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Preface

Electroelastic materials exhibit electromechanical coupling. They
experience mechanical deformations when placed in an electric field, and
become electrically polarized under mechanical loads. Strictly speaking,
piezoelectricity refers to linear electromechanical couplings only.
Electrostriction may be the simplest nonlinear electromechanical coupling,
where mechanical fields depend on electric fields quadratically in the
simplest description. Electroelastic materials have been used for a long time
to make many electromechanical devices. Examples include transducers for
converting electrical energy to mechanical energy or vice versa, resonators
and filters for frequency control and selection for telecommunication and
precise timing and synchronization, and acoustic wave sensors.

Although most of the book is devoted to the linear theory of
piezoelectricity, the book begins with a concise chapter on the nonlinear
theory of electroelasticity. It is hoped that this will be helpful for a deeper
understanding of the theory of piezoelectricity, because the linear theory is a
linearization of the nonlinear theory about a natural state with zero fields.
The presentation of the linear theory of piezoelectricity is rather independent
so that readers who are not interested in nonlinear electroelasticity can begin
directly with Section 2 of Chapter 2 on linear piezoelectricity.

Whereas the majority of books on elasticity treat static problems, the
author believes that dynamic problems deserve more attention for
piezoelectricity. Therefore, they occupy more space in this book. Chapter 3
is on linear statics and Chapters 4 and 5 are on linear dynamics. This is
because in technological applications piezoelectric materials seem to be
used in devices operating with vibration modes or propagating waves more
than with static deformations. Chapters 2 to 5 form the core for a one-
semester course on linear piezoelectricity.

Linear piezoelectricity assumes infinitesimal deviations from an ideal
reference state in which there are no pre-existing mechanical and/or electric
fields (initial or biasing fields). The presence of biasing fields makes a
material apparently behave like a different material and renders the linear
theory of piezoelectricity invalid. The behavior of electroelastic bodies
under biasing fields can be described by the linear theory for infinitesimal
incremental fields superposed on finite biasing fields, which is the subject of
Chapter 6. The theory of the incremental fields is derived from the nonlinear



xiv

theory of electroelasticity when the nonlinear theory is linearized about a
bias.

Chapter 7 gives a brief presentation of nonlinear theory including the
cubic effects of displacement gradient and electric potential gradient, linear
nonlocal theory, linear theory of gradient effects of electrical variables,
coupled thermal and dissipative effects, semiconduction, and dynamic
theory with Maxwell equations.

The development of the theory of electroelasticity was strongly
motivated and influenced by its applications in technology. A book on
piezoelectricity does not seem to be complete without some discussion on
the applications of the theory, which is given in Chapter 8. A piezoelectric
gyroscope, a transformer, a pressure sensor, a temperature sensor, and a
resonator are discussed in this chapter.

Throughout the book, effort has been made to present materials with
mathematics that are necessary and minimal. Two-point Cartesian tensors
with indices are assumed and are used from the very beginning, without
which certain concepts of the nonlinear theory cannot be made fully clear.
Some concepts from partial differential equations relevant to the well-
postness of a boundary-value problem are helpful, but classical solution
techniques of separation of variables and integral transforms, etc., are not
necessary. Although most problems appear as boundary-value problems of
partial differential equations, usually part of a solution is either known or
can be guessed from physical reasoning. Therefore some solution techniques
for ordinary differential equations are sufficient.

Many problems are analyzed in the book. Some exercise problems are
also provided. The problems were chosen based on usefulness and
simplicity. Most problems have applications in devices, and have closed-
form solutions.

Due to the use of quite a few stress tensors and electric fields in
nonlinear electroelasticity, a list of notation is provided in Appendix 1.
Material constants used in the book are given in Appendix 2.



Chapter 1

NONLINEAR ELECTROELASTICITY FOR
STRONG FIELDS

In this chapter we develop the nonlinear theory of electroelasticty for
large deformations and strong electric fields. Readers who are only
interested in linear theories may skip this chapter and begin with Chapter 2,
Section 2. This chapter uses two-point Cartesian tensor notation, the
summation convention for repeated tensor indices and the convention that a
comma followed by an index denotes partial differentiation with respect to
the coordinate associated with the index.

1. DEFORMATION AND MOTION OF A CONTINUUM

This section is on the kinematics of a deformable continuum. The
section is not meant to be a complete treatment of the subject. Only results
needed for the rest of the book are presented.

Consider a deformable continuum which, in the reference configuration
at time occupies a region V with boundary surface S (see Figure 1.1-1). N
is the unit exterior normal of S. In this state the body is free from
deformation and fields. The position of a material point in this state may be
denoted by a position vector in a rectangular coordinate system

denotes the reference or material coordinates of the material point. They
are a continuous labeling of material particles so that they are identifiable.
At time t, the body occupies a region v with boundary surface s and exterior
normal n. The current position of the material point associated with X is
given by which denotes the present or spatial coordinates of the
material point.

Since the coordinate systems are othogonal,

where and are the Kronecker delta. In matrix notation,
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Figure 1.1-1. Motion of a continuum and coordinate systems.

The transformation coefficients (shifters) between the two coordinate
systems are denoted by

In the rest of this book the two coordinate systems are chosen to be
coincident, i.e.,

Then becomes the Kronecker delta. A vector can be resolved into
rectangular components in different coordinate systems. For example, we
can also write

with

The motion of the body is described by

The displacement vector u of a material point is defined by
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or

A material line element dX at deforms into the following line element
at t:

where the deformation gradient

is a two-point tensor. The following determinant is called the Jacobian of the
deformation:

where and are the permutation tensor, and

The following relation exists identity):

As a special case, when i = p, then

With Equation (1.1 -14) it can be shown from (1.1-12) that

It can be verified that for all L, M, and N the following is true:

From Equation (1.1-17) the following can be shown:

Proof: Multiplying both sides of (1.1-17) by we have

Then
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Replacing the index r by i gives (1.1-18).
The following relation can then be derived:

Proof. Multiply both sides of (1.1-18) by

where (1.1-15) has been used. Replacing the index P by L gives (1.1-22).
The derivative of the Jacobian with respect to one of its elements is

Proof: From Equation (1.1-12)

where (1.1-22) has been used.
With (1.1-22) we can also show that

Proof: Differentiate both sides of (1.1-22) with respect to

because

Similarly, the following is true:

The length of a material line element before and after deformation is
given by

and
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where is the deformation tensor

Its inverse is

From Equation (1.1-32)

which defines J as a function of C.
It can then be shown that

where (1.1-24) has been used, and the components of C are treated as if they
were independent in the partial differentiation. Equation (1.1-36) implies
that

If J is written as a symmetric function of C in the sense that

then Equation (1.1-35) is true.
The derivative of with respect to C is given by

Proof:
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Proof: From Equation for a small variation of C,

where the components of C are treated as if they were independent in the

partial differentiation. Multiply Equation (1.1-40) by

or

Hence

Equation (1.1-39) follows when is written as a symmetric function of C
similar to (1.1-38).

From Equations (1.1-30) and (1.1-31):

where the finite strain tensor is defined by

The unabbreviated form of (1.1-45) is given below:
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At the same material point consider two non-collinear material line

elements and which deform into and The area of the

parallelogram spanned by and and that by and can be
represented by the following vectors, respectively:

They are related by

Proof:

where Equation (1.1-18) has been used.
At the same material point consider three non-coplanar material line

elements and which deform into and

The volume of the parallelepiped spanned by and and that

by and are related by

Proof:

where Equation (1.1-17) has been used.
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The velocity and acceleration of a material point are given by the
following material time derivatives:

The deformation rate tensor and the spin tensor are introduced by
decomposing the velocity gradient into symmetric and anti-symmetric parts

We also have

The strain rate and the deformation rate are related by

Proof:

The material derivative of the Jacobian is

Proof: From Equation (1.1-12)
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where Equation (1.1-22) has been used.
The following expression will be useful later in the book:

Proof: Since

we have, upon differentiating both sides,

Then

Multiplication of both sides of (1.1-63) by gives

Problems

1.1-1. Show (1.1-15) from (1.1-14).
1.1-2. Show (1.1-16).
1.1-3. Show (1.1-45).

1.1-4. Show that

2. GLOBAL BALANCE LAWS

This section summarizes the fundamental physical laws that govern the
motion of an elastic dielectric. They are experimental laws and are
postulated as the foundation for a continuum theory.
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2.1 Polarization

When a dielectric is placed in an electric field, the electric charges in its
molecules redistribute themselves microscopically, resulting in a
macroscopic polarization. The microscopic charge redistribution occurs in
different ways (see Figure 1.2-1).

Figure 1.2-1. Microscopic polarization: (a) electronic, (b) ionic, (c) orientational.

At the macroscopic level the distinctions among different polarization
mechanisms do not matter. A macroscopic polarization vector per unit
present volume,

is introduced which describes the macroscopic polarizing state of the
material.

2.2 Piezoelectric Effects

Experiments show that in certain materials polarization can also be
induced by mechanical loads. Figure 1.2-2(a) shows such a phenomenon
called the direct piezoelectric effect. The induced polarization can be at an
angle, e.g., perpendicular to the applied load, depending on the anisotropy of
the material. When the load is reversed, so is the induced polarization. When
a voltage is applied to a material possessing the direct piezoelectric effect,
the material deforms. This is called the converse piezoelectric effect (see
Figure 1.2-2(b)).
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Figure 1.2-2. Macroscopic piezoelectric effects.

Whether a material is piezoelectric depends on its microscopic charge
distribution. For example, the charge distribution in Figure 1.2-3(a), when
deformed into Figure 1.2-3(b), results in a polarization.

Figure 1.2-3. Origin of the direct piezoelectric effect.

2.3 Electric Body Force, Couple and Power

When a mechanically deformable and electrically polarizable material is
subjected to an electric field, a differential element of the material
experiences body force and couple due to the electric field. When such a
material deforms and polarizes, the electric field also does work to the
material. Fundamental to the development of the equations of
electroelasticity is the derivation of the electric body force, couple, and
power due to the electric field. This can be done by averaging fields
associated with charged and interacting particles [1] or particles with
internal degrees of freedom [2]. Tiersten [3] introduced a physical model of
two mechanically and electrically interacting and interpenetrating continua
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to describe electric polarization macroscopically. One continuum is the
lattice continuum which carries mass and positive charges. The other is the
electronic continuum which is negatively charged and is without mass.
Electric polarization is modeled by a small, relative displacement of the
electronic continuum with respect to the lattice continuum. By systematic
applications of the basic laws of physics to each continuum and combining
the resulting equations, Tiersten [3] obtained the expressions for the electric

body force couple and power as

where E is the electric field vector, is the present mass density, (a
scalar) is the present free charge density, and is the polarization

per unit mass. The presence of the mass density in is not obvious.
It is due to a relation between the density of the bound charge and mass
density [3]. The problem at the end of this section is helpful for
understanding (1.2-2).

2.4 Balance Laws

Let l be a closed curve. The continuum theory of electroelasticity
postulates the following global balance laws in integral form:

where D is the electric displacement vector, f is the mechanical body force
per unit mass, t is the surface traction on s, and e is the internal energy per
unit mass. The equations in (1.2-3) are, respectively, Gauss’s law (the
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charge equation), Faraday’s law in quasistatic form, the conservation of
mass, the conservation of linear momentum, the conservation of angular
momentum, and the conservation of energy. In the above balance laws, the
electric field appears to be static. This is the so-called quasistatic
approximation [4]. The approximation is valid when we are considering
phenomena at elastic wavelengths which are much shorter than
electromagnetic wavelengths at the same frequency [4]. Quasistatic
approximation can be considered as the lowest order approximation of the
electrodynamic theory through a perturbation procedure [5], which will be
shown in Chapter 7, Section 6 when discussing the dynamic theory. Within
the quasistatic approximation, the electric field depends on time through
coupling to the dynamic mechanical fields. The following relation exists
among D, E, and P:

where is the permittivity of free space.

Problem

1.2-1. Derive expressions for the force, couple, and power on a single,
stretchable dipole in an electric field.

3. LOCAL BALANCE LAWS

From Equation and using the divergence theorem, we can write

Equation (1.3-2) holds for any v. Assume a continuous integrand, then

From Equation with Stoke’s theorem, the line integral along l
can be converted to a surface integral over an area s whose boundary is l:

which implies that

From Equation change the integral back to the reference
configuration
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where Equation (1.1-58) has been used. Hence

With Equations (1.1-58) and (1.3-7) it can be shown that

Proof: With the change of integration variables

The Cauchy stress tensor can be introduced by

through the usual tetrahedron argument. Then from with (1.3-8)
and the divergence theorem, the balance of linear momentum becomes

Hence

From the balance of angular momentum can be written as
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The term on the left-hand side can be written as

The last term on the right-hand side can be written as

Substituting Equations (1.3-14) and (1.3-15) back into (1.3-13), we obtain

or

Hence

which implies that

or

It will be proven convenient to introduce an electrostatic stress
tensor whose divergence yields the electric body force
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For the existence of such consider

We have

where Equation (1.2-4) has been used. We note that is not unique in the

sense that there are other tensors that also satisfy (1.3-21). For example,

adding a second rank tensor with zero divergence to the in (1.3-22) will

not affect (1.3-21). In this book we will use (1.3-22).

With the balance of linear momentum, Equation (1.3-12), can be

written as

The balance of angular momentum, Equation (1.3-20), can be written as

which shows that the sum of the Cauchy stress tensor and the

electrostatic stress tensor is symmetric, which we call the total stress

tensor and denote it by

can also be decomposed into the sum of a symmetric tensor and the

symmetric Maxwell stress tensor as follows:

From Equation the conservation of energy is
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The left-hand side can be written as

The last term on the right-hand side can be written as

Substituting (1.3-29) and (1.3-30) back into (1.3-28) gives

or

With the equation of motion (1.3-12), the left-hand side of (1.3-32)
vanishes, and what is left is

which implies that

A free energy can be introduced through the following Legendre
transform:

Then

Substitute Equation (1.3-36) into (1.3-34)

In summary, the local balance laws are
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Since the electric field is quasistatic (curl-free), an electrostatic potential can
be introduced such that

Then Equation is satisfied identically.

Problems

1.3-1.

1.3-2.

1.3-3.

Calculate the stress in a plate capacitor by studying the Coulomb
force between charges at the two major surfaces of the plate.
Show (1.3-23).

Show that

4. MATERIAL FORM OF THE BALANCE LAWS

Up to this point, all the equations have been written in terms of the
present coordinates      Since the reference coordinates of material points are
known while the present coordinates are not, it is essential to have the
equations written in terms of the reference coordinates

From Equation

Change the integral back to the reference configuration

or

where Equation (1.1-49) has been used. Use the divergence theorem
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which implies that

where and (a scalar) defined by

are the reference or material electric displacement and body free change per
unit undeformed volume.

From Equation

which implies that

where defined by

is the reference electric field.
From the total mass of the material body is a constant, which is

the mass in the reference state

where is the mass density in the reference state. With changes in
integration variables, the conservation of mass takes the following form:

which implies that

The balance of linear momentum can be written as

The last term on the right-hand side of (1.4-13) can be written as
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Substitute (1.4-14) into (1.4-13)

which implies that

where is defined by

The conservation of angular momentum can be written as

which implies that

For the energy equation

we introduce a symmetric stress tensor and a material polarization

vector by

Then

where Equations (1.1-60) and (1.1-56) have been used. Hence
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In summary, the balance laws in material form are

5. CONSTITUTIVE RELATIONS

For constitutive relations we start with the following forms as suggested
by

Substitution of Equation (1.5-1) into gives

Since Equation (1.5-2) is linear in and for the inequality to hold

for any and we must have

where the partial derivatives are taken as if the strain components were
independent, and the free energy is written as a symmetric function of the
strain tensor similar to (1.1-38). Then
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where we have introduced

In terms of the displacement vector, we have

which, in the unabbreviated notation, takes the following form:

From

we have
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where

has been used.
The free energy      that determines the constitutive relations of nonlinear

electroelastic materials may be written as [6]

where the material constants

are called the second-order elastic, piezoelectric, electric susceptibility,
third-order elastic, first odd electroelastic, electrostrictive, third-order
electric susceptibility, fourth-order elastic, second odd electroelastic, first
even electroelastic, third odd electroelastic, and fourth-order electric
susceptibility, respectively. These material constants are called the
fundamental material constants. The second-order constants are responsible
for linear material behaviors. The third- and higher-order material constants
are related to nonlinear behaviors of materials. The structure of
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depends on material symmetry. Integrity bases for
constructing a scalar function of a symmetric tensor and a vector for all
crystal classes are known [7].

6. INITIAL-BOUNDARY-VALUE PROBLEM

Since

the curl-free equation

is automatically satisfied. The angular momentum equation

is satisfied because is symmetric. The present mass density appears in
the equation of conservation of mass only, and therefore can be
calculated from the equation after the deformation and the electric field have
been found. The energy equation is satisfied by the forms of the
constitutive relations. In summary, we need to solve the following
equations:

where

and

With successive substitutions from Equations (1.6-5) and (1.6-6), Equation
(1.6-4) can be written as four equations for the four unknowns
and
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Consider an interface between medium 1 and medium 2. The unit

normal n of the interface points from 1 to 2. A mechanical traction acts

on the interface. The surface free charge density on the interface is

Figure 1.6-1. A material interface.

We want to derive interface jump or continuity conditions. Construct a
pillbox on the interface as shown. Apply the balance of linear momentum
(1.4-13) to the pillbox:

Apply Gauss’s law of electrostatics to the pillbox:

On the interface,

and

Therefore Equations (1.6-7) and (1.6-8) can be written in the material form
as

where

For mechanical boundary conditions S is partitioned into and on
which motion (or displacement) and traction are prescribed, respectively.
Electrically S is partitioned into and with prescribed electric potential
and surface free charge, respectively, and
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Usual boundary value problems for an electroelastic body consist of (1.6-4)-
(16.-6) and the following boundary conditions:

where and are the prescribed boundary motion and potential, is

the surface traction per unit undeformed area, and is the surface free
charge per unit undeformed area. For dynamic problems, initial conditions
need to be added.

7. VARIATIONAL FORMULATION

Consider the following functional [8-10]:

where

The admissible and for satisfy the following essential boundary
conditions on and
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By straightforward differentiation, we have

From Equation (1.1-39) and Problem 1.1-4, the other partial derivative of
is equal to

Then the first variation of is

Therefore the stationary condition of implies the following equations and
natural boundary conditions:
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Problem

1.7-1. Show (1.7-6).

8. TOTAL STRESS FORMULATION

A more compact formulation will result if we introduce the following
total energy density:

Then the constitutive relations take the following form:

where we have introduced a total stress tensor in material form. In

terms of the two-point total stress tensor the constitutive relations are

The variational functional in (1.7-1) becomes

The following expressions will be useful in Chapter 6.
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Chapter 2

LINEAR PIEZOELECTRICITY FOR
INFINITESIMAL FIELDS

In this chapter we specialize the nonlinear equations in Chapter 1 to the
case of infinitesimal deformations and fields, which results in the linear
theory of piezoelectricity. A few theoretical aspects of the linear theory are
also discussed.

1. LINEARIZATION

In this section we reduce the nonlinear electroelastic equations in the
previous chapter to the linear theory of piezoelectricity for infinitesimal
deformation and fields. We consider small amplitude motions of an
electroelastic body around its reference state due to small mechanical and
electrical loads. It is assumed that the displacement gradient is infinitesimal
in the following sense that

under some norm, e.g., It is also assumed that the

electric potential gradient is infinitesimal. We neglect powers of

and higher than the first as well as their products in all expressions. The

linear terms themselves are also dropped in comparison with any finite
quantity such the Kronecker delta or 1. Under (2.1-1),

which implies that, to the first order of approximation, the displacement and
potential gradients calculated from the material and spatial coordinates are
numerically equal. Therefore, within the linear theory, there is no need to
distinguish capital and lowercase indices. Only lowercase indices will be
used in the linear theory. The material time derivative of an infinitesimal
field variable f(y,t) is simply the partial derivative with respect to t:
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For the finite strain tensor

In the linear theory, the infinitesimal strain tensor will be denoted by

The material electric field becomes

Similarly,

Since the various stress tensors are either approximately zero (quadratic in
the infinitesimal gradients) or about the same, we will use to denote the
stress tensor that is linear in the infinitesimal gradients. This is according to
the IEEE Standard on Piezoelectricity [11]. Our notation for the rest of the
linear theory will also follow the IEEE Standard. Then

For small fields the total free energy can be approximated by

where
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The superscript E in indicates that the independent electric constitutive

variable is the electric field E. The superscript S in indicates that the

mechanical constitutive variable is the strain tensor S. We have also denoted
the total free energy of the linear theory by H which is usually called the
electric enthalpy. The constitutive relations generated by H are

Hence T, D and P are also infinitesimal. The material constants in Equation
(2.1-11) have the following symmetries:

We also assume that the elastic and dielectric material tensors are positive-
definite in the following sense:

The total internal energy density per unit volume can be obtained from
H by a Legendre transform, given as

Constitutive relations in the following form then follow:

or

It can be shown that U is positive-definite:
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For small fields, the total internal energy density U per unit volume and the
internal energy density e per unit mass in the previous chapter are related by

Similar to (2.1-11) and (2.1-16), linear constitutive relations can also be
written as [11]

and

The equations of motion and the charge equation become

in which the difference between the reference and present mass and charge
densities can be ignored. The body force f and charge are infinitesimal.

Within linear theory, the conservation of mass and the relation between
the reference and present charge densities take the following form:

The surface loads are also infinitesimal. Hence
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and

Problem

2.1-1. Show (2.1-15).

