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INTRODUCTION

Purpose
In the chemical engineering design field, computers are used in the

preparation of heat and mass balances, the selection of optimum flow paths,

the design of equipment items such as heat exchangers and distillation columns,
and for' the preparation of flow diagrams, layouts and mechanical drawings.
Laboratory applications inciude a range of chemical analyses, determinations of
particle size ranges, etc. whilst on the plant, computers and microprocessors
are rapidly replacing conventional analog measurement and control devices.

How is the average chemical engineer equipped to handle these new
developments? For many older engineers, the computer came along only as an
afterthought in their studies, if it came at all. Current students of course,
are much better equipped and receive tuition in programming, so that they are
able to write programs in one or more of the common languages such as Basic,
Fortran, Pascal, APL & C, but even they have been overtaken by the recent
enormous increase in both power and availability of micro or desk-top computers
such as the IBM PC. They are unlikely also, before completing their tertiary
studies, to gain much experience writing programs related to their own ,
engineering discipline.

Outside of teaching and research, many computers exclusively use software
which has been developed by the computer manufacturers or other specialist
companies. Such software packages are produced by large teams of programmers,
numbering perhaps in the hundreds, working together for months under the
direction of a co-ordinator. The average user of such a package is unlikely to
be able to understand the program, even if he has access to it.

On entering employment, the young graduate may well find that where computers
are used, such software packages are used with them. Many of these can now be
run on a microcomputer equipped with a hard disc. In these circumstances, the
user finds his function Timited to the level of inputting data to the machine
and making decisions with regard to its output, often without regard for the
theoretical principles on which the software is based. I think this is a
potentially dangerous situation, ultimately tending to degrade the profession,
and restricting high level skills to the few.

The purpose of this book is to encourage the engineer to apply the skills in
programming which he has learnt to the solution of problems in engineering.
Programming such solutions is not difficult provided the programmer has a good
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understanding of the principles to be applied. Any gaps in this understanding
will soon be uncovered. I am sure that an ability to write such programs, and
the confidence which goes with it, is invaluable to the engineer working for
the small company, which cannot justify the expense of the sophisticated
software packages. For the engineer who does work with such packages, I hope
this book will provide some insights into the logic which they employ, and
encourage him also to develop his own programs.

I have selected a number of topics of interest to chemical engineers, a
separate chapter being devoted to each. Each chapter presents the theoretical
principles in summary form, then takes the reader through one or more manual
calculations, in detail. Then a computer program is presented to perform the
same task, each program including a detailed description, and being preceded by
a logic flowchart.

Programming Language

The programs in this book are all written in BASIC.

I have chosen to do this for several reasons. It is the most widely used
programming language and is acknowledged to be the easiest to learn, and it was
the first language adopted for use on microcomputers, with which it is still
widely used. Despite certain limitations with regard to speed and storage,
Basic in its more developed forms is quite powerful enough for the average user.

The programs are prepared on IBM PC and PC/XT machines employing Microsoft
Basic. The diskette which may be purchased with this book will of course run
on these machines and on other IBM - compatible machines. The form of Basic
used is in conformity with A.N.S.I. (American National Standards Institute) and
so is suitable for many other Basic compilers.

In certain cases the diskette may be unsuitable; this occurs where the byte
size employed in a particular machine is different from that used on the IBM
machine. In such a case, unless a translator is available, there is no recourse
but to type the programs in at the keyboard. Complete program listings are
provided which enable this to be done.

Learning to Program

It may be that you have not yet learned to program. Don't be put off, it is
not difficult. The first step is to obtain a Basic Manual appropriate to the
machine you will be using. Next obtain a teaching text, of which a number are
available (1) (2) (3) (4) (5). With these in hand you should be able to follow
all the programs given in this book, and to extend them.

If you wish to progress to more advanced topics, there are also texts which
will help you to do this (6) (7).
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Logic Flowcharts

These are intended to make it easier to follow the program logic. They
display the principal features of each program only, and employ symbols now
standardised by A.N.S.I. and 1.S.0. (International Organisation for
Standardisation). The symbols used in this book are tabulated below, with
brief summaries of their functions. For more information on flowcharts consult
references already cited (2) (3).

Mathematics
The jobs which the chemical engineer is 1ikely to use the computer for fall
into the following categories:

1. Storage of data (for example, physical & thermodynamic properties).

2. Interpretation of data (that is, finding a mathematical
relationship to fit the data).

3. Solution of probiems involving stagewise processes (distillation,
liquid extraction, evaporation, etc), treated as a serijes of
lumped parameter systems.

4, Solution of problems in heat, mass and momentum transfer possibly
involving transients. These are usually distributed parameter
systems, but may be modelied as series of lumped parameter systems
by the methods of finite differences (also by finite element methods).

The techniques employed to solve these problems are simply:

Standard analytical mathematical methods
Statistical methods
Finite difference methods

Usually, large numbers of simultaneous equations are generated and have to
be solved. This can be done either by Iteration, or by Matrix Algebra.

The chemical engineer who wishes to do his own programming then has to have
some facility with each of the above. However, the necessary skills can be
developed as the need arises.

Warnings
Commercial software includes a great deal of programming whose only function

is to protect the software and to avoid user mistakes. Very little of such
measures is included with the programs in this book; it makes understanding of
the programs very much harder. If for instance, the program calls for values of
composition in weight fraction, then the user must ensure that the sum of these
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values equals unity. If they do not, then errors will arise. So it is
necessary to be careful in your working. If you don't like this situation then
you can obtain excellent programming practice by incorporating your own safety
precautions:

It is recommended that you purchase the program diskette if possible. It
will save you many hours of typing and then checking for your mistakes. If you
do possess the diskette, make a copy of it immediately, and use this copy when
running or working on the programs. The original diskette should be retained as
a master copy and only used to restore your working diskette if this has been
corrupted.

The asterisk * is used in the text to indicate multiplication, in order to
avoid confusion with the letter x.

This book has been written to encourage chemical engineers to develop their
programming skills. I hope you find it helpful.

G. Ross
Swinburne Institute of Technology
MeTbourne 1987
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FLOW CHART SYMBOLS

Symbol

Meaning or Application

Termination

Process

Manual

| oBRE ¢

This symbol indicates a terminal point, such as
the beginning or end of a program or subroutine.

This stands for any function or group of functions
causing changes in the information flow, for
example, it could be a sequence of algorithms used
in a calculation.

Statements causing branching, such as IF ... THEN
or FOR ... NEXT. An abbreviated expression for the
decision is placed inside the symbol with a ? below
it.

For example, input from a data statement, output
to CRT or printer.

Input from the keyboard.

Input/Output from/to a magnetic aisc or similar
device.

Connector, used for convenience in laying out the
flowchart, it has no counterpart in tne actual
program.

A line with an arrowhead is used to link symbols;
the direction of the arrow indicates the sequence
of operations and the direction of the data flow.

The dotted 1line has no counterpart in the actual
program; its purpose is to indicate the symbols
referred to in a comment or annotation appended to
the flowchart.



Chapter 1

FLOWSHEETING (PROCESS SIMULATION)

Preparation of flowsheets is an important part of the work of the design
chemical engineer. The flowsheet is the bridge between design calculation and
plant hardware. Choice of optimum number of stages of extraction, or of heat
exchange, depends upon material and energy balance considerations, and may be
regarded as part of the flowsheeting process.

Computer flowsheeting is an attempt to assemble many chemical engineering
design functions into one package (1) (2). Software packages of considerable
complexity are now available (3) (4). Usually the simulation is Timited to
steady state conditions, thus greatly reducing the compliexity of the problems
to be dealt with.

A program for flowsheeting purposes obviously cannot be written as a simple
tinear program. Instead it must consist of a control program and a number of
subroutines. A different subroutine is required for each step or operation in
the process. A good many of these would be required, and the 1ist might include
"mix", "split", "compress", "expand", “flash”, "distil", "pump","heat exchange",
"extract", "absorb", "settle", "react", etc.

The control program would operate in such a way that these subroutines could
be called upon by the designer as required, interactively at the terminal. The
designer would assemble the complete flowsheet by appropriate connections
between the subroutines.

Each subroutine should perform the function of calculating material and
energy balances for the process step which it represents. In order to do this
it would generate (or call from other subroutines) data on physical properties
of all the fluids and solids concerned with that process step (4). In addition,
it might be necessary in some cases, such as a multi-component distillation,
for further design calculations to be made within the subroutine.

Since capital and operating costs affect the process design, it might be
necessary also to include further subroutines to handle cost calculations (4).

As the assembly of the flowsheet continues, the designer may wish to
incorporate corrections and improvements; he may wish also from time to time to
observe the effects of variation in process parameters. The program should
include means to enable this to be done; it should not be necessary to start
again from the beginning each time a modification has to be incorporated.



Obviously, a program to carry out all the functions mentioned above has
become indeed a "software package". It will have developed gradually by the
accumulation of new subroutines and by the extension of existing ones.
Reference to advertisements in the technical press shows how software companies
are constantly updating their material.

Typing in of the data and interpretation of the output will be difficult
and confusing for a flowsheet of any complexity. Consequently graphical
representations of the flowsheet and display of values would be extremely
advantageous. However, it is not an essential part of the program, and the
example in this chapter will show how a flowsheet program can be written in
BASIC without the use of graphic output.

The program to be described involves no mathematics other than algebra;
only simple process steps are included, but a more complex form of the program
might incorporate material from the other chapters of this book. Writing of
the program depends of course on the programmers ability to model the
process (5).

The growth of the program will be described step by step so that the reader
can follow the development of the logic.

STEP ONE
The beginning program must contain the minimum of necessary ingredients to

operate in the intended manner, namely:

- the control program;

- a subroutine to handlie data inputs and commands from the designer;
- a subroutine to simulate a simple process;

- a subroutine to handle the output of calculated values.

The Process Subroutine (MIX)

The operation of mixing of several process streams will be modelled.
Given the flowrates, compositions and enthalpies of n entering streams, the
flowrate, enthalpy and composition of the mixed exit stream should be
calculated (see Figure 1.1). For the sake of simplicity the algorithms
written here will be limited to the calculation of flowrate and composition
(not enthalpy).

If we have J entering streams, then the flowrate leaving

= 1.1
Fiegr =R FH + fy (1.1)



If there are K components present in each stream then the composition of
the exit stream,
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Fig. 1.1. Mixing of Streams.

This calculation should be performed for each component, i.e. for each value
of the subscript K. In terms of the program, we can store all these values of
composition in a two dimensional matrix X(J,K) where the first dimension refers
to the number of the entering or leaving stream, and the second dimension refers
to the components. We can then proceed to write a simple subroutine embodying
the above two equations.

The program FSHT1 which follows, embodies this subroutine and the steps
outlined above.



FSHT1. BAS

Subroutine
Feed

Input B$

Subroutine
Mix

Yes




10 REM  S30KAOKK K AKOK 3K KKK KK 3K OK 3K K AR KKK KORAORACK A ORI ORI KKK K K

20 REM
30 REM
40 REM
50 REM
60 REM

70 REM -

80 REM
90 REM
100 REM
110 REM
120 REM
130 REM
140 REM
150 REM
160 REM
170 REM
180 REM
190 REM
200 REM
210 REM
220 REM
230 REM
240 REM

PROGRAM FSHT1.BAS FIRST STEP IN
DEVELOPMENT OF A FLOWSHEET PROGRAM
PROGRAM NOMENCLATURE:

A$(J) - Names of subroutines and box numbers
Bs - Names of subroutines
B(J) - Numbers of the streams entering
a subroutine box
C$(J) — Names of components
El - Sum of values of F(J)
E2 - Sum of values of the product Fxx
E3 - Sum of values of weight fractions
F(J) - Flowrates
N1 - Number of components
N2 - Number of “boxes”
N3 -~ Number of flows to be mixed
X(J<K) -~ Composition as weight fraction of
component K in stream from Box J
Y(J<K) - Composition as weight fraction of

component K in stream from Box J
PROGRAM DESCRIPTION
LINES 1000, 1010 Alphanumeric arrays are declared,
and the arbitrary value of 20 allocated for the
largest likely number of operations or "boxes™
on the flowsheetbt.
LINES 1020-1110 The control program;subroutine
“"Feed” is called first;then the designer is
enabled to call subroutine "Mix"” as required;
finally subroutine “Print” is called.
LINES 1130-1390 FEED subroutine;
first, the number of components present is
is established and these are named
{lines 1180-1220}. Next, each entering stream
is given a number or identifier referred to as
a "Box Number”, which the designer must keep a
record of on his flow diagram. As each stream is
nunbered it is also given the name "Feed"”, and
values of flowrate and weight fraction of each
component are entered (lines 1230-1380)
LINES 1420-1650 MIX subroutine;each time this
subroutine is called a box number is allocated
and the box labelled "Mix" (lines 1430-1450). The
designer then enters the number of streams to be
mixed and the boxes from which they arise(lines
(1460-1490). The aldorithms previocusly written
{equations 1.1 and 1.2) are then employed to
calculate flowrate and composition of the mixed
stream leaving(lines 1500-1640).
LINES 1670-1780 PRINT subroutine; the name and
number of each box is printed out with values of
flowrate and weight fraction of each component.
S 34k 3k e 2K K Sk K 3K K 3 3K K K 3 3K K 3K 3K 3 35 3K 3K 3 3k o K 3 K K K ok K K Sk K K ok ok sk ok ok ok

1000 DIM A$(20),C$(10)

1010 DIM B(20),F(20),X(20,10),Y(20, 10)
1020 GOSUB 1130

1030 PRINT "ENTER MIX,OR END"

1040 INPUT B$

1050 IF B$="MIX" THEN 1080

1060 IF B$="END" THEN 1100

1070 GOTO 1030

1080 GOSUB 1400



GOTO 1030

GOSUB 1670

GOTO 1790

REM —  H0KACKEACKAROIOK I K K R AOKOK A K S AKOK KKK e koK oK ok sokoioR Sk kokoiok oKk 3k
REM - FEED SUBROUTINE FOR FLOWRATES &

REM - COMPOSITIONS OF ENTERING STREAMS
PRINT "FLOWRATES & COMPOSITIONS FOR FLOWS™
PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER"
PRINT "OF COMPONENTS & STICK TO THIS NUMBER"
INPUT "FOR ALL STREAMS" ;N1

FOR K=1 TO N1

PRINT "NAME OF COMPONENT";K;

INPUT C$(K)

NEXT K

PRINT "NUMBER OF STREAMS™

INPUT N2

FOR J=1 TO N2

A$(J)="FEED"

PRINT "FLOW";J;":"

PRINT "FLOWRATE";

INPUT F(J)

IF F(J)=0 THEN 1390

E3=0

FOR K=1 TO Ni-1

PRINT "WT. FRACTION OF ";C$(K);

INPUT X(J,K)

E3=E3+X(J,K)

REXT K

X(J,N1)=1-E3

NEXT J

RETURN

REM — kkakokokokoKok Ak K K ok kK oKk R oK kR ok Aok skokok ok ok A ok ok ok ok ok sk ko kok ok sk Kok Sk ok
REM - MIX SUBROUTINE, SIMULATES MIXING OF
REM - STREAMS CONTAINING UP TO 10 COMPONENTS
N2=N2+1

PRINT "THIS IS MIX SUBROUTINE, BOX NUMBER";N2
A$(N2)="MIX"

INPUT "NUMBER OF STREAMS TO BE MIXED" ;N3
FOR J=1 TO N3

INPUT "BOX NUMBER FROM WHICH STREAM COMES";B(J)
NEXT J

E1=0

FOR J=1 TO N3

E1=E1+F(B(J))

NEXT J

FOR K=1 TO N1

E2=0

FOR J=1 TO N3

E2=E2+F(B(J))*X(B(J),K)

NEXT J

Y(N2,K)=E2/E1

NEXT K

F(N2)=E1l

FOR K=1 TO N1

X(N2,K)=Y(N2,K)

NEXT K

RETURN

REM —  soksiokokolokok koK kokok A0k ok koK skokok ok 3ok ok kil ok ok 3ok ok Kok Kk Kok ok kokok
REM - PRINT SUBROUTINE

FOR J=1 TO N2

PRINT A$(J)



1700 PRINT “BOX NUMBER";J

1710 PRINT "FLOWRATE=";F(J)

1720 FOR K=1 TO N1

1730 PRINT "WEIGHT FRACTION OF ";C$(K);"=";
1740 PRINT USING "#. ####";X(J,K)

1750 NEXT K

1760 PRINT

1770 NEXT J

1780 RETURN

1790 END

Exampie 1.1
A typical recipe for a barrier cream is as follows:

A:  stearic acid 14.0 kg
zinc stearate 4.0 kg
solubilising agent 2.5 kg
water repellent 2.0 kg

B: sorbitol (70%) 5.0 kg
water 2.5 kg

C: 4% mucilage of
methyl cellulose 23.0 kg

Mixes A and B are prepared separately, emulsified together and then Mix C
is added.

Calculate the flowrates and compositions of all streams using the program
FSHTL.

This is a trivial problem, but it serves to demonstrate the flexible nature
of the program even at this beginning stage. A simple block diagram is first
drawn, which indicates the numbering of the boxes (Fig. 1.2). Next the
program is run and values entered, as follows:

Box 1 1 [Box 2] [Box 3] [Box 4 | |Box 5| [Box 6 Box 7
St acid [Zn stea |[Sol.ag) |[#at.rep |Sorb Water M.cell

| | |
]
Box 8 Box 9
Mix A Mix B
[
Box 10
Mix
l Mix C
'
Box 11
Mix
Product -

Fig. 1.2. Mixing of Barrier Cream.



RUN

FLOWRATES & COMPOSITIONS FOR FLOWS
ENTERING THE SYSTEM;ENTER THE NUMBER

OF COMPONENTS & STICK TO THIS NUMBER
FOR ALL STREAMS? 7

NAME OF COMPONENT 1 ? 8T ACID
NAME OF COMPONENT 2 7 IN STEA
NAME OF COMPONENT 3 ? SOL AGT
NAME OF COMPONENT 4 7 WATER REF
NAME OF COMPONENT 5 7 SORBITOL
NAME DF COMFONENT 6 ? METH CELL
NAKE OF COMPONENT 7 7 WATER
NUMBER OF STREAMS

77

FLOW {

FLOWRATE? 14

WT. FRACTION OF ST ACID? 1

WT. FRACTION OF IN STEA? ¢

WT. FRACTION OF SOL ABT? Q

WT. FRACTION OF WATER REP? 0
WT. FRACTION DF SORBITOL? ©
WT. FRACTION OF METH CELL? 0
FLOW 2

FLOWRATE? 4

WT. FRACTION OF ST ACID? O

WT. FRACTION OF IN STEA? 1

WT. FRACTION OF 8OL AGT? ©

WT. FRACTION OF WATER REP? 0
WT. FRACTION OF SORBITOL? 0
WT. FRACTION OF METH CELL? 0
FLOW 3 :

FLOWRATE? 2.5

WT. FRACTION OF ST ACID? 0O

WT. FRACTION OF IN STEA? O

WT, FRACTION OF S0L AGT? |

WT.
WT.
Wt

FRACTION OF
FRACTION OF
FRACTION OF

FLOW 4 :

FLOWRATE?

WT.
WT.
WT.
WT.
WT.
WY.

2

FRACTION OF
FRACTION OF
FRACTION OF
FRACTIGN OF
FRACTION OF
FRACTION OF

FLOW T
FLOWRATE? S

WT.
WT.,
WY.
WT.
WY,
WT.

FRACTION OF
FRACTION OF
FRACTION OF
FRACTION OF
FRACTION OF
FRACTION OF

FLOW &
FLOWRATE? 42,

. FRACTION QOF
. FRACTION OF
. FRACTION OF

FRACTION OF

. FRACTION OF

WATER REP? 0
SORBITOL? O
METH CELL? 0

8T ACID? 0
I8 STEA? ¢
0L ABT? O
WATER REP? 1
SORBITOLY ©
METH CELL?

0

ST ACID? ¢
IN STEA? ¢
apL AGT? 0
WATER REP?
SORBITOL?
METH CELL? 0

—

7

ST ACID? ©
IN STEA? 0
50L ABTT © ,
WATER REP? O i

SORBITOL? 0 I

PUT. FRACTION

 WEIGHT

 WEIGHT

METH CELL? @
FLOW 7 :
FLOWRATE? 23
WT. FRACTION
WT. FRACTION
WT. FRACTION
WT. FRACTION
WT, FRACTION
WT. FRACTION
ENTER MIX,OR
? OMIX

THIE IS5 MIX SUBROUTINE,BOX NUMBER 8
NUMBER OF STREAMS TO BE MIXED? 4

BOX NUMBER FROM WHICH STREAM COMES?
BOX NUMBER FROM WHICH STREAM COMES?
BOX NUMBER FROM WHICH STREAM COMES?
BOX NUMEBER FROM WHICH STREAM COMES?
ENTER MIX,0R END

7 MIX

THIS IS5 MIX GUBRGUTINE,ROX NUMBER 9
NUMRER OF STREAMS TO EE MIXED? 2

BOX NUMBER FROM WHICH STREAM COMES?
EOX NUMBER FROM WHICH STREAM COMES?
ENTER MIX,0R END

? MIX

THIS IS MIX SUBROUTINE,BOX NUMBER 10
NUMBER OF STREAMS TO EE MIXED? 2

BOX NUMBER FROM WHICH STREAM COMES? 8
BOX NUMEBER FROM WHICH STREAM COMES? 9
ENTER MIX,0R END

T OMIX

THIS IS MIX SUBROUTINE,BOX NUMBER (!
NUMEER OF STREAMS TO BE MIXED? 2

BOX NUMBER FROM WHICH STREAM COMES? 7
BOX NUMBER FROM WHICH STREAM COMES?T [0
ENTER MIX,OR END

8T ACID? O
IN STEA? O
SO0L AGT? 0
WATER REP?
SOREITOL? O
METH CELL?

Q

.04
END

BB ZTRE % R

i

7 END
| FEED
BOX NUMBER 1

FLOWRATE= 14

WEIBHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION

aF
aF
aF
oF
OF
OF
oF

ST ACID=1.0000Q
IN STEA=0,0000
SO0L ABT=0.0000
WATER REF=0,0000
SORBITOL=0.0000
METH CELL=0.0000
WATER=0,0000

EED

BOX NUMBER
FLOWRATE= 4
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION

2

ST ACID=0. G000
IN STEA=1.0000
SOL ABT=0,0000
WATER REP=0.0000
SORRITOL=0Q. 0000
METH CELL=0.0000
WATER=0,0000

WEIGHT
WEIGHT
WETGHT
WEIGHT
WEIGHT

FEED
pOX NUMBER

z
]



FLOWRATE= 2.5

WEIGBHT
WEIGHT
WEIGHT
WETGHT
WEIGHT
WEIGHT
WEIGHT

FEED

FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION

BOX NUMBER 4
FLOWRATE= 2

WEIGHT
WETBHT
WEIGHT
WEIGHT
WEIGHT
WETGHT
WEIGHT

FEED

FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION

BOX NUMBER 5
FLOWRATE= 5

WEIGHT
WETGHT
WEIGHTY
WELGHT
WEIGHT
WEIGHT
WEIGHT

FEED

FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION

BOX NUMBER &
FLOWRATE= 42.9

WEIBHT
WEIGHT
WEIGHT
AEIGHT
WEIGHT
WEIGHT
WEIGHT

FEED

FRACTION
FRACTION
FRACTION
FRACTION
FRACTICH
FRACTIDN
FRACTIO

BOX NUMBER 7

FLOWRATE=

WEISHT
WEIGHT
WEIGHT
WEIGHT
WEIGHT
WEIGHT
WEIGHT

MIX
BOX
FLOWRA
WEIGHT
WEIGHT
WEIGHT
WEIGHT
WEIGHT

2T
Lo

FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTION
FRACTIGN

NUMBER 3

TE - =
TE= 22.9

FRACTION
FRACTION
FRACTION
FRACTION
FRACTION

oF
oF
aF
oF
oF

oF

ar
oF
0F
oF
aF
QF
OF

GF

aF
aF
aF
oF
OF

oF
ar
aF

0F
oF

“METH CELL=0.0000

ST ACID=0.0000
IN STEA=0.0000
80L AGT=1.0000
WATER REF=0.0000
SORBITOL=0.0000

WATER=0.0000

ST ACID=0.0000
IN STEA=0.0000
S0L AGT=0,0000
WATER REP=1,0000
SORBITOL=0.0000
METH CELL=0.0000
WATER=0, 0000

ST ACID=0.0000
IN STEA=0.0000
SOL AGT=0.0000
WATER REF=0.0000
SORBITOL=0C, 7000
METH CELL=0.0000
WATER=0.,3000

ST ACID=q., 0000
IN §TEA=0.0000
80L AGT=0.0000
WATER REF=0.0000
SOREITOL=0.0000
METH CELL=0.0000
WATER=1,0000

Mix C

ST ACID=0,0000
IN GTEA=0.0000
S0L AGT=0.000¢
WATER REP=0,0000
SORBITEOL=0.0Q000
METH CELL=0.,0400
WATER=0.,9600

Mix A
ST ACID=0.4222

IN STER=0.1778
50L AGT=0,11112

WATER REF=0.0BBiiJ
SORBITOL=0.0000

WEIGHT FRACTION
WEIGHT FRACTION

MIX

BOX NUMBER 9
FLOWRATE= 47.5
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION

MIX

BOX NUMBER 10
FLOWRATE= 70
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION

MIX

BOX NUMBER 11t
FLOWRATE= 93
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHY FRACTION

Ok

oF

oF
oF
oF
OF

oF
oF

METH CELL=0.0000
WATER=0.0000

Mix B

ST ACID=0.0000
IN STEA=0.0000
0L AGT=0.0000
WATER REP=0.0000
SORBITOL=0.0737
METH CELL=0.0000
WATER=0.9263

AgasB

ST ACID=0¢.2000
IN STEA=0.057!
S0L AGT=0.0357
WATER REP=0.0285
SORBITOL=0.0500
METH CELL=0.0000
WATER=0. 4286

Product

ST ACID=0.1505
IN STEA=0.0430
S50L AGT=0.0289
WATER REP=0.0215
SORBITOL=0,0376
METH CELL=0.,0099
WATER=0.7103
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STEP TWO

Having demonstrated the workability of the program, the next step is to add
further subroutines representing process steps. Two simple examples have been
selected.

Process Subroutine (SETTLE)
It is assumed that the feed to the settler is a two phase mixture of solid

particles suspended in a solution of solute in solvent. In the settler,
separation of the phases occurs, a solids-free solution leaving as overflow,
the solids with the remaining solution leaving as underflow. (See Fig. 1.3).

Overflow
Fier s X1k
F o, x
— K ] Settle
J+ 1
Underflow -—
F X

J+2 27y+2 K

K =1 for solvent, 2 for solute, 3 for solid.
R1 = solids/solution ratio.

Fig. 1.3. Settling

It is further assumed that:

- the ratio of solids to solution in the underflow, is known;

- the concentration of solute in solvent is the same for both
overflow and underflow liquors;

- all the solute present is in solution;

- the solid phase is insoluble in the solvent.

