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Preface

This book contains a comprehensive treatment of piezoelectric materials using
linear electroelastic theory, the symplectic model, and various special solution
methods. The volume summarizes the current state of practice and presents the
most recent research outcomes in piezoelectricity. Our hope in preparing this book
is to present a stimulating guide and then to attract interested readers and
researchers to a new field that continues to provide fascinating and technologically
important challenges. You will benefit from the authors’ thorough coverage of
general principles for each topic, followed by detailed mathematical derivations and
worked examples as well as tables and figures in appropriate positions.

The study of piezoelectricity was initiated by Jacques Curie and Pierre Curie in
1880. They found that certain crystalline materials generate an electric charge
proportional to a mechanical stress. Since then new theories and applications of the
field have been constantly advanced. These advances have resulted in a great many
publications including journal papers and monographs. Although many concepts
and theories have been included in earlier monographs, numerous new
developments in piezoelectricity over the last two decades have made it
increasingly necessary to collect significant information and to present a unified
treatment of these useful but scattered results. These results should be made
available to professional engineers, research scientists, workers and postgraduate
students in applied mechanics and material engineering.

The objective of this book is to fill this gap, so that readers can obtain a sound
knowledge of the solution methods for piezoelectric materials. This volume details
the development of solution methods for piezoelectric composites and is written for
researchers, postgraduate students, and professional engineers in the areas of solid
mechanics, physical science and engineering, applied mathematics, mechanical
engineering, and materials science. Little mathematical knowledge besides the
usual calculus is required, although conventional matrixes, vectors, and tensor
presentations are used throughout the book.

Chapter 1 provides a brief description of piezocomposites and the linear theory
of piezoelectric materials in order to establish notation and fundamental concepts
for reference in later chapters. Chapter 2 presents various solution methods for
piezoelectric composites which can be taken as a common source for subsequent
chapters. It includes the potential function method, Lekhnitskii formalism,
techniques of Fourier transformation, Trefftz finite element method, integral
equation approach, shear-lag model, and symplectic method. Chapter 3 deals with
problems of fibrous piezoelectric composites, beginning with a discussion of
piezoelectric fiber push-out and pull-out, and ending with a brief description of the
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solution for a piezoelectric composite with an elliptic fiber. Chapter 4 is concerned
with applications of Trefftz method to piezoelectric materials. Trefftz finite element
method, Trefftz boundary element method, and Trefftz boundary-collocation
method are presented. Chapter 5 describes some solutions of piezoelectric problems
using a symplectic approach. Chapter 6 presents Saint-Venant decay analysis of
piezoelectric materials by way of symplectic formulation and the state space
method. Chapter 7 reviews solutions for piezoelectric materials containing
penny-shaped cracks. Chapter 8 describes solution methods for functionally graded
piezoelectric materials.

I am indebted to a number of individuals in academic circles and organizations
who have contributed in different, but important, ways to the preparation of this
book. In particular, I wish to extend appreciation to my postgraduate students for
their assistance in preparing this book. Special thanks go to Ms. Jianbo Liu of
Higher Education Press for her commitment to the publication of this book. Finally,
we wish to acknowledge the individuals and organizations cited in the book for
permission to use their materials.

I would be grateful if readers would be so kind as to send reports of any
typographical and other errors, as well as their more general comments.

Qing-Hua Qin
Canberra, Australia
May 2012
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Notation

English symbols
a;, by reduced material constants defined in Eq. (1.26)
B; magnetic flux
¢ unknown coefficients in Eq. (4.9) and elastic stiffness constants in Chapter 3
cyu, ¢y elastic stiffness constants
d; piezoelectric charge constants
D; electric displacements
€k €jf piezoelectric constants
& piezomagnetic coefficient
E; electric field
fi mechanical body forces
Ji elastic compliances
gii piezoelectric voltage constants
H; magnetic field intensity
my; reduced material constants defined in Eq. (6.5)
qs surface charge
0 electric charge density
t; surface tractions

u,v,w  displacement in x, y, z directions, respectively

u; displacements
Greek symbols
o magnetoelectric coupling coefficient
4 = CysKi) + s
— o (Y - -
A4, =cs k), +|es ) forn=0,1,2,---, defined in Eq. (5.73)
A, = B, — A defined in Eq. (5.119)
& elastic strains
o temperature change
K dielectric constants
i magnetic permeability
oy stresses
v Poisson’s ratio
@ electric potential
v magnetic potential



Xiv Notation

Other symbols

0/ox partial derivative of a variable with respect to x

[] denotes a rectangular or a square matrix

{} denotes a column vector

[ denotes the inverse of a matrix

[ denotes the transpose of a matrix

(7) a bar over a variable represents the variable being prescribed or complex
conjugate

\Y% =0%/ox*+0%/0y*



Chapter 1 Introduction to Piezoelectricity

This chapter provides a basic introduction to piezoelectricity. It begins with a dis-
cussion of background and applications of piezoelectric materials. We then present
the linear theory of piezoelectricity, functionally graded piezoelectric materi-
als(FGPM), and fundamental knowledge of fibrous piezoelectric composites(FPC).

1.1 Background

Piezoelectric material is such that when it is subjected to a mechanical load, it gen-
erates an electric charge (see Fig. 1.1(a)). This effect is usually called the “piezo-
electric effect”. Conversely, when piezoelectric material is stressed electrically by a
voltage, its dimensions change (see Fig. 1.1(b)). This phenomenon is known as the
“inverse piezoelectric effect”. The direct piezoelectric effect was first discovered by
the brothers Pierre Curie and Jacques Curie more than a century ago [1]. They
found out that when a mechanical stress was applied to crystals such as tourmaline,
topaz, quartz, Rochelle salt and cane sugar, electrical charges appeared, and this
voltage was proportional to the stress.

\ / Mechanical

force

(a) (b)

Fig. 1.1 Electroelastic coupling in piezoelectricity.(a) Piezoelectric effect: voltage induced
by force. (b) Inverse piezoelectric effect: strain induced by voltage.

The Curies did not, however, predict that crystals exhibiting the direct piezo-
electric effect (electricity from applied stress) would also exhibit the inverse piezo-
electric effect (strain in response to applied electric field). One year later that prop-
erty was theoretically predicted on the basis of thermodynamic consideration by
Lippmann [2], who proposed that converse effects must exist for piezoelectricity,
pyroelectricity (see Fig. 1.2), etc. Subsequently, the inverse piezoelectric effect was
confirmed experimentally by Curies [3], who proceeded to obtain quantitative proof
of the complete reversibility of electromechanical deformations in piezoelectric
crystals. These events above can be viewed as the beginning of the history of piezo-
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electricity. Based on them, Woldemar Voigt [4] developed the first complete and
rigorous formulation of piezoelectricity in 1890. Since then several books on the
phenomenon and theory of piezoelectricity have been published. Among them are
the books by Cady [5], Tiersten [6], Parton and Kudryavtsev [7], Ikeda [8], Ro-
gacheva [9], Qin [10,11], and Qin and Yang [12]. The first [5] treated the physical
properties of piezoelectric crystals as well as their practical applications, the second
[6] dealt with the linear equations of vibrations in piezoelectric materials, and the
third and fourth [7,8] gave a more detailed description of the physical properties of
piezoelectricity. Rogacheva [9] presented general theories of piezoelectric shells.
Qin [10,11] discussed Green’s functions and fracture mechanics of piezoelectric
materials. Micromechanics of piezoelectricity were discussed in [12].

o =@
W/

Fig. 1.2 Illustration of pyroelectricity.

In general, the piezoelectric effect occurs only in nonconductive materials. Pie-
zoelectric materials can be divided into two main groups: crystals and ceramics.
The best known piezoelectric material in the crystal group is quartz (SiO,), the
trigonal crystallized silica which is known as one of the most common crystals on
the earth’s surface. In the ceramics group, a typical piezoelectric material is barium
titanate (BaTiO;), an oxide of barium and titanium.

It should be mentioned that an asymmetric arrangement of positive and negative
ions imparts permanent electric dipole behavior to crystals. In order to “activate”
the piezo properties of ceramics, a poling treatment is required. In that treatment the
piezo ceramic material is first heated and an intense electric field (> 2 000 V/mm) is
applied to it in the poling direction, forcing the ions to realign along this “poling”
axis. When the ceramic cools and the field is removed, the ions “remember” this
poling and the material now has a remanent polarization (which can be degraded by
exceeding the mechanical, thermal and electrical limits of the material). Subse-
quently, when a voltage is applied to the poled piezoelectric material, the ions in the
unit cells are shifted and, additionally, the domains change their degree of align-
ment. The result is a corresponding change of the dimensions (expansion, contrac-
tion) of the lead zirconate titanate (PZT) material. In the poling treatment, the Curie
temperature is the critical temperature at which the crystal structure changes from a
nonsymmetrical (piezoelectric) to a symmetrical (non-piezoelectric) form. Particu-
larly, when the temperature is above the Curie temperature, each perovskite crystal
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(perovskite is a calcium titanium oxide mineral species composed of calcium
titanate, with the chemical formula CaTiO;) in the fired ceramic element exhibits a
simple cubic symmetry with no dipole moment (Fig. 1.3(a)). At temperatures below
the Curie point, however, each crystal has tetragonal or rhombohedral symmetry
and a dipole moment (Fig. 1.3(b)).

QO Ba
@ Ti
Qo

(a) (b)

Fig. 1.3  Crystal structures with the Curie temperature.(a) Temperature above Curie temperature:
symmetric. (b) Temperature below Curie temperature: non-symmetric.

Although piezoelectricity was discovered in 1880 it remained a mere curiosity
until the 1940s. The property of certain crystals to exhibit electrical charges under
mechanical loading was of no practical use until very high input impedance ampli-
fiers enabled engineers to amplify their signals. In 1951, several Japanese compa-
nies and universities formed a “competitively cooperative” association, established
as the Barium Titanate Application Research Committee. This association set an
organizational precedent not only for successfully surmounting technical challenges
and manufacturing hurdles, but also for defining new market areas. Persistent ef-
forts in materials research created new piezoceramic families which were competi-
tive with Vernitron’s PZT. With these materials available, Japanese manufacturers
quickly developed several types of piezoelectric signal filters, which addressed
needs arising from television, radio, and communications equipment markets; and
piezoelectric igniters for natural gas/butane appliances. As time progressed, the
markets for these products continued to grow, and other similarly lucrative ones
were found. Most notable were audio buzzers (smoke alarms), air ultrasonic trans-
ducers (television remote controls and intrusion alarms) and devices employing
surface acoustic wave effects to achieve high frequency signal filtering.

The commercial success of the Japanese efforts attracted the attention of indus-
try in many other countries and spurred new efforts to develop successful piezo-
electric products. There has been a large increase in relevant publications in China,
India, Russia and the USA. Since the piezoelectric effect provides the ability to use
these materials as both sensors and actuators, it has found relevant applications re-
quiring accurate measurement and recording of dynamic changes in mechanical
variables such as pressure, force and acceleration. The list of applications continues
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to grow and now includes [13] (a) acrospace: model testing, wind tunnel and shock
tube instrumentation, landing gear hydraulics, rocketry, structures, ejection systems
and cutting force research; (b) ballistics: combustion, explosion, detonation and
sound pressure distribution; (c) biomechanics: multi-component force measurement
for orthopedic gait and posturography, sports, ergonomics, neurology, cardiology
and rehabilitation; (d) engine testing: combustion, gas exchange and injection, in-
dicator diagrams and dynamic stressing; (€) engineering: materials evaluation, con-
trol systems, reactors, building structures, ship structures, auto chassis structural
testing, shock and vibration isolation and dynamic response testing; (f) indus-
trial/manufacturing: machining systems, metal cutting, press and crimp force,
automation of force-based assembly operations and machine health monitoring; and
(g) OEMs (original equipment manufacturer): transportation systems, plastic mold-
ing, rockets, machine tools, compressors, engines, flexible structures, oil/gas drill-
ing and shock/vibration testers.

Judging by the increase in worldwide activity focused on using a large number
of very precise piezoelectric sensors and actuators for active control in communica-
tions, navigation and packaging systems, and from the successes encountered in the
last sixty years, it is expected that piezoelectricity will enjoy a continuing role in
both fundamental and technical applications in the future.

In this chapter, the linearized piezoelectric formulations described in [10,11,14],
the concept of FGPM and fiber piezocomposites, which will be needed in later
chapters, are briefly summarized. The basic equations of linear electroelasticity are
first reviewed, followed by a brief discussion of FGPM and FPC, which have im-
portant applications in practical engineering. Then some issues in interface and
fracture mechanics in piezoelectricity are outlined.

1.2 Linear theory of piezoelectricity
1.2.1 Basic equations in rectangular coordinate system

This section recalls briefly the three-dimensional formulation of linear piezoelec-
tricity that appeared in [11,14]. Here, a three-dimensional Cartesian coordinate sys-
tem is adopted where the position vector is denoted by x (or x;). In this book, both
conventional indicial notation x; and traditional Cartesian notation (x, y, z) are util-
ized. In the case of indicial notation we invoke the summation convention over re-
peated Latin indices, which can be of two types with different ranges: i, j, ~=1,2,3
for lower-case letters and M, N=1,2,3,4 for upper-case letters. Moreover, vectors,
tensors and their matrix representations are denoted by bold-face letters. The
three-dimensional constitutive equations for linear piezoelectricity can be derived
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by considering an electric enthalpy function H defined as [11]
1 |
H(g,E) = EC;‘/E'klgi/‘c"kl —5 % EE; e, 5,E, (1.1)

where the strain tensor € (¢&;) and the electric field vector E (E;) are related to

the displacement u and the electric potential ¢ by
1
&; :E(ui,j—i-uj’i), E =-¢, (1.2)

in which a comma followed by arguments denotes partial differentiation with re-
spect to the arguments, cifk,, € and K; are the elastic, piezoelectric, and dielec-

tric constants, respectively. The superscript £ in cijE.,d indicates that the elastic con-
stants are measured at a constant electric field. The superscript ¢ in K; indicates

that the dielectric constants are measured at a constant strain. To simplify subse-
quent writing, we shall omit the superscripts £ and ¢ in the remaining part of this
book. The material constants in Eq. (1.1) can be reduced by the following consid-
eration. According to the definition (1.2) we may write &=g;. It follows that

¢ ijmk (13)

ijkm =¢

Further, fromo; = 0; we have

Cijtm = € jikm > Cij = Ci (1.4)

In view of these properties, it is useful to introduce the so-called two-index no-
tation or compressed matrix notation [10]. Two-index notation consists of replacing
ij or km by p or q, i.e. Cjw=Cpg> Cim=€ig» &~ &, When i=j, and 27~ g, when i#,
where i, j, k, m take the values 1-3, and p, g assume the values 1-6 according to the
following replacements 11 - 1,22 —> 2,33 — 3,23 0r32—> 4,13 0or31 > 5, 12 or
21— 6.

Constitutive relations are obtained from the electric enthalpy function (1.1) as

0H (¢,E)
o; = “on. CirEn ~ i Ly
8H(j£, E) (15)
D, = TR =eyuéy t Ky Ey

1
where o is the stress tensor and D; the electric displacement vector. Making use
of two-index notation mentioned above, Egs. (1.5) are reduced to

0, =Cpéy ik, D, =e e, + K, Ey (1.6)
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in which

: :{ &; (when i = ) (w7

2g;  (wheni= j)

In addition to the constitutive relation (1.5) above, three other forms of constitu-
tive representation are commonly used in the linear theory of piezoelectricity to
describe the coupled interaction between elastic and electric variables [11]. Each
type has its own different set of independent variables and corresponds to a differ-
ent electric enthalpy function, as listed in Table 1.1. It should be pointed out that an
alternative derivation of formulae is merely a transformation from one type of rela-
tion to another. Some relationships between various constants occurring in the four
types are as follows:

=", e=cfd, k¥ =k -d"c¢’d, P =(cF)"-dx”)'d",
g=dx)", ®=cf -cfdx*)'d"c?, h=-cfdx)", (1.8)
;\’o'z (Ko')—l’ }vg — (Kg)—l

Table 1.1  Four types of fundamental electroelastic relations.

Independent variables Constitutive relations Electric enthalpy functional
E, T
c=c¢-¢ E 1 1
e E Hy == ¢’ — xE*—ecE
D=ec+k°E 2 2
D T
=cPe-n"D
gD emeE H,=H,+ED
E =—he +B°D
e=ffo+d"E
o.E H,=H,—-o¢g
D=do +«k°E
e=tP6+g"D
o, D & H;=H,+ED-oc¢e
E=-gc+B°D

Having defined constitutive relations, the related divergence equations and
boundary conditions can be derived by considering the generalized variational prin-
ciple [10]:

SﬁQ[H(a, E)- fu, — 04ldQ2 + j s Tou.ds + jrq 7.0¢ds =0 (1.9)

where 9§ is the variational symbol, f; the body force vector, O the electric charge
density, and (2 is the solution domain. /; and / are the boundaries on which the
surface traction and surface charge are prescribed, respectively. 7 and g, are the

prescribed surface traction and surface charge, respectively.
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The variational equation (1.9) provides the following results:

o,,+f,=0, D, ,+0=0  (in€2) (1.10)

oun; zt_i (onl), Dim=-q,

(onTl,) (1.11)

and the constitutive equations (1.5), where #; is the unit outward normal vector to /-
Equations (1.10) are the elastic equilibrium equations and Gauss’ law of electro-
statics, respectively, Egs. (1.11) are boundary conditions and Egs. (1.5) the constitu-
tive equations.

The boundary value problems defined by Egs. (1.2), (1.5), (1.10), and (1.11)
should be completed by the following essential boundary conditions:

w=u, (onl,), ¢=¢ (onl},) (1.12)

where u; and ¢ are prescribed displacements and electrical potential, and 7 and
I are the parts of 7" (=7,U7,=7",Ul;) on which the displacement and

electric potential are prescribed, respectively.
Substitution of Eq. (1.2) into Eq. (1.6), and later into Eq. (1.10), results in
1 1
Crily +5(Cl ey (€3 + ey g3 +E(Cn =)y )

+eyqtty 33 (€31 +€5)P 15+ f1 =0 (1.13)

1 1
Cilly 2 +5(611 )y gy + (05 + s 03 +5(C11 =y,
eyt 33+ (€3 +€5)Pps + f, =0 (1.14)
Caqlty 11+ (Cag +C3) Uy 31 FUy 30) +Cuglly 0y +Ca3ls 55

tes (P +Pxn)tendss +/5=0 (1.15)

€5 Uy gy +uty50) + (€5 + ey ) (U 51 +y 3) + 5355
Ky (@1 +P0) —K33p33 +O =0 (1.16)

for transversely isotropic materials (class Cg,=6mm) with x; as the poling direction
and the x;-x, plane as the isotropic plane.

1.2.2 Boundary conditions

In electroelasticity theory, mechanical boundary conditions are formulated just as in
classical elasticity theory. The electric boundary conditions are, however, still de-
bated. The first attempt to define the electric boundary conditions over crack faces
was by Parton [15]. He assumed that although the magnitude of the normal electri-
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cal displacement component at the crack face is very small, the electrical displace-
ment is continuous across the crack faces. He used the following electric boundary
conditions:

=9, D =D, (1.17)

Later, Hao and Shen [16] improved on the above assumption by considering the
electric permeability of air in the crack gap. In addition to Eq. (1.17), they presented
an equation for the boundary condition at crack faces:

D, =D,,  Dy(u,—u,)=-K,(4"~¢") (1.18)

where «;, is the permittivity of air. However, Eq. (1.18) has for a long time remained
disregarded due to its complex mathematical treatment.

As pointed out by Suo et al. [17], the above assumption is not physically realis-
tic as there will clearly be a potential drop across the lower capacitance crack. This
is particularly true for those piezoelectric ceramics with permittivity 10° times
higher than the environment (e.g. air or vacuum). For this reason, Deeg [18] pro-
posed another set of electric boundary conditions over crack faces:

D =D; =0 (1.19)

n

Equation (1.19) are derived from the constitutive equation D,= x,F,. This is
equivalent to having crack surfaces free of surface charge as the electrical boundary
condition, and thus the electric displacement vanishes in the environment. We adopt
Eq. (1.19) in most of the subsequent chapters because of its much simpler mathe-
matical treatment and the fact that the dielectric constants of a piezoelectric material
are much larger than those of the environment (generally between 1 000 and 3 500
times greater).

1.3 Functionally graded piezoelectric materials

Functionally graded materials (FGMSs) are composite materials formed of two or
more constituent phases with a continuously variable composition. This feature can
eliminate the stress discontinuity that is often encountered in laminated composites
and thus can avoid delamination-related problems. Traditionally, homogeneous
laminas with different properties are bonded together to form laminated composite
structures for engineering applications. The discontinuity of material properties
across adjoining layers in a laminated composite can, however, result in crack ini-
tiation or delamination at the interfaces. To mitigate those disadvantages of lami-
nated composite structures, a new class of piezoelectric materials called FGPMs has
recently been developed. The FGPM is a kind of piezoelectric material intentionally
designed to possess desirable properties for specific applications, and featuring ma-
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terial composition and properties varying continuously in desired direction(s).
Smart structures or elements made of FGPM are thus superior to conventional sen-
sors, and actuators are often made of uni-morph, bi-morph and multimorph materi-
als. This is because, for piezoelectric laminates with layered materials having ho-
mogeneous properties, large bending displacements, high stress concentrations,
creep at high temperature and failure from interfacial bonding frequently occur at
the layer interfaces under mechanical or electric loading. These effects can lead to
reduced reliability and lifespan.

1.3.1 Types of gradation

The mechanical, electrical, magnetic, and thermal properties of FGMs are usually
assumed to have the same functions of certain space coordinates. Three com-
monly-used graded forms are.

(1) Exponential material gradation.

All the material constants including elastic constants, piezoelectric parameters,
dielectric constants, thermal expansion coefficients, and material density follow the
exponential law:

M, = Mgeﬂ” (1.20)

where M;; represents material constants such as ¢y, or f;;, M 3 are the corresponding

values at the plane x=0, and £ denotes a material graded parameter.

(2) Quadratic material gradation.

All material constants are assumed to have the same power-law dependence on
the coordinate x:

M =M1+ Bx)" (1.21)

where 7 is the inhomogeneous constant determined empirically.

(3) Trigonometric material gradation.

For some special applications, the material constants of FGMs may follow a
trigonometric law as [19]

M, = M](a, cos BX, +a, sin fX,)" (1.22)

where a,, a,, fand n are four material constants.

1.3.2 Basic equations for two-dimensional FGPMs

The field equations of electroelasticity reduce to two-dimensional form in two spe-
cial cases which are of some interest.
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(1) Plane strain.

Consider a transversely isotropic FGPM. In this case, according to Eq. (1.6), the
x-y plane is the isotropic plane, and one can employ either the x-z or y-z plane for
the study of plane electromechanical phenomena. Choosing the former, the plane
strain conditions require that

&y =€, =6, = Ey =0 (1.23)
By substitution of Eq. (1.23) into Eq. (1.6), we have
O, _Cll ‘13 0 0 € 1 &y
o, G O3 0 0 €33 &,
sz = O 0 055 615 O }/xz (1 24)
D, 0 0 es —kj 0 -E.
D, 181 633 0 0 K33 | [—E,
or inversely
&y _“11 a3 0 0 by, (o X
€, a3 ds; 0 0 by, o,
Ve t=| 0 0 ass bys 0 o, (1.25)
-E. 0 0 bs -0y 0 D,
-k, by by 0 0 —0y || D,

where a;;, b; and Jj; are the reduced material constants. They are related to the elas-
tic compliance tensor f;, the piezoelectric tensor g;;, and the dielectric impermeabil-
ity tensor £, by the following relations [20]:

1 JSinfi 13
a“:f“_i’ a; = fi3— 20 ayy = [ ==, ass = fss, bis = gis,
Ju Ju Ju (1.26)
b, =g &/ by=g _ & S, =B 6 _ﬁ}_g_fl
31 = &31 > D33 =833 > O =P 033 = P
i i i

with f;, g; and f3; being defined in Table 1.1. In the constitutive equations (1.39) and
(1.40), —E; is used instead of E; because it will allow the construction of a symmetric
generalized linear response matrix which will prove to be advantageous. When the
constitutive equation (1.24) is substituted into Eq. (1.10) we obtain

(Cl Uy 3ty 3+ 305 ),1 + (Css [t +uy 3]+ €59, ),3 +£/=0 (1.27)

(Css [, +uy 31+ e50, ),1 + (013”1,1 + 33133 + €330 ),3 +/f;=0 (1.28)
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(els[us,l 3] = K8 ),, + (eslul,l +eglly 3 — K3y )’3 +0=0 (1.29)
in which the material constants Cy» €5 K;» 4, by, and & are functions of coor-
dinates. When the Airy stress function approach is used to solve this equation [21],
the solution can be divided into two major parts: a homogeneous solution part and a
particular solution part. For the homogeneous solution part, the required strain
compatibility equation and the Airy function U are, respectively, expressed by

E133+ &390~ V1303 =0 (1.30)

0,=Uy, o0.=U,, o,=-Uj, (1.31)

z Xz

For most applications of FGPMs, the material properties are designed to vary con-
tinuously in one direction only, say, the z-direction. Substituting Eqgs. (1.2), (1.24),
(1.25), and (1.31) into Egs. (1.30) and (1.29), we have [21]

(bSIU,33 )’3 + (b33U,11 )‘3 —bsU,i5 = (533¢,3 )’3 +0,91 (1.32)
(allU,33 +aU ),33 +(“55U,113 )’3 +aU 53 +auU
= (b13¢,3 ),33 +D330)13 _(b15¢,ll)’3 (1.33)

(2) Anti-plane deformation.
In this case only the out-of-plane elastic displacement u3 and the in-plane elec-
tric fields are non-zero, i.e.,

=v=0, w=w(x, y), (134)
E =E(x,y), E =E/(x,y), E =0 )
Thus the constitutive equation (1.6) is simplified to
o, Css 0 0 €5 Vs
Oz _ 0 Css €s 0 Yz (1.35)
D, 0 e5 —Ky 0 ||-E,
D, e 0 0 &, ||-E,
The governing equations (1.10) become
(044”3,1 +e50, ) T (C44”3,2 +e50, ) ,+/3=0
’ ’ (1.36)

(815“3,1 — K19, ),1 +(615“3,2 —K19, ),2 +0=0

1.4 Fibrous piezoelectric composites

Due to the coupling effect between mechanical and electrical fields, piezoelectric
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materials have been widely used in smart structures and other applications such as
electromechanical sensors, ultrasonic transducers, hydrophones, micropositioning
devices, buzzers, accelerometers, and structural actuators [10]. However, when
serving as sensors and actuators, single-phase piezoelectric ceramic materials are
often unable to meet the increased demands from modern industry for high me-
chanical performance and special structural functions, because of their intrinsic
brittleness and the existence of microcracks and defects in most piezoelectric ce-
ramic materials. To overcome these drawbacks, piezoelectric material is usually
embedded in non-piezoelectric materials in the form of fiber-matrix composites
[22]. A composite configuration for structural actuation with significant advantages
over conventional piezoelectric actuators has been conceived, and the recent deve-
lopment of piezoelectric ceramic fibers <100 pm in diameter has enabled this con-
cept to be realized. Nelson [22] has predicted that FPCs will find uses in contour
control, non-destructive testing, vibration suppression, and noise control. The pos-
sibility of computer control using closed loop systems has led to FPC emerging as
favored candidates for “smart” materials and structures. The first FPC were devel-
oped in the Active Materials and Structures Laboratory at the Massachusetts Insti-
tute of Technology and patented in 2000 [23]. Typically, an FPC comprises a
monolayer of uniaxially aligned piezoelectric fibers embedded in a polymer matrix
between two interdigitated surface electrodes through which the driving voltage is
supplied. Since their initial development, significant advances have been made in
many areas including fiber manufacture, matrix materials and design, electrode
design, manufacturing techniques, and composite modeling.

At this time, various FPCs are used in practical engineering including:

(1) 1-3 piezo fiber composites.

The 1-3 piezoelectric composite is the classification given in Newnham’s con-
nectivity theory [24] for the identification of composites containing piezoelectric
ceramic rods in a polymer matrix. In Newnham’s connectivity theory there are ten
important connectivity patterns in diphasic solids: 0-0, 1-0, 2-0, 3-0, 1-1, 2-1, 3-1,
2-2, 3-2, and 3-3. A 3-1 (or 1-3) connectivity pattern, for example, has one phase
self-connected in three-dimensional layers, the other self-connected in
one-dimensional chains. The 1-3 piezo fiber composites are produced with the aim
of obtaining a combination of piezoelectric and mechanical properties which are
useful in electromechanically transducing applications. In the 1-3 connectivity, par-
allel fibers are embedded in a matrix in the longitudinal (z) direction. Work on pie-
zoelectric materials in transducers highlights the fact that piezoelectric composites
have more desired properties than single phase piezoelectric materials. For example,
a composite with PZT volume fraction of 40% can have a value of ds;, almost the
same as the PZT ceramic itself.

Various fabrication processes exist for different configurations and connectivi-
ties of FPCs. In general, the fabrication processes include poling of the PZT fi-
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bers/rods; the fibers are arranged in a mold, infiltrated with epoxy, cured, and diced
to produce cube-shaped blocks; the composite can be poled at the very last stage or
the fibers can be prepoled before embedding in the matrix. A typical method of fab-
ricating composites presented in [25] is casting the polymer around the aligned PZT
rods, the “lost wax” method, the “dice-and-fill” technique and a lamination process.
PZT fibers may be produced by sol-gel processing, the relic process, or the viscous
suspension spinning process [26]. Several processes using different organic solu-
tions were prepared in terms of the stiffness of the fibers and compaction [27]. It
was found that when a certain amount of specified solutions was added, the flexi-
bility and compaction of the resulting fibers were optimized.

The material parameters for composites, such as compliance, stiffness, permi-
ttivity and piezoelectric constants, are obviously dependent on the arrangement of
the matrix and fibers in the composite. Calculation of effective composite parame-
ters as a function of volume fraction is based on the rules of mixture [28]. The cal-
culation is based on the following assumptions: (a) Composite strain in the longitu-
dinal direction (z) is equal to the fiber strain and also to the matrix in the same di-
rection, and longitudinal composite stress is the weighted sum of the matrix stress
and the fiber stress. (b) Lateral composite stress is equal to lateral fiber stress and
also to the matrix stress, and lateral composite strain is the weighted sum of the
corresponding matrix and fiber strains. (c) Longitudinal composite electric field is
the same as that of matrix and also that of fiber. There is no lateral composite elec-
tric field. (d) Longitudinal composite electric displacement is the weighted sum of
matrix and fiber electric displacement. It should be mentioned that most piezoelec-
tric 1-3 fiber composite micromechanics models were initially developed for ultra-
sonic transducer applications, but their methods can be applied to applications of
piezoelectric fiber composites in other smart structures. A review of the 1-3 piezo-
electric composite in high-frequency (0.5 MHz) applications was given in [29].

(2) FPC with interdigitated electrodes (IDE).

The 1-3 piezo composites have already demonstrated substantial advantages
over monolithic piezoelectric ceramics, but, as indicated in [30], one major draw-
back remains from the previous work in 1-3 piezo composites—low actuation per-
formance. The high dielectric mismatch between fiber and matrix (approximately
three orders of magnitude in size) seriously reduces the electric field available to the
fiber material for actuation. Furthermore, high field concentrations in the poly-
mer-based matrix often cause dielectric breakdown prior to poling. These problems
can be addressed by introducing IDE technology into FPCs [31]. In 1993, Hagood
et al. [32] developed something similar to a circuit layer with electrodes, called IDE,
and placed them on the top and bottom surfaces of the piezoceramic layer. This
allowed the electric field to be applied in the transverse direction of a piezoceramic,
thus maximizing the transverse actuation. Later Bent and Hagood [31] introduced
IDE to FPCs. As shown in Fig. 1.4 there are three main constituents of an FPC-IDE:
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piezoelectric fibers, IDE and a polymer matrix. The fibers are typically circular in
cross section and made by an extrusion process, but can also be fabricated using
molding techniques or by slicing monolithic piezoelectric sheets to obtain fibers of
rectangular cross section. The metallic electrodes are normally made using photo-
lithography. The polymeric matrix material is perhaps the constituent with the wid-
est range of acceptable materials. Ideally, the matrix will have outstanding me-
chanical, and dielectric properties and will bond to the fibers in a consistent manner.

Fig. 1.4 FPC with IDE.

In the FPC-IDE shown in Fig. 1.4, fibers are aligned in plane, with orientation
along the z-axis, while matrix material provides the load transfer and distribution
along the fibers. The electrode patterns have fingers of alternating polarity, and ex-
act mirror images on the top and bottom faces. Poling is predominantly along the
z-axis direction. Application of an electric field produces primary actuation along
the fibers and transverse actuation perpendicular to the fibers.

To model and investigate the improvement in the effective properties of FPC
with IDE, Bent and Hagood [31] used an analytical model based on the uniform
fields model (UFM) and a finite element model, both of which were formulated for
a representative volume element (RVE). The UFM is a generalization of the
well-known “rule of mixture” which uses parallel and series (Voight and Reuss)
additions to model the effective properties of two-phase materials. The FPC consists
of PZT fibers aligned within a graphite/epoxy lamina and is sandwiched between
the IDE. As the name implies, the UFM assumes that the fields within the structure
are uniform. The rest of the formulation is based on rules analogous to the rule of
mixture for combining two different phases/materials in various configurations.
This led to the development of combination models for more complex arrangements
of the two phases. The UFM method, in fact, violates compatibility and equilibrium
at some material interfaces. However, the large material mismatches make this
method particularly well suited to modeling these types of composites [31].
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(3) Hollow tube FPC.

Although FPC-IDE based on solid cross-section piezoelectric fibers are very
useful for both longitudinal and transverse activation, they require high voltages
and are constrained to nonconductive matrix materials. Particularly, they require the
electric field to pass through the composite matrix. Due to the placement of the
electrode on the matrix surface, electric field losses are significant, requiring high
voltages for actuation. Moreover, the FPC-IDE limit the matrix to electrically non-
conductive materials, which is particularly a problem in large structure and air ve-
hicle applications where metals and carbon fiber composites are almost exclusively
utilized in construction. To overcome these drawbacks, a new type of FPC has been
fabricated using extruded hollow cross-section fibers [33]. Use of FPCs with hollow
cross-section piezoelectric fibers can lower operating voltages and broaden the
choice of possible matrix materials. In the hollow tube FPC, hollow fibers are indi-
vidually electroded on both the inside and outside surfaces [27]. They are activated
by an electric field applied directly across the walls of the fiber, generating longitu-
dinal strain due to piezoelectric d3; mode. Even though the longitudinal strain is
decreased by approximately half by using d5; versus the d3; mode used in solid fiber
FPCs, the required voltage can be decreased by a factor of 10 or more since the
electric field is applied only across the wall of the fiber instead of through the ma-
trix, thereby eliminating field losses [34].

Several existing processes, based on molding or extrusion techniques, are
available for fabricating hollow piezoelectric fibers [27]. Since the fibers have small
diameters, on the order of 0.9 mm, a new manufacturing technique has been im-
plemented called microfabrication by coextrusion (MFCX) [33]. MFCX is capable
of inexpensively producing long ceramic forms (>100 mm long) with complex
cross-section and small features. Manufacturing of fibers with MFCX consists of
three major steps, formation of feed rod, extrusion, and burnout/sintering [35]. As
described in [35], the feed rod formation process has two main steps. The first is to
mix piezoelectric powder with thermoplastic polymers and to separately mix the
same polymers with carbon black powder so that the two mixes have nearly the
same viscosity. The piezoelectric mix is then formed into a round, thick-walled tube,
while part of the carbon black mix is formed into a round cylinder with diameter
exactly the same as the inside of the piezoelectric tube. The remainder of the carbon
black mix is formed into a square cross-section block with the same dimension as
the inlet to the extrusion die, while a circular hole is bored into the center of the
square, with exactly the same diameter as the outside of the piezo tube. These three
components are then assembled, with the carbon black cylinder inside the hollow
piezo tube, which in turn is placed inside the square block. The extrusion process
begins when the assembled feed rod is heated and inserted into the extrusion die,
which turns to reducing the cross-section of the feeder rod by a factor of 25 or 40,
depending on the desired final tube dimensions. The resulting “green” fibers are
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then heated to and held at 1 300 ‘C for 48 hours during the burnout and sintering
step. This causes the carbon to be burned off from the exterior and interior of the
tube and causes the thermoplastics to be removed from the piezoceramic material,
which produces a stronger, denser ceramic and is accompanied typically by a 30%
reduction in the cross-section of the finished hollow tube.

To assess the strain response of a piezo tube FPC under an electric field, Zhang
et al. [36] presented a simple model detailed as follows: For a tubular structure, the
cylindrical polar coordinate system (r, 6, z) as shown in Fig. 1.5 is used. The prob-
lem is assumed to be axi-symmetric and all fields are independent of polar angle &
and the displacement u,=0. To simplify the analysis it is further assumed that the
coupling terms containing both 7 and z in the displacements field can be neglected
and u,= u(r), u,=u,(z). Under these assumptions, the non-zero strain components
are

r rro ‘919 =1u, /I", & = uz,z (1 37)

Fig. 1.5 Schematic drawing of a piezoelectric tube.

Making use of the constitutive equation (1.6), we have

O, =&, + 0y + . —enk,,
Oy =C&, +01&y + 08, — ey E., (1.38)
0. = e, topgy +08. — ey E,

where FE, is the applied electric field on the tube wall along the 7 direction. It is ob-
vious that the electric field is not a constant inside the tube wall, and with a total
voltage V applied on the tube, E, =V /[rIn(R,/7,)] (r, <r < R,). In writing Eq.
(1.38), Zhang et al. [36] also made the assumption that the tube is elastically iso-
tropic to simplify the analysis. Making use of the equilibrium equation (1.10) and
Egs. (1.38), we can derive the basic elastic equations for this problem
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1+v)1-2
(l[ru,] j = —(leuE,)M, u, . =constant  (1.39)
r ), r 1-v ’

where ay; is defined in Eq. (1.26), and v is the Poisson’s ratio. The solutions to Eq.
(1.39) are then

u :ar+é+ e31V all(1+0)(1_20)
r \Un(Ry /7)) l-v

, u, =cz (1.40)

z

in which a, b, and c are the integration constants which can be determined from the
boundary conditions: ¢, =d; E,, where E, is the average electric field in the

tube and E, =2V /[(R, +1,)In(R,/%))]; atr =R, and ry there is no external stress

on the tube wall, which implies ;=0 at these two boundaries. Substituting Eq. (1.40)
into Eq. (1.38) and using the boundary conditions, we obtain

:Em%’ b:‘Ro’”oEmMa c=dyE, (141)

2(1-v) 2(1-v)

All the strain components for the tube can be obtained from Egs. (1.40) and (1.41).
Making use of the solution, Zhang et al. [36] analyzed a typical hollow tube FPC
and found that the effective piezoelectric constant in the radial direction of a tube
could be changed from positive to negative by adjusting the ratio Ry /ry for piezo-
electric materials. Therefore, it is possible to make a piezoelectric transducer with
all the effective piezoelectric tensile constants having the same sign.
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Chapter 2 Solution Methods

In this chapter, the solution methods commonly used in analyzing the mechanical
behavior of piezoelectric material are reviewed. The chapter begins with a summary
of the potential function method in piezoelectricity, followed by a discussion of
other methods including Lekhnitskii formalism, techniques of Fourier transformation,
the Trefftz finite element method(FEM), the Fredholm integral equation and Abel
equation, the shear-lag model, the symplectic method, and the state space approach.

2.1 Potential function method

Potential function formulation is well known for solving the system of equations in
both the classical theory of elasticity and piezoelectricity. In this section, the poten-
tial function method for boundary value problems of three-dimensional (3D) piezo-
electricity is briefly summarized [1,2]. For a 3D piezoelectric problem of hexagonal
solids of class 6mm, the four unknowns u;, u,, u3, ¢ are to be expressed in terms of
four potential functions £(x|, xp, x3), ¥(x1, X2, X3), @ (X1, X2, X3), and O(xy, Xz, x3) in
such a way that [1]

w =81+ Uy == 21> u; =k¢ s+, P=0; (2.1

where k is an unknown coefficient. Then, consider the problem of the piezoelectri-
city of a hexagonal body of class 6mm subjected to electroelastic loadings. The con-
stitutive equations for the electroelastic field are expressed as

c=ce—e'E, D =eg+xE 2.2)

where the superscript represents the transpose of a matrix, and

Oy ‘i G O3 0 0 0 €1
O Cp  Cn Oy 0 0 &
c=1%% | 3 0 0 YR
O |’ 0 0 0 ¢ O 0 ’ &’
o5, 0 0 0 0 ¢y 0 &y
o | 0 0 0 0 0 (¢, —¢12)/2] &
0 0 0 0 e O K, 0 0

e=[0 0 0 e O 0|, k=0 x, O]

e e ey 0 0 0 0 0 &y
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Dl El
D={D,}, E={E
D3 E3

Making use of Egs. (1.2) and (2.2) and then substituting Eq. (2.1) into the
governing differential equations (1.10), in which all body forces and free charges
are assumed to be zero, the following four equations result:

B 2 2 2
c,\V+o,— Cia+Cuy)— e, te:)—
11 152 (o5 44)822 (€3 15)822
72 2 2 ¢
(e3+@)Vtkey; —  cuVtey— gsVtey— w;=0 (2.3)
0z 0z 0z
2 2 2 &
0
(e +a3)Vtkey—  esVtey—  —k\V—ky—
L 0z 0z 0z
2
A;(+§a—f=0 (2.4)
Oz
where
o* o
:§+8y_2’ oy =keyy +(L+k)ey,, o, =(+k)cy,,
2c
oy =(1+k)es, F=—4
ST

This reduces to the formulation in [2] when £ =0. In the following, we review
briefly the results presented in [2]. To obtain the solution to Eq. (2.3), Wang and
Agrawal [2] assumed that the solution of &, @, and @had the following form:

< A
@ :j:_[: f: cos(ax)cos(Sy)e™ dadf (2.5)

Substituting Eq. (2.5) into Eq. (2.3), we obtain

2 2 2 2
-y tam (c13 +¢q)m (&5, +e5)m A
2 2 2 2 2 2
—(c3 +ay)y” +hkeyym —Cuyy” +Cy3m —esy +epm B;=0 (2.6)
2 2 2 2 2 2
—(e3 +a3)y” +keyzm —e;sy” tepm K,y —Kym ¢

where y* =a® + 8% . For simplicity, define

2
m? =1 2.7
7
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Substituting Eq. (2.7) into Eq. (2.6) and setting the determinant of the matrix to
zero, we obtain

Ry’ + Ryp> + Rpu+R, =0 (2.8)
where
Ry = —cyy(€5; +e53533),
Ry = =2ej5e530)5 + 33 K33 — 25363, (€3 +Cyy)
+Cpzefs + €185 = 20,3044k + 20536565,
+Cy3Cagky ) — ClyKyy +€31C3 (2.9)
Ry = 2€5e55¢;, + Gy + 26565 — iy Ky
+26;5€51C13 — Cay€is = O Cagkyy +203C00K 1
Ry = ¢;,Chykyy + ;1875
The three roots of Eq. (2.8) are denoted by 1 (j=1,2,3). Corresponding to the
three roots, the roots of Eq. (2.6) can be written as

v 4 4
+-L o+ , ot
VH N VA
It is obvious that the solution to Eq. (2.6) is not unique. To solve this equation,

Wang and Agrawal took A=1 and solved the resulting equation. After a series of
mathematical operations the solution of Eq. (2.5) is obtained as

gzjjj:cos(ax)cos(ﬁy)i G, COSh(J/Z/\/Z.)

-1 | +H, sinh(yz/\/;i)

o 3 _Gl.cosh(j/z/\/;,-) |
= Jo J.o cos(ax) COS(ﬂy),ZZI:bi _+Hl. sinh(]fz/\/;,-)_

- 2 [ Greosh(rz/\m) |
@zjo J.O COS(ax)coS(ﬂJ/);c; o sinh(;/z/\/;i)_

where (by,¢1), (by,c2), and (bs,c3) are the solutions of (B,C) of Eq. (2.6) corre-
sponding to m==y/ \/,LTI , Ty/p, and ty/\/u, respectively, and G; and H;
are arbitrary constants which are determined using the boundary conditions.

m =

(2.10)

adp (2.11)

dadp (2.12)

dadp (2.13)

2.2 Solution with Lekhnitskii formalism

The mathematical method known as the Lekhnitskii formalism was developed
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originally to solve two-dimensional problems in elastic anisotropic materials [3].
The evolution of the method and a number of extensions to electroelastic problems
were described in Refs. [4-7]. In this section the Lekhnitskii formalism of genera-
lized plane piezoelectricity presented in [7] is briefly summarized. For a complete
derivation and discussion, the reader is referred to Refs. [3-6].

Consider a generalized plane problem of piezoelectric materials, in which all
physical quantities, such as stresses, strains, displacements, electric fields, electric
displacements and the electric potential, are functions of x and y only. The genera-
lized plane strain constitutive equations are governed by Eq. (2.2) or equations
located in the second column and fourth row of Table 1.1 as follows:

‘n _f11 S Sa hs o S g 821 | Oy
&n Ji S fou o s S 812 8» ||%n
2653 Ju o S Ju fis Jis &4 824 ||923
2e50=|hs  Sfs  Sas s Sse &is 825 |1%13 (2.14)
2e), he S S Jsso Jes &6 8% ||%12
-E & 82 8 &is & —Pu =P || D
-k, 181 &» &4 &5 & —Po  —PnllD

where the materials f}, g;;, and £, are defined in Eq. (1.8) and Table 1.1. The deriva-
tion of these constants can be found in Ref. [7].

Equation (2.14) constitutes a system of seven equations in 14 unknowns. Addi-
tional equations are provided by elastic equilibrium and Gauss’ law:

O+ 012, =0, 05;+09,=0, 0y3,+05,=0, D,;+D,,=0 (2.15)
in which the absence of body forces and free electric volume charge has been as-
sumed, and by two elastic conditions and one electric compatibility condition

1100 FExn 11— 26121, =0, 137 623, =0, E,-E,;=0 (2.16)
Having formulated the generalized plane problem, we seek a solution to Egs.
(2.14)-(2.16) subjected to a given loading and boundary condition. To this end, the

well-known Lekhnitskii stress functions F, ¥ and induction function V satisfying
the foregoing equilibrium equations are introduced as follows [7]:

oy, =Fy, op=F,, o,=-Fp,,

(2.17)
o3=¥,, on=-¥, D=V, D,=-V,

Inserting Eq. (2.17) into Eq. (2.14), and later into Eq. (2.16) leads to

L, L, L|(F
L, L L |i¥i=0 (2.18)
L, L, L |V
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where
o4 o 4
L, = —_— I -
4 féZ a)(/_14 f a a ( fi2 f‘66)ax]2ax§
o* a4
—2fi i ——+ 11—,
Sie ox 8x§ S ax;‘
3 63 83 83
T+ ———(fiu+ fss)——+ f1s —=,
f‘24 (ﬁS f;16) axfaxz (fi4 f‘56) aXI axzz ﬁS ax;
. a3 o o o
[ —_o Y + -z , 2.19
3 82 6x13 (g1 g26)8x128x2 (g + gm)axl @xz +8u T 8x2 ( )
o* o* o*
L, = —2f i ————+ fos—,
2= ox? Jis 0Ox, Ox, s ox;
o* o* o*
L, = - —_—t g —,
0 =Ju— 8)61 (g4 + g25)8x1 ox, 8is ax§
22 @2 52
= — 1t —
P 8x]2 2B —— o, O, Bi— 8)62

Eliminating ¥and V from Eq. (2.18) yields
(L,L, L, + 2L, L, — 5L, — L, Ly L, — Ly, L, )F =0 (2.20)
As discussed in [4] within the framework of anisotropic elasticity, Eq. (2.20) can
be solved by assuming a solution of F(z) such that
F(z)=F(x + ux,), H=a+if 2.21)
where o and g are real numbers. By introducing Eq. (2.21) into Eq. (2.20), and

using the chain rule of differentiation, an expression of the form {}F® =0 is

obtained. A nontrivial solution follows by setting the characteristic equation equal
to zero:

(L L, L, + 2L, L1y — L L5 L, — Ly Ly Ly — Ly Ly Ly )(p) = 0 (2.22)

Owing to the particular material symmetry of the piezoelectricity under investi-
gation, the polynomial is expressed in terms of even powers of . This allows us to
solve Eq. (2.22) analytically, rendering

o =a, +if, (k=1,2,3,4) (2.23)

where i=+/~1. Once the roots M (=1, 2, 3, 4) are known, the solution for the
functions £ ¥, and V is written as

4
F(x,x,)=2Re Y F(z;) (2.24)

J=1
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4
¥ (x,x,)=2Re Y ¥,(z,) (2.25)
Jj=1
4
V(x.x%)=2Re > V,(z,) (2.26)
Jj=1

where z=x+py. By eliminating ¥ or V from Eq. (2.18), we can express the func-
tions ¥and V in terms of the function F as

) {Aka’ (fork=124) {QkF/ (for k=1,2.3) 2.27)

CTVEA, (fork=3) T F T FQ (fork=4)

where F, =dF, /dz, , and

_ L (#y )l?i:(ﬂk)_l{(ﬂk )l%:(;uk) (for k =1,2)
L ()l () =L () (1)

_J)_ Ly )l;: (44)— l;; (44 )l%i (44) (for k = 3) (2.28)
L)l () =15 ()l ()

_ Ly (1 )IE*(/J/{) — L (4 )l{(ﬂk) (for k = 4)
LGl () =1 ()l (1)

_ L (44 )15*(ﬂk) _13*(,Uk )l{(ﬂk) (for k =1,2)
L ()l () =1L ()L (1)

0 =] Bbw)Ewh ) g g 229
L (e )l () = I (e )l ()

_ b (44 )13* (4) = I (14 )l; (44.) (for k = 4)
b ()l () = I (e )l ()

with

1L,(p) = futd* =2fiet® + Qi + fe )1 =2 folt+ [z

L(p)= fls#3 —(f14 +f56)#2 +(fos + fag) = foss

13*(P) = gll/u3 —(8y +g16)ﬂ2 +(&12 + 826)H— &> (2.30)
L(p)= fsst® =2 fistt+ fuss .
l;(p) = glsﬂz — (&4 + &5+ &4

L (p)=—Bui’ +2Bu— Py

Equations (2.24)-(2.26) can then be rewritten as
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F=2Re[F +F,+F,+F,],
¥V =2Re[ AR+ ALF +F | A+ AF], (2.31)
V =2Re[QF+ QF, +QF +F'/ Q]
With the aid of Eq. (2.31) we can obtain expressions for the stress and electric
displacement components. Using Eqs. (2.17) and (2.31), we obtain

O-ll 4 ‘U/?
oy =2Re) 1 1 (Fl(z,) (2.32)
Oiz - ~H

0y =—2Re[A K"+ A, F)+ F'/ A+ A F[],

013 =2Re[pi A\ F"+ py A, B+ py LA o+ py AL FY,
Dy =2Re[p 2 \F"+ p2,F'+ ps 2, F'+ p,F"1 2, ],
D, =-2Re[Q \F'+ Q2 ,F+Q F+F"/ 2 ,]

(2.33)

Finally, using the constitutive equations (2.14) in conjunction with Egs. (2.32)
and (2.33) allows us to find expressions for the strain and electric field. They are

4
= ZR{ZMksk } &y = ZR{ZV,C/J,{S,{'},

k=1

4
26, = 2R{Z( + t)sy }
k=1

A A (2.34)
2¢; = ZR{ZW sy }, 26, = 2Re{2w2yksk'},
k=1 k=1
* 4 *
E =—2R{Z¢’k sk'}, E, =—2Re{z¢k yksk’}
k=1 k=1
where
=K, s,=F, s;=F/A, s;=F /% (2.35)

HE S+ fia = s + fisti Ay = Frot + €010482 = 25,92 (for k=1,2)

A i+ Sro = Kok + &t S2% = 2092) = fra + sty (for k=3)

Q4 iy + Fia = Fra i + Fiste Ay = Fiskti) + 81— 8 (for k=4)
(2.36)

HiFia +(Fr = sy = 802 1y + fos Ay = fos + 8126% (for k=1.2)

Vi =9 Aty foo + fon |ty = Frs + 80092 = 80 | 1) = foa | + frs - (for k=3)

O (S + o 1 = Joa A Lty + fos Ay = fo6) + 812 =80/ 1y (for k=4)
(2.37)

<
> %
Il
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My fra + (Fog = faa e = 8242 1y + fus Ay = fag + 81452 (for k=1,2)
We =A At Fua+ Soad B = Sao + 81452 = 82458 1) = fua iy + fas - (for k=3)
Oy fra+ foa 1 = Jua i | 1y + Jas Ay = fag) + 81a = &au/ 1y (for k=4)
(2.38)
81y + 8 = Gy + Qs Aty — it = Bty 2 + B0 (fork=1,2)
B = A (214 + Qi = Loty = Butti 2 + B 2) = 8ua + ity (for k=3)
QU 815+ 81— L1a Ny + Qs bty — i6k) + &y~ Bty (for k=4)
(2.39)

Substitution of Eq. (1.2) into Eq. (2.34), and then integration of the normal
strains and the electric field £ = —grad ¢ produces

4 4
u, :2Re{2u,tsk}, u, :2R6|:ZVZS/¢}

k=1 k=1

4 4
Uy =2Re{2w}isk}, E =2Re{zfp,:sk}

k=1 k=1

(2.40)

The integrating constants, which represent the rigid body motions, are ignored
here[7].

Recapitulating, based on the procedure above the generalized plane strain pie-
zoelectric problem is reduced to one of finding four complex potentials, s; (i=1-4),
in some region (2 of the material. Each potential is a function of a different genera-
lized complex variable z, =x, + 1,.x, .

2.3 Techniques of Fourier transformation

In this section we briefly examine the application of Fourier transform techniques to
cracked piezoelectric materials. Yu and Qin [8,9] used Fourier transform techniques
to study the crack-tip singularities and damage properties of thermopiezoelectric
materials. They began with defining a Fourier transform pair

7 1 ~ i&x 1 R —iéx
f&=7= [ reeax, f@=—= [ F@e=as @4

and by introducing the shorthand notation given by Barnett and Lothe [10]. With
this shorthand notation, the governing equation (1.10) and the constitutive relation-
ship (1.6) can be rewritten as

HiJ,i = fJ (2‘42)
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11, = EiJKmUK,m (2.43)

where f,=0, and

e GI=123) -

YUl (U=4i=1,23) (249
Cfu, (K=1,2,3)

Uy = {¢ & =1) (2.45)

(i’J,K,m:l; 29 3)
b _lewm (K=4 iJm=1273) (2.46)
Km = (J=4 i,K,m=1, 2, 3) .

(J=K=4; i,m=1, 2, 3)

cijkm

ikm
~Kim

For generalized two-dimensional deformations in which U (={ui, u,, us, ¢}")
depends on x; and x, only, where the superscript “T”” denotes the transpose, a general
solution can be obtained by applying the transform to Eq. (2.42) over x;. This
gives

R S
£2QU +i§(R+RT)2—U—T U _y (2.47)

2
Xy axz

in which we assume f;= 0 in Eq. (2.42) for the sake of simplicity. The matrices Q,
R, and T are 4x4 real matrices whose components are

Ok =Ek1s Ry =E s, T =Eyikr (2.48)

The solution of Eq. (2.47) can be obtained by considering an arbitrary eigen-
function of the form

A

U=ae "™ (2.49)
Substituting Eq. (2.49) into Eq. (2.47), it is found that
[Q& +&n(R+RM)+7°Tla=0 (2.50)

Letting p=n/&, we have eight eigenvalues p from Eq. (2.50), which consists of
four pairs of complex conjugates [11]. Denote

_ {pr (£>0)
Yo lue €<0)
where M=1,2,3,4. It is obvious that Im(7,,)>0 for all & Such a definition is expe-

dient for development of the subsequent derivation. A general solution of Eq. (2.47)
is obtained from a linear combination of the eight eigensolutions, say F; and G;

2.51)
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(i=1-4), which are obtained by replacing 77 in Eq. (2.49) with 7,, (M=1-4), when

the roots p,, are distinct. The result is
U =2n(AFf + AGg)H (&) + 21 (AFf + AGg)H (=&) (2.52)
where H(¢) is the Heaviside step function, and
F(&x)=(F(Ex)= (), GEx)=(G,(Ex)=(e™") (2.53)

Note that 77 = p&, f and g are two vector functions of £ to be determined from

the electroelastic boundary conditions of a given problem.
The transformed stress and electric displacements follow from the constitutive
relation of Eq. (2.43):

1T, = iEN27(BPFf + BPGg)H (&) +i&2n(BPFf + BPGg)H (-£)  (2.54)
11, = —iE\2n(BFf + BGg)H (&) —ié2n(BFf + BGg)H (-&) (2.55)

The traction-charge vector on a surface with normal n=(#,, n,, 0) can be found
from Egs. (2.54) and (2.55) as follows:

t=1Tn + IT,n, = iEN27[B(n, P — n,1)Ff + B(n,P — n,1)Gg]H (&)
+iE\27[B(n, P — n,1)Ff + B(n,P — n,1)Gg]H (—&) (2.56)

where I is the unit matrix.

Equations (2.52), (2.54), and (2.55) represent the solution for the elastic and
electric fields in the Fourier transform space. The general solution for an electro-
elastic field in real space is obtained by applying the inverse Fourier transform to
Egs. (2.52), (2.54)-(2.56). The results are

o — . 0 — e
Ux,,x,) = jo [AFf + AGgle "“1d¢& + L,; [AFf + AGgle “"dé  (2.57)

I1(x. %) =i [BPFf+BPGglee ™ ds + i’ [BPFf+BPGglce 1 ds
2.58)

I, (x.x%,) =i BFf +BGglée “dg +i[’ [BFf+BGglee“ds (2.59)
t(x,x,) = zJ‘On EB(n, P — n,1)Ff +B(n,P —n,1)Ggle " d&

+ iJ: EB(n,P - n,])Ff + B(n,P - nz])Gg]efiixl dé (2.60)

For a given boundary value problem, the eight functions f and g are determined
from the appropriate boundary conditions.
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2.4 Trefftz finite element method

The solution methods discussed in the preceding sections are mostly based on ana-
lytical approaches. For a complex structure, however, a powerful numerical method
is required to obtain a meaningful solution for electroelastic crack problems. Of all
the numerical methods, the FEM and boundary element method (BEM) may be the
most versatile computational tools to treat piezoelectric problems. Particularly, the
Trefftz FEM has recently received attention from researchers in the field of solid
mechanics. In the literature there are only a few papers addressing the application of
Trefftz FEM to piezoelectric problems. Qin [12,13] introduced the Trefftz FEM for
piezoelectric problems in 2003. Wang et al. [14] used Trefftz FEM and computed
eigensolutions to determine singular electroelastic fields in piezoelectricity. In
this section, the application of Trefftz FEM to piezoelectric problems is briefly
examined.

2.4.1 Basic equations

Consider a linear piezoelectric material in which the constitutive relations, the dif-
ferential governing equations and boundary conditions are given in Egs. (1.5),
(1.10)-(1.12), respectively. Moreover, in the Trefftz FE form, Egs. (1.2), (1.5),
(1.10)-(1.12) should be completed by the following inter-element continuity re-
quirements:

Uy =Wy, B, =0 (on I, I, conformity) (2.61)

t,+t, =0, D, ,+D,=0  (onl,(\I,reciprocity) (2.62)
where “e” and “f” stand for any two neighboring elements. The equations men-
tioned above are taken as the basis to establish the modified variational principle for
Trefftz FE analysis of piezoelectric materials [12].

2.4.2 Assumed fields

The main idea of the Trefftz FEM is to establish an FE formulation whereby intra-
element continuity is enforced on a non-conforming internal displacement field
chosen so as to a priori satisfy the governing differential equation of the problem
under consideration [12]. With the Trefftz FEM the solution domain (2 is sub-
divided into elements, and over each element “e,” the assumed intra-element fields
are
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U i N,
u, U, N, _ -
U= =42y ¢=U+) Nic; =U+Ne (2.63)
U U N; 7=l
¢ g (N,

where ¢; stands for undetermined coefficient, and U (= {ﬁl,ﬁz,ﬁpﬁ}T) and N are
known functions. If the governing differential equation (2.42) is rewritten in a
general form

RUx)+f(x)=0 (xe) (2.64)

where R stands for the differential operator matrix for Eq. (2.42), x for the posi-
tion vector, f (= {f,, /. fs,0}") for the known right-hand side term, the overhead

bar indicates the imposed quantities, and 2 stands for the eth element sub-domain,

then U=U(x) and N= N(x) inEq. (2.63) must be chosen such that

RU+f=0 and RN=0 (2.65)
everywhere in (2 . A complete system of homogeneous solutions N; can be gene-

rated by way of the solution in Stroh formalism
U =2Re{A(f(z,))c} (2.66)

where “Re” stands for the real part of a complex number, A is the material eigen-
vector matrix which has been well defined in the literature (see pp. 17-18 of [11]),

(f(z,))=diag[ f(z)) f(z,) f(z3) f(z4)] is a diagonal 4x4 matrix, and f(z,) is
an arbitrary function with argument z; = x; + ;x, . 14 (i=1-4) are the material ei-

genvalues[11].

The unknown coefficient ¢ may be calculated from the conditions on the exter-
nal boundary and/or the continuity conditions on the inter-element boundary. Thus
various Trefftz element models can be obtained by using different approaches to
enforce these conditions. In the majority of cases a hybrid technique is used,
whereby the elements are linked through an auxiliary conforming displacement
frame which has the same form as in the conventional FE method. This means that,
in the Trefftz FE approach, a conforming electric potential and displacement (EPD)
field should be independently defined on the element boundary to enforce the field
continuity between elements and also to link the coefficient ¢, appearing in Eq.
(2.63), with nodal EPD d (={d}). The frame is defined as

N

- N -

Ux)=1"1= Ca=Nder) 2.67)
N
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where the symbol “~” is used to specify that the field is defined on the element
boundary only, d=d(c) stands for the vector of the nodal displacements which are
the final unknowns of the problem, 7/ represents the boundary of element e, and
N is a matrix of the corresponding shape functions which are the same as those in
conventional FE formulation.

Using the above definitions the generalized boundary forces and electric dis-
placements can be derived from Egs. (1.11) and (2.63), and denoted as

4 Oy;n; 2 Q
t o, N, 1, Q _

T = 2 = 277 = 3 —+ 2 Cc= T + QC (2.68)
ly 03,1, 2 3

D Din; D Q,

n

where 7 and D, are derived from U.

2.4.3 Element stiffness equation

Based on the two independent assumed fields, Egs. (2.63) and (2.67), presented
above, the element matrix equation can be generated by a variational approach [15].
For a three-dimensional piezoelectric problem, the variational functional can be
constructed as [12]

_ 1 T _ T 7 ST
Ve =3 jge U'fd2 jreT (0-U/2)dr +[ . utar (2.69)

Substituting the expressions given in Egs. (2.63), (2.67), and (2.68) into (2.69)
produces

1 .
e = EcTH(,c —¢'G,d+c'h, +d"g, +terms without ¢ or d (2.70)

me

in which the matrices H,, G, and the vectors h,, g, are as follows:

_ T _ T
H, —J.FHQ NdF—J.rEN Qdr 2.71)
_ TR
G,= j . Q'Ndr 2.72)
_ 1 T s T
h, _EerN fdQ+J.r¢e (Q"U+N'T)dI (2.73)

g = N'Tdr- j L N'Tdr (2.74)

I te
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To enforce inter-element continuity on the common element boundary, the un-
known vector ¢ should be expressed in terms of nodal DOF d. An optional rela-
tionship between ¢ and d in the sense of variation can be obtained from

v
e 2 =H,c-G,d+h, =0 (2.75)
oc
This leads to
¢c=H,'(G,d-h,) (2.76)

and then straightforwardly yields the expression of ¥, only in terms of d and

other known matrices:

me

wo- —%dT (GIH;'G,)d+d" (GIH,'h, +g,)+erms withoutd  (2.77)

Therefore, the element stiffness matrix equation can be obtained by taking the
vanishing variation of the functional ¥,, as
oY

0= KA, (2.78)

where K,=G!H,'G, and P,=GH,'h,+g, are, respectively, the element
stiffness matrix and the equivalent nodal flow vector. The expression (2.78) is the
elemental stiffness-matrix equation for Trefftz FE analysis.

2.5 Integral equations

An integral equation is, mathematically, an equation in which an unknown function
appears under an integral sign. It is noted that most crack and stress singularity
problems in piezoelectric structures and materials can be formulated in terms of a
certain type of integral equation such as Fredholm, Volterra, and Abel integral equa-
tions. In order to provide fundamental knowledge and to enhance understanding of
these integral equations which appear in coming chapters, a brief review of Fred-
holm, Volterra, and Abel integral equations is presented in this section.

2.5.1 Fredholm integral equations

A homogeneous Fredholm integral equation of the first kind is written as [16]

[[KCppidy=f()  (@sx<h) (2.79)
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where the continuous kernel function K(x,y) and the inhomogeneous term f (x) are
known functions. The equation is to be satisfied for x in the interval a < x < b, the
same as the interval of integration. It is typical to find the unknown function ¢(y).
An inhomogeneous Fredholm equation of the second kind has the form

#) =A[ K(e)d)d+ f(x)  (a<x<b) (2.80)

where A is a known constant. Given the kernel K(x,y), and the function f{x), the
problem is to determine the function ¢(y). A standard approach to solving Eq.
(2.80) is called an integral equation Neumann series, which may be described as
follows.

Take
¢y () = [ (),
b
h(0) = f()+A] K f()dy,
$o(0) = )+ 2] Koy f Gy
S rbh (2.81)
# 22 [ KK (0 f (52)ddys
¢,(x)= D A'u,(x)
i=0
where
uO (x) = f(-x)s
b
1y (x) = LbK:x, INVACALIE .
uy(0) = [ K G 7K (013)f () vy,
The Neumann series solution is then
$(x) = lim ¢, (x) = lim iz"u[ (x) (2.83)
n—oo n—oo =0

Alternatively, if the kernel K(x,y) is separable, i.e., it can be written in the form

K(x,y) =D M, (x)N,(») (2.84)

i=l1

Equation (2.80) may be solved as follows. Let

#0) = £+ [ Ko
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= f(0)+A) M (%) jb N, ()p0)dt = f(x)+AD_¢;M (%) (2.85)
J=1 Jj=1
where
¢, = jb N, (O)p(e)de (2.86)

Now multiply both sides of Eq. (2.85) by N(x) and integrate over dx, we have
b b L b
j CPLON, (x)dx = j SN, de+2Y ¢, j M ()N, (x)dr (2.87)
j=1

By Eq. (2.86), the first term of Eq. (2.87) is just ¢;. Now define
b b
b=[ Nof@dy, a,=[ N@M,xdr (2.88)
So Eq. (2.87) becomes

¢ =b+2) ac, (2.89)

Equation (2.89) can be written in matrix form as
C=B+1AC (2.90)
So we have

(1-1A)C=B, C=(1-1A)"B (2.91)

2.5.2 Volterra integral equations

It is noted from Eq. (2.79) that the integration limits of a Fredholm equation are
constants. A Volterra integral equation of the first kind is obtained by replacing the
upper integration limit b in Eq. (2.79) with the variable x:

[ K@ dodr=f@)  (a<x) (2.92)

Thus, for any fixed range of x, say 0<x <4, itis the same as a Fredholm equa-
tion with a kernel that vanishes for y>x. Consequently, all results for the Fredholm
equation are still valid.

