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Preface 

 
This book contains a comprehensive treatment of piezoelectric materials using 
linear electroelastic theory, the symplectic model, and various special solution 
methods. The volume summarizes the current state of practice and presents the 
most recent research outcomes in piezoelectricity. Our hope in preparing this book 
is to present a stimulating guide and then to attract interested readers and 
researchers to a new field that continues to provide fascinating and technologically 
important challenges. You will benefit from the authors’ thorough coverage of 
general principles for each topic, followed by detailed mathematical derivations and 
worked examples as well as tables and figures in appropriate positions. 

The study of piezoelectricity was initiated by Jacques Curie and Pierre Curie in 
1880. They found that certain crystalline materials generate an electric charge 
proportional to a mechanical stress. Since then new theories and applications of the 
field have been constantly advanced. These advances have resulted in a great many 
publications including journal papers and monographs. Although many concepts 
and theories have been included in earlier monographs, numerous new 
developments in piezoelectricity over the last two decades have made it 
increasingly necessary to collect significant information and to present a unified 
treatment of these useful but scattered results. These results should be made 
available to professional engineers, research scientists, workers and postgraduate 
students in applied mechanics and material engineering.    

The objective of this book is to fill this gap, so that readers can obtain a sound 
knowledge of the solution methods for piezoelectric materials. This volume details 
the development of solution methods for piezoelectric composites and is written for 
researchers, postgraduate students, and professional engineers in the areas of solid 
mechanics, physical science and engineering, applied mathematics, mechanical 
engineering, and materials science. Little mathematical knowledge besides the 
usual calculus is required, although conventional matrixes, vectors, and tensor 
presentations are used throughout the book.  

Chapter 1 provides a brief description of piezocomposites and the linear theory 
of piezoelectric materials in order to establish notation and fundamental concepts 
for reference in later chapters. Chapter 2 presents various solution methods for 
piezoelectric composites which can be taken as a common source for subsequent 
chapters. It includes the potential function method, Lekhnitskii formalism, 
techniques of Fourier transformation, Trefftz finite element method, integral 
equation approach, shear-lag model, and symplectic method. Chapter 3 deals with 
problems of fibrous piezoelectric composites, beginning with a discussion of 
piezoelectric fiber push-out and pull-out, and ending with a brief description of the 
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solution for a piezoelectric composite with an elliptic fiber. Chapter 4 is concerned 
with applications of Trefftz method to piezoelectric materials. Trefftz finite element 
method, Trefftz boundary element method, and Trefftz boundary-collocation 
method are presented. Chapter 5 describes some solutions of piezoelectric problems 
using a symplectic approach.  Chapter 6 presents Saint-Venant decay analysis of 
piezoelectric materials by way of symplectic formulation and the state space 
method. Chapter 7 reviews solutions for piezoelectric materials containing 
penny-shaped cracks. Chapter 8 describes solution methods for functionally graded 
piezoelectric materials. 

I am indebted to a number of individuals in academic circles and organizations 
who have contributed in different, but important, ways to the preparation of this 
book. In particular, I wish to extend appreciation to my postgraduate students for 
their assistance in preparing this book. Special thanks go to Ms. Jianbo Liu of 
Higher Education Press for her commitment to the publication of this book. Finally, 
we wish to acknowledge the individuals and organizations cited in the book for 
permission to use their materials.  

I would be grateful if readers would be so kind as to send reports of any 
typographical and other errors, as well as their more general comments. 
 
 
 

Qing-Hua Qin 
Canberra, Australia 

May 2012 
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Notation 

English symbols 
aij, bij reduced material constants defined in Eq. (1.26) 
Bi  magnetic flux 
ci  unknown coefficients in Eq. (4.9) and elastic stiffness constants in Chapter 3 
cijkl, cij  elastic stiffness constants 
dij  piezoelectric charge constants 
Di  electric displacements 
eijk, eij piezoelectric constants 

ije   piezomagnetic coefficient 

Ei  electric field 
fi  mechanical body forces 
fij   elastic compliances 
gij  piezoelectric voltage constants 
Hi  magnetic field intensity 
mij  reduced material constants defined in Eq. (6.5) 
qs  surface charge 
Q  electric charge density 
ti  surface tractions 
u, v, w displacement in x, y, z directions, respectively 
ui  displacements 
 
Greek symbols 

ij  magnetoelectric coupling coefficient 
    2

55 11 15c e

n   
2( ) ( ) ( )

55 11 15
n n nc e for n = 0,1,2, , defined in Eq. (5.73) 

*   2
11 11 11 defined in Eq. (5.119) 

ij  elastic strains 
  temperature change 
ij  dielectric constants 
ij  magnetic permeability 
ij  stresses 
  Poisson’s ratio 
  electric potential 
  magnetic potential 
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Other symbols 
/ x  partial derivative of a variable with respect to x 

[ ]   denotes a rectangular or a square matrix 
{ }  denotes a column vector 
[ ]–1  denotes the inverse of a matrix 
[ ]T  denotes the transpose of a matrix 
(  )  a bar over a variable represents the variable being prescribed or complex 

conjugate 
  = 2/ x2+ 2/ y2 

 
 



Chapter 1  Introduction to Piezoelectricity 

This chapter provides a basic introduction to piezoelectricity. It begins with a dis-
cussion of background and applications of piezoelectric materials. We then present 
the linear theory of piezoelectricity, functionally graded piezoelectric materi-
als(FGPM), and fundamental knowledge of fibrous piezoelectric composites(FPC). 

1.1  Background 

Piezoelectric material is such that when it is subjected to a mechanical load, it gen-
erates an electric charge (see Fig. 1.1(a)). This effect is usually called the “piezo-
electric effect”. Conversely, when piezoelectric material is stressed electrically by a 
voltage, its dimensions change (see Fig. 1.1(b)). This phenomenon is known as the 
“inverse piezoelectric effect”. The direct piezoelectric effect was first discovered by 
the brothers Pierre Curie and Jacques Curie more than a century ago [1]. They 
found out that when a mechanical stress was applied to crystals such as tourmaline, 
topaz, quartz, Rochelle salt and cane sugar, electrical charges appeared, and this 
voltage was proportional to the stress.  

 

Fig. 1.1  Electroelastic coupling in piezoelectricity.(a) Piezoelectric effect: voltage induced 
by force. (b) Inverse piezoelectric effect: strain induced by voltage. 

The Curies did not, however, predict that crystals exhibiting the direct piezo-
electric effect (electricity from applied stress) would also exhibit the inverse piezo-
electric effect (strain in response to applied electric field). One year later that prop-
erty was theoretically predicted on the basis of thermodynamic consideration by 
Lippmann [2], who proposed that converse effects must exist for piezoelectricity, 
pyroelectricity (see Fig. 1.2), etc. Subsequently, the inverse piezoelectric effect was 
confirmed experimentally by Curies [3], who proceeded to obtain quantitative proof 
of the complete reversibility of electromechanical deformations in piezoelectric 
crystals. These events above can be viewed as the beginning of the history of piezo-
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electricity. Based on them, Woldemar Voigt [4] developed the first complete and 
rigorous formulation of piezoelectricity in 1890. Since then several books on the 
phenomenon and theory of piezoelectricity have been published. Among them are 
the books by Cady [5], Tiersten [6], Parton and Kudryavtsev [7], Ikeda [8], Ro-
gacheva [9], Qin [10,11], and Qin and Yang [12]. The first [5] treated the physical 
properties of piezoelectric crystals as well as their practical applications, the second 
[6] dealt with the linear equations of vibrations in piezoelectric materials, and the 
third and fourth [7,8] gave a more detailed description of the physical properties of 
piezoelectricity. Rogacheva [9] presented general theories of piezoelectric shells. 
Qin [10,11] discussed Green’s functions and fracture mechanics of piezoelectric 
materials. Micromechanics of piezoelectricity were discussed in [12]. 

 

Fig. 1.2  Illustration of pyroelectricity. 

In general, the piezoelectric effect occurs only in nonconductive materials. Pie-
zoelectric materials can be divided into two main groups: crystals and ceramics. 
The best known piezoelectric material in the crystal group is quartz (SiO2), the 
trigonal crystallized silica which is known as one of the most common crystals on 
the earth’s surface. In the ceramics group, a typical piezoelectric material is barium 
titanate (BaTiO3), an oxide of barium and titanium.  

It should be mentioned that an asymmetric arrangement of positive and negative 
ions imparts permanent electric dipole behavior to crystals. In order to “activate” 
the piezo properties of ceramics, a poling treatment is required. In that treatment the 
piezo ceramic material is first heated and an intense electric field (> 2 000 V/mm) is 
applied to it in the poling direction, forcing the ions to realign along this “poling” 
axis. When the ceramic cools and the field is removed, the ions “remember” this 
poling and the material now has a remanent polarization (which can be degraded by 
exceeding the mechanical, thermal and electrical limits of the material). Subse-
quently, when a voltage is applied to the poled piezoelectric material, the ions in the 
unit cells are shifted and, additionally, the domains change their degree of align-
ment. The result is a corresponding change of the dimensions (expansion, contrac-
tion) of the lead zirconate titanate (PZT) material. In the poling treatment, the Curie 
temperature is the critical temperature at which the crystal structure changes from a 
nonsymmetrical (piezoelectric) to a symmetrical (non-piezoelectric) form. Particu-
larly, when the temperature is above the Curie temperature, each perovskite crystal 
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(perovskite is a calcium titanium oxide mineral species composed of calcium 
titanate, with the chemical formula CaTiO3) in the fired ceramic element exhibits a 
simple cubic symmetry with no dipole moment (Fig. 1.3(a)). At temperatures below 
the Curie point, however, each crystal has tetragonal or rhombohedral symmetry 
and a dipole moment (Fig. 1.3(b)). 

 

Fig. 1.3  Crystal structures with the Curie temperature.(a) Temperature above Curie temperature: 
symmetric. (b) Temperature below Curie temperature: non-symmetric. 

Although piezoelectricity was discovered in 1880 it remained a mere curiosity 
until the 1940s. The property of certain crystals to exhibit electrical charges under 
mechanical loading was of no practical use until very high input impedance ampli-
fiers enabled engineers to amplify their signals. In 1951, several Japanese compa-
nies and universities formed a “competitively cooperative” association, established 
as the Barium Titanate Application Research Committee. This association set an 
organizational precedent not only for successfully surmounting technical challenges 
and manufacturing hurdles, but also for defining new market areas. Persistent ef-
forts in materials research created new piezoceramic families which were competi-
tive with Vernitron’s PZT. With these materials available, Japanese manufacturers 
quickly developed several types of piezoelectric signal filters, which addressed 
needs arising from television, radio, and communications equipment markets; and 
piezoelectric igniters for natural gas/butane appliances. As time progressed, the 
markets for these products continued to grow, and other similarly lucrative ones 
were found. Most notable were audio buzzers (smoke alarms), air ultrasonic trans-
ducers (television remote controls and intrusion alarms) and devices employing 
surface acoustic wave effects to achieve high frequency signal filtering. 

The commercial success of the Japanese efforts attracted the attention of indus-  
try in many other countries and spurred new efforts to develop successful piezo-
electric products. There has been a large increase in relevant publications in China, 
India, Russia and the USA. Since the piezoelectric effect provides the ability to use 
these materials as both sensors and actuators, it has found relevant applications re-
quiring accurate measurement and recording of dynamic changes in mechanical 
variables such as pressure, force and acceleration. The list of applications continues 
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to grow and now includes [13] (a) aerospace: model testing, wind tunnel and shock 
tube instrumentation, landing gear hydraulics, rocketry, structures, ejection systems 
and cutting force research; (b) ballistics: combustion, explosion, detonation and 
sound pressure distribution; (c) biomechanics: multi-component force measurement 
for orthopedic gait and posturography, sports, ergonomics, neurology, cardiology 
and rehabilitation; (d) engine testing: combustion, gas exchange and injection, in-
dicator diagrams and dynamic stressing; (e) engineering: materials evaluation, con-
trol systems, reactors, building structures, ship structures, auto chassis structural 
testing, shock and vibration isolation and dynamic response testing; (f) indus-
trial/manufacturing: machining systems, metal cutting, press and crimp force, 
automation of force-based assembly operations and machine health monitoring; and 
(g) OEMs (original equipment manufacturer): transportation systems, plastic mold-
ing, rockets, machine tools, compressors, engines, flexible structures, oil/gas drill-
ing and shock/vibration testers.  

Judging by the increase in worldwide activity focused on using a large number 
of very precise piezoelectric sensors and actuators for active control in communica-
tions, navigation and packaging systems, and from the successes encountered in the 
last sixty years, it is expected that piezoelectricity will enjoy a continuing role in 
both fundamental and technical applications in the future.  

In this chapter, the linearized piezoelectric formulations described in [10,11,14], 
the concept of FGPM and fiber piezocomposites, which will be needed in later 
chapters, are briefly summarized. The basic equations of linear electroelasticity are 
first reviewed, followed by a brief discussion of FGPM and FPC, which have im-
portant applications in practical engineering. Then some issues in interface and 
fracture mechanics in piezoelectricity are outlined. 

1.2  Linear theory of piezoelectricity 

1.2.1  Basic equations in rectangular coordinate system  

This section recalls briefly the three-dimensional formulation of linear piezoelec-
tricity that appeared in [11,14]. Here, a three-dimensional Cartesian coordinate sys-
tem is adopted where the position vector is denoted by x (or xi). In this book, both 
conventional indicial notation xi and traditional Cartesian notation (x, y, z) are util-
ized. In the case of indicial notation we invoke the summation convention over re-
peated Latin indices, which can be of two types with different ranges: i, j, k=1,2,3 
for lower-case letters and M, N=1,2,3,4 for upper-case letters. Moreover, vectors, 
tensors and their matrix representations are denoted by bold-face letters. The 
three-dimensional constitutive equations for linear piezoelectricity can be derived 



1.2  Linear theory of piezoelectricity    5 

by considering an electric enthalpy function H defined as [11] 

 1 1( , )
2 2

E
ijkl ij kl ij i j kij ij kH c E E eE E  (1.1)  

where the strain tensor  and the electric field vector  are related to 

the displacement u and the electric potential  by 

( )ij ( )iEE

 , ,
1 ( ),
2ij i j j i i iu u E ,  (1.2) 

in which a comma followed by arguments denotes partial differentiation with re-
spect to the arguments, E

ijklc , are the elastic, piezoelectric, and dielec-

tric constants, respectively. The superscript E in 

and kij ije
E
ijklc  indicates that the elastic con-

stants are measured at a constant electric field. The superscript   in  indicates 

that the dielectric constants are measured at a constant strain. To simplify subse-
quent writing, we shall omit the superscripts E and  in the remaining part of this 
book. The material constants in Eq. (1.1) can be reduced by the following consid-
eration. According to the definition (1.2) we may write ij= ji. It follows that 

ij

  (1.3) ijkm ijmkc c

Further, from we have ij ji

  (1.4) ,ijkm jikm kij kjic c e e

In view of these properties, it is useful to introduce the so-called two-index no-
tation or compressed matrix notation [10]. Two-index notation consists of replacing 
ij or km by p or q, i.e. cijkm=cpq, eikm=eiq, ij= p when i=j, and 2 ij= p when i j, 
where i, j, k, m take the values 1-3, and p, q assume the values 1-6 according to the 
following replacements 11 1, 22 2, 33 3, 23 or 32 4, 13 or 31 5, 12 or 
21 6. 

Constitutive relations are obtained from the electric enthalpy function (1.1) as 

 

( , ) ,

( , )

ij ijkl kl kij k
ij

i ikl kl
i

H c e E

HD e
E

E

E
ik kE

kE

 (1.5) 

where  is the stress tensor and Di the electric displacement vector. Making use 

of two-index notation mentioned above, Eqs. (1.5) are reduced to 
ij

  (1.6) ,p pq q kp k i iq q ikc E D e
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in which  

  (1.7) 
(when )

2 (when )
ij

p
ij

i j
i j

In addition to the constitutive relation (1.5) above, three other forms of constitu-
tive representation are commonly used in the linear theory of piezoelectricity to 
describe the coupled interaction between elastic and electric variables [11]. Each 
type has its own different set of independent variables and corresponds to a differ-
ent electric enthalpy function, as listed in Table 1.1. It should be pointed out that an 
alternative derivation of formulae is merely a transformation from one type of rela-
tion to another. Some relationships between various constants occurring in the four 
types are as follows: 

  (1.8) 

1 T 1

1 1 T

1 1

( ) ,   ,   ,   ( ) ( ) ,
( ) ,    ( ) ,    ( ) ,

( ) ,    ( )
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1

Table 1.1  Four types of fundamental electroelastic relations. 

Independent variables Constitutive relations Electric enthalpy functional 

, E 
TEc e E

D e E
 0H = 1

2
cE 2– 1

2
E2–e E 

, D 
TDc h D

E h D
 1H = +ED 0H

,E 
TEf d E

D d E
 2H = –  0H

, D 
TDf g D

E g D
 3H = + ED –  0H

 
Having defined constitutive relations, the related divergence equations and 

boundary conditions can be derived by considering the generalized variational prin-
ciple [10]: 

 
 

[ ( , ) ]d d d 0
t q

i i i i sH f u Q t u s q sE  (1.9) 

where  is the variational symbol, fi the body force vector, Q the electric charge 
density, and  is the solution domain. t and q are the boundaries on which the 
surface traction and surface charge are prescribed, respectively. and it sq  are the 
prescribed surface traction and surface charge, respectively. 
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The variational equation (1.9) provides the following results: 

     (in  ) (1.10) , ,0,      0ij j i i if D Q

   (on ),           (on )ij j i t i i s qn t D n q  (1.11) 

and the constitutive equations (1.5), where ni is the unit outward normal vector to . 
Equations (1.10) are the elastic equilibrium equations and Gauss’ law of electro-
statics, respectively, Eqs. (1.11) are boundary conditions and Eqs. (1.5) the constitu-
tive equations. 

The boundary value problems defined by Eqs. (1.2), (1.5), (1.10), and (1.11) 
should be completed by the following essential boundary conditions: 

    (on ),         (on )i i uu u   (1.12) 

where  and iu are prescribed displacements and electrical potential, and u and 
 are the parts of ( u t q )  on which the displacement and 

electric potential are prescribed, respectively.  
Substitution of Eq. (1.2) into Eq. (1.6), and later into Eq. (1.10), results in 

 11 1,11 11 12 2,12 13 44 3,13 11 12 1,22
1 1( ) ( ) ( )
2 2

c u c c u c c u c c u  

 44 1,33 31 15 ,13 1( )c u e e f 0  (1.13) 

 11 2,22 11 12 1,12 13 44 3,23 11 12 2,11
1 1( ) ( ) ( )
2 2

c u c c u c c u c c u  

  (1.14) 44 2,33 31 15 ,23 2( )c u e e f 0

  44 3,11 44 13 1,31 2,32 44 3,22 33 3,33( )( )  c u c c u u c u c u
( ) 0e e f 15 ,11 ,22 33 ,33 3  (1.15) 

  15 3,11 3,22 15 31 1,31 2,32 33 3,33( ) ( )( )e u u e e u u e u
( ) 0Q  (1.16) 11 ,11 ,22 33 ,33

for transversely isotropic materials (class C6v=6mm) with x3 as the poling direction 
and the x1-x2 plane as the isotropic plane. 

1.2.2  Boundary conditions 

In electroelasticity theory, mechanical boundary conditions are formulated just as in 
classical elasticity theory. The electric boundary conditions are, however, still de-
bated. The first attempt to define the electric boundary conditions over crack faces 
was by Parton [15]. He assumed that although the magnitude of the normal electri-
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cal displacement component at the crack face is very small, the electrical displace-
ment is continuous across the crack faces. He used the following electric boundary 
conditions: 

  (1.17) , nD Dn

)

Later, Hao and Shen [16] improved on the above assumption by considering the 
electric permeability of air in the crack gap. In addition to Eq. (1.17), they presented 
an equation for the boundary condition at crack faces: 

  (1.18) , ( ) (n n n n n aD D D u u

where a is the permittivity of air. However, Eq. (1.18) has for a long time remained 
disregarded due to its complex mathematical treatment. 

As pointed out by Suo et al. [17], the above assumption is not physically realis-
tic as there will clearly be a potential drop across the lower capacitance crack. This 
is particularly true for those piezoelectric ceramics with permittivity 103 times 
higher than the environment (e.g. air or vacuum). For this reason, Deeg [18] pro-
posed another set of electric boundary conditions over crack faces: 

  (1.19) 0n nD D

Equation (1.19) are derived from the constitutive equation Dn= 
aEn. This is 

equivalent to having crack surfaces free of surface charge as the electrical boundary 
condition, and thus the electric displacement vanishes in the environment. We adopt 
Eq. (1.19) in most of the subsequent chapters because of its much simpler mathe-
matical treatment and the fact that the dielectric constants of a piezoelectric material 
are much larger than those of the environment (generally between 1 000 and 3 500 
times greater).  

1.3  Functionally graded piezoelectric materials 

Functionally graded materials (FGMs) are composite materials formed of two or 
more constituent phases with a continuously variable composition. This feature can 
eliminate the stress discontinuity that is often encountered in laminated composites 
and thus can avoid delamination-related problems. Traditionally, homogeneous 
laminas with different properties are bonded together to form laminated composite 
structures for engineering applications. The discontinuity of material properties 
across adjoining layers in a laminated composite can, however, result in crack ini-
tiation or delamination at the interfaces. To mitigate those disadvantages of lami-
nated composite structures, a new class of piezoelectric materials called FGPMs has 
recently been developed. The FGPM is a kind of piezoelectric material intentionally 
designed to possess desirable properties for specific applications, and featuring ma-
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terial composition and properties varying continuously in desired direction(s). 
Smart structures or elements made of FGPM are thus superior to conventional sen-
sors, and actuators are often made of uni-morph, bi-morph and multimorph materi-
als. This is because, for piezoelectric laminates with layered materials having ho-
mogeneous properties, large bending displacements, high stress concentrations, 
creep at high temperature and failure from interfacial bonding frequently occur at 
the layer interfaces under mechanical or electric loading. These effects can lead to 
reduced reliability and lifespan.  

1.3.1  Types of gradation 

The mechanical, electrical, magnetic, and thermal properties of FGMs are usually 
assumed to have the same functions of certain space coordinates. Three com-
monly-used graded forms are. 

(1) Exponential material gradation. 
All the material constants including elastic constants, piezoelectric parameters, 

dielectric constants, thermal expansion coefficients, and material density follow the 
exponential law: 

 0 x
ij ijM M e  (1.20) 

where Mij represents material constants such as cij, or fij, 0
ijM are the corresponding 

values at the plane x=0, and  denotes a material graded parameter. 
(2) Quadratic material gradation. 
All material constants are assumed to have the same power-law dependence on 

the coordinate x: 

 0 (1 )n
ij ijM M x  (1.21) 

where n is the inhomogeneous constant determined empirically. 
(3) Trigonometric material gradation. 
For some special applications, the material constants of FGMs may follow a 

trigonometric law as [19] 

  (1.22) 0
1 2 2( cos sin )n

ij ijM M a X a X 2

where a1, a2,  and n are four material constants. 

1.3.2  Basic equations for two-dimensional FGPMs 

The field equations of electroelasticity reduce to two-dimensional form in two spe-
cial cases which are of some interest. 
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(1) Plane strain. 
Consider a transversely isotropic FGPM. In this case, according to Eq. (1.6), the 

x-y plane is the isotropic plane, and one can employ either the x-z or y-z plane for 
the study of plane electromechanical phenomena. Choosing the former, the plane 
strain conditions require that 

 0  (1.23) yy zy xy yE

By substitution of Eq. (1.23) into Eq. (1.6), we have 
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13 33 33
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0 0 0
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 (1.24) 

or inversely 

 

11 13 31
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 (1.25) 

where aij, bij and ij are the reduced material constants. They are related to the elas-
tic compliance tensor fij, the piezoelectric tensor gij, and the dielectric impermeabil-
ity tensor ij by the following relations [20]: 

 

22
12 13 1312

11 11 13 13 33 33 55 55 15 15
11 11 11

2
31 12 31 13 31

31 31 33 33 11 11 33 33
11 11 11

,   ,   ,  ,   ,  

 ,   ,    ,   

f f ffa f a f a f a f b g
f f f
g f g f g

b g b g
f f f

1.26  

with fij, gij and ij being defined in Table 1.1. In the constitutive equations (1.39) and 
(1.40), –Ei is used instead of Ei because it will allow the construction of a symmetric 
generalized linear response matrix which will prove to be advantageous. When the 
constitutive equation (1.24) is substituted into Eq. (1.10) we obtain 

 11 1,1 13 3,3 31 ,3 55 3,1 1,3 15 ,1 1,1 ,3
[ ]c u c u e c u u e f 0  (1.27) 

 55 3,1 1,3 15 ,1 13 1,1 33 3,3 33 ,3 3,1 ,3
[ ]c u u e c u c u e f 0  (1.28) 



1.4  Fibrous piezoelectric composites    11 

 15 3,1 1,3 11 ,1 31 1,1 33 3,3 33 ,3,1 ,3
[ ]e u u e u e u Q 0

U

 (1.29) 

in which the material constants are functions of coor-

dinates. When the Airy stress function approach is used to solve this equation [

,  ,  ,  ,  ,  and ij ij ij ij ij ijc e a b

21], 
the solution can be divided into two major parts: a homogeneous solution part and a 
particular solution part. For the homogeneous solution part, the required strain 
compatibility equation and the Airy function U are, respectively, expressed by 

  (1.30) 1,33 3,11 13,13 0

  (1.31) ,33 ,11 ,13, ,x z xzU U

For most applications of FGPMs, the material properties are designed to vary con-
tinuously in one direction only, say, the z-direction. Substituting Eqs. (1.2), (1.24), 
(1.25), and (1.31) into Eqs. (1.30) and (1.29), we have [21] 

 31 ,33 33 ,11 15 ,113 33 ,3 11 ,11,3 ,3 ,3
b U b U b U  (1.32) 

 11 ,33 13 ,11 55 ,113 13 ,1133 33 ,1111,33 ,3
a U a U a U a U a U  

13 ,3 33 ,113 15 ,11,33 ,3
b b b  (1.33)  

(2) Anti-plane deformation. 
In this case only the out-of-plane elastic displacement u3 and the in-plane elec-

tric fields are non-zero, i.e., 

  (1.34) 
0,           ( , ),
( , ),     ( , ),     0x x y y z

u v w w x y
E E x y E E x y E

Thus the constitutive equation (1.6) is simplified to 
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The governing equations (1.10) become 

 
44 3,1 15 ,1 44 3,2 15 ,2 3,1 ,2

15 3,1 11 ,1 15 3,2 11 ,2,1 ,2

0

0

c u e c u e f

e u e u Q
 (1.36) 

1.4  Fibrous piezoelectric composites 

Due to the coupling effect between mechanical and electrical fields, piezoelectric 
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materials have been widely used in smart structures and other applications such as 
electromechanical sensors, ultrasonic transducers, hydrophones, micropositioning 
devices, buzzers, accelerometers, and structural actuators [10]. However, when 
serving as sensors and actuators, single-phase piezoelectric ceramic materials are 
often unable to meet the increased demands from modern industry for high me-
chanical performance and special structural functions, because of their intrinsic 
brittleness and the existence of microcracks and defects in most piezoelectric ce-
ramic materials. To overcome these drawbacks, piezoelectric material is usually 
embedded in non-piezoelectric materials in the form of fiber-matrix composites 
[22]. A composite configuration for structural actuation with significant advantages 
over conventional piezoelectric actuators has been conceived, and the recent deve- 
lopment of piezoelectric ceramic fibers <100 m in diameter has enabled this con-
cept to be realized. Nelson [22] has predicted that FPCs will find uses in contour 
control, non-destructive testing, vibration suppression, and noise control. The pos-
sibility of computer control using closed loop systems has led to FPC emerging as 
favored candidates for “smart” materials and structures. The first FPC were devel-
oped in the Active Materials and Structures Laboratory at the Massachusetts Insti-
tute of Technology and patented in 2000 [23]. Typically, an FPC comprises a 
monolayer of uniaxially aligned piezoelectric fibers embedded in a polymer matrix 
between two interdigitated surface electrodes through which the driving voltage is 
supplied. Since their initial development, significant advances have been made in 
many areas including fiber manufacture, matrix materials and design, electrode 
design, manufacturing techniques, and composite modeling.  

At this time, various FPCs are used in practical engineering including: 
(1) 1-3 piezo fiber composites. 
The 1-3 piezoelectric composite is the classification given in Newnham’s con-

nectivity theory [24] for the identification of composites containing piezoelectric 
ceramic rods in a polymer matrix. In Newnham’s connectivity theory there are ten 
important connectivity patterns in diphasic solids: 0-0, 1-0, 2-0, 3-0, 1-1, 2-1, 3-1, 
2-2, 3-2, and 3-3. A 3-1 (or 1-3) connectivity pattern, for example, has one phase 
self-connected in three-dimensional layers, the other self-connected in 
one-dimensional chains. The 1-3 piezo fiber composites are produced with the aim 
of obtaining a combination of piezoelectric and mechanical properties which are 
useful in electromechanically transducing applications. In the 1-3 connectivity, par-
allel fibers are embedded in a matrix in the longitudinal (z) direction. Work on pie-
zoelectric materials in transducers highlights the fact that piezoelectric composites 
have more desired properties than single phase piezoelectric materials. For example, 
a composite with PZT volume fraction of 40% can have a value of d33, almost the 
same as the PZT ceramic itself.  

Various fabrication processes exist for different configurations and connectivi-
ties of FPCs. In general, the fabrication processes include poling of the PZT fi-
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bers/rods; the fibers are arranged in a mold, infiltrated with epoxy, cured, and diced 
to produce cube-shaped blocks; the composite can be poled at the very last stage or 
the fibers can be prepoled before embedding in the matrix. A typical method of fab-
ricating composites presented in [25] is casting the polymer around the aligned PZT 
rods, the “lost wax” method, the “dice-and-fill” technique and a lamination process. 
PZT fibers may be produced by sol-gel processing, the relic process, or the viscous 
suspension spinning process [26]. Several processes using different organic solu-
tions were prepared in terms of the stiffness of the fibers and compaction [27]. It 
was found that when a certain amount of specified solutions was added, the flexi-
bility and compaction of the resulting fibers were optimized. 

The material parameters for composites, such as compliance, stiffness, permi-  
ttivity and piezoelectric constants, are obviously dependent on the arrangement of 
the matrix and fibers in the composite. Calculation of effective composite parame-
ters as a function of volume fraction is based on the rules of mixture [28]. The cal-
culation is based on the following assumptions: (a) Composite strain in the longitu-
dinal direction (z) is equal to the fiber strain and also to the matrix in the same di-
rection, and longitudinal composite stress is the weighted sum of the matrix stress 
and the fiber stress. (b) Lateral composite stress is equal to lateral fiber stress and 
also to the matrix stress, and lateral composite strain is the weighted sum of the 
corresponding matrix and fiber strains. (c) Longitudinal composite electric field is 
the same as that of matrix and also that of fiber. There is no lateral composite elec-
tric field. (d) Longitudinal composite electric displacement is the weighted sum of 
matrix and fiber electric displacement. It should be mentioned that most piezoelec-
tric 1-3 fiber composite micromechanics models were initially developed for ultra-
sonic transducer applications, but their methods can be applied to applications of 
piezoelectric fiber composites in other smart structures. A review of the 1-3 piezo-
electric composite in high-frequency (0.5 MHz) applications was given in [29]. 

(2) FPC with interdigitated electrodes (IDE). 
The 1-3 piezo composites have already demonstrated substantial advantages 

over monolithic piezoelectric ceramics, but, as indicated in [30], one major draw-
back remains from the previous work in 1-3 piezo composites low actuation per-
formance. The high dielectric mismatch between fiber and matrix (approximately 
three orders of magnitude in size) seriously reduces the electric field available to the 
fiber material for actuation. Furthermore, high field concentrations in the poly-
mer-based matrix often cause dielectric breakdown prior to poling. These problems 
can be addressed by introducing IDE technology into FPCs [31]. In 1993, Hagood 
et al. [32] developed something similar to a circuit layer with electrodes, called IDE, 
and placed them on the top and bottom surfaces of the piezoceramic layer. This 
allowed the electric field to be applied in the transverse direction of a piezoceramic, 
thus maximizing the transverse actuation. Later Bent and Hagood [31] introduced 
IDE to FPCs. As shown in Fig. 1.4 there are three main constituents of an FPC-IDE: 
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piezoelectric fibers, IDE and a polymer matrix. The fibers are typically circular in 
cross section and made by an extrusion process, but can also be fabricated using 
molding techniques or by slicing monolithic piezoelectric sheets to obtain fibers of 
rectangular cross section. The metallic electrodes are normally made using photo-
lithography. The polymeric matrix material is perhaps the constituent with the wid-
est range of acceptable materials. Ideally, the matrix will have outstanding me-
chanical, and dielectric properties and will bond to the fibers in a consistent manner. 

 

Fig. 1.4  FPC with IDE. 

In the FPC-IDE shown in Fig. 1.4, fibers are aligned in plane, with orientation 
along the z-axis, while matrix material provides the load transfer and distribution 
along the fibers. The electrode patterns have fingers of alternating polarity, and ex-
act mirror images on the top and bottom faces. Poling is predominantly along the 
z-axis direction. Application of an electric field produces primary actuation along 
the fibers and transverse actuation perpendicular to the fibers. 

To model and investigate the improvement in the effective properties of FPC 
with IDE, Bent and Hagood [31] used an analytical model based on the uniform 
fields model (UFM) and a finite element model, both of which were formulated for 
a representative volume element (RVE). The UFM is a generalization of the 
well-known “rule of mixture” which uses parallel and series (Voight and Reuss) 
additions to model the effective properties of two-phase materials. The FPC consists 
of PZT fibers aligned within a graphite/epoxy lamina and is sandwiched between 
the IDE. As the name implies, the UFM assumes that the fields within the structure 
are uniform. The rest of the formulation is based on rules analogous to the rule of 
mixture for combining two different phases/materials in various configurations. 
This led to the development of combination models for more complex arrangements 
of the two phases. The UFM method, in fact, violates compatibility and equilibrium 
at some material interfaces. However, the large material mismatches make this 
method particularly well suited to modeling these types of composites [31].  
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(3) Hollow tube FPC. 
Although FPC-IDE based on solid cross-section piezoelectric fibers are very 

useful for both longitudinal and transverse activation, they require high voltages 
and are constrained to nonconductive matrix materials. Particularly, they require the 
electric field to pass through the composite matrix. Due to the placement of the 
electrode on the matrix surface, electric field losses are significant, requiring high 
voltages for actuation. Moreover, the FPC-IDE limit the matrix to electrically non-
conductive materials, which is particularly a problem in large structure and air ve-
hicle applications where metals and carbon fiber composites are almost exclusively 
utilized in construction. To overcome these drawbacks, a new type of FPC has been 
fabricated using extruded hollow cross-section fibers [33]. Use of FPCs with hollow 
cross-section piezoelectric fibers can lower operating voltages and broaden the 
choice of possible matrix materials. In the hollow tube FPC, hollow fibers are indi-
vidually electroded on both the inside and outside surfaces [27]. They are activated 
by an electric field applied directly across the walls of the fiber, generating longitu-
dinal strain due to piezoelectric d31 mode. Even though the longitudinal strain is 
decreased by approximately half by using d31 versus the d33 mode used in solid fiber 
FPCs, the required voltage can be decreased by a factor of 10 or more since the 
electric field is applied only across the wall of the fiber instead of through the ma-
trix, thereby eliminating field losses [34].  

Several existing processes, based on molding or extrusion techniques, are 
available for fabricating hollow piezoelectric fibers [27]. Since the fibers have small 
diameters, on the order of 0.9 mm, a new manufacturing technique has been im-
plemented called microfabrication by coextrusion (MFCX) [33]. MFCX is capable 
of inexpensively producing long ceramic forms (>100 mm long) with complex 
cross-section and small features. Manufacturing of fibers with MFCX consists of 
three major steps, formation of feed rod, extrusion, and burnout/sintering [35]. As 
described in [35], the feed rod formation process has two main steps. The first is to 
mix piezoelectric powder with thermoplastic polymers and to separately mix the 
same polymers with carbon black powder so that the two mixes have nearly the 
same viscosity. The piezoelectric mix is then formed into a round, thick-walled tube, 
while part of the carbon black mix is formed into a round cylinder with diameter 
exactly the same as the inside of the piezoelectric tube. The remainder of the carbon 
black mix is formed into a square cross-section block with the same dimension as 
the inlet to the extrusion die, while a circular hole is bored into the center of the 
square, with exactly the same diameter as the outside of the piezo tube. These three 
components are then assembled, with the carbon black cylinder inside the hollow 
piezo tube, which in turn is placed inside the square block. The extrusion process 
begins when the assembled feed rod is heated and inserted into the extrusion die, 
which turns to reducing the cross-section of the feeder rod by a factor of 25 or 40, 
depending on the desired final tube dimensions. The resulting “green” fibers are 



16    Chapter 1  Introduction to Piezoelectricity 

then heated to and held at 1 300  for 48 hours during the burnout and sintering 
step. This causes the carbon to be burned off from the exterior and interior of the 
tube and causes the thermoplastics to be removed from the piezoceramic material, 
which produces a stronger, denser ceramic and is accompanied typically by a 30% 
reduction in the cross-section of the finished hollow tube. 

To assess the strain response of a piezo tube FPC under an electric field, Zhang 
et al. [36] presented a simple model detailed as follows: For a tubular structure, the 
cylindrical polar coordinate system (r, , z) as shown in Fig. 1.5 is used. The prob-
lem is assumed to be axi-symmetric and all fields are independent of polar angle  
and the displacement u  = 0. To simplify the analysis it is further assumed that the 
coupling terms containing both r and z in the displacements field can be neglected 
and ur = ur(r), uz = uz(z). Under these assumptions, the non-zero strain components 
are 

  (1.37) , , / ,r r r r z zu u r ,zu

 

Fig. 1.5  Schematic drawing of a piezoelectric tube. 

Making use of the constitutive equation (1.6), we have 
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where Er is the applied electric field on the tube wall along the r direction. It is ob-
vious that the electric field is not a constant inside the tube wall, and with a total 
voltage V applied on the tube, . In writing Eq. 
(1.38), Zhang et al. [

0 0 0 0/[ ln( / )] ( )rE V r R r r r R
36] also made the assumption that the tube is elastically iso-

tropic to simplify the analysis. Making use of the equilibrium equation (1.10) and 
Eqs. (1.38), we can derive the basic elastic equations for this problem 
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where a11 is defined in Eq. (1.26), and  is the Poisson’s ratio. The solutions to Eq. 
(1.39) are then(1.25) 
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in which a, b, and c are the integration constants which can be determined from the 
boundary conditions: 31 ,z md E

0 0 ) ln( /R r
 where Em is the average electric field in the 

tube and  at r =R0 and r0 there is no external stress 
on the tube wall, which implies r=0 at these two boundaries. Substituting Eq. (1.40) 
into Eq. (1.38) and using the boundary conditions, we obtain 

0 02 /[( )];mE V R r

 33 31 33 31
0 0 31

(1 2 )
, ,

2(1 ) 2(1 )m m
d d d d

a E b R r E c d Em  (1.41) 

All the strain components for the tube can be obtained from Eqs. (1.40) and (1.41). 
Making use of the solution, Zhang et al. [36] analyzed a typical hollow tube FPC 
and found that the effective piezoelectric constant in the radial direction of a tube 
could be changed from positive to negative by adjusting the ratio R0 /r0 for piezo-
electric materials. Therefore, it is possible to make a piezoelectric transducer with 
all the effective piezoelectric tensile constants having the same sign.  
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Chapter 2  Solution Methods 

In this chapter, the solution methods commonly used in analyzing the mechanical 
behavior of piezoelectric material are reviewed. The chapter begins with a summary 
of the potential function method in piezoelectricity, followed by a discussion of 
other methods including Lekhnitskii formalism, techniques of Fourier transformation, 
the Trefftz finite element method(FEM), the Fredholm integral equation and Abel 
equation, the shear-lag model, the symplectic method, and the state space approach.  

2.1  Potential function method 

Potential function formulation is well known for solving the system of equations in 
both the classical theory of elasticity and piezoelectricity. In this section, the poten-
tial function method for boundary value problems of three-dimensional (3D) piezo-
electricity is briefly summarized [1,2]. For a 3D piezoelectric problem of hexagonal 
solids of class 6mm, the four unknowns u1, u2, u3,  are to be expressed in terms of 
four potential functions  (x1, x2, x3),  (x1, x2, x3),   (x1, x2, x3), and  (x1, x2, x3) in 
such a way that [1]  

 1 ,1 ,2 2 ,2 ,1 3 ,3 ,3 ,, , ,u u u k 3=

=

 (2.1)  

where k is an unknown coefficient. Then, consider the problem of the piezoelectri- 
city of a hexagonal body of class 6mm subjected to electroelastic loadings. The con-
stitutive equations for the electroelastic field are expressed as 

  (2.2) T ,c e E D e E

where the superscript represents the transpose of a matrix, and 

 

, 

11 11 12 13 11

22 12 22 23 22

33 13 23 33 33

23 44 23

31 44 31

12 11 12 12

0 0 0
0 0 0
0 0 0

, ,
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ( ) / 2

c c c
c c c
c c c

c
c

c c

c

 ,  
15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

e
e

e e e
e

11

11

33

0 0
0 0
0 0

, 
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1 1

2 2

3 3

,
D E
D E
D E

D E  

Making use of Eqs. (1.2) and (2.2) and then substituting Eq. (2.1) into the 
governing differential equations (1.10), in which all body forces and free charges 
are assumed to be zero, the following four equations result: 

 

2 2 2

11 1 13 44 31 152 2 2

2 2 2

13 2 33 44 33 15 332 2 2

2 2 2

31 3 33 15 33 11 332 2 2

( ) ( )

( )

( )

c c c e e
z z z

c kc c c e e
z z z

e ke e e
z z z

0  (2.3) 

 
2

2 0
z

 (2.4) 

where 

 

2 2

1 13 44 2 442 2

44
3 15

11 12

, (1 ) , (1 )

2
(1 ) ,

kc k c k c
x y

ck e
c c

,

0

2

 

This reduces to the formulation in [2] when k =0. In the following, we review 
briefly the results presented in [2]. To obtain the solution to Eq. (2.3), Wang and 
Agrawal [2] assumed that the solution of , , and  had the following form: 

  (2.5) 
0 0

cos( ) cos( ) d dmz
A
B x y e
C

Substituting Eq. (2.5) into Eq. (2.3), we obtain 

   (2.6) 

2 2 2 2
11 1 13 44 31 15

2 2 2 2 2 2
13 2 33 44 33 15 33

2 2 2 2 2 2
31 3 33 15 33 11 33

( ) ( )

( )

( )

c m c c m e e m A
c kc m c c m e e m B

Ce ke m e e m m

where 2 2 . For simplicity, define 

 
2

2m  (2.7) 
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Substituting Eq. (2.7) into Eq. (2.6) and setting the determinant of the matrix to 
zero, we obtain 

  (2.8) 3 2
3 2 1 0 0R R R R

where 

  (2.9) 

2
0 44 33 33 33

1 15 33 13 33 11 33 33 31 13 44
2 2

33 15 11 33 13 44 33 33 15 31
2 2

33 44 11 13 33 31 33
2 2

2 15 33 11 13 11 13 15 33 11 11

15 31 1

( ),
2 2 (

       2 2
       ,

2 2
        2

R c e c
R e e c c c e e c c

c e c e c c c e e
c c c e c

R e e c c c e c c
e e c 2

3 44 15 11 44 33 13 44 11
2

3 11 44 11 11 15

2 ,c e c c c c
R c c c e

)

The three roots of Eq. (2.8) are denoted by j ( j=1, 2, 3). Corresponding to the 
three roots, the roots of Eq. (2.6) can be written as 

 
1 2

,    ,    m
3

 (2.10) 

It is obvious that the solution to Eq. (2.6) is not unique. To solve this equation, 
Wang and Agrawal took A=1 and solved the resulting equation. After a series of 
mathematical operations the solution of Eq. (2.5) is obtained as 

 
3

0 0
1

cosh /
cos( )cos( ) d d

sinh /

i i

i i i

G z
x y

H z
 (2.11) 

 
3

0 0
1

cosh /
cos( ) cos( ) d d

sinh /

i i
i

i i i

G z
x y b

H z
 (2.12) 

 
3

0 0
1

cosh /
cos( ) cos( ) d d

sinh /

i i
i

i i i

G z
x y c

H z
 (2.13) 

where (b1,c1), (b2,c2), and (b3,c3) are the solutions of (B,C) of Eq. (2.6) corre-
sponding to 1 2/ ,  /  and /m 3  respectively, and Gi and Hi 

are arbitrary constants which are determined using the boundary conditions. 

2.2  Solution with Lekhnitskii formalism 

The mathematical method known as the Lekhnitskii formalism was developed 
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originally to solve two-dimensional problems in elastic anisotropic materials [3]. 
The evolution of the method and a number of extensions to electroelastic problems 
were described in Refs. [4-7]. In this section the Lekhnitskii formalism of genera- 
lized plane piezoelectricity presented in [7] is briefly summarized. For a complete 
derivation and discussion, the reader is referred to Refs. [3-6]. 

Consider a generalized plane problem of piezoelectric materials, in which all 
physical quantities, such as stresses, strains, displacements, electric fields, electric 
displacements and the electric potential, are functions of x and y only. The genera- 
lized plane strain constitutive equations are governed by Eq. (2.2) or equations 
located in the second column and fourth row of Table 1.1 as follows: 

  (2.14) 

11 12 14 15 16 11 2111

12 22 24 25 26 12 2222

14 24 44 45 46 14 2423

15 25 45 55 56 15 2513

16 26 46 56 66 16 2612

11 12 14 15 16 11 121

21 22 24 25 26 12 222

2
2
2

f f f f f g g
f f f f f g g
f f f f f g g
f f f f f g g
f f f f f g g
g g g g gE
g g g g gE

11

22

23

13

12

1

2

D
D

where the materials fij, gij, and ij are defined in Eq. (1.8) and Table 1.1. The deriva-
tion of these constants can be found in Ref. [7]. 

Equation (2.14) constitutes a system of seven equations in 14 unknowns. Addi-
tional equations are provided by elastic equilibrium and Gauss’ law: 

  (2.15) 11,1 12,2 12,1 22,2 13,1 23,2 1,1 2,20, 0, 0, 0D D

in which the absence of body forces and free electric volume charge has been as-
sumed, and by two elastic conditions and one electric compatibility condition  

  (2.16) 11,22 22,11 12,12 13,2 23,1 1,2 2,12 0, 0, E E 0

Having formulated the generalized plane problem, we seek a solution to Eqs. 
(2.14)-(2.16) subjected to a given loading and boundary condition. To this end, the 
well-known Lekhnitskii stress functions F,  and induction function V satisfying 
the foregoing equilibrium equations are introduced as follows [7]: 

  (2.17) 11 ,22 22 ,11 12 ,12

13 ,2 23 ,1 1 ,2 2 ,1

, , ,
, , ,

F F F
D V D V

Inserting Eq. (2.17) into Eq. (2.14), and later into Eq. (2.16) leads to 

  (2.18) 

*
4 3 3

*
3 2 2
* * **
3 2 2

0

L L L F
L L L

VL L L
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where  

 

4 4 4

4 22 26 12 664 3 2 2
1 1 2 1 2

4 4

16 113 4
1 2 2

3 3 3

3 24 25 46 14 56 153 2 2
1 1 2 1 2
3 3 3

*
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( ) ( )
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L f f f f
x x x x x

f f
x x x

L f f f f f f
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2
3

,
x x x x x x

L g g g g g g
x x x x x 3

2
2 2 2

2 44 45 552 2
1 1 2 2
2 2 2

*
2 44 14 25 152 2

1 1 2 2
2 2 2
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2 22 12 112 2

1 1 2 2

,

2 ,

( ) ,

2

x

L f f f
x x x x

L f g g g
x x x x

L
x x x x

 (2.19) 

Eliminating  and V from Eq. (2.18) yields 

  (2.20) ** * * * * * * **
4 2 2 3 3 2 3 3 2 4 2 2 3 3 2( 2 )L L L L L L L L L L L L L L L F 0

As discussed in [4] within the framework of anisotropic elasticity, Eq. (2.20) can 
be solved by assuming a solution of F(z) such that 

 1 2( ) ( ),F z F x x i  (2.21) 

where are real numbers. By introducing Eq.  and 

0

(2.21) into Eq. (2.20), and 

using the chain rule of differentiation, an expression of the form  is 
obtained. A nontrivial solution follows by setting the characteristic equation equal 
to zero: 

(6){} 0F

  (2.22) ** * * * * * * **
4 2 2 3 3 2 3 3 2 4 2 2 3 3 2( 2 )( )L L L L L L L L L L L L L L L

Owing to the particular material symmetry of the piezoelectricity under investi-
gation, the polynomial is expressed in terms of even powers of . This allows us to 
solve Eq. (2.22) analytically, rendering 

 ( 1, 2,3, 4)k k ki k  (2.23) 

where 1i . Once the roots k (k=1, 2, 3, 4) are known, the solution for the 
functions F, , and V is written as 

 
4

1 2
1

( , ) 2Re ( )j j
j

F x x F z  (2.24) 
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4

1 2
1

( , ) 2Re ( )j j
j

x x z  (2.25) 

 
4

1 2
1

( , ) 2Re ( )j j
j

V x x V z  (2.26) 

where zj=x+pjy. By eliminating  or V from Eq. (2.18), we can express the func-
tions  and V in terms of the function F as 

  (2.27) 
(for =1,2,4) (for =1,2,3)
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/ (for =3) / (for =4)

k k k k
k k
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F k F k
V

F k F k

where d / dk k kF F z , and  

 

** * *
3 2 3 2

** * *
2 2 2 2

** * *
3 2 3 2

** * *
4 2 3 3

* *
4 2 3 3

** *
3 2 2 3

( ) ( ) ( ) ( )
(for 1, 2)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
(for 3)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
(fo

( ) ( ) ( ) ( )

k k k k

k k k k

k k k k
k

k k k k

k k k k

k k k k

l l l l
k

l l l l
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 (2.28) 
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(for 3)

( ) ( ) ( ) ( )
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l l l l
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 (2.29) 

with 

  (2.30) 

4 3 2
4 11 16 12 66 26

3 2
3 15 14 56 25 46 24
* 3 2
3 11 21 16 12 26 22

2
2 55 45 44
* 2
2 15 14 25 24
** 2
2 11 12 22

( ) 2 (2 ) 2 ,
( ) ( ) ( ) ,
( ) ( ) ( ) ,
( ) 2 ,
( ) ( ) ,
( ) 2

l p f f f f f f
l p f f f f f f
l p g g g g g g
l p f f f
l p g g g g
l p

22

Equations (2.24)-(2.26) can then be rewritten as 
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1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4

2Re ,
2Re / ,
2Re /

F F F F F
F F F F

V F F F F
 (2.31) 

With the aid of Eq. (2.31) we can obtain expressions for the stress and electric 
displacement components. Using Eqs. (2.17) and (2.31), we obtain 
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11 4

22
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2Re 1 ( )
k

k k
k

k

F z  (2.32) 
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D F F F F

4

4

s

 (2.33) 

Finally, using the constitutive equations (2.14) in conjunction with Eqs. (2.32) 
and (2.33) allows us to find expressions for the strain and electric field. They are 
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where 
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14 24 44 24 45 46 14
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14 24 46 14 24 44 45

14 24 44 45 46 14 24
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 (2.39) 

Substitution of Eq. (1.2) into Eq. (2.34), and then integration of the normal 
strains and the electric field E = –grad  produces 

 

4 4
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1 2
1

4
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3 1
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2Re ,        2Re ,
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k
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u u s u v
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1
4

k
s

s
 (2.40) 

The integrating constants, which represent the rigid body motions, are ignored 
here[7]. 

Recapitulating, based on the procedure above the generalized plane strain pie-
zoelectric problem is reduced to one of finding four complex potentials, si (i=1-4), 
in some region  of the material. Each potential is a function of a different genera- 
lized complex variable 1 2k kz x x . 

2.3  Techniques of Fourier transformation 

In this section we briefly examine the application of Fourier transform techniques to 
cracked piezoelectric materials. Yu and Qin [8,9] used Fourier transform techniques 
to study the crack-tip singularities and damage properties of thermopiezoelectric 
materials. They began with defining a Fourier transform pair 

 
    

  

1 1ˆ ˆ( )  ( ) d , ( )  ( ) d
2 2

i x i xf f x e x f x f e  (2.41) 

and by introducing the shorthand notation given by Barnett and Lothe [10]. With 
this shorthand notation, the governing equation (1.10) and the constitutive relation-
ship (1.6) can be rewritten as 

 ,iJ i Jf   (2.42) 
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  (2.43) ,iJ iJKm K mE U

where f4=Q, and 

  (2.44) 
( , 1,  2,  3)
( 4;   1,  2,  3

ij
iJ

i

i J
D J i )

)

3)

  (2.45) 
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u K
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( , , , 1,  2,  3)        
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im

c i J K m
e K i J m

E
e J i K m

J K i m

For generalized two-dimensional deformations in which U (={u1, u2, u3, }T) 
depends on x1 and x2 only, where the superscript “T” denotes the transpose, a general 
solution can be obtained by applying the transform to Eq. (2.42) over x1. This  
gives 

 
2

2 T
2

2 2

ˆ ˆˆ ( )i
x x
U UQU R R T 0  (2.47) 

in which we assume fJ = 0 in Eq. (2.42) for the sake of simplicity. The matrices Q, 
R, and T are 4 4 real matrices whose components are 

 1 1 1 2 2 2, ,IK IK IK IK IK IKQ E R E T E  (2.48) 

The solution of Eq. (2.47) can be obtained by considering an arbitrary eigen-
function of the form 

 2ˆ i xeU a  (2.49) 

Substituting Eq. (2.49) into Eq. (2.47), it is found that  

    (2.50) 2 T 2[ ( ) ]Q R R T a 0

Letting p= / , we have eight eigenvalues p from Eq. (2.50), which consists of 
four pairs of complex conjugates [11]. Denote 

 
( 0
( 0

M
M

M

p
p

)
)

 (2.51) 

where M=1, 2, 3, 4. It is obvious that Im( M)>0 for all . Such a definition is expe-
dient for development of the subsequent derivation. A general solution of Eq. (2.47) 
is obtained from a linear combination of the eight eigensolutions, say Fi and Gi 
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(i=1-4), which are obtained by replacing  in Eq. (2.49) with M  (M=1-4), when 
the roots pM are distinct. The result is 

 ˆ 2 ( ) ( ) 2 ( ) ( )H HU AFf AGg AFf AGg  (2.52) 

where H( ) is the Heaviside step function, and 

 2 2
2 2 2 2( , ) ( , ) , ( , ) ( , )i x i xx F x e x G x eF G  (2.53) 

Note that p , f and g are two vector functions of  to be determined from 
the electroelastic boundary conditions of a given problem. 

The transformed stress and electric displacements follow from the constitutive 
relation of Eq. (2.43): 

 1
ˆ 2 ( ) ( ) 2 ( ) ( )i H i HBPFf BPGg BPFf BPGg  (2.54) 

 2
ˆ 2 ( ) ( ) 2 ( ) ( )i H iBFf BGg BFf BGg H  (2.55) 

The traction-charge vector on a surface with normal n=(n1, n2, 0) can be found 
from Eqs. (2.54) and (2.55) as follows: 

 1 1 2 2 1 2 1 2
ˆ ˆˆ 2 [ ( ) ( ) ]n n i n n n n Ht B P I Ff B P ( )I Gg  

 1 2 1 22 [ ( ) ( ) ] (i n n n n H )B P I Ff B P I Gg  (2.56) 

where I is the unit matrix. 
Equations (2.52), (2.54), and (2.55) represent the solution for the elastic and 

electric fields in the Fourier transform space. The general solution for an electro- 
elastic field in real space is obtained by applying the inverse Fourier transform to 
Eqs. (2.52), (2.54)-(2.56). The results are 

 1 1
0

1 2 0
( , )  [ ] d  [ ] di x i xx x e eU AFf AGg AFf AGg  (2.57) 

1 1
0

1 1 2 0
( , )  [ ] d  [ ]i x i xx x i e i eBPFf BPGg BPFf BPGg d  

 (2.58) 

 1 1
0

2 1 2 0
( , )  [ ] d  [ ]i x i xx x i e i eBFf BGg BFf BGg d  (2.59) 

 1
1 2 1 2 1 20

( , )  [ ( ) ( ) ] di xx x i n n n n et B P I Ff B P I Gg  

 1
1 2 1 20

                  [ ( ) ( ) ] di xi n n n n eB P I Ff B P I Gg  (2.60) 

For a given boundary value problem, the eight functions f and g are determined 
from the appropriate boundary conditions.  
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2.4  Trefftz finite element method 

The solution methods discussed in the preceding sections are mostly based on ana-
lytical approaches. For a complex structure, however, a powerful numerical method 
is required to obtain a meaningful solution for electroelastic crack problems. Of all 
the numerical methods, the FEM and boundary element method (BEM) may be the 
most versatile computational tools to treat piezoelectric problems. Particularly, the 
Trefftz FEM has recently received attention from researchers in the field of solid 
mechanics. In the literature there are only a few papers addressing the application of 
Trefftz FEM to piezoelectric problems. Qin [12,13] introduced the Trefftz FEM for 
piezoelectric problems in 2003. Wang et al. [14] used Trefftz FEM and computed 
eigensolutions to determine singular electroelastic fields in piezoelectricity. In        
this section, the application of Trefftz FEM to piezoelectric problems is briefly  
examined. 

2.4.1  Basic equations 

Consider a linear piezoelectric material in which the constitutive relations, the dif-
ferential governing equations and boundary conditions are given in Eqs. (1.5), 
(1.10)-(1.12), respectively. Moreover, in the Trefftz FE form, Eqs. (1.2), (1.5), 
(1.10)-(1.12) should be completed by the following inter-element continuity re-
quirements: 

   (2.61) , (on , conformity)ie if e f e fu u

  (2.62) 0, 0 (on , reciprocity)ie if ne nf e ft t D D  

where “e” and “f ” stand for any two neighboring elements. The equations men-
tioned above are taken as the basis to establish the modified variational principle for 
Trefftz FE analysis of piezoelectric materials [12]. 

2.4.2  Assumed fields 

The main idea of the Trefftz FEM is to establish an FE formulation whereby intra-  
element continuity is enforced on a non-conforming internal displacement field 
chosen so as to a priori satisfy the governing differential equation of the problem 
under consideration [12]. With the Trefftz FEM the solution domain  is sub-   
divided into elements, and over each element “e,” the assumed intra-element fields 
are 
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  (2.63) 

11 1

22 2

33 3 1
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j j
j

u u
u u
u u

N
N

U c U N c
N
N

U Nc

where cj stands for undetermined coefficient, and  and N are 
known functions. If the governing differential equation 

T
1 2 3( { , , , } )u u uU
(2.42) is rewritten in a 

general form  

  (2.64) ( ) ( ) 0 ( )eU x f x x

where  stands for the differential operator matrix for Eq. (2.42), x for the posi-
tion vector,  for the known right-hand side term, the overhead 
bar indicates the imposed quantities, and  stands for the eth element sub-domain, 

then  and  in Eq. U U

T
1 2 3 ( { , , , } )f f f Qf

( )x ( )N N x
e

(2.63) must be chosen such that 

  (2.65) 0   and   0U f N

everywhere in . A complete system of homogeneous solutions Nj can be gene- 
rated by way of the solution in Stroh formalism 

e

 2Re{ ( ) }f zU A c  (2.66) 

where “Re” stands for the real part of a complex number, A is the material eigen-
vector matrix which has been well defined in the literature (see pp. 17-18 of [11]), 

1 2 3 4( ) diag[ ( ) ( ) ( ) ( )]f z f z f z f z f z  is a diagonal 4 4 matrix, and ( )if z  is 
an arbitrary function with argument 1iz x x2i . i (i=1-4) are the material ei-
genvalues[11].  

The unknown coefficient c may be calculated from the conditions on the exter-
nal boundary and/or the continuity conditions on the inter-element boundary. Thus 
various Trefftz element models can be obtained by using different approaches to 
enforce these conditions. In the majority of cases a hybrid technique is used, 
whereby the elements are linked through an auxiliary conforming displacement 
frame which has the same form as in the conventional FE method. This means that, 
in the Trefftz FE approach, a conforming electric potential and displacement (EPD) 
field should be independently defined on the element boundary to enforce the field 
continuity between elements and also to link the coefficient c, appearing in Eq. 
(2.63), with nodal EPD d (={d}). The frame is defined as  

  (2.67) 

1 1

2 2

3 3

4

( ) ( )e

u
u
u

N
N

U x d Nd x
N
N
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where the symbol “~” is used to specify that the field is defined on the element 
boundary only, d=d(c) stands for the vector of the nodal displacements which are 
the final unknowns of the problem, e represents the boundary of element e, and 

 is a matrix of the corresponding shape functions which are the same as those in 
conventional FE formulation.  
N

Using the above definitions the generalized boundary forces and electric dis-
placements can be derived from Eqs. (1.11) and (2.63), and denoted as  

  (2.68) 

11 11

22 22

33 33

4

j j

j j

j j

j jn n

nt t
nt t
nt t

D nD D

Q
Q

T
Q
Q

c T Qc

nwhere  are derived from .  and it D U

2.4.3  Element stiffness equation 

Based on the two independent assumed fields, Eqs. (2.63) and (2.67), presented 
above, the element matrix equation can be generated by a variational approach [15]. 
For a three-dimensional piezoelectric problem, the variational functional can be 
constructed as [12] 

 T T T
   

1 d ( / 2)d
2 e e te

me U f T U U U Td  (2.69) 

Substituting the expressions given in Eqs. (2.63), (2.67), and (2.68) into (2.69) 
produces 

 T T T T1 terms without  or 
2me e e e ec H c c G d c h d g c d  (2.70) 

in which the matrices He, Ge and the vectors he, ge are as follows: 

  (2.71) T T
  

d
e e

eH Q N N Qd

  (2.72) T
 

d
e

eG Q N

 T T T
  

1 d ( )
2 e e

eh N f Q U N T d  (2.73) 

 T T
  

d
te e

eg N T N Td  (2.74) 
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To enforce inter-element continuity on the common element boundary, the un-
known vector c should be expressed in terms of nodal DOF d. An optional rela-
tionship between c and d in the sense of variation can be obtained from  

 T 0me
e e eH c G d h

c
 (2.75) 

This leads to 

  (2.76) 1(e e ec H G d h )

and then straightforwardly yields the expression of only in terms of d and 
other known matrices: 

me

 T T 1 T T 11 ( )+terms without 
2me e e e e e e ed G H G d d G H h g d  (2.77) 

Therefore, the element stiffness matrix equation can be obtained by taking the 
vanishing variation of the functional  as me

 T 0me
eK d P

d e

e e

 (2.78) 

where  and  are, respectively, the element 
stiffness matrix and the equivalent nodal flow vector. The expression 

T 1
e e eK G H G T 1

e e e eP G H h g
(2.78) is the 

elemental stiffness-matrix equation for Trefftz FE analysis. 