These assumptions are quite usual for leaching problems, as can be seen by
reference to undergraduate chemical engineering texts (6) & (7).
Using the terminology of Figure 1.3 and that previously referred to, the

following equations can be written:



Underflow

Weight of solids Teaving = weight of solids entering =

Weight of solution leaving = F x, 5/R1
Hence the total underflow rate,

Fosz = Faxg,3 * (1 + 1/R1)

Weight fraction of solid in the underflow,

x _Fyxy,3 _ RL
“2’3"5:2—" T+R1

Weight of solute leaving in the underflow =

Wt. of solute entering » wt. solution in underflow _
total wt. of solution

x fuxy3/R1

Folxg +xi,2)

Hence the weight fraction of solute in the underflow

Faxy, 2

X4z, 2= Foxy,2%y,3 x 1
" RUxy,1 * xu2)  Faxy,s(l + 1/RI)
L Xg42,27 Xy, 2

X+ xg2) R+ 1)

By difference, the weight fraction of solvent in the underfiow,

Xge2, 1= 1 - Xyp2,2 - 42,3

Overflow

Weight of solution Teaving = Fja = Fy - Fys2
Based on the assumption of a solids-free overflow,
Xg41,3= 0

Weight of solute leaving in the overflow =

Wt. of solute entering » wt. solution in overflow
total wt. of solution

Fuxg2 % Fyai

Rl +x,2)

Foxy,3

11

(1.3)

(1.4)

(1.5)
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Hence the weight fraction of solute in the overflow,

Xg41,2 _ Xa,2 Fue 1

*
Xg1 ¥ Xg,2 Fyai

< Xger,2 - Xu,2 (1.9)
Xg,0 ¥ Xy, 2

By difference, the weight fraction of solvent in the underflow,
Xge1,1= 1 - Xge1,2 - Xy+1,3 (1.10)

Process Subroutine (SPLIT)
It is assumed that a process stream has to be subdivided, for example by
removal of a purge stream, because of a leak, or by a by-pass arrangement. The

situation is shown in Fig. 1.4.

Side Stream ——
Fus) X941,K
Fy y xJ,K Split Forward Steam
R —— . B EEE——
J+1 Fiez +%ys2,K

R2 = sidestream/entering stream ratio.
Fig. 1.4. Splitting of a Stream.

Composition of both outlet streams will be the same, and equal to the inlet
composition. Flowrate of the outlet streams are determined by the designated
value of the ratio of sidestream flow, R2.

FJ+| = FJ % R2 (1.11)

Faorz = Fy- Fos (1.12)

COMPUTER SOLUTION - STEP TWO
The program previously given has been modified by the insertion of the above

two subroutines. Their operation is self explanatory. Of course the
subroutines are added, tested and if necessary, debugged one at a time. This
modified program is named FSHT2. The listing follows. No example of its use
will be given until further modifications have been made.



FSHT2.BAS

Subroutine
Feed

Input B$

Mix
Subroutine

Split
Subroutine

Settle
Subroutine

13



10 REM —  sokskokokok ok ook okl ok b ok kol ok ok ok sk sk K sk ok ok ok ok ik Kokl ook sk skok sk skokokokok sk ok
20 REM - PROGRAM FSHTZ.BAS SECOND STEP IN

30 REM -~ DEVELOPMENT OF A FLOWSHEET PROGRAM

40 REM - PROGRAM NOMENCLATURE To the nomenclature given

50 REM ~ for program FSHT1.BAS has been added the following:
60 REM - R1 - Solids/Solution ratio

70 REM - R2 - Sidestream/entering stream ratio

80 REM — *kaokokookokkokok koK kR AoRR KRR oK K Ak K KK KA A KKK KA K KK AR AKK

DIM A$(20),C3$(10)

DIM B(20},F(20),X(20,10),¥(20,10)

GOSUB 1210

PRINT "ENTER MIX, SPLIT,SETTLE,OR END"

INPUT B$

IF B$="MIX" THEN 1120

IF B$="SPLIT" THEN 1140

IF B$="SETTLE" THEN 1160

IF B$="SET" THEN 1160

IF B$="END" THEN 1180

PRINT "INPUT NOT RECOGNISED"

GOTO 1030

GOSUB 1510

GOTO 1030

GOSUB 1790

GOTO 1030

GOSUB 1990

GOTO 1030

GOSUB 2240

GOTO 2360

REM  —  5k3ORAOKKOK KK A K K8 8 KK K 3 3 0K K A ORI K K OK K o o K Kok A KK ok koK K
REM - FEED SUBROUTINE FOR FLOWRATES &

REM — COMPOSITIONS OF ENTERING STREAMS
PRINT "FLOWRATES & COMPOSITIONS FOR FLOWS"
PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER"
PRINT "OF COMPONENTS & STICK TO THIS NUMBER"
PRINT "FOR ALL STREAMS (FOR SETTLING PROBLEMS USE:"
PRINT "K=1 FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID)"
INPOT N1

FOR K=1 TO N1

PRINT "NAME OF COMPONENT";K;

INPUT C$(K)

NEXT K

PRINT "NUMBER OF STREAMS"

INPUT N2

FOR J=1 TO N2

A$(J)="FEED"

PRINT “FLOW";J;":"

PRINT "FLOWRATE";

INPUT F(J)

IF F(J)=0 THEN 1490

E3=0

FOR K=1 TO Ni-1

PRINT "WT. FRACTION OF ";C$(K);

INPUOT X(J,K)

E3=E3+X(J,K)

NEXT K

X(J,N1)=1-E3

NEXT J

RETURN

REM — k3K AR KA K KK 3 A K K KK K K K K K K 3K K KK K K 3K K K K KK K K K K K Kk ok kK
REM -~ MIX SUBROUTINE, SIMULATES MIXING OF
REM —~ STREAMS CONTAINING UP TO 10 COMPONENTS



N2=N2+1

PRINT "THIS IS MIX SUBROUTINE, BOX NUMBER" ;N2
A$(NZ2)="MIX"

PRINT "NUMBER OF STREAMS TO BE MIXED";

INPUT N3

FOR J=1 TO N3

PRINT "BOX NUMBER FROM WHICH STREAM COMES™;

INPUT B(J)

NEXT J

E1=0

FOR J=1 TO N3

E1=E1+F(B(J))

NEXT J

FOR K=1 TO N1

E2=0

FOR J=1 TO N3

E2=E2+F(B(J))*X(B(J},K)

NEXT J

Y(N2,K)=EFE2/E1

NEXT K

F(N2Z)=E1

FOR K=1 TO N1

X(N2,K)=Y(N2,K)

NEXT K

RETURN

REM  — k30K KK 3OKAOK K 308 2 OK 9K 3K o o ok K oOK 0K AR Ak Rk sk ook K okokokokokokokok
REM - SPLIT SUBROUTINE, SIMULATES SPLITTING OF
REM — ONE STREAM INTO TWO IN A DESIGNATED RATIO
N2=N2+2

PRINT "THIS IS SPLIT SUBROUTINE, BOX NUMBER";N2-1
PRINT "THIS NUMBER ALSO DESIGNATES SIDE STREAM.
PRINT "FORWARD STREAM DESIGNATED BOX NUMBER™;NZ2
A$(NZ2-1)="SPLIT,SIDE STREAM"

A$(N2})="SPLIT, FORWARD STREAM"

PRINT "BOX NUMBER FROM WHICH STREAM COMES";

INPUT B1

PRINT "SIDE STREAM/TOTAL FLOW RATIO";

INPUT R2

F(N2-1)=F(B1)*R2

F(N2)=F(B1)-F(N2-1)

FOR K=1 TO N1

X(N2-1,K)=X(B1,K)

X(N2,K)=X(B1,K)

NEXT K

RETURN

REM  —  kkokokokok ok ok ok kR KR oK KOk oK 3K K ok ok K 3R 3K oK 3 ok oK kol sk ok o K o ok ok ok Kok kokok koK
REM SETTLE SUBROUTINE, SIMULATES OPERATION OF A
REM - SETTLER. 1 ENTERING STREAM IS ASSUMED,
REM - CONSISTING OF 3 COMPONENTS ONLY. THESE ARE
REM - NUMBERED 1 FOR SOLVENT, 2 FOR SOLUTE, 3 FOR
REM - SOLID. ZERO SOLIDS IN THE OVERFLOW IS ASSUMED
N2=N2+2

PRINT "THIS IS SETTLE SUBROUTINE, BOX NUMBER";N2-1
PRINT "THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM. "
PRINT "UNDERFLOW STREAM IS DESIGNATED BOX NUMBER™;N2
A$(N2-1)="SETTLE, OVERFLOW"

A$(N2)="SETTLE, UNDERFLOW"

PRINT "BOX NUMBER FROM WHICH STREAM COMES";

INPUT B1

PRINT "SOLIDS/SOLUTION RATIO FOR UNDERFLOW";
INPUT R1

15
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2140 F(N2)}=F(B1)*X(B1,3)*(1+1/R1)

2150 F(N2-1)=F(B1)-F(N2)

2160 X(N2,3)=R1/(1+R1)

2170 X(N2,2)=X(B1,2)/((X{B1, 1}+X(B1,2))*(R1+1))
2180 X(N2, 1)=1-X(N2,2)-X(N2, 3)

2190 X(N2-1,3)=0

2200 X(N2-1,2)=X(B1,2}/(X(B1,1)+X(B1,2))

2210 X(N2-1,1)=1-X(N2-1,2)

2220 RETURN

2230 REM — *xkckokokokoksokok ok Sokok R ook A KoK ORROR KKK K K IOK K K AOKKOKACK AR KKK KoKk
2240 REM - PRINT SUBROUTIKNE
2250 FOR J=1 TO N2

2260 PRINT A$(J)

2270 PRINT "BOX NUMBER";J

2280 PRINT "FLOWRATE=";F{(J)

2290 FOR K=1 TO N1

2300 PRINT "REIGHT FRACTION OF ";C$(K);"="
2310 PRINT USING “#. ####";X(J,K)
2320 NEXT K

2330 PRINT

2340 NEXT J

2350 RETURN

2360 END

’

STEP THREE

Many processes involve recycle loops, and in the development of the flowsheet
the values of flowrate, composition, etc within the loop are usually unknown.
The program so far will not handle this situation.

Where unknowns arise in a calculation in this way, it is frequently possible
to solve for these by generating a sufficient number of simultaneous equations.
This method is not applicable in the present case because in order to write the
program it would be necessary to know the flowsheet beforehand.

The difficulty can be resolved by using an iterative method. Values are
assumed for the composition and flowrate, etc of the unknown stream and these
values are employed in the calculation. Entering values in this way is known
as 'tearing' the stream (1). The calculation proceeds from box to box as before
until the variables of the torn stream are recalculated. The assumed and
recalculated values are compared; if they agree within specified limits then the
calculation is complete, otherwise new values for the torn stream variables must
be assumed (4).

The easiest way to assume new values is to employ the arithmetic mean between
the previously assumed values and the recalculated ones. These new values
provide the starting point for another calculation. Iteration proceeds in this
manner until the values of all variables before and after the 'tear’' are in
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agreement within the specified limits.

To modify the program in this way, an additional subroutine TEAR has been
aritten.

Process Subroutine (TEAR)
The box numbers which each torn stream leaves and enters are entered by the

designer. Flowrates and compositions of these streams are averaged (see
Figure 1.5).

Box [ Fu o Tear § B
M XM,K XN K

Fig. 1.5. The Torn Stream.

Thus the new value of Fy to be used at the next iteration, which we may call
Fn*, is:
*
Fn = FutFn
2

Similarly,
*
Knok™ Xmet Xk
2
In the remainder of the subroutine new values for all variables in the
flowsheet are recalculated.
Control is transferred to this subroutine when one or more torn streams
occur. The program has been modified so as to incorporate these torn streams.
This has necessitated certain other modifications namely:

The first parts of subroutines 'Mix', 'Split' and 'Settle' were concerned
with data acquisition. These parts have been made into separate
subroutines (labelled Part A in each case), which are accessed only once.
each time these operations are input by the designer. Part B of each
subroutine is accessed as required at each iteration.
Program FSHT3 which follows, incorporates these modifications, and an
example of its use is given.
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FSHT3.BAS

Subroutine
Feed

Input BS

vV —

Subroutine Subroutine
Mix - A Mix - B
Subroutine Subroutine
Split - A Split - B
Subroutine Subroutine -
Set -A [ set - B
!

Portion within broken lines is
renamed Subroutine build at the
next stage

Subroutine
Tear

Subroutine
Print




10 REM k3K AK KA OK K K XK 3K K H0OK A KK K K K KK K KKK KK K KK 3K A K 3K K KKK K R OK K K K
20 REM PROGRAM FSHT3.BAS THIRD STEP 1IN

30 REM DEVELOPMENT OF A FLOWSHEET PROGRAM

40 REM PROGRAM NOMENCLATURE The following variables are
50 REM used, in addition to those already in use

60 REM (see FSHT1 and FSHT2)}:

70 REM C1 - Number of iterations to achieve the

80 REM specified agreement in torn stream

90 REM values

100 REM N4 - Number of torn streams

110 REM NS - Duplicate value of N2 used in certain
120 REM algorithms

130 REM N(J} Number of streams to be mixed at box J
140 REM T(J, 1) Box number which torn stream J leaves
150 REM T(J, 2) Box number which torn stream enters

160 REM The following variables replace others previously
170 REM used:

180 REM B(J,K) Box number of stream K entering box J
190 REM replaces B(J) used in FSHT1 & FSHT2

200 REM R(J) Side stream/total flowratio, or solids/
210 REM solution ratio, at box J. Replaces R1
220 REM & R2 used in FSHT2

230 REM DETAILS OF SUBROUTINE TEAR

240 REM LINES 2500 — 2570 The value of N4 is entered, that
250 REM is the number of streams which are torn; for each
260 REM of these the box numbers before and after the tear
270 REM are entered (values of T(J,1) and T(J,2)).

280 REM LINES 2580 - 2710 The box numbers corresponding
290 REM to the values entered above are found (line 2620);
300 REM flows are averaged (line 2640); compositions are
310 REM averaged (line 2670); this is done for each torn
320 REM stream. These new values will be used as inputs
330 REM to the boxes which the torn streams enter.

340 REM - LINES 2720 - 2820 The new values obtained above
350 REM are compared with those calculated at the last
360 REM iteration. If agreement is within 1% the

370 REM remainder of the subroutine is bypassed and the
380 REM nunber of iterations is printed (line 2990}. If
390 REM all values are not within 1%, another iteration
400 REM is carried out.

410 REM LINES 2830 - 2960 Box numbers are stepped

420 REM through consecutively, the value of A$(L) being
430 REM used to identify the nature of each box. Part B
440 REM of the appropriate subroutine is called.

450 REM LINES 2970 — 3000 If the specified agreement
460 REM - has not been met, then the program terminates

470 REM after 50 iterations.

480 REM ook kkok ok 30k ok ok ok koo ik 3Kk ok ok ook ok ok skl R Kok R okok dokokok ok kofok Kok ok ko
1000 DIM A3$(20),C$(10)

1010 DIM B(20,10),F(20),N(20),R(20),X(20,10),Y(20, 10}

1020 GOSUB 1290

1030 PRINT “ENTER MIX, SPLIT,SETTLE,OR END”

1040 INPUT B$

1050 IF B$="MIX" THEN 1120

1060 IF B$="SPLIT" THEN 1150

1070 IF B$="SETTLE"™ THEN 1180

1080 IF B$="SET" THEN 1180

1090 IF B$="END" THEN 1210

1100 PRINT "INPUT NOT RECOGNISED"

1110 GOTO 1030

1120 GOSUB 1590

19



GOSUB 1750

GOTO 1030

GOSUB 1950

GOSUB 2080

GOTO 1030

GOSUB 2220

GOSUB 2360

GOTO 1030

PRINT "IF ONE OR MORE STREAMS ARE TORN, "

INPUT "TYPE Y ELSE N";B$

IF B$="Y" THEN 1260

GOSUB 3030

GOTO 3150

GOSUB 2490

GOTO 1240

REM kAo 0K 30K ok 30K 3R 30K 0K AR 30K KK KKK KKK KRR K K ok ok 3K K Aok R koo K ok ok sk
REM - FEED SUBROUTINE FOR FLOWRATES &

REM - COMPOSITIONS OF ENTERING STREAMS

PRINT "FLOWRATES & COMPOSITIONS FOR STREAMS™
PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER”
PRINT "OF COMPONENTS & STICK TO THIS NUMBER"
PRINT "FOR ALL STREAMS (FOR SETTLING PROBLEMS USE:"
PRINT "K=1 FOR SOLVENT,2 FOR SOLUTE, 3 FOR SOLID)"
INPUT N1

FOR K=1 TO N1

PRINT "NAME OF COMPONENT";K;

INPUT C$(K)

NEXT K

PRINT "NUMBER OF STREAMS™

INPUT N2

FOR J=1 TO N2

A$(J}="FEED"

PRINT "FLOW";J;":"

PRINT "FLOWRATE";

INPOT F(J)

IF F(J)=0 THEN 1570

E3=0

FOR K=1 TO N1-1

PRINT "WT. FRACTION OF ";C$(K);

INPUT X(J,K)

E3=E3+X({(J,K)

NEXT K

X(J,N1)=1-E3

NEXT J

RETURN

REM kKooK R oK 30K CROK K o K KOk 3K ok 0K K R K o oK 3 R oK oK KK S IOK 3OR Kok Kk ki ok ok
REM - MIX SUBROUTINE, SIMULATES MIXING OF

REM - UP TO 10 STREAMS CONTAINING

REM - UP TO 10 COMPONENTS - MIX, PART A *kikikiokiokiokkk

N2=NZ2+1

N5=N2

PRINT “THIS IS MIX SUBROUTINE, BOX NUMBER™;NZ
A$(NZ2)="MIX"

PRINT "NUMBER OF STREAMS TO BE MIXED";

INPUT N{N5)

FOR J=1 TO N(N5)

PRINT “BOX NUMBER FROM WHICH STREAM COMES™;

INPUT B(N5, J)

NEXT J

RETURN

REM ook akok ook sk ok ok ook 30k 0K sk sk ko o oK KoK 30K 50K 30K KKK KK R AR Kok Ok R kR ok



REM —~ MIX, PART B %okl iokskok KKk Kok ioiiork ok kiR ik ok K
FE1=0

FOR J=1 TO N(N5)

E1=E1+F(B(N5,J))

NEXT J

FOR K=1 TO N1

E2=0

FOR J=1 TO N(N5)

E2=E2+F(B(N5,J))*X(B(N5,J),K)

NEXT J

Y(N5,K)=E2/E}

NEXT K

F(N5)=E1

FOR K=1 TO N1

X(N5,K)=Y(N5,K)

NEXT K

RETURN

REM Kk kookaiokok ok ok oK koK Kk oKk ok Kok 30k AR AR KK oK ok koK KRRk K kok
REM - SPLIT SUBROUTINE, SIMULATES SPLITTING OF

REM - ONE STREAM INTO TWO IN A DESIGNATED RATIO

REM ~ SPLIT,PART A kXsokakokokk ko dordohok Kokiorokok k ok Aok dok ok ok okok
N2=N2+2

N5=N2

PRINT "THIS IS SPLIT SUBROUTINE, BOX NUMBER";N2-1
PRINT "THIS NUMBER ALSO DESIGNATES SIDE STREAM.
PRINT “"FORWARD STREAM DESIGNATED BOX NUMBER" ;N2
A$(N2~-1)="SPLIT, SIDE STREAM"

A$(N2)="SPLIT, FORWARD STREAM"

PRINT "BOX NUMBER FROM WHICH STREAM COMES"™;

INPUT B(N5,1)

PRINT "SIDE STREAM/TOTAL FLOW RATIO";

INPUT R(Nb5)

RETURN

REM - SPLIT,PART B

F(N5-1)=F(B(N5, 1) )*R(N5)

F(N5}=F(B(N5, 1))-F(N5-1)

FOR K=1 TO N1

X(N5-1,K)=X(B(N5,1),K)

X(N5,K)=X(B(N5,1),K)

NEXT K

RETURN

REM 50k skook Kook ok Kok KA Aok KoKk KA AKAIOK A KK oK KKK KK Kok ok Kk Kok koK
REM - SETTLE SUBROUTINE, SIMULATES OPERATION

REM - OF A SETTLER. 1 ENTERING STREAM

REM - IS ASSUMED, CONSISTING OF 3 COMPONENTS ONLY
REM - THESE ARE NUMBERED 1 FOR SOLVENT, 2 FOR SOLUTE,
REM - 3 FOR SOLID. ZERO SOLIDS IN THE OVERFLOW
REM - IS ASSUMED — SETTLE, PART A XKRKKKKKICKKKKKRKKEKKK
N2=N2+2

N5=N2

PRINT "THIS IS SETTLE SUBROUTINE, BOX NUMBER™;N2-1
PRINT "THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM.
PRINT "UNDERFLOW STREAM IS DESIGNATED BOX NUMBER" ;N2
A$(N2-1)="SETTLE, OVERFLOW"

A$(N2)="SETTLE, ONDERFLOW"

PRINT "BOX NUMBER FROM WHICH STREAM COMES";

INPUT B(N5,1)

PRINT "SOLIDS/SOLUTION RATIO FOR UNDERFLOW"™;

INPUT R(N5)

RETURN

REM KKk kKAR KA KKK KKK A KKK A KKK AAKA KA KKK AR KA
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REM —~ SETTLE, PART B okkdoksdokkokok dok dkoksk dkolok kK k kK kK sk kok X
F(N5)=F(B(NS5, 1} }*X(B(N5,1},3)*(1+1/R(N5))
F(N5-1)=F(B(N5, 1}))-F(Nb)

X(N5, 3)=R(N5}/{1+R(Nb})
K2=((X(B(N5, 1), 1)+X(B(N5,1},2))*%(R(N5)+1)})
X(N5, 2)=X(B(N5,1)},2}) /X2

X(N5,1)=1-X(N5, 2)-X(N5, 3)

X(N5-1,3)=0
X(N5-1,2)=X(B(N5, 1}, 2} /(X(B(N5, 1), 1}+X(B(N5, 1}, 2}
X(N5-1,1)=1-X(N5-1,2)

RETURN

REM  5kokaokok 3Kk ok KOk 3K o OK A OKOK KRR OKRAOR IR KK O KKK K koK ok ok ok ok koK ok skok
REM - TEAR SUBROUTINE, USED WHEN STREAM DATA
REM - HAS HAD TO BE ESTIMATED

PRINT "THIS IS TEAR SUBROUTINE"

PRINT "HOW MANY TORN STREAMS™;

INPUT N4

FOR J=1 TO N4

PRINT "BOX NUMBER WHICH TORN STREAM";J;" LEAVES";
INPUT T(J, 1)

PRINT "BOX NUMBER WHICH TORN STREAM"”;J;" ENTERS";
INPUT T(J,2)

NEXT J

FOR L=1 TO N2

N5=L

FOR M=1 TO N4

FOR N=1 TO N(N5)

IF B(N5,N)=T(M,2) THEN 2640

GOTO 2690
F(B(N5,N}}=(F(T(M,1})+F(T(M,2)})/2

C1=Ci+1

FOR P=1 TO N1
X(B(N5,N},P)=(X(T(M,1),P)}+X(T(M,2},P}))/2
NEXT P

NEXT N

NEXT M

NEXT L

FOR M=1 TO N4

FOR P=1 TO N1

IF X(T(M,1),P)=0 THEN 2800

IF X(T(M,2},P}=0 THEN 2800

IF X(T(M,2),P)/X(T(M,1),P)>1.01 THEN 2830
IF X(T(M,2),P)Y/X(T(M,1),P)<.99 THEN 2830
IF F(T(M,2))}/F(T(M,1})>1.01 THEN 2830

IF F(T(M,2))/F(T(M,1}))<.99 THEN 2830

NEXT P

NEXT M

GOTO 2990

FOR L=1 TO NZ

N5=L

IF A$(L)="FEED" THEN 2960

IF A$(L)="MIX" THEN 2910

IF A$(L)="SPLIT,SIDE STREAM" THEN 2960

IF A$(L)="SPLIT,FORWARD STREAM" THEN 2930
IF A$(L)="SETTLE, OVERFLOW" THEN 2960

IF A$(L)="SETTLE, UNDERFLOW" THEN 2950
GOSUB 1750

GOTO 2960

GOSUB 2070

GOTO 2960

GOSUB 2360
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2960 NEXT L

2970 IF C1>50 THEN 2990

2980 GOTO 2580

2990 PRINT "Ci=";C1

3000 RETURN

3010 REM 30kiokokokoRokROR K KR KKK KO AR ROK KKK K KKK K KKK K K KK K K KoKk sk ok ook
3020 REM - PRINT SUBROUTINE
3030 PRINT

3040 FOR J=1 TO N2

3050 PRINT A$(J)

3060 PRINT "BOX NUMBER";J

3070 PRINT "FLOWRATE=";F(J)

3080 FOR K=1 TO N1

3090 PRINT "WEIGHT FRACTION OF ";C$(K);"=";
3100 PRINT USING "#._####";X(J,K)
3110 NEXT K

3120 PRINT

3130 NEXT J

3140 RETURN

3150 PRINT “END"

3160 END

Example 1.2
A plastics manufacturer sells his product as a moulding compound consisting
of a blend of raw polymer, with carbon black, antioxidant and other chemicals.

The compound is prepared in a two stage process.

In the first step, all of the carbon black and antioxidant is mixed with
polymer to produce a concentrated mix referred to as masterbatch. This
operation is carried out in a batch mixer, the polymer being heated above its
softening point in the process. The blended product is cooled and diced into
granules.

In the second stage, the granular masterbatch and further raw polymer are
mixed in a dry blender and then fed to a twin screw compounding extruder. Once
again the polymer is heated above its softening point, is cooled and diced into
granules.

At each stage of mixing a certain amount of leakage occurs. Some of this
material is contaminated and must be discarded; the remainder is recycled to
the first stage mixer. The flow diagram of the process is shown in simplified
form in Figure 1.6.
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Anti Ox |C.Black [Polymer

—\

Dry
Blender

\:‘-D ilastey l
; Batch \\\ //
E Batch ) Twin Screw
Mixer Extruder ErodiClem

—y— Recycle ¥ Waste

Recycle Waste

Figure 1.6 Polymer Compounding

Using the data below, use the program described above to calculate the
flowrates and compositions of all streams.

Data
1. Raw polymer to 1lst stage mixer: 70 kg
2. Raw polymer to 2nd stage mixer: 950 kg
3. Carbon black: 30 kg
4. Anti oxidant: 2 kg

5% of the 1lst stage product appears as leakage; 25% of this has to be
discarded, the remainder being recycled.

3% of the 2nd stage product appears as leakage; 30% of this has to be
discarded, the remainder being recycled.