2. BOUNDARY-VALUE PROBLEM

2.1 Displacement-Potential Formulation

In summary, the linear theory of piezoelectricity consists of the
equations of motion and charge

constitutive relations

and the strain-displacement and electric field-potential relations

where u is the mechanical displacement vector, T is the stress tensor, S is
the strain tensor, E is the electric field, D is the electric displacement, is
the electric potential, is the known reference mass density (or in the
previous chapter), is the body free charge density, and f is the body
force per unit mass. The coefficients and are the elastic,
piezoelectric and dielectric constants. We have neglected the superscripts in
the material constants. With successive substitutions from Equations (2.2-2)
and (2.2-3), Equation (2.2-1) can be written as four equations for u and

2.2 Boundary-Value Problem

Let the region occupied by the piezoelectric body be V and its boundary
surface be S as shown in Figure 2.2-1. For linear piezoelectricity we use x as
the independent spatial coordinates. Let the unit outward normal of S be n.
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Figure 2.2-1. A piezoelectric body and partitions of its surface.

For boundary conditions we consider the following partitions of S:

where is the part of S on which the mechanical displacement is
prescribed, and is the part of S where the traction vector is prescribed.

represents the part of S which is electroded where the electric potential

is no more than a function of time, and is the unelectroded part. For
mechanical boundary conditions we have prescribed displacement

and prescribed traction

Electrically, on the electroded portion of S,

where does not vary spatially. On the unelectroded part of S, the charge
condition can be written as
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where is free charge density per unit surface area. In the above
formulation, the mechanical effect of the electrode is neglected because we
assume very thin electrodes.

On an electrode the total free electric charge can be represented
by

The electric current flowing out of the electrode is given by

Sometimes there are two (or more) electrodes on a body which are
connected to an electric circuit. In this case, circuit equation(s) will need to
be considered.

2.3 Principle of Superposition

The linearity of Equation (2.2-4) allows the superposition of solutions.
Suppose the solutions under two different sets of loads of and

are and respectively. Then under the

combined load of the solution to (2.2-4) is

This is called the principle of superposition and

can be shown as

and
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The principle of superposition can be generalized to include boundary loads.

2.4 Compatibility

Since the six strain components are derived from three displacement
components, it is natural to expect some relations among the strain
components whether they are linear or nonlinear. The following can be
verified by direct substitution:

Equations (2.2-14) are called compatibility conditions. The compatibility
conditions are necessary conditions for the six strain components derived
from three displacement components. They are also sufficient in the sense
that for six strain components satisfying these compatibility conditions,
there exist three displacement components from which the six strain
components are derivable. The sufficiency of (2.2-14) is true over a simply-
connected domain only. For a multiply-connected domain, some additional
conditions are needed. The compatibility conditions are useful when solving
a problem using stress components rather than displacement components as
the primary unknowns. In more compact form, Equation (2.2-14) can be
written as

of which the six independent relations are (2.1-25), or
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3. VARIATIONAL PRINCIPLES

3.1 Hamilton’s Principle

The equations and boundary conditions of linear piezoelectricity can be
derived from a variational principle. Consider [4]

where

u and are variationally admissible if they are smooth enough and satisfy

The first variation of is

where we have denoted

Therefore the stationary condition of is
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Hamilton’s principle can be stated as: Among all the admissible the
one that also satisfies (2.3-6) makes stationary.

3.2 Mixed Variational Principles

If the functional in Equation (2.3-1) is viewed to be dependent on u, S
and E, then Equation (2.3-2) should be considered as constraints among the
independent variables. These constraints, along with the boundary data in
Equations can be removed by the method of Lagrange multipliers.
Then the following variational functional will result [12]:

u, S, T, E and D are admissible if they are smooth enough and satisfy

The first variation of is
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Therefore the stationary condition of is

Hence, among all the admissible {u, S, T, E, D}, the one that also
satisfies Equation (2.3-10) makes stationary. The
functional in Equation (2.3-7) has all of the fields as independent variables.
Its stationary condition yields all the equations and boundary conditions.
Variational principles like this are called mixed or generalized variational
principles.

3.3 Conservation Laws

From Noether’s theorem on variational principles invariant under
infinitesimal transformations, the following relations can be shown [13]:
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where

Equation are obtained by the invariance of the functional in
Equation (2.3-7) under translations, rotations, and scale changes,
respectively. They can be verified by direct differentiation. The relations in
Equation (2.3-11) are in divergence-free form and are called conservation
laws. They can be transformed to path-independent integrals by the
divergence theorem.

Problems

2.3-1. Show (2.3-4).
2.3-2. Show (2.3-9)
2.3-3. Study the conservation laws for linear, static piezoelectricity [13].

4. UNIQUENESS

4.1 Poynting’s Theorem

We begin with the rate of change of the total internal energy density,
given as

where (2.2-1) has been used. Therefore,
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where

is the kinetic energy density, and is the quasistatic Poynting vector.
Equation (2.4-2) may be considered as a generalized version of Poynting’s
theorem in electromagnetics.

4.2 Energy Integral

Integration of (2.4-2) over V gives

where Equations (2.2-6) through (2.2-9) have been used. Integrating
Equation (2.4-4) from to t, we obtain

Equation (2.4-5) is called the energy integral which states that the energy at
time t is the energy at time plus the work done to the body from to t.

4.3 Uniqueness

Consider two solutions to the following initial-boundary value problem:
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From the principle of superposition, the difference of the two solutions
satisfies the homogeneous version of (2.4-6). Let and

denote the difference of the corresponding fields and apply (2.4-5) to it.
The initial energy and the external work for the difference are zero. Then the
energy integral (2.4-5) implies that, for the difference, at any

Since both T and U are nonnegative,

From the positive-definiteness of T and U,

Hence the two solutions are identical to within a static rigid body
displacement and a constant potential.

5. OTHER FORMULATIONS

5.1 Four-Vector Formulation

Let us define the four-space coordinate system [14]
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and the four-vector

where subscripts p, q, r, s will be assumed to run 1 to 4. Also define the
second-rank four-tensor

and the fourth-rank four-tensor where

and all other components of Then

and

Therefore,

yields the homogeneous equation of motion and the charge equation.

5.2 Vector Potential Formulation

Consider the case when there is no body charge. Since the divergence of
D vanishes, we can introduce a vector potential by
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which satisfies the divergence-free condition on D. Corresponding to vector
D, we introduce an anti-symmetric tensor by [15]

which, when substituted into (2.5-8), yields

Similarly, for the electric field E, we introduce an anti-symmetric tensor by

Then the curl-free condition on E takes the following form:

In summary, the equations for this formulation are

Note that in this formulation the internal energy U is used, which is positive
definite.

6. CURVILINEAR COORDINATES

Cylindrical and spherical shapes are often used in piezoelectric devices.
To analyze these devices, it is usually convenient to use cylindrical or
spherical coordinates.

6.1 Cylindrical Coordinates

The cylindrical coordinates (r, z) are defined by

In cylindrical coordinates we have the strain-displacement relation
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The electric field-potential relation is given by

The equations of motion are

The electrostatic charge equation is

6.2 Spherical Coordinates

The spherical coordinates  are defined by

In spherical coordinates we have the strain-displacement relation
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The electric field-potential relation is

The equations of motion are

The electrostatic charge equation is

7. COMPACT MATRIX NOTATION

We now introduce a compact matrix notation [11]. This notation
consists of replacing pairs of indices ij or kl by single indices p or q, where i,
j, k and l take the values of 1, 2, and 3, and p and q take the values 1, 2, 3, 4,
5, and 6 according to

Thus

For the strain tensor, we introduce such that

The constitutive relations in (2.1-11) can then be written as
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In matrix form, Equation (2.7-4) becomes

Similarly, Equations (2.1-16), (2.1-19) and (2.1-20) can also be written in
matrix form. The matrices of the material constants in various expressions
are related by [11]

As an example, some of the relations in (2.7-6) are shown below. In matrix-
vector notation (2.7-4) can be written as

From
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Multiplication of both sides of (2.7-8) by the inverse of yields

Substituting Equation (2.7-9) into gives

Compare Equations (2.7-9) and (2.7-10) with (2.1-19) which is rewritten in
matrix form below:

we identify

8. POLARIZED CERAMICS

Polarized ceramics are transversely isotropic. Let a, a constant unit
vector, represent the direction of the axis of rotational symmetry or the
poling direction of the ceramics. For linear constitutive relations we need a
quadratic electric enthalpy function H. For transversely isotropic materials, a
quadratic H is a function of the following invariants of degrees one and two
[16] (higher degree invariants are not included):

A complete quadratic function of the above seven invariants can be written
as [16]



51

where and are elastic constants, and are dielectric

constants, and and are piezoelectric constants. Differentiation of

Equation (2.8-2) yields

and

Let and rearrange (2.8-3) and (2.8-4) in the form of (2.7-5). The
following matrices will result:

where The matrices in Equation (2.8-5) have the same
structures as those of crystals class (or 6mm). The elements of the
matrices in (2.8-5) are related to the material constants in (2.8-2) by
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With Equation (2.8-5), the constitutive relations of ceramics poled in the
direction take the following form:

and

The equations of motion and charge are

Sometimes a piezoelectric device is heterogeneous with ceramics poled
in different directions in different parts. In this case it is not possible to
orient the axis along different poling directions unless a few local
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coordinate systems are introduced. Therefore, material matrices of ceramics
poled along other axes are useful. They can be obtained from the matrices in
(2.8-5) by rotating rows and columns properly. For ceramics poled in the
direction, we have

For ceramics poled in the direction, we obtain

9. QUARTZ AND LANGASITE

Quartz is probably the most widely used piezoelectric crystal. It belongs
to crystal class 32 (or Langasite and some of its isomorphs (langanite
and langatate) are emerging piezoelectric crystals which have stronger
piezoelectric coupling than quartz and also belong to crystal class 32. For
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such a crystal with a trigonal axis and a diagonal axis, the material
matrices are

The independent material constants are 6 + 2 + 2=10.
Quartz plates are often used to make devices. Plates taken from a bulk

crystal at different orientations are referred to as plates of different cuts. A
particular cut is specified by two angles, and with respect to the crystal
axes (X,Y,Z).

Figure 2.9-1. A quartz plate cut from a bulk crystal.
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Plates of different cuts have different material matrices with respect to
coordinate systems in and normal to the plane of the plates. One class of
cuts of quartz plates, called rotated Y-cuts, has and is particularly
useful in device applications. Rotated Y-cut quartz exhibits monoclinic
symmetry of class 2 (or in a coordinate system in and normal to
the plane of the plate. Therefore we list the equations for monoclinic crystals
below which are useful for studying quartz devices. For monoclinic crystals,
with the diagonal axis along the axis,

The constitutive relations are

and
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The equations of motion and charge are

For rotated Y-cut quartz, motions with only one displacement
component, are particularly useful in device applications. Consider

Equation (2.9-6) yields the following non-vanishing components of strain,
electric field, stress, and electric displacement:

The equations left to be satisfied by and are
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10. LITHIUM NIOBATE AND LITHIUM TANTALATE

Lithium niobate and lithium tantalate have stronger piezoelectric
coupling than quartz. For these two crystals the crystal class is
The material matrices are

When a rotated Y-cut is formed, the material apparently has m-monoclinic
symmetry with the following matrices

The constitutive relations are
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and

The equations of motion and charge are



Chapter 3

STATIC PROBLEMS

In this chapter, a few solutions to the static equations of linear
piezoelectricity are presented. Some simple, useful deformation modes are
considered in Sections 1 to 5. The concept of electromechanical coupling
factor is introduced in Sections 1 to 3. Sections 6 to 13 are on anti-plane
deformations of polarized ceramics. Real piezoelectric materials more or
less have some conductivity. This conductivity tends to neutralize the
electric field in a piezoelectric material. In static problems, an electric field
can be maintained by an applied voltage. Sometimes conductivity needs to
be considered [17].

1. EXTENSION OF A CERAMIC ROD

Consider a cylindrical rod of length L made from polarized ceramics
with axial poling. The cross-section of the rod can be arbitrary. The lateral
surface of the rod is traction-free and is unelectroded. The two end faces are
under a uniform normal traction p, but there is no tangential traction.
Electrically the two end faces are electroded with a circuit between the
electrodes, which can be switched on or off. Two cases of open and shorted
electrodes will be considered.

Figure 3.1-1. An axially poled ceramic rod.
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1.1 Boundary-Value Problem

The boundary-value problem is:

where we have chosen the stress components and the electric displacement
components as the primary unknowns. Many of these components are
known on the lateral surface, and it is easy to guess what they are like inside
the cylinder. Since many components of T will vanish, it is convenient to
use constitutive relations with T as the independent constitutive variable. In
this formulation the compatibility conditions on strains and the curl-free
condition on the electric field have to be satisfied. As suggested by the
boundary conditions on the lateral surface we consider the following T and
D fields

which satisfy the equation of motion and the charge equation. Since the T
and D fields are constants, the constitutive relations imply that the S and E
fields are also constants. Therefore the compatibility conditions on S and the
curl-free condition on E are satisfied. (3.1-2) also satisfies the boundary
conditions on the lateral surface and the mechanical boundary conditions on
the end faces. From the constitutive relations
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Hence the electrical boundary conditions of (constant electric
potential on an electrode) on the end electrodes are also satisfied. We
consider two cases as follows.

1.2 Shorted Electrodes

In this case there is no potential difference between the end electrodes.
Since is constant along the rod, we must have

which implies that

The mechanical work done to the rod per unit volume during the static
extensional process is

1.3 Open Electrodes

In this case there is no net charge on the end electrodes. Since is
constant over a cross-section, we must have

which implies that

The mechanical work done to the rod per unit volume is

1.4 Electromechanical Coupling Factor

Since
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we have

Therefore the rod appears to be stiffer when the electrodes are open and an
axial electric field is produced. This is called the piezoelectric stiffening
effect. The following ratio is called the longitudinal electromechanical
coupling factor for the extension of a ceramic rod with axial poling, and is
denoted by

For PZT-5H, a common ceramic, from the material constants in Appendix 2,

which is typical for ceramics. Graphically and their difference are
represented by areas in the following figure.

Figure 3.1-2. Work done to the ceramic rod per unit volume along different paths.

2. THICKNESS-STRETCH OF A CERAMIC PLATE

Consider an unbounded ceramic plate poled in the thickness direction.
The major surfaces of the plate are under a normal traction p and are
electroded. Two cases of shorted and open electrodes will be considered.
The traction-produced charge or voltage on the electrodes can be used to
detect the pressure electrically.
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Figure 3.2-1. An electroded ceramic plate under mechanical loads.

2.1 Boundary-Value Problem

The boundary-value problem is:

Consider the possibility of the following displacement and potential fields:

The nontrivial components of strain, electric field, stress, and electric
displacement are

and

The equation of motion and the charge equation require that

Hence
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unless

which we do not consider because usually Equation (3.2-5) implies
that all the strain, stress, electric field, and electric displacement components
are constants.

2.2 Shorted Electrodes

Since the potential at the two electrodes are equal and is a constant,

we must have

The mechanical boundary conditions require that Then

The work done to the plate per unit volume is

2.3 Open Electrodes

In this case the boundary conditions require that

which imply that

The work done to the plate per unit volume is

2.4 Electromechanical Coupling Factor

Clearly,
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The electromechanical coupling factor for the thickness-stretch of a ceramic
plate poled in the thickness direction is

For PZT-7A, from the material constants in Appendix 2,

3. THICKNESS-SHEAR OF A QUARTZ PLATE

Consider a quartz plate of rotated Y-cut. The major surfaces of the plate
are electroded. A voltage V is applied across the plate thickness. Two cases
of mechanical boundary conditions will be considered.

Figure 3.3-1. A quartz plate under a voltage V.

3.1 Boundary-Value Problem

The boundary-value problem is:

Consider the possibility of the following displacement and potential fields:
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The nontrivial components of the strain and the electric field are

From the equations in Section 9 of Chapter 2, the electric field, the
nontrivial components of stress and electric displacement are

The equation of motion and the charge equation require that

Hence

unless

which we do not consider because usually Equation (3.3-6) implies
that all the strain, stress, electric field, and electric displacement components
are constants. In particular,

3.2 Free Surfaces

We have

Then
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The free charge per unit area on the electrode at is

Hence the capacitance of the plate per unit area is

Equation (3.12) shows that the effect of piezoelectric coupling enhances the
capacitance by a portion of The electrical energy stored in the plate
capacitor per unit area is

3.3 Clamped Surfaces

In this case, since the strain is a constant, must be a linear function
of The displacement boundary conditions require this linear function to
vanish at two points. Hence

which implies that

The free charge per unit area on the electrode at is

Hence the static capacitance of the plate per unit area is
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The electric energy stored in the capacitor per unit area is

3.4 Electromechanical Coupling Factor

The electromechanical coupling factor for a rotated Y-cut quartz plate in
thickness-shear is then

A rotated Y-cut of is called an AT-cut and is widely used in
devices. From the material constants in Appendix 2,

which is much smaller than that of polarized ceramics. Quartz is often used
for signal processing in telecommunication or sensing rather than for power
handling. Therefore a small electromechanical coupling coefficient is
usually sufficient.

Problems

3.3-1.

3.3-2.

3.3-3.

Study the thickness-stretch deformation of a ceramic plate with
thickness poling due to a voltage across the plate thickness.
Study the thickness-shear deformation of a quartz plate due to
tangential surface traction.
Study the thickness-shear deformation of a ceramic plate with in-
plane poling under a voltage or tangential surface traction.

4. TORSION OF A CERAMIC CIRCULAR CYLINDER

Consider a circular cylinder of length L, inner radius a and outer radius
b. The cylinder is made of ceramics with tangential poling. We choose

to correspond to (2,3,1) so that the poling direction corresponds to 3.
The lateral cylindrical surfaces are traction-free and are unelectroded. The
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end faces are electroded. The end electrodes can be either open or shorted. A
torque M is applied.

Figure 3.4-1. A circular cylinder in torsion.

4.1 Boundary-Value Problem

The boundary-value problem is:

Consider the possibility of the following displacement and potential fields:

where A, C and B are undetermined constants. C represents a rigid body
displacement which is taken to be zero. The nontrivial components of strain,
electric field, stress, and electric displacement are

thus the boundary conditions on the lateral surfaces are satisfied. The
equation of motion and the charge equation are trivially satisfied. At the end
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faces and the given in Equation (3.4-2) is a constant for
fixed z. The torque at a cross-section is given by

where

is the polar moment of inertia of the cross-section about its center. The total
charge on the electrode at z = 0 is represented by

4.2 Shorted Electrodes

If the two end electrodes are shorted, we have B = 0 and

which is the same as the elasticity solution. There is no electric field in the
cylinder. However, does exist so the solution is not purely elastic.

4.3 Open Electrodes

If the end electrodes are open, we have From (3.4-5) and (3.4-7)
we obtain

The denominator of the right-hand side of Equation (3.4-9) represents a
piezoelectrically stiffened torsional rigidity.
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5. TANGENTIAL THICKNESS-SHEAR OF A CERAMIC
CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius a and out radius b.
The cylinder is made of ceramics with tangential poling. We choose
to correspond to (2,3,1) so that the poling direction corresponds to 3. The
lateral cylindrical surfaces are unelectroded. r = a is fixed. r = b is under a
shear stress

Figure 3.5-1. A circular cylinder with tangential poling.

The boundary-value problem is:

Consider the possibility of the following displacement and potential fields:

The nontrivial components of strain, electric field, stress, and electric
displacement are
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The stress components and vanish everywhere and on the lateral
surfaces in particular. The equation of motion and the charge equation to be
satisfied are

which can be integrated to give

where and are integration constants. Hence

For to vanish at r = a and/or b, we must have and hence
everywhere. To satisfy the traction boundary condition at r = b, we have

Therefore the only nonzero stress component is

Problem

3.5-1. Determine the displacement and potential fields from and

6. ANTI-PLANE PROBLEMS OF POLARIZED
CERAMICS

We consider motions satisfying in ceramics poled in the
direction. Then Equations (2.8-7) through (2.8-9) split into two uncoupled
sets of equations. One set is with and which is not electrically coupled.
These are called plane-strain problems. We consider the other set called
anti-plane problems with
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The non-vanishing strain and electric field components are

where

is the two-dimensional gradient operator. The nontrivial components of
and are

where we have denoted

The nontrivial equation of motion and the charge equation take the
following form [18]:

where and is the two-dimensional Laplacian

We introduce [18]

and then

and
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where

We note that in (3.6-10), u and are decoupled. For static problems (3.6-6)
can also be decoupled into

where

When there are no body source terms, (3.6-12) implies that

In polar coordinates the general solution to (3.6-14) periodic in is

where and are undetermined constants.

7. A SURFACE DISTRIBUTION OF ELECTRIC
POTENTIAL

Consider a ceramic half-space poled along the direction. The surface
is traction-free and a periodic potential is applied. The solution to this
problem is useful for exciting or detecting surface waves.

Figure 3.7-1. A ceramic half-space.
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From the equations in Section 6, the boundary-value problem is:

Consider the possibility of the following fields:

which already satisfy the Laplace equations in (3.7-1). For boundary
conditions we need

and the boundary conditions require

which determines

Hence

8. A CIRCULAR HOLE UNDER AXI-SYMMETRIC
LOADS

Consider a circular hole of radius R in an unbounded two-dimensional
domain (Figure 3.8-1). The hole surface at r = R is electroded with the
electrode shown by the thick line in the figure. On the hole surface we apply
a shear stress We consider the case that the electrode is not
connected to other objects. The surface charge density on the electrode is
given to be The problem is axi-symmetric.
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Figure 3.8-1. A circular hole under axi-symmetric loads.