2.5  Integral equations 

An integral equation is, mathematically, an equation in which an unknown function 
appears under an integral sign. It is noted that most crack and stress singularity 
problems in piezoelectric structures and materials can be formulated in terms of a 
certain type of integral equation such as Fredholm, Volterra, and Abel integral equa-
tions. In order to provide fundamental knowledge and to enhance understanding of 
these integral equations which appear in coming chapters, a brief review of Fred-
holm, Volterra, and Abel integral equations is presented in this section. 

2.5.1  Fredholm integral equations 

A homogeneous Fredholm integral equation of the first kind is written as [16] 

 ( , ) ( )d ( ) ( )
b

a
K x y y y f x a x b  (2.79) 
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where the continuous kernel function K(x,y) and the inhomogeneous term f (x) are 
known functions. The equation is to be satisfied for x in the interval a  x  b, the 
same as the interval of integration. It is typical to find the unknown function  (y). 
An inhomogeneous Fredholm equation of the second kind has the form 

 ( ) ( , ) ( )d ( ) ( )
b

a
x K x y y y f x a x b

2

 (2.80) 

where  is a known constant. Given the kernel K(x,y), and the function f(x), the 
problem is to determine the function  (y). A standard approach to solving Eq. 
(2.80) is called an integral equation Neumann series, which may be described as 
follows.  

Take 
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2 1 1 1
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x f x K x y f y y
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K x y K y y f y y y
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 (2.81) 

where 

  (2.82) 

0

1 1 1 1

2 1 1 2 2
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...

b

a
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u x K x y f y y

u x K x y K y y f y y y1 2

i

The Neumann series solution is then 

 
0

( ) lim ( ) lim ( )
n

i
nn n i

x x u x  (2.83) 

Alternatively, if the kernel K(x,y) is separable, i.e., it can be written in the form 

 
1

( , ) ( ) ( )
n

i i
i

K x y M x N y  (2.84) 

Equation (2.80) may be solved as follows. Let  

 ( ) ( ) ( , ) ( )d
b

a
x f x K x t t t  
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1 1

( ) ( ) ( ) ( )d  ( ) ( )
n nb

j j j ja
j j

f x M x N t t t f x c M x

t

i

 (2.85) 

where 

  (2.86) ( ) ( )d
b

j ja
c N t t

Now multiply both sides of Eq. (2.85) by Ni(x) and integrate over dx, we have  

 
1

( ) ( )d ( ) ( )d ( ) ( )d
nb b b

i i j ja a a
j

x N x x f x N x x c M x N x x  (2.87) 

By Eq. (2.86), the first term of Eq. (2.87) is just ci. Now define 

  (2.88) ( ) ( )d ,       ( ) ( )d
b b

i i ij i ja a
b N x f x x a N x M x x

So Eq. (2.87) becomes 

  (2.89) 
1

n

i i ij
j

c b a c j

Equation (2.89) can be written in matrix form as 

  (2.90) C B AC

So we have 

  (2.91) 1(1 ) ,       (1 )A C B C A B

2.5.2  Volterra integral equations 

It is noted from Eq. (2.79) that the integration limits of a Fredholm equation are 
constants. A Volterra integral equation of the first kind is obtained by replacing the 
upper integration limit b in Eq. (2.79) with the variable x: 

 ( , ) ( )d ( ) ( )
x

a
K x y y y f x a x

,

 (2.92) 

Thus, for any fixed range of x, say 0 x h  it is the same as a Fredholm equa-
tion with a kernel that vanishes for y>x. Consequently, all results for the Fredholm 
equation are still valid.  

Like the definition of the Fredholm equation above, a Volterra integral equation 
of the second kind is an integral equation of the form 
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 ( ) ( , ) ( )d ( ) ( )
x

a
x K x y y y f x a x  (2.93) 

where K(x,y) is again a known integral kernel, f (x) is a specified function, and (x) 
is the function to be determined. 

As a special type of Volterra equation of the first kind, Volterra’s singular equa-
tion 

 ( , ) ( )d ( )
( )

x

a

N x y y y f x
x y

 (2.94) 

has received wide application in the field of fracture mechanics and computational 
engineering, where N(x,y) is a specified bounded function and the exponent  is a 
positive number less than 1: 0< <1. 

Equation (2.94) can be solved by reducing it to an equation of the corresponding 
Volterra equation of the first kind with a bounded kernel. To this end, multiplying 
both sides of Eq. (2.94) by the function 1/( d integrating with respect to 
x from a to z, we obtain 

1)z x  an

 1 1
1 ( , ) (( )d d

( ) ( ) ( )
z x z

a a a

N x y f x xy y x
z x x y z x

)d  (2.95) 

or, upon application of the Dirichlet transformation the equation 

 11
( , )d ( )d ( )

( ) ( )
z z

a y

N x y x y y f z
z x x y

 (2.96) 

This is already a Volterra equation of the first kind with a bounded kernel 

 1
( , )d( , )

( ) ( )
z

y

N x y xK z y
z x x y

 (2.97) 

where the known function 1( )f z  is 

 1 1
( )d( )

( )
z

a

f x xf z
z x

 (2.98) 

The solution  of Eq. (2.94) obviously satisfies the transformed equation (2.96). 

2.5.3  Abel’s integral equation 

Abel’s integral equation 
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 ( ) d ( ) (0
( )

x

a

y y f x
x y

1)  (2.99) 

is a particular case of the integral equation (2.94) when N=1. The integral equation 
may be solved explicitly in the following way: when N=1 the kernel of the trans-
formed equation (2.96) has the constant value 

 
1

1 10

d d
sin( ) ( ) (1 )

z

y

x t
z x x y t t

 (2.100) 

in which t = (x–y)/(z–y) has been used. Let F(y) be any function which is continuous 
and has a continuous derivative throughout the solution domain I. Multiply Eq. 
(2.100) by ( )dF y y and integrate from a to z. That gives 

 1
( )d d[ ( ) ( )]

sin ( ) ( )
z z

a y

F y x yF z F a
z x x y

 (2.101) 

Applying Dirichlet’s generalized formula to the second term of Eq. (2.101), we 
obtain 

 1
sin 1 ( )d( ) ( ) d

( ) ( )
z z

a y

F y yF z F a x
z x x y

 (2.102) 

Multiply Eq. (2.99) by  dx and integrate and the equation takes the 
simple form a to z, thus obtaining 

11/( )z x

 1 1
( )d 1 ( )d d

( ) ( ) ( )
z z z

a a y

f x x y y x
z x z x x y

 (2.103) 

If in Eq. (2.102) we let  

 ( ) ( )d
x

a
F x y y  (2.104) 

it will be seen that the preceding equation reduces to 

 1( )d ( )
sin

z

a
y y f z  (2.105) 

By differentiating Eq. (2.105), we obtain the value of this solution 

 1
sin d ( )d( )

d ( )
z

a

f x xz
z z x

 (2.106) 
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Equation (2.106) can be further written in the form 

 1

d ( ) / d dsin ( )( )
( )

z

a 1

f x x xf az
z z x

0

 (2.107) 

2.6  Shear-lag model 

The term shear-lag has been widely used to study strengthening mechanisms 
through the load transfer from matrix to reinforcement in composite materials. The 
shear-lag model was originally proposed by Cox [17] and subsequently modified by 
many researchers. It is assumed that the load transfer from matrix to fiber occurs via 
shear stresses on the surface between them. Cox’s shear-lag model can be obtained 
by considering the free-body diagram of a differential element of the fiber, as 
shown in Fig. 2.1. For static equilibrium of the forces acting along the x direction, 
we have 

  (2.108) 2 2
f f f i( d ) (2 )dr r r x

where r = d/2,  is the fiber normal stress along the x direction at a distance from 

the end of fiber, i is the interfacial shear stress at a distance from the end of fiber, 
and x is the coordinate along the fiber length. 

f

 

Fig. 2.1  Free-body diagram of a differential element of a fiber. 

Equation (2.108) can be simplified to 

 fd 2
d

i

x r
 (2.109) 

Equation (2.109) is referred to as the basic shear-lag equation.  
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Cox further assumed that the total shear forces on the neighboring annuli remain 
constant. That assumption leads to the following relationships: 

  (2.110) 2 d constant ( 1 2 )k kr x k , , ,n

where rk and k are defined in Fig. 2.2. Equation (2.110) can be rewritten in the form 

 

Fig. 2.2  Distribution of stresses and geometry of rk and k. 

 ( , 1 2 )k l

l k

r
k l , , ,n

r
 (2.111) 

Thus, the shear stress  in the matrix at any radius  is related to the interfacial 
shear stress, i, of the fiber and fiber radius r by the following relation: 

 i
r  (2.112) 

Using Eq. (2.112), the shear strain of the matrix near the fiber, which is a func-
tion of the displacement of the matrix, can be expressed as 

 i

m m

d
d

u
G G

r  (2.113) 

The difference between the displacement at R and that at r or the fiber surface at 
any point x can be obtained by integrating Eq. (2.113) with respect to  : 

 i i

m m

1d d lnR

r

u R
R r u r

r r Ru u u
G G r

 (2.114) 

where R=D/2. 
Substituting Eq. (2.114) into Eq. (2.109), we have  
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 f m
2

d 2 (
d ln( / )

r RG u u
x r R r

)
 (2.115) 

To determine the stress built up along the fiber, we need to establish the rela-
tionship of uR and ur with the fiber stress or strain. To simplify the following deriva-
tion, assume the fiber has no shear deformation, then ur = uf for any position r. 
Therefore 

 f f
f

f

d d
,

d d
Ru u

x E x m 1  (2.116) 

where m and 1 are respectively the longitudinal strains in the matrix and in the 
composite.  

Differentiating Eq. (2.115) and using the relation in Eq. (2.116), we have 
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where  

 2 m
2

f ff

2 2
ln /ln /

G mG
A E D dr E D d

 (2.118) 

with Af being the area of fiber cross-secton, Ef the Young’s modulus of the fiber, Gm 
the matrix shear modulus. 

The solution of Eq. (2.117) is of the form 

 f f fh p  (2.119) 

where is the particular solution and f p f h the homogeneous solution. They 

are 

 f p f 1 f h( ) , ( ) sinh coshE A x B x

)

 (2.120) 

The coefficients A and B can be determined from the boundary conditions: 

  (2.121) f 0 (at / 2x L

Substituting the boundary conditions (2.121) into Eq. (2.119) and after some 
mathematical manipulation, the resulting fiber and interfical shear stresses are 

 
f f m

i f m

cosh( )1 ,
cosh( / 2)
sinh

2 cosh( / 2)

xE
L

r xE
L

 (2.122) 

where L is the fiber length. 
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2.7  Hamiltonian method and symplectic mechanics 

The strategy of simplifying a mechanical problem by exploiting symmetry so as to 
reduce the number of variables is one of classical mechanics’ grand themes. It is 
theoretically deep, practically important, and recurrent in the history of the subject. 
The best-known general approach using the strategy is undoubtedly the symplectic 
Hamiltonian method [18], which uses displacements and associated general stresses as 
dual variables so that the boundary conditions are satisfied without any assumption of 
displacement or shape functions. Thus the complete solution space covering all kinds 
of boundary conditions along the edges can be obtained.  

To illustrate the symplectic Hamiltonian method, we begin with considering the 
Principle of Virtual Work. It is one of the oldest principles in physics, which may 
find its origin in the work of Aristotle (384 322 B.C.) on the static equilibrium of 
levers. The principle of virtual work was written in its current form in 1717 by Jean 
Bernoulli (1667 1748) and states that a system composed of N particles is in static 
equilibrium if the virtual work 

  (2.123) 
1

0
N

i i
i

W F x

for all virtual displacements ( x1, , xN) that satisfy physical constraints, where Fi 
is the force acting on the particle i. Given the commonness of systems of N particles 
with constraints, it is natural to seek a description of mechanics relevant only in the 
subset of 3D Euclidean space accessible to the system. The number of generalized 
coordinates required to specify completely the configuration of the system is called 
the number of degrees of freedom of the system. Typically, if a system of N parti-
cles, each having mass mi and Cartesian coordinate xi (i = 1, ,N), is subjected to k 
holonomic constraints, 

 1 2( , , , , ) 0 ( 1, 2, , )j Nf t jx x x k  (2.124) 

we have n = 3N – k generalized coordinates, qi, which are independent. 
It was Jean Le Rond d’Alembert (1717 1783) who generalized the principle of 

virtual work (in 1742) by including within it the accelerating force  2 2d / di im tx
(2.123): 

 
2

2
1

d
( )

d

N
i

i i i
i

W m
t
x

F x 0  (2.125) 

so that the equations of dynamics could be obtained.  
To obtain the Lagrangian function of the system we need the mapping from the 

n = 3N–k generalized coordinates to the usual Cartesian coordinates on R3 for each 
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particle: 

  (2.126) 

1 2
1 1

1 2

( , , , , ),

( , , , , )

n

n
N N

q q q t

q q q t

x x

x x

Note that this collection of mappings (2.126) is equivalent to a (single) 
time-parameterized mapping from the 3N–k generalized coordinates (q1,…,qn) to 
the Euclidean hyperspace R3N with 3N coordinates (x1, y1, z1,…, xN, yN, zN). Per-
forming a Taylor expansion of the mapping, Eq. (2.126), about the point(q1,…, qn) 
(i.e., expanding xi(q1 + q1,…, qn + qn, t) about (q1,…,qn)) at a fixed time t we ob-
tain 

 
1

n
ji

i j
j

q
q
x

x  (2.127) 

The quantity xi/ q j is analogous to the Jacobian of the transformation from (q1, …, 
qn) (x1, y1, z1,…, xN, yN, zN). Equation (2.127) can be used to cast D’Alembert’s 
principle (2.125) in terms of the generalized coordinates 

2 2

2 2
1 1 1 1

d d
0

d d

n N n N
j ji i i i

i i i ij j
j i j i

W m q m
t q t q
x x x x

F Q q  

(2.128) 

where Qi is known as the generalized force acting on the particle i. 
Making use of the relations 
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 (2.129) 

and the definition of the kinetic energy of the system , Eq. 
1

/ 2
N

i i i
i

K m r r

(2.128) leads to 
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d 0
d

n
j

jj j
i

K K Q q
t q q

 (2.130) 

which is D’Alembert’s principle in configuration space. Since the system is, by 
hypothesis, holonomic, the q j form a set of independent coordinates. Any virtual 
displacement q j is independent of q k (k  j) and, therefore, for Eq. (2.130) to 
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hold, each term in the sum must separately vanish. For non-trivial q j this can only 
happen if each coefficient vanishes, or, equivalently 

 d 0 ( 1, 2, ,
d jj j

K K Q j
t q q

)n  (2.131) 

Equation (2.131) are frequently referred to as Lagrange’s equations, in which we 
note that the generalized force Qj is associated with any active (conservative or 
nonconservative) force Fj. Hence, for a conservative active force derivable from a 
scalar potential function V (i.e., F = U(q1,…, qn,t)), the ith component of the 
generalized force is Qi = U/ qi, and Lagrange’s equation (2.131) becomes 

 d 0 ( 1, 2, ,
d j j

L L j
t q q

)n  (2.132) 

where the Lagrangian is defined as: L=K–V.  
The n second-order Euler-Lagrange equations (2.132) can be written as 2k 

first-order differential equations, known as Hamilton’s equations (William Rowan 
Hamilton, 1805 1865), in a 2n-dimensional phase space with coordinates z = (q1, …, 
qk; p1,…, pk), where the dual variable of p according to Legendre’s transformation is 

 ( , , ) ( , , )j j
Lp t
q

q q q q t  (2.133) 

In terms of these new coordinates, the Euler-Lagrange equations (2.132) are 
transformed into Hamilton’s canonical equations 

 d d,       
d d

j j

j j
q H p H
t tp q

 (2.134) 

where the Hamiltonian function H is defined from the Lagrangian function L by the 
Legendre transformation (Adrien-Marie Legendre, 1752 1833): 

 ( , , ) ( , , ) ( , ( , , ), )H t t Lq p p q q p q q q p t t  (2.135) 

Using the definition of state vector ={q, p}T, Eq. (2.134) can be expressed as 

  (2.136) H h

where H is the Hamiltonian matrix and h is a 2n-vector [18,19]. The Hamiltonian 
matrix H satisfies the matrix equation 

 JHJ=HT (2.137) 

where J is a symplectic matrix defined as 
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With matrix J, a symplectic matrix S can be defined as 

 STJS=J (2.139) 

As an application of symplectic mechanics we consider a plane stress problem 
with the strip domain V as shown in Fig. 2.3 [20]. The 
force equilibrium, constitutive, and boundary equations of the problem are respec-
tively 

( 0 ,  )z l h x h

 0,       0xy xy yx
xf

x y x y yf  (2.140) 
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 (2.141) 

 2 2( ), ( ),
2(1 )1 1x x y y y x xy

E E
xy

E  (2.142) 

where Fx and Fy are the body forces. The relationship between strain and displace-
ment is expressed as 

 , ,x y xy
u v v u
x y x y

 (2.143) 

 

Fig. 2.3  Configuration of the strip domain and loading condition. 

The corresponding potential variational functional and the strain energy density are 
then defined as 

p e 2 2 1 10
( )d d ( ) ( ) d

l
x y x y y h x y x hU uf vf x y uF vF uF vF x 0

(2.144) 
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To construct the corresponding Hamiltonian system, the x-coordinate is modeled as 
the time variable of the Hamiltonian system. If 0xi yiF F , the Lagrangian func-

tion of the problem is 

 e( , , , ) x yL w u w u uf vf  (2.146) 

The dual vectors q and p can then be defined as 

  (2.147) T(    ) ,        (    )w uq p T

with 

 2 ( ),      (
2(1 )1

L E v L E uu v
u y v

)
y

 (2.148) 

Equations (2.148) yields 

 
21 ,     v uu v

y E y E
2(1 )  (2.149) 

Making use of Eqs. (2.140), (2.142), and (2.149), we have  
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2,     x y
vf E

y yy
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Equations (2.149) and (2.150) can be written in matrix as 
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02(1 )0 0
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y E
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y Eu u
f

y f

E
yy
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The homogeneous solution of Eq. (2.151) can be obtained using the separation of 
the variable approach and the symplectic eigenfunction expansion. To this end, as-
sume v in the form 

 ( , ) ( ) ( )x y x y  (2.152) 

Substituting Eq. (2.152) into Eq. (2.151) with h=0 yields the solution for (x): 

 ( ) xx e  (2.153) 
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and the eigenvalue equation: 

 ( ) ( )y yH  (2.154) 

in which  is an eigenvalue of the Hamiltonian operator matrix and is given by 

  (2.155) 
( )

( )
( )
y

y
y

q
p

Thus we have 

 ( , ) ( )xx y e y  (2.156) 

It should be noted that the eigenvalue  appears, in general, in n equal and op-
posite pairs, i and – i (i=1,2, ,n) for a (2n 2n) Hamiltonian matrix H, or else as 

i and 1/ i for a (2n 2n) symplectic matrix S [18,21]. Therefore, the 2n eigenvalues, 
when ordered appropriately, can be subdivided into the following two groups: 

(a)   ,  with Re 0i i , or Re 0 Im 0i i     ( 1  (2.157) , 2, , )i n

for a (2n 2n) Hamiltonian matrix H, and 

 , with 1i i     ( 1  (2.158) , 2, , )i n

for a (2n 2n) symplectic matrix S;  

(b) n i i     ( 1  (2.159) , 2, , )i n

for a (2n 2n) Hamiltonian matrix H, and 

 1/ ,     with 1n i i n i     ( 1  (2.160) , 2, , )i n

for a (2n 2n) symplectic matrix S.  
Further, Zhong and Williams [18] pointed out that the eigenvectors of H (or S) 

are related by the adjoint symplectic orthogonality relationship. Suppose that y1 and 
y2 are two eigenvectors of H (or S), with corresponding eigenvalues 1 2and  
which are unequal, we have 

  (2.161) T,
h

i j i jh
xJ d 0

2.8  State space formulation 

The idea of state space was used initially in system engineering and control theory. With 
state space representation, a system of linear differential equations for an engineer-
ing system can be described as 
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  (2.162) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( )
t t t t t
t t t t t

X A X B u
Y C X D u

where X( ) is called the “state vector”, Y( ) is the “output vector”, u( ) is the  
“input (or control) vector”, A( ) is the “state matrix”, B( ) is the “input matrix”,  
C( ) is the “output matrix”, and D( ) is the “feedthrough (or feedforward) matrix” 
(see Fig. 2.4). For simplicity, D( ) is often chosen to be the zero matrix, i.e. ,the 
system is designed to have no direct feed-through. Notice that in this general for-
mulation all matrixes are assumed to be timevariant, i.e. ,some or all their elements 
can depend on time. 

 

Fig. 2.4  A typical state space model. 

This method was recently generalized to piezoelectric materials [22]. In the fol-
lowing, basic formulations of the state space method for piezoelectric materials 
presented in [22,23] are briefly described to provide a common source for reference 
in later chapters. 

In [23], Sosa and Castro considered a two-dimensional piezoelectric material 
whose constitutive equation, strain-displacement and electric field-electric potential 
relations are, respectively, defined by Eqs. (1.24) and (1.2). The governing equation 
(1.10) reduces to  

  (2.163) , , , , , ,0, 0, 0xx x xz z xz x zz z x x z zD D

in which for simplicity all body forces and the electric charge density are assumed 
to be zero. 

The basic idea behind the state space formulation is to describe a given physical 
system in terms of the minimum possible number of variables. Sosa and Castro 
achieved this by eliminating xx and Dx from Eqs. (1.2), (1.24), and (2.163), pre-
senting the following system of differential equations: 
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where 

  (2.165) 33 33 31 33 13 33 33 31
2 2

33 33 33 55 11 15

,    ,
,        

c e e c e c e
c e c e

They then applied the Fourier transform (2.43) to Eq. (2.164), yielding 
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 (2.166) 

in which the assumptions are made that quantities u, u,x, w, zz, xz, , ,x, and Dz 
tend to zero as x , and 

 
22
13 13 33

41 11 43
33 33 33 33

,
c c

a c a
c c c c

e
 (2.167) 

Introducing the transformed state vector, 
Tˆ ˆ ˆˆ ˆ ˆ ˆ( , ) ,zz xz zz u w DS  

Eq. (2.166) becomes 

 
ˆd ˆ( , ) ( ) ( , )

d
z z

z
S A S  (2.168) 

where A is a 6 6 matrix appearing in Eq. (2.166), whose only feature is having 
zeros in its main diagonal. The solution to Eq. (2.168) is given by [22] 

  (2.169) ˆ ˆ( , ) exp[ ( )] ( ,0)z zS A S

in which the exponential matrix is the transfer matrix that propagates the initial 
transformed state vector on the bounding surface into the field at depth z. Conse-



50    Chapter 2  Solution Methods 

quently, the remaining task is to evaluate the transfer matrix exp[zA], explicitly. 
Sosa obtained the solution by the following two steps: 

(1) The eigenvalues  of A are found from the associated characteristic equa-
tion: 

  (2.170) 6 2 4 4 2 6 0p q r

where the coefficients p, q, and r, as functions of the material properties, are given 
by 

2
55 33 15 33 55 13 55 13 11 33 33
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2 2
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1 (2 ) ( ) ,

1 2 (

p c c e e c c c c c c c
c c c

c c c e c c
q c e e c c

c c c c c
)e

 

 
2

33 55
33 33 15 55 33 15 33

33 33
( )

e c
c e e c e e

c c
,  

 
2

2 33 33 13
13 33 11 33 132

33 3355

e e
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 (2.171) 

Sosa indicated that the roots of Eq. (2.170) can be found analytically. They can 
always be expressed in the following form: 

 1,4 2,5 3,6, ( ) , (a b ic b )ic

5

5

 (2.172) 

where a, b, and c are real numbers depending on the material properties. 
(2) The matrix exponential is expanded into a matrix polynomial as 

  (2.173) 2 3 4
0 1 2 3 4 5exp[ ]z a a a a a aA I A A A A A

where no higher powers of A are needed on account of the Cayley-Hamilton theo-
rem, namely, 

  (2.174) 6 2 4 4 2 6 0p q rA A A I

The coefficients a0, , a5 in Eq. (2.173) are determined in terms of the eigen-
values of A by noting that each  satisfies 

  (2.175) 2 3 4
0 1 2 3 4 5exp[ ]z a a a a a a

Using Eq. (2.175) six times, each for each eigenvalue, generates an algebraic 
system of six equations with unknowns a0, , a5, whose solution is written as 

 
3

1

1 ( 1) ( 1-5)
2

j jz zi
i ij

j
a e e i  (2.176) 
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where 
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j j j
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d dd d

d k
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,

2,3)

j

ˆ

 

 (2.177) 

Knowledge of the eigenvalues and, therefore, ai from Eq. (2.176), together with 
the various powers of A provides the complete determination of the exponential 
matrix exp[zA]. Letting the exponential matrix be denoted by B(M, , z), where the 
argument M emphasizes the dependence on the various material constants, one can 
write Eq. (2.169) as 

  (2.178) ˆ ( , ) ( , , ) ( ,0)z M zS B S

Thus, Eq. (2.178) gives the state vector consisting of the transformed stresses, 
displacements, electric potential, and electric displacement at an arbitrary depth z in 
the solution domain. Finally, solution (2.178) must be inverted to find the physical 
variables. Finding the inverse Fourier transform of Eq. (2.43) depends heavily on 
the problem under consideration. Sosa and Castro in [23] presented a detailed illus-
tration of how to conduct the inverse Fourier transform of Eq. (2.178). 

In this chapter, we have briefly introduced techniques of potential function, so-
lution with Lekhnitskii formalism, techniques of Fourier transformation, Trefftz 
FEM, integral equations, shear-lag model, symplectic mechanics, and state space 
method, which are all used in later chapters. 
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Chapter 3  Fibrous Piezoelectric Composites 

In the previous two chapters we presented some fundamental ideas about piezoelec-
tric composites and their mathematical treatment, including the linear theory of 
piezoelectricity and the corresponding solution techniques. We now try to genera- 
lize these ideas to a range of fibrous composite problems such as piezoelectric fiber 
push-out and pull-out, stress and electric field transfer between fiber and matrix, 
debonding criteria for the fiber push-out test, effective material properties of com-
posites, and solutions of piezoelectric composites with an elliptic fiber. All these 
topics are analyzed within the framework of linear theory of piezoelectric materials. 

3.1  Introduction 

Piezoelectric fiber composites (PFCs), which comprise uniaxially aligned piezo-
electric fibers embedded in a polymer matrix, have been widely used in recent years 
as transducers in applications such as sensors and actuators, sonar projectors, un-
derwater use, medical ultrasonic imaging applications, and health monitoring sys-
tems [1]. There are currently four leading industrial types of actuators that hold 
promise for intelligent structure applications. The first type is referred to as 1-3 
composites, manufactured by Smart Material Corp. [2], and is typically used for 
ultrasonic and acoustic control applications. Active fiber composite (AFC) actuators 
were developed at MIT and were the first composite actuators to focus primarily on 
structural actuation [3-5]. Third, macrofiber composites (MFC) were developed at 
NASA Langley Research Center, also for structural actuation purposes [6]. Lastly, 
the idea of active composites fabricated with hollow cross-section fibers has been 
proposed [7] as a means of lowering the typically high voltages required to actuate 
AFCs and MFCs.  

It is noted that in the application of these smart composites, fracture induced by 
crack and interlaminar delimination is a major concern in many applications of 
PFCs, especially in aerospace where high structural reliability is required. Among 
various mechanisms contributing to the fracture resistance of composite materials, 
bridging by reinforcing fibers is considered to be of high interest because it pro-
vides direct closure traction to the bridged crack [8]. To correlate the interfacial 
mechanical properties and experimental results and to study the mechanical beha- 
vior of the interface of PFCs, it is necessary to develop theoretical models (or em-
pirical formulation) for analyzing stress and electric fields in piezoelectric fiber 
tests such as the push-out test and/or the pull-out test. Based on shear-lag assump-
tions, the energy criterion and the Lamé solution for a 2D-axisymmetric problem, 
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many micromechanics models have been established over the past decades to pro-
vide a theoretical basis for single fiber pull-out tests. The Gao-Mai-Cotterell model 
[9] and its modifications [10-12] have provided a theoretical basis for the analysis 
of stress distribution, interface debonding and friction for the pull-out test, using a 
fracture mechanics approach. Zhou et al. [13] reported a theoretical model for 
evaluation of the interfacial properties of ceramic matrix composites (with no pie-
zoelectric effect) in push-out tests, based on the fracture mechanics approach. For 
PFC, Liu et al. [8] presented a theoretical model of fiber pull-out for simulation of 
the relationship between crack-opening and bridging stress using a shear stress cri-
terion. Gu et al. [14] extended the model in [8] to include electric field input. Re-
cently, Qin et al. [15] developed a theoretical model for analyzing piezoelectric be-
havior in piezoelectric fiber push-out tests. Wang and Qin [16] presented a debond-
ing criterion for determining interlaminar delimination during piezoelectric fiber 
push-out tests. Based on the model in [15] and some assumptions, Wang et al. [17] 
studied stress and electric field transfer in push-out tests under both electrical load-
ing and mechanical loading.  

On the other hand, increasing applications of fibrous piezoelectric composites 
have naturally increased interest in the micromechanics modeling for such materials. 
Early reports of the effective material properties of isotropic reinforced solids are 
due to Hill [18], and a companion work in 1964 [19] on mechanical properties of 
fiber-strengthened materials. Hill’s report indicated that the overall elastic moduli of 
fibrous composites are connected by simple universal relations at given concentra-
tions. Exact values of the effective properties can be determined when the phases 
have equal transverse shear modulus. In piezoelectric problems, Grekov et al. [20] 
studied the composite cylinder effective model for piezocomposites, Dunn and Taya 
[21] simplified the piezoelectric Eshelby’s tensors of the elliptic fiber problem and put 
them in explicit form instead of elliptic integrals, and then they extended the dilute, 
self-consistent, Mori-Tanaka and differential micromechanics methods to cover 
piezoelectric composites. Schulgasser [22] found that the effective constants of a 
two-phase fibrous piezoelectric composite are connected by simple relations. Ben-
veniste and Dvorak [23] showed that in such composites, uniform fields can be 
generated by certain loading conditions. The concept of uniform fields was further 
elaborated by Benveniste [24,25] in two-, three-, and four-phase composites with 
cylindrical microstructures. Chen [26] presented a number of exact results for over-
all moduli of a piezoelectric composite consisting of many perfectly-bonded phases 
of cylindrical shape. Mallik and Ray [27] reported improvement of the effective 
material coefficient of piezoelectric fiber reinforced composites by assuming the same 
electric field in both matrix and fiber phases. Huang and Kuo [28] directly extended the 
Eshelby type equivalent inclusion method to piezomagnetic composites and proposed 
an analogous simplification of Eshelby’s tensors [29]. Jiang et al. [30,31] presented a 
three-phase confocal elliptical model, in which the generalized self-consistent method 
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for piezocomposites was developed as for thermo-electro-magneto-elastic composites. 
Recently, Tong et al. [32] presented a three-phase model under in-plane mechanical 
load coupling with thermo-electro- magnetical loads. Kumar and Chakraborty [33] 
developed an effective coupled thermo-electro-mechanical model of piezoelectric 
fiber reinforced composite using an approach based on strength of materials . This 
chapter, however, only includes most of the results appearing in [8,14-17,24-26,34,35].  

3.2  Basic formulations for fiber push-out and pull-out tests 

The geometric configuration of the micromechanical model used in the single pie-
zoelectric fiber pull-out test and push-out test is shown in Fig. 3.1 [8,16], with an 
interfacial debonding crack of length l. A piezoelectric fiber polarized in the axial 
direction with radius a and length L is embedded at the centre of a coaxial cylindri-
cal shell of epoxy matrix with external radius b. A uniform stress (tension in 
pull-out test and pressure in push-out test) and an electrical loading 

a

a are applied 
at the end of the fiber ( ). The piezoelectric fiber is considered transversely 
isotropic and the epoxy is isotropic. In the following, basic formulations for the 
model shown in Fig. 3.1 are presented in order to establish notation and to provide a 
common source for reference in later sections of this chapter. 

0z

 

Fig. 3.1  Mechanics model of PFCs in (a) fiber pull-out test, (b) fiber push-out test. 

Based on linear piezoelectric theory, the relationship between strains and 
stresses is expressed as [36] 
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for pure mechanical loading, and  
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for electromechanical loading [17], where the superscripts “m” (in Eq. (3.5) below) 
and “f ” refer to the variable associated with “matrix” and “fiber” respectively. In 
the above formula, (dij, gij) and ( ,  ij ij ) are piezoelectric coefficient and dielectric 
constants, ijf  are components of elastic compliance. The constitutive relations of 

the elastic matrix are given by 

 

m m

m m

m m

m m
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1 01
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 (3.5) 

The general equilibrium equations for the fiber-matrix system are given by  

 0
j j j
zz rz rz

z r r
 (3.6) 

 0
j jj j

rrrr rz

r z r
 (3.7)  
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 0r r zD D D
r r z

 (3.8) 

where j=m, f. Making use of Eqs. (3.6) and (3.7), the equilibrium between the axial 
stress and the interfacial stress can be expressed as 

 f m1
a zz zz   (3.9) 

 
md 2 ( )

d
zz

i z
z a

 (3.10) 
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d
zz

i z
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 (3.11) 

where  

  (3.12) 2 2 2/( )a b a

and all stresses appearing in Eqs. (3.9)-(3.11) are taken to be the corresponding 
average values with respect to the cross section. Substituting Eqs. (3.10) and (3.11) 
into Eq. (3.6) yields the shear stresses in the fiber and the matrix as follows: 

 f ( )rz i
r z
a

 (3.13) 

 
2 2

m ( ) ( )rz i
b r z

ar
 (3.14) 

The electric field, Ei, is defined in Eq. (1.2), i.e., 

 ,r zE E
r z

 (3.15) 

To simplify the derivation of the theoretical model and without loss of generality, 
the axial stresses f

zz  and m
zz  are assumed to be functions of z only, and the 

electric potential which is caused by elastic deformation of the fiber is also inde-
pendent of r [15], i.e., 

  (3.16) f f m m( ), ( ), ( )zz zz zz zzz z z

a

z

For a long fiber ( ) polarized in the z-direction embedded in a relatively 
large matrix, this assumption is appropriate, and because of the transversely iso-
tropic property of the piezoelectric fiber the following assumption is still accept-
able: 

L

  (3.17) f f( ) ) ( )rr iz z q
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where  is the interfacial radial stress induced by Poisson contraction between 
the fiber and the matrix or/and applied electric field. Using Eqs. 

( )iq z
(3.2), (3.8), (3.15), 

and (3.16), the electric displacements in the fiber can be expressed in terms of fiber 
stresses as 

 f f f
15 15, f

z zz r rzD d D d  (3.18) 

Substituting Eq. (3.17) into Eq. (3.3), we obtain 

  (3.19) f f
rr

Using the strain-displacement relationships in the axi-symmetric problem 

  andr r
rr

u u
r r

 (3.20) 

we have 

 r ru u
r r

 (3.21) 

where ur is the radial displacement. The solution of Eq. (3.21) shows that 
 are independent of the coordinate r. Thus, it can be concluded that the 

axial electric field Ez is also independent of the variable r [14]. Integrating Eq. 
 and r

(3.15)2 
with respect to z, we obtain 

 1 2( , ) ( ) ( )r z f r f z  (3.22) 

Substituting Eq. (3.22) into Eqs. (3.4) and (3.8), we have 

 1( ) lnf r A r B  (3.23) 

 f
2 13 33 15

33

1( ) [2 ( ) ( ) ( )]di zzf z d q z d d z z Cz D  (3.24) 

in which A, B, C, and D are integral constants and, in general, it is assumed that 
B=D=0 because there is no effect on Ei and Di after the differential operation [14]. 
Note that f1(r) approaches infinity when r tends to 0, which implies A=0. C can be 
determined by using the electric boundary condition, say, 

 0z zD 0D  (3.25) 

where D0 is the electric displacement applied at the end of the fiber. Making use of 
Eqs. (3.4) and (3.24), C can be determined as 

  (3.26) 15 0aC d D

It can be seen from Eq. (3.24) that the electric potential is also independent of 
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the variable r. 
In the frictional sliding interface, , the interfacial shear stress i is go- 

verned by Coulomb’s friction law [36]. That is,  
0 z l

 0( ) ( )i z q qi z  (3.27) 

in which  is a constant coefficient of friction and  is the residual fiber clamp-
ing (compressive) stress in the radial direction caused by matrix shrinkage and dif-
ferential thermal contraction of the constituents upon cooling from the processing 
temperature. 

0q

The outer boundary conditions of the matrix are given by 

 m 0r r b
,    m 0rz r b

  (3.28) 

At the interface, the radial stresses and displacements of the fiber and matrix 
satisfy  

 m f m f,rr rr i r rr a r a r a r a
q u u  (3.29) 

At the bonded interface, , the continuity of axial deformations re-
quires that 

l z L

 m f
z zr a r a

u u  (3.30) 

The remaining task is to derive the differential equation for f
zz and radial stress 

 due to elastic deformation in composites with a perfectly bonded interface or 
in the frictional sliding process after the interface is completely debonded. The de-
tailed derivations for these two processes are provided in the following three sec-
tions. 

( )iq z

3.3  Piezoelectric fiber pull-out 

In this section a theoretical model presented in [8,14] is introduced for investigating 
the interaction between fiber deformation, pull-out stress and electric fields. The 
model can be used to examine stress distributions in the fiber under both mechani-
cal and electric loads. In the following, the solutions for elastic and electric fields in 
both bonded region and frictional sliding region are presented.  

3.3.1  Relationships between matrix stresses and interfacial shear stress 

The radial and hoop stresses in the matrix can be expressed in terms of 
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( ) and ( )i iz q z  by way of the strain compatibility and equilibrium equations. 
Noting that by assumption, the axial stress is dependent on z only, the strain com-
patibility equation can be written as [14] 

 
m m

m m

1
rr

rr
r

r r
 (3.31) 

Substituting Eq. (3.31) into Eq. (3.7) we obtain 

 
2

m m ( )
( )

2 (1 )
i

rr
zr F z

a z
 (3.32) 

where the function F(z) is to be determined by the boundary conditions. In the 
pull-out test, the boundary conditions for radial and hoop stresses can be assumed to 
be 

 m ( ) and 0rr r a i rr r bq z m  (3.33) 

Thus, the solutions for radial and hoop stresses can be written as 

 

m
1 2

m
3 4

d ( )
( , ) ( ) ( ) ( ) ,

d
d ( )

( , ) ( ) ( ) ( )
d

i
rr i

i
rr i

z
r z p r q z p r

z
z

r z p r q z p r
z

 (3.34) 

where 

2

1 2( ) 1bp r
r , 

2 2
2 2

2 1 22 2( ) 2 ln ln 1 1 ( ) ,
4

b b b bp r b r a
a r a r r

2

 

2

3 2

2
2 21

4 2

2
2 2 22

2

( ) 1 ,

( ) 2 ln ln 1 2( )
4

           1 ( ) 4
4

bp r
r

b b bp r b r b
a r a r

b r a b
a r

2  

with 

 1 21 , (3 ) / 2  
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3.3.2  Solution for bonded region 

In the solution for the bonded region, the following continuity conditions at r=a can 
be used: 

  (3.35) f m f,r r z zu u u um

Making use of Eqs. (3.9) and (3.17) and the continuity condition (3.35), we have 

 
f f

2 3 2

1 1

( )d ( )
d( )
i

a z z

i

z
3g g a

zq z
a g

a
 (3.36) 

where 
2
13 13 33 15 13 0 15

1 11 12 2 33 3
33 33 33

3 4
1 2 3

2 ( ) (
, ,

( ) ( )
, ,

ad d d d d D
a f f a f a

p a p ag g g
E E E

)d

 

Combining Eqs. (3.9), (3.11), (3.35) and (3.36) with axial displacements and 
stresses, a second-order differential equation of the axial stress in the fiber is ob-
tained: 

 
2 f

f
1 22

d
0

d
zz

zzA A
z

 (3.37) 

where 

1 1 2 2

1 1 2 1 1 2
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2 ( ) (
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3 4
1 2

[ ( ) 1] ( ) 1, ,
p a p ah h

E E 3h
E

 

For the case of the pull-out test shown in Fig. 3.1(a), the boundary conditions 
are 

  (3.38) f f(0) , ( ) 0zz a zz L



62    Chapter 3  Fibrous Piezoelectric Composites 

The solution to Eq. (3.37) is then obtained as 

  (3.39) f
1 2 2( ) /z z

zz z k e k e A A1

where 

2
1 1 2

1

2
2 2

1

, (1 )
1

1 (1 )
1

L
L L

aL

L
aL

AeA k e e
Ae

A
k e

Ae

,
 

As mentioned in [14], based on Eq. (3.39), the interfacial shear stress  
can be evaluated from Eq. (3.11). Then the interfacial normal stress qi(z) can be 
determined from Eq. (3.36). Meanwhile the electric potential can be calculated from 
Eqs. (3.22)-(3.24) with the proper boundary conditions, such as 

( )i z

( ) 0L . 
In this chapter, the yielding shear stress, , is taken as the maximum shear 

stress at which debonding starts along the interface between fiber and matrix, if the 
shear stress at the interface reaches .  

y

y

3.3.3  Solution for debonded region 

In the case of friction sliding, the interfacial shear stress is determined from Cou-
lomb’s friction law (3.27). Making use of Eqs. (3.9), (3.11), (3.27), and (3.36), we 
obtain 

 
2 f f

f
1 2 32

d d
0

dd
zz zz

zzB B B
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3)

0 ]D

2

 (3.40) 

where 

/ ( 1,2,i iB N N i  

2 1 1 1

2 2 3 3 3 3 1 1

/ 2, ( ) / 2,
( ), [( ) ( )a

N a g N a a g
N a g N a g a g

 

Equation (3.40) can be solved for fiber stress using the following boundary 
conditions [14]: 

  (3.41) f f(0) , ( ) 0zz a zz L l

The solution to Eqs. (3.40) and (3.41) can, then, be written as 

  (3.42) 1 2f
3 4 3( ) /z z

zz z k e k e B B

where 
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3.3.4  Numerical results 

To illustrate applications of the theoretical model described above, numerical results 
are presented for a piezoelectric/epoxy system, of which the material properties are 
[8]: E=3 GPa, =0.4, 11f = 0.019 GPa–1, 33f = 0.015 GPa–1, 12f = –0.005 7 GPa–1, 

13f = –0.004 5 GPa–1, 55f = 0.039 GPa–1. The radii of the matrix and fiber are 3 mm 
and 0.065 mm, respectively. The piezoelectric parameters of the fiber are given by:  
d33=390 10–12 m/V, d13 = –d15= –190 10–12 m/V, 11=40 10–9 N/V2, 33=16.25 10–9 N/V2. 
The interfacial properties are approximately evaluated as s=0.04 GPa and =0.8. 
The initial thermal stress q0 is taken to be 0.  

Figure 3.2 shows the stress and electric fields in the piezoelectric fiber, where 
the debonding length is 0.4 mm. In the debonded region ( ), both the 
fiber axial stress and the electric field are nearly constant. In the bonded area, their 
values reduce rapidly. In the boundary between the bonded and debonded regions, 
Ez has a significant increment. 

0 0z .4

 
Fig. 3.2  Stress and electric fields in the piezoelectric fiber. 

3.4  Piezoelectric fiber push-out 

In the previous section we presented a theoretical model for simulating the me-
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chanical behavior of PFCs in a pull-out test. Extension to the case of PFCs in the 
push-out test is described in this section. The mechanics model to be employed is 
shown in Fig. 3.1(b). Using the piezoelectric fiber push-out model presented in this 
section, the effect of piezoelectric constant and embedded fiber length on the me-
chanical behavior of fiber composites is investigated. The results show that there is 
a significant effect of the piezoelectric parameter and embedded fiber length on 
stress transfer, electric field distribution and load-displacement curve of the fric-
tional sliding process.  

3.4.1  Stress transfer in the bonded region 

Stress transfer is of fundamental importance in determining the mechanical proper-
ties of fiber-reinforced composite materials. For the interface in PFCs, stress trans-
fer is affected by the piezoelectric coefficient in addition to the micromechanical 
properties. In the following, the derivation of a second-order differential equation of 

f
zz  presented in [15,17] is briefly reviewed.  

Consider the mechanics model shown in Fig. 3.1(b). The inner and outer boun- 
dary conditions of the matrix are given by 

  (3.43) m m m m( , ) ( ), ( , ) ( ), ( , ) 0, ( , ) 0rr i rz i rr rza z q z a z z b z b z

Then from Eqs. (3.14) and (3.43), we obtain [37] 
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  (3.45) 

Substituting Eqs. (3.44) and (3.45) into Eq. (3.5) yields 
m
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 2 2 2 2 2
1 22b r b a b  (3.47) 

For a fully bonded interface, the continuity conditions of axial and radial defor-
mation between fiber and matrix are given in Eqs. (3.29) and (3.30). From Eqs. 
(3.1), (3.30) and (3.47), the radial stress of the fiber is obtained as 

 

f
33 33 15
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d1( ) / / 2
4 d2( / )

           2 (1 ) ln ( ) 2 ( )
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(3.48) 

Then, combining Eqs. (3.1), (3.29), (3.46), and (3.48) yields the differential 
equation of f

z  in the form 
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where 1A  and 2A  are two constants: 
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 2 2 2 2
2 1 1 22 (1 ) ln( ) ( ) 2 (C b a b b a b a b2 2 )  (3.54) 

 1 2(1 )  (3.55) 

 2 (1 ) 1 (3.56) 

Using the stress boundary conditions 
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  (3.57) f f(0) , ( ) 0z a z L

The axial stress in the piezoelectric fiber is given by 

 f 2
1 1 2 1

1
( ) sinh( ) cosh( )z a

A
z K A z K A z

A
 (3.58) 

where 1K  and 2K  are defined by 
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In addition, using Eqs. (3.6), (3.7), and (3.17),  can be expressed as  ( )iq z
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i a zq z N N N
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 (3.61) 

where  (i=1,2,3) are given by iN

 33 33 15 2
1 2

13 13

/
, ,

42( ) 2( / )
E f g d CN N N

EEf f E 3  (3.62) 

From Eqs. (3.2), (3.18), (3.58), and (3.61), the electric field zE can be calcu-
lated by 

 f15
31 33

33
( ) 2 ( ) ( )z i

d
E z g q z g zzz  (3.63) 

3.4.2  Frictional sliding 

Once the interface debonds completely, the frictional sliding of the fiber out of the 
surrounding matrix will begin, which is the last stage of the push-out process. To 
better characterize this stage, theoretical analysis was conducted with the microme-
chanical model shown in Fig. 3.3.  

For the sake of simplicity, we assume a small elastic deformation and a large 
displacement at the fiber-loaded end during sliding. Therefore, the elastic deforma-
tion of the fiber can be neglected, and the fiber axial displacement approximately 
equals the fiber sliding distance s, that is, s . 

The governing equation for f
z  in this case can be derived in a manner similar 
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to the mathematical operation for Eq. (3.49). In fact, from the continuity condition 
of radial displacement (3.29) and Eqs. (3.6), (3.14), and (3.17), we have 

 f13 13 31 15 1

1 1

/
( )

4 d
i

i a z
f f E g d Cq z

D D a 1

d
D z

 (3.64) 

 

Fig. 3.3  A fiber-matrix cylinder model for frictional sliding in the push-out test. 

Substituting Eq. (3.64) into Eq. (3.27) yields 

 
2 f f

f
1 22

d ( ) d ( )
( )

dd
z z

z
z zQ Q z

zz 3Q  (3.65) 

where  (i=1,2,3) are given by iQ
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Using the stress boundary conditions  

  (3.70) f f( ) , ( ) 0z a zs L

The solution to Eq. (3.65) is obtained as 

 1 2f 3
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( ) z z
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Q

z K e K e
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 (3.71) 

where s is the fiber sliding distance (see Fig. 3.3) and  are given by 3 4 1,  ,  ,  K K 2
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In the process, the interfacial shear stress is governed by Coulomb’s frictional 
law given in Eq. (3.27). Noting that fiber and matrix maintain contact in the radial 
direction, we have  

  (3.76) f m( , ) ( , )r ru a z u a z

Then, the radial normal stress can be expressed as 
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where iM  (i=1,2,3) are given by  
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Using Eqs. (3.2), (3.18), (3.71), and (3.77), the electric field can be obtained as 

 f15
31 33

33
( ) 2 ( ) ( )z i

d
E z g q z g zz  (3.79) 

Noting that the sum of the radial normal stress of the fiber should be negative, 
and the fiber and matrix can contact each other during the fiber sliding process, the 
radial stress must satisfy the expression 

  (3.80) 0 ( ) 0iq q z

According to the distribution of the fiber stress fields in the push-out test, the 
axial stress reaches its maximum value at the fiber-loaded end ( , and s 
is defined in Fig. 3.3), while the interfacial shear stress reaches its minimum value 
at the same location. Then Eq. 

z s 0s

(3.80) yields 

  (3.81) 0 ( ) 0iq q s

Therefore the relationship between the applied stress and the axial dis-a
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placement ( s) at the fiber-loaded end can be given as 
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 (3.82) 

3.4.3  PFC push-out driven by electrical and mechanical loading 

The formulation presented above can handle push-out problems under mechanical 
loading only. In the following, discussion of PFC push-out testing subjected to both 
mechanical and electric loading is presented. 

Consider now the electrical boundary conditions at the ends of the piezoelectric 
fiber: 

 (0) , ( ) 0V L  (3.83) 

From Eq. (3.24), we have 

 f
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Following the procedure in Subsections 3.4.1 and 3.4.2, solutions of the stress 
fields in the bonded region ( ) can be written as l z L

 m ( ) 1 exp( )z az z  (3.85) 

 f ( ) 1 exp( )z a az z  (3.86) 
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The solutions of the stress fields in the bonded region ( ) are obtained as l z L
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where 
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The electrical field zE  in both the debonded and bonded regions is given as 

 f
13 33 15

33

1 2 ( ) ( ) ( )z i zE d q z d d z C   (3.100) 

3.4.4  Numerical assessment 

To illustrate applications of the proposed theoretical model and to reveal the effects 
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of the electromechanical coupling on stress transfer behavior, numerical results are 
presented for a piezoceramic fiber/epoxy matrix system subjected to a push-out 
load. The material parameters are assumed to be the same as those used in Subsection 
3.3.4. The radii of fiber and matrix are:   

 The residual fiber clamping 
stress in radial direction  is assumed to be –0.01 GPa and 

0.065 mm, 3 mm, a b
mm.L

0.8

l
0.6 mm ( 0 for fully bonded fiber), and 2l

0q [15,17]. 
Figures 3.4(a)-(d) shows the distribution of stresses and electric field as func-

tions of the dimensionless axial distance z/L for a partially debonded piezoelectric 
composite system subject to a constant external stress GPa in the fiber 
push-out test. For comparison and illustration of the effect of electromechanical 
coupling on stress transfer behavior, the corresponding distribution of stresses for a 
non-piezoelectric fiber composite (NPFC) is also plotted in Fig. 3.4. It is found that 
the curves for PFC and NPFC have similar shapes. When subjected to applied stress 
of same value, the axial stress 

1.5a

f
z  in PFC is smaller than that in NPFC (Fig. 

3.4(a)). It can also be seen from Figs. 3.4(a) and 3.4(c) that both axial and radial 
stresses in the fiber gradually decrease as  increases. Figure. 3.4(c) demon-
strates that there is a larger radial stress in the PFC and it decays more rapidly than 
that in NPFC, which leads to a larger interface shear stress in the debonded region  

/z L

 

Fig. 3.4  Plot of (a) fiber axial stress, (b) interface shear stress, (c) fiber radial stress, (d) 
electric field for the piezoelectric fiber push-out under mechanical loading. 
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of PFC in Fig. 3.4(b) due to the Coulomb friction law (3.27). This phenomenon can 
be attributed to the piezoelectric effect in piezoelectric fiber; a larger applied stress 
is required in PFC to produce the same axial stress as in NPFC. The difference in 
the stress fields between these two composite systems is controlled by piezoelectric 
coefficients, which were investigated in [15] for fully bonded composites. When the 
piezoelectric coefficients and dielectric constants are set as zero, piezoelectric fiber 
degenerates to non-piezoelectric fiber. Figure 3.4(d) shows the variation of electri-
cal field as a function of axial distance z/L. The variation of zE with z/L is very simi-
lar to that of the fiber axial stress. 

Figures 3.5(a)-(d) shows the distribution of stresses and electric field as func-
tions of dimensionless axial distance z/L for a partially debonded piezoelectric 
composite system subject to electrical loading and a constant external stress 

GPa in the fiber push-out test. In order to study the effect of positive and 
negative electric loading on stress transfer, electric potentials of 5 000 V, 0 V, and 
–5 000 V are applied at the end of piezoelectric fiber (z = 0). Figure 3.5(a) shows 
that the fiber axial stress decays more rapidly under negative electric potential than 
under positive electric potential. It can also be seen from Fig. 3.5(c) that negative 
electric potential leads to a larger radial stress in the piezoelectric fiber than applied 
positive electric potential, whose positive electric potential accordingly causes a 

1.5a

 

Fig. 3.5  Plot of (a) fiber axial stress, (b) interface shear stress, (c) fiber radial stress, (d) 
electric field for the piezoelectric fiber push-out under electrical and mechanical loading. 
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larger interface frictional shear stress in debonded region in Fig. 3.5(b). This is be-
cause when piezoelectric fiber is subjected to an electric potential applied parallel to 
the polarization direction, expansion occurs in the same direction and shrinkage 
occurs in the transverse direction [38]. For a positive applied electric potential, the 
hoop stress developed is in compression, while for a negative applied electric po-
tential, the hoop stress developed is in tension. In Fig. 3.5(d), the distribution of 
electric field in the piezoelectric fiber is plotted via z/L, and it depends heavily on 
the applied electric field. 

Figures 3.6-3.11 apply to problems with fully bonded fiber. Figures 3.6 and 3.7 
present the distribution of fiber axial stress and interfacial shear stress at the first 
stage of push-out for different embedded fiber lengths. At the fiber end ( ), 
the applied stress is given by GPa. It is evident that the stress distribu-
tion in the piezoelectric fiber is similar to that in conventional material fiber such as 
carbon fiber. The fiber axial stress decays rapidly near the fiber-loaded end and the 
rate of decay varies with the embedded fiber length. The curves in Fig. 3.7 show 
clearly that the maximum interfacial stress is not very sensitive to variation of fiber 
length when , and the interfacial stress remains almost constant when 

, which is quite similar to the finding in [37].  

/ 0z L
0.05a

2 mmL
/ 0.z L 6

 

Fig. 3.6  The distribution of fiber axial stress  in fully bonded interfaces of different 
lengths (applied load stress  is –0.05 ). 

f ( )zz z
aa GP

To study the effect of the piezoelectric parameter and electro-mechanical coupling 
on stress transfer, stress distribution is plotted in Figs. 3.8 and 3.9 for both 
non-piezolectric fiber and piezoelectric fiber with different  where the fiber 
length mm. Figure 3.8 shows that axial stress decreases along with in-
crease in the piezoelectric constant , i.e., axial stress will be smaller at any 
given position z/L for a larger value of . Axial stresses decay more rapidly in 
piezoelectric fiber than in non-piezoelectric fiber. The situation in Fig. 3.9 is 

15d
2.0L

15d

15d
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slightly different. There is a critical location  at which  has no 
effect on interfacial shear stress. It is evident from Fig. 3.9 that shear stress will 
increase when z<zc and decrease when z>zc , along with an increase in the value of 

. This phenomenon indicates that the higher the value of , the higher the 
rate of decrease in both axial and shear stress. A comparison of the shear stress dis-
tributions in piezoelectric and non-piezoelectric fiber is also made and plotted in 
Fig. 3.9, and their significant difference is observed. 

c / 0.2z L 4 15d

15d 15d

 
Fig. 3.7  The distribution of interfacial shear stress  in fully bonded interfaces of 
different lengths (applied load stress  is –0.05 ). 
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Fig. 3.8  The distribution of fiber axial stress  in a fully bonded region (applied 

load stress  is –0.05  and d ). 

f ( )zz z
12  m/V10a GPa 15 190

Because of the piezoelectric effect, an electric field exists in the fiber. The dis-
tribution of the electric field in axial direction zE  is shown Figs. 3.10 and 3.11. It 
can be seen from these two figures that the distribution of the electric field and the 
effect of the fiber length and the parameter  are quite similar to those of the 15d
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stress field (Figs. 3.6-3.9). 

 

Fig. 3.9  The distribution of interfacial shear stress  in a fully bonded region (applied 

load stress  is –0.05  and ). 
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Fig. 3.10  The distribution of electric fields in piezoelectric fiber for different embedded 
lengths (applied load stress  is –0.05  and ). a GPa 12

15 190 10  m/Vd

 

Fig. 3.11  The distribution of electric field in a piezoelectric fiber for different values of 
(applied load stress  is –0.05 GP  and ). 15d a a 12

15 190 10  m/Vd
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3.5  Interfacial debonding criterion 

In the previous two sections theoretical models were described for simulating fiber 
pull-out and push-out processes. A debonding criterion for identifying interfacial 
delimination during fiber push-out testing of PFC is introduced in this section. The 
debonding criterion can be used for investigating the debonding process of piezo-
electric fiber in the push-out test under combined electrical and mechanical loading. 
The description in this section is based on the results presented in [16]. 

Unlike in NPFCs, there are electrical fields induced by the piezoelectric effect 
or inverse-piezoelectric effect of PFCs. Owing to this phenomenon, the debonding 
criterion for NPFCs is not directly applicable. To incorporate the piezoelectric effect 
in the debonding criterion we consider a cracked piezoelectric elastic body of vol-
ume V in which traction P, frictional stress t, and the surface electrical charge  
are applied. ,  and  are the corresponding surfaces respectively, as 
shown in Fig. 3.12. For the sake of simplicity, the matrix is assumed to be a piezo-
electric material whose piezoelectric coefficients and dielectric constants equal zero. 
In our analysis, the debonding region is taken to be a crack (see Fig. 3.12). 

PS tS S

 

Fig. 3.12  A piezoelectric elastic body with a frictional crack under electromechanical loading. 

Based on the principle of energy balance, the variation of energy in the piezo-
electric system for crack growth dA along the friction surface under electro-    
mechanical loading is 

  (3.101) fd d dcG A W

where  is fracture energy,  is the work done by friction stress during crack 
growth, 

cG fW

   (3.102) f 0( ) d
TS

W t t v S

and  is the generalized mechanical and electrical energy stored inside the pie-
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zoelectric body: 

         0 0
1 ( ) : ( )d
2

e e s s  

 0 0
1 ( ) : ( )d d
2 PS S

D D E E Pu S Sd  (3.103) 

in which  is the relative slip of crack surfaces and  is the tangential compo-
nent of pre-stress (or initial stress) on the crack surfaces. 

v 0t

0s , , e0, and E0 are 
selfequilibrium initial stress, electrical displacement, strain, and electrical field re-
spectively, and 

0D

0s s  and  balance the applied loads. 0D D
Using the basic theory of piezoelectricity (3.1)-(3.8), one can easily prove the 

corresponding reciprocal principle of work and the principle of virtual work for 
piezoelectric material: 

1 2 1 2 1 2 2 1 2 1 2 1d d d d di i i i i i i it u f u t u f u d  

  (3.104) 

d d d d (
t

i i i i ij ij i it u t u q D E )d  

  (3.105) 

Using the two principles (3.104) and (3.105) and following a method similar to 
that employed for fiber pull-out analysis [39], it can be proved that  against the 
incremental debonding length, l, is equal to the energy release rate  for the 
debonded crack, that is 

tU

iG

 2 t
i

U
aG

l
 (3.106) 

in which  is the total elastic energy and electrical energy stored in the fiber and 
matrix, which can be expressed in the following form: 

tU
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 (3.107) 

Then the following energy criterion is introduced: 

   (3.108) i iG G

in which  is the critical interface debonding energy release rate. icG
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In Eq. (3.107),  is a complex function of the material properties of the con-
stituents and geometric factors. Performing the mathematical operation over the 
debonded and bonded regions for a piezoelectric-epoxy composite system by utilizing 
a numerical quadrature approach,  derived in this study can be obtained as a 
second-order function of the applied stress  for a fiber/matrix system with 
given debonding length l.  

tU

iG

a

To illustrate the effect of electromechanical coupling on the debonding behavior 
of PFCs and to verify the proposed debonding criterion for the piezoelectric fiber 
push-out problem, a numerical example is considered for two composite systems, 
namely piezoelectric fiber/epoxy and non-piezoelectric fiber/epoxy. The parameters 
of the piezoelectric fiber and matrix are given as [8]: 

1 1 1
11 33 12

1 1 12
13 55 33

12 3
31 15 33

3 9 2
31 33

0.019 GPa ,   0.015 GPa ,   0.005 7 GPa ,

0.004 5 GPa ,   0.039 GPa ,   390 10  m/V,

190 10  m/V,   24 10  V m/N,

11.6 10  V m/N,   16.25 10  N/V , 

f f f

f f d

d d g

g e m m3 GPa, 0.4E

 

The radii of fiber and matrix are given by:  
 The residual fiber clamping stress in the radial direc-

tion  is –0.1 MPa and 

0.065 mm, 3 mm,a b
0.6 mm,l

0q
and 2 mm.L

0.8

5 / 400

[8]. It should be pointed out that real piezoelectric 
fibers have a wide variety of shapes and sizes. In general, the radius a of a piezo-
electric fiber is about  and the fiber length  (More details 
as to the shape and size of a piezoelectric fiber can be found elsewhere [15,40-42]). 
In a real single fiber push-out test, in general, the ideal single fiber composite is the 
one with the value of the matrix radius b being variable, b>>a, and L between 1/2 mm 
(see[43] for details).  

 m, 200 mmL

The geometric configuration and properties of non-piezoelectric fiber matrix 
and interfaces are the same as those of its counterpart, the piezoelectric fiber, except 
that the piezoelectric coefficients and dielectric constants are set as zero. 