The first step in solving this problem is to draw a block diagram. Here the
individual steps 'mix' and 'split' are shown, boxes and streams being numbered
in accordance with the convention employed in the program (see Figure 1.7).
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Figure 1.7 Block diagram for Polymer Compounding Process

Next the program FSHT3 is run and the values entered, as follows:

RUN

FLOWRATES & COMPOGSI
ENTERING THE SYSTEM;ENTER THE NUMBER

OF COMPONENTS

FOR ALL STREAMS {FOR SETTLING PROBLEMS USE:
F=1 FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLIDY
NAHE OF COMPOMENT § 7 C BLACK

NAME 0OF COMFONENT 2 7 ANTI QX

NAME COF COMPONENT 3 ? POLYMER

NUMBER OF STREAME

75

FLOW 1

FLOWRATE? 930

Wi, FRACTION OF L BLACK? G

WT. FRACTION OF ANTI CX7 O

Folh 2 3

FLOWRATE? 70

WT. FRACTION OF C RLACK? ©

WT. FRACTION OF &NTI OX7 0

FLOW 2

FLOWRATE? 340

WT. FRACTION QF C BLACK? !

WT. FRACTION COF ANTI QX7 0 e—————i)

& STICK

TIONS FOR STREAMS

TO THIS NUMBER

0w 4

FLOWRARTE? 2
WT. FRACTION
WT, FRACTION
FLOW 2 ¢

FLOWRARTE? 49
WT. FRACTION
WT. FRACTION

GF C BLACK? ©
OF ANTI OX7? 1

0F € BLACK?
OF ANTI 0X?

03
L0032
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ENTER MIX,SPLIT,SETTLE,OR END
? OMIX

THIS I8 MIX SUBROUTINE,BOX NUMBER &
NUMBER OF STREAMS TO BE MIXED? 4
BOX NUMBER FROM WHICH STREAM COMES?
BOX NUMBER FROM WHICH STREAM COMES?
BOX NUMBER FROM WHICH STREAM COMES?
BOX NUMBER FROM WHICH STREAM COMES?
ENTER MIX,SPLIT,GETTLE,QOR END

T OSPLIT

THIS I8 BPLIT SUBROUTINME, BOX NUMBER 7
THIS NUMEER ALSO DESIGNATES SIDE STREAM.
FORWARD STREAM DESIGNATEDRD BOX NUMBER 8
BOX NUMBER FROM WHICH STREAM COMES? 6
SIDE STREAM/TOTAL FLOW RATIO? .05

ENTER MIX,SPLIT,SETTLE,OR END

7 MIX

THIS IS MIX SUBROUTINE,EOX NUMBER ¢
NUMRER OF STREAMS TO BE MIXED? 2

BOX NUMBER FROM WHICH STREAM COMES? |
BOX NUMBER FROM WHICH STREAM COMES? 8
ENTER MIX,5PLIT,SETTLE,OR END

T OEPLIT

THIS IS SPLIT SUBROUTINE, HOX NUMBER 10
THIS NUMBER ALSO DESIGNATES SIDE STREAM.
FORWARD STREAM DESIGNATED BEOX NUMBER 11
BOX NUMBER FROM WHICH STREAM COMES? 9
SIDE STREAM/TOTAL FLOW RATIO? .03

ENTER MIX,8FLIT,SETTLE,OR END

7 OBPLIT

THIS IS5 SPLIT SURROUTINE, BOX MUMBER 12
THIG NUMBER ALSO DESIGNATER SIDE STREAM.
FORWARD STREAM DESIGNATED BOX NUMBER 13
BO¥ NUMBER FROM WHICH STREAM COMES? 7
SIDE STREAM/TOTAL FLOW RATIO? .25

ENTER MIX,SPLIT,SETTLE,OR END

? BPLIT

THIS I§ SPLIT GUBROUTINE, BOX NUMBER 14
THIS NUMBER ALSO DESIGNATES SIDE STREAM.
FORWARD STREAM DESIGNATED BOX NUMBER 13
ROX NUMBER FROM WHICH STREAM COMES? 10
SIDE STREAM/TOTAL FLOW RATIO? .3
ENTER MIX,SPLIT,SETTLE,OR END

T OMIX

THIS IS5 HIX SUBROUTIME,BOX NUMBER 1é&
MUMBER OF STREAMS TO RE MIXED? 2
HOX NUMBER FROM WHICH STREAM COME
ROX WUMBER FROM WHICH STREAM COMES? 15
ENTER MIX,BPLIT,SETTLE,OR END

7 END

IF ONE OR MORE STREAMS ARE TORN,
TYPE ¥ ELBE N7 Y

THIE IS TEAR SUBROUTINE

HOW MANY TORN STREAMST !

I0Y NUMBER WHICH TORN STREAM 1
BGX NUMBER WHICH TORN STREAM !

Li= 7

o> d N

Q2 17
FR )

LEAVES? 14

ENTERB? &

FEED

BOX NUMBER 1
FLOWRATE= 950
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

FEED

BOX NUMBER 2
FLOWRATE= 70
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

FEED

EOX NUMEER 3
FLOWRATE= 30
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

FEED

BOX NUMBER 4
FLOWRATE= 2

WEIGHT FRACTION CF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

FEED

BGY NUMBER §
FLOWRATE= 27,52879
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

MIX

HOX NUMBER &
FLOWRATE= 129,4587
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

SFLIT,SIDE STREAM
BOY NUMBER 7

FLOWRATE= £.482938
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

BPLIT,FORWARD
80X NUMBER 8
FLOWRATE= 123.1758
WEIBHT FRACTION CF
WEIGHT FRACTION OF
WEIGHY FRACTION GF

C BLACK=0.0000
ANTI 0X=0.0000
POLYMER=1.0000

C BLACK=0.0000
ANTI 0X=0.0000
POLYMER=1.0000

C BLACK=1.0000
ANTI 0X=0.0000
FOLYMER=0.0000Q

C BLACK=0,0000
ANTI 0X=1.0000
POLYMER=0.0000

RECYCLE
(after tear)

C BLACK=%.,06463
ANTI 0X=0.,0044
POLYMER=0,9292

MASTERBATCH

C BLACK=0.2454
ANTI 0X=0.0164
POLYMER=0.7382

C BLACK=0,2454
ANTL 0¥=0.0164
POLYMER=0.,73B2

STREAM

C BLACK=0.2454
ANTI [X=0.01&4
POLYMER=0.,7382



MIX

B0X NUMBER 9

FLOWRATE= 1073.176

WEIGHT FRACTION OF C BLACK=0, 0282
WEIGHT FRACTION OF ANTI 0X=0,0019
WEIGHY FRACTION OF FOLYMER=(0.5700

SPLIT,SIDE STREAM

BOX NUMBER 10

FLOWRATE= 32,1958

WEIGHT FRACTION OF C BLACK=0.0282
WEIGHT FRACTION OF ANTI 0X=0,0019
WEIGHT FRACTION OF POLYMER=0.9700

SPLIT,FCRWARD STREAMN PRODUCT
BOX NUMBER 11

FLOWRATE= 1040,981

WEIEHT FRACTION GF C BLACK=0.0282
WEIBHT FRACTION OF ANTI OX=0.0019
WEIBHT FRACTION OF POLYMER=0,97Q0

SRLIT,BIDE STREAM WASTE

BOX NUMBER (2

FLOWRATE= 1.620734

WEIGHT FRACTION OF € BLACK=0.2454
WEIGHT FRACTION OF ANTI 0X=0.0164
WEIGHT FRACTION OF POLYMER=0.,7382

SPLIT,FORWARD STREAM

BOX NUMBER 13

FLOWRATE= 4.862201

WEIGHT FRACTION OF C BLACK=0.,2454
WEIGHT FRACTION QF ANTI 0X=0.0164
WEIGHT FRACTION OF POLYMER=0.7382

SPLIT,SIDE STREAM WASTE

BOX NUMBER 14

FLOWRATE= 9,658582

WEIGHT FRACTION OF C BLACK=0,0282
WEIGHT FRACTION OF ANTI 0X=0.0019
WEIGHT FRACTION OF POLYMER=(0,9700

SFLIT,FORWARD STREAM

BOX NUMBER 13

FLOWRATE= 22,5266%

WEIGHT FRACTION OF C BLACK=0.(0282
WEIGHT FRACTION OF ANTI 0X=0.0019
WEIGHT FRACTION OF FOLYMER=0.9700

MIX RECYCLE

BOX NUMBER 16 (before tear)

FLOWRATE= 27,39889

WEIGHT FRACTION OF C BLACK=0,0667
WEIGHT FRACTION OF ANTI 0X=0.0044
WEIGHT FRACTION OF POLYMER=0.9288

END
0k

27
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STEP FOUR

A further step in the evolution of the program is the incorporation of
subroutines which will permit flowsheet modification, and also changing of the
values of the process variables. To do this, three additional subroutines have
been written.

These were incorporated into the program and debugged one at a time. For
the sake of brevity however, all three are described below, and the program
incorporating them all is given.

Process Subroutine (BUILD)
On inspection of the program so far, but having these new developments in

mind, it was obvious that subroutine 'Feed' should not have been treated
differently from the process subroutines 'Mix', 'Split', etc. At the same

time it was decided to simplify the control program by making the segment in
which the flowsheet building steps occur, into a new subroutine called 'Build';
this also made easier the writing of subroutine 'Modify'.

Process Subroutine (CHANGE)
The purpose of this subroutine is to change the values of process variables

on the flowsheet existing at the time the subroutine is called. The values
involved are flowrates, compositions, splitter ratios and solids/solution ratios.

Process Subroutine (MODIFY)
This subroutine is used to modify the flowsheet existing at the time the

subroutine is called. It is in two parts. In the first part the functions of
existing boxes and the interconnections between them, are altered; this is done
by calling up the process subroutines as required. In the second part, control
is transferred to 'Build' subroutine, which carries on with the assembly of the
flowsheet from the latest value of N2.

Program FSHT4 which follows includes these further steps.



FSHT4.BAS

Details
_Jgiven on
Subroutine - separate
Build sheet
7 T
/ ! \
7 l \
/ | \\
/ I \
/ | \
/ | \
/ I \
/ | \
Subrout ne [ Subrouting Subroutine
A Teav‘-Be Tear - C
N7= 1
Subroutine No
Modify
Yes
| Subroutine Subroutine —_—
Change Tear C

29
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Subroutine Build
Used in FSHT4.BAS

w
o
Y]
=
+

Subroutine Subroutine
Feed - A Feed - B
Subroutine Subroutine
Mix - A Mix - B
Subroutine Subroutine
Split - A Split - B
Subroutine Subroutine
Set - A Set - B

Yes




Subroutine TEAR
Used in FSHT4. BAS

Enumerate
Turn Streams

Averaging

Subroutine

Mix B

Subroutine S
Split B

Subroutine

Settle B

Tear - A
Tear - B
Tear - C

31



390
400
410
420
430

REM 5k ROK 3K K R K AOKOK 30K KR K OR o 3k KK K K 3K K o K 0K K K oK K KK o 3 K K R K K ok ROk K
REM - PROGRAM FSHT4.BAS LAST STEP IN

REM - DEVELOPMENT OF A FLOWSHEET PROGRAM

REM ~ PROGRAM NOMENCLATURE The following additional

REM - variables are used:

REM - B1 - Number of entering streams, splitters,
REM settlers, or number of boxes, to be
REM changed.

REM - B2 - Box number which has to be changed or
REM modified.

REM - N6 - Duplicate of N2, used in "Modify"”

REM subroutine

REM - N7 — This variable has two values; value 0
REM indicates no changes to process

REM variables; value 1 indicates changes

REM - DETAILS OF SUBROUTINE BUILD

REM - LINES 1430-1680 The required functions ("Feed",
REM - "Mix",ete) input from the keyboard, (lines 1430,
REM — 1440); the appropriate subroutines are then

REM - called (lines 1450-1670).

REM — DETAILS OF SUBROUTINE CHANGE )

REM - LINES 3500-3710 The number of existing feed

REM —- streams whose values will be changed is entered
REM - from the keyboard; for each of these streams the
REM - designer then enters the box number and values of
REM - flowrate and composition.

REM - LINES 3720-3850 New values of ratios for

REM - splitters are similarly entered. Note that lines
REM - 3780 and 3790 correct the box number should the
REM - designer have entered that for the side stream,
REM - in error.

REM — LINES 3860-4000 In a similar manner, new values
REM - of ratios for settlers are entered.

REM - DETAILS OF SUBROUTINE MODIFY

REM — LINES 4020-4260 The number of existing boxes

REM - whose function will be changed is entered from the
REM - keyboard, and for each of these the designer then
REM - enters the box number and the required function
REM - (“"Feed”, "Mix",etc - lines 4040 to 4110). The
REM - appropriate subroutines are then called (lines
REM - 4120 to 4260).

REM - LINES 4270-4330 If new boxes are to be added to
REM - the flowsheet then the subroutine "Build"is called
REM  skokookokok iRk ko skl ok ok ok okl ok ok iokok sk 30k ok sdkoskokokok ok skokokofokok sk ok kokok ok

1000 DIM A$(20},C$(10)

1010 DIM B(20, 10),X(20,10),Y(20, 10)
1020 DIM F(20),N(20),R(20)

1030 GOSUB 1390

1040 N6=N2

1050 IF N4>0 THEN 1070

1060 GOTO 1090

1070 GOSUB 3020

1080 GOTO 1130

1090 PRINT

1100 PRINT "IF ONE OR MORE STREAMS ARE TORN, ";
1110 INPUT "TYPE Y ELSE N";B$

1120 IF B$="Y" THEN 1150

1130 GOSUB 4350

1140 GOTO 1180

1150 GOSUB 2890

1160 GOSUB 3020



GOTO 1130

N7=0

PRINT

PRINT “TO RERUN WITH DIFFERENT VALUES ~;
INPUT "TYPE Y ELSE N";B$

IF B$="Y" THEN 1240

GOTO 1250

N7=1

PRINT

INPUT "TO MODIFY FILOWSHEET TYPE Y, ELSE N";B$
IF B$="Y" THEN 1300

IF N7=1 THEN 1360

GOTO 4540

GOSUB 4020

N4=0

IF N7<>1 THEN 1350

GOSUB 3500

GOSUB 3350

GOTO 1040

GOSUB 3500

GOSUB 3350

GOTO 1050

PRINT

REM  XA0kIKKAK K K KRR KA AAK KA KKK KK AR KA KA KK AR KA A KA A AR A KK
REM - BUILD SUBROUTINE

REM — USED WHEN ASSEMBLING THE FLOWSHEET
PRINT "ENTER FEED, MIX, SPLIT, SETTLE,OR END";
INPUT B$

IF B$="FEED" THEN 1530

IF B$="MIX" THEN 1590

IF B$="SPLIT" THEN 1620

IF B$="SETTLE"” THEN 1650

IF B$="SET" THEN 1650

IF B$="END" THEN 1680

PRINT "“INPUT NOT RECOGNISED"

GOTO 1390

IF N1>0O THEN 1570

GOSUB 1700

GOSUB 1860

GOTO 1390

GOSUB 1860

GOTO 1390

GOSUB 2020

GOSUB 2160

GOTO 1390

GOSUB 2340

GOSUB 2490

GOTO 1390

GOSUB 2580

GOSUB 2770

GOTO 1390

RETURN

REM 0k Rk ok Aok AKok KRR AR KRR KK KKK KA AR KKK KoK KK AR AR KK
REM - FEED SUBROUTINE FOR FLOWRATES &

REM - COMPOSITIONS OF ENTERING STREAMS

REM — FEED, PART A XkkkiRkkAKRKKRAKAKRAKKRKAKARIKAKKKAK
PRINT “FLOWRATES & COMPOSITIONS FOR STREAMS®
PRINT “ENTERING THE SYSTEM;ENTER THE NUMBER™
PRINT “OF COMPONENTS & STICK TO THIS NUMBER"
PRINT “FOR ALIL. STREAMS (FOR SETTLING PROBLEMS USE: "
PRINT “K=1 FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID)}"

33



INPUT N1

FOR K=1 TO N1

PRINT "NAME OF COMPONENT";K;

INPUT C$(K}

NEXT K

RETURN

REM  olokaicokok 3ok Kok kAR okok ok kR ok i akoaokskokok ok sk ok 3okokokokskokokokokdokolokokok ok ok ok
REM —~ FEED, PART B scksdokioksksoiokaokkksdkoklorskorkokkkokolokkokkdokkk
N2=N2+1

N5=N2

PRINT "THIS IS FEED SUBROUTINE, BOX NUMBER™ ;N2
A$(N2)}="FEED"

PRINT "FLOWRATE";

INPUT F(NZ2}

IF F(N2)=0 THEN 2000

E3=0

FOR K=1 TO N1-1

PRINT "WT FRACTION OF ";C$(K);

INPUT X(NZ2,K)

E3=E3+X({N2,K)

NEXT K

X(N2,N1)=1-E3

RETURN

REM sokokskokokokkskdokokokskskokoksoiokoksokdook sk sokokokorok ok skotoktolodolokok kk ok ko
REM - MIX SUBROUTINE, SIMULATES MIXING OF

REM -~ OP TO 10 STREAMS CONTAINING

REM - UOP TO 10 COMPONENTS - MIX, PART A *¥kikiokioidkkddokk
N2=N2+1

N5=N2

PRINT "THIS IS MIX SUBROUTINE, BOX NUMBER";NZ
A$(N2)="MIX"

PRINT "NUMBER OF STREAMS TO BE MIXED";

INPUT N(N5}

FOR J=1 TO N(N5)

PRINT "BOX NUMBER FROM WHICH STREAM COMES™;

INPUT B(NS5,J)

NEXT J

RETURN

REM — MIX, PART B kkkkkioksokdkdkikskkkaookiokkorkkkikiokkkokkkkk
E1=0

FOR J=1 TO N(N5}

E1=E1+F(B(N5,J)})

NEXT J

FOR K=1 TO N1

E2=0

FOR J=1 TO N(N5)

E2=E2+F(B(N5, J) }*X(B(N5,J),K)

NEXT J

Y(N5,K)=E2/El

NEXT K

F(N5)=El

FOR K=1 TO N1

X(N5,K)=Y(N5,K)

NEXT K

RETURN

REM soksokokokokakokkokaiokkok ok kR okokokokdokokokokok Ak okokok Kok kK k ok ok kK sk ok Kk kK
REM - SPLIT SUBROUTINE, SIMULATES SPLITTING OF

REM — ONE STREAM INTO TWO IN A DESIGNATED RATIO

REM — SPLIT,PART A sokkkdokkiokiokkkkickokiokakorkkaokkorkkokkkokkkk
N2=N2+2

N5=N2
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PRINT "THIS IS SPLIT SUBROUTINE, BOX NUMBER";N2-1

PRINT “"THIS NUMBER ALSO DESIGNATES SIDE STREAM. “

PRINT "FORWARD STREAM DESIGNATED BOX NUMBER";N2
A$(N2-1)="SPLIT,SIDE STREAM"

A$(N2)="SPLIT, FORWARD STREAM"

PRINT "BOX NUMBER FROM WHICH STREAM COMES"™;

INPOT B(N5,1)

PRINT "SIDE STREAM/TOTAL FLOW RATIO";

INPUT R(N5)

RETURN

REM — SPLIT, PART B 3k¥kaokkkakRAOK K KKK KKK AR KK AR K KA K KA K
F(N5-1)=F(B(N5, 1) )*R(N5)

F(N5)=F(B(N5, 1))-F(N5-1)

FOR K=1 TO N1

X(N5--1,K)=X(B(N5, 1),K)

X(N5,K)=X(B(N5,1),K)

NEXT K

RETURN

REM  3kioRok K Mok 30K 3Kk ok 3 0Kk 3K 3K K KOK 0ok 3OK K KR AR KK A K K KK K KKK KKK K oK

REM - SETTLE SUBROUTINE, SIMULATES OPERATION
REM - OF A SETTLER. 1 ENTERING FLOW
REM - IS ASSUMED, CONSISTING OF 3 COMPONENTS ONLY

REM - THESE ARE NUMBERED 1 FOR SOLVENT, 2 FOR SOLUTE,
REM - 3 FOR SOLID. ZERC SOLIDS IN THE OVERFLOW

REM — IS ASSUMED - SETTLE, PART A %kxksokkksokiakkkakdokkk
N2=N2+2

N5=N2

PRINT "THIS IS SETTLE SUBROUTINE,BOX NUMBER";N2-1

PRINT "THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM. "
PRINT "UNDERFLOW STREAM IS DESIGNATED BOX NUMBER™;N2
A$(N2-1)="SETTLE, OVERFLOW"

A$(N2)="SETTLE, UNDERFLOW"

PRINT "BOX NUMBER FROM WHICH FLOW COMES";

INPUT B(N5,1)

PRINT “SOLIDS/SOLUTION RATIO FOR UNDERFLOW";

INPUT R(N5)

RETURN

TEM Ak koA Kok ok 2Kk i ok A R K Ak sk A R KKK CHOK K ook KOROIOK S i KK K K Kk ok koK K KoK oK
REM — SETTLE, PART B 3kk3¥okk3Ok kA K KK KK AR KKK K AOK K AOK K KK K Kk
F(N5)=F(B(N5, 1) )*X(B(N5, 1}, 3)%(1+1/R(N5))
F(N5-1)=F(B{N5, 1))-F(N5)

X(N5,3)=R(N5)/(1+R(N5))
X2=((X(B(N5, 1), 1)4X(B(N5, 1), 2) y*(R(N5)+1))

X(N5, 2)=X(B(N5, 1), 2) /X2

X(N5, 1)=1-X(N5, 2)-X(N5, 3)

X{N5-1, 3)=0
X{N5-1,2)=X(B(N5,1),2)/(X{B(N5,1),1)+X(B{N5,1),2))
X(N5-1,1)=1-X(N5-1,2)

RETURN

REM 55k K K K K K 0K 3 K K KK KKK 0K OK 0K K K KK KK 3K K K K KK 3K 3K KK 3K OK Kk K kK
REM - TEAR SUBROUTINE, USED WHEN STREAM DATA

REM - HAS HAD TO BE ESTIMATED -~ TEAR, PART A skkxxkkkkxk
PRINT “THIS IS TEAR SUBROUTINE"

PRINT “HOW MANY TORN STREAMS";

INPUT N4

FOR J=1 TO N4

PRINT "“BOX NUMBER WHICH TORN STREAM";J;" LEAVES";

INPUT T(J, 1)

PRINT “BOX NUMBER WHICH TORN STREAM";J;" ENTERS";

INPUT T(J,2)

REXT J



RETURN

REM KKk kkokaiskoorsk ok ok Roioiok ok kR kKR kKoK Kok ok KKK oK K KKK KA KKKk koK
REM - TEAR, PART B #kickkkiokiokdok ok kiokaiock sk ok ko dokkkokok sk 4ok k
C1=0 :

FOR L=1 TO N2

N5=L

FOR M=1 TO N4

FOR N=1 TO N(N5)

IF B(N5,N)=T(M,2) THEN 3100

GOTO 3150

F(B(N5,N})}=(F(T(M, 1}}+F(T(M,2))}/2

Ci=Cl+1

FOR P=1 TO N1
X(B(N5,N),P)=(X(T(M,1},P)+X(T(M,2),P))/2

NEXT P

NEXT N

NEXT M

NEXT L

FOR M=1 TO N4

FOR P=1 TO N1

IF X(T(M, 1),P)=0 THEN 3260

IF X(T(M,2),P)=0 THEN 3260

IF X(T(M,2),P)/X(T(M,1),P)>1.01 THEN 3290

IF X(T(M,2),P)/X(T(M,1),P)<.99 THEN 3290

IF F(T(M,2))}/F(T(M,1))>1.01 THEN 3290

IF F(T(M,2))/F(T(M,1))<.99 THEN 3290

NEXT P

NEXT M

GOTO 3320

GOSUB 3360

IF C1>50 THEN 3320

GOTO 3040

PRINT "Ci=";C1

RETORN

REM 0k kR ok ko ok ok kKRR oK kKKK KKK KKK KK KKK AK K KKK K KoKk ok oKk
REM — TEAR, PART C Hkkdokkkksiorokdck ok kK iok ko ok Kk Kok Kok ko kK
FOR L=1 TO N2

N5=L

IF A$(L)="MIX" THEN 3420

IF A$(L)="SPLIT, FORWARD STREAM" THEN 3440

1F A$(L)="SETTLE, UNDERFLOW" THEN 3460

GOTO 3470

GOSUB 2170

GOTO 3470

GOSUB 2490

GOTO 3470

GOSUB 2780

NEXT L

RETUORN

REM k0K Ok KRR KKK AR A KKK AR oK oK KKK K K KKK KA ACK KA KK
REM —~ CHANGE SUBROUTINE, USED WHEN INPUT STREAMS,
REM - SPLITTING OR SETTLING RATIOS ARE TO BE CHANGED
PRINT "THIS IS CHANGE SUBROUTINE. INPUT NUMBER OF"
PRINT “ENTERING STREAMS TO BE CHANGED";

INPUT B1

IF B1=0 THEN 3720

FOR J=1 TO B1

PRINT "BOX NUMBER OF ENTERING STREAM";

INPUT B2

IF A$(B2)="FEED" THEN 3620

PRINT “INCORRECT BOX NUMBER HAS BEEN ENTERED"
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GOTO 3570

PRINT "NEW FLOWRATE";

INPUT F(B2)

E3=0

FOR K=1 TO N1-1

PRINT "NEW WEIGHT FRACTION OF “;C$(K);
INPUT X(B2,K)

E3=E3+X(B2,K)

NEXT K

X(B2,N1)=1-E3

NEXT J

PRINT "NUMBER OF SPLITTERS TO BE CHANGED";
INPUT B1

IF B1=0 THEN 3860

FOR J=1 TO B1

PRINT "BOX NUMBER OF SPLITTER™;

INPUT B2

IF A$(B2)="SPLIT,SIDE STREAM" THEN 3820

IF A$(B2)="SPLIT,FORWARD STREAM" THEN 3830
PRINT “INCORRECT BOX NUMBER HAS BEEN ENTERED"
GOTO 3760

B2=BZ2+1

PRINT "NEW VALUE OF SIDESTREAM/TOTAL FLOW RATIO";
INPUT R(B2)

NEXT J
PRINT "NUMBER OF SETTLERS TO BE CHANGED";
INPUT B1

IF B1=0 THEN 4000
FOR J=1 TO Bl

PRINT “"BOX NUMBER OF SETTLER";

INPUT B2

IF A$(B2)="SETTLE, OVERFLOW" THEN 3960

IF A$(B2)="SETTLE, UNDERFLOW" THEN 3970
PRINT "INCORRECT BOX NUMBER HAS BEEN ENTERED"
GOTO 3900

B2-B2+1

PRINT "NEW VALUE OF SOLIDS/SOLUTION RATIO";
INPUT R(B2)

NEXT J

RETURN

RIEM koK ok ook ok i sk o sielok sl o kol K i i kol ok 3K ok ok i KRk ok ke ok ol ok ok 30k ok 3okokok skokek
REM - MODIFY SUBROUTINE, USED WHEN

REM - MODIFYING THE FLOWSHEET

PRINT "THIS IS MOD SUBROUTINE. HOW MANY"
INPUT "EXISTING BOXES TO BE ALTERED";B1
FOR J=1 TO Bl

PRINT "BOX NUMBER";

INPUT B2

N2=B2-1

PRINT "FEED, MIX,SPLIT,OR SETTLE";

INPUT B$

IF B$-"FEED" THEN 4190

IF B$="MIX" THEN 4210"

IF B$="SPLIT" THEN 4230

IF B$="SET" THEN 4250"

IF B$="SETTLE" THEN 4250

PRINT "INPUT NOT RECOGNISED"

GOTO 4100

GOSUB 1860

GOTO 4260

GOSUB 2020
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4220 GOTO 4260

4230 GOSUB 2490

4240 GOTO 4260

4250 GOSUB 2580

4260 NEXT J

4270 PRINT "IF NEW BOXES TO BE ADDED INPUT Y ELSE N“;
4280 INPUT B$

4290 IF B$="Y" THEN 4310

4300 GOTO 4330

4310 N2=N6

4320 GOSUB 1380

4330 RETURN

4340 REM A0kokokokok ook ook ok ok ok ok ok sk ok o ok ok 3ok SKokok 3Kk Kok KoK koK sk KoKk 3Kk koK ok ok sk ok koK
4350 REM - PRINT SUBROUTINE

4360 PRINT

4370 FOR J=1 TO N2

4380 PRINT A$(J)

4390 PRINT "BOX NUMBER";J

4400 IF A$(J)="SETTLE, UNDERFLOW" THEN 4430
4410 IF A$(J)="SPLIT,SIDE STREAM" THEN 4450
4420 GOTO 4460

4430 PRINT "SOLIDS/SOLUTION RATIO=";R(J)
4440 GOTO 4460

4450 PRINT "SIDE STREAM/TOTAL FLOW RATIO=";R(J)
4460 PRINT "FLOWRATE=";F(J)

4470 FOR K=1 TO N1

4480 PRINT "WEIGHT FRACTION OF " ;C$(K);"=";
4490 PRINT USING “#.####";X(J,K)

4500 NEXT K

4510 PRINT

4520 NEXT J

4530 RETURN

4540 PRINT "END"

4550 END

gExample 1.3
(a) A sand intended for concrete manufacture is washed to reduce its salt
content in a 2-stage, cross-current operation as shown in Figure 1.8.

