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Preface

Fatigue analysis of metals has been developing for more than 150 years from a
simple approach involving elementary stress calculation based on the theory of
elasticity, to a sophisticated treatment demanding a thorough knowledge of com-
plex multiaxial loading and material behavior. Present engineering practice for
comprehensive fatigue analysis requires computer-aided engineering (CAE) tools
that use knowledge of material properties for cyclic stress—strain and fatigue
behavior, structural kinematics for load simulations, finite element analysis for
stress—strain calculations, and fatigue damage assessment for crack initiation and
propagation life predictions.

Since the state-of-the-art technologies’ load, stress, and fatigue analyses and their
applications to engineering design for durability have been commonly adopted in
numerous commercial analysis products, this publication strives to present, in a
logical manner, the theoretical background needed for explaining and interpreting
the analysis requirement and outputs. Ultimately, this book is intended to serve the
reader as a theoretical manual or an analysis handbook. Beginning with coverage
of background material, including references to pertinent research, the development
of the formulas or theories applied in these CAE tools is followed by a number of
examples to illustrate the process of designing structures to prevent fatigue failures
in detail.

Considerable emphasis has been placed on including for the advanced student, as
well as the practicing engineer, the present techniques used in CAE for road load
simulations, pseudo stress calculations, estimates of material properties, incremen-
tal plasticity theories, and multiaxial fatigue life predictions. The understanding
of these is essential to properly applying mechanical designs for durability. The
specific illustrative examples are generally treated in separate sections within the
chapters so that the reader can easily grasp the concepts.
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Preface

The following list details the information provided in each chapter.

Chapter One covers the three road-load analysis techniques to predict vehicle
component loads for mechanical design for durability. They are the generic
load case analysis for extreme loads; the semianalytical load analysis with the
input of the acquired spindle forces, displacements, and accelerations; and the
vehicle dynamics analysis with a tire model and the input of three-dimensional
digitized terrain profiles. Commonly used commercial tire models are also
introduced in this chapter.

Chapter Two details the three pseudo stress analysis techniques: fixed reactive
method, inertia relief method, and modal transient response analysis method.
The pseudo stresses are the stresses calculated from a linear elastic finite
element analysis. These stresses are named because they are different from
the true stresses as plasticity occurs. The pseudo stresses can be directly
employed for stress-based fatigue assessment in the high cycle fatigue (HCF)
regime or for strain-based fatigue damage analysis in the low cycle fatigue
(LCF) regime in conjunction with the multiaxial notch analysis to estimate
the local true stresses and strains.

Chapter Three overviews the historical rainflow cycle counting techniques
for uniaxial load time history and the latest rainflow reversal extraction
techniques for multiaxial load time histories. For multiaxial fatigue analyses,
the uniaxial rainflow cycle counting method and the multiaxial rainflow
reversal extraction method have been widely employed in the critical plane
search approach and the equivalent stress—strain approach, respectively.

Chapter Four provides an in-depth presentation on the stress-based uniaxial
fatigue analysis, which focuses on the techniques provided by FKM-Guideline
(Analytical Strength Assessment of Components in Mechanical Engineering)
that are used to generate the synthetic nominal stress life and the local pseudo
stress-life curves of a component, based on a given material’s ultimate tensile
strength, and to account for the mean stress effect with the mean stress
sensitivity factor for various materials.

Chapter Five introduces the concept of proportional and nonproportional
loading, or stressing in the state of multiaxial stresses, and the nonproportional
loading effect on fatigue strength; it also presents the popular stress-based
theories (empirical formulas, equivalent stresses, critical plane approach, and

xvi



Preface

Dang Van multiscale method) for assessing fatigue damage under the state of
multiaxial stresses.

Chapter Six reviews the strain-based fatigue analysis techniques for a
material under the state of uniaxial stress, which demands the familiar
Ramberg—Osgood and the Masing equations for hysteresis loop simulations,
the modified Neuber method or Molsky—Glinka’s energy density method
for the notch analysis, and finally the modified Morrow or Smith—Watson—
Topper (SWT) mean stress corrected strain-life equation for fatigue behavior.
The incorporation of residual stress and surface finish factor in the notch stress
analysis is presented.

Chapter Seven details the presentations of theories of plasticity, including
the introduction of associated flow rule, consistency condition, and kinematic
hardening rules, for simulating the material hysteresis behaviors under the
state of multiaxial stresses, and of the multiaxial notch analysis techniques
for estimating local material responses based on the input of pseudo
stresses.

Chapter Eight extends the discussion of multiaxial stress—strain relation
and multiaxial notch analysis methods of Chapter Seven, and focuses on
the presentation of strain-based fatigue damage assessment techniques for
a material under multiaxial stress state. Particularly, the critical plane
approach with the damage parameter such as the Fatemi—Socie, SWT,
or Brown—Miller method has been introduced and discussed for the
pros and cons.

Chapter Nine presents an analytical solution to assess fatigue damage
severity for various vibration test specifications. This chapter also reviews
the fundamentals of sinusoidal and random vibration test methods and
introduces the fatigue damage spectrum (FDS) calculation technique for
each test method.

Chapter Ten introduces some fatigue analysis techniques for seam-welded
joints using linear elastic finite element analysis results. Especially, structural
stress approaches developed by Dong and Femer were described in detail
with examples.

Chapter Eleven presents a summary of the primary factors affecting fatigue
life and strength of resistance spot-welded joints and then focuses on some
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particular fatigue analysis techniques (the linear elastic fracture mechanics
approach and the structural stress approach) and the relation of basic
material specimens test to design.

*  Chapter Twelve introduces the basics of the VDI 2230 guideline for ISO
metric bolted joints to prevent potential failure modes such as embedding,
clamp load loss, clamped plates crushing and slipping, bolt yielding, thread
stripping, and bolt fatigue failure. The assumptions and the calculation
procedure to estimate the elastic compliances of the bolt and the clamped
plates are also described. In addition, the last portion of this chapter presents
the commonly used finite element (FE) bolt-modeling techniques for forces
and stress analysis, and recommends the appropriate fatigue damage
assessment method for two different threaded bolts (e.g., rolled before and
after heat treatment).

This book does not cover present nonlinear damage rules, but instead it emphasizes
the application of the linear damage rule (LDR). The LDR has been universally
adopted due to its simplicity and can account for load sequence and hardening
effect, if used with the appropriate damage parameter. This book does not address
detailed analytical models for crack growth behavior such as crack growth direction,
growth rates, closures, R ratio effect, small crack effects, and threshold. However,
the book does present the crack initiation life prediction models for metallic
components subjected to the state of uniaxial and multiaxial stresses, and the
crack growth approaches for life predictions of welded joints.

The plasticity theories introduced here do not apply to rate-dependent yielding,
elevated temperature effect, and anisotropic materials. This book is not intended
to be a comprehensive review of all published research in each respective sub-
ject area, but instead it presents the theories and problem-solving techniques
commonly employed in automotive engineering.
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Nomenclature

Chapter 1

a., = engine/transmission CG x direction translational acceleration
a., = engine/transmission CG y direction translational acceleration
a., = engine/transmission CG z direction translational acceleration
a;, =i-th acceleration vector of the particles in the dynamics system
ap = engine/transmission translational acceleration

Bx = engine/transmission angular acceleration about x axis

By = engine/transmission angular acceleration about y axis

2 = engine/transmission angular acceleration about z axis

FE = engine/transmission angular acceleration vector

CG = center of gravity

a =i-th constraint force vector

OW = virtual work

8T, = virtual displacements of the i-th system, consistent with the constraints
F, = spindle longitudinal force

F, = spindle lateral force

F, =spindle vertical force

Fxir=left front tire-ground longitudinal force

Fx1r =left rear tire-ground longitudinal force

Fxrp=right front tire-ground longitudinal force

Fyxgrr =right rear tire-ground longitudinal force

FyLr = left front tire-ground lateral force

FyLr = left rear tire-ground lateral force

Fyrp=right front tire-ground lateral force

Fygrr =right rear tire-ground lateral force

Fz1 = left front tire-ground vertical force

Fz1 r = left rear tire-ground vertical force

Fzrp=right front tire-ground vertical force
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Nomenclature

Fzrr =right rear tire-ground vertical force

F = vector forces

F: =i-th applied forces vector

fEI = engine/transmission inertial forces

fEMi = engine/transmission mount forces

J =mass moment of inertia of a body

Jg = engine/transmission mass moment of inertia
LCA =low control arm

M, = bending moment

m = mass

m; = masses of the particles in the system

Q = state space of a dynamic system

[R]gy = powertrain geometric rigid body transformation matrix
T, = position vector of the centre of mass of the body
'_fc) = acceleration vector of the centre of mass of the body
T =vector moments or torques

Tr = engine/transmission inertial torque

Tof = transfer case front output torque

T, = transfer case rear output torque

TEMi = engine/transmission mount moments

0 = angular acceleration

WEFT = wheel force transducer

X(t) = dynamic system state vector

x; (t) =first state of dynamic system at time t

X (t) =n-th state of dynamic system at time t

Chapter 2

o = Rayleigh damping proportionality factor with the system mass matrix

{a} =normal or natural modal vector

B =Rayleigh damping proportionality factor with the system stiffness matrix

C, = generalized damping coefficient to the n-th mode shape

[C] = damping matrix of a structure

At =time increment

[®] = modal matrix obtained in the solution of the undamped free vibration
system

F,(t) = generalized force value to the n-th mode shape
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Nomenclature

{F(t)} = dynamic forcing vector

Yn = constant to normalize the modal vector

[K] = stiffness matrix of a structure

K, = generalized stiffness value to the n-th mode shape

Ly (t) =k-th load magnitude at a time t

M = applied static moment at a node

[M] = mass matrix of a structure

M, = generalized mass to the n-th mode shape

® = natural frequency of a structure

®, = natural frequency to the n-th mode shape

P = applied static force at a node

{P} = applied static load vector

{Py }¢x; = resultant force vector at the origin (0, 0, 0)

{P;} ¢ = applied loading vector at a nodal point i

{@}eux1 = eigen-solution rigid body modal vector

{@}, =n-th normalized modal vector

{@}} = transpose of the n-th normalized modal vector

[Ri 0lexs = geometric rigid transformation matrix from a nodal point i to the
reference point (0, 0, 0)

o;i(t) = stress tensor at a time t

Gijx = stress tensor influence due to a k-th unit load source

t; =i-th time instant

0 =nodal rotation

0 = nodal rotational acceleration

{u} =flexible deformation vector of a structure

{u(0)} = initial displacement vector

{u, } =rigid body motion vector with respect to the CG of a structure

{0}y, =rigid body motions from the reference point (0, 0, 0)

{U;; } ¢, =rigid body motions at a nodal point i

{u,} =total deformation vector of a structure

{(0)} = initial velocity vector

{ii} =flexible acceleration vector of a structure

{i,;} =rigid body acceleration vector with respect to the CG of a structure

{1, } =total acceleration vector of a structure

{0}, =rigid body acceleration vector at the origin (0, 0, 0)

{li;; }4y, =rigid body acceleration vector at a nodal point i

v =nodal displacement



Nomenclature

Vv =nodal translational acceleration

&, =damping ratio to the n-th mode shape

z,; = generalized displacement to the n-th mode shape at time t;
{z} =modal participation coefficients matrix

z,; = generalized velocity to the n-th mode shape at time t;

Z,; = generalized acceleration to n-th mode shape at time t;

Chapter 4

2ht =height of a rectangular section

2N =number of reversals to a specific crack initiation length

A =fatigue parameter

ag = constant in the size correction formula

ag = material constant in the K/K; ratio

ay; = material parameter in determining the mean stress sensitivity factor
an = Neuber’s material constant

a,, = Peterson’s material constant

ag =roughness constant

agg = Siebel and Stieler material parameter

B =width of a plate

b =slope (height-to-base ratio) of an S-N curve in the HCF regime
bg = material constant in the K/K; ratio

by = material parameter in determining the mean stress sensitivity factor
b,w =net width of a plate

bw = width of a rectangular section

Cy 1 =load correction factor in bending

Cp =size correction factor

Cg 1 = temperature correction factor for the endurance limit

Cr =reliability correction factor

Cg = surface treatment factor

C, = stress correction factor in normal stress

C,.g =endurance limit factor for normal stress

C,.r =rOUughness correction factor for normal stress

C, 1 =load correction factor in torsion

C. =shear strength correction factor

C. =stress correction factor in shear stress

C.r =roughness correction factor for shear stress
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Nomenclature

C,.r = temperature correction factor

COVg = coefficient of variations

D =diameter of a shaft

Dpyp = critical damage value in the linear damage rule

d =net diameter of a notched shaft

d.sr = effective diameter of a cross section

defr.min = minimum effective diameter of a cross section

®(—) = standard normal density function

G =stress gradient along a local x axis

G =relative stress gradient

G, () =relative normal stress gradient

G.() =relative shear stress gradient

yw =mean stress fitting parameter in Walker’s mean stress formula

HB = Brinell hardness

Ky.r=fatigue notch factor for a shaft under bending

Ky = fatigue notch factor or the fatigue strength reduction factor

K; = fatigue notch factor for a superimposed notch

K. r=elastic stress concentration factor for a plate under shear stress

K r= fatigue notch factor for a shaft or plate under shear

K, = elastic stress concentration factor

K¢ ¢=fatigue notch factor for a shaft under torsion

K, r=fatigue notch factor for a pate under normal stress in x axis

K, (=elastic stress concentration factor for a pate under normal stress in
X axis

K, ¢=fatigue notch factor for a plate under normal stress in y axis

K, (=elastic stress concentration factor for a plate under normal stress in
y axis

Kax ¢ = fatigue notch factor for a shaft under axial loading

k = slope factor (negative base-to-height ratio) of an S-N curve in the HCF
regime

M; =initial yielding moment

M, = fully plastic yielding

M, =mean stress sensitivity factor in normal stress

N =number of cycles to a specific crack initiation length

Ng =endurance cycle limit

N¢; =number of cycles to failure at the specific stress event

n; = number of stress cycles
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Nomenclature

ng = K/K; ratio or the supporting factor

ng () = K/Ky ratio for a plate under normal stress

ng ox () = K/K; ratio for a plate under normal stress in x axis

ng oy () = K/Ky ratio for a plate under normal stress in y axis

ng - () = K/K¢ ratio for a plate under shear stress

O =surface area of the section of a component

¢ = 1/(4/t/r+2) = parameter to calculate relative stress gradient

g =notch sensitivity factor

R = stress ratio =ratio of minimum stress to maximum stress

R, =reliability value

Rz = average roughness value of the surface

r =notch root radius

I'max = larger one of the superimposed notch radii

S =nominal stress

S. = stress amplitude

Sc =nominal stress of a notched component

Sk = endurance limit at 10° cycles

S, = mean stress

Sn.g =nominal endurance limit of a notched component

Ss.ax.g = endurance limit of a notched, rod-shaped component under fully
reversed loading in axial

Ss.ax.u = ultimate strength of a notched, rod-shaped component in axial
loading

Ss.b.g = endurance limit of a notched, rod-shaped component under fully
reversed loading in bending

Ss.p.u = ultimate strength of a notched, rod-shaped component in bending

Ss.E.Notched = Nominal endurance limit of a notched component at
10° cycles

Ss.E.smooth = Nominal endurance limit of a smooth component at 10° cycles

Ss.s.e =endurance limit of a notched, rod-shaped component under fully
reversed loading in shear

Ss.s.u = ultimate strength of a notched, rod-shaped component in shear

Ss..e =endurance limit of a smooth, polish component under fully reversed
tension

Ss..e = endurance limit of a notched, rod-shaped component under fully
reversed loading in torsion

Ss.tu = ultimate strength of a notched, rod-shaped component in torsion
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Nomenclature

Ss.-g=endurance limit of a smooth, polish component under fully reversed
shear stress

Ss.cu = ultimate strength values of a notched, shell-shaped component for
shear stress

Ss.x.e = endurance limit of a notched, shell-shaped component under fully
reversed normal stresses in x axis

Ss.x.u = ultimate strength of a notched, shell-shaped component for normal
stresses in X axis

Ss,y.g = endurance limit of a notched, shell-shaped component under fully
reversed normal stresses in y axis

Ss,y,u = ultimate strength of a notched, shell-shaped component for normal
stresses in y axis

Ss..=normal stress amplitude in a stress cycle

Se.ar = equivalent fully reversed normal stress amplitude

Ss.g =endurance limit for normal stress at 10° cycles

Se.Fr = fatigue limit in normal stress = normal stress amplitude at 10% cycles

Se.m =mean normal stress in a stress cycle

Se.max = Maximum normal stresses in a stress cycle

Ss.min = minimum normal stresses in a stress cycle

S¢u = ultimate tensile strength with R97.5

St u.min = mMinimum ultimate tensile strength

Siusta = mean ultimate tensile strength of a standard material test specimen

Sy =tensile yield strength with R97.5

Sty,max = maximum tensile yield strength

S: g =endurance limit for shear stress at 10° cycles

S pL = fatigue limit in shear = shear stress amplitude at 10® cycles

Smax = Maximum Sstress

Smin = Minimum stress
= fatigue strength coefficient
o.f = fatigue strength coefficient in normal stress

c° =fictitious or pseudo stress

6°(x) = pseudo stress distribution along x

og = pseudo endurance limit

o, .. =maximum pseudo stress at x =0

T = temperature in degrees Celsius

t. = coating layer thickness in pm

V =volume of the section of a component
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Nomenclature

Chapter 5

ag = sensitivity shear-to-normal stress parameter

apy = hydrostatic stress sensitivity

onp = nonproportional hardening coefficient for material dependence
Ooc¢ = hydrostatic stress sensitivity factor

Oy = mean stress sensitivity factor in the von Mises failure criterion
o =center of the smallest von Mises yield surface

C = constant to make fyp unity under 90° out-of-phase loading

Ag = strain range

Eneso = Young’s modulus in mesoscopic level

@ =phase angle between two loadings

€°(t) = macroscopic elastic strain tensor at a time instant t

e

€ oo (1) = mesoscopic elastic strain tensor at a time instant t

e . (t) =mesoscopic plastic strain tensor at a time instant t
1 = material constant

fgp = scaled normal stress factor

fxp = nonproportional loading path factor for the severity of loading paths
G =factor to account the stress gradient effect

k=0gr-—1/Tg

Ky, =elastic stress concentration factor due to bending

kg =normal stress sensitivity factor

k, =monotonic strength coefficient

K, =elastic stress concentration factor due to torsion

k" =cyclic strength coefficient

n, = monotonic strain hardening exponent

n’ =cyclic strain hardening exponent

¢ = inclination angle between x’ and z axis

¢" =interference plane angle with respect to the x-y plane

p* =residual stress tensor in the mesoscopic scale

gmeso‘, (t) =largest mesoscopic deviatoric principal stress at a time instant t
Smeso.3 (t) = smallest mesoscopic deviatoric principal stress at a time instant t
S(t) = macroscopic deviatoric stress tensor at a time instant t

S meso (1) = mecroscopic deviatoric tensor at a time instant t

SF(t) = safety factor at a time instant t

[6]xy, = stress matrix relative to a global xyz coordinate system

[6]yy, = stress matrix relative to a local x'y’z" coordinate system



Nomenclature

= maximum principal stress
61, =maximum principal stress amplitude
03, =minimum principal stress amplitude
6, =applied in-phase normal stress amplitude
ogr=—1 = fully reversed fatigue limit for normal stress
oy, = hydrostatic stress
Geq,m = €quivalent mean stress
Omeso.n (t) = mesoscopic hydrostatic stress at a time instant t
On.max = Maximum normal stress on a critical plane
Gps.. = the maximum principal stress amplitude (= oy ,)
oy, = ultimate tensile strength
Gy = yield strength in tension
Gym.a = von Mises stress amplitude
Svm.a (P = 90°) =90° out-of-phase von Mises stress amplitude
ovm.a(®P = 0°) =in-phase von Mises stress amplitude
Oym.m = von Mises mean stress
OvM.aNp = €quivalent nonproportional stress amplitude
o, =normal stress in a local x-y coordinate
* = pseudo normal stress in x axis
fy’— pseudo normal stress in y axis
o¢ = fatigue strength coefficient
G.max (t) = maximum principal stresses at a time t

G1.max (t)| = maximum absolute value of the principal stress at a time instant t

?

1€

ef .
|.max = largest absolute principal stress

Ql

|'5}(t)| = magnitude of the maximum principal stress at a time instant t
|'55(t)| = magnitude of the minimum principal stress at a time instant t

o(t) = macroscopic stress tensor at a time instant t

0,050 (t) = MesOScopic stress tensor at a time instant t

T =time for a cycle

[T] = coordinate transformation matrix

0 = interference plane angle with respect to the x-z plane or the inclination
angle between the x and x’ projection vector on x-y plane

0, = angle between the maximum principal stress and the local x axis

0" =interference plane angle with respect to the y-z plane

Ta..E = shear fatigue limit for Case A or B crack

T, = applied in-phase shear stress amplitude

Q

Xxxi



Nomenclature

7g = fully reversed fatigue limit for shear stress

7,(0) = shear stress on an interference plane with an inclination angle () to
a local x axis

Ty+ o = resultant shear stress due to T, and Ty, along a critical plane

Twms.o = maximum shear stress amplitude (=6, — 63.,)

Tyy = shear stress in a local x-y coordinate

Tyy' = shear stress component along a critical plane

T,,» = shear stress component along a critical plane

Tiy = pseudo shear stress in a local x-y plane

Toct.a = alternating octahedral shear stress

Tt = effective shear stress defined by Sonsino

Trindley,a = Findley’s stress amplitude

TMcDiarmid.a = McDiarmid’s stress amplitude

V =ratio of the minimum to maximum principal stresses

v=Poisson’s ratio

Chapter 6

2N = fatigue life to failure in reversals
2Nt = transition fatigue life in reversals
Ass = K{/K; ratio

ag =roughness constant

b = fatigue strength exponent

Cg = surface treatment factor

C,s = material constant dependent on yield strength (o) for the K¢/Ky ratio
Cs.r =roughness correction factor

¢ = fatigue ductility exponent

D =total damage

Ae =nominal strain range

Ag =true strain range

Ag® =elastic strain range

AgP = plastic strain range

AS =nominal stress range

Ac =true stress range

Ao =pseudo stress range

E =modulus of elasticity

e =nominal strain
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Nomenclature

e; =nominal strain for initial loading

eM = modified version of a nominal strain

€ =true strain

€1 =true strain for initial loading

€, =true strain amplitude

€4rev = fully reversed strain amplitude

€° = elastic strain

e, = elastic strain amplitude

P = plastic strain

el = plastic strain amplitude

e¢=fatigue ductility coefficient

g, =residual strain

G =relative stress gradient

HB = Brinell hardness

K, = true strain concentration factor

K¢ = fatigue notch factor

k., = mean correction factor for o

K, =limit load factor or plastic notch factor

K = true stress concentration factor

K, = elastic stress concentration factor

KM = modified elastic stress concentration associated with S™
K" =cyclic strength coefficient

kn = total number of the stress blocks

L, =load producing gross yielding of a net section
L, =load producing first yielding of a net section
N¢; =number of cycles to fatigue failure

n; = number of applied cycles to a constant stress amplitude
n’ = cyclic strain hardening exponent

Y = constant to estimate e¢ in the uniform material law
Rz = average roughness value of the surface in pm
r =notch radius

S =nominal stress

S; =nominal stress for initial loading

St minu = Minimum ultimate tensile strength

Siu = ultimate tensile strength

SM =modified version of a nominal stress

o =true stress
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Nomenclature

o, =true stress for initial loading

o] = pseudo stress for the initial loading

o, =true stress amplitude

Carev = fully reversed stress amplitude

c. =pseudo stress

o°(x) = theoretically calculated pseudo stress distribution near a notch root
O, = Mmean stress

Omax = Maximum Stress

o, .. =maximum local pseudo stress

o, =residual stress

ot = fatigue strength coefficient

oy = cyclic yield stress

W, =strain energy density at the notch root

Wg =energy density due to nominal stress and strain
x =normal distance from the notch root

Chapter 7

A =nonproportional parameter in Tanaka’s model

A, =constant to the addition of an elastic stress increment

A =translational direction of the yield surface

o = back stress tensor

o = part of the total back stress

anp = nonproportional hardening coefficient

B =translational direction of the yield surface

b = material parameter determining the rate at which yield saturation is
reached

b, = material constant in the Zhang and Jiang model

bnp = material parameter

C.=material constant

C =internal state variable describing the internal dislocation structure

¢ = material constant in the Zhang and Jiang model

D =normalized difference between d and d,,,«

d = distance between the loading and the limit surfaces

d; =distance between a loading stress point and its conjugate point

dmax = maximum distance between the loading and the limit surfaces

d™ = discrete memory variable to account for the memory effect
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Nomenclature

de® = elastic deviatoric strain increment tensor
de =total strain increment tensor

de® = elastic strain increment tensor

deP = plastic strain increment tensor

d\; = multiplier based on Levy’s flow rule

d\, = multiplier based on Prandtl and Reuss’ flow rule
d\; = multiplier based on Mises’ flow rule

d\4 = multiplier based on Mroz’s flow rule

d)\s = scalar associated with the back stress

dAe = scalar associated with the back stress

dpy = scalar based on Mroz’s flow rule

dp =equivalent plastic strain increment

dS = deviatoric stress increment tensor

do = stress increment tensor

Ae =deviatoric pseudo strain tensor

Ae® = deviatoric pseudo strain increment tensor
AS = deviatoric stress increment tensor

AS® = deviatoric pseudo stress increment tensor
d;j = unit tensor

E = Young’s modulus of elasticity

e = deviatoric strain tensor

¢ = deviatoric pseudo strain tensor

= symmetric, second order strain tensor

€° = symmetric, second order pseudo strain tensor
€.q = equivalent (von Mises) strain

€, = elastic von Mises strain

g;j = symmetric, second order strain tensor

o o |

f = func() =yield surface function or criterion

f(S) =yield surface function or yield criterion depending on deviatoric
stress tensor

f = next inactive yield or limit surface

G =elastic shear modulus

H = hardening function

h = plastic modulus, the tangent modulus of a uniaxial stress-plastic strain curve

[;j = unit tensor

1 = unit tensor

J, =second invariant of the deviatoric stress tensor



Nomenclature

k =yield strength in shear (=1,)

K’ =cyclic strength coefficient for a true stress-strain curve
K" =cycle strength coefficient for a pseudo stress-strain curve
M =number of back stress parts

m; = material constant 1 in the Zhang and Jiang model

m, = material constant 2 in the Zhang and Jiang model

pi =constant 1 for the Armstrong-Frederick back stress rule
Mo = constant 2 for the Armstrong-Frederick back stress rule

p(;) = constant for the Armstrong-Frederick i-th back stress rule

uff) = constant for the Armstrong-Frederick i-th back stress rule
n’ =cyclic hardening exponent for a true stress-strain curve

n* =cyclic hardening exponent for a pseudo stress-strain curve
n = outward normal to an active surface at S

p= / dp = accumulated plastic strain

¢ = phase angle between two loadings

Q() = plastic potential function

q = size of the memory size in the Zhang and Jiang model

gn = target value for nonproportional hardening

gp = target values for proportional hardening

R() = isotropic strain-hardening function

Rnp =saturated value with increasing plastic strain due to nonproportional
loading

R" = saturated value with increasing plastic strain

r=evolution parameter in the Zhang and Jiang model
Si(i=1,2,3) =deviatoric principal stress component

S =deviatoric stress tensor

S¢ = deviatoric pseudo stress tensor

L = conjugate stress point on the next inactive yield or limit surface
= symmetric, second order stress tensor

| = /0:6 =norm of a tensor

Geq = /3], =von Mises or equivalent stress

Geq = €quivalent (von Mises) stress

o° = symmetric, second order pseudo stress tensor

o, = elastic von Mises stress

o, = hydrostatic stress tensor

o; = principal stress component

Q|

ia
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Nomenclature

Gjj = symmetric, second-order stress tensor

Svma(@ = 90°) =90° out-of-phase von Mises stress amplitude
6vma(@ = 0°) =in-phase von Mises stress amplitude

o, = yield stress which is a function of accumulated plastic strain p
cs]y‘ = limit or saturated yield stress

Gy, = initial yield stress

T, =yield strength in shear (=k)

v =Poisson’s ratio

WP = [o;def; = plastic work

W = function of back stress range

X =material constant in the Zhang and Jiang model

Chapter 8

2N =reversals to failure

o = nonproportional hardening coefficient
o =plastic work exponent

b, c = fatigue strength, ductility exponents
ds}} = plastic strain increment tensor
Agp=maximum principle strain range
Agnp = nonproportional strain range

% = strain amplitude

% = principal strain amplitude

% =equivalent plastic strain amplitude
_Ayzmax = shear strain amplitude

Ao _

=~ = stress amplitude

AW,, AW,,, AW,y = elastic, plastic, and total work per cycle
E =modulus of elasticity

€1(t), e3(t) = extreme values of principle strain at a given time
€, = strain amplitude

€2, €p, € = corrected strain gage rosette readings

€1(t) = maximum absolute value of principle strain

€1max = Maximum value of g(t) for the cycle

€, =normal strain on maximum shear strain plane
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Nomenclature

eP = von Mises equivalent plastic strain
Ex, €y, Yxy = coordinate strains

P oP oP AP p P _ 1 1
€5, €y, €, €y, €y, €y, = plastic strain tensor components

SZ, 8;;, 8: =uncorrected strain gage rosette readings

€, =equivalent strain amplitude

€., €p, & = equivalent elastic, plastic, and total strains

F = nonproportionality factor

fyp = Itoh’s nonproportionality factor

G = shear modulus

Ya = shear strain amplitude

ygy =engineering plastic shearing strain

k, k, = damage parameter fitting constants

K, K/, n, " = monotonic, cyclic Ramberg—Osgood strength coefficient

K., K, K = strain gage rosette transverse sensitivity factors

A= Aoc,/Ac; =biaxiality ratio computed from magnitude ordered principal
stresses

m = material constant to account for hydrostatic stress (Mowbray)

n, n’ = monotonic, cyclic Ramberg—Osgood strength exponent

Ve, V=Poisson’s ratio

V, = Poisson’s ratio of the material on which the strain gage factors and
sensitivities were determined, 0.285

v, = “plastic” Poisson’s ratio

S, C, k =damage parameter constants

of, e = fatigue strength, ductility coefficients

ojj = stress tensor

Gp = in-phase cyclic stress

Omax = Maximum stress

On.max = Maximum normal stress on shear plane

o, =von Mises equivalent stress

Goop = out-of-phase cyclic stress

Oy, Oy, Gy, Txy, Txz» Ty, = SIIESS te€Nsor components

o, =yield stress (when in damage parameter equation)

Tf, yr = shear fatigue strength, ductility coefficients

» = equivalent Poisson’s ratio

E(t) = angle between principle strain and max principal strain for cycle
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Chapter 9

A =proportional constant in a logarithmic sweep

A = coefficient in Fourier transforms of X(t)

A, = coefficient in Fourier transforms of X(t)

A’ =constant in a linear sweep

aw = constant in Wirsching’s damage equation

o = Weibull scale parameter (characteristic life)

B =half-power bandwidth

B,, = coefficient in Fourier transforms of X(t)

bw = constant in Wirsching’s damage equation

p = Weibull shape parameter (Weibull slope)

C = material constant of an S-N curve

¢ = viscous damping coefficient of an SDF system

D =linear damage value

Dnp =narrow band fatigue damage value

DwB wirsching = Wirsching’s wide band fatigue damage value

Dwg.orit, = Ortiz’s wide band fatigue damage value

Dws pinik = Dirlik’s wide band damage equation

dB =logarithm of the ratio of two measurements of power

d;(f,) = fatigue damage to a system with a resonant frequency f,,, subjected
to a sinusoidal input with an excitation frequency f;

dt; = incremental time for x < X(t) < x +dx

dx = incremental random variable

d[n] =impulse to linear time invariant system

d[n — k] = Dirac delta function

Af =frequency increment

At=time increment

E(X(t)) = expected value of X(t)

E[N,+(dt)] = expected number of positively-sloped crossing (up-crossing) in
an infinitesimal interval

E[0*] = expected rate of zero up-crossing

E[P] = expected rate of peak crossing

E[X?(t)] = mean-square value of X(t)

n = parameter defined as n=Q/ng,

Fs,(s,) = cumulative distribution function of the stress amplitude
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Nomenclature

fyx (u,v) =joint probability density function of X(t) and X(t)

fx(x) = probability density function = P[x < X(t) < x + dx] = probability that
x < X(t) < x+dx

K =spring constant defined as the ratio of stress amplitude to relative
displacement

k = stiffness of an SDF system

f = excitation frequency rate

f = excitation frequency in cycles/second (Hz)

f; = excitation frequency in cycles/second (Hz)

f, =resonant frequency in cycles/second (Hz)

fimin = minimum excitation frequency in cycles/second (Hz)

fimax = maximum excitation frequency in cycles/second (Hz)

G =fraction of the maximum steady state response of a system

I'(.) = gamma function

y =regularity factor

|H, (r;)| = gain function or the modulus of the transfer function

|H(o)| = gain function or the modulus of the transfer function

H*(®) = complex conjugate of H(®)

h[n] =response to a linear time invariant system due to an impulse d[n]

kn = total number of the stress blocks

A =spectral width parameter

M; = j-th moment of a one-sided power spectral density function

m = slope factor of an S-N curve

m, =mass of an SDF system

px = mean value of X(t)

N = number of equally spaced time intervals in X(t)

N ; = fatigue life as the number of cycles to failure under S,;

NO =total sample points in T

ng, = number of cycles of excitation between the half-power bandwidth B

n; = number of cycles in the i-th block of constant stress amplitude S, ;

octave = doubling of frequency

oy = frequency of the k-th harmonic frequency

®, = natural frequency in radians/second

PSD = power spectral denstiy

pdf(f;) = probability that the stress amplitude S, =s,; may occur

Q =dynamic amplification factor
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Nomenclature

R(t) = autocorrelation function of X(t)

RMSx = root mean square of X(t)

1; = frequency ratio defined as fi/f,

S.(f;, &, f,) = stress amplitude

S..rms =root mean square of this stress amplitude response to an SDF system

Sx(w) =two-sided spectral density of a stationary random process X(t) with
kHX =0

Y no; = total number of the sample points between x and x + dx

i=1

ox = standard deviation of X(t)

o3 = variance of X(t)

T =total time

tj=time instant at j-th digitized point=j- At

T =time lag

v, = expected rate of up-crossing per time unit

W, (f) = power spectral density = one-sided spectral density a stationary
random process

W, (f;, &, f,) = power spectral density of the relative displacement to an
SDF system

W (f,) = power spectral density of the base random accelerations to an SDF
system

W; (f,, &, f,) = power spectral density of the relative acceleration to an SDF
system

X(w) = forward Fourier transform of X(t)

X(t) = displacement, random process
X[n] = arbitrary input a linear, discrete time, time-invariant system

Xﬁ =complex conjugate of X,
X(t) = velocity random process

x =random variable at a time instant

XO( ) =displacement of the mass of an SDF system

X, (t) = velocity of Xx,(t)

5&0(‘[) = acceleration of x,(t)

XRrms =root mean square of the absolute acceleration response to an SDF
system

& = damping ratio

Y[n] = output with a weighted sum of time-shift impulse responses
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y,(t) =base input displacement of an SDF system

y,(t) = velocity of y,(t)

¥, (t) = acceleration of y,(t)

|V, (f;)| = base input sine vibration with an excitation frequency of f;

z=normalized variable for a normal distribution

Z,(t) = X, (t) —y,(t) =relative displacement

Zrms = root mean square of the relative displacement response to a SDF
system

7, (t) = velocity of z,(t)

7,(t) = acceleration of z,(t)

|Z, (£, &, f,,)| = steady-state relative response to a SDOF system with a
resonant frequency f,,, subjected to a base input sine vibration with an
excitation frequency of f;

Lo =constant in Ortiz’s damage equation

Cw =rainflow correction factor based on Wirsching’s study

Chapter 10

a = effective weld throat

anp = nonproportional hardening coefficient for the material dependence

og = sensitivity shear-to-normal stress parameter

b = fatigue strength exponent

C =fitting material coefficient

Cnp = constant chosen to make fyp unity under 90° out-of-phase loading

Dy =damage value due to normal stress

D. =damage values due to shear stress

d = partial penetration depth

AS =equivalent structural stress range

F;=nodal force at nodes i in a local coordinate system

F)(:l) (y) and Fsz)(y) = grid forces in an element (E”)

f(x") =linear weld force distribution force as a function of a distance x’
from a reference node

f1() and f,() =functional expressions

f, =bending compliance function

f; = unit nodal weld force at node i in a local coordinate system

fi(k) =unit nodal weld force at node i in region k

f, = membrane compliance function

xlii



Nomenclature

£ (y) = unit line force in an element (E©)

fxil) (y) and f,?z)(y) = grid weldline forces in an element (E¥)
fy = unit weldline in-plane force on the crack propagation plane
fnp = nonproportional loading path factor for the severity of loading paths

g(li) and gg) = grid points in an element (E)

I(r) = dimensionless function of bending stress ratio
IS) =element edge length between the two grid points
K, =stress intensity factor for an edge crack under structural (far-field)

stresses
Kai<o.1 = stress intensity factor dominated by the local notch stresses

Kans0.1 = stress intensity factor controlled by the structural stresses

AK,i<0.1 = stress intensity factor range in the short regime

AK>0.1 = stress intensity factor range in long crack growth regime

K., = elastic stress concentration factors under axial load

Ky, = elastic stress concentration factors under bending load

k =slope factor for an S-N curve

L =weld leg length

1 =length of a plate or shell element

l;=length of a plate or shell element i

M; =nodal moment at node i in a local coordinate system

M, = stress intensity magnification factor

M1 and My, » =mean stress sensitivity factors defined in Haigh’s
diagram

my)(y) =unit line moment in an element (E(i))

Mgll) (y) and Mglz) (y) = grid moments 1 and 2 in an element (E¥)

;il) (y) and m§12)(y) = grid line moments 1 and 2 in an element (E?)

m = crack growth rate exponent for the long crack growth regime

m; = unit nodal weld moment at node i in a local coordinate system

m, = unit weldline in-plane torsion on the crack propagation plane

n=crack growth rate exponent for the first stage of the crack growth

R =load ratio

r =bending ratio = 6,/0;

p =weld toe radius

G1, 65, and 03 =local stresses points 1, 2 and 3, respectively, to describe the
bi-linear notch stress distribution

o, = median pseudo endurance limit at 2 X 10° cycles

m
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Nomenclature

oy, = bending stresses

GS ) (y) =bending stress along a weldline direction y in an element (ED)
Oy = bending stress at node i

csé,k) =Dbending stress in region k due to the bi-linear notch stress

distribution

Gfk) =local stress at node i in region k

0, = membrane stress

G ; = membrane stress at node i

cff]) (y) = membrane stress along a weldline direction y in an element (E®)
](1'1() = membrane stress in region k due to the bi-linear notch stress
distribution

o, = structural stress normal to the crack surface

0., = maximum structural stress amplitude

Os.m = Mean structural stress

(9

Os.a.r=—1 = equivalent fully reversed stress amplitude

GS) (y) = structural stress normal to the crack surface along a weldline
direction y in an element

O, = structural stress at node i

—ref .

O max = largest absolute principal stress

Eﬁ,max(t) = maximum principal stresses

Geq,m = €Equivalent mean stress

of = fatigue strength coefficient

ovm.a(® = 90°) =equivalent stress amplitude due to 90° out-of-phase loading

ovm.a(® = 0°) = equivalent stress amplitude due to in-phase loading

Oym.a and Gyp . Np = €quivalent proportional and nonproportional stress
amplitudes

Oyx.a» Oyas Txy,a = plane stress amplitude components

Oxm and o, ;, =mean stress values in x and y axes, respectively

T =time period for a cycle

t=member thickness

t1, to = plate thickness

t. = characteristic depth in bilinear notch stress distribution

0 = angle of G} . (t) With respect to the x axis

0,=weld throat angle

&(t) = angle between E}riax and G} max ()

xliv



Nomenclature

Chapter 11

A = constant

A, = constant

a =radius of the spot weld

o =exponent for the shape of the failure surface

b = half width of the coupon

b, =load ratio exponent

f; = material constant

> = material parameter to correlate Ky mode fatigue data to K; mode
fatigue data

d =nugget diameter

AF =remote load range

AFy = out-of-plane normal load range

AFy N, = fatigue strength range in out-of-plane normal loading in lbs

AFg =in-plane shear load range

AFs N, = fatigue strength range in in-plane shear loading in Ibs

AMj; = bending moment ranges

AP; = axial load range in the weld nugget

AQj; = membrane load ranges

AS .x = maximum structural stress ranges

F, and F, =in-plane interface forces

G = geometrical correction factor

h = constant

k, = parameter that depends on the ratio of the nugget radius and
specimen span

k, = parameter that depends on the ratio of the nugget radius and
specimen span

k3 = material dependent geometry factor

K¢y =equivalent stress intensity

K =stress intensity factor for Mode I

K| =fatigue damage parameter

K, =equivalent stress intensity factor of Mode I

K eqmax = €quivalent stress intensity factor of Mode I at the maximum
applied load

Ky = stress intensity factor for Mode II
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Nomenclature

M =mean stress sensitivity factor

M, and M, =in-plane interface moments

M, , = applied moment in the local x or y direction

M, = out-of-plane interface moment

m = constant

N =fatigue life in cycles

N =number of cycles for initiation and early growth

N =number of cycles for crack propagation through the thickness

Npw =number of cycles for crack propagation through the specimen
width

o = effective specimen width (=wd/3)

P =normal component of the applied load

R =load ratio

r=nugget radius

o, = bending stress

Geq,0 = €quivalent stress amplitude at R=0

Geq,a = €quivalent stress amplitude

Ceq,m = IN€anN stress

6, =normal stress

Gr.max = Maximum radial stress

Gui» Ouo» Oli, and oy, = normal stresses

t = sheet thickness

Tmax = Maximum shear stress

Tqu and 7y = transverse shear stresses

T, and Ty = circumferential stresses

W = specimen width
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A =cross sectional area

Ap =sealing area

Appin = minimum bolt head or nut bearing area

A; =cross sectional area of an individual cylindrical bolt

Ap =nominal cross sectional area of the bolt

Agsz = cross sectional area of the minor diameter of the bolt threads
Ag = effective tensile stress area

Asgs = critical shear area for the length of external thread engagement
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Nomenclature

Asgm = critical shear area for the length of internal thread engagement
o = thread (flank) angle
o = tightening factor
Pr=lx/dw
C, = shear strength reduction factor due to internal thread dilation
C, =shear stress area reduction factor due to external thread bending
C; =shear strength reduction factor due to internal thread bending
D =major diameter of internal threads (nut) in mm
D, = minor diameter of internal threads in mm
D, = pitch diameter of internal threads in mm
Dk =projected or limiting diameter of a deformation cone at the interface
d =major (nominal) diameter of external threads (bolt) in mm
d, = pitch diameter of external threads in mm =d — 0.649519P
d; = minor diameter of external threads in mm=d — 1.226869P
dg = effective stress diameter
dop = elastic compliance of an infinite small plate thickness
AT =temperature difference
d =elastic compliance, resilience, flexibility
81, O, =compliance of the bolt sections
83 = compliance of unengaged threads
8 = compliance of the engaged threads
Ok = compliance of the bolt head
Oy = compliance of the nut or tapped hole
Op = elastic compliance of the clamped plates
O = elastic compliance of the bolt
p = effective elastic compliance of the clamped plates (8 = ndp)
d's = effective elastic compliance of the bolt (55 = (1 — n)dp + ds)
E = Young’s modulus
Enm = Young’s modulus of the nut
E, = Young’s modulus of the clamped material
Es = Young’s modulus of the bolt
€, =1nitial strain to a beam model due to bolt pretension
@ =load distribution factor, percentage of the applied load to the bolt
Fo.2min = minimum yield force
F, = axial force on the bolted axis
Fkerr =required minimum clamp force to prevent plate slippage
Fyp = special force required for sealing

xlvii



Nomenclature

Fxq =frictional grip to transmit a transverse load (Fg) and a torque about
the bolt axis (M)

Fggr =residual clamp force

FiRmin = minimum residual clamp load

Fym =bolt preload load due to My

F..gm = ultimate shear force that will fracture the internal (nut) threads

F..gs = ultimate shear force that will fracture the external (bolt) threads

Faimax = maximum bolt preload force

FMmin = minimum preload force

Fazu = permissible preload

Fpa = working load on the clamped plates

Fpamax = portion of the working axial load, which unloads the
clamped plates

Fq = transverse force normal to the bolt axis

Fsa = working load on the bolt

Fs,, = mean nominal stress level

F, ; =first tangential force component on the thread surface due to
the preload

F,, =second tangential force component on the thread surface due to the
preload

F; =preload loss due to embedment

f =deformation due to a force F

fpp = compression of the clamped plates

fsm = elongation of the bolt

f; = plastic deformation (embedding)

H =height of fundamental triangle in mm

Ip = polar moment of inertia

i=number of bolts (i) in the flange

k =elastic stiffness

k. = shear stress reduction factor used in the von Mises equivalent stress

L = component length

13 =length of unengaged threads

l; =length of an individual cylindrical bolt

Ik = total clamping length

M, = applied assembly torque

Mg =bending moment at the bolting point

Mg = thread torque

xlviii



Nomenclature

Mk =under-head torque
Mr =torque (twist moment) at the bolt position at the interface
m¢r = length of thread engagement
pg = coefficient of friction in the thread
pxk = coefficient of friction in the bolt or nut-bearing area
pr = coefficient of friction between the clamp plate interfaces
N¢=fatigue life in cycle
n=load introduction factor
n;, n, = percentages of the clamped plate length
P =pitch in mm
Pemax = induced surface pressure
P = permissible surface pressure of the clamped material
Pimax = Maximum internal pressure to be sealed
PMmax = maximum surface pressure due to bolted joint assembly
¢ =thread helix angle (lead angle)
gr =number of slippage planes
Rpg omin = minimum 0.2% yield strength of the external threads in N/mm?
Rg = TeMASGM
TesAsGs
Rz =average surface roughness value
R,m = ultimate tensile strength of the internal threads (nut) in N/mm?
R,,s = ultimate tensile strength of the external threads (bolt) in N/mm?
r, = torque radius from the bolt axis due to Mt
Sp = safety factor against fatigue
Sk = safety factor against bolt yielding
S = safety factor against slipping
Sp = safety factor against clamped plates crushing
s = width across flats for nuts
6, =nominal stress amplitude calculated on the tensile stress area
s = fatigue limit in amplitude at 2 X 10° cycles
oasc = fatigue limit of rolled threads after heat treatment
o sy = fatigue limit of rolled threads before heat treatment
oazsc = fatigue strength of rolled threads after heat treatment
oazsy = fatigue strength of rolled threads before heat treatment
op = bolt tensile stress on tensile stress area
OnMul = permissible assembly stress
Cr.qg = Von Mises equivalent stress

xlix



Nomenclature

CreaM = €quivalent von Mises stress for a bolt

te = thickness of an external thread at the critical shear plane

t; = thickness of an internal thread at the critical shear plane

Tgm = Ultimate shear strength of the internal threads in N/mm?

Tgs = ultimate shear strength of the external threads in N/mm?

Ty = bolt torsional stress on tensile stress area

v =utilization of the initial or the gross yield stress during tightening

Wp =polar moment of resistance

w =1 for a through-bolted joint (DSV); 2 for a tapped thread joint (ESV)
y =Da/dw
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Introduction

The concept of design-by-analysis and validation-by-testing has been proven to be
the most efficient and effective way to design a vehicle structure to meet its func-
tional objectives, and universally adopted by most of the engineering communities.

Metal Fatigue Analysis Handbook
© 2012 Elsevier Inc. All rights reserved. 1



2  Chapter 1

The vehicle functional objectives include the federal regulations, such as emission
and safety, and the mandatory requirements set up by each manufacturer, such as
durability, reliability, vehicle dynamics, ride and comfort, noise, vibration and
harshness (NVH), aerothermal and electromagnetic capability (EMC), among other
things. The new concept can offer a chance to optimize a vehicle structure for these
multifunctional objectives in a virtual engineering domain and to validate the struc-
ture by testing it in a physical world.

The validation-by-testing concept consists of development of accelerated test
methods and reliability demonstration test planning strategies. Accelerated test
method development is used to develop a pass or failure criterion for durability
testing by using the damage equivalence theory. Examples could be vehicle
proving grounds testing to represent the extreme customer usage profiles for
the life of a design vehicle (so-called duty cycle data), real-time simulation test-
ing on systems—that is, road test simulators (RTS) and multiaxial simulation
table (MAST)—or simple life testing for components (e.g., constant amplitude
loading or block cycle loading test).

Once the success criterion is established, numerous reliability demonstration
test planning strategies have been proposed to demonstrate the reliability and
confidence level of the designed products by testing them with a limited sample
size. Depending on the failure criteria, the reliability demonstration test methods
are recommended for components and the repairable systems, while the reliabil-
ity growth model approaches are employed only for the repairable systems.
Detailed discussion of these methods is beyond the scope of this chapter, and
can be found elsewhere (Lee, Pan, Hathaway, & Barkey, 2005).

The design-by-analysis concept requires reliable virtual analytical tools for ana-
lyses. The quality of these tools relies on the accuracy of the mathematical
model, material characterization, boundary conditions, and load determination.
For durability analysis, the three important factors are:

e Loading
*  Geometry

e Material

When external forces are applied to a multibody system, these forces are transferred
through that system from one component to the next, where a component is defined
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as an element within that system. The fatigue life of a component is governed by
the loading environment to which it is subject, the distribution of stresses and strains
arising from that environment, and the response of the material from which it is
manufactured. As a result, the major inputs to any fatigue analysis are loading, com-
ponent geometry, and cyclic material properties.

A moving vehicle is a complex dynamic system primarily subjected to various
static and dynamic external loads from tire/road interaction, aerodynamics, gravity,
and payload, which yield overall vehicle motion in space and relative motions
among various vehicle components. The relative motions of vehicle components
are always constrained by joints and compliant elements (such as springs, shock
absorbers, bushings/mounts, and jounce/rebound bumpers), and would induce inter-
nal forces and stresses that will possibly result in fatigue failures. Thus, it is crucial
to predict these internal responses of vehicle components and systems for any fail-
ure prevention.

Loading information can be obtained using a number of different methods. Local
or nominal strains can be measured by means of strain gages. Nominal loads can
be measured through the use of load cells or, more recently, they can be derived
externally by means of analysis. Since early methodologies relied on measurement
from physical components, the application of fatigue analysis methods has been
confined to the analysis of service failures or, at best, to the later stages of the
design cycle where components and systems first become available.

The ability to predict component loads analytically means that physical components
are no longer a prerequisite for durability analysis and so analysis can proceed
much earlier in the design cycle. It is important to note that, in this context, loading
environment is defined as the set of phase-related loading sequences (time histories)
that uniquely map the cyclic loads to each external input location on the component.

Many virtual analysis tools for multibody dynamics (Gipser, Hofer, & Lugner, 1997,
Tampi & Yang, 2005; Bicker et al., 2007; Abd El-Gawwad, Crolla, Soliman, &
El-Sayed, 1999a, 1999b; Stadterman, Connon, Choi, Freeman, & Peltz, 2003; Berzeri
et al., 2004; Haga, 2006, 2007) have been developed to accurately calculate loads for
components and systems. In addition to computer memory and speed, the efficiency
of their engineering applications hinges on the availability of input data sources
and modeling techniques. These tools have been widely adapted by the automotive
engineering industry to predict vehicle road loads for fatigue damage assessments.
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The objective of this chapter is to present the virtual analysis methods employed
to characterize vehicle dynamic loads for one of the functional objectives—
design for durability. More specifically, this chapter will cover the road load
analysis techniques to predict vehicle component loads induced by irregular
road surface profiles and driver’s maneuvers (steering, braking/accelerating).

Fundamentals of Multibody Dynamics

A multibody system is used to model the dynamic behavior of interconnected rigid
or flexible bodies, each of which may undergo large translational and rotational
displacements. The vehicle suspension is a typical example of a multibody dynamic
system. Multibody systems can be analyzed using the system dynamics method.

System dynamics (Randers, 1980) is an approach used to understand the beha-
vior of complex systems over time. Generally, a dynamic system consists of
three parts. The first part is the state of a system, which is a representation of all
the information about the system at some particular moment in time. For exam-
ple, the state of a simple two-degrees-of-freedom (DOF) quarter-car model for
vehicle suspension ride analysis, as illustrated in Figure 1.1, can be summarized

Sprung Mass
Sprung Mass _T Displacement

Spring

— | Damper
Stiffness

Unsprung Mass
Unsprung Mass —T Displacement

Tire Stiffness

Road
Displacement

Figure 1.1
Two-DOF quarter-car model for vehicle suspension ride analysis.
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by the vertical displacement and velocity of sprung and unsprung masses. In
general, the symbol X(t) = [x;(t), ..., X,(t)] will be used to denote the state of a
system at time t.

The second part is the state space of a system. This is a set that contains all
the possible states to which a system can be assigned. The state space of the
two-DOF quarter-car model is the 2" ensemble containing all the possible con-
figurations for the n-element sprung and unsprung mass vertical motions within
a given timeframe. The symbol € is commonly used to denote the state space
of a dynamic system, and X(t) € Q.

The third part is the state-transition function that is used to update and change the
state from one moment to another. For example, the state-transition function of the
two-DOF quarter-car model is defined by the governing state equation that changes
the sprung and unsprung motion state at one step X(t) to the next step X(t+1).

The objective of dynamic systems analysis is thus to understand or predict all
possible state transitions due to the state-transition function. In other words, the
dynamic system analysis for the two-DOF quarter-car model is to predict the
motions (displacements and velocities) of sprung and unsprung masses with
given road displacement input within a given time frame. It can be seen that
during the displacements and velocities are solved, the loads associated with
tire stiffness, spring stiffness, and damper also can be resolved.

Depending on the differences of the state space, the state-transition function,
and the excitation of a dynamic system, the dynamic response of the system
may demonstrate different behaviors such as nonlinearity and hysteresis. For
example, when the excitation of the road input is small, the spring stiffness,
damper force-velocity characteristics, and tire stiffness may be of linear charac-
teristics, thus the state-transition function may be expressed by a linear state
equation. Then the state response of the two-DOF quarter car model may
demonstrate linear behavior.

On the other hand, if the road excitation is significant enough, the nonlinear
characteristics of the tire, spring stiffness, and damper force-velocity function
may not be negligible. In this case, a nonlinear state-transition function is
required to present the dynamic behavior of this system, thus the nonlinearity
and hysteresis of the state responses may be yielded.
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For a simple linear mechanical dynamics system, the state-transition function
or governing state equation can be easily established based on a certain rule
of the system, such as D’Alembert’s principle or Newton’s second law. The
iterative solution for the state-transition function in a time domain is also not
very difficult, as compared to a full multibody vehicle model that has large
degree of complexity.

For a nonlinear multibody dynamic system, different numerical integration tech-
niques may be required to solve for the ordinary differential equation (ODE).
The linear explicit numerical integration methods with a constant time step are
well applicable to most of the ODEs, but perform poorly for a class of “stiff”
systems where the rates of change of the various solution components differ sig-
nificantly. Consider, for example, the motion solution of a stiff suspension sys-
tem when the system is being driven at a low oscillation frequency and then run
into a deep pothole.

In principle, the stability region of a stiff system must include the eigenvalues
of the system to be stable. Consequently, the linear explicit methods have a
penalty of requiring an extremely small time step to be stable, causing unaccep-
table increases in the number of integration steps, integration times, and accu-
mulated errors. On the other hand, the implicit methods with variable time
steps are often recommended for stiff systems because of the better stability
properties in the numerical integration process. Thus, depending on the nature
of a system, stiff or nonstiff integrators may be applied to solve the dynamics
equations (Newmark, 1959; Hilber, Hughes, & Taylor, 1977).

The dynamic behavior results from the equilibrium of applied forces and the
rate of change in the momentum. Nowadays, the term multibody system is
related to a large number of engineering fields of research, especially in vehicle
dynamics. As an important feature, multibody system formalisms usually offer
an algorithmic, computer-aided way to model, analyze, simulate, and optimize
the arbitrary motion of possibly thousands of interconnected bodies.

Conditions of Equilibrium

The equilibrium condition of an object exists when Newton’s first law is valid. An
object is in equilibrium in a reference coordinate system when all external forces
(including moments) acting on it are balanced. This means that the net result of
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all the external forces and moments acting on this object is zero. According to
Newton’s first law, under the equilibrium condition, an object that is at rest will
stay at rest or an object that is in motion will not change its velocity.

Static equilibrium and dynamic equilibrium are termed when the object is at rest
and moving in a constant velocity in a reference coordinate system, respectively.
If the net result of all the external forces (including moments) acting on an object is
not zero, Newton’s second law applies. In this case, the object of a mass is not in
equilibrium state, and will undergo an acceleration that has the same direction as
the resultant force or moment. The velocity change yields an inertial force, which
can be quantified by the product of mass and translational acceleration, or mass
moment of inertia and angular acceleration.

D’Alembert’s Principle

D’Alembert’s principle, also known as the Lagrange—d’Alembert principle
(Lanczos, 1970), is a statement of the fundamental classic laws of motion. The prin-
ciple states that the sum of the differences among the forces acting on a system and
the inertial forces along any virtual displacement consistent with the constraints of
the system is zero. Thus d’ Alembert’s principle can be expressed as

Y (F-ma)-8% =0 (1.1)

where

ﬁ = applied forces
8T, =the virtual displacements of the system, consistent with the
constraints
m; = the masses of the particles in the system
a;, = the accelerations of the particles in the system
m; a; = the time derivatives of the system momenta, or the inertial forces
i (subscript) = an integer used to indicate a variable corresponding to a
particular particle

Considering Newton’s law for a system of particles, the total forces on each
particle are

E  =ma (1.2)
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where

—(T) . )
F,  =the total forces acting on the particles of the system
m;a; = the inertial forces resulting from the total forces

Moving the inertial forces to the left side of the equation gives an expression
that can be considered to represent quasistatic equilibrium, which is just a sim-
ple algebraic manipulation of Newton’s law:

T
' mz =0, (1.3)

1

Considering the virtual work, W, done by the total and external/inertial forces
together through an arbitrary virtual displacement, 8T; of the system leads to a
zero identity, since the forces involved sum to zero for each particle:

T
6W=2E’()-6T;—zm5;-6?1=0. (1.4)

At this point, it should be noted that the original vector equation could be
recovered by recognizing that the work expression must incllcle arbitrary dis-
placeme_n}ts. Separating the total forces into external forces, F; and constraint
forces, C;, yields

SW=YF 81 +YC 81 -~ Yma -8t =0. (1.5)

If arbitrary virtual displacements are assumed to be in directions that are orthogonal
to the constraint forces, the constraint forces don’t do work. Such displacements
are said to be consistent with the constraints. This leads to the formulation of
d’Alembert’s principle, which states that the difference between applied forces and
inertial forces for a dynamic system does not do virtual work:

oW = Z(Fl - miai) . 61’1 =0. (16)

There is also a corresponding principle for static systems called the principle of
virtual work for applied forces.

D’Alembert shows that we can transform an accelerating rigid body into an
equivalent static system by adding the so-called inertial force and inertial tor-
que or moment. The inertial force must act through the center of mass and the
inertial torque can act anywhere. The system can then be analyzed exactly as a
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static system subject to inertial force and moment and the external forces. The
advantage is that, in the equivalent static system, we can take moments about
any point rather than only the center of mass.

This often leads to simpler calculations because any force in turn can be eliminated
from the moment equations by choosing the appropriate point about which to apply
the moment equation with the summation of moments equaling zero. Even in the
courses of Fundamentals of Dynamics and Kinematics of Machines, this principle
helps analyze the forces that act on a moving link of a mechanism. In textbooks of
engineering dynamics, this is sometimes referred to as d’Alembert’s principle.

A rigid body moving in a plane is subject to forces and torques; the inertial force is
—

= -
F, = —mr (1.7)

where

T, = the position vector of the center of mass of the body
m = the mass of the body

The inertial torque (or moment) is
— -

T, = -JO (1.8)
where J is mass moment of inertia of the body and 0 is the angular displacement
of the body. In addition to the external forces and torques acting on the body,
the inertia forces acting through the center of mass and the inertial torques need
to be added. The system is equivalent to one in static equilibrium with following
equations:

YE, =0
SF, =0 (1.9)
ST=0

where

2T =the sum of torques or moments, including the inertial
moment and the moment of the inertial force taken about the
axis of any point
2F, and ZF, = the summation of forces along the two perpendicular axes X
and Y, respectively
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Multibody Dynamics Systems

During the past three decades, there has been a rapid expansion of research on
multibody dynamics (Andrews & Kesavan, 1975; Andrews, Richard, & Anderson,
1988; Bainum & Kumar, 1982; Agrawal & Shabana, 1985; Allen, Oppenheim,
Parker, & Bielak, 1986; Angeles, 1986a, 1986b; Amirouche, 1988). A multi-
body system may be defined as a collection of bodies with a given connec-
tion configuration. The system may have as few as two bodies, but multibody
analyses are generally directed toward systems that have an unlimited number
of bodies.

Figure 1.2 depicts a short-long-arm suspension, which is a typical multibody
dynamic system. In general, a multibody system may contain a mix of rigid and
flexible bodies with specified motion. Many physical systems of interest are effec-
tively modeled by a system of pin-connected rigid bodies or compliant elements
such as bushings or mounts. The interest in multibody systems stems from the
ability to accurately model physical systems, such as robots, mechanisms, chains,
cables, biosystems, structures, flexible beams, and vehicles. The analysis of the

Figure 1.2
A multibody system.



Road Load Analysis Techniques in Automotive Engineering 11

corresponding multibody system has become practical with advances in computer
technology and the development of supporting computational methods.

In spite of many notable advances in multibody dynamics analyses, there is no
common view about which method is the best for specific applications, compu-
tational efficiency, or governing dynamic equation acquisition. There are adher-
ents of Lagrangian methods, Newton—Euler methods, virtual work methods,
Gibbs—Appell equations, and Kane’s equations. Many advocate the use of
pseudo-inverse methods to reduce the governing differential/algebraic equations
to a consistent set of differential equations in a form suitable for numerical
integration.

Others prefer null/tangent space methods, singular value decomposition, and
orthogonal complement arrays. There are arguments about the best method to
incorporate flexibility effects into the analyses, and the best way to take advan-
tage of advances in finite element methods and modal methods in hybrid
analyses.

The principle tasks in computational multibody dynamics are (Huston, 1991):
e To develop adequate models of interesting physical systems
* To efficiently generate the governing dynamic and constraint equations

e To accurately and efficiently solve the governing equations

Some analysts advocate lumped parameter models where the system is modeled by
rigid bodies connected by springs and dampers that simulate the flexibility effects.
Others, using the principles of elasticity, modal analysis, and finite element
analysis, incorporate the flexibility effects directly into the multibody system.

The relative advantages and disadvantages of these approaches, especially on
their accuracy, efficiency, and ease of use, are still being debated. It seems that
the physical system being studied may determine which approach is optimal.
The lumped parameter models appear to be the best for systems with low fre-
quency, large-displacement movements. The innate flexible systems are better
suited for systems with rapid but relatively small displacements.

The most commonly used software to generate loads is called ADAMS (Advanced
Dynamic Analysis of Mechanical Systems) by MSC software (2007). It is general
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purpose multibody dynamic analysis software, based on the Lagrangian formulation
of dynamic equations of motion. It formulates and solves a set of simultaneous
differential algebraic equations (DAEs) for the dynamic and the constraint equa-
tions. This formulation leads to a stiff system of equations, which can be integrated
without introducing stability problems by integrators that use backward difference
formulas.

The software also utilizes symbolic derivatives and sparse matrix formulation
to improve the efficiency of the solution process. The solution process includes
a predictor step that utilizes a given number of solutions over previous time
steps and a corrector step that is essentially a Newton—Raphson procedure for
the solution of a set of nonlinear algebraic equations. The software has a built-
in library of constraints such as prismatic, revolute, spherical, and such, and an
extensive set of force elements such as bushings, beams, springs, and dampers,
as well as generic modeling entities.

The main advantage of the software is that it can accurately handle complex
nonlinear mechanical system dynamics that consist of large translational and
angular displacements. It simultaneously provides the constraint forces between
different bodies in the system. Since durability events are typically in the range
of 0 to 50Hz with highly nonlinear elastometric characteristics included, a
time-domain formulation is ideal to handle such problems and ADAMS is well-
suited to this purpose.

Generic Load Cases

Load analysis plays a pivotal role in the vehicle design program, particularly
at an early design stage where it is impossible to perform an accurate and
extensive load prediction since most of the vehicle data are not available. Alter-
natively, some extreme load cases, commonly referred to as generic load cases,
have been proposed to study the reactions of a new suspension design to these
load cases as compared to the current design. The generic load cases will pro-
vide engineers a good design direction, and are useful for A to B design
comparison.

The generic load case can be studied independently for the front and rear
suspensions so that the design proposal may be evaluated independently with
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minimum necessary data. However, the generic load cases cannot replace the
need for vehicle proving grounds data acquisition. Once available, measured
proving ground loads on every suspension component and system should be
employed for detailed fatigue assessment.

Generic Load Events

The generic load events currently used by most automotive manufacturers are
primarily developed based on historical test data, special cases/events studies,
and special durability requirements for various structure/suspension types. They
represent severe loading conditions in each primary mode of the component/
system. The fundamental objective of the generic load is to predict the most
possibly severe load cases that the vehicle may experience. Meanwhile, it
should be understood that the peak load for different components may not occur
in one single severe load case, thus multiple load cases are needed to investigate
for the actual peak load predictions for every suspension component.

Some generic load events and their input forces are listed in Tables 1.1 and 1.2,
respectively. In Table 1.2, Fxpr, Fxrr, FxpLr, and Fxgrgr are the longitudinal

Table 1.1: List of Sample Generic Load Events

No. Name Static/Dynamic Suspension Major Functions
1 1G jounce Static Front and rear Inertial load check and
static load distribution
2 3G jounce Static and Front and rear Vertical suspension
dynamic loads and travel
3 5G jounce Static and Front and rear Vertical suspension
dynamic loads and travel
4 2G roll Static Front and rear Roll motion and antiroll
bar loads
5 Cornering Static Front and rear Lateral suspension loads
6 Braking over bump Dynamic Front and rear Vertical and longitudinal
suspension loads
7 Left-wheel bump Dynamic Front and rear Vertical suspension and
antiroll bar loads
8 Curb push-off Static Front Steering system loads

Note: 5G jounce events may be applied only for light-duty vehicles, such as a car.
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Table 1.2: Input Loads under Various Generic Load Events

No. Name Fxir  Fuie Fzir Fxre  Fyre Fzre Fxar  Fuir Fzir Fxrr  Fyrr Fzrr
1 1G jounce 0 0 1Gs 0 0 1Gs 0 0 1Gs 0 0 1Gs
2 3G jounce 0 0 1Gs+2Gp O 0 1Gs+ 2Gp 0 0 1Gs+ 2Gp O 0 1Gs+ 2Gp
3 5G jounce 0 0 1Gs+4Gp O 0 1Gs+4Gp 0 0 1Gs+4Gp 0 0 1Gs+ 4Gp
4 2G roll 0 0 2Gs 0 0 0 0 0 0 0 0 2Gs
5 Cornering 0 1Gs  1Gs 0 1Gs  1Gs 0 1Gs  1Gs 0 1Gs  1Gs
6 Braking over 2Gp 0 1Gs+2Gp 2Gp O 1Gs+2Gp 2Gp O 1Gs+2Gp 2Gp O 1Gs+ 2Gp
bump
7 Left-wheel bump 0 0 1Gs+ 2Gp O 0 1Gs+ 2Gp O 0 1Gs+ 2Gp O 0 1Gs
Curb push-off 0 pGs  1Gs 0 pGs  1Gs

Note: Gs for corner GVW or GVWT weight, Gp for corner GVW or GVWR weight pulse, i is the tire patch friction coefficient (default value as 0.88). The curb
push-off lateral force is equal to the summation of left and right tire patch lateral friction forces.
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forces acting on the tire patches at four corners (LF =left front, RF =right
front, LR =left rear, and RR =right rear), respectively, and the positive direc-
tion of the longitudinal forces is toward the back of the vehicle. Fypg, Fygrr,
FyLr, and Fygg are the lateral forces acting on the tire patches at four corners,
respectively, and the positive direction of the lateral forces is toward the right
side of the vehicle. Fzy r, Fzrr, Fzrr, and Fzgrg are the vertical forces acting
on the wheel centers at four corners, respectively, and the positive direction of
the vertical forces is upward. The major assumptions in the generic load cases
are as follows:

*  The vehicle sprung mass is much heavier than the unsprung masses such
that the motion of the sprung mass is neglected. Such an assumption may
yield an over- or underprediction of the interaction forces between the
sprung and unsprung masses, particular for dynamic load cases.

* During cornering, the vehicle is in steady-state at a constant forward
speed, thus the inertia forces, longitudinal tire forces, and shock forces
are neglected.

e The maximum possible jounce bumper forces are assumed to happen at 3G
jounce static load condition, where G represents the vehicle corner weight
at the gross vehicle weight (GVW) or gross vehicle weight rating (GVWR)
condition.

e The input forces pulse when braking over bumps and left-wheel bump load
cases are the same as that in 3G jounce dynamic load case.

*  The curb push-off (CP) happens at zero vehicle speed with extremely slow
steering action, thus the inertia forces, longitudinal tire forces, and shock
forces are neglected.

e The vehicle rollover motion happens at extremely slow speed with a
steady-state condition, thus the inertia forces, longitudinal and lateral tire
forces, and shock forces are neglected.

It should be noted that the curb push-off load case is specially designed to vali-
date the design of steering system components, thus it should not be applied to
the rear suspension. Furthermore, to obtain representative loads on the frame,
we need to combine the appropriate loads from the front and rear load cases.
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The definition of 1G depends on the engineer. In most cases, it is equal to half
the front or rear GAWR (Gross Axle Weight Rating).

However, if both front and rear suspensions are analyzed at their respective
GAWRs and the loads are combined to obtain the frame loads, it should be rea-
lized that the frame is being overloaded. Alternatively, we may appropriately
scale down the loads such that the frame will never experience initial static
loads higher than GVWR.

Under all events except for curb push-off, all the lateral and longitudinal forces
are applied at the corresponding tire patch, and all vertical forces are applied at
the corresponding wheel center, as shown in Figure 1.3(a). For the curb push-
off event, as shown in Figure 1.3(b), the left (Fyyr) and right (Fygrg) tire patch
friction forces being against the curb push-off force are applied at the corresponding
tire patch.