To illustrate the effect of electrical loading on stress transfer behavior, Fig. 3.13 
presents the distributions of interfacial shear stress as functions of dimensionless 
axial distance z/L for partially debonded PFCs in the fiber push-out test. In the cal-
culation, the debonding length is set to be l = 0.6 mm. The distribution of interfacial 
shear stress in PFC is similar to that in NPFC [13], in that both show a jump at the 
point (i.e., the interface between the debonded and bonded regions). It is evi-
dent from Fig. 3.13 that there is a larger interface shear stress in the debonded re-
gion under an applied negative electrical potential. This is because, for piezoelectric 
fiber, expansion occurs in the same direction and shrinkage occurs in the transverse 
direction when the fiber is subjected to an electrical field applied parallel to the po-

/l L
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larization direction. For an applied positive electrical potential, the hoop stress in-
duced is in compression while for a negative applied electrical potential, the hoop 
stress developed is in tension [38]. Therefore, an applied negative electrical loading 
leads to a larger shear stress in the debonded region than that induced by a positive 
electrical loading, according to the Coulomb friction law(3.27). 

 

Fig. 3.13  Distribution of interfacial shear stress under different electrical loadings 
for a constant mechanical loading GPa. 

( )i z
0.06a

The effect of interfacial properties on PFC performance is shown in Fig. 3.14, 
showing the variation of electrical field as a function of axial distance z/L for several 
values of the parameters of interfacial properties. It can be seen that the electrical 
field decreases along with either an increase in the residual compressive stress  
or an increase in the Coulomb frictional coefficient 

0q
. These results indicate that 

for piezoelectric composites, the interfacial properties not only control the stress 
transfer between fiber and matrix but also have an important influence on the   
distribution of the electrical field. It should be mentioned that at the transition point 
from the debonded region to the bonded one there is no jump in electrical field, 
unlike in the case of interfacial shear stress. This phenomenon is very different from 
the result obtained in [8], and this difference is mainly attributed to the fact that in 
our model the expressions for  and  do not include the term  owing 

to the use of Lamè’s solution [37]. It is also evident from Fig. 3.15 that the results 
depend largely upon the piezoelectric constant d15. 

m
rr

m
,i z

To study effect of piezoelectric coefficient on the debonding process, the results 
of energy release rate are plotted in Fig. 3.15 as a function of debonding length  
for different piezoelectric coefficients . From this figure we can see that the 
normalized energy release rate  increases along with an increase in the 

l
15d

mG/iG
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value of . In addition, the energy release rate increases distinctly along with an 
increase in the value of  until it reaches a maximum. This finding implies that 
the piezoelectric effect has an important influence on the fiber debonding process 
during fiber push-out. 

15d
/l L

 

Fig. 3.14  Distribution of electric field in piezoelectric fiber under mechanical loading 
GPa for different interface property parameters. 0.06a

 
Fig. 3.15  Energy release rate vs.  under different  for a constant me-
chanical loading GPa. represents the energy release rate for  

and . 

/i mG G

mG
/l L 15d

0.06a 15 151.0*d d

/ 0.05l L

In Fig. 3.16 the energy release rate vs. electric potential loading is plotted, from 
which it can be seen that the energy release rate is linearly dependent on the elec-
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trical loading when PFCs are subjected to a constant mechanical loading. The ob-
servation above indicates that the total energy release rate can be used as a debond-
ing criterion for the piezoelectric fiber push-out test. 

It should be mentioned that the energy release rate derived in this section is the 
total energy release rate. Park and Sun [44] obtained the total energy release rate 
and the mechanical strain rate for an electrically impermeable crack in an infinite 
piezoelectric medium for the three fracture modes, theoretically and experimentally. 
They concluded that the total energy release rate could not be used as a fracture 
criterion because the electrical loading always reduces the total release rate. How-
ever, it should be remembered that those results derived from the electrically im-
permeable condition on the crack surfaces, a condition not involved in our problem. 

 

Fig. 3.16  Energy release rate vs. electrical loading under various mechanical loadings, 
.  represents the energy release rate for electrical loading 0.6 kV. / 0.l L 2 mG

3.6  Micromechanics of fibrous piezoelectric composites 

In the previous sections of this chapter, stress transfer and interfacial debonding 
criteria of fibrous piezoelectric composites were described. Determination of the 
effective material properties of fibrous piezoelectric composites is discussed in this 
section. It focuses on the developments in [25,26,34]. 

3.6.1  Overall elastoelectric properties of FPCs 

In this subsection some exact results presented in [26,34] for effective properties of 
a piezoelectric composite consisting of many perfectly-bonded transversely iso-
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tropic phases of cylindrical shape are briefly summarized. 
Unlike the format of the constitutive relation (2.2), both Benveniste [34] and 

Chen [26] employed the five constants of Hill [19] (k, l, m, n, p) in the constitutive 
relation they studied. For a piezoelectric composite with a fibrous structure charac-
terized by the fact that the phase boundaries are surfaces which can be generated by 
straight line parallel to the x3-axis, the constitutive relations of a class 6mm of the 
hexagonal system for phase “r”  are in the following form: 
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where k represents the plane strain bulk modulus for lateral dilatation without axial 
extention, l the associated cross modulus, m the transverse shear modulus, n the 
modulus for longitudinal uniaxial straining, and p the longitudinal shear modulus. 
Following the procedure of Chen [26], a representative volume element V of the 
composite is chosen so that under homogeneous boundary conditions it represents 
the macroscopic response of the composite. The phase volume fraction cr satisfies 
c1+c2+ +cN=1, where N is the number of phases in the composite. The volume V is 
subjected to uniform displacement and electric boundary conditions 

  (3.111) 0( ) ,         ( )i ij j iu S x S E x
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where ui and  denote the applied elastic displacement and electric potential,  

and are constant strain and electric field tensors. The overall material properties 
of the composite are then defined by 

0
ij

0
iE

 0 T 0 0,         L e E D e E0  (3.112) 

where  and D  stand for the volume average stresses and electric displacements 
in V. Under the boundary condition (3.111), the relationships between local and 
global average fields in V are given by  

 0 0

1 1 1
,         ,         ,         

N N N

r r r r r r r r
r r r

c c cE E D
1

N

r
c D  (3.113) 

in which cr is the volume fraction of material r, and 

 1 d
r

rr
V

r
V

V
� �  (3.114) 

In deriving the following formulations for effective material properties, Ben-
veniste [34] used two special types of loading condition (3.111): 
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Under the loading condition (3.115), the solution can be assumed in the form 

  (3.117) 
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The resulting stresses, electric displacements, equilibrium equations, and conti-
nuity conditions are 
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where n = (n1, n2,0) denotes the normal to the interface rs which is the interfaces 
between phase r and phase s. 

For the loading condition (3.116), the corresponding solutions can be assumed 
in the form 
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The stresses and electric displacements induced by the fields (3.121) are 
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whereas the equilibrium equation (3.119) becomes 
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in which the functions ( ) ( )and r r  can be obtained by solving (3.123) under the 
boundary conditions (3.116) and the following continuity conditions at the inter-
faces rs:  
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3.6.1.1  Effective properties of two-phase composites 

(1) Effective constants of k, l, n, e31, e33, and 33. 
To determine k, assume  and in Eq. 0

11 22
0 0 0

33 3 0E (3.115). Then, Eqs. 
(3.117)-(3.120) show that this turns out to be a purely mechanical problem and k 
can be expressed as [34] 
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k k
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 (3.125) 

where the subscripts “m” and “f ” represent the related variables which are associ-
ated with matrix phase and fiber phase. The formulae for the remaining five con-
stants can be obtained by making use of the universal connections between these 
moduli as recently derived by Schulgasser [22]: 

 

(m) (f)
m 31 f 31 31f m m m f f

(m) (f)
f m m m f f m 33 f 33 33

(m) (f)
31 m 31 f 31f m m m f f

(f) (m) (m) (f) (m) (f)
31 31 31 31 m 33 f 33 33 m 33 f 33 33

,
c e c e ek k k k c l c l l

l l l l c n c n n c e c e e

e c e c ek k k k c l c l l
e e e e c e c e e c c

 (3.126) 

It is noted that only five of the six relations in Eq. (3.126) are independent. Once k 
is known from Eq. (3.125), the effective material constants l, n, e31, e33, and 33 can 
be determined from Eq. (3.126). 

(2) Effective constants of e15, p, and 11. 
The determination of these three constants involves the application of boundary 

condition (3.116) and the use of Eqs. (3.121)-(3.124). For simplicity, rewrite the 
constitutive equation (3.122) in matrix form 
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The real symmetric matrix Lr can be diagonalized by means of the transformation 
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where W may be complex, and  is diagonal.  *
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  (3.130) 
( ) ( )* *

* *
* *

,         0,         0
r r

rL D
D

*

T

Therefore, in terms of the new field quantities, the original coupled problem is 
reduced to two uncoupled problems. The transformed effective tensor L* is also 
diagonal. That is, 
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The above procedures imply that use can be made of known results in the uncou-
pled system to transform them to the coupled system. The composite cylinder re-
sults for p* and are given by [34] *
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Equation (3.133) can be written in matrix form as 
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To transform the L* into L, multiply each side of Eq. (3.134) by W–1 and WT–1 
respectively, and after some mathematical manipulation, we obtain 

  (3.136) 1
m f m m f m m f f[(1 ) ] [ (1 ) ]c c c cL L L L L L

Equation (3.136) gives the effective constants p, e15, 11 of two-phase FPCs. 

3.6.1.2  Effective properties of FPC with equal transverse shear modulus  

Consider a multiphase FPC with the same transverse shear modulus for all 
phases and with transversely isotropic constituents described by the constitutive 
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laws (3.109) and (3.110). The method of derivation follows closely the analysis 
of Hill [19] for the uncoupled mechanical case. Let the composite be subjected 
to the loading condition (3.115), resulting the following fields: 
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  (3.137) 

where f is an unknown function to be determined from the governing equation and 
boundary conditions. Substituting Eq. (3.137) into Eqs. (3.109) and (3.110) yields [26] 
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Benveniste [34] indicated that Eq. (3.119) are identically satisfied by requiring 
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where er conforms with the uniform phase dilatations. It can be proved that the in-
terface conditions of surface traction (3.124) are satisfied if [34] 
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s s s r r rk m e l e E k m e l e E0r

0E

For any two phases r and s, Eq. (3.140) together with the condition 

  (3.141) 0 0
11 22

1

N

r r
r

c e

enable us to determine the constants er. After a series of mathematical manipula-
tions, Benveniste [34] obtained the expression for er as 

  (3.142) 0 0 0
11 22 33 3( )r r r re

where 

 

( )
31

( )
1 31

1 1

1 1,         ,

sN
s

r
ss r

r rN N
r r rs s

s ss s

c e
k m c e

k m k m k mc c
k m k m

1  
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 1

1

1

N
s s

ss r r
r N

r rs

ss

c l
k m c l

k m k mc
k m

 (3.143) 

Then, the average fields used to determine the effective constants are obtained as 

        0 0 0
11 11 22 33 31 3( ) ( )k m k m l e E0  

 ( ) ( ) 0 ( ) 0
11 22 33 31 3

1
( ) ( )

N
r r

r r r r r r r
r

c k m c k m c l c e Er  (3.144) 

        0 0 0
22 11 22 33 31 3( ) ( )k m k m l e E0  

 ( ) ( ) 0 ( ) 0
11 22 33 31 3

1
( ) ( )

N
r r

r r r r r r r
r

c k m c k m c l c e Er  (3.145) 

              0 0 0
33 11 22 33 33 3( )l n 0e E  

 ( ) ( ) 0 ( ) 0
11 22 33 33 3

1
( )

N
r r r

r r r r r
r

c l c n c e E  (3.146) 

 0
12 12 12

1
2

N
r

r
r

m c m ( )  (3.147) 

             0 0 0
3 31 11 22 33 33 33( )D e e E0

3  

 ( ) ( ) ( ) ( ) 0 ( ) 0
33 11 22 33 33 33 3

1
( )

N
r r r r r

r r
r

c e c e c Er  (3.148) 

Making use of Eqs. (3.144)-(3.148), Benveniste [34] obtained the following formu-
lations for predicting effective material constants k, l, n, e31, e33, and 33: 

 

( )
31

1 1
31

1 1

,         ,         1

1

sN N N
rr r r r

r rr r r
N N N

r r

r rr r r

c ec k c l
k m k m k m

k l e
c c

k m k m k m

r

r

r

c
 (3.149) 

 
2

1

1 1 1

1

N
r r

N N N
rr r r r r

r r N
r rr r rr

rr

c n
k mc n c nn c n

k m k mc
k m

 (3.150) 
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( )
33 2( )( )

33( ) 33 1
33 33

1 1 1

1

rN
r

rrN N N
rr rr r

r N
r rr r rr

rr

c e
c ek mc e

e c e
k m k mc

k m

 (3.151) 

 

( )
33 2( )( )

33( ) 33 1
33 33

1 1 1

1

rN
r

rrN N N
rr rr r

r N
r rr r rr

rr

c
ck mc

c
k m k mc

k m

 (3.152) 

3.6.2  Extension to include magnetic and thermal effects 

In the last subsection, a formulation for effective elastoelectric material constants of 
FPCs was presented. Extension of these results to include piezomagnetic and thermal 
effects is presented in this subsection. It is a brief review of the development in [25]. 

To obtain formulations for calculating effective constants of thermo-magneto- 
electro-elastic materials, Benveniste [25] considered a transversely isotropic, 
two-phase composite with a fibrous structure. The constitutive law is given by 

  (3.153) 

( ) ( ) ( ) T( ) ( ) T( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

,

,

r r r r r r r r r

r r r r r r r r r

r r r r r r r r r

c e E e H

D e E H

B e E H

where  denote, respectively, magnetic fluxes, magnetic field 
intensity, and temperature change in rth phase; Elastic properties  is a 6 6 
elastic constant matrix defined in Eq. (3.109);  are piezoelectric and 
dielectric constants defined in Eq. (3.110).  are thermal stress, 

pyroelectric, and pyromagnetic vectors.  are piezomagnetic, 
magnetoelectric coupling coefficient, and magnetic permeabilities matrices. These 
six matrices are defined by 

( ) ( ) ( ),  ,  and r rB H r

r

r

,

( )rc
( ) ( )and re

( ) ( ),  ,  and r r

( ) ( ),  ,  and r r

( )

( ) re

  (3.154) 

T( ) ( ) ( ) ( )
T T L

T( ) ( )
L

T( ) ( )
3

0 0 0 ,

0 0 ,

0 0

r r r r

r r

r r

 

( )
15

( )
15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

r

r
e

e
e e e

e  
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  (3.155) 

( ) ( )
11 11

( ) ( )
11 11

33 33

0 0 0 0
0 0 ,         0 0
0 0 0 0

r r

r r

where T and L are transverse and longitudinal thermal stress coefficients, L is the 
longitudinal pyroelectric constant.  

Benveniste [25] then considered the following two sets of loading conditions: 
The first set of loading conditions consists of Eq. (3.115) and 

 0
3 3 0( ) ,         ( )S H x S

,

 (3.156) 

where  is magnetic potential. The second set of loading conditions is defined by 
Eq. (3.116) and 

  (3.157) 0 0
1 1 2 2( )S H x H x

together with the steady state equilibrium equations 
  (3.158) , ,0,         0,         0ij j i i i iD B

Keeping this mind, he proved that there exists a specific choice of 
, denoted by , so that the strains, electric and 

magnetic fields are uniform throughout the composite: 

0 0 0
0( ,  ,  ,  )E H 0

ˆ ˆˆ( ,  ,  ,  )E H

 ( ) ( ) ( )
0

ˆ ˆˆ,         ,         ,         r r rE E E H H H  (3.159) 

and the possible sets of  resulting in uniform fields are given by 0
ˆ ˆˆ( ,  ,  ,  )E H

 

1

2

3 1 2 3 43

3 3

33

4 5 6 1 2 1 2

ˆ 01 0 0
ˆ 01 0 0
ˆ 1 ,1
ˆ 00
ˆ 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ 0

r r
E s

tH

E E H H

03

0  (3.160) 

where ( 1- 4)i i  are arbitrary constants and  

  (3.161) 

3 1 2 1 2

(1) (2)
3 1 2 31 31

(1) (2)
3 1 2 31 31

(1) (2)
3 T T 1

2( ) /( ),

( ) /( ),

( ) /( ),

( ) /(

r k k l l

s l l e e

t l l e e

r l 2 )l

where subscripts “1” and “2” represent the variables associated with matrix and 
fiber materials. The uniform fields generated from Eq. (3.160) allow the derivation 
of exact connections between some of the effective properties. The effective con-
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stants c, e, q, , , , , ,  are defined by 

 

T T
0

2
( ) ( ) T( ) ( ) T( ) ( ) ( )

0
1

0

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

0
1

( ) ( )
0

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

0
1

[ ]

[ ]

[ ]

r r r r r r r
r

r

r r r r r r r
r

r

r r

r r r r r r r
r

r

c

c

c

c e E e H

c e E e H

D e E H

e E H

B e E H

e E H

,

,
 (3.162) 

Substituting Eqs. (3.159) and (3.160) into Eq. (3.162) and equating the coeffi-
cients , 1- 4i i  yield a set of exact connections between the effective properties 
as follows [24,25]: 

 

2 2 2
( )

31 31
1 1 1 1

2 2 2
( ) 1 2

33 33
1 1 1

r
r r r r r

r r r

r
r r r r r

r r r

k c k l c l e c e
k k
l l

l c l n c n e c e

2  (3.163) 

 

2 2 2
( ) ( ) ( )

31 31 33 33 33 33 (1) (2)
31 311 1 1

2 2 2
( ) 1 2

33 33
1 1 1

r r r
r r r

r r r

r
r r r r r

r r r

e c e e c e c
e e

l l
l c l n c n e c e

 (3.164) 

 

2 2 2
( )

31 31
1 1 1 1

2 2 2 (1)
( ) ( ) ( ) 31 31

31 31 33 33 33 33
1 1 1

r
r r r r r

r r r

r r r
r r r

r r r

k c k l c l e c e

e ee c e e c e c

2
(2)  (3.165) 

 

2 2 2
( ) ( ) ( )

31 31 33 33 33 33 (1) (2)
31 311 1 1

2 2 2
( ) 1 2

33 33
1 1 1

r r r
r r r

r r r

r
r r r r r

r r r

e c e e c e c
e e

l l
l c l n c n e c e

 (3.166) 

 

2
( )

33 33
1 1

2 (1
( ) 31 31
33 33

1

r
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r

r
r
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e c e
l l

e ec

2
) (2)  (3.167) 
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2 2

( )
1 2 3 T

1 1

r
r r r

r r
c l l r c

L

 (3.168) 

 
2 2

( )
3 3

1 1

r
r r r

r r
c n n r c  (3.169) 

 
2 2

( ) ( )
3 33 33 3

1 1

r
r

r r
c e e r c L

r
r  (3.170) 

  (3.171) 
2 2

( ) ( )
3 33 33 3

1 1

r
r

r r
c e q r c 3

r
r

2x

c

On the whole, there are nine independent connections between the ten effective 
parameters k, l, n, e33, e31,  33, 33, 33, so that knowledge of one of them 
allows the determination of the rest. In [25], it was proved that the parameter k can 
be determined by Eq. (3.125). Having obtained the value of k, the moduli l, n, e33, 
e31,  33, 33, 33 can thus be fully determined from Eqs. (3.163)-(3.167) 
above. 

31 33,  ,e e

31 33,  ,e e

The remaining six effective constants ( p, e15,  33, 33, 33 ) can be deter-
mined using the procedure described in [25]. Consider the loading type defined by 
Eqs. (3.116) and (3.157). The solution to this loading type can be represented by 

15 ,e

  (3.172) 
( ) 0 ( ) 0 ( ) ( ) 0 0
1 13 3 2 23 3 3 1 2 13 1 23

( ) ( ) ( ) ( )
1 2 1 2

,         ,         ( , ) ,

( , ),         ( , )

r r r r

r r r r

u x u x u x x x

x x x x

Benveniste [25] then cast the constitutive laws of the constituents in matrix form as 

  (3.173) 

( )( ) ( )
15 15

15 11 11

15 11 11

       ( 1, 2, )

rr rp e e
e r
e

D
B

where the subscript “c” refers to the effective law, and the following definitions are 
used: 

 
13 23 1 2 1 2

,1 ,2 ,1 ,2 ,1 ,2

,         ,         ,

,         ,         

D D B BD B
 (3.174) 

Similar to the procedure described in Subsection 3.6.1.1, define the 3 3 matrices Lr 
representing the material matrix in Eq. (3.173): 
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  (3.175) 

( )
15 15

15 11 11

15 11 11

        ( 1, 2, )

r

r

p e e
e
e

L r c

c

1
c

Lr can then be converted to a diagonal matrix  using a matrix W: *
rL

  (3.176) * T        ( 1, 2, )r r rL WL W

The implication of this result is the existence of the following constraint relation 
between the components of the effective matrix Lc:  

  (3.177) 1
1 2 2 1cL L L L L L

It can be shown that the resulting matrix on the left hand side of Eq. (3.177) is 
antisymmetric, so that this equation provides three connections between the six 
effective components to be determined. To find the remaining three connections, 
consider the uncoupled elastic, electric, and magnetic behavior of the composite 
and denote the longitudinal shear modulus, transverse dielectric, and magnetic per-
meability coefficients by  In the framework of the composite 
cylinder assemblage model [45], Benveniste [25] obtained the following expres-
sions of  

* * *
11 11,  ,  and .p

* :* *
11 11,  ,  and p

 
* *

* * 1 1 2 2
1 * *

2 1 1 2

(1 )
       ( ,  ,  )

(1 )
c f c ff f f p

c f c f 11 11

c

2

2

 (3.178) 

He then defined the matrices  * :rL

  (3.179) 

*

* *
11

*
11

0 0

0 ( ) 0         ( 1, 2, )

0 0 ( )

r

r r

r

p

rL

and cast Eq. (3.178) in the form 

  (3.180) * * * * 1 * *
1 2 1 2 2 2 1 2[(1 ) (1 ) ] [(1 ) (1 ) ]c c c c cL L L L L L

Making use of Eq. (3.176), it can be proved that the effective moduli of the piezo-
magnetoelectric composite is given by 

  (3.181) 1
1 2 1 2 2 2 1 2[(1 ) (1 ) ] [(1 ) (1 ) ]c c c c cL L L L L L

where L1, L2, and Lc are defined by Eq. (3.175). 
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3.7  Solution of composite with elliptic fiber 

In this section, the thermoelectroelastic solutions presented in [35] for thermal 
loading applied inside and outside an elliptic piezoelectric fiber in an infinite piezo-
electric matrix are presented. By combining the method of Stroh’s formalism, the 
technique of conformal mapping, the concept of perturbation and the method of 
analytical continuation, a general analytical thermoelectroelastic solution is ob-
tained for an elliptic piezoelectric cylindrical fiber embedded in an infinite piezo-
electric matrix subjected to thermal loading. The loading may be a point heat source, 
temperature discontinuity, or a uniform remote heat flow. Special cases when the 
fiber becomes rigid or a hole are also investigated.  

3.7.1  Conformal mapping 

Consider an elliptic piezoelectric fiber embedded in an infinite matrix. The contour 
of their interface  is represented by 

 1 2cos ,         sinx a x b  (3.182) 

where  is a real parameter and  are the principal radii of the elliptic 
interface. It will be more convenient to transform the ellipse to a circle before solv-
ing the problem. For this, consider the mapping 

0a b

 1
1 2k k k k kz a a   (3.183) 

where 

  (3.184) 1 2( ) / 2,         ( ) / 2k k k ka a ip b a a ip b

Equation (3.183) will map the region outside the elliptic fiber onto the exterior 
of a unit circle in the k-plane. Further, the transformation (3.183) is single valued 
and conformal outside the ellipse, since the roots of equation 

  (3.185) 2
1 2d / d 0k k k k kz a a

are located inside the unit circle 1k . In fact, the roots are 0
2 1/k ka a k  

,ki
km e  where (mk)1/2<1 [46]. However, the mapping (3.183) is not single  

valued inside the ellipse because the roots of Eq. (3.185) are located inside the unit 
circle. To bypass this problem, the mapping of 2 (see Fig. 3.17) is done by ex-
cluding a slit 0, which represents a circle of radius km  in the k-plane, from the 

ellipse [47]. In this case the function (3.183) will transform  and 0 into a ring of 
outer and inner circles with radii  and out 1r in kr m , respectively. Moreover, 
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anywhere inside the ellipse and on the slit 0 a function f ( k) must satisfy the    
following condition:  

 2[ ( )] [ / (ki
k kf m f m e )]  (3.186) 

to ensure that the field is single valued [47], where stands for a point 
located on the unit circle in the k-plane, and  is a polar angle. 

( ) ie

 

Fig. 3.17  Geometry of an elliptic fiber in a matrix. 

3.7.2  Solutions for thermal loading applied outside an elliptic fiber  

Consider an elliptic fiber embedded in an infinite piezoelectric matrix subjected to 
thermal loading located at the point (x10, x20) which is outside the fiber. If the fiber 
and matrix are assumed to be perfectly bonded along the interface, the temperature, 
heat flow (hn), elastic displacements, electric potential, stress and electric displace-
ment (tn) across the interface should be continuous, i.e.,  

     (along the interface) (3.187) 1 2 1 2 1 2 1,     = ,   = ,    =T T U U 2

,s

Here the following equations are used: 
  (3.188) , ,         n s nh t

where n is the normal direction of the interface, s is the arc length measured along 
the elliptic boundary, and tn is the surface traction-charge vector. Here and in the 
following, the subscripts “1” and “2” (or superscripts (1) and (2)) denote the quanti-
ties associated with matrix and fiber, respectively. 

3.7.2.1  General solution for thermal fields   

Based on the conformal mapping described above and the concept of perturbation 
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given by Stagni [48], the general solution for temperature and heat-flow function 
can be assumed in the form 

(1) (1) (1) (1)
1 0 0 1 1

(1) (1) (1) (1)
1 1 0 1 0 1 1 1 1

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

t t t t

t t t

T f f f f

ik f ik f ik f ik f t

(1) )   ( 1t  (3.189) 

 
(2) (2)

2 2 2

(2) (2)
2 2 2 2 2

( ) ( ),

( ) (

t t

t t

T f f

ik f ik f )

(2)
2( )t               

2

 (3.190) 

Here, f0 can be chosen to represent the solutions associated with the unperturbed 
thermal field, which is holomorphic in the entire domain except for some singular 
points such as the point at which a point heat source is applied, and f1 and f2 are the 
functions corresponding to the perturbed field of matrix and fiber, respectively. 
They are holomorphic in the regions , respectively. In the t-plane,  
is the region outside the unit circle and  is the region of the annular ring be-

tween the unit circle and the circle of radius 

1 and 

2

1

tm . 

For a given loading condition, the function f0 can be obtained easily since it is 
related to the solution of homogeneous media. When an infinite space is subjected 
to a line heat source h* and a line temperature discontinuity , both located at (x10, 

x20), the function f0 can be chosen in the form  
T̂

  (3.191) (1) (1) (1)
0 0( ) ln(t tf q 0 )t

twhere (1) (1)
 0 and  t are related to the complex arguments  

 through the following transformation functions: 

(1) (1)
 0 1 and  (t tz z 0x

*(1)
1p x20 )

(1) (1)2 2 *(1)2 2
1(1)

*(1)
1

t t
t

z z a p b
a ip b

,    
(1) (1)2 2 *(1)2 2
0 0 1(1)

0 *(1)
1

t t
t

z z a p b
a ip b

 

 (3.192) 

and q0 is given in the form [36] 

  (3.193) *
0

ˆ / 4 / 4q T i h k

When the thermal load is uniform remote heat flow , the function f0 
may be expressed by  

10 20( , )h hh

 (1) * (1)
0 0( )tf q t  (3.194) 

The infinite condition provides 
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 * *(1) *(1)
0 1 10 1

1

1 ( )( /
4

q a ibp h p h
ik 20 )  (3.195) 

As for the function f2, noting that it is holomorphic in the annular ring, it can be 
represented by Laurent’s series 

 (2) (2)
2 ( ) j

t j
j

f c t  (3.196) 

whose coefficients can be related by means of Eq. (3.186) in the following manner: 

 
*(2)

* * 1
*(2)
1

,         
j

j j j j
a ibpc c
a ibp

 (3.197) 

Inserting Eqs. (3.191) and (3.196) into Eqs. (3.189) and (3.190), and later into 
Eqs. (3.187)1,2, yields 

 * *
1 0 1 0

1 1
( ) ( ) [ ] [ ] ( ) ( )j j

j j j j j j
j j

f f c c c c f f  

  (3.198) 

            *2
0 1

1 1
( ) ( ) [ ] j

j j j
j

kf f c c
k

 

 *2
0 1

1 1
[ ] ( )j

j j j
j

k c c f f
k

( )  (3.199) 

One of the important properties of holomorphic functions used in the method of 
analytic continuation is that if the function f( ) is holomorphic in 1 (or  

then 
0 2 ),

(1/ )f  is holomorphic in (or 1), 0 denoting the region inside 

the circle of radius 
0 2

tm . Hence, put 

 

*
1 0 1

1
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1 0 0

1

( ) (1/ ) [ ] ( )        

( )
(1/ ) ( ) [ ] ( )

j
j j j

j

j
j j j

j

f f c c

f f c c 2

 (3.200) 

where the function ( ) is holomorphic and single valued in the whole plane. By 
Liouville’s theorem, we have ( )= constant. However, constant function f does not 
produce stress and electric displacement (SED), which may be neglected. Thus, by 
letting ( )=0, we have 
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 (3.201) 

It should be mentioned that the subscripts “1” and “2” (or superscripts (1) and 
(2)) are omitted in Eqs. (3.200) and (3.201). To further simplify subsequent writing, 
we shall omit them again in the related expressions when the distinction is unne-  
cessary. As in Eq. (3.201), it can be determined from Eq. (3.199) that 
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1 1
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1 1
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 (3.202) 

The Eqs. (3.201)2 and (3.202)2 provide 

 *
0 2 1 2 1

1

1( ) [(1 / ) (1 / ) ]
2

j
j j

j
f k k c k k jc  (3.203) 

With the use of the series representation 
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0
0 1 

1

(0) ( )1( ) ,         d
! 2

k
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f f0 x
f x e x e

k i x
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the function f0( ) given in Eq. (3.191) (or (3.194)) can be expressed as 

 
(1)

0 0
0

1
( ) ,        

j
j t

j j
j

q
f e e

j
*

1 0(or )j je q  (3.205) 

where ij=1, when i=j; ij=0, when i j. 
By comparing the coefficients of corresponding terms in Eqs. (3.203) and 

(3.205), we obtain 

 1
0 0 0( / ) ( / )        ( 1,  2, , )j j j j j jc G G G G e G e G j  (3.206) 

where . *
0 2 1 2 1(1 / ) / 2,  (1 / ) / 2j jG k k G k k

With the solution obtained for ck, the functions f1, 1, and 2g g  can be further 
written as 

 * (1) (1) 1 (1)
1 0

1
( ) lnj

j j j t t t
j

f c c q 0  (3.207) 
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 (1) (1) (1) (1) 1 (1) * (1)
1 0 0 0 0

1
( ) ln( ) ln( ) j

t t t t t j j j
j

g q q c c t  (3.208) 

 (2) (2) * (2)
2

1
( ) j j

t j t j t
j

g c  (3.209) 

Equations (3.208) and (3.209) are the general thermal solutions for the case of 
line heat source and temperature discontinuity. If the load is uniform remote heat 
flow, the general solutions can be obtained similarly. They are 

 (1) * (1) * (1) 1 * (1) 1
1 0 0 1 1 1( ) ( )t t t tg q q c c

)

ig

 (3.210) 

  (3.211) (2) (2) * (2) 1
2 1 1( ) (t t tg c

3.7.2.2  General solution for electroelastic fields 

The particular piezoelectric solution induced by a thermal load can be written as 
[35,36] 

     (i=1, 2) (3.212) ( ) ( )2Re[ ( )],    2 Re[ ( )]i
ip i i t ip i i tgU c d

where subscript “p” refers to a particular solution. The function g(zt) in Eq. (3.212) 
can be obtained by integrating Eqs. (3.208) and (3.209) (or (3.210) and (3.211)) 
with respect to zt, which yields 

 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1)
1 1 0 1 0 0 2 0 2 0 2( ) [ ( , ) ( , )] [ ( ,t t t t t tg a q F q F a q F 0 )t  

       (1) 1 (1) * (1) (1) (1)
0 1 0 1 1 1 1 1

1
( , )] ( ) ln j

t t t j t
j

q F c c a G  (3.213) 

 (2) (1) (2)
2 2 3

1
( ) j j

t j t j t
j

g G G  (3.214) 

for Eqs. (3.208) and (3.209), or 

         (1) * (1) (1)2 (1) (1)
1 0 1 2( ) ( / 2 lnt tg q a a )t

 * * (1) (1) (1) (1) 2
0 1 1 1 1 2( )( ln t tq c c a a / 2)

2

 (3.215) 

              (3.216) (2) (2) (2)2 (2) * (2) 2
2 1 1 2 1( ) ( ) /t t tg c a a

for Eqs. (3.210) and (3.211), where  

   1 0 0 0( , ) ( )[ln( ) 1],    t t t t t tF

   
1 1 1

2 0 0 0 0

( ) *( ) ( ) *( )
1 1 2 1

( , ) ( ) ln( ) ln ,

( ) / 2,         ( ) / 2,           ( 1, 2)

t t t t t t t t

k k k k

F

a a ip b a a ip b k
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* (1) (1) *
1 1 1 1 1 2 1 1 1 1

(2) (2)
2 1 1 1 2 1

(2) * (2) *
3 1 1 1 2 1 1 1

[( ) ( ) ] / ,

( ) / ,

( ) /

j j j j j j j j

j j j j

j j j j j j

G c c a a c c s j

G a c s a c j

G a c a c s j

   (3.217) 

and 1 for , 0 for ij ijs i j s i j . 
The particular solution (3.212) does not generally satisfy the condition (3.187)3,4 

along the interface. We therefore need to find a corrective isothermal solution for a 
given problem so that when it is superposed on the particular thermoelectroelastic 
solution the interface condition (3.187)3,4 will be satisfied. Owing to the fact that 
f( m) and g( t) have the same rule affecting the SED in the general solution of a 
thermoelectroelastic problem [35] 

 
1 ,2 2 ,1

1 ,2 2 ,1

( ) ( ),

( ) ( ),

,    ,

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

,      

t t

t t

t t

t t

T g z g z

ikg z ik g z

h h

f z g z f z g z

f z g z f z g z

U A q c A q c

B q d B q d

 (3.218) 

with 

  (3.219) *
1 1tz x p x2

possible function forms come from the partition of g( t). They are 

 

( ) ( ) ( ) ( ) ( ) ( )
1 0 1 0 0 2 0

( ) 1 ( ) ( ) 1 ( )
0 1 0 0 2 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 0 1 0 0 2

0

( ) [ ( , ) ( , )

                   ( , ) ( , )] / 2,

( ) [ ( , ) ( , )

                   

j j j j j j
m m m t m t

j j j j
m t m t

j j j j j j j
m m m m t m t

f a q F q F

q F q F

f ip b q F q F

q

0

( ) 1 ( ) ( ) 1 ( )
1 0 0 2 0( , ) ( , )] /j j j j

m t m tF q F 2

    ( j=1, 2) (3.220) 

 ( ) ( ) ( ) ( )
3 1( ) lnj j j

m m m mf a j     ( j=1, 2) (3.221) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 5

1 1
( ) ,        ( )j j j k j j j j k j

k k
k k

f r f s     ( j=1, 2) 

  (3.222) 

where ( )j
kf are four component vectors, and ( ) ( )and j j

kr sk  are constant vectors 
with four components to be determined. It should be pointed out that the vector 

( )j
ks  is not the same as the symbol sij given in Eq. (3.217). 
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The Green’s functions for the electroelastic fields can thus be chosen as 

 
3 5

( ) ( ) ( ) ( ) ( ) ( )

1 4
2Re ( ) ( ) ( )j j j j j j

j j k k j k j j
k k

f gU A q A f c t  (3.223) 

 
3 5

( ) ( ) ( ) ( ) ( ) ( )

1 4
2 Re ( ) ( ) ( )j j j j j j

j j k k j k j j
k k

f gB q B f d t  (3.224) 

The above two expressions, together with the interface condition (3.187)3,4, pro-
vide 

 (1) 1 1
1 1 2 1 2 1(q X A c B d )  (3.225) 

 (2) 1 1
1 2 1 1 1(q X B d A c1)  (3.226) 

 (1) *(1) 1 (1)
2 1 1 1pq P q  (3.227) 

 (2) (*1) 1 (2)
2 1 2 1pq P q  (3.228) 

 
1(1) (1) (1) * (1)

3 1 1 1 1 1( )a a c cq 1q  (3.229) 

 
1(2) (2) (1) * (2)

3 1 1 1 1 1 1( )a a c cq q  (3.230) 

(1) (1) (2) (2)
1 5 1 4 2 5 2 4 1 1 2 2 2 3

1
( ) ( ) ( ) ( ) ( ) j

j j j
j

G G GA f A f A f A f c c c  

 (2) (2) (1) (1)
2 4 2 5 1 4 1 5 1 1 2 2 2 3

1
= ( ) ( ) ( ) ( ) ( ) j

j j j
j

G G GA f A f A f A f c c c  

  (3.231) 

(1) (1) (2) (2)
1 5 1 4 2 5 2 4 1 1 2 2 2 3

1
( ) ( ) ( ) ( ) ( ) j

j j j
j

G G GB f B f B f B f d d d  

 (2) (2) (1) (1)
2 4 2 5 1 4 1 5 1 1 2 2 2 3

1
= ( ) ( ) ( ) ( ) ( ) j

j j j
j

G G GB f B f B f B f d d d

1

 

  (3.232) 

where 

  (3.233) 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2( ) ,         ( )X A A B B X A A B B

Therefore, by Liouville’s theorem, Eqs. (3.231) and (3.232) yield 
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 (2) (2)
2 5 2 4 1 1 2 2 2 3

1
( ) ( ) ( ) j

j j j
j

G G GA f A f c c c  

 (1) (1)
1 5 1 4( ) ( )A f A f  (3.234) 

 (2) (2)
2 4 2 5 1 1 2 2 2 3

1
( ) ( ) ( ) j

j j j
j

G G GA f A f c c c  

 (1) (1)
1 4 1 5( ) ( )A f A f   (3.235) 

 (2) (2)
2 5 2 4 1 1 2 2 2 3

1
( ) ( ) ( ) j

j j j
j

G G GB f B f d d d  

 (1) (1)
1 5 1 4( ) ( )B f B f  (3.236) 

 (2) (2)
2 4 2 5 1 1 2 2 2 3

1
( ) ( ) ( ) j

j j j
j

G G GB f B f d d d  

 (1) (1)
1 4 1 5( ) ( )B f B f  (3.237) 

The above four equations are not completely independent. For example, Eqs. 
(3.234) and (3.236) can be obtained from Eqs. (3.235) and (3.237). Thus only two 
of the equations are independent. However, there are four sets of constant vectors, 
i.e., , to be determined. We need two more equations to make 
the solution unique. Through use of the relation (3.186) and Eqs. (3.223) and 
(3.224), the unknown vectors 

( ) ( ) and ( 1, 2)j j
k k jr s

(2) (2)and j jr s  appearing in  can be 
determined as follows: 

(2) (2)
4 and f f5

    
(2) 1 (2) 1 (2) 1 1

2 2 2 2 2 2( ) 3[ (j j j Gr A A B B A c j  

 (2) 1 (2)
2 2 2 2 3 2 2) ( )]        ( 1, , )j j j j jG G G jc B d d  (3.238) 

 (2) 1 (2) (2)
2 2 2 2 2[ ( ) 3 ]j j j jG Gs B B r d d j )    ( 1  (3.239) , ,j

where 
( )

( )
( )

ji
i

j i
a ibp
a ibp

. 

Once the constant vectors (2) (2)
 and  j jr s  are obtained, the unknown vectors 

(1) (1)
  and  j jr s  given in  can be determined from Eqs. (3.234) and 

(3.236) (or (3.235) and (3.237)). They are 

(1)
 4 andf (1)

5  f

      (1) T (2) (2)
1 2 1 2 1 2 2[( ) ( )j j jir A M M A r M M A s  

 1 1 1 2 2 2 3 1 1 2 2 2 3( ) ( )]j j j j jG G G i G G GM c c c d d d j  (3.240) 
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      (1) T (2) (2)
1 2 1 2 1 2 2[( ) ( )j j jis A M M A s M M A r  

 1 1 1 2 2 2 3 1 1 2 2 2 3( ) ( )]j j j j jG G G i G G GM c c c d d d j

,  

t

t

 (3.241) 

where  

     (k=1, 2)  (3.242) 

1 1

T

T

( )

2 ,  

(2 )

k k k k k

k k k

k k k

i i

i

i

M B A H I S

H A A

S A B I

For the case of remote heat flow, the related general solution can be obtained 
similarly. Set 

  (3.243) 
3

( ) ( ) ( ) ( )

1
2Re ( ) ( )j j j j

j j k k j j
k

gU A F q c

  (3.244) 
3

( ) ( ) ( ) ( )

1
2 Re ( ) ( )j j j j

j j k k j j
k

gB F q d

where 

( ) ( ) ( )
1 ( ) lnj j j

mF ,   
2( ) ( ) ( )2 ( ) ( ) ( )

2 3( ) ,         ( )j j j j j j
m mF F    ( j=1, 2) 

  (3.245) 

The interface condition (3.187)3,4 leads to 

 (1) (1) * (1) * * 1 1 1 1 1
1 2 0 1 0 1 1 1 2 1 2 1 2 1 2[ ( )]( ) (a q a q c cq A A B B 1)A c B d  

  (3.246) 

 (2) (1) * (1) * * 1 1 1 1 1
1 2 0 1 0 1 1 1 1 2 1 2 1 1 1[ ( )]( ) (a q a q c cq A A B B 1)B d A c  

  (3.247) 

            (1) 1 1 1 1 1 (2)
2 1 1 1 1 1 2 1 2( ) [(q A A B B A A B B q2)  

 1 1 (2) 1 * 1
1 2 1 2 3 1 1 1 2( )A A B B q A * ]g B g  (3.248) 

 (2) 1 (2) (2) *
2 2 2 2 3(q A A q G c2 )  (3.249) 

            (1) 1 1 1 1 1 (2)
3 1 1 1 1 1 2 1 2( ) [(q A A B B A A B B q3)  

 1 1 (2) 1 * 1
1 2 1 2 2 1 1 1 2( )A A B B q A * ]g B g  (3.250) 

 (2) 1 (2) 1 (2) 1 1 * 1 *
3 2 2 2 2 2 2 2 2 2( ) (m mq A A B B A G c B G d2 )  (3.251) 

where  

 * (2) (2) (2)
1 1 2 2( mc a aG I )  (3.252) 
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 * (2) (2) * (1) (1) * *
1 1 1 2 1 2 2 0 1 1 2 1 1 1 0 1( ) / 2 [ (c a c a q a a c c qg c c c c) ] / 2  (3.253) 

 * (2) (2) * (1) (1) * *
2 1 1 2 1 2 2 0 1 1 2 1 1 1 0 1( ) / 2 [ (c a c a q a a c c qg d d d d) ] / 2  (3.254) 

3.7.3  Solutions for holes and rigid fibers 

When the fiber is an insulated and traction-free hole, i.e.,  along the 
hole boundary, the solutions can be found in a manner similar to that described for 
the piezoelectric fiber. They are 

1 1 0

 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1)
1 1 0 1 0 0 2 0 2 0 2( ) [ ( , ) ( , )] [ ( ,t t t t t tg a q F q F a q F 0 )t  

             (1) 1 (1)
0 1 0( ,t tq F )]   (3.255) 

 (1) (1) 1 * 1 (1)
1 1 1 2 1 1 1 1 1 12Re{ [ ( ) ( ) ] ( )}tf f p gU A P B d c  (3.256) 

 (1) (1) 1 * 1 (1)
1 1 1 2 1 1 1 1 1 12Re{ [ ( ) ( ) ] ( )}tf f p gB P B d d  (3.257) 

for the case of a point heat source and temperature discontinuity, and  

 (1) * (1) (1)2 (1) (1) * (1) (1) (1) (1) 2
1 0 1 2 0 1 2( ) ( / 2 ln ) ( ln / 2t t t t tg q a a q a a )  (3.258) 

 * (1) * (1) 1 * 1 (1)
1 1 1 2 1 1 1 1 12Re{ [ ( ) ( ) ] ( )}tf f p gU A P B d c  (3.259) 

 * (1) * (1) 1 * 1 (1)
1 1 1 2 1 1 1 1 12Re{ [ ( ) ( ) ] ( )}tf f p gB P B d d

)

 (3.260) 

for the case of remote heat flow, where  have, respec-

tively, the same expressions as  given in Eq. (3.220), 
except that now 

(1) (1)
 1 2( )   and   (f f

) (1) (1)
1 2( )  and  ( )f f(1) (1

0q  should be replaced by 0q , and  

 
* (1) * (1)2 (1) * (1) 2 (1)

1 0 0

* (1) (1) * (1) 2 (1) * (1)2 (1)
2 0 0

( ) [ ( 2 ln ) ( 2 ln )] / 4,

( ) [ ( 2ln ) ( 2 ln )] / 4

k k k k k k

k k k k k k k

f a q q

f ibp q q
 (3.261) 

Similarly, for a rigid and nonconductive fiber, the thermal boundary condition  
is the same as that of a hole. However, the elastic boundary condition of the fiber 
should be described in a manner similar to that of Hwu and Yen [47]: 

 1 T
2 0 0 0( ) / 2,         { ,  ,  0,  0}ib au u u u     (on the interface) 

  (3.262) 

where  denotes the rigid-body rotation relative to the matrix, which can be ob-
tained by the condition that the total moment about the origin due to the traction 
along the surface of the rigid fiber vanishes. 
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Substituting Eqs. (3.225) (or (3.258)) and (3.262) into (3.187)3,4 provides 

 (1) (1) 1 * 1
1 1 1 2 1 12Re{ [ ( ) ( ) ]f f pU A P A1 1c  

                (1) (1) 1
1 1 0( ) / 2tgc }u  (3.263) 

 1 * 1(1) (1)
1 1 1 11 22Re{ [ ]( ) ( ) pf fB P 1 1A c  

                (1) 1 (1) 1
1 1 1 1 0( ) / 2tgd B A u } (3.264) 

for the case of a point heat source and temperature discontinuity, and  

 1 * 1* (1) * (1)
1 1 11 22Re{ [ ]( ) ( ) pf fU A P A1 1c  

                (1) (1) 1
1 1 0( ) / 2tgc }u   (3.265) 

 1 * 1* (1) * (1)
1 1 11 22Re{ [ ]( ) ( ) pf fB P 1 1A c  

                (1) 1 (1) 1
1 1 1 1 0( ) / 2tgd B A u }

k

  (3.266) 

for the case of a remote heat flow, where * *
1 1 2 1 2,  , ,  ,  k k kg f f f f  have the same ex-

pressions as those in Eqs. (3.255)-(3.261). Once the general solution has been ob-
tained,  can be determined by using the condition that the total moment about the 
origin due to the traction along the surface of the rigid fiber vanishes. The result is 

 

 2 T
 0

T 1
0 1 1 0

2 Re{ ( ) / }d

Im{ }

i
s ey f

u B A u
 (3.267) 

where 

  (3.268) T { sin ,  cos ,  0, 0}b ay

 1 * 1
1 1 2 1 1 1 1 1 1( ) [ ( ) ( ) ] ( )s mf f p gf B P A c d  (3.269) 

for the case of a point heat source and temperature discontinuity, and  

 * * 1 * 1
1 1 2 1 1 1 1 1( ) [ ( ) ( ) ] ( )s f f p gf B P A c d  (3.270) 

for the case of a remote heat flow. 
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Chapter 4  Trefftz Method for Piezoelectricity  

In Chapter 3, theoretical solutions for problems of PFC pull-out and push-out are 
presented. The solutions are, however, restricted to axi-symmetric problems. To 
remove this restriction, Trefftz numerical methods are presented for solving various 
engineering problems involved in piezoelectric materials in this chapter. Trefftz 
methods discussed here include the Trefftz FEM, Trefftz BEM, and the Trefftz 
boundary-collocation method. 

4.1  Introduction 

Over the past decades the Trefftz approach, introduced in 1926 [1], has been     
considerably improved and has now become a highly efficient computational tool 
for the solution of complex boundary value problems. Particularly, Trefftz FEM has 
been successfully applied to problems of elasticity [2], Kirchhoff plates [3],   
moderately thick Reissner-Mindlin plates [4], thick plates [5], general 3-D solid 
mechanics [6], potential problems [7], elastodynamic problems [8], transient heat 
conduction analysis [9], geometrically nonlinear plates [10], materially nonlinear 
elasticity [11], and contact problems [12]. Recently, Qin [13-16] extended this 
method to the case of piezoelectric materials. Wang et al. [17] analyzed singular 
electromechanical stress fields in piezoelectrics by combining the eigensolution 
approach and Trefftz FE models. As well as Trefftz FEM, Wang et al. [18] presented a 
Trefftz BEM for anti-plane piezoelectric problems. Sheng et al. [19] developed a 
Trefftz boundary collocation method for solving piezoelectric problems. The 
multi-region BEM [20] and the Trefftz indirect method [21] were also recently ap-
plied to electroelastic problems. This chapter, however, focuses on the results pre-
sented in [13-16,18,19,22]. 

4.2  Trefftz FEM for generalized plane problems 

In this section, discussion is based on the formulation presented in [14]. Essentially, 
a family of variational formulations is presented for deriving Trefftz-FEs of      
generalized plane piezoelectric problems. It is based on four free energy densities, 
each with two kinds of independent variables as basic independent variables, i.e., 

, , , and . ( , )D ( , )E ( , )D ( , )E

4.2.1  Basic field equations and boundary conditions 

Consider a linear piezoelectric material, in which the differential governing equa-
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tions and the corresponding boundary conditions in the Cartesian coordinates xi (i=1, 
2, 3) are defined by Eqs. (1.10)-(1.12) (Chapter 1), and the relation between the 
strain tensor and the displacement, ui, is governed by Eq. (1.2). For an anisotropic 
piezoelectric material, the constitutive relation is defined in Table 1.1 for as 
basic variables [14],  

( , )E

 ( , ) ( , ),         D
ij ijkl kl kij k i ikl kl ik k

ij i

H Hs g D E g D
D

D D  (4.1) 

for  as basic variables,  ( , )D

 ( , ) ( , ),         D
ij ijkl kl kij k i ikl kl ik k

ij i

H Hc h D E h
D

D D D  (4.2) 

for  as basic variables, and ( , )D

 ( , ) ( , ),         E
ij ijkl kl kij k i ikl kl ik k

ij i

H Hs d D D d E
E

E E  (4.3) 

for as basic variables, and ( , )E

 1 1( , )
2 2

D
ijkl ij kl ij i j kij ij kH s D D gD D  (4.4) 

 1 1( , )
2 2

D
ijkl ij kl ij i j kij ij kH c D D hD D  (4.5) 

 1 1( , )
2 2

E
ijkl ij kl ij i j kij ij kH s E E dE E  (4.6) 

and  is defined in Eq. (1.1), where ( , )H E ,   and ,  E D E
ijkl ijkl ijkl ijklc c s s

,   anij ij

D  are the stiff-

ness and compliance coefficient tensor for E=0 or D=0,  are 

the permittivity matrix and the conversion of the permittivity constant matrix for 
=0 or =0.  

d ,  ij ij

Moreover, in the Trefftz FE form, Eqs. (4.1)-(4.6) should be completed by the 
following inter-element continuity requirements: 

 ,          ie if e fu u  

 

        conformity)  (4.7) (on ,e f

         reciprocity) (4.8) 0,      0ie if ne nft t D D (on ,e f

where “e” and “f ” stand for any two neighboring elements. Eqs. (1.1), (1.2), (1.5), 
(1.10)-(1.12), and (4.1)-(4.8) are taken as the basis to establish the modified varia-
tional principle for Trefftz FE analysis of piezoelectric materials. 
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4.2.2  Assumed fields 

The main objective of the Trefftz FEM is to establish an FE formulation whereby 
the intra-element continuity is enforced on a non-conforming internal displacement 
field chosen so as to a priori satisfy the governing differential equation of the prob-
lem under consideration [23,24]. In other words, as an obvious alternative to the 
Rayleigh-Ritz method as a basis for an FE formulation, the model here is based on 
the method of Trefftz [1]. With this method the solution domain  is subdivided 
into elements, and over each element, the assumed intra-element fields are 

  (4.9) 

11 1

22 2

33 3 1

4

j j
j

u u
u u
u u

N
N

u c u N c
N
N

u Nc

where cj stands for undetermined coefficient, and (=u T
1 2 3{ , , , }u u u ) and N are 

known functions. If the governing differential equation (1.10) is rewritten in a gene- 
ral form  

 ( ) ( ) 0        ( )eu x b x x  (4.10) 

where  stands for the differential operator matrix for Eq. (1.10), x the position 
vector, b = T

1 2 3{ , , , }f f f Q

( )N N x

 the known right-hand side term, the overhead bar indi-
cates the imposed quantities and  stands for the eth element sub-domain, then 

 and  in Eq. 
e

(u u )x (4.9) have to be chosen so that 

 0   and   0u b N  (4.11) 

everywhere in  A complete system of homogeneous solutions Nj can be gene- 
rated by way of the solution in Stroh formalism 

.e

 2Re{ ( ) }f zu A c  (4.12) 

where “Re” stands for the real part of a complex number, A is the material eigen-
vector matrix which is well defined in the literature (see pp. 17-18 of [25]), 

1 2 3 4( ) diag[ ( ) ( ) ( ) ( )]f z f z f z f z f z  is a diagonal 4 4 matrix, while ( )if z  
is an arbitrary function with argument . pi (i=1-4) are the material 
eigenvalues. Of particular interest is a complete set of polynomial solutions which 
may be generated by setting in Eq. 

1iz x p x2i

(4.12) in turn 

  (4.13) 
( ) ,

       ( 1, 2, )
( )

k

k

f z z
k

f z iz
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where 1i . This leads, for Nj of Eq. (4.9), to the following sequence: 

 2 2Re{ }j
j zN A  (4.14) 

 2 1 2Re{ }j
j izN A  (4.15) 

The unknown coefficient c may be calculated from the conditions on the exter-
nal boundary and/or the continuity conditions on the inter-element boundary. Thus 
various Trefftz element models can be obtained by using different approaches to 
enforce these conditions. In the majority of cases a hybrid technique is used, 
whereby the elements are linked through an auxiliary conforming displacement 
frame which has the same form as in the conventional FE method. This means that 
in the Trefftz FE approach, a conforming EPD field should be independently defined 
on the element boundary to enforce the field continuity between elements and also 
to link the coefficient c, appearing in Eq. (4.9), with nodal EPD d (={d}). The 
frame is defined as  

  (4.16) 

1 1

2 2

3 3

4

( )         ( )e

u
u
u

N
N

u x d Nd x
N
N

where the symbol “~” is used to specify that the field is defined on the element 
boundary only, d=d(c) stands for the vector of the nodal displacements which are 
the final unknowns of the problem, e represents the boundary of element e, and 

 is a matrix of the corresponding shape functions which are the same as those in 
conventional FE formulation. For example, along the side A-O-B of a particular 
element (see Fig. 4.1), a simple interpolation of the frame displacement and electric 
potential can be given in the form 

N

 

1

2

3
( )          ( )A

A B
B

u
u
u

d
u x N N x

d e  (4.17) 

where 

  (4.18) 1 1 1 1 2 2 2 2diag[    ],         diag[    ]A BN N N N N NN N

  (4.19) T T
1 2 3 1 2 3{    } ,        {    }A A A A A B B B B Bu u u u u ud d

with 
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 1 2
1 ,  

2 2
N N 1  (4.20) 

 

Fig. 4.1  A quadrilateral element for a generalized two-dimensional problem. 

Using the above definitions the generalized boundary forces and electric dis-
placements can be derived from Eqs. (1.11) and (4.9), and denoted by 

  (4.21) 

11 11

22 22

33 33

4

j j

j j

j j

j jn n

nt t
nt t
nt t

D nD D

Q
Q

T
Q
Q

c T Qc

n

me

where  are derived from .  and it D u

4.2.3  Modified variational principle 

The Trefftz FE equation for piezoelectric materials can be established by the varia-
tional approach [23]. Since the stationary conditions of the traditional potential and 
complementary variational functional cannot satisfy the inter-element continuity 
condition which is required in Trefftz FE analysis, some new variational functionals 
need to be developed. Following the procedure given in [24], the functional corre-
sponding to the problem defined in Eqs. (1.1), (1.2), (1.5), (1.10)-(1.12), and 
(4.1)-(4.8) is constructed as  

  (4.22) m
e

where 

  (4.23) 
  

( ) d  ( ) d
e e

me e n i i iD s u u t s

with 

 
    

[ ( , ) ]d d d
e te

e i i b i i
De

nH b u q t u s D sE  (4.24) 
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in which Eq. (1.10) is assumed to be satisfied, a priori and nD qs

e

. The boun-  
dary  of a particular element consists of the following parts: e

  (4.25) e ue te Ie e De I

where 

  (4.26) ,    ,    ,    ue u e te t e e e De D e

and Ie  is the inter-element boundary of the element “e”.  
We now show that the stationary condition of the functional (4.23) leads to Eqs. 

(1.11), (1.12), (4.7), (4.8),  and (  on i i tu u ) (  on )D . The first-order 
variational of the functional (4.23) yields 

  

     (4.27) 

 
[( ) ( ) ]d

e
me e n i i iD u u t

 
[ ( ) ( )]d

e
n i i iD t u u s

s

where “ ” is a variational symbol, and  

 
    

  [ ( , ) ]d   d   d
e te

e i i b i i
De

nH b u q t u s D sE

)ds

  

  (4.28) 

with 

   

  (4.29) 

  
( , )d ( )d

e e

E
ijkl ij kl ij i j kij ij k kij k ijH c E E e E e EE

Eqs. (1.2) and (1.5)

, ,  
( )d

e
ij i j i iu D

Integrating the domain integral term in Eq. (4.29) by parts, we can obtain 

  

  (4.30) 

, ,  
( )d (

e e
ij i j i i i i nu D t u D

, ,( )d
e

ij j i i iu D

Combining Eqs. (4.27), (4.28), and (4.30), 

 

, ,   

 

  

 [( ) ( ) ]d [( )

            ( )]d [( ) ( )]d

            ( ) d   ( ) d

e e

ue

te De

me ij j bi i i i b n

n i i i i i i

i i i n n

f u D q D

D s u u t t u u s

t t u s D D s

           )]d  (4.31) 

 

 
 

[ ( ) (
Ie

n i i n i i iD u t D t u u s
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Obviously, 1) leads to  i iu u   the vanishing variation of me in Eq. (4.3

on ,ue  on ,e  governing differential equation (1.10) (see the first i
in 
the second and third i

ntegral 
Eq. (4.31)), displacement and electric potential boundary conditions (1.12) (see 

ntegrals in Eq. (4.31)), boundary conditions of traction and 
surface charge (1.11) (see the fourth and fifth integrals in Eq. (4.31)). The field con-
tinuity requirement Eqs. (4.7) and (4.8) can be shown in the following way. Con-
sidering that only the last integral in Eq. (4.31) can contribute to the continuity 
equation and when assembling elements “e” and “f ”, we have 

 
 

[ ( ) ( ) ( )
Ie If

ne nf i ie if ne eD D u t t D  

  

in

( ) ( ) ( )]dnf f ie i ie if i ifD t u u t u u 0s (4.32) 

 which the conditions  and ie if ie ifu u  are used. Equation
continuity conditions (4.7) and (4.8). 

iffness equation  

 

 (4.32) yields the 

4.2.4  Generation of the element st

i it t  and n nD DNoting the definition of elemental boundary (4.26), and  on 
the related boundaries, the functional (4.23) can be simplified to 

         
 

[ ( , ) ]d
e

me i i bH b u qD  

 
   

 ( )d d  d
e e ue

n i i n i iD t u s D s t u s  (4.33) 

Integrating the domain integral in Eq. (4.33) by parts gives 

 

  
( , )d (

2 2e e

E
ijkl ij kl ij i j kij ijH c E E eD

Eq. (1.5)

, , 

, , , , 

1 1 )d

1                       ( )d
2

1                          [( ) ( ) ]d
2

e

e

k

ij i j i i

ij i j i i ij j i i i

E

u D

u D u D

 

               
  

1 1( )d ( )
2 2e e

i i n bi i bt u D s f u q d  (4.34) 

Su ) into Eq. (4.33) yields 

 

bstituting Eq. (4.34

   
( )d

2 2e
me i i nt u D s1 1 ( )d

e
bi i bf u q  

        
   

( )d d  d
e e

n i i n i iD t u s D s t u
ue

s .35)  (4
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Making use of Eqs. (4.9), (4.16), and (4.21), Eq. (4.35) can be w

 

ritten as 

T T T T
1 2 terms without  or 

2
D

me c Hc c Sd c r d r c d  (1 4.36) 

 which the matrices H, S and the vectors r1, r2 are defined by in

 
 

d
e

T s  (4H Q N .37) 

 T
 

d
e

sS Q N  (4.38) 

T
1 1u

T T T T
1 4 2 2    

3 3

1 1 ( )d d d d
2 2e e e ue

s s u s
u

 r N T Q u N b Q Q
Q

 

 (4.3 ) 

Q

 9

 2  
d

e

T sr N T  (4.40) 

To enforce inter-element continuity on the com
known vector c should be expressed in terms of nodal DOF d. An optional rela-
tion

mon element boundary, the un-

ship between c and d in the sense of variation can be obtained from  

 1T 0me Hc Sd r
c

 (4.41) 

This leads to 

  (4.42) 

here and then st

of her known matrices, 

c Gd g

w raightforwardly yields the expression 1 1
1  and  ,G H S g H r  

me  only in terms of d and ot

 T T T T
2

1 ( )me d G HGd d G H
2

g r +terms without d (4.43) 

Therefore, the element stiffness matrix equation  taki
vanishing variation of the functional  as 

 can be obtained by ng the 

me

 T 0me   K
d

 (4.44) 

here K=GTHG and P= –GTHg–r2 are, ectively
and the equivalent nodal flow vector. The expression (4.44) is the elemental stiff-

d P

w resp , the element stiffness matrix 
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ness-matrix equation for Trefftz FE analysis. 