Fresh water Frech water
250 tonnes/day 250 tonnes/day
Raw_sand
300 tonnes/
day

1st Stage

Washed

Spent Spent
Wash Wash

Figure 1.8. Two-stage cross-current sand washing operation.



300 tonnes per day of sand are washed in this way, using 250 tonnes per day
of water at each stage. The composition of the sand is given below. The
underflow leaving each stage is a slurry consisting of 66.6 wt% sand, the
remainder being dilute salt solution.

Calculate the flowrates and compositions of all streams and determine the
salt content of the washed sand on a dry basis.

(b) An improved slurry pump is available capable of handling a slurry
containing 70 wt% sand. It has also been observed that by careful operation
the water flowrate to a stage can be increased to 275 tonnes per day without
carryover of sand.

It is proposed to replace the existing pumps with the improved model, and
simultaneously to convert to countercurrent operation as shown in Figure 1.9.

Fresh water
275 tonnes/day

Raw sand
300 tonnes/day

1st Stage 2nd Stage
Washed
* mfkg Sand
Spent Pump Pump

Wash

Figure 1.9 Two-stage counter-current sand washing operation.

In this way water usage will be reduced to 275 tonnes per day total. Can
the same purity be attained for the washed sand?
Composition of Raw Sand

Water 5.0%
Salt 1.5%
Sand 93.5%

39



40

Sand Wash

water
1

@ Mix

Wash

err

Settle ‘(E)

®

1st Stage
spent wash

(::>Mix
!

Settle

Washed sand

2nd stage
spent wash

Figure 1.10 Block diagram for 2-stage cross-current washing operation.

Sand nd_st. Wash water
o | £low
-,
O | [J Lo
'
|
I |
]
Tear
(::)Mix Stream

Spent
wash

Settle <§>

Washed sand

Figure 1.11 Block diagram for 2-stage counter-current washing operation.



The question gives the slurry composition on a percentage basis; before
running the program it is necessary to convert the values given to a ratio

basis.

Underfiow composition: 66.6 wt% sand
33.4 wt% solution

Ratio sand/solution = 66.6 ~ 2.0
33.4 - :

Underflow composition: 70.0 wt% sand
30.0 wt% solution

Ratio sand/solution = 70

= = 2.33

o

Next block diagrams are drawn for the two cases (Figures 1.10 & 1.11).
The program FSHT4 is then run and the values entered, as follows:

ENTER FEED,MIX,S5PLIT,SETTLE,OR END? FEED
FLOWRATES & COMPOSITIONS FOR STREAMS
ENTERING THE SYSTEM;EMTER THE NUMBER

OF COMFONENTS & STICK TO THIS NUMEER

FOR ALL STREAMS (FOR SETTLING PROBLEMS USE:
kK={ FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID)
? 3

NAME OF COMPONENT 1 7 WATER

NAME OF COMPONENT 2 ? SALT

NAME OF COMPONENT I ? SAND

THIS IS FEED SUBROUTINE, BROX NUMERER !
FLOWRATE? 300

WY FRACTION OF WATER? .0S

WT FRACTION OF SALT? .015

ENTER FEED,MIX,SPLIT,8ETTLE,OR END? FEED
THIS I5 FEED SUBROUTINE, BOX NUMBER 2
FLOWRATE? 230

WT FRACTION OF WATER? |

WT FRACTION OF SALT? O

ENTER FEED,MIX,SPLIT,SETTLE,OR END? FEED
THIS 18 FEED SUBROUTINE, BOX NUMBER 2
FLOWRATE? 250

WT FRACTION OF WATER?

WT FRACTION OF SALT? 0

ENTER FEED,MIX,SPLIT,SETTLE,OR END? MIX
THIS IS MIX SUBROUTINE,BOX NUMBER 4
NUMBER OF STREAMS TO BE MIXED? 2

BOX NUMBER FROM WHICH STREAM COMES?
EOX NUMBER FROM WHICH STREAM COMES? 2

[y

ENTER FEED,MIX,SPLIT,S8ETTLE,OR END? SET
THIS 18 SETTLE SUBROUTINE,BOX NUMBER 5

THIS NUMBER ALS0 DESIGNATES OVERFLOW STREAM.
UNDERFLOW STREAM IS DESIGNATED BOX NUMBER &
BOX NUMBER FROM WHICH FLOW COMES? 4
SOLIDS/SOLUTION RATIO FOR UNDERFLOW? 2

41
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ENTER FEED,MIX,SPLIT,S8ETTLE,OR END? MIX
THIS IS MIX SUBRTUTINE,RBOX NUMEER 7
MUMBER OF STREAMS TO RE MIXED? 2

BOYX NUMBER FROM WHICH STREAM COMES? 3
20X NUMBER FROM WHICH STREAM COMES? &

ENTER FEED,MIX,SPLIT,BETTLE,QR END? BET
THIS 19 SETTLE SUBROUTINE,HOX NUMBER 8

THIS NUMBER ALSC DESIGNATES CVERFLOW STREAM.
UNDERFLOW STREAM IS5 DESIGNATED BOX NUMBER 9
BOX NUMBER FROM WHICH FLOW COMES? 7
SOLIDE/ES0LUTION RATIO FOR UMDERFLOW?Y 2

ENTER FEED,MIX,SFLIT,SETTLE,OR END? END

IF ONE OR MORE STREAMS ARE TORN,TYPE Y ELSE N7 N

FEED

EOX NUMBER 1
FLOWRATE= 00
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

VUV REE—
MIX

BOX NUMBER 7
FLOWRATE= 670.75
WEIGHT FRACTION OF
WEIGHT FRACTION GOF

HATER=0., 0500
SALT=0,0150
SAND=0, 7350

WATER=0.,5783
SALT=0,0035

WEIGHT FRACTION OF SAND=0,4182
FEED
BoX NUMBER,E- SETTLE,OVERFLOW 2nd Stage
FLOWRATE= Z30 BOX NUMBER 8 Spent Wash

WATER=1.0000
SALT=0,0000
BAND=0. 0000

WEIBHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

FEED

BOX NUMBER 3

FLOWRATE= 250

WEIGHT FRACTION OF WATER=1.000¢
WEIGHT FRACTION OF SALT=0.0000

WEIBHT FRACTION OF SAND=0,0000

MIX
BOX NUMBER 4
FLOWRATE= 550 ‘

WEIGHT FRACTION OF WATER=0.4818

FLOWRATE= 250

WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

WATER=0.9940
SALT=0.0060
SAND=0,0000
SETTLE,UNDERFLOW Washed Sand
BOX NUMBER 9

SOLIDS/SOLUTION RATIO= 2

FLOWRATE= 420,75

WEIBHT FRACTION OF WATER=0,3313
WEIGHT FRACTION OF SALT=0,0020
WEIGHT FRACTION OF SAND=0,b6467

COMPUTER SOLUTION, PART B:

TO RERUN WITH DIFFERENT VALUES TYPE Y ELSE N7 Y

WEIGHT FRACTION
WEIGHT FRACTION

SETTLE,OVERFLOW
BOX NUMBER 5

oF

SALT=0,0082
SAND=0.5100

1st Stage
Spent Wash

TG MODIFY FLOWSHEET TYFE Y, ELSE N? Y

THIS IS5 MOD SUBROUTINE.

HOW MANY

EXISTING BOXES TD BE ALTERED? 0
IF NEW BOXES TO BE ADDED INPUT Y ELSE N? N

THIS I8 CHANBE SUERROUTINE, INPUT NUMBER OF
ENTERING STREAMS TO BE CHANGED? 1

EDX NUMBER OF ENTERING STREAM? 3

NEW FLOWRATE? 27%

NEW WEIGHT FRACTION OF WATER?

NEW WEIGHT FRACTION DF SALT? 0

NUMBER OF SPLITTERS TO BE CHANBED? ¢
NUMBER OF SETTLERS TO BE CHANBED? 2

BOX NUMBER OF SETTLER? 8

WEIGHT FRACTION OF WATER=0.3278|NEW VALUE OF SOLIDS/SOLUTION RATIO? 2.33
WEIGHT FRACTION OF SALT=0.0056 |BDX NUMBER OF SETTLER? &

WEIGHT FRACTION OF SAND=0.6667 INEW VALUE OF SOLIDS/SOLUTION RATIO? 2.33

FLOWRATE= 129.25

WEIGHT FRACTION OF WATER=0.7833
WEIGHT FRACTION OF SALT=0.0167
WEIGHT FRACTION OF SAND=0.0000

SETTLE,UNDERFLOW

BOX NUMBER 6
SOLIDS/SOLUTION RATIO= 2
FLOWRATE= 420.73
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IF GNE OR MORE STREAMS ARE TORN,TYPE Y ELSE N7 V

WHICH TORN STREAM |

STREAM 1

THIS I5 TEAR SUBROUTINE
HOW MANY TORN STREAMS?T |
BOX NUMBER

BOX NUMBER WHICH TORN
Ci= 9

FEED

BOX NUMBER 1
FLOWRATE= 200
WEIGHT FRACTION OF
WEIGBHT FRACTION OF
WEIGHT FRACTION OF

FEED

BOX MUMBER 2
FLOWRATE= 274.9312
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

FEED

BOX NUMBER 3
FLOWRATE= 278
WEIGHT FRACTION OF
WEIGHT FRACTION COF

WEIGHT FRACTION OF

MIX

BOX NUMBER 4
FLOWRATE= 574.9024
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

SETTLE,DVERFLOW
BOX NUMBER 3
FLOWRATE= 174.0161
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

SETTLE,UNDERFLOM
BOX NUMBER &

S0LIDS/GOLUTION RATIO= 2.33

FLOWRATE= 400.8843
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

MIX

BOX NUMBER 7
FLOWRATE= 675.8843
WEIGHT FRACTION OF
WEIGHT FRACTION OF
WEIGHT FRACTION OF

WATER=0,0500
BALT=0,0150
S5AND=0.9330

LEAVES? 8
ENTERS? 2

Wash from Settler 2

(after

WATER=(.9934
SALT=0.0064
SAND=0. 0600

WATER=1.,0000
SALT=0,0000
SAND=0. 0000

WATER=0.5012
SALT=0.0109
SAND=0. 4879

WATER=0.9788

SALT=0,0212
SAND=0. 0000

WATER=0,293
SALT=0,0064
SAND=0. 6997

WATER=0.5812
SALT=0,0038
SAND=0.4150

ﬁSETTLE,UNDERFLDW
g

Tear)

Wash from Settler 2

SRS ]
SETTLE,OVERFLOW
(before tear)

BOX NUMBER 8
FLOWRATE= 275
WEIGHT FRACTION
WEIGHT FRACTION
WEIGHY FRACTION

OF WATER=0.9935
OF SALT=0.0065
OF SAND=0.0000

Washed Sand
BOX MUMBER 9

SOLIDS/SOLUTION RATIO= 2,33
FLOWRATE= 400,8863

WEIGHT FRACTION OF WATER=0,2984
WEIGHT FRACTION OF SALT=0.0019
WEIGHT FRACTION OF SAND=0,6997

[TO RERUN WITH DIFFERENT VALUES TYPE Y ELSE N? V

P

TO MODIFY FLOWSHEET TYPE Y, ELSE N? N
END
Gk



a4

Inspection of the printout shows that for the cross-current operation the
underflow composition from the second stage is:

Water 0.3313
Salt 0.0020
Sand 0.6667

1.0000

Hence for 1 kg of slurry, dry weight = 0.6687 kg and composition is:

Salt 0.0030
Sand 0.9970
1.0000

For countercurrent operation the printout shows the underflow composition

as:
Water 0.2984
Salt 0.0019
Sand 0.6997
1.0000

Hence for 1 kg of slurry, dry weight = 0.7016 kg and composition is:

Sait 0.0027
Sand 0.0073
1.0000

Countercurrent washing under the new conditions will give a slightly
improved product.
By comparison, the composition of the raw sand on a dry basis is:

Salt 0.0158
Sand 0.9842
1.0000

STEP FIVE

A further modification to the program would be the inclusion of means to

generate a 'control block' when required. Suppose for instance, in example 1.3
above that outlet composition of the sand slurry had been specified, and it was

required to determine the wash water rate. The execution of the program would

then proceed inside another iterative loop; an initial guess for flowrate would

be read in, and the calculated value of outlet compositions compared with that

specified. The value of flowrate would then be adjusted, and another iteration

performed, and so on until convergence had been achieved (1).
These and many other options are available in commercial flowsheeting
software.
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PROBLEMS - CHAPTER 1
1. Use the program to modify the solution given in example 1.3 by the
addition of a third settler.

2. A vegetable o1l is extracted from seeds by leaching with a hydrocarbon
solvent. The process is carried out batchwise using 500 kg. batches of seed
and 1000 kg. batches of solvent.

The fresh seeds contain 20 wt% oil, and 96% of their o0il content is to be
removed in the process. How may washes with fresh solvent will be required in
order to achieve this if the seed retains 0.38 kg. solvent per kg. oil-free
seed? If a countercurrent washing process is used instead, what quantity of
solvent, and what number of stages, would you recommend?

3. A baking process involves the blending of the following ingredients to
form Dry Blend A:

flour 160 kg
sugar 80 kg
salt 0.6 kg
raising agent 1.2 kg

Dried milk, eggs and fat are blended in the following quantities to form
Blend B:

dried milk 10 kg
dried eggs 10 kg
fat 40 kg

Dry Blend A is mixed with 70 kg water.
Dry Blend B is mixed with 20 kg water.

The two batches are then combined together for final mixing, and charged
into moulds for baking.

Calculate the compositions and quantities of all streams, assuming
spillage losses of 0.2% occur at each dry blending stage.

4. Write a subroutine to model a single stage flash evaporator.

Vapour
FLASH
Liquid Feed o
" Equilibrium ..
pressure p Liquid
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5. Modify the program to include the control block described above under
'Step Five'.

6. MWrite subroutines appropriate to your own line of work and incorporate
them in the program.
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Chapter 2

INTERPRETATION AND ACCESSING OF RESULTS AND PHYSICAL DATA

Mathematical methods of handling these tasks are covered in standard
mathematical and statistical text books. Some books in this area are of
particular interest to chemical engineers (1), (2), (3), (4). Computer
routines for many statistical methods are also available in the literature
(5), (6). Two examples are given below, with possible applications. In
addition, the applicability of thermodynamic methods and their use in computer
programs should not be overlooked (7); see also references with Chapter 4.

The chapter is concluded with a section on the solution of simultaneous linear
equations.

Regression Analysis

Suppose a number of sets of observational or experimental data to exist.
Each data set consists of values of a number of independent variables x; and
the corresponding value of the dependent variable y. The purpose of regression
analysis is to seek out a mathematical relationship between the dependent
variable and the independent variables. The relationship selected should be
that which predicts the value of the dependent variable with the least error.

Least Squares Polynomial Regression

The simplest form of this analysis method occurs when we consider data in
which the dependent variable y is a function of only one independent variable x.
Such data may be represented by a polynomial relationship of the form:

Y =a+bx+cex?+dx3+ ...,

For each data point exists a value of the independent variable x; Y is the
value of the dependent variable predicted by the relationship; a, b, c, etc.
are parameters whose values have to be determined by analysis of the data.

Thus if there are n data points, a polynomial relationship may be written
for each one:

Y, =a+ bx, +cx,? +dx® + ..., (2.1)

Y. =a+ bx, +cx®+dx® ...,

= 2 3
Y a+ bx,+tcx, 2 Frdx2 + ...,
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We assume that the uncertainty in x is insignificant compared with the
uncertainty in Y. There is then, a difference or error between the predicted
value Y, and the actual or measured value y, i.e. error =

Yi-y; = (@+bxp +ox?+dx? ooll) -y (2.2)

For a polynomial of any given order, the best fitting curve through the data
will be that which makes the sum of the squares of the errors a minimum. The
sum of the squares is:

%(Y; YR e (Y y)  H (Yo - ye)® o (Yo - )2 (2.3)
i=l

Before going further it is necessary to look at the order of the polynomial
employed. The simplest case would be of the employment of a polynomial of
order 1, that is, the equation of a straight line:

Y = a + bx

In some cases this may fit the data adequately, in other cases, a polynomial
of order 2, that is, the equation of a parabola may fit the data better, i.e.

Y = a + bx + cx?.

In many cases, a polynomial of still higher order may be required. To carry
out a full regression analysis, a series of polynomials of order 1, 2, 3 ...m
would each be fitted to the data. The polynomial yielding the Towest value for
the sum of the squares of the errors would be the optimum one to employ.
Theoretically the sum of the squares of the errors should be less for
successively higher order polynomials, but in practice this is not the case due
to round off errors in the computations (8).

In order to explain the method further, a second order poiynomial will be
considered. In this case we require to find values of a, b and ¢ only
(equation 2.1). These values will be the ones which make the sum of the squares
of the errors a minimum, and this will occur when:

2lzo-w] -o (2.4a)
S [z-ye] =0 (2.4b)
3 [Zti-wod -0 (2.4¢)
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The results of differentiation are:

gg =npa+tbiIx, +ciIxf = 1y (2.5a)
%E = anx; + brx] + cIN = Ixyy; (2.5b)
%% = agxi + b + cix = ixiy, (2.5¢)

If we consider the application of the method to the equation of a straight
line (2-term polynominal) then we need only include the first two of the above
equations.

Rearranging the first equation gives:

(2.6)

LY - bIXi
“n n

Substituting this value of a into the second equation and rearranging gives:

IX; Y - IXiLY;
n
- (2.7)
xi - (zx)?
n

Computer Solution of Linear Regression
It is required to write a program which, given pairs of values x;y. (where i
can be any number greater than 2) will determine the values of the coefficients

a and b in the equation:
y = a + bx

Program DATAl presented below does this, using equations 2.6 and 2.7.

The use of a straight line relationship may well be adequate to represent
physical data over a limited range; experimental data is often represented in
this way, by the choice of suitable ordinates:
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DATA1,BAS

Input

Process
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10 IDICEES 2222222322332 33332233 3382333232333 33333 33T TETLE S
20 REM - PROGRAM DATA1l.BAS

30 REM - THIS PROGRAM FITS A STRAIGHT LINE TO ANY

40 REM - GIVEN NUMBER OF X,Y PAIRS.

50 REM - PROGRAM NOMENCLATURE:

60 REM - Al - unknown a in egquation 2.6

70 REM - A% Alphanumeric input in response

!

80 REM to query

90 REM - bi - unknown b in equation 2.7

100 REM - X1,Y1 - values of the unknowns x and y

110 REM - X2,Y2 - sun of the values of X1,Y1 respectively
120 REM - X3 - values of X1 squared

130 REM - Y3 - the product xy (X1%Y1)

140 REM ~ X4,Y4 - sum of values of X3,¥Y3 respectively

150 REM kokakokokook ook K KOK KK oK 3 50K K KO K 30K 3K A K Ok K K 30K 0k ok kK kR ok K kK KoK 30K K
1000 PRINT "NUMBER OF X,Y PAIRS";

1010 INPUT N1

1020 FOR J=1 TO N1

1030 PRINT "X,Y";

1040 INPUT X1,Y1

1050 X2=X2+X1

1060 X3=X1"2

1070 X4=X4+X3

1080 Y2=Y2+Y1

1080 Y3=X1%Y1

1100 Y4=Y4+Y3

1110 REXT J

1120 B1=(Y4-X2%Y2/N1}/(X4-(X272}/N1)
1130 A1=Y2/N1-B1*xX2/N1

1140 PRINT "THE DATA CAN BE REPRESENTED BY THE EQUATION:"
1150 PRINT " Y=A+BX WHERE A=";Al;"B=";Bl
1160 X2=0

1170 X3=0

1180 X4=0

1190 ¥2=0

1200 ¥3=0

1210 Y4=0

1220 INPUT "ANOTHER? TYPE Y OR N";A$
1230 IF A$="Y" THEN 1000

1240 IF A$="N" THEN 1260

1250 GOTO 1220

1260 END

EXAMPLE 2.1
The data of Table 2-1 has been abstracted from Steam Tables. It is required
to represent it in simple mathematical form for incorporation into a computer

program.
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TABLE 2.1
Enthalpy of Enthalpy of
Temperature Saturated Liquid Saturated Vapour

0

C KJd/kg KJ/kg
20 83.9 2537.6
30 125.7 2555.7
70 293 2626.3
100 419.1 2675.8
120.2 505 2707
147.9 623 2744

Source: Reprinted with permission from Y.R. Mayhew and G.F.C. Ragers,
Thermodynam1c and Transport Properties of Fluids, S1 Units, 2nd Edition,
Basil Blackwell Oxford, U.K. 1969.

LOAD"A:DATAL

Ok

RUN

NUMBER OF X,Y PAIRS? 6

X,¥? 20,83.89

X,¥Y? 30,125.7

X,¥? 70,293

X,¥? 100,419.1

X,¥Y? 120.2,505

X,¥Y? 147.9,623

THE DATA CAN BE REPRESENTED BY THE EQUATION:
Y=A+BX WHERE A=-.9695129 B= 4.211242
ANOTHER? TYPE Y OR N? ¥

Lagrangian Interpolation Method

Much of the data used by engineers has traditionally been presented in
tabular form, and consists of a series of values of y for corresponding values
of x. Examples include tables of logarithmic and trigonometric functions,
steam tables, and tables of physical chemical data such as vapour pressure,
solubility, etc.

The use of interpolation formulae has an advantage in accuracy when using
such tables in performing manual calculations. Their use is invaluable when

that same data js to be incorporated in a computer program.
The Lagrangian method is one of several mathematical interpolation

techniques (1). The technique is employed later, in the chapter on distillation.

It is assumed that we have a number of data pairs, X1 ¥1 > Xz Y2 »
...%a ¥n. The intervals between these data points need not be regular.

We require to calculate the value of y for any given value of x between the
1imits x, and X,. Then according to the Lagrangian interpolation method, this

value of y will be:
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Y o= ya% (X = Xz) (X = X3 (X = X4) vuv. {X = Xn)
(Xl' Xz) (Xx' X3) (X:I.- XA7 veea (Xl- Xn)

+ 0 y% (X = X1) (X = X3 (X = Xu) «u.. (X = xn)
Xa= X1) (Xz= X 3) (X2= X&) ovn. (X2~ Xq)

+

+oye* (X - Xa) (X = Xp) (X = X9 ... [x = Xpq)
(Xn' xl) (Xn" Xz) (Xn' Xa) cees (Xn- xn—x)

(2.8)

Program DATAZ has been written to employ this method.

The program stores values x,, X., etc. in Matrix A,and values of y,, Y.,
etc. in Matrix B.

Values (x,- xz) etc. are evaluated and stored in Matrix M. The appropriate
values are then multiplied together to form the denominators of the above
expression, and these are stored in Matrix D. These calculations are done in
the first subroutine. See Table 2.2.

Values of (x - X,) etc. are then calculated for a given value of x for which
the value of y is required. These values of (x - x;) etc. are again stored in
Matrix M. Appropriate values are then multiplied together to give the numerator
terms of the above expression, and these are stored in Matrix N. Values of each
term in the expression are then evaluated and summed to give the required value
of y. These calculations are performed in the second subroutine.

TABLE 2.2

Values stored in Matrix M. The product of each row gives the denominator
terms in Equation 2.8. The matrix is used again in the 2nd subroutine to obtain
the numerator terms of Equation 2.8.

X1 - Xz X1 = X3 X1 = Xa X1 = Xs X1 = Xe J=1
Xz - X3 Xz = X3 Xz - Xg Xz = Xs Xz = Xg Jd=2
X3= X X3~ Xz X3~ Xg X3 - Xs X 3= Xe J=3
Xy = X2 Xy = Xz Xy - X 3 X4 = Xs X4, - Xe Jd =4
Xs = Xi Xs = Xz Xs - X3 Xs - Xg Xs - Xe J=5
K=1 K=2 K=3 K=4 K=5
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DATAZ2 .BAS

Start

Input

Subroutine

DTH

Input X

Subroutine




290

330
340
350
360
370
380
390
400
410
420
430
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1120
1140
1150
1160
1170

REM 30K 30K kR OK 30K OK K e o ok i ook o K oK 3k ik ook ok okl koo 3ok okokok Jokok ok ok
REM - PROGRAM DATAZ.BAS

REM - THIS PROGRAM PERFORMS INTERPOLATION

REM - BY THE METHOD OF LAGRANGE

REM - PROGRAM NOMENCLATURE:

REM - A(J),B(J) - Values of the variables x and y
REM - respectively

REM - A% - Alphanumeric input in response to
REM query

REM - Al — Value of x for which the

REM corresponding value of y is sought
REM - B1 - Value of y corresponding to the
REM value of x input as Al

REM - D(J) — Denominator terms in the Lagrange
REM expression

REM - M(J,K) - Factors of the numerator ternms,
REM - x~x, etce

REM - N(J) -~  Numerator terms in the Lagrange
REM expression

REM — N1 Number of data pairs

REM - PROGRAM DEbCRIPTION

REM - LINES 1000--1060 Matrices are dimensioned, values
REM - of x are stored in matrix A, and values of y are
REM - stored in matrix B

REM - L.INES 1070-1140 Using the subroutines contained
REM - in statement 1150 onwards, the value of y is

REM - calculated corresponding to the given value of x
REM - LINES 1160-1420 Values are calculated for the
REM - groups occurring in the denowminators of the terms
REM - of equation 2.8; these are then stored in matrix M
REM - These groups are then wmultiplied together to form
REM - the denominators of the terms of equation 2.8,

REM - and these are stored in matrix D

REM — LINES 1440-1760 Values are calculated for the
REM - groups occurring in the numerators of the terms in
REM - equation 2.8; these are then stored in matrix M.