The vertical loads (Fz; ¢ and Fzrg) are applied at the corresponding wheel center,
but the lateral curb push-off force (Fyrg cp or FyLr cp, depending on the corner
of the curb push-off) is applied at a certain height (e.g., 8 inches) above the tire
patch and several inches ahead or behind the wheel center, depending on the tire
dimensions (see Figure 1.4). It should be noted that the configuration of the steer-
ing system directly affects the patterns of curb push-off input force and steering
system motion direction, as illustrated in Figure 1.5.

FxLr

Fyrr . Fazr
ZRF

(a) (b)

FyRE Fore FxrF Fzir

Figure 1.3
Generic loads input forces under various events.
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Figure 1.4
Determination of curb push-off input lateral force action point location (x, y, and z).

In generic load cases, two kinds of analyses are included, static and dynamic.
Static analysis means that the simulation under a specific generic load event is
based on quasistatic or static equilibrium using any multibody simulation sol-
ver, thus only the displacement-dependent and gravity forces are involved.
Dynamic analysis indicates that the simulation is based on an integration of the
dynamics equations using any multibody simulation solver, thus the inertial and
velocity-dependent forces are also counted.

The duration (see Figure 1.6) of input force pulse has no effect on the loads
from the static analysis, but affects the load calculations from dynamic analysis.
The duration of an input pulse can be adjusted under the 3G jounce dynamic
load case until the maximum jounce bumper load in the dynamic analysis
approximately equals that in the static analysis. Such an adjustment may involve
an iterative process.
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Rack motion and steering system configurations under curb push-off event.
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Analysis Procedure

The following procedures are applied for a typical generic load case analysis
(3G jounce static load):

1.

10.

Prepare suspension and steering modeling data, including suspension hard
points, properties of spring, shock, jounce bumper, and bushing.

. Use commercial software for multibody system modeling to build the

suspension model at the design position with the vehicle body fixed to the
ground.

. Adjust all the parameters to the required design values from default

settings. Those parameters include geometry, mass, and inertia, spring
and bushing properties, shock and jounce bumper force characteristics,
and others.

. Establish component local reference coordinates (also called markers, in

multibody dynamics system) for potential output request.

. Create force requests for all required components, including jounce bumper,

frame, cradle, control arms, links, track bar, knuckles, stabilizer bar drop
links, tie rods, and more.

. Perform kinematics and compliance (K&C) analysis. If the model cannot

achieve the required K&C properties, you should contact the responsible
engineers to verify the geometry, spring, and bushing properties.

. Once the 3G jounce static load is chosen, the required GVW at the front or

rear axle is adjusted from the default value and all other adjustable parameters
are kept in default values.

. Run the 3G jounce static analysis and plot the calculated time histories of

left and right jounce bumper forces. These jounce bumper forces are used
for adjusting the pulse duration of tire patch input forces.

. Adjust the pulse duration of tire patch input forces and run the 3G jounce

dynamic analysis, until the maximum jounce bumper forces are approximately
equal to those from 3G static analysis.

Apply the well-adjusted pulse duration parameters to all other considered
generic load cases.
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11. Calculate the peak values for all required loads and achieve simultaneous
peak load files for all generic load cases.

For clarity, these procedures are illustrated in a flowchart shown in Figure 1.7.

Results and Report

After the static and dynamic analyses, the time histories of all the loads on each
component are obtained in a coordinate system that is fixed in that component.
This facilitates an easy finite element (FE) analysis using the loads. It should be
noted that the inertial loads are not reported and the loads from the dynamic ana-
lysis cannot be used to perform a static FE analysis. An inertia-relief analysis
must be performed instead. The results of generic load cases can be processed in
two ways:

e The maximum magnitude of each load and its corresponding time are
summarized. This is useful only to get a quick estimation of the maximum
loads. The loads from the summary table may not be simultaneous and
cannot be used to perform an FE analysis for the component.

*  For each load, the maximum magnitude is given along with the rest of the
loads occurring simultaneously on that component. These loads can be used
to perform FE analyses. It should be noted that there may be multiple
possible peak slices for a given analysis and that an FE analyst should
carefully choose the slice that may cause the highest stresses in the structure.

It is important to check the results by reviewing the time histories and the animation
graphic files before publishing the results. Be particularly careful about some force
spikes that may result from an incorrect solution. It is a good practice to gain the
simulation confidence by comparing the results with those calculated from a similar
vehicle or from the same vehicle at a previous design stage. The simultaneous peak
loads on a particular component can be simply examined with the summation of all
attachment forces in x, y, and z directions, respectively.

If the summation in each direction is zero or close to zero, the simultaneous
peak loads for the component may be considered as correct outputs. Otherwise,
some attachment forces acting on that component may have not been included to
extract the simultaneous peak loads. Once the results are examined and approved
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Obtain necessary data.
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A

I
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[

Run 3G jounce dynamic analysis until
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I
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l

Calculate the peak values and achieve
simultaneous peak load files for all
generic load cases.

il

Check results and distribute the report

to other concerned engineers.

Figure 1.7

A flowchart of generic load process.



22 Chapter 1

for correctness, those results can be distributed in the form of a standard report
for generic loads to the design and analysis engineers for further analyses.

Semianalytical Analysis

With rapid development of advanced computer technologies, more and more
virtual road load analyses or simulations have been applied by automotive man-
ufacturers to replace the field measurement. At different stages of vehicle
development, the availability of vehicle modeling data varies. Thus different
simulation strategies may be applied to meet the vehicle development require-
ments in road loads analysis.

The semianalytical method is introduced to solve for the second-order ordinary
differential motion equations by the static analysis. It is assumed that the vehi-
cle or system of interest will meet the dynamic equilibrium, provided that all
the external forces including moments and the inertia forces at every time
instant are given analytically or experimentally. These analysis techniques are
applied to a powertrain mount and an independent suspension system, and are
presented in this section.

Powertrain Mount Load Analyses

In the process of developing a powertrain mount system, the calculation of power-
train mount loads (PML) is one of the critical inputs required for fatigue analyses
of the powertrain structure and mounts. As reported by Yang, Muthukrishnan, Seo,
and Medepalli (2004), the powertrain mount loads on a given powertrain architec-
ture for durability depends on the following factors:

* Customer’s usage/operating conditions

e Powertrain mount stiffness and damping characteristics
* Powertrain mount locations and orientations

* Powertrain mass and mass moments of inertia

e Powertrain reaction torques

* Rigid body vibration modes from subsystems such as engine, transmission,
accessory, and exhaust systems
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Figure 1.8
Powertrain mount system diagram (Yang et al., 2004).

To predict the powertrain mount loads for durability, an analytical model
should be developed to account for all the factors just addressed.

An analytical model to calculate the mount loads at a three-mount powertrain
system for an all-wheel-drive (AWD) vehicle will be presented herein. The
three-mount system is schematically illustrated in Figure 1.8, where two mounts
at the engine side and one mount at the transmission side are attached to the
vehicle body or cradle, and the transfer case splits the input torque from
the transmission into two output torques: one to the front axles and the other to
the rear axles.

Based on the assumption of rigid body vibration modes and negligible damping
force of the powertrain system, the free body diagram of the powertrain mount sys-
tem is shown in Figure 1.9, where FEM1 and TEM1 are the force and torque vectors
acting on the i-th powenram mount; FEI and TEI are the powertrain inertia force
and torque vectors; and Tof and TOr are the front and rear output torque vectors
from the transfer case. The vehicle body or cradle is assumed to be fixed to the
ground.
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Powertrain mount loads balance.

If the two output torque vectors and the two powertrain inertia force and torque
vectors can be acquired during durability testing, the remaining two unknowns
(F;Mi and TEMi) can be solved from the following two static equilibrium
equations:

3= —
2 Femi+ Fgr =0 (1.10)
i=1

3. — — —

Z EMi+T0f+Tor+ EI=O- (111)

T;f and T:,r can be measured by placing torsional bridges on two front axle
shafts and one rear propshaft, respectively. Furthermore, the inertial force and
torque vectors of powertrain system (fEI and TEI) can be calculated from the
measured powegrain translational acceleration vector (ap) and angular accel-
eration vector ( fg) in the following manner:

Frr = Mg ag (1.12)

— —
Ter = Je Pg (1.13)
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where Mg and Jg are the mass and mass moment of inertia of the powertrain
system, respectively. ag and Py have six components and are expressed in this
equation:

aCX BCX
@ =1 ay pand By = B, (1.14)
aCZ BCZ

where

acx» Acy, and ag, = the powertrain CG translational accelerations along fore/
aft, lateral, and vertical directions, respectively

Bexs Pey» and P, = the powertrain angular acceleration in roll, pitch, and
yaw directions, individually

Here the reference coordinates attached to powertrain rigid body are defined as
X axis-positive toward back of the vehicle; Y axis-positive toward vehicle
right-side; and Z axis-positive upward.

Since translational acceleration (?E) and angular acceleration (FE) of engine/
transmission have six components in total, we need at least six measured chan-
nels for calculating the engine/transmission translational and angular accelera-
tions. In summary, Table 1.3 lists the necessary channels for calculating AWD
vehicle powertrain mount loads. For the front- or rear-wheel-drive vehicle, only
one channel for the powertrain output torque is needed.

It should be mentioned that the total channels needed to resolve the powertrain
mount durability loads are based on the assumption that all measured accelera-
tions are accurate and can be applied to nonsingularly resolve the powertrain
CG accelerations. Furthermore, all those high frequency components due to the
nonrigid body vibrations are neglected.

Table 1.3: Summary of Necessary Measured Channels

Channel Total Channel
Channels Needed Number Number
Powertrain acceleration 6 8
Powertrain output torque (front and rear) 2
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Practically, the accelerations at a powertrain center of gravity (CG) are usually
obtained by measuring the nine accelerations located at three different locations
of powertrain sides. It is assumed that the i-th location of an arbitrary acceler-
ometer can be described as (Xx;, y;, z;) in a Cartesian coordinate system and that
the origin of the Cartesian axes is located at the powertrain CG.

A geometric rigid body transformation matrix ([R]oxe), which relates rigid
body accelerations ({a.g}ex1) from the CG location to those accelerations at a
nodal point i ({ajg}ox1), can be defined as follows:

{aietox1 = [RloxgtacE fox1 (1.15)
or
apy ) 1.0 0 O 71 =y, |
ajy 01 0 -z 0 Xi |,
a, 0 0 1 yi X1 0 Aex
ac
Ay 1 0 0 O 7 -y, y
ay p=10 10 -z 0 x g“ (1.16)
Ay, 0 0 1 y> —X7 0 ﬁcx
Azx 1 0 0 0 73 k) ch
sy 0 1 0 —73 0 X3 ~ ez
\ 437 _O 0 1 y; —X3 0 ]

Using the D-optimal technique (Lee, Lu, & Breiner, 1997), with the given
{aie}ox1 and [R]owe, the best estimated {a.g}¢x1 can be obtained as follows:

{ace} = (R]'R])™'[R] {a}- (1.17)

Once the powertrain CG accelerations are estimated, they can be used to back-
calculate accelerations at measured locations. Then the calculated accelerations
can be compared with those measured. The calculated powertrain mount accelera-
tions using nine channels were compared with those measured. The maximum
error for all nine channels is below 0.1 g, which shows that the back-calculated
powertrain mount accelerations are reasonably well-correlated with those mea-
sured ones.

Figure 1.10 displays the maximum error of all nine channels between calculated
and measured a;,. Finally, the calculated powertrain CG accelerations are illu-
strated in Figure 1.11.



Road Load Analysis Techniques in Automotive Engineering 27

0.4 1 L} bl al b h) — A
: : : i "" : : —— Measured
~ - Calculated

A1y (g)

735 73.6 73.7 73.8 739 74.0 741 742 743

Time (s)

Figure 1.10
Snapshot of maximum error between calculated and measured powertrain
mount accelerations aq,.

It should be mentioned that the measured accelerations are first filtered by a
low-pass sixth-order forward-backward Butterworth digital filter with a certain
band limit (in this example, 15 Hz). The determination of the filter bandwidth
is based on the highest frequency of powertrain rigid-body modes under given
mount stiffness and mass/inertia properties. Table 1.4 shows the frequencies of
six rigid body modes. It can be seen that the maximum frequency for the rigid
body roll mode is 14 Hz.

To predict the powertrain mount loads using the developed analytical model,
Equation (1.17), the input variables (the inertial loads and powertrain output
torques) should be available. The inertial loads can be calculated using the
resultant powertrain CG accelerations, while the powertrain output torques can
be either directly measured or estimated using the measured front- and rear-
wheel driving torques divided by the transmission ratios.

In the calculation, the measured front- and rear-wheel driving torques are served as
the input variables. All powertrain mount translational stiffness characteristics are
measured. The torsional and conical stiffness values of powertrain mounts are
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Calculated powertrain CG accelerations.

Table 1.4: Six Rigid Body Modes for a Sample
Powertrain Mount System

Mode No. Frequency (Hz) Mode
1 4.83 Lateral
2 5.72 Fore-aft
3 6.54 Yaw
4 8.04 Bounce
5 10.58 Pitch
6 13.97 Roll
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estimated using the historical powertrain mount data. Equations (1.12) and (1.13)
are solved using a quasistatic analysis technique to yield the powertrain mount
loads.

The calculated powertrain mount loads are reasonably correlated to those mea-
sured, except the transmission mount lateral loads. Figure 1.12 shows the com-
parison of the measured and calculated left front mount vertical load in time
history. Table 1.5 illustrates the comparison of the RMS values for calculated
and measured powertrain mount loads.

Table 1.5 shows that the RMS values for both measured and calculated loads
are very close except for transmission mount lateral loads, where the relative
error is 63%. The results may indicate that some parameters in the current
model are not accurate or the current approach may need to be refined to
include some other effects, such as the interaction between the powertrain and
exhaust system, assuming that the measured transmission mount lateral load is
accurate.
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Figure 1.12
Comparison of left front mount vertical loads.
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Table 1.5: Comparison of RMS Values for PML

Location/Direction Calculated Measured Relative Error (%)
Fy 113.4 100.0 13.4
LF (N) Fy 132.7 133.9 -0.9
F, 300.7 358.0 —-16.0
Fy 105.0 85.2 233
RF (N) F, 137.7 134.7 2.2
F, 293.8 369.8 —20.6
Fy 70.7 69.8 1.3
T™ (N) Fy 155.4 95.2 63.4
F, 333.0 293.1 13.6

It should be noted that the proposed method only uses the nominal mount stiff-
ness characteristics and doesn’t consider the change of those properties due to
manufacture tolerance, operating temperature variation, and so on. The mass
and inertia values used in the model include only the engine and transmission,
but the powertrain is actually rigidly attached to the exhaust system.

Furthermore, the contributions due to the vibrations of exhaust and accessories
attached to the powertrain are entirely ignored in this example. The front half-
shaft and rear prop shaft torques are estimated using the measured wheel force
driving torque, which may not be capable of capturing the dynamic torque as
well as transmission efficiency loss, since a constant torque ratio is used in the
calculation.

Suspension Component Load Analysis

A semianalytical method is presented in this section to calculate suspension com-
ponent loads with minimum instrumentation effort and data acquisition channels,
as compared with the conventional road load data acquisition approach where all
the component loads are measured with strain gauges or load cells. In this method,
the vehicle body is fixed to the ground, and the reaction forces acting on suspen-
sion components are calculated by the quasistatic analysis technique, based on the
measured input data from wheel force transducers, steering angle, shock force, and
inertia forces calculated from acquired accelerations.

As an example of a McPherson strut front suspension (see Figure 1.13) of a vehi-
cle, two load prediction techniques are introduced. The first one, called the
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Figure 1.13
A McPherson strut front suspension.

vertical displacement input method (Sommerfeld & Meyer, 1999; Tatsuya, 2001),
requires the inputs of six forces from every wheel force transducer (WFT), except
that the vertical force in each WFT is replaced by the vertical displacement calcu-
lated from the measured lower control arm (LCA) angle. In the vertical displace-
ment method, the measured or calculated jounce bumper force is also used as an
input.

The other technique, the vertical WFT force input method, uses all six forces from
every wheel force transducer as inputs, where the jounce bumper force is calculated
by using the jounce bumper force-deflection curve. If the inertia force, measured
shock absorber force, and measured WFT forces are accurate, we can calculate the
induced forces acting on every suspension component.

Vertical Displacement Input Method

In this method (Sommerfeld & Meyer, 1999; Tatsuya, 2001), the input channels to
a multibody dynamics model first are summarized in Table 1.6, and then discussed.
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Table 1.6: Input Channels for Vertical Displacement Input Method

Channels Used in the Simulation No. of Channels Input to ADAMS Model

WEFT force (left, right) 4 Longitudinal and lateral force

WFT moment (left, right) 6 Overturning, driving, and aligning
moment

Spindle acceleration (left, right) 6 Inertia force of spindle, rotor and

caliper, and WFT

LCA angle (left, right) 2 Vertical displacement of WFT position
Steering angle 1 Steering angle

Shock absorber force (left, right) 2 Shock absorber force

Jounce bumper force (left, right) 2 Jounce bumper force

Braking signal 1 Braking signal

Total channels 24

WEFT Forces Including Moments

The WFT forces are measured between tire and spindle axis. The measured
WEFT forces are not actual tire patch forces because of the inertia effect of the
tire. However, the WFT forces are actual external forces applied on the spindle
axis. The measured WFT forces are applied at the wheel force transducer center
position, instead of the wheel center position, because the WFT forces are mea-
sured at that point. The WFT central plane is typically 4 inches from the wheel
central plane. The WFT forces and moments are applied with respect to the
wheel-fixed reference frame.

Inertia Force

The inertia forces of spindle, rotor, caliper, and WFT are calculated by using the
measured spindle acceleration and the mass of each component. The rotational iner-
tia force is not considered. The inertia forces of the other components whose mass
is negligible are ignored. The tire mass is not considered because the WFT forces
are measured between spindle and tire.

The inertia force should be applied at the CG of each component in the analysis.
However, the CG of a bulk shape component such as a spindle is usually inside
the component. It is almost impossible to measure the acceleration of CG with
only one accelerometer because we cannot cut the knuckle to measure the
acceleration.
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In the case of a McPherson strut type suspension, it can be assumed that the motion
of the spindle is usually translational and the angular acceleration is small. Even
when the spindle is steered, the angular acceleration may not be high. Thus the
same acceleration can be used to calculate the inertia force of spindle, rotor, caliper,
and WFT. In the test, three translational accelerations are measured at one location
on the spindle. The calculated inertia forces are applied at the CG of each compo-
nent with respect to the spindle-fixed reference frame.

Vertical Displacement of WFT Position

The vertical displacement of WFT is derived from the measured lower control
arm angle. The lower control arm angle is a relative angle between vehicle
body and LCA. Thus the calculated vertical displacement is the relative displa-
cement between vehicle body and spindle. A special simulation technique is
required to ensure the wheel moves vertically, by creating a kinematics curve
between the vertical displacement of WFT center and LCA angle, as shown in
Figure 1.14. Figure 1.15 shows the comparison between the calculated and
measured LCA angles for a diagonal trench road event.
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Figure 1.14
Kinematics curve between the spindle vertical displacement and LCA angle.
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Comparison between the calculated (left) and measured (right) LCA angles
in a diagonal trench event.

Note that the spindle acceleration can also be used to calculate the vertical dis-
placement by the double integration approach. However, the integrated vertical
displacement is not a relative displacement but the absolute displacement with
respect to the fixed ground. The displacement should be relative to the vehicle
body because the vehicle body is fixed to the ground in this quasistatic simula-
tion method.

The absolute displacement of the spindle can be used under the assumption that
the vertical movement of vehicle body is negligible, but the vehicle body
should not be fixed to the ground to use the absolute displacement. In that case,
the independent analysis of front and rear suspension is impossible and we
need accurate mass properties of vehicle body.

Shock Absorber Force

The measured shock absorber force is the preferable force input for better accuracy.
However, in the absence of the measured shock absorber force, an accurate shock
force-velocity curve is needed to estimate the shock force using the calculated
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shock axial velocity by differentiating its axial displacement estimated from the
kinematics relationship between the measured LCA angle and LCA ball joint.

Jounce Bumper Force

The measured jounce bumper force is the preferable external force input. The
jounce bumper force can be calculated from a jounce bumper force versus
deflection curve. It should be noted that the calculated jounce bumper force is
very sensitive to the initial static position of the analysis. A small displacement
error in an initial position will yield large jounce bumper force discrepancy due
to its highly nonlinear force-deflection characteristics.

Brake Signal

The brake signal is very important to identify the brake or driving torque (Ty)
from the WFT moment measurement. For the front-wheel drive suspension illu-
strated in Figure 1.16, the drive torque is not reacted by the suspension, thus

Driving
Torque

WFT Moment (Ty)

Figure 1.16
[llustration of front-wheel drive suspension.
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the application of Ty depends on whether braking is on or off. If braking is
on, the caliper holds the brake disk and the braking torque acts on the suspen-
sion. If braking is off, then Ty should not be applied at all on the suspension.
This principle can be applied to any other type of torque-driven independent
suspensions.

Vertical WFT Force Input Method

In this method, the vertical WFT force instead of the vertical displacement of
the WFT is used. The input channels to a multibody dynamics model are sum-
marized in Table 1.7. The jounce bumper force is determined by the measured
inertia force and WFT vertical force according to the D’Alembert principle.
Thus, the accurate measurement of shock force and acceleration is required to
obtain accurate load prediction. In general, the calculated jounce bumper force
in this method is not sensitive to the jounce bumper force-deflection curve as
well as the initial suspension static position.

The suspension load analysis procedures with the WFT force input method are
summarized as follows:

1. Check polarity, calibration, unit, and quality of the measured data for
accuracy. If necessary, noise and outliers should be removed prior to any
engineering usage.

2. Build the suspension model using any commercially available software.

Table 1.7: Input Channels for Vertical Force Input Method

Channels Used in the Simulation No. of Channels Input to ADAMS Model

WEFT force (left, right) 6 Longitudinal, lateral, and vertical
force

WFT moment (left, right) 6 Overturning, driving, and aligning
moment

Spindle acceleration (left, right) 6 Inertia force of spindle, rotor and

caliper, and WFT
Steering angle

Shock absorber force
Braking signal

Steering angle
Shock absorber force (left, right)
Braking signal
Total channels 22

IR SR
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Calculate the suspension kinematics and compliance (K&C) and compare
them with the targeted data. The K&C in this section include the suspension
ride and roll rates as well as the steering ratio.

Estimate the WFT inboard mass for inertial load compensation. The inboard
mass includes any unsprung mass inboard of the WFT interface with the
rim and moving together with the knuckle, which can be the WFT, knuckle,
brake disc, brake caliper, and the like.

Apply the time histories of WFT loads, spindle accelerations, shock forces,
and steering wheel angle to the suspension model, and perform the quasistatic
analysis to resolve the suspension component loads.

The correlations of calculated and measured suspension load data for a McPherson

strut front suspension system are presented in Figures 1.17 through 1.21.
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Antiroll bar drop link axial loads in a figure-eight event.
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Figure 1.18
Steer tie rod axial loads in a wide-open throttle event.

Some discrepancies between the calculated and experimental strut forces in
longitudinal and lateral directions are observed in Figures 1.19 and 1.20, which
are believed to be attributable to the compliance of the strut subjected to high
forces, resulting in larger elastic deflection such that the two signals acquired
from the transducers on the strut tower would be distorted from its original
local coordinate system fixed to a rigid vehicle body. By considering the contribu-
tions due to the flexibility of some critical components, such as body, frame, sub-
frame, suspension control arms, strut tube, tie rod, and so on, the accuracy of the
road load analysis can be greatly improved.

Incorporating the structural flexibility of various components into time domain
dynamic analyses of multibody systems have been studied by various authors in
the literature (Griffis & Dufty, 1993; Kang, Yun, Lee, & Tak, 1997; Knapczyk &
Dzierzek, 1999; Medepalli & Rao, 2000; Ambrésio & Gongalves, 2001; Kang,
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Figure 1.19
Strut lateral loads in a very rough road event.

Bae, Lee, & Tak, 2003; Davidson & Hunt, 2004; Knapczyk & Maniowski, 2006;
Lee & Han, 2009; Hong, You, Kim, & Park, 2010). Discussion of these approaches
is beyond the scope of this chapter.

Vehicle Load Analysis Using 3D Digitized Road Profiles

As mentioned in the previous section, the suspension component loads can be
efficiently predicted by using the measured spindle loads and some other channels
as well as an accurate multibody dynamics suspension model. This is possible
when the prototype vehicle for spindle loads measurement is available. However,
during a vehicle development process, the design changes after the prototype vehi-
cle cannot be avoided. These changes may be due to the suspension tuning, power-
train mount system optimization, body structure optimization, and even the vehicle
weight target setting.
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Strut fore-aft loads in a severe braking event.

In the current severely competitive automotive market, it is impossible to build
the prototype vehicles for road loads data acquisitions along with all these
changes in different development stages. Thus it is critical to effectively and
accurately predict the spindle loads change due to the design changes from the
prototype vehicle by utilizing the measured data acquired from the previous
prototype vehicle. To ensure the accuracy of the spindle loads prediction with
full vehicle model, the following three components are important:

* Road profile representation
*  Vehicle and tire model representation

e Operating condition representation

The road profiles in a proving ground for durability assessment typically
include various types, such as concrete flat surface, deterministic transverse and
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Figure 1.21
Lower ball joint fore-aft loads in a severe braking event.

diagonal trenches, random nature pothole, cobblestone, and Belgian block with
different material properties for the road. For full vehicle simulation on these
road profiles, the geometrical representation of the road profile is essential
since the tire-road interaction heavily depends on the local contact area normal
and shear forces representation. The representations of these forces are directly
related to the road profile geometry.

The emergence of a high-fidelity 3D terrain measurement technique and dur-
ability tire model evolution has made virtual road load analysis and data acqui-
sition possible. A high-speed inertial profiler developed by General Motors
Research in the 1960s (Spangler & Kelly, 1966) may be the first simple device
to measure 2D road roughness. As computer power increased and signal pro-
cessing evolved, 3D terrain measurement systems were developed (Wagner &
Ferris, 2009), which incorporated a scanning laser that is rigidly mounted to the
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body of a host vehicle. This vehicle traverses the terrain while simultaneously
acquiring terrain measurement.

To obtain accurate terrain measurements, the motion of the vehicle must be
accurately measured so that it can be removed from the laser measurement.
Modern systems use an Inertial Navigation System (INS) to measure the vehi-
cle motion (Kennedy, Hamilton, & Martell, 2006). The accuracy of the INS
depends on the alignment of the Inertial Measurement Unit (IMU) to the laser
and satellite coverage of the Global Positioning System (GPS).

Discussion about the emerging 3D terrain measurement capabilities can be
found elsewhere (Chemistruck, Binns, & Ferris, 2011; Smith & Ferris, 2010a,
2010b; Detweiler & Ferris, 2010), and is beyond the scope of this chapter.
However, it is the objective of this section to present the vehicle suspension
load analysis based on measured 3D terrain profiles.

The operating condition representation usually refers to the driver’s control and
maneuver when driving the vehicle according to the proving ground durability
schedules, such as the braking/accelerating and cornering. These maneuvers are
required for different road profiles of the proving ground according to the dur-
ability schedules. It is thus important to simulate the same driver’s control man-
euvers as required by the durability schedule, to have the vehicle yield the
same spindle loads in longitudinal, lateral, and vertical directions as those mea-
sured. Besides the road profile and the operating condition representations, the
vehicle and tire models are also critical for the spindle loads prediction.

Vehicle Model Description

The accuracy of the vehicle load analysis hinges on the high-fidelity of vehicle and
tire models. A typical vehicle model with meshed body representations is illu-
strated in Figure 1.22, where the front suspension is a typical short-long arm
(SLA) with a rack-pinion steering system. The rear suspension is a multilink type
with solid axle and coil springs. The vehicle body is modeled as a rigid part and
its mass and mass moments of inertia are derived from the finite element model.

As a result of the fact that a suspension travel and bushing deformations are
large in proving grounds road events, the force at every bushing follows a non-
linear function of its deflection and a linear function of its velocity in all three
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Figure 1.22
Full vehicle model with flexible body graphical representation.

translational and three rotational directions. All suspension components are
represented with rigid bodies. The vehicle model needs to be well correlated
with its target kinematics and compliance properties before being used for full
vehicle simulations.

Tire Model Description

The tire model is the most critical and difficult module in a full vehicle system
model due to its complexity of nonlinear characteristics and interaction with
terrain profiles. For practical applications, a tire model must prove its quantita-
tive quality and its possibility for adaptation to different driving conditions
(Yang & Medepalli, 2009).
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Over the years, many tire models have been developed for vehicle dynamics
and road loads simulations, among which the most commonly applied tire mod-
els are RMOD-K (Oertel & Fandre, 1999, 2001; Pacejka, 2006), FTire (Gipser,
2007), CDTire (Gallrein, De Cuyper, Dehandschutter, & Bicker, 2005), and
SWIFT (Schmeitz, Besselink, & Jansen, 2007; Jansen, Verhoeff, Cremers,
Schmeitz, & Besselink, 2005). The four tire models have different approaches
and levels of complexity, resulting in differences in computational effort and
accuracy.

The agreement with experimental data may be significantly different, depending
on the type of application. All the models aim at similar motion input ranges
and application types. These include steady-state (combined) slip, transient, and
higher frequency responses, covering at least the rigid body modes of vibration
of the belt. The models are also designed to roll over three-dimensional terrain
unevenness, typically exhibiting the enveloping properties of the tire. The four
tire models are introduced as follows.

RMOD-K is a detailed finite element model (FEM) for the actual tire structure.
It features a flexible belt that is connected to the rim with a simplified sidewall
model with pressurized air. The belt is modeled by one or more FE layers that
interact with each other. Terrain contact is activated through an additional sen-
sor layer. In each sensor point, the normal and frictional forces are calculated.
The contact area (with possible gaps) and pressure distribution are determined
from the rolling and compressed FEM.

Depending on the need of an application, the complexity of the model may be
reduced from a fully FEM to a hybrid, or a discrete structure representation. Three-
dimensional uneven terrain surfaces can be dealt very well with this sophisticated
model. However, the computational effort remains relatively high. Friction func-
tions are also included to allow generation of both adhesion and sliding areas with
various friction levels dependent on temperature and contact pressure.

SWIFT (Short Wavelength Intermediate Frequency Tire) is a relatively simple
model in representing the actual physical structure of a tire. However, this model
relies heavily on experimental data concerning the tire-terrain slip properties. The
belt is represented by a rigid ring with numerous residual springs that connect the
ring with the contact patch. This simplification limits the frequency of the model
application to 100 Hz.
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Contact dynamic behavior is represented by a bushing model with nonlinear
frequency response characteristics. The wavelength of horizontal tire motion is
limited to, but not less than, 10 cm. Rolling over terrain unevenness is accom-
plished by the so-called effective road plane defined by the vertical positions of
a 2D tandem or 3D multiple set of oval cams that travel over a real sharp-edged
terrain surface. A scaling factor can be used to account for any change that may
occur in a frictional or service condition. Moreover, full-scale tire slip measure-
ments, straightforward rolling experiments over oblique cleats, and some special
tests are required to determine the parameters pertinent to tire dynamic rolling
behavior.

Alternatively, the MF (Magic Formula) quasi-steady-state or transient tire
model was introduced by approximating some parameters in the SWIFT model.
This model is applicable for any low frequency response to about 10 Hz, rela-
tively large motion wavelengths, and smooth road surfaces. The MF tire model
is a simple variant of the SWIFT model. Both produce identical steady-state
responses.

More information on MF-Swift can be found in Jansen et al. (2005) and
Schmeitz et al. (2007). Typical applications are vehicle handling and stability,
vehicle ride and comfort analysis, suspension vibration analysis, and the devel-
opment of vehicle control systems such as antilock brake systems (ABS) and
electronic stability programs (ESP).

FTire features a flexible belt provided with a large number of friction elements
on tread blocks. The flexible belt is modeled by 80 to 200 segments, each of
which possesses five degrees of freedom including twisting and bending about
the circumferential axis. The segments are connected with respect to the wheel
rim by nonlinear spring-damper elements. One thousand to 10,000 friction ele-
ments are attached to each of the segments through five to 50 tread blocks.
Through these elements, normal and frictional forces are generated. Friction
functions are used to make distinction between sticking and sliding friction.
The tread block may represent a simple tread pattern design.

A thermal model can also account for the change in the temperature of structure
and contact surface, thereby varying friction, inflation pressure, and stiffness
properties. In addition, the model features a tread wear model based on the con-
cept of friction power. The contact patch contour and pressure distribution are
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determined by the model’s flexible properties. The model can roll over arbitrary
uneven, possibly sharp-edged terrain surfaces.

The frequency bandwidth of the model is limited to 150 Hz (up to first-order
bending modes), and the horizontal motion wavelength should be constrained to
5 to 15 cm. Special measurements are required to obtain the geometry, inertia,
stiffness, damping, friction, and material properties of the tire of interest. Para-
meterization may be conducted either by physical oblique cleat tests or virtual
finite element simulations.

CDTire is a high frequency FEM tire model. The CDTire family offers three
packages with variable characteristics, which include

1. CDTire-20 with a rigid ring and long wavelength surfaces

2. CDTire-30 with a single flexible ring, short wavelength surfaces, and
constant lateral height profile

3. CDTire-40 with multiple flexible rings

The unique features of these CDTire models are the smaller local enveloping
surfaces on the tire patch as well as the ability to present tire-specific vibrations
up to 40 Hz and higher. It is worth mentioning that CDTire-40 is suitable for
irregular terrain profiles such as Belgian block, cobblestone, cleats with variable
heights and arbitrary positions, and so on.

Model Validation Process

This section discusses the validation process from tire model parameterization
to full vehicle model simulation.

Tire Model Validation

The CDTire model is chosen here as an example because this model has been
proven (Cuyper, Furmann, Kading, & Gubitosa, 2007) to be suitable for durability
road load simulations. The CDTire model is expressed as a GFORCE statement
in an ADAMS® environment. Many laboratory bench tests for tire model parame-
terization are performed according to the published SAE J-documents (SAE 2704,
2005; SAE J2705, 2005; SAE J2707, 2005; SAE J2710, 2005; SAE J2717, 2006;
SAE J2718, 2006; SAE J2730, 2006). As a result, the parameters used in the
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CDTire model are identified by optimizing the tire model with the experimental
data from these bench tests.

The dynamic drum cleat test (SAE J2730, 2006) is the bench test selected to
illustrate the validity of analytical predictions, as compared with the tested
results. In the test, the tire spindle is fixed to a rigid structure and the tire can
freely rotate around the spindle. The tire is mounted with a preload on a 1.7 m
diameter drum, which is driven. The drum diameter of 1.7 m is chosen such
that the tire oscillations due to cleat impact during the test decay away prior to
the second encounter with the cleat at speeds of 64.4 km/h or less. A WFT is
installed to measure the spindle loads of the tested tire. One steel cleat with a
cross-section dimension of 15 mm X 15 mm is rigidly attached on the drum at
90° or 45°. The drum rotates at multiple speeds to yield the different dynamic
responses of the parameterized tire.

A virtual dynamic drum cleat testing with the parameterized CDTire model is simu-
lated. The spindle force comparison for the 45° cleat at 40 km/h is illustrated in
Figure 1.23, where the CDTire-40 model is applied for simulation. The CDTire-40
model can predict the longitudinal (F,) and vertical load (F,) very well for the 45°
cleat test as shown in the figure. The lateral force (Fy) comparison shows apparent
discrepancies. It should be argued that the spindle longitudinal and lateral forces in
the 45° cleat test are expected to demonstrate similar trends, while the measured
longitudinal and lateral spindle forces between 0.1 and 0.15 second show extre-
mely different patterns. This requires further investigation.

Vehicle Model Validation

Vehicle model validation involves the full vehicle dynamics analysis with the input
of 3D digitized terrain profiles as well as the vehicle performance simulation on a
flat road surface. There are two types of terrain profiles applied for any full vehicle
simulation at a constant speed, including deterministic and random types. The deter-
ministic terrains includes 10" X 2" wood plank on concrete road, transverse and
diagonal trenches in concrete. The random terrains include Belgian blocks, random
potholes, and cobblestones. Furthermore, the vehicle performance simulations
include figure-eight cornering and straight-line acceleration and braking.

During analysis, the terrain profile interface with the tire is difficult to charac-
terize in terms of its friction. The friction between the tire and road surface at



48 Chapter 1

Drum test: Preload=2039Ibs 45° cleat 15mmx15mm;
Velocity=40km/h; Tire pressure=2.5Bar
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Figure 1.23

Spindle longitudinal, lateral, and vertical force over a 45° cleat.

various locations is not the same, and it is hard to model the friction coefficient
as a function of road surface location, tire pressure, tire load, and tire material.
In this validation, the friction coefficient for all road surfaces applied is
assumed to be 0.9.

Deterministic Road and Performance Event Simulations

The validation study is based on the time histories of measured and predicted spindle
forces from the deterministic terrain profiles and the performance type simulations.

For a deterministic road simulation, Figure 1.24 shows the comparison of left-
rear spindle force-time histories for a simulated vehicle over the diagonal
trenches at 20 mph. It can be seen that the simulated spindle loads match rea-
sonably well with the measured. It can also be seen that the phase between the
simulated and measured spindle loads are not negligible.
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Figure 1.24
Left-rear spindle longitudinal, lateral, and vertical force responses under
diagonal trenches event at 20 mph.

The reason behind this is that during the measurement, it is very hard for the
driver to maintain the constant forward speed, while in simulation the virtual
driver model is “smart” enough to keep the vehicle as constant speed. Since
the spindle loads are very sensitive to the driving speed in this kind of event,
the spindle load’s difference between the measured and simulated are not com-
pletely due to the tire/vehicle model accuracy. This fact may be one of
the many challenges for the validation of the virtual simulation model.

For a vehicle performance simulation on braking and acceleration, the mea-
sured driving and/or braking torques at front and rear axles are applied as
input. The predicted spindle longitudinal and vertical spindle loads, as well
as the vehicle forward velocity are compared with the measured to illustrate
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Spindle longitudinal and vertical forces and vehicle velocity under hard-stop
braking event (start speed is 30 mph).

the validity of the tire model. Figures 1.25 and 1.26 illustrate the comparison
of the predicted and measured spindle longitudinal force, vertical force, and
the vehicle velocity under a hard-stop and a heavily accelerating event,
respectively.

It can be seen that the predicted spindle loads (especially those of the longitudi-
nal forces) and vehicle velocity, in general, match very well with the measured
data. This indicates that the CDTire-30 tire model can be applied to accurately
predict the relationship among the tire driving/braking torque and longitudinal
and vertical forces on such a performance simulation. It should also be noted
that the vertical spindle forces in front and rear axles underpredict the load
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Figure 1.26
Spindle longitudinal forces and vehicle velocity under acceleration
event (start speed is 0 mph).

transfer due to deceleration, which may indicate some modeling errors of the
vehicle body mass, CG location, or inertia properties.

For a vehicle performance simulation subjected to the figure-eight event, the dri-
ver’s behavior significantly affects vehicle dynamic responses and spindle loads.
The validation is not to validate a closed-loop driver-vehicle system model; it
focuses on the predicted longitudinal, lateral, and vertical spindle loads under the
given steering wheel angle and driving/braking torque at front and rear axles.

Figure 1.27 illustrates the dynamic spindle loads at four corners for the pre-
dicted and measured spindle loads. The results clearly indicate that the CDTire-
20 model can accurately predict the dynamic spindle loads for the figure-eight
event.
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Spindle longitudinal, lateral, and vertical forces under the figure-eight event.

Figure 1.28 further illustrates the comparison of the vehicle velocity between the
predicted and measured, as well as the predicted vehicle center of gravity (CG)
trajectory when negotiating the figure-eight event. It can be seen that the predicted
vehicle forward velocity is somewhat close to the measured, except for a certain
time frame (from 20-25 seconds) where the measured velocity is constant at 8
mph and the predicted velocity increases to 11.8 mph and then decreases.

A further investigation of the measured wheel torque within the time frame
indicates that the vehicle should be accelerating and then braking. Thus we can
conclude that the measured velocity signal may not be accurate. The predicted
vehicle CG trajectory response indicates that it is hard for a driver to follow
the exact same figure-eight trajectory for two figure-eight runs. This further
indicates that the vehicle dynamic responses under such a severe cornering
event are greatly dependent on the driver’s behavior.
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Figure 1.28
Vehicle speed and CG trajectory under the figure-eight event.

Random Road Simulations

The random type road events presented in this study include cobblestones, Belgian
blocks, and combinations of random potholes, diagonal trenches, and cobblestone.
For these types of roads, the cumulative exceedance plot from the rainflow cycle
counting output and the pseudo-fatigue damage are used for comparison. For the
pseudo-damage calculation, a fictitious material load-life curve with a slope of
—0.2 and 20,000 Ibs intercepts at 1 reversal is applied. The discussion of the rainflow
cycle counting techniques and the linear damage theory can be found elsewhere
(Lee et al., 2005) and is beyond the scope of this chapter.

CDTire-40 (CDT40) is the most comprehensive tire model in the CDTire family.
It can be used to simulate vehicle longitudinal, lateral, and vertical dynamics
responses on the road profiles with long and short wavelengths. However, due to
its relative complexity thus a longer simulation time, it is not recommended to use
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Left-rear spindle longitudinal (a), lateral (b), and vertical (c) force responses
under Belgian block event at 5 mph.
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a CDTire-40 model to simulate a road profile with very large wavelength, such as
flat surface, or an event with only vertical and longitudinal vehicle dynamics
involved, such as transverse trench on a flat concrete surface. On the other hand,
for random type roads that will stimulate all three-direction vehicle dynamics, the
CDTire-40 model should be applied.

Figure 1.29(a—c) illustrates the comparison of cumulative exceedance plots for
the measured and predicted longitudinal, lateral, and vertical spindle forces,
respectively, with a vehicle moving over Belgian blocks at 5 mph. Figure 1.30
also provides a normalized pseudo-damage ratio with respect to the pseudo-
damage-using model.
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Figure 1.30

Left-rear spindle longitudinal (a), lateral (b), and vertical (c) force responses under
Belgian block event at 5 mph displayed in bar graphs.
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The comparisons between the three-time measured and predicted peak-to-peak
range (Range) and standard deviation (STD) of the left-rear spindle loads are
also illustrated in Figure 1.30. It can be seen that the spindle loads predicted
with CDT40 model, in general, are well-correlated with the measured ones.

Note that a validation of the durability tire model usually focuses on the pre-
dictability of the rainflow cycle counts of spindle loads under given road events
and operating conditions. If the rainflow cycle counts of the predicted spindle
loads match very well with the measured data, it indicates that the predicted
spindle loads will yield comparable damage due to the spindle loads, which
demonstrates the validity of the tire model for durability assessment.

Based on the previous studies, the following conclusions can be drawn:

e The current LMS CDT models can be applied to predict the spindle loads
under various road events with reasonable accuracy, achieving significant
improvement in longitudinal, lateral, and vertical dynamics compared with
the Durability 521 tire model (Yang & Medepalli, 2009).

e The validation of a tire model is strongly challenged by the measurement
run-to-run variations from the tire bench test and full vehicle measurement.
Simulations cannot exactly replicate physical events due to road surface and
driving variability. It is highly recommended to develop a standard worldwide
validation procedure to make consistent validation criteria for comparisons of
different tire models and sources of validated data. Furthermore, the tire bench
test data followed by the published SAE J-documents are applied in this study,
which indicates that the documents cover the necessary tire data to parameterize
the CDTire model for “nonmisuse” road loads simulation purpose.

Summary

In the current competitive automotive business environment, decisions on automo-
tive product development greatly rely on accurate and fast estimations of loads input
data to perform durability, fatigue analysis, and bench tests for the designed vehicle
system, subsystems, and components. Conventional data acquisitions, which mea-
sure the component loads with installed strain gages, are time-consuming, expen-
sive, and rarely reusable. These methods thus have almost been replaced with the
wheel force transducers technology, a fast and reliable method, which measures
only wheel spindles loads, accelerations, and a few correlation channels.
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The measured spindle loads can be directly applied to perform full vehicle fati-
gue simulation testing with road test simulators in the laboratory. They can also
be effectively applied to predict the vehicle component loads by using the semi-
analytical load simulation methodology, which combines the measured data and
analytical models. With the measured or calculated component loads, it is con-
venient to conduct the stress and fatigue analysis for components through FE
model simulation.

Multibody loads simulation focuses on the rigid and flexible body combination
and integration with finite element analysis. All analytical models for loads
analyses may be further integrated to perform the vehicle dynamics simulation.
Ultimately, the advanced virtual road load simulation technology allows fewer
prototype vehicles, and less proving ground and laboratory testing. It can also per-
form design of experiments (DOE) and optimal design with low cost and high
confidence.

Sensitivity analysis using DOE and contribution ratio calculation can help
determine the necessary signal to be measured in the experiments. Signals hav-
ing little effect on the loads can be removed from the measurement list to
reduce the number of transducer channels, thereby speeding up instrumentation,
data acquisition, and data analysis activities.
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To expedite the computational process, numerous notch analysis techniques
(Neuber, 1961; Molsky & Glinka, 1981; Hoffmann & Seeger, 1989; Barkey,
Socie, & Hsia, 1994; Lee, Chiang, & Wong, 1995; Moftakhar, Buczynski, &
Glinka, 1995; Gu & Lee, 1997; Lee & Gu, 1999; Buczynski & Glinka, 2000)
have been developed to estimate the local stress—strain responses based on the
stress output from a linear, elastic FEA. The stress calculated from a linear,
elastic FE analysis is often termed pseudo stress or fictitious stress to differenti-

ate the true stress as plasticity occurs.

Metal Fatigue Analysis Handbook
© 2012 Elsevier Inc. All rights reserved. 6 1
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Calculation of pseudo stresses becomes a crucial step in the notch analysis to
estimate the true local stress—strain responses. Static stress analysis and modal
transient response analysis are the two commonly used techniques for pseudo
stress analysis. In the static stress analysis, the pseudo stresses can be obtained
by superimposing all the pseudo stress influences from the applied loads at every
time step.

In addition, in the modal transient response analysis, the pseudo stresses can be
calculated from the stress influences from the normal modes and modal coordinates.
If resonant fatigue is of primary concern, the modal transient response analysis
would be recommended; otherwise, the static stress analysis could be a primary
choice. Both the static stress analysis and the modal transient response analysis are
described in this chapter.

Static Stress Analysis

Static stress analysis often assumes the relationship between the applied load
and its structural response is linear and the material follows elastic behavior.
Static stress analysis herein is referred to a linear, elastic static stress analysis.

If a structure subjected to external loads experiences small deformation
response and elastic material behavior, a linear elastic static analysis would be
the best option to use because it has advantages in simplifying stress and fati-
gue calculations. One advantage is that the computational process is very effi-
cient because the structural stiffness matrix is constant and does not require any
update as load increases.

Another advantage is that the response of a structure due to an identical loading
but with a different magnitude can be scaled by the load magnitude ratio. More-
over, if a structure is subjected to multiple load cases, responses of the structure
can be calculated by superimposing the same response of each load case with
an appropriate load magnitude ratio. This is called superposition of structure
responses.

The combination of scaling and superposition of structure responses plays an
important role in stress and fatigue analyses for a long, complicated multiaxial
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load time history. The time history of pseudo stresses of a structure due to the time
history of N different load sources can be obtained by the following equation:

N
Gij (t) = z Gij,k . Lk(t) (21)
k=1
where

cij(t) = the stress tensor at a time t
cijx = the stress tensor influence due to a unit load at the k-th load source
Ly (t) = the k-th load magnitude at a time t

Depending on the boundary condition of a structure, the static stress analysis
has two different problem-solving techniques, the fixed reactive and inertia-
relief methods for constrained and unconstrained structures, respectively.

Fixed Reactive Analysis

The fixed reactive analysis is a common and fundamental solution for a con-
strained structure subjected to a set of time-independent actions such as forces,
moments, torques, or temperatures. If the constrained structure can be modeled
by finite elements, the nodal displacements of the analytical model are usually
unknown and can be solved by the following force equilibrium equation:

[K[{u} = {P} (2.2)

where

[K] =a system stiffness matrix
{u} and {P} =the nodal displacement and force vectors, respectively

Once the nodal displacements are known, any desired output, such as element
forces or strains and stresses, can be computed on an element-by-element basis.

Example 2.1

A cantilever beam with a length of 1016 mm and a box section of

50.8 X 25.4 mm is subjected to a set of loads at the free end, as shown in
Figure 2.1(a), and all the degrees of freedom are fixed at the constrained
end. The constrained beam is made of steel with Young’s modulus of
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210,000 MPa. Conduct linear static stress analyses for the following load
cases:

1. A single unit force 1000 N in the vertical/z direction, F,=1000 N

2. A single unit force 1000 N in the lateral/y direction, F, = 1000 N

3. Asingle unit force 1000 N in the longitudinal/x direction, F, = 1000 N
4. Asingle force 2224 N in the vertical/z direction, F,=2224 N

5. A force with components of F,= 2224 N, F,= 1500 and F,=3000 N

Solution

The finite element model is meshed by using eight-node hexahedral solid
elements. The analyses are conducted using “Static” stress analysis
solution in ABAQUS® (ABAQUS, Inc.). The contours of stresses in the

x direction (6,4) are shown in Figure 2.1(b) through (f) for all the load
cases where the maximum compressive stresses on the same element for
load cases (1), (2), and (3) (64 = —93.0 MPa, —69.4 MPa, and —0.8 MPa)
are listed.

Actually the maximum compressive stress G,, under load case (4) can
be easily calculated as —207.0 MPa, by scaling the stress result of load
case (1) with a load ratio of 2.224, because load case (4) has the same
loading condition as load case (1) but a different magnitude of force.
Similarly, by scaling and superimposing the stresses of load cases (1) to
(3), the maximum compressive stress G,, under load case (5) can be
calculated as —313.2 MPa (= -93.0x 2.224 - 69.4x 1.5 - 0.8 X 3.0).

For displacement, since it is a vector, scaling calculation is still
applicable but superimposing calculation should be conducted by the
vector calculation rules. In this example, the maximum displacements
in the loading directions at the loading point of load cases (1) to (3)
are 24.3 mm, 6.08 mm, and 0.004 mm, respectively. The maximum
displacement of load case (4) is 54.0 mm (=24.3 mm X 2.224).

In addition, the maximum displacement in magnitude at the loading
point of load case (5) should be calculated as follows: [(24.3 ><2.224)2 +
(6.08 x 1.5)% + (0.004 % 3.0)*]"* = [(54.0)> + (9.12)” + (0.012)*]"* =

54.78 mm. Note that it would be wrong by simply adding the three
scaled displacement values for the magnitude of the maximum displace-
ment such as 54.0 + 9.12 + 0.012=63.13 mm.
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Figure 2.1
Linear static stress analyses of a cantilever beam: (a) a cantilever beam with loading and
boundary conditions; (b) contour plot of 6,, under F,=1000 N; (c) contour plot of 6,
under F, = 1000 N; (d) contour plot of 6,, under F, = 1000 N; (e) contour plot of c,, under
F,=2224 N; and (f) contour plot of o,, under F, = 1000 N, F, = 1500 N, and F,=3000 N.
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Inertia Relief Analysis

Solving for the responses of an unconstrained structure subjected to constant
or slowly varying external loads is commonly performed throughout the auto-
motive and aerospace industry. It is assumed that the external loads are steady-
state loads applied to the structure and the structural transient responses have
dampened out. Typical example problems are a rocket undergoing constant or
slowly varying acceleration during lift-off, and a vehicle driven on a test track
where the local responses are not critical.

These problems can be solved by using static stress analysis with the inertia relief
technique. Conventional finite element static analyses cannot be performed on
unconstrained structures because of the singularity of the stiffness matrix due to
rigid body motions. With the inertia relief technique, it is assumed that inertial
loads of rigid body motions and external loads are in balance with respect to a
reference point, thus the unconstrained structure is in a state of static equilibrium.
The rigid body accelerations at the reference point will be calculated and applied
along with the external loads back to the finite element structure to produce a
load-balanced static formulation. With the steady state equilibrium condition,
the relative structure displacements, the internal forces, and the stresses can be
finally determined.

Even though numerous techniques for inertia relief have been developed and
published elsewhere (Barnett, Widirck, & Ludwiczak, 1995; Gaffrey & Lee,
1994; ABAQUS, 2008), a simple, concise solving technique for static analysis
with inertia relief is presented in this section.

Approximation to Dynamic Equilibrium Equations

If an unconstrained structure has rigid body modes with respect to its center of
gravity (CG), the static analysis with inertia relief is considered as an approxi-
mation to the dynamic equilibrium equations where the damping force is
excluded because of the assumption of steady-state responses. This concept is
illustrated here.

It is assumed that the total deformation vector {u,} of the unconstrained
structure is a combination of a rigid body motion vector with respect to its
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CG {u,} and a flexible deformation vector {u}, which can be written as
follows:

{u} = {u} +{u}. (2.3)

Therefore, the corresponding total acceleration vector is

{ﬁt} = {ur} + {u} (2.4)

When a steady-state external force vector {P} is applied to the unconstrained
structure with a mass matrix [M] and a stiffness matrix [K], the dynamic equili-
brium equation becomes

M]{i } + M]{i} + [K]{u} = {P}. (2.5)

It is also assumed that the inertia force due to flexible body motions of the
structure is negligible as compared to that from rigid body motions. Thus the
relative acceleration term [M]{ii} is dropped off from the preceding equilibrium
equation. Equation (2.5) can be rewritten as

M]{i} + [K]{u} = {P}. (2.6)

This is the fundamental equation for the static analysis with inertia relief when
the CG of the structure is the center of its rigid body motions.

Basic Approximation of Finite Element Analysis

If an unconstrained structure has rigid body modes with respect to an arbitrary
reference point different from its center of gravity (CQG), all the applied loads
and the inertia forces generated by the applied loads must be balanced at this
point for force and moment equilibrium. This concept is demonstrated in this
section.

It is assumed that an arbitrary nodal point i (x;, y;, z;) of an unconstrained struc-
ture can be described in a Cartesian coordinate system and that the origin of the
Cartesian axes is the reference point. A geometric rigid body transformation
matrix ([Riole) that relates rigid body motions ({u,¢},,) from the reference
point (0, 0, 0) to those motions at a nodal point i ({u,;},,) can be defined as
follows:

{ur,i}6><1 = [Ri,0]6x6{ur,0}6x1 (2'7)
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where
Vx,i ) ( Vx,0 I 1 0 O 0 Z; -Y; i
Vyi Vy.0 01 0 -z O X;
) Vai ) Vo _100 1 vy —=x 0
{ur,l} - ex,i {ur,O} - ex,O [Rl,()] - 00 0 1 0 0
ey,l ey,() 0 0 0 0 1 0
0, 0.0 ) 100 0 O 0 1]
where

v and O = the nodal displacement and rotation
X, y, and z (the subscripts) = the Cartesian axes

If a reference point different from the origin is introduced, the geometric rigid
body transformation matrix will be revised accordingly. The choice of the refer-
ence point is arbitrary and will not affect the results of inertia relief.

With the application of the geometric rigid body transformation matrix, the
following node-to-origin displacement and force equations apply:

{tritox = [Riolexe o bexs (2.8)
[Ri,O]gxﬁ{Pi}éxl = {Po}sxl (2.9)

where

{li;0} ¢y = the rigid body acceleration vector at the origin
{Ui;;}4y; = the rigid body acceleration vector at a nodal point i
{Po}6x1 = the resultant force vector at the origin

{P;}6x1 = the applied loading vector at a nodal point i

These accelerations and forces are noted as follows:

. . p
VX,O Vx,i Px,O

Vy.0 Vyi Pyo

. V20 . Vi P,o
{io} =4 4" {ii}=94" {Po}esa = ’

Bx0 Oy.i ox1 M,

ey»O ey,i My,O

\ 9Z,O \ 9Z,i MZ,O

7
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where

v and 0 = the nodal translational and rotational accelerations
P and M = the applied force and moment at a node

Consider a structure modeled by a finite element model with a total of n nodal
points where the external loading applies. The total resultant forces and the
accelerations at the origin can be obtained in the following equations:

{ﬁr}6n><1 = [Ri,o]ﬁnx6{ﬁr,0}6x1 (2.10)
[R]gx6n{P}6n><l = {PO}éxl (2'11>
where
[[Ri] ] i1 o] ] ({P:}
[Ro,0] [ii,0] {P,}
[R]énxﬁ = [i,] = {Phoua = '
| [Ru]  fino] [P}

Similarly, the inertia forces at all the nodes can be transformed into the inertia
forces at the origin by taking moments about this reference point:

[R]gxm [M]6n><6n{ﬁl’}6n><l = [R]€x6n [M]6n><6n [R]6nx6{ﬁr,0}6x1 (2‘12)

where

eoleleNeBel

Rigid body mechanical loads are balanced at the origin, meaning at which
reference point the total resultant inertia forces are equal to the total resultant
loads. This can be expressed as

[R] gxén [M] 6nx6n [R] 6nx6{ﬁr,0}6x 1= [R] gxén {P}6n><1 . (2 1 3)
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The rigid body accelerations at the origin can be solved:

{ﬁr,0}6x1 = ([R]gXGH [M]énXGn [R}6n><6)_1 [R]gx6n{P}6n><l' (2.14)

By applying the balanced loads to the finite element structure in a linear static
formulation, the relative nodal flexible displacements with respect to the origin
({u}¢.x;) can be solved from the following equation:

[M] 6nx6n [R] 6nx6 {ﬁr,o }6><1 + [K] 6nx6n {u}anl = {P}6n><1 ' (2 1 5)

Since the stiffness matrix is singular for the unconstrained structure, it requires
a special technique to solve for the relative nodal displacements. The technique
used in MSC-NASTRAN® (MSC Software Corporation; NASTRAN®, National
Aeronautics and Space Administration) is based on the fact that the relative
nodal displacements matrix is orthogonal or decoupled from eigen-solution
rigid body mode shapes ({¢}¢,;). For low strain rigid body modes, geometric
rigid body transformation vector ([R].) can be expressed as a linear combina-

tion of {@} g, -

Therefore, a rigid body decoupling constraint is met by the following criterion:
o MJ{u} =0 — [R]'M]{u}=0. (2.16)
Adding Equations (2.12), (2.14), and (2.15) to Equation (2.16) obtains

[[R][g[]M] [R%\EII]Q%R]] {{iu}}} = { [R]{TP {}P} } (2.17)

a nonsingular matrix

Therefore, the relative nodal displacements with respect to the origin can be solved:

L= Wik ]_1{[R]{f{}P}}' 19

Example 2.2

The same beam in dimensions as in Example 2.1 is subjected to a thrust
force of 2224 N in the z direction acting at one end, but does not have
any constraints, as shown in Figure 2.2(a). The beam is made of steel
with the mass density of 7.8e™° Mg/mm?> and Young’s modulus of
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(b)

Figure 2.2
A free beam analyzed using initial relief technique: (a) a finite element model
of the unconstrained beam and (b) stress contour plot of G,,.

210,000 MPa. Conduct stress analyses of this unconstrained beam using
inertia relief technique.

Solution

The finite element beam model is meshed by using eight-node hexahedral
solid elements. It is analyzed using “Static” stress analysis solution with
the “Inertia relief” option in ABAQUS. The analyzed stress contour plot
in x direction o,, is shown in Figure 2.2(b) where the maximum compres-
sive stress G,, is found to be —30.7 MPa at the marked location.

Modal Transient Response Analysis

In the cases where local dynamic responses of a structure cannot be ignored or
the relative acceleration term cannot be dropped from the dynamic equilibrium
equation as it does in inertial relief method, dynamic structural response ana-
lyses are needed. One of the analyses is modal transient response analysis.

Modal transient response analysis is an approach to compute the transient
response of a linear structure in a modal coordinate system. The method uses
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the mode shapes of the structure to reduce size, uncouple equations of motion,
and then perform numerical integration method. There is no need to use all the
computed modes in the transient response solution. Only the few lowest ones
are sufficient for the dynamic analysis. Mode truncation assumes that an accu-
rate solution can be obtained using a reduced set of modes whose frequencies
are below the cutoff frequency.

It should be noted that truncating modes in a particular frequency range may
truncate a significant portion of the behavior in that frequency range. It is often
necessary to evaluate the frequency contents of transient loads and to determine
a frequency above which no modes are noticeable excited. This frequency is
called the cutoff frequency. It is recommended to set the cutoff frequency to
five times the forcing frequency and to run the analysis a second time with addi-
tional modes for a final verification.

The equations of motion describing a forced vibration of a linear discrete N
degrees-of-freedom system can be written in a matrix notation as

[MI{i} + [C]{u} + [K]{u} = {F(0)} (2.19)

where [M], [C], and [K] are the system mass, damping, and stiffness matrices,
individually. The system displacement and force vectors are given by {u} and
{F(t)}. Often the system is given some initial displacements and velocities,
which are represented by {u(0)} and {u(0)}.

Natural Frequencies and Normal Modes

To perform a modal analysis the force vector {F(t)} and the damping matrix
[C] must be equal to zero in Equation (2.19), namely

MJ{i} + [K]{u} = {0}. (2.20)

The solutions of Equation (2.20) in free vibrations of the undamped structure
have the form

{u} = {a}sin(wt—a) (2.21)

where

{a} = the normal or natural mode shape of vibration
® = the natural frequency of the system
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The substitution of Equation (2.21) into (2.20) and factoring out sin(mt — )
gives

[[K] — 0’ [M]]{a} = {0}. (2.22)

The solution for which not all a; =0 requires that the determinant of the matrix
be equal to zero, meaning

K] — 0*[M]| = 0. (2.23)

The eigenvalues, or the square of each natural frequency u)iz, can be obtained
from the expansion of the determinant in Equation (2.23), resulting in a charac-
teristic equation of degree n in w”. The corresponding mode shape or eigen-
vector at a specific eigenvalue can be solved from Equation (2.22) by the
substitution of ;.

Orthonormalization of Normal Modes

It is sometimes convenient to work with normalized, or orthonormal mode
shapes. In particular we want to scale each mode shape such that

{¢}, M]{9},, =0 for n#m (2.24a)

{o}'M){g},=1 for n=m (2.24b)

where {¢}, is the n-th normalized modal vector. To accomplish this we seek
some constant y,, such that

{o}, = 1a{a}, (2.25)

The substitution of Equation (2.25) into Equation (2.24b) yields

nlalMiv{a}, = vi{a}, Ml{a}, = 1. (2.26)
Solving Equation (2.26) for vy, it has

1 =_1 2.27)

YH =
Ja ey, VM
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where M, is the n-th generalized mass. Hence the n-th normalized mode is
given by

1

= ——{a} . 2.28
0l = Syt (2.28)
The normalized modes can be conveniently arranged in the modal matrix as
P P2 o P
@] = {{o}{@hpafol, f = | 72 P2 Pl @229)
Pnr P2 0 Py

We can rewrite Equation (2.22) for the i-th normalized mode as

K{o}, = o; M|{q},. (2.30)

Premultiplying Equation (2.30) by {¢}., we can obtain the orthogonality condi-
tion

(O} K{@}n=0 for n#m; {o}i[K[{¢}, =0, for n=m. (231

Example 2.3

A two-degree-of-freedom model with two springs and two masses is
illustrated in Figure 2.3. It is given that m; = 0.1kg = 0.1 N-sec’/m”,
m, = 10kg = 10N - sec’/m”, k; = 100 N/m, and k, = 10,000 N/m. Determine
the normalized normal modes and the modal matrix.

N\ N

N\ Fo(t)—» Fq(t)—»

%wvw— my AAMA My

\ © oa OO

A s e e
Figure 2.3

A two degree-of-freedom model.
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Fo(t) —» _ Fq(t > _
2(t) e 1(t) i

Kouy «— «— — Kq(U1—Up) «— <—

Figure 2.4
Free body diagrams and force equilibrium.

Solution
The following equations of motion are obtained from the free body

diagrams as shown in Figure 2.4 by equating the sum of the forces acting

on each mass to zero, respectively. Hence,

mlﬁl +k1 (ul —U2) = Fl (t)
m2ﬁ2 _kl (ul —U2) +k2ll2 = Fz(t)

The preceding equations are written in a matrix form as
my 0 ijl + kl _kl (18] _ Fl (t)
0 my ﬁz _kl kl + k2 Uy N F2 (t) ’
The mass and stiffness matrices are given, respectively, by
[m; 0 0.1 0
M] = =
| 0 m, 0 10
100 —100
| -100 10,100 ]
The equation of motion for a free vibration system is expressed as

K-ofla) = |0 e [} =10}

For a nontrivial solution, the determinant of the matrix needs to be set
equal to zero, that is,

ki =k
|k Ktk

I[K] — @?[M]| = (100 — 0.10%)(10,100 — 100?) — (=100)* = 0.

1

The expansion of this equation leads to

o* —20100” + 1,000,000 = 0.
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The roots of this quadratic, eigenvalues are
o7 =904.9
®; = 1105.
Thus, the natural frequencies of the structure are
o; = 30.08 radians/sec = 4.787 cycles/sec
®, = 33.24radians/sec = 5.290 cycles/sec

The first normal mode or modal shape can be obtained by substituting
the first natural frequency, w; = 30.08 radians/sec, back to the equation
of motion for free vibration, that is,

100—-0.1%x904.9 —100 a | _JO SJanl 1.000
—100 10,100—10%x904.9 | ay, [~ |0 a [ 10.0951 ("
Similarly, substituting the second natural frequency, ®, = 33.24 radians/sec,
into the equation of motion for free vibration, we obtain the following

second normal mode,
an _ 1.000
an) - —-0.105 '

The generalized masses M; and M, corresponding to the first and second
normal modes are calculated as

T T - _
_Jan | (m O |Ja, | _J1.00 0.1 0]f1.00 1\ _
Ml_{azl} [0 mzHazl}_{o.0951} 0 10_{0.0951}‘0'1904
ap'[m; 07 fa 1.00 Y'To.1 0] 1.00
_Jan 1 2| _ . ) . 3
M2_{322} |: 0 m2:| {azz}_{—OIOS} _O 10_ {_0105}—02103

and the normalized normal modes for the two natural frequencies are
defined as

( }_{(Pn}_ 1 {an}_ | {1.000 }_{2.2917}
i (5 vM; (a2 v/0.1904 | 0.0951 0.2179

{(p}:{(Pu}: 1 {an}z 1 { 1.ooo}={ 2.1806}
2 ®rr VM, | a2 0.2103 | —0.105 —-0.2290 |-
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Finally, the modal matrix is

_12.2917 2.1806

(@] = 0.2179 —-0.2290 |

Decoupled Modal Equations of Motion

To uncouple the equations of motion in Equation (2.19), the transformation of
coordinates is introduced:

{u} = [®]{z} (2.32)
where

[®] = the modal matrix obtained in the solution of the undamped free
vibration system
{z} = the modal participation coefficients matrix

The substitution of Equation (2.32) and its derivatives into Equation (2.19)
leads to

M][@]{z} + [C][@}{z} + [K][®[{z} = {F(1)}. (2.33)

Premultiplying Equation (2.33) by the transpose of the n-th modal vector {(p}I
yields

{eha MI[@Hz} + {0}, [Cl@Hz} +{@}, [K][@]{z} = {0}, {FO)}. (234

The orthogonality properties of the modal shapes are

{¢}, M{9},, =0 m#n (2.35a)
{9}, M{g}, =M, m=n (2.35b)
{¢},[K]{9},, =0 m#n (2.35¢)

{¢o},[K{9}, =K, m=n. (2.35d)
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It is assumed that a similar reduction is applied to the damping term,

{0}, [C{¢},, =0 m#n (2.36a)
{0}, [Cl{¢},=C, m=n. (2.36b)

This equation of motion (Equation 2.34) can be decoupled as

M,Zy + Cozy + Koz, = Fy (1) (2.37)
where

M, = {¢},M]{o}, = 1 (2.382)
Ko = {0}, [KH{o}, = oM, = o] (2.38b)
Co = {0}, [CHo}, = 26,0,M, = 28,0, (2.38¢)
Fu(t) = {@}, {F(} (2.38d)

or, alternatively as
Fn + 28,002, + 022, = Fy(t). (2.39)

Here &, is the damping ratio to the n-th mode shape.

The normal modal coordinator transformation, Equation (2.32), will uncouple
the damping force if the damping matrix [C] follows the Rayleigh damping
equation as follows:

[C] = a[M] + B[K] (2.40)

where o and P are the damping proportionality factors. This can be demon-
strated by premultiplying both sides of the equation by the transpose of the n-th
mode {¢}. and postmultiplying by the modal matrix [®]. We obtain

{0}, [Cl[@] = af{e}, M][®] + p{e}, [K][@]. (2.41)
Equation (2.41) can be rewritten on the orthogonality conditions as follows:
{0} [CH{e}, =0 m#n (2.42)

{0} [CH{¢},=C, m=n (2.42b)
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where
C, = a+ fo’. (2.43)

To determine these constants for any desired values of damping ratios &,s in
any specified number of modes, setting Equation (2.38c) equal to Equation
(2.43) provides

Cp = 28,0, = 0+ for. (2.44)

When two damping ratios (§; and &) and their corresponding natural frequen-
cies (0, and w,) of a structure are given, Equation (2.44) reduces to
28,0 = a+Por (2.45a)
28,0, = o+ Pw3. (2.45b)

Thus, the Rayleigh damping factors can be obtained by solving Equations
(2.45a) and (2.45b) as

28,0, —2
p= 25101 7250 (2.46)
W7 — 03
o =280, — P (2.47)

Example 2.4

It is assumed that a structure has a constant damping ratio of 2% at the
two natural frequencies of 200 Hz and 1000 Hz. Determine the Rayleigh
damping factors.

Solution
Using Equations (2.46) and (2.47) we can find o and f as

28,0 — 26,0, 2-0.02-(21-200) —2-0.02- (2 - 1000) »
p= 5250 ) . =53%10
of — w3 (27-200)* — (21 - 1000)

o =280, — P’ =2-0.02- (2x-200) —5.3-107° - (2 200)* = 41.90.
Equation (2.44) can be rearranged as

o+ B’
20,

& =
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0.20
0.18 -
0.16
0.14 +
0.12 ~
0.10 ~
0.08 -
0.06
0.04
0.02 -
0.00

10

Damping Rat

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 2.5
Rayleigh damping ratios versus natural frequencies.

This equation can be used to plot the Rayleigh damping ratios versus the
natural frequencies as shown in Figure 2.5.