4.2.5  Numerical results 

of the element model presented above, an example of a 
piezoelectric prism subjected to simple tension (see Fig. 4.2) is considered. To al-

material are given 
as 

,  

 

  

here The boundary cond ons of the pr

,   

  

To illustrate the application 

low comparisons with other solutions appearing in Ref. [26], the results obtained 
are limited to a piezoelectric prism subjected to simple tension. 

This example was taken from Ding et al. [26] for a PZT-4 ceramic prism subject 
to a tension P=10 N/m2 in the y-direction. The properties of the 

follows: 

10 2
1111 12.6c 10 2 10 210  N/m , 1122 7.78 10  N/mc , 1133 7.43 10  N/mc

10 2
3333 11.5 10  /mc , N N ,  10 2

3232 2.56 10  /mc , 2
131 12.7 C/me

 33
2

311 5.2 C/me , 2
3 15.1 C/me , 11 0730 , 33 0635

w iti ism are 12 2 2
0 8.854 10  C /(N m ) . 

         (on edges y b ) yy P 0xy yD

 xy       (on edges 0xx xD x a )  

here a=3 m, b=10 m. Owing to th ound
geometry, only one quadrant of the prism is modeled by 10 (x-direction)  20 
w e symmetry of load, b ary conditions and 

(y-direction) elements in the Trefftz FEM analysis. Table 4.1 lists the displacements 
and electric potential at points A, B, C, and D using the present method and com-
parison is made with analytical results. It is found that the Trefftz FEM results are in 
good agreement with the analytical ones [26]. 

 

Fig. 4.2  Geometry of the piezoelectric prism in example. 
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Table 4.1  Trefftz FEM results and comparison with exact solution. 

Point A(2,0) B(3,0) C(0,5) D(0,10) 

Trefftz 1010u /m –0.967 4 –1.451 0 0 0 1

FEM /m 9
2 10u 0 0 0.500 9 1.001 6 

  /V 89 0 77 9 0 0 0.6 1.3

Exact 10
1 10u /m –0.967 2 .450 8 –1 0 0 

Ref.[27] /m 9
2 10u 0 0 0.500 6 1.001 1 

  /V 88 8 77 5 0 0 0.6 1.3

4.3  Trefftz FEM for anti-plane problems 

2, we now consider applica-
tion of the Trefftz FEM to anti-plane electroelastic problems. Particularly, special 

4.3.1  Basic equations for deriving Trefftz FEM 

 out-of-plane displace-
ment uz and in-plane electric fields, we have [13] 

As a special case of the problem discussed in Section 4.

trial functions which satisfy crack boundary conditions are introduced and used to 
develop a special purpose element with cracks. 

In the case of anti-plane shear deformation involving only

 0,     ( , ),    ( , )x y z zu u u u x y x y  (4.45) 

The differential governing equation (1.9) can be simplified t

 

o 

55 15 15 110,      0z zc u e e u     (in ) (4.46) 

ith the constitutive equations (1.35) or 

 

w

55 15

55 15

15 11

15 11

0 0
0 0

0 0
0 0

xz xz

yz yz

x x

y

f g
f g

E Dg
E g yD

 (4.47) 

wher 2e 2 2 2 2/ /x y  is the two-dimensional Laplace operator.  
The constants f55, g15 and 11 are defined by the relations 

 215 5511
55 15 11,        ,        ,        44 11 15

e c
f g c e  (4.48) 
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The boundary conditions are still defined by Eqs. (1.11) and (1.12) 
e given in Eqs. (4.7) and (4.8). 

(4.49) 

to have non-trivial solutions for the out-of-plane displacement and in-plane electric 
elds. It results in  

and the con-
tinuity conditions ar

It is obvious from Eq. (4.46) that it is necessary for 

 2
44 11 15 0c e  

fi

 0,         0zu  (4.50) 

4.3.2  Trefftz functions 

ons of the Laplace equation (4.50) may be found using 
ration. By this method, the Trefftz functions are ob-

m

It is well known that soluti
the method of variable sepa
tained as [13] 

 ( , ) ( cos sin )mu r r a m b m  (4.51) 
0

z m m
m

 
0

( , ) ( cos sin )m
m m

m
r r c m d

r a bounded region and 

m  (4.53) 

 (4.52) 

fo

 z
*
0 0

1
( , ) ln ( cos sin )m

m
m

u r a a r r a m b m

 *
0 0

1
( , ) ln ( cos sin )m

m m
m

r c c r r c m d m

r an unbounded region, where r and  are a pair of polar coordi
associated T-complete sets of Eqs. (4.51)-(4.54) can be written in the form 

  (4.56) 

.3.3  Assumed fields 

The two independent fields in the present Trefftz FEM are assumed in the following 
way: 

(1) The non-conforming intra-element field is expressed by 

 (4.54) 

fo nates. Thus, the 

 {1,  cos ,  sin } { }m m
ir m r m T  (4.55) 

m m{1,  ln ,  cos ,  sin } { }r r m r m Ti

4
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 zu 1 1

2

0 0
 

0 0

m
j ujN c

N c
N

u c
N21 j jj

where

Nc  (4.57) 

 c is a vector of undetermined coefficient, are taken from the component 
of ts. The choice of m 
was discussed in Section 2.6 of Ref. [23]. The optimal value of m for a given type 
f element should be found by numerical experimentation. 

(2) An auxiliary conforming field 

iN  
the series (4.55) or (4.56), and m is its number of componen

o

 11

22

0
00

u ucz c
c c

cc

u 0

ms of nodal DOF d={du, 
d }  represents the conventional FE interpolating 

function are give  Eqs. (4.59) and (4.60) below. For example, 
 a simple interpolation of the frame field on the side 1-C-2 of a particu

(Fig. 4.3), the frame functions are defined in the following way: 

d dNN
u Nd N d

d dNN
 (4.58) 

is independently assumed along the element boundary in ter
T and T{ , }c uc cd d d , where N

s and 1cN , 2cN  n in
in lar element 

 1 2
1 1 2

1
(1 )

uM
J

12 2z z z zCJ
J

N u N u u  (4.59) 

 1 2
12 1 1 2 2

1
(1 )

M
J

CJ
J

N N

u

 (4.60) 

zCJu  and CJ  where are shown in Fig. 4.3, and 

 1 2
(1 ) (1 ),         

2
N N

2
 (4.61) 

Using the above definitions the generalized boundary forces and electric dis-
ents .57), denoting 

c Q

placem can be derived from Eqs. (1.11) and (4

 c  (4.62) 3 1

2

j jz

j jn

nt
D nD

Q
T

Q

 

Fig. 4.3  Geometry of a triangular element. 
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4.3.4  Special element containing a singular corner 

It is noted that singularities induced by local defects, such as angular corners, cracks, 
and so on, can be accurately accounted for in the conventional FE model by way of 
appropriate local refinement of the element mesh. However, an importan ure of 
the Trefftz FEM is that such problems can be far more efficiently handled by the 

lements containing local defects (see Fig. 
4.4) are treated by simply replacing the standard regular functions N in Eq. (4.57) 
by appropriate special purpose functions. One common characteristic of such trial 

ntial equations, which are 
Laplace equations here, that are satisfied exactly, but also some prescribed boun-   

t feat

use of special purpose functions [23]. E

functions is that it is not only the governing differe

dary conditions at a particular portion eS (see Fig. 4.4) of the element boundary. 
This enables various singularities to be specifically taken into account without trou-
blesome mesh refinement. Since the whole element formulation remains unchanged 
(except that now the frame function u  in Eq. (4.58)) is defined and the boundary 
integration is performed only at the portion *e  of the element boundary 

* ,  (see  Fig. 4.4)e e eS [23], all that is needed to implement the elements 
containing such special trial functions is to provide the element subroutine of the 
standard, regular elements with a library of various optional sets of special purpose 
functions.  

 

Fig. 4.4  Special element containing a singular corner. 

In this section we show how special purpose functions can be constructed to 
satisfy both the Laplace equation (4.50) and the traction-free boundary conditions 
on angular corner faces (Fig. 4.4). The derivation of such functions is based on the 
general solution of the two-dimensional Laplace equation: 

 n

(4.63) 

0
1 1

( , ) ( ) cos( ) ( )sin( )n n n n
z n n n n n

n n
u r a a r b r d r e r  

  



122    Chapter 4  Trefftz Method for Piezoelectricity 

 0
1 1

( , ) ( ) cos( ) ( )sin( )n n n n
n n n n n n

n n
r e e r f r g r h r   

  (4.64) 

Appropriate trial functions for a singular corner element are obtained by consi-   
ering an infinite wedge (Fig. 4.4) with particular boundary conditions prescribed 

along the sides  =  forming the angular corner. The boundary conditions on the 

charge: 

 

d
0

upper and lower surfaces of the wedge are free of surface traction and surface 

55 15 0,z
r

uc e
r r

    15 11 0zuD e
r r

 (4.65) 

This leads to 

 0,         0zu
   (for 0 ) (4.66) 

To solve this problem, we rewrite the general solution (4.63) as 

 (4.67) 

where are two sets of constants which are assumed to be greater than 
ero. Differentiating solution (4.67) and su  it into 

   

 os( ( )n  0
1 1

( , ) ( ) c ) ( )sinn n n n
z n n n n n

n n
u r a a r b r d r e r

 

  and  n n  
z bstituting Eq. (4.66) yield 

0 0( )sin( )n nz
n n n n

u a r b r        
1n

) 0   ( 68) 

e the soluti

.69) 

(4.68) it can be deduced that 

 ,    

 
1n

4.    0( ) cos(n n
n n n nd r e b

Sinc on must be limited for r = 0, we should specify 

 0n nb e  (4

From Eq. 

0sin( ) 0n 0cos( ) 0n  (4.70) 

     (n =1,2,3, ) (4.71) 

leading to 

0n n

 02 n n     (n =1

e crack (in this case ), the solu-

 ,3,5, ) (4.72) 

Thus, for an element containing an edg 0
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tion can be written in the form 

2
0

1
 

1,3,5 2n
n

( , ) cos( ) sin( )
n

n
z n

n

nu r a a r n d r  (4.73) 

With solution (4.73), the internal f

 

unction defined in Eq. (4.57) can be taken as 
(2 1)

2
2 1 2

(2 1)cos( ),         sin( )
n

n
n n

nN r n N r     (n =1 ) (4.74) 
2

,2,3,

It is obvious that the displacement function (4.73) includes the term proportional 
 r1/2, whose derivative is singular at the crack tip. The solution

equation of (4.66) can be obtained similarly. 

.3.5  Generation of element matrix 

The

 

to  for the second 

4

 element matrix equation can be obtained by means of a variational approach. 
Following the procedure described in [24], the related variational functional used 
for deriving Trefftz FE formulation of the anti-plane problem may be constructed as 

  
{ ( ) d  ( )

De te

D D D
m me e n n

e e
D D s t t u s  dz

 (4.75)              ( )d }n zD tu s  
 Ie

 
  

{ ( ) d  ( ) d
e ue

E E E
m me e n z z

e e
D s u u t s  

             2 d 2 d ( )d }zu t s D s D u t s  (4.76) 
   te De Ie

z n n

where 

 
    

 ( )de i (4.77)   d   d
e ue e

D
j k z nH ,D tu s D s  

    
 ( )d   d   d

e te D

E
e ij k z

e
nH ,E tu s D s  (4.78)  

with 

2 2 2 2
55 15 15 11

1 1 ( , ) ( ) ( )
2 2ij k xz yz xz x yz y x yH D f g D g D D D  (4.79) 

 2 2 2 2
55 15 15 11

1 1( , ) ( ) ( )
2 2ij k xz yz xz x yz y x yH E c e E e E E E  (4.80) 

in which Eq. (4.50) is assumed to be satisfied, a priori.  
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The element matrix may be then established by setting = 0 or D
me  E

me

a

= 

. As an illustration, we use =0 to derive the elem fness m
plify the derivation, the domain integral in Eq. (4.77) is converted

boundary integral by use of solution properties of the intra-element trial functions, 
r which the functional (4.75) is rewritten as 

0 trix. To 
sim  into a 

 D
me ent stif

fo

 
    2 e e e ue

  (4.81) 

Substituting the expressions given in Eqs. 

1 ( )d ( )dme z z n n z zt u D s D t u s d  dn z zD s t u s  

(4.57), (4.58), and (4.62) into Eq. 
(4.81) produces 

 T T1D c Hc c T
12me Sd c r  (4.82) 

 which the matrices H, S and the vectors r1 are defined by in

 T d ,s
 e

 

H Q N  

T
 

d ,
e

sS Q N  (4.83) 

T T
1 2 1  

d d
e ue

zs u sr Q Q   

The symmetry of the matrix H can be sh wn by considering the generalized en-
rgy Ue of a particular element “e”: 

 
d

e
 (4.84) 

where 

  (4.85) 

T  

e H=HT. 
To enforce inter-element continuity on the common element boundary, the un-

nown vector c should be expressed in terms of nodal degr
optional relationship between c and d in the sense of variation can be obtained from  

o
e

  ( )dij ij k kD E  
    

2 2   ( )d  
e e

e ij kU H ,D

    T T
  

( )d d
e e

ij j i i in u D n s s sT u u T

 T dsT u cT T T
  

d
e e

sQ N c c Hc

  (4.86) T T T T
  

d d
e e

s su T c N Q c c H c

Therefor

k ees of freedom d. An 
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1T 0me Hc Sd r
c

  

f her known matrices:

(4.87) 

This leads to 

 c Gd g  (4.88) 

where 1 1 and  ,G H S g H r  and then straightforwardly yields the expression 1

me  only in terms of d and oto  

T T T T1
2me d G HGd d G Hg  (4.89) 

Therefore, the element stiffness matrix equ
ng variation of the functional

 

ation can be obtained by taking the 
vanishi  me  as 

 T 0  me   Kd P  (4
d

.90) 

ere K=GTHG and P= –GTHg are, respectively, the element stiffness matrix and 
the

.3.6  Numerical examples 

, and a uniform electric displace-
ment, at infinity (see Fig. 4. terial properties of PZT-5H are as 

, 
 

n Fig.
ns of the

k tip, it is unnecessary to increase the mesh density near the crack
re

To study th

wh
 equivalent nodal flow vector. The expression (4.90) is the elemental stiffness 

matrix equation for Trefftz FE analysis. 

4

As a numerical illustration of the formulation described above we consider an 
anti-plane crack of length 2c embedded in an infinite PZT-5H medium which is 
subjected to a uniform shear traction, zy

5). The ma

15 17.0e
nergy release 

yD D  

given by [13]: 55 3.53 10
5.0 N/mJ , where Jcr is the c

10 2 N/m ,c
ritical e

2 C/m ,  8
11 1.51 10  C/(V m)

rate. In our FE analysis, onecr

half of the geometry configuration shown in Fig. 4.6 is used and a typical element 
mesh is shown in Fig. 4.7. However, due to the symmetry about the x-axis (the line 
AB in Fig. 4.7), only one half of the mesh i  4.7 is actually used. Since the trial 
functio  crack element satisfy the crack face condition and represent the 
singularity at crac  
tip. In the calculation, th e types of element (see Fig. 4.7) have been used.  

e convergent performance of the proposed formulation, numerical re-
sults for different element meshes 8 8,  12 12,  16 16,  20 20,  and 24 24  
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are presented in Table 4.2, showing that the h-extension performs very nicely, and 
Table 4.3 shows the results of cr/J J  versus M, where 2M is the number of hierarchic 
degrees of freedom. That also shows good convergent performance. 

 

Fig. 4.5  Configuration of the cr  infinite piezoelectric medium. acked

 

kFig. 4.6  Geometry of the crac  in FE analysis. ed solid

 

 typical element mesFig. 4.7  A ement types. h and el
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Table 4.2  h-convergence study on /J crJ  for piezoelectric plate with a central crack 

(a/c=15, 3 3 6 22 10  C / m ,  and 10  N / m ).D  

Meshes 

4.2

cr/J J  
8×8 

12×12 
16×16 
20×20 
24×24 

1.595 4 
1.590 8 
1.589 9 
1.589 5 
1.589 3 

Table 4.3  p-convergence study on cr/J J  for piezoelectric plate with ntral crack 
6 2

ce

(a/c=15, 16 16 , 3 32 10  C / m ,  and 4.D 2 10  N / m ).  

M /J crJ  

0 1.589 9 
1 1.589 6 

1.589 5 
1.589 

2 
3 4 

 
The boundary e investigated by using different rat c (5, 7, 10, 12, 

and 15). Numerical  of
ffect is ios of a/
 results  cr/J J  for different a/c are l Table 4.4. The 

accuracy of these re adequate when a/c is greater than 1

Table 4.4  Boundary effect study on

isted in 
sults is 0. 

 / crJ J

 N / m ).

 for plate with central crack ( 24 24,  
3 3 6 22 10  C / m ,  and 4.2 10D  

a/c cr/J J  

5 
7 
10 
12 
15 

1.596 8 
1.591 7 
1.589 8 
1.589 4 
1.589 3 

4.4  Trefftz boundary element method for anti-plane problems 

majo  and the
indirect method. The direct and indirect meth s presented in [18] are detailed here.  

4.4.1  Indirect form ion 

In the indirect metho he unknown displacement uz and potential  are 
approximated by the ansions (4.57). In Eq. (4.57), Ni is om Eq. (4.55) 

Trefftz BEM can be divided into two r categories: the direct method  
od

ulat

d, t electric 
exp  taken fr
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for subdomains witho rack or from Eq. (4.74) for the re , and the gene-  
ralized traction vector T is defined in Eq. (4.62). Then, the indirect formulation 
corresponding to the anti-plane problem can be expressed by 

ut c mainder

 1 2  
 ( ) d   ( ) du u w s w s  

u
z z

 3 4  
 ( ) d   ( ) d 0

t D
z z n nt t w s D D w s  (4.91) 

where wi (i=1-4) are arbitrary weighting functions and uz, , t, Dn have the series 
62). If we use the Galerkin method, the weighting 

 variations of the expressions (4.57) and (4.62),    

(4.93) 

here 

representations (4.57) and (4.
functions are chosen as arbitrary
that is 

 1 1 2 2 3 1 4 2,    ,    ,    w w w wQ c Q c N c N c  (4.92) 

Substituting Eq. (4.92) into Eq. (4.91) yields 

 Kc f  

w

 T
2 2  dT T T

1 1 1 1 2 2    
  d   d   d

u t D
s s sK Q N N Q Q N sN Q  (4.94) 

 T T T T
1 1 2 2    

  d   d   d   d
u t D

z z nu s t s s D sf Q N Q N  (4.95) 

It should be noted that the formulation above applies only to a solution domain 
containing one semi-infinite crack when the particular solution (4.74) is used as the 

eighting function. For multi-crack problems, the domain decompo
is required. In this case, the solution domain is divided into several sub-domains 
(Fi racks can be divided into four 
ub-domains (Fig. 4.8), In Fig. 4.8, i (i=1-4

undary, and Iij the inner boundaries between
rect method leads to 

    (i=1-4) 

On the inner boundary Iij, the continuity conditions provide 

 j

w sition approach 

g. 4.8). For example, a domain containing two c
s ) denote the sub-domains,  the outer 
bo  sub-domains. For each sub-domain, 
the indi

 (4.96) i i iK c f

,    ,    ,    i j i j i j i
zI zI I I zI zI nI nIu u t t D D  (4.97) 

where the subscript “I ” stands for the inner boundary, and superscript “i ” (or “j ”) 
means the ith (or jth) sub-domain. Equations (4.96) and (4.97) can be used to solve 
multiple crack problems. 
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Fig. 4.8  Geometry of the four sub-domain problems. 

4.4.2  The point-collocation formulations of Trefftz boundary element method 

The point-collocation technique is obtained when these functions are defined by the 
Dirac delta function as 

  (4.98) 

where is the collocation point. 
Substituting Eqs. (4.57), (4.62), and (4.98) into Eq. (4.91) yields 

 

1 2 3 4 ( )iw w w w P P

iP  

1( ) [ ( )  ] ( )z i iu P P w PN 0 c i     (for on )  (4.99)  iP   w

 1( ) ( ) ( )z i i z it P P t PQ c     (for  on ) (4.100) 

 

 iP q

2( ) [   ( )] ( )i iP P0 N c iP     (for  on  iP ) (4.101) 

2( ) ( ) ( )n i i n iD P P D PQ c     (for  on ) (4.102) iP D 

The above equations may be written in index form: 

 ij j iK c f    (4.103) 

atrix e form as that of Eq. (4.93), but different ele-
collocation can be set at any location where a 

bou

.4.3  Direct formulation 

he Trefftz direct formulation is obtained by g 

or in m  form which has the sam
ments of matrix K. The points of 

ndary value is known. 

4

T  considerin [28] 

d 0v  (4.104) 2 2
1 2 zu v 
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Performing the integration by parts and taking the right-hand side of Eq. (4.57) 
s weighting function, that is a

 11 1

22 20

0
 

0
j uj

j jj

N cv
N cv

m

 d 0  (4.106) 

Since the equation is valid for arbitrary vectors c, we have 

d

BEM, the boundary  is divided into m linear elements, for which uz, tz, , and Dn 
re approximated by 

 (4.108) 

here 

N
v c Nc

N
 (4.105) 

we have 

T T T T T
1 1 2 2 ( )z z nt u D sc N Q N Q

 

 0  (4.107) T T T T
1 1 2 2 

 ( )i i z i n it u D sN Q N Q

The analytical results of Eq. (4.107) are, in general, impossible, and therefore a 
numerical procedure must be used to solve the problem. As in the conventional 

a

 z
1 1 1 1

( ),  ( ),  ( ),  ( )
m m m m

zi i z zi i i i n ni i
i i i i

u u F s t t F s F s D D F s

w ,  ,   and zi zi i niu t D are, respectively, their values at no
me ated at the left of the 
nod e ith-node. Fi(s) is 
ero-valued over the whole mesh except within two eleme
th-node (see Fig. 4.9). Since Fi(s) is assumed to be linear withi

has

de i. s>0 in the ele-
nt located at the right of the node i, s<0 in the element loc
e. Fi(s) is a global shape function associated with th

z nts connected to the 
i n each element, it 

 three possible forms: 

 ( ) ( ) /i i iF s l s l  (4.109) 

for a node located at the left end of a line (see Fig. 4.9(a)),  

( ) ( ) /i i iF s l s l  

de located at the ri

(4.110)  

for a no ght end of a line (see Fig. 4.9(b)), or 

 
( ) /     (if )

( )
( ) /     (if )

i i i
i

i i i

l s l s l
F s

l s l s l
 (4.111) 

where  and i il l  are two elements connected to the ith node, with being to the  il  
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( ),   and i iF s l l . Fig. 4.9  Definitions of i

right and being to the left, while il  and  i il l denote their lengths, and  

 

0     (at node )

    (at node 1)

   (at node 1)

i

i

i

s l i

l i

 (4.112) 

Having performed the discretion above, we obtain 

  (4.113) 

Applying the boundary conditions, we have 

 

Gu Ht

1 2 3 4 1 2 3 4

z

z

nD

n

u t
u t

G G G G H H H H

D

 (4.114) 

or simply 

 

The direct formulation above is only suitable for single crack problems. For a 
mu e domain decomposition ap-
pro roblems. For a particular sin-
le crack problem with sub-domain I (see Fig.

  i) (4.116) 

while on the inner boundary Iij, the continuity condition is again defined in Eqs. 
(4.7) and (4.8). 

 (4.115) Kx f

lti-crack problem, as treated in Subsection 4.4.1, th
ach is used to convert it into several single crack p

g  4.8), Eq. (4.115) becomes 

i i iK x f     (in
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4.4.4  Numerical examples 

s a numerical illustration of the proposed formulation, two simple exa
sidered. To allow for comparisons with analytical results, as presented in [22,29], the 
results obtained are limited to a central cracked piezoelectric plate and a piezoelectric 

its x-axis. In all the calculations, the PZT-5H pie-
mic material is used, the material constants of which are [25] 

, and a 
niform electric displacement,

n

 Fig. 4.10. The energy release rate for PZT-5H material with a 
crack of length 2c=0.02 m and a/c=14 is plotted in Fig. 4.11 as a function of elec-
trical load, with the mechanical load fixed so that J=Jcr at zero electric load. The 

e from Qin [13] using Trefftz FEM. It is found from 
Fig. 4.11 that the energy release rate can be negative, which means that the crack 

A mples are con-

strip with two collinear cracks along 
zoelectric cera

10 2 2
 44 15 11 cr3.53 10 N/m ,  17.0 C/m ,  e 81.51 10  C/(V m), 5.0 N/mc J  

where Jcr is the critical energy release rate. 
Example 1 
we consider again an anti-plane crack of length 2c embedded in an infinite 

PZT-5H medium which is subjected to a uniform shear traction, zy

u  at infinity (see Fig. 4.5). In the Trefftz  yD D
boundary element calculation, o ly one half of the geometry configuration shown in 
Fig. 4.6 is used due to the symmetry of the problem. A typical boundary element 
mesh is shown in

results are compared with thos

growth may be arrested. It is also observed that there is good agreement between 
the two approaches although only 32 boundary elements are used in the calculation. 
The energy release rate appearing in Fig. 4.11 was defined in [25] 

 
0

lim
x

WJ G
x

 (4.117) 

with 

 
 12 (

x
W u

 0 2
)dzy z yD x  (4.118) 

 

Fig. 4.10  A typical boundary mesh (32 elements). 
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  Energy release rate in cracked PZT-5H plate Fig. 4.11 /c=14, 

 
The boundary effect should be studied since we use a rectangular domain with 

side length 2a (see Fig. 4.6), rather than the infinite domain. The boundary effect is 
investigated by using different ratios of a/c (6, 10, 14, and 18). Numerical results of 

6 24.2 10  N / m ,  (a

and 32 elements). 

cr/J J  for different a/c are listed in Table 4.5. The accuracy of the results is ade-
quate when a/c is greater than 14. 

Table 4.5  Boundary effect study of cr/J J
2).  

 for plate with central crack (

a/c 

D  
3 3 62 10  C / m ,  and 4.2 10  N / m

cr/J J  

6 
10 
14 
18 

1.598 7 
1.592 2 
1.589 6 
1.589 5 

 
lation, numerical re-To study the convergent performance of the proposed formu

sults of cr/J J  for different element meshes 24, 32, 48, 64, an

ments are presen

d 128 boundary ele-

ted in Table 4.6, which demonstrates that the h-extension performs 
very ble 4.7 shows the results of nicely. Ta  III III/ SK K  and S/D DK K  for the element 

meshes above, also showing good convergent performance, where [25] 

 III 55 15 15 11,         S E DS EK c K e K K e K K    (4.119) 
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with  

11 15 55 15 2 2
55 11 15 55 11 15

,   E
e D

      
c D e

K c K c
c e c e

 (4  .120)

Table 4.6  h-convergen tudy of cr/J J
2/ m ).  

ce s  for plate with central crack (a/c=14, 
3 3 6

D  

2 10  C / m ,  and 2 10  N

Eleme

4.

nts cr/J J  

24
32

1.5
1.5

 
 

96 1 
91 3 

48 
64 
128 

1.590 1 
1.589 4 
1.589 3 

 

Table 4.7  h-convergence study for III III/ SK K /D DSK and K  with central crack 

(a/c=14, 3 3 6 22 10 C / m ,  and 4.2 10  N / m ).D  

for plate 

III II/K KElements IS  /D DSK K  

24 
32 
48 
64 
128 

1.254 
1.181 
1.112 
1.094 
1.092 

1.195 
1.122 
1.0
1.0
1.070 

89 
71 

 
Table 4.8 shows the results fo cr/J J  obtained by both the indirect m  r ethod

and the direct method, indicating vergent performance. Therefore both 
methods are suit ti-pla , although the values of 

similar con
ne fracture analysis cr/J J  able for an

obtained from the indirect method are slightly higher tha  from the direct 
method. 

Table 4.8 

n those

cr/J J  
3 3m ,  and 

fo e central cracked plate from the two s (a/c=14, 
6 2

ber of v

r th  method D  

2 C / 4.2 10  N / m ).  10

Num ariables Approach 
48 64 96 128 

Indirect method 1.598 8 1.592 4 1.590 7 1.590 1 
Direct method 1.596 1 1.591 3 1.590 1 1.589 4 

 
Example
Consider a piezoelectric strip of w (h=2) which has an  extent in 

the y-z dire (see Fig. 4.12). Th contains two collin permeable 

 2 
idth 2h infinite

ction e strip ear im
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thr gh crac f equal length (1–b) a e x-axis [29]. Here 2 e distance 
bet are pe
sum

1 2

ary elements.  

ks o long th b is thou
ween the two cracks. Both cracks rpendicular to the edges of the strip. As-
e that the strip is subjected to a constant shear stress, 32 0 , over the sur-

face of the two cracks.  
Owing to the symmetry of the problem only one half of the geometry configura-

tion shown in Fig. 4.13 is analyzed, and each sub-domain (  or ) is modelled by 
64 bound

          

Fig. 4.12  Two cracks in a piezoelectric    Fig. 4.13  Geometry of the two crack system 
p under anti-plane loading.             in the Trefftz boundary element analysis. 

                   
stri

Figures 4.14 and 4.15 display the variation of  and with the 
crack distance b, where c, 

inn 0/K out 0/K

innK  and outK  are as de  [29]

 

fined by  

inn 32 out 32
1

12,  lim 2 ( ) ( ,0),  lim 2 (1 ) ( ,0)
x b x

c K b x x K x x   

It can be seen from Figs. 4.14 and 4.15 that the results from the Trefftz BEM are 
in good agreement with analytical results [29] when the crack distance b is greater 
than 0.4. However, the discrepancy between the two methods increases along with a 
decrease in b when b is less than 0.4. This indicates that edge effect will become 
important when the ratio of crack length (1–b) to the distance from the crack tip to 
the edge of the sub-domain (b here) is greater than 1.5, i.e., . This 

result can help us to select an appropriate subdomian size when using the proposed 
formulation. 

(1 ) / 1.5b b
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Fig. 4.14  inK n 0/  vs crack distance b. 

 

 
Fig. 4.15  vs crack distance b. 

 

out 0/K  
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Chapter 4 Trefftz method for piezoelectricity 

4.5  Trefftz boundary-collocation method for plane piezoelec-
tricity 

This section presents a brief summary of the development in [19] which begins with 
a Trefftz solution of general plane piezoelectricity derived by Lekhnitskii’s formal-
ism. Then a boundary collocation scheme is described.  

4.5.1  General Trefftz solution sets  

Let ( , )x y
e set of coord

be the principal material coordinates, the poling direction and (x,y) 
th inates obtained by rotating 

y
)( ,x y  through an anti-clockwise rota-

tion  (see Fig. 4.16). Using Lekhnitskii’s formalism, a general solution of plane 
piezoelectricity can be written as [25] 

  (4.121) 

 z  (4.122) 

wher

2
3 k11 3

1
22

21 1
12

2Re 1 ( ),       2Re ( )k k
k k k k

kk k
k

D
z z

D

1 3 ku p

2 2 Re ( )k k ku q
1k

ks

kth root of Eq. (2.8),  k is an arbitrary function of the complex e k is the 
variable zk, and [25] 

 

2 2
11 12 21 12 22 22

21

,    ,   
(

( ) ,     ( )

k k k k k kp a a b q a a b
b

s b p
2

13 22
13 11 2

11 22

)
,

(cos sin )

k
k k k k k

k

k

b b

z x y r i

 (4.123) 

q. (1.25), and the polar coordinates being 

21) an

ined by expressing k in terms of Taylor se-
ries [19]: 

  (4.124) 

k k k k

with ,  ,  and a b being defined by Eij ij ij

ented repres by ( , )k kr .  
Making use of the general solutions (4.1 d (4.122), the plane piezoelectric 

problem is reduced to the one of solving the potential functions k. The corre-
sponding Trefftz functions can be obta

( ) ( )

1
( ) ( )        (for 1,2,3, ) n n n

k k k k k
n

z i z k
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Fig. 4.16  Coordinate systems and poling direction for elliptical hole. 

where k and k are real coefficients. Substituting Eq. (4.124) into the general solu-
ons (4.121) and (4.122), the basic set of Trefftz functions can be givti en in the form  

( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1

( ) ( ) ( ) ( )
2 2 2 2 2 2 2 2

( ) ( ) ( ) ( )
3 3 3 3 3 3 3 3

( ) Im( ) ,  Re( ) Im( ) ,
e( ) Im( ) ,  Re( ) Im( ) }n n n n

c s s c
c s s c

D D D D
D D D D

 
2{Re( ) Im( ) , Re( ) Im( ) ,

           Re
           R

n n n n

n n n n
c s s cuT D D D D

i

 

(for 0,1, 2,3, )n  (4.125) 

which corresponds to the unknown real constants ( ) ( ) ( ) ( ) ( )
1 1 2 2 3{ ,  ,  ,  ,  ,n n n n n  

( )
3 },n where ( ) cos ,n nc r n  ( ) sin ,n n

i i i i is r n  D ={p , q , s }T, “Re” and “Im” k k k k

denote, respectively, the real and imaginary parts of the subsequent expression, and 
e subscript “u” signifies that the basic solution set is for the disp

u = {u1, u2, }T. 

4.5.2  Special Trefftz solution set for a problem with elliptic holes 

For an arbitrarily oriented elliptic hole, Sheng et al. [19] in 2006 constructed a spe-
cial set of Trefftz functions. They began with considering the following conformal 
mappings:  

 

th lacement vector   

1      (for  1,2,3)
2 2

k k
k k

k

a i b a i b
z k  (4.126) 

16). With the map-
ping, the region occupied by the piezoelectric material in the z -plane is mapped 
where a and b are the half-lengths of the hole axes (see Fig. 4.

k

onto the outside of a unit circle in the -plane, since it can be shown that all the 
roots of equation d / d 0k kz  for Eq. (4.126) are located inside the unit circle 

1k  [30]. Th  mapping (4.126) provides e inverse of the
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2 2 2 2( )
(for  1,2,3)k k k

k
k

z z a b
k

a i b
  (4.127) 

in which the sign of the square root  is chosen in such a way that 1k

displacements 

. Making 

use of Eq. (4.126), the elastic displacements, stresses, and electric 
e form defined in Eqs. (4.121) and (4.122) can be written in th

    

2
11 3 3

1
22

21 1
12

( ) ( )
2 Re 1 ,       2 Re

( ) ( )
k kk k k k

kk k k kk k
k

D
Dz z

k

 (4.128) 

 2
1

2 Re ( )k k k
k s

1 3 k

k

u p
u q  (4.129) 

For an impermeable elliptic hole, the traction-free and charge-free conditions 
can be given from Eq. (4.128) as in [19]: 

3 3 3

1 1 1
Re ( ) 0,  Re ( ) 0,   Re ( )

 (on 1)

k k k k k k k k k k k

k

 (4.130) 

Equation (4.130) can be written equivalently as 

 

3 3

1 1
3

[ ( ) ( )] 0,    [ ( ) ( )] 0,

[ ( ) ( )] 0          (on 1)

k k k k k k k
k k

k k k k k k k

 (4.131) 

1

k k k

k

r further in matrix form o
1

1 1 11 12 13

2 1 2 3 1 2 3 2 21 22 23 2

3 1 2 3 1 2 3 3 31 32 33 3

1 1 1 1 1 1 E E E
E E E
E E E

1

4.132)   (

where Eij are self-defined in Eq. (4.132). 
complex potential functions k for the hole problem can be chosen

 Laurent series [19]: 

 (4.133) 

where k and k are real constants. Noting that  

The  in the 
form of

( ) ( ) ( ) ( )

1
( ) [( ) ( ) ]      (  for 1,2,3, )n n n n n n

k k k k k k k k
n

i i k
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  (4.134) 

y point along the hole boundary, where  is a polar a
Eqs. (4.132)-(4.134) provides six constraints on the 12 real coefficients 

n in Eq. (4.133), which result  
following set of special Trefftz functions: 

   

1 2 3
ie

at an ngle, the combined use of 
( )n
k , 

s in the

( ) ( ) ( ),  ,  and n n n
k k k for a particular number n. The six constraints can be used to 

eliminate six real constants, say, ( )  ann
k k

( )d 

(hole) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3{ ,  , ,  , ,  }      (for 0,1,2,3, )n n n n n n nuT  (4.135)   

where 

 (4.136) 

3 3
( ) ( ) ( ) ( )

1 1
3 3

( ) ( ) ( ) ( )

1 1

Re( ) Im( ) ,

Im( ) Re( )

n n n n
k k ik i ik i

i i

n n n n
k k ik i ik i

i i

E E

E E
 

n

n
k
n
k

n
k

 

on set for impermeable crack problems  

Having obtained the special Trefftz functions for elliptic hole problems, Sh
[19] next derived a special set of Trefftz functions for problems containing an im-

oundary conditions along the crack 
r

 

with 

 (4.137) 

( )

( )

( )

( )

2Re( ) Re( ) 2 Im( ) Im( ),
2Re( ) Re( ) 2 Im( ) Im( ),
2Re( ) Im( ) 2 Im( ) Re( ),
2Re( ) Im( ) 2 Im( ) Re( )

n n
k k k k k
n n

k k k k
n n
k k k k
n n

k k k k

D D
D D
D D
D D

4.5.3  Special Trefftz soluti

eng et al. 

permeable semi-infinite crack. In this case, the b
faces a e 

 aces )  (4.138) 22 12 2 =0      (at crack fD

The potential function k in Eq. (4.124) are now in the form  

( ) ( ) ( ) ( )) ( ) (cos sin )k k k k k k ki z i r i( ) (k k kz (4.139) 

where  is no longer an integer and is to be determined by boundary conditions. To 
determine the unknown  substituting Eq. (4.139) into Eq. (4.121) yields 

 ]  (4.140) 
3  

( ) ( ) ( ) ( ) ( ) ( )

1
2 [ ( ) ( )k sk k sk k k sk k sk k

k
A c B s A s B c
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 )  (4.141) 

  )]  (4.142) 

  )]c  (4.143) 

where 

3  
( ) ( 1) ( ) ( 1)

22
1

2 ( k k k k
k

c s

 
3  

( ) ( 1) ( 1) ( ) ( 1) ( 1)
12

1
2 [ ( ) (k k k k k k k k k k

k
A c B s A s B c

 
3  

( ) ( 1) ( 1) ( ) ( 1) ( 1)
2

1
2 [ ( ) (k k k k k k k k k k

k
D A c B s A s B

( ) cos ,i ic r i  ( ) sin ,i is r i  

k), and B k= –Im
(4.141)-(4.143) int

Ask=Re(sk), Bsk=Im(sk), A k= –Re( k), 
B k= –Im ( k). Noting that  and rk=r at 

o Eq. (4.138) 
( k), A k= –Re(

, substituting Eqs. 
k

provides 

 ( ) 0X Gq  (4.144) 

where 
( )
1
( )

1

1 0 1 0 1 0
0 1 0 1 0 1

 
3 ,

( )
2 1 1 2 2 3
( )

1 1 2 2 3 32

3

( ) 1 1 2 2 3 3
3

,          

( ) diag cos sin cos

A B A B A B
B A B A B A

B
B A B A B A

( ) 1 1 2 2 33
A B A B A

q G

X sin cos sin

 (4.145) 

If G is in full rank, the non-trivial solution of q can be determined by setting the 
determinant of X( ) at zero. The solutions to ( ) 0X yield 

/ 2     ( for 0,1,2,3, )n n  

Since Eq. (4.138) provides three constraints, only three coefficients in Eq. (4.139) 
e independent. Taking

(4.146) 

 ( ) ( ) ( )
1 1 2,  ,  and 

 ( ) ( ) ( )
2 3 3,  ,  and 

ar  as indepen

maining three constants, 

dent constants, the re-

, can be found from Eq. (4.144) as 

 

( ) ( ) ( ) ( )
2 1 1 2 1 3 2
( ) ( ) ( ) ( )
3 4 1 5 1 6 2
( ) ( ) ( ) ( )
3 7 1 8 1 9 2

,
,

J J J
J J J
J J J

 (4.147) 

e  wher

1 1 3 3 3 1 0

3 3 2 2 3 0 4 1 2 3 1 3 0

( ) ( )] / ,
( ) / ,   [ ( ) ( )] /

3 1 1 3 0 2 3

2

) / ,   [ (J B A AB B B J J B A A B J
J B B A B A A J  (4.148) B B J J B A
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 05 1 3 2 2 1 3 3 2 1[ ( ) ( ) ( )]
6 2 2 3 2 3

/ ,
[ ( ) ( 2 0 7 1)] / ,             

J A A A A A A A A A J
J B A A B A A J J J  (4.149) 

38 3 1 2 3 2 1 0 9

0 3 3 2 3 2 3

[ ( ) ( )] / ,      
( ) ( )

J B A A B A A J J J
J B A A B A A  (4.150) 

for odd n, i.e., , and 

0

1/ 2,3 / 2,

1 3 1 3 3 3 1 0 2 1 3 3 1 0

3 3 2 3 3 3 2 0 4 6 5

7 2 3 1 2 1 3 0 8 2 1 1 2

9 2 3 2 2 2 3

[ ( ) ( )] / ,   [ ) / , 
[ ( ) ( )] / ,  1,     0,
[ ( ) ( )] / ,   [ )
[ ( ) ( )]

/ ,

J B A A B A A J J B B B B J
J B A A B A A J J J J
J B A A B A A J J B B B B
J B A A B A A 0 0 3 2 2 3/ ,   J J B B B B

J  (4.151) 

for even n, i.e., 1, 2,3, . 
By incorporating Eqs. (4.139), (4.146), and (4.147) into the general solutions 

ed as 
(4.121) and (4.122), a set of special Trefftz functions for a problem containing an 
impermeable semi-infinite crack can be obtain

(crack im) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 5 3 8 3+ + ,J J1 1 2 4 3 7 3 1 2{ + + ,   J J J JuT S S S S S

dependent constants

kc

S S S   

      ( ) ( ) ( ) ( )
2 3 2 6 3 9 3+ + }     (for 2 0,1, 2, )J J JS S S S  (4.152) 

which corresponds to the in  ( ) ( ) ( )
1 1 2{ ,  ,  } , and 

( ) ( ) ( ) ( ) ( ) ( )2Re( ) 2 Im( ) ,   2Re( ) 2 Im( )k k k k k k k k kc s sS D D S D D  (4.153) 

4.5.4  Special Trefftz solution set for permeable crack problems  

 in [19] that besides the impermeable and permeable assumptions, the 
upper and lower limits of the exact electric boundary conditions are to 
mined. Sheng et al. then developed a set of special Trefftz functions for problems 
with a permeable semi-infinite crack in [19]. In this case, the boundary conditions 
long the crack faces (4.138) become 

It is noted
be deter-

a

22 12

2 2

=0       (at crack faces ),
,     D D  (

ction  k for th lem has the same form as that of Eq. (4.139), 
expressions (4.1 .143) also apply to this problem. Substituting 

the expressions of 

4.154) 

The potential fun is prob
and in turn the 40)-(4

12 22 2,  ,   and D  in Eqs. (4.140)-(4.143) into Eq. (4.154), an 
equation analogous to Eq. (4.144) can be obtained. Then eigenvalues of  are also
given by Eq. (4.146), but they have different eigenfunctions.  

Noting that Eq. (4.154) provides four constraints, only two coefficients for each 
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 in Eq. (4.139) en are independ t if n is an odd integer, i.e., 1/ 2,3 / 2, . When 

we take ( ) ( )
1 1 and  to be independent constants, the following relationships can 

be obtained: 
( ) ( ) ( ) ( ) ( ) ( )
2 11 1 12 1 2 13 1 14 1
( ) ( ) ( ) ( ) ( ) ( )
3 15 1 16 1 3 17 1 18 1

,      ,
,      

J J J J
J J J J

  ( 55) 

 

4.1
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)( )
        ( )( )] / ,   
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        ( )( ) ( )
 

s

s s

s s s s

s s s s

A B B
A A B B B B J

J A A A B B A A A A B A B
A A A B A B A A A B

1 3 2 3 3 2 1 3 10       ( ) ( ) )] /s s s sA A A B A A A B J

)  (4.156) 

 1 3 2 2 3 10

14 3 1 2 3 3 2 3 1 3 2 2 3

3 1 2 3 3 2 10

        ( )] / ,  
[( )( ) ( )( )

        ( )( )] /

s s

s s s s

s s

B B B B B J
J A A B B B B A A B B B B

A A B B B B J

 (4.157) 

15 3 2 2 1 1 2 3 2 1 2 2 1

3 2 2 1 1

[( )( ) ( )( )
        ( )(

s s s s

s s

J A A B B B B A A B B B B
A A B B B B

13 3 2 1 1 2 2 1 3 3 1[ ( ) ( )s s s sJ B B B B B B B B B B

 2 2 1

2 10

16 2 1 3 2 2 3 3 2 1

3 1 2 2 2 2 2 3 1 2

)] / ,
[( )( ) ( )( )

       ( )( ) ( )
     

s s s s

s s s

J
J A A A B B A A A A B B A

A A A B B A A A A B
3 1 2 2 1 2 3 2 10  ( ) ( ) )] / ,s sA A A B A A A B J

 (4.158) 

17 13J J

 

18 2 3 2 1 2 3 3 2

2 1 3 2 2 3 10

10 3 2 3 2 2 3 3 2 2

[( ) ( )( )
        ( )( )] / ,

( )( ) ( )( )
        ( )( )
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s s s

J A A A B B B B
A A B B B B J

J A A B B B B A A B B B B
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 (4.159) 

1 3 2 2

3 3 2

)( s s

s

A B B B B

3 2 3 2 2 3s s

hen n is an even integer, i.e., 0,2,4, ,n  Sheng et hat Eq. 
(4.154) can ly two independent constraints. Therefore, we have four in-
dependent co

W  al. indicated t  
provide on
efficients in Eq. (4.1 . Taking 39) for each n ( ) ( )

3 3 and  as depen- 
dent coefficients, we have 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
3 1 2 3 19 1 20 1 21 2 22 2,      J J J J  (4.160) 

where 

  (4.161) 

Making use of Eqs. (4.121), (4.122), (4.139), (4.146), (4.155), and (4.160), a set of 

19 1 3 3 20 1 3

21 2 3 3 22 2 3

( ) / ,       / ,  
( ) / ,       /

J A A B J B B
J A A B J B B
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special Trefftz functions for permeable semi-infinite crack problems can be found 
as  

 (crack p)
1 2 n n

u u
uT S S  (4.162) 

where 

  (4.163) 

ith S being defined in Eq. (4.153). 
It should be mentioned that the three electromechanical field intensity factors 

for plane piezoelectricity can be directly obtained from Eqs. (4.141)-(4.143) as 

   

( 1/ 2) ( 1/ 2) ( 1/ 2) ( 1/ 2) ( 1/ 2)
1 1 3 19 3 1 20 3
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2 3 21 3 2 22 3
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2 1 11 2 13 2 15 3
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n n n n n

n n n n
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J J n

J J J
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1 12 2 14 2 16 3 17 3
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I 22 00 1
3

(1/ 2) (1/ 2)
II 12 00 1

3
(1/ 2) (1/ 2)

 

2 00
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kr i
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i

K r

K r A B  

on formulation  

he boundary collocation method for plane piezoelectricity is similar t
e piezoelectricity described in Section 4.4. Essentially, the trial solution for 

ed in the form 

 
1a

Na  (4.165) 

Ni are the Trefftz functions extracted from the basic solution set Eq. (4.125), 
r the special solution set Eqs. (4.135), (4.152), and (4
oefficients to be determined by boundary cond

 and (4.122), the stresses and electric displacements induced by  can be 
d. From those, the boundary tractions and surface char nsity 

can be derived and expressed symbolically

(4.164) 

4.5.5  Boundary collocati

T o that of 
anti-plan
u is assum

1

2 1 2[ ,  , , ]m

u
uu N N N

ma

where 
o .162), ai are the unknown real 
c itions. Using the expressions  
(4.121)
obtaine

u
ge de1 2( ,  )t t  
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1 1

2 1 2[ ,  , , ]m

m

t a
t

a
p M M M Ma   (4.166)

Since the trial functions satisfy the homogeneous form of the governing equations, 

ced by minimizing the following residuals: 

 

only boundary conditions need to be enforced. In the boundary collocation method, 
the boundary conditions can be enfor

1 2(on ),              (on )u pR u u R p p  (4.167) 

where the overbarred quantities are prescribed along the respective boundaries. In 
the collocation method, the residuals are coerced to be zero at selected boundary 
points xi along , i.e., 

 ( ) ( ) 0    (on ),         ( ) ( ) 0   (on )i i i iu pu x u x p x p x

for  where nc is the total number of the collocation points. The sub-
stitution of Eqs. (4.165) and (4.166) into Eq. (4.168) yields the matrix equation 

 Ka = f (4.169) 

, the number of residuals 3nc ex-
ceeds the number of unknown coefficients m. Under this circumstance, an ap-

eferences 

approa
ng 18(6), 334-339 (1994). 

 [4] Qin QH: Hybrid-Trefftz finite-element method for Reissner plates on an 
elastic-foundation. Computer Methods in Applied Mechanics and Engineering 
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1, 2, , ,ci n

where the dimension of K is 3 cn m . Generally

proximate solution of the over-constrained equation system can be obtained by the 
least square method which pre-multiplies both sides of Eq. (4.169) with the trans-
pose of K. 

R

 [1] Trefftz TE: Ein Gegenstück zum Ritzschen Verfahren. In: Proceedings 2nd 
International Congress of Applied mechanics, Zurich, 131-137 (1926). 

 [2] Jirousek J, Venkatesh A: Hybrid Trefftz plane elasticity elements with p-method 
capabilities. International Journal for Numerical Methods in Engineering 35(7), 
1443-1472 (1992). 

 [3] Qin QH: Hybrid Trefftz finite-element ch for plate-bending on an 
elastic-foundation. Applied Mathematical Modelli

 [6] Stein E, Peters K: A new boundary-type finite element for 2D and 3D elastic solids. In: 
Onate E, Periaux J, Samuelson A (eds.) The Finite Element Method in the 1990s, A 
Book Dedicated to O.C. Zienkiewicz, Springer, Berlin, pp. 35-48 (1991). 



146    Chapter 4 Trefftz method for piezoelectricity 

 [7] Wang H, Qin QH, Arounsavat D: Application of hybrid Trefftz finite element method 
to non-linear problems of minimal surface. International Jou
Methods in Engineering 69(6), 1262-1277 (2007). 

alysis. Computers & Structures 58(1), 195-201 (1996). 
0] Qin QH, Diao S: Nonlinear analysis of thick plates on an elastic foundati

with p-extension capabilities. International Journal of Solids and Structures 33(30), 
4583-4604 (1

ty. 

refftz finite element method to f
ter Assi

ids and Structures 40(23), 6335-6346 (2003). 
[15] Qin QH: Fracture analysis of piezoelectric materials by boundary and Trefftz finite 

element methods. In: Proceedings of the Sixth World Congress on Computational 
 in conjunction with the Second Asian-Pacific Congress on Computational 
, Beijing, China, September 5-10, 2004, pp. 558-563. Tsinghua University 

[22] 

rnal for Numerical 

 [8] Qin QH: Transient plate bending analysis by hybrid Trefftz element approach. 
Communications in Numerical Methods in Engineering 12(10), 609-616 (1996). 

 [9] Jirousek J, Qin QH: Application of hybrid-Trefftz element approach to transient 
heat-conduction an

[1 on by HT FE 

996). 
[11] Qin QH: Formulation of hybrid Trefftz finite element method for elastoplastici

Applied Mathematical Modelling 29(3), 235-252 (2005). 
[12] Qin QH, Wang KY: Application of hybrid-T rictional 

contact problems. Compu sted Mechanics and Engineering Sciences 15, 
319-336 (2008). 

[13] Qin QH: Solving anti-plane problems of piezoelectric materials by the Trefftz finite 
element approach. Computational Mechanics 31(6), 461-468 (2003). 

[14] Qin QH: Variational formulations for TFEM of piezoelectricity. International Journal 
of Sol

Mechanics
Mechanics
Press, Beijing (2004). 

[16] Qin QH: Trefftz plane element of piezoelectric plate with p-extension capabilities. In: 
Yang W (ed.) Proceedings of IUTAM Symposium “Mechanics and Reliability of 
Actuating Materials”, Series: Solid Mechanics and Its Applications, Beijing, China, 
September 1-3, 2006, pp. 144-153. Springer, Dordrecht (2006).  

[17] Wang HT, Sze KY, Yang XM: Analysis of electromechanical stress singularity in 
piezoelectrics by computed eigensolutions and hybrid-Trefftz finite element models. 
Computational Mechanics 38(6), 551-564 (2006). 

[18] Wang J, Cui YH, Qin QH, Jia JY: Application of Trefftz BEM to anti-plane 
piezoelectric problem. Acta Mechanica Solida Sinica 19(4), 352-364 (2006). 

[19] Sheng N, Sze KY, Cheung YK: Trefftz solutions for piezoelectricity by Lekhnitskii’s 
formalism and boundary-collocation method. International Journal for Numerical 
Methods in Engineering 65(13), 2113-2138 (2006). 

[20] Sheng N, Sze KY: Multi-region Trefftz boundary element method for fracture analysis 
in plane piezoelectricity. Computational Mechanics 37(5), 381-393 (2006). 

[21] Jin WG , Sheng N, Sze KY, Li J: Trefftz indirect methods for plane piezoelectricity. 
International Journal for Numerical Methods in Engineering 63(1), 139-158 (2005). 
Qin QH: Mode  fracture analysis of piezoelectric materials by Trefftz BEM. 
Structural Engineering and Mechanics 20(2) (2005). 

[23] Qin QH: The Trefftz Finite and Boundary Element Method. WIT Press, Southampton 
(2000). 

[24] Qin QH, Wang H: Matlab and C Programming for Trefftz Finite Element Methods. 



References    147 

CRC Press, Boca Raton (2009). 
[25] Qin QH: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton 

(2001). 
Ding HJ, Wang GQ[26] , Chen WQ: A boundary integral formulation and 2D fundamental 

[28]  T: Application of a direct Trefftz method with domain 

 method. Mechanics Research 

[30] 

solutions for piezoelectric media. Computer Methods in Applied Mechanics and 
Engineering 158(1-2), 65-80 (1998). 

[27] Pak YE: Crack extension force in a piezoelectric material. Journal of Applied 
Mechanics-Transactions of the ASME 57(3), 647-653 (1990). 
Kita E, Kamiya N, Iio
decomposition to 2D potential problems. Engineering Analysis with Boundary 
Elements 23(7), 539-548 (1999). 

[29] Zhou ZG, Wang B: Investigation of anti-plane shear behavior of two collinear cracks 
in a piezoelectric materials strip by a new
Communications 28(3), 289-295 (2001). 
Ting TCT: Green’s functions for an anisotropic elliptic inclusion under generalized 
plane strain deformations. Quarterly Journal of Mechanics and Applied Mathematics 
49, 1-18 (1996). 

 



Chapter 5  Symplectic Solutions for Piezoelectric 
Materials 

In Chapter 4, numerical methods including Trefftz FE and BE approaches were 
described. It was noted that for some singularity problems such as crack problems 
of piezoelectric materials, the symplectic approach is a powerful and promising tool 
for obtaining analytical solutions and analyzing local singularity behavior. This 
chapter describes symplectic solutions for piezoelectric wedges, magnetoelectroe-
lastic strips and wedges, and three-dimensional piezoelectric materials. 

5.1  Introduction 

Traditionally, electroelastic coupling effects of piezoelectric materials are treated 
mainly using a Green’s function approach [1,2], micromechanics [3,4], and the in-
tegral transform method [5-7]. These studies have been carried out in Euclidean 
space and they are within the framework of the semi-inverse solution method, 
which is similar to classical elastic mechanics. The symplectic space method in the 
conservative Hamiltonian system, pioneered by Zhong [8,9], is different from the 
traditional semi-inverse solution method. It is based on the Hamiltonian form with 
Legendre’s transformation. The resulting Hamiltonian dual equations have deriva-
tives with respect to the radial (or transverse) coordinate alone on one side and the 
angular coordinate alone on the other side. The separation of variables is employed 
to solve the resulting differential eigenvalue problem, and analytical solutions can 
be obtained by the expansion of eigenfunctions. Unlike the classical semi-inverse 
methods with pre-assumed trial functions, the symplectic elasticity approach is rig-
orously rational without any guess functions. All geometric and natural boundary 
conditions are imposed on the system in a natural manner. It is rational and system-
atic, with a clearly defined, step-by-step derivation procedure. With the symplectic 
model, elastic or electroelastic problems can, for example, be solved by means of 
analogy theory between computational structural mechanics and optimal control. 
Particularly, using analogy theory, the eigenfunction expansion method of the Ham-
iltonian operator matrix along the transverse section can be developed within the 
symplectic geometry space. For detailed description of this approach the reader is 
referred to [10,11]. For applications of the symplectic formulation to multifield ma-
terials, Gu et al. [12] and Leung et al. [13] obtained 2D solutions for transversely 
isotropic media using the symplectic method. Leung et al. [14] and Zhou et al. 
[15-17] obtained analytical stress intensity factors for finite elastic disks, 
edge-cracked circular piezoelectric shafts using symplectic expansion, and Mode III 
electromagnetic cracks. Leung et al. [18] then extended their symplectic formula-
tion to the case of piezoelectric cantilever composite plates. Xu et al. [19] applied 
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the symplectic expansion method to solve three-dimensional problems for trans-
versely isotropic piezoelectric media and introduced a 3D sub-symplectic structure 
for transversely isotropic piezoelectric media. Wang and Qin [20] developed a sym-
plectic model for analyzing singularities near the apex of a multi-dissimilar piezo-
electric wedge under anti-plane deformation. Zhao and Chen [21,22] presented 
symplectic formulations for both functionally graded piezoelectric and magneto-
electroelastic materials. Recently, Li and Yao [23,24] obtained a symplectic solution 
for magnetoelectroelastic materials in a rectangular domain. This chapter focuses on 
the developments in [17,19-24]. 

5.2  A symplectic solution for piezoelectric wedges 

A symplectic model developed in [20] for analyzing singular behavior near the apex 
of a multi-dissimilar piezoelectric wedge under anti-plane deformation is described 
in this section. Explicit solutions of elastic and electric fields are presented for the 
cases of composite wedges consisting of one, two and multiple piezoelectric mate-
rials. 

5.2.1  Hamiltonian system by differential equation approach 

Consider a 2D piezoelectric wedge of sectorial domain as shown in Fig. 5.1. The 
polar cylindrical coordinate (r, , z) is selected under the condition that the z-axis is 
out-of-plane, with the origin located at the central point of the cross-section. For an 
anti-plane electroelastic problem involving out-of-plane displacement w and 
in-plane electric fields only, the constitutive equations are given by Eq. (1.35) and 
the corresponding governing equations (1.36) and Eq. (1.2) are now rewritten in 
terms of polar coordinates (r,  ) as  

 
Fig. 5.1  A piezoelectric wedge. 
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( ) ( )

0, 0zrz r
z

Dr rDrf rQ
r r

 (5.1) 

and 

 1 1, , ,rz z r
w w E E
r r r r

r

 (5.2) 

where fz and Q are body force and electric charge density. The Hamiltonian system 
for an anti-plane electroelastic problem can be obtained using the differential equa-
tion method. To do this, let  represent longitudinal and transverse coordi-
nates, respectively. Then define the dual vectors q and p as follows: 

( , )r

  (5.3)          , r

r

Sw
SD

q p

which are required in the Hamiltonian system, where   

  (5.4) ,r rz rS r SD rD

Further, to convert variables and equations from Euclidean space to symplectic 
geometry space, introduce a generalized time variable such that  

 ln( )r  (5.5)      

Since is now a generalized time variable, the symbol “ ” is used to represent 
the differentiation with respect to .  

Making use of Eqs. (5.1), (5.4), and (5.5), we have 

 
2 2

55 152 2
1 1 1zr r

r z
S S wS rf c e
r r r r zrf  (5.6) 

Equation (5.6) can be further written in the form 

 
2 2

2
55 152 2r

wS c e e zf  (5.7)     

Similarly, the expression of  can be obtained as rSD

 
2 2

2
15 112 2r

wSD e e Q  (5.8)      

Considering Eqs. (1.35) and (5.5), the variables Sr and SDr can be expressed as 

 55 15 15 11,       r rS c w e SD e w  (5.9) 
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Solving Eq. (5.9) for  and w  yields 

  (5.10) 55 15 15 11,     r r rw f S g SD g S SDr

in which  

 215 5511
55 15 11 15 55 11,     ,     ,     

e c
f g e c  (5.11) 

The combination of Eqs. (5.7) and (5.10) provides the following matrix equa-
tion: 

 

55 15

15 11
2 2

255 152 2

2 2 2

15 112 2

0 0
00 0
0

0 0

0 0

r r z

r r

f g
w wg

c eS S e f
SD SD e Qe

 (5.12) 

Further, using the notation  

  (5.13) 
q

p

Equation (5.12) can be written in the same form as Eq. (2.138) with 

 

55 15

15 11
2 2

55 152 2

2 2

15 112 2

0 0
0 0

0 0

0 0

f g
g

c e

e

H  (5.14) 

 
T2 20 0 ze f e Qh  (5.15) 

To prove that H is a Hamiltonian operator matrix, the rotational exchange operator 
matrix defined by Eq. (2.140) with n=2 is employed. With the notation J, Wang and 
Qin [20] proved that H satisfies the following relation: 

 T T
1 22,H , H 1  (5.16) 

where  



5.2  A symplectic solution for piezoelectric wedges    153 

 T T,  1 2 1 2H JH d  (5.17) 

with the angles  and  being defined in Fig. 5.1. Then, according to theory of 
symplectic geometry [10], H is a Hamiltonian operator matrix. 