REM -~ These groups are then multiplied together Lo form
REM - the numerators of the terms in equation 2.8, and
REM - these are stored in matrix N

REM - The individual terms of equation 2.8 are then
REM - evaluated and summed, giving the required
REM value of y
REM 580k 30K KO 3Ok 3 5K R K K R AR K K A R S OK R KR K A KOR 3 OK KK AR Sk 0k K 3k K Kok sk
DIM A{20),B{(20),D(20},N{(20)

DIM M{(Z20,20}

INPUT “"NUMBER OF DATA PAIRS";N1

PRINT "INPUT X,Y"

FOR J=1 TO N1

INPUT A(J),B(J)

NEXT J

GOSUB 1160

INPUOT "INPUT VALUE OF X™;Al

GOSUB 1480

PRINT "Y=";Bl

INPUT "ANOTHER VALUE? TYPE Y OR N";AS$

IF A$-"Y" THER 1080

I¥F Ag-"N" THEN 1770

GOTO 1110

FEEM sk ok ok ook siOR K s8R K K R OK 30K K R i K ROK ok 3 OK K ek K ok ok K K ok R K ok K koK Xk sk sk ok ok K
REM -~ FIRST SUBROUTINE OF LAGRANGIAN ITNTERPOLATION
FOR J=1 TG 20

55



56

1180
1180
1200
1210
1220
1230
1240
1250
1280
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
14180
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1580
1600
1610
1620
16306
1646
16590
1660
1670
1680
1680
1700
1710
1720
1730
1740
1750
1760
1770

FOR K=1 TO 20

M(J,K)}=0

NEXT K

NEXT J

REM — CALCULATES VALUES OF X1-X2 ETC & »dkdcokdokickiksiorkok
REM - STORES THEM IN MATRIX M

FOR J=1 TO N1-1

FOR K=J TO Ni-1

M(J,K)}=A(J}-A(K+1)
NEXT K

NEXT J

FOR K=1 TO Ni1-1

FOR J=K+1 TO N1

M(J,K)Y=A(J)-A(K)

NEXT J

NEXT K

REM - CALCULATES DENOMINATOR TERMS & Kkkkookskokkkok ok kokokkok
REM —~ STORES THEM IN MATRIX D

FOR J=1 TO N1

D{(J)=1

FOR K=1 TO N1-1

D{JI}=D(J)y*M(J,K)

NEXT K

NEXT J

RETURN

REM Ak ok siokokok ok sk R K KR 0K KSR HORHOK SCIOIOK K HOKOK 0K Kk sk ok okok koK koK
REM - SECOND SUBROUTINE OF

REM - LAGRANGIAN INTERPOLATION

FOR J=1 TO 20

FOR K=1 TO 20

M{J,K)=0

NEXT K

NEXT J

REM — CALCULATES VALUES OF X-X1 ETC & FkRkHockiokkkiorkk
REM - STORES THEM IN MATRIX M

FOR J=1 TO Ni--t

FOR K=-J TO N1-1

M{J,K)y=A1-A(K+1)

NEXT K

NEXT J

FOR K=1 TO N1-1

FOR J=K+1 TO N1

M{J,Ky=A1-A{K)

NEXT J

NEXT K

REM CALCULATES NUMERATOR TERMS & sokekokkekskokokaokok ok sk kokokokok
REM - STORES THEM IN MATRIX N

FOR J=1 TO N1

N{J}=1

FOR K=1 TO N1--1

N{J}=N(J)*M(J,K}

NEXT K

NEXT J

RBR1-0D

REM - EVALUATES EACH TERM & ADDS THEM AKIOKKKKKAKKKKKKKK KK
FOR J=! TO N1

Bl=B1+B(JIY*N{J)Y/D{J)

NEXT J

RETURN

BND
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EXAMPLE 2.2
Store the vapour/liquid equilibrium data of Table 2-3 using program DATA2.

TABLE 2-3
Equilibrium Data for Ethanol-Water System
at 101.325kPa (1 Atm)*
Temperature Vapour-Liquid Equilibriaf| Temperature | Vapour-Liquid Equilibria
Mass Fraction Ethanol Mass Fraction  Ethanol
C OF X y 9 OF X y
100.00 | 212 0 0 81.0|177.8 | 0.600 0.794
98.1 | 208.5| 0.020 0.192 80.1]176.2 0.700 0.822
95.2 | 203.4] 0.050 0.377 79.11174.3 | 0.800 0.858
91.8 | 197.2] 0.100 0.527 78.3|173.0 | 0.900 0.912
87.3 | 189.2| 0.200 0.656 78.2 | 172.8 | 0.940 0.942
84.7 | 184.51 0.300 0.713 78.11172.7 | 0.960 0.959
83.2 | 181.7| 0.400 0.746 78.2{172.8 | 0.980 0.978
82.0 | 179.6] 0.500 0.771 78.3(173.0 | 1.00 1.00
Source: Reprinted with permission from G.G. Brown & Others, Unit Operations,

John Wiley & Sons Inc., New York, U.S.A. Copyright 1950 (:)

Note that instead of inputting all the data to the program, (which would
of course be done if it were to be used for further computations), only 10 data
pairs have been selected. A comparison can thus be made between the given

values for the remaining data pairs, and those calculated by interpolation.

LOAD"A:DATAZ

Ok -
RUN ANOTHER VALUE? TYPE Y OR N? Y
NUMBER OF DATA PATRS? 10 INPUT VALUE OF X2 .8

INPUT X, Y Y- 8564766

2 02,.192 ANOTHER VALUE? TYPE Y OR N? ¥
% .05, .377 INPUT VALUE OF X? .94

2 1,.527 Y- .941975

2 '3, .713 ANOTIER VALUE? TYPE Y OR N? ¥
? 5. 771 INPUT VALUE OF X2 .99

@ 7. 822 Y- 9885352

¢ 9 912 ANOTIER VALUE? TYPE Y OR N? N
2 [96..959 Ok

2 98, 978 A

2 1.1

INPOT VALUE OF X2 .2

Y= . 6437698

ANOTHER VALUE? TYPE Y OR N2 Y

INPUT VALUE OF X% .4

Y- .750134

ANOTHER VALUE? TYPE Y OR N? Y

INPUT VALUE OF X? .6

Y 7945083
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Functions of Two Variables

Such often required information as values of enthalpy or density, is
frequently a function of two variables, pressure and temperature, or
concentration and temperature.

Modification of the previous program provides a method to store and
represent such data.

Let the dependent variable be x and the independent variables y and z.

By use of the subroutines already developed, we find by Lagrangian
interpolation, the value of x, at the designated value of y for every value of
z for which we have data. We thus have a number of values of x as a function
of z only. The Lagrangian subroutines are used again to obtain the value of x
at the designated value of z. This is the required value.

A(J) and B(J) are used in the subroutines as before. However, since these
are now used twice, values of X(J,K) and Y(J,K) and later Z(J) and E(J) have
to be exchanged with A(J) and B(J).

These procedures are demonstrated in program DATA3. Enthalpy data for
NaOH solutions is included with the program; this was employed during program
development.



DATA3.BAS

Read Data

Input S1

Yes >
Input Data
/
\
Input
Subroutine
1
> Subroutine
I
Process
I‘ﬁ Subroutine
1
Subroutine
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10 REM okokosoR koK ok 5ok kok 5ok ok ok K K s Ok ok kR KoOR 5 KK 30K 3K Rk K 3ok ok ok 30k sk kokokok
20 REM PROGEAM DATA3.BAS

30 REM - THIS PROGRAM PERFORMS INTERPOLATION

40 REM - BY THE METHOD OF LAGRANGE APPLIED

50 REM - TO DATA WHICH IS A FUNCTION OF 2 VARIABLES

60 REM - PROGRAM NOMENCLATURE

70 REM - A(J),B(J} - Sets of values of y and x

80 REM respectively for a particular

90 REM value of z

100 REM -~ A3 -~ Alphanumeric input in response

110 REM to query

120 REM - Al -~ Used to duplicate the value of Y1 or
130 REM Z1 for use in the second Lagrange
140 REM subroutine

150 REM - D{J) -  Denominator terms, as in DATAZ

160 REM - E(J) - 8Set of values of y, one for each
170 REM value of z for which we have data
180 REM - M(J,K} - Factors of the numerator terms, as
190 REM in DATAZ

200 REM - N(J) - Numerator terms as in DATAZ

210 REM - N1 — Number of x,y pairs for each z value
220 REM — N2 — Number of values of variable x

230 REM - X(J,K) —~ Values of the dependent variable x
240 REM - Y(J,K},Z(J,K)} - Values of the independent

250 REM - variables y and 2z

260 REM - Y1,7Z1 — Values of y and z for which the
270 REM corresponding value of x is sought

280 REM -- PROGRAM DESCRIPTION

290 REM — LINES 1340-1430 For each value of z, all the
300 REM - values of x and y are used to generate the

310 REM - denominator terms {(equation 2.8). The chosen
320 REM - value of y (Y1} is then ascribed to Al and a
330 REM — value of x (Bl) is obtained from the second
340 REM - subroutine at line 1410, for each value of =z=.
350 REM — These values are stored in matrix E (line 1420)
360 REM - LINES 1440-1580 The values of E(J} are taken
370 REM — with the values Z{(J)} for another rum through
380 REM - the Lagrange subroutines, to generate the

390 REM ~ required value of x

400 REM  scdkskokok 3 ok sk okok 3 ok ok koK sk ok ok 3ok ok 3 ok kK K ok K K ok A 3OK KOR SRR O Kk sk KKK K
1000 DIM A(10),B(10),D{(10),E(10),N(10),Z (10}

1010 DIM M(10,10),X(10,10),Y(10,10)

1020 N1=5

1030 N2=4

1040 FOR J=1 TO N2

1050 FOR K=1 TO N1

1060 READ Y(J,K)},X(J,K)

1070 NEXT K

1080 NEXT J

1090 FOR J=1 TO N2

1100 READ Z({J)

1110 NEXT J

1120 REM - ENTHALPY OF NAOH IN BTU/LB, 0-30%,40-400 DEG F
1130 DATA 40,8, 100, 68, 200, 167, 300, 268, 400, 375

1140 DATA 40,6, 100, 60, 200, 155, 300, 244, 400, 335

1150 DATA 40, 5,100, 57, 200, 144, 300, 232, 400, 322

1160 DATA 40,13, 100, 684, 200, 151, 300, 237, 400, 324

1170 DATA 0,10,20,30

1180 INPUT “TYPE 1 FOR NAOH DATA™;S1

1190 IF S1=1 THEN 1320

1200 PRINT “INPUT YOUR OWN DATA™



1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1680
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810

INPUT "HOW MANY Z VALUES";N2

PRINT “HOW MANY Y/X PAIRS FOR EACH Z VALUE";
INPUT N1

FOR J=1 TO N2

PRINT “Z(";J;")";

INPUT Z(J)

PRINT "Y/X VALUES?"

FOR K=1 TO N1

INPOT Y(J,K), X(J,K)

NEXT K

NEXT J

PRINT "INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED"
INPUT Z1,Y1

FOR G=1 TO N2

FOR H=1 TO N1

A(H)=Y(G, H)

B(H)=X(G,H)

NEXT H

GOSUB 1600

Al=Y1

GOSUB 1830

E(G)=B1

NEXT G

FOR J=1 TO 10

A(J)=Z(J)

B(J)=E(J)

NEXT J

X1=N1

N1=N2

GOSUB 1600

Al=Z1

GOSUB 1830

PRINT "“X=";B1

N1=X1

INPUT "ANOTHER X VALUE? TYPE Y OR N";A$
IF A$="Y" THEN 1320

IF A$="N" THEN 2100

GOTO 1550

REM 50K KKKk KK KKK KK K A OK A K OK KK KKK R K K A K KK A KK oK 3ok K K ok koK
REM -~ FIRST SUBROUTINE OF LAGRANGIAN INTERPOLATION
REM - CALCULATES VALUES OF X1-X2 ETC &
REM - STORES THEM IN MATRIX M

FOR J=1 TO N1-1

FOR K=J TO N1-1

M(J,Ky=A(J)-A(K+1)

NEXT K

NEXT J

FOR K=1 TO N1-1

FOR J=K+1 TO N1

M(J,K)=A(J)-A(K)

NEXT J

NEXT K

REM — CALCULATES DENOMINATOR TERMS & FKKX¥KKXK¥KKIKAKKKKK
REM - STORES THEM IN MATRIX D

FOR J=1 TO N1

D(J)=1

FOR K=1 TO Ni1-1

D(J)=D{J)*M(J,K)

NEXT K

NEXT J

RETURN
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1820 REM KKK 30K K AR HOK 3Kk KK 3 A ok K KR 3K K ok ok ok sk sk sk ok kol siololok skolok ok sk skokok ok
1830 REM -~ SECOND SUBROUTINE OF LAGRANGIAN INTERPOLATION
1840 REM ~ CALCULATES VALUES OF X-X1 ETC &

1850 REM - STORES THEM IN MATRIX M

1860 FOR J=1 TO N1l-1

1870 FOR K=J TO Ni-1

1880 M(J,K}=A1-A(K+1)

1890 NEXT K

1900 NEXT J

1910 FOR K=1 TO N1-1

1820 FOR J=K+1 TO N1

1930 M(J,K)=Al1-A(K}

1940 NEXT J

1960 NEXT K

1960 REM - CALCULATES NUMERATOR TERMS & *iokiocokkickkksokikkiokk
1970 REM - STORES THEM IN MATRIX N

1980 FOR J=1 TO N1

1890 N(J)=1

2000 FOR K~1 TO Ni-1

2010 N{J)}=N({J)*xM(J,K)

2020 NEXT K

2030 NEXT J

2040 B1=0

2050 REM - EVALUATES EACH TERM & ADDS THEM Yokaoksoksksorokksdokkk ok
2060 FOR J=1 TO N1

2070 B1-Bi+B(J)y*N(J}/D(J)

2080 NEXT J

2090 RETURM

2100 END

EXAMPLE 2.3 )
Use program DATA3 to store typical density data such as that of Table 2.4,
as a function of both temperature and concentration.

TABLE 2.4
Density of NaCl solutions

Sodium Chloride (NaC1)
% | oCc. 10°¢C. 25°¢. 40°%. 60°. | 80°. | 100°C.
1| 1.00747 | 1.00707 | 1.00409 | 0.99908 | 0.9900 | 0.9785 | 0.9651
2| 1.01509 | 1.01442 | 1.01112 | 1.00593 | .9967 | .9852 | .9719
4 | 1.03038 | 1.02920 | 1.02530 | 1.01977 | 1.0103 | .9988 | .9855
8 | 1.06121 | 1.05907 | 1.05412 | 1.04798 | 1.0381 | 1.0264 | 1.0134
12 | 1.09244 | 1.08946 | 1.08365 | 1.07699 | 1.0667 | 1.0549 | 1.0420
16 | 1.12419 | 1.12056 | 1.11401 | 1.10688 | 1.0962 | 1.0842 | 1.0713
20 | 1.15663 | 1.15254 | 1.14533 | 1.13774 | 1.1268 | 1.1146 | 1.1017
24 | 1.18999 | 1.18557 | 1.17776 | 1.16971 | 1.1584 | 1.1463 | 1.1331
26 | 1.20709 | 1.20254 | 1.19443 | 1.18614 | 1.1747 | 1.1626 | 1.1492

Source: National Research Council, International Critical Tables, McGraw Hill
Book Co, 1933.
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A portion only of the above data has been used below. A comparison can thus
be made between the remaining density values on the table, and those calculated
by the interpolation program.

LOAD"A:DATA3
Ok

RON

TYPE 1 FOR NAOH DATA? 2

INPUT YOUR OWN DATA

HOW MANY Z VALUES? 5

HOW MANY Y/X PAIRS FOR EACH Z VALUE? 4
Z( 1 3?1

Y/X VALUES®

0,1.00747
25,1.00409
60, .99

100, . 9651
(2 )? 4
/X VALUES?

0,1.03038

25,1.0253

60,1.0103

100, . 9855

( 3 )7 12
/X VALUES?

0,1.09244

25, 1.08365

60, 1. 0667

100,1.042

( 4 )2 20
/X VALUES?

0,1.156863

25,1.14533

60,1.1268

100,1.1017

Z{ 5 )? 26
Y/X VALUES?
0,1.20709

? 25,1.19443

? 60,1.1747

? 100,1.1492

INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED
? 2,10

X= 1.014241

ANOTHER X VALUE? TYPE Y OR N? 2,80
?Redo from start

ANOTIIER X VALUE? TYPE Y OR N? Y
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED
? 2,80

X= .9850922

ANOTHER X VALUE? TYPE ¥ OR N? Y
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED
? 8,25

X= 1.054119

ANOTHER X VALUE? TYPE Y OR N? Y
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED
? 186,60

X= 1.09625%

ANOTHER X VALUE? TYPE Y OR N? N
Ok

8D g W) D

G D ) ) 0

LV IRV IEEV IR Bl o BV IREE, BV IR

(]
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Solution of Simultaneous Linear Equations
This is a frequently required procedure; examples in this text include:

solution of multi-effect evaporators {(Chapter 3);
solution of finite difference equations for heat transfer (Chapters 6,
7 and 8).
The choice of solution method 1ies between the use of matrix algebra and
numerical methods involving iteration.

Solution by Matrix Algebra

This method is fully explained in numerous texts and will be only briefly
discussed here (2), (3).

Suppose that we have a set of linear algebraic equations such as the

following:
dy Xy + A32X2 *t oL, dinXp = bl.
21Xy * 822Xz t ... 8zpXy = by
(2.9)
@niXy * ApzXz * ..., @nnXn = b,

where x,, x, etc are unknown variables;
a1, 212 €tc are known constant coefficients;
b, , b, etc are known constants.

This set can be written in matrix notation as:

—~ — 4 - 8
- N alnw Xy b,
dz; azn X2 b,

Lanz ann_ BRI _bn_

In more precise matrix notation this can be expressed as:

AX=8

where A is a square matrix of order n and Band X are column vectors of order n.
The solution of this equation is:

X=A"IB

where A™! is the reciprocal of matrix A.
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The procedures for evaluating the inverse of a matrix are explained in
mathematical textbooks, and are easily applied providing that the order of the
matrix is not greater than 3 or 4. With higher orders, the difficulties in
evaluation become formidable, and it then becomes necessary to employ Gaussian
elimination (as used in Chapter 5 with the Simplex method). Nevertheless, a

program to handie matrices of high order is complex and requires considerable
storage capacity.

Consequently, micro and desk top computers do not include matrix
manipulations among their normal range of mathematical functions.
Where matrix algebra is available to the programmer, then the solution of

simultaneous equations is easy, as shown by the following simple program,
DATA4.BAS.

10 REM s o 3 oK 3 AR K o K 36 KK o oK S 3 e 3 o K oK 0K 0K AR K OK O OR SKORSKOK K K ok K K
20 REM - PROGRAM DATA4.BAS

30 REM - THIS PROGRAM SOLVES SIMULTANEOUS LINEAR EQUATIONS
40 REM - BY MATRIX ALGEBRA

50 REM - UMSUITABLE FOR USE UNLESS YOU HAVE A MATRIX

60 REM -- PROCESSOR

70 REM - LINE 1000 An arbitrary value of 20 has been set
80 REM - for the maximum number of unknowns to be handled
90 REM -~ LINES 1020 -~ 1050 Matrices are dimensioned for
100 REM - the inversion and multiplication steps

110 REM  KAK K KA K K KOk 3K KK AR AR A ROK K A OKAOK K R R IOK KKK OK K KKK K K oK KK K KK KKK
1000 DIM A(20,20)},B(20),C(20,20),T(20)

1010 INPUT “"NUMBER OF UNKNOWNS™;N

1020 MAT A=ZER(N,N)

1030 MAT B=ZER(N)

1040 MAT C=ZER(N,N)

1050 MAT T-ZER(N}

1060 PRINT “INPUT MATRIX"

1070 MAT INPUT A(N,N)

1080 PRINT "INPUT VECTOR"

1090 MAT INPUT B(N)

1100 MAT C=INV(A)

1110 MAT T=CxB

1120 MAT PRINT T

1130 END
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EXAMPLE 2.4

Use the above program to solve the following three simultaneous equations:
3%, + 8%, = 71
BXz + 3x 3= 41

Xy - b5x3= -40

The equations are first rewritten in matrix form:

X1 71
0 X2 = 41
0 -5 X3 -40

These values are then input to the program as below, the values obtained
being:

21.4706

X1

X2 0.8235

X3 12.2941

RUN
NUMBER OF UNENCWMS? 3
INPUT MATRIX
¢ 3,8,0
T 0,5,3
¢ 1,0, -8
INFUT VECTOR
? 71,41, 40
21.4706
. 8235321
12.29412
Ok

Solution by Numerical Methods
Several variations of the iterative method exist (3).

The Jacobi Method
Suppose we have n linear equations, as before. Each equation in turn is

rewritten so as to express each unknown in terms of the others.
Thus the equations of the set 2.9 are rewritten as:
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Xn
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= b, - (@32 Xo* ... . @1pXn)
all

= b2 - (a:l X1+ da3Xs3 + ... aann) (—2.10)
azz

= by - {@8;; Xat ... @nn-t Xn—y)

a
nn

The process is begun by assuming values for each of the unknowns on the RHS
the above equations. The value of zero is convenient, in which case the

first iteration yields the values of the unknowns as:

X1

= by/a11 3 X2 = ba/az2 3 Xn = ba/ann

These values are then inserted on the RHS of the equations, giving a further

set of values of x. The process is conninued until the values obtained at

successive iterations are considered to be sufficiently close.

EXAMPLE 2.5

X1

X2

X3

Solve the equations of Example 2.4 by the Jacobi method.
First we rewrite the equations as:

= 71 - 8x,
3

= 41 - 3X3

= 40 + x,
5

Inserting the value x, = X2 = x5 = 0 into the RHS of each of the above

equations, we obtain for the first iteration:

X3
X2

X3

X3

X2

X3

= 23.667
= 8.2
= 8

The second iteration yields:

= 71-8%82 _ ;g4
3
= 41 - 24 _
S
= 40 + 23.667 12.73
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The procedure is continued until successive values of the variables agree
sufficiently closely. This may take a large number of iterations. Rather than
proceed with the manual calculation, a computer calculation will be carried out
later. It may be noted here however that 25 iterations were carried out to
obtain a satisfactory result namely:

x, = 21.468
Xz = 0.823
xs = 12.293

The Gauss-Seidel Method
This is similar to the Jacobi method except the new values of the unknowns

as they are generated, are inserted into the following equation.

EXAMPLE 2.6

Solve the equations of Example 2.4 by the Gauss-Seidel method.

We use the equations as rewritten in Example 3.2 and commence with the
assumption that x, = xz = x3 = 0.

The first iteration then yields the following:

X, =71 - 8x, = 71 = 23.667
3 3

X2 =41 - 3xa = 41 = 8.2
5 5

Xs = 40 + x; = 40 + 23.667

5 £ = 12.73

The secod iteration yields:

x1=71-§*8.2 L8
X, = 41 - g* 12.73 0.562
Xs =40+ 1.8 _ g o

5

Once again, rather than proceed with the manual calculation, a computer
calculation will be carried out. This required 18 iterations to obtain a
result closely similar to that obtained by the Jacobi method in 25 iterations.
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Convergence
These iterative procedures will not converge in some cases. However,

convergence is more likely if the equations to be solved are rearranged so as
to present a strong Teading diagonal (3). That is,when the equations are
written as in equation 2.9, the largest coefficients in successive equations
occur in the a;,, &8z25 83ss... 8nn positions.

This can be done by rearranging the sequence of the equations and the
sequence of unknowns within them.

Program DATA5 which follows solves simultaneous equations by these iterative
methods.
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% Iteration

Procedure

End
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380
390
400
410
420
430
440
450
160
470
480
490
500
510
520
530
540
550
560

JREEM stk e okok R SR AR 0K OK KK S 5K K K HOR S0OK 0K KK KKK KR 30K KR R 30K 30K R kK K

REM PROGRAM DATAS.BAS

REM - SOLUTION OF UP TO 20 SIMULTANEOUS KQUATIONS

REM - BY THE ITERATIVE METHODS OF JACOBI & GAUSS-SEIDEL
REM -~ PROGRAM NOMENCLATURE:

REM - C(J) - Values of the vector (i.e. RHS of
REM equat.ions 2.9)

REM - Ci - Number of iterations

REM —~ E(J) - Values of the unknowns, evaluated
REM at each iteration

REM I1 S3kip convergence test on first

REM iteration

REM - M(J,K} - Coefficients of the eguations

REM - N1 Number of unknowns

REM - V(.J) - Values of the unknowns at the

REM previous iteration (Jacobi)}, or

REM Values of the unknowns as modified
REM at each step of the iteration

REM {(Gauss Seidel)}

REM - W(J) - Values of the unknowns at the

REM previous iteration (Gauss-—Seidel}
REM - PROGRAM DESCRIPTION

REM - LINE 1000 The arbitrary nuamber of 20 has been
REM - assumed for the maximum number of unknowns to

REM — be handled

REM - LINES 1010 - 1180 Choice of solution method is
REM -~ made, and values of the constants in the equations
REM - are entered

REM - LINES 1190 - 1470 The iteration proceeds using
REM - the form given by equation 2.10, the first assumed
REM - value for each unknown being zero. Values of
REM - unknowns calculated at the previous iteration are
REM - multiplied by the appropriate coefficient to give
REM - values of the products ax etc.. These values are
REM - summed and entered into Matrix E (lines 1240,

REM — 1260, etec); the sum of these values is then

REM -~ subtracted from the vector value and divided by
REM - the appropriate coefficient (line 1380}. This
REM - gives the new value of each unknown. If the

REM - Seidel method is being employed, this new value is
REM — immediately brought into use (line 1400). If the
REM - Jacobi method is employed, the new values are

REM ~ brought into use only after the iteration is

REM - complete (lines 1430 - 1450)

REM — LINES 1480 - 1660 A count is kept of the running
REM - total of iterations. If this number reaches

REM - 100, the program is terminated, the assumption
REM - being that convergence towards the correct

REM - solution is not occurring (lines 1480 -~ 1510}).