From the equations in Section 6, the boundary-value problem is:

In polar coordinates, for axi-symmetric problems, the Laplacian is given by

The general solution is

where and are undetermined constants. and represent a
rigid body displacement and a constant in the electric potential and are
immaterial to the problem we are considering. The stress and electric
displacement are

which satisfy the boundary conditions at infinity. On the hole surface,
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which determines

Hence

where and are arbitrary constants. Now consider the limit of
and at the same time and such that

Then

Equations (3.8-9) represent the fields of a line force and a line charge at the
origin. Mathematically they are the fundamental solution to the following
problem according to (3.6-12):

where is the Dirac delta function. The solution given by (3.8-9) is
unbounded when This is a typical failure of continuum mechanics in
problems with a zero characteristic length. Continuum mechanics is valid
only when the characteristic length in a problem is much larger than the
microstructural characteristic length of matter. Equation (3.8-9) is valid
sufficiently far away from the origin. At a point very close to the origin, the
source can no longer be treated as a line source; therefore, its size has to be
considered.
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9. AXIAL THICKNESS-SHEAR OF A CIRCULAR
CYLINDER

Consider a circular cylindrical shell of ceramics poled in the direction
with an inner radius of and an outer radius of (see Figure 3.9-1). The
inner and outer surfaces are electroded with electrodes shown by the thick
lines in the figure. A voltage V is applied across the thickness. Mechanically
the boundary surfaces are either traction-free or fixed. The problem is axi-
symmetric.

Figure 3.9-1. A. circular cylindrical ceramic shell as a capacitor.

From the equations in Section 6, the boundary-value problem is:

In polar coordinates, for axi-symmetric problems, the Laplacian takes the
following form:

The general solution is

where and are undetermined constants. The stress and electric
displacements are
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Consider traction-free surfaces

which determines

Hence

where C is an arbitrary constant representing a rigid body displacement. The
surface charge density on the electrode at is given by

The capacitance per unit length of the cylinder is

Equation (3.9-9) shows that the effect of piezoelectric coupling on the
capacitance is of the order of through

Problem

3.9-1. Study the case when the cylindrical surfaces are fixed.

10. A CIRCULAR HOLE UNDER SHEAR

Consider a circular cylindrical hole or radius R in an unbounded ceramic
poled in the direction. The hole surface is electroded and the electrode is
grounded. The hole is under a uniform shear stress at (see Figure
3.10-1). Electrically are either open or shorted. When are
electrically open, the problem is anti-symmetric about
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Figure 3.10-1. A circular hole under shear.

From the equations in Section 6, the boundary-value problem is:

First we determine the fields when is very large. For mechanical fields
we have

We consider the case when are electrically open, such that for large

Equations (3.10-2) and (3.10-3) imply that for the far field
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where and are arbitrary constants and have been set to zero. In view of
the far field solution, we look for solutions in the following form:

Substituting (3.10-5) into the Laplace equations in (3.10-1), we obtain

The general solution is then

where and are undetermined constants. For (3.10-7) to match
the applied field at the far field, we must have

The stress and electric displacement components are

At r = R the boundary conditions require that

which imply that

The displacement and potential fields are



82

Problem

3.10-1. Study the case when are electrically shorted.

11. A CIRCULAR CYLINDER IN AN ELECTRIC FIELD

Consider an infinite circular cylinder of ceramics poled in the
direction with radius R in a uniform electric field (Figure 3.11-1).
The problem is symmetric about and is anti-symmetric about

Figure 3.11-1. A circular cylinder in a uniform electric field.

From the equations in Section 6, the boundary-value problem is

For large r, the fields are known to be
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In view of the far field solution, we look for solutions in the following form
for the field in the free space:

Substituting (3.11-2) into the Laplace equation gives

The general solution for the field in the free space is then

where and are undetermined constants. For the electric field in (3.11-
5) to be equal to the applied field in (3.11-2) for large r, we must have

Inside the cylinder we look for solutions in the following form:

Substituting (3.11-7) into the Laplace equations, we have

The general solution is

where and are undetermined constants. For the boundedness of
u and at the origin, we must have
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and hence

The stress and electric displacement fields in the cylinder are

We note that (3.11-11) and (3.11-12) represent uniform strain, stress,
electric field, and electric displacement inside the cylinder. At r = R, the
traction-free condition and the continuity of and require that

which determines

Then the electric field in the free space is given by

and the fields inside the cylinder are



12. A SCREW DISLOCATION
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Consider a screw dislocation at in a polar coordinate system (see
Figure 3.12-1).

Figure 3.12-1. A screw dislocation.

From the equations in Section 6, the boundary-value problem is:

We look for a solution in the following form:

Substitute (3.12-2) into the Laplace equations as follows:

The general solution is

where and are undetermined constants. From the boundary
conditions in (3.12-1),

Hence
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and

The singularity of the fields at the origin is an indication of the failure of
continuum mechanics in problems with a zero characteristic length.
Equation (3.12-7) is valid sufficiently far away from the origin only.

13. A CRACK

Consider a semi-infinite crack at in a polar coordinate system as
shown in Figure 3.13-1.

Figure 3.13-1. A semi-infinite crack.

From the equations in Section 6, the boundary-value problem is:
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Physically, the above boundary conditions indicate traction-free and
unelectroded crack faces. We look for a solution in the following form:

Substitute (3.13-2) into the Laplace equations as follows:

The relevant solution is

where A and B are undetermined constants. The corresponding
electromechanical fields are

The boundary conditions in Equation (3.13-1) are already satisfied and
impose no more restrictions on the above fields. Note the singularity of the
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fields at the origin. The singularity is an indication of the failure of
continuum mechanics in problems with a zero characteristic length. The
solution is valid sufficiently far away from the crack tip only. As such the
solution’s usefulness is very limited because the behavior of a crack is
mainly determined by the physics at the crack tip.



Chapter 4

VIBRATIONS OF FINITE BODIES

This chapter and Chapter 5 are on the linear dynamics of piezoelectrics.
In this chapter we discuss time-harmonic vibrations of finite bodies, which
are fundamental to device applications. Both free and forced vibrations are
examined. Sections 1 to 5 present exact solutions from the three-
dimensional equations. Section 6 provides some general results of the
eigenvalue problem for the free vibration of a piezoelectric body. Sections 7
to 11 give approximate solutions of a few vibration problems that are very
useful but do not allow simple, exact solutions. However, with some very
accurate approximations, the problems can be solved very easily. Section 12
presents a special problem, i.e., frequency shifts of a piezoelectric body due
to small amounts of mass added to its surface. This problem is particularly
useful in sensor applications. It is treated by a perturbation method and a
simple formula for frequency shifts is obtained.

1. THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (THICKNESS EXCITATION)

Solutions to thickness vibrations of piezoelectric plates can be obtained
in a general manner [19]. To simplify the algebra we discuss a few special
cases in Sections 1 to 3. Consider a ceramic plate poled along the axis
(see Figure 4.1-1). The plate is bounded by two planes at which are
traction-free and electroded. A time-harmonic voltage is applied across the
plate thickness.

Figure 4.1-1. An electroded ceramic plate with thickness poling.
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1.1 Boundary-Value Problem

The boundary-value problem is:

Consider a possible solution in the following form:

The nontrivial components of strain and electric field are

where the time-harmonic factor has been dropped. The nontrivial stress and
electric displacement components are

The equations to be satisfied are

Equation can be integrated to yield

where and are integration constants, and is immaterial. Substitute
Equation (4.1-6) into the expressions for and

where

The general solution to (4.1-8) and the corresponding expression for the
electric potential are
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where and are integration constants, and

The expression for stress is then

The boundary conditions require that

or, add the first two, and subtract the first two from each other:

1.2 Free Vibration

Consider free vibrations with V = 0 first. Equation (4.1-14) decouples
into two sets of equations.

1.2.1 Anti-Symmetric Modes

One set is called anti-symmetric modes for which

Nontrivial solutions may exist if

or

which determines the resonance frequencies
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Equation (4.1-16) implies that and The corresponding modes
are

where n = 0 is a rigid body mode.

1.2.1 Symmetric Modes

For symmetric modes

The resonance frequencies are determined by

or

where

Equations (4.1-22) and (4.1-20) determine the resonance frequencies and
modes. For symmetric modes,

1.3 Forced Vibration

Next consider forced vibrations. From Equation (4.1-14), which
means that anti-symmetric modes are not excitable by a thickness electric
field, and



93

Hence

where is the surface charge per unit area on the electrode at The
capacitance per unit area is

We note the following limits:

where is the static capacitance. The motional capacitance is defined
by
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Note that depends on electromechanical coupling.

Problem

4.1-1. Study thickness-shear vibration of a ceramic plate with in-plane
poling under thickness excitation. Hint: Consider

and

Figure 4.1-2. An electroded ceramic plate with in-plane poling.

2. THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (LATERAL EXCITATION)

Consider a ceramic plate poled in the direction (Figure 4.2-1). The
two major surfaces are traction-free and are unelectroded. A voltage is
applied across and a uniform electric field is produced.

Figure 4.2-1. An unelectroded ceramic plate with in-plane poling.

2.1 Boundary-Value Problem

The boundary-value problem is:
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Consider the possibility of the following fields:

The nontrivial strain and electric field components are

where the time-harmonic factor has been dropped. The nontrivial stress and
electric displacement components are

The electrical boundary conditions and the charge equation are trivially
satisfied. The equation of motion and the mechanical boundary conditions
take the following form:

which shows that we effectively have an elastic plate driven by a surface
traction. The general solution to is

where and are integration constants, and

Then the expression for the stress component relevant to the boundary
conditions is

The boundary conditions require that

or, add and then subtract
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2.2 Free Vibration

First consider free vibrations with E = 0. From nontrivial
solutions may exist if

or

which determines the following resonance frequencies

Equation (4.2-11) implies that The corresponding modes are

which are called anti-symmetric modes, n = 0 represents a rigid body mode.
For symmetric modes from (E = 0),

or

which determines the following resonance frequencies

Equation (4.2-15) implies that The corresponding modes are

2.3 Forced Vibration

For forced vibrations and from

The displacement field is
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Problem

4.2-1. Study the thickness-shear vibration of a ceramic plate with thickness
poling under lateral excitation. Hint: Consider

and

Figure 4.2-2. An unelectroded ceramic plate with thickness poling.

3. THICKNESS-SHEAR VIBRATION OF A QUARTZ
PLATE (THICKNESS EXCITATION)

Consider a rotated Y-cut quartz plate. The two major surfaces are
traction-free and are electroded, with a driving voltage across the thickness.
This structure represents a widely used piezoelectric resonator.

Figure 4.3-1. An electroded quartz plate.

3.1 Boundary-Value Problem

The boundary-value problem is:
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The problem is mathematically the same as the one in Section 1. Its solution
can be obtained from that in Section 1 by changing notation. Because of the
importance of this solution in applications, we solve this problem below so
that this section can be used independently. Consider the possibility of the
following displacement and potential fields:

The nontrivial components of strain, electric field, stress, and electric
displacement are

and

where the time-harmonic factor has been dropped. The equation of motion
and the charge equation require that

Equation                can be integrated to yield

where and are integration constants, and is immaterial. Substituting
(4.3-6) into the expressions for and we obtain

where

The general solution to (4.3-8) and the corresponding expression for the
electric potential are
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where and are integration constants, and

Then the expression for the stress component relevant to boundary
conditions is

The boundary conditions require that

or, add the first two, and subtract the first two from each other:

3.2 Free Vibration

First we consider free vibrations with V = 0. Equation (4.3-14)
decouples into two sets of equations. For symmetric modes,

Nontrivial solutions may exist if

or

which determines the following resonance frequencies

Equation (4.3-16) implies that and The corresponding modes
are
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where n = 0 represents a rigid body mode. For anti-symmetric modes,

The resonance frequencies are determined by

or

where

Equations (4.3-22) and (4.3-20) determine the resonance frequencies and
modes. If the small piezoelectric coupling for quartz is neglected in (4.3-22),
a set of frequencies similar to (4.3-17) with n equals odd numbers can be
determined for a set of modes with sine dependence on the thickness
coordinate. Static thickness-shear deformation and the first few thickness-
shear modes in a plate are shown in Figure 4.3-2.

Figure 4.3-2. Thickness-shear deformation and modes in a plate.
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3.3 Forced Vibration

For forced vibration we have and

Hence

where is the surface charge per unit area on the electrode at The
capacitance per unit area is

We note the following limits:

3.4 Mechanical Effects of Electrodes

In certain applications, e.g., piezoelectric resonators, the electrodes
cannot be treated as a constraint on the electric potential only, and its
mechanical effects need to be considered. This may include the inertial
effect of the electrode mass and the stiffness of the electrode. Consider a
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quartz plate with electrodes of unequal thickness on its two major faces as
shown in Figure 4.3-3 [20].

Figure 4.3-3. A quartz plate with electrodes of different thickness.

We are interested in free vibration frequencies. The governing equations are

where and are the mass density and the elastic constants of the
electrodes. The two electrodes are of the same isotropic material. The outer
surfaces of the electrodes are traction-free. The electrodes are shorted. We
have the following boundary and continuity conditions:

Fields inside the plate are still given by (4.3-10), and (4.3-12).
For fields inside the electrodes, consider the upper electrode first:
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where and are integration constants, and

Similarly, for the lower electrode we have

where and are integration constants.
Substituting (4.3-10), (4.3-12), (4.3-32), (4.3-33), (4.3-35), and

(4.3-36) into (4.3-30), we obtain

For nontrivial solutions of the undetermined constants, the determinant of
the coefficient matrix of (4.3-37) has to vanish. This results in the following
frequency equation:

We make the following observations from (4.3-38).



104

(i) In the limit of and i.e., the mechanical effects of the
electrodes are neglected, (4.3-38) reduces to

which is the frequency equation of both symmetric and anti-symmetric
modes given in (4.3-16) and (4.3-22).

(ii) When i.e., the electrodes are of the same thickness, (4.3-38)
reduces to

The first factor of (4.3-40) is the frequency equation for the anti-symmetric
modes given in [21]. The second factor is for symmetric modes. For small

i.e., very thin electrodes, we approximately have

In this case the first factor of (4.3-40) reduces to

which is the result given in [22]. Note that in Equation (4.3-42) the shear
stiffness of the electrodes has disappeared. Only the mass effect of the
electrodes is left and is represented by the mass ratio R.

(iii) For small and i.e., thin and unequal electrodes, Equation (4.3-
38) reduces to

where we have denoted
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To the lowest (first) order of the mass effect, the term on the right-hand
side of Equation (4.3-44) can be dropped.

Problem

4.3-1. When the electrodes are very thin, only the inertial effect of the
electrode mass needs to be considered; its stiffness can be neglected.
The boundary condition on an electroded surface is, according to
Newton’s law

Use Equation (4.3-45) to study the anti-symmetric thickness-shear
vibration of a quartz plate with electrodes of equal thickness and
derive Equation (4.3-42).

4. TANGENTIAL THICKNESS-SHEAR VIBRATION OF
A CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius a and outer radius
b. The cylinder is made of ceramics with tangential poling. We choose

to correspond to (2,3,1) so that the poling direction corresponds to 3.
The inner and outer surfaces are electroded. There is no load applied, and
we are interested in free vibrations independent of

Figure 4.4-1. A circular cylinder with tangential poling.

The boundary-value problem is:
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Consider the possibility of the following displacement and potential fields:

The nontrivial components of strain, electric field, stress, and electric
displacement are

Thus on the boundary surfaces at r = a and b there are no tangential electric
fields. The electric potential assumes constant values on the electrodes as
required. The stress components and vanish everywhere,
particularly on the lateral surfaces. The equation of motion and the charge
equation to be satisfied are

Equation can be integrated as

where is an integration constant. Then, from we have

Substitution of (4.4-7) into gives
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where

Substitute (4.4-8) into

or

or

where

Introduce a dimensionless variable Equation (4.12) can be written
as

which is Bessel’s equation of order one.
In the following we consider the case when the electrodes at r = a and b

are open. The electrical boundary conditions imply, through (4.4-6), that
Then the general solution to (4.4-14) is

where and are the first-order Bessel’s functions of the first and second
kind, respectively. From (4.4-8) the shear stress is
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The traction-free boundary conditions require that

The frequency equation is given by

Problem

4.4-1. Study the tangential thickness-shear vibration of a circular cylinder
of monoclinic crystals [23].

5. AXIAL THICKNESS-SHEAR VIBRATION OF A
CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius a and outer radius
b. The cylinder is made of ceramics with axial poling along the direction.
We choose to correspond to (1,2,3) so that the poling direction
corresponds to 3. The inner and outer surfaces are electroded. There is no
load applied, and we are interested in anti-plane axi-symmetric free
vibrations [24].
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Figure 4.5-1. A circular cylindrical ceramic shell with axial poling.

5.1 Boundary-Value Problem

From Section 6 of Chapter 3, the boundary value problem is:

where and are related by

The stress and electric displacement components are

We look for solutions in the following form:

The equations for and are
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The general solution to (4.5-5) is

where and are undetermined constants, and are zero-order
Bessel’s functions of the first and second kind, and

Hence

where and have been used.

5.2 Clamped and Electroded Surfaces

First consider the case when the two cylindrical surfaces are fixed and
the two electrodes are shorted. Then we have

which implies that

Hence

and
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5.3 Free and Unelectroded Surfaces

Next consider the case

Then and

5.4 Free and Electroded Surfaces

Finally, consider

It can be shown that

For large x, Bessel functions can be approximated by

Then it can be shown that for large a and b, (4.5-16) simplifies to
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Setting 2h = b-a and allowing a, we have

Then Equation (4.5-18) reduces to

which is the frequency equation for the thickness-shear vibration of a
ceramic plate with in-plane poling (see Problem 4.1-1).

Problems

4.5-1.
4.5-2.
4.5-3.
4.5-4.

4.5-5.

Show (4.5-16).
Show (4.5-18).
Study the case of u = 0, r = a, b and r = a, b.
Study the axial thickness-shear vibration of a circular cylinder of
monoclinic crystals [23].
Study vibrations of a ceramic wedge.

6. SOME GENERAL RESULTS

In this section we prove a few general properties of the eigenvalue
problem for the free vibration of a piezoelectric body [25]. The free
vibration of a piezoelectric body with frequency is governed by the
differential equations
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6.1 Abstract Formulation

We introduce the following notation:

where U and V are four-vectors and A and B are operators. Then the
eigenvalue problem for the free vibration of a piezoelectric body can be
written as

which is a homogeneous system. We are interested in nontrivial solutions of
U. A and B are real but    and U may be complex at this point. We note that
for a nontrivial U, its first three components have to be nontrivial, because

implies, through (4.6-3), that For convenience we denote the
collection of all U that are smooth enough and satisfy the boundary
conditions in (4.6-3) by

A scalar product over H is defined by

which has the following properties:

where and are scalars.

6.2 Self-Adjointness

For any
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and

Hence both A and B are self-adjoint on H. Equation (4.6-7) is called the
reciprocal theorem in elasticity and Green’s identity in mathematics.

6.3 Reality

Let be an eigenvalue and U the corresponding eigenvector. Hence

Take complex conjugate

where an asterisk means complex conjugate, and we have made use of the
fact that A and B are real. Multiply (4.6-9) by and (4.6-10) by U
through the scalar product, and subtract the resulting equations:

Since is strictly positive, we have

or is real. Then let the real and imaginary parts of U be and
Equation (4.6-9) can be written as
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which implies that

Equation (4.6-14) shows that and are also eigenvectors of In the
rest of this section, we will assume that the eigenvectors have been chosen
as real.

6.4 Orthogonality

Let and be two eigenvectors corresponding to two distinct
eigenvalues and respectively. Then

Multiply by and                 by through the scalar product,
and subtract the resulting equations

which implies that

The multiplication of by leads to

Equations (4.6-17) and (4.6-18) are called the orthogonality conditions. In
unabbreviated form they become

6.5 Positivity

A subset of H consisting of U that also satisfies the charge equation is
denoted by
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For any

and

Multiply (4.6-9) by U

which shows that is nonnegative.

6.6 Variational Formulation

Consider the following functional (Rayleigh quotient) of

The first variation of is

Therefore implies that

From (4.6-24) we have
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where the small variation (4.6-27) implies that

Hence the U that makes is an eigenvector of the eigenvalue

6.7 Perturbation Based on Variational Formulation

Next we consider the case when A and B are slightly perturbed but are
still self-adjoint, which causes small perturbations in and U:

We are interested in an expression of linear in and From (4.6-
24),
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hence

6.8 Perturbation Based on Abstract Formulation

Equation (4.6-31) can also be obtained from the following perturbation
procedure. Expand both sides of (4.6-29). The zero-order terms represent the
unperturbed eigenvalue problem. The first-order terms are

Multiply both sides by U:

or

The first term and the last term in (4.6-34) cancel, and what is left is

which is the same as (4.6-31). Note that in this perturbation procedure, no
assumption regarding the self-adjointness of and was made.
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7. EXTENSIONAL VIBRATION OF A THIN ROD

Consider a rectangular rod of length l, width w, and thickness t as shown
in Figure 4.7-1, where l >> w >> t. We are interested in the low frequency
extensional vibration of the rod [11]. By low frequency we mean that the
wavelength of the vibration modes is much longer than the width and
thickness of the rod.

Figure 4.7-1. A piezoelectric rod with rectangular cross section.

