Finally, the inverse of any coset Ha is the coset Ha because

Ha1 = Haa' = He and Ha' Ha = Ha1a = He.
The group G/H is called the factor group, or quotient group of G by H.
And now, the pièce de resistance:

Theorem 5 G/H is a homomorphic image of G.

The most obvious function from G to G/H is the function f which
carries every element to its own coset, that is, the function given by

f(x) = Hx

This function is a homomorphism, because

f(xy) = Hxy = Hy =f(x)f(y)

f is called the natural homomorphism from G onto G/H. Since there is a
homomorphism from G onto G/H, G/H is a homomorphic image of G.

Thus, when we construct quotient groups of G, we are, in fact, con-
structing homomorphic images of G. The quotient group construction is
useful because it is a way of actually manufacturing homomorphic images
of any group G. In fact, as we will soon see, it is a way of manufacturing all
the homomorphic images of G.
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Our first example is intended to clarify the details of quotient group
construction. Let 7 be the group of the integers, and let <6> be the cyclic
subgroup of 7 which consists of all the multiples of 6. Since 7 is abelian,
and every subgroup of an abelian group is normal, <6> is a normal sub-
group of 7. Therefore, we may form the quotient group 71<6>. The el-
ements of this quotient group are all the cosets of the subgroup <6>,
namely:

<6>+0={..., —18, —12, —6,0,6, 12, 18,...}

<6> + 1 = {..., —17, —11, —5,1,7, 13, 19, ...}

<6>+2={...,—16,—10,—4,2,8,14,20,...}

<6>+3={..., —15, —9, —3,3,9, 15,21,...}

<6>+4={..., —14, —8, —2,4,10, l6,22,...}

<6> + 5 = {..., —13, —7, —1,5,11, 17, 23, ...}

These are all the different cosets of <6>, for it is easy to see that
<6> + 6 = <6> + 0, <6> + 7 = <6> + 1, <6> + 8 = <6> + 2, and so on.

Now, the operation on 7 is denoted by +, and therefore we will call the
operation on the cosets coset addition rather than coset multiplication. But
nothing is changed except the name; for example, the coset <6> + 1 added
to the coset <6> + 2 is the coset <6> + 3. The coset <6> + 3 added to the
coset <6> + 4 is the coset <6> + 7, which is the same as <6> + 1. To
simplify our notation, let us agree to write the cosets in the following
shorter form:

O=<6>+0 T=<6>+1 2=<6>+2
3=<6>+3 4=<6>+4 5=<6>+5

Then 71<6> consists of the six elements 0, 1, 2, 3, 4, and 5, and its operation
is summarized in the following table:

+ 012345
0012345
1 1234502234501334501244501235501234

The reader will perceive immediately the similarity between this group and
4. As a matter of fact, the quotient group construction of 71<6> is con-
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sidered to be the rigorous way of constructing So from now on, we will
consider 4 to be the same as 71<6>; and, in general, we will consider 7,, to
be the same as 7L/<n>. In particular, we can see that for any n, Zn is a
homomorphic image of 7.

Let us repeat: The motive for the quotient group construction is that it
gives us a way of actually producing all the homomorphic images of any
group G. However, what is even more fascinating about the quotient group
construction is that in practical instances, we can often choose H so as to
"factor out" unwanted properties of G, and preserve in G/H only "desir-
able" traits. (By "desirable" we mean desirable within the context of some
specific application or use.) Let us look at a few examples.

First, we will need two simple properties of cosets, which are given in
the next theorem.

Theorem 5 Let G be a group and H a subgroup of G. Then
(a)Ha=Hb (IT ar'eH and
(b)Ha=H (if aeH

If Ha = Hh, then a e Hb, so a = hh for some h e H. Thus,

ab' = h e H

If aV' e H, then ab1 = h for he H, and therefore a = Jibe H/i. It
follows by (*) of Chapter 13 that Ha = H/i.

This proves (a). It follows that Ha = He iffae' = a e H, which proves
(b).

For our first example, let G be an abelian group and let H consist of all
the elements of G which have finite order. It is easy to show that H is a
subgroup of G. (The details may be supplied by the reader.) Remember that
in an abelian group every subgroup is normal, hence H is a normal sub-
group of G, and therefore we may form the quotient group G/H. We will
show next that in G/H, no element except the neutral element has finite
order.

For suppose G/H has an element Hx of finite order. Since the neutral
element of G/H is H, this means there is an integer in 0 such that
(Hx)m = H, that is, Hf' = H. Therefore, by Theorem Sb, Xm e H, so Xm has
finite order, say t:

(Xm)t = = e

But then x has finite order, so x e H. Thus, by Theorem Sb, Hx = H. This
proves that in G/H, the only element Hx of finite order is the neutral
element H.
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Let us recapitulate: If H is the subgroup of G which consists of all the
elements of G which have finite order, then in G/H, no element (except the
neutral element) has finite order. Thus, in a sense, we have "factored out" all
the elements offinite order (they are all in H) and produced a quotient group
G/H whose elements all have infinite order (except for the neutral element,

which necessarily has order 1).

Our next example may bring out this idea even more clearly. Let G be

an arbitrary group; by a commutator of G we mean any element of the form
aba'b' where a and b are in G. The reason such a product is called a
commutator is that

aba'b1=e if ab=ba

In other words, aba 1b' reduces to the neutral element whenever a and b
commute—and only in that case! Thus, in an abelian group all the com-
mutators are equal to e. In a group which is not abelian, the number of
distinct commutators may be regarded as a measure of the extent to which
G departs from being commutative. (The fewer the commutators, the closer
the group is to being an abelian group.)

We will see in a moment that if H is a subgroup of G which contains all
the commutators of G, then G/H is abelian! What this means, in a fairly
accurate sense, is that when we factor out the commutators of G we get a
quotient group which has no commutators (except, trivially, the neutral el-
ement) and which is therefore abelian.

To say that G/H is abelian is to say that for any two elements Hx and
Hy in G/H, HxHy = HyHx, that is, Hxy = Hyx. But by Theorem 5b,

Hxy=Hyx if
Now xy(yx)' is the commutator xyx'y', so if all the commutators are
in H, then G/H is abelian.

EXERCISES

A. Examples of Finite Quotient Groups

In each of the following, G is a group and H is a normal subgroup of G. List the
elements of G/H and then write the table of G/H.

Example G = 4 and H = {O, 3}
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The elements of G/H are the three cosets H = H + 0 = {0, 3}, H + 1 = {l, 4}, and
H + 2 = {2, 5}. (Note that H + 3 is the same as H + 0, H + 4 is the same as H + 1,
and H + 5 is the same as H + 2.) The table of G/H is

+ H H+l 11+2
H H H+1 11+2

H+1 11+1 1-1+2 H
H+2 H+2 H H+l

I

G = H = {e, /3, ö}.

3 G=D4,H={R0,R2}.(Seepage68.)
4 G=D4,H={R0,R2,R4,R5}.

S G = x Z2, H = <(0, 1)) = the subgroup of Z4 x 4 generated by (0, 1).
6 G=P3,H={Q,{l}}.(P3isthegroupofsubsetsof{l,2,3}.)

B. Examples of Quotient Groups of R x R

In each of the following, His a subset of R x It

(a) Prove that H is a normal subgroup of x It (Remember that every subgroup of
an abelian group is normal.)

(b) In geometrical terms, describe the elements of the quotient group G/H.
(c) In geometrical terms or otherwise, describe the operation of G/H.

I H = {(x, 0) x e
2 H = {(x, y): y = —x}

3 H = {(x, y)
.

y = 2x}

C. Relating Properties of H to Properties of G/H

In each of the problems below, G is a group and H is a normal subgroup of G. Prove
the following. (Theorem 5 will play a crucial role.)

I If x2 a H for every x a G, then every element of G/H is its own inverse. Con-
versely, if every element of G/H is its own inverse, then x2 a H for all x a G.
2 Let m be a fixed integer. If xm a H for every x a G, then the order of every element
in G/H is a divisor of m. Conversely, if the order of every element in G/H is a divisor
of in, then xtm a H for every x a G.

3 Suppose that for every x a G, there is an integer n such that f a H; then every
element of G/H has finite order. Conversely, if every element of G/H has finite order,
then for every x a G there is an integer n such that a H.
4 Every element of G/H has a square root if for every x a G, there is some y a G
such that xy2 a H



150 CHAPTER FIFTFEN

5 G/H is cyclic ill there is an element a e G with the following property: for every
x e G, there is some integer n such that xc?' e H.
6 If G is an abelian group, let be the set of all x e G whose order is a power of p.
Prove that is a subgroup of G. Prove that has no elements whose order is a
power of p.

7 (a) If G/H is abelian, H contains all the commutators of G.
(h) Let K be a normal subgroup of 6, and H a normal subgroup of K. If 6/H is

abelian, then 6/K and K/H are both abelian. [Use (a) and the last paragraph of this
chapter.]

D. Properties of G Determined by Properties of G/H and H

There are some group properties which, if they are true in 6/H and in H, must be
true in 6. Here is a sampling. Let G be a group, and H a normal subgroup of 6.
Prove:

I If every element of 6/H has finite order, and every element of H has finite order,
then every element of 6 has finite order.
2 If every element of 6/H has a square root, and every element of H has a square
root, then every element of 6 has a square root.
3 Let p be a prime number. A group 6 is called a p-group if the order of every
element x in G is a power of p. Prove: If 6/H and H are p-groups, then 6 is a
p-group.

4 If 6/H and H are finitely generated, then 6 is finitely generated. (A group is said
to be finitely generated if it is generated by a finite subset of its elements.)

E. Order of Elements in Quotient Groups

Let G be a group, and H a normal subgroup of G. Prove the following:

1 For each element a e G, the order of the element Ha in 6/H is a divisor of the
order of a in G. (HINT: Use Chapter 14, Exercise Ft.)

2 If (G: H) = m, the order of every element of 6/H is a divisor of in.
3 If (G: H) = p, where p is a prime, then the order of every element a H in 6 is a
multiple of p. [Use (I).]
4 If 6 has a normal subgroup of index p, where p is a prime, then G has at least one
element of order p.
5 If(6: H) = in, then atm e H for every a e 6.
6 In Q/Z, every element has finite order.

t F. Quotient of a Group by its Center

The center of a group 6 is the normal subgroup C of 6 consisting of all those
elements of 6 which commute with every element of 6. Suppose the quotient group
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G/C is a cyclic group; say it is generated by the element Ca of G/C. Prove each of the
following:

1 For every x a G, there is some integer m such that Cx = Catm.

2 For every x a G, there is some integer in such that x = catm, where c a C.
3 For any two elements x and y in G, xy = yx. (HINT: Use part 2 to write x = cam,

y = c'a", and remember that c, c' a C.)
4 Conclude that if G/C is cyclic, then G is abelian.

t G. Using the Class Equation to Determine the Size of the Center

(Prerequisite: Chapter 13, Exercise I.)
Let G be a finite group. Elements a and b in G are called conjugates of one

another (in symbols, a h) if a = xbx for some x a G (this is the same as
b = x 'ax). The relation is an equivalence relation in G; the equivalence class of
any element a is called its conjugacy class, hence G is partitioned into conjugacy
classes (as shown in the diagram); the size of each conjugacy class divides the order
of G. (For these facts, see Chapter 13, Exercise Set 1.)

"Each element of the ccnter C is alone in its conjugacy class

Let 5,, .., St be the distinct conjugacy classes of G, and let k,, k2 be
their sizes. Then I G

I
= k, + k2 + + k1. (This is called the class equation of G.)

Let G be a group whose order is a power of p, say I G
I

= p". Let C denote the
center of G. Prove the following:

1 The conjugacy class of a contains a (and no other element) if a a C.
2 Letc be the orderofC.ThenIGI =c + k, + + wherek5 are
the sizes of all the distinct conjugacy classes of elements x C.

-Y
C
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3 For each i e {s, s + 1 is equal to a power of p. (See Chapter 13, Exercise
16.)

4 Solving the equation I G
I
= c + Ic, + for c, explain why c is a multiple of

p.

We may conclude from part 4 that C must contain more than the one element e; in
fact, I C

I
is a multiple of p.

5 If I G
I = p2. G must be abelian. (Use the preceding exercise F.)

6 IfIGI = p2,then either G Z,,2 orG 71,, x 71,,.

t H. Induction on I G I An Example

Many theorems of mathematics are of the form "P(n) is true for every positive
integer n" [Here, P(n) is used as a symbol to denote some statement involving n.]
Such theorems can be proved by induction as follows:
(a) Show that P(n) is true for n = 1.

(b) For any fixed positive integer k, show that, if P(n) is true for every n <Ic, then
P(n) must also be true for n = Ic.

If we can show (a) and (b), we may safely conclude that P(n) is true for all positive
integers n.

Some theorems of algebra can be proved by induction on the order n of a group.
Here is a classical example: Let G be a finite abelian group. We will show that G
must contain at least one element of order p, for every prime factor p of G I. If

I
G

I
= 1, this is true by default, since no prime p can be a factor of 1. Next, let

I
G

I
= Ic, and suppose our claim is true for every abelian group whose order is less

than Ic. Let p be a prime factor of Ic.
Take any element a e in G If ord(a) = p or a multiple of p, we are done!

1 If ord(a) = ip (for some positive integer t), what element of G has order p?
2 Suppose ord(a) is not equal to a multiple of p. Then G/<a) is a group having fewer
than Ic elements. (Explain why.) The order of G/<a) is a multiple of p. (Explain why.)
3 Why must G/<a> have an element of order p?
4 Conclude that G has an element of order p. (HINT: Use Exercise El.)
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SIXTEEN
THE FUNDAMENTAL HOMOMORPHiSM

THEOREM

Let G be any group. In Chapter 15 we saw that every quotient group of G is
a homomorphic image of G. Now we will see that, conversely, every
morphic image of G is a quotient group of G. More exactly, every homomor-
phic image of G is isomorphic to a quotient group of G.

It will follow that, for any groups G and H, H is a homomorphic image
of G if H is (or is isomorphic to) a quotient group of G. Therefore, the
notions of homomorphic image and of quotient group are interchangeable.

The thread of our reasoning begins with a simple theorem.

Theorem 1 Letf: G —> H be a homomorphism with kernel K. Then

f(a)=f(h) (If Ka=Kh

(In other words, any two elements a and b in G have the same image underf
if they are in the same coset of K.)

Indeed,

f(a) =f(b) if f(a)[f(b)f' = e

if f(ab1)=e

if ab1eK
if Ka = Kb (by Chapter 15, Theorem 5a)
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What does this theorem really tell us? It says that if f is a homomor-
phism from G to H with kernel K, then all the elements in any fixed coset of
K have the same image, and, conversely, elements which have the same
image are in the same coset of K.

K = Ke

Ka = Kb

It is therefore clear, already, that there is a one-to-one correspondence
matching cosets of K with elements in H. It remains only to show that this
correspondence is an isomorphism. But first, how exactly does this corre-
spondence match up specific cosets of K with specific elements of H? Clear-
ly, for each x, the coset Kx is matched with the element f(x). Once this is
understood, the next theorem is easy.

Theorem 2 Let f: G —> H be a homomorphism of G onto H. If K is the kernel
off, then

H G/K

To show that G/K is isomorphic to H, we must look for an isomor-
phism from G/K to H. We have just seen that there is a function from G/K
to H which matches each coset Kx with the elementf(x); call this function
0. Thus, 4i is defined by the identity

q5(Kx) =f(x)

This definition does not make it obvious that Ø(Kx) is uniquely defined. (If it
is not, then we cannot properly call 0 a function.) We must make sure that
if Ka is the same coset 45 Kb, then Ø(Ka) is the same as 0(Kb): that is,

if Ka = Kb then f(a) =f(b)

As a matter of fact, this is true by Theorem 1.

Kx

G
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Now, let us show that 0 is an isomorphism:

0 is infective: If Ø(Ka) = çb(Kh), then f(a) =f(b), so by Theorem I,
Ka = Kb.

0 is surf ective, because every element of H is of the formf(x) = Ø(Kx).
Finally, Ø(Ka Kb) = Ø(Kah) =f(ah) =f(a)f(b) = 4'(Ka)Ø(Kb).

Thus, q5 is an isomorphism from G/K onto H.
Theorem 2 is often called the fundamental homomorphism theorem. It

asserts that every homomorphic image of G is isomorphic to a quotient
group of G. Which specific quotient group of G? Well, if f is a homomor-
phism from G onto H, then H is isomorphic to the quotient group of G by
the kernel off

The fact that f is a homomorphism from G onto H may be symbolized
by writing

f:G
Furthermore, the fact that K is the kernel of this homomorphism may be
indicated by writing

H

Thus, in capsule form, the fundamental homomorphism theorem says that

If f:G -sH then

Let us see a few examples;
We saw in the opening paragraph of Chapter 14 that

to 1 2 3 4 5

1 2 0 1 2

is a homomorphism from onto 4. Visibly, the kernel of f is {0, 3},
which is the subgroup of 4 generated by 3, that is, the subgroup <3>. This
situation may be symbolized by writing

f:4 —*13
<3>

We conclude by Theorem 2 that

/3 161<3>

For another kind of example, let G and H be any groups and consider
their direct product G x H. Remember that G x H consists of all the



156 CHAPTER SIXTEEN

ordered pairs (x, y) as x ranges over G and y ranges over H. You multiply
ordered pairs by multiplying corresponding components; that is, the oper-
ation on G x H is given by

(a, b) . (c, d) = (ac, bd)

Now, letf be the function from G x H onto H given by

f(x, y) = y

It is easy to check that f is a homomorphism. Furthermore, (x, y) is in the
kernel of f ifff(x, y) = y = e. This means that the kernel of f consists of all
the ordered pairs whose second component is e. Call this kernel G*; then

C? = {(x, e) x e G}

We symbolize all this by writing

By the fundamental homomorphism theorem, we deduce that
H (G x H)/G*. [It is easy to see that G* is an isomorphic copy of G; thus,
identifying G* with G, we have shown that, roughly speaking,
(G x H)/G H.]

Other uses of the fundamental homomorphism theorem are given in the
exercises.

EXERCISES

In the exercises which follow, FHT will be used as an abbreviation for fundamental
homomorphism theorem.

A. Examples of the FHT Applied to Finite Groups

In each of the following, use the fundamental homomorphism theorem to prove that
the two given groups are isomorphic. Then display their tables.

Example

2

1 1 0 1

is a homomorphism from 4 onto 74. (Do not prove that f is a homomorphism.)
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The kernel off is {O, 2, 4} = <2). Thus,

4
<2>

It follows by the FHT that 41<2>.

1. 75 and 1201<5>.

2. 13 and 41<3>.
3. and S3/{e, /3, ö}.

4. P2 and P3/K, where K = {Ø, {3}}. [HINT: Consider the function f(C) =
Cn {1,2}.P3isthegroupofsubsetsof{l,2,3},andP2of{l,2}.]
5. 4 and (73 x 13)/K, where K = {(O, 0), (1, 1), (2, 2)}. [HINT: Consider the func-
tionf(a, b) = a — b from 13 x 13 to 13.]

B. Example of the FHT Applied to F(R)

Let F(R)—4t be defined by and let /3: .F(R)—*lR be defined by
/3(f) =f(2).

I. Prove that cx and /3 are homomorphisms from F(lR) onto ift
2 Let J be the set of all the functions from 11 to R whose graph passes through the
point (1, 0) and let K be the set of all the functions whose graph passes through
(2, 0). Use the FHT to prove that 11 F(R)/J and 11 39R)/K.
3 Conclude that 3911)/f 3911)/K.

C. Example of the FHT Applied to Abelian Groups

Let G be an abelian group. Let H = {x2: x a G} and K = {x a G: x2 = e}.

1 Prove thatf(x) = x2 is a homomorphism of G onto H.
2 Find the kernel off
3 Use the FHT to conclude that H G/K.

t D. Group of Inner Automorphisms of a Group G

Let G be a group. By an automorphism of G we mean an isomorphismf: G C.

1 The symbol Aut(G) is used to designate the set of all the automorphisms of G.
Prove that the set Aut (C), with the operation a of composition, is a group by
proving that Aut(G) is a subgroup of S6.
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2 By an inner autornorphism of G we mean any function Øa of the following form:

for every x e G øa(X) = axa

Prove that every inner automorphism of G is an automorphism of G.
3 Prove that, for arbitrary a, h e G,

4 Let 1(G) designate the set of all the inner automorphisms of G. That is, 1(G) =
a e G}. Use part 3 to prove that 1(G) is a subgroup of Aut(G). Conclude that

1(G) is a group

5 By the center of G we mean the set of all those elements of G which commute with
every element of G, that is, the set C defined by

C = {a e G : ax = xa for every x a G}

Prove that a a C if and only if axcC = x for every x a G.

6 Let h: G —* 1(G) be the function defined by h(a) = Prove that h is a homomor-
phism from G onto 1(G) and that C is its kernel.
7 Use the FHT to conclude that 1(G) is isomorphic with G/C.

t E. The FHT Applied to Direct Products of Groups

Let G and H be groups. Suppose J is a normal subgroup of 6 and K is a normal
subgroup of H

1 Show that the function fix, y) = (Jx, Ky) is a homomorphism from G x H onto
(G/J) x (H/K)
2 Find the kernel off
3 Use the FHT to conclude that (G x H)/(J x K) (G/J) x (H/K).

Let G, M, and N be groups, letf. G —* M be a homomorphism from G onto
M, and let h: G N be a homomorphism from G onto N.

4 Show that 0(x) = (f(x), h(x)) is a homomorphism from G onto M x N.
SIfH=kerfandK=kerh,provethatkerØ=HnK.
6 Use the FHT to conclude that G/(H n K) M x N.

t F. The First Isomorphism Theorem

Let G be a group; let H and K be subgroups of G, with H a normal subgroup of G.
Prove the following:



THE FUNDAMENTAL HOMOMORPHISM THEOREM 159

1 H n K is a normal subgroup of K.
2LfHK={xy:xeHandyeK},thenHKisasubgroupofG.
3 H is a normal subgroup of HK.
4 Every member of the quotient group HK/H may be written in the form Hk for
some k a K.
5 The functionf(k) = Hk is a homomorphism from K onto HK/H, and its kernel is
H n K.
6 By the Fl-IT, H/(H n K) HK/H. (This is referred to as the first isomor-
phism theorem.)

t G. A Sharper Cayley Theorem

If H is a subgroup of a group G, let X designate the set of all the cosets of H in G.
For each element a a G, define Pa : X —* X as follows:

Pa

Prove that h: G —. defined by h(a) = Pa is a homomorphism.
3 Prove that the set {a a H: xax' a H for every x a G}, that is, the set of all the
elements of H whose conjugates are all in H, is the kernel of h.
4 Prove that if H contains no normal subgroup of G except {e}, then G is isomor-
phic to a subgroup of

t H. Quotient Groups Isomorphic to the Circle Group

Every complex number a + hi may be represented as a point in the complex plane.

Imaginary axis

—-ya+bi

i Real axis
a

The unit circle in the complex plane consists of all the complex numbers whose
distance from the origin is 1; thus, clearly, the unit circle consists of all the complex
numbers which can be written in the form

cos x + i sin x

for some real number x.
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I For each x e it is conventional to write cis x = cos x + i sin x. Prove that
cis (x + y) = (cis x)(cis y).

2 Let T designate the set {cis x: x e R}, that is, the set of all the complex numbers
lying on the unit circle, with the operation of multiplication. Use part 1 to prove
that T is a group. (T is called the circle group.)
3 Prove thatf(x) = cis x is a homomorphism from l1 onto T.
4 Prove that kerf= {2nir: ne l} = <2m).

5 Use the FHT to conclude that T
6 Prove that g(x) = cis mx is a homomorphism from onto T, with kernel 1.
7 Conclude that T Rh.

t I. The Second Isomorphism Theorem

Let H and K be normal subgroups of a group G, with H K. Define
4): G/H —* G/K by: çb(Ha) = Ka. Prove the following:

1 4) is a well-defined function. [That is, if Ha = Hb, then Ø(Ha) = Ø(Hb).]

2 4) is a homomorphism.
3 4) is surjective.
4 kcr 4) = K/H.
5 Conclude (using the FHT) that (G/H)/(K/H) G/K.

t J. The Correspondence Theorem

Letf be a homomorphism from G onto H with kernel K:

G —nH
K

IfS is any subgroup of H, let 5* = {x a G : f(x) a S}. Prove:

1 5* is a subgroup of G.
2 K
3 Let g be the restriction off to [That is, g(x) =f(x) for every x a 5*, and 5* is
the domain of g.] Then g is a homomorphism from onto 5, and K = ker g.

4 S

t K. Cauchy 's Theorem

Prerequisites: Chapter 13, Exercise 1, and Chapter 15, Exercises G and H.
If G is a group and p is any prime divisor of I G I' it will be shown here that G

has at least one element of order p. This has already been shown for abelian groups
in Chapter 15, Exercise H4. Thus, assume here that G is not abelian. The argument
will proceed by induction; thus, let

I
G = k, and assume our claim is true for any
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group of order less than k. Let C be the center of G, let Ca be the centralizer of a for
each a a G, and let k = c + k5 + + k, be the class equation of C, as in Chapter
15, Exercise G2. Prove:

1 If p is a factor of I Ca I for any a a G, where a C, we are done. (Explain why.)

2 For any a*C in G, ifp is not a factor ofi Ca then p is a factor of(G: Ca).
3 Solving the equation k = c + + for c, explain why p is a factor of c. We
are now done. (Explain why.)

t L. Subgroups of p-Groups (Prelude to Sylow)

Prerequisites: Exercise J; Chapter 15, Exercises C and H.
Let p be a prime number. A p-group is any group whose order is a power of p.

It will be shown here that if I C I = then C has a normal subgroup of order ptm for
every in between I and k. The proof is by induction on I C I; we therefore assume our
result is true for all p-groups smaller than C. Prove the following:

1 There is an element a in the center of C such that ord(a) = p. (See Chapter 15,
Exercises G and I-I.)

2 <a> is a normal subgroup of C.
3 Explain why it may be assumed that C/<a> has a normal subgroup of order pm-I

4 Use Exercise J(4) to prove that C has a normal subgroup of order pm

SUPPLEMENTARY PROBLEMS

Exercise Sets M through Q are included as a challenge for the ambitious reader.
Two important results of group theory are proved in these exercises: one is called
Sylow's theorem, the other is called the Basis theorem of finite abelian groups.

t M. p-Sylow Subgroups

Prerequisites: Exercises J and K, Exercise II, page 142, and Exercise D3, page 150.
Let p be a prime number. A finite group C is called a p-group if the order of

every element x in G is a power p. (The orders of different elements may be different
powers of p.) If H is a subgroup of any finite group C, and H is a p-group, we call H
a p-subgroup of C. Finally, if K is a p-subgroup of C, and K is maximal (in the sense
that K is not contained in any larger p-subgroup of C), then K is called a p-Sylow
subgroup of G. Prove the following:

1 The order of any p-group is a power of p. (I-lINT: Use Exercise K.)
2 Every conjugate of a p-Sylow subgroup of C is a p-Sylow subgroup of G.
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Let K be a p-Sylow subgroup of G, and N = N(K) the normalizer of K.

3 Let a e N, and suppose the order of Ka in N/K is a power of p. Let S = <Ka> be
the cyclic subgroup of N/K generated by Ka. Prove that N has a subgroup 5* such
that 5*/K is a p-group. (HINT: See Exercise J4.)
4 Prove that 5* is a p-subgroup of G (use Exercise D3, page 150). Then explain why
5* = K, and why it follows that Ka = K
5 Use parts 3 and 4 to prove: no element of N/K has order a power of p (except,
trivially, the identity element).

6 If a c N and the order of a is a power of p, then the order of Ka (in N/K) is also a
power of p. (Why?) Thus, Ka = K. (Why?)

7 Use part 6 to prove: if aKa' = K and the order of a is a power of p, then a e K.

t N. Sylow's Theorem.

Prerequisites: Exercises K and M, and Exercise 110, page 142.
Let G be a finite group, and K a p-Sylow subgroup of G. Let X be the set of all

the conjugates of K. See Exercise M2. If C1 C2 C1 = aC2a'
for some a e K.

1 Prove that is an equivalence relation on X

Thus, partitions X into equivalence classes. If C e X, let the equivalence
class of C be denoted by [C].

K is the only member of its class

2 For each C e X, prove that the number of elements in [C] is a divisor of I K
(HINT: Use Exercise 110, page 142.) Conclude that for each C e X, the number of
elements in [C] is either I or a power of p.
3 Use Exercise M7 to prove that the only class with a single element is [K].
4 Use parts 2 and 3 to prove that the number of elements in X is kp + 1, for some
integer k.

5 Use part 4 to prove that (G: N) is not a multiple of p.
6 Prove that (N: K) is not a multiple of p. (Use Exercises K and MS.)
7 Use parts 5 and 6 to prove that (G: K) is not a multiple of p.
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8 Conclude: Let G be a finite group of order pkm, where p is not a factor of m. Every
p-Sylow subgroup K of G has order pk•

Combining part 8 with Exercise L gives:

Let G he a finite group and let p he a prime number. For each n such that pfl divides
G , G has a subgroup of order

This is known as Sylow's Theorem

t 0. Lifting Elements from Cosets

The purpose of this exercise is to prove a property of cosets which is needed in
Exercise Q. Let G be a finite abelian group, and let a be 'an element of G such that
ord(a) is a multiple of ord(x) for every x e G. Let H = <a). We will prove:

For every x e G, there is some y e G such that Hx = Hy and ord(y) = ord(Hy).

This means that every coset of H contains an element y whose order is the same as
the coset's order

Let x be any element in G, and let ord(a) = t, ord(x) = s, and ord(Hx) = r.

1 Explain why r is the least positive integer such that xr equals some power of a, say
= am.

2 Deduce from our hypotheses that r divides s, and s divides t.

Thus, we may write s = ru and t = sv, so in particular, t = ruv.

3 Explain why atm' = e, and why it follows that mu = tz for some integer z. Then
explain why m = rvz.

4 Setting y = prove that Hx = Hy and ord(y) = r, as required.

t P. Decomposition of a Finite Abelian Group into p-Groups

Let G be an abelian group of order p"m, where p" and m are relatively prime (that is,
pk and m have no common factors except ± 1). [REMARK: If two integers j and k are
relatively prime, then there are integers s and t such that sj + tk = 1. This is proved
on page 218.]

Let be the subgroup of G consisting of all elements whose order divides ji.
Let Gm be the subgroup of G consisting of all elements whose order divides m.
Prove:

1 For any x e G and integers s and t, e and xtm e

2 For every x a G, there are y a and z a Gm such that x = yz.

3

G X Gm. (See Exercise H, Chapter 14.)
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5 Suppose G has the following factorization into primes: I =
G1 x G2 x x 1,...,

Q. Basis Theorem for Finite Abelian Groups

Prerequisite: Exercise P.
As a provisional definition, let us call a finite abelian group "decomposable" if

there are elements a,, ..., e G such that:
(Dl) For every x e G, there are integers k1, ..., such that x = at".

(D2) If there are integers 11, ..., such that a'1'a'? a'; = e then a'? = a'?

= = a.
If(Dl) and (D2) hold, we will write G = [a,, a2 as].

1 Let C be the set of all products a'? .. a';, as 12 range over Z. Prove that C
is a subgroup of £1, and G' = [a2, ..., aj.
2 Prove: G <a,> x G'. Conclude that G <a1) x <a2) x x <an).

In the remaining exercises of this set, let p be a prime number, and assume G is
a finite abelian group such that the order of every element in G is some power of p.
Let a e G be an element whose order is the highest possible in G. We will argue by
induction to prove that G is "decomposable." Let H = <a>.

3 Explain why we may assume that G/H = [Hb, for some b, b, e G.

By Exercise 0, we may assume that for each i = 1, ..., n, ord(b,) = ord(Hb,). We
will show that G = [a, b,, ..., ba].

4 Prove that for every x e G, there are integers k0, k, such that

x = b';'

5 Prove that if a'°h'1' ... = e, then = b',' = = e. Conclude that
G=[a,b,,..
6 Use Exercise P5, together with parts 2 and 5 above, to prove: Every finite abelian
group G is a direct product of cyclic groups of prime order. (This is called the Basis
Theorem offinite Abelian groups.)

It can be proved that the above decomposition of a finite Abelian group into
cyclic p-groups is unique, except for the order of the factors. We leave it to the
ambitious reader to supply the proof of uniqueness.



CHAPTER

SEVENTEEN
RINGS: DEFINiTIONS AND

ELEMENTARY PROPERTIES

In presenting scientific knowledge it is elegant as well as enlightening to
begin with the simple and move toward the more complex. If we build upon
a knowledge of the simplest things, it is easier to understand the more
complex ones. In the first part of this book we dedicated ourselves to the
study of groups—surely one of the simplest and most fundamental of all
algebraic systems. We will now move on, and, using the knowledge and
insights gained in the study of groups, we will begin to examine algebraic
systems which have two operations instead ofjust one.

The most basic of the two-operational systems is called a ring; it will be
defined in a moment. The surprising fact about rings is that, despite their
having two operations and being more complex than groups, their funda-
mental properties follow exactly the pattern already laid out for groups.
With remarkable, almost compelling ease, we will find two-operational ana-
logs of the notions of subgroup and quotient group, homomorphism and
isomorphism—as well as other algebraic notions—and we will discover that
rings behave just like groups with respect to these notions.

The two operations of a ring are traditionally called addition and multi-
plication, and are denoted as usual by + and respectively. We must
remember, however, that the elements of a ring are not necessarily numbers

165
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(for example, there are rings of functions, rings of switching circuits, and so
on); and therefore "addition" does not necessarily refer to the conventional
addition of numbers, nor does multiplication necessarily refer to the con-
ventional operation of multiplying numbers. In fact, + and are nothing
more than symbols denoting the two operations of a ring.

By a ring we mean a set A with operations called addition and multi-
plication which satisfy the following axioms:
(1) A with addition alone is an abelian group.
(2) Multiplication is associative.
(3) Multiplication is distributive over addition. That is, for all a, b, and c

in A,

a(h + c) = ab + ac

and (b+c)a=ba+ca
Since A with addition alone is an abelian group, there is in A a neutral
element for addition: it is called the zero element and is written 0. Also,
every element has an additive inverse called its negative; the negative of a is
denoted by — a. Subtraction is defined by

a — b = a + (—b)

The easiest examples of rings are the traditional number systems. Thc
Set 7 of the integers, with conventional addition and multiplication, is a
ring called the ring of the integers. We designate this ring simply with the
letter 7. (The context will make it clear whether we are referring to the ring
of the integers or the additive group of the integers.)

Similarly, 0 is the ring of the rational numberS, 111 the ring of the real
numbers, and C the ring of the complex numbers. In each case, the oper-
ations are conventional addition and multiplication.

Remember that represents the set of all the functions from R to
that is, the Set of all real-valued functions of a real variable. In calculus

we learned to add and multiply functions: if f and g are any two functions
from R to their sumf+ g and their productfg are defined as follows:

[f+ g](x) =f(x) + g(x) for every real number x

and [fg](x) =f(x)g(x) for every real number x

.F(R) with these operations for adding and multiplying functions is a ring
called the ring of real functions. It is written simply as F(R). On page 47
we saw that F(R) with only addition of functions is an abelian group. It is
left as an exercise for you to verify that multiplication of functions is associ-
ative and distributive over addition of functions.
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The rings 1, 0, C, and F(l1) are all infinite rings, that is, rings with
infinitely many elements. There are also finite rings: rings with a finite
number of elements. As an important example, consider the group 74, and
define an operation of multiplication on Zn by allowing the product ab to
be the remainder of the usual product of integers a and b after division by n.
(For example, in 4, 2 4 = 3, 3 3 = 4, and 4 3 = 2.) This operation is
called multiplication modulo n. Zn with addition and multiplication modulo
n is a ring: the details are given in Chapter 19.

Let A be any ring. Since A with addition alone is an abelian group,

everything we know about abelian groups applies to it. However, it is

important to remember that A with addition is an abelian group in additive
notation and, therefore, before applying theorems about groups to A, these
theorems must be translated into additive notation. For example, Theorems
1, 2, and 3 of Chapter 4 read as follows when the notation is additive and
the group is Abelian:

a+b=a+c implies b=c (*)

a+b=O implies a=—b and b=—a (**)

—(a + b) = (—a) + (—b) and — (—a) = a (***)

Therefore (*), (**), and (***) are true in every ring.

What happens in a ring when we multiply elements by zero? What
happens when we multiply elements by the negatives of other elements? The
next theorem answers these questions.

Theorem 1 Let a and b be any elements of a ring A.
(i)aO=O and Oa=O

(ii) a(—b)= —(ab) and (—a)b= —(ab)
(iii) (—a)(—h) = ab

Part (i) asserts that multiplication by zero always yields zero, and parts (ii)
and (iii) state the familiar rules of signs.

To prove (i) we note that

aa + 0 = aa

=a(a+0) becausea=a+0
= aa + aO by the distributive law

Thus, aa + 0 = aa + aO. By (*) we may eliminate the term aa on both sides
of this equation, and therefore 0 = aO.
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To prove (ii), we have

a(—b) + ab = afl—h) + b] by the distributive law

= aO

= 0 by part (i)

Thus, a(—b) + ab = 0. By (**) we deduce that a(—h) = —(ab). The twin
formula (— a)b = —(ab) is deduced analogously.

We prove part (iii) by using part (ii) twice:

(—a)(—h) = —[a(—b)] = —[—(ab)] = ab

The general definition of a ring is sparse and simple. However, par-
ticular rings may also have "optional features" which make them more
versatile and interesting. Some of these options are described next.

By definition, addition is commutative in every ring but multiplication
is not. When multiplication also is commutative in a ring, we call that ring
a commutative ring.

A ring A does not necessarily have a neutral element for multiplication.
If there is in A a neutral element for multiplication, it is called the unity of
A, and is denoted by the symbol 1. Thus, a a a a

a a ring with unity. The rings 7, Q, ER, C, and
F(IR) are all examples of commutative rings with unity.

Incidentally, a ring whose only element is 0 is called a trivial ring; a ring
with more than one element is nontrivial. In a nontrivial ring with unity,
necessarily 1 0. This is true because if I = 0 and x is any element of the
ring, then

x = = xO = 0

In other words, if I = 0 then every element of the ring is equal to 0, hence 0
is the only element of the ring.

If A is a ring with unity, there may be elements in A which have a
multiplicative inverse. Such elements are said to be invertible. Thus, an el-
ement a is invertible in a ring if there is some x in the ring such that

ax = xa =

For example, in ER every nonzero element is invertible: its multiplicative
inverse is its reciprocal. On the other hand, in 7 the only invertible elements
are 1 and — 1.

Zero is never an invertible element of a ring except if the ring is trivial;
for if zero had a multiplicative inverse x, we would have Ox = 1, that is,
0= 1.
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If A is a commutative ring with unity in which every nonzero element is
invertible, A is called a field. Fields are of the utmost importance in math-
ematics; for example, 0, and C are fields. There are also finite fields, such
as 4 (it is easy to check that every nonzero element of 4 is invertible).
Finite fields have beautiful properties and fascinating applications, which
will be examined later in this book.

In elementary mathematics we learned the commandment that if the
product of two numbers is equal to zero, say

ah = 0

then one of the two factors, either a or b (or both) must be equal to zero.
This is certainly true if the numbers are real (or even complex) numbers, but
the rule is not inviolable in every ring. For example, in 4,

2 and 3 are both nonzero. Such numbers, when
they exist, are called divisors of zero.

In any ring, a nonzero element a is called a divisor of zero if there is a
nonzero element bin the ring such that the product ab or ha is equal to
zero.

(Note carefully that both factors have to be nonzero.) Thus, 2 and 3 are
divisors of zero in 4; 4 is also a divisor of zero in 4, because 4 3 = 0.

For another example, let designate the set of all 2 x 2 matrices of
real numbers, with addition and multiplication of matrices as described on
page 8. The simple task of checking that satisfies the ring axioms is
assigned as Exercise C at the end of this chapter. is rampant with
examples of divisors of zero. For instance

(0 lvi r\ (0 0

tAo o,flk\o 0
hence

(0 1'\ (1 1

I and I

\O 1) \O 0

are both divisors of zero in .i12(ffk).
Of course, there are rings which have no divisors of zero at all! For

example, /, 0, and C do not have any divisors of zero. It is important to
note carefully what it means for a ring to have no divisors of zero: it means
that if the product of two elements in the ring is equal to zero, at least one of
the factors is zero. (Our commandment from elementary mathematics!)
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It is also decreed in elementary algebra that a nonzero number a may
be canceled in the equation ax = ay to yield x = y. While undeniably true
in the number systems of mathematics, this rule is not true in every ring.
For example, in

yet we cannot cancel the common factor 2. A similar example involving
2 x 2 matrices may be seen on page 9. When cancelation is possible, we
say the ring has the "cancelation property."

A ring is said to have the cancelation property if

ab = ac or ba = ca implies b = c

for any elements a, b, and c in the ring ifa # 0.

There is a surprising and unexpected connection between the cancelation
property and divisors of zero:

Theorem 2 A ring has the cancelation property jff it has no divisors of zero.

The proof is very straightforward. Let A be a ring, and suppose first
that A has the cancelation property. To prove that A has no divisors of zero
we begin by letting ab = 0, and show that a or b is equal to 0. If a = 0, we

are done. Otherwise, we have

ab = 0 = aO

so by the cancelation property (canceling a), b = 0.

Conversely, assume A has no divisors of zero. To prove that A has the
cancelation property, suppose ab = ac where a 0. Then

ab — ac = a(b — c) = 0

Remember, there are no divisors of zero! Since a # 0, necessarily b — c = 0,

so b = c.

An integral domain is defined to be a commutative ring with unity
having the cancelation property. By Theorem 2, an integral domain may
also be defined as a commutative ring with unity having no divisors of zero.
It is easy to see that every field is an integral domain. The converse, how-
ever, is not true: for example, 1 is an integral domain but not a field. We
will have a lot to say about integral domains in the following chapters.



RINGS: DEFINITIONS AND ELEMENTARY PROPERTIES 171

EXERCISES

A. Examples of Rings

In each of the following, a set A with operations of addition and multiplication is
given. Prove that A satisfies all the axioms to be a commutative ring with unity.
Indicate the zero element, the unity, and the negative of an arbitrary a.