5.2.2  Hamiltonian system by variational principle approach 

In Subsection 5.2.1 we derived a Hamiltonian system using a differential equation 
approach. The same Hamiltonian system for the anti-plane problem of a piezoelec-
tric wedge can also be obtained using a variational principle approach. To illustrate 
this approach, consider the constitutive equation (4.47) in terms of the polar coor-
dinate system: 

 

55 15

55 15

15 11

15 11

0 0
0 0
0 0

0 0

z z

rz rz

r r

f g
f g

E g
E g D

D
 (5.18) 

Based on the constitutive relation (5.18), the modified Hellinger-Reissner gene-  
ralized variational principle can be stated as follows: 

 2

1

2 2 2 2
55 11

1 1 1 1[ ( ) (
2 2

r
rz z r z rz rr

w w D D f D D
r r r r

)  

 15 15 ] d dz rz rg D g D wT Q r r 0  (5.19) 

Making use of the variable transformation (5.5), the variational equality (5.19) 
can be further written as 

 2

1

2 2 2 2
55 11

1 1( ) (
2 2r r r r

w wS S SD SD f S S SD SD )  

 2 2
15 15 d d 0r rg SD S g SD S e wT e Q

rD

 (5.20) 

where 

 1 1 2 2ln , ln , ,zr r S r SD  (5.21)          

Taking variation with respect to S  and , Eq. (5.20) leads to SD

 55 15 15 11,      wS c e SD e w  (5.22) 
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Substituting Eq. (5.22) into Eq. (5.20) we can obtain the Hamiltonian mixed en-
ergy variational principle as follows: 

 2

1

2
2 2

55 11 15 55
1 1 1
2 2 2r r r r r r

w wS SD f S SD g SD S c  

 
2

2 2
11 15

1 d d 0
2

we e wT e Q  (5.23) 

Making use of Eq. (5.3), Eq. (5.23) can be further simplified to 

  (5.24) 2

1

T ( ) d d 0H ,p q q p

where H(q, p) is the Hamiltonian function defined by 

 T T
2

1 1( )
2 2

H q,p q Bq p Dp q hT  (5.25) 

in which  

 
2

55 15 55 15 2
22

15 11 15 11
,     ,     zc e f g f

e
e g Q

B D h  (5.26)  

In the derivation of Eq. (5.24), homogeneous boundary conditions were used 
[20]. 

From Eqs. (2.136) and (5.25) the following equations can be obtained: 

  (5.27) 2,      q Dp p Bq h

Using the definition of  defined in Eq. (5.13), Eq. (5.27) can be rewritten in 
the form 

  (5.28) *H h

in which  

  (5.29) * 0
0
D

H
B

where H* is used to distinguish the matrix H in Eq. (5.14) and h is defined by Eq. 
(5.15). By comparing the components of B and D defined in Eq. (5.26) with those 
in the corresponding positions in Eq. (5.14), it is found that H  in Eq. (5.28) is the 
same as H given in Eq. (5.14).  

5.2.3  Basic eigenvalues and singularity of stress and electric fields 

In Subsections 5.2.1 and 5.2.2, the dual state vector equation (5.28) was derived 
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using either the differential equation method or the variational principle approach. 
This section discusses applications of the Hamiltonian model developed to analyze 
the eigenvalues of the Hamiltonian operator matrix which are associated with the 
singularity behavior of a piezoelectric wedge. 

Noting that Eq. (5.28) can be solved by the separation of the variable and the 
symplectic eigenfunction expansion described in Section 2.7, one can assume in 
the form of Eq. (2.154). Substituting Eq. (2.154) into Eq. (5.28) yields the same 
form of solution (2.158). 

Eigenfunction-vectors corresponding to the eigenvalues (2.159) and (2.160) as 
well as the zero eigenvalue 0 are denoted by . Following 
the procedure in [10], Wang and Qin [20] proved that are of adjoint 
symplectic orthonormalization, that is 

0,  and  i i

and  i i

   (5.30) 
T T

T T

,  ,  ,        ,  ,  ,
,  ,  0,         ,  ,  0

i j ij i j

i j i j

J J
J J

ij

j

j

in which  

   (5.31) T T,  ,  di j i jJ J

Equation (5.31) implies that satisfies the homogeneous boundary conditions 
at . 

i

,
To prove Eq. (5.30), considering two eigenfunction-vectors, , we have 

from Eq. (2.156)  

,  i

 ,i i i j jH H

i

 (5.32) 

in which H satisfies the following relation: 

  (5.33) T ( )i iH J J

Multiplying T
j on both sides of Eq. (5.33) and integrating it across the trans-

verse section, we can obtain the following equation: 

 T T T T T, , , , , , , ,j i i j i j i i iH HJ J J J j

j

0

 (5.34) 

in which Eq. (2.140) has been used. Similarly, it is easy to show that the following 
relation holds true:  

  (5.35) T T, , , ,i j j iHJ J

Making use of Eqs. (5.34) and (5.35), we have 

  (5.36) T( ) , ,i j i jJ
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If 0,i j  Eq. (5.36) is reduced to  

  (5.37) T , , 0i jJ

n

n

i

)

When , i.e., , and satisfy the following relation: 0i j j i i i

     ( 1  (5.38) T 0i iJ , 2, , )i

Performing the orthonormality operation, we obtain 

  (5.39) T T1    and (or) 1 ( 1,2, , )i i i i iJ J

This indicates that Eq. (5.30) holds true. The adjoint symplectic ortho-normalization 
relation between eigenfunctions has thus been proved. 

Since are of adjoint symplectic orthonormalization, the state vec-
tor  can be expressed by the linear combination of the eigenfunction-vectors as 
follows: 

 and  i

  (5.40) 
1

( i i i i
i

a b

where and are eigenfunction-vectors corresponding toi i i and i , and ai, bi 
are coefficients to be determined. 

 From Eqs. (5.3) and (2.158) we can obtain the following expressions: 

  (5.41) ( )
u

r
w

q

   (5.42) 1 ( )rz

r
r

D
p

From Eq. (5.42) it can be found that the stresses and electric displacements near 
the apex of a wedge are proportional to 1r

( ) 1
; therefore the singularity order of the 

stresses and electric displacements is Re .  
It is obvious that the stresses and electric displacements are singular if the real 

part of  is less than 1, i.e., Re( ) <1. For the potential energy to be bounded at the 
crack tip, it is necessary that Re( ) 0 . So we focus our attention on the interval 

 0 Re( ) 1  (5.43) 

Using the notation of the stress and electric field intensity factors K and DK , 
Eq. (5.42) can be rewritten as 

   (5.44) 
1

1

( , ) ( ),

( , ) ( )
rz

D D

r K r f

D r K r f
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where is orders of the stress and electric field singularity, and and 

 are the angular functions. 

1

)

( )f

(Df
From Eqs. (5.42) and (5.44) it is easy to see that 

 ,     (5.45) ( ) ( )Kf *

where  

  (5.46) 
T0

,        ( ) ( ) ( )
0

D
D

K
f f

K
K f

The remaining task is to find the angular function f(  ) and the generalized stress 
and electric displacement intensity factors K. Therefore, we need to find eigen-  
values of Eq. (2.156) which satisfy the condition (5.43). To this end, rewriting Eq. 
(2.156) in terms of its matrix components, we have 

 

55 15

15 11
2 2

55 152 2

2 2

15 112 2

0
0

d d 00
d d
d d 0

d d

r

r

f g
wg

c e S
SD

e

0

i

 (5.47) 

The order of singularity in the elastic and electric fields is determined by setting 
the determinant of the 4 4 matrix in Eq. (5.47) to zero. This is equivalent to 

   (5.48) 

55 15

15 11
2 2

55 15
2 2

15 11

0
0

det 0
0

0

f g
g

c e

e

where  is the eigenvalue in the  direction. 
Equation (5.48) leads to the following equation: 

  (5.49) 2 2 2( )

Thus, the solutions of  are 

  (5.50)  1,2 3,4,i

With solution (5.50), the general expressions of the elastic and electric fields can 
be expressed as 
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1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

    cos( ) sin( ) cos( ) sin( ),
    cos( ) sin( ) cos( ) sin( ),
   cos( ) sin( ) cos( ) sin( ),

cos( ) sin( ) cos( ) sin( )
r

r

w A B C D
A B C D

S A B C D
SD A B C D

  (5.51) 

where are unknown constants to be determined. ,  ,  ,   ( 1- 4)i i i iA B C D i
Substituting Eq. (5.51) into Eq. (5.47) yields the following relationships among 

the four unknown constants : 

 
3 55 1 15 2 4 15 1 11 2

3 55 1 15 2 4 15 1 11 2

( ),       ( ),
( ),        ( ),

0 ( 1- 4)i i

A c A e A A e A A
B c B e B B e B B

D C i
 (5.52) 

Then Eq. (5.51) can be rewritten as 

 

1 1

2 2

55 15 55 151 1

15 11 15 112 2

cos( )
,

sin( )

cos( ) sin( )r

r

A Bw
A B

c e c eS A B
e eSD A B

 (5.53) 

From Eqs. (1.35) and (5.53) we have 

 55 15 1 1

15 11 2 2

sin( )
cos( )

S c e A B
SD e A B

A

 (5.54) 

To obtain explicit expression of the four unknown constants, consider a piezo-
electric wedge as shown in Fig. 5.1. The conditions at the boundary edges are as-
sumed to be free of traction and electrically insulated: 

  (5.55) ( , ) ( , ) ( , ) ( , ) 0z zr r D r D r

Subsitituting Eqs. (5.53) and (5.54) into Eq. (5.55) yields 

  (5.56) 

55 15 55 15 1

15 11 15 11 2

55 15 55 15 1

15 11 15 11 2

sin( ) sin( ) cos( ) cos( )
sin( ) sin( ) cos( ) cos( )
sin( ) sin( ) cos( ) cos( )
sin( ) sin( ) cos( ) cos( )

c e c e A
e e

c e c e B
e e B

0

The condition for the existence of non-zero solutions of is that 

the determinant of the coefficients matrix is zero, which leads to the following 
equation: 

T
1 2 1 2A A B B

 2 2 2
55 11 15( ) sin ( )c e 0  (5.57) 

If , we have 1/ 2 , and the order of singularity is –1/2, which is 
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the classical root singularity for a semi-infinite crack. This result also verifies the 
validity of this method for the case of a semi-infinite crack. 

Consider now a piezoelectric half-plane, i.e., . It can be easily 
found that no root of Eq. (5.57) can satisfy the condition 

/ 2
0 Re( ) 1 . Therefore, 

there is no singularity for the piezoelectric half-plane under the homogeneous 
boundary condition. We also note that the singularity disappears for . 
For , the variation of the order of singularity with is 
plotted in Fig. 5.2. It can be seen that for a homogeneous piezoelectric wedge, the 
order of singularity depends on the value of only. 

180
180 360

 
Fig. 5.2  Variation of order of singularity with for a piezoelectric wedge. 

It should be mentioned that for the sake of simplicity only one type of boundary 
condition on the edges, given as Eq. (5.55), is considered. However, for other types 
of boundary conditions such as clamped ( ) and electrically open (0w 0 ), this 
procedure is also applicable and the results can be obtained in a similar way. 

5.2.4  Piezoelectric bimaterial wedge 

For a piezoelectric bimaterial wedge as shown in Fig. 5.3, the boundary conditions 
are as follows: 
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   (5.58) (1) (2) (1) (2)( , ) ( , ) ( , ) ( , ) 0z zr r D r D r

If the bimaterials are rigidly bonded at the interface, the continuity conditions on 
the interface are 

  (5.59) 
(1) (2) (1) (2)

(1) (2) (1) (2)
( ,0) ( ,0),          ( ,0) ( ,0),
( ,0) ( ,0),        ( ,0) ( ,0)

z z

r r

r r w r w r
D r D r E r E r

 

Fig. 5.3  Piezoelectric bimaterial wedge. 

in which superscripts (1) and (2) denote materials 1 and 2, respectively. 
As shown in Fig. 5.3, each material can be viewed as a homogeneous wedge. 

Using the general solution (5.53) of a homogeneous piezoelectric wedge and the 
continuity condition at its interface, we can easily obtain the solution for a bimate-
rial wedge. Keeping this in mind, substituting the solutions (5.53) and (5.54) for 
each material into Eq. (5.59) yields the relationship between the unknown con-
stants: 

 
(2) (1)
1 11 12 1
(2) (1)

21 222 2

B a a B
a aB B

 (5.60) 

in which 

 

(2) (1) (2) (1) (2) (1) (2) (1)
11 11 55 15 15 12 11 15 15 11

2 2

(2) (1) (2) (1) (2) (1) (2) (1)
21 15 55 55 15 22 15 15 55 11

2 2

1 1( ),      (

1 1( ),      (

a c e e a e e

a e c c e a e e c

),

)
 (5.61) 

where 

  (5.62) (2) (2) (2) 2
2 55 11 15( )c e
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Using the relation (5.60) and substituting the solutions (5.53) and (5.54) into Eq. 
(5.58) lead to 

 

(1) (1) (1)
55 15 55
(1) (1) (1)
15 11 15

(2) (2) (2) (2)
55 15 55 11 15 21

(2) (1) (2) (2)
15 11 15 11 11 21

sin( ) sin( ) cos( )

sin( ) sin( ) cos( )

sin( ) sin( ) cos( )

sin( ) sin( ) cos( )

c e c

e e

c e c a e a

e e a a

 

  (5.63) 

(1) (1)15 1
(1) (2)11 2

(2) (2) (1)
55 12 15 22 1

(2)(2) (2)
215 12 11 22

cos( )

cos( )
0cos( )

cos( )

e A

A
c a e a B

Be a a

The non-zero solution of Eq. (5.63) requires that 

  (1) (1) (1)2 2 2 (2) (1) (2)2 2 2
55 11 15 55 11 15( )sin ( ) cos ( ) ( )sin ( ) cos ( )c e c e

  (5.64) (1) (2) (1) (2) (2) (1)
55 11 15 15 55 11( 2 )sin( )sin( ) cos( ) cos( ) 0c e e c

Equation (5.64) can be further written as 

 2 2
1 2sin ( ) sin ( ) sin ( ) sin ( )R R  (5.65) 

with 

 

11 22 12 21 22 11
1 2

11 22 12 21 11 22 12 21
(1) (1) (1) (1) (1) (2) (1) (2)

11 15 15 55 11 12 15 15 11 55
(2) (1) (2) (1) (2) (

21 15 15 11 55 22 15 15

2( ),       ,

,               ,
,              

A A A A A AR R
A A A A A A A A

A e e c A e e c
A e e c A e e 2) (2) (2)

55 11c
  (5.66) 

It is found that Eq. (5.65) is exactly the same as the equations of Chue and Chen 
[25]. For an interface crack, i.e., , we have =–1/2, which returns to a 
classical –1/2 singularity. For other values of  and , Eq. (5.65) shows that the 
order of singularity strongly depends on the geometry and material constants of the 
two piezoelectric materials. Moreover, the angular function and generalized stress 
and electrical intensity factors K Dand K can also be obtained easily using this 
method. Compared to the conventional method [26], the symplectic model re-
viewed in this section [20] can solve singularity problems more rationally. Particu-
larly, with an increase in the number of materials, the conventional method would 
induce a large number of complex equation systems which may be difficult to solve 
theoretically. 
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5.2.5  Multi-piezoelectric material wedge 

In the previous two subsections the theory of Hamiltonian systems was used to de-
velop symplectic models of a piezoelectric wedge and then to determine the orders 
of singularity for both a homogeneous wedge and a bimaterial wedge. Now the re-
sults obtained are extended to the case of multi-piezoelectric materials. To this end, 
consider a piezoelectric wedge consisting of multi-piezoelectric material elements 
as shown in Fig. 5.4, which is similar to the multi-elastic material wedge in [27]. 
Here N is the number of material elements. The polar coordinate is again selected 
for simplicity, and  are adopted to indicate the 0-N sub-polar coor-
dinate systems. The domain denotes the material element

0 1,  C , , NC

i

C

iM , and is the angle 
of 

i

iM . 

 

Fig. 5.4  Multi-piezoelectric material wedge. 

The continuity conditions on the bonded interface region are 

  (5.67)  
( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1)

( ,0) ( ,0),       ( ,0) ( ,0),
( ,0) ( ,0),      ( ,0) ( ,0)

i i i i
z z
i i i i

r r

r r w r w
D r D r E r E r

r

in which the superscript “i ” runs from 1 to N-1 which represents the associated 
variable which is defined in the domain . It should be mentioned that the fields in i
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the two adjacent regions  and  in Eq. (5.67) are written in terms of the 
coordinate system with both regions having  at the interface. This is for 
the sake of simplicity. 

i

(1) (

1i

( ))z z

iC

( ,

0

)N

The boundary conditions of this problem are 

  (5.68) (1) ( )
1 1) , ( , ( , ) 0N

Nr D r r D r N

Note that solution (5.53) also applies for each single domain . Thus, substi-
tution of the general solutions (5.53) for the domain  and  into Eq. (5.67) 
yields the relationship of the unknown constants for any two adjacent domains as 
follows:  

i

1i i

 1 ( , 1i ) i
iiF R i i F

11 12

21 22

0 0
0 0
r r
r r

 (5.69) 

where  

 1)

1 0
0 1

( ,
0 0
0 0

R i i  (5.70) 

1 1 1 1
1 2

i iA B1
1 2
i

i iBi i
i iF A i  (5.71)  

and  

 

( 1) ( 1) ( 1) ( ) ( 1) ( )
11 11 15 12 11 15 15 11

1 1

( 1) ( 1) ( 1) ( ) ( 1) ( )
21 15 55 22 15 15 55 11

1 1

1 1,  ( ),

1 1, ( )

i i i i i

i i

i i i i i

i i

r c e r e e

r e c r e e c

( )
55

( )
55

i i

ic

( )
15

( )
15

( )     

( )      

i

i i

e

e
 (5.72) 

with  

 
2( ) ( )

15
n

n e( )
55 11
n nc

1i

i
i

 (5.73) 

In Eq. (5.69), the subscript “i ” represents the unknown constants expressed in 
terms of the coordinates , and the superscripts “i ” and “i+1” mean the domains 

, , respectively. 
iC

iC

i 1i

In the following, the coordinate transformation is used to find the relationships 
between the unknown constants in general solutions of each material domain  
in two coordinate systems and C . Assuming the equality  

i

  (5.74) 1

1

i i
i
i

i i

w w
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and using the relationships among the trigonometric functions, we obtain 

 1( , 1)i
iF T i i F i

i

i

 (5.75) 

where 

 

cos( ) 0 sin( ) 0
0 cos( ) 0 sin( )

( , 1)
sin( ) 0 cos( ) 0

0 sin( ) 0 cos( )

i i

i

i i

i i

T i i  (5.76) 

The combination of Eqs. (5.69) and (5.75) yields the relationship 

 1
1

N
N N 1F TR F  (5.77) 

where 

  (5.78) 
2

1
( , 1) ( , 1) (1, 2)N

i N
TR R i i T i i R

It can be seen from Eq. (5.77) that solutions in any domain can be expressed by 
four independent unknown constants defined in . Considering the boundary 
conditions 

1

(5.68), we obtain 

 1
1 0M F  (5.79) 

where M  is a matrix which has a similar form to that in Eq. (5.63). The 

existence of a nontrivial solution for 

4 4
1

1F  requires deletion of the coefficients 

matrix M : 

 det 0M  (5.80) 

Then, the solution for  can be obtained by solving Eq. (5.80), and the order of 
singularity is again Re( ) 1  by considering the condition in Eq. (5.43). 

It should be mentioned that Eq. (5.80) is highly nonlinear in terms of the vari-
able  and therefore an analytical solution to  is usually impossible except for a 
few simple cases. In the following, our focus is on a numerical solution only. For 
illustration, consider a three-material wedge in which Materials 1 and 3 are as-
sumed to be PZT-4, and Material 2 is PZT-5 (see Fig. 5.5). The material properties 
used are 

PZT-4: ; 9 2 9
55 15 1125.6 10  N/m ,    12.7 C/N,   6.46 10  F/mc e

PZT-5: . 9 2 9
55 15 1121.1 10  N/m ,    12.3 C/N,   8.11 10  F/mc e

As an example, Table 5.1 lists the orders of singularity for different values of 
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1  and (1)
15e  when 2 3 / 3 . It can be seen from Table 1 that a pair of 

complex or two real sin orders exist for some values of 1  (e two real 
singularity order or 1 / 3  and a pair of complex 1 ) or for 

some values of (1)
15e . It is found from Table 5.1 that at 3  the singularity 

er may be complex or real, depending on the values of (1)
15e , which indicates that 

(1)
15e  can affect the singularity order to some exte  Furthe ore, the singularity 

order may become zero for some special values of 1  and (1)
15e . In conclusion, the 

order of singularity is a function

5.
.g., 

s f  roots 

nt.

 of geometry and material constants for a 
multi-piezoelectric material wedge. 

gularity 
for 

2 /1

rm

ord

 

Fig.

e the validity of the proposed formulation, two cases are considered as 
foll

rder for both cases is –1/2, which is identical with the result for 

u  order of a pi  of three dissimilar materials for dif-
ferent values of and when 2= 3= /3. 

 5.5  Piezoelectric wedge of three dissimilar materials. 

To prov
ows: 
Case 1: ; 1 2 3,     0
Case 2: 1 3 2,     0 . 
The singularity o

an interface crack. 

Table 5.1  Sing larity ezoelectric wedge

1 15 12.7 C / Ne

 1  (1)
155 0.81e e (1)

15 0.9e e15  (1)
1515e e  (1)

15 1.1e e15
(1)

155 1.21e e  

/3 –0.269 –0.300 –0.324 –0.339 –0.339 
2 /3 –0.783 .765 .812 –0 –0 0 –0.913 

 –0.959 0 0 –0.985 –0.956 
4 /3 –0.079 –0.086 –0.090 –0.084 –0.095 
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5.3  Extension to include magnetic effect 

In the last section a symplectic model for an anti-plane piezoelectric wedge was 
presented. Extension to anti-plane fracture problems of magnetoelectroelastic media 
is discussed in this section. All descriptions in this section are taken from the work 
of Zhou et al. [17]. 

5.3.1  Basic equations and their Hamiltonian system 

Consider a two-dimensional magnetoelectroelastic wedge with  = –  as shown in 
Fig. 5.1. The constitutive equation (1.35) is extended to include the effect of the 
magnetic field as follows:  

 

55 15 15

55 15 15

15 11 11

15 11 11

15 11 11

15 11 11

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

rz rz

z z

r

r r

c e e
c e e

D e E
D e
B e H
B e

r

E

H

 (5.81) 

where  are, respectively, piezomagnetic, electromagnetic, and 
magnetic permeability coefficients. The equations of shear strain-displacement and 
electric field-electric potential are given by Eq. (5.2). The magnetic field-magnetic 
potential equation is expressed as 

15 11 11,  ,  and e

 1,       rH H
r r

 (5.82) 

The corresponding governing field equations are given by Eq. (5.1) and 

 
( )

0r BrB rI
r

 (5.83) 

where I is the body electric current. Zhou et al. [17] then presented the following 
potential energy density: 

 

2 2 2 2 2

55 55 11 11 11 11

15 152 2

12

1 1+2 + +2 +

w wU c c
r r r r r r

w w w we e
r r r rr r

2

 

     15 2
12

r r r
  (5.84) 
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Then the Lagrange function L is 

 ( , , ) ( , , ) zL w U w wf Q I  (5.85) 

Zhou et al. then presented a new Lagrange function L sing the variable  defined in 
Eq. (5.5) as 

u

 

2 2
2 2 2

55 55 11 11 11

2

11 15 15

2 ( ) ( , , )

+2 + +2 +

wL e L w c w c

w we w e w

2

 

            2
15 2

12 2 ( ze wf Q I
r

)  (5.86) 

Then, the Hamiltonian equation (2.138) can be obtained by defining the generalized 
displacement vector q and the dual vector p as 

  T ,wq

 
55 15 15

15 11 11

15 11 11

r

r

r

c e e w S
L e

e S
p cq

q
SD

B

r

 (5.87) 

where c is self-defined, Sr and SDr are defined in Eq. (5.4), and . Based 
on the mutual duality of the vectors q and p, the corresponding Hamiltonian func-
tion H can be expressed in the form 

rSB rB

  (5.88) T( , ) ( , )H Lq p p q q q

Substitution of Eq. (5.88) into Eq. (2.136) yields the Hamiltonian equation (2.318) 
with  

 

1

2

22

0 0
,       

0

c
H

hc
h  (5.89) 

where . T2
2 ze f Q Ih

5.3.2  Eigenvalues and eigenfunctions 

In the following, Zhou et al. [17] presented both zero- and nonzero-eigenvalue solu-
tions for anti-plane crack problems of magnetoelectroelastic media. They consid-
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ered only the homogeneous Eq. (2.138) with the the following traction-free, elec-
trically and magnetically insulated natural boundary conditions: 

 0qc  (5.90) 

5.3.2.1  Zero-eigenvalue solutions 

For analyzing the problem of zero-eigenvalue, when j = 0, the solutions of the 
equation, Hvj = 0, are required and the direct eigenfunctions and their principal 
vectors in Jordan form can be obtained. Zhou et al. showed that there are only six 
eigensolutions corresponding to zero-eigenvalue. They are divided into two groups 
(  and ): 

TT ( )( )
4 1 1 2 71

TT( ) ( )
2 5 2 3 4

T T( ) ( )
3 6 3 5 6 9

/ 0 010 0 0 0 0

010 0 0 0 ,     and 0 / 0

0 010 0 0 0 0 /
8 (5.91) 

which satisfy the relationship  

  (5.92) 
( )T ( ) ( )T ( )

( )T ( ) ( )T ( )
,  ,  ,  ,  0,
,  ,  ,     ,  ,  

n k n k

n k nk n k nk

J J
J J

In the solutions (5.91), the parameters are defined as:  
det ,c  1= 10/ 7,  2= 11/ 7,  3= 10/ 8,  4= 12/ 8,  5= 11/ 9,  6= 12/ 9, 

2
7 11 11 11, 8

2
15 55 11,e c 2

9 15 55 11,e c 10 11 15 15 11,e e  

11 11 15 15 11,e e  12 55 11 15 15( )c e e , 1 7 /(2 ),  

2 8 /(2 ),  3 9 /(2 )  

5.3.2.2  Nonzero-eigenvalue solutions 

To find the solution of Eq. (2.156) where 0,  the characteristic determinant 
equation is ( 2+  2)3=0, whose six roots are =i  (triple root) and =–i  (triple 
root). The general solution of Eq. (2.156) can be written as 

 

2 2
11 13 15 12 14 16

2 2
21 23 25 22 24 26

2 2
31 33 35 32 34 36

2 2
41 43 45 42 44 46

2 2
51 53 55 52 54 56

2
61 63 65 62 64 66

cos( )j

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r 2

sin( )  (5.93) 
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where rmn (m, n=1-6) are constants to be determined from boundary conditions. 
Substituting the solutions into Eq. (2.156), the following relationships between the 
unknown constants are obtained: (n=1,2); rmn=0 

for m=1-6 and n=3-6. As a result, the solution 

T T
4 5 6 1 2 3n n n n n nr r r r r rc

(5.93) can be simplified to 

 T T
11 21 31 41 51 61 12 22 32 42 52 62cos( ) sin( )j r r r r r r r r r r r r  (5.94) 

Substituting the solutions (5.94) into the traction-free conditions 0zr , 

electrically and magnetically impermeable 0r D r B  on the lateral 

boundary, we have 

  (5.95) 

11

12

21

22

31

32

sin( ) cos( ) 0 0 0 0
sin( ) cos( ) 0 0 0 0

0 0 sin( ) cos( ) 0 0
0

0 0 sin( ) cos( ) 0 0
0 0 0 0 sin( ) cos( )
0 0 0 0 sin( ) cos( )

r
r
r
r
r
r

The non-trivial solutions of Eq. (5.95) require that the determinant of its coefficient 
matrix is zero, which leads to 

 / 2        1, 2, (triple root)  j j j  (5.96) 

It is obvious that 1=1/2 represents the order of singularity at the apex of the 
crack under consideration. For the crack problems, each eigenvalue is a triple root, 
thus there are three groups of nonzero-eigenvalue solutions. Substituting eigen-   
values (5.96) into Eq. (5.95), let 1 2/ cos( ) / sin(k k kr r r ) , where rk are new 
constants to be determined. Then, the nonzero-eigenvalue solutions can be written as 

  (5.97) 
T

1 2 3 4 5 6 cos[ ( )]j j j j jr r r r r r

where  T T
4 5 6 1 2 3 .r r r r r rc

Zhou et al. [17] mentioned that each nonzero-eigenfunction can be represented 
by three nonlinear correlation eigenfunctions. Similar to the zero-eigenvalue solu-
tions, these nonlinear correlation eigenfunctions need to be adjoint symplectic   
ortho-normalized and can be separated into two groups (  and  ): 

  (5.98) 

T(1, )
55 15 15

T(2, )
15 11 11

T(3, )
15 11 11

cos[ ( )] 1 0 0 ,

cos[ ( )] 0 1 0 ,

cos[ ( )] 0 01

j j j j j

j j j j j

j j j j j

c e e

e

e
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and 

  (5.99) 

T(1, )
1 1 2

T(2, )
2 3 4

T(3, )
3 5 6

cos[ ( )] 1 / 0 0 ,

cos[ ( )] 1 0 / 0 ,

cos[ ( )] 1 0 0 /

j j j j

j j j j

j j j j

7

8

9

where j are assumed to be positive, and 6 /(2 )ij i j

e

(i=1-3). 

Finally the solution of the problem is the linear combinations of eigenfunctions 
of both zero-and nonzero-eigenvalues: 

 (0) ( ) (0) ( ) ( ) ( , ) ( ) ( , )
h

n ni i i i
n n n n n n n n

n n n n
a b a e b

i

i

 (5.100) 

where the coefficients can be determined from the bound-
ary conditions, the subscript “h” represents the homogeneous solution.  

(0) (0) ( ) ( ),  ,  ,  and i
n n n na b a b

5.3.3  Particular solutions 

The general solution (5.100) applies to homogeneous equations only. A particular 
solution of nonhomogeneous Eqs. (5.1) and (5.83) is still needed. To this end, let 
the form of the special solution be 

  (5.101) ( , ) ( , ) ( , ) ( , )
p ( ) ( )i i i

n n n n
n n

E E

and the nonhomogeneous term of Eq. (2.138) (or Eq. (5.89)) is also expressed in 
terms of the eigenfunctions: 

  (5.102) ( , ) ( , ) ( , ) ( , )( ) ( )i i i i
n n n n

n n
B Bh

From the adjoint symplectic orthogonality of eigenfunctions, we obtain the coeffi-
cients by the inner products as 

 ( , ) T ( , ) ( , ) T ( , ), ,  ,        , ,  i i i
n n nB Bh J h J i

n

i

n

 (5.103) 

Making use of Eqs. (2.138) and (5.101)-(5.103), we obtain 

  (5.104) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),        i i i i i
n n n n n n n nE E B E E B

The solution of Eq. (5.104) can be expressed as 

 ( , ) ( , ) ( , ) ( , )
0 0

d ,        dn n ni i i i
n n n nE e B e E e B e  (5.105) 

The particular solution p can then be written in the form 

 ( , ) ( , ) ( , ) ( , )
p

ni i i i
n n n n

n n
E e E e n  (5.106) 
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Therefore the solution of the problem is given as 

  (5.107) h p

in which h is defined in Eq. (5.100). 

5.4  Symplectic solution for a magnetoelectroelastic strip 

The symplectic duality system for a plane problem of a magnetoelectroelastic strip 
presented in [23,24] together with some derivations from the authors is described in 
this section. Methods of variable separation and symplectic eigenfunction expan-
sion are employed to derive the symplectic formulation.   

5.4.1  Basic equations 

Consider a homogeneous transversely isotropic magnetoelectroelastic strip as 
shown in Fig. 5.6. The rectangular coordinates ( , )x z  are used in the analysis and 
the z axis is along the longitudinal direction (Fig. 5.1). 

With the rectangular coordinate system shown in Fig. 5.6 and the involvement 
of a magnetic field, the constitutive relations (1.24) and (1.25) are extended as fol-
lows:  

  (5.108) 

11 13 31 31

31 33 33 33

55 15 15

15 11 11

31 33 33 33

15 11 11

31 33 33 33

0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0 0

0 0 0

x x

z z

xz xz

x x

z z

x x

z z

c c e e
c c e e

c e e
eD E

e eD E
eB H

e eB H

C

The inverse of Eq. (5.108) yields 

  (5.109) 

11 13 31 31

13 33 33 33

55 15 15

15 11 11

31 33 33 33

15 11 11

31 33 33 33

0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0 0

0 0 0

x x

z z

xz xz

x x

z z

x x

z z

f f g g
f f g g

f g g
gE D

g gE D
gH B

g gH B

1C
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Fig. 5.6  Geometry and loading of a magnetoelectroelastic strip. 

The gradient equations are defined in Eq. (1.2) and rewritten as follows: 

 

0

0 ,   ,   
x

x x
z

z z
xz

x
E Hu x x
E Hwz

z z
z x

 (5.110) 

The equilibrium equations of a plane magnetoelectroelastic solid are given by 

 

0

0

0

0

x xz
x

xz z
z

x z

x z

f
x z

f
x z
D D Q
x z

B B M
x z

 (5.111) 

in which fx, fz, Q, M are body force in x and z direction, electric charge density and 
electric current density, respectively. 

The boundary value problem in Fig. 5.6 is completed by adding the following 
boundary conditions: 

 1 1 1 1

2 2 2 2

( ),   ( ),   ,      ( );
( ),   ( ),   ,      ( )

x x xz z x x x x

x x xz z x x x x

F z F z D D B B x h
F z F z D D B B x h

 (5.112) 

5.4.2  Hamiltonian principle 

There are several ways to convert a Lagrange system into a Hamiltonian system, 
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one of which is to use the variational principle and Legendre’s transformation. In 
the following, a description is presented of deriving system equations in symplectic 
space from Euclidean space. Since the energy functional plays an important role in 
deriving the basic equations of a coupled magnetoelectroelastic field in the Hamil-
tonian system, we define the energy functional, say , as follows: 

   1 1 1 1 1 1 1
2 2 2 2 2 2 2x x z z xz xz x x z z x x zE D E D H B H Bz  (5.113) 

Using the constitutive relations, Eq. (5.113) can be further written in terms of 
strain, electric field, and magnetic field: 

 
2 2 2 2 2

11 33 55 11 33 11

2
33 13 15 31 33 15

1 1 1 1 1 1
2 2 2 2 2 2
1      
2

2
x z xz x z x

z x z x xz z x z z x xz

c c c E E

H c e E e E e E e H

H
 

          31 33 11 33z x z z x x ze H e H E H E Hz  (5.114) 

Then, based on energy functional (5.114) and following the procedure presented 
in [10], a variational principle corresponding to the boundary value problem 
(5.108)-(5.112) can be given by 

    2 20 0
  d d (

l h l
z xh

uX wZ Q M x z wF uF  

          2 2 1 1 1 1) ( ) dx x x h z x x x x hD B wF uF D B z 0  (5.115) 

For simplicity, introduce the following mutually work-conjugate vectors q and 
p:  

 ,      

z

xz

z

z

w
u

DD
BB

q p   (5.116) 

where the definition of  is different from that in [23,24], to achieve a Hamiltonian 
operator matrix. 

To convert variables and equations from Euclidean space to symplectic geome-
try space, the following concepts are introduced; that is, the coordinate z is analo-
gous to the time variable in the dynamic problem, and the dot represents the differ-
ential with respect to , namely, z (  ) ( ) ( )z : 

 ,    ,    ,    u wu w
z z z z

 (5.117) 

From Eq. (5.109)1,4,6, we have 
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, 13 31 31 11

1 11 , 11 , *

2 11 , 11 , *

/ ,
(
( )

x x

x x x

x x x

u f g D g B f
D C
B C

) / ,
/

 (5.118) 

where  

  (5.119) 2
* 11 11 11 1 11 15 11 15 2 11 15 11 15,   ,   C g g C g g

Then, let , and using Legendre’s transformation, 
we obtain the following relationships:   

uX wZ Q M

 

13 33 33 33

55 55 15 15

31 33 33 33

31 33 33 33

,

,

,

uc c w e e
w x

wc c u e e
u x x

uD e e w
x
uB e e w
x

x  (5.120) 

Making use of the notation given in Eq. (5.117), we have 

 

2

13 31 312
11

2 2

1 11 112 2
*

2 2

2 11 112 2
*

 ,

1 ,

1 ,

1

Z
x

u D Bf g g
f x x xx

D C Q
x x x

B C M
x x x

X

 (5.121) 

 

13 1 2 3
11

1 2
7

* *

31 2 4 5
11

31 3 5 6
11

1 ,

 ,

1 ,

1

z z

z z

uw f a a D a B
f x

C Cwu a
x x x

ug a a D a B
f x

ug a a D a B
f x

 (5.122) 

in which  
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2
1 11 33 13 2 11 33 13 31 3 11 33 13 31

2 2
4 11 33 31 5 11 33 31 31 6 11 33 31

15 1 15 2
7 55

*

,    ,     ,  
,    ,     ,

a f f f a f g f g a f g f g
a f g a f g g a f g

g C g C
a f

h

 (5.123) 

Rewriting Eqs. (5.121) and (5.122) in matrix form, we obtain 

  (5.124) 
q A D q

=
p B C p

where matrixes A, B, C, and D are defined by  

 

13
1 2

1 11 2 11
11 7 11

* *
2 411 11

31
3 5

31

0 0 0
0

0 0 01,   
0

0 0 0
0

0 0 0

f
a a a

C f C ff a f
a a af x f

g
a a a

g

3

5

6

0
A D  (5.125) 

 

11

13 31 31
* 2

1 11
11 2

* 11*
11 11

2 11
11 11

*

0 0 0
0 0 0 0

0
0 0 0

0 0 0,     
0 0

0 0 00 0

f
f g g

C f
f

f xx
C f

B C  (5.126) 

and the vector h is  
  (5.127) T (0,  0,  0,  0,  ,  ,  , )Z X Q Mh T

Then, the following relationship between A and C can be obtained from Eqs. (5.125) 
and (5.126): 

   (5.128) TC A
Using the definition (5.13), we can obtain Eq. (2.138) with  

 T

A D
H

B A
 (5.129) 

and A, B, D, h being defined in Eqs. (5.125)-(5.127), in which the matrices B and D 
are symmetric. 

5.4.3  The zero-eigenvalue solutions 

Due to the homogeneous boundary conditions at both sides ( )x h , there exist 
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zero eigenvalues whose eigen solutions correspond to the Saint-Venant solutions 
when the averaged effects are included and the edge effects are also considered. To 
obtain the zero-eigenvalue solutions, Yao and Li [24] considered the following ho-
mogeneous boundary conditions:  

 

, 13 31 31 11

55 55 15 15

1 11 , 11 , 4

2 11 , 11 , 4

/ 0

0,

( ) /
( ) /

,

0,

x x

x x x

x x x

u f g D g B f
wc c u e e
x x x

D C
B C

(on )

0

    x h

,

,

*ib

 (5.130) 

When =0, Eq. (2.156) becomes 

  (5.131) 0H

By solving Eq. (5.131) under the boundary conditions (5.130), Yao and Li ob-
tained the following linear independent eigensolutions: 

   (5.132) 

T(0) (0)
1 1

T(0) (0)
2 2

T(0) (0)
3 3

T(0) (0)
4 4

1 0 0 0 0 0 0 0 ,

0 1 0 0 0 0 0 0 ,

0 0 1 0 0 0 0 0 ,

0 0 0 1 0 0 0 0

which represent the rigid body translation along the x- and z-directions, constant 
electric potential, and constant magnetic potential. Because the solutions (5.132) 
have symplectic orthogonality to each other, there must exist eigensolutions in Jor-
dan form. To obtain those eigensolutions, Yao and  Li considered the following 
equations together with the boundary conditions (5.130): 

  (5.133) ( ) ( 1)       ( 1- 4)i i
j j jH

where the subscripts “i ” and “i –1” denote the Jordan normal form eigensolutions of 
the ith and (i 1)th order, respectively. 

Substituting Eqs. (5.132) into Eq. (5.133), the first order Jordan form eigensolu-
tions are obtained as 

  (5.134) 

T(1)
1 1* 1* 2* 3*

T(1)
2

T(1)
3 2* 2* 4* 5*

T(1)
4 3* 2* 5* 6*

0 0 0 0

0 0 0 0 0 0 0 ,

0 0 0 0

0 0 0 0

b x a a a

x

b x a a a

b x a a a

in which  are given by *  and ia
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1
1* 2* 3* 33 33 33

2* 4* 5* 33 33 33

3* 5* 6* 33 33 33

1* 13 1* 31 2* 31 3*

2* 13 2* 31 4* 31 5*

3* 13 3* 31 5* 31 6*

,

,
,

a a a f g g
a a a g
a a a g

b f a g a g a
b f a g a g a
b f a g a g a

 (5.135) 

It should be mentioned that the solutions (5.134) are not the direct solution of the 
original problem, but the solution of the original equation (2.138) with h=0 can be 
obtained by the combination of solutions (5.132) and (5.134) as 

  (5.136) (1) (1) (0)      ( 1- 4)i i iz i

which satisfies Eq. (5.131) at the zero eigenvalue. In Eq. (5.136),  

 represent, respectively, uniform extension in the z-direction, rigid-body 
rotation in the x-z plane, the solution induced by the constant electric field, and the 
solution induced by a constant magnetic field. 

(1) (1) (1)
1 2 3,  ,  ,

(1)
4and 

Yao and Li then indicated that the solutions with subscripts 1, 3 and 4 represent 
the symmetric deformation in the z-axis, and solutions with subscripts 2 describe 
the behavior of the antisymmetric deformation on the z-axis. The eigensolutions of 
symmetric deformation and the eigensolutions of antisymmetric deformation are 
symplectic orthogonal. To obtain a set of adjoint symplectic orthonormal bases, the 
eigensolutions of the symmetric deformation should be orthonormalized firstly. To 
this end, let 

  (5.137) 
(0) (0) (0) (0) (0) (0) (0)
3 3 1 1 4 4 2 1 3 3
(1) (1) (1) (1) (1) (1) (1)
3 3 1 1 4 4 2 1 3 3

,     ,
,     

t t
t t

t
t

where 

 1* 6* 2* 3*
1 2* 1* 2 3* 1* 3 2

1* 5* 2*

/ ,     / ,      
a a a a

t a a t a a t
a a a

 (5.138) 

Yao and Li then concluded that the eigensolutions of the symmetric deformation, 
have a symplectic adjoint and orthonormal 

relationship. The remaining eigensolutions are symplectic orthonormal. This shows 
that for the eigensolutions of the symmetric deformation associated with zero ei-
genvalue there are six independent solutions and there is no second order Jordan 
form eigensolution for symmetric deformation. 

(0) (0) (0) (1) (1) (1)
1 3 4 1 3 4,  ,  ,  and ,  ,  ,

For the eigensolutions associated with antisymmetric deformation, since  

is symplectic orthonormal with , the second order Jordan form eigensolution is 

(0)
2

(1)
2
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given by 

 
T(2) 2

2 1* 1* 2* 3*0 / 2 0 0 0b x a x a x a x

)

 (5.139) 

The vector is not the solution of the original problem, however, from which the 
physical solution can be derived as follows: 

(2)
2

  (5.140) (2) (2) (1) 2 (0)
2 2 2 2 / 2z z

which represents a pure bending deformation. Because is still symplectic or-

thonormal with , the third order Jordan form eigensolution exists. It is 

(2)
2

(0)
2

(3)
2

  (3) 3 3 2 3 2
2 9* 4* 7* 8*0 ( 3 ) ( 3a x b x a x h x a x h x

 
T

2 2
1*

10 ( ) 0 0
2

a x h  (5.141) 

where 

 

7* 11 1* 1 2* * 11 1* 2 3* * *

8* 11 1* 2 3* * 11 1* 1 2* * *

9* 7* 1 4 8* 2 * 1* 1*
2

4* 1* 7* 1 * 8* 2 *

55 15 1 15 2 *

[ ( ) ( )] /(6 )
[ ( ) ( )] /(6 ),

/ / ( ) / 6,
( / 2 3 / 3 / ),

( ) /

a a C a a C a
a a C a a C a
a a C a C a C b
b h a C a C a C
C f g C g C

,

t

 (5.142) 

The corresponding solution of the original equation (5.131) is as follows: 

  (5.143) (3) (3) (2) 2 (1) 3 (0)
2 2 2 2 2/ 2 / 6z z z

which represents a bending solution due to constant shear force. Because is 

symplectic adjoint with , no fourth order Jordan form eigensolution for anti-
symmetric deformation exists.  

(3)
2

(0)
2

Similarly, the orthonormalization of the eigensolutions of the antisymmetric de-
formation can be constructed as 

  (5.144) (2) (2) (0) (3) (3) (1)
2 2 4 2 2 3 4 2,       t

where 

 
(2)T (3)
2 2

4
(1)T (2)
2 2

d

d

h

h
h

h

x
t

x

J

J
 (5.145) 
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Thus the set of adjoint symplectic orthonormal bases constituted by the eigen-solutions 
associated with zero eigenvalue is 

  (5.146) (0) (0) (1) (0) (0) (1) (2) (3) (1) (1
1 2 2 3 4 1 2 2 3,   ,   ,   ,   ,   ,   ,   ,   ,   )

4

The above adjoint symplectic orthonormal bases form a complete symplectic sub-
space. 

5.4.4  Nonzero-eigenvalue solutions 

To find the solution of Eq. (2.156) where 0,  the characteristic determinant 
equation is [23] 

13 11 1 11 2 11 3 11

1 2
7

* *

31 11 2 11 4 11 5 11

31 11 3 11 5 11 6 11

2
11 13 11 31 11 31 11

2 2
11 11 1

* * *
2

11

/ 0 0 / 0 / /

0 0 0

0 / 0 / 0 / /
0 / 0 / 0 / /
0 0 0 0 0 0det
0 / 0 0 / / /

0 0 0 0

0 0

f f a f a f a f
C C

a

g f a f a f a f
g f a f a f a f

f f f g f g

C

f

2
11 2

* * *

0

0 0C

 

  (5.147) 

Equation (5.147) has eight roots: 

  (5.148) 4,          ( 1- 4)i i i i i

Li and Yao [23] then obtained the general solution of Eq. (2.156) in the following 
form: 

 

4 4

1 1
1 1

4 4

2 2
1 1

4 4

3 3
1 1
4 4

4 4
1 1

cosh( ) sinh( ) ,

sinh( ) cosh( )

cosh( ) sinh( )

cosh( ) sinh( )

,

,

z
i i i i

i i

z
i i i i

i i

z
i i i i

i i

i i i i
i i

w A x D x e

u A x D x e

A x D x e

A x D x ze

 (5.149) 



180    Chapter 5  Symplectic Solutions for Piezoelectric Materials 

 

4 4

5 5
1 1

4 4

6 6
1 1
4 4

7 7
1 1

4 4

8 8
1 1

cosh( ) sinh( ) ,

sinh( ) cosh( ) ,

cosh( ) sinh( ) ,

cosh( ) sinh( )

z
i i i i

i i

z
i i i i

i i

z
i i i i

i i

i i i i
i i

A x D x e

A x D x e

D A x D x e

B A x D x ze

 (5.150) 

Li and Yao then divided the solution into two parts, symmetric and anti-symmetric. 
They considered firstly the symmetric part: 

 

4 4

1 2
1 1

4 4

3 4
1 1
4 4

5 6
1 1

4 4

7 8
1 1

cosh( ) ,    sinh( ) ,

cosh( ) ,    cosh( ) ,

cosh( ) ,    sinh( ) ,

cosh( ) ,   cosh

z z
i i i i

i i

z z
i i i i

i i

z z
i i i i

i i

z
i i i

i i

w A x e u A x e

A x e A x e

A x e A x

D A x e B A

e

( ) z
i x e

 (5.151) 

Substituting Eq. (5.151) into Eq. (2.156), Aji can be related to A6i as 

 6 5 6 6
( ) ( )

( 1- 4), ,   ( 7,8
( ) ( )

Nj i Nj i
ji i i i i ji i

Dj i Dj i

f f
A A j A A A A j

f f
)   

  (5.152) 
where  are the functions of [23]. Then, substituting Eqs. 

(5.151) and (5.152) into the boundary condition (5.130) yields 

( ) and ( )Nj i Dj if f i

 

4
2 7 8

13 31 31 6
1 2 7 8

4

6
1

4
3 4

1 11 11 6
1 3 4

2 11

( ) ( ) ( )
cosh( ) 0,

( ) ( ) ( )

sinh( ) 0,

( ) ( )
sinh( ) 0,

( ) ( )

N i N i N i
i i i

i D i D i D i

i i
i

N i N i
i i i i

i D i D i

f f f
f g g h A

f f f

h A

f f
C h

f f

C

i

A

4
3 4

11 6
1 3 4

( ) ( )
sinh( ) 0

( ) ( )
N i N i

i i i i
i D i D i

f f
h A

f f

(5.153) 

Equation (5.153) is further written in matrix form for simplicity: 
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  (5.154) 6[ ]{ } 0ij jB A

For the non-trivial solutions of Eq. (5.154), the determinant of coefficient matrix 
must vanish:  

 det 0ijB  (5.155) 

Denote n (n=1,2, ) as the roots of Eq. (5.155). After obtaining A6i by substi-
tuting n into Eq. (5.154),  the solutions of Eq. (2.138) for h=0 and symmetric de-
formation are obtained as 

 

4
1

6
1 1

4
2

6
1 2

4
3

6
1 3
4

4
6

1 4

( )
cosh( ) ,    

( )
( )

sinh( ) ,
( )
( )

cosh( ) ,    
( )

( )
cosh( )

( )

n

n

n

n

zN i
n i i n

i D i n

zN i
n i i n

i D i n

zN i
n i i n

i D i n

zN i
n i i n

i D i n

f
w A x

f
f

u A x
f
f

A x e
f

f
A x e

f

e

e
 (5.156) 

 

4 4

6 6
1 1

4
7

6
1 7

4
8

6
1 8

cosh( ) ,    sinh( ) ,

( )
cosh( ) ,

( )
( )

cosh( )
( )

n n

n

n

z z
n i i i n n i i n

i i

zN i
n i i n

i D i n

zN i
n i i n

i D i n

A x e A x

f
D A x e

f
f

B A x e
f

e

 (5.157) 

Similarly, the corresponding solutions of eigenvalues n (n=1,2, ) for anti-
symmetric deformation can be obtained as  

 

4 4

1 1
1 1

4 4

3 6
1 1
4 4

5 6
1 1

sinh( ) ,    cosh( ) ,

sinh( ) ,    sinh( ) ,

sinh( ) ,    cosh( ) ,

n n

n n

n n

z z
n i i n n i i n

i i

z z
n i i n n i i n

i i

z z
n i i n n i i n

i i

n

w D x e u D x e

D x e D x

D x e D x

D D
4 4

7 8
1 1

sinh( ) ,    sinh( )n n

e

e

z z
i i n n i i n

i i
x e B D x e

 (5.158) 

Equations (5.156), (5.157), and (5.158) consist of all eigensolutions corre-
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sponding to nonzero-eigenvalues. These solutions are covered in the Saint-Venant 
principle and decay with distance depending on the characteristics of the eigenval-
ues [23]. Together with the eigensolutions of zero-eigenvalue, they constitute a 
complete adjoint symplectic orthonormal basis.  

5.5  Three-dimensional symplectic formulation for piezoelectricity 

In the previous sections of this chapter, symplectic formulations for 2D piezoelec-
tric materials were presented. The extension to 3D electroelastic problems docu-
mented in [19] is described in this section. We begin by reducing a 3D piezoelectric 
problem to zero-eigenvalue solutions with their Jordan chains and non-
zero-eigenvalue solutions in the Hamiltonian systems. Then the solution of the 
problem is obtained by superimposing linearly by their symplectic eigensolutions, 
which form the complete space of solutions. The problem is finally reduced to 
finding eigenvalues and eigensolutions.  

5.5.1  Basic formulations 

To obtain the symplectic formulation for 3D piezoelectric materials, Xu et al. [19] 
considered an anisotropic piezoelectric cylinder which is transversely isotropic and 
anisotropic in the longitudinal direction. The corresponding relationships between 
stress displacement and electric displacement-electric potential are written in terms 
of circular cylindrical coordinate (r, , z) as 

  (5.159) 

11 , 12 , 13 31

12 , 11 , 13 31

13 , 13 , 33 33

66 , ,

55 , 15 ,

55 , 15 ,

( ) /
( ) /
( ) /

( / / ),
( ) ,
( / ) /

rr r

r

zz r

r r

rz r r

z

c u c v u r c w e
c u c v u r c w e
c u c v u r c w e
c v v r u r
c w u e
c w r v e r

,
,
,

.

  (5.160) 
15 , 11 ,

15 , 11 ,

31 , 31 , 33 33

( ) / ,
( / ) / ,

( ) /

r r r

z r

D e w u r
D e w r v r
D e u e v u r e w

where v is the displacement in the -direction and the dot above represents differen-
tial with respect to z, namely, /F F z  The z coordinate is considered analo-
gously as the time coordinate. The related potential energy density is 
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2 2 2 2
11 , 11 , 33 12 , , 13 ,

2 2
13 , 55 , 55 , 66 , ,

31 , 31 , 33 15 , ,

{ ( ) / 2 ( ) / 2
2 ( ) / ( / ) ( ) ( / / )
2 2 ( ) / 2 2 ( / ) /

r r

r r

r

U r c u c v u r c w c u v u r c u w
c w v u r c w r v c w u c v v r u r
e u e v u r e w e w r v r

2
r

Q

2 2 2 2
15 , , 11 , 11 , 332 ( ) / }/ 2r r re w u r  (5.161) 

The Lagrange function which is the potential energy U minus the work done by an 
external generalized force is as follows: 

 ( , ) ( , ) r zL U uf vf wfq q q q  (5.162) 

where T{ , , } { , , } /r z r z
Tf f f f f f r  represent the external body forces and 

/Q Q r  the density of free charges, q ={u,v,w, }T is the primary vector in the 
Hamiltonian system.  

5.5.2  Hamiltonian dual equations 

The dual vector of q according to Legendre’s transformation is 

 

55 , 15 ,

55 , 15 ,

13 , 13 , 33 33

31 , 31 , 33 33

[ ( ) ]
[ ( / ) / ]

[ ( ) / ]
[ ( ) / ]

r r rz

z

r z

r z

r c w u e r
r c w r v e r rL

r c u c v u r c w e r
r e u e v u r e w rD

p
q

/

 (5.163) 

On the basis of the mutually dual vectors q and p, Xu et al. [19] then obtained 
the Hamiltonian function defined in Eq. (2.137). Making use of Eq. (2.136), the 
dual equations for the Hamiltonian system can be obtained as 

  (5.164) 1
T

2

/
/

H
H

A B hp p q
hq q pC A

where [19] 

 

1

1

3 3

6 6

0 0
0 0 /

( 1/ ) / 0 0
( 1/ ) / 0 0

r r

r

r

a
r a r

a r a r
a r a r

A  (5.165) 

 

* 2
8 1 9 10 11

* 2
10 11 9 1 8

*
12 2

/ /

/ / 0
0 0 0

0 0 0

r

r

a r a r a a r

a a r a r a r

a r

0 0

0
0

C  (5.166) 
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2

2

4 5

5 7

/ 0 0 0
0 / 0 0
0 0 / /
0 0 / /

a r
a r

a r a r
a r a r

B  (5.167) 

 T
1 20,  r zf f f Qh h  (5.168) 

with  

      (5.169) * 2 * 2 2
1 2/ ,    / ,    1/ ,    /r r rr r r r r r r r r

,

)
  (5.170) 

2
1 15 55 2 55 3 13 33 31 33 33 33 33

2 2
4 33 33 33 33 5 33 33 33 33

2 2
6 31 33 13 33 33 33 33 7 33 33 33 33

/ ,   1/ ,   ( ) /( )
/( ),   /( ),

( ) /( ),    /(

a e c a c a c e e e c
a e c a e e c
a e c c e e c a c e c

  (5.171) 8 11 3 13 6 31 9 66 10 11 11 12
2

11 8 66 12 11 15 55 13 10 66

,   ,   ,   
, / ,    

a c a c a e a c a a c c
a a c a e c a a c

The corresponding conditions of the lateral boundary can be written as [19] 

 

8 13 13 3 3 6 4

9

1

12 1 1

[ / / / / ]
[ / / ] ,
/ ,

( / )

a
r r

a
r r a r
a

r a rz
a

r rr a

a u a u r a v r a p r a p r
a u r v v r
p r

a a p r D

,a rr

 (5.172) 

5.5.3  The zero-eigenvalue solutions 

For the eigenequation of the problem for zero-eigenvalue  =0, Eq. (2.156) becomes 

  (5.173) 0H

where traction-free natural boundary conditions are taken into consideration.  
Then, Xu et al. presented the direct zero-eigenvalue eigensolutions as 

  (5.174) 

(0) (0) T
1 1
(0) (0) T
2 2
(0) (0) T
3 3
(0) (0) T
4 4
(0) (0) T
5 5

{cos  sin  0  0 0 0 0 0} ,
{sin  cos   0  0 0 0 0 0} ,
{0  0 1 0 0 0 0 0} ,
{0  0 0 1 0 0 0 0} ,
{0  0 0 0 0 0 0}r

The governing differential equation for Jordan form solutions then has the fol-
lowing relations: 



5.5  Three-dimensional symplectic formulation for piezoelectricity    185 

  (5.175) ( 1) ( )n
iH n

i

,

The solution to the original problem can thus be expressed as 
( 1) ( 1) ( ) 2 ( 1) 3 ( 2) ( 1) (0)/ 2 / 6 /( 1)!n n n n n n
i i i i i iz z z z n  (5.176) 

For illustration, the Jordan form of the first order is given as 

  (5.177) 

(1) T
1
(1) T
2
(1) T
3 15 16 17
(1) T
4 18 19 20
(1) 2 T
5 2

{0  0 cos  0 0  0  0 0 } ,
{0 0 sin  0 0 0 0 0 } ,
{  0 0 0 0  0  } ,
{  0 0 0 0 0  } ,
{0  0 0 0  0  /  0 0}

r
r

a r a r a r
a r a r a r

r a

The corresponding solutions to the original problem are 

  (5.178) 

(1) T
1
(1) T
2
(1) T
3 15 16 17
(1) T
4 18 17 19
(1) 2 T
5 2

{ cos  sin  cos  0 0 0  0  0} ,
{ sin  cos  sin  0 0 0  0 0} ,
{  0  0 0  0  } ,
{  0 0  0 0   }
{0  0 0  0  /  0  0}

z z r
z z r

a r z a r a r
a r z a r a r

rz r a

where 

  (5.179) 

2 2 2
14 3 7 4 6 3 5 6 5 4 7 8 13

2
15 5 6 3 7 14 16 7 8 13 6 14

17 3 6 5 8 13 14 18 3 5 4 6 14
2

19 4 6 3 14

2 2 4 ( )( ),
2( ) / ,    [ ( ) ] / ,
[2 ( )] / ,   2( ) / ,
( ) /

a a a a a a a a a a a a a
a a a a a a a a a a a a
a a a a a a a a a a a a a
a a a a a

Xu et al. indicated that the physical meanings of these solutions are rigid body 
rotations, simple extension deformations in which the external electric displacement 
does not act on the ends but forces the displacement induced by a uniform electric 
field in which no external force exists, and torsion. 

In the following, the Jordan forms of the second and third orders presented in  
[19] are given as 

  
(2) 2 2 2 2 T
1 15 15 16 17
(2) 2 2 2 2 T
2 15 15 16 17

{( / 2) cos  ( / 2)sin  0 0 0 0 cos  cos } ,
{( / 2)sin  ( / 2)cos  0 0 0 0 sin  sin }

a r a r a r a r
a r a r a r a r

  (5.180) 
No solutions exist for i =3,4,5. Then the solutions to the original problem are 

 (5.181) 

(2) 2 2 2 2
1 15 15

2 2 T
16 17

(2) 2 2 2 2
2 15 15

2 2 T
16 17

{[( ) / 2]cos [( ) / 2]sin cos  0 0 0 
         cos cos } ,

{[( ) / 2]sin [( ) / 2]cos sin  0  0  0
         sin sin }

a r z a r z zr
a r a r
a r z a r z zr

a r a r
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The Jordan form of the third order is 

  (5.182) 

(3) 3 2 3 2
1 20 21 22 23

3 2 3 2
24 25 26 27

(3) 3 2 3 2
2 20 21 22 23

3 2 3 2
24 25 26 27

{0 0 ( ) cos ( )cos
          ( ) cos ( )sin 0 0 } ,

{0 0 ( )sin ( )sin
          ( )sin ( ) cos 0 0}

a r a ra a r a ra
a r a ra a r a ra

a r a ra a r a ra
a r a ra a r a ra

T

T

T

T

,

,

where a is external radius of the cylinder under consideration. Again, no solutions 
exist for i =3,4,5. The solutions to the original problem are given by 

   

(3) 2 3 2 3
1 15 15

3 2 2 3 2
20 21 22 23

3 2 3 2 2 2
24 25 26 27 16 17

(3) 2 3
2 15

{( / 2 / 6)cos     ( / 2 / 6)sin  
         ( / 2)cos     ( )cos  
         ( )cos ( )sin cos cos } ,

{( / 2 / 6)si

a r z z a r z z
a r a ra rz a r a ra
a r a ra a r a ra a r z a r z

a r z z 2 3
15

3 2 2 3 2
20 21 22 23

3 2 3 2 2 2
24 25 26 27 16 17

n     ( / 2 / 6)cos  
         ( / 2)sin ( )sin  
         ( )sin ( )cos sin sin }

a r z z
a r a ra rz a r a ra
a r a ra a r a ra a r z a r z

  (5.183) 
where 

  (5.184) 
20 2 16 15 1 22 21 20 15 23 22

22 1 16 17 12 24 16 15 2 25 24

26 15 2 16 27 24

/ 8 / 4 ,   3 / 2,     3 ,
( ) /(8 ),   3 / 8 /(4 ),    
3 /(4 ) / 8,    

a a a a a a a a a a a
a a a a a a a a a a a
a a a a a a

Based on the solutions (5.174), (5.178), (5.181), and (5.183), the adjoint symplectic 
orthogonality relationship of zero-eigenvalue solutions can be established in the 
following way. Let 

   (5.185) 

( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (1)
1 1 2 2 3 3 4 4 5 5 6 1
( ) (1) ( ) (3) (1) ( ) (3) (1)
7 2 1 31 1 28 1 2 31 2 28 2
( ) (1) (1) ( ) (1)
3 32 3 29 4 4 33 4 30 3

,   ,   ,   ,  ,   ,
,    ( ),    ( ),
( ),   (

a a a a
a a a a (1) ( ) (1)

5 34 5
( ) (2) ( ) (2)
6 35 1 7 35 2

),    ,
,    

a
a a

where 

2
28 16 20 16 21 17 22 15 24 15 26 16

4
29 17 19 30 17 16 31 2 1 23 21 1 22 20

2 2 2 2
32 19 16 19 17 33 16 16 19 17

4
34 2 35

(4 6 14 2 2 ) /(6 ),
/ ,   / ,   /[ ( )]

/[ ( )],    /[ ( )],
2 /( ),    

a a a a a a a a a a a a a
a a a a a a a a a a a a a a a
a a a a a a a a a a a a
a a a a 4

164 /( )a a

 (5.186) 

The solutions of Eq. (5.185) satisfy the following relationships of the adjoint 
symplectic orthogonal: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,      , ,i j i j ij i j i j 0

0

 (5.187) 

5.5.4  Sub-symplectic system 

To obtain eigensolutions related to nonzero-eigenvalue problems 

 ( )H I  (5.188) 

Xu et el. introduced a Hamiltonian system sub-symplectic structure. They proposed 
that the  coordinate be taken in analogy to the time coordinate and denoted 

 The potential energy density (5.161) now becomes /F F .