Like the definition of the Fredholm equation above, a Volterra integral equation
of the second kind is an integral equation of the form
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() = 2] K0+ () (@< (2.93)

where K(x,y) is again a known integral kernel, f'(x) is a specified function, and ¢(x)
is the function to be determined.

As a special type of Volterra equation of the first kind, Volterra’s singular equa-
tion

[ Mf/ﬁ(y) dy = £(x) (2.94)

has received wide application in the field of fracture mechanics and computational
engineering, where N(x,y) is a specified bounded function and the exponent « is a
positive number less than 1: 0<a<I.

Equation (2.94) can be solved by reducing it to an equation of the corresponding
Volterra equation of the first kind with a bounded kernel. To this end, multiplying
both sides of Eq. (2.94) by the function 1/(z—x)" and integrating with respect to

x from a to z, we obtain

e T L SEE™

or, upon application of the Dirichlet transformation the equation

z| 2 N(x,y)dx
[ { [ }qﬁ(y)dy ) (296)
ol (z-0)" (x-y)”
This is already a Volterra equation of the first kind with a bounded kernel
N(x,y)dx
K(z,y) = ﬁ_ay ) _ (2.97)
Y (z=x) (x—y)
where the known function f,(z) is
x)dx
)= [ L (2.98)
“(z-x)

The solution g of Eq. (2.94) obviously satisfies the transformed equation (2.96).

2.5.3 Abel’s integral equation

Abel’s integral equation
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J'xﬂdy =f(x) (0O<a<l) (2.99)
“(x=p)"

is a particular case of the integral equation (2.94) when N=1. The integral equation
may be solved explicitly in the following way: when N=1 the kernel of the trans-
formed equation (2.96) has the constant value

[ lfix _ :f dffa T (2.100)
Y(z=x)"“(x-y) 01-1)""¢ sinan

in which ¢ = (x—)/(z—y) has been used. Let F()’) be any function which is continuous
and has a continuous derivative throughout the solution domain I. Multiply Eq.
(2.100) by F'(y)dy and integrate from a to z. That gives

F'(y)dxdy
(z=x)"(x=y)*

T

[F)-Fa)=] [ 2.101)

sinan

Applying Dirichlet’s generalized formula to the second term of Eq. (2.101), we
obtain

w A -0 -y

F(z)—F(a):Sinanr{ 1 sz'(y)dy}dx (2.102)

Multiply Eq. (2.99) by 1/(z—x)""“dx and integrate and the equation takes the

simple form a to z, thus obtaining

U L N Ly T 2.103)

“(z=x)7 ez (x-p)”
Ifin Eq. (2.102) we let

F(0 = [ g(r)dy (2.104)

it will be seen that the preceding equation reduces to

T

[Ty =16 (2.105)

sinamn
By differentiating Eq. (2.105), we obtain the value of this solution

_sinan d 2 f(x)dx

#2) dz e (z—x)"™

(2.106)
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Equation (2.106) can be further written in the form

sy smart[f(a) I[df(x)/dx]dx] (2.107)

(z—x)l a

2.6 Shear-lag model

The term shear-lag has been widely used to study strengthening mechanisms
through the load transfer from matrix to reinforcement in composite materials. The
shear-lag model was originally proposed by Cox [17] and subsequently modified by
many researchers. It is assumed that the load transfer from matrix to fiber occurs via
shear stresses on the surface between them. Cox’s shear-lag model can be obtained
by considering the free-body diagram of a differential element of the fiber, as
shown in Fig. 2.1. For static equilibrium of the forces acting along the x direction,
we have

(o; +dop)nr? —opmr® +7,(2mr)dx = 0 (2.108)

where r = d/2, o} is the fiber normal stress along the x direction at a distance from

the end of fiber, 7 is the interfacial shear stress at a distance from the end of fiber,
and x is the coordinate along the fiber length.

L |
VRN

(O

dx X

T

Fig. 2.1 Free-body diagram of a differential element of a fiber.

Equation (2.108) can be simplified to

doy __ 2% (2.109)
dx r

Equation (2.109) is referred to as the basic shear-lag equation.
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Cox further assumed that the total shear forces on the neighboring annuli remain
constant. That assumption leads to the following relationships:

2mr, 7, dx = constant (k=1,2,---,n) (2.110)

where r; and 7; are defined in Fig. 2.2. Equation (2.110) can be rewritten in the form

R
T
,ﬁ-:—d\‘ x
Fig. 2.2 Distribution of stresses and geometry of 7, and 7.
T 7
kL (k,1=1,2,---,n) (2.111)
o T

Thus, the shear stress 7 in the matrix at any radius p is related to the interfacial
shear stress, 7, of the fiber and fiber radius r by the following relation:

r

S 2.112)

Using Eq. (2.112), the shear strain of the matrix near the fiber, which is a func-
tion of the displacement of the matrix, can be expressed as

du_, T _&[r (2.113)
dp Gn Gulp

The difference between the displacement at R and that at » or the fiber surface at
any point x can be obtained by integrating Eq. (2.113) with respect to p:

u nr (R 1 nr (R
(uR—ur):Leru :G— . ;dsz—ln(7j (2114)

where R=D/2.
Substituting Eq. (2.114) into Eq. (2.109), we have
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doy  2G,,(u, —uy)
dc P In(R/r)

(2.115)

To determine the stress built up along the fiber, we need to establish the rela-
tionship of uz and u, with the fiber stress or strain. To simplify the following deriva-
tion, assume the fiber has no shear deformation, then u, = u; for any position .
Therefore

d . d
D g =2, Hrap g 2.116)
dx E; dx
where &, and & are respectively the longitudinal strains in the matrix and in the
composite.
Differentiating Eq. (2.115) and using the relation in Eq. (2.116), we have

d’c
=l e E) 2.117)

where

m

2nG
= = B 2.118
b r’E;In(D/d) AcE;In(D/d) (@118)

with 4 being the area of fiber cross-secton, £ the Young’s modulus of the fiber, G,
the matrix shear modulus.
The solution of Eq. (2.117) is of the form

o :(O'f)h+(0'f)p (2.119)
where (o )p is the particular solution and (o )h the homogeneous solution. They
are

(01), = E¢&,, (0y), = Asinh(x)+ Bcosh(fx) (2.120)
The coefficients A and B can be determined from the boundary conditions:
o, =0 (atx==£L/2) (2.121)

Substituting the boundary conditions (2.121) into Eq. (2.119) and after some
mathematical manipulation, the resulting fiber and interfical shear stresses are

. {IM}
cosh(fL/2) (2.122)
=l pShpx
2 cosh(fL/2)

where L is the fiber length.
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2.7 Hamiltonian method and symplectic mechanics

The strategy of simplifying a mechanical problem by exploiting symmetry so as to
reduce the number of variables is one of classical mechanics’ grand themes. It is
theoretically deep, practically important, and recurrent in the history of the subject.
The best-known general approach using the strategy is undoubtedly the symplectic
Hamiltonian method [18], which uses displacements and associated general stresses as
dual variables so that the boundary conditions are satisfied without any assumption of
displacement or shape functions. Thus the complete solution space covering all kinds
of boundary conditions along the edges can be obtained.

To illustrate the symplectic Hamiltonian method, we begin with considering the
Principle of Virtual Work. It is one of the oldest principles in physics, which may
find its origin in the work of Aristotle (384-322 B.C.) on the static equilibrium of
levers. The principle of virtual work was written in its current form in 1717 by Jean
Bernoulli (1667-1748) and states that a system composed of N particles is in static
equilibrium if the virtual work

N
3W =Y F,-8x, =0 (2.123)

i=1

for all virtual displacements (6xy,**, dxy) that satisfy physical constraints, where F;
is the force acting on the particle i. Given the commonness of systems of N particles
with constraints, it is natural to seek a description of mechanics relevant only in the
subset of 3D Euclidean space accessible to the system. The number of generalized
coordinates required to specify completely the configuration of the system is called
the number of degrees of freedom of the system. Typically, if a system of N parti-
cles, each having mass m; and Cartesian coordinate x; (i = 1,***,N), is subjected to k
holonomic constraints,

f‘j(xlaxza"'axN’t):O (j=l,2,~-,k) (2124)

we have n = 3N—k generalized coordinates, g;, which are independent.
It was Jean Le Rond d’Alembert (1717-1783) who generalized the principle of

virtual work (in 1742) by including within it the accelerating force —m.d’x, /d¢*
(2.123):

2
9% 6x. =0 (2.125)

dr? '

N
SW = (F —m,

i=1

so that the equations of dynamics could be obtained.
To obtain the Lagrangian function of the system we need the mapping from the
n = 3N—k generalized coordinates to the usual Cartesian coordinates on R® for each
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particle:

X :Xl(ql’qzau'aqnat)’
(2.126)

XN = XN(qlaqza'”:qnat)

Note that this collection of mappings (2.126) is equivalent to a (single)
time-parameterized mapping from the 3N—k generalized coordinates (¢',---,4") to
the Euclidean hyperspace R* with 3N coordinates (x1, ¥1, Z15%5 X, Vs 2n)- Per-
forming a Taylor expansion of the mapping, Eq. (2.126), about the point(q', -, ¢")
(i.e., expanding x{g' + 8¢",--, ¢" + 84", £) about (¢',--,¢")) at a fixed time # we ob-
tain

L O0X.
5x, =Y sy (2.127)
The quantity dx,/dq’ is analogous to the Jacobian of the transformation from (¢', ---,

q") =(xy, y1, 21+, Xn Ya zn)- Equation (2.127) can be used to cast D’ Alembert’s
principle (2.125) in terms of the generalized coordinates

o gfgir ) St -4

(2.128)
where Q; is known as the generalized force acting on the particle 7.
Making use of the relations
dx, 0Ox, oxX.; . or, ox;
rp=—Lb=—"\x —q’ ;L= —L
Yodt ot jZ::‘ oq’ oq’  oq’
(2.129)

m,——r - —= mr,
dr*  oq’ dr

d’x, ox, d 0x; o
= il —mr; -
oq" oq"

N
and the definition of the kinetic energy of the system K =Zmiri -1 /2, Eq.
=1

Z[%[;fjj st -0, }Sq’ = (2.130)

i=l1

(2.128) leads to

which is D’Alembert’s principle in configuration space. Since the system is, by
hypothesis, holonomic, the ¢’ form a set of independent coordinates. Any virtual
displacement 8¢/ is independent of 8¢ * (k #j) and, therefore, for Eq. (2.130) to
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hold, each term in the sum must separately vanish. For non-trivial 8¢ this can only
happen if each coefficient vanishes, or, equivalently

i(a—K.j—a—K.—Q.zo (j=12,---,n) (2.131)
dt 8(2’ 86]] g

Equation (2.131) are frequently referred to as Lagrange’s equations, in which we
note that the generalized force (; is associated with any active (conservative or
nonconservative) force F;. Hence, for a conservative active force derivable from a
scalar potential function V (i.e., F = —V U(¢',-, ¢"f)), the ith component of the
generalized force is Q; =—0U/dq', and Lagrange’s equation (2.131) becomes

dfor) oL (j=12,,n) (2.132)
dt aql aq/

where the Lagrangian is defined as: L=K-V.

The n second-order Euler-Lagrange equations (2.132) can be written as 2k
first-order differential equations, known as Hamilton’s equations (William Rowan
Hamilton, 1805-1865), in a 2n-dimensional phase space with coordinates z = (ql, -
4" p',--, p"), where the dual variable of p according to Legendre’s transformation is

. oL .
r;(4.9.1) =@(q,q,t) (2.133)

In terms of these new coordinates, the Euler-Lagrange equations (2.132) are

transformed into Hamilton’s canonical equations
J J
dg’ _oH — dp’ _ OH (2.134)
dt  op’ dr oq’

where the Hamiltonian function A is defined from the Lagrangian function L by the
Legendre transformation (Adrien-Marie Legendre, 1752-1833):

H(qapat):p'q(q>p,t)_L(q7q(q7p>t)’t) (2135)
Using the definition of state vector v ={q, p}, Eq. (2.134) can be expressed as
v=Hv+h (2.136)

where H is the Hamiltonian matrix and h is a 2n-vector [18,19]. The Hamiltonian
matrix H satisfies the matrix equation

JHJ=H" (2.137)

where J is a symplectic matrix defined as
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0 In 2 T
J= , =1, JT=-J (2.138)

With matrix J, a symplectic matrix S can be defined as
STJS=J (2.139)

As an application of symplectic mechanics we consider a plane stress problem
with the strip domain V' (0<z</, —h<x<h)as shown in Fig. 2.3 [20]. The

force equilibrium, constitutive, and boundary equations of the problem are respec-
tively

oo, or,, 0o

+%+f =0 J+ 4 +f =0 (2140)
Ox oy o ox Oy g
O-y = F_‘yI (2)9 Txy = F_.'\fl (Z) (.y = _h) (2 141)
O-}" = y2 (Z)’ Txy =l (Z) (y = h)
E E E
o, =——(& +vs,), o, =——=(&,+vs,), 7, = w (2,142
s o = e tue), ny =o sy, (214D

where F, and F), are the body forces. The relationship between strain and displace-
ment is expressed as

SX=Z—Z, 8},=2—;, yx},=%+2—§ (2.143)
[ 1

h x=l

Fig. 2.3 Configuration of the strip domain and loading condition.

The corresponding potential variational functional and the strain energy density are
then defined as

dU, = 8{ (4t —f, _ny)dXdy__[;[(”F;cz +vFv2)y=h —(uF, +VFyl)x=—/1:|dx} =0
(2.144)
2
£ [pun v 0w ov] B (0w ov
#0_2(1—1)2){(8)) +(8y) +2U(8x)(8y):|+4(1+0)(8y+8xJ (2.145)
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To construct the corresponding Hamiltonian system, the x-coordinate is modeled as
the time variable of the Hamiltonian system. If F, = Fy[ =0, the Lagrangian func-

tion of the problem is
L(w,u,w,u) = u, —uf, —vf, (2.1406)

The dual vectors q and p can then be defined as

q=(w w)', p=(c )’ (2.147)
with
o= E iy 0L E 0 (2.148)
ou  1-v° oy ov  2(1+v) oy

Equations (2.148) yields

2
p=—p v oo 20HY) (2.149)
Oy E oy E
Making use of Egs. (2.140), (2.142), and (2.149), we have
2
6=-0" s =gV %9 (2.150)
oy oyt oy
Equations (2.149) and (2.150) can be written in matrix as
_ . -
0o w2 1z 0
oy E
0
W 0 0 0 2(1+v) |[w
| oy E u 0
v= = 5 + P =Hv+h (2.151)
7 0 0 0 -2 ;
7 o \z) \-f,
2
o £ L2
i oy oy |

The homogeneous solution of Eq. (2.151) can be obtained using the separation of
the variable approach and the symplectic eigenfunction expansion. To this end, as-
sume Vv in the form

v(x,y)=s(x)w(y) (2.152)
Substituting Eq. (2.152) into Eq. (2.151) with h=0 yields the solution for &(x):

E(x)=e" (2.153)
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and the eigenvalue equation:

Hy () = 1y(») (2.154)
in which u is an eigenvalue of the Hamiltonian operator matrix and y is given by
w(y) = {q(y)} (2.155)
P(»)
Thus we have
v(x, ) =e“w(y) (2.156)

It should be noted that the eigenvalue u appears, in general, in n equal and op-
posite pairs, 4 and —z; (i=1,2,+++,n) for a (2nx2n) Hamiltonian matrix H, or else as
1 and 1/4; for a (2nx2n) symplectic matrix S [18,21]. Therefore, the 2n eigenvalues,
when ordered appropriately, can be subdivided into the following two groups:

(@ g, withRey, <0,0orRep, =0NIm gy, <0 (i=L2,---,n) (2.157)
for a (2nx2n) Hamiltonian matrix H, and

t;, with [] <1 (i=12,---,n) (2.158)

for a (2nx2n) symplectic matrix S;
() M=ty ((=12,,m) (2.159)
for a (2nx2n) Hamiltonian matrix H, and
Mo =1/ g1, with |p,|>1 (i=1,2,---,n) (2.160)
for a (2nx2n) symplectic matrix S.
Further, Zhong and Williams [18] pointed out that the eigenvectors of H (or S)

are related by the adjoint symplectic orthogonality relationship. Suppose that y; and
y» are two eigenvectors of H (or S), with corresponding eigenvalues g and z,

which are unequal, we have

h
ww )= wlay de=0 2.161)

2.8 State space formulation

Theidea of state space was used initially in system engineering and control theory. With
state space representation, a system of linear differential equations for an engineer-
ing system can be described as
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X(1) = AOX (1) +B(Ou(),

(2.162)
Y (1) = C()X(¢) + D(t)u(?)

where X(-) is called the “state vector”, Y(-) is the “output vector”, u(-) is the
“input (or control) vector”, A(-) is the “state matrix”, B(-) is the “input matrix”,
C(-) is the “output matrix”, and D( -) is the “feedthrough (or feedforward) matrix”
(see Fig. 2.4). For simplicity, D(-) is often chosen to be the zero matrix, i.e. ,the
system is designed to have no direct feed-through. Notice that in this general for-
mulation all matrixes are assumed to be timevariant, i.e. ,some or all their elements
can depend on time.

u . Y
B Trdn?fgr C
( : ) processing
[ A

Fig. 2.4 A typical state space model.

This method was recently generalized to piezoelectric materials [22]. In the fol-
lowing, basic formulations of the state space method for piezoelectric materials
presented in [22,23] are briefly described to provide a common source for reference
in later chapters.

In [23], Sosa and Castro considered a two-dimensional piezoelectric material
whose constitutive equation, strain-displacement and electric field-electric potential
relations are, respectively, defined by Egs. (1.24) and (1.2). The governing equation
(1.10) reduces to

Op,t0o..=0, o_ . +0..=0, D +D._ =0 (2.163)

XX,X Xz,z XZ,X

in which for simplicity all body forces and the electric charge density are assumed
to be zero.

The basic idea behind the state space formulation is to describe a given physical
system in terms of the minimum possible number of variables. Sosa and Castro
achieved this by eliminating oy, and D, from Egs. (1.2), (1.24), and (2.163), pre-
senting the following system of differential equations:
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u,z = _W,x + (sz - 615¢,x)/055 H
w. =(-au, +k;0_ +euD.)/y,

O =—0,

22,z zx,x
2 2
c g Pe c p (2.164)
_| s 33 Ci3
O-zx,z - - cll - u,,\:x + - O-zz,x __Dz,x H
C33 V€33 V€3 O3 e

¢,z = (_ﬁu,x +e33o-zz _C33Dz)/)/7
D, . =(-¢50, , +kp )/ css

where

a =k +ey 103, f =036 — ey,

; : (2.165)
V=K e, K =Cs5Ky T €5
They then applied the Fourier transform (2.43) to Eq. (2.164), yielding
il [ o i o0 i escsic 0 |[d
W aifly 0 wyuly 0 0 ey || W
d |0 0 0 0 i& 0 0 o..
dz OA.xz B a4]§2 0 a43i§ 0 0 ﬂl§/7 &xz
¢ Bily 0 eyly 0 0 —culy || @
DJ [ 0 0 0  esxié -kt 0 |[D,
(2.166)

in which the assumptions are made that quantities u, u,, w, 0., ., ¢ @., and D,
tend to zero as |x| — oo, and

2 2
ay =y + b3 g G P (2.167)

V€3 G C3 Y€y

~ AT
Introducing the transformed state vector, S(f,z)z{ﬁ w 6. 6. ¢ DZ} ,

Eq. (2.166) becomes

ds -
5(5,2)=A(5)S(5,Z) (2.168)
where A is a 6x6 matrix appearing in Eq. (2.166), whose only feature is having
zeros in its main diagonal. The solution to Eq. (2.168) is given by [22]
5(¢,2) = exp[zA(£)IS(£.0) (2.169)

in which the exponential matrix is the transfer matrix that propagates the initial
transformed state vector on the bounding surface into the field at depth z. Conse-
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quently, the remaining task is to evaluate the transfer matrix exp[zA], explicitly.
Sosa obtained the solution by the following two steps:

(1) The eigenvalues A of A are found from the associated characteristic equa-
tion:

AS+ pE2 2t +q& AP +rE0 =0 (2.170)

where the coefficients p, ¢, and r, as functions of the material properties, are given
by

1 s /4 2
p= {acss +—(2¢53¢5 —e33055 — B) +——(C13C55 + €3 —€11C33) —KC35 |,
VCss 33 C33

2 2

1 | eney—c K e:C c

_ 33611 ~Ci3 1533 13

q=——| | Cs5k33 +2€555 + — ———= | = K5 +—(acss + Pes)
VCss C33 Css Css Cs33

2
K ap €33Css B
_;(ac33 +ﬁe33)+7(e15 ——= +—(c551c33 +615€33) s

Cs3 V€33
K el Peysc
_ 2 33 33613
r=— (‘713_‘333011) Ky t—— |=QC3 ————— (2.171)
Y Css C33 C33

Sosa indicated that the roots of Eq. (2.170) can be found analytically. They can
always be expressed in the following form:

Ag=talé|, A =tb+io)E], A =+(b-ic)|d| (2.172)

where a, b, and ¢ are real numbers depending on the material properties.
(2) The matrix exponential is expanded into a matrix polynomial as

exp[zA] = a] + 4, A + a, A + ;A + a,A* + a A’ (2.173)
where no higher powers of A are needed on account of the Cayley-Hamilton theo-
rem, namely,

AS + pEPAY + & AT +1ET=0 (2.174)

The coefficients ay, ***, as in Eq. (2.173) are determined in terms of the eigen-
values of A by noting that each A satisfies

explzA] = a, + a A +a, A* + a2’ +a At +a A’ (2.175)
0 1 2 3 4 5

Using Eq. (2.175) six times, each for each eigenvalue, generates an algebraic
system of six equations with unknowns a, ***, as, whose solution is written as

a, :li/g[eifﬁ(—l)"e%q (i=1-5) (2.176)
i 2]‘:1 ij ’
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where

k+2 22 k+2 42 k2 7. k+2 g
Ay = - A= —, Ay = -, Ay = -

,1:11 dy ,EIH A d, jg;l dy ,gil Aed

1 1
Ay =—> Asp =——, dp = (/113+1 _ﬂ’kz)(ﬂﬂfﬂ _/113) (k=1,2,3)

d; Aidy

(2.177)

Knowledge of the eigenvalues and, therefore, a; from Eq. (2.176), together with
the various powers of A provides the complete determination of the exponential
matrix exp[zA]. Letting the exponential matrix be denoted by B(M, &, z), where the
argument M emphasizes the dependence on the various material constants, one can
write Eq. (2.169) as

S(&,2) =B(M, E,2)S(&,0) (2.178)

Thus, Eq. (2.178) gives the state vector consisting of the transformed stresses,
displacements, electric potential, and electric displacement at an arbitrary depth z in
the solution domain. Finally, solution (2.178) must be inverted to find the physical
variables. Finding the inverse Fourier transform of Eq. (2.43) depends heavily on
the problem under consideration. Sosa and Castro in [23] presented a detailed illus-
tration of how to conduct the inverse Fourier transform of Eq. (2.178).

In this chapter, we have briefly introduced techniques of potential function, so-
lution with Lekhnitskii formalism, techniques of Fourier transformation, Trefftz
FEM, integral equations, shear-lag model, symplectic mechanics, and state space
method, which are all used in later chapters.
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Chapter 3 Fibrous Piezoelectric Composites

In the previous two chapters we presented some fundamental ideas about piezoelec-
tric composites and their mathematical treatment, including the linear theory of
piezoelectricity and the corresponding solution techniques. We now try to genera-
lize these ideas to a range of fibrous composite problems such as piezoelectric fiber
push-out and pull-out, stress and electric field transfer between fiber and matrix,
debonding criteria for the fiber push-out test, effective material properties of com-
posites, and solutions of piezoelectric composites with an elliptic fiber. All these
topics are analyzed within the framework of linear theory of piezoelectric materials.

3.1 Introduction

Piezoelectric fiber composites (PFCs), which comprise uniaxially aligned piezo-
electric fibers embedded in a polymer matrix, have been widely used in recent years
as transducers in applications such as sensors and actuators, sonar projectors, un-
derwater use, medical ultrasonic imaging applications, and health monitoring sys-
tems [1]. There are currently four leading industrial types of actuators that hold
promise for intelligent structure applications. The first type is referred to as 1-3
composites, manufactured by Smart Material Corp. [2], and is typically used for
ultrasonic and acoustic control applications. Active fiber composite (AFC) actuators
were developed at MIT and were the first composite actuators to focus primarily on
structural actuation [3-5]. Third, macrofiber composites (MFC) were developed at
NASA Langley Research Center, also for structural actuation purposes [6]. Lastly,
the idea of active composites fabricated with hollow cross-section fibers has been
proposed [7] as a means of lowering the typically high voltages required to actuate
AFCs and MFCs.

It is noted that in the application of these smart composites, fracture induced by
crack and interlaminar delimination is a major concern in many applications of
PFCs, especially in aerospace where high structural reliability is required. Among
various mechanisms contributing to the fracture resistance of composite materials,
bridging by reinforcing fibers is considered to be of high interest because it pro-
vides direct closure traction to the bridged crack [8]. To correlate the interfacial
mechanical properties and experimental results and to study the mechanical beha-
vior of the interface of PFCs, it is necessary to develop theoretical models (or em-
pirical formulation) for analyzing stress and electric fields in piezoelectric fiber
tests such as the push-out test and/or the pull-out test. Based on shear-lag assump-
tions, the energy criterion and the Lamé solution for a 2D-axisymmetric problem,
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many micromechanics models have been established over the past decades to pro-
vide a theoretical basis for single fiber pull-out tests. The Gao-Mai-Cotterell model
[9] and its modifications [10-12] have provided a theoretical basis for the analysis
of stress distribution, interface debonding and friction for the pull-out test, using a
fracture mechanics approach. Zhou et al. [13] reported a theoretical model for
evaluation of the interfacial properties of ceramic matrix composites (with no pie-
zoelectric effect) in push-out tests, based on the fracture mechanics approach. For
PFC, Liu et al. [8] presented a theoretical model of fiber pull-out for simulation of
the relationship between crack-opening and bridging stress using a shear stress cri-
terion. Gu et al. [14] extended the model in [8] to include electric field input. Re-
cently, Qin et al. [15] developed a theoretical model for analyzing piezoelectric be-
havior in piezoelectric fiber push-out tests. Wang and Qin [16] presented a debond-
ing criterion for determining interlaminar delimination during piezoelectric fiber
push-out tests. Based on the model in [15] and some assumptions, Wang et al. [17]
studied stress and electric field transfer in push-out tests under both electrical load-
ing and mechanical loading.

On the other hand, increasing applications of fibrous piezoelectric composites
have naturally increased interest in the micromechanics modeling for such materials.
Early reports of the effective material properties of isotropic reinforced solids are
due to Hill [18], and a companion work in 1964 [19] on mechanical properties of
fiber-strengthened materials. Hill’s report indicated that the overall elastic moduli of
fibrous composites are connected by simple universal relations at given concentra-
tions. Exact values of the effective properties can be determined when the phases
have equal transverse shear modulus. In piezoelectric problems, Grekov et al. [20]
studied the composite cylinder effective model for piezocomposites, Dunn and Taya
[21] simplified the piezoelectric Eshelby’s tensors of the elliptic fiber problem and put
them in explicit form instead of elliptic integrals, and then they extended the dilute,
self-consistent, Mori-Tanaka and differential micromechanics methods to cover
piezoelectric composites. Schulgasser [22] found that the effective constants of a
two-phase fibrous piezoelectric composite are connected by simple relations. Ben-
veniste and Dvorak [23] showed that in such composites, uniform fields can be
generated by certain loading conditions. The concept of uniform fields was further
elaborated by Benveniste [24,25] in two-, three-, and four-phase composites with
cylindrical microstructures. Chen [26] presented a number of exact results for over-
all moduli of a piezoelectric composite consisting of many perfectly-bonded phases
of cylindrical shape. Mallik and Ray [27] reported improvement of the effective
material coefficient of piezoelectric fiber reinforced composites by assuming the same
electric field in both matrix and fiber phases. Huang and Kuo [28] directly extended the
Eshelby type equivalent inclusion method to piezomagnetic composites and proposed
an analogous simplification of Eshelby’s tensors [29]. Jiang et al. [30,31] presented a
three-phase confocal elliptical model, in which the generalized self-consistent method
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for piezocomposites was developed as for thermo-electro-magneto-elastic composites.
Recently, Tong et al. [32] presented a three-phase model under in-plane mechanical
load coupling with thermo-electro- magnetical loads. Kumar and Chakraborty [33]
developed an effective coupled thermo-electro-mechanical model of piezoelectric
fiber reinforced composite using an approach based on strength of materials . This
chapter, however, only includes most of the results appearing in [8,14-17,24-26,34,35].

3.2 Basic formulations for fiber push-out and pull-out tests

The geometric configuration of the micromechanical model used in the single pie-
zoelectric fiber pull-out test and push-out test is shown in Fig. 3.1 [8,16], with an
interfacial debonding crack of length /. A piezoelectric fiber polarized in the axial

direction with radius @ and length L is embedded at the centre of a coaxial cylindri-
cal shell of epoxy matrix with external radius b. A uniform stress o, (tension in

pull-out test and pressure in push-out test) and an electrical loading ¢, are applied
at the end of the fiber (z =0). The piezoelectric fiber is considered transversely
isotropic and the epoxy is isotropic. In the following, basic formulations for the
model shown in Fig. 3.1 are presented in order to establish notation and to provide a
common source for reference in later sections of this chapter.

-;ﬁ Poling direction . )

T < 0 = = r
L
(a)

/ D
— i

Ga ;-: o z
L
(b)

Fig. 3.1 Mechanics model of PFCs in (a) fiber pull-out test, (b) fiber push-out test.

Based on linear piezoelectric theory, the relationship between strains and
stresses is expressed as [36]
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for electromechanical loading [17], where the superscripts “m” (in Eq. (3.5) below)
and “f ” refer to the variable associated with “matrix” and “fiber” respectively. In
the above formula, (dy;, g;) and ( B;, ;) are piezoelectric coefficient and dielectric

constants, f; are components of elastic compliance. The constitutive relations of

the elastic matrix are given by

& 1 -v  -v 0 o,
&y RS B B 0 O (3.5)
e’ El-v -vu 1 0 ol
2™ 0 0 0 2(1+v) o

The general equilibrium equations for the fiber-matrix system are given by
ool 00, , o

0z or r
ooy, + elest n o)~ Ol

or 0z r

=0 (3.6)

=0 (3.7)
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oD, +&+ oD, =0 (3.8)
or r Oz

where j=m, f. Making use of Egs. (3.6) and (3.7), the equilibrium between the axial
stress and the interfacial stress can be expressed as

o, =0 +la:; (3.9)
Y

doll 2y

Z =L 1 (z 3.10
& P :(2) (3.10)
dof 2

Z=——1.(z 3.11
& P :(2) (3.11)

where

y=a’ /[(b* —a*) (3.12)

and all stresses appearing in Egs. (3.9)-(3.11) are taken to be the corresponding
average values with respect to the cross section. Substituting Egs. (3.10) and (3.11)
into Eq. (3.6) yields the shear stresses in the fiber and the matrix as follows:

ol =Lr(2) (3.13)
a

2 2
o=y &= (3.14)
ar

The electric field, E;, is defined in Eq. (1.2), i.e.,

-0 g __0¢ (3.15)
or 0z

To simplify the derivation of the theoretical model and without loss of generality,

the axial stresses o and o are assumed to be functions of z only, and the

electric potential which is caused by elastic deformation of the fiber is also inde-
pendent of  [15], i.e.,

oL =0.(2), oL=00(2), $=¢() (3.16)

For a long fiber (L >> a ) polarized in the z-direction embedded in a relatively

large matrix, this assumption is appropriate, and because of the transversely iso-

tropic property of the piezoelectric fiber the following assumption is still accept-

able:

o7.(2) = 0e(2) = q,(2) (3.17)
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where ¢,;(z) 1is the interfacial radial stress induced by Poisson contraction between

the fiber and the matrix or/and applied electric field. Using Egs. (3.2), (3.8), (3.15),
and (3.16), the electric displacements in the fiber can be expressed in terms of fiber
stresses as

£ f
D, =d,so

zz?2

D} =dso. (3.18)
Substituting Eq. (3.17) into Eq. (3.3), we obtain
& = &4 (3.19)

Using the strain-displacement relationships in the axi-symmetric problem

6 =0 and gy, = (3.20)
or r
we have
oy Y (3:21)
or r

where u, is the radial displacement. The solution of Eq. (3.21) shows that
&, and &, are independent of the coordinate 7. Thus, it can be concluded that the
axial electric field £ is also independent of the variable r [14]. Integrating Eq. (3.15),
with respect to z, we obtain

P(r.z) = fi(r)+ 1>(2) (3.22)
Substituting Eq. (3.22) into Egs. (3.4) and (3.8), we have
Sfiry=Alnr+B (3.23)
fH(2)= I%[deqi (2)+(dy; —d,5)ot (2)]dz +Cz+ D (3.24)
33

in which 4, B, C, and D are integral constants and, in general, it is assumed that
B=D=0 because there is no effect on E; and D; after the differential operation [14].
Note that fi(r) approaches infinity when # tends to 0, which implies 4=0. C can be
determined by using the electric boundary condition, say,

D

z

—0=D, (3.25)

where Dj is the electric displacement applied at the end of the fiber. Making use of
Egs. (3.4) and (3.24), C can be determined as

C=d.c,-D (3.26)
15%a 0

It can be seen from Eq. (3.24) that the electric potential is also independent of
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the variable r.
In the frictional sliding interface, 0 <z </, the interfacial shear stress 7; is go-
verned by Coulomb’s friction law [36]. That is,

7,(2) = ~u[qy ~ 4;(2)] (3.27)

in which g is a constant coefficient of friction and ¢, is the residual fiber clamp-

ing (compressive) stress in the radial direction caused by matrix shrinkage and dif-
ferential thermal contraction of the constituents upon cooling from the processing
temperature.

The outer boundary conditions of the matrix are given by

m
rz

=0 (3.28)

r=b

At the interface, the radial stresses and displacements of the fiber and matrix
satisfy

f
=0,

r
r=a

m

(o

(3.29)

=u
r=a

= qi H ur
r=a r=a

At the bonded interface, / <z <L, the continuity of axial deformations re-
quires that

(3.30)

The remaining task is to derive the differential equation for o' and radial stress
q;(z) due to elastic deformation in composites with a perfectly bonded interface or

in the frictional sliding process after the interface is completely debonded. The de-
tailed derivations for these two processes are provided in the following three sec-
tions.

3.3 Piezoelectric fiber pull-out

In this section a theoretical model presented in [8,14] is introduced for investigating
the interaction between fiber deformation, pull-out stress and electric fields. The
model can be used to examine stress distributions in the fiber under both mechani-
cal and electric loads. In the following, the solutions for elastic and electric fields in
both bonded region and frictional sliding region are presented.

3.3.1 Relationships between matrix stresses and interfacial shear stress

The radial and hoop stresses in the matrix can be expressed in terms of
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7,(z) and g;(z) by way of the strain compatibility and equilibrium equations.
Noting that by assumption, the axial stress is dependent on z only, the strain com-
patibility equation can be written as [14]

a m m
T [ %—ua””J (3.31)

1+ov| or or
Substituting Eq. (3.31) into Eq. (3.7) we obtain

B r* 01, (2)
2a(l+v) o0z

m m _
Oy +O_t9(9 -

+F(z) (3.32)

where the function F(z) is to be determined by the boundary conditions. In the

pull-out test, the boundary conditions for radial and hoop stresses can be assumed to
be

m

(o}

rr

r=a= 4 (Z) and Urr;l

,y=0 (3.33)

Thus, the solutions for radial and hoop stresses can be written as

m dTl- z
o) = (4, + pr() T,
i) (3.34)
m Ti z
0, (r,z) = p3(r)q;(2) + py(r) &
where
b2
py(r) :7/[_2_1)
r b
2 2
() =L op b2 lné+yln2 1 +1, 12—l
4a r al  r? r?
bz
p3(r):_7(_2+1]’
r
2
Pa(r) = m{21;2 {mh y/lné(l—kb—zﬂ + 207 —bz)}
4a r a r
2
v (r* +a*)+4b>
4q 7’
with

m =1+v, 1m,=03+v)/2
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3.3.2 Solution for bonded region

In the solution for the bonded region, the following continuity conditions at r=a can
be used:

ul =u™,  ul=ul (3.35)

Making use of Egs. (3.9) and (3.17) and the continuity condition (3.35), we have

dz.(z
& 454 g p(0, -0 -ao! -4,
9,(z) = (3.36)
a— &
where
2d? dii(dy —d,s5) d;(D, —d,s5,)
4= fiy+ fy -3 a, = fi, —3 07 qs) a, = 23020 = %is
33 K33 K33
_p(@)-v _py(a) _ v
&1 —E > &> _E > g3 £

Combining Egs. (3.9), (3.11), (3.35) and (3.36) with axial displacements and
stresses, a second-order differential equation of the axial stress in the fiber is ob-
tained:

d*ocf
dz—;z+ Aot +4,=0 (3.37)
where
A =M IM, A =M,/M
a
M:_E[(bl —h)g, —(a _gl)hz]’
M, =—(b—h)a, +yg)+(a —g )b, +yh),
M, = (b —h)(—ay +yg0,)+(ay— g )by —yho,)
2d,.d di(dyy—d d.. (D, —d
b =2f, =135 by = fis — 33(d33 15)’ by = 13(Dy —dys0,)
33 K33 K33
o U@ op@ 1
E E E

For the case of the pull-out test shown in Fig. 3.1(a), the boundary conditions
are

oL(0)=0,  oL(L)=0 (3.38)
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The solution to Eq. (3.37) is then obtained as

ol (z)=ke" +he ™ — 4,/ 4 (3.39)
where
—AL
e A
A=.-4, kk=——-—|(O-e ——e "o, |,
1 1 l_e,ULL |:( )Al a:|

1 ary A
k2=m|:(l—€ )71+O'a
As mentioned in [14], based on Eq. (3.39), the interfacial shear stress 7;(z)

can be evaluated from Eq. (3.11). Then the interfacial normal stress g,(z) can be
determined from Eq. (3.36). Meanwhile the electric potential can be calculated from
Egs. (3.22)-(3.24) with the proper boundary conditions, such as ¢(L)=0.

In this chapter, the yielding shear stress, 7, , is taken as the maximum shear

stress at which debonding starts along the interface between fiber and matrix, if the
shear stress at the interface reaches 7,.

3.3.3 Solution for debonded region

In the case of friction sliding, the interfacial shear stress is determined from Cou-
lomb’s friction law (3.27). Making use of Egs. (3.9), (3.11), (3.27), and (3.36), we
obtain

d2 f d f
d;” +B, ;ZZZ Byo! +B, =0 (3.40)

where
B,=N;,/N  (i=12,3)
N=-aug,/2, Ny=a(a—-g)/2,
N, =—u(a, +yg;), Ny = pl(—a; +yg;0,)+(a; — g)) D, ]

Equation (3.40) can be solved for fiber stress using the following boundary
conditions [14]:

ol (0)=0, o (L-1)=0 (3.41)
The solution to Egs. (3.40) and (3.41) can, then, be written as
ol (z)=ke™ +k, e -B, /B, (3.42)

where
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—B, +,/B’ —4B,
ham

et w-NBs s
hy=—————| (1—e2") 2 2 |
3 1— e(ll—/lz)(l,—l) B2 a

_ 1 -n(e-ny Bs
ks = oaman {(1 - )B_2+ Ta

3.3.4 Numerical results

To illustrate applications of the theoretical model described above, numerical results
are presented for a piezoelectric/epoxy system, of which the material properties are

[8]: E=3 GPa, v=0.4, f;,=0.019 GPa™', f,;=0.015GPa"', f,,=-0.0057 GPa,
£3=-0.004 5GPa™', f;s=0.039 GPa . The radii of the matrix and fiber are 3 mm

and 0.065 mm, respectively. The piezoelectric parameters of the fiber are given by:
d5=390x10™"° m/V, dyy =—d;5=—190x 10" m/V, x3;=40x10"N/V?, x35=16.25x10° N/V?.
The interfacial properties are approximately evaluated as 7=0.04 GPa and £~0.8.
The initial thermal stress g is taken to be 0.

Figure 3.2 shows the stress and electric fields in the piezoelectric fiber, where
the debonding length is 0.4 mm. In the debonded region (0<z<0.4), both the
fiber axial stress and the electric field are nearly constant. In the bonded area, their
values reduce rapidly. In the boundary between the bonded and debonded regions,
E. has a significant increment.
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Fig. 3.2 Stress and electric fields in the piezoelectric fiber.

3.4 Piezoelectric fiber push-out

In the previous section we presented a theoretical model for simulating the me-
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chanical behavior of PFCs in a pull-out test. Extension to the case of PFCs in the
push-out test is described in this section. The mechanics model to be employed is
shown in Fig. 3.1(b). Using the piezoelectric fiber push-out model presented in this
section, the effect of piezoelectric constant and embedded fiber length on the me-
chanical behavior of fiber composites is investigated. The results show that there is
a significant effect of the piezoelectric parameter and embedded fiber length on
stress transfer, electric field distribution and load-displacement curve of the fric-
tional sliding process.

3.4.1 Stress transfer in the bonded region

Stress transfer is of fundamental importance in determining the mechanical proper-
ties of fiber-reinforced composite materials. For the interface in PFCs, stress trans-
fer is affected by the piezoelectric coefficient in addition to the micromechanical

properties. In the following, the derivation of a second-order differential equation of

o-zfz presented in [15,17] is briefly reviewed.

Consider the mechanics model shown in Fig. 3.1(b). The inner and outer boun-
dary conditions of the matrix are given by

o (a,z)=q,(z), on(a,z)=1,(2), o, (b,z) =0, 72(b,z)=0 (3.43)

Then from Eqgs. (3.14) and (3.43), we obtain [37]

dr.
o™ (r,z) = yq.(z)(b*/r* -1 AL
™(r,2) = yq,(2)(b* /1 ~1) yE

x{2m, b [ In(r/b) + y (b7 /1> =) In(b/a) |+, (0 = "Y1 -’ [ 1)
(3.44)

dr.
o (r.2) ==rq () 1+ [b?) +ﬁ§{zm b [1n(r/b)

—y(0*[r* +D)In(b/a)]+4b* + 25, (B —r?) 41, (b + 1)1 +a*/ rz)}
(3.45)

Substituting Eqs. (3.44) and (3.45) into Eq. (3.5) yields
E”;n_ o N\m2/2 _ mL% 201

. —yqi(z)[( v-1)b/r 1+U:| voy + o © {2771b (1 U)[ln(r/b)
—yln(b/a)]+anbzyln(b/a)(—u—l)b2/r2+772 (b2+r2)(1+a2/r2)

o, (02 =r*)(1-a*/r? )+ 4b* + 21, (1? —rz)} (3.46)
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Eoul”
0z

=2vyq,(z)—vol —2v 4}/ (ZZT’ {25, 5*[In(r/b) -y In(b/a)]

a
(b =17)+267 +p, (a? + )} (3.47)
For a fully bonded interface, the continuity conditions of axial and radial defor-

mation between fiber and matrix are given in Egs. (3.29) and (3.30). From Egs.
(3.1), (3.30) and (3.47), the radial stress of the fiber is obtained as

1 £ y dr,
(z2)=——yo /E—|y/E+ fis +g:.d,. oo —20——L
q;(2) 2(f,3—}/l)/E){y P (7 i3+ 833 15) z 4Faq dz

X[ 2mp? (14 p)In(afb)+ (87 —a®)+ 267 + (@ +BD) || (3.48)

Then, combining Egs. (3.1), (3.29), (3.46), and (3.48) yields the differential

equation of ! in the form
dz f
“—ZZ(Z) ~ A0 (2) = Ao, (3.49)

where 4, and A4, aretwo constants:

I/ E+ fi3+g3dis —B(y/E+ f33+ 833dys5)

A = (3.50)

%(q +2B,0C, /| E)
4 - -yw/E—-BylE (3.51)

%(q +2BvC, | E)

with
p = Jotfu—r(co-Db/(Ea®) +y(1-v)/ E 3:52)
1= .
2(fi3—yv/ E)
C, = 26> (1-1)(1+ y)In(a/b)/ E + 2n,b° y In(b/a)(~v—1)b | (Ea®)

+2n,(a* +b*)/ E+4b* | E + 25,1, (b* —a*) (3.53)
C, =2n,b°(1+y)In(a/b) + 1, (b* —a”) +2b* +1,(a” +b%) (3.54)
n =-2(1+v)/v (3.55)
n, =—(1+v)/v-1 (3.56)

Using the stress boundary conditions
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cf(0)=0c,, ol(L)=0 (3.57)

The axial stress in the piezoelectric fiber is given by
A
o' (2) = K, sinh(\/4,2) + K, cosh(y/4, 2) - 72% (3.58)
1

where K, and K, are defined by

4 —[1 + ff] cosh(y/4,L)

Al 1

o
sinh(\/AT L) ‘

K, = [1 +%]aa (3.60)

1

K=

(3.59)

In addition, using Eqs. (3.6), (3.7),and (3.17), ¢;(z) can be expressed as

d’cf
4,(2)=No, = N,o! + N, 5 (3.61)
where N, (i=1,2,3) are given by
E+ fi3+ 83,4,
= b4 , N, = Y/ E+ f33 + 33dss N, = yGo (3.62)
2(Ef i3~ ) 2fi3 =/ E) 4E

From Egs. (3.2), (3.18), (3.58), and (3.61), the electric field E, can be calcu-
lated by

d
E.(2) =—2g4,4,(2) +[£— g33j0'2fz (2) (3.63)
K33

3.4.2 Frictional sliding

Once the interface debonds completely, the frictional sliding of the fiber out of the
surrounding matrix will begin, which is the last stage of the push-out process. To
better characterize this stage, theoretical analysis was conducted with the microme-
chanical model shown in Fig. 3.3.

For the sake of simplicity, we assume a small elastic deformation and a large
displacement at the fiber-loaded end during sliding. Therefore, the elastic deforma-
tion of the fiber can be neglected, and the fiber axial displacement o approximately
equals the fiber sliding distance s, thatis, 0 = s .

The governing equation for O'Zf in this case can be derived in a manner similar
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to the mathematical operation for Eq. (3.49). In fact, from the continuity condition
of radial displacement (3.29) and Egs. (3.6), (3.14), and (3.17), we have

7]‘130 1Sz U/ E+g3d;s of +LQ%

(2) = 3.64
%(2) D D, ° 4aD dz (5.64)
o’{!
KA —
L s
Fig. 3.3 A fiber-matrix cylinder model for frictional sliding in the push-out test.
Substituting Eq. (3.64) into Eq. (3.27) yields
d’cf(z dof(2)
2210 °% 5 000, (3.65)
where Q. (i=1,2,3) are given by
4aD,
0 =—221 (3.66)
uy G
0, 28(_VU/E+f|3+g31d15) (3.67)
G
8D, [ —yv
=—/| ——o0, - 3.68
Q3 7C1 [DIE a qo] ( )
with
D, = fi, + f;, —y(~0-)b*/(Ea*)+ y(1-v)/ E (3.69)
Using the stress boundary conditions
ol(s)=0,  ol(L)=0 (3.70)
The solution to Eq. (3.65) is obtained as
ol (2) :K3ellz +K4ehz +% 3.71)
2

where s is the fiber sliding distance (see Fig. 3.3) and K, K,, 4, 4, are given by
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Ky =0ymy+no,,  K,=0ymy+n,0o, (3.72)

1 Rt LR NP S o BN R IR CRE)

with
- e/lzL _exlz_v . ells _ellL (3 74)
my = 0, (e/llL+/123 _ells+l2L) > my = 0, (e/ilL+lzs _e/lls+/12L) :
AL AL
e e
ny = ny (3.75)

T hLhs _ stal = ALs _ hsthal

In the process, the interfacial shear stress is governed by Coulomb’s frictional
law given in Eq. (3.27). Noting that fiber and matrix maintain contact in the radial
direction, we have

u' (a,2) =u™(a,z) (3.76)

Then, the radial normal stress can be expressed as

d2 f
q.(z) = M, — M,o, + M, dz"; (3.77)
where M, (i=1,2,3) are given by
-wI/E
M] — _ 70 , M2 — 7/0/ +fi3+g3ld15 , 1‘43 :_7_C1 (378)

ED, D, 8D,

Using Egs. (3.2), (3.18), (3.71), and (3.77), the electric field can be obtained as

d,
EZ(Z)=—2g31%(z)+[i—g33j0§(2) (3.79)
K33

Noting that the sum of the radial normal stress of the fiber should be negative,
and the fiber and matrix can contact each other during the fiber sliding process, the
radial stress must satisfy the expression

G—4,(2)<0 (3.80)

According to the distribution of the fiber stress fields in the push-out test, the
axial stress reaches its maximum value at the fiber-loaded end z=s(s>0, and s

is defined in Fig. 3.3), while the interfacial shear stress reaches its minimum value
at the same location. Then Eq. (3.80) yields

99— q;(s)=0 (3.81)

Therefore the relationship between the applied stress o, and the axial dis-



3.4 Piezoelectric fiber push-out 69

placement § (J =~s) at the fiber-loaded end can be given as
qo (l _m3212ells _m4ﬂfze/125')

o 2 ks 2 sy, PG 2 s 2 Jps
——(mA7e™ +myA, e )+ (A e +ny A)e™)
ED, 8D,

o, =
Sz +&udis
D,

(3.82)

3.4.3 PFC push-out driven by electrical and mechanical loading

The formulation presented above can handle push-out problems under mechanical
loading only. In the following, discussion of PFC push-out testing subjected to both
mechanical and electric loading is presented.

Consider now the electrical boundary conditions at the ends of the piezoelectric
fiber:

#(0)=V, #(L)=0 (3.83)
From Eq. (3.24), we have

c--L
L kL

IOL[2d13ql.(z)+(d33—dls)dzf(z)sz (D=V)  (3.84)

Following the procedure in Subsections 3.4.1 and 3.4.2, solutions of the stress
fields in the bonded region (/ < z < L) can be written as

ol (z)= 7(0(0'* +o, )[1 —exp(—A4z)] (3.85)
ol(z)=0, —a)(O'* +0'a)[1—exp(—/lz)] (3.86)
7,(z) = MTCU(G* +0,)exp(-12) (3.87)

E[flS —dy5(dy; _d]S)/K33]szz(Z)+UG;n(Z)_Ed]3C

(z)=—- 3.88
%(2) E(f;, + fi, —2d,3* | K33) + 1+ 2y +0 (3.88)
in which
o= E[f13 —d;(dy, _dls)/K33] (3.89)
E[f13 —dy;(ds; _d15)/K33]_7U
ot =_2 9 (3.90)
PO
a2 (3.91)
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E —di(dy, —d <)/ -
i [fi —dis( 5 1)/ Ks ] = 0 (3.92)
E(fi,+ fi—2d;" /Kk33)+1+ 2y +0

. Ed,;C
E(f,, + fi, =2d,3* | ky3) +1+ 2y +0

q (3.93)

The solutions of the stress fields in the bonded region (/ < z < L) are obtained as

4
[AZaa+o—ljsinh./Al(L—z)—j2aasinh,/Al(z—z) ,
ol(z)=~— . 250 (3.94)
sinh /4, (L —1) 4

4
(/120“ +0',jsinh,/A1 (L—z)—%aa sinh /4, (/ - 2)
1 1

y
0'2“(2)=7[1+—2j6a—7

4 sinh /4, (L 1)

(3.95)

K 4, J 4,

Aa|| —o,+0 cosh\/Z(L—z)——O'a cosh\/jl(l—z)
(2) = 4 4 (3.96)
§ 2sinh /4, (L 1) '
where

o,=c.()=0,-0(c" +0,)[1-exp(-A])] (3.97)

4 - 2{7+E[f33 —dy;(dy; —dy5)/ K35 ]=2p(y0 — Ef 5 + Ed, 3y /Kss)} (3.98)
1 (1+0)[ 290> In(b/ a)—a” | '

2{[)/+2(;/U—Ef]3 +Ed,ydy; | 1655) (@ -1)p]

+2[J’U_E(f13 —dy3dy; /K53 )]q*/aa +Edy;Clo,

A =—
? 1+ 1))[2;/b2 ln(b/a)—azJ

(3.99)

The electrical field E, in both the debonded and bonded regions is given as

E =—L[2d13‘]i(z)+(d33 _dls)azf(Z)J_C (3.100)
K

z
33

3.4.4 Numerical assessment

To illustrate applications of the proposed theoretical model and to reveal the effects
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of the electromechanical coupling on stress transfer behavior, numerical results are
presented for a piezoceramic fiber/epoxy matrix system subjected to a push-out
load. The material parameters are assumed to be the same as those used in Subsection
3.34. The radii of fiber and matrix are: ¢=0.065mm,b=3mm, [=

0.6 mm (! = 0 for fully bonded fiber), and L =2 mm. The residual fiber clamping
stress in radial direction ¢, is assumed to be —0.01 GPaand x =0.8[15,17].

Figures 3.4(a)-(d) shows the distribution of stresses and electric field as func-
tions of the dimensionless axial distance z/L for a partially debonded piezoelectric
composite system subject to a constant external stress o, =1.5 GPa in the fiber
push-out test. For comparison and illustration of the effect of electromechanical
coupling on stress transfer behavior, the corresponding distribution of stresses for a
non-piezoelectric fiber composite (NPFC) is also plotted in Fig. 3.4. It is found that
the curves for PFC and NPFC have similar shapes. When subjected to applied stress
of same value, the axial stress o' in PFC is smaller than that in NPFC (Fig.
3.4(a)). It can also be seen from Figs. 3.4(a) and 3.4(c) that both axial and radial
stresses in the fiber gradually decrease as z/L increases. Figure. 3.4(c) demon-
strates that there is a larger radial stress in the PFC and it decays more rapidly than
that in NPFC, which leads to a larger interface shear stress in the debonded region
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Fig. 3.4 Plot of (a) fiber axial stress, (b) interface shear stress, (c) fiber radial stress, (d)
electric field for the piezoelectric fiber push-out under mechanical loading.
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of PFC in Fig. 3.4(b) due to the Coulomb friction law (3.27). This phenomenon can
be attributed to the piezoelectric effect in piezoelectric fiber; a larger applied stress
is required in PFC to produce the same axial stress as in NPFC. The difference in
the stress fields between these two composite systems is controlled by piezoelectric
coefficients, which were investigated in [15] for fully bonded composites. When the
piezoelectric coefficients and dielectric constants are set as zero, piezoelectric fiber
degenerates to non-piezoelectric fiber. Figure 3.4(d) shows the variation of electri-
cal field as a function of axial distance z/L. The variation of £, with z/L is very simi-

lar to that of the fiber axial stress.

Figures 3.5(a)-(d) shows the distribution of stresses and electric field as func-
tions of dimensionless axial distance z/L for a partially debonded piezoelectric
composite system subject to electrical loading and a constant external stress
o, =1.5 GPa in the fiber push-out test. In order to study the effect of positive and

negative electric loading on stress transfer, electric potentials of 5 000 V, 0 V, and
—5 000 V are applied at the end of piezoelectric fiber (z = 0). Figure 3.5(a) shows
that the fiber axial stress decays more rapidly under negative electric potential than
under positive electric potential. It can also be seen from Fig. 3.5(c) that negative
electric potential leads to a larger radial stress in the piezoelectric fiber than applied
positive electric potential, whose positive electric potential accordingly causes a
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Fig. 3.5 Plot of (a) fiber axial stress, (b) interface shear stress, (c) fiber radial stress, (d)
electric field for the piezoelectric fiber push-out under electrical and mechanical loading.
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larger interface frictional shear stress in debonded region in Fig. 3.5(b). This is be-
cause when piezoelectric fiber is subjected to an electric potential applied parallel to
the polarization direction, expansion occurs in the same direction and shrinkage
occurs in the transverse direction [38]. For a positive applied electric potential, the
hoop stress developed is in compression, while for a negative applied electric po-
tential, the hoop stress developed is in tension. In Fig. 3.5(d), the distribution of
electric field in the piezoelectric fiber is plotted via z/L, and it depends heavily on
the applied electric field.

Figures 3.6-3.11 apply to problems with fully bonded fiber. Figures 3.6 and 3.7
present the distribution of fiber axial stress and interfacial shear stress at the first
stage of push-out for different embedded fiber lengths. At the fiber end (z/L=0),
the applied stress is given by o, =—0.05 GPa. It is evident that the stress distribu-

tion in the piezoelectric fiber is similar to that in conventional material fiber such as
carbon fiber. The fiber axial stress decays rapidly near the fiber-loaded end and the
rate of decay varies with the embedded fiber length. The curves in Fig. 3.7 show
clearly that the maximum interfacial stress is not very sensitive to variation of fiber
length when L >2 mm, and the interfacial stress remains almost constant when
z/L > 0.6, which is quite similar to the finding in [37].
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Fig. 3.6 The distribution of fiber axial stress O'Zfz (z) in fully bonded interfaces of different
lengths (applied load stress o, is—0.05 GPa).

To study the effect of the piezoelectric parameter and electro-mechanical coupling
on stress transfer, stress distribution is plotted in Figs. 3.8 and 3.9 for both
non-piezolectric fiber and piezoelectric fiber with different d,; where the fiber

length L =2.0 mm. Figure 3.8 shows that axial stress decreases along with in-
crease in the piezoelectric constant d,s, i.e., axial stress will be smaller at any

given position z/L for a larger value of d,5. Axial stresses decay more rapidly in

piezoelectric fiber than in non-piezoelectric fiber. The situation in Fig. 3.9 is



74 Chapter 3  Fibrous Piezoelectric Composites

slightly different. There is a critical location z, /L =0.24 at which d,; has no

effect on interfacial shear stress. It is evident from Fig. 3.9 that shear stress will
increase when z<z. and decrease when z>z. , along with an increase in the value of
d,s. This phenomenon indicates that the higher the value of d,5, the higher the

rate of decrease in both axial and shear stress. A comparison of the shear stress dis-
tributions in piezoelectric and non-piezoelectric fiber is also made and plotted in
Fig. 3.9, and their significant difference is observed.
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Fig. 3.7 The distribution of interfacial shear stress 7;(z) in fully bonded interfaces of
different lengths (applied load stress o, is—0.05 GPa).
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Fig. 3.8 The distribution of fiber axial stress azfz (z) in a fully bonded region (applied
load stress o, is—0.05 GPa and d;5=190x10""2 m/V).

Because of the piezoelectric effect, an electric field exists in the fiber. The dis-
tribution of the electric field in axial direction £, is shown Figs. 3.10 and 3.11. It
can be seen from these two figures that the distribution of the electric field and the
effect of the fiber length and the parameter d,; are quite similar to those of the
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stress field (Figs. 3.6-3.9).
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Fig. 3.9 The distribution of interfacial shear stress 7;(z) in a fully bonded region (applied
load stress o, is—0.05 GPa and djs=190x10""2 m/V ).
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Fig. 3.10 The distribution of electric fields in piezoelectric fiber for different embedded
lengths (applied load stress o, is—0.05 GPa and d; =190x107"? m/V ).

0.7

1.0%d5
0.6 A L7
0.5 === = 20

E/A(kV/mm)
=
N

Fig. 3.11 The distribution of electric field in a piezoelectric fiber for different values of
d,s (applied load stress o, is—0.05 GPa and dj5=190x10""2 m/V).
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3.5 Interfacial debonding criterion

In the previous two sections theoretical models were described for simulating fiber
pull-out and push-out processes. A debonding criterion for identifying interfacial
delimination during fiber push-out testing of PFC is introduced in this section. The
debonding criterion can be used for investigating the debonding process of piezo-
electric fiber in the push-out test under combined electrical and mechanical loading.
The description in this section is based on the results presented in [16].

Unlike in NPFCs, there are electrical fields induced by the piezoelectric effect
or inverse-piezoelectric effect of PFCs. Owing to this phenomenon, the debonding
criterion for NPFCs is not directly applicable. To incorporate the piezoelectric effect
in the debonding criterion we consider a cracked piezoelectric elastic body of vol-
ume ¥ in which traction P, frictional stress #, and the surface electrical charge @
are applied. S,, S, and S, are the corresponding surfaces respectively, as

shown in Fig. 3.12. For the sake of simplicity, the matrix is assumed to be a piezo-
electric material whose piezoelectric coefficients and dielectric constants equal zero.
In our analysis, the debonding region is taken to be a crack (see Fig. 3.12).

P

(G

Fig.3.12 A piezoelectric elastic body with a frictional crack under electromechanical loading.

Based on the principle of energy balance, the variation of energy in the piezo-
electric system for crack growth d4 along the friction surface under electro-
mechanical loading is

dI7 = -G, dA—dW, 3.101)

where G, is fracture energy, W, is the work done by friction stress during crack

growth,

W, = jST (t+1,)vdS (3.102)

and /7 is the generalized mechanical and electrical energy stored inside the pie-
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zoelectric body:
1 .
Jod =EJ.Q(e+eO) (5 +5,)d2
—1j (D+D,):(E+E )dg—j Pud5+j w®dS (3.103)
2 0 0 0 SP S(u

in which v is the relative slip of crack surfaces and #, is the tangential compo-
nent of pre-stress (or initial stress) on the crack surfaces. s,, D,, ey, and E, are

selfequilibrium initial stress, electrical displacement, strain, and electrical field re-
spectively, and s+s, and D+ D, balance the applied loads.

Using the basic theory of piezoelectricity (3.1)-(3.8), one can easily prove the
corresponding reciprocal principle of work and the principle of virtual work for
piezoelectric material:

[ dutar-[ o@ar+| flude={ fudr-| o*@'ar+| flulde
(3.104)

jr’ tdu.dl + jgt,.esu,.dg— jrwaa@dr—jg GO0 = jﬂ(a,.jagi, —D3E,)dQ
(3.105)

Using the two principles (3.104) and (3.105) and following a method similar to
that employed for fiber pull-out analysis [39], it can be proved that U, against the
incremental debonding length, /, is equal to the energy release rate G, for the

debonded crack, that is

214G, = % (3.106)

in which U, is the total elastic energy and electrical energy stored in the fiber and

matrix, which can be expressed in the following form:

U, = J.;j:[azfng -D.E, Jnrdrdz+Ileoa[a§8§ -D.E, Jnrdrdz

IJ |:(O'm) 2(1+u )( )}nrdrdz

=) {(2) 2(“"? ) (6 )Jnrdrdz (3.107)

Then the following energy criterion is introduced:

G >G, (3.108)

i

in which G, is the critical interface debonding energy release rate.



78 Chapter 3  Fibrous Piezoelectric Composites

In Eq. (3.107), U, is a complex function of the material properties of the con-

stituents and geometric factors. Performing the mathematical operation over the
debonded and bonded regions for a piezoelectric-epoxy composite system by utilizing
a numerical quadrature approach, G; derived in this study can be obtained as a
second-order function of the applied stress o, for a fiber/matrix system with

given debonding length /.

To illustrate the effect of electromechanical coupling on the debonding behavior
of PFCs and to verify the proposed debonding criterion for the piezoelectric fiber
push-out problem, a numerical example is considered for two composite systems,
namely piezoelectric fiber/epoxy and non-piezoelectric fiber/epoxy. The parameters
of the piezoelectric fiber and matrix are given as [8]:

£11=0.019GPa™, f,; =0.015GPa™, f,, =-0.0057 GPa™",
fi3=-0.004 5GPa™", £, =0.039 GPa™', dy; =390x107" m/V,

dy =—d;5 =—190x10" m/V, g;; =24x107 V-m/N,

831 =-11.6x1073 V-m/N, ey, —16.25%x10° N/VQ’ E. =3 GPa, v, —0.4

The radii of fiber and matrix are given by: @ =0.065 mm,b =3 mm,
[ =0.6 mm, and L =2 mm. The residual fiber clamping stress in the radial direc-
tion ¢, is—0.1 MPaand u =0.8[8]. It should be pointed out that real piezoelectric

fibers have a wide variety of shapes and sizes. In general, the radius a of a piezo-
electric fiber is about 5/400 pum, and the fiber length L <200 mm (More details

as to the shape and size of a piezoelectric fiber can be found elsewhere [15,40-42]).
In a real single fiber push-out test, in general, the ideal single fiber composite is the
one with the value of the matrix radius b being variable, b5>>a, and L between 1/2 mm
(see[43] for details).

The geometric configuration and properties of non-piezoelectric fiber matrix
and interfaces are the same as those of its counterpart, the piezoelectric fiber, except
that the piezoelectric coefficients and dielectric constants are set as zero.

To illustrate the effect of electrical loading on stress transfer behavior, Fig. 3.13
presents the distributions of interfacial shear stress as functions of dimensionless
axial distance z/L for partially debonded PFCs in the fiber push-out test. In the cal-
culation, the debonding length is set to be /= 0.6 mm. The distribution of interfacial
shear stress in PFC is similar to that in NPFC [13], in that both show a jump at the
point //L (i.e., the interface between the debonded and bonded regions). It is evi-
dent from Fig. 3.13 that there is a larger interface shear stress in the debonded re-
gion under an applied negative electrical potential. This is because, for piezoelectric
fiber, expansion occurs in the same direction and shrinkage occurs in the transverse
direction when the fiber is subjected to an electrical field applied parallel to the po-
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larization direction. For an applied positive electrical potential, the hoop stress in-
duced is in compression while for a negative applied electrical potential, the hoop
stress developed is in tension [38]. Therefore, an applied negative electrical loading
leads to a larger shear stress in the debonded region than that induced by a positive
electrical loading, according to the Coulomb friction law(3.27).

T T T T T T
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Fig. 3.13 Distribution of interfacial shear stress 7;(z) under different electrical loadings

for a constant mechanical loading o, =0.06 GPa.

The effect of interfacial properties on PFC performance is shown in Fig. 3.14,
showing the variation of electrical field as a function of axial distance z/L for several
values of the parameters of interfacial properties. It can be seen that the electrical
field decreases along with either an increase in the residual compressive stress g,

or an increase in the Coulomb frictional coefficient x . These results indicate that

for piezoelectric composites, the interfacial properties not only control the stress
transfer between fiber and matrix but also have an important influence on the
distribution of the electrical field. It should be mentioned that at the transition point
from the debonded region to the bonded one there is no jump in electrical field,
unlike in the case of interfacial shear stress. This phenomenon is very different from
the result obtained in [8], and this difference is mainly attributed to the fact that in

our model the expressions for o) and oy, do not include the term 7, owing

to the use of Lame¢’s solution [37]. It is also evident from Fig. 3.15 that the results
depend largely upon the piezoelectric constant ds.

To study effect of piezoelectric coefficient on the debonding process, the results
of energy release rate are plotted in Fig. 3.15 as a function of debonding length /
for different piezoelectric coefficients d,5. From this figure we can see that the

normalized energy release rate G,/G,, increases along with an increase in the
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value of d,. In addition, the energy release rate increases distinctly along with an
increase in the value of //L until it reaches a maximum. This finding implies that
the piezoelectric effect has an important influence on the fiber debonding process
during fiber push-out.