1 A is the set 7 of the integers, with the following "addition" $ and "multi-
plication" 0

a$b=a+b— 1 aQb=ab—(a+h)+2
2 A is the set Q of the rational numbers, and the operations are e and 0 defined
as follows:

a$b=a+b+ 1 aQb=ah+a+h
3 A is the set 0 x 0 of ordered pairs of rational numbers, and the operations are
the following addition e and multiplication 0:

(a, h) e (c, d) = (a + c, b + d)

(a, b) 0 (c, d) = (ac — bd, ad + bc)

4 A = {x + y e l} with conventional addition and multiplication.
5 Prove that the ring in part 1 is an integral domain.
6 Prove that the ring in part 2 is a field, and indicate the multiplicative inverse of an
arbitrary nonzero element.
7 Do the same for the ring in part 3.

B. Ring of Real Functions

1 Verify that 3911) satisfies all the axioms for being a commutative ring with unity.
Indicate the zero and unity, and describe the negative of anyf
2 Describe the divisors of zero in .F(11).

3 Describe the invertible elements in F(R).
4 Explain why F(l1) is neither a field nor an integral domain.

C. Ring of 2 x 2 Matrices

Let designate the set of all 2 x 2 matrices

(a b

kc d

whose entries are real numbers a, b, c, and d, with the following addition and
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multiplication:
(a b\ (r A (a+r b+s

d+u
and

(a b\(r s'\ (ar+ht as+bu

d)kt cs+du

I Verify that .at'2(lR) satisfies the ring axioms.
2 Show that is commutative and has a unity.
3 Explain why J2(lR) is not an integral domain or a field.

D. Rings of Subsets of a Set

If D is a set, then the power set of D is the set of all the subsets of D. Addition
and multiplication are defined as follows: If A and B are elements of P,, (that is,
subsets of D), then

A+B=(A—B)u(B—A) and AB=AnB
It was shown in Chapter 3, Exercise C, that with addition alone is an abelian
group. Now prove the following:

I P0 is a commutative ring with unity (You may assume n is associative; for the
distributive law, use the same diagram and approach as was used to prove that
addition is associative in Chapter 3, Exercise C.)
2 Describe the divisors of zero in P0.
3 Describe the invertible elements in P,.
4 Explain why P0 is neither a field nor an integral domain.
5 Give the tables of P3, that is, P0 where D = {l, 2, 3}.

E. Ring of Quaternions

A quaternion (in matrix form) is a 2 x 2 matrix of complex numbers of the form

_( a+bi c+di
a—hi

1 Prove that the set of all the quaternions, with the matrix addition and multi-
plication explained on page 8, is a ring with unity. This ring is denoted by the
symbol 22 Find an example to show that .9 is not commutative. (You may assume
matrix addition and multiplication are associative and obey the distributive law.)

2 Let

(i o\ . Ii o\ . 1 0 i\ (0 i

i) o) 0
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Show that the quaternion x, defined previously, may be written in the form

= al + hi + cj + dk

(This is the standard notation for quaternions.)
3 Prove the following formulas:

12 =j2 =k2 = —1 ij = —ji = k jk = —kj = I ki = —1k =j
4 The conjugate of is

- (a—hi —c—di
\c—di a+b,

The norm of is a2 + h2 + c2 + d2, and is written Show directly (by matrix
multiplication) that

°)
Conclude that the multiplicative inverse of is (1/t)ã.

5 A skew field is a (not necessarily commutative) ring with unity in which every
nonzero element has a multiplicative inverse. Conclude from parts 1 and 4 that .92 is
a skew field.

F. Ring

Let G be an abelian group in additive notation. An endomorphism of G is a homo-
morphism from G to G. Let End(G) denote the set of all the endomorphisms of G,
and define addition and multiplication of endomorphisms as follows:

[1+ g](x) =f(x) + g(x) for every x in G

[fq] =fo g the composite off and g

I Prove that End(G) with these operations is a ring with unity.
2 List the elements of End(74), then give the addition and multiplication tables for
End(Z4).

REMARK: The endomorphisms of Z4 are easy to find. Any endomorphisms of 4
will carry 1 to either 0, 1, 2, or 3. For example, take the last case: if

Il—.3
then necessarily

l+1L3+3=2 l+l+lL3+3+3=l and

hencef is completely determined by the fact that

I
— 3
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G. Direct Product of Rings

If A and B are rings, their direct product is a new ring, denoted by A x B, and
defined as follows: A x B consists of all the ordered pairs (x, y) where x is in A and
y is in B. Addition in A x B consists of adding corresponding components:

(x1,y1)+(x2,y2)=(x1 +x2,y1 +Y2)

Multiplication in A x B consists of multiplying corresponding components:

(x1, Yt) (x2, Y2) = (x1x2, Y1Y2)

I If A and B are rings, verify that A x B is a ring.
2 If A and B are commutative, show that A x B is commutative. If A and B each
has a unity, show that A x B has a unity.
3 Describe carefully the divisors of ze,ro in A x B.
4 Describe the invertible elements in A x B.
5 Explain why A x B can never be an integral domain or a field. (Assume A x B
has more than one element.)

H. Elementary Properties of Rings

Prove each of the following:

1 In any ring,a(h—c)=ab—ac and (b—c)atba—ca.
2 In any ring, ifab = —ha, then (a + h)2 = (a — h)2 = a2 + b2.

3 In any integral domain, if a2 = b2, then a = ± h.

4 In any integral domain, only 1 and —1 are their own multiplicative inverses.
(Note that x = iffx2 = 1.)

S Show that the commutative law for addition need not be assumed in defining a
ring with unity. it may be proved from the other axioms. [HINT: Use the distributive
law to expand (a + b)(1 + 1) in two different ways.]
6 Let A be any ring. Prove that if the additive group of A is cyclic, then A is a
commutative ring.
7 In any integral domain, if = 0 for some integer n, then a = 0.

I. Properties of Invertible Elements

Prove that each of the following is true in a nontrivial ring with unity.

I If a is invertible and ah = ac, then b = c.

2 An element a can have no more than one multiplicative inverse.
3 Ifa2 = 0 then a + land a — I are invertible.
4 If a and h are invertible, their product ah is invertible.
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5 The set S of all the invertible elements in a ring is a multiplicative group.
6 By part 5, the set of all the nonzero elements in a field is a multiplicative group.
Now use Lagrange's theorem to prove that in a finite field with in elements,

= I for every x 0.

7 If ax = 1, xis a right inverse of a; if ya = I, y is a left inverse of a. Prove that if a
has a right inverse x and a left inverse y, then a is invertible, and its inverse is equal
to x and to y. (First show that yaxa = 1.)

8 In a commutative ring, if ab is invertible, then a and h are both invertible.

J. Properties of Divisors of Zero

Prove that each of the following is true in a nontrivial ring.

1 Ifa ±1 and a2 = I, then a + I and a — 1 are divisors of zero.
2 If ab is a divisor of zero, then a or h is a divisor of zero.
3 In a commutative ring with unity, a divisor of zero cannot be invertible.
4 Suppose ab 0 in a commutative ring. If either a or h is a divisor of zero, so is ab.
5 Suppose a is neither 0 nor a divisor of zero. If ab = ac, then b = c.

6 A x B always has divisors of zero.

K. Boolean Rings

A ring A is a boolean ring if a2 = a for every a a A. Prove that each of the following
is true in an arbitrary boolean ring A.

I For every a a A, a = —a. [HINT: Expand (a + a)2.]
2 Use part I to prove that A is a commutative ring. [HINT: Expand (a + b)2.]

In parts 3 and 4, assume A has a unity.

3 Every element except 0 and 1 is a divisor of zero. [Consider x(x — 1).]

4 1 is the only invertible element in A.
5 Letting a V b = a + h + ab, we have the following in A:

aVhc=(aVh)(aVc) aV(I+a)=I aVa=a a(aVh)=a

L. The Binomial Formula

An important formula in elementary algebra is the binomial expansion formula for
an expression (a + h)". The formula is as follows:

(a +
= k=O
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where the binomial coefficient

(n\ n(n—1)(n—2)'"(n—k+I)
kk) k!

This theorem is true in every commutative ring. (If k is any positive integer and a is
an element of a ring, ka refers to the sum a + a + + a with k terms, as in
elementary algebra.) The proof of the binomial theorem in a commutative ring is no
different from the proof in elementary algebra. We shall review it here.

The proof of the binomial formula is by induction on the exponent n. The
formula is trivially true for n = 1. In the induction step, we assume the expansion for
(a + is as above, and we must prove that

(a +

(a + b)>J

= k=O

(;)an÷1_kbk +
k=O

Collecting terms, we find that the coefficient of _khk is

1)

By direct computation, show that

/ n \ /n+l

It will follow that (a + is as claimed, and the proof is complete.

M. Nilpotent and Unipotent Elements

An element a of a ring is nilpotent if a" = 0 for some positive integer n.

1 In a ring with unity, prove that if a is nilpotent, then a + 1 and a — I are both
invertible. [HINT: Use the factorization

I — a" =(l — a)(l + a + a2 + + a"')

for 1 — a, and a similar formula for I + a.]
2 In a commutative ring, prove that any product xa of a nilpotent element a by any
element x is nilpotent.
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3 In a commutative ring, prove that the sum of two nilpotent elements is nilpotent.
(HINT: You must use the binomial formula; see Exercise L.)

An element a of a ring is unipotent if 1 — a is nilpotent.

4 In a commutative ring, prove that the product of two unipotent elements a and b
is unipotent. [HINT: Use the binomial formula to expand I — ah =
(1 + a) + a(l — b) to power n + m.]
5 In a commutative ring, prove that every unipotent element is invertible. (HINT:
Use the binomial expansion formula.)



CHAPTER

EIGHTEEN
IDEALS AND HOMOMORPHISMS

We have already seen several examples of smaller rings contained within
larger rings. For example, Z is a ring inside the larger ring Q, and Q itself is
a ring inside the larger ring When a ring B is part of a larger ring A, we
call B a subring of A. The notion of subring is the precise analog for rings of
the notion of subgroup for groups. Here are the relevant definitions:

Let A be a ring, and B a nonempty subset of A. If the sum of any two
elements of B is again in B, then B is closed with respect to addition. If the
negative of every element of B is in B, then B is closed with respect to
negatives. Finally, if the product of any two elements of B is again in B, then
B is closed with respect to multiplication. B is called a subring of A if B is
closed with respect to addition, multiplication, and negatives. Why is B then
called a subring of A? Quite elementary:

If a nonempty subset B c A is closed with respect to addition, multi-
plication, and negatives, then B with the operations of A is a ring.

This fact is easy to check: If a, b, and c are any three elements of B, then a,
h, and c are also elements of A because B c A. Rut A is a ring, so

a + (b + c) = (a + b) + c

a(bc) = (ab)c

a(b + c) = ab + ac

and (h+c)a=ba+ca
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Thus, in B addition and multiplication are associative and the distributive
law is satisfied. Now, B was assumed to be nonempty, so there is an element
h e B; but B is closed with respect to negatives, so —b is also in B. Finally,
B is closed with respect to addition, hence b + (—h) e B, that is, 0 is in B.
Thus, B satisfies all the requirements for being a ring.

For example, €1 is a subring of l1 because the sum of two rational
numbers is rational, the product of two rational numbers is rational, and
the negative of every rational number is rational.

By the way, if B is a nonempty subset of A, there is a more compact
way of checking that B is a subring of A:

B is a subring of A if and only if B is closed with respect to subtraction
and multiplication.

The reason is that B is closed with respect to subtraction iff B is closed with
respect to both addition and negatives. This last fact is easy to check, and is
given as an exercise.

Awhile back, in our study of groups, we singled out certain special
subgroups called normal subgroups. We will now describe certain special
subrings called ideals which are the counterpart of normal subgroups: that
is, ideals are in rings as normal subgroups are in groups.

Let A be a ring, and B a nonempty subset of A. We will say that B
absorbs products in A (or, simply, B absorbs products) if, whenever we multi-
ply an element in B by an element in A (regardless of whether the latter is
inside B or outside B), their product is always in B. In other words,

for all b e B and x e A, xb and bx are in B.

A nonempty subset B of a ring A is called an ideal of A if B is closed with
respect to addition and negatives, and B absorbs products in A.

A simple example of an ideal is the set lE of the even integers. lE is an
ideal of / because the sum of two even integers is even, the negative of any
even integer is even, and, finally, the product of an even integer by any
integer is always even.

In a commutative ring with unity, the simplest example of an ideal is
the set of all the multiples of a fixed element a by all the elements in the
ring; in other words, the set of all the products

xa

as a remains fixed and x ranges over all the elements of the ring. This set is
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obviously an ideal because

xa + ya = (x + y)a

—(xa) = (—x)a

and y(xa) = (yx)a

This ideal is Called the principal ideal generated by a, and is donoted by

<a)

As in the case of subrings, if B is a nonempty subset of A, there is a
more compact way of checking that B is an ideal of A:

B is an ideal of A ([and only ([B is closed with respect to subtraction and

B absorbs products in A.

We shall see presently that ideals play an important role in connection
with homomorphisms.

Homomorphisms are almost the same for rings as for groups.

A homomorphism from a ring A to a ring B is a function f: A — B
satisfying the identities

f(xi + X2) +f(X2)

and

=f(x1)f(x2)

There is a longer but more informative way of writing these two identities:

(1) Jff(x1) = y1 andf(x2) = y2, then f(x1 + x2) = y1 + Y2

(2) Iff(x1) = y1 and f(x2) = y2, then f(x1x2) = y1y2.

In other words, iff happens to carry x1 to y1 and x2 to y2, then, necessarily,

it must carry x1 + x2 to y1 + y2 and x1x2 to y1y2. Symbolically,

If x1 -L y1 and x2 -L y2, then necessarily

f I
and

One can easily confirm for oneself that a function f with this property will
transform the addition and multiplication tables of its domain into the
addition and multiplication tables of its range. (We may imagine infinite
rings to have "nonterminating" tables.) Thus, a homomorphism from a ring
A onto a ring B is a function which transforms A into B.
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For example, the ring 4 is transformed into the ring 74 by

(0 1 2 3 4 5

1 2 0 1 2

as we may verify by comparing their tables. The addition tables are com-
pared on page 132, and we may do the same with their multiplication
tables:

012345 012012
0000000 0000000
1012345 Replace 1012012
2024024 xbyf(x) 2021021
3030303 0000000
4042012 1012012
5054321 2021021

Eliminate duplicate
0 1 2

information 0 0 0 01012
(Forexample,2 2=1 2 0 2 1

appears four separate

times in this table.)

If there is a homomorphism from A onto B, we call B a homomorphic
image of A. 1ff is a homomorphism from a ring A to a ring B, not neces-
sarily onto, the range of f is a subring of B. (This fact is routine to verify.)
Thus, the range of a ring homomorphism is always a ring. And obviously,
the range of a homomorphism is always a homomorphic image of its
domain.

Intuitively, if B is a homomorphic image of A, this means that certain
features of A are faithfully preserved in B while others are deliberately lost.
This may be illustrated by developing further an example described in
Chapter 14. The parity ring P consists of two elements, e and o, with
addition and multiplication given by the tables

+ Co . Co

e e o and e C C

0 0 C 0 CO
We should think of e as "even" and o as "odd," and the tables as describing
the rules for adding and multiplying odd and even integers. For example,

even + odd = odd, even times odd = even, and so on.
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The function f: Z —> P which carries every even integer to e and every
odd integer to o is easily seen to be a homomorphism from / to P; this is
made clear on page 134. Thus, P is a homomorphic image of /. Although
the ring P is very much smaller that the ring /, and therefore few of the
features of Z can be expected to reappear in P. nevertheless one aspect of
the structure of / is retained absolutely intact in P, namely the structure of
odd and even numbers. As we pass from / to P, the parity of the integers
(their being even or odd), with its arithmetic, is faithfully preserved while all
else is lost. Other examples will be given in the exercises.

1ff is a homomorphism from a ring A to a ring B, the kernel off is the
set of all the elements of A which are carried by f onto the zero element of
B. In symbols, the kernel off is the set

K = {x A :f(x)=O}

It is a very important fact that the kernel off is an idçal of A. (The simple
verification of this fact is left as an exercise.)

If A and B are rings, an isomorphism from A to B is a homomorphism
which is a one-to-one correspondence from A to B. In other words, it is an
injective and surjective homomorphism. If there is an isomorphism from A
to B we say that A is isomorphic to B, and this fact is expressed by writing

EXERCISES

A. Examples of Subrings

Prove that each ofthefollowing is a subring of the indicated ring.

1

2 {x+2"3y+2213z:x,y,zeZ}isasubringofR.
3

4 Let %'(IR) be the set of all the functions from R to l1 which are continuous on
(— cc,cc), and let be the set of all the functions from to Ft which are
differentiable on (— cc, cc). Then c6'(fft) and are subrings of
5 Let %(R) be the set of all functions from to R which are continuous on the
interval [0, 1]. Then is a subring of S9l1), and is a subring of *(ER).

6 The subset of S2(R) consisting of all matrices of the form

(o 0

x
is a subring



IDEALS AND HOMOMORPHISMS 183

B. Examples of Ideals

1 Identify which of the following are ideals of 7 x 7, and explainS {(n, n) ne
{(5n, 0) ne Z}; {(n, m) :n + m is even}; {(n, m) :nm is even}; {(2n, 3m) :n, me Z}.
2 List all the ideals of
3 Explain why every subring of 4 is necessarily an ideal.
4 Explain why the subring of Exercise A6 is not an ideal.
5 Explain why '6(R) is not an ideal of 39R).
6 Prove that each of the following is an ideal of F(R):

(a) The set of allf which are constant on the interval [0, 1].
(b) The set of allf such thatf(x) = 0 for every rational x.
(c) The set of alIf such thatf(O) = 0.

7 List all the ideals of P3. (P3 is defined in Chapter 17, Exercise D.)
8 Give an example of a subring of P3 which is not an ideal.
9 Give an example of a subring of 73 x 73 which is not an ideal.

C. Elementary Properties of Subrings

Prove each ofthefollowing:

1 A nonempty subset B of a ring A is closed with respect to addition and negatives
if B is closed with respect to subtraction.
2 Conclude from part 1 that B is a subring of A if B is closed with respect to
subtraction and multiplication.
3 If A is a finite ring and B is a subring of A, then the order of B is a divisor of the
order of A.

4 If a subring B of an integral domain A contains 1, then B is an integral domain. (B
is then called a subdomain of A.)

5 Every subring of a field is an integral domain.
6 If a subring B of a field F is closed with respect to multiplicative inverses, then B
is a field. (B is then called a subfield of F.)

7 Find subrings of 4 which illustrate each of the following:
(i) A is a ring with unity, B is a subring of A, but B is not a ring with unity.
(ii) A and B are rings with unity, B is a subring of A, but the unity of B is not

the same as the unity of A.
8 Let A be a ring,f: A—.A a homomorphism, and B = {x eA :f(x) = x}. Then B
is a subring of A.

9 The center of a ring A is the set of all the elements a e A such that ax = xa for
every x e A. Prove that the center of A is a subring of A.
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D. Elementary Properties of Ideals

Let A be a ring and J a nonempty subset of A.

1 Using Exercise Cl, explain why J is an ideal of A ill J is closed with respect to
subtraction and J absorbs products in A.
2 If A is a ring with unity, prove that J is an ideal of A if J is closed with respect to
addition and J absorbs products in A.
3 Prove that the intersection of any two ideals of A is an ideal of A.
4 Prove that iff is an ideal ofA and I ci, then J = A.

5 Prove that if J is an ideal of A and J contains an invertible element a of A, then
J=A
6 Explain why a field F can have no nontrivial ideals (that is, no ideals except {O}
and F).

E. Examples of Homomorphisms

Prove that each of the following is a homomorphism. Then describe its kernel and its
range.

1 0: .F(R)—* R given by 0(f) =f(O).
2 h: 11 x 11 given by h(x, y) = x.

3 h: l1—. given by

fx 0

4 x lR—*4'2(l1)givenby

Ix 0

5 Let A be the set l1 x l1 with the usual addition and the following "multi-
plication":

(a, h) 0 (c, d) = (ac, hc)

Granting that A is a ring, letf: A —÷ aY2(R) be given by

f(x, y) =
(x 0)

6 h: given by h(A) = A n D, where D is a fixed subset of C.

7 List all the homomorphisms from 12 to 14; from 4 to 16.

F. Elementary Properties of Homomorphisms

Let A and B be rings, andf: B a homomorphism. Prove each of the following.

I f(A)={f(x):xeA}isasubringofB.
2 The kernel off is an ideal of A.
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3 f(O) = 0, and for every a a A,f(—a) = —f(a).

4 f is injective if its kernel is equal to {0}.
5 If B is an integral domain, then either f(1) = I or f(l) = 0 If f(l) = 0, then
f(x) = 0 for every x a A. Iff(1) 1, the image of every invertible element of A is an
invertible element of B.
6 Any homomorphic image of a commutative ring is a commutative ring Any
homomorphic image of a field is a field.
7 If the domain A of the homomorphismf is a field, and if the range off has more
than one element, thenf is injective. (HINT: Use Exercise D6.)

G. Examples of Isomorphisms

1 Let A be the ring of Exercise A2 in Chapter 17. Show that the function
f(x) = x — 1 is an isomorphism from 0 to A, hence C A.

2 Let 9' be the following subset

b):ahER}

Prove that the function

f(a+bi)=( b)

is an isomorphism from C to 9'. [REMARK: You must begin by checking thatf is a
well-defined function; that is, if a + bi = c + di, then f(a + hi) =f(c + di). To do
this, note that if a + hi = c + di then a — c = (d — h)i; this last equation is impos-
sible unless both sides are equal to zero, for otherwise it would assert that a given
real number is equal to an imaginary number.]
3 Prove that {(x, x) :x a Z} is a subring of! x 1, andshow {(x, x):x a Z} 1.

4 Show that the set of all 2 x 2 matrices of the form

(0 0

x

is a subring of 112(R), then prove this subring is isomorphic to Fl.

For any integer k, let k7L designate the subring of 1 which consists of all the
multiples of k.

5 Prove that 1 2!; then prove that 2! 3!. Finally, explain why if k # 1, then
kiL I!.

H. Further Properties of Ideals

Let A be a ring, and let J and K be ideals of A. Prove each of the following. (In parts
3 and 4, assume A is a commutative ring.)

11ff n K = {0},thenjk=OforeveryjafandkaK.
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2 For any a cA, 'a = {ax +j + k: xc A,jeJ, ke K} is an ideal ofA.
3 The radical of J is the set rad J = {a e A : an e J for some n e Z}. For any ideal
J,rad J is an ideal of A.
4 For any a e A, {x e A: ax = O} is an ideal (called the annihilator of a). Fur-
thermore, {x e A : ax = 0 for every a e A} is an ideal (called the annihilating ideal of
A). If A is a ring with unity, its annihilating ideal is equal to {0}.
5 Show that {0} and A are ideals of A. (They are trivial ideals; every other ideal of
A is a proper ideal.) A proper ideal J of A is called maximal if it is not strictly
contained in any strictly larger proper idealS that is, if J K, where K is an ideal
containing some element not in J, then necessarily K = A. Show that the following
is an example of a maximal ideal: In the ideal J = {f:f (0) = 0} [HINT: Use
D5. Note that if g e K and g(O) 0 (that is, g 0 J), then the function h(x) =
g(x) — g(0) is in J, hence h(x) — g(x) e K. Explain why this last function is an invert-
ible element of F(R).]

I. Further Properties of Homomorphisms

Let A and B be rings. Prove each of the following:

I 1ff : A B is a homomorphism from A onto B with kernel K, and J is an ideal of
A such that K J, thenf(J) is an ideal of B.
2 1ff A B is a homomorphism from A onto B, and B is afield, then the kernel of
f is a maximal ideal. (HINT: Use part 1, with D6. Maximal ideals are defined in
Exercise H5.)

3 There are no nontrivial homomorphisms from Z to Z. [The trivial homomor-
phisms aref(x) = 0 andf(x) = x.]
4. If n is a multiple of m, then 4, is a homomorphic image of 4.
5 If n is odd, there is an injective homomorphism from Z2 into

t I A Ring of Endomorphisms

Let A be a commutative ring. Prove each of the following:

I For each element a in A, the function TEa defined by Tha(x) = ax satisfies the identity
lta(X + 3') = lta(X) + 7ta(Y). (In other words, TEa is an endomorphism of the additive
group of A.)

2 TEa is injcctivc if a is not a divisor of zero.
3 is surjective if a is invertible.
4 Let d denote the set {ira: a e A} with the two operations

[ira + iCb](X) = ita(x) + rrb(x) and = TEa
°

Verify that si is a ring.
5 If 0: A —. si is given by 0(a) = lEa, then 0 is a homomorphism.
6 If A has a unity, then 0 is an isomorphism. Similarly, if A has no divisors of zero
then 0 is an isomorphism.
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QUOTIENT RINGS

We continue our journey into the elementary theory of rings, traveling a
road which runs parallel to the familiar landscape of groups. In our study of
groups we discovered a way of actually constructing all the homomorphic
images of any group G. We constructed quotient groups of G, and showed
that every quotient group of G is a homomorphic image of G. We will now
imitate this procedure and construct quotient rings.

We begin by defining cosets of rings:

Let A be a ring, and f an ideal of A. For any element a e A, the symbol
J + a denotes the set of all sums j + a, as a remains fixed and j ranges

over J. That is,

f + a = + a :j 6 J}

J + a is called a coset off in A.

It is important to note that, if we provisionally ignore multiplication, A
with addition alone is an abelian group and J is a subgroup of A. Thus, the
cosets we have just defined are (if we ignore multiplication) precisely the
cosets of the subgroup f in the group A, with the notation being additive.
Consequently, everything we already know about group cosets continues to
apply in the present case—only, care must be taken to translate known
facts about group cosets into additive notation. For example, Property (*) of
Chapter 13, with Theorem 5 of Chapter 15, reads as follows in additive
notation:

187
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aeJ+h (IT J+a=J+b
J+a=J+h 1ff a—bef

J+a=J (IT aef

(*)

(**)

We also know, by the reasoning which leads up to Lagrange's theorem, that
the family of all the cosets J + a, as a ranges over A, is a partition of A.

There is a way of adding and multiplying cosets which works as follows:

(J + a) + (J + b) = J + (a + b)

(J + a)(J + b) = J + ab

In other words, the sum of the coset of a and the coset of b is the coset of
a + h; the product of the coset of a and the coset of b is the coset of ab.

It is important to know that the sum and product of cosets, defined in
this fashion, are determined without ambiguity. Remember that J + a may
be the same coset as J + c [by (*) this happens if c is an element of J + a],
and, likewise, J + b may be the same coset as J + d. Therefore, we have the
equations

(J + a) + (J + b) = J + (a + b)
II and

(J + c) + (J + d) = J + (c + d)

(J + a)(J + b) = J + ab
II II

(J + c)(J + d) = J + cd

Obviously we must be absolutely certain that J + (a + b) = J + (c + d) and
J + ab = J + cd. The next theorem provides us with this important guar-
antee.

Theoremi Let Jbe an ideal of A.IfJ +a=J+candf +b=J +d,then
(i) J + (a + h) = J + (c + d), and

(ii) J + ab = J + cd.
We are given that J + a = J + c and J + b = J + d, hence by (**),

a—cef and h—def

Since J is closed with respect to addition, (a — c) + (b — d) = (a + h) —

II
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(c+d) is in f. It follows by (**) that f+(a+b)= f+(c+d), which
proves (i). On the other hand, since f absorbs products in A,

(a—c)hef c(b—d)ef
and

ab—ch ch—cd

and therefore (ab — cb) + (cb — cd) = ab — cd is in f. It follows by (**) that
f + ab = J + cd. This proves (ii).

Now, think of the set which consists of all the cosets off in A. This set
is conventionally denoted by the symbol A/f. For example, if f + a, f + b,
f + c, ... are cosets of f, then

A/f = {f + a, f + b, f + c,

We have just seen that coset addition and multiplication are valid oper-
ations on this set. In fact,

Theorem 2 A/f with coset addition and multiplication is a ring.

Coset addition and multiplication are associative, and multiplication is
distributive over addition. (These facts may be routinely checked.) The zero
element of A/f is the coset f = f + 0, for if f + a is any coset,

(f + a) + (f + 0) = f + (a + 0) = f + a

Finally, the negative of f + a is f + (—a), because

(f + a) + (f + (—a)) = f + (a + (—a)) = f + 0

The ring A/f is called the quotient ring of A by f.
And now, the crucial connection between quotient rings and homomor-

phisms:

Theorem 3 A/f is a homomorphic image of A.

Following the plan already laid out for groups, the natural homomor-
phism from A onto A/f is the function f which carries every element to its
own coset, that is, the functionf given by

f(x) = f + x
This function is very easily seen to be a homomorphism.

Thus, when we construct quotient rings of A, we are, in fact, construct-
ing homomorphic images of A. The quotient ring construction is useful
because it is a way of actually manufacturing homomorphic images of any
ring A.
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The quotient ring construction is now illustrated with an important
example. Let Z be the ring of thc integers, and let <6> be the ideal of /
which consists of all the multiples of the number 6. The elements of the
quotient ring /1<6> are all the cosets of the ideal <6>, namely:

<6>+0= —18, —12, —6,0, 6,12, 18,...}=0

<6>+ 1 = H. —17, —11, —5,1, 7,13, 19,...}=i

<6>+2={...,—16,—l0,—4,2, 8,14,20,...}—2

<6>+3={..., —15, —9, —3,3, 9,15,21,...}=3

—2,4,10,16,22,...}=4

—l,5,11,17,23,...}=5

We will represent these cosets by means of the simplified notation 0, 1, 2, 3,

4, 5. The rules for adding and multiplying cosets give us the following
tables:

+012345 P012345
0012345 0000000
1123450 1012345
2234501 2024024
3345012 3030303
4450123 4042042
5501234 5054321

One cannot fail to notice the analogy between the quotient ring /1<6>

and the ring 4. In fact, we will regard them as one and the same. More

generally, for every positive integer n, we consider 4 to be the same as
7L/(n>. In particular, this makes it clear that 4 is a homomorphic image of
2

By Theorem 3, any quotient ring A/f is a homomorphic image of A.
Therefore the quotient ring construction is a way of actually producing
homomorphic images of any ring A. In fact, as we will now see, it is a way
of producing all the homomorphic images of A.

Theorem 4 Let f: A B be a homomorphism from a ring A onto a ring B,
and let K he the kernel off Then B A/K.

To show that A/K is isomorphic with B, we must look for an isomor-
phism from A/K to B. Mimicking the procedure which worked successfully
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for groups, we let 4) be the function from A/K to B which matches each
coset K + x with the elementf(x); that is,

Ø(K + x) =f(x)

Rcmember that if we ignore multiplication for just a moment, A and B are
groups and f is a group homomorphism from A onto B, with kernel K.
Therefore we may apply Theorem 2 of Chapter 16: is a well-defined,
hijective function from A/K to B. Finally,

q5((K +a)+(K +b))=qS(K +(a+h))=f(a+h)

=f(a)+f(b)=ç$K+a)+q5(K+b)

and ç5((K + a)(K + b)) = Ø(K + ab) =f(ab)

=f(a)f(b) = çb(K + a)çb(K + b)

Thus, 4) is an isomorphism from A/K onto B.
Theorem 4 is called the fundamental homomorphism theorem for rings.

Theorems 3 and 4 together assert that every quotient ring of A is a homo-
morphic image of A, and, conversely, every homomorphic image of A is
isomorphic to a quotient ring of A. Thus, for all practical purposes, quo-
tients and homomorphic images of a ring are the same.

As in the case of groups, there are many practical instances in which it
is possible to select an ideal J of A so as to "factor out" unwanted traits of
A, and obtain a quotient ring A/f with "desirable" features.

As a simple example, let A be a ring, not necessarily commutative, and
let f be an ideal of A which contains all the differences

ab — ha

as a and b range over A. It is quite easy to show that the quotient ring A/f
is then commutative. Indeed, to say that A/f is commutative is to say that
for any two cosets f + a and f + b,

(f + a)(f + b) = (f + b)(f + a) that is f + ab = f + ha

By (**), this last equation is true iff ab — ha e f. Thus, if every difference
ab — ha is in f, then any two cosets commute.

A number of important quotient ring constructions, similar in principle
to this one, are given in the exercises.

An ideal f of a commutative ring is said to be a prime ideal if for any
two elements a and b in the ring,

If abef then aef or bef
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Whenever f is a prime ideal of a commutative ring with unity A, the
quotient ring A/f is an integral domain. (The details are left as an exercise.)

An ideal of a ring is called proper if it is not equal to the whole ring. A
proper ideal f of a ring A is called a maximal ideal if there exists no proper
ideal K of A such that f K with f # K (in other words, f is not con-
tained in any strictly larger proper ideal). It is an important fact that if A is
a commutative ring with unity, then f is a maximal ideal of A ?ff A/f is a
field.

To prove this assertion, let f be a maximal ideal of A. If A is a com-
mutative ring with unity, it is easy to see that A/f is one also. In fact, it
should be noted that the unity of A/f is the coset f + 1, because if f + a is
any coset, (f + a)(f + I) = f + al = f + a. Thus, to prove that A/f is a
field, it remains only to show that if f + a is any nonzero coset, there is a
coset f + x such that (f + a)(f + x) = f + 1.

The zero coset is f. Thus, by (***), to say that f + a is not zero, is to
say that a f. Now, let K be the set of all the sums

xa + j
as v ranges over A andj ranges over f. It is easy to check that K is an ideal.
Furthermore, K contains a because a = la + 0, and K contains every el-
ement j. e f because j can be written as Oa + j. Thus, K is an ideal which
contains f and is strictly larger than f (for remember that a e K but a f).
But f is a maximal ideal! Thus, K must be the whole ring A.

It follows that 1 e K, so 1 = xa +j for some x e A and j e f. Thus,
— ta =j e f, so by (**), f + I = f + xa = (f + x)(f + a). In the quotient

ring A/f, f + x is therefore the multiplicative inverse of f + a.
The converse proof consists, essentially, of "unraveling" the preceding

argument; it is left as an entertaining exercise.

EXERCISES

A. Examples of Quotient Rings

In each of the following, A is a ring and J is an ideal of A. List the elements of A/f,
and then write the addition and multiplication tables of A/f.

Example A=76,f=

The elements of A/f are the three cosets f = f + 0 = {0, 3}, f + 1 = { 1, 4}, and
f + 2 = (2, 5}. The tables for A/f are as follows.
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J J+l J+2 J J+l J+2
J J J+lJ+2 .1 J .1 J

J+l J+1 J+2 J J+l J J+1 J+2
J+2 J+2 J J+l J+2 J J+2 J+1

I

A = P3. J = {O, { I }}. (P3 is defined in Chapter 17, Exercise D)

3 A=72 x4;J=

B. Examples of the Use of the FHT

In each of the following, use the FHT (fundamental homomorphism theorem) to
prove that the two given rings are isomorphic Then display their tables.

Example and 76/<2).

The following function is a homomorphism from onto 72:

(0 1 2 3 4 5

1 0 1 0 1

(Do not prove thatf is a homomorphism.)
The kernel off is {0, 2, 4} = <2). Thus

<2>

It follows by the FHT that 761<2).

1 75 and
2 73 and 76/<3).
3 P2 and P3/K, where K = {3}}. [HINT: See Chapter 18, Exercise E6. Con-
sider the functionf(X) = X n { 1, 2}.]

4 4 and x 72/K, where K = {(0, 0),(0, l)}.

C. Quotient Rings and Homomorphic Images in 39R)

1 Let 0 be the function from to R x R defined by çb(f) = (f(0),f(l)). Prove
that 0 is a homomorphism from onto 11 x R, and describe its kernel.

2 Let J be the subset of consisting of all f whose graph passes through the
points (0, 0) and (1, 0). Referring to part I, explain why J is an ideal of .F(lR), and

R x R.
3 Let 0 be the function from F(R) to .59Q) defined as follows:

0(f) =f0 = the restriction off to 0



194 CHAPTER NINETEEN

(NOTE: The domain of is Q and on this domain]'0 is the same function asf)
Prove that 4) is a homomorphism from onto .F(Q), and describe the kernel of

4 Let f be the subset of .F(R) consisting of all]' such thatf(x) 0 for every rational
x. Referring to part 3, explain why f is an ideal of.F(R) and F(R)/J .S9Q).

D. Elementary Applications of the Fundamental
Homomorphism Theorem

In each of the following let A be a commutative ring. If a a A and n is a positive
integer, the notation na will stand for

(nterms)

I Suppose 2x = 0 for every x a A. Prove that (x + y)2 = x2 + y2 for all x and y in
A. Conclude that the function h(x) = x2 is a homomorphism from A to A. If f =
{x a A. x2 = 0} and B = {x2: x a A}, explain why f is an ideal of A, B is a subring
of A, and A/f B.

2 Suppose 6x = 0 for every x a A. Prove that the function h(x) = 3x is a homomor-
phism from A to A. 1ff = {x: 3x = 0} and B = {3x: x a A}, explain why f is an
ideal of A, B is a subring of A, and A/f B.

3 If a is an idempotent element of A (that is, a2 = a), prove that the function
lCa(X) = ax is a homomorphism from A into A. Show that the kernel of 2ta is 'a' the
annihilator of a (defined in Exercise 1-14 of Chapter 18). Show that the range of 2Ta is
<a>. Conclude by the Fl-IT that A/la <a>.

4 For each a a A, let Jta be the function given by mjx) = ax. Define the following
addition and multiplication on A = {ira: a a A}:

xa+xb—7ta+b and 7[alth=T(ah

(A is a ring; however, do not prove this.) Show that the function 0(a) = 2ta is a
homomorphism from A onto A. Let I designate the annihilating ideal of A (defined
in Exercise H4 of Chapter 18). Use the FHT to show that A/I A.

E. Properties of Quotient Rings A/f
in Relation to Properties of J

Let A be a ring and i an ideal of A. Use (*), (**), and (***) of this chapter. Prove
ea Ii of the follotunq

1 Every clement of A/i has a square root ill for every x a A, there is some y a A
such that 'c — a i
2 Every element of A/i is its own negative iffx + x a f for every x a A.
3 A/i is a boolean ring if ,2 — x a i for every x a A. (S is called a boolean ring if

= s for every s a S.)

4 If i is the ideal of all the nilpotent elements of a commutative ring A, then A/i
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has no nilpotent elements (except zero). (Nilpotent elements are defined in Chapter
17, Exercise M; by M2 and M3 they form an ideal.)
5 Every element of A/i is nilpotent iffi has the following property for every x e A,
there is a positive integer n such that x" e i
6 A/i has a unity clement ill there exists an element a e A such that ax — x e i and

— 'cc i for every 'c a A.

F. Prime and Maximal Ideals

Let A be a commutative ring with unity, and i an ideal of A. Prove each of the
lb/lowing

I A/i is a commutative ring with unity.
2 i is a primc ideal if A/i is an integral domain.
3 Every maximal ideal of A is a prime ideal. (HiNT: Use the fact, proved in this
chapter, that if i is a maximal ideal then A/f is a field. Also, use part 2.)
4 If A/i is a field, then i is a maximal ideal. (HiNT. Use Theorem 3 of this chapter
and Exercise 12 of Chapter 18.)

G. Further Properties of Quotient Rings
in Relation to their Ideals

Let A be a ring and i an ideal of A Prove the following. (In parts I to 3, assume that
A is a commutative ring with unity.)

I A/i is a field if for every element a a A, where a f, there is some /' a A such
that ah — I a i.
2 Every nonzero element of A/i is either invertible or a divisor of zero if the
following property holds, where a, v a A: For every a 0 i, there is some x i such
that either ax a i or ax — 1 a i.
3 An ideal i of a ring A is called primary if for all a, b a A, if ab a i, then either
a a i or a i for some positive integer n. Prove that every zero divisor in A/i is
nilpotent if i is primary.
4 An ideal i of a ring A is called semiprime if it has the following property: For
every a a A, if& a i for some positive integer n, then necessarily a a i. Prove that i
is semiprime if A/i has no nilpotent elements (except zero)
5 Prove that an integral domain can have no nonzero nilpotent elements. Then use
part 4, together with E2, to prove that every prime ideal is semiprime.

U. 4, as a Homomorphic Image of Z

Recall that the function

f(a) = a
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is the natural homomorphism from 7 onto 4. If a polynomial equation p = 0 is

satisfied in 7, necessarily f(p) =f(0) is true in 4. Let us take a specific example,
there are integers x and y satisfying I 1x2 — 8y2 + 29 = 0 (we may take x = 3 and
y = 4). It follows that there must be elements 5 and 53 in 4 which satisfy
11 22 — 852+29=0 in 4, that is, 5 — p2 + (We take and p=4.)
The problems which follow are based on this observation.

1 Prove that the equation x2 — 7y2 — 24 = 0 has no integer solutions. (1-lINT: If
there are integers x and y satisfying this equation, what equation willS and 53 satisfy
in 77?)

2 Prove that x2 + (x + 1)2 + (x + 2)2 = y2 has no integer solutions.
3 Prove that x2 + 10y2 = n (where n is an integer) has no integer solutions if the
last digit of n is 2,3,7, or 8.
4 Prove that the sequence 3, 8, 13, 18, 23, ... does not include the square of any
integer. (HINT: The image of each number on this list, under the natural homomor-
phism from 7 to 75, is 3.)
5 Prove that the sequence 2, 10, 18, 26, ... does not include the cube of any integer
6 Prove that the sequence 3, 11, 19, 27, ... does not include the sum of two squares
of integers.

7 Prove that if n is a product of two consecutive integers, its units digit must be 0, 2,
or 6.

8 Prove that if n is the product of three consecutive integers, its units digit must be
0, 2, 4, or 6.



CHAPTER

TWENTY
INTEGRAL DOMAiNS

Let us recall that an integral domain is a commutative ring with unity
having the cancelation property, that is,

if and ab=ac then b=c (1)

At the end of Chapter 17 we saw that an integral domain may also be
defined as a commutative ring with unity having no divisors of zero, which
is to say that

(/' ab=O then a=O or b=O (2)

for as we saw, (I) and (2) are equivalent properties in any commutative ring.
The system Z of the integers is the exemplar and prototype of integral

domains. In fact, the term "integral domain" means a system of algebra
("domain") having integerlike properties. However, Z is not the only inte-
gral domain: there are a great many integral domains different from 1.