As an approximation, it is appropriate to take the vanishing boundary
stresses on the surfaces bounding the two small dimensions to vanish
everywhere. Consequently

If the surfaces of the area lw are fully electroded with a driving voltage V
across the electrodes, the appropriate electrical conditions are

The pertinent constitutive relations are

Equation can be inverted to give

Then the differential equation of motion and boundary conditions are
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Equations (4.7-5) show that the applied voltage effectively acts like two
extensional end forces on the rod. For free vibrations, V = 0 and the
electrodes are shorted. We look for free vibration solution in the form

Then the eigenvalue problem is

The solution of and represents a rigid body mode. For

the rest of the modes we try Then, from

To satisfy we must have

or

Similarly, by considering the following frequencies can be
determined:

The frequencies in (4.7-9) and (4.7-10) are integral multiples of and are

called harmonics. is called the fundamental and the rest are called the

overtones.
If the surfaces of the area lt are fully electroded with a driving voltage V

across the electrodes, the appropriate electrical conditions are

The pertinent constitutive relations are

From the boundary conditions on the areas of lw, we take the following to
be approximately true everywhere:



121

With (4.7-13), (4.7-12) can be written as

where

If the surfaces of cross-sectional areas lw and lt are not electroded, the
appropriate electrical conditions are

The pertinent constitutive relations are

8. RADIAL VIBRATION OF A THIN RING

Axi-symmetric radial vibration can be set up in a thin ceramic ring (see
Figure 4.8-1) with radial poling, electroded on its inner and outer surfaces
[1].

Figure 4.8-1. A ceramic ring with radial poling.

Let R be the mean radius, w the width and h the thickness of the ring. We
assume R >> w >> h. In cylindrical coordinates, from the boundary
conditions, we make the approximation that the following is true throughout
the ring:
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Let correspond to (1,2,3). The radial electric field and the tangential
strain are given by

The relevant constitutive relations are

which can be solved to give

where

The equation of motion takes the following form

Substitution of into (4.8-6) yields

For free vibrations V= 0 and

The resonance frequency is

9. RADIAL VIBRATION OF A THIN PLATE

A circular disk of a piezoelectric ceramic poled in the thickness
direction is positioned in a coordinate system as shown in Figure 4.9-1. We
consider axi-symmetric radial modes [26].
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Figure 4.9-1. A circular ceramic plate with thickness poling.

The faces of the disk are traction-free and are completely coated with
electrodes. The electrodes are connected to a voltage source of potential

Under these circumstances, the boundary conditions at are

Since and vanish on both major surfaces of the plate and the plate
is thin, these stresses cannot depart much from zero. Consequently they are
assumed to vanish throughout. Thus we assume that

Furthermore, since the plate is thin and has conducting surfaces,

We consider radial modes with

The constitutive relations are

where
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are the effective material constants for a thin plate after the relaxation of the
normal stress in the thickness direction. The one remaining equation of
motion in cylindrical coordinates is

Substitution from (4.9-5) for the stress components, we obtain

which, since we are assuming a steady-state problem with frequency
becomes

where

Equation (4.9-9) can be written as Bessel’s equation of order one. For a
solid disk, the motion at the origin is zero and the general solution is

where is the first kind Bessel function of the first order. Equation (4.9-11)
is subject to the boundary condition

hence (4.9-12) requires that

where, for convenience, the argument of the Bessel function is not written.
From (4.9-13) B can be expressed in terms of V as follows:

where



has been used and

which may be interpreted as a planar Poisson’s ratio, since the material is
isotropic in the plane normal to The total charge on the electrode at the
bottom of the plate is given by

Substitution of (4.9-11) into and then into (4.9-17) yields

Hence we obtain for the current that flows to the resonator

where

At mechanical resonance, the applied voltage can be zero, and from (4.9-
13),

Or, at the resonance frequency, the current goes to infinity. This condition is
determined by setting the square bracketed factor in the denominator of
(4.9-14) equal to zero. The resulting equation is

which can be brought into the same form as (4.9-21). The antiresonance
frequency results when the current goes to zero. The resulting equation is
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10. RADIAL VIBRATION OF A THIN CYLINDRICAL
SHELL

In this section we analyze the axi-symmetric radial vibration of an
unbounded thin ceramic circular cylindrical shell with radial poling,
electroded on its inner and outer surfaces (see Figure 4.10-1). A voltage V is
applied across the thickness. Let R be the mean radius, and h the thickness
of the shell. By a thin shell we mean R >> h.

Figure 4.10-1. A thin ceramic circular cylindrical shell.

In cylindrical coordinates, the boundary conditions give

which are taken to be approximately true throughout the shell. We consider
motions independent of and z. By symmetry

The tangential strain and radial electric field are given by

Let correspond to (1,2,3). From

we solve for
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Substituting (4.10-5) into the following constitutive relations

we obtain

where

Equation (4.10-7) can be inverted to give

Substitution of into the following equation of motion

yields

For free vibrations, V= 0 and the resonance frequency is

Problem

4.10-1. Study the forced vibration.

11. RADIAL VIBRATION OF A THIN SPHERICAL SHELL

Consider a thin spherical ceramic shell of mean radius R and thickness h
with R >> h (see Figure 4.11-1). The ceramic is poled in the thickness
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direction, with fully electroded inner and outer surfaces. Consider radial
vibration of the shell [1].

Figure 4.11-1. A spherical ceramic shell with radial poling.

In spherical coordinates the boundary conditions give

which are taken to be valid approximately throughout the shell. For radial
motions independent of and by symmetry

The relevant strain and electric field components are

Let correspond to (3,1,2) so that poling is along 3. The pertinent
constitutive relations are

which can be inverted to yield

where

The relevant equation of motion is
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Substitute from (4.11-5)

For free vibration, V= 0 and the resonance frequency is

Problem

4.11-1. Study the forced vibration.

12. FREQUENCY SHIFTS DUE TO SURFACE
ADDITIONAL MASS

In certain applications, we need to study shifts of resonance frequencies
due to a small amount of mass added to the surface of a crystal. One
example is the mass effect of a thin surface electrode on resonance
frequencies. In addition, many chemical and biological acoustic wave
sensors detect certain substances through the mass-frequency effect of the
substances accumulated on the crystal surface by chemically or biologically
active films. These situations can be modeled by a crystal with a thin film of
thickness and mass density on part of the crystal surface (see Figure
4.12-1).

Figure 4.12-1. A crystal with a thin layer of additional mass on part of its surface.



130

The mass layer is assumed to be very thin. Only the inertial effect of the
layer needs to be considered; its stiffness can be neglected. The boundary
condition on the surface area with added mass is

Then the eigenvalue problem for the resonance frequencies and modes of a
crystal with surface added mass is

where we have denoted

and we have artificially introduced a dimensionless number to show the
smallness of the added mass. When becomes (4.12-1). In
terms of the abstract notation in Section 6, Equation (4.12-2) can be written
as

We make the following perturbation expansion [27]:

Substituting (4.12-5) into (4.12-4), collecting terms of equal powers of the
following perturbation problems of successive orders can be obtained. Zero-
order:
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The solution to the zero-order problem, and is assumed known. The
first-order problem below is to be solved:

The equations for the first-order problem can be written as

Multiplying both sides of (4.12-8) by gives

From (4.6-7),

With (4.12-6) and (4.12-7), (4.12-10) becomes

Substituting (4.12-11) into (4.12-9) yields
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which can be further written as

With (4.12-6), from (4.12-13)

The above expressions are for the eigenvalue For we make the
following expansion:

Then

Hence

Finally, setting in (4.12-7), we obtain

We make the following observations from (4.2-18):
(i) Clearly, we have This shows that a small amount of

mass added to the surface tends to lower the resonance frequencies, as
expected. On the other hand, if a thin layer of material is removed from the
surface, resonance frequencies increase.

(ii) Larger causes more frequency shifts.
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(iii) In an area where the surface displacement is large, the added mass
has a larger effect on resonance frequencies.

(iv) If the additional mass is essentially a concentrated mass m at a point
with Cartesian coordinates on the surface (e.g., a local contamination),

then (4.2-18) reduces to

(v) Obviously, can be several disadjoint areas.

Problem

4.12-1. Use (4.12-18) to analyze Problem 4.3-1 [27].



Chapter 5

WAVES IN UNBOUNDED REGIONS

This chapter is on propagating waves in unbounded regions, which can
be resolved into stationary waves. In unbounded regions, eigenvalue
problems may have continuous rather than discrete spectra. Instead of
resonance frequencies we are going to obtain dispersion relations. All
solutions presented in this chapter are exact.

1. PLANE WAVES

First consider waves in a region without a boundary. The waves are
governed by the following equations only without boundary conditions:

We are interested in the following plane wave:

where A, B, n, and v are constants, and f is an arbitrary function, n · x – vt
is the phase of the wave. v is the phase velocity. n · x – vt = constant
determines a wave front which is a plane with a normal n. Differentiating
(5.1-2), we obtain

Substitution of (5.1-3) into (5.1-2) yields the following linear equations for
A and B:
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For nontrivial solutions of A and/or B, the determinant of the coefficient
matrix of (5.1-4) has to vanish. Equivalently, we proceed as follows. From

Substituting (5.1-5) into gives

which can be written as

where

is the (piezoelectrically stiffened) acoustic tensor or Christoffel tensor.
Equation (5.1-7) is an eigenvalue problem of the acoustic tensor. For
nontrivial solutions of A, we must have

which is a polynomial equation of degree three for Since the acoustic
tensor is real and symmetric, there are typically three real eigenvalues:

and three corresponding eigenvectors that are orthogonal:

Graphically, given a propagation direction n, there exist three plane waves

with speeds and Their displacement vectors are
perpendicular to each other as shown in Figure 5.1-1. In anisotropic
materials, usually one of the waves, e.g., the one with      is roughly
aligned with n. This is called a quasi-longitudinal wave. The other two
waves have their displacement vectors roughly perpendicular to n and are
called quasi-transverse waves. In materials with high symmetry, e.g.
isotropic materials, one wave may be exactly longitudinal and the other two
may be exactly transverse.
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Figure 5.1-1. Plane waves propagating in a direction given by n.

Problems

5.1-1.

5.1-2.

Study plane waves propagating in the direction of polarized
ceramics.
Study plane waves propagating in the direction of rotated Y-cut
quartz.

2. REFLECTION AND REFRACTION

2.1 Reflection

In a semi-infinite medium, a wave solution needs to satisfy boundary
conditions in addition to the differential equations in (5.1-1). As an example,
consider an anti-plane (SH) wave with incident upon a plane boundary of
a ceramic half-space poled in the direction as shown in Figure 5.2-1. The
boundary is traction-free and is unelectroded. The electric field in the free
space is neglected.

Figure 5.2-1. Incident and reflected waves at a plane boundary.
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With the notation in Section 6 of Chapter 3, the incident and reflected waves
together must satisfy the following equations and boundary conditions:

The incident wave can be written as

which is considered known. The incident wave alone can, in fact, satisfy the
differential equations in                  provided that

or

where is the speed of a transverse wave propagating in a direction
perpendicular to the poling direction in ceramics. The electric potential, the
electric displacement, and the stress component needed for the boundary
conditions are

and

Similarly, we write the reflected wave as

which satisfies (5.2-4) and is considered unknown. For boundary conditions,
we need

The incident and reflected waves already satisfy the governing equations
individually and so does their sum. At the boundary, the sum of the incident
and reflected waves together has to satisfy



139

for any and any t. This implies that

and thus determines the reflected wave.

2.2 Reflection and Refraction

At the interface between two semi-infinite media, an incident SH plane
wave is reflected and refracted. As an example, consider two semi-infinite
spaces of polarized ceramics as shown in Figure 5.2-2.

Figure 5.2-2. Incident, reflected, and refracted waves at a plane interface.

The incident and reflected waves together must satisfy the following
equations:

The refracted wave must satisfy

The interface continuity conditions are

The incident wave can be written as
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which is considered known. The reflected wave can be written as

which is considered unknown. We write the refracted wave as

Equation (5.2-11), (5.2-12), and are already satisfied. From
we have

Equation (5.2-17) can be satisfied if the following two sets of relations are
true:

and

Next we analyze (5.2-18) and (5.2-19) separately. For (5.2-18) to be true
for all t and all we have

Hence
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where n is the refractive index, and

which is Snell’s law. Then from (5.2-19) we solve for B and C:

Thus the reflected and refracted waves are fully determined. As a special
case consider normal incidence with From (5.2-22)
implies that

where or is the acoustic impedance. When the
wave is not reflected and total transmission occurs.

Problem

5.2-1. Study the reflection in Figure 5.2-1 when the boundary is fixed and
unelectroded.

3. SURFACE WAVES

Surface waves in piezoelectrics have been used extensively to make
surface acoustic wave (SAW) devices. In addition to Rayleigh waves, anti-
plane (SH) surface waves can also propagate in certain piezoelectrics. These
waves rely on piezoelectric coupling and do not have an elastic counterpart.
In this section, a surface wave in polarized ceramics called the Bleustein-
Gulyaev wave is presented [18,28].
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Consider a ceramic half-space as shown in Figure 5.3 -1. The ceramic is
poled in the direction. We consider anti-plane motions.

Figure 5.3-1. A ceramic half-space.

With the notation in Section 6 of Chapter 3, the governing equations are

Consider the possibility of solutions in the following form:

where A and B are undetermined constants, and should be positive for
decaying behavior away from the surface. Equation already satisfies

For to satisfy we must have

which determines
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3.1 A Half-Space with an Electroded Surface

First we consider the case when the surface of the half-space is
electroded and the electrode is grounded. The corresponding boundary
conditions are

or, in terms of u and

Substituting (5.3-2) into

For nontrivial solutions,

or

where

Substitution of (5.3-3) into (5.3-9) yields

from which the surface wave speed can be determined as

When we have and the wave is no longer a surface wave.
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3.2 A Half-Space with an Unelectroded Surface

If the surface of the half-space is unelectroded, electric fields can also
exist in the free space of Denoting the electric potential in the free

space by we have

The boundary and continuity conditions are

or, in terms of and

From (5.3-13), in the free space,

Substituting (5.3-2) and (5.3-16) into

For nontrivial solutions,

or
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Substitution of (5.3-3) into (5.3-19) yields the surface wave speed

4. INTERFACE WAVES

Consider two half-spaces of polarized ceramics as shown in Figure 5.4-
1. The ceramics are both poled along the directions. We are interested in
the possibility of a wave traveling near the interface between the two
ceramics [29].

Figure 5.4-1. Two semi-infinite ceramic half-spaces.

The governing equations are

where the subscripts A and B indicates quantities in ceramic A and ceramic
B. For an interface wave, we require

For the solutions to that satisfy can be written as

where
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and

Similarly, for the solutions to that satisfy are

where

For interface continuity conditions, we consider two situations separately.

4.1 An Electroded Interface

When the interface is a grounded electrode we have, at

Substitution of (5.4-3) and (5.4-6) into (5.4-9) results in a system of linear
homogenous equations for and For nontrivial solutions, the
determinant of the coefficient matrix has to vanish, which yields

which determines the speed of the interface wave. As a special case, when
medium B is free space with

Equation (5.4-10) reduces to

which is the speed of the Bleustein-Gulyaev wave given by (5.3-12).
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4.2 An Unelectroded Interface

When the interface is unelectroded, the continuity conditions at
are

Substituting (5.4-3) and (5.4-6) into (5.4-13), and requiring the determinant
of the coefficient matrix to vanish, we obtain

We note that the right-hand side of (5.4-14) depends on the difference
between the two materials. As a special case, when mediums B is free space
with (5.4-11), Equation (5.4-14) reduces to

which is the speed of the Bleustein-Gulyaev wave given in (5.3-20).

Problems

5.4-1. Show (5.4-10).
5.4-2. Show (5.4-14).

5. WAVES IN A PLATE

Waves in plates are widely used to make bulk acoustic wave (BAW)
devices. Consider a ceramic plate poled in the direction (see Figure 5.5-
1). The major surfaces of the plate are traction-free and electroded, and the
electrodes are grounded. We are interested in anti-plane waves in the plate
[30].
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Figure 5.5-1. A ceramic plate.

With the notation in Section 6 of Chapter 3, the governing equations are

The boundary conditions are

or, in terms of and

As we will show in the following paragraphs, there are two types of waves
that can propagate in the plate. One type of waves is symmetric and the
other is an anti-symmetric. We discuss them separately below.

5.1 Anti-Symmetric Waves

For anti-symmetric waves we consider the possibility of

where A and B are constants. For (5.5-4) to satisfy (5.5-1), we have

Substitution of (5.5-4) into (5.5-3) leads to
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which is a system of linear, homogeneous equations for A and B. For
nontrivial solutions we must have

Equation (5.5-7) can be written as

where the dimensionless frequency and the dimensionless wave number in
the direction are defined by

In the limit when Equation (5.5-8) reduces to

which is the frequency equation for anti-symmetric thickness-shear modes
in a ceramic plate (see Problem 4.1-1).

5.2 Symmetric Waves

For Symmetric waves we consider

where A and B are constants. For (5.5-11) to satisfy (5.5-1), we have

Substitution of (5.5-11) into (5.5-3) leads to



For nontrivial solutions of A and/or B, we must have

or

The first few branches of (5.5-8) and (5.5-15) are plotted in Figure 5.5-2.
The dotted straight line represents Bleustein-Gulyaev waves in a half-space
with an electroded surface, which is plotted for comparison. The frequency-
wave number relations of the waves in Sections 1 to 4 are all linear relations
or straight lines going through the origin. In other words, the speed of these
waves does not depend on the wave number. They are called nondispersive
waves. Nondispersive waves are usually associated with regions without a
geometric characteristic length. The waves in plates discussed in this section
have wave speed depending on the wave number, and are called dispersive
waves. For dispersive waves the frequency-wave number relations are
nonlinear as shown in the figure.

Figure 5.5-2. Dispersion relations for anti-plane waves in a plate.
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Problem

5.5-1. Study the case when the plate is unelectroded [30].

6. WAVES IN A PLATE ON A SUBSTRATE

We now consider the possibility of a wave traveling in a metal plate on
a ceramic half-space [31]. The ceramic is poled along the direction (see
Figure 5.6-1).

Figure 5.6-1. A metal plate on a ceramic half-space.

With the notation in Section 6 of Chapter 3, the governing equations are

where and are the mass density and shear constant of the metal plate.
We look for solutions satisfying

For the solutions to satisfying (5.6-2) can be written as

where A and B are constants. For to satisfy the following
must be true
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where

The electric potential and the stress component needed for the boundary
conditions are

For we write

where

and

For boundary conditions, we need

The continuity and boundary conditions are (except for a factor of

Using to eliminate A and B, we obtain
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For nontrivial solutions,

or

Substituting from (5.6-4) and (5.6-8),

which determines the surface wave speed v as a function of the wave
number which is a dispersive wave. When the electromechanical
coupling factor , Equation (5.6-15) reduces to the dispersion relation
for the well-known Love wave in an elastic layer on an elastic half-space.
When or h = 0, Equation (5.6-15) reduces to (5.3-12) for the
Bleustein-Gulyaev wave in a ceramic half-space with an electroded surface.

Problem

5.6-1. Study anti-plane waves in an elastic dielectric plate on a ceramic
half-space (see Figure 5.6-2). The plate is electroded at and
the electrode is grounded. What if the electrode is removed?

Figure 5.6-2. A dielectric plate on a ceramic half-space.
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Answer [32]:

7. GAP WAVES

7.1 A Gap between Two Half-Spaces of Different Ceramics

Consider two piezoelectric half-spaces of polarized ceramics with a 2h
gap between them (see Figure 5.7-1). The ceramics are poled in either the
direction or its opposite. The two surfaces of the half-spaces at are
traction-free and unelectroded. Acoustic waves in the two half-spaces can be
coupled by the electric field in the gap. We consider surface waves in the
half-spaces near [33].

Figure 5.7-1. Two ceramic half-spaces with a gap.

The governing equations are

where the subscripts A and B indicate quantities in ceramic A and ceramic B.
For waves near the gap, we require that
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For the solutions to that satisfy can be written as

where and are undetermined constants,

and

For continuity conditions, we need and in ceramic A, denoted by

Similarly, for the solutions to that satisfy are

where and are undetermined constants,

and

For continuity conditions, we need and in ceramic B, denoted by

and

and
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The fields in the gap can be written as

where and are undetermined constants and is already

satisfied. For continuity conditions, we need in the gap:

For interface continuity conditions, we impose

which implies that

Equation (5.7-14) can be rearranged into
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For nontrivial solutions the determinant of the coefficient matrix has to
vanish, which yields the dispersion relation of the waves.

7.2 A Gap between Two Half-Spaces of the Same Ceramic

We examine the special case when the two ceramic half-spaces are of
the same material:

Then the waves can be separated into symmetric and anti-symmetric ones.

7.2.1 Symmetric Waves

For symmetric waves we consider

for which the last three equations of (5.7-15) become identical to the first
three, and the dispersion relation assumes the following simple form:

or
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Equation (5.7-19) can be further written as

where we have introduced the refractive index by

With (5.7-4), Equation (5.7-20) takes the following form

Equation (5.7-22) shows that the wave is dispersive.

7.2.2 Anti-Symmetric Waves

For anti-symmetric waves we consider

Then the last three equations of (5.7-15) become identical to the first three,
and the dispersion relation assumes the following simple form:

or
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Equation (5.7-25) can be further written as

With (5.7-4), Equation (5.7-26) takes the following form:

We note that the right-hand side of (5.7-27) is the inverse of that of (5.7-22).
Therefore for any one of the right-hand sides of (5.7-27) and (5.7-22)
is smaller than 1. Since the range of a hyperbolic tangent function is
between –1 and 1, a root for can be found from either (5.7-27) or (5.7-22).

Problem

5.7-1. Study anti-plane waves propagating in a ceramic plate between two
ceramic half-spaces.

Figure 5.7-2. A ceramic plate between two ceramic half-spaces.
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8. WAVES ON A CIRCULAR CYLINDRICAL SURFACE

Consider SH waves propagating on the surface of a circular cylinder
[34] as shown in Figure 5.8-1. The cylinder is made of ceramics with axial
poling along the direction. We choose to correspond to (1,2,3) so
that the poling direction corresponds to 3.