Numerical Integration Method for Equations of Motion

Explicit and implicit numerical integration methods are commonly used for
solving the equations of motion. For explicit schemes the equations of motion
are evaluated at the current time step t;, and the implicit methods use the equa-
tions of motion at the new time step t;,. LS-DYNA3D® (Livermore Software
Technology Corporation) and NASTRAN uses the central difference time inte-
gration. The central difference scheme is an explicit method.

Explicit Integration Scheme: The Central Difference Method

As illustrated in Figure 2.6, the central difference equations for velocity and
acceleration at discrete times are

1

(Znjit1 = Znj-1) (2.48)
and

. 1 /. . 1
ni = = (Znjits = Znjt) = —— (Zni+1 —2Zni +Znj1)- 2.49
Zn, At(z,Jrz Zn, 2) (At)z(z,ﬂ Zoi+ Znio1) ( )
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Figure 2.6
Central finite difference approximation.

The equilibrium at time t; is
Mnin,i + ann,i + KnZn,i = Fn,i- (250)

By substituting Equations (2.48) and (2.49) into Equation (2.50), the equations
of motion can be written as

M, C,
((At)2> (Znjis1 =22y + Znj1) + (—2 : At) (Zni1 — Znio1) + Knzo; = Fope (2.51)

Collecting terms, the equation of motion can be rearranged as
(Mn + %AtCn> Zais1 =Fui + (21\/1n - (At)an) 7o+ (%AtCn —Mn> Zait.  (2.52)

In the case where M,,, C,, K,, and At are constant throughout the analysis
and they do not change with time, the solution for z,;,; can be obtained from
Equation (2.52) based on the given displacements and force at time t;_; and t;,
such as z,;_1,z,;, and F,;. The same procedure is repeated to calculate the
quantity at the next time step t, and the process is continued to any desired
final time.

Transformation of Initial Conditions

In order to specify the constants z,, and z,, in Equations (2.51) and (2.52),
the initial conditions must be transformed from the physical coordinates
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to the modal coordinates. Since the mode shapes are normalized, at time
t=0

{u(0)} = [@{z(0)} (2.53)
{u(0)} = [@]{z(0)}. (2.54)
Premultiplying both side of Equations (2.53) and (2.54) by [®]"[M] gives
(@] M]{u(0)} = [@]M][@]{z(0)} (2.55)
(@] M]{(0)} = [®]' M][@}{2(0)}. (2.56)
Due to the orthogonality property of the mass matrix it follows
{z(0)} = [@]' M]{u(0)} (2.57)
{2(0)} = [ [M]{u(0)}. (2.58)
Initial conditions z, and z, are set at time t.

Based on Equation (2.50) we can find Z, as

1

) Cy . K,
Zno = M

l:;n()_ r Zn0 = x5 Zno-
i Mn i Mn i

(2.59)

In the central difference method it is necessary to know the value of z, _; to cal-
culate z,;, which can be estimated as

Zn,—l = Zn,O — At- in,O' (260)

Converting Back to Physical Coordinates

Once the N modal solutions z,(t) have been obtained the physical solutions
u,(t) are obtained by employing the modal transformation as

{n()} = [@H{z ()} (2.61)

or

N
ui(t) = kz_l P; Zx (t) (262)
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and the local stresses can be calculated as

N

GU Z 1_|k (pk Zk ) (263)

Example 2.5

The same beam in dimensions as in Examples 2.1 and 2.2 is subjected to
a dynamic thrust force with a peak of 2224 N in the z direction at one
end, as shown in Figure 2.7(a). The beam is unconstrained, made of
steel with mass density of 7.8e™® Mg/mm?® and Young’s modulus of
210,000 MPa. Conduct modal transient response analyses for stresses of
the beam as the force is cyclically applied with loading frequencies of
(a) 125Hz and (b) 62.5 Hz, respectively, as illustrated in Figure 2.7(b).

Solution

The finite element beam model is meshed by using eight-node hexahedral
solid elements. The analyses are conducted using ABAQUS. Both options
“Frequency” and “Modal dynamic” are employed in sequence as the
solution methods. A damping ratio is taken to 0.05, and both the initial
displacement and velocity are set to 0.0.

The normal mode analysis is carried out first to extract natural
frequencies and mode shapes of the beam that are essential for the
modal transient response analysis. The first four natural frequencies
(129.7 Hz, 257.7 Hz, 355.9 Hz, and 693.6 Hz) of the beam and their
corresponding normal modes are presented in Figure 2.7(c). It can be
found that all the four modes, except for Mode 2, are bending modes in
the vertical direction, which happens to be the loading direction.

In the case where the loading frequency of 125 Hz is considered, using
the recommended rule for the cutoff frequency (625 Hz) being five times
the loading frequency, the first four mode shapes are assumed to be
sufficient for use in the modal transient response analysis. Consequently,
the stress contours for 6,, and the maximum compressive stress of
—-39.4 MPa are shown in Figure 2.7(d).

To verify the assumption and check accuracy of the stress solution, the
first five and 20 modes are employed in analyses. The corresponding
maximum compressive stress o,, at the same element and location are
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(@) Fy(t) with F, may = 2224 N

(b) 2500 2500
__ 2000 2000
Z 1500 = 1500
8 3
E 1000 E 1000
500 500
0+ / / / \ 0+ - Y - \
0 0.0080.0160.024 0.032 0 0.0080.0160.024 0.032
Time (s) Time (s)
floading =125 Hz floading =62.5Hz
(c) f1 =129.7 Hz fp =257.7 Hz
f3 =355.9 Hz fy, =693.6 Hz
J - W‘
(d) Max Stress = -39.4 MPa

with 125 Hz Loading Frequency

i S

Max Stress = -33.5 MPa
with 62.5 Hz Loading Frequency g

Figure 2.7
A free beam analyzed using the modal transient response analysis: (a) a finite element
model of the unstrained beam with a dynamic force, (b) load time histories with
two different loading frequencies, (c) the first four natural frequencies and mode
shapes, and (d) stresses in the x direction.
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found to be —39.4 MPa and —39.9 MPa, respectively. This indicates that
the transient response solution using the first four normal modes yields
very satisfactory stress results.

Since this loading frequency of 125 Hz is close to the first fundamental
frequency of 129.7 Hz, the beam is excited at a frequency close to the
resonant frequency, resulting in the maximum stress increase by 28%, as
compared to the maximum compressive stress of —30.7 MPa from the
analysis using the inertia relief technique in Example 2.1. This indicates
that in this case modal transient analysis is essential to capture the
resonant effect on responses of the beam.

In the case where the loading frequency of 62.5 Hz is considered, the
cutoff frequency is calculated as 312.5 Hz and the first three modes are
used in the modal transient response analysis. As a result, the stress
contours for o,, and the maximum compressive stress of —33.4 MPa are
illustrated in Figure 2.7(d). Next, the analysis is performed based on the
first four and five normal modes, separately. Both analyses result in the
same stress —33.5 MPa, indicating the first three modes are sufficient for
use in the modal transient response analysis.

Summary

Three commonly used techniques for pseudo stress analysis such as fixed reac-
tive analysis, inertia relief analysis, and modal transient response analysis have
been presented. The pseudo stress output can be used in conjunction with a mul-
tiaxial notch analysis technique to estimate local true stresses/strains at stress
concentration areas for fatigue damage assessment.

The fixed reactive stress analysis is a common, fundamental solution for a con-
strained structure that is subjected to a set of constant or time independent actions
such as forces, moments, torque, and/or temperatures. The actions and reactions
from constraint are statically balanced.

The inertial relief analysis is to solve for the responses of an unconstrained
structure subjected to constant or slowly varying external loads. It is assumed
that the external loads are steady-state loads applied to the structure, the struc-
tural transient responses have damped out, and local dynamic responses are
ignored.
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The modal transient response analysis is used in cases where local dynamic
responses of a structure cannot be ignored or the relative acceleration term cannot
be dropped from the dynamic equilibrium equation. Modal transient response ana-
lysis is to compute the transient response of a linear structure in a modal coordi-
nate system. The method uses the mode shapes of the structure to reduce the
size, uncouple the equations of motion, and then perform the numerical integra-
tion technique.
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Introduction

This chapter focuses on the process of extracting cycles from a complicated
loading history, where each cycle is associated with a closed stress—strain hys-
teresis loop. For a uniaxial load time history, the rainflow cycle counting techni-
que introduced in 1968 by Matsuishi and Endo (1968) was the first accepted
method used to extract closed loading cycles.

The “rainflow” analogy is derived from a comparison of this method to the flow
of rain falling on a pagoda and running down the edges of the roof. Due to the
importance of the rainflow cycle counting method, many different algorithms
have been proposed in the literature, namely, the three-point (Richards et al.,
1974; Downing & Socie, 1982; Conle et al., 1997; ASTM E 1049-85, 2005)
and the four-point (Amzallag et al., 1994; Drefler et al., 1995) cycle counting
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techniques. These algorithms are computationally more efficient and will be reviewed
in this chapter.

For a complicated multiaxial load time history, there are two broad cycle count-
ing techniques used for fatigue damage assessment of the structure. In the first
approach (the critical plane method), the material volume is segregated into can-
didate planes. On each candidate plane, the uniaxial cycle counting method is
used and the fatigue damages are calculated. The plane that accumulates the most
damage is deemed to be the critical plane and the structure life is assessed from
this plane.

In the second approach (the equivalent stress or strain amplitude method), a
multiaxial cycle counting technique is developed based on the assumption that
the fatigue damage or life can be evaluated from the cycles identified from the
complicated equivalent loading history. The first multiaxial reversal counting tech-
nique was developed by Wang and Brown (1996).

The Wang—Brown technique incorporates a novel extension of the uniaxial rain-
flow reversal counting technique along with the equivalent strain amplitude con-
cept. Two variants of the Wang—Brown reversal counting technique, namely, the
Lee-Tjhung—Jordan equivalent stress reversal counting method (Lee et al., 2007)
and the path dependent maximum range (PDMR) reversal counting method
(Dong et al., 2010) were developed later. These multiaxial reversal counting tech-
niques are discussed in this chapter.

Uniaxial Rainflow Cycle Counting Techniques

Consider the stress and strain time histories and the corresponding stress—strain
response behavior shown in Figure 3.1. Since the hysteresis loops are associated
with energy dissipation and fatigue damage, most established uniaxial fatigue
damage parameters are calculated from the cycles identified from the hysteresis
loops. The rainflow cycle counting method specifically identifies these hysteresis
loops (cycles) within a load, stress, or strain time history.

Rainflow Counting Method by Matsuishi and Endo

The rainflow counting technique introduced in 1968 by Matsuishi and Endo (1968)
is the first accepted method used to extract closed loading reversals or cycles.
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Figure 3.1
Stress and strain time histories and corresponding hysteresis loops.

The “rainflow” was named from a comparison of this method to the flow of rain
falling on a pagoda and running down the edges of the roof. The rainflow cycle
counting algorithm is summarized as follows:

1. Rotate the loading history 90° such that the time axis is vertically
downward and the load time history resembles a pagoda roof.

2. Imagine a flow of rain starting at each successive extremum point.

3. Define a loading reversal (half-cycle) by allowing each rainflow to continue
to drip down these roofs until:

a. It falls opposite a larger maximum (or smaller minimum) point.
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4.

b. It meets a previous flow falling from above.
c. It falls below the roof.

Identify each hysteresis loop (cycle) by pairing up the same counted reversals.

Example 3.1

Perform the rainflow cycle counting technique on a given service load time
history as shown in Figure 3.2(a) where it has been constructed to start from
the largest maximum point A and to end with the same load value at A.

Solution
1. Rotate the load time history 90° clockwise.
2. Designate A as the first extremum point, the largest peak in this load time history.

3. Identify the first largest reversal A-D as the flow of rain starts at A and falls
off the second extremum point D, the smallest valley in this load time history.

4. lIdentify the second largest reversal D—A as the flow initiates at D and ends at
the other extremum point, which happens to be the first one, A.
5. In the first largest reversal A-D,

a. ldentify a reversal B—C as the rain starts flowing at B and terminates at C
because D is a larger maximum than B.

b. Identify a reversal C—B as the rain starts flowing at C and meets a
previous flow at B.

c. Complete all the points in the first large reversal A-D.

6. In the second largest reversal D-A,

a. ldentify a reversal E-H as the rain starts flowing at E and falls off the roof
at H.

b. Identify a reversal H-E as the rain starts flowing at point H and meets a
previous flow at E.

c. ldentify a reversal F-G as the rain starts flowing at F and terminates at G
because H is a larger maximum than F.

d. Identify a reversal G—F as the rain starts flowing from the successive
extremum point G and meets a previous flow at F.

e. Complete all the points in the second largest reversal D—A.

7. The rainflow cycle counting results in terms of reversals and cycles are given
in Tables 3.1 and 3.2, respectively.
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Figure 3.2
[llustration of the rainflow counting technique. Identification of reversals
and loading cycles: (a) a service load-time history and (b) rainflow
cycle counting the loading history.
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Table 3.1: Reversal Counts Based on the Rainflow Counting Technique

No. of

Reversals From To From To Range Mean
1 A D -5 4 9 -0.5
1 B A 4 -5 9 -0.5
1 B C 1 -3 4 -1
1 C B -3 1 4 =1
1 E H -4 3 7 -0.5
1 H E 3 -4 7 -0.5
1 F G 4 -1 3 0.5
1 G F -1 2 3 0.5

Table 3.2: Cycle Counts Based on the Rainflow Counting Technique

No. of

Cycles From To From To Range Mean
1 A D -5 4 9 -0.5
1 B C 1 -3 4 =1
1 E H -4 3 7 -0.5
1 F G 2 =1 3 0.5

When a loading history is periodic, the loading history needs to be rearranged to
start from the largest extremum point and this extremum point is repeated at the
end, in effect closing the largest hysteresis loop. All inner reversals therefore pair
up to form cycles. Otherwise, for the nonperiodic loading case, where the loading
history does not start and end with the largest extremum point, the rainflow tech-
nique will identify unpaired reversals, or half-cycles, in addition to full cycles.

Three-Point Counting Technique

ASTM E 1049-85 recommends a cycle counting method commonly known as
the three-point method because this method repeatedly evaluates the loading his-
tory three consecutive peak/valley points at a time. The basic three-point cycle
counting rule is illustrated in Figure 3.3, where a hanging cycle and a standing
cycle are identified in (a) and (b), respectively.

The labels and values of the three peak/valley points are designated as P1, P2, and
P3. Define the range X =[P3—P2I, and the previous adjacent range Y =IP2—P1I.
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ASTM 3-point rainflow cycle counting rule. X>:
(a) hanging cycle, (b) standing cycle.
A cycle or hysteresis loop from P1 to P2 and back to P1’ (=P1) is defined if
X >Y, and no cycle is counted if X <Y.
Cycle Counting for a Periodic Load Time History

When a loading history is periodic, the loading history needs to be rearranged
such that it contains only peaks and valleys and starts with either the highest
peak or lowest valley, whichever is greater in absolute magnitude. Then the cycle
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identification rule is applied to check every three consecutive points from the
beginning until a closed loop is defined. The two points P1 and P2 are discarded
from the loading history and the remaining points are connected together. This
procedure is repeated until the remaining data are exhausted.

Example 3.2

Perform the rainflow cycle counting technique on a given service load
time history as shown in Figure 3.4(a). It is assumed this loading history
is periodic.

(c)

Figure 3.4
Rearrangement of a service load time history: (a) a service load time history,
(b) a periodic service load time history, and (c) the rearranged load time history.
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Solution

Since this loading history is periodic, the loading history needs to be
rearranged such that it starts at the minimum valley D that is the largest
extremum point. As shown in Figure 3.4(b), this can be accomplished by
cutting off all the points before and at D (namely, A, B, C, and D) and
by appending these data to the end of the original history. Please note
that additional point D is included in the newly constructed load time
history, as illustrated in Figure 3.4(c), to close the largest loop for
conservatism.

The three-point cycle counting method is illustrated in Figure 3.5 as follows:

* Consideration of D, E, and F. X=|F-E|; Y=|E-D| (Figure 3.5(a)). Since X <Y,
no cycle is counted and E is designated as the new starting point.

* Consideration of E, F, and G. X=|G-F|; Y= |F-E| (Figure 3.5(b)). Since X >,
count a cycle from E to F, remove E and F, and connect D and G. Designate D
as the new starting point.

5 5
4 4
3 3
2 2
1 1
0 0

-1 -1

-2 -2

-3 -3

-4 -4

-5 -5
5
4
3
2
1
0

1

-2

-3

-4

-5

(d)

Figure 3.5
Cycles extracted by the three-point counting method: (a) cycle E-F extracted, (b) cycle
A-B extracted, (c) cycle H-C extracted, and (d) cycle D—G extracted.
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* Consideration of D, G, and H. X=|H-G|; Y=|G-D| (Figure 3.5(c)). Since X <Y,
no cycle is counted and G is designated as the new starting point.

* Consideration of G, H, and A. X=|A-H|; Y=|H-G| (Figure 3.5(c)). Since X<Y,
no cycle is counted and H is designated as the new starting point.

* Consideration of H, A, and B. X=|B-A|; Y=|A-H| (Figure 3.5(c)). Since X <Y,
no cycle is counted and A is designated as the new starting point.

* Consideration of A, B, and C. X=|C-B|; Y=|B-A| (Figure 3.5(c)). Since X>Y,
count a cycle from A to B, remove A and B, and connect H and C. Designate G
as the new starting point.

* Consideration of G, H, and C. X=|C-H|; Y=|H-G]| (Figure 3.5(c)). Since X<Y,
no cycle is counted, and H is designated as the new starting point.

* Consideration of H, C, and D. X=|D-C|; Y=|C-H| (Figure 3.5(d)). Since X>Y,
count a cycle from H to C, remove H and C, and connect G and D. Designate D
as the new starting point.

e Consideration of D, G, and D. X=|D-G|; Y=|G-D| (Figure 3.5(e)). Since X >,
count a cycle from D to G and conclude the counting process.

* The summary of the cycle counting result is given in Table 3.3.

Table 3.3: Cycle Counts Based on the Three-Point Counting Technique

No. of

Cycles From To From To Range Mean
1 E F 1 -3 4 -2
1 A B 2 =1 3 0.5
1 H C -4 3 7 -0.5
1 D G -5 4 9 -0.5

Reversal Counting for a Nonperiodic Load Time History

For a nonperiodic loading case, where the loading history does not start and end
with the largest extremum point, the rainflow technique will identify unpaired rever-
sals, or half-cycles, in addition to full cycles. The two rules to follow are:

* If X>Y and point P1 is not the starting point of the loading history, then
a cycle is counted (as shown in Figure 3.3).

e If X>Y and point P1 is the starting point of the loading history, then a
reversal or half-cycle is counted from P1 to P2, and only point P1 is
removed (as illustrated in Figure 3.6).
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Figure 3.6
Reversal extracted at the starting point of the load time history by the three-point
counting method: (a) reversal P1 to P2 and (b) reversal P1 to P2.

Example 3.3

Perform the three-point counting technique on a given service load time history
as shown in Figure 3.4(a). It is assumed this loading history is nonperiodic.

Solution
The three-point counting technique to extract the reversals from this
complicated history is illustrated in Figure 3.7.

* Consideration of A, B, and C. X=|C-B|; Y=|B-A| (Figure 3.7(a)). Since X > Y
and A is the starting point of this history, count a reversal from A to B and
remove A. Designate B as the new starting point.

* Consideration of B, C, and D. X=|D-C|; Y=|C-B| (Figure 3.7(b)). Since X > Y
and B is the starting point of this history, count a reversal from B to C and
remove B. Designate C as the new starting point.
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Figure 3.7
Reversal extraction for the nonperiodic load-time history by the three-point
counting method: (a) reversal A-B extracted, (b) reversal B—C extracted,
(c) cycle E-F extracted, (d) reversal C-D extracted, and (e) residue.
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* Consideration of C, D, and E. X=|E-D|; Y=|D-C| (Figure 3.7(c)). Since X<,
no cycle is counted and D is designated as the new starting point.

* Consideration of D, E, and F. X=|F-E|; Y=|E-D| (Figure 3.7(c)). Since X <
Y, no cycle is counted and E is designated as the new starting point.

* Consideration of E, F, and G. X=|G-F|; Y=|F-E| (Figure 3.7(c)). Since X>
Y, count a cycle from E to F, remove E and F, and connect D and G.
Designate C as the new starting point.

* Consideration of C, D, and G. X=|G-D|; Y=|D-C| (Figure 3.7(d)). Since X>Y
and C is the starting point of this history, count a reversal from C to D and
remove C. Designate D as the new starting point.

* Consideration of residue D, G, F, and | (Figure 3.7(e)). The entire loading
history has been evaluated and no further reversals or cycles can be
counted by the three-point rule. The remaining points constitute the
residue. By the ASTM three-point method, the remaining ranges are
counted as reversals.

® The summary of the reversal counting result is given in Table 3.4.

Table 3.4: Reversal Counts Based on the Three-Point Counting Technique

No. of

Cycles From To From To Range Mean
1 A B 2 -1 3 0.5
1 B C -1 3 4 1
2 E F 1 -3 4 -1
1 C D 3 -5 8 -1
1 D G -5 4 9 -0.5
1 G H 4 -4 9 0
1 H A, | -4 2 6 -1

In contrast to the classical rainflow method described in Chapter 2, the three-
point technique counts inner loops before outer loops. Computationally, this is a
more efficient algorithm compared to the classic rainflow method. It also allows
the three-point method to be used for real-time cycle counting applications. In the
postprocessing case, ASTM recommends rearrangement and closure for periodic
load histories. In the real-time case, where rearrangement cannot be performed,
the ASTM three-point technique has provisions to count half-cycles in addition to
full cycles.



102 Chapter 3

Four-Point Counting Technique

Consider four consecutive peak/valley points P1, P2, P3, and P4, as shown in
Figure 3.8. If P2 and P3 are contained within P1 and P4, then a cycle is counted
from P2 to P3 (and back to P2'); otherwise no cycle is counted. One way to code
this rule is given as:

e Define ranges X=IP4-P3l, Y=IP3-P2I|, and Z=IP2-P1I.
e IfX>Y AND Z>Y then FROM=P2 and TO=P3, end.
Similar to the three-point counting technique, the four-point counting method can be

easily implemented for a real-time cycle counting acquisition for a nonperiodic
loading history. But this method can only recognize the closed cycles for fatigue
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Figure 3.8

The four-point rainflow cycle counting rule: (a) hanging cycle and (b) standing cycle.
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analysis and excludes the contribution from the residues (unpaired reversals),
which is different from the three-point technique.

Example 3.4

Perform the four-point counting technique on a given service load time
history as shown in Figure 3.4(a).

Solution

The four-point counting method, as illustrated in Figure 3.9, is as follows:

* Consideration of A, B, C, and D. X=|D-C|, Y=|C-B|, Z=|B-A|. X>Y but
Z <Y, therefore no cycle is counted. Designate B as a new starting point.

* Consideration of B, C, D, and E. X=|E-D|, Y=|D-C|, Z=|C-B|. X<Y and
Z <Y, therefore no cycle is counted. Designate C as a new starting point.

* Consideration of C, D, E, and F. X=|F-E|, Y=|E-D|, Z=|D-C|. X<Y and
Z>Y, therefore no cycle is counted. Designate D as a new starting point.

* Consideration of D, E, F, and G. X=|G-F|, Y=|F-E|, Z=|E-D|. X>Y and
Z>Y, therefore count a cycle from E to F. Remove E and F, and join D to G.
Designate C as a starting point.

N W B~ O

D

Figure 3.9
Cycle extraction of a service load time history using the
four-point cycle counting rule.
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Table 3.5: Cycle Counting Result Based on the Four-Point Counting Technique

No. of
Cycles From To From To Range Mean
1 E F 1 -3 4 =1

*  Consideration of C, D, G, and H. X=|H-G|, Y=|G-D|, Z=|D-C|. X<Y and

Z <Y, therefore no cycle is counted. Designate D as a new starting point.

* Consideration of D, G, H, and I. X=|I-H|, Y=|H-G|, Z=|G-D|. X<Yand Z >

Y, therefore no cycle is counted. The residue (A, B, C, D, G, H, and I) are found.

* The summary of the four-point cycle counting result is given in Table 3.5.

Alternatively, the four-point counting technique (Drefler et al., 1995) offers a pro-
cedure to obtain the identical cycle counting results from using the three-point
counting method where the load time history has been rearranged to begin and
end with a global extremum point. The procedure is given as follows:

Extract the cycles and the residue based on the four-point cycle counting
technique.

Duplicate the residue to form a sequence of [residue + residue].

Perform the four-point cycle counting technique on the sequence of [residue +
residue].

Add the newly extracted cycles to the original cycle count.

Example 3.5

Assume the service load time history in Figure 3.4(a) is periodic. Use the
result from Example 3.4 using the four-point counting technique (where
one extracted cycle E-F and the residue (A, B, C, D, G, H, and I) are
identified) to produce a cycle counting result based on the three-point
counting method.

Solution

* Duplication of residue to form a sequence of [residue + residue] is shown in
Figure 3.10(a).

* Consideration of G, H, A, and B (Figure 3.10(a)). X=|B-A|, Y=|A-H]|,
Z=|H-G|. X<Yand Z >Y, therefore no cycle is counted. Designate H as a new
starting point.
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Figure 3.10
The four-point cycle counting technique applied to a sequence of [residue + residue]
from the previous counting residue in Figure 3.9: (a) residue duplication—cycle
A-B extracted; (b) cycle H-C extracted; (c) cycle G-D extracted—residue
A, B, C,D,G,H,and I

Consideration of H, A, B, and C (Figure 3.10(a)). X=|C-B|, Y= |B-A|, Z=
|A-H|.X>Y and Z>Y, therefore count a cycle from A-B and connect H and C.
Designate G as a new starting point.

Consideration of G, H, C, and D (Figure 3.10(b)). X=|D-C|, Y=|C-H|, Z=
|H-G|. X>Y and Z >Y, therefore count a cycle from H-C and connect G and D.
Designate D as a new starting point.

Consideration of D, G, D, and G (Figure 3.10(c)). X=|G-D|, Y= |D-G|, Z=
|G-D|.X>Y and Z >Y, therefore count a cycle from G-D and connect D and G.
Designate D as a new starting point.

Consideration of D, G, H, and A (Figure 3.10(c)). X= |A-H|, Y=|H-G|, Z=
|G-D|. X <Y and Z >Y, therefore no cycle is counted.
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* Consideration of the remaining points will not identify any more cycles. This
completes the closure of the residue.

* Add the newly counted cycles (A-B, H-C, G-D) to the original cycle count (E-F).

The summary of the equivalent three-point cycle counting result obtained by the
four-point technique with “closure” of the residue is given in Table 3.3. Note that
Table 3.6 yields an identical range-mean output to Table 3.3, except that the
largest cycle count G-D has an opposite from-to count (D-G) in Table 3.3.

Multiaxial Rainflow Reversal Counting Techniques

There are two commonly accepted approaches to assess fatigue damage of a
structure subjected to variable amplitude multiaxial loading. One is the critical plane
approach where the fatigue damage parameter of each potential failure plane has
been identified and the total accumulated damage is calculated based on the cycle
counting results by using the uniaxial cycle counting technique as described earlier
on the signed damage parameter time history.

The other is the equivalent stress or strain approach where the fatigue damage
parameter is defined as an equivalent stress or strain value. For proportional loading,
the uniaxial cycle counting technique can be used to extract cycles from a signed
equivalent stress or strain parameter time history.

For nonproportional loading, a multiaxial rainflow reversal counting method, an
extension of the Matsuishi—Endo rainflow cycle counting technique along with
the equivalent strain amplitude concept, was first proposed by Wang and Brown
(1996) to extract the reversals from a complicated variable amplitude multiaxial
load time history.

Table 3.6: Equivalent Three-Point Cycle Counting Result Based on the

Four-Point Counting Technique

No. of
Cycles From To From To Range Mean

2 =1 0.5

OI>m
ONwm
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Two variants of the Wang-Brown cycle counting technique were later developed,
namely, the Lee—Tjhung—Jordan equivalent stress cycle counting (Lee et al., 2007)
and the path dependent maximum range (PDMR) cycle counting method (Dong
et al.,, 2010). It is the objective of this section to introduce fundamentals of the
multiaxial counting technique.

Following the rainflow reversal counting rule, the multiaxial rainflow reversal
counting technique defines a reversal or half-cycle based on the maximum rela-
tive equivalent stress or strain range. All the points in the stress or strain space
with a monotonic increasing relative stress range with respect to a turning point
are considered part of the reversal identified. The counting rule can be illustrated
by a plane stress condition; the normal stress (c,) and the shear stress (ty,) time
histories are shown in Figure 3.11.

If the equivalent stress is defined by the von Mises stress, the normal stress (cy)
and the shear stress (ﬁrxy) can be cross plotted as in Figure 3.12(a), and the maxi-
mum equivalent stress range with respect to the first turning point A and the
maximum equivalent stress is shown in Figure 3.12(b). The first multiaxial
reversal A-B-B*-D can be identified either by the monotonically increasing
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Figure 3.11
Normal stress versus time and shear stress versus time plots.
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Figure 3.12

Definition of a multiaxial reversal A~-B—B*-D in a \/§'txy—cx space in (a)
and an equivalent stress range plot in (b).

distance in the \/§1:xy—cx space as in Figure 3.12(a) or by the increasing
equivalent stress range in Figure 3.12(b). The intermediate point B* is defined
as the point where the relative distance or equivalent stress range is identical
to Point B.

The concept of using the maximum von Mises stress or strain range as the counting
criterion has been proposed (Wang & Brown, 1996; Lee et al., 2007), and the con-
cept of using the maximum distance with a crack growth related effective stress
range was developed (Dong et al., 2010). Figures 3.12(a) and (b) are equivalent,
with a different way to define the reversal.

The following describes the multiaxial reversal counting algorithm for a plane
stress condition:

1. From the time histories of oy (t), o, (), and Tyy (t), calculate the equivalent
stress time history of 6.4 (t). Based on the von Mises criterion, the
equivalent stress can be defined as

Oeq(t) = \/Gf(t) +02(t) —ox (o, (1) + 372, (1) (3.1)
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Reorder the data to begin with the point, t,, that has the maximum
equivalent stress.

Calculate the relative equivalent stress time history of Aceq(t).

Ace,(t) = \/ Aoy (t) + Ac (1) — Ao (1) Ac, (1) +3A72 (1) (3.2)

where
Aoy, = o, (t) —oy(t,) (3.3)
Aoy = oy (t) — oy (t,) (3.4)
Aty = Tyy (1) = Ty (1) 3.5)

Collect all points that cause Acy(t) to increase. This block of points
constitutes the first major reversal.

Store the remaining points consisting of one or more blocks that start and
end with the same value of Acg,(t) and a trailing block.

For each of these “uncounted” blocks, treat the first point as the reference
point with which to calculate the relative equivalent stress Ace,(t). Proceed
to collect points that cause the new Ac,(t) to increase. This process will
yield additional reversals (and possibly more uncounted blocks).

Repeat step 6 until all the data are counted.

Example 3.6

Assume the two service stress time histories (6, and T,y) in Figure 3.13(a)
are periodic and the equivalent stress is defined by the von Mises stress
criterion. The points from A through | are the peaks and valleys identified
when at least one of the slopes is changing. Reverse count the two service
stress time histories.

Solution

* Mapping the o,(t) and Ty (t) time histories onto the o, — \/g'txy coordinate
from Point A to Point |, shown in Figure 3.13(b).

* Extraction of a reversal A-B—B*—H based on the maximum distance or
equivalent stress range with respect to Point A and identification of the two
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Figure 3.13
[llustration of multiaxial reversal counting method: (a) normal and shear stress
time histories, (b) v/3 shear and normal stress plot, (c) extracted reversal
A-B-B*—H, (d) extracted reversal B-C—C*—E, (e) extracted reversal
C-D-C*, (f) extracted reversal E-F—FI-B*, (g) extracted reversal

F-G-F*, and (h) extracted reversal H-A.
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Table 3.7: Multiaxial Reversal Counting Results

No. of Cycles Data Points
0.5 A-B-B*-H
0.5 B-C-C*-E
0.5 C-D-C*
0.5 E-F-F*_B¥
0.5 F-G-F*
0.5 H-A

groups of uncounted points from B to B* and from H to |, as shown in Figure
3.13(c). Point B* is the intermediate point where the relative distance or
equivalent stress range starts to increase.

* Extraction of a reversal B-C—C*—E from the first group of uncounted points
from B to B*, based on the maximum distance or equivalent stress range with
respect to Point B and identification of the two groups of uncounted points
from C-C* and E-B*, as shown in Figure 3.13(d). Point C* is the intermediate
point where the relative distance or equivalent stress range starts to increase.

* Extraction of a reversal C—C* from the group of uncounted points from C to
C*, based on the maximum distance or equivalent stress range with respect
to Point C, as shown in Figure 3.13(e).

* Extraction of a reversal E-F—F*—B* from the group of uncounted points from
E-B*, based on the maximum distance or equivalent stress range with respect
to Point E and identification of one group of uncounted points from F to F*,
as shown in Figure 3.13(f).

* Extraction of a reversal F-G—F* from the group of uncounted points from F
to F*, based on the maximum distance or equivalent stress range with
respect to Point F, as shown in Figure 3.13(g).

* Extraction of a reversal H-A(or I) from the group of uncounted points from
H to A (or I), based on the maximum distance or equivalent stress range with
respect to Point H, as shown in Figure 3.13(h). This finally completes the
counting process for all the data points in this service stress time history.

*  The summary of the multiaxial reversal counting result is given in Table 3.7.

Summary

The techniques available for the rate independent process of extracting cycles or
reversals from a complicated loading history have been introduced. The original
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rainflow cycle counting technique, the three-point cycle counting method, and the
four-point cycle counting algorithm can be used to extract cycles from compli-
cated uniaxial loading.

For complicated multiaxial loading, the choice of a cycle counting technique
depends on the multiaxial fatigue damage assessment method. If a critical plane
approach is adopted, any of the three uniaxial cycle counting techniques can be
used to calculate the fatigue damages for each potential failure plane. If an equiva-
lent stress or strain approach is chosen, a multiaxial cycle counting technique
would be used, developed based on the assumption that the fatigue damage or life
can be evaluated from the cycles identified from the complicated equivalent loading
history.

The Wang-Brown method, the Lee-Tjhung—Jordan approach, and the path-
dependent maximum range technique are the commonly used multiaxial reversal
counting methods. They have been reviewed in detail in this chapter.
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Introduction

The uniaxial fatigue analysis is used to estimate the fatigue life of a component
under cycling loading when the crack is initiated due to a uniaxial state of
stress. The fatigue life of a component refers to the fatigue initiation life defined
as the number of cycles (N) or reversals (2N) to a specific crack initiation length
of the component under cyclic stress controlled tests. Note that one cycle con-
sists of two reversals.

The stress in a cycle can be described either by stress amplitude (S,) and mean
stress (Sy,) or by maximum stress (S.x) and minimum stress (Sy,), as shown in
Figure 4.1. Since S, is the primary factor affecting N, it is often chosen as the
controlled or independent parameter in fatigue testing, and consequently, N is
the dependent variable on S,.

The choice of the dependent and independent variables places an important role
in performing a linear regression analysis to define the stress and life relation.
As the stress amplitude becomes larger, the fatigue life is expected to be shorter.
The stress and life relation (namely, the constant amplitude S-N curve) can be
generated by fatigue testing material specimens or real components at various
load/stress levels. For this type of fatigue testing, the mean stress is usually held
as a constant, and commonly is equal to zero.

The constant amplitude S-N curve is often plotted by a straight line on log-log
coordinates, representing fatigue data in the high cycle fatigue (HCF) regime
where fatigue damage is due to little plastic deformation. In German, the constant

Smax
S{ /
Sm |AS

Time

One Cycle
Two Reversals

Figure 4.1
Symbols used with cyclic stresses and cycles.
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amplitude S-N curve is often named the Wohler curve, to honor Mr. Wohler for
his contribution to the first fatigue study in the world.

The term of an S-N curve is used as the abbreviation of a constant amplitude S-N
curve. Depending on the test objects, there can be the material S-N curve or the
component S-N curve. Also, depending on the definition of stress, the real com-
ponent S-N curve can be categorized as the nominal S-N curve or the pseudo
c°-N curve.

Generally, an S-N curve can be constructed as a piecewise-continuous curve
consisting of two distinct linear regimes when plotted on log-log coordinates.
For the typical S-N curve of a component made of steels, as schematically illu-
strated in Figure 4.2, there is one inclined linear segment for the HCF regime
and one horizontal asymptote for the fatigue limit.

The parameters used to define the inclined linear segment of an S-N curve are
the fatigue properties. The slope of an S-N curve in the HCF regime can be
denoted as b (the height-to-base ratio) or as k (the negative base-to-height ratio).

S, (Iog) High .Cycle
A Fatigue
Regime

Fatigue
Limit

|

Haibach

» N (log)

Figure 4.2
Schematic constant amplitude S-N curve of a component made of steels.
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The parameter k is the slope factor. The two slopes are related in the following
expression:

k=—r. (4.1)

Any two S-N data points (S;,N;) and (S;,N,) in the HCF regime can be related
by the slope b or the slope factor k in the following equation:

No _ (S} sy 42)

N, \Sy)  \Sy) ‘
Equation (4.2) also means any data point (S,, N,) can be obtained by a reference
point (S;,N;) and a given b or k. The S-N curve is commonly expressed as

NSk = A (4.3)

or
S, = S{(2N)° (4.4)
where

A =the fatigue parameter
St =the fatigue strength coefficient defined as the fatigue strength at one
reversal

The fatigue limit of a component made of steels and cast irons can be defined
as the fully reversed stress amplitude at which the fatigue initiation life
becomes infinite or when fatigue initiation failure does not occur. The fatigue
limit can be interpreted from the physical perspective of the fatigue damage
phenomenon under constant amplitude loading. Due to cyclic operating stres-
ses, a microcrack will nucleate within a grain of material and grow to the size
of about the order of a grain width until the grain boundary barrier impedes its
growth.

If the grain barrier is not strong enough, the microcrack will eventually propa-
gate to a macrocrack and may lead to final failure. However, if the grain barrier
is very strong, the microcrack will be arrested and become a nonpropagating
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crack. The minimum stress amplitude to overcome the crack growth barrier for
further crack propagation is referred to as the fatigue limit.

The fatigue limit might be negatively influenced by other factors such as peri-
odic overloads, elevated temperatures, or corrosion. When Miner’s rule (Miner,
1945) is applied in variable amplitude loading, the stress cycles with amplitudes
below the fatigue limit could become damaging if some of the subsequent stress
amplitudes exceed the original fatigue limit. It is believed that the increase in
crack driving force due to periodic overloads will overcome the original grain
barrier strength and help the crack to propagate until failure.

Therefore, two methods such as the Miner rule and the Miner—Haibach model
(Haibach, 1970), as shown in Figure 4.2, were proposed to include the effect
of periodic overloads on the stress cycle behavior below the original fatigue
limit. The Miner rule extends the S-N curve with the same slope factor k
to approach zero stress amplitude, while the Miner—Haibach model extends the
original S-N curve below the fatigue limit to the zero stress amplitude with
a flatter slope factor 2k—1. Stanzl et al. (1986) concluded that a good agreement
is found for measured and calculated results according to the Miner—Haibach
model.

For a component made of aluminum alloys and austenitic steel, the fatigue
limit does not exist and fatigue testing must be terminated at a specified large
number of cycles. This nonfailure stress amplitude is often referred to as the
endurance limit, which need not be the fatigue limit. However, in this chapter
the endurance limit is defined as the fully reversed stress amplitude at the
endurance cycle limit (Ng = 10° cycles) for all materials. The particular model
for fatigue data in the HCF regime and beyond the endurance cycle limit will
be described later.

The detailed procedures to generate the synthetic nominal S-N and the pseudo
6°-N curves for fatigue designs are the focus of this chapter, and will be addressed
in the following sections. The techniques used to conduct S-N testing and perform
data analysis for fatigue properties are beyond the scope of our discussion, and can
be found elsewhere (Lee et al., 2005; ASTM E 739-91, 2006).

Through many years of experience and testing, empirical relationships that relate
the data among ultimate tensile strengths and endurance limits at 10° cycles
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have been developed. These relationships are not scientifically based but are
simple and useful engineering tools for generating the synthetic component
stress-life curves for various materials. It is also worth mentioning that the mate-
rials presented here have been drawn heavily from FKM-Guideline (Haibach,
2003).

Ultimate Tensile Strength of a Component

The mean ultimate tensile strength of a standard material specimen can be
determined by averaging the static test results of several smooth, polished
round test specimens of 7.5 mm diameter. If the test data are not available,
the ultimate tensile strength of a standard test specimen can be estimated by
a hardness value. There has been a strong correlation between hardness and
mean ultimate tensile strength of standard material test specimens. Several
models have been proposed to estimate mean ultimate tensile strength from
hardness.

Lee and Song (2006) reviewed most of them and concluded that Mitchell’s
equation (Mitchell, 1979) provides the best results for both steels and aluminum
alloys:

S.usd(MPa) = 3.45HB (4.5)

where S, 4 1s the mean ultimate tensile strength of a standard material test spe-
cimen and HB is the Brinell hardness.

It has been found that the surface treatment/roughness and the local notch geo-
metry have little effect on the ultimate tensile strength of a notched component
and that the size of the real component has some degree of influence on the
strength of the component. Therefore, based on the estimated or measured mean
ultimate tensile strength of a “standard” material specimen, the ultimate tensile
strength of a real component (S,) with a survival rate (reliability) of R, % is esti-
mated as follows:

Siu = CpCrSusua (4.6)
where

Cr =the reliability correction factor
Cp = the size correction factor
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If a component exposed to an elevated temperature condition is subjected to var-
ious loading modes, the ultimate strength values of a notched, rod-shaped com-
ponent in axial (Sg ), bending (Ssp). shear (Ss;,), and torsion (Sg,,) can be
estimated as follows:

Ssaxu = CoCurSiu (4.7)
Ssbu = CorCoCurSiu (4.8)
Sssu = CCurSa (4.9)
Ssiu = CrCeCurStu- (4.10)

Similarly, the ultimate strength values of a notched, shell-shaped component for
normal stresses in x and y directions (Sgy, and Ssy,) and for shear stress
(Ss.u) can be determined as follows:

SS,x,u = CGCu,TSt,u (411)
SS,y,u = CGCu,TSt,u (412)
SS,T,u = CrCu,TSl,u (413)

where

C,.r = the temperature correction factor C,
C. =the stress correction factors in normal and shear stresses
Cy1 and C,; =the load correction factors in bending and torsion

Figure 4.3 shows the schematic effects of these corrections factors on the com-
ponent ultimate tensile strength and its endurance limit. These correction factors
will be discussed in the following sections.

Reliability Correction Factor

If test data are not available, a statistical analysis cannot be performed to
account for variability of the ultimate tensile strength. In the absence of the
statistical analysis, the suggested reliability values for various reliability levels
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1.0

SS,u,Notched

St,u,std
SS,E,Smooth

Stustd

Ratio of Stress Amplitude to
Ultimate Material Strength (log)

Ss,E,Notched
Stustd

| ek (reliability)
. Co  (size)
Curt (temperature)
i Cs,C;  (stress factor)
i Cb,1, CtL (load)

Cr (reliability)

i Cp (size)

i CeT (temperature)

i g,C.g (endurance factor)
i Cs (surface treatment)
;_CG,R,CT’R (roughness)

|

|

|

|

1

Ke+ _1__4 (notch/roughness)
CG,R

v

Number of Reversals to Failure, 2N (log)

Figure 4.3

Correction factors for the component ultimate strength and the endurance limit.

Table 4.1: Reliability Correction Factors, Cg

Reliability Cr

0.5 1.000
0.90 0.897
0.95 0.868
0.975 0.843
0.99 0.814
0.999 0.753
0.9999 0.702
0.99999 0.659

are given in Table 4.1, derived on the assumptions of a normally distributed
ultimate tensile strength and the coefficient of variations (COVg) of 8%.
The derivation of these Cgr values can be obtained by using the following

equation:

Cr = 1—|@"(1=R,)|COVs (4.14)
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where

®(—) =the standard normal density function
R, % = a reliability value

Note that FKM-Guideline (Haibach, 2003) specifies that the ultimate strength of
a component for a design should be based on the probability of a 97.5% survi-
val rate, meaning a corresponding Cg value of 0.843.

Size Correction Factor

The size correction factor (Cp) is used to account for the fact that the strength
of a component reduces as the size increases with respect to that of the standard
material test specimen (a diameter of 7.5 mm) due to the possibility of a weak
link increasing with a larger material volume. Based on FKM-Guideline (Haibach,
2003), the size correction factor, dependent on the cross-sectional size and the type
of material, can be obtained as follows:

e  For wrought aluminum alloys:

Cpr=1.0 (4.15)
*  For cast aluminum alloys:
Cp=1.0 for dg<I12mm (4.16)
Cp = 1.1(degr/7.5mm) *?*  for 12mm <dey <150 mm (4.17)
Cp=0.6 for de>150mm (4.18)
e For grey cast irons:
Cp =1.207 for de<7.5mm (4.19)

Cp = 1.207(der/7.5mm) " for dey>7.5mm (4.20)

* For all steels, steel castings, ductile irons, and malleable cast iron:

Co=10 for d< deff,min 4.21)
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Table 4.2: Constants Used to Estimate the Size Correction Factors

Material Type deff,min (mm) ay Case of d.g
Plain carbon steel 40 0.15 Case 2
Fine-grained steel 70 0.2 Case 2
Steel, quenched and tempered 16 0.3 Case 2
Steel, normalized 16 0.1 Case 2
Steel, case hardened 16 0.5 Case 1
Nitriding steel, quenched and tempered 40 0.25 Case 1
Forging steel, quenched and tempered 250 0.2 Case 1
Forging steel, normalized 250 0 Case 1
Steel casting 100 0.15 Case 2
Steel casting, quenched and tempered 200 0.15 Case 1
Ductile irons 60 0.15 Case 1
Malleable cast iron 15 0.15 Case 1

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau, 2003.

1-0.7686- aq * log(deff/7.5 mm)

Ch =
P 1-0.7686 - ag - 10g(degt min /7.5 mm)

for  degr > degr,min (4.22)

where
d.sr = the effective diameter of a cross section
detr min @nd a4 = the constants tabulated in Table 4.2

Depending on the type of material as listed in Table 4.2, two cases are required
to be distinguished to determine d.g. In Case 1, de is defined by

4V

Ao = 4.23
ff O ( )

where V and O are the volume and surface area of the section of the component
of interest. In Case 2, d.i is equal to the diameter or wall thickness of the
component, and applies to all components made of aluminum alloys. Examples
of d. calculation are illustrated in Table 4.3.

Temperature Correction Factor for Ultimate and Yield Strengths

The temperature factor (C, 1) is used to take into account the ultimate and the
yield strength reductions in the field of elevated temperatures. FKM-Guideline
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Table 4.3: Calculation of the Effective Diameter d.¢

No. Cross Section d.s Case 1 d.¢ Case 2
1 'y d d
d
v
2 v S 2s s
==
3 2s s
7'y
P zZ S
v
4 4 2bs s
s b+s
v
b
5 4 b b
S
v
b

Source: Adapted from FKM-Guideline, published by Forschungskuratorium
Maschinenebau, 2003.

(Haibach, 2003) specifies the following temperature effects for various
materials:

*  For age-hardening (or heat treatable) aluminum alloys where T > 50°C:
Cur=1-45-107(T-50)>0.1 (4.24)

*  For nonage-hardening aluminum alloys where T > 100°C:
Cyr=1-4.5-107(T-100) >0.1 (4.25)

*  For fine-grained steel where T > 60°C:
Cor=1-12-107T (4.26)
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* For all steels except fine-grained steel where T > 100°C:

Cor=1-1.7-107(T - 100)
*  For steel castings where T > 100°C:

Cur = 1-1.5-107*(T - 100)

e For ductile irons where T > 100°C:

Cur=1-24-107T

Note that the temperature must be given in degrees Celsius.

Stress Correction Factor

(4.27)

(4.28)

(4.29)

The stress correction factor is used to correlate the different material strengths
in compression or shear with respect to that in tension, and can be found in

Table 4.4. Note that C; = 1.0 for tension.

Load Correction Factor

The stress gradient of a component in bending or torsion can be taken into
account by the load correction factor, also called the ‘“‘section factor” or the

Table 4.4: Stress Correction Factors C; and C; in Compression

and in Shear

Materials C, C.
Case hardening steel 1 ‘I/\@ =0.577*
Stainless steel 1 0.577
Forging steel 1 0.577
Steel other than above types 1 0.577
Steel castings 1 0.577
Ductile irons 1.3 0.65
Malleable cast iron 1.5 0.75
Grey cast iron 2.5 0.85
Aluminum alloys 1 0.577
Cast aluminum alloys 1.5 0.75

*Note that 1/\/5 = 0.577 is based on the von Mises yield criterion.

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau, 2003.
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Table 4.5: Load Correction Factors C,; and C,

Cross Section Cor CeL
Rectangle 1.5 —
Circle 1.7 1.33
Tubular 1.27 1

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau,
2003.

“plastic notch factor” in FKM. The load correction factor is defined as the ratio
of the nominal stress at global yielding to the nominal stress at the initial notch
yielding.

Alternatively, the load correction factors in Table 4.5 are derived from the ratio
of fully plastic yielding force, moment, or torque to the initial yielding force,
moment, or torque. For example, a component has the tensile yield strength
(Siy) and a rectangular section with a width of by and a height of 2hr. Its initial
yielding moment is calculated as M; =2/ 3bwh%St,y, and the fully plastic yield-
ing moment is M, = bwh%SLy. Thus, the corresponding load modifying factor
for bending is found to be M, /M, = 1.5.

The load correction factor also depends on the type of materials according
to FKM-Guideline (Haibach, 2003). For surface hardened components, the load
factors are not applicable and Cy; = C;;. = 1.0. For high ductility of austenitic
steels in a solution annealed condition, Cy,; and C,;. follow the values in Table 4.5.

Also, for other steels, steel castings, ductile irons, and aluminum alloys,

CpL = minimum of <, /Stymax/ St’y; Cb,L> (4.30)
C,L = minimum of (, /Sty.max/ Siys CLL) 4.31)

where

Sy = the tensile yield strength with R;97.5 in MPa
Siy,max = the maximum tensile yield strength in MPa

This is shown in Table 4.6.
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Table 4.6: Maximum Tensile Yield Strength S, .., for Various Materials

Type of Material Steels, Steel Castings Ductile Irons Aluminum Alloys

Seymax (MPa) 1050 320 250

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau, 2003.

Component Endurance Limit under Fully
Reversed Loading

The endurance limit is defined as the stress amplitude for a fully reversed
loading at an endurance cycle limit (Ng = 10° cycles). Since R is defined
as the ratio of minimum stress to maximum stress, a fully reversed loading is
also called an R =-1 loading. Even though the endurance limit is occasionally
expressed in terms of range in some references, it is worth noting that the
endurance limit in this chapter is clearly defined in amplitude.

With the probability of an R.% survival rate, the endurance limit for a smooth,
polished component at an elevated temperature condition and under fully reversed
tension or shear stress can be estimated from S, which has already taken into
account the factors for size and reliability:

Ssok = CseCerSiu 4.32)

SS,‘r,E = CTSS,U,E (433)

where

Cgr =the temperature correction factor for the endurance limit
C,.k = the endurance limit factor for normal stress
C, =the shear stress correction factor

It has been found that the endurance limit of a notched component is affected
by the residual stress/surface hardened layer due to surface treatment and by the
high stress concentration/stress gradient due to surface roughness and the local
geometrical change. These effects have been empirically quantified by FKM-
Guideline (Haibach, 2003).
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For example, the endurance limit values of a notched, rod-shaped component
under fully reversed loading in axial (Ss.xg), bending (Sspg), shear (Sssg), and
torsion (Ss.g) can be obtained as follows:

CsSso
Ssaxp = ———2F S’l L (4.34)

Kos + =— — 1
! CO‘,R

Sspp = ———— (4.35)

(4.36)

CS SS,’C,E

1 .
-1
C‘E,R

(4.37)

SS,t,E =
Kt’f +

Similarly, the endurance limit values of a notched, shell-shaped component under
fully reversed normal stresses in X and y directions and under shear stress can be
obtained as follows:

CsSs.o
Ssp =~ (4.38)

Ker+ —— — 1
! C(S,R

S _ CSSS,G,E
S,y.E — 1 1
Kyf+ =—— —
v CG,R

(4.39)

CsS
S5k = ——— (4.40)
Ko+ — —1
s,f CT,R
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where

Cg = the surface treatment factor
Cor and C, g = the roughness correction factors for normal and shear
stresses
K> Kogs Koy K, Kir,Kyr, and Ko ¢ = the fatigue notch factors for various
loading modes

Note that the endurance limit of a smooth component can be calculated by
using the preceding equations with Ky=1.

Refer to Figure 4.3, which shows the schematic effects of these corrections fac-
tors on the endurance limits of smooth and notched components. The correction
factors for temperature, endurance limit for tension, surface treatment, rough-
ness, and the fatigue notch factor are discussed in the following sections.

Temperature Correction Factor

It has been observed that at an elevated temperature, the component fatigue
strength is reduced with increasing temperature. The temperature reduction fac-
tor for the endurance limit is different from the factor applied to the ultimate
tensile strength (C, 7).

Depending on the type of materials, FKM-Guideline (Haibach, 2003) specifies
these temperature correction factors as follows:

For aluminum alloys where T >50°C:
Cer=1-12- 10'3(T—50)2 (4.41)

 For fine-grained steel where T > 60°C:
Cer=1-107T (4.42)

* For all steels except fine-grained steel where T > 100°C:

Cpr=1-14-10"(T=100) (4.43)



Stress-Based Uniaxial Fatigue Analysis 131

*  For steel castings where T > 100°C:
Cer=1-1.2-107(T -100) (4.44)

* For ductile irons where T > 100°C:

Cer=1-16-(10".T) (4.45)
*  For malleable cast iron where T > 100°C:

Cer=1-13-(10".T) (4.46)
* For grey cast iron where T > 100°C:

Cer=1-10-(107.T) (4.47)
Note that the temperature must be given in degrees Celsius.
Endurance Limit Factor
The endurance limit factor (C,g) for normal stress (found in Table 4.7) is an

empirical factor to estimate the endurance limit based on the ultimate tensile
strength of a component with the chance of a survival rate of R;%.

Table 4.7: Endurance Limit Factors for Various Materials

Material Type Coe
Case-hardening steel 0.40
Stainless steel 0.40
Forging steel 0.40
Steel other than above types 0.45
Steel casting 0.34
Ductile iron 0.34
Malleable cast iron 0.30
Grey cast iron 0.30
Wrought aluminum alloys 0.30
Cast aluminum alloys 0.30

Source: Adapted from FKM-Guideline, published by Forschungskuratorium
Moaschinenebau, 2003.
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Surface Treatment Factor

The surface treatment factor, Cg, which takes into account the effect of a
treated surface layer on the fatigue strength of a component, is defined as the
ratio of the endurance limit of a surface layer to that of the core material. Cg
depends on whether the crack origin is expected to be located at the surface
or in the core.

According to FKM-Guideline (Haibach, 2003), the upper and lower limits of
the surface treatment factors for steel and cast iron materials are tabulated in
Table 4.8. The values in the table are applicable to components of 30 to 40 mm
diameter, while the values in the parenthesis are for 8 to 15 mm diameter. Cg
can also account for the effect of a surface coating such as electrolytically
formed anodic coatings on the endurance limit of a component made of alumi-
num alloys, and is specified as follows:

Cs =1-0.271-log(t.) (4.48)
where

t. = the coating layer thickness in pm

Roughness Correction Factor

Surface roughness or irregularity acts as a stress concentration and results in crack
initiation on the surface as well as fatigue strength reduction. The roughness correc-
tion factors C, g and C.r account for the effect of surface roughness on the compo-
nent endurance limit in tension and shear.

According to FKM-Guideline (Haibach, 2003), the two roughness correction
factors under normal and shear stresses are defined as follows:

Csr = 1 —aglog(Rz)1og(2S /S .u.min) (4.49)

and

C.r = 1 —C.agrlog(Rz)10g(2S /S umin) (4.50)
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where

ag = a roughness constant listed in Table 4.9
Ry =the average roughness value of the surface in pm
Stumin = the minimum ultimate tensile strength in MPa in Table 4.9

An average roughness value (Rz =200 um) applies for a rolling skin, a forging
skin, and the skin of cast irons. For steels, the roughness value of a ground

Table 4.8: Surface Treatment Factors for Various Materials

Surface Treatment

Unnotched Components  Notched Components

Steel

Chemo-Thermal Treatment

Nitriding
Depth of case 0.1-0.4 mm

Case hardening
Depth of case 0.2-0.8 mm

Carbo-nitriding
Depth of case 0.2—-0.8 mm

Surface hardness 700-1000 HV10

Surface hardness 670-750 HV10

Surface hardness 670-750 HV10

1.10-1.15 1.30-2.00
(1.15-1.25) (1.90-3.00)
1.10-1.50 1.20-2.00
(1.20-2.00) (1.50-2.50)
(1.80)

Mechanical Treatment

Cold rolling

Shot peening

1.10-1.25 1.30-1.80
(1.20-1.40) (1.50-2.20)
1.10-1.20 1.10-1.50
(1.10-1.30) (1.40-2.50)

Thermal Treatment

Inductive hardening
Flame-hardening
Depth of case 0.9-1.5 mm

Surface hardness 51-64 HRC

Nitriding

Case hardening
Cold rolling
Shot peening

Inductive hardening, flame-hardening

1.20-1.50 1.50-2.50
(1.30-1.60) (1.60-2.8)
Cast Iron Materials

1.10(1.15) 1.3 (1.9)
1(1.2) 1.2 (1.5)
1(1.2) 'I 3 (1.5)
1(1.1) 1(1.4)
2(1.3) 5(1.6)

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau, 2003.
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Table 4.9: ag and S, mi, for Various Materials

Materials ag Stumin MPa
Steel 0.22 400
Steel castings 0.20 400
Ductile iron 0.16 400
Malleable cast iron 0.12 350
Grey cast iron 0.06 100
Wrought aluminum alloys 0.22 133
Cast aluminum alloys 0.20 133

Source: Adapted from FKM-Guideline, published by Forschungskuratorium
Maschinenebau, 2003.

surface varies from 1 pm to 12 pm, and the value of a finished surface ranges
from 6.3 pm to 100 pm.

Fatigue Notch Factor

It was once believed that at the same crack initiation life near the endurance
cycle limit of 10° cycles, the pseudo surface stress (op) at the stress concentration
location of a notched component would be identical to the surface stress of a
smooth component (Ssgsmoom)- Since this belief provides 6 = Ssgsmoon and
op = K- SsENotchea Where K and Sggnochea are the elastic stress concentration
factor and the nominal stress of a notched component, respectively, we can con-
clude that Sg g Notchea 1S smaller than Sg g smoom by @ factor of K.

Tryon and Dey (2003), however, presented a study revealing the effect of fati-
gue strength reduction for Ti-6Al-4V in the HCF regime shown in Figure 4.4.
The test has indicated at the same endurance cycle, the presence of a notch on a
component under cyclic stressing reduces the nominal stress of a smooth com-
ponent by a factor K; instead of K. The K; is termed the fatigue notch factor or
fatigue strength reduction factor defined as follows:

_ SS,E,Smooth

K; <K.. 4.51)

SS,E,N otched

Equation (4.51) can be interpreted as that when K¢SggNotched = Ss.E.Smooths DOth
the notched and smooth components would have the same endurance cycle
limit, as shown in Figure 4.5.
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Figure 4.4
Effect of a notch on S-N behavior for Ti-6Al-4V in the HCF regime.

The smaller K; than K; can be explained either by the local cyclic yielding
behavior or by the stress field intensity theory (Yao, 1993; Qylafku et al., 1999;
Adib & Pluvinage, 2003). The local yielding theory suggests the cyclic material
yielding at a notch root reduces the peak pseudo surface stress, while the stress
field intensity theory postulates that the fatigue strength of a notched component
depends on the average stress in a local damage zone, instead of the peak
pseudo surface stress at a notch root.

The stress field intensity theory is valid in the endurance cycle limit regime where
the peak pseudo surface stress is approximately equal to the true surface stress.
According to the stress field intensity theory, the average stress is responsible for
the crack initiation life, and associated with the stress distribution and the local
damage volume at the notch. The average stress is defined as K¢S¢ as opposed to
the peak pseudo surface stress, K Sc, where Sc is the nominal stress of a notched
component.

Figure 4.6 schematically shows two notched components with the same peak
pseudo surface stress and steel material. Note that the subscripts numbers 1 and 2
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Figure 4.5

Identical crack initiation life for smooth and notched components.

denote the notched components 1 and 2. For illustration, the damage zone of steel
material is assumed to be of the order of two grain sizes.

As the notch radius decreases, the stress gradient becomes steeper, resulting in
a lower average stress level. So the notch component with a smaller notch
radius in Figure 4.6(b) would have a lower K; value, a longer fatigue initiation
life, and be less damaging than the component with a larger notch radius in
Figure 4.6(a).

Figure 4.7 schematically illustrates another example of the same notched compo-
nents made of mild strength and high strength steels. Note that the subscripts 1 and
2 denote the notched components 1 and 2. Again, the damage zone of steel material
is assumed to be of the order of two grain sizes. Since the high strength steel has
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Figure 4.6
Effect of notch size and stress gradient on K¢: (2) large notch radius and mild stress
gradient and (b) small notch radius and steep stress gradient.
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Figure 4.7
Effect of strength of materials on K¢: (a) mild-strength steel
and (b) high-strength steel on.

smaller grain size than the mild strength steel, it suggests that the damage zone for
high strength steel is smaller than that for mild strength steel.

Under the same peak pseudo surface stress and distribution, the component
made of mild strength steel in Figure 4.7(a) would have a lower average stress
in a larger damage zone, a lower K; value, a longer fatigue initiation life, and be
less damaging than the component made of high strength steel in Figure 4.7(b).
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Based on the stress field intensity theory, the K; factor is closely related to a
notch root radius (or a stress gradient) and the strength of materials (or the grain
size). Therefore, several empirical methods have been developed to determine
the K; — K¢ relationship based on any combination of the earlier two parameters.
For example, a notch sensitivity factor (q) was introduced by Peterson (1959)
as follows:

q= (4.52)

where q is a function of a notch root radius and the ultimate tensile strength of
a material. Also the K/K; ratio or the supporting factor (ngx) was developed:

_ K

=K (4.53)

Nk
where ng depends either on a relative stress gradient and tensile yield strength

(Siebel & Stieler, 1955) or on a notch root radius and ultimate tensile strength
(Haibach, 2003).

The three approaches will be discussed in the following sections; we recommend
the one based on FKM-Guideline.

Notch sensitivity factor
Based on Equation (4.52), the formula for K; can be written as follows:
Ki =1+ (K,—1)g. (4.54)

When q=1 or K; = K¢, the material is considered to be fully notch sensitive.
On the other hand, when q=0 and K; = 1.0, the material is considered not to
be notch sensitive (the so-called “notch blunting” effect).

Peterson (1959) assumed fatigue damage occurs when the stress at a critical dis-
tance (ap) away from the notch root is equal to the fatigue strength of a smooth
component. Based on the assumption that the stress near a notch reduces line-
arly, Peterson obtained the following empirical equation for q:

1
ap

1+T

q= (4.55)
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where r is the notch root radius and ap is Peterson’s material constant related to
the grain size (or S;;) and the loading mode. A plot by Peterson is provided in
Figure 4.8 to determine the notch sensitivity factor for high and mild strength
steels.

Furthermore, Neuber (1946) postulated that fatigue failure occurs if the average
stress over a length from the notch root equals the fatigue strength of a smooth
component, and proposed the following empirical equation for q:

qg= — (4.56)

an
1+1/T

ay = Neuber’s material constant related to the grain size or the ultimate
tensile strength

where

1.0
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Figure 4.8
Peterson’s notch sensitivity curves for steels.
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Relative Stress Gradient

Siebel and Stieler (1955) introduced a new parameter (G) in a unit of 1/mm,

termed the relative stress gradient, which is defined as follows:

€ €
Gmax Gmax dX

G- G _ 1 (dce(x)>

where

x = the distance from the notch root
G =the stress gradient along x
6°(x) =the calculated pseudo stress distribution along x

(4.57)

o.  =the maximum pseudo stress at x =0, as illustrated in Figure 4.9

max

By testing many smooth and notched components for the endurance cycle
limit at 2x 10’ cycles, they generated a series of empirical curves relating the
K/K; ratios to G values for various materials in terms of tensile yield

\J

!

Figure 4.9

Pseudo stress distribution and the stress gradient at a notch root.
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Relative stress gradient effect on K.—K¢ ratios for various materials in terms

of tensile yield strength.

strength (S, in MPa). These empirical curves, as illustrated in Figure 4.10,
can be expressed by the following generic formula:

where

f

K, / —
nK=f=1+ ass'G

agg = the Siebel and Stieler material parameter

FKM-Guideline

(4.58)

The fatigue notch factors for a notched shaft under axial, bending, shear, and
torsional stress (K, Ky, Kqr, Kir) can be calculated from the corresponding
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elastic stress concentration factors (K, Ky, K, Ki) and the K,/K, ratios
(ng o(r), g o(d), ng(r), ng<(d)) as follows:

Kaxt
Ko = d (4.59)
’ nK,G (I')
Ky,
K., = J 4.60
b,f nK o (r) . nK,G (d) ( )
K
K= —= (4.61)
' nK,‘r (I‘)
K
K= = (4.62)

where
r =the notch radius and d is the net diameter or net width of a section

Similarly, the fatigue notch factors for a notched shell-shaped component under
normal stresses in x and y directions and shear stress (Kyr, Ky, Kif) can be
calculated from the corresponding elastic stress concentration factors (K, Ky,
K,,) and the K,/K; ratios (ng s (), Nk sy (r), ng(r)) as follows:

K
K. = L (4.63)
' nK,G,X (I')
K, = (4.64)
- ng oy (1) '
K.
K= — (4.65)
ng (1)

The K/K; ratios (ng(r) and ng4(d)) for normal stress are calculated from the
relative normal stress gradients G4(r) and G4(d):

ngo = 14 G, - 107@6705+8whe) for G, <0.1 mm™ (4.66)

nge = 141/Gg-1070*Swhe) for 0.1 mm™' <G, <1 mm™ (4.67)
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nge = 1+14/Go- 1070+ for T mm™ <Gy <100 mm™". (4.68)

Likewise, the K,/K; ratios for shear stress are calculated from the relative shear
stress gradients G, (r) and G,(d):

ng. = 1+G, - 107@0+CSuwbs)  for G <0.1 mm™! (4.69)
ng.=1+1/G,-107@*Swe) for 0.1 mm™' <G, <1mm™! (4.70)
nge = 14+1/G, - 107@+CSwhe)  for | mm™ <G, <100 mmi™’ 4.71)

where

S¢u = the ultimate strengths with R97.5 in tension in the unit of MPa
C, =the shear stress correction factor
ag and bg = the material constants listed in Table 4.10

The relative stress gradient of a notched component under a specific loading
mode really depends on the diameter (or net width) of the component and its
notch radius. The relative stress gradients for bending and torsion as a function of

Table 4.10: ag and b for Various Materials

Materials ag b; MPa
Stainless steel 0.40 2400
Steels except for stainless steel 0.50 2700
Steel castings 0.25 2000
Ductile irons 0.05 3200
Malleable cast iron -0.05 3200
Grey cast iron —-0.05 3200
Wrought aluminum alloys 0.05 850
Cast aluminum alloys —-0.05 3200

Source: Adapted from FKM-Guideline, published by Forschungskuratorium
Maschinenebau, 2003.
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Table 4.11: Relative Stress Gradients Gy, (r) and G (r) for Various
Notched Geometries

Notched Components Gyo(r) mm™’ Gyo(r) mm™’
A groove shaft in Figure 4.11(a) 2(1 +9) 1
r r
A shoulder shaft in Figure 4.11(b 2.3 1.15
& ®) = (+9) p
A groove plate in Figure 4.11(c 2 —
g p g () 2(1+¢)
A shoulder plate in Figure 4.11(d .3 _
P & () = (+9)
A central hole plate in Figure 4.11(e) 23 _
r

Notes: (1) @ = 1/(4y/t/r+2) for t/d<0.25 or t/b,,<0.25; (2) ¢ =0 for t/d >0.25 or t/b,, > 0.25.

nw —

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau, 2003.

the net diameter (d) of a notched shaft or net width (b,,,) of a notched plate can
be obtained:

2

GK,G(d) = GK‘l:(d) = d (472)

= = 2
Gko(b,y,) = Gr(by,) = = (4.73)

Also, the relative stress gradients (Gg ,(r) and G (r)) can be found in Table 4.11
for various notched geometries.

FKM-Guideline also specifies that the resulting fatigue notch factors for superim-
posed notches (e.g., K; ¢ and K;;) can be estimated as

Kf =1 + (Kl’f - 1) + (Kz’f - 1) (474)

Superposition does not need to be considered if the distance of notches is equal
to 2r,.c Or greater, where 1., is the larger one of both notch radii.
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Figure 4.11
Definition of notched components in FKM-Guideline.

Constant Amplitude Stress-Life Curve for a Notched
Component under Fully Reversed Loading

Based on the definition of stress (namely nominal stress or pseudo stress), the pro-
cedure to generate a constant amplitude stress-life curve for a notched component
under fully reversed loading is discussed. (See Figure 4.11.)

Constant Amplitude Nominal Stress-Life Curve

This section presents the FKM method to construct the synthetic S-N curve for
a notched component, based on a reference point and a specified slope factor (k).
The endurance limit (Sg) at an endurance cycle limit (Ng= 10° cycles) is the
reference point. Thus, the S-N equation can be obtained as follows:

NSk = NES]E = constant. 4.75)
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The specified slope factor (k) depends on the type of material and stress. The
following are the specifications from FKM-Guideline:

*  For surface nonhardened components made of steels and cast irons, except
austenitic steel, the component constant amplitude S-N curves based on
normal stress and shear stress are illustrated in Figures 4.12(a) and (b),
respectively. The endurance limit value (Sqg or S;g) at 10° cycles is the
fatigue limit at which the fatigue initiation life becomes infinite or when
fatigue initiation failure does not occur. The specific slope factors for
normal stress and shear stress (k;, and k; ;) are defined as 5 and 8,
respectively.