Our first few comments will apply to rings generally. To begin with, we
introduce a convenient notation for multiples, which parallels the exponent
notation for powers. Additively, the sum

of n equal terms is written as n a. We also define a to be 0, and let
(— n) a = — a) for all positive integers n. Then

m a + n a = (m + a and m (n . a) = a

197
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for every element a of a ring and all integers m and n. These formulas are
the translations into additive notation of the laws of exponents given in
Chapter 10.

If A is a ring, A with addition alone is a group. Remember that in
additive notation the order of an element a in A is the least positive integer
n such that n a = 0. If there is no such positive integer n, then a is said to
have order infinity. To emphasize the fact that we are referring to the order
of a in terms of addition, we will call it the additive order of a.

In a ring with unity, if 1 has additive order n, we say the ring has
"characteristic n." In other words, if A is a ring with unity,

the characteristic of A is the least positive integer n such that

n times

If there is no such positive integer n, A has characteristic 0.

These concepts are especially simple in an integral domain. Indeed,

Theorem 1 All the nonzero elements in an integral domain have the same
additive order.

That is, every a # 0 has the same additive order as the additive order of
1. The truth of this statement becomes transparently clear as soon as we
observe that

n a = a + a + + a = la + + la = (I + ... + 1)a = l)a

hence n a = 0 if 1 = 0. (Remember that in an integral domain, if the
product of two factors is equal to 0, at least one factor must be 0.)

It follows, in particular, that if the characteristic of an integral domain
is a positive integer n, then

x=0

for every element x in the domain.
Furthermore,

Theorem 2 In an integral domain with nonzero characteristic, the character-
istic is a prime number.

For if the characteristic were a composite number mn, then by the

distributive law,
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1) = (1 + + 1)(1 + + 1) = I + I +' + 1 = 1 = 0
L

_______

m terms n terms mn terms

Thus, either I = 0 or 1 = 0, which is impossible because mn was
chosen to be the least positive integer such that (mn) I = 0.

A very interesting rule of arithmetic is valid in integral domains whose
characteristic is not zero.

Theorem 3 In any integral domain of characteristic p,

(a + b)" = a" + b" for all elements a and b

This formula becomes clear when we look at the binomial expansion of
(a + b)". Remember that by the binomial formula,

a +b"

where the binomial coefficient

k!

It is demonstrated in Exercise L of Chapter 17 that the binomial formula is
correct in every commutative ring.

Note that if p is a prime number and 0 < k <p, then

(p\.is a multiple of p

because every factor of the denominator is less than p, hence p does not
cancel out. Thus, each term of the binomial expansion above, except for the
first and last terms, is of the form px, which is equal to 0 because the
domain has characteristic p. Thus, (a + h)" = + h".

It is obvious that every field is an integral domain: for if a 0 and
ax = ay in a field, we can multiply both sides of this equation by the
multiplicative inverse of a to cancel a. However, not every integral domain
is a field: for example, 7 is not a field. Nevertheless,

Theorem 4 Every finite integral domain is afield.

List the elements of the integral domain in the following manner:
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0, 1, a1, a2.
In this manner of listing, there are n + 2 elements in the domain. Take any

and show that it is invertible: to begin with, note that the products

a10, a1 I, a1a1, a1a2, .. .,

are all distinct: for if a1x = a1y, then x = y. Thus, there are n + 2 distinct
products a1x; but there are exactly n + 2 elements in the domain, so every
element in the domain is equal to one of these products. In particular,

= a1 x for some x, hence a1 is invertible.

OPTIONAL

The integral domain / is not a field because it does not contain the quo-
tients m/n of integers. However, / can be enlarged to a field by adding to it
all the quotients of integers; the resulting field, of course, is 0 the field of
the rational numbers. 0 consists of all quotients of integers, and it contains
/ (or rather, an isomorphic copy of 7) when we identify each integer n with
the quotient n/I. We say that 0 is thefield of quotients of7.

lt is a fascinating fact that the method for constructing 0 from 7 can

be applied to any integral domain. Starting from any integral domain A, it
is possible to construct a field which contains A: a field of quotients of A.
This is not merely a mathematical curiosity, but a valuable addition to our
knowledge. In applications it often happens that a system of algebra we are
dealing with lacks a needed property, but is contained in a larger system
which has that property—and that is almost as good! In the present case, A
is not a field but may be enlarged to one.

Thus, if A is any integral domain, we will proceed to construct a field
A* consisting of all the quotients of elements in A; and A* will contain A,
or rather an isomorphic copy of A, when we identify each element a of A
with the quotient a/l. The construction will be carefully outlined and the
busy work left as an exercise.

Given A, let S denote the set of all ordered pairs (a, h) of elements of A,
where b 0. That is,

S={(a,h):a,beA and b#0}
In order to understand the next step, we should think of (a, b) as a/b. [It is

too early in the proof to introduce fractional notation, but nevertheless each
ordered pair (a, b) should be thought of as a fraction a/b.] Now, a problem
of representation arises here, because it is obvious that the quotient xa/xb is
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equal to the quotient a/b; to put the same fact differently, the quotients a/b
and c/d are equal whenever ad = hc. That is, if ad = hc. then a/h and c/d are
two different ways of writing the same quotient. Motivated by this obser-
vation, we define (a, h) (c, d) to mean that ad = bc, and easily verify that
is an equivalence relation on the set S. (Equivalence relations are explained
in Chapter 12.) Then we let [a, b] denote the equivalence class of(a, b), that
is,

[a, h] = {(c, d) e S : (c, d) (a, h)}

lntuitively, all the pairs which represent a given quotient are lumped toge-
ther in one equivalence class; thus, each quotient is represented by exactly
one equivalence class.

Let us recapitulate the formal details of our construction up to this
point: Given the set S of ordered pairs of elements in A, we define an
equivalence relation in S by letting (a, b) (c, d) if ad = bc. We let
[a, b] designate the equivalence class of (a, b), and finally, we let A * denote
the set of all the equivalence classes [a, b]. The elements of A* will be called
quotients.

Before going on, observe carefully that

[a,b]=[r,s] iff if as=hr (*)

As our next step, we define operations of addition and multiplication in A*:

[a, b] + [c, d] = [ad + bc, bd]

and [a, b] . [c, d] = [ac, bd]

To understand these definitions, simply remember the formulas

a c ad+bc a c ac

bd
and

We must make certain these definitions are unambiguous; that is, if
[a, b] = [r, s] and [c, d] = [t, u], we have the equations

[a, h] + [c, d] = [ad + bc, bd] [a, b] . [c, d] = [ac, hd]
1 ii and ii

[r, s] + [t, u] = [ru + st, su] [r, s] . [t, u] = [rt, su]

and we must therefore verify that [ad + bc, bd] = [ru + st, su] and
[ac, hd] = [rt, su]. This is left as an exercise. It is also left for the student to
verify that addition and multiplication are associative and commutative
and the distributive law is satisfied.

The zero element is [0, 1], because [a, b] + [0, 1] = [a, b]. The nega-
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tive of [a, 1,] is [—a, h], for [a, h] + [—a, 1,] = [0, b2] = [0, 1]. [The last
equation is true because of (*).] The unity is [1, 1], and the multiplicative
inverse of [a, b] is [b, a], for [a, b] [b, a] = [ab, ab] = [I, I]. Thus, A* is
a field!

Finally, if A' is the subset of A* which contains every [a, 1], we let 0 be

the function from A to A' defined by 0(a) = [a, 1]. This function is injective
because, by (*), if [a, 1] = [b, I] then a = b. It is obviously surjective and is
easily shown to be a homomorphism. Thus, 4) is an isomorphism from A to
A', so A* contains an isomorphic copy A' of A.

EXERCISES

A. Characteristic of an Integral Domain

Let A be an integral domain. Prove each ofihefollowing.

I Let a be any nonzero element of A. If n a = 0, where n 0, then n is a multiple
of the characteristic of A.

2 If A has characteristic zero, n 0, and n a = 0, then a = 0.

3 If A has characteristic 3, and 5 a = 0, then a = 0

4 If there is a nonzero element a in A such that 256 a = 0, then A has character-
istic 2.

5 If there are distinct nonzero elements a and h in A such that 125 a = 125 b,

then A has characteristic 5.

6 If there are nonzero elements a and b in A such that (a + b)2 = a2 + b2 then A

has characteristic 2.
7 If there are nonzero elements a and h in A such that Wa = 0 and 14b = 0 then A
has characteristic 2.

B. Characteristic of a Finite Integral Domain

Let A be a finite integral domain. Prove each of the following.

I If A has characteristic q, then q is a divisor of the order of A.
2 If the order of A is a prime number then the characteristic of A must be equal
to p
3 If the order of A is ptm, where p is a prime, the characteristic of A must be equal to
p
4 If A has 81 elements, its characteristic is 3.

S If A, with addition alone, is a cyclic group, the order of A is a prime number.
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C. Finite Rings

Let A be a finite commutative ring with unity. Prove each of the following.

I Every nonzero element of A is either a divisor of zero or invertible. (HiNT: Use an
argument analogous to the proof of Theorem 4.)
2 If a 0 is not a divisor of zero, then some positive power of a is equal to 1.

(HINT: Consider a, a2, a3,. . . Since A is finite, there must be positive integers n cm
such that = am.)

3 Use part 2 to prove: If a is invertible, then a' is equal to a positive power of a.

D. Field of Quotients of an Integral Domain

The following questions refer to the construction of a field of quotients of A, as
outlined on pages 200 to 202.

I If [a. h] = [r, and [c, d] = [t, ii], prove that [a, b] + [c, d] = [r, s] + [t, ii].
2 If [a, h] = [r, s] and [c, d] = [1, ii], prove that [a, b][c, d] = [r, s][t, u].
3 If (a, h) (c, d) means ad = hc, prove that is an equivalence relation on S.

4 Prove that addition in A* is associative and commutative.
5 Prove that multiplication in A* is associative and commutative.
6 Prove the distributive law in A*
7 Verify that A —* A' is a homomorphism.

E. Further Properties of the Characteristic
of an Integral Domain

Let A be an integral domain. Prove each of the following.

1 Let a a A. If A has characteristic p, and n a = 0 where n is not a multiple of p,
then a = 0

2 If p is a prime, and there is a nonzero element a a A such that p a = 0, then A
has characteristic p.
3 If p is a prime, and there is a nonzero element a a A such that pm. a = 0 for some
integer m, then A has characteristic p.
4 If A has characteristic p, then the functionf(a) = a homomorphism from A
to A.

5 Let A have order p, where p is a prime. Explain why

A = {0, 1, 21, 3•J (p —

Prove that A Z1,.

6 If A has characteristic p. then for any positive integer n,
(4) (a + = + and (ii) (a1 + a2 + + ar + ... + ar.
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7 Let A c B where A and B are integral domains. A has characteristic p if B has
characteristic p.

F. Finite Fields

By Theorem 4, "finite integral domain" and "finite field" are the same. Prove the
following:

1 Every finite field has nonzero characteristic.
2 If A is a finite field of characteristic p, the functionf(a) = a" is an automorphism
of A, that is, an isomorphism from A to A. (HINT: Use Exercise E4 above and
Exercise F7 of Chapter 18. To show that f is surjective, compare the number of
elements in the domain and in the range off)

Thefunctionf(a) = a" is called the Froebenius automorphism.

3 Use part 2 to prove: In a finite field of characteristic p, every element has a p-tb
root.
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TWENTY-ONE
THE INTEGERS

There are two possible ways of describing the system of the integers.
On the one hand, we may attempt to describe it concrqtely.
On the other hand, we may find a list of axioms from which it is

possible to deduce all the properties of the integers, so the only system
which has all these properties is the system of the integers.

The second of these two ways is the way of mathematics. It is elegant,
economical, and simple. We select as axioms only those particular proper-
ties of the integers which are absolutely necessary in order to prove further
properties of the integers. And we select a sufficiently complete list of axioms
so that, using them, one can prove all the properties of the integers needed
in mathematics.

We have already seen that the integers are an integral domain. How-
ever, there are numerous examples of integral domains which bear little
resemblance to the set of the integers. For example, there are finite integral
domains such as 4, fields (remember that every field is an integral domain)
such as Q and R, and others. Thus, in order to pin down the integers—that
is, in order to find a list of axioms which applies to the integers and only the
integers—we must select some additional axioms and add them to the
axioms of integral domains. This we will now proceed to do.

Most of the traditional number systems have two aspects. One aspect is
their algebraic structure: they are integral domains or fields. The other
aspect—which we have not yet touched upon—is that their elements can be
ordered. That is, if a and b are distinct elements, we can say that a is less

205
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than h or b is less than a. This second aspect—the ordering of elements—
will now be formalized.

An ordered integral domain is an integral domain A with a relation,
symbolized by <,having the following properties:
(1) For any a and h in A, exactly one of the following is true:

a=h a<h or bca
Furl hermore,for any a, h, and c in A,
(2) If a <h and h <c, then a cc.
(3) If a <h, then a + c <b + c.
(4) If a c h, then ac <be on the condition that 0 < c.

The relation c is called an order relation on A. The four conditions which
an order relation must fulfill are familiar to everyone. (I) and (2) require no
comment. (3) asserts that we are allowed to add any given c to both sides of
an inequality. (4) asserts that we may multiply both sides of an inequality
by any c, on the condition that c is greater than zero.

As usual, a> b has the same meaning as b <a. Furthermore, a � b
means "a cb or a = b," and b � a means the same as a � h.

In an ordered integral domain A, an element a is called positive if a > 0.
if a <0 we call a negative. Note that if a is positive then —a is negative
(proof: add —a to both sides of the inequality a > 0). Similarly, if a is
negative, then —a is positive.

In any ordered integral domain, the square of every nonzero element is
positive, indeed, if c is nonzero, then either c > 0 or c <0. If c > 0, then,
multiplying both sides of the inequality c > 0 by c,

cc> cO = 0

so c2 > 0. On the other hand, if c <0, then

(— c) > 0

hence (—c)(—c)>0(—c)=0

But (—c)(—c) = c2, so once again, c2 > 0.
In particular, since I = j2, I is always positive.
From the fact that I > 0, we immediately deduce that 1 + I > 1,

I + I + I > 1 + I, and so on. In general, for any positive integer n,

(n + 1)' / > n' /

where n 1 designates the unity element of the ring A added to itself n
times. Thus, in any ordered integral domain A, the set of all the multiples of
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I is ordered as in 7: namely

1

The set of all the positive elements of A is denoted by At An ordered
integral domain A is called an integral system if every nonempty subset of
A + has a least element; in other words, if every nonempty set of positive
elements of A has a least element. This property is called the well-ordering
property for At

It is obvious that I is an integral system, for every nonempty set of
positive integers contains a least number. For example, the smallest element
of the set of all the positive even integers is 2. Note that Q and R are not
integral systems. For although both are ordered integral domains, they
contain sets of positive numbers, such as {x: 0 cx < 1}, which have no
least element.

In any integral system, there is no element between 0 and 1. For suppose
A is an integral system in which there are elements x between 0 and I. Then
the set {x e A : 0 cx < 1} is a nonempty set of positive members of A, so
by the well-ordering property it has a least element c. That is,

0cccI
and c is the least element of A with this property. But then (multiplying by

0 <c2 <c

Thus, c2 is between 0 and 1 and is less than c, which is impossible.
Thus, there is no element of A between 0 and 1.
Finally, in any integral system, every element is a multiple of 1. If that

were not the case, we could use the well-ordering principle to pick the least
positive element of A which is not a multiple of 1: call it b. Now, b > 0 and
there are no elements of A between 0 and 1, SO h > I. (Remember that b
cannot be equal to 1 because b is not a multiple of I.) Since b > 1, it follows
that b — I > 0. But b — I <h and h is the least positive element which is
not a multiple of 1, so b — I is a multiple of]. Say

b—l=n /

But then b = n / + I = (n + I) . I, which is impossible.
Thus, in any integral system, all the elements are multiples of I and

these are ordered exactly as in 7. It is now a mere formality to prove that
every integral system is isomorphic to 7. This is left as Exercise D at the end
of this chapter.
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Since every integral system is isomorphic to Z, any two integral systems
are isomorphic to each other. Thus Z is, up to isomorphism, the only
integral system. We have therefore succeeded in giving a complete axio-
matic characterization of /.

Henceforward we consider Z to be defined by the fact that it is an
integral system.

The theorem which follows is the basis of proofs by mathematical
induction. It is intuitively clear and easy to prove.

Theorem I Let K represent a set of positive integers. Consider the following
two conditions

(i) 1 is in K.
(ii) For any positive integer k if k e K, then also k + I e K.

If K is any set of positive integers satisfying these two conditions, then K
consists of all the positive integers.

Indeed, if K does not contain all the positive integers, then by the
well-ordering principle, the set of all the positive integers which are not in K
has a least element. Call it b; Li is the least positive integer not in K. By
Condition (i), Li I, hence b > 1.

Thus, b — 1 > 0, and b — 1 e K. But then, by Condition (ii), Li e K,
which is impossible.

Let the symbol represent any statement about the positive integer n.
For example, might stand for "n is odd," or "n is a prime," or it might
represent an equation such as (n — l)(n + I) = n2 — I or an inequality such
as n � n2. If, let us say, stands for n � n2, then S1 asserts that I � 12,

2 asserts that c 32, and so on.

Theorem 2: Principle of mathematical induction Consider the following condi-
tions:

(i) is true.
(ii) For any positive integer k, tfSk is true, then also 5k+ is true.

1/ Conditions (i) and (ii) are satisfied, then is true for every positive integer
n.

lndeed, if K is the set of all the positive integers k such that 5k is true,
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then K complies with the conditions of Theorem 1. Thus, K contains all the
positive integers. This means that is true for every n.

As a simple illustration of how the principle of mathematical induction
is applied, let be the statement that

n(n + 1)

that is, the sum of the first n positive integers is equal to n(n + 1)12. Then
is simply

1

2

which is clearly true. Suppose, next, that k is any positive integer and that
5k is true. In other words,

k(k + 1)

Then, by adding k + I to both sides of this equation, we obtain

(k + I)(k + 2)
thatis,

2

However, this last equation is exactly 5k+ We have therefore verified that
whenever 5k is true, 5k +1 also is true. Now, the principle of mathematical
induction allows us to conclude that

n(n + 1)

for every positive integer n.
A variant of the principle of mathematical induction, called the prin-

ciple of strong induction, asserts that 5n is true for every positive integer n on
the conditions that

(i) is true, and

(ii) For any positive integer k, if is true for every i <k, then 5k is true.

The details are outlined in Exercise H at the end of this chapter.
One of the most important facts about the integers is that any integer

m may be divided by any positive integer n to yield a quotient q and a
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positive remainder r. (The remainder is less than the divisor n.) For exam-
ple, 25 may be divided by 8 to give a quotient of 3 and a remainder of 1:

25 = 8 x 3 + I
m n q r

This process is known as the division algorithm. It is stated in a precise
manner as follows:

Theorem 3: Division algorithm If m and n are integers and n is positive,
there exist unique integers q and r such that

m=nq+r and O�rcn
We call q the quotient, and r the remainder, in the division of m by n.

We begin by showing a simple fact:

There exists an integer x such that xn � m. (*)

Remember that n is positive, hence n � I. As for m, since m 0, either
m > 0 or m <0. We consider these two cases separately:

Suppose m > 0. Then

O�m hence
x

Suppose m <0. We may multiply both sides of n � I by the positive
integer —m to get (—m)n � —m. Adding mn + m to both sides yields

mn � m
x

Thus, regardless of whether m is positive or negative, there is some integer x
such that xn � m.

Let W be the subset of 1 consisting of all the nonnegative integers
which are expressible in the form m — xn, where x is any integer. By (*), W
is not empty; hence by the well-ordering property, W contains a least
integer r. Because r e W, r is nonnegative and is expressible in the form
m — nq for some integer q. That is,

r�0
and r=m—nq

Thus, we already have m = nq + r and 0 � r. It remains only to verify
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that r <n. Suppose not: suppose n � r, that is, r — n � 0. But

r — n = (m — nq) — n = m — n(q + 1)

and clearly r — n < r. This means that m — n(q + 1)is an element of W less
than r, which is impossible because r is the least element of W. We conclude
that n � r is impossible, hence r < n.

The verification that q and r are unique is left as an exercise.

EXERCISES

A. Properties of Order Relations in Integral Domains

Let A be an ordered integral domain. Prove the following,for all a, h, and c in A.

1

2

3

4 Ifa<handccO,thenhc<ac.
5 a<biff—h< —a.
6 Ifa+c<h+c,thena<h.
7 Ifac<hcandc>0,thena<b.
8lfachandc<d,thena+c<b+d.

B. Further Properties of Ordered Integral Domains

Let A be an ordered integral domain. Prove the following,for all a, b, and c in A.

1 a2 — 2ab + b2 � 0
2 a2 + h2 � 2ah

3 a2 + b2 � ab
4 a2 + h2 � —ab
5 a2 + h2 + c2 � ab + he + ac
6 a2+h2>ah,ifa#h
7

ah + 1 <a + b + c + abc, ifa, b, c> 1

C. Uses of Induction

Prove each of the following, using the principle of mathematical induction
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1 1+3+ +(2n— 1)=n2 (Thesumofthefirstnoddintegersisn2.)

2 n n!—17—+—+" =
2! 3! (n+1)! n!

8 The Fihonacci sequence is the sequence of integers F1, F2, F3, ... defined as
follows: F1 = 1; F2 = 1; + 2 = + for all positive integers n. (That is, every
number, after the second one, is the sum of the two preceding ones.) Use induction
to prove that for all n > 0,

— = (_1)fl

D. Every Integral System Is Isomorphic to /

Let A be an integral system. Let h: 1—. A be defined by: h(n) = n 1. The purpose
of this exercise is to prove that h is an isomorphism, from which it follows that
A Z. Prove the following:

1 For every positive integer n, n 1 > 0. From this, deduce that A has nonzero
characteristic.
2 Prove that h is injective and surjective.
3 Prove that h is an isomorphism.

K Absolute Values

In any ordered integral domain, define a I by

a if a�0
(—a if ac0

Using this definition, prove the following:

I I—aI=IaI
2 a�IaI
3 a� —lal
4Ifh>0,laI�biff—b�a�h
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5 Ia+bl�IaI+IbI
6 Ia—hI�Ia!+IhI
7 lahI = lal
8 IaI—IhI�Ia—hI
9 IaI-IbII�Ia-bI

F. Problems on the Division Algorithm

Prove the fbi/owing, where k, m, n, q, and r designate integers.

I Let n > 0 and k > 0. If q is the quotient and r is the remainder when m is divided
by n, then q is the quotient and kr is the remainder when km is divided by kn.
2 Let n > 0 and k > 0. If q is the quotient when m is divided by n, andq1 is the
quotient when q is divided by k, then q1 is the quotient when m is divided by nk.
3 If n 0, there exist q and r such that m = nq + r and 0 � r c I n I. (Use Theor-
em 3, and consider the case where n cO.)
4 In Theorem 3, suppose m = nq1 + r1 = nq2 + r2 where 0 � r1, r2 <n. Prove that

— r2 = 0. [HINT: Consider the difference (nq1 + r1) — (nq2 + r2).]
5 Use part 4 to prove that q1 — q2 = 0. Conclude that the quotient and remainder,
in the division algorithm, are unique.
6 If r is the remainder when m is divided by n, then fri = Fin 4; and conversely.

G. Laws of Multiples

The purpose of this exercise is to give rigorous proofs (using induction) of the basic
identities involved in the use of exponents or multiples. If A is a ring and a a A, we
define n a (where n is any positive integer) by the pair of conditions:

(i) la=a, and (ii) (n-j-1)a=na+a
Use mathematical induction (with the above definition) to prove that the following
are true for all positive integers n and all elements a, h a A:

I n (a + b) = n a + n b

2 (n + m) a = a + rn a

3(n

a = (n J)a where / is the unity element of A
6 (n a)(m . b) = (nm) ab (Use parts 3 and 4.)

H. Principle of Strong Induction

Prove the following in 7:
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1 Let K denote a set of positive integers. Consider the following conditions:

(i) 1 e K.
(ii) For any positive integer k, if every positive integer less than k is in K, then

k e K.

If K satisfies these two conditions, prove that K contains all the positive integers.
2 Let 5,, represent any statement about the positive integer n. Consider the follow-
ing conditions:

(i) is true.
(ii) For any positive integer k, ifS1 is true for every i .ck, 5k is true.

If Conditions (i) and (ii) are satisfied, prove that is true for every positive integer n.
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TWENTY-TWO
FACTORING INTO PRIMES

It has been said that the two events most decisive in shaping the course of
man's development were the invention of the wheel and the discovery of
numbers. From the time—ages ago—when man first learned the use of
numbers for counting, they have been a source of endless fascination for
him. Alchemists and astrologers extolled the virtues of "mystic" numbers
and found in them the key to potent magic. Others, more down to earth,
found delight in observing the many regularities and unexpected properties
of numbers. The integers have been a seemingly inexhaustible source of
problems great and small on which mathematics has fed and continues to
draw in our day.

The properties of prime numbers alone have occupied the energies of
mathematicians from the time of Euclid. New questions relating to the
primes continue to appear, and many continue to resist the best efforts to
solve them. Most importantly, a large part of number theory starts out
from a few basic facts about prime numbers. They will be outlined in this
chapter.

Modern number theory is the oldest as well as one of the newest parts
of mathematics. It rests upon some basic data regarding the structure of the
domain Z of the integers. An understanding of this structure is a fundamen-
tal part of any mathematical education.

An important feature of any ring is the structure of its ideals. We
therefore begin by asking: What are the ideals of 7? We have already made
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use of principal ideals of /, such as the ideal

<6>={..., —18, —12, —6,0,6,12, 18,...}

which consist of all the multiples of one fixed integer. It is natural to inquirc
whether / has any ideals which are not principal, and what they might look
like. The answer is far from self-evident.

Theorem I Every ideal of 1 is principal.

Let J be any ideal of /. If 0 is the only integer in J, then J =<0>, the
principal ideal generated by 0. If there are nonzero integers in J. then for
each x in J, — x is also in J; thus there are positive integers in J. By the
well-ordering property we may pick the least positive integer in J, and call
it H.

We will prove that J = <n>, which is to say that every element of J is
some multiple of n. Well, let in be any element of J. By the division algo-
rithm we may write in = nq + r where 0 � r cn. Now in was chosen in J,
and n e J, hence nq is in J. Thus,

r = in — nq e J

Remember that r is either 0 or else positive and less than n. The second case
is impossible, because n is the least positive integer in J. Thus, r = 0, and
therefore in = nq, which is a multiple of n.

We have proved that every element of J is a multiple of n, which is to
say that J = <n>.

It is useful to note that by the preceding proof, any ideal J is generated
by the least positive integer in J.

If r and s are integers, we say that s is a multiple of r if there is an
integer k such that

s = rk

If this is the case, we also say that r is a factor of s, or r divides s, and we
symbolize this by writing

rls

Note that 1 and — 1 divide every integer. On the other hand, an integer
r divides 1 (if r is invertible. In I there are very few invertible elements. As a
matter of fact,

Theorem 2 The only invertible elements of 7L are 1 and — 1.
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If s is invertible, this means there is an integer r such that

rs = I

Clearly r # 0 and s 0 (otherwise their product would be 0). Furthermore,
r and s are either both positive or both negative (otherwise their product
would be negative).

If r and s are both positive, then r = 1 or r> 1. In case r> 1, we may
multiply both sides of 1 Cr by s to get s < rs = 1; this is impossible be-
cause s cannot be positive and C 1. Thus, it must be that r = 1, hence

= rs = is = s, so also s = 1.

If r and s are both negative, then — r and — s are positive. Thus,

I = rs = (—r)(—s)

and by the preceding case, —r = —s = I. Thus, r = s = —1.

A pair of integers r and s are called associates if they divide each other,
that is, if r s and s r. If r and s are associates, this means there are integers
k and 1 such that r = ks and s = lr. Thus, r = ks = klr, hence kl = 1. By

Theorem 2, k and 1 are ± 1, and therefore r = ±5. Thus, we have shown
that

If r and s are associates in 1, then r = ± s. (*)

An integer t is called a common divisor of integers r and s if t r and t I s.

A greatest common divisor of r and s is an integer t such that

(i) tlrandtls, and
(ii) For any integer u, ifuir and uls, then ult.

In other words, t is a greatest common divisor of r and s if t is a common
divisor of r and s, and every other common divisor of r and s divides t. Note
that the adjective "greatest" in this definition does not mean primarily that

is greater in magnitude than any other common divisor, but, rather, that it
is a multiple of any other common divisor.

The words "greatest common divisor" are familiarly abbreviated by
gcd.Asanexample,2isagcdof8and 10;but—2 alsoisagcdof8and 10.
According to the definition, two different gcd's must divide each other;
hence by (*), they differ only in sign. Of the two possible gcd's ± t for r and
s, we select the positive one, call it the gcd of r and s, and denote it by

gcd(r, s)

Does every pair r, s of integers have a gcd? Our experience with the
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integers tells us that the answer is "yes." We can easily prove this, and
more:

Theorem 3 Any two nonzero integers r and s have a greatest common divisor
t. Furthermore, t is equal to a "linear combination" of r and s. That is,

t = kr + ls

/br some integers k and 1

Let J be the set of all the linear combinations of r and s, that is, the set

of all ur + vs as u and v range over 1. J is closed with respect to addition
and negatives and absorbs products because

(u1r + v1s) + (u2r + v2s) = (u1 + u2)r + (v1 + v2)s

—(ur + vs) = (—u)r + (—v)s

and w(ur + vs) = (wu)r + (wv)s

Thus, J is an ideal of 1 By Theorem 1, J is a principal ideal of 7, say
.1 = <t>. (.1 consists of all the multiples of t.)

Now t is in J, which means that t is a linear combination of r and s:

= kr + ls

Furthermore, r = lr + Os and s = Or + is, so r and s are linear combi-
nations of r and s; thus r and s are in J. But all the elements of J are
multiples of t, so r and s are multiples of t. That is,

tjr and tls

Now, if u is any common divisor of r and s, this means that r = xu and
s = yu for some integers x and y. Thus,

t = kr + Is = kxu + lyu = u(kx + ly)

It follows that u t. This confirms that t is the gcd of r and s.

A word of warning: the fact that an integer m is a linear combination of
r and s does not necessarily imply that m is the gcd of r and s. For example,
3 = (1)15 + (—2)6, and 3 is the gcd of 15 and 6. On the other hand,
27 = (1)15 + (2)6, yet 27 is not a gcd of 15 and 6.

A pair of integers r and s are said to be relatively prime if they have no
common divisors except ± I. For example, 4 and 15 are relatively prime. If
r and s are relatively prime, their gcd is equal to 1; so by Theorem 3, there
are integers k and 1 such that kr + ls = I. Actually, the converse of this
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statement is true too: if some linear combination of r and s is equal to 1
(that is, if there are integers k and 1 such that kr + is = 1), then r and s are
relatively prime. The simple proof of this fact is left as an exercise.

If in is any integer, it is obvious that ± 1 and ± in are factors of in. We
call these the trivial factors of in. If in has any other factors, we call them
proper factors of in. For example, ± 1 and ±6 are the trivial factors of 6,
whereas ±2 and ±3 are proper factors of 6.

If an integer in has proper factors, in is called composite. If an integer
p 0, 1 has no proper factors (that is, if all its factors are trivial), then we
call p a prime. For example, 6 is composite, whereas 7 is a prime.

Composite number lemma If a positive integer in is composite, then in = rs

where

1<r<in and 1<s<in
in is composite, this means that in = rs for integers r and s which are

not equal either to I or to in. We may take r and s to be positive, hence
I and 1<s. Multiplying both sides of I cr by s gives scrs=m.
Analogously, we get r <in.

What happens when a composite number is divided by a prime? The
next lemma provides an answer to that question.

Euclid's lemma Let in and n be integers, and let p be a prime.

If p 1 (inn), then either p 1 in or p 1 n.

If p 1 in we are done. So let us assume that p does not divide in. What
integers are common divisors of p and in?

Well, the only divisors of p are ± 1 and ±p. Since we assumed that p
docs not divide in, p and —p are ruled out as common divisors of p and in,
hence their only common divisors are 1 and — 1.

It follows that gcd(p, in) = 1, so by Theorem 3,

kp + lin = I

for some integer coefficients k and I. Thus,

kpn + mn = n

But p I (inn), so there is an integer h such that inn = ph. Therefore,

kpn + iph = n

that is, p(kn + lh) = n. Thus, p I n.
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Corollary I Let m1, ..., m1 be integers, and let p be a prime. If pj (m1
then m1 for one of the factors m1 among m1, ...,

We may write the product m1 m1 as m1(m2 ... m,), so by Euclid's
lemma, plm1 or pjm2 In the first case we are done, and in the
second case we may apply Euclid 's lemma once again, and repeat this up to

times.

Corollary 2 Let q1, ..., q, and p be positive primes. qj, then p is
equal to one of thefactors q1, ..., q1.

By Corollary 1, p divides one of the factorsq1 q1, say plq1. But is

a prime, so its only divisors are ± I and p is positive and not equal to
l,so if pIq1, necessarily p = q1.

Theorem 4: Factorization into primes Every integer n > I can be expressed
as a product of positive primes. That is, there are one or more primes Pi
Pr such that

n=plp2"pr

Let K represent the set of all the positive integers greater than I which
cannot be written as a product of one or more primes. We will assume there
are such integers, and derive a contradiction.

By the well-ordering principle, K contains a least integer m; m cannot
be a prime, because if it were a prime it would not be in K. Thus, in is
composite; so by the compositive number lemma,

m = rs

for positive integers r and s less than in and greater than I; r and s are not
in K because in is the least integer in K. This means that r and s can be
expressed as products of primes, hence so can m = rs. This contradiction
proves that K is empty; hence every n > I can be expressed as a product of
primes.

Theorem 5: Unique factorization Suppose n can be factored into positive
primes in two ways, namely

Then r = t, and the are the same numbers as the except, possibly,for the
order in which they appear.
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In the equation Pj Pr = q1 let us cancel common factors from
each side, one by one, until we can do no more canceling. If all the factors
are canceled on both sides, this proves the theorem. Otherwise, we are left
with some factors on each side, say

Now, is a factor of so m I
Thus, by Corollary 2 to

Euclid's lemma, is equal to one of the factors q,,,, which is impos-
sible because we assumed we can do no more canceling.

It follows from Theorems 4 and 5 that every integer m can be factored
into primes, and that the prime factors of m are unique (except for the order
in which we happen to list them).

EXERCISES

A. Properties of the Relation "a Divides b"

Prove the following,for any integers a, b, and c.

I Ifalhandblc,thenalc.
2 alhiffal(—b)iff(—a)Ih.
3 ljaand(—Ifla.
4

5 Ifclaandclb,thencl(ax +by)forallx,yel.
6 Ifa > Oand b > Oand aib, then a � b.

7

8 Ifalbandcld, then aclbd.
9 Letpbeaprime.Ifpla"forsomen>O,thenpla.

B. Properties of the gcd

Prove the following,for any integers a, b, and c. For each of these problems, you will
need only the definition of the gcd.

I gcd(a,O)=a,ifa>O.
2 gcd(a, b) = gcd(a, b + xa) for any x e Z.
3 Let p be a prime. Then gcd(a, p) = 1 or p. (Explain.)

4 Suppose every common divisor of a and b is a common divisor of c and d, and
vice versa. Then gcd(a, h) = gcd(c, d).
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5 If gcd(ah, c) = I, then gcd(a, c) = I and gcd(b, c) = 1.

6 Let gcd(a, h) = c. Write a = Ca' and b = Then

gcd(a', h') = gcd(a, h') = gcd(a', b) = 1.

C. Properties of Relatively Prime Integers

Prove the following,for all integers a, b, c, d, r, and s. (Theorem 3 will be helpful.)

I If there are integers r and s such that ra + sb = I, then a and h are relatively
prime

2 If gcd(a, c) = 1 and ci ab, then ci b. (Reason as in the proof of Euclid's lemma)
3

If d = gcd(a, h)where a = dr and b = ds, then gcd(r, s) = 1.

6 If gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1.

D. Further Properties of gcd 's and Relatively Prime Integers

Prore the following, for all integers a, h, c, d, r, and s.

I Suppose aib and rib and gcd(a, c) = d. Then acibd
2 l,thenacdih.
3 Let d = gcd(a, h) For any integer x, d i x ill x is a linear combination of a and b.
4 Suppose that for all integers x, t a and x i h ill x c. Then c = gcd(a, b).

5 Prove by induction: For all n > 0, if gcd(a, h) = I, then gcd(a, h") = I.
6 Suppose gcd(a, h) = I and c ah. Then there exist integers r and s such that c = rs,

s) = I.

E. A Property of the gcd

Let a and h be integers. Prove the following:

I Suppose a is odd and h is even, or vice versa. Then gcd(a, b) = gcd(a + h, a — b)

2 Suppose a and h are both odd. Then 2gcd(a, h) = gcd(a + h, a — h).

3 If a and h are both even, explain why either of the two previous conclusions are
possible

F. Least Common Multiples

A least conmzon multiple of two integers a and h is a positive integer c such that
(i) ale and he; (ii) ifai x and bix, then cix. Prove thefollowing
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1 The set of all the common multiples of a and h is an ideal of 71.

2 Every pair of integers a and b has a least common multiple. (HINT: Use part 1.)

The least common multiple of a and h is denoted by lcm(a, b).

3 a lcm(b, e) = lcm(ab, ac).

4 lfa=a1candb=b1cwherec=gcd(a,b),thenlcm(a,b)=a1b1e.
5 lcm(a, ab) = ab.

6 Ifgcd(a,h)= 1,thenlcm(a,h)=ah.
7 If lcm(a, h) = ab, then gcd(a, h) = I.

8 Let gcd(a, h) = c. Then lcm(a, b) = ab/c.

9 Let gcd(a, b) = c and 1cm (a, b) = d. Then cd = ah.

G. Ideals in 1

Prove the following:

I <n> is a prime ideal ifin is a prime number.
2 Every prime ideal of 71 is a maximal ideal. [HINT: If <a>, but <a>,
explain why gcd(p, a) = I and conclude that I a <a>.]
3 For every prime number p. 71,, is a field. (HINT: Remember 71,, = Z/<p>. Use the
last page of Chapter 19.)
4 If c = lcm(a, b), then <a> n <b> = <e>.

5 Every homomorphic image of 71 is isomorphic to 4 for some n.
6 LetGbeagroupandleta,beG
7 Let G be a group, H a subgroup of G, and a a G. Prove that

S = {n a 71 : a H)

is an ideal of 71.

8 If gcd(a, b) = d, then <a> + <h> = <d> (NoTE: If J and K are ideals of a ring A,
then J + K = {x + y: x a J and y a K).)

H. The gcd and the 1cm as Operations on /.

For any two integers a and b, let a * b = gcd(a, b) and a o b = Icm(a, h). Prove the
following properties of these operations.

1 * and o are associative.
2 There is an identity element for a, but not for *.
3 Which integers have inverses with respect to a
4 a * (b c) = (a * h) a (a * c).



CHAPTER

TWENTY-THREE
ELEMENTS OF NUMBER THEORY

Almost as soon as children are able to count, they learn to distinguish
between even numbers and odd numbers. The distinction between even and
odd is the most elemental of all concepts relating to numbers. It is also the
starting point of the modern science of number theory.

From a sophisticated standpoint, a number is even if the remainder,
after dividing the number by 2, is 0. The number is odd if that remainder is

This notion may be generalized in an obvious way. Let n be any posi-
tive integer: a number is said to be congruent to 0, modulo n if the re-
mainder, when the number is divided by n, is 0. The number is said to be
con gruent to 1, inodulo n if the remainder, when the number is divided by n,
is I Similarly, the number is congruent to 2, modulo n if the remainder after
division by n is and so on. This is the natural way of generalizing the
distinction between odd and even.

Note that "even" is the same as "congruent to 0, modulo 2"; and "odd"
is the same as "congruent to 1, modulo 2."

In short, the distinction between odd and even is only one special case
of a more general notion. We shall now define this notion forMally:

224
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Let n be any positive integer. If a and b are any two integers, we shall
say that a is_congruent to b, modulo n if a and b, when they are divided by n,
leave the same remainder r. That is, if we use the division algorithm to
divide a and b by n, then

a—nq1+r and b=nq2+r
where the remainder r is the same in both equations.

Subtracting these two equations, we see that

a — b (nq1 + r) — (nq2 + r) = n(q1 — q2)

Therefore we get the following important fact:

a is congruent to b, modulo n fff n divides a — h (1)

If a is congruent to h, modulo n, we express this fact in symbols by
writing

a b (mod n)

which should be read "a is congruent to h, modulo n." We refer to this
relation as congruence modulo n.

By using (1), it is easily verified that congruence modulo n is a reflexive,
symmetric, and transitive relation on 7. It is also easy to check that for any
n> 0 and any integers a, b, and c,
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implies a+c=h+c(modn)
and a b (mod n) implies ac bc (mod n)

(The proofs, which are exceedingly easy, are assigned as Exercise C at the
end of this chapter.)

Recall that

<n>={...,—3n,—2n,—n,O,n,2n,3n,...}

is the ideal of Z which consists of all the multiples of n. The quotient ring
7L/<n> is usually denoted by 4, and its elements are denoted by 0, 1, 2
n — 1. These elements are cosets:

O=<n>+O={...,—2n,—n,O,n,2n,...}

I = <n> + I = {..., —2n + I, —n + I, 1, n + 1, 2n + 1, ...}

2=<n)+2={...,—2n+2,—n+2,2,n+2,2n+2,...}
and so on

It is clear by inspection that different integers are in the same coset iff they
differ from cach other by a multiple of n. That is,

a and h are in the same coset (If n divides a — b

(if [by(I)] (2)

If a is any integer, the coset (in 4) which contains a will be denoted by
a. For example, in 4,

0=6= —6=== 1=7=
etc.

In particular, a = b means that a and h are in the same coset. It follows by
(2) that

a=b in4 (If (3)

On account of this fundamental connection between congruence
modulo n and equality in 4, most facts about congruence can be dis-
covcred by examining the rings 4. These rings have very simple properties,
which arc prcscnted next. From these properties we will then be able to
dcducc all we nced to know about congruences.

Let n be a positive integer. It is an important fact that for any integer a,

a is invertible in 4 (If a and n are relatively prime. (4)
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Indeed, if a and n are relatively prime, their gcd is equal to 1. Therefore, by
Theorem 3 of Chapter 22, there are integers s and t such that sa + tn = 1. It
follows that

— sa = tn e <n>

so by (**) on page 188, 1 and sa belong to the same coset in 7L/<n>. This is
the same as saying that I = = hence is the multiplicative inverse of
a in 74 .The converse is proved by reversing the steps of this argument.