0.8 , ] X ,
0.7 i
| —=— u=0.8, g;=—0.1 MPa |
06f —— §=04, gy=—0.1 MPa |
—05F A /1:0.2, (/0:—0.1 MPa B
g | N #=0.8, g;=—0.2 MPa
§ 04F ‘ < u=08, g;=—-0.3 MPa |
_‘é .
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o2t
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Fig. 3.14 Distribution of electric field in piezoelectric fiber under mechanical loading
o, =0.06 GPa for different interface property parameters.
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Fig. 3.15 Energy release rate G;/G,, vs. [/L under different d;s for a constant me-
chanical loading o, =0.06 GPa. G,, represents the energy release rate for dj5 =1.0%d;

and //L=0.05.

In Fig. 3.16 the energy release rate vs. electric potential loading is plotted, from
which it can be seen that the energy release rate is linearly dependent on the elec-
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trical loading when PFCs are subjected to a constant mechanical loading. The ob-
servation above indicates that the total energy release rate can be used as a debond-
ing criterion for the piezoelectric fiber push-out test.

It should be mentioned that the energy release rate derived in this section is the
total energy release rate. Park and Sun [44] obtained the total energy release rate
and the mechanical strain rate for an electrically impermeable crack in an infinite
piezoelectric medium for the three fracture modes, theoretically and experimentally.
They concluded that the total energy release rate could not be used as a fracture
criterion because the electrical loading always reduces the total release rate. How-
ever, it should be remembered that those results derived from the electrically im-
permeable condition on the crack surfaces, a condition not involved in our problem.
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Fig. 3.16 Energy release rate vs. electrical loading under various mechanical loadings,
I/L=02.G,, representsthe energy release rate for electrical loading 0.6 kV.
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3.6 Micromechanics of fibrous piezoelectric composites

In the previous sections of this chapter, stress transfer and interfacial debonding
criteria of fibrous piezoelectric composites were described. Determination of the
effective material properties of fibrous piezoelectric composites is discussed in this
section. It focuses on the developments in [25,26,34].

3.6.1 Overall elastoelectric properties of FPCs

In this subsection some exact results presented in [26,34] for effective properties of
a piezoelectric composite consisting of many perfectly-bonded transversely iso-
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tropic phases of cylindrical shape are briefly summarized.

Unlike the format of the constitutive relation (2.2), both Benveniste [34] and
Chen [26] employed the five constants of Hill [19] (k, [, m, n, p) in the constitutive
relation they studied. For a piezoelectric composite with a fibrous structure charac-
terized by the fact that the phase boundaries are surfaces which can be generated by
straight line parallel to the x;-axis, the constitutive relations of a class 6mm of the

[T3%1)

hexagonal system for phase “/” are in the following form:

oy, « [k, +m, k.-m. 1. 0 0 0][g, «
Oy k,—m, k.4+m_ [, 0 0 0 |]|é&y
ou| | L [, n, 0 0 0 |]eé&y
onl| | 0 0 0 p 0 0|26,
O3 0 0 0 0 p. 0|2,
oy, | 0 0 0 0 m, ||2¢&,
0 0 €]
0 0 @_«Eq) E (r)
0 0 (r) 1
- “ \E, (3.109)
0 ¢ 0 ||g
3
0 0
L0 0 0|
r T
0 0 &l (g1
(")
pyo |00 e e K00 0 (g @
1 - 1
R U =S I ")
D, = + 0 2 0 HE (3.110)
0 &2 0 2853 .
D, 15 5 0 0 K}(}) E;
¢ 0 0 &3
Lo o o] (%

where k represents the plane strain bulk modulus for lateral dilatation without axial
extention, / the associated cross modulus, m the transverse shear modulus, 7 the
modulus for longitudinal uniaxial straining, and p the longitudinal shear modulus.
Following the procedure of Chen [26], a representative volume element V' of the
composite is chosen so that under homogeneous boundary conditions it represents
the macroscopic response of the composite. The phase volume fraction ¢, satisfies
crteytetepy=1, where N is the number of phases in the composite. The volume V is
subjected to uniform displacement and electric boundary conditions

u;(S)=€)x;, #(S)=—E'x, (3.111)
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where u; and ¢ denote the applied elastic displacement and electric potential, 51.2

and EiO are constant strain and electric field tensors. The overall material properties

of the composite are then defined by
6=Le’"—e'E’, D=es"—kE’ (3.112)

where & and D stand for the volume average stresses and electric displacements
in V. Under the boundary condition (3.111), the relationships between local and
global average fields in V are given by

N N N
e'=Ycg, E'=>c¢E, ©=)¢5, D=)cD (3113
r=1 r=1 r=1
in which ¢, is the volume fraction of material r, and

- 1
(), :ZJ‘Vr(u),.dV (3.114)

In deriving the following formulations for effective material properties, Ben-
veniste [34] used two special types of loading condition (3.111):

w($) |en 0 0 |(xy

w,(S)p=l 0 &) 0 |ix, Gi15)

u;(S) 0 0 &%|[lx '
#(S) =—E3x,

w) [0 0 &y

w(S) =l 0 0 & [ix (3.116)

23 (S) 8103 833 0 X3 '

#(S)=-E)x — Eyx,
Under the loading condition (3.115), the solution can be assumed in the form

) _ () ry _, ()

u =up(x,%,), Uy =uy  (x,%,),
" . " . (3.117)
r r

Uy " = &35, P =—E3x,

The resulting stresses, electric displacements, equilibrium equations, and conti-
nuity conditions are
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3 0 0
ol =k, +m ) + (k. —muy) +1.65 — &) EY,

0 0
0% = (k, —m ) +(k, +m)uy) +1.65 — &) EY,

0 0
03(;) = lr (ul(j) + ung)) + I’lr533 - e:gg)ES b

3.118
(r) _ (r) (r)) ( )

o1 =m, (u; +uy
DY = e (uy) +ul))+elels + k5 EY,
O'gg) = O-](;) =D =D{" =0

(k, +m, D + (k= m,)u, +m, ()5, +ul ) =0,
() ) ) o) (3.119)
(k, —mu'py +(k, +muy 3y +m, (w5 +us’}) =0
ul(r) — ul(s)’ u;r) — M;S),

ol'n +oyny = +on,, (onrl,) (3.120)

(r) ), _ (s) (s)
Oy1 M + 03 1y =051 +05 1y

where n = (n, n,,0) denotes the normal to the interface 7, which is the interfaces
between phase r and phase s.

For the loading condition (3.116), the corresponding solutions can be assumed
in the form

(r) _ .0 ") _ .0
Uy~ =ép3Xs, Uy " =&y,
") _ " 0 0 () _ 40 (3.121)
uy” =y (X, ) — E3X) — €3, ¢ =47 (x,x,)
The stresses and electric displacements induced by the fields (3.121) are
o) =pwy +edy. o =pyi e,
(r) (r),, (1) (r) 4(r) (r) (), (r) (r) 4(r) (3.122)
r r r r r r r r r r
D7 =es'y)’ — Ky ¢,1 > D) =eswy — Kk P,
whereas the equilibrium equation (3.119) becomes
PV 4" =0 VYT —qPg =0 (3.123)

in which the functions " and ¢ can be obtained by solving (3.123) under the
boundary conditions (3.116) and the following continuity conditions at the inter-
faces 7,:

ul(r') — ul(s)’ ugr) — ugs)’

o\ +oyn, =o\)n +ol3'n,, (onrl,)  (3.124)

(r) ), _ —(s) (s)
Oy My + 03 1y =051 +05 1y
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3.6.1.1 Effective properties of two-phase composites

(1) Effective constants of &, /, n, e3, e33, and x3;.

To determine &, assume &) = &5, and &3, = Ey = 0in Eq. (3.115). Then, Egs.
(3.117)-(3.120) show that this turns out to be a purely mechanical problem and &
can be expressed as [34]

k=k + (3.125)

ke =k, k,+m,

m

[T L]

where the subscripts “m” and “f ” represent the related variables which are associ-
ated with matrix phase and fiber phase. The formulae for the remaining five con-
stants can be obtained by making use of the universal connections between these
moduli as recently derived by Schulgasser [22]:

ke =k ky,—k c b +cle—1 cme§T> +cfe§? —e5

I -1 1 -1 econ +cfnf—n_c eg';)+cfe§?—e33’
m m "m m ( ) ( (3'126)
m
ke —k  k,—k Col by =1 €3 —cpe3) —crey

(f) T (m) - (m) (H) - (m) (f)
€1 —€y &y €y (63 T ey —€3  CpK3y T K33 — Ky

It is noted that only five of the six relations in Eq. (3.126) are independent. Once &
is known from Eq. (3.125), the effective material constants /, n, e;;, e33, and x33can
be determined from Eq. (3.126).

(2) Effective constants of e;s, p, and «;.

The determination of these three constants involves the application of boundary
condition (3.116) and the use of Eqgs. (3.121)-(3.124). For simplicity, rewrite the
constitutive equation (3.122) in matrix form

(r) () V4 (r) v (r)
of “lay —ip]lvel T lve

The real symmetric matrix L, can be diagonalized by means of the transformation
L =WLW' (r=m,f) (3.128)

where W may be complex, and Lt. is diagonal.

Now define

(1) (r) ) (1) (r)
° =W{G} : VW* —(wT)" {V"”} (3.129)
D D \7) V¢

so that there is
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NG ()
c « |V * .

.t =L b V.o =0, V-D' =0 (3.130)
D vV

Therefore, in terms of the new field quantities, the original coupled problem is
reduced to two uncoupled problems. The transformed effective tensor L is also
diagonal. That is,

L' =WLW" (3.131)

. 0
L {p } L:[p Gs } (3.132)
0 —x €s —kj

The above procedures imply that use can be made of known results in the uncou-
pled system to transform them to the coupled system. The composite cylinder re-

with

sults for p” and «;, are given by [34]

2 =p;m,
Pm(+¢) + prey,
K1*1 :< . )m Cm (Kl*l )m +(K1*1)f (I+cp)

K,
! (Kl*l )m (1+Cf)+(Kl*l )f Cm

(3.133)

Equation (3.133) can be written in matrix form as
"0 w0 [H o]'[F o
P . | = P . { } { } (3.134)
0 —«,] |0 —(«) [LO J] [0 G

H:P:n(l"‘cf)"'l’;Cma J:_<Kfl)m(l+cf)+(_’(:1)f Cm>

where

.. . . (3.135)
F=copn+pi(te), G=c,(—xi) +(=«), A +ep)

To transform the L" into L, multiply each side of Eq. (3.134) by W—1 and WT-1
respectively, and after some mathematical manipulation, we obtain

L= IJm [(1 + Ce )Lm + cmLf ]7l[cmLm + (1 + Ce )Lf] (3136)
Equation (3.136) gives the effective constants p, e;s, &j; of two-phase FPCs.
3.6.1.2 Effective properties of FPC with equal transverse shear modulus

Consider a multiphase FPC with the same transverse shear modulus for all
phases and with transversely isotropic constituents described by the constitutive
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laws (3.109) and (3.110). The method of derivation follows closely the analysis
of Hill [19] for the uncoupled mechanical case. Let the composite be subjected
to the loading condition (3.115), resulting the following fields:

u = af(r)(xl,xz) " = of"” (%, %)
1 - ) 2 - )

( ) _ (r) _ 0
P ' 533x3 ) ¢ =—E3x,
X, 0ox,

(3.137)

where f'is an unknown function to be determined from the governing equation and
boundary conditions. Substituting Eq. (3.137) into Egs. (3.109) and (3.110) yields [26]

ol =(k, +m)f{) +(k, —m)fS) +1,.6) — e EY,

o3y = (k, —m)f{} +(k, +m)fS) +1.6 — e EY,

o) =L+ [5) +me — e ES, (3.138)

(;) — szl(g)’
D =& (17 + 3+ e el + 3 B
oy =0y =D{" =D;” =0
Benveniste [34] indicated that Eq. (3.119) are identically satisfied by requiring

Vi =g 1 6l) =e (3.139)

where e, conforms with the uniform phase dilatations. It can be proved that the in-
terface conditions of surface traction (3.124) are satisfied if [34]

(k, +m)e, +1.&3% — eV EY = (k. +me, +1.6% — e EY (3.140)
For any two phases r and s, Eq. (3.140) together with the condition

N
e +En =D ce, (3.141)
r=1

enable us to determine the constants e,. After a series of mathematical manipula-
tions, Benveniste [34] obtained the expression for e, as

0,0 0 0
e, =p. (& +en)+y,65 -0 By (3.142)
where
N (s)
Z cse3;
_ 1 Hkm cey R 1
" kr+mi c, k,+m ' k,+mi ¢,
s=1 ks +m =1 ks +m
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N

¢l
1 z

k,+m ¢l

V=

k +mz Cy kr+m
s=1 ks+m

(3.143)

Then, the average fields used to determine the effective constants are obtained as

- 0 0 0 0
oy, = (k+m)ey, +(k—m)ey, +1e33 — e E;

N
= Zcr (k, +m)g) +c,(k, —m)&R +c,l &3 —c el Ey

_ 0 0 0 0
Gy =(k—m)ey, +(k+m)ey, +ley; — e Ey

N
= Zcr (k, —m)& +c,(k, +m)&) + 1,63 —c. e Ey
- 0,0 0 0
033 =1(e)) +&p) +ney; —en By
0
= Zcrlr & +83)) +en, 65 —c. el By

=)
Gy, =2me)y = Zc me,

r=1

0
=5 (‘911 + ‘922) + 633533 + i3 Ey

¢, (@] +85)) ¢ e ey + g By

Mm'

r=1

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

Making use of Eqgs. (3.144)-(3.148), Benveniste [34] obtained the following formu-

lations for predicting effective material constants &, /, n, e31, e33, and &33:

(s)

N N
> > o P
k. +m — k. +m = k. +m
k_ r=1 l r=1 "r . = r=1
= ) =N ) 31 ——N
- > >
k. +m k. +m k. +m

(3.149)

(3.150)



3.6 Micromechanics of fibrous piezoelectric composites 89

(r) : (r)
e = ZC e(l) z C633 o T ic ( ) (3151)

N
r:lkr+mz C, r=1

N
ZCrK33 e
=k, -ﬁc’('c” ) (3.152)
k +mz c, ~ k. +m
—~k

3.6.2 Extension to include magnetic and thermal effects

In the last subsection, a formulation for effective elastoelectric material constants of
FPCs was presented. Extension of these results to include piezomagnetic and thermal
effects is presented in this subsection. It is a brief review of the development in [25].
To obtain formulations for calculating effective constants of thermo-magneto-
electro-clastic materials, Benveniste [25] considered a transversely isotropic,
two-phase composite with a fibrous structure. The constitutive law is given by

6" = Mg _TOED _gTOHO) 4 3G,

D(') (') (r) _,’_K(F)E(r) +a(V)H(r) _,’_X(V)g(r) (3.153)
B =g 4 gED +u(F)H(") +2Ng"

where B, H", and ) denote, respectively, magnetic fluxes, magnetic field

intensity, and temperature change in rth phase; Elastic properties ¢!’ is a 6x6

elastic constant matrix defined in Eq. (3.109); e and k"’ are piezoelectric and

dielectric constants defined in Eq. (3.110). B, 3, and A" are thermal stress,
a(r)
é

pyroelectric, and pyromagnetic vectors. , a0 andp'”) are piezomagnetic,

magnetoelectric coupling coefficient, and magnetic permeabilities matrices. These
six matrices are defined by

B(V ﬂ(r) (V) ﬁti') 0 0 O}T ,
00 Z), (3.154)
A® = {0 0 A;”}T

={
'={

0 0 & o
& = & 0 0| ,

e & & 0 0 0
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a 0 0 " 00 "
a”?7=0 a, 0|, p?=[0 g O (3.155)
0 0 oy 0 0

where fr and 4 are transverse and longitudinal thermal stress coefficients, y; is the
longitudinal pyroelectric constant.
Benveniste [25] then considered the following two sets of loading conditions:
The first set of loading conditions consists of Eq. (3.115) and

w(S)=—Hix;, 0(S) =6, (3.156)
where y is magnetic potential. The second set of loading conditions is defined by
Eq. (3.116) and

w(S)=-Hx,—Hx, (3.157)
together with the steady state equilibrium equations
0, =0, D;; =0, B

i

=0 (3.158)

Keeping this mind, he proved that there exists a specific choice of
(€’, E°, H’, 6,), denoted by (&, E, H, 6,), so that the strains, electric and

magnetic fields are uniform throughout the composite:

e=g"”=¢ E=E"”=E, H=H"=H, 0=6, (3.159)

and the possible sets of (€, E, H, 6,) resulting in uniform fields are given by

& 1 0 0 0
& 1 0 0 0
G o=ty L+ 1 e+m i 6, 3.160
£, 0 5 0 0 (3.160)
ﬁ3 0 0 t 0
‘64:‘(:’:5:8’\6:E1:EA'2_H1_H2:
where 77,(i=1-4) are arbitrary constants and
ry==2(k — k) /(; = 1),
s3=(h—L) (&) =),
(3.161)

Iy = (11 _12)/(53(11) _ééf)),
i ==(B =B~ 1)

where subscripts “1” and “2” represent the variables associated with matrix and
fiber materials. The uniform fields generated from Eq. (3.160) allow the derivation
of exact connections between some of the effective properties. The effective con-
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stants ¢, e, q, B, ¥, A, ¥, 1, a are defined by
G=ce—-¢ E-& H+p6,

e [V —eTED _gTOH® 409,

1

<
Il
—_

D = e +«E+aH + 0,

2 _ _ (3.162)
=3 V8" +xVEY + " HY 40,1,

r=l1

B=¢&+aE+p"H+1"4,

¢ BVEY +aVED + pOHY 1.6,

v

Il
—_

Substituting Egs. (3.159) and (3.160) into Eq. (3.162) and equating the coeffi-
cients 7,,i=1-4 yield a set of exact connections between the effective properties
as follows [24,25]:

2 2 2
k—Zc,k, l—Zc,lr e31—20 ey k-k
r;l _ el _ r=1 _hTh (3.163)
1-Ycl,
r=1

2 2
_ _ e 11 - 12
n G . s €33
r=1

r=1

2
) ) )
ey = 268 Zc ‘3 ZC B E ()

(2)

r=1 _ _G1 ~4
> 1 (3.164)
I—Zcrlr n—Zcrnr Z ey
r=1 r=1
2 2
k —Zcrkr Z—Zc,.lr ZC ey
I e N AL
r r r € —¢
;) _zcre;l) ZC ey ZC K~k O
r=1 r=1
2 2
€~ creS(T) ZC &y Zc,;é;’ M s _ @
=1 _&1 —&
- = == (3.166)
l—Zc,lr n—Zcrnr Zcr~3(;) b
r=1 r=1
Zc ey -
=1 (3.167)

> _ 5(2)

(r) _ 631 — &
Zcra33 O3
r=l1
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2 2
— — ~ (
Bi=B=| Dl ~l|H+ e B (3.168)
r=1 r=l1

2 2
By = (Zcrnr —nj;g +> B (3.169)
r=1 r=1

2 2

2= [Zc,.e%) - %J% +> ez (3.170)
r=1 r=1
2 2

2= [Zcré&" —4733]% +> A" (3.171)
r=1 r=l1

On the whole, there are nine independent connections between the ten effective
parameters k, [, n, ess, €31, &, €33, Ks3, Ma3, O3, SO that knowledge of one of them

allows the determination of the rest. In [25], it was proved that the parameter £ can
be determined by Eq. (3.125). Having obtained the value of £, the moduli /, n, e;3,
€1, &y, €33, K3, L3, 053 can thus be fully determined from Egs. (3.163)-(3.167)

above.
The remaining six effective constants ( p, e;s, €5, K33, t53, 033) can be deter-

mined using the procedure described in [25]. Consider the loading type defined by
Eqgs. (3.116) and (3.157). The solution to this loading type can be represented by

(r) _ .0 (r) _ .0 (r) _ q(r) _ 0 0
Uy~ =é&3x;3, Uy = &p3Xs, uy” =F(x, %)~ E3x — 63X,

) (3.172)
¢(r) = ¢(r) (X, %), ‘//(') = ‘//(r) (x,x,)

Benveniste [25] then cast the constitutive laws of the constituents in matrix form as

G (r) p e 515 (r) V3 (r)
Dy =les -k, o V¢ (r=1,2,¢) (3.173)
B es ay —Hy Vy

where the subscript “c” refers to the effective law, and the following definitions are
used:

o':{O'13 0'23}, D:{Dl DQ}, B:{B1 Bz},

(3.174)
vo={s ). Ve={g ). Ve={v, v,

Similar to the procedure described in Subsection 3.6.1.1, define the 3x3 matrices L,
representing the material matrix in Eq. (3.173):
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~ (r)
P s €5

L, =les -Kx, o (r=1,2,¢c) (3.175)

as oy My
L, can then be converted to a diagonal matrix L*,, using a matrix W:
L =WL W' (r=12,¢c) (3.176)

The implication of this result is the existence of the following constraint relation
between the components of the effective matrix L,

LL'L, =L,L}'L, (3.177)

It can be shown that the resulting matrix on the left hand side of Eq. (3.177) is
antisymmetric, so that this equation provides three connections between the six
effective components to be determined. To find the remaining three connections,
consider the uncoupled elastic, electric, and magnetic behavior of the composite
and denote the longitudinal shear modulus, transverse dielectric, and magnetic per-
meability coefficients by p°, x;,, and z,,. In the framework of the composite

cylinder assemblage model [45], Benveniste [25] obtained the following expres-

. * * *
sionsof p, x;;, and 4, :

* % C; * +(1+ C .
JA i e CR TS (3.178)
A+e)fi +afs
He then defined the matrices L :
p 0 0
L=0 (-, 0 (r=1,2,¢) (3.179)
0 0 (),
and cast Eq. (3.178) in the form
L. =L[(+c¢)L, +(1-c,)L, ' [(1-¢,)L; + (1+¢,)L;] (3.180)

Making use of Eq. (3.176), it can be proved that the effective moduli of the piezo-
magnetoelectric composite is given by

L. =L[(I+¢)L, +(1_02)L2]71[(1_02)L1 +(1+¢)L,] (3.181)

where L, L, and L, are defined by Eq. (3.175).
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3.7 Solution of composite with elliptic fiber

In this section, the thermoelectroelastic solutions presented in [35] for thermal
loading applied inside and outside an elliptic piezoelectric fiber in an infinite piezo-
electric matrix are presented. By combining the method of Stroh’s formalism, the
technique of conformal mapping, the concept of perturbation and the method of
analytical continuation, a general analytical thermoelectroelastic solution is ob-
tained for an elliptic piezoelectric cylindrical fiber embedded in an infinite piezo-
electric matrix subjected to thermal loading. The loading may be a point heat source,
temperature discontinuity, or a uniform remote heat flow. Special cases when the
fiber becomes rigid or a hole are also investigated.

3.7.1 Conformal mapping

Consider an elliptic piezoelectric fiber embedded in an infinite matrix. The contour
of their interface /is represented by

X, =acosy, x, =bsiny (3.182)

where  is a real parameter and a>b >0 are the principal radii of the elliptic
interface. It will be more convenient to transform the ellipse to a circle before solv-
ing the problem. For this, consider the mapping

2 = 4y +ayly (3.183)
where

ay =(a—ipb)/2,  ay, =(a+ip,b)/2 (3.184)

Equation (3.183) will map the region outside the elliptic fiber onto the exterior
of a unit circle in the {;-plane. Further, the transformation (3.183) is single valued
and conformal outside the ellipse, since the roots of equation

dz /dg, =ay —ay & =0 (3.185)

are located inside the unit circle |g” k| <1.In fact, the roots are ¢} =*.Ja,, /a,, =

6 12

+/m, €%, where (m;)'’<1 [46]. However, the mapping (3.183) is not single

valued inside the ellipse because the roots of Eq. (3.185) are located inside the unit
circle. To bypass this problem, the mapping of (2, (see Fig. 3.17) is done by ex-
cluding a slit /g, which represents a circle of radius 4/m,

K

in the ¢;-plane, from the

ellipse [47]. In this case the function (3.183) will transform /" and 7 into a ring of

outer and inner circles with radii 7,

=1 and 7, =./m, , respectively. Moreover,
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anywhere inside the ellipse and on the slit 7y a function f(&;) must satisfy the
following condition:

Sm, (0N = fTfm, &% 1 o(0)] (3.186)

to ensure that the field is single valued [47], where o(6) = " stands for a point

located on the unit circle in the ;-plane, and @1s a polar angle.

: IeR ‘i\

NMM%W

Fig. 3.17 Geometry of an elliptic fiber in a matrix.

3.7.2  Solutions for thermal loading applied outside an elliptic fiber

Consider an elliptic fiber embedded in an infinite piezoelectric matrix subjected to
thermal loading located at the point (x;0,x50) Which is outside the fiber. If the fiber
and matrix are assumed to be perfectly bonded along the interface, the temperature,
heat flow (4,), elastic displacements, electric potential, stress and electric displace-
ment (t,) across the interface should be continuous, i.e.,

=T, §=9%, U=U,, ¢g=0¢ (along the interface) (3.187)
Here the following equations are used:
h,=8,, t, =0, (3.188)

where 7 is the normal direction of the interface, s is the arc length measured along
the elliptic boundary, and t, is the surface traction-charge vector. Here and in the
following, the subscripts “1”” and “2” (or superscripts (1) and (2)) denote the quanti-
ties associated with matrix and fiber, respectively.

3.7.2.1 General solution for thermal fields

Based on the conformal mapping described above and the concept of perturbation
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given by Stagni [48], the general solution for temperature and heat-flow function

can be assumed in the form

T = fu( €™+ fo €0+ D)+ £1(CD),
8 =ik fy (€Y ik, £y (€)= ik £(C ™) + ik £(E)

¢V e2) (3.189)

T, = £, + /D),
8 =ik, £,(¢P) + ik, £,(S)

(&7 e2) (3190

Here, fy can be chosen to represent the solutions associated with the unperturbed
thermal field, which is holomorphic in the entire domain except for some singular
points such as the point at which a point heat source is applied, and £} and f; are the
functions corresponding to the perturbed field of matrix and fiber, respectively.
They are holomorphic in the regions (2, and £2,, respectively. In the g-plane, 2

is the region outside the unit circle and (2, is the region of the annular ring be-

tween the unit circle and the circle of radius /m, .

For a given loading condition, the function f;can be obtained easily since it is
related to the solution of homogeneous media. When an infinite space is subjected
to a line heat source 4" and a line temperature discontinuity T , both located at (x/,

X20), the function f; can be chosen in the form

f&") =g, In(" =) (3.191)

0

where ¢V and £ are related to the complex arguments z" and z{(= x,,

+p;Vx,,) through the following transformation functions:

zl(])+\/z,(')2—a2—pl*(')2b2 z[((l))+\/ M2 _ 2 _pl*(l)zbz

O _ (é)
t * t *
ip, ®Op lpl(l)b

B

(3.192)

and gy is given in the form [36]
qo=T/4ni—h"/4nk (3.193)

When the thermal load is uniform remote heat flow h(h,,,%,,) , the function f;

may be expressed by

fo& = a6 (3.194)

The infinite condition provides
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* 1 % *
Go = @=ibp, DYhy ! p ¥ =) (3.195)
1

As for the function f;, noting that it is holomorphic in the annular ring, it can be
represented by Laurent’s series

£ = Z @ (3.196)

Jj=—oo

whose coefficients can be related by means of Eq. (3.186) in the following manner:

* * a+lbp1*(2) /
ij ZFJ-C]», Fj —[W (3-197)

Inserting Eqgs. (3.191) and (3.196) into Egs. (3.189) and (3.190), and later into
Eqgs. (3.187),, yields

fi(0)+ Fo(0)- Z 6, + e o = Y le, + Fe 1o’ — (@) fo()
Jj=1

(3.198)
folo)- ﬁ(a)——Z[c ~Ie;lo™
1 Jj=1
ky & N —
=—k—22[cj ~Iclo’ + fy(0) - fi(o) (3.199)
1 j=I

One of the important properties of holomorphic functions used in the method of
analytic continuation is that if the function f{¢) is holomorphic in €2 (or €2, + £2,),

then f(1/£) is holomorphic in )+, (or £2), £ denoting the region inside
the circle of radius /m, . Hence, put

KO+ WD =Y+ Fe ) (£
o({) = j; (3.200)
~HAUI D) =[O+ e, + T )7 (C ey +2)
j=1

where the function @(¢) is holomorphic and single valued in the whole plane. By
Liouville’s theorem, we have @(¢)= constant. However, constant function f'does not
produce stress and electric displacement (SED), which may be neglected. Thus, by
letting @(£)=0, we have
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oo

Dle+Tc )7 = HO+/0/E) (e

Jj=1

(3.201)

Yle,+FE 1 = fUID+ &) (e +2y)
j=1

It should be mentioned that the subscripts “1”” and “2” (or superscripts (1) and
(2)) are omitted in Egs. (3.200) and (3.201). To further simplify subsequent writing,
we shall omit them again in the related expressions when the distinction is unne-
cessary. As in Eq. (3.201), it can be determined from Eq. (3.199) that

5 Z[c ~Ie T =[O+ LMD (Ce)

1_]1

(3.202)
)/ — —_ . —_——
k—fz;[C,—F,cj]C’=—f1(1/§)+fo(§) (C e +42)
=
The Eqgs. (3.201), and (3.202), provide
I < —a
fo(§)= EZ[(l +hy ke, + (1 —ky k)T e 1¢7 (3.203)
j=1
With the use of the series representation
© (k)
k Jo(0) 1 ¢ fo(x)
fO(X):;ekx N € :Tzz_ni dex (3204)
the function fy(¢) given in Eq. (3.191) (or (3.194)) can be expressed as
- j qoélt 0 *
fHO=Del!, e = (ore; =6,,4,) (3.205)
j=1

where 6;=1, when i=j; 6;=0, when i#j.
By comparing the coefficients of corresponding terms in Egs. (3.203) and
(3.205), we obtain

¢, =(Gy—G,G,1G) ' (e;,-G,e;/Gy)  (j=1, 2,-+,0) (3.206)

where G, =(1+k,/k)/2, G, :(l—kz/kl)F;/Z.
With the solution obtained for ¢4, the functions f;, g, and g, can be further

written as

(&)= Z(c + e )¢ =gy m(¢0 = Z) (3.207)
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g (é’(l)) % ln(é'(l) (5))_% ln( (1) 1 (1))+Z(C +1— c. );(1) j (3 208)

(&)= c; (¢ + ™) (3.209)
j=1

Equations (3.208) and (3.209) are the general thermal solutions for the case of
line heat source and temperature discontinuity. If the load is uniform remote heat
flow, the general solutions can be obtained similarly. They are

8¢ = a6 = q0g" + @+ Iie)¢ (3:210)

() =P +17¢P™ (3.211)

3.7.2.2 General solution for electroelastic fields

The particular piezoelectric solution induced by a thermal load can be written as
[35,36]

U, =2Re[c;g; (&), @, =2Re[d,g, ()] (=1,2) (3.212)

[T}

where subscript “p” refers to a particular solution. The function g(z,) in Eq. (3.212)
can be obtained by integrating Eqs. (3.208) and (3.209) (or (3.210) and (3.211))
with respect to z,, which yields

PR BT /N o (RN B9 o (N o | RS 1779 oY (o )

—40F (4(1) : gt(l))]+ (q+1; cl)a(l) In é’z(l) + ZGL/é/tm_j (3.213)

&) =6, +G, ) (3.214)
=

for Egs. (3.208) and (3.209), or

&M= q0< %(”2/2 a)ng)
~(@y & —Iie)ay g +a5)¢" 2 12) (3.215)

(& =e(a? P+l 1Py /2 (3.216)
for Egs. (3.210) and (3.211), where

F(&:¢0) = (&, = Co)lIn(G, = &,9) —11,
Fy (&) = (& =) In(g, = &) + &g n g,
alt =(a—ip;Vb)/2, & =(a+ip/"'b)/2, (k=1,2)
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- (= * M _ W= * .
Gy =, + e )a, —ay (¢, + 175 ¢,,)8,,1) s

Gy, = (al(z%)cj—lsjl _aéi)cjﬂ)/j’ (3:217)

*

_ (2) (2) ;* :
G}_/ =—(a; 1€+ ~ 4o, I—V_j—lcj—lsjl)/J

and s; =lfori# j,s; =0fori=.

The particular solution (3.212) does not generally satisfy the condition (3.187); 4
along the interface. We therefore need to find a corrective isothermal solution for a
given problem so that when it is superposed on the particular thermoelectroelastic
solution the interface condition (3.187);4 will be satisfied. Owing to the fact that
A¢&,) and g(&) have the same rule affecting the SED in the general solution of a
thermoelectroelastic problem [35]

T=g'(z)+g'(z),
9 =—ikg'(z,)+ikg'(z,),
hlz_lgvz, h2=19,l’

(3.218)
U=A(/(z,))a+eg(z)+A(f(z,))a+cg(z),
¢=B(f(z,))a+dg(z,)+B(f(z,))q+dg(z,),
I =-¢,, IL =9,
with
Z, =X + P X, (3.219)

possible function forms come from the partition of g(¢;). They are
S (&) =dlagF (&) ) + 4o (8,6
~0 RG] a0 B (&4 2,
130G =ip =40 B (6. 6 + 40 (6560
RN DR A (RN D) I

ANEI =al g (=1,2) (3.221)

(j=1,2) (3.220)

£0) (£ = i(gj)k W, D)= i(;;f)—k s (12)
k=1 k=1

(3.222)

where f{/) are four component vectors, and r”’ ands!’’ are constant vectors
with four components to be determined. It should be pointed out that the vector

sgfj ) is not the same as the symbol s; given in Eq. (3.217).
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The Green’s functions for the electroelastic fields can thus be chosen as

U_j — ZRe{Z}:A]( k(/)(é/(]))>q(/) +ZA f(/)(c(J))+c]g (é/(/))} (3.223)
k=1

,_2Re{z3:B < 1)(4’(/))) /)+ZB f(/)(C(/))+djgj(§[(/))} (3.224)

k=1

The above two expressions, together with the interface condition (3.187); 4, pro-

vide
a4’ =X,(A,'¢ -B,'d)) (3.225)
4 =X,(B/'d, -A['T) (3.226)
0 =p5,"P'q" (3.227)
q” = p{ "P; 'qf” (3.228)
a) =(a f;}) aV (e, + I c)q" (3.229)
0 =(a?)" @0 (c,+ Ie)q? (3.230)

A (0)+ A (0) - AP (0) - A B (0)+ ) (G — 6,6, —€,Gy)o

J=1

ZAzfiz) (o)+ Kz fs(z) (0)- Alfél) (o)- ;‘1 fs(l) (0)- Z (El(_;lj —¢,Gy; _‘_'/263_/ )o!
j=1

(3.231)
B,f{"(0)+B\f}" (c)-B,f{” (0)-B,f{” (0)+ > G, -d,G,, -d,G;, )0’
J=1

=B2ff)(o-) +l—32f5(2)(0') _Blfil)(o') _ﬁlfS(])(o-) _2(6161/' -d,G,; _5263/')0']‘
j=1

(3.232)
where
X, =(A'A,-B;'B))",  X,=(A'A,-B;'B,)" (3.233)

Therefore, by Liouville’s theorem, Eqgs. (3.231) and (3.232) yield
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A2f5(2) (0)+A, 1% (0)- Z (©G; _Ezézj —6,G;y; )o !
=1
=Af(0)+A 1" (0) (3.234)

AP (0)+ AP (0)- D €6y, —¢,G,y; -6 )0’
J=1
=Af(0)+A " (o) (3.235)

B, (0)+B,f,” (6)- ) @,G,; -d,G,; —d,G, )/

J=!

=B,f" (o) +B,f"(0) (3.236)

B,f" (0)+ B, (0)- ) @,G,, —d,G,, —d,G, )0’

=
=B,f"(c)+B,f{"(c) (3.237)
The above four equations are not completely independent. For example, Egs.

(3.234) and (3.236) can be obtained from Egs. (3.235) and (3.237). Thus only two
of the equations are independent. However, there are four sets of constant vectors,

ie., (f ) and sfcf )(j =1,2), to be determined. We need two more equations to make
the solutlon unique. Through use of the relation (3.186) and Egs. (3.223) and
(3.224), the unknown vectors r ) and s(z) appearing in f{* and fs(z) can be

determined as follows:
r® = (A7 (r2)A, -85 (10))B,) '[A) (6,65,

~(2)e.6,)) =By (@G, (D))l (=Lee0)  (3.238)

s =By (1) (Byr? +4,G,)~d,Gyy] (j=Lee)  (3.239)

(&)
where <F§2>:<[L[l;p(’)] >
. a—ibp

Once the constant vectors l‘ 2

and s are obtained, the unknown vectors

rj(,1 and s' j given in fj” and fS(” can be determined from Egs. (3.234) and
(3.236) (or (3.235) and (3.237)). They are

i =iA[(M, +M)A,r? +(M, —-M,)A,5

-M,(€G,; —¢,G,,; - 6,G,,) +i(d,G,; —-d,G,, —d,G;,)] (3.240)
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s =iA[[(M, + M)A + (M, - M,)A,T”
-M,(¢,G,; - 6,G,; —¢,G;,) +i(d,G,; —d,G,, —d,G;,)] (3.241)
where
M, =-iB,A;' =H;'(I1+iS,),
H, =2iAA], (k=1,2) (3.242)
S, =i(2A,B; —1)

For the case of remote heat flow, the related general solution can be obtained
similarly. Set

3
U, = 2Re{z AF N +¢,g j(;;«”)} (3.243)
k=1
3
;= 2Re{z B F (g +d,g, (g“,("))} (3.244)
k=1
where
F (W) = <lr1 §;j>> . FV@EW)= <§;j>2>’ F) (W) = <(§(;>) > (=1,2)
(3.245)

The interface condition (3.187); 4 leads to
a” ={a/q, +ay; (g —e - 10)I(A'A, - B,'B) ™ (A'G - B;'d))

(3.246)
ai? =-{a/q, +@ (g~ — [1E)IA'A, B 'B,) ' (B 'd, - A, ')
(3.247)
a5’ =(A7'A, -B'B)'[(A['A, -B{'B,)q}”
+(A1 Az_ﬁl_le)(I32)+A| g —BIIEQ] (3.248)
0 = A (r2) A -G'ey) (3.249)
q" =(A'A,-B;'B)) '[(A;'A, - B;'B,)q}”
+A;'A, -B'B,)qs” + Aj'g - B/'g; ] (3.250)

a? = (A (r2)A, -B;' (r)B,)'(A;'G’e, -B;'G'd,)  (3.251)

where

G =¢(@1-(r@)a?) (3.252)
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g =@a"C +casle,)) 1 2-[qa) € +ai) (G + I e, —q)e,1/2  (3.253)
g, =(qa)d, +aid,y) /2 [q,a ) d, +al) (¢ + Iic,—qo)d, 172 (3.254)

T

3.7.3 Solutions for holes and rigid fibers

When the fiber is an insulated and traction-free hole, i.e., 4 =¢, =0 along the

hole boundary, the solutions can be found in a manner similar to that described for
the piezoelectric fiber. They are

g ¢M =a g,/ (6.6 + @ F (6T N+ ay [a0 B (6 6
+4oF (&0 (3.255)

U, = 2Re{A [ /1, (€)) +( £ G2 pr 1B, e, (¢)) (3256)

-1 *

91 =—2Re(B[( £, (€))+ (/1 () P ') B ', —dig (&)} (3.257)

for the case of a point heat source and temperature discontinuity, and

&) = qo(a ¢ 12-a5) )+ (o gV +a5)¢ 02 /2) (3.258)
U, = 2Re{A [ /i (€))+ (€)Y P ' 5 1B A —e,g, (6N} (3.259)
¢ = 2Re{By[( /1, () + (2, ()P p 1B, —dig (&)} (3.260)

for the case of remote heat flow, where f, (£") and f£,,(<.") have, respec-
tively, the same expressions as f1)(¢}") and f3,/(¢)") given in Eq. (3.220),

2a

except that now ¢, should be replaced by —¢,, and

Fi (&) =alge(CP? —2In &)+ 4, (0 +2In g1/ 4,
&M =ibpP1g, (& =2In &) = g (& +2In g ")/ 4

Similarly, for a rigid and nonconductive fiber, the thermal boundary condition
is the same as that of a hole. However, the elastic boundary condition of the fiber
should be described in a manner similar to that of Hwu and Yen [47]:

(3.261)

u, =o(u,oc+u,0")/2, u, = {ib, a, 0, 0}" (on the interface)
(3.262)
where @ denotes the rigid-body rotation relative to the matrix, which can be ob-

tained by the condition that the total moment about the origin due to the traction
along the surface of the rigid fiber vanishes.
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Substituting Egs. (3.225) (or (3.258)) and (3.262) into (3.187); 4 provides

U, = 2Re{A [/, (C) +{ £, (D)) P Dl 1A e,

—,,(¢") - o(¢O)H, 2} (3.263)
@, = 2Re{By[{ i, (¢ +( o, (C) Py 1A e,
~d,g,(¢") - B A (0T, 12} (3.264)

for the case of a point heat source and temperature discontinuity, and

U, = 2Re{A [ £ () +{ fo, (D)) P Dl 1A ey

g (M) - o), /2) (3.265)
¢ = —2Re{B,[( /7, (C)) +{£2, (€N P P IAT e,
~d,g, (&) - B AT (), /2) (3.266)

for the case of a remote heat flow, where g, fi,, /s> fix> fo have the same ex-

pressions as those in Egs. (3.255)-(3.261). Once the general solution has been ob-
tained, @ can be determined by using the condition that the total moment about the
origin due to the traction along the surface of the rigid fiber vanishes. The result is

2f 7y Refot, () /opidy

@ nim{u} B, AU, } (3-267)
where
y' ={bsiny, —acosy, 0,0} (3.268)
f,(0) = -B,[( /1, (0)) + (/2 (@) P P ]AT e, —d, g, (0) (3.269)
for the case of a point heat source and temperature discontinuity, and
f,(0) =-B\[{ /i, (@) +(f2.()) P p] 1A', —d,g () (3.270)

for the case of a remote heat flow.

References

[17 He LH, Lim CW: Electromechanical responses of piezoelectric fiber composites with
sliding interface under anti-plane deformations. Composites Part B: Engineering 34(4),
373-381 (2003).



106

[15]

Chapter 3 Fibrous Piezoelectric Composites

Smart Material Corp. http://www.smart-material.com/.

Hagood NW, Kindel R, Ghandi K, Gaudenzi P: Improving transverse actuation of
piezoceramics using interdigitated surface electrodes. Proc. SPIE 1917, 341-352
(1993).

Hagood N, Bent A: Composites for structural control. US Patent, 6048622 (2000).
Bent AA, Hagood NW: Improved performance in piezoelectric fibre composites using
interdigitated electrodes. Proc. SPIE 2441, 196-212(1995).

Wilkie WK, Bryant GR, High JW, Fox RL, Hallbaum RF, Jalink A Jr, Little BD,
Mirick P H: Low-cost piezocomposite actuator for structural control applications. Proc.
SPIE 3991, 323(2000).

Cannon BJ, Brei D: Feasibility study of microfabrication by coextrusion (MFCX)
hollow fibers for active composites. Journal of Intelligent Material Systems and Struc-
tures 11(9), 659-670 (2000).

Liu HY, Qin QH, Mai YW: Theoretical model of piezoelectric fibre pull-out. Interna-
tional Journal of Solids and Structures 40(20), 5511-5519 (2003).

Gao YC, Mai YW, Cotterell B: Fracture of fiber-reinforced materials. Zeitschrift Fur
Angewandte Mathematik Und Physik 39(4), 550-572 (1988).

Zhou LM, Mai YW: On the single-fiber pullout and pushout problem—effect of fiber
anisotropy. Zeitschrift Fur Angewandte Mathematik Und Physik 44(4), 769-775
(1993).

Zhou LM, Kim JK, Mai YW: On the single fiber pull-out problem—effect of loading
method. Composites Science and Technology 45(2), 153-160 (1992).

Zhou LM, Kim JK, Mai YW: Interfacial debonding and fiber pull-out stresses .2. A
new model based on the fracture-mechanics approach. Journal of Materials Science
27(12), 3155-3166 (1992).

Zhou LM, Mai YW, Ye L: Analyses of fiber push-out test based on the frac-
ture-mechanics approach. Composites Engineering 5(10-11), 1199-1219 (1995).

Gu B, Liu HY, Mai YW: A theoretical model on piezoelectric fibre pullout with elec-
tric input. Engineering Fracture Mechanics 73(14), 2053-2066 (2006).

Qin QH, Wang JS, Kang YL: A theoretical model for electroelastic analysis in piezo-
electric fibre push-out test. Archive of Applied Mechanics 75(8-9), 527-540 (20006).
Wang JS, Qin QH: Debonding criterion for the piezoelectric fibre push-out test. Phi-
losophical Magazine Letters 86(2), 123-136 (2006).

Wang JS, Qin QH, Kang YL: Stress and electric field transfer of piezoelectric fibre
push-out under electric and mechanical loading. In: Ren WX, Gary Ong KC, Tan JSY
(eds.) 9th International Conference on Inspection, Appraisal, Repairs & Maintenance
of Structures, Fuzhou, China, 20-21 October, 2005, pp. 435-442. CI-Premier PTY LTD
(2005).

Hill R: Elastic properties of reinforced solids: Some theoretical principles. Journal of
the Mechanics and Physics of Solids 11(5), 357-372 (1963).

Hill R: Theory of mechanical properties of fibre-strengthened materials.1. Elastic be-
haviour. Journal of the Mechanics and Physics of Solids 12(4), 199-212 (1964).
Grekov AA, Kramarov SO, Kuprienko AA: Effective properties of a transversely iso-
tropic piezocomposite with cylindrical inclusions. Ferroelectrics 99, 115-126 (1989).
Dunn ML, Taya M: Micromechanics predictions of the effective electroelastic moduli



(22]

(23]

[24]

(23]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]
[35]
[36]
[37]

[38]
[39]

References 107

of piezoelectric composites. International Journal of Solids and Structures 30(2),
161-175 (1993).

Schulgasser K: Relationships between the effective properties of transversely isotropic
piezoelectric composites. Journal of the Mechanics and Physics of Solids 40(2),
473-479 (1992).

Benveniste Y, Dvorak GJ: Uniform-fields and universal relations in piezoelectric com-
posites. Journal of the Mechanics and Physics of Solids 40(6), 1295-1312 (1992).
Benveniste Y: Exact results in the micromechanics of fibrous piezoelectric composites
exhibiting pyroelectricity. Proceedings of the Royal Society of London Series
A: Mathematical Physical and Engineering Sciences 441(1911), 59-81 (1993).
Benveniste Y: Magnetoelectric effect in fibrous composites with piezoelectric and
piezomagnetic phases. Physical Review B 51(22), 16424-16427 (1995).

Chen TY: Piezoelectric properties of multiphase fibrous composites—some theoretical
results. Journal of the Mechanics and Physics of Solids 41(11), 1781-1794 (1993).
Mallik N, Ray MC: Effective coefficients of piezoelectric fiber-reinforced composites.
ATAA Journal 41(4), 704-710 (2003).

Huang JH, Kuo WS: The analysis of piezoelectric/piezomagnetic composite materials
containing ellipsoidal inclusions. Journal of Applied Physics 81(3), 1378-1386 (1997).
Huang JH: Analytical predictions for the magnetoelectric coupling in piezomagnetic
materials reinforced by piezoelectric ellipsoidal inclusions. Physical Review B 58(1),
12-15 (1998).

Jiang CP, Tong ZH, Cheung YK: A generalized self-consistent method for piezoelec-
tric fiber reinforced composites under antiplane shear. Mechanics of Materials 33(5),
295-308 (2001).

Jiang CP, Tong ZH, Cheung YK: A generalized self-consistent method accounting for
fiber section shape. International Journal of Solids and Structures 40(10), 2589-2609
(2003).

Tong ZH, Lo SH, Jiang CP, Cheung YK: An exact solution for the three-phase
thermo-electro-magneto-elastic cylinder model and its application to piezoelec-
tric-magnetic fiber composites. International Journal of Solids and Structures 45(20),
5205-5219 (2008).

Kumar A, Chakraborty D: Effective properties of thermo-electro-mechanically cou-
pled piezoelectric fiber reinforced composites. Materials & Design 30(4), 1216-1222
(2009).

Benveniste Y: On the micromechanics of fibrous piezoelectric composites. Mechanics
of Materials 18(3), 183-193 (1994).

Qin QH: Thermoelectroelastic solution for elliptic inclusions and application to
crack-inclusion problems. Applied Mathematical Modelling 25(1), 1-23 (2000).

Qin QH: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton
(2001).

Zhang X, Liu HY, Mai YW, Diao XX: On steady-state fibre pull-out. 1. The stress
field. Composites Science and Technology 59(15), 2179-2189 (1999).

Tiersten HF: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969).
Zhou LM: A study on the fracture mechanics of interfaces in fibre-matrix composites.
PhD Thesis, University of Sydney (1994).



108

[40]

[41]

[44]

Chapter 3 Fibrous Piezoelectric Composites

Steinhausen R, Hauke T, Seifert W, Beige H, Watzka W, Seifert S, Sporn D, Starke S,
Schonecker A: Finescaled piezoelectric 1-3 composites: Properties and modeling.
Journal of the European Ceramic Society 19(6-7), 1289-1293 (1999).

Chan HLW, Li K, Choy CL: Piezoelectric ceramic fibre/epoxy 1-3 composites for
high-frequency ultrasonic transducer applications. Materials Science and Engineering
B: Solid State Materials for Advanced Technology 99(1-3), 29-35 (2003).

Nelson LJ: Smart piezoelectric fibre composites. Materials Science and Technology
18(11), 1245-1256 (2002).

Honda K, Kagawa Y: Debonding criterion in the pushout process of fiber-reinforced
ceramics. Acta Materialia 44(8), 3267-3277 (1996).

Park SB, Sun CT: Effect of electric-field on fracture of piezoelectric ceramics. Interna-
tional Journal of Fracture 70(3), 203-216 (1995).

Hashin Z: Analysis of properties of fiber composites with anisotropic constituents.
Journal of Applied Mechanics-Transactions of the ASME 46(3), 543-550 (1979).

Ting TCT: Green’s functions for an anisotropic elliptic inclusion under generalized
plane strain deformations. Quarterly Journal of Mechanics and Applied Mathematics
49, 1-18 (1996).

Hwu C, Yen WJ: On the anisotropic elastic inclusions in plane elastostatics. Journal of
Applied Mechanics-Transactions of the ASME 60(3), 626-632 (1993).

Stagni L: On the elastic field perturbation by inhomogeneities in plane elasticity.
Zeitschrift Fur Angewandte Mathematik Und Physik 33(3), 315-325 (1982).



Chapter 4 Trefftz Method for Piezoelectricity

In Chapter 3, theoretical solutions for problems of PFC pull-out and push-out are
presented. The solutions are, however, restricted to axi-symmetric problems. To
remove this restriction, Trefftz numerical methods are presented for solving various
engineering problems involved in piezoelectric materials in this chapter. Trefftz
methods discussed here include the Trefftz FEM, Trefftz BEM, and the Trefftz
boundary-collocation method.

4.1 Introduction

Over the past decades the Trefftz approach, introduced in 1926 [1], has been
considerably improved and has now become a highly efficient computational tool
for the solution of complex boundary value problems. Particularly, Trefftz FEM has
been successfully applied to problems of elasticity [2], Kirchhoff plates [3],
moderately thick Reissner-Mindlin plates [4], thick plates [5], general 3-D solid
mechanics [6], potential problems [7], elastodynamic problems [8], transient heat
conduction analysis [9], geometrically nonlinear plates [10], materially nonlinear
elasticity [11], and contact problems [12]. Recently, Qin [13-16] extended this
method to the case of piezoelectric materials. Wang et al. [17] analyzed singular
electromechanical stress fields in piezoelectrics by combining the eigensolution
approach and Trefftz FE models. As well as Trefftz FEM, Wang et al. [18] presented a
Trefftz BEM for anti-plane piezoelectric problems. Sheng et al. [19] developed a
Trefftz boundary collocation method for solving piezoelectric problems. The
multi-region BEM [20] and the Trefftz indirect method [21] were also recently ap-
plied to electroelastic problems. This chapter, however, focuses on the results pre-
sented in [13-16,18,19,22].

4.2 Trefftz FEM for generalized plane problems

In this section, discussion is based on the formulation presented in [14]. Essentially,
a family of variational formulations is presented for deriving Trefftz-FEs of
generalized plane piezoelectric problems. It is based on four free energy densities,
each with two kinds of independent variables as basic independent variables, i.c.,
(o,D), (¢,E), (¢,D),and (c.E).

4.2.1 Basic field equations and boundary conditions

Consider a linear piezoelectric material, in which the differential governing equa-
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tions and the corresponding boundary conditions in the Cartesian coordinates x; (i=1,
2, 3) are defined by Egs. (1.10)-(1.12) (Chapter 1), and the relation between the
strain tensor and the displacement, u;, is governed by Eq. (1.2). For an anisotropic
piezoelectric material, the constitutive relation is defined in Table 1.1 for (g,E)as

basic variables [14],

0H(c,D) 0H(c,D) D) _
i =——F=_ = Siﬁclo-kl + 84Dy E; = —gOu + 4z Dy (4.1)
ooy, oD,
for (o,D) as basic variables,
6H(8 D) D 0OH (g,D) .
” &y + Dy, E = =&y + 43D, (4.2
ij ao_l] z;k[ Kl ki =k aDl ikl < kil k~k ( )
for (e,D) as basic variables, and
0H(o,E) _0H(o,E)
& = _T‘ij = 80w + Ay Dy D, = OF, =d oy + K B (4.3)
for (o,E) as basic variables, and
1 1.,
H(c,D)=- 5 yk,ayak, 51 D.D; -gy;0,D, 4.4)
H(e,D)= z/kl Eibyt— /1 D,D; + hy;e,;Dy 4.5)
1 & 1 &
H(c,E) = —Esijk,a,.jak, _E ; EE;, —dy0.E, (4.6)

and H(g,E) is defined in Eq. (1.1), where clfkl, ci?k[ and sfk,, sfkl are the stiff-

ness and compliance coefficient tensor for E=0 or D=0, «/, x;; and 47, 4; are

the permittivity matrix and the conversion of the permittivity constant matrix for
6=0 or £=0.

Moreover, in the Trefftz FE form, Egs. (4.1)-(4.6) should be completed by the
following inter-element continuity requirements:

Uip =Ups 4. =9, (on ", I, conformity) 4.7

e

ty+tty =0, D, +D,=0 (on 77, I",, reciprocity) 4.8)

where “e” and “f” stand for any two neighboring elements. Egs. (1.1), (1.2), (1.5),
(1.10)-(1.12), and (4.1)-(4.8) are taken as the basis to establish the modified varia-

tional principle for Trefftz FE analysis of piezoelectric materials.
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4.2.2 Assumed fields

The main objective of the Trefftz FEM is to establish an FE formulation whereby
the intra-element continuity is enforced on a non-conforming internal displacement
field chosen so as to a priori satisfy the governing differential equation of the prob-
lem under consideration [23,24]. In other words, as an obvious alternative to the
Rayleigh-Ritz method as a basis for an FE formulation, the model here is based on
the method of Trefftz [1]. With this method the solution domain (2 is subdivided
into elements, and over each element, the assumed intra-eclement fields are

U U N,
u, i, N, - _
u= =< 2hy c:u+ZNjchU+NC 4.9)
Uy Uy N3 Jj=1
¢ ) [Ny

where ¢; stands for undetermined coefficient, and u (= {ﬁl,ﬁz,@,&}T) and N are
known functions. If the governing differential equation (1.10) is rewritten in a gene-
ral form

Ru(x)+b(x)=0 (xe) (4.10)

where R stands for the differential operator matrix for Eq. (1.10), x the position
vector, b={f,, f,, f3,Q}~T the known right-hand side term, the overhead bar indi-
cates the imposed quantities and (2, stands for the eth element sub-domain, then
u=u(x) and N=N(x) inEq. (4.9) have to be chosen so that

Ri+b=0 and RN=0 4.11)

everywhere in (2,. A complete system of homogeneous solutions N; can be gene-

rated by way of the solution in Stroh formalism
u=2Re{A(f(z,))c} (4.12)

where “Re” stands for the real part of a complex number, A is the material eigen-
vector matrix which is well defined in the literature (see pp. 17-18 of [25]),

<f(za )> =diag[f(z)) f(z,) f(z;) f(z,)] is a diagonal 4x4 matrix, while f(z;)
is an arbitrary function with argument z;, = x, + p,x,. p; (i=1-4) are the material

eigenvalues. Of particular interest is a complete set of polynomial solutions which
may be generated by setting in Eq. (4.12) in turn

f(z) =24,

oy i (k=1,2,) (4.13)
Za :lZa
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where i =+/~1. This leads, for N; of Eq. (4.9), to the following sequence:

N, =2Re{A<z;>} (4.14)

N

2j+1

= 2Re{A<iz;' >} (4.15)

The unknown coefficient ¢ may be calculated from the conditions on the exter-
nal boundary and/or the continuity conditions on the inter-element boundary. Thus
various Trefftz element models can be obtained by using different approaches to
enforce these conditions. In the majority of cases a hybrid technique is used,
whereby the elements are linked through an auxiliary conforming displacement
frame which has the same form as in the conventional FE method. This means that
in the Trefftz FE approach, a conforming EPD field should be independently defined
on the element boundary to enforce the field continuity between elements and also
to link the coefficient ¢, appearing in Eq. (4.9), with nodal EPD d (={d}). The
frame is defined as

U

- U,
u(x) = - =
Uy

¢

d=Nd (xel) (4.16)

w

2 20 NZ! 7

4

where the symbol “~” is used to specify that the field is defined on the element
boundary only, d=d(c) stands for the vector of the nodal displacements which are
the final unknowns of the problem, 7, represents the boundary of element e, and
N is a matrix of the corresponding shape functions which are the same as those in
conventional FE formulation. For example, along the side A-O-B of a particular
element (see Fig. 4.1), a simple interpolation of the frame displacement and electric
potential can be given in the form

U
- i, d,
u(x)=9 " t=[N, N;] (xerl),) 4.17)
Us dg
¢
where
N, =diag[N, N, N, N,], N, =diag[N, N, N, N,] (4.18)
d,={u, uy, usyy ¢A}T’ dy ={up uyp usy ¢B}T (4.19)

with
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1- 1+
NI 275, N2 =T§ (420)
D(dp) o)
c
&=-1 ¢=0 &=+1
A 0 B
B(d
Ady 19) (dg)

Fig. 4.1 A quadrilateral element for a generalized two-dimensional problem.

Using the above definitions the generalized boundary forces and electric dis-
placements can be derived from Egs. (1.11) and (4.9), and denoted by

4 Oy,;n; 2 Q
t O, N, 1, _
T: 2 = 277 = 3 —+ Q2 c:T-‘rQC (4.21)
ly O3, L Q;
Dn Dfn./ Dn Q4

where 7 and D, are derived from .

4.2.3 Modified variational principle

The Trefftz FE equation for piezoelectric materials can be established by the varia-
tional approach [23]. Since the stationary conditions of the traditional potential and
complementary variational functional cannot satisfy the inter-element continuity
condition which is required in Trefftz FE analysis, some new variational functionals
need to be developed. Following the procedure given in [24], the functional corre-
sponding to the problem defined in Egs. (1.1), (1.2), (1.5), (1.10)-(1.12), and
(4.1)-(4.8) is constructed as

n,=x1, (4.22)
where
M, =11, ~[ (@=PD,ds—[ (i )ds (4.23)

with

1, = o, [H(e.B) =B, ~g,41d02 [ twas-| ,, Digds (424)
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in which Eq. (1.10) is assumed to be satisfied, a priori and D, =—g, . The boun-

dary I, of a particular element consists of the following parts:

e

Fe:r UrteUrIe:F¢eUrDeUrIe (425)

ue
where

Fue:FuﬂFw Ftezrtﬂre’ F¢e:r¢ﬂre’ rDe:FDﬂre (426)

and 77, is the inter-element boundary of the element “e”.

We now show that the stationary condition of the functional (4.23) leads to Eqgs.
(1.11), (1.12), (4.7), (4.8), (u; =u; on/",) and (¢=¢ on I,)). The first-order
variational of the functional (4.23) yields

811, =311, = _[(¢=@)3D, +(u, ~ii,)31,1ds

+ ID,5(p— )+ 18, —ii)ds (427)

where “8” is a variational symbol, and

811, :ﬁ N [8H (¢, E) — b,du, — g,54]d.2 - j N t_iSﬁids—J- D,5¢ds

I'pe

with
o H(g,E)dQ = (c.E £.06, —k.ESE, —e, £.0E, —e, F,d¢,)dQ
Q, ’ 2, ijkl i =<kl /2t eV Rt et S/ S

Egs. (1.2) and (1.5)
= H , (0du,;+D39,)42 (4.29)
Integrating the domain integral term in Eq. (4.29) by parts, we can obtain
ng (0,8u, , + D¢, )d2 = jre (t5u, + D,54)ds
- HQ (0,.,8u, + D, 5$)d2 (4.30)
Combining Egs. (4.27), (4.28), and (4.30),
517, ==[ , U+ fi)du + (D +,)89142+ [ | [(§-)3D,
+D,8(p— @)lds + j (. L = )30, +1,8(; = 7,))ds
-, G-wpads=[ (D, ~D,)dpds

~[ 1D, +i3t,+D,8(¢—§) +1,3(d, ~u,)lds (4.31)



4.2 Trefftz FEM for generalized plane problems 115

Obviously, the vanishing variation of 8/7,, in Eq. (4.31) leads to u, =1
on/’

ue?

p=donl 4o» governing differential equation (1.10) (see the first integral

in Eq. (4.31)), displacement and electric potential boundary conditions (1.12) (see
the second and third integrals in Eq. (4.31)), boundary conditions of traction and
surface charge (1.11) (see the fourth and fifth integrals in Eq. (4.31)). The field con-
tinuity requirement Eqs. (4.7) and (4.8) can be shown in the following way. Con-
sidering that only the last integral in Eq. (4.31) can contribute to the continuity
equation and when assembling elements “e” and “f”’, we have

[ 98D, +D,)+id(t, +1,)+D,($~4,)
I LeNIf '

D, 8(¢ — 8, )+ 1,8, 1)+ 1,8(i, —u,)]ds =0 (4.32)

in which the conditions #;, =, and 4, = ¢Z.f are used. Equation (4.32) yields the

continuity conditions (4.7) and (4.8).

4.2.4 Generation of the element stiffness equation

Noting the definition of elemental boundary (4.26), and % =7, and D, =D, on
the related boundaries, the functional (4.23) can be simplified to

- Ijgg[ﬂ(o,D)—Eui -q,$1dQ

[ Og+tiyis—[ Dgds-[ s (4.33)
e de e

Integrating the domain integral in Eq. (4.33) by parts gives

1 E 1 &
I , H(e.D)de= I o, GGty =5 KT EE, — ey B )R

E (15)1
! ﬂ (00, + D,g)d02
=—jj (o), +(D,$), =0y u; + D, #1d2
—2f @D pss ] G rasie @30
Substituting Eq. (4.34) into Eq. (4.33) yields

1, =] G+ Dpds = [ (G +a, 92
j (D, ¢+ 1,1)ds - j D¢ds jr tirds (4.35)

ue
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Making use of Egs. (4.9), (4.16), and (4.21), Eq. (4.35) can be written as
1 .
el = —EcTHc +¢'Sd+e¢'r, +d'r, + terms without ¢ or d (4.36)

in which the matrices H, S and the vectors ry, r; are defined by

H= —jr Q"Nds (4.37)

S= —jr Q"Nds (4.38)
1 1 Q1 (@
_ - Trr T~ _ Ty, _ T _ —

r‘_zjre (N"T+QTir)ds 2erN bd0 Ir¢eQ4¢ds jrw Q, | | ds

3 Uy

(4.39)

r, :—j . N'Tds (4.40)

e

To enforce inter-element continuity on the common element boundary, the un-
known vector ¢ should be expressed in terms of nodal DOF d. An optional rela-
tionship between ¢ and d in the sense of variation can be obtained from

oIT
o= He+Sdn =0 (4.41)

This leads to

c=Gd+g (4.42)

where G=H"'S and g= H_lr1 , and then straightforwardly yields the expression

of 77,, only in terms of d and other known matrices,
1 .
I, = EdTGTHGd +d" (G"Hg +r,) +terms without d (4.43)

Therefore, the element stiffness matrix equation can be obtained by taking the
vanishing variation of the functional 77,, as

7
?'T"“:O: Kd=P (4.44)

where K=G"HG and P= —G"Hg-, are, respectively, the element stiffness matrix
and the equivalent nodal flow vector. The expression (4.44) is the elemental stiff-
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ness-matrix equation for Trefftz FE analysis.

4.2.5 Numerical results

To illustrate the application of the element model presented above, an example of a
piezoelectric prism subjected to simple tension (see Fig. 4.2) is considered. To al-
low comparisons with other solutions appearing in Ref. [26], the results obtained
are limited to a piezoelectric prism subjected to simple tension.

This example was taken from Ding et al. [26] for a PZT-4 ceramic prism subject
to a tension P=10 N/m” in the y-direction. The properties of the material are given
as follows:

¢y =12.6x10" N/m?, ¢, =7.78x10"° N/m?*, ¢, 5; = 7.43x10' N/m?,

Cyppy = 11.5x10"° N/m?, ¢34, =2.56x10'° N/m*, e, =12.7 C/m?,
ey, =-52C/m*, ey, =15.10/m*, &, =730k,, &y =635k,
where x, =8.854x 1072 C* /(N -m?) . The boundary conditions of the prism are
o,=P, o,=D, =0 (onedges y=1b)

o,=0,=D=0 (onedges x=xa)
where a=3 m, b=10 m. Owing to the symmetry of load, boundary conditions and
geometry, only one quadrant of the prism is modeled by 10 (x-direction) x 20
(y-direction) elements in the Trefftz FEM analysis. Table 4.1 lists the displacements
and electric potential at points 4, B, C, and D using the present method and com-
parison is made with analytical results. It is found that the Trefftz FEM results are in
good agreement with the analytical ones [26].

y

D

C

3
O 418 x

2a

Fig. 42 Geometry of the piezoelectric prism in example.
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Table 4.1 Trefftz FEM results and comparison with exact solution.

Point A(2,0) B(3,0) C(0,5) D(0,10)

Treffiz ~ u,x10'"/m | ~0.967 4 ~1.4510 0 0

FEM u,x10°/m | 0 0 0.500 9 1.001 6
$IV 0 0 0.689 0 13779

Exact u; <10 /m | -0.9672 ~1.450 8 0 0

Ref[27]  u,x10°/m |0 0 0.500 6 1.001 1
$/IV 0.688 8 13775

4.3 Trefftz FEM for anti-plane problems

As a special case of the problem discussed in Section 4.2, we now consider applica-
tion of the Trefftz FEM to anti-plane electroelastic problems. Particularly, special
trial functions which satisfy crack boundary conditions are introduced and used to
develop a special purpose element with cracks.

4.3.1 Basic equations for deriving Trefftz FEM

In the case of anti-plane shear deformation involving only out-of-plane displace-
ment u, and in-plane electric fields, we have [13]

u,=u, =0,

The differential governing equation (1.9) can be simplified to

cssVu, +esVg =0,

with the constitutive equations (1.35) or

Jss
0

—8i15
0

uZ = uZ (x’y)9

esVu, —x,V¢=0

8is
0 g5
B
0 A

¢=p(x,y)

(in )

(4.45)

(4.46)

(4.47)

where V> =0 /0x” + 0% /0y” is the two-dimensional Laplace operator.