*  For surface hardened components made of steels and cast irons, the
component constant amplitude S-N curves for both normal and shear stresses
have larger slope factors than the nonhardened components by a factor close
to 3.0. As shown in Figure 4.13, the specific slope factors for normal stress
and shear stress (k;; and k; ;) are defined as 15 and 25, individually.

S6,E=Ss,ax,E O Sg g OF

N Ssx,EOr Ssy.E StE=Ss,sEOr SgtEOr S ¢ E

> A
2 =
0 2
3 [}
= 1 S
3 s |

ki s=5 a
< l,o
o g k=8
g SsE a St
@« g
T )
£ &
o [}
= 7

NE=106 i NE=1 06 "
Number of Cycles to Failure (log) Number of Cycles to Failure (log)
(a) (b)
Figure 4.12

Synthetic component constant amplitude S-N curve for surface nonhardened
components made of steels and cast irons.
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Figure 4.13

Synthetic component constant amplitude S-N curve for surface hardened
components made of steels and cast irons.

*  For components made of aluminum alloys and austenitic steel, the
component constant amplitude S-N curves based on normal stress and
shear stress are illustrated in Figures 4.14(a) and (b), respectively. The
stress amplitude at 10® cycles is defined as the fatigue limit (S, or
S:rL)- The S-N curve between 10° and 108 cycles are defined by the same
reference point, but with a different slope factor such as 15 for normal
stress or 25 for shear stress. The fatigue limit can be calculated by using
Equation (4.75).

Constant Amplitude Pseudo Stress-Life Curve

The synthetic constant amplitude pseudo stress-life curve for a notched compo-
nent is preferable if the local stress is determined by a linear elastic finite element
analysis. This section presents the method to convert the nominal stress-life curve
mentioned earlier to the local pseudo stress-life curve.
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Figure 4.14
Synthetic component constant amplitude S-N curve for components made
of aluminum alloys and austenitic steel.

The following equations are valid:

G]ei = KtSS,E,Notched (476)
SsEsm
Kf — S.E.Smooth (477)
SS,E,Notched
K¢
= 4.78
ng K ( )

where

o = the pseudo endurance limit
ng =the K,/K; factor or the supporting factor
Ss.ENotched = the endurance limit of a notched component, calculated by the
equations in Section 4.3
Ss.E.smooth = the endurance limit of a smooth component, calculated by the
equations in Section 4.3 with the exception of Ky =1
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Figure 4.15
Synthetic constant amplitude S-N and 6°-N curves for a notched
component made of steel.

These equations lead to a new reference stress point at 10° cycles as
O = NkSs E Smooth- 4.79)

With the assumption of the identical slope factor specified by FKM-Guideline,
the synthetic constant amplitude pseudo stress-life curve can then be determined.
Figure 4.15 shows the concept of defining the pseudo endurance limit with respect
to the endurance limit of a smooth component as well as the comparison between
the constant amplitude S-N and o-N curves for a notched component made of
steels.

Stress-Life Curve for a Component under Variable
Amplitude Loading

For a component subjected to variable amplitude loading over time, a rainflow
cycle counting technique as addressed in Chapter 3 is typically used to convert
a complicated time-varying stress history to a series of discrete simple constant
amplitude stress events that consist of a mean stress level and a number of stress
cycles (n;).



150 Chapter 4

The fatigue life (N;;) corresponding to the number of cycles to failure at the speci-
fic stress event can be estimated from the component constant amplitude S-N
curve. In this case, the fatigue damage is defined as the cycle ratio (=n;/N;).

The Palmgren—Miner (Palmgren, 1924; Miner, 1945) linear damage rule is adopted
to calculate the accumulated damage, which assumes fatigue damage occurs when
the sum of the cycle ratios at each constant amplitude stress event reaches a critical
damage value (Dpy;). In mathematics, fatigue failure is predicted when

D £i > Dpy. (4.80)

i

Palmgren and Miner found the critical damage value of 1.0 in their studies. But
since their work was conducted, it has been shown (Wirshing et al., 1995; Lee
et al., 2005; Lalanne, 2002) that the critical damage value is a random variable
varying from 0.15 to 1.06. For mechanical designs, FKM-Guideline (Haibach,
2003) recommends Dpy;=0.3 for steels, steel castings, and aluminum alloys,
and Dpy=1.0 for ductile irons, grey cast irons, and malleable cast irons. For
electronic equipment design, Steinberg (1973) suggests Dpy=0.7.

The component constant amplitude S-N curve is supposed to be used for estimating
the fatigue life of a component at a given constant amplitude stress event. But
when the Palmgen—Miner linear damage rule is applied to a component in variable
amplitude loading, the stress cycles with amplitudes below the fatigue limit could
become damaging if some of the subsequent stress amplitudes exceed the original
fatigue limit. It is believed that the increase in crack-driving force due to the peri-
odic overloads will overcome the original grain barrier strength and help the crack
to propagate until failure.

Therefore, there is a need to modify the fatigue limit for a component subjected
to variable amplitude loading history because the fatigue limit obtained from con-
stant amplitude loading might be negatively influenced by periodic overloads.
Two methods such as the Miner rule and the Miner—Haibach model (Haibach,
1970), as shown in Figure 4.16, were proposed to include the effect of periodic
overloads on the stress cycle behavior below the original fatigue limit.

The Miner rule extends the S-N curve with the same slope factor k to approach
zero stress amplitude, while the Miner—Haibach model extends the original S-N
curve below the fatigue limit to the zero stress amplitude with a flatter slope
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Number of Cycles to Failure, Nt (log)

Figure 4.16
Constant amplitude S-N curve for a component made of steels and subjected
to variable amplitude loading.

factor 2k—1. Stanzl et al. (1986) concluded that a good agreement is found for
measured and calculated results according to the Miner—Haibach model.

Mean Stress Effect

From the perspective of applied cyclic stresses, the fatigue damage of a compo-
nent strongly correlates with the applied stress amplitude or applied stress range,
and is secondarily influenced by the mean stress. The mean stress effect should
be seriously considered in fatigue analyses. In the HCF regime, normal mean
stresses have a significant effect on fatigue behavior of components.

Mean normal stresses are responsible for the opening and closing state of micro-
cracks. Since the opening of microcracks accelerates the rate of crack propaga-
tion and the closing of microcracks retards the growth of cracks, tensile mean
normal stresses are detrimental and compressive mean normal stresses are bene-
ficial in terms of fatigue strength. There is very little or no effect of mean stress
on fatigue strength in the low cycle fatigue (LCF) regime where the large
amount of plastic deformation significantly reduces any beneficial or detrimental
effect of the mean stress.
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The mean normal stress effect can be represented by the mean stress (S,,,) or
the stress ratio (R). Both are defined as follows:

(Scs,max + Sc,min)

Som = 4.81

. 2 (4.81)
S. .

R = _om 4.82

Sc,max ( )

where

Se.max and Sg nin = the maximum and minimum normal stresses in a stress
cycle

For an example of a fully reversed stress condition, it can be found that
Sem =0 and R=-1.

The early models to account for the mean stress effect, such as Gerber (1874),
Goodman (1899), Haigh (1917), Soderberg (1930), and Morrow (1968), were
usually plotted against empirical data in constant life plots of stress amplitude (S;.,)
versus mean stress (Sy,). In Germany, these constant life plots are called Haigh’s
diagram; in North America they are commonly referred as Goodman’s diagram.

As schematically illustrated in Figure 4.17, Haigh’s diagram can be determined
from a family of constant amplitude S;, —N curves (Wohler curves) with var-
ious mean stress values (0, Sg i, Se.m2, and Sg.m3). The equivalent fully reversed
stress amplitude (S, ) 1s the generic interception point of the S;, axis, which is
used to determine the fatigue life (N;) from a corresponding component S-N
curve.

According to Goodman’s and Morrow’s models as illustrated in Figure 4.17(c),
the ultimate tensile strength (S,) and the fatigue strength coefficient (Sq ) are the
physical limits to S,,, and the interception of the S, , axis, respectively. Alterna-
tively, Haibach in FKM-Guideline introduces the mean stress sensitivity factor
(M,) to define the Haigh diagram, which is the absolute value of the slope of the
constant life plot. The M, factor depends on the type of materials and loading
condition.

Even though numerous models have been developed to account for the mean
stress effect on fatigue strength and lives, the four commonly used formulas are
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Figure 4.17

Construction of constant life plots on normal stress in S,, and S, coordinates.

chosen for discussion: Goodman’s (1899), Morrow’s (Morrow, 1968), Smith—
Watson-Topper’s (SWT; Smith et al., 1970), and Walker’s (Walker, 1970).

The differences among the four models can be observed from the following expres-
sions of the fully reserved stress amplitude in the case of moderate mean stress
values:

e Goodman’s:

Se.
Sear = 4 (4.83)
’ Scm
1 _ >
Siu
e Morrow’s:
S
Soar = o4 (4.84)
’ Se.m
e
o.f
e SWT’s:
Sc,ar = \/Sc,maxsc,a = \/(Sc,a +So,m)sc,a (485)
e Walker’s:

Soar = SLN ST = (Squ +Som)' TV SIY (4.86)

o,max “~o,a
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where

Yw =a mean stress fitting parameter

The SWT and the Walker equations predict that fatigue crack will not initiate if the
maximum normal stress in a cycle is less than or equal to zero, meaning S . <O.

The following conclusions are extracted from the extensive studies by Dowling
et al. (2008) on experimental fatigue data for steels, aluminum alloys, and tita-
nium alloy where the R ratio ranges from -2 to 0.45. Goodman’s model for life
predictions is highly inaccurate and should not be used.

Walker’s model gives the superior results if an additional mean stress fitting
parameter (yy,) is provided. Otherwise, both Morrow’s and SWT’s models yield
reasonable life estimates for steels. The SWT model is the one recommended
for aluminum alloys. In summary, the SWT method provides good results in
most cases and is a good choice for general use.

If there are no experimental data available for materials or the R ratio is beyond the
range of the previous studies, FKM-Guideline (Haibach, 2003) is recommended
for use. According to FKM-Guideline, Haigh’s diagram based on a normal stress
can be classified as four regimes, as shown in Figure 4.18 and summarized next:

* Regime [ is applied for the stress ratio R > 1 where the maximum and
minimum stresses are under compression.

* Regime II is applicable to the case of —co <R <0 where R = —o0 is the
zero compression stress; R = —1, the fully reversed stress; R = 0, the
alternating tension stress with a zero minimum stress.

* Regime Il is for 0 <R < 0.5 where the maximum and minimum stresses are
under tension.

* Regime IV is for R>0.5, the regime of high alternating tension stress.

FKM-Guideline specifies various mean stress sensitivity factors due to normal
stress for all four regimes and any material. The fully reversed fatigue strength S; ,
in the classified regimes can be written as follows:

* Regimes [ and IV:

Soar = Sea (4.87)



Stress-Based Uniaxial Fatigue Analysis 155

Figure 4.18
Haigh’s diagram for mean stress effect on normal stress.

e Regime II:
Sc,ar = Sc,a + Mcsc,m (488)
* Regime III:
Sea+ Ms/3)Som
Sear = (1 +M,)— —. 4.89

Haigh’s diagram based on shear stress can be classified as three regimes as shown
in Figure 4.19 because the negative mean stress in shear is always regarded as posi-
tive and treated the same as the positive mean stress. For the case of ambient or ele-
vated temperatures, the mean stress sensitivity factors for normal and shear stresses
can be obtained as follows:

M, = aySiy +bum (4.90)

M, = C.M, 4.91)
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Figure 4.19
Haigh’s diagram for mean stress effect on shear stress.

Table 4.12: ay, and by, for Various Materials

Materials ay bm
Steel 0.00035 —0.1
Steel casting 0.00035 0.05
Ductile irons 0.00035 0.08
Malleable cast iron 0.00035 0.13
Grey cast iron 0 0.5
Wrought aluminum alloys 0.001 —0.04
Cast aluminum alloys 0.001 0.2

Source: Adapted from FKM-Guideline, published by Forschungskuratorium
Maschinenebau, 2003.

where

ay; and by = the material parameters listed in Table 4.12
S.u and C; =the ultimate tensile strength in MPa and the shear stress
correction factor

For mechanical designs, Wilson and Haigh (1923) introduced the line of constant
tensile yield strength as an additional design constraint for materials, termed as the
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Figure 4.20
Safe design regions for fatigue strength and ultimate tensile strength at both
ambient and elevated temperatures.

safe design region for the consideration of both the fatigue strength and the tensile
yield strength. The line of constant tensile yield strength was constructed by the
line connecting the two tensile yield strength values in S,, and S;;, axes. Any
combination of S;, and S, that falls into the inside of the enclosed area is consid-
ered a safe design that will meet both of the yield strength and fatigue strength
criteria.

Figure 4.20 shows the isothermal temperature effect on the safe design regions
for the fatigue strength and tensile yield strength at both ambient and elevated
temperatures. The temperature correction factors for tensile yield strength and
fatigue strength follow the guidelines as previously described.

Summary

According to FKM-Guideline, the empirical procedures to generate the synthetic
nominal S-N and the pseudo 6°-N curves have been introduced in this chapter.
These procedures are not scientifically based but are simple and useful engineer-
ing tools for generating the synthetic component stress-life curves for various
materials.
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If the test data are not available, the ultimate strength of a real component at a
specific temperature with a survival rate can be estimated based on an estimated
strength value of standard smooth, polished round test specimens of 7.5 mm dia-
meter with the correction factors for temperature, reliability, size, load, and stress.

The endurance limit of a real component at a specific temperature with a survival
rate can be estimated based on an estimated strength value of standard smooth,
polished round test specimens of 7.5 mm diameter with the correction factors for
temperature, reliability, size, endurance limit in normal or shear stress, surface
treatment, roughness, and fatigue notch factor.

The stress field intensity theory has been used to explain why the fatigue notch
factor or fatigue strength reduction factor is less than the elastic stress concentration
factor. There are three popular approaches (notch sensitivity factor by Peterson
and Neuber, relative stress gradient by Siebel and Stieler, and FKM-Guideline
by Haibach) to estimate the fatigue notch factor, among which we recommend
FKM-Guideline.

The constant amplitude nominal stress-life approach and the local pseudo stress-
life approach for a notched component under fully reversed loading were intro-
duced. Either one can be derived on a reference point, the endurance limit at an
endurance cycle limit, and a suggested slope factor by FKM-Guideline.

The application of the Palmgren—Miner linear damage rule to a component sub-
jected to variable amplitude loading over time was discussed. It has been shown
that the critical damage value is a random variable varying from 0.15 to 1.06.
So for mechanical designs, FKM-Guideline recommends Dpy;=0.3 for steels,
steel castings, and aluminum alloys, and Dpy;=1.0 is recommended for ductile
irons, grey cast irons, and malleable cast irons. Also for electronic equipment
designs, Steinberg suggests Dpy;=0.7.

The mean stress effect on the fatigue strength and lives of a component was
addressed. Even though there are numerous models developed to account for the
mean stress effect, five commonly used formulas such as Goodman’s, Mor-
row’s, Smith—Watson—Topper’s, Walker’s, and the one by FKM-Guideline were
discussed.

According to the extensive studies (Dowling et al., 2008) on experimental fatigue
data for steels, aluminum alloys, and titanium alloy where the R ratio ranges from
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-2 to 0.45, Goodman’s model for life predictions is highly inaccurate and should
not be used. Walker’s model gives the superior results if an additional mean
stress fitting parameter (yyy) is provided. Both Morrow’s and SWT’s models yield
reasonable life estimates for steels and the Smith—Watson—Topper model is the
one recommended for aluminum alloys. If there are no experimental data avail-
able for materials or the R ratio is beyond the range of the previous studies,
FKM-Guideline is recommended.
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Introduction

It is common to perform a finite element analysis (FEA) to calculate stresses at
the stress concentration sites of a complex structure. There are three popular FEA
strategies, depending on the need and application. First of all, if material yielding
is expected as in the case of the thermal mechanical fatigue assessment, a non-
linear, elastic-visco-plastic FEA is preferable because it renders accurate stress
results and has been favored for use in a structure with complicated boundary,
material, and loading conditions. However, it is not practical for use in a structure
under long duration, multiaxial variable amplitude loading histories, due to expen-
sive computational CPU time.

Metal Fatigue Analysis Handbook
© 2012 Elsevier Inc. All rights reserved. 1 61
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Second, a linear elastic FEA in conjunction with a multiaxial notch stress—strain
analysis is employed to estimate the true notch stresses and strains. Traditionally,
this approach has been used with the strain-based multiaxial fatigue analysis. Lastly,
based on the assumption that there is very little plastic deformation in the high
cycle fatigue (HCF) regime, the pseudo or fictitious stress components calculated
from a linear elastic FEA are employed to estimate the fatigue damage parameter
and to predict life from the synthesized pseudo stress-life curve as described in
Chapter 4.

The previous two approaches have been commonly coded in some commercial
fatigue analysis tools. The last approach, excluding the additional step for the
multiaxial notch stress—strain analysis, is the most efficient fatigue analysis for
use in the HCF regime. Therefore, it is the focus of this chapter.

Please note that all the stress components described herein are referred to as the
pseudo stresses calculated from a linear elastic FEA such as the stress influence
superposition approach, the inertia relief method, or the modal transient analysis. The
fundamentals of the three pseudo stress analysis methods can be found in Chapter 2.

Multiaxial cyclic stresses at high stress concentration areas can be commonly
found in structures under multiaxial cyclic loads. Due to geometric constraints at
notches, multiaxial loads can result in either a uniaxial stress state as applied to a
notched thin metal sheet or in a multiaxial stress state as applied to a notched shaft
or rod. Overall, multiaxial cyclic loading can be classified into two categories:
nonproportional and proportional loading.

Nonproportional loading is the multiaxial loading paths that cause the principal
stress axis or maximum shear stress axis of a local element to rotate with time and
with respect to a local coordinate system. On the other hand, proportional loading
will result in a stationary principal stress axis or maximum shear stress axis.

If out-of-phase loading causes local sinusoidal normal and shear stress paths with
a phase angle, or phase shift, this type of out-of-phase loading is nonproportional
loading. For example, as shown in Figure 5.1, a smooth round shaft is subjected
to a 90° out-of-phase normal-shear stress time history, where o, and 1, are the
normal and shear surface stresses in a local x—y coordinate system. In this exam-
ple, the normal stress and shear stress time histories are expressed in terms of a
cosine function.
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oy=100-cos(2nt)
Tuy=(1 00/N'3)-cos(2nt—n/2)

100

» Time

-100

Figure 5.1
A surface element of a round shaft subjected to 90° out-of-phase normal
and shear stress time histories.

The shear stress time history has a lagging phase angle (®) of n/2 in radians, or
of 90° with respect to the normal stress history. Thus, the 90° out-of-phase stres-
sing is termed due to the phase angle of 90°. As a time instant progresses from A
to M, the maximum principal stress (c¢;) axis rotates with respect to the local
x axis in an angle of 0, as illustrated in Figures 5.2 through 5.4.

Nonproportional loading causes equal (Archer, 1987), or present more damage
(Siljander et al., 1992; Sonsino, 1995) than, proportional loading, based on the
same von Mises stress range. The cause of this phenomenon has been explained
by an additional nonproportional strain hardening due to slip behavior of the
material (Itoh et al., 1995; Socie & Marquis, 2000).
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Maximum and minimum principal stress axes with respect to the local
x axis in time steps A, B, C, and D.

As shown in Figure 5.5, due to nonproportional normal and shear stressing, the
continuous change of the principal stress plane, or maximum shear stress plane,
increases the interaction between slip systems resulting in plastic deformation
along different slip systems. The cross slip interaction due to plastic deformation
can induce an additional strain hardening as compared to that observed in pro-
portional loading.

This strain-hardening phenomenon is illustrated in Figure 5.6, which shows
the effective stress—strain curves for the same material under in-phase and 90°
out-of-phase loadings. The additional strain hardening due to 90° out-of-phase
loading can be described by the nonproportional hardening coefficient, onp,
defined by

o _ GVM,a((D = 900)
NP GVM,a((I) = OO)

~1 (5.1)
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where

oym.a(® =90°) =the 90° out-of-phase von Mises stress amplitude
oym.ao(P =0°) = the in-phase von Mises stress amplitude at the same strain
amplitude (eyp.a)

The severity of nonproportional hardening is dependent on the ease in which
slip systems interact and the type of loading path. Materials such as aluminum
alloys have weak interactions and show wavy slips because dislocations can
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Figure 5.3
Maximum and minimum principal stress axes with respect to the local
x axis in time steps E, F, G, and H.
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Figure 5.6
Comparison of equivalent stress—strain curves for the same material
under in-phase and 90° out-of-phase loadings.

easily change their slip planes as the maximum shear stress plane rotates, result-
ing in no or small additional strain hardening. However, a typical material, such
as Type 304 stainless steel (Doong et al., 1990; Itoh et al., 1995), shows higher
hardening and damaging effects than aluminum alloys (Krempl & Lu, 1983;
Doong et al.,, 1990; Itoh et al., 1997) based on the identical nonproportional
loading tests.

Also the study (Itoh et al., 1995) showed that different nonproportional loading
paths produce different degrees of nonproportional hardening, among which the
90° out-of-phase loading path has the largest degree of nonproportional harden-
ing. Therefore, the fatigue life reduction of a material under nonproportional
loading is strongly connected to additional nonproportional hardening due to
both loading history and material.

A reliable fatigue model (theory or criterion) should be capable of assessing dif-
ferent fatigue damage values for proportional and nonproportional loadings.
Existing stress-based multiaxial fatigue models will be reviewed in the following
sections.
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Fatigue Damage Models

The existing stress-based multiaxial fatigue damage models can be categorized
into four different classifications: empirical formula approach, equivalent stress
approach, critical plane approach, and Dang Van multiscale approach.

The empirical formula approach is referred to as the best-fit equation to the
experimental fatigue limit data tested under combined normal and shear stresses,
and it is only applicable to the biaxial stress state in a fully reversed loading
condition.

The equivalent stress approach, based on either the von Mises or Tresca yield
theory, was originally developed to define fatigue limit criteria of various mate-
rials under proportional loading. Some of the formulations for nonproportional
loading have been developed by modifying the von Mises equivalent stress
amplitude to account for the nonproportional hardening effect.

The critical plane approach provides a physical interpretation of the damage
initiation process. The crack orientation can be identified by searching for the
most damaging plane among numerous potential crack initiation planes, where
the damage parameter is usually defined as a function of the shear and normal
stresses on such a plane.

The Dang Van multiscale approach is a popular approach for assessing meso-
scopic fatigue damage at the fatigue limit. It is assumed that an elastic shake-
down in a macroscopic state occurs before the fatigue limit and that both
mesoscopic and macroscopic plastic strains and residual stresses are stabilized.

The four multiaxial fatigue approaches are presented in the following sections.
Although these approaches are expressed to assess the damage at fatigue limit,
they can be extended for fatigue life predictions in the HCF regime by simply
replacing the fatigue limit with an S-N material equation.

Empirical Formula Approach

The empirical formula approach is only applicable to the biaxial, fully reversed
stress state.
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Gough and Pollard

The concept of using a failure surface for bending and torsional stresses was
presented by Gough and Pollard (1935; Gough, 1950) who found that the fati-
gue limits of ductile and brittle materials under in-phase bending-torsional load-
ing have the following separate empirical expressions:

2 2
(6_) N <L> —1 for ductile materials (52)
OER=-1 TE
2
O, Ta : 1
<7) + <—> =1 for brittle materials (5.3)
OF R=—1 TE

where

0, and 7, =the applied in-phase normal and shear stress amplitudes,
respectively
og.r=—1 = the fully reversed fatigue limit for normal stress
T = the fully reversed fatigue limit for shear stress

In addition to correlating well with in-phase fatigue limit data, these equations
can be easily used for design purposes. Studies have shown that the Gough—Pollard
equations have general applicability when expressed in terms of principal stresses
(Hashin, 1981; Rotvel, 1970), and they have a physical interpretation on fatigue
damage mechanism if expressed in terms of shear stress and normal stress on the
maximum shear stress plane (McDiarmid, 1974).

Dietmann, and Socie and Marquis

Dietmann (1973a,b) and Socie and Marquis (2000) developed the following
general empirical formulas for fatigue limits under fully reversed in-phase loading,
respectively:

¢ Dietmann:

k 2
( G > + <l> =1 (5.4)
GER=-1 TE



170 Chapter 5

e Socie and Marquis:

2 2
(k—l)( % ) +(2—k)<L> + <l> =1 (5.5)
OER=-1 OER=-1 TE

GER=-1
k= ——
TE

where

These two formulas are very generic such that the Gough—Pollard formulas become
special cases of them. For example, for a ductile material where the k value is 2.0,
Equations (5.4) and (5.5) are equivalent and can be reduced to Equation (5.2). And
for a brittle material where the k value is 1.0, Equations (5.4) and (5.5) are identical
to Equation (5.3).

Lee and Lee and Chiang

Taking the Gough—Pollard ellipse quadrant formula as a frame of work, Lee (1985)
as well as Lee and Chiang (1991) developed the following criteria for fatigue limits
under fully reversed out-of-phase loading:

1 (I+onp-sin @) 1 (l+onp sin @)
( Fa ) + <l> ~1 (5.6)
CER=— TE

* Lee and Chiang:

k(1+ anpsin @) 2 (H+anpsin @)
( % ) + <l> =1 (5.7)
OER=-1 TE

n =2 for ductile materials
n = 1.5 for brittle materials
onp = the parameter to account for nonproportional hardening due to the
phase shaft ® between normal and shear stresses

e Lee:

where

Equivalent Stress Approach

The existing equivalent stress models are reviewed in this section, among which the
effective equivalent stress amplitude approach (Sonsino, 1995) and the equivalent
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nonproportional stress amplitude method (Lee et al., 2007) are the promising ones
to account for the nonproportional hardening effect.

The latter approach, as proposed by Lee et al. (2007), is the only one that can
be employed to calculate the fatigue damage of a structure under variable ampli-
tude, nonproportional loading with both the Miner—Palmgren linear damage rule
(Miner, 1945; Palmgren, 1924), and the Wang—Brown rainflow cycle counting
technique (Wang & Brown, 1996).

Maximum Principal Stress Theory
Fatigue initiation occurs when
Ops,a =01, = OER=—1 (5.8)

where o, is the maximum principal stress amplitude and the subscripts PS and
a represent the principal stress and amplitude, respectively.

Maximum Shear Stress Theory (Tresca Theory)
Fatigue initiation occurs if

TMS.a =012 =032 2 TE (5.9)
where

63, =the minimum principal stress amplitude and the subscript MS
represents the maximum shear

von Mises
Fatigue initiation happens if

OvMa + OyMOVM,m = OER=—1 (5.10)

where

oy = the mean stress sensitivity factor
6vM.m and oyp, = the mean stress and von Mises stress amplitude

The last two are defined as follows:

OvM,m =O1,m + 02 m + 03 .m = Oxm + Gy.m + Ozm (51 1)
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or

OvMa =

where

Sil-

OvM,a =

\/(Gl’a - 62,3)2 +(6,, — 63’a)2 + (61,a - c3ga)2 (5.12)

Sil-

V(00— 000 + (6, = 0,0) + (0, = 0, +6(2y 412, 422,

Xy,a yz,a

(5.13)

X, y, and z (subscripts) = the local coordinate axes

Sines

1, 2, and 3 =the principal stress axes

Sines (1959) defined the damage at the fatigue limit in terms of the octahedral
shear stress amplitude (T, ,) and the hydrostatic stress (o) for mean stresses. The
Sines theory, also named the octahedral shear stress theory, shows satisfactory
correlation with experimental investigations. It states that the fatigue failure occurs

when

where

TSines,a = Tocta T (xoct(36h) >TE (5 14)

et = the hydrostatic stress sensitivity factor

op and Ty, = the following:

or

Tocta =

6h == (01 m+062m+03m) == (Oxm+Oym+0.m) (5.15)

W=
W=

1
Toct,a = § \/(Gl,a - G2,a)2 + (Gz,a - 63,3)2 + (Gl,a - 63,a)2 (5 16)

\/(Gx’a - csy,a)2 + (Gy’a - cim)2 + (cx’a - csm)2 +6(t2 , +72, +12, ).

Xy,a yz,a XZ,a

(5.17)

W | =
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Example 5.1

The staircase method for fatigue limit testing was conducted on thin-walled
tubular specimens subjected to axial sinusoidal loading with R=—1 and

R =0. The two fatigue limits are found as 6g gr-_1 = 700 MPa and 6¢ g-o =
560 MPa. Determine the mean stress sensitivity factor ayy used in the von
Mises stress theory and the hydrostatic stress sensitivity factor o, in the
Sines theory.

Solution

1. The von Mises stress theory:
(a) For R=—1 loading (fully reversed loading), it is given 6gr-_1 =700 MPa
(b) For R=0 loading (61, =01,m=0gr-0=560)

1
OvM,a = % \/(G‘l,a - 0)2 + (0 - 0)2 + (61,a - 0)2 =01, =0gRr=0~— 560

GVM,m = GT,m + 0 + 0= GE,R=0 =560 MPa

OvM.a T OyMOvm,m = OF R=—1

(Oepe—1 —Oer—0) _ (700 - 560)

St weo =025

ThUS, Oypm =

2. The Sines theory:
(a) For R=—1 loading (fully reversed loading),

1 2 2
Tocta ™= g\/(cha _0)2 + (0_0)2 + (0 _01,a)2 = TG1,3=\/?-GE,R:—1

1
Oh,R=—1 =§(°1,m +63m+063m)=0

2
Toct,a +(xoct(36h) = —GE,R:—1 +(xoct (O) =T

3
rEzchRz_] =g700=330MPa

(b) For R=0 loading

C VI

1 2
Toct,azg\/(01,21_0)2+(0_0)2+(0_G1,a) = 3 G1,a—\/T_GE,R=0

3Gh,R:0 = OE,R=0
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2 2
Toct,a + (xoct(36h> = ?GE,R:O + (xoct(GE,R=0) = \/?_GE,R:—1
V2 —6treo)  Y2(700 - 560
Thus, e = 2 ias=t ~Oerc0) 5 ( ) Z0.12

OE R=0 560

Sonsino

Sonsino (1995) developed a theory, so-called “the effective equivalent stress ampli-
tude method,” to account for nonproportional hardening as a result of out-of-phase
loading paths. It is assumed that the Case A crack growing along a free surface—as
illustrated in Figure 5.7(a)—is the typical fatigue failure of a ductile material under
multiaxial loading, and is induced by the shear stress (t,(0)) on an interference
plane with an inclination angle () to a local x axis, as shown in Figure 5.7(b).

The interaction of shear stresses in various interference planes, representing the
severity of nonproportional loading, is taken into account by the following effective
shear stress:

Turitn = % / 7,(6)do. (5.18)

>y
Free
Surface

(a) (b)

Figure 5.7
(a) Potential Case A surface cracks and (b) normal and shear stresses
on an interference plane.
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For an out-of-phase sinusoidal loading in a plane stress condition with a phase
shift of @, the effective shear stress derived on the von Mises stress criterion is
used to determine the effective equivalent stress amplitude (Gyy .(P)) as follows:

ovma(®) =Oyua Lq))) \/ G- exp [ - (‘D - 90°>2] (5.19)

Tarith(q) = Oo 900
where
OyMa = Gia + Gg’a —0yaOyat+ 30@1’%’& (5.20)
\/Gi,a + G%,a - Gx,a : G)’sa
og = (5.21)
V3Tya
1+K,,
=— 5.22
1 +K, ( )
where

Ky, and K= the elastic stress concentration factors due to bending
and torsion, respectively

The ratio G takes into account the stress gradient effect. ag is called the size
effect factor, representing the sensitivity of the shear stress amplitude on the nor-
mal stress amplitude. This factor can be determined by comparing the S-N curve
for bending-only stress with that for pure torsional stress such that the data should
lie on top of each other.

Given the fact that the effective equivalent stress amplitude is increased by
out-of-phase loading, the square root in Equation (5.19) considers the nonpropor-
tional hardening effect due to an out-of-phase sinusoidal loading with a phase shift
of @. It was developed based on empirical observations on ductile materials. And
the ratio Tn(DP)/ Tarm(P =0°) represents the nonproportional hardening effect due
to the type of materials.

Finally, the effective equivalent stress amplitude indicates that with the identical
von Mises equivalent stress amplitude, 90° out-of-phase loading is more damaging
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than in-phase loading due to the nonproportional hardening effect. However, the
Sonsino stress theory is only applicable to in-phase or out-of-phase loading.

Lee, Tjhung, and Jordan

Lee et al. (2007) proposed the concept of equivalent nonproportional stress
amplitude in 2007, analogous to the equivalent nonproportional strain amplitude
by Itoh et al. (1995). The equivalent nonproportional stress amplitude (Gyn.anp)
is defined as follows:

OvmManp = Oyma(l 4 onpfap) (5.23)
where

Ovm.a and oy Np = the equivalent proportional and nonproportional stress
amplitudes
(1 + anpfnp) = the term accounts for the additional strain hardening

observed during nonproportional cyclic loading

anp = the nonproportional hardening coefficient for the
material dependence

fxp = the nonproportional loading path factor for the severity
of loading paths

In the previous equation, oy, is based on the von Mises hypothesis, but employs
the maximum stress amplitude between two arbitrary stress points among all multi-
ple points in a cycle. For the example of a plane stress condition, Gy, 1S maxi-
mized with respect to time, and defined as follows to account for the mean stress
effect:

i
2 Of
Gym.a = Max {\/ o2, + Gia — Oxa0ya + 30cs’c§y’a X (G’—>} (5.24)

f= Geq,m

where

ag = the sensitivity shear-to-normal stress parameter
ot =the fatigue strength coefficient determined from the best fit of the
proportional loading data with a stress ratio R=—1
Geq,m = the equivalent mean stress, ignoring the effect of torsional mean
stress on fatigue lives
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Geq,m 18 calculated in the following equation:
Geqm = Ox.m + Gym- (5.25)

The nonproportional material coefficient anp as defined in Equation (5.1) is
related to the additional hardening of the materials under 90° out-of-phase load-
ing. Alternatively, this coefficient can be obtained from the von Mises stress
amplitude versus life curves of the same material under in-phase and 90° out-of-
phase fatigue testing.

As shown in Figure 5.8, at a same oy (P =0°) value, the life (Ngge) for 90° out-
of-phase loading is shorter or more damaging than that (Ny-) for in-phase loading.
Since the in-phase oynm., — N curve is the baseline S-N curve for life predictions,
the higher stress amplitude Gyy (@ =90°) than oy (P =0°) is found to produce
an equivalent damage or Ngg- life to the 90° out-of-phase loading, which is assu-
med to be attributable to the nonproportional strain-hardening phenomenon. Thus,
(onp + 1) can be determined by the ratio of Gy (P =90°) to Gyp(P =0°).

9=90°

Sym.a(® =90°)

Sym.a(@=0°)

Figure 5.8
Graphical representation of nonproportional hardening due to 90° out-of-phase
loading in S-N curves.
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If there are no experimental data available, anp could be estimated by various
empirical formulas. According to the experimental study (Doong et al., 1990),
there is almost no additional hardening (onp =~ 0) for aluminum alloys; anp =
0.3 for coppers, and anp =~ 1.0 for stainless steels.

This study also stated that the nonproportional hardening is related to the mate-
rial stacking fault energy (SFE). The materials with a low SFE level do exhibit
additional cyclic hardening under nonproportional loading, whereas those with
a high SFE are susceptible to little hardening. It is difficult to quantify the non-
proportional hardening coefficient with the material SFE parameter.

Recent efforts (Borodii & Strizhalo, 2004; Borodii & Shukaev, 2007) to develop an
analytical description from the macro material perspective were done. An empirical
relation was proposed as follows:

logotne| = 0.705 ("L) —1.22 (5.26)

Gt’y

where
6.y and o, = ultimate tensile strength and tensile yield strength, respectively

Moreover, Shamsaei, and Fatemi (2010) observed that under nonproportional
loading, cyclic hardening materials exhibit nonproportional hardening and cyclic
softening materials have little nonproportional hardening. Since both cyclic hard-
ening and nonproportional hardening are associated with the SFE, they developed
the following empirical strain-based equation for op:

axp=1.6 (%)2 (%)2('1_“’) ~338 (%) (%)“Hﬂ) +22 (5.27)

where

Ae =the strain range that can be approximated by Ac/E in the
HCF regime
K, K’, n, and n’ = the monotonic strength coefficient, cyclic strength
coefficient, monotonic strain-hardening exponent, and
cyclic strain-hardening exponent, respectively

The nonproportional loading factor (fyp), varying from zero to one, represents the
effect of a loading path on nonproportional hardening. In-phase loading generates
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the value of fxp equal to zero, whereas 90° out-of-phase loading produces the value
of fxp equal to one, indicating the most damaging loading condition.

As reported by Itoh et al. (1995), this factor is calculated by integrating the
contributions of all maximum principal stresses (a,max(t)) on the plane being
perpendicular to the plane of the largest absolute principal stress (E>lrjrf1ax)' This
factor is mathematically represented as follows:

T

o= J(1in&0 X G O] (528)
1,max 0

where

|6} max (t)| = the maximum absolute value of the principal stress at time t,
depending on the maximum’s larger magnitude and the minimum
principal stresses at time t (maximum of |} (t)| and | o3(t)|)

E(t) = the angle between Eﬁfm and Eﬁ,max(t), as shown in Figure 5.9
G1.max (t) = the orientation at an angle of © with respect to the x axis

. f .
fyp =normalized to |Eﬁna | and T (the time for a cycle)

X

The constant C is chosen to make fyp unity under 90° out-of-phase loading.

—

N
O1y 01,max(t1) = G;?rfnax
A
. -
sin &(ta) % |01 max(ta)ll
-
61,max(ta) S
N
AN
N\
N
AN
&(ts)
> »G1 x
7/
4
4
7/
//
— ’
61 max(tB) /
»/
) -
|S|n E,.(tB)X|(51,max(tB)||

Figure 5.9
Schematic plot of principal stress vectors at various time steps.
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Example 5.2

A cantilever, tubular structural is seam welded to a fixed plate at one end
and is subjected to out-of-phase nominal bending (S;) and torsional (S;)
stresses at the other end. The tubular structural is made of a thin-walled,
rectangular section, as shown in Figure 5.10. Testing indicates that most of
the fatigue cracks are initiated at the weld toe near a corner of the tube.

Therefore, the stress state in the surface element (in the x-y coordinate)
at this crack initiation location is assumed to be a plane stress condition,
and is chosen for our fatigue assessment. With the given elastic stress
concentration factors for bending and torsion (K and K;,), the local
pseudo stresses (o, and ’ciy) of interest can be related to the nominal
bending and torsional stresses (S, and S;) as

6¢ = Kp.Sq (5.29)
T =K,S.. (5.30)
ox

e
A ,,”'Txy \\
|- N
y_ -~ oS N
\ \\
-7 X N
400 !
o%

300

wol |\ [\

100

0

4/;’/
a
Stress (MPa)

/
/
1007/_5 T\ oS T

—-200

300 \ /

—-400

Figure 5.10
A crack initiation site with a local coordinate system at a structural component
subjected to external loads.
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Also, the assumption of the constraint €, =0 leads to the following
relation

G; =10, (5.31)

where v = the Poisson ratio (v=0.3).

The local pseudo stresses and their induced time history plots are
illustrated in Figure 5.10.

1. Determine the constant C in fyp

2. The fatigue limit for normal stress (6gr-—1 =700 MPa) and the
nonproportional coefficient for the material (onp=0.3) are given. Determine
whether the welded structure under the nonproportional loading as shown in
Figure 5.10 will have an infinite life.

Solution

1. Since the constant C is obtained to make fyp unity under 90° out-of-phase

loading, there is a need to generate a 90° out-of-phase relation between &
and T:y having the same magnitude of the von Mises stress where 6 =vo;.

Therefore, a fictitious 90° out-of-phase stressing as illustrated in Figure 5.11
is generated by

0.79 (c:(c))z +3<‘c§y(t))2 =1 (5.32)

The elliptic stress path is then divided into 72 points with a 5° angular
increment. For each data point, the maximum and minimum principal
stresses can be calculated as follows:

= 20, ¢ <—°i(t) 50 ) + <’C§y(t))2 (533)

o5(t)= —Gi(t) erc;(t) h \/(ci(t) ;G;_(t) )2 + (Tiy(t)>2. (5.34)

And %,,.,(6) =05 (0)] iF 03 (8) | 2 [05(0)] or 0%, (6) = |05 (0)] iF 05 (1) > |05 (0.
The orientation of the absolute maximum principal stress with respect to the
x axis can be calculated as

27
0(t) = % -arctan (ﬁ%) . (5.35)

X y
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Ry

1.2 1

0.9 4

—0.9 +

-1.2-

Figure 5.11
A fictitious 90° out-of-phase relation between o] and T having the unit
magnitude of the von Mises stress.

Thus, the maximum principal stress plane at any time instant (E)fmax( t))
can be expressed in terms of its x and y components (o5, .. (t). 67 . (t))
obtained as follows:

O o (t) = =0 s (D5 (011)) (5.36)

07y max(t) =09 o (t)cos (G(t)) : (5.37)

Figure 5.12 shows plots of principal stresses versus 0 angles. The largest
magnitude of 67 (t) is found to be ‘IF 125 at three 0 angles (0°, 180°,
360°). The perpendicular plane to 61 . at 0=0° is used to determine
the contributions of all absolute maximum principal stresses on various
interference planes, representing the severlty of nonProportlonaI loading.
The cosine and sine angle between o, 01 (t)and @, G max Can be determined as

61 max, xG1 max

cos E(t) = —Lmx _Lm (5.38)

f f
‘_?Iremax| | ‘l max( ) | |E>1r,emax| |E:e,max (t) |

LA AN (5 B (t) + 65,05, ()
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Figure 5.12
Plots of maximum elastic principal stresses and angles due to the fictitious
90° out-of-phase stressing.

sing(t)=1/1— (cosi(t))z. (5.39)

Figure 5.13 shows the plots of E:e,max(tﬂ, |sin&(t)|, and [sin&(t) X | G max(t)]]
due to the fictitious 90° out-of-phase stressing. The area under the curve

01,max

b
of [sin&(t) X | O1.max(t)|| equals to Y [sin&(t;) X | ) . (t)]| =27.26. By
1

setting fyp =1 in Equation (5.28), C can be determined with the following
equation:

ref
Fre T 0% max _ 1x72x1.125

C=
LI . 27.26
12 |Sin€(6) X [0} pa (6)]

=2.97.
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Figure 5.13

Plots of |E)imax(t)|, [sin &(t)|, and [sin &(t) X | 67 max(t)|| due to a fictitious
90° out-of-phase stressing.

2. The local pseudo stress time histories in Figure 5.10 can be cross plotted
as shown in Figure 5.14. Thus, the one cycle of the out-of-phase stressing
history can be described by four points, Points 1 through 4, as tabulated
in Table 5.1. Choose an extreme stress point as a reference point at which
the stress components are algebraically either a maximum or minimum.

If an extreme point is not easily identified, it will require trying different
alternatives for the largest stress amplitude. Because of no mean stress

found in this history and the assumption of as=1.0, Equation (5.28) is
reduced to

Oli.a = Max {¢ (02.)" +(0¢,)" 02,0, +3(x,.)° } (5.40)

This table shows the calculation procedures for the value of 6y,, ., based
on Point 1 as a reference point. So as a result, oy,,, =280.3 MPa.
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Figure 5.14
The applied out-of-phase relation between o and r:y.

Table 5.1: Tabulated Data to Calculate oy, ,

Point G, 6; tiy o, c;’a 'rf(y’a Cuma
1 Ref. -300 -90 -50 — — — -
2 — 300 90 -50 300 90 0 266.6
3 - 300 90 50 300 90 50 280.3
4 - -300 -90 50 0 0 50 86.6

The next step is to calculate the fyp factor due to the applied out-of-
phase stressing path, which is divided into 40 data points. According to
the calculated maximum principal stress components in x and y axes,
G, ()] and [sin&(t) x| G} ,,.|| can be determined and_Eelotted against
0 in Figure 5.15. The area under the curve of |sin&(t) X | o, || is equal

.

to X [sin&(t) X | ) ae(t)]| = 2468.5. Given C=2.97 and T =40, fyp can
1

be found to be 0.59 by using Equation (5.28).

The equivalent stress amplitude is then calculated as follows:

OvM,a,NP = G\/M,a(1 + (xNPFNP) = 2803(1 +0.3X% 059) =330 MPa.
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Plots of |E:e’max(t)\ and [sin&(t) X |E:eymax\| versus 0 angles due to the applied
out-of-phase loading.

This is found to be less than the fatigue limit for normal stress

(0er=—1 = 700 MPa) by a safety factor of 2.1. Therefore, we can conclude
that the welded structural component under the nonproportional stressing
will survive for infinite life.

Critical Plane Approach

The critical plane approach has been commonly used for fatigue analyses of com-
ponents under variable amplitude, multiaxial loading. It is known that nonpropor-
tional loading results in rotating the maximum principal and the shear stress
planes at a crack initiation location where the potential crack orientation is chang-
ing as well.

A final crack will eventually initiate on a certain orientation where the fatigue
damage parameter representing the crack nucleation and growth is maximized.
Therefore, this approach essentially involves the critical plane searching technique
to identify the orientation of the highest damage plane.
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The fatigue damage parameter can be a function of shear stress and normal stress
on the plane to evaluate the degree of a damage process. The dominant stress
used in a fatigue damage parameter depends on the fatigue damage mechanism.
For example, fatigue initiation life of ductile materials is typically dominated by
crack initiation and growth on maximum shear stress planes; therefore, shear
stress and normal stress are the primary and the secondary damage parameters to
use, respectively. On the other hand, the fatigue initiation life of brittle materials
is typically controlled by crack growth along maximum tensile stress plane;
normal stress and shear stress are the primary and secondary parameters to use,
respectively.

Based on nucleation and growth of fatigue cracks, two cracks termed Case A and
Case B cracks by Brown and Miller (1973) are considered. Case A crack is the sur-
face crack, which tends to be very shallow and has a small aspect ratio. Case B
crack is the in-depth crack, propagating into the surface. As illustrated in Figures
5.16 and 5.17, Case A cracks grow on the planes perpendicular to the z axis,
whereas Case B cracks grow on the planes perpendicular to the y axis. The critical
plane searching techniques based on Case A and Case B cracks are addressed next.

First, the critical plane search for Case A cracks is described. Figure 5.16(b)
shows two possible critical planes that are perpendicular to the z axis, each of
which locates at an interference angle 8* with respect to the y—z surface. And the
typical normal and shear stresses acting on an interference plane with the angle of
0* are depicted in Figure 5.18. For the plane of maximum damage, it is necessary

»
»
»
»

(a)

Figure 5.16
Case A cracks: (a) critical plane orientation and (b) potential critical
planes at a crack initiation site.



188 Chapter 5

%&\ » y
S Free Surface™,

*

(a) (b)

Figure 5.17
Case B cracks: (a) critical plane orientation and (b) potential critical
planes at a crack initiation site.

Figure 5.18
Normal and shear stresses on an interference plane 8* from the y—z
plane for Case A cracks.

to assess the fatigue damage parameter on each critical plane by varying 6* from
0° to 180° at every 5° interval. Note that a 5° interval is common practice, but it
could lead to discretization errors in some cases.

Second, for Case B cracks, each critical plane locates at an angle @* with respect to
the x—y plane and has its normal vector defined as the local x" axis, as illustrated in
Figure 5.19. For the plane of maximum damage, it is necessary to assess a damage
parameter on each critical plane by varying @* from 0° to 180° at every 5° interval.
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(a) (b)
Figure 5.19

(a) Normal and shear stresses on an interference plane y* from the x—y
surface for Case B cracks (b) coordinate transformation of shear
stresses on a potential critical plane.

Using an appropriate coordinate transformation matrix, the normal stress and
shear stresses acting on the plane orientated at ¢@* can be determined. The two
shear stress components (T, and t,,)) along this critical plane produce a resul-
tant shear stress, Ty g, as shown in Figure 5.19. Both magnitude and direction
of the resultant shear stress vary with time.

Thus, an angle of y* with respect to the local z’ axis is introduced for the direction
of the resultant shear stress. At each time instant and at a specific ¢*, the magnitude
of the resultant shear stress at y* varying from 0° to 180° at every 5° interval is cal-
culated. During one load cycle, the most damaging plane at the angles of ¢* and y*
can be identified by searching for the largest of the fatigue damage parameter.

In summary, a critical plane searching approach would require a stress transforma-
tion technique and the definition of fatigue damage parameter. Both are discussed
next.

Stress Transformation

The state of stresses at a point relative to a global xyz coordinate system is given
by the stress matrix

Oxx Txy Tx
[6]xyz = | Ty Oy Ty (5.41)
Tixx Tyz Op
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and the state of stresses at the same point relative to a local x'y’z’ coordinate
system is noted as

O Thy T
[6lyyy=1|Txy O Ty |- (5.42)

’ /

Tix Ty, On
It is shown that the stress transformation is
[0y = [T)- [0y, [T] (5:43)
where

[T] =the coordinate transformation matrix that transforms a vector in the
[

Xyz system to a vector in the x'y’z’ system
[T]T = the transpose of [T]

Consider a tetrahedron composed of four triangular faces, as shown in Figure
5.20(a), three of which meet at a vertex (0) and are perpendicular to each other.
The common vertex and three sides of the tetrahedron define a global xyz
coordinate system, whereas a local x'y’z" coordinate system is introduced along
the fourth face, where x’ is normal to the surface. Since the x'y’z’ system can
be related to the xyz system by two inclination angles (0 and @), it can be

expressed as

X X
y ¢=[T-qY ¢ (5.44)
7’ 4

The [T] matrix is obtained by two subsequent coordinate rotations. The first coun-
terclockwise rotation of the x—y plane about the z axis by an inclination angle
of 6, as shown in Figure 5.20(b), results in the following coordinate relationship:

X cos® sin® O X
y, p=| —sin® cos® O y 7. (5.45)
7 0 0 1 z

Then the x'y’z" coordinates can be established by rotating the x;—z; plane clock-
wise about y; with an inclination angle of ¢, as shown in Figure 5.20(c), and
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Y1

(b)

Y, V1

Figure 5.20
Transformation of global and local coordinates: (a) global and local coordinates;
(b) first rotation; (c) second rotation.

they are related to the x;y;z; coordinates by

X' sing 0 cosq X1
y' p= 0 1 0 Vi p- (5.46)
VA —cos@ O sing 74

Combining the two coordinate transformation matrices leads to

X [ sing 0 cosq] [ cos® sin® 07 (x
y' = 0 1 0 —sin® cosB® O y
7 | —cos@ O sing 0 0 1 (5.47)
[ cosO-sing sin@-sing  cos@ X
= —sin O cos O 0 y
| —cos0-cos¢@ —sinB-cos@ sing z
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Thus,

cos0-sin@ sin@-sin@  cos@
[T]= —sin© cos 0 0 1. (5.48)
—cosB-cos@ —sinB-cos@ sin@

Fatigue Damage Parameters

Three popular stress-based damage parameters are reviewed in this section, among
which the Findley (1959) and the Gaier—Dannbauer (2008) theories are recom-
mended for fatigue damage assessments of structures under variable amplitude,
multiaxial loading conditions.

Findley

Findley (1959) first proposed the concept of the critical plane approach and
assumed a fatigue crack will form on the plane where the damage parameter (the
shear stress amplitude t, with some contributions from the maximum normal
stress G, max ON that plane) is maximized and exceeds the fatigue limit in shear
Tg. It can be expressed as follows:

(TFindley,a>max =1g (549)
TFindley,a = Ta T kFGn,max (5.50)

where

kr =the normal stress sensitivity factor, representing the influence of the
maximum normal stress on the maximum shear stress amplitude

kg can be determined by fatigue limits from two loading conditions. If G, max
exceeds the tensile yield strength of the material, then 6, . = Gy y.

McDiarmid

McDiarmid (1987) developed a generalized failure criterion including the crack
initiation modes as follows:

TMcDiarmid,a = TA,B,E (5.51)

_ TAB.E 5
TMcDiarmid,a =T, + Gn,max ( 52)
26y
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where

Ta.p.g = the shear fatigue limit for Case A or B crack
o, = the ultimate tensile strength
T, and o, max = the shear stress amplitude and maximum normal stress on
the critical plane with the maximum shear stress amplitude

Galer and Dannbauer

After reviewing Gough’s experimental data for combined bending and torsional
loads, Gaier and Dannbauer (2008) proposed that a fatigue crack will likely
initiate on the critical plane where the scaled normal stress on the plane (f5 ) is
maximized and exceeds a failure criterion. The failure criterion is defined as

(fGDGn)max = GOE,R=-1 (553)
fon=1+(1-k)V (5.54)

where

fgp = the scaled normal stress factor
K =0gRr-—1/TE
V =the ratio of the minimum to maximum principal stresses, defined as
V =o03/0, for loyl > losl and as V =o,/03 for losl > loyl

It has been found that the k values are 2.0 and 1.0 for ductile and brittle materials,
respectively. The V value ranges between —1 and +1. V=—1 for shear loading
where o03=-—0;. V=0 for tension/bending loading where 63=0. V=+1 for
hydrostatic loading where 6| = 6, = 3.

It has been proven that Equation (5.53) is identical to Equation (5.5) proposed
by Socie and Marquis, which agrees very well with experimental data for fully
reversed combined in-phase normal and shear stresses. The most damaging
effect of torsion load on ductile materials is considered by scaling up the stress
tensor with a factor fgp > 1. The magnitude of the hydrostatic stress is scaled
down, which is in good agreement with distortion energy criterion. Furthermore,
brittle materials result in k=1 and fgp =1, which matches up with the normal
stress hypothesis.
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Example 5.3

The staircase method for fatigue limit testing was conducted on thin-walled
tubular specimens subjected to axial sinusoidal loading with R=—1 and R=0.
Two fatigue limits are found to be 6g r-_1 = 700 MPa and 6g g-o = 560 MPa.

1.
2.

Determine the material parameters used in the Findley theory.

Determine whether the component under the nonproportional loads as
shown in Figure 5.10 will survive for infinite life, using the critical plane
approach with the Findley damage parameter.

Determine whether the component under the nonproportional loads as
shown in Figure 5.10 will survive for an infinite life, using the critical plane
approach with the Gaier-Dannbauer damage parameter.

Solution

1.

Based on the applied axial stress (o), the normal and shear stresses (6o and Tp)
on a plane oriented at an angle 0 from a local x axis can be computed as follows:

Go = % + %sin(ZG) (5.55)
To= %cos(29) (5.56)

(ta + ko), o = l((sacosZB +o.ke(1+ sin29))

max 2 max
= %(\ [o? +K22_ + kchax> (5.57)

(a) For R=-1 loading, 64 = Gmnax=0gr-—1=700 MPa

<\/G§,R=—1 + kgﬁé,r{:q + kﬁ'GE,R:—1) =21 (5.58)

(b) For R=0 loading, 6, =0gr-0 =560 MPa and 6.x= 26¢r-0= 1120 MPa

(\/Gé,R=0 + (2k§05R=0)2 + 2k§GE,R=0) = ZTE (559)

Dividing Equation (5.58) by Equation (5.59) leads to

ke + /1 + k7 560 _ 4

2ke + 1/ 1+ (2ke)? 700

from the equation kg =0.23 and t¢ = 440 MPa.
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2. As shown in Figures 5.16 and 5.17, the inclination angles of interference
planes for Case A and Case B cracks, 0* and @*, are defined, respectively.
For the case of welded joints, the majority of cracks typically initiate along
the weld toes line. Therefore, Case B cracks at 6% = 0° along the weld toe line
are the cracks of interest, and critical planes into the surface will be searched.
For the damage assessment of Case B cracks at 0% = 0°, the normal stress and
shear stresses acting on an interference plane with an inclination angle of ¢* can
be determined by an appropriate stress transformation. In this case, the coordinate
transformation matrix [T] is modified by setting © = 0° and ¢ = @* + 90° as

cosO-sing  sinO-sing  cos@ cos@” 0 —sing”
[T]= —sin® cos6 0 | = 0 1 0 . (5.60)
—cos0-cosq —sinB-cos@ sing sing® 0 cos@”

Therefore, the stress state corresponding to a new coordinate system is

-
[G]X’y’z’ = [T] [G]xyz[T]
S -cos’ Q" T, "COs@’ O sing’ - cos@’
. . . e (5.61)
= Ty, COS @ o, Ty SINQ
e H * * e . * e s 2k
O, 'sin@ -cos@” T -sing o, -sin“@
As a result, the stress components on the interference plane are
e __ _e 2k
G, =0, -COS" @ (5.62)
e — € . *
Toy =Ty " COSQ (5.63)
e — € N * *
T, =0, -sSin@ -cos@". (5.64)

The two shear stresses on the specific plane can be combined to produce a
resultant shear stress on the plane. Since the direction and magnitude of the
resultant shear stress change with time, there is a need to determine the
critical shear stress plane at an angle y* with respect to the y" axis. As shown
in Figure 5.19(b), the magnitude of the resultant shear stress corresponding
to y* from 0° to 180° is then computed as follows:

T ='cz,y,cos lil* +1:§/:,sin:|1*. * o (5.65)
=T, cos@ cosy +0o, sin@ cos@siny.

Using Equations (5.62) and (5.65), the normal and shear stresses on
interference planes in every 20° increment are computed throughout the
loading history as described by 4 points, as illustrated in Table 5.2.
Actually every 5° increment should be used for actual practice, but the 20°

increment is adopted in this example for illustration. Maximum shear stress
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e

Table 5.2: Resultant Shear Stresses (T, .
on Interference Planes (0° < @* and y* <180°)

) and Normal Stresses (c7,,)

Point 1: 6, = —300 MPa; ‘ciy = —50 MPa; G;y = —90 MPa
6, =0MPa; 6; = —78.70 MPa; 65 = —311.30 MPa; V=0

e
Ty

Yr\@* 0 20 40 60 80 100 120 140 160
0 =50 —-47 -38 =25 -9 9 25 38 47
20 —47 =77 -87 -68 -26 26 68 87 77
40 —38 -98 124  -103 —40 40 103 124 98
60 =25 -107 =147 =125 —-49 49 125 147 107
80 -9 -103 —-152 -132 =52 52 132 152 103
100 9 -87 =139 124 —49 49 124 139 87
120 25 -60 —=109 -100 —40 40 100 109 60
140 38 -26 —66 —64 -26 26 64 66 26
160 47 11 =15 =21 -9 9 21 15 =11
Gl
-300 265 176 =75 -9 -9 =75 =176 =265

Point 2: 6;, =300 MPa; 'cf(y = —50 MPa; G;y =90 MPa
6: =311.30 MPa; G; =78.70 MPa; 6§ =0.0MPa; V=0

e
T

y*\p* 0 20 40 60 80 100 120 140 160
0 -50 —-47 -38 =25 -9 9 25 38 47
20 —-47 =11 15 21 9 -9 -21 -15 11
40 —-38 26 66 64 26 —-26 —64 —66 —-26
60 =25 60 109 100 40 —-40 —-100 —-109 —-60
80 -9 87 139 124 49 —-49 —-124 —-139 —-87
100 9 103 152 132 52 —-52 —-132 —152 —-103
120 25 107 147 125 49 —-49 —-125 —147 —-107
140 38 98 124 103 40 —-40 —-103 —124 —-98
160 47 77 87 68 26 —-26 —68 —-87 77
[
300 265 176 75 9 9 75 176 265

Point 3: ¢}, =300 MPa; ‘tiy =50 MPa; G;y =90 MPa
67 =311.30 MPa; 63 =78.70 MPa; 65 =0.0MPa; V=0

e
Ty

y*\e* 0 20 40 60 80 100 120 140 160

0 50 47 38 25 9 -9 -25 -38 —-47
20 47 77 87 68 26 —26 —68 —-87 =77
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Table 5.2: —Cont’d
Point 3: ¢;, =300 MPa; 'cf(y =50 MPa; G;y =90 MPa
67 =311.30 MPa; 6, =78.70 MPa; 65 =0.0 MPa; V=0

Ty
40 38 98 124 103 40 —40 -103 -124 -98
60 25 107 147 125 49 —-49 -125 -147 =107
80 9 103 152 132 52 =52 -132  —-152 -103
100 -9 87 139 124 49 —-49 -124  -139 -87
120 =25 60 109 100 40 —40 -100 —109 —60
140 —38 26 66 64 26 —26 —64 —66 —26
160 —47 =11 15 21 9 -9 =21 -15 11

[
300 265 176 75 9 9 75 176 265

Point 4: 6, = —300 MPa; ‘ciy =50 MPa; 6;), = —90 MPa
65 =0MPa; 6, = —78.70 MPa; 65 = —311.30 MPa; V=0

Ty
y*\e* 0 20 40 60 80 100 120 140 160
0 -50 47 38 25 9 -9 -25 -38 —-47
20 47 11 =15 =21 -9 9 21 15 -1
40 38 —26 —66 —64 —26 26 64 66 26
60 25 -60 -109 -100 —-40 40 100 109 60
80 9 -87 —-139 124 —49 49 124 139 87
100 -9 -103 =152 -132 =52 52 132 152 103
120 =25 =107 =147 =125 —-49 49 125 147 107
140 —38 -98 -124  -103 —40 40 103 124 98
160 —47 —77 —87 —68 —26 26 68 87 77

co
-300 265 176 =75 -9 -9 =75 =176 =265

amplitudes, maximum normal stresses, and Findley’s shear stress amplitudes

with kg = 0.23 on various interference planes are summarized in Table 5.3. It is
is located on two
planes (¢* = 20° and 140°) with the magnitude of 193 MPa. The factor of safety

found that the maximum Findley stress amplitude (g, g,..)

is then computed as 2.3, based on the ratio of T¢ to (¢ giey.)

max

max”’

3. According to the Gaier-Dannbauer damage parameter in the critical plane
approach, it is necessary to determine the scaled normal stress on the interference
plane. By definition, k= 06gr-_1/Te = 1.59 is obtained from the two given fatigue
limits and V =0 is found for each stress point in Table 5.2. The normal stresses at
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e

s max)» Maximum Normal Stresses

Table 5.3: Maximum Shear Stress Amplitudes (t
(oo ), and Findley’s Equivalent Shear Stress Amplitudes (¢4, .)

on Interference Planes (0° < ¢* and y* <180°)

e

T

a,max

y\o* 0 20 40 60 80 100 120 140 160
0 50 47 38 25 9 9 25 38 47

20 47 77 87 68 26 26 68 87 77

40 38 98 124 103 40 40 103 124 98

60 25 107 147 125 49 49 125 147 107

80 9 103 152 132 52 52 132 152 103
100 9 103 152 132 52 52 132 152 103
120 25 107 147 125 49 49 125 147 107
140 38 98 124 103 40 40 103 124 98
160 47 77 87 68 26 26 68 87 77
.. 50 107 152 132 52 52 132 152 107
e 300 265 176 75 9 9 75 176 265
Tdea 119 168 193 150 54 54 150 193 168

Table 5.4: Normal Stresses 67, and Maximum Normal Stresses o,
on Interference Planes (0° < ¢* < 180°)

e

O,y

Point\gp* 0 20 40 60 80 100 120 140 160
1 =300 -265 -176 =75 -9 -9 =75 -176 —265

2 300 265 176 75 9 9 75 176 265

3 300 265 176 75 9 9 75 176 265

4 =300 -265 -176 =75 -9 -9 =75 -176 —265

6;’x’,max
300 265 176 75 9 9 75 176 265

each stress point on every interference plane are tabulated in Table 5.4, where the
maximum normal stress of 300 MPa is found on the plane of ¢* =0°. So the
maximum scaled normal stress is determined

[(1 +(1- |<)v) : ij/} =300 MPa < Gg ey = 700 MPa

and the factor of safety is obtained as 2.3, based on the ratio of 700 MPa to
300 MPa.
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Dang Van’s Multiscale Approach

This is a multiscale fatigue initiation approach based on the use of mesoscopic
stresses instead of engineering macroscopic quantities. The fatigue initiation pro-
cess can be described by three different scales: the microscopic scale of disloca-
tions, the mesoscopic scale of plastic slip bands localized in some crystalline
grains, and the macroscopic scale of short crack development. The macroscopic
scale is characterized by an element of finite element mesh.

As shown in Figure 5.21, Dang Van (Dang Van et al., 1982; Dang Van, 1993)
postulated that for an infinite lifetime (near the fatigue limit), crack nucleation in
slip bands may occur in the most unfavorably oriented grains, which are subjected
to plastic deformation even if the macroscopic stress is elastic. Residual stresses
in these plastically deformed grains will be induced due to the restraining effect
of the adjacent grains.

Mesoscopic State

€meso,ij ///

Omeso,ij

T

Macroscopic State

e
Eij Oij

Figure 5.21
Stresses and strains in the macroscopic and mesoscopic states.
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Dang Van also assumed that an elastic shakedown in a macroscopic state occurs
before the fatigue limit and that both mesoscopic and macroscopic plastic strains
and residual stresses are stabilized. Note that a material is said to exhibit elastic
shakedown, corresponding to stabilization of elastic responses, if yielding does not
occur during unloading and subsequent reloading is wholly elastic.

The theory assumes that for an infinite lifetime, the macroscopic elastic strain
tensor (¢°(t)) is the sum of the mesoscopic elastic and plastic strain tensors in the
grain (g7 (t), € (t)). It is expressed as follows:

meso —meso

E°(8) = Eeso (1) + Efeso (1) (5.66)
By definition,
o(t)

(t) === 5.67
)= (5.67)

Oimeso (1)
(5] t — —meso 5,68
gmeso( ) Emeso ( )

where

E =the Young’s modulus in macroscopic scale
Eneso =the Young’s modulus in mesoscopic level
o(t) and o, (t) = the macroscopic and mesoscopic stress tensors,
respectively

Then, by substituting Equations (5.67) and (5.68), Equation (5.66) can be rewrit-
ten in term of stresses as

Omeso (t) = %g(t) - Emesogfneso' (569)

Assuming % =1, Equation (5.69) becomes

Gmeso (t) = g(t) - Emesogfneso = g(t) + p* (5.70)

where a local residual stress tensor in the mesoscopic scale (p*) is introduced by

p* = - Emesogf)neso (5.71)

and p* is a deviatoric tensor because it is proportional to the mesoscopic plastic
strains.
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It should be noted that both p* and € . are stabilized and independent of time

F Emeso
after a number of loading cycles. Also the mesoscopic hydrostatic pressure

Omeson () is equal to the macroscopic one:

gmeso,h = (Qi DI

(5.72)

Op =

W | =

Thus, the same relation between the instantaneous macroscopic deviatoric stress
tensor S(t) and mesoscopic tensor s, (t) can be applied:

Smeso (1) =S(t) +p" (5.73)
Dang Van assumed p"= —a" where o is the center of the smallest von
Mises yield surface, Gy, that completely encloses the path described by the
macroscopic deviatoric stress tensor. p* is calculated by changing o, the back
stress tensor, to minimize the maximum of the von Mises stresses calculated from
the macro deviatoric stress tensor with respect to the updated yield surface
center.

An initial guess or a starting point for the yield surface center is calculated as
the average of the macro deviatoric stress points. It should be noted that for pro-
portional loading, o is the average of the macro deviatoric stress points.

The min-max solution process can be expressed as follows:

o = min {mle oym(t) } (5.74)

(5.75)

= \/% [(Sn — o)’ + (S — 00)* + (S3 —(133)2+2<(512 — )’ + (Sa3 — 023)” + (S —0(31)2)]-
This min-max concept is depicted in Figure 5.22. Once o and p” are calculated,
the mesoscopic tensor s, (t) can be determined by Equation (5.73) and the
instantaneous mesoscopic shear stress can be calculated as

Tmeso (t) = % [Smeso,l (t) — Smeso,3 (t)] (576)
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where

Smeso.1(t) and Spes0 3(t) = the largest and smallest mesoscopic deviatoric
principal stresses, respectively

The Dang Van criterion is constructed on a mesoscopic approach to fatigue
behavior on a critical shearing plane. It assumes that the mesoscopic shear stress
(Tmeso(t)) On a grain is responsible for crack nucleation in slip bands within a
grain and the mesoscopic hydrostatic stress (Gpeso,n(t)) Will influence the opening
of these cracks. The formula uses the mesoscopic shear stress and mesoscopic
hydrostatic stress to calculate an “equivalent” stress and compare it to a shear
fatigue limit (tg).

As shown in Figure 5.23, no fatigue damage will occur if

max{mtax |Tmeso (t) + aDVGmeso,h (t) |} S TE (577)

where

apy = the hydrostatic stress sensitivity

Sij(ts)

Figure 5.22
The smallest von Mises yield surface enclosing all the macroscopic
deviatoric stress tensors.
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» Omeso,h

%
Tmeso(t) = & Omeso,n(t) =T

Figure 5.23
The Dang Van criterion for success or failure.

>~

A safety factor for each time instant t can then be defined as follows:

TE
SF(t) = . 5.78
( ) Tmeso (t) + (xDVo-micro,h(t) ( )

Example 5.4

The staircase method for fatigue limit testing was conducted on thin-walled
tubular specimens subjected to axial sinusoidal loading with R=—1 and

R =0. The two fatigue limits (in amplitude) are found as 6g gr-_1 of 700 MPa
and 6g r-o of 560 MPa.

1. Determine the material parameters used in the Dang Van multiscale approach.

2. The structural component is subjected to complex multiaxial loading resulting
in the macroscopic normal stress histories at a critical location as illustrated
in Figure 5.24. It is an engineering requirement that this component should
have a minimum safety factor of 1.5. Determine whether this component
would meet the engineering regulation, using the Dang Van multiscale
approach.

3. If the component under the nonproportional macroscopic stressing as shown
in Figure 5.10 will survive for an infinite life, please determine whether this
component would meet the same engineering regulation, using the Dang Van
multiscale approach.
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Figure 5.24

Macroscopic plane stress histories at a critical finite element.

Solution

1. For a given fatigue limit of 700 MPa with R=—1 loading, at a peak stress
point denoted at a time instant t;, the macroscopic stress, hydrostatic, and
deviatoric tensors are

700 0 0 2333 0 0
o(ty)=] 0 0 0| o(t;)=| 0 2333 0
0 00 0 0 2333
466.7 0 0
S(t1)=c(ti) —op(t))=| 0 —-233.3 0
0 0 —233.3

Similarly, at a valley stress point denoted at a time instant t, the macro-
scopic stress, hydrostatic, and deviatoric tensors are

—-700 0 O] —233.3 0 0
o(t)= 0 0 0| o(t)= 0 —233.3 0
0 0 0] 0 0 —233.3
[ —466.7 0 0
S(ta) =o(ty) —oy(t2) = 0 2333 0
|0 0 233.3
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Due to proportional loading, the center of the final yield surface is equal to
the average deviatoric stresses from t; to t;. That means

S(t1) +5(t)

* _ =

- 2

o O O
o O O
o O O

Thus, the macro residual stress tensor becomes

o O o

0 0
E*=_g*= 0 0
0 0

~—

The mesoscopic parameters, such as s....;(t1), Gmeso,n(t1), and Tmeso(t1), are

determined as follows:

466.7 0 0
§meso(t1 ) = §(t1 ) + B* §meso(t1 ) = 0 —233.3 0
0 0 —233.3
o,+0,+0, 7004+0+40
O meso,h (t1 ) = Y = +0+ =233.3
3 3
Toneso (61) = % (466.7 — (—233.3)) = 350.