It follows from (4) that if n is a prime number, every nonzero element of
74 is invertible! Thus,

77,, is afleld,for every prime number p. (5)

In any field, the set of all the nonzero elements, with multiplication as
the only operation (ignore addition), is a group. Indeed, the product of any
two nonzero elements in nonzero, and the multiplicative inverse of any
nonzero element is nonzero. Thus, in 74, the set

with multiplication as its only operation, is a group of order p — 1.

Remember that if G is a group whose order is, let us say, m, then xm = e

for every x in 6. (This is true by Theorem S of Chapter 13.) Now, has
order p — 1 and its identity element is 1, so = 1 a O in 77,,.

lf we use (3) to translate this equality into a congruence, we get a classical
result of number theory:

Little theorem of Fermat Let p be a prime. Then,

a (mod p)

every

a in a
this the

in is a group with respect to multiplication. (Reason: The
product of two invertible elements is invertible, and, if a is invertible, so is
its inverse.) For any positive integer n, let q5(n) denote the number of positive
integers, less than n, which are relatively prime to n. For example, 1. 3, 5, and
7 are relatively prime to 8, hence çb(8) = 4. 4 is called Euler 's phi-function.

It follows immediately from (4) that the number of elements in is



228 CHAPTER TWENTY-THREE

Thus, t' is a group of order çb(n), and its identity elements is I. Conse-
quently, for any a in = 1. If we use (3) to translate this equation
into a Congruence, we get:

Euler's theorem If a and n are relatively prime, I (mod n).

OPI1ON AL

Congruences are more important in number theory than we might expect.
This is because a vast range of problems in number theory—problems
which have nothing to do with congruences at first sight—can be trans-
formed into problems involving congruences, and are most easily solved in
that form. An example is given next:

A Diophantine equation is any polynomial equation (in one or more
unknowns) whose coefficients are integers. To solve a Diophantine equation
is to find integer values of the unknowns which satisfy the equation. We
might be inclined to think that the restriction to integer values makes it
easier to solve equations; in fact, the very opposite is true. For instance,
even in the case of an equation as simple as 4x + 2y = 5, it is not obvious
whether we can find an integer solution consisting of x and y in Z. (As a
matter of fact, there is no integer solution; try to explain why not.)

Solving Diophantine equations is one of the oldest and most important
problems in number theory. Even the problem of solving Diophantine
linear equations is difficult and has many applications. Therefore, it is a
very important fact that solving linear Diophantine equations is equivalent to
solving linear con gruences. Indeed,

ax+by=c if hy=c—ax if

ax c (mod b) yields a solution in integers of
ax + by = c.

Finding solutions of linear congruences is therefore an important
matter, and we will turn our attention to it now.

A congruence such as ax h (mod n) may look very easy to solve, but
appearances can be deceptive. In fact, many such congruences have no
solutions at all! For example, 4x 5 (mod 2) cannot have a solution, be-
cause 4x is always even [hence, congruent to 0 (mod 2)], whereas 5 is odd
[hence congruent to 1 (mod 2)]. Our first item of business, therefore, is to
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find a way of recognizing whether or not a linear congruence has a sol-
ution:

Theorem 1 The congruence ax b (mod n) has a solution ,ffgcd(a, n) I b.

Indeed,

if nI(ax—b) if ax—b=yn

if ax—yn——b

Next, by the proof of Theorem 3 in Chapter 22, if J is the ideal of all the
linear combinations of a and n, then gcd(a, n) is the least positive integer in
J. Furthermore, every integer in J is a multiple of gcd(a, n). Thus, b is a
linear combination of a and n if b e J if b is a multiple of gcd(a, n). This
completes the proof of our theorem.

Now that we are able to recognize when a congruence has a solution,
let us see what such a solution looks like.

Consider the congruence ax b (mod n). By a solution modulo n of this
congruence, we mean a congruence

x c (mod n)

such that any integer x satisfies x c (mod n) if it satisfies ax b (mod n).
[That is, the solutions of ax b (mod n) are all the integers congruent to c,
modulo n.j Does every congruence ax b (mod n) (supposing that it has a
solution) have a solution modulo n? Unfortunately not! Nevertheless, as a
starter, we have the following:

Lemma If gcd(a, n) = 1, then ax b (mod n) has a solution modulo n.

Indeed, by (3), ax b (mod n) is equivalent to the equality = b in
74. But by (4), a has a multiplicative inverse in 4, hence from ZiY = b we
get = rib. Setting ?V1b = ë, we get = 5 in 4, that is, x c (mod n).

Thus, if a and n are relatively prime, ax b (mod n) has a solution
modulo n. If a and n are not relatively prime, we have no solution modulo
n; nevertheless, we have a very nice result:

Theorem 2 If the congruence ax b (mod n) has a solution, then it has a
solution modulo m, where

n

gcd(a, n)
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This means that the solution of ax b (mod n) is of the form x c

(mod m); it Consists of all the integers which are Congruent to c, modulo in.
To prove this, let gcd(a, n) = d, and note the following:

a b nif if (*)

But a/d and n/d are relatively prime (because we are dividing a and n by d,
which is their gcd); hence by the lemma,

a b n
x (mod

has a solution x mod n/d. By (*), this is also a solution of ax b (mod n).
As an example, let us solve 6x 4 (mod 10). Gcd(6, 10) = 2 and 214, so

by Theorem 1, this congruence has a solution. By (*) in the proof of Theor-
em 2, this solution is the same as the solution of

6 4 10
thatis

2 2 2

This is equivalent to the equation 3x = 2 in 4, and its solution is 2 = 4.

So finally, the solution of 6x 4 (mod 10) is x 4 (mod 5).

How do we go about solving several linear congruences simul-
taneously? Well, suppose we are given k congruences,

(modn1), ..., akx=bk(modnk)

If each of these congruences has a solution, we solve each one individually
by means of Theorem 2. This gives us

c1 (mod m1), x c2 (mod in2), ..., x Ck (mod ink)

We are left with the problem of solving this last set of congruences simul-
taneously.

Is there any integer x which satisfies all k of these congruences? The
answer for two simultaneous congruences is as follows:

Theorem 3 Consider x a (mod n) and x fr (mod in). There is an integer
v satisfying both simultaneously if a b (mod d), where d = gcd(m, n).

If is a simultaneous solution, then n j (x — a) and m (x — b). Thus,

x—a=nq1 and x—b=mq2
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Subtracting the first equation from the second gives

a — b = mq2 — nq1

Butdimanddin,sodi(a—h);thus,a_= b(mod d).
Conversely, if a b (mod d), then dj(a — b), so a — h = dq. By The-

orem 3 of Chapter 22, d = rn + tin for some integers r and t. Thus,
a — b = rqn + tqm. From this equation, we get

a — rqn = b + tqm

Set x = a — rqn = b + tqm; then x — a = —rqn and x — h = tqm, hence
n (x — a) and in (x — b), so

x a (mod n) and x h (mod m)

Now that we are able to determine whether or not a pair of congru-
ences has a simultaneous solution, let us see what such a solution looks like.

Theorem 4 If a pair of congruences x a (mod n) and x b (mod in) has a
simultaneous solution, then it has a simultaneous solution of the form

x c (mod t)

where t is the least common multiple of in and n.
Before proving the theorem, let us observe that the least common

multiple (1cm) of any two integers in and n has the following property: let
be the least common multiple of in and n. Every common multiple of in and n
is a multiple oft, and conversely. That is, for all integers x,

mix and nix if tix
(See Exercise F at the end of Chapter 22.) In particular,

mI(x—c) and nI(x—c) if ti(x—c)

hence

and if (6)

Returning to our theorem, let c be any solution of the given pair of
congruences (remember, we are assuming there is a simultaneous solution).
Then c a (mod n) and c b (mod in). Any other integer x is a sim-
ultaneous solution itT x c (mod n) and x c (mod in). But by (6), this is
true if x c (mod t). The proof is complete.

A special case of Theorems 3 and 4 is very important in practice: it
is the case where in and n are relatively prime. Note that, in this case,
gcd(ni, n) = 1 and lcmfrn, n) = inn. Thus, by Theorems 3 and 4,
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(7) If m and n are relatively prime, the pair of congruences x a (mod n)
and r b (mod in) always has a solution. This solution is of the form

c (mod mn).

(7) can easily be extended to the case of more than two linear congru-
ences. The result is known as the

Chinese remainder theorem Let m1, m2 mk he pairwise relatively prime.
Then the system of simultaneous linear congruences

xmc2(modm2), ...,

always has a solution, which is of the form x c (mod m1m2... mk).

Use Theorem 4 to solve x c3 (mod m1) and x c2 (mod simul-
taneously. The solution is of the form x d (mod m1m2). Solve the latter
simultaneously with x c3 (mod m3), to get a solution mod m1m2m3.
Repeat this process k times.

EXERCISES

A. Solving Single Congruences

1 For each of the following congruences, find in such that the congruence has a
unique solution modulo in. If there is no solution, write "none."

(a) 60v 12 (mod 24) (h) 42v 24 (mod 30) (c) 49x 30 (mod 25)
(d) 39v 14 (mod 52) (e) 147x 47 (mod 98) (f) 39'c 26 (mod 52)

2 Solve the following linear congruences:
(a) 12v 7 (mod 25) (b) 35x 8 (mod 12) (c) lS'c 9 (mod 6)

(d) 12 (mod 30) (e) 147x 49 (mod 98) (f) 39x 26 (mod 52)

3 (a) Explain why 2\.2 8 (mod 10) has the same solutions as 4 (mod 5).
(h) Explain why 2 (mod 5) and x 3 (mod 5) are all the solutions of 2x2 8

(mod 10)

4 Solve the following quadratic congruences (if there is no solution, write "none")
(a) 6y2 9 (mod 15) (b) 18 (mod 24) (c) 30x2 18 (mod 24)
(d) 4N-+ 14(modl0) (e)

LI)
5 Solve the following congruences:

(b)2(x—
(c)x3 +3x2+3x+ I
(d)x4 + 2x2 + 1 5)

6 Solve the following Diophantine equations (if there is no solution, write "none")
(a)14x+15y=11 (h)4x+5y=I (c)21x+lOy=9
(d)30x2+24y= 18
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B. Solving Sets of Congruences

Example Solve the pair of simultaneous congruences x 5 (mod 6), x 7 (mod 10).

By Theorems 3 and 4, this pair of congruences has a solution modulo 30. From
x 5 (mod 6), we get x = 6q + 5. Introducing this into x 7 (mod 10) yields
6q + 5 7 (mod 10). Thus, successively: 6q 2 (mod 10), 3q I (mod 5),

q 2 (mod 5), q = Sr + 2. Introducing this into x = 6q + 5 gives
x = 6(5r + 2) + 5 = 30r + 17. Thus, x 17 (mod 30). This is our solution.

1 Solve each of the following pairs of simultaneous congruences:
(a) x 7 (mod 8); x 11 (mod 12) (b) x 12 (mod 18); x 30 (mod 45)

11 (mod 14)

2 Solve each of the following pairs of simultaneous congruences:
(a) lOx 2 (mod 12); 6x 14 (mod 20) (b) 4x 2 (mod 6); 9x 3 (mod 12)

12)

3 Use Theorem 3 to prove the following: Suppose we are given k congruences

x1 (mod in1), (mod in2) ...,
x satisfying all k congruences simultaneously if for all i,j e {1

(mod where = gcd(m,,

4 Use Theorem 4 to prove the following: If the system of congruencesx1 c1 (mod
in1), ..., (mod has a simultaneous solution, then it has a simultaneous
solution of the form x c (mod t), where t = lcm(m1, in2, ..., m,3.

5 Solve each of the following systems of simultaneous linear congruences; if there is
no solution, write "none."

lOx a4(mod 10)

(c) 5x 3 (mod 6); 4x 2 (mod 6); 6x 6 (mod 8)

6 Solve the following systems of simultaneous Diophantine equations:
(a) 4x + 6y = 2; 9x + l2y = 3 (h) 3x + 4y = 2; 5x + 6y = 2; 3x + by = 8

C. Elementary Properties of Congruence

Prove the following for all integers a, b, c, d and all positive integers in and n.

1

Ifa h (mod n), then a (mod it).

3 Ifa h(mod n), then ac bc(mod n)

4 a h (mod 1).

5 Ifab 0(modp)orb

6 If a2 b2 (mod p), where p is a prime, then a ±h (mod p).

7 If a h (mod in), then a + km h (mod m), for any integer k. In particular,

a + km a (mod m).
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8 If ac hc (mod n) and gcd(c, n) = 1, then a h (mod n).

9 If a b (mod n), then a h (mod in) for any in which is a factor of n.

D. Further Properties of Congruence

Prove the following for all integers a, b, c and all positive integers in and n

I If a In (mod a), and gcd(c, a) = d, then a h (mod n/d).
2 h (mod a), then gcd(a, a) = gcd(h, n).

3 lfa h(modp)foreveryprimep,thcn a = h.

4 If a h (mod a). then a"' (mod a) for every positive integer in.
5 If a h (mod in) and a h (mod a) where gcd(in, n) = 1, then a h (mod inn).

f Ifah I (mod c), ac I (mod Ii) and he 1 (mod a), then ah + hc + ac 1 (mod
abc). (Assume a, h, c > 0.)

7 Ifa2 1 (mod 2), then a2 1 (mod4)
8 If a h (mod a), then a2 + h2 2ah (mod a2); and conversely.
9 If a 1 (mod in), then a and ni are relatively prime: and conversely.

FL Consequences of Fermat's Theorem

Pnn e the fri/owing.

I If p is a prime, find 4i(p). Use this to deduce Fermat's theorem from Euler's
theorem

2 Ifp > 2 is a prime and a 0 (mod p), then

± 1 (modp)

3 (a) Let p be a prime > 2. If p 3 (mod 4), then (p — I)/2 is odd.
(h) Let p > 2 be a prime such that p 3 (mod 4). Then there is no solution to

the congruence x2 + I 0 (mod p). [HiNT: Raise both sides of x2 — I (mod p) to
the power (p — 1)12, and use Fermat's little theorem.]
4 Let p and q be distinct primes. Then + q" I (mod pq).

5 Let p be a prime.
(a) If — 1), then a"' I (mod p) provided that p4'a.
(/i If in (p — I), then a" 1 a (niod p) for all integers a

6 Let p and q be distinct primes
(a) If nil(p — 1) and — 1), then atm I (mod pq) for any a such that

and
(h) If — I) and ia((q — I). then a (mod pq) for all integers a.

7 Generalize the result of part 6 to n distinct primes, p', . , (State your result,
hut do not prove it.)
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8 Use part 6 to explain why the following are true:
(i) a'9 I (mod 133)

(ii) a'° I (mod 66), provided a is not a multiple of 2,3, or 11.
(iii) a'3 a (mod 105)
(iv) a49 a (mod 1547) (HINT: 1547 = 7 x 13 x 17.)

9 Find the following integers x:
(a) .i (mod 210) (/,) x 757 (mod 133) (a) x 573 (mod 66)

F. Consequences of Euler's Theorem

Pro,e each oft/ic following:

I If gcd (a, n) = I, the solution modulo n of ax b (mod n) is x h (mod n).

2 If gcd (a, ii) = 1, then 1 (mod n) for all values of m.

3 If gcd (in, a) = gcd (a, mn) = 1, then 1 (mod mn).

4 p"' = p''(p— 1) (HINT:
have a common divisor I if a is a multiple of p There are exactly multi-
pIes ofp between I andp')
5 For every a $ 0 (mod p), a prime.

6 Under the conditions of part 3, if t is a common multiple of 0(m) and çh(n), then
at 1 (mod nm). Generalize to three integers /, m, and n.

7 Use parts 4 and 6 to explain why the following are true:
(i) a'2 I (mod 180) for every a such that gcd(a, 180) = I.

(ii) a42 I (mod 1764) if gcd (a, 1764) = I. (RFMARK: 1764 = 4 x 9 x 49.)
(iii) a2° I (mod 1800) if gcd (a, 1800) = 1.

8 If gcd (iii, a) = I, then + I (mod mn).

9 If /, in, n are relatively prime in pairs, then + (ln)(m) + 1 (mod
inn)

G. Wilson's Theorem, and Some Consequences

In any integral domain, if Y2 = I, then x2 — 1 = (x + 1)(x — 1) = 0, hence x = ±1
Thus, an element v ± I cannot be its own multiplicative inverse. As a conse-
quence, in ZL,,, the integers may be arranged in pairs, each one being
paired off with its multiplicative inverse. Prove the fol/owing:

1 InZ,,,23" p—2=L
2 (p — 2)! 1 (mod p) for any prime number p.
3 (p — 1)! + 1 0 (mod p) for any prime number p. This is known as Wilson's
Theorem.

4 For any composite number n 4, (n — 1)! 0 (mod n). [HINT: If p is any prime
factor ofn, then p is a factor of(n — I)! Why?]
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Before going on to the remaining exercises, we make the following observations:
Let p> 2 be a prime. Then

Consequently,

(modp)

REASON: p— 1 —l (mod p), —2 (mod p), (p+ —(p— 1)/2
(mod p)

With this result, prove the following:

5 [(p — 1)/2]!2 (mod p), for any prime p> 2. (HINT: Use Wilson's
theorem.)

6 If p 1 (mod 4), then is odd. (Why?) Conclude that

—1 (modp)

7 If p 3 (mod 4), then is even. (Why?) Conclude that

I (mod p)

8 When p> 2 is a prime, the congruence x2 + 1 0 (mod p) has a solution if p
(mod 4). (HINT: Use pah 6.)

9 For any prime p> 2, x2 —1 (mod p) has a solution if p * 3 (mod 4). (HINT:
Use part 8 and El)

H. Quadratic Residues

An integer a is called a quadratic residue modulo m if there is an integer x such that
12 a (mod in). This is the same as saying that a is a square in 4. If a is not a
quadratic residue modulo in, then a is called a quadratic nonresidue modulo in
Quadratic residues are important for solving quadratic congruences, for studying
sums of squares, etc. Here, we will examine quadratic residues modulo an arbitrary
prime p> 2.

Let /1: > 4* be defined by h(a) = a2. Prove:

I his a homomorphism. Its kernel is {±T}.
2 The range of h has (p — 1)/2 elements. If ran h = R, R is a subgroup of 4* having
two cosets. One contains all the residues, the other all the nonresidues.
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The Legendre symbol is defined as follows:

+1 if a a residue mod p.

(f) = —I if p,f'a and a is a nonresidue mod p.

0 ifpla.

3 Referring to part 2, let the two cosets of R called 1 and —1. Then =
{1, —l}. Explain why

=

for every integer a which is not a multiple of p.

/17\ /3\ /5\ /8\ /2
4 Evaluate: çjj,,J;

5 Prove: if a h mod then (f)

a2

In particular,
(a ±kP)

= (a).

6 Prove: (i) (-)(-) = (—)
(ii) (_) = I if

(—I)
= {

I (mod 4)
(H1:T: Use Exercises 06 and 7.)

p

The most important rule for computing

(a

"p

is the law of quadratic reciprocity, which asserts that for distinct primes p, q > 2,

—

(p'\ j \pJ
'\q) fq\

I ( — I otherwise
t

(The proof may be found in any textbook on number theory, for example,
Fundamentals of Number Theory, by W. J. LeVeque.)

8 Use parts 5 to 7 and the law of quadratic reciprocity to find:

(is\ (379
VIOl)' k401

Is 14 a quadratic residue, modulo 59?
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9 Which of the following congruences is solvable9
30 (mod 101) (h) v2 6 (mod 103) (c) 2t2 70 (mod 106)

[NOTE: a (mod p) is solvable ill a is a quadratic residue modulo p if

=

I. Primitive Roots

Recall that is the multiplicative group of all the invertible elements in 4. if
happens to be cyclic, say J' = <in>, then any integer a in (mod n) is called a
prinzitit e root of a Prove the fo/lowinq

I ciisa primitive root of a if the order of a in is d4n)

2 Every prime number p has a primitive root. (HiNT: For every prime p, 7 is a
cyclic group. The simple proof of this fact is given as Theorem i in Chapter 33.)
3 Find primitive roots of the following integers (if there are none, say so): 6, 10, 12,
14, 15

4 Suppose a is a primitive root of in. If h is any integer which is relatively prime to
in. then h 0k (mod in) for some k � 1.
5 Suppose in has a primitive root, and let a be relatively prime to 0(m). (Suppose
a > 0) Prove that if a is relatively prime to in, then a (mod m) has a solution
6 Let p> 2 be a prime. Every primitive root of p is a quadratic nonresidue, modulo
p. (HINT: Suppose a primitive root a is a residue; then every power of a is a residue.)
7 A prime p of the form p = 2" + I is called a Fermat prime. Let p be a Fermat
prime Every quadratic nonresidue mod p is a primitive root of p. (HINT: How many
primitive roots are there? How many residues? Compare)



CHAPTER

TWENTY-FOUR
RINGS OF POLYNOMIALS

In elementary algebra an important role is played by polynomials in an
unknown x. These are expressions such as

2x3 — 4x2 + 3

whose terms are grouped in powers of x. The exponents, of course, are
positive integers and the coefficients are real or complex numbers.

Polynomials are involved in countless applications—applications of
every kind and description. For example, polynomial functions are the
easiest functions to compute, and therefore one commonly attempts to
approximate arbitrary functions by polynomial functions. A great deal of
effort has been expended by mathematicians to find ways of achieving this.

Aside from their uses in science and computation, polynomials come up
very naturally in the general study of rings, as the following example will
show:

Suppose we wish to enlarge the ring 1 by adding to it the number ic. It
is easy to see that we will have to adjoin to I other new numbers besides
just for the enlarged ring (containing it as well as all the integers) will
also contain such things as —it, it + 7, 6m2 — II, and so on.

As a matter of fact, any ring which contains 1 as a subring and which
also contains the number it will have to contain every number of the form

239
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where a, h k, I are integers. In other words, it will contain all the
pa/mom jal evpressions in it with integer coeffIcients.

But the set of all the polynomial expressions in it with integer coeffi-
cients is a ring. (It is a subring of l1 because it is obvious that the sum and
product of any two polynomials in it is again a polynomial in it.) This ring
contains Z because every integer a is a polynomial with a constant term
only, and it also contains it.

Thus, if we wish to enlarge the ring Z by adjoining to it the new
number it, it turns out that the "next largest" ring after 7 which contains 7
as a subring and includes it, is exactly the ring of all the polynomials in it
with coefficients in L

As this example shows, aside from their practical applications, poly-
nomials play an important role in the scheme of ring theory because they
are precisely what we need when we wish to enlarge a ring by adding new
elements to it.

In elementary algebra one considers polynomials whose coefficients are
real numbers, or in some cases, complex numbers. As a matter of fact, the
properties of polynomials are pretty much independent of the exact nature
of their coefficients. All we need to know is that the coefficients are con-
tained in some ring. For convenience, we will assume this ring is a com-
mutative ring with unity.

Let A be a commutative ring with unity. Up to now we have used
letters to denote elements or sets, but now we will use the letter x in a
different way. In a polynomial expression such as ax2 + bx + c, where a, b,
c e A, we do not consider x to be an element of A, but rather x is a symbol
which we use in an entirely formal way. Later we will allow the substitution
of other things for x, but at present x is simply a placeholder.

Notationally, the terms of a polynomial may be listed in either ascend-
ing or descending order. For example, 4x3 — 3x2 + x + I and I + x —
3x2 + 4x3 denote the same polynomial. In elementary algebra descending
order is preferred, but for our purposes ascending order is more convenient.

Let A be a commutative ring with unity, and x an arbitrary symbol. Every

expression of the form

a0 + a1x + a2x2 +

is called a polynomial in x with coefficients in A, or more simply, a

polynomial in x over A. The expressions a,, for k e {1 n}, are

called the terms of the polynomial.

Polynomials in x are designated by symbols such as a(x), b(x), q(x), and
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so on. If a(x) = a0 + a1x + + is any polynomial and akx" is any
one of its terms, ak is called the coefficient of xk. By the degree of a poly-
nomial a(x) we mean the greatest n such that the coefficient off is not zero.
In other words, if a(x) has degree n, this means that # 0 but am = 0 for
every m > n. The degree of a(x) is symbolized by

deg a(x)

For example, I + 2x — 3x2 + x3 is a polynomial degree 3.
The polynomial 0 + Ox + Ox2 + ... all of whose coefficients are equal

io zero is called the zero polynomial, and is symbolized by 0. It is the only
polynomial whose degree is not defined (because it has no nonzero coeffi-
cient).

If a nonzero polynomial a(x) = a0 + a1x + + has degree n,
then is called its leading coefficient: it is the last nonzero coefficient of
a(x). The term x" is then called its leading term, while a0 is called its
constant term.

If a polynomial a(x) has degree zero, this means that its constant term
a0 is its only nonzero term: a(x) is a constant polynomiaL Beware of confus-
ing a polynomial of degree zero with the zero polynomial.

Two polynomials a(x) and b(x) are equal if they have the same degree
and corresponding coefficients are equal. Thus, if a(x) = a0 + + x" is
of degree n, and b(x) = b0 + + bmxm is of degree m, then a(x) = b(x) if
n = m and a,, = b,, for each k from 0 to n.

The familiar sigma notation for sums is useful for polynomials. Thus,

with the understanding that x° = I.

Addition and multiplication of polynomials is familiar from elementary
algebra. We will now define these operations formally. Throughout these
definitions we let a(x) and b(x) stand for the following polynomials:

a(x) = a0 + a1x + +

Here we do not assume that a(x) and b(x) have the same degree, but allow
ourselves to insert zero coefficients if necessary to achieve uniformity of
appearance.

We add polynomials by adding corresponding coefficients. Thus,

a(x) + b(x) = (a0 + h0) + (a1 + b1)x + ... + +
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Note that the degree of a(x) + b(x) is less than or equal to the higher of the
two degrees, deg a(x) and deg h(x).

Multiplication is more difficult, but quite familiar:

a(x)b(x)

In other words, the product of a(x) and b(x) is the polynomial

c(x) = c0 + c1x + +

whose kth coeffient (for any k from 0 to 2n) is

i+j=k

This is the sum of all the a, for which i + j = k. Note that deg [a(x)h(x)]
� deg a(x) + deg h(x).

If A is any ring, the symbol

A [x]

designates the set of all the polynomials in x whose coefficients are in A,
with addition and multiplication of polynomials as we have just defined
them.

Theorem I Let A be a commutative ring with unity. Then A[x] is a corn-
inutative ring wit/i unity.

To prove this theorem, we must show systematically that A[x] satisfies
all the axioms of a commutative ring with unity. Throughout the proof, let
a(v), b(x), and c(x) stand for the following polynomials:

a(x) = a0 + a1x + +

and c(x) = c0 + c1x + +

The axioms which involve only addition are easy to check: for example,
addition is commutative because

a(x) + b(x) = (a0 + b0) + (a1 + b1)x + ... + + bjx"

= (b0 + a0) + (b1 + a1)x + ... + + ajf = b(x) + a(x)

The associative law of addition is proved similarly, and is left as an exercise.
The zero polynomial has already been described, and the negative of a(x) is
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—a(x) = (—a0) + (—a1)x + +

To prove that multiplication is associative requires some care. Let
b(v)c(x) = d(x), where d(x) = d0 + d1x + + By the definition of
polynomial multiplication, the kth coefficient of h(x)c(x) is

>:
i+j=k

Then a(x)[b(x)c(x)] = a(x)d(x) = e(x), where e(x) = e0 + e1x + +
Now, the lth coefficient of a(x)d(x) is

e1= ahdk= ah( x
h+k=1 i+j=Ic

It is easy to see that the sum on the right consists of all the terms
such that h + i +J = 1. Thus,

e1= > ahblcJ
h+i+j=1

For each 1 from 0 to 3n, e1 is the lth coefficient of a(x)[b(x)c(x)].
If we repeat this process to find the lth coefficient of [a(x)b(x)]c(x), we

discover that it, too, is e1. Thus,

a(x)[h(x)c(x)] = [a(x)h(x)]c(x)

To prove the distributive law, let a(x)[b(x) + c(x)] = d(x) where
d(x) = d0 + d1x + + By the definitions of polynomial addition
and multiplication, the kth coefficient a(x)[b(x) + c(x)] is

i+j=Ic i+j=k

= E
i+j=k i+j=k

But L +j=k is exactly the kth coefficient of a(x)b(x), and L +j=k is

the kth coefficient of a(x)c(x), hence dk is equal to the kth coefficient of
a(x)b(x) + a(x)c(x). This proves that

a(x)[b(x) + c(x)] = a(x)b(x) + a(x)c(x)

The commutative law of multiplication is simple to verify and is left to
the student. Finally, the unity polynomial is the constant polynomial 1.

Theorem 2 If A is an integral domain, then A[x] is an integral domain.

If a(x) and b(x) are nonzero polynomials, we must show that their
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product a(x)b(x) is not zero. Let be the leading coefficient of a(x), and
hm the leading coefficient of b(x). By definition, 0, and bm # 0. Thus
dmnbm 0 because A is an integral domain. It follows that a(x)b(x) has a
nonzero coefficient (namely hj, so it is not the zero polynomial.

If A is an integral domain, we refer to A[x] as a domain of polynomials,
because A[x] is an integral domain. Note that by the preceding proof, if;
and are the leading coefficients of a(x) and b(x), then bm is the leading
coefficient of a(x)b(x). Thus, deg a(x)b(x) = n + m: In a domain of poly-
nomials A[v], where A is an integral domain,

deg[a(x) . b(x)] = deg a(x) + deg b(x)

In the remainder of this chapter we will look at a property of poly-
nomials which is of special interest when all the coefficients lie in a field.
Thus, from this point forward, let F be a field, and let us consider poly-
nomials belonging to F[x].

lt would be tempting to believe that if F is a field then F[x] also is a
field. However, this is not so, for one can easily see that the multiplicative
inverse of a polynomial is not generally a polynomial. Nevertheless, by
Theorem 2, F[xJ is an integral domain.

Domains of polynomials over a field do, however, have a very special
property: any polynomial a(x) may be divided by any nonzero polynomial
h(v) to yield a quotient q(x) and a remainder r(x). The remainder is either 0,
or if not, its degree is less than the degree of the divisor b(x). For example,

may be divided by x — 2 to give a quotient of x + 2 and a remainder of
4:

= (x—2)(x+2) + 4

a(x) h(x) q(x) r(x)

This kind of polynomial division is familiar to every student of elementary
algebra. It is customarily set up as follows:

x+2 Quotientq(x)
Divisor > x — 2 ) x2 Dividend b (x)
a(x) x2-2x

2x
2x-4

4 -e-——-—Remainderr(x)

The process of polynomial division is formalized in the next theorem.

Theorem 3: Division algorithm for polynomials If a(x) and b(x) are poly-
nomials over a field F, and b(x) 0, there exist polynomials q(x) and r(x) over
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F sue/i that

= b(x)q(x) + r(x)

and r(x) = 0 or deg r(x) <deg b(x)

Let b(x) remain fixed, and let us show that every polynomial a(x) sat-
isfies the following condition:

(*) There exist polynomials q(x) and r(x) over F such that

a(x) = b(x)q(x) + r(x), and r(x) = 0 or deg r(x) <deg b(x).

We will assume there are polynomials a(x) which do not fulfill Condition (*)
and from this assumption we will derive a Let a(x) be a
polynomial of lowest degree which fails to satisfy (*), Note that a(x) cannot
be zero, because we can express 0 as 0 = b(x) 0 + 0, whereby a(x) would
satisfy Furthermore, deg a(x) � deg b(x), for if deg a(x) <deg b(x) then
we could write a(x) = b(x) 0 + a(x), so again a(x) would satisfy (*).

Let a(x)= a0 + + a new
polynomial

A(x) = a(x) —? (**)

= a(x) — (b0 + b1 xn_m+l + +

x"

This expression is the difference of two polynomials both of degree n and
both having the same leading term Because cancels in the sub-
traction, A(x) has degree less than n.

Remember that a(x) is a polynomial of least degree which fails to satisfy
(*), hence A(x) does satisfy (*), This means there are polynomials p(x) and
r(x) such that

A(x) = b(x)p(x) + r(x)

where r(x) = 0 or deg r(x) < deg h(x). But then

a
a(x) = A(x) + by(**)

in

a
= b(x)p(x) + r(x) + x"mh(x)

in

/ a
= b(x)( p(x) + xnn

) + r(x)

\ Urn /
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If we let p(x) + (an/bjf - lfl be renamed q(x), then a(x) = b(x)q(x) + r(x), so
a(x) fulfills Condition (*). This is a contradiction, as required.

EXERCISES

A. Elementary Computation in Domains of Polynomials

RFMARK ON NOTATiON: In some of the problems which follow, we consider poly-
nomials with coefficients in 4 for various n. To simplify notation, we denote the
elements of Zn by 1, 2,. , n — 1 rather than the more correct 1, 2, ..., — 1.

1 Let a(x) = 2x2 + 3x + 1 and b(x) = x3 + 5x2 + x. Compute a(x) + b(x),
a(x) — b(x) and a(x)h(x) in Z[x], 4 [x], 4 [x], and 4 [x].
2 Find the quotient and remainder when x3 + x2 + x + 1 is divided by x2 + 3x + 2
in Z[x] and in Z5[x].
3 Find the quotient and remainder when x3 + 2 is divided by 2x2 + 3x + 4 in Z[x],
in 4 [x], and in 4 [x].

We call h(x) a factor of a(x) if a(x) = b(x)q(x) for some q(x), that is, if the
remainder when i4x) is divided by b('c) is equal to zero.

4 Show that the following is true in A[xJ for any ring A: For any odd n,
(a) v + lisa factor off + I
(h) x+ us a factor of x" + f' + +x+

5 Prove the following: In Z3['c], x + 2 is a factor of xm + 2, for all m. In Zn[x],
+ (n — I) is a factor of vtm + (it — I), for all in and n.

6 Prove that there is no integer in such that 3x2 + 4x + m is a factor of6x4 + 50 in
Z[v].
7 For what values of 17 is + 1 a factor of x5 + 5x + 6 in Zn[x]?

B. Problems Involving Concepts and Definitions

1 Is v8 + I = v3 + I in Z5[x]? Explain your answer.
2 Is there any ring A such that in A[x], some polynomial 01 degree 2 is equal to a
polynomial of degree 49 Explain.
3 Write all the quadratic polynomials in Z5[x]. flow many are there? flow many
cubic polynomials are there in Z5[v]? More generally, how many polynomials of
degree it are there in

4 Let A be an integral domain; prove the following:
I in A[v], then A must have characteristic 2.
I in A[v], then A must have characteristic 2.

If(x + 1)6 = + 2v3 + I in A[x], then A must have characteristic 3.
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5 Find an example of each of the following in Z8[x] a divisor of zero, an invertible
element, an idcmpotent element.
6 Explain why v cannot be invertible in any A[x], hence no domain of polynomials
can ever be a field.
7 There are rings such as P3 in which every element 0, 1 is a divisor of zero.
Explain why this cannot happen in any ring of polynomials A[x], even when A is
not an integral domain.
8 Show that in every /1[x], there are elements 0, 1 which are not idempotent,
and elements 0, 1 which are not nilpotent
9 Prove that if has an invertible element, so does A.

C. Rings Ajxj where A Is Not an Integral Domain

I If A is not an integral domain, neither is A[x]. Prove this by showing that if A has
divisors of zero, so does A[t].
2 Give examples of divisors of zero, of degrees 0, 1, and 2, in Z4[x].
3 In + 2)(2v + 2) = (2x + + 2x + 2), yet (2x + 2) cannot be can-
celed in this equation Explain why this is possible in 110[x], but not in 75[x].
4 Give examples in Z4[x], in and in 79[x] of polynomials a(x) and h(x) such
that deg a(x)b(ic) < deg a(x) + deg b(x)
S If A is an integral domain, we have seen that in A[x],

deg a(x)b(x) = deg a(x) + deg b(x)

Show that if A is not an integral domain, we can always find polynomials a(x) and
h(') such that deg a(i)b(x) <deg a(x) + deg h(x).
6 Show that if A is an integral domain, the only invertible elements in A[x] are the
constant polynomials ± I. Then show that in Z4[x] there are invertible polynomials
of all degrees.

7 Give all the ways of factoring t2 in 79[x], in Z5[x]. Explain the difference in
behavior.
8 Find all the square roots of x2 + x + 4 in Z5[x]. Show that in Z8[x]. there are
infinitely many square roots of I.

D. Domains Aixi where A Has Finite Characteristic

In each of the following, let A be an integral domain.

I Prove that if A has characteristic then A[x] has characteristic p.
2 Use part I to give an example of an infinite integral domain with finite character-
istic.

3 Prove: If A has characteristic 3, then x + 2 is a factor of xm + 2 for all m. More
generally, if A has characteristic p, then x + (p — 1) is a factor of xm + (p — 1) for all
in.
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4 Prove that if A has characteristic p, then in A[x], (x + = x" + (You may
use essentially the same argument as in the proof of the binomial theorem.)
5 Explain why the following "proof" of part 4 is not valid: (x + = + c" in

because (a + et & + c" for all a, cc A. (Note the following example: inZ2,
a2 + 1 = a4 + 1 for every a, yet x2 + I x4 + I in Z2[x].)
6 Use the same argument as in part 4 to prove that if A has characteristic p. then
(cC + Jr.-')" = + d"x-"'. Use this to prove:

(a0 +a1v+" +ax"

E. Subrings and Ideals in Aixi

I Show that if B is a subring of A, then B[x] is a subring of A[x].
2 If B is an idea! of A, B[x] is not necessarily an ideal of A[x]. Give an example to
prove this contention.

3 Let S be the set of all 'the polynomials a(x) in A[x] for which every coefficient
for odd i is equal to zero. Show that S is a subring of A[x]. Why is the same not true
when "odd" is replaced by "ei'en'Y?
4 Let J consist of all the elements in A[x] whose constant coefficient is equal to
zero. Prove that J is an ideal of A[x].
5 Let 3 consist of all the polynomials a0 + a1x + + in A[x] such that
a0 + a1 + + = 0. Prove that 3 is an ideal of A[x].
6 Prove that the ideals in both parts 4 and 5 are prime ideals.

F. Homomorphisms of Domains of Polynomials

Let A be an integral domain.

1 Let !i A[x] —* A map every polynomial to its constant coefficient; that is,

Prove that h is a homomorphism from A[x] onto A, and describe its kernel.
2 Explain why the kernel of h in part 1 consists of all the products xa(x), for all
a(x) a A[x]. Why is this the same as the principal ideal <x) in A[x]?
3 Using parts 1 and 2, explain why A[x]/<x) A.

4 Let g: A[x] —* A send every polynomial to the sum of its coefficients. Prove that
g is a surjective homomorphism, and describe its kernel
5 If C a A, let h: A[x] -s A[x] be defined by h(a(x)) = a(cx), that is,

h(a0 +a1x + + a0 + a1cx + a2c2x2 +

Prove that h is a homomorphism and describe its kernel.
6 If h is the homomorphism of part 5, prove that h is an automorphism (isomor-
phism from A[x] to itself) ill C is invertible.
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G. Homomorphisms of Polynomial Domains
Induced by a Homomorphism of the Ring of Coefficients

Let A and B be rings and let Ii: A —÷ B be a homomorphism with kernel K. Define
A[x] —. B[x] by:

+h(ajx"

(We say that his induced by h.)

I Prove that h is a homomorphism from A[x] to B[x].
2 Describe the kernel /t of It
3 Prove that Ii is surjective if Ii is surjective.
4 Prove that h is injective if Ii is injective.
5 Prove that if a(x) is a factor of h(x), then h(a(x)) is a factor of h(b(x)).

6 If h Z 4 is the natural homomorphism, let h Z[x] 4[x] be the homo-
morphism induced by Ii. Prove that h(a(x)) = 0 if n divides every coefficient of a(x).

7 Let h be as in part 6, and let n be a prime. Prove that if a(x)h(x) E ker h, then
either a(x) or b(x) is in ker h. (HINT: Use Exercise F2 of Chapter 19.)

H. Polynomials in Several Variables

Aix1, x2] denotes the ring of all the polynomials in two letters x1 and x2 with
coefficients in A. For example, x2 — 2xy + y2 + x — 5 is a quadratic polynomial in

v]. More generally, ;] is the ring of all the polynomials in n letters
; with coefficients in A Formally it is defined as follows: Let A[x1] be

denoted by A1, then A1[x2] is A[x1, x2]. Continuing in this fashion, we may adjoin
one new letter x1 at a time, to get A[x1

1 Prove that if A is an integral domain, then A[x1 is an integral domain.
2 Give a reasonable definition of the degree of any polynomial p(x, y) in A[x, y]
and then list all the polynomials of degree � 3 in 73[x, y].

Let us denote an arbitrary polynomial p(x, y) in A[x, y] by E where
ranges over some pairs i, j of nonnegative integers.

3 Imitating the definitjons of sum and product of polynomials in A[x], give a
definition of sum and product of polynomials in A[x, y].
4 Prove that deg a(x, y)h(x, y) = deg a(x, y) + deg h(x, y) if A is an integral domain.

1. Fields of Polynomial Quotients

Let A be an integral domain. By the closing part of Chapter 20, every integral
domain can be extended to a "field of quotients." Thus, A[x] can be extended to a
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field of polynomial quotients, which is denoted by A(x). Note that A(x) consists of
all thc fractions a(v)/b(x) for a(x) and b(x) 0 in A[x], and these fractions are
added, subtracted, multiplied, and divided in the customary way.

I Show that A( i) has the same characteristic as A
2 Using part 1, explain why there is an infinite field of characteristic p. for every
prime p.

3 If A and B are integral domains and h. A -s B is an isomorphism, prove that h
detcrminec an isomorphism Ii: AN) —* B(x).

J. Division Algorithm: Uniqueness of Quotient and Remainder

In the division algorithm, prove that q(x) and r(x) are uniquely determined. [HINT
Suppose a('c) = b(xjq1('c) + r1(t) = h(x)q2(x) + r2(x), and subtract these two ex-
pressions, which are both equal to a(x).]
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FACTORING POLYNOMIALS

Just as every integer can be factored into primes, so every polynomial can
be factored into "irreducible" polynomials which cannot be factored fur-
ther. As a matter of fact, polynomials behave very much like integers when
it comes to factoring them. This is especially true when the polynomials
have all their coefficients in afield.

Throughout this chapter, we let F represent some field and we consider
polynomials over F. It will be found that F[x] has a considerable number
of properties in common with /. To begin with, all the ideals of F[x] are
principal ideals, which was also the case for the ideals of Z.

Note carefully that in F[x], the principal ideal generated by a poly-
nomial a(x) consists of all the products a(x)s(x) as a(x) remains fixed and
s(x) ranges over all the members of F[x].

Theorem 1 Every ideal of F[x] is principal.

Let J be any ideal of F[x]. If J contains nothing but the zero poly-
nomial, J is the principal ideal generated by 0. If there are nonzero poly-
nomials in J, let b(v) he any polynomial of lowest degree in J. We will show
that J = (b(x)>, which is to say that every element of J is a polynomial
multiple b(x)q(x) of b(x).

Indeed, if a(x) is any element of J, we may use the division algorithm to
write a(x) = b(4q(x) + r(x), where r(x) = 0 or deg r(x) <deg b(x). Now,

251
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r(x) = a(x) — b( t)q(x); but a(x) was chosen in J, and b(x) e J, hence
h(x)q(x) e J. It follows that r(x) is in J.

If r(x) 0, its degree is less than the degree of h(x). But this is impos-
sible because b(x) is a polynomial of lowest degree in J. Therefore, of
necessity, r(x) = 0.

Thus, finally, a( v) = b(x)q(x); so every member of J is a multiple of h(x),
as claimed.

It follows that every ideal J of F[x] is principal. In fact, as the proof
abovc indicates, J is generated by any one of its members of lowest degree.

Throughout the discussion which follows, remember that we are con-
sidcring polynomials in a fixed do,main F[x] where F is afield.

Let a(x) and b(x) be in F[x]. We say that b(x) is a multiple of a(x) if

h(x) = a(x)s(x)

for some polynomial s(x) in F[x]. If b(x) is a multiple of a(x), we also say
that a(x) is afactor of b(x), or that a(x) divides b(x). In symbols, we write

a(x) I b(x)

Every nonzero constant polynomial divides every polynomial. For if
c 0 is constant and a(x) = a0 + + f, then

(a0 a1

\C C C

hence c I a(x). A polynomial a(x) is invertible if it is a divisor of the unity
polynomial I. But if a(x)h(x) = 1, this means that a(x) and b(x) both havc
degree 0, that is, are constant polynomials: a(x) = a, b(x) = b, and ab = 1.

Thus,

the invertible elements of.F[x] are all the nonzero Constant polynomials.

A pair of nonzero polynomials a(x) and b(x) are called associates if they
divide one another: a(x) I b(x) and b(x) I a(x). That is to say,

a(x) = h(x)c(x) and b(x) = a(x)d(x)

for some c(x) and d(x). If this happens to be the case, then

a(x) = h(x)c(x) = a(x)d(x)c(x)

hence d(x)c(x) = I because F[x] is an integral domain. But then c(x) and
d(x) are constant polynomials, and therefore a(x) and b(x) are constant
multiples of each other. Thus, in F[x],

a(x) and b(x) are associates jff they are constant multiples of each other.
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If a(x) = a0 + + f, the associates of a(x) are all its nonzero con-
stant multiples. Among these multiples is the polynomial

which is equal to (1/aja(x), and which has I as its leading coefficient. Any
polynomial whose leading coefficient is equal to I is called monic. Thus,
every nonzero polynomial a(x) has a unique monic associate. For example, the
monic associate of 3 + 4x + 2x3 is4 + 2x + x3.

A polynomial d(x) is called a greatest common divisor of a(x) and b(x) if
d(x) divides a(x) and b(x), and is a multiple of any other common divisor of
a(x) and b(x); in other words,
(i) d(x) a(x) and d(x) I b(x), and

(ii) For any u(x) in F[x], if u(x) I a(x) and u(x) I b(x), then u(x) I d(x).

According to this definition, two different gcd's of a(x) and h(x) divide
each other, that is, are associates. Of all the possible gcd's of a(x) and b(x),
we select the monic one, call it the gcd of a(x) and b(x), and denote it by
gcd[a(x), b(x)].

It is important to know that any pair of polynomials always has a
greatest common divisor.

Theorem 2 Any two nonzero polynomials a(x) and b(x) in F[x] have a gcd
d(x). Furthermore, d(x) can be expressed as a "linear combination"

d(x) = r(x)a(x) + s(x)b(x)

where r(x) and s(x) are in F[x].

The proof is analogous to the proof of the corresponding theorem for
integers. 1ff is the set of all the linear combinations

u(x)a(x) + v(x)h(x)

as u(x) and v(x) range over F[x], then J is an ideal of F[x], say the ideal
<d(x)> generated by d(x). Now a(x) = la(x) + Ob(x) and
b(x) = Oa(x) + lb(x), so a(x) and b(x) are in J. But every element off is a
multiple of d(x), so

d(x)Ia(x) and d(x)jb(x)

If k(x) is any common divisor of a(x) and b(x), this means there are
polynomials f(x) and g(x) such that a(x) = k(x)f(x) and b(x) = k(x)g(x).
Now, d(x) e J, so d(x) can be written as a linear combination
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d(v) = r(x)a(x) + s(x)b(x)

= r(x)k(x)f(x) + s(x)k(x)g(x)

= k(x)[r(x)f(x) + s(x)g(x)]

hence
I

1(x). This confirms that d(x) is the gcd of a(x) and b(x).
Polynomials a(v) and h(x) in F[x] are said to be relatively prime if their

gcd is equal to I. (This is equivalent to saying that their only common
factors are constants in F.)

A polynomial a(x) of positive degree is said to be reducible over F if
there are polynomials b(x) and c(x) in F[x], both of positive degree, such
that

a(x) = b(x)c(x)

Because h(v) and c(x) both have positive degrees, and the sum of their
degrees is deg a(x), each has degree less than deg a(x).

A polynomial p(x) of positive degree in F[x] is said to be irreducible
at er F if it cannot be expressed as the product of two polynomials of
positive degree in F[c]. Thus, p(x) is irreducible ill it is not reducible.

When we say that a polynomial p(x) is irreducible, it is important that
we specify irreducible over the field F. A polynomial may be irreducible over
F, yet reducible over a larger field E. For example, p(x) = x2 + 1 is irreduc-
ible over but over C it has factors (x + i)(x — i).

We next state the analogs for polynomials of Euclid's lemma and its
corollaries. The proofs are almost identical to their counterparts in /;
therefore they are left as exercises.

Euclid's lemma for polynomials Let p(x) be irreducible. If p(x)ja(x)b(x), then

p(v)ja(c) p(x)jh(x).

Corollary I Let p(x) be irreducible. If p(x) I a1(x)a2(x) ... ;(x), then

p(x) I a1('c)for one of the factors a1(x) among a1(x) ajx).

Corollary 2 Let q 1(x) and p(x) be monic irreducible polynomials. If

p(x) q1(x) ... then p(x) is equal to one of the factors q1(x), ...,

Theorem 3: Factorization into irreducible polynomials Every polynomial a(x)
of positive degree in F[x] can be written as a product

a(x) = kp1(x)p2(x) pr(X)

where k is a constant in F and p1(x), ..., pr(X) are monic irreducible poly-

nomials of F[x].
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If this were not true, we Could Choose a polynomial a(x) of lowest degree
among those which Cannot be factored into irreducibles. Then a(x) is re-
ducible, so a(x) = h(x)c(x) where b(x) and c(x) have lower degree than a(x).
But this means that h(x) and c(x) can be factored into irreducibles, and
therefore a(v) can also.

Theorem 4: Unique factorization If a(x) can be written in two ways as a
product of irreducibles, say

a(x) = kp1(x) = 1q1(x) ...
then k = 1, r = s, and each p1(x) is equal to a

The proof is the same, in all major respects, as the corresponding proof
for t it is left as an exercise.

In the next chapter we will be able to improve somewhat on the last
two results in the special cases of and C[x]. Also, we will learn more
about factoring polynomials into irreducibles.

EXERCISES

A. Examples of Factoring into Irreducible Factors

1 Factor ,4 — 4 into irreducible factors over Q, over and over C.
2 Factor — 16 into irreducible factors over 0, over IL and over C.
3 Find all the irreducible polynomials of degree � 4 in Z2[x]
4 Show that ,2 + 2 is irreducible in Z5[x]. Then factor x4 — 4 into irreducible
factors in Z5[x]. (By Theorem 3, it is sufficient to search for monic factors.)
5 Factor 2x3 + 4x + 1 in 15[x]. (Factor it as in Theorem 3.)
6 In 76[x], factor each of the following into two polynomials of degree 1: x, x + 2,

x + 3. Why is this possible?

B. Short Questions Relating to Irreducible Polynomials

Let F be a field. Explain why each ofthefollowing is true in F[x].

I Every polynomial of degree I is irreducible.
2 If a(x) and h(x) are distinct monic polynomials, they cannot be associates.
3 Any two distinct irreducible polynomials are relatively prime.
4 If a(x) is irreducible, any associate of a(x) is irreducible.
S If a(x) 0, a(x) cannot be an associate of 0.
6 In every polynomial has exactly p — 1 associates.

7 x2 + I is reducible in if p = a + b where ab = I (mod p).
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C. Number of Irreducible Quadratics over a Finite Field

1 Without finding them, determine how many reducible monic quadratics there are
in 725[x]. [HINT' Every reducible monic quadratic can be uniquely factored as
(x + a)(x + b).]

2 How many reducible quadratics are there in 7L5[x]? How many irreducible quad-
ratics?
3 Generalize: How many irreducible quadratics are there over a finite field of n
elements?
4 How many irreducible cubics are there over a field of n elements?

D. Ideals in Domains of Polynomials

Let F be a field, and let J designate any ideal of F[x]. Prove the following:

1 Any two generators of J are associates.
2 J has a unique monic generator m(x). An arbitrary polynomial a(x) a F[x] is in J
iffm(x)Ia(x).
3 J is a prime ideal ill it has an irreducible generator.
4 If p(x) is irreducible, then p(x) is a maximal ideal of F[x]. (See Chapter 18,
Exercise H5.)

5 Let S be the set of all polynomials a0 + a1x + + in F[x] which satisfy
a0 + a1 + '+ = 0. It has been shown (Chapter 24, Exercise E5) that S is an
ideal of F[x] Prove that x — I a 5, and explain why it follows that S = <x — I).
6 Conclude from parts 4 and 5 that F[x]/<x — 1) F. (See Chapter 24, Exercise
F4.)

7 Let F[x, y] denote the domain of all the polynomials in two letters x
and y, with coefficients in F. Let J be the ideal of F[x, y] which contains all the
polynomials whose constant coefficient is zero. Prove that J is not a principal ideal.
Conclude that Theorem 1 is not true in F[x, y].

E. Proof of the Unique Factorization Theorem

1 Prove Euclid's lemma for polynomials
2 Prove the two corollaries to Euclid's lemma.
3 Prove the unique factorization theorem for polynomials.

F. A Method for Computing the gcd

Let a(x) and b(x) be polynomials of positive degree. By the division algorithm, we
may divide a(x) by b(x):

a(x) = b(x)q1(x) + r1(x)
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1 Prove that every common divisor of a(v) and h(v) is a common divisor of b(x) and
v)

It follows from part 1 that the gcd of a(v) and b(x) is the same as the gcd of b(x)
and r1(x). This procedure can now be repeated on b(x) and r1(x); divide b(x) by r1(x):

b(v) = r1(x)q2(v) + r2(x)

Next, r1(x) = r2(x)q3(x) + r3(x)

Finally, = + 0

In other words, we continue to divide each remainder by the succeeding remainder.
Since the remainders continually decrease in degree, there must ultimately be a zero
remainder. But we have seen that

gcd[a(v), h(x)] = gcd[h('c), r1(v)] = = 1(x),

Since is a divisor of 1(x), it must be the gcd of rjx) and 1(x). Thus,

rjx) = gcd[a(x), b(x)]

This method is called the euclidean algorithm for finding the gcd.

2 Find the gcd of + I and x4 + + 2x2 + x — 1. Express this gcd as a linear
combination of the two polynomials.
3 Dothesameforv24—landv15—1
4 Find the gcd of v + + x + I and x4 + x3 + 2x2 + 2x in 73[x].

G. An Automorphism of 194

Let h. F[x] F['c] be defined by:

+a0x"

Prove the followingS

I h is a homomorphism.
2 Il is injective and surjective, hence an automorphism of F[x].
3 a0 + a1x + + is irreducible + x +

a0 + a1v + + =(b0 . + bmxmXCo + cqxi. Factor

5 Let a(x)=a0-i-a1x+ and +a0f. If ceF,
prove that a(c) = 0 iffâ(l/c) = 0.
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SUBSTITUTION IN POLYNOMIALS

Up to now we have treated polynomials as formal expressions. If is a
polynomial over a field F, say

a(v)=a0+a1x+
this means that the coefficients a0, a1 elements of the field F,
while the letter x is a place/wider which plays no other role than to occupy
a given position.

When we dealt with polynomials in elementary algebra, it was quite
different. The letter t was called an unknown and was allowed to assume
numerical values. This made a(x) into a function having x as its indepen-
dent variable. Such a function is called a polynomialfunction.

This chapter is devoted to the study of polynomial functions. We begin
with a few careful definitions.

Let a(v) = a0 + a1x + + anf be a polynomial over F. If c is any
element of F, then

+ancn

is also an element of F, obtained by substituting c for x in the polynomial
a(x). This element is denoted by a(c). Thus,

+ancn

Since we may substitute any element of F for x, we may regard a(x) as a
/iinction from F to F. As such, it is called a polynomialfunction on F

258
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The difference between a polynomial and a polynomial function is
mainly a difference of viewpoint. Given a(x) with coefficients in F: if x is
rcgarded merely as a placeholder, then a(x) is a polynomial; if x is allowed
to assume values in F, then a(x) is a polynomial function. The difference is a
small one, and we will not make an issue of it.

lf a(x) is a polynomial with coefficients in F, and c is an element of F
such that

a(c) = 0

then we call c a root of a(x). For example, 2 is a root of the polynomial
3x2 + x — 14 e because 3.22 + 2 — 14 = 0.

Therc is an absolutely fundamental connection between roots of a poly-
nomial and factors of that polynomial. This connection is explored in the
following pages, beginning with the next theorem:

Let a(x) be a polynomial over a field F.

Theorem I c is a root of a(x) iffx — c is a factor of a(x).

If x — c is a factor of a(x), this means that a(x) = (x — c)q(x) for some
q(x). Thus, a(c) = (c — c)q(c) = 0, SO c is a root of a(x). Conversely, if c is a
root of a(x), we may use the division algorithm to divide a(x) by x — c:
a(x) = (x — c)q(x) + r(x). The remainder r(x) is either 0 or a polynomial of
lower degree than x — c; but lower degree than x — c means that r(x) is a
constant polynomial: r(x) = r � 0. Then

0 = a(c) = (c — c)q(c) + r = 0 + r = r

Thus, r = 0, and therefore x — c is a factor of a(x).

Theorem I tells us that if c is a root of a(x), then x — c is a factor of a(x)
(and vice versa). This is easily extended: if c1 and c2 are two roots of a(x),
then x — c1 and x — c2 are two factors of a(x). Similarly, three roots give
rise to three factors, four roots to four factors, and so on. This is stated
concisely in the next theorem.

Theorem 2 If a(x) has distinct roots c1 cm in F, then (x — c1)(x — c2)

(x — cm) is a factor of a(x).

To prove this, let us first make a simple observation: if a polynomial
a(x) can he factored, any root of a(x) must he a root of one of its factors.
Indeed, if a(x) = s(x)t(x) and a(c) = 0, then s(c) t(c) = 0, and therefore either
s(c) = 0 or t(c) = 0.
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Let C1, ..., Cm be distinct roots of a(x). By Theorem 1,

a(x)=(x—c1)q1(x)

By our observation in the preceding paragraph, c2 must be a root of x —
or of q1(x). It cannot be a root ofx — c1 becausec2 — c1 0; soc2 is a root
of q1(x). Thus, qj(x) = (x — c2)q2(x), and therefore

a(x) = (x — c1) (x — c2)q2(x)

Repeating this argument for each of the remaining roots gives us our result.
An immediate consequence is the following important fact:

Theorem 3 If a(x) has degree n, it has at most n roots.

If a(x) had n + I roots c1, ..., then by Theorem 2, (x — c1)

(x — i) would be a factor of a(x), and the degree of a(x) would therefore
be at least n + 1.

It was stated earlier in this chapter that the difference between poly-
nomials and polynomial functions is mainly a difference of viewpoint.
Mainly, but not entirely! Remember that two polynomials a(x) and h(x) are
equal iff corresponding coefficients are equal, whereas two functions a(x)
and h(x) are equal iff a(x) = b(x) for every x in their domain. These two
notions of equality do not always coincide!

For example, consider the following two polynomials in 4 [x]:

a(x) = x5 + I

b(x) = x — 4

You may check that a(0) = b(0), a(l) = b(l), ..., a(4) = b(4), hence a(x) and
h(v) are equal functions from 4 to 4. But as polynomials, a(x) and b(x)
arc quite distinct! (They do not even have the same degree.)

lt is reassuring to know that this cannot happen when the field F is
infinite. Suppose a(x) and b(x) are polynomials over a field F which has
infinitely many elements. If a(x) and b(x) are equal as functions, this means
that a(c) = hfr) for every c e F. Define the polynomial d(x) to be the diflèr-
encc of a(x) and b(x) : d(x) = a(x) — b(x). Then d(c) = 0 for every c e F. Now,
if d(x) were not the zero polynomial, it would be a polynomial (with some
finitc degree n) having infinitely many roots, and by Theorem 3 this is
impossible! Thus, d(x) is the zero polynomial (all its coefficients are equal to
zero), and therefore a(x) is the same polynomial as b(x). (They have the
same coefficients.)
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This tells us that if F is a field with infinitely many elements (such as 0,
or C), there is no need to distinguish between polynomials and poly-

nomial functions. The difference is, indeed, just a difference of viewpoint.

POLYNOMIALS OVER / AND 0

In scientific computation a great many functions can be approximated
by polynomials, usually polynomials whose coefficients are integers or
rational numbers. Such polynomials are therefore of great practical interest.
It is easy to find the rational roots of such polynomials, and to determine if
a polynomial over 0 is irreducible over 0. We will do these things next.

First, let us make an important observation:
Let a(x) be a polynomial with rational coefficients, say

k0 k

10 lJ in

We may factor out the constant 1/1011 ... and get

_____

n i .1 .. 11 n

,
¶"04 tnt tItntO tniX

b(x)

The polynomial h(x) has integer coefficients; and since it differs from a(x)
only by a constant factor, it has the same roots as a(x). Thus, for every
polynomial with rational coefficients, there is a polynomial with integer coef-
ficients having the same roots. Therefore, for the present we will confine our
attention to polynomials with integer coefficients. The next theorem makes
it easy to find all the rational roots of such polynomials:

Let s/t be a rational number in simplest form (that is, the integers s and
do not have a common factor greater than I). Let a(x) = a0 +

a polynomial with integer coefficients.

Theorem 4 If sit is a root of a(x), then s a0 and t I an.

If s/t is a root of a(x), this means that

a0 + a1(s/t) + ... + an(sn/tn) = 0

Multiplying both sides of this equation by t" we get

(*)
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We may now factor out s from all but the first term to get:

Thus, sI and since s and t have no common factors, 51 a0. Similarly, in
(*), we may factor out t from all but the last term to get

t(a0t"t + + = —an?

Thus, t a, s": and since s and t have no common factors, t j;.
As an example of the way Theorem 4 may be used, let us find the

rational roots of a(x) = 2x4 + 7x3 + 5x2 + 7x + 3. Any rational root must
be a fraction s/t where s is a factor of 3 and t is a factor of 2. The possible
roots arc therefore ± 1, ±2, ±4 and ±4. Testing each of these numbers by
direct substitution into the equation a(x) = 0, we find that —4 and —3 are
roots are therefore ± 1, ± 3, ±4 and ±4. Testing each of these numbers by
(v + 4)(v + + 1).

Before going the next step in our discussion, we note a simple but fairly
surprising fact. Let a(x) = h(x)c(x), where a(x), b(x), and c(x) have integer
coefficients.

Lemma if a prime number p divides every coefficient of a(x), it either divides
every coefficient of b(x) or every coefficient of c(x).

If this is not the case, let hr be the first coefficient of b(x) not divisible by
p. and let c1 be the first coefficient of c(x) not divisible by p. Now,

= b(c)c(x), so

Each term on the right, except hr c1, is a product b1 where either i> r or
j> t. By our choice Of and c1, if i> r then pIb1, and ifj> t then

p is a factor of every term on the right with the possible exception of
hrCz, but p is also a factor of ar+t. Thus, p must be a factor ofhrct, hence of
either hr or c,, and this is impossible.

We saw (in the discussion immediately preceding Theorem 4) that any
polynomial a(x) with rational coefficients has a constant multiple ka(x), with
integer coefficients, which has the same roots as a(x). We can go one better;
let a(v) e

Theorem 5. Suppose a(x) can be factored as a(x) = b(x)c(x), where h(x) and
c( v) have rational coefficients. Then there are polynomials B(x) and C(x) with
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integer coefficients, which are constant multiples of b(x) and c(x), respectively,
such that a(x) = B(x)C(x).

Let k and I be integers Such that kb(x) and lc(x) have integer coeffi-
cients. Then kla(x) = [kb(x)][lc(x)]. By the lemma, each prime factor of kI
may now be canceled with a factor of either kb(x) or lc(x).

Remember that a polynomial a(x) of positive degree is said to be re-
ducible over F if there are polynomials b(x) and c(x) in F[x]. both of
positive degree, such that a(x) = b(x)c(x). If there are no such polynomials,
then a(x) is irreducible over F.

If we use this terminology, Theorem 5 states that any polynomial with
integer coefficients which is reducible over C is reducible already over 7.

In Chapter 25 we saw that every polynomial can be factored into
irreducible polynomials. In order to factor a polynomial completely (that is,
into irreducibles), we must be able to recognize an irreducible polynomial
when we see one! This is not always an easy matter. But there is a method
which works remarkably well for recognizing when a polynomial is irreduc-
ible over C:

Theorem 6: Eisenstein's irreducibility criterion Let

a polynomial with integer coefficients. Suppose there is a prime number p
which divides every coefficient of a(x) except the leading coefficient sup-
pose p does not divide and p2 does not divide a0. Then a(x) is irreducible
over C.

If a(x) can be factored over C as a(x) = b(x)c(x), then by Theorem 5 we
may assume b(x) and c(x) have integer coefficients: say

b(x)=bo+...+bkxk and +cmxm

Now, a0=h0c0; p divides a0 but p2 does not, so only one of b0, c0 is

divisible by p. Say p I c0 and p b0. Next, = bk cm and p ,}' so p ,j'cm.
Let s be the smallest integer such that p c5. We have

and by our choice of every term on the right except b0 is divisible by p.
But also is divisible by p. and therefore b0 c5 must be divisible by p. This
is impossible because p b0 and p ,{' Thus, a(x) cannot be factored.

For example, x3 + 2x2 + 4x + 2 is irreducible over C because p = 2

satisfies the conditions of Eisenstein's criterion.
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POLYNOMIALS OVER AND C

One of the most far-reaching theorems of classical mathematics concerns
polynomials With complex coefficients. It is so important in the framework
of traditional algebra that it is called the fundamental theorem of algebra. It
states the following:

Every nonconstant polynomial with complex coefficients has a complex
root.

(The proof of this theorem is based upon techniques of calculus and can
be found in most books on complex analysis. It is omitted here.)

It follows immediately that the irreducible polynomials in C[x] are exact-
ly the polynomials of degree 1. For if a(x) is a polynomial of degree greater
than 1 in C[x], then by the fundamental theorem of algebra it has a root c
and therefore a factor x — c.

Now, every polynomial in C[x] can be factored into irreducibles. Since
thc irreducible polynomials are all of degree I, it follows that if a(x) is a
polynomial of degree n over C, it can be factored into

a(x) has degree n it has n (not necessarily distinct) complex
rootsc1

Since every real number a is a complex number (a = a + Oi), what has
just been stated applies equally to polynomials with real coefficients.
Specifically, if a(x) is a polynomial of degree n with real coefficients, it can
be factored into a(x) = k(x — c1) ... (x — ca), where c1 are complex
numbers (some of which may be real).

For our closing comments, we need the following lemma:

Lemma. Suppose a(v) e [x]. If a + bi is a root of a(x), so is a — bi.

Remember that a — bi is called the conjugate of a + bi. If r is any
complex number, we write F for its conjugate. It is easy to see that the
function J(r) = F is a homomorphism from C to C (in fact, it is an isomor-
phism). For every real number a,f(a) = a. Thus, if a(x) has real coefficients,
then f(a0 + a1r + a/) = a0 + a1F + + Sincef(O) = 0, it fol-
lows that if r is a root of a(x), so is F.

Now let a(x) be any polynomial with real coefficients, and let r = a + bi
be a complex root of a(x). Then 1 is also a root of a(x), so

(x — r)(x — F) = x2 — 2ax + (a2 + b2)
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and this is a quadratic polynomial with real coefficients! We have thus
shown that any polynomial with real coefficients can be factored into poly-
noinials of' degree I or 2 in [x]. In particular, the irreducible polynomials
of [x] are the linear polynomials and the irreducible quadratics (that is,
the ax2 + by + c where b2 — 4ac <0).

EXERCISES

A. Finding Roots of Polynomials over Finite Fields

In order to find a root of a(t) in a finite field F, the simplest method (if F is small) is
to test every clement of F by substitution into the equation a(x) = 0.

1 Find all the roots of the following polynomials in Z5[x], and factor the poly-
nomials:

3x4+x2+I; x5+l; x4+1; x4+4

2 Use 1-ermat's theorem to find all the roots of the following polynomials inZ7[x]:

— I; 3x98 + x19 + 3; 2x74 — x55 + 2x + 6

3 Using Fermat's theorem, find polynomials of degree � 6 which determine the
same functions as the following polynomials in Z7[x].

3x'5—5x54+2x13—x2; 4x'°8+6x'°' —2x81; 3x'°3—x73+3x55—x25

4 Explain why every polynomial in has the same roots as a polynomial of
degree <p

B. Finding Roots of Polynomials over Q

1 Find all the rational roots of the following polynomials, and factor them into
irreducible polynomials in O['c].

9v3 + — 4x —8; 4x3 — 3x2 — 8x + 6;

2x4+3y3—8x—!2; 6x4—7x3+8x2—7x+2

2 Factor each of the preceding polynomials in R[x] and in C[x].
3 Find associates with integer coefficients for each of the following polynomials:

1y3!y2!v+!;

4 Find all the rational roots of the polynomials in part 3 and factor them over Il
5 Does 2 have any rational roots? Can it be factored into two poly-
nomials of lower degree in O[x]? Explain.
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C. Short Questions Relating to Roots

Let F he a field Prove that each of the following is true in F[x]

I The remainder of pk), when divided by v — c, is p(c).

2

3 Every polynomial has the same roots as any of its associates.
4 If a(x) and h(v) have the same roots in F, are they necessarily Explain

5

6 If aN) is a monic polynomial of degree n, and a(x) has n rootsc1 e F, then
a(\) = — ('c —

7 Suppose a(s) and h(x) have degree <n. If a(c) = b(c) for n values of c, then
a(v) = h(v)

8 There are infinitcly many irreducible polynomials in Z5['c].
9 How many roots does — have in In Z11? Explain the difference.

D. Irreducible Polynomials in 0 lxi by Eisenstein 's Criterion
(and Variations on the Theme)

I Show that each of the following polynomials is irreducible over 12

3x4 — 8x3 + 6x2 — 4x + 6; x5 + — 2x2 +

I I 2 1 4 2
—x4——x3——x+1, —x4+—x3——x2+I

2 It often happens that a polynomial a(y), as it stands, does not satisfy the condi-

tions of Eisenstein's criterion, but with a simple change of variable y = x + c, it
does. It is important to note that if a(x) can be factored into p(x)q(x), then certainly
a(x + c) can be factored into p(x + c)q(x + c). Thus, the irreducibility of a(x + c)
implies the irreducibility of a(x).

(a) Use the change of variable y = x + 1 to show that x4 + 4x + I is irreducible
in O[x]. [In other words, test (x + 1) + 1 by Eisenstein's criterion]

(b) Find an appropriate change of variable to prove that the following are
irreducible in Q[x]:

x4 + 2x2 — 1; x3 — 3x + 1; x4 + 1; — lOx2 + I

3 Prove that for any prime p, x + I is irreducible in Q[x].
[HINT: By clementary algebra,

(x— I

— 1

hence x"'+x"2+"'+x+l=
x—1

Use the change of variable y = x + 1, and expand by the binomial theorem.
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4 By Exercise G4 of Chapter 25, the function

is an isomorphism of Z[x] onto Z[x]. In particular, h matches irreducible poly-
nomials with irreducible polynomials. Use this fact to state a dual version of Eisen-
stein's irreducibility criterion.
S Use part 4 to show that each of the following polynomials is irreducible in Q[x]:

4 3 2 41 3 4 1 3 66x +4x 6x —8x+5; x

E. Irreducibility of Polynomials of Degree � 4

1 Let F be any field. Explain why, if a(x) is a quadratic or cubic polynomial in F[x],
a(x) is irreducible in F[x] iffa(x) has no roots in F.
2 Prove that the following polynomials are irreducible in Q[x]:

13
2 3 1 1 5 3

—x 3x —2x—4; x +x

3 Suppose a monic polynomial a(x) of degree 4 in F[x] has no roots in F. Then a(x)
is reducible if it is a product of two quadraticsx2 + ax + h andx2 + cx + d, that is,
if

a(x) = x4 + (a + c)x3 + (ac + b + d)x2 + (bc + ad)x + hd

If the coefficients of a(x) cannot be so expressed (in terms of any a, b, c, d a F) then
a(x) must be irreducible.

Example a(x)=x4+2x3+x+1; then hd=1, so b=d= ±1; thus,
bc + ad = ±(a + c), hut a + c = 2 and hc + ad = I, which is impossible.

Prove that the following polynomials are irreducible in Q[x] (use Theorem 5,
searching only for integer values of a, h, c, d):

x4—5x2+1; 3x4—x2—-2; x4+x3+3x+l

4 Prove that the following polynomials are irreducible in Z5[x]:

2x3+x2+4x+1; x4+2; x4+4x2+2; x4+1

F. Mapping onto 74 to Determine Irreducibility over Q

If h: 7 —* 4 is the natural homomorphism, let h :Z[x] —÷ 4[x] be defined by

h(a0 + a1x + + h(a0)+ h(a1)x + +
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In Chapter 24, Exercise G, it is proved that Ii is a homomorphism. Assume this fact
14') prore (lii! following

I If ii(a(v)) is irreducible in 4[x], then a(x) is irreducible in Z[x].
2 Prove that x4 + + 7 is irreducible in O[t] by using the natural homomor-
phism from Ito 15.
3 Prove that the following are irreducible in Q[x] (find the right value of n and use
the natural homomorphism from 1 to 4)

— lOx2 + 1; + 7x3 + l4x2 + 3; + I

C. Roots and Factors in Aixi when A Is an Integral Domain

It is a useful fact that Theorems 1, 2, and 3 are still true in A[x] when A is not a
field, hut merely an integral domain The proof of Theorem I must be altered a bit
to avoid using the division algorithm. We proceed as follows'

a(v) — it(c) = a1(v — c) + a2(v2 — c2) + + —c")

I Provethatfork= I
ak(v — = ak(v — c)(vk_l + + +

2 Conclude from part I that a(x) — a(c) = (v — c)q(v) for some q(x).

3 Complete the proof of Theorem I, explaining why this particular proof is valid
when A is an integral domain, not necessarily a field.
4 Check that Theorems 2 and 3 are true in A[v] when A is an integral domain.

I-I. Polynomial Functions over a Finite Field

1 Find three polynomials in which determine the same function as

— + I

2 Prove that Y' — v has p roots in for any prime p. Draw the conclusion that
in v can be factored as.

I)(v—2)'" [x—(p— I)]

3 Prove that if ci(v) and h(v) determine the same function in then

V — x)I(a(v) —

In i/ic or vt four problems, let F he any finite field. Prove the following:

4 Let a(v) and h(v) be in F['c]. If a(v) and h(x) determine the same function, and if
the number of elements in F exceeds the degree of a(x) as well as the degree of b(x),
then af\) = h(v).
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5 The set of all a(t) which determine the zero function is an ideal of F[x]. What is
its generator?

6 Let .F(F) be the ring of all functions from F to F, defined in the same way as
f(R). Let In F[t] .39F) send every polynomial a(x) to the polynomial function
which it determines. Show that h is a homomorphism from F[x] onto F(F).
7 Let F = tc1, . ., cJ and p(x) = (x — c1) .. (x — cj. Prove that

F[x]/<p(x)> ffi(F)

I. Polynomial Interpolation

One of the most important applications of polynomials is to problems where we are
given several values of x (say x = a0, a1, ..., aj and corresponding values of y (say
y = b0, ha), and we need to find a function y =f(x) such that f(a0) =
f(a1) = = The simplest and most useful kind of function for this
purpose is a polynomial function of the lowest possible degree.

We now consider a commonly used technique for constructing a polynomial
p(x) of degree n which assumes given values b0, b1 at given points a0, a1,

That is,

p(a0) = b0, p(a1) = =

First, for each i = 0, 1 n, let

1 Show that = 0 forj i, and 0.

Let q,(a1) = c1, and define p(x) as follows:

0p(x)=
C1 C0

(This is called the Lagrange interpolation formula.)

2 Explainwhyp(a0)=h0,p(a1)=b1
3 Prove that there is one and only one polynomial p(x) of degree � n such that
p(a0)=b0,.
4 Usc the Lagrange interpolation formula to prove that if F is a finite field, every
function from F to F is equal to a polynomial function. (In fact, the degree of this
polynomial is less than the number of elements in F.)

5 If t(x) is any polynomial in F[x], and a0 e F, the unique polynomial p(x)
of degree � n such that p(a0) = t(a0), ..., = is called the Lagrange inter-
polator for t(x) and a0, ..., Prove that the remainder, when t(x) is divided by
(x — a0)(x — a1) ... (x — an), is the Lagrange interpolator.



CHAPTER

TWENTY-SEVEN
EXTENSIONS OF FiELDS

In the first 26 chapters of this book we introduced the cast and set the scene
on a vast and complex stage. Now it is time for the action to begin. We will
be surprised to discover that none of our effort has been wasted; for every
notion which was defined with such meticulous care, every subtlety, every
fine distinction, will have its use and play its prescribed role in the story
which is about to unfold.

We will see modern algebra reaching out and merging with other dis-
ciplines of mathematics; we will see its machinery put to use for solving a
wide range of problems which, on the surface, have nothing whatever to do
with modern algebra. Some of these problems—ancient problems of geom-
etry, riddles about numbers, questions concerning the solutions of
equations —reach back to the very beginnings of mathematics. Great mas-
ters of the art of mathematics puzzled over them in every age and left them
unsolved, for the machinery to solve them was not there. Now, with a light
touch modern algebra uncovers the answers.

Modern algebra was not built in an ivory tower but was created part
and parcel with the rest of mathematics—tied to it, drawing from it, and
offering it solutions. Clearly it did not develop as methodically as it has
been presented here. It would be pointless, in a first course in abstract
algebra, to replicate all the currents and crosscurrents, all the hits and
misses and false starts. Instead, we are provided with a finished product in
which the agonies and efforts that went into creating it cannot be discerned.

270
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There is a disadvantage to this: without knowing the origin of a given
concept, without knowing the specific problems which gave it birth, the
student often wonders what it means and why it was ever invented.

We hope, beginning now, to shed light on that kind of question, to
justify what we have already done, and to demonstrate that the concepts
introduced in earlier chapters are correctly designed for their intended pur-
poses.

Most of classical mathematics is set in a framework consisting of fields,
especially 0, DL and C. The theory of equations deals with polynomials over

and C, calculus is concerned with functions over and plane geometry is
set in fD x It It is not surprising, therefore, that modern efforts to generalize
and unify these subjects should also center around the study of fields. It

turns out that a great variety of problems, ranging from geometry to practi-
cal computation, can be translated into the language of fields and formu-
lated entirely in terms of the theory of fields. The study of fields will there-
fore be our central concern in the remaining chapters, though we will see
other themes merging and flowing into it like the tributaries of a great river.

If F is a field, then a subfield of F is any nonempty subset of F which is
closed with respect to addition and subtraction, multiplication and division.
(It would be equivalent to say: closed with respect to addition and nega-
tives, multiplication and multiplicative inverses.) As we already know, if K
is a subfield of F, then K is a field in its own right.

If K is a subfield of F, we say also that F is an extension field of K.
When it is clear in context that both F and K are fields, we say simply that
F is an extension of K.

Given a field F, we may look inward from F at all the subfields of F. On
the other hand, we may look outward from F at all the extensions of F. Just
as there are relationships between F and its subfields, there are also interest-
ing relationships between F and its extensions. One of these relationships,
as we shall see later, is highly reminiscent of Lagrange's theorem—an
inside-out version of it.

Why should we be interested in looking at the extensions of fields?
There are several reasons, but one is very special. If F is an arbitrary field,
there are, in general, polynomials over F which have no roots in F. For
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example, x2 + 1 has no roots in fit This situation is unfortunate but, it
turns out, not hopeless. For, as we shall soon see, every polynomial over
any field F, has roots. If these roots are not already in F, they are in a
suitable extension of F. For example, x2 + I = 0 has solutions in C.

In the matter of factoring polynomials and extracting their roots, C is
utopia! In C every polynomial a(x) of degree n has exactly n rootsc1, ...,
and can therefore be factored as a(x) = k(x — c1)(x — c2) (x — ca). This
ideal situation is not enjoyed by all fields—far from it! In an arbitrary field
F, a polynomial of degree n may have any number of roots, from no roots
to n roots, and there may be irreducible polynomials of any degree what-
ever. This is a messy situation, which does not hold the promise of an
elegant theory of solutions to polynomial equations. However, it turns out
that F always has a suitable extension E such that any polynomial a(x) of
degree n over F has exactly n solutions in E. Therefore, a(x) can be factored
in E[x] as

a(x) = k(x — cj)(x — c2) ... (x —

Thus, paradise is regained by the expedient of enlarging the field F. This is
one of the strongest reasons for our interest in field extensions. They will
give us a trim and elegant theory of solutions to polynomial equations.

Now, let us get to work! Let E be a field, F a subfield of E, and c any

element of E. We define the substitution function as follows:
For every polynomial a(x) in F[x],

= a(c)

Thus, is the function "substitute c for x." It is a function from F[x] into
E. In fact, a homomorphism. This is true because

+ h(x)) = +

a(c) + b(c) a(c) b(c)

and

=

a(c)h(c) a(c) b(c)



FXTFNS!ONS OF FiELDS 273

The kernel of the homomorphism is the set of all the polynomials
a(x) such that a(c) = = 0. That is, the kernel of consists of all the
polynomials a(x) in F[x] such that c is a root of a(x).

Let denote the kernel of since the kernel of any homomorphism
is an ideal, is an ideal of F[x].

An element c in E is called algebraic over F if it is the root of some
nonzero polynomial a(x) in F[x]. Otherwise, c is called transcendental over
F. Obviously c is algebraic over F contains nonzero polynomials, and
transcendental over F 1ff = {O}.

We will confine our attention now to the case where c is algebraic. The
transcendental case will be examined in Exercise G at the end of this
chapter.

Thus, let c be algebraic over F, and let be the kernal of (where
is the function "substitute c for x"). Remember that in F[x] every ideal is a
principal ideal, hence = <p(x)> = the set of all the multiples of p(x), for
some polynomial p(x). Since every polynomial in is a multiple of p(x),
p(x) is a polynomial of lowest degree among all the nonzero polynomials in

It is easy to see that p(x) is irreducible; otherwise we could factor
it into polynomials of lower degree, say p(x) = f(x)g(x). But then
0 = p(c) =f(c)g(c), sof(c) = 0 or g(c) = 0, and therefore eitherf(x) or g(x) is
in This is impossible, because we have just seen that p(x) has the lowest
degree among all the polynomials in whereas f(x) and g(x) both have
lower degree than p(x).

Since every constant multiple of p(x) is in we may take p(x) to be
monic, that is, to have leading coefficient I. Then p(x) is the unique monic
polynomial of lowest degree in (Also, it is the only monic irreducible
polynomial in ia.) This polynomial p(x) is called the minimum polynomial of
c over F, and will be of considerable importance in our discussions in a
later chapter.

Let us look at an example: is an extension field of €1, and P contains
the irrational number The function is the function "substitute
for x"; for example (x4 — 3x2 + 1) = — + 1 = —1. By our
discussion above, Q[x] —p P is a homomorphism and its kernel con-
sists of all the polynomials in Q[xj which have as one of their roots.
The monic polynomial of least degree in Q[x] having as a root is
p(x) = — 2; hence x2 — 2 is the minimum polynomial of \/i over Q.

Now, let us turn our attention to the range of Since a,, is a homo-
morphism, its range is obviously closed with respect to addition, multi-
plication, and negatives, but it is not obviously closed with respect to
multiplicative inverses. Not obviously, but in fact it is closed for multi-
plicative inverses, which is far from self-evident, and quite a remarkable
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fact. In order to prove this, letf(c) be any nonzero element in the range of
ci,. Sincef(c) O,f(x) is not in the kernel of crc. Thus,f(x) is not a multiple
of p(x), and since p(x) is irreducible, it follows that f(x) and p(x) are rela-
tively prime. Therefore there are polynomials s(x) and t(x) such that
s(x)f(x) + t(x)p(x) = I. But then

s(c)f(c) + t(c)p(c) = 1

=0

and therefore s(c) is the multiplicative inverse off(c).
We have just shown that the range of a subfield of E. Now, the

range of is the set of all the elements a(c), for all a(x) in F[x]:

Range = {a(c): a(x) e F[x]}

We have just seen that range a field. In fact, it is the smallest field
containing F and c: indeed, any other field containing F and c would
inevitably contain every element of the form

(a0

in other words, would contain every element in the range of
By the smallest field containing F and c we mean the field which con-

tains F and c and is contained in any other field containing F and c. It is
called the field generated by F and c, and is denoted by the important
symbol

F(c)

Now, here is what we have, in a nutshell: a homomorphism with
domain F[x], range F(c), and kernel = <p(x)). Thus, by the fundamental
homomorphism theorem,

F(c)

Finally, here is an interesting sidelight: if c and d are both roots of p(x),
then, by what we have just proved, F(c) and F(d) are both isomorphic to
F[x]/<p(x)>, and therefore isomorphic to each other:

(*) If c and d are roots of the same irreducible polynomial p(x) in F[x],
then F(c) F(d).

In particular, this shows that, given F and c, F(c) is unique up to isomor-
phism.

It is time now to recall our main objective: if a(x) is a polynomial in
F[x] which has no roots in F, we wish to enlarge F to a field E which
contains a root of a(x). How can we manage this?



EXTENSIONS OF FIELDS 275

An observation is in order: finding extensions of F is not as easy as
finding subfields of F. A subfield of F is a subset of an existing set: it is
there! But an extension of F is not yet there. We must somehow build it
around F.

Let p(x) be an irreducible polynomial in F[x]. We have just seen that if
F can be enlarged to a field E containing a root c of p(x), then F(c) is
already what we are looking for: it is an extension of F containing a root of
p(x). Furthermore, F(c) is isomorphic to FIx]/<p(x)>. Thus, the field exten-
sion we are searching for is precisely F[x]/c(p(x))i. Our result is summarized
in the next theorem.

Basic theorem of field extensions Let F be a field and a(x) a nonconstant
polynomial in F[x]. There exists an extension field E ofF and an element c in
F such that c is a root of a(x).

To begin with, a(x) can be factored into irreducible polynomials in
F[x]. If p(x) is any nonconstant irreducible factor of a(x), it is clearly
sufficient to find an extension of F containing a root of p(x), since it will
also be a root of a(x).

In Exercise D4 of Chapter 25, the reader was asked to supply the
simple proof that, if p(x) is irreducible in F[x], then <p(x)> is a maximal
ideal of F[x]. Furthermore, by the argument at the end of Chapter 19, if
<p(x)> is a maximal ideal of F[x], then the quotient ring F[x]/<p(x)> is a
field.

It remains only to prove that F[x]/'(p(x)> is the desired field extension
of F. When we write J = <p(x)>, let us remember that every element of
F[x]/J is a coset of .1. We will prove that F[x]/J is an extension of F by
identifying each element a in F with its coset J + a.

To be precise, define h: F —* F[x]/J by h(a) = J + a. Note that h is the
function which matches every a in F with its coset J + a in F[x]/J. We will
now show that h is an isomorphism.

By the familiar rules of coset addition and multiplication, h is a homo-
morphism. Now, every homomorphism between fields is injective. (This is
true because the kernel of a homomorphism is an ideal, and a field has no
nontrivial ideals.) Thus, h is an isomorphism between its domain and its
range.

What is the range of h? It consists of all the cosets J + a where a e F,
that is, all the cosets of constant polynomials. (If a is in F, then a is a
constant polynomial.) Thus, F is isomorphic to the subfield of F[x]/J
containing all the cosets of constant polynomials. This subfield is therefore an
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isomorphic copy of F, which may be identified with F, so F[x]/J is an
extension of F.

Finally, if p(x) a0 + a1x + + let us show that the coset
J + x is a root of p(x) in F[x]/J. Of course, in F[x]/J, the coefficients are
not actually a0, their cosets J+a0,
Writing

and J+x=i
we must prove that

Well,

a0 + + + = (J + a0) + (J + a1)(J + x) + + (J + + 4
= (J + ao) + (J + a1x) + + (J +

= J + p(x)

= J [because p(x) J]

This completes the proof of the basic theorem of field extensions. Ob-
serve that we may use this theorem several times in succession to get the
following:

Let a(x) he a polynomial of degree n in F[x]. There is an extension field
E ofF which contains all n roots of a(x).

EXERCISES

A. Recognizing Algebraic Elements

Example To show that + \/2 is algebraic over 0, one must find a polynomial
p(x) a Q[x] such that + is a root of p(x).

Let a = + then a2 = 1 + a2 — I = \/i, and finally, (a2 — 1)2 = 2.

Thus, a satisfies Mx) = — 2x2 — 1 = 0.

1 Prove that each of the following numbers is algebraic over 0:
(a)i (c)2+3i
(e)\/i—q7

2 Prove that each of the following numbers is algebraic over the given field:

(a) over 0(E) (h) over 0(m2) (c) it2 — 1 over 0(m3)
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NOTE: Recognizing a transcendental element is much more difficult, since it
requires proving that the element cannot be a root of any polynomial over the given
field. In recent times it has been proved, using sophisticated mathematical machi-
nery, that it and e are transcendental over ILl.

B. Finding the Minimum Polynomial

I Find the minimum polynomial of each of the following numbers over ILl. (Where
appropriate, use the methods of Chapter 26, Exercises D, E, and F to ensure that
your polynomial is irreducible.)

(a)1+2i (b)1+Ii
(d) + jt/N (e) + (f)

2 Show that the minimum polynomial + i is:

(a) x2 — + 3 over 11 (h) x4 — 2x2 + 9 over ILl (c) x2 — 21x — 3 over 0(i)

3 Find the minimum polynomial of the following numbers over the indicated fields:

+ i over Ill; over 0: over 0(i); over

+ over Fl; over 0(i); over over 0

4 For each of the following polynomials p(x), find a number a such that p(x) is the
minimum polynomial of a over 0:

(a) x2 + 2x — 7 (b) x4 + 2x2 — I (c) x4 — lOx2 + I

5 Find a monic irreducible polynomial Mx) such that_0[x]/<p(x)> is isomorphic to:
(a) (h) 0(1 + (c) +

C. The Structure of Fields

Let p(t) be an irreducible polynomial of degree n over F. Let c denote a root of Mx)
in some extension of F (as in the basic theorem on field extensions). Prove:

I Every element in F(c) can be written as r(c), for some r(x) of degree <n in F[x].
[HINT: Given any element 1(c) e F(c), use the division algorithm to divide t(x) by
p(t).]
2 If s(c) = 1(c) in F(c), where s(x) and t(x) have degree <n, then s(x) = t(x).

3 Conclude from parts I and 2 that every element in F(c) can be written uniquely as
r(c), with deg r(x) <n.
4 Using part 3, explain why there are exactly four elements in Z2[x]/<x2 + x + 1).
List these four elements, and give their addition and multiplication tables. [HINT:
Identify Z2[x]/<x2 + x + 1) with 12(c), where c is a root of x2 + x + I. Write the
elements of 712(c) as in part 3. When computing the multiplication table, use the fact
that c2 + c + I = 0.]
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5 Describe Z2[x]/<x3 + x + 1>, as in part 4.
6 Describe 13[x]/<x3 + x2 + 2>, as in part 4.

D. Short Questions Relating to Field Extensions

Let F be any field. Prove each ofthefollowing:

I If c is algebraic over F, so are c + I and kc (where k a F).

2 If cd is algebraic over F, then c is algebraic over F(d). If c + d is algebraic over F,
then c is algebraic over F(d)
3 If the minimum polynomial of a over F is of degree I, then a a F, and conversely.

4 Suppose F c K and a a K. If p(x) is a monic irreducible polynomial in F[x], and
p(a) = 0, then p(x) is the minimum polynomial of a over F.

5 Name a field ( R or C) which contains a root of x5 + 2x3 + 4x2 + 6.
6 0(1 + i) 0(1 — i). However, QLJ5).
7 If p(x) has degree 2, then 0[x]/<p(x)> contains both roots of p(x).

E. Simple Extensions

Recall the definition of F(a). It is a field such that (i) F c F(a); (ii) a a F(a); (iii) any
field containing F and a contains F(a). Use this definition to prove each of the
following, where F K, c a F, and a a K:

1 F(a) = F(a + c) and F(a) = F(ca).

2 F(a2) c F(a) and F(a + h) c F(a, h). [F(a, b) is the field containing F, a, and b, and
contained in any other field containing F, a, and h] Why are the reverse inclusions
not necessarily true?
3 a+cisarootofp(x)ifTaisarootofp(x+c);caisarootofp(x)ifraisarootof
p(cx).

4 Let a be a root of p(x + c). Then F[x]/<p(x + c)> F(a) and

F[x]/<p(x)> F(a + c)

Conclude that F[x]/<p(x + c)> F[x]/<p(x)>.
5 Let a be a root of p(cx). Then F[x]/(p(cx)> F(a) and F[x]/<p(x)> F(ca).
Conclude that F[x]/<p(cx)> F[x]/<p(x)>.
6 Use parts 4 and 5 to prove the following:

(a) Z11[x]/<x2 + 1> ?L11[x]/<x2 + x + 4>.

(b) If a is a root of x2 — 2 and b is a root of x2 — 4x + 2, then 0(a) 0(h).
(c) If a is a root of x2 — 2 and h is a root of x2 —4, then 0(a) 0(b).
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t F. Quadratic Extensions

If the minimum polynomial of a over F has degree 2, we call F(a) a quadratic
extension of F. Prove the following, where F is any field whose characteristic is 2.

1 Any quadratic extension of F is of the form FkJ), for some a F. (HINT:
Complete the square, and use Exercise E4.)

Let F be a finite field, and F* the multiplicative group of nonzero elements of
F. Obviously H = {x2 : x e F*} is a subgroup of F*; since every square x2 in F* is
the square of only two different elements, namely ±x, exactly half the elements of

are in H. Thus, H has exactly two cosets: H itself, containing all the squares, and
aH (where a * H), containing all the nonsquares. If a and h are nonsquares, then by
Chapter 15, Theorem 5a,

aab' =—eH

Thus: if a and h are nonsquares, a/h is a square. Use these remarks in thefollowing:

2 Let F be a finite field. If a, h e F, let p(x) = — a and q(x) = — h be irreduc-
ible in F[x], and let and denote roots of p(x) and q(x) in an extension of F.
Explain why a/b is a square, say a/h = c2 for some c e F. Prove that is a root of
p(cx).

3 Use part 2 to prove that F[x]/<p(cx)> then use Exercise E5 to conclude
that F(,/i).
4 Use part 3 to prove: Any two quadratic extensions of a finite field are isomorphic.
5 If a and h are nonsquares in R, a/b is a square (why?). Use the same argument as
in part 4 to prove that any two simple extensions of R are isomorphic (hence
isomorphic to C).

G. Questions Relating to Transcendental Elements

Let F be a field, and let c be transcendental over F. Prove the following:

1 {a(c): a(x) F[x]} is an integral domain isomorphic to F[x].
2 F(c) is the field of quotients of {a(c): a(x) e F[x]}, and is isomorphic to F(x), the
field of quotients of F[x].
3 If c is transcendental over F, so are c + 1, kc (where k F), and c2.

4 If c is transcendental over F, every element in F(c) but not in F is transcendental
over F.
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t H. Common Factors of Two Polynomials:
Over F and over Extensions of F

Let F be a field, and let a(x), b(x) e F[x]. Prove the following:

1 If a(x) and h(x) have a common root c in some extension of F, they have a
common factor in F[x]. [Use the fact that a(x), b(x) e ker
2 If a(x) and b(x) are relatively prime in F[xJ, they are relatively prime in K[x], for
any extension K of F.
3 Let K L be fields containing the coefficients of a(x) and b(x). Then a(x) and b(x)
are relatively prime in K[x] itt they are relatively prime in L[x],

t I. Derivatives and Their Properties

Let a(x) = a0 + a1x + + a F[x]. The derivative of a(x) is the following
polynomial a'(x) a

(This is the same as the derivative of a polynomial in calculus.) We now prove the
analogs of the formal rules of differentiation, familiar from calculus.

Let a(Y), h(x) a F[x], and let k a F. Prove the following:

1 [a(x) + h(x)]' = a'(x) + h'(x)
2 [a(x)h(x)]' = a'(x)h(x) + a(x)h'(x)

3 [ka(x)]' = ka'(x)

4 If F has characteristic 0 and a'(x) = 0, then a(x) is a constant polynomial. Why is
this conclusion not necessarily true if F has characteristic p # 0?
5 Find the derivative of the following polynomials in 725[x]:

x6+2x3+x+l x5+3x2+l x15+3x'°+4x5+l
6 If F has characteristic p 0, and a'(x) = 0, prove that the only nonzero terms of
a(v) are of the form amp xmhl for some m. [That is, a(x) is a polynomial in powers of

t J. Multiple Roots

Suppose a(x) a F[Y], and K is an extension of F. An element c a K is called a
multiple root of a(x) if(x — c)tmla(x) for some in> 1. It is often important to know if
all the roots of a polynomial are different, or not. We now consider a method for
determining whether an arbitrary polynomial a(x) a F[x] has multiple roots in any
extension of F.

Let K be any field containing all the roots of a(x). Suppose a(x) has a multiple
root c.
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I Prove that a(x) = (x — c)2q(x) for some q(x) e K[x].
2 Compute a'(x), using part 1.
3 Show that x — c is a common factor of a(x) and a'(x). Use Exercise 1-11 to con-
clude that a(x) and a'(x) have a common factor of degree > I in F[x].

Thus, if a(x) has a multiple root, then a(x) and a'(x) have a common factor in
F[x]. To prove the converse, suppose a(x) has no multiple roots. Then a(x) can be
factored as a(x) = (x — c1) (x — en) where c1 are all different.

4 Explain why a'(x) is a sum of terms of the form

(x — c1) (x — c1_ 1)(x — ... (x — en).

5 Using part 4, explain why none of the roots c1, ..., of a(x) are roots of a'(x).
6 Conclude that a(x) and a'(x) have no common factor of degree > I in F[x].

This important result is stated as follows: A polynomial a(x) in F[x] has a
multiple root a common factor of degree > 1 in F[x].

7 Show that each of the following polynomials has no multiple roots in any exten-
sion of its field of coefficients:

— 7x2 + 8 a Q[x] x2 + x + I a Z5[xl x'°° — I a Z,[x]

The preceding example is most interesting: it shows that there are 100 djfferent
hundredth roots of I over Z7. (The roots ± I are in Z7, while the remaining 98
roots are in extensions of Z7.) Corresponding results hold for most other fields.



CHAPTER

TWENTY-EIGHT
VECTOR SPACES

Many physical quantities, such as length, area, weight, and temperature, are
completely described by a single real number. On the other hand, many
other quantities arising in scientific measurement and everyday reckoning
are best described by a combination of several numbers. For example, a
point in space is specified by giving its three coordinates with respect to an
xyz coordinate system.

Here is an example of a different kind: A store handles 100 items; its
monthly inventory is a sequence of 100 numbers (a1, a2 a100) speci-
fying the quantities of each of the 100 items currently in stock. Such a
sequence of numbers is usually called a vector. When the store is restocked,
a vector is added to the current inventory vector. At the end of a good
month of sales, a vector is subtracted.

As this example shows, it is natural to add vectors by adding corre-
sponding components, and subtract vectors by subtracting corresponding
components. If the store manager in the preceding example decided to
double inventory, each component of the inventory vector would be multi-
plied by 2. This shows that a natural way of multiplying a vector by a real
number k is to multiply each component by k. This kind of multiplication is
commonly called scalar multiplication.

Historically, as the use of vectors became widespread and they came to
be an indispensable tool of science, vector algebra grew to be one of the
major branches of mathematics. Today it forms the basis for much of
advanced calculus, the theory and practice of differential equations, statis-
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tics, and vast areas of applied mathematics. Scientific computation is enor-
mously simplified by vector methods; for example, 3, or 300, or 3000 indi-
vidual readings of scientific instruments can be expressed as a single vector.

In any branch of mathematics it is elegant and desirable (but not
always possible) to find a simple list of axioms from which all the required
theorems may be proved. In the specific case of vector algebra, we wish to
select as axioms only those particular properties of vectors which are abso-
lutely necessary for proving further properties of vectors. And we must
select a sufficiently complete list of axioms so that, by using them and them
alone, we can prove all the properties of vectors needed in mathematics.

A delightfully simple list of axioms is available for vector algebra. The
remarkable fact about this axiom system is that, although we conceive of
vectors as finite sequences (a1, a2 of numbers, nothing in the axioms
actually requires them to be such sequences! Instead, vectors ace treated
simply as elements in a set, satisfying certain equations. Here is our basic
definition:

A vector space over a field F is a Set V, with two operations + and
called vector addition and scalar multiplication, such that

1. V with vector addition is an abelian group.
2. For any k e F and a e V. the scalar product ka is an element of V,

subject to the following conditions: for all k, 1 e F and a, b e V,
(a) k(a + b) = ka + kb,
(b) (k + 1)a = ka + la,
(c) k(la) = (kl)a,

(ci) la = a.

The elements of V are called vectors and the elements of the field F are
called scalars.

In the following exposition the field F will not be specifically referred to
unless the context requires it. For notational clarity, vectors will be written
in bold type and scalars in italics.

The traditional example of a vector space is the set l1" of all n-tuples of
real numbers, (a1, a2, ..., an), with the operations

and

For example, is the set of all two-dimensional vectors (a, h), while lfV is
the set of all vectors (a, b, c) in euclidean space.
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b) be)

However, these are not the only vector spaces! Our definition of vector
space is so very simple that many other things, quite different in appearance
from the traditional vector spaces, satisfy the conditions of our definition
and are therefore, legitimately, vector spaces.

For example, you may recall, is the set of all functions from R to
IR. We define the sumf+ g of two functions by the rule

[1+ g](x) =f(x) + g(x)

and we define the product af, of a real number a and a functionf, by

[af](x) = af(x)

It is very easy to verify that .F(R), with these operations, satisfies all the
conditions needed in order to be a vector space over the field P.

As another example, let Yt denote the set of all polynomials with real
coefficients. Polynomials are added as usual, and scalar multiplication is
defined by

k(a0 + a1x + + = (ka0) + (ka1)x + ... +

Again, it is not hard to see that en is a vector space over P.
Let V be a vector space. Since V with addition alone is an abelian

group, there is a zero element in V called the zero vector, written as 0. Every
vector a in V has a negative, written as —a. Finally, since V with vector
addition is an abelian group, it satisfies the following conditions which are
true in all abelian groups:

a+b=a+c implies b=c (*)

a+b=0 implies a=—b and h=—a (**)

—(a+b)=(—a)+(—b) and (***)

There are simple, obvious rules for multiplication by zero and by nega-
tive scalars. They are contained in the next theorem.

Theorem I If V is a vector space, then:
(a) Oa = 0,for every a e V.
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(b) kO = O,for every scalar k.
(c) Ifka=O,thenk=Oora =0.
(d) (—1)a = —afor every a e V.

To prove Rule (a), we observe that

Oa = (0 + 0)a = Oa + Oa

hence 0 + Oa = Oa + Oa. It follows by (*) that 0 = Oa.

Rule (b) is proved similarly. As for Rule (c), if k = 0, we are done. If
k 0, we may multiply ka = 0 by I/k to get a = 0. Finally, for Rule (d), we
have:

a+(—l)a=la+(—l)a=(1+(—l))a=Oa=0
soby(**),(_l)a= —a.

Let V be a vector space, and U V. We say that U is closed with
respect to scalar multiplication if ka e U for every scalar k and every a e U.
We call U a suhspace of V if U is closed with respect to addition and scalar
multiplication. It is easy to see that if V is a vector space over the field F,
and U is a subspace of V. then U is a vector space over the same field F.

If a1, a2, ..., are in V and k1, k2 are scalars, then the vector

is called a linear combination of a1, a2, ..., The set of all the linear
combinations of a1, a2, ..., a subspace of V. (This fact is exceedingly
easy to verify.)

If U is the subspace consisting of all the linear combinations of a1,
a2 we call U the subspace spanned by a1, a2, ..., An equivalent
way of saying the same thing is as follows: a space (or subspace) U is
spanned by a1, a2 if every vector in U is a linear combination ofa1,

If U is spanned by a1, a2, ..., we also say that a1, a2 span U.
Let S = {a1, a2 be a set of distinct vectors in a vector space V.

Then S is said to be linearly dependent if there are scalars k1 not all
zero, such that

(I)

Obviously this is the same as saying that at least one of the vectors in S is a
linear combination of the remaining ones. [Solve for any vector

a nonzero coefficient.]
If S = {a1, a2, ..., is not linearly dependent, then it is linearly inde-
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pendent. That is, S is linearly independent if

implies

This is the same as saying that no vector in S is equal to a linear combi-
nation of the other vectors in S.

It is obvious from these definitions that any set of vectois containing
the zero vector is linearly dependent. Furthermore, the set {a}, containing a
single nonzero vector a, is linearly independent.

The next two lemmas, although very easy and at first glance rather
trite, are used to prove the most fundamental theorems of this subject.

Lemma I If {a1, a2 is linearly dependent, then some a, is a linear
combination of the preceding ones, a1, a2,...,

Indeed, if {a,, a2 is linearly dependent, then k1a1 + +
= 0 for coefficients k1, k2, ..., which are not all zero. If k, is the last

nonzero coefficient among them, then k1a, + + k,a, = 0, and this equa-
tioncanbeusedtosolvefora,intermsofa1 a,,.

Let {a1, a2 denote the set {a1, a2 after removal
of a1.

Lemma 2 If {a1, a2, ..., aj spans V. and a, is a linear combination of
preceding vectors, then {a1, ..., still spans V.

Our assumption is that a, = k,a1 + + k,_1a,_1 for some scalars
Since every vector b e V is a linear combination

it can also be written as a linear combination

in which a1 does not figure.

A set of vectors {a1, ..., aj in V is called a basis of V if it is linearly
independent and spans V.

For example, the vectors e, = (1, 0, 0), e2 = (0, 1, 0), and = (0, 0, 1)
form a basis of They are linearly independent because, obviously, no
vector in {e1, e2, e3} is equal to a linear combination of preceding ones.
[Any linear combination of c1 and e2 is of the form ae1 + be2 = (a, b, 0),
whereas a3 is not of this form; similarly, any linear combination of a, alone
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is of the form ac1 = (a, 0, 0), and 82 not of that form.] The Vectors c,, 82,
83 span IV because any Vector (a, h, c) in 1R can be written as (a, b, c) = ac,

+ b82 + C83.

Actually, {c,, 82, 83} is not the only basis of Another basis of 1W
consists of the Vectors (1, 2, 3), (1, 0, 2), and (3, 2, 1); in fact, there are
infinitely many different bases of 1W. Nevertheless, all bases of 1W have one
thing in common: they contain exactly three vectors! This is a consequence
of our next theorem:

Theorem 2 Any two bases of a vector space V have the same number of
elements.

Suppose, on the contrary, that V has a basis A = {a, a

basis B {b, bm} where ni n. To be specific, suppose n cm. From
this assumption we will derive a contradiction.

Put the vector b, in the set A, so A now contains {b1, a1, a2
This set is linearly dependent because b, is a linear Combination of a,

But then, by Lemma 1, some a, is a linear combination of preceding
vectors. By Lemma 2 we may expel this a1, and the remaining set {b,, a,,

aj still spans V.
Repeat this argument a second time by putting b2 in A, so A now

contains {b2, b,, a1, a2, ..., ..., aj. This set is linearly dependent
because {b,, a, spans V and therefore b2 is a linear combi-
nation of b,, a, ..., a linear combi-
nation of preceding vectors in A, so by Lemma 2 we may remove and
{b2,b1,a,,a2 aj stillspans V.

This argument is repeated n times. Each time, a vector from B is put
into A and a vector a,, is removed. At the end of the nth repetition, A
contains only b1, ..., and {b1, ..., bj still spans V. But this is impossible
because it implies that is a linear combination of b1 whereas in
fact, B = {b,, ..., bm} is linearly independent!

This contradiction proves that any two bases of V must contain the
same number of elements!

If V has a basis {a,, ..., aj, we call V afinite-dimen5ional vector space
and say that V is of dimension n. In that case, by Theorem 2 every basis of
V has exactly n elements.

In the sequel we consider only finite-dimensional vector spaces. The
next two lemmas are quite interesting. The first one states that if {a,
am} spans V, there is a way of removing vectors from this set, one by one,
until we are left with an independent set which still spans V.
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Lemma 3 If the set {a1, ..., aj spans V, it contains a basis of V.

If {a1, ..., a,,,} is an independent set, it is a basis, and we are done. If
not, some a linear combination of preceding ones, so {a1
am} still spans V. Repeating this process, we discard vectors one by one
from {a1 am} and, each time, the remaining vectors still span V. We
keep doing this until the remaining set is independent. (In the worst case,
this will happen when only one vector is left.)

The next lemma asserts that if {a1, ..., aj is an independent set of
vectors in V. there is a way of adding vectors to this set so as to get a basis
of V.

Lemma 4 If the set {a1 is linearly independent, it can be extended to

a basis of V.

isanybasisofV,then{a1 spans V. By
the proof of Lemma 3, we may discard vectors from this set until we get a
basis of V. Note that we never discard any a1, because, by hypothesis, a1 is
not a linear combination of preceding vectors.

The next theorem is an immediate consequence of Lemmas 3 and 4.

Theorem 3 Let V have dimension n. If {a1, ..., aj is an independent set, it is
already a basis of V. If {b1 spans V, it is already a basis of V.

If {a1, ..., a basis of V. then every vector c in V has a unique
expression c = k1a1 + + a linear combination of a1
Indeed, if

then

hence

c with respect to the basis {a1, ..., It is then
convenient to represent c as the n-tuple
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If U and V are vector spaces over a field F, a function h: U —* V is a
homomorphism if it satisfies the following two conditions:

h(a + b) = h(a) + h(b)

and h(ka) = kh(a)

A homomorphism of vector spaces is also called a linear transformation.
If h: U —÷ V is a linear transformation, its kernel [that is, the set of all

a e U such that h(a) = 0] is a subspace of U, called the null space of h.
Homomorphisms of vector spaces behave very much like homomorphisms
of groups and rings. Their properties are presented in the exercises.

EXERCISES

A. Examples of Vector Spaces

1 Prove that II?', as defined on page 283, satisfies all the conditions for being a
vector space over IR.

2 Prove that F(R), as defined on page 284 is a vector space over R
3 Prove that YE', as defined on page 284, is a vector space over R
4 Prove that J12(IR), the set of all 2 x 2 matrices of real numbers, with matrix
addition and the scalar multiplication

k1"
— (ka kb

d,i kkc kd

is a vector space over Ft

B. Examples of Subspaces

1 Prove that {(a, b, c) 2a — 3b + c = O} is a subspace of P3.

2 Prove that the set of all (x, y, z) e ER3 which satisfy the pair of equations
n + by + c = 0, dx + ey +f= 0 is a subspace of R3.
3 Prove that {f:f(I) = O} is a subspace of 39R).
4 Prove that {f:fis a constant on the interval [0, I]} is a subspace of F(R)
5 Prove that the set of all even functions [that is, functions f such that
f('c) = f(—x)] is a subspace of 39R). Is the same true for the set of all the odd
functions [that is, functionsf such thatf(—x) = —f(x)]?
6 Prove that the set of all polynomials of degree � n is a subspace of
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C. Examples of Linear Independence and Bases

1 Provethat {(O,O,O, 1),(O,O, 1, l),(O, 1,1, 1),(1, 1,1, 1)} isabasisoflR4.

2 If a = (1,2,3,4) and b = (4,3,2, 1), explain why {a, b} may be extended to a basis
of R4 Then find a basis of R4 which includes a and b.
3 Let A be the set of eight vectors (x, y, z) where x, y, z = 1, 2. Prove that A spans

and find a subset of A which is a basis of ft&I.

4 If is the subspace of consisting of all polynomials of degree �n, prove
that {1, x, x2 f} is a basis Then find another basis of
5 Find a basis for each of the following subspaces of

(a) S1={(x,y,z):3x—2y+z=O} (b) S2={(x,y,z):x+y—z=O and
2x — y + z = O}

6 Find a basis for the subspace of Fl3 spanned by the set of vectors (x, y, z) such
that x2 + + z2 = I.
7 Let U be the subspace of spanned by {cos2 x, sin2 x, cos 2x}. Find the
dimension of U, and then find a basis of U.

8 Find a basis for the subspace of spanned by

x3 + x2 + x + I, x2 + 1, x3 — + x — I, x2 — l}

D. Properties of Subspaces and Bases

Let V be a finite-dimensional vector space Let dim V designate the dimension of V.
Prove each of the following:

I If U is a subspace of V. then dim U � dim V.
2 If U is a subspace of V. and dim U = dim V. then U = V.

3 Any set of vectors containing 0 is linearly dependent.
4 The set {a}, containing only one nonzero vector a, is linearly independent.
5 Any subset of an independent set is independent. Any set of vectors containing a
dependent set is dependent.
6 If b, c} is linearly independent, so is {a + b, b + c, a + c}.
7 If {a1, . , a basis of V, so is {k1a1, . , for any nonzero scalars
k1

8 The space spanned by {a1, . , aj is the same as the space spanned by {b1
bm} if each a1 is a linear combination of b1 bm, and each is a linear combi-
nation of a1, .. ,

E. Properties of Linear Transformations

Let U and V be finite-dimensional vector spaces over a field F, and let h: U—÷ V be
a linear transformation. Prove each ofthefollowing:

I The kernel of h is a subspace of U. (It is called the null space of h.)
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2 The range of his a subspace of V. (It is called the range space of h.)
3 h is injective ill the null space of h is equal to {O}.

Let J" be the null space of h, and 3t the range space of h. Let {a1 ar} be a basis
Of/il Extend it to a basis {a1,. ., of U. Prove:

4 Every vector b a is a linear combination of h(ar+ i)
S . , h(aj} is linearly independent.
6 The dimension of I is n — r.

7 Conclude as follows: for any linear transformation h, dim (domain h) = dim (null
space of h) + dim (range space of h).
8 Let U and V have the same dimension n Use part 7 to prove that h is injective ill
h is surjective.

F. Isomorphism of Vector Spaces

Let U and V be vector spaces over the field F, with dim U = n and dim 1' = m. Let
h: U —p V be a homomorphism. Prove the following:

1 Let h be injective If {a1 ar} is a linearly independent subset of U, then
{h(a1), ..., h(a,j} is a linearly independent subset of V.
2 h is injective if dim U = dim h(U).

3 Suppose dim U = dim V; h is an isomorphism (that is, a bijective homomor-
phism) if h is injective if h is surjective.
4 Any n-dimensional vector space V over F is isomorphic to the space F" of all
n-tuples of elements of F.

t G. Sums of Vector Spaces

Let T and U be subspaces of V. The sum of T and U, denoted by T + U, is the set
of all vectors a + b, where a a T and b a U. Prove the following:

1 T+ Uand Tn UaresubspacesofV.

V is said to be the direct sum of T and U if V = T + U and T n U = {O}. In
that case, we write V = T U Prove the following

2 V = T U if every vector c a V can be written, in a unique manner, as a sum
c = a + b where a a T and b a U.
3 Let T be a k-dimensional subspace of an n-dimensional space V. Prove that an
(n — k)-dimensional subspace U exists such that V = T U.

4 If T and U are arbitrary subspaces of V. prove that

dim(T+ U)=dim T+dim U—dim(T n U)



CHAPTER

TWENTY-NINE
DEGREES OF FIELD EXTENSIONS

In this chapter we will see how the machinery of vector spaces can be
applied to the study of field extensions.

Let F and K be fields. If K is an extension of F, we may regard K as
being a vector space over F. We may treat the elements in K as "vectors"

and the elements in F as "scalars." That is, when we add elements in K, we
think of it as vector addition; when we add and multiply elements in F, we
think of this as addition and multiplication of scalars; and finally, when we
multiply an element of F by an element of K, we think of it as scalar
multiplication

We will be especially interested in the case where the resulting vector
space is of finite dimension. If K, as a vector space over F, is of finite
dimension, we call K a finite extension of F. If the dimension of the vector
space K is n, we say that K is an extension of degree n over F. This is

292
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symbolized by writing

[K : F] = n

which should be read, "the degree of K over F is equal to n."
Let us recall that F(c) denotes the smallest field which contains F and c.

This means that F(c) contains F and c, and that any other field K contain-
ing F and c must contain F(c). We saw in Chapter 27 that if c is algebraic
over F, then F(c) consists of all the elements of the form a(c), for all a(x) in
F[x]. Since F(c) is an extension of F, we may regard it as a vector space
over F. Is F(c) a finite extension ofF?

Well, let c be algebraic over F, and let p(x) be the minimum polynomial
of c over F. [That is, p(x) is the monic polynomial of lowest degree having
c as a root.] Let the degree of the polynomial p(x) be equal to n. It turns
out, then, that the n elements

1, c, c2, ...,

are linearly independent and span F(c). We will prove this fact in a moment,
but meanwhile let us record what it means. It means that the set of n
"vectors" {l, c, is a basis of F(c), hence F(c) is a vector space
of dimension n over the field F. This may be summed up concisely as
follows:

Theorem 1 The degree of F(c) over F is equal to the degree of the minimum
polynomial of c over F.

It remains only to show that the n elements I, c, ..., c" span F(c)
and are linearly independent. Well, if a(c) is any element of F(c), use the
division algorithm to divide a(x) byp(x):

a(x) = p(x)q(x) + r(x) where deg r(x) � n — 1

Therefore, a(c) =p(c)q(c) + r(c) = 0 + r(c) = r(c)

This shows that every element of F(c) is of the form r(c) where r(x) has
degree n — 1 or less. Thus, every element of F(c) can be written in the form

a0 + a1c + ... +

a linear combination of I, c, c2, ...,
Finally, to prove that I, c, c2, ..., —' are linearly independent, sup-

pose that If the coefficients Oo, a1,
- were not all zero, c would be the root of a nonzero polynomial of
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degree n — I or less, which is impossible because the minimum polynomial
ofcoverFhasdegreen.Thus,a0 =a1 = = =0.

For example, let us look at the number is not a root of any
monic polynomial of degree 1 over 0. For such a polynomial would have
to be x — and the latter is not in Q[x] because is irrational.
However, is a root of x2 — 2, which is therefore the minimum poly-
nomial of over 0, and which has degree 2. Thus,

0] = 2

In particular, every element in is therefore a linear combination of 1
and that is, a number of the form a + where a, be 0.

As another example, i is a root of the irreducible polynomial x2 + I in

I1[x]. Therefore x2 + 1 is the minimum polynomial of i over It x2 + I has
degree 2, so [I1(i) : = 2. Thus, lR(z) consists of all the linear combi-
nations of 1 and i with real coefficients, that is, all the a + bi where a, b e It
Clearly then, ftk(i) = C, so the degree of C over R is equal to 2.

In the sequel we will often encounter the following situation: E is a
finite extension of K, where K is a finite extension of F. If we know the

degree of E over K and the degree of K over F, can we determine the degree
of E over F? This is a question of major importance! Fortunately, it has an
easy answer, based on the following lemma:

Lemma Let a1, a2, ..., a,,, be a basis of the vector space K over F, and let b1,
b2 b,, be a basis of the vector space E over K. Then the set of mn
products is a basis of the vector space E over the field F.

To prove that the set {a1 spans F, note that each element c in F can
be written as a linear combination c = + + k,,h,, with coefficients
k1 in K. But each k1, because it is in K, is a linear combination

with coefficients in F. Substituting,

c = (l11a1 + ... + l,majbj + ... + (l,,1a1 + ...+ lnmam)bn

=
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and this is a linear combination of the products a1 with coefficient in F.
To prove that {a, is linearly independent, suppose a1 = 0.

This can be written as

(111a1 + ... + limam)bj + ... + + ... + lnmam)bn = 0

and since b1 are independent, + + limam = 0 for each i. But
a1 am are also independent, so every = 0.

With this result we can now conclude the following:

Theorem 2 Suppose F c K F where F is afinite extension of K and K is a
finite extension ofF. Then F is afinite extension ofF, and

[E: F] = [F: K] [K: F]

This theorem is a powerful tool in our study of fields. It plays a role in
field theory analogous to the role of Lagrange's theorem in group theory.
See what it says about any two extensions, K and F, of a fixed "base field"
F: If K is a subfield of F, then the degree of K (over F) divides the degree of
E(over F).

If c is algebraic over F, we say that F(c) is obtained by adjoining c to F.
If c and d are algebraic over F, we may first adjoin c to F, thereby obtain-
ing F(c), and then adjoin d to F(c) The resulting field is denoted F(c, 6),
and is the smallest field containing F, c, and d. [Indeed, any field contain-
ing F, c, and d must contain F(c), hence also F(c, 6).] It does not matter
whcther we first adjoin c and then d, or vice versa.

If c1, ..., are algebraic over F, we let F(c1 be the smallest
ficid containing Fand c1, ..., We call it the field obtained by adjoining

to F. We may form F(c1 step by step, adjoining onec1 at
a time, and the order of adjoining the c, is irrelevant.

An extension F(c) formed by adjoining a single element to F is called a
simple extension of F. An extension F(c1 c,j, formed by adjoining a
finite number of elements c1 is called an iterated extension. It is

called "iterated" because it can be formed step by step, one simple exten-

sion at a time:

Fc F(c1) c F(c1, c2) c F(c1, c2, c3) c c F(c1 (*)

If c1 are algebraic over F, then by Theorem 1, each extension in (*)
is a finite extension. By Theorem 2, F(c1, c2) is a finite extension of F;
applying Theorem 2 again, F(c1, c2, c3) is a finite extension of F; and so
on. So finally, if c1, ..., are algebraic over F, then F(c1 is afinite
extension ofF.

Actually, the converse is true too: every finite extension is an iterated
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extension. This is obvious: for if K is a finite extension of F, say an exten-
sion of degree n, then K has a basis {a1, ..., aj over F. This means that
every element in K is a linear combination of a1 with coefficients in
F; but any field containing F and a1 obviously contains all the
linear combinations of a1, .. ., hence K is the smallest field containing F
and a1 That is, K= F(a1 ar).

In fact, if K is a finite extension of F and Kz= F(a1 an), then
a1, ..., have to be algebraic over F. This is a consequence of a simple
but important little theorem:

Theorem 3 If K is a finite extension of F, every element of K is algebraic
over F.

Indeed, suppose K is of degree n over F, and let c be any element of K.
Then the set {l, c, c2, ..., ?} is linearly dependent, because it has n + 1
elements in a vector space K of dimension n. Consequently there are scalars
a0, ..., not all zero, such thata0 +a1c+ Therefore
c is a root of the polynomial a(x) = a0 + a1x + in F[x].

Let us sum up: Every iterated extension F(c1, ..., cj, where c1

are algebraic over F, is a finite extension of F. Conversely, every finite
extension of F is an iterated extension F(c1 ,...,cj, where c1 are
algebraic over F.

Here is an example of the concepts presented in this chapter. We have
already seen that is of degree 2 over Q, and therefore
consists of all the numbers a + where a, beQ. Observe that
cannot be in for if it were, we would have = a + for
rational a and b; squaring both sides and solving for would give us

= a rational number, which is impossible.
Since is not in cannot be a root of a polynomial of

degree 1 over (such a polynomial would have to be x — But
is a root of x2 — 3, which is therefore the minimum polynomial of

over Thus, is of degree 2 over and therefore by
Theorem 2, is of degree 4 over o.

By the comments preceding Theorem I, JI, is a basis of
over C, and {1, is a basis of 13) over Thus, by the
lemma of this chapter, {l, is a basis of over o.
This means that consists of all the numbers a + +
+ dfi, for all a, h, c, and d in C.
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For later reference. The technical observation which follows will be needed
later.

By the comments immediately preceding Theorem 1, every element of
F(c1) is a linear combination of powers of c1, with coefficients in F. That is,
every element of F(c1) is of the form

(**)

where the k1 are in F. For the same reason, every element of F(c1, c2) is of
the form

>1JCJ2

where the coefficients are in F(c1). Thus, each coefficient is equal to a
sum of the form (**). But then, clearing brackets, it follows that every
element of F(c1, c2) is of the form

where the coefficients are in F.
If we continue this process, it is easy to see that every element of

F(c1, c2 is a sum of terms of the form

k of each term is in F.

EXERCISES

A. Examples of Finite Extensions

I Find a basis for over 0, and describe the elements of (See the two
examples immediately following Theorem I)
2 Show that every element of R(2 + 31) can be written as a + bi, where a, h e 1R.
Conclude that R(2 + 3i) = C.

3 If a = + show that {l, 22/3, a, 2H3a, 2213a} is a basis of 0(a) over 0.
Describe the elements of 3(a).
4 Find a basis of + over 3, and describe the elements of +
5 Find a basis of 0(.%%/, over 0, and describe the elements of (See

the example at the end of this chapter.)
6 Find a basis of over 0, and describe the elements of

0 over which ir is algebraic of degree 3.
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B. Further Examples of Finite Extensions

Let F be a field of characteristic 2. Let a b be in F. Prove the following:

1 Any field F containing 4 + also contains 4 and [HINT: Compute
+ and show that e F. Then compute + 4), which is also

in F.] Conclude that + 4) = F(4,
2 If h x2a for any x e F, then \/b $ Conclude that F(4, 4) is of degree
4 over F.

3 Show that x =_4 + satisfies x4 — 2(a + h)x2 + (a — b)2 = 0. Show that
x = Ja + b + also satisfies this equation. Conclude that

+ b + 2a) = F(4, 4)
4 Using parts I to 3, find an uncomplicated basis for 0(d) over 0, where d is a root

of x4 — 14x2 + 9. Then find a basis for 0(\/T+ over 3.

C. Finite Extensions of Finite Fields

By the proof of the basic theorem of field extensions, if p(x) is an irreducible
polynomial of degree n in F[x], then F[x]/<p(x)> F(c) where c is a root of p(x). By
Theorem 1 in this chapter, F(c) is of degree n over F. Use the paragraph preceding
Theorem 1 to prove the following:

1 Every element of F(c) can be written uniquely as a0 + a1c +

a field of four elements. (It is to be an extension of 4.) Describe its
elements, and supply its addition and multiplication tables.
3 Construct a field of eight elements. (It is to be an extension of 4.)
4 If F has q elements, and a is algebraic over F of degree n, then F(a) has qfl
elements.

5 For every prime number p, there is an irreducible quadratic in Conclude
that for every prime p, there is a field with p2 elements.

D. Degrees of Extensions (Applications of Theorem 2)

Let F be a field, and K a finite extension of F. Prove the following:

1 [K.F]=liffK=F.
2 If [K: F] is a prime number, there is no field properly between F and K (that is,
there is no field L such that F L K).

3 If [K: F] is a prime, then K = F(a) for every a e K — F.
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4 Suppose a, b e K are algebraic over F with degrees m and n, where m and n are
relatively prime. Then:

(i) F(a, b) is of degree mn over F.
(ii) F(a) n F(b) = F.

5 If the degree of F(a) over F is a prime, then F(a) = for any n (on the
condition that $ F).
6 If an irreducible polynomial p(x) a F[x] has a root in K, then deg [K: F].

I!. Short Questions Relating to Degrees of Extensions

Let F be a field. Prove the following:

1 The degree of a over F is the same as the degree of 1/a over F. It is also the same
as the degrees of a + c and ac over F, for any c a F.
2 aisofdegreeloverFiffaeF.
3 If a real number c is a root of an irreducible polynomial of degree > I in Q[x],
then c is irrational.
4 Use part 3 and Eisenstein's irreducibility criterion to prove that (where m,

n a Z) is irrational if there is a prime number which divides m but not n, and whose
square does not divide in.
S Show that part 4 remains true for where q> 1.
6 If a and b are algebraic over F, then F(a, b) is a finite extension of F.

t F. Further Properties of Degrees of Extensions

Let F be a field, and K a finite extension of F. Prove each of the following:

1 Any element algebraic over K is algebraic over F, and conversely.
2 If b is algebraic over K, then [F(b): F] I [K(b): F].
3 If b is algebraic over K, then [K(b): K] I [F(b) : F]. (HINT: The minimum poly-
nomial of b over F may factor in K[x], and b will then be a root of one of its
irreducible factors.)
4 If b is algebraic over K, then [K(h): F(b)] I [K: F]. [HINT: Note that
F K K(b) and F c F(b) c K(b). Relate the degrees of the four extensions in-
volved here, using part 3.]
S Let p(x) be irreducible in F[x]. If [K: F] and deg p(x) are relatively prime, then
p(x) is irreducible in K[x]. [HINT: Suppose p(x) is reducible in K[x]. Let a(x) be an
irreducible factor of p(x) in K[x], and let c be a root of p(x) in some extension of K.
Relate [K : F] to [F(c): F], [K(c): K], and [K(c): F].]
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t G. Fields of Algebraic Elements:
Algebraic Numbers

Let F c K and a, b a K. We have seen on page 295 that if a and b are algebraic
over F, then F(a, b) is a finite extension of F. Use this to prove the following:

I If a and h are algebraic over F, then a + b, a — b, ab, and a/b are algebraic over F.
2 The set v a K : x is algebraic over F} is a subfield of K, containing F.

Any complex number which is algebraic over Q is called an algebraic number.
By part 2, the set of all the algebraic numbers is a field, which we shall designate by
A

Let a(x) = a0 + a1x + be in A[x], and let c be any root of a(x). We
will prove that c a A. To begin with, all the coefficients of a(x) are in Q(a0, a1
ar). Now prove the following:

3 O(a0, a1,. ., aj is a finite extension of Q.

Let O(a0 = Since a(x) a 01[x], c is algebraic over Prove:

4 01(c) is a finite extension of hence a finite extension of 11 (Why?)
S c C A.
6 Conclude: The roots of any polynomial whose coefficients are algebraic numbers
arc themselves algebraic numbers.

A field F is called algebraically closed if the roots of every polynomial in F[x]
are in F. We have thus proved that A is algebraically closed.
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THIRTY
RULER AND COMPASS

The ancient Greek geometers considered the circle and straight line to be
the most basic of all geometric figures, other figures being merely variants
and combinations of these basic ones. To understand this view we must
remember that construction played a very important role in Greek geom-
etry: when a figure was defined, a method was also given for constructing it.
Certainly the circle and the straight line are the easiest figures to construct,
for they require only the most rudimentary of all geometric instruments: the
ruler and the compass. Furthermore, the ruler, in this case, is a simple,
unmarked straightedge.

Rudimentary as these instruments may be, they can be used to carry
out a surprising variety of geometric constructions. Lines can be divided
into any number of equal segments, and any angle can be bisected. From
any polygon it is possible to construct a square having the same area, or
twice or three times the area. With amazing ingenuity, Greek geometers
devised ways to cleverly use the ruler and compass, unaided by any other
instrument, to perform all kinds of intricate and beautiful constructions.
They were so successful that it was hard to believe they were unable to
perform three little tasks which, at first sight, appear to be very simple:
doubling the cube, trisecting any angle, and squaring the circle. The first task
demands that a cube be constructed having twice the volume of a given
cube. The second asks that any angle be divided into three equal parts. The
third requires the construction of a square whose area is equal to that of a
given circle. Remember, only a ruler and compass are to be used!

301
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Mathematicians, in Greek antiquity and throughout the Renaissance,
devoted a great deal of attention to these problems, and came up with
many brilliant ideas. But they never found ways of performing the above
three constructions. This is not surprising, for these constructions are im-
possible! Of course, the Greeks had no way of knowing that fact, for the
mathematical machinery needed to prove that these constructions are
impossible—in fact, the very notion that one could prove a construction to
be impossible—was still two millennia away.

The final resolution of these problems, by proving that the required
constructions are impossible, came from a most unlikely source: it was a
by-product of the arcane study of field extensions, in the upper reaches of
modern algebra.

To understand how all this works, we will see how the process of
ruler-and-compass constructions can be placed in the framework of field
theory. Clearly, we will be making use of analytic geometry.

If d is any set of points in the plane, consider operations of the follow-
ing two kinds:

1. Ruler operation: Through any two points in at, draw a straight line.
2. Compass operation: Given three points A, B, and C in at, draw a circle

with center C and radius equal in length to the segment AB.

The points of intersection of any two of these figures (line-line, line-
circle, or circle-circle) are said to be constructible in one step from at. A
point P is called constructible from at if there are points P1, P2. ..., P

such that P1 is constructible in one step from at, P2 is constructible in one
step from at u {P1}, and so on, so that is constructible in one step from

As a simple example, let us see that the midpoint of a line segment AB
is constructible from the two points A and B in the above sense. Well, given
A and B, first draw the line AB. Then, draw the circle with center A and
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radius and the circle with center B and radius Al; let C and D be the
points of intersection of these circles. C and D are constructible in one step
from {,4, B}. Finally, draw the line through C and D; the intersection of this
line with AB is the required midpoint. It is constructible from {A, B}.

As this example shows, the notion of constructible points is the correct
formalization of the intuitive idea of ruler-and-compass constructions.

We call a point in the plane constructible if it is constructible from
x Q, that is, from the set of all points in the plane with rational coeffi-

cients.
How does field theory fit into this scheme? Obviously by associating

with every point its coordinates. More exactly, with every constructible
point P we associate a certain field extension of Q, obtained as follows:

Suppose P has coordinates (a, b) and is constructed from Q x Q in one
step. We associate with P the field Q(a, b), obtained by adjoining to Q the
coordinates of P. More generally, suppose P is constructible from Q x €1 in
n steps: there are then n points P1, P2 = P such that each P1 is
constructible in one step from 0 x 0 u {P1, ..., P11}. Let the coordi-
nates of P1 be (a1, h1) (an, bj, respectively. With the points

..., we associate fields K1 where K1 = 0(a1, b1), and for
each i> 1,

K1 = K11(a1, b1)

Thus, K1 = 0(a1, b1), K2 = K1(a2, b2), and so on: beginning with 0, we
adjoin first the coordinates of then the coordinates of P2. and so on
successively, yielding the sequence of extensions

We call K the field extension associated with the point P.
Everything we will have to say in the sequel follows easily from the next

lemma.

Lemma JfK1,..., are as defined previously, then [K1: K1_1] = 1, 2, or
4.

Remember that K1_ 1 already contains the coordinates of P1 P1_

and K1 is obtained by adjoining to K1 the coordinates x1, y, of P,. But
is constructible in one step from 0 x 0 u {P1 P11}, so we must
consider three cases, corresponding to the three kinds of intersection which
may produce P1, namely: line intersects line, line intersects circle, and circle:
intersects circle.
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Line intersects line: Suppose one line passes through the points (a1, a2)
and (h1, h2), and the other line passes through (c1, c2) and (d1, d2). We may
write equations for these lines in terms of the constants a1, a2, b1, b2, c1, c2
and i/H (all of which are in K1_ and then solve these equations simul-
taneously to give the coordinates x, y of the point of intersection. Clearly,
these values of x and y are expressed in terms ofa1, a2, h1, b2, c1, c2, d1,
d2, hence are still in K1_1. Thus, K1 = K11.

Line intersects circle: Consider the line AB and the circle with center C
and radius equal to the distance k = Let A, B, C have coordinates

(a1, a2), (b1, b2), and (c1, c2), respectively. By hypothesis, K1_ contains the
numbers a1, a2, b1, b2, c1, c2, as well as = the square of the distance 5E.
(To understand the last assertion, remember that K1_ contains the coordi-
nates of D and E; see the figure and use the pythagorean theorem.)

Now, the line AB has equation

y—b2b2—a2
(I)

x—b1 b1—a1

and the circle has equation

(x—c1)2+(y—c2)2=k2 (2)

Solving for x in (l)and substituting into (2) gives:

— a2

— a1

This is obviously a quadratic equation, and its roots are the x coordinates
of S and T. Thus, the x coordinates of both points of intersection are roots
of a quadratic polynomial with coefficients in K1_ The same is true of the
y coordinates. Thus, if K1 = K1_ 1(x1, y3 where (x1, yJ is one of the points of
intersection, then

[K1_ 1(x1, y3 : K1_ = [K1_ 1(x1, : K1_ 1(x1)] [K1_ 1(x1) : K1_

= 2x2=4

(This assumes that x1, K1 If either or or both are already in
K,_1, then [K,1(x1, y3 : = I or 2.)

B



Circle intersects circle: Suppose the two circles have equations

x2+y2+ax+by+c=O (3)

x2+y2+dx+ey+f=O (4)

Then both points of intersection satisfy

(a—d)x+(b—e)y+(c-—f)=O (5)

obtained simply by subtracting (4) from (3). Thus, x and y may be found by
solving (4) and (5) simultaneously, which is exactly the preceding case.

We are now in a position to prove the main result of this chapter:

Theorem 1: Basic theorem on constructible points If the point with coordi-
nates (a, b) is constructible, then the degree of Q(a) over C is a power of 2,
and likewise for the degree of C(b) over C.

Let P be a constructible point; by definition, there are points P1
with coordinates (a1, h1) (an, such that each is constructible in
one step from C x C u {P1, ..., and P,, = P. Let the fields associ-

[Ku: C] = [Ku: : ... : C]

and by the preceding lemma this is a power of 2, say 2"'. But

[Ku: C] = [Ku: C(a)][C(a): C]

hence [C(a): C] is a factor of 2"', hence also a power of 2.
We will now use this theorem to prove that ruler-and-compass con-

structions cannot possibly exist for the three classical problems described in
the opening to this chapter.

Theorem 2 "Doubling the cube" is impossible by ruler and compass.

Let us place the cube on a coordinate system so that one edge of the
cube coincides with the unit interval on the x axis. That is, its endpoints are
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and

/F/J

(I, 0)
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(0, 0) and (1, 0). If we were able to double the cube by ruler and compass,
this means we could construct a point (c, 0) such that c3 = 2. However, by
Theorem I, [Q(c): C] would have to be a power of 2, whereas in fact it is
obviously 3. This contradiction proves that it is impossible to double the
cube using only a ruler and compass.

Theorem 3 "Trisecting the angle" by ruler and compass is impossible. That
is, there exist angles which cannot be trisected using a ruler and compass.

We will show specifically that an angle of 600 cannot be trisected. If we
could trisect an angle of 60°, we would be able to construct a point (c, 0)
(see figure), where c = cos 20°, hence certainly we could construct (b, 0)
where b = 2 cos 20°.

But from elementary trigonometry

hence

cos 30 = 4 cos3 0 — 3 cos 0

cos 60° 4 cos3 20° — 3 cos 20°

1/2

Thus, h = 2 cos 20° satisfies b3 — 3h — I = 0. The polynomial

p(x)=x3 3x 1

is irreducible over C because p(x + 1) = x3 + 3x2 — 3 is irreducible by Eis-
enstein's criterion. It follows that C(b) has degree 3 over C, contradicting
the requirement (in Theorem 1) that this degree has to be a power of 2.

Theorem 4 "Squaring the circle" by ruler and compass is impossible.
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If we were able to square the circle by ruler and compass, it would be
possible to construct the point (0, hence by Theorem 1, : C]
would be a power of 2. But it is well known that ic is transcendental over C.
By Theorem 4 of Chapter 29, the square of an algebraic element is alge-
braic, hence is transcendental. It follows that is not even a finite
extension of C, much less an extension of some degree 2" as required.

EXERCISES

t A. Constructible Numbers

If 0 and I are any two points in the plane, consider a coordinate system such that

0 1

-J

the interval 01 coincides with the unit interval on the x axis Let ED be the set of real
numbers such that a e ED ift the point (a, 0) is constructible from {0, I}.
Prove the following:

I Ifa,hcED,thcna+beEbanda—hcED.
2 If a, h a ED, then ab a ED. (HINT: Use similar triangles. See the accompanying
figure.)

3 If a, h a ED, then a/h a ED. (Use the same figure as in part 2.)
4 If a > 0 and a a ED, then a ED. (HINT: Use the pythagorean theorem.)

It follows from parts I to 4 that ED is a field, closed with respect to taking square
roots. ED is called the field of constructible numbers.

5 C c ED.
6 If a is a root of any quadratic polynomial with coefficients in ED, then a a ED
(HINTS Complete the square and use part 4.)
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t B. Constructible Points and Constructible Numbers

Prove each of the fhllowing:

1 Let .cJ be any set of points in the plane; (a, b) is constructible from a' if (a, 0) and
(0, b) are constructible from a'.
2 If a point P is constructible from {O, I} [that is, from (0, 0) and (1, 0)], then P is
constructible from Q x Q.
3 Every point in 0 x 0 is constructible from {o, I}. (Use A5 and the definition of
EL)

4 If a point P is constructible from 0 x 0, it is constructible from {O, I}.

By combining parts 2 and 4, we get the following important fact: Any point P is
constructible from 0 x 0 if P is constructible from {O, I}. Thus, we may define a
point to be constructible if it is constructible from {O, 1}.

5 A point P is constructible if both its coordinates are constructible numbers.

C. Constructible Angles

An angle is called constructible if there exist constructible points A, B, and C such
that L. ABC = Prove the following:

I The angle is constructible if sin and cos are constructible numbers.
2

cos (24 e U ifcos cx e ED.

S If and /3 are constructible angles, so are + /3, — /3, 4cc, and ncx for any positive
integer n

6 The following angles are constructible: 300, 75°, 224°.
7 The following angles are not 20°, 40°, 140°. (I-lINT: Use Theorem 3)

D. Constructible Polygons

A polygon is called constructible if its vertices are constructible points. Prove the
following:

1 The regular n-gon is constructible if the angle 2n/n is constructible.
2 The regular hexagon is constructible.
3 The regular polygon of nine sides is not constructible.
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t I!. A Constructible Polygon

We will show that 2ir/5 is a constructible angle, and it will follow that the regular
pentagon is constructible.

1 If r = cos k + I sin k is a complex number, prove that l/r = cos k — i sin k
Conclude that r + l/r = 2 cos k.

By de Moivre's theorem,

2ir . . 2ir
w = cos — + i sin —

is a complex fifth root of unity. Since

x5 — I = (x — l)(x4 + x3 + x2 + x + 1)

w is a root ofp(x) = x4 + x3 + x2 + x + I.

3 Prove that

2ir 2m
4 cos2 — + 2 cos — — 1 = 0

(HINT: Use parts I and 2.) Conclude that cos (2it/5) is a root of the quadratic
4x2 — 2x — I.

4 Use part 3 and A6 to prove that cos (2ir/5) is a constructible number.
S Prove that 2n/5 is a constructible angle.
6 Prove that the regular pentagon is constructible.

t F. A Nonconstructible Polygon

By de Moivre's theorem,

2ir . 2ir
w = cos — + i sin —

is a complex seventh root of unity. Since

— I = (x — l)(v6 + x5 + x4 + x3 + x2 + x + I)

w is a root of ¶6 + + x4 + x3 + x2 + x + I.

2 Prove that
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32ir 22ir 2m
8cos

(Use I and El.) Conclude that cos (2ir/7) is a root of 8x3 + 4x2 — 4x — I.

3 Prove that 8x3 + 4x2 — 4x — I has no rational roots. Conclude that it is irreduc-
ible over Q. -

4 Conclude from part 3 that cos (2ir/7) is not a constructible number.
5 Prove that 2ir/7 is not a constructible angle.
6 Prove that the regular polygon of seven sides is not constructible.

C. Further Properties of Constructible Numbers and Figures

Prove each ofihefollowing

I If the number a is a root of an irreducible polynomial p(x) a Q[x] whose degree is
not a power of 2, then a is not a constructible number.
2 Any constructible number can be obtained from rational numbers by repeated
addition, subtraction, multiplication, division, and taking square roots.
3 Use part 2 and Exercise A to prove ID is the smallest field extension of 0 closed
with respect to square roots (that is, any field extension of 0 closed with respect to
square roots contains DID).

4 All the roots of the polynomial x4 + 2x2 — 2 are constructible numbers.

A line is called constructible if it passes through two constructible points. A
circle is called constructible if its center and radius are constructible.

5 The line ax + by + a = 0 is constructible if a, h, a a ID.
6 The circle x2 + y2 + ax + by + a = 0 is constructible iffa, h, a a ID.



CHAPTER

THIRTY-ONE
GALOIS THEORY: PREAMBLE

Field extensions were used in Chapter 30 to settle some of the most puz-
zling questions of classical geometry. Now they will be used to solve a
problem equally ancient and important: they will give us a definitive and
elegant theory of solutions of polynomial equations.

We will be concerned not so much with finding solutions (which is a
problem of computation) as with the nature and properties of these solu-
tions. As we shall discover, these properties turn out to depend less on the
polynomials themselves than on the fields which contain their solutions.
This fact should be kept in mind if we want to clearly understand the
discussions in this chapter and Chapter 32. We will be speaking of field
extensions, but polynomials will always be lurking in the background.
Every extension will be generated by roots of a polynomial, and every
theorem about these extensions will actually be saying something about the
polynomials.

Let us quickly review what we already know of field extensions, filling
in a gap or two as we go along. Let F be a field; an element a (in an
extension of F) is algebraic over F if a is a root of some polynomial with its
coefficients in F. The minimum polynomial of a over F is the polynomial of
lowest degree in F[x] having a as a root; every other polynomial in F[x]
having a as a root is a multiple of the minimum polynomial.

The basic theorem of field extensions tells us that any polynomial of
degree n in F[x] has exactly n roots in a suitable extension of F. However,
this does not necessarily mean n distinct roots. For example, in the

311
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polynomial (x — has five roots all equal to 2. Such roots are called
multiple roots. It is perfectly obvious that we can come up with polynomials
such as (x — having multiple roots; but are there any irreducible poly-
nomials with multiple roots? Certainly the answer is not obvious. Here it is:

Theorem 1 1fF has characteristic 0, irreducible polynomials over F can never
have multiple roots.

To prove this, we must define the derivative of the polynomial a(x) =
+a1x + It is a'(x)=a1 + 2a2x+ As in el-

ementary calculus, it is easily checked that for any two polynomials f(x)
and g(x),

(f+g)'=f'+g' and (fg)'=fg'+f'g

Now suppose a(x) is irreducible in F[x] and has a multiple root c: then in a
suitable extension we can factor a(x) as a(x) = (x — c)2q(x), and therefore
a'(x) = 2(x — c)q(x) + (x — c)2q'(x). So x — c is a factor of a'(x), and there-
fore c is a root of a'(x). Let p(x) be the minimum polynomial of c over F;
since both a(x) and a'(x) have c as a root, they are both multiples of p(x).

But a(x) is irreducible: its only nonconstant divisor is itself; so p(x)
must be a(x). However, a(x) cannot divide a'(x) unless a'(x) = 0 because a'(x)
is of lower degree than a(x). So a'(x) = 0 and therefore its coefficient is 0.
Here is where characteristic 0 comes in: if = 0 then = 0, and this is
impossible because is the leading coefficient of a(x).

In the remaining three chapters we will confine our attention to fields of
characteristic 0. Thus, by Theorem 1, any irreducible polynomial of degree n
has n distinct roots.

Let us move on with our review. Let E be an extension of F. We call E
a finite extension of F if E, as a vector space with scalars in F, has finite
dimension. Specifically, if E has dimension n, we say that the degree of E
over F is equal to n, and we symbolize this by writing [E: F] = n. If c is
algebraic over F, the degreee of F(c) over F turns out to be equal to the
degree of p(x), the minimum polynomial of c over F.

F(c), obtained by adjoining an algcbraic clcmcnt c to F, is callcd a
simple extension of F. F(c1, ..., cj, obtained by adjoining n algebraic el-
ements in succession to F, is called an iterated extension of F. Any iterated
extension of F is finite, and, conversely, any finite extension of F is an
iterated extension F(c1, ..., cj. In fact, even more is true; let F be of
characteristic 0.

Theorem 2 Every finite extension ofF is a simple extension F(c).
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We already know that every finite extension is an iterated extension.
We will now show that any extension F(a, b) is equal to F(c) for some c.
Using this result several times in succession yields our theorem. (At each
stage, we reduce by I the number of elements that must be adjoined to F in
order to get the desired extension.)

Well, given F(a, h), let A(x) be the minimum polynomial of a over F,
and let B(x) be the minimum polynomial of b over F. Let K denote any
extension of F which contains all the roots a1 of A(x) as well as all
the roots hi,...,hm of B(x). Leta1 beaandleth1 beh.

Let t be any nonzero element of F such that

for every land j I

Cross multiplying and setting c = a + tb, it follows that c a1 + that is,

c — for all i 1 andj I

Define h(x) by letting h(x) = A(c — tx); then

h(h) = Mc — tb) = 0

while for everyj 1,

= A(c — thy) 0

* dl))' aj

Thus, h is the only common root of h(x) and B(x).
'We will prove that b e F(c), hence also a = c — tb e F(c), and therefore

F(a, b) c F(c). But c e F(a, b), so F(c) c F(a, b). Thus F(a, b) = F(c).

So, it remains only to prove that b e F(c). Let p(x) be the minimum
polynomial of b over F(c). If the degree of p(x) is 1, then p(x) is x — b, so

b e F(c), and we are done. Let us suppose deg p(x) � 2 and get a contradic-
tion: observe that h(x) and B(x) must both be multiples of p(x) because both
have b as a root, and p(x) is the minimum polynomial of b. But if h(x) and
B(x) have a common factor of degree � 2, they must have two or more
roots in common, contrary to the fact that b is their only common root.
Our proof is complete.

For example, we may apply this theorem directly to ,,,./i).

Taking t = I, we get c = + hence = +
If a(x) is a polynomial of degree n in F[x], let its roots be c1

Then F(c1 is clearly the smallest extension of F containing all the
roots of a(x). F(c1, ..., is called the root field of a(x) over F. We will have
a great deal to say about root fields in this and subsequent chapters.
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Isomorphisms were important when we were dealing with groups, and
they are important also for fields. You will remember that if F1 and F2 are
fields, an isomorphisrn from F1 to F2 is a bijective function h: F1 —> F2

satisfying

h(a + b) = h(a) + h(b) and h(ab) = h(a)h(b)

From these equations it follows that h(O) = 0, h(1) = 1, h(—a) = — h(a), and
h(a ') =

Suppose F1 and F2 are fields, and h: F1 —÷ F2 is an isomorphism. Let
K1 and K2 be extensions of F1 and F2, and let h: K1—>K2 also be an
isomorphism. We call h an extension of h if h(x) = h(x) for every x in F1,
that is, if h and h are the same on F1. (h is an extension of h in the plain
sense that it is formed by "adding on" to h.)

As an example, given any isomorphism h: F1 —÷ F2, we can extend h to
an isomorphism K: F1[x] —÷ F2[x]. (Note that F[x] is an extension of F
when we think of the elements of F as constant polynomials; of course,
F[x] is not a field, simply an integral domain, but in the present example
this fact is unimportant.) Now we ask: What is an obvious and natural way
of extending h? The answer, quite clearly, is to let h send the polynomial
with coefficients a0, a1 to the polynomial with coefficients h(a0),

h(aj:

h(a0 + a1x + + = h(a0) + h(a1)x + ... + h(ajf
It is child's play to verify formally that h is an isomorphism from F1[x] to
F2[x]. In the sequel, the polynomial h(a(x)), obtained in this fashion, will be
denoted simply by ha(x). Because Ii is an isomorphism, a(x) is irreducible if
Iia(x) is irreducible.

A very similar isomorphism extension is given in the next theorem.

Theorem 3 Let h: F1 —> F2 be an isornorphisin, and let p(x) he irreducible in
F1 [x]. Suppose a is a root of p(x), and h a root of hp(x). Then h can be
evtended to an isomorphisin
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h : F1(a)—* F2(b)

Furthermore, h(a) = b.

Remember that every element of F1(a) is of the form

where c0,..., ç are in F1, and every element of F2(b) is of the form
d0 + d1h +• + where d0 c4 are in F2. Imitating what we did
successfully in the preceding example, we let h send the expression with
coefficients c0 to the expression with coefficients h(c0), ...,

h(c0 + c1a + + = h(c0) + h(c1)b + ... + li(cjb"

Again, it is routine to verify that h is an isomorphism. Details are laid out in
Exercise H at the end of this chapter.

Most often we use Theorem 3 in the special case where F1 and F2 are
the same field—let us call it F—and Ii is the identity function a: F—> F.
[Remember that the identity function is c(x) = x.] When we apply Theorem
3 to the identity function a: F—> F, we get:

Theorem 4 Suppose a and h are roots of the same irreducible polynomial p(x)
in F[x]. Then there is an isomorphism g: F(a)—> F(b) such that g(x) = x for
every x in F, and g(a) = b.

From Theorem 3 we can also deduce another fact about extending
isomorphisms:

Theorem 5 Suppose K is a finite extension of F. Any isomorphism
Ii: F —> h(F) can be extended to an isomorphism Is: K —> h(K).

By Theorem 2, K is a simple extension of F, say K = F(a). Writing F'
for h(F), we can use Theorem 3 to extend h: F—> F' to

K 11(K)

Let K be an extension of F. If/s is any isomorphism with domain K,
and h(x) = x for every x in F, we say that h fixes F. Let c be an element of
K; if h fixes F, and c is a root of some polynomial a(x) = a0 +

a root of a(x). It is easy to see why: the coefficients of a(x)
are in F and are therefore not changed by h. So if a(c) = 0, then
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a(h(c)) = a0 + a1h(c) + +

What we have just shown may be expressed as follows:

(*) Let a(x) be any polynomial in F[x]. Any isomorphism which fixes F
sends roots of a(x) to roots of a(x).

If K happens to be the root field of a(x) over F, the situation becomes
even more interesting. Say K = F(c1, c2 cj, where c1, c2. ..., are
the roots of a(x). If h: K — h(K) is any isomorphism which fixes F, then by
(*), h permutes c1, c2 Now, by the brief discussion headed "For later
reference" on page 297, every element of F(c1, ..., is a sum of terms of
the form

k is in F. Because h fixes F, h(k) = k. Furthermore, c1,
c2 are the roots of a(x), so by (*), the product is trans-
formed by h into another product of the same form. Thus, h sends every
element of F(c1, C2, ..., to another element of F(c1, C2, ..., ca).

The above comments are summarized in the next theorem:

Theorem 6 Let K be the root field of some polynomial over F. If h is any
isomorphism with domain K which fixes F, then h(K) c K.

For later reference. The following results, which are of a somewhat tech-
nical nature, will be needed later. The first presents a surprisingly strong
property of root fields.

Theorem 7 Let K he the root field of some polynomial over F. For every
irreducible polynomial p(x) in F[x], has one root in K, then p(x) must
have all of its roots in K.

Indeed, suppose p(x) has a root a in K, and let b be any other root of
p(x). By Theorems 4 and 5 [apply Theorem 5 to F(a) instead of F], there is
an isomorphism i: K —÷ i(K) fixing F, with i(a) = b. By Theorem 6,

i(K)c K.Thus,b=i(a)eK.

Theorem 8 Suppose I c E K, where E is a finite extension of I and K is a
finite extension of E. If K is the root field of some polynomial over E, then K
is also the root field of some polynomial over I.
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Suppose K is a root field of some polynomial over E, and let K = 1(a).

If p(x) is the minimum polynomial of a over I, its coefficients are certainly
in E and it has a root a in K, so by Theorem 7, all its roots are in K.
Therefore, K is the root field of p(x) over 1.

EXERCISES

A. Examples of Root Fields over 0

Illustration Find the root field of = (x2 — 3)(x3 — 1) over 0.

ANSWER The complex roots of a(x) are 1, 4(— I ± so the root field

is 0( ± I, 4( — I ± The same field can be written more simply as i).

I Show that i) is the root field of(x2 — 2x — 2)(x2 + 1) over 0.

Comparing part 1 with the illustration, we note that different polynomials may
have the same root field. This is true even if the polynomials are irreducible:

2 Prove that x2 — 3 and x2 — 2x — 2 are both irreducible over 0. Then find their
root fields over 0 and show they are the same.
3 Find the root field of x4 — 2, first over 0, then over IR
4 Explain: 0(i, f2) is the root field of x4 — 2x2 + 9 over 0, and is the root field of

— + 3 over

5 Find irreducible polynomials a(x) over 0, and b(x) over 0(i), such that 0(i, is

the root field of a(t) over 0, and is the root field of b(x) over 0(i). Then do the same
for

6 Which of the following extensions are root fields over 0? Justify your answer:
0(i); where is the real cube root of 2; 0(2 + \/i); O(i +
0(i,

B. Examples of Root Fields over 74,

Illustration Find the root field of x2 + I over 4.

ANSWER By the basic theorem of field extensions,

Z3[x]/<x2 + I) 4(u)

where u is a root of x2 + I. In 4(u), x2 + I = (x + u)(x — u), because u2 + I = 0.

Since 713(u) contains ± u, it is the root field of x2 + I over 4. Note that 7L3(u) has
nine elements, and its addition and multiplication tables are easy to construct. (See
Chapter 27, Exercise C.)
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I Show that, in any extension of 73 which contains a root u of

a(x) = x3 + 2x + 1 a Z3[x]

it happens that u + I and u + 2 are the remaining two roots of a(x). Use this fact to
find the root field of x3 + 2x + 1 over 73 Write its addition and multiplication
tables.

2 Find the root field of x3 + x2 + x + 2 over and write its addition and multi-
plication tables.
3 Determine whether the fields in parts I and 2 are isomorphic.
4 Find the root field of x3 + x2 + I a 72[x] over Write its addition and multi-
plication tables
5 Find the root field over of x3 + x + 1 a 72[x]. (CAUTION: This will prove to
hc a little more difficult than part 4.)

C. Short Questions Relating to Root Fields

Prove each of the following:

I Every extension of degree 2 is a root field.

2 If F c 1 c K and K is a root field of a(x) over F, then K is a root field of a(x) over
I.

3 The root field over I1 of any polynomial in R[x] is R or C.
4 If c is a complex root of a cubic a(x) a 0[x], then 0(c) is the root field of a(x) over
0.
S If p(x) = x4 + ax2 + h a F[x], then F[x]/c(p(x)) is the root field of p(x) over F.
6 If K = F(a) and K is the root field of some polynomial over F, then K is the root
field of the minimum polynomial of a over F.
7 Every root field over F is the root field of some irreducible polynomial over F.
(HINT: Use part 6 and Theorem 2.)
8 Suppose [K F] = n, where K is a root field over F. Then K is the root field over
F of every irreducible polynomial of degree n in F[x] having a root in K.
9 Let a(x) be a polynomial of degree n in F[x], and let K be the root field of a(x)
over F. Prove that [K F] divides n!

D. Reducing Iterated Extensions to Simple Extensions

1 Find c such that = 0(c). Do the same for
2 Let a be a root ofx3—x+ 1, and b a root ofx2—2x— 1. Find c such that
0(a, b) = 0(c). (HINT: Use calculus to show that x3 — x + I has one real and two
complex roots, and explain why no two of these may differ by a real number.)
3 Find c such that = 0(c).
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4 Find an irreducible polynomial Mx) such that OLJi, is the root field of Mx)
over 0. (HINT: Use Exercise C6.)
5 Do the same as in part 4 for

t E. Roots of Unity and Radical Extensions

De Moivre's theorem provides an explicit formula to write the n complex nth roots
of 1. (See Chapter 16, Exercise H.) By de Moivre's formula, the nth roots of unity
consist of w = cos (2ir/n) + i sin(2ir/n) and its first n powers, namely 1, w, a?
to" We call to a primitive nth root of unity, because all the other nth roots of unity
are powers of to. Clearly, every nth root of unity (except 1) is a root of

— I
= x"1 + x"2 + + x + 1

x—1

By Eisenstein's criterion, this polynomial is irreducible if n is a prime (see Chapter
26, Exercise D). Prove each of the following, where to denotes a primitive nth root of
unity:

1 0(w) is the root field off — I over 0
2 Ifn is a prime, [0(w): 0] = n — 1.

3 If n is a prime, at -' is equal to a linear combination of 1, to 2 with
rational coefficients.
4 Find [0(w): 0], where to is a primitive nth root of unity, for n = 6, 7, and 8
5 For any r e {I, 2,.. , n — l}, </wr is an nth root of a. Conclude

are the n complex nth roots of a.
6 0(w, is the root field off — a over 0.
7 Find the degree of 0(w, over 0, where to is a primitive cube root of 1. Also
show that 0(w, = (HINT: Compute ax)

8 If K is the root field of any polynomial over 0, and K contains an nth root of any
number a, it contains all the nth roots of unity.

t F. Separable and Inseparable Polynomials

Let F be a field An irreducible polynomial p(x) in F[x] is said to be separable over
F if it has no multiple roots in any extension of F. If p(x) does have a multiple root
in some extension, it is inseparable over F Prove the following:

I If F has characteristic 0, every irreducible polynomial in F[x] is separable.

Thus, for characteristic 0, there is no question whether an irreducible poly-
nomial is separable or not. However, for characteristic p $ 0, it is different. This case
is treated next. In the following problems, let F be a field of characteristic p 0.
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2 If a'(x) = 0, the only nonzero terms of a(x) are of the form ampxm1' for some m. [In
other words, a(x) is a polynomial in powers of x".]
3 If an irreducible polynomial a(x) is inseparable over F, then a(x) is a polynomial
in powers of x". (HINT: Use part 2, and reason as in the proof of Theorem I)

4 Use Chapter 27, Exercise J (especially the conclusion following J6) to prove the
converse of part 3.

Thus, if F is a field of characteristic p 0, an irreducible polynomial a(x) a F[x]
is inseparable ill a(x) is a polynomial in powers of For finite fields, we can say
even more:

5 If F is any field of characteristic p 0, then in F[x],

(HINTS See Chapter 24, Exercise D4.)
6 If F is a finite field of characteristic p 0, then in F[x], every polynomial a(x") is
equal to [h(xft' for some b(x). [HINT: Use part 5 and the fact that in a finite field of
characteristic p, every element has a pth root (see Chapter 20, Exercise F).]
7 Use parts 3 and 6 to prove: In any finite field, every irreducible polynomial is
separable.

Thus, fields of characteristic 0 and finite fields share the property that irreducible
polynomials have no multiple roots. The only remaining case is that of infinite fields
with finite characteristic. It is treated in the next exercise set.

t G. Multiple Roots over Infinite Fields
of Nonzero Characteristic

If is the domain of polynomials (in the letter y) over let E = be the
field of quotients of Let K denote the subfield of

I Explain why and are infinite fields of characteristic p.

2 Prove that a(t) = — yP has the factorization — y" = (x — y)" in E[x], but is
irreducible in K[x]. Conclude that there is an irreducible polynomial a(x) in K[x]
with a root whose multiplicity is p.

Thus, over an infinite field of nonzero characteristic, an irreducible polynomial
may have multiple roots. Even these fields, however, have a remarkable all
the roots of any irreducible polynomial have the same multiplicity. The details follow:
Let F be any field, p(x) irreducible in F[x], a and h two distinct roots of p(x), and K
the root field of p(x) over F. Let i: K i(K) = K' be the isomorphism of Theorem
4, and 1: K[x] —* K'[x] the isomorphism described immediately preceding Theorem
3.

3 Prove that I leaves p(x) fixed



GALOIS THEORY: PREAMBLE 321

4 Prove that i((x — a)tm) = (x — h)tm.

5 Prove that a and b have the same multiplicity.

t H. An Isomorphism Extension Theorem (Proof of Theorem 3)

Let F1, F2, h, p(x), a, b, and/i be as in the statement of Theorem 3. To prove thath
is an isomorphism, it must first be shown that it is properly defined: that is, if
c(a) = d(a) in F1(a), then h(c(a)) = h(d(a)).

I If c(a) = d(a), prove that c(x) — d(x) is a multiple of p(x). Deduce from this that
hc(x) — hd(x) is a multiple of hp(x).
2 Use part 1 to prove that h(c(a)) = h(d(a)).

3 Reversing the steps of the preceding argument, show that h is injective.
4 Show that Ii is surjective.
5 Show that h is a homomorphism.

t I. Uniqueness of the Root Field

Let h: F1 F2 be an isomorphism. If a(x) e F1[x], let K1 be the root field of a(x)
over F1, and K2 the root field of ha(x) over F2. Prove the following:

I If p(x) is an irreducible factor of a(x), u e K1 is a root of p(x), and v e K2 is a root
of hp(x), then F1(u) F2(v).

2 F1(u) = K1 iffF2(v) = K2.
3 If F1(u) [hence F2(v) K2], write F'1 = F1(u) and F'2 = F2(v). Let q(x) e
F'1[x] be an irreducible factor of a(x), of degree > I. (Explain why such a factor is

certain to exist in F'1[x].) Let w e K1 be a root of q(x), and z a K2 a root of hq(x).
Prove that F'1(w) F'2(z).

4 Use parts I to 3 to form an inductive proof that K1 K2.

S Draw the following conclusion: The root field of a polynomial a(x) over a field F
is unique up to isomorphism.

t J. Extending Isomorphisms

In the following, let F be a subfield of C. An injective homomorphism h: F —* C is

called a nionomorphism; it is obviously an isomorphism F h(F).

1 Let w be a complex pth root of unity (where p is a prime), and let h: 0(w) —* C be
a monomorphism fixing 0. Explain why h is completely determined by the value of
h(w). Then prove that there exist exactly p — I monomorphisms 0(w) C which fix
0.
2 Let p(x) be irreducible in F[x], and c a complex root of p(x). Let h: F —÷ C be a



322 CHAPTER THIRTY-ONE

monomorphism. If deg p(x) = n, prove that there are exactly n monomorphisms
F(c) C which are extensions of Ii.
3 Let F K, with [K: F] = n. If h: F —. C is a monomorphism, prove that there
are exactly n monomorphisms K —÷ C which are extensions of h.
4 Prove: The only possible monomorphism h: Q —÷ C is h(x) = x. Thus, any mon-
omorphism h: Q(a) C necessarily fixes 0.
5 Prove: There are exactly three monomorphisms —÷ C, and they are deter-

mined by the conditions: —p —* —p where to is a
primitive cube root of unity.

K. Normal Extensions

If K is the root field of some polynomial a(x) over F, K is also called a normal
extension of F. There are other possible ways of defining normal extension, which
are equivalent to the above. We consider the two most common ones here: they are
precisely the properties expressed in Theorems 7 and 6. Let K be a finite extension
of F. Prove the following:

1 Suppose that for every irreducible polynomial p(x) in F[x], if p(x) has one root in
K, then p(x) must have all its roots in K. Prove that K is a normal extension of F.
2 Suppose that, if h is any isomorphism with domain K which fixes F, then
h(K) c K Prove that K is a normal extension of F.
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If K is a field and h is an isomorphism from K to K, we call h an auto-
morphism of K (automorphism = "self-isomorphism").

Several of the isomorphisms we looked at in Chapter 31 were, in fact,
automorphisms. For example, suppose K is a finite extension of F and h is
any isomorphism whose domain is K. If h(K) K, then necessarily
li(K) = K, and therefore h is an automorphism of K. The reason is quite
simple: h(K) is isomorphic to K, hence K and h(K) are vector spaces of the
same dimension over F. Therefore, if h(K) c K, h(K) is a subspace of K
having the same dimension as K, and so h(K) must be all of K.

This observation leads us to restate a few results of Chapter 31 in a
simpler form. (First we restate Theorem 6, then Theorem 4 in a form which
uses Theorem 6.)

Let K be the root field of some polynomial over F:

(*) Any isomorphism with domain K which fixes F is an automorphism of K.
(**) If a and b are roots of an irreducible polynomial p(x) in F[x], there is an

automorphism of K fixing F and sending a to h.

(*) is merely a restatement of Theorem 6 of Chapter 31, incorporating
the observation that h(K) = K.

(**) is a result of combining Theorem 4 of Chapter 31, Theorem 5 of
Chapter 31 [applied to F(a) instead of to F), and (*), in that order.

Let K be the root field of a polynomial a(x) in F[x]. Ifc1, c2 are

323



324 CHAPTER THIRTY-TWO

the roots of a(x), then K = F(c1, c2, ..., cj, and, by (*) of page 316, any
automorphism h of K which fixes F permutes c1, c2 On the other
hand, remember that every element a in F(c1, c2 is a sum of terms
of the form

k of each term is in F. If h is an automorphism which
fixes F, Ii does not change the coefficients, so h(a) is completely determined
once we know h(c1) h(cj. Thus, every automorphism of K fixing F is
completely determined by a permutation of the roots of a(x).

This is very important!
What it means is that we may identify the automorphisms of K which

fix F with permutations of the roots of a(x).
It must be pointed out here that, just as the symmetries of geometric

figures determine their geometric properties, so the symmetries of equations
(that is, permutations of their roots) give us all the vital information needed
to analyze their solutions. Thus, if K is the root field of our polynomial a(x)
over F, we will now pay very close attention to the automorphisms of K
which fix F.

To begin with, how many such automorphisms are there? The answer
is a classic example of mathematical elegance and simplicity:

Theorem 1 Let K be the root field of some polynomial over F. The number of
automorphisms of K fixing F is equal to the degree of K over F.

Let [K : F] = n, and let us show that K has exactly n automorphisms
fixing F. By Theorem 2 of Chapter 31, K = F(a) for some a e K. Let p(x) be
the minimum polynomial of a over F; if h is any root of p(x), then by (**),
there is an automorphism of K fixing F and sending a to b. Since p(x) has n
roots, there are exactly n choices of b, and therefore n automorphisms of K
fixing F.

[Remember that every automorphism h which fixes F permutes the
roots of p(x) therefore sends a to some root of p(x); and h is completely
determined once we have chosen h(a).]

For example, we have already seen that is of degree 2 over 0.
is the root field of x2 — 2 over 0 because contains both roots

of x2 — 2, namely By Theorem 1, there are exactly two auto-
morphisms of OLfi) fixing 0: one sends to it is the identity
function. The other sends to — and is therefore the function
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Similarly, we saw that C = l1(i), and C is of degree 2 over The two
automorphisms of C which fix are the identity function, and the function
a + bi a — bi which sends every complex number to its complex conju-
gate.

As a final example, we have seen that is an extension of
4 over Q, so by Theorem 1, there are four automorphisms of

which fix 0: Now, is the root field of(x2 — 2)(x2 — 3) over
0, for it contains the roots of this polynomial, and any extension of 0
containing the roots of (x2 — 2)(x2 — 3) certainly contains ,,ji and
Thus, by (*) on page 316, each of the four automorphisms which fix 0 sends
roots of x2 — 2 to roots of x2 — 2, and roots of x2 — 3 to roots of x2 — 3.

But there are only four possible ways of doing this, namely

dan

Since every element of is of the form a + + +
these four automorphisms (we shall call them a, /3, and y) are the follow-
ing

a + + + a + + +

p

y

If K is an extension of F, the automorphisms of K which fix F form a
group. (The operation, of course, is composition.) This is perfectly obvious:
for if g and h fix F, then for every x in F,

It 9 1. 9x—*x and x—>x so x—*x—-*x

that is, g c h fixes F. Furthermore, if

x x then xt—x

that is, if h fixes F so does h -'.
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This fact is perfectly obvious, but nonetheless of great importance, for it
means that we can now use all of our accumulated knowledge about groups
to help us analyze the solutions o( polynomial equations. And' that is pre-
cisely what Galois theory is all about.

If K is the root field of a polynomial a(x) in F[x], the group of all the
autornorphisms of K which fix F is called the Galois group of a(x). We also
call it the Galois group of K over F, and designate it by the symbol

Gal(K: F)

In our last example we saw that there are four automorphisms of
\/i) which fix 0. We called them c, x, /3, and y. Thus, the Galois

group of \/i) over Q is Q) = {c, /3, y}; the oper-
ation is composition, giving us the table

0 Ic /1 y

cz fi y

czczcy/3

As one can see, this is an abelian group in which every element is its own
inverse; almost at a glance one can verify that it is isomorphic to 4 x

Let K be the root field of a(x), where a(x) is in F[x]. In our earlier
discussion we saw that every automorphism of K fixing F [that is, every
member of the Galois group of a(x)] may be identified with a permutation
of the roots of a(x). However, it is important to note that not every permu-
tation of the roots of a(x) need be in the Galois group of a(x), even when a(x)
is irreducible. For example, we saw that = + where

+ is a root of the irreducible polynomial x4 — lOx2 + 1 over 0.
Since x4 — lOx2 + 1 has four roots, there are 4! = 24 permutations of its
roots, only four of which are in its Galois group. This is because only four
of the permutations are genuine symmetries of x4 — lOx2 + 1, in the sense
that they determine automorphisms of the root field.

In the discussion throughout the remainder of this chapter, let F and K
remain fixed. F is an arbitrary field and K is the root field of some poly-
nomial a(x) in F[x]. The thread of our reasoning will lead us to speak
about fields I where F c I c K, that is; fields "between" F and K. We will
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refer to them as intermediate fields. Since K is the root field of a(x) over F, it
is also the root field of a(x) over I for every intermediate field I.

The letter G will denote the Galois group of K over F. With each
intermediate field I, we associate the group

1* = Gal(K: I)

that is, the group of all the automorphisms of K which fix I. It is obviously
a subgroup of G. We will call J* the fixer of I.

Conversely, with each subgroup H of G we associate the subfield of K
containing all the a in K which are not changed by any it H. That is,

{ a e K: ir(a) = a for every it e H}

One verifies in a trice that this is a subfield of K. It obviously contains F,
and is therefore one of the intermediate fields. It is called the fixed field of
H. For brevity and euphony we call it the fixfield of H.

Let us recapitulate: Every subgroup H of G fixes an intermediate field
I, called the fixfield of H. Every intermediate field I is fixed by a subgroup
H of G, called the fixer of I. This suggests very strongly that there is a
one-to-one correspondence between the subgroups of G and the fields inter-
mediate between F and K. Indeed, this is correct. This one-to-one corre-
spondence is at the very heart of Galois theory, because it provides the
tie-in between properties of field extensions and properties of subgroups.

Just as, in Chapter 29, we were able to use vector algebra to prove new
things about field extensions, now we will be able to use group theory to
explore field extensions. The vector-space connection was a relative light-
weight. The connection with group theory, on the other hand, gives us a
tool of tremendous power to study field extensions.

We have not yet proved that the connection between subgroups of G
and intermediate fields is a one-to-one correspondence. The next two theor-
ems will do that.

Theorem 2 If H is the fixer of I, then us the fixfield of H.
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Let H be the fixer of I, and let F be the fixfield of H. It follows from the
definitions of fixer and fixfield that I I', so we must now show that I' I.
We will do this by proving that a I implies a I'. Well, if a is an element
of K which is not in 1, the minimum polynomial p(x) of a over 1 must have
degree � 2 (for otherwise, a e I). Thus, p(x) has another root h. By (**),
there is an automorphism of K fixing I and sending a to h. This auto-
morphism moves a, so a I'.

Lemma Let H be a subgroup of G, and I the fixfield of H. The number of
elements in H is equal to [K: 1].

Let H have r elements, namely h1, ..., hr. Let K = 1(a). Much of our
proof will revolve around the following polynomial:

b(x) = (x — h1(a))(x — h2(a)) (x — hr(a))

Since one of the is the identity function, one factor of b(x) is (x — a), and
therefore a is a root of b(x). In the next paragraph we will see that all the
coefficients of b(x) are in 1, so h(x) e I[x]. It follows that h(x) is a multiple of
the minimum polynomial of a over I, whose degree is exactly [K : 1]. Since
b(x) is of degree r, this means that r � [K : 1], which is half our theorem.

Well, let us show that all the coefficients of b(x) are in I. We saw on
page 314 that every isomorphism : K —> K can be extended to an iso-
morphism : K[x] —÷ K[x]. Because is an isomorphism of polynomials,
we get

= h1(x — h1(a))h1(x — h2(a)) ... h1(x — hr(a))

But h1 o h1, h1 o h2, ..., c hr are r distinct elements of H,and H has exact-
ly r elements, so they are all the elements of H (that is, they are h1 hr.
possibly in a different order). So the factors of are the same as the
factors of b(x), merely in a different order, and therefore = h(x).

Since equal polynomials have equal coefficients, h1 leaves the coefficients of
b(x) invariant. Thus, every coefficient of b(x) is in the fixfield of H, that is, in
I.

We have just shown that [K : I] � r. For the opposite inequality, re-
member that by Theorem 1, [K : I] is equal to the number of 1-fixing
automorphisms of K. But there are at least r such automorphisms, namely
h1 hr.Thus,[K :1]�r,andwearedone.

Theorem 3 If I is the Jixfield of H, then H is the fixer of I.
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Let I be the fixfield of H, and J* the fixer of I. It follows from the
definitions of fixer and fixfield that H We will prove equality by
showing that there are as many elements in H as in By the lemma, the
order of H is equal to [K : I]. By Theorem 2, I is the fixfield of 1*, so by the
lemma again, the order of is also equal to [K : I].

It follows immediately from Theorems 2 and 3 that there is a one-to-one
correspondence between the subgroups of Gal(K : F) and the intermediate
fields between K and F. This correspondence, which matches every sub-
group with its fixfield (or, equivalently, matches every intermediate field
with its fixer) is called a Galois correspondence. It is worth observing that
larger subfields correspond to smaller subgroups; that is,

if 12*_cIr

As an example, we have seen that the Galois group of over
Q is G = {t, /3, y} with the table given on page 326. This group has
exactly five subgroups, namely {e}, {e, {c, /3}, {c, '4, and the whole group
G. They may be represented in the "inclusion diagram"

(c,a} {e,33 (€,7}

On the other hand, there are exactly five fields intermediate between 0
and which may be represented in the inclusion diagram

ON/i)

If H is a subgroup of any Galois group, let H° designate the fixfield of
H. The subgroups of G in our example have the following fixfields:

{e}° = {c, = {c, /J}O
=

G°=0
(This is obvious by inspection of the way /3, and y were defined on page
325.) The Galois correspondence, for this example, may therefore be
represented as follows:
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G Q(VZ'Ji)

V I 7 1

{e,y) (e,f3} {e,a) Q(VTh

In order to effectively tie in subgroups of G with extensions of the field
F, we need one more fact, to be presented next.

Suppose E I K, where K is a root field over I and I is a root field
over E. (Hence by Theorem 8 on page 316, K is a root field over E.) If
Ii e Gal(K : E), h is an automorphism of K fixing E. Consider the restriction
of h to I, that is, h restricted to the smaller domain I. It is an isomorphism
with domain I fixing E, so by (*) on page 323, it is an automorphism of I,
still fixing E. We have just shown that if h e Gal(K : E), then the restriction
of h to I is in Gal(I : E). This permits us to define a function
p : Gal(K : E) —* Gal(I : E) by the rule

p(h) = the restriction of h to I

It is very easy to check that p is a homomorphism. p is surjective, because
every F-fixing automorphism of I can be extended to an F-fixing auto-
morphism of K, by Theorem 5 in Chapter 31.

Finally, if h e Gal(K : E), the restriction of h to I is the identity function
iff h(x) = x for every x e I, that is, itT h fixes 1. This proves that the kernel of
pis Gal(K :1).

To recapitulate: p is a homomorphism from Gal(K : I?) onto Gal(I : F)
with kernel Gal(K : I). By the FHT, we immediately conclude as follows:

Theorem 4 Suppose F I K, where I is a root field over F and K is a root
field over I. Then

Gal(K :E)
Gal(I :E)

Gal(K :1)

It follows, in particular, that Gal(K : I) is a normal subgroup of Gal(K : F).

EXERCISES

t A. Computing a Galois Group

1 Show that 3(i, \/i) is the root field of(x2 + I)(x2 — 2) over

2 Find the degree of Q(i, \/i) over Q.
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3 List the elements of Gal(Q(i, : Q) and exhibit its table.
4 Write the inclusion diagram for the subgroups of Gal(Q(i, : Q), and the
inclusion diagram for the fields intermediate between Q and Q(i, Indicate the
Galois correspondence.

t B. Computing a Galois Group of Eight Elements

1 Show that Q(%fi, is the root field of(x2 — 2)(x2 — 3)(x2 — 5) over 0
2 Show that the degree of over 0 is 8.
3 List the eight elements of G = Gal(QLfi, :0) and write its table.
4 List the subgroups of G. (By Lagrange's theorem, any proper subgroup of G has
either two or four elements.)
5 For each subgroup of G, find its fixfield.
6 Indicate the Galois correspondence by means of a diagram like the one on page
330.

t C. A Galois Group Equal to S3.

I Show that is the root field ofx1 — 2 over 0, designates the
real cube root of 2. (HINT: Compute the complex cube roots of unity.)
2 Show that = 3.

3 Exglain why x2 + 3 is irreducible over then show that
0W2)] = 2. Conclude that :0] 6.

4 Use part 3 to explain why L7i3: 0) has six elements. Then use the
discussion following (**) on page 323 to explain why every element of Gal(0(.,?Ji,

0) may be identified with a permutation of the three cube roots of 2.
5 Use part 4 to prove that Gal(0RJ2, 0) 53.

t D. A Galois Group Equal to D4

If cr = is a real fourth root of 2, then the four fourth roots of 2 are ± and ± fri.
Explain each of the following, briefly but carefully:

1 i) is the root field of x4 — 2 over 0.
2

0

4 i): 0] = 8.

5 1, 22, i, fri, ioc2, icz3} is a basis for 0(2, i) over 0.

6 Any 0-fixing automorphism h of 0(2, i) is determined by its effect on the elements
in the basis. These, in turn, are determined by h(cx) and h(i).

7 h(4 must be a fourth root of 2 and h(i) must be equal to ± i. Combining the four
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possibilities for hfrx) with the two possibilities for h(i) gives eight possible auto-
morphisms List them in the format

52—*4
1.1' i

8 Compute the table of the group i): 0) and show that it is isomorphic to
D4, the group of symmetries of the square.

t E. A Cyclic Galois Group

1 Describe the root field K of x7 — I over 0. Explain why [K : 0] = 6.

2 Explain: If i is a primitive seventh root of unity, any h e Gal(K : 0) must send
to a seventh root of unity. In fact, h is determined by h(cx).
3 Use part 2 to list explicitly the six elements of Gal(K : 0). Then write the table of
Gal(K: 0) and show that it is cyclic.
4 List all the subgroups of Gal(K: 0), with their fixfields. Exhibit the Galois corre-
spondence.
5 Describe the root field L of x6 — 1 over 0, and show that [I,: 0] = 3. Explain
why it follows that there are no intermediate fields between 0 and L (except for 0
and L themselves).
6 List the three elements of Gal(L: 0) and write its table. (It will be useful to
remember that the sixth roots of unity form a multiplicative cyclic group. An auto-
morphism must send any element of order k, in this group, to another element of the
same order k.)

t F. A Galois Group Isomorphic to S5

Let a(x) = — 4x4 + 2x + 2 e 0[x], and let r1, .. . , r5 be the roots of a(x) in C. Let
K = 0(r1,. ., r5) be the root field of a(x) over 0. Prove the following:

I a(x) is irreducible in OFt].

2 a(x) has three real and two complex roots [HINT: Use calculus to sketch the
graph of y = a(x), and show that it crosses the x axis three times.]
3 If r1 denotes a real root of a(x), [0(r1): 0] = 5. Use this to prove that [K : 0] is

a multiple of 5

4 Use part 3 and Cauchy's theorem (Chapter 13, Exercise E) to prove that there is
an element of order 5 in Gal(K: 0). Since may be identified with a permutation

of {r1, . ., r5}, explain why it must be a cycle of length 5. (HINT: Any product of
disjoint cycles on {r1 r5} has order # 5.)
5 Explain why there is a transposition in Gal(K : 0). [It permutes the conjugate
pair of complex roots of a(x).]

6 Any subgroup of 55 which contains a cycle of length 5 and a transposition must
contain all possible transpositions in S5, hence all of S5. Thus, Gal(K : 0) = 55.
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G. Shorter Questions Relating to Automorphisms and Galois Groups

Let F be a field, and K a finite extension of F. Prove the following:

I If an automorphism Ii of K fixes F and a, then h fixes F(a).

2 F(a, b)* = F(a)*nF(b)*.

3 Aside from the identity function, there are no 0-fixing automorphisms of
[HINT: Note that contains only real numbers.]
4 Explain why the conclusion of part 3 does not contradict Theorem 1.

In the next three parts, let w be a primitive pth root of unity, where p is a prime.

S

6 Use part 5 to prove that Gal(Q(o4: Q) is an abelian group.
7 Use part 5 to prove that Gal(Q(o4: Q) is a cyclic group.

t H. The Group of Automorphisms of C

Prove the following:

1 The only automorphism of Q is the identity function. [HINT: If h is an auto-
morphism, h(1) = 1, hence h(2) = 2, and so on.]
2 Any automorphism of sends squares of numbers to squares of numbers, hence
positive numbers to positive numbers.
3 Using part 2, prove that if/i is any automorphism of R, a ch implies h(a) < h(b).

4 Use parts 1 and 3 to prove that the only automorphism of R is the identity
function.

5 List the elements of Gal(C:
6 Prove that the identity function and the function a + hi a — hi are the only
automorphisms of C.

I. Further Questions Relating to Galois Groups

Throughout this set of questions, let K be a root field over F, let G = Gal(K: F),
and let I be any intermediate field. Prove the following:

1 f* = Gal(K: I) is a subgroup of G.
2 If II is a subgroup of G and H° = {a e K: ir(a) = a for every ire H}, then H° is a
subfield of K, and F [P.
3 Let H be the fixer of I, and I' the fixileld of H. Then 1 c 1'. Let 1 be the flxfield of
H, and J* the fixer of I. Then H 1*.

4 Let I be a normal extension of F (that is, a root field of some polynomial over F).
If G is abelian, then Gal(K: I) and Gal(I: F) are abelian. (HINT: Use Theorem 4.)
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5 Let I be a normal extension of F. If G is a cyclic group, then Gal(K: I) and
Gal(I: F) are cyclic groups.

6 If G is a cyclic group, there exists exactly one intermediate field I of degree k, for

each integer k dividing [K: F].

t J. Normal Extensions and Normal Subgroups

Suppose F c K, where K is a normal extension of F. (This means simply that K is
the root field of some polynomial in F[x]: see Chapter 31, Exercise K.) Let
be intermediate fields.

1 Deduce from Theorem 4 that, if '2 is a normal extension of is a normal
subgroup of
2 Prove the following for any intermediate field I: Let h e Gal(K: F), g a I,
and h = h(a). Then [h o g o Jf '](b) = b. Conclude that

ch(I)*

3 Use part 2 to prove that hI*h = h(I)*.

Two intermediate fields 11 and '2 are called conjugate ill there is an auto-
morphism [i.e., an element i a Gal(K : F)] such that i(11) =

4 Use part 3 to prove: and '2 are conjugate ill fl and It are conjugate subgroups
in the Galois group.
5 Use part 4 to prove that for any intermediate fields and : if fl is a normal
subgroup of It. then is a normal extension of

I a normal extension of Hilt is a
normal subgroup of it. (Historically, this result is the origin of the word "normal"
in the term "normal subgroup.")



CHAPTER

THIRTY-THREE
SOLVING EQUATIONS BY RADICALS

In this final chapter, Galois theory will be used explicitly to answer practi-
cal questions about solving equations.

In the introduction to this book we saw that classical algebra was
devoted- largely to finding methods for solving polynomial ecluations. The
quadratic formula yields the solutions of every equation of degree 2, and
similar formulas have been found for polynomials of degrees 3 and 4. But
every attempt to find explicit formulas, of the same kind as the quadratic
formula, which would solve a general equation of degree 5 or higher ended
in failure. The reason for this was finally discovered by the young Galois,
who showed that an equation is solvable by the kind of explicit formula we
have in mind if and only if its group of symmetries has certain properties.
The group of symmetries is, of course, the Galois group which we have
already defined, and the required group properties will be formulated in the
next few pages.

Galois showed that the groups of symmetries of all equations of degree
� 4 have the properties needed for solvability, whereas equations of degree
5 or more do not always have them. Thus, not only is the classical quest for
radical formulas to solve all equations of degree > 4 shown to be futile, but
a criterion is made available to test any equation and detcrminc if it has
solutions given by a radical formula. All this will be made clear in the
following pages.

Every quadratic equation ax2 + hx + c = 0 has its roots given by the
formula

335
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—b ± 1b2 — 4ac

2a

Equations of degree 3 and 4 can be solved by similar formulas. For exam-
ple, the cubic equation x3 + ax + b = 0 has a solution given by

3 2

Such expressions are built up from the coefficients of the given polynomials
by repeated addition, subtraction, multiplication, division, and taking roots.
Because of their use of radicals, they are called radical expressions or radical
formulas. A polynomial a(x) is solvable by radicals if there is a radical
expression giving its roots in terms of its coefficients.

Let us return to the example of x3 + ax + b = 0, where a and b are
rational, and look again at Formula (*). We may interpret this formula to
assert that if we start with the field of coefficients Q, adjoin the square root

then adjoin the cube roots ± we reach a field in which
x3 + ax + b = 0 has its roots.

In general, to say that the roots of a(x) are given by a radical expression
is the same as saying that we can extend the field of coefficients of a(x) by
successively adjoining nth roots (for various n), and in this way obtain a
field which contains the roots of a(x). We will express this notion formally
now, in the language of field theory.

F(c1 is called a radical extension of F if, for each i, some power
of c1 is in F(c1 c1. i). In other words, F(c1 is an iterated exten-
sion of F obtained by successively adjoining nth roots, for various n. We say
that a polynomial a(x) in F[x] is solvable by radicals if there is a radical
extension of F containing all the roots of a(x), that is, containing the root
field of a(x).

To deal effectively with nth roots we must know a little about them. To
begin with, the nth roots of 1, called nth roots of unity, are, of course, the
solutions of — 1 = 0. Thus, for each n, there are exactly n nth roots of
unity. As we shall see, everything we need to know about roots will follow
from properties of the roots of unity.

In C the nth roots of unity are obtained by de Moivre's theorem. They
consist of a number cu and its first n powers: 1 = co0, co, co2, ..., of We
will not review de Moivre's theorem here because, remarkably, the main
facts about roots of unity are true in every field of characteristic zero.
Everything we need to know emerges from the following theorem:



SOLVING EQUATIONS BY RADICALS. 337

Theorem I Any finite group of nonzero elements in a field is a cyclic group.
(The operation in the group is the field's multiplication.)

If F* denotes the set of nonzero elements of F, suppose that G F*,

and that G, with the field's "multiply" operation, is a group of n elements.
We will compare G with 4 and show that G, like 74, has an element of
order n and is therefore cyclic.

For every positive integer k which divides n, the equation xk = 1 has at
most k solutions in F; thus, G contains k or fewer elements of order k. On
the other hand, in 4 there are exactly k elements of order k, namely

Now, every element of G (as well as every element of 4) has a well-
defined order, which is a divisor of n. Imagine the elements of both groups
to be partitioned into classes according to their order, and compare the
classes in G with the corresponding classes in 74. For each k, G has as
many or fewer elements of order k than 74 does. So if G had no elements of
order n (while 74 does have one), this would mean that G has fewer elements
than 4, which is false. Thus, G must have an element of order n, and
therefore G is cyclic.

The nth roots of unity (which are contained in F or a suitable extension
of F) obviously form a group with respect to multiplication. By Theorem I,
it is a cyclic group. Any generator of this group is called a primitive nth root
of unity. Thus, if cv is a primitive nth root of unity, the set of all the nth
roots of unity is

1, cv, cv2

If cv is a primitive nth root of unity, F(cv) is an abelian extension of F in
the sense that g o h = Ii o g for any two F-fixing automorphisms g and h of
F(cv). Indeed, any automorphism must obviously send nth roots of unity to
nth roots of unity. So if g(co) = cc! and h(cv) = cc!, then g c h(co) =
g(cv5) = a!', and analogously, h c g(cv) = Thus, g o h(cv) = h o g(co). Since
g and h fix F, and every element of F(cv) is a linear combination of powers
of cv with coefficients in F, g o h = h o g.

Now, let F contain a primitive nth root of unity, and therefore all the
nth roots of unity. Suppose a e F, and a has an nth root h in F. It follows,
then, that all the nth roots of a are in F, for they are h, bcv, bcv2 bat -
Indeed, if c is any other nth root of a, then clearly c/b is an nth root of 1, say
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&, hence c = boY. We may infer from the above that if F contains a primi-
tive nth root of unity, and b is an nth root of a, then F(b) is the root field of
x" — a over F.

In particular, F(h) is an abelian extension of F. Indeed, any F-fixing
automorphism of F(h) must send nth roots of a to nth roots of a: for if c is
any nth root of a and g is an F-fixing automorphism, then

g(c) is an nth root of a. So if g(h) = ha! and
h(b) = ha!, then

g c h(h) = g(b&) = b&& =

and h g(b) h(hof) = haht! =

hence g o h(b) = h o g(b). Since g and Ii fix F, and every element in F(b) is a
linear combination of powers of b with coefficients in F, it follows that
g o h = h o g.

If a(x) is in F[x], remember that a(x) is solvable by radicals just as long
as there exists some radical extension of F containing the roots of a(x). [Any
radical extension of F containing the roots of a(x) will do.] Thus, we may as
well assume that any radical extension used here begins by adjoining to F
the appropriate roots of unity; henceforth we will make this assumption.
Thus, if K = F(c1 is a radical extension of F, then

F F(c1) g F(c1, c2) ... c F(c1. ..., cj

10 '1 '2

is a sequence of simple abelian extensions. (The extensions are all abelian by
the comments in the preceding three paragraphs.) If G denotes the Galois
group of K over F, each of these fields 1k has a fixer which is a subgroup of
G. These fixers form a sequence

=

For each k, by Theorem 4 on page 330, is a normal subgroup of
and Gal(Ik + : Ik) which is abelian because 'k + is an abelian
extension of The following definition was invented precisely to account
for this situation:

A group G is called solvable it has a sequence of subgroups {e} =
H0 H1 c ... H,,, = G such that for each k, Gk is a normal subgroup

of Gk+ I and Gk+ l/Gk is abelian.
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We have shown that if K is a radical extension ofF, then Gal(K: F) is a
solvable group. We wish to go further and prove that if a(x) is any poly-
nomial which is solvable by radicals, its Galois group is solvable. To do so,
we must first prove that any homomorphic image of a solvable group is
solvable. A key ingredient of our proof is the following simple fact, which
was explained on page 148: G/H is abelian itT H contains all the products
xyx for all x and y in G. (The products xyx'y 1 are called "com-
mutators" of G.)

Theorem 2 Any homomorphic image of a solvable group is a solvable group.

Let G be a solvable group, with a sequence of subgroups

as specified in the definition. Let f: G — X be a homomorphism from G
onto a group X. Then f(H0), f(H1), . . . , f(H,,,) are subgroups of X, and
clearly {e} f(H0) cf(H1) f(H,,,) = X. For each i we have the
following: if f(a) e f(H1) and f(x) e f(H1+ then a e H1 and x e
hence xax' e H1 and therefore e f(HJ. So f(H1) is a
normal subgroup of f(H1÷ i). Finally, since 1/H1 is abelian, every
commutator xyx 'y ' (for all x and y in is in H1, hence every
f(x)f(y)f(x) 'f(y) 'is inf(H1). Thus,f(H1+ 1)/f(H1) is abelian.

Now we can prove the main result of this chapter:

Theorem 3 Let a(x) be a polynomial over a field F. If a(x) is solvable by
radicals, its Galois group is a solvable group.

By definition, if K is the root field of a(x), there is an extension by
radicals F(c, such that F c K F(c,, . . ., cj. It follows by Theorem
4 on page 330 that Gal(F(c,, ..., ca): F)/Gal(F(c,, ..., ca): K) Gal(K: F),
hence by Theorem 4 on page 330, (Jal(K: F) is a homomorphic image of
Gal(F(c, ca): F) which we know to be solvable. Thus, by Theorem 2
Gal(K: F) is solvable.

Actually, the converse of Theorem 3 is true also. All we need to show is
that, if K is an extension of F whose Galois group over F is solvable, then
K may be further extended to a radical extension of F. The details are not
too difficult and are assigned as Exercise E at the end of this chapter.

Theorem 3 together with its converse say that a polynomial a(x) is
solvable by radicals Wits Galois group is solvable.

We bring this chapter to a close by showing that there exist groups
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which are not solvable, and there exist polynomials having such groups as
their Galois group. In other words, there are unsolvable polynomials. First,
here is an unsolvable group:

Theorem 4 The symmetric group S5 is not a solvable group.

Suppose 55 has a sequence of subgroups

as in the definition of solvable group. Consider the subset of S5 containing
all the cycles (ijk) of length 3. We will show that if H1 contains all the cycles
of length 3, so does the next smaller group It would follow in iii steps
that H0 = {e} contains all the cycles of length 3, which is absurd.

So let H1 contain all the cycles of length 3 in 55. Remember that if
and /3 are in then their commutator ac/icr - 1/3 -1 is in H1 But any cycle
(ijk) is equal to the commutator

(ilj)(jkm)(ilj) '(jkm) - 1 = (ilj)(jkm)(jli)(mkj) = (ijk)

hence every (ijk) is in H1_ as claimed.
Before drawing our argument toward a close, we need to know one

more fact about groups; it is contained in the following classical result of
group theory:

Cauchy's theorem Let G be a finite group of n elements. If p is any prime
number which divides n, then G has an element of order p.

For example, if G is a group of 30 elements, it has elements of orders 2,
3, and 5. To give our proof a trimmer appearance, we will prove Cauchy's
theorem specifically for p = 5 (the only case we will use here, anyway).
However, the same argument works for any value of p.

Consider all possible 5-tuples (a, b, c, d, k) of elements of G whose
product ahcdk = e. How.many distinct 5-tuples of this kind are there? Well,
ifwe select a, b, c, and dat random, there is a uniquek = in
G making ahcdk = e. Thus, there are n4 such 5-tuples.

Call two 5-tuples equivalent if one is merely a cyclic permutation of the
other. Thus, (a, h, c, d, k) is equivalent to exactly five distinct 5-tuples,
namely (a, b, c, d, k), (b, c, d, k, a), (c, d, k, a, b), (d, k, a, h. c) and
(k, a, b, c, d). The only exception occurs when a 5-tuple is of the form
(a, a, a, a, a) with all its components equal; it is equivalent only to itself.
Thus, the equivalence class of any 5-tuple of the form (a, a, a, a, a) has a
single member, while all the other equivalence classes have five members.



SOLVING EQUATIONS BY RADICALS 341

Are there any equivalence classes, other than {(e, e, e, e, e)}, with a
single member? If not then 5 I — 1) (for there are n4 5-tuples under
consideration, less (e, e, e, e, e)), hence n4 1 (mod 5). But we are assuming
that 5 n, hence n4 0 (mod 5), which is a contradiction.

This contradiction shows that there must be a 5-tuple (a, a, a, a, a) #
(e, e, e, e, e) such that aaaaa = a5 = e. Thus, there is an element a e G of
order 5.

We will now exhibit a polynomial in Q[x] having S5 as its Galois
group (remember that S5 is not a solvable group).

Let a(x) = — 5x — 2. By Eisenstein's criterion, a(x + 2) is irreducible
over 0, hence a(x) also is irreducible over 0. By elementary calculus, a(x)
has a single maximum at (—1, 2), a single minimum at (1, —6), and a single
point of inflection at (0, — 2). Thus (see figure), its graph intersects the x axis
exactly three times. This means that a(x) has three real roots, r1, r2, and r3,
and therefore two complex roots, r4 and r5, which must be complex conju-
gates of each other.

Let K denote the root field of a(x) over 0, and G the Galois group of
a(x). As we have already noted, every element of G may be identified with a

—5

(—1,2)

y = x' - 5x -2

3

—3

-4
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permutation of the roots r1, r2, r3, r4, r5 of a(x), so G may be viewed as a
subgroup of S5. We will show that G is all of S5.

Now, [Q(r1): = 5 because r1 is a root of an irreducible polynomial
of degree 5 over 0. Since [K : 0] = [K: 0(r1)][0(r1): 0], it follows that 5
is a factor of [K: 0]. Then, by Cauchy's theorem, G contains an element of
order 5. This element must be a cycle of length 5: for by Chapter 8, every
other element of is a product of two or more disjoint cycles of length
<5, and such products cannot have order 5. (Try the typical cases.) Thus, G

contains a cycle of length 5.
Furthermore, G contains a transposition because complex conjugation

a + bi—+ a — hi is obviously a 0-fixing automorphism of K; it interchanges
the complex roots r4 and r5 while leaving r1, r2, and r3 fixed.

Any subgroup G which contains a transposition r and a cycle c of
length 5 necessarily contains all the transpositions. (They are 1,

and their products; check this by direct com-
putation!) Finally, if G contains all the transpositions, it contains everything
else: for every member of is a product of transpositions. Thus, G =

We have just given an example of a polynomial a(x) of degree 5 over 0
whose Galois group is not solvable. Thus, a(x) is an example of a
polynomial of degree 5 which cannot be solved by radicals. In particular,
there cannot be a radical formula (on the model of the quadratic formula)
to solve all polynomial equations of degree 5, since this would imply that
every polynomial equation of degree 5 has a radical solution, and we have
just exhibited one which does not have such a solution.

In Exercise B it is shown that 53, 54, and all their subgroups are
solvable, hence every polynomial of degree � 4 is solvable by radicals.

EXERCISES

A. Finding Radical Extensions

1 Find radical extensions of 0 containing the following complex numbers:

(a) -- + (h) -
(c) — 2i)3/(i — qTf)

2 Show that the following polynomials in 0[x] are not solvable by radicals.
(a) 2x5 — 5x4 + 5 (h) x5 — 4x2 + 2 (c) x5 — 4x4 + 2x + 2

3 Show that a(x) = x5 — lOx4 + 40x3 — 80x2 + 79x — 30 is solvable by radicals

over 0, and give its root field. [1-lINT: Compute (x — — (x — 2).]

4 Show that ax8 + hx6 + cx4 + dx2 + e is solvable by radicals over any field.
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(HINT: Let y = x2; use the fact that every fourth-degree polynomial is solvable by
radicals.)

5 Explain why parts 3 and 4 do not contradict the principal finding of this chapter:
that polynomial equations of degree n � 5 do not have a general solution by rad-
icals.

t B. Solvable Groups

Let G be a group. The symbol H G is commonly used as an abbreviation of H is
a normal subgroup of G." A normal series of G is a finite sequence H0, H1, ., of
subgroups of G such that

{e}=HociHici"cHn=G
Such a series is called a solvable series if each quotient group H1+ 1/H1 is abelian. G is
called a solvable group if it has a solvable series.

I Explain why every abelian group is, trivially, a solvable group.
2 Let G be a solvable group, with a solvable series H0, ..., Let K be a sub-
group of G. Show that J0 = K n H0 = K n Hn is a normal series of K.
3 Use the remark immediately preceding Theorem 2 to prove that J0 is a
solvable series of K.

4 Use parts 2 and 3 to prove: Every subgroup of a solvable group is solvable.
5 Verily that {r} {r, /1, ö} c S3 is a solvable series for S3. Conclude that and
all of its subgroups, are solvable.
6 In S4. let A4 be the group of all the even permutations, and let

B = {c, (12)(34), (13)(24), (14)(23)}

Show that {} c B c A4 c S4is a solvable series for S4 Conclude that S4 and all its
subgroups are solvable.

The next three sets of exercises are devoted to proving the converse of Theorem
3: 1/the Galois qroup of a(x) is solvable, then a(x) is solvable by radicals

t C. pth Roots of Elements in a Field

Let p be a prime number, and (I) a primitive pth root of unity in the field F.

I If ii is any root of x" — a a F[x], show that F(w, d) is a root field of — a.

Suppose x" — a is not irreducible in F[x]

2 Explain why x" — a factors as x" — a = p(x)f(x) where both factors have degree
� 2.
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3 If deg p(x) = m, explain why the constant term of p(x) (let us call it h) is equal to
the product of m pth roots of a. Conclude that b = oidm for some k.

4 Use part 3 to prove that h" =
5 Explain why m and p are relatively prime. Explain why it follows that there are
integers s and such that sin + tp = 1.

6 Explain why b"' = aSrn. Use this to show that (bsat)rJ = a.

7 Conclude: 1ff — a is not irreducible in F[x], it has a root (namely l9at) in F.

We have proved. x" — a either has a root in F or is irreducible over F.

t D. Another Way of Defining Solvable Groups

Let G be a group. The symbol H-ci G should be read, "H is a normal subgroup of
G." A maximal normal subgroup of G is an Hci G such that, if

H f the following:

I If G is a finite group, every normal subgroup of G is contained in a maximal
normal subgroup.
2 Letf: G—. H be a homomorphism. 1ff-c H, G.

3 Let K ci G. If / is a subgroup of G/K, let 3 denote the union of all the cosets
which are members off. If f-c G/K, then / ci G. (Use part 2.)
4 If K is a maximal normal subgroup of G, then G/K has no nontrivial normal
subgroups. (Use part 3.)
5 If an abelian group G has no nontrivial subgroups, G must be a cyclic group of
prime order. (Otherwise, choose some a a G such that <a> is a proper subgroup of
G.)

6 If H-c K ci G, then G/K is a homomorphic image of G/H.
7 Let H-c G, where G/H is abelian. Then G has subgroups H0, ..., such that
H = H0ci H1 ci = G, where each quotient group H1±1/H1 is cyclic of
prime order.

It follows from part 7 that if G is a solvable group, then, by "filling in gaps," G
has a normal series in which all the quotient groups are cyclic of prime order.
Solvable groups are often defined in this fashion.

E. If Gal(K: F) Is Solvable, K Is a Radical Extension of F

Let K be a finite extension of F, with G = Gal(K: F) a solvable group. As remarked
in the text, we will assume that F contains the required roots of unity. By Exercise
D, let H0 be a solvable series for G in which every quotient 1/H1 is cyclic
of prime order For any i = 1, .., n, let F1 and be the fixfields ofH1 and
Prove the following:
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I F1 is a normal extension of and [F1: i] is a prime p.
2 Let t be a generator of Gal(F1: to a pth root of unity in andb e F1.
Set

+w'iC0''1(b)
Show that = ox.

3 Use part 2 to prove that lrk(ctJ) = c" for every k, and deduce from this that
c" e F1÷

4 Use Exercise C to prove that x" — c" is irreducible in F1÷ 1[x].
5 Prove that F, is the root field of x" — 9 over
6 Conclude that K is a radical extension of F.
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Disjoint cycles, 77
Distributive law, 15, 166
Division algorithm, 210, 244

Divisor of zero, 169
Domain of a function, 55

Eisenstein's irreducibility criterion
263

Endomorphism, 173
Equivalence class, 119
Equivalence relation, 118 — 122
Euclidean algorithm, 257
Euclid's lemma, 219, 254
Euler's phi-function, 227
Euler's theorem, 228
Even permutation, 79, 83
Extension:

abelian, 337
algebraic, 296
degree of, 292
finite, 292, 312

iterated, 295

normal, 322, 334

quadratic, 279

radical, 319, 336
simple, 278, 295, 312

Extension field, 270—28 1
degree of, 292—300

Fermat's little theorem, 227
Field, 169
Field extension, 270—281

degree of, 292—300
Field of quotients, 200
Finite extension, 292, 312
First isomorphism theorem, 158
Fixed field, 327
Fixer, 327
Fixfield, 327
Flow network, 87

Froebenius automorphism, 204
Functions, 54—63

bijective, 56

composite, 57

domain of, 55
identity, 65
injective, 55
inverse, 58



Functions (Corn'.):
range of, 55
surjective, 56

Fundamental homomorphism
theorem, 153—164

for groups, 153
for rings, 191

Galois, Evariste, 18
Galois correspondence, 329
Galois group, 326
Galois theory, 311 —333
Greatest common divisor, 217, 253
Group(s), 26—44, 64—74,

100—115, 143—152
abelian, 29

acting onaset, 131

alternating, 81
circle, 159
cyclic, 109—115
dihedral, 69

finite, 26

Galois, 326
of integers modulo n, 28
order of, 39
parity, 134
of permutations, 67
quaternion, 130
quotient, 143—152
solvable, 338, 343

symmetric, 66

of symmetries of a square, 67

Homomorphisms, 132— 142,

153—164, 180—181,

184— 186

Ideal(s), 179— 186

annihilating, 186

annihilator of, 186

Ideal(s) (Con,'.):
maximal, 186, 192
primary, 195

prime, 191

principal, 180, 251

proper, 186, 192

radical of, 186

semiprime, 195

Identity element, 22

Identity function, 65
Index of a subgroup, 127
Induction:

mathematical, 208, 211

strong, 209

Injective function, 55

Inner automorphism, 157

Inner direct product, 141

Integers, 205—2 14

Integral domain, 170, 197—204

characteristic of, 198

ordered, 206

Integral system, 207

Inverse function, 58
Invertible element in a ring, 168
Irreducible polynomial, 254
Isomorphism, 86—99
Iterated extension, 295

Kernel:
of a group homomorphism,

137
of a ring homomorphism, 182

Lagrange's theorem, 126

Leading coefficient, 241
Least common multiple, 222
Legendre symbol, 237
Linear combination, 285
Linear dependence, 285
Linear independence, 285

Linear transformation, 289

INDEX 349



350 INDEX

Matrices, 7—10
Matrix multiplication, 9

Maximal ideal, 186, 192

Minimal polynomial, 273

Modulo n:

addition, 28

congruence, 225, 228

multiplication, 167
Monic polynomial, 253
Monomorphism, 321
Multiplication modulo n, 167

Nilpotent element, 176
Normal extension, 322, 334
Normal series, 343

Normal subgroup, 136
Null space, 289

Odd permutation, 79, 83
Operations, II, 20—25
Orbit, 131
Order:

of an element, 102
of a group, 39
infinite, 102

p-group, 161
p-subgroup, 161
p-Sylow subgroup, 161
Partition, 116— 122
Permutation, 65—85

even, 79, 83
odd, 79, 83

Polynomial(s), 239— 269
inseparable, 319
irreducible, 254
minimum, 273

monic, 253
reducible, 254
root(s) of, 259

multiple, 280, 312

Polynomial(s) (Corn'.):
separable, 319

Polynomial interpolation, 269
Prime ideal, 191
Prime numbers, 2 15—223
Primitive roots, 238, 337

Principal ideal, 180, 251

Proper ideal, 186, 192

Quadratic reciprocity, 237
Quadratic residue, 236
Quaternion, 172

ring of, 172
Quaternion group, 130
Quotient group, 143
Quotient ring, 187

Radical(s), 335—343
Radical extension, 319, 336
Radical of an ideal, 186
Range of a function, 55
Regular representation of groups,

98
Relatively prime, 2 18, 254
Ring(s), 165—177,187—196,

239— 250
commutative, 168
of endomorphisms, 173
of polynomials, 239—250
of quaternions, 172
quotient, 187— 196
trivial, 168
with unity, 168

Root field, 313
Root(s) of a polynomial, 259

multiple, 280, 312

Second isomorphism theorem, 160
Solvable by radicals, 336
Solvable group, 338, 343



Solvable series, 343

Stabilizer, 131

Subgroup(s), 45—53

cyclic, 48, Ill

generators of, 48

index of, 127

normal, 136

p-, 161

p-Sylow, 161

propcr, 48

trivial, 48

Subring, 178

Surjective function, 56

Sylow groups, 161

Sylow subgroup, 161

Sylow's theorem, 162
Symmetric difference, 3 1

Symmetric group, 66

INDEX 351

Transcendental elements, 273
Transposition, 79

Unique factorization, 220, 255
Unity, ring with, 168

Vector space, 282—291
basis of, 287
dimension of, 287

Well-ordering property, 207
Wilson's theorem, 235
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