Figure 5.8-1. A circular cylinder of polarized ceramics.

From Section 6 of Chapter 3, the governing equations are

The electric potential is related to and by

The stress and electric displacement components relevant to boundary
conditions are

In polar coordinates we have
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where

For waves propagating in the direction we consider

where is allowed to assume any real value that is greater than or equal to
1. Substitution of (5.8-6) into (5.8-4) results in

where we have denoted

Equation can be written as Bessel’s equation of order Then the
general solution can be written as

where and are the order Bessel functions of the first and second
kind, and are undetermined constants. From (5.8-9), (5.8-2) and
(5.8-3) we obtain the following expressions that are needed for boundary
conditions:

where a superimposed prime indicates differentiation with respect to the
whole argument of a function. Consider a solid cylinder (a = 0 in Figure 5.8-
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1). The surface at r = b is traction-free and carries a very thin electrode of a
perfect conductor. Since and are singular at the origin, terms
associated with and have to be dropped. and should both vanish
at r = b. This leads to the following two homogeneous, linear, algebraic
equations for and

For nontrivial solutions the determinant of the coefficient matrix has to
vanish, which results in the following equation for

or,

Consider the special case when the wavelength is much smaller than the
cylinder radius. Then the cylinder is effectively like a half-space for these
short waves. It is convenient to introduce a surface wave number and a
surface wave speed v by

Consider the limit when and but remains finite. We
have

With the following asymptotic expression due to Carlini for Bessel’s
functions of large orders:

Equation (5.8-13) reduces to
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which gives the surface wave speed in (5.3-12)

Problems

5.8-1. Show (5.8-17).
5.8-2. Study the case of an unelectroded cylinder [34].

9. ACOUSTIC WAVE GENERATION

We now consider the generation of SH acoustic waves in an elastic
medium (see Figure 5.9-1). The piezoelectric layer is ceramics poled along
the direction. It is driven by an alternating voltage. Waves are generated
in the elastic half-space, propagating away from the ceramic plate.

Figure 5.9-1. A ceramic plate on an elastic half-space.

With the notation in Section 6 of Chapter 3, the governing equations, the
boundary and continuity conditions are
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where and are the mass density and shear constant of the elastic
medium. For the solutions can be written as

where and are undetermined constants, and

For boundary and continuity conditions, we need

For the solution can be written as

where is an undetermined constant, and

Equation (5.9-5) already satisfies the condition that the waves in the elastic
medium are propagating away from the plate (radiation condition). For
continuity conditions we need

The continuity and boundary conditions are (except for a factor of

Our main interest is to find the following:
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where

It can be seen that depends strongly on the driving frequency.

Problem

5.9-1. Study the dependence of on the driving frequency.



Chapter 6

LINEAR EQUATIONS FOR SMALL FIELDS
SUPERPOSED ON FINITE BIASING FIELDS

The theory of linear piezoelectricity assumes infinitesimal deviations
from an ideal reference state of the material in which there are no pre-
existing mechanical and/or electrical fields (initial or biasing fields). The
presence of biasing fields makes a material apparently behave like a
different material, and renders the linear theory of piezoelectricity invalid.
The behavior of electroelastic bodies under biasing fields can be described
by the theory for infinitesimal incremental fields superposed on finite
biasing fields, which is a consequence of the nonlinear theory of
electroelasticity. Knowledge of the behavior of electroelastic bodies under
biasing fields is important in many applications including the buckling of
thin electroelastic structures, frequency stability of piezoelectric resonators,
acoustic wave sensors based on frequency shifts due to biasing fields,
characterization of nonlinear electroelastic materials by propagation of
small-amplitude waves in electroelastic bodies under biasing fields, and
electrostrictive ceramics which operate under a biasing electric field. This
chapter presents the theory for small fields superposed on biasing fields in
an electroelastic body and some of its applications.

1. A NONLINEAR SPRING

The basic concept of small fields superposed on finite biasing fields can
be well explained by a simple nonlinear spring. Consider the following
spring-mass system (see Figure 6.1-1). When the spring is stretched by x,
the force in the spring is where k and are linear and
nonlinear spring constants.
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Figure 6.1-1. Reference, initial, and present states of a nonlinear spring-mass system.

The reference state in Figure 6.1-1 (a) is the natural state of the spring
when there is no force and stretch in it. Under an initial, constant force the
mass m is in equilibrium with an initial stretch in the spring (see Figure
6.1-1 (b)) such that

Then a small, dynamic, incremental force is applied, and the mass is in
small amplitude motion around with position (see Figure 6.1-1
(c)). Since both and are small, we want to derive a linear relation
between them. In the state in Figure 6.1-1 (c) the equation of motion for the
mass is
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Using (6.1-1) and the smallness of

where

is an effective linear spring constant at the initial stretch Thus at the state
with an initial stretch, the nonlinear spring responds to small, incremental
changes like a linear spring with an effective linear spring constant It is
important to note that depends on and the nonlinear spring constant

2. LINEARIZATION ABOUT A BIAS

The concept in the previous section can be generalized to an
electroelastic body [35]. Consider the following three states of an
electroelastic body (see Figure 6.2-1):

Figure 6.2-1. Reference, initial, and present configurations of an electroelastic body.

(i) The reference state: In this state the body is undeformed and free of
electric fields. A generic point at this state is denoted by X with Cartesian
coordinates The mass density is

(ii) The initial state: In this state the body is deformed finitely and
statically, and carries finite static electric fields. The body is under the action
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of body force body charge prescribed surface position surface

traction surface potential and surface charge The deformation

and fields at this configuration are the initial or biasing fields. The position
of the material point associated with X is given by x = x(X) or
with strain Greek indices are used for the initial configuration. The

electric potential in this state is denoted by with electric field
x(X) and satisfy the following static equations of nonlinear
electroelasticity:

(iii) The present state: In this state, time-dependent, small, incremental
deformations and electric fields are applied to the deformed body at the
initial state. The body is under the action of and

The final position of X is given by y = y(X,t), and the final electric potential
is and satisfy the dynamic equations of
nonlinear electroelasticity:
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2.1 Linearization of Differential Equations

Let the incremental displacement be u(X,t) (see Figure 6.2-1). u and
are assumed to be infinitesimal. We write y and as

where a dimensionless parameter is introduced to indicate the smallness of
the incremental deformations and fields. In the following, terms quadratic in
or of higher order of will be dropped. Substitution of (6.2-3) into (6.2-2)
yields

where

and

where

To the first order of

From (1.1-22),
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For the electric field

Then the Maxwell stress tensor and can be expanded as

where

and

Then

where



173

Equation (6.2-15) can be further written as

which shows that the incremental stress tensor and electric displacement
vector depend linearly on the incremental displacement gradient and
potential gradient. In (6.2-16),

and are called the effective or apparent elastic,

piezoelectric, and dielectric constants. They depend on the initial
deformation and electric potential Even when a material is
considered linear, i.e., only the second-order material constants need to be
considered, the effective material constants still show modifications by the
biasing fields. The effective material constants in general have lower
symmetry than the fundamental linear elastic, piezoelectric, and dielectric
constants. This is called induced anisotropy or symmetry breaking. There
can be as many as 45 independent components for 27 independent

components for and 6 independent components for Since the

fields in the present configuration satisfy (6.2-2) and the biasing fields
satisfy (6.2-1), we have

where and are determined from

In the above derivation, can be set to 1 everywhere.
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The boundary value problem for the incremental fields u and consists
of the following equations and boundary conditions:

Because of the dependence of and on the initial

deformations and fields, (6.2-20) in general are equations with variable
coefficients.

2.2 A Variational Principle

The symmetries shown in (6.2-17) imply that the differential operators
in (6.2-20) are self-adjoint (see Section 6). It can be verified that the
stationary condition of the following variational functional under the
constraint of the boundary conditions on and yields (6.2-18) and the
boundary conditions on and

2.3 Linearization Using the Total Stress Formulation

With the total stress formulation in Section 7 of Chapter 1, the
derivation for the equations of the incremental fields can be written in a
more compact form as
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where

Problem

6.2-1. Show (6.2-9).

3. VARIATIONAL APPROACH

The equations for the small incremental fields can also be obtained by
making power series expansions in terms of the small incremental fields in
the variational functional of nonlinear electroelasticity [36]. Consider the
dynamic form of the total energy formulation in (1.8-5). Let
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Other quantities of the present state can then be written as

where, due to nonlinearity, higher powers of may arise. Note that in (6.3-
2) the superscripts 0, 1, 2 are for orders of expansions, not for powers except
in We want to derive equations governing u and From (6.3-1) and
(6.3-2), we can further write

where

Substituting (6.3-l)-(6.3-4) into the dynamic form of the in (1.8-5), we
obtain

where
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and

Comparing (6.3-6) to (1.7-1), we recognize (6.3-6) to be simply the
variational functional for the initial deformation which may be dynamic.
Since the initial deformation here satisfies the dynamic form of (6.2-1),
in (6.3-7) can be written into the following much simpler form:

which does not depend on u and anymore. If and are

held constant, or, in other words, then which

simply shows that is the variational functional for the initial deformation.
Since we are interested in equations for the first-order incremental fields u
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and we drop all second-order quantities involving

and in and obtain

where

Equation (6.3-11) are the same as (6.2-23). When (1.8-1) is introduced into
(6.3-11), with the use of (1.8-2) and (1.8-6)-(1.8-8), (6.2-17) will result.

4. SMALL BIASING FIELDS

In some applications, the biasing deformations and fields are also
infinitesimal. In this case, usually only their first-order effects on the
incremental fields need to be considered. Then the following energy density
of a cubic polynomial is sufficient:
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where the subscripts indicating the orders of the material constants have
been dropped. For small biasing fields it is convenient to introduce the small
displacement vector w of the initial deformation (see Figure 6.2-1), given as

Then, neglecting terms quadratic in the gradients of w and the effective
material constants take the following form [35]:

where

It is important to note that the third-order material constants are necessary
for a complete description of the lowest order effects of the biasing fields.

5. THEORY OF INITIAL STRESS

In certain applications, e.g., buckling of thin structures, consideration of
initial stresses without initial deformations is sufficient. Such a theory is
called the initial stress theory in elasticity. It can be obtained from the theory
for incremental fields derived in Section 2. We set x = X in the equations for
small fields superposed on finite biasing fields. Furthermore, for buckling
analysis, a quadratic expression of with second-order material constants
only and the corresponding linear constitutive relations are sufficient. The
biasing fields can be treated as infinitesimal fields. Then the effective
material constants sufficient for describing the buckling phenomenon take
the following simple form:
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where is the initial stress and is the initial electric field.
Results obtained in buckling analyses of a few thin piezoelectric beams,

plates, and shells show that the buckling load of a piezoelectric structure is
often related to the corresponding elastic buckling load obtained from an
analysis neglecting the piezoelectric coupling in the following manner

where is a small, positive number. may depend on the material and
geometry of the structure. is an electromechanical coupling
factor. When (6.5-2) is true the electromechanical coupling tends to increase
the buckling load. In such a case an elastic analysis ignoring the
piezoelectric coupling yields a conservative estimate of the buckling load.
This is not surprising in view of the piezoelectric stiffening effect. Specific
results on buckling of thin piezoelectric structures can be found in the
references in a review article [37].

6. FREQUENCY PERTURBATION

Many piezoelectric devices are resonant devices for which frequency
consideration is of fundamental importance in design. Analysis based on
linear piezoelectricity can provide understanding of the operating principles
and basic design tools. This type of analysis is represented by Mindlin’s
early work on the eigenvalue problem of Section 6 of Chapter 4 [38].
However, devices designed based on linear piezoelectricity are deficient in
certain applications. Knowledge of the frequency stability due to
environmental effects (e.g., temperature change, force, and acceleration)
which cause biasing deformations and frequency shifts is often required for
a successful design. For the lowest order effect of the biasing fields, we need
to study the eigenvalue problem of an electroelastic body vibrating with the
presence of a small bias. From (6.4-4) we have
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where and are the resonance frequency and the

corresponding mode, respectively, when the biasing fields are present and
may be called a perturbed frequency and mode.  is an artificially introduced
dimensionless number to show the smallness of the biasing fields. In terms
of the abstract notation in Section 6 of Chapter 4, Equation (6.6-1) can be
written as [39]

where

We make the following expansions:

Substituting (6.6-4) into (6.6-2), collecting terms of equal powers of the
following perturbation problems of successive orders can be obtained. Zero-
order:
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which we recognize to be the eigenvalue problem for vibrations of a linear
piezoelectric body without biasing fields, treated in Section 6 of Chapter 4.
The solution to the zero-order problem, and is assumed known and
the first-order problem below is to be solved:

The equations for the first-order problem can be written as

Multiply both sides of (6.6-7) by

Similar to (4.6-7), it can be shown that

With (6.6-5) and (6.6-6), Equation (6.6-9) becomes
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Substitute (6.6-10) into (6.6-8):

which can be further written as

With Equation from (6.6-12)

The above expressions are for the eigenvalue For we make the
following expansion:

Then

Hence
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or

With integration by parts, we can write (6.6-17) further as

When is set to 1, (6.6-18) becomes the well-known first-order perturbation
integral for frequency shifts [40].

7. ELECTROSTRICTIVE CERAMICS

As the linear coupling between mechanical and electric fields,
piezoelectricity cannot exist in isotropic materials. Mathematically this is the
consequence of the fact that a third-rank isotropic tensor with a pair of
symmetric indices has to vanish. Electrostriction is a nonlinear electroelastic
coupling effect that exists in all dielectrics, isotropic or anisotropic. In the
simplest description, electrostriction can be described by the term

in the energy density (6.4-1).

7.1 Nonlinear Theory

Electrostrictive ceramics are macroscopically isotropic due to their
polycrystalline structure. For isotropic materials, there are not many
independent components of the material tensors, linear or nonlinear. Instead
of (6.4-1), it is more convenient to use representations based on tensor
invariants of the strain tensor with components and the material

electric field vector with components The invariant representation
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automatically yields three-dimensional constitutive relations with a few
independent material parameters. With the integrity bases for isotropic
functions of a symmetric tensor and a vector, it can be determined that for
isotropic electroelastic ceramics the energy density function can be
written as

where the six invariants through are given by [1 ]

In (6.7-2), stands for Equations (6.7-1) and (6.7-2) imply the
following constitutive relations for the symmetric stress tensor and the
polarization vector:

where 1 is the unit tensor of rank two, and represents tensor or dyadic
product. Equation (6.7-3) and (6.7-4) are the most general constitutive
relations of isotropic, nonlinear electroelastic materials. Although seemingly
simple, they can be complicated functions of and Under the
inversion of we have and indicating that
is odd and is even in Therefore linear dependence of on
(piezoelectricity) is not allowed, but higher order couplings are possible. In
particular, electrostrictive effect can be seen from, e.g., the fourth term on
the right-hand side of (6.7-3), which is due to

7.2 Effects of a Small, Electrical Bias

Electrostrictive ceramics operate under a biasing electric field. If a small
biasing electric field is applied, the small biasing fields are purely
electrical because there is no linear electromechanical coupling in the
material. In such a case, the effective material constants under the electrical
bias are
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Thus electrostrictive ceramics appear to be piezoelectric under a biasing
electric field, and the effective piezoelectric constants are tunable by
the biasing electric field

For the simplest model of electrostrictive ceramics, consider the case of
infinitesimal deformation. We construct an energy density function as
follows:

where and are elastic constants, is the relative dielectric permittivity,
and are electrostrictive constants. The constitutive relations generated

by (6.7-4) are

Under a biasing electric field in the direction, from (6.7-5), the
effective piezoelectric constants can be obtained as

Note that since there are only two electrostrictive material constants, the
following relation exists

The nonzero tensor components of the electrostrictive constants are related
to the material constants in (6.7-6) by



Chapter 7

CUBIC AND OTHER EFFECTS

In this chapter we derive equations for cubic nonlinear effects. Some
other effects not included in the general framework of Chapter 1 are also
discussed.

1. CUBIC THEORY

1.1 Cubic Effects

By cubic theory we mean that effects of all terms up to the third power
of the displacement and potential gradients or their products are included
[6]. Cubic theory is an approximate theory for relatively weak
nonlinearities, and can be obtained by expansions and truncations from the
nonlinear theory in Chapter 1. From

by repeated use of the chain rule of differentiation, we obtain, to the second
order in products of the derivative of

From (1.1-16), retaining terms up to the second order in the derivative of
we find

From (7.1-2) and (7.1-3)

From (1.5-11), and (7.1-4), retaining terms up to cubic in
the small field variables, we obtain
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and

From (1.5-10), and (7.1-4):
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and

Note that the fourth-order material constants are needed for a complete
description of the cubic effects.

1.2 Quadratic Effects

If we keep terms up to the second order of the gradients only, we obtain
the quadratic or second-order theory below:
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where the third-order material constants are needed.

2. NONLOCAL EFFECTS

2.1 Nonlocal Theory

Nonlocality comes from the consideration of long-range interactions. In
one-dimensional lattice dynamics it has been shown that nonlocal theory
includes, besides the interactions between neighboring atoms, interactions
among non-neighboring atoms as well [41]. Nonlocality in constitutive
relations is needed in modeling certain phenomena. Consider an
electroelastic body V. Within the linear theory of piezoelectricity the
nonlocal constitutive relations are given by [42]

As a special case, when the nonlocal material moduli are Dirac delta
functions, Equations (7.2-1) reduce to the classical constitutive relations in
(2.1-11). Substitution of (7.2-1) into the equation of motion and the charge
equation results in integral-differential equations which are usually difficult
to solve.

2.2 Thin Film Capacitance

In the following we give an example of what is probably the simplest
nonlocal problem [43]. Consider an unbounded dielectric plate as shown in
Figure 7.2-1. The plate is electroded and a voltage is applied. We want to
obtain its capacitance from the nonlocal theory.

Figure 7.2-1. A thin dielectric plate.

The problem is one-dimensional. The boundary-value problem is
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When the kernel function has the following special form

Equation (7.2-2) reduces to the usual classical form. is the dimensionless
relative electric susceptibility which differs from the one in (1.5-11) by a
factor of The dielectric material of the capacitor is assumed to be
homogeneous and isotropic. Hence must be invariant under
translation and inversion. We have

should have a localized behavior, large near and decaying
away from there. We chose the following kernel function

where is a microscopic parameter with the dimension of a length. It is a
characteristic length of microscopic interactions. It is easy to verify that

has the following properties:

Hence

which shows that does include the local form as a limit case. We
also note that the above is the fundamental solution of the
following differential operator

Integrating once, with we obtain
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where is an integration constant which physically represents the surface
free charge density on the electrode at x = h. Equation (7.2-9) can be written
as

which is a Fredholm integral equation of the second kind for the electric
field E. Instead of solving (7.2-10) directly, we proceed as follows. With
(7.2-8), we differentiate (7.2-10) with respect to x twice and obtain

Hence a solution E of the integral equation (7.2-10) also satisfies the
following differential equation

The general solution to (7.2-12) can be obtained easily. It has two
exponential terms from the corresponding homogeneous equation, and a
constant term which is the particular solution. The general solution contains
two new integration constants. These two integration constants result from
the differentiation in obtaining the differential equation (7.2-12) from the
original integral equation (7.2-10). Hence the solution to (7.2-12) may not
satisfy (7.2-10). Therefore we substitute the general solution to (7.2-12)
back into (7.2-10), which determines the two new integration constants.
Then, with the boundary conditions we can determine and
another integration constant resulting from integrating E for and thus
obtain the nonlocal electric potential distribution
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where is the classical local solution, and

The nonlocal electric field distribution E and the local solution are

Denoting the capacitance per unit electrode area from the local theory by
and the one from the nonlocal theory by C, we have

With the expression of k in (7.2-14), we write in the following
form:

It is seen that the thin film capacitance from the nonlocal theory differs from
the result of the local theory. The nonlocal solution depends on the ratio

of the film thickness to the microscopic characteristic length. From
(7.2-17) we immediately have
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which shows that the nonlocal result is smaller than the local result. From
(7.2-17) we also have the following limit behavior

which shows that when the film thickness is large compared to the
microscopic characteristic length, the nonlocal solution approaches the local
solution. We also have the limit

which shows that the nonlocal and local solutions differ more for materials
with larger We plot from (7.2-17) as a function of for values of

and 100 in Figure 7.2-2. It is seen that for a film with a moderate
value of when the thickness there is a deviation of about
10% from the local theory which has a fixed value of 1. The figure shows
that and the deviation from 1 becomes larger as h becomes smaller
and disappears when h is large:

Figure 7.2-2. Capacitance for and 100.

The spatial distribution of the electric field for and for two values
of and 5, respectively, is shown in Figure 7.2-3. It is interesting to
see that the field is large near the electrodes compared to the local solution
with the fixed value of 1. The curve with has a larger electric field
near the electrodes than the curve with This is a boundary effect
exhibited by the nonlocal theory. Even for a thick capacitor, (7.2-15) still
yields
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For our case, with Equation (7.2-21) yields a limit value of 3.32. For
materials with a large the value of (7.2-21) can be large. Since E is larger
near the electrodes and D is a constant, P must be smaller near the
electrodes than near the center of the plate.

Figure 7.2-3. Electric field distribution for                            and 5.

The spatial distribution of the normalized deviation of the electric
potential from the local solution for and for two values of
and 5, respectively, are shown in Figure 7.2-4. The curve with
shows a smaller deviation.