2 2 2 2 2
11 11 33 12

2 2
13 13 55 55

2 2
66 31 31 33

15

{ ( ) ( ' ) / 2 ( )( ' ) /
       2 ( ) 2 ( )( ' ) / ( '/ ) ( )
       ( / '/ ) 2 ( ) 2 ( ' ) / 2
       2 ( '/ )

r r

r r

r r

L r c u c v u r c w c u v u r
c u w c w v u r c w r v c w u

c v v r u r e u e v u r e w
e w r v 2 2

15 11'/ 2 ( )( ) ( ') /r rr e w u r

 

2 2 2
11 33( ) }/ 2r   (5.189) 

The dual vector corresponding to Eq. (5.189) is 

 

66

11 12 3 31

55 15

15 11

( / '/ )
( ') / ]

( '/ ) '/ ]'
( '/ ) '/ ]

r r

r

z

c v v r u r
L c u v r c u c w e

c w r v e r
e w r v r D

g
q

4

0

 (5.190) 

Xu et al. then mentioned that the variable g is dual to q with respect to  and the 
variable p is dual to q with respect to z, of Eq. (5.163). p has three independent 
variables r, z, and , and g has two independent variables r and . The 
sub-symplectic system is then in the form 

  (5.191) T
'
'

A Bq q
g gC A

where 

 2 2

0 1 0 0
1 0

0 0
0 0 0 0

r

r

r
b r b r b r

r
A  (5.192) 
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 (5.193) 

2 2
9 10 11 12 13

2 2
11 11 12 11 16 11

2 2 ***
17 19 17 17 18

0
0 0 0

0

0

r r r

r r

r r r

b b r b r b r b r b

b b r b r b b r b r b

b b r b b r b r b

C

*

**

0

 

1

5

6 7

7 8

0 0 0
0 0 0
0 0
0 0

b r
b r

b r b r
b r b r

B  (5.194) 

with 

  (5.195) 

1 66 2 12 11 3 13 11 4 31 11 5 11

6 11 7 15 8 44 9 12 12 11
2

10 12 11 11 11 55 12 13 12 11

13 12 55 14 31 12 11

15 13

1/ ,   / ,   / ,   / ,   1/ ,
,   ,   ,    ( / 1),
/ ,   ,    ( / 1),   

,   ( / 1),

b c b c c b c c b e c b c
b b e b c b c c c
b c c c b c b c c c
b b c b e c c
b c c 2

12 11 31 15 16 13 11 33 17 15 20 11
2

18 13 31 11 33 19 12 31 11 15 31 21 31 11 33
* ** 2

14 15 17 17 18
*** 2 2

20 20 21

/ ,   / ,   ,   
/ ,   / ,   /

,    ,r r r

r r

c e e b c c c b e b
b c e c e b c e c e e b e c
b b r b r b b b r b r
b b b r b r

,
,

Xu et al. assumed the eigensolutions of the sub-system (5.191) to be in the form 

 ( ) n
n r e   (5.196) 

where  In the cylindrical coordinate system, the solution  should 
satisfy the periodic condition: 

T T T{ , } .q g

 ( ,0) ( , 2 )r r  (5.197) 

The axisymmetric problem can be described by zero-eigenvalue and the 
non-axisymmetric solutions of the problem in the form 

  (5.198) ( ) ( )n in
nC r e

Substituting the eigensolution  

  (5.199) 
( )

( )
( )

in inr
r e e

r
q
g

into the dual equation (5.191) yields 
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( )
1 1 11 0 1 0
( )3
1 1 11 0 1 0(0)

0 1 ( )
1 2

( )
3

[ ( ) ( )][ ( ) ( )]
[ ( ) ( )][ ( ) ( )]

0 ( )
0 ( )

j
n j n jn n

j
n j n jn n

j j
j n j

j
n j

K J r J ri J r J r
iK J r J rJ r J r

C K C
K J r

K J r

q  (5.200) 

(0) 2 2 (0) (0)
2 0 0 3 1 0 0 4 1 0 0

(0) (0)
5 1 0 6 1 0 02

0 (0)
7 1 0 1 0
(0)
8 1 0 1 0

(1 2 / ) ( ) ( ) / ( ) /

[ ( ) ( )] /

[ ( ) ( )]

[ ( ) ( )]

n n n

n n

n n

n n

K n r J r K J r r K J r r

i K J r K J r r
C

K J r J r

K J r J r

g  

    

( ) ( )
4 1 5 1

( ) ( ) ( )3
6 1 7 1 82

( )
1 9 1 1

( )
10 1 1

[ ( ) ( )]

( ) / ( ) / ( )

[ ( ) ( )]

[ ( ) ( )]

j j
n j n j

j j j
n j j n j j n j

j j
j n j n j

j
n j n j

i K J r K J r

K J r r K J r r K J r
C

iK J r J r

iK J r J r

 (5.201) 

where jC ( j = 0,1,2,3),   and T{ , , , } ,u v wq T{ , , , } ,r z Dg

(0) (0) 2 (0) 2 (0) 2
1 0 2 66 0 3 66 0 4 66
(0) 2 (0) 2
5 11 12 0 6 12 11 0
(0) (0)
7 55 0 8 15 0

1/(2 ),   / ,   ( 1) / ,   ( 1) / ,
[ ( 1) ( 1)] /(2 ),   [ ( 1) ( 1)] /(2 ),

/(2 ),   /(2 )

0K s K c s K c n s K c n s
K c n c n s K c n c n s
K c s K e s

(5.202) 

( ) ( ) 2 4 2 2
1 2 11 11 3 55 33 1 2
( ) 2 4 2 2 ( ) 2
3 11 15 4 55 33 1 2 4 66
( ) 2 ( ) 2
5 66 6 12 11
( )
7 12 11

1/(2 ),   ( ) /[( ) ],

( ) /[( ) ],   (

( 1) / ,   [( )( 1)] /(2 ),

[( )(

j j
j j j j

j j 1) / ,
j

j j j j
j j

j j
j

K s K c m s c s m m s s

jK c e m s c e s m m s s K c n s
K c n s K c c n s

K c c n 2 ( ) ( ) ( ) ( )
8 13 2 31 3 12 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
9 55 2 31 3 1 10 15 2 11 3 1

1)] /(2 ),   2 ,

[ (1 ) ] ,   [ (1 ) ]

j j j j
j

j j j j j j j

s K c K e K c K
jK c K e K K K e K K K

 (5.203) 

1 11 13 55 15 15 31 2 33 13 55 33 15 31
2

3 11 33 55 11 15 31 4 11 33 55 15 13 55 15 31

( ) ( ),   ( ) ( ),
( ) ,   ( )( )

m c c e e e m c c e e e
m c c e e m c e c e c c e e

 (5.204) 

in which  are the three roots of the equa-

tion 

2 2
0 66 55/ ,  / ,   ( 1, 2,3)j j jr r s s c c s j

  (5.205) 3 2
3 2 1 0 0x x x

In Eq. (5.205), the parameters i (i=1=0,1,2,3) are  
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  (5.206) 

2
0 11 15 55 11

2 2
1 55 11 33 15 31 11 11 33 55 13 55

15 11 33 55 15 13 55 15 31
2 2

2 33 55 11 15 31 33 11 33 55 13 55

33 55 15 11 33

( ),
[ ( ) ] [ (

      [2 2( )( )],
[ ( ) ] [ ( ) ]

      [2 2

c e c
c c e e c c c c c

e c e c e c c e e
c c e e c c c c c
e c e c e 13 55 15 31

2
3 55 33 33 33

( )( )],
( )

c c e e
c e c

2

2

) ]

5.5.5  Nonzero-eigenvalue solutions 

The nonzero-eigenvalue solutions to Eq.(5.188) can be assumed in the form 

 ( , , ) ( , ) j z
j jr z c r e  (5.207) 

Substituting the solutions (5.198) into Eq. (5.207) yields  

 ( )( , , ) ( ) j zn in
nr z C r e e  (5.208) 

where is related to by Eqs. (5.163), (5.164), 
(5.190), and (5.191), namely, and 

( ) T T Tˆ ˆ( ) { , }n r q p T T T( ) { , }r q g
q̂ q

2
1 23 23 23 25 1

2 3
2 2 2 2

3 26 26 27 28 3 29 4
2 2 2 2

4 30 30 27 31 3 32 4

ˆ ( / ) ( / ) ,
ˆ ,
ˆ ( 1) ( / ) ( / ) ( / )
ˆ ( 1) ( / ) ( / ) ( / )

r r

r

r

p ib n v b r w b r ib n r g
p rg
p b r u i b n b r n v ib n r g ib n r g
p b r u i b n b r n v ib n r g ib n r g

,
(5.209) 

in which 

2
22 5 4 7 23 2 24 1 23 25 2 23 27 7 22

26 3 7 5 6 22 28 6 7 7 5 22 29 7 7 8 5 22

30 3 7 5 6 22 31 7 5 6 7 22 32 7 7 8 5 22

1/( ),   1/ ,   ,   ,   ,
( ) ,   ( ) ,   ( ) ,
( ) ,   ( ) ,   ( )

b a a a b a b a b b b b b a b
b a a a a b b b a b a b b b a b a b
b a a a a b b b a b a b b b a b a b

 (5.210) 

From solutions (5.200), (5.201), and the relation above, we have 

( )(0)
11 1 19 0

( )3(0)
120 10 1 0 1 0

0 ( )
1 13

( )
14

[ ( ) ( )]( )
( )[ ( ) ( )]ˆ
( )0

0 ( )

j
j n j n jn

j
n jn n

j j
j j n j

j
j n j

r K J r J riK J r
iK J rr K J r J rC C
r K J r

r K J r

p  (5.211) 

where 
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(0) (0) ( ) ( ) ( ) ( ) ( )
9 55 10 55 11 44 2 5 3 12 11
( ) ( ) ( ) ( ) ( ) ( )
13 33 2 33 3 13 14 33 2 33 3 31

,  / 2,  [ (1 ) ] / 2,  2 ,
/ ,  /

j j j j

j j j j j j

j

j j j j j

K nc K c K c K e K K nK

jK c s K e s K c s K e s K s K e s
(5.212) 

The traction-free natural boundary conditions (5.172) are now transformed as fol-
lows: 

  (5.213) 

8 13 13 3 2 6 3

1

ˆ ˆ ˆ ˆ ˆ[ ]
ˆ ˆ ˆ[ ] 0,

ˆ | 0,
ˆ | 0

r r

r r a

r a

r r a

a r u a u a inv a p a p
inu r v v
p

0,a

/ 2

j

where 

  (5.214) 

11 12 13 14 0

21 22 23 24 1

31 32 33 34 2

41 42 43 44 3

0

A A A A C
A A A A C
A A A A C
A A A A C

where 

  (5.215) 

11 8 13 0 13 0 8 0
2 (0)

3 0 0 10 1 0 1 0
2

21 0 0 0 1 0 1 0
(0)

31 9 0 41

( ) ( ) ( / 2
        )[ ( ) ( )],

(2 ) ( ) [ ( ) ( )],
( ),      0

n

n n

n n n

n

A i a a nJ r ia nr ia nr
a r s rK J r J r

A n r J r r J r J r
A iK J r A

  (5.216) 

2 2 2 ( ) 2 ( )
1, 8 13 3 12 6 13

8 13 1 1

2, 1 1
( )

3, 11 1 1

4,

[ ( ) ] ( )
         ( ) [ ( ) ( )] / 2,

{ [ ( ) ( )] ( )} ,                 ( =2,3,4)

[ ( ) ( )],

j j
j j j j j j n

j n j n j

j j n j n j n j
j

j j n j n j

j

A a n r a n a ir s K a r s K J r
a a r J r J r

A i r J r J r J r n j

A K r J r J r
A ( )

2 1 1[ ( ) ( )] /(2 )j
n j n j jK J r J r s

in which /  for 0,1,2,3.j jr a s j  

The condition of the nonzero solution of Eq. (5.214) requires that  

 det | ( , ) | 0nA  (5.217) 

The eigenvalues obtained by Eq. (5.217) are of infinite number, denoted by nm  
(m =1,2,3, ), and eigensolutions are given by Eqs. (5.200), (5.211), and (5.214). 
By using the characteristics of the Bessel function, ( , ) ( ,n n )A A , we 
obtain 

  (5.218) ( ) ( ) ( ) ( )( ) ( )nm nmz zin in
nm nm nm nm

n m n m
C r e e C r e e
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The relationships of the adjoint symplectic orthogonal are given by 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ( ) ,    , ( )

, ( ) , ( ) 0,

, , 0

in ik in ik
nm kj kn mj nm kj kn mj

in ik in ik
nm kj nm kj

in in
nm k nm k

e r e e r e

e r e e r e

e e

,

]

0

 (5.219) 

The final solution to the problem can then be obtained as 
( ,0) ( ) ( ,0) ( )[ ]m m m m

m
C C  

( ) ( ) ( ) ( )[ ( ) ( )nm nmz zin in
nm nm nm nm

n m
C r e e C r e e  (5.220) 

5.6  Symplectic solution for FGPMs 

In previous sections of this chapter, all formulations applied to homogeneous pie-
zoelectric materials only. A symplectic system for functionally graded piezoelectric 
materials is now examined. The shift-Hamiltonian matrix proposed in [21] is briefly 
reviewed. At the end of this section, extension to the case of functionally graded 
magnetoelectroelastic materials is discussed. 

5.6.1  Basic formulations 

In [21], Zhao and Chen considered a generalized plane strain problem of a trans-
versely isotropic FGPM. The constitutive and governing equations are respectively 
defined by Eqs. (1.24) and (1.27)-(1.29). They assumed that all material properties 
varied exponentially with z, in the form of 

 0 0,    ,    =z z
ij ij ij ij ij ijc c e e e e e z  (5.221) 

To handle the problem induced by the continuously varying material properties, 
Zhao and Chen introduced new definitions of stress, electric displacement, body 
force, and density of free charge as 

 
,    ,   ,    ,
,    ,    ,       

z z z
x x z z xz xz x x

z z z
z z x x z z

e e e D D
D D e f f e f f e Q Qe

z

z
e

 (5.222) 

By way of the variables defined in Eq. (5.222), they obtained the Hamiltonian 
equation (2.138) in which 
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T

T

,

0 0 0

xz z z

x z

u w D

f f Qh
 (5.223) 

 

1 2

3 4

6 5

2

8 32

2

9 12

0 0

0 0 0

0 0 0

0 0

0 0 0 0

0 0 0

a a
x x

a a
x

a a
x

a a

5

7

6

0

a

a

a
x xx

x

a a
xx

H  (5.224) 

with 

 

0 0 0 0 0 0 0 0
1 15 55 2 55 3 13 33 31 33 4 33

0 0 0 0 0 0
5 33 6 31 33 13 33 7 33

0 0 0 0 0 2 0 0 0 2
8 11 3 13 6 31 9 11 15 44 33 33 33

/ ,   1/ ,   ( ) / ,   / ,
/ ,   ( ) / ,   / ,

 = + , = + ( ) ,  ( )

a e c a c a c e e g a g
a e g a e c c e g a c g
a c a c a e a e c g c e

 (5.225) 

Using Eqs. (1.24) and (5.222), and x xD  can be expressed in terms of state vari-
ables as 

 8 , 3 6 9 , 1,     x x z z x xa u a a D D a a xz  (5.226) 

Zhao and Chen then discovered that the operator matrix H exhibits different cha-    
racteristics from the standard Hamiltonian matrix, but it has similar properties, and 
they proved that the eigenvalues of H were symmetric with respect to –  /2. They 
presented the proof as follows. It can be be proved that 

  (5.227) T( )J H I J H

Supposing the polynomial of the eigenequation to be 

 ( )f I H  (5.228) 

we have 

 ( ) ( ) ( )f J I H J JJ JHJ JJ J H I J JJ  
T( ) ( ) (fI H I H )  (5.229) 
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The eigenvalues of the Hamiltonian matrix H are symmetric with respect to 
– /2. 

5.6.2  Eigenvalue properties of the Hamiltonian matrix H 

To study the eigenvalue characteristics of the so-called shift-Hamiltonian matrix H, 
Zhao and Chen [21] considered the plane problem of an FGPM beam occupying the 
rectangular domain  : , as shown in Fig. 5.6. For the ho-
mogeneous Hamiltonian equation and boundary conditions on lateral surfaces: 

0 ,  z l h x h

  (5.230) H

and 

 
8 , 3 6

9 , 1

0,     
0,

0

x x z z

x x xz

xz

a u a a D
D a a  (5.231) 

the solution can be assumed in the form 

 
T

( , ) ( ) ( ) ( ) (xz z xz x z u w D x z x)  (5.232) 

Substituting Eq. (5.232) into Eq. (5.230) yields 

 ( ) zz e  (5.233) 

and Eq. (2.156). Zhao and Chen then proved that the operator matrix H has the fol-
lowing properties: 

If i is the eigenvalue of H, i  is also an eigenvalue of H. Here i and 
i  constitute an adjoint pair of eigenvalues (by contrast, the symplectic ad-

joint eigenvalue of i is i for the standard Hamiltonian matrix). Similar to the 
treatment of the standard Hamiltonian matrix, all the eigenvalues of the 
shift-Hamiltonian matrix H can be divided into the following three groups accord-
ing to the inhomogeneous parameter : 

(a)    for Re( ) / 2 or Re( ) / 2 Im( ) 0i i i i  (i=1,2, n)  (5.234) 

(b)     i i   (5.235) 

(c)      / 2   (5.236) 

5.6.3  Eigensolutions corresponding to  =0 and –  

For the FGPM discussed here, the symplectic adjoint eigenvalue of zero is – , in-
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stead of itself. When  =0, Eq. (2.156) is reduced to Eq. (5.173). The three funda-
mental eigenvectors of Eq. (5.173) are given by 

  (5.237) T T(0) (0) (0)
0,1 0,2 0,31 0 0 0 0 0 ,   0 1 0 0 0 0 ,   0 0 1 0 0 0 T

i

,i

The first-order eigenvector of Jordan normal form can be obtained from the matrix 
equation (5.133) as 

  (5.238) T(1)
0,1 0 0 0 0 0x

The solution of the original equation (5.230) can be obtained by the combination of 
solutions (5.237) and (5.238) as 

  (5.239) (0) (0) (0) (0) (0) (0) (1) (1) (0)
0,1 0,1 0,2 0,2 0,3 0,3 0,1 0,1 0,1,   ,   ,   z

For the eigensolutions corresponding to the eigenvalue  =– , Eq. (5.188) becomes 

  (5.240) (0) (0)
iH

Through a lengthy mathematical manipulation, Zhao and Chen obtained the fol-
lowing three fundamental eigenvectors: 

  (5.241) 

13
2

13

(0)
,1

2 2
13 14 15

2 2
13 16 17

12
2

12

(0)
,2

14

16

sinh( ) /

[cosh( ) 1] /
1/

,0

[1 cosh( )] /

[1 cosh( )] /
sinh( ) /

cosh( ) /
0
0

cosh( )
cosh( )

a x

a x

a a x a

a a x a
a x

a x

a x
a x

2
12

3
12

(0)
,3

14

16

cosh( ) /

sinh( ) /
0,     
0

sinh( ) /
sinh( ) /

a x

a x

a x
a x

The corresponding first-order eigenvector of Jordan normal form can be obtained 
from the following matrix equation: 

  (5.242) (1) (1) (0)
, ,i iH

as 
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20 2022
2 2

20 19 2021
2 2 3 3

18 18
3 2(1)

,3
14
2

(1)10 20 1

sinh( ) cosh( ) cosh( )
2

6 3
cosh( ) cosh( ) sinh( )

2 2
6 6

sinh( ) cosh( )

[cosh( ) cosh( )]

6
cosh( ) sinh( )

2

a x aa
x h x

a aa a
x h x x

a a
x h x

a x h

a a x a
x x 8 1

2

(2)11 20 18 2
2

cosh( )

6
cosh( ) sinh( ) cosh( )

2

b
x x

a a x a b
x x x x

 (5.243) 

where 

2
6 7 8 3 6 5 8 5 6 3 7 3 5 4 6

10 11 12 13* *
3 7 5 6 3 7 5 6

3 6 5 8 3 6 5 8
14 10 12 15 16 11 12 17* *

1 14 16 12 14 12
18 19 1 18 20 19 12

9 9

,  ,  ,  ,

,   ,   ,   ,

6
,  ,  6

6 6

a a a a a a a a a a a a a a a
a a a a

a a a a a a a a a a
a a a a a a a a

a a a a a a a a
a a

a a a aa a aa a a a a a a
a a

3 18

12

21 13 18 12 22 13 18 12 19 12 12

( ) * 2 2 218 9 20
6 4 5 8 4 7 8 3 5 6 3 73

,

6 / ,  6 / 6 ,  ,
6

,   2
2

i i i

a
a

a a a a a a a a a a a
a b a a

a a a a a a a a a a a a a

 (5.244) 

The eigensolutions corresponding to eigenvalues  can be written as 

  (5.245) 
(0) (0) (0) (0) (0) (0)

,1 ,1 ,2 ,2 ,3 ,3
(1) (1) (0)

,3 ,3 ,3

,     ,     ,
( )

z z

z

e e e
e z

z

Thus the four solutions of the original boundary-value problem of a plane piezo- 
elastic beam with free lateral boundary conditions can be constructed as 

  (5.246) T
xz z zu w D M

where M=diag [1, 1, 1, e  z, e  z, e  z] is the transform matrix between the eigensolu-
tion and the original solution. 

Zhao and Chen then conducted limit analysis by letting  and obtained 
the expressions of the original solutions as 

0
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T(0)
,1 13 15 17

T(0)
,2 12 14 16

T
(0) 2 2

,3 12 14 162

T
(1) * * 3 2 2 214

,3 1 2 18 14 16

0 1/ 0 ,

1/ 0 0 ,

1 1 1 0 0 ,
2 2

( 3 ) ( )
2

a x z a a

a x z a a

z xa x z xz a x a x

aa x h x x h a xz a xz

 (5.247) 

in which 

 

2
* 2 3 222 22
1 12 2 3

2
* 3 2 22 12
2 19 23 23 192

1 1 2 ,
2 6 2 2

1 ,   3
2 2

a h z aza x z z h

a h x axa x z x a x a a
2

0

 (5.248) 

Zhao and Chen finally indicated that by removing the constant electric potential and 
the rigid translations and rotations, the above degenerated results become the same 
as those corresponding to the zero-eigenvalue for homogeneous piezoelectric mate-
rials [13]. 

5.6.4  Extension to the case of magnetoelectroelastic materials 

In the previous subsections a symplectic model for a plane FGPM was presented. 
Extension to the plane problems of magnetoelectroelastic media is discussed in this 
subsection.  

In [22], Zhao and Chen considered the plane problem of a functionally graded 
magnetoelectroelastic strip occupying the rectangular domain  :  

 as shown in Fig. 5.6. With the generalized plane strain assumption, the 
two-dimensional constitutive and governing equations are given by Eqs. (5.108) 
and (5.111). All material constants are again assumed to vary exponentially along 
the length direction, as described by Eq. (5.222) and 

0 ,z l
h x h

 0 0,    ,    =z z
ij ij ij ij ij ije e e e e z  (5.249) 

In the derivation of the Hamiltonian equation, the new variables of stresses, electric 
displacement, and magnetic induction defined in Eq. (5.222) and 

 ,    ,    z z
x x z zB B e B B e M Me z  (5.250) 

are employed.  
Making use of Eqs. (5.108), (5.111), (5.222), and (5.250), the following rela-

tionships can be obtained: 
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,
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 (5.251) 
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f
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1 ,

36 , 37 , 24 ,
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z xx xx xz x z

D Q
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 (5.252) 

where the dot above represents differential with respect to z, and 

 (5.253) 
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0 0 0 0 0 0 0
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0 0 2 0 0 0 0 0 0 0 0 0
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a e c a e e c a e e c
a c0 0 0

1 33 2 33 3b e b e b

,
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e
 (5.254) 

Equation (5.252) is the Hamiltonian equation (2.138) in which  
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The homogeneous boundary conditions used are 

 
34 , 25 29 32

35 , 36 , 1

36 , 37 , 24

0,    =0, 
0,
0

x x z z z xz

x x x xz

x x x xz

a u a a D a B
D a a a
B a a a

/

 (5.257) 

5.6.4.1  Eigensolutions for  = 0 

There are four fundamental eigenvectors and eigensolutions for the problem defined 
by Eq. (5.173), which are given by Eq. (5.132). Since zero-eigenvalues are multiple, 
the Jordan normal form eigenvector needs to be considered. Using Eq. (5.133), the 
first-order Jordan form can be written as 

  (5.258) T(0)
0,1 0 0 0 0 0 0 0x

The corresponding solution of the original problem is 

  (5.259) T(1) (1) (0)
0,1 0,1 0,1 0 0 0 0 0 0z z x

which represents the rigid rotation in the plane. Zhao and Chen proved that there is 
no other high-order Jordan form in the chain. 

5.6.4.2  Eigensolutions for  = –  

For the eigensolutions corresponding to the eigenvalue  = – , Eq. (5.188) is used 
to determine the solutions. Through a lengthy mathematical manipulation, Zhao and 
Chen obtained the following four fundamental eigenvectors: 

  (5.260) 

2 3
2 2

2 3

(0) (0)
,1 ,2

2 1 4 3 1 5

2 2 6 3 2 7

2 3 8

sinh( ) / sinh( ) /

[cosh( ) 1] / [cosh( ) 1] /
1/ 0
0 1

,    
0 0

cosh( ) cosh( )
cosh( ) cosh( )
cosh( )

k x k x

k x k x

k m x m k m x m
k m x m k m x m
k m x m 3 3 9cosh( )k m x m

  (5.261) 

2
1 1

2 3
1 1

(0) (0)
,3 ,4

1 1 1 1

1 2 1 2

1 3 1 3
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0 0
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0 0

cosh( ) sinh( ) /
cosh( ) sinh( ) /
cosh( ) sinh( ) /

k x k x
k x k x

k m x k m x
k m x k m x
k m x k m x
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where 
2

1 29 29 33 31 32 32 29 31 30 32 34 31 30 33 0
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   1 25 26 1 27 3 28 3 2 1 26 4 27 6 28 8

3 1 26 5 27 7 28 9 1

1/( ),   ( ),
( ),          

k a a m a m a m k k a m a m a m
k k a m a m a m k

 (5.263) 

The eigensolutions corresponding to eigenvalues can be written as 

(0) (0) (0) (0) (0) (0) (1) (0)
,1 ,1 ,2 ,2 ,3 ,3 ,4 ,4,  ,  ,   z z ze e e e z  (5.264) 

The solutions of the original problem can then be constructed as 

  (5.265) (0) (0) (0) (0) (0) (0) (1) (0)
,1 ,1 ,2 ,2 ,3 ,3 ,4 ,4,  ,  ,   M M M M

where M=diag [1,1,1,1,e  z, e  z, e  z, e  z]. 
 The corresponding first-order eigenvector of Jordan normal form can be ob-

tained from Eq. (5.242) as 
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 (5.266) 
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where 

  (5.267) 
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)

The corresponding solution of the original problem is in the following form: 

  (5.268) (1) (1) (0)
,4 ,4 ,4( ze zM

Limiting the analysis by letting , Zhao and Chen obtained the expressions 
of the original solutions as 

0
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T(0)
,2 3 1 3 5 2 3 7 3 3 9
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T2 2
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and 

 

2 23
(1) 2 37 71

,4 1 12 3

22 2
2 2 2 27 51 1
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2 1{ ,
2 6 2 2 6

           ,   ( 3 ),   ( ),
2 2 2 6 2

k h z k hk z zx z k h x

k h x k xh h x k mxz x 1

 ( ) ,

x h x h
 

             (5.270) T
1 1 1 2 1 3,   ,   }k m xz k m xz k m xz

By removing the constant electric potential, the constant magnetic potential, the 
rigid translations and rotations, the above degenerated solutions become the same as 
those corresponding to the zero eigenvalue for homogeneous magnetoelectroelastic 
materials [24]. 
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Chapter 6  Saint-Venant Decay Problems in Piezo-
electricity 

As an application of the symplectic mechanics described in the previous chapter, 
Saint-Venant decay analysis of piezoelectric strips is presented in this chapter. Ap-
plications of state space approach to the Saint-Venant decay problem of piezoelec-
tric laminates are also discussed. Particularly, a mixed-variable state space model 
for dissimilar piezoelectric laminates and multilayered graded piezoelectric mate- 
rials is described. Further formulations for decay analysis of piezoelec-
tric-piezomagnetic sandwich structures are discussed.  

6.1  Introduction 

Saint-Venant’s principle [1], named after the French elasticity theorist Jean Claude 
Barré de Saint-Venant, is an old topic and has been widely studied in both elastic 
materials and piezoelectricity [2-5]. As stated in [6], the Saint-Venant’s effect can be 
explained as “the strains that can be produced in a body by the application, to a 
small part of its surface, of a system of forces statically equivalent to zero force and 
zero couple, are of negligible magnitude at distances which are large compared with 
the linear dimensions of the part.” For purely elastic materials, the problem of stress 
decay has been extensively investigated by many researchers [7,8]. By contrast, 
progress in the study of Saint-Venant decay of piezoelectric material has been much 
slower, due to the complex mathematical operations induced by electromechanical 
coupling. Batra and his co-workers [9,10] extended the energy-decay inequality 
techniques to the case of piezoelectric cylinders and helical piezoelectric solids. 
They proved that the energy stored in the piezoelectricity decreases exponentially. 
Fan [11] applied Stroh formalism and the eigen-expansion equation approach to an 
analysis of two-dimensional decay in piezoelectricity. Using the stress function ap-
proach, Ruan et al. [12] presented an approximate analysis of decay behavior for a 
semi-infinite piezoelectric strip. Using the state space approach as a basis, Tarn and 
Huang [3] studied the Saint-Venant end effects in multilayered piezoelectric lami-
nates under generalized plane strain deformation. Borrelli et al. [13] used the en-
ergy-decay inequality technique to analyze the decay behavior of end effects in 
anti-plane shear deformation in piezoelectric solids and FGPMs. They subsequently 
extended the Airy-type stress function approach to cases of plane deformation of 
linear piezoelectric materials. It should be noted that the methods above often lead 
to a higher order of partial differential equations (PDE) which, to some extent, are 
difficult to solve theoretically [14]. Bisegna [15] established the Saint-Venant prin-
ciple for monoclinic piezoelectric cylinders and demonstrated that the free energy 
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stored in the cylinder decays exponentially along the cylinder axis. Rovenski et al. 
[16] presented a linear analysis of homogeneous piezoelectric beams that undergo 
tip loading, based on the Saint-Venant’s principle and semi-inverse method of 
solution. Vidoli et al. [17] obtained a second-order solution for the Saint-Venant 
problem for a straight, prismatic, homogeneous and transversely isotropic body 
made of a second-order piezoelectric materials. For a prismatic circular bar sub-
jected to bending moments only at the end faces, they found that in addition to the 
second-order Poisson’s effect proportional to the square of moment vector, there is 
also a torsional effect proportional to the square of the distance from the “clamped” 
face. Xue and Liu [4] investigated the decay of the Saint-Venant end effects for 
plane deformations of piezoelectric-piezomagnetic sandwich structures. He et al. [5] 
presented a mixed-variable state space formulation for the Saint-Venant decay 
analysis of FGPMs. Recently, Qin and Wang [2] developed a symplectic model for 
Saint-Venant analysis of a piezoelectric strip. In this chapter, the focus is on the 
developments in [2-5]. 

6.2  Saint-Venant end effects of piezoelectric strips 

In this section a Hamiltonian system presented in [2] for modeling Saint-Venant 
decay behavior at the ends of a piezoelectric strip under plane deformation is de-
scribed. The derivation is based on a differential equations approach. In the analy-
sis, governing equations of a piezoelectric strip are first transferred into Hamilto-
nian form via a differential approach with multi-variables and the state space 
method. The approach of variable separation under the Hamiltonian system is then 
used to obtain the nonzero-eigenvalues and to analyze decay behavior at the ends of 
a piezoelectric strip.  

6.2.1  Hamiltonian system for a piezoelectric strip 

Consider a transversely isotropic piezoelectric strip as shown in Fig. 6.1. The po-
larization direction is assumed to be parallel to the z-axis. Derivation of the Hamil-
tonian system for the piezoelectric strip is based on the governing equation (1.10), 
constitutive equation (1.25), generalized strain-displacement relationship (1.2), and 
boundary conditions (1.11),(1.12). For the problem of a two-dimensional piezoelec-
tric strip in the absence of body forces and electric charge density, the basic equa-
tions (5.109)-(5.111) become 

 0,      0,     0x xz xz xz D Dz

x z x z x z
 (6.1) 



6.2  Saint-Venant end effects of piezoelectric strips    207 

 

Fig. 6.1  Geometry and loading configuration of the piezoelectric strip. 
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  (6.4) ( ) 0,    ( ) 0,    ( )z zx zH H D H
where aij are defined in Eq. (1.26), and 
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(6.5) 

It is worth noting that at the surfaces  only homogeneous boundary 
conditions are considered. However, under inhomogeneous boundary conditions, 
i.e., where the right-hand terms of Eq. (6.4) are not equal to zero, the decay rate is 
the same as that for the case of homogeneous boundary conditions, although the 
corresponding Saint-Venant solutions without decay characteristics may be different. 
Moreover, the procedure here, presented initially for stress and electric displace-
ment boundary conditions, is also valid for displacement and electric potential 
boundary conditions or mixed boundary conditions. 

,z H

The field equations (6.1)-(6.3) can be converted into the Hamiltonian form us-
ing a differential approach. In doing so, the x-coordinate, defined in the longitudinal 
direction, is analogous to the “time coordinate” in elastic dynamics, and the 
z-coordinate is defined in the poling direction. The displacements u, w in the longi-
tudinal and transverse directions respectively and the electric potential  are chosen 
as state variables, and the normal stress x, the shear stress xz as well as the electric 
displacement Dx are defined as dual vectors to the state variables above. Denote 
these definitions by q and p so that 
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 ,   
x

xz

x

u
w

D
q p  (6.6) 

where q and p are a pair of dual vectors in Hamiltonian system. 
Making use of Eqs. (6.1)-(6.5), we have 
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where a dot “ ” over a variable or function represents differentiation with respect   
to x.  

Further, if we define the full state vectors v and  by v

   (6.8) ,     =
q q
p p

Equation (6.7) can be rewritten as 
  (6.9) H

in which H is known as the Hamiltonian operator matrix:  
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6.2  Saint-Venant end effects of piezoelectric strips    209 

where 
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It should be noted that the Hamiltonian equation (6.9) is based on the constitu-
tive equation (6.2) in which stress ij and electric field Ei are taken as basic vari-
ables. For the constitutive equations (1.24) in which ij and Ei are the basic variables, 
the corresponding symplectic form of field variables now becomes  

 13 31

33 11 11

1 ,x
c ewu

c c z c z
  

 1511 ,xz
euw

z xD   

 15 55 ,xz
e c Dx   (6.12) 
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where .  The corresponding matrix of Hamiltonian operator H has 
the same form as that of Eq. (6.10), except that ki (i = 1-9) are now defined by 

2
55 11 15c e
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11 11 11
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c

J J

   (6.13) 

To prove that H is indeed a Hamiltonian operator matrix, the rotational ex-
change operator matrix J defined in Eq. (2.130) is rewritten as follows [18]: 

  (6.14) 3 32 T

3 3

0
,    ,   

0
10 I I

J J J
I 0 I
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where I3 is the three-order identity matrix. With the notation J, it is easy to prove 
that H satisfies the following relation: 

 T T
1 22,H ,H 1  (6.15) 

where  

 2

1

T T,  
z

z
z1 2 1 2H JH d  (6.16) 

and ,  are two full state vectors satisfying the homogeneous boundary con-
ditions (6.4) at . Therefore H satisfies the relation JHJ=HT. According to 
the theory of symplectic geometry [19], H is a Hamiltonian operator matrix. 

1 2

z H

Noting that Eq. (6.9) can be solved by the method of variable separation and the 
symplectic eigenfunction expansion, we assume  in the form 

 ( , ) ( ) ( )x z x z   (6.17)  

in which ( )x  is a function of x and  depends on z only. ( )z
Substituting Eq. (6.17) into Eq. (6.9) yields the solution for ( )x  as 

 ( ) xx e  (6.18) 

and the corresponding eigenvalue equation  

 H   (6.19) 

It should be noted that the eigenvalues of the Hamiltonian operator matrix H 
have the following property [19]: if i is an eigenvalue of Eq. (6.19), then– i is also 
an eigenvalue of Eq. (6.19). Thus all eigenvalues of H can be subdivided into the 
following three groups: 

(a) ,   Re( ) 0  or  Im( ) 0  (if Re( ) 0)    =1,2,i i i i i  
(b) i i   (6.20) 
(c) 0  
From Eqs. (6.9), (6.17), and (6.18), the following expression can be obtained: 

  (6.21) ( )xe z
q
p

From Eq. (6.21), it is evident that all field variables including stress, electric 
displacements, elastic displacements, and electric potential contain the same factor 

xe . Therefore they will decay exponentially for a negative value of  when x in-
creases. The real part of eigenvalue  with the smallest positive real part is here 



6.2  Saint-Venant end effects of piezoelectric strips    211 

known as the decay rate. The next step is to determine  and then to analyze the end 
decay behavior of a piezoelectric strip using the proposed formulation. 

6.2.2  Decay rate analysis 

The decay parameter  is determined by considering the equation 

 6( ) 0H I

)

 (6.22) 

and setting the determinant of matrix 6(H I  to be zero, where I6 is a six-order 
identity matrix. To this end, consider 

  (6.23) 
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The roots of Eq. (6.23) have two possible cases. 
Case 1 :  

  (6.24) 1 2 2 2,     ( ) ,     ( )i i

Case 2: 

  (6.25)  1 2,    ,    i i

where 2 and i (i =1-3) are real positive constants depending on the properties of 
the piezoelectric material and can be determined numerically. For piezoelectric ma-
terials PZT-5H, PZT-5, PZT-4 and Ceramic-B, the roots of Eq. (6.23) are in Case 1, 
which are the same as those in [14]. For certain piezoelectric materials like PZT-6B, 
the roots of Eq. (6.23) may be in Case 2 [2]. 

Thus, the general solutions for the whole state vectors can be given as follows: 
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      cosh( )sin( ) sinh( )sin( )

x
x

g h
D e A h B h C g h D g h

E g h F g h

 (6.26) 

(6.26) 
for Case 1, and  

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

cos( ) sin( ) cos( ) sin( ) cos( ) sin( ),
sin( ) cos( ) sin( ) cos( ) sin( ) cos( ),
sin( ) cos( ) sin( ) cos( ) sin( ) cos( ),

x

x

x

x

ue A h B h C h D h E h F h
we A h B h C h D h E h F h
e A h B h C h D h E h F h

4 1 4 1 4 2 4 2 4 3 4 3

5 1 5 1 5 2 5 2 5 3 5 3

6 1 6 1 6 2 6 2 6 3 6 3

cos( ) sin( ) cos( ) sin( ) cos( ) sin( ),
sin( ) cos( ) sin( ) cos( ) sin( ) cos( ),
sin( ) cos( ) sin( ) cos( ) sin( ) cos( )

x

x
xz

x
x

e A h B h C h D h E h F h
e A h B h C h D h E h F h

D e A h B h C h D h E h F h

 

(6.27) 

for Case 2, where , and Ai, Bi, Ci, Di, Ei, and Fi 

(i=1-6) are unknown coefficients. 
,    ( 1- 3)j j j jg z h z j

The above general solutions can be decomposed into two separate parts: a 
symmetric deformation solution and an anti-symmetric deformation solution. Tak-
ing the symmetric deformation of Case 1 as an example, we have 

  (6.28) 

1 1 1 2 2 1 2 2

2 1 2 2 2 2 2 2

3 1 3 2 2 3 2 2

4 1 4 2 2 4 2

cos( ) cosh( )cos( ) sinh( )sin( ),
sin( ) sinh( )cos( ) cosh( )sin( ),
sin( ) sinh( )cos( ) cosh( )sin( ),

cos( ) cosh( )cos( ) sinh(

x

x

x

x
x

ue A h C g h E g h
we A h C g h E g h
e A h C g h E g h
e A h C g h E g 2

5 1 5 2 2 5 2 2

6 1 6 2 2 6 2 2

)sin( ),
sin( ) sinh( )cos( )  cosh( )sin( ),
sin( ) sinh( )cos( ) cosh( )sin( )

x
xz

x
x

h
e A h C g h E g h

D e A h C g h E g h

Substituting Eq. (6.28) into Eq. (6.19), we can obtain relationships between Ai, 
Ci, and Ei as 

  (6.29)  

1 1 1

1 1
*

1 1
*

1 1

  ( 2,3)  ( 2,3)
,           ,  

 ( 4 - 6)  ( 4 - 6)

  ( 2,3)

 ( 4 - 6)

i i i
i i

i i i

i i
i

i i

t A i rC s E i
A C

t A i r C s E i

t C w E i
E

t C w E i

1

where ti, , si,  and wi (i=1-6) are unknown coefficients and can be determined 
numerically. 

ir
*
it

From Eqs. (6.2), (6.3), and (6.11), the stress z  and the electric displacement 
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Dz can be expressed as 

 1 7 8 2 8 9,     z x z x
w wk k k D k k k
z z z z

 (6.30) 

Using the boundary condition (6.4), the following equation can be obtained: 

  (6.31) 

* * * * * * * * *
1 1 2 2 3 2 4 2 5 2 1

* * * * * * * * * *
5 1 5 2 5 2 5 2 5 2 1

* * * * * * * * *
11 1 2 2 3 2 4 2 5 2

cos( )

0

p C p W C p R S p W h p R S A
t S t W S r R C w W S s R C C

Em C m W C m R S m W C m R S

where * *,   ,i i i ig H h H
*sin( ),ih

   

 and  

* * *
2 2cosh( ),  sinh( ),W g R * * *cos( ),i iC hg

,
,

,

*
iS

  (6.32) 

1 7 2 8 3 1 1 4
* *

2 7 2 2 2 2 8 2 3 2 3 1 4
* * *

3 7 2 2 2 2 8 2 3 2 3 1 4

4 7 2 2 2 2 8 2 3 2 3 1 4

5 7 2 2 2 2 8 2 3 2 3 1 4

1 8 2 9 3 1 2 4

( ) ,
( ) ( ) ,  

( ) ( ) ,
( ) ( )    

( ) ( )
( )

p k t k t k t
p k r t k r t k r
p k r t k r t k t
p k s w k s w k s
p k s w k s w k w
m k t k t k t

* *
2 8 2 2 2 2 9 2 3 2 3 2 4

* * *
3 8 2 2 2 2 9 2 3 2 3 2 4

* *
4 8 2 2 2 2 9 2 3 2 3 2 4

5 8 2 2 2 2 9 2 3 2 3 2 4

,
( ) ( ) ,   

( ) ( ) ,
( ) ( )   

( ) ( )

m k r t k r t k r
m k r t k r t k t
m k t w k t w k s
m k s w k s w k w

The condition for the existence of non-zero solutions of T
1 1 1A C E is the 

determinant of the coefficients matrix being zero, which leads to the following 
equation: 

  (6.33) 

* * * * * * * * *
1 1 2 2 3 2 4 2 5 2

* * * * * * * * * *
5 1 5 2 5 2 5 2 5 2

* * * * * * * * *
1 1 2 2 3 2 4 2 5 2

cos( )

det 0

p C p W C p R S p W h p R S

t S t W S r R C w W S s R C

m C m W C m R S m W C m R S

Similarly, the solution for the case of anti-symmetric deformation can be ob-
tained as 

  (6.34) 

1 1 1 2 2 1 2 2

2 1 2 2 2 2 2 2

3 1 3 2 2 3 2 2

4 1 4 2 2 4 2

sin( ) sinh( )cos( ) cosh( )sin( ),
cos( ) cosh( )cos( ) sinh( )sin( ),
cos( ) cosh( )cos( ) sinh( )sin( ),

sin( ) sinh( )cos( ) cosh(

x

x

x

x
x

ue B h D g h F g h
we B h D g h F g h
e B h D g h F g h
e B h D g h F g 2

5 1 5 2 2 5 2 2

6 1 6 2 2 6 2 2

)sin( ),
cos( ) cosh( )cos( ) sinh( )sin( ),

cos( ) cosh( )cos( ) sinh( )sin( )

x
xy

x
x

h
e B h D g h F g h

D e B h D g h F g h
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In a similar manner to that in Eq. (6.33), we have 

  (6.35) 

* * * * * * * * *
1 1 2 2 3 2 4 2 5 2
* * * * * * * * * * * * * *
5 1 5 2 5 2 5 2 5 2

* * * * * * * * *
1 1 2 2 3 2 4 2 5 2

det 0

p S p W S p R C p W S p R C

a C b R S r W C w R S s W C

m S m W S m R C m W S m R C

*

,  
,
,  
,

*
4

,  
,
,  

in which  

  (6.36) 

* * *
1 7 2 8 3 1 1 4

* * * * *
2 7 2 2 2 2 8 2 3 2 3 1 4

* * * * *
3 7 2 2 2 2 8 2 3 2 3 1 4

* * * * *
4 7 2 2 2 2 8 2 3 2 3 1 4

* * * *
5 7 2 2 2 2 8 2 3 2 3 1 4

1 8

( ) ,
( ) ( )

( ) ( )
( ) ( )

( ) ( )
(

p k a k a k a
p k r b k r b k b
p k r b k r b k r
p k s w k s w k w
p k s w k s w k s
m k a* * *

2 9 3 1 2 4
* * * * *

2 8 2 2 2 2 9 2 3 2 3 2 4
* * * * *

3 8 2 2 2 2 9 2 3 2 3 2 4
* * * * *

4 8 2 2 2 2 9 2 3 2 3 2 4
* * * *

5 8 2 2 2 2 9 2 3 2 3 2

) ,
( ) ( )

( ) ( )
( ) ( )

( ) ( )

k a k a
m k r b k r b k b
m k r b k r b k r
m k s w k s w k w
m k s w k s w k s

and , ,*
ia *

ir
*
is , ,  ( ) are unknown coefficients. The equations for un-

knowns Bi, Di, and Fi are as follows: 

*
ib *

iw 2-6i

  (6.37) 

* * *
1 1 1

* * *
1 1

* *
1 1

* *
1 1

  ( 2,3)  ( 2,3)
,  ,

 ( 4-6)  ( 4-6)

  ( 2,3)

 ( 4-6)

i i i
i i

i i i

i i
i

i i

a B i r D s F i
B D

a B i r D s F i

b D w F i
F

b D w F i

1

 

The solutions presented above are for piezoelectric materials whose characteris-
tic constant of material property matrix is defined by Eq. (6.24), which is applicable 
to PZT-5H, PZT-5, PZT-4, and Ceramic-B under consideration. General solutions 
for materials with characteristic constants defined by Eq. (6.25), which are applica-
ble to PZT-6B under consideration, can be obtained similarly and are listed below:  

(1) Symmetric deformation solutions: 

   
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

cos( ) cos( ) cos( ),
sin( ) sin( ) sin( ),
sin( ) sin( ) sin( ),

x

x

x

ue A h C h E h
we A h C h E h
e A h C h E h
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  (6.38) 
4 1 4 2 4 3

5 1 5 2 5 3

6 1 6 2 6 3

cos( ) cos( ) cos( ),
sin( ) sin( ) sin( ),

sin( ) sin( ) sin( )

x
x

x
xy

x
x

e A h C h E h
e A h C h E h

D e A h C h E h

The corresponding transcendental equations for nonzero eigenvectors are 

  (6.39) 
* * * * * *

3 2 2 3 5 1 2 3 2 1 1 2 5 1 2 3
* * *

1 3 1 3 5 1 2 3

( ) ( )
                                     ( ) 0
p m p m a S C C p m p m e C C S

p m m p c C S C (6.39) 

where  

 
1 7 2 8 3 1 1 4 2 7 2 8 3 1 1 4

3 7 2 8 3 1 1 4 1 8 2 9 3 1 2 4

2 8 2 9 3 1 2 4 3 8 2 9 3 1 2 4

( ) ,     ( )
( ) ,     ( ) ,   
( ) ,     ( )

p k a k a k a p k c k c k c
p k e k e k e m k a k a k a
m k c k c k c m k e k e k e

,
 (6.40) 

and ai, ci and ei are coefficients defined by 

1 1 1

1 1 1

   ( 2,3)    ( 2,3)    ( 2,3)
,   ,    

   ( 4 - 6)    ( 4 - 6)    ( 4 - 6)
i i i

i i i
i i i

a A i c C i e E i
A C E

a A i c C i e E i

0

,

 (6.41) 

which can be determined numerically. 
(2) Anti-symmetric deformation solutions: 

  (6.42) 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

4 1 4 2 4 3

5 1 5 2 5 3

6 1

sin( ) sin( ) sin( ),
cos( ) cos( ) cos( ),
cos( ) cos( ) cos( ),

sin( ) sin( ) sin( ),
cos( ) cos( ) cos( ),

cos( )

x

x

x

x
x

x
xy

x
x

ue B h D h F h
we B h D h F h
e B h D h F h
e B h D h F h
e B h D h F h

D e B h 6 2 6 3cos( ) cos( )D h F h

The corresponding transcendental equations for nonzero eigenvectors are 
* * * * * * * * *

3 2 2 3 5 1 2 3 1 3 3 1 5 1 2 3 2 1 1 2 5 1 2 3( ) ( ) ( )n t n t b C S S n t n t d S C Sh n t n t f S S Ch   (6.43) 

where  

 
1 7 2 8 3 1 1 4 2 7 2 8 3 1 1 4

3 7 2 8 3 1 1 4 1 8 2 9 3 1 2 4

2 8 2 9 3 1 2 4 3 8 2 9 3 1 2 4

( ) ,      ( )
( ) ,     ( ) ,   
( ) ,      ( )

n k b k b k b n k d k d k d
n k f k f k f t k b k b k b
t k d k d k d t k f k f k f

 (6.44) 

and bi, di and fi are coefficients are defined by 

1 1 1

1 1 1

   ( 2,3)    ( 2,3)    ( 2,3)
,   ,    

   ( 4 - 6)    ( 4 - 6)    ( 4 - 6)
i i i

i i i
i i i

b B i d D i f F i
B D F

b B i d D i f F i
 (6.45) 

The transcendental equations (6.33), (6.35), (6.39), or (6.43) can be used for  
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determining the eigenvalue  for various piezoelectric strip materials. As usual, the 
eigenvalues are decomposed into even and odd groups. It is evident that the even 
decay rate, k (even), corresponds to cases of symmetric deformation solutions, 
whereas the odd decay rate, k (odd), corresponds to cases of anti-symmetric defor-
mation. To characterize the end effects of piezoelectric strips, the characteristic de-
cay length L, which is defined as the length over which the stress and the electric 
displacement decay to 1% of their value, has been introduced and used in the fol-
lowing numerical analysis: L= ln (100/k).  

6.2.3  Numerical illustration 

To illustrate applications of the formulation presented above in studying the 
Saint-Venant decay behavior of a piezoelectric strip, numerical results of decay rate 
and characteristic decay length for several piezoelectric strips are presented. Table 
6.1 lists the material properties of PZT-5H, PZT-5, PZT-4, and Ceramic-B used in 
the numerical analysis, in which fij is the elastic compliance constant, dij is the pie-
zoelectric constant, and 0ij  is relative permittivity. The corresponding values 

of 2 and i of these materials are listed in Table 6.2. It should be mentioned that 
the coefficients ai, ri, si, … appearing in Eqs. (6.29)-(6.45) can be determined nu-
merically using the data listed in Tables 6.1 and 6.2. The properties of PZT-6B are 
in a form different from that in Table 6.1 and are given separately as 

Elastic constants (1010 N/m2): , , , ; 11 16.8c 12 6.0c 33 16.3c 55 2.71c
Piezoelectric constants (C/m2): , , ; 15 4.6e 31 0.9e 33 7.1e
Dielectric permittivities (10-10 F/m): , . 11 0/ 36 33 0/ 34

Table 6.1  Piezoelectric properties. 

  PZT-5H PZT-5 PZT-4 Ceramic-B 
f11 16.5 16.4 12.4 8.6 
f12 –4.78 –5.74 –3.98 –2.6 
f13 –8.45 –7.22 –5.52 –2.7 
f33 20.7 18.8 16.1 9.1 

12 2 10 m Nijf  

f44 43.5 47.5 39.1 22.2 
d31 –274 –172 –135 –58 
d33 593 374 300 149 

12
10 C Nijd  

d15 741 584 525 242 

11 0 1 700 1 730 1 470 1 000 12

0 0 ( 8.85 10 F mij )
33 0 1 470 1 700 1 300 910 
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Table 6.2  Values of  and 2 i (i=1-3) for materials listed in Table 6.1. 

 
1  2  2  

PZT-5H 8.210 16 0.289 22 1.010 77 
PZT-5 1.077 68 0.258 98 1.076 76 
PZT-4 1.187 52 0.276 48 1.085 87 
Ceramic-B 1.097 21 0.227 98 1.003 05 
 

1  2  3  
PZT-6B 2.101 46 1.014 33 0.517 60 

 
To determine the complex roots of Eqs. (6.33), (6.35), (6.39), and (6.43),  is 

assumed in the form: +i . It can be determined by setting the real and imaginary 
parts of Eqs. (6.33), (6.35), (6.39), or (6.43) to zero to find the points of intersection 
of the curves defined by these four equations. Tables 6.3 and 6.4 present the results 
of the decay rate and the characteristic decay length. Comparison with the results 
from other techniques is also made. It can be seen from Tables 6.3 and 6.4 that the 
proposed symplectic method provides reasonably accurate estimates for decay rate 
and characteristic decay length. It is also found that for all the piezoelectric materi-
als considered in this chapter except PZT-5H, L (even) >L (odd), which coincides 
with the findings in [20]. Moreover, PZT-5H has the largest decay length L (odd) 
and the smallest decay rate k (odd), which may be caused by the fact that the value 
of 1  for PZT-5H is the largest in Table 6.2. For PZT-6B, it is also the case that L 
(even) > L (odd). 

Table 6.3  Decay rate of several piezoelectric strips. 

Decay rate k (even) Decay rate k (odd)  
[14]a [14]b Present [14]a [14]b Present 

PZT-5H 1.104/H 1.864/H 1.157/H 0.436/H 0.428/H 0.572/H 

PZT-5 1.092/H 1.230/H 1.244/H 2.811/H 2.610/H 2.918/H 

PZT-4 1.337/H 1.210/H 1.226/H 2.125/H 2.571/H 2.748/H 

Ceramic-B 1.016/H 1.330/H 1.309/H 2.638/H 2.571/H 2.963/H 

PZT-6B   1.352/H   2.129/H 

aExact results taken from [14]; bAsymptotic results taken from [14]. 

Table 6.4  Characteristic decay length of several piezoelectric strips. 

Decay length L (even) Decay length L (odd)  
[14]a  [14]b Present [14]a [14]b Present 

PZT-5H 2.083×2H 1.234×2H 1.990×2H 5.275×2H 5.373×2H 4.025×2H 

PZT-5 2.016×2H 1.870×2H 1.851×2H 0.818×2H 0.881×2H 0.789×2H 

PZT-4 2.172×2H 1.900×2H 1.878×2H 1.082×2H 0.895×2H 0.838×2H 

Ceramic-B 2.263×2H 1.730×2H 1.759×2H 0.872×2H 0.816×2H 0.777×2H 

PZT-6B   1.702×2H   1.082×2H 

aExact results taken from [14]; bAsymptotic results taken from [14]. 
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6.3  Saint-Venant decay in anti-plane dissimilar laminates 

In this section, the mixed-variable state space formulation developed in [5] for 
FGPM strips and laminates is briefly described. For dissimilar homogeneous piezo-
electric laminates, the state space formulation is degenerated to a Hamiltonian sys-
tem. Using the formulation presented in [5], results for the Saint-Venant end effects 
in a single FGPM strip and an FGPM laminate are presented. The decay rates for 
multi-layered FGPM laminates are also discussed. 

6.3.1  Basic equations for anti-plane piezoelectric problem  

Consider a single FGPM strip which is transversely isotropic and with the poling 
direction in the z-axis but graded in the y axis (Fig. 6.2). It is assumed to be graded 
in the transverse direction (y-axis) only. The constitutive equations for the FGPM 
under anti-plane deformation are defined by Eq. (1.35) and are rewritten in terms of 
elastic displacement and electric potential as follows: 

 

Fig. 6.2  Schematic diagram of a single FGPM strip. 

 55 , 15 , 55 , 15 ,

15 , 11 , 15 , 11 ,

( ) ( ) ,     ( ) ( ) ,
( ) ( ) ,     ( ) ( )

xz x x yz y

x x x y y

c y w e y c y w e y
D e y w y D e y w y

y

y

0 y

 (6.46) 

where the material constants c55(y), e15(y), and 11(y) are here assumed to vary in 
the following exponential form:  

 0 0
55 55 15 15 11 11( ) ,     ( ) ,     ( )y yc y c e e y e e y e  (6.47) 

where  is the inhomogeneous parameter characterizing the degree of the material 
gradient in the y-direction and  are the reference material pa-

rameters. The equilibrium equation and Maxwell’s equation (1.10) now become 

0 0 0
55 15 11,  ,  and c e
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 0,      0yz yxz x DD
x y x y

 (6.48) 

in which the body force fb and the electric charge density qb are assumed to be zero 
for simplicity. The boundary conditions are considered to be self-equilibrated at the 
end x = 0, and the stress and electric displacement are supposed to vanish on the 
surfaces . y h

6.3.2  Mixed-variable state space formulation 

Following the description in Section 6.2, the field equations (6.46)-(6.48) can also 
be converted into the Hamiltonian form using the mixed-variable state space 
method. To obtain the mixed-variable state space formulation, the x axis is assumed 
to be analogous to the time coordinate in elastic dynamics, and the y axis is taken to 
be in the transverse direction. Then, the dual state vectors q and p are introduced as 

  (6.49) 0

0
,      

w
D

p q

where 

 0 0,     y y
xze D e xD

y

 (6.50) 

Denoting the differential with respect to x by the symbol “ ”, Eq. (6.46)1,3 can 
be rewritten as 

  (6.51) 0 0 0 0
55 15 15 11,    y y y

xz xc e w e e D e e w e

Solving Eq. (6.51) for and w , we obtain the following expressions: 

 
0 00
15 15 5511

0 0 0
0 0 0 0

,    e e cw D
0

0D

.

),
)

 (6.52) 

where  0 0 0 2
0 55 11 15( )c e

The expressions of  and  can be obtained by considering Eqs. 0 0D (6.46)2,4, 
(6.47), (6.48), and (6.50) as 

 
0 0

0 55 , , 15 , ,
0 0

0 15 , , 11 , ,

( ) (
( ) (

yy y yy y

yy y yy y

c w w e
D e w w

 (6.53) 

Equations (6.52) and (6.53) can be written again as Eq. (6.9), where v is given 
in (6.8), but q and p are now defined by Eq. (6.49), and the operator matrix H is in 
the form 
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00
1511

0 0
0 0
15 55

0 0

2 2
0 0
55 152 2

2 2
0 0
15 112 2

0 0

0 0

0 0

0 0

e

e c

c e
y yy y

e
y yy y

H  (6.54) 

It should be mentioned that for the case of homogeneous piezoelectric material 
( 0 ) the operator matrix H is a Hamiltonian operator matrix and Eq. (6.9) is a 
Hamiltonian equation [21], whereas for the FGPM case ( 0 ), H is not a Hamil-
tonian operator matrix due to the material inhomogeneity, and thus the governing 
equation cannot be directed into the Hamiltonian system, and it is difficult to find 
the adjoint symplectic orthonormalization eigenvector  to obtain the electroelas-
tic fields using a procedure similar to that in [21]. However, the decay rate still cor-
responds to the nonzero-eigenvalue of the operator matrix. 

To prove that H is a Hamiltonian operator matrix for the case of homogeneous 
piezoelectric materials, the rotational exchange operator matrix J given in Eq. (6.14) 
now becomes 

  (6.55) 2 22 T

2 2

0
,    ,   

0
10 I I

J J J
I 0 I

J J

where I2 is a two-order identity matrix. With the notation J, it is easy to prove that 
H satisfies the following relation by performing a procedure similar to that in [21] 
and  

 T T
1 22,H ,H 1   (6.56) 

where  

 2

1

T T,
y

y
dy1 2 1 2H JH  (6.57) 

The proof of Eq. (6.56) can be found in [5]. Then, according to theory of symplectic 
geometry [19], H is proved to be a Hamiltonian operator matrix. 