The constants fss, g5 and ), are defined by the relations

_ ki

fis =1

815 =

€

A’

c
ﬁn:%

b

A=cyuK, +efs (4.48)
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The boundary conditions are still defined by Eqgs. (1.11) and (1.12) and the con-
tinuity conditions are given in Eqs. (4.7) and (4.8).
It is obvious from Eq. (4.46) that it is necessary for

Ciuki +els 0 (4.49)

to have non-trivial solutions for the out-of-plane displacement and in-plane electric
fields. It results in

Vu, =0, V=0 (4.50)

4.3.2 Trefftz functions

It is well known that solutions of the Laplace equation (4.50) may be found using
the method of variable separation. By this method, the Trefftz functions are ob-
tained as [13]

u.(r,0)=Y_r"(a, cosmb+b, sinmo) (4.51)
m=0

#(r.0) = r"(c, cosmd+d,, sinmo) (4.52)
m=0

for a bounded region and

u(r,0)=ay+a,Inr+ Y r"(a, cosm@+b,, sinmb) (4.53)

m=1
é(r,0) = c; +cyInr+ Z r"(c,, cosm@+d, sinm0) (4.54)
m=1

for an unbounded region, where » and @ are a pair of polar coordinates. Thus, the
associated 7-complete sets of Eqgs. (4.51)-(4.54) can be written in the form

T={l, r" cosm@, r" sinm@} = {T} (4.55)

T={1, Inr, r " cosm@, r " sinm0} ={T,} (4.56)

4.3.3 Assumed fields

The two independent fields in the present Trefftz FEM are assumed in the following
way:
(1) The non-conforming intra-element field is expressed by
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_uz_lej 0 Cyi _Nl 0 _
R RS e e

where c¢ is a vector of undetermined coefficient, N, are taken from the component
of the series (4.55) or (4.56), and m is its number of components. The choice of m
was discussed in Section 2.6 of Ref. [23]. The optimal value of m for a given type
of element should be found by numerical experimentation.

(2) An auxiliary conforming field

SN 728 R B P O R ([ ) P
u—{&}—{o NzH%}J{O Nchd¢c}—Nd+NCdc (4.58)

is independently assumed along the element boundary in terms of nodal DOF d={d,,
dys"and d, ={d,.d ¢C}T , where N represents the conventional FE interpolating

functions and Nlc, N,. are given in Eqgs. (4.59) and (4.60) below. For example,

in a simple interpolation of the frame field on the side 1-C-2 of a particular element
(Fig. 4.3), the frame functions are defined in the following way:

MM
i, = Ny + Nyu, +Z§J4 (1-Eue, (4.59)
J=1
. . My
By =N+ Nogy + > &1 1-EDgy (4.60)
J=1

where u,., and ¢, areshown in Fig. 4.3, and

g 0= 5 0+

1 > 2 5 (4.61)

Using the above definitions the generalized boundary forces and electric dis-
placements can be derived from Eqgs. (1.11) and (4.57), denoting

| o Q|
vl o o e o2

3atza, d3) 55:1 ijo s‘:fiH
/g AN ! ¢ 2
2 N
o .,
yd h ® i, ¢(2 DOF)
. — & g, o) DUzt Dot Uz, (20 DOF)
1oy, )

Fig. 4.3 Geometry of a triangular element.
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4.3.4 Special element containing a singular corner

It is noted that singularities induced by local defects, such as angular corners, cracks,
and so on, can be accurately accounted for in the conventional FE model by way of
appropriate local refinement of the element mesh. However, an important feature of
the Trefftz FEM is that such problems can be far more efficiently handled by the
use of special purpose functions [23]. Elements containing local defects (see Fig.
4.4) are treated by simply replacing the standard regular functions N in Eq. (4.57)
by appropriate special purpose functions. One common characteristic of such trial
functions is that it is not only the governing differential equations, which are
Laplace equations here, that are satisfied exactly, but also some prescribed boun-
dary conditions at a particular portion /7 (see Fig. 4.4) of the element boundary.

This enables various singularities to be specifically taken into account without trou-
blesome mesh refinement. Since the whole element formulation remains unchanged
(except that now the frame function u in Eq. (4.58))is defined and the boundary
integration is performed only at the portion /7,. of the element boundary

e

I, =I,.+TI,, (see Fig. 4.4)[23], all that is needed to implement the elements

containing such special trial functions is to provide the element subroutine of the
standard, regular elements with a library of various optional sets of special purpose
functions.

Element
boundary ~ ¢°

Fig. 4.4 Special element containing a singular corner.

In this section we show how special purpose functions can be constructed to
satisfy both the Laplace equation (4.50) and the traction-free boundary conditions
on angular corner faces (Fig. 4.4). The derivation of such functions is based on the
general solution of the two-dimensional Laplace equation:

u,(r,0)=ay+ Y (a," +b,r " )cos(1,0)+ > (d,r* +e,r " )sin(4,0)
n=1 n=1

(4.63)
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#(r.0)=ey+ Y (e, + f,r ") cos(4,0)+ Y (g, r™ +h,r)sin(4,0)

n=1 n=1

(4.64)

Appropriate trial functions for a singular corner element are obtained by consi-
dering an infinite wedge (Fig. 4.4) with particular boundary conditions prescribed
along the sides 8= £6, forming the angular corner. The boundary conditions on the
upper and lower surfaces of the wedge are free of surface traction and surface
charge:

ou o¢ ou o¢
=C—Zte——=0, Dy=e¢;—=-x,—=0 4.65
0,9 = Css 00 €5 00 6 = €s 00 Ky o0 ( )
This leads to
Ou o0¢
=0, £ =0 for 6 ==6, 4.66
00 00 (for 0) (466

To solve this problem, we rewrite the general solution (4.63) as

u.(r,0) =ay+ Y (@, +b,r""")cos(1,0)+ Y (d,r"" +e,r " )sin(B,0)
n=1 n=1
(4.67)
where A, and g, are two sets of constants which are assumed to be greater than

zero. Differentiating solution (4.67) and substituting it into Eq. (4.66) yield

o
00

gy == A (@, + b, ) sin(£4,6,)
n=1

+Z B,(d " +e b Pr)cos(£f,0,) =0 (4.68)

n=1
Since the solution must be limited for »=0, we should specify

b,=e,=0 (4.69)

From Eq. (4.68) it can be deduced that

sin(£4,6,) =0, cos(£f,6,)=0 (4.70)

leading to
1,6, =nn (n=1,2,3,") (4.71)
28,6, =nn (n=13,5,""*) (4.72)

Thus, for an element containing an edge crack (in this case 6, =), the solu-
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tion can be written in the form

u,(r,0)= a0+Za r" cos(né) + Z d,r 51n(—€) (4.73)
n=1 n=1,3,5
With solution (4.73), the internal function defined in Eq. (4.57) can be taken as

(2n-1)
N,,_, =r" cos(nb), N,,=r % sin(——=

(2” Doy =123 (474)

It is obvious that the displacement function (4.73) includes the term proportional
"2 whose derivative is singular at the crack tip. The solution for the second
equation of (4.66) can be obtained similarly.

tor

4.3.5 Generation of element matrix

The element matrix equation can be obtained by means of a variational approach.
Following the procedure described in [24], the related variational functional used
for deriving Trefftz FE formulation of the anti-plane problem may be constructed as

P =3 =Y [ (D,-D)gds-[ (T -nids

+Ir (D, ¢+, )ds} (4.75)
le
H;E:ZH,,if_ {1785+j (¢ #D, ds+J. —u,)ids

= fts-2 [, #Dds=[ @D, +inds (4.76)
where

> N H(aii,Dk)d_Q—kJ.l_“e fir, ds +jr¢e D,$ds 4.77)

e =] " H(yij,Ek)d.Q+J‘rt dii ds+ [ .  dds (4.78)

with

H( UﬂD)___f‘SS(O-xz_Fo-vz) ngO-rsz 8150 yz y+ ﬂll(D +D) (479)

1 1
H(yij’Ek) 25055(732 +7iz)_6157/szx _6157yzEy _EKII(E)? +Ef) (480)

in which Eq. (4.50) is assumed to be satisfied, a priori.
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The element matrix may be then established by setting 8/77° =0or 87755 =
0. As an illustration, we use 8/77° =0 to derive the element stiffness matrix. To

simplify the derivation, the domain integral in Eq. (4.77) is converted into a
boundary integral by use of solution properties of the intra-element trial functions,
for which the functional (4.75) is rewritten as

1, =5[, € +Dpss=[ DF+riys—[ Diss-|,

u

t.ii.ds
(4.81)

Substituting the expressions given in Eqs. (4.57), (4.58), and (4.62) into Eq.
(4.81) produces

me

1777 =~ LT He 1 TSd + ¢ (4.82)
2 1

in which the matrices H, S and the vectors r, are defined by

H=-] Q'Nds,
S= —jr Q"Nds, (4.83)

=], Qéds-] Qlids

The symmetry of the matrix H can be shown by considering the generalized en-
ergy U, of a particular element “e”:

2v, =2 N H(oy,D)d2 = [ o, 046y~ DiE)IL

_ _ T _ T
- j . (@nu; + D )ds _j . Thuds = j  u'Tds (4.84)
where
T T T _ T
IFET uds = ¢ UQQ Nds}c—c He (4.85)
T _ T T _ Ty T
J‘Fgu Tds = ¢ UFEN st}c—c H'c (4.86)

Therefore H=H".

To enforce inter-element continuity on the common element boundary, the un-
known vector ¢ should be expressed in terms of nodal degrees of freedom d. An
optional relationship between ¢ and d in the sense of variation can be obtained from
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)il
aac;m’ =—Hc+Sd+r, =0 (4.87)

This leads to

c=Gd+g (4.88)

where G=H"'S and g=H'r,, and then straightforwardly yields the expression

of 77,, only interms of d and other known matrices:
,, =%dTGTHGd+dTGTHg (4.89)

Therefore, the element stiffness matrix equation can be obtained by taking the
vanishing variation of the functional 77,, as

oll,
—5<=0 = Kd=P (4.90)

od
where K=G'HG and P= —G"Hg are, respectively, the element stiffness matrix and
the equivalent nodal flow vector. The expression (4.90) is the elemental stiffness

matrix equation for Trefftz FE analysis.

4.3.6 Numerical examples

As a numerical illustration of the formulation described above we consider an
anti-plane crack of length 2¢ embedded in an infinite PZT-SH medium which is
subjected to a uniform shear traction, o,, =7, and a uniform electric displace-

oo 2

ment, D, =D,_ atinfinity (see Fig. 4.5). The material properties of PZT-5H are as

given by [13]: c55 =3.53x10" N/m?, ¢ =17.0 C/m*, x;, =1.51x10°* C/V-m),
J, =5.0 N/m, where J, is the critical energy release rate. In our FE analysis, one

half of the geometry configuration shown in Fig. 4.6 is used and a typical element
mesh is shown in Fig. 4.7. However, due to the symmetry about the x-axis (the line
AB in Fig. 4.7), only one half of the mesh in Fig. 4.7 is actually used. Since the trial
functions of the crack element satisfy the crack face condition and represent the
singularity at crack tip, it is unnecessary to increase the mesh density near the crack
tip. In the calculation, three types of element (see Fig. 4.7) have been used.

To study the convergent performance of the proposed formulation, numerical re-
sults for different element meshes 8x8, 12x12, 16x16, 20x20, and 24x24
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are presented in Table 4.2, showing that the /-extension performs very nicely, and
Table 4.3 shows the results of J/J versus M, where 2M is the number of hierarchic

degrees of freedom. That also shows good convergent performance.

Toay Deo
©O0 0060000

Fig. 4.5 Configuration of the cracked infinite piezoelectric medium.

(] -

Fig. 4.6 Geometry of the cracked solid in FE analysis.

e Node

A B Ordinary element

Element mesh Crack element Element on line 4B

Fig. 4.7 A typical element mesh and element types.
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Table 4.2 h-convergence study on J/J, for piezoelectric plate with a central crack

(alc=15, D, =2x1073 C/m’, and 7., =4.2x10° N/m?).

Meshes JI/J g

8x8 1.5954
12x12 1.590 8
16x16 1.5899
20%20 1.5895
24x24 1.5893

Table 4.3 p-convergence study on J/J, for piezoelectric plate with central crack

(alc=15, 16x16, D, =2x107 C/m>, and 7, =4.2x10° N/m?).

M JIJ
0 1.5899
1 1.589 6
2 1.5895
3 1.5894

The boundary effect is investigated by using different ratios of a/c (5, 7, 10, 12,
and 15). Numerical results of J/J for different a/c are listed in Table 4.4. The

accuracy of these results is adequate when a/c is greater than 10.

Table 4.4 Boundary effect study on J/J, for plate with central crack (24 x24,
D, =2x10" C/m’, and 7., =4.2x10° N/m?).

alc I/
5 1.596 8
7 15917
10 1.589 8
12 1.589 4
15 1.5893

4.4 Trefftz boundary element method for anti-plane problems
Trefftz BEM can be divided into two major categories: the direct method and the
indirect method. The direct and indirect methods presented in [18] are detailed here.
4.4.1 Indirect formulation

In the indirect method, the unknown displacement u, and electric potential ¢ are
approximated by the expansions (4.57). In Eq. (4.57), N, is taken from Eq. (4.55)
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for subdomains without crack or from Eq. (4.74) for the remainder, and the gene-
ralized traction vector T is defined in Eq. (4.62). Then, the indirect formulation
corresponding to the anti-plane problem can be expressed by

[,, @-womds+] (@ -gmds

+j . (= tywds +er (D, —D,)w,ds =0 4.91)

where w; (i=1-4) are arbitrary weighting functions and u., ¢, ¢, D, have the series
representations (4.57) and (4.62). If we use the Galerkin method, the weighting
functions are chosen as arbitrary variations of the expressions (4.57) and (4.62),
that is

w =Q8¢, w, =Q,8¢, w;=-N;6¢c, w, =—N,d¢c (4.92)

Substituting Eq. (4.92) into Eq. (4.91) yields
Kce=f (4.93)

where

K= . QINlds—jrt NlTQlds+Ir¢ QIN,ds - jFD NIQ,ds  (4.94)

f=] . Qlizds- | . NiZds+ | ,, Qdds- | . NiDds  (499)
It should be noted that the formulation above applies only to a solution domain
containing one semi-infinite crack when the particular solution (4.74) is used as the
weighting function. For multi-crack problems, the domain decomposition approach
is required. In this case, the solution domain is divided into several sub-domains
(Fig. 4.8). For example, a domain containing two cracks can be divided into four
sub-domains (Fig. 4.8), In Fig. 4.8, €2 (i=1-4) denote the sub-domains, / the outer
boundary, and /7; the inner boundaries between sub-domains. For each sub-domain,
the indirect method leads to

Ke =f  (i=1-4) (4.96)

171 1
On the inner boundary /7, the continuity conditions provide

wy=ul, # =4/, t;=-t), D,=-D (4.97)
where the subscript “/” stands for the inner boundary, and superscript “i” (or ‘5 )
means the ith (or jth) sub-domain. Equations (4.96) and (4.97) can be used to solve
multiple crack problems.
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Fig. 4.8 Geometry of the four sub-domain problems.

4.4.2 The point-collocation formulations of Trefftz boundary element method

The point-collocation technique is obtained when these functions are defined by the
Dirac delta function as

W] :W2:W3:W4:6(P—Pi) (4.98)

where P, is the collocation point.

1

Substituting Eqs. (4.57), (4.62), and (4.98) into Eq. (4.91) yields

u.(R)=[Ny(R) Oe=w(R)  (for B on I,) (4.99)

t.(R)=Q(R)=7(R)  (for B on I,) (4.100)
#(P)=[0 Ny(R)e=¢(R)  (for B on Iy) (4.101)
D,(R)=Q,(B)=D,(R)  (for B on I}) (4.102)

The above equations may be written in index form:
Kyc, = f; (4.103)

or in matrix form which has the same form as that of Eq. (4.93), but different ele-
ments of matrix K. The points of collocation can be set at any location where a
boundary value is known.

4.4.3 Direct formulation

The Trefftz direct formulation is obtained by considering [28]

” (V2 + Vi, )d2 =0 (4.104)
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Performing the integration by parts and taking the right-hand side of Eq. (4.57)
as weighting function, that is

R T I :{N‘} =N 4.105
Y {vz} ;{0 szch} N, T (4.105)

[, (NIt ~Qu, +N]D, ~Q}¢)ds = 0 (4.106)

we have

Since the equation is valid for arbitrary vectors ¢, we have

[ Ni-Qlu, +N3,D, —Q}¢)ds = 0 (4.107)
The analytical results of Eq. (4.107) are, in general, impossible, and therefore a
numerical procedure must be used to solve the problem. As in the conventional
BEM, the boundary /"is divided into m linear elements, for which u., t,, ¢, and D,
are approximated by
u, = ZuziF;(S)7 tz = thiF;‘(S)7 ¢ = z%E(S)’ Dn = ZDniF;(S) (4108)
- i=1 i=1 i=l

i=

where u,;, t,;, ¢, and D,, are, respectively, their values at node i. s>0 in the ele-

ment located at the right of the node 7, s<0 in the element located at the left of the
node. Fis) is a global shape function associated with the ith-node. Fis) is
zero-valued over the whole mesh except within two elements connected to the
ith-node (see Fig. 4.9). Since F(s) is assumed to be linear within each element, it
has three possible forms:

F(s)=("|-s)/|lf (4.109)
for a node located at the left end of a line (see Fig. 4.9(a)),
F(s)= (\1;\ +s)/\1;\ (4.110)
for a node located at the right end of a line (see Fig. 4.9(b)), or
(| +ofr|  Geseln
F(s) = (4.111)
(MERUA (ifsel’)

where [ and I are two elements connected to the ith node, with /" being to the
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) ':>ﬁ‘”

i(s=0) § i+1(s;|1j ) i(s=0) +1(s=|l}])
(@) (b)
Fis) Fi(s)
1
~1(s=-I17]) is=0) (=11
©)
Fig. 4.9 Definitions of F.(s), || and |/;].

;

right and [ being to the left, while and |ll.’| denote their lengths, and

0 (at node 7)
I

S =

(atnode i +1)

—‘l,f‘ (atnode i —1)
Having performed the discretion above, we obtain
Gu = Ht

Applying the boundary conditions, we have

z

u
u

G, G, G, G]J{"!=[m, B, H, H,]

o
0

O Ol a -~

or simply

Kx=f

131

(4.112)

(4.113)

(4.114)

(4.115)

The direct formulation above is only suitable for single crack problems. For a
multi-crack problem, as treated in Subsection 4.4.1, the domain decomposition ap-
proach is used to convert it into several single crack problems. For a particular sin-

gle crack problem with sub-domain / (see Fig. 4.8), Eq. (4.115) becomes
Kx; =f, (in €2)

(4.116)

while on the inner boundary /7;, the continuity condition is again defined in Eqs.

(4.7) and (4.8).
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4.4.4 Numerical examples

As a numerical illustration of the proposed formulation, two simple examples are con-
sidered. To allow for comparisons with analytical results, as presented in [22,29], the
results obtained are limited to a central cracked piezoelectric plate and a piezoelectric
strip with two collinear cracks along its x-axis. In all the calculations, the PZT-5H pie-
zoelectric ceramic material is used, the material constants of which are [25]

iy =3.53x10"" N/m?®, ¢, =17.0 C/m*, x;, =1.51x10"* C/(V-m),J, =5.0 N/m

where J,, is the critical energy release rate.

Example 1

we consider again an anti-plane crack of length 2¢ embedded in an infinite
PZT-5H medium which is subjected to a uniform shear traction, 0, =T.» and a

uniform electric displacement, D, =D_  at infinity (see Fig. 4.5). In the Trefftz

boundary element calculation, only one half of the geometry configuration shown in
Fig. 4.6 is used due to the symmetry of the problem. A typical boundary element
mesh is shown in Fig. 4.10. The energy release rate for PZT-5H material with a
crack of length 2¢=0.02m and a/c=14 is plotted in Fig. 4.11 as a function of elec-
trical load, with the mechanical load fixed so that J=J, at zero electric load. The
results are compared with those from Qin [13] using Trefftz FEM. It is found from
Fig. 4.11 that the energy release rate can be negative, which means that the crack
growth may be arrested. It is also observed that there is good agreement between
the two approaches although only 32 boundary elements are used in the calculation.
The energy release rate appearing in Fig. 4.11 was defined in [25]

J=G=1im 2" (4.117)
Ax—0 Ax
with
ax ]
AW =2 j ) 5(@tt. + Dy P (4.118)

Fig. 4.10 A typical boundary mesh (32 elements).
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=
"
T

—e— Treffiz BEM

051 — Qin[13]

Do /(107C/Im?)

Fig. 4.11 Energy release rate in cracked PZT-5H plate (a/c=14, 7., =42x10° N/m?,

and 32 elements).

The boundary effect should be studied since we use a rectangular domain with
side length 2a (see Fig. 4.6), rather than the infinite domain. The boundary effect is
investigated by using different ratios of a/c (6, 10, 14, and 18). Numerical results of
J/J, for different a/c are listed in Table 4.5. The accuracy of the results is ade-

quate when a/c is greater than 14.
Table 4.5 Boundary effect study of J/J, for plate with central crack ( D, =
2x107 C/m*, and 7., =4.2x10° N/m?).

alc J/Jcr
6 1.598 7
10 1.5922
14 1.589 6
18 1.5895

To study the convergent performance of the proposed formulation, numerical re-
sults of J/J_ for different element meshes 24, 32, 48, 64, and 128 boundary ele-

ments are presented in Table 4.6, which demonstrates that the /#-extension performs
very nicely. Table 4.7 shows the results of K, /K¢ and K, /K, for the element

meshes above, also showing good convergent performance, where [25]

Kys = ¢ssK, —esKp, Kps =esK, +x,K, (4.119)
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with

cisD_—e 7T
KE — 55 15 ,TCC

KT, +e:D

_ Kt test,
K, =Sl T o, k
CssKyp tés

¥ 2
Csskyp t €5

(4.120)

Table 4.6 /A-convergence study of J/J, for plate with central crack (a/c=14, D, =
2x107° C/m’, and 7, =4.2x10° N/m?).

Elements S I
24 1.596 1
32 1.5913
48 1.590 1
64 1.589 4
128 1.5893

Table 4.7  h-convergence study for Ky /Ky and K/ Kpg for plate with central crack
(alc=14, D, =2x10"C/m’, and 7, =4.2x10° N/m?).

Elements Ky / Kins Kp/Kpg
24 1.254 1.195
32 1.181 1.122
48 1.112 1.089
64 1.094 1.071
128 1.092 1.070

Table 4.8 shows the results for J/J_, obtained by both the indirect method

and the direct method, indicating similar convergent performance. Therefore both
methods are suitable for anti-plane fracture analysis, although the values of J/J,

obtained from the indirect method are slightly higher than those from the direct
method.

Table 4.8 J/J_, for the central cracked plate from the two methods (a/c=14, D, =
2x107°C/m?, and 7., =4.2x10° N/m?).

Number of variables
Approach
48 64 96 128
Indirect method 1.598 8 1.592 4 1.590 7 1.590 1
Direct method 1.596 1 1.5913 1.590 1 1.589 4
Example 2

Consider a piezoelectric strip of width 24(A=2) which has an infinite extent in

the y-z direction (see Fig. 4.12). The strip contains two collinear impermeable
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through cracks of equal length (1-b) along the x-axis [29]. Here 2b is the distance
between the two cracks. Both cracks are perpendicular to the edges of the strip. As-
sume that the strip is subjected to a constant shear stress, o5, = -7, , over the sur-
face of the two cracks.

Owing to the symmetry of the problem only one half of the geometry configura-
tion shown in Fig. 4.13 is analyzed, and each sub-domain ({2, or £2) is modelled by

64 boundary elements.
y
\*_/

2 h-(1 TM
| 1 1 (1+6)/2
I o //

X
2b
- — =
” Q|

Fig. 4.12 Two cracks in a piezoelectric Fig. 4.13 Geometry of the two crack system
strip under anti-plane loading. in the Trefftz boundary element analysis.

Figures 4.14 and 4.15 display the variation of K, /7, and K, /7, with the

out

crack distance b, where ¢, K;,, and K, are as defined by [29]
c=12, K, = lim 2n(b+x)0;,(x,0), K, = lim /-2n(1+x)05,(x,0)
x—>-b* x—>—1"

It can be seen from Figs. 4.14 and 4.15 that the results from the Trefftz BEM are
in good agreement with analytical results [29] when the crack distance b is greater
than 0.4. However, the discrepancy between the two methods increases along with a
decrease in b when b is less than 0.4. This indicates that edge effect will become
important when the ratio of crack length (1-b) to the distance from the crack tip to
the edge of the sub-domain (b here) is greater than 1.5, i.e., (1-5)/b>1.5. This
result can help us to select an appropriate subdomian size when using the proposed
formulation.
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—a— 7Zhou and Wang[29]
—C— Present method
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Fig.4.14 K, /7, vs crack distance b.
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Fig. 415 K, /7y vs crack distance b.
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4.5 Trefftz boundary-collocation method for plane piezoelec-
tricity

This section presents a brief summary of the development in [19] which begins with
a Trefftz solution of general plane piezoelectricity derived by Lekhnitskii’s formal-
ism. Then a boundary collocation scheme is described.

4.5.1 General Trefftz solution sets

Let (x',y")be the principal material coordinates, y" the poling direction and (x,y)
the set of coordinates obtained by rotating (x',y") through an anti-clockwise rota-

tion & (see Fig. 4.16). Using Lekhnitskii’s formalism, a general solution of plane
piezoelectricity can be written as [25]

O 3 Il'l/f D 3 (@, u
opnp=2Re) 1 1 wi(z), Ph=2Re) ¢ T l(z,) (4121)
k=1 D, k=1 ~@k
012 —Hy
U 3 | P
uy (=2Re D 3 q wilz) (4.122)
¢ - Sk

where g, is the kth root of Eq. (2.8), wy is an arbitrary function of the complex
variable z;, and [25]
Pr =AM +ay —by@y, gy = ap i +dy, - 2212”k>
_(by +bi3) i + by
Sk + 6

sp ==(by+0,, @)y, @ (p)= (4.123)

z, =x+ .y =r.(cosf, +isinf,)
witha, by,

represented by (7,6, ) .

and 6 being defined by Eq. (1.25), and the polar coordinates being

Making use of the general solutions (4.121) and (4.122), the plane piezoelectric
problem is reduced to the one of solving the potential functions ;. The corre-
sponding Trefftz functions can be obtained by expressing y;in terms of Taylor se-
ries [19]:

v (z) =D (" +ip{"Mz;  (fork=1,2,3,-) (4.124)
n=1
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Fig. 4.16 Coordinate systems and poling direction for elliptical hole.

where ¢ and f; are real coefficients. Substituting Eq. (4.124) into the general solu-
tions (4.121) and (4.122), the basic set of Trefftz functions can be given in the form

T|, =2{Re(D))c{” —Im(D,)s{", —Re(D,)s{"” —Im(D,)c;",
Re(D,)ci” —Im(D,)ss”, —Re(D,)ss” —Im(D,)cs”,
Re(D,)c{” —Im(D;)s{"”, —Re(D;)s{"” —Im(D;,)c{"}

(for n=0,1,2,3,-) (4.125)

which corresponds to the unknown real constants {c™, B, &\, g\, ai”,

ﬂé”)},where ci(") =r" cosnd,, s = 1" sinnb,, Di={pi, qi, st T, “Re” and “Im”

1
denote, respectively, the real and imaginary parts of the subsequent expression, and
the subscript “u” signifies that the basic solution set is for the displacement vector
u={uy,w, ¢

4.5.2 Special Trefftz solution set for a problem with elliptic holes
For an arbitrarily oriented elliptic hole, Sheng et al. [19] in 2006 constructed a spe-

cial set of Trefftz functions. They began with considering the following conformal
mappings:

B a—iykbé, +a+i,u,€bL
= k

z
2 2 &

(for k=1,2,3) (4.126)
where @ and b are the half-lengths of the hole axes (see Fig. 4.16). With the map-
ping, the region occupied by the piezoelectric material in the z;-plane is mapped

onto the outside of a unit circle in the {-plane, since it can be shown that all the
roots of equation dz, /d{, =0 for Eq. (4.126) are located inside the unit circle

é’k

=1 [30]. The inverse of the mapping (4.126) provides
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+ 2 — (2 + 2B
g o AENE WMD) 03 4.127)

a—iub

in which the sign of the square root + is chosen in such a way that |§ k| >1. Making

use of Eq. (4.126), the elastic displacements, stresses, and electric displacements
defined in Egs. (4.121) and (4.122) can be written in the form

o ey (D (@ | wi(&)
oy p=2Re Y 1 e { 1}:21«2{ "”"}"’{f—k (4.128)
k=1 Zk(gk) D, =1 L O Zk(gk)
Oz ~Hy
U 3 | Pk
uy f=2Re Y {q; wi(&y) (4.129)
¢ k=1 Sk

For an impermeable elliptic hole, the traction-free and charge-free conditions
can be given from Eq. (4.128) as in [19]:

3 3 3
Rezl//k(é’k)zoz ReZﬂka(gk)zo’ Rezwkl//k(é’k) (4.130)
k=1 k=1 k=t .
(on |§k| =1

Equation (4.130) can be written equivalently as

M

3
[V (€ +w, (E)]=0, Z[ﬂkvlk(gk)+ﬁky7k(§k)] =0,
k=1

k! (4.131)
Doy CO+a7,(E)1=0  (on | =1)
k=1
or further in matrix form
_ 1
L4 1 11y £y By By ||y
Vo == M My 1 My Hy s |\Wo = By By By |\ (4.132)
Vs @, O, T, ), @, Ty | |V; Eyy By, Exy | |ys

where Ej; are self-defined in Eq. (4.132).
The complex potential functions y; for the hole problem can be chosen in the
form of Laurent series [19]:

V() =D e +iBMG + (e +ifT™)G"] (fork=1,2,3,-) (4.133)

n=1

where o and f; are real constants. Noting that
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G=C=0=€" (4.134)

at any point along the hole boundary, where @is a polar angle, the combined use of
Eqgs. (4.132)-(4.134) provides six constraints on the 12 real coefficients a,((") s
al™, p™, and B for a particular number 1. The six constraints can be used to
eliminate six real constants, say, a,g_”) and ,8,5_”) in Eq. (4.133), which results in the

following set of special Trefftz functions:

(hole) _ (™ ™ B ™
T|u = {(DO:II s (Dﬂnl > (I)anza (Dﬁnz’ (Dafs >

@)} (forn=0,1,2,3,+) (4.135)

where
3 3
D) =15+ Y Re(E " = D Im(E 5"
i~1 =l (4.136)
G =y - Z Im(E, y'" - Z Re(E; 15"
i=1 i=1
with
1 = 2Re(D, )Re(£}) -2 Im(D, ) Im(<}),
Ko = 2Re(D)Re(C,") = 2Im(D,) Im(C, "), @137

14 = —2Re(D,) Im(¢}) - 2Im(D, ) Re(S}),
1o =2Re(D,)Im(¢;") - 2Im(D, )Re(£,")

4.5.3 Special Trefftz solution set for impermeable crack problems

Having obtained the special Trefftz functions for elliptic hole problems, Sheng et al.
[19] next derived a special set of Trefftz functions for problems containing an im-
permeable semi-infinite crack. In this case, the boundary conditions along the crack
faces are

0, =0y, =D,=0  (at crack faces 8 = £m) (4.138)

The potential function y; in Eq. (4.124) are now in the form
vi(z) = D (@ +ifMz] = (@ +if{" ) (cosn b, +isinn6,) (4.139)
7 7

where 77 is no longer an integer and is to be determined by boundary conditions. To
determine the unknown 7 substituting Eq. (4.139) into Eq. (4.121) yields

3 oo
$=2>">[a{"(Agct” = Bys™) B (Ays(” = By (4.140)
k=1 n



4.5 Trefftz boundary-collocation method for plane piezoelectricity 141

3 oo
00 =22, 2 e B (4.141)

k=1 n

3 oo
o1, =22 > nlaf” (A,c"™ =B s B (A st + B el (4.142)

k=1 n
3 o

D, =23 nla” (Al = BLusi"™) =B (AyysT™" + B el )] (4.143)
k=1 n

where ¢ =r"cosnf, s =r"sinnb,, A4=Re(sy), By=Im(s), A= -Re(uy),
B = —Im(1y), A= —Re(a@y), and B = —Im(a). Noting that 6, =+n and r=r at

6 = £, substituting Egs. (4.141)-(4.143) into Eq. (4.138) provides

X(7)Gq=0 (4.144)
where
(n) - -
o' 1 0 1 0 1 0
B 01 0 1 0 1
q= a;']) G= A,ul _Byl A,u2 _B,UZ A,u3 _B/l3
é’” B, A, B, A, B, Ag (4.145)
a§’7) Awl _Bwl AwZ _BwZ Aw3 _Bw3
3(’7) _Bwl Awl Bza2 AwZ Bza3 AZD'3 i

X(77) = diag [cosnm sinnm cos pm sinpm cos 7 sin 7|

If G is in full rank, the non-trivial solution of q can be determined by setting the
determinant of X(7) at zero. The solutions to |X (77)| =0yield

n=n/2 (forn=0,1,2,3,--) (4.146)
Since Eq. (4.138) provides three constraints, only three coefficients in Eq. (4.139)
are independent. Taking al(” ), ,31('7), and aé”) as independent constants, the re-
maining three constants, A", a{”, and A", can be found from Eq. (4.144) as
,32('7) — Jla](n) + Jzﬂl(n) +J3a§’7),
" =, + T P+ Tl (4.147)
g = J70‘1(77) +J B + Jyas”
where

Jy = (Bzz13B,ul _BmByz)/Jo’ s :[Bms(Am _A,u3)+B;13(Azzr3 = A1/ Jgs

4.148
Jy = (Bm3B,uZ _Bszm)/Jo’ Jy= [Bm(Aﬂz _Ay3)+B/11(A173 —A,.)1/J, ( )
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Js =[A,(Ayy = Apy) + A, (A — Ags) + A,5(Ayy — 4,1/ T,

4.149
Jo =[Byy (4,5 = Ay3) + B,p (A — 450)1/ Jy, Jr ==J, ( )
Jy :[Bm(Aul _Auz)"’By}(Amz — Ay, Jy=—J5 (4.150)
JO = Bm3(A/43 _A,L12)+B/43(Am2 _Am3)
forodd n,ie., n=1/2,3/2,---,and
‘]I :[Bw:i(A,u] _A,u3)+B,uS(Aa73 _Azzrl)]/JO’ ‘]2 :[BzzrlB,uB _Bzzr3B/tl)/J ’
J3 :[BZU}(Aﬂz _A#3)+B#3(AZU3 _Amz)]/JO’ J4 :JG :_1’ JS :0’ (4 151)
J7 =[Bya (A5 = A,) + B,y (A4 =4,/ Jg, Iy =[B,,B,, _BwlBy2)/']0’ '
Jo =[Byr(Ays = Ayp) + By (Ayy — A3)1 oo Jg = By3B,, — BB,

forevenn,ie., n=12,3,--.

By incorporating Eqgs. (4.139), (4.146), and (4.147) into the general solutions
(4.121) and (4.122), a set of special Trefftz functions for a problem containing an
impermeable semi-infinite crack can be obtained as

(crack—im) 7 7
T, ={SW +J,SP+J, SR +,ST, SY +J,8 D+ S+ ST,
S + ISR +J SU TSR (for 27 =0,1,2,--) (4.152)

which corresponds to the independent constants {”, S, a{”}, and

St =2Re(D, )" —2Im(D, )s;”, ST =-2Re(D,)s;” —2Im(D,)c{”  (4.153)

4.5.4 Special Trefftz solution set for permeable crack problems

It is noted in [19] that besides the impermeable and permeable assumptions, the
upper and lower limits of the exact electric boundary conditions are to be deter-
mined. Sheng et al. then developed a set of special Trefftz functions for problems
with a permeable semi-infinite crack in [19]. In this case, the boundary conditions
along the crack faces (4.138) become

0, =0,=0  (at crack faces 6 = +n),

4.154
¢|0:n = ¢|0:—n ’ D2 |z9:n = D2 |t9:—n ( )

The potential function ; for this problem has the same form as that of Eq. (4.139),
and in turn the expressions (4.140)-(4.143) also apply to this problem. Substituting
the expressions of @, o,, 0,, and D, in Eqgs. (4.140)-(4.143) into Eq. (4.154), an
equation analogous to Eq. (4.144) can be obtained. Then eigenvalues of 7 are also
given by Eq. (4.146), but they have different eigenfunctions.

Noting that Eq. (4.154) provides four constraints, only two coefficients for each
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nin Eq. (4.139) are independent if » is an odd integer, i.e., 7=1/2,3/2,---. When
we take o and 7 to be independent constants, the following relationships can

be obtained:

(m _ ) () _ (
azn) = Jllal(” +J12ﬁ1(77): ,32'7) =J " +J14ﬁ1(”),

(4.155)
" = sV + T B, B = T + T B

in which

Jin =43 = A4,,)(By B,y = BB, )+ (Ays — Apy (B3 B,y — By B,3)
+ (A3 — A By By — By BN/ Jig,

J12 = [(Am - Ayz )(Asleﬂ3 - Bs3Aw1) + (AyS - Aﬂl)(szBss - AszBm) (4~156)
+(A, — A A By — A3 By) + (A — A)A3B,5

+ (A = A3) Ay By + (A — A) A1 B,3)1 Uy

Ji3 =[By3 (B2 By — B,y Byy) + B, (B, Bs — B3 Byy)
+B,(B,3B,, —B,,B3)1/ Jy,

Jiy = [(Am - Am N By, B3 = Bi3B,s)+ (A, — Ay )(3533/12 - BS28/13
+(A3 — 4By B3 — B,y B,n)1 Uy

) (157)

Jis =[(A4,3 = A, By, B,y — B B,y) +(Ayy — A0 )(By B, — B, B,y)
+ (A3 — A4, (BB = By Bo)1 Jig,s

Ji6 =45, — 4y )(A,u_“anZ —B,,4,3)+ (4 - Asz)(A,quz
+ (A — Ay Ay B,y =By Ayp) +(Ayy — 4534, B,
+ (Ams - Awl )AyZBXZ + (Awl - Am2 )AmBsz )] / JlO ’

Ji7 =413

“Buda) (4 158)

Jis =[(A,, = A VBB, = BB 3) +(Ayy — Ay (B By — B3 By,)
+(Ay — A3 ) By3B,, = By B3 Jys

Jio = (A/ﬁ e N Bg3Byy =By Bys) +(Ayy — Ay )B,B,; — BB,
+(A4;3 — 4, N By3B,,, = B,y B,s)

) 4159

When 7 is an even integer, i.e., n=0,2,4,---, Sheng et al. indicated that Eq.
(4.154) can provide only two independent constraints. Therefore, we have four in-
dependent coefficients in Eq. (4.139) for each n. Taking @!” and A" as depen-

dent coefficients, we have
" =-a" =", PV =Jea” + Sy 7+ S50 + T 7 (4.160)

where

J19 :(A,ul _AyS)/B,LB’ J20 :_Byl /B/B’ (4 161)
Iy =4, —Aﬂ3)/Bﬂ3, Js =—B#2/B#3

Making use of Egs. (4.121), (4.122), (4.139), (4.146), (4.155), and (4.160), a set of
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special Trefftz functions for permeable semi-infinite crack problems can be found
as

| =88 Use, (4.162)

where

Soi = {8311/2) _52131/2) +Jlos(ﬁn31/2)s S(ﬁn11/2) + Jzos(ﬁn;/z)s
Sun =S5+ Sy ST, S+ Sy (fornl=0,2,0),
2/2 2/2 2/2 2/2 2/2
Shy ={Su 2 + 7,80 )+J135<ﬁ"2 '+ 15845 )+J17S§;3 !,

Sfbjllz/Z) + lesglzz/Z) + J14Sf/;22/2)+ J16S(0:132/2) + J17S$32/2)} (forn2=1,3,--+)

(4.163)

with S being defined in Eq. (4.153).
It should be mentioned that the three electromechanical field intensity factors
for plane piezoelectricity can be directly obtained from Egs. (4.141)-(4.143) as

3
—h _ (1/2)
K, = 11—%0-22|9:0 V2 = \/211;1% ,
3
Ky = lim Oy N2 =21 (" 4, - BB, (4.164)
i=1

3
K, =limD,|,  2mr =\2n) (a{''? 4,, - "7 B,,)
r—0 - pary

4.5.5 Boundary collocation formulation

The boundary collocation method for plane piezoelectricity is similar to that of
anti-plane piezoelectricity described in Section 4.4. Essentially, the trial solution for
u is assumed in the form

Uy a,
a=1:u, =[N, Ny,---,N ]3¢ t=Na (4.165)
¢ a,

where N; are the Trefftz functions extracted from the basic solution set Eq. (4.125),
or the special solution set Egs. (4.135), (4.152), and (4.162), a; are the unknown real
coefficients to be determined by boundary conditions. Using the expressions
(4.121) and (4.122), the stresses and electric displacements induced by u can be
obtained. From those, the boundary tractions (7, 7,) and surface charge density

@ can be derived and expressed symbolically as
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4 aq
p=14 =M, M,,-- M 13 : {=Ma (4.166)
10) a

m

Since the trial functions satisfy the homogeneous form of the governing equations,
only boundary conditions need to be enforced. In the boundary collocation method,
the boundary conditions can be enforced by minimizing the following residuals:

R, =i-u (on7,), R,=p-p (on7},) (4.167)

where the overbarred quantities are prescribed along the respective boundaries. In
the collocation method, the residuals are coerced to be zero at selected boundary
points x; along 7 i.e.,

i(x)-u(x)=0 (on7,).  B(x)-B(x)=0 (n7,)  (4.168)

for i=1,2,---,n., where n, is the total number of the collocation points. The sub-
stitution of Egs. (4.165) and (4.166) into Eq. (4.168) yields the matrix equation

Ka=f (4.169)
where the dimension of K is 3n, xm . Generally, the number of residuals 37, ex-

ceeds the number of unknown coefficients m. Under this circumstance, an ap-
proximate solution of the over-constrained equation system can be obtained by the
least square method which pre-multiplies both sides of Eq. (4.169) with the trans-
pose of K.
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Chapter 5 Symplectic Solutions for Piezoelectric
Materials

In Chapter 4, numerical methods including Trefftz FE and BE approaches were
described. It was noted that for some singularity problems such as crack problems
of piezoelectric materials, the symplectic approach is a powerful and promising tool
for obtaining analytical solutions and analyzing local singularity behavior. This
chapter describes symplectic solutions for piezoelectric wedges, magnetoelectroe-
lastic strips and wedges, and three-dimensional piezoelectric materials.

5.1 Introduction

Traditionally, electroelastic coupling effects of piezoelectric materials are treated
mainly using a Green’s function approach [1,2], micromechanics [3,4], and the in-
tegral transform method [5-7]. These studies have been carried out in Euclidean
space and they are within the framework of the semi-inverse solution method,
which is similar to classical elastic mechanics. The symplectic space method in the
conservative Hamiltonian system, pioneered by Zhong [8,9], is different from the
traditional semi-inverse solution method. It is based on the Hamiltonian form with
Legendre’s transformation. The resulting Hamiltonian dual equations have deriva-
tives with respect to the radial (or transverse) coordinate alone on one side and the
angular coordinate alone on the other side. The separation of variables is employed
to solve the resulting differential eigenvalue problem, and analytical solutions can
be obtained by the expansion of eigenfunctions. Unlike the classical semi-inverse
methods with pre-assumed trial functions, the symplectic elasticity approach is rig-
orously rational without any guess functions. All geometric and natural boundary
conditions are imposed on the system in a natural manner. It is rational and system-
atic, with a clearly defined, step-by-step derivation procedure. With the symplectic
model, elastic or electroelastic problems can, for example, be solved by means of
analogy theory between computational structural mechanics and optimal control.
Particularly, using analogy theory, the eigenfunction expansion method of the Ham-
iltonian operator matrix along the transverse section can be developed within the
symplectic geometry space. For detailed description of this approach the reader is
referred to [10,11]. For applications of the symplectic formulation to multifield ma-
terials, Gu et al. [12] and Leung et al. [13] obtained 2D solutions for transversely
isotropic media using the symplectic method. Leung et al. [14] and Zhou et al.
[15-17] obtained analytical stress intensity factors for finite elastic disks,
edge-cracked circular piezoelectric shafts using symplectic expansion, and Mode 111
electromagnetic cracks. Leung et al. [18] then extended their symplectic formula-
tion to the case of piezoelectric cantilever composite plates. Xu et al. [19] applied
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the symplectic expansion method to solve three-dimensional problems for trans-
versely isotropic piezoelectric media and introduced a 3D sub-symplectic structure
for transversely isotropic piezoelectric media. Wang and Qin [20] developed a sym-
plectic model for analyzing singularities near the apex of a multi-dissimilar piezo-
electric wedge under anti-plane deformation. Zhao and Chen [21,22] presented
symplectic formulations for both functionally graded piezoelectric and magneto-
electroelastic materials. Recently, Li and Yao [23,24] obtained a symplectic solution
for magnetoelectroelastic materials in a rectangular domain. This chapter focuses on
the developments in [17,19-24].

5.2 A symplectic solution for piezoelectric wedges

A symplectic model developed in [20] for analyzing singular behavior near the apex
of a multi-dissimilar piezoelectric wedge under anti-plane deformation is described
in this section. Explicit solutions of elastic and electric fields are presented for the
cases of composite wedges consisting of one, two and multiple piezoelectric mate-
rials.

5.2.1 Hamiltonian system by differential equation approach

Consider a 2D piezoelectric wedge of sectorial domain as shown in Fig. 5.1. The
polar cylindrical coordinate (7,6, z) is selected under the condition that the z-axis is
out-of-plane, with the origin located at the central point of the cross-section. For an
anti-plane electroelastic problem involving out-of-plane displacement w and
in-plane electric fields only, the constitutive equations are given by Eq. (1.35) and
the corresponding governing equations (1.36) and Eq. (1.2) are now rewritten in
terms of polar coordinates (7,8) as

Fig. 5.1 A piezoelectric wedge.
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o(ro,.) 80'9 o(rD,) 0D,
: 0, AP) %D 5y 5.1
or og 7T or g 7Y SR
and
ow 10w g 164
_ow E - £ =199 52
=T YT e U T e T a0 (5-2)

where £, and Q are body force and electric charge density. The Hamiltonian system
for an anti-plane electroelastic problem can be obtained using the differential equa-
tion method. To do this, let (7,6) represent longitudinal and transverse coordi-

nates, respectively. Then define the dual vectors q and p as follows:

=" Y 5.3
=40 p—SDr (53)

which are required in the Hamiltonian system, where

S. =ro,,, SD,. =rD, 54

Further, to convert variables and equations from Euclidean space to symplectic
geometry space, introduce a generalized time variable £ such that

& =In(r) (5.5)

Since & is now a generalized time variable, the symbol - is used to represent
the differentiation with respect to & .

Making use of Egs. (5.1), (5.4), and (5.5), we have

or 6§ r 00

oS, _18s, 1. 00, 1| o&*w 0*¢
S ___0_’”]2:__{ 55@"‘%5%

}—rfz (5.6)

Equation (5.6) can be further written in the form

o’w  0'¢

§ = OV
508 a0”

I3

- f. (5.7)

Similarly, the expression of SD, can be obtained as

O*w o’

2
87+ 892 —e Q (58)

SD, =5

Considering Eqgs. (1.35) and (5.5), the variables S, and SD, can be expressed as

S, =cswtesd,  SD, =esw—k; b (5.9
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Solving Eq. (5.9) for w and ¢ vyields

W= f55S, + 855D, ¢f:g15S,, = puSD, (5.10)
in which
K e c
Jss 711; &is :f’ B :f» A:elzs + 55Ky (5.11)

The combination of Egs. (5.7) and (5.10) provides the following matrix equa-
tion:

0 0 Sss &is ]
w 0 0 &is —Pi w 0
9| 2 & ¢
S e | VA
SD, Ca 02 SD,| | -e*p
15 8(92 11 W

V= {q} (5.13)
P

Equation (5.12) can be written in the same form as Eq. (2.138) with

0 0 Sss & 1
0 gis —B
_ o? o*
H= —Cssﬁ—elsﬁ 0 0 (514)
o* o*
558 "o
h=1{00-c%1. 0} (5.15)

To prove that H is a Hamiltonian operator matrix, the rotational exchange operator
matrix defined by Eq. (2.140) with n=2 is employed. With the notation J, Wang and
Qin [20] proved that H satisfies the following relation:

<V]T,HV2>=<V§,HV]> (5.16)

where
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v Hy, )= [ vIJHy, do (5.17)
(vioHv,) =]

with the angles « and f being defined in Fig. 5.1. Then, according to theory of
symplectic geometry [10], H is a Hamiltonian operator matrix.

5.2.2 Hamiltonian system by variational principle approach

In Subsection 5.2.1 we derived a Hamiltonian system using a differential equation
approach. The same Hamiltonian system for the anti-plane problem of a piezoelec-
tric wedge can also be obtained using a variational principle approach. To illustrate
this approach, consider the constitutive equation (4.47) in terms of the polar coor-
dinate system:

Yoz Jss 00 g5 ||0,,

)/rz — 0 f55 ng O Urz (5 18)
E, 0 -gspB, 0 D,
E, -gs 0 0 B, ||Dy

Based on the constitutive relation (5.18), the modified Hellinger-Reissner gene-
ralized variational principle can be stated as follows:
5W 1 ow 8¢ 1 8¢ 1 2 1 2 2
——+D, +0.)—— D:+D,
I r89 al" r 00 [2f;5( 0z rz) 2ﬂll( r 6)
_g15D96492 — 8150, r] wl'— ¢Q} rdrd@ =0 (519)

Making use of the variable transformation (5.5), the variational equality (5.19)
can be further written as

8(0 8(/) ! 2 N 2 2
6] [ { ae +SD, 52 +SDs 35 [Efss(sr +83) = Bu(SD; +5D;)
+g,5SD,S, + ngSD,S,}—eszT —e25¢Q} dédo=0 (5.20)
where
&=y, &=hrn, S,=roc,, SD,=rD, (5.21)

Taking variation with respect to Spand SD, , Eq. (5.20) leads to

ow 04 ow_ o4 (522)

9 sp -
PY; 0= G0 MGy
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Substituting Eq. (5.22) into Eq. (5.20) we can obtain the Hamiltonian mixed en-
ergy variational principle as follows:

5] [ { o, sp % Ly g2yl BuSD} = 255D, +1655[awj

ag 2 06
- — | +e T— dédo =0 5.23
ZK”(@H ]58059 wl —e™¢Q rdS ( )

Making use of Eq. (5.3), Eq. (5.23) can be further simplified to
& ra T- _
s f@ Jlﬁ[p d- H(q,p) [4£d6=0 (5.24)

where H(q, p) is the Hamiltonian function defined by

1 1
fu%p>=—5qTBq+5pTDp—qﬁb (5.25)

—C55 —€ 2
B:{ 55 15}8_2’ D:{fss 815 } h, __o* {fz} (5.26)
—es Ky |00 gis —Pu 0
In the derivation of Eq. (5.24), homogeneous boundary conditions were used

[20].
From Egs. (2.136) and (5.25) the following equations can be obtained:

in which

q=Dp, p=Bq+h, (5.27)

Using the definition of v defined in Eq. (5.13), Eq. (5.27) can be rewritten in
the form

v=H'v+h (5.28)
in which
. (0D
H = (5.29)
B0

where H' is used to distinguish the matrix H in Eq. (5.14) and h is defined by Eq.
(5.15). By comparing the components of B and D defined in Eq. (5.26) with those
in the corresponding positions in Eq. (5.14), it is found that H" in Eq. (5.28) is the
same as H given in Eq. (5.14).

5.2.3 Basic eigenvalues and singularity of stress and electric fields

In Subsections 5.2.1 and 5.2.2, the dual state vector equation (5.28) was derived
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using either the differential equation method or the variational principle approach.
This section discusses applications of the Hamiltonian model developed to analyze
the eigenvalues of the Hamiltonian operator matrix which are associated with the
singularity behavior of a piezoelectric wedge.

Noting that Eq. (5.28) can be solved by the separation of the variable and the
symplectic eigenfunction expansion described in Section 2.7, one can assume v in
the form of Eq. (2.154). Substituting Eq. (2.154) into Eq. (5.28) yields the same
form of solution (2.158).

Eigenfunction-vectors corresponding to the eigenvalues (2.159) and (2.160) as
well as the zero eigenvalue =0 are denoted by w,; ,y_; and y,. Following
the procedure in [10], Wang and Qin [20] proved that y_; and y_, are of adjoint

symplectic orthonormalization, that is

Wi dow =6, Wi dw ) =-5;, (5.30)
<‘I’Ii’ J, ‘|I+j>=0’ <‘|’L‘7 J7 \I]_j):o
in which
wid v :j_ﬁw}J\yjde (5.31)

Equation (5.31) implies that , satisfies the homogeneous boundary conditions
at Od=a,-p.

To prove Eq. (5.30), considering two eigenfunction-vectors, y,, ¥, we have
from Eq. (2.156)

Hy, = vy, H‘l’j =HY; (5.32)
in which H satisfies the following relation:
H' “(Jy,) =y, (5.33)

Multiplying w} on both sides of Eq. (5.33) and integrating it across the trans-

verse section, we can obtain the following equation:
Wi HY 3wy == JH ) = = (w L, dw) = w(w) oy ) (5.34)

in which Eq. (2.140) has been used. Similarly, it is easy to show that the following
relation holds true:

(Wi IH ) = u(yl dy ) (5.35)
Making use of Egs. (5.34) and (5.35), we have

(4 +12,) (W dw,) =0 (5.36)
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If w4 +u; #0, Eq.(5.36) is reduced to

(v Jy;)=0 (5.37)

When g +u; =0,1e., j=-i, y;andy_satisfy the following relation:

vidy, 20 (i=12,,n) (5.38)
Performing the orthonormality operation, we obtain
\|1iTJ\|Li =1 and (or) \|11J\|1i =-1 (i=12,---,n) (5.39)

This indicates that Eq. (5.30) holds true. The adjoint symplectic ortho-normalization
relation between eigenfunctions has thus been proved.
Since w,; and y_; are of adjoint symplectic orthonormalization, the state vec-

tor y can be expressed by the linear combination of the eigenfunction-vectors as
follows:

v=2(aw,+bv_) (5.40)
i=1
where y,and y_; are eigenfunction-vectors corresponding to z and _;, and a;, b;

are coefficients to be determined.
From Egs. (5.3) and (2.158) we can obtain the following expressions:

u
{ } =r"q(0) (5.41)

w
{GD} = r*p(0) (5.42)

From Eq. (5.42) it can be found that the stresses and electric displacements near

the apex of a wedge are proportional to ' ; therefore the singularity order of the
stresses and electric displacements is Re(z) -1 .

It is obvious that the stresses and electric displacements are singular if the real
part of g is less than 1, i.e., Re(x) <1. For the potential energy to be bounded at the
crack tip, it is necessary that Re(x) > 0. So we focus our attention on the interval

0<Re(u)<1 (5.43)
Using the notation of the stress and electric field intensity factors K and K,

Eq. (5.42) can be rewritten as

o,.(r,0)= K" £ (0),

. (5.44)
D(r,0)=K"r* 7' P ()
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where 1" —1is orders of the stress and electric field singularity, and £ (@) and
£P(0) are the angular functions.
From Eqgs. (5.42) and (5.44) it is easy to see that

v(O)=Kf©®), A1 =u (5.45)
where
K° 0 o b T
K=" oo (0= 1" ©)} (5.46)

The remaining task is to find the angular function f(8) and the generalized stress
and electric displacement intensity factors K. Therefore, we need to find eigen-
values of Eq. (2.156) which satisfy the condition (5.43). To this end, rewriting Eq.
(2.156) in terms of its matrix components, we have

—H 0 fss & ]
0 —H Gs Pl W
d? d? ¢
= =0 5.47
Css 10 15 40’ u 0 S, ( )
d? d? SD,
e . —— - _
i 15 16> 11 16 H |

The order of singularity in the elastic and electric fields is determined by setting
the determinant of the 4x4 matrix in Eq. (5.47) to zero. This is equivalent to

—H 0 fss5 &
0 -1 &is —Bu

det ) ) =0 (5.48)
—CssA” —es A7 —u 0

R YV R

where A is the eigenvalue in the & direction.
Equation (5.48) leads to the following equation:

A+ 7)Y =0 (5.49)
Thus, the solutions of A are
Ay = i, Ayg =—pi (5.50)

With solution (5.50), the general expressions of the elastic and electric fields can
be expressed as
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w= 4 cos(ub)+ B sin(ub)+ C,0cos(ub)+ D,Osin(ub),
¢= A, cos(ub)+ B, sin(u0)+ C,0cos(10) + D,0sin(ub),
S, = A4, cos(u0)+ Bysin(u0) + C,0cos(ub) + D,0sin(u6),

SD, = A, cos(ub)+ B, sin(ub)+ C,0cos(ub)+ D,Osin(ub)

(5.51)

where 4;, B;, C;, D, (i =1-4) are unknown constants to be determined.

Substituting Eq. (5.51) into Eq. (5.47) yields the following relationships among
the four unknown constants :

Ay = pless A +esdy), Ay = plesd — k1 4,),
B, = u(css By +¢5B,), B, = u(esB, —x,B,), (5.52)
D=C=0 (i=1-4)

Then Eq. (5.51) can be rewritten as
{w} - {Al B, Hcos(y&)}
¢ 4, B, |[sin(u6) ]’ (5.53)
S, o |6ss as |4 Css es || B .
=u cos(ub)+ u sin(u6)
SD, es =k | (4 es =k | (B
From Eqgs. (1.35) and (5.53) we have
So = p Css s || 4 By ||—sin(u0) (5.54)
SDy s =& || 4y B, || cos(ub)
To obtain explicit expression of the four unknown constants, consider a piezo-

electric wedge as shown in Fig. 5.1. The conditions at the boundary edges are as-
sumed to be free of traction and electrically insulated:

O-Hz(r9a) = O-Hz(rs_ﬂ) = Dg(rya) = Dg(r,_ﬁ) = 0 (555)
Subsitituting Eqgs. (5.53) and (5.54) into Eq. (5.55) yields

—csssin(ua)  —ejssin(ua)  csscos(ua) escos(ua) || 4
—essin(ua) &, sin(ua)  escos(ua) —&cos(ua) ||,
Csssin(uf)  essin(uf)  csscos(up) e cos(uf) || B
gssin(uf)  —&sin(uf)  escos(uf) —é&,cos(up) || B,

=0 (5.56)

The condition for the existence of non-zero solutions of {4, 4, B, B, }T is that

the determinant of the coefficients matrix is zero, which leads to the following
equation:

(css&y +6i5)” sin® [u(a + B)] =0 (5.57)

If a=p=mn,wehave u=1/2, and the order of singularity is —1/2, which is
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the classical root singularity for a semi-infinite crack. This result also verifies the
validity of this method for the case of a semi-infinite crack.

Consider now a piezoelectric half-plane, i.e.,a = =mn/2. It can be easily
found that no root of Eq. (5.57) can satisfy the condition 0 < Re(z) <1. Therefore,
there is no singularity for the piezoelectric half-plane under the homogeneous
boundary condition. We also note that the singularity disappears for o+ £ <180°.
For 180° <« + f <360°, the variation of the order of singularity with o+ f is

plotted in Fig. 5.2. It can be seen that for a homogeneous piezoelectric wedge, the
order of singularity depends on the value of « + £ only.

{] T T T T T T T T

=0.05 T

Re(u™")

030 b

-0.351 1

-0.40

T
A

045 .

__0‘.’ 1 | 1 1 i i
‘?80 200 220 240 260 280 300 320 340 360
a+f

Fig. 5.2 Variation of order of singularity with « + /8 for a piezoelectric wedge.

It should be mentioned that for the sake of simplicity only one type of boundary

condition on the edges, given as Eq. (5.55), is considered. However, for other types
of boundary conditions such as clamped (w =0 ) and electrically open (¢ = 0), this

procedure is also applicable and the results can be obtained in a similar way.

5.2.4 Piezoelectric bimaterial wedge

For a piezoelectric bimaterial wedge as shown in Fig. 5.3, the boundary conditions
are as follows:
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o) (r,a) =) (r,-p) =Dy (r,a) = Dy’ (r,~ ) =0 (5.58)

If the bimaterials are rigidly bonded at the interface, the continuity conditions on
the interface are

o(r,00=02(r,0),  w(r,0)=w?(r,0),

5.59
DY (r,00= D (r,0),  EV(r,0)=E? (r,0) (559)

¥y

Material 1
a "

[
B Interface

Material 2

Fig. 5.3 Piezoelectric bimaterial wedge.

in which superscripts (1) and (2) denote materials 1 and 2, respectively.

As shown in Fig. 5.3, each material can be viewed as a homogeneous wedge.
Using the general solution (5.53) of a homogeneous piezoelectric wedge and the
continuity condition at its interface, we can easily obtain the solution for a bimate-
rial wedge. Keeping this in mind, substituting the solutions (5.53) and (5.54) for
each material into Eq. (5.59) yields the relationship between the unknown con-

stants:
(2) 1)
B, :|:all a12:| B, (5.60)
Béz) ayy Ay Bél)
in which
o0, o0 o0 @0
ay =— (K1 'css Teses), an=—I(Kyes —es5 Ky ),
1 1 (5.61)
_ (2) (1) (2) (1) _ (2) (1) (2) (1)
ay =—(@5¢css —Css'es ), Ay =—(e5es +es5kyy)
4,
where

4, =cx} + (€2 (5.62)
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Using the relation (5.60) and substituting the solutions (5.53) and (5.54) into Eq.
(5.58) lead to

1) . 1) - 1
—cl¥ sin(ua) —€¥ sin(ua) ¥ cos(ua)
—eV sin(ua) &\ sin(ua) el? cos(ua)

cF sin(up) e sin(up) [ ay, +eay |cos(up)

o2 sin(up) —) sin(uB) | e a, —xlay, |cos(up)

el cos(ua) A
—x\} cos(ua) AP

2 2
|:C§S)a12 + el(S)a22 ] cos(uf3) Bl(l)

2 2 (2)
|:el(5)a12 - Kl(l )azz ] cos(upf) | B,

=0 (5.63)

The non-zero solution of Eq. (5.63) requires that
(9} +e(?)sin® (ua) cos™ (up) + (¢ k) +ef2)sin’ (up) cos® (ua)
HeWxlD +2eY ey + )kl sin(uar) sin(up) cos(uar) cos(uB) =0 (5.64)

Equation (5.64) can be further written as

sin® [ u(a + )]+ R, sin® [ u(a = B)] = Ry sin[ u(a + B)]sin[ u(e - B)] (5.65)

with
R = A+ Ay — Ay — 4y R, = 2(4y —4)
A+ Ay + A, + 4y A+ Ay + A + 4y,
_ M, M @ (D _ M (2) 1) .(2)
4 =eses o5k, A, =e5es +KjCss s (5.66)
_ ) M) (2) .(1) _ (2 ,(2) (2) .(2)
Ay =e5es +kj Css, Ay =5’ + 055 Ky

It is found that Eq. (5.65) is exactly the same as the equations of Chue and Chen
[25]. For an interface crack, i.e.,a = f#=mn, we have x=1/2, which returns to a

classical —1/2 singularity. For other values of « and g, Eq. (5.65) shows that the
order of singularity strongly depends on the geometry and material constants of the
two piezoelectric materials. Moreover, the angular function and generalized stress
and electrical intensity factors K”and K" can also be obtained easily using this
method. Compared to the conventional method [26], the symplectic model re-
viewed in this section [20] can solve singularity problems more rationally. Particu-
larly, with an increase in the number of materials, the conventional method would
induce a large number of complex equation systems which may be difficult to solve
theoretically.
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5.2.5 Multi-piezoelectric material wedge

In the previous two subsections the theory of Hamiltonian systems was used to de-
velop symplectic models of a piezoelectric wedge and then to determine the orders
of singularity for both a homogeneous wedge and a bimaterial wedge. Now the re-
sults obtained are extended to the case of multi-piezoelectric materials. To this end,
consider a piezoelectric wedge consisting of multi-piezoelectric material elements
as shown in Fig. 5.4, which is similar to the multi-elastic material wedge in [27].
Here N is the number of material elements. The polar coordinate is again selected
for simplicity, and C,, C,,---,C, are adopted to indicate the 0-N sub-polar coor-
dinate systems. The domain £2, denotes the material element M, , and ¢, is the angle

of M,.

Ciy

Fig. 5.4 Multi-piezoelectric material wedge.

The continuity conditions on the bonded interface region are

o) (r,0) =0y (r,0),  w”(r,0)=w""(r,0),

A A A A 5.67
DY (r,0)=Dy™(r,0), E (0 =E""(r,0) 567

[IEEL]
1

in which the superscript runs from 1 to N-1 which represents the associated
variable which is defined in the domain (2, . It should be mentioned that the fields in
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the two adjacent regions (2. and (2., in Eq. (5.67) are written in terms of the
coordinate system C; with both regions having =0 at the interface. This is for

the sake of simplicity.
The boundary conditions of this problem are
oy (r.0) =Dy (r.e) = 0,2 (r.—ay) = D) (r.—ay) =0 (5.68)
Note that solution (5.53) also applies for each single domain (2 . Thus, substi-
tution of the general solutions (5.53) for the domain (2 and (2., into Eq. (5.67)

yields the relationship of the unknown constants for any two adjacent domains as
follows:

{F;’“} =[RG,i+ 1)]{1«;"} (5.69)
where
100 0O
(RGi+n]=|0t 00 (570)
Li+1)|= .
00~ A,
00wr, r,
{(FY =4 4 B By (5.71)
and
1 i i i i 1 i i i i
Ut =4_(’(1(1+1)C§5) +el(5+1)el(5))9 Up) ZA,_(’(l(lH)el(s) _el(;l)’(l(l))?
'1“ '1“ (5.72)
=l ) e, =l el k)
4+1 4+1
with

2
4, = cxly + (e (5.73)

In Eq. (5.69), the subscript “i” represents the unknown constants expressed in

[TEET]

terms of the coordinates C;, and the superscripts “i”” and “i+1” mean the domains
o, Q

.1 » respectively.

In the following, the coordinate transformation is used to find the relationships
between the unknown constants in general solutions of each material domain (2,

in two coordinate systems C,and C,_, . Assuming the equality

Wl [wi,
=g (5.74)
{¢f } {ﬂ-l }
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and using the relationships among the trigonometric functions, we obtain
{F}=[rG,i-D]{F} (5.75)

where
cos(ua;) 0 —sin(ua;) 0
0 cos(ua;) 0 —sin(uea;)

[TG,i-1)]= sinua,) 0 cos(ua) 0 (5.76)
0 sin(ua) 0 cos(ua;)
The combination of Egs. (5.69) and (5.75) yields the relationship
{FY ) =[1R () (5.77)
where
[TRy]= ,-jv[_l {[RG.i+D][TGi-D]}[R(,2)] (5.78)

It can be seen from Eq. (5.77) that solutions in any domain can be expressed by
four independent unknown constants defined in (2,. Considering the boundary

conditions (5.68), we obtain

[M){F'}=0 (5.79)
where [M ] is a 4x4 matrix which has a similar form to that in Eq. (5.63). The
existence of a nontrivial solution for {Fl'} requires deletion of the coefficients
matrix [M ] :

det[M]=0 (5.80)

Then, the solution for x can be obtained by solving Eq. (5.80), and the order of
singularity is again Re(x)—1 by considering the condition in Eq. (5.43).