Figure 7.2-4. Electric potential deviation for and 5.
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Finally, we note that in (7.2-12) the small parameter appears as the
coefficient of the term with the highest derivative. Hence when tends to
zero we have a singular perturbation problem of boundary layer type of a
differential equation. For this type of problem, when the small parameter is
set to zero, certain boundary conditions have to be dropped because the
order of the differential equation is lowered. Equation (7.2-12) is a
consequence of an integral-differential equation of defined by (7.2-2),
which only needs two boundary conditions. In the solution procedure, two
of the integration constants in the general solution to (7.2-12) were
determined by the integral equation (7.2-10). However, if we take (7.2-12)
as our starting point, we need two more boundary conditions. This is
because (7.2-12) is a fourth-order differential equation for (considering it
has already been integrated once with an integration constant Then
when is set to zero, two boundary conditions have to be dropped.

3. GRADIENT EFFECTS

3.1 Gradient Effect as a Weak Nonlocal Effect

Gradient effects in constitutive relations can be shown to be related to
weak nonlocal effects. For example, consider a one-dimensional nonlocal
constitutive relation between Y and X in a homogeneous, unbounded
medium. We have
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where

Therefore, to the lowest order of approximation, the nonlocal relation
reduces to a local one, and to the next order a gradient term arises.

3.2 Gradient Effect and Lattice Dynamics

Gradient terms can also be introduced in the following procedure.
Consider the extensional motion of a one-dimensional spring-mass system
(see Figure 7.3-1).

Figure 7.3-1. A spring-mass system.

The motion of the i-th particle is governed by the finite difference equation

or, with the introduction of x

where the extensional force T is given by the following constitutive relation
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which depends on the strain and its second gradient. It should be noted
that, according to Mindlin [44], a continuum theory with the first strain
gradient is fundamentally flawed in that it is qualitatively inconsistent with
lattice dynamics and the second strain gradient needs to be included to
correct the inconsistency.

3.3 Polarization Gradient

Mindlin [45] generalized the theory of piezoelectricity by allowing the
stored energy density to depend on the polarization gradient

where boundary terms are dropped for simplicity. The stationary conditions
of the above functional for independent variations of and are

Equations (7.3-7) represent seven equations for and If the
dependence of W on the polarization gradient is dropped, Equations (7.3-7)
reduce to the theory of linear piezoelectricity. The inclusion of polarization
gradient is supported by lattice dynamics [46,47]. The polarization gradient
theory and lattice dynamics both predict the thin film capacitance to be
smaller than the classical result [47], as shown in Figure 7.2-2.

3.4 Electric Field Gradient and Electric Quadrupole

3.4.1 Governing Equations

Electric field gradient can also be included in constitutive relations [48].
Electric field gradient theory is equivalent to the theory of dielectrics with
electric quadrupoles [1], because electric quadrupole is the thermodynamic
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conjugate of the electric field gradient. Consider the following functional
[49]

where is related to surface free charge. The presence of the term is
variationally consistent. We choose

where H is the usual electric enthalpy function of piezoelectric materials
given in (2.1-9), which is repeated below:

and are new material constants due to the introduction of the electric
field gradient into the energy density function. has the dimension of
length. has the dimension of Physically they may be related to
characteristic lengths of microstructural interactions of the material. Since

has the same structure as as required by crystal symmetry,
and has the same structure as For W to be negative definite in the
case of pure electric phenomena without mechanical fields, we require
to be positive definite like

With the following constraints

from the variational functional in (7.3-8), for independent variations of
and in V, we have

where we have denoted
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and is the relative electric susceptibility. When the energy
density does not depend on the electric field gradient, the equations reduce
to the linear theory of piezoelectricity. The first variation of the functional in
(7.3-8) also implies the following as possible forms of boundary conditions
on S

where is the surface gradient operator. One obvious possibility of
Equation  is on S. With substitutions from (7.3-13) and (7.3-
11), Equation (7.3-12) can be written as four equations for     and

where we have added the acceleration term.

3.4.2 Anti-Plane Problems of Ceramics

For anti-plane motions of polarized ceramics, Equations (7.3-15) reduce
to a much simpler form. Consider
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The non-vanishing strain and electric field components are

For ceramics poled in the direction, the nontrivial components of and
are

where is the two-dimensional Laplacian, and
The nontrivial ones of (7.3-15) take the form

where

3.4.3 Thin Film Capacitance

To see the most basic effects of the electric field gradient, consider the
infinite plate capacitor shown in Figure 7.3-1.

Figure 7.3-1. A thin dielectric plate.
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The problem is one-dimensional. We assume that the material is isotropic so
that there is no piezoelectric coupling. The equations and boundary
conditions from the electric field gradient theory are

From (7.3-20) the following equation for can be obtained:

where

The general solution to (7.3-22) can be obtained in a straightforward
manner. The anti-symmetric solution for is

where and are integration constants. Due to the introduction of the
electric field gradient, the order of the equation for is now higher than the
Laplace equation in the classical theory. Therefore more boundary
conditions than in the classical theory are needed. Following Mindlin [47],
we prescribe

where is a parameter. represents the classical solution.
Equation (7.3-24) is for Mindlin’s polarization theory. When it is directly
introduced here for the electric field gradient theory, it is not variationally
consistent. This can be resolved by translating it into a different form
mathematically while still keeping its physical interpretation, which is left as
an exercise. With the solution in (7.3-23), the boundary conditions in (7.3-
20) and (7.3-24), and the identification of the relation between an integration
constant and the surface charge on the electrode at we obtain the
capacitance C per unit area, the potential and the electric field E as
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where

are the capacitance and electric field from the classical theory, and
is the electric permittivity. Equation (7.3-25) is exactly the same as

the result of the polarization gradient theory [47], and its behavior is
qualitatively the same as what is shown in Figure 7.2-2.

3.4.4 A Line Source

Consider the potential field of a line charge at the origin [50]. We
need to solve Equation (7.3-19) with a concentrated electric source.
Eliminating we obtain

Equation (7.3-29) can be rewritten as

Therefore is the fundamental solution of the differential operator in
Equation (7.3-30), which is known. Hence

where is the zero order modified Bessel function of the second-kind.
Since
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integrating Equation (7.3-31) twice we obtain

where the lnr term is the classical solution. Since

we have

The potential field is plotted in Figure 7.3-2.

Figure 7.3-2. Normalized potential field of a line source.



For far field approaches the classical solution. At the source point is not
singular. This is fundamentally different from the classical solution. When
approaches zero, Equation (7.3-33) reduces to the classical result. The curve
with the larger value of is closer to the classical solution. These qualitative
behaviors are as expected.

3.4.5 Dispersion of Plane waves

In the source-free case, eliminating from (7.3-19) we obtain

Consider the propagation of the following plane wave

Substitution of Equation (7.3-37) into the homogeneous form of Equation
(7.3-36) yields the following dispersion relation [50]

Different from the plane waves in linear piezoelectricity, Equation (7.3-38)
shows that the waves are dispersive, and the dispersion is caused by the
electric field gradient through electromechanical coupling. The dispersion
disappears when k = 0, or when there is no electromechanical coupling. We

note that the dispersion is more pronounced when is not small, or
when the wavelength is not large when compared to the microscopic
characteristic length When just begins to show its effect,
Equation (7.3-38) can be approximated by

As a numerical example we consider polarized ceramics PZT-7A. For
polarized ferroelectric ceramics the grain size, which may be taken as the

microscopic characteristic length is at sub-micron range. We plot

205
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Equation (7.3-39) in Figure 7.3-3 for different values of It can be seen

that larger values of yields more dispersion, as expected.

Figure 7.3-3. Dispersion curves of plane waves.

Problem

7.3-1. Study the capacitance of the dielectric plate in Figure 7.3-1 using
the electric field gradient theory with the following additional
boundary condition instead of (7.3-24)

where  is a parameter. represents the classical solution.

4. THERMAL AND VISCOUS EFFECTS

4.1 Equations in Spatial Form

Thermal and viscous effects often appear together and are treated in this
section. The energy equation in the global balance laws in (1.2-3) needs to
be extended to include thermal effects, and the second law of
thermodynamics needs to be added as follows:
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where q is the heat flux vector, is the entropy per unit mass, is the body
heat source per unit mass, and is the absolute temperature. The above
integral balance laws can be localized to yield

Eliminating in (7.4-2), we obtain the Clausius-Duhem inequality as

The free energy can be introduced through the following Legendre
transform:

then the energy equation and the C–D inequality (7.4-3) become

and

7.2 Equations in Material Form

Introducing the material heat flux and temperature gradient

the energy equation and the C–D inequality can be written as
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7.3 Constitutive Relations

For constitutive relations we start with the following:

Substitution of (7.4-9) into the C–D inequality yields

Since (7.4-10) is linear in and for the inequality to hold cannot

depend on and is related to by

We break and into reversible and dissipative parts as follows:

Then what is left for the C–D inequality (7.4-10) is

From and (7.4-11) we obtain the heat equation
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4.4 Boundary-Value Problem

In summary, the nonlinear equations for thermoviscoelectroelasticity are

with constitutive relations

which are restricted by

The equation for the conservation of mass in can be used to
determine separately from the other equations in (7.4-15). Equations

can be written as five equations for and

On the boundary surface S, the thermal boundary conditions may
be either prescribed temperature or heat flux

4.5 Linear Equations

For small deformations and weak electric fields
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The reversible part of the constitutive equations for small deformations and
weak electric fields are determined by and

In order to linearize the constitutive relations we expand into a power
series about and where is a reference temperature.
Denoting assuming and keeping quadratic terms
only, we can write

where are the thermoelastic constants, are the pyroelectric constants
and is related to the specific heat. Equations (7.4-20) and (7.4-21) yield

which are the equations for linear thermopiezoelectricity given by Mindlin
[51]. For the dissipative part of the constitutive relations we choose the
linear relations

In the following we will assume Equations (7.4-23) are

restricted by

A dissipation function can be introduced as follows:

whereby Equations and (7.4-24) can be written as
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Equation implies that

which further implies that and are positive definite. The formal
similarity between (7.4-25) and the first three terms on the right-hand side of
(7.4-21) suggests that the structures of and are the same as those
of and which are known for various crystal classes.

When the thermoelastic and pyroelectric effects are small, they can be
neglected. Then the above equations for the linear theory reduce to two one-
way coupled systems of equations, where one represents the problem of
viscopiezoelectricity with the following constitutive relations

and the other governs the temperature field

Equations (7.4-28) can be substituted into for four equations for
and Once the mechanical and electric fields are found, they can be
substituted into (7.4-29) to solve for the temperature field T.

Under harmonic excitation with an factor, the linear constitutive
relations in (7.4-28) can be written as

Formally, the material constants become complex and frequency-dependent.
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5. SEMICONDUCTION

Piezoelectric materials are either dielectrics or semiconductors.
Mechanical fields and mobile charges in piezoelectric semiconductors can
interact, and this is called the acoustoelectric effect. An acoustic wave
traveling in a piezoelectric semiconductor can be amplified by application of
a dc electric field. The acoustoelectric effect and the acoustoelectric
amplification of acoustic waves have led to piezoelectric semiconductor
devices. The basic behavior of piezoelectric semiconductors can be
described by a simple extension of the theory of piezoelectricity.

5.1 Governing Equations

Consider a homogeneous, one-carrier piezoelectric semiconductor under
a uniform dc electric field       The steady state current is

where q is the carrier charge which may be the electronic charge or its
opposite, is the steady state carrier density which produces electrical
neutrality, and is the carrier mobility. When an acoustic wave propagates
through the material, perturbations of the electric field, the carrier density
and the current are denoted by and The linear theory for small
signals consists of the equations of motion, Gauss’s law, and conservation of
charge [52]

The above equations are accompanied by the following constitutive
relations:

where are the carrier diffusion constants. Equations (7.5-1) can be written
as five equations for u, and n
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On the boundary of a finite body with a unit outward normal the
mechanical displacement or the traction vector the electric potential

or the normal component of the electric displacement vector and the
carrier density n or the normal current may be prescribed.

The Acoustoelectric effect and amplification of acoustic waves can also
be achieved through composite structures of piezoelectric dielectrics and
nonpiezoelectric semiconductors. In these composites the acoustoelectric
effect is due to the combination of the piezoelectric effect and
semiconduction in each component phase.

5.2 Surface Waves

As an example, consider the propagation of anti-plane surface waves in
a piezoelectric dielectric half-space carrying a thin, nonpiezoelectric
semiconductor film of silicon (see Figure 6.5-1) [53].

Figure 6.5-1. A ceramic half-space with a silicon film.

5.2.1 Equations for a Thin Film

The film is assumed to be very thin in the sense that its thickness is
much smaller than the wavelength of the waves we are interested in. For
thin films the following stress components can be approximately taken to
vanish

According to the compact matrix notation, with the range of p, q as 1,2, ...
and 6, Equation (7.5-4) can be written as
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For convenience we introduce a convention that subscripts u, v, w take the
values 2, 4, 6 while subscripts r, s, t take the remaining values 1, 3, 5. Then
Equation can be written as

where (7.5-5) has been used. From we have

Substitution of (7.5-7) into gives the constitutive relations for the
film

where the film material constants are

We now introduce another convention that subscripts a, b, c and d assume 1
and 3 but not 2. Then Equation (9.5-8) can be written as

Integrating the equations in for i = 1,3 and with respect to
through the film thickness, we obtain the following two-dimensional

equations of motion, Gauss’s law and conservation of charge:

where and n are averages of the corresponding quantities
along the film thickness.

5.2.2 Fields in the Ceramic Half-Space

From the equations in Section 6 of Chapter 3, the equations for the
ceramic half-space are
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and

where

For a surface wave solution we must have

Consider the possibility of solutions in the following form:

where A and B are undetermined constants, and should be positive for
decaying behavior away from the surface. Equation already
satisfies For to satisfy we must have

which leads to the following expression for

where

The following are needed for prescribing boundary and continuity
conditions:
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5.2.3 Fields in the Free Space

Electric fields can also exist in the free space of which is
governed by

A surface wave solution to (7.5-22) is

where C is an undetermined constant. From (7.5-23), in the free space

5.2.4 Fields in the Semiconductor Film

The semiconductor film is one-dimensional with Consider
the case when the dc biasing electric field is in the direction. Let

where N is an undetermined constant. Equation (7.5-25) already satisfies the
continuity of displacement between the film and the ceramic half-space, and
the continuity of electric potential between the film and the free space. We
use a prime to indicate the elastic and dielectric constants as well as the
mass density of the film. Silicon is a cubic crystal with m3m symmetry. The
elastic and dielectric constants are given by
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From (7.5-10) and we obtain:

5.2.5 Continuity Conditions and Dispersion Relation

Substitution of (7.5-21), (7.5-23), (7.5-24), (7.5-25) and (7.5-27) into
the continuity condition of the electric potential between the ceramic half-
space and the film, for b = 3, and yields

which is a system of linear, homogeneous equations for A, B, C and N. For
nontrivial solutions the determinant of the coefficient matrix has to vanish

which determines the dispersion relation, a relation between and of the
surface wave. In terms of the surface wave speed Equation (7.5-
29) can be written in the following form:
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where (7.5-19) has been used, and

When h = 0, i.e., the semiconductor film does not exist, (7.5-30) reduces
to

which is the speed of the Bleustein-Gulyaev wave in (5.3-20).
When i.e., the half-space is non-piezoelectric,

electromechanical coupling disappears and the wave is purely elastic. In this
case Equation (7.5-30) reduces to

which is the equation that determines the speed of Love wave (an anti-plane
surface wave in an elastic half-space carrying an elastic layer) in the limit
when the film is very thin compared to the wavelength Love
waves are known to exist when the elastic stiffness of the layer is smaller
that that of the half-space.

The denominator of the right hand side of (7.5-30) indicates that a
complex wave speed may be expected and the imaginary part of the
complex wave speed may change its sign (transition from a damped wave to
a growing wave) when changes sign or

i.e., the acoustic wave speed is equal to the carrier drift speed [52].
When semiconduction is small, Equation (7.5-30) can be solved by an

iteration or perturbation procedure. As the lowest (zero) order of



219

approximation, we neglect the small semiconduction and denote the zero-
order solution by Then from (7.5-30),

which is dispersive. For the next order, we substitute into the right-hand
side of (7.5-30) and obtain the following equation for

which suggests a wave that is both dispersive and dissipative.
For numerical results consider PZT-5H. Since the

counterpart of the elastic Love wave does not exist, but a modified
Bleustein-Gulyaev wave is expected. We plot the real parts of and

versus in Figure 7.5-2. The dimensionless wave number X and the
dimensionless wave speed Y of different orders are defined by

is a dimensionless number given by

which may be considered as a normalized electric field. It represents the
ratio of the carrier drift velocity and the speed of the Bleustein-Gulyave
wave. Because of the use of thin film equations for the semiconductor film,
the solution is valid only when the wavelength is much larger than the film
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thickness (X << 1). It can be seen that semiconduction causes additional
dispersion. This conduction induced dispersion varies according to the dc
biasing electric field.

Figure 7.5-2. Dispersion relations.

Figure 7.5-3 shows the imaginary part of versus The

dimensionless number describing the decaying behavior of the waves is
defined by

When the dc bias is large enough (approximately the decay constant
becomes negative indicating wave amplification. The transition from
damped waves to growing waves indeed occurs when (7.5-34) is true for
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Figure 7.5-3. Dissipation as a function of the dc bias.

6. DYNAMIC THEORY

The theory of linear piezoelectricity is based on the quasistatic
approximation. In piezoelectricity theory, the mechanical equations are
dynamic but the electromagnetic equations appear to be static. The electric
field and the magnetic field are not directly coupled in Maxwell’s equations.
When the complete set of Maxwell’s equations is included, the fully
dynamic theory is called piezoelectromagnetism [54].

6.1 Governing Equations

For a piezoelectric but nonmagnetizable dielectric body, the three-
dimensional equations of linear piezoelectromagnetism consist of the
equations of motion and Maxwell’s equations, as shown by
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as well as the following constitutive relations

where is the magnetic induction, is the magnetic field, and is the
magnetic permeability of free space. With Equation (7.6-2), Equation (7.6-
1) becomes

6.2 Quasistatic Approximation

The quasistatic approximation made in Section 2 of Chapter 1 can be
considered as the lowest order approximation of the dynamic theory given
by (7.6-3) through the following perturbation procedure [5]. Consider an
acoustic wave with frequency in a piezoelectric crystal of size L. We scale
the various independent and dependent variables with respect to
characteristic quantities

where

is the speed of light in free space and the scaling yields a b in the same units
as E. Then Equation (7.6-3) takes the following form:
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or

where

To the lowest order

or

6.3 Anti-Plane Problems of Ceramics

For anti-plane motions of polarized ceramics we have [55]
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The non-vanishing components of                  and     are

The nontrivial ones of the equations of motion and Maxwell’s equations in
(7.6-1) take the following form:

Eliminating the electric field components from

where Differentiating with respect to time

once and substituting from we have

The above equations can be written in coordinate independent forms as

where and are the two-dimensional gradient operator and Laplacian,
respectively. D is the electric displacement in the plane. is the unit
vector in the direction. Equations govern the displacement and
magnetic fields. Once and are determined, and can be obtained
from Equation Then the electric field and the stress components
can be obtained from constitutive relations. From Equations and
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it can be seen that physically the introduced by Bleustein [18] is
related to

6.4 Surface Waves

To see the dynamic effects more specifically, we study the propagation
of surfaces waves in a ceramic half-space [55]. The corresponding
quasistatic problem was analyzed in Section 3 of Chapter 5. Consider a
ceramic half-space poled in the direction (see Figure 7.6-1).

Figure 7.6-1. A ceramic half-space.

Consider surface waves propagating in the direction with

where U, H, and are undetermined constants. Substitution of
Equations (7.6-17) into (7.6-14) and (7.6-15) results in

where the inequalities are for decaying behavior from the surface. From
Equations and (7.6-17) we obtain
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6.4.1 A Half-Space with an Electroded Surface

First consider the case when the surface at is electroded with a
perfect conductor for which we have The electrode is assumed to be
very thin with negligible mass. Hence we have the traction-free condition

on the surface. Then from (7.6-12) and we can write

For nontrivial solutions of U and H, the determinant of the coefficient
matrix has to vanish which, with (7.6-18), leads to

where

In Equations (7.6-22), v is the surface wave speed, is the speed of plane
shear waves propagating in the direction, is the ratio of acoustic and
light wave speeds which is normally a very small number, c is the speed of
light in a vacuum, and n is the refractive index in the direction. Equation
(7.6-21) is an equation for the surface wave speed v. Waves with speed
determined by (7.6-21) are clearly nondispersive. Since is very small, it is
simpler and more revealing to examine the following perturbation solution
of (7.6-21) for small

It is seen that the effect of electromagnetic coupling on the wave speed of
Bleustein-Gulyaev waves is of the order of As a numerical example

we consider PZT-7A. Calculation shows that
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Hence the modification on the wave speed is very small and is negligible in
most applications. When is set to zero, or when the speed of light
approaches infinity, Equation (7.6-23) reduces to the speed of the Bleustein-
Gulyaev waves in Section 3 of Chapter 5. The above solution serves as a
good example for illustrating the quasistatic approximation, which can only
be done from the dynamic theory.

6.4.2 A Half-Space with an Unelectroded Surface

When the surface of the half-space at is unelectroded,
electromagnetic waves also exist in the free space of The solution for
the free space can be written as:

where and are undetermined constants. Substitution of (7.6-25) into

(7.6-15) with replaced by for free space, we obtain

The electric field generated by in (7.6-25) through (7.6-13) with
dropped and replaced by for fee space, is given by

We require the continuity of and at as well as the vanishing of
shear stress This implies that

Vanishing of the determinant of the coefficient matrix leads to
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which is an equation for v. Again, the waves are nondispersive. When is
set to zero the result of Section 3 of Chapter 5 will be obtained. A
perturbation solution of (7.6-29) to the first order in is

and calculation shows that, for PZT-7A,

6.5 Electromagnetic Radiation

Next we consider electromagnetic radiation from a vibrating circular
cylinder of ceramics poled in the direction as shown in Figure 7.6-2 [56].