REM - At each iteration new values of the unknowns are
REM - compared with previous values; the program

REM - terminates 1f these differ only within the set
REM - limits (lines 1520 - 1580). Finally, the

REM - solution and the number of iterations taken, is
REM - printed (lines 1620 - 1660).

REM kR ok oK 3K K K 30K K K 3K R K KK K K 3K 3K K K K 3K 3 K K 3 KK 3K K K ok 3 Kok ok o ok K ok ok ok ok

1000 DIM M(20,20),C(20),E(20}),V(20),W(20)

1010 PRINT “INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL"
1020 INPOT M$

1030 IF M$="J" THEN 1060

1040 IF M$="GS" THEN 1060

71
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1050 GOTO 1010

1060 INPUT "NUMBER OF UNKNOWNS" ;N1
1070 FOR J=1 TO N1

1080 PRINT "COEFFICIENTS OF EQUATION “;J
1080 FOR K=1 TO N1-1

1100 INPUT;M(J,K)

1110 NEXT K

1120 INPUT M(J,N1)

1130 NEXT J

1140 PRINT "INPUT VECTOR TERMS™
1156 FOR J=1 TO N1-1

1160 INPUT;C(J)

1170 NEXT J

1180 INPUT C(N1)

1190 REM - ITERATION SEGMENT skikoksokoror dokkor ok sdokrkskoksokokkokokskokk
1200 FOR J=1 TO N1

1210 1IF M(J,J)=0 THEN 1410

1220 IF J=1 THEN 1280

1230 IF J=2 THEN 1340

1240 E(J)=M(J, 1)}%*V(1)

1250 FOR K=2 TO J-1

1260 E(J)=E(J)+M({J,K)}XV(K}

1270 NEXT K

1280 GOTO 1350

1290 E(1)=M(1,2)xV(2)

1300 FOR K=3 TO N1

1310 E(1)y=E(1)+M{1,K)*V(K)

1320 NEXT K

1330 GOTO 1380

1340 E(2)=M(2, 1)¥V(1)

1350 FOR K=J+1 TO N1

1360 T(J)=E{J)+M({(J,K}*V(K}

1370 NEXT K

1380 E{J;=(C(I)-B{J})y/M(J,J}

1390 TF M$="J" THEN 1410

1400 V(Ji=E{J}

1410 NEXT J

1420 IF M$-"G5" THER 1480

1430 FOR J=1 TO N1

1440 V(J)=E(J)

1450 REXT J

1460 REM - NOMBER OF ITERATIONS AND ckiiokkkokiokiokokksorcksokkokkok
1470 REM - TEST FOR CONVERGENCE ¥¥30KKHOKKAK KKK KKK K KKK KK KK KA K
1480 C1-Cl+1

1490 I¥ C1<100 THEN 1520

1500 PRINT NG CONVERGENCE™

1510 GOTO 1620

1520 1F 110 THEN 1600

1530 FOR J=1 TO Nl

1540 IF W({J}=0 THEN 1580

1550 IF V(J)/W{J)<1.0001 THEN 1570
1560 GOTO 1880

1570 IF V(J)/W(J)>.9999 THEN 1620
1580 W{J)=V(J)

1580 NEXT J

1600 I1=11+1

1610 GOTO 1200

1620 PRINT "NUMBER OF ITERATIONS:=";Cl
1630 FOR J=1 TO N1

1640 PRINT "V(";J3; 7"y ";V{J)}

1650 NEXT J



1660 END

LOAD"A:DATAS

Ok

RUN

INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL
?Jd

NUMBER OF UNKNOWNS? 3
COEFFICIENTS OF EQUATION 1
? 3728?20

COEFFICIENTS OF EQUATION 2
? 0? 57 3

COEFFICIENTS OF EQUATION 3
? 12 0?7 -5

INPUT VECTOR TERMS

? 7127 417 -40

NUMBER OF ITERATIONS= 25

V{ 1 )= 21.47083

V{ 2 )= .8243408

V{ 3 )= 12.29365

Ok

RUN

INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL
? GS

NUMBER OF UNKNOWNS? 3

COEFFICIENTS OF EQUATION

? 3?2 82 0

COEFFICIENTS OF EQUATION
? 0? 57 3

COEFFICIENTS OF EQUATION 3
? 12 0? -5

INPOT VECTOR TERMS

? 712 412 -40

NUMBER OF ITERATIONS= 18
V(1 )= 21.46843

V{ 2 )= .8235001

V( 3 )= 12.29368

Ok

N
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The Method of Residuals
This method was developed and widely used before the advent of computers,

as a manual solution method. The technique was known as 'Relaxation' and is
more fully described, with an example, in Chapter 7(9).

The equations are arranged with all terms on the L.H.S. Then if correct
values of the unknowns are substituted, the sum of these terms will be zero
for each equation. Should incorrect values have been chosen, then the terms
will not add to zero; this non-zero sum is referred to as a residual.

Thus equations 3.1 are rewritten as:

A;1X, t azaXe t .... @;0Xn - by, =Ry
21Xyt @.X: t .... @zpXp - b = R;
AaXy tanzXz t .... @nnXn - bn = Rn

where R,, R, etc are the residuals.
The procedure involves progressive alteration of the variables so as to
reduce all the residuals to acceptably small values.

PROBLEMS - CHAPTER 2
1. The Wilson procedure for determination of film heat transfer coefficients
for fluid flow inside a pipe is based upon two assumptions (10), (11).

a. The outside film coefficient is assumed to be constant, (as for
instance if the coefficient is large and relatively invariant, as with
condensing steam).

b. Physical properties of the fluid in the tube do not vary appreciably
at the test conditions.

In these circumstances, for a series of tests in a given apparatus, the
relationships involved can be reduced to the following simple form:
1 1

U= Kthaeee

where U = overall coefficient of heat transfer;
K = constant;
h, = value of inside film heat transfer coefficient at unit fluid velocity;
V = fluid velocity.

Use the linear regression program to deduce h; and K from the following
data:
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U fluid velocity
W/m3K m/s
1845 0.899
2073 1.256
2271 2.060
1692 0.872
2725 2.774

2. Rearrange the following set of simultaneous equations so as to provide a
strong leading diagonal, then solve them using the program, by the Gauss-Seidel
method:

2a+b+c+8d+9% = 25
a - be = 8
4b - 3c + 3.1d = 0
2.5b + d + 4e = -18
a-b+4c = 4.6

Can you modify the program to carry out this rearrangement for you?

3. Below is a table of distribution ratio or K values. Use the interpolation
program DATA3.

a. to store K values for CHjover the entire range of temperatures and pressures
listed;

b. to store K values for all 9 paraffins listed, over the entire range of
temperatures, at a pressure of 14.7 psia.

VOLATILITY EQUILIBRIUM DISTRIBUTION
RATIOS, K = y/x FOR IDEAL SOLUTIONS

4.4 37.8 93.3 148.9 204.4 260 ¢
40° 100° 200° 300° 400 500° Of

Pressure = 14.7 psia (1.01 x 10° N/m?)

CH., 214 252 276 286 291 296

C2He 22.5 38.5 69.0 94.0 110 124

C.H, 4,95 | 10.0 25.0 41.0 56.0 71.0
i-CoHyo 1.83 4.6 13.7 25.0 38.5 52.0
nCiHLe 1.19 3.27 10.4 20.5 32.5 46.0
i-CsHyz 0.41 1.40 5.60 12.2 21.8 32.0
n-CsHyz 0.30 1.02 4.26 7.15 14.2 28.3
n-CeHy . 0.091| 0.34 1.89 6.00 12.0 19.6
n-C,H.e 0.028] 0.112 0.82 3.23 7.5 13.4
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Pressure = 50 psia (3.45 x 10° N/m?)
CHa 64.3 | 76.4 83.8 87.0 89.0 89.5
CoHe 6.3 11.4 21.0 28.5 34.4 39.0
CsHe 1.5 3.15 7.85 13.1 17.8 22.3
r=C,Hio 0.59 1.45 4.25 8.1 12.0 16.0
n-C,Hyio 0.40 1.03 3.24 6.7 10.4 13.9
i~CsHyz 0.14 0.43 1.70 4.05 6.75 9.8
nCsHyz 0.104 0.322 1.39 3.44 5.85 8.8
n-CeHyy 0.034 0.113 0.605 1.93 3.8 6.0
n-C,H 6 0.011 0.0395 0.27 1.04 2.46 4.3
Pressure = 100 psia (6.9 x 10°N/m?)
CH. 32.0 37.8 41.8 43.9 45.0 45.5
C,H¢ 3.4 5.8 10.6 14.8 18.0 20.4
CsHe 0.795 1.70 4,17 6.87 9.4 11.8
C,Hio 0.31 0.76 2.30 4.35 6.50 8.6
nCLHio 0.217 0.545 1.77 3.5 5.55 7.4
€5ty 0.08 0.235 0.94 2.24 3.74 5.4
nC.H,» 0.058 0.172 0.745 1.89 3.23 4.8
nCeHya 0.0197 0.062 0.327 1.05 2.08 3.3
nCrH e 0.0067 0.022 0.143 0.575 1.38 2.25

Source: Reprinted with permission from G.G. Brown & Others, Unit Operations,
John Wiley & Sons Inc., Copyright 1950 (c)

4, Write a program which will store the temperature data of Table 2.2, in
addition to the equilibrium values.
5. Write a program applying the least squares method to a polynomial of three

terms.

REFERENCES

1 H.S. Mickley, T.K. Sherwood, C.E. Reed, Applied Mathematics in Chemical
Engineering, McGraw Hill Book Co., New York, 1957

2 V.G. Jenson, G.V. Jeffreys, Mathematical Methods in Chemical Engineering,
Academic Press, London, 1963

3 S.F. Hancock, Mathematics for Engineers, Macdonald & Evans, Plymouth, U.K.,
1979

4 B.H. Chirgwin & C. Plumpton, A Course of Mathematics for Engineers and
Scientists, Vol. 2., Pergamon Press, Oxford, 1978

5 J.R.F. Alonso, SIMPLE, Basic Programs for Business Applications, Prentice Hall
Inc., New Jersey, 1981

6 L. Poole & Others, Some Common BASIC Programs, Osborne/McGraw Hill, 1982

7 M.E. Leesley, Editor, Computer-aided Process Plant Design, Gulf Publishing
Co., Houston, Texas, 1982.

8 B.E. Gillett, Introduction to Operations Research; a computer oriented
Algorithmic approach, McGraw Hill, New York, 1976

9 G.M, Dusinberre, Heat Transfer Calculations by Finite Differences,
International Textbook Co., Scranton Pa, 1961

10 Transactions of the American Society of Mechanical Engineers, 37,47 1915

11 J.M. Coulson, J.F. Richardson & Others, Chemical Engineering, Vol. 1,
3rd Edition, Pergamon Press, Oxford, 1978



71

Chapter 3

SOLUTION OF MULTIPLE EFFECT EVAPORATOR PROBLEMS

The computer solution to such problems can follow exactly the usual manual
method, and involves solution of simultaneous equations, coupled with an
iterative procedure (1), (2), (3), (4).

Assumptions: The method to be described rests upon the following
assumptions:

all effects are of the same area;
heat losses are negligible;
no carry over of liquid into the vapour phase occurs.

In the example which follows, further simplifications are made:

boiling point elevations are ignored;
only forward feed systems are considered;
thermal recompression is not included.

Obviously, none of these assumptions are fundamental, and they can be omitted
if desired. Figure 3.1 shows the arrangement and nomenclature for a forward
feed system. Details of specific evaporation problems can be found in
specialist texts (5), (6) (7).

Procedure: The following values must be known or calculable:

overall heat transfer coefficient in each effect;

temperature of the heating medium;

pressure and hence temperature of saturated vapour from the last
effect (presumed to be governed by conditions at the condenser);

feed flowrate, temperature and concentration;

desired product concentration.

Obviously, enthalpy data and boiling point elevation data (if applicable)
must also be employed. The calculation procedure then involves the following
steps:

a. For n effects, product flowrate and total evaporation are calculated from
a mass balance:

FXp = LaXg (3.1)
Knowing x, , product flowrate L, can be calculated .

F=Ln+Vy+V,.... Vn (3.2)

o
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Where boiling point rises and enthalpies, dependent on concentration as
well as temperature, have to be employed, it is necessary to determine the
concentration in each effect. This can be done approximately at this stage,
by making the further assumption of equal evaporation in each effect.

In this case

V., = Vo= ... Y,

Vo + WV, + ... Vg (3.3)
n

F =V, + L, Hencel, is obtained
Fxg= L, X, Hence x, is obtained, and so on for each effect.

b. Initially, the temperature driving force in each effect is evaluated by
sharing the overall difference available, amongst the effects in proportion to
the individual thermal resistances. Overalil available temperature difference,

AToa= Tg - T, - Z(AT)g
(3.4)
where (AT)g = boiling point rise in effect

Ts= temperature of the heating medium

Tn = temperature in the final effect. Then temperature driving force in the
first effect,
AT, = ATea* 1/U, (3.5)

1/U, + 1/U; + ... 1/Us

where U,, U, , etc. are overall heat transfer coefficients in effects 1, 2, etc.
The values of AT, etc. and the consequent effect temperatures are adjusted at
the second and subsequent iterations.

c. Evaporation rate from each effect is obtained from heat and material
balances. An equation can be written for each effect and these simultaneous
equations can be solved for the unknowns.

d. Knowing the vapourisation rates, heat loads can now be calculated for each
effect, and the required heat transfer areas A,, A,, etc, calculated from the
rate equation q = UAAT.

e. Assuming that effects of equal area are required, (as mentioned before),
then the mean area is calculated, and values of temperature driving force in
each effect are adjusted:

Am= AL+ A, + .... Ay (3.6)
n

ATh = AT, x A/An (3.7)

AT, etc.
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f. The new AT values are again adjusted so that their sum =
Te - T - z{aT)g i.e.

AT = ATD % (Tg- T, - z(AT)) (3.8)
AT’

g. From the new AT values new effect temperatures are obtained and fresh
calculation of evaporation from each effect is made (step c).

If necessary, new boiling point rise values can be incorporated. Steps c.
to f. are repeated until the effect areas are the same within suitable Timits.

MANUAL SOLUTION OF A MULTI EFFECT EVAPORATION PROBLEM

EXAMPLE 3.1
Use the method outlined above to solve the following problem:

A solution with a negligible boiling-point rise is evaporated in a triple-
effect evaporator, which it enters at 30°C. Saturated steam at 121.8°C (395K)
enters the calandria of the first effect. The pressure of the vapor in the
last effect is 26 Kpa. 6 Kg/s of solution containing 10% solids enter the
system. The product leaves the last effect containing 30% solids. The heat
transfer coefficients are U, = 3000, U, = 2000, Us = 1500W/m*K.

Assuming a forward feed system, with effects of equal area, calculate the
following:

the temperature in each effect;
the vapourisation from each effect;
the area required in each effect.

Sojution
From steam tables, the temperature in the last effect is found to be 65.9°C.
The temperature driving force available therefore =

Tg - T, (since there are no BPt rises), = 121.8 - 65.9 = 55.9°C = Ao
This is apportioned between the effects as follows:

AT, = AT, * 1/Uy (equation 3.5)
/U, + /U, + 1/Us

AT, = 55.9 % 1/3000 - 12.4%
173000 + 1/2000 + 175000 :



81

1/2000

- 0]
AT, = 55.9 % 773666 + 172000 * /1500 = 18:6°C

Similariy:
AT, = 55.9 - 12.4 - 18.6 = 24.9°C.
Hence, the effect temperatures are:

121.8 - 12.4 = 109.4°C.
2nd effect temperature = 109.4 - 18.6 = 90.8°C.
3rd effect temperature = 65.90as already determined.

1st effect temperature

By an overall material balance, the weight of product and the evaporation

effected are calculated:

FXF = Lnxn

6 % 0.1 = Ln % 0.3. Hence weight of product = %;% = 2.0 Kg/s.

Total evaporation = 6.0 - 2.0 = 4.0 Kg/s.

Evaporation and heat load in each effect are now calculated using heat and
material balances as follows:

1st effect
Sxg + Fhg = Lihy+ ViH, but (3.9)
F=V,+L, .. L, = F-V,

values of enthalpies obtained from steam tables are:

feed liquid at 30°C, he = 125.7KJ/kg;
liquid at 109.4°C, h. = 458.4KJ/kg;
vapour at 109.4°c, Hy = 2690KJ/kg;
latent heat heating steam, s = 2198%J/kg;

21985 + 6 % 125.7 = (6-V.) % 458.4 + V, x 2690
21985 + 6 % (125.7-454.3) = V(2690 - 458.4)

2198S - 1996 = 2232 V, (3.9a)
znd effect
Vi (Hi- hy) + L;hy = Loh, + V,H, but (3.10)

Ly = Vot Lo Lo=L, -V, =F -y, -V,

values of enthalpies obtained from steam tables are:
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380.0KJ/kg;
2661KJ/kg.

liquid at 90.8°C, h
vapour at 90.8°C, H

2

n

2

Vi(H,= hy) + (F -V, )hy = (F -V, - Va)ha + VoH,
Vo(Hi- 2hy + hp) + F (ha= h2) = V,(H.~ h2)
V.(2690 - 2 x 458.4 + 380) + 6 (458.4 - 380) =
Va(

1

2(2661 - 380)
. 2153V, + 470.4 = 2281 V, (3.10a)
3rd effect
Va(H2- hz) + Loh, = Lshs + V3Hs (3.11)

Lo =Vs+Ls .. Ls= L -Vy =
F-V, -V, -V, but

V, + V, + V, = 4kg/s as calculated above and
L, = 2kg/s as calculated above.

values of enthalpies obtained from steam tables are:

n

276KJ/kg;
2619KJ/kg.

liquid at 65°C, hs
vapour at 65°C, Hs

Yo Va(Hz- hy) + (6 - Vo - Va)he = 2hy + (4 -V, - Vy)H,

Vi(Hs- ha) + Vy (Hp- 2h, + Hy) =

2hs + 4Hs - 6h,

V.(2619 - 280) + V, (2661 - 2x380 + 2619) =

2 % 276 + 4%2619 - 6x380

2239V, + 4520V, = 8748 (3.11a)
. 2153V, = 8412 - 4346V,

Substituting into equations 3.10a, hence

Vo = 8412 + 470.4 _ 4 34 kg/s hence

4346 + 2281
Vo= 8412 - gfgg x 1.3 202 kg/s and by difference

Vs= 4 - 2,542 = 1.458 kg/s. From equation 3.9a

S = 2232 x 1.202 + 1996 _
5798 = 2.129 kg/s

Heat loads and required areas in each effect are now readily calculable:

1st effect heat load = Sks = (3.12)
2.129 % 2198 = 4.68 % 10% KJ/s
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required area =

4.68 x 10 _ 2
3000 % 12,4 - 126M

2nd effect head load = V, (H, - hy) =
1.202 (2690 - 458.4) = 2.682 x 10° KJ/s
required area =

2.682 % 10° _ 2
2000 % 18,6 - /2-Im

3rd effect head load = V., (H, - h;) =
1.34 (2661 - 330) = 3.05 x 10° KJ/s
required area =

3.05 % 10° _ 2
1500 % 24,9 ~ 81.6m

_ 126 + 72.1+ 81.6

Am_ 3 =93-2m2

Corrected values of driving forces and temperatures in the affects are:

- 126 _ 15.7°

AT, = 12.4 % 555 = 16.7
3 72.4 _ 4 40

ATz = 18.6 % 52 = 14.4
81.6 0

AT, = 24.9 % 2329 = 21.8
B2 g

The calculation is now repeated using the following values adjusted to give
AT4q= 55.9°.

AT, = 17.6° T, = 104.2°
AT, = 15.2° T, = 89.0°
AT, = 23.7° T, = 65.9°

The remainder of the calculation is left as an exercise for the reader; the
result may be checked by comparison with the computer calculation described
next.

COMPUTER SOLUTION OF MULTI-EFFECT EVAPORATOR PROBLEMS

Program EVAP1 which follows, is based on the assumptions which have already
been stated. It is capable of handling any number of effects, the simultaneous
equations generated being solved by either matrix algebra, or Seidel iteration.

The equations for the effects are dealt with below:

First effect

FhF + S)\! = V,,Hx + L1h1
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Since L, = F - V, this equation can be rearranged as:
FF(h -hy) = - %As + V, (Hi- hy) (3.15)

Intermediate effect

L,hy, + V, (H1 - h1) = V,Hz + Lzh.
Since L, = L, - V. = F -V, -V, the equation can be rearranged as:
F (hl - hz) =V, (2h1 - H, - hz) + ¥V, (Hz - hz) (3.163)

Similar heat and mass balances lead to further equations for additional
intermediate effects:

Third effect

F(hs - hs) =V, (hy = hs) +V, (2h, - Hy - hy) + Vs (Hs - hs) (3.16b)
Fourth effect

F(hs - hy) =V (hsa = ha) + V, (hs - hy)
+ Vs (2hs = Hs = h,}) + V, (H, - hy) (3.16¢)

Since enthalpy values are known, the only unknowns in these equations are
S; Vy 3 Vo etc.
Table 3.1 shows these equations arranged in matrix form.

Final effect
Suppose that Effect 2 is the last; then using xp to denote product
concentration,

Fxg = L2xp. By a heat balance, as before
Lihy +# Vi (Hy - hy) = VoHe + Lohe. But

"

L, = Fxg/xp and
Vo =Ly =Lz =F - Vi - FXg/%p
! (F‘Vz)h1 +Vy (Hy - hy) = (F -V, - FXF/XP) Ho + F xg  he

Xp °
Rearranging:
F[hl-H2+§F_(H2—h2)] = V,(2h, - H, - Hy) (3.17a)
Xp
Suppose that Effect 3 is the last; then
Fxg = LaXp
Similar arguments to those above then lead to the equation:
F[ ha-Hetxg (Hs-ha)] = Vilha = Hy) + Va(2hs - Ha - Ha) (3.17b)
Xp

Table 3.2 tabulates in matrix form the various equations that may arise from
the heat balance around the final effect. The appropriate values must be

incorporated in the nth row of Table 3.1.
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EVAP1.BAS

Start

Input

)

Input

Process

Process

NO
Yes

Seidel Matrix
subroutine subroutine

]

Process

Process




REM

REM
REM
RE)

REM
REM

fafu

REM
REM

K34 KKK KKK KR K K K K KKK K KKK K KKK KK 3 K R KOK K oK K ok ok Ok K K KK KKK R KK

PROGRAM EVAP1.BAS THIS PROGRAM SOLVES
FORWARD FEED MULTI-EFFECT EVAPORATOR PROBLEMS
UP TO 10 EFFECTS

PROGRAM NOMENCLATURE

A(d) - Heat transfer area, Jth effect, sg m

B(J) - Intermediate values used in
correction of temperature differences

D(J) - Temperature difference across effect,
Deg C

H{(I ~ Heat load across effect, KJ/s

L{J) - Liquid flowrate from effect, kg/s

P{J) - Vectors for matrix calculations

R{J) - Thermal resistance, used in
calculation of D{J) values

T(J} - Temperature in effect, DEG C

U(Jdy ~ Overall heat transfer coefficient
in effect, W/sq m,K

V{J) - Vapour rate from effect, kg/s

W(J) - Previously calculated values of V(J)

X(J) - Vapour enthalpy. KJ/kg

Y(.J) - Liquid enthalpy, KJ/kg

M(J,Jd) - Matrix of enthalpy values

N{J,d - Inverse matrix of enthalpy values

PROGRAM DESCRIPTION

LINES 1000 - 1320 Array dimensions are declared,
and choice of solution method is made. The
relevant data concerning flows, temperatures, etc,
are then input to the program

LINES 1330 - 1450 Driving forces and
temperatures in the effects are calculated

using equations 3.4 and 3.5

LINES 1220, 14680 - 1500 The properties of pure
water have been assumed for the process fluid.
Enthalpies of saturated liquid and vapour, taken
from steam tables over a limited temperature range
have been fitted to linear equatbtions using
regression analysis {(see example 2.1)

LINES 151¢ - 1580 Calculations are performed for
a single effect system, using equations 3.1,3.2,
3.8, and 3.11

- LINEG 1370 - 1600, 2140 - 2560, and 28580 - 2860

For two or more effects it is necessary to write
general equationsg for the first, intermediate, and
final effects. The simultaneous linear equations
generated are then solved by sither matrix algebra
or by Beidel iteration. Subroutines to do this
are accessed at lines 1570 - 1600

SUBROUTINE FOR SOLUTION OF VAPOUR QUANTITIES BY
MATRIX ALGERRA LINE3 2140 - 2560

Lines 2160 to 2180 esztablish the required matrix
dimensions; lines 2200 to 2410 ascribe the matrix
values from Tables 3.1 and 3.2 to the matrix M;
lines 2420 to 2470 ascribe the vector values from
Tables 3.1 and 3.2 to the matrix P. Solution of
the unknowns (steam supply rate 23, wvapourisation
from each effect V(J)) is obtained by
multiplication of the inverse matrix by the vector
at linez 2450 and 2490

SUBROUTINE FOR SOLUTION OF VAPOUR QUANTITIES BY
SEIDEL ITERATION LINES 2580 - 2980

87
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620
630
6840
650
860
670
680
890
700
710
720
730
740
750
760
770
780
790
800
810
820
330
840
850
860
570
380
890
300
910
920
930
540
L}"U
960
970
980
9g80

1000

010
1020
1030
1040

REM - First a set of duplicate values of V{(J)} are

REM - established as W(J) (lines 2600 to 28680). If a
REM - double effect solution is required, then direct
REM - solution is possible, without iteration. This
REM - is done using equation 3.17a (lines 2840 and 2850)
REM - and eguation 3.1%5 (line 2880). Determination of
REM - wvapour from the last effect is not carried ocut

REM - within the subroutine.
REM - For cases involving more than two effects, first
REM - effect vapour is calculated using equation 3.16a

REM - (lines 2680 and 2690). Vapour rates from
REM - intermediate effects are calculated using
REM - equations 3.16b,c etec {lines 2710 to 2770).

REM - Vapour from the last but one effect is calculated
REM - using equaticns 3.17b,c ete (lines 2780 to 2830).
REM - Bteam rate is then calculated, as for the double
REM - effect case, at line 2860. A test is then made
REM - to determine whether the values of V(J) and

REM ~ W(J) agree within preset limits. If they do

REM - not, another iteration is carried out (lines

REM - 2920 to 2950)

REM - LINES 1610 - 1710 Vapour flowrate from the last
REM - effect is calculated, then for each effect, liguor
REM - flowrate, heat load, and reguired area for heat
REM - transfer, are calculated.

REM -~ LINEZ 1720 ~ 1870 Values calculated for each

REM ~ effect are printed.

REM - LINEZ 1880 - 2080 If inspection of the areas

REM - calculasted for the effects shows these to differ

REM -~ beyond accepbable limits, then the calculation
REM - ia repeated. Lines 1830 to 2040 recalculate
REM - temperature driving forces using equaticons 3.8

REM - and 3.7;lines 2050 to 2070 correct these new

RENM - valuss using equation 3.8

REM - LINES 2080 - 2120 Provide an opportunity to

REM -~ rerun using a different number of effects and/or

REM - different heat trancfer coefficients.