It should be mentioned that Eq. (5.80) is highly nonlinear in terms of the vari-
able u and therefore an analytical solution to u is usually impossible except for a
few simple cases. In the following, our focus is on a numerical solution only. For
illustration, consider a three-material wedge in which Materials 1 and 3 are as-
sumed to be PZT-4, and Material 2 is PZT-5 (see Fig. 5.5). The material properties
used are

PZT-4: c45 =25.6x10° N/m®, ¢5=12.7CN, &, =6.46x10" F/m;

PZT-5: css =21.1x10° N/m?, e =123 C/N, x;, =8.11x10" F/m .

As an example, Table 5.1 lists the orders of singularity for different values of
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o, and €! when a, = o, =7/3. It can be seen from Table 5.1 that a pair of
complex or two real singularity orders exist for some values of ¢, (e.g., two real
singularity orders for o, =n/3 and a pair of complex roots for ¢, =m) or for
some values of e? . It is found from Table 5.1 that at &, =2mn/3 the singularity
order may be complex or real, depending on the values of ¢[2 , which indicates that
el(? can affect the singularity order to some extent. Furthermore, the singularity
order may become zero for some special values of a, and e} . In conclusion, the

order of singularity is a function of geometry and material constants for a
multi-piezoelectric material wedge.

Material 1

&o
a™ 4N ¥

0 /Material 2 x
Interface 2

0777
B

Material 3

Fig. 5.5 Piezoelectric wedge of three dissimilar materials.

To prove the validity of the proposed formulation, two cases are considered as
follows:

Casel: ay=a,=mn, a;=0;

Case2: oy=a;=mn, «a,=0.

The singularity order for both cases is —1/2, which is identical with the result for
an interface crack.

Table 5.1 Singularity order of a piezoelectric wedge of three dissimilar materials for dif-
ferent values of ¢; and ¢;5 =12.7 C/N when a,=az=n/3.

o) e1(15) =0.8¢5 el(ls) =0.9¢5 el(ls) =e5 31(15) =1.1¢5 el(ls) =1.2¢5
/3 —0.269 -0.300 —0.324 -0.339 -0.339
2m/3 —0.783 —0.765 —0.812 0 -0.913
b -0.959 0 0 —0.985 -0.956
47/3 -0.079 —0.086 —-0.090 —0.084 —0.095
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5.3 Extension to include magnetic effect

In the last section a symplectic model for an anti-plane piezoelectric wedge was
presented. Extension to anti-plane fracture problems of magnetoelectroelastic media
is discussed in this section. All descriptions in this section are taken from the work
of Zhou et al. [17].

5.3.1 Basic equations and their Hamiltonian system

Consider a two-dimensional magnetoelectroelastic wedge with = —a as shown in
Fig. 5.1. The constitutive equation (1.35) is extended to include the effect of the
magnetic field as follows:

o.] [es 0-es 0 =85 0 |[r.
Op: 0cs 0 —es 0 —&5||7
D, _|as 0 x, 0 o O E, (5.81)
Dy 0es 0 x 0 o ||E
B, s 0 oy 0 gy 0 ||H,
By) [0&s 0 o 0 m JH,

where e, o, and g, are, respectively, piezomagnetic, electromagnetic, and

magnetic permeability coefficients. The equations of shear strain-displacement and
electric field-electric potential are given by Eq. (5.2). The magnetic field-magnetic
potential equation is expressed as

o =--Y op-_1ov (5.82)
or r o6

The corresponding governing field equations are given by Eq. (5.1) and

o(rB,) 0B,

=0 5.83
or " (583)

where [ is the body electric current. Zhou et al. [17] then presented the following
potential energy density:

owY’ 1owY opY o4 Y [6;//]2 (@WJZ
W) ve [LOW) _p [90) o [0 ) _, [O¥ ) _, [2¥
Css(ar) css[raej Kll(@r) K“(raej il ) "M e

+2els(awa¢+1 8w8¢]+2~ [a_wa_‘/’+La_W5‘Vj

) s IV EY)
or or r- 06000 or or r- 060 060
_z%(aqﬁ oy 1 8¢8_y/j

5.84
or or 10000 6:84)
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Then the Lagrange function L is
L(W3¢3'//) =U(W,¢,V/)—Wf; _¢Q_l//l (585)

Zhou et al. then presented a new Lagrange function L using the variable & defined in
Eq. (5.5) as

2L(E) = e L(w, ) = csW* +¢ ow Z—K # -k o 2—,u v’
P, 55 Y 11 1 50 11
oy Y ow 0 . owd
_/v‘n[%) 2615[ ¢+ zj"'zels [W‘V"‘ag alg)
—2al{¢5v2—r———j—2ezf(wﬁ ~40 -y 1) (5.86)

Then, the Hamiltonian equation (2.138) can be obtained by defining the generalized
displacement vector q and the dual vector p as

a={wov},
oi Css €5 € W S,
p= a =cq=|¢s5 —Kk;; —y |1 =15D, (5.87)

@s —ay —tyy | W SB

”

where c is self-defined, S, and SD, are defined in Eq. (5.4), and SB, =rB, . Based

on the mutual duality of the vectors q and p, the corresponding Hamiltonian func-
tion H can be expressed in the form

H(q.p)=p'q-L(q.q) (5.88)

Substitution of Eq. (5.88) into Eq. (2.136) yields the Hamiltonian equation (2.318)
with

0 ¢! 0
H= 92 , hz{ } (5.89)

where h, =—e*{f. 01)".

5.3.2 [Eigenvalues and eigenfunctions

In the following, Zhou et al. [17] presented both zero- and nonzero-eigenvalue solu-
tions for anti-plane crack problems of magnetoelectroelastic media. They consid-
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ered only the homogeneous Eq. (2.138) with the the following traction-free, elec-
trically and magnetically insulated natural boundary conditions:

DL [ (5.90)

5.3.2.1 Zero-eigenvalue solutions

For analyzing the problem of zero-eigenvalue, when £ = 0, the solutions of the
equation, Hv; = 0, are required and the direct eigenfunctions and their principal
vectors in Jordan form can be obtained. Zhou et al. showed that there are only six
eigensolutions corresponding to zero-eigenvalue. They are divided into two groups
(aand p):

v ={100000}" vW=p{ ¢ né né-xly, 0 O
v ={010000}", andiW =5 {né & & 0 —xlz Of (591
v ={001000}" W plzéné €0 0 —gip)

which satisfy the relationship
<V§,a)T, J, viﬂ)) — <v£1ﬂ)T7 J, viﬂ)) — O’

(5.92)
v I v =6, (v I v =6,

In the solutions (5.91), the parameters are defined as:
X = det|c|, ZIZZIO/Z% }(2:}(11/}(7, }(3:}(10/}(8, )(4:}(12/)(8, )(5:)(11/)(9, /‘{/6:/‘{/12/;{9’
X1 = 0‘121 —Kiths s = é125 +Cssthys Yo = 6125 +CssKyy5 Yo = 185 — €5k
X = s —esky, X = —(Ccssaqy teses), P =—x;/2ny),
P, =15 12ny), Py =—x,/2ny)

5.3.2.2 Nonzero-eigenvalue solutions

To find the solution of Eq. (2.156) where u # 0, the characteristic determinant
equation is (A*+u%)*=0, whose six roots are A=iu (triple root) and A=—iu (triple
root). The general solution of Eq. (2.156) can be written as

Ky + 1130 +1560° Ry +Hy0+ 10’
7y + 130+ r2592 Ty +r24¢9+r26t92
2 2
v, - I +r339+r3592 cos(u0) + Ty, +r349+r36(92 sin(0) (5.93)
Ty + 10 + 1,50 Ty + 74,0 + 1,0
75 + 15,0+ r5592 Ty + 15,0 + r56¢92
Ty +r6349+r6592 Ty +r649+r66:92
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where 7, (m, n=1-6) are constants to be determined from boundary conditions.
Substituting the solutions into Eq. (2.156), the following relationships between the

unknown constants are obtained: {ry, 75, 7, }T = uc{n, ry, 1y, }T (n=1,2); 7p,=0

for m=1-6 and n=3-6. As a result, the solution (5.93) can be simplified to
T T .
W, =y 1 13y Ty 15y T} OS(UO)+{riy 1y 1y 1y 15 Ty} sin(u) (5.94)

Substituting the solutions (5.94) into the traction-free conditions r o, =0,

O=ta

electrically and magnetically impermeable rDé,‘ei+ = ;’Bg‘ei+ =0 on the lateral

boundary, we have

" sin( ) cos( um) 0 0 0 0 n

sin(um) cos(um) 0000 |r,
0 0 —sin(um) cos(um) 0 O Il (5.5

0 0  sin(un) cos(um) 0 0 g2

0 0 0 0 —sin(um) cos(um) || 73,

0 0 0 0 sin(um) cos(um) | |73,

The non-trivial solutions of Eq. (5.95) require that the determinant of its coefficient
matrix is zero, which leads to

u;=jl2 (j =+1,%2,--(triple root)) (5.96)

It is obvious that z4=1/2 represents the order of singularity at the apex of the
crack under consideration. For the crack problems, each eigenvalue is a triple root,
thus there are three groups of nonzero-eigenvalue solutions. Substituting eigen-
values (5.96) into Eq. (5.95), let 7, /n, =1, cos(um)/sin(um), where r; are new

constants to be determined. Then, the nonzero-eigenvalue solutions can be written as
T
v; ={r] Ty lTy HT ,u].ré} cos[u; (6 —m)] (5.97)

where {r, 1 r6}T =c{iin r3}T.

Zhou et al. [17] mentioned that each nonzero-eigenfunction can be represented
by three nonlinear correlation eigenfunctions. Similar to the zero-eigenvalue solu-
tions, these nonlinear correlation eigenfunctions need to be adjoint symplectic
ortho-normalized and can be separated into two groups (o and f):

(La) _ s \T
v —cos[,uj(ﬁ—rr)]{lo0,ujc55 Hies ,ujels} ,
a T
W =cos[u; (0-m){010 wes —umy —pye, | (5.98)

Ga) _ 5 '
vy =cos[u; (60— n)]{O 01 p;65 —p;0, _,Uj/un}
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and
WO = py coslu, (0-mN{1 7 7, 4,21 2, 00)
WP =y coslu (0-m{ 1 14 0 1) 2 O} (5.99)
\Il(,3 B _ s, cos[,uj(t9—7t)]{;(5 Yo IOOyj;(/;(g}T

where g4 are assumed to be positive, and  p; = x4, /(2u;my) (=1-3).

Finally the solution of the problem is the linear combinations of eigenfunctions
of both zero-and nonzero-eigenvalues:

vy =Y aOve +Z pOyP +Z Dy ) gt +Z PP e E (5.100)
n

O pO 4D and b(’) can be determined from the bound-

n 2 n > 71

where the coefficients «a

ary conditions, the subscript “h” represents the homogeneous solution.

5.3.3 Particular solutions

The general solution (5.100) applies to homogeneous equations only. A particular
solution of nonhomogeneous Egs. (5.1) and (5.83) is still needed. To this end, let
the form of the special solution be

ZE(I a)(é:)w(l .a) +2E(l ﬁ)(g)\v(l A (5101)

and the nonhomogeneous term of Eq. (2.138) (or Eq. (5.89)) is also expressed in
terms of the eigenfunctions:

h= ZB(z a)(g)‘v(z @) ZB(I B (é:)w(l B (5.102)

From the adjoint symplectic orthogonality of eigenfunctions, we obtain the coeffi-
cients by the inner products as

BY = (0" 0, wi ), B =—(n",J, g (5.103)
Making use of Egs. (2.138) and (5.101)-(5.103), we obtain
EC? = E + B9 ECP =y ESP) 4 B (5.104)
The solution of Eq. (5.104) can be expressed as
EG) = ot J j BU@g gy P = g Jf BUAemidy  (5.105)

The particular solution y,, can then be written in the form
=3 EGyinems N ECP ) gt (5.106)
n
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Therefore the solution of the problem is given as

V=Y, Y, (5.107)

in which wy, is defined in Eq. (5.100).

5.4 Symplectic solution for a magnetoelectroelastic strip

The symplectic duality system for a plane problem of a magnetoelectroelastic strip
presented in [23,24] together with some derivations from the authors is described in
this section. Methods of variable separation and symplectic eigenfunction expan-
sion are employed to derive the symplectic formulation.

5.4.1 Basic equations

Consider a homogeneous transversely isotropic magnetoelectroelastic strip as
shown in Fig. 5.6. The rectangular coordinates (x,z) are used in the analysis and
the z axis is along the longitudinal direction (Fig. 5.1).

With the rectangular coordinate system shown in Fig. 5.6 and the involvement
of a magnetic field, the constitutive relations (1.24) and (1.25) are extended as fol-
lows:

Oy _Cll 3 0 0 —e; 0 _531— &y

P G163 0 0 —e5 0 —&5 (|6

Ok 0 0cs-¢5 0 —¢5 O Vxz
6=1D =/ 0 0¢sx, 0 o, 0 |[JE =Cse (5.108)

D, ee3 00 g 0 oy || E;

B, 0 0ésa, 0 g 0 ||H

B, (&85 0 0 a3 0 5 (A,

The inverse of Eq. (5.108) yields

&y [ o Sz 00 g 0 §31_ Oy

€ Jis fin 00 gy 0 gy |0,

Vxz 0 0 f5 &5 0gs 0 ||o.
e={E t=| 0 0 -gsB8, 0 4, 0 <D t=C'e  (5.109)

E, g3 -8&3 0 0 S5 0 Ay || D,

H, 0 0 -gs4; 0y 0] B,

H ] |-8&1-8; 0 0 A3 0 vy |(B.
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s i1 ]
eI

Fig. 5.6 Geometry and loading of a magnetoelectroelastic strip.

The gradient equations are defined in Eq. (1.2) and rewritten as follows:

9
c Ox o¢ oy
g E o | [H o
O O R GO G N O S (5.110)
0z ||w E. og H, oy
Ve 0 0 0z 0z
| Oz Ox |

The equilibrium equations of a plane magnetoelectroelastic solid are given by

oo, 0o
X + XZ + :O
ox Oz /s
ao-_XZ_Fai_{_](z =0
ox oz (5.111)
oD. oD
—+—=+0=0
ox 0z
%+%+M=O
ox 0Oz

in which f,, f., O, M are body force in x and z direction, electric charge density and
electric current density, respectively.

The boundary value problem in Fig. 5.6 is completed by adding the following
boundary conditions:

[
e

l(Z)a o
xZ(Z)’ Oy, = 22(2)’ szDxZ’ B

O, X
O

I
|

(5.112)

5.4.2 Hamiltonian principle

There are several ways to convert a Lagrange system into a Hamiltonian system,
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one of which is to use the variational principle and Legendre’s transformation. In
the following, a description is presented of deriving system equations in symplectic
space from Euclidean space. Since the energy functional plays an important role in
deriving the basic equations of a coupled magnetoelectroelastic field in the Hamil-
tonian system, we define the energy functional, say /7 , as follows:

1 1 1 1 1 1 1
M=—¢0,+—¢.0.+~y.0,-—ED ——ED.——H B, ——H_B. (5.113)
2 2 27T T g 2 2

Using the constitutive relations, Eq. (5.113) can be further written in terms of

strain, electric field, and magnetic field:

1 ) 1 2 ) 1 2 1 ) 1 2
Il =—c & +—c6, " +—c¢ ——x B =K B ——uH
5y T GaE Ty 557 xz o K TR B, 2/‘111 x

1 -
_E,U33Hz2 +36.8, —esEy,. —eyE.e, —ensE 6. —esH y,.
_E3legx _533Hz€z _allExHx _a33Esz (5114)

Then, based on energy functional (5.114) and following the procedure presented
in [10], a variational principle corresponding to the boundary value problem
(5.108)~(5.112) can be given by

sR=5[ [ (1T ~uX ~wZ g0~y M) dadz [ [ (WF, +uF.
0d_n 0 z2 x2
+¢5x2 +V/Ex2 )x:h _(WF;I +MF;1 +q)5xl +(pEx1)x:—h:|dZ =0 (5115)

For simplicity, introduce the following mutually work-conjugate vectors q and

p:
w o o,
u T -0,
=140 PTp(T D; (5.116)
v B B,

where the definition of 7 is different from that in [23,24], to achieve a Hamiltonian
operator matrix.

To convert variables and equations from Euclidean space to symplectic geome-
try space, the following concepts are introduced; that is, the coordinate z is analo-
gous to the time variable in the dynamic problem, and the dot represents the differ-
ential with respect to z , namely, (")=(6/0z)():

ou ow , 0¢ ow

':_’ ':_’ —_’ .:_ 5.117
! oz v 0z ¢ 0z v 0z ( )

From Eq. (5.109); 46, we have
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( —f1:0-83D—-gB )/fll’
Cr-v o, + Ay )/ A, (5.118)
(—Cor+ 4,0, — By ) A

O
Dx
B

where

A= B = A C=vgis—M&is Co = Budis =& (5.119)
Then, let N=/7-uX-wZ-¢Q—-wM , and using Legendre’s transformation,

we obtain the following relationships:

oN ou . s
O=——=¢3—topyWrendteny,
ow Ox
oN ow . 0 .0
r=—_=—055——055u—615—¢—615—w,
ou ox ox ox 5120
N e (5.120)
6¢ =5 a+333w_’(33¢_a33‘//’
oN . ou . . ; .
==& —tepW—and— Y
oy ox

Making use of the notation given in Eq. (5.117), we have

X
5 i Cﬁ ﬂ_% azl// 0 (5.121)
Al Tox M ax? " ox? ’
1 e ¢, a%,y
B= — |-
A*{ /111 2 " o2
. 1 ou
W= f S +a16+a2D+a3B
11
_@_Q%_ﬂa_%”_ .
 ox Aox Aoox
o ou (5.122)
¢=f—{g3la—x+azo'+a4Dz+asBz}
11
. 1|. Ou
y/:f—[g3la—x+a3a+a5Dz+a6Bz}
1

in which
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a :f11f33_f1§’ ay = f118€3 — [13&1> a3 = [11833 — [13&315
ay :f11ﬂ33_g3215 as = fuly — 831831, Y :f11V33_§3215 (5.123)
815G + 8156,

a; = fss+ Y
*

Rewriting Egs. (5.121) and (5.122) in matrix form, we obtain

RPN e

where matrixes A, B, C, and D are defined by

0 f5 O 0
a 0 a,a

Cf, Cf
_ 0 ——Ju 2/ 0 0 0
Az A A |2 po L] 0@ (5.125)
O g O O f]‘lax ]{ll (12 0 a4 (15
31
0 3 0 0 a; 0 a5 ag
31
00 0 0 (0 S 0 0]
A -fis 0 —gy —&y
0= 10 0 2 C
B=| f, %, c=| o % 0 0 aa (5.126)
00 vy 4| * C} S
00 -4, f, 0 % 0 0

and the vector h is
h'=(,0 00 -Z, X, -0, -M)" (5.127)

Then, the following relationship between A and C can be obtained from Egs. (5.125)
and (5.126):

C=-A" (5.128)
Using the definition (5.13), we can obtain Eq. (2.138) with
H A D (5.129)
| B-AT '

and A, B, D, h being defined in Egs. (5.125)-(5.127), in which the matrices B and D
are symmetric.

5.4.3 The zero-eigenvalue solutions

Due to the homogeneous boundary conditions at both sides (x = +h), there exist
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zero eigenvalues whose eigen solutions correspond to the Saint-Venant solutions
when the averaged effects are included and the edge effects are also considered. To
obtain the zero-eigenvalue solutions, Yao and Li [24] considered the following ho-
mogeneous boundary conditions:

O'x=(u,x—f130'_g31D_g~31 )/fn:O
B ow . op . Oy
T =—Cs5 a_cssu —€5 O €5 Ox O (Onx = ih) (5130)

D, =(-Cr—yp,+ 4w ,)/ 4 =0,
B =(-Cr+ 4,9, - Puy.)/ 4, =0

When =0, Eq. (2.156) becomes
Hy =0 (5.131)

By solving Eq. (5.131) under the boundary conditions (5.130), Yao and Li ob-
tained the following linear independent eigensolutions:

T

>

vi? =y{” ={10000000

}
) _ o (0) _ T
v =y ={01000000}", (5132
}
}

E

v =y® ={00100000}"
v =y ={00010000

T

which represent the rigid body translation along the x- and z-directions, constant
electric potential, and constant magnetic potential. Because the solutions (5.132)
have symplectic orthogonality to each other, there must exist eigensolutions in Jor-
dan form. To obtain those eigensolutions, Yao and Li considered the following
equations together with the boundary conditions (5.130):

H\V(j) —\Il(j 1 (j=1-4) (5.133)

where the subscripts “i” and “/—1” denote the Jordan normal form eigensolutions of
the ith and (i—1)th order, respectively.
Substituting Egs. (5.132) into Eq. (5.133), the first order Jordan form eigensolu-
tions are obtained as
{0 bx 00 a0 aye as }T ,
“> ={-x0000000}",
v ={0b.x00ay 0a, as.}",
w&l) ={0b3.x 00 ay 0 as. ag }T

(5.134)

in which ;. and b, are given by
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-1

Ay Apx A3« S & &
Ays Qg A5 | =| &35 Pz ~Aaz | >
A3x Asx Ugx 8y Ay Vi (5.135)

b = fi3ps + &31Gp + 3,03,
by = fi305% + 3104 + 3,451,
bys = fi303 + 83105 + 31

It should be mentioned that the solutions (5.134) are not the direct solution of the
original problem, but the solution of the original equation (2.138) with h=0 can be
obtained by the combination of solutions (5.132) and (5.134) as

Vfl) _ \Il,(-l) +Z\|,[(0> (i=1-4) (5.136)

[OREIORRNO)

which satisfies Eq. (5.131) at the zero eigenvalue. In Eq. (5.136), v,’, v5’, v3’,

and vf‘l) represent, respectively, uniform extension in the z-direction, rigid-body

rotation in the x-z plane, the solution induced by the constant electric field, and the
solution induced by a constant magnetic field.

Yao and Li then indicated that the solutions with subscripts 1, 3 and 4 represent
the symmetric deformation in the z-axis, and solutions with subscripts 2 describe
the behavior of the antisymmetric deformation on the z-axis. The eigensolutions of
symmetric deformation and the eigensolutions of antisymmetric deformation are
symplectic orthogonal. To obtain a set of adjoint symplectic orthonormal bases, the
eigensolutions of the symmetric deformation should be orthonormalized firstly. To

~ (0 0 0 ~ (0 0

~ (1 1 1 ~ (1 1
v =y +ayl’, e =y

(0) ~ (0)
ThLW T H LY,

i, (D

b (5.137)
+LWY T LY

where

_ al*a(,* - az*a3*

2
a]*as* - az*

(5.138)

tl = _az* /al*, t2 = _a3* /al*, t3 =

Yao and Li then concluded that the eigensolutions of the symmetric deformation,

v, g, 9, and w", ¢, ¥, have a symplectic adjoint and orthonormal

relationship. The remaining eigensolutions are symplectic orthonormal. This shows
that for the eigensolutions of the symmetric deformation associated with zero ei-
genvalue there are six independent solutions and there is no second order Jordan
form eigensolution for symmetric deformation.

For the eigensolutions associated with antisymmetric deformation, since w(zo)

is symplectic orthonormal with w(zl) , the second order Jordan form eigensolution is



178 Chapter 5 Symplectic Solutions for Piezoelectric Materials

given by
T
) = {0 bux/2 0 0—apx 0—dayx —a3*x} (5.139)

The vector y'? is not the solution of the original problem, however, from which the

physical solution can be derived as follows:
v =y gl + 2yl /2 (5.140)

which represents a pure bending deformation. Because y'” is still symplectic or-

thonormal with \|1(20) , the third order Jordan form eigensolution \|1(23 ) exists. It is

y = {ag*)f +hpx 0 an(x’ =3h°x) ag(x’ —3h’x)

T
0 %al*(xz—hz) 0 0} (5.141)

where
ar =[f,1(a:C) — aye A) + 41 (1 C, — a3 A.)]/(64.),
age = [ (a:C; —azd) + 4, (apC, = aA)]/(64,),
agr = —05:C, | Ay — a4 C, | Au+ (a:C + by )/ 6, (5.142)
by = h*(a,C/2-3a,.C, | Ac—3ag.C, | A.),
C=fss +(25C + 825G/ A

The corresponding solution of the original equation (5.131) is as follows:

(3) (2)

Ve =yl oy 12y 2+ 2wl /6 (5.143)

which represents a bending solution due to constant shear force. Because \|1(23) is
symplectic adjoint with \|1(20) , no fourth order Jordan form eigensolution for anti-

symmetric deformation exists.
Similarly, the orthonormalization of the eigensolutions of the antisymmetric de-
formation can be constructed as

W = ol 9 = ey (5.144)
where
h
[ vy

t, = p
[ w0y

(5.145)
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Thus the set of adjoint symplectic orthonormal bases constituted by the eigen-solutions
associated with zero eigenvalue is

0 0 1 ~ (0 ~ (0 1 ~ (2 ~ (3 ~ (1 ~ (]
v W e e 0, W e, e, e, Y (5.146)

The above adjoint symplectic orthonormal bases form a complete symplectic sub-
space.

5.4.4 Nonzero-eigenvalue solutions

To find the solution of Eq. (2.156) where u # 0, the characteristic determinant
equation is [23]
—u fisAl fiy 0 0 a/ fi 0 a/f ay/ fy
A G
1 - I L
T T
0 guiA/fiy —u 0 alfiy 0 alfy as/ fi
0 gyA/fyy 0 —H ay/ fyy 0 as/fy ag/ fiy

0 a 0 0

det| O 0 0 0 —u A 0 0 =0
0 ﬁ2/f11 0 0 —Afis/fi —#1 —Agy/ fiy =28/
0 0 Vll_/lz ﬂ 0 Ga —u 0
A, Ay A,
0 0 ﬂ M 0 A 0 —u
A, A, A,
(5.147)

Equation (5.147) has eight roots:
b=ty Ay ==y (i=1-4) (5.148)

Li and Yao [23] then obtained the general solution of Eq. (2.156) in the following
form:

4 4
w= { A, cosh(4, ux) + ZDl ; sinh(4, ,ux)} e,

i=1

4 4
u= {Z Ay, sinh(Z,ux) + Y Dy, cosh(/li,ux)} e,
o " (5.149)
¢ = {Z Ay, cosh(, g1x) + Z D, sinh(/ii,ux)} e,
i=1 i=1
4 N 4 -
w=| Y. Ay cosh(4,ux)+ Y. D, sinh(4, ,ux)} et
i=1 i=1
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i=1 i=1

4 4
- {Z As; cosh(A,ux)+ " Dy, sinh(/, /Jx)} e,

4 4
T= {Z Ag; sinh(, x) + Z D, cosh(ﬂ:i,ux)} e,

i=1 i=1

. . (5.150)
D= {Z A, cosh(Z, ux) + ZDW sinh(/iyx)} e,

i=1 i=l1

i=l1 i=l1

4 4
= |:Z Ag; cosh(, pux) + Z D, sinh(/i.yx)} et

Li and Yao then divided the solution into two parts, symmetric and anti-symmetric.
They considered firstly the symmetric part:

4 4
= Z scosh(Zux)e’*, u="" A, sinh(1ux)e",
i=l1

: 4
Z cosh(/t ux)e', = Z cosh(ﬂ:i ux)e',
= = (5.151)
Z .cosh(A ux)e*, = Z Ag, sinh( gx)e™,
i=1 i= 1
4
Z i cosh(/i ux)e, B= Z A, cosh(}t ux)e'
i=1 i=1
Substituting Eq. (5.151) into Eq. (2.156), 4;; can be related to A¢; as
(A 3 (1
DB Geteay 4y =—da, 4, =T8 o7
ij (A ij (A)
(5.152)

where fNj(/?j,.) and fp, (/??,.) are the functions of /ii [23]. Then, substituting Egs.
(5.151) and (5.152) into the boundary condition (5.130) yields
- ) . A -
zi S %) h%_&fmxfxgnmgqum@ﬂm%za
o2 (%) Jo7 (%) Jos (%)

ZMMMWFQ

i=1
1

i (5.153)
{ql_mx)%“mu)
1

I3 (4) Spa(4)

s fya(h) Sva(A)
;( + A4 zme) =B lfD4(/1)jsnh(ﬂ Hh)A4g; =0

]smh(/i uh)4; =0,

4
i=
4

Equation (5.153) is further written in matrix form for simplicity:
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[B;1{4s,;} =0 (5.154)

For the non-trivial solutions of Eq. (5.154), the determinant of coefficient matrix
must vanish:

det|B,,| = (5.155)

Denote x4, (n=1,2,**+) as the roots of Eq. (5.155). After obtaining A4¢; by substi-

tuting 4, into Eq. (5.154), the solutions of Eq. (2.138) for h=0 and symmetric de-
formation are obtained as

4

= Sia(4) Ag; cosh(A iz, x)e",
i=1 fDl(}b ),

4
X

froa (&)
Z Jpal ,),Un

fN3( ) 5 e
zfm(/i) Ag; cosh(Z, 1, x)e"r,

Z / N;ﬁ » )4, cosh(F e

Ay, sinh(, 1, x)e"*

(5.156)

4

4
= —Z Ag; cosh(L u, x)e"*, 7, = ZA(”. sinh(4, i, x)e""

i=1 i=1
3 fmgi,-) .
i= 1fD7(

2 fi;\'(g( )) Ag; cosh(J, 1, x)e"r*

. cosh(Ap, x)et, (5.157)

n

n

Similarly, the corresponding solutions of eigenvalues f, (n=1,2,-*+) for anti-

symmetric deformation can be obtained as

4 4
, =Dy sinh(4, 7, x)e™*, i, = ZD cosh(Z, i1, x)e™,

4: 4
ZD sinh(Z, i1, x)e"* z -sinh(Z, i1, x)e™*

(5.158)

5 :
Z ., sinh( 4, i1, x)e™* Z . cosh(, 2, x)e™”,

Il
Mp N

=
Z ., sinh(4, 1, x)e"”, B, D, sinh(Z, i1, x)e™*
=1

i

Equations (5.156), (5.157), and (5.158) consist of all eigensolutions corre-
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sponding to nonzero-eigenvalues. These solutions are covered in the Saint-Venant
principle and decay with distance depending on the characteristics of the eigenval-
ues [23]. Together with the eigensolutions of zero-eigenvalue, they constitute a
complete adjoint symplectic orthonormal basis.

5.5 Three-dimensional symplectic formulation for piezoelectricity

In the previous sections of this chapter, symplectic formulations for 2D piezoelec-
tric materials were presented. The extension to 3D electroelastic problems docu-
mented in [19] is described in this section. We begin by reducing a 3D piezoelectric
problem to zero-eigenvalue solutions with their Jordan chains and non-
zero-eigenvalue solutions in the Hamiltonian systems. Then the solution of the
problem is obtained by superimposing linearly by their symplectic eigensolutions,
which form the complete space of solutions. The problem is finally reduced to
finding eigenvalues and eigensolutions.

5.5.1 Basic formulations

To obtain the symplectic formulation for 3D piezoelectric materials, Xu et al. [19]
considered an anisotropic piezoelectric cylinder which is transversely isotropic and
anisotropic in the longitudinal direction. The corresponding relationships between
stress displacement and electric displacement-electric potential are written in terms
of circular cylindrical coordinate (7; 6 z) as

0, =, + (Vg +u)/r+cvtesd,
Ogo = it +¢, (Vg +10)/ 7+ cyvtey
0, =cxu, +c3(vy +”)/”+c33w+e33¢’ (5.159)
O =Ces(v, —VIr+ugylr),

0, =css(w, +u)+e;sd,,

Oy =Css(Wy/r+V)+esp,/r

Dr = elS(W,r +u)/r_Kll¢r7
DHZeIS(W’€/7'+f/)—K”¢ﬂ/r, (5.160)

D, =eyu, +e5(vy )/ 1+ ey W—Ky3f

where v is the displacement in the @-direction and the dot above represents differen-
tial with respect to z, namely, F =0F/0z. The z coordinate is considered analo-

gously as the time coordinate. The related potential energy density is



5.5 Three-dimensional symplectic formulation for piezoelectricity 183

U= r{c“u’z,. +o,(vy +u) 1+ oW + 2epu, (vy+u)/r+2c5u,w
+2e3W(vy +u)/ r+ess(w, /7 +9) +cg (w, + 1)* + Cyq (v, —vir+u, /r)?
+2ey 1§+ 2e,B(v ) +u) 17+ 2e00p +2e15(Wy [T+ )Py [ 7
2e5(w, +i)p, — Kk dr — kb5 /17 — K337} 12 (5.161)

The Lagrange function which is the potential energy U minus the work done by an
external generalized force is as follows:

L(q,9) =U(q,q) —uf, =vfy —w[. =90 (5.162)
where {j_”,,ﬁ,ﬁ}T ={f.. /9, f4" /7 represent the external body forces and
0=0Q/r the density of free charges, q ={u,v,w,¢} " is the primary vector in the
Hamiltonian system.

5.5.2 Hamiltonian dual equations

The dual vector of q according to Legendre’s transformation is

rless(w, +i) + e3¢, ] ro,,
18 e (W, /r+v)+e /r ro
p-b- essOralrantasho Il = | _Jroo | (s 13
0q rlepu, +c3(vy +u)/ r+cyw+ ey d] ro,
rleu, +e5 (v, +u)/r+e33W—K33¢3] D,

On the basis of the mutually dual vectors q and p, Xu et al. [19] then obtained
the Hamiltonian function defined in Eq. (2.137). Making use of Eq. (2.136), the
dual equations for the Hamiltonian system can be obtained as

SRR
q —0H / 0q C —-A"||p] |h,

where [19]
0 0 -0, —a0,
_ 0 0 —0y/7 —a0y/r (5.165)
—a;(0, +1/r) —a0, /7 0 0
ag(0, +1/7r) ag0,/r 0 0
—agr —ay0y/r  —a,,0,0, —a,0,/r 0 0
C- ~a,40,0, —a,,0,/1 —agn —ad5/r 0 0 (5.166)
0 0 0 0

0 0 0 a,r
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a,/r 0 0 0
0 a/r 0 0

B= (5.167)
0 0 a,/r aslr
0 0 as/r —a,/r
T
h, =0, h, :_{fr Jo f. Q} (5.168)

with
0,=0/0r, 0,=0/00, 1, =rdo>+06,-1/r, r, =ro>+0,+05/r (5.169)

_ _ _ 2
ay =e;5/Css, ay =1/ css, ay =(cp3k5; +ey1655) /(€53 + C33K33),
2 2
ay = Ky3 /(€53 + C3K33), as = ey /(€33 + C33K53), (5.170)
_ 2 _ 2
ag = (e31055 —C3653) /(€33 + C33K33),  ay = c33 /(€53 + C33K33)
ag =€) — 303 T ageyy, A9 =Cgg, Qg =y —Cp +Cpp,

g (5.171)
ay) =dg +Ceq, Ay = Kiy €5/ Cs5, Qy3 = Gy —Ceq

The corresponding conditions of the lateral boundary can be written as [19]

[ag0,u+ayulr+a0,v/ir+ayps/r—agpy/vl,_, =0

a[Oulr+0v—v/ir]_ =oc%,

9[ 0 ;’ ]rfa ro (5172)
pl/r r=azo-rz’

(_a12ar¢+ ap /r)|r:a = Da

r

5.5.3 The zero-eigenvalue solutions

For the eigenequation of the problem for zero-eigenvalue =0, Eq. (2.156) becomes

Hy =0 (5.173)

where traction-free natural boundary conditions are taken into consideration.
Then, Xu et al. presented the direct zero-eigenvalue eigensolutions as

vi” =y{” = {cos@ —sind 0 00000},
v =y ={sin@ cosd 0 00000},
VW=y®=0 0 1000007, (5.174)
vVO—y®=0 0 0100007,
v =y ={0 r 000000}

The governing differential equation for Jordan form solutions then has the fol-
lowing relations:
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Hy!"™) =y " (5.175)
The solution to the original problem can thus be expressed as
VO =y g 22D 24 Py 64 2D (k1) (5.176)

For illustration, the Jordan form of the first order is given as

yW={0 0-rcos60 0 0 0 037,

“> ={0 0-rsind0 0 0 0 017,
yW={-aqs+0 0 0 0 0 ar a,ryt,  (5.177)
yW=fagqer 0 0 0 0 0 ar  —ayrtT,

yl=0 0 0 0 0 rYa 0 0’

The corresponding solutions to the original problem are

v\ ={zcos@ —zsin® —rcos® 0 0 0 0 0",
<”—{zsin9 zcos@® —rsind 0 O 0 0 0",

v3 )={-a O z 0 0 0 ayr a,r}’, (5.178)
v = {ar 0 0 z 0 0 ayr —a,r)T,

vl =40 rz 0 r’la, 0 0"

where
ay = 2a32a7 +2a4aé +4ayasa, —(c152 +aya,)(ag +a),
2
a5 = 2(asag —aya;)/ ayy,  ayg =[a;(ag +ay) +agl/ ay, (5.179)
ay; =[2a5a4 +as(ag +a3)l/ ay,, ag =2(azas +a,aq)/ ayy,

2
ayg = (a5 +ay)/ ay

Xu et al. indicated that the physical meanings of these solutions are rigid body
rotations, simple extension deformations in which the external electric displacement
does not act on the ends but forces the displacement induced by a uniform electric
field in which no external force exists, and torsion.

In the following, the Jordan forms of the second and third orders presented in
[19] are given as

v\ ={(a,5r* /2)cos O (a,5* /2)sin@ 0000 —a,;* cosd —ay,r cose}
( ) ={(a,5r* 12)sin@ —(a,5r*/2)c0s@ 0000 —a,r”sin@ —a,,r’sind}"
(5.180)
No solutions exist for i =3,4,5. Then the solutions to the original problem are
v = {[(a,5* +z7)/2]cos [ (a,sr* —z*)/2]sin@—zrcosd 0 0 0
—a,gr° cos@—a,,r* cos )",
v = {[(a,sr* +2z*)/ 2]sin @[ (a,sr* —2z*)/2]cos @ —zrsind 0 0 0
2 15 15

2 2o T
—a,er” sin@—a,,r” sin 0}

(5.181)
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The Jordan form of the third order is

W' =100 (a1’ +ayra*)cosO(ay,r +ayra’)cosd
(a1 +aysra®)cos @ (ayr” +ay,ra*)sin@ 0 0 )7,
W5 =10 0 (ayr’ +ayra®)sin O (ayr’ +ayra®)sin@

(ay, 7 +aysra®)sin O — (a1 +ay,ra*)cos6 0 0}

(5.182)

where a is external radius of the cylinder under consideration. Again, no solutions
exist for i =3,4,5. The solutions to the original problem are given by

v ={(a,°2/2+2° /6)cosO (a5r°z/2—2/6)sin@

(ayy?” +ayra® —rz° 12)cos@  (ayr +ayra’)cosd

(5,7 +aysra”) cos O (ay” +ay,ra’)sin O —ayr*z cos@—a,,r*zcos )7,
v ={(ays*z/2+2° /6)sin@ (a,*z/2—2°/6)cosf
2

3 2 : 3 2N -
(ayor” +ayra” —rz” /2)sin@(ayr” +ayra”)sin g

(ay,7” +aysra®)sin @ —(ayr” +ay;ra’)cos 0 —a,gr’zsin @—a,,r*zsin 6}

(5.183)
where

Ay = aya5/8—a;s /4= aay, ay =30y —a;5/2, Gy =-3ay,
ay, =(aqa,4 —a;7)/(8ay,), a,, =3a,,/8—ay5/(4a,), ays =—ay,, (5.184)
aye =3a15 /(4ay) — a6 /18, ay =ay,

Based on the solutions (5.174), (5.178), (5.181), and (5.183), the adjoint symplectic
orthogonality relationship of zero-eigenvalue solutions can be established in the
following way. Let

VO =y Oy Z O @) 0@ (O @) g0y 0

1 »
_ B _ Qa3 1 _ 3) 1)
v(70() = V(z)a Vlﬂ =ay (v ) +a28"§ ), V(zﬂ) = a31(v(2 +azs"(2 ),

(5.185)
1 1 1 1 1
Vgﬂ) =d3 (Vg) +a29"5t))’ v = as; (v§ +a30v(3)), v = a34vg),
s _ (2) B) _ (2)
Veﬂ =daszsVy o, V7ﬂ =assV)
where
2
Ay = a” (4a15ay +6ay4ay; —14a1,a5, + 201505, +2a,5054) [(6ay4),
4
Qrg =7/ Qyg, G390 =—ay7/ 15, Ay =—a, /[Ta" (@1ay; + ay; +a1a5, +ay,)], (5.186)

2 2 2 2
a3y =—ayg /[ma” (a5a19 + a7)],  ayy = a6 /[ma” (a0 + a;7)],

ay, =2a, /(na*), a5 =-4/(ma’a)

The solutions of Eq. (5.185) satisfy the following relationships of the adjoint
symplectic orthogonal:
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<v§“),v§ﬁ)> = _<v(ﬁ),v_(/.”‘)> =5,

t q

<v§“),V;a)> _ —<v§ﬂ), v;ﬂ)> =0 (5.187)

5.5.4 Sub-symplectic system

To obtain eigensolutions related to nonzero-eigenvalue problems

(H - ul)y =0 (5.188)

Xu et el. introduced a Hamiltonian system sub-symplectic structure. They proposed
that the @ coordinate be taken in analogy to the time coordinate and denoted
F'=0F /6. The potential energy density (5.161) now becomes

L,= r«{cll(fﬂ,,u)2 +c,(v'+ u)?/r? +c33,112w2 +2¢,( O u)v'+u)/r
+ 20510, u)w+2c;(uw)(v'+u) / v+ css (W' r + )’ + css (0, w4+ 1u)?
+ce(0,v—v/r+u'l r)? + 2e5, 10, u)p+2e; up(v'+u)/ r+ 2633,UZW¢
+2e,5(W! r+ uv)g' r+2e5(8,w+ uu)(0,4) — Ky, (4 / 1

—11(0,4) — Ky’ §7 112 (5.189)

The dual vector corresponding to Eq. (5.189) is

Ce6(0,v=v/r+u'/r) G0
g =aﬁz ¢ (u+v)/ r+c,0,u+cuw+ ey udl _ )% (5.190)
oq' Css(Wr+uv)+esp'/r] G0 .
es(W/r+uv)—x,8'r] D,

Xu et al. then mentioned that the variable g is dual to q with respect to 8 and the
variable p is dual to q with respect to z, of Eq. (5.163). p has three independent
variables 7, z, and 6, and g has two independent variables » and €. The
sub-symplectic system is then in the form

1 (A, B
{:'}:{C# _;TH:} (5.191)
u u

where
0 1-r5, 0 0
- -1-byr0, 0 —=byru —byru (5.192)
‘ 0 —ru 0 0

0 0 0 0



188 Chapter 5 Symplectic Solutions for Piezoelectric Materials

byd, +byor0; —byrp 0 byyr i+ bysr o, b
0 0 0 0
C,= ) , 1(5.193)
~byp=byru +byrud, 0 byt bygrut —byruo, b
—bigpt+bygr 10, 0 b0, ~by;ro; +bygrp’ b
br 0 0 0
0 byr 0 0
B - (5.194)
“ 0 0 byr byr
0 0 br —byr

with
by =1/ce, by=cpley, by=cyley, by=e /e, bs=1/cy,
by =Kk 4, by =esA, by=cyd, by =c,(cy /ey —1),
by 20122/011_611’ by =css, by =c5(c, /¢y =),
by =bj, —css, by =ey(cy /¢y 1),
bie =CiaCry ¢ —€y —esy b =chley —Ciy by =6, by =k (5.195)
15 = Ci3Ca /€11 — €31 — €55 D =C3/ € — G335 D17 = €55, Dyg =Ky,

big =33 /¢ ey, by =cppey /¢ —es —eyy, b21:e321/011+’(337

b = byrp+bsruo,, b= —by70, —by7r 0, "'bls”/lza

b = by, +byyr0: +by i’

Xu et al. assumed the eigensolutions of the sub-system (5.191) to be in the form
¢ =¢,(ne’ (5.196)

where ¢ ={q",g"}". In the cylindrical coordinate system, the solution ¢ should

satisfy the periodic condition:
$(r,0)=¢(r,2m) (5.197)

The axisymmetric problem can be described by zero-eigenvalue and the
non-axisymmetric solutions of the problem in the form

¢=>c,¢" e (5.198)
Substituting the eigensolution
& =L(r)e" = {?(r)}e""‘g (5.199)
g(r)

into the dual equation (5.191) yields



5.5 Three-dimensional symplectic formulation for piezoelectricity 189

i1y (1) + Ty ()] KW () =T, ()]
[0 (1) =Ty ()] +i C.a K\ (7)) 4, ()]
0 =i K3 J, (1))
0 K, ()

q=CyukK® (5.200)

KO +2n2 /i), (1) + KOT, (1) 17y + K0T, (1) 1
i[KS(O)Jn—l () + KéO)JrH—l )1/ 1y
K;O) [/ () = I, ()]
KéO) [/ () = I, ()]

i[K‘(‘j)J”’l (r/) - Kéj)JnJrl (rj )]
o %) 0
+icjﬂ2 Kéj Jnfl(rj)/rj.‘ +K7/ Jn+1(”j)/7”j +K81 Jn(rj)
; iK1, )+, ()]
KO, (r)+J 0 ()]

(5.201)

where C,(j=0,123), §="{i,5,#8}", §=1{6,),64.6.9.D,}", and

KO =1/2sy), K" =co /50, KO =co(n=1)/s7, K" =cee(n+1)/sg,
K =[e;,(n+1) =, (n=D1/2s7), K =[c(n+1) = (n=D1/(2s5), (5.202)
KO =cs5/(250), K =ey5/(25,)

K = 1/(2s,), K = (e, _mssjz' +css’(333j)/[(m1 —mzsi)si],

K =(cpes —m4s§ +0556335‘?)/[(m1 _mzsf)sf]a K =cg (”—1)/537
K =ceo(n+1)/s7, K =[(c ¢ )n+D]/(2s}), (5.203)
K =[(c;, —¢y)(n=1)] /(25"]2'): K¢ = c Ky + ey K =2, K7,
Kéj) =[ess(1+ Ky + 931K3(j) 1K1, Kl(({) =[es(1+ K —x 1K3(j) L
my =Ky (3 +0s5) +es(es +ey), my =Ky3(cp3 +6s55) +ess(es +ey),

2 (5.204)
My = Cy Ky +Csskyy (€5 +€31)7, My =¢85 +Csseps —(C3 +Cs5)(€5 +€5)

in which r; = ur/s;, S5 = Ceg / Css sf. (j=12,3) are the three roots of the equa-
tion

VX =1, X 4y x =7, =0 (5.205)

In Eq. (5.205), the parameters y (i=1=0,1,2,3) are
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2
Yo =11 (s + Cs5kq1)s
2 2 2
7 = Csslapioy +(es +e5))" 1+ k[0 ¢35 + 55 = (5 +¢55)7 ]
+es[2¢ 655 +sseps —2(0p5 + ¢s5)(€5 + €31)],

) 5 5 (5.206)
7> = CxslCss €y + (€5 +e3) 1+ Kasley o33 + 655 — (€3 +655)7 ]
+eg3[2es5e5 + ey =203 +cs5)(egs + )],
73 = Css(€3; + Cyisy)
5.5.5 Nonzero-eigenvalue solutions
The nonzero-eigenvalue solutions to Eq.(5.188) can be assumed in the form
v(r.z,0)=> ¢,y ,(r,0)e"" (5.207)
Substituting the solutions (5.198) into Eq. (5.207) yields
v(r,z,0) = Cy" (e e (5.208)

where w"™ (r)={q",p" " is related to £(r)={q",8"}" by Egs. (5.163), (5.164),
(5.190), and (5.191), namely, q = q and

Py =—ibys (,Ll/n)\7+b23r8rﬂ/+b23r8r¢z —ibys(u/n)r*g,,
Py =183,
2~

. . o L (5.209)
P3 =by(r0, + 1 +l(b26n+b27’”2/”2 /”)V_lbzs(ﬂ/”)”z& —ibyy (u/n)r-g,,

Dy = by (r0, + V)i +i(bygn +byyr” g | 0)V +iby, (1] n)r* &5 —iby, (10 n)r° &,

in which

by, = 1/(052 +taya;), by =1/a,, by =abyy, bys =b,byy, by; =asby,,

bys =(a3a; —asag)by,, byg =(bsa; +byas)by,, byy =(b,a, —byas)by,, (5.210)

byy = (aya; +asag)by,, by =(b,as —bsa; )by, by, =(b,a; +byas)b,,

From solutions (5.200), (5.201), and the relation above, we have

—iKOT, (1) RK L, ) =T, )]
) _ 3 KD T (r.
f) = CO/'I rOK]O [Jn*l (r()) ‘]n+l (rO)] +zcjﬂ 1? ) ”( ./) (5.211)
0 = 1K, ()

where
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K =ness, K\ =55 /2, K =[ey 1+ KY) +esK1/2, K = 20K},

() _ (0)] ) ) _ () ()
K —c33st2 +e33st3 —013/Sj,K14 —e33st2 —K33st3 —631/Sj

(5.212)

The traction-free natural boundary conditions (5.172) are now transformed as fol-

lows:
[agrd, it + aji + ayinv+ay py —agpyl,_, =0,
inu+ro,v-7],_, =0,
ﬁl |r=a = 0’
0,81,-a=0
where
Ay Ay A Ay |G
Ay Ay Ayy Ay || C -0
Ay Ay Ay Ay |G
Ay A Az Ay |G
where

A, =i(ag —apnd, (ry) + (ianr /2 —iagnry /2
+ a7y 5K,y (1) = T ()],

Ay = (2”2 =1, (1) =[S, (1) = I ()],

4, :_iK;O)Jn(”o)s Ay =0

2 2 2 . j 2 j
4 ; =lag(n” —rj)—a;n +a3zrjst1(-2’) —agr; SjKl(jl)]Jn(l"j)

+(ag +a)r[J, (r) = J 0 (1)1 2,
Ay =i{r [,y () = s (1=, ()}, (j=2.3,4)
Ay = K\, () = ()],
Ay =K, ()=, ()1 2s )

in which r;=pals; forj=0,1,2,3.
The condition of the nonzero solution of Eq. (5.214) requires that

det| A(n, 1) [=0

(5.213)

(5.214)

(5.215)

(5.216)

(5.217)

The eigenvalues obtained by Eq. (5.217) are of infinite number, denoted by 4,

(m =1,2,3,-*+), and eigensolutions are given by Egs. (5.200), (5.211), and (5.214).
By using the characteristics of the Bessel function, A(-n,—u)=-A(n,u), we

obtain

nm in¢ ~Hym? =l 0
v :ZZCEZ)wqun)(r)e“ e +ZZC’S£)\|I££2(I’)€ Hnm= o1
n m

n m

(5.218)
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The relationships of the adjoint symplectic orthogonal are given by

(Wi D (e™ ) = 5,8, (Whe ™ Wi (1)e™) =6,
(Wil i (0 )= (Wil i (9 =0, G219
<\1,<a> e, V§f)> _ <\P(ﬁ) e viﬁ)> -0

nm nm

The final solution to the problem can then be obtained as

,0 ,0
v = TN + POV
m

m n

_,’_Z Z [Cflz)‘llfqil) (r)elunmzeimg +C}£ﬂ)‘|l£1€) (r)e’:umnze_img ] (5 .220)

5.6 Symplectic solution for FGPMs

In previous sections of this chapter, all formulations applied to homogeneous pie-
zoelectric materials only. A symplectic system for functionally graded piezoelectric
materials is now examined. The shift-Hamiltonian matrix proposed in [21] is briefly
reviewed. At the end of this section, extension to the case of functionally graded
magnetoelectroelastic materials is discussed.

5.6.1 Basic formulations

In [21], Zhao and Chen considered a generalized plane strain problem of a trans-
versely isotropic FGPM. The constitutive and governing equations are respectively
defined by Egs. (1.24) and (1.27)-(1.29). They assumed that all material properties
varied exponentially with z, in the form of

_ 0 az _ 0 az _ .0 az
¢ =cye”, e =ee”, K;=K e (5.221)
To handle the problem induced by the continuously varying material properties,
Zhao and Chen introduced new definitions of stress, electric displacement, body

force, and density of free charge as

az

- — —az — —-az n —az
o.e o.=0.¢ o._=0_e D.=De

T A A 023

z DZe 7fX:fxe 9f‘z:f‘ze b Q:Qe

X

o1 QI
[

By way of the variables defined in Eq. (5.222), they obtained the Hamiltonian
equation (2.138) in which
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— - T
h={000 7. £ O}
0 o —ali a, 0 0
ox 0
0
035 0 0 0 a, as
0
c— 0 0 0 as -a,
He ox
ai 0 0 —-a —aia 0
¥ ox Sox Cox
0 0 0 —i -a 0
ox
2
0
0 0 — 0 -a
I Yo o ]

with

0,0 4,0 0.0, 00 0
ay=e;5/css, ay =llcss, a3 =(c3hz; +eye53)/ g, a, =ky/ g,
_,0 _¢,0 0 00 0
as =ey3 /g, ag=(e5035 —c3e33)/ g, a; =c33/ g,

_ 0 0 0 . 0.,,012 0.0 042
ag=— ¢y Tayey — ages) ay =Ky T (e5) /c44, 8 = Cy3Kk33 +(e33)
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(5.223)

(5.224)

(5.225)

Using Egs. (1.24) and (5.222), o, and Bx can be expressed in terms of state vari-

ables v as

O, =—agu  +a;0, —azD D, =-ap +aC,

zo

(5.226)

Zhao and Chen then discovered that the operator matrix H exhibits different cha-
racteristics from the standard Hamiltonian matrix, but it has similar properties, and
they proved that the eigenvalues of H were symmetric with respect to —a/2. They

presented the proof as follows. It can be be proved that
JH+al)J=H"
Supposing the polynomial of the eigenequation to be
f(u)=|ul-H|
we have
F() =3l —H)J| = | I —JHI| = | 13T = IH +aD)J + a ]|

=@+ w1 -H"|=|~(a+ w1 -H| = f(~u-a)

(5.227)

(5.228)

(5.229)
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The eigenvalues of the Hamiltonian matrix H are symmetric with respect to
—a/2.

5.6.2 [Eigenvalue properties of the Hamiltonian matrix H

To study the eigenvalue characteristics of the so-called shift-Hamiltonian matrix H,
Zhao and Chen [21] considered the plane problem of an FGPM beam occupying the
rectangular domain 2: 0<z</, —h<x<h, as shown in Fig. 5.6. For the ho-

mogeneous Hamiltonian equation and boundary conditions on lateral surfaces:

v =Hv (5.230)
and
O, =—agu  +a,0, — a;D. =0,
D, =-ayp +ac,. =0, (5.231)
o, =0

the solution v can be assumed in the form

V() =E@){uwg G, 5. D} (1)=E@ww) (5.232)
Substituting Eq. (5.232) into Eq. (5.230) yields
E(z) = (5.233)

and Eq. (2.156). Zhao and Chen then proved that the operator matrix H has the fol-
lowing properties:

If 4 is the eigenvalue of H, — 1, — « is also an eigenvalue of H. Here y; and
— 1 — o constitute an adjoint pair of eigenvalues (by contrast, the symplectic ad-
joint eigenvalue of g4 is— 4 for the standard Hamiltonian matrix). Similar to the
treatment of the standard Hamiltonian matrix, all the eigenvalues of the
shift-Hamiltonian matrix H can be divided into the following three groups accord-
ing to the inhomogeneous parameter o

(a) g, for Re(u,)<—a/2 or Re(y;)=—a/2NIm(x;) <0 (=1,2,2++,n) (5.234)

(b) =y~ (5.235)

1

) u=-al2 (5.236)

5.6.3 Eigensolutions corresponding to =0 and -«

For the FGPM discussed here, the symplectic adjoint eigenvalue of zero is —¢, in-
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stead of itself. When =0, Eq. (2.156) is reduced to Eq. (5.173). The three funda-
mental eigenvectors of Eq. (5.173) are given by

v ={100000}", % ={010000}", yQ={001000}" (5237)

The first-order eigenvector of Jordan normal form can be obtained from the matrix
equation (5.133) as

vl ={0-x0000}" (5.238)
The solution of the original equation (5.230) can be obtained by the combination of
solutions (5.237) and (5.238) as

0) _ ,(0) 0) _ 4,,(0) 0) _ ,,(0) @ _ D (0)
Voi =Woi> Vo2 =Wo2> Vo3 =Wo3> Vo1 =Wo1 T2V (5.239)

For the eigensolutions corresponding to the eigenvalue 1=—¢, Eq. (5.188) becomes
Hy(” =~y (" (5.240)

Through a lengthy mathematical manipulation, Zhao and Chen obtained the fol-
lowing three fundamental eigenvectors:

a,; sinh(Ax)/ A
ayyafcosh(Ax) —1]/ A°
-1/a
‘II(—OO)(,I = O >
ay3a,,0°[1-cosh(Ax)]/ A + a5

ay3a,40°[1 = cosh(Ax)]/ A* +a;,

(5.241)
—a,, sinh(1x)/ A a,, cosh(Ax)/ A
—ay,a cosh(Ax)/ A* ay,asinh(Ax)/ A’
‘V(—o)c,Z = 0 ) W(—;J = 0
a,, cosh(Ax) —a,, sinh(Ax)/ A
a,¢ cosh(Ax) —a,¢ sinh(Ax)/ A

The corresponding first-order eigenvector of Jordan normal form can be obtained
from the following matrix equation:

Hy"), =—ay!)  +y, (5.242)

as
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6a, 3
0 cosh(Ax) cosh(/ih)x+( ;19 ‘;fg]sinhux)

y, = /1 (5.243)
%[cosh(ﬂx) — cosh(Ah)]

a“’zazo cosh(Ax) + A" sinh(Ax) - ib xcosh(4x)
a

6a,4b
D920 osh(Ax)+ A2 sinh(Ax) - ~822% x cosh(Lx)

where

2
Qg +a7dy  _ Gylg+dsdy G5 —didy - G305 + 040

= > ) = > Ayp = > , A3 = - s
a,a; — asa aa; — asa a a
a,a, +a.a a,a, +a.a
- _ 3306 + sy —_ _ B30 a5y
iy = —Qplyp, A5 = ¥ > g = —apdyp, a7 = * >
a,a;, —a a,a,, —a 6a,,a
_ 4y — a6 _Gayy —ap _ 13%3
Qg =————, Qg =—————=— Ay, Gy, = 0a,y —a;, ——, (5.244)
6a, 6a, a,

Ay =6a3a15/ 4y, @y, = 6013015/ A, —6a19 —ay,, A=ay/ay,,
6a,sb.a _ 9,9

20 —
23 204

" =dala, +alag + +2 —al
, 4 =daga, +asdg +a,a,d + 20,050, — ayd,

The eigensolutions corresponding to eigenvalues g =—« can be written as

o) _ (0) 0 _ —azy (0) 0) _ -azy (0)
v—a,l - ‘I’ a,l» v—a =e ‘I’—a,Z’ v—a =e ‘I’—aﬁ’

a2l

(5.245)

V(—lgz,a =e (v,
Thus the four solutions of the original boundary-value problem of a plane piezo-
elastic beam with free lateral boundary conditions can be constructed as

vV={uwgo_ o D) =Mv (5.246)

where M=diag [1, 1, 1, e“*, e*?, ¢**] is the transform matrix between the eigensolu-
tion and the original solution.

Zhao and Chen then conducted limit analysis by letting o — 0 and obtained
the expressions of the original solutions as
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T
v ={ayx 0 z-1/a 0 asa;} .

v1(0)

"y ={-a,x z—-1/a 0 0a, a16}T,

2
a, x“+—z

T
1 2z, 1 «x } (5.247)
2 2 a a «a ’

——+— ——xz 0 0 —ax —a,x

T
n o 3 2.y Qa2 42
v'_(a’3 —{ul v, ag(x”=3h"x) T(x —-h") —ayxz —amxz}

in which
. h?
v, :la12x22+lz3 +M——Z2 +—23 % 2
2 o o 2 (5.248)
aph™x  x a,

* _ 3 2
V), =a1gX° ——Z X+ 0y X —
2

Zhao and Chen finally indicated that by removing the constant electric potential and
the rigid translations and rotations, the above degenerated results become the same
as those corresponding to the zero-eigenvalue for homogeneous piezoelectric mate-
rials [13].

5.6.4 Extension to the case of magnetoelectroelastic materials

In the previous subsections a symplectic model for a plane FGPM was presented.
Extension to the plane problems of magnetoelectroelastic media is discussed in this
subsection.

In [22], Zhao and Chen considered the plane problem of a functionally graded
magnetoelectroelastic strip occupying the rectangular domain 2 : 0<z </,
—h <x<h asshown in Fig. 5.6. With the generalized plane strain assumption, the
two-dimensional constitutive and governing equations are given by Egs. (5.108)
and (5.111). All material constants are again assumed to vary exponentially along
the length direction, as described by Eq. (5.222) and

~ ~0 az 0 _az _,0 az
g =¢e, oy =z, =uge (5.249)

ij ij ij

In the derivation of the Hamiltonian equation, the new variables of stresses, electric
displacement, and magnetic induction defined in Eq. (5.222) and

B,=B.e®, B.=B.e™, M=Me*" (5.250)

are employed.
Making use of Egs. (5.108), (5.111), (5.222), and (5.250), the following rela-
tionships can be obtained:
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= Ayl + 0,50, —ayD, —ay,B,,
x _a35¢,x - a36V/,x + alo-xz b (525 1)
=y, — Ay  + a0,

U==W, =, —ayy  +a,0,.,

W=—aysu  +0a,0, +a27D +a283

1 D Ql

¢ Ayl +ay; 0, a30D + a3lBZ,

1// Ay +axy0, + a31D a33B

2 = 3l azso'z ' ang + a3zB —-ac,, _fx’ (5.252)
=—0,,-a0.~ [,

. =350 W — a0, -aD, -0,

B, =ay@ .. +ayy o — a0, -aB.-M

BT |-§n

z
where the dot above represents differential with respect to z, and
0,0 0 0 ~0 000 0 0
Ayy = €5/ Cs5, Ays = (C13by + 31Dy +€5,D3), ays = (K33 135 — U33033) / 4,
0 0 =0 0 00 0 0
ay; = (et —e53033) Ay, Gy = (k33833 —e33033)/ ay,

0 0 ~0 0 0  ~0=0
g = (—C3b, +e51by —&31b5), ayy = (c33065 —E33833)/ ay,

0.0 ~0 0 0

ay, = (C330533 —ey3e53)/ ay,  ay =(— cBb +e31b —eyb;), (5.253)
0.0 0.0 _ 0

ayy = (c33k3; —ex3e33) / ay, a3 = 011 +Cl3‘125 e31a29,
_ 0 02/ .0

ass =Ky +(e5)" /ess, a an +elSeIS /CSS» a3 = ,U11 +elSeIS /6559

0 0 ~0
ay = Cy3b +e53h, + 633[73

with
by = K3 4155 _(a% )2 o by = e — a0y, by = Kl —eha), (5.254)
by = 3855 +(5303 )2 . by =cqnany tendy, by = Ky +(3§)3 ] |
Equation (5.252) is the Hamiltonian equation (2.138) in which
vluwpy e, 5 DB .
g (5.255)
h={0000 7, /. O M|
0 -0, —q0, —ayd, a, 0 0 0 |
a0, 0 0 0 0 Ay ay; Gy
(540 0 0 0 0 ay;  —ay 4y
o a,0 0 0 0 0 Ay ay,  —as P
a, 0> 0 0 0 -0 —ay0, 4,0, ap0, |
0 0 0 0 -0, -a 0 0
0 0 a0, a0, -ad, 0 -a 0
|0 0 a0 a;0° —ayd, O 0 -a |
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The homogeneous boundary conditions used are
= Uyl + 50, — ayD, ~ayB. =0, 5.0,
=—aysp, — a3V  + 4,0, =0, (5.257)

=—ayp, —ayy  +ayo,, =0

1 G Al

5.6.4.1 Eigensolutions for =0

There are four fundamental eigenvectors and eigensolutions for the problem defined
by Eq. (5.173), which are given by Eq. (5.132). Since zero-eigenvalues are multiple,
the Jordan normal form eigenvector needs to be considered. Using Eq. (5.133), the
first-order Jordan form can be written as

v ={0-x000000}" (5.258)
The corresponding solution of the original problem is
v =yl + 29 ={z-x 000000} (5.259)
which represents the rigid rotation in the plane. Zhao and Chen proved that there is
no other high-order Jordan form in the chain.
5.6.4.2 Eigensolutions for y=—-o

For the eigensolutions corresponding to the eigenvalue 1 = —a, Eq. (5.188) is used
to determine the solutions. Through a lengthy mathematical manipulation, Zhao and
Chen obtained the following four fundamental eigenvectors:

k, sinh(1x)/ A ks sinh(Ax)/ A
k,a[cosh(Ax) 1]/ A? kyafcosh(Ax)—1]/ A*
-1/« 0
v, = g , w0, = _1(;“ (5.260)
—k,ym, cosh(Ax)+m, —kym, cosh(Ax) + my
—k,m, cosh(Ax) —my —kym, cosh(Ax) +m,
—k,my cosh(Ax) + mg —kym; cosh(Ax) —m,
—k, sinh(1x)/ A k, cosh(Ax)/ A*
—k,a cosh(Ax)/ A* k,a sinh(Ax)/ A°
0 0
v, = g , oy, = g (5.261)
k,m, cosh(Ax) —k;my sinh(Ax)/ A
kym, cosh(Ax) —k,m, sinh(Ax)/ A
kymy cosh(Ax) —kymy sinh(Ax)/ A
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where

my = [y (artsy +ay,a3,) + sy (Aag s + a3ty ) = sy (65, = azgazy)/ my,

my = [a3) (ays5y) +ayya3y) + a3y (Ay; @33 + Qg3 ) = Aoy (g @3y = Aysaisy)]/ Mg,

My =[50 (Ar3pg + Ay5a31) + A3y (Argasg + Ayysy) — A3y (37059 — Aysa3)]/ s

my = (ayylz3 +a3a3) [ My, ms = (aya3, +azass)/ my, (5.262)

mg = (aygzy = Aysazz) My, My =(Aysay, +ayas,)/ my,

My = (Aysay) + aygtyg) /My, My =(Ay;029 = Ay5a3) /My,

My = ly; (Gaglys + iy sy) + g (Arg ) + 3oy ) + s (a5 — 39a33)
ky =1/ays + aygmy + ayymy + aygms), ky = ky(ayemy — ayymg + argm), (5.263)
ky = ky(ayems — ay,my + aygmy), A= a\/E '

The eigensolutions corresponding to eigenvalues ¢ = —¢ can be written as

0 — 0 0 0 0 — 0 1 0
VO =y LV =y, V) =y, VD = e @y, (5.264)

The solutions of the original problem can then be constructed as

vO =MV L v, =MV, v =MD, v =MV, (5.265)

—a] -a,l? -a,2° -a,3°

where M=diag [1,1,1,1,e%*, ¢**, ¢**, ¢*7].
The corresponding first-order eigenvector of Jordan normal form can be ob-
tained from Eq. (5.242) as

kex kegx ky .
———cosh(Ax) ———cosh(Ah) + —=-sinh(Ax
YE (Ax) 2 (Ah) PR (Ax)
Ka | L Ginn(Ax) - x cosh(Ah)
LA

% [% sinh(Ax)—x cosh(ih)}
W(_lgl,4 - (5.266)

kymy

- [cosh(Ax) —cosh(Ah)]

oy [xcosh(/lx) B smh/ftlx) ~ ki;za smh/ixix) _ vcosh(ih)
a | L i

5 2 {x cosh(Ax) — smh)(bﬂx) - kzza sinh(4x) _ xcosh(Ah)
a - [ =

kgmy, [x cosh(ix) - s1nhiﬂx) . k;a smh;(tix) _ xcosh(4h)
a ] L ]
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where
ky = kylas; (aym; —my) = asg(arymy —my)]/(ay5a57 — a326 ),
ks = k[ass(ayymy —my) — ayg (aymy —m, )] (aysay, — azzs ),
kg =2k +h+hlky, ky=h+h/lk, ky=hlk, (5.267)

kg =2k, +k 12+ kg, kyo=myky+msks, kj, =—-mck,+mks,
ki, = mgky —moks, h =ak,+a,,ks—akim, h, =kk, +k;k;

The corresponding solution of the original problem is in the following form:
vO =My 2y ) (5.268)

Limiting the analysis by letting o — 0, Zhao and Chen obtained the expressions
of the original solutions as

v(o) ={k x 0 z-lVa 00 —mky,+m, —myk,—mq —m3k2+mx}T,
VO, ={kyx 00 z=1/a 0 —mkytm; —myky+m, — ey —my )

VO ={kx z=Va 00 0 mk mhk mk} (5.269)

—a3

T
1 m
Vo, {kx = _—+—2 ~xz+2 0 0 0 —mkx —mykx — 3k1x}

a o a
and
v, = o by 263+k7h22—§+§—%, ——(k +h)x,
ﬂzx—x—zz—ﬂz’%%, Ex 2 oam), B2 ey,
2 2 2 a 6
—kimxz, —kmyxz, —kmyxz)" (5.270)

By removing the constant electric potential, the constant magnetic potential, the
rigid translations and rotations, the above degenerated solutions become the same as
those corresponding to the zero eigenvalue for homogeneous magnetoelectroelastic
materials [24].
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Chapter 6 Saint-Venant Decay Problems in Piezo-
electricity

As an application of the symplectic mechanics described in the previous chapter,
Saint-Venant decay analysis of piezoelectric strips is presented in this chapter. Ap-
plications of state space approach to the Saint-Venant decay problem of piezoelec-
tric laminates are also discussed. Particularly, a mixed-variable state space model
for dissimilar piezoelectric laminates and multilayered graded piezoelectric mate-
rials is described. Further formulations for decay analysis of piezoelec-
tric-piezomagnetic sandwich structures are discussed.