Similarly, s, .0 (€2), Omeso,n(t2), and Trmeso(t2) can be obtained as follows:

_4667 0 0
suu(t)=| 0 2333 0
0 0 2333
Ormecon (t2) = @ = 2333  Treolts) = %(233.3 — (~466.7)) = 350.

Next, for a given fatigue limit of 560 MPa with R =0 loading, the
macroscopic stress, hydrostatic, and deviatoric tensors at the peak and valley
stress points denoted by t; and t, are

1120 0 0 373 0 0
s(t)=] 0 0 0| oft)=| 0 373 0
0 00 0 0 373

747 0 0
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0 0 O 0 0 O
o(t))=10 0 0 oh(t2)=10 0 0
0 0 O 0 0 O

0 0 O

S(tz) =o(tz) —o,(tz2)=|0 0 0O

0 0 O

Due to proportional loading, the center of the final yield surface is equal to
the average deviatoric stresses from t; to t;. That means

3735 0 0
o = 57@;5(”) =| 0o -185 0
0 0 -1865

The macro residual stress tensor p* becomes

—-373.5 0 0
pr=—-a= 0 186.5 0
0 0 186.5

The mesoscopic parameters such as s,...,(t1), Omeson(t1), and Tmeso(t1) are
determined as follows:

406.5 0 0
Smeso(t1) =S(t)+p" s (t)=] 0  -153.5 0
0 0 -1535

cmeso,h(q):%ﬁns Toneso (t1) = & (406.5 — (=153.5)) = 280.

1
2

Similarly, Smeso,iji(£2), Omeso,n(t2), @aNd Tmeso(t2) can be obtained as follows:

-373.5 0 0
Smeso (tz) =§(t2) +B* §meso (t2) = 0 186.5 0
0 0 186.5
0+0+0 1
Omesoh(t2) = % =0 Tmesolt2) = 3(186.5 —(=373.5))=279.5.

The two mesoscopic parameters determined from the two fatigue limits and
located in the first quadrant of the Gpesoh — Tmeso diagram are used to
determine the Dang Van failure criterion. They are (Gmeso,n(t1) =233.3,
Trmeso(t1) = 350) and (Gmeso,n(t2) = 373.5, Tmeso(t2) = 280), from R=—1 and
R =0 loading, respectively. Consequently, the two constants of the fatigue
limit criterion (app = 0.5 and tg =467 MPa) are obtained.
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2. Three macroscopic stress tensors in time are considered to define the
complete nonproportional stress history in Figure 5.24. The three points are:

0 00 900 0 180 900 0 —180
o(ty)=[0 0 O o(ty) = 0O 0 O o(tz)= 0 0 0
000 180 0 0 -180 0 0

[0 0 O 0 00O
Atty,o,(ty)=[0 0 0| S(ty)=|0 0 0O

[0 0 0 0 0 0

(300 0O 0 600 0 180
Atty),o,(t;)=| 0 300 O S(tb)=] 0 =300 0

| 0 0 300 | 180 0 =300

(300 © 0 ] 600 0 —180
Attz,0,(t3)=| 0 300 O S(t) = 0 —300 0

| 0 0 300 | -180 0 =300

The initial guess of a center of the yield surface is equal to the average
macroscopic deviatoric stresses from t; to ts.

400 0 0
Xieiat = | O —200 0
0 0 -200

The von Mises stresses at t;, t,, and t3 are calculated as 600 MPa, 432.7 MPa,
and 432.7 MPa, respectively. The maximum von Mises stress is 600 MPa
calculated on the macro deviatoric stresses with respect to the initial guessed
yield surface center. By minimizing the maximum von Mises stress during
several iterations, the final yield center solution can be obtained as

follows:

336 0 0
a'=| 0 —168 0
0 0 —168

The final corresponding von Mises stresses at tq, tp, and t; are 504 MPa,
504 MPa, and 504 MPa. Thus, the macro residual stress tensor is

=336 0 0
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Finally, the mesoscopic stress tensors at t; are

336 0 0
Smeso()=S(O)+p" s (u)=| 0 168 0
0 0 168

(0)=0  Tesolts) = (168—(-336)):252

[SUR PN
N —

Gmeso,h (t‘l ) =

252 +0.5-0=252 <467
467

SF(e1) = 555 = 1.85> 1.5 (meeting the engineering requirement).
At ty,

600 0 180 ] -336 0 0
Smeso(t2)=| 0 =300 0 |+| 0o 168 0

| 180 0 =300 | 0 0 168

[264 0 180 ]

=( 0 —-132 0
180 0 —132]

Smeso,1 (tz) = 3336 smeso,Z (tz) = —1 32 Smeso,3 (tz) = —201 6

Gmeso (£2) = = (900) =300 Tpneso(tz) = = (333.6 — (—201.6)) =267.6

(SNSRI
N|—=

267.6+0.5% (300) =417.6 <467

SF(t;) = %776 =1.12<1.5(NOT meeting the engineering requirement).
At ts,
[ 600 0 —180] -336 0 0
Smeso (t3) = 0 -300 0 + 0 168 0
—-180 0 =300 | 0 0 168

264 0 -180]
= 0 -132 0
| —180 0 —132]

Simeso,1 (t3) =333.6 Sieso,2 (t3) =-132 Stmeso,3 (t3) = -201.6

(900) =300  Tpeso(ts) = = (333.6 — (—201.6)) =267.6

W=
N =

Gmeso,h (t3) =
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267.6+0.5x(300)=417.6 <467

SF(t3) = 467 _112<1.5 (NOT meeting the engineering requirement).

417.6

In conclusion, this component subjected to the nonproportional loading will
not meet the engineering requirement because the minimum safety factor of
1.12 found at both time instant t, and t; is less than the required 1.5.

3. Four macroscopic plane stress tensors in time are considered to define the
complete nonproportional stress history in Figure 5.10. Following the same
calculation procedures as stated in step 2, the mesoscopic stresses and the
factors of safety are tabulated in Table 5.5. It therefore is concluded that this

Table 5.5: Output of Mesoscopic Stresses Calculation Procedures (Stress Unit in MPa)

Macroscopic Stresses
Oyx Gyy Txy Gz, Gh
1 -300 -90 -50 0 -130
2 300 90 -50 0 130
3 300 90 50 0 130
4 -300 -90 50 0 -130
Macroscopic Deviatoric Stresses and von Mises Stress
Sex S,y S.. Sy S« Syz Gvm
1 -170 40 130 -50 0 0 280
2 170 -40 -130 -50 0 0 280
3 170 -40 -130 50 0 0 280
4 -170 40 130 50 0 0 280
o, 0 0 0 0 0 0
o* 0 0 0 0 0 0 280
Mesoscopic Deviatoric Stresses
Smeso,><>< Srneso,yy Smeso,zz Smeso,xy Smeso,xz Smeso,yz
1 =170 40 130 =50 0 0
2 170 -40 -130 -50 0 0
3 170 -40 -130 50 0 0
4 =170 40 130 50 0 0
Principal Stresses, Shear Stresses, Hydrostatic Stresses, and SF
Smeso,‘l Smeso,Z Smeso,3 Tmeso Gmeso,h SF
1 130 51.3 -181.3 155.6 -130 5.15
2 181.3 -51.3 -130.0 155.6 130 2.11
3 181.3 -51.3 -130.0 155.6 130 2.11
4 130 51.3 -181.3 155.6 -130 5.15
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component under the nonproportional loading would survive for infinite
life because the minimum safety factor of 2.11 exceeds the engineering
requirement (1.5).

Summary

Based on the assumption there is very little plastic deformation in the HCF
regime, the pseudo or fictitious stress components calculated from a linear elas-
tic FEA can be used to estimate the fatigue damage parameter and predict life
from the synthesized pseudo stress-life curve.

Multiaxial cyclic loading can be classified into two categories: nonproportional
and proportional loading. Nonproportional loading is the loading path that causes
the principal stress axis or the maximum shear stress axis of a local element to
rotate with time and with respect to a local coordinate system. On the other hand,
proportional loading will result in a stationary principal stress axis or a maximum
shear stress axis.

Nonproportional loading causes equal or more damage than proportional loading,
based on the same von Mises stress range. The cause of this phenomenon has
been explained by an additional nonproportional strain hardening due to slip beha-
vior of the material. The severity of nonproportional hardening is dependent on
the ease on which slip systems interact and the type of loading path.

Numerous stress-based multiaxial fatigue damage models have been developed and
can be categorized into four different classifications: empirical formula approach,
equivalent stress approach, critical plane approach, and Dang Van multiscale
approach.

The empirical formula approach is referred to as the best-fit equation to the
experimental fatigue limit data tested under combined normal and shear stresses,
and it is only applicable to the biaxial stress state in a fully reversed loading
condition.

The equivalent stress approach, based on either the von Mises or Tresca yield the-
ory, was originally developed to define fatigue limit criteria of various materials
under proportional loading. All the equivalent stress formulations are limited to fati-
gue assessment under proportional loading, except for the two methods introduced
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by Sonsino (1995) and Lee et al. (2007) where the von Mises equivalent
stress formula has been modified to account for the nonproportional hardening
effect.

The critical plane approach provides a physical interpretation of the damage
initiation process. The crack orientation can be identified by searching for the
most damaging plane among numerous potential crack initiation planes, where
the damage parameter is usually defined as a function of the shear and normal
stresses on such a plane. However, based on the pseudo stress input excluding
strain hardening in the material modeling, it is very challenging to account for
the nonproportional hardening effect on the fatigue damage.

The Dang Van multiscale approach is a popular approach for assessing meso-
scopic fatigue damage at the fatigue limit. It is assumed that an elastic shakedown
in a macroscopic state occurs before the fatigue limit and that both mesoscopic
and macroscopic plastic strains and residual stresses are stabilized.
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The local strain-life method is based on the assumption that the life spent on
crack nucleation and small crack growth of a notched component is identical to
that of a smooth laboratory specimen under the same cyclic deformation (i.e.,
strain controlled material behavior at the local crack initiation site).

Metal Fatigue Analysis Handbook
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Figure 6.1
Concept of the local strain-life approach.

Using this concept as illustrated in Figure 6.1, it is possible to determine the fati-
gue initiation life of a cyclically loaded component if the relationship between
the localized strain in the specimen and fatigue life is known. This local strain
versus life relationship, typically represented as a log-log plot of strain ampli-
tude versus fatigue life in reversals, is generated by conducting cyclic axial
strain-controlled tests on smooth, polished material specimens.

Figure 6.2 shows configurations and dimensions of the commonly used material
specimens (round bar and flat plate). Cyclic strain-controlled testing is recom-
mended because the material at the stress concentration area in a component
may be subjected to cyclic plastic deformation even when the bulk of the com-
ponent behaves elastically during cyclic loading. The experimental test programs
and data reduction technique for cyclic and fatigue material properties can be
found elsewhere (Lee et al., 2005) and are excluded from this chapter.

This chapter presents the local strain—life method in a uniaxial state of stress in
the following sequences: estimates of cyclic stress—strain and fatigue properties,
mean stress correction models, and notch stress and strain analysis.
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25.4 mm, radius

6.0 mm, diameter 4
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19.05mm - v
) 108 mm i

(a)

8.0 mm, radius

F—\2.0 mm¢N -

lat Specimen 12.7mm
SV S W P
7.83mm
’ 76.2mm ,
(b)
Figure 6.2

Fatigue test specimen (a) configurations and (b) dimensions (provided by
Dr. Benda Yan of ArcelorMittal R&D).

Steady State Cyclic Stress—Strain Relation

For most metals, fatigue life can be characterized by steady-state behavior
because for the constant strain-amplitude controlled tests, the stress—strain rela-
tionship becomes stable after rapid hardening or softening in the initial cycles,
that is, about the first several percent of the total fatigue life. The cyclically stable
stress—strain response is termed as the hysteresis loop, as illustrated in Figure 6.3.

The inside of the hysteresis loop defined by the total strain range (Ag) and total
stress range (Ac) represents the elastic plus plastic work on a material under-
going loading and unloading. Usually, the stabilized hysteresis loop is taken at
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Ae
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AeP |, Ae®

v

A
Y

Figure 6.3
Nomenclature for a hysteresis loop.

half of the total fatigue life. It is assumed that the total strain range can be
decomposed into elastic and plastic strain components (Ae®, AeP), which can be
expressed as follows:

Ae = Ae® + AeP (6.1)
where
E = modulus of elasticity
Ac
Aef = —. 6.2
&€=7 (6.2)

When a family of stabilized hysteresis loops created by various strain amplitude
levels is plotted on the same c-e coordinate, a cyclic stress—strain curve can be
constructed by the locus of the loop tips, as shown in Figure 6.4, and expressed
using the familiar Ramberg—Osgood equation:

1/m’
e=e+el =24 (1%) 6.3)
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where

K’ =the cyclic strength coefficient
n’ =the cyclic strain hardening exponent
" (superscript) = the parameters associated with “cyclic behavior” to
differentiate them from monotonic behavior parameters

The cyclic yield stress (6y) can be defined as the stress at 0.2% of plastic strain
on a cyclic stress—strain curve.

Masing (1926) proposed that the stress amplitude (c,) versus strain amplitude (g,)
curve follows the same expression as described by the cyclic stress—strain curve:

I/’
o= eitel = 2+ () (6.4)

K/

Strain

2002190 si (140 MPa)

Figure 6.4
Construction of a cyclic stress—strain curve.
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where
e; and €’ =the elastic and plastic strain amplitudes, respectively

The Masing assumption is valid for homogeneous materials that have symmetric
behavior in tension and compression. Equation (6.4) can be rewritten in terms
of strain range (Ae) and stress range (Ac) as follows:

Ae _ Ae° | A _ Ao ( Ac )””'
2t 2 L2 20, (=22) 6.5
2 2 * 2 2E * 2K’ 65)
Equation (6.5) can be further reduced to the following equation:
Ac Ac\'™
Ae=£942(22)" 6.6
= E T\ (6.6

Note that for a given strain increment, the stress increment with respect to a
reference turning point can be calculated from Equation (6.6), and vice versa.
Equation (6.6) has been widely used for describing and tracking the hysteresis
behavior under variable amplitude loading conditions.

When a material response returns back to its previously experienced deforma-
tion, it will remember the past path to reach such a state and will follow this
path with additional increase in deformation. This is the so-called “memory”
effect observed in materials undergoing complex loading histories, which should
be considered and can be accounted for by the proper choice of a reference turn-
ing point. For example, as can be seen in Figure 6.5, in the third reversal (from

1,5

-
=

Figure 6.5
[llustration of material memory.
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Point 3 to Point 4), Point 1, instead of Point 3, should be used as a reference
point after the smaller reversal from Points 3 to 2 is closed, and this loading
reversal will follow the path from Points 1 to 4.

Fully Reversed, Constant Amplitude Strain-Life Relation

Based on Morrow’s proposal (1965), the relation of the total strain amplitude
(e,) and fatigue life to failure in reversals (2Ny) can be expressed in the follow-
ing form:

g, =l +el = % (2N,)° +€;(2N,)¢ (6.7)

where

o =the fatigue strength coefficient
er=the fatigue ductility coefficient
b =the fatigue strength exponent
¢ =the fatigue ductility exponent

The previous equation is called the strain-life equation for the zero mean stress
case, and is the foundation of the local strain-life approach for fatigue. This
equation is a summation of two separate curves for elastic strain amplitude ver-
sus life (e; —2Ny) and for plastic strain amplitude versus life (€ —2Ng).

Dividing the strain-life equation (Basquin, 1910) by E, the elastic strain ampli-
tude versus life curve can be obtained as follows:

SezAsezﬁ
a 2 E

= %oy 6.8)

and the plastic strain amplitude versus life curve, simultaneously developed by
Manson (1953) and Coffin (1954), is expressed as

= ef(2N;)". (6.9)
Both Equations (6.8) and (6.9) are fitted to the experimental data for stress

versus life and plastic strain versus life, in which the fatigue life 2Ny is chosen
as the independent variable. Eliminating 2N¢ between Equations (6.8) and (6.9)
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and comparison with the plastic strain amplitude in Equation (6.4) leads to the
following estimates:

[ellen

(6.10)

o1
(en)"

When plotted on log-log coordinates, both curves become straight lines as
shown in Figure 6.6, where the transition fatigue life in reversals (2Nt) is
defined as the intersection of the elastic and the plastic straight lines. A transi-
tion fatigue life occurs when the magnitude of plastic strain amplitude is equal
to that of elastic strain amplitude.

K =

6.11)

0.01
N LTI L [T
R50 Total strain
NI [ [T/t 1 [=-—-= R90C90 Total strain | |
N. e} Experimental data [
WM R50 Elastic ]
\ \\ ————— R90C90 Elastic
g . \'i\ R50 Plastic H
= X [ —e—— R90C90 Plastic
€ 14 NN\G
I Plastic Line \j\
[0) \
g N
2 \ K :\‘
g' \ NN
< ~—__ \ \Q\
c ™~ [ TN .
= T N
% \._/&‘ \~ o SN
. ~ T~ G’\
\ \,~~.\\ ~N Nt o
. ~.I ML
| . . ik ::T\~>\\
Transition Life |\ K =
T
\ Elastic Ling =~
0.001
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Fatigue Life (reversals)

Figure 6.6
Schematic of a total strain-life curve.
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The regime to the left of this point where fatigue life is less than the transition
fatigue life is considered the plastic strain dominant regime, the so-called low
cycle fatigue (LCF) regime. The regime to the right where fatigue life is higher
than the transition fatigue life is the elastic strain dominant regime, the high
cycle fatigue (HCF) regime.

Overall, steels with high hardness and ultimate tensile strength have lower tran-
sition fatigue life. Equating Equations (6.8) and (6.9) leads to the estimate of
the transition fatigue life as follows:

’ 1/(b—c)
INp = (ﬂE) . (6.12)

of

Estimate of Cyclic Material and Fatigue Properties

If there are no experimental strain—life fatigue data available, an estimate of cyclic
and fatigue behavior of a material can be helpful in the design stage. However,
the parameter estimation should not eliminate the need for real data. Lee and
Song (2006) reviewed and evaluated the existing estimation techniques (Muralid-
haran & Manson, 1988; Baumel & Seeger, 1990; Roessle & Fatemi, 2000; Meg-
giolaro & Castro, 2004) for cyclic and fatigue properties. They concluded that
for a given ultimate tensile strength (S,,), the uniform material law (Baumel &
Seeger, 1990) is recommended for both steels and titanium alloys and the med-
ians method (Meggiolaro & Castro, 2004), for aluminum alloys. Both the uniform
material law and the medians method are summarized in Table 6.1.

Several models have been proposed to estimate ultimate tensile strength from
hardness because there has been a strong correlation between hardness and
ultimate tensile strength. Again, Lee and Song (2006) reviewed most of them
and found that Mitchell’s equation (Mitchell, 1979) provides the best results
for both steels and aluminum alloys. His equation is defined as follows:

Stu(MPa) = 3.45HB (6.13)
where

HB = the Brinell hardness
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Table 6.1: Estimated Cyclic Material and Fatigue Properties Based
on the Uniform Material Law and the Medians Method

Material Titanium and Aluminum

Properties Steels' Aluminum Alloys’ Alloys?
of 1.55., 1.67S.,, 1.9S.,
b —-0.087 —0.095 —0.11
ef 0.59y 0.35 0.28
c —-0.58 —0.069 —0.066
K’ 1.65S, 1.61S., —
n’ 0.15 0.11 —

Notes: y =1 if S;E” <3x107° or w=1.375—125.OS;E’“ if S‘?‘”>3><10_3.

"Uniform material law
2Medians method

Strain-Life Equations with Mean Stress

Most experimental data support the fact that compressive mean normal stresses
are beneficial, and tensile mean normal stresses are detrimental to fatigue life.
However, it actually depends on the damage mechanism in the material; a shear
parameter sensitive material would not necessarily have a longer fatigue life if
the compressive stress is not aligned with the shear plane. This has been
observed under the condition when the fatigue behavior falls in the high cycle
fatigue regime where elastic strain is dominant.

In conjunction with the local strain—life approach, many mean stress correc-
tion models have been proposed to quantify the effect of mean stresses on
fatigue behavior. The modified Morrow equation (Morrow, 1968) and the
Smith—Watson—Topper model (Smith et al., 1970) are commonly used and
described in the following sections.

Morrow

Morrow (1968) originally presented his mean stress correction model in the
stress-life equation. By postulating the mean stress effect is negligible in the
LCF regime and can be modeled by the Morrow equation for its noticeable



Strain-Based Uniaxial Fatigue Analysis 225

effect in the HCF regime, the strain-life equation (so-called the modified Mor-
row equation) is then modified as follows:

G’f—cm(

= ONp)” + g4 (2N;)° (6.14)

€, =
where

6, =a mean stress

This equation has been extensively used for steels and used with considerable
success in the HCF regime. Walcher, Gray, and Manson (1979) have noted that
for other materials, such as Ti-6Al-4V, o} is too high a value for the mean
stress correction, and an intermediate value of k,,c¢ is introduced. Thus, a gen-
eric formula was proposed:

_ kmclf — O (

X = 2Np)® +ef(2Np)C. (6.15)

This equation requires additional test data to determine k,,c}.

Smith, Watson, and Topper

Smith, Watson, and Topper (1970) developed another mean stress correction
model, by postulating the fatigue damage in a cycle is determined by the pro-
duct of 0,,.x€2, Where 6, 1S the maximum stress. They stated that c.e, for a
fully reversed test is equal to 0,,.x€, for a mean stress test.

Later in 1995, Langlais and Vogel (1995) expressed this concept in the follow-
ing form:

Omax€a = Oarev €arev for Omax > 0 (616)

where G, ..y and g, ., are the fully reversed stress and strain amplitudes, respec-
tively, that produce an equivalent fatigue damage due to the SWT parameter.

The value of €, .., should be obtained from the fully reversed, constant ampli-
tude strain-life curve, Equation (6.7), and the value of o,., from the cyclic
stress—strain curve, Equation (6.3). The SWT parameter predicts no fatigue
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damage if the maximum tensile stress becomes zero and negative. The solutions
to Equation (6.16) can be obtained by using the Newton—Raphson iterative
procedure.

For a special case of Equation (6.16), where a material satisfies the compatibility
condition among fatigue and strain properties (i.e., n’ =b/c and K’ = oi/(ep™), the
maximum tensile stress for fully-reversed loading is then given by

Omax = 0a = 6§ (2N,)". (6.17)

Also by multiplying the fully reversed, constant amplitude strain-life equation,
the SWT mean stress correction formula becomes

7\ 2
(Gé) (2Np)™ + 6765 (2NF)™* G > 0. (6.18)

Omax€a =

Equation (6.18) has been the widely adopted SWT equation that has been suc-
cessfully applied to grey cast iron (Fash & Socie, 1982), hardened carbon steels
(Koh & Stephens, 1991), microalloyed steels (Forsetti & Blasarin, 1988), and
precipitation-hardened aluminum alloys in the 2000 and 7000 series (Dowling,
2009).

Example 6.1

A single active strain gage was placed at the notch root of a notched
plate in the loading axis of the plate. The notched component made of
SAE 1137 carbon steel has the following material properties:

E=209,000 MPa, K' = 1230 MPa, n’ =0.161, 6f= 1006 MPa,

b=-0.0809, £=1.104, c = -0.6207.
The recorded strain time history due to the applied load is repetitive; it is

shown in Figure 6.7. Determine the fatigue life of the SAE 1137 notched
plate by the following procedures:

1. Plot the cyclic stress—strain response (hysteresis loop).
2. Estimate the fatigue life of the notched plate with the SWT formula.

3. Estimate the fatigue life of the notched plate with the modified Morrow
equation.
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Figure 6.7
Variable amplitude strain-time history.
Solution

During cyclic loading, it is assumed that the material follows the cyclic
stress—strain curve for the initial loading and the hysteresis stress—strain
behavior for the subsequent loading reversals. The stresses at strain
increments of 0.0006 are calculated for the entire block. The stress—strain
curve up to point 1 is calculated using a cyclic stress—strain curve
equation (the Ramberg-Osgood equation):

+( )””/.

From then on all incremental reversals with respect to a reference turning

G
81 = — -
K

point are calculated based on Masing’s model:

1/n’
+2< ) .

Due to the difficulty of algebraically solving for 6 and Ac in these equations,
they are solved using the iterative solver tool in MS Excel. The resulting data
are tabulated in Table 6.2, where the reference turning points are listed to

Ao
2K’

__ Ao

E

Ae
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Table 6.2: Calculation Summary of True Stresses and Strains

Ref
Reversal € Ae Ac (MPa) ¢ (MPa) Point
0.0000 Reference Point 0.0 0
0.0006 0.0006 122.7 122.7 0
0.0012 0.0012 1951 1951 0
0.0018 0.0018 226.4 226.4 0
0 to 1 0.0024 0.0024 245.3 245.3 0
0.0030 0.003 259.0 259.0 0
0.0036 0.0036 269.7 269.7 0
0.0042 0.0042 278.6 278.6 0
0.0048 0.0048 286.2 286.2 0
0.0054 0.0054 292.9 292.9 0
0.0060 0.006 298.8 298.8 0
0.0060 Reference Point 298.8 1
0.0054 —0.0006 125.3 173.5 1
0.0048 —0.0012 245.7 53.1 1
0.0042 —0.0018 335.4 —-36.6 1
1to 2 0.0036 —0.0024 390.2 -91.4 1
0.0030 —0.003 426.2 —-127.4 1
0.0024 —0.0036 452.7 —-153.9 1
0.0018 —0.0042 473.5 -174.6 1
0.0012 —0.0048 490.6 —-191.8 1
0.0006 —0.0054 505.2 —-206.4 1
0.0000 —0.006 518.0 —-219.2 1
0.0000 Reference Point -219.2 2
0.0004 0.0004 83.8 —-135.4 2
0.0008 0.0008 166.8 -52.3 2
0.0012 0.0012 245.7 26.6 2
7 to 3 0.0016 0.0016 310.1 91.0 2
0.0020 0.002 356.6 137.5 2
0.0024 0.0024 390.2 171.0 2
0.0028 0.0028 415.6 196.5 2
0.0032 0.0032 435.8 216.7 2
0.0036 0.0036 452.7 233.5 2
0.0040 0.004 467.0 247.8 2
0.0040 Reference Point 247.8 3
0.0030 —0.001 207.4 40.4 3
0.0020 —0.002 356.6 —108.8 3
3 0.0010 —0.003 426.2 -178.4 3
to4 0.0000 —0.004 467.0 —-219.2 3
0.0060 Reference Point 298.8 1
—0.0010 —-0.007 536.2 —-237.3 1
—0.0020 —0.008 551.6 —-252.8 1
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Table 6.2: Cont’d

Ref
Reversal € Ae Ac (MPa) ¢ (MPa) Point
—0.0030 —0.009 565.1 -266.3 1
3104 —0.0040 —0.01 5771 -278.3 1
—0.0050 —-0.011 587.8 —-289.0 1
—0.0060 —0.012 597.6 —298.8 1
—0.0060 Reference Point —298.8 4
—0.0048 0.0012 245.7 -53.1 4
—0.0036 0.0024 390.2 91.4 4
—-0.0024 0.0036 452.7 153.9 4
—0.0012 0.0048 490.6 191.8 4
4to5 0.0000 0.006 518.0 219.2 4
0.0012 0.0072 539.4 240.6 4
0.0024 0.0084 557.2 258.4 4
0.0036 0.0096 572.4 273.6 4
0.0048 0.0108 585.7 286.9 4
0.0060 0.012 597.6 298.8 4

properly describe the material memory effect. From Point 1 to Point 2 (the
first reversal), Point 1 is the reference point. From Point 2 to Point 3 (the

second reversal), Point 2 is the new reference point. The next reversal from
Point 3 to Point 4 requires two parts: the first part from Point 3 to Point 2"
and the remaining part from Point 2' to Point 4.

Point 2' indicates the return path from Point 3 (a reference point), and is
equivalent to Point 2 on the hysteresis due to the material memory effect.
After closing the hysteresis loop from Point 3 to Point 2, Point 1 becomes
the reference point for the remaining reversal from Point 2' to Point 4.
Finally, Point 4 is the reference point for the last reversal Point 4 to Point 5.
The calculated stresses and strains for all the reversals are tabulated in
Table 6.2, which are also used to plot the hysteresis loop of the single
block cycle, shown in Figure 6.8.

The next step is to extract the hysteresis loops and identify the maximum
and minimum stress and strain points for each loop so these data could
be entered into a damage calculation. Please note that the three-point

rainflow cycle counting technique can be used to check the identified

hysteresis loops. Using this information, the Smith-Watson-Topper and
the modified Morrow formulas are used to evaluate the number of block
cycles under which this component will survive.
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Figure 6.8
Simulated hysteresis loops for the given strain time history.

For each counted cycle, an individual damage number is calculated by
employing the linear damage accumulation rule, which is also known as
the Palmgren-Miner linear damage rule (Palmgren, 1924; Miner, 1945).
The total damage D is defined as:

D=3 (6.19)

where

n; = the number of applied cycles to a constant stress amplitude
kn = the total number of the stress blocks
N¢,; = the so-called fatigue life as the number of cycles to failure calculated
from either the modified Morrow equation or the SWT model
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Table 6.3: Summary of Damage Calculation Based on the SWT Parameter

O max O min Nf
n; €max €min (MPa) (MPa) €, (cycles) d;
1 0.004 0.000 368.3 -317.7 0.002 194303 5.15E-6
1 0.006 —0.006 497.6 —497.5 0.006 4476 2.23E-4

2d; per block = 2.28E-4
# of blocks to failure = 4400

Table 6.4: Summary of Damage Calculation Based on the
Modified Morrow Parameter

O max G min Om NF
n; B Bt (MPa) (MPa) (MPa) £ (cycles) d;
1 0.004 0.000 368.3 —=317.7 253 0.002 211905 4.72E-6
1 0.006 —0.006  497.6 —497.5 0.005 0.006 4835 2.07E-4

Xd; per block = 2.12E-4
# of blocks to failure = 4700

The number of repeats of the given load time history (the number of
blocks) can be estimated by assuming failure occurs when D =1. The
results of the SWT and modified Morrow damage calculations and life
predictions are tabulated in Tables 6.3 and 6.4, respectively.

Notch Analysis

Notch analysis is referred to as a numerical analysis procedure to estimate the
local stress—strain response at a notch root (a stress concentration site) based on
the pseudo (fictitious) stress time history from a linear elastic finite element ana-
lysis (FEA). For a component with a well-defined notch geometry and config-
uration, the pseudo stress (6°) can also be obtained by the product of the elastic
stress concentration factor (K,) and nominal stress (S).

There have been numerous efforts devoted to the development of notch analyses
for expeditious stress—strain calculations. Among these, Neuber’s rule (Neuber,
1961) and Molsky—Glinka’s energy density method (Molsky & Glinka, 1981)
have been widely used and will be discussed in the following sections.
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Neuber

Neuber (1961) analyzed a grooved body subjected to monotonic torsional loading
and derived a rule for nonlinear material behavior at the notch root. Neuber’s
paper was written in terms of shear parameters only. Others subsequently ext-
ended its meaning for normal stress and strain terms. It is observed, as shown in
Figure 6.9, that after local yielding occurs, the local true notch stress (o) is less
than the pseudo stress predicted by the theory of elasticity and the local true
notch strain (g) is greater than that estimated by the theory of elasticity.

Normalizing the local true notch stress with respect to the nominal stress
(S) and the true notch strain to the nominal strain (e) leads to the true stress
concentration (K,) factor and the true strain concentration (K,) factor, respec-
tively. Neuber then proposed a hypothesis that the elastic stress concentration
factor is the geometric mean of the true stress and strain concentration factors;
that is,

K, = vK; - K,. (6.20)
Strain
€
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Calculated
Ge
20, :‘/ 2ey L
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N e—
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Figure 6.9
Stresses (a) and strains (b) at a notch.
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Squaring both sides of Equation (6.20) leads to the following famous Neuber
expression:

oe = K’ Se. (6.21)
The physical interpretation of the Neuber rule is shown in Figure 6.10 (note that
for the graphical illustration, both sides of Equation (6.21) were divided by 2).

During cyclic loading, it is assumed that the material follows the cyclic stress—
strain curve for the initial loading and the hysteresis stress—strain behavior for
the subsequent loading reversals. Therefore, in terms of the initial cyclic stress—
strain curve, the Neuber equation can be written as

cie; = KSe (6.22)
and, in terms of the hysteresis stress—strain curve, as
AcAe = K}ASAe (6.23)

where the subscript 1 in Equation (6.22) refers to the initial cyclic loading
condition.

Equations (6.22) and (6.23) represent the equations of a hyperbola for given K
and nominal stress—strain data. The right side of the equation is often referred to

Strfss Stress—Strain Curve Based
on Elastic Behavior
KeS |- —
P B Y s ,/<
/ True Stress—Strain
Curve
L
i
A
o » Strain
Kte €
Figure 6.10

Interpretation of the Neuber model.
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as Neuber’s constant. To solve for the two unknowns o; and €; or Ac and Ae,
an additional equation for cyclic material behavior is required. Depending on
the nominal stress—strain behavior, the Neuber equation will be discussed.

Nominally Elastic Behavior

When the bulk of a notched component behaves elastically and plasticity takes
place locally at the notch root (called nominally elastic behavior), the following
Neuber equations hold:

For the initial cyclic stress—strain curve

1
g = % + (%) . (6.25)
For the hysteresis stress—strain curve
Ae = AES (6.26)
1/n’
ae =29 +2(59) (6.27)

where

S; =the nominal stress for initial loading

e, =the nominal strain for initial loading

o1 =the local true notch stress on the initial cyclic loading curve
€1 =the local true notch strain on the initial cyclic loading curve
Ae = the nominal strain range
AS =the nominal stress range

Substituting the elastic nominal stress—strain and the local cyclic stress—strain
relations—Equations (6.24) through (6.27)—into the Neuber equations (Equa-
tions (6.22) and (6.23)) results in the following equations:

2

K/

o (61)”"' _ (KS1)® _ (o)) (6.28)

E O E _ E
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and

(Ac)’ Ao\ (KAS)®  (Ac®)
~ 2 42.A ( > = = . 2
E %K E E (6.29)
Given K, and nominal stress or the pseudo stress data, these equations for the
local stress can be solved by using the Newton—Raphson iteration technique.
Once the local stress is determined, Equation (6.25) or (6.27) will be used to
obtain the corresponding local strain value.

As a rule of thumb, the assumption of the nominally elastic material behavior

works well when nominal stress is below 30% of the cyclic yield stress.

Nominally Gross Yielding of a Net Section

When nonlinear net section behavior is considered, the nominal stress (S) and
nominal strain (e) need to follow a nonlinear material relationship and Neuber’s
rule has to be modified too. Seeger and Heuler (1980) proposed the modified
version of a nominal stress S™ to account for the general yielding:

sM=g§ <5> (6.30)

where K, is known as the limit load factor or the plastic notch factor, and is
defined as

~
[
&

(6.31)

where

L, and L, =the loads producing first yielding and gross yielding of a net
section, respectively

A finite element analysis with an elastic-perfectly plastic material can be utilized
to determine L, and L,. The modified stress and strain (SM and e™) follow the
cyclic stress—strain equation:

1/n’
M_SM [/sM
=2 4 . 6.32
© T E <K> 6.32)
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Since the pseudo notch stress is independent of the definition of nominal stress,
a modified elastic stress concentration K™ associated with SM is introduced in
the following form:

o¢ = SMKM = SK, (6.33)
and the Neuber rule can be rewritten
oe = (KM)*sMeM. (6.34)

The new form of the Neuber rule can be rearranged and extended to

2
o€ = mé‘) <"':—ME> (6.35)

Equation (6.35) is the generalized Neuber rule for nonlinear net section beha-
vior. Note that if the S™—eM curve remains in the elastic range, the factor
(eME/S™) becomes unity and the generalized Neuber equation reduces to the
known Neuber equation.

Modified Neuber Rule

To account for the cyclic material behavior in the local strain-life approach,
Topper et al. (1969) proposed to modify the Neuber rule by replacing K, with
the fatigue notch factor (Ky). This has been criticized for both accounting twice
the notch root plasticity effects and incorporating the S-N empiricism into the
“more fundamentally satisfying” theory. However, by knowing these conflicting
results, we recommend that the modified Neuber rule be used for local notch
stress—strain estimates and fatigue life predictions.

The use of the Ky factor in Neuber’s rule would experience a problem with a
notched component where the notch geometry and configuration is complex
because the nominal stress S and the K, factor are difficult to quantify. How-
ever, the product of K.S (the pseudo stress) is obtained from a linear elastic
finite element analysis. Therefore, there is a need to convert KS to KS in the
modified Neuber rule.

The K—K; relationship can only be obtained experimentally. In the past empiri-
cal average stress models (Peterson, 1959; Neuber, 1946; Heywood, 1962) have
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been developed to estimate the K,—K; factor with the reference to a notch radius
(r) and the ultimate tensile strength S,,. Moreover, the following expression for
the K/Ky ratio was developed by Siebel and Stieler (1955):

K

—t=1 C.G 6.36
K +1/Cs (6.36)

where

C,s = a material constant dependent on yield strength (o)

G =the relative stress gradient, defined as

G = 1 <@> (6.37)

G?nax dx =0
where
o, .. = the maximum local pseudo stress
6°(x) = the theoretically calculated pseudo stress distribution near a notch

root
x =the normal distance from the notch root (as shown in Figure 6.11)

Figure 6.11
Definition of relative stress gradient.
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Figure 6.12
Empirical relative stress gradient correction factor for steel, aluminum and cast
iron (Siebel and Stieler, 1955).

Equation (6.36) is the generalized formula for the K/K; ratio for various mater-
ials with different yield strengths as illustrated in Figure 6.12.

This unique relationship between the K/K; ratio and G provides a promising
opportunity for use in the modified Neuber model. The K/K; ratio can be
obtained from Equation (6.36) for the given G and material yield strength. And
the pseudo stress at a notch (o] = KS;) or the pseudo stress range at a notch
(Ac® =K AS) can be obtained from the elastic finite element analysis.

Therefore, letting K/K¢= Agg, the modified Neuber equation with the assump-
tion of nominally elastic behavior can be rewritten as follows:

- (6.38)

E

and
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(Ao)*
E

AG>1/n' B (Ace)z
’ - 2 .
2K AgsE
These two equations containing the stress gradient effect for the local stress or
stress range can be solved using the Newton—Raphson iteration technique.

+2. AG( (6.39)

Molsky and Glinka

Molsky and Glinka (1981) proposed another notch analysis method, which
assumes the strain energy density at the notch root (W,) is related to the energy
density due to nominal stress and strain (Wg) by a factor of Kt2 That means

W, = KZWs. (6.40)

Figure 6.13 illustrates the physical interpretation of the strain energy density
method. If nominally elastic behavior of the notched specimen is assumed, the
following strain energy equations can be obtained:

2
1S
Wg=- -2 6.41
S=3E (6.41)
and
2 ,
o o o 1/n
W, = a a (—) . 6.42
2-E+1+n’ K’ ( )

Substituting Equations (6.41) and (6.42) into Equation (6.40) leads to the well-
known energy density formula:

G_i 4 26a (&>l/n/ _ (Ktsa)z '

P 6.43
E 141 \K’ E 643)
For initial loading, Equation (6.43) can be reduced to
2 , 2 e\2

op 26, (01>‘/“ (KiS1) (c1)

1 2Ly = = ) 6.44

E * I+n" \K’ E E ©44)
For stabilized hysteresis behavior, Equation (6.43) can be reduced to

Ac)® 4. i (KAS)?  (Ac®)’
E 1+n" \2K’ E E

where o] and Ac® are the local pseudo stress and the pseudo stress change at a
notch root based on a linear elastic finite element analysis.
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Figure 6.13
Interpretation of the strain energy density method.

Example 6.2

A notched thin plate subjected to a load-time history was analyzed by a
linear elastic finite element analysis. The linear elastic finite element
analysis indicates that the pseudo stress at the notch root is 0.035 MPa
as a result of a unit applied load (P =1 Newton). This plate is made of
SAE 1005 steel that has the following cyclic and fatigue properties:

E=207,000 MPa, K’'=1240 MPa, n’ =0.27, c'¢= 886 MPa,
b=-0.14, ¢'r= 0.28, c = —0.5.

It is assumed that the notched plate follows nominally elastic behavior.
Estimate the fatigue life of the notched thin plate made of SAE 1005
steel, with the following, subjected to the variable amplitude loading
condition shown in Figure 6.14.
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Figure 6.14
Variable amplitude load-time history.

1. Use the Molsky-Glinka energy density method to simulate the local hysteresis
behavior.

2. Predict the fatigue life of the notched plate using the SWT mean stress
correction formula.

3. Predict the fatigue life of the notched plate using the modified Morrow mean
stress method.

Solution

A notched thin plate subjected to a load-time history is analyzed by a
linear elastic finite element analysis. The finite element results indicate
that the pseudo stress at the notch root is 0.035 MPa due to a unit
applied load (P =1N). This gives a linear relationship between all further
applied loads and localized pseudo stress.

¢ _ 0.035MPa

P 1Newton

From this loading history and the linear relationship developed between
input load and elastic stress, the local pseudo stresses (6°) can be
calculated. For example, at the first load point:

e <0.035MPa
o= ———=

) - (~15,000 Newton) = —525 MPa
1T Newton
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Variable amplitude ¢®-time history.

The complete pseudo stress versus time history is illustrated in Figure 6.15.

The hysteresis loops can be constructed through all seven data points.
Each reversal is divided into 10 parts in order to get a well-defined graph.
The Molsky-Glinka energy density method is employed to convert the
pseudo stress into true stress and strain data. Taking the absolute value
of the input stress or stress change, the initial loading curve up to point 1
is calculated using Equation (6.44) and from then on all the incremental
reversals with respect to a reference turning point are calculated based on
Equation (6.45). Since 6 and Ao are difficult to solve for algebraically,
the iterative solver tool in MS Excel was used.

The resulting data for local true stresses and strains are tabulated in
Table 6.5 and the resulting hysteresis loops are shown in Figure 6.16.
Please note that to describe the material memory effect, a reference
turning point needs to be chosen correctly when calculating the
incremental reversals.

For example, there will be three reference points involved in simulating
the reversal from Point 5 to Point 6. Points 5, 3, and 1 are the reference
points for the points in reversals: Point 5 to Point 4', Point 4' to Point 2',
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Table 6.5: Calculation Summary Based on Local Pseudo Stresses
for True Stresses and Strains
Ac® Ac Ref
Reversal ¢° (MPa) (MPa) (MPa) Ae ¢ (MPa) € Point
0 Reference Point 0.0 0.0000 0
-53 —-53 -51.3 —0.0003 -51.3 —0.0003 0
—-105 —-105 —-94.1 —0.0005 —-94.1 —0.0005 0
—158 —158 -126.5 —0.0008 -126.5 —0.0008 0
—-210 —-210 —-152.2 —0.0012 —-152.2 —0.0012 0
0to1 —263 —263 —-173.5 —0.0015 —-173.5 —0.0015 0
-315 -315 -191.9 —0.0019 -191.9 —0.0019 0
—368 —368 —208.3 —0.0024 —208.3 —0.0024 0
—420 —420 —223.1 —0.0028 —223.1 —0.0028 0
—473 —473 —236.7 —0.0033 —236.7 —0.0033 0
—-525 —-525 —249.3 —0.0038 —249.3 —0.0038 0
—525 Reference Point —249.3 —0.0038 1
—455 70 69.4 0.0003 —-179.9 —0.0035 1
—385 140 133.6 0.0007 —-115.7 —0.0031 1
-315 210 188.1 0.0011 —-61.2 —0.0028 1
—245 280 233.3 0.0014 -16.0 —0.0024 1
1to?2 -175 350 271.4 0.0019 22.1 —0.0020 1
-105 420 304.3 0.0023 55.1 —0.0015 1
-35 490 333.5 0.0028 84.2 —0.0010 1
35 560 359.8 0.0033 110.5 —0.0005 1
105 630 383.8 0.0038 134.6 0.0000 1
175 700 406.0 0.0044 156.8 0.0006 1
175 Reference Point 156.8 0.0006 2
123 —-53 52.3 —0.0003 104.5 0.0003 2
70 —-105 102.6 —0.0005 54.2 0.0001 2
18 —-158 148.2 —0.0008 8.5 —0.0002 2
-35 —-210 188.1 —0.0011 -31.4 —0.0005 2
2to3 —88 —263 222.7 —0.0013 —66.0 —0.0008 2
—140 -315 253.1 —0.0016 -96.3 —0.0011 2
—-193 —368 280.0 —0.0020 —-123.3 —0.0014 2
—245 —420 304.3 —0.0023 —147.6 —0.0017 2
—298 —473 326.5 —0.0027 —-169.8 —0.0021 2
—-350 —-525 347.0 —0.0030 —-190.2 —0.0025 2
-350 Reference Point —190.2 —0.0025 3
-315 0 0.2 0.0000 —190.0 —0.0025 3
304 —280 35 35.0 0.0002 —-155.3 —0.0023 3
—245 70 69.4 0.0003 -120.8 —0.0021 3
—-210 105 102.6 0.0005 —-87.6 —0.0020 3
—-175 140 133.6 0.0007 —-56.6 —0.0018 3

(Continued)
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Table 6.5: Calculation Summary Based on Local Pseudo Stresses

for True Stresses and Strains—cont’d

Ac® Ac Ref

Reversal ¢° (MPa) (MPa) (MPa) Ae ¢ (MPa) € Point
—-140 175 162.1 0.0009 —28.1 —0.0016 3
-105 210 188.1 0.0011 -2.1 —0.0014 3
-70 245 211.7 0.0012 21.5 —0.0012 3
-35 280 233.3 0.0014 43.1 —0.0010 3
0 315 253.1 0.0016 62.8 —0.0008 3
0 Reference Point 62.8 —0.0008 4
-18 -18 17.5 —0.0001 45.4 —0.0009 4
-35 -35 35.0 —0.0002 27.9 —0.0010 4
-53 -53 52.3 —0.0003 10.6 —0.0011 4
=70 -70 69.4 —0.0003 —6.6 —0.0012 4
4to5 —-88 —-88 86.2 —0.0004 —-23.4 —0.0012 4
-105 -105 102.6 —0.0005 —-39.7 —0.0013 4
—-123 —-123 118.4 —0.0006 —-55.6 —-0.0014 4
-140 -140 133.6 —0.0007 —-70.8 —0.0015 4
—158 —158 148.2 —0.0008 —-85.4 —0.0016 4
-175 -175 162.1 —0.0009 -99.3 —0.0017 4
-175 Reference Point -99.3 -0.0017 5
-105 70 69.4 0.0003 -29.9 —0.0013 5
-35 140 133.6 0.0007 34.3 —0.0010 5
-350 Reference Point -190.2 —0.0025 3
35 385 288.4 0.0021 98.2 —0.0004 3
105 455 319.3 0.0026 129.1 0.0001 3
5to6 175 525 347.0 0.0030 156.8 0.0006 3
—525 Reference Point —249.3 —0.0038 1
245 770 426.7 0.0050 177.5 0.0012 1
315 840 446.2 0.0056 196.9 0.0018 1
385 910 464.5 0.0063 215.2 0.0025 1
455 980 481.9 0.0070 232.7 0.0031 1
525 1050 498.6 0.0077 249.3 0.0038 1
525 Reference Point 249.3 0.0038 6
420 -105 102.6 —0.0005 146.7 0.0033 6
315 -210 188.1 —0.0011 61.2 0.0028 6
210 -315 253.1 —0.0016 -3.8 0.0022 6
105 —420 304.3 —0.0023 —55.1 0.0015 6
6to7 0 —525 347.0 —0.0030 -97.7 0.0008 6
-105 —630 383.8 —0.0038 —-134.6 0.0000 6
-210 -735 416.6 —0.0047 -167.3 —0.0009 6
=315 -840 446.2 —0.0056 -196.9 —0.0018 6
—420 —-945 473.3 —0.0066 —224.1 —0.0028 6
—525 -1050 498.6 —0.0077 —249.3 —0.0038 6
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Figure 6.16

Simulation of hysteresis loops based on the block cycle loading and the
Molsky-Glinka energy density method.

and Point 2' to Point 6. Point 4' and 2' are the return points for the
memory effect, and are identical to Points 4 and 2 on the hysteresis
loops. These reference points can be easily identified with the application
of the three-point rainflow cycle counting technique.

The next step is to extract the hysteresis loops and identify the maximum
and minimum stress and strain points for each loop so these data could
be used as input into a damage calculation. Using this information, the

SWT and the modified Morrow mean stress correction models are used

to evaluate the number of block cycles.

For each counted cycle, an individual damage number is calculated
according to the linear damage rule. The sum of these yields the total
damage for one block cycle. Since failure is defined as a damage value of 1,
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Table 6.6: Summary of Damage Calculation Based on the SWT Parameter

O max O min Nf
n; €max €min (MPa) (MPa) €, (Cycles) d;
1 —0.0008 —0.0017 62.8 —-99.3 0.00043 3,215,072 3.11E-8
1 0.000587 —0.00246 156.8 —-190.2 0.00152 87,124  1.15E-5
1 0.003831 —0.00383 249.3 —249.3 0.00383 5157 1.94E-4

Xd; per block = 2.06E-4
# of blocks to failure = 4900

Table 6.7: Summary of Damage Calculation Based on the Modified

Morrow Parameter

O max O min Om Nf
n; €max €min (MPa) (MPa) (MPa) €, (Cycles) d;
1 -0.0008 —0.0017 62.8 -99.3 -18.2  0.00043 1,700,984 5.88E-8
1 0.00058 —0.0024 156.8 —=190.2 -16.7 0.00152 78,444  1.27E-5
1 0.00383 —0.00383 349.3 —249.3 0 0.00383 5508 1.82E-4

Xd; per block = 1.95E-4
# of blocks to failure = 5100

the inverse of the total damage per block cycle will yield the number of

block cycles until failure.

The results of these calculations are tabulated in Tables 6.6 and 6.7
where the SWT and the modified Morrow methods predict that the
component will fail after 4900 blocks and 5100 blocks of variable
amplitude loading shown earlier in Figure 6.14, respectively.

Applications

As a result of various manufacturing and processing conditions, the surface of a real
structure will be different from the smooth, polished material specimens used to
determine the strain—life fatigue properties. Thus, there is a need to account for the
effects of residual stress, surface treatment, and finish on fatigue in the high cycle
fatigure regime. The following present some practical notch analysis models to

account for these effects.
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Residual Stress Effect

If the residual stress (6,) or residual strain (g;) at a notch root due to a manufacturing
process is obtained prior to any operating load reversals, both of the modified
Neuber rule and the Molsky—Glinka energy density method for initial loading
needs to be modified. The following variants have been proposed based on the
modified Neuber rule:

1. Lawrence et al. (1982):
G% o\ (K¢S, +($r)2
! (_> - E

= (6.46)

2. Reemsnyder (1981):

Or ’ G% o\ _ (Ktsl)2
< —G—1> {EM,(E) ] =S (6.47)

(o] (81 _Sr) = . (648)

Surface Finish Effect

If the surface treatment factor (Cg) and the roughness correction factor (Cgsgr)
are known from FKM-Guideline (Haibach, 2003), the Lawrence model can be
further revised to account for the surface finish effect:

2 , * 2
v () - CiSre)
E T o\k E (6:49)
where
K = " Ci 1. (6.50)
+ —
! CG,R

Per FKM-Guideline, the surface treatment factor for steel and cast iron materials
are tabulated in Table 6.8. The values in the table are applicable to components
of 30 to 40 mm diameter, while the values in the parenthesis are for 8 to 15 mm
diameter.
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Table 6.8: Surface Treatment Factors for Various Materials

Surface Treatment Unnotched Components Notched Components
Steel
Chemo-Thermal Treatment
Nitriding
Depth of case 0.1-0.4 mm 1.10-1.15 1.30-2.00
Surface hardness 700-1000 HV10 (1.15-1.25) (1.90-3.00)
Case hardening
Depth of case 0.2—-0.8 mm 1.10-1.50 1.20-2.00
Surface hardness 670-750 HV10 (1.20-2.00) (1.50-2.50)
Carbo-nitriding
Depth of case 0.2-0.8 mm (1.80)
Surface hardness 670-750 HV10
Mechanical Treatment

Cold rolling 1.10-1.25 1.30-1.80

(1.20-1.40) (1.50-2.20)
Shot peening 1.10-1.20 1.10-1.50

(1.10-1.30) (1.40-2.50)

Thermal Treatment
Inductive hardening
Flame-hardening
Depth of case 0.9-1.5 mm 1.20-1.50 1.50-2.50
Surface hardness 51-64 HRC (1.30-1.60) (1.60-2.8)
Cast Iron Materials

Nitriding 1.10 (1.15) 1.3 (1.9)
Case hardening 1.1 (1.2) 1.2 (1.5)
Cold rolling 1.1 (1.2) 1.3 (1.5)
Shot peening 1.1(1.1) 1.1 (1.4)
Inductive hardening, flame-hardening 1.2 (1.3) 1.5(1.6)

Source: Adapted from FKM-Guideline, published by Forschungskuratorium Maschinenebau, 2003.

Per the FKM-Guideline, the roughness factor under normal stress is:

2S
Csr = 1 —aglog(Rz)log <S o > (6.51)

t,min,u

where

ag = a roughness constant listed in Table 6.9
Rz =the average roughness value of the surface in pm
Siu = the ultimate tensile strength in MPa
St min.u = the minimum ultimate tensile strength in MPa in Table 6.9
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Table 6.9: ar and S, ,in,, for Various Materials

Materials aR St,min,u MPa
Steel 0.22 400
Steel castings 0.20 400
Ductile iron 0.16 400
Malleable cast iron 0.12 350
Grey cast iron 0.06 100
Wrought aluminum alloys 0.22 133
Cast aluminum alloys 0.20 133

Source: Adapted from FKM-Guideline, published by Forschungskuratorium
Maschinenebau, 2003.

An average roughness value, Rz =200 pm, applies for a rolling skin, a forging
skin, and the skin of cast irons. For steels, the roughness value of a ground
surface varies from 1 pm to 12 pum, and the value of a finished surface ranges
from 6.3 pm to 100 pm.

Summary

The Masing equation for describing and tracking the hysteresis behavior of a
homogeneous material under variable amplitude load time history has been
introduced. For any given strain increment, the stress increment with respect to
a reference turning point can be easily calculated by the equation, and vice
versa. The proper choice of a reference turning point to account for the memory
effect of a material undergoing complex loading condition is important in the
material simulation process.

The Morrow strain-life equation for zero mean stress has been described. In
conjunction with the local strain-life approach, the modified Morrow equation
and the SWT model have been proposed to quantify the effect of mean stresses
on fatigue behavior.

If there are no experimental strain-life fatigue data available, an estimate of cyc-
lic and fatigue behavior of a material can be helpful in the design stage. For a
given ultimate tensile strength (S,,), the uniform material law by Baumel and
Seeger (1990) is recommended for both steels and titanium alloys, and the med-
ians method by Meggiolaro and Castro (2004), for aluminum alloys.
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The modified Neuber rule and the Molsky—Glinka energy density method are
the two popular techniques to estimate the true stress—strain behavior at a stress
concentration area based on the pseudo stress time history obtained from the lin-
ear elastic FEA. Their limitations and applications have been addressed. More-
over, the practical notch analysis models to account for the effects of residual
stress, surface treatment, and finish on fatigue in the HCF regime have been
presented.
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Introduction

Early studies of cyclic plasticity concentrated mainly on the monotonic and uni-
axial loading conditions. But for the past four decades, efforts have been direc-
ted toward cyclic multiaxial plasticity for both proportional and nonproportional
loading. Numerous new theories have been developed since, however, many of
these theories have complex mathematical formulations and require a large num-
ber of material constants to achieve reasonable correlation between simulation
and experimental data.

Consequently the simplicity and the physical clarity desired may be lost. In
this chapter, the historical and recent development of “simple” plasticity
theories will be presented with emphasis on both physical interpretation of
all the formulations and determination of the material parameters required.
Please note that the plasticity theories reviewed herein do not apply to
rate-dependent yielding, materials at elevated temperature, and anisotropic
materials.

The applications of the existing plasticity theories to multiaxial notch analysis
based on pseudo stresses are also reviewed. Pseudo stresses (also called ficti-
tious stresses) are the stresses calculated from a linear elastic finite element ana-
lysis. True stress and strain components at a notch are the essential parameters
for fatigue life predictions. Nonlinear finite element analysis could be the perfect
solution to calculate the notch stresses and strains, but its usage may be very
limited due to intensive CPU time consumption. Therefore, estimation techni-
ques for the multiaxial notch stresses and strains based on the pseudo stresses
are important and needed.

Tensor Notations

Stress and strain are considered as symmetric, second-order tensors, and they
are represented by ¢ and g, respectively, with components that are listed by

Gi1 G2 O33 Ox Txy Txz
G =06jj= [0O21 O O3 | = [Tyx Oy Ty
631 O3 033 Tzx sz G,
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and
€11 €12 €13 Ex &y &
E=Ej= | €1 €xn €3 |F|&x & &y
€31 €3 €33 €4x 8zy €
The unit tensor is
1 0 0
1 = Il_] = 6ij =10 1 0
0 0 1

where
d;; is the Kronecker delta

A colon between two tensors denotes their inner product, dot, or scalar. For
example,
O:€ = Oy = 011€1] +012€12 + 013813 + 021821 + 02282 + 0623823
+ 031831 + 03283, + 633833
and

QIIZGkk=(511+022+G33 =GX+Gy+GZ.

Also the norm of a tensor is defined as

It is a common practice to refer to some of the tensors as vectors, particularly in
describing a hardening rule, even though a tensor and a vector are not physically
equivalent.

Theory of Elasticity

An additive decomposition of the elastic (de®) and plastic (de”) components of
the total strain increment (de) is assumed and expressed as

de = de® +deP. (7.1)

This equation is often used to define the plastic strain, and is valid for small
strains compared to unity. The volume change due to plastic straining is also
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assumed to be zero, and is the plastic incompressibility condition, which can be
represented by

deP:1=0. (7.2)

For the elastic part, assuming Hooke’s law is applicable, the elastic strain versus
stress relationship can be expressed by

e 14V \%
= — ZI I .
de E dg 1+V(dg I (7.3)
or
e_do v ...
de’ = 7= — £ (do: D)L (7.4)
where

do = the stress increment tensor

E = Young’s modulus of elasticity
G =the elastic shear modulus

v = Poisson’s ratio

The elastic shear modulus can be represented by

_ _E
G= 20+ (7.5)

The stress tensor can be assumed to be decomposed into a deviatoric (S) stress
tensor and a hydrostatic (o,) stress tensor, respectively, and can be written by

6=S+g0, (7.6)

where hydrostatic stress is the average normal stress at a point defined as

(c:D)L

(7.7)

Op =

QI | —

It should be noted that hydrostatic stress does not influence plastic yielding and
the principal directions. Therefore, when yielding, the deviatoric stress tensor is
responsible for plastic deformation and can be expressed as follows:

(o:IL (7.8)
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According to Hooke’s law, the elastic deviatoric strain increment tensor (de®) is
assumed to be linearly related to the deviatoric stress increment tensor as

dS = 2Gde°. (7.9)

Based on its definition, the elastic deviatoric strain increment tensor can be
expressed by

de* = de —de” = [de - 3 (de:D)1] - de”. (7.10)

Using Equation (7.10), the deviatoric stress increment tensor can be rewritten,

dS 1
= = —deP — = .
G de —de 3 (de:DL (7.11)

The relationship between plastic strains versus deviatoric stresses can be described
in the following sections on theories of plasticity.

Monotonic Plasticity Theories

Monotonic plasticity theories describe plastic deformation behavior of a material
under monotonic loading. The following key elements are required to develop an
algorithm that will simulate the nonlinear monotonic stress—strain behavior of a
material:

e Definition of a yield surface function
* Application of an isotropic hardening rule
* Introduction of a flow rule

e Calculation of plastic strains

Yield Surface Function

A yield surface function or yield criterion f(S) defines the region of purely elas-
tic behavior under any multiaxial state of stress, and is represented as a surface
in stress space. The yield criterion is given by

f(S) < 0: elastic deformation
f(S) =0: plastic deformation
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The commonly accepted yield criterion for metals is the von Mises yield criter-
ion, which assumes the yield surface function f(J,) is a function of the second
invariant of the deviatoric stress tensor (J,) and has the form

f(J,) = 37, - 3k? (7.12)

where k is the yield strength in shear. The second deviatoric stress invariant can
be written in terms of deviatoric principal stresses as
J2 =

(S:8) = =(ST+S5+5S3). (7.13)

D [ —
B [ —

Also, in terms of principal stresses, it is given that

J, = 2[(6,-02)"+(0,—03)" + (0, —6,)°]. (7.14)

AN =

The square root of 3J, is defined as the von Mises or equivalent stress, and can
be written in terms of deviatoric stresses and principal stresses as

Geg = /315 = /%g;_z \%\/(cl —6,)%+(0,—03) + (05 —0)°.  (7.15)

In this case of f(J,) =0, the equivalent yield stress 6., under uniaxial loading is
identical to the uniaxial yield stress oy, which implies 6, = v/3k. Equivalent to
Equation (7.12), the yield surface function can have the following two variants:

f(S) =S:S-2k*=0 (7.16)
or
f(S) = 28:S—0> =0 (7.17)
§)=358:8-0;=0. .

Equations (7.16) and (7.17) are also the commonly used von Mises yield criteria
where both k and o, are dependent on the accumulated plastic strain, p.

Similarly, the increment of an equivalent plastic strain dp is defined as

dp = ,/%dg‘”:dg". (7.18)
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This choice of the coefficient in Equation (7.18) will also result in an identical
uniaxial plastic strain increment. The accumulated plastic strain is then obtained by

p= /dp. (7.19)

Isotropic Hardening

Isotropic hardening is used to describe the deformation hardening behavior for a
material under monotonic loading. Isotropic hardening, as illustrated in Figure 7.1,
assumes that the initial yield surface expands uniformly without translation and dis-
tortion as plasticity occurs. The size increase in the yield surface depends on the
stress, hardening property, and temperature.

The isotropic hardening model does not take into account the Bauschinger
effect, which means cyclic yield strength reduction under a loading reversal. If
temperature is excluded here, the size of the yield surface is governed by the
accumulated plastic work or accumulated plastic strain. For example, the yield
surface function is f = func(S or o, H) where H is a hardening function.

oy [oF]
4 A
1
+0y, 1
+Gy
O|— —
+09) +Oy
-c9 +0y)
y y » 0o ; » €1
/
/
/
/
Jpee) /
Oy L 50
-7 / y
_ ‘/_ _____ _01
ey / y
y
Figure 7.1

Isotropic hardening.
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The hardening function can be either work or strain hardening. If the size increase

of a yield surface depends on plastic work (WP = fcijdsg), then the material beha-

vior is called work hardening and the yield surface can be written as
f = func(S or o, W"). (7.20)

If the size increase of a yield surface depends on the accumulated equivalent plastic
strain, then it is named strain hardening whose yield surface can be written as

f = func(S or o, p). (7.21)
Strain hardening is often assumed and employed in the plasticity theories. Thus,
the yield criterion can be written as
(S) = 38:5-02(p) =0 (7.22)
and
Oy (p) = Oy, t+ R(p) (7.23)
where

Gy, = the initial yield stress
R(p) =the isotropic strain hardening function

R(p) has the following formulation with an initial condition R(0) = 0:
dR(p) = b(R"—R)dp. (7.24)

in which R" is the saturated value with increasing plastic strain and b is the
material parameter determining the rate at which saturation is reached. Both R"
and b can be obtained from the uniaxial stress—strain curve. Provided that G;‘ is
the limit or saturated yield stress, then R" = 63 — Gy,. The solution to the differ-
ential equation, Equation (7.24), is

R(p) = R:(1 —e™). (7.25)
Flow Rules

A flow rule defines the plastic deformation vector by determining the orientation
and magnitude of plastic deformation of a material as plasticity occurs. There
have been many flow rules proposed over the years, some of which will be
reviewed in the following two sections.
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Classical Flow Rules

Levy (1870) and von Mises (1913) postulated that with the negligible elastic
strain the total strain increment is proportional to the deviatoric stress and has
the following relation:

de = dnS (7.26)
where
dA; =a multiplier

Later Prandtl (1925) and Reuss (1930) postulated that the plastic strain
increment is proportional to the deviatoric stress, which has the following
relation:

de? = dnS (7.27)

where

d\, =a multiplier that can be determined from an equivalent stress versus
accumulated plastic strain (c.q —Pp) curve

It is assumed that if o, is a function of p, then the material would have strain
hardening behavior defined as

6eq = H(p) (7.28)
where
H() = a hardening function
The multiplier dA, can be determined by squaring Equation (7.27):
deP: de? = dA3S: S. (7.29)

Therefore, Equation (7.29) can be written as

2
%(dp)2 = gdki(oeq)z, (7.30)
which results in
dx2=%:—p. (7.31)
eq
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Now differentiating the strain hardening function (Equation 7.28) with respect to
dp has

oH(p)
do., = ——=dp. (7.32)
T op
Equation (7.32) can be expressed as
do = do, _ doe, (7.33)
P=oHp) ~ h ‘
dp

Here h is termed as the plastic modulus, the tangent modulus of a uniaxial stress—
plastic strain curve, as depicted in Figure 7.2. Substituting Equation (7.33) back
to (7.31) yields

3 dog
dh, = =— —. 7.34
s (7.34)
Finally the Prandtl-Reuss flow equation can be expressed as
3 dog
def = = S. 7.35
£ 700 o (7:33)
1 O1
A A
Oy F----
» €4 > 8?
Figure 7.2

Uniaxial stress versus strain and plastic strain curves.
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Postulating that the total plastic strain would have the same type of relationship
as the Prandtl-Reuss incremental one, Hencky (1924) developed the following
flow equation:

e’ =

\S RN}

S. (7.36)

P
Geq

Both flow rules imply that the present state of plastic strain is independent
of its loading path. Also both flow rules would be identical under the special
circumstances of linear strain hardening and a monotonically increasing load.

Associated Flow Rule

Von Mises (1928) assumed that there exists a plastic potential function Q(S)
that can be related to the plastic flow as

Q(S)
oS

de? = dig (7.37)

where
dA; = a multiplier

The plastic potential function represents a surface in the stress space and the
plastic strain increment is a vector normal to the surface.

Therefore, Equation (7.37) is referred to as the normality flow rule. For most
materials, a yield surface function f(S) is the criterion for development of plastic
deformation. So it is a common approach in the theory of plasticity to assume
that the plastic potential function is identical to the yield surface function
(Q(S) =1(S)). Thus, the plastic flow can be written as

of(S)
deP = dM — 7.38
€ 3 S ( )

This indicates the plastic strain increment vector is normal to the yield surface,
and is known as the associated flow rule. But if Q(S)#f(S), Equation (7.37)
would be used and termed the nonassociated flow rule.
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Plastic Strains

dA; in the associated flow rule (Equation 7.38) can be determined by setting up
the dot product of an exterior normal and a stress vector tangent to the yield
surface equal to zero,

of
ds —hdeP): &L =0 7.39
(dS g)as (7.39)

where

% =the gradient of the yield surface with respect to S
h = the generalized plastic modulus that has related the plastic flow to the
stress increment component normal to the yield surface

This concept of normality is illustrated in Figure 7.3. By substituting Equation
(7.38) into Equation (7.39), dA; is obtained as follows:

as%
0S 0S
dS —hdeP ds

Yield Surface, f(S)=0

Figure 7.3
Normality condition of stress states.
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Finally, after substituting Equation (7.40) into Equation (7.38) and with an intro-
duction of n, the unit normal to a yield surface, the associated flow rule can be
simplified in the following:

de” = 1 (n:dS)n (7.41)
and
_of /|of
n= 0§/‘0§ . (7.42)

Cyclic Plasticity Theories

A material under cyclic reversed loading will usually exhibit the Bauschinger
effect, meaning during a reversed loading the elastic stress range is unchanged
and the yield strength is reduced, as shown in Figure 7.4. The kinematic harden-
ing rule can simulate the Bauschinger effect for material behavior under cyclic
loading. Kinematic hardening assumes that during plastic deformation, the sub-
sequent yield surface translates as a rigid body in the stress space, maintaining
the size, shape, and orientation of the initial yield surface.

01 01
A A
1 1 -
+Gy- +Gy _______
0 (0]
oL +Gy - —
» Oo > €1
/
/
/
/
-c9 L//_/_ —0°
-7 y
Figure 7.4

[llustration of kinematic hardening.
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The incremental plasticity theory based on the kinematic hardening model has
advanced significantly in the past decades. When the von Mises yield criterion
is assumed, the kinematic hardening can be expressed as

3
f=28-a):(S-a)-0;=0 (7.43)

where

o = the back stress tensor, which defines the translational center of the
yield surface
o, =the yield stress for the size of the yield surface

The yield surface is supposed to be a function of accumulated plastic strain p,
but is assumed to be a constant here. This type of kinematic hardening is sche-
matically illustrated in Figure 7.4.

To describe nonlinear material hardening behavior, kinematic hardening models
can be classified into (1) multiple-surface (or nested-surface) models, (2) two-
surface models, and (3) single-surface models. The first multiple-surface model
was proposed by Mroz (1967). In this approach, the nonlinear stress—strain rela-
tion is represented by a number of straight-line segments. The linearization results
in a series of yield surfaces, each with its own center and size.

As illustrated in Figure 7.5, Mroz’s model uses a finite number of yield surfaces
in the stress space to approximate the nonlinear hardening behavior of materials,
where the flow of each yield surface represents a constant plastic modulus. Mroz
specifies that during loading, these individual surfaces do not intersect but consecu-
tively contact and push each other. To meet this criterion, the active yield surface
must translate in the direction that connects the current stress point (S) on the sur-
face with the conjugate point (S“) on the next inactive yield or limit surface,
which has the same outward normal (n) as the normal to the active surface at S.