T A oK o ok s ok ok oA ok KRS SRR K oK SRR K K KR SRR KA AR KKK O CK
DIM  A(C10),B(10),D(10),B{(10),L{10},M{(10,10;,N(10,10}
DIM P{1Gy, R{10), T(10}, U(lO\ V(lO),A(1O) Y{10}

PRINT "SIMULTANEOUS EQUATIONS GENERATED WITHIN THE"
FPRINT "PROGRAM ARE SOLVED BY A-MATRIX ALGEBRA, "
INPUT "B-3EIDEL ITERATION. INPUT A OR B";C$

10650 IF Cp="A" THEN 1080

10680 IF C$="B" THEN 1090

1070 GOTO 1020

10680 PRINT

1080 PRINT "FORWARD FEED UP TO 10 EFFECTS
1100 PRINT "STEAM TEMP,.DEG C7;

O InrUl C
™
1

O INPOT 51
'O PRINT "INLET LIQUOR TEMP, DEG C7;
GOINPUOT T

O PRINT "INLET LIGQUCR CONC,WT FRACH";
o INPUT Cl

LOWRATE, KG/S";

LIGUOR TEME, DEG C;

LIQUOR CONC,WT FRACN”
TaErTT

3
VTENT STEAM 30K K R HORHOIORHOK S SR KK A KKK kK



123¢
1240
1250
1260
127

1280
1296
130¢
1310
1320
1330
1340
1380
1360
1370
1380
1380
1460
141G
1420
1430
1440
1450
1460
1470
14890
1490
1500
1510
1820
1830
1540
1580
1560
1570
1580
1580
1600
1610
1620
1830
1640
1650
1660
1670
1680
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SZ=2881.74-3.16338%51

PRINT

PRINT "NUMBER OF EFFECTS"

INPUT N1

IF M1>1C THEN 1240

PRINT "U VALUES,W/3@ M,DEG K"

FOR J=1 TO N1

FPRINT "U(";Jd;")"

INPUT U(J}

NEXT J

REM — WORK GUT TEMPRE DIFFERENCES 0K R OKHOK KKK KKK KK MK 30K
REM - IN INYERSE PROPORTION TO U VALUES
El=0

FOR J=1 TO N1

R1=R1+1/0(J)

NEXT J

FOR J=1 TC N1

D(Jy=(81-T2} /{U{J¥*R1;

NEXT J

T(1)=81-D(1}

FOR J=2 TO N1

T(J)y=T(J-1-D(J)

NEXT J

REM-SATURATED VAPOUR AND LIQUID ENTHALPIES Hokoickoksksorokskk
FOR J=1 TO N1

X(J)y=2508.3+1.63539%T(J}
Y{(J)y=4.21119%T(J)-.96387

NEXT J

IF Ni1>1 THEN 1570

V{1)=F1x(1-C1/C2)
H{1y=V(1)*X(1)y+F1x(Y(1)*C1/C2-4.1888%T(1})
A(1y=H{(1)*1000/(U(1)%xD(1})

53=H(1)/52

GOTC 1720

IF C%="B" THEN 1600

GOSUB 2140

GOTO 18610

GOSUB 2580

J=N1

V(J)=F1-Vi-F1xC1/C2

L{1)=F1-V(1)
H{1)=L(1)*Y{1)+V(1)*X(1)-F1x4. 1868*T1
FOR J=2 TO N1

L{Jy=L(J-1)-V(J)
H{Jy=L{J}*Y(JY+V{IkX(J)-L(J-1)*Y({J-1)
NEXT J

FOR J=1 TO N1

A(J)=H(J)y*1000/(U(J)*D(J))
 NEXT J
PRINT "EFFECT TEMP DEL.T HEAT AREA VAPN"
PRINT " DEG C DEG C KJ/8 SQ M KG/8"
FOR J=1 TO N1
PRINT J;" ;
PRINT USING "###.#";T(J);
PRINT " "
PRINT USING "###.#";D(J);
PRINT " "
PRINT USING "####. #";H(J);
PRINT " "
PRINT USING "###.8";A(J);

PRINT ;
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1340
1850
1360
1870
1880
1890
1900
1510
1920
1930
1940
185G
1980
1970
1980
1990
2000
2010
Z02¢C
2030
2040
2080
2060
2070
2080
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440

PRINT USING "###.#";V(J)

NEXT J

PRINT "STEAM TO FIRGT EFFECT";33; "KG/8"
PRINT

IF Ni=1 THEN 2080

PRINT "DC YOU WANT TO RERUN? TYPE Y ORE N"

INPUT AS

IF Ag="Y" THEN 1830
GOTO 2080

Al=0

FOR J=1 TO N1
Al=Al+A(J)

NEXT J

FOR J=1 TO N1

R{J)y=A{J*N1/Al
NEXT J

D1=0

FOR J=1 TO N1

B(J)=R(J}*D(J)

D1=D1+B(J)

NEXT J

FOR J=1 TO N1

D(J)=B(J)*(81-T2} /D1

NEXT J

GOTO 1420

PRINT "DIFFERENT NUMBER OF EFFECTS?"
INPUT "TYPE Y OR N";B$

IF B="Y" THEN 1240

GOTO 2970

REM st o ook koK SR s sk ok K e SOK R OK SOR ROk sk ok Kok 3KOK KKK KK K KK KO K
REM ~ SOLUTION OF VAPOUR TO EACH EFFECT
REM - BY MATRIX ALGEBRA

MAT M=ZER(N1,N1)

MAT N=ZER(N1,N1)

MAT P=ZER(N1)

MAT V=ZER(N1)
M{1,1)=-52

FOR J=1 TO (MN1-1)
K=Jd+1
M(J,K)y=X(J;-Y¥(J;
NEXT J

IF N1=2 THEN 2390
FOR J=2 TO (N1-1)
K=J
M{J,Ky=2%¥(J-1)}~-X(J-1}-Y(J}
NEXT J

FOR J=3 TO (N1-1}

FOR K=2 TO (J-1)
M{J,Ky=Y(J-1}-Y(J)

NEXT K

NEXT J

J=N1

FOR K=2 TO J-1
M(J,K)=Y(J-1)-X{(J)}

NEXT K

J=N1

K=J
M(J,K)=2%xY{J-1}-X(J~-1)-X(J)
P(1)=F1%(4.1868%T1-Y(1})
FOR J=2 TO (N1-1)
P(J)Y=F1x(Y(J-1)-Y(JI})



2450
24860
2470
2480
2490
2500
2310
2520
2530
25490
2580
25890
2870
2830
2590
2600
2610
2820
2830
2640
2650
28660
2870
2680
2890
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2880
2880
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
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NEXT J

J=N1

PUI;=Fixa{¥Y{J-1)-X{J)y+(CLl/C2 % (X(J)-Y(JI})}
MAT N=INV(M)

MAT V=N*P

23=V{1}

Vi=0

FOR J=2 TO N1

V{J-1)y=V{J}

V1=V1+V(J-1}

NEXT J

RETURN

REM 3tk okolok sKokok ok ko ok KoK KKK KOKRHOROKK HOK K 3K KKK KK KKK o ok ok
REM -~ SOLUTION OF VAPOUR TO EACH EFFECT
REM -~ BY SEIDEL ITERATION

FOR J=1 TO N1-1

IF V(J)=0 THEN 2640

W({Jy=V(J)

GOTO 2660

V{J)=F1%(1-C1/C2}) /N1

W(Jr=V(dJ)

NEXT J

IF N1=2 THEN 2840
V{1)=F1k(Y(1)-Y(2))-V(2)*%(X(2)-Y(2))

V{1)=V{1)/(2¥Y(1)-X(1)-Y()}

IF N1=3 THEN 2780

FOR J=2 TO Ni-2
V{J)=F1x(Y{J)-Y(J+1))-V(IJ+1 ¥ (X(J+1)-Y(J+1) >
FOR K=1 TO J-1

V(I3 =V{(J) -V{K)Y®(Y({J}-Y(JI+1))

NEXT K

V{I)Y=V(J}/(2*Y(J)-X(J})~-Y(J+1))

NEXT J
V{N1-1)=F1x(Y(N1-1)-X(N1)Y+(C1/C2) % (X(N1)-Y(N1}))
FOR K=1 TO N1-2
V{N1-1)=V(N1-1)}-V(K)*{Y(N1-1}-X(N1i})

NEXT K
V(N1-1)=V(N1-1})/(2%Y(N1-1}-X(N1-1)~-X(N1)}
GOTO 2860

V(1) =F1x(Y{1)-X(2)+{C1/C2)*(X{(2}~-Y(2)}))
V{1)=V(1)/(2%Y(1)-X(1)-X(2))
B3=(V(1)*(X(1)~-Y(1))-F1%(4.1888%T1-Y(1)))/82
Vi=0

FOR J=1 TO N1-1

V1=V1+V(J)

NEXT J

IF N1=2 THEN 2960

FOR J=1 TO N1-1

IF V(J)/W(J)>1.001 THEN 2600

IF W(J)/V(J)>1.001 THEN 2600

NEXT J

RETURN

END
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EXAMPLE 3.2

Use the computer program to repeat Example 3.1 It will be seen that the
first computer iteration gives results closely similar to those obtained by the
manual calculation. After a further two iterations, closely similar values
are obtained for the required heat transfer areas.

LOAD"A:EVAPL

Ok

RUN

SIMULTANEOUS EQUATIONS GENERATED WITHIN THE
PROGRAM ARE SOLVED BY A-MATRIX ALGEBRA,
B~3EIDEL ITERATION. INPUT A OR B? B
FORWARD FEED UP TO 10 EFFECTS

STEAM TEMP, DEG C7 121.8

INLET LIQUOR TEMF,DEG C?7 30

INLET LIQUOR CONC,WT FRACN? .1
FEEDFLOWRATE,KG/27 ©

QUTLET LIQUOR TEMP,DEG C? 65.9

GUTLET LIQUOR CONC,WT FRACN? .3

NUMBER OF EFFECTS

71

U VALUES, W/5Q M, BEG K

o 13

? 1500

EFFECT TEMP DEL.T HEAT AREA VAPN

DEG C DEG C KJ/3 5@ M KG/S

1 65.9 55.9 9381.9 111.7 4.0

STEAM TO FIRST EFFECT 4.262322 KG/S

DIFFERENT NUMBEE OF EFFECTS?
TYPE Y OR N? Y

NUMBER OF EFFECTS3

7 3

U VALUES, W/5Q M,DEG K

o 1

? 3000

U{ 2 3

? 2000

U( 3 )

? 1500

EFFECT TEMP DEL.T HEAT AREA VAPN
DEG C DEG C KJ/5 o M KG/S

1 109. 4 12. 4 4679.2 125.86 1.2
2 80.7 18.86 2673.9 71.8 1.3
3 85.8 24.8 3050.5 81.9 1.5

STEAM TO FIRST EFFECT 2.1303585 KG/5

DO YOU WANT TO RERUN? TYPE Y OR N
?Y
EFFECT TEMP DEL.T HEAT AREA VAPN
DEG C DEG C KJd/s SQ M KG/S
1 104.1 17.7 4608.8 86.9 1.
2 89.0 15.2 2738.3 90.3 1
3 85.9 23.1 3043.3 88.0 1.
STEAM TO FIRST EFFECT 2.098313 KG/S

W
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DO YOU WANT TO RERUN? TYPE Y OR N

Y

EFFECT TEMP DEL.T HEAT AREA YAPN
DEG C DEG C KJ/8 SQ M KG/S

1 104. 4 17. 4 4611.2 88.3 1.2

2 88.9 186.5 2733.7 88.1 1.3

3 865.9 23.0 3045.9 88.3 1.4
ST

EAM TO FIRST EFFECT 2.099399 KG/S

DO YOU WANT TO RERUN? TYPE Y OR N

Ty

EFFECT TEMP DEL.T HEAT AREA YAFN
DEG C DEG C KJ/& SQ M KG/s

1 104. 4 17.4 4612.3 88.3 1.2
b4 83.9 15.5 2733. 4 38.23 1.3
3 65.9 23.0 3045.1 38.2 1.4
STEAM TO FIRST EFFECT 2.09992 KG/S

DC YOU WANT TO RERUN? TYPE Y CR N
? N

DIFFERENT NUMBER OF EFFECTS?

TYPE ¥ OR N? N

Ok

PROBLEMS - CHAPTER 3
1. A forward feed evaporator system has three effects each of 80m? heat
transfer surface. Heat transfer coefficients in successive effects are 3000,
2500 and 2000 W/m*K. Steam enters the calandria of the first effect at a
presure of 320kPa; the pressure above the liquor in the final effect is 18kPa.
The feed enters effect one at a concentration of 3 wt% solids and a temperature
of 40°C; product leaves the final effect at a concentration of 32 wt% solids.
Use the program to determine the feed and final product rates, assuming the
solution to have the properties of water.
Hint: Assume a value for feedrate and use this to run the program; scale
this figure up or down as required to satisfy the area requirement.

2. An evaporator system is to be installed for the concentration of an aqueous
solution of an organic material. It is desired to make an estimate of the
number of effects which should be employed in order to give the lowest annual
total costs -(operating plus fixed costs).

Pilot plant work has established that the overall coefficient of heat
transfer in the evaporator, using low pressure steam for heating, is correlated
approximately by the following simple relationship:

U = 2500 - 2000C W/m*K where C = solution concentration, wt fraction.
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Assuming a forward feed system is to be employed, use the program, and the
data below, to estimate the optimum number of effects to be used:

Feed rate of solution : 5.5 kg/s
Feed concentration : 0.05 wt fraction
Feed temperature : 18.0°C
Product concentration : 0.5 wt fraction
Physical properties of

solution : As for water
Steam temperature : 140%
Final effect temperature : 60°C
Heating costs : be/KiWh
Capital cost for equipment : $5,000 per m* of heat transfer surface

instalied

Interest payable on capital : 15% p.a.

Maintenance costs and overheads: 20% p.a. on installed capital
Additional operating costs
incurred : $25,000 p.a.
What would be the effect on your appraisal if energy costs were to be
doubled?
Note: The figures quoted above are conjectural only; they should not be taken
as in any way typifying the industry.

3. Modify the program described in this chapter to handle:

Backward feed systems.

Crossflow systems.

Process fluids exhibiting boiling point rise.

Enthalpy data such as that discussed in Example 2.3.

Computation of film coefficients as functions of physical properties.

[T = S o T = i =]
o 4 e e

4. Write an evaporator program using the Newton Raphson method (8).
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Chapter 4

SOLUTION OF DISTILLATION PROBLEMS

The example given here, is based upon the well-known McCabe Thiele
Graphical Solution method for binary separations (1), (2), (3). Sophisticated
computer methods of solution have of course been developed (4), (5), (6), (7).

McCabe Thiele Graphical Method
Assumption: The method to be described rests upon the following assumptions:

constant molal overflow;
equilibrium is attained at each stage.

In the example which follows it is further assumed that:

the column consists of both stripping and enriching sections;

the feed enters between these sections;

all overhead vapour from the column is condensed and either withdrawn
as product (distillate) or returned to the column (reflux).

For compiete information on the method the reader should refer to the basic
texts listed above (1), (2), (3). However, an outline is given below, using
the nomenclature of Figure 4.1.

Procedure
The following data must be available:

Feed flowrate, enthalpy and composition;
desired product concentrations and/or flowrates;
vapour/liquid equilibrium data at the chosen operating pressure.

Various methods for the calculation of equilibrium data are available (4),
(8), (9), (10). The equilibrium data is first plotted as a graph of mol fraction
of more volatile component in the vapour phase (values of y, plotted on the
ordinate) versus mol fraction of more volatile component in the liquid phase
(values of x, plotted on the abscissa). A graphical construction is then
carried out. The procedure involves the construction on the diagram of the
operating lines, the equations for which are derived as follows:
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Cooling Medium

Condenser
- ﬁef]ux Distillate
D, x

Enriching | D
Section

-__J\/__——Disti11ation Column
Feed
Fs zF

Stripping ¢

Section
Vapour
Heating Medium
Reboiler
Residue
N, Xw
Nomenclature:
D,F,R - flowrates of distillate, feed, residue
L, V - flowrates of Tiquid, vapour from plate to plate, above the feed plate
L,V - flowrates of 1iquid and vapour below the feed plate
Xps Xy 2p - Mol. fraction of more voiatile component in distillate, residue,

feed.

Figure 4.1, Distillation Column Flow Diagram.

Equation of the Upper Operating Line (Enriching Line)
See Figure 4.2a. The plates or equilibrium stages are assumed to be

numbered counting from the top downwards. A mass balance on a molar basis, over
the top section of the column down to a typical stage n (above the feedplate)
yields the equations:

V=1L+D (by an overall balance) (4.1)
Vyn4o = LXn + DXo (by a balance for the more volatile component) (4.2)
Calling the ratio L/D the reflux ratio R,

Xo + XD (4.3)

. _ R
"yn+1_ m R+1
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ondenser
Reflux, D1st1]1a e

|
———

I

D, Xp

Plate n ’///////
a. Flows in the Enriching Section

N

Plate m

<|

Reboiler

Figure 4.2.

Residue

b.

Flows in the Stripping Section
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The assumption of constant molal overflow permits this equation to represent
any equilibrium stage above the feedplate. The equation is that of a straight
Tine on the graph of x, y values, known as the Upper Operating Line or
Enriching Line.

Equation of the Lower Operating Line (Stripping Line)
See Figure 4.2b, then

V=L-W (by an overall balance) (4.4)
Vyme + WX, = Lx, (by a balance for the more volatile component) (4.5)
Y41 L~ Xm= _W_ Xw (4.6)

v v

This equation is that of a straight line, known as the Lower Operating Line
or Stripping Line.

Equation of the q - Tine

The Tocus of intersection of the Upper and Lower Operating Lines is required;
it can be shown that this locus is also a straight line, the equation for which

is:

" _ _ZF -
y T - X 1 where q (4.7)
Hy - He and (4.8)
Hy - He
Hy ,H_ = enthalpies of vapour, liquid leaving any plate;

H¢ = enthalpy of the feed.

For the derivation of the g-line, the reader should refer to a standard text
(1), (2), (3).

Manual Solution of Binary Distillation Problem

EXAMPLE 4.1
Use the McCabe Thiele method to solve the following problem:

A mixture containing 35 wt% heptane and 65 wt% octane is to be fractionated
so as to produce a distillate containing 97 wt% heptane, and a residue containing
not more than 4 wt% heptane. The operating pressure is 1.3 x 10° N/m* and
1.5 kg/s of feed enters as a liquid at 40°c.

(i) Calculate the production rates of distillate and residue.

(ii) Determine the number of plates required at total reflux and the
minimum reflux ratio required.
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(iii) Specify the appropriate reflux ratio and number of ideal stages
which should be provided.

The enthalpy and equilibrium data of Table 4.1 should be used.

TABLE 4.1
Properties of Heptane/Octane Mixtures
Equilibrium Data at 1.3 x 10° N/m?
Mol fraction of heptane
Liquid Phase Vapour Phase

X Yy
1.00 1.00
0.95 0.98
0.89 0.96
0.81 0.90
0.61 0.77
0.44 0.63
0.33 0.51
0.28 0.46
0.23 0.39
0.11 0.20
0.097 0.18
0.067 0.13
0.039 0.078
0.012 0.025

Enthalpy data:

Feed liquid at 40°C, Hf = 87.1 K&/Kg
Feed 1liquid at bubbie point, H_. = 280.3 KJ/kg
Feed vapour at dew point, Hy = 581.8 KJd/kg

Solution
(a) First the equilibrium data is plotted (Figure 4.3).

(b) Next the given compositions of feed, distillate and residue are converted
to a mol fraction basis:

Molecular weight of heptane, C,H,s= 100
Molecular weight of octane, Ce H,e= 114

Using a basic weight of 100 kg for each of the three streams:



100

Stream kg kg mols mol fraction Mean mol wt
Feed C, = 35 0.35 0.38
(xg) Cs = 65 0.57 0.62
>0.92 1.00 108.7
Distillate c, =97 0.97 0.973
(XD) Ce = 3 0.026 0.027
2.0.996 1.000 100.4
Residue C, = 4 0.04 0.045
(Xy) Cs = 96 0.842 0.955
2.0.882 1.000 113.4
1.0
0.8
////// 3
.
2 St |
g 0.6 N, 3
= s@
qc_; <90\ /
8 0.4
f=% .
e // 5 1
s /!
o 6
‘g 0.2 /
— 7
[«]
=
!
0
0 0.2 0.4 0.6 0.8 1.0
| Mol fraction heptane in liquid

Xw= XD =

0.045 0.973
Figure 4.3. Distillation of Heptane/Octane Mixture at Total Reflux.
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(c) Quantities of distillate and residue are calculated from a mass balance:
F=1.5kg/s =D+ W (froman overall balance) (4.9)
Fzg= Dxp + Wxy (component balance)
1.5 5% 0.35 = 0.97D + 0.04KW

0.541 = D + 0.0412 (4.10)

Subtracting 4.10 from 4.9 and solving for W
W

1.0 kg/s (.00882 mol/s)
0.5 kg/s (.00498 mol/s)
1.5 kg/s (.1380 mol/s)

(d) The values of xp and xy in mol fractions are entered on the graph, and by
a stepwise construction the number of plates required at total reflux is found
to be 8 (Figure 4.3).

(e} q=Hy - He = 581.8 - 87.1 = 1.64
Hy - H.  581.8 - 280.3

The slope of the g-line

g = 1.64 = 2.56

q-1 0.64

A Tine is drawn through Z¢ = 0.38 to intersect the diagonal. Through this point
of intersection the g-line is drawn at a slope of 2.56 (see Figure 4.4)}.

A line is drawn through x = 0.973 to intersect the diagonal. Through this
point of intersection a line is drawn to meet the g-line where the latter cuts
the equilibrium line. This line is the upper operating line, or enriching line,
and in this position it corresponds to the condition of minimum reflux.

The enriching line cuts the y-axis at the point

y=xp = 0.39 (Equation 4.3) Hence
R+1

Rmin = 0.973 .
o 0.39 - 1 1.49

The value of R can also be determined from the slope of the operating line.
This is more convenient for use with the program which follows.

By geometry, the slope

R+1 Xp - Xq

where xgq and yq are the coordinates of the point of intersection of the g-line
and the equilibrium curve.
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These points are shown on Figure 4.4, and more clearly on Figure 4.7.

1.0

& 7
;v' //;/’
0.8 28 ,/1/////
'/\u, /
°~ Cd

s v —
S
= 0.6 \;\\\// /
f ot
o A\\fy/ /
AV a4 .
g 04 4 & /
c N4
2 S/
g 87
& 0.2 \';;

O
e Vi |

/ [

0o Y

0 0.2 0.4 xq 0.6 0.8 1.0
Mol fraction heptane in liquid

|

Zp=
0.045 0.38 0.973

XW= Xp =

Figure 4.4. Distillation of Heptane/Octane Mixture0
Minimum Reflux Condition with Cold (40°C) Feed

(f) A reflux ratio of between 1.2 and 1.5 times the minimum is usually
recommended (1), (2), (3). Choosing a value of 1.4 for this case, with a cold
feed, a reflux ratio of 1.4 x 1.49 = 2.1 will be chosen for the calculation.

It is usually recommended that an economic optimum number of stages is twice
that required at total reflux, i.e. we anticipate that the calculated number of
stages should beapproximately 16.

The construction is shown in Figure 4.5. Verticals are drawn through the
values of xys Z g and Xp, to intersect the diagonal. The g-line is drawn in at
the slope of 2.56. The upper operating line is drawn, intercept being

xp - 0973 _ 43

R+1 2.1+1

The Tower operating line is then drawn, as shown.
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1.0
4.
0.8 P '
j =
5 Z
2 0.6 ] x
5 a}/ Upper operating
- e // (enriching) Tihe
: N ) -
g 0.4 . g/ 19 - fne
o
u 12
< 0.31/ / f
[ 2
2 7 TLower operating
E 0.2 (stripping) ling
- I
Y %/ ] l
=
=
0
0 I 0.2 0.4 0.6 0.8 1.0
i Mol fraction heptane in Tiquid
sz ZF = XD=
0.045 0.38 0.973

Figure 4.5. Distillation of Heptane/Octane Mixture at a Refiux Ration of 2.1.

The number of ideal stages computed by this technique is seen to be about
15%, the last stage being the reboiler. Plate Number 8 should be the feed

plate.
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- y = X_D___——— - - et — - - - -
First value of
Al = C2

Second Aalue
1L == e .~
of AY' = First Bl

X ———sm

1
Second value First value

of Bl of Bl
xw = C3 Xp = C2
Figure 4.6. Sequence used in computing number of plates required at Total
Reflux.
_ - Enriching Line
Xp f—-——-————=-~—
= XD - yq
Yo o _ .
I = xp -/ Xq
| ,
T | - q - Line
|
Y \ ;
I
]
] |
I i
|
l
¢
Xq XF XD

X ———m

Figure 4.7. Determination of minimum reflux ratio from the slope of the
Enriching Line.
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COMPUTER SOLUTION OF A BINARY DISTILLATION PROBLEM BY
THE McCABE-THIELE METHOD

This method utilises the equations of Lewis and Sorel which when drawn upon
the y - x diagram of vapour-liquid concentrations, are the operating lines of
the McCabe-Thiele method described above.

The equilibrium data required is input as a series of paired values of x
and y. These data are then interpolated using the method of Lagrange detailed
in Chapter 2. This technique is unreliable if the number of data pairs is
inadequate, and it is advantageous to have other methodsavailable, such as those
given in references already quoted (4), (8), (9), (10). The following simple
method which assumes ideal behaviour has been included in the program:

The Relative Volatility

o = Yi/¥a ( 411)
X1/ Xz
where y,, y. etc. are mol fractions of component 1, 2, etc. in the vapour phase;
X1, X, €tc. are mol fractions of component 1, 2, etc. in the liquid phase
and equilibrium is assumed.
For a binary mixture, this relationship may be written as o

= 21/%1 - ,21) (4.12)
Xl/ 1- Xl)

where x,, y.are the mol fractions of the more volatile component in the liquid
and vapour phases respectively.

In other words, each pair of values of x and y permits a value ofa to be
calculated. Over limited temperature ranges these values may not vary widely,
and a geometric mean may be taken.