6.3.3  Decay rate of FGPM strip 

In this subsection the separable variation method is used to solve the state space 
equation (6.5). With the method of variable separation, the dual vector  can be 
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assumed in the form of Eq. (6.17). Then Eqs. (6.18)-(6.21) also apply here, except 
that the eigenvector  is now defined by 

   (6.58) 
( )

( )
( )
y

y
y

q
p

Then, we have 

  (6.59) ( )xe y
q
p

For the case of dissimilar homogeneous piezoelectric materials, since the ei-
genvalues of the Hamiltonian operator matrix have the property described in Eq. 
(6.20), their corresponding eigenfunction-vectors are written as  
Following the procedure presented in [19], it is easy to prove that  
are of adjoint symplectic orthonormalization, that is, 

0,  ,  and .i i

and  i i

  (6.60)    
T T

T T

,  ,  ,    ,  ,  ,

,  ,  0,      ,  ,  0
i j ij i j

i j i j

J J
J J

ij

in which 

 2

1

T T,  ,  d
y

i j i jy
yJ J  (6.61) 

Equation (6.61) implies that  satisfies the homogeneous boundary condi-
tions at   

i

1 2. y

e

1

 and y y
It should be mentioned that the eigenvalues  might be real, complex, and only 

the real part is related to the decay behavior. From Eqs. (6.49) and (6.59) we can 
obtain the following expressions: 

 ,      (6.62) 1

1

( )
( )

x w yw
y

1

1

( )
( )

xz x y

x

y
e e

D D y

where 1 1 1,  ,  ,  w D  are the functions of y. It is obvious from Eq. (6.62) that both 
the shear stress and the electric displacement contain the factor e x. Thus, it can be 
easily found that both shear stress and electric displacement decay exponentially for 
an eigenvalue of  with a negative real part when x increases. In fact,  has four 
types of solutions which include ,    ( 0, 0)a bi a bi a b . The real 
part of  with the smallest positive value, say a, is here taken as the decay rate k, i.e., 

  (6.63) k a

To determine  and to analyze the Saint-Venant decay behavior for FGPM strips, 
Eq. (6.19) can be rewritten as 
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00
1511

0 0
0 0
15 55

0 0

2 2
00 0

55 152 2
0

2 2
0 0
15 112 2

0

0

0
0

0

e

e c w

c e
Dy yy y

e
y yy y

 (6.64) 

Letting the determinant of the coefficient matrix of Eq. (6.64) be equal to zero, 
and noting that  is replaced by  and / y 2 / 2y  is replaced by 2, we have 

 

00
1511

0 0
0 0
15 55

0 0
0 2 0 2
55 15
0 2 0 2
15 11

0 0

0 0det 0

( ) ( ) 0 0

( ) ( ) 0 0

e

e c

c e

e

 (6.65) 

Equation (6.65) can be written as 

  (6.66) 2 2 2( ) 0

Then, the solution of  is in the form 

 2 2 2
1,2 3,4

1 14 ,   4
2 2 2 2

2

0

  (6.67) 

Thus, the general solutions of the elastic and electric fields to Eq. (6.64) can be 
given as the following two cases: 

Case 1:  2 24 0

In the case of , we can easily arrive at 2 24

2
1 1 1 1

2
2 2 2 2

2
3 3 3 3

cos sin cos sin ,
2 2 2 2

cos sin cos sin ,
2 2 2

cos sin cos sin
2 2 2

y

y

y

m m m mwe A y B y C y y D y y

m m me A y B y C y y D y y

m m me A y B y C y y D y y

2

2

m

m

2
4 4 4 4

,

cos sin cos sin
2 2 2

y m m mDe A y B y C y y D y y
2
m

   (6.68) 
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in which Ai, Bi, Ci, and Di ( ) are unknown constants to be determined and  1- 4i

 2 24m   (6.69) 

Substituting Eq. (6.68) into Eq. (6.64) can lead to the following relationships 
between the unknown constants: 

 
3 44 1 15 2 4 15 1 11 2

3 44 1 15 2 4 15 1 11 2

( ),    (
( ),    (

0 ( 1- 4)i i

),
),

A c A e A A e A A
B c B e B B e B B
D C i

 (6.70) 

Making use of Eq. (6.70), Eq. (6.68) can be rewritten as 

2
1 1

2
2 2

0 0 0 02
55 1 15 2 55 1 15 1

0 02
15 1 11

cos sin ,
2 2

cos sin ,
2 2

cos cos sin sin ,
2 2 2 2

cos cos
2 2

y

y

y

y

m mwe A y B y

m me A y B y

m m m me c y A e y A c y B e y B

m mDe e y A y 0 0
2 15 1 11 2sin sin

2 2
m mA e y B y B

 

(6.71) 

From Eqs. (6.46)2,4 and (6.71), we have 

  (6.72)  
0 0 0 0
55 1 15 2 55 1 15 2
0 0 0 0
15 1 11 2 15 1 11 2

( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( )

yz

y

c P y A e P y A c N y B e N y B
D e P y A P y A e N y B N y B

in which  

 

2

2

1( ) sin cos ,
2 2 2
1( ) cos sin
2 2

y

y

m mP y e m y y

m mN y e m y y
2

 (6.73) 

Considering now the FGPM strip shown in Fig. 6.2, assume that the boundary 
conditions are self-equilibrated at the end , and the stress and electric dis-
placement are supposed to vanish on the surfaces , i.e., 

0x
y h

   (6.74) ( , ) 0,      ( , ) 0yz yx h D x h

Substituting Eq. (6.72) into Eq. (6.74), the following equation can be obtained: 

  (6.75) 

0 0 0 0
55 15 55 15 1
0 0 0 0
15 11 15 11 2

0 0 0 0
155 15 55 15

0 0 0 0 215 11 15 11

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

c P h e P h c N h e N h A
e P h P h e N h N h A

Bc P h e P h c N h e N h
Be P h P h e N h N h
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The existence of nonzero solutions requires the determi-

nant of the coefficient matrix to be zero, which can lead to the equation 

T
1 2 1 2A A B B

    (6.76) 2 2 2
016 sin ( ) 0mh

Thus, we can obtain 

 nm
h

   ( )    (6.77) 0, 1, 2,n

Substituting Eq. (6.77) into Eq. (6.69), we can obtain the eigenvalue as follows: 

 
2 2 2 2/

2
n h  (6.78) 

Note that the solutions w and  decay exponentially with xe  with distance 
from the end x = 0 for negative values of . The real part of the eigenvalue  with 
smallest positive real part is here known as the decay rate k, which is obtained as 

 
2 2 2/

2
hk   (6.79) 

It can be easily found that the decay rate heavily depends on the value of the 
material inhomogeneous parameter  of an FGPM strip. It should be mentioned that 
the case of k = /2 for n =0 should be removed and Eq. (6.79) should be adopted 
when choosing the value of the decay rate k using Eq. (6.78), due to the fact that the 
decay rate k depends on the value of the thickness h of the FGPM strip, and that if 

=0, the decay rate will be equal to zero for homogeneous piezoelectric materials. 
Thus, in the following numerical examples for two-layered and multi-layered 
FGPMs, the roots of = /2 should also be removed. Note that the FGPM strip is a 
homogeneous piezoelectric material strip when =0, and Eq. (6.79) is reduced to 

 
2

k
h

 (6.80) 

This result is the same as that of Borrelli et al. [20]. 
In Fig. 6.3, the decay rate of single FGPM strips with various thicknesses h for 

different values of  has been plotted to show the effect of the inhomogeneous pa-
rameter on the decay rate. It can be seen that the decay rate increases with the in-
crease of , which agrees well with the results of Borrelli et al. [13]. This indicates 
that material inhomogeneity has a significant influence on the decay of end effects. 

Case 2:  2 24 0

In the case of , the solution to Eq. (6.65) is obtained as 2 24 0
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Fig. 6.3  Variation of the decay rate k with various h for different material inhomogeneous 
parameters  
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 (6.81) 

in which 

 2 4m 2  (6.82) 

Using Eq. (6.64), we can obtain the same relationships between ,  ,  ,  i i i iA B C D

yz

 
as shown in Eq. (6.70). Then the shear stress and electric displacement  and 

 in the transverse direction can be expressed as yD

 

0 02 2
55 1 15 2

0 02 2
55 1 15 2

0 02 2
15 1 11 2

0 02 2
15 1 11 2

1 ( ) ( )
2

( ) ( ) ,

1 ( ) ( )
2

( ) ( )

m my y
yz

m my y

my y
y

m my y

e c m e A e m e A

c m e B e m e B

D e e m e A m e

e m e B m e B

2

2

y

m y
A

 (6.83) 

Thus, following a similar procedure to that in Case 1, we can obtain the follow-
ing equations: 

 2 24m 0  (6.84) 
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which violates the assumption of , and therefore it is impossible for 
 to appear.  

0m
2 24 0

2

Now, let us solve the decay rate k for two-layered and multi-layered FGPM 
laminates and dissimilar piezoelectric material laminates using the coordinate 
transformation technique and the interface continuity conditions. 

6.3.4  Two-layered FGPM laminates and dissimilar piezoelectric laminates 

For two-layered FGPM laminates as shown in Fig. 6.4, the boundary conditions are 
as follows: 

  (6.85) (1) (2) (1) (2)
1 2 1( , ) ( , ) ( , ) ( , ) 0yz yz y yx h x h D x h D x h

 

Fig. 6.4  Schematic diagram of a two-layered FGPM laminate. 

and the interface continuity conditions for two-layered fully bonded FGPM lami-
nates are 

  (6.86) 
(1) (2) (1) (2)

(1) (2) (1) (2)

( ,0) ( ,0),   ( ,0) ( ,0),
( ,0) ( ,0),  ( ,0) ( ,0)

yz yz

y y

x x w x w
D x D x x x

x

in which the superscripts “(1)” and “(2)” denote material 1 (M1) and material 2 
(M2), respectively. It should be mentioned that here we are considering the more 
general and complex case of dissimilar materials. In the special case of 1= 2=0, the 
laminates degenerate to dissimilar homogeneous piezoelectric material laminates. 
However, in the case of 1 0  or 2 0 , the laminate is reduced to an FGPM 
laminate, and this case is considered for the analysis of multi-dissimilar materials. 
Substituting the solutions of Eqs. (6.71) and (6.72) for M1 and M2 into Eq. (6.86), 
we obtain the following relationship between the coefficients: 

  (6.87)  

(2) (1)
1 1
(2) (1)
2
(2) (1)

11 12 13 141 1
(2) (1)21 22 23 242 2

1 0 0 0
0 1 0 0

A A

A A
a a a aB B
a a a aB B

2

in which 
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(1) (1) (2) (1) (2) (2) (2)2 (2) (2)
11 15 15 55 11 15 55 11

(1) (1) (2) (2) (1)
12 15 11 15 11

(1) (1) (2) (1) (2)
13 15 15 55 11

(1) (2) (1) (1) (2)
14 15 11 15 11

1 ( ) (

1 ( ) ,

1 ( ) ,

1 ( )

a

a

a

a

a e e c e c k

a e e

a m e e c

a m e e

) ,

 (6.88) 

 

(1) (1) (2) (2) (1)
21 15 55 15 55

(1) (1) (2) (2) (1) (2) (2)2 (2) (2)
22 15 15 55 11 15 55 11

(1) (1) (2) (2) (1)
23 15 55 15 55

(1) (2) (1) (2) (1)
24 55 11 15 15

1 ( ) ,

1 ( ) (

1 ( ) ,

1 ( )

a

a

a

a

a e c e c

a e e c e c

a m e c e c

a m c e e

) ,
 (6.89) 

with 

  (6.90) (2) (2)2 (2) (2)
15 55 11(a m e c )

,
,

,

Combining Eqs. (6.72), (6.85), and (6.87) yields 

  (6.91) (1) 0MF

in which  

  (6.92) 

(1) (1) (1) (1) (1) (1) (1) (1)
55 1 15 1 55 1 15 1
(1) (1) (1) (1) (1) (1) (1) (1)
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31 32 33 34

41 42 43 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c P h e P h c N h e N h

e P h P h e N h N h
a a a a
a a a a

M

Where 

  (6.93) 

(2) (2) (2) (2) (2)
31 55 2 2 55 11 15 21

(2) (2) (2) (2) (2)
32 15 2 2 55 12 15 22

(2) (2) (2)
33 2 55 13 15 23

(2) (2) (2)
34 2 55 14 15 24

( ) ( )( )
( ) ( )( )

( )( ),
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a c P h N h c a e a
a e P h N h c a e a
a N h c a e a
a N h c a e a

  (6.94) 

(2) (2) (2) (2) (2)
41 15 2 2 15 11 11 21

(2) (2) (2) (2) (2)
42 11 2 2 15 12 11 22

(2) (2) (2)
43 2 15 13 11 23

(2) (2) (2)
44 2 15 14 11

( ) ( )( ),
( ) ( )( )

( )( ),
( )( )

a e P h N h e a a
a P h N h e a a
a N h e a a
a N h e a
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and 

 
T(1) (1) (1) (1) (1)

1 2 1 2A A B BF  (6.95) 

The non-zero solution F(1)requires the determinant of the coefficients matrix M 
to be zero: 

  (6.96) det 0M

Thus, the solution for  can be obtained by solving Eq. (6.96) and then the de-
cay rate can also be obtained by choosing the appropriate value of . 

6.3.4.1  Two-layered FGPM laminates 

Here PZT-4 is taken as an example for illustration. Its properties are 
,  and . 9

44 25.6 10  Pac 15 12.7 C/N,e 9
11 6.46 10  F/mk

To show the effect of material inhomogeneity on the end effect, the decay rates 
of the two-layered FGPM laminate with h2 = 0.03 m and various h1 are calculated 
from Eq. (6.96) and plotted in Fig. 6.5 for different values of 2 and 1=100. For the 
case of 1 = 2=100, the two-layered FGPM laminate is reduced to a single layer 
FGPM strip, and the decay rate can be obtained from Eq (6.79). The results ob-
tained from Eq. (6.79) and their counterparts obtained from Eq. (6.96) by numerical 
methods are also plotted in Fig. 6.5. It is observed that the results obtained from Eq. 
(6.96) agree well with those obtained from Eq. (6.79) in the case of 1 2 . Also, 
it can be seen that the decay rate varies with the inhomogeneous parameters 1 and 

2. It can be found that the decay rate of the end effects increases with the increase 
of 2. Furthermore, the decay rate decreases with an increase of the value of h1.  

 

Fig. 6.5  Variation of the decay rate k with various h1 for different values of 2 and 1=100, 
h2=0.03 m. 
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To illustrate the effect of material inhomogeneity on the end effects of FGPM 
laminates, the variation of the decay rate k with the values of 2 is plotted in Fig. 6.6 
for a two-layered FGPM with a fixed thickness . It can again be 
observed that the decay rate increases with the increase of 2. From Figs. 6.5 and 
6.6, we can see that material inhomogeneity has a significant influence on the decay 
behavior for both the two-layered case and the single strip case. 

1 2 0.02  mh h

 
Fig. 6.6  The dependency of the decay rate k on 2 for different 1 and fixed thickness 

. 1 2 0.02 mh h

6.3.4.2  Two-layered dissimilar piezoelectric material laminates 

Now we consider two-layered dissimilar piezoelectric material laminates composed 
of a first layer of PZT-4 and a second layer of PZT-5. The properties of PZT-4 are 

,  and , and the proper-

ties of PZT-5 are ,  and  

. Using the boundary conditions and the solutions for each layer, Eq. 
(6.96) can be simplified as follows: 

(1) 9
55 25.6 10  Pac

910  F/m

(1)
15 12.7 C/N,e

(2) 9
55 21.1 10c

(1) 9
11 6.46 10  F/mk

(2)
15 12.3 C/N,e Pa (2)

11 8.11k

(1) (1) (1)2 2 2 (2) (1) (2)2 2 2
55 11 15 1 2 55 11 15 2 1

(1) (2) (1) (2) (2) (1)
55 11 15 15 55 11 1 2 1 2

( )sin ( )cos ( ) ( )sin ( )cos ( )
( 2 )sin( )sin( )cos( )cos( ) 0

c e h h c e h
c e e c h h h h

h
 
(6.97)

 

or written as 

2 2
1 2 1 1 2 2 1 2 1 2sin [ ( )] sin [ ( )] sin[ ( )]sin[ ( )]h h R h h R h h h h   (6.98) 

with 
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11 22 12 21 22 11
1 2

11 22 12 21 11 22 12 21
(1) (1) (1) (1) (1) (2) (1) (2)

11 15 15 55 11 12 15 15 11 55
(2) (1) (2) (1) (2) (2) (2) (2)

21 15 15 11 55 22 15 15 55 11

2( ),       ,

,      ,
,     

A A A A A AR R
A A A A A A A A

A e e c A e e c
A e e c A e e c

2

 (6.99) 

In the case of , it can be seen from Eq. (6.98) that the roots of 1h h  do 
not depend on the piezoelectric properties, and the solution to Eq. (6.98) is 

 
2
n

h
 (6.100) 

and the decay rate is  

 
2

k
h

 (6.101) 

In the case of 1 2 , Eq. (6.98) can be solved numerically. The decay rates of 
two-layered dissimilar piezoelectric material laminates are plotted in Fig. 6.7 for 
different h1 and h2. It is observed that the decay rate decreases with increases of h1 
and h2. When h1 is small, the difference between the decay rates for different thick-
nesses of h2 is large, which implies that the magnitude of the thickness h2 signifi-
cantly affects the decay rate provided h1 is small. As h1 increases, the effect of 
thickness h2 on the decay rate decreases, and it can be negligible when h1 is suffi-
ciently large. Further, the decay rate drops quickly with the increase of h1 when 
both h1 and h2 are small, say, when h1 is less than 0.02 m and h2 is less than 0.01 m, 
as shown in Fig. 6.7. However, the decay rate varies slowly when h1 or h2 is very 
large and approaches a constant when h1 or h2 is sufficiently large, indicating again 
that the effect of the thicknesses h1 and h2 on the decay rate can be ignored when 
either h1 or h2 is sufficiently large. 

h h

 

Fig. 6.7  Variation of the decay rate k with various h2 for two-layered dissimilar piezoelec-
ric aminates. t l 
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6.4  Saint-Venant decay in multilayered piezoelectric laminates 

This section presents a summary of the development in [3]. In that work, Tarn and 
Huang developed a state space approach in the context of generalized plane strain 
for studying the Saint-Venant end effects on multilayered laminates of piezoelectric 
materials. They showed that the electromechanical interaction has significant ef-
fects on the internal field in a self-equilibrated strip or laminate. The Saint-Venant 
end effects are more pronounced and the decay length is more extensive in homo-
geneous strips or composite laminates with stiff piezoelectric layers than in those 
with soft piezoelectric layers. 

6.4.1  State space formulation 

For a piezoelectric laminate composed of n layers in a self-equilibrated state as 
shown in Fig. 6.8, Tarn and Huang developed the following state space formulation 
for a monoclinic system of class 2mm with the x3-axis being the polarization direc-
tion. They begin by considering the constitutive equation (1.6), but in the special 
form for a multilayered structure, as 

 T
k kk

f d
D Ed

  (6.102) 

where , , D, and E are defined in Eqs. (2.3) and (2.4), and f, d,  used in [3] are 
given as 

11 12 13 16 31

12 22 23 26 32
11 12

13 23 33 36 33
12 22

44 45 14 24
33

45 55 15 25

16 26 36 66 36

0 0 0 0
0 0 0 0

0
0 0 0 0

,   ,   0
0 0 0 0 0

0 0
0 0 0 0 0

0 0 0 0

f f f f d
f f f f d
f f f f d

f f d d
f f d d

f f f f d

f d  

 (6.103) 

 

Fig. 6.8  Configuration of a piezoelectric laminate. 
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In the problem they studied the laminate was subjected to self-equilibrated loads at 
x1= 0 and L (Fig. 6.8). The boundary conditions on the top and bottom surfaces are 
free from traction and electric voltage or surface charge so that 

    (6.104) 13 23 33 3 30,      0 or 0       (on )D x h

]D

3 ,3

T

The continuity conditions on the interface x3= zk (k =1, 2,…, n) require 

  (6.105) 1 2 3 1 2 3 1

13 23 33 3 13 23 33 3 1

[ ] [ ] ,
[ ] [

k k

k k

u u u u u u
D

To simplify the following derivation they separated the field variables into trans-
verse components and those in the x1-x2 plane (denoted by a subscript p), and re-
wrote Eq. (6.102) as (the subscript k here has been dropped for conciseness) 

  (6.106) 

3 33 ,3
T

33 3 33 33 33 ,3

T

T
3 33 33 3

,

,
,
,

p pp p p p

p p

s ss s s

p s s

p p

f d

D d

f f d
S

f d L
D d L

d

where 
T T

11 22 12 11 22 12 1 2
T T

13 23 13 23

2 ,      ,     ,

2 2 ,          
p p p

s s

D DD
 (6.107) 
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s
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d d x
d d x

f f d f

d L

   (6.108) 

In the derivation of the state space formulation for decay analysis, Tarn and Huang 
[3] took 1 2 3 33 3,  ,  ,  ,  ,  ,  and su u u D  as the primary variables and then ar-
ranged the basic equations in the form 

 
,3 3

T 1 T 1
3,3 3 33 3 3 33 33 3

1 T 1 1
,3 33 33 33 33 3

,
( )

s ss s

p pp p p pp p

p pp p

u
u s

d D
,d D

u L d L S
S S L u S S S

d S L u
  (6.109) 

  (6.110) 

T 1 1
,3 3 33 33 3

T
33,3

T T
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,
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  (6.111) 
1 1

3 33 33 3
T

( )p pp p p p

p s s

DS GL u S d
D L d

,

2

1

x
x

where 

    (6.112) 
1 T 1

3 3 33 33 33 33 33 33
T 1 1 T 1

33 33 33 33 33 3
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p pp p p pp p

d s s d d
d d

S S d G I d d S
d S d d S S

 1 1T

2 2

/ 0 /
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0 / /p
u x
u x

u L  (6.113) 

The state space equations (6.109) and (6.110) of a linear piezoelectric material can 
be rewritten in matrix form as 

 

1 14 44 451

15 45 552

31 32 37 333
1

41 42 33 33

133 51 52 31 41

23 52 62 32 42

33 1

3 84 14 15

0 0 0 0
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l s su

l l a du

l l d
x l l l l

l l l l

D l l l
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13

23

33

3

u
u

D

 (6.114) 

where the field variables are independent of x2 for a problem of generalized plane 
strain, and 

  (6.115) 
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Equation (6.111) can be further written as 

 
33

11 11 12 17 18
1

22 21 22 27 28 3
21

12 31 32 37 38

b b b b
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b b b b D
ux
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 (6.117) 
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d dD
d dD

 (6.118) 
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where 

    (6.119) 
11 12 17 18

1 T 1 1 1
21 22 27 3 28 33

31 32 37 38

,   ,   pp pp p pp p

b b b b
b b b b
b b b b

S GH S S S d

Equations (6.114), (6.117), and (6.118) constitute all the state field formulations 
needed in the decay analysis. 

6.4.2  Eigensolution and decay rate equation 

To obtain the decay solutions to the space state differential equations (6.114) above, 
suppose that the solution has the following form: 

1

1

1 2 3 13 23 33 3 13 23 33 3
( )

13 23 33 3

{ , , , , , , , }

                                                    

x
k k

x a
k

u u u D e u v w

e u v w
 

 (6.120) 

where  and  are the decay factors to be determined; u, v, w,  and  
are unknown functions of x3. Tarn and Huang [3] indicated that the first exponential 
function depicts the decay from the end x1=0 with a decay rate ; the second one 
depicts the decay from the end x1=L with a decay rate . As x1 increases, the influ-
ence of the first term decreases whereas the influence of the second term increases. 
For a semi-infinite strip, L , the second term vanishes, and only the decay from 
x1=0 needs to be considered. 

,  ,  ,u v w

Substitution of Eq. (6.120) into Eq. (6.114) yields two sets of equations as fol-
lows: 

 
3 3

d d,     
d dk k k k kx x
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where 
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T

13 23 33 3
T

13 23 33 3

,k k

k k

u v w

u v w

X

X
 (6.123) 

It is noted that Eq. (6.121)1 is mathematically the same as Eq. (6.121)2 if = – . 
This indicates that the decay rates from both ends are the same and both equations 
result in the same through-thickness variation of the field variables. Consequently, 
Tarn and Huang treated Eq. (6.121)1 as the first part and Eq. (6.121)2 as the second 
part.  

The solution of Eq. (6.121)1 is 

  (6.124) 3 3 1( ) ( ) ( )
kk k k kx x z zX P X 1

)

i

k

where the transfer matrix Pk is given by 

  (6.125) 3 1(
3 1( ) k kA x z

k kx z eP

Using the continuity condition (6.105) and Eq. (6.124), we have 

  (6.126) 1 1 1( ) ( ) ( ) ( 1,2, , )
kk k k k k kz z z z k nX P X

Applying Eq. (6.126) recursively yields 

 3 3 1 3( ) ( ) ( )         ( )
kk kx x h z x zX T X

)

 (6.127) 

where 
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 (6.128) 

Letting 3 ,x h  Eq. (6.127) becomes 

  (6.129) ( ) ( ) ( )nh hX T X h

Denoting 

 

TT
13 23 33 3,     ,

( ) ( )( ) ( )
( ) ( )( ) ( )

uu us

su ss

u v w

h hh h
h hh h

U S
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 (6.130) 

and considering S(h)=S(–h)=0, we have 
  (6.131) ( ) ( ) 0su h hT U

to which the non-trivial solution U(h) exists if the determinant of the coefficient 
matrix vanishes, 

 det ( ) 0su hT  (6.132) 
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Then, the decay factor , subsequently U(h), can be determined from Eq. 
(6.132). 

The primary state variables are determined from 

 3 3 3 3( ) ( ) ( ),       ( ) ( ) ( )uu sux x h x x hU T U S T U  (6.133) 

When both the top and bottom surfaces are grounded, i.e, =0, Eq. (6.130) be-
comes 
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 (6.134) 

Again, with the boundary conditions the decay rate is determined 
from 

ˆ ˆ( ) ( ) 0,h hS S

 ˆdet ( ) 0su hT  (6.135) 

Once the primary state variables have been determined, the other stress and 
electric displacement components are determined from Eqs. (6.117) and (6.118) as 
follows: 
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 (6.137) 

As a special case of multilayered structures, Tarn and Huang considered a 
monoclinic piezoelectric strip and developed the corresponding formulations in [3]. 
For piezoelectric materials of the orthorhombic system of class 2mm, Eq. (6.121)1 
reduces to  
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 (6.138) 
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 (6.139) 

Equations (6.136) and (6.137) also reduce to 
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Tarn and Huang found from Eqs. (6.138) and (6.139) that the field variables in the 
x1-x3 plane are associated with the antiplane shear 23, and the antiplane deforma-
tion and shear stress are associated with the electromechanical field in the x1-x3 
plane through . The in-plane and antiplane field variables are coupled unless 
d15=0. Only in orthorhombic piezoelectric materials with d15=0 does a 2-D loading 
give rise to plane deformation, and the antiplane shears 12, 23 and displacement u2 
are independent of the electric field. From the material properties of various piezo-
electric materials listed in Table 1 of [12], all have non-zero d15. This suggests that 
the applicability of a 2-D formulation for piezoelectric strips without accounting for 
the antiplane field variables is very limited. The plane strain or plane stress assump-
tion is invalid for electroelastic analysis in general. 

6.5  Decay rate of piezoelectric-piezomagnetic sandwich structures 

In this section the decay of Saint-Venant end effects for plane deformations of pie-
zoelectric (PE)-piezomagnetic (PM) sandwich structures presented in [4] is de-
scribed. The structures studied are subjected to a self-equilibrated mag-
neto-electro-elastic load. The upper and lower surfaces of the sandwich structure 
are mechanically free, electrically open or shorted as well as magnetically open or 
shorted. 
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6.5.1  Basic equations and notations in multilayered structures 

In [4], Xue and Liu considered a sandwich structure as shown in Fig. 6.9. The PE 
layers and PM layers are assumed to possess transversely isotropic properties. The 
x3-axis is the polarization direction of both two materials. The thickness of the 
sandwich plate is 2h and the thickness of the mid-layer is 2f. The constitutive equa-
tions of the PE and PM media in the context of plane strain are, respectively, given 
by 

  (6.145) T( ) ,    ,     e e e e e e e e e e e ec e D e B e

 

Fig. 6.9  Piezoelectric-piezomagnetic sandwich plate. (a) PE-PM-PE structures; (b) PM- 
PE-PM structures. 

and 
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where the superscripts “e”and “m”denote the quantities to be associated with PE 
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 (6.147) 
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The strain-displacement relations (1.2) and governing equations (1.10) are now in 
the form 

 
, ,

, , ,

,
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i j j in
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u u

D B

3x h

 (6.148) 

For the boundary conditions of the problem Xue and Liu studied, the structures are 
considered to be subjected to self-equilibrated magneto-electro-elastic loads at x1 = 
0. The upper and lower surfaces of the structures are mechanically free, and electri-
cally shorted (S) or open (O) and magnetically open or shorted, i.e., 

  (6.149) 
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The continuity conditions on the interface x3 = ±f  require 
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Xue and Liu also employed the dimensionless variable approach, which is use-
ful for simple deduction and calculation. In setting forth the normalization formula-
tion, four key properties are selected as the reference values: (a) half of the sand-
wich thickness h; (b) an elastic modulus c0; (c) a piezoelectric constant e0; and (d) a 
piezomagnetic constant h0. The geometry, mechanical displacements, electrical 
potential, magnetic potential and the material constants can then be normalized as 
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where  0 0 0 0 0 0 0 0 2 0 0 0 2 0/ ,  / ,  ( ) / ,  and ( ) / .E c e H c h e c h c

6.5.2  Space state differential equations for analyzing decay rate 

Making use of Eqs. (6.145), (6.146), and (6.151), a set of normalized form of con-
stitutive equations for both PE and PM materials is obtained as 
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 T 0( ) ,    ,     e e e e e e e e e e e eS d D d B e  (6.152) 

and  

 T 0( ) ,    ,     m m m m m m m m m m m mS g D B g m  (6.153) 

where 
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and the remaining variables are defined in the same way as those of Eq. (6.147). 
For convenience, Eq. (6.152) is rewritten in the following form: 
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From Eqs. (6.155), (6.159), and (6.161), we have 
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Equations (6.148), (6.156), and (6.162)-(6.164) lead to 

 3,3 11 11 33 33 13 3
e e e e e eu n n n De  (6.166) 
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where 
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Finally, making use of Eqs. (6.148), (6.157), (6.158), (6.160), and (6.162), we 
obtain 
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 (6.168) 

Equations (6.163), (6.164), (6.166), and (6.168) consist of the differential equa-
tions of PE materials for decay analysis. Similarly the differential equations for PM 
materials can be obtained as follows: 
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where 
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   (6.170) 

6.5.3  Solutions to the space state differential equations 

To obtain the decay solutions to the space state differential equations described in 
Subsection 6.5.2, denote 1 3 13 33 3 3{ , , , , , , , }.n n n n n n n n nu u D BK  As 1x  increases, 
the influence of Kn which determines the self-equilibrated state at the end decreases. 
Then the solutions to be found can be expressed in the form 

 1
13 33 3 3
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Noting that 1 1
eu u m  on the interface, we can conclude that  Sub-.e m



242    Chapter 6  Saint-Venant Decay Problems in Piezoelectricity 

stitution of Eq. (6.171) into Eqs. (6.163), (6.164), (6.166), (6.168), and (6.169) 
yields 
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Then the solution to Eq. (6.172) is 

 3 3( ) ( ) ( ) ( ,  ;  1,2)n n n
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where 
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Using the solution (6.176), Xue and Liu derived characteristic equations for de-
cay analysis by considering four types of boundary conditions of PE-PM-PE sand-
wich structures.  
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Case 1: Electrically open and magnetically shorted: 
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Using continuity conditions (6.150) and Eq. (6.179), we have 
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When 3x h , Eq. (6.180) becomes 
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and considering S(h)=S(–h)=0, we have 

  (6.184) ( ) ( ) 0su h hT U

If there is a nonzero solution U(h) to Eq. (6.184), it must be 

 det ( ) 0su hT  (6.185) 

Thus, the decay factor  can be determined from Eq. (6.185), which is the charac-
teristic equation for Case 1. 

Case 2: Electrically open and magnetically open: 

  (6.186) 13 33 3 30,     0,     0      (on )e e e eD x h

In this case, the state space variable defined in Eq. (6.183) and the correspond-
ing efficient matrices Ae and Am become 
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Then, the corresponding characteristic equation can be obtained in the same way 
as in Case 1. 

Case 3: Electrically shorted and magnetically shorted: 

  (6.190) 13 33 3 30,     0,     0      (on )e e e eB x h

In this case, the state space variable defined in Eq. (6.183) and the correspond-
ing efficient matrices Ae and Am become 
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Case 4: Electrically shorted and magnetically open: 

 13 33 30,     0,     0      (on )e e e e x h  (6.194) 

In this case, the state space variable defined in Eq. (6.183) and the correspond-
ing efficient matrices Ae and Am become 
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For the PM-PE-PM sandwich structures, the relevant characteristic equations 



246    Chapter 6  Saint-Venant Decay Problems in Piezoelectricity 

can be obtained similarly. 
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Chapter 7  Penny-Shaped Cracks 

This chapter applies the formulation presented in the first two chapters to a range of 
piezoelectric problems containing penny-shaped cracks. It includes a penny-shaped 
crack in an infinite piezoelectric plate, a piezoelectric strip, a fiber embedded in a 
matrix, a piezoelectric cylinder with elastic coating, and the fundamental solution 
for penny-shaped crack problems. 

7.1  Introduction 

Over recent years, significant efforts have been made to study fracture behavior of 
piezoelectric materials in the presence of cracks [1-3]. Among various crack 
problems, a penny-shaped crack in a piezoelectric cylinder is most popular and is 
the subject of many reports in the literature [4-10]. Using the Fourier and Hankel 
transforms, Narita et al. [4] obtained the stress intensity factor, the total energy 
release rate, and the mechanical strain energy release rate for a penny-shaped crack 
in a piezoceramic cylinder under mode  loading. Yang and Lee [5], using the 
potential function approach and Hankel transform, and Lin et al. [6], using Fourier 
and Hankel transforms, investigated a piezoelectric cylinder with a penny-shaped 
crack embedded in an infinite matrix. The field intensity factors (FIFs) for different 
loading cases were respectively analyzed in [7-10], and the energy release rate 
(ERR) was derived by Eriksson [11]. Yang and Lee [12] investigated the problems 
of a penny-shaped crack in a piezoelectric cylinder and in a piezoelectric cylinder 
surrounded by an elastic medium. Wang et al. [13] analyzed the problem of a 
penny-shaped crack in a piezoelectric medium of finite thickness. Li and Lee [14] 
investigated the effects of electrical load on crack growth of penny-shaped 
dielectric cracks in a piezoelectric layer. Feng et al. [15] considered the dynamic 
fracture behavior of a penny-shaped crack in a piezoelectric layer.   

The penny-shaped crack problem can be treated as a limiting case of a sphe- 
roidal crack, or directly as a crack with flat surfaces. The spheroidal problem is a 
piezoelectric analog of Eshelby’s elastic problem [16]. That approach was taken by 
Wang [17], Kogan et al. [7], Huang [18], and Chiang and Weng [19]. The electro- 
elastic analysis of a penny-shaped crack in a piezoelectric material is of practical 
importance, since it represents an idealization of internal flaws that are inherent in 
many piezoelectric materials [20]. The fracture behavior of a penny-shaped crack 
embedded in an infinite piezoelectric material was first studied by Kudryavtsev et al. 
[21], who gave a special solution of the stresses and displacement fields. Wang [17], 
using the Fourier transform method, presented the expressions of the crack opening 
displacement, interaction and the stress intensity factors. Chen et al. [22] presented 
a three-dimensional (3-D) closed-form solution for a penny-shaped crack in 3-D 
piezoelectric ceramic subjected to normal mechanical loading and electrical charges 
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on crack faces. Chen and Shioya [9] performed an exact analysis of a penny-shaped 
crack in a 3-D piezoelectric ceramic under shear loading over the crack faces. 
Huang [18], utilizing the eigenstrain formulation and Cauchy’s residue theorem, 
presented a unified explicit expression for the electroelastic fields inside a flat el-
lipsoidal crack. Wang et al. [13] developed a model to treat a penny-shaped crack in 
a finite piezoelectric layer subjected to axially symmetric loading. Kogan et al. [7] 
derived explicit expressions for the stress intensity factors of a penny-shaped crack 
in a piezoelectric material under various remote loading conditions. However, most 
of the work has not considered the contribution of electrostatic energy to the crack 
driving force, and none of the work has provided complete solutions to the fracture 
mechanics of a penny-shaped crack in an infinite piezoelectric material when sub-
jected to axisymmetric loading. Lin et al. [20] extended the same approach to ana-
lyze the electroelastic interaction of a penny-shaped crack in a piezoelectric ceramic 
under mode  loading, but they did not explicitly give a closed-form solution of 
the crack driving force as a function of the electrostatic energy. Qin et al. [23] pre-
sented a solution for a penny-shaped crack in a piezoelectric cylinder with elastic 
coating. In this chapter we focus on the development presented in [6,13,20,23-25]. 

7.2  An infinite piezoelectric material with a penny-shaped crack 

All formulations in this section are taken from the work of Lin et al. [20]. In their 
paper, they consider an infinite piezoelectric ceramic containing a penny-shaped 
crack of radius  under axisymmetric electromechanical loads (Fig. 7.1). For 
convenience, a cylindrical coordinate system ( ) originating at the center of 
the crack is used, with the z-axis perpendicular to the crack plane. The piezoelectric 
material is assumed to be transversely isotropic with the poling direction parallel to 
the z-axis and hexagonal symmetry. It is subjected to the far-field of a normal 
stress, and a uniform electric displacement . 

a
, ,r z

zz D D
The constitutive equations for piezoelectric materials which are transversely 

isotropic and poled along the z-axis can be written as [26] 

 12 , 11 13 , 31 ,
r

r r z z z
uc u c c u e
r

 (7.1)  
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 (7.3) 

   (7.4) 55 , , 15 ,( )rz z r r z rc u u e

  (7.5) 15 , , 11 ,( )r z r r zD e u u



7.2  An infinite piezoelectric material with a penny-shaped crack    251 

 31 , 33 , 33 ,
r

z r r z z z
uD e u e u
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  (7.6) 

The governing equations can then be expressed in terms of displacements and 
electric potential as 

 ,
11 , 55 , 13 44 , 31 15 ,2 ( ) ( )r r r

r rr r zz z rz rz
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r r

0  (7.7) 
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13 55 , 33 , 55 , 15 , 33 ,( ) r z z r r

r rz z zz z rr rr zz
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r rz z rr z zz rr zz
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e e u e u e u
r r r

0

,z

 

(7.9) 

The electric field components may be written in terms of an electric potential          
 (r,z) as 

 , ,     r r zE E  (7.10) 

 

Fig. 7.1  A penny-shaped crack embedded in an infinite piezoelectric material. 

In a vacuum, the constitutive equations (7.5) and (7.6) and the governing 
equation (7.9) become 

  (7.11) 0 ,      r r zD E D E0 z

 ,
, , 0r
rr zzr

 (7.12) 
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The problem of determining the distribution of stress and electric displacement in 
the vicinity of the crack is then equivalent to that of finding the distribution of stress 
and electric displacement in the semi-infinite piezoelectric material  

, subjected to the following boundary conditions: 
0,z

0 r

  (7.13) ( ,0) 0  (0 ),      ( ,0) 0   (0 ),
( ,0) 0  ( )

zr zz

z

r r r r
u r a r

a

c
z

  (7.14) ( ,0) ( ,0),   ( ,0) ( ,0)     (0 ),      
( ,0) 0  ( )

c c
r r z zE r E r D r D r r a
r a r

  (7.15) ( , ) ,     ( , )      ( )zz zr z E r z E z

where  are respectively the electric field and electric displacement in 
the void inside the crack. The far-field normal stress can be expressed in terms of 

 as 

 and c
rE D

E

 11 12 33 13 31
0

11 12

( ) 2c c e c e E
c c  (7.16) 

where  is a uniform normal stress for a closed-circuit condition with the 
potential forced to remain zero. 

0

The solution to the boundary value problem stated above is as follows [20]:  
Assume that the solutions ,   and r zu u  are of the form 
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1

2( , ) ( )exp( ) ( )dr j j j
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u r z a A z J r a r  (7.17) 
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00
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b
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where  are the unknowns to be solved, ( ) ( 1,2,3)jA j j ( j=1,2,3) are the 
roots of the characteristic equation (2.8), and J0( ) and J1( ) are the zero and first 
order Bessel functions of the first kind, respectively. The real constants a , b , and 
c  can be obtained by applying far-field loading conditions as 

 13 13 33 33 31
2
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11 12 13 31 11 12 33
2
13 33 11 12
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The constants aj and bj are 

 

2 2
31 15 33 55 13 55 33 15

2 2
55 11 33 15 13 55 31 15
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55 11 13 55
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( ) ( )
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j j j

j j
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e e c c c c e e
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b
e e

 (7.21) 

To determine the coefficients Aj, applying the Fourier transform to Eq. (7.12), 
we have 

 00

2 ( )sinh( ) ( )d (0 )c C z J r r a  (7.22) 

where the superscript “c”stands for the variable associated with the void inside the 
crack, and C( ) is unknown. Thus, the boundary conditions (7.13)1 and (7.14) yield 
the following relations between unknown functions: 

 

31 2
1 2 3

1 2 3

31 2
1 2 3

1 2 3

( ) ( ) ( ) 0,
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ff fA A A

bb bA A A
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 (7.23) 

where  

  (7.24) 2
55 15( 1) ( 1,2,j j j jf c a e b j

Making use of the mixed boundary conditions (7.13)2,3, we have 
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where 
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 (7.26) 

It is noted from Eq. (7.26) that D( ) is the only unknown in Eq. (7.25). The set of 
dual integral (7.25) may be obtained by using a new function defined by ( )

 
2 1

0
( ) ( )sin( )daD a

F
 (7.27) 
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Having satisfied Eq. (7.25) for , the remaining condition for  
leads to an Able integral equation for . The solution for  is expressed 
by 

a r
(

0 r a
) ( )

  (7.28) ( )

The displacements and electric potential near the crack border are then obtained as 

 

1/ 23 1/ 2I 1 2 2 2
1 1 1

1
1/ 23 1/ 2I 1 2 2 2

1 1 1
1

1/ 23 1/ 2I 1 2 2 2
1 1 1

1

cos sin cos ,

cos sin cos ,

cos sin cos

r j j j
j

j
z j

j j

j j
j

j j

K r
u a d

F
dK r

u
F

b dK r
F

 (7.29) 

where the polar coordinates r1 and 1 are defined as  

 
1/ 22 2 1

1 1( ) ,     tan zr r a z
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 (7.30) 

Substituting Eq. (7.29) into the constitutive equations (7.1)-(7.6), we obtain the 
singular parts of the stress and electric displacements in the neighborhood of the 
crack border as 
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The stress intensity factor KI for the crack model is obtained as  

 I
2lim ( ,0) 2( )zz

r a
K r r a a  (7.34) 

The electric displacement intensity factor KD is given by 



7.3  A penny-shaped crack in a piezoelectric strip    255 

 
3

I
1

1lim ( ,0) 2( )D z j j
r a j

K D r r a h d K
F

 (7.35) 

7.3  A penny-shaped crack in a piezoelectric strip 

In this section we present a brief review of the results given in [13]. Consider a 
piezoelectric layer with a penny-shaped crack of radius a as shown in Fig. 7.2.  

 

Fig. 7.2  A piezoelectric strip with a penny-shaped crack. 

For the sake of convenience, Eqs. (7.17)-(7.19) are rewritten in the form 
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where U={ur, uz, }T, F( ) is an unknown function to be determined,  and Aj are 
eigenvalue and eigenvector respectively of Eq. (2.6) which is rewritten as follows: 
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In terms of these eigenvalues and eigenvectors, a general expression for the dis-
placements and electric potential can be written as  
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Substituting Eq. (7.38) into the constitutive equations (7.2), (7.4), and (7.6) yields 

  (7.40) 
0

{ ( , )} [ ( )][ ]{ }d
rz

zz

z

T r z G r B F
D

where 

 
1 55 1 55 3 15 4

2 13 1 33 3 33 4

3 31 1 33 3 33 4

( ) ( ) ,

( ) ( ) ,

( ) ( )

z

z

z

B z c A c A e A e

B z c A c A e A e

B z e A e A A e

 (7.41) 

Noting that superscripts “( )”and “( )”represent the related variables associated 
with the materials occupying the lower and upper parts (see Fig. 7.2) and assuming 
that {t(0)(r)} represents { (r, =0)} or { (r, =0)}, the boundary condi-
tions can be rewritten as   

( )T ( )z ( )T
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The mixed boundary conditions along the crack line are 
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utilizing the inverse Hankel transform to Eq. (7.40) as    
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Substituting Eq. (7.44) into Eq. (7.38), we obtain 
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where  
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From Eq. (7.47), the solution of  can be expressed in terms of an unknown 

vector  as 
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Define  then it follows from Eq. 1[ ( )] [ ( )] [ ( )] ,K M M (7.50) that 
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where 
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The solution of {d(r)} can be obtained by substituting the crack surface condition 
(7.43) into Eq. (7.51): 
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where 
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Equation (7.53) can be used for solving {d(r)} numerically. Once {d} is solved 
from Eq. (7.53), the stress and electric displacement intensity factors can be calcu-
lated using the following equation: 
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The displacement and electric potential jumps between the upper and lower faces of 
the crack can be calculated from (7.46) and (7.50) as 
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Integration of Eq. (7.56) with respect to  yields 
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7.4  A fiber with a penny-shaped crack embedded in a matrix 

This section focuses on problems of a piezoelectric cylindrical fiber with a 
penny-shaped crack embedded in a matrix. It is a brief summary of the development 
presented in [6]. Consider a piezoelectric fiber of infinite length with radius b, em-
bedded in an elastic matrix having Young’s modulus E and Poisson’s ratio  (see 
Fig. 7.3). The fiber contains a penny-shaped crack whose center is located at the 
origin of the fiber (Fig. 7.3), and is subjected to the normal stress,  and 
electric field,  at infinity.  

,zz

zE E

The constitutive and governing equations for both piezoelectric fiber and void 
inside the crack are given by Eqs. (7.1)-(7.12). The related field equations for an 
elastic matrix are 
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Fig. 7.3  A piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix.  
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where the superscript “E ”represents the corresponding variable associated with the 
elastic matrix, the constant 2G=E/(1+ ) is the modulus of rigidity, and 

. 2 /(1 2G
Due to the symmetry of the problem about the plane of z=0, we consider the 

semi-infinite region . The related boundary conditions 
can be expressed in the form 
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Following the procedure described in Section 7.2, the solutions of  , ,  r zu u

,  ,and E E
ru zu  can be assumed in the form 
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where Aj and Bj are the unknowns to be solved, I0( ) and I1( ) are the zero and first 
order modified Bessel functions of the first kind, and K0( ), K1( ), and K2( ) are the 
zero, first and second order modified Bessel functions of the second kind, respec-
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tively. The real constants  are determined from far-field 
loading conditions. In the present problem, these constants are obtained as  

, , , ,  and a b c d e
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The constants  are defined in Section 7.2, and ,  ,  and j ja 2 21/ ,j j  

, and jb bj
2

j j ja a . The boundary conditions (7.60) and (7.61) lead again 

to Eq. (7.23). 
Application of the mixed boundary conditions in Eq. (7.60) gives rise to a pair 

of dual integral equations: 
3

0 00 0
1

00

( ) ( )d ( ) ( )d   (0 ),
2

( ) ( )d 0 ( )

j j j j
j

FD J r g B I r r a

D J r a r b
 

(7.71) 

where D( ) and gj are defined in Eq. (7.26). The solution of integral equation (7.71) 
may be obtained by using a new function , defined by ( )
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The function  is governed by the following Fredholm integral equation of 
the second kind: 
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where the functions  are given by ( , ) ( 1,2,3)jE j
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with 
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C  is the determinant of the square matrix C and Qi,j( ) are the co-factors of the 
elements ci,j( ). Once the solution  is obtained, the stress intensity factor KI 
for the exact crack model can be calculated by  

( )
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2lim {2( )} ( ,0) (1)zz
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The electric displacement intensity factor KD can also be calculated by 
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where  31 33 33 .j jh e a e b

7.5  Fundamental solution for penny-shaped crack problem 

The fundamental solution presented in [24] for a penny-shaped crack subjected to a 
point load is reviewed in this section.  

7.5.1  Potential approach 

Consider a transversely isotropic piezoelectric material weakened by a 
penny-shaped crack subjected to a pair of point forces P and a pair of point surface 
charge Q as shown in Fig. 7.4. The linear constitutive relations used in this problem 
are defined as 
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Introducing a new function U=u+iv, the governing equation (1.10) can be re-
written as 

2
11 66 55 , 11 66 13 55 , 15 31 ,
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(7.87) 
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Fig. 7.4  A penny-shaped crack subjected to point loads. 
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where 2 2 2 2/ / ,  = / /x y x i y  and an overbar indicates the 
complex conjugate value. The general solution to Eqs. (7.87)-(7.89) can be written 
in the following form: 
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and  and are the roots of Eq. (2.8). 2
4 66 44,  / ,i iz z c c 2 ( 1,2,3)i i

Substitution of Eq. (7.90) into Eqs. (7.85) and (7.86) yields the following 
expressions for stresses and electric displacements: 
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where 1 2, 2 ,xx yy xx yy xy z xz yi i z  and x yD D iD  

and 1 2i i13 33 1 33 2 2 31 33 1 33,  .i i i i i i i ic c e e e  

7.5.2  Solution for crack problem 

Having obtained general expression of stresses and electric displacements in the 
potential theory, we consider now a flat crack S in a piezoelectric material, with 
arbitrary pressure p and surface charge q applied symmetrically to the upper and 
lower crack faces. The boundary conditions are 
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harmonic functions G and H: 
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The two functions G and H are defined as 
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where  (N) and  (N) represent the crack face displacement w and electric 
potential  at point N(r, ,0), respectively. R(M,N) is the distance between the points 
M ( , ,z) and N(r, ,0). Making use of the property of the potential of a simple 
layer, the condition 0,  ( , ,0)w x y  is already identically satisfied. 
Moreover, the following relations hold true inside the crack: 
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Making use of Eqs. (7.90), (7.95), and (7.98), we obtain the following relations: 
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ci and di are then solved from Eqs. (7.96) and (7.99) as follows:  
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Taking consideration of the first condition in Eq. (7.94), the following 
integro-differential equations are obtained: 
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where  
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Equation (7.101) can be rewritten as 
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where  2
1 4 2 31/[4 ( )].A g g g g

7.5.3  Fundamental solution for penny-shaped crack problem 

For the case of a penny-shaped crack, the solutions to Eq. (7.103) are obtained as 
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7.5  Fundamental solution for penny-shaped crack problem 
where a is the radius of the crack and  
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To obtain the whole elastoelectric field, substitution of Eq. (7.104) into (7.97) gives 
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where the Green’s function K reads 
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where 0 0 0 0( , , ),  ( , ,0),  ( , ,0).M M z N N r N N  
If the penny-shaped crack is subjected to a pair of normal point forces P in op-

posite directions at the points 1 1 1( , ,0 ),  a

2),  a
 and a pair of point charges Q 

acting at the points 2 2( , ,0  as shown in Fig. 7.4. Making use of the 
property of the  -function, the fundamental solution for the elastoelectric field is 
obtained as 
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7.6  A penny-shaped crack in a piezoelectric cylinder  

In this section, the developments in [25] for the response of elastic stress and elec-
tric displacement in a long piezoelectric cylinder with a centered pennyshaped crack 
are presented. The long piezoelectric cylinder is subjected to two types of boundary 
conditions: (a) the piezoelectric cylinder is inserted in a smooth rigid bore of radius 
b; (b) the surface of the piezoelectric cylinder is stress and electric charge free. 
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Based on the potential function approach and Hankel transform, a system of dual 
integral equations is obtained, and then reduced to a Fredholm integral equation of 
the second kind. Numerical results of various field intensity factors for PZT-6B 
cylinder are obtained to show the effect of the ratio  on the fracture behavior 
of the cracked piezoelectric cylinder (a is the radius of the crack and b is the radius 
of the PZT-6B cylinder).  

/a b

7.6.1  Problem statement and basic equation 

Consider a piezoelectric cylinder of radius b containing a centered penny-shaped 
crack of radius a under axisymmetric electromechanical loads (Fig. 7.5). For con-
venience, a cylindrical coordinate system ( ) originating at the center of the 
crack is used, with the z-axis along the axis of symmetry of the cylinder. The cylin-
der is assumed to be a transversely isotropic piezoelectric material with the poling 
direction parallel to the z-axis. It is subjected to the far-field of a normal 
stress,

, ,r z

( )z r and a normal electric displacement, ( )zD D r . 

 

Fig. 7.5  Penny-shaped crack in a piezoelectric cylinder. 

The constitutive equations are defined in Eqs. (7.1)-(7.6). The equilibrium equa-
tion and the equation of electrostatics for this problem are given as 
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In the derivation of the analytic solution, the following potential functions are 
introduced [5,27]: 
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 (7.116) 

where  is the potential function, and k1 and k2 are unknown constants to be 
determined. 
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Substituting Eq. (7.116) into Eqs. (7.1)-(7.6), and then into Eq. (7.115), we have 
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Obviously, Eq. (7.118) leads to Eq. (2.8). According to Eq. (2.8) and the princi-
ple of superposition, the governing equation (7.117) becomes 
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(7.119)

 

where /i i iz z n z , i  are the roots of Eq. (2.8) and  
are the corresponding potential functions. The displacement and electric potential 
equations are then in the form 

( , ) ( 1,2,3)i r z i
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where and ( ) are determined from Eq. (7.118).  1ik 2ik 1, 2,3i
Following the procedure presented in [27], we take the solution of Eq. (7.119) in 

the form 

   
 

0 0 0

1( , ) ( ) cos( ) ( ) exp( ) ( ) di i i i
i

rr z A I z B z J r  (7.121)  

where ( ),  ( ),  ( 1,2,3)i iA B i  are the unknown functions to be determined.  
Then we have expressions of the components of displacement, stress and elec-

tric displacement in the following form: 
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where 
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7.6.2  Derivation of integral equations and their solution 

In the derivation, we consider separately two sets of boundary conditions. 
Case 1: In the first case it is assumed that the piezoelectric cylindrical surface is 

free from shear and is supported in such a way that the radial component of the dis-
placement vector vanishes on the surface. Such a situation would arise physically if 
the piezoelectric cylinder was embedded in a rigid cylindrical hollow (of exactly the 
same radius) and was then deformed by the application of a known stress and an 
electric displacement at the end of the piezoelectric cylinder. The problem of deter-
mining the distribution of stress and electric displacement in the vicinity of the 
crack is equivalent to that of finding the distribution of stress and electric displace-
ment in the semi-infinite cylinder , 0 ,when its plane boundary  
is subjected to the condition: 

0z r a 0z

    (7.132) 
( ,0) 0,   ( ,0 ) ( ,0 ),   ( ,0 ) ( ,0 )  (0 ),
( ,0) 0,    ( ,0) 0      ( ),
( ,0) 0    (0 )

z z z r r

z

rz

r D r D r E r E r r
u r r a r b

r r b
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and its curved boundary is subjected to the conditions: r b

   (7.133) ( , ) 0,    ( , ) 0,    ( , ) 0r rz ru b z b z D b z

From the boundary conditions (7.132) and (7.133), and making use of the Fou-
rier inversion theorem and the Hankel inversion theorem, we find that 
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11 32 31 12 23( ) ( ) ( ) ( ) ( )h h h h h  (7.138) 

 1 13 22 12 23 3 12 33 13 32 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i iN h h h h g h h h h ig  

23 32 22 33 1( ) ( ) ( ) ( ) ih h h h g  (7.139) 
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22 31 21 32 1( ) ( ) ( ) ( ) ih h h h g
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with  
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From Eqs. (7.132)1,4, we can obtain a system of dual integral equations: 
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Thess equations can be solved by using the function ( ) , defined by  
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we can obtain a Fredholm integral equation of the second kind in the form  
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Case 2: In the second case we assume that the piezoelectric cylindrical surface 
is stress free. The conditions (7.132) remain the same, and the boundary conditions 
(7.133) are replaced by the following conditions: 
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Performing a procedure similar to that in Case 1, we have 
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in which  
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and the remaining steps are the same as those in Case 1. 
Then we can obtain a Fredholm integral equation of the second kind which is 

exactly the same as that given in Eqs. (7.143) and (7.144), except that the ker-
nel takes the form ( , )L
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The field intensity factors are then expressed in the form 
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in which 
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,

,

,

Eand I ,  ,  , and DK K K K  are the stress intensity factor, electric displacement in-
tensity factor, strain intensity factor and electric field intensity factor, respectively. 

7.6.3  Numerical results and discussion 

The material used in the numerical analysis is PZT-6B ceramic and its material 
properties are as follows: 

Elastic constants (1010 N/m2) :  11 12 33 5516.8,  6.0,  16.3,  2.71;c c c c
Piezoelectric constants(C/m2):  15 31 334.6,  0.9,  7.1;e e e
Dielectric permittivities (10–10 F/m): , . 11 3336,  34 33 34d
From Eqs. (7.122)-(7.129), it is clear that once the functions ( ),  ( )i iA B are 

known, the stress and electric displacement inside the piezoelectric cylinder can be 
obtained. Determination of the stress intensity factor requires solution of the func-
tion ( ) . The Fredholm integral equation of the second kind (7.146) can be 
solved numerically using a Gaussian quadrature formula. Then we can estimate all 
intensity factors using Eq. (7.157). 

It can be found easily that the stress intensity factor is not dependent on the me-
chanical loading unless the piezoelectric cylinder is under the far-field stress and 
electric displacement in these two loading cases. This observation confirms the re-
sults presented in [4,5]. The variation of the normalized stress intensity factor, elec-
tric displacement intensity factor and strain intensity factor with the ratio of crack 
radius to PZT-6B cylinder radius is shown in Fig. 7.6. It can be seen that all the 



278    Chapter 7  Penny-Shaped Cracks 

intensity factors have a similar distribution along the dimensionless crack radius. 
When the value of  increases from 0.0 to 0.65 the normalized intensity factors 
remain constant, but when the value exceeds 0.65, all intensity factors increase rap-
idly. However, the intensity factors increase more rapidly in Case 2 than in Case 1, 
which may be caused by the different loading conditions on the surface of the pie-
zoelectric cylinder in radial direction. 

/a b

 

 
Fig. 7.6  (a) Normalized stress intensity factor against the ratio a/b; (b) Normalized electric 
displacement intensity factor against the ratio a/b; (c) Normalized strain intensity factor 
against the ratio a/b. 
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Fig. 7.6  Continued. 

7.7  A fiber with a penny-shaped crack and an elastic coating 

In the previous section we presented a solution to the problem of a penny-shaped 
crack in a piezoelectric cylinder. The problem of a penny-shaped crack in a piezo-
electric fiber with an elastic coating is described in this section. By using the poten-
tial function method and Hankel transform, this problem is formulated as the solu-
tion of a system of dual integral equations which are reduced to a Fredholm integral 
equation of the second kind. Numerical analysis is conducted to investigate the ef-
fect of the thickness and the elastic material properties of the coating on the fracture 
behavior of piezoelectric fiber composites.  

7.7.1  Formulation of the problem 

Consider a piezoelectric fiber with a finite elastic coating and containing a centered 
penny-shaped crack of radius a under axisymmetric electromechanical loading (Fig. 
7.7). For convenience, a cylindrical coordinate system ( ) originating at the 
center of the crack is used, with the z-axis along the axis of symmetry of the cylin-
der. The fiber is assumed to be a transversely isotropic piezoelectric material with 

, ,r z
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the poling direction parallel to the z-axis, and the elastic coating is also transversely 
isotropic. They are subjected to the far-field of a normal strain, ( )z r and a 
normal electric loading, ( )zE E r . 

 

Fig. 7.7  Piezoelectric fiber with a finite elastic coating and containing a pennyshaped crack 
under mechanical and electrical loading. 

The constitutive equations for piezoelectric materials which are transversely 
isotropic and poled along the z-axis are defined in Eqs. (7.1)-(7.6) and the govern-
ing equations used are Eqs. (7.115). As in the previous section, the potential func-
tions (7.120) are employed and rewritten as follows: 

  (7.159) 
3 3 3

, 1 ,
1 1 1

,     ,     r i r z i i z i
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u u k 2 ,i zk

a

b
b

Substituting Eq. (7.159) into the field equations (7.115), we again obtain Eq. 
(7.119). 

It is obvious from Fig. 7.7 that the problem is subject to the following boundary 
conditions: 
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   (7.161) 
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In this section, the following continuity and loading conditions are used: 
(1) The continuity conditions for elastic displacements and tractions at the in-

terface between the fiber and elastic coating  are given by (0 )z

   (7.162) 
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(2) Loading conditions at infinity are 

 ( , ) ( ),       ( , ) ( ),      ( , ) ( )c
z z zr r E r E r r r  (7.163) 

(3) Loading conditions over the surface of the coating are 

   (7.164) ( , ) 0,    ( , ) 0       (0 )c c
r rzu d z d z z

where the superscript “c” represents the related variable associated with the coating 
material.  

Following the procedure discussed in Section 7.6, the electric and elastic fields 
for the piezoelectric fiber have the same form as those of Eqs. (7.121)-(7.131).  

For the elastic coating, the corresponding potential functions can be assumed in 
the form 
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   (7.165) 

In a manner similar to that discussed in Section 7.6, the potential functions for 
the elastic coating layer can be assumed in the form 
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Making use of Eq. (7.166), the elastic displacements and stresses in the elastic 
coating can be given in the form  
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in which  
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Using the boundary conditions (7.160)-(7.164), the Fourier inversion theorem 
and the Hankel inversion theorem, we obtain 
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where ( )iB and the related coefficients Mi are defined by Eqs. (7.135) and (7.136), 
respectively, and ( ),  ( ),  and ( )ji ij jih M H  are defined as 
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 2 2
13 1 14 1 15 12 2

1 ,    ,    
( ) ( )

c c
i i

i i ic c c c c
i i i i i i

F Fd dg K g I g K
c

d
  

7.7.2  Fredholm integral equation of the problem 

Making use of Eqs. (7.160)1,2 and (7.172)-(7.178), the following system of dual 
integral equations can be deduced: 

 1311 12
0 1 0 2 0 32 2 2 0

1 1 2 2 3 3

 
1 11 2 12 3 13 1 0 0

( ) ( ) ( )  d

( ) ( )d ( ) (0 )

FF Fr r rI A I A I A

M F M F M F B J r c r r a

)

 

  (7.179) 

    (7.180) 
 

1 11 1 2 12 2 3 13 3 1 0 0
( ) ( )d 0M k M k M k B J r (a r b

These equations can be solved using the function ( ) defined by  

 
 

1  0
( ) ( )sin( )d

a
B   (7.181) 

where (0) 0 . 
Using the solutions of integral equations defined in Section 7.6.2, we can obtain 

a Fredholm integral equation of the second kind in the form 

 
  

 0  0 2 2
0

2 ( )( ) ( ) ( , )d d
a a rc rL r

m r
  (7.182) 

in which 

3 3 1
12 2 0

0 1 1

0 0 2

4 1 1( , ) sinh sinh ( )
( )

             ( ) ( ) ( ) d

j
ji

j j i i ij i

i
ji ji ji

i i i i i

F bL N
m

b b bP K W K Y K

K

 
(7.183)

 

The stress intensity can thus be expressed in terms of function ( ) , as in [5]: 

 I 0lim 2 ( ) ( ,0) ( )zzr a
K r a r m a

a
  (7.184) 

in which 
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   (7.185) 0 1 11 2 12 3(m M F M F M F13 )

7.7.3  Numerical results and discussion 

To investigate the effect of elastic coating on the fracture behavior of piezoelectric 
fiber composites, numerical studies are conducted based on the analytic solutions 
obtained above. Material properties used in this study are: 

(1) Piezoelectric fiber: 
Elastic constants (1010 N/m2) : ; 11 12 33 4416.8,   6.0,   16.3,   2.71c c c c
Piezoelectric constants (C/m2):  15 31 334.6,   0.9,   7.1;e e e
Dielectric permittivities (10–10 F/m) : . 11 3336,   34

(2) Elastic coating: 
Elastic constants (1010 N/m2) :  

  11 12 13 33 550.83,  0.28,  0.03,  8.68,  0.42.c c c c c

It can be seen from Eq. (7.184) that determination of the stress intensity factor 
requires solution of the function ( ) . The Fredholm integral equation of the se- 
cond kind (7.182) can be solved numerically using a Gaussian quadrature formula. 
In the calculation, 540 mm, ( 510 ,  ( ) 10 10 V m,E r) 1.0b r  are used. 

The variations of the normalized stress intensity factor with the ratio of crack 
radius to fiber radius  under different thickness and elastic constants of the 
coating are shown in Figs. 7.8 and 7.9. It can be seen from Fig. 7.8 that the stress 
intensity factor decreases with increase of the ratio , which is different from 
the results in [28]. It is also evident that thickness of the elastic coating has an im-
portant effect on the stress intensity factor, and greater thickness will lead to a 
higher decay rate and a smaller value of the stress intensity factor. This means that 
thicker coating layers can slow crack propagation.  

/a b

/a b

The variation of the stress intensity factor with the ratio  under different 
elastic constants  of the coating layer is plotted in Fig. 7.9. It can be seen from 
the figure that the stress intensity factor may increase or decrease with the ratio 

 depending on the value of  of the coating. When  of the coating is 
greater than that of the piezoelectric fiber, the stress intensity factor will increase 
along with an increase in the . Obviously, the decay rate of the stress intensity 
factor depends strongly on the value of  when it is smaller than that of the pie-
zoelectric fiber.  

/a b

33c

33c

/a b 33c

b/a
33c
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Fig.7.8  Variation of the stress intensity factor with the ratio a/b under different thicknesses 
of the coating. 

 

Fig.7.9  Variation of the stress intensity factor with the ratio a/b under different elastic con-
stants of the coating. 33c
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Chapter 8  Solution Methods for Functionally Graded  
           Piezoelectric Materials 

In the previous two chapters Saint-Venant decay and penny-shaped crack problems 
were discussed. The material properties of the piezoelectric materials considered 
there were homogeneous or piecewise homogeneous. This chapter presents solution 
methods for piezoelectric materials with continuously varying properties. It focuses 
on problems of an angularly graded piezoelectric wedge, solutions for FGPM 
beams, problems of parallel cracks in an FGPM strip, and mode  cracks in a 
two-bonded FGPM. 

8.1  Introduction  

FGMs are composite materials formed of two or more constituent phases with a 
continuously variable composition. During design, the requirements of structural 
strength, reliability and lifetime of piezoelectric structures/components call for en-
hanced mechanical performance, including stress and deformation distribution un-
der multifield loading. In recent years, the emergence of FGMs has demonstrated 
that they have the potential to reduce stress concentration and to provide improved 
residual stress distribution, enhanced thermal properties, and higher fracture tough-
ness. Consequently, a new kind of material, FGPM, has been developed to improve 
the reliability of piezoelectric structures by extending the concept of the 
well-known FGM to piezoelectric materials [1]. At present, FGPMs are usually 
associated with particulate composites where the volume fraction of particles varies 
in one or several directions. One of the advantages of a monotonous variation of 
volume fraction of constituent phases is elimination of the stress discontinuities that 
are often encountered in laminated composites and accordingly, avoidance of de-
lamination-related problems. How all these aspects can be improved and what the 
mechanisms might be are popular topics which have received much attention from 
researchers. Wang and Noda [2] investigated the thermally induced fracture of a 
functionally graded piezoelectric layer bonded to a metal. Ueda studied the fracture 
of an FGPM strip with a normal crack [3,4], of a symmetrical FGPM strip with a 
center crack [5] due to a thermal load, mixed-mode thermoelectromechanical frac-
ture problems for an FGPM strip with a two-dimensional crack [6,7], and a 
penny-shaped crack [8,9]. Li and Weng [10] solved the problem of an FGPM strip 
containing a finite crack normal to boundary surfaces. Hu et al. [11] studied the 
problem of a crack located in a functionally graded piezoelectric interlayer between 
two dissimilar homogeneous piezoelectric half-planes. Rao and Kuna [12] pre-
sented an interaction integral method for computing stress intensity factors (SIFs) 
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and electric displacement intensity factor (EDIF) for cracks in FGPMs under ther-
moelectromechanical loading. Borrelli et al. [13] used the energy-decay inequality 
technique to analyze the decay behavior of end effects in anti-plane shear deforma-
tion in piezoelectric solids and FGPMs. Zhong and Shang [14] developed an exact 
solution for a functionally graded piezothermoelectric rectangular plate. Dai et al. 
[15] conducted a theoretical study of electromagnetoelastic behavior for an FGPM 
cylinder and sphere. They then extended their solutions to include thermal effects 
[16]. Zhong and Yu [17] presented a general solution for an FGPM beam with arbi-
trarily graded material properties along the beam thickness direction. Based on the 
layerwise finite element model, Shakeri and Mirzaeifar [18] performed a static and 
dynamic analysis of a thick FGM plate with piezoelectric layers. Wang et al. [19] 
analytically investigated the axisymmetric bending of circular plates whose material 
properties vary along the thickness. Using the Fourier transform technique, Chue 
and Yeh [20] developed a system of singular integral equations for angle cracks in 
two bonded FGPMs under anti-plane shear. Chue and Ou [21] presented a solution 
for Mode  crack in two bonded FGPMs. More recently, Li and Ding [22] pre-
sented a solution to the problem of a periodic array of parallel cracks in an FGPM 
strip bonded to an FGP substrate. Chen and Bian [23] studied wave propagation 
characteristics of an axially polarized, functionally graded, piezoceramic cylindrical 
transducer submerged in an infinite fluid medium. Ueda [24] addressed the problem 
of two coplanar cracks in an FGPM strip under transient thermal loading. Salah et 
al. [25] examined the propagation of ultrasonic guided waves in FGPMs. Wang et al. 
[26] studied the singularity behavior of electroelastic fields in a wedge with            
angularly graded piezoelectric material(AGPM) under anti-plane deformation. Chue 
and Yeh [27] extended the results of [21] to the case of two arbitrarily oriented 
cracks in two bonded FGM strips. This chapter focuses on the developments in 
[17,21,22,26]. 

8.2  Singularity analysis of angularly graded piezoelectric wedge 

Analytical solutions of AGPM presented in [26] are described in this section. The 
mixed variable state space formulation for an AGPM wedge under anti-plane         
deformation is used to investigate the singular behavior of stresses and electric 
fields at the apex of AGPM wedges under anti-plane deformation.  

8.2.1  Basic formulations and the state space equation 

In [26], Wang et al. considered an AGPM wedge with angularly graded material 
properties such as shear modulus, piezoelectric constant and dielectric constant, as  
shown in Fig. 8.1, under anti-plane deformation. The poling direction is along the 
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z-axis perpendicular to the r-  plane, where r and  are polar coordinates. The con-
stitutive relation equations are defined by Eq. (1.35), where the material constants 
c44, e15, and 11 are assumed to vary in the following exponential form: 

 0 0
44 44 15 15 11 11( ) ,   ( ) ,    ( )c c e e e e e0   (8.1) 

and the subscripts “1”, “2”, “4”, and “5” in Eq. (1.35) are now replaced by “ z”, 
“rz”, “r” and “  ”, respectively. 

 

Fig. 8.1  (a) Diagram of an AGPM wedge; (b) Variation of material properties.  

In Eq. (8.1),  represents the inhomogeneity degree of the material gradient 
along the angular direction. Using Eq. (8.1),  can be written as 

 44 15 110

1 ( )ln ( ,  ,  or )c e  (8.2) 

where 0  represents , which is the associated material property at 
 and is known as the reference material parameter.  

0 0 0
44 15 11,  ,  or c e

0
The governing, the shear strain-displacement, and the electric field-electric po-

tential equations are defined by Eqs. (5.1) and (5.2) with T = Q = 0. 
To simplify the derivation and transform the differential equations (5.1) and (5.2) 

into a state space equation, define the following state variables: 

  (8.3) 
,      ,
,       

z

r rz r

S e r SD e rD
S e r SD e rDr

From Eqs. (1.35), (5.1), and (5.2), we have 

2 2
0 0
44 152 2

2 2
0 0
15 112 2

( ) ( )1 1 1 ,

( ) ( )1 1 1

zrz rz

r r

r r w wc e e e
r r r r

DrD rD w we e e
r r r r

 

  (8.4) 
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and then the following equations can be obtained: 

 

2 2
0 0
44 152 2

2 2
0 0
15 112 2

,r

r

w wS c e

w wSD e
 (8.5) 

where “ ” denotes the differential with respect to  which is defined in Eq. (5.5). 
The combination of Eqs. (1.35) and (5.2) leads to the following equation: 

 0 0 0 0
44 15 15 11,      r rS c w e SD e w  (8.6) 

Then we obtain 

 
0 00 0
15 1511 44,    r r r

e e c
w S SD S S rD

0

T,

TSD

 (8.7) 

in which 

  (8.8) 0 02
15 44 11( )e c

Equations (8.5) and (8.7) can be rewritten into the following matrix form: 

  (8.9) TT T T T,p q H p q

in which 

  (8.10) T, ,      ,r rw Sp q

 

00
1511

0 0
15 44

2 2
0 0
44 152 2

2 2
0 0
15 112 2

0 0

0 0

( ) ( ) 0

( ) ( ) 0

e

e c

c e

e

H
0

0

 (8.11) 

Then Eq. (8.9) can be simplified into the state space equation (2.136), where  

  (8.12) TT T,p q

We can then assume 

 ( , ) ( ) ( )  (8.13) 

in which  
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  (8.14) TT T( ) ( ),  ( )q p

Using the separate variables method, we have 

  ( ) e r  (8.15) 

 H  (8.16) 

Thus, the following equations can be obtained: 

  (8.17)      TT T T 1( ), ( ) ,    , ( ), ( )rz r rz rw r w D r e D

It can be seen from Eq. (8.17) that the stress and electric field have the 
Re( 1) singularity at the apex of the AGPM wedge when . 0r

It should be mentioned that in the case of homogeneous piezoelectric material 
( 0 ) the operator matrix H is a Hamiltonian operator matrix and Eq. (8.9) is a 
Hamiltonian equation [28], whereas in the case of inhomogeneous piezoelectric 
material ( 0 ), H is not a Hamiltonian operator matrix, because of the material 
inhomogeneity, and thus the governing equation cannot be directed into the Hamil-
tonian system, and it is difficult to find the adjoint symplectic orthonormalization 
eigenvector  to obtain the electroelastic fields using a procedure similar to that in 
[28]. However, the singular order can still be obtained, which also corresponds to 
the nonzero eigenvalue of the operator matrix. The singular order k is given as 

 Re( 1)k  (8.18) 

and  must satisfy the condition 0 Re( ) 1 . 
To find the nonzero-eigenvalue , we have from Eq. (8.16): 

 0H I  (8.19) 

in which d/d  is replaced by  and d2/d 2 is replaced by 2, and I is the four-order 
identity matrix. Eq. (8.19) can be simplified to 

  (8.20) 2 2 2( ) 0

Then we can obtain the solution of  as 

 2 2 2
1,2 3,4

1 4 ,      4
2 2 2 2

21

0

 (8.21) 

In the case of 2 24 , we can easily reach 
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2 1 1 1 1

2 2 2 2 2

2 3 3 3

cos sin cos sin ,
2 2 2 2

cos sin cos sin ,
2 2 2 2

cos sin cos
2 2 2r

m m m mw e A B C D

m m m me A B C D

m m mS e A B C 3

2 4 4 4 4

sin ,
2

cos sin cos sin
2 2 2r

mD

m m m mSD e A B C D
2

(8.22) 

in which r r r rw S SD e w S SD , Ai, Bi, Ci, Di (i=1-4) are 

unknown constants to be determined, and  

 2 24m  (8.23) 

Substituting Eq. (8.22) into Eq. (8.16) leads to the following relationships be-
tween the unknown constants: 

 

0 0 0 0
3 44 1 15 2 4 15 1 11 2

0 0 0 0
3 44 1 15 2 4 15 1 11 2

( ),      ( )
( ),      (

0      ( = 1- 4)i i

,
),

A c A e A A e A A
B c B e B B e B B
C D i

 (8.24) 

By using Eq. (8.24), Eq. (8.22) can be rewritten as 

 

2 1 1

2 2 2

0 0 02 44 1 15 2 44 1

0
15 2

02 15

cos sin ,
2 2

cos sin ,
2 2

cos cos sin
2 2 2
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r

m mw e A B
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m m mS e c A e A c B

me B

SD e e 0 0
1 11 2 15

0
11 2

s cos sin
2 2

sin
2

m m
12

mA A e B

m B

 (8.25) 

From Eqs. (1.35) and (8.25), we have 

  (8.26) 
( ) 0 0 0 0

44 1 15 2 44 1 15 2
( ) 0 0 0 0

15 1 11 2 15 1 11 2

  ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( )

S c P A e P A c N B e N B

SD e P A P A e N B N B
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where  

 

2

2

1( ) sin cos ,
2 2 2

1( ) cos sin
2 2 2

m mP e m

m mN e m

0

 (8.27) 

Considering the AGPM wedge shown in Fig. 8.1, the conditions at the edges are 
assumed to be free of traction and electrically insulated: 

  (8.28) 0( ,0) ( , ) ( ,0) ( , ) 0z zr r D r D r

Substituting Eq. (8.26) into Eq. (8.28), the following equation can be obtained: 

  (8.29) 

0 0 0 0
144 0 15 0 44 0 15 0

0 0 0 0
215 0 11 0 15 0 11 0

0 0 0 0
144 15 44 15

0 0 0 0
215 11 15 11

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0
( ) (0) (0) (0)
( ) (0) (0) (0)

Ac P e P c N e N
Ae P P e N N
Bc P 0 e P c N e N
Be P 0 P e N N

The existence of nonzero solutions requires the determi-

nant of the coefficients matrix to be zero, which can lead to the equation 

T
1 2 1 2A A B B

 2 2 2
016 sin 0

2
m

 (8.30)  

Thus, we obtain 

 
0

2      ( =1,2, )nm n  (8.31) 

Using Eq. (8.23) the eigenvalue can be obtained as follows: 

 
2 2

2
04

 (8.32) 

Using the condition: 0 1 , it can be determined that the wedge angle  
must satisfy the following condition if there are singular electroelastic fields at the 
apex of the single AGPM wedge: 

0

 44 02 2
00

44

( )1 ln 2
4

c
c

 (8.33) 
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In the case of 2 24 0 , using a procedure similar to that from Eq. (8.22) 
to Eq. (8.31) we can easily prove that this is an impossible occurrence. 

8.2.2  Two AGPM wedges 

For a bi-material wedge system consisting of two AGPMs as shown in Fig. 8.2
considered traction free and electrically insulated, the boundary conditions are as 
follows: 

  (8.34) (1) (2) (1) (2)( , ) ( , ) ( , ) ( , ) 0z zr r D r D r

in which the superscripts “(1)” and “(2)” denote AGPM1 and AGPM2, respectively, 
and . If the two AGPMs are fully bonded at the interface, 
the continuity conditions on the interface are 

2 1 1,  0

  (8.35) 
(1) (2) (1) (2)

(1) (2) (1) (2)

( ,0) ( ,0),        ( ,0) ( ,0),

( ,0) ( ,0),      ( ,0) ( ,0)
z z

r r

r r w r w r

D r D r E r E r

 

Fig. 8.2  Diagram of a bi-AGPM wedge system and the variation of the materials’ inho-
mogeneity. (a) Geometry configuration of the AGPM1-AGPM2 wedge system; (b) Variation 
of material properties with the angle variable . 

Using Eqs. (8.26) and (8.35), we can obtain 

  (8.36) 

(2) (1)
1 1
(2) (1)
2
(2) (1)

11 12 13 141 1
(2) (1)21 22 23 242 2

1 0 0 0
0 1 0 0

A A

A A
a a a aB B
a a a aB B

2

where  and  (i = 1-4) are given as 1ia 2ia
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2(1) (2) (1) (2) (2) (2) (2)(1) (2)
11 15 15 44 11 15 44 11

0

(1) (2) (2) (1) (1) (2) (1) (2)(1) (1)
12 15 11 15 11 13 15 15 44 11

0 0

(2) (1) (1) (2)(1)
14 15 11 15 11

0
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a e e c e c

a e e a m e e c

a m e e

)

2

(1) (2) (2) (1)(1)
21 15 44 15 44

0
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0
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0 0

1,   ( )

1 ( ) ( ) ,

1 1( ) (

a e c e

a e e c e c

a m e c e c a m c e e )

c  (8.37) 

with  

 2 2(2) (2) (2)(2) ( ) ( )
0 15 44 11( ),     4i im e c m  (8.38) 

Combination of Eqs. (8.26), (8.34), and (8.35) leads to the equation    

 (1) 0M F  (8.39) 

where 

 
T(1) (1) (1) (1)(1)

1 2 1 2A A B BF  (8.40) 
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M

,

 (8.41) 

with  and (i = 1-4) being given as 1ib 2ib

  (8.42) 

(2) (2) (2)(2) (2)
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In the following, the case of an AGPM-AGM wedge system is taken as a special 
case for an AGPM-AGPM wedge. In Fig. 8.2, AGPM1 is replaced by AGM1. The 
boundary conditions for the AGPM-AGM wedge now become 

  (8.43) (1) (2) (1)( , ) ( , ) ( , ) 0z zr r D r

and the continuity conditions at the interface are 

  (8.44) (1) (2) (1)(1) (2)( ,0) ( ,0),    ( ,0) ( ,0),    ( ,0) 0z zr r w r w r D r

Then, following a procedure similar to that for Eq. (8.36), we can arrive at 

 

(1) (1) (1) (1)
(1) (1) (1) (1) (2) (1)15 15
2 1 1 2 1(1) (1) (1) (1)

11 11
(2) (2) (1) (1) (1) (1)

(2) (1) (1)44
1 1(2) (2)(2) (2)

44 44

,   ,

1

e e m m
1

1

A A B B A

c mB A
m mc c

A

B
 (8.45) 

in which  

 
2(1)

(1) 15(1)
44 (1)

11

e
c  (8.46) 

Using the boundary conditions Eqs. (8.43) and (8.45), the following equation 
can be obtained: 

2(1) (1) (1)
(1) (1)15(1) (1) (1) (1) (1) (1)
44 15(1) (1) (1)

11

(1) (1)
(1) (1)(1) (1) (1) (1)
15 11(1) (1)

(1)
* (1) (2)

(2)

( ) ( ) ( ) ( ) ( )

0 ( ) ( ) ( )

( ) 0

e m mP P c N e P N

m me P N N P

ma N
m

( )  

  (8.47) 

(1)
1
(1)
1
(1)
2

0

A

B

B

where 

 (2) (2)* (2) (1) (1) (2) (2)
44 44 (2)

1( ) ( )a c P c N
m

 (8.48) 

If AGM1 is a conductor such as aluminum or nickel, the continuity conditions 
are the same as in Eq. (8.44) except that  is replaced by (1) ( ,0) 0D r (1) ( ,0)r  
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0 . The boundary conditions are the same as those given in Eq. (8.43). 
The relations between the coefficients of AGM1 and AGPM2 are 

 

(1) (2) (1)
1 1 2

(1)(2) (1) (1)(2) (1) (1) (1)
(2) (1) (1) (1)1544 44 44
1 1 1(2) (2) (2)(2) (2)(2)

44 44 44

,       0,A A A

ec c c m mB A B
m mc m c c 2B

 (8.49) 

and the characteristic equation is 

 

(1) (1) (1) (1)(1) (1) (1)
44 44 15 1
(1) (1) (1) (1)(1) (1) (1)
15 15 11 1

(1) (1) (1)
(1) (1)* (2) (2) 2
44 15(2) (2)

( ) ( ) ( )

( ) ( ) ( ) 0
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e P e N N B
m m Bb c N e N
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 (8.50) 

in which  

 
(2) (1)(2) (1)

(2) 44 44* (2) (2)
44 (2)

( ) ( )
c cb c P N

m
 (8.51) 

8.2.3  AGPM-EM-AGPM wedge system 

In the following, the wedge consisting of AGPM1, an elastic material (EM) con-
ductor, and AGPM2, as shown in Fig. 8.3, is considered. 1, 2, and 3 denote 
AGPM1, EM, and AGPM2, respectively. The polar coordinate systems are again 
selected for simplicity, and  are adopted to indicate the sub-polar coordi-
nate systems. The interface conditions are: 

1  and c 2c

On interface 1: 

  (8.52) (1) (2) (1) (2) (1)( ,0) ( ,0),     ( ,0) ( ,0),    ( ,0) 0z zr r w r w r r

On interface 2: 

  (8.53) (3) (2) (3) (2) (3)( ,0) ( ,0),    ( ,0) ( ,0),    ( ,0) 0z zr r w r w r r

The relationship of the unknown constants for two adjacent domains can be ob-
tained from Eqs. (8.52) and (8.53) as  

  (8.54) (1) (3)
21 220,     0A A

(1)
11(2) (2) (2)

11 12 11(1)0(1) (1) (1)
1115(2) (2) (2)

11 0 12 11(1)
44 21

1 0 0
cos( ) sin( )

,  
sin( ) cos( )

A
A A

Bem m
B Bc B

A

B
 

  (8.55)  
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Fig. 8.3  Diagram of AGPM1-EM-AGPM2 wedge system. (a) Geometry configuration of 

the AGPM1-EM-AGPM2 wedge system; (b) Variation of material properties with the angle 

variable . 

 

(3)
12(2)

21 (3)*(3) (3) (3)
1215(2)

21 * (3)
44 22

1 0 0 A
A

Bem m
B c B

 (8.56) 

where the second subscript denotes the coordinate system.  
The coordinate transformation [29] is used to find the relationships between the 

unknown constants in general solutions of each material domain, yielding the fol-
lowing equations: 

(3) (1) (1) (1) (3) (1) (1) (1) (3)
12 11 11 12 11 13 21 12 21 11 22 11 23 21 24 22,   A s A s B s B B s A s B s B s B  (8.57)        

where  and are given by 1  ( 1- 3)is i 2 ( 1- 4)is i

 

0(1) (1)
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11 12 13 120
44
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22 23 22 240(3)
44 44
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1 sin( ) ( )cos( ) sin( ) ,

cos( ) sin( ) ,    ,    
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c

s
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e ems s d
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d

s
c0

 (8.58) 

According to the traction free and electrically insulated boundary conditions, we 
can obtain 
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  (8.59) 
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 (8.60) 

Equations (8.39), (8.50), and (8.59) are transcendental and have numerous roots 
which may be real or a complex quantity. They can be solved using the numerical 
method and then the admissible values of  can be obtained. In the following, the 
effects of angular inhomogeneity on the singularity of electro-elastic fields of 
wedge system are investigated via numerical results. 

8.2.4  Numerical results and discussion 

In the following numerical studies, the material properties of PZT-4 are taken as the 
reference material properties as follows: ,  
and . 

0 9 2
44 25.6 10  N/mc 0

15 12.7 C/Ne
0 9
11 6.46 10  F/m

8.2.4.1  A single AGPM wedge 

In Fig. 8.4, the variation of the singular order for single AGPM wedge with the 
wedge angle from 180o to 360o is plotted to show the effect of material angular in-
homogeneity on the singularity of electro-elastic fields, in which the angular inho-
mogeneity parameter  is defined as 

 44 0 15 0 11 0
0 0
44 15 11

( ) ( ) ( )c e
c e 0  (8.61) 

It can be seen from Fig. 8. 4 that 1.0  ( 0 ) for a homogeneous piezo-
electric wedge and thus there is no singularity for the piezoelectric half plane 
( ). Hence, the classic root exists for the singularity of a semi-infinite 
crack ( ). Moreover, the singularity disappears when . These 
results are consistent with those of [29,30]. The range of wedge angle in which sin-
gularity exists is given in Eq. (8.33) for inhomogeneous piezoelectric materials, but 

0 180

0 360 0 180
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the singular order for the semi-infinite crack ( ) is not equal to the classic 
root (–0.5). The angular material inhomogeneity leads to a smaller singular order 
than that of homogeneous material, and a larger inhomogeneity parameter  can 
produce a smaller singularity. For a single AGPM wedge, the singular order relates 
only to the value of , the wedge angle and the boundary conditions. 

0 360

 

Fig. 8.4  Variation of the singular order with the wedge angle for different angular inho-
mogeneities. 

8.2.4.2  AGPM-AGPM wedge system 

Consider an AGPM-AGPM wedge system as shown in Fig. 8.2(a), in which the 
AGPM1 and AGPM2 have different inhomogeneity degrees 1  and 2 , as shown 
in Fig. 8.2(b). The material properties of PZT-4 are again taken as the reference 
material properties for AGPM1 and AGPM2, and  and 180 180 , and in 
this case the wedge can denote a semi-infinite crack. The variation of the singular 
order with 1  for different 2  is given in Fig. 8.5. It should be mentioned that 
according to Eq. (8.2), we have 

 44 2 44 1
1 2

2 1 44 1 44 0

( ) ( )
ln ,     

( ) ( )
c c
c c1 0

1 1 ln  (8.62) 

in which 1 0  implies that , and 44 2 44 1( ) ( )c c 1 0  implies that 
. Meanwhile 44 2( )c 44 1( )c 2 0  implies that , and 44 1( ) )c 44 0(c 2 0  

implies that . For a fixed value of 44 1( )c 44 0(c ) 2 , we can see that the singu-
larity becomes more severe when 1 varies from a negative to a positive value. 
However, a larger value of 2 can lead to a less severe singularity. This behavior 
demonstrates that the angular material inhomogeneity can be used to control the 
singularity of the electro-elastic fields for a bi-AGPM wedge.  
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The variation of the singular order with  and the value of 2 is plotted in Fig. 
8.6 for a bi-AGPM wedge system in which 180 , 1 1.2 . It is observed that 
the degree of singularity increases with the increase of the value  from  to 

. When , the bi-AGPM wedge degenerates to a single wedge with 
wedge angle 

0
180 0

180 , and in this case the wedge becomes a half plane, and there 
is no singularity when 2 equals –0.6, 0, and 0.6. When , the wedge sys-
tem can be a bi-AGPM semi-infinite crack, and the singularity may not be the clas-
sical root singularity when AGPM2 is the homogeneous piezoelectric material 
(

180

2 0 ). When 2 0  there is a less severe singularity, whereas when 2 0  
the singularity becomes more severe. 

 

Fig. 8.5  Variation of the singular order with angular material inhomogeneity for an 
AGPM1-AGPM2 wedge system ( ,180 180 ). 

 
Fig. 8.6  Variation of the singular order with  for different values of 2 ( 180 , 

1 1.2 ). 
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Figure 8.7 shows the variation of singularity for an AGPM2-AGM1 wedge sys-
tem with 180  and 1 1.0  for various wedge angles . When 2 0 , the 
AGM becomes a homogeneous elastic material (EM). It can be observed that the 
singularity behavior is similar to that of the bi-AGPM wedge, as shown in Fig. 8.6. 
A positive value of 2 leads to a small value of the singular order whereas a nega-
tive value of 2 can produce a larger singular order compared to the case of the 
AGPM-EM wedge.  

 

 and 1 1.0 ). Fig. 8.7  Singularity for AGPM-AGM wedge system ( 180

The singularity behavior of an AGPM-AGM conductor wedge system is pre-
sented in Fig. 8.8, with 270  and 2 0.8 . With the increase of the wedge 
angle , the singularity increases for all the values of 2. For a small value  of the 
AGM, the singularity depends mainly on the AGPM, and 1 has little effect on the 
singularity behavior of the AGPM-AGM wedge. With an increase in the value of , 
the material inhomogeneity degree 1 of the AGM conductor has more effect on the 
singularity of electro-elastic fields, but a small value of 1 will cause a weak singu-
larity. 

8.2.4.3  AGPM-EM conductor-AGPM wedge system 

Finally, the singularity of an AGPM-EM conductor-AGPM wedge system is shown 
in Fig. 8.9, with , 90 180 , 2 30,  1.2 . The material pro- 
perties of PZT-4 are again taken as the reference material properties, and the refe- 
rence elastic constant  of the EM conductor is the same as that of the AGPM. 
The material inhomogeneity takes a “U” form, as shown in Fig. 8.3(b). This 
three-material wedge denotes an interface crack between AGPM1 and AGPM2. The 
numerical results in Fig. 8.9 show the singularity of the three-material wedge sys-
tem, which is more complex than that of a two-materials wedge system. Multi-root 
singularity exists, such as two-roots singularity and three-roots singularity. The 

44c
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variation from one to three roots depends on the value of 1, and some values 
around 1 0.1  and 1 0.3  can lead to very strong singularities which are 
larger than –0.9. It is noted that two real roots singularity can exist with the value of 

1 varying in the ranges of [–1.80, –0.15] and [1.90, 4.60], in which the singularity 
degree decreases when 1 increases from –1.8 to –0.15. After that, the singularity 
tends to increase until 1=2. Thus, for the multi-material wedge system the degree 
of singularity can also be made as weak as the two-material wedge system by 
choosing an appropriate degree of angular inhomogeneity. It should be mentioned 
that only the three-material wedge system is considered here as an example of a 
multi-material wedge for the model described in this section. Four-material wedges 
and wedges containing even more materials can be solved using a similar proce-
dure.  

 
Fig. 8.8  Singularity behavior of an AGPM-AGM conductor wedge system with 270 , 

 and 90 2 0.8 . 

 
Fig. 8.9  Singularity behavior of AGPM-EM conductor-AGPM wedge system with 

, 90 180 , 2 30,  and 1.2 . 
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8.3  Solution to FGPM beams  

A general solution presented in [17] for FGPM beams with arbitrary graded mate-
rial properties along the beam thickness direction is described in this section. The 
beam under consideration may be subjected to normal and shear tractions of poly-
nomial form on the upper and lower surfaces, while the end boundary conditions 
can be cantilever, simply supported or rigidly clamped. 

8.3.1  Basic formulation 

Consider an FGPM beam with an arbitrary composition gradient through the thick-
ness. In the absence of body forces and free electric charges, the mechanical and 
electric equilibrium equations are defined by Eq. (2.163), and the strain-dis-
placement and electric field-electric potential relations are given by Eq. (1.2). When 

ij and Ei are chosen as independent variables, the constitutive equation (1.24) be-
comes 

 

11 13 31

13 33 33

55 15

15 11

31 33 33

0 0
0 0

0 0 0
0 0 0

0 0

x x

z z

xz

x x

z z

a a d
a a d

a d
dD E

d dD E

xz  (8.63) 

Substituting Eqs. (1.2), (1.31), and (8.63) into Eqs. (1.30) and (2.163), Eqs. (1.32) 
and (1.33) now become differential equations for Airy stress function U and electric 
potential , as 

 31 ,33 33 ,11 15 ,113 33 ,3 11 ,11,3 ,3 ,3
d U d U d U  (8.64) 

 
11 ,33 13 ,11 55 ,113 13 ,1133 33 ,1111,33 ,3

13 ,3 33 ,113 15 ,11,33 ,3
                                       

a U a U a U a U a U

d d d
 

(8.65)
 

8.3.2  Solution procedure 

To obtain the solution to Eqs. (8.64) and (8.65), Zhong and Yu [17] introduced the 
following form of Airy stress and electric potential functions: 

  (8.66) 
0 0

( ),     ( )
n n

i
i

i i
U x f z x gi

i z
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Substituting Eq. (8.66) into Eqs. (1.2) and (1.31) yields 

 

2

2
0

2

2

1

1

d ( )
d

( 1) ( )

d ( )
d

n
kk

k
x n

k
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k
xy n

kk

k

f z
x

z

k k x f z
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d ( )
d

n
k

k
x k

n
y kk

k

kx g z
E
E g z

x
z

 (8.68) 

Then, by substituting Eq. (8.66) into Eqs. (8.64) and (8.65), we obtain the gov-
erning equations for fi(z) and gi(z) as 

 

2
0

31 332

22
0

11 312 2

d ( ) d ( )d ( ),
d d d

d ( ) d ( )d ( )     ( 0,1, , )
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where 
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 (8.70) 
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  (8.71) 

with the following notations being defined as: 
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1 2
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2
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d d
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Equation (8.69) gives a recurrence relation for fi(z) and gi(z). Zhong and Yu ob-
tained the general solution for fn(z), gn(z), fn–1(z), and gn–1(z) using the condition 

0 00 0
1 1( ) ( ) ( ) ( ).n n n nF z G z F z G z Then, fi(z), gi(z) (i = n–2, , 1, 0) can be 

solved one by one using the solution obtained for fn(z), gn(z), 1( ),nf z  and gn-1(z). 
Hence, the solutions of  fi(z) and gi(z) can be written in general form as 
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k k k k kk
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 (8.73) 

where ,  ,  ,  ,  ,  and k k k k k kA B C D E K  are unknown constants, and 
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 (8.74) 

 
0 0 0

33 11 31
0 0 0

( ) ( )d ,    ( ) ( )d ,     ( ) ( )d ,

( ) ( ) ( )
( ) d ,   ( ) d ,   ( ) d

( ) ( ) ( )

z z z
k k k k k k

k kz z z
k k k

H z H z z I z I z z J z J z z

z z a z z d z zk
H z z I z z J z

z z
z

z

 (8.75) 

Making use of Eqs. (1.2), (8.63), (8.67), (8.68), and (8.73), the expressions for 
elastic displacements and electric displacements can be obtained as 
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where ,  ,  and a c d are integral constants related to the rigid motions of the beam, 
and 
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As can be seen from the solution presented above, there exist 6(n+1) unknown 
constants, 0 0 0 0 1 1 1 1, , , , , , , , , ,a c d A B E K A B C K  and , , , , ,i i i i i iA B C D E K  (i=2, 3, ,
n), which are to be determined from the boundary conditions.  

To determine these constants, Zhong and Yu evaluated the concentrated normal 
force N0, the concentrated shear force P0, the concentrated moment M0 and the 
concentrated electric load 0 at the left end (x = 0) of the beam under consideration, 
by means of the following formulations: 
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0x  (8.79) 

Their counterparts at the right end (x = l), Nl, Pl, Ml, and l, are given by 
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 (8.80) 

in which b, h, and l are, respectively, the width, thickness, and length of the beam. 
They proved then that the following equilibrium equations are automatically 

satisfied 
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if the upper and lower surfaces of the beam are subjected to normal and shear trac-
tions of polynomial form as follows: 

 

2 1
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k k

0
1

k
k

n

k

x x

x x
 (8.82) 

where ˆˆ,  ,  ,  and  are known constants.  
Making use of Eqs. (1.2), (8.63), and (8.76), we have 

 

2 2

1 1

/ 2 / 2

ˆ
,           ( 2,3, , ),

2 ( 1) 2 ( 1)
ˆd d

,      ( 1,2, , )
d d

k k
k k

k k k k

z h z h

h hf f k
k k k k

f f
k n

z k z k

n

 (8.83) 

Considering further the electric boundary conditions on the upper and lower 
surfaces of the beam, 

 / 2 / 2 0z zz h z hD D  (8.84) 

we can obtain from Eqs. (8.77) and (8.84) 

 

331
1 2

331
1 2

0,
2 2

0          ( 0,1, , 2)
2 2

kk k

kk k

h hG E L X

h hG E L X k n
 (8.85) 

 1 0n nE E  (8.86) 

Noting that Eqs. (8.83) and (8.85) constitute 6n–2 independent linear algebraic 
equations for the 6(n+1) unknowns mentioned above, eight more equations are 
needed. Zhong and Yu obtained these equations by considering the end boundary 
conditions of a beam. For example, for a cantilever FGPM beam clamped at one 
end (x = l) and subjected to a concentrated normal force N*, a concentrated shear 
force P* and a concentrated moment M* at the other end (x = 0), the end boundary 
conditions are given as 

  (8.87) 0 * 0 * 0 * 0

, ,

,   ,   ,   0                   (at 0),
0,      0 (or 0)           (at 0,  0)x x

N N P P M M x
u w w u x z

8.4  Parallel cracks in an FGPM strip 

This section describes the solution presented in [22] for the problem of a periodic 
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array of cracks in an FGPM strip bonded to a different FGPM. The corresponding 
singular integral equation is derived using the Fourier integral transform approach 
and can be solved numerically using the Lobatto-Chebyshev integration technique. 

8.4.1  Basic formulation 

In [22], Li and Ding considered an FGPM strip perfectly bonded to another FGPM 
in the y direction, as shown in Fig. 8.10. The FGPM1 (see Fig. 8.10) is considered 
to contain periodic cracks perpendicular to the interface. The length of each crack is 
2a0 along the x direction. The centre of each crack is located at x = d. The distance 
between two nearest parallel cracks is 2c (see Fig. 8.10). If the poling direction of 
the two FGPMs is assumed to be along the z-axis, the constitutive equation (1.35) 
now becomes  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
55 15 55 15

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
15 11 15 11

( ) ( ) ,     ( ) ( ) ,

( ) ( ) ,    ( ) ( )

k k k k
k k k kk k

xz yz

k k k
k k k kk k

x y

w wc x e x c x e x

k

x x y
w wD e x x D e x x

y

x x y y

 (8.88) 

where the superscript “(k)” represents the variable associated with material k, and 
all material constants are assumed to vary in the following form: 

  (8.89) 
(1) (1) (1)0 00
55 55 15 15 11 11
(2) (2) (2)0 00
55 55 15 15 11 11

( ) ,   ( ) ,   ( )    (0 ),

( ) ,   ( ) ,   ( )    ( 0)

x x x

x x x

c x c e e x e e x e x h

c x c e e x e e x e x

 

Fig. 8.10  Configuration of a periodically cracked FGPM1 strip bonded to FGPM2. 

In Eq. (8.89), the subscript “0” stands for material properties at the interface or 
reference value of material constants. For the two-material system shown in Fig. 
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8.10, the governing equations (1.10) are now written in the form 

 
( ) ( )( ) ( )

0,    0     ( 1, 2)
k kk kyz yxz x DD

k
x y x y

 (8.90) 

Substituting Eq. (8.88) into Eq. (8.90) and making use of the relation (8.89) 
yield 

 

(1) (1)
2 (1) 2 (1)

0
15(1) (1) (1)
0
11

0,    0,

( , ) ( , ) ( , )

ww
x x

e
x y w x y x y

 (8.91) 

for FGPM1, and  

 

(2) (2)
2 (2) 2 (2)

0
15(2) (2) (2)
0
11

0,    0,

( , ) ( , ) ( , )

ww
x x

e
x y w x y x y

 (8.92) 

where 2 2 2 2/ / 2x y  is the two-dimensional Laplace operator.  
Due to the periodicity and symmetry of the problem, Li and Ding [22] consi- 

dered the solution domain for 0<y<c only. The continuity condition at the interface is 

  (8.93) 
(1) (2) (1) (2)

(1) (2) (1) (2)

(0, ) (0, ),     (0, ) (0, ),
(0, ) (0, ),      (0, ) (0, )xz xz x x

w y w y y y
y y D y D y

and the outer surface boundary conditions of the problem shown in Fig. 8.10 are 
defined by 

  (8.94) 

(1) (1)

(2) (2)

(1) (1)

(2) (2)

( , ) 0,     ( , ) 0,
( ,0) 0,     ( ,0) 0    ( 0),
( , ) 0,     ( , ) 0     (0 ),
( , ) 0,     ( , ) 0    ( 0)

xz xh y D h y
w x x x
w x c x c x h
w x c x c x

At each crack face, the boundary conditions are given by 

 
(1) (1)

(1) (1)

( ,0) 0,      ( ,0) 0     (0 ,  ),
( ,0) ( ),    ( ,0) ( )      ( )yz y

w x x x a b x h
x x D x D x a x b  (8.95) 

for impermeable cracks, and 

 

(1)

(1)

(1) (1)

( ,0) 0              (0 ,  ),
( ,0) 0               (0 ),
( ,0) ( ),    ( ,0) ( ) ( )  ( )yz y c

w x x a b x h
x x h
x x D x D x D x a x b

 (8.96) 

for permeable cracks, where Dc(x, 0) denotes the electric displacement within the 
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crack void itself. 

8.4.2  Singular integral equations and field intensity factors 

 

(1)
1 1 2 1

1 1 2 2
1

(1)
1 1 2 1

1

1( , ) [ ( ) exp( ) ( ) exp( )] d
2

                 [ ( ) exp( ) ( )exp( )]sin( ),

1( , ) [ ( ) exp( ) ( )exp( )] d
2

                [ ( ) exp(

i x

k k k k k k k
k

i x

k k

w x y A m y A m y e

C p x C p x

x y B m y B m y e

D 1 2 2
1

) ( ) exp( )]sin( )k k k k k
k

p x D p x y

y

 (8.97) 

 

(2)
2

1

(2)
2

1

( , ) ( ) exp( )sin( ),

( , ) ( ) exp( )sin( )

k k k k
k

k k k k
k

w x y E q x y

x y F q x y
 (8.98) 

where A1, A2, B1, B2, C1k, C2k, D1k, D2k, E2k, and F2k are unknown constants to be 
determined, and  

 

2
1 2 1 2

2 2
2 2

,   ,   ,
2 2

,   ,  ,   
4 2 4

k k k

k k k kk k

m m i p p

kq
c

k

k

 (8.99) 

To determine the unknown constants above, Li and Ding defined the following 
two dislocation functions: 

 

(1) (1)

1 2

( ,0) ( ,0)    ( )     ( )
( )     ( )  

        0         ( ,  ),         0       ( ,  )

w x xa x b a x b
g x g xx x

x a x b x a x b
 (8.100) 

Substituting Eq. (8.97) into Eq. (8.100) and making use of the continuity condi-
tion (8.93) and boundary conditions (8.94) and (8.95), we obtain  

 

2

1 2

1

1 2

2

1 2

1

1 2

1 1

2 1

0
15

1 2 0
11

0
15

2 2 10
11

( ) ( ) d ,   

( ) ( ) d ,

( ) [ ( ) ( )] d ,

( ) [ ( ) ( )] d

m c b
i u

m c m c a

m c b
i u

m c m c a

m c b
i u

m c m c a

m c b
i u

m c m c a

i eA g u e u
e e

i eA g u e u
e e

ei eB g u g
e e

ei eB g u g u
e e

1 u e u

e u

 (8.101) 
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1 2

1
1 2

2 ( ) ( )
1 1

3

2 1 2 1 1 2
3 2

( )
( )[ ]d ,

( )[ ( ) ( ) ]d

j j

j
j j

bj j j p u h p u h
j a

j

p h
bj p u p u

j j j j j ja
j j

p q
C g u e e u

c

e
C g u p p q e p q p e

c p j u
 (8.102) 

 

1 2

1
1

2

2 ( ) ( )
1 1

3

0
15

2 2 1 2 10
3 2 11

1 2

( )
( )[ ]d ,

( ) ( ) [ ( )

         ( ) ]d

j j

j
j

j

bj j j p u h p u h
j a

j

p h
bj p u

j ja
j j

p u
j j j

p q
D g u e e

c

e e
D g u g u p p

c p

p q p e u

j j

u

q e   (8.103) 

 

1 2

1 2

2 1 2 ( ) ( )
2 1

3 2

0
2 1 2 ( ) ( )15

2 2 10
3 2 11

( )
( )[ ]d ,

( )
( ) ( ) [ ]d

j j

j j

bj j j j p u h p u h
j a

j j

bj j j j p u h p u h
j a

j j

p p p
E g u e e u

c p

p p p e
F g u g u e e u

c p

 (8.104) 

with 

  (8.105) 2
3 1 2 2 1( ) ( )jp

j j j j j jp p e p p e 1 jp

Substituting Eqs. (8.100)-(8.104) into Eq. (8.95) yields 

 

00
55 1 15 2

0 0
15 1 11 2

1 1( ) [ ( ) ( )] ( , ) d ,

1 1( ) [ ( ) ( )] ( , ) d

b
x

a

b
x

a

x e c g u e g u K u x
u x

D x e e g u g u K u x u
u x

u
 (8.106) 

in which the kernel function K(u,x) is given by 

 1 2 3( , ) ( , ) ( , ) ( , )K u x F u x F u x F u x  (8.107) 

where 

  

1 2

1 2

1
1 2

2 1 ( )
1

(2 )
2 2 3 (2 ) /

1

2
( ) ( )

2 2 2
2 3

1( , ) d ,
2

( , ) ,     ( , ) ,
( 1

( , ) ( )

              

j

j
j j

m c m c
i u x

m c m c

h u x
j h u x c

j

p x
j p u h p u h

j j j j
j j

m e m eiF u x e
e e

F u x F e F u x
c c

e
F u x p p q e e

p

)e

2 1
1 2

2

2 1 1 2
2 3

   ( ) ( )
j j

j j

p x p h
j p u p u

j j j j j j
j j

e e
p p q e p q p e

p

 (8.108) 
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To solve the singular integral equations (8.106), Li and Ding introduced the fol-
lowing normalized quantities and related functions: 

 0 0 1 1

2 2

/ ,     / ,       ( ) ( ),
( ) ( ),      ( ) ( ) ,     ( ) ( )x x

x x d a u u d a f u g u
f u g u x x e D x D x e

 (8.109) 

Using the definition (8.109), Eq. (8.106) can be rewritten as 

 

1
00

55 1 15 2 0 01

1
0 0
15 1 11 2 0 01

1 1( ) [ ( ) ( )] ( , ) d ,

1 1( ) [ ( ) ( )] ( , ) d

x c f u e f u K a u d a x d u
u x

D x e f u f u K a u d a x d u
u x

 (8.110) 

They then mentioned that for an internal crack, functions 1 2( ) and ( )f u f u  must 
fulfill the condition of single-valuedness as 

  (8.111) 
1 1

1 21 1
( )d ( )d 0f u u f u u

It is obvious that Eq. (8.110) is a singular integral equation of the first kind. It 
can be solved numerically by the Lobatto-Chebyshev integration approach. Thus 
the relationship between functions 1 2( ) and ( )f u f u  and weighting function ( )iF u , 
which can be used to evaluate intensity factors, is given by 

 1
1 2

( ) ( )
( ) ,    ( )

(1 )(1 ) (1 )(1 )
F u F uf u f u
u u u u

2   (8.112) 

Making use of Eq. (8.112), the field intensity factors can be calculated by [22] 

 

00
3 55 0 1 15 0 2

00
3 55 0 1 15 0 2

0 0
3 15 0 1 11 0 2

0 0
3 15 0 1 11 0 2

( ) (1) (1),

( ) ( 1) ( 1),

( ) (1) (1),

( ) ( 1) ( 1)

b b

a a

D b b

D a a

K b c e a F e e a F

K a c e a F e e a F

K b e e a F e a F

K a e e a F e a F

 (8.113) 

For the electrically permeable case, the corresponding stress and electric dis-
placement can be similarly obtained as 

 

0
55 1

0
15 1

1 1( ) ( , ) ( )d ,

1 1( ) ( , ) ( )d

b
x

a

b
x

a

x e c K u x g u
u x

D x e e K u x g u u
u x

u
 (8.114) 

and the corresponding field intensity factors are defined in the form 

 
0 0

3 55 0 1 3 55 0 1

0 0
3 15 0 1 3 15 0 1

( ) (1),     ( ) ( 1),

( ) (1),    ( ) ( 1)

b a

D b D a

K b c e a F K a c e a F

K b e e a F K a e e a F
 (8.115) 
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Making use of Eqs. (8.113) and (8.115), Li and Ding finally presented, respectively, 
the energy release rate G3 and the energy density factors S3, as  

 

0 02 0
11 3 15 3 3 55 3

3 20 00
55 11 15

0 02 0
11 3 15 3 3 55 3

3 20 00
55 11 15

( ) 2 ( ) ( ) ( ( ))1( ) ,
2

( ) 2 ( ) ( ) ( ( ))1( )
2

D D

a

D D

b

K a e K a K a c K a
G a

e c e

K b e K b K b c K b
G b

e c e

2

2
 (8.116) 

 

0 02 0
11 3 15 3 3 55 3

3 20 00
55 11 15

0 02 0
11 3 15 3 3 55 3

3 20 00
55 11 15

( ) ( ) ( ) 2 ( ( ))1( ) ,
8

( ) ( ) ( ) 2 ( ( ))1( )
8

D D

a

D D

b

K a e K a K a c K a
S a

e c e

K b e K b K b c K b
S b

e c e

2

2
 (8.117) 

for an impermeable crack, and 

 
2 2
3 3

3 3 3 30 0
55 55

( ) ( )
( ) 4 ( ) ,     ( ) 4 ( )

2 2a b

K a K
G a S a G b S b

c e c e
b

  (8.118) 

for a permeable crack. 

8.5  Mode  cracks in two bonded FGPMs 

The fracture behavior of a crack perpendicular to the interface of two bonded 
FGPMs is described in this section. Under antiplane shear and in-plane electric dis-
placement, Chue and Ou [21] reduced the problem to a set of singular integral 
equations and solved them numerically using the Gauss-Chebyshev integration 
technique.  

8.5.1  Basic formulation of the problem 

The development presented in [21] is considered there. In [21], Chue and Ou con-
sidered a system of two FGPMs perfectly bonded together along the y-axis in which 
a crack of length 2a0 is located at y =0 and in a  x  b (see Fig. 8.11). The poling 
directions of the two FGPMs are oriented along the z-axis. For the problem of anti-
plane deformation, the constitutive relations and the governing equations are, re-
spectively, defined by Eqs. (8.88) and (8.90). The variations of material properties 
are assumed in the exponential forms defined by Eq. (8.89), except that the domain 
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(0< x < h) in Eq. (8.89)1 is replaced by (x >0). 

 

Fig. 8.11  Geometry of two bonded FGPMs containing a crack. 

Substituting Eq. (8.88) into Eq. (8.90) and using the relation (8.89) provide the 
following equations for FGPM1 and FGPM2, respectively: 

 

22 (1) 2 (1) 2 (1) (1) (1)
10 00 0

55 15 55 152 2 2 2

2 (1) 2 (1) 2 (1) 2 (1) (1) (1)
0 0 0 0
15 11 15 112 2 2 2

0,

0

w w wc e c e
x y x y x x

w w we e
x y x y x x

(8.119) 

 

2 (2) 2 (2) 2 (2) 2 (2) (2) (2)
0 00 0

55 15 55 152 2 2 2

2 (2) 2 (2) 2 (2) 2 (2) (2) (2)
0 0 0 0
15 11 15 112 2 2 2

0,

0

w w wc e c e
x y x y x x

w w we e
x y x y x x

(8.120) 

Using the Fourier integral transform, Chue and Ou then wrote the solutions of 
Eqs. (8.119) and (8.120) in the following form: 

 

(1)
11 110

(1)
21 210

1 2( , ) ( , ) d ( , )sin( )d ,
2
1 2( , ) ( , ) d ( , )sin( )d

2

i x

i x

w x y f y e g x y

x y f y e g x y
 (8.121) 

 

(2)
120

(2)
220

2( , ) ( , )sin( )d

2( , ) ( , )sin( )d

w x y g x y

x y g x y
 (8.122) 

in which 
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2
11 1

2
21 1

2 2
11 1

2 2
21 1

2 2
12 2

2 2
22 2

( , ) ( ) exp ,

( , ) ( ) exp ,

( , ) ( ) exp 4 / 2 ,

( , ) ( ) exp 4 / 2 ,

( , ) ( ) exp 4 / 2 ,

( , ) ( ) exp 4 / 2

f y A y i

f y B y i

g x C x

g x D x

g x E x

g x F x

 (8.123) 

where A1( ), B1( ), C1( ), D1( ), E2( ), and F2( ) are unknown functions to be 
determined from boundary conditions. In the following, Chue and Ou considered 
both permeable and impermeable crack surface conditions. 

8.5.2  Impermeable crack problem 

For an impermeable crack embedded in a two-FGPMs system as shown in Fig. 8.11, 
we have the following continuity conditions along the interface x = 0, symmetric 
conditions with respect to the x-axis, and the crack face conditions: 

(1) Continuity conditions along the interface x = 0. 

  (8.124) 
(1) (2) (1) (2)

(1) (2) (1) (2)

(0, ) (0, ),    (0, ) (0, ),
(0, ) (0, ),     (0, ) (0, )xz xz x x

w y w y y y
y y D y D y

(2) Symmetric conditions. 
If all external loads are symmetric with respect to the x-axis, it is sufficient to 

consider the upper surface for y  0 and to assume 

 (1) (1)( ,0) 0,     ( ,0) 0w x x    (for 0 x a  and ) (8.125) b x

     (2) (2)( ,0) 0,      ( ,0) 0w x x     ( for ) (8.126) 0x

(3) Conditions on the crack surfaces. 
The crack surface is assumed to be impermeable and simultaneously subjected 

to electrical displacement D(x) and shear traction (x): 

 (1) (1)( ,0) ( ),       ( ,0) ( )yz yx x D x D x     (for ) (8.127) a x b

Chue and Ou [21] then noted that D(x) and (x) in Eq. (8.127) can be obtained 
from the remote electrical and mechanical loads using the superposition method. 

After applying the continuity conditions Eq. (8.124) and taking the Fourier in-
verse transform, the four unknown functions C1( ), D1( ), E2( ), and F2( ) can be 
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expressed by the rest of the two functions A1( ) and B1( ) as 

 

2 1 12 2

2 1 12 2

0 00 0
55 2 15 2 55 1 15 1

00
55 1 15 12 2

0
15

1( ) ( ) ( )d ,
2

1( ) ( ) ( )d ,
2

( ) ( ) ( ) ( )

1              ( ) ( ) d ,
2

E C A
i

F D B
i

c sE e sF c pC e pD

i c A e B
i

e 0 0 0
2 11 2 15 1 11 1

0 0
15 1 11 12 2

( ) ( ) ( ) ( )

1              ( ) ( ) d
2

sE sF e pC pD

i e A B
i

 (8.128) 

where 

 
2 2 2 24

,     
2 2

p s
4  (8.129) 

As in Section 8.4, introduce two dislocation functions defined by Eq. (8.100). 
Then, substituting Eq. (8.123) into Eq. (8.121), later into Eq. (8.100), and applying 
the conditions (8.125), Chue and Ou indicated that g1(x) and g2(x) must satisfy the 
following equations: 

  (8.130) 1 2( )d ( )d 0
b b

a a
g t t g t t

The two remaining unknown functions can then be obtained as 

 1 1 1 2( ) ( ) d ,    ( ) ( ) d
b b

i t i t
a a

i iA g t e t B g t e t
a a

 (8.131) 

By using the residue theorem, they obtained the four unknown functions C1( ), 
D1( ), E2( ), and F2( ) as 

1 1

1 1

1 1
1 1 1

1 1 1 1

1 1
2 1 2

1 1 1 1

( ) ( )
( ) ( ) d ,    ( ) ( ) d ,

2 ( ) 2 ( )
( ) ( )

( ) ( ) d ,   ( ) ( ) d
2 ( ) 2 ( )

b b
n t n t

a a

b b
n t n t

a a

s n s n
C g t e t D g

n p s n p s
p n p n

E g t e t F g
n p s n p s

2

2

t e t

t e t
(8.132) 

where 2 2 2
1 1 1/ 2 and / 4 .n   

Making use of Eqs. (8.121), (8.123), (8.131), and (8.132), the condition (8.127) 
yields 
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0(1) 0
55 1 15 2 1 2

0 0(1)
15 1 11 2 1 2

1( ,0) ( ) [ ( ) ( )][ ( , ) ( , )]d ,

1( ,0) ( ) [ ( ) ( )][ ( , ) ( , )]d

b
x

yz a

b
x

y a

x x e c g t e g t k x t k x t t

D x D x e e g t g t k x t k x t t
 (8.133) 

where 

 
2

( )
1( , ) d

2
i t xiik x t e  (8.134) 

 
2 2

( ) 2
1 ( ) / 422 0 2 2

1

( )
( , ) d

( ) / 4

t x
i xs nk x t e e

p s n
 (8.135) 

To solve the singular integral equation (8.133), define a function  as the 
factor in the integrand of Eq. (8.135) as 

2 ( )K

 
2

1 22
1

2 2 2
1

1 1 2 1

( ) 2( )
( ) / 4

2 2

s nK
p s n

 (8.136) 

where 2 2
2 / 4.   

By separating the singular term of the kernels k1(x, t), Eq. (8.133) can be rewrit-
ten as 

 

00
55 1 15 2 1 2

0 0
15 1 11 2 1 2

1 1( ) [ ( ) ( )] ( , ) ( , ) d ,

1 1( ) [ ( ) ( )] ( , ) ( , ) d

b
x

a

b
x

a

x e c g t e g t h x t k x t
t x

D x e e g t g t h x t k x t t
t x

t
 (8.137) 

where 

0.252

1 20

0.252

20

0.252

2

( , ) 1 cos 1 sin ( )d
2

             1 sin cos ( )d
2

cos ( )             1 sin cos ( )d d
2 2 2

A

A A

h x t t x

t x

t xt x

 

  (8.138) 

with and A as an arbitrary positive constant.  tan /
The solutions of the singular integral equation with the Cauchy type kernel have 

the form 
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where Gi(t) are bounded functions. Chue and Ou then obtained the stress intensity 
factors and electric displacement intensity factors as 
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To obtain the numerical solution of Gi(a) and Gi(b) (i = 1, 2), they normalized 
Eqs. (8.137) and conditions (8.130) into the following form: 
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Equation (8.141) is similar to Eq. (8.110) and again the singular integral equa-
tion of the first kind. Following the same manner of treatment as Eq. (8.112), we 
can obtain the relationship between function ( )if t  and the weighting function 

( )iF t  as 

 1
1 2

( ) ( )
( ) ,     ( )

(1 )(1 ) (1 )(1 )
F t F t

f t f t
t t t t

2   (8.144) 

Thus, Eqs. (8.141) and (8.142) can be solved by using the definition (8.144) and 

reducing these two equations into the following Chebyshev polynomial: 
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where 
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Making use of the relationships between Eqs. (8.139), (8.143), and (8.144), the 
field intensity factors (8.140) can be rewritten as 
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where the unknown values of Fi(–1) and Fi(1) can be obtained from the quadratic 
extrapolation from Fi(tn–1), Fi(tn–2), Fi(tn–3) and Fi(t2), Fi(t3), Fi(t4), respectively. 

8.5.3  Permeable crack problem 

In [21], Chue and Ou also considered the case of a permeable crack face. In this 
case, the symmetric condition (8.125)2 and crack face condition (8.127)2 are modi-
fied to be 
 (1) ( ,0) 0x       (for ) (8.148) 0 x

     (for ) (8.149) (1) ( ,0) ( )yD x D xc a x b

where Dc is defined in Eq. (8.96).  
To satisfy the conditions of the permeable crack problem, Chue and Ou indi-
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cated that they need one dislocation function g1(x) only. Similar to the procedure in 
Subsection 8.5.2, the corresponding stress and electric displacement can be written 
as 

 

0
55 1 2 1

0
15 1 2 1

1 1( ) [ ( , ) ( , )] ( )d ,

1 1( ) [ ( , ) ( , )] ( )d

b
x

a

b
x

c a

x c e h x t k x t g t t
t x

D x e e h x t k x t g t t
t x

 (8.150) 

The corresponding stress intensity factor k3 and the electric displacement inten-
sity factor are given by  3

Dk
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Chue and Ou finally noted that since the crack is assumed to be electrically 
permeable, the condition (8.148) results in the electrical field Ey being continuous 
across the crack surfaces and remaining at a finite value at the crack tips. However, 
from the constitutive equations of piezoelectric material, the electrical displacement 
Dy is related to the shear strain yz and the piezoelectric constant e15. Therefore, Dy 
must be singular at the crack tips, due to the discontinuous displacement of the 
crack surface. The corresponding electrical displacement intensity factors  thus 
depend only on the material constant but not on the applied electric load. 

3
Dk

0
15e
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