The active yield surface (f) is defined by the von Mises yield criterion, Equation
(7.43), while the next inactive yield or limit surface (f%) can be expressed by

fl = % stist— (o)’ =0 (7.44)

where

V2/ 305 = the radius of the inactive yield or limit surface in the deviatoric
stress space
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Figure 7.5
The multiple-surface model in a biaxial stress state
Source: Adapted from Socie and Marquis, 2000.
Then, based on Mroz’s translational rule, §L is defined as
ok
St= 2 (S—a). (7.45)
Gy

The incremental translation of a loading surface can be expressed in the follow-
ing expression:

da = d,(S" - S) (7.46)

where
dp, = a multiplier

The two-surface models were introduced by Dafalias and Popov (1975, 1976)
and Krieg (1975). Figure 7.6 illustrates the concept of the model with two sur-
faces, a stationary limit surface and a loading surface that may translate in the
stress space inside the limit surface. The material nonlinearity is described based
on the relative position of the loading surface with respect to the limit surface.
The Mroz translational rule is adopted to avoid any overlapping of both surfaces.

The single-surface model was originally developed by Armstrong and Frederick
(1966). The model was later modified by many researchers (Chaboche, 1977;
Chaboche & Rousselier, 1983; Chen & Keer, 1991; Ohno & Wang, 1993a,



268 Chapter 7

n Oyt
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_Gy______________

Figure 7.6
A two-surface model with the Mroz translational rule.

1993b; Jiang & Sehitoglu, 1996a,b). Essentially it is a single yield surface with
an introduction of a nonlinear kinematic hardening rule to describe the nonlinear
cyclic material behavior, as shown in Figure 7.7. The original Armstrong—
Frederick model has the following translational rule for the back stress:

da = p,de” — p,dpa (7.47)

where
i, and p, = material constants

Others proposed to use multiple back stress increments in order to achieve good

correlations with experimental data in “ratcheting.” It is assumed that the total
back stresses are composed of additive parts,
)

a= Yo (7.48)

i=l1

where

o = the total back stress
aV=a part of the total back stress, i=1, 2, ..., M

M = the number of back stress parts considered
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Sz3
4
G111
A
doq1
hyj=—5—
11 d8$1
Oy
S14 / Soo > 8?1
Figure 7.7
Single-surface model with a nonlinear hardening rule.
Each back stress part follows the Armstrong—Frederick relation,
do = ) (uff) de® — w<i>dpa<i>)
(7.49)

(i=1,2,....M)

where

pgi) and pfp = material constants associated with the i-th part of back
stress o
W@ = a function of back stress range, which determines the
nonlinear recovery behavior of this model

A number of efforts (Chaboche, 1977; Chaboche & Rousselier, 1983; Ohno &
Wang, 1993a, 1993b; Jiang & Sehitoglu, 1996a, 1996b) have been focused on
introducing a proper w9 to improve the performance of their models. In addition
to the choice for one of these kinematic hardening models, the following key ele-
ments need to be included to develop an algorithm that will simulate the nonlinear
cyclic stress—strain behavior of a material:

e The elastic and plastic process

¢ An associated flow rule
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* The consistency condition
* A kinematic hardening rule
e The generalized plastic modulus

e  Formulation of stresses and strains

Elastic and Plastic Processes

A process is said to be elastic if the current stress state is interior to the yield
surface. If the current stress is on the yield surface, and the stress points toward
the interior side of the tangent plane of a yield surface, then the process is also
elastic. Otherwise the process is said to be plastic. The fundamental quantity
that distinguishes elastic and plastic processes is the sign of the normal compo-
nent of the trial stress (n:dS).

As depicted in Figure 7.8, the elastic or unloading process takes place if

f<0 and n:dS<O0. (7.50)
A plastic process is defined if

f=0 and n:dS>0. (7.51)

ds
Loading
—>

Neutral Loading

Unloading ds
Yield Surface, f(S)=0

Figure 7.8
Loading criteria.
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A neutral process occurs if
f=0 and n:dS=0. (7.52)

For neutral or nearly neutral loading, the stresses remain on the yield surface
but the center of the yield surface does not move. To ensure the stresses remain
on the yield surface, the value of the current yield function is calculated after
the stress increment has been added to obtain the current stress state. But, the
addition of an elastic stress increment (A;AS) would result in stresses that are
not on the yield surface. A consistency condition in a finite difference form is
needed to correct this situation by using either the radial return technique devel-
oped by Hughes (1984) or the interactive calculation procedure.

This consistency condition, which is based on the interactive calculation proce-
dure yields

f=2(S+AIAS—0): (S+AAS —@) o} = 0 (1.53)

f=

[SSRINS)

[(AS: AS)AT+2AS: (S—0)A;+(S—-a): (S—a)]—0; =0.  (7.54)

A, should take the smaller root of the two solutions of Equation (7.54). This
furnishes a simple method for the numerical computation to correct the stress
increment for neutral loading.

Associated Flow Rule
When a material point is yielding under the action of a total strain or stress

increment, a flow rule is needed to determine the plastic strain increment. By
substituting the von Mises yield criterion, the unit normal to the yield surface

becomes
n= \ﬁs—g. (7.55)
2 oy
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Thus, the associated flow rule, Equation (7.41), becomes

de? = ﬁ[(g—@ dS](S — ). (7.56)
Yy

Consistency Condition

During loading, the new (or updated) stress state following the application of
stress increment must lie on the new (or subsequent) yield surface. That means
that the yield surface must move or change to accommodate the change in the
stress increment. Suppose that the yield surface is given as

f(S,a,0,) = 0. (7.57)
The equation of the new surface due to stress increments is given by
f(S+dS, a+da, oy +doy) = 0. (7.58)
Since both incremental values are infinitesimal, this equation can be expanded as

of of of

f(S+dS,a+da, oy +doy) =f(S,a,0,) + s :dS + ok sdo+ a?dcsy =0. (7.59)
The consistency condition can be written as
of of of
df :dS+ —:da+ —do, = 0. 7.60
()S + o+ 3o, Gy = ( )

For the von Mises yield criterion with the kinematic hardening rule, where o,
is assumed to be a constant, the consistency condition yields the following
equation:

dS:n =da: n. (7.61)

Kinematic Hardening Models

When kinematic hardening is assumed, the translation of the yield surface must
be specified. This can be done by prescribing the change of the location of the
center of the current yield surface in the stress space, meaning the evolution of
the back stress tensor (do).
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Several kinematic hardening models have been proposed to describe the change
of the back stress tensor. A generic kinematic hardening rule that is associated
with de” and a can be expressed as follows:

do = dAsA (7.62)
where

A =the translational direction of a yield surface
dAs =the scalar that can be determined from the consistence condition

There are three kinematic hardening rules that fall into this category and can be
expressed as

Prager’s rule (1955):

A =dgP (7.63)
Mroz’s rule (1967):
L
2h(o, —oy)

A=St—S=,/2— L TP - 7.64
A=S"-S 3d§:gd§g (7.64)

Armstrong—Frederick’s rule (1966):
A =deP - cldegqg. (7.65)

Another general kinematic hardening rule that is dependent on dS and a or n
can be represented by

da = dAsB (7.66)

where

B =the translational direction of the yield surface
d)\g = the scalar that can be determined from the consistence condition

There are three kinematic hardening rules that fall into this category and are
expressed as

Phillips—Lee’s rule (1979):
B =dS (7.67)
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Ziegler’s rule (1959):
B=S-a (7.63)

B=— +on. (7.69)

The Mroz translational rule is chosen in the two-surface model for its simplicity
and geometrical consistency, while the original Armstrong—Frederick rule is
recommended for use in the single-surface model for fewer material parameters
required than the modified ones. The two kinematic models are discussed in the
following sections.

Determination of a Generalized Plastic Modulus

The following sections provide examples that illustrate determination of the
plastic modulus used in the incremental plasticity model, which is based on the
uniaxial cyclic stress—strain curve of a material.

Two-Surface Model with the Mroz Kinematic Rule

The Mroz incremental movement of the yield surface center can be described in
a deviatoric stress space as

da = dpy(S" - S) (7.70)

where
dp, = a positive scalar to be determined by the consistency condition

The consistency condition yields the following equation:

dS:n=da:n. (7.71)

Therefore, Equation (7.70) becomes

dS:
(S--s

n

=]

dp, = (7.72)

~—
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and the associated flow rule is then obtained by

3

deP = S—a):dS|(S—a). 7.73
€= 2he? [(S—a):dS|(S-a) (7.73)
Considering the uniaxial loading case, Sy = S33 = —1/2S,, = —1/30,, and ay =
az; = —1/2a,,. Hence, the generalized hardening modulus (h) can be reduced to
2 dGll
h=2—1, 7.74
3 def, (7.74)

Assuming the uniaxial stress—plastic strain curve can be represented by the
Ramberg—Osgood equation, the tangent modulus of the curve is

n-—1
dcsl — K/n/(g) n’ (775)
dey,
where

K’ =the cyclic strength coefficient
n’ = the cyclic hardening exponent

Substituting Equation (7.75) into Equation (7.74) yields the following equation:

K'n’ (Ki)i (7.76)

2

h=
3

The distance between the loading and the limit surfaces is a variable to describe
the generalized plastic modulus. In the two-surface model (Bannantine, 1989;
Lee et al., 1995), it is assumed the hardening modulus depends on the distance (d)
from the current stress point (S) of a yield surface to the conjugate stress point
(S) on the limit surface with the same outward normal.

Thus, d can be expressed as

3 oL /ol
4=\ 3=y (8 -5 a.77)

The maximum distance in the uniaxial stress—strain curve is

dnax = 2(0) — ). (7.78)
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Figure 7.6 earlier in the chapter depicts the distance between the loading and
the limit surfaces and its relationship in the uniaxial stress—strain curve. Let D
be the normalized difference between d and d,,,

dmax —d

dmax

D= (7.79)

The normalized D varies between zero and one. When initial yielding occurs
after a reversed unloading, D is zero and the corresponding uniaxial stress is

6 = + (20, —oy). (7.80)
When the limit surface is reached, D is equal to one and the uniaxial stress is

6= ics]y“. (7.81)

Thus, the uniaxial stress can be related to the normalized D in the following
form:

o= +[2(o}

y—oy)(D—1)+oy]. (7.82)

Substituting this uniaxial stress into the generalized hardening modulus becomes

w1
h: gK’n’ |2(G;‘_Gy)<D_1)+G§’"] v
3 .

o (7.83)

Also in another two-surface model (Wang & Brown, 1993), a variable d,; is
introduced and defined as the projection of the vector connecting the loading
stress point and its conjugate point on the same normal to the loading surface,

_ 3L L )
d, = 5(§ —-S):n=0,— 28:n. (7.84)

It can be shown that for proportional loading, the equivalent uniaxial stress is

6 =20, —d; —d" (7.85)

where

d™ =a discrete memory variable to account for the memory effect
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This was described in Wang and Brown (1993). So the generalized hardening
modulus becomes:

—1

L m n,
2 2Gy—d1—d n
h==2K'n'| ——— . 7.86
3 n( K (7.86)

Single-Surface Model with the Armstrong—Frederick Kinematic Rule
The von Mises yield criterion is expressed in the form
f=2(S-u):(S-a)-o? =0. (7.87)
Plus, the original Armstrong—Frederick kinematic model is used:
da = p,de” — p,dpa (7.88)
where
p, and p, = constant material parameters

This will be determined from the uniaxial cyclic stress—strain curve. The associ-
ated flow rule is also given as follows:

3

deP = 5
2hc5y

[(S—a):dS|(S—a). (7.89)

For the von Mises yield criterion with the kinematic hardening rule, the consis-
tency condition yields the equation,

dS:n=dua:n (7.90)

nzv@§‘g, (7.91)
20y

Substituting the kinematic model and the flow rule into the previous consistency
equation has

where

(S-0):a

h=p —p,—= 5,

(7.92)



278 Chapter 7

The material parameters p, and p, can be obtained from the uniaxial cyclic stress—
strain curve. Considering the uniaxial loading case, S, =S;;=-1/2S,, =
—1/30,, and ap; = o33 = —1/2a,. Hence, the generalized plastic modulus (h) can
be reduced to

3 (Sy—ap)oy

b= py = S (7.93)
Yy

and the von Mises yield criterion can be expressed as follows:

2(8-0):(S—w) = (7.94)

Expanding Equation (7.94) results in

9

2 (Sy1—ayy)’ = Gi- (7.95)
Finally squaring the root of Equation (7.95) has

3

§|S”—(x“| =Gy. (796)

Therefore, after substituting Equation (7.96) into Equation (7.93), the general-
ized plastic modulus can be rewritten as

h=p =0y Syp>ay (7.97)
h=p +po  Spp<ay (7.98)

where minus and plus refer to loading and reversed loading, respectively. Also,
the flow rule becomes

2
d81131 = 3—hd(51 l- (799)
By considering only the loading condition, the tangent modulus of the uniaxial
cyclic stress—strain curve can be expressed in terms of the generalized plastic

modulus in the following:

doy, 3

3
h,y = = -h== - 7.100
11 de’, 3 2(}11 Hy0ty 1) ( )
and the yield criterion has
2 2 2
g =Sll_§cy= 5(511—56},. (7101)
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Substituting Equation (7.101) into Equation (7.100) yields

do 3
?5111 + 1,011 = 5“1 +mo, or doy
31 (7.102)
= (Gy_cll + E p—;> (}szfﬁl).
Imposing the initial condition, 6;; = oy at €], = 0, the solution of the preceding
linear differential equation is
C11 =Gy+% %(1 —e_”zgll)l). (7.103)
2

Therefore, the material parameters, p; and p,, can be determined by fitting the
uniaxial cyclic stress-plastic strain data into Equation (7.103).

Figure 7.9 depicts the correlation between the Ramberg—Osgood equation and
Equation (7.103) with the fitted material parameters, p, and p,. Equation (7.103)

641 (MPa)
600
Material - SAE 1137 (K'=1230MPa; n"=0.161)
500 |
/ f
400 — —
300 / (6y=200 MPa; y1,=380000; j1,=2300)
200
100
0 efy
0 0.0005 0.001 0.0015 0.002 0.0025 0.003
Figure 7.9

Comparison between the original and fitted cyclic stress-plastic strain curves.
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gives an exponential shape to the uniaxial stress—strain curve that saturates with
increasing plastic strain, where the value of o, + % E—; is the maximum saturated
stress and p, determines the rate at which saturation is achieved.

Advanced Cyclic Plasticity Models for Nonproportional Hardening

Nonproportional hardening is an additional strain hardening of some materials
under nonproportional loading where the principal axes change with time.
A special material modeling technique is required to predict this type of material
behavior.

The phenomenon of this additional strain hardening as a result of the slip
behavior of the material has been explained (Tanaka, 1994; Itoh et al., 1995).
As shown in Figure 7.10, the continuous change of the principal stress plane
or the maximum shear stress plane due to nonproportional loading increases
the interaction between slip systems resulting in plastic deformation along the
different slip systems. The cross slip interaction due to plastic deformation
can induce an additional strain hardening as compared to that observed in pro-
portional loading.

Interaction between
Slip Planes

Maximum Shear

Stress Planes ﬁ

+—>

Figure 7.10
Interaction between slip planes due to nonproportional loading.
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Hardening
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Figure 7.11
Comparison of equivalent stress—strain curves for the same material
under in-phase and 90° out-of-phase loadings.

This strain hardening phenomenon is illustrated in Figure 7.11, which shows the
effective stress—strain curves for the same material under proportional (in-phase)
and nonproportional (90° out-of-phase) loadings. The additional strain hardening
due to nonproportional loading can be described by the nonproportional harden-
ing coefficient, anp, defined by

= 90°
ayp = SMa(@=907) (7.104)

GVM,a((P = 00)
where

¢ = the phase angle between two loads
ovm.a(@ = 90°) = the 90° out-of-phase von Mises stress amplitude
ovma(@ = 0°) =the in-phase von Mises stress amplitude at the same
strain amplitude

The severity of nonproportional hardening is dependent on the ease on which
slip systems interact and the type of loading path. Materials such as aluminum
alloys have weak interactions and show wavy slips because dislocations can
easily change their slip planes as the maximum shear stress plane rotates, result-
ing in no or small additional strain hardening.
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A typical material, such as Type 304 stainless steel (Doong et al., 1990; Itoh et al.,
1995), shows higher strain hardening effects than aluminum alloys (Krempl &
Lu, 1983; Doong et al., 1990; Itoh et al., 1997) based on the identical nonpropor-
tional loading tests. Also the study (Tanaka et al., 1985; Itoh et al., 1995) showed
that different nonproportional loading paths produce different degrees of nonpro-
portional hardening, among which the 90° out-of-phase loading path has the largest
degree of nonproportional hardening.

The aforementioned cyclic plasticity models in previous sections fail to account
for nonproportional hardening and these models need to be modified with a
special parameter to capture this phenomenon. There have been many attempts
to describe nonproportional hardening, among which the fourth rank tensor
developed by Tanaka (1994) is the promising method to account for the nonpro-
portional hardening, based on the investigation by Zhang and Jiang (2008).

Tanaka introduced a nonproportional parameter A and an internal state variable
C describing the internal dislocation structure, both of which are defined as
follows:

(7.105)

and
dC = Cc(g:g—g)dsgq (7.106)
where

C. = a material constant

Based on the framework described by Zhang and Jiang (2008), an advanced
plasticity model with Tanaka’s nonproportional parameter A is introduced to
account for nonproportional hardening. This advanced model considers a com-
bined isotropic and kinematic hardening. Therefore, the yield criterion can be
written

(sao0) = 5-0:5-0-0@ =0 710



Fundamentals of Cyclic Plasticity Theories 283

For the evolution of the isotropic hardening, o,(p) follows the expression

6y(p) = oyo +R(p) (7.108)

where

Gy, = the initial yield stress
R(p) = the isotropic strain hardening function

R(p) has the following exponential formulation:
R(p) = Ryp(1 — e~ 7P) (7.109)

in which byp is a material parameter and Ryp is the saturated value with increas-
ing plastic strain determined. Ryp is proposed as follows:

Ryp = Agy + (1 - A)gp (7.110)

where qy and g, are the material parameters for nonproportional hardening (A = 1)
and proportional hardening (A = 0), respectively.

A simplified version of the evolution of the back stress tensor in the Zhang and
Jiang model (2008) is given by

- X
dg:cr[g_<\/ﬁ'ﬁ> L]dggﬁ%dr (7.111)

r NCH

where ¢ and X are material constants, and the evolution of r has the following
form:

dr = b,[1 + (m; — myq)A](Ryxp —1)del, (7.112)

in which b,, m;, and m, are material constants and q is the value of the
memory size.

Stresses and Strains

For the strain-controlled test, the deviatoric stress tensor in terms of total strain
and plastic strain increment tensors can be rewritten,

s = de—de” — 1 (de: 1)1

. 7.113
2G 3 - ( )



284 Chapter 7

With the introduction of the flow rule, this equation reduces as

d§=d

1
oG = % H( dS)n——(ds DL (7.114)

Dotting both sides of Equation (7.114) by n yields

& in=desn-Ln:aS)nin— L (de:Dlin (7.115)
Since the volume change due to plastic strain change is zero,
deP:I=0; I:n=0. (7.116)
Thus, Equation (7.115) reduces to
%:g=dg:g—l—ll(g:d§) (7.117)
or
2Gh
:dS = de 7.118
n:ds = 52"~ (n:de). (7.118)
Finally, substituting Equation (7.118) into Equation (7.114) results in
ds = 2G| de ——G( L de)n— L (de: D)1 (7.119)
2G+h 30 77
For the stress-controlled test, the elastic strain increment can be rewritten:
—e_ 14V | Voo TN
de® = dc — do:DIj. 7.120
ot = LY lag - (a1 .120)
And with the application of the flow rule, the total strain increment is
dg = 1;" [dc— 1J‘:V(d6:i)i] +%(ﬁ:d6)ﬁ. (7.121)

From both strain-controlled and stress-controlled tests, the inelastic stress—strain
response is extremely dependent on the generalized plastic modulus (h), which is
closely related to the active yield surface position and the uniaxial plastic modulus.

Applications: Notch Analyses Based on Pseudo Stresses

The following sections present three popular multiaxial notch analyses—the
Hoffman—Seeger method, the Buczynski—Glinka method, and the Lee—Chiang—Wong
method—in detail.
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Hoffmann and Seeger

Hoffmann and Seeger (1989) developed an approach to estimate notch stresses
and strains based on the pseudo stresses calculated from a linear elastic finite
element analysis (FEA). The assumptions are:

*  The surface stress and strain components at a notch root are of interest
e The principal stress and strain axes are fixed in orientation

e The ratio of the in-plane principal strains is constant

*  The out-of-plane principal stress is zero, 63 =0

e The uniaxial stress—strain curve can be extended for use with suitable
equivalent stress and strain parameters such as the von Mises parameter

e Hencky’s flow rule is adopted

The elastic values of the von Mises stress o, and strain ¢;, from a linear elastic
FEA are computed:

Ge
% = o V(00 + (03)* ~ ot (7.122)
1
e, = O (7.123)
eq E .

The equivalent stress o, and strain €., can be obtained by solving the following
modified Neuber rule (1961):

e e (qu)z
Oeq€eq = Opg€eq = T (7.124)
and the Ramberg—Osgood equation:
c Geg\ =
eq eq\n’
=—+4+(— A2
fa= g * (K/> (7.125)

where

E = Young’s modulus
K’ =cyclic strength coefficient
n’ =the cyclic hardening exponent
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It is assumed Hencky’s flow rule is valid and has the following expression:

o 1+VG—X(G:I)I+§%[0_1(631)1] (7.126)
- E - E— 7 2 Geq -3
or
p p
1+v , 3 &q v, 1 %
_ 3 Y4 > (oL 7.127
£ < E " 2 Geq>g |:E " 2 Geq (g _)_ ( )

It is also assumed proportional principal stresses and 63 =0. Then the maximum
principal strain €; can be expressed as follows:

e? b
81=<1+V+§ﬂ>.61_<x+lﬂ)-(61+62) (7.128)

E 2 0 E 2 o
or
p p
1 8eq \'% 1 Seq
= (L4 .5 (Y4l a) g 7.129
. (E ceq> o (E 2 0) 7 (7.129)
But the two terms on the right side of Equation (7.129) can be further expa-
nded:
e’ Ceq + E€P €e
<l+_<1>.6, = (M L>.61=_q.cl (7.130)
E oy E Ocq Geq
or

p p
\Y 1 8eq 263(1 vV Eeeq 1 <1 ) Ceq | €eq
—+-— | =—]=|z—-|z - —o0,. (7.131
<E 2 oe() o < 2By 2712707 ey 0y (7.131)
Substituting Equations (7.130) and (7.131) into Equation (7.129) yields

€eq

g = (01 =V"-07) (7.132)

Ceq

where

v’ =the generalized Poisson ratio

This is defined as

_<l_v>. Oeq_ (7.133)
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Similarly, e, and €3 can be determined by

€
gr=—-(6,— Vo)) (7.134)

Oeq

5= —V- -9 (5, +0,). (7.135)
Oeq

Combining Equations (7.132) and (7.134) has

2 4y
Q2 _ & (7.136)
SI v 22 '
€1

Provided that €, and &, denote surface strains and e; is normal to the surface,
the assumption of a constant surface strain ratio has

Lot —v.o
e _s_E 27V (7.137)

€ g l.(ce_v_ce)

E 1 2

The principal stresses and strains can then be calculated:
61 = Goq ——d (7.138)
P V1—a+a? '

06, = a-o0;j. (7139}

Finally, the steps to calculate the local notch surface stresses and strains based
on pseudo stresses are summarized in the following:

1. The elastic values of the von Mises stress and strain from a linear elastic
FEA are computed:
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2. The equivalent stress and strain can be obtained by solving the following
modified Neuber rule:

Ceq€eq = Ocq€

1
Ocq Oecq\n'
fq =g + <f) '

3. The assumption of a constant surface strain ratio leads to

R HCEa)

c
€ €

o | —|m =

(0] =v-03)

4. Based on Hencky’s flow rule, the generalized Poisson ratio and the
principal stress ratio can be obtained as

€
24y
G2 €
=5 €
o I+v- =
€

5. The principal stresses and strains can be calculated as follows:

1
vVi—a+a?

(e3] =Geq'

0y = a- 0]
€ =8ﬂ-(6 -V -0,)
= o 2
I R
€ = oo (6, —V'oy)
€
g3 = =V - — . (6, +0,).

Ocq
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Buczynski and Glinka

Moftakhar et al. (1995) proposed the concept of equality of the total strain
energy at the notch root by modifying the Neuber rule for the multiaxial notch
stress—strain analysis:

c:ef=0:¢ (7.140)

where the product of ¢° and £° is the total strain energy due to pseudo stress
and strain tensors at a notch and the product of ¢ and ¢ is the total strain energy
due to true stress and strain tensors at the same notch.

This is depicted in Figure 7.12. With the Hencky flow rule, the following addi-
tional stress—strain equation is introduced:

p

_1+4v \ 38q[ 1,
=% g—ﬁ<g.1>1+56—eq[g e (7.141)
(51,81
c5.€§ o5 ——
— —
65,5
5

Figure 7.12
Generalized Neuber rule.
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where egq = ge". In this case, o and € can be obtained by solving the simulta-

neous Equations (7.140) and (7.141).

However, after reviewing this total strain-based approach, Chu (1995) found
that the accuracy of the estimated notch stresses and strains depends on the
selected coordinate system and the local notch constraint conditions and that
the conflict between the flow rule and the modified Neuber rule may result in
singularity in the solutions at some specific stress ratios. Therefore, it is recom-
mended to use the incremental format of the strain energy to improve the
accuracy.

Buczynski and Glinka (2000) developed a method analogous to the original
Neuber rule by assuming that the elastic incremental strain energy density equals
the true incremental strain energy density. It is graphically shown in Figure 7.13
and mathematically expressed in terms of deviatoric stress and strain spaces:

Sp:Ae®+AS%:ef =S, : Ae+AS: e, (7.142)
S, 8¢
A
AS®
!
Sk
Sk 4
/ B
AS
Ae
Ae® —
> e e
ek e«
Figure 7.13

Generalized Neuber rule in deviatoric stress
and strain increments.
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where

Si. e, AS®, and Ae® = the deviatoric pseudo stress and strain tensors at a load
step k, and the incremental deviatoric pseudo stress
and strain tensors, respectively

S,. €, AS, and Ae = the true deviatoric stress and strain tensors at a load
step k, and the true incremental deviatoric stress and
strain tensors, respectively

The quantities on the left side of Equation (7.142) are known from the outputs of
a linear elastic FEA due to the incremental applied loads. The two variables (AS
and Ag) on the right side of the equation are unknown and can be determined by
introducing an additional equation based on the Prandtl-Reuss flow rule as:

S,. (7.143)

Consequently, the pseudo and true deviatoric stress and strain tensors at the
next load step k+1 can be updated as

S;,, =S; +AS* (7.144)
€ = & +Ae” (7.145)
Sip1 =S¢ +AS (7.146)
S =& +Ae (7.147)
where
AS®
Ae® = G (7.148)

In terms of true stress and strain spaces, the equality of total strain energy at a
notch root can be expressed as follows:

oy Ae+Ac:gf =0, : Ae+AC g (7.149)
Assuming the nominally elastic behavior, Equation (7.149) can be written as

%(gi {Ac®) =0, : Ae+Ac g, (7.150)
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Similarly, the Prandtl-Reuss stress—strain incremental relation for isotropic hard-
ening is introduced as

p
I+v i 3 &y 1
Ac—=(Ac: DI+ —|Ac— =

c (Ac:D)I 2 5 o-3

E

Ae = (Ac:DI|. (7.151)
As a result, the true stress and strain incremental tensors (Ao, Ag) can be cal-
culated by solving the previous simultaneous equations—(7.150) and (7.151).

Lee, Chiang, and Wong

Lee, Chiang, and Wong (1995) developed a two-step calculation procedure to
estimate multiaxial notch stresses and strains using pseudo stresses as an input
to a two-surface plasticity model. At the same time, Barkey, Socie, and Hsia
(1994) proposed a similar approach by using an anisotropic plasticity model
with the structural stress versus strain relation. Later, Gu and Lee (1997) and
Lee and Gu (1999) extended the two-step calculation procedure by using an
endochronic approach to calculate notch stresses and strains based on pseudo
stress solutions.

The complete two-step solution procedure is summarized here. The first step
of this approach is to create a uniaxial pseudo stress versus true strain relation
(0] —¢; curve) by using either Neuber’s rule (Neuber, 1961) or Molsky—Glinka’s
energy density method (Molsky & Glinka, 1981). The new cyclic strength
coefficient and strain hardening exponent (K* and n*) can then be estimated
by fitting the previous o] —e; curve. Subsequently, the local true strains can
be calculated by using the stress control plasticity model with the new mate-
rial properties (K* and n*). The second step is to obtain the local true stresses
by using the strain control plasticity model with the cyclic material properties
(K" and n").

Figure 7.14 illustrates the concept of this approach. The o, —¢; curve is the
uniaxial material stress—strain behavior. The linear elastic finite element solution
follows the o] —e] curve and can be converted into the 6] —g; curve by using
Neuber’s or Molsky—Glinka’s method. With any given value of o7, the local
strain €; can be obtained from the o} —€; curve. And, after ¢, is calculated, the
local stress o; can be easily determined from the 6, —¢; curve. It is assumed that
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61,09
A

09-€% o—eq(K*n*)

01— &1 (K’;n')

> e
> €4,85

Figure 7.14
[llustration of the two-step calculation concept in uniaxial
stress versus strain curves.

the 6 —¢; and 6, — ¢, behavior in multiaxial state of stresses can be described by
any cyclic plasticity model.

Summary

An additive decomposition of the elastic and plastic components of the total
strain is always assumed throughout all the plasticity theories. The elastic strain
tensor can be calculated based on the theory of elasticity; the plastic strain ten-
sor is based on the theory of plasticity.

The theory of elasticity has been reviewed. The formulas based on Hooke’s law
for calculation of elastic strain tensor due to stress and deviatoric stress tensors
were presented.

There are many classical plasticity theories for plastic strain tensor calculation for
materials undergoing monotonic loading. They are common in adopting the iso-
tropic hardening model where plastic deformation of the material under loading
will result in even size expansion of the yield surface with respect to its center,
but different in defining the flow rule specifying the orientation and magnitude of
the plastic deformation. Some of the popular flow rules (such as Levy, Mises,



294 Chapter 7

Prandtl, Reuss, Hencky, and the associated flow rule) are discussed. Their equa-
tions for calculation of plastic strain tensor are also documented.

There are numerous theories of plasticity to simulate the hysteresis behavior for
materials subjected to cyclic loading. They are common in adopting the asso-
ciated flow rule for the plastic deformation tensor, but different in using various
kinematic hardening models (such as nested-surface model, two-surface model,
and single-surface model) to account for the Bauschinger effect in cyclic reversed
loading.

In each model, there are various translational rules (for example, Parger’s, Mroz’s,
Armstrong—Frederick’s, Jiang—Sehitoglu’s, Phillips—Lee’s, Ziegler’s, and Rolovic—
Tipton’s) developed based on experimental observation to update the back stress
tensor of the yield surface during a plastic deformation increment. These kine-
matic hardening models with the popular translational rules are discussed. Two
examples for calculation of plastic strain tensor are illustrated.

An advanced plasticity model, a combined isotropic and kinematic hardening
model developed by Zhang and Jiang which adopts the fourth-rank tensor devel-
oped by Tanaka to account for nonproportional hardening has been presented.

The application of the existing plasticity theories to multiaxial notch analysis
based on pseudo stresses is also reviewed. Three popular multiaxial notch ana-
lyses (the Hoffman—Seeger, Buczynski—Glinka, and Lee—Chiang—Wong methods)
are also presented in detail.
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Introduction

Fatigue Analysis

Mark E. Barkey
The University of Alabama

Yung-Li Lee
Chrysler Group LLC

This chapter’s emphasis is on critical plane methods and appropriate damage
parameter selection, since the more general critical plane methods simplify to
equivalent stress—strain approaches for proportional multiaxial loading. Damage
parameters and calculations based on energy density terms that contain combina-
tions of stress and strain components are also discussed.

In addition to performing fatigue calculations during the design phase, the CAE
analyst may also be asked to examine test data collected using strain gages for life
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prediction or for correlation to CAE models. Therefore, the basic data reduction
approaches for strain-gage rosettes are also discussed. Additionally, an example of
multiaxial strain-based fatigue analysis is presented using strain gage rosette data,
and additional examples using multiaxial fatigue criteria and the critical plane
approach are presented.

Fatigue Damage Models

Strain-based uniaxial approaches were discussed in Chapter 6. Approaches for
multiaxial low-cycle fatigue can be broadly categorized as equivalent stress—
strain approaches, energy approaches, and damage parameter, critical plane
approaches. A review of those approaches proposed from 1980 to 1996 is pre-
sented by You and Lee (1996), and more recently by Wang and Yao (2004).
These various approaches have been extended and modified since, and are still
current areas of research and discussion.

All of these approaches rely on an accurate characterization of the time-varying
stress and strain state at the critical location where the fatigue damage is to be
assessed. Material constitutive models were discussed in Chapter 7, initially for
uniaxial loading conditions and then extended to proportional cyclic loading and
for general multiaxial stress states. In a similar manner, the type of strain-based
low-cycle fatigue approach will depend on the manner in which the critical loca-
tion is stressed.

Equivalent Strain Approaches

Under laboratory conditions, multiaxial loading is often accomplished by sub-
jecting a cylindrical solid or hollow test specimen to tension—torsion loading. In
some cases, a cruciform type specimen is subjected to in-plane biaxial tension/
compression loading. The loading conditions are usually represented by a phase
plot of the loads, stresses, or strains in the primary loading directions.

In the case of tension and torsion, the phase plots of stress are usually shown in
equivalent stress axes; for the von Mises yield criterion:

1 2 2 2 2 2 2 17
6,=—=|(6x—0y)" +(6,—0,)" + (0, —0x)" + 61, +61,+67,| . (8.1

V2
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If the specimen is subjected to only an axial stress o, the equivalent stress
6, = 6, and for only a torsional stress, 6,= \/g'cxy. If combined axial and torsional
loads are applied, then the expression for the von Mises equation results in

6, = /(03 +315,).

A 45° path on this phase plot represents a proportional tension—torsion loading
where the equivalent stress contribution from the tension and torsion terms are
equal. A circular path on these axes represents 90° out-of-phase loading. Exam-
ples of stress phase plots are shown in Figure 8.1. Note that these plots are not
Mohr’s circle of stress plots.

Proportional and nonproportional loading paths are easily distinguished by
using these phase plots—proportional loading paths are straight lines and non-
proportional paths are any other paths. Under laboratory conditions, a complete
loading cycle can be defined as one circuit around the path.

An equivalent plastic strain equation can be defined in a manner consistent with
the definition of the von Mises equation (Mendelson, 1983). The equivalent
plastic strain, €”, is given by:

12
2 = Y2 [(eh el 4 (D — )+ (2 — 0>+ 6(e8, )+ (€2, + 6(eL,)°

3 ot
(8.2)

3, B,
A A

(a) (b)

Figure 8.1
Proportional (a, in-phase) and nonproportional (b, 90° out-of-phase) loading
plots in equivalent stress phase space (90° out-of-phase).



302 Chapter 8

where

P P oP P P
€y, €y €, €y, €

b _ . :
xy» Ex,» and &g, = the plastic strain tensor components

When a uniaxial stress is applied in the x direction, strains occur in the axial
direction and both transverse directions.

For an isotropic material that follows the conservation of volume during plastic
deformation, the transverse plastic strains are e} =€) =—3el. Thus for a uniax-
1al stress state,

2 2172 12
e Fl(erief el - Ff e 0o
For a state of pure shear loading,

p
Xy

e 1 V2 e V2 e 1
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where the term ygy is the engineering plastic shear strain.

For a combined state of uniaxial tension and torsion loading,

12
2 1 2
el = [(sg) +3 (v8,) } . (8.4)
For low-cycle fatigue applications, the elastic portion of the strains is often neglected,
and the equivalent strain is computed based on total plastic strain quantities.

In other cases, the elastic strains are incorporated into the equivalent strain
through the use of a modified Poisson’s ratio term, as shown in Equation (8.5)
(Shamsaei & Fatemi, 2010):

172

1 2 2 3 2
= — |2 14+v) += 8.5
= e |2 0 S ) 9
where
5=1/eee-i-vpep
€

In this expression, the modified Poisson’s ratio depends on the elastic Poisson’s
ratio (the usual material property), the plastic Poisson’s ratio (a result of volume
conserving plastic flow of metals), and equivalent elastic, plastic, and total
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Figure 8.2
Proportional (a, in-phase) and nonproportional (b, 90° out-of-phase) loading
plots in equivalent strain phase space.

strains. In Equation (8.5), the equivalent plastic strain, €, = €P, is determined
from Equation (8.2), the equivalent elastic strain is determined by €. = o,/E,
and the total equivalent strain is given by € =&, +&€,.

The typical presentation of equivalent strain phase plots takes the form shown
in Figure 8.2, where plots are presented on axes of total axial and total engineer-
ing shear strain over the square root of three. Note that these plots are not
Mohr’s circle of strain plots.

Equivalent Strain Approaches for Proportional Loading

The goal of the equivalent strain approach is to use the equivalent strain ampli-
tude, €,, in a damage parameter equation to determine fatigue life. For example,
modifying the uniaxial strain-life equation to write it in terms of equivalent
strain amplitude results in

€, = %(2N)b +e/(2N) (8.6)
where

2N = the number of reversals to crack initiation
of =the fatigue strength coefficient
et =the fatigue ductility coefficient
b, ¢, and E =the fatigue strength exponent, fatigue ductility exponent, and
modulus of elasticity, respectively
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This method reduces to the uniaxial strain-life equation in the absence of shear-
ing strains. Additionally, if only shearing stress is applied, it provides a way to
relate shear strain—life material properties to uniaxial strain—life material proper-
ties. As described in Bannantine et al. (1990), if the slopes of the uniaxial and
shear strain—life curves are the same (the material constants b and c¢), then an
equivalence can be seen between the shear strain-life equation:

T , c
Yo= g (ON)+7(N) (8.7)
and the equivalent strain—life equation for torsional-only loading:

= Ya

Gf, b ’ C
= —= = —(2N 2N
g, NG E( ) +¢&f(2N),

resulting in

G V30} o}
(= V/3¢gf, d ti=+V30i= = ~
It \/_Sf and  Tf \/_Gf E 2(1+v) 3

when plastic strains dominate.

In these equations, t¢ is the torsional fatigue strength coefficient, y; is the tor-
sional fatigue ductility coefficient, and b, c, v, and G are the fatigue strength
exponent, fatigue ductility exponent, Poisson’s ratio, and shear modulus of elas-
ticity, respectively.

It should be noted however, that although the equations developed with this
approach predict that equivalent strain should result in the same fatigue life for
both the axial-only and torsional-only loading, experimental discrepancies are to
be expected and have been noted (Krempl, 1974). Torsional-only loading can
often have a factor of two on fatigue lives as compared with axial-only loading
at the same equivalent strain range.

In the low-cycle fatigue regime, this discrepancy is often attributed to the fatigue
damage mechanism being sensitive to the hydrostatic stress (Mowbray, 1980).
Mowbray proposed a modification of the strain-life equation as:

A& _ S, ) (2N) + (52

= 3 m) eig(%, m) (2N (8.8)
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where
W Ul 70 B
0 (1—n+22)2 ‘
ghnoz(Z—xﬂﬂl—k+ﬁfﬂ—mU+kﬂ

6(1 —A+2?)

in which v is Poisson’s ratio, m is a material constant with an upper bound of
1.5 that incorporates the effect of hydrostatic stress, A = Ac,/A o, is the biaxial-
ity ratio computed from magnitude ordered principal stress ranges, and the
remaining terms in Equation (8.8) are from the strain-life equation.

Mowbray’s equivalent strain parameter, shown in Equation (8.8), was developed
using the deformation theory of plasticity, which restricts the use of this equa-
tion to proportional loading paths. Although this approach has not been widely
adopted by the fatigue community, it does demonstrate that damage parameters
based on equivalent strain terms alone are unable to accommodate experimental
observations and that stress terms must be included if a multiaxial damage para-
meter is to be suitable for both low-cycle and mid-cycle fatigue regimes.

Although the most common equivalent strain approaches are based on the von
Mises stress and strain, equivalent approaches based on the maximum principal
strain and maximum shear strain (Tresca) criteria have also been developed. The
advantages of equivalent strain approaches for multiaxial fatigue is that the
methods are easy to apply for proportional strain loading histories and usually
require only commonly available strain—life material properties.

Equivalent Strain Approaches for Nonproportional Loading

Equivalent strain approaches have also been developed for nonproportional loading.
Most of them incorporate a parameter that describes the degree of out-of-phase load-
ing within the loading path. Applications of these approaches are limited, and are
usually used for load paths that can be readily applied in a laboratory setting. Even
so, these approaches can be useful for describing and quantifying material behavior
differences between proportional and nonproportional loading paths.

For tension—torsion multiaxial loading, the largest difference in fatigue behavior
is often between proportional and 90° out-of-phase loading. Equivalent strain
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Figure 8.3
In-phase and out-of-phase loading paths based on equal maximum
equivalent strains for an entire cycle.

paths that exhibit the same maximum equivalent strain ranges can be constructed
for in-phase and out-of-phase loading, and are illustrated in Figure 8.3. Using
equivalent strain approaches for nonproportional loading can generate additional
difficulties.

As discussed previously in Chapter 5, some materials can experience additional
hardening for out-of-phase or nonproportional loading—meaning that under
strain controlled conditions, stresses in the material are higher for out-of-phase
loading than for in-phase loading. These additional stresses can cause more
damage for out-of-phase loading as compared to in-phase loading.

The degree of nonproportional hardening is dependent on the microstructure of
the material. It can be characterized by the ratio of equivalent stress developed
from out-of-phase loading and in-phase loading as follows:

o= J00P _ (8.9)
Orp

where

o = the nonproportional hardening coefficient
Goop = the equivalent out-of-phase stress
Gp = the equivalent in-phase stress

Testing to determine the nonproportional hardening coefficient is more compli-
cated than is standard strain controlled fatigue testing. Shamsaei and Fatemi
(2010) have observed that materials that tend to cyclically harden during
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uniaxial testing exhibit a higher degree of nonproportional hardening than mate-
rials that do not cyclically harden.

Shamsaei and Fatemi further proposed the following relation to determine the
nonproportional hardening coefficient:
K 2 Ag 2(n—n’) K\ /Ae (n—n’")
=16(g) (55 -38(3)(8) +22 8.10
* K/ \2 k/N\2) ° (8.10)
where

Kand K’ = the Ramberg—Osgood coefficients for the monotonic and cyclic
stress—strain curves
nand n'= the monotonic and cyclic exponents
Ag/2 =the strain amplitude.

The Ramberg—Osgood properties for materials are usually available or can them-
selves be estimated from fatigue properties of materials. If a high degree of non-
proportional low-cycle plasticity is expected for an analysis, the out-of-phase
hardening parameters can be accounted for and the equivalent stress amplitude-
plastic strain amplitude curve can be adjusted by

Ac Ag,

89 _ k(1 +a) <T> 8.11)

where F represents the factor of nonproportionality due to a loading path effect.
Therefore, the equivalent strain approaches can be used for more general non-
proportional loading if enough data is available to assess the nonproportional
hardening affects.

Another equivalent strain approach has been developed by Itoh et al. (1999).
In their study, Itoh and coworkers conducted nonproportional tension—torsion
fatigue testing on materials subjected to as many as 14 different loading paths
based on equivalent stress and strain ranges, such as earlier in Figure 8.3, and
other paths including box-paths, stair-step paths, and X-paths. One cycle was
considered one circuit around the loading path.

At any instant in time, the maximum absolute value of principle strain can be
calculated by:

fle®] for le()]2 ()
8‘“)‘{|e3<t>| for [ea(t)] <|e (1) ®.12)
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and the maximum value of g(t) is defined as
€max = Max|[gq(t)]. (8.13)

During the cycle, the principal directions of strain will change, in general. The
angle between the current direction of g(t) to the direction of the maximum
value of g(t) over the cycle (€, ) is defined as &(t). The maximum principal
strain range over the cycle can then be defined by

Agr = Max [eqmax — c08 (E(1)) &1(1)]. (8.14)

Itoh and coworkers’ (1999) tests on 304 steel and 6061 aluminum alloy both
exhibited additional hardening for nonproportional loading. Since the directions
of principal strains are changing, the different planes in the material exhibit
varying amounts of shear stress and strain range during the cycle. Depending on
the material microstructure, the slip systems within the material may interact.

As explained by Itoh, for the 304 steel, the interaction was such that large addi-
tional hardening occurred during nonproportional cycling. For the 6061 alumi-
num alloy, much less interaction occurred since this aluminum alloy has a
higher stacking fault energy and exhibits wavy dislocation slip, resulting in an
easier change of slip glide planes.

Itoh then proposed a nonproportional strain range as
ASNP = (1 + (XfNP) ASI (815)
where
o =a material constant related to the additional hardening (defined as in
Equation 8.9)

fyp = the nonproportionality factor that expresses the severity of
nonproportional straining

The latter depends on the strain path that is taken. Itoh and coworkers defined
this term as

T
fie = o [ [sin(e0)| (o) (8.16)
0

where

k =chosen to make fyp equal to one for 90° out-of-phase loading
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T =the time period of the cycle, and the result normalized by e,
fxp = zero for proportional loading

Itoh reported that the fatigue test data resulted in less scatter when using this
equation, for both materials.

In general, equivalent strain approaches do not consider combinations of stress
and strain acting together on critical planes within the material. These appro-
aches do not consider complicated material models; they attempt to reduce the
strain tensor components to a single value, and incorporate observed effects that
do not match with the basic theory with adjustable parameters. However,
equivalent strain approaches can be used effectively when the loading behavior
and material behavior are well characterized.

Energy Approaches

The goal of an energy-based fatigue damage parameter is to use the product
of stress and strain quantities to determine fatigue damage at a location in a
material. The success of the von Mises yield criterion—also known as the maxi-
mum distortion energy criterion—in reducing a complex stress state to an
equivalent stress that can be compared to the uniaxial yield stress of a metal
gives some rationale for this approach. These approaches can be used for high-
cycle and low-cycle fatigue.

The Smith—Watson—Topper damage parameter is often cited as an energy-based
damage parameter:
(of)

= (2N +6{ef(2N* 60 >0 (8.17)

Omax€a =
where

€, = the strain amplitude on the tensile crack plane
Omax = the maximum normal stress on this plane

The right side of the equation is a mean stress influenced representation of the
strain-life equation.

The product of the strain amplitude and the maximum stress on the left side of
the equation is a strain energy density term. Knowing the material properties on
the right side from strain-life fatigue tests, and the left side from the loading
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history and constitutive equation, the fatigue life/damage can be calculated. In
practice, the equation would only be evaluated when the left side is positive,
meaning that the maximum stress term has at least some value of tension. Physi-
cally, this scenario would represent a material with perhaps even a very small
crack being held open while the strain is cycling.

In uniaxial fatigue conditions, the Smith—Watson—Topper damage parameter has
been used with a great degree of success. For multiaxial fatigue conditions, the
use of a single parameter has met with some challenges in the implementation,
particularly for general nonproportional loading.

One approach is to compute the multiaxial strain energy density, as done by
Garud (1981). In this approach, the plastic work is computed for a cycle:

AWP =/Gijd85~ (818)
cycle
where

ojj = the stress tensor components
deg =the plastic strain tensor components
AW, = the plastic work done in a cycle

It is noted that the implied summation is used for tensor components over i and j.

Fatigue life is related to the plastic work by a function calibrated from uniaxial
test data, such as in the power law form N=A AW;X, where A and o are the
power law fitting constants. The approach is similar in concept to that of Ellyin
(1974) and variants that use total strain energy:

Avvtolal = AWP + AWe = /Gijdeij- (819)

cycle

The advantage of these approaches is that the energy approaches are derived
from general principals and can be applied to multiaxial nonproportional load-
ing. Such approaches, however, rely on the accurate characterization of the con-
stitutive model of the material under multiaxial loading conditions. General,
multiaxial constitutive models are discussed in Chapter 7. The applications of
these approaches to materials that exhibit failure modes dependent on stress
level and loading mode is a current area of research.
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Critical Plane Approaches

In the previous section we have seen that low-cycle fatigue damage parameters
are based on both strains and stresses. As in the case of stress-based multiaxial
fatigue, a constitutive model is needed to calculate the stress tensor time his-
tory or the strain tensor time history from either known strains or stresses, respec-
tively. Constitutive modeling for relatively high strains can be challenging to do.
Additionally, some materials can experience additional hardening for out-of-phase
or nonproportional loading—meaning that under strain-controlled conditions,
stresses in the material are higher for out-of-phase loading than for in-phase
loading.

These additional stresses can cause an accelerated amount of fatigue damage
on critical planes as compared to in-phase loading. For fatigue calculations, con-
stitutive models that do not account for nonproportional hardening effects may
result in nonconservative fatigue life calculations.

An early strain-based critical plane approach was proposed by Kandil, Brown,
and Miller (1982), who proposed that a combination of shear strain and normal
strain acting on a plane was responsible for crack initiation and growth:

AY ax

3 +5e, = C (8.20)

where

AY,..«/2 = the strain amplitude on the maximum shear strain plane
€, = the normal strain on this plane
S =a material fitting constant

This parameter provided a physical basis for crack growth for shear cracks
opened by normal strains perpendicular to the crack surface. However, it has
been shown by Socie and coworkers (Socie & Marquis, 2000; Fatemi & Socie,
1988) that strain parameters alone cannot correlate fatigue behavior for a range
of materials subjected to both in-phase and out-of-phase loading.

Calculations using the critical plane approach have been discussed in Chapter 5
and can be made in a similar manner for strain-based or low-cycle fatigue calcula-
tions. Damage parameters and cracking mechanisms are subsequently reviewed,
with an emphasis on low-cycle fatigue applications.
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Damage parameters are functions that relate physically meaningful variables,
such as stress or strain, to fatigue damage. The fatigue damage of metals is
understood to involve the movement of dislocations, the formation of slip
bands, and the development of a small crack in the material due to alternating
loads.

Therefore, terms that can affect the dislocations, slip bands, and small crack for-
mation in materials subjected to alternating loads would be justifiable to include
in a fatigue damage parameter. Indeed, as expected, many damage parameters
include shear stress amplitude, mean stress, and crack opening strains fitted for
a particular material by the use of material constants.

In addition to these basic terms, it also understood that load level and type of
loading can influence the damage evolution in a material. While the use of fitted
material constants to a proposed damage parameter is sometimes the only
recourse an analyst may have, some rationale for choosing appropriate para-
meters can be made based on the physical development of small cracks in a
particular material.

Socie (1993), through the use of damage mechanism maps, explained a rationale
for using different terms in damage parameters based on the respective damage
mechanisms that are activated. For example, in his paper, AISI 304 stainless
steel was tested in torsion and in tension and the cracking behavior was
described:

Cracking behavior could be categorized into two regions: Region A and
Region B. Region A behavior was observed at short lives. Microcracks
initiated on shear planes. Once initiated, the cracks became more distinct
but showed no significant increase in length. At failure, a large density of
small coarse cracks dominated the surface of the specimen. A small amount
of branching onto tensile planes (Stage Il planes) was observed. Failure
cracks grew on either shear planes (Stage I planes) or tensile planes (Stage
1l planes) by a slow linking of previously initiated shear cracks. Region B is
characterized by shear crack nucleation followed by crack growth on planes
of maximum principal strain amplitude (Stage Il planes). Shear crack
growth consumes a small fraction of the fatigue life. Region C behavior was
observed at the longest lives in torsion. The fraction of life spent growing
the crack on shear planes was reduced, as was the crack density. A small
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Figure 8.4
Damage mechanism map for 304 stainless steel tested in torsion (Socie, 1993).

number of cracks initiated on shear planes but quickly branched to Stage Il
planes. Growth on these planes occurred by the propagation of the mail
crack rather than by a linking process.'

Figure 8.4 shows the life fraction on the vertical axis, and the cycles to failure on
the horizontal axis. For the AISI 304 stainless steel loaded in torsion, a portion of
the life was spent nucleating small cracks. As the fatigue lives became longer, the
portion of fatigue nucleation life increased as a percentage of total life.

For low-cycle torsional fatigue, the nucleated cracks grew in a vertical orienta-
tion and horizontal directions on the specimen, as defined by the loading axis of
the specimen. These orientations have the highest shear stress and shear plastic
strain amplitudes. Socie denoted this region as region A.

! This paragraph, Figure 8.4, and Figure 8.5 are reprinted, with permission, from STP 17191
Advances in Multiaxial Fatigue; copyright ASTM International, 100 Barr Harbor Drive, West
Conshohocken, PA 19428.
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At longer lives, in the mid-cycle to high-cycle fatigue regime, crack growth was
dominated by cracks growing at approximately a 45° angle to the axis of the
specimen. For torsional loading, these planes experienced reversed tension and
compression loading. Socie denoted this region as region B. In the high-cycle
regime, the nucleated cracks transitioned immediately to a tensile growth mode.
In the mid-cycle fatigue life regime, some shear and tensile crack growth may
be expected.

Figure 8.5 shows the life fraction on the vertical axis, and the cycles to fail-
ure on the horizontal axis, this time for AISI 304 stainless steel loaded in
tension. A large portion of the life was spent nucleating small cracks. The
low-cycle fatigue regime indicated tensile crack growth from the initiated
cracks. These planes would be aligned perpendicular to the loading axis of
the specimen.

Socie also presented damage mechanism maps for Inconel-718 and 1045 steel.
The different materials exhibited different mechanism maps due to their different
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Tensile Crack Growth
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Figure 8.5

Damage mechanism map for 304 stainless steel
tested in tension (Socie, 1993).
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microstructures and abilities to impede dislocations and small cracks. Damage
parameters were proposed for each region (Socie, 1993) as follows:

Region A: low-cycle, shear-crack growth, plastic shear-strain—dominated
and affected by crack opening normal stress

Y. (1 +k°“"““> = X (ONY +y/(2N) (8.21)
Gy G

where vy, is the shear-strain amplitude on the cracking plane, k is a fitting
parameter dependent on the material of interest, 6, max/ o, is the maximum
normal stress opening the crack faces normalized by the material yield
stress, and the right side of the equation represents a shear strain-life fit of
experimental test data (Fatemi & Socie, 1988).

Region B: low- or mid-cycle, normal-stress—driven crack growth, described
by Smith—Watson—Topper or similar damage parameter
_ (5@2 2 b+c
Omax€a =~ (2N)™ + ofef(2N) Omax >0 (8.22)
where ¢, is the strain amplitude on the tensile crack plane, 6, is the

maximum normal stress on this plane, and the right side of the equation
represents a mean-stress—influenced representation of the strain—life equation.

Region C: high-cycle fatigue, dominated by crack nucleation on shear planes
due to elastic-shear strains or elastic stress, influenced by tensile stress

To + KeOpmax = TH2N) (8.23)

where 7, is the shear-stress amplitude, k. is a fitting constant, 6, y,y 1S the
maximum normal stress opening the crack faces, and the right side represents
the elastic-dominated shear-stress—fatigue-life curve.

Different materials can be modeled with one or more of these damage parameters.
These damage parameters can be used in conjunction with a critical plane sweep
method to accumulate calculated fatigue damage on candidate planes. The plane
experiencing the most calculated damage is determined to be the cracking plane. In
instances where the transition from one damage parameter to another is not known
in advance (i.e., the material lacks a damage mechanism map), each damage para-
meter can be evaluated for the entire loading history and the most damaging para-
meter can be used to give a conservative estimate on calculated fatigue life.
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The advantages of the critical plane approach for strain-based fatigue analysis
are the same as in the stress-based approach. The approach is general enough
to apply to both proportional and nonproportional multiaxial loading conditions.
The physical nature of the development of small cracks can be captured by the
use of appropriate damage parameters.

The expected crack orientation in the material can be calculated. However, an
accurate constitutive model is essential in obtaining the best results, as is knowl-
edge about the appropriate damage parameter to use for a given material at a
particular load level.

Strain Gage Rosette Analysis

An electrical resistance foil-strain gage is a strain-sensing element made of
multiple metal foil loops that is calibrated to measure strain in the axis of the
strain gage. For uniaxial stress states, the gage factor of the strain gage can be
used to determine the strain in the axis of the strain gage when the gage axis
is aligned with the stress. The gage factor is determined by placing the strain
gage in a uniaxial stress field on a reference material with a Poisson’s ratio
of 0.285.

In many practical situations, however, the stress state may be multiaxial with
fixed directions of principal stress—proportional stressing or loading—or with
changing directions of principal stresses—nonproportional stressing or loading.
Additionally, even if the stress state is known to be proportional, the principal
directions of stress may be unknown when the strain gage is installed. In these
cases, it is essential to use a strain-gage rosette.

A strain-gage rosette is a pattern of multiple single-axis strain gages. The most
common type of strain-gage rosette is the three-element 0°—45°-90° rosette.
In this type of rosette, two linear strain gages are aligned perpendicular to
each other, and another is located at a 45° angle in-between the other two.
For multiaxial states of stress, the corresponding strain field components perpen-
dicular to the gage axis may affect the reading of the strain gage. The degree to
which the strain gage is affected by a strain perpendicular to its axis is called
the transverse sensitivity of the strain gage. A detailed discussion of transverse
sensitivity of strain gages is presented in Vishay Micro-Measurements (2007).
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For the 0°-45°-90° rosette, with gages a, b, and ¢ associated with each angular
direction, respectively, the corrected gage readings are given by the following
set of equations (Vishay Micro-Measurements, 2007):

e, (1 -v,Kp) —Kpe, (1 = Ky)

a = 8.24

¢ 1- KtaKtc ( )
e: (1 - voKp) K [&;(1 = 1K) (1 = K) + £, (1 = VoK) (1 — Ky) -

= - 25

©= 71K, (1~ KoKo) (1 -Ky) (8.2

e = e.(1 - vKi) —Keeg, (1 = Ky,) (8.26)

- Kta Ktc

where the uncorrected measured strains are 8:,8;, and ez, their respective trans-
verse sensitivities are given by K, Ky, and K, and v, is Poisson’s ratio of the
material on which the strain gage factors and sensitivities were determined, and is
usually 0.285 for Vishay Micro-Measurements strain gages. Transverse sensitivity
correction equations for other types of strain-gage rosettes are presented in Vishay
Micro-Measurements (2007).

It should be noted that the transverse sensitivities are given in the strain gage
data sheet for the gage as percentages, and must be converted into numbers
before the application of these equations. The rolling process of the strain gage
metal and manufacture of the strain gages typically results in equal transverse
sensitivity factors for the a and ¢ gages.

Although the correction for transverse sensitivity is usually small in comparison
to the strain readings, it can be large depending on the stress field and how the
strain gages are aligned within the stress field. For this reason, it is recom-
mended that transverse sensitivity correction be made to gage readings as part
of the data-reduction process.

After the strains have been corrected, the local in-plane strain state can be deter-
mined by the use of strain transformation equations. In the local axis of the
strain-gage rosette where the x-axis is aligned along the grid axis of gage a, and
the y-axis is aligned along the grid axis of gage c, the local coordinate strain com-
ponents are given by:

(8.27)
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The local in-plane strains can be used in a constitutive model to calculate stres-
ses. Since the strain-gage rosette is on a traction-free surface of a material, the
plasticity model that is used will assume that the stress state is in-plane stress.
In general, the constitutive model may include the effects of both elastic and
plastic material behavior as described in Chapter 7.

Strain Data Acquisitions

A strain-gage rosette was placed on a steel rail, and data acquisition channels 1,
2, and 3 were collected from the strain gages that are composed of the strain-
gage rosette gages a, b, and c. A photo of the strain gage installation is shown
in Figure 8.6. Data was collected from the strain gages as a train passed over
the section of rail.

Figure 8.7 shows a time history of a portion of the data as the wheel sets passed
over the strain gage location. In this application, the data acquisition rate was
100 points per second, and the horizontal axis is the time in seconds. The units

Figure 8.6
Strain-gage rosettes installed on a section of rail.
Source: Photo of rail provided by J. McDougall of ESI.
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Strain vs. Time
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Figure 8.7
Gage time history.

on the vertical axis of the plot are microstrain. This data was collected with a
10-kHz low-pass filter, but otherwise was not filtered or edited.

The strain gage rosette data was corrected for transverse sensitivity by the use
of Equations (8.24) through (8.26) and the information on the strain gage data
sheet shown in Figure 8.8, transformed into the local strain gage coordinate sys-
tem strains by the use of Equation (8.27), and then transformed into a coordi-
nate system aligned with the vertical and horizontal directions of the rail by the
use of standard strain transformation equations. These coordinate systems are
indicated in Figure 8.9, which shows a strain-gage rosette.

The data must be examined to determine if a proportional or nonproportional
analysis should be conducted. A phase plot of the strains is shown in Figure 8.10.
There is a large cluster of data near zero in the plot. These points are typical of
low-amplitude noise in the data. Of more interest is the data near an equivalent
strain magnitude of 200 microstrain or greater.

Due to the alternating sign of the shear strain as the wheel sets pass over the
strain gage location as shown in Figure 8.11, the plot basically takes the idea-
lized shape as shown on the phase plot in Figure 8.12. This type of path is a
nonproportional loading path, indicating that a critical plane approach must be
used to analyze the fatigue life.
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Figure 8.8
Strain-gage rosette data sheet.

The next step in the analysis is to calculate the stress-tensor history. The mate-
rial is assumed to be in a state of plane stress, since the rosette is on a traction-
free surface. Because of the nature of this application and the magnitude of the
strains, the stress calculations can be done based on a linear elastic stress
model; that is, 3-D Hooke’s law. However, if the strains were larger, resulting
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Figure 8.9
Strain gage coordinate system and coordinate system
aligned with the rail.
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Figure 8.10
Phase plot of vertical and shear strain on equivalent strain axes.
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Figure 8.11
Train wheel sets passing over gage location.
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Figure 8.12
Idealized phase plot.
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in stress above the yield stress of the material, the material models discussed in
Chapter 7 would be used to calculate the stress tensor history.

The centerline of the rail where the strain-gage rosette is located is expected to
carry mainly transverse shearing stress in addition to an axial component of
stress from the wheel set approaching the point and finally passing over the
point. This would be expected to be a shear-dominated, high-cycle fatigue appli-
cation, and therefore Region C behavior is expected.

A damage parameter in the form of Equation (8.21) is most appropriate. The cri-
tical plane approach described in Chapter 5 would be used to calculate the fati-
gue damage and expected cracking plane. In this example, the strains at this
location in the rail are such that an infinite life is calculated using material prop-
erties of the rail steel.

Fatigue Analysis with Plasticity

The preceding example measured strains from an instrumented section of rail.
The analysis resulted in an infinite fatigue life as was expected for that location
on the rail. To illustrate the use of the damage parameters for finite life fatigue
analysis using the critical plane approach, the same basic time histories will be
used but this time will be scaled to represent the stresses at a location on the
surface of a component, which will be assumed to be in a state of plane stress.
The state of stress to be examined will be as indicated in Figure 8.13. The time
histories of the stress components are shown in Figure 8.14.

Material properties listed in Table 8.1 representing a carbon steel were used in a
multiaxial cyclic plasticity material model to obtain the corresponding in-plane
strains &y, €y, and v,,, and the out-of-plane normal strain, €,. The material consti-
tutive model was a strain controlled Mroz model for isotropic materials.

Plasticity was obtained during this analysis, as shown in the hysteresis loop plots
of the shear stress and engineering shear strain components that is illustrated in
Figure 8.15. Strain-life fatigue properties shown in Table 8.2 were used in the
fatigue analysis.

As mentioned previously, the selection of damage parameter to be used in an
analysis depends on the behavior of the material and the manner in which it is
sensitive to the formation of small cracks. The cracking behavior of the material
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Figure 8.13
Plane stress state.
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Figure 8.14
Stress-time history.

Table 8.1: Material Properties Used
in Plasticity Analysis

E=210,000 MPa

v=203
69 = 100 MPa
n" =0.239

K"=1289 MPa
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Figure 8.15
Hysteresis plot of shear stress and engineering shear strain.

Table 8.2: Material Properties Used
in Fatigue Analysis

E=210,000 MPa
of = 1555 MPa

el =0.811
b=-0.076
c=-0.732

can depend on the level of load that is applied and the amount of mean stress
and hydrostatic stress within the material. Material constants for some damage
parameters can be difficult to obtain.

In these cases, the fatigue analyst may choose to evaluate the fatigue damage
for a loading history using more than one damage parameter to examine the cal-
culated results for general trends. Prior experience of the analyst and the exami-
nation of fatigue test results can eventually lead to the determination of an
appropriate damage parameter for a material.

In this example, the critical plane approach will be used for in-plane normal
strains using the Region B Smith—Watson—Topper equation (Equation 8.22) and
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for in-plane and out-of-plane shear stresses using the region A shear strain—life
equation (Equation 8.21) and shear fatigue properties derived from the axial
strain—life properties. In this case, in-plane shearing stresses refer to the shearing
stress in the plane of the rail surface, and out-of-plane shearing stresses refer to
the shearing stresses that are at a 45° angle between the surface of the rail and
the direction normal to the rail surface.

For the region B Smith—Watson—Topper equation, the strain tensor time history
determined by the use of the strain controlled multiaxial material model was
resolved to candidate-critical planes by the use strain transformation equations.
In this approach, only the normal strain on the plane was considered to influence
the fatigue life. The resulting normal strain time history was picked for peaks,
rearranged to start with the highest peak, and then the rainflow cycle counted to
determine closed hysteresis loops as well as their corresponding maximum normal
stresses.

Reversals to failure were determined from Equation (8.16), and damage per hyster-
esis loop was assigned based on the cycles to failure. A low amplitude strain cycle
cutoff threshold was determined based on 10’ reversals to failure. For cycles with
less than or equal to this strain range, no damage was assigned.

Figure 8.16 shows the resulting damage per candidate-critical plane. In this ana-
lysis, candidate-critical planes were analyzed at both 10° and 2° increments.
Based on the critical planes every 2° apart, the maximum damage that was cal-
culated was 6.33e-3 at 56°, resulting in a fatigue life of 158 repeated blocks of
the stress history. If only the 10° planes were considered, the maximum damage
would have been determined to be at the 50° plane, resulting in a fatigue life of
159 repeated blocks of the stress history.

The analysis was repeating using the region A shear strain—life equation, consid-
ering in-plane and out-of-plane shearing strains. The results are plotted in Figure
8.17. The results indicate that the in-plane shear strain is more damaging than
the normal strain or out-of-plane shear strain. The calculated critical plane is at
0°, resulting in a life of 79 repeats of the stress.

To further examine this stress history, load scaling factors were applied to the
stress history, making new stress histories that were 1.10, 1.25, and 1.5 times
the original stress history. Figures 8.18 through 8.20 show the effect on damage
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shear strain, and out-of-plane shear strain parameters.
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Damage per candidate-critical plane determined by normal strain
for various scale factors on load.
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Damage per candidate-critical plane determined by out-of-plane shear strain
for various scale factors on load.

calculation for each candidate-critical plane of scaling the stress history for the
normal strain, in-plane shear strain, and out-of-plane shear strain damage para-
meters. The location of the candidate-critical plane remains the same, although
the damage increases disproportionately with the scale factor.

Summary

Strain tensor components can be used as damage parameters for multiaxial fati-
gue analysis. To capture physical features of the cracking behavior of the mate-
rials, the strain terms are often used in conjunction with stress terms to account
for mean stresses or hydrostatic stresses. Strain-based damage parameters can be
used for high-, mid-, and low-cycle fatigue life regimes with the proper selection
of damage parameter.

Fatigue life estimates for proportional multiaxial loading can be obtained
with equivalent strain equations based on a yield criterion. Special loading con-
ditions, such as 90° out-of-phase loading can also be accounted for by using an
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out-of-phase hardening parameter and a basic material constitutive equation.
However, for general nonproportional loading, a critical plane approach matched
with an appropriate damage parameter is necessary to determine fatigue life and
the expected cracking plane.

For damage parameters that include stress terms, an accurate calculation of the
stress tensor history from the strain tensor history requires sophisticated multiax-
ial material models and material constants. These material constants and damage
parameter material constants can be challenging to obtain for an absolute fatigue
life prediction, although comparative analysis can be conducted to examine gen-
eral trends in fatigue life using multiple damage parameters.
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Introduction

Traditionally vibration test specifications, such as IEC 60068-2-6 (2007) and
ISO-16750-3 (2003), were generated by using an envelope of generic customer
usage vibration profiles. In general, these generic test standards are extremely
severe, which may lead to different failure modes than the ones found in the field,
and occasionally can be poorly adapted to the present needs. These test standards
also specify the testing environmental values (accelerations, temperature, etc.) for a
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product according to the purpose of its usage. Most often, the two vibration test
methods are allowed to apply to the same description of the product of interest.

However, there are several fundamental differences between the two vibration
tests. Sinusoidal vibration has a bathtub-shaped histogram for its probability
density function (PDF) and random vibration has a bell-shaped histogram. Also
a single sine tone frequency is excited by sinusoidal vibration, whereas a broad
spectrum of frequency components is presented simultaneously in random
vibration. It will be costly to conduct both test methods to validate a product for
durability and life requirements. Thus, it becomes a challenging task for product
manufacturers to decide which test standard to follow in order to save cost and
test time. There is a need to develop an analytical solution to evaluate the fati-
gue damage severity of the vibration tests.

Another challenging task to assess the product durability is to develop an accel-
erated vibration test specification. MIL-STD-810F (2000) and GAM EG-13
(1986) have addressed the concept of “test tailoring,” which tailors a product’s
environmental design and test limits to the conditions that it will experience
throughout its service life and develops an accelerated test method that repli-
cates the effects of environments on the product rather than imitating the envir-
onments themselves.

On the other hand, the test-tailoring method is the method to develop a vibration
specification based on the customer usage conditions and the use of the material.
It is a two-stage process that consists of mission profiling and test synthesis, as
described by Halfpenny and Kihm (20006).

In the mission profiling stage, the measured customer usage (CU) events and data
are required to be identified first. For each CU event, two damage criteria such as
the shock response spectrum (SRS) and the fatigue damage spectrum (FDS) are
used to represent the customer usage profile in terms of damage severity. The
shock response is referred to the largest displacement or acceleration response of a
system subjected to a time-based excitation. For a linear SDOF system with a given
natural frequency and damping ratio, the shock response (SR) and fatigue damage
(FD) can be easily calculated.