6.1 Introduction

Saint-Venant’s principle [1], named after the French elasticity theorist Jean Claude
Barré de Saint-Venant, is an old topic and has been widely studied in both elastic
materials and piezoelectricity [2-5]. As stated in [6], the Saint-Venant’s effect can be
explained as “the strains that can be produced in a body by the application, to a
small part of its surface, of a system of forces statically equivalent to zero force and
zero couple, are of negligible magnitude at distances which are large compared with
the linear dimensions of the part.” For purely elastic materials, the problem of stress
decay has been extensively investigated by many researchers [7,8]. By contrast,
progress in the study of Saint-Venant decay of piezoelectric material has been much
slower, due to the complex mathematical operations induced by electromechanical
coupling. Batra and his co-workers [9,10] extended the energy-decay inequality
techniques to the case of piezoelectric cylinders and helical piezoelectric solids.
They proved that the energy stored in the piezoelectricity decreases exponentially.
Fan [11] applied Stroh formalism and the eigen-expansion equation approach to an
analysis of two-dimensional decay in piezoelectricity. Using the stress function ap-
proach, Ruan et al. [12] presented an approximate analysis of decay behavior for a
semi-infinite piezoelectric strip. Using the state space approach as a basis, Tarn and
Huang [3] studied the Saint-Venant end effects in multilayered piezoelectric lami-
nates under generalized plane strain deformation. Borrelli et al. [13] used the en-
ergy-decay inequality technique to analyze the decay behavior of end effects in
anti-plane shear deformation in piezoelectric solids and FGPMs. They subsequently
extended the Airy-type stress function approach to cases of plane deformation of
linear piezoelectric materials. It should be noted that the methods above often lead
to a higher order of partial differential equations (PDE) which, to some extent, are
difficult to solve theoretically [14]. Bisegna [15] established the Saint-Venant prin-
ciple for monoclinic piezoelectric cylinders and demonstrated that the free energy
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stored in the cylinder decays exponentially along the cylinder axis. Rovenski et al.
[16] presented a linear analysis of homogeneous piezoelectric beams that undergo
tip loading, based on the Saint-Venant’s principle and semi-inverse method of
solution. Vidoli et al. [17] obtained a second-order solution for the Saint-Venant
problem for a straight, prismatic, homogeneous and transversely isotropic body
made of a second-order piezoelectric materials. For a prismatic circular bar sub-
jected to bending moments only at the end faces, they found that in addition to the
second-order Poisson’s effect proportional to the square of moment vector, there is
also a torsional effect proportional to the square of the distance from the “clamped”
face. Xue and Liu [4] investigated the decay of the Saint-Venant end effects for
plane deformations of piezoelectric-piezomagnetic sandwich structures. He et al. [5]
presented a mixed-variable state space formulation for the Saint-Venant decay
analysis of FGPMs. Recently, Qin and Wang [2] developed a symplectic model for
Saint-Venant analysis of a piezoelectric strip. In this chapter, the focus is on the
developments in [2-5].

6.2 Saint-Venant end effects of piezoelectric strips

In this section a Hamiltonian system presented in [2] for modeling Saint-Venant
decay behavior at the ends of a piezoelectric strip under plane deformation is de-
scribed. The derivation is based on a differential equations approach. In the analy-
sis, governing equations of a piezoelectric strip are first transferred into Hamilto-
nian form via a differential approach with multi-variables and the state space
method. The approach of variable separation under the Hamiltonian system is then
used to obtain the nonzero-ecigenvalues and to analyze decay behavior at the ends of
a piezoelectric strip.

6.2.1 Hamiltonian system for a piezoelectric strip

Consider a transversely isotropic piezoelectric strip as shown in Fig. 6.1. The po-
larization direction is assumed to be parallel to the z-axis. Derivation of the Hamil-
tonian system for the piezoelectric strip is based on the governing equation (1.10),
constitutive equation (1.25), generalized strain-displacement relationship (1.2), and
boundary conditions (1.11),(1.12). For the problem of a two-dimensional piezoelec-
tric strip in the absence of body forces and electric charge density, the basic equa-
tions (5.109)-(5.111) become

60, 00, _ 8oy 9o _, 9D, 9D, _, (6.1)
ox Oz ox 0z ox 0z
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Fig. 6.1 Geometry and loading configuration of the piezoelectric strip.

&y _an a; 0 ||o, 0 mjy E
e r=la; ay; 0 o, r+[0 my, {Ex}’
7xz L 0 0 aSS O-xz mlS 0 : (6 2)
Dy o o m] 7| [a o](E
= o, r+
D, my my 0 0 Ay |lE.
- GXZ
gx:a_ua gz:a_wﬂ 7xz:a_u+a_wﬂ Ex:_%’ Ez:_% (6.3)
Ox 0z 0z Ox ox 0z
o,(xH)=0, o, (tH)=0, D (tH)=0 (6.4)
where a;; are defined in Eq. (1.26), and
ds, fq d
mys =d,s, mzlzdzl_M’ m33=d33—ﬂ,
S A
(6.5)
d3)
A=Ky, Ay =Ky ——
A

It is worth noting that at the surfaces z=1H, only homogeneous boundary

conditions are considered. However, under inhomogeneous boundary conditions,
i.e., where the right-hand terms of Eq. (6.4) are not equal to zero, the decay rate is
the same as that for the case of homogeneous boundary conditions, although the
corresponding Saint-Venant solutions without decay characteristics may be different.
Moreover, the procedure here, presented initially for stress and electric displace-
ment boundary conditions, is also valid for displacement and electric potential
boundary conditions or mixed boundary conditions.

The field equations (6.1)-(6.3) can be converted into the Hamiltonian form us-
ing a differential approach. In doing so, the x-coordinate, defined in the longitudinal
direction, is analogous to the “time coordinate” in elastic dynamics, and the
z-coordinate is defined in the poling direction. The displacements u, w in the longi-
tudinal and transverse directions respectively and the electric potential ¢ are chosen
as state variables, and the normal stress o, the shear stress z,. as well as the electric
displacement D, are defined as dual vectors to the state variables above. Denote
these definitions by q and p so that
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u o,
q=yWr, P=90
¢ D,

where q and p are a pair of dual vectors in Hamiltonian system.
Making use of Eqgs. (6.1)-(6.5), we have

2
. a a., ow [ a,.m 0
uz(an— 13JO.X+ 13 _{ 13 33_m31j_¢’

s ayy 0z s 0z

. ou ms ms
W:_EJF ass—— o, +—=D,,

Ay Ay
¢£:m15 GXZ _LDX’
A Ay
_ 0o,
¥ oz’

2 2

. a5 00, 1 0w my; 0°¢

Oy = 3 - 2 27
ay; 0z ay 027 ayy Oz

2
ay; )0z as3

D :_@az_w_i_{ﬂg?) _m_é]az_¢+(m33al3 _m3ljaax
4

(6.6)

(6.7)

where a dot “-” over a variable or function represents differentiation with respect

to x.
Further, if we define the full state vectors vand v by

)

Equation (6.7) can be rewritten as
v=Hv

in which H is known as the Hamiltonian operator matrix:

0 0

0 = 2k 0 0
"9z Yoz 3
I 0 0 kK

0z
0 0 0 0 kg kg
H=| 0 0 o -2 o
0z
o* 8? G
0 hk— k- k= 0 0
7622 8822 oz
0’ 0* G
0 k— k987 15 0 0

(6.8)

(6.9)

(6.10)
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where
a a,m a’ m?
ky 2,k e —my, ky=ay - 2, ky = ass 2,
33 as; 33 Ay (6.11)
2
m 1 1 m m
15 _ _ "33 _ 7733
ks— > ké—_ > k7 > ks ’ k9—/133
A A a3 33 a3

It should be noted that the Hamiltonian equation (6.9) is based on the constitu-
tive equation (6.2) in which stress oy and electric field E; are taken as basic vari-
ables. For the constitutive equations (1.24) in which &; and E; are the basic variables,

the corresponding symplectic form of field variables now becomes

U= L —B 3T
Cy3 ¢, 0z ¢, Oz
ou K e
== +J xz+£Dx7
oz A A
;€5 Css
¢ - jaxz _ij’ (612)
__asz
ez
2 2 2
. __01_380'x c Ow [cey o°¢
G, = —X 4 e |+ e3 |[=—>
0z c 0z c 0z
S 11 11
2 2\ A2
Do e, 8w+ e 4 5L 8¢_&80‘x
ol = T 33 2
¢ 0z ¢, )0z° ¢ Oz

where A= cyk;, +efs. The corresponding matrix of Hamiltonian operator H has

the same form as that of Eq. (6.10), except that k; (i = 1-9) are now defined by

c e 1 K e c
k]:_ 13’ k2:— 31’ k3: , k4= 11’ k5= 1 , k6:_ 55’
S 11 SN A A 6.13
ez ) e ©6.13)
_CG3 13631 _ 63
ky =—=—c53, ky= ey, ky=—"+1iy
S ST ST

To prove that H is indeed a Hamiltonian operator matrix, the rotational ex-
change operator matrix J defined in Eq. (2.130) is rewritten as follows [18]:

0 I I, 0
J= o= , I =—g=0" (6.14)
1, 0 0 -1,
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where I is the three-order identity matrix. With the notation J, it is easy to prove
that H satisfies the following relation:

<v1T,Hv2>=<v§,Hv1> (6.15)
where

(vi.Bv,)=["viaHy, d- (6.16)
2

and v,, v, are two full state vectors satisfying the homogeneous boundary con-

ditions (6.4) at z=+H . Therefore H satisfies the relation JHJI=H'. According to
the theory of symplectic geometry [19], H is a Hamiltonian operator matrix.

Noting that Eq. (6.9) can be solved by the method of variable separation and the
symplectic eigenfunction expansion, we assume v in the form

v(x,z) =x(x)y(z) (6.17)

in which k(x) isa function of x and wy(z) depends on z only.
Substituting Eq. (6.17) into Eq. (6.9) yields the solution for k(x) as

K(x)=e" (6.18)

and the corresponding eigenvalue equation
Hy = ny (6.19)

It should be noted that the eigenvalues of the Hamiltonian operator matrix H
have the following property [19]: if £ is an eigenvalue of Eq. (6.19), then—; is also
an eigenvalue of Eq. (6.19). Thus all eigenvalues of H can be subdivided into the
following three groups:

(@) 4, Re(,)>0 or Im(g)>0 (if Re(y,)=0) i=1,2,--

(0) f, = (6.20)

(¢) u=0

From Egs. (6.9), (6.17), and (6.18), the following expression can be obtained:

{q} — e y(z) 6.21)
P

From Eq. (6.21), it is evident that all field variables including stress, electric
displacements, elastic displacements, and electric potential contain the same factor
e"" . Therefore they will decay exponentially for a negative value of x when x in-
creases. The real part of eigenvalue g with the smallest positive real part is here
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known as the decay rate. The next step is to determine x and then to analyze the end
decay behavior of a piezoelectric strip using the proposed formulation.

6.2.2 Decay rate analysis
The decay parameter x is determined by considering the equation
(H-pd)y =0 (6.22)

and setting the determinant of matrix (H - ulI,) to be zero, where I is a six-order

identity matrix. To this end, consider

i kA kA k00
A -y 0 0 Kk k
0 0 —u 0 Kk Kk

det 0 0 —u =0 (6.23)

0
0 kA* k> kA -u
0 kA® kA’ kKA 0 —u|

oS O

where 1=0/0z and A*=0%/0z".
The roots of Eq. (6.23) have two possible cases.
Casel:

A=xpui, A=(a £, A=(-a,*piu (6.24)
Case 2:
A=xpui, A=xpui, A=xpui (6.25)

where o, and f; (i =1-3) are real positive constants depending on the properties of
the piezoelectric material and can be determined numerically. For piezoelectric ma-
terials PZT-5H, PZT-5, PZT-4 and Ceramic-B, the roots of Eq. (6.23) are in Case 1,
which are the same as those in [14]. For certain piezoelectric materials like PZT-6B,
the roots of Eq. (6.23) may be in Case 2 [2].

Thus, the general solutions for the whole state vectors can be given as follows:

ue " = A cos(h)+ B, sin(h) + C, cosh(g,)cos(h,) + D, sinh(g, ) cos(h,)
+ E, sinh(g, )sin(h, ) + F, cosh(g, ) sin(%,),
we ** = A, sin(h) + B, cos(hy) + C, sinh(g,) cos(h, ) + D, cosh(g,) cos(h,)
+ E, cosh(g, )sin(h, ) + F, sinh(g, )sin(k, ),
ge " = A, sin(hy) + B; cos(h,) + C, sinh(g, ) cos(h, ) + D, cosh(g, ) cos(h,)
+ E; cosh(g, )sin(h, ) + F; sinh(g, )sin(h,),
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o,e " = A4, cos(h)+ B, sin(h) + C, cosh(g, ) cos(h, ) + D, sinh(g, ) cos(%,)
+ E, sinh(g,)sin(h,) + F, cosh(g, )sin(h,),
o, e " = Agsin(h) + Bs cos(h) + Cs sinh(g, ) cos(h, ) + Ds cosh(g, ) cos(h,)
+ E cosh(g, )sin(h, ) + F sinh(g, ) sin(h,),
D e = Agsin(hy) + B cos(hy) + Cy sinh(g, ) cos(h, ) + D, cosh(g, ) cos(h,)
+ E, cosh(g,)sin(h, ) + Fy sinh(g,)sin(h,) (6.26)

for Case 1, and

ue " = 4, cos(hy) + B, sin(h)) + C, cos(h, ) + D, sin(h, ) + E, cos(hy) + F; sin(hy),
we " = 4, sin(l) + B, cos(hy) + C, sin(hy) + D, cos(h, ) + E, sin(hy) + F, cos(h),
ge " = Ay sin(hy) + By cos(hy) + Cy sin(h, ) + D; cos(h, ) + E; sin(fy) + F; cos(hy),
o.e " = 4,cos(h)+ By sin(h) + C, cos(h,) + D, sin(h,) + E, cos(hy) + F, sin(hy),
oe " = Agsin(h)+ B cos(hy) + Cy sin(h, ) + Ds cos(hy ) + Es sin(hy) + F; cos(hy),
D e = Agsin(ly) + B cos(hy) + Cy sin(hy ) + Dg cos(hy ) + E sin(hy) + Fy cos(h;)
(6.27)
for Case 2, where g; =a;uz, h;=p;uz (j=1-3), and 4;, B;, C;, D,, E;, and F;
(i=1-6) are unknown coefficients.
The above general solutions can be decomposed into two separate parts: a

symmetric deformation solution and an anti-symmetric deformation solution. Tak-
ing the symmetric deformation of Case 1 as an example, we have

ue " = 4, cos(h) + C, cosh(g, ) cos(h,) + E, sinh(g, )sin(%, ),
we = A4, sin(h) + C, sinh(g, ) cos(h,) + E, cosh(g, )sin(h, ),
ge " = A, sin(h) + C, sinh(g, ) cos(h, ) + E; cosh(g, )sin(h,),
o.e " =4, cos(hy)+C, cosh(g,)cos(h, )+ E, sinh(g,)sin(h,),
o.e " = Agsin(h)+ Cssinh(g,) cos(h, ) + E cosh(g,)sin(h,),
D e = Agsin(h) + Cg sinh(g, ) cos(h, ) + E, cosh(g, )sin(h,)

(6.28)

Substituting Eq. (6.28) into Eq. (6.19), we can obtain relationships between A4,
C,and E; as
4 :{ tA4, (i=2,3) _ :{;;C1 +5.E, (i=2,3)
b lhud (i=4-6) " nuC s uE, (i=4-6)
. {t;‘q +wE, (i=2,3)
" GG W, (i=4-6)

(6.29)

where 1,1, , s, t: and w; (i=1-6) are unknown coefficients and can be determined
numerically.
From Egs. (6.2), (6.3), and (6.11), the stress o, and the electric displacement
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D, can be expressed as
o =—ko -k k22 p - ko -k, 00
’ 0z 0z 0z 0z

Using the boundary condition (6.4), the following equation can be obtained:

(6.30)

pC pW G+ RS, p WV cos(hy)+ psR'S, |( 4
S, WS, +rR'C, wl'S) +5sR C, C =0  (631)
mC, m,W'C, + m3R*S; mW'C, + mSR*S;k E,

where g: =o,uH, hl.* =puH, W= cosh(g;), R = sinh(g;), C,.* = cos(h;),
S’ =sin(h;), and

P = _(k7t2 + k8t3 ):Bl —kity,

Py =—k;(ayry + ﬂzt;) —kg(ayr; + ﬂzt;) —kry,

D3 =k (Bor, —ayty) + kg (Bors — ayty) — kit

Py =—ky (s, + Pywy) — kg (a3 + Byws) —kisy,

Ds =k, (Basy —aywy) + kg (Bys3 —ayws) — kywy, (6.32)

my = —(kgty + kots) i = oty ,
my = —ky(ay1, + Bot) =g (1 + Bot) = o1,
my = k(Bors — anty) + ko (Bors — oty — ity
my =—kg(yty + Bywy) = ko(@ots + Bywy) —kys,,
ms = kg (S5, = ywy) + ko (Brsy —aywy) —kyw,
The condition for the existence of non-zero solutions of {4, C, E, }T is the
determinant of the coefficients matrix being zero, which leads to the following
equation:
pC pW Co+pR'S,  p i cos(h)+ psR'S,
det| S,  6W'S, +rRC, wV'S, +ssR°C,  |=0 (6.33)
mC, mW'Cy+mR'S,  mW 'C,+mR’S,
Similarly, the solution for the case of anti-symmetric deformation can be ob-
tained as
ue " = B, sin(h)+ D, sinh(g, ) cos(h, ) + F; cosh(g, )sin(%,),
we ** = B, cos(h) + D, cosh(g, ) cos(h, ) + F, sinh(g, )sin(h,),
ge " = B, cos(h,) + D, cosh(g, ) cos(h,) + F sinh(g, ) sin(h,),
o.e " = B,sin(l)+ D, sinh(g,)cos(%,) + F, cosh(g,)sin(h,),
o,e " =Bscos(h)+ Dscosh(g,)cos(h, ) + Fy sinh(g, )sin(h,),
D e = Bscos(h) + Dy cosh(g,) cos(h, ) + Fy sinh(g, )sin(h,)

(6.34)
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In a similar manner to that in Eq. (6.33), we have

nS. PSS+ pRCy p VS, + psR'C)
det| a;C;  DR'S,+rW'C, w.R'S, +sW ' C, |=0 (6.35)
mS,  mW'S, +mRC, mW'S,+mR C,

in which

p = Uy +kgas) B~ kay,

Py =ks(Bory —ayby) + ks(Byrs —anby) —kiby,

ps =—ks(ayrs + Boby) —kg(ayrs + Bobs) —kiry,

Pa = ks (By5y = aywy) + ks (Bys — apwy) = kywy,

ps =~k (*azS; tﬂzwg) - k*g (55 + Bowy) — kisy, (6.36)
my = (kgay +koay) ) — kyay,

my, = kg (:Bz’”z* - azb;) +ky (132’”3* - azb;) - kzb:,

my = —ky (az’”z* + ﬂzb;) —ky (az’”; + ﬂzb;) - kz’”:’

my, = kg (,stz - azwz) +ky (ﬁzS; - %W;) - szZ,

* * * * *
ms = —kg(atys, + Bowy) —ko(ay55 + Byws) —kys,

* * * * * . . .
and q; .7 ,s;,b ,w, (i=2-6) are unknown coefficients. The equations for un-

knowns B;, D;, and F; are as follows:

. {ajBl (i=2,3) . {r[*Dl +5F (i=2.3)
a uB, (i=4-6) 1 1Dy + 5, (i =4-6)
. {b,."D1 +w F, (i=2,3)
by Dy +w; uFy (i = 4-6)

(6.37)

The solutions presented above are for piezoelectric materials whose characteris-
tic constant of material property matrix is defined by Eq. (6.24), which is applicable
to PZT-5H, PZT-5, PZT-4, and Ceramic-B under consideration. General solutions
for materials with characteristic constants defined by Eq. (6.25), which are applica-
ble to PZT-6B under consideration, can be obtained similarly and are listed below:

(1) Symmetric deformation solutions:

ue ™ = A cos(h)+C, cos(h,) + E, cos(hy),
we " = 4, sin(h) + C, sin(h,) + E, sin(hy),
ge " = A sin(hy) + C; sin(h, ) + E, sin(hy),
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o.e " =4,cos(hy)+C,cos(h,) + E, cos(hy),
oe " = Assin(hy) + Cssin(hy) + Es sin(hy), (6.38)
D e = Agsin(hy) + Cq sin(h,) + E sin(hy)

The corresponding transcendental equations for nonzero eigenvectors are

(p3m, — szs)asSfC§C§ +(pymy — lez)escl*C;S;

+(pymy —my py)esC §,C5 =0 (6.39)
where

= (—kyay —kgay)) B, —kay,  py = (—kye, —kges) By —kiey,
s = (kye, —kgey) By —key, my = (—kga, —kyay) B, — kya,, (6.40)
my = (—kye, —koc3) B —kycy,  my =(—kge, —koe3) B —kyey

and a;, ¢; and e; are coefficients defined by

ad (i=23) eC, (i=2.3) eE, (i=2,3)
Ai = . H Ci = . H Ei = . (641)
apd, (i=4-06) GuC (i=4-6) eHE, (i=4-6)
which can be determined numerically.
(2) Anti-symmetric deformation solutions:
ue™ ™" = By sin(hy) + D, sin(h, ) + F; sin(hy),
we ** = B, cos(h) + D, cos(h,) + F, cos(hy),
pe " = By cos(hy) + D cos(h,) + F; cos(hy), (642)

o.e " =B, sin(h) + D, sin(h,) + F, sin(h),
o, " = Bscos(h)+ Dscos(h,) + F; cos(hy),

D e " = By cos(hy) + D cos(hy ) + F, cos()

The corresponding transcendental equations for nonzero eigenvectors are

sk K

(15, — myt3)bsCy S5 85 + (mty —nst, )dsS, CyShy + (nyt, —myty) f5S, S;Chy =0 (6.43)

where
m = (kyb, + ksbs) By —kiby,  ny = (kydy + kydy) ) —kid,y,
ny = (ks fo + kg f) B — ki fy, 4 = (kgb, +koby) f — kyby, (6.44)
by = (ked, + kody) ) —kydy, 1= (ks o + ko /3) B —kr /4
and b;, d; and f; are coefficients are defined by
{biB1 (i=2,3) D {a?iD1 (i=2,3) r {fiF1 (i=2,3)
fiuF; (i=4-6)

The transcendental equations (6.33), (6.35), (6.39), or (6.43) can be used for

(6.45)

i

buB, (i=4-6) '

duD, (i=4-6) '
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determining the eigenvalue y for various piezoelectric strip materials. As usual, the
eigenvalues are decomposed into even and odd groups. It is evident that the even
decay rate, k (even), corresponds to cases of symmetric deformation solutions,
whereas the odd decay rate, & (odd), corresponds to cases of anti-symmetric defor-
mation. To characterize the end effects of piezoelectric strips, the characteristic de-
cay length L, which is defined as the length over which the stress and the electric
displacement decay to 1% of their value, has been introduced and used in the fol-
lowing numerical analysis: L= In (100/k).

6.2.3 Numerical illustration

To illustrate applications of the formulation presented above in studying the
Saint-Venant decay behavior of a piezoelectric strip, numerical results of decay rate
and characteristic decay length for several piezoelectric strips are presented. Table
6.1 lists the material properties of PZT-5H, PZT-5, PZT-4, and Ceramic-B used in
the numerical analysis, in which f;; is the elastic compliance constant, dj; is the pie-
zoelectric constant, and  «;; / Kk, 1s relative permittivity. The corresponding values
of & and f; of these materials are listed in Table 6.2. It should be mentioned that
the coefficients a;, r;, s;, --+ appearing in Egs. (6.29)-(6.45) can be determined nu-
merically using the data listed in Tables 6.1 and 6.2. The properties of PZT-6B are
in a form different from that in Table 6.1 and are given separately as

Elastic constants (10" N/m%): ¢, =16.8, ¢, =6.0, ¢33 =163, c55=2.71;

Piezoelectric constants (C/m?): ¢ =4.6, e;,=-09, e;;=7.1;

Dielectric permittivities (107 F/m): &, /x, =36, &y /x,=34.

Table 6.1 Piezoelectric properties.

PZT-5H _PZT-5  PZT-4 _ Ceramic-B
fu 165 164 124 8.6
fio | 478 574 398 2.6
sy (107 m*/N) fis 845 122 552 27
s 207 188 16l 9.1
fua 435 475 391 222
ds, 274 172 135 58
dz:,-/ (10" o) dsy 593 374 300 149
dis 741 584 525 242
ey =510 By | /K, | 1700 1730 1470 1000
KK, | 1470 1700 1300 910
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Table 6.2 Values of @, and f; (i=1-3) for materials listed in Table 6.1.

A a, B,
PZT-5H 8.210 16 0.289 22 1.010 77
PZT-5 1.077 68 0.258 98 1.076 76
PZT-4 1.187 52 0.276 48 1.085 87
Ceramic-B 1.097 21 0.227 98 1.003 05

:Bl ﬂz ﬂ3
PZT-6B 2.101 46 1.014 33 0.517 60

To determine the complex roots of Eqgs. (6.33), (6.35), (6.39), and (6.43), u is
assumed in the form: a+if. It can be determined by setting the real and imaginary
parts of Egs. (6.33), (6.35), (6.39), or (6.43) to zero to find the points of intersection
of the curves defined by these four equations. Tables 6.3 and 6.4 present the results
of the decay rate and the characteristic decay length. Comparison with the results
from other techniques is also made. It can be seen from Tables 6.3 and 6.4 that the
proposed symplectic method provides reasonably accurate estimates for decay rate
and characteristic decay length. It is also found that for all the piezoelectric materi-
als considered in this chapter except PZT-5H, L (even) >L (odd), which coincides
with the findings in [20]. Moreover, PZT-5H has the largest decay length L (odd)
and the smallest decay rate k (odd), which may be caused by the fact that the value
of p, for PZT-5H is the largest in Table 6.2. For PZT-6B, it is also the case that L

(even) > L (odd).

Table 6.3 Decay rate of several piezoelectric strips.

Decay rate k (even) Decay rate & (odd)
[14]" [141° Present [14]* [141° Present
PZT-5H 1.104/H 1.864/H  1.157/H | 0.436/H  0.428/H  0.572/H
PZT-5 1.092/H 1230/H  1244/H | 2811/H  2610/H  2918H
PZT-4 13371 1210/H  1.226/H | 2.125H  2571/H  2.748H
Ceramic-B | 1.016/H 1.330/H  1.309/H | 2.638/H  2571/H  2.963/H
PZT-6B 1.352/H 2.129/H

“Exact results taken from [14]; bAsymptotic results taken from [14].

Table 6.4 Characteristic decay length of several piezoelectric strips.

Decay length L (even) Decay length L (odd)
[14] [14]° Present [14] [14]° Present
PZT-5H | 2.083x2H 1.234x2H 1.990x2H | 5.275x2H 5.373x2H  4.025x2H
PZT-5 2.016x2H 1.870x2H 1.851x2H | 0.818x2H 0.881x2H  0.789x2H
PZT-4 2.172x2H  1.900x2H 1.878x2H | 1.082x2H 0.895x2H  0.838x2H
Ceramic-B | 2.263x2H 1.730x2H 1.759x2H | 0.872x2H 0.816x2H  0.777x2H
PZT-6B 1.702x2H 1.082x2H

“Exact results taken from [14]; bAsymptotic results taken from [14].
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6.3 Saint-Venant decay in anti-plane dissimilar laminates

In this section, the mixed-variable state space formulation developed in [5] for
FGPM strips and laminates is briefly described. For dissimilar homogeneous piezo-
electric laminates, the state space formulation is degenerated to a Hamiltonian sys-
tem. Using the formulation presented in [5], results for the Saint-Venant end effects
in a single FGPM strip and an FGPM laminate are presented. The decay rates for
multi-layered FGPM laminates are also discussed.

6.3.1 Basic equations for anti-plane piezoelectric problem

Consider a single FGPM strip which is transversely isotropic and with the poling
direction in the z-axis but graded in the y axis (Fig. 6.2). It is assumed to be graded
in the transverse direction (y-axis) only. The constitutive equations for the FGPM
under anti-plane deformation are defined by Eq. (1.35) and are rewritten in terms of
elastic displacement and electric potential as follows:

¥

y=h

2h

y==h

Fig. 6.2 Schematic diagram of a single FGPM strip.

O, :Css(J/)W,x +e|5(y)¢,x: Oy, :Css(y)w,y +315(y)¢y:

6.46
D, = ‘315()’)W,x _Kll(y)¢,x’ Dy = elS(y)W,y - Kll()’)ﬁy ( )

where the material constants css(y), e15(y), and xj;(y) are here assumed to vary in
the following exponential form:

css(v) = Cgseﬂy» es(y) = ef)seﬂya K (») = Kloleﬂy (6.47)

where [ is the inhomogeneous parameter characterizing the degree of the material

. . . . 0 0 0 .
gradient in the y-direction and css, €5, and «;; are the reference material pa-

rameters. The equilibrium equation and Maxwell’s equation (1.10) now become
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oo oD
00 9% _o 0D, 90 _ (6.48)
ox oy ox oy

in which the body force f, and the electric charge density g, are assumed to be zero
for simplicity. The boundary conditions are considered to be self-equilibrated at the
end x = 0, and the stress and electric displacement are supposed to vanish on the
surfaces y==h.

6.3.2 Mixed-variable state space formulation

Following the description in Section 6.2, the field equations (6.46)-(6.48) can also
be converted into the Hamiltonian form using the mixed-variable state space
method. To obtain the mixed-variable state space formulation, the x axis is assumed
to be analogous to the time coordinate in elastic dynamics, and the y axis is taken to
be in the transverse direction. Then, the dual state vectors q and p are introduced as

I =7 6.49
P=140" 971p, (6.49)

By

where

o,=¢ o D,=e "D, (6.50)

Xz

Denoting the differential with respect to x by the symbol “-”, Eq. (6.46);5 can
be rewritten as

o, =cdePw+rele’p, D, =ele -kl (6.51)

Solving Eq. (6.51) for 1w and ¢, we obtain the following expressions:

0 0 0 0
w="lg 4 Asp g=tsg  Ssp (6.52)
4 40 4

where 4, = ¢k + (e's)*.
The expressions of 7, and DO can be obtained by considering Eqs. (6.46),4,
(6.47), (6.48), and (6.50) as

d-O = _CSS (W,yy + ﬂw,y) - elos (¢,yy + ﬂ¢,y)’ (6 53)
Dy =—e{s(w,, +Bw )+ K (¢,, +SP,)

Equations (6.52) and (6.53) can be written again as Eq. (6.9), where v is given
in (6.8), but q and p are now defined by Eq. (6.49), and the operator matrix H is in
the form



220 Chapter 6 Saint-Venant Decay Problems in Piezoelectricity

0 0 Kods
4 4
4 4

= (6.54)
2 2
| e L] | Sepl] 0 0
oy oy oy oy
o b o d
—els —+h- K1) =+ 0
i Oy oy Oy 0y

It should be mentioned that for the case of homogeneous piezoelectric material
(B =0) the operator matrix H is a Hamiltonian operator matrix and Eq. (6.9) is a

Hamiltonian equation [21], whereas for the FGPM case ( f # 0 ), H is not a Hamil-

(=]

tonian operator matrix due to the material inhomogeneity, and thus the governing

equation cannot be directed into the Hamiltonian system, and it is difficult to find
the adjoint symplectic orthonormalization eigenvector y to obtain the electroelas-

tic fields using a procedure similar to that in [21]. However, the decay rate still cor-
responds to the nonzero-eigenvalue of the operator matrix.

To prove that H is a Hamiltonian operator matrix for the case of homogeneous
piezoelectric materials, the rotational exchange operator matrix J given in Eq. (6.14)

now becomes

0 I | 0

J= 2rr=| , I =—g=J" (6.55)
-1, 0 0 -1,

where I, is a two-order identity matrix. With the notation J, it is easy to prove that
H satisfies the following relation by performing a procedure similar to that in [21]
and

<V]T,HV2> :<v§,Hv]> (6.56)
where

(v, Hy, )= Lyf v JHv,dy (6.57)

The proof of Eq. (6.56) can be found in [5]. Then, according to theory of symplectic
geometry [19], H is proved to be a Hamiltonian operator matrix.

6.3.3 Decay rate of FGPM strip

In this subsection the separable variation method is used to solve the state space
equation (6.5). With the method of variable separation, the dual vector v can be
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assumed in the form of Eq. (6.17). Then Eqgs. (6.18)-(6.21) also apply here, except
that the eigenvector y is now defined by

v = {“(y )} 6.59)
p(»)
Then, we have
{q}ww‘w(y) (6.59)
|y

For the case of dissimilar homogeneous piezoelectric materials, since the ei-
genvalues of the Hamiltonian operator matrix have the property described in Eq.
(6.20), their corresponding eigenfunction-vectors are written as y_,, y_;, and y,,.

i

Following the procedure presented in [19], it is easy to prove that w,; and y_,

are of adjoint symplectic orthonormalization, that is,

T T
<‘|’+i7 Ja \V—j>:é‘ya <\|’—i9 J: \V+j>:_é‘[j:

(6.60)
Wi dow, )=0, (i J y )=0

in which
T 2T
Wil dowp =] Pl dy (661)

Equation (6.61) implies that , satisfies the homogeneous boundary condi-
tionsat y =y, and y,.

It should be mentioned that the eigenvalues x might be real, complex, and only
the real part is related to the decay behavior. From Egs. (6.49) and (6.59) we can
obtain the following expressions:

{W} = {Wl (y)} , {O-xz} = et e {0'1 (y)} (6.62)
¢ % (») D, Dy(y)

where w;, @, oy, D, are the functions of y. It is obvious from Eq. (6.62) that both

the shear stress and the electric displacement contain the factor ¢/*. Thus, it can be
easily found that both shear stress and electric displacement decay exponentially for
an eigenvalue of ¢ with a negative real part when x increases. In fact, x has four
types of solutions which include g=a=xbi, u=-a=xbi (a>0,b>0). The real

part of x with the smallest positive value, say a, is here taken as the decay rate £, i.e.,
k=a (6.63)

To determine x and to analyze the Saint-Venant decay behavior for FGPM strips,
Eq. (6.19) can be rewritten as
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L 0 Ko s
4 4

0 —u i_iw
4 4|4

=0

(6.64)
0* b 0’ G o

| =+ p=| ek —=+p—]| - 0 0

Css(ayz 'Bayj 815[8 2 ﬂayj H D,

0’ 0 0’

0

—es| —+L— + 0o -

i ‘5[@y2 'BayJ [ o j o
Letting the determinant of the coefficient matrix of Eq. (6.64) be equal to zero,

and noting that 6/8y is replaced by Land /8y’

is replaced by 2%, we have

0 0 Kods
4 4
0 0
€ C
det 0 0 et B (6.65)
4 4
—chs (AP +BA) —es(AP+BL) 0 0
| —es(AP+BA) k(AP 0 0|
Equation (6.65) can be written as
A+ A+ ) =0 (6.66)
Then, the solution of A is in the form
42_—§+5 B2 —4u, ,734—————,/ (6.67)

Thus, the general solutions of the elastic and electric fields to Eq. (6.64) can be
given as the following two cases:

Casel: S —44°<0

In the case of B> —4u* <0, we can easily arrive at

- 4 cos(%y}+31 sin(%y)+Clycos[%y)—i-Dlysin[%yj,
¢ezy =4, cos(ﬂyj+B2 sm(ﬂy}rC ycos(%yJ+D ysm(’;yj,
(57 rmeo{ 3]0

B
we?

(6.68)
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in which 4,, B;, C;, and D; (i =1-4) are unknown constants to be determined and

=4’ - B? (6.69)

Substituting Eq. (6.68) into Eq. (6.64) can lead to the following relationships
between the unknown constants:

Ay = plcy A +esdy), Ay = ples A =k, 4y),
= p(cyB +e5B,), B, =ulesB —kyB,), (6.70)
D,=C,=0 (i=1-4)

Making use of Eq. (6.70), Eq. (6.68) can be rewritten as
wegy = A cos| 2y |+ B sin|
1 5 y 1 5 Y
Zy m
2” = A4, cos +B,sin| —y |,
s (zy j : (zy j
é)’ 0o . [ m 0o . | m
ce? = csscos >y 4 +elscos ¥ |4, + 55 sin X4 B, +¢5sin 57 B |,
Ey m 0 . m 0 . m
De?" =yl e cos X4 A — & cos| —y |4, +elssin > B, — K, sin > B,

(6.71)
From Egs. (6.46),4 and (6.71), we have
0. = 3 P(y) 4 +e)sP(y) 4, — ¢ N(y)B, — e[sN(¥)B,, 672)
D, =e[sP(y)4 — 1, P(y) 4, —€sN(»)B, + K\ N()B,
in which
1 —ﬁy . (m m
P(y)= _Ee 2 msm(zy)+ﬁcos(3yj ,

(6.73)

ﬁ
N(y)=—%e 2 [mcos[m j ,Bsm( ﬂ

Considering now the FGPM strip shown in Fig. 6.2, assume that the boundary
conditions are self-equilibrated at the end x =0, and the stress and electric dis-

placement are supposed to vanish on the surfaces y=+#h,i.e.,
0,.(xth)=0, D, (x,th)=0 (6.74)
Substituting Eq. (6.72) into Eq. (6.74), the following equation can be obtained:

SsP(h)  esP(h)  —cssN(h)  —esN(h) |4
esP(h)  —x\P(h)  —esN(h)  k\N(h) ||4,
Cgsp(_h) eIOSP(_h) —c?SN(—h) —eIOSN(—h) B,
esP(-h) —k\P(~h) —elsN(-h)  «{\N(-h) ||B

=0 (6.75)
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The existence of nonzero solutions {4, 4, B BZ}T requires the determi-

nant of the coefficient matrix to be zero, which can lead to the equation

16,4° A7 sin® (mh) =0 (6.76)
Thus, we can obtain
m:”h—“ (n=0,+1,42,--) (6.77)

Substituting Eq. (6.77) into Eq. (6.69), we can obtain the eigenvalue as follows:

[22, 22,2
P I h (6.78)

+
H= 2

Note that the solutions w and ¢ decay exponentially with e** with distance
from the end x = 0 for negative values of w. The real part of the eigenvalue x4 with
smallest positive real part is here known as the decay rate k, which is obtained as

2 2 2
k= N AT (6.79)

2

It can be easily found that the decay rate heavily depends on the value of the
material inhomogeneous parameter 5 of an FGPM strip. It should be mentioned that
the case of k = /2 for n =0 should be removed and Eq. (6.79) should be adopted
when choosing the value of the decay rate & using Eq. (6.78), due to the fact that the
decay rate k depends on the value of the thickness 4 of the FGPM strip, and that if
=0, the decay rate will be equal to zero for homogeneous piezoelectric materials.
Thus, in the following numerical examples for two-layered and multi-layered
FGPMs, the roots of 1=//2 should also be removed. Note that the FGPM strip is a
homogeneous piezoelectric material strip when £=0, and Eq. (6.79) is reduced to

T

k=—
2h

(6.80)

This result is the same as that of Borrelli et al. [20].

In Fig. 6.3, the decay rate of single FGPM strips with various thicknesses / for
different values of £ has been plotted to show the effect of the inhomogeneous pa-
rameter on the decay rate. It can be seen that the decay rate increases with the in-
crease of S, which agrees well with the results of Borrelli et al. [13]. This indicates
that material inhomogeneity has a significant influence on the decay of end effects.

Case2: B°—4u°>0
In the case of B> —4u* >0, the solution to Eq. (6.65) is obtained as
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—-— B=100
S— )]
6 — p=300
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him

Fig. 6.3 Variation of the decay rate k with various / for different material inhomogeneous
parameters f.

W= Ale%(mfﬁ)y . Ble%("”ﬁ)y .\ Clye%(m—ﬁ)y N Dle%(mﬂ)y’

4 Aze%(mfﬁ)y . Bze—%(nwﬂ)y ) Czye%(mfﬂ)y ) D2e%<m+p)y’ o
o= Aze%(mfﬁ)y +B3e%(m+ﬂ)y + C}ye%(m*ﬂ)y +D3e%(m+ﬁ)y’ (6.81)
D= A4e%(m—ﬁ)y + B4e‘%(m+ﬁ')y N C4ye%(m—ﬁ')y . D4e_%(m+ﬁ)y

in which

m=+p*—41’ (6.82)

Using Eq. (6.64), we can obtain the same relationships between 4;, B;, C;, D,
as shown in Eq. (6.70). Then the shear stress and electric displacement o, and

D, in the transverse direction can be expressed as

1 —g.v 0 oy 0 a4
o, = _Ee [Css (B—m)e* A +es(f—m)e* A,

+ cgs B+ m)e_EyB1 + elo5 B+ m)e_Ey B, ],

1

. N . (6.83)
D, = _Ee’?' [l (B—m)e?” 4 =i\ (B—m)e?” 4,

¥y

+ 6105 B+ m)e_5y31 - K101 (B+ m)e_gy B, ]

Thus, following a similar procedure to that in Case 1, we can obtain the follow-

ing equations:
m=yp>—4u* =0 (6.84)
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which violates the assumption of m >0, and therefore it is impossible for
B> —4u* >0 toappear.

Now, let us solve the decay rate k for two-layered and multi-layered FGPM
laminates and dissimilar piezoelectric material laminates using the coordinate
transformation technique and the interface continuity conditions.

6.3.4 Two-layered FGPM laminates and dissimilar piezoelectric laminates

For two-layered FGPM laminates as shown in Fig. 6.4, the boundary conditions are
as follows:

ol (x,h) =02 (x,~h)) =D (x,h)) = D (x,~h,) = 0 (6.85)
y
y=h
0 ol X
Mi’ lgz
y==h,

Fig. 6.4 Schematic diagram of a two-layered FGPM laminate.

and the interface continuity conditions for two-layered fully bonded FGPM lami-
nates are
oy (2,0)= 0 (x,0), w"(x,0)=w(x,0), (656)
() — D3 (1) — 42 '
Dy (X,O)—Dy (X,O), ¢ ()C,O)—¢ (X,O)
in which the superscripts “(1)” and “(2)” denote material 1 (M;) and material 2
(M), respectively. It should be mentioned that here we are considering the more
general and complex case of dissimilar materials. In the special case of £=£=0, the
laminates degenerate to dissimilar homogeneous piezoelectric material laminates.
However, in the case of S, #0 or f, #0, the laminate is reduced to an FGPM
laminate, and this case is considered for the analysis of multi-dissimilar materials.
Substituting the solutions of Egs. (6.71) and (6.72) for M; and M, into Eq. (6.86),
we obtain the following relationship between the coefficients:
A? 1 0o o o]/4"
AP 0 1 0 04"
(= 1 (6.87)
Bl( ) A G a3 4y Bl( )

B Ay Gy Gy Ay || BV

in which
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1 1 2 2), (1
[ﬂ()(e() 2) 61(5>KH>)]
[ B (—eDe@ cglj),C(z))]

m® (e@xD - ,(1<12))]

S
B

1 1) (2 2)
PO e + )],

N, (1) (2 2 @ 2, 22, (2.2
B (e(s 1(5)"‘ gS)KI()) B )(61(5) + gS)Kl(l)

15 Cs5 €5 Css

u|_. u|~ u|_QB|H u|_ u|_. u|~am|ﬂ

[ D (DD _ @ (0)]
1 2)..(1 2) (1
[ D (@D — el(s)e())]

with
A =—mD (2 4 (Di®y

Combining Egs. (6.72), (6.85), and (6.87) yields

MF® =0
in which
POy )PV N () —e NV (k)
M| @sPV ) i POh) e dND () k) NO ()
a3 asy as; a3y
ay %) Ay gy
Where

a3y = PP () = NP (=) ay, + e ayy),
ay, = ey PP (=hy) = NP (=y)(cFay, + €7ayy),

=N (~hy)(ca; + 315 ay3),

=-N® (=h, )(cé?aM + 915 a24)

0 =€ PP (=) = NP (=)D a, - Va,)),
Ay :_KUZ)P(Z)( hy)— N(z)( h )(61(52)012 Kflz)azz)»
—N(z)(_hz)(eg)aw Kll a23),
~N (hy)(elsa, ~ &1}

1 12 1 2 2 2)2 2)7.(2
AU (eDe® + i@y — pO (22 4 2 )k(l)):|7
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(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)
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and
T
F(”:{A{” AD B Bz(l)} (6.95)

The non-zero solution F"requires the determinant of the coefficients matrix M
to be zero:

detM =0 (6.96)

Thus, the solution for & can be obtained by solving Eq. (6.96) and then the de-
cay rate can also be obtained by choosing the appropriate value of sz

6.3.4.1 Two-layered FGPM laminates

Here PZT-4 is taken as an example for illustration. Its properties are
4y =25.6x10° Pa, e5=12.7 C/N, and k,=6.46x10" F/m.

To show the effect of material inhomogeneity on the end effect, the decay rates
of the two-layered FGPM laminate with 4, = 0.03 m and various /4, are calculated
from Eq. (6.96) and plotted in Fig. 6.5 for different values of /3, and £,=100. For the
case of S = =100, the two-layered FGPM laminate is reduced to a single layer
FGPM strip, and the decay rate can be obtained from Eq (6.79). The results ob-
tained from Eq. (6.79) and their counterparts obtained from Eq. (6.96) by numerical
methods are also plotted in Fig. 6.5. It is observed that the results obtained from Eq.
(6.96) agree well with those obtained from Eq. (6.79) in the case of S, =, . Also,
it can be seen that the decay rate varies with the inhomogeneous parameters £, and
. It can be found that the decay rate of the end effects increases with the increase
of f,. Furthermore, the decay rate decreases with an increase of the value of 4,.

150 T T T |
-~ 3,=100
140 - 3,=125 -
- ,=150
130+ & -
-8 B.=175
120+ o= 3,=200
== 3,=100
= 110+
D
100
]
90
80+ Based on Eq.(6.79) \
7{) | 1 | 1 | '
0 0.005 0.010 0.015 0.020 0.025 0.030

h/m

Fig. 6.5 Variation of the decay rate k with various /4, for different values of £ and £=100,
h2:0.03 m.
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To illustrate the effect of material inhomogeneity on the end effects of FGPM
laminates, the variation of the decay rate £ with the values of /5, is plotted in Fig. 6.6
for a two-layered FGPM with a fixed thickness A =/, =0.02 m. It can again be
observed that the decay rate increases with the increase of £. From Figs. 6.5 and
6.6, we can see that material inhomogeneity has a significant influence on the decay
behavior for both the two-layered case and the single strip case.

200 T T T T T X
- =100 L
180} L 5
-2 B=150
160 - - (=200 |
140
=~
120 .
100, B
80/ B
6 1 1 i 1 1
0 50 100 150 200 250 300

B

Fig. 6.6 The dependency of the decay rate k£ on f for different f, and fixed thickness
h=h,=0.02m.

6.3.4.2 Two-layered dissimilar piezoelectric material laminates

Now we consider two-layered dissimilar piezoelectric material laminates composed
of a first layer of PZT-4 and a second layer of PZT-5. The properties of PZT-4 are
c{d =25.6x10° Pa, e =12.7 C/N, and k) =6.46x10"° F/m, and the proper-

ties of PZT-5 are {2 =21.1x10° Pa , €3’ =123 C/N, and £k} =8.11x

10 F/m . Using the boundary conditions and the solutions for each layer, Eq.
(6.96) can be simplified as follows:

(c(l) D2

Wil +eld?)sin’ (uhy ) cos® (uhy) + (¢} + 3% )sin® (uhy ) cos™ (uhy)

HeWxP +2e(els) + i3k} ) sin(uhy ) sin(uh, ) cos(uhy ) cos(uhy) =0 (6.97)
or written as
sin® [peChy + b))+ Ry sin® [p(hy —hy)]= Ry sin[ pu(hy + hy)]sin[ p(h —hy)]  (6.98)

with
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R1=A11+A22_A]2_A21, R, = 2(Ay — 4,) ’

Ay + Ay + Ay + Ay Ay + Ay + Ay + Ay
A =3y +cdxf), Ay =efes + xS, (6.99)
Ay =efely) +x7ed, Ay =eges ety

In the case of /4 =h,, it can be seen from Eq. (6.98) that the roots of x do
not depend on the piezoelectric properties, and the solution to Eq. (6.98) is

_hn

=__ 6.100
H=> (6.100)
and the decay rate is
T
k=— 6.101
o (6.101)

In the case of & # h, , Eq. (6.98) can be solved numerically. The decay rates of
two-layered dissimilar piezoelectric material laminates are plotted in Fig. 6.7 for
different /4, and /,. It is observed that the decay rate decreases with increases of /;
and /,. When #; is small, the difference between the decay rates for different thick-
nesses of 4, is large, which implies that the magnitude of the thickness /%, signifi-
cantly affects the decay rate provided 4, is small. As /; increases, the effect of
thickness /, on the decay rate decreases, and it can be negligible when /4, is suffi-
ciently large. Further, the decay rate drops quickly with the increase of /#; when
both /4, and /4, are small, say, when #, is less than 0.02 m and #, is less than 0.01 m,
as shown in Fig. 6.7. However, the decay rate varies slowly when 4, or 4, is very
large and approaches a constant when /4, or 4, is sufficiently large, indicating again
that the effect of the thicknesses /; and /4, on the decay rate can be ignored when
either A, or h;, is sufficiently large.

300 T T T T T

== ,=0.010m 4
—&— 1,=0.015m

== 1,=0.020m o
= /1,=0.025 m

250

0 0.01 0.02 0.03 0.04 0.05 0.06
hy/m

Fig. 6.7 Variation of the decay rate k£ with various /4, for two-layered dissimilar piezoelec-

tric laminates.
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6.4 Saint-Venant decay in multilayered piezoelectric laminates

This section presents a summary of the development in [3]. In that work, Tarn and
Huang developed a state space approach in the context of generalized plane strain
for studying the Saint-Venant end effects on multilayered laminates of piezoelectric
materials. They showed that the electromechanical interaction has significant ef-
fects on the internal field in a self-equilibrated strip or laminate. The Saint-Venant
end effects are more pronounced and the decay length is more extensive in homo-
geneous strips or composite laminates with stiff piezoelectric layers than in those
with soft piezoelectric layers.

6.4.1 State space formulation

For a piezoelectric laminate composed of # layers in a self-equilibrated state as
shown in Fig. 6.8, Tarn and Huang developed the following state space formulation
for a monoclinic system of class 2mm with the x;-axis being the polarization direc-
tion. They begin by considering the constitutive equation (1.6), but in the special
form for a multilayered structure, as

D ' d’ « . E .
where €, o, D, and E are defined in Egs. (2.3) and (2.4), and f, d, k used in [3] are
given as

(6.102)

[ f fe fis 000 £ [0 0 4]
.fl2 J{22 ﬁ3 0 0 .f26 0 O d32 0
fo fa fa 00 fy 0 0 dy| T
f= , d= , K=k, ky O
0 0 0 fu fis O dyy dy 0 0 0 x
0 0 0 f45 fss 0 dlS d25 0 »
_f16 fzo f36 0 0 fos_ 0 0 d36_
(6.103)
X3 Polarization direction Piezoelectric layer
|
< —.
= I X1
L
Insulated or
grounded

Fig. 6.8 Configuration of a piezoelectric laminate.
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In the problem they studied the laminate was subjected to self-equilibrated loads at
x;=0 and L (Fig. 6.8). The boundary conditions on the top and bottom surfaces are
free from traction and electric voltage or surface charge so that

Gl3=0y,=0y3=0, ¢=00rD,=0 (onx,=:+h) (6.104)

The continuity conditions on the interface x;= z; (k =1, 2,---, n) require

[, uy uy GL=[w, u, uy ¢, (6.105)
o135 0y 033 D)y =lo; 0y 033 Diliy

To simplify the following derivation they separated the field variables into trans-
verse components and those in the x;-x, plane (denoted by a subscript p), and re-
wrote Eq. (6.102) as (the subscript & here has been dropped for conciseness)

g, =f,6,+f,:05;,-d ¢;,

Op
E33 = SI}?)O_p + f3303; —dy3 s,
g =f o —dLg, (6.106)

_aT
Dp _ds Oy _KL¢’

T
Dy =d 6, +dy05 — k330,
where

sp:{gll ) 2‘912}Tn o :{0'11 Oy O'lz}T’ D :{Dl Dz}Ta

p p
(6.107)
T T
g, ={2¢e; 2&,} , 6, ={0; 0y}
S Sz Sie S13 dy,
Ss5 Sy
£ =52 Sn x| f3=|su| d,=|dsy | fsszL s }
S16 S26 Se6 S36 dyg BT (6.108)
dS=|:d15 d25:|’ K=|:KH K12:|, L=|:a/axl:|
dyy dyy Ky Ky 0/0x,

In the derivation of the state space formulation for decay analysis, Tarn and Huang
[3] took u,, u,, u;, ¢, 6, 033, and D; as the primary variables and then ar-

ranged the basic equations in the form

u,=-Lu;-dLé+S o,

33 =818 L u+ (3, —S):8,'S Yoy - dy;D;, (6.109)
¢y = K3d, S L u+dyy0; — K33 D;

o,3=-L'[S (GL u-S ;05 —&53d,D,)],

0333 = _LTG,s ) (6.110)
D;y=L'(xLg—d]s,)
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6,=S(GL,u-S ;o5 —i5d,Dy),

(6.111)
DPZ_KL¢+dS K
where

§p3:s —ci33d 533=533—‘;’33d33’ G:I+K33ldl’dj’s;”’ (6.112)

Ky = K33 — dESp},dp, K33(d33 dTSpp )

o/o 0 o/o

]t - ) % (6.113)

Uy 0 0/0x, 0/0x

The state space equations (6.109) and (6.110) of a linear piezoelectric material can
be rewritten in matrix form as

[u, ] [0 0 -0, L, sS4 S5 O 0 [y |
U, 0 0 0 [s 845 855 O 0 U,
wy | Ly Ly 00 0 0 ay dy | ou
O | |y L O 0 0 0 dy K| ¢ 6.114)
0x3 | O13 l I, 00 0 0 L I, %
023 Y 0 Ly Iy |9
033 o 0 0 0 -5 0 O 0 || 93
| Ds | 10 0 0 Ly Ly Ls O 0 __D3_

where the field variables are independent of x, for a problem of generalized plane
strain, and

ly=-d\,0y, Lis=—di50,, Ly =ay0,, L, =a30,
ly=ay0,, lp=ap0;, Il =as50,, I, =a50, (6.115)
ley = a0y, Ly =5K,0y,

[031 a32] = SLS;},HT, Ay =543 -STs°'S

p3~ pp~ p3>

Ay - ds; ds, 1 0 0 (6.116)
=Ky, Hspp o —-HS, GH H=
ay, as, Qg 0 0 1

Equation (6.111) can be further written as

on by by o lu b, by
oy |=| by by TL‘}F by, (o +| by | Ds (6.117)
O by, by, e by, byg

D, Ky 14 d15:||:o-13i| 6.118
{Dj LJ% {dzzt dys || 03 (6.118)
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where
bll blz b17 B b18
by by |=S,GH', |by, |==S'S .. |by |=—£3S,d, (6.119)
b31 b32 b37 b38

Equations (6.114), (6.117), and (6.118) constitute all the state field formulations
needed in the decay analysis.

6.4.2 Eigensolution and decay rate equation

To obtain the decay solutions to the space state differential equations (6.114) above,
suppose that the solution has the following form:

— oA
{uy suy,uy,0,013,0,3,05,Dy ) =e [” V.w @ Ti3 Ty Ts As]k

i B W § Ry By A3]k
(6.120)

where A and y are the decay factors to be determined; u, v, w,*** and u, v, W,
are unknown functions of x;. Tarn and Huang [3] indicated that the first exponential
function depicts the decay from the end x;=0 with a decay rate A; the second one
depicts the decay from the end x;=L with a decay rate . As x; increases, the influ-
ence of the first term decreases whereas the influence of the second term increases.
For a semi-infinite strip, L—o, the second term vanishes, and only the decay from
x;=0 needs to be considered.

Substitution of Eq. (6.120) into Eq. (6.114) yields two sets of equations as fol-

lows:
4 X, —iAX,,

d - .
—X, =—7A, X 6.121
d, dr, k VAR ( )

where

0 0 1 dy fu fis O 0

0 0 0 ds fis fis O 0
—ay —ap 00 0 0 a4y dy
A <| @0 a2 0 00 0 dy —i}) 6.122)
a, ap 00 0 0 -ay -a
a;  ap 0 0 0 0 -—ap -a,
0 0 0 0 1 o0 0 0
0
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X, =[au v Aw Ao 15 15 7y A3]Z,

. - . ..
Xk=|:_7/u YVTYw Y@ T3 Ty T Aa]k

(6.123)

It is noted that Eq. (6.121); is mathematically the same as Eq. (6.121), if A= —y.
This indicates that the decay rates from both ends are the same and both equations
result in the same through-thickness variation of the field variables. Consequently,
Tarn and Huang treated Eq. (6.121), as the first part and Eq. (6.121), as the second

part.
The solution of Eq. (6.121), is

X, (x3) =P (3 -z, )X (z,)
where the transfer matrix Py is given by
P (x; =z ) =T
Using the continuity condition (6.105) and Eq. (6.124), we have
Xyi1(zp) =Pz, _Zk—])Xk (ze21) (k=1,2,---,n—1)
Applying Eq. (6.126) recursively yields
X(x3) =T, (%)X, (h) (z; Sx3<z,)

where

[Py, ) k=1)
Ti(x) = {Pl (s 3 Ty (zy) (R =2.3,,m)

Letting x; =—h, Eq.(6.127) becomes
X(=h) =T, (=m)X(h)
Denoting
U=2{u v w ¢}T’ SZ{TU Ty T3 As}T’

U(_h) _ Tuu (_h) Tus (_h) U(h)

SChy [T, (h) T (h) [ S(h)
and considering S(2)=S(-4)=0, we have

T, (=mU() =0

(6.124)

(6.125)

(6.126)

(6.127)

(6.128)

(6.129)

(6.130)

(6.131)

to which the non-trivial solution U(k) exists if the determinant of the coefficient

matrix vanishes,

det

Tvu (_h)| =0

(6.132)
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Then, the decay factor A, subsequently U(%), can be determined from Eq.
(6.132).
The primary state variables are determined from

U(x;) =T, (x)U(h),  S(x;) =T, (x;)U(h) (6.133)

When both the top and bottom surfaces are grounded, i.e, ¢=0, Eq. (6.130) be-
comes

A

ﬁ:{lu v Aw /13}T, S={Tl3 Tyy T3 /W}T,

U-hy | [T, Tk || O (6.134)
Semy ] [T, =) T =m) || Sk

Again, with the boundary conditions s(h) = g(—h) =0, the decay rate is determined

from

det

T, (—h)‘ =0 (6.135)

Once the primary state variables have been determined, the other stress and
electric displacement components are determined from Eqs. (6.117) and (6.118) as
follows:

Oy by by Au by, big
oy | = = by by Lv} by, 755+ byg | A (6.136)
by, byg

%12 J; by, by, k

|:D1:| _ GKH}}@'{L{M dls}{ﬁsD (6.137)
D, |, Kip dyy  dys || T3 ]),

As a special case of multilayered structures, Tarn and Huang considered a
monoclinic piezoelectric strip and developed the corresponding formulations in [3].
For piezoelectric materials of the orthorhombic system of class 2mm, Eq. (6.121),

reduces to

M au] o 1 0 s, O 0 1Tau1 T o

Aw a5, 0 0 0 ay dy ||Aw 0

A _ j. g tla 0
AP 000 dyy R A2 P 6 138)
dxy | 713 as; 00 0 —ay —ay || 0

T3 0 0 0 1 0 0 || 7 0

| A5 | 0 0 x, 0 0 0 |[4] [ds]
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S
dx; | 73 1/ses 0| 753 0

Equations (6.136) and (6.137) also reduce to

RISL b b 4
r“}:e—({ ”}w{ ”}BJ{ 18}%), O =——— v (6.140)
O N by, by, byg S66

Dy =e (i Ap+disty), Dy =eMdyz;s (6.141)

where

= ~ ~-1
a3 = (8138 = 52351,) /N, ay = K33 (d3150 —d3pspy) /N,
37 = 833+ [533 (51381 = 523811) = 813 (51352 = 533811/, (6.142)

a1, 42 2 2 2 _ 2
as) = K33 (d3y81, —d3185,) 1N =555 IR, N=157,55, =5y,

|:bl 1 } _ l: Sy + ’Z;;[szz(dglszz —dydyys1,) + Slz(dszzslz —dydyps,)l/N

by, —S12 _72531 [511(d322S12 —dydyysy,) +Slz(d321322 —dydyysp,)]/N

{bn}:{imslz _S:13S22} |:b18:|:’%3—31 |:d32512 _d31522} (6.144)
by, S13812 ~ 523511 byg dyy81, —dypsy

Tarn and Huang found from Egs. (6.138) and (6.139) that the field variables in the
x1-x3 plane are associated with the antiplane shear o»;, and the antiplane deforma-
tion and shear stress are associated with the electromechanical field in the x;-x;
plane through ¢. The in-plane and antiplane field variables are coupled unless
d5=0. Only in orthorhombic piezoelectric materials with d15=0 does a 2-D loading
give rise to plane deformation, and the antiplane shears oy, 03 and displacement u,
are independent of the electric field. From the material properties of various piezo-
electric materials listed in Table 1 of [12], all have non-zero d;s. This suggests that
the applicability of a 2-D formulation for piezoelectric strips without accounting for
the antiplane field variables is very limited. The plane strain or plane stress assump-
tion is invalid for electroelastic analysis in general.

} (6.143)

6.5 Decay rate of piezoelectric-piezomagnetic sandwich structures

In this section the decay of Saint-Venant end effects for plane deformations of pie-
zoelectric (PE)-piezomagnetic (PM) sandwich structures presented in [4] is de-
scribed. The structures studied are subjected to a self-equilibrated mag-
neto-electro-elastic load. The upper and lower surfaces of the sandwich structure
are mechanically free, electrically open or shorted as well as magnetically open or
shorted.
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6.5.1 Basic equations and notations in multilayered structures

In [4], Xue and Liu considered a sandwich structure as shown in Fig. 6.9. The PE
layers and PM layers are assumed to possess transversely isotropic properties. The
x;-axis is the polarization direction of both two materials. The thickness of the
sandwich plate is 2/ and the thickness of the mid-layer is 2f. The constitutive equa-

tions of the PE and PM media in the context of plane strain are, respectively, given
by

6’ =ce° +(e°) ®°, D°=e‘e" —k‘@®°, B =—p¥* (6.145)

X3 X3

PE layer = PM layer
-~ S
- _U PM layer o _“ PE layer
PE layer = PM layer

(a) (b)

Fig. 6.9 Piezoelectric-piezomagnetic sandwich plate. (a) PE-PM-PE structures; (b) PM-
PE-PM structures.

and
o_m — cmgm +(hm )T‘I’m’ Dm — _KWIQWI’ Bl’ﬂ — hmam _ul’ﬂ\llm (6.146)

[TPRL)

where the superscripts “e”’and “m”denote the quantities to be associated with PE
and PM materials respectively, and

6”={0{’1 ol ohj. D ={or DI} B'={B B,
e ={el o } o =g gl =l sl

n 0 0 @ n 0 0/
b e = n n b h = n n b (n = e’ m)
e e 0 by hyo 0

n l::ulnl 0 :|
p = "
0 5

o
C]3 C33
C44
|:K11
K33

(6.147)
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The strain-displacement relations (1.2) and governing equations (1.10) are now in
the form

w' +u',
g =l i
v 2 (6.148)
05,=0, D=0, B;=0
For the boundary conditions of the problem Xue and Liu studied, the structures are
considered to be subjected to self-equilibrated magneto-electro-elastic loads at x; =
0. The upper and lower surfaces of the structures are mechanically free, and electri-
cally shorted (S) or open (O) and magnetically open or shorted, i.e.,

oty =0t =0,
¢"=0(S) or Dy=0(0), (onx;=xh) (6.149)
w"=0(0) or By =0(S)

The continuity conditions on the interface x; =+f require
e e e e T _ m m m m T
A B U T A A

(6.150)
lot, oty D B} =lop ofy DI B

T

Xue and Liu also employed the dimensionless variable approach, which is use-
ful for simple deduction and calculation. In setting forth the normalization formula-
tion, four key properties are selected as the reference values: (a) half of the sand-
wich thickness 4; (b) an elastic modulus ¢’; (c) a piezoelectric constant €°; and (d) a
piezomagnetic constant 4°. The geometry, mechanical displacements, electrical
potential, magnetic potential and the material constants can then be normalized as

R R —__ Y
X =—7 X3=—7, UYy=—, U3 =—, = > = 5
e e ST P Y

Gn _ (I)n _ \I,n en _ hn

En:—, gnzsn’ (Dn:_’ no_ , En:_’ hn:_’ 6151
¢’ E° H° e’ n° (131
n _ Dn _ Bn n n

En :c_o’ Dn :_O’ Bn _ -, —=n :K_O’ T HO
c e h K )7

where E*=c"/e, H' =c"/h°, k° =(e")? /¢, and 1 = (h°)? /<.