Figure 7.6-2. A Circular cylinder of ceramics poled in the direction.

The cylinder is mechanically driven at r = b. The surface at r = b is
unelectroded. Electromagnetic waves propagate away from the cylinder
(radiation).

6.5.1 Boundary-Value Problem

For the special case of a solid cylinder (a = 0), from Equation (7.6-16)
the boundary-value problem is:
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6.5.2 Interior Fields

For fields inside the cylinder, in polar coordinates, from Equation (7.6-
16) we have

and

Consider the possibility of

where v is allowed to assume any real, positive value for the moment (for
solutions periodic in v has to be an integer). Other values of v may also
be physically meaningful. For example, v= 1/2 with represents a
crack at Substitution of (7.6-35) into (7.6-33)results in

where we have denoted
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Equation (7.6-36) can be written as Bessel’s equations of order v. Then
general solutions for and can be written as

where and are the v-th order Bessel functions of the first and second
kind. are undetermined constants. From (7.6-38) we obtain the
following expressions that are useful for boundary and/or continuity
conditions:

where a superimposed prime indicates differentiation with respect to the
whole argument of a function.
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6.5.3 Exterior Fields

In the free space of r >b, the electromagnetic fields are given by

where and are the v-th order Hankel function of the first and

second kind, and

6.5.4 Boundary and Continuity Conditions

Since is singular at the origin, terms associated with and have
to be dropped. To satisfy the radiation condition at we must have

What need to be satisfied at r = b are

Note that when v = 0 (axi-symmetric), Equation becomes
uncoupled to In this case cannot be excited by Hence there
is no radiation. In the following we consider the case of From
Equation (7.6-44)
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where

yields a frequency equation. The corresponding modes are coupled
acousto-electromagnetic modes.

6.5.5 Electromagnetic Radiation

We calculate the radiation at far fields with large r using the following
asymptotic expressions of Bessel functions with large arguments

Then

which are clearly outgoing. To calculate radiated power we need the radial
component of the Poynting vector which, when averaged over a period of
time, with the complex notation, is given by
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where an asterisk represents complex conjugate. Equation (7.6-49) shows
that the energy flux is inversely proportional to r. It also shows the angular
distribution of the power radiation. The radiated power per unit length of the
cylinder is

We are interested in the frequency range of acoustic waves. Therefore is
finite, and For small arguments we have

Then, approximately,

In this approximate form, the denominator of the first factor of (7.6-52)
represents the frequency equation for quasistatic electromechanical
resonances in piezoelectricity. With Equation (7.6-52), the radiated power
can be written as

From Equation (7.6-53) we make the following observations:
(i) S is large near resonance frequencies. It is singular at these

frequencies unless some damping is present.
(ii) In the limit of and all 0. In this case as

expected.
(iii) S is proportional to the square of a piezoelectric constant. For

materials with strong piezoelectric coupling, the radiated power is much
more than that of a material with weak coupling.
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Problems

7.6-1.
7.6-2.

7.6-3.

Study piezoelectromagnetic SH waves in a ceramic plate [57].
Study piezoelectromagnetic SH surface waves in a ceramic half-
space carrying a thin layer of isotropic conductor or dielectric [32].
Study piezoelectromagnetic SH gap waves between two ceramic
half-spaces [58].



Chapter 8

PIEZOELECTRIC DEVICES

This chapter presents analyses of piezoelectric devices that use the
equations developed in previous chapters. Sections 1 and 2 are based on the
linear theory of piezoelectricity. Sections 3 to 5 use the theory for small
fields superposed on biasing fields. Device problems are usually
complicated mathematical problems. Exactly solutions cannot be obtained.
Structural theories or numerical methods are necessary. All problems treated
in this chapter have approximations in order to make them simple. Since
interest in devices varies, the chapter is written in such a way that sections
can be read independently.

1. GYROSCOPES

Gyroscopes have important applications in automobiles, video cameras,
smart weapon systems, machine control, robotics, and navigation.
Traditional mechanical gyroscopes are based on the inertia of a rotating
rigid body. New types of gyroscopes have also been developed, e.g.,
vibratory gyroscopes and optical gyroscopes. These gyroscopes are based on
different physical principles and they differ greatly in size, weight, accuracy,
and cost. Each type of gyroscope has its own advantages and disadvantages,
and each is used in different applications.

For vibratory gyroscopes, the excitation and detection of vibrations can
be achieved electrostatically or piezoelectrically, or in other ways.
Piezoelectric gyroscopes make use of two vibration modes of a piezoelectric
body. The two modes have material particles moving in perpendicular
directions so that they are coupled by Coriolis force when the gyroscope is
rotating. Furthermore, the two modes must have the same frequency so
that the gyroscope operates at the so-called double resonance condition with
high sensitivity. When a gyroscope is excited into mechanical vibration by
an applied alternating electric voltage in one of the two modes (the primary
mode) and is attached to a body rotating with an angular rate Coriolis
force excites the other mode (the secondary mode) through which can be
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detected from electrical signals (voltage or current) accompanying the
secondary mode.

1.1 Governing Equations

A Piezoelectric gyroscope is in small amplitude vibration in a reference
frame that rotates with it. The equilibrium state in the rotating reference
frame has initial deformation and stress due to centrifugal force. Therefore
an exact description of the motion of a piezoelectric gyroscope requires the
equations for small, dynamic fields superposed on static initial fields due to
centrifugal force. The governing equations in the rotating frame can be
written as

where represents terms due to the initial fields. Since piezoelectric
gyroscopes are very small (on the order of 10 mm), their operating
frequency is very high, on the order of hundreds of kHz or higher.
Piezoelectric gyroscopes are used to measure an angular rate much
smaller than In such a case, the centrifugal force due to rotation and the
initial fields which are proportional to are much smaller compared to the
Coriolis force that is proportional to Therefore, the effect of rotation
on the motion of piezoelectric gyroscopes is dominated by the Coriolis
force. This is fundamentally different from the relatively well-studied
subject of vibrations of a rotating elastic body for machinery application. In
machinery dynamics large bodies with low resonance frequencies are often
in relatively fast rotations, and the centrifugal force is one of the dominant
forces. The high frequency vibration of a small rotating piezoelectric body is
characterized by that the Coriolis force is much larger than the centrifugal
force. This presents a new class of mechanics problems.

1.2 An Example

The operating principle and the basic behaviors of piezoelectric
gyroscopes can be best explained by the simple example below [59].
Consider a concentrated mass M connected to two thin rods of polarized
ceramics as shown in Figure 8.1-1.
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Figure 8.1-1. A simple piezoelectric gyroscope.

The two rods are electroded at the side surfaces, with electrodes shown by
the thick lines. Under a time-harmonic driving voltage the rod along
the x direction is driven into extensional vibrations. If the entire system is
rotating about the normal of the (x,y) plane at an angular rate it results in
a voltage output across the width of the rod along the y direction.
is proportional to when is small, which can be used to detect

1.2.1 A Zero-Dimensional Model

For long and thin rods (L >> h) the flexural rigidity is very small. The
rods do not resist bending but can still provide extensional forces. When the
mass of M is much larger than that of the rods, the inertial effect of the rods
can be discounted. Then the mechanical behavior of the rods is effectively
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like two elastic springs with the addition of piezoelectric couplings. Let the
displacements of M in the x and y directions be u(t) and v(t). We consider
small amplitude vibrations of M in the co-rotating (x,y) coordinate system.
For each rod we also associate a local coordinate system with the axis
along the axis of the rod and the axis along the poling direction.

Consider the rod along the x direction first. Neglecting the dynamical
effect in the rod due to inertia, the axial strain in the rod can be written as

With respect to the local coordinate system, the electric field corresponding
to the configuration of the driving electrodes can be written as

where the driving voltage is considered given and is time-harmonic. For
thin rods in extension, the dominating stress component is the axial stress
component All other stress components can be treated as zero (see
Chapter 4, Section 7). Under the above stress and electric field conditions,
the constitutive relations take the form

where is the component of the electric displacement vector in the local
coordinate system, and and are the relevant elastic, piezoelectric,
and dielectric constants. From Equation (8.1-4) we can solve for and
in terms of and with the result

where Equations (8.1-2) and (8.1-3) have been used, and

The axial force in the rod and the electric charge on the electrode at the
upper surface of the rod are given by
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where

represent the elastic stiffness and the static capacitance of the rod. The
electric current on the electrode is related to the charge by

Similarly, for the rod along the y direction, the axial force and electric
current are given by

In gyroscope applications, neither nor is directly known. The output
receiving or sensing electrodes across the rod along the y direction are
connected by an electric circuit. For time-harmonic cases, we have the
following circuit condition

where Z is the impedance of the output circuit (also called the load circuit in
this book), which depends on the structure of the circuit and, in general, is
also a function of the frequency of the time-harmonic motion. In the special
cases when Z = 0 or we have shorted or open output circuit conditions
with or

The equations of motion are

where the Coriolis and centrifugal accelerations are included.

1.2.2 An Analytical Solution

For time-harmonic motions we use the complex notation
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where and are the input and output currents. The vibration of the system
is governed by the following three linear equations for and with

as the driving term:

For forced vibration, some damping is introduced into the system by the
complex elastic constant where Q, the quality factor, is a
large number. The output voltage and current, as well as the driving current,
are determined as

1.2.3 Numerical Results

Output voltage as a function of the driving frequency is plotted in
Figure 8.1-2 for the case of open sensing electrodes for large sensing
voltage) and two values of There are two resonance frequencies with
values near 1. Near the two resonance frequencies, the voltage sensitivity
assumes maximal values. If smaller values of Q are used, the peaks will
become narrower and higher. Although higher peaks suggest higher voltage
sensitivity, narrower peaks require better control in tuning the sensor into
what is called the double-resonance condition, with the driving frequency
and the resonance frequencies of the primary and the secondary modes very
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close. We note that when is doubled, the output voltage is essentially
doubled as well, thus suggesting a linear response to

Figure 8.1-2. Voltage sensitivity versus the driving frequency

The dependence of the normalized maximum output voltage (the value
of one of the two peaks shown in Figure 8.1-2) on the rotation rate is
shown in Figure 8.1-3 for two values of the load Z. When is much smaller
than the relation between the output voltage and is essentially linear,
as shown in Therefore these gyroscopes are convenient for
detecting a rotation rate that is relatively slow compared to the operating
frequency. Since piezoelectric gyroscopes can be made very small with high
resonance frequencies, the relatively slow rotation rate that the gyroscopes
can detect linearly can still cover a variety of applications. When is not
small, the quadratic effect of in the denominator of begins to
show its effect, which determines the range of the sensor for a linear
response. Since the response is linear in small in the analysis of
piezoelectric gyroscopes the centrifugal force (which represents higher order
effects of can often be neglected. The contribution to sensitivity is from
the Coriolis force which is linear in The above behaviors are also
observed in many other gyroscopes.
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Figure 8.1-3. Voltage sensitivity versus the rotation rate

2. TRANSFORMERS

Piezoelectric materials can be used to make transformers for raising or
lowering electric voltages. A piezoelectric transformer is widely used in
several types of electronic equipment. A piezoelectric transformer is a
resonant device operating at a particular resonance frequency of a vibrating
piezoelectric body. The basic behavior of a piezoelectric transformer is
governed by the linear theory of piezoelectricity.

In this section, we perform an analytical study [60] on Rosen
transformers operating with extensional modes of rods. An approximate
one-dimensional model similar to Section 7 of Chapter 4 will be developed.
The one-dimensional model is simple enough to allow analytical studies. At
the same time, the model provides useful information for understanding the
operating principle of the transformer and its design.

2.1 A One-Dimensional Model

Consider a ceramic Rosen transformer of length a+b, width w and
thickness h as shown in Figure 8.2-1.
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Figure 8.2-1. A Rosen ceramic piezoelectric transformer.

We assume that the transformer has a slender shape with a, b >> w >> h.
The driving portion is poled in the direction and is electroded
at and with electrodes in the areas bounded by the thick lines
shown in the figure. In the receiving portion the ceramic is poled
in the direction with one output electrode at the end The other
output electrode is shared with the driving portion (where Under a
time-harmonic driving voltage with a proper frequency, the
transformer can be driven into extensional vibration and produce an output
voltage The output electrodes are usually connected by a load circuit
whose impedance is denoted by Because the transformer is non-uniform,
with materials in the two portions oriented differently, we analyze each
portion separately below.

2.1.1 Driving Portion

Since the rod is slender and we are considering extensional motions
only, for the driving portion we make the usual assumption of a
unidirectional state of stress:

For the electric field, based on the electrode configuration, we
approximately have

which implies that
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The relevant equation of motion and constitutive relations are

From Equations (8.2-1) to (8.2-4) we obtain the equation for and the
expressions for and as

where

At the left end, we have the following boundary condition

The current flowing out of the driving electrode at is given by

where is the charge on the driving electrode at

2.1.2 Receiving Portion

For the receiving portion the stress assumption (8.2-1) is still
valid. For the electric field, since the portion is not electroded on its lateral
surfaces, we approximately have

which implies, from the constitutive equations, that

Hence in the receiving portion, the dominating electric field component is

The relevant equation of motion, the charge equation, and constitutive
relations are

Then the equation for and the expressions for and are
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where

and and are two integration constants which may still be functions
of time. The following boundary conditions need to be satisfied at the right
end:

Physically, is related to the electric charge and hence the current on
the receiving electrode at

2.1.3 Continuity Conditions

At the junction of the two portions the following continuity and
boundary conditions need to be prescribed:

We need to solve the two second-order equations and for
in two regions. Since piezoelectric transformers operate under a time-

harmonic driving voltage, we employ the complex notation and write

For the output electrodes, under the complex notation, we have the
following circuit condition

When or we have shorted or open output electrodes.
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2.2 Free Vibration Analysis

The basic mechanism of a piezoelectric transformer can be shown by its
vibration modes from a free vibration analysis. For free vibrations we set

and Physically this means that the driving electrodes are shorted
and the receiving electrodes are open. Mathematically the equations and
boundary conditions all become homogeneous. From Equations

(8.2-7), (8.2-15) and (8.2-17), the equations and boundary
conditions we need to solve reduce to

where is an unknown resonance frequency at which nontrivial solutions
of U to the above equations exist. Mathematically, Equation (8.2-20) is an
eigenvalue problem. The solution with is a rigid body displacement
with U being a constant, which is not of interest here. The solution to (8.2-
20) is

where

and is the n-th root of the following frequency equation
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We note that the width w and thickness h do not appear in the frequency
equation. This is as expected from a one-dimensional model. Once U is
known, in the receiving portion can be found from We have

2.3 Forced Vibration Analysis

For forced vibration driven by from
(8.2-7), (8.2-15) and (8.2-17), we need to solve the following non-
homogeneous problem for U:

The solution to (8.2-26) allows an arbitrary constant which is chosen to be 0.
Then the solution to (8.2-26) can be written as
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where

Note that implies the frequency equation (8.2-24). With Equations
(8.2-27), from and we obtain the voltage distribution in
the receiving portion as

Although is considered given, Equations (8.2-27) and (8.2-29) still have
an unknown constant From Equations (8.2-29) and the output
voltage is

where

and Equation (8.2-16) has been used to replace by From Equations
(8.2-8), and (8.2-27), the driving current is
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where

Equations (8.2-30) and (8.2-32) are in fact the general form of the input-
output relation for a linear system. Equations (8.2-31) and (8.2-33) are
specific expressions of the coefficients in the linear relations, which depend
on the specific system which, in this case, is the Rosen transformer in Figure
8.2-1. Discussions in the rest of this section will depend on the general
forms of (8.2-30) and (8.2-32), but not on the specific expressions (8.2-31)
and (8.2-33). Since is given, solving (8.2-30), (8.2-32), and the circuit
condition (8.2-19), we obtain the transforming ratio, the output current, and
the input admittance as

The dependence of the transforming ratio and the input admittance on the
load is of great interest in transformer design. This is explicitly shown in
(8.2-34). It can be seen that for small loads the transforming ratio is linear in

and the input admittance approaches a finite limit. For large the
transforming ratio approaches (saturation) and the input admittance
approaches The input and output powers are given by

where an asterisk means complex conjugate. Then the efficiency of the
transformer can be written as
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Equation (8.2-36) shows that for small loads depends on linearly, and
for large loads decreases to 0. When the load is a pure resistor, is real.
In this case, Equation (8.2-36) can be written in a simpler form as

where and  are real functions of and Equation (8.2-37)
has only three real parameters which can be easily determined from
experiments. Equation (8.2-37) implies that the efficiency as a function of a
resistor load has a maximum. Equations (8.2-34), (8.2-36), and (8.2-37) are
valid for piezoelectric transformers in general.

2.4 Numerical Results

As an example, consider a transformer made from polarized ceramics
PZT–5H. For forced vibration analysis, some damping in the system is
necessary. This is achieved by allowing the elastic material constants and

to assume complex values, which can represent viscous type damping in
the material. In our calculations and are replaced by and

where Q is a real number. For polarized ceramics the value of Q
is in the order of to For free vibration we consider the case of Q = 0.
In the calculation for forced vibration we fix Q = 1000. We consider a
transformer with a = b = 22 mm, w = 10 mm, and h = 2 mm.

With the above data, the first root of the frequency equation (8.2-24),
that is, the resonant frequency of the operating mode, is found to be

The mode shape of the operating mode is shown in Figure 8.2-2, and is
normalized by its maximum. The location of the nodal point is not simply in
the middle of the transformer, although a = b in this example. This is
because the material is not uniform. The location of the nodal point depends
on the compliances and In this example we have Hence
the nodal point appears in the left half of the bar, where the material is less
rigid in the direction than the material of the right half.

In Figure 8.2-2, is continuous at but is not, as dictated
by Accurate prediction of vibration modes and their nodal points
is particularly important for Rosen piezoelectric transformers. Theoretically,
Rosen transformers can be mounted at their nodal points. Then mounting
will not affect the vibration and the performance of these transformers.
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Figure 8.2-2. Normalized mechanical displacement  of the first extensional mode.

Normalized as a function of is shown in Figure 8.2-3. It is seen
that rises in the receiving portion [0, b]. This is why the present non-
uniform ceramic rod can work as a transformer. We note that the rate of
change of is large near where the extensional stress is large. On
the other hand, the rate of change is small near which is a free end
with vanishing extensional stress.

Figure 8.2-3. Normalized electric potential of the first extensional mode.
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Figure 8.2-4 shows the transforming ratio as a function of the driving
frequency for two values of the load The transforming ratio assumes its
maximum as expected near the first resonance frequency (f = 36.35 kHz).
This shows that the transformer is a resonant device operating at a particular
frequency. The output voltage can be tens of times as high as the input
voltage. When the load is larger, the output voltage is larger. At the same
time, the output current is usually smaller.

Figure 8.2-4. Transforming ratio versus driving frequency.

Figure 8.2-5 shows the transforming ratio as a function of the load for
two values of the driving frequency that are close to the first resonance
frequency. As the load increases from 0, the transforming ratio increases
from 0 almost linearly. As the load increases further, there is a slower rate of
increase in the transforming ratio. For very large loads, the transforming
ratio is almost a constant, exhibiting a saturation type of behavior.
Physically, for very large values of the load, the output electrodes are
essentially open. In this case, the output voltage is saturated and the output
current essentially vanishes.
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Figure 8.2-5. Transforming ratio versus load.

In Figure 8.2-6 the transforming ratio versus the aspect ratio b/h is
plotted for different values of the load and driving frequency. The
transforming ratio increases essentially linearly with b/h.

Figure 8.2-6. Transforming ratio versus b/h.
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Figure 8.2-7 shows the efficiency as a function of the load. The figure
shows two values of the driving frequency, one close to and the other far
away from the first resonant frequency. As the load increases from 0, the
efficiency first increases from 0 linearly and then reaches a maximum. After
the maximum, the efficiency decreases monotonically. The efficiency-load
curve is not sensitive to the driving frequency.

Figure 8.2-7. Efficiency versus load.

3. PRESSURE SENSORS

Piezoelectric crystals are often used to make pressure sensors.
Piezoelectric pressure sensors may detect pressure either from pressure-
induced voltage (or charge) or from frequency shifts. The thickness-stretch
deformation of a ceramic plate analyzed in Section 2 of Chapter 3 shows
how a pressure sensor may work. The voltage or charge developed in the
plate is proportional to the normal surface traction, and can be used to detect
the traction.

In this section, we analyze a pressure sensor that measures pressure by
frequency shifts induced by the biasing fields due to the pressure. Consider
the reference state of the structure shown in Figure 8.3-1 [61].
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Figure 8.3-1. A pressure sensor.

The axis is normal to the paper determined by the right-hand rule. The
shell is a cylindrical structure which is relatively long in the direction.
Figure 8.3-1 shows a cross-section with a unit length in the direction. A
quartz thickness-shear resonator of thickness 2h between two electrodes
represented by the thick lines is sealed in the shell structure. External
pressure on the shell is transmitted to the plate, causing biasing fields and
hence frequency shifts in the resonator, which can then be used to measure
the pressure. The shallow shell is part of a circular cylindrical shell. The
shell is shallow in the sense that a >> d. The shell is also assumed to be very
thin with t << a. The radius of the corresponding circular cylindrical shell
(see Figure 8.3-2) can be found as

When the structure in Figure 8.3-1 is subject to a surrounding pressure
p, extensional stresses develop in the shell. As an approximation we neglect
bending moments and shear forces everywhere in the shell including the
edges, and treat it as a membrane that does resist bending. The free body
diagram of the lower piece of the shell when under pressure p is shown in
Figure 8.3-2. The problem is statically determinate. The membrane
extensional stress Q/t induced by p is simply the hoop stress for a circular
cylindrical shell under uniform pressure
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which is a large force when a >> d. The membrane stress in (8.3-2)
compresses the piezoelectric plate axially and generates a pressure-induced
initial stress in the resonator. Under the axial stress induced by p the
resonator vibrates in a thickness-shear mode at a resonance frequency that is
slightly perturbed from that of a stress-free resonator. In order to calculate
this frequency shift and hence exhibit the mechanism of the pressure sensor,
the theory in Chapter 6 for incremental vibrations superposed on biasing
deformations is needed.