Both SRS and FDS in each CU event can be generated by varying the natural
frequency one at a time in a frequency range of interest. The SRS is sometimes
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termed the extreme response spectrum (ERS) if the system is subjected to a
frequency-based excitation. To represent the worst local response likely to be
seen by the linear SDOF system during the entire life of the product in all
the CU events, the lifetime SRS can be obtained by using an envelope of all the
measured SRSs. Moreover, the lifetime FDS is determined by the sum of all
the FDSs, based on the Palmgren—Miner linear damage rule (Palmgren, 1924;
Miner, 1945).

In the test synthesis stage, a close-form solution to calculate ERS and FDS due
to a vibration test profile such as the power spectral density (PSD) has been
successfully derived by Lalanne (2002) based on test duration. Therefore, the
test PSD is obtained from the lifetime FDS. The accelerated test time can be
determined based on the principle that the ERS of the test PSD should be com-
pared with the lifetime SRS by adjusting the test duration, and be less than the
lifetime SRS to minimize the risk of shock failure during testing.

The objective of this chapter is to present an analytical solution that can be used
to assess fatigue damage severity for various vibration test specifications. The
close form calculation (Lalanne, 2002; Halfpenny & Kihm, 2006) for the FDS
calculated directly from the base acceleration PSD is a noble approach to the
test-tailoring method. However, other than the use of the linear SDOF system,
the formula was derived based on the following assumptions:

e Using Miles’ equation for calculation of the root mean square acceleration
in Gs

* A linear stiffness constant to relate the relative displacement to the local
stress

e The narrow-band random stress process

* The Rayleigh PDF for the stress amplitude

Therefore, there is a need to evaluate this FDS calculation process by developing
an analytical solution to include the state-of-art frequency-based fatigue damage
theories such as Wirsching—Light’s method (1980), Ortiz—Chen’s method (1987),
and Dirlik’s method (1985). These frequency-based fatigue theories are addressed
in this chapter. This chapter also presents the fundamentals of sinusoidal and ran-
dom vibration test methods and their fatigue damage spectrum calculations.
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Swept Sinusodial or Single-Frequency Sweep Test

In the sweep test, a controller inputs a pure sine tone to a shaker where the tone
may sweep in frequency and vary in amplitude. The sine tone is obtained from
performing a peak hold Fast Fourier Transform (FFT) of the raw periodic data
and the excitation frequency is continuously varying between the minimum and
maximum frequencies.

The changing rate of the excitation frequency and the method of varying this rate
as a function of test frequency have a significant effect on the response of test
parts. The sweep method controls the amount of time and the number of cycles
accumulated in any frequency range and the sweep rate affects the amplitude of
resonant response.

There are two standard sweep methods, namely the logarithmic sweep and the
linear sweep. In the logarithmic sweep, the excitation frequency f varies at a
rate f proportional to itself. Hence,
. df
f===A-f 9.1
m 9.1

where

A =a proportional constant that can be determined by a given sweep time
T in seconds from the minimum excitation frequency fy;, to the
maximum frequency f,,x

For example, A is obtained by

In(fax) — In(fiin)

A= 9.2
T 9.2)
Equation (9.1) can be rewritten in the following incremental form,
Af

At=—. 9.3
N 9.3)

So the number of cycles accumulated for each frequency interval is
n=fAc= A = T-Af (9.4)

A ln(fmax) - ln(fmin) .
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In the linear sweep, the excitation frequency rate equals a constant A’. As a
result,

f=d90_n

=== 9.5
” 9.5)
where
finax — fmi
A/ — max min . 9.6
B — 9.6)
With the incremental form, Equation (9.5) becomes
Af
At=—. 9.7
N .7
Also the number of cycles experienced for each frequency interval is
n=f ar=ALT_ T-ALT 9.8)

A fmax - fmin

During sinusoidal sweep testing it is necessary to control the equal number of
cycles or the time at each resonance. According to Equation (9.4), the logarith-
mic frequency sweep gives the same number of cycles for a given frequency
interval and is independent of the frequency level, whereas the linear sweep
produces a large number of cycles of high frequency as seen in Equation (9.8).
Thus, a logarithmic frequency sweep is the preferable one for use in sinusoidal
sweep testing because of its easy way to dictate an equal number of cycles at
each resonance.

Response to a Linear Single-Degree-of-Freedom System
Subjected to Sinusoidal-Based Excitation

Figure 9.1(a) shows a mathematical model for a linear single-degree-of-freedom
(SDOF) system where m,, c,, and k, represent the mass, viscous damping coef-
ficient, and stiffness, individually. The displacement of the mass equals to x,(t)
and the base input displacement equals to y,(t).
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(a) Mathematical model of an SDOF system
and (b) a free body diagram.

From the free body diagram of Figure 9.1(b), summing the forces in the vertical
direction leads to the following differential equation of motion:

moko(t) =Co (yO(t) - XO(t» + kO(Yo (t) —Xo (t)) 9.9)
where

X, (t), Xo(t) = the acceleration and velocity of x,(t)
¥, (t), ¥, (t) = the acceleration and velocity of y, (t)

By introducing a relative displacement, z,(t) =x,(t) —y,(t), Equation (9.9) can
be written as

mozo (t) +Coio(t) +k0Z0 (t) = _moyo (t) (910)

Dividing Equation (9.10) by m yields

(1) + (Co/my) 2o 1) + (Ko/my ) 2o(1) = =3, (1). .11
By definition,

(co/m,) =28 - @, (9.12)

(Ko/m,) = o, (9.13)

where

®, = the natural frequency in (radians/second)
& = the damping ratio
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An assumed value of 0.05 is commonly used (Lalanne, 2002) for the damping
ratio.

Substituting Equations (9.12) and (9.13) into Equation (9.10) has
7o (1) 428 - 0pZ, () + 0270 (t) = =¥, (). (9.14)

By replacing o, by 2xn-f, and then solving Equation (9.14), the steady-state
relative response |Z,(f;, &, f,)| to an SDOF system with a resonant frequency f,
in Hz subjected to a base input sine vibration with an excitation frequency of
fi |y, (f;)| can be obtained by

.. .. f;
|Zo(fi, & £o) | = [Hy (1) |3, (F) ;- 1= P (9.15)

n

where
|H, (r;)| = the gain function or the modulus of the transfer function

This is defined as

2
I3

H, ()| = ’ . 9.16)
V=127 +(28-1,)

For a steady state sinusoidal forcing, the maximum relative response will occur at
the excitation frequency approximately equal to the natural frequency, r; =f;/f, =1.
In this case, Equation (9.16) reduces to the following gain function:

et
=T =

9.17)
where
Q = the dynamic amplification factor

If the damping ratio is assumed to be 0.05, then Q =10. Also the maximum
relative displacement can be determined by dividing the maximum relative
acceleration by (2x-f;)* as follows:

‘zo(fi’ gv fn)’
|2, (f5, & fn)| = “omi) (9.18)
Therefore, Equation (9.18) can be expressed as

|2o(fi, & £a) | = [Ha (i) |[3, (fi) (9.19)
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where [H,(r;)| is obtained as follows:
1
(2P (1 - 2F + (281}

When a system is excited by a constant excitation at a resonant frequency, the
amplitude of the response will gradually build up to a level proportional to the
amplification of the resonance, also termed the maximum steady state response.

Ha(ri)| =

(9.20)

The number of constant excitation cycles to obtain the maximum steady state
response is proportional to the resonance amplification. It is preferable that the
sweep rate is slow enough to allow a sufficient number of cycles to occur in
the resonance bandwidth.

To answer the question of how slow of a sweep rate is considered to be too
slow, a sweep parameter, 1, was developed by Cronin (1968) to relate the res-
ponse level to the properties of the SDOF system. This parameter is defined as
follows:

n=— 9.21)
where
ng, = the number of cycles of excitation between the half-power bandwidth B

As illustrated in Figure 9.2, the half-power bandwidth B is defined as the fre-
quency bandwidth at v/1/2 of the peak response amplitude, and can be related
to the resonant frequency f, and the dynamic amplification factor Q as

f
B=2.

Q
In a logarithmic sweep test, the number of cycles for a given frequency interval
B is then obtained from Equation (9.4) as follows:

9.22)

T-B
= . 9.23
o (o) — 1 (F) ©-23)
Substituting Equations (9.22) and (9.23) into Equation (9.21) results in
2
In fmax —In fmin
ﬂ=Q[ (f) ( )] . (9.24)

T-f,
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Figure 9.2
[llustration of the half-power bandwidth in a response spectrum
with a resonant frequency f,.

Based on Cronin’s study (1968), it was estimated that the fraction of the maxi-
mum steady state response (G) of a system subjected to a sinusoidal excitation
passing through the resonant frequency can be approximated by

G=1—el28607"") (9.25)

This equation states that in theory, a minimum sweep parameter exists in order
to achieve a response level at a fraction of the maximum steady state response
(G) for a system subjected to a sinusoidal excitation at the resonant frequency.
With Equation (9.25), the minimum logarithmic sweep time T from f;, to f;.«
can be determined by substituting Equation (9.24) into (9.25), required to obtain
a fraction of maximum steady state response (G) for the half-power bandwidth
of an SDOF system under a resonant excitation.

As a result, the minimum sweep time T in seconds is written as follows:

_ Q2[ln(fmax) —In(fmin) /In(1 =G)\>"
- fa ( ~2.36 > '

(9.26)

Fatigue Damage Calculation

A linear SDOF system with a resonant frequency f, is subjected to a base sinu-
soidal forcing input with an excitation frequency f;. The maximum relative
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displacement, in terms of the sinusoidal acceleration input, can be obtained from
Equation (9.19) as follows:

5 ()] |
(2n-£,P/ (1 -2 + (28 1)

|Z0(fi’ é’ fn)| = (927)

It is assumed that the relative displacement can be related to the stress amplitude
S.(fi, &, f,) by a constant K. Thus, it is written

Sa(fi, & 10) =K+ |25 (f;, €, £ (9.28)
If an S-N curve exists and has the following Basquin expression (1910),
N - S;n (fiv g, fn) =C 9.29)
then the fatigue life N¢; at the stress amplitude level S (f;, &, f,) would be

S;n(fh&’ fn) Km' |Z0(fi’§’ fn)|m

Ni; (9.30)

where

m = the slope factor of the S-N curve
C = the material constant

For the logarithmic frequency sweep from the minimum excitation frequency
fimin to the maximum frequency f,,,, the number of cycles n; is given as

T Af
In(fa) = In(fipin)

(9.31)

n; =

According to the Palmgren—Miner linear damage rule (Palmgren, 1924; Miner,
1945), the fatigue damage d;(f,) to a system with a resonant frequency f,, sub-
jected to a sinusoidal input with an excitation frequency f;, can be calculated as
follows:

di(f,) = N—f (9.32)
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If the sinusoidal forcing input sweeps from a minimum frequency to a maximum
frequency, the linear damage rule would yield the following fatigue damage spec-
trum, FDS(f,,), as

fmax fmax .
FDS(f,) = 2 di(f,) = X “;A 9.33)

By substituting Equations (9.30) and (9.31) into Equation (9.33), the FDS becomes

T.K" fﬁx MOIN
C- (4w6)" [In(frnax) = I0(Fwin) | fn [(1 = 12)2 4 (28 -1,)’]

FDS(f,) = (9.34)

m
2

Example 9.1

IEC 68-2-6, Classification Ill specifies the following swept sinusoidal test
for a mechanical system. It follows a logarithmic sweep with a 20-minute
sweep from 5 Hz to 200 Hz for 6 hours (total of 18 sweeps). Its vibration
profile is tabulated in Table 9.1 and shown in Figure 9.3.

Determine the fatigue damage spectrum based on the IEC specification.

Solution

The first step is to check if the logarithmic sweep time of 20 minutes
exceeds the minimum sweep time required to reach 99% of the maximum
steady state response, say G =0.99, at a resonant frequency. For the
sweep frequency varying from 5 Hz to 200 Hz, the minimum sweep time

Table 9.1: Tabulated Vibration Profile Based
on IEC 68-2-6, Classification Ill Specification

Frequency (Hz) Peak Acceleration (G)
5 0.5
18.6 7
50 7
50 4.5
100 4.5
100 3
200 3
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Figure 9.3
Vibration profile based on IEC 68-2-6, Classification Il Specification.

can be calculated as 215 seconds or 3.6 minutes from Equation (9.26)
based on the assumption of Q=10 and f,, =5Hz. So a 20-minute sweep
time is reasonable for this test.

The second step is to determine Af for the integration of Equation (9.34).
The half-power bandwidth B is naturally the choice that is related to the
resonant frequency and the dynamic amplification factor as expressed in
Equation (9.20). The minimum Af =0.5Hz is obtained in the frequency
sweep range by using Q=10 and f,, =5 Hz.

The last step is to perform the numerical integration to calculate the relative
fatigue damage at each resonant frequency by arbitrarily assuming K=10°,
m =4, and C=1. Please note that for relative comparison, the value of m
for steel is used and is approximated as m = 4. The final FDS is illustrated
in Figure 9.4.
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Figure 9.4
Relative fatigue damage spectrum plot based on IEC 68-2-6,
Classification Il Specification.

Random Vibration Test

Random vibration testing is used to simulate a stationary random field excitation
to a system or equipment. Stationary random data from a field is random in nature
and has a consistent energy or root mean square (RMS) value of the data over time.
But nonstationary random data is random in terms of the energy or RMS level. It is
assumed that the random data used for creating a random test specification are
stationary.

Characteristics of Random Vibration

The following subsections describe sample time history, ensembles, correlations,
and Fourier transforms, which are characteristics of random vibration.
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Sample time history

A system produces a certain response under excitation. If the excitation or the
response motion X(t) is unpredictable, the system is in random vibration
because the exact value of X(t) cannot be precisely predicted in advance. It can
only be described probabilistically. The probability density function of a time
history X(t) can be obtained by calculating its statistical properties by the fol-
lowing means.

First, for an example of a time history for a random process X(t) during a time
interval T, if X(t) exists between the values of x and x+dx for a total time
of (dt; + - - - +dt), then the probability that x < X(t) < x +dx is therefore given by

P[x <X(t) <x+dx] = w. 9.35)

If the duration T is long enough, the probability density function fx(x) is given by

M-

dy
=1

() =Bls <00 <x+x] =

(9.36)

Alternatively, the probability density function can be determined by the fraction
of the total number of samples in the band between x and x + dx. This can be
done by digitizing the time history at a certain sampling rate in the time

interval T. For example, if the total number of the sample points between x and
k
x4+ dx is )] no; and the total sample points in T is NO, then fx(x) is given by

i=1

Zk:noi
fx(x) =Px <X(t) <x+dx] = 121\11 5 (9.37)

Equations (9.36) and (9.37) are correct if the time duration T goes to infinity,

which implies the sample time history continues forever. But measurement of
k k

the time intervals Y dt; or the sample points Y no; for the probability density

=1 i=1
function fx(x) is very cumbersome.
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The statistical properties of X(t) in describing a probability density function fx(x)
are addressed here. The mean value py or expected value E(X(t)) describes the
central tendency of the random process, defined as

ny = E[X(0)] = % /X(t)dtz / X(6)fx (x)dx. (9.38)

The mean-square value E[X?(t)] is the average value of X>(t)

E[X2(1)] = % /X(t)zdtz /X(t)zfx(x)dx. (9.39)

The variance Gi of the process is the dispersion of the data measured from the
mean value, given as

T +o0

=1 / IX(t) = py ]t = / [X(1) = x| (x)dx =E[(X(1) = E(X ()] (9.40)

0 —0

where
ox = the standard deviation of X(t)
Equation (9.40) can be further reduced to
ox =E[X*()] - (EX()])". (9.41)

Quite often the mean value of a random process is zero, and the variance equals
the mean square value. The root mean square RMSx of the random process is

defined as
RMSx = 1/ E[X?*(t)] = ox. (9.42)

A random process X(t) is called the Gaussian random process if its probability
density function fx(x) follows the normal distribution. Thus, the probability density
function is given by

fx(x)=

2
1 1[X—Hx
exp|—= —00 <X < +00. 9.43)
vV 2mox p[ 2< Ox )]
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When a normally distributed random variable is normalized in terms of a new
—Hx
[$'¢

distribution and can be described in the following form:

variable z =12 , the probability density function is known as the standard normal

f7(z) = ——exp { —%(2)2} -0 <Z< +00. (9.44)

Figure 9.5 shows the standard normal distribution for a Gaussian random process
with a mean value of py. Since the secondary vibration environment of concern is
sinusoidal vibration, the probability density function fz(z) of a sinusoidal wave is
shown in Figure 9.5 and is defined by

fy(2) = — 1 —co<z<+co. (9.45)

V2 —72

This figure shows that the probability density functions for sinusoidal and random
vibrations differ significantly. Both probability density functions of Equations
(9.44) and (9.45) are symmetrical about zero. The maximum z value is known as
a crest factor. A crest factor for a sine wave is approximate to /2 = 1.414, while
the crest factor for a random signal is usually chosen as 3.0 (a 3 sigma design).

0.8

—— Random vibration

Sine vibration

0.6 -

0.4

0.2

Probability Density Function

0 T T | T T T | T
-4 -3 -2 -2 -1 0 142 2 3 4
Ratio of Random Variable to Standard Deviation

Figure 9.5
Normalized probability density functions for random vibration and sinusoidal vibration.
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Ensemble

A collection of an infinite number of sample time histories such as X;(t),
X5(t), ..., Xk(t),and so on makes up the ensemble X(t) as shown in Figure 9.6.
The statistical properties of an ensemble can be easily computed at any time ins-
tant. A random process is said to be stationary if the probability distributions for
the ensemble remain the same (stationary) for each time instant. This implies that
the ensemble mean, standard deviation, variance, and mean square are all time
invariant.

A stationary process is called “ergodic” if the statistical properties along any single
sample time history are the same as the properties taken across the ensemble. That
means each sample time history completely represents the ensemble. Note that if a
random process is ergodic, it must be stationary. However, the converse is not true;
a stationary process is not necessarily ergodic. It is assumed here that all random
processes are stationary and ergodic.

W
Xi-1(t) M ’//\/V‘

Xk(t)\M\/\’\ M/\ AR WAYNE .\ N

Figure 9.6
Random process ensemble of random sample time histories.
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Correlation

Correlation is a measure of the dependence between two random processes. It
is known that larger correlation exists for two similar random processes and
smaller correlation for two dissimilar processes. If two random processes are
stationary but differ by a time lag t, the correlation between X(t) and X(t+7)
is termed the autocorrelation function R(t) of a random process, expressed as

T

Ry (7) = Tlim% X(t)X (t+7)dt=E[X()X(t+7)]. (9.46)

0
It is evident from Equation (9.46) that R(t) is an even function (Rx(t)=
Rx(—7)) and the autocorrelation becomes the mean square value when
t=0(i.e., Rx(0) =E[X?(t)].). Figure 9.7 schematically illustrates the autocorre-

lation function in the positive time lag axis.

Fourier transforms

Many times a transformation is performed to provide a better or clear under-
standing of phenomena. The time representation of a sine wave may be difficult

1 =0 (Nolag)
t© =1 (Lag of one time unit)
Tt = 2 (Lag of two time units)

/O\O\m O/O T
oo’ o

Figure 9.7
Autocorrelation function R(t) of a stationary random process.
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to interpret. By using a Fourier series representation, the original periodic
signals in time can be easily transformed and much better understood.

Transformation is also performed to represent the same data with significantly
less information. In general, random vibrations are not periodic, and the fre-
quency analysis requires the extension of a Fourier series to the Fourier integrals
for nonperiodic functions. A Fourier transform as a result of Fourier integrals
are used extensively for solving random vibration problems.

The Fourier series can be used to represent any periodic time history by the
summation of a series of sinusoidal waves of various amplitude, frequency, and
phase. If X(t) is a periodic function of time with a period T, X(t) can be
expressed by an infinite trigonometric series of the following form:

X(0)=Ag+ X [Ay-cos(ZEnt) +B,-sin(Zn)| (9.47)
n=1
where
T2 T
1 1
Ay= = [ X(t)dt== [X(t)dt

o= [xa=1 [x

-T2 0

T/2

T
_2 o\ g2 2n
A= T /X(t)cos < T nt) dt—T/X(t)cos ( T nt) dt

-T2 0

™ T
22 Fxrosin( 2t a2 2 [xosin (28
B, = T /X(t)sm(T nt) dt—T/X(t)s1n<T nt) dt.

=T/2 0

The Fourier series can be expressed in exponential form by introducing X, =
A, —i-B, and e*"® =cos(0) Fi-sin(0),

2,

X(t)= ¥X, - 9.48)

where the complex coefficients X,, is the nth coefficient and relates to a sinusoi-
dal wave of frequency n/T Hz, given by

T T/2

X, = & / X(t) -e'i(zTﬂ"th:% / X(t) g (9.49)
0 V)
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When the perioric time history X(t) is digitized by N equally spaced time intervals
to, ti, t, ..., ty—1, Where tj=j- Atand T=N- At, the complex coefficients X, of
the discrete Fourier transform of the time series X(t;) is obtained as follows:

N-l —i Jrllj
Xo= L YX(4) e (%) 9.50)
N5
and its inverse discrete Fourier transform is
N-1 i nnfj
X(t)= ¥ X, e (%), 9.51)
=0

The Fourier integral can be viewed as a limiting case of the Fourier series as
the period T approaches infinity. This can be illustrated as follows by rewriting
Equation (9.48) with infinite T:
/2
X(t) = lim i % / X(t)e‘i(z%“‘)dt T, (9.52)

T—o0 1= o0
-T2

If the frequency of the k-th harmonic oy in radians per second is

2
W = T“k (9.53)

and the spacing between adjacent periodic functions Aw is

Aw=2m7. (9.54)
Equation (9.52) becomes
T/2
X(0)=lim ¥ % / X(t)e "MV | efnae, (9.55)
T—c0 n=—00 T
-T/2

As T goes to infinity, the frequency spacing, Aw, becomes infinitesimally small,
denoted by dw, and the sum becomes an integral. As a result, Equation (9.55)
can be expressed by the well-known Fourier transform pair X(t) and X(o):

X(0) = =— / X(t)e 7 @Vdt (9.56)
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X(t)= / X(w)e®do. (9.57)

The function X() is the forward Fourier transform of X(t) and X(t) is the inverse
Fourier transform of X(®). Similarily, if the frequency f is used, do=2n- Af.
Equations (9.56) and (9.57) can be written by the following Fourier transform pair
X(t) and X(f)

X(f)= / X (t)e-i2¥ g 9.58)
X(t)= / X(f)et g, (9.59)
0

The Fourier transform exists if the following conditions are met:

1. The integral of the absolute function exists; that is, / |X(t)]dt < 0.

2. Any discontinuities are finite.

The Fourier transform of a stationary random process X(t) usually does not
(o)

exist because the condition / |X(t)|dt< oo is not met. However, the Fourier
-0

transform of the autocorrelation function Rx(t) for a stationary random process
X(t) with py =0 always exists. In this case, the forward and inverse Fourier
transforms of Rx(t) are given by

Sx(0) = i / Ry (1)e 7 dz 9.60)
Ry (1) = / Sx(m)e " dw (9.61)

where

Sx(w) = the spectral density of a stationary random process X(t) with py =0
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If t=0, Equation (9.61) reduces to

Ry (0) = / Sx(®)do=E[X?]=0?. 9.62)

—0o0

This means that the square root of the area under a spectral density plot Sx(®) is
the root mean square (RMS) of a normalized stationary random process. Sx (o) is
also called mean square spectral density and is illustrated in Figure 9.8.

The idea of a negative frequency has been introduced for mathematical complete-
ness. However, it has no physical meaning. It is common in practice to consider the
frequency from zero to infinity and to have the frequency f expressed in Hz
(cycles/second), rather than o in radians/second. Therefore, the two-sided spectral
density Sx(®) can be transformed into an equivalent one-sided spectral density
Wx(f) as follows:

E[X?]=03= / Wi (f)df (9.63)

_ZSX(m)dmz o2

Figure 9.8
Relationship between the spectral density and RMS of a normalized
stationary random process.
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where W (f) is termed as the power spectral density (PSD), defined as
W (f) =4n- Sx(w). (9.64)
For a discrete random time series X(t;), which has the discrete Fourier transforms

as Equations (9.50) and (9.51), its mean square value E[X*(t)] can be obtained as
follows:

E[X(t)] = 12X2 (9.65)

_|—()

Equation (9.65) is further reduced by substituting Equations (9.50) and (9.51) as

X(5)X(t) = 12X< >nzx o)
(9.66)

where

X" = the complex conjugate of X,

The PSD function is usually presented on a log-log scale. An octave (oct) is a
doubling of frequency. The increase in octaves from f; to f, is

In(fax) — In(fiin)

Octaves = n ( 2)

(9.67)

A bel is the common logarithm of the ratio of two measurements of power.
A decibel (dB) is one-tenth of a bel and is defined by

dB=10log (%) (9.68)
1

A doubling of power spectral density corresponds to an increase of approximately
3 dB. If the power spectral density doubles for each doubling of frequency, the
spectrum increases at 3 dB per octave or the spectrum has a positive roll-off rate of
3 dB per octave.
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Responses to a Linear Single-Degree-of-Freedom System
Subjected to Base Random Vibration

The following material describes the calculation of responses to a linear single-
degree-of-freedom system to base random accelerations. The convolution theory
is used to define a relationship between input and output signals for linear time-
invariant (LTI) systems described by an impulse response function.

For a linear, discrete time, time-invariant system, an arbitrary input X[n] can be
expressed as a weighted sum of time-shift impulses as

X[n]= 3 X[K5[n—k] (9.69)

k=—00

where

8[n — k] = the Dirac delta function

This is defined as

1 forn=k
6[n—k]_{0 forn#k.

If H is the sum operator on the input, Equation (9.69) is written as

H{Xn]} = H{ 3 X[k|[n — k]} — S XKH{Sh-K}.  (©.70)
k=—c0 k=—c0
For a linear operation, Equation (9.70) becomes
Y= 3 X[kJhjn—K] ©.71)
k=—c0

where

h[n] = a response to the linear time invariant system due to an impulse 3[n]
Y|[n] = the output with a weighted sum of time-shift impulse responses

Similarly, for a linear, continuous time, time-invariant system, an arbitrary input
can be expressed as

X(t) = / X(1)8(t—1)dt 9.72)

—00
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where
8(t— 1) = the Dirac delta function

This is defined as

1 fort=t
d(t-7)= {O fort#r.

Then, the output Y(t) of a linear time invariant system described by an impulse
response h(t) is obtained as

[so]

Y(t)= / X (t)h(t - t)d. 9.73)

Equation (9.73) is called the convolution integral. Another derivation of the convo-
lution integral is given by introducing 6 =t — T,

Y(t)= / X(t—0)h(0)do. (9.74)

To determine the frequency content H(w) of the impulse response h(t), let
X(t) =€"". Then Equation (9.74) becomes

Y(t)= / ¢©(=9h(p)do =e'" / ¢“@h(0)do =H(w)e". (9.75)

—0o0 —o0

The relationship between the Fourier transforms of X(t) and Y(t) is used to derive
responses of an SDOF system to random vibration input. Take the Fourier trans-
form of both sides of Equation (9.75),

[Se] [Se]

Y(m)=i / / X(t—0)h(0)d6 | e~dt. (9.76)

—o0 —o0

Introducing T =t—0 and dt =dr,

[so]

Y(m)=i / / X(t)h(0)do | e dr. 9.77)

—0o0
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Rearranging,
Y(0)= /h(e)e—iw'ede : i /X(r)e—iw'fdr . (9.78)

Because h(t) and H(o) are the Fourier transform pairs,

[Se]

H(o)= / h(0)e™°do 9.79)
and

h(t)= — /H(co)e_i“”dm. (9.80)

Y (o) =H(0)X (o) (9.81)
where
H(w) = the transfer function or the frequency response function

The spectral density of the output equals the spectral density of the input multiply-
ing the squares of the gain function, which is expressed in terms of the frequency ®
in radians/second as

Sv(®) = [H(0)[Sx(0) (9.82)
where
|H(o)| = the gain function (the modulus of the transfer function)
This is defined as
H() =A@ (@) 9.83)
where

H" (o) = the complex conjugate of H(o)
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In terms of the frequency f in cycles/second, the power spectral density of the
response is

Wy (£) = [H(f) PWx(f). (9.84)

The variance of this response G%{ can be calculated as the area under the response
spectral density function as

o = / Sy(0)do = / IH(0)[*Sx(0)do (9.85)
or
o2 = /SY(f)dfz / IH(f)[Sx ()df. (9.86)
0 0

As discussed in previous sections, the steady-state relative acceleration Z(f;, €, f,,)
to an SDOF system with a resonant frequency f, subjected to a base zero-mean
stationary acceleration ¥ (f;) with an excitation frequency of f; can be obtained by

[2(£;, & )| = [Hi () Iy (£) ] 1= (9.87)
where |H(r;)| is defined as
2
[H ()| = ‘ (9.88)

V=27 8y

where € is the damping ratio, and the maximum relative displacement |z(f;, &, f,,)]
can be determined by

|2(fi, & )| = [Ha (1) || (3| (9.89)
where |H,(r;)| is obtained as follows:

[Hy(r;)| = !

(2n- fn)z\/(l I

Therefore, the power spectral density of the relative acceleration W; (f;, &, f,), to a
linear single-degree-of-freedom system on which to base random accelerations

Wj (f;), is obtained:

(9.90)

W; (£, &, £a) = [Hy () Wy (f;) (9.91)
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and the power spectral density of the relative displacement W, (f;, €, f,) is obtained:
W, (1, & ) = [Hy (r;) P Wy (£7). (9.92)

It is assumed that the relationship between the stress amplitude S, and relative
displacement |z| follows:

S.=K-|z] (9.93)
where

K = the coefficient relating a relative displacement to a stress amplitude

In this case, the power spectral density of the response stress amplitude W (f;, &, f,)
is obtained:
W, (fi, €, f,) = K2 - W, (i, &, ). (9.94)

With Equations (9.92) and (9.94), the root mean square of this stress response S, rms
can be calculated by

[Se] oo

Suws = | [K2- W, 6)d0= | K0 [H@) Wyt 099

0 0

The following approach developed by Miles (1954) is an approximation to a root
mean square stress response. The Miles equation was derived for the absolute res-
ponse of an SDOF system excited by a “white noise” base acceleration of a constant
level. If the base acceleration excitation is white noise, Sy(w) =S, and the spectral
density function of the absolute acceleration of the mass S; (®) can be derived as

K + (co)]S,

2
So= . 9.96
(k—ma?) + (co) ©-50)

o=, = At

The variance of the absolute acceleration is

(5]

o . 2
2 k+icw
2= [Si(0)do=S, [|—=FIc®
x / (0)do 0/' (k — mw?) +icw

—o0 —o0

_g n(ke? + mk?)
e kcm

] . 9.97)
Finally,

2
o2 =S, [w] . 9.98)
cm
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In terms of the power spectral density function, W, =4x-S,, the variance can
be written as

2 wo TC(CZ+II]J() T fn“o(1 +4§2) T 2
c= 0 == = Z1,QW, (1 +4&°). .
S 1 : 5 FnQWo (1 +487) 9.99)
For small damping ratio, £ < 1, it is shown that
ol = ganwo. (9.100)

Then the root mean square of the absolute acceleration response Xgys 1S
Krus = ganwo. 9.101)

Also the root mean square of the relative displacement response is approximated as

Zrws = 9.102)
With the assumption of Equation (9.93), the root mean square of this stress ampli-

tude response S, rys can be approximated by

K- Xrums QwW,
;=K 3
(2n-f,) 4.(2n-f,)

. (9.103)

Sa,RMS =K zZgms =

It should be noted that the Miles equation should be used only if the power spectral
density amplitude is flat within one octave on either side of the natural frequency.

Fatigue Damage Models under Random Stress Process

Fatigue damage models under narrow- and wide-band random stress processes
will be addressed in the following sections with the emphasis on the frequency-
based cycle counting techniques.

Level crossing rate of narrow-band random processes

For a continuous and differentiable stationary process X(t), the expected number of
positively sloped crossing (up-crossing) in an infinitesimal interval is only depen-
dent on dt. We have

B[N, (dt)] = vge dt (9.104)
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where
v+ = the expected rate of up-crossing per time unit

If A denotes the event that any random sample from X(t) has an up-crossing
x =a in an infinitesimal time interval dt, the propability of such an event A is

P(A) =v,.dt. (9.105)

Equation (9.105) allows us to express v,+ in terms of P(A). In order for the
event A to exist, we must have

a—X(t)<X(t)<a and X(t)>0. (9.106)
Combining these two conditions, P(A) can be written as

P(A):P(a—X(t)<X(t)<anX(t)>0). 9.107)

These conditons define a triangle area in the X(t) —X(t) plane, as shown in
Figure 9.9.

The probability of event A is calculated by integrating the joint probability den-
sity function of X(t) and X(t) over this region; that is,

e a
P(A)=/ /fxx(u,v)dudv. (9.108)
0 a—vdt
X
A
h
a—xdt
» X
a
Figure 9.9

The region where event A occurs.
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Substitution of Equation (9.108) into Equation (9.105) leads to the following
expression of the level up-crossing rate for a stationary random process:

Var =/fox(a, v)dv. (9.109)
0
If X(t) is Gaussian, the expected up-crossing rate of x =a is
v = Kk (9.110)

The expected rate of zero up-crossings E[0*] is found by letting a=0 in Equa-
tion (9.110):

E[o+]=21—n Z—i ©.111)

The mean square displacement and velocity can be related to the moment of the
spectral sensity function as

ox = / Sx(w)dw = /WX(f)df 9.112)
o o
o} = / ®”Sx(0)do = (21) /f2wx(f)df. (9.113)
o 0

Using Equations (9.112) and (9.113), the expected rate of zero up-crossing is
then obtained as

(o]

/ PWy (f)df

L (9.114)
/ Wiy (F)df
0

The expected rate of peak crossing E[P] is found from a similar analysis of the
velocity process X(t). The rate of zero down-crossing of the velocity process
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corresponds to the occurrence of a peak in X(t). The result for a Gaussian
process is

1 ox
E[P|=— —. 9.115
P 2m oy ( )
In terms of the moment of the spectral density function, we have
/ W (f)df
EP|= [=>——— 9.116)
/ 2 Wy (f)df
0

A narrow-band process is smooth and harmonic. For every peak there is a corre-
sponding zero up-crossing, meaning E[0*] is equal to E[P]. However, the wide-
band process is more irregular. A measure of this irregularity is the ratio of the zero
up-crossing rate to the peak-crossing rate. The ratio is known as the irregularity
factor y expressed as

E[0"]
E[P] -

Y= (9.117)

Alternatively, a narrow- or wide-band process can be judged by the width of its
spectrum. For this reason, the spectral width parameter A is introduced as

A=+/1-7y2 (9.118)

Note that A—0 represents a narrow-band random process.

If M; is the j-th moment of a one-sided power spectral density function for
random vibration stress amplitude (see Figure 9.10) defined as

M;= [fWg (f)df (9.119)
0

then the rate of zero crossings E[0] and the rate of peaks E[P] are given by

E[0"]= \/% (9.120)

E[P]= 4 (9.121)
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and the the irregularity factor y and the spectral width parameter A are rewritten as

M;
Y=\ MM 9.122)
A=4/1— Mg. (9.123)
MM,

df

Figure 9.10
Moments from a one-sided power spectral density.

Fatigue damage under narrow-band random stresses

The Palmgren—Miner linear damage rule (Palmgren, 1924; Miner, 1945) and an
S-N curve following the Basquin expression (1910) are employed for fatigue
damage calculation under narrow-band random stresses. Variable amplitude
loading is simulated by a sequence of blocks of constant amplitudes. The linear
damage D is defined as

30 9.124
D=) (9.124)
i=le,i

where

n; = the total number of cycles in the i-th block of constant stress amplitude S, ;
kn = the total number of the stress blocks
N;; = the fatigue life as the number of cycles to failure under S,;
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According to the Palmgren—Miner linear damage rule, failure occurs when D > 1.
The S-N curve follows the following Basquin expression:

N;;- Sy =C. (9.125)
Alternatively, the fatigue life Ny; at the stress amplitude level S, ; would be

C

Ng;= _Sm
a,i

(9.126)

where

m = the slope factor of the S-N curve
C = the material constant

The cycle-counting histogram for a narrow-band stress process S(t) can be estab-
lished by either performing the rainflow cycle counting technique or by counting
the number of peaks n; in the window As; around a stress level. Suppose that the
total number of peaks counted in the stress process is denoted by

kn
an.
j=1

The probability pdf (f;) that the stress amplitude S, =s,; may occur is

(9.127)

Thus, Equation (9.127) is the probability density function of the random vari-
able S,. In this case, the total fatigue damage can be written as

D=3

. (9.128)
Ntl i=1 Nf,i

Using the linear S-N model as in Equation (9.125), the expression for fatigue
damage is

D= —ZfS (9.129)
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Also, the expected value of S is

kn
E(S™) = YfS™. (9.130)
i=1

k
For narrow-band random stresses, the total count of cycles Y n; is equal to
j=1
the rate of zero up-crossing multiplying the total time period T. Thus, the fati-

gue damage can be expressed as

kn
2,

D= J:;E(sm)=L0+] il
C a

C
Assume that the probability density function of stress amplitude S, can be treated

as a continuous random variable, as illustrated in Figure 9.11. The expected value
of ST is

E(S™). (9.131)

E(Sy) = / S s, (Sa)dsa. (9.132)
0

A

Probability Density

Y > S,

ds,

Stress Amplitude

Figure 9.11
Continuous probability density function of stress amplitude.
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Even though any statistical model of S, can be employed, it is common to use
the Weibull distribution with the following cumulative distribution function:

Fsa(s.) =1 —exp [— (%ﬂ (9.133)
where

a and P = the scale parameter (characteristic life) and the shape parameter
(Weibull slope), respectively

For the Weibull distribution,

a

E(S™) =o™T (% + 1) (9.134)

where
I'() = the gamma function

In the special case where =2, the Weibull distribution reduces to the Rayleigh
distribution. This is an important case because Rayleigh is the distribution of
peaks or ranges or amplitude in a stationary narrow-band Gaussian process that
has RMS value of og,. Also it can be shown that

a=1/20s,. (9.135)

Therefore, if S(t) is a zero-mean stationary narrow-band Gaussian and the stress
amplitudes follow the Rayleigh distribution, the expected value of S’ becomes

E(S™) = (V205 )" F(Q + 1) 9.136)
2
where
o5, = /Mo. 9.137)

Finally, the fatigue damage Dyg of a stress process over a time interval T can be
written as

E[0*]-T
DNB=%(\/2MO)’“F<% +1>. (9.138)
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Fatigue damage under wide-band random stresses

Based on the rainflow counting method, a model for predicting fatigue damage under
a stationary wide-band Gaussian stress process has been proposed by Wirsching and
Light (1980). Using the narrow-band approach as a starting point, the general expres-
sion for the damage Dwg wirsching OVer a time interval T is

DWB,Wirsching = CWDNB (9.139)
where

Dyng = the fatigue damage under a narrow-band random process
Cw = the rainflow correction factor

Cw 1s an empirical factor derived from extensive Monte Carlo simulations that
include a variety of spectral density functions. It is expressed as follows:

Cw=aw+ [l —aw](1 =)™ (9.140)

where

aw =0.926-0.033m
bw =1.587m—-2.323

Note that m is the slope of the S-N curve, and A is the spectral width parameter.

Ortiz and Chen (1987) also derived another similar expression for fatigue damage
Dwg. oni. under wide-band stresses as

Dwg.oritz = GoDng (9.141)

1 M, M, 2.0
==,/ and k==——.
‘o Y V MoMg 0 m

The irregularity factor y is defined in Equation (9.117) or (9.122).

where

Instead of using the damage correction factor from the narrow-band random
stresses to the wide-band random stresses, Dirlik (1985) has developed an
empirical closed-form expression for the probability density function of stress
amplitude fg (s,) based on the rainflow cycle counting results from extensive
Monte Carlo simulations of random stress time histories.
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Dirlik’s solutions were sucessfully verified by Bishop in theory (Bishop, 1988).
Dirlik’s damage model for a time period of T is presented here:

E[P|T |
Dws pirik = [C—] / Sy fs,(8a)ds, (9.142)
0
1 D1 =Z Dzz =z i:|
fs (s.) = —eQ + —=-ex? +D3Ze 9.143
()= ap | et + DeE 4, ©9.143)
where
S
7Z=-—=2
VM

is the nomalized stress amplitude with respect to the RMS of random stress
amplitude, and

M,
MM,

Xo= e o0
0 4

2(Xm —7%)
1+7y2

’Y:

D1=
— ’Y_Xm_D%
1-y-D,+D;

1-y-D, +D7
PETTR

D3=1—D1—D2

_ 1.25(y—D; —D,R)
- =

Q
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To perform the numerical integration analysis, the Dirlik equation needs to be
expressed in the following discrete format:

SIf, (54) As, = §(E[P]T)(fc (sa)As,) 2
Sa

E[PT

DWB,Dirlik - C

(9.144)

OMS

i
;

Equation (9.144) states that the Dirlik damage calculation is the sum of the
incremental damage value in each As,.

If the stress range, instead of stress amplitude, is the preferable variable to be
used in the S-N expression and the damage calculation, then the PDF of stress
range f; (s;) would follow this expression:

_72 2
£, (s:)= Dl Ty 2Le5 1 DyzeF (9.145)

2\/“

where

Please note that the difference in Equations (9.143) and (9.145) by a factor of
2 is due to the simple variable transformation from As, to As, /2.

Bishop (1989, 1994) concluded that the Dirlik formula is far superior to other
existing methods for estimating rainflow fatigue damage. The Dirlik method
is preferable for fatigue damage calculations based on the PSD and has been
widely adopted by many commercial fatigue software packages.

However, the Dirlik method has some drawbacks. First of all, it is an empi-
rical approach that is not supported by any kind of theoretical framework.
Second, the proposed rainflow distribution does not account for the mean
stress effects, making it impossible for further extension to cover non-Gaussian
problems.
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Example 9.2

A hot-rolled component made of SAE 1008 steel is subjected to random
loading process. The stress response at a critical location is calculated in
terms of the power spectrum density in Figure 9.12. The PSD has two
frequencies of 1 Hz and 10 Hz, corresponding to 10,000 MPa*/Hz and
2500 MPa®/Hz, respectively.

The material S-N curve is given as follows:
, b
Sai =SF(2N¢))

where

St =the fatigue strength coefficient of 1297 MPa
b =the fatigue strength exponent of —0.18

Please determine the fatigue damage of this component, using the
preceding equations for wide-band stresses. Note that a sine wave has a
crest factor of /2 =1.414.

12000

10000

8000

6000

PDS (MPa2/Hz)

4000

2000

0 1 2 3 4 5 6 7 8 9 10 11 12
Frequency (Hz)

Figure 9.12
Power spectral density of the stress response of a component
made of SAE 1008 steel.
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Solution

We will calculate the fatigue damage of the component in time domain
first and use it as baseline information to compare with the predicted
damage based on the PSD.

The original stress time history can be obtained by adding two sine
waves, one for each block in the PSD. For a sine wave, the amplitude of
each is calculated from 1.414 times the RMS value, that is, the area of
each PSD block.

The stress amplitude S,@11z of the sine wave at 1 Hz is

Sz =1/10,000 X 1X 1.414=141.4 MPa.

The stress amplitude S @101z Of the second sine wave at 10 Hz is

S.eonz = V2500 X 1X 1.414=70.7 MPa.

The application of the rainflow cycle-counting technique to the
superimposed sine waves would result in the stress amplitude of 212.1
MPa (=141.4+70.7 MPa) with 1 Hz frequency and the stress amplitude
of 70.7 MPa with 10 Hz frequency, excluding the mean stress effect.

The material S-N curve for vibration fatigue usually follows this S-N expression:
N¢iS.,i" =C.
Thus,
m=—1/b=—1/(—0.18)=5.56
C=0.5%(SH)"=0.5x1297>*°=1.02x 10" MPa.

With the preceding S-N equation, we determine the fatigue life for each
sine wave as follows:

N =C-S;7=1.02x10"x%212.17>% =1.18 x 10" cycles
Nr,=C-S.5=1.02x10"x70.7°°°=5.32% 10° cycles.

In a one-second-time interval, the sine waves at 1 Hz and 10 Hz represent
1 cycle (ny=1) and 10 cycles (n, =10) of reversed loading, respectively.
The linear damage calculation for this time interval gives

n, n, 1 10
Dy = - + o = : :
Ner Nep  1.18X10 5.32x10

This corresponds to a fatigue life of 11,500 seconds (=1/8.66 x 107°).

=8.66X107°.
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We then proceed to calculate the fatigue damage to the component
based on the given PSD. The aforementioned frequency domain methods
will be used for the damage estimation. The j-th moment of the PSD can
be easily calculated as

MJ:/FJWSa(F)dfz 1% 10,000X 1+ 10X 2500 X 1
0

Mo=1%%10,000x1+10°%2500% 1=12,500
M, =1%%10,000x 1+ 10%*x 2500 x 1= 260,000
M, =1%%10,000% 1+ 10*%x2500% 1=25,010,000

from which we can compute

E[o*]= [Ma_ [260.000_, s
Mo 12,500

E[P]= %: w=9.81 per second
M, 260,000
E[0"
y= 0] _4.56 _ 465
E[P] 9.8

A=+/1—7y2=V1-0.4652=0.885.

The Wirsching and Light Method

Fatigue damage Dyg of a zero-mean stationary narrow-band Gaussian
stress process over a time interval T=1 second can be written as

ou0= ST () r(24)

5.56
= 4.56X1_ <2><12,500> F<—5'256+1>

"~ 1.02%x10"7
Dy = 0.000345.
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The rainflow correction factor is calculated as

aw=0.926 —0.033 m=0.926 —0.033 X 5.56 = 0.743
byw=1.587m—2.323=1.587x5.56 —2.323=6.501
Cw=aw+[1—aw](1—A)™ =0.743 + (1 -0.743) x (1 -0.885)"°"' =0.743.
Finally, the fatigue damage Dwgwirsching 1S computed as

Dwawirsching = ¢wDng = 0.743 X 0.000345 = 0.000256 per second.

This corresponds to a fatigue life of 3900 seconds (= 1/0.000256), which is
very conservative as compared to baseline fatigue life (11,500 seconds).

The Ortiz and Chen Method

Dng =0.000345 is the same as the one calculated previously. Calculation of
the rainflow correction factor {, is required. Given the slope of the S-N
curve, m=5.56,

(—2:0 _ 20

—— =0.3597
m  5.56

M, = 1%%% % 10,000 x 1+ 10°**" x 2500 x 1=15,723

Miso = 1229742 % 10,000 x 1+ 10°%7*2 % 2500 x 1 = 582,338

r=1 MM 1 260,000% 15,723 _ ., .,
°7 y\/MoM,  0.4651/12,500% 582,338

The fatigue damage Dwgp orir, Is computed as

Dwe.oritz =$oDng =1.612x0.000345 =0.000556 per second.

This corresponds to a fatigue life of 1800 seconds (=1/0.000556), which

is very conservative as compared to the baseline fatigue life (11,500
seconds).

The Dirlik Method

It is necessary to determine the following parameters for the probability
density function of stress amplitudes that have been rainflow cycle counted.
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X M, _ 35,000 260,000 —0.2859
M, 12,500 /25,010,000

2(Xm —y _2(0.2859 — 0465

D, = - - ) Z0.1146
1+7y2 1+0.465
_ Y=Xn=Di _ 0.465-02859-0.1146" _  4a0q
1—y—D;+D? 1-0.465—-0.1146+0.1146>
1—y-D;+D? q_ - ?
D,= | “Y=Di+Di _1-0465-0.1164+0.1164° _ 0,5

1-R 1-0.3828
D;=1-D;—D,=1-0.1146 —0.7023 =0.1831
_ 1.25(y—D; —D,R) _ 1.25(0.465—0.1831—0.7023 X 0.3828)
B D, h 0.1146
=0.1425.

Substituting the preceding values into Equation (9.143) provides the
Dirlik’s probability density function of stress amplitudes as follows:

fs.(s2) =0.0071907e 701537 4 0.042867e 21237 4+ 0.0016377¢ 57",

The numerical integration technique for the Dirlik formula, Equation (9.144),
is illustrated in Table 9.2. For a given time exposure of 1 second, the
calculation leads to Dy pirik = 1.38 X 107*, the sum of all the damage values
in the last column of the table. This corresponds to a fatigue life of 7250
seconds, which correlates better to the baseline fatigue life (11,500 seconds).

Table 9.2: Calculation Procedures for Dy pigik (As, =10 MPa; T =1 seconds)

Sai MPa Z= sa,i/‘ /Mg fi =f5a (Sa,i) . Asa n;, = (E[P]T) ° fi Nf,i = C/S;" di = n;/Nf,;
10 0.0894 0.077162 0.757 2.8x 10" 2.7%x107"2
20 0.1789 0.092135 0.904 6.0x 10" 1.5%107"°
30 0.2683 0.105155 1.032 6.2x 10" 1.7%107°
980 8.7654 1.2x107"
990 8.8548 59%x107'8

1000 8.9443 2.9x107'8
>di=1.38x107*
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Example 9.3

An electronic system mounted directly on a vehicle body (a sprung mass)
is subjected to road-load driving, inducing random vibration to the
system. It is recommended that the vehicle manufacturer and supplier
perform the random vibration test based on the ISO (International
Organization for Standardization) 16750-3 standard.

The test duration should be 8 hours for each principal axis of the system.
The power spectral density function of the base random excitation to the
system is shown in Figure 9.13 and tabulated in Table 9.3.

It is assumed that the S-N curve follows N¢; - ST' = C where m =4 and
C =1 and that the linear relationship between the stress amplitude and
the relative displacement exists as S, = K-z where K= 10°%. The Q=10 for

0.1 —
.
\
AN
— AN
z N
N N
O 0.01 NG
5 N
a N
£ AN
N\
0.001
0.0001
10 100 1000
Frequency (Hz)
Figure 9.13

PSD plot based on the ISO 16750-3 random vibration profile.
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Table 9.3: Tabulated PSD Data for the ISO 16750-3
Random Vibration Profile

f (Hz) G?*/Hz
10 0.208
55 0.0677

180 0.0026
300 0.0026
360 0.00146

1000 0.00146

dynamic amplification factor is assumed, equivalent to the damping ratio of
E=5%.

Calculate the fatigue damage of the electronic system based on the
Wirshing—Light method, the Ortiz—Chen method, and the Dirlik method.

Solution

The electronic system of interest consists of a number of subsystems

and components whose natural frequencies are not easily obtained
experimentally or analytically. In order to assess the fatigue damage of
the system, it is very common to construct a fatigue damage spectrum by
estimating the damage for an individual subsystem or component that
can be modeled as a single-degree-of-freedom system subjected to base
random excitation, whose natural frequency is allowed to vary as an
independent variable.

The analytical solution to assess the fatigue damage severity of a linear
SDOF system subjected to base excitations is derived and discussed. The
general solution for relative displacement PSD for each natural frequency
is given as

W, (Fi, &, ) =Wy (1) [Ha (r) .

With the assumption of S, =K |z|, the stress amplitude PSD for each
natural frequency can be determined by

WSa(Fiv ‘:9 i:.n) = K2 'Wz(Fiv 59 Fn) = K2 : ‘HZ(ri)|2 Wy(Fl)

According to the S-N curve expressed as N¢;-S'(&,f,) =C, the fatigue
damage value based on the test duration T and the stress amplitude
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PSD at each natural frequency, f, can be calculated by the following
theories:

1. Calculate the narrow-band damage

o= ST e« BT () (5 1)

2. Calculate the narrow-band damage on Miles’ equation

_ K™ Q'WV(Fn) ) m
DNB,MI'ES_FF\ T C ( 2. (Zﬂ'fn)3 F(1 + 2)

3. Calculate the wide-band damage based on the Wirsching—Light method
DWB,Wirsching = CWDNB and é’W =aw + [1 - aW}(‘I - }\')bw'

4. Calculate the wide-band damage based on the Ortiz—Chen method

1 | MaM,
D I'iZ= OD d = - NV
WB,Orit: {,Dne and &g vV MoMer

k=20,
m

where

5. Calculate the wide-band damage based on the Dirlik method

E[PIT y
Dwes,pirlik = %/Sﬁsa(sa)dsa

Fsa(sa)=\/:\/l_0 %e%+%e%+D3Ze4
where
Z=
= |\/|
M,
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Relative Damage Ratio

2(Xm —7%)
T+72
_ ’Y_Xm_Df
1—y-D;+D?
1—y-D;+D?
D2= v 1 1
1T—R
D3=1—D1—D2

Q D, .

1=

The FDS can be constructed by varying the natural frequency changes from 10 Hz
to 1000 Hz according to the ISO specification. According to the aforementioned
frequency-based fatigue theories, the normalized fatigue damage spectrum plots
with respect to the Dirlik method are presented in Figure 9.14. This figure shows

10000 —_—
— ISO_NB Miles
— ISO_NB
ISO_WL
—1S0_0C
1000 ‘\ — 1SO_Dirlik ||

/

100

10

0.1

10 100 1000
Frequency (Hz)

Figure 9.14
Normalized fatigue damage spectrum plots based on various frequency-based
fatigue theories, with respect to Dirlik’s method.
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that the narrow-band Miles’ equation is conservative below 350 Hz and becomes
less conservative above 350 Hz as compared to Dirlik’s method.

Also of the wide-band damage methods, Ortiz—Chen’s method is the most
conservative while Dirlik’s has been found by Bishop (Bishop & Sherratt,
1989; Bishop, 1994) to be the most accurate in practice. Furthermore,
Figure 9.14 shows relative FDS plots based on IEC 60068-2-6, Classification
[, and ISO 16750-3. This figure indicates the IEC test specification induces
the most severe FDS to a linear single-degree-of-freedom system than those
based on the ISO test standard.

Summary

This chapter has presented a standard FDS calculation procedure that can be
employed for assessing durability of automotive parts subjected to vibrational
loading conditions. It also explained fatigue damage calculation methods for
sinusoidal and random vibration tests in detail.

As discussed in previous sections, vibration fatigue test methods should be chosen
based on the characteristics of dominant forcing inputs. For example, a logarithmic
frequency sweep is the preferable one for use in sinusoidal sweep testing because
of its easy way to dictate an equal number of cycles at each resonance.

Finally, this chapter has compared the fatigue damage calculation results obtai-
ned from various fatigue damage calculation methods for random vibration
excitations. It shows that the narrow-band Miles equation is conservative below
350 Hz and becomes less conservative above 350 Hz, as compared to Dirlik’s
method. Also for the wide-band damage methods, Ortiz—Chen’s method is the
most conservative while Dirlik’s has been found to be the most accurate in
practice. It is also seen that IEC 60068-2-6 is more severe than ISO 16750-3
standards, in terms of fatigue damage severity comparison.
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Introduction

All the seam-welding techniques require high thermal energy input to weld work
pieces together. Contrary to a spot weld, a seam weld is a continuous weld in var-
ious welding geometries such as fillet and butt welds. In this chapter, only seam-
welded joints are considered, whereas the analysis and behavior of spot-welded
joints is a specific area that has been treated differently and will be discussed in
Chapter 11.

During the service life of welded structures exposed to various service loading
conditions, welded joints are usually the potential fatigue failure sites due to the
highest stress concentration areas and altered material properties. Thus, engineers and
scientists are always interested in understanding fatigue characteristics of the welded
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joints, and are trying to develop analytical tools to estimate fatigue lives of welded
joints. However, prediction of fatigue life of welded joints is frequently complicated
and inaccurate because many parameters affect the fatigue life of welded joints.

Welding strongly affects the materials by the process of heating and subsequent
cooling as well as by the fusion process with additional filler material, resulting
in inhomogeneous and different materials. Furthermore, a weld is usually far
from being perfect, containing inclusions, pores, cavities, undercuts, and so on.
The shape of the weld profile and nonwelded root gaps creates high stress con-
centrations with varying geometry parameters. Moreover, residual stresses and
distortions due to the welding process affect the fatigue behavior.

In view of the complexity of this subject on fatigue life prediction models of
seam-welded joints and the wide area of applications, it is not surprising that sev-
eral analytical approaches exist and none of them could account for the afore-
mentioned process variables. Therefore, it has been an ongoing research area of
interest to all the engineering disciplines to improve the life predictive capability
for seam-welded joints.

Due to the vast amount of relevant literature, this chapter will present only Dong’s
and Fermer’s structural stress approaches (Dong, 2001a,b; Fermer et al., 1998) and
the notch pseudo stress approach because the three approaches have been coded
in some commercial fatigue analysis modules as one of the Computer Aided Engi-
neering (CAE) tools used in automotive engineering. Refer to the book by Radaj
et al. (2006) for a detailed review of all other methods. However, this chapter will
start with an introduction of the parameters affecting the fatigue life of welded joints
to help you understand the possible sources of the variability of fatigue data.

Parameters Affecting Fatigue Lives of Seam-Welded Joints

Generally fatigue test results of seam-welded joints contain various levels of scatter.
Much of this scatter is caused by geometric and processing variations such as part
fit-up, weld gap, variation in feed rates, travel rates, weld angles, and so on. This
scatter confuses the interpretation of test results, and it is often nearly impossible to
discern the effects of the material and other factors.

Numerous researchers have indicated that one of the most critical factors affecting
the fatigue life of a welded joint is the consistency of the cross-sectional weld
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(b)

Figure 10.1
Weld geometric parameters for fillet (a) and butt (b) joints.
Source: Adapted from Berge (1985).

geometry (Jiang, 2006; Ninh Nguyen & Wahab, 1995; Ferreira & Branco, 1989;
Maddox, 1991; Caccese et al., 2006; Berge, 1985; Branco et al., 1985; Ferreira &
Branco, 1991; Seto et al., 2004; Kang et al., 2011a). Weld geometric parameters
including plate thickness (t;, t,), effective weld throat thickness (a), weld leg length
(L), weld throat angle (8,), and weld toe radius (p) are shown in Figure 10.1.

Ninh Nguyen and Wahab (1995) investigated the effect of a toe radius on fati-
gue lives of butt-weld joints while the toe radius was increased from 0.2 mm to
2.5 mm, but other weld geometric parameters (weld bead flank angle, plate edge
preparation angle, plate thickness, and tip radius of undercut at weld toe) were
not changed. The fatigue life increased whereas the toe radius increased. The
same trends were reported by Lawrence (1973), Lawrence and Munse (1973),
Gurney (1979), and Maddox (1991).

Ninh Nguyen and Wahab (1995) also reported the effect of a flank angle on
fatigue lives of butt-weld joints. The variations of the flank angles were from 0°
to 60° but other weld geometric parameters were kept constant. While the flank
angle decreased, the fatigue life of the butt-weld joints increased. However, the
increment of the fatigue life was not significant when the flank angle decreased
between 60° and 20°. Similar observations were also reported by Lawrence
(1973), Lawrence and Munse (1973), Gurney (1979), and Maddox (1991).

The plate thickness effect on fatigue lives of butt-weld joints was reported by sev-
eral researchers (Gurney, 1979; Parker, 1981; Newman & Raju, 1981; Nelson,
1982; Berge, 1985; Foth et al., 1986; Yee & Burns, 1988; Niu & Glinka, 1989;
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Ohta et al., 1990; Maddox, 1991; Ninh Nguyen & Wahab, 1995). They found that
the fatigue life of welded joints decreased while the plate thickness increased.

Ninh Nguyen and Wahab (1995) observed this phenomenon for their specimens
varied from 9 to 32 mm. The decrement of the fatigue life was noticeable when the
plate thickness increased from 9 to 32 mm. However, the fatigue life was not
affected by the plate thickness changes from 20 mm to 9 mm. On the contrary, thin
steels used in the automotive industry showed that fatigue life increased as sheet
thickness increased from 1.6 to 3.4 mm in single lap-shear specimens (Bonnen et al.,
2009; Kang et al., 2011a,b).

Many researchers (Gurney, 1979; Berge, 1985; Branco et al., 1985; Ferreira &
Branco, 1989, 1991) have found that the fatigue life of welded joints also
depends on the attachment thickness, the main plate thickness, and the weld toe
radius of curvature. Branco et al. (1985) investigated the effect of the weld geo-
metry parameters on the stress intensity factor that is directly related to the fati-
gue life of a welded joint. They found that the stress intensity factor increased
as the weld angle increased.

The same trends were observed for the attachment thickness and main plate
thickness in T-joint specimens. Ferreira and Branco (1989) showed that the fati-
gue life increased as the toe radius decreased. However, this effect was not
noticeable when the main plate thickness was less than 6 mm.

The effect of the edge preparation angle on the fatigue life of butt-weld joints
was investigated by Ninh Nguyen and Wahab (1995). The angle was reduced
from 90° to 45° with keeping other geometry parameters constant. It showed
that when the edge preparation angle was smaller, the fatigue life of the weld
increased. However, the variation was insignificant and ignorable. They also
reported that the fatigue life of butt joints increased as the radius of the undercut
at weld toe decreased. The order of weld geometry parameters influencing fati-
gue life of butt-weld joints was the flank angle, weld toe radius, plate thickness,
tip radius of undercut, and edge preparation angle.

Caccese et al. (2006) reported that the effect of weld profile on fatigue perfor-
mance of cruciform specimens fabricated with laser welding. The specimens
with the concave round fillet produced better fatigue characteristics than those
with the straight fillet.
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On the other hand, many researchers (McGlone & Chadwick, 1978; Doherty
et al., 1978; Yang et al., 1993; Huissoon et al., 1994; Maul et al., 1996; Chandel
et al.,, 1997; Kim et al., 2003) worked on the welding process control to obtain
better and consistent welding geometry that could result in better fatigue perfor-
mance of the welded joint. The weld geometry is directly related to bead height,
width, and penetration. Thus numerous researchers focused on the relationships
with bead dimensions and welding process control variables.

Kim et al. (2003) conducted a study on the relationship between welding process
variables and bead penetration for robotic Gas Metal Arc Welding (GMAW).
They found that the bead penetration increased as the welding current, welding
voltage, and welding angle increased. However, the bead penetration decreased as
welding speed increased.

Huissoon et al. (1994) also studied welding process variables for robotic
GMAW. Voltage, wire feed rate, travel speed of the torch, and the contact tip to
workpiece distance were controlled to obtained the optimum weld width and the
throat thickness.

Chandel et al. (1997) investigated the effect of increasing deposition rate on the
bead geometry of SAW. The deposition rate increased with the electrode nega-
tive but bead penetration and bead width decreased, which may result in lack of
fusion at the welded joint. In the same way with polarity, smaller electrode dia-
meter increased the deposition rate but produced unfavorable bead geometry.

In addition to the previously mentioned geometric welding parameters, the com-
plications of fatigue damage assessment of the welded joints include (1) the
inhomogeneous material due to the added filler to the base material; (2) the
welding defects and imperfections such as cracks, pores, cavities, undercut,
inadequate penetration, and such; and (3) welding residual stresses induced from
the rapid cooling process and distortions.

Fatigue Life Prediction Methods

Fatigue life of seam-welded joints is generally influenced by weld geometry,
service loading history, and material properties. Thus, fatigue life calculation
methods should be developed to account for those influencing factors. This
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section introduces various prediction methods for the fatigue life of seam-welded
joints, including nominal stress approaches, structural stress approaches, and
notch pseudo stress approaches.

Nominal Stress Approaches

Traditionally, the fatigue life of welded joints was assessed with the nominal
stress-based S-N curves generated from fatigue tests of welded specimens for dif-
ferent weld notch classifications. The S-N curves are obtained from extensive
experimental data of welded steel bridges, with life varying from 105 to 107
cycles. The complex weld geometries are placed in groups having similar fatigue
strengths and identified by weld class depending on the weld types and loading
conditions. It is found that fatigue strength is not sensitive to mean stress or
ultimate strength.

Tensile residual stresses from the welding process are already at the yield strength
of the material and will be larger than any applied mean stresses. The slope fac-
tors for normal stress and shear stress are found to be 3.0 and 5.0, respectively,
indicating fatigue of welded joints is governed by crack propagation. It is also
assumed that the fatigue strength could be modified due to the influence of the
sheet thickness.

Further information on nominal stress approaches can be found from numerous
papers (Maddox, 2003), books (Gurney, 1979; Radaj, 1990; Maddox, 1991; Radaj
et al.,, 2006), and design guidelines and codes (ASME boiler and pressure vessel
code, 1989; British standards, 1980, 1988, 1991, 1993, 2004; European recommenda-
tions and standards, 1985, 2005; German standard (Deutsches Institut Fur Normung),
1984; IIW recommendations, 1982, 1990; Japanese standard, 1995).

These approaches are relatively simple but are limited to disclosing stresses and
strains at the critical regions of the welded joint. The manufacturing effects are
directly included in the large empirical database for structural steels, but the residual
stress effect due to different manufacturing processes is not taken into account. It
also appears difficult to determine weld class for complex weld shapes and loadings.

For variable amplitude multiaxial fatigue damage assessment, [IW and Eurocode 3
(II'W recommendations, 1990; Eurocode 3, 2005) recommend the damage values
(Ds and D;) due to normal stress and shear stress be calculated separately, using
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the Palmgren—Miner rule (Palmgren, 1924; Miner, 1945), and then combined using
the following interaction equations:

*  Proportional loading:

D;+D.<1.0 (10.1)

*  Nonproportional loading:

D, +D,<0.5 (10.2)
Structural Stress Approaches

In structural stress approaches, the structural stress is determined based on
macro-behavior of a structure at the location where the fatigue crack is most
likely to initiate and propagate. The structural stress is defined as the nominal
stress at the weld toe or root cross-section, which excludes the local geometric
(weld toe or root radius) effect in the stress calculation. Therefore, a structural
stress is not a true local stress.

In the present structural stress approaches (Femer et al., 1998; Dong, 2001,
2005; Dong & Hong, 2002; Potukutchi et al., 2004; Poutiainen & Marquis,
2006), the structural stress of a welded joint is calculated based on nodal forces
and moments obtained from a linear elastic finite element analysis (FEA).

In addition, an S-N curve is generated by fatigue testing fabricated welded
laboratory specimens to failure at various structural stress levels. Thus, the fati-
gue life of a real welded structure can then be calculated by this structural stress
at the critical welded joint and the S-N curve from laboratory testing.

Dong’s and Fermer’s structural stress approaches (Dong, 2001a,b; Fermer et al.,
1998) are popular among all the structural stress approaches because they define a
systematic way to calculate structural stresses based on nodal forces and moments
extracted from any linear elastic FEA. The two commonly used approaches will
be described in the following sections.

Dong’s Approach

Dong and his coworkers (Dong, 2001a,b; Dong & Hong, 2002; Dong et al., 2003)
proposed a mesh-insensitive structural stress parameter based on the stress inten-
sity factor concept derived on structural stresses along a weld line. This approach
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has been validated and documented elsewhere (Dong, 2001a,b; Dong & Hong,
2002; Dong et al., 2003).

More recently, this method has been included in the American Society of
Mechanical Engineers’ update to the Boiler and Pressure Vessel Codes, and is
available in Section VIII Division 2 (ASME Boiler and Pressure Vessel Code,
2007). Thus, the mesh-insensitive approach is introduced here, particularly for
estimating structural stresses and stress intensities at notches and for generating
master S-N curves for fatigue analyses of welded joints.

Figure 10.2 shows the physical model of a welded joint whose characteristics can
be described by the partial penetration depth (d), weld roots (locations 1 and 2),
weld toe (location 3), and the effective throat (a). It is assumed in the figure that
the crack will initiate at the weld root radius (location 1) and propagate along
the member thickness (t) direction. So the stress distribution normal to the crack
surface is responsible for the crack opening and propagation.

The typical stress distribution in a thickness direction at a critical location
under arbitrary loading can be simplified as shown in Figure 10.2. Here the
total stress distribution can be decomposed into two components: one for the
structural stress distribution without a weld root radius (Figure 10.2(a)) and

d = penetration depth, a = effective throat
1 = weld root, 2 = weld root, 3 = weld toe

A

Y.
A
v

(a) (b)

Figure 10.2
Structural stress and notch stress definitions for a fatigue crack in thickness
direction at the edge of a weld.
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the other for the local notch stress distribution as a result of the root radius
effect (Figure 10.2(b)).

As illustrated in Figure 10.2(a), the structural stress (c,) normal to the crack sur-
face can be expressed in terms of membrane (c,,) and bending (c}) stresses. In
mathematical expression, the structural stress is presented as

G, =0y, + Gp. (10.3)

The structural stress definition that follows the elementary structural mechanics
theory becomes the far-field stress definition in the linear fracture mechanics
context. As shown in Figure 10.2(b), the true notch stress distribution as a result
of the consideration of a weld root radius is represented by the dotted line, but,
based on the study by Dong et al. (2003), this distribution is assumed to be
approximated by a bilinear distribution with a characteristic depth t..

The static equilibrium condition holds for the structural stress distribution. Thus,
the structural stress distribution along a weld line can be easily calculated by the
balanced nodal forces and moments in a linear elastic FEA, using the elementary
structural mechanics theory. A weld line is defined as the boundary between the
weld and base metal, and generally located along the weld toe or root.

To accurately capture these forces and moments, the weld can be modeled by
shell/plate elements, in which the thickness of each element should be selected
to reflect the local equivalent stiffness of the joint, as shown in Figure 10.3.
In the structural stress calculation procedure, the balanced nodal forces and
moments originally solved in a global coordinate system should be converted to
a local coordinate system such that the resulting membrane stress and bending
stress components will act normal to the weld line.

Nominal Weld
Throat Size

Thickness Based on
Equivalent Stiffness

S . ]
Q S

Full Penetration Weld

Partial Penetration Weld

Figure 10.3
Weld representations with plate/shell elements.
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Fa, fa My, my

M1, my

(a) (b)

Figure 10.4
Equilibrium-based transformation of nodal forces (a) and moments
to unit line forces and moments (b).

Now the local balanced nodal forces and moments are converted to the line forces
and moments using the static equilibrium concept. For example, Figure 10.4 shows
the nodal forces/moments and unit weld line force/moment distribution for a first-
order plate or shell element with a length of L

Here F; and F, are the beginning and the end nodal forces; M; and M, are the
beginning and the end moments; f; and f, are the unit nodal weld forces at the
beginning and end nodes, following a linear weld force distribution function;
and m; and m, are the unit nodal weld moments at the beginning and end
nodes, having a linear weld moment distribution relation.

Let f(x”) be the linear weld force distribution force as a function of a distance x’
from node 1; the following static equilibrium conditions holds:

iFi=/f(x/)dx/ (10.4)

1

2

Y Fix| = / xf(x)dx'. (10.5)
0

Solving Equations (10.4) and (10.5) leads to

2
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fy==(2F,—F,). (10.7)

— 1N

With Equations (10.6) and (10.7), the weld line force distribution can be
easily obtained. In similar fashion, m; and m, can be derived in the following
relations:

(2M,; —M,) (10.8)

m; =

— 1N

(2M, - M)). (10.9)

m, =

— 1N

If a weld is modeled by two linear plate or shell elements with three nodes, as
shown in Figure 10.5, it is assumed that the weld line force distribution follows
the shape function of each nodal displacement. The static equilibrium condition
leads to the following relations between nodal balanced forces and unit nodal
weld line forces:

(10.10)

Figure 10.5
Equilibrium-based transformation of nodal forces to line forces.
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£, £l
Fy= 32 4 122
T3 6

(10.11)

(10.12)

Similarly, if the weld modeled by (n— 1) plate or shell elements with n nodes
has an open weld end, the relation between nodal forces and unit nodal weld

line forces can be expressed as follows:

where

Iy, 15, 15...1, = the element lengths
f,, f5, f3...f, = the weld line forces

, ! -
- — 0 0 0
3 6

Fy L (h+h) L 0

F, 6 3 6

Bl 0 I, (L+h) L

6 3 6

F, . .. .

) 1n—l 1n—l
0 0 0 0 ¢ 3

(10.13)

F,, F,, F;5...,F,=nodal balanced forces in local coordinate systems at the

nodal points

Or, if the weld has a close weld end, the relation becomes

1 L
— — 0 0
3 6
F1 1] (11+12) 1_2 0
F, 6 3 6
Bl 0 I, (L+L) 15
6 3 6
1r1 1n—l
2 0 0 0
6 6

—

n

6

(ln—]“+ ln)

(10.14)
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Unit weld line forces can be obtained by inverting the preceding matrix form of
the simultaneous equations as Equations (10.13) or (10.14), depending on the
weld end description. The similar expression can be developed for unit weld
line moment equations. Then, the structural stress at each nodal point (oy;) is
calculated with the obtained unit nodal line forces and moments as follows:

(10.15)

where

G = the membrane stress at nodal i
op,; = the bending stress at nodal i
f; = the unit weld line force at node i
m; = the unit weld line moment at node i

For local notch stress calculation, Dong et al. (2003) introduced a small notch
radius at the weld root to avoid any stress singularity and they assumed the self-
equilibrium condition holds for the local notch stress distribution, which can be
estimated by a bilinear distribution with a characteristic depth of t. =0.1t.

For illustration, the bilinear notch stress distribution induced by a weld root radius
under unit-nodal weld-line forces can be considered as two linear stress distribu-
tions in regions 1 and 2 along the member thickness direction, as illustrated in
Figure 10.6(a), where 05” and Ggl) are the local stresses at points 1 and 2 in region 1;
and 0(22) and ng) are the local stresses at points 2 and 3 in region 2.

01
£(1) £(1)
1 (1)0(1) (t11 A 1 1 (1) ¥ ! (t1“ A
f(), £ 2 2 (1) £ ) v
272 c@ ¢ 272 02\ ! t
@\ ) @ [
ng) .3 3 v f(sz) , 3 193 v
(a) (b)

Figure 10.6
(a) Static equilibrium condition to the balanced weld line forces and the two linear
stress distributions in regions 1 and 2; (b) static equilibrium condition to the
balanced nodal forces and modified bilinear stress distributions.
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The static equilibrium state leads to the following relations between the nodal
weld line forces and the local stresses:

£ = %c (2c§” +c§”) (10.16)
£ = % (oil) +2c§”) (10.17)
£ = t_6t° (209 +c§2>) (10.18)
£ = t_6tc (a? + 205”). (10.19)

Figure 10.6(b) shows the bilinear stress distribution with the stress compatibility
condition at point 2, where 6, 6,, and o3 are the local stresses points 1, 2, and
3, respectively. The static equilibrium state will result in the earlier similar equa-
tions in terms of 6;, 65, and o3.

Thus, by enforcing the static equilibrium condition and continuity condition at
point 2, the following equations are obtained:

26t +6) =26, + 0, (10.20)

te (20&” +cs§”) +(t—t,) (20&2) +c§2)> =t.(26,+0)) 1021)
+ (t—t.)(20, +03)

267 + 65 =205 + 0. (10.22)

The three unknowns (o, 0,, and 63) can be solved with the three equations as

o, = 1 (2651) +6;l) - ng)) L (‘521) _Gg)) (10.23)
2 2t

or=0f + % (o} ~of) (10.24)

os =0l + 2 (of ~o}). (10.25)
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In regions 1 and 2, the local notch membrane and bending stresses due to the
introduction of a weld root radius are

ol =21 1+% (10.26)
2

ol =2L=%2 (10.27)
2

Gg) _02%0s (10.28)
2

ol = % (10.29)

In contrast to the local notch stress calculation in this particular weld modeling
example, the structural stresses can be directly calculated by the following static
equilibrium condition:

on= 1 (1 + )+ 17 +10) (10.30)
o= (117t (1) +12) - (=20 + 17 0). (10.31)

Since crack propagation dominates fatigue lives of welded joints, the stress inten-
sity factor in the linear elastic fracture mechanics approach is a preferable damage
parameter to describe the complex stress state at a crack tip and to relate to fati-
gue lives by the Paris crack growth law. The stress intensity factor is a function
of crack size, far-field stress state, and geometry. For most of the welded joints, a
close-form solution for the stress intensity factor is not available.

Fortunately, the structural stress definition is consistent with the far-field stress
definition in the linear elastic fracture mechanics. Thus, the structural stress cal-
culated from a complicated welded joint under arbitrary loading is analogous to
the far-field stress in a simple fracture specimen, where the loading and geo-
metric effects are captured in the form of membrane and bending stresses. As a
result, the stress intensity factor for any welded joint can be estimated by using
the existing stress intensity factor solution for a simple fracture mechanics speci-
men under membrane tension and bending.

Consider a two-dimensional single-edge-notched (SEN) fracture specimen under
combined membrane tension and bending, as shown in Figure 10.7. The stress
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—

-
RN
| I;igure 10.7

Two-dimensional single-edge-notched fracture specimen under combined
membrane tension and bending.

intensity factor (K,) for an edge crack under structural (far-field) stresses, as
presented by Tada et al. (2000), is

K, = V1[(0m + 0p)fm — 6 (fn — )] = V0, [fr — 1 (fr — £ )] (10.32)

Here r is the bending ratio =cy/os; f,,, and f,, are the membrane compliance
function and bending compliance function, depending on the ratio of crack pro-
pagation length to the member thickness (a/t), defined as follows:

37 4 /2tan7;—a
fu(2) = [0.752+2.02% +0.37(1- sin’;—i‘ﬂ A B (10.33)
COSZ—t

2 tan 4

4
fio(2) = [0.923 +0.199(1 - sinZ) ] 2t (10.34)
t 2 COS Z_t

Equation (10.32), which is the stress intensity factor for a long edge crack as a
result of structural (far-field) stresses, has been extended by Dong and coworkers
(2003) to determine the stress intensity factor for a short edge crack due to local
notch membrane and bending stresses in region 1 as

Koe, =V [(Ggp + cQ))fm —oM (fm— fb)} . (10.35)

Here the characteristic depth, t., is a transition crack length from a small crack
regime to a long crack regime. Assuming there is a relation between the stress
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intensities due to structural stresses and local notch stresses, a stress intensity
magnification factor (My,) is then introduced as

Kat,

My, = X (10.36)
Dong and his coworkers (2003) reported that M,, approaches to unity as a
crack size is close to 0.1t for all of the cases studied. Consequently, t. =0.1t can
be considered as a characteristic depth beyond which the notch stress effect
becomes negligible. They also found that, for an edge crack in a T fillet weld,
the stress intensity factor solution is due to the structural stresses; Equation
(10.32) provides an accurate estimation for a crack size larger than 0.1t. As the
crack size becomes smaller than 0.1t, the local notch stresses at the weld toe or
root should be considered and will introduce an elevated stress intensity factor.

Figure 10.8 schematically illustrates the two distinguished patterns of the stress
intensity factors for a crack size ratio a/t varying from a/t < 0.1 to a/t > 0.1.
Thus, the so-called “two-state growth model” was proposed, where the stress
intensity factor (K,;<o.1) dominated by the local notch stresses and stress inten-
sity factor (K,4s0.1) controlled by the structural stresses can be used to charac-
terize the small crack and the long crack regimes, respectively.

Based on the two-stage growth model, the Paris crack growth law is then modi-
fied accordingly as follows:

((11_18\11 =Clfi(AKui<0.1) X T2 (AKyes0.1)]- (10.37)

Osvt

Notch Effects

Without Notch

—~ Dy

Figure 10.8
Schematics of the stress intensity factor versus the crack size ratio relation.
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Here C is a fitting material coefficient; AK, <1 and AK,(; are the stress
intensity factor ranges in the short and long crack growth regimes; and f;() and
f5() are the functional expressions. For the long crack growth regime, f,() follows
the Paris crack growth model as

£2(AK,js0.1) = (AK,)" (10.38)

where
m = the crack growth rate exponent for the long crack growth regime

By the introduction of My, in the short crack growth regime, f;() is assumed to
have the similar power law express as f,(), and can be expressed by

f1(AKyi<01) = (MknAKn)n (10.39)

where
n =the crack growth rate exponent for the first stage of the crack growth

Finally, by substituting Equations (10.38) and (10.39), Equation (10.37) can be
written

3—13 = C[(MwAK,)" % (AK,)"]. (10.40)
To determine the fatigue life N, the two-stage crack growth equation (Equation
10.40) can be integrated as

a=as ap/t=1 td- (E_:)

da
Nz/ C(My) (AK)" / C(My)"(AK,)"

aj a;/t=0.01

1-m

72+ (Aog) ™ I(r) (10.41)

R
LA GT

I(r) is a dimensionless function of r, which takes into account the loading
mode effect. If the nominal weld quality is not well defined, it is recommended

al—

where

I(r) = (10.42)
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(Dong, 2005) that the initial crack-life defect size ratio (a;/t=0.01 or less) be
used to calculate I(r) for S-N data correlations.

The I(r) function depends on the test loading types such as load control test and
displacement control test. For the load control application, the estimated numerical
solution of I(r) is given (Dong et al., 2004) as

I(r) = 0.294r> + 0.846r +24.815. (10.43)

Then, Equation (10.41) can be rewritten in terms of N as

1 2-m 1
Acg=C m-t2m -I(r)m-N m. (10.44)

or, a typical S-N curve is expressed as

1 1

ASg=Cm-N'm (10.45)
where
AS = 2% (10.46)
(o I()m

AS; is the so-called equivalent structural stress range used for life predictions
of welded joints. Figure 10.9 (Kong, 2011) shows that when the equivalent
structural stress range is used, all of the S-N data for various joint types
made of aluminum alloys, loading modes, and thickness are collapsed into a
narrow band.

Fermer’s Approach

Fermer and coworkers (1998) proposed a fatigue damage parameter based on
the concept of maximum structural stress amplitude to predict fatigue lives of
welded joints from the baseline S-N curves generated by testing fabricated
laboratory welded specimens.

The structural stress calculation in this approach is exactly identical to Dong’s
approach where the structural stresses are calculated from balanced nodal forces
and moments in a linear elastic FEA, using the elementary structural mechanics
theory. Thus, it is supposed to be another mesh-insensitive approach. But, in
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Figure 10.9

Correlation of existing S-N data for various joint types, loading modes, and plate
thickness. Source: Personal communication from Dr. J. K. Kong, February 7, 2011.

this approach, welded joints are required to be molded by plate or shell elements
with the following mesh rules:

¢ The 4-node shell elements are used for all the thin sheet structures and the
welds.

* The shell elements present the mean surfaces of the thin sheet structures.

* There is an offset by t/2 at the nodes of the shell elements for weld along
the weld line.

e The thickness of shell elements for a weld is the effective throat size.
* The proper element size is about 10 mm.

e The local weld toe and root radii need not be modeled.

These rules are enforced to ensure local stiffness of a welded joint is captured with
the same modeling techniques used to generate the baseline S-N data in laboratory
testing. This approach has been successfully employed in welded thin sheet
structures that can be effectively modeled by plate or shell elements. Moreover,



Fatigue Life Prediction Methods of Seam-Welded Joints 403

@ 3 a00)
9 |\/|y1

(0]
Fx‘l

(@) (b)

Figure 10.10
Forces (a) and moments (b) at each nodal point on shell elements.
Source: Adapted from Fermer et al. (1998).

the chosen maximum structural stress amplitude, as the fatigue damage parameter
in Fermer’s approach, is different from the equivalent structural stress range
derived in Dong’s approach.

Structural stresses can be defined by the following procedures. First, a local coor-
dinate is defined (see Figure 10.10), where the weld line is located along the local

y-axis. The unit line force, f!(y), and unit line moment, mg)(y), in an element
(i)

x1

(EY) can be converted from nodal forces, F'ly) and Fi‘z)(y), and moments

(i)
Myi(y
weld line nodal force and moment is assumed to be linear along the weld line.

(y) and M ( ) that are obtained from a linear elastic FEA. The variation of

Then the following static equilibrium conditions hold:

Q)
16

Iy
W4 Fl) = /f‘ )dy = y? (f)((i1> +ff<iz)> (10.47)
0
Y <1<1>)
IR = / yf(y)dy = YT (ffff + 2fff§>- (10.48)
0

Here IS) is the element edge length between the two nodal points (gsl> and gg)).
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Solving Equations (10.47) and (10.48) leads to

i) = 2 (25 - F) (10.49)
ly

£ = 2 (pp) _p® 10.50

x2 1(_1> x2 — Ixl)- ( . )
y

Following the similar fashion, myl) and mSz) can be derived in the following rela-
tions:

my) = 1% (v} - M) (1051)
y
ml) = 1% (2M<yi2> - M;if). (10.52)

With Equations (10.49) through (10.52), the weld line force distribution can be
easily obtained as follows:

o= (- 2)r(Z-)) s
1 Iy ly
y y y
Wy — 2 (v ([r_3Y (3 _
m{’(y) = 0 (Myl< 1<i>) +M;, (1?) )) (10.54)

y
The structural stress, G£i>(y), which is normal on the crack surface along a weld

line direction y in an element (E(i>) can be expressed in terms of membrane

stress, Ggl) (y), and bending stress, G](P (y). The structural stress is calculated by

the elementary structural mechanics theory as:

f0y)  6my)

) +oyly) =24 = —5 (10.55)

q/\
<
~—

I

q/\

For a continuous weld, using the nodal forces and moments, the grid structural
stresses on the top surface in an element (E(‘)) can be calculated as follows:

; 2 (2F§‘1> - Fi‘;) 12 (2M§‘1) - My;) -
Gs (0) _GS,I - 1<1)t + l(l)tz ( . )
y y
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. 2 (2F§‘2) - Ffjl)) 12 (2M§Q - Myl))
o, (ly) =05,= an -+ g . (10.57)
y y

This means that each nodal point inside a continuous weld will have two structural
stresses. However, if a nodal point is located at a weld start, stop, or weld corner,
as shown in Figure 10.11, it will have four structural stresses as calculated accord-
ing to the nodal forces and nodal moments in the three surrounding elements.
The maximum value of the structural stress amplitudes at each nodal point will
be used for fatigue-life assessments of the weld.

Next, information required to evaluate fatigue life of welded joints is the maximum
structural stress amplitude versus number of cycles to failure (65, —N) curve,
which can be determined by fatigue-testing fabricated specimens at various

Figure 10.11
Moments and forces for the structural stress calculation at a grid point
located at weld start/stop and sharp corner.
Source: Adapted from Fermer et al. (1998).
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Figure 10.12
Structural stress amplitude versus number of cycles to failure.
Source: Adapted from Fermer et al. (1998).

load amplitude levels with the load ratio of R=—1. Applied load amplitudes
can be converted to maximum structural stress amplitudes by using the procedures
explained in the previous section.

Figure 10.12 shows the o, ,-N curves with the best-fit equations against exper-
imental data. It is found that the slope of the o, ,-N curve is sensitive to the bending
ratio (r) defined as the ratio of bending to structural stresses. The flatter 6, ,-N curve
(the upper one) was generated based on the data where the bending stress is domi-
nant (0.5 < r < 1.0). On the other hand, the stiffer curve (the lower one) was obtained
from the data where the membrane stress is dominant (0 <r < 0.5).

When a mean structural stress (o) exists, the equivalent fully reversed stress
amplitude (6, r=—1) at the load ratio of R=—1 could be modified using the fol-
lowing equations:

e For—-o00 <R KO,

Gs,a,R=—1 = Gs,a + Mms,lcs,m- (1058)
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e For0<R<0.5,
0s,a + Mms,ZGS,m
1+M,

Here M,s; (=0.25) and M,,;» (= 0.097) are the mean stress sensitivity factors
defined in Haigh’s diagram.

GsaR=—1 = (1 +Mms,1) (1059)

Notch Pseudo Stress or RXMS Approach

This approach considers the local pseudo stress in a stress concentration area
as a fatigue damage parameter and requires fine meshes in the local weld toes
and/or roots geometry to capture the accurate notch stresses from a linear elastic
FEA. The pseudo stress analysis could be virtually impossible in most practical
situations used to analyze large structures with all of the details required. How-
ever, this approach could be feasible if the substructure modeling technique is
used to extract pseudo stresses in a desired location from a small but detailed
local model with input and boundary conditions that are derived from the
analysis results of its global model with coarse meshes.

The substructure modeling technique is used to model the nominal weld geometry
with solid finite elements, where a specific notch radius is introduced at every
weld/base material intersection. Depending on the member thickness of interest,
the nominal notch radius p is recommended as follows:

p=0.3mm
0.5mm<t<6mm
for
p=0.05mm
for
6.0mm<t<20mm
p=1.0mm
for

20 mm <t < 100 mm.

This technique to assign various notch radii will allow better adoption of S-N
curves for the size effect. This detailed substructure model can be created by
using any automatic mesh generation software.
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The substructure analysis technique to extract notch pseudo stresses involves
two finite element analyses. First, a user will start to set up the cut boundary for
the substructure model and analyze the global model for the cut boundary dis-
placements. Second, the user will apply the cut boundary displacements and
other relevant boundary conditions to the local detailed model for further stress
analysis.

The pseudo stress life approach is employed for fatigue life predictions of
welded joints. The synthetic pseudo stress life curve can be constructed by a
given slope factor k and a median pseudo endurance limit (c°) at 2 x 10°
cycles. Luckily, it has been found that the slope factor (k=3.0) is constant
for seam-welded joints made of steels and aluminum alloys due to the fact
that the crack propagation dominates fatigue lives of welded joints.

The pseudo endurance limit can be obtained by fatigue testing welded laboratory
specimens with the staircase test method for the endurance load amplitude at
2 x 10° cycles. A linear elastic FEA is required to calculate the median pseudo
endurance limit by applying the median endurance load. This is the way to covert
the experimentally determined endurance load amplitude to the pseudo endurance
limit. It is worth mentioning that residual stresses due to weld solidifications and
distortions have been implicitly taken into account in the calculated pseudo endur-
ance limit.

For some simple fabricated welded specimens used in laboratory testing, where
nominal stresses can be easily defined, the pseudo endurance limit can be simply
calculated by the product of the component endurance limit and the elastic stress
concentration factor. Fortunately, many elastic stress concentration formulas in
welds have been derived and can be found in the literature (Lida & Uemura, 1996;
Monahan, 1995).

Therefore, the detailed FE substructure modeling and analysis procedures could
be replaced by using these formulas for pseudo stress calculation. For example,
the elastic stress concentration factors (K, and Ky,) of a fillet weld subjected to
axial load and bending load, respectively, derived by Monahan (1995), are
expressed in the following equations:

0.37
70 (0454
K, =0. — - 10.

=0 388(180) (P) (10.60)
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0.572
_ ne[ t 0.469
Km_o.512<180> (p) . (10.61)

Finally, the notch pseudo stress approach is also known as the RXMS approach;
RX refers to the nominal notch Radius of X mm introduced in the substructure
modeling technique and MS refers to the back-calculated Mean and Standard
deviation or Scatter of the pseudo endurance limit.

Examples

Correlation studies between analytical solutions and experimental fatigue data
of a seam-weld structure are discussed in this section. Two commercial fatigue
analysis modules based on structural stress approaches were used to predict fati-
gue lives of the welded joints subjected to prescribed loading. Dong’s struc-
tural stress approach has been implemented into a module called VERITY®
(Battelle Memorial Institute) or FE-Safe® (Safe Technology Inc.), while Fermer’s
structural stress approach has been coded into the other module called DesignLife®
(HBM United Kingdom Limited).

Fatigue testing on welded perch-mount specimens made of DP600 and HSLA steels
has been conducted by Bonnen et al. (2009). As shown in Figure 10.13, the geometry
and dimensions of perch-mount specimens are expressed in millimeters, and the spe-
cimen thickness (t) is 3.4 mm. The specimen is subjected to either cyclic normal or
cyclic shear loading with respect to the weld line, as shown in Figure 10.14.

The fatigue test results in terms of load range in Newtons versus number of
cycles to failure are shown in Figure 10.15, where two load-life curves with the
I

slope factors k=3.4 (z m) and 5.1 (% m) for cyclic normal and cyclic shear

loads, respectively, can be seen.

To obtain nodal forces and moments at critical locations along the weld toe line,
any linear elastic FE analysis with quasistatic loading conditions can be employed
for the welded structure subjected to cyclic loads. For example, MSC-NASTRAN®
(MSC-Software Corporation) is chosen here for illustration. As shown in
Figure 10.14, the single FE welded structure for both the normal and shear load
cases can be analyzed by using the SUBCAE option in MSC-NASTRAN.

After this analysis is done, the nodal forces and moments along the weld line can
be extracted for structural stress calculations, and then used as an input to the two
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Figure 10.13
Geometry and dimension of perch-mount specimens.
Source: Adapted from Bonnen et al. (2009).
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Figure 10.14
FE model for perch-mount specimen and loading directions.
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Figure 10.15
Fatigue test results of the perch-mount specimen subjected to normal and shear load.
Source: Adapted from Kang et al. (2011b).

commercial fatigue analysis modules for fatigue life predictions based on the fati-
gue properties of welded joints provided in the software’s material database.

To examine validity of the two structural stress approaches in life predictions,
the structural stress ranges calculated from VERITY and DesignLife due to phy-
sically applied load ranges in testing are plotted against the experimental fatigue
lives in Figures 10.16 and 10.17, respectively (Kang et al., 2011b). Both the
structural stress approaches significantly improve the relationship between num-
ber of cycles to failure and structural stress range because all the data points are
now consolidated into one single S-N curve.

As shown in this example, both the structural stress approaches are very effective
for the simple experimental test results. However, a user should be cautioned when
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Figure 10.16
Structural stress range obtained from Dong’s approach versus cycles
to failure of the perch-mount specimens.
Source: Adapted from Kang et al. (2011b).

using the material database provided in the commercial analysis module for life
predictions because the welding and manufacturing processes included in the sup-
plied fatigue properties could be different from those in actual welded joints of
interest, resulting in different residual stresses.

Residual stresses from the welding process can have a significant effect on the
fatigue behavior of a welded structure. A local tensile residual stress is often
induced at the weld toe when the weld solidifies. Additional residual stresses as
a result of distortion may also be present. It is a common assumption that the
tensile residual stress could reach the yield strength of the parent material,
resulting in a detrimental effect on the fatigue strength of the welded joint.
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Figure 10.17
Structural stress range obtained from Fermer’s approach versus cycles
to failure of the perch-mount specimens.
Source: Adapted from Kang et al. (2011b).

This postulation is valid for most of the welded construction specimens because
the residual stress due to distortion could be negligible for these stiff specimens.
Thus, welding-induced tensile residual stresses at the weld toe should be relieved
by heat treatment to improve the fatigue performance of welded joints (Cheng
et al., 2003; Webster & Ezeilo, 2001). All the structural-stress—based or pseudo-
stress—based fatigue properties available in the commercial software are calibrated
from the experimental fatigue data on these welded construction specimens,
where tensile residual stresses have been implicitly taken into account.

However, welding-induced residual stresses are not always in tension as reported
by Ohta et al. (1990) and Kang et al. (2008). They observed compressive
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residual stresses on some thin-walled tubular specimens after a welding process.
The existence of compressive residual stress at the weld toe has been proven by
the X-ray diffraction method and by fatigue-testing as-welded and heat-treated
specimens. Figure 10.18 shows that the heat treatment process to relieve weld-
ing residual stresses reduces the fatigue performance of the seam-welded joints.

Fatigue life prediction results for the thin-walled tubular specimens are presented
in Figure 10.18 using the two structural stress approaches coded by FATI and
FAT?2. The data indicate that both approaches are comparable to each other, and
could overestimate and underestimate the fatigue performance of the welded
joints in the low cycle and high cycle fatigue regimes, respectively.

It is thus concluded that the analytical solutions show no correlation with the
experimental data. Before the two structural stress approaches are used, you
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Figure 10.18
Comparison of predicted and experimental fatigue data.
Source: Adapted from Kang et al. (2008).
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should understand the local residual stress states on the welded joints of interest
and should generate in-house fatigue properties by fatigue-testing some welded
samples with the same welding process as real products.

Variable Amplitude Multiaxial Fatigue Analyses

Welding is a common joining technique that has been widely used in many
engineering components. These welded components are usually subjected to a
loading history, which may be nonproportional and of variable amplitude. Thus,
development of a convenient and accurate life prediction technique for welded
components under multiaxial random loading is essential to an engineering
design and analysis.

Nonproportional cyclic loading on welded components causes equal (Archer,
1987) or more damage (Siljander et al., 1992; Sonsino, 1995) than proportional
loading. In nonproportional loading tests for components made of the same mate-
rial, fatigue lives are decreased as compared to those in proportional loading tests
with the same von Mises stress range. This phenomenon can be explained by the
slip behavior of the material (Itoh et al., 1995). The change of the principal
stress—strain axes due to nonproportional loading increases the interaction between
slip systems, which is responsible for additional hardening.

In addition, a typical material such as Type 304 stainless steel (Itoh et al., 1995;
Doong et al., 1990) shows more damaging effects than aluminum alloy (Krempl
& Lu, 1983; Itoh et al., 1997) due to identical nonproportional loading tests.
The degree of damage in a material is highly dependent on the ease on which
slip systems interact.

Strong interaction occurs in Type 304 stainless steel and weak interaction in alumi-
num alloy. Therefore, the fatigue life reduction is strongly connected to additional
nonproportional hardening due to both loading history and material, and a robust
and reliable life prediction model for welded joints under nonproportional loading
should take into account the nonproportional hardening effect.

Life prediction models for welded joints under nonproportional loading have
been developed, among which Dong’s structural stress-based model is the most
popular. It is well known that Dong’s mesh-insensitive model is a noble
approach derived on the linear elastic fracture mechanics approach for Mode I
loading only.
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More recently, two separate fatigue damage models (Dong & Hong, 2006;
Dong et al., 2010) were proposed for welded joints under nonproportional load-
ing. The Mode II loading effect was accounted for by the definition of in-plan
shear structural stress T4 as

fy | 3m,
t 2

Ty =

(10.62)

and by a von Mises-like equivalent stress formula in Dong et al. (2010):

1
S, = 5] /62 +312. (10.63)

Here f, and m, are the unit weld line in-plane force and torsion on the crack
propagation plane. D(®) is the damage parameter for nonproportional hardening
due to out-of-phase sinusoidal loads with a phase angle ®. In this approach, a
multiaxial rainflow reversal counting technique as described in Chapter 3 has
been used for fatigue life predictions of seam-welded joints under variable
amplitude multiaxial loading.

The local stress-based fatigue life prediction models, such as critical plane
approaches (Siljander et al., 1992; Backstrom & Marquis, 2001), and the effec-
tive equivalent stress amplitude method (Sonsino, 1995) are commonly adopted
for use in assessing nonproportional fatigue damage on welded joints, but their
uses are very limited. The critical plane approaches using Findley’s shear-stress
amplitude (Findley, 1959) provide a physical interpretation of the damage pro-
cess by identifying crack orientations; however, it fails to account for nonpro-
portional hardening.

The effective equivalent stress amplitude method (Sonsino, 1995) has received
much attention because not only is it easy to use, but it also gives reasonable physi-
cal meaning to account for nonproportional hardening due to material and loading
history. However, Sonsino’s approach is only valid for out-of-phase sinusoidal
loading histories and cannot be applied to general nonproportional loads.

More recently, a variant of the local stress-based fatigue life prediction model
was proposed, the equivalent nonproportional stress amplitude approach (Lee
et al., 2007). This model is a modified version of Sonsino’s effective equivalent
stress amplitude model, where the nonproportional hardening effect is taken
into account by a nonproportional coefficient for the material dependence of
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additional hardening as well as a nonproportional factor for the severity of non-
proportional loading.

This nonproportional hardening model, which was originally developed by Itoh et al.
(1995) in the equivalent nonproportional strain amplitude approach, was correlated
well with nonproportional fatigue life data under complex nonproportional cyc-
lic strain paths for Type 304 stainless steel. The applicability of this equivalent
nonproportional stress amplitude approach has been validated with experimen-
tal results for various welded joint configurations due to nonproportional con-
stant amplitude loading. What follows is a brief introduction of this model.

The equivalent nonproportional stress amplitude (v, np) 1S defined as follows:

OvM.aNp = Ovmall + onpfrp)- (10.64)

Here oy, is the equivalent proportional stress amplitude. The term of (1 + onpfnp)
accounts for the additional strain hardening observed during nonproportional cyclic
loading. onp is the nonproportional hardening coefficient for the material
dependence, and fyp is the nonproportional loading path factor for the severity
of loading paths.

In Equation (10.64), oym., is derived according to the von Mises hypothesis,
but employs the maximum stress amplitude between two arbitrary stress points
among all multiple points in a cycle. For the example of a plane stress condition
with three stress amplitude components (Gya, Oya Txya)s OvMm,a 1S maximized
with respect to time, and defined here to account for the mean stress effect:

ot
Gyma = Max {\/ o2, + G;a — Oy aOya + 3(x§r§y,a X <76;‘ >} ) (10.65)

- Geq,m

Here ag is the sensitivity shear-to-normal stress parameter, of is the fatigue
strength coefficient determined from the best fit of the proportional loading data
with a stress ratio R=—1, and 6., is the equivalent mean stress. Ignoring the
effect of torsional mean stress on fatigue lives, 64 m is calculated in the following
equation:

Geqm = Ox,m + Gy.m (1066)

where

Oxm and oy, =the mean stress values in x- and y-axes, respectively
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Figure 10.19
Graphical representation of nonproportional hardening due to 90°
out-of-phase loading in S-N curves.

The nonproportional material coefficient (onp) is related to the additional harden-
ing of the materials under 90° out-of-phase loading. Alternatively, this coefficient
can be obtained from the von Mises stress amplitude versus life curves of the
same material under in-phase and 90° out-of-phase fatigue testing. As shown in
Figure 10.19, at a same Gy (® =0°) value, the life (Ngy-) for 90° out-of-phase
loading is shorter or more damaging than that (Ny-) for in-phase loading.

Since the in-phase oy ,-N curve is the baseline S-N curve for life predictions,
the higher stress amplitude Oy .(®=90°) than oyy(P=0°) is found to
produce an equivalent damage or Ngg- life to the 90° out-of-phase loading.
This is assumed to be attributable to the nonproportional strain-hardening
phenomenon. Thus, (anp + 1) can be determined by the ratio of cyp (P =90°)
to Oyp.a(P=0°).

The nonproportional loading factor (fyp), varying from zero to one, represents the
effect of a loading path on nonproportional hardening. In-phase loading generates
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the value of fyp equal to zero, whereas 90° out-of-phase loading produces the
value of fyp equal to one, indicating the most damaging loading condition.
As reported by Itoh et al. (1995), this factor is calculated by integrating the contri-
butions of all maximum principal stresses (?l,max (t) ) on the plane being perpen-
dicular to the plane of the largest absolute principal stress (?rfmax).

This factor is mathematically represented as follows:
T

/ (}Sini(t) X |01 max (1) !)dt (10.67)

CNP

—ref
1,max

fNP =

where

|6 1.max ()| = the maximum absolute value of the principal stress at time t,
depending on the larger magnitude of the maximum and the
minimum principal stresses at time t (maximum of |5’ ()|
and [ 5'5(t))) .

1¢] . .
E(t) = the angle between ?1,max and G | max (1), as shown in Figure 10.20

- —ref
o1y 51, max (t1) = G1,max

| sin&(ta) % | G max (ta)l

N
G1,max (ta)

‘61_)(
1y
’
’
5 ’
G1,max (t8) -
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Figure 10.20

Schematic plot of principal stress vectors at various time steps.
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Also ?1,max(t) is oriented at an angle of O with respect to the x-axis. fyp is
. f . .
normalized to |?rle’max| and T (the time for a cycle). The constant Cyp is chosen

to make fyp unity under 90° out-of-phase loading.

A flowchart on how to apply the equivalent nonproportional stress amplitude
approach for the cumulative damage assessment of welded joints under multiax-
ial variable amplitude loading is presented in Figure 10.21. After the material

| A. Read the material properties o; b, o, and a |
v

| B. Read the time histories o, oy, and 1y, |

v
| C. Perform multiaxial rainflow reversal counting technique (Chapter 3) |
2
—»D. For each reversal, n=1,...., N:|1

E. For each point, k=1, ..., K, calculate
1) 64, Gy, principal stresses
2) 64: larger absolute principal stress
3) 61x and o4 y: local components of o4
4) 0ya @nd 6y 5 and Ty 5 stress amplitudes
5) 6xm and oy ,: mean stresses

F. Identify G1 mayx, the maximum valte of all 64s

G. Calculate sin &, the orthogonal p:ojection of 6110 64 max

|H. Calculate nonproportional Ioadin:; factor, fyp, using Eqg. (10.60) |

| I. Calculate oy o the equivalent st*ress amplitude, using Eq. (10.58) |

| J. Calculate 6y, anp using Eq. (10.;7) |

K. Calculate the fatigue life in rever:als by 2N = (Gyw a np/o) P |

| L. Calculate the damage for the cu:rent reversal d = 1/(2Ng) |
No Yes (M. Sum up total damage

n=N? "l from all reversals

Figure 10.21
Flowchart to apply the equivalent nonproportional stress
amplitude model for cumulative damage assessment under
variable amplitude multiaxial loading.
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properties (i.e., 6's, fatigue strength coefficient; b, fatigue strength exponent, g,
sensitivity shear-to-normal stress parameter; and og, nonproportional hardening
factor) and the stress time histories are read (steps A and B), the multiaxial rain-
flow reversal counting technique, as outlined in Chapter 3, is invoked (step C)
to count the reversals of the input data.

For each reversal (step D), the following procedures are then performed to cal-
culate the damage.

1. Point-by-point calculations (step E) are performed.

2. Identify (step F) the maximum absolute principal stress in the reversal.
3. The sin & can be calculated for all points (step G).
4

The nonproportional loading factor fyp is then calculated (step H) using the
discrete form of Equation (10.60).

5. The maximum equivalent proportional stress amplitude, oy ., €quivalent
nonproportional stress amplitude, oy anp. fatigue life in reversals,
and damage for the reversal are calculated as shown in steps I, J, K,
and L.

6. After the damage is calculated for all reversals, the total damage is linearly
summed (step M) using the linear damage rule.

Summary

This chapter has described various methods to predict fatigue life of seam-
welded joints, including nominal stress approaches, structural stress approaches,
and notch pseudo stress approaches. Nominal stress approaches are relatively
simple but have limitations to disclose stresses and strains at the critical regions
at the welded joint. It also appears difficult to determine weld class for complex
weld shapes and loadings.

The structural stress approaches reviewed are finite element mesh insensitive
because the structural stress of a welded joint is calculated by the elementary
structural mechanics theory, which requires the input of nodal forces and
moments obtained from a linear elastic FEA. It is fairly easy to use, thus these
approaches have been commonly adopted in the automotive industry.
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The notch pseudo stress approach considers the local pseudo stresses in stress
concentration areas such as fatigue damage parameters and requires fine meshes
in weld toes and roots to capture the notch stresses in a linear elastic finite
element analysis. A substructure modeling technique is required to model the
nominal local weld geometry with solid finite elements, where a constant notch
radius is introduced at every weld-base material intersection.

There are no universal fatigue properties of welded joints because of the com-
plexity of this subject. All the fatigue properties generated for use in the three
approaches are derived from a large empirical fatigue database for welded con-
struction steels. The manufacturing effects have been directly included in the
large empirical material database for welded construction steels, but the residual
stress effect as a result of different manufacturing processes is not taken into
account in any of these methods. Thus, we should understand the local residual
stress states on welded joints and generate in-house fatigue properties by fatigue-
testing of welded laboratory samples with the same manufacturing processes as
real products.

Present fatigue life prediction models for seam-welded joints under variable
amplitude nonproportional loading histories, such as Dong’s structural stress
approaches, stress-based critical plane approaches, Sonsino’s effective equivalent
stress amplitude method, and the equivalent nonproportional stress amplitude
approach, have been reviewed. None of them is perfect to use and there is
always room for improvement. However, the equivalent nonproportional stress
amplitude approach has been discussed in depth to address the important factors
that are needed for future model development.

This model is an extension of Sonsino’s effective equivalent stress amplitude
method and it consists of four material parameters accounting for the severity
of nonproportional loading paths, the material’s susceptibility to nonpropor-
tional hardening, the material’s fatigue life under shear-versus-normal stresses,
and the mean stress effect. The four parameters can be obtained by fatigue
testing for S-N curves under bending only, under torsion only, and with 90°
out-of-phase loading. In addition, a procedure has been described to predict
fatigue lives of welded joints under nonproportional variable amplitude load-
ing histories, based on the linear cumulative damage rule, the equivalent non-
proportional stress amplitude, and the multiaxial rainflow reversal counting
technique.
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Introduction

Some parameters, and their relation to resistance spot-welded fatigue, are as follows:

*  Manufacturing: Properly formed spot welds are the result of a combination of
the appropriate current, pressure, and hold time for a particular sheet thickness
and material property combination. Residual stresses are normally inevitable.
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*  Metallurgy: Base sheet metal properties will change in the weld nugget and
heat affected zone (HAZ) of the spot weld.

»  Statistics: Electrode wear through the manufacturing cycle, the nonuniform
nature of the joining surface, and missed or incomplete welds creates
variability at both the local spot-weld level and the structural level.

»  Stress Analysis: Large-scale automotive structural modeling of resistance
spot welds relies on finite element analysis techniques based on crudely
simplified spot-weld models. And single-weld analysis typically relies on
mechanics of materials, elasticity, and fracture mechanics approaches in
which detail models are often employed.

*  Fatigue Analysis: Fatigue critical weld locations must be determined and
then appropriate damage models and damage accumulation techniques must
be chosen to model resistance spot-welded fatigue behavior.

Many researchers have been working on developing simple, reliable fatigue life
prediction methods for resistance spot-welded joints, some of which have been
successfully correlated with experimental results. This chapter starts with a brief
summary of the primary factors affecting fatigue life of spot-welded joints and
then focuses on some particular spot-welded fatigue analysis techniques and the
relation of basic material specimen test to design.

Parameters Affecting Spot-Welded Joints

The primary mechanical parameters affecting fatigue life of resistance spot-welded
joints include weld nugget diameter, sheet metal thickness, specimen width, speci-
men types, base metal strength, and multiaxial loading. Their effects are described
in the following subsections.

Nugget Diameter

The weld nugget is formed from the molten material by the use of electrical
resistance spot welding. The resistance spot welds are created by bringing elec-
trodes in contact with sheet metal. Electrical current flows through the electrodes
and encounters high resistance at the interface, or faying surface, between the
sheets. This resistance creates a large amount of heat, which locally melts the
sheet materials. The current flowing through the electrodes is then stopped, but
the electrodes remain in place as the weld nugget forms. The weld nugget
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depends on the combination of current, electrode tip force, and the timing of
these parameters, called the weld schedule.

The weld nugget diameter is defined as the average diameter of the major and
minor button diameter determined by peeling one of the sheets back over the
spot weld, leaving a hole in one sheet and a button of material attached to the
other sheet. The weld nugget is responsible for transferring loads and is known
to affect fatigue life and failure mode of resistance spot-welded joints.

The fatigue life increases as the weld nugget diameter increases (Wilson & Fine,
1981) for a concentric tube specimen subjected to fully reversed axial loading.
Some researchers (Abe, Kataoka, & Satoh, 1986; Pollard, 1982) also observed
the beneficial effect as the nugget diameter increased on the fatigue life of single
resistance spot-welded joints subjected to cyclic loading.

Interestingly enough, Davidson (1983) found that the larger weld diameter showed
longer fatigue life than the smaller one in the low cycle fatigue (LCF) regime and
that the effect of nugget diameter on the fatigue life is insignificant for the high
cycle fatigue (HCF) regime (N;> 106).

Sheet Metal Thickness

The sheet metal thickness is another important parameter. Wilson and Fine (1981)
studied the effect of sheet metal thickness ranging from 0.5 mm to 1.4 mm on
fatigue performance. In their study, as compared to fatigue strength of the resis-
tance spot welds with a baseline sheet thickness, the welds with thicker sheet
metals could have higher fatigue strength in the LCF regime but lower fatigue
strength in the HCF fatigue regime.

Other researchers (Davidson & Imhof, 1984; Pollard, 1982) also observed that
the fatigue life of resistance spot-welded joints increased as sheet metal thickness
increased. Similar reports on this subject could be found elsewhere (Bonnen et al.,
2006; Jung, Jang, & Kang, 1996; Kitagawa, Satoh, & Fujimoto, 1985; Zhang &
Taylor, 2000).

Specimen Width

The specimen width is also a factor affecting the fatigue life of spot welds. How-
ever, a few researchers studied the effect of sheet width on fatigue performance of
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a spot-welded joint. Rivett (1983) studied the shear fatigue properties of spot welds
with three different widths of carbon steel and hot rolled HSLA steel. The fatigue
life increased as the specimen width increased, but the incremental rate decreased
as the specimen width increased. Sheppard (1993) included the effect of specimen
width in the structural stress calculation and correlated the structural stress and
fatigue life of spot-welded joints.

Base Metal Strength

Base metal strength is generally referred to as the ultimate tensile strength of the
sheet metals spot-welded together. Abe et al. (1986) showed that the base metal
strength did not affect the crack propagation life, but it was a very influential
factor for the crack initiation life. Moreover, all the studies (Bonnen et al., 2006;
Davidson & Imhof, 1984; Gentilcore, 2004; Kitagawa et al., 1985; Nordberg,
2005; Pollard, 1982; Wilson & Fine, 1981) showed the beneficial effect of higher
base metal strength on fatigue performance in the LCF regime and the diminish-
ing effect in the HCF regime.

Specimen Type

The effects of different material specimen types such as the tensile-shear, coach-
peel, and cross-tension specimens were also widely studied. Figure 11.1 shows

SN % \

Tensile Shear Coach Peel

4/_

Double Shear _‘_,
W

e
Cross Tension
Figure 11.1

Various types of resistance spot-welded specimens under uniaxial
loading. Source: Adapted from Swellam (1991).
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the frequently employed material specimen types (Swellam, 1991). Generally a
tensile-shear specimen shows better fatigue performance than that of coach-peel
and cross-tension specimens at the same applied load range.

Fatigue properties of spot welds are most commonly evaluated by using the pre-
ceding single-welded specimens. But the interpretation of these material speci-
men data and application of the data to automotive structural analysis must be
done with caution, since the deformation characteristics of these material speci-
mens do not reflect those of spot welds in typical automotive structures. This
means that the deformation of an automotive spot weld is constrained by that of
the surrounding welds and structure.

In addition, the failure definition for the laboratory test may not reflect an appropri-
ate failure definition for a weld in an automotive structure. Thus, other specimens
with multiple welds, such as box beams, have been proposed for more direct appli-
cation to automotive structures. However, at present no particular standard for a
multiple spot-welded specimen has been developed.

Multiaxial Loading

For multiaxial spot-weld testing, two basic types of multiaxial spot-welded speci-
mens as shown in Figure 11.2 recently have been proposed (Barkey & Kang, 1999;

I% 90° loading

45° |oading 90° loading
X 45° loading
A

@ ------- > 0° loading

N % .

* 2|3 0° loading \&/

(a) (b)
Figure 11.2

Two types of resistance spot-welded specimens under combined tension
and shear. Source: Adapted from Lee et al. (1998).
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Barkey & Han, 2001; Barkey, Kang, & Lee, 2001; Gieske & Hahn, 1994; Hahn
et al., 2000; Lee, Wehner, Lu, Morrissett, & Pakalnins, 1998). The test fixture is
designed to apply the combined tension and shear loads on the spot-welded speci-
mens by changing the loading direction, as shown in Figure 11.3. This test set-up
has been employed to validate the present fatigue damage models of spot-welded
joints under multiaxial loading.

Spacer  Actuator
Inserts Bolt

it

L] /

— ™

Clamping

Frame Test

Coupon

Figure 11.3
The test fixture to apply the combined tension and shear loads
on the spot-welded specimens.
Source: Adapted from Lee et al. (1998).
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Fatigue Life Prediction Methods

If enough experimental data are available, a multivariable load-life type of approach
(Kang & Barkey, 1999) can be employed. However, it can be advantageous to
employ a fatigue damage parameter for resistance spot welds. In damage para-
meter approaches, an analytical model of the joint is developed to determine
how the stress, deformation, or stress intensity depends on the applied load.
These quantities are then related to a fatigue damage parameter and are calibrated
by specimen tests.

The popular fatigue damage parameters for resistance spot welds were devel-
oped analytically or experimentally, and can be classified into three groups that
are briefly reviewed in the following sections.

1. Load life approach
2. Linear elastic fracture mechanics approach

3. Structural stress approach

Load Life Approach

The applied loads, load ranges, or load amplitudes can be used to correlate the
fatigue test results in the load life approaches. Pollard (1982) proposed empirical
equations to calculate the fatigue life of resistance spot-welded joints from the
relationship among the sheet thickness, nugget diameter, load range, and load
ratio.

For in-plane shear tests and cross-tension tests of high strength low alloy steel
(HSLA), the empirical equations are expressed in Equations (11.1) and (11.2),
respectively:

0.139 | 0.0218
AFqy, = 124,500N7027¢ (7 +%050) (L1
AFyyx, = 8.143 x 10°N; 02880382 5¢)"%0 (11.2)

where

AFg N, and AFy n, = the fatigue strength ranges in pounds in in-plane shear
and out-of-plane normal loading, respectively
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N =the fatigue life in cycles
r =the nugget radius
t=the sheet thickness

For fatigue lives between 5 x 10° and 5 x 10° cycles, these empirical equations
showed good agreement with experimental results for both in-plane shear and
cross-tension.

For a resistance spot weld subjected to combined in-plane shear AFg and out-of-
plane normal load AFy ranges, the following constant-life criterion can be
employed to determine the fatigue life of the weld:

AFq > ( AFy )
+ =1.0 (11.3)
(AFS,Nf AFyx,

where a is the exponent for the shape of the failure surface, usually setting
o = 1.0 for conservatism, if the test data are not available.

Equation (11.3) is the most direct and least sophisticated approach for determin-
ing fatigue life because it involves the assumptions that the weld nugget, free of
rotation, does not resist any moment or torque; the mean stress effect is negligi-
ble; and that the nugget is subjected to proportional in-plane and out-of-plane
loading histories.

For a variable amplitude proportional loading history on the weld nugget, the
uniaxial rainflow cycle counting technique can be used to count the number of
cycles on either the in-plane shear or out-of-plane normal loading history, and
to calculate the resulting fatigue damage based on each load range and the num-
ber of extracted cycles.

Linear Elastic Fracture Mechanics Approach

The linear elastic fracture mechanics approach for spot welds was first developed by
Pook (1975a, 1975b), in which fatigue strength of tensile-shear resistance spot weld
was assessed in terms of the stress intensity factor at the spot weld. The work by
Yuuki, Ohira, Nakatsukasa, and Yi (1986) first showed the feasibility of the stress
intensity factor in correlating fatigue strength of spot welds for different specimens.

The finite element method has been widely used to determine the stress intensity
factors at spot welds. Various modeling techniques for spot welds and sheet
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metals include the detailed three-dimensional solid elements (Cooper & Smith,
1986; Smith & Copper, 1988; Swellam, Ahmad, Dodds, & Lawrence, 1992) and
the boundary elements (Yuuki & Ohira, 1989), and the combined three-dimensional
solid element for spot welds and shell elements for sheets (Radaj, 1989; Zhang,
1997, 1999a,b,c, 2001, 2003).

All these models require refined finite element meshes at and near the spot
welds and result in accurate calculation of the stress intensity factors. But the
computational CPU time consumption is the drawback of modeling the spot-welded
joints with the detailed three-dimensional elements, which prohibits engineers from
using the analysis of any structure containing a large number of spot welds.

Two commonly used solutions to stress intensity factors at spot welds were
therefore developed, without using three-dimensional solid finite elements. One is the
structural-stress-based solution using the stresses in the shell elements (plate theory
stresses) around the spot weld, and the other is the force-based solution using the
interface forces and moments in the beam element for a spot weld.

Structural-Stress-Based Stress Intensity Factors

The classic work in fracture mechanics by Tada, Paris, and Irwin (1985) provided
the fundamental solution to the stress intensity factors at a crack between two sheets
under edge loads in terms of the structural stresses at the crack tip multiplying a
square root of the sheet metal thickness. Pook (1979) later validated the solution by
Tada et al. (1985) and concluded that the crack tip stresses can be directly calcu-
lated from the simple plate theory. This is an innovational work to obtain the stress
intensity factors of spot welds based on the structural stress concept.

Radaj (1989), Zhang (1997, 1999a,b,c, 2001), and Lin, Wang, and Pan (Lin & Pan,
2008a,b; Lin, Pan, Tyan, & Prasad, 2003; Lin, Pan, Wu, Tyan, & Wung, 2002;
Lin, Wang, & Pan, 2007; Wang, Lin, & Pan, 2005; Wang & Pan, 2005) further
refined the structural stress concept and provided a number of formulas for stress
intensity factors at spot welds based on the input of structural stresses.

For example, the formulas (Zhang, 1999b) for the spot-welded specimen type as
shown in Figure 11.4 are as follows:

ﬁ(oui — Guo + 05 — Oy +5\/§(’Cqu —Tq) Vit (11.4)

1
K=~
6|2
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Figure 11.4
Structural stresses (plate theory stresses) around a spot weld
according to Zhang (1999b).

1 2
Ku= Z(Gui —oy) + ﬁ(rqu"'rql) Vi (11.5)

K= L= (1 — 1)Vt (11.6)

]S,

where

Gui» Ouo» O1j» and oy, = the normal stresses
T, and Tj; = the circumferential stresses
Tqu and 7y =the transverse shear stresses on the verge of the spot weld

Note that these structural stresses are the plate theory stresses without any issue
of stress singularity, and generally represent external loads.

An appropriate finite element model is needed to extract plate theory stresses at
spot welds. Zhang (1999b) proposed that a special spoke pattern as illustrated in
Figure 11.5 is considered as a simplified model without three-dimensional solid
elements. The central beam in the spoke pattern is actually a cylindrical elastic
beam element with a diameter of that of the nugget. The base material properties
should be used for the beam element.

The spoke pattern consists of rigid bar elements transferring all the six transla-
tional and rotational degrees of freedom between the master nodes of the beam
element and those (slave nodes) of the shell elements. The diameter of the pat-
tern is equal to the nugget diameter. It is suggested to constrain only the three
translational and the rotational (in the radial direction) degrees of freedom, with
the other two rotational degrees of freedom being set free. The structural stresses
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Figure 11.5
A special spoke pattern to represent a spot weld in a finite element analysis
model. Source: Adapted from Zhang (1999b).

obtained from this simplified finite element analysis is mesh dependent and
adequate mesh refinements should be introduced around the spoke pattern for
the accurate stress outputs.

Interface Force-Based Stress Intensity Factors

There is a need for a mesh insensitive solution to stress intensity factors at a
spot weld, as applied to automotive structures that have a large number of spot
welds. A common practice in the finite element analysis (FEA) is to model
spot welds with beam elements, which connect two sheet metals modeled by
shell elements without mesh refinements. The interface forces and moments in
the beam elements are employed to calculate the structural stresses around a
spot weld.

Many methodologies (Maddox, 1992; Rupp, Grubisic, & Buxbaum, 1994; Swellam,
1991; Swellam et al., 1992) for estimating the structural stresses based on the inter-
face forces and moments have been developed. For example, Swellam et al. (1992)
proposed a fatigue damage parameter (K;) based on the linear elastic fracture
mechanics concept. They assumed that a spot-welded joint consists of the two half-
spaces joined by a circular area under combined out-of-plane normal force, in-plane
shear force, and in-plane bending moment.
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The resistance spot weld is subjected to the combinations of Mode I and Mode II
loadings and the stress intensity factors at the edge of the spot-weld nugget are
expressed (Tada et al., 1985) as:

6v2 M; +M;
K; = fF . (11.7)
d\/__ d*v/nd
V2, /R +F
Ki=—"Vv ~ 7 (11.8)
! dv/ad

where

Fy and F, = the in-plane interface forces
M, and M, = the in-plane interface moments
d =the weld nugget diameter

The equivalent stress intensity factor is derived by linear superposition as shown

in this equation:
VK +HBIKG
Ky, = —F+—. (11.9)

G
Here K;_is an equivalent stress intensity factor of Mode I, and B, is a material
constant that can be determined by collapsing the total fatigue life data of the
only Mode I loading case and the combined Mode I and II loading case. The
geometrical correction factor (G) is:

2 2
G= 8?? <i—t2+1> (11.10)

where

W =the specimen width
t = the sheet metal thickness

A theoretical estimation of the stress intensity factor for the geometric effect
was given by Zhang (1997, 1999a). For example, the stress intensity factor at a
spot weld is as follows:

V3, /F2+F2 2V3, /M +M;
- (11.11)

Ki=—r Ay 3n d\/ adtv/t
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2\/EE+E
= - (11.12)

V2, /B2 +
K = "+ 2V2M, (11.13)

where
M, = the out-of-plane interface moment

The stress intensity factors given in Equations (11.11), (11.12), and (11.13) are
the maximum values on the spot-weld edge; for a spot weld with unequal sheet
thickness, the smaller sheet thickness is suggested as a crude approximation.
The equivalent stress intensity (K.q) can be obtained for combined actions of
K, Ky, and Ky

Kieq = J K{ + B, Kqy + B, Ky (11.14)
where

> = a material parameter to correlate Ky; mode fatigue data to K; mode
fatigue data

In terms of correlating the equivalent stress intensity factor of Mode I to the fatigue
life, Swellam et al. (1992) proposed a new fatigue damage parameter (K;) to
account for the load ratio effect as follows:

K; =Ky eqmax X (1 =R)™. (11.15)

Here Kjcqmax 1S the equivalent stress intensity factor of Mode I at the maximum
applied load and R is the load ratio defined as the ratio of minimum to maxi-
mum loads. And b, is a load ratio exponent to present a better correlation
between the total fatigue life and K in log-log scale. If no test data is available,
set a default value of b, =0.85.

Then a fatigue damage parameter and life relationship can be derived based on
the plot using the least squares method as shown:

Ki=AN;)" (11.16)
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where
A and h=the constants from the curve-fitting for the fatigue test data

For a variable amplitude proportional loading history on the weld nugget, the
uniaxial rainflow cycle counting technique can be used to count the number of
cycles on either the in-plane shear or out-of-plane normal loading history that is
responsible for the maximum equivalent stress intensity factor of Mode I, and to
calculate the resulting fatigue damage based on each Kj ¢y max and the number of
extracted cycles.

Structural Stress Approach

The structural stress approach is to characterize some critical aspect of the stress
state at the crack initiation location of the spot-welded joint and incorporate this
stress state into a fatigue damage parameter that depends on the nugget forces,
moments, and weld geometry such as the nugget diameter and sheet metal thick-
ness. The structural stresses are not the true stresses at the weld, but are the local
nominal stresses that are related to the loading mode and geometry in a linear
elastic fashion.

The linear elastic finite element analysis showed the limitation to calculate the
stresses at the edge of spot-welded joints even with a finely meshed model
because of considerable plastic deformation at the edge of the weld nugget
(Rupp, Storzel, & Grubisic, 1995). In structural stress approaches, a rigid beam
element typically represents the weld nugget in finite element models to obtain
forces and moments at the spot-welded joints (Kang et al., 2000; Kang, 2005).
Based on the obtained forces and moments, structural stresses are calculated
using the linear elastic equations of beam and plate theory.

Sheppard

Sheppard (1993, 1996) developed a structural stress approach to predict fatigue
life of spot-welded joints. It was assumed that the fatigue life of spot-welded
joints can be directly related to the maximum structural stress range at the
critical region of the welded joints. In this approach, the fatigue crack initia-
tion life is assumed to be negligible as compared to the crack propagation
life. The weld nugget rotation during service loading was also assumed to
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be negligible in this approach. The structural stress range (Sheppard, 1996) is
expressed as:

_ AQij 4 6'AMi*j AP;

AS; = = 11.17
T ot wt? £ ( )

where

o = the effective specimen width (= nd/3)
W =the width of the specimen
t; = the sheet thickness
AM:} =the bending moment ranges
AQjj = the membrane load ranges
AP; =the axial load range in the weld nugget

The subscript i refers to the number of sheet (i=1, 2) and the subscript j refers
to the number of elements in the particular sheet (j=1, 2, 3, 4).

The forces around the weld nugget were obtained from linear elastic FEA. Plate
elements simulated the behavior of sheet metals and a beam element simulated
the weld nugget in the finite element model. All compressive membrane forces
are set equal to zero since it was assumed that compressive forces do not contri-
bute fatigue damage.

The maximum structural stress (AS;,.x) can be obtained from Equation (11.17) and
correlated to the fatigue life of the spot weld. The relationship between AS.«
and propagation life was derived from Forman’s equation (Forman, Kearney, &
Eagle, 1967):

Ny, o
(ljR)zAﬂA&m). (11.18)

Here A, and m can be obtained from a curve fitting of maximum structural stress
ranges (AS,,,) versus measured fatigue life (N,./(1 —R)) in log-log scale. R is the
load ratio. It was assumed that the crack propagation life (N, is equal to the total
fatigue life of the spot weld.

Rupp, Storzel, and Grubisic

Rupp et al. (1995) used local structural stresses at the spot welds instead of
using notch-root stresses or stress intensities to correlate with the fatigue life of
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the spot-welded joints. The local structural stresses were calculated based on the
cross-sectional forces and moments using beam, sheet, and plate theory. A stiff
beam element represented the spot weld in a finite element model to connect
both sheet metals. The length of the beam element was recommended to be
one-half of the summation of both sheet thicknesses (Hayes & Fermer, 1996).

When fatigue cracks are developed in the sheet metals, the local structural stres-
ses are calculated from the formulas of the circular plate with central loading. In
this case, a spot-welded specimen is considered as a circular plate with a rigid
circular kernel at the center (Young, 1989), and the outer edges of the plate are
treated as fixed, as shown in Figure 11.6. Then, the equivalent stresses for the
damage parameter of the spot-welded joints can be derived by combination and
superposition of the local structural stresses.

The solution of the radial stresses for this plate problem is presented in Roark’s
formulas for stress and strain (Young, 1989). The maximum radial stress (G max)
resulting from lateral forces is determined as follows:

E

Y 11.19
ndt ( )

Gr,max -

where
Fy,y =a lateral force in the local x or y direction, as shown in Figure 11.6

The radial stress due to a normal force F, on the weld nugget is given by

_kE

5 (11.20)

r

7ﬁy“”*
E//

Figure 11.6
Circular plate model for a spot-welded specimen.
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where

k; = a parameter that depends on the ratio of the nugget radius and
specimen span

The maximum radial stress due to applied moments occurs at the edge of the
nugget and is expressed as follows:

1(2 Mx,y
de?

(11.21)

Ormax =

where

k, = a parameter that depends on the ratio of the nugget radius and
specimen span
M, y = an applied moment in the local x or y direction

The equivalent stresses for the damage parameter are calculated by the appropriate
combination and superposition of the local radial structural stresses.

For nonproportional loading, the equivalent stresses can be determined as a
function of the angle 0 around the circumference of the spot weld. Here 0 is the
angle measured from a reference axis in the plane of the weld nugget. The
equivalent stress of the fatigue damage parameter is:

Geq(0) = —Omax (Fx)c0S0 — Gyax (Fy )sin® + o(F,)

(11.22)
+ Opmax (M )SINO — Gy (My ) cOsO
where
F
max Fx ==z 11.23
O ’Y) ndt ( )
k, M,
cmax(Mx,y)=K3< ? 2’y> (11.24)
dt
k;E,
forF,>0 G(FZ)=K3< iz > (11.25)
forF, <0 o(F,)=0. (11.26)

Here k;=1.744 and k,=1.872 are determined based on an assumed ratio of
radius to span of 0.1. Parameter «3;(= 0.64/t) is a material-dependent geometry
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factor applied to the stress terms calculated from the bending moment. It effec-
tively reduces the sensitivity of these stress terms to the sheet thickness.

When fatigue cracks are developed through the weld nugget (nugget failure), the
local structural stresses are calculated from the formulas of the beam subjected
to tension, bending, and shear loads, as shown in Figure 11.7. This failure mode
can occur when a spot weld is used to connect relatively thick sheets. In this
case, the spot-weld nugget is modeled as a circular cross section of a beam.

The normal stress (c,,), bending stress (6p), and maximum shear stress (T;.x) are
given by the following formulas:

4F

0= —~ 11.27
s ( )
32M,

op= (11.28)
nd
16F,

Tiax = ——5 - (11.29)
3nd

The nominal nugget stresses in this case can be calculated by superpositioning
these formulas, and a failure orientation can be determined by using the

Figure 11.7
Beam model for the weld nugget subjected to tension,
bending, and shear.
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stress-based critical plane approach. The equivalent stress (tensile normal stress)
on the critical plane is taken as the damage parameter.

As a function of the angle 6 along the circumference of the spot weld, these
stresses are

T(e) = Tmax (Fx)Sine + Tmax (Fy)COSG (11.30)
6(0) =0(F,) + Omax (My)sin® — 6, (M )cos (11.31)
where

16F
Tmnax (Fy) = —5" 11.32
(Fuy)=—_ (11.32)

32M
Omax(Myy) = —=~ 11.33
(Myy)=—-3 (11.33)
forF,>0 o(F,)= 4F§ (11.34)

nd

forF,<0 o(F,)=0. (11.35)

Stress histories of sheet or nugget stresses detailed previously are used to cal-
culate the fatigue life of the spot-welded structures. Rainflow cycle counting
of these histories can be used to determine the equivalent stress amplitude and
mean stress associated with each cycle. If the structure is subject to propor-
tional loading, a single crack initiation site near each nugget can be readily deter-
mined. If the structure is subjected to nonproportional loading, the many potential
sites for crack initiation around the circumference of each weld nugget must be
examined.

In either proportional or nonproportional loading, a correction may be made for
mean stress sensitivity. Rupp et al. (1995) proposed the following equivalent
stress amplitude at R=0 (c.q0) by modifying the equivalent stress amplitude
(Geq,a) and equivalent mean stress (Geqm) based on a Goodman-type mean stress
correction procedure:

Geqa + MGeqm

11.36
M+1 ( )

Geq0 =
where

M =the mean stress sensitivity factor
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Hence the total fatigue life can be correlated to the calculated equivalent stress
amplitude at R=0.

The failure mode of spot-welded joints was determined using a simple guideline
that is generally accepted in industry (Rupp et al., 1995). When the weld nugget
diameter versus sheet thickness is plotted, the boundary value of the cracking in
the sheet and through the nugget is 3.51/t, where t is the sheet thickness. When
the weld nugget diameter is larger than the boundary value, the crack will be
in the sheet. Alternatively, when the weld nugget diameter is smaller than the
boundary value, the crack will be through the weld nugget.

Dong

Dong and his coworkers (Dong, 2001a,b, 2005; Dong & Hong, 2002; Potukutchi,
Agrawal, Perumalswami, & Dong, 2004) applied the structural stress approach
described in Chapter 10 to predict fatigue life of spot-welded joints (Bonnen
et al.,, 2006; Dong, 2005; Kang, Dong, & Hong, 2007). This structural stress is
calculated from the nodal forces and moments derived from the linear elastic
FEA. At each nodal point along the weld line, the forces and moments have to be
resolved into the local coordinate systems that define Mode I loading.

The nodal forces and moments in a local coordinate system are then converted
to line forces and moments along the weld line. Application of this approach is
also discussed further in the next section.

Applications

This section describes some examples for the applications of the fatigue life pre-
diction methods of spot-welded joints discussed in previous sections. Prediction
results were also compared with experimental results to assess the effectiveness
of those methods. The test results that were used in this session were from
Bonnen et al. (2006), and included seven advanced high strength steel (AHSS)
grades, mild steels, and a conventional high strength low alloy (HSLA) grade.
Tensile shear (TS) and coach peel (CP) specimen geometries were employed for
the spot-welded specimens. The specimen dimensions are shown in Figures 11.8
and 11.9.

All specimens were tested at the single frequency in the range of 5 to 30 Hz with
the load ratio of R=0.1 or R=0.3. Fatigue failure was defined as the specimens
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Figure 11.8
Schematic of tensile shear specimen.
Source: Adapted from Bonnen et al. (2006).

being completely separated in the two parts, or as the testing machine reaching the
displacement limit due to extensive cracking of specimens.

The fatigue test results of TS and CP specimens are shown in Figure 11.10, in
terms of load amplitude versus number of cycles to failure. The test results
show that fatigue life of a tensile shear specimen is clearly separated from that
of a coach peel specimen.

As reviewed in the previous section, many different approaches were proposed
to estimate fatigue life of spot-welded joints. However, only two structural stress
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Figure 11.9
Schematic of coach peel specimen.
Source: Adapted from Bonnen et al. (2006).

approaches, those of Rupp and coworkers (1995) and Dong (2005), are demon-
strated for the examples. Those approaches were well explained in the previous
section.

The two approaches have differences in modeling of the spot-welded joint in
the finite element model to obtain nodal forces and moments. For the approach
of Rupp and coworkers, a simple rigid beam element represents the spot-welded
joint as shown in Figure 11.11.

On the other hand, for Dong’s approach, it requires more effort to represent the
spot-welded joint, as shown in Figure 11.12. A beam element represents the
spot-weld and rigid elements connect from the center node to periphery nodes
of the weld nugget at each plate. The length of the beam element is equal to
one half the summation of the two sheet thicknesses.
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Fatigue results for TS and CP specimens.
Source: Adapted from Bonnen et al. (2006).
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The structural stress ranges were calculated using the grid forces and moments

obtained from FE analyses, and plotted with experimental fatigue life to obtain
the best fit curve equation for the data as shown in Figures 11.13(a) and 11.13(b).
The structural stresses were obtained for TS and CP specimens tested by Bonnen
et al. (2006). Unlike applied load range as shown in Figure 11.10, most data
points are within the factor of 5 lines. The predicted fatigue life is determined
from the best-fit curve equation for the specific applied load range.

The predicted fatigue life versus experiment fatigue life is plotted in Figures 11.13
and 11.14 for Dong’s approach and Rupp and coworkers’ approach, respectively.
The dotted and dashed line represents the perfect correlation between the prediction
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Figure 11.11
Finite element models for Rupp and coworkers’ approach.
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Figure 11.12
Finite element models for Dong’s approach.
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Figure 11.13
Structural stress range versus cycles to failure (a) and predicted fatigue
life versus experimental fatigue life (b) for Dong’s approach.
Source: Adapted from Bonnen et al. (2006).
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Figure 11.14
Structural stress range versus cycles to failure (a) and predicted fatigue life
versus experimental fatigue life (b) for Rupp and coworkers’ approach.
Source: Adapted from Bonnen et al. (2006).
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and experiment fatigue life. Factor of 5 lines are also presented above and below
the perfect correlation line. Most of the data points are within the factor of 5 lines
for both approaches.

Summary

In this chapter, the effects of nugget diameter, specimen thickness, base metal
strength, and specimen width have been reviewed. Increasing nugget diameter
and specimen thickness improves the fatigue lives of spot welds. The effects of
base metal strength are negligible on relatively long fatigue lives, although signi-
ficant at short fatigue lives. The fatigue lives increase with increasing specimen
width, but with a diminishing rate for larger widths.

The primary methods for fatigue life prediction of resistance spot-welded joints
are the load-life approach, linear elastic fracture mechanics approach, and the
structural stress-life approach. These approaches have been discussed in detail in
this chapter.

The load-life approach fails to correlate fatigue data from different geometries.
Therefore, this approach requires testing for each type of geometry. Neverthe-
less, this approach provides understanding of the geometric factors that affect
the total fatigue life of resistance spot-welded joints.

The linear elastic fracture mechanics approach requires accurate determination of
the stress intensity factors at spot welds and the relationship of these stress inten-
sity factors to a single fatigue damage parameter, which correlates to fatigue lives
of spot welds. The stress intensity factors are expressed by the structural stresses
around the spot weld or estimated by the interface forces and moments in the
weld nugget. In general, force-based solutions are less accurate than stress-based
ones. The equivalent Mode I stress intensity factor to account for the load ratio
effect, developed by Swellam et al. (1992), is the one recommended for use.

The structural stress approach requires the calculated local structural stresses using
plate, sheet, and beam theory based on the cross-sectional forces and moments.
This method is suitable for application to large finite element models because mesh
refinement is not necessary for spot welds. The applying theory depends on the fail-
ure mode. The failure mode determines which theory will be employed to calculate
the local structural stress.
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Both Dong’s and Rupp’s approaches show relatively accurate predictions for fatigue
life of spot-welded joints. These methods require the following information:

* The estimated failure mode

* The forces and moments around nuggets

e Local structural stresses as given by the equations presented
* Mean stress sensitivity

e A relation between maximum equivalent stress amplitude and total fatigue
life, such as a power law relation, obtained from a fit of experimental data

The linear elastic fracture mechanics and the structural stress approaches have the
following limitations. First, the derived formulas for the stress intensity factors and
local structural stresses are linear solutions, and are therefore bound to elastic and
small-deformation behavior of the material. The results should be applicable to brit-
tle fracture and high-cycle fatigue of spot welds where plasticity is contained by a
large elastic stress field. For low-cycle fatigue and ultimate failure of spot welds
where plasticity or large deformation may prevail, the results are not applicable.
Second, the material heterogeneity, residual stress, welding imperfection, and other
welding-related factors have not been considered here.
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