6.5.2 Space state differential equations for analyzing decay rate

Making use of Egs. (6.145), (6.146), and (6.151), a set of normalized form of con-
stitutive equations for both PE and PM materials is obtained as
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£ =5%"-d°)"®°, D°=ds° -k‘®°, B°=-uVP° (6.152)
and
" =8"6"—(g")'¥", D" =—«k"®", B"=g"¢"-n""'¥" (6.153)
where
Qe _ r=en-l _e__e ™ T el _ zeQe genT | ize
SR G

and the remaining variables are defined in the same way as those of Eq. (6.147).
For convenience, Eq. (6.152) is rewritten in the following form:

& =507 + 5505 — 5,05 (6.155)
&y = 5500 + 55305, —disds (6.156)
285 =55,5 —d54) (6.157)
Df =diGs - K\pf (6.158)
=d;\5}, +d5355, — ’?§3_§ (6.159)
B =\ (6.160)
By =175 (6.161)
From Eqgs. (6.155), (6.159), and (6.161), we have
611 = e — (s + 4 33)0'33 + fiaDs (6.162)
5 = [85 — (535 + [5d33)T5 + [5D5 (6.163)
75 = f:B5 (6.164)
where
; i, ; -d;,
e 51 e 1
TomRs A T

Equations (6.148), (6.156), and (6.162)-(6.164) lead to

—e _ e —e e —e e e
Uy 3 =)&) + N350335 + 1305 (6.166)
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where

n =554 +d33f12’
ngy =53 = 555501 — 255 33f12 +d33d33f22, (6.167)
A 33f262

Finally, making use of Egs. (6.148), (6.157), (6.158), (6.160), and (6.162), we
obtain

D5y =—(d\s00; +i,8) s By =(HW1),, O35 =013,
O35 =—Lf5&0 — (1515 + f15d33)03; + f15D5 L Wty =3, +53,07; — 185¢1e
(6.168)

Equations (6.163), (6.164), (6.166), and (6.168) consist of the differential equa-
tions of PE materials for decay analysis. Similarly the differential equations for PM
materials can be obtained as follows:

—m = —m

—m __  —m —m —=m pm _ —m—m —m —=m
Uz = U3y + 8544073 — gls‘/’l ) 33 =K 11, By = Wi — &15013,5

—m —m —=m Bm
Oy33 =013, Opss=—[A1&1 —(A155 + f385)05 + 3B,

mim —m m—m (6169)
¢,3 = 22D3 > Y3 = e — (A5 +f33g33)‘733+ﬁ«13
—m __ _m—=m m —m mpm
Uyy =Ny &) +n33053 +1y3B;
where
—m —m
f _ 33 m __ 31 _f
" —m—m —m=m’ B3 7" —m—m —m—=m’ 31 7 J13»
S11H33 — 831831 S11H33 — 831831
_1 EWI
meo__ I § m o _<m mo_ =m grm
2= T S5 = Toom = i = Si3Jn — 833713 (6.170)
K33 S11 a3 — 831831

m __ —=m —m—m m —_—m-—=m m —m —m m m __ —=m m -—m m
ny3 =533 — 513513 11 — 25383315 +€383/33, M3 =S3./15 — 833

6.5.3 Solutions to the space state differential equations

To obtain the decay solutions to the space state differential equations described in
Subsection 6.5.2, denote K" = {it", 5 " " 5{’3,63”3,D3",§3"}. As X, increases,
the influence of K" which determines the self-equilibrated state at the end decreases.
Then the solutions to be found can be expressed in the form

K'=ca W ¢y 6l & Dy B (6.171)

Noting that =" on the interface, we can conclude that A°=A4" =A4. Sub-
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stitution of Eq. (6.171) into Egs. (6.163), (6.164), (6.166), (6.168), and (6.169)
yields

LXK (=eum) (6.172)
dx3

where
X'=e i A Ag At Gl Gl DY By (6173)

0 1 d5 0 =5 0 0 0
-, 0 0 0 O N3, ny 0
~fi 00 0 0 —fiSS-fadh fh 0
Aco| 00 0 0 0 0 ) 0 15 6.174)
=fi 00 0 0 —fis5-fiddss Sz O
0 0 0 0 1 0 0 0
0 0 &% 0 dS 0 0 0
L0 0 0 & O 0 0 0|
0 1 0 g s 0 0 0]
-n; 0 0 0 0 nyy 0 nj
0 0 0 0 0 0 o0
Am — - 311 O 0 0 O - 31151{; - 3r;1§3n; 0 f;;l (6175)
-fi 00 0 0 —fisi-f585 0 A
0 0 0 0 1 0 0 0
0 0 &K" 0 0 0 0 0
0 0 0 & g 0 0 0|
Then the solution to Eq. (6.172) is
X" (%) =P" (%, —z,)X"(z;) (n=e, m;i=12) (6.176)
where
PI(%,—z) =M (5= f, 5 =—f) (6.177)

Using the solution (6.176), Xue and Liu derived characteristic equations for de-
cay analysis by considering four types of boundary conditions of PE-PM-PE sand-
wich structures.
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Case 1: Electrically open and magnetically shorted:
o,=03,=0, D;=0, By=0 (on x; =+h)
The solution for the boundary condition (6.178) is
P°(x; — )X (h) (n=e f<x;<h)
X'(x) =1 P" (x5 - H)X"(/) (n=m; —f<x<f)
Pe(x, + )X (-1) (n=e; —h<x;<-f)
Using continuity conditions (6.150) and Eq. (6.179), we have
XE(x) =P (% + )P (=2 /)P (f — )X (h)
When Xx; =—h, Eq. (6.180) becomes
X(=h) =T (-h)X(h)
where
T(=h)=P*(f —hP" (<21 )P(f ~ ))X(h)
Denote
~ ~ 7 ~3T ~ ~ ~ ~ T
U=l{” wo¢ vy, S={G; Gy D 3} >
U=h)| |T,(=h) T (=h)|[U)
S ] [T (=h) T (=h) ]S
and considering S(#)=S(-%)=0, we have
T, (-)U(h)=0

If there is a nonzero solution U(%) to Eq. (6.184), it must be

det

T, (-h)]=0

(6.178)

(6.179)

(6.180)

(6.181)

(6.182)

(6.183)

(6.184)

(6.185)

Thus, the decay factor A can be determined from Eq. (6.185), which is the charac-

teristic equation for Case 1.
Case 2: Electrically open and magnetically open:

0,=03,=0, D;=0, w°=0 (onx;=xh)

(6.186)

In this case, the state space variable defined in Eq. (6.183) and the correspond-

ing efficient matrices A° and A" become

U={ai i i§ B) . S={6, 6, D, Ay}

(6.187)
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0 1 d5 0 35 0 0 0
-, 0 0 0 O n3, ny 0
2w 000 0 0 —fiFi-fudy fn O
o o o0 o0 O 0 0
AC = B - il (6.188)
=i 00 0 0 —fi\s5-fdn Sz 0
0 0 0 0 1 0 0 0
0 0 &% 0 di 0 0 0
L0 0 0 f5 O 0 0 0 |
0 1 0 o0 s 0 0 g
-ny 0 0 mn3 O nss 0 0
0 0 0 0 O 0 frn 0
Am — 0 0 0 0 815 B 0 B 0 My (6189)
=00 Ay 0 —fiss-sigs 000
0 0 0 0 1 0 0 0
0 0 &K’ 0 0 0 0 0
A 000 Sy g5 —fass—fags 00 0

Then, the corresponding characteristic equation can be obtained in the same way
as in Case 1.
Case 3: Electrically shorted and magnetically shorted:

ofy=05,=0, ¢ =0, B;=0 (onx,=1h) (6.190)

In this case, the state space variable defined in Eq. (6.183) and the correspond-
ing efficient matrices A° and A" become

U={aa v D, Ay} . S={6, 6, id B}  (6.19])

0 1 0 0 55 0 ds 0
-n, 0 n; 0 O ns, 0 0
0 0 0 0 d 0 K, 0
AcZ| 0 0 0 0 0 0 ) 0 f5 6.192)
-fi 0 f3 0 0 —fi{S5-fidy 00
0 0 0 0 1 0 0 0
~fn 0 f5 0 0 —f35—fhds O 0
|0 0 0 m O 0 0 0|
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0 I 0 g5 5 0 0 0
- 0 0 0 O ny, 0 nj
0 0 0 0 o0 0 Ky 0
-fii 00 0 0 —fisy-f3gn 0 i
0o 0 0 0 1 0 0 0
0 0 f5 0 0 0 0 0
Lo 0 0 @l g 0 0 0]
Case 4: Electrically shorted and magnetically open:
o3=0353,=0, ¢°=0, w°=0 (onx;==h) (6.194)

In this case, the state space variable defined in Eq. (6.183) and the correspond-
ing efficient matrices A° and A™ become

~ ~ T T
U={aa aw D, B, S={6; 6, 4 Ay} (6199

0 1 0 0 =5 0 i 0
-n;, 0 n; 0 O ns, 0 0
0 0 0 d 0 K, 0
A = 0 0 0 0 0 ) 0 B 0 Hi (6196)
-f1 0 A5 0 0 —fISS-fiddy; 000
0 0 0 0 1 0 0 0
0 S 00 —fEES-feds 00
| 0 0 0 f5 O 0 0 0|
0o 1 0 0 0 0 gl
-ny 0 0 mn3 O niy 0 0
0 0 0 0 O 0 K 0
Am — 0 0 0 0 815 0 0 M (6197)
000 s fNEn 00
0 0 0 0 1 0 0 0
0 0 f5 0 0 0 0 0
L™ 5 00 w0 —fiS5 - fnghn O 0]

For the PM-PE-PM sandwich structures, the relevant characteristic equations
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can be obtained similarly.
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Chapter 7 Penny-Shaped Cracks

This chapter applies the formulation presented in the first two chapters to a range of
piezoelectric problems containing penny-shaped cracks. It includes a penny-shaped
crack in an infinite piezoelectric plate, a piezoelectric strip, a fiber embedded in a
matrix, a piezoelectric cylinder with elastic coating, and the fundamental solution
for penny-shaped crack problems.

7.1 Introduction

Over recent years, significant efforts have been made to study fracture behavior of
piezoelectric materials in the presence of cracks [1-3]. Among various crack
problems, a penny-shaped crack in a piezoelectric cylinder is most popular and is
the subject of many reports in the literature [4-10]. Using the Fourier and Hankel
transforms, Narita et al. [4] obtained the stress intensity factor, the total energy
release rate, and the mechanical strain energy release rate for a penny-shaped crack
in a piezoceramic cylinder under mode [ loading. Yang and Lee [5], using the
potential function approach and Hankel transform, and Lin et al. [6], using Fourier
and Hankel transforms, investigated a piezoelectric cylinder with a penny-shaped
crack embedded in an infinite matrix. The field intensity factors (FIFs) for different
loading cases were respectively analyzed in [7-10], and the energy release rate
(ERR) was derived by Eriksson [11]. Yang and Lee [12] investigated the problems
of a penny-shaped crack in a piezoelectric cylinder and in a piezoelectric cylinder
surrounded by an elastic medium. Wang et al. [13] analyzed the problem of a
penny-shaped crack in a piezoelectric medium of finite thickness. Li and Lee [14]
investigated the effects of electrical load on crack growth of penny-shaped
dielectric cracks in a piezoelectric layer. Feng et al. [15] considered the dynamic
fracture behavior of a penny-shaped crack in a piezoelectric layer.

The penny-shaped crack problem can be treated as a limiting case of a sphe-
roidal crack, or directly as a crack with flat surfaces. The spheroidal problem is a
piezoelectric analog of Eshelby’s elastic problem [16]. That approach was taken by
Wang [17], Kogan et al. [7], Huang [18], and Chiang and Weng [19]. The electro-
elastic analysis of a penny-shaped crack in a piezoelectric material is of practical
importance, since it represents an idealization of internal flaws that are inherent in
many piezoelectric materials [20]. The fracture behavior of a penny-shaped crack
embedded in an infinite piezoelectric material was first studied by Kudryavtsev et al.
[21], who gave a special solution of the stresses and displacement fields. Wang [17],
using the Fourier transform method, presented the expressions of the crack opening
displacement, interaction and the stress intensity factors. Chen et al. [22] presented
a three-dimensional (3-D) closed-form solution for a penny-shaped crack in 3-D
piezoelectric ceramic subjected to normal mechanical loading and electrical charges



250 Chapter 7 Penny-Shaped Cracks

on crack faces. Chen and Shioya [9] performed an exact analysis of a penny-shaped
crack in a 3-D piezoelectric ceramic under shear loading over the crack faces.
Huang [18], utilizing the eigenstrain formulation and Cauchy’s residue theorem,
presented a unified explicit expression for the electroelastic fields inside a flat el-
lipsoidal crack. Wang et al. [13] developed a model to treat a penny-shaped crack in
a finite piezoelectric layer subjected to axially symmetric loading. Kogan et al. [7]
derived explicit expressions for the stress intensity factors of a penny-shaped crack
in a piezoelectric material under various remote loading conditions. However, most
of the work has not considered the contribution of electrostatic energy to the crack
driving force, and none of the work has provided complete solutions to the fracture
mechanics of a penny-shaped crack in an infinite piezoelectric material when sub-
jected to axisymmetric loading. Lin et al. [20] extended the same approach to ana-
lyze the electroelastic interaction of a penny-shaped crack in a piezoelectric ceramic
under mode [ loading, but they did not explicitly give a closed-form solution of
the crack driving force as a function of the electrostatic energy. Qin et al. [23] pre-
sented a solution for a penny-shaped crack in a piezoelectric cylinder with elastic
coating. In this chapter we focus on the development presented in [6,13,20,23-25].

7.2 An infinite piezoelectric material with a penny-shaped crack

All formulations in this section are taken from the work of Lin et al. [20]. In their
paper, they consider an infinite piezoelectric ceramic containing a penny-shaped
crack of radius @ under axisymmetric electromechanical loads (Fig. 7.1). For
convenience, a cylindrical coordinate system (7,0,z ) originating at the center of
the crack is used, with the z-axis perpendicular to the crack plane. The piezoelectric
material is assumed to be transversely isotropic with the poling direction parallel to
the z-axis and hexagonal symmetry. It is subjected to the far-field of a normal
stress, 0, = 0., and a uniform electric displacement D, =D, .

The constitutive equations for piezoelectric materials which are transversely
isotropic and poled along the z-axis can be written as [26]

Ogo = Ciolhy +cll%+613uz,z +eyd. (7.1)
O, =Cp3U,, TCp3 MT’ +toqu, . +end. (7.2)
O, =y, 0 %"‘ ..+ ey, (7.3)

0,, =Css(u,, +u,.)+esp, (7.4)

D, =es(u., +u,.)—k,d, (7.5)
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u
D, =e;, (ur,r +Trj ey, , — Ky, (7.6)

The governing equations can then be expressed in terms of displacements and
electric potential as

ur,r u,
C [ur,rr + p _r_;] s, + (g +egu, . +(e; tes)d,. =0 (7.7)

ur,z uz,r ¢,r =0
(cl3 + CSS) ur,rz + ’ + c33uz,zz + CSS uz,rr + r + elS S +7 + 633¢,zz -

(7.8)
ur,z uz,r ¢,r
(e3l +elS) ur,rz +T +e15 uz,rr +T +e33uz,zz _Kll ¢,rr +7 _K33¢,zz = 0
(7.9)

The electric field components may be written in terms of an electric potential

§(:2) as
Er = _¢,r’ Ez = _¢,z (710)

bbb e
[ A B

Fig. 7.1 A penny-shaped crack embedded in an infinite piezoelectric material.

In a vacuum, the constitutive equations (7.5) and (7.6) and the governing
equation (7.9) become

D, =x,E,, D,=x,E (7.11)

¢,,+&+¢ZZ =0 (7.12)
r
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The problem of determining the distribution of stress and electric displacement in
the vicinity of the crack is then equivalent to that of finding the distribution of stress
and electric displacement in the semi-infinite piezoelectric material z >0,
0<r <o, subjected to the following boundary conditions:

Uzr(l",O):O (0<r <), gzz(r,()):() (0<r<a), (713)
u,(r,0)0=0 (a<r <o)
E (r,00=E/(r,0), D,(r,00=D;(r,0) (0<r<a), (7.14)
#(r,0)=0 (a<r<x)

0=(rn2)=0., E(n)=E. (z-) (7.15)

where E; and D are respectively the electric field and electric displacement in
the void inside the crack. The far-field normal stress can be expressed in terms of
E_ as

=)

(o +p)es; — 2055 E
¢ top

o, =0,

. (7.16)
where 0, is a uniform normal stress for a closed-circuit condition with the
potential forced to remain zero.
The solution to the boundary value problem stated above is as follows [20]:
Assume that the solutions u,, u. and ¢ are of the form

2
u, (r,2) =;ZL a, A, (@) exp(~u,az)J (ar)da +a,r (7.17)
J=
2 1
u,(r,z) = ;Z jo ﬂ—Aj (@) exp(—u,a2)Jy(ar)da +b, z (7.18)
= j
2 3 e b]»
#(r,z) = _;Z jo ﬂ—A (@) exp(—p,az)Jy(ar)da—c. z (7.19)
j=1 j

where 4;(a) (j=12,3) are the unknowns to be solved, #; (j=1,2,3) are the

roots of the characteristic equation (2.8), and Jy( ) and J;( ) are the zero and first
order Bessel functions of the first kind, respectively. The real constants a,, b, and
¢, can be obtained by applying far-field loading conditions as

_ 0130, (¢35 =363 ) E,

(=)

2
2ei3 —cg3(eq +6pp)

7.20
_ (e +ep)o, +[2e563 = (6 +epp)es ]E. (7.20)

b

>

2
2cy —ey3(eyy + o)
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The constants a; and b, are

2 2
(e Fes) (e —css) —(c3 +Css)(es3 145 —€5)
J 2 2 2>
(esstt; —cpy Nesspty —es) + (5 +css)ey) + €)1
2
(esspy —epp)a; + (e +0s5)

& tées

(7.21)
b,

J

To determine the coefficients 4;, applying the Fourier transform to Eq. (7.12),
we have

¢ = EJ.: C(a)sinh(az)Jy(ar)da  (0<r<a) (7.22)
n

[TPRT)

where the superscript “c”stands for the variable associated with the void inside the
crack, and C(«) is unknown. Thus, the boundary conditions (7.13), and (7.14) yield
the following relations between unknown functions:

£A1(a) +QA2(0!)+£A3(0‘) =0,
7 H "

1 2 3
(7.23)
D @)+ 2 )+ B 4y =0
1 Hy s
where
fi=essla;u; +D—esh,  (j=1,2,3) (7.24)

Making use of the mixed boundary conditions (7.13),3, we have

T

ranD(a)Jo (ar)da=—-—0o, (0<r<a)),
. 2 (7.25)
jo D(a)J,(ar)da =0 (a<r<o)
where
_A(a)  4(a)  4(a) _ :
ey == =" ~"a F‘Z:;gjdp
! (7.26)

dy= (b f5-by13), dy =, (b3, =0 fy), dy=(bf,—b, 1),
g =cxa;—cztepb,  (j=123)

It is noted from Eq. (7.26) that D(¢) is the only unknown in Eq. (7.25). The set of

dual integral (7.25) may be obtained by using a new function % (&) defined by

ao,
F

D(a)=- jolsv(g)sin(aag)dg (7.27)



254 Chapter 7 Penny-Shaped Cracks

Having satisfied Eq. (7.25) for a <r <<, the remaining condition for 0<r<a
leads to an Able integral equation for #(&) . The solution for ¥(&) is expressed
by

Y()=¢ (7.28)

The displacements and electric potential near the crack border are then obtained as

u :Kl_ﬁia‘/d {(cos 6, +,u] sin 0)/ +cos€1}l/2,
=1

" F
3
>
j=1

/2

J
K 1/2
u = 1};/2 {(cos 6, +,u sin 0) —cosﬁl: s (7.29)

d,
J

¢:K1\/Ei ’ {(cos 6, + 117 sin 0) 2—00591}1/2
g H;

where the polar coordinates »; and @, are defined as

= {(r—at)2 +zz}”2, 0, = tanl( j (7.30)

r—a
Substituting Eq. (7.29) into the constitutive equations (7.1)-(7.6), we obtain the
singular parts of the stress and electric displacements in the neighborhood of the
crack border as

R __K N c
O, = ZF[Zm ](91)7 O, _2F\/Z ;g]d]R/(Hl)a (731)

T 2F\/7 Z

I/R(e)

D, 2F\/T m LR, . \ﬁzh,d,R,(H) (7:32)

j=1

where
h; =eya; +e;3—Kky3b,
m; =cpa; =c+eyb;, (j=1,2,3) (7.33)
n, :els(,ufaj+1)+lc”bj

The stress intensity factor K for the crack model is obtained as
. 2
K, =lim o (r,002(r—a) =0 _a (7.34)
r—a* s

The electric displacement intensity factor K is given by
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. 1
K, = lim D,(r,02(r—a) = [th}.d j]KI (7.35)
r—a Jj=1

7.3 A penny-shaped crack in a piezoelectric strip

In this section we present a brief review of the results given in [13]. Consider a
piezoelectric layer with a penny-shaped crack of radius @ as shown in Fig. 7.2.

I

h

Fig. 7.2 A piezoelectric strip with a penny-shaped crack.

For the sake of convenience, Egs. (7.17)-(7.19) are rewritten in the form
U= J.OX) F(a)(4,J,(ar), AJ,(ar), A (ar))e"da (7.36)

where U={u,, u,, ¢} T, F(¢) is an unknown function to be determined, uand 4; are
eigenvalue and eigenvector respectively of Eq. (2.6) which is rewritten as follows:

<7 _cssﬂz (c3tess)u (e +es)u 4
(e3+ess)u 033:“2 —Css e33,u2 —es (Y4 =0 (7.37)
(€5, +es)u 633/12 —€s5 K- K33ﬂ2 4y

In terms of these eigenvalues and eigenvectors, a general expression for the dis-
placements and electric potential can be written as

U= j:[G(ar)][A(z)] (Fida (7.38)

where

appz
kg€

A4ﬂea”ﬂz}, (7.39)
[F1={F,}" (k=13  p=123,45,6)

[G(ar)]=diag[J,(ar), J(ar), J\(ar)], [A(2)]= [
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Substituting Eq. (7.38) into the constitutive equations (7.2), (7.4), and (7.6) yields

where

O-FZ
{T(r,z2)} =10, = Io a[G(ar)]|[Bl{F}da (7.40)
DZ
Blﬂ (2)= (CSS:uﬁAlﬁ' - CSSA3ﬂ - €15A4ﬁ)eaﬂﬂ2’
Byp(2) = (i +Cxaptpdyp +esspip Ay e, (7.41)

By 5(2) = (e5,4i5 + 3115 A — Ky ttp Ay )™

Noting that superscripts “( I )”and “(II )’represent the related variables associated

with the materials occupying the lower and upper parts (see Fig. 7.2) and assuming
that {9(r)} represents { 71 (r, 20 =0} or { 7D (r,z""" =0)}, the boundary condi-

tions can be rewritten as

1O, z=-0") =V (),

7.42
{0,z =)y =1 ()} (742
The mixed boundary conditions along the crack line are
t(r)} = {0
=10y (r<a), (43)

Urz=0={U"r,z=0} (>a)

The unknown vector {F} can be expressed in terms of {(r)}, (i=0, 1,Il) by
utilizing the inverse Hankel transform to Eq. (7.40) as

0) (I
{F(I)}:[Ca)}{l" (a)}’ {F(H)}:[C(H)Hr (a)} (7.44)

r(l)(a) ) (@)

where 7"(«), (i =0,1,1) is the Hankel transform of {r(r)}, and

BO) T' BT
= My — 7.45
7 {B(—h“’)} e {B(O)} (149

Substituting Eq. (7.44) into Eq. (7.38), we obtain

. ©
"= 6@ Dé“]{r (“)}da,

) (7.46)

o (I
W =] 16D D§“>]{F (a)}da

1—'(0) (a)
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where
[Dl(l) D;I)] — [A(I)(y)][c(l)], [Dl(“) DEH)] — [A(H)(y)][c(ll)] (7.47)

are two 4x4 matrices.
Making use of the continuity condition (7.43), we have

[, Gam@Ur "y + MU Oy + IV HE PDda =0 (r>a)  (7.48)
where
[L(e)]=[D"(0)], [M(e)]=[D"(0)]-[DS"(0)], [N(a)]=-ID{"(0)]

(7.49)

From Eq. (7.47), the solution of /(&) can be expressed in terms of an unknown
vector {d(r)}={d, (r).d, (r).d,(r)}" as

duer(ar)
(MULOy =21 - IN Y+ 02 [0 d, Ty p(ar) e (750)
d¢J1/2(ar)

Define [K(a)]=[M ()] —[M(>)]"", then it follows from Eq. (7.50) that

d, (x)J;3,,(ax)
(rO) ==y @} +(ME)] +K@Da' [ 11 d, ()7, 2 (@x)
d;(x)J,,(ax)
(7.51)
where
(7, ()] =[M ()] ' [LHT P (@)} +[M ()] [N ()} (7.52)

The solution of {d(r)} can be obtained by substituting the crack surface condition
(7.43) into Eq. (7.51):

d, (x)J5,,(ax)
M [ &[G ['1d, (0J,(ax) dx da
dy(x)J,)5(ax)
d, (x)J5,(ax)

+[ | @ 1GE@K @], d, ()2 (@) (dr da=0,(r)  (r<a) (753)
dy(x)J,)5(ax)
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where
o, (r) = {t" ()} + j [G(ari{l,(a)}da (7.54)

Equation (7.53) can be used for solving {d(r)} numerically. Once {d} is solved
from Eq. (7.53), the stress and electric displacement intensity factors can be calcu-
lated using the following equation:

Ky =20 =)t} - = —\/%[M(oon‘l {d(a)} (7.55)

The displacement and electric potential jumps between the upper and lower faces of
the crack can be calculated from (7.46) and (7.50) as

durJ3/2(ar)
AU = U 0~ U003 == [ "Gy d,, Iy (ar) jdrda
d¢J1/2(0”’)
(7.56)
Integration of Eq. (7.56) with respect to ¢ yields
d, (Nr/x
2 ra 1
AU} = —\/;J d, (x)/x ?dx (7.57)
! X" —r
d,(x)/\x

7.4 A fiber with a penny-shaped crack embedded in a matrix

This section focuses on problems of a piezoelectric cylindrical fiber with a
penny-shaped crack embedded in a matrix. It is a brief summary of the development
presented in [6]. Consider a piezoelectric fiber of infinite length with radius b, em-
bedded in an elastic matrix having Young’s modulus £ and Poisson’s ratio v (see
Fig. 7.3). The fiber contains a penny-shaped crack whose center is located at the
origin of the fiber (Fig. 7.3), and is subjected to the normal stress, 0., =o.,, and
electric field, E, =E,, at infinity.

The constitutive and governing equations for both piezoelectric fiber and void
inside the crack are given by Eqs. (7.1)-(7.12). The related field equations for an

elastic matrix are
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Matrix

Piezoelectric
fiber

Fig. 7.3 A piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix.

z,z 2,22

E E
ol =G+ !, +A(”—’+u£ ], oby =P, + QG+ )y
r r

. (7.58)
ot =;{”r +uf,.J+(2G+/1)u£Z, of =G(uf, +uf,)
r
uE uE
(2G+/1)(uf,, L ——’2J+Gufﬂ +(G+ Ak, =0,
r
(7.59)

E E
(G+/1)[uE +ur’2]+(2G+/1)uE +G[u£ +”Z”J=o
r

r,rz 2,22 zZ,rr
r

where the superscript “E “represents the corresponding variable associated with the
elastic matrix, the constant 2G=E/(1+p) is the modulus of rigidity, and
A=2Gv/(1-2v).

Due to the symmetry of the problem about the plane of z=0, we consider the
semi-infinite region z >0, 0<r <oo, 0<O <27, The related boundary conditions
can be expressed in the form

0..(r,0)=0 (0<r<b), c(r,0)=0 (b<r<w),
0,.(#0)=0 (0<r<a), u(r,00=0 (a<r<b), (7.60)
ul (r,00=0 (b<r<o)

E,(r.0)= ES(r,0), D.(r,0)=Di(r,0) (0<r<a),

$(r,0)=0 (a<r<b) (7.61)
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u,(b,z)=u’(b,z), u.(b,z)=u’(b,z),
0,(b,2)=0,.(b,2), 0,.(b,2)=0%(b,2), (7.62)
D.(b,z)=0

O'ZZ(V,Z)ZO'OQ, Ez(rﬂz):Eoo (0<7’<b,2—)00),

oE(rz)=cF  (b<r<o, z—o) (7.63)
where
o, =0,-e,E,_, of=co._+(ce—e)E.,
o = QG+ D[2(G+A)—¢ —¢p] - 244 —¢y3)
L u2(GHA) - —ep - 2e5(A—cy) (7.64)

N 2¢p565, o = 2ey,
2G+A)—¢—c,  ° 2AG+A)—¢,—cpy

€ =és

Following the procedure described in Section 7.2, the solutions of u, u.,

E E -
@, u, ,and u; can be assumed in the form

3 [s's)
0,22 =2 3 [, A (@)exp(-p az) (@)
=1
+ Zz}Bj ()], (@iar)cos(az)lda +a,r (7.65)
0= 23 [ e (@) exp(-aa2), (@)
meS !

1 , .
+?Bj () (uiar)sin(az)lda +b, .z (7.66)

J

3 e b.
9.2 =23 [ - (@)exp(-,az) ] (ar)
T H;

b,
+ij (o) (jar)sin(az)lda —c. 2 (7.67)

uf () =2 [ Ky (@) By (@) + 40 -0)Ky (@)
+arK,(ar))Bs(a)}cos(az)da +a,b+d_ (r—b) (7.68)

uE(rz) =2 [, [=Ky(@r)By(@) + arK (ar)By(@)Isin(@z)da +e.z  (7.69)
T

where 4; and B;are the unknowns to be solved, /y( ) and /;( ) are the zero and first
order modified Bessel functions of the first kind, and Ky( ), K,( ), and K,( ) are the
zero, first and second order modified Bessel functions of the second kind, respec-
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tively. The real constants a.,b.,c..d.., ande, are determined from far-field

loading conditions. In the present problem, these constants are obtained as

(e = Ao l(c; = Deys — x5 1E.,

a,=d_= ,
2¢;5(c;3 = A) —ex3(eqy +¢p —24-2G)
b o—e — —(c), + ¢, —2A-2G)(0,, +e;E_ ) +2c565,E, (7.70)
2¢;5(c;3 = A) —e5(eqy +¢, =24 -2G)
c,=FE

o o

The constants A, a;, andb; are defined in Section 7.2, and 4’ =1/u;,
by==b; and d=-a, y? . The boundary conditions (7.60) and (7.61) lead again
t0 Eq. (7.23).

Application of the mixed boundary conditions in Eq. (7.60) gives rise to a pair
of dual integral equations:

3
. . , o n
jo aFD(a)J(ar)da _,Z:‘ jo aguB (@)l (anda=-—0. (0<r<a)

j:D(a)JO(ar)da =0  (a<r<b)
(7.71)

where D(«) and g; are defined in Eq. (7.26). The solution of integral equation (7.71)
may be obtained by using a new function ¥(&), defined by

D(a) = —%az j(: W (&)sin(aad)ds (7.72)

The function #(&) is governed by the following Fredholm integral equation of
the second kind:

P(&)+ [, PKEmdn=¢ (7.73)

The kernel function K(&,77) is
K(&n)= Zg,ﬂ, [ E (@msinh(u; aé)da (7.74)
where the functions E;(a,77) (j=1,2,3) are given by

D,
E(a=3 2@ 55 (175)

i=1 |C|
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with

_cl,l (@) ¢,(a) 61,3(05) 61,4(0‘) Cl,s(a)_
(@) oy(a) op(@) cua) os(a)
C=|¢,(a) &%) (@) c3(a) cyy(a) Cs,s(a)
c(@) cun(@) cus(a) cuq(a) cps(a)

_‘75,1(05) 05’2(05) c5,3(a) 05,4(05) 05’5(0()_

o (a@)=d L (uabla), c, (a)=pul(uabla),

e (@) =-m;ual,(W;ab/ a) +§(c12 -l (yjabla), (j=1,2,3)

oy ()=—f1,(@abla), c; (a)=-nI(t;abla)
4(@)=K(abla), ¢y 4(@)=Ky(ab/a),
¢ 4(a) =-2GlaK(ab/ a)] +£K1(ab/a),
cy4(@)=2GK (ab/a), cs, (Z) =0

cs(@)=—4(1 —U){Ko(ab/a) +%K1 (ab/a)} +"‘7bzr<l (abla),

ab
e 5(a)= —71{0 (abla), c55(a)=0,

a’b

2,2
o 5(a) =27GbH4—4u+a—zjKO(ab/a) +(3 —21))067bK1 (ab/a):l,

Cus(@) = 2G[%bl(o(ab/a) +(2-20)K, (ab/a)}

3 ajdj , ] ,
Dy(a.n) =Y ~LK,(1}ab/ a)sinh(u;an),

=1 Hj
3.d, aa ma , ) ,

Dy (a,n) =Y —5| (1 —¢))————— |Ko(#;ab/ a)sinh(x;an),

j=t M b

: dj ' . '
Dy(a,n) =Y — K, (ujab/ a)sinh(uan)

j=1 7

: fjdj ' : '
Dy(a,n) =Y =K, (ujab/ a)ysinh(uem),

=t ~j

3 n/.dj , ) .
Ds(at,n) = ) —LK, (b | a)sinh(uan)

= Hj

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)
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m; =ca; — ¢y +eb;, 782
nj=e15(ajuf+l)+Kllbj '

|C | is the determinant of the square matrix C and Q; () are the co-factors of the
elements c; (o). Once the solution ¥(&) is obtained, the stress intensity factor K;

for the exact crack model can be calculated by
K, = lim 2(r —a)}'"?o_(r,0) = zam\/;‘[’(l) (7.83)
r—a* T
The electric displacement intensity factor K, can also be calculated by
13
. 1/2
Kp = lim {2(r ~a)} Dz<r,0)=(;;hjdeKl (7.84)

where /; =e5a; +e55 = Ky3b;.

7.5 Fundamental solution for penny-shaped crack problem

The fundamental solution presented in [24] for a penny-shaped crack subjected to a
point load is reviewed in this section.

7.5.1 Potential approach

Consider a transversely isotropic piezoelectric material weakened by a
penny-shaped crack subjected to a pair of point forces P and a pair of point surface
charge Q as shown in Fig. 7.4. The linear constitutive relations used in this problem
are defined as

Oy =Cl, +CpV, +C3W, + €510, O, =Cpll +0V, +C3W, +eyd,

O, =CaU, +C3v , +epw, tepd., o =css(u, +w,)+esd,, (7.85)

0, =css(v.+w,)+esd,, O = oo, +v.)

D, =esu,+w)-x,9,, D ,=es(v.+w,)-k,4,,

7.86
Dz = e}l(u,x + V,y) + 633W,z - K33¢,z ( )

Introducing a new function U=u+iv, the governing equation (1.10) can be re-
written as

1 1 _
5(011 +¢e) VU + 55U, + E(CH - 066)A2U (o3 tess)Aw, +(es+ey)g, =0

(7.87)
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Fig. 7.4 A penny-shaped crack subjected to point loads.
1 _ _
5(013 +Css (AU + AU)  +essVwregw . +esVtesd . =0 (7.88)
1 _ _
E(e15 te AU +AU)  +esVwtepw  —kVP—Kpp.. =0 (7.89)
where V =0°/0x*+0°/0y*, A=0/0x+i0/0y and an overbar indicates the

complex conjugate value. The general solution to Eqs. (7.87)-(7.89) can be written
in the following form:

3 . 3 oF, 3 oF,
U=A| D F,+iF, |, w:Zaﬂa—, ¢=Zaﬂa— (7.90)
= = Zj = Zj
where
2 4 2 4
O Ky T CssKs . = C1€5 — Myl + Cssepzfd

>

(g = mo i) (g = mo i) (7.91)
my =Ky, (C5 +ss) +es(es +e51), my =ky3(c3 +Cs5) +eps(es +e3)),

n= o dp=

_ 2 _
My = ¢ K3+ Cssky + (€5 +€31)7, My =¢p4e33 +Css€p5 — (€5 +€31)(¢3 + Cs5)

and z, =gz, 1 =cg/cy, and g (i=1,2,3) are the roots of Eq. (2.8).

Substitution of Eq. (7.90) into Egs. (7.85) and (7.86) yields the following
expressions for stresses and electric displacements:
3 O2F
o) = 22[666 O T Okt 631,“;'0‘;'2]872[’

i=1

(7.92)

3 2
O°F,
o, = 2066/12(171 +F, + F, +iF)), o, = 2711' azzl

i=1 i
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3 OF, OF,
.= A{ [ess(p; +a) + €5y |- +ipyess— ¢,
= 0z, 0z,
3
OF, oF,
D= A{Z[EIS(/“[ ) = K O | ipyes }, (7.93)
i=1 az, 8Z4
3 2
0°F.
Dz = 2721 :

where o,=0,  tO,,

and 71 = 703 T O3 @ T e i, Yy = €3 T e iy — Kyl

0,=0,-0, +2i0,,7.=0,_+ic, and D=D, +iD,

7.5.2 Solution for crack problem

Having obtained general expression of stresses and electric displacements in the
potential theory, we consider now a flat crack S in a piezoelectric material, with
arbitrary pressure p and surface charge ¢ applied symmetrically to the upper and
lower crack faces. The boundary conditions are

o.=-p(xy), D ,=q(xy), w=¢=0 ((x,»,0)¢59),

=0 (o< (x,y)<®) (7.94)

The condition can be satisfied by expressing F; in terms of the following two
harmonic functions G and H:

F(z)=cG(z)+d.H(z) (i=1,23), Fy(z)=0 (7.95)

To satisfy the third condition in Eq. (7.94),
3 3
ZQ[‘M(M’ +ay)+esa,]=0, Zd;[c44(ﬂ; +a)+esa,]=0  (7.96)
i=1 i=1

The two functions G and H are defined as

N (1') N
Gp0.0=[[ S Hewon=[[qornds  aom

where @ (N) and @ (N) represent the crack face displacement w and electric
potential ¢ at point N(r,,0), respectively. R(M,N) is the distance between the points
M (p,60,z) and N(r,,0). Making use of the property of the potential of a simple
layer, the condition w=¢=0, (x,»,0)¢S is already identically satisfied.

Moreover, the following relations hold true inside the crack:

8 —aro—2muy0, L —-2n0—2mpen0) (799

0z z=0 Z |20
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Making use of Egs. (7.90), (7.95), and (7.98), we obtain the following relations:
3 3 3 1
Zciail = Zdz a, =0, Zciaiz =0, Zdi“n = Ton (7.99)
i1 il il n

¢; and d; are then solved from Egs. (7.96) and (7.99) as follows:

G 1 d €5/ Cy | M Hy
¢ p=LAN-Tp Adyp=[A1 0 ()= |y oy | (7100
c 0 d -1 o, O, O

Taking consideration of the first condition in Eq. (7.94), the following
integro-differential equations are obtained:

) _oN) _PN)

p(No)—_glAIj R(a])v N) '”SR(N ,N) > (N, eS) (7.101)
o) o) 0 '

o) =g ] 7 - [f s

where
3 3 3 3
& =_Zci71i’ &> =_Zdi71i’ &= Zci72i! 84 = Zdi72i (7.102)
i=1 i=1 i=1 i=1

Equation (7.101) can be rewritten as

84P(Ny) —g,q9(Ny) =— zA HSR(QJ)\EN;,) ,
0>
(N, €S) (7.103)
D(N
81P(Ny)—g3q(Ny) =~ 2A J.J‘SR(]\E ])\/)
0>

where 4 =1/[41°(g,2, - 2,23)]-

7.5.3 Fundamental solution for penny-shaped crack problem

For the case of a penny-shaped crack, the solutions to Eq. (7.103) are obtained as

w(P:Q):_I J —tan~ ][77j[&l’(ﬂoﬁo)_gﬂ(po’eo)]Podpodeo,
(7.104)

CD(,D,H)_—I J—tan—l(77j[g]p(po,go)—g3q(,00,¢90)]p0d,00d30
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where a is the radius of the crack and
R=[p>+pi =2pp, cos(@— 0172, n=[(a> - p>)a* - p3)I* /a (1.105)

To obtain the whole elastoelectric field, substitution of Eq. (7.104) into (7.97) gives

2A f2n pa
G(p,0,z2) :7-‘-0 J.o K(p,0,z, py,6,)g4P(Py,6y) — 2:9(Py,6,)] 00y d 6,

2 4 e2n ca (7.106)
H(p,0,z)= 7_[0 .[0 K(p,0,z,py,0)g p(py>0) — &39(0,0)]pydpyd 6,
where the Green’s function K reads
2% ra 1 2 _p2\U2(,2 — H2)1/2 drd
KN =" 1| 2D @ ) rdrdy g
0 OR(NaNO) aR(NaNO) R(MaN)

where M =M(p,0,z), N = N(r,y,0), Ny = Ny(py,6,,0).

If the penny-shaped crack is subjected to a pair of normal point forces P in op-
posite directions at the points (0;,6,,0%), o, <a and a pair of point charges O
acting at the points (p,,6,,0%), p, <a as shown in Fig. 7.4. Making use of the
property of the §-function, the fundamental solution for the elastoelectric field is
obtained as

3
U =44 [ /i (z)P+ B fi2(z)0),

i=1

3
W= 44N @[ for (2P + B fon (2O (7.108)

i=1

3
$=—-44) an[ B fo(z)P+ B fr(2)0]

i=1

3

o = 8AZ[(066 =)+ O30y + e 14,0, 11 By f31(2) P + B f3(2,) 0],
il

3 (7.109)
0, = 8A066Z[ﬂi1f41(zi)P+ﬂi2f42 (z)0]

i=1

3
0., = 4142 1l B f51(z) P+ B f3(2,) 0],

i=1

3
T, = 4142[644 (4 + ) + s, 1 B f51(2) P+ By /5,(2,)0]

i=1

(7.110)
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3
D= 4‘42[915(,“;' + ;) = K110 [ B f51(2) P+ Bia 5, (2)0],
im1
s (7.111)
D, = 4Azy2i[ﬂi1f31(Zi)P+ﬂi2f32(Zi)Q]

i=1

1)z (A ~ S;
fii(z)Zt:i{?ital’l 1[E]}—Btan 1(_(122—a2)1/2j’

f2i(2) = R%tan‘ [h—] (7.112)
z pr-1 2
ﬁi(z)zﬁml[?J z(R2+h2){12 2 Rﬁ}

e 5 R -2 ,
Jau(2)= g %— pl_e tan~! Si _ 2(3_1 z?) tan-! h
t\t 52 (122 _a2)1/2 tl_le_g R

N B(122 _aZ)l/ZpieiH,- Zhi ti pZeZiH
WS- ppe0] R+ T R (BB~
h h 0 g
fulz) = —tan‘l L S D Ca S
R ) R+m|B-1 R

l

where

., (7.113
pz)} (7.113)

B =cgs—d;gs, Bo=dg —cg, t=pe?—pel,
Ei _(a - ppie —i(6— 6))1/2 hi :(a2 _112)1/2(a2 _pl_2)1/2/a’
2 _ H2)1/2
R =[p* +p? —2pp;cos(0-06,)+2]"2, B=%,
Si (7.114)

B = lp+ @ + 212 (o) + 2177,

B = lp+ @ + 217 4 {(p-a) + 2]

7.6 A penny-shaped crack in a piezoelectric cylinder

In this section, the developments in [25] for the response of elastic stress and elec-
tric displacement in a long piezoelectric cylinder with a centered pennyshaped crack
are presented. The long piezoelectric cylinder is subjected to two types of boundary
conditions: (a) the piezoelectric cylinder is inserted in a smooth rigid bore of radius
b; (b) the surface of the piezoelectric cylinder is stress and electric charge free.
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Based on the potential function approach and Hankel transform, a system of dual
integral equations is obtained, and then reduced to a Fredholm integral equation of
the second kind. Numerical results of various field intensity factors for PZT-6B
cylinder are obtained to show the effect of the ratio a/b on the fracture behavior
of the cracked piezoelectric cylinder (« is the radius of the crack and b is the radius
of the PZT-6B cylinder).

7.6.1 Problem statement and basic equation

Consider a piezoelectric cylinder of radius b containing a centered penny-shaped
crack of radius a under axisymmetric electromechanical loads (Fig. 7.5). For con-
venience, a cylindrical coordinate system (7,6,z) originating at the center of the
crack is used, with the z-axis along the axis of symmetry of the cylinder. The cylin-
der is assumed to be a transversely isotropic piezoelectric material with the poling
direction parallel to the z-axis. It is subjected to the far-field of a normal
stress, o, = &(r) and a normal electric displacement, D, = D(r).

2a
I T
“f‘,f oS ~,

X

Fig. 7.5 Penny-shaped crack in a piezoelectric cylinder.

The constitutive equations are defined in Egs. (7.1)-(7.6). The equilibrium equa-
tion and the equation of electrostatics for this problem are given as
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O r +Grz,z
r
vo. +22-9 (7.115)
O-rz,r O-zz,z ” - .
r—()
I

In the derivation of the analytic solution, the following potential functions are
introduced [5,27]:

oD oD oD
=, =k —, =—k,— 7.116
u, o u, P ¢ 275, ( )

where @(7,z) is the potential function, and k, and k, are unknown constants to be
determined.
Substituting Eq. (7.116) into Egs. (7.1)-(7.6), and then into Eq. (7.115), we have

@, +l<pv, +n®_ =0 (7.117)

r
where

_Cua + (13 + ek — (€5, +e5)k,

S

Czk —essky _ ek + K33k,

- (7.118)
Cuky oy tey —esk,  esk +es+ey ik,

Obviously, Eq. (7.118) leads to Eq. (2.8). According to Eq. (2.8) and the princi-
ple of superposition, the governing equation (7.117) becomes

i[dﬁ +— (Dm+¢ } 0

1=

or
S(00, 100, < 0D,
Cn;(arz - o +ZZ::, Css+k1i(513+css)+k2i(ezl+els)]a7 =0,
3 0D, 18@.) aa}
ki, ¢y +ess ek, || —L+——=L |+| ek, + ek, |—p=0, (7.119
;{[044 1i T63 T Cs5 T €5 2’][81”2 - or [033 1i T 633 21] 522 ( )
: 00, 100,
Z{[615k1i+631+615 dy ky; ](8 5 "’; or j +essky — d33k21] } 0
i1

where z; :z/\/nT.:,uiz, 4; are the roots of Eq. (2.8) and @;(r,z) (i=1,2,3)

are the corresponding potential functions. The displacement and electric potential
equations are then in the form
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3.0, 300, 3. 0.
=) — u, =) ki—, ¢=-) ky— 120
=2 Z} o 972 (7.120)

i=l1 r

where kj; and ky; (i =1,2,3) are determined from Eq. (7.118).

Following the procedure presented in [27], we take the solution of Eq. (7.119) in
the form

o= [A 1, [ff jcos(éz)+B[<¢)exp<—§uiz)Jo(ér)}d§ (7.121)

where 4.(&), B;(&), (i=1,2,3) are the unknown functions to be determined.

Then we have expressions of the components of displacement, stress and elec-
tric displacement in the following form:

3
() =2 k[, A, [‘5 ]sm(éz)d&
Z us [ | BOI(Enedg+a(r)z (7.122)
u,(r,z) = Z j A(f)f[‘f jCOS(e‘Z)di Z [, BI(Ereeds (7123)
3 &r
Hr2) =2 ko] A(ﬁ)l( Jsm(&)dé
# 2k [ BEM (e 47dg =)z (7.124)
o. =—Z L j £4 (5)1[ jcos(éz)df
+ ZF.,-J: EB/(§)Jy(ér)edE +2(r) (7.125)
: r &
=2 5 j &4 (f)l[ jcos(fz)df
CIZZ =, 4 <§)1[ ]oos(éz)de:
+ZF5,- [, $B.(&Ty(eresucds

p— 3 [es]
g 2[, e enesas (7.126)
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3 N 3 _
7. =2 AN s D [ 28, Ene s
(1.127)
D, =—Z ) enn, (‘f jcos(fz)dé
Y| L EB(E,(Ere g +d(r) (7.128)
i=1

b, =—Z 4’f $4,(O1, (‘f js1n(§Z)d§+ZF4,f EB,(E)J,(Er)edg

(7.129)
where
= (C33ky; —essky )1 — i35 By = (es3hy; + dyshy ) 1if — e,
2% [544(1+k1,) elSkZl]ILll’ 4 = [515(1+k1i)+d11k2i]ﬂw (7.130)
¢+
Fy; = (cysky; —es ko) 7 _%
aor) = dy;G(r) + e D(r) b= c3D(r) e 5(r) ,
Cyydys + e c33ds3 + e (7.131)

c(r)=&(r), d(r)=D(r)

7.6.2 Derivation of integral equations and their solution

In the derivation, we consider separately two sets of boundary conditions.

Case 1: In the first case it is assumed that the piezoelectric cylindrical surface is
free from shear and is supported in such a way that the radial component of the dis-
placement vector vanishes on the surface. Such a situation would arise physically if
the piezoelectric cylinder was embedded in a rigid cylindrical hollow (of exactly the
same radius) and was then deformed by the application of a known stress and an
electric displacement at the end of the piezoelectric cylinder. The problem of deter-
mining the distribution of stress and electric displacement in the vicinity of the
crack is equivalent to that of finding the distribution of stress and electric displace-
ment in the semi-infinite cylinder z > 0,0 <7 <a ,when its plane boundary z =0
is subjected to the condition:

o,(r,00=0, D (r,0t)=D_(r,07), E.(r,0t)=E (r,0") (0<r<a),
u (r,00=0, ¢r,0=0 (a<r<b), (7.132)
o.(r,00=0 (0<r<b)
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and its curved boundary r = b is subjected to the conditions:
u,(b,z)=0, o,.(b,z)=0, D,(b,z)=0 (7.133)

From the boundary conditions (7.132) and (7.133), and making use of the Fou-
rier inversion theorem and the Hankel inversion theorem, we find that

A1(§)— ZN (£) (&), 4, (5)—@ N, (6)12:(S),
= (7.134)

Z
4=~ ( 5 Z () f5(E)

B(&)=M,B,(S), B,(5)=M,B,(S), B;()=M;B/() (7.135)

in which
M, =1, M,= Fykoys 15 — Fsky 4 . M, = Fakypy = Fykoy (7.136)
Fykypt, = Fyykys 1y Fyskoy 1, = Fiykeys

nB,(n7)J,(nb) 17° B, (11)J, (17b)

Si&== f e agr U L©O=1 j e

i +g nu+g (7.137)

o 215’ J,(nb ’

f31~(§)=— n°B, (1) J, (1) |

w0 e

A) = [h12 (E)53(8) = gy ()i (éﬁ)] hy (8)+ [h31 (y3(8) = hy ($)hss (f)] hy, (&)
+[hll(§)h32(§)_h31(§)h12(§)]h23(§) (7.138)

N (&) =[3(E) s (§) = by (O3 (£)] &3 + [a ()53 (§) = i3 (§)hsy (8)] €5
Iy (E)35 (&) = oy ()55(£)] &1 (7.139)

Ny() = [hn(§)h23(§)_hzl(f)hm(@]&i +[h]3(§)h31(§)—hl1(§)h33(§)]g2i
[y ()33 (8) = Py ()3 ()] &1 (7.140)

N3 (&) = [Ia () (§) = Iy ()y (§)] &5 + [ ()33 (§) = iy () ()] &5
+[h22(§)h31(66)_}121(5)}%2(5)]&1' (7.141)

with
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h(&)= ‘“1(5’)} gu=FuM,, (&)= 3!1(5’)]
w2 2
&b

i

i i i

(7.142)

8y =M, h3l(§):;[[ ja &y =My,

From Eqgs. (7.132), 4, we can obtain a system of dual integral equations:

fg{ “1( jA(éf) ”1(&}1(5) '31(&}1(5)}@
w3 w3

2 2 3 3

+[ ) E[MFy+ My Fy + MSF JB(E),(ErdE = —2(r) (0<r<a) (7.143)
[ [Mikys, + Mokos, + Mok 1Bi(E)J,(6r)dE =0 (a<r<b) (7.144)

Thess equations can be solved by using the function ¥ (), defined by

B,(&)= j :l//(a)sin(.fa)da (7.145)

where w(0)=0.
Using solutions of the following integrals:

u

® s -
J sin(sz)e *“dz = ———, I cos(sz)edz =———,
0 s2+u? Jo s2 +u?

t 7l (fr) s1nh(§t) o J (ru)sm(ut) sinh(st)KO(rs)
I 02 _p I s

ERwE (t<r)

J- =J,(ru) sin(ut)du _ sinh(st)K, (rs)
0 s

s2 +u?

(t<r)

J- > ul| (ru) sm(ut)

T =sinh(sH)K,(rs) (t<r)
s?+u

J- o u?J, (ru) sin(ut)
0

i u =—s-sinh(st)K,(rs) (1<)
s2 +u

[ :Mdu = s-sinh(s))K, (rs) (¢ <r)

s2 +u?
as well as the solution

f(0=

2sinta ij‘t ug(u)

ado@ _uz)liadu (a<t<b)

of the integral equation



7.6 A penny-shaped crack in a piezoelectric cylinder 275

Im S @)

dr = g(x O<a<l, a<x<b
e A )

we can obtain a Fredholm integral equation of the second kind in the form

a rc(r) dr

a 2
L(a, p)dp = :
v+ [ e pip=—=f = (7.146)
where
1 B (b
Lia,pB) = =— 1), —N; h
@)= o,Z‘ﬂ,J" A(é‘) [N,j;ﬂl (Ssin (ﬂ] (ﬂj :

(7.147)

Case 2: In the second case we assume that the piezoelectric cylindrical surface
is stress free. The conditions (7.132) remain the same, and the boundary conditions
(7.133) are replaced by the following conditions:

o, (b,2)=0, 0,(b,z)=0, D,(b,z)=0 (z20) (7.148)
Performing a procedure similar to that in Case 1, we have

4(5) = A(lg) DN i (E) + B /o () + M (E) ()]

3

4,(5) = A(f)Z[Nz,-(é?)fii(éﬂ%;(f)ﬁ;(§)+%;(§)/‘3;(§)], (7.149)
i=1

3

4(5) = A@)Z[Ng,-(f)ﬁ,«(s‘%I%i(s“)fzi(f)Jrsz(f)faf(é)]
i=1

in which

N, (&)= [hsz (&)= hyy (é:)][hu (£)g2 — My (éz)gy]
+ [h53(§) _h43(‘§)][h22((§)g3i —hy, (g)gZiL

Ri(©)= é[hﬂ (&)1 (8) = Iy () (f)] &si» (7.150)

Wi (&) = 5[ Iy (E)y, (§) — h22(§)h33(§)]g41
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Ny(&)= [h53 (5)—h43(§)][h31(§)g2i - 21(§)g3i]

+ [h51(§) - h41(§)][h23 (£)gs —hss (§)g2i]’

Bi(&) = é[hzl(ég)hw (&)= ho3 ()hsy ()] g1 (7.151)

W, (&) = é[hﬁ (&3 (£) = Iy (g (£)] 2

Ny (&) = [h51(‘:z)_h41 (5)][}%2 (©)gw _hzz(‘:z)gy]
+ [hsz(f) —h42(§)][h21(§)g3,- —hy (f)gzi]’

P(&) = é[hn(f)hﬂ ()= Iy (O ()] g5 (7.152)

W (&) = é[hn (&)1 ()~ oy (D) ()] 24

A(E) = {[~h53 (&) + g ()] iy (€) +[ sy (£) = By () 3 ()} oy (£)
+ {[h53 ) _h43(§)]h31(§) + [_h51(§) +hy, (éﬁ)]hﬁ(f)} hy ($)
+{[151(8) = By ()] i (&) +[~hsy (E) + hyy (E) ] s (E)} s (£)(7.153)

with

¢, —¢C b ¢, —¢C
By (£) =1 ”M26j,%=i7£MM (7.154)

i i

hey(&) =25, [‘5”
"\

1

} 8si = F5iM, 4, (7.155)

and the remaining steps are the same as those in Case 1.

Then we can obtain a Fredholm integral equation of the second kind which is
exactly the same as that given in Eqs. (7.143) and (7.144), except that the ker-
nel L(a, f) takes the form

L(a, B) = 3 ! (éan . sinh(ﬁ]

U 00 A(g) M )i K H;
{N Ok, (‘fl’j—iP O, (‘fl’jiw O, (‘f ]}dé (7.156)
4 W) Hy

1

i i i

The field intensity factors are then expressed in the form
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K, = lim \2n(r — )0 (r,0) = .| “my (a),
r—at a

K, = lim \2n(r —a)D,(r,0) = Emll//(a),
r—at a

(7.157)
K, = lim \2n(r—a)e..(r,0) = .| “m (a),
r—a* a
Ky = lim 200 —a)E. (,0) = .| ~myy (a)
r—at a
in which
my =—~(MFy, + M, 1, + M3 F3),
my =—(Fy M, + F), M, + Fy; M),
(7.158)

my = —(ky lE M + by i My + b3 17 M),
my = —(ky i My + Koy p15 My + keys i3 M 5)

and K, K, K,,and K, are the stress intensity factor, electric displacement in-

tensity factor, strain intensity factor and electric field intensity factor, respectively.

7.6.3 Numerical results and discussion

The material used in the numerical analysis is PZT-6B ceramic and its material
properties are as follows:
Elastic constants (10'° N/m?) : ¢, =168, ¢, =6.0, ¢33 =16.3, ¢55 =2.71;
Piezoelectric constants(C/m?): €5 =4.6, e;, =-0.9, e;; =7.1;
Dielectric permittivities (107'° F/m): &, =36, &3 =34, d;; =34
From Egs. (7.122)~(7.129), it is clear that once the functions 4;($), B;(£) are

known, the stress and electric displacement inside the piezoelectric cylinder can be
obtained. Determination of the stress intensity factor requires solution of the func-
tion w(&). The Fredholm integral equation of the second kind (7.146) can be

solved numerically using a Gaussian quadrature formula. Then we can estimate all
intensity factors using Eq. (7.157).

It can be found easily that the stress intensity factor is not dependent on the me-
chanical loading unless the piezoelectric cylinder is under the far-field stress and
electric displacement in these two loading cases. This observation confirms the re-
sults presented in [4,5]. The variation of the normalized stress intensity factor, elec-
tric displacement intensity factor and strain intensity factor with the ratio of crack
radius to PZT-6B cylinder radius is shown in Fig. 7.6. It can be seen that all the
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intensity factors have a similar distribution along the dimensionless crack radius.
When the value of a/b increases from 0.0 to 0.65 the normalized intensity factors
remain constant, but when the value exceeds 0.65, all intensity factors increase rap-
idly. However, the intensity factors increase more rapidly in Case 2 than in Case 1,
which may be caused by the different loading conditions on the surface of the pie-
zoelectric cylinder in radial direction.

0.735 Case |
====Case2
0.730
<0725}

Kp/[2¢q (alp)V
)
el
e}
=S

0715}
3!
0.710F =
0 01 02 03 04 05 06 07 08 09 1L
alb
(a)
0.735 Case 1
-——-Case2
0.730

Kp/[2¢q (alp)'?]
<
™
<

0715

0.710 -

i ! L | 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
alb

(b)

Fig. 7.6 (a) Normalized stress intensity factor against the ratio a/b; (b) Normalized electric
displacement intensity factor against the ratio a/b; (c) Normalized strain intensity factor

against the ratio a/b.
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Fig. 7.6 Continued.

7.7 A fiber with a penny-shaped crack and an elastic coating

In the previous section we presented a solution to the problem of a penny-shaped
crack in a piezoelectric cylinder. The problem of a penny-shaped crack in a piezo-
electric fiber with an elastic coating is described in this section. By using the poten-
tial function method and Hankel transform, this problem is formulated as the solu-
tion of a system of dual integral equations which are reduced to a Fredholm integral
equation of the second kind. Numerical analysis is conducted to investigate the ef-
fect of the thickness and the elastic material properties of the coating on the fracture

behavior of piezoelectric fiber composites.

7.7.1 Formulation of the problem

Consider a piezoelectric fiber with a finite elastic coating and containing a centered
penny-shaped crack of radius ¢ under axisymmetric electromechanical loading (Fig.
7.7). For convenience, a cylindrical coordinate system (7,6,z) originating at the
center of the crack is used, with the z-axis along the axis of symmetry of the cylin-
der. The fiber is assumed to be a transversely isotropic piezoelectric material with
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the poling direction parallel to the z-axis, and the elastic coating is also transversely
isotropic. They are subjected to the far-field of a normal strain,&. = &(r)and a

normal electric loading, E, = E (r).

g(r), E(r)

Piezoelectric fiber

k Elastic coating
=
|

(), E(r

Fig. 7.7 Piezoelectric fiber with a finite elastic coating and containing a pennyshaped crack

under mechanical and electrical loading.

The constitutive equations for piezoelectric materials which are transversely
isotropic and poled along the z-axis are defined in Egs. (7.1)-(7.6) and the govern-
ing equations used are Egs. (7.115). As in the previous section, the potential func-
tions (7.120) are employed and rewritten as follows:

3 3
u, = z¢i,r’ u, = zkli¢i,z’ ¢= _Zk%@i,z (7.159)

Substituting Eq. (7.159) into the field equations (7.115), we again obtain Eq.

(7.119).
It is obvious from Fig. 7.7 that the problem is subject to the following boundary

conditions:
0,.(r0)=0 (0<r<a),
u,(r,0)=0 (a<r<b),
#(r,0)=0 (a<r<b),
o,.(,0)=0 (0<r<bd)

(7.160)
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D (r,0t)=D_(r,00) (0<r<a),
E (r,00)=E.(r,00) (0<r<a), (7.161)
D, (b,z)=0 (0<z <)

In this section, the following continuity and loading conditions are used:

(1) The continuity conditions for elastic displacements and tractions at the in-
terface between the fiber and elastic coating (0 <z <<°) are given by

u (b,z)=ui(b,z),  u.(b,z)=u;(b,z),

o.(b,z)=0¢(b,z), o, (b,z)=05(b,z) (7.162)
(2) Loading conditions at infinity are
e.(r,°)=&(r), E.(r,»o)=E(r), &(r,»)=g(r) (7.163)
(3) Loading conditions over the surface of the coating are
ut(d,z)=0, o%(d,z)=0 (0<z<x) (7.164)

“ t3]

where the superscript “c
material.

Following the procedure discussed in Section 7.6, the electric and elastic fields
for the piezoelectric fiber have the same form as those of Egs. (7.121)-(7.131).

For the elastic coating, the corresponding potential functions can be assumed in
the form

represents the related variable associated with the coating

c 2 c
us =Zk 0% Zagz' (7.165)
i=l1 i=1

In a manner similar to that discussed in Section 7.6, the potential functions for
the elastic coating layer can be assumed in the form

O (r,z) = j {C(ﬁ)[ [§FJ+D(§)K (i Hcos(gz)dg (7.166)

Making use of Eq. (7.166), the elastic displacements and stresses in the elastic
coating can be given in the form

w(ra)=-Y k[ {C(:)I [5 ]+D<§)K (i

1

ﬂ sin($z)dé+a(r)z  (7.167)

ue(r,2) = Z ;J O[C@’)J(f”j D&)X, (i ﬂcos(sz)ds (7.168)

1
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oc(r,2) = Z j (;[c (&)1, [5 j+D(§)K [i ﬂcos(g‘z)d(f
i=1 l !
Cn CIZZ )2.[ §|: (O], [§FJ+D(§)K (5 j:lcos(fz)dgE
¢ 4
(7.169)
2 c 5,«- 5
o< (r,2) = Z e f (5)1[ j D,($)K, [ﬂ ) sin(£2)d& (7.170)
-1 M i
in which
Ff; = ey (I ke, E§=Cf3kf(ﬂf)2—@ (7.171)

Using the boundary conditions (7.160)-(7.164), the Fourier inversion theorem
and the Hankel inversion theorem, we obtain

4(6)= A(lg) il‘,[Nn(é)fl,-(éHHi(cf)féi(cf)+%(§)f3i(§)+&(5)1&,«(5)] (7.172)
4O =7 © il[Nz,- () 11:(8) + Poi() 24 (E) + Wi (§) 3:(9) + 1y (6) £1:(£)] (7.173)
4(2)=~ B lZi:[Ns,-(f)fl,«(é) + Py(6) £ () + W3, (§) 15:(§) + V3, (6) £1,(9)] (7.174)
G = iZ:‘,[MsiAi(é)+M4i(§)fzi(§)] (7.175)

G () = iZi‘,[MSiAf(éHMG,- () /(9] (7.176)

Dy(&) = iZZ;MUCi(cf) (7.177)

D, (&)= Zz‘,MziC,»(f) (7.178)

p
in which

N (&) =[H3(H3p (8) — Hyy () H3y (6)] 1 (6) + [ i3 () Hiy (§) = Hip (O H i3 ()] s (),
Ny (&) =[H,((H)H3(8) — H3 (O H 5(6)] 81,(E) + [ 1y () Hs (&) — Hy5 () Hiy ()] hs; (&),
N3i(&) =[Hp () H3 (&)~ Hy () H3y (8)] 81:(E) + [y () H 3, (§) = H, () Hp (6)] sy (€)
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Bi(&) =[5 () H3y (&) = by () Hiy () [ Ho () + [y () H 3 () = I3 () H 5 (§) | H iy (8,
Py (&) = [ () H3(8) = hy3 (O Hy (O] Hyi (§) + [y () Hy (§) = Iy (HH 3 (D] H i (£),
Py(&) =[ o () Hs1 () = hy () Hyp ()] H oy () + [y () H 5 (§) =y (O H, ()] H oy (€)

W (E) = [y (E)H 5 (&) = by (O H 5 (6)] By (£),
Wy (£) = [y (&) H 3 (E) = hs () H, ()] g (£),
W4 (&) = [y (O H, (£) = by () Hy ()] gy (D),
Y, (&) = [y () H 5 (&) = iy (E)H i3 (£)] oy (9,
Y,,(8) = [y () H 5 (£) = his (E)H 1 (6)] o (£),
Y3,(8) = [ha(E)H,, (E) = by (§)H 5 (6)] h (£,

A) =y ([ H (O H3 (§) — H y (HHy3(9)]
+ iy (O Hy (O H3(8) — Hy (HH 5(S)]
s () H 1o (H)Hy,(5) — H, () Hp (8]

773 (m)J,(nb) B,(11)J,(11b)
ﬁ@— oy a@—j el

B, (n)J,(nb B, (n)J,(nb
fu©)= j”}?;?) fu®-= Ii;@;%%n

where B;($) and the related coefficients M;are defined by Egs. (7.135) and (7.136),
respectively, and £;;(£), M;(8), and H (&) are defined as

h@—“lfq,%@)%lfﬂ,%—hl,
w2\ s

i i

hy; =L]1 Eﬁjs hsy =My, hg; = 5; 1 (é:bj
H; H; Hi Hi

o, —¢ &b -c
hy; = %ﬂz (,U )’ hy; = FsMp;, by = A 12Mz:ui7

thi 31 ] (gbj’ hllt _FstMl
wr

i i
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8132 (‘f)gm,i é)- 85,2 (éz)ng,i(é:)
8132 (5)815,1(5) — 85,2 (f)glm(f) '
83,1 ((:K)g14,i(é:) — 815, (éz)ng,i(é:)
8131 (5)815,2 (&)- 8151 (f)gm,z (&) ’

Gy (E)y, (£) = Gy (), ()
Gy, (6)G(E) =G (E)Gy,

M, (&)= Gy (O, (E) + G, () (6) ,
G, (6)G,1(£) -Gy (6)Gy,
Gy (E)hyy(8) = G (O, ()
Gy (6)G, (&) -G (E)Gy,
Gy, (E)hyy (E)+ Gy (E)hy 1, (&)
Gy, (6)G,(6) -G, (£)Gyy

H () = (M3, (&) +1,()M5,(8) = hy (),
Hy (S) = 1M 4 (S) +1,()M;(S),
H3;(8) = r(EM3, (&) + 1, (HM5;(E) = [1,(E) — he; (D) ],
H,($) = 11()M 4, (8) +13(S)M ;(S)
G1i(8) = €2,(8) + €31 ()M, (5) + &3, ()M, (S),

M;(&)=

My(8) =

My(S) =

Msl‘(f) =

M6i((:z) =

G, ($) =g10,i(§)_g11,1(§)M1;(‘f)_gn,z(f)Mzi(f)
1;(8) = 84(&)— 251 (H)M;(E) — g5, (EIM,,(E)
r}'(g):[g7i(§)_g6i(é:)]é:+[g91(é)_gSI(é:)]ngi(é:)+[g92(§)_g82(§)]§M2i(§)

8u(&)=E;M (&), gy =kil, (ib]’ g3i=kao(§le,

i i

&b g‘.‘b F§ &b
84 = [ &si —_c &6 = j 2 1y —
B\ M\ () "\ 4
i —cf, 1 b : b i —ch, 1 b
g, = L= —1, b . gy = F K, 5 , gy = LD ~K, 5 ’
20 () \u M\ 2 (4) H

B &b _F &b 1 &d
glOi_( c)z 1[M ’ glli_( <) K, e > g12i_/u_ic]1 P ’
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1 &d ES &d E &d
813 :_CKl (_‘j’ 814 :%]l [_cj’ 8isi = f 2 Kl( .
1 'z (45) 4 (4f) Hi

7.7.2 Fredholm integral equation of the problem

Making use of Egs. (7.160),, and (7.172)-(7.178), the following system of dual
integral equations can be deduced:

—jf«:{F—tlo (QJAA«:HF—;ZI [frjA @+ (‘frjA (é)} a
Hi H ) H 7 H

1 2 3
+f CE[MUF, + Mo F, + MyFL] Bi(§)J(Er)dé = —2(r) (0<r<a)
(7.179)

.[o [M &y + Mok gty + Mk 5] Bi(6)J,(§r)dE =0 (a<r<b) (7.180)
These equations can be solved using the function () defined by

B,(&)= f :z//(a)sin(cfa)da (7.181)

where w(0)=0.
Using the solutions of integral equations defined in Section 7.6.2, we can obtain
a Fredholm integral equation of the second kind in the form

v ]y pap=—f L0 (7.182)
in which
4 F, fa £ £b
L = h K,
(@.f)= mojz:‘ﬂ/jo AE) [H/J;ﬂ, i [#j[ Nu(®) ( J
PO, (‘*‘gbj—im(ém (ﬂ’}iY O, (ﬂ’ﬂdé (7.183)
é: ] lui i luz ]

The stress intensity can thus be expressed in terms of function ¥(&), as in [5]:

K, = lim \2n(—a)o_.(r,0) = .| ~myy(a) (7.184)
r—a* a

in which
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my =—(M,F, + M, F, + M3F5) (7.185)

7.7.3 Numerical results and discussion

To investigate the effect of elastic coating on the fracture behavior of piezoelectric
fiber composites, numerical studies are conducted based on the analytic solutions
obtained above. Material properties used in this study are:

(1) Piezoelectric fiber:

Elastic constants (10'° N/m?) : ¢;; =16.8, ¢, =6.0, ¢33 =163, ¢,, =2.71;

Piezoelectric constants (C/m?): ¢;5 = 4.6, e;; =-0.9, e;; =7.1;

Dielectric permittivities (10" F/m) : &, =36, &3; =34,

(2) Elastic coating:

Elastic constants (10'° N/m?) :

¢, =0.83, ¢, =0.28, ¢3 =0.03, ¢33 =8.68, c55 = 0.42.

It can be seen from Eq. (7.184) that determination of the stress intensity factor
requires solution of the function (&) . The Fredholm integral equation of the se-

cond kind (7.182) can be solved numerically using a Gaussian quadrature formula.
In the calculation, b=40mm, £(+)=1.0x10-5, E(r) =10x105V -m, are used.

The variations of the normalized stress intensity factor with the ratio of crack
radius to fiber radius /b under different thickness and elastic constants of the
coating are shown in Figs. 7.8 and 7.9. It can be seen from Fig. 7.8 that the stress
intensity factor decreases with increase of the ratio a/b, which is different from
the results in [28]. It is also evident that thickness of the elastic coating has an im-
portant effect on the stress intensity factor, and greater thickness will lead to a
higher decay rate and a smaller value of the stress intensity factor. This means that
thicker coating layers can slow crack propagation.

The variation of the stress intensity factor with the ratio «/b under different
elastic constants ¢33 of the coating layer is plotted in Fig. 7.9. It can be seen from
the figure that the stress intensity factor may increase or decrease with the ratio
a/b depending on the value of ¢33 of the coating. When ¢33 of the coating is
greater than that of the piezoelectric fiber, the stress intensity factor will increase
along with an increase in the a/b . Obviously, the decay rate of the stress intensity
factor depends strongly on the value of ¢33 when it is smaller than that of the pie-

zoelectric fiber.
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Fig.7.8 Variation of the stress intensity factor with the ratio a/b under different thicknesses

of the coating.
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Fig.7.9 Variation of the stress intensity factor with the ratio a/b under different elastic con-
stants ¢33 of the coating.
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Chapter 8 Solution Methods for Functionally Graded
Piezoelectric Materials

In the previous two chapters Saint-Venant decay and penny-shaped crack problems
were discussed. The material properties of the piezoelectric materials considered
there were homogeneous or piecewise homogeneous. This chapter presents solution
methods for piezoelectric materials with continuously varying properties. It focuses
on problems of an angularly graded piezoelectric wedge, solutions for FGPM
beams, problems of parallel cracks in an FGPM strip, and mode III cracks in a
two-bonded FGPM.

8.1 Introduction

FGMs are composite materials formed of two or more constituent phases with a
continuously variable composition. During design, the requirements of structural
strength, reliability and lifetime of piezoelectric structures/components call for en-
hanced mechanical performance, including stress and deformation distribution un-
der multifield loading. In recent years, the emergence of FGMs has demonstrated
that they have the potential to reduce stress concentration and to provide improved
residual stress distribution, enhanced thermal properties, and higher fracture tough-
ness. Consequently, a new kind of material, FGPM, has been developed to improve
the reliability of piezoelectric structures by extending the concept of the
well-known FGM to piezoelectric materials [1]. At present, FGPMs are usually
associated with particulate composites where the volume fraction of particles varies
in one or several directions. One of the advantages of a monotonous variation of
volume fraction of constituent phases is elimination of the stress discontinuities that
are often encountered in laminated composites and accordingly, avoidance of de-
lamination-related problems. How all these aspects can be improved and what the
mechanisms might be are popular topics which have received much attention from
researchers. Wang and Noda [2] investigated the thermally induced fracture of a
functionally graded piezoelectric layer bonded to a metal. Ueda studied the fracture
of an FGPM strip with a normal crack [3,4], of a symmetrical FGPM strip with a
center crack [5] due to a thermal load, mixed-mode thermoelectromechanical frac-
ture problems for an FGPM strip with a two-dimensional crack [6,7], and a
penny-shaped crack [8,9]. Li and Weng [10] solved the problem of an FGPM strip
containing a finite crack normal to boundary surfaces. Hu et al. [11] studied the
problem of a crack located in a functionally graded piezoelectric interlayer between
two dissimilar homogeneous piezoelectric half-planes. Rao and Kuna [12] pre-
sented an interaction integral method for computing stress intensity factors (SIFs)
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and electric displacement intensity factor (EDIF) for cracks in FGPMs under ther-
moelectromechanical loading. Borrelli et al. [13] used the energy-decay inequality
technique to analyze the decay behavior of end effects in anti-plane shear deforma-
tion in piezoelectric solids and FGPMs. Zhong and Shang [14] developed an exact
solution for a functionally graded piezothermoelectric rectangular plate. Dai et al.
[15] conducted a theoretical study of electromagnetoelastic behavior for an FGPM
cylinder and sphere. They then extended their solutions to include thermal effects
[16]. Zhong and Yu [17] presented a general solution for an FGPM beam with arbi-
trarily graded material properties along the beam thickness direction. Based on the
layerwise finite element model, Shakeri and Mirzaeifar [18] performed a static and
dynamic analysis of a thick FGM plate with piezoelectric layers. Wang et al. [19]
analytically investigated the axisymmetric bending of circular plates whose material
properties vary along the thickness. Using the Fourier transform technique, Chue
and Yeh [20] developed a system of singular integral equations for angle cracks in
two bonded FGPMs under anti-plane shear. Chue and Ou [21] presented a solution
for Mode III crack in two bonded FGPMs. More recently, Li and Ding [22] pre-
sented a solution to the problem of a periodic array of parallel cracks in an FGPM
strip bonded to an FGP substrate. Chen and Bian [23] studied wave propagation
characteristics of an axially polarized, functionally graded, piezoceramic cylindrical
transducer submerged in an infinite fluid medium. Ueda [24] addressed the problem
of two coplanar cracks in an FGPM strip under transient thermal loading. Salah et
al. [25] examined the propagation of ultrasonic guided waves in FGPMs. Wang et al.
[26] studied the singularity behavior of electroelastic fields in a wedge with
angularly graded piezoelectric material(AGPM) under anti-plane deformation. Chue
and Yeh [27] extended the results of [21] to the case of two arbitrarily oriented
cracks in two bonded FGM strips. This chapter focuses on the developments in
[17,21,22,26].

8.2 Singularity analysis of angularly graded piezoelectric wedge

Analytical solutions of AGPM presented in [26] are described in this section. The
mixed variable state space formulation for an AGPM wedge under anti-plane
deformation is used to investigate the singular behavior of stresses and electric
fields at the apex of AGPM wedges under anti-plane deformation.

8.2.1 Basic formulations and the state space equation

In [26], Wang et al. considered an AGPM wedge with angularly graded material
properties such as shear modulus, piezoelectric constant and dielectric constant, as
shown in Fig. 8.1, under anti-plane deformation. The poling direction is along the
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z-axis perpendicular to the - @ plane, where » and @ are polar coordinates. The con-
stitutive relation equations are defined by Eq. (1.35), where the material constants
C44, €15, and xq; are assumed to vary in the following exponential form:

C14(0) = cgyen?, es(0) = 51056779’ &,(0) = x e’ (8.1)

and the subscripts “17, “2”, “4”, and “5” in Eq. (1.35) are now replaced by “&”,

€6, 9% 6 9o

rz”, “r’ and “@”, respectively.
Z(0)

£(0y)

00 Y —_/

(a) (b)

Fig. 8.1 (a) Diagram of an AGPM wedge; (b) Variation of material properties.

In Eq. (8.1), n represents the inhomogeneity degree of the material gradient
along the angular direction. Using Eq. (8.1), 7 can be written as

)
n :511’17

where ¢ represents cf,, e, or k), which is the associated material property at

(& =cy» €5, O K7) (8.2)

6 =0 and is known as the reference material parameter.

The governing, the shear strain-displacement, and the electric field-electric po-
tential equations are defined by Eqs. (5.1) and (5.2) with 7= 0 =0.

To simplify the derivation and transform the differential equations (5.1) and (5.2)
into a state space equation, define the following state variables:

S,=e"rr,, SD,=e"rD,,

(8.3)
S =er_, SD.=e%D,

From Egs. (1.35), (5.1), and (5.2), we have
2 2
A0ta) AU0Ee) e L o B ) L g (24, 20),
or r o0& 06 r 06? 00 06? 06

15
2 2
o) _100D,) Dy 1y (6_v2v+,78_w)+1,(ﬂe,,g ( 24 @j
or ro o0& 00 r 00 00 00 00

8.4)
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and then the following equations can be obtained:

. 2 2
S, :_024(6 o 8_W)_6105 (M""?%j,

PYEREY, PYEREY, ©5)

: 2w ow 024 a¢) '
SD, =—e| ——+n— |+&| —=+n—
’ e‘s(aez "aaj K“(aaz 50

where “*” denotes the differential with respectto & which is defined in Eq. (5.5).
The combination of Egs. (1.35) and (5.2) leads to the following equation:

S =chw+eld, SD, =elw—rkld (8.6)
Then we obtain
W:%‘OIS,,+%SD,, q&:%sr—%sz)r 8.7)
in which
A=(e))* +cdxd (8.8)

Equations (8.5) and (8.7) can be rewritten into the following matrix form:

(BT.q7) =H{pT.q"} (8.9)
in which
p={wd}'. q={S,.5D,}' (8.10)
I 0 0 LSINGE
A A
0 0 s
_ A A
H= . ; . ; (8.11)
—e () =l (——tn—) 0
002 o0 00> o0
o2 o 02 9
0 (D e il 0 0
| 615(8192 ’759) ”(86’2 7789) |

Then Eq. (8.9) can be simplified into the state space equation (2.136), where
v={pT,qT}T (8.12)
We can then assume
v(&,0) =x($5)w(0) (8.13)

in which
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w(©)={a"(0), p"(O)} (8.14)

Using the separate variables method, we have
K(§)=e s =r# (8.15)
Hy = py (8.16)

Thus, the following equations can be obtained:
(w. ¢} =re{w@),00))", {z..D,} =reen{z_(0),D,(0)} (8.17)

It can be seen from Eq. (8.17) that the stress and electric field have the
Re(x—1) singularity at the apex of the AGPM wedge when r — 0.

It should be mentioned that in the case of homogeneous piezoelectric material
(7=0) the operator matrix H is a Hamiltonian operator matrix and Eq. (8.9) is a

Hamiltonian equation [28], whereas in the case of inhomogeneous piezoelectric
material (7 #0), H is not a Hamiltonian operator matrix, because of the material
inhomogeneity, and thus the governing equation cannot be directed into the Hamil-
tonian system, and it is difficult to find the adjoint symplectic orthonormalization
eigenvector ¥ to obtain the electroelastic fields using a procedure similar to that in
[28]. However, the singular order can still be obtained, which also corresponds to
the nonzero eigenvalue of the operator matrix. The singular order £ is given as

Jo=Re(u—1) (8.18)

and g must satisfy the condition 0 <Re(z) <1.
To find the nonzero-eigenvalue 4, we have from Eq. (8.16):

|H-p1|=0 (8.19)

in which d/d@is replaced by A and d’/d¢& is replaced by 42, and I is the four-order
identity matrix. Eq. (8.19) can be simplified to

(A2 +nl+ )2 =0 (8.20)

Then we can obtain the solution of 4 as

1 1
Rt Y SN e (8:21)

2 2

In the case of 77?> —44* <0, we can easily reach



296 Chapter 8 Solution Methods for Functionally Graded Piezoelectric Materials
(8.22)

in which {W ¢ S, SD.J=e*{w ¢ S. SD}, 4, B, C, D; (i=1-4) are
unknown constants to be determined, and
m=.4u* —n? (8.23)

Substituting Eq. (8.22) into Eq. (8.16) leads to the following relationships be-
tween the unknown constants:

Ay = p(cy A +els4y), Ay = p(els 4, —x)\4,),
By = p(cyB, +elsB,), B, = u(esB, —x\\B,), (8.24)
C=D=0 (i=1-4)

By using Eq. (8.24), Eq. (8.22) can be rewritten as
_n
w=e 2| 4 cos(ﬂejwl sin(ﬂaj ,
2 2
F—e 2| 4, (9)3‘(’"9)
=e 2 CcoS +B,sin| — 5
¢ 2 : 2
- _n
§ =e¢2’ {ﬂcfﬁ cos (% 6’) A, + pels cos (% 6’) A, + pc, sin (%9) B,
+ pes sin (%9) B, } ,
~ _n
SD. =e 27 |:ﬂel()5 cos (%9) A, — ux, cos(%@) A, + pels sin (%9) B,

— px) sin (% 0) B, }

From Egs. (1.35) and (8.25), we have
S = 0, P(0) 4, + e’ P(0) A4, — I, N(0)B, —e’N()B,,
SD? = el P(0) 4, — x°, P(8) A, —e’;N(0)B, + k*, N(6)B,

(8.25)

(8.26)
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where
1 -7g . (m m
P(@)=——e 2 | msin| —6 |+ncos| —6 ||,
2 2 2
1 2 .
N(O)=——e 2’ mcos(ﬁﬁj - 7751n(ﬁ9j
2 2 2

Considering the AGPM wedge shown in Fig. 8.1, the conditions at the edges are
assumed to be free of traction and electrically insulated:

(8.27)

7,.(r,0)=7,,(r,6)) = D,y(r,0) = D,(r,6,) =0 (8.28)
Substituting Eq. (8.26) into Eq. (8.28), the following equation can be obtained:
i P(0y)  esP(6,) —cuN(G) —esN(G,) || 4
esP(6,) —x)\P(0)) —esN(@) «\N(6))

4,
3, P(0) e P(0) -, N() —eXN() || B,
elsP(0) -« P0) —eN(0) K\ N(0) |B

=0 (8.29)

The existence of nonzero solutions {4, 4, B, B, }T requires the determi-

nant of the coefficients matrix to be zero, which can lead to the equation

mAaﬂgM(%aJ=o (8.30)
Thus, we obtain
2nm
m=—- (n=1,2,--+) (8.31)

0

Using Eq. (8.23) the eigenvalue can be obtained as follows:

772 12

8.32
4 G (8:32)

IL[:

Using the condition: 0<# <1, it can be determined that the wedge angle 6,

must satisfy the following condition if there are singular electroelastic fields at the
apex of the single AGPM wedge:

Jn2+%hﬁ[£ﬂ%%l)<ﬂ,<2n (8.33)

Ca4




298 Chapter 8 Solution Methods for Functionally Graded Piezoelectric Materials

In the case of 7? —4u* <0, using a procedure similar to that from Eq. (8.22)
to Eq. (8.31) we can easily prove that this is an impossible occurrence.

8.2.2 Two AGPM wedges

For a bi-material wedge system consisting of two AGPMs as shown in Fig. 8.2,
considered traction free and electrically insulated, the boundary conditions are as
follows:

7y (r,a) =15 (r,—B) = Dy (r,a) = Dy (r,—f) =0 (8.34)

in which the superscripts “(1)” and “(2)” denote AGPM1 and AGPM2, respectively,
and a=6,-0,, f=0 -0, . If the two AGPMs are fully bonded at the interface,

the continuity conditions on the interface are
7 (r0) =72 (.0, w(r,0)=w(r,0),

8.35
DY (r,0)= D (r,0), ED(r,0)=E®(r,0) (835)

AGPMI

66, 0 6,-6, 6
(b)

Fig. 8.2 Diagram of a bi-AGPM wedge system and the variation of the materials’ inho-
mogeneity. (a) Geometry configuration of the AGPM1-AGPM2 wedge system; (b) Variation
of material properties with the angle variable 6.

Using Egs. (8.26) and (8.35), we can obtain

A1 T1 0 o0 o074
A7 Lo 10 0|4
Bl(z) a4 43 4y Bl(l)

B Ay Gy Gy Gy || B

(8.36)

where «@; and a,; (i=1-4)are given as
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4,
1
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1
@ =]
dy = i[
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(2 1 (2 2)2 2
10 ele? + ) -n (@2 + x|,
1
e 2) (1 D (2 e
77(1)(@1(5)K1(1) 1(5)’(1(1))]’ a3 = [m(l)( e( )e(s)_cz(M)KI(l))]’
AO
2) (2 H (2 2) (1
m(l)(efs)’fl() 61(5) (1))], ay = [77(1)( e( )04(14)"'@1(5)0())] (8.37)
4,
(2 ), 2)2 2) (2
70 (Ve + @k — @ (2?1 <1>)]’

1
1 (2 2) 2) (1 2) (1
m® (Ve —elcy ))] Qyy = —[m“) (P&} —ePelt ))J

4 =-m (e + kD), mO = \Jau-(n®)’ (8.38)

Combination of Egs. (8.26), (8.34), and (8.35) leads to the equation

where

[M]-

[M]{F} =0 (8.39)

FO={40 4" B BPY (8.40)

WPO(@)  efPO(a) —c{IND(a) —e)ND(a)
1 1 1 1
e PO () —k{PV(a) —eYNV(a) &)ND(a)

(8.41)
by, by, by, by
by, by, by, by,
with b; and by, (i = 1-4) being given as
by, —‘74421)P(2)( B)—N? (- ﬂ)(a11‘744 +azlels ),
by, _elg)P(z)( -B)—-N® (- ﬂ)(a12044 +a22€1§))
by =-N® (- ﬂ)(a13c44 +a23els))
by, = -N® (=) a,c? +a,,e?),
14C8 +ayes (8.42)

by, _elg)Pu)( -B)—-N® (- ﬂ)(anels a21’(112))
b, :_KIIZ)P(Z)( —f) - N3 (- ﬂ)(aIZeIS a22K112))
by; ==N® (_ﬂ)(alsel —dayk 12))

by, =—N©@ (_ﬂ)(aMeI(S a24K112))
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In the following, the case of an AGPM-AGM wedge system is taken as a special
case for an AGPM-AGPM wedge. In Fig. 8.2, AGPM1 is replaced by AGM1. The
boundary conditions for the AGPM-AGM wedge now become

7y (r.e) =72 (r.=f) = Dy (r.c) = 0 (8.43)
and the continuity conditions at the interface are
D (r,0) =72 (,0), wO(r,0)=w®(r,0), D (r,0)=0 (8.44)
Then, following a procedure similar to that for Eq. (8.36), we can arrive at

(1) (1)
s ) _&s m" BO m(

1 _ 1) 2) _ 4
A2 - (1) 1 (1) 77(1) 1 B Al _Al 5
(8.45)
cDp@ _s5Hp0 SO m
B® — 44 77 n U BO
1 (2) @ 1 (2) ,,(2) !
Ca4 m Cag M
in which
1 2
1 — 31(5)
oW =cy, + (8.46)

D
SH

Using the boundary conditions Egs. (8.43) and (8.45), the following equation
can be obtained:

(1)? ) T
e m
M p() _I5 T p(g D A7(D) <1) (1) )
oW PV (a) 0 77(1)P (a)=cy,y NV (a) [77 PO (a)-N (a)}
]
oD o) m(!)
0 €5 P(l)(a) NO(a) Ky | NO(a)———PD(a)
77 77(1)
m®
a* —50 Z_NO(=p) 0
m?
Al(l)
M _
BV =0 (8.47)
BY
where
1
@ =POP)+[ 80— | N () (8.48)

If AGM1 is a conductor such as aluminum or nickel, the continuity conditions
are the same as in Eq. (8.44) except that D’ (r,0)=0 is replaced by ¢V (r,0)=



8.2 Singularity analysis of angularly graded piezoelectric wedge 301

0 . The boundary conditions are the same as those given in Eq. (8.43).
The relations between the coefficients of AGM1 and AGPM?2 are

AD =4, 4D =0,

2 1 1
D@ —po (1)+cf‘4) m» el m0 o (8.49)

31(2) = 1 1 2
e e e

and the characteristic equation is

cWPO(@) N (@) —eyNO(@) (4"
VPO (q) _emNm(a) (”N(‘)(a) BV =0 (8.50)
D
po N ey BN p |1
in which
@)p2) _ O
b =2 PR (~f) - M]\m)( 5) (8.51)

m

8.2.3 AGPM-EM-AGPM wedge system

In the following, the wedge consisting of AGPM1, an elastic material (EM) con-
ductor, and AGPM2, as shown in Fig. 8.3, is considered. (2, (2, and (% denote
AGPMI1, EM, and AGPM2, respectively. The polar coordinate systems are again
selected for simplicity, and ¢; and ¢, are adopted to indicate the sub-polar coordi-

nate systems. The interface conditions are:
On interface 1:

0 (r,0) =72 (r,0), wh(r,0)=w®(r,0), $O(r,0)=0 (8.52)
On interface 2:
D (r,0) =72 (r,0), wd(r,0)=w?(r,0), ¢3(,0)=0 (8.53)
The relationship of the unknown constants for two adjacent domains can be ob-
tained from Egs. (8.52) and (8.53) as
A) =0, A2 =0 (8.54)
1 0 0 Al(}) .
A | L0 L (42 Jeostur) —singu ][4
=\ _n m Gs m By N 2
BY| |7~ o ol 182 Lsin(uy)  cos(uy) || B
H H o Cy M || By
(8.55)
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|
|
I
1
I

AGPMI

17,>0
em |

Qo e

(a) (b)

Fig. 8.3 Diagram of AGPM1-EM-AGPM2 wedge system. (a) Geometry configuration of
the AGPM1-EM-AGPM2 wedge system; (b) Variation of material properties with the angle

variable 6.

3)
e 1 0 0 4
=l g m® ey m® |{BY (8.56)

uoou ey po||BY

where the second subscript denotes the coordinate system.
The coordinate transformation [29] is used to find the relationships between the
unknown constants in general solutions of each material domain, yielding the fol-

lowing equations:
3 1 1 3 1 1 1 3
Al(z) = SnA( ) +SIZBII +S13B§1), Bl(2) = S21A](1) +SzzB( ) +S233( ) +S24B( ) (8.57)

where s, (i=1-3) and s,; (i =1-4) are given by

((OR m el
= cos(up) —T=sin(uy), s, = ——sin(uy). S5 =--dy,.,
H H Cay
1 3 , 77(1)77(3) .
So1 = ey usin(uy) +(n® —nM)cos(uy) - u sin(uy) |, (8.58)
m® n® el &0
Sy = |:C0 (u7) __Sm(,u7):| Sy3 = %d22: Syq = _%
H Caq Cay

According to the traction free and electrically insulated boundary conditions, we

can obtain
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cuPO(@) —cyuNO(a) —eNO(a) 0|47
esPV(a) -esNW(a) x,NV(a) 0 qu)
h by b3 0 BSR
by Iy by Iy BS)

=0 (8.59)

inwhich #; (i=1-3) and t,; (i=1-4) are given by

by =[5 PO B =suNO P 1 = cu[5PO ()= sn NO (=) ]
tiy = 4[5 PO(=B) =53, NO(=P)], 1, = els[ 5, PO (=) =5, NO(=p) ],
ty, = efs [312P(3) =5 - SzzNG)(_ﬂ):L ty, = el [513P(3)(_ﬂ) — 53 N©@ (_ﬂ)],
by = l:—s24el°5 + &) ] NO(=p)

(8.60)

Equations (8.39), (8.50), and (8.59) are transcendental and have numerous roots
which may be real or a complex quantity. They can be solved using the numerical
method and then the admissible values of 4 can be obtained. In the following, the
effects of angular inhomogeneity on the singularity of electro-elastic fields of
wedge system are investigated via numerical results.

8.2.4 Numerical results and discussion

In the following numerical studies, the material properties of PZT-4 are taken as the
reference material properties as follows: cj, =25.6x10° N/m?, e =12.7 C/N

and &} =6.46x10~ F/m .
8.2.4.1 A single AGPM wedge

In Fig. 8.4, the variation of the singular order for single AGPM wedge with the
wedge angle from 180° to 360° is plotted to show the effect of material angular in-
homogeneity on the singularity of electro-elastic fields, in which the angular inho-
mogeneity parameter p is defined as

o= 44 (0y) _ e;5(0y) _ K1 (60)

0 0 0
Ciy €5 Ky

(8.61)

It can be seen from Fig. 8. 4 that »=1.0 (7=0) for a homogeneous piezo-
electric wedge and thus there is no singularity for the piezoelectric half plane
(6, =180°). Hence, the classic root exists for the singularity of a semi-infinite

crack (&, =360°). Moreover, the singularity disappears when 6, <180°. These

results are consistent with those of [29,30]. The range of wedge angle in which sin-
gularity exists is given in Eq. (8.33) for inhomogeneous piezoelectric materials, but
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the singular order for the semi-infinite crack (6, =360°) is not equal to the classic
root (—0.5). The angular material inhomogeneity leads to a smaller singular order
than that of homogeneous material, and a larger inhomogeneity parameter 7 can
produce a smaller singularity. For a single AGPM wedge, the singular order relates
only to the value of 7, the wedge angle and the boundary conditions.

On

-0.1

Re (u-1)

i 1 i 1 i 1 i 1 i i i i 1
180 200 220 240 260 280 300 320 340 361
)

1 1 H

-0.5L

Fig. 8.4 Variation of the singular order with the wedge angle for different angular inho-

mogeneities.

8.2.4.2 AGPM-AGPM wedge system

Consider an AGPM-AGPM wedge system as shown in Fig. 8.2(a), in which the
AGPMI1 and AGPM2 have different inhomogeneity degrees 77, and 77,, as shown

in Fig. 8.2(b). The material properties of PZT-4 are again taken as the reference

material properties for AGPM1 and AGPM2, and « =180° and S =180° and in

this case the wedge can denote a semi-infinite crack. The variation of the singular

order with 77, for different 77, is given in Fig. 8.5. It should be mentioned that

according to Eq. (8.2), we have

_ 1 lnc44(6’2), 7y = 1 In cu(8)
0,-0,  cyu(6) 0 =6, cu(6y)

m (8.62)

in which 7, <0 implies that c4(6,)<cyu(6), and 7, >0 implies that
c44(0,) > ¢y (6) . Meanwhile 7, <0 implies that ¢4 () <cy(6,),and 7, >0
implies that ¢4, (6)) > c,4(6,) . For a fixed value of 77,, we can see that the singu-
larity becomes more severe when 7, varies from a negative to a positive value.
However, a larger value of 75, can lead to a less severe singularity. This behavior
demonstrates that the angular material inhomogeneity can be used to control the
singularity of the electro-elastic fields for a bi-AGPM wedge.
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The variation of the singular order with ¢ and the value of 7, is plotted in Fig.
8.6 for a bi-AGPM wedge system in which S =180° 7, =1.2 It is observed that
the degree of singularity increases with the increase of the value ¢ from 0° to
180°. When «a =0°, the bi-AGPM wedge degenerates to a single wedge with
wedge angle S =180° and in this case the wedge becomes a half plane, and there
is no singularity when 7, equals —0.6, 0, and 0.6. When « =180°, the wedge sys-
tem can be a bi-AGPM semi-infinite crack, and the singularity may not be the clas-
sical root singularity when AGPM2 is the homogeneous piezoelectric material
(17, =0). When7n, >0 there is a less severe singularity, whereas when 7, <0

the singularity becomes more severe.

=0.10
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Fig. 8.5 \Variation of the singular order with angular material inhomogeneity for an
AGPMI1-AGPM2 wedge system (« =180°, f =180°).

0.1

-0.1

-0.2

-0.4

Re(u-1)

-0.5
0.6
-0.7

-0.3

I P I P

-08L

L i 1 i I i i i 1 i
20 40 60 80 100 120 140 160 1801
o

Fig. 8.6 Variation of the singular order with ¢ for different values of 7, (S =180°,

m=12 ).
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Figure 8.7 shows the variation of singularity for an AGPM2-AGM1 wedge sys-
tem with S =180° and 7, =1.0 for various wedge angles . When 7, =0, the
AGM becomes a homogeneous elastic material (EM). It can be observed that the
singularity behavior is similar to that of the bi-AGPM wedge, as shown in Fig. 8.6.
A positive value of 7, leads to a small value of the singular order whereas a nega-
tive value of 77, can produce a larger singular order compared to the case of the
AGPM-EM wedge.

Re(u-1)

_O_“',' Il Il i Il i Il
0 20 40 60 80 100 120 140 160 180
a

Fig. 8.7 Singularity for AGPM-AGM wedge system ( S =180° and 7, =1.0).

The singularity behavior of an AGPM-AGM conductor wedge system is pre-
sented in Fig. 8.8, with #=270° and 7, =-0.8 . With the increase of the wedge
angle «, the singularity increases for all the values of 7,. For a small value « of the
AGM, the singularity depends mainly on the AGPM, and 7, has little effect on the
singularity behavior of the AGPM-AGM wedge. With an increase in the value of ¢,
the material inhomogeneity degree 7, of the AGM conductor has more effect on the
singularity of electro-elastic fields, but a small value of 7;; will cause a weak singu-

larity.
8.2.4.3 AGPM-EM conductor-AGPM wedge system

Finally, the singularity of an AGPM-EM conductor-AGPM wedge system is shown
in Fig. 8.9, with a=4=90° y=180°, 5, =0, 7, =—1.2. The material pro-
perties of PZT-4 are again taken as the reference material properties, and the refe-
rence elastic constant ¢, of the EM conductor is the same as that of the AGPM.
The material inhomogeneity takes a “U” form, as shown in Fig. 8.3(b). This
three-material wedge denotes an interface crack between AGPM1 and AGPM2. The
numerical results in Fig. 8.9 show the singularity of the three-material wedge sys-
tem, which is more complex than that of a two-materials wedge system. Multi-root
singularity exists, such as two-roots singularity and three-roots singularity. The
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variation from one to three roots depends on the value of 7, and some values
around 7, =—-0.1 and 7, =0.3 can lead to very strong singularities which are
larger than —0.9. It is noted that two real roots singularity can exist with the value of
m varying in the ranges of [-1.80, —0.15] and [1.90, 4.60], in which the singularity
degree decreases when 7, increases from —1.8 to —0.15. After that, the singularity
tends to increase until 7,=2. Thus, for the multi-material wedge system the degree
of singularity can also be made as weak as the two-material wedge system by
choosing an appropriate degree of angular inhomogeneity. It should be mentioned
that only the three-material wedge system is considered here as an example of a
multi-material wedge for the model described in this section. Four-material wedges
and wedges containing even more materials can be solved using a similar proce-
dure.
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Fig. 8.8 Singularity behavior of an AGPM-AGM conductor wedge system with S =270°,
a=90° and 7,=-0.8,

i 7

Re(u-1)

-1.0 : : :
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Fig. 8.9 Singularity behavior of AGPM-EM conductor-rAGPM wedge system with
a=p4=90°, y=180°, n,=0, and 7, =-1.2
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8.3 Solution to FGPM beams

A general solution presented in [17] for FGPM beams with arbitrary graded mate-
rial properties along the beam thickness direction is described in this section. The
beam under consideration may be subjected to normal and shear tractions of poly-
nomial form on the upper and lower surfaces, while the end boundary conditions
can be cantilever, simply supported or rigidly clamped.

8.3.1 Basic formulation

Consider an FGPM beam with an arbitrary composition gradient through the thick-
ness. In the absence of body forces and free electric charges, the mechanical and
electric equilibrium equations are defined by Eq. (2.163), and the strain-dis-
placement and electric field-electric potential relations are given by Eq. (1.2). When
oy and E; are chosen as independent variables, the constitutive equation (1.24) be-

comes
&y fay ay 00 dy] Oy
& a3 ayz 0 0 dy||o.
Ve(=| 0 0 a5 ds 0 |qo, (8.63)
D, 0 0 ds x, 0 ||E,
D, |dyy dyz 0 0wy || E.

Substituting Eqgs. (1.2), (1.31), and (8.63) into Egs. (1.30) and (2.163), Eqgs. (1.32)
and (1.33) now become differential equations for Airy stress function U and electric
potential ¢, as

(d31U,33 ),3 + (d33U,11 ),3 —disU;5 = (’(33415,3 )73 +K1 (8.64)
(allU,33 +aUy, )’33 +(a55U,113 ),3 +aU 53 +apUg,
= <d13¢,3 ),33 +dyp13 _(d15¢,11 )’3 (8.65)

8.3.2 Solution procedure

To obtain the solution to Egs. (8.64) and (8.65), Zhong and Yu [17] introduced the
following form of Airy stress and electric potential functions:

U=Yxfi(z), ¢= xgl(2)

i=0 i=0

(8.66)
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Substituting Eq. (8.66) into Egs. (1.2) and (1.31) yields

o 32 (2)
k— Jk 277
o, ;
o, p =12 k(k=Dx2£,(2) (8.67)
k=2
N & V@)
=N k1 2Lk
5 e

kx* g, (2)
Bl 3w
k=0 dz

(8.68)

Then, by substituting Eq. (8.66) into Eqgs. (8.64) and (8.65), we obtain the gov-
erning equations for f{(z) and g{(z) as

d d*f; (2) dg, (2)
E[dm d; — K33 (I;Z =G (2),
d d*f, (2) dg, (2) 0 (50
@ ap dz? _d31 dz =Ec (Z) (k=0,],"',l’l)
where
0 (k=n-1,n)
GO(z) = 33 )
(@) L {% -Yl5 - Zzllz} (others) (8.70)
0 (k=n-1Ln)
d2R13. 4SS5, dys
FPE)=1 L { o iz R —Wii%} (k=n-3,n-2)
2R13 55 15
{d o dekZ” + dzkz” FTS W + LZR;,’L} (others)
(8.71)

with the following notations being defined as:
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L =—(k+1)(k+2), L,=(k+3)(k+4), R/= a;(2) /. (2),

d . RE
_ ,,( aaSEs fk(z) T/ =a[j(z)$’ vy zd,-j(Z)gk(Z),
(8.72)
d i d
=d;(2) gk( )’ X7 =d;(2) [ (2), Ykl/ =d,(z) 222 fk( )
_Kij(z)gk(z)

Equation (8.69) gives a recurrence relation for fi(z) and g,(z). Zhong and Yu ob-
tained the general solution for f,(z), g,(2), f,_1(z), and g, ,(z) using the condition
F2(2)=G%(z) =F?,(z) =G ,(2). Then, f{(2), g(z) (i = n-2, ==+, 1, 0) can be
solved one by one using the solution obtained for f,(z), g,(z), f,-1(2), and g,.(2).
Hence, the solutions of  f{(z) and g/(z) can be written in general form as

[i(2) = Fi @)+ 4 H\(2)+ BiH ()~ E,Jo(2) + Gz + D,

, . _ _ _ (8.73)
g (2) =G (2)+ A4, (2)+ B, J(2) - E [ (2) + K,
where Zk, E,{, Ek, Ek, Ek, and K « are unknown constants, and
4 [ 3 3\ 2 k33(2)FE(2) = dy (2)GY(2)
F2)=[ Fadz F)=|, o dz,
2= [F (= [FFo0 (= ["Go
RE=[[REE RO [[REE GE=[[6ee o

Gi(o) =[] OB DA, g, -

G =G, =F) =F)=F! =F}=0, Az)=(a,ky—d})2)

=F =FL, =F =0,

Ho ()= [ H (M2, T, ()= (), T,(2)= | T (o,

=d
R e A R A s

(8.75)

Making use of Egs. (1.2), (8.63), (8.67), (8.68), and (8.73), the expressions for
elastic displacements and electric displacements can be obtained as

= Z (- )+Zn:kx"*1R,L3

—T113+VI/113—6E333—§55 Vs —az+e, (8.76)

z n ~ X A
wzzxk[r,g3—W,g3 7 J+Zk(k DxF2RB +ax+d

k=0 | k=2
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:

D, = (k+1)x" (Y5 -21L),
=0
5 (8.77)

D. =Y x(Gl+E,—LX3,)+x"E,  +x"E,
k=0

R

where @, ¢, and d are integral constants related to the rigid motions of the beam,

and
Iéikl :.[()ZR"MdZ’ S‘ikl _ _[:Sz'kldzn f;kl _ J‘OZTZ_kIdZ’ Wikz _ J: WHdz,
2 ZJ'OZ VHdz, WH = I: Whdz, RM = J: Ridz, SH ZJ.()ZS'lkIdZ, (8.78)
TH = J‘Ozfikzdz

As can be seen from the solution presented above, there exist 6(n+1) unknown

constants, a@,c,d,4,,B,,E,,K,,4,B,,C,K, and 4,B,,C,,D,E. K, (i=2,3,

n), which are to be determined from the boundary conditions.

To determine these constants, Zhong and Yu evaluated the concentrated normal
force N,, the concentrated shear force P, the concentrated moment M, and the
concentrated electric load @, at the left end (x = 0) of the beam under consideration,
by means of the following formulations:

hi2 hi2
N, :bJ. Lol de My =b[ "o o] =z
x= x=0
P b /2 & b hi2 bl d (8.79)
Ih/z =0 & = th/z x|x:o
Their counterparts at the right end (x = /), N,, P;, M,, and @, are given by
/2 2
N, :bj ol & M=b[" o] =,
h/2 " 'x=l hl2 x=l
_, 2 0 b h/2 iz (8.80)
- .[h/z L% .[ x=l

in which b, &, and / are, respectively, the width, thickness, and length of the beam.
They proved then that the following equilibrium equations are automatically
satisfied

i
N[ = N() +bJ0 (ze —h/2 —ze z:h/Q)dZ,
o O.|. ) (—x)dz
>, (8.81)
_?J‘O (O-zx /2 O-Zx Z:_h/2)dz,
!
O w242 6, =06,
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if the upper and lower surfaces of the beam are subjected to normal and shear trac-
tions of polynomial form as follows:

n=2 n-1
Oclochin = Z77kxk’ Oszlzonra = zﬂkxk’
k=0 k=0
o o (8.82)
Ocloecinin = kaxk’ Oxzloecpin = Zﬂkxk
k=0 k=0
where 7, 7, B3, and 3 are known constants.
Making use of Egs. (1.2), (8.63), and (8.76), we have
h = ( h) Vi
— | = > - = - k:2337"'9n9
f"(z] k(k-1) Ji 2) k(k-1) ( )
_ . (8.83)
% :_&’ % :_@ (k=1,2,---,n)
dz z=h/2 k dz z=h/2

Considering further the electric boundary conditions on the upper and lower
surfaces of the beam,

D

¥4

D

z=h/2 Tz

2 =0 (8.34)

we can obtain from Eqs. (8.77) and (8.84)
) = h
Gi(2)+ B - nxi( 2] -

(8.85)
1 h E 33 h
Gk —E Ek —L]Xk+2 —5 =0 (k:0,1,---,n—2)

E,=E,, =0 (8.86)

Noting that Egs. (8.83) and (8.85) constitute 6n—2 independent linear algebraic
equations for the 6(n+1) unknowns mentioned above, eight more equations are
needed. Zhong and Yu obtained these equations by considering the end boundary
conditions of a beam. For example, for a cantilever FGPM beam clamped at one
end (x = /) and subjected to a concentrated normal force N, a concentrated shear
force P« and a concentrated moment M- at the other end (x = 0), the end boundary
conditions are given as

Ny=N., B,=P., My=M., 6,=0 (atx=0),

u=w=¢=0, w,=0(ru,=0)  (ax=0z=0 OO

8.4 Parallel cracks in an FGPM strip

This section describes the solution presented in [22] for the problem of a periodic
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array of cracks in an FGPM strip bonded to a different FGPM. The corresponding
singular integral equation is derived using the Fourier integral transform approach
and can be solved numerically using the Lobatto-Chebyshev integration technique.

8.4.1 Basic formulation

In [22], Li and Ding considered an FGPM strip perfectly bonded to another FGPM
in the y direction, as shown in Fig. 8.10. The FGPM1 (see Fig. 8.10) is considered
to contain periodic cracks perpendicular to the interface. The length of each crack is
2a, along the x direction. The centre of each crack is located at x = d. The distance
between two nearest parallel cracks is 2¢ (see Fig. 8.10). If the poling direction of
the two FGPMs is assumed to be along the z-axis, the constitutive equation (1.35)
now becomes

owk) LY}
i) = (k)() +e8) () —— ¢ 70 = e (x) 5 re® (0222 ¢

(8.88)
owl 2 owh o 0@k

D = (0 25 (0 22 ¢ L
ox Oy

where the superscript “(k)” represents the variable associated with material &, and
all material constants are assumed to vary in the following form:
W (x) = clelx, el (x)=elelr, x\)(x)=x%ef* (0<x<h),

(8.89)
e (x) = csers, el (x) =eler, i} (x)=xfjer (x<0)

Interface ¥y

Fig. 8.10 Configuration of a periodically cracked FGPM1 strip bonded to FGPM2.

In Eq. (8.89), the subscript “0” stands for material properties at the interface or
reference value of material constants. For the two-material system shown in Fig.
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8.10, the governing equations (1.10) are now written in the form
or otk oDW® D)

—_Xz + — X + By

ox oy ox oy

=0 (k=1,2) (8.90)

Substituting Eq. (8.88) into Eq. (8.90) and making use of the relation (8.89)
yield

(1) (1)
V20 +/;’aL =0, V290 +p’£ =0,
X

(8.91)
PO (x,y) = W“)(x »)+90(x, )
ll
for FGPM1, and
(2) (2)
Vi 4y o vage 09
X ox
(8.92)

¢ (x,y) = W(z’ (x, )+ 9@ (x, )
11
where V2 =0%/0x?+02/0y* is the two-dimensional Laplace operator.

Due to the periodicity and symmetry of the problem, Li and Ding [22] consi-
dered the solution domain for 0<y<c only. The continuity condition at the interface is

w(0,) =w®(0,y),  4D(0,y) =4 (0, ),

8.93
o0(0,)=0D(0.y), D0, y)=DO(0,y) (8.93)

and the outer surface boundary conditions of the problem shown in Fig. 8.10 are
defined by

ol (h,y)=0, DO (h,y)=0,
W (x,0)=0, ¢D(x,00=0 (—o<x<0),

w(x,c)=0, ¢D(x,c)=0 (0<x<h), 854
w(x,c)=0, ¢PD(x,c)=0 (—o<x<0)
At each crack face, the boundary conditions are given by
wh(x,00=0, ¢D(x,00=0 (O<x<a, b<x<h),
ol(x,0)=-0(x), DV(x,0)=-D(x) (a<x<b) (8.95)
for impermeable cracks, and
wh(x,0)=0 (0<x<a, b<x<h),
$V(x,0)=0 (0<x<h), (8.96)

ol (x,0)=-0(x), DI (x,0)=-D,(x)=—D(x) (a<x<b)

for permeable cracks, where D (x, 0) denotes the electric displacement within the
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crack void itself.

8.4.2 Singular integral equations and field intensity factors

1 ¢~ )
WO p) = [ LA (@) expimy) + Ay () expm )l da

+ z [Cix (7)) exp(px) + Cop (7;) €xp(poy X)]I8in(y y),

k=1

e (8.97)
P0(2) =5 [ [Bi(@)exp(my) + By(@)exp(my)ede
+ i [Dy (7)) exp(pyeX) + Dy (7, ) exp(pax)]sin(y, »)
k=1
W (x,3) = " Ey (7)) exp(g,x)sin(y, »),
. (8.98)

P (x,y) = D Fy (7, exp(q,x)sin(y, )

k=1
where A, A5, By, B, Ci1, Cop Dyjo Dog, Eop, and Fy; are unknown constants to be
determined, and

, B
my =—my =\a? +ifa, py :_E_ﬂ’k: P :_E‘F}%a

e . (8.99)
roar 7? KT
A = \/ +7i, Qk=_5+/7~ka ﬂ’k—\T_{'}/k’ Vi = B

To determine the unknown constants above, Li and Ding defined the following
two dislocation functions:

ow (x,0) 0¢" (x,0)
g(®=1 ox (@<x<b) o w=1"a @D (5100
0 (x<a, x>Db), 0 (x<a, x>b)

Substituting Eq. (8.97) into Eq. (8.100) and making use of the continuity condi-
tion (8.93) and boundary conditions (8.94) and (8.95), we obtain

l' emzc b .
A(@) === ———— [ g ()™ du,
o e™e —e™e Ja
i eme b _
Ay (a) = _ﬁj g, () du,
o et —e"
D ome (8.101)
Bay=--— "I, (u)——g (u)Je ™ du,
o e e’
i emce )
Bya)="—F e [gz(u)——gl(unemdu
—e™m
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_ _7/'(}721'_‘]/') b

C. W[ P 4 P21 |y,
= [ g ]
},jem;h b ‘ .
C2j ZWL gl(”)[pzj(plj _‘Ij)ep” +p1j(qj _ij)e P27" 1du
2j7%)
=7, (P2 —4;) ¢b o (hh) & e )
Dy :TI & (e + eV ]du,
C . a
j
]/,e‘"ljh b el
D, =——— u)——g (u (p. —q.)el"
= A [RERC o 100|227 =4))
+p1;(q; — pyj)e P du
= LPA U TP (1 oyt g g,
CAM*jpzj @
. . e . b 0
2 =MI |:g2 (u)_el_ggl (u):|[e—p1j(u—h) _e—m/(u—h)]du
' CAM*jpzj a K
with

A =p (7 +pry)e™ —py(y; + e

Substituting Egs. (8.100)-(8.104) into Eq. (8.95) yields
ﬂxl b 0 0 1
ox)=e —J. [cdsg (u)+elsg, (u)]| ——+ K(u,x) |du,
T a U—x
P 1o, 0 1
D(x)=e x—j lesg (1) — K g, (w)]| — + K (u,x) |du
T Ya U—x

in which the kernel function K(u,x) is given by
K (u,x) = Fy (u, x) + F, (u, x) + F; (u, x)

where
1= i | mye™e —me™me ;
R e e |
2 - eme — e
T — n
_r —y_-<2h—u—x)J . S
F,(u,x) c Zl[sz te’/ s Fy(u,x) c(er@h-u=x)/c _1)’
=
_epljx}/Z
Fy(u,x) = 2 ] [sz(Pz/' —q)e e e_mj(u_h)}
’ jp2jA3 ' ' '
ePijePIjhyZ

J — Py ju Do jU
D2 (P —q;)e ™"+ pyi(q; — pyy et
ﬂ’j ij A3 [ JNL) J VARV J :|

(8.102)

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)

(8.108)
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To solve the singular integral equations (8.106), Li and Ding introduced the fol-
lowing normalized quantities and related functions:

f=(x-d)/ay,, i=(u-d)lay, f@@)=g ),

- . - (8.109)
L) =g,(w), oX)=oc(x)e’, D(F)=D(x)e
Using the definition (8.109), Eq. (8.106) can be rewritten as
o(®) =~ [ [ty /i) + et fz(ﬁ)][%+ K(ayii +d, a,% + d)}dﬁ,
- TR
(8.110)

D@ =~ (e @£, (zz)][%+ K(agii +d.a,+ d)} di
Y u—Xx

They then mentioned that for an internal crack, functions f,(i#) and f, (i) must

fulfill the condition of single-valuedness as
1 1
[ fda= fa@di=0 (8.111)

It is obvious that Eq. (8.110) is a singular integral equation of the first kind. It
can be solved numerically by the Lobatto-Chebyshev integration approach. Thus
the relationship between functions f;(it) and f, (i) and weighting function F;(i),

which can be used to evaluate intensity factors, is given by
£ (w) £ (u)
Making use of Eq. (8.112), the field intensity factors can be calculated by [22]
Ky (b) = —cse \Jay Fy (1) - efse \Ja, Fy (1),
K;(a) = e Jay F (~1) + elseba Jay Fy (-1),
KP (b) = —else? \Ja, F (1) + k0, eP? \Ja, Fy (1),
KP(a) = eleP \Jay Fy (-1) - e Ja, Fy (<1)

For the electrically permeable case, the corresponding stress and electric dis-
placement can be similarly obtained as

h@) = S ) =

(8.113)

o(x) =ef* l"-b cd l:; + K (u, x)} g, (u)du,
wda U—x

L b . (8.114)
D(x) = ef* —J. es [——i— K(u,x)} g, (u)du
nYa u—x
and the corresponding field intensity factors are defined in the form
K;(b) = ~cbse \Ja, (1), Ky(a) = cse?\Ja, Fy (-1, S115)

KP(b) = —elsef Ja,F (1), KP(a)=elel\[a,F(-1)
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Making use of Egs. (8.113) and (8.115), Li and Ding finally presented, respectively,
the energy release rate G; and the energy density factors S;, as

6. (a) = | KiK3 @)+ 26Ky (@KP (@) by (KP (@)
’ 2ef cdsky +(5105 )2 ’
- 8.116
G.(b) = 1 [ &0K2(b)+2e%K,(b)KP (b) - & (KL (b))? (8.116)
’ 2ef? cdsky + (5105 )2
5. (a) = —L_| KhKZ (@) —elsK; (KD (@) +2¢fs (KD (a))?
3 Bel Ik +(3105 )2 ’
- (8.117)
5. (b) = 1| FHKZB) =t K3 (D)KP (b) +2ck (KD (b))
3 8el? 95Ky +(3105 )2
for an impermeable crack, and
K3 (a) K3 ()
G.(a) =4S.(a)=——""2, G,(b)=4S,(b)=—"2 11
s(a) =455(a) 2cbehe 3(0) =485(D) 2o (8.118)

for a permeable crack.

8.5 Mode III cracks in two bonded FGPMs

The fracture behavior of a crack perpendicular to the interface of two bonded
FGPMs is described in this section. Under antiplane shear and in-plane electric dis-
placement, Chue and Ou [21] reduced the problem to a set of singular integral
equations and solved them numerically using the Gauss-Chebyshev integration
technique.

8.5.1 Basic formulation of the problem

The development presented in [21] is considered there. In [21], Chue and Ou con-
sidered a system of two FGPMs perfectly bonded together along the y-axis in which
a crack of length 2a, is located at y =0 and in a < x < b (see Fig. 8.11). The poling
directions of the two FGPMs are oriented along the z-axis. For the problem of anti-
plane deformation, the constitutive relations and the governing equations are, re-
spectively, defined by Eqgs. (8.88) and (8.90). The variations of material properties
are assumed in the exponential forms defined by Eq. (8.89), except that the domain
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(0<x<h)in Eq. (8.89), is replaced by (x >0).

y

Interface

Q

Fig. 8.11 Geometry of two bonded FGPMs containing a crack.

Substituting Eq. (8.88) into Eq. (8.90) and using the relation (8.89) provide the
following equations for FGPM1 and FGPM2, respectively:

2 23D 2 240 (1) (O]
Cgs(a - +a - j+el()5(a ¢1+8¢ j*‘ﬁ(cgg ow +efs 097 ]:03
0ox? oy? ox?  oy? 0x ox

2w 52y 02 524 S 240 (8.119)
ds| 52 Lt + +/’7(6105__K101_j=0
axz @yz axz ayz ax ax
2/(2) 214,(2) 2.4(2) 2.4(2) ) )
Cgs[aawz +aaw2 )MPS(& . J+ (Cgs Gl Al B
X v 0x oy Ax 5120
2w?®  A2p® 826 524 W@ e .
efs > T o ki ¢2 + ¢2 +7(elos — K ¢ j: 0
Ox oy Ox y ox Ox

Using the Fourier integral transform, Chue and Ou then wrote the solutions of
Egs. (8.119) and (8.120) in the following form:

1 = , 2 .
WO = [ ful@peedat=[ g (v asinay)da,
(8.121)

1 . 2 e .
PO == [ fulamemda+= [ g (xv,a)sin(ay)da
2w Y0

W) =2 [ g (ra)sin(ay)da,
T (8.122)

99000 =2 [ g (xa)sin(ay)da
T

in which
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fin(@, ) = A(@)exp(-pfa? +iaB),
for(@.y) = By(@)exp(~ya® +iaf).

g1 (5@) = G@exp([~p- B +4a’ |x/2),
gu(x.a) = D(@exp([ -~ +4a” |x12),
g, (xa) = Ez(a)exp([—}/+m}c/2),
gn(na) = B(@exp([—7+7> +4a? |x/2)

where 4,(a), Bi(«), Ci(a), Di(a), EX(x), and Fy(¢) are unknown functions to be
determined from boundary conditions. In the following, Chue and Ou considered
both permeable and impermeable crack surface conditions.

(8.123)

8.5.2 Impermeable crack problem

For an impermeable crack embedded in a two-FGPMSs system as shown in Fig. 8.11,
we have the following continuity conditions along the interface x = 0, symmetric
conditions with respect to the x-axis, and the crack face conditions:

(1) Continuity conditions along the interface x = 0.

w(0,y) =w®(0, ), ¢1(0,y)=¢*(0,y),

8.124
o0(0,) = 72(0,5),  DO(0, ) = DA(0, ) (8.124)

(2) Symmetric conditions.
If all external loads are symmetric with respect to the x-axis, it is sufficient to
consider the upper surface for y > 0 and to assume

wh(x,0)=0, ¢W(x,00=0 (for 0<x<a and b<x<oo) (8.125)
w@(x,0)=0, ¢ (x,0)=0 (for —=<x<0) (8.126)

(3) Conditions on the crack surfaces.
The crack surface is assumed to be impermeable and simultaneously subjected
to electrical displacement D(x) and shear traction o(x):

ol (x,0)=0(x), DP(x,00=D(x)  (for a<x<b) (8.127)

Chue and Ou [21] then noted that D(x) and o(x) in Eq. (8.127) can be obtained
from the remote electrical and mechanical loads using the superposition method.

After applying the continuity conditions Eq. (8.124) and taking the Fourier in-
verse transform, the four unknown functions C(a), D\(), Ex(x), and F,(¢) can be
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expressed by the rest of the two functions 4,(«) and B;(«) as

E@)-C@)=—|" [LjAl(p)dp,

2n Y=\ a? + p* +if,

Fy(@)~Dy(a) = Ej:[m% (p)dp,

cdsE, (@) +elssF, () — cg’SpC (a)—e pD, ()
1 o
on w(a +p*+ifp
elssky (a) — xi\sF, (a) —efs pC (a) + &0, pDy ()
1oy ipo
T on —w(az +p2+ifip

(8.128)

J[c 4(p)+esB (p)]dp,

j[_elos A4 (p)+x\\B, (,0):|dp

where

Iy 2 2 _ 2 2
“P-NB +4a” Vfgw'a’ g YNy A (8.129)

p= B

As in Section 8.4, introduce two dislocation functions defined by Eq. (8.100).
Then, substituting Eq. (8.123) into Eq. (8.121), later into Eq. (8.100), and applying
the conditions (8.125), Chue and Ou indicated that g,(x) and g,(x) must satisfy the
following equations:

b b
L g (Hdt = j g,(Ndt =0 (8.130)
The two remaining unknown functions can then be obtained as
i b _ i b .
A== g0 dt, B(a)==] g (edr (8.131)
avva ava

By using the residue theorem, they obtained the four unknown functions C,(¢),
Dl(a), Ez(a), and Fz(a) as

(s—n)a b (s—n)a b

Cl(a)= 2 (p—s)a L g (e mdt, D(a)= 2n(p-s)at L g, (H)edt, -
Ey(a)=—2=m% ﬁ g (edi, Fy(a) =M% ﬂ’ &, (e ds

2m(p -8y

wheren, =, — /2 and o, =\Ja? + > /4.
Making use of Egs. (8.121), (8.123), (8.131), and (8.132), the condition (8.127)
yields

2n(p -9y
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ol (x,0) = o(x) = epx lJ.b[cg)5 g (O +elsg, Ok (x,0) + ky (x,£)]de,
T (8.133)
DO (5,0)= D) = — [ ety () - 8, s D10k (1) + o )

where

o —Ja? +i
[M) et d g (8.134)

i
kl(x,t):EI -

—oo

A=) o a’(s—ny) ; 2. 32
ky(x,t)=e 2 ' N e (8135
? '[0 Lp—s)nl\/a2+,32/4 ( )

To solve the singular integral equation (8.133), define a function K,(«) as the
factor in the integrand of Eq. (8.135) as

2| g —
a (al o, +

7—ﬂj
@som) _ (8.136)
(p—s)mJa? + B2 /4 al(al+a2+ﬂ_7j(al_ﬂ] .

2

2
where @, =\/a?+y?/4.

By separating the singular term of the kernels k,(x, £), Eq. (8.133) can be rewrit-
ten as

Ky(a)=

o(x) =efx %J‘: [chg () +eg, ()] [i +hy(x, 1) + Ky (x, t)} de,

(8.137)

D) =er [ letyg, (1)~ k8,2, (1) [L )+ (x, t)} dt
T oa t—Xx

where

0.25
By (x,1) = J:KI +ﬁ_zj cos (gj - l}sin a(t—x)da
[04

+IA 1+— - in 4 (t—x)d
. e s 5 cosa(t—x)da

0.25
+ J-OOKH’B—Z) sin(gj —ﬁ}cosa(t —x)da +£J'°° cosa(t _x)da
A a? 2 20 2 J4 a

(8.138)

with tan@ = f/c and A as an arbitrary positive constant.

The solutions of the singular integral equation with the Cauchy type kernel have
the form
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q(=—2D (i=1,2) (8.139)
Ja—ab-1)

where G(f) are bounded functions. Chue and Ou then obtained the stress intensity
factors and electric displacement intensity factors as

ky(b) = 1II£1+ 2(x —b)a}}z) (x,0)=—

b= im o 0=
Bb

kP (b) = lim J2(x=b)D{ (x,0) = _e_—z

kP (a) = lim \2(a=x)D" (x,0) = FTTﬁEMKM@‘K%%WH

To obtain the numerical solution of G,(a) and G«(b) (i = 1, 2), they normalized
Egs. (8.137) and conditions (8.130) into the following form:

[c35G, (D) + [5G, ()],

\I(b a)/2
[CgsGl (a)- elost (a)],

(8.140)
elsG, (b) —x,G, (b)],

o(x)=el I [cssfl(t)+615f2(t)]{ e + (X", ) + ke, (X7, t*)}

O (8.141)
D(x) = e/ I lels /1(7)— K]lfz(t)]{( ) +h (X0 (X7t )}
j_ll F(D)T = jll £(1)F =0 (8.142)
where
Xx=(x-c)/ay, Tt =(t-c)la,, x"=ax+c, 1" =ayl +c, (38.143)

fl(t_) =g,(1), fz(t_) =g,(1)

Equation (8.141) is similar to Eq. (8.110) and again the singular integral equa-
tion of the first kind. Following the same manner of treatment as Eq. (8.112), we
can obtain the relationship between function f;(#) and the weighting function

Fi(t) as
. F@® RO
fl(t)——(lﬂ_)(l_t_), S (1) N TS (8.144)
Thus, Eqs. (8.141) and (8.142) can be solved by using the definition (8.144) and

reducing these two equations into the following Chebyshev polynomial:
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Hx

ef &
o(x,)= B Z[cgsﬁ(tk)"'eloSFZ(tk)]
k=1
x{ ! +n{hl(x**,t(k>)+k2(x**,t(k>)}},
t, — X,
P 0 0
D(x,) === [elF (1)~ ki Fy (1) (8.145)
k=1

{ — ol (X7, 1) + k, (x**,t("))}},

4 —x,

T~ T
=D F(t)=0, =Y F(t)=0
n nyo

where

s

X" =ayx, +c, t® =apt, +c,

2k—1
os—( )n’ J@ZCOSE (k=1-nr=1--n-
2n n

(8.146)
t,=c

Making use of the relationships between Egs. (8.139), (8.143), and (8.144), the
field intensity factors (8.140) can be rewritten as

ey (b) = = \Ja, [ Fy (1) + s Fy (D],
ky(a) = P \Jay [ (=1) + s Fy (< 1)),
kP (b) = —eP \Jay [els Fy (1) — &0, Fy (D],
kP (a) = e/ \Ja, [efsFy (~1) = K\ Fy (~1)]

(8.147)

where the unknown values of Fi(—1) and Fi(1) can be obtained from the quadratic
extrapolation from Fi(z,—1), F(t,~—2), F(t,~3) and F(t,), F(t;), F(t,), respectively.

8.5.3 Permeable crack problem

In [21], Chue and Ou also considered the case of a permeable crack face. In this
case, the symmetric condition (8.125), and crack face condition (8.127), are modi-
fied to be

¢ (x,0)=0 (for 0<x <o) (8.148)
DP(x,00=D,(x)  (for a<x<b) (8.149)

where D, is defined in Eq. (8.96).
To satisfy the conditions of the permeable crack problem, Chue and Ou indi-
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cated that they need one dislocation function g;(x) only. Similar to the procedure in
Subsection 8.5.2, the corresponding stress and electric displacement can be written
as

o(x) = ckef~ 1 Ib [L + I (x,0) +ky (x,1)]g, (D),
moe Iy (8.150)
D,(x) = e - [ Tty () ks (e, ()
mea —Xx

The corresponding stress intensity factor k3 and the electric displacement inten-
sity factor &P are given by

ky (b) = —ePbcd\Jag Fi (1), ksy(a) = ePrch\fay F(-1),

(8.151)
kP (b) = —eels Ja, F (1), kP (a) = ePels\Ja, Fy(-1)

Chue and Ou finally noted that since the crack is assumed to be electrically
permeable, the condition (8.148) results in the electrical field £, being continuous
across the crack surfaces and remaining at a finite value at the crack tips. However,
from the constitutive equations of piezoelectric material, the electrical displacement
D, is related to the shear strain . and the piezoelectric constant e;s. Therefore, D,
must be singular at the crack tips, due to the discontinuous displacement of the
crack surface. The corresponding electrical displacement intensity factors &% thus

depend only on the material constant e but not on the applied electric load.
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quartz 1,2

Index 331

R

reliability 9, 53,291

representative volume element (RVE)
14, 82

rhombohedral symmetry 3

Rochelle salt 1

rule of mixture 14

S

Saint-Venant decay analysis

SED 97, 100

shear-lag model 21, 39, 51

shorthand notation 28

singularity 34, 125, 149, 154-159

state space 21, 47, 48, 51, 205, 206,
218-220

state space approach 205, 231

205, 206

state space equation 292-294

state space model 48, 205

strain tensor 5, 110

stress and electric field 53, 54, 59,
63, 154, 156, 157, 295

stress and electric field transfer 53, 54

stress transfer 64, 71-73, 78, 79,
81

structural actuator 12

summation convention 4

suspension spinning process 13

2,291, 325

symplectic 21, 42, 44, 46, 47, 51,
149, 171, 192

symmetrical

T

thermal effect 89

thermodynamic 1

three-dimensional 4, 5, 12, 21, 33,
149, 182, 189, 249



332 Index

tourmaline 1

traditional Cartesian notation 4

transversely isotropic material 7

Trefftz FEM 31, 109, 111, 117, 121,
132

Trefftz finite element
127,129, 135

trigonal crystallized silica 2

21, 31, 109,

trigonometric material gradation 9
two-dimensional 9, 24, 29, 48, 113,
118, 121, 166, 197, 205, 291, 314

two-index notation 5

U

uniform fields model 14
uni-morph 9

\%

variational principle 6, 31, 110, 113,
153-155,173

variational symbol 6, 114

vibration suppression 12

Volterra integral equations 21, 36

volume fraction 13
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