Figure 8.3-2. Free body diagram of the shell.

Consider the quartz plate alone. The stress-free reference configuration
of the plate before the surrounding pressure p is applied is shown in Figure
8.3-3(a). The static biasing deformation is due to the surrounding pressure p
on the shell or the related axial force N, and is shown in Figure 8.3-3(b). The
incremental thickness-shear vibration is shown in Figure 8.3-3(c). We study
motions independent of with and Quartz is a material
with very weak piezoelectric coupling. For a frequency analysis this
coupling is neglected and an elastic analysis will be performed.

The biasing fields in the crystal plate caused by p through N are
assumed to be small and are governed by the linear theory of elasticity. The
two major surfaces of the plate are traction-free. The plate is under the axial
compressional force N which depends on the pressure p as follows

where the approximation is valid for a shallow shell with a small The two
terms on the right-hand side of (8.3-3) are due to the pressure p on the shells
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and the pressure that acts on the side walls of the structure with height 2H.
They are transferred to the crystal plate as N.

Figure 8.3-3. Reference (a), initial (b), and present (c) configurations of the quartz plate.

Consider a rotated Y-cut quartz plate which is of monoclinic symmetry.
The deformations due to compression by N are governed by

with boundary conditions

where is the displacement in the direction and
From Equations (8.3-4) and (8.3-5) the initial strain in

the direction is found to be

The related thickness expansion due to Poisson’s effect can be obtained
from the stress relaxation condition in the plate’s normal direction as
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Since the biasing deformations are uniform and the plate is thin with a
>> h, for the incremental motion we neglect edge effects and consider
motions independent of We study thickness-shear vibration in the
direction with

The relevant incremental stress components are found to be

where, under the compact matrix notation, and are the
third-order elastic constants and

Since the third-order elastic constants are usually larger in value than the
second-order elastic constants, and are not necessarily small

compared to For rotated Y-cut quartz:

and hence The equations of motion are

Equations are trivially satisfied. Equation take the
following form

Consider odd thickness-shear modes which are excitable by a thickness
electric field. Let

which satisfies the boundary conditions

Substitution of (8.3-14) into (8.3-13) results in the following ordinary
differential equation for u(t),

where
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is the resonance frequency of the n-th odd thickness-shear mode of the
plate when the biasing fields are not present. Letting

in Equation (8.3-16), we obtain the frequency

which implies the following frequency shift due to pressure

A few observations can be made from Equation (8.3-20). The frequency
shift varies according to pressure and therefore can be used to measure the
pressure. For sensor applications, the frequency shift should ideally be
proportional to pressure (for small pressure). The frequency shift depends on

which is a large number. Thus a shallow shell magnifies the pressure
and increases sensitivity. A thicker resonator or a more rigid resonator with
a large h or a large results in lower sensitivity. Under the assumption of
the membrane state of thin shells, shell thickness does not have an effect on
sensitivity.

Consider the fundamental thickness-shear mode corresponding to n = 1
in (8.3-14). Relative frequency shift versus pressure is shown in Figure 8.3-
4 for different values of a/d, while a/h = 20 and H/h = 5 are fixed.

Figure 8.3-4. Frequency shift versus pressure for different values of a/d.
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Figure 8.3-4 shows that for small pressure the frequency shift is proportional
to pressure. The slope of the straight lines is related to sensitivity. Larger
slopes represent higher sensitivity. Clearly, for larger values of a/d, i.e.,
shallower shells, the sensitivity is higher. The above analysis and the linear
results in Figure 8.3-4 are for low pressure. For high pressure, the response
is nonlinear.

The above analysis is based on the membrane theory of shells. When the
shells become thicker, the effect of bending moment and transverse shear
force cannot be ignored, especially near the edges of the shells.

4. TEMPERATURE SENSORS

A temperature change causes changes in the geometry of a piezoelectric
body. The material constants are also temperature-dependent. Hence a
temperature change causes shifts in resonance frequencies in a piezoelectric
body. This effect can be used to make a thermometer. Consider a crystal
plate connected to two elastic layers by rigid end walls as shown in Figure
8.4-1 [62].

Figure 8.4-1. A crystal plate as a temperature sensor.

The structure is long in the direction, and Figure 8.4-1 shows a cross-
section. The elastic layers are isotropic with Young’s modulus E and
thermal expansion coefficient The crystal plate is piezoelectric with two
electrodes for vibration excitation represented by the thick lines at the top
and bottom of the plate. The thermal expansion coefficients of the crystal
plate and the elastic layers are different. Under a temperature change they
expand differently if allowed to do so freely. Due to the rigid end
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connections, they have to be of the same length for all temperatures. Thus,
under a temperature change, initial strains and stresses are developed in both
the crystal plate and the elastic layers.

The operating mode of the crystal plate is the thickness-shear mode,
with only one displacement component in the direction. The frequency is
determined by the plate thickness. We need to study the thickness-shear
vibration of a crystal plate with initial stresses and strains due to a
temperature change and the constraint. The theory for small fields
superposed on finite biasing fields in a thermoelectroelastic body is needed.
Such a theory can be obtained by linearizing the nonlinear electroelastic
equation in Section 4 of Chapter 7 in the manner of Chapter 6 about a
thermoelectroelastic bias [63].

Consider a quartz plate of rotated Y-cut. Quartz has very weak
piezoelectric coupling. The coupling is necessary for electrically forced
vibrations. For free vibration frequency analysis, the weak piezoelectric
coupling can be neglected and an elastic analysis is sufficient. The equations
for small fields superposed on a thermomechanical bias in a thermoelastic
body are summarized below.

4.1 Equations for Small Fields Superposed on a Thermal Bias

Consider the following three configurations of a thermoelastic body as
shown in Figure 8.4-2.

Figure 8.4-2. Reference, initial and present configurations of a thermoelastic body.
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(i) The reference configuration: At this state the body is undeformed
with a reference temperature of A generic point is denoted by X with
rectangular coordinates The mass density is denoted by

(ii) The initial configuration: In this state the body is deformed finitely
and statically, with an initial temperature of The position of the material
point associated with X is given by The initial displacement is
given by w = x – X . The initial deformations satisfy the following equations
of static nonlinear thermoelasticity

The above equations are adjoined by constitutive relations defined by the
specification of the free energy and the heat flux vector

where is the material temperature gradient. For the initial state

(iii) The present configuration: Time-dependent, small deformations are
applied to the initial configuration of the deformed body. The final position
of the material point associated with X is given by The small,
incremental displacement vector is denoted by u. The equations for the
incremental fields are

where the effective linear constitutive relations for the small incremental
stress tensor, entropy, and heat flux are

In Equation (8.4-5), the effective material constants are defined by
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High frequency incremental motions can be assumed to be isentropic for
which Then from       the incremental temperature field   .   can
be obtained and substituted into resulting in

where the isentropic effective constants are

In many applications the biasing deformations are small. In this case,
only their linear effects on the incremental fields need to be considered.
Then the following free energy density is sufficient:

where a and are related to the specific heat and the thermoelastic
constants. Then
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For sensor applications the linear effects of the initial temperature variation
are of main interest. Then, Equation (8.4-10) can be approximated

to the first order for all of the mechanical and thermal biasing fields by

where

are the thermoelastic constants.

4.2 Analysis of a Temperature Sensor

We now use the above equations for incremental vibrations superposed
on a thermomechanical bias to analyze [62] the temperature sensor in Figure
8.4-1. The reference configuration of the crystal plate in Figure 8.4-1 is
redrawn in Figure 8.4-3(a). The biasing deformation is due to a constrained
thermal expansion which is shown in Figure 8.4-3(b). The incremental
motion is the thickness-shear vibration shown in Figure 8.4-3(c).

Figure 8.4-3. Reference (a), initial (b), and present (c) configurations of the quartz plate.
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Consider plane-strain motions independent of  with and
The biasing fields are assumed to be small and are governed by the

linear theory of thermoelasticity. The relevant constitutive relations for
plane-strain deformations are

where, under the compact matrix notation, and are the initial

extensional stresses in the and directions, and and are the
corresponding initial strains. In Equation (8.4-13) we have denoted

The plate is assumed to be thin with We can then

solve for from and substitute the resulting expression into
to obtain the following one-dimensional constitutive relation

The relevant constitutive relation for the elastic layers is

The solution to the constrained thermal expansion problem of the structure
in Figure 8.4-1 is

Since the biasing deformations are uniform and the plate is long and
thin, for the incremental motion we neglect edge effects and consider
motions independent of We study thickness-shear vibration in the
direction with
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The isentropic modification of the effective elastic constants given by (8.4-
8) is a very small modification for quartz. Therefore in the following
example we will neglect the modification. The relevant stress components
for the incremental fields are found to be

where, under the compact matrix notation, and are the
third-order elastic constants and

As a special case, note that for an unconstrained plate we have, by setting E
= 0 in (8.4-19),

Since the third-order elastic constants are usually larger in value than the
second-order elastic constants, and are not necessarily small

compared to For rotated Y-cut quartz,
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and hence The equations of motion are

Equations are trivially satisfied. Equation takes the
following form

Consider the following odd thickness-shear modes which are excitable by a
thickness electric field

which satisfy the boundary conditions

Substitution of (8.4-24) into (8.4-23) yields the following ordinary
differential equation for u(t)

where

is the resonance frequency of the n-th odd thickness-shear mode of the
crystal plate when the biasing fields are not present. Letting

in Equation (8.4-26), where U is a constant, we obtain the resonance
frequency as

which implies the following frequency shift due to a temperature change

For a numerical example, consider an AT-cut quartz plate. The
temperature derivative of the relevant material constant   at 25°C is
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The thermal expansion coefficient of quartz is

For the plate thickness we choose h = 0.9696 mm. For thickness-shear
vibration without biasing deformations, the fundamental thickness-shear
frequency (n =1 in (8.4-27)) is We want to study effects of
the constraints on the thermally induced frequency shift.

Figure 8.4-4 shows the frequency shift versus temperature change for
different values of         ratio of the thermal expansion coefficients of the
crystal plate and the elastic layers. The frequency shift is linear in
temperature variation. This is ideal for a temperature sensor. This linearity
assumes a small temperature variation. The slopes of the straight lines in the
figure are related to the sensitivity of the sensor. It can be seen that the
sensitivity is not sensitive to

Figure 8.4-4. Frequency shift versus temperature change for different

Figure 8.4-5 shows the frequency shift versus temperature change for
different values of the ratio of extensional stiffness of the crystal plate and
the elastic layers, Again, the frequency shift is insensitive to the
stiffness ratio.
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Figure 8.4-5. Frequency shift versus temperature change for different

A close examination of the numerical procedure shows that the first term on
the right-hand side of (8.4-19), i.e., the dependence of the elastic constant

on temperature, is dominant. This term does not vary with the constraint.
Therefore the sensitivity of this particular sensor does not vary much when a
plate is in constraint or free thermal expansion.

5. VIBRATION SENSITIVITY OF A RESONATOR

Piezoelectric crystal resonators are key components of
telecommunication, timekeeping, and navigation equipment. A resonator is
a resonant device operating at a desired frequency. When a resonator is
mounted on objects under constant acceleration (missiles, satellites, etc.),
acceleration-induced inertial forces cause biasing deformations and hence
frequency shifts in the resonator. The acceleration sensitivity of a resonator
is defined as a vector When the resonator is under a constant
acceleration the sensitivity defines the acceleration perturbed frequency
by where is the unperturbed frequency.
Calculations of acceleration sensitivity and its minimization have been
among the main issues in resonator design for a long time. Acceleration
sensitivity can be calculated by the theory of small fields superposed on
finite biasing fields in an electroelastic body and the corresponding



270

perturbation theory. The research on acceleration sensitivity is very active,
with military requirements driving the need to advance from the
production technology available today to the or better in the near
future.

In certain applications, the acceleration is also time-dependent
(vibration). In the case of a time-harmonic acceleration with frequency
the acceleration can be written as where is a constant vector.

In this case, it is more appropriate to consider the vibration sensitivity.
When the frequency of the vibration is much lower than the operating
frequency of the resonator, that is, it has been assumed that the
acceleration sensitivity calculated from a constant acceleration analysis is
still applicable. The frequency of a resonator under a tune-dependent
acceleration is then approximately given by

This approach may be called a quasistatic analysis. Mathematically, since
the vibration induced biasing fields are time-dependent, the equations for the
incremental motion have time-dependent coefficients. To predict the
behavior of the solution of an equation with time-dependent coefficients, we
need a dynamic approach. In this case, the results can be more complicated
than with a quasistatic approach.

In this section, the problem of resonator vibration sensitivity is analyzed
directly from the equations for small fields superposed on time-dependent
biasing fields [64]. Consider a thin crystal plate as shown in Figure 8.5-1
(a), with a >> b.

Figure 8.5-1. The reference configuration (a), the biasing extensional deformation (b), and
the incremental thickness-shear deformation (c) of a thin crystal plate.



271

For plane-stain motions, the fields are independent of and
The two major surfaces of the plate are traction-free. The two ends of the
plate at move with prescribed extensional displacements
where A is a dimensionless number and is the vibration frequency. We
assume that the biasing fields are infinitesimal: hence A is a very small
number (A << 1). The plate is driven into extensional motions under the
prescribed end displacements (see Figure 8.5-1(b)). Since the plate is thin,

is taken to be approximately true throughout. The equation for
extensional motions takes the following form:

with boundary conditions

where and Once the extensional
displacement is found, the related thickness expansion or contraction due to
Poisson’s effect can be obtained from the plate stress relaxation condition as

Consider low frequency forcing with much lower than the resonance
frequency of the first extensional mode of the plate, i.e.,

Then the inertial term in (8.5-1) may be

neglected. The solution to (8.5-1) and (8.5-2) is

which produces the following spatially homogeneous, time-dependent
biasing strains:

Since the biasing deformations are uniform and the plate is assumed to be
thin, for the incremental motion the edge effects are neglected and motions
are assumed to be independent of For thickness-shear vibration in the
direction (see Figure 8.5-1(c)),

The relevant stress components are found to be
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where, under the compact matrix notation, and are the
third-order elastic constants. is a small dimensionless number
given by

Since the third-order elastic constants are usually larger in value than the
second-order elastic constants, and are not necessarily small
compared to For rotated Y-cut quartz,

and hence The equations of motion are

Equations are trivially satisfied. Equation takes the
following form

For odd thickness-shear modes that are excitable by a thickness electric
field, let

which satisfies the boundary conditions

Substituting (8.5-12) into (8.5-11) gives the following ordinary differential
equation for u(t):

where

is the resonant frequency of the n-th odd thickness-shear mode of the
plate when the biasing fields are not present. Equation (8.5-14) is the well-
known Mathieu equation.



273

Consider the case when the frequency of the biasing fields is much
lower than the operating frequency of the resonator, i.e., We seek
solutions to (8.5-14) in the following form

where and are dimensionless functions. They are slowly varying in
the following sense

Differentiating (8.5-16) with respect to time twice, substituting the
expressions for u and ü into (8.5-14), setting the sum of the coefficients of
the terms with and the sum of the coefficients of the terms with

to zero separately, we obtain the following two equations for
and

Under Equation (8.5-17), we neglect terms associated with the second
derivatives of and or the product of their first derivatives in (8.5-
18) and obtain the following approximate system of first-order equations:

Equation (8.5-19) shows that to the first order, is a constant and the
corresponding is found to be

where is an integration constant. Equation (8.5-20) shows that is
indeed slowly varying in the sense of (8.5-17) due to the smallness of
Within the first-order approximation

which is a frequency modulated signal. The modulated frequency may be
defined as
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For a more refined solution that shows the time dependence of and a
more refined expression for some second-order terms in (8.5-18) need to
be kept. The first-order solution shows that although both and are
slowly varying, is even slower than Therefore we drop but keep

(which was dropped in the first-order approximation) in and
obtain

From (8.5-23) we have

Equation (8.5-24) implies the following approximate expression of the
frequency

which is more refined than (8.5-22). Multiplying by gives

which can be written as

Integration of (8.5-27) yields

where is an integration constant. Solving (8.5-28) for we obtain

To the lowest order, we have, approximately

which is indeed much slower than Equations (8.5-25) and (8.5-30)
show that both the frequency and the amplitude of u(t) are modulated.
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As a numerical example, consider a Y-cut quartz resonator. For
geometric parameters we choose a = 14.25 mm and b = 0.9696 mm. The
biasing deformation is specified by A = 1. Then The above
parameters imply that for the extensional biasing deformation,
Hz. For the thickness-shear motion without biasing deformation, the
fundamental thickness-shear frequency (n = 1 in (8.5-15)) is
We choose We are considering a very small effect. The
above parameters are chosen to greatly exaggerate this small effect.
Therefore some of the parameters do not quite satisfy the assumptions that A

and The zero-, first-, and approximate
second-order solutions are summarized below:

where we have set and Equation is the zero-order
solution when the biasing field is not present, which is a pure sinusoidal
signal. Equation shows the first-order effect of the biasing field.
This is a frequency modulated signal as shown in Figure 8.5-2. This is the
same as the result from the quasistatic analysis.

Figure 8.5-2. First-order solution with frequency modulation.
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Equation              includes some second-order effects on the amplitude
modulation and is shown in Figure 8.5-3.

Figure 8.5-3. Second-order solution with frequency and amplitude modulation.
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Appendix 1

List of Notation

At present the IEEE Standard on Piezoelectricity [11] is concerned with
the linear theory of piezoelectricity only. For nonlinear electroelasticity
notation and terminology vary among researchers. The following are used in
this book:

Kronecker delta
Shifter
Permutation tensor

Reference position of a material point
Present position of a material point
Mechanical displacement vector

J – Jacobian
Deformation tensor
Finite strain tensor

Linear strain tensor

Velocity vector
Deformation rate tensor
Spin tensor

D/Dt – Material time derivative
Reference mass density

Present mass density
Free charge
Free charge density per unit present volume
Free charge density per unit reference volume

Surface free charge per unit present area

Surface free charge per unit reference area
Permittivity of free space
Electrostatic potential
Electric field
Electric polarization per unit present volume
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Electric polarization per unit mass
Electric displacement vector
Reference electric field vector

Reference electric polarization vector

Reference electric displacement vector

Electric body force per unit present volume

Electric body couple per unit present volume

Electric body power per unit present volume
Body force per unit mass

Cauchy stress tensor

Electrostatic stress tensor

Symmetric stress tensor in spatial, two-point, and

material form
Symmetric Maxwell stress tensor in spatial, two-point,

and material form

Total stress tensor in spatial, two-point, and material

form
Linear stress tensor

Mechanical surface traction per unit reference area

Mechanical surface traction per unit present area

Internal energy per unit mass
Free energy per unit mass
Total free energy per unit mass

Absolute temperature
Entropy per unit mass
Body heat source per unit mass
Present heat flux vector
Reference heat flux vector



Appendix 2

Electroelastic Material Constants

Material constants for a few common piezoelectrics are summarized
below. Numerical results given in this book are calculated from these
constants. It is convenient to have these constants all in one place.

Permittivity of free space

Permeability of free space

Boltzmann constant

Electronic charge

Polarized ceramics

The material matrices for PZT-5H are [65]
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where the superscript T in the piezoelectric matrix indicates transpose. For
PZT-5H, an equivalent set of material constants are [65]

When poling is along other directions, the material matrices can be obtained
by tensor transformations. For PZT-5H, when poling is along the axis, we
have

When poling is along the axis
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Material constants of a few other polarized ceramics are given in the
following tables [66]:
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Quartz

When referred to the crystal axes, the second-order material constants
for left-hand quartz have the following values [67]

Temperature derivatives of the elastic constants of quartz at 25 °C are [68]
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For quartz there are 31 nonzero third-order elastic constants. 14 are given
in the following table. These values, at 25 °C, and based on a least-squares
fit, are all in [69]

In addition, there are 17 relations among the third-order elastic constants of
quartz [70]
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For the fourth-order elastic constants there are 69 nonzero ones of which
23 are independent [71]

There are 46 relations [71]
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The fourth-order elastic constants are usually unknown. Some scattered
results are [71]

and [72]

AT-cut quartz is a special case of rotated Y-cut quartz
whose material constants are [4]
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Langasite

The second-order material constants of are [73]

The third-order material constants of at 20°C are given in
[73]. The third-order elastic constants (in are
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The third-order piezoelectric effect constants (in are

The third-order electrostriction constants (in are

The third-order dielectric permeability (in are

Lithium Niobate

The second-order material constants for lithium niobate are [74]
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The third-order material constants of lithium niobate are given in [75].
The third-order elastic constants (in are
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The third-order piezoelectric constants are

The third-order electrostirctive constants (compressed from

(in are
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The third-order dielectric constants (in are

Lithium Tantalate

The second-order material constants for lithium niobate are [74]
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Silicon

Silicon is of cubic symmetry m3m and is nonpiezoelectric. For silicon
we have [76]

The mobility of electrons and holes in silicon are

The diffusion constants can be determined from the Einstein relation

where is the absolute temperature. For the third-order elastic constants
there are twenty nonzero ones among which six are independent

and the other fourteen are determined from the following relations:




