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PREFACE 

This monograph is essentially a compilation of a series of lectures given 
by the author to the Piezoelectric Crystal Device Department of Bell Tele­
phone Laboratories at the invitation of Dr. W. J. Spencer. The lectures 
were given, between March 1965 and April 1966, in order to acquaint the 
people in the department with the very relevant theoretical techniques that 
had been developed and systematically employed by Prof. R. D. Mindlin 
of Columbia University during the preceding fifteen years. The lectures 
appear to have been somewhat successful in that a number of people who 
attended them and had been unfamiliar with the viewpoints and techniques 
before have been using them since. 

Although most of Prof. Mindlin's work was on the vibrations of 
elastic plates, this monograph is concerned with the vibrations of piezo­
electric plates. In addition, the basic differential equations and boundary 
conditions governing the behavior of the linear, piezoelectric continuum 
are developed systematically from fundamental continuum concepts. The 
field-theoretic viewpoint adopted is quite different from the lumped-circuit 
attitude prevalent in existing works on this subject. This treatment is more 
akin to certain treatments of the linear theory of elastic waves and vibra­
tions available in the current literature. During the period in which the 
lectures were being delivered the monolithic crystal filter was discovered 
by R. A. Sykes and W. D. Beaver.* As a consequence, the theory presented 
was applied to the analysis of such a structure at a very early stage in its 
development. 

It is intended that this monograph can be used as a nucleus for a gra­
duate course or a seminar in piezoelectric vibration theory. It is also felt 
that it can be read, with some effort, by a reasonably competent individual 
knowing something about the rudiments of elasticity and electromagnetism, 
and that this effort can enable him to engage in timely research in this 
field. 

The author would like to take this opportunity to thank W. J. Spencer 
for suggesting that the lectures be given, for constant encouragement, and 

• Work on the same type of structure was done by Prof. M. Onoe at the Institute of 
Industrial Science of the University of Tokyo. 
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for indispensable help with the preparation of a preliminary version of this 
monograph; A. H. Meitzler and J. H. Rowen for their support and en­
couragement throughout; and all those who attended the lectures for their 
time, effort, and patience. I wish to thank Mrs. E. Jenkins for doing a 
magnificent typing job on the final version of this manuscript under very 
trying circumstances. I also wish to thank Prof. J. L. Bleustein of Yale 
University for some useful comments and for providing a list of corrections 
to the preliminary version of this monograph. The author, of course, takes 
full responsibility for any errors and inadequacies that remain. 

Murray Hill, New Jersey 
July 1968 

H.F.T. 
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INTRODUCTION 

The small vibrations of piezoelectric bodies are governed by the equa­
tions of the linear theory of piezoelectricity. In piezoelectricity the quasi­
static electric field is coupled to the dynamic mechanical motion. To be 
more specific, the equations of linear elasticity are coupled to the charge 
equation of electrostatics by means of the piezoelectric constants. The 
equations of piezoelectricity have been available and used since the days 
of Voigt (1). Although there are a reasonable number of books on piezo­
electricity currently available (2.3), they are all written from different prac­
tical points of view, and use the theory sporadically without a systematic 
development. In fact, a systematic derivation of the equations and relevant 
boundary conditions appears to be virtually nonexistent in the open liter­
ature, with the exception of the work of Mindlin (4), which is very brief. 
Moreover, all the existing texts discuss the piezoelectric vibrations of bodies 
only in the simplest cases of the one-wave thickness vibrations and the 
extremely low-frequency extensional and flexural vibrations of thin rods. 
In addition, considerations of large piezoelectric coupling are completely 
absent in texts on this subject except for discussions of the simplest cases 
of elementary thickness vibrations. However, during the past two decades 
techniques for the solution of more complicated piezoelectric plate vibration 
problems have been developed and employed, and appear in the current 
research literature, although not in the texts on the subject. Although there 
are a number of such methods, the technique that has been most used and 
the one that seems most fruitful to this author is the one resulting from the 
investigations of Prof. R. D. Mindlin of Columbia University and some of 
his students. Even though Prof. Mindlin has written a very valuable mono­
graph (5) on the vibrations of elastic plates which appeared as a Signal 
Corps report, it was never published as a book. As a consequence, it is, 
unfortunately, not readily available, and some acquaintance with much of 
its contents is essential to an understanding of much of the current literature 
on this subject. Hence it seems advisable at this time to prepare for publica­
tion the present rather brief monograph, which originated as a series of 
lectures given by the author within Bell Telephone Laboratories at the 
request of W. J. Spencer, and which includes some very relevant material 
(and ideas) that appear (in greater detail) in the Signal Corps monograph 

xiii 



xiv Introduction 

by Mindlin. However, it should be noted that the material presented here 
includes the piezoelectric interaction, whereas Mindlin's monograph was 
devoted to the vibrations of purely elastic plates. In addition, linear piezo­
electric theory is developed in some detail and some space is devoted to a 
discussion of approximation techniques other than the ones considered by 
Mindlin in his monograph. 

The material presented can broadly be separated into four categories: 

1. The development of the three-dimensional linear differential equa­
tions and appropriate boundary condition. 

2. Solution of pertinent three-dimensional standing wave problems, 
which can be solved and serve as the basis of the approximation techniques. 

3. The approximation techniques. 
4. Applications to practical problems. 

In developing the three-dimensional theory, the mechanical concepts 
of infinitesimal deformation and stress are presented in some detail, but 
the electrical discussion proceeds from Maxwell's equations, which are 
assumed to be known. However, the quasi static electric field equations, 
which are used in linear piezoelectric theory, are obtained from Maxwell's 
equations, and the attendant assumptions and limitations are carefully 
delineated. The degenerate form of the Poynting vector for the quasi static 
electric field and the conditions for its validity appear naturally in the course 
of the derivation. At this point it should be noted that the importance of 
the word linear appearing in the title of this monograph cannot be over­
emphasized. The assumption of linearity is far-reaching and obscures much 
interesting physical detail which is of no importance for the type of small 
vibrations being described. As a consequence of this assumption, con­
sideration of such things as electric body forces and couples and the distinc­
tion between the final and initial position are omitted, along with a number 
of other related things. Almost all of the equations presented rest, in one 
way or another, on this assumption of linearity, and if a situation is to be 
described in which nonlinear effects are present, the entire description pre­
sented in this monograph must be abandoned and the appropriate invariant, 
nonlinear description derived. Important results concerning the nonlinear 
theory have been presented by Toupin (6), but are not needed or included 
in this monograph. A derivation of Hamilton's variational principle for 
the linear piezoelectric continuum is included, since it is needed for a number 
of the approximate techniques. 

The three-dimensional problems that are presented, which are extremely 
important for the approximate techniques of vibration analysis developed 
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later, are the thickness vibrations of piezoelectric plates and two-dimensional 
standing eigenwaves in plates, which, fortunately, are problems that can be 
solved exactly in the framework of the three-dimensional theory. If all the 
vibration problems could be solved exactly within the framework of the 
three-dimensional theory, there would be no need for approximation tech­
nique. However, this is not the case, and approximation techniques are 
almost always required in any real physical problem. 

The approximation techniques that are developed are not perturbation 
techniques in any sense. Actually, three techniques are discussed. Two of 
these take modal solutions of the three-dimensional equations just men­
tioned; these solutions satisfy the differential equations and boundary con­
ditions on the major surfaces of the plate exactly, and a number of such 
solutions are summed so as to satisfy the remaining boundary conditions 
on the minor surfaces approximately, using either the variational formula­
tion or the method of least squares. The third technique, which is consider­
ed to be most fruitful and is concentrated on most heavily, is somewhat 
different in philosophy from the other two, in that the variational formula­
tion is used to construct a system of approximate two-dimensional piate 
equations, which may then be solved exactly in some instances in which 
the three-dimensional equations cannot. This latter procedure originated 
with Poisson, Cauchy, and Kirchhoff in the development of the classical 
theory of elastic plates, and has been developed most extensively by Mindlin. 
A great deal of present research in the area of piezoelectric plate vibrations 
uses these approximate equations. In this monograph a further simplifica­
tion in these equations is introduced, and the more tractable thickness-shear 
approximation is obtained along with the appropriate edge conditions in a 
manner exhibiting the natural limitations inherent in the approximation. 
However, these latter equations turn out to be extremely accurate in the 
frequency range of most practical interest, i.e., in the vicinity of the thick­
ness-shear frequency. 

These equations are applied in the description of the steady-state forced 
vibrations of a monolithic crystal structure. Structures of this type show 
great promise of significantly furthering the crystal filter art, and, indeed, 
have been fabricated and used and are already available commercially. 
Another area of application of these approximate procedures is in the design 
of AT cut quartz resonators and thickness-shear resonators using high 
coupling materials. 



Chapter 1 

ELEMENTS OF VECTOR 
AND TENSOR NOTATION 

1. CARTESIAN COORDINATE TRANSFORMATIONS 

Consider the orthogonal coordinate system with axes Xl' X 2 , and Xa 

shown in Fig. 1. The base vectors are e. (i = I; 2, 3), where leil = 1. Clearly, 
the vector r may be written 

r = eixi = elxl + e2x2 + eaXa, 

and since the coordinate system is orthogonal, 

ei·ej = "ii' 

where "ij is the Kronecker delta defined by 

"ij = 1 

=0 

if i =j 

if i=l=j, 

(1.1) 

(1.2) 

(1.3) 

and we have introduced the summation convention (7) for repeated indices. 

, 
X l ~ 1 Xl 

r , 
--" X, ---.."...",....".,.."..,. 

---~~--- .. 
~ X, 

X3/ / 

"/ 
/ 

/ , , 
X3 

Fig. 1. Rectangular Cartesian coordinate axes. 

1 



2 Elements of Vector and Tensor Notation [Ch. 1 

A vector is an invariant quantity, i.e., it is independent of the frame of 
reference in which its components are measured; this is why it is useful 
for the description of physical phenomena. Consider another orthogonal 
coordinate system XI' (shown dotted in Fig. 1). Then we may write 

r = ez'xz' = eixi' (1.4) 

Remembering that ei·ej = 0ij and ez' . em' = Olm, upon dotting em' into 
both sides of (1.4) we obtain xm' = em' . eixi' Let ami = em' . ei; then 

Xm' = amiXi, (1.5) 

which is the transformation law for the components of a first rank tensor. 
Similarly, we have 

Xj = aljxz' , (1.6) 

which is the transformation law going the other way. Note the placement 
of the indices in (1.5) and (1.6). Since r = (r·ei)ei, and r can be ez' , we 
have 

ez' = (ez' . ei)ei , 

from which we obtain 

em' . ez' = (ez'· ei)em' • ei , 

which with the definition of ami> (1.2), and (1.4) yields 

aliami = Olm' (1.7) 

Similarly, we obtain 

alialj = °ij' (1.8) 

Equations (1.7) and (1.8) are the orthogonality relations, which tell us that 
the transformation from one orthogonal coordinate system to another is 
orthogonal. 

Since det 0ij = 1 and the determinant of a matrix product is equal to 
the product of the determinants, we must have 

det ali - lalil = ± 1. (1.9) 

Proper rotations have det ali = + 1, and improper rotations - 1. Inver­
sion and reflection operations give improper rotations. 
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2. VECTORIAL OPERATIONS 
AND INTEGRAL THEOREMS 

3 

According to any text on vector and/or tensor analysis, the scalar 
product of any two vectors A and B may be written 

A· B = Aiei" Bjej = AiBi' (1.10) 

Similarly, the vector product may be written 

AxB = AieiX Bjej = AiBjeiXej, (1.11) 

and we may write 
ei X ej = eijkek , (1.12) 

where eijk is the three-dimensional skew-symmetric tensor or Levi-Civita 
symbol defined by 

eijk = + I 

o 
= -I 

if ijk is a cyclic permutation of I, 2, 3 

if any two indices are equal 

if ijk is an anticyclic permutation, 

(1.13) 

in any coordinate system; hence eijk does not transform as a tensor under 
improper transformations. Substituting from (1.12) into (1.11), we obtain 

A X B = eijkAiBjek = ekijAiBjek , (1.14) 

which shows that A X B is not a true (polar) vector. In other words, (1.14) 
shows that A X B behaves as a vector under proper rotations, but not under 
improper rotations. It is the vectorial representation of an antisymmetric 
second rank tensor in three-dimensional space. It is very useful in 3-space, 
but not in spaces of higher dimensions. It is called a dual, oriented, or 
relative quantity by mathematicians, and either an axial or pseudo vector 
by physicists. 

Texts on vector and tensor analysis define the spatial differential opera­
tor l7 by 

8 888 
l7=ei -8 =el - 8 +e2 - 8 +e3 - 8 . 

Xi Xl X 2 Xa 
(1.15) 

Then we may write the gradient of a scalar rp in the form 

l7rp = ei 8rp/8xi = eirp,i, (1.16) 



4 Elements of Vector and Tensor Notation [Ch. 1 

where the comma followed by an index denotes differentiation with respect 
to the space coordinate Xi' Clearly, we may write the divergence and curl 
of a vector A in the forms 

I7·A = 8Aij8xi = Ai,i' 

I7xA - (ej 8j8Xj)xekAk = ejXekAk,j = eijkeiAk,r 

(1.17) 

(1.18) 

There exist the following integral theorems, which we write in both vector 
and Cartesian tensor notation 

Is n· A ds = I v 17 . A dV, (1.19a) 

I niAi ds = I Ai i dV, s v ' 
(1.19b) 

fc A·dr = Is n·(l7xA)ds, (1.20a) 

f c Ai dXi = Is nieijkAk,j ds , (1.20b) 

where S denotes a closed surface enclosing a volume V, and c a closed 
curve enclosing an open area s. 

3. DYADICS AND HIGHER RANK TENSORS 

Let A = Aiei and B = Bjej. Form the outer product P = AB (no dot, 
no cross), i.e., 

P = AB = AieiBjej = eiAiBjej = eiPijer (1.21) 

The symbol P represents a dyadic or second rank tensor, and Pij are its 
nine components in a rectangular Cartesian coordinate system. A dyadic 
(second rank tensor) is an invariant just like a vector (first rank tensor) 
and scalar (zero rank tensor). Consequently, from (1.21) we have 

P 'P" P = ei ijej = ez Imem' (1.22) 

from which we may obtain the transformation law fQr the components of 
second rank tensors by successively dotting both sides of (1.22) with primed 
base vectors as we did in obtaining (1.5) for the transformation of the 
components of vectors. The resulting transformation laws for second rank 
tensors corresponding to (1.5) and (1.6) for vectors are 
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P 1m = aliamjPij, 

P ij = aliamjPlm' 

5 

(1.23) 

(1.24) 

In a similar way we may form triads or third rank tensors and tetrads or 
fourth rank tensors, and so on. The transformation law always turns out 
to be of the form 

HlmnaY(J ... = aliamjanJflataysafjr ... Hijktsr ... · (1.25) 

In Cartesian tensor notation we simply write the components and ignore 
the base vectors. 

4. PROPERTIES OF ANTISYMMETRIC 
SECOND RANK TENSORS 

We will now show that there is a one-to-one correspondence between 
an antisymmetric second rank polar tensor and an axial vector. Consider 
wilw = eiWijej), where 

Wij = - Wji(W = - wT ). (1.26) 

Clearly there are three independent components, i.e., the number of inde­
pendent components possessed by a vector in 3-space. Form the vector Q 
from the tensor w by 

Di = !eijkWjk, (1.27) 

and Q = eiDi is an axial vector, whereas w is a polar tensor (dyadic). 
Note that 

WZm = eilmDi !eilmeijkWjk, (1.28) 

since we have the well-known tensor identity between the Levi-Civita and 
Kronecker symbols 

eilmeijk = bljbmk - bZkbmj · (1.29) 

Consider the polar vector v = w . r. Then 

Vi = WijXj = ekijDkxj = eij~jDk' (1.30a) 

and 
v =w·r =rxQ. (1.30b) 



6 Elements of Vector and Tensor Notation [Ch. 1 

5. PROPERTIES OF SYMMETRIC 
SECOND RAN K TENSORS 

Let us now determine the eigenvalues and eigenvectors of a symmetric 
matrix. Consider Sij(S = eiSi,-ej), where 

Sij = Sji(S = ST). (1.31) 

Consider S operating on r to form v, where v is any other vector. Then 
we have 

v =S·r Vi = S,jXj' (1.32) 

Now ask whether there are directions whereby v = S·r is in the direction r. 
This may be stated mathematically by writing v = ;"r, where;" is a scalar 
multiplier. Then from (1.32) we have 

S,jXj = ;"x" (1.33) 

and 
(Sij - ;"«5ij)Xj = 0 , (1.34) 

which can have nontrivial solutions only if the determinant of the coefficients 
of Xj vanishes, i.e., if 

ISij - ;"«5,jl = o. (1.35) 

Equation (1.35) is a cubic equation and yields 3 ;"'s. Each ;"(nl (n = 1, 2, 3) 
determines amplitude ratios X}nl. Let l(nl denote the complex conjugate 
of ;"(nl and x}nl denote the complex conjugate of X}nl. Taking the complex 
conjugate of (1.33) for ;,,(nl, i.e., of SijX}nl = ;,,(nlx~nl, we get 

,..-----' ,..-----' 

SijX}nl = ;,,(nlx~nl , (1.36) 

or 
S"X(!,l = l(nlx(nl 

" , t • (1.37) 

Form 
x(nlS .. xc,nl - x<.nlS .. x<.nl = (;,,(nl - l(nl)x<.nlx(nl 

t ." .., , • , , 

and 
x<.nlS··x<.nl - xc,nlS .. xc,nl = (;,,(nl - l(nl)x<.nlx<.nl = 0 

• tJ, •• " ." 
(1.38) 

where we have used (1.31), (1.33), and (1.37) in obtaining (1.38). Since 
x~nlx~nl is real, l(nl = ;"(nl, and ;"(nl is real. Thus X}nl is real, since it is 
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determined from linear equations which contain only real quantities. Now 
assume all A(n) distinct (no degeneracy). Normalize x~n) so that x~n) x~n) = 1, 
i.e., x\n)x\n) = N~n) and x\n) = x\n)jN(n)' The ejxjn) are eigenvectors, one 
eigenvector for each value of n. Thus there are three eigenvectors. We can 
write the x?) (n = 1,2,3; j = 1,2,3) as Xnj and consider them as a 3x3 
array which is a transformation. We will now show that for distinct A(n) 
the eigenvectors ejxjn) are mutually orthogonal, or what is the same thing, 
that the transformation given by the Xnj is orthogonal. To this end, we 
write the eigenvalue equation for two distinct values of n = I,m, 

Sijxjll = A(/)X\lJ , 

Sijxjm) = A (m) x\m) , 

and form 

X~m)SijXJlJ - x\IlSijxjm) = (A(/) - A(m»)x~llxlm), 

from which with (1.31) we have 

(A(/) - A(m»)xlllxlm) = O. 

(1.39a) 

(1.39b) 

(lAO) 

Since A(/)"#- A(m) and x\n)x\n) = 1, from (lAO) we have x\lJx~m) = (jIm, 

and the eigenvectors are orthogonal; thus XliXmi = (jIm, and the transforma­
tion is orthogonal. Let us now transform the Sij to the particular orthogonal 
coordinate system which is composed of the aforementioned eigenvectors. 
It is clear that we may do this by writing 

Sim = XliXmjSij; 

but from (1.39b) we have 

XmjSij = Sijxjm) = A(m)xlm) 

so that 

Sim = XliA(m)X~m) = x~IlA(m)X~m) = A(m)(jlm' (1.41 ) 

From (1.41) it is clear that in the coordinate system composed of the eigen­
vectors the S matrix is diagonal, and the diagonal values are equal to the 
eigenvalues. In the case of a degeneracy it turns out that the eigenvectors 
are not unique but may be selected to be orthogonal. For a discussion of 
the degenerate case when two or even all three of the eigenvalues are equal 
see (8), Section 72. 
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6. LAGRANGIAN UNDETERMINED MULTIPLIERS 

We will now consider the stationary value of a function F(Xk) = F(Xl, 
X 2 , xa). For a stationary value of F at P we have 

dF = (aFjaXk) Ip dXk = O. (1.42) 

Since all dXk are arbitrary, we have the three independent conditions 

(aFjaXk) Ip = O. (1.43) 

However, suppose we want F to be stationary but the variables Xk are not 
independent and satisfy an additional relation of the form 

g(Xk) = c. (1.44) 

Now we cannot have (aFjaXk) Ip = 0, since all the dXk are no longer ar­
bitrary. Nevertheless, we can solve (1.44) for anyone of the Xi in terms 
of the other two, and then make F(x,,) stationary with respect to the other 
two. However, this is a cumbersome and unnecessarily selective and asym­
metric procedure. However, by taking the total differential of (1.44) and 
solving for anyone of the dXk in terms of the other two and substituting 
in (1.42), it can be shown that we can proceed in a more symmetric and 
less cumbersome manner by introducing an unknown scalar multiplier A 
and forming 

( aF ag ) 
dF - A dg = aXi - A aXi dx; = o. (1.45) 

This procedure can also be viewed as selecting A so that anyone of the 
terms in parentheses vanishes. Then the other two dx" are independent, 
and the coefficients can be equated to zero independently. We can find the 
additional unknown A from the condition (1.44). Thus we can obtain a 
stationary value of F, subject to (1.44), by making 

H=F- A(g - c) (1.46) 

stationary and allowing all dXi to be arbitrary. 
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PART I 

ELEMENTS OF THE LINEAR THEORY 
OF PIEZOELECTRICITY 



Chapter 2 

MECHANICAL CONSIDERATIONS 

1. DEFINITION OF THE FIELD VARIABLES 
AND THE CONSERVATION EQUATIONS 

In a mechanical continuum two distinct types of forces act, body 
forces f and contact forces t. The body forces arise as a result of some 
distant action. They are long-range forces. The contact forces arise as a 
result of the contact of adjacent elements of a body. Macroscopically 
speaking, they are surface forces. Microscopically, they are caused by very 
short-range near-neighbor interactions between adjacent microscopic ele­
ments. The body force exerted by electric or magnetic fields will be neglected 
below. We will also neglect body-couples and surface-couples as well. The 
quantities being neglected can be shown to be very small in the linear theory 
with which we will be concerned. 

The traction vector t(o) is defined as the force per unit area acting on 
a surface, usually exerted by a neighboring surface, and is shown in Fig. 2. 
The body force f is applied and has the units of force per unit volume. 
An example is gravity. The mechanical linear momentum of a continuum 
is given by (!V, where (! is the mass density and v denotes the velocity of a 
point. Both f and (!V are volumetric quantities, and are shown applied to 
an arbitrary point of a continuum in Fig. 2. 

The motion of an arbitrary portion of a continuum is governed by the 
following conservation equations: 

Mass 

(dldt) f v (! dV = O. (2.1) 

Linear momentum 

f s t(o) dS + f v f dV = (dldt) f v (!V dV. (2.2) 

Angular momentum 

Is rxt(o) dS + f v rxf dV = (dldt) f rx(!v dV. (2.3) 

11 
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t (n) 

o 
Fig. 2. An arbitrary material volume element in motion. 

In (2.1)-(2.3) dldt denotes the material derivative, but as we shall see 
shortly, such considerations are of no importance in the linear theory. 

2. THE STRESS TENSOR 

Applying (2.2) to the elementary tetrahedron shown in Fig. 3 and 
taking the limit as the volume approaches zero, i.e., as h - 0, we obtain 

t(n) LlSn + ~ t( - ei) LlSi + h (r - e dd v) LlSn = O. 
-=1 t 

2 

1 
VOL = "3ht.Sn 

t.Sj = nj t.Sn 

-..-- t(-e.) 

3 

Fig. 3. Elementary tetrahedron. 
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Then substituting LlSi = ni LlSn (Fig. 3) and taking the limit as h ---+ 0, 
we find 

3 

ten) + ~ t( - ei)ni= 0. (2.4) 
i=l 

Considering n = (1,0,0) as a limit of (2.4), we find 

t(el ) + t( - el ) = 0, t(el ) = - t(- el ). 

If we consider the other two perpendicular surfaces, we get 

t(ej) = - t(- ej). (2.5) 

Substituting from (2.5) into (2.4), we find 

3 

ten) = ~ nit(ei) = nit(ei) = njej'eit(ei) = n.eit(ei)' (2.6) 
i=l 

As we have seen, the quantity eit(ei) is a dyadic or second rank tensor, and 
hereafter will be denoted by or or T, i.e., 

or = eit(ei) , (2.7) 

and from (2.7) and (2.6) 

ten) = n·or. (2.8) 

From Fig. 3 it is clear that the component representation of the vector t 
may be written 

ten) = injej. (2.9) 

Consequently, 

t(ei) = iijej' (2.10) 

where the subscript i indicates the surface on which t acts and j indicates 
the direction in which t acts. Finally, 

or = eit(ei) = eiiijej' (2.11) 

We may also write the vector ten) in the form 

ten) = tj(n)ej - tjej. (2.12) 

Clearly, from (2.9) and (2.12) we have 

tj = t;Cn) - inj, (2.13) 
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and from (2.8), (2.11), and (2.12) we have 

tjej = nlez-e{fijej = n{fi,-ej, (2.14) 

so that in Cartesian tensor component form we have 

tj = n{fij. (2.15) 

From (1.23) and (1.24) we know that the components of the tensor't" trans­
form according to the formulae 

Tkl = akialjTij and Tij = akialjTkl· (2.16) 

3. THE STRESS EQUATIONS OF MOTION 

Substituting from (2.8) into the equation of the conservation of linear 
momentum (2.2) and applying the divergence theorem, we obtain 

I yl7.'t" dV + I yf dV = I ye(dv/dt) dV, 

from which, since V is arbitrary, we find 

l7.'t" + f = e dv/dt, (2. 17a) 

which are the stress equations of motion. In Cartesian component form 
we have 

Tij,i + jj = e dVj/dt. (2.17b) 

Rewriting (2.3) in component form and substituting from (2.15), we obtain 

Is ekljXlniTij dS + I y eklj[xJj - xle(dVj/dt) - eVIVj] dV = O. (2.18) 

Using the divergence theorem in (2.18), we find 

I ekl.X1(T ... + •. - II dVj) dV + I ek·lxl ·T·· dV = o. V J t"t J J 0: dt y J ,t " 

Since Xl,i = ~li and V is arbitrary and we have (2.17b), we may write 

ekjiTij = 0, (2.19) 

from which we may conclude that 

Tij = Tji, (2.20) 

and the stress tensor is symmetric. 
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We now introduce the first linearizing approximation, 

dVj 8vj 8 2uj .• 
Tt = at = 8t2 = Uj, (2.21) 

where u is the mechanical displacement of a material point. The stress 
equations of motion (2.17) now take the component form 

Tij,i + jj = eUj 

From (2.11) we obtain 

( 3 eqUationS) 
9 variables . 

Tkl = ek·'t'·el, 

and in particular 

T(k)(k) = ek·'t'·ek, k no sum 

(2.22) 

(2.23) 

(2.24) 

(the parentheses mean no sum), where ek and el denote mutually orthogonal 
unit vectors referred to a particular Cartesian coordinate system. 

Let n denote a unit vector normal to a surface (any surface). Then 
from (2.24) 

T(n)(n) = n·'t'·n = n{(ijnj, (2.25) 

and T(n)(n) represents the component of the traction vector on that surface, 
normal to that surface. 

4. THE NATURE OF THE STRESS TENSOR 

It is natural to ask the question: For a given stress tensor referred to 
a specific Cartesian coordinate system, are there surfaces with normal n 
on which the normal component of stress T(n)(n) is locally a maximum or 
a minimum, and if so, where are they? To answer this, we try to find orien­
tations n for which T(n)(n) is stationary, subject to the constraint n·n = 1. 
From our discussion of Lagrangian multipliers it is clear that we proceed 
by forming the function 

f = niTijnj - J..(nini - 1), (2.26) 

and making f stationary for arbitrary bnk, i.e., 

bf = (8//8nk) bnk = 0, (2.27) 

so that 

8//8nk = 0 (2.28) 
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are the conditions. Now, since we must regard the nk as independent, 
we have 

8ni/8nk = !5ik' 

Hence from (2.26), (2.28), and (2.29) we find 

!5ikTijnj + niT ij!5jk - A(ni!5ik + !5i~i) = 0 

Tkjnj + niTik - 2Ank = 0, 

and from (2.20) and (2.30) we obtain 

Tkini = Ank; 

(2.29) 

(2.30) 

(2.31) 

but (2.31) is just the eigenvalue equation for a symmetric matrix, and we 
already know all the results. There are three real eigenvalues, and three 
mutually orthogonal eigenvectors which form a triad, and the symmetric 
tensor is diagonal and is equal to the eigenvalues when referred to this 
triad. Therefore we can immediately conclude that there are three mutually 
orthogonal pl~mes on which the normal stress is locally a maximum or 
minimum, and all shear stresses are zero on these planes. Moreover, the 
eigenvalues of this problem are the locally extreme values of the stresses. 



Chapter 3 

INFINITESIMAL DEFORMATION THEORY 

1. THE IN FINITESIMAL DISPLACEMENT FIELD 

Consider a line element dr which moves in such a manner that it 
rotates and extends (or contracts) to dr as shown in Fig. 4. From Fig. 4 
it is clear that 

u' 

r' 

0, 
r 

dr=r2 -r1 , dr=r2 -r1 , 

rl - rl = u1 , r2 - r2 = u2 , 

2 

o 
Fig. 4. Deformation of an arbitrary line element. 

17 

u2 

(3.1) 

(3.2) 
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and from (3.1) and (3.2) we have 

dr - df = u2 - u1 • (3.3) 

Let u2 - u1 = du, where u is the displacement field. Then from (3.3) we 
have 

du=dr-df, 

or 
dr = df + du. 

When the deformation is infinitesimal we may assume that 

r::::::::: r, 

IOUi/OXjl ~ 1 , 

(3.4) 

(3.5) 

(3.6) 

which means that u is very small and that products of components of the 
displacement gradients are negligible compared to the components of the 
displacement gradients themselves. 

Expand u in a Taylor's series: 

2_ 1 OU?d h Ui - Ui + -0- Xj + .O.t. 
x) 

where the higher order terms (h.o.t.) are negligible, or, vectorially, 

u2 = u1 + dr·Vu = u1 + df.l7u, 

(3.7a) 

(3.7b) 

where V = 17 because of the assumption given by (3.5), i.e., because 
Eulerian and Lagrangian coordinates are equivalent. Thus, since the infini­
tesimal strain assumptions have already been made, we can no longer 
distinguish between the final and the initial positions. This is a far-reaching 
assumption and obscures much important detail, but it is perfectly all right 
for the type of linear theory in which we are interested. Almost all of the 
simplified treatment which will be presented rests on this assumption. If 
this assumption is removed, the mathematics becomes much more involved. 

From (3.7b) and the definition of du we have 

dUi = (oudoxj) dXj, (3.8a) 

or 
du = dr·Vu. (3.8b) 
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Since f)Ui/f)Xj is a second rank tensor with nine terms, we can decompose 
it into its symmetric and anti symmetric parts. Thus let 

Sij = HUi,j + Uj,i)' S = i(l7u + ul7), (3.9) 

where ul7 _ (l7u)transpose, and 

Wij = HUj,i - ui,j), w = Hl7u - ul7). (3.10) 

Then, adding (3.9) and (3.10), we obtain 

Ui,j = Sij + Wji , (3.IIa) 

or 
l7u = S +w, (3.lIb) 

and 
du = dr·S + dr·w, 

dUi = Sij dXj + Wji dXj. 

Since Wij is an anti symmetric second rank tensor, according to (1.28) it 
may be written 

Wij = + ekijQk , 

where 9 is an axial vector, and according to (1.27) we have 

QZ = + teZijWij. 

Moreover, from (3.10) and (3.13) we have 

or 

QZ = teZijUj,i' 

9 = tl7xu. 

2. THE NATURE OF AN INFINITESIMAL 
DEFORMATION 

From (3.4) and (3.8b) we have 

dr = dr + dr·l7u = dr· (I + l7u), 

where 1 = eiClijej = eiei, or 

dXi = di/Clij + Ui,j) , 

(3.12) 

(3.13) 

(3. 14a) 

(3.I4b) 

(3.I5a) 

(3.I5b) 
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and from (3.lla) and (3.1Sb) we obtain 

dXi = dXj (~ij + Sij - Wij). (3.16) 

Let 
Tij = ~ij + Sij - Wij, (3.17) 

and regard Tij as a linear transformation which transforms dt to dr. Further, 
let 

Rik = ~ik - Wik (3.18) 

and 

Lik = ~ik + Sik· (3.19) 

Then from (3.17)-(3.19) 

Tij = RikLjk 

since by (3.9), (3.10), and (3.6) wand 8 are infinitesimal, and products 
of components are negligible. Thus we now have two infinitesimal transfor­
mations Rand L operating successively in transforming dt to dr. 

Now, the square of the length of any arbitrary line element before the 
deformation is given by 

102 = dXj dXj' 

and the square of the length of the corresponding element after the defor­
mation is given by 

/2 = dXi dXi. 

Let us compute 12 using (3.16). Thus 

dXi dXi = dXj (~ij + Sij - Wij) dXk (~ik + Sik - Wid 

= dXj dXk (~jk + 2Sjk) , 

since 8 and ware infinitesimal and w is antisymmetric. 

(3.20) 

Consider a deformation in which the Sjk = O. Then from (3.20) we 
have 

dXi dXi = dXj dXj , 

or J2 = 102, and the length of any element does not change. Therefore, since 
the length of any element does not change under a deformation consisting 
of an w only (8 = 0), w must correspond to a pure infinitesimal rotation. 
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It is interesting to note that from (3.4), (3.16), and (3.12) we may 
write 

dUi = dXi - dXi = Sij dXj + eikj[Jk dXj, (3.21a) 

or 
du = dr - dt = S· dt + Q x dt , (3.21b) 

where Q is given by (3.14b). Therefore the infinitesimal change in displace­
ment between the ends of any differential line element consists of a portion 
which produces a change in length and another portion which does not 
produce any change in length, and corresponds to a pure rotation. It is 
important to note that whereas the rotational deformation w (or Q) cannot 
change the length of any element, the extensional deformation S can (and 
generally does) rotate almost all differential line elements dt issuing from 
a point. The difference is that the rotation w rotates every element by the 
same amount, i.e., rigidly, while the strain S rotates different elements 
different amounts, i.e., nonrigidly. The off-diagonal terms of S do the 
rotating. 

Let us ask if for a given deformation (Ui,j) referred to a specific Car­
tesian coordinate system, out of all differential elements issuing from a 
point, having the same initial length 10 , are there any elements which 
locally have a maximum or minimum final length, and if so, where are 
they? To answer this question, we maximize the final length (or the square) 
dXi dXi' subject to the constraint that the initial length (or rather the square) 
is equal to a constant, i.e., dXj dXj = 102• We know that we may proceed 
by forming the function 

G = dXi dXi - )"(dxj dXj - 102), (3.22) 

and making G stationary for arbitrary dXk, i.e., 

~G = aG ~(dxm) = 0, 

so that 

aG/a(dxm) = ° (3.23) 

are the conditions. Substituting from (3.20) into (3.22), we obtain 

G = (~jk + 2Sjk) dXj dXk - ).,(dxj dXj - 102). (3.24) 

Since we must regard the dXk as independent, we have 

a(dXj)/a(dxm) = ~jm' (3.25) 
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and from (3.23) and (3.24), with (3.25), we obtain 

aG = «()jk + 2Sjk) ( ()jm dXk + ()km dXj) - 2A()jm dXj = 0 

= «()mk + 2Smk) dXk + «()jm + 2Sjm) dXj - 2,1 dXm = 0; (3.26) 

but ()mj + 2Smj = ()jm + 2Sjm , and 

«()mk + 2Smk) dXk = «()mj + 2Smj) dXj. (3.27) 

Hence from (3.26) and (3.27) we have 

«()mj + 2Smj) dXj = A dxm, 

or 

Smj dXj = !(A - 1) dXm - Ai dxm. (3.28) 

Again, we see that this is just the eigenvalue equation for a symmetric 
matrix Smj' and we know all the results. 

Therefore we can immediately conclude that there are three mutually 
orthogonal directions dXl;:) along which the change in length is locally a 
maximum or minimum, and consequently, the extensional strain is locally 
a maximum or minimum along these same mutually orthogonal directions. 
Moreover, from our knowledge of the solution of the eigenvalue problem 
it is clear that when the S tensor is referred to the eigenvector triad, the 
off-diagonal (or shear) strains vanish. Thus in this coordinate system we 
may write 

Sij = S(i) ()ij' 

where S(i) - A1<il, and from (3.16) and (3.29) we have 

dXi = dXj «()ij + S(i) ()ij - Wij) 

dXi = (1 + S(i) dXi - Wij dXj. 

(3.29) 

(3.30) 

Now we consider only the three line elements which coincide with the axes 
of the eigenvector triad. In order to keep track of the three elements, let 
us denote which element we are considering by an m, i.e., instead of dXj 
we have dxjm). Then substituting from (3.12) into (3.30), we obtain 

dx~m) = (1 + S(i) dx1m) + eikl'k dX3m) . (3.31 ) 

Since we are considering only those elements lying along th~ axes of the 
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eigenvector triad, we may write 

dx}m) = ~mio, 

and substituting from (3.32) into (3.31), we have 

dx~m) = (1 + S(i»)~milo + eikjf2k~mio 
dx~m) = [(1 + S(m»)~mi + eikmf2k]lo. 

Multiplying (3.33) by ei and summing over i, we obtain 

dr(m) = [(1 + S(m»)em + eieikmf2d1o, 

dr(m) = [(1 + S(m»)em + e~kxem]lo. 

Since emlo = dt(m), from (3.34) we find 

dr(m) = (1 + S(m») dt(m) + n X dt(m) , 

23 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

from which it is clear that the strain deformation S does not rotate the 
eigenvectors of the strain tensor, it simply elongates (or contracts) them, 
and that each eigenvector is rotated through the same infinitesimal angle n. 
Since the eigenvectors are orthogonal before the deformation and rotate 
through the same angle, they remain orthogonal during the deformation. 
Thus it is clear that an arbitrary infinitesimal deformation consists of a small 
translation u of a point, a rotation of three mutually perpendicular lines 
through the point, and an extension or contraction of these lines. 

3. INFINITESIMAL VOLUME CHANGE 

We will now determine the expression for an infinitesimal change in 
volume. The most expedient way of doing this is to consider the mutually 
orthogonal eigenvectors of the strain tensor S. These vectors are orthogonal 
before the deformation and remain orthogonal during the deformation. 
They are simply rotated rigidly by n and extended (or contracted) by S. 
The rectangular volume enclosed by these vectors before the deformation 
is [(8), Section 19] 

dVo = dtll). dt(2) X dt(3) . (3.36) 

The corresponding volume enclosed by the same vectors after the defor­
mation is 

dV = dr(])· dr(2) X dr(3) . (3.37) 
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Substituting from (3.35) into (3.37), we obtain 

dV = (1 + S(1)) di:(l). (1 + S(2») di:(2) X (1 + S(3») di:(3) , (3.38) 

since nand Scm) are infinitesimal and 

di:(l). di:(2) x (n x di:(3») + di:(1)· (n x di:(2») X di:(3) + (n x di:Cll ). di:(2) x di:(3) =0, 

where each term vanishes separately, since di:Cl ), di:(2) and di:(3) are mutually 
orthogonal. Therefore from (3.36) and (3.38) we obtain 

dV - dVo = [(1 + S(ll)(1 + S(2»)(1 + S(3») - 1] di:(1)·di:(2)xdi:C3), (3.39) 

and from (3.39) and (3.36) we find 

(dV - dVo)/dVo = S(1) + S(2) + S(3) , (3.40) 

since the Scm) are infinitesimal. 
The quantity (dV - dVo)/dVo is called the dilatation and is represented 

by the symbol L1. Thus from (3.40) we have 

L1 = S(1) + S(2) + S(3) , (3.41) 

that is to say, the dilatation is equal to the sum of the eigenvalues of the 
strain tensor. But the sum of the diagonal components of a second rank 
tensor is an invariant, and we have 

L1 = Sii' (3.42) 

in any coordinate system, and since ISi;1 ~ 1, L1 ~ 1. Moreover, since 
from (3.40) and (3.41) dV = (1 + L1) dVo and L1 ~ 1, dV""", dVo; and 
since (l dV = (lo dVo, (l = (1 - L1)(lo, (l ""'" (lo- Thus in infinitesimal de­
formation theory, although L1 represents the change in volume per unit 
volume, the final volume and mass density may be taken to be equal to 
the initial volume and mass density, respectively. Note that 

o 
TidV = Lf dVo, (3.43) 

and that 
L1 = Sii = Ui,i = V·u. (3.44) 



Chapter 4 

ELECTROMAGNETIC CONSIDERATIONS 

1. THE FIELD VECTORS AND THE FIELD EQUATIONS 

Maxwell's equations in Gaussian units are (9) 

v X H = ~ aD 4n 
c at+c J , (4.1) 

VXE=-~ aB 
c fit' 

(4.2) 

where H is the magnetic field intensity, E is the electric field intensity, D 
is the electric displacement vector, and B is the magnetic flux vector. These 
vector fields are related by the equations 

D =E+4nP, 

B =H+4nM, 

(4.3) 

(4.4) 

where P is the polarization vector and M is the magnetization vector, 
with D, E, and P polar vectors, while B, H, and M are axial vectors. Along 
with the six Maxwell equations, (4.1) and (4.2), we have the auxiliary 
equations 

V·B = 0, 

V·D = 4nee. 

(4.5) 

(4.6) 

Equation (4.5) is satisfied automatically, and (4.6) simply defines ee such 
that the equation of the conservation of electric charge 

aee/at + V·J = 0 (4.7) 

is satisfied. 
Boundary conditions are determined from the integral form of Max­

well's equations. Maxwell's differential equations may be determined from 
the integral forms when suitable differentiability conditions are assumed. 
The integral forms are: 

25 
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Ampere's law: 

~I H·dr = (l/c) f. n·D ds + (4nlc) I. n·J ds, (4.8) 

Faraday's law: 

~I E·dr = - (l/c) I. n·B ds, 

Isn.Dds =0, 

Is n· D ds = 4n I v ee dV, 

(4.9) 

(4.10) 

(4.11) 

where 1 in (4.8) and (4.9) denotes an arbitrary closed circuit and s an ar­
bitrary open surface contained within 1, and Sin (4.10) and (4.11) denotes 
an arbitrary closed surface. All surfaces and circuits are stationary with 
respect to an inertial reference frame. The integral form of the conservation 
of electric charge takes the form 

Is n· J ds = - I v ee dV, (4.12) 

where S is a closed surface. 
In indicial notation Maxwell's equations (4.1) and (4.2) and (4.5) 

and (4.6) take the form, respectively, 

eiikHk,i = {l/c)Di + (4nlc)Ji , 

eiikEk,i = - {l/c)Bi' 

B··=O ',I. , 
Di,i = 4nee, 

2. THE ELECTROMAGNETIC POTENTIALS 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

These equations may be reformulated in terms of the vector and scalar 
potentials A and qJ: 

Bi = eiikAk,i ' 

eiik( Ek + -+- Ak)'i = 0, 

Ek + (l/c)Ak = - qJ,k' 

(4.17) 

(4.18) 

(4.19) 
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Note that Au is arbitrary. Different selections of Au determine different 
gauges. The vector potential A is not unique because any other A defined by 

A = A + VP', (4.20) 

where P'is any scalar, could also have been used as the vector potential, 
since 

VxVP' = O. 

When written in terms of the vector and scalar potential Maxwell's equa­
tions become (4.13), (4.17), and (4.19), which we rewrite here as 

1. 4n 
eijkHk,j = C Di + C J i , 

Bi = eijkAk,j , 

1 
Ek = - m k - - Ak , 

'r, C 

(4.21) 

(4.22) 

(4.23) 

along with the definitions (4.3) and (4.4), which we rewrite here as 

Di = Ei + 4nPi, Hi = Bi - 4nMi , (4.24) 

and the auxiliary equation (4.16), which we rewrite here as 

Di,i = 4nee· (4.25) 

Although A and hence ((! are not unique, E, H, B, D, and J are unique. 

3. POYNTING'S THEOREM 
AND ELECTROMAGNETIC ENERGY FLUX 

From (4.13) and (4.14) we form 

EieijkHk,j = (ljC)EiDi + (4njc)EiJi 

HieijkEk,j = - (ljc)H/Ji , 

and subtracting, we obtain 

1 . 1 . 4n 
eijkEiHk,j - eijkHiEk,j = C EiDi + C HiBi + C EiJi 

1 . . 4n 
- (ejikEiHk),j = C (EiDi + HiBi) + C EiJi · 

(4.26) 

(4.27) 

(4.28) 
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Integrating (4.28) over an arbitrary volume and using the divergence 
theorem, we find 

- (c/4n)Ln.ExHdS= Jv(1/4n)(E.D+H.B)dV+ JvE.JdV. (4.29) 

Equation (4.29) is Poynting's theorem. So far it is nothing more than a 
mathematical consequence of Maxwell's equations. We will now try to 
interpret the terms physically for the purely electromagnetic case. When 
we do this we will have an energy equation for the purely electromagnetic 
case only. It is not an energy equation when there is any interaction present, 
such as, e.g., thermal or mechanical. However, in any event it is always a 
mathematical identity which is compatible with Maxwell's equations. 

Let us define 

a= (c/4n) ExH, (4.30) 

and identify (E.n + H.B)/4n with the rate of change of electromagnetic 
energy, O. This last identification is questionable in general, but adequate 
for our purposes. Moreover, questions of this nature, which are closely 
related to the electromagnetic body force question, will, like and for the 
same reasons as the body force and finite deformation questions, be entirely 
ignored. Then in this purely electromagnetic case Poynting's theorem (4.29) 
gives us 

~J UdV=-J n.hdS-J E·JdV. at v s v 
(4.31) 

Under the interpretation we are using, the E·J term is the usual Joule 
heat term. The energy equation (4.31) for the purely electromagnetic case 
now asserts that the time rate of change of internal energy in an arbitrary 
volume is equal to minus the rate at which electromagnetic energy flows 
out of the surface enclosing that volume minus the rate at which electric 
energy is dissipated inside the volume by thermal means. 

The previous considerations have told us the important fact that the 
vector h defined in (4.30) represents the energy flux vector across a surface, 
and it is taken to be positive when outwardly directed across a closed surface. 
It is called the Poynting vector, and it has the units of energy per unit area 
per unit time or power per unit area. 

The electromagnetic potentials A and cp enable us to put Poynting's 
theorem in a form which is particularly useful for our purposes. Consider 
the term in Poynting's differential equation, (4.28), which is responsible 
for the Poynting energy flux vector, h, in (4.31). If (4.28) is multiplied 
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throughout by c/4n, the term may be written 

- hi,i = - (c/4n)(eijkEjHk),i, 

and substituting from (4.23), we have 

- h· . = + ~ [e"k(m . + ~ A.)Hk] '.' 4n 'J T ,J C J • 
" 

= :n eijk[ q;,jHk,i + ~ (AjHk),i] , 

and substituting from (4.21), we find 

- h· . = - - m . - D· + - J. + - (e"kA H k) . c (1. 4n) 1 . 
", 4n T,} c} c} 4n lJ} ,t 

1 .. 1. 
= - 4n [(q;Dj),i - q;Dj,j] - (q;Jj),j + q;Jj,j + 4n (eijkAjHk).i, 

which, with the divergence of (4.21), yields 

_ h . . = - [m( hi + J.) __ I e" •. AHk ] 
t,' T 4n ' 4n '}ft.1 .' 

" 

(4.32) 

Substituting from (4.32) into (4.28) and integrating over an arbitrary 
volume and applying the divergence theorem, we get Poynting's theorem, 
(4.29), in the form 

- f n· [m( hi + J.) - _1 e"kA -Hk] dS s'T4n • 4n'J} 

f l. . f = - (B.D· + H-B.) dV + EIdV v 4n It., v'" (4.33) 

and as a consequence we obtain from (4.32) and (4.33) for the purely 
electromagnetic case the previous energy equation, (4.31), with 

( h. ) 1 . 
h· =m -' + J. - -e"kA-Hk 'T4n ' 4n'}}' (4.34) 

Now, whereas hi = (c/4n)eijkEjHk is unique, the present hi in (4.34) is 
not, because q; and Aj are not unique. Nevertheless, in the present case 
we know that Is nih; dS, where S is any closed surface, is unique, and 
that is all that counts. Moreover, the unique form of h can have added 
to it the 17 x V, where V is any vector, without violating Poynting's theorem, 
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because Is n·17xV dS = 0, where S is an arbitrary closed surface. That 
is to say, the nonunique b's all differ by the curl of some vector, and that 
doesn't matter because the surface integral vanishes. 

4. THE QUASISTATIC ELECTRIC FIELD 

When we consider piezoelectricity or biased electro stricti on, which, to 
a good approximation, gives the same equations, we will consider polariz­
able (but not magnetizable) dielectrics only. Consequently, we may set 

Qe = J i = Mi = ° (4.35) 

in all the equations. It should be noted that under these circumstances 
from (4.35) and (4.24) 

Hi - Bi , (4.36) 

and Hi (and consequently Ai) cannot be zero, because from (4.21) and 
(4.35) 

17xH = (lle):O, (4.37) 

and 
:0*0. (4.38) 

Under these circumstances Maxwell's equations (4.21)-(4.23) take the form 

eijkHk,j = (lle)Di' 

Hk = eklmAm, I , 

Ei = - f{J,i - (Aile), 

and from (4.24) 

Di = Ei + 4nPi' 

and from (4.25) and (4.35) we have the auxiliary equation 

Di,i = 0. 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

The basic simplifying assumption which is used to get the piezoelectric 
equations is that each component of f{J,i that enters in a problem satisfies 

/ Aile / ~ / f{J,i /. (4.44) 

This assumption obviously is well borne out experimentally. It basically 



Sec. 3] The Quasistatic Electric Field 31 

is valid when the electromagnetic waves essentially uncouple from the elas­
tic waves, and when we are considering wavelengths near the elastic wave, 
which are much shorter than the electromagnetic wavelength of the same 
frequency. The condition for the validity of (4.44) is 

w/e ~ I k i I, (4.45) 

where k i represents a component of the wave number for a wavelike solution 
of (4.39)-(4.41). It may readily be seen that (4.45) is. the condition for the 
validity of (4.44) by considering a wavelike solution of (4.39)-(4.41) in 
the form of a successive approximation about Ade = O. When Ade is 
neglected in (4.41), the auxiliary equation (4.43) may be used to find qJ. 

When qJ is thus determined, Ai may be determined by using (4.39) and (4.40) 
with the now known Di on the r.h.s. of (4.39), with the result that each 

I Ai I ~ I qJ I, (4.46) 

when (4.45) holds, thereby showing that (4.44) is indeed satisfied whenever 
(4.45) holds. As a matter of fact we could continue with this successive 
approximation procedure with the now known nonzero Ai and determine 
a second approximation for qJ, and so on. However, as a consequence of 
(4.45), the first approximation (or the theory of the quasistatic electric 
field) is certainly as accurate as necessary. Moreover, when (4.45) is valid, 
it is clear from (4.39) and (4.46) that the magnetic portion of the Poynting 
energy flux in (4.34) is negligible compared to the electric portion, and 
by virtue of this fact and (4.35), the degenerate form of the Poynting energy 
flux in this quasistatic electric case may be written from (4.34) in the form 

hi = qJDd4n. (4.47) 

In addition, since (4.45) must hold in the vacuum (or air) immediately 
outside a piezoelectric body as well as inside-in order to satisfy the electric 
boundary conditions at the interface-(4.44), (4.46), and (4.47) also hold 
in the same region and, consequently, the electric equation in the vacuum 
in the immediate vicinity of the piezoelectric body is 

qJ,kk = O. (4.48) 

We are now in a position to write the conservation of energy for a 
linear piezoelectric continuum. However, before proceeding it should be 
noted that in this chapter we have used Gaussian units exclusively, primarily 
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because we wished to make the quasi static electric field approximation 
and A and cp have the same Gaussian units, thereby enabling the approxima­
tion to be made more easily in those units. Nevertheless, once the quasi­
static approximation has been made, we are free to use any electrical 
units we wish; and we employ MKS units exclusively throughout the 
remainder of this monograph because they are more convenient. 



Chapter 5 

THE LINEAR THEORY 
OF PIEZOELECTRICITY 

1. ENERGY CONSIDERATIONS 

The principle of conservation of energy for a piezoelectric medium 
states that in any volume V bounded by a surface S with unit outward 
normal n the rate of increase of energy (kinetic plus internal) is equal to 
the rate at which work is done by the surface tractions acting across S 
less the flux of electric energy outward across S. Thus we have 

:t f v (~ eiyij + u) dV = f s (tjUj - njepDj ) dS, (5.1) 

as the equation of the conservation of energy,. Basically, this equation pos­
tulates the existence of the internal energy function U. 

From our previous work we have the following equations: The stress 
equations of motion, (2.22), with jj = 0, 

Tij,i = eUj, (5.2) 

(where Tij = Tji)' The charge equation of electrostatics, (4.43), 

Di,i = O. (5.3) 

The electric field-electric potential relations, (4.41), with (4.44), 

Ek = - ep,k' (5.4) 

The strain-mechanical displacement relations, (3.9), 

Sij = l(Ui,j + Uj,i)' (5.5) 

All these will be needed in what follows. Previously discussed linearizing 
approximations have already been included, such as d/dt""" a/at, v """ iI, 
infinitesimal strain, the absence of the electric body force and couple, and 
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the fact that we cannot distinguish between the initial and the final positions. 
We also have the relation 

dV = dVo(1 + ,1) = dVo, (5.6) 

since 
,1 = uk,/< ~ 1 , (5.7) 

and hence 
e = eo(1 - ,1) = eo , (5.8) 

and, (3.43), 
a . . 

7ft dV = ,1 dVo = ,1 dV. (5.9) 

Substituting from (2.15) into (5.1), applying the divergence theorem, 
and utilizing the fact that the resulting equation is valid for an arbitrary 
volume V, we obtain 

eiiilj + (J = (rijitj),i - (q;Di),i 

(J = (T·· . - £Iii·)it· + T··it· . - mD· . - m ·D· t), t t:: J J 1,J J, t ,1.. t , , t 1. , 

which with (5.2)-(5.5) yields 

(J = TijSij + EiDi. (5.10) 

Equation (5.10) is called the first law of thermodynamics for the piezo­
electric medium. 

2. PIEZOELECTRIC CONSTITUTIVE EQUATIONS 

Let us define the electric enthalpy H by 

H= U- EiDi. (5.11) 

Then differentiating (5.11) with respect to time, we obtain 

if = (J - EiDi - EPi' 

which with (5.10) yields 

if = TijSij - DiEi. (5.12) 

Equation (5.12) implies that 

H = H(S, E), (5.13) 
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and differentiating (5.13) with respect to time, we find 

. 8H. 8H. 
H = 8S .. Sij + 8£. Ei , 

'J , 

and substituting from (5.12), we obtain 

( 8H). ( 8H) . iij - 8Sij Sij - Di + 8Ei Ei = O. (5.14) 

Since Eq. (5.14) is an identity which must hold for arbitrary Sij and Ei 

which are consistent with the condition Sij = Sji' we obtain 

1 (8H 8H) 
iij = 2: 8S·. + 8S.. ' 

'J J' 

(5.15) 

Di = - 8Hj8Ei · (5.16) 

If we further agree to construct H so that 

8H 8H 

8Sij 8Sji ' 

we may write in place of (5.15) 

iij = 8Hj8Sij' (5.17) 

Since we are interested in a linear theory only, we construct a homo­
geneous quadratic form for H 

H = !CZklSijSkl - eijkEiSjk - iBZEiEj , (5.18) 

where 

Cijkl = Cijlk = Cjikl = Cklij , 

eijk = eikj, 

Bij = Bji' 

and here and below we have dropped the superscript E on the elastic con­
stants and the superscript S on the dielectric constants because all other 
constants occurring in this monograph will be defined in terms of these 
constants and eijk' Thus we have 21 independent elastic constants, 18 
independent piezoelectric constants, and six independent dielectric con­
stants in the most general case (10) (triclinic crystal without center of sym­
metry). Since e is an odd rank polar tensor, it cannot exist in any material 
that has a center of symmetry. 
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From (5.16)-(5.18) we obtain the linear piezoelectric constitutive 
equations 

Tij = CijklSkl - ekijEk , 

Di = eiklSkl + eikEk' 

3. THE DIFFERENTIAL EQUATIONS 
OF PIEZOELECTRICITY 

(5.19) 

(5.20) 

We now have a determinate system of equations, i.e., the number of 
equations is equal to the number of variables, as is clear from Table I. 
This system of 22 equations in 22 variables can readily be reduced by 
simple substitutions to four equations in the four variables Uj and cpo The 
equations are 

CijklUk,li + ekijcp,ki = eUj, 

eikluk,li - eikCP,ki = O. 

(5.21) 

(5.22) 

We must solve this system of equations subject to boundary conditions 
which we have yet to determine. To determine the boundary conditions, 
we will obtain conditions sufficient for a unique solution analogous to 
those of Neumann for the purely elastic case [(11), Section 124]. This will 
give us a uniqueness theorem. 

Before we obtain the uniqueness theorem we should note that the 
internal energy function U must be a positive-definite quadratic form in 
order to secure the stability of the system. From (5.18), (5.11), and (5.20) 
it is readily seen that 

Til,i = eiil 

Di,i = 0 
Til = CiiklS,d - e/<iIE" 

Di = eiklSkl + Ei,.E" 

Ski = .(U",I + UI,J 
E" = - !P," 

Totals 

U = tCijklSijSkl + teijEiEj. 

TABLE I 

Number of equations 

3 
1 
6 
3 
6 
3 

22 

(5.23) 

Additional variables 

9 
3 
9 
o 
o 
1 

22 
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4. UNIQUENESS OF SOLUTION 

Consider two solutions of the 22 equations 

Tij,i = eUj, 

D· ·=0 't,1. , 

Tij = CijklSkl - ekijEk , 

Di = eiklSkl + fikEk' 

Ski = t(Uk,1 + UI,k) , 

Ek = - q;,k' 
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(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

Since every equation is linear, the difference of the two solutions is also 
a solution of the same system of equations. Let T;j, uj, Dr, Ski, EZ, and q;* 

denote the difference solution, where T;j = T~j) - TW, etc. Now, consider 
the dependent variables in the above equations to be starred (i.e., the 
difference variables), and drop the star. 

From (5.24) form the scalar 

(Tij,i - eUj)itj = 0, 

and integrate over the volume of the region being considered 

f V (Tijjlj - eUjUj) dV = 0 

= f V [(TijUj),i - TijUj,i - teUjUj] dV. (5.30) 

Applying the divergence theorem to (5.30) and employing the symmetry 
of the stress tensor and (5.28), we obtain 

f s niTijUj dS = f V [Tij'S'ji + T] dV, (5.31) 

where 
1 •. 

T = 2eUjUj. (5.32) 

The substitution of (5.26) into (5.31) yields 

f s niTijUj dS = f V [CijklSklSij - ekijEkSij + t] dV, 
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and the further substitution of (5.27) yields 

Is n{rijUj dS = I V [CijklSklSij - Ek(Dk - 8kiEk) + t] dV, 

which with (5.29) and (5.25) yields 

Is n(CijUj dS = I V [CijklSklSij + 8ikEiEk + (f/JDk),k + t] dV. (5.33) 

Applying the divergence theorem to (5.33), we obtain 

I v [t + CijklSklSij + 8i~iEk] dV = Is [n{l"ijUj - nif/JDd dS. (5.34) 

At this point it should be remembered that this equation is for the difference 
solution, i.e., every dependent variable should have a star. Let us define 
the internal energy U* of the difference system as 

U* = !Cijkl~SZI + !8ikEi* Ek * . (5.35) 

Then differentiating (5.35) with respect to time and utilizing the symmetries 
of all the quantities, we find 

. * - ~ <'ok E *E' * U - CijklJJklJJ,j + 8ik. i k' 

which enables us to write (5.34) in the form 

I v [t* + 0*] dV = Is [ni'l"Tju/- nif/J* Di*] dS. (5.36) 

Integrating (5.36) with respect to time, we have 

I ' I" I' I . '0 dt v(T* + U*) dV = '0 dt s (ni'l"Tju/ - nif/J* Di*) dS, 

and hence 

~* + ~* = W;-o* + ~o* + It dt I (t/u/ - nif/J*D/) dS, (5.37) 
'0 s 

where 

~* = IvT* dV, ~* = IvU* dV, 

* t·* = ni'l"ij. , 
(5.38) 

(5.39) 

Since T* and U* are positive-definite homogeneous quadratic functions (12) 
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of u/' st and Ei*, making the right-hand side zero (and hence the left­
hand-side zero) is sufficient to ensure that 

u/ = S0 = Ei* = 0, 

and hence that the two solutions are identical to within a static rigid body 
displacement and a constant potential [see (11), Section 18]. Therefore from 
the right-hand side of (5.37) we can read off initial and boundary conditions 
sufficient for a unique solution. 

Initial conditions may be the specification of Uj' Uj, and Ei at each 
point of the body at 10 , in which case the aforementioned static rigid body 
displacement of the difference system vanishes. Boundary conditions con­
sist of the specification at all 1 and at each point of the surface of the body 
any combination of conditions which make the surface integral in (5.37) 
vanish. For example: (11' 12 , 13 , r); (11' 12 , 13 , niDi); (11' U2 , U3 , r); 
(11' U2 , 13 , niDi); etc. 

The above is the piezoelectric generalization of Neumann's theorem 
in linear elasticity [see (11), p. 176]. The uniqueness theorem which has been 
presented is subject to a number of restrictions which are not especially 
important for our purposes. Some of these restrictions may be removed 
[see Mindlin's monograph (5), pp. 1.17-1.18]. 



Chapter 6 

HAMILTON'S PRINCIPLE 

1. THE PROCESS OF VARIATION 

Consider a function f(x), a < x < h. Change the function at any (or 
every) point x = Xo toj(x), while holding x = Xo fixed. Form the difference 

j(xo) - f(xo) = tJf, (6.1) 

which is called the variation of f. Note that tJf differs fundamentally from 
df, which is defined as the difference in the value of the function f at two 
neighboring points Xl and Xo. In taking the variation, the functional form 
is varied and the position is held fixed. In taking the differential, the position 
is varied and the functional form is held fixed. 
Now 

~ f = lim f(xl ) - f(xo) , 
dx "'r+"'o Xl - Xo 

Xl = Xo + Llx, (6.2) 

and 

tJ( df ) = df _ df = lim [f(X+Llx) - f[X) _f(x + Llx) - f(X)] 
dx dx dx .1",-+0 Llx Llx 

= lim [/(x + Llx) - /(x) _f(x + Llx) - f(x)] 
.1",-+0 LI X LI X 

1 - -= lim -LI [{(x + Llx) - f(x + Llx) - f(x) + f(x)] 
.1",-+0 X 

= lim -Ll1 [tJf(x + Llx) - tJf(x)] = dd (tJf). (6.3) 
~-+O X X 

Thus the tJ-process (variation) commutes with d/dx (differentiation). Con­
sider c5 J! F(x) dx; then by definition 

fb fb fb fb- fb tJ a F(x) dx = aF(x) dx -a F(x) dx = a F(x) dx - a F(x) dx 

fb - fb = a [F(x) - F(x)] dx = a tJF(x) dx. (6.4) 

41 
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This shows that the variation of a definite integral is equal to the definite 
integral of the variation. 

In practice we are not interested in the simple cases we have just 
discussed, in which F is a prescribed function of the independent variable x. 

Instead we are interested in the situation in which F is a prescribed function 
of a dependent variable, say, y, and its first derivative, y', which in turn 
depends on the independent variable x. Moreover, we are especially con­
cerned when F appears as the integrand of a definite integral. Under these 
circumstances we have 

G = f: F(y, y', x) dx, (6.5) 

and we wish to make the functional G in (6.5) stationary. In Eq. (6.5) 
the dependence of F on y, y', and x does not change during the variation. 
However, the dependent variable y (and, of course, y') is changed during 
the variation in accordance with (6.1). Clearly then, taking the variation 
of the functional G in (6.5), we obtain 

(jG = f: (jF(y, y', x) dx = 0, (6.6) 

since the limits a and b remain fixed. Since the dependence of F on y and y' 

does not change as y (and, hence, y') are varied, from (6.1) we obtain 

(jF = F(y, y', x) - F(y, y', x), (6.7) 

where y = y + (jy and y' = y' + (jy'. Expanding F(y, y', x) in a Taylor 
series about y and y' and neglecting terms in (jy and (jy' higher than the 
first since (jy and (jy' approach zero, from (6.7) we obtain 

(jF = of I (j + of I (j , - y -, y , 
oy 6y=o oy 6y'=O 

which may be written 
of of, 

(jF = Oy (jy + oy' (jy. (6.8) 

Substituting from (6.8) into (6.6), we find 

fb [OF of ,] 
(jG = a Ty (jy + Oy' (jy dx = 0, 
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which may be written 

fb [OF d (OF)] [OF]b 
bG = a oy - dx oy' by dx + oy' by a = 0 , (6.9) 

which must hold for arbitrary variations by. In .particular, if by vanishes 
at a and b, it is easy to show [(13), Chapter II, Section 10] that we must have 

of _ d (OF)_O 
Ty dx oy' - , (6.10) 

which is the Euler equation for the variational problem. If, on the other 
hand, by does not vanish at one end, say b, we must have 

and (6.10) is satisfied. 

of =0 
oy' 

at x = b, 

2. HAMILTONIAN MECHANICS 

(6.11) 

In classical mechanics there is a function L of all the pertinent variables 
(the independent coordinates and velocities) which is given by [(13), Chapter 
Y, Section 1] 

L = T(qk) - V(qk, t) = L(qk, qk, t), (6.12) 

where T is the kinetic and V the potential energy. There is a principle which 
states that for a conservative holonomic system 

b fl L dt = 0 
10 

(6.13) 

for all variations bqk of the position coordinates qk which are consistent 
with the holonomic [(13), Chapter I, Section 6] constraints and which vanish 
at to and t [(13), Chapter Y, Section 1]. The principle is called Hamilton's 
principle, and all of classical mechanics (subject to the restrictions mention­
ed) may be shown to be a consequence of that single statement. If the con­
straints are not holonomic, the principle can be generalized by introducing 
Lagrangian undetermined multipliers, but we are not interested in this. 
If the force system is not conservative, the principle can be generalized 
directly simply by calculating the virtual work b W done by the noncon­
servative forces in a virtual displacement consistent with the constraints, 
and reformulating the principle as follows: 

b fl L dt + ft b W dt = O. 
10 10 

(6.14) 
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This is the form of Hamilton's principle which we will use. There is a 
Hamilton's principle for the electromagnetic field equations in free space 
[see (9), Chapter 24]. 

It is commonly agreed that it is both interesting and useful to have 
a variational principle which reproduces an entire system of equations 
which were obtained previously in the alternative manner of defining field 
variables and applying conservation theorems. It is interesting (from the 
standpoint of having a single statement embodying the entire theory in a 
manner which exhibits energies of interaction) and useful for the purpose 
of obtaining approximate solutions of the equations or of generalizing 
the theory. 

We are interested in obtaining approximate solutions of the equations 
which we have already derived. 

3. THE VARIATIONAL PRINCIPLE 
FOR A LINEAR PIEZOELECTRIC CONTINUUM* 

Consider a piezoelectric body subject to prescribed surface tractions, 
t, and surface charge per unit area a. The given surface tractions t and 
surface charge a may, of course, be zero at any part. The virtual work 
per unit area done by the prescribed surface tractions in a small virtual 
displacement of the surface is Ik {JUk' The electrical analog of the virtual 
work per unit area done by the prescribed surface charge a in a small 
variation {Jq; of electrical potential q; is -a (Jq;. The minus sign occurs be­
cause in the variational principle for our electromp.chanical medium it 
turns out that the electric enthalpy H = U - EiDi takes the place of the 
internal energy function U in the Lagrange density, i.e., the effective elec­
trical energy content of H is opposite in sign to that of U. In any event, 
we will show that the variational principle presented here yields the dif­
ferential equations and boundary conditions previously derived. 

The Lagrangian for this bounded piezoelectric medium is defined by 

L = f v [teUjUj - H(Skl, Ek)] dV, (6.15) 

and 

{JW = Is (lk {JUk - a (Jq;) dS. (6.16) 

• All linearizing approximations will be already built in. 



Sec. 3] The Variational Principle for a Linear Piezoelectric Continuum 45 

Hence, from (6.14)-(6.16) the variational principle takes the form 

<5 f dt f [teUjUj - H(Sklo Ek)] dV + f dt f (ik <5Uk - a <5cp) dS = 0, 
to V to S (6.17) 

where lk and a are prescribed and all variations vanish at to and t. Remember 
that we have the relations (5.5), (5.4), (5.17), and (5.16) and the approxi­
mation for the material derivative: 

SkZ = HUk,z + UZ,k), Ek = - CP,k, 

aH 
Tkl = askZ ' 

aH 
Dk = - aEk ' 

which we will need in the derivation. 

a d 
Tt=Tt, 

Consider the expression for the variational principle term by term. 

First term: 

<5 ft dt f teuA dV = ft dt f eUj <5Uj dV 
to V to V 

= ft dt f [~(eu. <5u· dV) - eu' <5u· dV] 
~ v at J J J J 

= f [eu. <5u.]t dV - ft dt feu. <5u· dV = - ft dt feu. <5u· dV, 
V J J to to V J J to V J J 

since <5Uj vanishes at to, t. 

Second term: 

<5 s:. dt f v H(SkZ , Ek) dV = s:. dt f v [ :~Z <5SkZ + :~ <5Ek] dV. 

Now, 

<5SkZ = t <5(Uk,Z + UZ,k) = H(<5Uk),Z + (<5uZ),k] ' 

<5Ek = - <5CP,k = - (<5cp),k' 

Hence because of the symmetry of Tkl 

<5ft dtf HdV=ft dtf [TkZ(<5UZ),k+Dk(<5CP),k]dV 
to v to V 

(6.18) 

(6.19) 

= ft dt f [nkTkZ <5uz + nkDk <5cp] dS - ft dt f [TkZ k <5UI + Dkk <5cp] dV, 
to S to v' , 

from the divergence theorem. 
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Thus after substituting the above expressions for the first two 
terms back into the variational principle, (6.17), and rearranging terms 
we have 

15 It dt I rleUjUj - H(SkZ, Ek)] dV + It dt I (lk bUk - 0 brp) dS 
to V to S 

= S:o dt [J v (rkl,k - eiil) bUI dV + I v Dk,k brp dV 

+ Is (11 - nkTkz) bUI dS - f s (0 + nkDk) brp dS] = o. (6.20) 

Since the variations bUI and brp are arbitrary inside the volume V, we 
have: 

Stress equations of motion 

Tkl,k - eiil = o. (6.21 ) 

Charge equation of electrostatics 

Dk,k = o. (6.22) 

Now, on the surface S: 

(a) Either bUI is arbitrary and 11 - nkTkl = 0, or Ul is prescribed and 
bUI = O. 

(fJ) Either brp is arbitrary and 0 + nkDk = 0, or rp is prescribed and 
brp is zero. 

Thus we see that we have obtained both the differential equations and the 
boundary conditions from this single variational principle. 

Note that 11 = 0 for traction-free boundary conditions. The surface 
charge 0 exists in general at all interfaces in this formalism. It may be taken 
as zero at a dielectric-dielectric interface if the appropriate dielectric con­
stant on the side of interest is sufficiently greater than the corresponding 
dielectric constant on the other side. This will usually be the case, and 
for our purposes it will be nonzero only when solved for at the end of a 
problem. It will be taken as zero on all surfaces on which it must be pre­
scribed. In introducing 0 and ignoring the electromagnetic field on the 
vacuum (or air) side of the dielectric-vacuum (or air) interface we have 
made a restrictive but usually valid assumption. This assumption may be 
removed, but we will not do so here. 
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We are interested in the last variational form, (6.20), of the variational 
principle. This is the variational equation from which we will obtain ap­
proximate solutions. 

4. A MODIFICATION OF HAMILTON'S PRINCIPLE 

As we shall see, Eq. (6.20), which we obtained from Hamilton's prin­
ciple, turns out to be useful in certain instances and not in others. More 
specifically, Eq. (6.20) is particularly useful, within the theoretical frame­
work we will espouse, when the boundary conditions which are to be 
satisfied approximately are traction free and/or charge free, but not when 
the mechanical displacement and/or the electrical potential vanishes. The 
reason for this limitation is that in the variational principle the variations 
of Uk and cp are constrained to vanish on those portions of the boundary 
on which they are prescribed, and any approximating functions used with 
this variational principle must satisfy the variational constraints contained 
in the principle. On the other hand, the traction and/or charge boundary 
conditions arise when the variations of Uk and cp are unconstrained: In 
addition, for similar reasons Eq. (6.20) is not useful when there is an in­
ternal surface of discontinuity present as shown in Fig. 5. However, it 
turns out that all these difficulties present in (6.20) may be removed if we 
modify (14) Hamilton's principle slightly. 

It is clear from the discussion in the preceding paragraph that the 
limitations of the utility of (6.20) arise as a consequence of the constraints 
on the variations imposed in the principle. Thus it is clear that if we can 
remove the constraints, we can remove the limitation. Now, it is well known 
in variational calculus [(15), Chapter IV] (and in stationary problems in 
general) that a constraint on a variation may be removed by adding to 
the Lagrangian each constraint as a zero times a Lagrange multiplier and 
then treating all variations of the field variables as unconstrained [(15), 

Fig. 5. Diagram of a bounded region containing an 
internal surface of discontinuity. 
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Chapter IV, Section 9.1]. We now proceed to modify Eq. (6.17) accord­
ingly, i.e., in place of (6.17) we write 

bIt dt ± [I [h/m)u(m)ztm) - H(m)(s(m) , E(m»] dV 
to m=l VIm) J J kl k 

+ I (l(m)u(m) - (j(m)cp(m» dS + I A(m)(U(m) - aIm»~ dS 
s';') k k s~m) k k k 

- I I(m)(cp(m) - cp(m» dS] 
sImI 

o 

+ bIt dt I A(d)(U(2) - u(l) dS - bIt dtI l(d)(cp(2)_cp(1) dS = 0, 
to SId) k k k to Sla) 

(6.23) 

where S<;,), s~m), and S(d), r~spectively, stand for the portion of the mth 
surface on which the traction l~m) and/or the charge (j(m) are prescribed, 
the portion of the mth surface on which the mechanical displacement ur) 
and/or the electrical potential cp(m) are prescribed, and the surface of dis­
continuity shown in Fig. 5. In taking the variation of the expression on 
the left-hand side in (6.23), all the bu~m) and bcp(m) are unconstrained 
everywhere except at t and to, * where they are constrained as in the usual 
version of Hamilton principle, and the Lagrangian multipliers A~m), I(m), 
A~d), and I(d) are to be varied freely [(15), Chapter IV, Section 9.2]. Carrying 
out the variations in (6.23), as we did in going from (6.17) to (6.20), and 
taking into consideration the fact that the divergence theorem is valid only 
up to and not across the surface of discontinuity Sid), we obtain 

I t dt ± [I [(T(m) - e(m)ii(m» bu(m) + D(m) bcp(ml] dV 
to m=l VIm) kl,k I I k,1e 

+ I [(lim) - n(m)T(m» bu(m) - «(j(m) + n(m)D(m» bm(m)] dS 
sImI I k kl I k k r 

N 

+ I [(A (m) - n(m)T(m» bu(m) - (/(m) + n(m) D(m» bm(m) 
sImI I k lei I k k r 

o 

+ bAim)(u~m) - a~m» - b/(m)(cp(m) - gi(m»] dS ] 

+ It dt I [- (A(d) + n(d)T(1) bUll) + (A(d) + n(d)T(2» bU(2) 
to S(a) I k lie I I k lk I 

+ (/(d) - nid) DkO) bcp(l) - (I(d) - nid) Dk2» bcp(2) 

+ bAkd)(uk2) - u~O) + b/(d)(cp(2) - cp(1)] dS = 0, (6.24) 

* This constraint can be removed also. [See (14)]. 
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where nidi denotes the components of the unit normal to the surface of 
discontinuity S(d) directed from Vm to V(2). Since the volumetric variations 
in (6.24) are arbitrary, we have (6.21) and (6.22) in both Vm and V(2). 

Since all the surface variations ou~m), ocp(m), OAim), (j[(m), OA1d ), and (j[(d) 

are independent (unconstrained), we have 

pm) - n(m) r(m) = 0 
I k kl 

a(m) + n1m) D1m) = 0 

A(m) - n(m) r(m) = 0 
I k kl 

[(m) + n1m) D1m) = 0 

uim) - iiim) = 0 

cp(m) _ ijJ(m) = 0 

A(d) + n(d)r(1) = 0 
I k lk 

Aid) + nid)ri~) = 0 

[(d) - nidi D~I) = 0 

[(d) - nidi D~2) = 0 

ui2) - u11) = 0 

cp(2) _ cpm = 0 

on 

on 

on 

on 

on 

on 

on 

on 

on 

on 

on 

on 

s(m) 
N' 

s(m) 
N' 

Sm) 
C ' 

s(m) 
C ' 

s(m) 
C ' 

Sm) 
C ' 

Sd) , 
S(d) , 
S(d) , 
S(d) , 

S(d) , 

S(d). 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

From (6.27) and (6.28) we obtain the Lagrangian multipliers Aim) and [(m) 

in the form 

Aim) = nim)ril'), 

[(m) = - nlm) Dim). 

Not~ that the subtraction of (6.32) from (6.31) yields 

n(d)(r(2) - r(ll) = 0 
k lk lk ' 

and the subtraction of (6.34) from (6.33) yields 

nid ) (D12) - Dill) = O. 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

Equations (6.39) and (6.40), respectively, tell us that the traction vector 
and the normal component of electric displacement are continuous across 
Sd). At this point it is clear that our variational formalism (6.23) yields 
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the differential equations (6.21) and (6.22) in the mth region and the bound­
ary conditions (6.25), (6.26), (6.29), (6.30), 6.35), (6.36), (6.39), and (6.40) 
of the linear theory of piezoelectricity for the problem at hand. 

In order to find the most appropriate forms of (6.23) and (6.24) to be 
used in obtaining approximate solutions to boundary value problems, add 
(6.31) to (6.32) and (6.33) to (6.34) to obtain, respectively, 

A,(d) - - In(d)(1'(l) + 1'(2») 
1-"2"k lk Ik' 

I(d) = !n~d)(D~l) + D~2») , 
(6.41) 

(6.42) 

and then substitute from (6.37), (6.38), (6.41), and (6.42) into (6.23) and 
(6.24) to obtain, respectively, 

15 It dt f [I (le(m)u~m)u~m) - H(m») dV + I (l(m)u(m) - a(m)q; m») dS 
to m=l VIm) J J s';') k k 

+ I n(m)1'(m)(u(m) - u(m») dS + I n(m)D(m)(q;(m)-q,<m»)dS] shm) 1 kl k k shm) k k 

-15 It dt I !n(d) [(r(I)+1'(2»)(u(2)-u(l))+(D(I)+D(2))(q;(2)_q;(l))]dS=0 , 
t SIal k lk Ik 1 I k k 
o (6.43) 

It dt f [I [(1'(m) - e(m)ii(m») du(m) + D(m) dq;(m)] dV 
to m=] VIm) kl.k 1 1 k,k 

+ I [(l(m) - n(mJ1'(m») du(mJ - (a(m) + n (mJD(m») dm(mJ] dS 
sImI I k kl I k k Tk 

N 

+ I shm ) n~mJ[(ulm) - ulmJ) d1'~'i') + (q;(mJ - q,(mJ) dD~mJ] dS] 

+ It dt I n(dJ t[(1'(2J ~ 1'(l))(duUJ + du(2») 
to SIal k kl kl I I 

+ (ujIJ - ul2J)( d1'l~) + 151'::» 

+ (D~2) - D~l))( dq;(1) + dq;(2J) 

+ (q;(2J - q;(1J)(dD~lJ + dD~J)] dS = O. (6.44) 

Equation (6.44) is a form that is very useful for approximation. The in­
tegrals over sgn) in (6.43) and (6.44) were first presented by Eer Nisse (16) 
and Holland and Eer Nisse (17) but without a complete derivation. A 
derivation was provided in (14), in which the integrals over S(dJ first appear. 



Chapter 7 

MATERIAL SYMMETRY 
CONSIDERATIONS 

1. COMPRESSED NOTATION AND MATRIX ARRAYS 

In order to determine the solution of piezoelectric (or elastic) vibration 
problems, we will have to know the arrays of material coefficients for the 
particular symmetry of the material we are considering. The book by 
Nye (10) is very useful in this context. The compressed matrix notation turns 
out to be more useful than the extended tensor notation when discussing 
symmetry. This matrix notation consists of replacing ij or kl by p or q, 
where i, j, k, and I take the values 1, 2, and 3, and p and q take the values 
1, 2, 3, 4, 5, and 6 according to the prescription in Table II. 
Furthermore 

Cijkl = c pq ' eikl = eip' '7:ij - Tij = Tp == '7:p • 

By virtue of the above identifications and the fact that we wish the con­
stitutive relations (5.19) and (5.20) to be written 

Tp = C~qSq - ekpEk , (7.1 ) 

Di = eiqSq + efkEk' (7.2) 

TABLE II 

ij or kl p or q 

11 

22 2 

33 3 

23 or 32 4 

31 or 13 5 

12 or 21 6 

51 
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we find that 

Sij = Sp 

2Sij = Sp 

Material Symmetry Considerations [Ch. 7 

when i = j, P = 1,2, 3, 

when i *- j, P = 4, 5, 6. 
(7.3) 

We may now write the elastic and piezoelectric constants as well as 
the dielectric constants as matrices, since they all are described by two 
indices. The arrays for an arbitrarily anisotropic (triclinic) material without 
a center of symmetry are 

Cn C12 C13 C14 C15 C16 

C12 C22 C23 C24 C25 C26 

cE = ,C13 
C23 C33 C34 C35 C361 , (7.4) pq C14 C24 C34 C44 C45 C46 

C15 C25 C35 C45 C55 C56 

C16 C26 C36 C"6 C56 C66 

en e12 e13 e14 e15 e,,) 
eip = e2l e22 e23 e24 e25 e26 , (7.5) 

e3l e32 e33 eM e35 e36 

('" 
c12 ''') cg = c12 c22 c23 • (7.6) 

C3l C32 C33 

Here we see the 21 + 18 + 6 = 45 independent constants exhibited. The 
arrays for a material with monoclinic symmetry, with Xl the digonal axis 
(which by the International Symbol is class 2, or by the Schoenflies Symbol 
is C2), are 

Cn C12 C13 C14 0 0 
C12 C22 C23 C24 0 0 

~ = ,C13 
C23 C33 C34 0 0 I, (7.7) pq c14 C24 C34 C44 0 0 

0 0 0 0 C55 C56 

0 0 0 0 C56 C66 

en e12 e13 e14 0 

~,,) , eip = ~ 0 0 0 e25 (7.8) 
0 0 0 e35 e36 

en 0 

~,,) cg = 0 C22 (7.9) 
0 C23 C33 
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These arrays exhibit the symmetry of rotated Y-cut quartz when the equa­
tions are referred to rectangular axes in and normal to the plane of the plate. 
For a monoclinic crystal all 13 + 8 + 4 = 25 constants are independent, 
whereas for rotated Y-cut quartz the 25 constants are not independent 
but are derived from a smaller number of independent constants, which 
are the independent constants of a trigonal crystal with Xa the trigonal 
axis and Xl a diagonal axis. The arrays for such a crystal (32, Da) are 

Cll C12 C13 C14 0 0 
Cl2 Cll Cla -C14 0 0 

cE _ ,c13 C1a Caa 0 0 0 
pq -

-C14 0 C44 0 0 C14 
(7.10) 

0 0 0 0 C44 C14 

0 0 0 0 C14 CGG 

CGG = HCll - C12), 

('" 
-ell 0 e14 0 

-~n)' eip = ~ 0 0 0 -el 4 

0 0 0 0 
(7.11) 

en 0 

~ ). e~ = 0 ell 

0 0 e33 

(7.12) 

Thus we see that a material with this type of trigonal symmetry is described 
by 6 + 2 + 2 = 10 independent material constants. Clearly, the 25 con­
stants for the previously mentioned rotated Y-cut quartz may be expressed 
in terms of the 10 independent material constants for a crystal in class Da 
by using the appropriate tensor transformation laws. 

Lithium tantalate and lithium niobate are two new crystalline materials 
which have higher piezoelectric coupling than quartz, and are currently 
being investigated for potential resonator and transducer applications. 
Both of these materials are trigonal, but they are a different type of trigonal 
crystal than quartz. Although Xa is the trigonal axis in both quartz and 
these crystals, Xl is normal to a mirror plane in these crystals instead of 
being a twofold rotation axis as it is in quartz. For these two crystals the 
crystal class is Cav = 3m. The arrays of the elastic and dielectric constants 
are the same as for quartz when referred to the principal axes, and are 
given in (7.10) and (7.12). However, the array of piezoelectric constants 
is quite different, and is given by 
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e" ~ ( -~ti 
0 0 0 e l5 -e,,) 
e 22 0 e l5 0 o . (7.13) 

eal eal e a3 0 0 0 

When a rotated Y-cut is formed by rotating about Xl , as shown in Fig. 6, 
and the arrays are referred to rectangular axes in and normal to the plane 
of the plate the arrays have m-monoclinic symmetry with Xl normal to a 
mirrorplane. The arrays of the elastic and dielectric constants are the same 
as for 2-monoclinic symmetry and are given in (7.7) and (7.9). The array 
of piezoelectric constants is given by 

(
0 0 0 0 el5 e16) 

eip e 21 e 22 e 2a e 24 0 0 . 
eal e a2 e a3 e a4 0 0 

(7.14) 

Thus it is clear that a material with m-monoclinic symmetry has 13 + 10 
+ 4 = 27 independent constants. However, if the arrays (7.7), (7.9), and 
(7.14) are for rotated Y-cut lithium niobate referred to axes in and normal 
to the plane of the plate, the 27 constants are not independent, but are 
expressible in terms of the 6 + 4 + 2 = 12 independent constants of a 
material with 3m symmetry by using the appropriate tensor transformation 
laws. 

The polarized ferroelectric ceramics (with Xa in the poling direction) 
effectively have the symmetry of a hexagonal crystal in class C6V = 6mm. 

z 

X2 

*" ~y 

X, xI 

Fig. 6. Diagram of a rotated Y-cut of quartz. 
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The arrays for a material possessing this symmetry are 

c n C12 C13 0 0 0 
C12 Cn C13 0 0 0 

~ = IC13 
C13 C33 0 0 0 

pq 0 0 0 C44 0 0 
(7.15) 

0 0 0 0 C44 0 
0 0 0 0 0 C66 

C66 = HCn - C12 ) , 

e~ ~ (~ 
0 0 0 e15 

~) , 0 0 e15 0 
e3l e3l _ e33 0 0 

(7.16) 

('" '0 o ) 
ci3 = ~ ~n o . 

c33 

(7.17) 

Thus it is clear that a material with this type of symmetry is described 
by 5 + 3 + 2 = 10 independent material constants. Materials with this 
type of symmetry are important because the polarized ceramics have high 
piezoelectric coupling. An isotropic material has arrays which are similar 
to the arrays for class C6V except that there are some additional relations 
among the coefficients. For one thing, all the eip vanish, and there is no 
piezoelectric coupling. In addition to that, there are the relations 

C12 = C13 ' Cn = C33 ' C44 = C66 ' cn = C33' (7.18) 

Hence there are two independent elastic constants and one independent 
dielectric constant. The relationships between the isotropic cpq elastic con­
stants and the Lame constants A and f1, are 

Cn = A + 2f1" C12 = A, C44 = f1,. (7.19) 

2. EQUATIONS FOR DIFFERENT SYMMETRIES 

When the arrays for the material with monoclinic symmetry (class 2, C2 ) 

are substituted in the constitutive equations (7.1) and (7.2) we obtain 

Tn = c n ul,1 + C12U2 ,2 + C13U3 ,3 + C14(U2,3 + U3,2) + enfJJ,l, 

T22 = C12Ul ,l + C22U 2 ,2 + C23U3 ,3 + C24(U2 ,3 + U3,2) + e12fJJ,l , 
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T33 = CI3Ul,l + C23U2•2 + caaua,a + Ca4(U2,a + Ua,2) + edP,i , 

T 2a = C14Ul,1 + C24U2•2 + c a4u a•3 + C44(U2,a + Ua,2) + e 14Ifi.I, 

T31 = Css(Ua•1 + UI •a) + CS6(UI ,2 + U2•1) + e 2slfi.2 + e 3slfi,a, 

T12 = CS6(U3•1 + uI,a) + C66(U I •2 + U2•1) + e 261fi,2 + e a61fi,3, 

DI = ellul •1 + e 12u 2,2 + e l3u a,a + e I4 (U2,a + U3,2) - cUIfi,1 , 

D2 = e 2S(ua,1 + U1,3) + e 26(UI ,2 + U2•1) - c221fi,2 - c2alfi.a, 

Da = eas(Ua•1 + UI •a) + e a6(U I ,2 + U2,1) - e 2alfi.2 - caalfi.3' 

(7.20) 

When these constitutive relations are substituted in the stress equations 
of motion 

Tij,i = eUj, 

and the charge equation of electrostatics 

D i •i = 0, 

and terms are combined we obtain 

CllUI •ll + (C12 + C66)U2.12 + (CIa + CSs)U3.la + (c14 + CS6)U2.13 

+ (C14 + CS6)Ua.12 + 2Cs6UI ,2a + C66UI.22 + cssuI.a3 

+ elllfi.n + e 261fi,22 + (ea6 + e 2s )Ifi,23 + e 3slfi.33 = eUI , 

Cs6Ua,n + (CS6 + C14)UI •13 + (C66 + CI2)UI ,12 + C66U2•11 

+ C22U2.22 + (C23 + C44)Ua.2a + 2C24U2.2a + c24ua.22 

+ c a4u a ,33 + c44U2.aa + (e 26 + e I2 )1fi.12 + (ea6 + e I4 )1fi,13 = e U2, 

CSSUa•U + (css + Cla)UI,la + (CS6 + CI4)UI.12 + CS6U2,11 

+ C24U2.22 + 2Ca4Ua.2a + (C44 + C23 )U2,2a + C44ua.22 

+ c 3au3,aa + C34U2.33 + (e2S + e I4 )1fi,12 + (e3S + e I3 )1fi,13 = eUa, 

enuI •ll + (e12 + e26)u2.12 + (ela + e3S)U3.la + (e14 + e a6 )u2,la 

+ (e14 + e2S)U3.12 + (~2S + e36)UI.23 + e26uI.22 

+ e3SuI.33 - cnlfi.l1 - c221fi.22 - 2C231fi.23 - ca31fi.33 = O. 

(7.21 ) 

(7.22) 

(7.23) 

These are the equations for rotated Y-cut quartz referred to axes (Xl' X 2 , 

xa) in and normal to the plane of the plate, with X 2 normal to the plane of 
the plate and Xl the digonal axis in the plane of the plate. The coordinate 
axes for the rotated Y-cut are related to the principal axes of trigonal 
quartz as shown in Fig. 6. In Fig. 6, (J is the angle of the cut. The equations 
for quartz (trigonal, class Da) when referred to the principal axes (x, y, z), 
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which are then denoted, respectively, (Xl, X 2 , X 3), are given by (7.20) and 
(7.23) provided 

C22 = Cn , C23 = Cl3 , C24 = - C14 ' C34 = 0 , 

C66 = HCn - C12) , C55 = C44 , C56 = Cl4 , 

e l2 = - en, e l3 = 0 , e25 - e14 , e26 - ell' 
(7.24) 

e35 = 0, e36 = 0, 1022 = cll, C23 = O. 

When the arrays for a material with m-monoclinic symmetry are sub­
stituted in the constitutive equations (7.1) and (7.2) we obtain 

Tn = CnUI.I + C12U2•2 + C13U3 ,3 + CI4 (U2,3 + U3,2) + e 21({J,2 + e 31({J,3 

T22 = CI2UI,1 + C22U2,2 + C23U3,3 + C24(U2,3 + U3,2) + e 22({J,2 + e 32({J,3 

T33 = CI3Ul ,1 + C23U2,2 + C33U3 ,3 + C34(U2,3 + U3,2) + e 23({J,2 + e 33({J,3 

T 23 = C14UI,1 + C24U2,2 + C34U3 ,3 + C44(U2,3 + U3,2) + e 24({J,2 + e 34({J,3 

T31 = C55(U3,l + UI ,3) + C56(UI ,2 + U2,1) + e 15({J,1 (7.25) 

Tl2 = C56(U3,l + UI ,3) + C66 (UI ,2 + U2,1) + e l6({J,l 

DI = e 15(uI ,3 + U3,1) + e I6(uI ,2 + U2,1) - cn({J,1 

D2 = e2luI,l + e 22u 2,2 + e 23u 3,3 + e 24(u2,3 + U3,2) - c22({J,2 - c23({J,3 

D3 = e3luI,l + e 32u 2,2 + e 33u 3 ,3 + e 34(u2,3 + U3,2) - c23({J,2 - c33({J,3 

When these constitutive equations are substituted in (7.21) and (7,22) 
we obtain 

CllUI,l1 + (CI2+C66)U2,12 + (Cl3+C55)U3,13 + (C14+C56 )U2,13 + (Cl4+C56)U3,12 

+ 2C56UI ,23 + C66U1,22 + C55UI ,33 + (e21 +el6 )({J,12 + (e31 +el5 )({J,13 = eill , 

C56U3 ,l1 + (C56+C14)UI ,13 + (C66+CI2)UI,12 + c 66u 2,n + C22U2,22 

+ (C23+C44)U3,23 + 2C44U2 ,23 + C24U3,22 + C34U3 ,33 + C44U2,33 

+ e I6({J,n + e 22({J,22 + (e32+e24 )({J,23 + e 34({J,33 = e il2' 

C55U3,l1 + (C55+CI3)UI,13 + (C56+C14)UI ,12 + c 56U2,n + C24U2,22 

+ 2C34U3,23 + (C44+C23)U2,23 + C44U3,22 + C33U3,33 + C34U2,33 

+ e I5({J,n + e 24({J,22 + (e34+e23 )({J,23 + e 33({J,33 = e il3' 

(eI5+e31)UI,31 + e l5u 3 ,l1 + (eI6+e21)uI,12 + e 16u 2,1l + e 22u 2,22 

+ (e23+e34)u3,23 + (e24+e32)u2,23 + e 24u 3,22 + e 33u 3,33 

+ e 34u 2,33 - cn({J,ll - c22({J,22 - 2C23({J,23 - c33({J,33 = O. 

(7.26) 

These are the equations for rotated Y-cut lithium niobate or lithium tan-
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talate referred to axes (Xl' X 2 , x 3) in and normal to the plane of the plate. 
The equations for these two materials (trigonal, class 3m = C3V ) when 
referred to the principal axes (x, y, z), which are then denoted, respectively, 
(Xl' X 2 , X 3), are given by (7.25) and (7.26) provided 

C22 = Cn, 

Css = C44 , 

e24 = e1s, 

e32 = e31 , 

C23 = Cl3 , C24 = - C14' C34 = 0 , 

CS6 = C14 , C66 = HCn - C12), 

el6 = - e 22 , e 2l = e 22 , e 23 = 0, 

e34 = 0 , B22 = Bn , B23 = O. 

(7.27) 

When the arrays for the material in class C6V are substituted in the con­
stitutive equations (7.1) and (7.2) we obtain 

Tn = CnUI,l + C12U2,2 + Cl3U3,3 + e3lrp,S, 

T22 = Cl2UI ,l + Cn U2,2 + Cl3US,S + e 3lrp,S' 

T33 = Cl3UI ,l + Cl3U2,2 + C33U3,S + e S3rp.3' 

T 23 = C44(U3,2 + U2,3) + e 1Srp.2 , 

TSI = C44(US,1 + UI ,3) + elSrp,l , 

T12 = C66(U1,2 + U2,1) , 

Dl = e1SuS,l + elSu1,3 - Bu rp,1' 

D2 = e 1S(uS,2 + U2,3) - Bnrp, 2 , 

Ds = e 3luI,l + eSlu2,2 + e 33u 3,S - B33rp,3' 

(7.28) 

When these constitutive equations are substituted in the stress equations 
of motion (7.21) and the charge equation of electrostatics (7.22) we obtain 

CnUI,n + (c12 + C66 )U2,12 + (Cl3 + C44 )U3,13 + C66UI ,22 

+ C44UI,33 + (e31 + e 1S)rp,13 = eill , 

C66U2,n + (C66 + C12)UI ,12 + Cn U2,22 + (CIS + C44 )US,2S 

+ C44U2,S3 + (e31 + e1S)rp,2S = eil2' 

C44Us,n + (C44 + Cl3)UI,31 + C44US,22 + (C44 + C13)U2,23 

+ C3SUS,33 + elSrp,n + elSrp,22 + e 33rp,3S = eils, 

e15u s,n + (e15 + e 31)uI ,IS + e 1Su 3,22 + (eiS + e 31)u2,32 

+ e 33u 3,S3 - Bnrp,n - Burp,22 - BS3rp,33 = O. 

(7.29) 

The constitutive equations for an isotropic material may be written suc-
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cinctly in indicial notation and in vector notation in terms of the Lame 
constants 2 and fl, since, for the isotropic array shown 

Cijkl = 2bij bkl + fl( bikbjl + bilbjk )· (7.30) 

Substituting in the elastic constitutive relations 

Tij = CijklUk.1 , (7.31) 

we obtain 

Tij = 2uk,kbij + fl(Ui.j + Uj,i)' (7.32) 

Substituting this into the stress equations of motion, (7.21), we obtain 

(2 + fl)Uk,kj + flUj,kk = eiij. (7.33) 

In invariant vector notation we have 

T = 2V· uI + fl(VU + uV) , (T~32') 

for the constitutive equations and 

(2 + fl) VV·u + fl172u = eii , (7.33') 

for the displacement equations of motion for an isotropic material. 

3. MATERIAL CONSTANTS 

Values for the material constants for left-hand quartz have been de­
termined by Bechmann (18). When referred to the crystal axes in accord­
ance with the notation in this chapter, for left-hand quartz the constants 
have the values 

Cn = C22 = 86.74x 109 N/m2, 

C34 = 0, C13 = C23 = 11.91, 

C66 = HCll - C12 ) = 39.88; 

C14 = - C24 = C56 = - 17.91, C12 = 6.99, 

C44 = C55 = 57.94, C33 = 107.2, 

ell = - e 12 = - e 26 = 0.171 C/m2, e14 = - e 25 = - 0.0406, 
(7.34) 

e 13 = e 35 = e 36 = 0; 

£11 = £22 = 39.21 X 10-12 C/V-m, £33 = 41.03, £23 = o. 
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The mass density of quartz is 

(! = 2649 kg/m3 . (7.35) 

When the constants are referred to the (Xl' X 2 , X 3 ) axes shown in Fig. 6 
and () = 35.25° the rotated Y-cut is an AT-cut and the constants for the 
AT-cut determined from Bechmann's constants given in (7.34) are 

Cll = 86.74, C22 = 129.77, C33 = 102.83, Cl2 = - 8.25, Cl3 = 27.15, 

C14 = - 3.66, C23 = - 7.42, C24 = 5.7, C34 = 9.92, C44 = 38.61, 

C55 = 68.81, C66 = 29.01, C56 = 2.53; 

ell = 0.171, el2 = - 0.152, el3 = - 0.0187, e14 = 0.067, e25 = 0.108, 

e26 = - 0.095, e35 = - 0.0761, e36 = 0.067; 

8n = 39.21, 822 = 39.82, 833 = 40.42, 8 23 = 0.86. (7.36) 

Values for the material constants for lithium tantalate and lithium 
niobate have been determined by Warner, Onoe, and Coquin (19). When 
referred to the crystal axes in accordance with the notation of this chapter 
the constants for lithium tantalate have the values 

Cll = C22 = 2.33 X 1011 N/m2, C14 = - C24 = C56 = - 0.11, CI2 = 0.47, 

C34 = 0, Cl3 = C23 = 0.80, C44 = C55 = 0.94, C33 = 2.75, 

C66 = HCll - c12) = 0.93; 

e15 = e24 = 2.6 C/m2, e22 = - el6 = - e21 = 1.6 
(7.37) 

e31 = e32 = 0.0, e33 = 1.9, e23 = e34 = 0; 

8 n = 8 22 = 36.3x 10-11 C/V-m, 8 33 = 38.2, 823 = O. 

The mass density of lithium tantalate is 

(! = 7450 kg/m3. (7.38) 

The constants for lithium niobate have the values 

Cll = C22 = 2.03 X 1011 N/m2, 

C34 = 0, CI3 = C23 = 0.75, 

C66 = HCll - C12) = 0.75; 

C14 = - C24 = C56 = 0.09, Cl2 = 0.53, 

C44 = C55 = 0.60, C33 = 2.45, 

el5 = e24 = 3.7 C/m2, e22 = - el6 = - e21 = 2.5, 
(7.39) 

e31 = e32 = 0.2, e33 = 1.3, e23 = e34 = 0; 

8 n = 8 22 = 38.9 X 10-11 C/V-m, 8 33 = 25.7, 8 23 = O. 
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The mass density of lithium niobate is 

e = 4700 kg/m3 . (7.40) 

There are so many different high coupling polarized ceramics which 
have the effective symmetry of a material in class C6V that there seems to 
be no point in reproducing the constants for all or many of these ceramics 
here. Constants for many of these ceramics are given in the excellent article 
by Berlincourt et al. eO). 



PART II 

FUNDAMENTAL STANDING 
WAVE SOLUTIONS 



Chapter 8 

SOME ASPECTS OF THE THEORY 
OF WAVES AND VIBRATIONS 

1. THE INHOMOGENEOUS SCALAR WAVE EQUATION 

Before considering piezoelectric (or even elastic) vibrations-which 
are vectorial-it is enlightening to consider the mathematics of scalar 
vibration theory in some detail because the basic ideas of the two theories 
are the same and vectorial vibration theory is sufficiently complex and cum­
bersome to obscure the basic ideas if one is not already aware of them. 
On the other hand, scalar vibration theory is sufficiently simple and straight­
forward so as not to obscure the basic ideas. Of course, in either case we 
are considering linear vibration theory only. 

Consider the scalar wave equation in one space variable and time and 
containing a source term: 

(Pcp _ 1 (Pcp 
8x2 C2 8t2 = e(x, t) , (8.1) 

where e denotes the source term, which is the inhomogeneous term of the 
differential equation. It must be prescribed. The scalar cp is the dependent 
variable. Any term containing cp or any of its partial derivatives is called 
a homogeneous term. The differential equation is defined in a region of 
space-time defined by 

a < x <b, t > o. (8.2) 

If a = - 00 and b = + 00 the region is unbounded and we do not have 
to consider the boundary conditions associated with the differential equa­
tion. If a is finite and b = + 00 the region is unbounded on one side, i.e., 
a half space, and we do have to consider the boundary conditions on the 
bounded side. If both a and b are finite, the body is bounded and we have 
to consider the boundary conditions at both a and b. The problem of the 
unbounded and semibounded region are similar and have many things in 
common, in particular, the existence of a continuous distribution of eigen-

65 
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states. On the other hand, the problem of the fully bounded body is quite 
different in character from the other two, namely, in the existence of a 
discrete distribution of eigenstates only. We are here concerned with the 
fully bounded body which possesses a discrete distribution of eigenstates, 
and will discuss the other problem only in passing. The differential equation 
we are discussing could be describing the transverse vibrations of a string, 
the longitudinal oscillations of a rod, as well as other things. 

The boundary conditions at each end consist of the specification of 
either cp or acp/ax or any combination thereof. These conditions could be 
obtained from a uniqueness theorem as in three-dimensional piezoelectricity. 
The most general condition at a boundary point then is of the form 

ccp + e acp/ax = I(t) , (8.3) 

where I(t) denotes a prescribed inhomogeneous term and c and e could be 
functions of time. Only those situations in which c and e are constants are 
of interest to us and will be considered here. Now our problem consists 
of the differential equation (8.1) and the boundary conditions 

c1cp + e1 acp/ax = 11(t) 

c2cp + e2 acp/ax = 12(t) 

at x = a and t > 0, 

at x = band t > 0 , 

and the initial conditions 

cp = g(x) 

acp/at = h(x) 

at t = 0, a < x < b , 

at t = 0, a < x < b. 

(8.4) 

(8.5) 

The quantities e,/1 ,/2 , g, and h are the inhomogeneous terms which must 
be prescribed and which force the system into oscillation. The initial con­
ditions g and/or h produce so-called free vibrations, while the boundary 
and interior forCing terms 11 , 12' and e are responsible for the steady­
state forced vibrations. It should be noted that we are not interested in 
the free vibrations here, but only in the steady forced vibrations. Con­
sequently, we take g = h = 0 and assume that any free-vibrational term 
which is generated by 11,/2' or e is sufficiently damped to be ignored. We 
further assume that the damping is sufficiently small to be ignored in the 
steady-state forced vibrational solution. Both of these assumptions are 
essentially satisfied after a sufficient number of cycles. Thus we are obtain­
ing the solution after a sufficient number of cycles and we call this solution 
the steady-state solution. In brief, we have eliminated any consideration 
of the initial conditions and all transients associated therewith. 
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2. HOMOGENEOUS SOLUTIONS 

When II , 12' and e vanish we have what is called a homogeneous 
boundary value problem (or eigenvalue problem). It is important to note 
that the solution to the inhomogeneous (forced) problem, which exists 
when anyone of 11 , 12' and e are nonzero, frequently may be composed 
of solutions of the associated homogeneous (e = 11 = 12 = 0) problem. 
Consequently, the solution of the homogeneous problem is of fundamental 
interest. 

Let us first consider the homogeneous problem in the infinite medium 
(line). Then the boundary conditions may be left out of account. Our dif­
ferential equation is 

a2cp 1 a2cp 
----=0 ax'!: c2 at2 • 

(8.6) 

We may verify that a traveling wave solution in the + x direction is given 
by 

cp = A cos(rJx - wt), (8.7) 

provided 
rJ2 = W2/C2, (8.8a) 

or 
w = C'Yj, (8.8b) 

since we restrict w to be positive and real always and rJ to be positive in 
this instance. If we plot an w vs. 'Yj diagram from (8.8b), we obtain the straight 
line shown in Fig. 7, i.e., a straight line with slope c. If instead of writing 
(8.7) we write 

w 

cp = A cos rJ(x - vt), 

K • ~ 

Fig. 7. Frequency vs. wave number diagram for a 
non dispersive string. 

(8.9) 
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where v is the velocity of an infinite train of waves, then 

0.1 =1'Jv, (8.10) 

and the slope c of the above dispersion curve is identical with the phase 
velocity v of the infinite train of waves in this simple case. 

If we had been obtaining a plate wave solution of a more complicated 
equation the dispersion curve associated with the solution might not have 
been a straight line as above, but might have been curved as shown in Fig. 8, 
or any of a number of other shapes for that matter. As a matter of fact, 
there might be portions of the dispersion curves for which 'YJ is imaginary 
or even complex, but 0.1 is always restricted to be real and positive. In any 
event, when 'YJ is real the slope of the radius vector from the origin to the 
curve denotes the phase velocity v. 

If in the present wave equation we had considered a traveling sine wave, 
we would, of course, have obtained the same dispersion curve. Moreover, 
if we had considered standing waves of the forms 

ffJ = B cos 'YJX cos wt , 

ffJ = B sin 1'Jx cos wt , 
(8.11) 

we would have obtained the same straight-line dispersion relation shown in 
Fig. 7. It is precisely these latter standing waves which will be of importance 
to us in obtaining solutions to vibration problems. 

Let us now consider the homogeneous problem of, say, a string of 

w 

.,., 

Fig. 8. Frequency liS. wave number diagram for a 
hypothetical dispersive medium. 
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10; · I · ---.... ··x 

~ 

Fig. 9. Stretched string of length 2/. 

length 21 fixed at both ends as shown in Fig. 9. For convenience, let us 
place the origin of coordinates in the center of the string; we could place 
it anywhere. Here q; is the displacement. The equation and boundary 
conditions are 

{Pq; 1 a2q; 
----=0 ax2 c2 at2 

-I<x</, (8.12) 

q;=0 at x = ± I. (8.13) 

We will now obtain two independent sets of solutions, which correspond, 
respectively, to the symmetryc and antisymmetric motions (or modes). For 
the symmetric modes we have 

q; = A cos 'YjX cos wt , (8.14) 

and for the antisymmetric modes 

q; = B sin 'Yjx cos wt. (8.15) 

In either case, from (8.12) we obtain the w vs. 'Yj (or dispersion) relation 

w=c'Yj, (8.16) 

and A and B are arbitrary. Substituting in the boundary conditions (8.13), 
we find in the symm~tric case 

Acos 'Yjl cos wt = O. (8.17) 

For a nontrivial solution to exist, i.e., A nonzero, we must have 

cos 'Yjl = O. (8.18) 

Hence 

'Yjl = nnj2, n.= 1, 3, 5, 7, ... , (8.19) 
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and from (8.19) and (8.16) we obtain 

w = ncn/2/, n=I,3,5,7, ... (8.20) 

These values of w in (8.20) are the natural (or eigen) frequencies of the 
symmetric modes. From the boundary conditions (8.13), in the antisym­
metric case we find 

B sin 'Yjl cos wt = 0 , (8.21) 

and for a nontrivial solution we must have 

sin 'Yjl = O. (8.22) 

Equations of this nature are called transcendental frequency equations. We 
will be concerned with equations of this nature-but much more complicat­
ed ones of course-throughout. 

From (8.22) we have 

'Yjl = nn/2, n = 2, 4, 6, 8, ... , (8.23) 

and from (8.23) and (8.16) we obtain 

w = ncn/2/, n = 2, 4, 6, 8, ... (8.24) 

These are the eigenfrequencies of the anti symmetric modes. 
Suppose we consider the same string, but have the slope vanish at 

both ends instead of the displacement. The boundary conditions now 
become 

oq;/ox = 0 at x = ± I. (8.25) 

Then for the symmetric motions we have 

q; = A cos 'YjX cos wt , (8.26) 

and from (8.25) we obtain 

sin 'Yjl = 0, (8.27) 

so that from (8.27) and (8.16) we have 

w = ncn/2/, n = 2, 4, 6, 8, ... ; (8.28) 

and for the anti symmetric motions we have 

q; = B sin 'YjX cos wt , (8.29) 
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and from (8.25) we obtain 

cos 'YJ1 = 0, (8.30) 

so that from (8.30) and (8.16) we have 

w = ncn/21, n = 1, 3, 5, 7, ... (8.31 ) 

From this we see that the boundary conditions have a strong influence on 
the natural frequencies of the system. In fact, in the two systems the natural 
frequencies of the symmetric and antisymmetric modes have been inter­
changed. 

Suppose we consider the same string, but have the slope vanish at 
one end and the displacement at the other. The boundary conditions be­
come 

8cp/8x = 0 

cp=o 

at x = - 1, 

at x = I. 

(8.32) 

(8.33) 

Now, we will not have separate, uncoupled symmetric and anti symmetric 
motions because the system is no longer symmetric. From the differential 
equations we have the independent solutions 

where in both solutions 

cp = A cos 'YJX cos wt , 

cp = B sin 'YJx cos wt , 

'YJ =w/c, 

and A and B are arbitrary. Hence we have the sum solution 

cp = (A cos 'YJx + B sin 'fJx) cos wt, 

(8.34) 

(8.35) 

(8.36) 

since the system is linear. Substituting from (8.36) into the boundary 
conditions (8.32) and (8.33), we obtain 

or 

[- A'YJ sin 'YJ( - I) + B'fJ cos 'fJ( - I)] cos wt = 0, 

[A cos 'YJI + B sin 'YJ1] cos wt = 0, 

A'YJ sin 'YJ1 + B'YJ cos 'YJ1 = 0, 

A cos 'YJ1 + B sin 'fJI = O. 

(8.37) 

(8.38) 

(8.37') 

(8.38') 
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For a nontrivial solution to exist, i.e., for A and B nonzero, the determinant 
of the coefficients of A and B must vanish, and we obtain 

I'YJ sin 'YJI 

cos 'YJ1 

Expanding (8.39), we find 

'YJ cos 'YJ/1 = O. 
sin 'YJ1 

'Yj sin2'Yj1 - 'Yj cos2'Yj1 = O. 

(8.39) 

(8.40) 

This is a more complicated transcendental frequency equation than obtained 
previously. Since 'Yj #- 0, we have 

sin2'Yj1 - cos2'Yj1 = 0 , (8.41) 

or 
cos2'Yj1 = 0, (8.42) 

and 
2'Yj1 = nn/2, n 1,3,5, ... , (8.43) 

and from (8.43) and (8.35) we find 

w = ncn/4/, n = 1, 3, 5, ... (8.44) 

We could go on to consider more complicated homogeneous boundary 
conditions, but no new ideas would be introduced. However, the trans­
cendental frequency equations would become even more complicated. 

3. STEADY-STATE FORCED VIBRATIONS. I 

Let us now consider an inhomogeneous (forced) vibration problem 
with an interior forcing term. The boundary conditions are homogeneous 
-say, zero displacement conditions (8.13)-and the interior forcing term 
in (8.1) is taken to be 

(! = Kcoswt. (8.45) 

The classical procedure consists of first obtaining the solutions to the 
associated homogeneous eigenvibration problem, which we have already 
done, then expanding K in the complete set of eigenfunctions of the homo­
geneous solution, expanding the solution to the forced problem in the 
same set of functions, and evaluating the coefficients of each term of the 
solution. Let us briefly run through this procedure. We will then run through 
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another very useful procedure, which has applications when the classical 
procedure doesn't. Both forms of solution are useful in their own way. 

In the solution let 

q;(X, t) = q;(X) cos OJt. (8.46) 

Then substituting (8.45) and (8.46) into (8.1), we obtain 

d2q; OJ2 

dX2 + (;2q; = K, -/<x<l, (8.47) 

and from (8.13) we have 

q;=0 at x = ± I. (8.48) 

We have already obtained the eigensolutions to the associated homogeneous 
problem. They are 

q;n = An cos 'f}nx , 'f}n = nn/2/, n = 1,3,5, ... , (8.49) 

for the symmetric modes and 

q;n = Bn sin 'f}nX, 'f}n = nn/2/, n = 2, 4, 6, ... , (8.50) 

for the anti symmetric modes. Expanding K in a series of the eigenfunctions, 
we have 

00 00 

K = ~ Cn cos 'f}nx + ~ dn sin 'f}nx , 
n=I,3 n=2,4 

where by virtue of the orthogonality of the eigenfunctions we find 

Cn = (K/ I) II cos 'f}nx dx = (2K/'f},.I) sin 'f}nl, dn = O. 
-I 

Expanding q; in a series of the eigenfunctions, we have 

00 

q; = ~ An cos 'f}nX + ~ Bn sin 'f}nx , 
n=I,3 n=2,4 

and substituting in the differential equation (8.47), we find 

00 

~ 'f}n2An cos 'f}nx - ~ 'f}n2Bn sin 'f}nx 
n=I,3 n=2,4 

OJ2 00 OJ2 00 • 

+ -2 ~ An cos 'f}nX + -2 ~ Bn sm 'f}nX = ~ Cn COS 'f}nX. 
C n=1,3 C n=2,4 n=I,3 

(8.51 ) 

(8.52) 

(8.53) 

(8.54) 
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Now from the eigensolutions we know that 

'YJn2 = W n2JC2 • (8.55) 

Hence, substituting from (8.55) into (8.54), we obtain 

00 

~ [An(w2 - w n2) - c2cn l cos 'YJnX + ~ Bn(w2 - w n2) sin 'YJnX = 0, (8.56) 
n=l,3 n=2,4 

which, by means of the orthogonality [(21), Chapter II of the eigensolutions, 
yields 

Bn =0, An = c2CnJ(W2 - w n2). (8.57) 

Hence, substituting from (8.57) into (8.53), we see that our solution may 
be written 

00 

q; = c2 ~ 
n=l,3 

w2 _ 2 cos'Yl X Wn ·/n' 

Cn (8.58) 

from which it is clear that a symmetric (in this case constant) forcing 
function cannot force the anti symmetric motions, which was clear on 
intuitive grounds. From the form of the solution (8.58), i.e., the fact that 
each term contains a resonance denominator, it is clear that when the 
driving frequency w is very near a particular natural frequency Wi the ith 
term dominates the entire series and the solution may be written 

C2Ci 
q; = 2 2 cos 'YJiX , 

W - Wi 
(8.59) 

and when w = Wi the steady-state solution blows up. 

4. ORTHOGONALITY OF THE EIGENSOlUTIONS 

It is clear from the foregoing that the orthogonality of the eigen­
solutions was crucial to obtaining our result. Although the eigensolutions 
turned out to be trigonometric functions in this simple case, and it is well 
known that the trigonometric functions are orthogonal, the orthogonality 
properties are more far reaching (fundamental), and in fact are a direct 
consequence of our differential eigensystem. Thatis, any solution of the 
homogeneous differential equation and homogeneous boundary conditions 
can be shown to be orthogonal without actually obtaining the solution. 
This is an important fact, since when we have such a general proof of 
orthogonality we don't have to examine the orthogonality of complicated 
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solutions, which is very desireable with complicated functions-especially 
complicated vectorial functions. 

To this end consider two eigensolutions to the homogeneous differential 
equation (8.47) subject to the same homogeneous boundary conditions 

d2 W 2 0 ~+~({im= , 
dx2 c2 

(8.60) 

d 2({in W 2 __ + __ n_ 
dx2 C2 ({in = O. (8.61) 

From (8.60) and (8.61) form the equation 

d 2 d2 2 2 
~_ . ~+Wm -Wn =0 

({in dx2 ({im dx2 .2 ({im({in , (8.62) 

which with an integration from - I to + I can be written 

I I I Wn 2 - Wm 2 II 
[({in({im - ({im({in ]-1 .2 ({im({in dx, 

-I 
(8.63) 

from which it is clear that for any homogeneous boundary condition [Eq. 
(8.3) with J(t) = 0] the left-hand side vanishes. Hence if Wm *- Wn 

II ({im({in dx = O. 
-I 

(8.64) 

We will now obtain the solution to the previous forced vibration prob­
lem in the second manner, which will be a particularly useful procedure 
to us in future problems. 

5. STEADY-STATE FORCED VIBRATIONS. II 

The second manner of obtaining the steady-state solution of (8.47) 
subject to (8.48) consists of writing 

({i=X+tp, (8.65) 

and substituting in (8.47) and (8.48) to obtain 

d2X w2 d2tp w 2 

-d 2 +-2X+-d 2 +-2tp=K, x C x C 
-/<x<l, (8.66) 

X+tp=O at x = ± /. (8.67) 
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We now select X so that 1fJ satisfies a homogeneous equation. Hence 

X = e2K/w2 , 

d21fJ w 2 

dx2 +""""(;21fJ = 0, - I < x < I, 

1fJ = - e2K/w2 at x = ± l. 

Clearly, the differential equation (8.69) is satisfied by 

1fJ = A cos 'YJx + B sin 'YJx , 

where 
'YJ =w/e. 

Substituting in the boundary conditions (8.70), we find 

Adding, we obtain 

A cos 'YJ1 - B sin 'YJI = - e2K/w2 , 

A cos 'YJ1 + B sin 'YJ1 = - e2K/w2 • 

A cos 'YJ1 = - e2K/w2 , 

and subtracting, we obtain 

B sin 'YJ1 = O. 

(8.68) 

(8.69) 

(8.70) 

(8.71 ) 

(8.72) 

(8.73) 

(8.74) 

(8.75) 

Equation (8.74) is inhomogeneous, and shows that symmetric motions are 
forced by a uniform forcing field; whereas (8.75) is homogeneous, and 
shows that anti symmetric motions cannot be forced by a uniform forcing 
field. More precisely, from (8.75) we have 

B=O, (8.76) 

and from (8.74) 
A = - e2K/(w2 cos 'YJ1). (8.77) 

Resonance occurs when the amplitude of the forced oscillation goes to 00, 

i.e., when A = 00. From (8.77) we see that this occurs when 

cos'YJ1=0. (8.78) 

Note that 

_ e2K (1 _ cos 'YJX ) cos wt, 
cp - w 2 cos 'YJ1 'YJ = w/e , (8.79) 
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is the steady-state solution for any driving frequency w off resonance, and 
simply diverges at resonance. 

6. BOUNDARY FORCING 

Now let us consider the problem of a boundary (here an edge) forcing 
term. We have the differential equation (the time factor cos wt has been 
removed) 

d2rp w2 

dx2 + 7rp =0, -l<x<l, 

and the boundary conditions 

rp=o 

rp=H 

at x = - I, 

at x = I (really H cos wt). 

If we wish to use the classical (Fourier) procedure, we write 

rp=X+1p, 

and, substituting from (8.83) into (8.80)-(8.82), obtain 

d2X w2 d21p w2 

-d 2 +-2 X+-d 2 +-2 1p=0, x c x c 

X+1p=o 

X+1p=H 

at x = - I, 

at x = I. 

(8.80) 

(8.81) 

(8.82) 

(8.83) 

(8.84) 

(8.85) 

(8.86) 

We now select X so that the boundary conditions on 'IjJ are homogeneous. 
That is, we wish X to satisfy the conditions 

X=o 

X=H 

at x = - I, 

at x = I. 

This is accomplished by the selection 

X= ~ (1+ ~). 

(8.87) 

(8.88) 

(8.89) 

Substituting from (8.89) into (8.84)-(8.86), we find 

d2'IjJ w 2 . w 2 H ( x ) 
dx2 + 71p = -7'2 1 + T ' - I < x < I, (8.90) 
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1jJ=0 at x = ± 1. (8.91) 

We now proceed as before, i.e., we obtain the solutions to the homogeneous 
eigenvalue problem defined by 

d 21jJ w 2 

dx2 +71jJ =0, -/<x<l, 

1jJ=0 

and then expand the forcing term 

w2H 
2c2 

at x = ± I, 

(1+ ~), 

(8.92) 

(8.93) 

(8.94) 

and the function 1jJ as an infinite sum of all the eigensolutions 1jJn of (8.92)­
(8.93), and then evaluate the amplitudes (coefficients) of each 1jJn by means 
of the orthogonality of the 1jJn' There is no point in repeating this procedure 
here, since it is exactly the same as we followed in Section 3 except for the 
fact that the forcing term is different. From the form of the forcing term 
it is clear that a motion will be neither symmetric nor anti symmetric in 
general; but a resonant mode will be either symmetric or antisymmetric. 

Now the second manner of obtaining a solution of (8.80)-(8.82) is 
perfectly straightforward. Clearly, we may write 

q; = A cos 'Yjx + B sin 'YjX, 'Yj =w/c. (8.95) 

Substituting from (8.95) into the boundary conditions (8.81)-(8.82), we 
find 

A cos 'Yjl - B sin 'Yjl = 0, 

A cos 'Yjl + B sin 'Yjl = H. 
(8.96) 

At this point we could simplify the problem by adding and subtracting 
the two equations in (8.96), but it is more instructive to proceed in the 
following way because it is more typical of what has to be done in more 
complicated problems. We solve the inhomogeneous simultaneous equations 
in (8.96) for A and B to obtain 

A=I~ 
B = I cos 'YJ1 

cos 'YJI 

- s~n 'YJ11 I I cos 'YJ1 
sm 'YJI cos rJI 

o I II cos 'Yjl 
H cos 'Yjl 

-sin 'YJ11 
sin 'YJ1 ' 

-sin 'YJ11 
sin 'YJI • 

(8.97) 
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Expanding (8.97), we obtain 

A = (H sin 'YJ1)j(2 sin 'YJl cos 'YJ/) = Hj(2 cos 'YJ/) , 

B = (H cos 'YJl)j(2 sin 'YJl cos 'YJ1) = Hj(2 sin 'YJ/). 
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(8.98) 

These are two inhomogeneous equations for A and B. These equations 
show that in general a motion will be neither symmetric nor anti symmetric. 
However, since the resonance denominator factored into two parts, a re­
sonant mode will be either symmetric or anti symmetric. This is clear from 
the above equations since there are two separate conditions for resonance, 
i.e., resonance occurs when either A or B go to infinity. In this case they 
go to infinity separately (and not together), and that is why a resonant 
mode is either symmetric or anti symmetric even though the solution is 
asymmetric. Note that 

H (COS 'YJx sin 'YJx ) 
= - --- + --- cos wt, 

Cf! 2 cos 'YJI sin 'YJI 
'YJ =wjc, (8.99) 

is the steady-state solution for any driving frequency w off resonance, and 
simply diverges at a symmetric or anti symmetric resonance. 

7. ORTHOGONALITY OF PIEZOELECTRIC VIBRATIONS 

Consider two eigensolutions of the homogeneous piezoelectric equations 

iij,i = (lUj, (8.100) 

Di,i = 0, (8.101) 

iij = CijkZSkZ - ekijEk , (8.102) 

Di = eikZSkZ + eikEk, (8.103) 

SkZ = HUk,Z + UZ,k) , (8.104) 

Ek = - Cf!,k, (8.105) 

one solution at frequency Wm and the other at wn . The solution at frequency 
Wm satisfies the equations 

iij,i + (lWm 2ur = 0 , 

D'/':i = 0, 

(8.106) 

(8.107) 
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and the solution at Wn the equations 

1'~,i + eWn2ut = 0, 

D~i = O. 

From (8.106) and (8.108) form the equation 

ut1'fj,i - Ur1'~,i + e(wm2 - wn2)urut = O. 

Now, we have 

ut1'fj,i Ur1''/j,i (ut1'fj),i - S&1'0 - (Ur1'~),i + SfjT~ 
(ut1'fj - UrT~),i - SijTfj + Sfj1''/j, 

(8.108) 

(8.109) 

(8.110) 

and from (8.101)-(8.103), and the symmetry of the elastic and dielectric 
coefficients we have 

SY;T'/j - S~1'fj = Sfj(CijklSZI - ekijEkn) - S&(CijkISZl - ekijEkm) 

= ekijS~Ek m - ekijSfj Ek n 

= (Dkn - CklEr)Ekm - (Dkm - CklEr)Ekn = DknEkm - DkmEkn 

= - Dkncp'Je + Dkmcp~k = (Dkmcpn),k - (Dkncpm),k' 

Substituting from (8.111) into (8.110), we obtain 

(ut1'fj - Ur1''/j + Drcpn - D.rcpm),i + e(w2m - w2n)ur ut = O. 

Integrating (8.112) throughout the volume V, we find 

Is (ni1'7]u/ - ni1'[jut + nprcpn - niDincpm) dS 

= e(Wm 2 - wn2) I vutu/ dV. 

(8.111) 

(8.112) 

(8.113) 

From (8.113) it is clear that for any homogeneous boundary conditions the 
left-hand side vanishes. Hence, if Wm * Wn , for homogeneous boundary 
conditions we have 

IvurutdV=O if m*n, (8.114) 

which is the orthogonality condition for piezoelectric vibrations. 



Chapter 9 

THICKNESS VIBRATIONS OF PLATES 

1. FREE ELASTIC THICKNESS VIBRATIONS 

The plate is infinite in extent and bounded by two parallel planes 
located at, say, X 2 = ± h, as shown in Fig. 10. For our purposes, both 
faces of the plate may (or may not) be completely coated with electrodes 
which are infinitesimally thin. Since the electrodes are infinitesimally thin, 
all possible mechanical effects may be ignored. When the electrodes are 
there we shall assume that an alternating potential difference is applied 
to them. 

Let us first consider a few purely elastic eigenvibration problems so 
that later on we can note the influence of the piezoelectric coupling. This 
approach will also be instructive, since the purely elastic problems are less 
cumbersome. The mechanical boundary conditions are 

T2j = 0 at X 2 = ± h. (9.1) 

Referring to Fig. 10, thickness vibrations correspond to solutions which 
depend on the X 2 spatial coordinate only, and are independent of Xl and xa. 

For the thickness eigenvibration problem for anisotropic plate the 
differential equations become 

• 

/lUI ,22 = eill' 

(It + 2/l)U2,22 = eil2' 

/lUa,22 = eila , 

Xl 

2h X, 

Fig. 10. Infinite plate of thickness 2h. 
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(9.2) 
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and the boundary conditions become 

T2I = P,UI,2 = 0 

T22 = (A. + 2P,)U2,2 = 0 

T 2a = P,Ua,2 = 0 

at x 2 = ± h, 

at x 2 = ± h, 

at X2 = ± h, 

(9.3) 

from which it is clear that the three displacements UI , U2 , and Ua uncouple, 
and we have three independent scalar wave equations, which have already 
been solved in Chapter 8. The only additional information which we now 
have is that 

c = (p,/e)I/2 (9.4) 

for shear vibrations and 

c = [(A. + 2p,)/e]1/2 (9.5) 

for extensional vibrations. Exactly the same sort of thing happens for the 
material with hexagonal symmetry, for the symmetry axis either in the 
plane of the plate or perpendicular to the plane of the plate. 

For the material with monoclinic symmetry, with Xl the digonal axis 
in the plane of the plate and X2 perpendicular to the plane of the plate, 
the differential equations and boundary conditions, respectively, become 

C66U1,22 = eill , 

C22U2,22 + C24Ua,22 = e il2 , 

C24U2,22 + C44Ua,22 = eila , 

T21 = C66U1,2 = 0 

T22 = C22U2,2 + C24Ua,2 = 0 

T 2a = C24U2,2 + C44Ua,2 = 0 

at X 2 = ± h, 

at X 2 = ± h, 

at X2 = ± h. 

(9.6) 

(9.7) 

Thus it is clear that the U1 displacement is uncoupled from U2 and Ua , but 
U2 and Ua remain coupled even in a thickness solution. The thickness vibra­
tions depending on the U1 displacement are governed by a scalar wave 
equation as before with 

C = (C66/e )1/2, (9.8) 

and we have already obtained the solution. The thickness vibrations depend­
ing on U2 and Ua are a little more complicated than the previous ones. Let us 
obtain the solutions. Consider as a solution of the differential equations 
(9.6) 
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Ul = 0, 

u2 = (A2 COS 'YJX2 + B2 sin 'YJX2) cos wt , 

Ua = (Aa cos 'YJX2 + Ba sin 'YJX2) cos wt , 

which satisfies (9.6) provided 

A 2( C22'YJ2 - (lW2) + AaC24'YJ2 = 0 , 

A 2c24'YJ2 + Aa(C44'YJ2 - (lW2) = 0, 

B2(C22'YJ2 - (lW2) + BaC24'YJ2 = 0, 

B2c24'YJ 2 + Ba(C44'YJ 2 - (lW2) = 0, 
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(9.9) 

(9.10) 

(9.11) 

which shows that the symmetric and anti symmetric motions are not coupled 
by the differential equations. In other words, we can have a nontrivial 
solution with either A", = 0 or B", = 0 (a = 2,3). Dividing Eqs. (9.10) and 
(9.11) by 'YJ2 and defining It as (lW2/'YJ2, and noting that for a nontrivial sym­
metric solution B", = 0 and the determinant of the coefficients of the A", 
must vanish, i.e., 

I C22 - It 
C24 

we obtain the two values of It 

C24 I C44 - It = 0, 

A,± = HC22 + C44) ± H(C22 - C44)2 + 4C~4]l/2. 
For each value of It we obtain amplitude ratios 

[A2±:Aa±] = [C24 :(It± - C22)] , 

(9.12) 

(9.13) 

(9.14) 

and a dispersion curve as shown in Fig. II. Thus we have two dispersion 
curves in this case. For a nontrivial anti symmetric solution A", = 0, and 
we obtain the same It ± and amplitude ratios for the B", ± as we did for the 
A",± in the other case. We now have the four boundary conditions (two on 
each surface) given in (9.7) remaining to be satisfied. It is instructive­
because it is at times necessary-to proceed in the following general way. 
Take U", as a sum of all four solutions-two symmetric and two anti­
symmetric-of the differential equations. Thus 

U2 = [C+ A2 + cos 'YJ+x2 + C-A2 - cos 'YJ-X2 + D+ B2 + sin 'YJ+x2 

+ D-B2 - sin 'YJ-X2] cos wt , 

Ua = [C+Aa+ cos 'YJ+x2 + C-Aa- cos 'YJ-X2 + D+Ba+ sin 'YJ+x2 

+ D-Ba - sin 'YJ-X2] cos wt . 

(9.15) 
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CII 

x-

"1 
Fig. 11. Frequency vs. wave number diagram for elastic thickness 

vibrations in a rotated Y-cut quartz plate. 

Substituting from (9.15) into the boundary conditions (9.7), we obtain 

1= C+(C22A2+ + c24A3+)17+(sin 17+h) 1= C-(C22A2- + c24A3-)17-(sin 17-h) \ 

+ D+(C22B2+ + c24B3+)17+(cOS 17+h) + D-(C22B2- + c24B3-)17-(COS 17-h) = 0, 

(9.16) 

1= C+(C24A2+ + c44A3+)17+(sin 17+h) 1= C-(C24A2- + c44A3-)17-(sin 17-h) 

+ D+(C24B2+ + c44B3+)17+(cOS 17+h) + D-(C24B2- + c44B3-)17-(COS 17-h) = 0, 

in which the upper sign refers to the boundary conditions at the upper 
surface and the lower sign at the lower surface. Adding, we obtain 

D+(C22B2+ + C24B3+)17+(cOS 17+h) + D-(C22B2- + c24B3-)17-(COS 17-h) = 0, 

(9.17) 

D+(C24B2+ + c44B3+)17+(cOS 17+h) + D-(C24B2- + cMB3-)17-(COS 17-h) = 0, 

and subtracting, we obtain 

C+(C22A2+ + c24A3+)17+(sin 17+h) + C-(C22A2- + c24A3-)17-(sin 17-h) = 0, 

(9.18) 

C+(C24A2+ + cMA3+)17+(sin 17+h) + C-(C24A2- + c44A3-)17-'(sin 17-h) = 0, 

which shows that the symmetric and anti symmetric solutions of the dif­
ferential equations are not coupled by the boundary conditions. For a 
nontrivial anti symmetric solution c+ = c- = 0, and the determinant of 
the coefficients of D+ and D- must vanish, i.e., 
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I (C22B2+ + C24B 3+)1]+ cos 1]+h 

(C24B2+ + C44B3+)1]+ cos 1]+h 
(C22B 2- + C24B 3=)1]= cos 1]=h I = 0, (9.19) 
(C24B 2 - + C44B 3 )1] cos 1] h 

and from (9.19) we obtain the two independent transcendental frequency 
equations 

cos 1]+h = 0, cos 1]-h = O. (9.20) 

Consequently, either D- = 0 or D+ = 0, and the two independent anti­
symmetric solutions of the differential equations are not coupled by the 
boundary conditions in this case. From the transcendental frequency equa­
tions (9.20) we have 

1]±h = nnj2, n = 1, 3, 5, ... , (9.21) 

and the eigenfrequencies are given by 

w± = ().±je)1/2nnj2h, n = 1,3,5, .... (9.22) 

Exactly the same sort of thing happens for the symmetric modes, when 
D+ = D- = 0; and the eigenfrequencies are given by Eq. (9.22), but with 
n = 2,4,6, .... 

Now, let us consider an arbitrarily anisotropic material. For thickness 
vibrations we have the differential equations 

C2jk2Uk,22 = eUj, (9.23) 

and boundary conditions 

T2j = C2jk2Uk,2 = 0 at X 2 = ± h. (9.24) 

Let us see if we can determine purely anti symmetric solutions. Consider 
as a solution of the differential equations 

Uj = Aj sin 1]X2 cos wt, j = 1,2,3. (9.25) 

This is a solution of (9.23) provided 

(C2jk2 - Abjk)Ak = O. (9.26) 

Equation (9.26) is a system of linear, homogeneous, algebraic equations 
in the Ak , and for a nontrivial solution to exist the determinant of the 
coefficients of the Ak must vanish, i.e., 

I C2jk2 - Abjk 1= o. (9.27) 
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This is a cubic equation in ;. and yields 3;'(1X), which, for our purposes, 
are all assumed distinct. Since 

C2jk2 = Ck22j = C2kj2 , (9.28) 

this is an algebraic eigenvalue problem for a symmetric matrix, and this 
problem has already been covered in great detail by us, from which we 
can assert that the 3;'(1X) (here distinct) are all real and that the eigenvectors 
AIX of the three independent solutions are mutually orthogonal, so that the 
displacements nIX are, of course, mutually orthogonal also. From the fore­
going it is clear that there are three dispersion curves which are all straight 
lines, as shown in Fig. 12. In order to satisfy the six boundary conditions 
in (9.24) (three on each surface), we will try a sum of the three independent 
antisymmetric solutions of the differential equations. If we were to require 
six solutions, we would need the three independent symmetric solutions 
as well. Thus we take 

3 

U, = ~ C(IX)A~IX) (sin r/ lX )x2) cos wt 
J J 

1X=1 

(9.29) 

as the solution. Substituting from (9.29) into the boundary conditions (9.24), 
we obtain 

3 
~ C(IX)C A(IX)1'l(IX) cos 1'l(IX)h = 0 
.... 2jk2 k '/ ./ 

1X=1 

(9.30) 

on each surface. Consequently, the antisymmetric solutions are adequate, 
and we do not need the symmetric solutions. The equations are linear, 

(AI 

~'" 

~ .~ 

Fig. 12. Frequency vs. wave number diagram for elastic thickness 
vibrations in an arbitrarily anisotropic plate. 
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homogeneous, algebraic equations in the c(a>, and for a nontrivial solution 
to exist the determinant of the coefficients of the C(a) must vanish, i.e., 

I C2jk2A ka )n(a) cos n(a)h I = 0, (9.31) 

and we obtain the three independent transcendental frequency equations 

cos n(a)h = 0, a = 1,2,3. (9.32) 

Consequently, for each eigensolution two of the three C(IX) = 0, and the 
three independent solutions of the differential equations are not coupled 
by the boundary conditions. Therefore from the previous discussion we 
know what the anti symmetric eigenmodes look like. The eigenfrequencies 
of the anti symmetric modes are 

w(") = (J..(a.)/e)1(2nn/2h; a = 1,2,3; n = 1, 3, 5,.... (9.33) 

This result is due to Koga (22). From the foregoing the symmetric eigen­
solutions are obvious. The implications for propagating elastic waves in 
anisotropic crystals are obvious. 

2. FORCED PIEZOELECTRIC THICKNESS VIBRATIONS 

Let us now consider a forced piezoelectric thickness vibration problem. 
We will consider a material with monoclinic symmetry (rotated Y-cut 
quartz), since the material with hexagonal symmetry is somewhat simpler. 
The differential equations are 

C66UI ,22 + e26f{J,22 = eUI , 

C22U2,22 + C24U3,22 = e U2 , 

C24U2,22 + C44U3,22 = e U3 , 

e26uI ,22 - c22f{J,22 = 0; 

and the boundary conditions are 

T2I = C66UI,2 + e26f{J,2 = 0, 

T22 = C22U 2,2 + C24U3,2 = 0, 

T 23 = C24U2,2 + C44U3 ,2 = 0, 

f{J = ± f{Jo cos wt, 

at X 2 = ± h, 

at X2 = ± h, 

at X 2 = ± h, 

at X 2 = ± h. 

(9.34) 

(9.35) 

From the differential equations (9.34) and the boundary conditions (9.35) 
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it is obvious that only the U1 displacement is coupled to the electric po­
tential. Hence we take 

U2 = U3 = 0, 

U1(X2, t) = U1(X2) cos wt, 

<P(X2' t) = <p(x2) cos wt, 

(9.36) 

and substitute in the differential equations (9.34), which are then mani­
pulated to obtain 

[C66 + (e~6/822)]Ul,22 + ew2Ul = 0, 

<P = (e26/822)Ul + L 1x2 + L2· 

(9.37) 

(9.38) 

Substituting from (9.36) and (9.38) into the nontrivial boundary conditions 
in (9.35), we obtain 

[e66 + (e~6/ 8 22) ]U1 ,2 + e26L 1 = 0 

(e26/822)Ul ± Llh + L2 = ± <Po, 

Consider the anti symmetric function 

U1 = A sin 'f}X2 

at X 2 = ± h, 

at X 2 = ± h. 
(9.39) 

(9.40) 

as a solution of the differential equation (9.37). This satisfies (9.37) provided 

C66'f}2 = ew2 , (9.41) 

where 

C66 = C66 + (e~6/822) (9.42) 

is the piezoelectrically stiffened elastic constant. If we were to consider 
the symmetric solution, we would find that it could not be forced. Sub­
stituting from (9.40) into the four remaining boundary conditions (9.39), 
we obtain 

C66'f}A cos 'f}h + e26L 1 = 0 at X2 = ± h, 

± (e26/822)A sin 'f}h ± Llh + L2 = ± <Po at X2 = ± h. 

Hence solving (9.44) for Ll and L2, we find 

L2 =0, 

Ll = (<Po/h) - (e26A/822h) sin 'f}h, 

(9.43) 

(9.44) 

(9.45) 
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and substituting from (9,45) into (9,43), we obtain 

A (C66'YJ cos 'YJh _ e~6 sin 'YJh ) _ _ ((Jo 
e22 h - e26T' (9,46) 

Equation (9,46) is an inhomogeneous linear algebraic equation in A. Con­
sequently, the anti symmetric modes are forced by the application of an 
alternating voltage to the surface electrodes. Resonance occurs when the 
coefficient of A in (9,46) vanishes, i.e., when 

tan 'YJh = (e22C66M6) 'YJh = 'YJh/k~6' (9,47) 

Thus for this piezoelectric plate the wavelengths of overtone resonances 
are not integral fractions of the fundamental; as a consequence the resonant 
frequencies of overtone modes are not integral multiples of the fundamental. 
The deviation from the integral multiple relationship depends on the elec­
tromechanical coupling factor k26 only. Consequently, the coupling factor 
can be determined from simple resonance measurements (fundamental plus 
at least one overtone) only, and anti resonance measurements are not re­
quired. Tables for doing this exist in the literature (23). 

Now let us consider an arbitrarily anisotropic piezoelectric plate (24). 
Let the index v, instead of the index 2, denote the direction normal to the 
surface of the plate. We will adopt the convention that there will be no 
sum over repeated Greek indices, although we will continue to sum over 
repeated Latin indices. The differential equations are 

CvjkvUk,vv + evvj((J,vv = eUj, 

evkvuk".v - evv((J,vv = 0, 

and the boundary conditions are 

Let 

T,.j = C,.jkvUk,v + ev,oj((J,v = 0 

((J = ± ((Jo cos wt 

at Xv = ± h, 

at Xv = ± h. 

Uj(Xv , t) = Uj(xv) cos wt , 

((J(xv, t) = ((J(xv) cos wt , 

(9,48) 

(9,49) 

(9.50) 

and substitute in the differential equations (9,48), which are then manipulat­
ed to obtain 

C,.jkvUk,vv + eW2Uj = 0, (9.51) 
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gJ = (evvk/Cvv)Uk + L 1x v + L 2 , (9.52) 

where 
Cvjkv Cvjkv + (evvjevvk/evv) , (9.53) 

and Ll and L2 are integration constants. Substituting from (9.50) into the 
boundary conditions (9.49), we obtain 

C"jk vUk , v + e vvjL 1 = 0 at Xv = ± h, (9.54) 

evvk Uk(± h) ± Llh + L2 = ± gJo 
C vv 

at Xv = ± h. (9.55) 

Consider the anti symmetric functions 

Uj = Aj sin 'YJXv (9.56) 

as a solution of the three coupled ordinary differential equations (9.51). 
This satisfies (9.51) provided 

(Cvjkv - Cc5jk)Ak = 0, (9.57) 

where 
C = ew2/'YJ2. (9.58) 

For a nontrivial solution to (9.57) the determinant of the coefficients of 
the Ak must vanish: 

I Cvjkv - Cc5jk I = o. (9.59) 

Equation (9.59) is a cubic equation in C and yields three real positive roots, 
C(1), C(2), C(3). Hence for a given w there are three real 'YJ(n), one for each 
C(n). Each c(n) then yields an independent solution, and amplitude ratios 
are found from the linear algebraic equations (9.57). The amplitude ratios 
will be denoted by 

(A (n) 'A(n) 'A(n») = (p(n) 'p(n) 'p(n») 
1'2'3 1'2'3' 

Thus we have three anti symmetric solutions given by 

UJn ) = PJn ) sin 'YJ(n)xv , n = 1, 2, 3; (9.60) 

and from (9.52) for each solution there exists an electric potential gJ(n) 

given by 

m(n) = e,'vk p(n) (sin ",(n)x ) + L(n)x + Dn). 
r e k ./ v 1 v 2 

vv 
(9.61) 
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Similarly, there are three symmetric solutions given by 

u(ml = p(,ml cos 1'l(mIX J } ./ v, m = 1,2,3, (9.62) 

where the 'Y}(ml and p;ml are exactly the same as in the antisymmetric so­
lutions. One solution of the differential equations is insufficient to satisfy 
the eight boundary conditions. All six solutions seem to be required. Six 
solutions will certainly be enough, since the two integration constants L1 
and L2 already appear in the boundary conditions, and we require at most 
eight linear algebraic equations in eight unknowns which will consist of 
L 1 , L 2 , and the amplitudes of the six solutions. Hence we take 

3 3 
U, = ~ p(nIR,(nl sin 1'l(n1x + ~ Q(mIR,(ml cos 1'l(mlx } p} '/ v f} '/ v 

n=1 m=l 
(9.63) 

as the solution of the problem. Clearly, from (9.61) we have 

a 3 

qJ = ~ p(nl evvk p~nl (sin 'Y}(n1x) + ~ Q(ml evvk p~ml (cos 'Y}(mlx ) 
n=I ClIP m=I c vv 

+ L1x v + L 2 • (9.64) 

From the two boundary conditions on the electric potential (9.55) we 
obtain 

L1 = .J!.!!.... - J.- ± p(nl evvk p~nl sin 'Y}(n1h, 

h h n=l e"v 

a 
L2 = - ~ Q(ml evvk P1ml cos 'Y}(m1h, 

m=l CVl1 

(9.65) 

Substituting from (9.63)-(9.65) into the remaining six boundary conditions 
(9.54), we obtain 

a 3 
~ p(nlC , p(nl1'l(nl COS 1'l(n1h =f ~ Q(mIC, p(ml1'l(ml sin 1'l(m1h 

vJkv k '/ '/ v}kv k '/ '/ 
n=l m=l 

- J. i p(nl evvjevvk P(nl(sin 'Y}(n1h) + e ,.J!.!!.... = 0 
h 1/-=1 evv k VV} h 

at Xv = ± h. 

Adding the equations at Xv = ± h and multiplying by h, we obtain 

± p(1/lp(nl [c, 1'l(n1h (cos 1'l(1/ lh) -
k v}b'/ '/ 

n=l ' 

evvjevvk 

evv 
sin 'Y}(nlh ] = - evvjqJo' 

(9.66) 

(9.67) 
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while subtracting the equations at Xv = ± h, we obtain 

3 
c. ~ Q(m)R(m)'Y)(m) sin 'Y)(m)h = 0 vJkv f'k·/ ./ , 

m=l 
(9.68) 

which shows that the symmetric and antisymmetric solutions of the equa­
tions are not coupled by the boundary conditions, and, moreover, that the 
symmetric solutions are not driven by the application of an alternating 
voltage to the surface electrodes. For the antisymmetric modes which are 
driven by an alternating voltage resonance occurs when the determinant 
of the coefficients of the p(n) vanishes, i.e., when 

I P<:) [cVjkv'Y}(n)h (cos 'Y}(n)h) - eVV~~:Vk (sin 'Y}(n)h)] I = o. (9.69) 

This is the transcendental frequency equation, from which the resonant 
frequencies may be determined. It cannot be factored, and shows that the 
three fundamental anti symmetric solutions of the differential equations are 
coupled by the boundary conditions. It is a very complicated transcendental 
equation indeed. Each term in the 3 X 3 determinant consists of a sum of 
three terms with a cosine function and three terms with a sine function. 
It is fortunate that in practical cases there are usually enough zeros so that 
the determinant simplifies considerably, as it does for rotated Y-cut quartz 
plates, polarized ceramic plates with surfaces parallel to principal axes, 
and many other instances. However, it does not simplify very much for 
certain principal cuts of a material in trigonal class C3V (lithium niobate) 
or C3 or monoclinic class m. One may calculate resonances from the 
complicated determinant by first noting that 

'Y}(n)h = [e/c(n)]1!2wh, (9.70) 

substituting the constants C"jkv in the determinant (9.59), and then calculat­
ing the three c(n) from the cubic, and the p~n) from the linear algebraic 
equations (9.57) that led to the cubic. Then everything is known in the 
complicated determinant (9.69) except wh, which are then determined as 
the roots of the determinant. Note that when the piezoelectric constants 
vanish the determinant factors and reduces to 

cos 'Y}(n)h = 0, n = 1,2,3, (9.71) 

which is the same as (9.32) in the purely elastic case. It should, of course, 
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be clear that every thickness vibration problem of a piezoelectric (or elastic) 
plate is a special case of the foregoing. 

Equation (9.69) can be written in a more compact form, which turns 
out to be more illuminating for certain purposes. To obtain this form 
construct the matrix 

Fmn = (3(.m) G\n) 
J J' (9.72) 

where 

G (n) _ (3(n) [ - (n) ( (n)h) _ evvjevvk (. (n)h)] 
j - k Cvjkv'Yj cos'Yj --- sm'Yj , 

Svv 
(9.73) 

and the (3jn) are assumed to be normalized. Now since the determinant of a 
matrix product is equal to the product of the separate determinants and 
det (3jn) is nonzero (it equals one), we have 

I Fmn I = I (3jm)Gjn) I = I (3jm) II Gt) I = 0, (9.74) 

which, with (9.57) and (3?){3jm) = bmn , enables us to write 

I ~n'Yj~~ I 'Yj(0'Yj(2)'Yj(3)h3 cos 'Yj(1)h cos 'Yj(2)h cos 'Yj(3)h bmn - k(m)k(n) = 0, 
'Yj(n)h cos 'Yj(n)h 

(9.75) 
where 

( k(n»2 = (f3(n)e .)2/C(n)s 
J VV) vv· (9.76) 

Expansion of the determinant in (9.75) yields 

[ 
3 tan 'Yj(n)h ] 

'Yj(1)'Yj(2)'Yj(3) cos 'Yj(Oh cos 'Yj(2)h cos 'Yj(3)h ~ (k(n»2 - 1 = 0. (9.77) 
n~l 'Yj(n)h 

Equation (9.77) was first obtained by G. A. Coquin of Bell Telephone 
Laboratories, who communicated the result to the author. 



Chapter 10 

TWO-DIMENSIONAL STANDING WAVES 
IN ELASTIC PLATES 

1. SOLUTION FOR POLARIZED CERAMIC 

Since the solutions of problems in the theory of the vibrations of 
bounded plates may be composed of sums of solutions of the appropriate 
problems of two-dimensional standing waves in unbounded plates, the 
solution of the problem of two-dimensional standing waves in an infinte 
plate will be discussed in considerable detail. In fact, one cannot even 
attempt to obtain a solution to a vibration problem of a bounded plate 
by the methods we will adopt until one is thoroughly familiar with the 
details of the solution to the corresponding problem of the unbounded 
plate. The exact reasons for this will become increasingly clear as we proceed. 
Since waves in purely elastic plates are simpler than waves in piezoelectric 
plates-and more is known about the details of the solution-and we 
wish to see the influence of the piezoelectric coupling on the solution, 
we will consider two-dimensional standing waves in purely elastic plates 
before proceeding to a consideration of the equivalent problem for piezo­
electric plates. To this end, we will consider the polarized ceramic material 
-excluding piezoelectric coupling-first, since it is simpler than rotated 
Y-cut quartz (25). Let the surfaces of the unbounded plate be normal to 
the polarization axis, which is in the Xs direction, and let us consider stand­
ing waves which depend on Xl and Xs only. Note that the solution will be 
similar to that for plate-waves propagating in the Xl direction. Consider 
as a solution of the differential equations (7.29), with the eijk = 0, 

UI = Al cos 'Y}xa cos ~XI cos rot , 
U2 =0, 
Us = As sin 'Y}xs cos ~XI cos rot , 

which satisfies (7.29) with the eijk = 0, provided 

(Cll~2 + C44'Y}2 - (lro2)AI + (CIS + C(4)~'Y}Aa = 0, 

(c44 + c13)~'Y}AI + (C44~2 + caa'Y}2 - (lro2)Aa = O. 

95 

(10.1) 

(10.2) 
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This system of linear homogeneous equations in Al and Aa yields nontrivial 
solutions when the determinant of the coefficients of Al and Aa vanishes, 
i.e., when 

I (Cll~2 + C44'YJ2 - {lC(2) 

(CIa + C44 ) ~'YJ 
(C13 + C44H'YJ 1=0 
(C44~2 + Caa'YJ2 - {lC(2) . 

(10.3) 

This equation is quadratic in co2, ~2, and 'YJ2. Therefore for a given co and ~ 
there are two 'YJ2, [('YJ{1})2, ('YJ(2l)2]. The frequency co must be real, but ~ can 
be real, imaginary, or even complex. For real or imaginary ~ an 'YJ2 may 
be either real-positive, real-negative, or they may occur in complex conjugate 
pairs. If an 'YJ2 is real-positive, the corresponding 'YJ is real. Although both 
+ 'YJ and - 'YJ result, only the + 'YJ need be considered, since the - 'YJ gives 
the same solution as the + 'YJ because of the form of the solution (10.1). 
If an 'YJ2 is real-negative, the corresponding 'YJ is imaginary. Again, and for 
the same reason, only the + imaginary 'YJ need be considered. If the two 'YJ2 

occur in complex conjugate pairs, the resulting four 'YJ consist of two com­
plex conjugates and the negatives of them. Again, because of the form of 
the solution (10.1) the negative pair give the same solution as the positive 
pair, and hence do not have to be considered. Each solution yields amplitude 
ratios when substituted in the linear equations (10.2) in Al and Aa. The 
amplitude ratios are given by 

Ainl = - (C13 + C44)~'YJ(nl' 
A~nl = Cll~2 + C44'YJrnl - {lC02 • 

The boundary conditions at each surface of the plate are 

TSI = Ta2 = Taa = 0 at Xa = ± h. 

(10.4) 

(10.5) 

Since U2 = 0 and UI and Us are independent of X2' by virtue of (7.28) with 
the eijk = 0, Ta2 - O. Thus we have two remaining boundary conditions 
to satisfy at each surface of the plate. One solution of the differential equa­
tions is insufficient to satisfy the boundary conditions; both solutions are 
required. Hence we take 

2 

UI = sin ~Xl cos cot ~ c(nlAinl cos 'YJ(nlXa 
n=l 

2 

Ua = cos ~XI cos cot ~ c(nlA~nl sin 'YJ(nlXa 
n=l 

(10.6) 

as the solution of the problem. Substituting from (10.6) into the boundary 
conditions (10.5), with the aid of (7.28) with ejik = 0 we obtain 
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2 

~ e(n)c44(A~n)~ + An)1](n» sin 1](n)h = 0 
n=l 

(10.7) 
2 

~ e(n)(claA(n)~ + c2aA~n)1](n» cos 1](n)h = O. 
n=l 

Equations (10.7) constitute a system of linear homogeneous algebraic 
equations in the e(n). This system yields nontrivial solutions when the de­
terminant of the coefficients of e(1) and e(2) vanishes, i.e., when 

I C44(A~1)~ + Ail) 1](1) sin 1](1)h 

(claAil)~ + caaA~l)1](1) cos 1](1)h 

c4!(Aa \> + 1 1](2) sm 1](2) = O. (2) I: A(2) ). h I 
(C13A~2)~ + ca3A~2)1](2» cos 1](2)h (l0.8) 

Equation (10.8) is a transcendental equation, the roots of which determine 
the w vs. ~ relation for this plate. For a fixed w and ~-and hence 1](1), 
1](2), A~I), AP), A~2), and A~2)-this equation contains an infinite number 
of roots hrn' each of which determines a point on the wh vs. ~h relation, 
and yields amplitude relations (e(l) :e(2» when substituted in the linear 
algebraic equations (10.7) in e(1) and e(2). 

The foregoing has implicitly assumed both 1] real. However, when an 
1] is imaginary, it may be carried through the entire calculation as an ima­
ginary quantity. In fact, some of the modern computing machines do 
complex arithmetic directly and even enable the direct treatment of some 
functions of a complex variable. Also, when 1](1) and 1](2) are complex con­
jugate they may be carried through the calculation as complex quantities 
in the same way. Of course, when you obtain the final solution, it will be 
real-either because each term is real or because the complex terms occur 
in conjugate pairs. Until now we have considered ~ either pure real or pure 
imaginary. However, when ~ is complex it may be carried through the entire 
calculation as a complex quantity. Of course, when ~ is complex 1](1) and 
1](2) are complex, and they are not complex conjugates. Consequently, all 
successive quantities occurring in the solution are complex, and are not 
complex conjugate. Therefore when ~ is complex the frequency determinat 
is complex and both real and imaginary parts must vanish simultaneously. 
However, when ~ is pure real or pure imaginary the frequency determinant 
is either pure real or pure imaginary, so that only one quantity has to vanish. 
If ~ (complex) is a point on the w vs. ~ curve, then - ~ and! (complex 
conjugate) are also points on the w vs. ~ curve because of the form of the 
solution. When a final complex solution is obtained it will be complex. 
However, combinations of complex conjugate (~ and !) solutions will 
be real. 
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For purposes of calculation, it is convenient to write the pertinent 
equations involved in the calculation in dimensionless form. To this end, 
we define 

y = 2$h/n, a = 2rJh/n, Cpq = Cpq /C44 ' Q = w/w, (10.9) 

where 
w = (n/2h)(C44/e)1!2 (10.10) 

is the lowest thickness shear frequency, and substitute in Eqs. (10.3), (lOA), 
and (10.8) to obtain 

I (ClIy2 + a 2 - Q2) 

(cta + 1) ya 
(Cta + 1)ya I 
(y2 + caaa2 _ Q2) = 0 , (10.11) 

Ain) = - (cta + l)ya(n) ' 

A~n) = cn y2 + a~n) - Q2 , 
(10.12) 

I (A~l)y + A~t) a(1)) sin ha(1) 
-(1) -(1) 

(ctaAt y + caaAa am) cos lnaU) 

-(2) -(2) . 1 
(Aa Y + At a(2») sm "2"na(2) I 

-(2) -(2) = O. 
(C13A l Y + caaAa a(2)) cos l na(2) 

(10.13) 

The relation between Q and y is wanted from Eqs. (10.11)-(10.13). A 
straightforward procedure for calculating this relation begins by selecting 
a value of y. The further choice of Q permits a(1) and a(2) to be determined 
from the biquadratic equation in a, (10.11). After this Ail), A~l), Ai2), 

and A~2) may be evaluated from (10.12). If the values thus determined 
satisfy the transcendental frequency equation (10.13), the selected values 
of y and Q consitute a point on the Q vs. y (dispersion) curve. If the tran­
scendental frequency equation (10.13) is not satisfied, repeat the calculation 
for different values of Q (and/or y) until the frequency equation is satisfied 
and a root has been obtained. When a sufficient number of values of y 
and Q satisfying the frequency equation have been obtained the dispersion 
curves may be plotted. 

2. DISPERSION RELATIONS FOR ELASTIC WAVES 
WITH REAL PROPAGATION WAVE-NUMBERS 

One could now proceed randomly and do a tremendous amount of 
calculation and determine the curves. One could also proceed by determin­
ing certain critical points analytically and obtain the curves with much 
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less calculation by starting at these points. We will, of course, discuss the 
latter procedure. Furthermore, these equations must be studied exhaustively 
in the Q vs. y region of interest because it is essential that all branches of 
the dispersion curves in the region of interest be determined before proceed­
ing with vibration problems of the bounded plate by means of the procedures 
discussed in this monograph. 

Before proceeding with a discussion of the tracing of the dispersion 
curves we should note that the solution and dispersion curves we have been 
discussing completely determine the longitudinal modes for this elastic plate. 
Another independent solution can be obtained by interchanging cos 'fjXa and 
sin 'fjXa in the solution functions (10.1) and (10.6) and carrying through 
the solution in the same manner. This latter solution yields dispersion 
curves which are independent of the others and determine the flexural 
modes for the plate. 

In determining critical (or starting) points on the dispersion curves, 
we examine the solution. when y = 0 and Q *" O. The solution degenerates 
and the frequency determinant (10.13) takes the form 

-(1) • 1 I At a(1) Sl~ ~na(1) o I - -(2) = 0, 
caaAa a(2) cos tna(2) 

(10.14) 

which yields the two transcendental equations 

sin tna(l) = 0, cos tna(2) = 0 , (10.15) 

the first of which, as we know, corresponds to the symmetric thickness 
shear modes, and the second to the anti symmetric thickness stretch modes. 
Thus we have 

a(1) = n, n = 2,4,6, ... , 
(10.16) 

a(2) =m, m 1,3,5, ... , 

and from (10.11), we have 

a(t) = Q, a(2) =Q/CJ~2. (10.17) 

Hence at ~ = 0 we have the points 

Q=n, n = 2, 4, 6, ... , 

m = 1, 3, 5, ... . 
(10.18) 

Q = ca~2m, 
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Fig. 13. Location of thickness frequencies on dispersion spectrum for 
polarized ceramic plates. 

If CJ,2 = 1.5, then the points of the upper set and the points of the lower 
set in (10.18) take the respective positions shown on the dispersion spec­
trum in Fig. 13. If we had obtained the antisymmetric solution, we would 
have found the points m even and n odd. These results for the antisym­
metric modes are also shown in Fig. 13. We have to determine the dispersion 
spectrum in some region of this space shown in Fig. 13. 

If the material were isotropic, the basic characteristics of the dispersion 
spectrum would be essentially the same as in this anisotropic case, and 
would differ only in detail. Furthermore, when the elastic constants satisfy 
the isotropic relations, the algebra and, consequently, some of the associated 
discussion simplifies considerably. Moreover, for a first discussion the iso­
tropic case is complicated enough, and a knowledge of the isotropic case 
turns out to be a useful-if not an essential-prerequisite for a discussion 
of the algebraically more complicated anisotropic case. Hence we will now 
introduce the assumption of elastic isotropy into our problem. When a 
material is elastically isotropic we have 

Cn = C33 = A + 2ft, CI3 = A, C44 = HCn - CI3 ) =ft. (10.19) 
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Expansion of the algebraic determinant (10.11) yields 

a4 + [(ell - ~r3 - 2~13) y2 - (-J- + I)Q2 ]a2 

C33 C33 C33 

+ ~1l y1 _ (~11 + -J-) y2Q2 + ~4 = O. 
C33 C33 C33 C33 

(10.20) 

Introducing the isotropy relations, (10.20) may be written 

a4 + [2y2 _ (1 + V2: )Q2] a2 + y4 _ (1 + V2:) y2Q2 + V2: Q4 = 0, 
VI VI VI (10.21) 

where 
V22 = flle, V12 = (A. + 2fl)le. 

The roots of the biquadratic in a in (10.21) are given by 

2 _ 1 ( 1 V22 ) Q2 _ 2 1 Q2 (1 _ V22 ) 
a± - '2 + V12 Y ± '2 V12 ' 

from which we obtain 

a+2 ~ a22 =Q2 _ y2, 

a_2 - a12 = (V22IVI2)Q2 - y2, 

(10.22) 

(10.23) 

(10.24) 

which shows the major simplification which results from the assumed 
isotropy-the biquadratic equation in a in (10.21) factors into the two 
parts (10.23) and (10.24). This algebraic simplification does not occur in 
the anisotropic case. 

Substituting from (10.23) and (10.24) into (10.12) for the amplitude 
ratios, we obtain for the coefficients of the trigonometric functions in the 
transcendental determinant 

-(1) -(1) 2 2 (1 V12 ) A3 Y + Al a(1) = yaw - V22 ' 

-(2) -(2) 2 _ 2 __ 1_ ( V 2) 
Aa Y + Al a(2) = y(a(2) y) 1 V22' 

- -(1) - -(1) 2 _ 2 __ 1_ ( V 2) c1aA1 Y + c33Aa a(1) = fla (1)(a(2) y) 1 V22' 

- -(2) - -(2) 2 __ 1_ ( V 2) 
c1aA1 Y + c33A3 a(2) = - 2flY a(2) 1 V22' (10.25) 

Substituting from (10.25) into the transcendental determinant (10.13), we 
obtain 
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( 
V12 )2 12am sin tna(1) 

flY 1 - V22 a(1) (ar2) - y2) cos tna(l) 
(ar2) - y2) sin tna(2) I = 0. 

- 2y2a(2) cos tna(2) (10.26) 

Expanding (10.26), we find 

n (y2 - ar2»)2 n 
tan ---=-<X2 (1) = - 4 2 tan ~2 (2), 

y ama (2) 

(10.27) 

which is the Rayleigh (26) frequency equation governing the symmetric 
motions of an isotropic elastic plate. If in the basic solution of the problem 
we interchange cos 1]Xa and sin 1]xa, we obtain . 

n 4y 2ama(2) n 
tan ---=-<X2 (1) = - ( 2 _ 2)2 tan ---=-<X2 (2), 

Y a(2) 
(10.28) 

which is the Rayleigh (26) frequency equation governing the anti symmetric 
motions of an isotropic elastic plate. The frequency-propagation wave 
number-thickness wave number relations, (10.23)-(10.24), are the same 
as for the symmetric motions. 

In attempting to sketch the dispersion spectrum we first focus our 
attention on y real, and note that the D-Re y plane breaks up into three 
distinct regions (5,27) depending on the character of am and a(2). When 

Diy> VdV2 

VdV2 > Diy >1 

1 > Diy 

am and a(2) are real, 

a(2) real, am imaginary, 

a(l) and a(2) are imaginary. 

(10.29) 

The character of the solutions and the mode shapes are, of course, quite 
different in the three regions. Schematically, we have the regions shown 
in Fig. 14. Besides the thickness solutions which we have already discussed, 
there are other simple solutions at which the frequency equation degener­
ates, and which are helpful in the approximate sketching of the spectrum. 
One such set of simple solutions are the Lame solutions, which are given by 

a~2) = y2, cos tna(2) = 0, a(2) = 1, 3, 5, ... , (10.30) 

for the symmetric motions and 

a~2) = y2, sin tna(2) = 0, a(2) = 2,4,6, ... , (10.31) 

for the anti symmetric motions. Clearly, these solutions intersect the line 

D = y V2. Schematically, we have the Lame frequencies shown in Fig. 15. 
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Fig. 14. Regions of real and imaginary thickness wave numbers in 
the Q vs. Re y plane for an infinite isotropic plate. 
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Another set of simple degenerate solutions are those along the line 
D = VIy I V2 when a l = O. We will not bother to discuss this set. 

In the lowest range of Diy, am and a(2) are pure imaginary. An imagin­
ary am or am will be denoted by 

am = iiim , a(2) = iam' 

Q !1' ~ 
QI+ 

_K ____________________________ ~~ ReY 

Fig. 15. Location of the Lame modes on the dispersion spec­
trum of an infinite isotropic plate. 

(10.32) 
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It should be noted at this point that although the a(n) are either pure real 
or pure imaginary for real y inc the isotropic case, in the anisotropic case 
there are frequently ranges in which they are complex. This is one of the 
algebraic complications which are avoided in the isotropic case. In the 
lowest range of Q/y the equation for the symmetric modes (10.27) becomes 

tanh (nii(2)/2) 
tanh (na(1)/2) 

4y2ii(1)ii(2) 
(y2 + a~2»)2 

and (10.28) for the anti symmetric modes becomes 

tanh (nii(2)/2) 
tanh (na(l)/2) 

(y2 + iir2»)2 
4y2a(l)a(2) . 

(10.33) 

(10.34) 

For y very large (wavelengths very short compared to h), we obtain from 
both (10.33) and (10.34) for both the symmetric and anti symmetric motions 

(y2 + iir2»)2 = 4y2ii(l)ii(2)' (10.35) 

Substituting from (10.23) and (10.24) into (10.35), we obtain 

Q2 [Q6 Q4 ( V22 ) Q2 ( V22 )] - --8-+83-2- --161-- =0, y2 y6 y4 V12 y2 V12 (10.36) 

which is the equation governing the velocity (Q /y) of Rayleigh (28) surface 
waves in an isotropic solid. This equation, which is valid only in the region 
Q/y < 1, has only one root in this range. For V1/V2 = 1.5 that root is 
given by 

Q /y = 0.8935 , (10.37) 

which corresponds to a straight line slightly below the Q = y line on the 
dispersion spectrum. Clearly, this line will be an asymptote for at least one 
curve for the symmetric motions and -one curve for the antisymmetric 
motions. 

Still in the lowest Q/y range, we have for y very small (wavelengths 
very long compared to h) Q --+ 0, ii(2) --+ 0, and ii(1) --+ O. In this limit the 
equation for the symmetric modes (10.33) becomes 

(y2 + iir2»)2 = 4y2iirl) , 

from which, with the aid of (10.23) and (10.24), we obtain 

Q = 2y[1 - (V22/V12)]1!2 , 

(10.38) 

(10.39) 
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which does not lie in the range D/y < 1 since V22/V12 < t, and hence is 
invalid. In the same limit (y very small) for the antisymmetric modes we 
must use the first two terms in the expansion for the tanh x, i.e., tanh x 
= x - ix3• Using this_expression, the transcendental equation (10.34) for 
the antisymmetric modes becomes 

4 2-2 1 2...2-4 ( 2 + -2 )2(1 l 2-2 ) Y a(2) - an r a(2) = Y a(2 ) -12n a(1) , (10.40) 

from which, remembering that D -- 0 and y -- 0 and using (10.23) and 
(10.24), we obtain 

D = ny2 [ ~ (I - ~::) r2 
, (10.41) 

which is an unfamiliar form of the dispersion equation in the classical 
theory of the flexure of thin plates. 

In the intermediate range of D/y the transcendental equation (10.27) 
for the symmetric modes takes the form 

tan (na(2)/2) 
tanh (na(l)/2) 

4ysaCl)aC2) 

(y2 - a~2»)2 ' 

and (10.28) for the anti symmetric modes 

tan (na c2)/2) 
tanh(nam/2 ) 

(y2 - a~2»)2 

4y2ama(2) . 

(10.42) 

(10.43) 

For y very small Q -- 0, am -- 0, and a(2) -- O. In this limit Eq. (10.42) 
for the symmetric modes becomes 

(y2 _ a2 )2 - 4y2a-2 
(2) - (1), (10.44) 

from which we obtain 

D = 2y[I - (V22/VI2)]1/2, (10.45) 

which is a straight line intersecting the origin, and does lie in the inter­
mediate range 1 < D/y < VI/V2 since 0 < (V22/VI2) < 1. Equation (10.45) 
is an unfamiliar form of the dispersion equation in the classical theory of 
the extension of thin plates. In the same limit the transcendental equation 
(10.43) for the antisymmetric modes takes the form 

- 4y2a~2)( 1 + 1~ n2a~2») = (y2 - a~2») (1 - ~; a~ll) , (10.46) 
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which yields the same dispersion relation, (10.41), as for the classical theory 
of flexure, which lies below the intermediate range, and hence is invalid. 

The lowest antisymmetric curve is confined to the lowest Q jy region 
and is asymptotic to the Rayleigh surface-wave line from below. The lowest 
symmetric curve crosses the line Q = y separating the lowest from the 
intermediate region. The crossover point is found by taking the limit of 
the transcendental equation (10.42) for the symmetric modes as a(2) ---+ 0, 
to obtain 

4a(l) tanh tna(l) = tny2, 

from which with the aid of (10.24) we find 

( V2) n n 
4 1 - V:2 tanh ~(l) = ~(l). (10.47) 

Then the location of the crossover point on the dispersion spectrum is given 
by 

Q = y = a(l)[1 - (V22jV12)]-1I2 , (10.48) 

where a(l) is the root of the previous ~ranscendental equation. For V1jV2 
= 1.5, a(l) = 2.22 and y = 2.97. This lowest curve is then asymptotic to 
the Rayleigh surface-wave line from above. 

Thus so far in addition to the thickness frequencies and the Lame 
modes we also have, in the two lowest Q /y ranges, the curves shown in 
Fig. 16. In Fig. 16 the upper heavy line is the lowest longitudinal mode 

.0. 

,/ 

" ... .... 

,/ 

/ 
,/ 

;;­
'/ 

,/ 

Re), 

Fig. 16. Dispersion curves for the lowest extensional and flexural 
modes in an infinite isotropic plate. 
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and the lower dotted line is the lowest flexural mode. As already mention­
ed, the behavior of these curves as Q -+ 0 and y -+ 0 coincides with that 
predicted by the classical theories of the extensional and flexural motions 
of thin plates. Note that these are the only curves in the lowest Q/y region 
shown in Fig. 14. 

In the highestQ/y region in Fig. 14 the transcendental equation (10.27) 
for the symmetric modes degenerates at certain points, at which it has the 
special roots 

sin tna(1) = 0, -sin tna(2) = 0, 

and the amplitude ratio determined from (l0.7) is given by 

C(1) /C(2) = ± 2y 2a (2)/(ar2) - y2)a(1). 

Under these circumstances 

a(1) = n = 2, 4, 6, ... , a(2) = m = 2, 4, 6,. .. . 

When am = nand a(2) = m, from (10.23) and (10.24) we have 

Q2 _ y2 = n2, 

Q2 - (VI2/V22)y2 = (VI2/V22)m2. 

(10.49) 

(10.50) 

(10.51) 

(10.52) 

(l0.53) 

Equation (l0.52) represents a series of hyperbolas on the Q vs. y diagram 
which intersect the Q axis at certain of the thickness frequencies and are 
asymptotic to the line Q = y as y -+ 00. Equation (10.53) also represents 
hyperbolas which intersect the Q axis at thickness frequencies, but which 
are asymptotic to the line Q = VIy / V2 as Y -+ 00. 

The intersections of these two sets of hyperbolas determine points on 
the dispersion curves. The transcendental equation (10.27) for the symmetric 
modes degenerates at another sequence of points, at which it has the special 
roots 

cos tna(1) = 0, cos tna(2) = 0 , (10.54) 

and at which the amplitude ratio determined from (10.7) is given by 

cm/C(2) = ± (y2 - az2 »/2aZl)' (l0.55) 

Under these circumstances 

aU) =n = 1, 3, 5, ... , a(2) = m 1, 3, 5, ... , (10.56) 
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and the two sets of hyperbolas discussed previously may be drawn for 
n-odd, m-odd as well as for n-even, m-even. Thus it is clear that the inter­
sections of the hyperbolas for m-even, n-even and for m-odd, n-odd deter­
mine points on the dispersion curves for the symmetric motions, whereas 
mixed intersections do not. In an entirely similar way it may be shown 
that the same set of intersection points determine points on the dispersion 
curves for the anti symmetric motions. It is also clear that the curves m-odd, 
n-odd and m-even, n-even form bounds for the dispersion curves, i.e., the 
dispersion curves can cross the m, n curves only at the aforementioned 
intersection points. 

3. IMAGINARY PROPAGATION WAVE NUMBER 

When y is pure imaginary, i.e., 

y = iy, 

where 9 is a real number, from (10.23) and (10.24) we have 

af2) = Q2 + 92 , 

a~l) = (V22jV12)Q2 + 92 • 

(10.57) 

(10.58) 

(10.59) 

Therefore am and a(2) are always real when y is pure imaginary. Con­
sequently, the previous degenerate roots corresponding to the intersections 
of the hyperbolas for m-odd, n-odd and m-even, n-even when y is real and 
Qjy > V1jV2 are also roots whenever y is pure imaginary. The only dif­
ference is that the curves are no longer hyperbolas. Now the set of curves 
from (10.58) are circles and the other set from (10.59) are ellipses. Thus 
at this stage we can exhibit the set of dispersion curves shown in Fig. 17 
for the isotropic plate. Actually, to really draw the curves in as much 
detail as shown, we would have to determine the slopes and curvatures at 
all critical points. We will not bother with these steps because we intend 
to use a calculator to determine the precise detail. Note that for real y all 
curves except the lowest two are asymptotic to the line Q = y as y ---+ <Xl. 

The lowest two are asymptotic to the Rayleigh surface-wavelineQ=0.8935y. 

4. COMPLEX PROPAGATION WAVE NUMBER 

This brings us to a discussion of the complex branches (29). The first 
thing to do is to determine the points of intersection of the complex bran­
ches with the three coordinate planes - Q = 0, 1m y = 0, and Re y = O. 
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Fig. 17. Frequency spectrum of an infinite isotropic plate for real and imaginary wave 
numbers (v = 0.31). After Mindlin (33). 

When y is complex, i.e., 
y = x + iy, (10.60) 

a(1) and a(2) become complex. The points of intersection of the complex 
branches with the plane Q = 0 cannot be found simply by setting Q = 0 
in the equations 

a~2) = Q2 _ y2, a~l) = (V22Q2JV12) - y2, (10.61 ) 
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because then a(1) = a(2) and the solution evaporates, and the Rayleigh 
frequency equation for the symmetric modes 

tan t:7w(1)/tan tna(2) = - (y2 - ar2»)2/4y 2a(1)a(2) , (10.62) 

degenerates to an identity which permits any value of y. In other words, 
in this isotropic case we cannot first select the plane Q = 0 and then ask 
where the intersections of the branches with the plane Q = 0 are. We must 
first get on a branch at some small value of Q > 0 and then ask for the 
limiting position of the branch as Q -- O. This complication does not exist 
in an anisotropic case, in which one may proceed in the straightforward 
manner of first selecting the plane Q = 0 and then determining the inter­
section with that plane. 

In proceeding with the isotropic (and anisotropic) case, it is expedient 
to note that the transcendental frequency equation (10.62) and the two 
quadratic relations (10.61) actually amount to an implicit equation of the 
form 

F(y, Q) = O. (10.63) 

In the isotropic case we now make a Taylor expansion of (10.63) at some 
y = Yo, which is not required to be the intersection of a branch with the 
Q = 0 plane, in powers of Q, and retain only the first term in Q to obtain 

F(yo, Q) = F(yo, 0) + Q(8F/8Q)Q=o,y=yO = O. (10.64) 

Since F(yo, 0) 0 (as already noted, it gives no information in the iso­
tropic case), and since from (10.61) and (10.62) 8F/8Q is linearly propor­
tional to Q and Q *- 0, from (10.64) we must have 

Q-l(8F/8Q)Q=o = 0 (10.65) 

as the condition for the intersection of the branches with the plane Q = O. 
Carrying out the operations 

1 8F 1 8F 8a(1) 1 8F 8a(2) 0 
---=-----+-----= 
Q 8Q Q 8a(1) 8Q Q 8a(2) 8Q 

by means of (10.61) and (10.62) and noting that a(1) = a(2) = iy when 
Q = 0, we obtain after some manipulation 

(sinhny) + ny = 0 (10.66) 
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for the symmetric modes. In a similar way but replacing (10.62) by (10.28), 
we obtain 

(sinhny) - ny = 0 (10.67) 

for the anti symmetric modes. Equations (10.66) and (10.67) are complex 
equations, and equating real and imaginary parts of (10.66) we obtain for 
the symmetric modes 

(sinh nx)(cos ny) + nx = 0, 

(cosh nx)(sin ny) + ny = 0, 
(10.68) 

with similar equations for the antisymmetric modes. The two equations in 
(10.68) determine curves in the Q = 0 plane. The intersections of these 
families of curves determine the intersections of the complex branches 
with the plane Q = O. We can determine the character of the complex 
branches in the vicinity of the plane Q = 0 by differentiating (10.63) totally 
with respect to Q. Thus 

8F 8y 8F_ 0 -----ay 8Q + 8Q -

and since, from (10.61) and (10.62) 8Fj8y is not zero, with (10.65) we 
have 

Q-l 8yj8Q = 0 as Q--O. (10.69) 

We have derived (10.69) for the isotropic case only. The derivation for the 
anisotropic case would proceed by setting Q = 0 in (10.11)-(10.13) and 
finding the Yo at Q = 0, and then evaluating Q-l 8yj8Q at Yo and Q = 0 
from (10.11)-(10.13). 

The behavior of the complex branches in the vicinity of the plane 
1m y = 0 can be investigated by making a Taylor expansion at some real 
y = Xo andQ = Qo, which is not required to be a root of (10.63), in powers 
of iy and retaining only the first term in iy to obtain 

F(y, Qo) = F(xo, Qo) + iy(8Fj8y)y=xo = O. 

Since for analytic functions of a complex variable the derivative is inde­
pendent of the direction in the complex plane, we have 8Fj8y = 8Fj8x 
= 8Fj8iy. Consequently, 

F(y, Qo) = F(xo, Qo) + iy(8Fj8x)x=xo = 0, 

and separating real and imaginary parts, we obtain the equations 
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F(xo ,Do) = 0, y(aF/ax)x=xo = 0, 

governing the roots in the complex space near the plane 1m y = O. These 
equations yield the usual real roots 

F(xo ,Do) = 0, y = 0, (10.70) 

and also the roots 

F(xo ,Do) = 0, y =I=- 0, aF/ax!x=xo = 0, (10.71) 

which govern the complex branches in the vicinity of the plane 1m y = O. 
Differentiating (10.63) with y = x totally with respect to x, we obtain 

aF aD aF_ o 
aD fiX+fiX- . (10.72) 

Since, as is usually the case, aF/aD =I=- 0, from (10.71) and (10.72) we have 

aD/ax = 0, (10.73) 

thereby clearly showing that the complex branches intersect the real bran­
ches at points of zero slope of the real branches. Exceptional cases where 
aF/aD = 0 occur, but they will not be discussed here. These cases are 
exceptional in other ways which we have also ignored here. The exceptional 
cases are discussed by Mindlin (5.29). The theorem we have just proved is 
referred to by Mindlin as Qnoe's theorem, and is true for any analytic 
function of one real and one complex variable, as noted by Kaul and 
Mindlin (30). Equation (10.73) is valid in the anisotropic as well as the 
isotropic case, since the isotropic relations were in no way used in obtain­
ing (10.73). 

A similar investigation of the behavior of the roots in the vicinity of 
the plane Re y = 0 shows again that the complex branches intersect the 
imaginary branches at points of zero slope of the imaginary branches. 

When the end points of a complex branch have been determined the 
entire branch can be calculated starting at the known points. Thus any 
desired portion of the frequency spectrum can be calculated. 

5. CALCULATION OF THE DISPERSION CURVES 

When the material is somewhat anisotropic-cubic, C6V (not quartz)­
the same curves exist but are shifted somewhat (31). The amount of numerical 
work does not change much, but much of the algebra that we went through 
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for the isotropic case becomes extremely cumbersome in an anisotropic 
case. Nevertheless, it should be clear that all the information we obtained 
in the isotropic case is not really necessary if a machine calculation is to 
be made. The really crucial information consists of the following: 

1. The thickness frequencies, which have already been determined in 
general. 

2. The behavior of the real branches in the vicinity of zero frequency 
and zero wave number. I will provide a simple procedure which works in 
every case. 

3. The location of the Rayleigh surface-wave line, which is located by 
solving the appropriate surface wave problem. This will be discussed later. 

4. The location of the lowest of the three wave velocity lines for the 
infinite medium. This is straightforward. In the isotropic case this was 
simply the shear velocity line. 

S. The location of the intersection of the complex branches with the 
plane Q = O. This has already been discussed. 

After the aforementioned have been determined the order of the 
machine calculation should be: 

1. The calculation of the real branches. 
2. The calculation of the imaginary branches. 
3. The calculation of the complex branches. 

Of course, step 3 must proceed after steps 1 and 2 because the real 
and imaginary branches are needed in order to locate the intersections of 
the complex branches with the real and imaginary planes (points of zero 
slope in the respective planes). 

The exact procedure is, of course, a computational decision. At this 
point we again note that a vibration problem can be started using the 
techniques presented in this monograph only after the frequency spectrum 
has been plotted in detail in some defined region in Q vs. y space. 

6. LOW-FREQUENCY EXTENSIONAL PLATE 
EQUATIONS 

The aforementioned procedure for determining the behavior of the 
lowest branches in the real plane (Q -+ 0 vs. y -+ 0) begins with the govern­
ing equations (7.28) and (7.29), which with U2 = 0 and no X 2 dependence 
yield the nontrivial equations 
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Tn = Cn U1,l + C13Ua, a , Taa = C1aU1,l + caaua,a, T1a = C44(U1,a + Ua,l); 

Tn ,l + Ta1 ,l + ew2U1 = 0, 

T1a,l + Taa,a + ew2ua = O. 

We also have the boundary conditions 

Tal = Taa = 0 at Xa = ± h. 

(10.74) 

(10.75) 

(10.76) 

(10.77) 

We now look for the lowest longitudinal branch. To this end, we ~ake the 
approximations and the expansions directly in the equations. The simplest 
way of describing the approximation consists of assuming that 

Taa = Tal = 0 for all Xl' Xa , (10.78) 

along with 
ew2Ua = 0, (10.79) 

so that the boundary conditions (10.77) and the differential equation (10.76) 
are satisfied identically. The one remaining differential equation (10.75) 
with the aid of (10.78) and (10.74) yields 

( Cia) 2 Cn - -- U1,n + ew U1 = 0 , 
C3a 

(10.80) 

from which we can see that the lowest longitudinal branch approaches 
Q = 0, y = 0 as a straight line with the slope 

Q (C c2 )112 __ _ -.!!.. ___ l_a_ 
y C44 CaaC44 

(10.81) 

For the isotropic case this becomes 

Q/y = 2[(it + f-t)/(it + 2f-t)]112 = 2[1 - (V22/V12)]1I2 , (10.82) 

as we have already shown in (10.45). 

7. LOW-FREQUENCY FLEXURAL PLATE EQUATIONS 

We now look for the lowest flexural branch by means of an essentially 
analogous procedure. To this end we assume that 

Ta3 = 0, for all Xl' Xa (10.83) 
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and that 
UI = X3"P(XI) , 

Ua = W(XI ) , 

and perform the following operation on (10.75): 

f~h Xa(Tll,1 + Tal,a + ew2UI) dXa = 0, 

which yields 

where 

M = fh x3Tn dXa , 
-h 

We now suppose that 

M,l - V + Iw2"P = 0, 

V = fh Tal dXa , 
-h 

Iw2"P = 0, 

1= e fh X32 dxa. 
-h 
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(10.84) 

(10.85) 

(10.86) 

(10.87) 

(10.88) 

which means that we are neglecting what is commonly termed rotatory 
inertia; and from (10.86) and (10.88) we have 

V=M,I' (10.89) 

Substituting from (10.83), (10.85), (10.87), and (10.89) in the integrated 
form of (10.76), we obtain 

M,ll + 2hew2w = o. (10.90) 

From (10.83) and the second of (10.74) we further have 

Ua,a = - (C13/Caa)UI,I' (10.91) 

and substituting from (10.91) and (10.84) into the first of (10.74) and in­
tegrating through the thickness and using (10.87), we obtain 

M = (Cll _ C~3) 2h3 
C3a 3 "P,l' 

(10.92) 

Finally, we assume that the shearing strain S13 is negligible, and obtain 

"P = - W,l' (10.93) 
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Substituting from (10.92) and (10.93) into (10.90), we find 

( 
C2 ) h2 

- cll - c:: 3 W,llll + ew2w = 0, (10.94) 

from which it is clear that the dispersion relation for the lowest antisym­
metric (flexural) branch is a parabola as Q ->- 0, y ->- 0, which is given by 
the equation 

Q _ 11 _ 13 ny2 [I (C C2 ) ] 1/2 
- -2- 3 C44 CaaC44 

(10.95) 

For the isotropic case Eq. (10.95) becomes 

[ A + ,u ] 1/2 [I ( v: 2 )] 1/2 
Q = ny2 3(A + 2f-l) = ny2 3 1 - V:2 ' (10.96) 

in accordance with (10.41), as we obtained previously. 
I have gone through these last operations in accord with the elementar~ 

theories of the extension and flexure of thin plates. This may be regarded 
as a preliminary introduction to the principles underlying Mindlin's theory 
of plates (5). 

8. ELASTIC SURFACE WAVES 

We will now go through the procedure for determining the surface 
wave velocity. We begin with Eqs. (10.74)-(10.76), but we take as solutions 
of the equations the following: 

Ul = Al(exp - 'YJxa) sin ~Xl' 

Ua = Aa(exp - 'YJxa) cos ~Xl' 

which satisfy the equations provided 

(Cll - C44k 2 - ev2)Al - (CIa + C44)kAa = 0, 

(C13 + C44)kA1 + (C44 - caak2 - (!v2)Aa = 0, 

(10.97) 

(10.98) 

where v = w/~ and k = 'YJg. This system of linear homogeneous equations, 
(10.98), in Al and Aa yields nontrivial solutions when the determinant of 
the coefficients of Al and Aa vanishes, i.e., when 

I (Cll - C44k2 - ev2 ) 
(C13 + C44)k 

- (CIa + c44)k I = 0 
(C44 - caak2 - ev2) . 

(10.99) 
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This equation is quadratic in k 2 and v2• Hence for a given v there are two 
k 2 (k12, k22). For a physically meaningful solution v must be real, and k 2 

must be positive ifit is real. However, the k 2 may occur in complex conjugate 
pairs and the solutionis still physically meaningful. In any event, each k 2 

yields two solutions, one the negative of the other, and the one correspond­
ing to a negative real part is discarded since it cannot correspond to a 
physically meaningful solution. Each solution, of course, yields amplitude 
ratios when substituted in the linear equations (10.98) in Al and A a, 

Ain) = (CIa + C44)k(n) , 

A~n) = (cn - C44k~n) - (lV2). 
(10.100) 

The boundary conditions at the surface of the semiinfinite body are 

Tal = Ta2 = Taa = 0 at Xa = 0, (10.101) 

and everything vanishes as Xa -+ 00. Since T32 - 0, one condition is satisfied 
identically, and two remain. Hence we take 

2 

Ul = (sin ~Xl) ~ c(n)Aln) exp(- 'Y/(n)xa) , 
n=l 

2 

Ua = (cos ~Xl) ~ c(n)A~n) exp( - 'Y/(n)Xa) , 
n=1 

(10.102) 

as the solution of the problem. Substituting from (10.74) and (10.102) 
into the nontrivial boundary conditions (10.101), we obtain 

2 

~ c(n)(Ain) + knAin» = 0 , 
n=l 

2 

~ c(n) (c13Ain) - caak(n)A~n» = O. (10.103) 
n=l 

Equations (10.103) constitute a system of linear homogeneous algebraic 
equations in the c<n). This system yields nontrivial solutions when the 
determinant of the coefficients of CO) and C(2) vanish, i.e., when 

I (A~l) + klA~l» 
(claA~l) - CaaklA~l» 

(A~2) + k 2Ai2» I 
(2) (2) = o. 

(C13A l - Caak2Aa ) 
(10.104) 

This equation may be regarded as an algebraic equation in kl' k2' and v, 
or as a higher-order algebraic equation in valone. A number of values of 
v satisfy the system. However, only one value of v turns out to yield a 
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physically permissible solution, i.e., a solution with real v and such that 
all variables vanish at infinity. To my knowledge, this has not been proven 
in general, but it usually works out this way. It has been proven for the 
isotropic case, and Synge has shown that at times there may be no physically 
meaningful solution. The v that yields the physically meaningful solution is 
called the Rayleigh surface wave velocity. 

The surface wave velocity v may now be calculated by selecting a 
value of v and calculating the corresponding kl and k2 from (10.99). After 
this the A~n) and A1n) may be calculated from (10.100). All quantities 
appearing in the determinant (10.104) are now known, and it either does 
or does not vanish. If it vanishes, the v which has been selected is a root, 
and if it does not vanish, change v and repeat the calculation until the 
determinant does vanish. When you have a root such that vis real, then 
kl and k2 must be checked to assure that the solution vanishes as Xa -+ =. 
The one physically acceptable solution, when it exists, corresponds to a 
vR which is almost always less than the lowest plane wave velocity in the 
infinite medium in the propagation (here Xl) direction. The surface wave 
velocity V R will usually be in the vicinity of 0.9 of the lowest plane wave 
velocity in that direction. At any rate, that value provides a good starting 
point for the calculation. 



Chapter 11 

TWO-DIMENSIONAL STANDING WAVES 
IN PIEZOELECTRIC PLATES 

1. SOLUTION FOR POLARIZED CERAMIC MATERIAL 

We now consider the solution for two-dimensional standing waves in 
a piezoelectric plate (32) of the same material considered in Chapter 10. 
The surfaces of the plate are coated with infinitesimally thin electrodes 
which are shorted. Consider the following as a solution of the differential 
equations: 

UI = Al cos 'fJX3 sin eXI cos mt , 

U2 =0, 

U3 = A3 sin 'fJX3 cos eXI cos mt , 

ffJ = B sin 'fJX3 cos eXI cos mt , 

which satisfies the differential equations (7.29) provided 

(cne2 + c«'fJ2 - e(2)AI + (C13 + C44)e'fJA3 + (e31 + eI5)e'fJB = 0, 

(11.1 ) 

(C44 + C13)e'fJAI + (C44e2 + C33'fJ2 - e(2)A3 + (elSe2 + e3s'YJ2)B = 0, (11.2) 

(eiS + esl)e'fJAI + (elSe2 + eS3'fJ2)As - (8n e2 + 833'fJ2)B = o. 

This system of linear homogeneous equations. in AI' A3, and B yields 
nontrivial solutions when the determinant of the coefficients vanishes, i.e., 
when 

(Cne2 + C44'fJ2 - e(2) 

(C44 + c13)e'fJ 

(e15 + e31)e'fJ 

(C13 + c«)e'fJ (e31 + eI5)e'fJ 

(C44e2 + C33'fJ2 - e(2) (elSe2 + e33'fJ2) I = o. 

(elSe2 + e33'fJ2) - (8n e2 + E33'fJ2) 
(11.3) 

Equation (11.3) is quadratic in m2, but cubic in e2 and 'fJ2. Hence for a 
given m and e there are three 'fJ ('fJI' 'fJ2' 'fJ3), each of which yields amplitude 
ratios when substituted in any two of the three linear algebraic equations 
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(11.2) in A l , Aa , and B. The amplitude ratios will be designated by 

(A~nl :A~nl :B(nl) = ({J~nl :(J~nl :(J~nl) , (11.4) 

and are readily determined so that there are no denominators in the expreS­
sions. The above determinantal equation (11.3) clearly sho\;Vs that the 
piezoelectric constants couple the quasi static electric solution to the dyn­
amic mechanical solution. These two solutions uncouple only if all the eip 

vanish. It is precisely the coupling of these two solutions that is ignored 
in purely mechanical treatments of this problem. This coupling of a quasi­
static phenomenon to a dynamic phenomenon is the underlying reason that 
although in this instance a given wave normal in the XcXa plane results in 
only two phase velocities, a given frequency and propagation wave number 
results in three thickness wave numbers. The existence of these three thick­
ness wave numbers is what enables the solution of the problem. The bound­
ary conditions at each surface of the plate are 

Tal = Ta2 = Taa = q; = 0 at Xa = ± h. (11.5) 

Since according to (7.28) and (11.1) Ta2 = 0, we have three boundary 
conditions to satisfy at each surface of the plate. Clearly, all three solutions 
of the differential equations are required in order to satisfy the remaining 
conditions. Hence we take 

a 
Ul = cos rot sin ~Xl ~ c(nl{Jlnl cos 'YJnXa, 

n=l 

a 
U = cos rot cos tx '" c(nl{J(nl sin 'I'l x a s- 1 £oJ a 'In a, (11.6) 

n=l 

a 
q; = cos rot cos ~Xl ~ c(nl{J~nl sin 'YJnxa, 

n=l 

as the solution of the problem. Substituting from (11.6) into (7.28) and 
from (7.28) into the boundary conditions (11.5), we obtain 

a 
~ c(nl L~nl sin 'YJnh = 0 , 

n=l 

a 
~ c(nlL~nl cos 'YJnh = 0, (11.7) 

n=l 

a 
~ c(nl{J~nl sin 'YJnh = 0, 

n=l 
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where 
L~n) = C44({3&n)~ + {3~n)'YJn) + eI5{3~n)~ , 
Vn) - C {3<nH: + c {3<n).., + e {3<n).., 

2 - 13 1 \; 33 3'm 33 2 'm' 
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(11.8) 

The above system of homogeneous linear algebraic equations, (11.7), in 
em, e(2), and e(3) yields nontrivial solutions when the determinant of the 
coefficients of the e<n) vanishes, i.e., when 

LP) sin 'YJIh 

L~I) cos 'YJIh 

{3~I) sin 'YJIh 

L~2) sin 'YJ2h 

L~2) cos 'YJ2h 

{3~2) sin 'YJ2h 

L~3) sin 'YJ3h 

L~3) cos 'YJ3h I = O. 

{3~3) sin 'YJ3h 

(11.9) 

Equation (11.9) is a transcendental equation, the roots of which enable 
the determination of the w vs. ~ relation for this piezoelectric plate. The 
procedure for making a calculation is similar to, but more complicated 
than, that in the purely mechanical case, and should be obvious. However, 
it should be noted that in putting the equations in dimensionless form for 
a calculation, the dimensionless constants are most conveniently defined by 

Cpq = Cpq /C44 , eip = eip/(c441':33)1/2, fij = l':ij/1':33' (1LlO) 

In addition, note that the transcendental determinant (11.9) can be written 
in the more familiar form 

3 

~ Mn cot 'YJnh = 0, (lLll) 
n=I 

where the Mn are composed of combinations of L~n), L~n>, and {3~n). 

The determinantal form (11.9) is better suited to a calculation, however, 
since it does not contain terms which sometimes diverge. 

2. LIMITING ROOTS 

No complete calculation for the determination of the roots of (11.9) 
has been performed to date. However, we shall determine the important 
critical information for starting a calculation and note some of the similar­
ities and differences between this and the purely elastic case. First we de­
termine the thickness frequencies. This solution at infinite wavelength can 
be obtained directly from the previous solution simply by setting ~ = O. 
However, the procedure is not quite as straightforward as in the purely 
elastic case. Consequently, we will present the details. When ~ is set equal 
to zero the set of algebraic equations, (11.2), in AI, A3 , and B and the 
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corresponding determinant (11.3) become, respectively, 

(C441')2 - ew2)Al = 0, 

(C331')2 - ew2)A3 + e 331')2B = 0, 

e331')2A3 - S331')2B = 0, 

(C441')2 - e w2) 

o 
o 

o 
(C331')2 - e w2 ) 

e 331')2 

o 
e 331')2 I = O. 

-S331')2 

(11.12) 

(11.13) 

The determinant (11.13) readily yields the three 1')n, which are given by 

1')1 = W/(C44/e)I12, 1')2 = 0, 1')3 = W/(C33 /e)I12, (11.14) 

where 

C33 = C33 + (e~3/s33)' (11.15) 

The substitution of the three 1')n in (11.14) successively into the algebraic 
equations (11.12) yields 

1 0 0 

(Jjn) = II 0 1 e 33/s33 

o 0 

(11.16) 

where the column refers to the 1')n and the row to the Uj or cp. The linear 
equations (11.7) in the c(n) now become 

C(1)C441')1 sin 1')lh = 0, 

C(2)e331')2 cos 1')2h + C(3)[C33 + (e~3/s33)]1')3 cos 1')3h = 0, (11.17) 

C!2) sin 1')2h + C!3)(e33/s33 ) sin 1')3h = O. 

The last two equations in (11.17) show that as 1')2 ---+ 0, C(2) ---+ 00, since 
sin 1')3h and cos 1')3h cannot be equal to zero simultaneously. However, in 
(11.17) C!2) and 1')2 always occur as an indeterminate product. Hence Eqs. 
(11.17) may be written 

where 

C(1)C441')1 sin 1')lh = 0, 

Ke33 + C(3)C331')3 cos 1')3h ~O, 

Kh + C(3)(e33 /s33 ) sin 1')3h = 0, 

K ==0 C(2)1')2' 

(11.18) 

(11.19) 
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Equations (11.18) yield a nontrivial solution when 

C44TJI sin TJIh 

o 
o 

o 
eaa 

h 

o 
CaaTJa cos TJah 

(eaa/saa) sin TJah 
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=0. (11.20) 

This transcendental determinant (11.20) yields the two transcendental 
equations 

sin TJIh = 0, tan 'YJah = 'YJahsaacaa/e5a = 'YJah/kt2. (11.21) 

Thus we see that the first transcendental equation yields thickness frequencies 
and modes which are identkal with the purely elastic, symmetric, thickness­
shear frequencies and modes. We also see that the second transcendental 
equation yields thickness frequencies and modes which are identical with 
those of the piezoelectric, antisymmetric, thickness-stretch solution which 
we have obtained previously. These two sets of roots determine the starting 
points of the dispersion curves on the Q axis (y = 0 line). 

The three wave velocities for propagation in any direction in an ar­
bitrarily anisotropic crystal have been obtained previously. Hence the lowest 
velocity for our direction may be obtained easily. The determination of the 
surface wave velocity is straightforward and, by virtue of Chapter 10, Sec­
tion 8, the procedure should be obvious. The procedure for determining 
the intersections of the complex branches with the plane Q = 0 is the same 
as in the anisotropic, purely elastic case and is straightforward. Onoe's 
theorem concerning the intersection of the complex branches with the real 
(1m y = 0) and the imaginary (Re y = 0) planes remains valid, since the 
proof covers this case also. We have still to determine the behavior of the 
lowest branches in the real plane as y -- 0 (Q -- 0 as y -- 0). Although 
we can proceed with the approximation in an essentially similar (but some­
what different) manner in this piezoelectric case as in the elastic case, we 
will not do so now because the analysis is a little complicated, and, more 
importantly, we will obtain the approximate equations automatically a 
little later on and to obtain them now also seems a waste of time. 

3. PLATE OF IN FINITESIMAL WIDTH 

In the foregoing we have considered two-dimensional standing waves 
in infinitely wide as well as infinitely long plates. We will now show that 
the solution we have presented is also applicable in the case of standing 
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waves in an infinitesimally wide (i.e., very narrow) and infinitely long plate, 
provided some changes are made in the elastic, piezoelectric, and dielectric 
constants. 

We now take the coordinate system in the same way as before, as 
shown in Fig. 18, so that the additional faces of the plate are at x 2 = ± w. 
The boundary conditions on the additional faces of the plate are, assuming 
a high enough dielectric constant, 

T2 = T4 = T6 = D2 = 0 at X2 = ± w. (11.22) 

The proper assumptions for such a plate in which w/h ~ 1 are 

T2 = T4 = T6 = D2 = 0 , (11.23) 

for all Xi, along with 

ew2U2 = O. (11.24) 

Introducing the assumptions (11.23) into the constitutive equations (7.28), 
we obtain after elimination of certain terms 

X2 

2W 

Tl = ChUl,l + ciaua,a + eftcp,a, 

Ta = CiaUl,l + cfaua,a + efacp,a, 

Ts = C44Ua,l + C44Ul ,a + elScp,l , 

Dl = elsua,l + elSUl,a - cUCP,l' 

Da = eftul,l + efaua,a - cfacp,a, 

T2 = T4 = T6 = D2 = 0, 

X3 

____ - - - - - __ x, 2h 

Fig. 18. Plate of infinitesimal width and infinite length between 
shorted electrodes. 

(11.25) 
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where 

ciI = [Cn - (Ci2/Cn )], 

eft .. [e31 - (C12e31/Cn)] , 

efa = [e33 - (C13e31/Cn)] , 

cis = [c13 - (C12C13/Cn)], 

cfa = [C33 - (Ci3/Cn)], 

Efa = [E33 + (e~dcn)], 
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(11.26) 

and the constants without the superscript remain unchanged. The substi­
tution of the constitutive equations (11.25) along with the unused assumption 
(11.24) into the equations 

Tl,1 + T6 ,2 + TS ,3 + ew2Ul = 0 , 

T6,l + T2 ,2 + T4,3 + ew2U2 = 0, 

TS,l + T4,2 + T3 ,3 + ew2U3 = 0, 

D1 ,l + D 2 ,2 + D3 ,3 = 0, 

(11.27) 

yields a system of equations which are identical, except for the modification 
of the constants, with the equations we used before in the case of the in­
finitely wide (2w = 00) plate, i.e., Eqs. (7.28) and (7.29) with U2 = 0 and 
no X 2 dependence. The nontrivial boundary conditions on the electroded 
surfaces X3 = ± h remain the same, and are given in (11.5). The boundary 
conditions (11.22) on the additional surfaces are, of course, satisfied iden­
tically by virtue of the assumptions. Thus, since the nontrivial equations 
and boundary conditions are identical with those used in the case of the 
infinitely wide plate, that analysis applies without change to the thin (nar­
row) plate provided the c pq , eip' and Eij are replaced, respectively, by the 
q;'q, et;" and E{j which we have defined. It should be noted that for the 
analysis of the thin plate which we have presented to be applicable the 
frequency must be well below the lowest width frequency because of the 
assumptions we have made. It should be noted further that these plate 
equations which we have presented are the piezoelectric counterparts of the 
(so-called) plane-stress equations of the theory of elasticity. 

Since the entire solution for the infinitely wide plate is valid in the case 
of the infinitesimally wide plate if the constants are changed, the thickness 
solution must, of course, also be valid. Thus we obtain the transcendental 
equation 

where 

tan 'YJ3h = 'YJ3hEfacfa 
(efa)2 

'YJ3 = w/(cfa/e)i, 

'YJ3h 
(kfa)2 ' 

(11.28) 

(11.29) 
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and 
efa = c!; + [(e!;)2je!;]. (11.30) 

The transcendental equation (11.28) governs the piezoelectric thickness­
stretch modes for a plate which is narrow in one direction and very long 
in another. These modes can, of course, be driven by the application of an 
alternating voltage to the surface electrodes. It is evident that we have 
obtained a piezoelectric coupling factor k!; which is neither the one for 
the infinite medium nor the one for the thin rod. 

Ifwe were to go further and introduce additional boundaries at Xl = ±l 
and make the assumption that /jh ~ 1 as well as wjh ~ 1, we would in­
troduce the conditions 

TI = Ts = Te = DI = 0, 

and obtain the equations, resonant frequencies, and coupling factor for the 
thin rod with a high dielectric constant. The procedure is obvious. 
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APPROXIMATION TECHNIQUES 
AND APPLICATIONS 



Chapter 12 

EXPANSION IN PLATE EIGENSOLUTIONS 

1. METHOD OF LEAST SQUARES 

The method of least squares [(21), Section 6.C] is a very powerful 
technique for obtaining approximate solutions to boundary value problems 
with a high degree of accuracy. Before proceeding with a problem of in­
terest we will introduce the general idea by applying the procedure to 
Fourier series. 

Supposing we wish to approximate f(x) in the range - I < x < I 
by a trigonometric series in the form 

N N 
SN(X) = !Ao + ~ An cos(nnxjl) + ~ Bn sin(nnxjl). 

n=l n=1 

To proceed with the method of least squares, we form the error eN, 

eN = f(x) - SN(X) , 

and following Gauss we calculate the mean-square error 

M = (lj2/) II eN2 dx, 
-I 

(12.1 ) 

(12.2) 

(12.3) 

and reduce M to a minimum through the choice of the only quantities 
left to us, i.e., the An and Bn. Note that although eN can be either positive 
or negative, eN2 must always be positive so that there can be no cancella­
tions from different Llx regions. That is why the minimization of M yields 
an excellent approximation. The mean-square error M will be a minimum if 

bM = (1jl) (l eN beN dx = 0, (12.4 ) 

where 

aSN N aSN N aSN 
beN = - bSN = - ;JA bAo - ~ ;JA bAm - ~ ;JB bBm, (12.5) 

U 0 m=l U m m=l U m 
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and 

fJS N/fJAO = to fJS N/fJAm = cos(mnx/I), fJS N/fJBm = sin (mnx/I) . (12.6) 

Substituting from (12.5) and (12.6) into (12.4), we obtain 

1 IZ [1 N mnx N • mnx ] - T -z 'leN bAo + ION ~ cos -1- bAm + ION ~ sm -1- bBm dx = 0 , 
m-l m-l (12.7) 

from which, since all the Ak and Bk are independent, we obtain the equations 

(1/1) fz (SN - f) cos(mnx/I) dx = 0, 

(1/1) fl (SN - f) sin(mnxfl) dx = 0, 

m = 0, 1, 2, ... N , 

m = 1,2, .. . N. 
(12.8) 

Equations (12.8) constitute 2N + 1 linear algebraic equations for the de­
termination of the 2N + 1 unknowns Ak , Bk • In this particular application 
of the method of least squares a tremendous simplification of the algebra 
occurs because of the orthogonality of the trigonometric functions, which 
enables each Ak and Bk to be determined separately by an independent 
equation. In many situations-as in the ones we will be concerned with­
this simplification does not occur, but the procedure is still applicable and 
the algebra simply becomes more cumbersome. 

For the trigonometric functions the orthogonality relations are 

fz cos(mnx/I) sin(nnx//) dx = 0, 

fz cos(mnx/I) cos(nnx/I) dx = I bmn , 

fz sin(mnx/I) sin(nnx/I) dx = I bmn · 

(12.9) 

Hence from (12.8) and (12.9) for the coefficients of the trigonometric series 
in (12.1) we obtain 

1 IZ Am = T _/(x) cos(mnx/l) dx, 1 IZ Bm = T _/(x) sin(mnx/I) dx. (12.10) 

We could go on and show that the series is complete [(15), Chapter II, 
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Section 1.3] since M ---+ 0 as N ---+ 00, but mathematical considerations of 
this nature are not of interest to us here. 

Now suppose we wish to approximate a function in the range -l<x<l 
by a trigonometric series when we are given therunctionf(x) for -l<x<a 
and the slope f' (x) - g(x) for a < x < l. The series is the same as before, 
but the error term changes. We now must define two error functions s1 
and s}i such that 

s1- =f(x) - SN(X) 

s}i = [g(x) - SN'(x)]a 

-l<x<a, 

a<x<l, 

where we have introduced the a for dimensional purposes, and 

, N nn .nnx N nn nnx 
SN = - ~l -1- An SIO -,- + n~l -1- Bn cos -1-· 

We now form the mean-square error 

1 fa I 2 1 fl II 2 M=-l+ (sN) dx+-1 - (SN) dx, a -l -a a 

proceed as before, and obtain 

(12.11 ) 

(12.12) 

(12.13) 

1 fa mnx a2 fl mn mnx r--+ _ (SN - f)cos-1-dx - -1- (SN' - g)-I-sin-1 -dx = 0 
a l a a (12.14) 

1 fa mnx a2 fl mn mnx r--+ _ (SN - f)sin-1-dx + -1- (SN' - g)-I-cos-1-dx = 0 
a l a a (12.15) 

m = 0,1,2, .. . ,N. 

Equations (12.14)-(12.15) constitute a system of 2N + 1 linear algebraic 
equations for the 2N + 1 unknowns Ak , Bk • However, in this case the 
orthogonality relations are of no use to us because of the limits on the 
integrals, and the algebraic equations have to be inverted in the usual 
manner to find the Ak and Bk . Note that each time the number N is changed 
all the Ak and Bk change. However, the solution (S N) will usually converge, 
and the solution will not change much after a certain N = No. We are 
here bordering on some complicated questions relating to the convergence 
of series, which questions are answered by concepts from modern functional 
analysis relating to the theory of the Lebesgue integral (33). We shall not 
concern ourselves with questions of this nature. 
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2. FORCED VIBRATIONS OF A BOUNDED 
PIEZOELECTRIC PLATE BY THE METHOD 

OF LEAST SQUARES 

Consider the plate shown in Fig. 19, and let the top and bottom sur­
faces be completely coated with infinitesimally thin electrodes, while the 
right and left surfaces are exposed. The plate may be either infinitely wide 
in the direction out of the paper or infinitesimally narrow with the additional 
faces free and without electrodes. As we have already shown, the only 
difference between the two cases is in the specific values of the constants 
in the equations. The plate is driven into vibration by the application of an 
alternating potential difference to the surface electrodes. For definiteness 
we will be considering the plate which is infinite in the direction out of the 
paper. 

From Eqs. (7.28) and (7.29) the pertinent nontrivial equations are 

Tl,1 + Ts,a = eiil' TS,1 + Ta,a = eiia, DI,1 + Da,a = 0, (12.16) 

and the constitutive equations are 

TI = CnUI,1 + c13ua,a + ealqJ,a, 

Ts = C44(U1,3 + Ua,l) + e15qJ,l, 

DI = eIS(UI,a + Ua,l) - cnqJ,I' 

Ta = C13UI ,1 + caaua,a + eaaqJ,a, 

(12.17) 

Da = ealUI,1 + eaaua,a - caaqJ,a, 

and simple substitution of (12.17) in (12.16) yields three differential equa­
tions in the three variables UI , Ua , and qJ. The boundary conditions are 

2h 

TI = Ts = 0, qJ = ± qJo cos wt 

Ta = Ts = Da = 0 

XI 

at Xl = ± h, 

at Xa = ± I. 
(12.18) 

L-_-r--.. Xs 

I. 2J _I 
Fig. 19. A bounded plate of length 21 and thickness 2h. 
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Our previous work has shown that the thickness solution satisfies the 
conditions 

TI = Tr, = 0, cP = ± CPo cos OJt at Xl = ± h, (12.19) 

and the two-dimensional standing waves satisfy the conditions 

TI = Ts = cP = ° at Xl = ± h .. (12.20) 

Hence the thickness solution plus any number of the two-dimensional 
solutions satisfy, at the driving frequency OJ, the prescribed conditions on 
Xl = ± h. Our procedure then consists of taking a sum of the aforemention­
ed solutions with undetermined coefficients and satisfying the boundary 
conditions on X3 = ± I approximately by the method of least squares. 

The thickness solution is given by 

UI = U2 = 0, U3 = A sin 'fJOXI , 
(12.21 ) 

cP = B (sin 'fJOXI) + CxI , 

where we have ignored the time factor cos OJt, and 

'fJo = OJ/(C44 /e)1!2, C44 = C44 + [(eIS)2/en], 

B = elsA/en, C = (CPo/h) - (elsA/enh ) sin 'fJoh, (12.22) 

A [C44'fJoh cos 'fJoh - (e~s/ en) sin 'fJoh] = - elScpo· 

Thus, given an OJ and a CPo, the 'fJo, A, B, and C are known in terms of OJ 
and CPo unless OJ is a thickness frequency. 

We are interested in the two-dimensional solutions in which cP is 
symmetric in X 3 , since the driving field, and hence the thickness solution, 
are symmetric in X 3 . These two-dimensional solutions take the form 

3 

UI = sin ~X3 ~ H(n)f3in ) cos 'fJ(n)XI ' 
n=l 

U2 = 0, 

3 

U3 = cos ~X3 ~ H(n)f3~n) sin 'fJ(n)XI ' 
(12.23) 

n=l 

3 

cP = cos ~X3 ~ H(n)f3~n) sin 'fJ(n)XI ' 
n=l 
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where for a given $ and w the 'Y)(n) are the three roots of 

(C13 + C44)'Y)$ (e31 + e15 )'Y)$ (Cn 'Y)2 + C44$2 - (?W2) 

(C44 + C13)'Y)$ 

(elS + e31 )'Y)$ 

(C44'Y)2 + C33$2 - (?W2) 

(e15'Y)2 + e33$2) 

(e15'Y)2 + e33$2) 1= o. 
- (en 'Y)2 + e33$2) . 

(12.24) 

The amplitude ratios (3in ), (3~n), and (3~n) are determined in the usual way such 
that there are no denominators. For a given w the correct $ must satisfy 

where 

Li1) sin 'Y)(1)h 

L~1) cos 'Y)(1)h 

(3~1) sin 'Y) (1)h 

Li2) sin 'Y)(2)h 

L~2) cos 'Y)(2)h 

(3~2) sin 'Y)(2)h 

Li3) sin 'Y)(3)h 

L~3) cos 'Y)(3)h I = 0, 

(3~3) sin 'Y)(3)h 

L (n) - (3(n) + {3(n)c + e (3(n)c 1 - Cn 1 'Y)(n) C13 3 S" 31 2 S", 

L (n) - C (3(n),),) + C (3(n)c + e (3(n),),)(n) 
2 - 44 3 ·i!n) 44 1 S" 15 2·/ . 

(12.25) 

(12.26) 

The amplitude ratios H(1), H(2), and H(3) are determined in the usual way 
such that there are no denominators. 

After the dispersion curves have been determined we must decide in 
how many two-dimensional eigensolutions we will expand in order to obtain 
an accurate solution. This approximation is crucial and cannot be made 
until after all the dispersion curves have been determined in a given w-$ 
region. Let us suppose that in the w-$ region of interest to us the dispersion 
curves look as shown in Fig. 20. We are interested in w < A. Other bran­
ches in the region w < A - and there are an infinite number of such 
branches - have a very large 1m $, so large that their influence on the 
frequency spectrum is negligible and they may be ignored. In particular, 
the complex branch emanating from B is assumed to have an 1m $ value 
well in excess of that of the essentially vertical branch, shown in the 1m $ 
plane, for all w < A. If this were not so, it would be ridiculous to include the 
vertical branch without also including the two complex-conjugate branches 
emanating from B. The essentially vertical branch is a consequence of 
the piezoelectric coupling and will be included in the analysis. It can sub­
sequently be ignored simply by setting its amplitude equal to zero through­
out. Obviously this could be done with the complex-conjugate branches 
emanating from B also, or any other branches for that matter. A branch 
shown in the position of the essentially vertical branch will probably be 
negligible, but we will include it at this point anyway. 
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3 

Im{ • " ./ • Re{ 
3 2 o 2 3 

Fig. 20. Dispersion curves for the low anti symmetric modes of an infinite, 
polarized ceramic plate for real and imaginary wave numbers including the 
influence of piezoelectricity, 

Thus, as far as we are concerned, there are three branches (or solutions) 
which we have to consider for any co < A in order to obtain an accurate 
solution. The three branches are labeled 1, 2, 3 in the diagram. We now 
take the approximate solution in the form 

a a 
u 1 = ~ K(m)u1m ) , u a = ~ K(m)u~m) + A sin 1]oXl , 

m=l m=l 
(12.27) 

a 
rp = ~ K(m)rp(m) + (el5/en) A(sin 1]oXl) + Cxl , 

1",=1 

where 
3 

U (m) - sin I: x '" H(nm){3(nm) cos 'Yl X 1 - S"(m) 3 ~ 1 ·,cnm) 1, 
n=l 

a 
U (m) - COS I: X '" H(nm){3(nm) sin 'Yl x a - S"(m) a ~ a ,,cnm) 1, (12.28) 

n=l 

a 
rp(m) = cos ;(m)xa ~ H(nm){3~nm) sin 1](nm)X1 ' 

n=l 

and 1]0, A, and C are known in terms of co and rpo from the thickness solu­
tion. We now express the quantities appearing in the remaining boundary 
conditions on X3 = ± I in terms of the Ul , Ua , and rp shown above, form 
the mean-square error M, and minimize M by the appropriate selection of 
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the K(m). To this end, we write the expressions 

333 
To = c ~ K(m)u(m) + C ~ K(m)u'm) + e ~ K(m)m(m) 

3 13 £oJ 1,1 33 £oJ 3,3 33 £oJ r ,3 , 
m=1 m=1 m=1 

To - c ~ K(m)u(m) + c (~K(m)u(m) + A'Yl cos 'Yl_Y) 
5 - 44 £oJ 1,3 44 £oJ 3,1 ",0 "",...1 

m=1 m=1 

+ e15 [~I K(m)cp~~) + (eI5 / Ell) A 'YJo( cos 'YJoXI) + C] , 

(12.29) 

333 

D3 = e31 ~ K(m)ut'i + e33 ~ K(m)u~'Ji - Ess ~ K(m)cp~~) , 
m=1 m=1 m=1 

and after the differentiations are performed we set Xs = I in the above and 
form 

M = 2~ J~h [ (TS)2 + (T5)2 + (::: Ds) 2] dX1 , (12.30) 

where the factor C44/e15 has been introduced for dimensional reasons. This 
factor is not unique; other factors with the same dimensionality could have 
been chosen. This is an undesirable feature of this procedure. The mean­
square error M in (12.30) will be a minimum if 

1 Jh 3 [ 8Ts 8T5 C~4 D 8Ds ]lJK(P) dXI = O. 
lJM = h -h~1 Ts 8K(p) + T5 8K(p) + eis s 8K(p) (12.31) 

Since all the K(p) are independent, we obtain 

Jh [ 8Ts 8T5 C~4 8Ds ] 
-h Ts 8K(p) + Ts 8K(p) + ei5 D3 8K(p) dXI = 0, p = 1,2,3, 

(12.32) 

which yields three linear inhomogeneous algebraic equations in the three 
K(p). This system can be solved for the K(p) unless we have resonance, in 
which case the K(p) diverge. The resonance condition occurs when the 
determinant of the coefficients of the K(p) vanishes. The vanishing of said 
determinant yields a transcendental frequency equation, the roots of which 
determine w vs.l/h. The procedure for making a calculation should be 
obvious. The determination of the algebraic equations in the K(p) requires 
some straightforward if tedious effort. There is no point in presenting the 
final algebraic equations here, since they are quite lengthy, and by them­
selves provide no additional insight. 
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3. SMALL PIEZOELECTRIC COUPLING 

If we had assumed small coupling, the problem considered in Section 2 
of this chapter would simplify somewhat, in that we would have had 

E1 = - (CPo/h)coswt, E3 =0, (12.33) 

so that a pure elasticity problem would remain with E1 as the driving term. 
The solution would proceed in exactly the same way except that the electric 
differential equations and boundary conditions would be ignored, so that 
the thickness vibration and two-dimensional standing wave solutions would 
be purely elastic. Under these circumstances the purely imaginary vertical 
branch on the dispersion curves would not exist. The sums in the two­
dimensional mode equations would be over 1 and 2, and both determinants 
would have the third row and column eliminated, and all piezoelectric con­
stants would be eliminated from any equation pertaining to the two-dimen­
sional standing waves. In the final solution equations the sum on m would 
be over 1 and 2, and cP would not appear. The expression for M would not 
contain D 3 , and we would obtain two linear inhomogeneous algebraic 
equations in K(1) and K(2) in place of the three in the piezoelectric case. 

It should be noted that in either case if an off-resonant steady-state 
solution is obtained, the charge on (and of course, the current through) 
the crystal may be obtained from the relation 

Q = - b II D1] dX3 , 
-I xl=h 

(12.34) 

where b is the length into the paper, and the resonances do not depend on b. 
The time derivative of the above equation gives the relation between the 
voltage across and the current through the crystal. This is the relation 
needed to put the crystal in a circuit. 

4. USE OF VARIATIONAL TECHNIQUES 

In Chapter 6 [Eq. (6.20)] we derived the variational equation 

It dt [I (rkl k - eiil) bUI dV + I Dk k bcp dV 
to V ' V ' 

+ Is (II - nkTkl) bUt dS - Is (B + nlPk) bcp dS] = 0. (12.35) 

We may employ this principle instead of the method of least squares to 
obtain an approximate solution to the problem treated in Section 2 of this 
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chapter. The variational procedure is very similar to the previous one except 
for the last step. 

Exactly as in Section 2 we expand the solution in a sum of the thickness 
solution and the two-dimensional standing waves. Then all that remains 
in (12.35) is 

- b fh (T31 c5uI + T33 c5u3) dXI - b fh D3 c5cp dXI = 0 
-h -h 

at X3 = ± I, 
(12.36) 

since the plate eigenmodes, which satisfy the differential equations and 
boundary conditions at Xl = ± h, are such that all the other terms vanish. 
We then substitute in the above equation instead of (12.31) and equate 
the coefficients of each c5KCm) in (12.36) to zero in order to obtain the three 
equations in the KCm). 

Note that the technique presented in this section does not have the 
unfortunate nonuniqueness of the least-squares technique. However, if the 
boundary at, say, X3 = I ofthe plate in Fig. 19, is held rigidly, the variational 
equation (12.35) is not applicable when the solution consists of an expansion 
in plate eigenmodes because under such circumstances the solution functions 
Uk must vanish at X3 = I and the plate eigensolutions cannot. On the other 
hand, the least squares technique can be used when the aforementioned 
boundary cannot move, because with the use of least squares the solution 
functions Uk need not satisfy any conditions at X3 = I. Nevertheless, in the 
boundary value problem we are now considering the least squares technique 
suffers from the, additional dimensional difficulty that the mechanical 
displacement and stress terms appearing in the error equation are not 
naturally dimensionally compatible. These terms can be made dimensionally 
compatible by introducing a nonunique geometric factor (lor h?) and some 
nonunique combination of elastic constants (c"" or C33 ?). However, the 
difficulties inherent in the variational equation (12.35) and the least squares 
technique are both eliminated if the modification of Hamilton's principle 
presented in Section 4 of Chapter 6 is employed. In this modification the 
variational equation that replaces (12.35) is (6.44). Since there is no surface 
of discontinuity in the problem being considered here, the integral over SCd) 

in (6.44) does not exist and the superscript (m) and attendant summation 
sign can be eliminated. Since the plate eigenmodes satisfy the differential 
equations and boundary conditions at Xl = ± h, aU that remains of (6.44) is 

+ b fh [T3l c5UI + T33 c5u3]"'0=-1 dX1 + b fh [D3 c5cp ]"'0=-1 dXI 
-h -h (12.37) 

+ b fh [ul c5T31 + U3 c5T33 ]",.=1 dXI - b fh [Da c5cp ]"'3=1 dX1 = O. 
-h -h 
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At this point it should be noted that since the boundary conditions in the 
problem we are considering now are asymmetric with respect to Xa , the 
plate eigenmodes in which qJ is symmetric in Xa are no longer adequate and 
the eigensolutions in _~hich qJ is antisymmetric in Xa are also required. 
We may now take both the symmetric and anti symmetric (in xa) plate eigen­
solutions with amplitude coefficients KIm) and substitute in (12.37) and then 
equate the coefficients of each ~Klm) in (12.37) to zero in order to obtain 
the same number of equations as of KIm). 

If a surface of discontinuity were present in Fig. 19, we would expand 
the solution in two sets of plate eigensolutions, one for each region separated 
by the surface of discontinuity. The amplitude coefficients KIm) for each 
term of each set would be independent, and we would employ (6.44) with 
the integral over SId) included, and, as in the immediately preceding discus­
sion, obtain the requisite number of linear algebraic equations for the KIm). 

It should be noted that variational formulations such as (6.17) or 
(6.20) and (6.43) or (6.44) can be used to obtain approximate solutions 
without expanding in plate eigenmodes. In other words,_ the expansion func­
tions selected need not even satisfy the differential equations and boundary 
conditions on the major surfaces in addition to not satisfying the boundary 
conditions on the minor surfaces. Under such circumstances none of the 
integrals appearing in (6.20) and (6.44) can be eliminated. Although this 
latter approach can yield very accurate and useful information, this writer 
feels that it does not yield as much understanding and insight into the 
nature of plate vibrations as does the expansion in eigenmodes. Con­
sequently, this latter approach will not be treated at all in this monograph. 
In recent years this approach has been fruitfully exploited by Eer Nisse 
and Holland (34)* in treating the vibrations of complicated geometric 
structures. 

* Also (16,17) and a number of other publications cited in these references. 



Chapter 13 

TWO-DIMENSIONAL PIEZOELECTRIC 
PLATE EQUATIONS 

1. GENERAL PLATE EQUATIONS FROM A POWER 
SERIES EXPANSION 

Since we are interested here in obtaining plate differential equations 
only, and not in establishing three-dimensional plate boundary conditions, 
we consider the volumetric portion of the variational principle (6.20) and 
ignore the surface portion. If we were to include the surface portion, we 
would obtain no additional terms in the resulting plate equations. The 
volumetric portion of the variational principle is 

5:. dt I v [(Tij,i - eiij) bUj + Di,ib/p] dV = O. (13.1) 

In addition to the variational principle we have the strain-mechanical 
displacement and electric field-electric potential relations, (5.5) and (5.4), 

Sij = t(Ui,j + Uj,i) , 

Ei = - /P,i, 

(13.2) 

(13.3) 

respectively, and the linear piezoelectric constitutive relations, (5.19) and 
(5.20), 

Tij = CijklSkl - ekijEk , 

Di = eiklSkl + BikEk' 

(13.4) 

(13.5) 

The faces of the plate are at X 2 = ± h and the remaining boundary 
is a cylindrical surface with generators perpendicular to the faces as shown 
in Fig. 21. We now expand the mechanical displacement (5,35,36) Uj and 
electric displacement (37) Di in a series of powers of the thickness coordinate 
x2 • Thus 

g 
Uj = ~ X nu~n) 2 J , (13.6) 

n=O 

141 
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2h): 

X3 

X2 

I 
I 

A '" .... '" .... , .... , .... 
'" .... '" .... '" .... 

Xt 

Fig. 21. Orientation of the coordinate system with respect to a 
bounded plate. 

u 
D. = '" x nD(n> 

J ~ 2 J ' 
n=O 

(13.7) 

where g is a positive integer and the variables ujn> and Djn> are independent 
of X2 but are functions of Xl and Xa, and ujn> and Djn> vanish for n > g. 
Successively higher values of g determine successively higher-order theories. 
When the series expansions (13.6) and (13.7) are substituted in the varia­
tional principle (13.1) and the integrations with respect to X 2 are performed 
we obtain 

I t dt I f [(T~":>. - nT(,,:-l) + F~n> - (! f H ii~m» bu~n> 
to A n=O 'J,t 2J J m=O mn J J 

+ (D~~l + (n + 1 )D~n+1» b!p(n>] dA = 0, (13.8) 

where A is the area of the plate and we have introduced the definitions 

Tijn> = Ih x2n Tij dX2 , 
-h 

Fj(n> _ [x2nT2j]~h' 

!p(n> _ Ih X2n!p dx2, 
-h 

(13.9) 

(13.10) 

(13.11) 

for the nth order component of stress resultant, the nth order component 
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of applied plate force per unit area, and the nth order potential resultant, 
respectively; and 

H - fA mn = x~mx n dx _ 2hm+n+1 
-A 2 2 - ___ I __ I" m + n even, 

(13.12) 

=0, m + n odd. 

Since the variations 15ujn) and 15q/n) in (13.8) are arbitrary, we obtain 

u 
T(rt~ - nT.("!-l) + F\n) = n ~'H u\m) 

OJ.' 23 3 0: ~ mn 3 ' (13.13) 
m=0 

D~~) + (n + 1 )D~n+1) = 0 , (13.14) 

as the two-dimensional equations of motion and of electrostatics of order n. 
Note that the substitution of the power series expansion for the electric 
displacement Di given in (13.7) into the three-dimensional equation of 
electrostatics, Di •i = 0, yields 

g 
~ x 2n[D.('!) + (n + I)D2(n+1)] = 0, '.t n=O 

which is satisfied identically by virtue of the form of the two-dimensional 
equations of electrostatics (13.14). 

Substituting the power series expansion (13.6) for Uj in the three­
dimensional expression (13.2) for the strain and rearranging terms, we 
obtain 

_ (/ 1/ (n) 
Sij - ~ X 2 Sij , (13.15) 

1/.=0 

where we have introduced the definition 

SW) = Hut}) + uj~) + (n + 1)(152j u~n+1) + 152i ujn+1»], (13.16) 

for the nth order component of strain. Now, we define the nth order com­
ponent of electric field resultant by forming 

E1n) = fAx2nEi dX2' 
-A 

and we substitute from (13.3) into (13.17) to find 

E.(n) == - <p~f) - 152i (<p(n) - n<p(n-ll) , 

(13.17) 

(13.18) 
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where we have introduced the definition 

wIn) = [x2nrp ]~h (13.19) 

for the nth order component of applied voltage. All that remains now is 
the determination of the two-dimensional constitutive equations. To this 
end, we substitute the power series expansions (13.7) and (13.15) in the 
constitutive equations (13.4) and (13.5), multiply by x 2m dX2 , integrate over 
the thickness, and employ (13.9) and (13.17), with the result 

(m) g (n) (m) 
Tij = Cijkl ~ HmnSkl - ekijEk , (13.20) 

n=O 

g (n) (n) (m) 
~ Hmn(Di - eiklSkl ) = eikEk , (13.21 ) 

n=O 

which, with (13.12), shows that the nth order stress resultants and electric­
field resultants depend on all the strains and electric displacements of even 
order if n is even and odd order if n is odd. If we define 

H;;;,~ = (cof HmnMHmnl , 

U -1 
~ HmrHmn = brn, 

m=O 

(13.21) may be written in the more useful form 

(n) (n)!!' -1 (m) 
D; = eiklSkl + ~ HmneikEk . 

m=O 

(13.22) 

(13.23) 

(13.24) 

Thus we have obtained a complete system of two-dimensional equations 
from the three-dimensional equations. 

At this point it should be noted that the stress at a point cannot be 
determined from a solution of the plate equations because the equations 
are written in terms of the stress-resultants Ti~n) and not the stresses Tij . 

Similarly, we cannot obtain the electric potential at a point, but only the 
electric-potential resultants rp(n). In addition, the actual mode shapes cannot 
be determined from a solution because the X 2 dependence of Uj and D j 

has been assumed. Thus it should be clear that we have given up all hope 
of obtaining a solution of the three-dimensional equations, and have re­
placed them by a larger system of two-dimensional equations which we can 
hope to solve in some cases. It is not surprising then that we are unable 
to obtain the aforementioned three-dimensional information from a solution 
of the two-dimensional equations. It is, of course, implicit that the infor­
mation which we cannot obtain is not pertinent to the information we wish 
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to obtain. This assumption is valid in certain instances-such as the de­
termination of frequency spectra-but not in all instances. It should be 

. clear that we have replaced the philosophy of obtaining an approximate 
solution to an exact system of equations discussed in Chapter 12 by that 
of obtaining an exact solution to an approximate system of equations. 
Note that the F(n) are the inhomogeneous mechanical forcing terms in the 

J 

equations and the ([J(n) are the inhomogeneous electrical forcing terms. 
Hence the ([J(n) are important even in the small coupling case, since they 
are the electrical driving terms which force the elastic solution. Now we 
define two-dimensional kinetic energy, internal energy, and electric enthalpy 
densities by substituting the appropriate series expansions in the respective 
volumetric densities and integrating through the thickness. Thus we obtain 

Jh 1 . • 1 U U • (m) .(n) 
.% == 7};(}UjUj dX2 == 2(} ~ ~ HnmUj Uj , 

-h m=O=O 
(13.25) 

Jh U 
V = h t(TijSij + EiDi) dX2 = t ~ (Tijn)Si'j) + Ei(n)D~n) , 

- n~ 

(13.26) 

Jh U 
de' = t(TijSij - EiDi) dX2 = t ~ (Tijn)SY'/ - Ein)D~n). 

-h =0 
(13.27) 

2. TRUNCATION 0 F SERIES FOR A SPECI FIC 
APPROXIMATION 

The equations in Section 1 are not particularly useful unless they are 
truncated to form a finite system. Unfortunately, the truncation is not 
quite as straightforward as the expansion because it entails an approximation 
which is always a bit difficult because of its nature. In this section we will 
truncate in order to obtain a system that includes the lowest-order coupled 
extensional and flexural motion of the plate. However, before proceeding 
with the truncation it is enlightening to study the character of certain of 
the equations in Section I in some detail. 

An examination of Eq. (13.8) reveals that in making an approximation 
we have the choice of either taking a t5u~n) = 0 and ignoring that nth order 

J 
equation (13.13) or letting bujn) be arbitrary and satisfying the nth order 
equation (13.13). Clearly, from (13.8) a similar relationship exists between 
a particular t5cp(n) and the nth order equation (13.14). The specific choice 
in a given instance depends on some knowledge of the two-dimensional 
standing wave solutions discussed in Chapter 10 in the frequency-wave 
number range of interest. It is also worth noting that the nth order equations 
in (13.13) are coupled to the (n - l)th order equations through the T~j-l). 
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Moreover if n is even, the nth order equation in (13.13) is coupled to all 
the even order equations for which ~ujn) does not vanish by virtue of 
(13.12), the inertia terms on the right-hand side of Eqs. (13.13), and the 
strains of even order appearing on the right-hand side of Eqs. (13.20) for 
m even. Similar statements hold, of course, for m and n odd. In a similar 
way the nth order electrical equations are coupled together for all n's for 
which ~rp(n) does not vanish by virtue of (13.24), (13.12), and (13.18). 
Thus it is clear that in making a truncation we will have the choice, with 
the highest order equations considered, of either including the equation 
and letting the associated ~ujn) (or ~rp(n») be arbitrary, or ignoring the 
equation and letting the associated ~ujn) (or ~rp(n») vanish. The choice 
will be made so as to optimize the approximation for the size of the system 
of equations obtained by an appeal to the character of the solutions discus­
sed in Chapter 10. 

We begin the truncation in which we are interested, and which includes 
coupled extensional and flexural motions, by first setting g = 2 in the 
equations of Section 1. At this stage we have three sets of Eqs. (13.13) 
and (13.14) corresponding to n = 0, 1, 2. This seems simple enough, but 
the truncation is not yet complete because this is far from an optimum 
approximation for such a large number (twelve) of dynamic equations. 
Clearly, we have 

u~n) = 0 
J 

D~n) = 0 
J 

for n > 2, 

for n > 2, 

(13.28) 

(13.29) 

at this stage of the truncation. We now wish to eliminate the differential 
equations of order two from our approximation. For the mechanical 
equations (13.13) this can readily be accomplished by setting ~u?) = o. 
But such an approach will not yield an accurate description of the flexural 
motion because it prevents contraction during the extension accompanying 
flexure, which is undesirable. We would obtain a much more accurate 
description of the flexural motion by permitting the contraction during 
the extension accompanying flexure to take place freely. This can be ac­
complished by letting ~U~2) be arbitrary and setting 

T~~) = 0, (13.30) 

and assuming ii~2) to be negligible in the equations of motion (13.13). The 
other two mechanical displacement conditions 

~Ui2) = 0, ~U~2) = 0, (13.31) 
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are retained. Since the three-dimensional electric potential cp is most likely 
essentially antisymmetric in X 2 because of (13.17) and (13.3), we take 

m2 ) =0, E~2) = 0, (13.32) 

and retain D~2), a = 1,3. This consideration will undoubtedly yield different 
conditions for the even and odd order truncations. From (13.32) and (13.18) 
it is clear that we have 

bq/2) = ° (13.33) 

in this approximation, and we have thus eliminated the equation (13.14) 
for n = 2. At this stage from (13.13) and (13.14) we have a total of eight 
differential equations. From (13.20), (13.21), (13.28), and (13.29) we also 
have the constitutive equations 

T~O) = 2hcpqS~O) - eipE~O) , 

T~l) = ih3CpqS~1l - eiPmll , 

ih3DP) = ih3eiqS~1l + 8ikEl?) , 

2hD~O) + ih3D~2) = 2heiqS~O) + 8ikEJc°), 

ih3D~O) + !h5D~2) = ih3eiqS~O) + 8i2E~2), 

(13.34) 

(13.35) 

where we have introduced the abbreviated indicial notation. The last two 
constitutive equations in (13.35) may be solved simultaneously for DjO) 
and D~2) to give 

3 

D (O) S(O) 9 E(O) 15 E(2) 
i = eiq q + 8h 8ik k - 8h3 8i2 2 , 

(2) 15 (3 (2) (0») 
Di = 8h3 Ji2 8i2E2 - 8ikEk . 

(13.36) 

This system of equations contains, among other things, the lowest thickness­
stretch resonance, which Mindlin has shown [(36); (5), Sections 5.01,6.02; 
(38)] can be eliminated without appreciably altering the range of validity 
of the approximation. This unnecessary thickness resonance can be elimin­
ated by setting 

T~P = 0, nJ) =0, 

T~g) = 0, 

(13.37) 

(13.38) 

and neglecting ii~l) in the equations of motion (13.13). This essentially 
completes the truncation. 
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The condition (13.38) permits the elimination of s~O) from the con­
stitutive equations (13.34) and (13.35) with the result 

where 

T~O) = 2hc;qS~O) - et'pEiO) , 

D~O) = etqS~O) + (1/2h)c{jE)O) - (15/8h3)Ci2E&2) , 

C;q = cpq - (Cp2C2q/C22) ' 

et'p = eip - (ei2cp2/C22) ' 

c{j = tCij + (ei2ej2/c22)' 

(13.39) 

(13.40) 

(13.41) 

The conditions (13.30) and (13.37) permit the elimination of the Sg> 
from (13.34) and (13.35) with the result 

r;1l = ih3YrsS~1l - VJirEl1) , 

D~ll = VJirS~l) + (3/2h3)CijEJll , 

where with i,j = 1,2,3; r,s = 1,3,5; V,W = 2, 4, 6; 

Yrs = Crs - crwcvs(cvw)-l, 

VJir = eir - eivCrw(cvw)-l, 

Cij = Cij + eivejw(cvw)-l. 

(13.42) 

(13.43) 

(13.44) 

Thus we now have the constitutive equations for this intermediate approxi­
mation. 

At this stage our two-dimensional electric enthalpy density takes the 
form 

::'!lC' = t (T<J)S~O) + T~llS~ll - E~O)D~O) - E~llDP) - E~2)D~2» 

= t (2hc;qS~O)S~O) - 2e~S~O)E~O) + i h3YrsSP)S~1l 
- 2VJirEP)S~1l - (1/2h)c{jE~O)E}O) - (3/2h3)CijmllE}1) 

+ (15/4h3)C2kE~2)mO) - (45/8h5)C22Ei2)m2» , (13.45) 

and an analogous expression may be written for the internal energy density. 
Even before this point we could have substituted the strain-mechanical 

displacement and electric field-electric potential relations (13.16) and (13.18) 
in the constitutive equations (13.39), (13.40), (13.42), and (13.43) and sub­
stituted the latter in the equations of motion (13.13) and (13.14) for n = 0,1 
to obtain seven differential equations in the seven variables u}O), u~I), rp<Ol, 
and rp(1). However, if we had done this and specialized the resulting equa-
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tions to rotated Y-cut quartz (or even an isotropic material for that matter) 
and obtained the thickness solution we would have obtained a thickness­
shear frequency that was too high. This sort of thing happens because we 
have assumed a thickness dependence of the displacement which is linear, 
whereas the actual one is trigonometric. In order to compensate for this 
(incorrect) assumption without altering the description of the fundamental 
modes at long wavelengths, we follow Mindlin (36) and introduce correction 
factors ){4 and ){6 by replacing S40) and S~O) in:ilC' and V with ){4S~0) and ){sS~O), 
respectively. This replacement produces important alterations in the zero­
order constitutive equations. The values of ){4 and ){s are to be determined 
so that the two lowest thickness-shear frequencies predicted by these ap­
proximate equations agree with the exact values predicted by the three­
dimensional equations in Chapters 10 and 11. The correction factors may 
conveniently be inserted in the appropriate position by replacing C;q and 
etp in de" and V by 

C;: = ){~){~C;q, etq* = ){~e{q (no sum), (13.46) 

where a and (J are the powers a = cos2(pn/2), (J = cos2(qn/2). Thus ){~ 
(or ){~) is equal to ){4, ){s, or 1 depending on whether p (or q) in c;: and 
etp* is 4, 6, or neither, respectively. The same definitions hold for Ctjtl, 
etk! , ){fj' and ){Zl if p and q are replaced by ij and kl. 

At this point it should be noted that piezoelectric correction factors 
should be introduced in addition to the aforementioned elastic correction 
factors in the fully coupled piezoelectric case. Furthermore, it is believed 
that these piezoelectric correction factors should be introduced by replac­
ing E?) and E~ll by corrected terms in de" and V because of the incorrect 
assumption of the thickness dependence of Dl and D 3 • However, nothing 
has been done in connection with the determination of such piezoelectric 
correction factors, mainly because the dispersion curves in a fully coupled 
piezoelectric case have never been determined. Such correction factors are, 
of course, of no importance in a small coupling case (such as quartz). 
Consequently, they are being neglected in this development. 

To recapitulate, after the truncation and adjustments we have the 
following: 

The electric enthalpy density de" is given by the previous expression 
with C;q and e1;, replaced by c;: and et/. 

The internal energy density V is given by 

V = de" + E;O)D;O) + EP)DP) + EJ2)D~2). (13.47) 
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The kinetic energy density 3f is given by 

3f = eh(it~O)it}O) + (h2 j3)it~°it~O) , 

where here, and hereafter, indices a, b, c, d range over 1, 3. 
The constitutive relations are given by 

T~O) = 8:7t'j8S~O) = 2hc;:S~O) - eZ;mO) , 

n° = 8:7t'j8SP) = i h3YrsS~1) - tpirE~l) , 

Dt) = - 8:7t'j8EIO) = e{'q*S~O) + (1j2h)c{jEjO) - (15j8h3)Ci2Ei2) , 

Dlo = - 8:7t'j8EP) = tpirS~o + (3j2h3)!;ijE}o, 

D~2) = - 8:7t'j8E~2) = (15j8h5)(3c22Ei2) - h2c2kEkO»). 

The equations of motion take the form: 

(13.48) 

(13.49) 

(13.50) 

n~~a + FjO) = 2ehiijO) , T~V,a - ng) + F61) = ieh3uJo. (13.51) 

The equations of electrostatics take the form 

D~~~ + D~o = 0 , D~~~ + 2m2 ) = O. 

The strain-displacement relations are given by 

SiJ) = Hu1?] + uj?l + b2juP) + b2iUjO) , 

SJt) = Hu~~1 + Ub~~). 

The electric field-potential relations are given by 

E}O) = - q;~y) - b2i(/J(O) , 

EP) = - q;~p + b2i (q;(O) - (/J(1») , 

E~2) = 2q;(O _ (/J(2) , 

and we note that ([>(2) = h2(/J(O). 

(13.52) 

(13.53) 

(13.54) 

The foregoing equations (13.49)-(13.54) comprise 37 equations in the 
37 dependent variables: five each of T~O) and S~O); three each of TP), S~l), 

D}O), E}O), DP), EP), and ulO); two u~o; and D~2), E~2), q;(O), and q;(1). The 37 
equations may readily be reduced to seven in seven variables by first sub­
stituting from (13.53) and (13.54) into (13.49) and (13.50) with the result 
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T}J) = 2hctMuk~1 + 1521 Ukl » + eZi";rp~Z) + e~/J(/)(O) , 
T~lJ = i h3YabcdU~~~ - "P2abrp(O) + "Piabrp~P + "P2ab(/)(1) , 
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(13.55) 

D(O) = e~*(u(O) +. 15 utI) - (1/2h)c~m(l) - (15/4h3)c- m(l) - (1/8h)c~ (/)(0) t tkl k,l 21 k 'J, ,J ,2, ,2, 

DP) = "PiabU~~b + (3/2h3)Ci2rp(O) - (3/2h3)Cijrp~}) - (3/2h3) Ci2(/) (1) , (13.56) 

D~2) = (15/8h5)(h2c2krp~Z) + 6C22rp(1) - 2h2c22(/)(O» , 

where C~2 = 4c{2 - 15ci2; and then substituting from (13.55) and (13.56) 
into (13.51) and (13.52), respectively, to obtain 

2hctMuk~li + D2kul;{) + eMrp~Zl + F}O) + eM'(/)~?) = 2ehiljO) 

i h3YabcdU~~~a - 2hc~bMuk~1 + D2kUP» - e{2brp~?) 

+ "Piab(rp~U - D2irp~~» + Ftl) - e~2~(/)(0) + "P2ab(/)~~) = i eh3il~l) , 

i h3"P2klUk~! + i h3eM(uk~li + D2kul~D - t h2c~rp~?] 
- C2/rp~}) - D2jrp(0» - i Ck2rp~l) - (h2/12)c~2(/)~?) - C22(/)(1) = 0, 

i h3"PiabU~~bi - Ciirp~t] - D2jrp~?» + i C2krp~Z) + (15/h2)c22rp(l) 
- 5C22(/)(0) - C i2(/)~t) = O. 

(13.57) 

(13.58) 

Equations (13.57) and (13.58) are seven second-order differential equations 
in the seven dependent variables u~O), u~l), rp(O), and rp(1) with seven inhomo­
geneous (forcing) terms; the five surface tractions FjO) , F~l) and the two sur­
face potentials (/)(0), (/)(1). Note that there are three independent variables, 
Xl , X 3 , and t, and that the major surfaces are already included in the case 
of the infinite medium (plate). Note that the inhomogeneous potentials 
(/)(0), (/)(1) are important even in the small coupling case, since they are the 
electrical terms that drive the motion. 

3. UNIQUENESS OF SOLUTION 
OF THE TRUNCATED SYSTEM 

We have still to establish edge (boundary) conditions at the bounding 
surface of a finite plate. To this end, we will establish a theorem of uni­
queness of solution of the aforementioned 37 equations in the classical 
Neumann manner. We consider two sets of the 37 variables, each set satisfy­
ing the system of equations, and form a system comprising the 37 differences 
between corresponding variables in the two sets. Since each set satisfies the 
equations and the equations are linear, the difference set also satisfies the 
equations. In terms of the difference quantities, we form the equation 
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ft dt f [(f(?). + P5°) - 2flhu(0»)u(O) + (f - f(O) + P(I) 
'1,' J '" J J ab,a 2b b 

to A 

- ieh3ubll)ubl)] dA = 0, (13.59) 

where the bar denotes the difference. After much tedious manipulation and 
the use of all other difference equations along with many applications of 
the divergence theorem the above equation may be brought to the form 

f [~+ 5'fy dA = ft dt J n (f(O)u~O) + f(1)U(I) - cp(O) lyO) - cpO) DO)) ds 
A to to j a a a} J ab b (a) a 

+ ft dt f [P(O) U (.0) + PO)uO) - (jj(O)(lyO) + h2 D(2») - (jj0) /J(1)] dA 
t AlJ bb 2 2 2' 
o (13.60) 

where ~ and5'f denote the internal and kinetic energy densities, respectively, 
of the difference system; C denotes the edge of the plate; and the na are the 
components of the outward unit normal to the edge of the plate in the plane 
of the plate. From the above equation we see by the usual arguments based 
on the positive-definiteness of ~ and5'f that there are seven conditions to 
be specified at each point of the interior and at each point on the edge of 
the plate in addition to the initial values of ulO), u~ll, 1jJ(O), it}O) , and it~ll. 

Referred to orthogonal coordinates n, s, x2 , the edge conditions are one 
member of each of the seven products 

Tj!l~uj!l), TA~)u~O), TAWu~O), ThIJu~I), Tltlu~ll, 1jJ(O)Dj!l), IjJ(1)Dlt). (13.61) 

In terms of the orthogonal coordinates, a, (J, X 2 , the interior conditions 
are one member of each of the seven products 

FJO)u~O), F!O)u~O), F~O)u~O), F2)u~1), F~llU~l), 4)(0)(D~0) +h2D~2»), 4)0) D~ll. (13.62) 

The terms DiO) + h2Di2) and Dill in the interior conditions (13.62) can 
be interpreted by recalling that, to our approximation, 

D2 = DiO) + x2D~I) + X 22 D~2) . 

Hence from (13.63) we have 

DiO) + h2Di2 ) = t[D2(h) + D2( - h)], 

ml ) = (lj2h)[D2(h) - D 2 ( - h)]. 

(13.63) 

(13.64) 

The above interior conditions (13.64) and the interpretation indicates that 
these equations, which have been derived for the situation where the major 
surfaces of the plate are completely coated with electrodes, may be applied 
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even when the major surfaces are without electrodes provided the dielectric 
constant 8 22 of the plate is sufficiently larger than the dielectric constant of 
the surrounding region simply by setting 

D~fH + h2D~2) = 0, mI) =0, (13.65) 

at all interior points. Under these circumstances rp(O) and rpm become un­
known variables. However, the above two conditions in (13.65) permit the 
elimination of rp(O) and rpm from the equations (13.49)-(13.54). When a 
solution is obtained the unknown quantities rp(O) and rpm can, of course, 
be obtained from the solution. 

4. ORTHOGONALITY OF SOLUTION 
OF THE TRUNCATED SYSTEM 

In solving a forced vibration problem it is sometimes useful to have 
orthogonality conditions. To this end we consider two solutions 

(ur, ubI), rp(O), rpm) = (ujO)/L, ubl)/L, rp(O)/L, rpm/L)eiwp,t, 

(ujO), ubI), rp(O), rp(l») = (ur', UbI)., rp(O)., rp(I)·)eiw•t , 
(13.66) 

of the equations of motion (with FjO) = F~l) = 0) and electrostatics. The 
substitution of the first of (13.66) in the equations of motion (13.51) yields 

2ehw/ujO)/L = - Ti~~1/L, 

ieh3w/Ubl)/L = - TW.~ + ng)/L, 

and the second yields 

2ehw•2UjOl· = - T~J,)l' , 

ieh3w.2uhl). = - Td5;~ + ng)·· 

From (13.67) and (13.68) we now form the equation 

2he(Wp,2 - w.2) fA (ujO)p,ujO). + th2UbI)/LUhl).) dA 

= f (T~O)!u(O)/L - T(O)!,u(~)' + T(I),.ump, - T(I)/Lu(I)· 
A 'J,' J 'J,' J ab,a b ab,a b 

+ ~~)/Lu~ll· - T~~)vU~l)/L) dA. 

(13.67) 

(13.68) 

(13.69) 

After much tedious manipulation and the use of the constitutive equations 
(13.49) and (13.50), the equations of electrostatics (13.52), the relations 
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(13.53) and (13.54), the symmetries of the material constants, and the di­
vergence theorem, Eq. (13.69) may be brought to the form 

2nh(w 2 - W 2) f (u(O)I'U(.O)v + lh2u(I)l'u°)v) dA 
"I' v A JJ 3b b 

= f A [CP(O)I'(D~O)v + h2D~2)v) - CP(O)v(D~O)1' + h2D~2)1') 
+ CP(I)I'D~I)v - CP(I)vD~I)I'] dA 

+,.( n (T(O)vu(.o)1' - T(O)l'u(O)v + T(l)vu(I)1' - T(I)l'u0 )V 
'j' c a aJ J aJ J ab b ab b 

+ Dd0 )vq;(O)1' - D~O)I'q;(O)v + D~I)vq;(I)1' - D~I)I'q;(I)v) ds. (13.70) 

The area integral on the right-hand side of (13.70) vanishes for either zero 
electric potential or zero electric displacement on both major surfaces of 
the plate, and the edge integrals vanish for homogeneous boundary con­
ditions on the edge. Thus for homogeneous conditions on the major surfaces 
and edge we find 

f (U(O)I'U(O)v + lh2uO)l'u(I)v) dA = N 0 
A j j 3 b b (I') PV' 

(13.71) 

where N(I') is a normalization factor. These are the orthogonality conditions 
for the approximation. 

5. STEADY-STATE FORCED VIBRATIONS. I 

Let us consider the problem of steady vibrations forced by an ac voltage 
applied to electrodes on the major surfaces of a plate with its edge free. 
Under these circumstances the inhomogeneous terms FjO) , F~I), and cp(I) 

vanish and only the inhomogeneous term cp(O) remains. The boundary 
conditions on the edge are 

nan~) = nanb) = naD~O) = naD~I) = 0 , (13.72) 

since we have assumed the dielectric constants of the plate to be large 
compared with those of the surrounding region. Although these edge con­
ditions appear to be homogeneous, they are actually inhomogeneous due 
to the presence of the prescribed potential cp(O) in the constitutive equations 
(13.49) and (13.50) by virtue of (13.54). It will be convenient for our purposes 
here to transfer all inhomogeneous terms from the boundary conditions to 
the differential equations. It should be noted that at times it might be better 
to transfer the inhomogeneous terms from the differential equations to the 
boundary conditions, as would be the case in the presence of dissipation. 
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Nonetheless, we shall proceed as specified. To this end, we shall choose the 
auxiliary function so that it removes the inhomogeneity not only from the 
boundary conditions (13.72), but also from the electrostatic equations 
(13.58), thereby leaving a residual problem of inhomogeneous equations 
of motion, homogeneous electrostatic equations, and homogeneous bound­
ary conditions. Let 

(ur, u£o, q;(O>' q;(ll) = (ujOlA, U~IlA, q;(OlA, q;(llA) eiwt 

+ (U(olR U(IlR m(OlR m(1)R) eiwt 
j , b 'T 'T , (13.73) 

where the superscript A identifies the auxiliary functions and R the residual 
solution. Inserting this solution in the constitutive relations (13.49) and 
(13.50) and cancelling the factor eiwt, we obtain expressions of the type 

where 

Ti1l = Ti1lR + Ti1lA + e:ij<P(Ol , 

Ti1lR = 2hc&li(u~~lR + t52IU~llR) + eU;q;~~lR, 
TfJlA = 2hc&ZI(u~~lA + t52IU~llA) + eZ;jq;~~lA. 

(13.74) 

With resolutions like (13.74) for all the constitutive equations, the dif­
ferential equations (13.51) and (13.52) take the form 

TiT.~R + 2ehw2u~OlR + TmA + 2ehw2ujOlA + e~j<P~?l = 0 , (13.75) 
T~~~{f - nglR + ieh3w2ubllR + TJ~~t - TiglA + ieh3w2ubIlA - e:2~<P(ol = 0, 

D}?lR + m IlR + D1?lA + D~llA - (1 18h )S;2<P~?l = 0 , 

D}~IR + 2D~2lR + D}~lA + 2m2lA - (15/2h3)s22<P(Ol = 0, 

and the boundary conditions (13.72) take the form 

naT~~lR + nan~lA + nae:a~<P(Ol = 0 , 

naTJtlR + naTJLlA = 0 , 

naD~OlR + naD~OlA - (1 18h )naS~2<P(Ol = 0, 

naD~IlR + naD~llA = o. 

(13.76) 

(13.77) 

We now choose the auxiliary functions u}OlA, U~llA, q;(OlA, and q;(IlA to be 
particular solutions of the differential equations 

D}?lA + mIlA = (s;2/8h)<P~?l , 

D\~lA + 2D~2lA = (15 12h3)s~2<P(ol , 
(13.78) 
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and to satisfy the boundary conditions 

naT~~lA + nae:aj<1>(Ol = 0 , 

naT~blA = 0, 

naD~OlA - na(8~2/8h)<1>(ol = 0, 

(13.79) 

naD~llA = O. 

Then, inserting (13.78) and (13.79) in (13.75), (13.76), and (13.77), re­
spectively, we find the residual problem governed by the differential equa­
tions 

Ti~~~R + 2ehw2uJOlR + 2ehw2UJOlA + Gr = 0 , (13.80) 

nb~f} - nglR + ieh3w2u~llR + ieh3w2ubllA + ih2G~ll = 0, (13.81) 

D~?lR + DillR = 0 , 

D~~lR + 2Di2lR = 0 , 

and the boundary conditions 

naT~~lR = naTA},lR = naD~lR = naD~l)R = 0 , 

where the inhomogeneous forcing terms are given by 

(13.82) 

(13.83) 

(13.84) 

GjOl = n~~A + e:ij<1>~?l, G~ll = (3/h2)(TAb~t - T4g lA - e:2t<1>(ol). 

The solution of the residual problem may be expressed as an infinite series 

(U(~lR U(llR m(olR m(llR) = ~ A (u(oll' U(llj.l m(Olj.l m(llj.l) 
J 'b " 'T ~ Jl J 'b " 'T , 

(13.85) 
j.l 

where ujOlll, U~llll, q;(Olll, and q;(1)1l are the orthogonal solutions of the associated 
homogeneous (<1> (0 l = 0) eigensystem, 

Ti~~11l + 2ehw/ujOlll = 0, 

Trt~t: - ng lll + ieh3w/u~llll = 0, 

D~?lll + Dillil = 0, 

D~~lll + 2Di2lll = 0, 

(13.86) 

(13.87) 

naT~~lll = naTA},lll = naD~Olll = naD~l)ll = 0 on C. (13.88) 

Noting, from (13.85), (13.55), and (13.56) (with <1>(Ol = 0), that 

(T~OlR T(l)R D~OlR D~llR D(2lR) = ~ A (T~Olll T(1)Il D(Plj.l D(1)Il D(2)Il) (13.89) 
1,)'ab'1,'1-'2 ~J.ll,J'ab'1't'2' 

I' 
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we see from (13.87) that the residual electrostatic equations (13.82) and 
(13.83) are satisfied identically, since they are satisfied by each term of the 
sum in (13.85) separately. In order to find the A" which will make the series 
solution (13.85) satisfy the residual equations of motion (13.80) and (13.81), 
we must first express the known inhomogeneous terms, in (13.80) and 
(13.81) in series form: 

G~O) = ~ B"u~O)" , 
} ~ } 

" G~l) = ~ B"u~l)", 

" 

U~O)A = ~ C"u!O)" , 
} ~ } 

" 
u~l)A = ~ C,..u~l)". 

" 

(13.90) 

(13.91) 

Multiplying (13.90) by ujO)v, (13.91) by !h2U~l)v, adding, integrating over the 
area of the plate, and using the orthogonality relations (13.71), we find 

B = N-l f (G~O)U<~)" + ih2G(l)u(l),,) dA 
" <")A}} bb' 

C = N-l f (U<~)AU~O)" + ih2u(l)AU(l),,) dA. 
" <")A}} b b 

(13.92) 

Now substituting (13.85) and (13.89)-(13.91) in (13.80) and (13.81), using 
(13.86), multiplying (13.80) by ujO)v and (13.81) by u~l)v, adding, integrating 
over the area, and then using (13.71), we find 

A" = (B" + 2ehw2C,,)/2eh(w/ - w2) , (13.93) 

thereby showing that each A" has a resonance denominator. Thus we have 

( u<O) u(l) mID) m(l) = (U<O)A U(l)A mW)A m(l)A)eiwt 
j' b ''t' 'T j , b 'T ''r 

+ ~ A (u~O)" U<l)" mW)" m(l)")eiwt 
.(..,J JI. J 'b 'T '. , 

(13.94) 

" 
as the complete steady-state solution of (13.57) and (13.58) with boundary 
conditions (13.72). Obviously, very near a resonance-say w.-one term 
of the series expansion in (13.94) dominates all others and the quasi static 
auxiliary solution as well, so that our solution (13.94) becomes 

( u<O) u<l) mID) m(l) = A (u<O). u<l)v mID). m(l)')eiwt 
j , b'T 'T v j , b 'T 'T . (13.95) 

The solution, of course, blows up at w = w. because A. diverges. 

6. DETERMINATION OF SURFACE CHARGE 

Since the ac voltage is applied uniformly over traction-free faces by 
means of a thin perfectly conducting film, we have 

(j)<O) Veiwt, (13.96) 
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where V is the constant voltage drop across the thickness. The current 
through the plate is equal to the time derivative of the integrated surface 
charge, Q, over the whole area of a face, where 

Q = fA D2 L
2
=-h dA. (13.97) 

Substituting from (13.63) into (13.97) and using the two-dimensional 
equations of electrostatics (13.52), the divergence theorem, and the electric 
boundary conditions on C in (13.72), we find 

Q = f A D~O) dA. (13.98) 

Then substituting (13.94) in the first of (13.56) and the resulting expression 
for D&O) in (13.98), we have for the total surface charge 

Q = V[L - (e~2/8h)A + ~ A/X!"], (13.99) 

where A is the area of the plate and the AI' are given in (13.93) and 

Y = f [e**(u(O)!" + (j u(1)!") - (e* /2h)m(O)!" - (15/4h3 )eS m O )!"] dA 
!" A 2kl k,l 21 k 2j '1',j 22'1" 

(13.100) 
L = f [e**(u(o)A + (j U(1)A) - (e* /2h)m(OJA - (15/4h3 )eS m(llA] dA 

A 2kl k,l 21 k 2j '1',j 22'1" 

(13.101) 

with the constant V factored out. The formula (13.99) for the surface charge 
Q takes account of the action of the crystal both as a capacitor and as a 
charge generator, including in both cases the distortion of the field due 
to the finite dimensions of the plate. When in the vicinity of a resonant 
frequency w = Wv one term in the sum in (13.99) dominates all others, and 
the formula for surface charge takes the form 

Q = V[L - (e~2/8h)A + AvYv]. (13.102) 

At resonance (w = w.) Av and hence Q approach infinity. Right near the 
resonant frequency there is the so-called antiresonant frequency at which 
the quasi static terms in (13.102) cancel the resonant term, so that Q vanishes. 

7. STEADY-STATE FORCED VIBRATIONS. II 

In the solution to the nondissipative forced vibration problem which 
we have obtained we have transferred the inhomogeneities from the bound­
ary conditions and the electrostatic equations to the equations of motion. 
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This procedure enabled the solution to be obtained as an expansion in the 
eigensolutions of the associated homogeneous problem. As we already 
know, there is another procedure whereby we transfer the inhomogeneities 
from the differential equations to the boundary conditions. Moreover, this 
latter procedure is equally applicable when dissipation is present. We may 
obtain the solution based on this latter procedure simply by defining our 
auxiliary solution in such a way that the residual differential equations are 
homogeneous, rather than in the way we did before. To this end, we choose 
the auxiliary functions U(O)A U<UA m(O)A and m(1)A to be particular solutions 

i ' b 'T' ,. 
of the equations 

Ti}~lA + 2ehw2u~O)A + eM'(/)~?) = 0 , 

TJt~t - ng)A + ieh3w2ubuA - e:2b(/)(O) = 0, 

D~?lA + D~UA - (ei2/8h)(/)~?) = 0, 

D~~lA + 2D~2)A - (15/2h3)e~2(/)(O) = 0, 

(13.103) 

without regard to boundary conditions. Then inserting (13.103) in the full 
equations (13.75)-(13.77), we find the residual problem governed by the 
homogeneous equations 

Ti}~lR + 2ehw2ujO)R = 0 , 

TJW! - ng)R + ieh3w2ubl)R = 0 , (13.104) 

D\?lR + m])R = 0, D}~lR + 2D~2)R = 0 , 

and the inhomogeneous boundary conditions 

naT~~)R = - naT~~)A - nae:a~(/)(O), naTJt)R = - naT~t)A, 

naD~O)R = - naD~O)A + na(e~2/8h)(/)(O), naD~l)R = - naD~UA, 
(13.105) 

wherein the entire right-hand sides of (13.105) are known from the afore­
mentioned particular auxiliary solution. We must now obtain an appropriate 
number of independent solutions of the residual homogeneous equations 
(13.104) at any given frequency, and take a sum of those independent 
solutions in order to satisfy the seven inhomogeneous boundary conditions 
(13.105) of the residual problem. The boundary condition equations (13.105) 
yield a number of inhomogeneous algebraic equations in the same number 
of amplitudes of the independent solutions of the residual homogeneous 
equations. Hence the amplitudes may be solved for in terms of the driving 
terms and the resultant solution thereby obtained. The above may be 
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accomplished, of course, without further approximation for a highly limited 
number of geometries only. The series method of solution naturally suffers 
from the same limitation. When the present solution is obtained the surface 
charge Q may be obtained from the equation 

Q = f (D(O)A + D(o)R) dA 
A 2 2 ' 

(13.106) 

where D~O)A and D~O)R are determined from the constitutive relation for D~O). 
The present solution may be generalized formally to account for a small 
amount of dissipation simply by replacing the real elastic constants by 
complex quantities, as is usually done in linear viscoelasticity theory. The 
complex quantities will, of course, be functions of frequency. When the 
complex quantities are introduced in place of the elastic constants the 
resonances may be defined as the frequencies at which Q is a maximum 
for a given voltage. When the system is left nondissipative the solution 
blows up (Q becomes infinite) at resonance and cannot be used for a cal­
culation. 

8. TRUNCATED PLATE EQUATIONS 
FOR ROTATED V-CUT QUARTZ 

When the arrays of elastic piezoelectric and dielectric constants for a 
crystal with 2-monoc1inic symmetry given in (7.7)-(7.9) are substituted in 
(13.49) and (13.50) we obtain the constitutive equations 

T(O) - 2h [c* u(O) + c* U u(O) + c* U u<O + c* u(O)] + e* m(O) 1 - 11 1,1 14 4 2,3 14 4 !l 13 3,3 11 r,l , 

T~O) = 2hudc:6u6u~?1 + C:6U6UP) + c:6ui?~ + c:6u~?I] + e~6U6q>(O) + e:6U6ffJ~g) , 
TJO) = 2h[C:6u6u~?1 + C:6U6Ui1) + c:5ui?~ + c:5u~?1l + e~5q>(O) + e:5ffJ~g), 
TjO) = 2hu4[ci4ui?1 + Ct4U4U~?~ + Ct4U4U~I) + C:4U~%] + et4U4ffJ~~) , 
T~O) = 2h[ct3Ui~i + C~u4u~~1 + C~U4U~I) + c:3u~~1] + et3ffJ~~), 
DiO) = etlui~i + et4u4U~?~ + et4u4U~I) + et3U~?~ - (lj2h)etlffJ~~) , 

D~O) = e~6u6u~?1 + e~6U6Up) + e~5ui?~ + e~5u~?1 - (1j2h)[e~2q>(O) + e~3ffJ~g)] 
- (15 j4h3)e~2ffJ(1) + (15 j8h )e~2q>(O) , 

D~O) = e:6u6u~?1 + e:6u6up) + e:5ui?~ + e:5U~?{ - (1j2h)[e~3q>(O) + e:affJ~g)] 
- (15j4h3)e~3ffJ(1) + (15j8h)ebq>(O) , 

Til) = (2h3j3)[Ynuel + YI3U~!n + VJ11ffJ~P, 
TJl) = (2h3j3)[Y55Ui!~ + Y55u~!1l + VJ25q>(1) - VJ25ffJ(O) + VJ35ffJ~A), 
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TJO = (2h3 13) [YI3Ui!~ + Y33U~!~] + 1pI3qJ~P , 

Dil) = 1pnui!I + 1pI3U~!~ - (3/2h3)CnqJ~~) , 

D(1) - 111 u(1) + 111 u(l) - (3/2h3)[1- (/>(1) _ 1- m(O) + 1- m(l)] 
2 - '1'25 1,3 '1'25 3,1 <'22 <'22'1' <'23'1' ,3 , 

D~l) = 1p35ui!~ + 1p35U~!I - (3/2h3)[C23(/>(1) - C23qJ(O) + C33qJ~~)], 
D~2) = (15/8h3)[8~2(/>(0) + 8~3qJ~g)] - (45/8h3)8~2(/>(O) + (45/4h5)8~2qJ(1). 

(13.107) 

Constitutive equations for rotated Y-cut quartz in this approximation have 
been presented by Beaver (39). However, there are discrepancies between 
his Eqs. (9) and our (13.107) above. 

When the constitutive equations (13.107) are substituted in the plate 
stress equations of motion (13.51) and the plate charge equations of elec­
trostatics (13.52) we obtain the differential equations 

* (0) * (0) ( * *) (0) ( * *) (0) * (1) 
Cn U I ,l1 + C55UI ,33 + C14"4 + C56"6 U 2,I3 + Cl3 + C55 U3 ,I3 + C56"6UI,3 

* * * F(O) * (1) ell (0) e35 (0) e25 (/>(0) I .• (0) 
+ C14"4U3,I + 2h qJ,n + 2h qJ 33 + 2h ,3 + ----vI = eUI , 

(Ci4"4 + "6c!6)uiOI3 + c;'6,,/uJoII + C:4"4 2U~0~3 + "6C:6U~0~I + C:4"4U~0~3 , , , , , 

* 2 (1) * 2 (1) e14"4+ e36"6 (0) e26 (0) 2 ··(0) * *) * F(O) 

+ C66"6 U1 ,1 + C44"4 U3,3 + ( 2h qJ,I3+2h"6(/>,1 +271 = e U2 , 

( * *) (0) * (0) + * (0) + * (0) + * (0) + * (1) 
C13 + C55 U1 ,I3 + C56"SU2,11 C34"4U2,33 C55U3,11 C33U3,33 C56"6UI,1 

* * * F(O) 

+ c* (1) + (e13 + e35 ) (0) + ~ (/>(0) + _3_ _ ii(O) 
34"4U3,3 2h qJ,I3 2h ,1 2h - e 3 , 

* (0) * (0) (* *) (0) (* + *) (0) + (* + ) (1) ellu 1,11 + e35u 1,33 + e14"4 + e3S"s U2,I3 + el3 e35 U3,13 e36"S 1p25 UI ,3 

* * 3 ( * ) (1) 8 11 (0) 8 33 (0) + 1- (0) 
+ e14"4 + 1p25 U3 ,I - 2h qJ,n - 2h qJ,33 2h3 <'22qJ 

3 (5 S ) (1) 8~3 (/>(0) 3 (/>(1) 15 S (/>(0) _ 
- 2h3 "2823 + C23 qJ,3 - 2h ,3 - 2h3 C22 + 8h 8 23 ,3 - 0, 

3 * (0) 3 * 2 (0) 3 * (0) 3 * 2 (1) (1) 
~ C56"SU1,3 - ~ C66"6 U2,1 - ~ C56"6U3,I - ~ C66"6 U1 + YnUI,l1 

+ (1) + ( + ) (1) 3 ( * + ) (0) + 3 (1) 
Y55UI,33 YI3 Y55 U3 ,I3 - 2h3 "6e36 1p25 qJ ,3 2h3 1pnqJ,ll 

3 (1) 3 * (/>(0) 3 (/>(l) 3 F(I) .. (1) 
+ 2h3 1p35qJ,33 - 2h3 e26"6 + 2h3 1p25 ,3 + 2h3 1 = eUI , 
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3 * (0) 3 * 2 (0) 3 * (0) 3 2 * (1) - Ji2 CI4)(;4UI.I - Ji2 C44)(;4 u2,a - Ji2 Ca4)(;4Ua,3 - Ji2 )(;4 C44Ua 

( ) (1) + (1) + (1) 3 (* + ) (0) + Y13 + Y55 UI,Ia Y55Ua,1l YaaUa,a3 - 2ha e14)(;4 "P25 CP,I 

3 ( ) (1) + 3 cP(1) + 3 F(I) •• (1) + 2h3 "P13 + "Pa5 CP,Ia 2ha "P25,I 2h3 a = eUa , 

(1) + (1) + ( + ) (1) + 3 (r + 5 8) (0) 
"PUUI.ll "P35UI,a3 "PI3 "P35 U3,I3 2h3 <'23 2"" 8 2a CP,3 

45 8 (1) 3 r (1) 3 r (1) 15 'cP(O) + 2h5 822CP - 2h3 <,nCP.ll - 2h3 <'a3CP,33 + 4h3 822 

3 r .m(I) 45 s .m(0) 
- 2ha <'2a""',3 - 4h3 8 22"", = O. (13.108) 

9. AN APPLICATION TO A ROTATED V-CUT 
QUARTZ PLATE 

As an example of the use of the equations obtained let us consider a 
rotated Y-cut quartz plate with edges at Xl = ± I and unbounded in the X3 

direction, as shown in Fig. 22. We will obtain the solution using both of 
the aforementioned procedures. Let us first consider the series expansion 
procedure discussed in Section 5. Clearly the problem, and hence the solu­
tion, is independent of Xa. An examination of Eqs. (13.108), which are 
applicable to rotated Y-cut quartz, when they are independent of Xa reveals 
that we may take 

uiO) = u~I) = cp(O) = 0 , (13.109) 

while u~O), u~O), uiI), and cp(l) remain coupled to the driving voltage. Then 
from (13.108) the governing differential equations are 

C66)(;62(U~?~I + u1!D + C56)(;6U~?~I + ew2u~0) = 0, 

C56)(;6(U~?~I + u1~D + C55U~?~I + ew2u~0) = 0 , 

ihaYllU1!~I - 2h)(;62C66(U~?~ + uP) - 2h)(;6C56U~?~ + "PllCP~U (13.110) 

+ ih3ew2up) - )(;6e26 V = 0 , 

ih3"PllU1!~I - CllCP~U + (15/h2)8~2CP(1) - 58~2V = O. 

Note that the constant e26 couples the thickness-shear deformation with 
the applied voltage, and "Pn couples the flexural deformation with the 
induced electric field. 
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In accordance with Fig. 22, the plate is bounded by Xl = ± I and 
Xa = ± w. The appropriate boundary conditions on Xl = ± I are 

ng) = ng) = np = D~l) = 0 , (13.111) 

and we ignore the boundary conditions on Xa = ± w. Substituting from 
the constitutive equations (13.107) into the boundary conditions (13.111) 
on Xl = ± I and taking account of (13.109), we obtain 

2hx6C66(U~?i + uP») + 2hc56U~?i + e26 V = 0, 

2hx6C56(U~?i + u~l») + 2hc55U~?i + e25 V = 0, 

ihaYllU~~i + 1pufP~P = 0, 

iha1pllU~~~ - CllP~P = O. 

(13.112) 

A set of auxiliary functions which may be used to remove the inhomoge­
neous terms, V, from the electrostatic equation, the fourth of (13.110), 
and the boundary conditions (13.112), is 

U&O)A = (1/2h) VP2XI, U~O)A = (1/2h)VPax l , 

p<I)A = th2 V , 
U~I)A = 0 (13.113) 

where 
P _ e25c56 - e26c55 

2 - X6(C55C66 - C~6)' 
P _ e26c56 - e25c66 

a - (C55C66 - C~6) . 

Then G)O) = G~l) = 0 and the residual inhomogeneous differential equations 
are 

C66X62(U~~if + ul~iR) + C56X6U~?if + ew2u~O)R + (1 /2h )ew2VP2XI = 0, 

C56X6(U~?if + u~~~R) + C55X6U~~~f + ew2u~O)R + (1/2h)ew2VPaXI = 0, 

ihaYllUi~if - 2hx62C66(U~?iR + U~I)R) - 2hx6C56UA?iR + 1pllP,<HR 

+ iehaw2u~l)R = 0 , 

iha1pllUi~if - CllP;HR + (l5/h2)e~2p(1)R = O. 

(13.114) 

In this case we see that the third residual equation in (13.114) has also 
become homogeneous. The boundary conditions to be satisfied by the re­
sidual solution are 

2hx6C6sCu4?iR + UiI)R) + 2hc56UJ?iR = 0, 

2hx6C56(u4?iR + U~I)R) + 2hc55UJ?iR = 0, 

ihaYllU~~iR + 1pllp~~)R = 0, iha1pllU~~iR - CllP~pR = O. 

(13.115) 
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We now find the orthogonal functions for the series solution of the 
residual problem, i.e., we find the solutions of the above systems (13.114) 
and (13.115) with V = O. Consider 

(u~O), u~O») = (A, B) sin ';x1, (ul1), <p(l») = (C, D) cos .;x1. (13.116) 

These satisfy (13.114) with V = 0 provided 

A("lc66';2 - ew2) + B"6C56';2 + C"62C66'; = 0, 

A"6C56';2 + B( C55';2 - ew2) + C"6C56'; = 0 , (13.117) 

A"62C66'; + B"6C56'; + C( "62C66 + th2YU';2 - teh2w2) + D( tpu/2h )';2 = 0, 

Ctpll';2 - D(3/2h3)[(15/h2)e~2 + CU';2] = O. 

For a nontrivial solution the determinant of the coefficients of A, B, C, 
and D in (13.117) must vanish, leading to a quartic equation in ';2, as 
against a cubic when the piezoelectric constant tpu vanishes. The additional 
root is imaginary for all w, i.e., it produces a nonpropagating mode. Thus 
there will be no additional resonances due to the piezoelectric effect, i.e., 
there will be a modification of the existing resonances only. Since tpil is 
small in comparison with Cuyu and e~2Yu, the remaining three roots are 
almost the same as with tpll = O. Hence there will be little error in the 
wave numbers'; if they are computed as the roots of the aforementioned 
vanishing determinant with tpu = O. Under these circumstances we have 
';n , n = 1, 2, 3, as functions of w2 from the portion of the determinant from 
the first three of the linear equations (13.117) in A, B, and C, and 

.;~ = - 15e~2/h2Cu, (13.118) 

independent of w, from the fourth. From the three-dimensional solution 
presented in Chapter 11 it is seen that (13.118) should be more like 

.;~ = - n2e~2/h2eh· (13.119) 

An examination of the equations reveals that an electrical correction factor 
"e should be introduced, and the most probable position should be alongside 
E~l) in the expression for the plate electric enthalpy density d't:'. Nothing 
has been done along these lines, and it really doesn't matter for small 
coupling materials such as quartz. Corresponding to ';n' n = I, 2, 3, we 
may determine amplitude ratios 

(Pn:qn:Sn) = (An:Bn:Cn) (13.120) 
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from the first two of the linear equations (13.117) in A, B, and C, and 

s 2 h3S /: 2 _ E22 D _ _ E22~n Sn 
rn - n - 3 (15 S h-2 + r /: 2) , '/fJn E22 <'l1~n 

n = 1,2,3, (13.121) 

from the fourth. In accordance with our approximation P4 = q4 = S4 = 0, 
r 4 = l. Consequently, we may write (13.116) as 

3 

(uiO),u~O) = ~ Mn(Pm qn) sin ~nXl , 
n=l 

3 

u~U ~ Mnsn cos ~nXl , (13.122) 
n=l 

3 

q/U = M4 cosh ~4fX1 + ('/fJlljE~2) ~ M"rn cos ~nX1' 
n=l 

as the solution of the problem. In (13.122) ~4f = i~4' Substituting (13.122) 
into the boundary conditions (13.115) for the residual solution, we obtain 

3 

~ Mn["6C66(Pn~n + Sn) + c56qn~n] cos ~nl = 0, 
n=l 

3 

~ Mn["6C56(Pn~n + Sn) + c55qn~n] cos ~nl = 0, 
11=1 (13.123) 

3 

M4'/fJllE~2~4f sinh(~4fl) - ~ Mn(ih3YllE~2Sn + '/fJ~lrn)~n sin ~nl = 0, 
n=l 

3 

M4'llE~2~4f sinh(~4f I) + '/fJll ~ Mn(ih3E~2sn - 'llrn)~n sin ~nl = O. 
n=l 

Equations (13.123) constitute a system of linear homogeneous algebraic 
equations in M 1, M 2, M 3, and M 4. This system yields nontrivial solutions 
when the determinant of the coefficients of the Mn vanishes. As usual, the 
vanishing of said determinant results in a transcendental frequency equation 
which ultimately relates the ljh ratio to the eigenfrequencies. For a given 
frequency wI-' the equation yields an infinite number of ljh ratios (or vice­
versa), to each of which there correspond amplitude ratios 

(M1:M2:M3:M4) (13.124) 

from three of the four linear equations in the M n , and the amplitude ratios 

(Pn :qn :Sn:r n) (13.125) 

from three of the four linear equations in A, B, C, and D, as already discus-
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sed. Thus we obtain the expressions 
3 

(u~O)'",u~o),") = ~ Mn'"(Pn'", qn'") sin ~n'"XI , 
n=1 

3 

u~l)," = ~ Mn'"sn'" cos ~n'"XI , 
n=1 

3 

q;(1)," = Ml' cosh ~4fXI + ("Pu/sh) ~ Mn'"rn'" cos ~n'"XI' 
n=1 

(13.126) 

for the orthogonal eigenfunctions for the series solution of the residual 
problem. 

Little error in a computation of frequencies and amplitude ratios will 
result if the frequency equation is obtained from the first three of (13.123) 
with M4 = O. The frequency equation would then be of the same form as 
in the purely elastic case (38), but the coefficients of the transcendental 
functions would have slightly different values due to the presence of the 
piezoelectric constants. In such an approximation the amplitude ratios M I ,", 

M 2'", and M 3," would be obtained from the first two of (13.123) and M 4'" 

from the fourth. 
The normalization factor N(,") is found by inserting the eigen-solution 

(13.126) in (13.71), remembering that uiO)," = u~l)," = 0, with the result 

3 3 

N(,") = tA ~ ~ Mm'"Mn'"[(Pm'"Pn'" + qm'"qn'" + th2sm'"sn'")Smn 
m=1 n=1 

- (Pm'"Pn'" + qm'"qn'" - th2sm'"srt)S;;;n] ' (13.127) 

where 

Silin = [sin(~m'"l ± ~n'"l) l/(~m'"l ± ~n'"I). 

Now, from (13.92) we have 

B," = 0, 

A 3 M '" (Sin ~ '"I ) 
C," = 2N ~ I: :ii (P2Pn'" + P3qn'") ~ -cos ~,tl , 

('") n=1 \; n \; n 
(13.128) 

since GjO) = G1l) = 0 and UiO)A = uil)A = U~J)A = O. 
Finally, from (13.93) we have 

A," = C,"w2/(w/ - w2). (13.129) 

Note that for small damping, dissipation may be introduced simply by 
allowing some of the elastic constants in the associated eigenproblem to be 
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complex, thereby introducing a small amount of viscoelastic behavior, 
which contributes a time decay portion to the eigensolution of the free­
vibration problem. This is admittedly a very approximate procedure, and 
one which we have not justified. However, it is probably very accurate for 
the small damping which occurs in vibrating piezoelectric crystals. In other 
words, it is very doubtful that a more accurate analysis is warranted. This 
procedure permits the relation of the time decay factor of a free vibration 
to the Q of the crystal, which should be related to the steady-state spatially­
decaying mode rather than the transient time-decaying mode. Nevertheless, 
this procedure affords a useful and essentially valid simplification. Introduc­
ing the usual expression for small damping into (13.129), we obtain 

A = C"w2 

I' W,,2 + i(W,,2/Q) - w2' 
(13.130) 

This latter expression prevents the solution from blowing up at resonance. 
The solution is completed except for the expression for the correction 

factor X 6 • This is determined by equating the thickness frequency predicted 
by the third of (13.110) with the thickness-shear frequency for rotated Y-cut 
quartz plates, which we have obtained previously from the appropriate 
solution of the three-dimensional equations and is given in Chapter 9 as 
the lowest root of (9.47) along with (9.41) and (9.42). The result is 

2 _ 1 2(1 e~6) 
X6 - -3 a o + BE ' e22c66 

where a o is the lowest positive root of 

tan a = a(1 + e~2~€i,). 
e26 

(13.131) 

(13.132) 

The formula for surface charge, (13.99), requires expressions for YI' 
and L in addition to AI" These are obtained by substituting (13.126) and 
(13.113) in (13.100) and (13.101), respectively, with the results 

3 M I' ( 15 ) . 
Y" = A n~l ~n:l x6e26(Pn"~n" + sn") + e2oqnl"~n" - 4h3 "Pur nl' SIll ~nl'l 

_ A _1_5 oS M " sinh ~4' I 
4h3 "22 4 --;:,.-=,-':-, ~ , 

L = (A/2h)(x6e26P2 + e2oP3 - ~e~2)' (13.133) 

As noted previously, since the expression (13.129) for AI' has a reson-
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ance denominator, near a resonance only one term in the infinite series 
in the formula for the surface charge Q need be computed. In the fore­
going it has been suggested that in computing the roots of the equations 
obtained by setting determinants of the coefficients in (13.117) and (13.123) 
equal to zero certain of the terms having 1jJll as a factor be neglected because 
of the smallness of 1jJll' By following this suggestion the coupling between 
the applied voltage V and the strain would be taken into account through 
e26 , as would the generation of the induced electric field by the strain 
gradient through the amplitude ratios r n' but a part of the small counter­
effect of the induced electric field on the strain would be neglected. This 
approximation need not be made if adequate computing facilities are avail­
able for computing the roots of the 4 X 4 algebraic determinant obtained 
from (13.117), which yields a quartic equation, and the 4 X 4 transcendental 
determinant which would replace the present transcendental determinant 
obtained from (13.123). 

As noted previously, the solution to a problem including dissipation 
may be obtained more properly by means of the other method of solution, 
which transfers the inhomogeneities from the differential equations to the 
boundary conditions, thereby leaving a residual problem of homogeneous 
equations and inhomogeneous boundary conditions. For completeness we 
will indicate this second method of solution of the rotated Y-cut quartz 
plate problem, which solution we have just obtained by the first method. 
To this end, we take the auxiliary solution in the form 

U~O)A = U~O)A = 0, uillA = R1V, !p(1)A = R2V, (13.134) 

where 

Rl = "6e26/2h(!h2ew2 - "62C66), R2 = h2/3. (13.135) 

Substituting these expressions for the auxiliary solution, (13.l34)and (13.135), 
into (13.110) and (13.112), it is clear that the residual problem consists of 
homogeneous differential equations with inhomogeneous boundary con­
ditions, and all inhomogeneities are proportional to V. If the problem is 
nondissipative, it is clear that we obtain exactly the same resonance con­
dition as before, and an off-resonance solution is not a series. If the problem 
is dissipative, the solution exists at all driving frequencies and we may 
obtain the surface charge Q (or any other quantity) in terms of V and the 
driving frequency w. Resonance may then be defined as that w at which Q 
is a maximum for a given V. This procedure involves much more calculation 
than the first, but it is exact, whereas the first is an approximation, although 
one which undoubtedly is very accurate in most practical instances. 



Chapter 14 

MECHANICAL EFFECT 
OF ELECTRODE PLATING 

1. EQUATIONS FOR THE CRYSTAL PLATE 

We are here interested in determining the effect of the elastic stiffness 
and inertia of the electrodes shown in Fig. 22 on the truncated form of 
the two-dimensional equations of motion we have obtained previously in 
Chapter 13. The equations for the unplated crystal (13.51) and (13.52) are 
reproduced here 

n~~a + FjOl = 2ehiijOl, TJ1~a - ngl + Ftll = ieh3iitll, (14.1) 

D~~~ + D~l) = 0, D~~~ + 2D~2l = 0, (14 . ..2) 

and the constitutive equations (13.49) and (13.50) are also reproduced 
here as 

X2 

L( I ( 
2h 

r~2l .. 
Fig. 22. A rectangular plate with electroded surfaces connected to 

a driving circuit. 
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Ti~) = 2hcijtIS1~) - e~j ELO) , 

TJ1;) = ih7abcdS~) - V'iabE~l) , 

D~O) = et/ S~O) + (1 /2h )e'tE~O) - (15 /8h3)ei2E~2) , 

Di1) = V'iabSJ1;) + (3/2h3)l;ijE~1) , 
D~2) = (15/8h5)(3e22E~2) - h2e2~LO», 

and all the quantities have been defined previously in Chapter 13. 

(14.3) 

(14.4) 

Now, before proceeding to the platings we must discuss a few points 
in a little greater detail than we have previously; namely, the significance 
of the quantities Ti~O)' TJ1;), F}O), and F~l). First consider the stress resultants 
TfJ), which are defined by 

(0) Jh 
Tij = -h Tij dX2 , (14.5) 

from which we can see that n~) and T:l8) represent extensional forces per 
unit length in the plane of the plate. Similarly, we see that ng) represents 
a shearing force per unit length in the plane of the plate, and that ng) 
and T~g) represent shearing forces per unit length acting in the direction 
normal to the plane of the plate. The stress resultants TJb) are defined by 

(1) Jh Tab = X2Tab dX2 , 
-h 

(14.6) 

from which it is clear that T~P and T~A) represent bending moments and Tg> 
represents a twisting moment. Note that T~~), T~g), and T~g) are forces per 
unit length which occur in the elementary theory of the extension of thin 
plates and ng), T~g), np, T~A), and nJ) are forces and moments per unit 
length which occur in the elementary theory of the flexure of thin plates (40). 
The surface loadings F~O) and F61l are defined by 

F}O) = [T2j]~h = T2j(h) - T2j( - h), 

F~1l = [x2T2b]~h = hT2b(h) + hT2b( - h), 

(14.7) 

(14.8) 

and will be of the utmost importance in obtaining the equations for the 
electroded crystal. 

2. EQUATIONS FOR THE P~TII\IGS 

The electrodes are assumed to be perfectly conducting, and are ex­
tremely thin compared with the thickness of the crystal plate (Fig. 23). 
Consequently, the purely mechanical portions of Eqs. (14.1) and (14.3), 
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X2 

2h' 

+ 

L 
, 2h" 

X3 

Fig. 23. Diagram of a plated crystal plate showing thicknes­
ses of platings. 
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i.e., excluding all electrical terms, for the unplated crystal are applicable to 
each electrode with the additional simplification that all forces, ng), and 
moments, Tg), per unit length associated with the elementary theory of 
flexure of thin plates may be neglected, since the plate is so thin that only 
its extensional resistance need be considered. Nevertheless, both its ex­
tensional and transverse inertia must be included, but rotatory inertia, 
2eh3iW) /3, may be neglected. Under these circumstances all that remains 
of (14.1) and (14.3) are 

(jjbTJ~~~ + FjOl' = 2h' e' iiJOl' , 

TJ~)' = 2h'Y~bcdS~~)' , 

where (jjb = 0 for j = 3 and 

]
h' 

F.(O)' = [T;. = ~'. (h') - T;.(- h'). 
J J -h' J J 

(14.9) 

(14.10) 

(14.11 ) 

Equations (14.9)-(14.11) are for the upper electrode, and we have an 
identical set of equations for the lower electrode but with the primes replac­
ed by double primes. 

3. EQUATIONS FOR THE PLATED CRYSTAL PLATE 

Since the electrodes are attached to the crystal plate, we must impose 
the conditions of continuity of surface tractions and mechanical displace­
ments across the interfaces as did Mindlin (41). However, since we are 
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already limited to wave numbers which are not too large (~h < 2), we may 
ignore the free thickness-stretch motion (U~l)') which accompanies the exten­
sional motion of the plating and write 

T~j( - h') = T2ih), T~j(h") = T2j( - h) , (14.12) 

U~o>' = u~O) + MiaU~l), U~o>" = u~O) - MiaU~l) . (14.13) 

Using (14.12), we may express the surface loadings F~O) and F!l) of the 
unelectroded crystal in terms of the surface loadings F~o>' and Fjo>" of the 
electrodes. Then the equations of motion of the electrodes, (14.9), may be 
incorporated in the stress equations of motion of the unplated crystal, 
(14.1), thus forming five stress equations of motion of the electroded 
crystal plate; and u~o>' and u~o>" may be eliminated from the five equations 
as well as from all the constitutive relations by means of (14.13). In essence, 
this procedure will leave us with five stress equations of motion of the 
electroded crystal plus two electrostatic equations, for a total of seven 
equations in the seven dependent variables u}O), u~o>, qJ(O>' and qJ(1). To carry 
out this process from (14.7), (14.8) and (14.12) we note that 

FJO) = T;j(-h') - T~j(h"), F6 1 ) = hT;b(-h') + hT~b(h"). (14.14) 

The successive addition and subtraction of (14.11) and its double primed 
counterpart, respectively, yield 

where 

T~j( - h') - T;j(h") = !?'}O) - FjOl' - F}o>" , 

hT;b( - h') + hT~b(h") = !?'61) - h(Fto>' - FtO)") , 
(14.15) 

!?')O) - T~ih') - T~j( - h") , !?'61) - hT~b(h') + hT;b( - h"). (14.16) 

Thus from (14.14) and (14.15) we obtain 

F}O) = !?'}O) - (Fjo>' + F}O)") , F6 1 ) = !?'t1 ) - h(Fto>' - FtO)"). (14.17) 

We further obtain from the sum and difference of (14.9) and its double 
primed counterpart the equations 

F}O)' + F}o>" = - (jjb(TJg)' + T~g)") ,a + 2h' e' ii}o>' + 2h" e" ii)O) " , 

Fto>' - FtO)" = - (T~g)' - TJg)") ,a + 2h' e' iito>' - 2h" e" ii6o>" • 

(14.18) 
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Hence substituting from (14.18) into (14.17) and using the continuity of 
mechanical displacement conditions (14.13), we find 

F(O) = ~<'O) + <5. (T(O)' + T(O)") - 2hflR u(O) - 2h2flR <5. U(1) 
J J Jb ab ab,a '" S } '" n}a a , (14.19) 
F61) = ~Jl) + h(ng)' - TJg)"),a - 2h3eRsuJl) - 2h2eRnuLO) , 

where 

Rs = (e'h' + e"h")/eh , 

Rn = (e'h' - e"h")/eh , 

(14.20) 

(14.21 ) 

so that Rs and Rn are the ratios of the sums and differences of the weights 
of the electrodes to the weight of the portion of the crystal located between 
the electrode. Finally, substituting from (14.19) into (14.1), we obtain 

r(Q)· + 67(0) = 2hfl(1 + R )u(!) + 2h2flR <5. u(1) 
'},' -7:} '" S 1 '" n ja a , 

ri.J],a - rW + ~!/) = i h3e(1 + 3Rs)uJl) + 2h2eRnUbO) , 
(14.22) 

where 
rV!) = Tlg) + <5. <5. (T(O)' + T(O)") 
.,- '1 ,alb ab ab' 

r~1l - TJ6) + h(TJg)' - TJg)"). 
(14.23) 

Noting from the conditions of continuity of mechanical displacement at 
the interface (14.13) that 

S~Oj' = S~?] + hS~~, s~o,r = s~~) - hS~~ , (14.24) 

and substituting from the constitutive equations for the unelectroded crystal 
(14.3) and the electrodes (14.10) and its double primed counterpart, and 
using (14.24), we obtain the stress constitutive equations for the e1ectroded 
crystal in the form 

r~J) = 2h(cTt"k1 + <5ia<5jb<5kc<5ldY~bCd)Sk~) + 2h2<5ia<5jby!j,JCdS~~ + e"kijE~O) , 
r~V = ih3(Yabcd + 3Y~Cd)Sgi + 2h2Y!lbCdS~~) - 'l'iabE?) , 

where 

ygbcd= (h'Y~bcd + h"Y~bcd)/h, 
n - (h' , h"" )/h Yabcd= Yabcd - Yabcd , 

(14.25) 

(14.26) 

(14.27) 

and the electric-displacement constitutive equations for the electroded 
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crystal remain the same as for the unelectroded crystal, (14.4). Thus we 
now have the full system of equations for the electroded crystal, which may 
readily be reduced, by straightforward substitution of the constitutive equa­
tions (14.25) and the kinematical and potential relations (13.53) and (13.54) 
in the five stress equations of motion (14.22) and the two equations of 
electrostatics (14.2), to seven equations in the seven dependent variables 
u~O), u~I), riO), and q;(1). The equations are similar to but a bit more com­
plicated than the equations for the unelectroded crystal. At this point we 
could proceed in the usual way to obtain initial, edge, and interior conditions 
sufficient for a unique solution (41). However, in view of our previous work 
in Chapter 13, the results are obvious, and we need not present the uni­
queness theorem here. We could also obtain the orthogonality conditions 
for the electroded crystal in the usual straightforward manner, but we shall 
not bother to do so, even though the results are slightly different for the 
electroded crystal. Nevertheless, the orthogonality relation for homogeneous 
conditions in the interior and on the edge probably takes the form 

f [(1 + R )u~O)"'u(~lv + lh2(1 + 3R )u(1)"'u(1)v 
A SJJ Sbb 

+ hR (u(l)",u(O)v + u(O)"'u(1)V)] dA = N r5 n b b b b (",) P' (14.28) 

where N(il) is a normalization factor. 
Of particular importance to us is the situation where the upper and 

lower electrodes are identical and isotropic. Under these circumstances 
from (14.21) and (14.27) we have Y~bcd = Rn = 0, and from (14.26), (7.30), 
and (11.26) 

Y~bcd = P.Gr5ab r5cd + p( r5ac r5bd + r5ad r5bc )]2h' jh , (14.29) 

where AO = 2pAj(A + 2p) is the plate Lame constant of the electrode and 
A and p are the Lame constants for the electrode material. Then the stress 
equations of motion (14.22) for the symmetrically electroded crystal take 
the form 

7:rJ!i + .7'}O) = 2he(1 + Rs)ur ' 

7:<'}l.a - 7:&) + fl'f/) = ih3e(1 + 3Rs)u~1l , 

and the stress constitutive equations (14.25) take the form 

7:rJ) = 2hct;US~~) - eli7mO) , 

7:1J/ = ih7~Sg; - lJfiabE~l) , 

(14.30) 

(14.31 ) 
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where 

c&~z* = C&ZI + (2h' /h)[AObibbjbbkdbld + f1(bicbjdbkcbld + bidbjcbkcbld)] ' 

Y~bcd = Yabcd + (6h' /h)[AObabbcd + f1(bac bbd + badbbc)]' (14.32) 

Thus it is clear that in the case of symmetric isotropic electrodes the equa­
tions are exactly the same as in the case of the unelectroded crystal except 
that the elastic constants and translational and rotational inertial densities 
are different. 

4. FURTHER USES OF THE PLATING EQUATIONS 

Before proceeding further I would like to indicate how the mechanical 
effect of the electrode plating may be included in the least squares or var­
iational methods discussed in Chapter 12 for solving problems in the 
vibration of bounded plates. In either of these methods we superpose 
solutions of the three-dimensional equations which exactly satisfy the dif­
ferential equations and the boundary conditions on the major surfaces in 
order to satisfy the conditions on the remaining surfaces approximately. 
The major difference is that in the previous method of using the two­
dimensional equations the mechanical effect of the electrode served to 
change the differential equations and the edge conditions, while in the least 
squares and variational methods it changes the boundary conditions on 
the major surfaces of the plate and the edge conditions. That is to say, we 
proceed exactly as we did before with either the least squares or variational 
method except that we first change the mechanical boundary conditions on 
the major surfaces of the plate so as to account for the mechanical effect 
of the electrode on those surfaces, and then extend the integration over the 
minor surfaces so as to include the electrode plating. Without the electrode 
the mechanical boundary conditions for a plate with major surfaces at 
X 2 = ± hare 

T2j = 0 at X 2 = ± h. (14.33) 

We are here going to consider the case of symmetric electrodes only. The 
electrodes are sufficiently thin compared to the thickness of the plate that 
the mechanical equations for the upper electrode are the same equations 
as before, i.e., 

bjbTJg~~ + F)O)' = 2h' e' ii}O) , , 

FjO)' - [T~j]~~, == T~j(h') - T~j( -h') , 

TJg) , = 2h'Y~bcd S~~)'. 

(14.34) 

(14.35) 

(14.36) 
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Since the electrodes are attached to the crystal and the wave numbers of 
interest are not too large (~h < 5), we may ignore the free thickness-stretch 
motion (u~l)') which accompanies the extensional motion of the plating and 
write 

n;( -h') = T2j(h), u~Ol' = u;(h). (14.37) 

Moreover, since the outside of the electrode is traction free, we have 

T~j(h') = o. (14.38) 

From the mechanical displacement continuity conditions in (14.13) we have 

S~~)' = Scih) , (14.39) 

and from (5.19) we also have the stress constitutive equations 

Tij = CijklUk,1 + eki/p,k· (14.40) 

Substituting (14.36) in (14.34) and then (14.34) and (14.40) in the first of 
(14.37), we obtain the mechanical boundary conditions 

C2jklUk,l + ek2/p,k = bjb2h'Y~bcdUc,ad - 2h' e'iij (14.41) 

at X 2 = + h. We obtain a negative right-hand side at X 2 = - h, since the 
electrode on the lower surface is identical with the electrode on the upper 
surface and X 2 points up. Moreover, since the electrode is perfectly conduct­
ing, the potential within the electrode must be constant, and 

f/J,a = 0, 

so that the boundary conditions become 

C2jklUk,l + e 22jf/J,2 =f 2h'bjbY~bcdUc,da ± 2h'e'iij = 0 at X 2 = ± h, (14.42) 

and since the electrodes are isotropic we have 

Y~bcd = AObabbcd + fl( bacbbd + badbbc). (14.43) 

It can readily be shown in the usual way that these boundary conditions, 
along with the usual electrical condition, are sufficient for a unique solution 
to the steady-state problem of the infinite plate. The electrical condition 
is, of course, 

f/J = ± f/Jo cos wt at x 2 =±h. (14.44) 
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The homogeneous form (qJo = 0) of (14.44) and (14.42) determines 
the two-dimensional standing wave solutions and corresponding dispersion 
curves for the infinite plate including the mechanical effect of the electrode 
plating (42). Note that the new mechanical boundary conditions (14.42) 
on the major surfaces are homogeneous and linear. Consequently, the same 
procedure of superposing the thickness solution and an appropriate number 
of two-dimensional standing wave solutions of the homogeneous rroblem 
(i.e., with qJ = 0 at X 2 = ± h) in order to satisfy the remaining boundary 
conditions approximately by either the method of least squares or a varia­
tional technique is applicable. Note from (14.42) that even the thickness 
solution changes because of the inertia of the electrode. Note further that 
in integrating either the least-squares conditions or the variational con­
ditions in the thickness direction along the minor surfaces of the plate the 
contribution of the electrode plating must be included. For example, sup­
pose in a symmetric, purely elastic problem that the boundary conditions 
on each of the minor surfaces are, say, 

Tlj = 0 at Xl = ± I. (14.45) 

Then, according to the method of least squares discussed in Chapter 12, 
we must minimize 

(fh fh+2h'] M = _ '" -h TliTlj dX2 + 2 h TlbTIb dX2 at Xl = I, (14.46) 

since, as already discussed, TI2 is negligible in the electrode plating. Now 

(0)' fh+2h' 
Tlb = h TIb dX2 , (14.47) 

and since Tlb is essentially constant in the electrode plating, we have 

Tlb = ng)' j2h'. (14.48) 

Hence we must minimize 

1 [fh 1 (0)' (0)'] M = - '" . _." -h TljTlj dX2 + h'Tlb Tib at Xl = I. (14.49) 

In the same problem, using the variational technique discussed in Section 4 
of Chapter 12, we have the variational condition 

fh fh+2h' 
- T lj 15Uj dX2 - 2 Tlb 15ub dX2 = 0 

-h h 
at Xl = I, (14.50) 
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since TI2 is negligible in the electrode plating. Since Ub is essentially constant 
in the electrode plating, as is TIb , we have from (14.37), (14.48), and 
(14.50) 

fh ~ (0)' ~ (0)' - TIj UUj dX2 - 2TIb uUb = 0 
-h 

at Xl = I (14.51) 

as the variational condition for the approximation. 



Chapter 15 

SOME ELECTRICAL CIRCUIT 
CONSIDERATIONS 

1. ELECTRICAL ADMITTANCE 

In Section 6 of Chapter 13 we found the current through the crystal 
for a prescribed driving voltage across the crystal. In electrical engineering 
terminology we have found the admittance of the crystal [(43), Chapter 3, 
Section 18)]. However, before we can introduce these terms properly we 
must discuss a sign convention associated with the terminology. The sign 
convention we will employ is contained in the diagram in Fig. 24, which 
indicates that by convention the current is considered positive if it flows 
from active to passive + to + [(43), Chapter 9, Sections 1,2]. The passive 
element can be represented by an admittance Y and eliminated from the 
diagram by means of the relation 

1= YV, (15.1 ) 

so that we may consider the diagram in Fig. 25 instead of the one in Fig. 24. 
Thus it is clear that our formula for surface charge has effectively determin­
ed the admittance of the crystal, which, in that case, was a passive element. 

lAP 

..... ,+ 

A VA p Vp VP=VAiV 

I pA= lAP = I 

lAP 
Fi~. 24. An electrical circuit with a passive and an active element. 
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A !=YV 

Fig. 25. An electrical circuit with the passive element repre­
sented by an admittance. 

However, we must find out if I is + Q or - Q according to our convention. 
Since the X 2 axis has been taken to be positive in the up direction and accord­
ing to our electrical convention the current flows down in this passive ele­
ment, we have 

I = - L iJ2 ( - h) dA = - Q, (15.2) 

and in our particular case from (13.102) and (15.2) we find near a resonance 
(w """ w.) 

1= - iWV(L _ e~2 A + y"C"W2
) 

Sh w v2 - w2 • 
(15.3) 

Hence the admittance of the crystal is given by 

Y = _ iW(L _ e~2A + y"C"W2
) 

Sh w v2 - w2 ' 
(15.4 ) 

and is purely susceptive [(43), Chapter 3, Section IS] when there is no damp­
ing. If damping is introduced in the usual manner, a conductive (43) com­
ponent enters (15.4) by virtue of (13.130). We can now use the above formula 
(15.4) to put the crystal in a circuit with an active element and determine 
the characteristics of the entire circuit as a function of frequency if the 
frequency is confined in the neighborhood of W •. 

However, of prime interest to us here is the situation where the crystal 
is the active element, because in that case the problem cannot be completely 
formulated field-theoretically without determining the analytical expression 
for the admittance relation for the remaining passive portion of the circuit. 
We are again concerned about whether a sign is plus or minus according 
to our convention. Since the X 2 axis has been taken to be positive in the up 
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direction and according to our electrical convention the current flows up 
in an active element, we have 

I = + L. D2( - h) dA = + Q. (15.5) 

Thus from (15.1) and (15.5) our required expression for the admittance 
relation for the remaining passive portion of the circuit is 

L. D2(- h) dA = YV. (15.6) 

As we shall see, this expression is crucial to the solution of a crystal vibration 
problem when the crystal is an active element. 

2. COMPLEX NOTATION 

Note that in Section 1 we introduced the usual electrical engineering 
convention [(43), Chapter 3, Sections 13-15] of introducing complex quan­
tities and meaning that the real part should be taken after the complete 
expression is written in terms of real quantities including the time depend­
ence. For example, in Section 1 

Y = yR + iYI, v = (VoR + iVi)eiwt , 

and according to the convention, by YV we mean 

YV = Re(yR + iyl)(VoR + iVi)(cos wt + i sin wt), 

YV = (YRVoR - yIVi) cos wt - (yRVl + YlVoR) sin wt. 
(15.7) 

We shall adhere to this convention where convenient. Moreover, when we 
have a standing wave function as a solution we shall write, say, 

U1 = A sin 'YjX2 cos ~X1 eiwt (15.8) 

where A is complex and sin 'YjX2 cos ~X1 is real, so that in (15.8) we mean 

U1 = sin 'YjX2 cos ~X1 (AR cos wt - Al sin wt). (15.9) 

When we have a traveling wave function as a solution we shall write, say, 

U1 = A cosh 'YjX2 exp - i(~X1 - wt) , (15.10) 
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where A is complex and cosh TJX2 is real, so that according to our con­
vention, by (15.10) we mean 

U1 = cosh TJX2 [AR COS(~Xl - wt) + AI sin(~xl - wt)]. (15.11) 

This convention reduces the amount of writing considerably. 



Chapter 16 

APPLICATION TO A 
MONOLITHIC STRUCTURE 

1. COUPLED THICKNESS-SHEAR AND FLEXURE 

Consider the rotated Y-cut quartz plate shown in Fig. 26 with five 
sections which are denoted 0, 1, 2, 3, and 4. The 1 and 3 sections contain 
electrodes and the others do not. The 1 section is driven by the application 
of an alternating voltage to the surface electrodes and the energy is detected 
in the 3 section by a passive detecting circuit of admittance Y. As usual, 
the dimension out of the paper will be ignored. The solution actually re­
quires the full system of two-dimensional equations (13.110) which we 
derived for Xl dependence in rotated Y-cut quartz, and which contain 
coupled thickness-shear, flexure, and face-shear motions. However, we shall 
make an approximation which results in a tremendous simplification and 
which yields very accurate results if we confine the frequency to a certain 
very narrow range of great practical importance. Nevertheless, before we 
make the simplification we will discuss the solution of the more general 
problem in some detail, including the full piezoelectric coupling. When 
we make the approximation we will, of course, assume that the piezoelectric 
coupling is small. 

The differential equations in all four sections are of the same form, 
but the voltage must be eliminated in sections 0, 2, and 4 by means of the 
zero surface charge conditions (13.65). As we know from Chapter 14, on 
account of the plating the mechanical material constants (elastic and 
inertial) in sections 1 and 3 are different than those in sections 0, 2, and 4. 
The first thing we do in all five sections is introduce auxiliary solutions in 

f2 
fh .. XI 

C ,(1 J. .12 J. .(3 J 
Fig. 26. A monolithic structure. 
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Im~ .. ~cC .. Re~ 
3 2 o 2 3 

Fig. 27. Dispersion curves for the lowest antisymmetric modes of an infinite 
rotated Y-cut quartz plate for real and imaginary wave numbers including the 
influence of piezoelectricity. 

(13.110) which leave residual homogeneous differential equations and in­
homogeneous boundary conditions. We know that the standing and travel­
ing wave solutions of these differential equations yield the dispersion curves 
shown in Fig. 27. The curves shown are for the unplated regions 0,2, and 4. 
The curves for the plated regions 1 and 3 are of the same shape, but have 
the important difference that the nonzero intersection point A with the OJ 

axis appears lower, say at the point A', on the diagram shown. Real values 
of the wave number; correspond to propagating waves in regions 0 and 4 
and trigonometric standing waves in regions 1, 2, and 3. Imaginary values 
of; correspond to decaying (or growing) standing waves in regions 0 and 4 
and hyperbolic standing waves in regions 1, 2, and 3. In regions 0 and 4 
we can tolerate only decaying standing and outward traveling waves. Thus 
at any frequency we have four complex solutions in each of these two re­
gions. In regions 1, 2, and 3 we can have both sin and cos (or sinh and 
cosh) for the spatial dependence of each variable, thereby giving eight 
complex solutions at anyone frequency in each of regions 1, 2, and 3. Thus 
so far we have 32 independent solutions, and hence 32 complex unknowns. 
The voltage V in Section 3 is an additional complex unknown, and we have 
a total of 33 complex unknowns. The boundary conditions are the con­
tinuity of 

T(O) 
12 , 

T(O) 
13 , np, Dil), dO) 2 , 

u(O) 
3 , uill, cp(1) (16.1) 

at each point of connection of one region with the adjacent one. There 
are four such points of connection of the five regions. Hence the continuity 
of the eight quantities in (16.1) at each of the four connection points gives 
us 32 complex equations in the 33 complex unknowns. However, we have 
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the admittance condition in Section 3, which takes the form 

f [i>~O) + h2i>~2)] dA = YV, 
A 3 3 S 

(16.2) 

in this approximation. This gives us a total of 33 complex linear algebraic 
equations in 33 complex unknowns, which may be solved numerically. 

2. THE THICKNESS-SHEAR APPROXIMATION (4.) 

Numerical results from the aforementioned system of equations discus­
sed in Section 1 in simpler cases (44.45) indicate that for frequencies in the 
vicinity of the thickness-shear frequency (say A' < w < A) and for small 
wave numbers (I ~h 1 ~ 1) the thickness-shear mode dominates and the 
amplitudes of all other modes are extremely small. Consequently, we will 
formulate the problem discussed in Section 1 considering only that one 
mode and assuming small piezoelectric coupling. The significant character­
istics of this essentially thickness-shear approximation are: 

1. The frequency is very close to-both above and below-the thick­
ness-shear frequency in each region. 

2. The wave number ~ is sufficiently small that 1 ~2h2 1 ~ 1. 

This means that our approximation will contain two parameters of 
smallness, (1) the ratio (deviation from the thickness-shear frequency): 
(thickness-shear frequency) and (2) the dimensionless quantity ~h. We now 
proceed to make the approximation in the two-dimensional equations. The 
equations are the four differential equations (13.110) in the dependent 
variables u~°l, u~O), uil), and rp(1), which we used when we considered the 
vibrations of a rotated Y-cut quartz plate in Chapter 13. We are at this 
stage considering the typical equations which are valid in any section, 
with different sections having different constants. The pertinent constitutive 
equations may be obtained from (13.107) when Xs dependence is excluded, 
and are 

ng) = 2h~62C66(U~~l + u\l)) + 2h~6C56U~~l + ~6e26 V, 

T~g) = 2h~6C56(U~?l + uP)) + 2hc55U~~l + e25 V , 

np = i h3Yuui~l + "Purp~p , 
D(l) =.11 u(I) - (3/2h3 ) r m(l) 

1 TU 1.1 'oUT.l , 

D~O) = ~6e26(U~~l + U\l)) + e25u&~l - (15/4h3 )S22rp(1) + (3j4h)S22V, 

D~2) = (15j4h5)S22(3rp(1) - h2V). 

(16.3) 
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Since the piezoelectric coupling is small, for purposes of obtaining a solution 
all electrical quantities can be ignored in the unelectroded sections 0, 2, 
and 4, the electrostatic equation can be ignored in the driving section 1, 
and the stress equation and electrostatic equations can be solved separately 
in the detection Section 3, and all electrical edge conditions can be omitted 
in the analysis. However, if when the solution is obtained, we wish to cal­
culate the current through the driving Section 1, we must first obtain the 
induced electrical-potential resultant <p(1) from the electrostatic equation in 

1 

Section 1 using the mechanical functions known from the solution. Thus 
under the assumption of small piezoelectric coupling it is perfectly permis­
sible to make the approximation, in the three stress equations of motion 
in (13.110), of ignoring the induced electrical potential resultant <pm. 

We begin the approximation by noting that CS6 ~ Css , and neglecting 
CS6 • Then since we are not interested in the resonances associated with u~O) 
we may ignore the second differential equation and Tig). At this stage the 
two remaining mechanical equations in (13.110) take the form 

C66U62(U~?ll + ui~D + ew2u~O) = 0, (16.4) 

(2h3j3)YllUi~ll - 2hu62C66(U~?l + uiI) + ih3ew2uil) - u6e26 V = 0, (16.5) 

and the remaining constitutive equations (16.3) take the form 

Tig) = 2hu62C66(U~?l + utI) + U6e26 V , 

TiP = i h3YllUi~l , 
DiI) = V'l1ui~l - (3j2h3)Cll<P~P , 

mO) = u6e26(u~?l + uiI) - (15j4h3)s22<P(1) + (3j4h)S22V, 

D~2) = (15j4h5)s22(3<p(I) - h2V). 

(16.6) 

Note from (16.4)-(16.6) that the two remaining mechanical differential 
equations (16.4) and (16.5) may be written 

Ti~~l + ewu~O) = 0, (16.7) 

Tn~l - Tig) + ih3ew2uil) = O. (16.8) 

Ignoring the mechanical effect of the electrode, we take 

u~O) = A sin ;x1 , uiI) = B cos ;Xl , (16.9) 
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such that 

w = (:rr;/2h)(C66/e)1!2 + e = Wo + e, 1~2h21 ~ I, lei ~ wo , (16.10) 

and substitute (16.9) in the homogeneous form (V = 0) of (16.4) and (16.5), 
to obtain 

A = (h2~/3)B, 

- ihYll~WB - (:rr;2/6)C66~hA + ih2:rr;(C66e)1!2eB = O. 

Substituting from (16.11) into (16.12), we obtain 

ih[Yll + (:rr;2/12)c66 ];2h2B - ih2:rr;(C66e)1!2eB = O. 

(16.11) 

(16.12) 

(16.13) 

The implications of the foregoing are that (16.4) serves to enable us to 
solve for u~o) in terms of uP) in the form 

u~o) = - (h2/3) ui~L (16.14) 

which may then be substituted in (16.5) to yield 

ih3(Yll + "62C66)ui~II - 2h"62C66Uil) + ih3ew2uill - "6e26 V = O. (16.15) 

The above approximation was for the unelectroded portion of the 
crystal. A similar approximation may, of course, be performed for the 
electroded portion. However, since the mass loading of the electrodes is 
very small, the effect of small piezoelectric coupling may be comparable 
with the effect of the mass loading. Consequently, before proceeding further 
we must obtain the thickness solution of a piezoelectric plate including the 
mass loading of the electrode. 

3. THICKNESS VIBRATIONS OF ELECTRODED 
ROTATED V-CUT QUARTZ INCLUDING THE MASS 

LOADING OF THE ELECTRODE 

We begin this section by writing the equations for the thickness-shear 
vibrations of a rotated Y-cut crystal with surface electrodes in the form 

C66U1 ,22 + e26({J,22 = eUI , e26u1 ,22 - e22({J,22 = 0, 

C66U1 ,2 + e26({J,2 ± 2h' e'u1 = 0 

({J = ± ({Jo cos wt 

at X 2 = ± h, 

at x 2 =±h. 

(16.16) 

(16.17) 

(16.18) 
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Equations (16.16) are the nontrivial equations of (9.34), (16.18) is the last 
of (9.35), and (16.17) is the form taken by (14.42) in this case. Ignoring 
the time factor cos wt, the steady-state solution satisfying the differential 
equations (16.16) and the electrical boundary conditions (16.18) is given 
by 

U1 = A sin 'f}X2 , 

e26 A . cP =- Slll'f}X2 -
1022 

( C66 + e~6 )'f}2 = ew2 , 
1022 

e26A sin 'f}h + CPo 
h X2 -h X2· 

1022 
(16.19) 

Substituting from (16.19) into the mechanical boundary conditions (16.17), 
we obtain 

A('f}h cos 'f}h - k~6 sin 'f}h - R'f}2h2 sin 'f}h) = - e26CPO/c66 , (16.20) 

where 

k~6 = e~6/c66e22' R = 2e' hi /eh , (16.21) 

and 

C66 = C66 + (e~6/ 0$22) • (16.22) 

Resonance occurs when the coefficient of A in (16.20) vanishes, i.e., when 

'f}h cos 'f}h - k2 sin 'f}h - R'f}2h2 sin 'f}h = 0 , 

or 
tan 'f}h = 'f}h/(k2 + R'f}W) , (16.23) 

where we have dropped the subscripts 26 on k. Since k 2 and R are very 
small, the first root 'f}h of (16.23) will differ from n/2 by a small quantity, 
say LI. Then we have 

'f}h = (n/2) - LI , (16.24) 

and substituting (16.24) in (16.23), we find 

cos LI (n/2) - LI 
sin LI = k 2 + R(ln2 - nLi + Ll2) . 

(16.25) 

Expanding the trigonometric functions in (16.25) as power series in LI, 
recalling that R ~ 1 and k 2 ~ 1, and retaining up to quadratic terms in LI, 
we obtain 

Ll2 - !nLl + k2 + tRn2 = 0, (16.26) 
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which has the pertinent root 

Ll = (2k2/n) + !nR. (16.27) 

Hence from (16.27) and (16.24) we have 

n ( 4k2) TJh =- 1 - R --
2 n 2 ' 

(16.28) 

and the piezoelectric effect of the electrode is negligible compared to the 
mass loading effect if 4k2/n2 ~ R. Thus from (16.28), the second of (16.19), 
and (16.22), the thickness frequency in the electroded portion is given by 

_ = ~ (_ _~) (C66 )1/2 
Ws 2h 1 R n 2 e . (16.29) 

It can readily be shown that the thickness frequency in the unelectroded 
region is given by 

WN = (n/2h)(C66/e)1/2. (16.30) 

The thickness frequency which we used in Section 2 of this chapter and 
appears in (16.10) is 

Wo = (n/2h)(C66/e)1/2. (16.31) 

Now, from the first of (16.21) and (16.22) we have 

C66 = C66(1 - k 2) , (16.32) 

and since k 2 ~ 1, we have 

C66 = C66 (1 + k 2). (16.33) 

The quantity which is really of interest is Ws/WN' and from (16.29) and 
(16.30) this is given by 

Ws/WN = 1 - R - (4k2/n2). (16.34) 

Now from (16.33) we have 

(C66 )1I2 = [c66(1 + k2)]112 = (C66 )1/2(1 + tk2). (16.35) 

Hence from (16.30), (16.31), and (16.35) we have WN/WO = 1 + tk2, and 
if we wish to continue to use the thickness-shear frequency Wo from our 
previous work in Section 2 in the small piezoelectric coupling appro xi-
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mati on we must define a fictitious piezoelectrically un stiffened thickness­
shear frequency £00 by 

£00 = £Os(1 - ik2). (16.36) 

Then from (16.36), (16.29), (16.31), (16.35), and (16.34) we have 

£Oo/Wo = £Os/WN = 1 - R - (4k2/n2) , 

and the important relationship (16.34) is adhered to. From (16.29), (16.31) 
and (16.35) note that 

_8= l-R-- 1+- =1+- l---R £0 ( 4k2 ) ( k 2 ) k 2 ( 8 ) 
% ~ 2 2 ~ 

= 1 + 0.lk2 - R (16.37) 

is of no physical significance here, since the piezoelectric constants cannot 
be varied. However, for electrically biased electrostriction the effective 
piezoelectric constants could be varied, and then (16.37) would have physical 
significance. Note from (16.37) that for small piezoelectric coupling the 
combination of piezoelectric stiffening and the electric boundary condition 
at a driven electrode serves to raise-not lower-the thickness frequency. 

4. THE THICKNESS-SHEAR APPROXIMATION 
IN THE ELECTRODED REGION 

We may now make the approximation for the electroded portion. In 
doing so we will naturally introduce the defined thickness-shear frequency 
£00 given in (16.36). 

From (14.30)-(14.32) we find that the pertinent equations for the 
electroded portion analogous to Eqs. (16.4) and (16.5) for the unelectroded 
portion are 

C66i262(U~~ll + ui~D + e(1 + R)W2U~0) = 0, (16.38) 

ih3YllUi~ll - 2hi262C66(U~~l + ujO) + ih3e(1 + 3R)w2uP) - i26e26 V = O. 
(16.39) 

where the barred coefficients are for the plated region. The thickness-shear 
frequency predicted by (16.39) is given by 

i26 
£Ot=T [ 3c ] 1/2 

(1 + ;6R )e (16.40) 
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and is to be compared with Wo defined in (16.36), which from (16.36), 
(16.29), and (16.35) is given by 

W=- l-R--- --. _ ... n ( 4k2) (C66 ) 1/2 

o 2h n 2 e (16.41 ) 

instead of Ws , because we used Wo instead of WN in the unelectroded region, 
as noted in Section 3. Hence from (16.40) and (16.41) we have 

n 2 ( 4k2)2 ii62 = 12 1 - R - ~ (1 + 3R), 

which for R ~ 1 and k 2 ~ 1 may be written 

_ 2 n 2 ( 8k2 ) 
K6 = 12 1 + R - ~ . (16.42) 

Now, proceeding as in Section 2 for W = Wo + e, lei ~wo, and 1~2h21 ~ 1, 
from (16.38), (16.41), and (16.42) we find 

(0) _ h2 1 + R - (8k2/n2) (1) 

U2 - T 1 - R _ (8k2/n2) U1,1' 

or since R ~ 1 and k 2 ~ 1, we have 

U~o> = - lh2(1 + 2R)ueI , (16.43) 

and substituting (16.43) in (16.39), we obtain 

ih3[Yll + iis2(1 + 2R)C66 ] ui~il - 2hii62cssuio + ih3e(1 + 3R) w2up> 

- iiSe26V = 0, (16.44) 

which is a differential equation of the same form as (16.15) but with slightly 
different coefficients. 

5. TH E EDG E CON DITIONS 
FOR THE THICKNESS-SHEAR APPROXIMATION 

The edge conditions in the thickness-shear approximation [Eqs. (16.15) 
and (16.44)] are extremely complicated indeed, as a result of the fact that 
one branch-the flexural-has been eliminated and only one-the thick­
ness-shear-remains. The approximation itself is valid in anyone region 
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only if the frequency is very near the thickness-shear frequency. In any 
steady-state vibration problem in which there are two or more different 
sections the frequency must be the same in each section. Consequently, 
for Eqs. (16.15) and (16.44) to be valid the thickness-shear frequencies 
must be very nearly the same in adjacent sections. I cannot emphasize 
too much the need to note carefully that Eq. (16.15) [or (16.44)] is an 
approximation to the equations of coupled thickness-shear and flexure, 
and it is valid in a highly limited range only. Now, the equations of coupled 
thickness-shear and flexure have four continuity conditions at an edge 
connecting one region with another. The four conditions are the continuity 
of 

ng), Ta), u~O), u~l); (16.45) 

and two branches in each section are required in order to satisfy the four 
conditions; however, the present approximation no longer has two branches, 
it has only one. The first step in resolving this dilemma is to recall that 
to the present approximation we have in the unlectroded region 

ng) = - ih3"'62C66U~~ll + 2h"'62C66U~1) , 
np = ih3YllU~~i, 

u~O) = - !h2u~~i. 

(16.46) 

(16.47) 

(16.48) 

Since in this approximation 1~2h21 < 1, we may write ng) in the form 

T~g) = 2h"'62C66U~1) , (16.49) 

in place of (16.46). Note from (16.47)-{16.49) that of the four continuity 
conditions in (16.45) T~g) and u~l) are large and TlP and u~O) are small, since 
l~hl < 1, and the large ones and small ones are separately proportional. 
Note further that the product terms 

T1g)u~O), npu~l) , (16.50) 

which appear in Mindlin's (36) uniqueness theorem for the equations of 
coupled thickness-shear and flexure, may, by virtue of (16.47)-{16.49), be 
written 

- ih3"'62C66UP)u~~I, ih3YllU~~Ml) , (16.51) 

from which it is clear that both terms are of the same order of magnitude. 
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Consequently, it is impossible to eliminate the flexure in favor of the shear, 
or viceversa, at this stage. Hence at a prescribed homogeneous edge con­
dition (free, fixed, or mixed) we must satisfy two conditions approximately 
with one branch, and at a junction connecting two adjacent regions we 
must satisfy all four conditions approximately with one branch in each 
section. In the prescribed homogeneous cases we can always eliminate one 
of the two conditions, since, as noted previously, two of the four quantities 
specifying the conditions are small compared to the other two and the large 
ones and small ones are separately proportional. Hence we have simply 
to satisfy the large condition and ignore the small negligible one when it 
exists. Thus when the edge is either completely free (ng) = TW = 0) or 
completely fixed (u~O) = ui1) = 0), we have to satisfy the edge condition 

ui1) = O. (16.52) 

Clearly we must satisfy this same condition when the edge is supported 
in such a way that ng) = uP) = o. Only when the edge is supported in 
such a way that np = ~O) = 0 do we have to satisfy 

ui~~ = O. (16.53) 

In the case of a junction connecting two adjacent regions we can satisfy 
all four conditions approximately only when two of the four conditions 
are approximately equal to the other two. This will be the case when adjacent 
sections have approximately the same thickness and flexural and shear 
properties, i.e., when h, Yll , and "'62C66 have very nearly the same values in 
adjacent sections, as in the problems with which we are concerned. Under 
these circumstances the four continuity conditions, (16.45), at a junction 
may be replaced by the two continuity conditions 

ui1) , ui~~ , (16.54) 

or any of the other equivalent combinations of two conditions for that 
matter. Thus the thickness-shear approximation is sensible only if the thick­
ness and shear and flexural stiffnesses are approximately the same on 
adjacent sides of a junction, and under these circumstances all four con­
tinuity conditions are satisfied approximately by the one remaining branch 
associated with each section. These considerations imply that if the shear 
and/or flexural characteristics in two adjacent sections differ considerably, 
the thickness-shear approximation would be useless and the fully coupled 
equations of thickness-shear and flexure would have to be used. 
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6. APPLICATION OF THE THICKNESS-SHEAR 
APPROXIMATION TO A MONOLITHIC STRUCTURE 

We now have the equations and boundary conditions to solve the 
problem discussed in Section 1 using the thickness-shear approximation. 
In regions 0, 2, and 4 the equation is (16.15), which, for convenience, we 
rewrite here as 

ih3(Yn + "62C66) ui~I1 - 2hu62C66Ui1) + ih3ew2ui1) = O. (16.55) 
n n n 

In region 1 the equation is (16.44), which, for convenience, we rewrite 
here as 

ih3[jin + "62(1 + 2R)C66] ui~h - 2hX62C66 uill + ih3e(1 + 3R)w2 ui1) 
1 1 1 

- "6e26V = O. (16.56) 
1 

In region 3 we have the same equation as (16.56) but with a lower script 
3 instead of a 1, and from the last of (13.110) the electrostatic equation 

ih31jJn ui1I1 - en cp(H + (15jh2)822 cp(l) - 5822V = 0, 
3 • 3' 3 3 

(16.57) 

which, because of small piezoelectric coupling, may be solved separately 
from the mechanical equation analogous to (16.56) for region 3. In region 3 
from (15.6), (13.63), and the fact that D~ll = 0 according to (13.107) we 
also have the admittance condition 

f [ iJ~O) + h2iJ~2)] dA = YV, 
A 3 3 3 

(16.58) 

where from (13.107) and (16.43) we have 

h2 15 3 
D (O) - - - (1 + 2R) (1) + - (1) - __ (1) + V 

2 - "6e26 - U111 "6e26 u1 h3 8 22 cp -h 822 , 
3 3 3' 3 4 3 4 3 

D~2) = (15j4h5) 8 22(3cp(1l - h2V). 
3 3 3 

(16.59) 

At each point of connection of one region with the adjacent one we have 
according to (16.54) 

uill = uill 
n 11+1 

U(ll - U(l) 
1.1 - 1.1 

n n+1 

(16.60) 
n=O, 1, 2,3, 

(16.61) 
n=O, I, 2, 3. 
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Since the frequencies must be confined to be in the neighborhood of the 
thickness-shear resonances, we may simplify the equations somewhat by 
recalling from (16.10) that 

n 
W =W{) + B =2Jl 

and then defining e so that 

)
112 

(C;6 + B, 

n ( 4k2 ) (C ) 112 W = roo + e = 2Jl 1 - R - ~ f + e, 

(16.62) 

(16.63) 

and then substituting (16.62) and (16.63) in (16.55) and (16.56) to obtain 

ih3(Yll + "62C66) ul~f1 + inh2( c66e )1I2B ulll = 0 , (16.64) 
n n 

for n = 0, 2, 4, and 

( 4k2) 
ih3[Yll + uW + 2R)C66] ul~f1 + inh2 1 + 2R - -2- (C66e )1I2e u11) 

n n n 

u6e26 V = 0, 
n 

for n = 1, 3. Clearly, from 06.62) and (16.63) we have 

n (C )1/2 ( 4k2 ) e = B + Wo - roo = B + 2Jl f R + ~ . 

(16.65) 

(16.66) 

In regions 1 and 3 we now express the solution as a sum of an auxiliary 
and a residual part, the auxiliary part selected so that the residual part 
satisfies homogeneous differential equations. Clearly, from (16.65) the 
auxiliary part is given by 

A 3 u6e26 
u11 ) = V, 
n 2h2n [1 + 2R - (4k2jn2)](C66e)1I2 en 

or since R ~ 1 and k 2 ~ 1 

A V3 (1 - iR) 
u(I) = - e V 

1 4h2 ( )112 - 26 , n c66e B n 
(16.67) 

and the residual solution satisfies the homogeneous mechanical equation 

R R 
ih3[Yll + u62(1 + 2R)C66 ] Uef1 + inh2[1 + 2R - (4k2jn2)](C66e)1/2 e uP) = 0 

n n 

(16.68) 
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for n = 1, 3, and in these regions 

A R 
u~ll = uP) + u~ll. (16.69) 
n n n 

Moreover, in region 3 the electrostatic equation (16.57) remains essentially 
unchanged and may be written 

2 3 R(1) _ (1) 2 (1) _ ah VJn u1,n en q;,l1 + (15/h )822 q; - 5822 V - o. (16.70) 
3 3 3 3 

When expressed in terms of the residual variables in regions 1 and 3 the 
mechanical continuity conditions (16.60) and (16.61) take the form 

u(l) = V3 (1 - iR) e V + 
1 4h2 ( )112 - 26 n e6Se 8 n+l 

n n-1 

R 
U(ll U(1) 

1,1 1,1 

R u(ll 
1 

n+1 
n-1 

n n+1 
n n-1 

n=O,2, 
n=2,4. 

n=O,2, 
n=2,4. 

(16.71) 

(16.72) 

Thus at this stage we have five homogeneous mechanical equations, (16.64) 
and (16.68), eight mechanical boundary conditions, (16.71) and (16.72), 
one electrostatic equation, (16.70), and one admittance condition, (16.58). 
We also have a prescribed voltage V. In each section a typical solution 

1 

uP) = A cos ~X1 , 
n n n 

yields a dispersion relation as shown in Fig. 28, and the dispersion relation 
for the unelectroded region lies above the dispersion relation for the elec­
troded region, and is shown dotted. We will confine ourselves to frequencies 

w 

I 

1m( -.....L----L.....--:---7-~-__;_-7-.. Re( .. 
3 2 o 2 3 

Fig. 28. Thickness-shear dispersion curves for plated and unplated piezoelectric 
plates for real and imaginary wave numbers. 
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w, where roo < w < Woo Then E is always negative. We may then write 
the mechanical portion of the solution in the form 

ulll = A exp - [i~(XI + 11 + i/2)] , 
o 0 0 

~1l) = A cos HXl + 1(11 + 12)] + B sin HXl + l(ll + 12)], 
1 1 1 1 1 

uP) = A cosh i~Xl - B sinh i~Xl , 
2 2 2 2 2 

(16.73) 

~P) = A cos ~[Xl - t(/2 + 13)] + B sin ~[Xl - t(/2 + 13)], 
3 3 3 3 3 

ull) = A exp[i~(xl - 11 - 1/2)], 
4 4 4 

where the time factor is understood to be eirot and the A and B are complex, 
n n 

and ~ = ~ = ~ and ~ =~, and which are found, respectively, from the 
02413 

relations 
~2 = (csse )112 nE 

o Yn + "62CS6 h' 
(16.74) 

~2 = 1 + 2R - (4k2 jn2 ) 1/2 nl 
1 9n + x~(1 + 2R)C66 (C66e) h' (16.75) 

which are found by substituting from (16.73) into (16.64) and (16.68), 
respectively. Substituting from (16.73) into the eight mechanical continuity 
conditions given in (16.71) and (16.72) yields eight complex, linear, algebraic 
equations in the nine complex unknowns A, A, A, A, A, B, B, B, and V. 

01234123 3 

We must now satisfy the electrostatic equation (16.70) in region 3. 
R 

To this end, we substitute uP) from (16.73) and write cp(l) as the sum of an 
3 3 

auxiliary and residual part, so that 

A R 
cp(1) = cp(l) + cp(l) , (16.76) 
3 3 3 

where 
A 
cp(ll = (h2V)j3; (16.77) 
3 3 

R . 
so that from (16.76), (16.77), and (16.70) we see that cp(1) satIsfies 

3 
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R R R 
- ih3"1'1l;2 ull ) - ell <p~N + (15Jh2)822 <p(1) = o. 

3 3 3 3 
(16.78) 

Since we have assumed small piezoelectric coupling and ignored all electri­
cal edge conditions, we have already ignored the essentially vertical piezo­
electric branch shown in Fig. 27. Inasmuch as the homogeneous solution 

R 
of (16.78) for <p(1) gives rise to this essentially vertical branch which has 

3 

already been ignored, this homogeneous (complementary) solution can be­
indeed has been-ignored and only the inhomogeneous (particular) solu­
tion of (16.78) need be considered. This latter solution takes the form 

~(1) = ~ h3 "I'n h2;2 ~~u . 
3 45 8 22 3 3 

(16.79) 

Moreover, as we shall see this term turns out to be negligible when inserted 
in the admittance relation (16.58). From (16.76), (16.77), and (16.79) we 
now have 

h2 2 "I' R 
<p(1) = _ V + - h3 ~ h2;2 uP) . 
3 3 3 45 8 22 3 3 

(16.80) 

Substituting from (16.73) and (16.80) into the constitutive equations (16.59), 
which must be integrated over the area of the electrode in region 3, in the 
admittance relation (16.58), we find 

R V3(1 - ?.R) 
D(O) = 1.u e (1 + 2R);2h2 u(1) + u 2 e2 V 

2 3 6 26 I. 6 4h2( )112 _ 26 
3 1 3 c66e 8 3 

R 5 1 R 3 + u6e26 ulu - -h 8 22 V - - "I'nh2;2 uP) + - 8 22 V, (16.81) 
3 4 3 6 1 3 4h 3 

R 
D~2) = (1 J2h2)"I'nh2;2 uP) . 
3 1 3 

Since "I'll is of the order of e26 and ;2h2 ~ 1, from (16.81), we obtain 
1 

v'3 (1 - !R)e~6 V _ ~V 
I?~O) + h2f~2) = u 6 4h2(C66e)1!2e 3 2h 3 

+ u6e26 {A cos ; [Xl - t(l2 + 13)] + B sin ; [Xl - tc/2 + 13)]}. (16.82) 
3 1 3 1 

Substituting (16.82) into the admittance condition (16.58) and integrating 
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over the area of the electrode in region 3, we obtain 

- 1 
[ X6 V3 (1 - i R M6J V+ iw2b "6e26 A sin $ 2a = Yr' e22 1 $ a 1 

-iwbla 2h - 2h(C66e)1i2ee22 a 1 (16.83) 

where b is the length of the electrode out of the paper. Equation (16.83) 
may be written 

[ e22 ( X6 V3 (1 - iR)e~6) iYJ 2bx6e26 . la bla-- 1 - - - V= A sm$-. 
2h 2h(C66e )1/2ee22 w a $ a 1 2 

1 (16.84) 

Equation (16.84) is the admittance relation, which provides the ninth com­
plex linear algebraic equation. As already stated, the other eight equations 
come from the eight mechanical continuity conditions in (16.71) and (16.72). 
We have not bothered to write them down because they are extremely 
straightforward and simply require a great amount of writing. Thus we 
now have nine complex, linear, algebraic equations in nine complex un­
knowns. The value of the admittance Y depends, of course, on the external 
circuitry associated with region 3. 

Before making a calculation the equations should, of course, be put 
in dimensionless form wherever possible. This may be accomplished by 
writing the pertinent equations so that the dimensionless quantities $h, 
In/h, e/wo , and e/wo occur. A calculation would then proceed by selecting 
a value of w/wo, which would determine values of e/wo and e/wo. Then 
$h and $h could be determined from (16.74) and (16.75), respectively, 
o 1 

after which the nine complex equations may be solved simultaneously to 
give the nine complex unknowns in terms of the applied voltage V. Thus V / V 

1 a 1 

may be determined. In making a calculation, some obvious numerical 
simplifications can be made because of the smallness of certain quantities. 
That is, since the electrodes and piezoelectric coupling are such that 

jill = Yll' X6 = "6' R~l, 4k2/n2 ~ 1 , (16.85) 

we may replace the continuity relations (16.71) and (16.72) by the simpler 
ones 

R V 3 e26 V + uP) 
(1) - J 1 n+1 

U
1 

- 2nhc66 ~~1 n-l n 
n 

n=O,2 
n=2,4, 

(16.86) 
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R 
u(1) u(1) 

1.1 1.1 
n n+l 
n n-l 

n=O,2 
n=2,4, 

(16.87) 

and the dimensionless form of the dispersion relations (16.74) and (16.75) 
by the simpler ones 

where 

n 2 c5 
~W = 2(yu + ~n ° 

n2g 
~2h2 = 2(- + un 
1 Yu 

c5 = e/wo, g = e/wo , Yu =YU/C66' 

(16.88) 

(16.89) 

Similarly, the admittance condition (16.84) may be written in the form 

[~ ~ (1 - ~6 V'! k~6 ) _ iYJ r = 2~6e26 A sin ~ hl3 . (16.90) 
2 h nc5 bwo h ~h 3 1 2h 

I 

Thus it is clear that the entire effect is contained in the relation 

g - c5 = R + (4k2 /n2) , (16.91) 

and 

c5 = (w/wo) - 1, roo <w <wo· (16.92) 

Once the solution has been obtained, the driving current through re­
gion 1 may be calculated. However, as already stated the electric-potential 
resultant cp(I) must first be determined as a solution of the electrostatic 

I 

equation in region 1. The solution for cp(1) in region 1 proceeds in exactly 
I 

the same manner as the solution for cp(1) in region 3, and with the same 
3 

terms being negligible. In fact, the expression for cp(I) may be obtained from 
1 

the expression for cp(l) in (16.80) merely by replacing all lower scripts 3 
3 

with lower scripts 1. In this way the expressions for D&O) and D~2) may be 
I 1 

obtained from the expressions for mOl and D&2) in (16.81). Moreover, since 
3 3 

region 1 is passive in relation to the driving circuit, we have 

1= - f (b&O) + h2b&2») dA = - iw f (D&O) + h2D&2») dA. (16.93) 
I Al I Al I 
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Substituting in (16.93) from the expressions for D&O) and D&2), we obtain 
1 1 

• C22 [X6 V3 (1 - iRM6 ] I = - ,wbl1 -- - 1 V 
1 2h 2h(C66Q )1I2£C22 1 

x6e26 11 
- iw2b--A sin~-

~ 1 1 2 ' 

(16.94) 

1 

which, after the introduction of the approximations in (16.85), may be 
written in the form 

1 = - iwb/1e22 [( "6 ~ k~6 _ 1) r + 4e26 "6 ~ 1 sin ~h ~J. 
2 1(,(j h c22 11 ~h 2 h 

(16.95) 

Since Ae26/C22 is known in terms of V/h from the solution, Eq. (16.95) de-
l 1 

termines the admittance of the entire structure as seen by the driving circuit. 
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INDEX 

A 

Abbreviated notation for material con­
stants, 51 

Active element, 179-181 
Admittance, 179-181, 185, 194 

of monolithic structure, 202 
Ampere's law, 26 
Angular momentum, conservation of, 11 
Anisotropic crystals, 35, 52jf, 85 
Antiresonant frequency, 158 
Antisymmetric tensor, 5, 20 
Axes 

Cartesian coordinate, 
Axial vector, 3 

Body 
force, 11 
couple, 11 

B 

Boundary conditions 
constraint, 47 
electrical, 25, 39 
homogeneous, 69jf, 74, 80, 155 
inhomogeneous, 66, 77, 154 
mechanical, 39 
natural,47 
piezoelectric, 36, 39 

Branches 
on dispersion spectrum, 106, 109 
complex, 108ff 
imaginary, 108, 109 
real, 102 jf, 109 

Cartesian 
coordinates, 

C 

tensor notation, 4, 5 
Complex notation, 181 
Conditions 

boundary, 25, 36, 39, 66, 69, 74, 77, 80 
constraint, 47 
edge, 152, 191ff 
initial, 39 
interior, 152 
junction, 192, 193 

Conduction 
electrical, 158, 179 

Conductance, 180 
Conservation 

of angular momentum, 11, 14 
of energy, 33 
of linear momentum, 11 
of mass, 11 

Constants 
dielectric, 35, 52ff 
elastic, 35, 52ff 
piezoelectric, 35, 52ff 

Constitutive equations 
three-dimensional, 36 

isotropic, 59 
lithium niobate, 57 
lithium tantalate, 57 
2-monoclinic, 55, 56 
m-monoclinic, 57 
polarized ceramics, 55, 58 
quartz, 57 
32-trigonal, 57 
3m-trigonal, 58 

two-dimensional plate 
2-monoclinic, 160, 161 

Constraint 
variational, 97 

Correction factors, 149, 164, 167, 191 
Coupling factors, 89, 126 
Crystal point group symmetries 

hexagonal, 54, 55 
isotropic, 55 
m-monoclinic, 54 
2-monoclinic, 52 
32-trigonal, 53 
3m-trigonal, 54 

D 

Damping, 66, 166, 167 
Decay factor, 167 
Deformation, infinitesimal, 17ff 
Degenerate 

eigenvalues of symmetric matrix, 7 
form of Poynting's vector, 29 
form of Poynting's theorem, 29 
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Delta, Kronecker, 
Differential equations 

homogeneous, 67 
inhomogeneous, 66 
three-dimensional 

isotropic, 59 
lithium niobate, 57 
lithium tantalate, 57 
2-monoclinic, 56 
m-monoclinic, 57 
polarized ceramics, 58 
quartz, 57 
32-trigonal, 57 
3m-trigonal, 58 

two-dimensional plate 
2-monoclinic, 161, 162 

Dilatation, 24 
Dispersion curves 

for elastic plate, 109 
for extensional mode, 106 
for flexural mode, 106 
for piezoelectric plate, 184 
for plane wave, 84, 86 
for thickness-shear, 196 
for thickness-shear and flexure, 184 

Displacement 
electrical, 25 
mechanical, 18 

Dissipation, 166, 168 
Divergence 

of a vector, 4 
of stress tensor, 14 

Dyadic, 4 

E 

Edge conditions, 152, 193 
homogeneous, 155 
inhomogeneous, 154 

Eigen solution 
expansion in, 135ff 
for coupled thickness-shear and flexural 

vibrations of plates, 164-166 
for elastic thickness vibrations, 81ff 
for one-dimensional wave equation, 67ff 
for two-dimensional elastic standing wa-

ves, 95ff 
for two-dimensional piezoelectric stand­

ing waves, 119-121 
Eigenvalues 

degenerate, 7 
for elastic plane waves, 83, 85ff 
for piezoelectric plane waves, 90 

for strain tensor, 22 
for stress tensor, 16 
nondegenerate, 7 
of symmetric matrix, 6 
of symmetric tensor, 6 
real, 6 

Eigenvectors 
of symmetric matrix, 6 
of symmetric tensor, 6 

Elastic 
constants, 35 
plane waves, 85 

[Index 

thickness vibration, 81ff 
two-dimensional standing waves, 95ff 

Electric 
admittance, 179-181, 185, 194 
boundary conditions, 25 
charge density, 25 
conductance, 180 
current, 179 
displacement, 25 
edge conditions, 152, 154ff 
enthalpy, 34, 148 
field intensity, 25 
polarization, 25 
potential, 26 
potential resultant, 143 
voltage, 144, 157 

Electrode 
inertia of, 169 
mass loading of, 187 
plating, 168-169 
shorted, 119 
thin, 168 

Electromagnetic 
energy flux, 27ff 
gauge, 27 
potentials, 26, 27 

Extensional waves 
dispersion curves for, 106 
theory of, 114 

Faraday's law, 26 
Field 

electric, 25 
magnetic, 25 

F 

mechanical displacement, 17ff 
Flexural waves 

dispersion curves for, 106 
theory of, 114 

Flux 
electromagnetic energy, 27 



Index) 

Forced vibrations, 66, 72, 75,87 
steady state, 66 

Forcing voltage, 145, 158, 162, 196 
Free vibrations, 66 
Frequency 

antiresonant, 89, 158 
equation 

for coupled thickness-shear and flex-
ure, 165 

for elastic thickness vibration, 85 
for piezoelectric thickness vibration, 92 
for a string, 70 
Rayleigh, 102ff 
resonant, 74, 76, 79, 89, 92, 167 

G 
Gauge 

electromagnetic, 27 
Gradient 

displacement, 18ff 
of a scalar, 3 
of a vector, 18 

Green's theorem, 4 

H 

Hamilton's principle 
for linear piezoelectric continuum, 44-46 

modification of, 47ff 
for particle and rigid body mechanics, 43 

Homogeneous 
boundary conditions, 72, 74, 80 
differential equations, 67 
edge conditions for plate equations, 156 
linear algebraic equations, 7, 85, 90, 

96, 97, 117, 119, 121, 165 
quadratic functions, 35, 36, 38 

Holonomic condition, 43 

I 
Imaginary 

number, 103, 181 
wavenumber, 108 

Improper rotation, 2 
Indicial notation, Iff 
Inertia 

of electrode plating, 169, 187 
Infinite 

linear medium, 67 
piezoelectric medium 35, 36 
plate, 81 

Infinitesimal 
mechanical displacement, 18 
rotation, 19, 20 

strain, 19, 20 
volume change, 23, 24 

Inhomogeneous 

209 

boundary conditions, 77, 87jJ. 130, 131, 
159 

differential equations, 65, 66, 154, 159, 
168 

edge conditions for plate equations, 152, 
154, 159, 196 

linear algebraic equations, 78, 89, 92 
Initial conditions, 39, 66 
Interior conditions for plate equations, 152 
Internal energy, 33, 36, 145 
Isotropic material, 55, 59 

J 

Junction conditions, 193 

K 

Kinetic energy, 33, 43, 145 
Kronecker delta, 1 

L 

Lagrange denSIty, 43, 44 
Lagrangian multipliers, 8, 15, 21, 47ff 
Lame solution, 102 
Least squares, 129jJ. 134 
Levi-Civita symbol, 3 
Linear momentum 

conservation of, 11 
differential equation of, 14 

Linear piezoelectric equations, 36, 55ff 
lithium niobate, 53, 54, 57, 58, 60, 61 
lithium tantalate, 53, 54, 57, 58, 60, 61 

Magnetic field, 25 
Magnetization, 25 

M 

Mass loading of electrode, 169, 187 
Material constants, 59 
Matrix 

antisymmetric, 5 
notation for material constant, 51ff 
symmetric 

diagonal form, 7 
eigenvalues, 7 
eigenvectors, 7 

Maxwell's equations, 25 
Mean square error, 129, 131, 135, 136 
Mechanical 

displacement, 18 
forcing terms, 142, 143, 170 
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Momentum 
conservation of 

angular, 11 
linear, 11 

Multipliers, Lagrange, 8, 15, 21, 47ff 

N 

Natural boundary conditions, 47 
Neumann's uniqueness theorem, 39 
Niobate, lithium, 53, 54, 57, 58, 60, 61 
Nonlinear piezoelectricity, xii, 18, 33, 34 
Notation 

compressed, 51ff 
indicial, Iff 
tensor, 4ff 
vector, Iff 

o 
Onoe's theorem, 112 
Orthogonal 

coordinate transformation, 1, 2 
eigenvectors of symmetric matrix, 7 

Orthogonality 
conditions, 2 
of piezoelectric vibrations, 79, 80 
of scalar vibrations, 74, 75 
of trigonometric functions, 130 
of vectors, 2 

p 

Passive element, 179-181, 200 
Phase velocity, 68 
Piezoelectric coupling factors, 89, 126 
Piezoelectrically stiffened elastic constant, 

88 
Piezoelectricity 

linear, 33ff 
nonlinear, xii, 18, 33, 34 

Plane stress, 125 
Plate 

bounded, 132, 142 
constitutive equations, 151, 160-161 
correction factors, 149, 164, 167, 191 
edge conditions, 152, 193 
elastic, 81-87, 95ff 
electric enthalpy density, 145, 148 
infinitely wide, 81 
infinitesimally wide, 123ff 
interior conditions, 152 
internal energy density, 145, 149 
kinetic energy density, 145, 150 
piezoelectric, 87ff, 119ff 
rotated Y-cut quartz, 54 

Plated plate 
constitutive equations, 174 
differential equations, 174 

[Index 

Plating equations as boundary conditions, 
175ff 

Point group symmetry, 51ff 
Polarization, 25 
Polarized ceramics, 54, 55, 58, 61 
Polar vector, 3 
Potential 

electric, 26ff 
resultant, 142-143 
scalar, 26ff 
vector, 26ff 

Poynting's theorem, 28 
quasi-static form, 31 

Poynting's vector, 28, 29 
quasi-static form, 31 

Proper rotation, 2 

Q 

Quality factor, 167 
Quartz crystal, 53, 54 

constitutive equations, 55-57 
differential equations, 56-57 
material constants for 

A-T cut, 58 
referred to crystal axes, 59 

rotated Y-cut, 54 
truncated plate equation for, 160-162 

Quasi-static 
electric field, 30ff 
Poynting's vector, 31 

R 
Rayleigh 

frequency equation, 102 
surface wave velocity, 118 

Real 
branches, 106, 108 
wavenumbers, 102ff 

Residual solution, 155ff 
Resonance 

denominator, 74, 158 
frequency of, 74, 158 

Rotated Y-cut quartz plate, 54 
Rotation 

of Cartesian axes, 1-2 
infinitesimal, local, 20-23 

s 
Scalar, 4 

electric potential, 26-27 
Scalar product, 3 
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Series 
expansion, 141ff 
truncation of, 145ff 

Shear 
strain, 22 
stress, 16 
thickness, 149, 162, 182, 192 

approximation, 185 ff 
Shorted electrodes, 119 
Solution 

auxiliary, 155ff, 163ff 
residual, 155ff, 163ff 
uniqueness of, 37ff, 151ff 

Standing waves, 68ff 
Stationary 

normal strain, 21ff 
normal stress, 15ff 
value of a function, 8 
value of a functional, 42ff 

Steadystate, 68 
Stiffened elastic constants, 88 
Stokes theorem, 4 
Strain 

plate components, 143 
tensor, 21ff 

Stress 
resultants, 142, 170 
tensor, 12ff 

Structure 
monolithic, 183ff 

Surface 
bounding, 81, 95, 142 
of discontinuity, 47ff, 139, 184, 193 
plating on, 169ff, 183, 187 
traction, llff 
waves, 116ff 

Susceptance, 180 
Symmetric 

matrix, 6 
eigenvalues of, 6 
eigenvectors of, 7 

tensors, 6, 14ff, 19ff 
Symmetry 

of crystals 
hexagonal, 54, 55 
m-monoclinic, 53, 54 
2-monoclinic, 52 
triclinic, 52 
trigonal, 53 

T 

Tantalate, lithium 53, 57-58, 60-61 
Tensor 

antisymmetric, 5 
dielectric, 35, 52ff 
elastic, 35, 52ff 
Kronecker, 1 
Levi-Civita, 3 
piezoelectric, 35, 52ff 
rotation, 19ff 
skew-symmetric, 3 
strain, 19ff 
stress, 12ff 
symmetric, 6 

Tetrahedron, elementary, 12 
Thickness 

coordinate expansion in, 141ff 
of electrode plating, 171 
shear, 149, 162, 182, 192 

approximation, 185ff 
dispersion curves, 197 

stretch, 147 
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vibrations, 81ff, 100, 121ff, 133, 187ff 
wavenumbers, 102-103 

Time decay factor, 167 
Traction vector, I1ff 
Transformation 

equations for components of vectors, 2 
equations for components of tensors, 5 
of Hamilton's principle, 47ff 
orthogonal, 2 

improper, 2 
proper, 2 

Traveling wave, 67 
Truncation of series, 145ff 

U 

Uniqueness of solution 
of the equations of linear piezoelectricity, 

37ff 
of the truncated plate equations, 157ff 

Units, 32 

v 
Variation 

constrained, 43, 47ff 
free, 48ff 
of a function, 41 
of a functional, 42 

Variational 
approximation techniques, 47ff 
calculus, 41-43 

Vector 
axial, 3 
curl of, 4 
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divergence of, 4 
electric displacement, 25 
electric field, 25 
gradient of, 18-19 
local rotation, 20ff 
magnetic field, 25 
magnetic flux, 25 
magnetization, 25 
mechanical displacement, 18ff 
polar, 3 
polarization, 25 
potential, 26ff 
Poynting, 28ff 

degenerate form of, 31 
traction, 11ff 
transformation of components of, 2 

Velocity 
of propagation, 68 

in infinite medium 
elastic, 82 
piezoelectric, 90 

surface wave, 118 
phase, 68 

Vibrations 
forced, 66, 72, 75, 87 
free, 66 

scalar, 68ff 
steady-state, 66 
thickness 

elastic, 81ff 
piezoelectric, 100, 121.0; 133 

thickness-shear, 187ff 
Virtual work, 43-44 
Voltage, 144, 157 

Wave 
equation, 65 
number 

complex, 108ff 
imaginary, 108 
real, 102ff 

standing, 68ff 
traveling, 67 

Waves 
elastic, 81.0; 95ff 

w 

in infinite medium 81.0; 87ff 
piezoelectric, 87.0; 119ff 
plane, 81.0; 87ff 
plate, 81ff 
surface, 116ff 

Work, 33, 43-44 
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