From a mean value of aand a given value of y, the corresponding value of x may
be calculated by rearrangement of the above equation: Since

a = xlgl-xlg
Xl - y1
LooXy - Xy Y1 T Y1 o~ YaiXa

Xy = Y1 (413)
all - yi) +ya

Equilibrium data for the system Benzene/Toluene is included with the program;
this was employed during program development.
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DIST1.BAS

Read

No

Data Segment

\

Yes

Check Data

Segment

|

Total Reflux
Segment

(]

Min Reflux
Segment

P1 to Plate
Segment

Input

End



10
20
30
40
50
60
70
80
90
100

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
480
470
480
490

500 -

510
520
530
540
550
560
570
580
590
600
610

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM

3Kk 3Kk KOk K Sk KR KoK K K K Kk K Sk ok K KoK Stk Ok ook ook i koK sk ok 30K ok

PROGRAM DIST1.BAS

MC CABE THIELE DISTILLATION

PROGRAM NOMENCLATURE

A(JY,B(J)Y - Values of vapour, liquid
compositions at equilibrium, input
from the terminal

Al - Value input to either the inter-
polation or the relative
volatility subroutine

B1 - Value obtained from either of
the above subroutines
C1,C2,C3 - Feed, overhead and bottom
compositions in mol fraction
D(J) - Used in the Lagrangde interpolation
- subroutine described in Chapter 2
F1,D1,W1 - Feed, overhead and bottom
flowrates
Ji1,J2 - Tag the data pairs inappropriate
for calculation of rel. volatility
K1 - Increment in iteration procedure
M(J,K) - Used in the Lagrande interpolation
N(J) - subroutine described in Chapter 2
N1 - Number of data pairs
P1 - Number of plates at total reflux
Ql - Value of the enthalpy ratio g
Q2 - Value of liquid composition at the

intersection of the g-line with the
enriching line

R1 - Reflux ratio

R2 - Slope of the enriching line

V({J) - Values of relative volatility

Vi - Used in calculation of mean value
of relative volatility

vz - Mean value of relative volatility

X(G),Y(G)y -~ Values of liquid, vapour,
compositions on the Gth plate

Y2 - Vapour composition

Z1 - Number of data pairs inappropriate

for calculation of rel. volatility
PROGRAM DESCRIPTION
LINES 2000 - 2010 Maximum array dimensions are
declared;the arbitrary value of 20 has been
selected for the number of data pairs, and 100
for the maximum number of plates
LINES 2020 - 2180 Equilibrium data for benzene/
toluene is read from the data statements 2070
& 2110, into matrices A & B. Line 2170 calls the
subroutine which uses these values to calculate
denominator terms of the Lagrange interpolation
described in Chapter 2. Line 2180 calls for the
subroutine which calculates relative volatilities
LINES 2200 - 2310 As an alternative to the data
for benzene/toluene, equilibrium data values are
input to matrices A & B from the keyboard.
LINES 2320 - 2450 Intermediate equilibrium
values are checked if desired.
LINES 2460 - 2470 Choice is made between the
interpolation and relative volatility methods
LINES 2480 - 2500 Composition values in mol
fractions are entered

107
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620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
880
900
910
920
930
940
950
960
970

980

1000
1010
1020
1030
1040
1050
1060

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM -

REM

REM -
REM -
REM -

REM
REM
REM
REM
REM
REM
REM
REM
REM

REM -

REM
REM
REM
REM
REM
REM

1070 REM
1080 REM
1090 REM

1100

REM

1110 REM
1120 REM
1130 REM

1140

REM

1150 REM
1160 REM
1170 REM
1180 REM
1190 REM
1200 REM
1210 REM
1220 REM

LINES 2510 -~ 2700 The number of plates required
at total reflux is computed in a manner analogous
to that described for the manual calculation, and
shown in Figure 4.6 For this case the operating
lines lie on the diagonal. Distillate
composition (C2) is taken as a starting point, its
value being equal to the vapour composition from
the top plate (Al)}. Using the x,y data input to
the program, the value of Al is used to evaluate
the corresponding value of x (Bl). Since this
value lies on the diagonal, it is equal to the
value of vapour composition y from the next plate
(Al). This new value of Al is used to compute
its corresponding value (Bl), and so on until
the value of residue composition (C3)has been
reached. See Figure 4.6
The minimum reflux ratio is
now to be computed:
LINES 2720 - 2750 A value of q (Q1)
is input from the terminal, and depending on
its value, various alternatives are followed.
LINES 2760 - 2830 For values of Q1 other than
zero or unity, values of vapour composition (Y2)
are taken successively, starting from distillate
composition (C2), stepwise in decrements of 0.1
mol fraction (K1)}. Each time this is done the
value is ascribed to Al and the corresponding
value of liquid composition x (Bl) is calculated
using either the interpolation or relative
volatility method (lines 2800 ~ 2840).
A value of x (B2) is also
calculated from the equation of the g-line
{Equation 4.7), rearranged as line 2850. If
values Bl and B2 are the same, the point of
intersection of the g-line and the equilibrium
curve has been obtained. This is tested at lines
2860 and 2800. If B2 exceeds Bl but the values
do not agree within 1% then the decrement (K1) is
reduced to one tenth of its previous value and
the search is continued (lines 2810 - 2930).
When agreement between values Bl and B2 has been
obtained within 1%, the arithmetic mean of these
values is ascribed to variable Q2 (line 2940)
LINES 2960 - 3020 For the case of a saturated
vapour, Q=0 and the slope of the gq-line=0. In
this case, the gq-line is horizontal through the
intersection of feed composition (Cl) with the
diagonal. The value is thus also the value of
y at the intersection of the gq-line and the
equilibrium lines. This value of y is ascribed
to Al, and the interpolation routine used to
obtain the corresponding value of xq (Q2)
LINES 3030 - 3170 For the case of a saturated
liquid, q=1 and the slope of the g-line =
infinity. In this case, the .q-line is a
vertical through the intersection of feed
composition with the diagonal. This value is

- thus also the required value of xg (Q2)

LINES 3180 - 3250 The minimum reflux ratio is
calculated from the slope of the enriching line
(Equation 4.3) as discussed in the text.



1230
1240
1250
1260
1270
1280
1280
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1820
1630
1640
1650
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
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REM -~ LINES 32680 - 3840 The calculation of number

REM - of plates required at given reflux ratio and q
REM - value is undertaken. The given value of

REM - distillate composition (C2) is the same as the
REM - vapour composition from the top plate. This

REM - value is ascribed to Al and the corresponding

REM - equilibrium value in the liquid phase is obtained
REM - from the subroutine (Bl). At line 3350 these
REM - values (C2 and Bl) corresponding to the vapour
REM - and liquid equilibrium compositions on plate 1
REM - are printed. The value of Bl above is that of
REM - X(1) (line 3330) and this value is used

REM - at line 3390 to calculate from the

REM ~ equation of the enriching line (Equation 4.3)
REM -~ the composition of vapour from plate 2.

REM - The corresponding equilibrium composition

REM - of liquid on plate 2 is then calculated

REM - (lines 3410 - 3440). This procedure is

REM -~ repeated until the g-line is reached. At each
REM - iteration the value of vapour composition Y(G)
REM - calculated above is also used to calculate a
REM - value of liquid composition (Q2) from the

REM - g-line equation (lines 3480 - 3810). It

REM - this value is greater than that calculated

REM - from the operating line equation, then the

REM - feedplate has been reached. The program then
REM - moves to the next routine, and continues, this
REM - time using the equation for the stripping line
REM - (Equation 4.6) at line 3710. Iteration

REM - continues until the value of residue

REM - composition (C3) has been reached.

REM - LINES 3960 - 45860 The Lagrange interpolation
REM - routine described in Chapter 2

REM - LINES 4580 - 4990 Calculation using the

REM - relative volatility method. A value of relative
REM - volatility is calculated for each equilibrium
REM - data pair, and the geometric mean value is then
REM - calculated (lines 4600 - 4730). The highest
REM - and lowest values are then selected and printed
REM - out (lines 4730 - 4970). Values of liquid

REM - composition (Bl) are calculated as required at
REM - line 5030.

REM  5kkok 3k 3 3k OK 5K K 3 5 5K 3K KK 3K 3 K A 3K 3K 3K 3K ok 3K 3K 3K 3K K 3K 3K 3K 3K oK oK 3K 3K 3K KK KK K sk ok ok
DIM A(20),B(20),D(20),N(20),V(20),X(100), Y{100)

DIM M(20, 20)

REM-DATA FOR BENZENE/TOLUENE

N1i=7

FOR J=1 TO N1

READ B(J)

NEXT J

DATA 1.0,0.78,0.581,0.411,0.258,0.130,0.04

FOR J=1 TO N1

READ A(J)

NEXT J

DATA 1.0,0.9,0.777,0.632,0.456,0.261,0.1

PRINT “TO USE DATA FOR BENZENE/TOLUENE 101.325KPA"
INPUT "INPUT 1";D

PRINT

IF D<>1 THEN 2200

PRINT "USING DATA FOR BENZENE/TOLUENE"

GOSUB 3960
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2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780

GOSUB 4590

GOTO 2320

PRINT "NUMBER OF DATA PAIRS";

INPUT N1

FOR J=1 TO N1

A(J)=0

B(J)=0

NEXT J

PRINT "INPUT Y, X"

FOR J=1 TO N1

INPUT A(J},B(J)

NEXT J

GOSUB 3960

GOSUB 4590

PRINT "DO YOU WANT TO CHECK DATA? TYPE Y OR N";
INPUT A$

PRINT

IF A$="N" THEN 2450

PRINT "INPUT VALUE OF VAP COMP Y";

INPUT Al

GOSUB 5010

PRINT "BY RELATIVE VOLATILITY METHOD X=";
PRINT USING "“##.##";B1

GOSUB 4260

PRINT "BY LAGRANGE METHOD X=";

PRINT USING "##. ##";B1

GOTO 2320

PRINT

PRINT "LAGRANGIAN INTERPOLATION OR RELATIVE VOLATILITY"
INPUT "METHOD, TYPE LI OR RV";B$

PRINT "FEED, OVERHEAD AND BOTTOM COMPOSITIONS AS"
PRINT "MOL FRACT OF MORE VOLATILE COMPONENT";
INPUT C1,C2,C3

REM - TOTAL REFLUX CALCULATION k5K KK A KKK K 3OK K H K K KKK K
B1=C2

PRINT " X= Y= PLATE NO*
FOR G=1 TO 100

Al=B1

IF B$="LI" THEN 2590

GOSUB 5010

GOTO 2600

GOSUB 42860

PRINT USING "#. ### ";B1;A1;

PRINT G

IF B1<C3 THEN 2860

NEXT G

PRINT "ERROR IN DATA"

GOTO 5010

P1=G-(C3-B1)/(A1-B1l)

PRINT "AT TOTAL REFLUX "

PRINT "NUMBER OF PLATES REQUIRED=";

PRINT USING "#. ##";P1

PRINT

REM - MINIMUM REFLUX CALCULATION Xxokxikkdkkickiskokskkskokikkk
PRINT "Q VALUE";

INPUT Q1

IF Q1=0 THEN 2960

IF Q1=1 THEN 3030

Ki=.1

Y2=C2+K1

FOR J=1 TO 100



Y2=Y2-K1

Al=Y2

IF B$="LI" THEN 2840

GOSUB 5010

GOTO 2850

GOSUB 4260
B2=(Y2%(Q1~-1)+C1)/Q1

IF B2>B1 THEN 2900

NEXT J.

PRINT "“J=100"

GOTO 5010

IF B2/B1<1.01 THEN 2940
Y2=Y2+K1

K1=K1%., 1

GOTO 2780

QZ2=(B1+B2)/2

GOTO 3180

Al=C1

IF B$="LI" THEN 3000

GOSUB §010

GOTO 3010

GOSUB 4260

Q2=B1

GOTO 3180

Q2=Cl1

Ki=.1

Y2=C1

Y2=Y2+K1

Al=Y2

IF B$="LI" THEN 3110

GOSUB 5010

GOTO 3120

GOSUB 4260

IF B1<C1 THEN 3080

IF B1=C1 THEN 3180

IF B1/C1<1.01 THEN 3180
Y2=Y2~-K1

K1=K1/10

GOTO 3060

R2=(C2-Y2) /(C2-Q2)

R1=R2/(1-R2)

PRINT "AT @ VALUE OF";Ql;" MINIMUM REFLUX RATIO=";
PRINT USING "##.##";R1

PRINT "FOR MINIMUM REFLUX RATIO AT ANOTHER Q VALUE"
INPUT "TYPE MR";A$

PRINT

IF A$="MR" THEN 2720

PRINT "REFLUX RATIO,Q VALUE, FEEDRATE";
INPUT R1,Q1,F1

Al=C2

IF B$="LI" THEN 3320

GOSUB 5010

GOTO 3330

GOSUB 4260

X(1)=B1

PRINT" X= Y= PLATE NO"
PRINT USING "#.#u## ";B1;C2;
PRINT " 1"

REM - ENRICHING LINE skokokokskokom ok sk ok sk ok ok skokok sk Kok sk okok sk ok ok Kok sk okok
FOR G=2 TO 100
Y{(G)=X(G~-1)*R1/(R1+1)+C2/(R1+1)
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Al1=Y(G)

IF B$="LI" THEN 3440

GOSUB 5010

GOTO 3450

GOSUB 4260

PRINT USING "#. ### ";B1;Y(G);
PRINT G

X(G)=B1

REM — @ LINE okokosokokskok sk sk ook ook 5ok sk ok ok sk ok ok K ok ok ok o oKk Kok ok ok skoskok ok sk
IF Q1=0 THEN 3530

IF Ql=1 THEN 3600
Q2=(Y(G)*(Ql-1)+C1)/Q1

GOTO 3610

Al1=C1

IF B$="LI" THEN 3570

GOSUB 5010

GOTO 3580

GOSUB 4240

Q2=B1

GOTO 3610

@2=C1

IF Q2>X(G) THEN 3650

NEXT G

PRINT "OYER 100 PLATES"

GOTO 3900

PRINT "FEEDPLATE"
D1=F1%(C1-C3)/(C2-C3)

W1=F1-D1

L1=Q1%F1+R1%D1

REM — STRIPPING LINE seokskioksdoiokokok sk sksk sk sk ook ok ok korok ok ok ok sk kok
FOR H=G+1 TO 100
Y(H)=L1*X(H-1)/(L1-W1)-C3%W1/(L1-W1)
Al=Y(H)

IF B$="LI" THEN 3760

GOSUB 5010

GOTO 3770

GOSUB 4240

PRINT USING "#. ### ";BL;Y(H);
PRINT H

IF B1<C3 THEN 3840

X(H)=B1

NEXT H

PRINT "OVER 100 PLATEGS™

GOTO 3900

PRINT "FEEDRATE=";F1

PRINT "DISTILLATE=";D1

PRINT "RESIDUE=";W1

PRINT "NO. OF PLATES=";
P1=H-1+(X(H-1)-C3})/(X(H-1)-B1)

PRINT USING “##. ##";P1

INPUT "TYPE RR FOR REPEAT RUN BY SAME METHOD"; A$
IF A$="RR" THEN 3260

INPUT "TYPE RC FOR REPEAT CALCULATION FROM START";A$
IF A$="RC" THEN 2450

GOTO 5050

REM  skskokok kiR ok ok sk ok sk skoROK 3ROk KR K K K KK 3KOKK SOIOK 3K K KKK K KKK KK 30K K koK
REM - FIRST SUBROUTINE OF LAGRANGIAN INTERPOLATION
FOR J=1 TO N1

FOR K=1 TO N1

M(J,K)=0

NEXT K
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4010 NEXT J

4020 REM - CALCULATES VALUES OF X1-X2 ETC *¥XKKKKAKIKKKKKKKK
4030 REM - & STORES THEM IN MATRIX M

4040 FOR J=1 TO Ni1-1

4050 FOR K=J TO N1-1

4060 M(J,K)=A(J)-A(K+1)

4070 NEXT K

4080 NEXT J

4090 FOR K=1 TO N1-1

4100 FOR J=K+1 TO N1

4110 M{J,K)=A(J)-A(K)

4120 NEXT J

4130 NEXT K

4140 REM - CALCULATES DENOMINATOR TERMS *¥HKAKAKAKAKK KK KK KKK
4150 REM - & STORES THEM IN MATRIX D

4160 FOR J=1 TO N1

4170 D(J)=1

4180 FOR K=1 TO N1-1

4190 D(J)=D(J)*M(J,K)

4200 NEXT K

4210 NEXT J

4220 RETURN

4230 REM kkokokskok ok skok sk ko sk ok ok ok ok sk sk Ook sk Kok 3k ok ok ok ok ok ok 3k ok Sk Skolok ok ok kok sk kok sk
4240 REM - SECOND SUBROUTINE OF

4250 REM - LAGRANGIAN INTERPOLATION 3¥KAKAKAKKANKKKKAKK KKK KK
4260 FOR J=1 TO N1

4270 FOR K=1 TO N1

4280 M(J,K)=0

4290 NEXT K

4300 NEXT J

4310 REM - CALCULATES VALUES OF X-X1 ETC XXRKXHAKFKKKKKKIOKK
4320 REM - & STORES THEM IN MATRIX M

4330 FOR J=1 TO N1-1

4340 FOR K=J TO N1-1

4350 M(J,K)=A1-A(K+1)

4360 NEXT K

4370 NEXT J

4380 FOR K=1 TO N1-1

4390 FOR J=K+1 TO N1

4400 M(J,K)=A1-A(K)

4410 NEXT J

4420 NEXT K

4430 REM - CALCULATES NUMERATOR TERMS K3OKKKKIOKIKKKKKKKKKK KK
4440 REM - & STORES THEM IN MATRIX N

4450 FOR J=1 TO N1

4460 N(J)=1

4470 FOR K=1 TO Ni-1

4480 N(J)=N(J)*xM(J,K)

4490 NEXT K

4500 NEXT J

4510 B1=0

4520 REM - EVALUATES EACH TERM & ADDS THEM OKXKIKIOKKKAKIOKNK KK
4530 FOR J=1 TO N1

4540 B1=B1+B(J}*N(J)/D(J}

4550 NEXT J

4560 RETURN

4570 REM KKK KKK KK KKK K K KKK 0K K 3K 3Kk 3 5 o K0k 3K o oK e sk ok ok sk ok ok sk ok sk ok sk sk sk ok
43580 REM ~ FIRST SUBROUTINE OF RELATIVE VOLATILITY METHOD
4590 REM - RELATIVE VOLATILITY VALUES sckiokskokdoksofororskkskokdok
4600 V1=1

4610 Z1=0



4620 FOR J=1 TO N1

4630 IF A(J)=1! THEN 48680

4640 IF A(J)=0 THEN 4700

4650 V(J)=A(J)*(1-B(J)}/(B(J)*(1-A(J)))
4660 V1=V1%V(J)

4670 GOTO 4720

4680 J1=J

4690 GOTO 4710

4700 J2=J

4710 Z1=71+1

4720 NEXT J

4730 V2=V1~(1/(N1-71))

4740 FOR J=1 TO N1

4750 FOR K=J TO Ni1-~1

4760 IF J=J1 THEN 4820

4770 IF J=J2 THEN 4820

4780 IF V(J)>V(K+1) THEN 4800

4790 GOTO 4820

4800 NEXT K

4810 GOTO 4830

4820 NEXT J

4830 PRINT "HIGHEST VALUE OF REL VOL=";
4840 PRINT USING "##.##";V(J)

4850 FOR J=1 TO N1

4860 FOR K=J TO Ni-1

4870 IF J=J1 THEN 4940

4880 IF J=J2 THEN 4940

4890 IF V(K+1)=0 THEN 4920

4900 IF V(J)<V(K+1) THEN 4920

4910 GOTO 4940

4920 NEXT K

4930 GOTO 4950

4940 NEXT J

4950 PRINT "LOWEST VALUE OF REL VOL=";
4960 PRINT USING "##.#8";V(J)

4970 PRINT "MEAN VALUE OF REL VOL=";
4980 PRINT USING "##.##";V2

4990 RETURN

5000 REM 50Kk K ROK KK KKK K KK K R OK K K ¢ OK K K K KKK o KK 3 K KK Ko sk ok ok oK
5010 REM - SECOND SUBROUTINE OF RELATIVE VOLATILITY METHOD
5020 REM — COMPOSITION VALUES kKR cdokokok koK sk ok sk sk sk ok sk ok sk kKoK K K
5030 B1=Al1/(V2%(1-Al)+Al)

5040 RETURN

5050 END

EXAMPLE 4.2

Use the above computer program to repeat Example 4.1. It will be seen that
answers are not precisely the same. This may be attributed to inaccuracies in
the graphical construction and in the interpolation procedure.



LOAD"A:DIST1

Ok

RUN

TO USE DATA FOR BENZENE/TOLUENE 101.325KPA
INPUT 1% 2

NUMBER OF DATA PAIRS? 14

INPUT Y, X

? 1,1

.98,.95

.96, .89

.9,.81

.77, .61

.63, .44

.51,.33

.46, .28

.39,.23

.2,.11

.18, .097

.13, .0867

. 078, .039

? .025,.012

HIGHEST VALUE OF REL VOL= 2.97
LOWEST VALUE OF REL VOL= 2.02
MEAN VALUE OF REL VOL= 2.20
DO YOU WANT TO CHECK DATA? TYPE Y OR N? Y

40 40 ¢ D D D ) ] D D Y D

INPUT VALUE OF VAP COMP Y? .97

BY RELATIVE VOLATILITY METHOD X= 0.94

BY LAGRANGE METHOD X= 0.92

DO YOU WANT TO CHECK DATA? TYPE Y OR N? N

LAGRANGIAN INTERPOLATION OR RELATIVE VOLATILITY

METHOD, TYPE LI OR RV? LI
FEED, OVERHEAD AND BOTTOM COMPOSITIONS AS

MOL FRACT OF MORE VOLATILE COMPONENT? .38,.973,.045

X= Y= PLATE NO
0.928 0.873 1
0.831 0.928 2
0.736 0.831 3
0.546 0.736 4
0. 369 0.546 5
0.218 0.369 8
0.123 0.218 7
0.083 0.123 8
0.032 0.0863 9

AT TOTAL REFLUX
NUMBER OF PLATES REQUIRED=8. 58

Q VALUE? 1.64

AT Q VALUE OF 1.64 MINIMUM REFLUX RATIO= 1.31

FOR MINIMUM REFLUX RATIO AT ANOTHER Q VALUE
TYPE MR? M

115
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REFLUX RATIO,Q VALUE,FEEDRATE? 2.1,1.64,.138

X= Y= PLATE NO
0.928 0.973 1
0.852 0.942 2
0.804 0.891 3
0.777 0.859 4
0.751 0.840 5
0.721 0.823 6
0.678 0.802 7
0.817 0.773 8
0.539 0.732 9
0.477 0.879 10
FEEDPLATE
0. 442 0.633 11
0. 407 0.587 12
0.3861 0.538 13
0.294 0.475 14
0.227 0.385 15
0.175 0.293 16
0.125 0.222 17
0.081 0.154 18
0.047 0.084 19
0.026 0.048 20

FEEDRATE= .13

DISTILLATE= 4.981681E~02

RESIDUE= 8.818319E-02

NO. OF PLATES=19.10

TYPE RR FOR REPEAT RUN BY SAME METHOD? N

TYPE RC FOR REPEAT CALCULATION FROM START? RC

LAGRANGIAN INTERPOLATION OR RELATIVE VOLATILITY
METHOD, TYPE LI OR RV? RV

FEED, OVERHEAD AND BOTTOM COMPOSITIONS AS

MOL FRACT OF MORE VOLATILE COMPONENT? .38,.873,.045

X= Y= PLATE NO
0.842 0.973 1
0.882 0.942 2
0.772 0.882 3
0.607 0.772 4
0.412 0.807 5
0.242 0.412 6
0.127 0.242 7
0.062 0.127 8
0.029 0.062 9

AT TOTAL REFLUX
NUMBER OF PLATES REQUIRED=8.51

Q VALUE? 1.64

AT Q@ VALUE OF 1.64 MINIMUM REFLUX RATIO= 1.58
FOR MINIMUM REFLUX RATIO AT ANOTHER Q VALUE
TYPE MR? M
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REFLUX RATIO,Q VALUE, FEEDRATE? 2.1,1.64,.138

X= Y= PLATE NO
0.942 0.973 1
0.901 0.952 2
0.847 0.924 3
0.782 0.888 4
0.711 0.844 5
0.639 0.795 6
0.573 0.747 7
0.517 0.702 8
0.473 0.664 9
FEEDPLATE
0.435 0.629 10
0.383 0.577 11
0.318 0.5086 12
0.245 0.417 13
0.175 0.318 14
0.115 0.222 15
0.068 0.140 16
0.037 0.078 17

FEEDRATE= .138

DISTILLATE= 4.981681E-02

RESIDUE= 8.818319E-02

NO. OF PLATES=186.75

TYPE RR FOR REPEAT RUN BY SAME METHOD? N
TYPE RC FOR REPEAT CALCULATION FROM START? N
Ok
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PROBLEMS - CHAPTER 4

1. Repeat example 4.2 using program DIST1, and assuming that the feed enters
the tower as a vapour/liquid mixture containing 80 wt% liquid and 20 wt% vapour.

2. Use the data for acetone/acetic acid, and ‘program DIST1, to solve the
following problems:

(a) Determine the number of plates required at total reflux, and the minimum
reflux ratio required, if a distillation column operates with feed, distillate
and residue compositions of 40 mol%, 97.5 mol%, and 5 mol% acetone respectively.

(b) A still column for the separation of an acetone/acetic acid mixture is
operated as an enriching column only. The feed contains 30 mol% acetone, and
enters the bottom of the column as a saturated vapour. If a reflux ratio of
4 is used, determine the number of ideal plates required in order to produce a
distillate containing 96 mol% acetone. What is the composition of the liquid
leaving the bottom plate?

Verify your answer by carrying out the McCabe Thiele construction.

Equilibrium Data forAcetone/Acetic Acid
at 1 atm
Mo1% Acetone Temgerature
In Tiquid In Vapour C
0 0 118.1
5 16.2 110.0
10 30.6 103.8
20 55.7 93.1
30 72.5 85.8
40 84.0 79.7
50 91.2 74.6
60 94.7 70.2
70 96.9 66.1
80 98.4 62.6
90 99.3 59.2
100 100 56.1

Source: Reprinted with permission from G.G. Brown & Others, Unit Operations,
John Wiley & Sons Inc., copyright 1950 (c)

3. Write a program to calculate bubble and dew points of multicomponent mixtures

from:

(a) Equilibrium constants;
(b) Vapour pressures.



119

4. Write a program for a single stage flash of a multicomponent mixture:

(a) Isothermal
(b) Adiabatic

5. Write a program for a separation of multicomponent mixtures in a multi-stage
colum (5), (6), (11):

(a) With total condenser
(b) With partial condenser

6. Modify the McCabe-Thiele program given to handle stripping, with and without
live steam.
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Chapter 5

LINEAR PROGRAMMING
(A) THE SIMPLEX METHOD

Linear programming is concerned with finding solutions to problems about
optimum allocation of resources, or production facilities, blending of products,
etc. Generally these are Tooked at from the view point of finding the solution
of lowest cost or greatest profitability. The mathematics of these methods were
worked out by American economists between about 1945 and 1955 (1)

The term Tinear programming refers not to computer programming (although of
course this is widely used in connection with the technique), but to the
preparation of programs or plans concerning the future distribution of resources.
The mathematical expressions employed can be expressed in linear form.

The following simple example demonstrates the linear nature of the
relationships and also gives the basis of the solution method.

EXAMPLE 5.1
A plastics moulder produces two different qualities of moulded article:

Standard Quality - made from a mix consisting of
30% copolymer and
70% homopolymer

Super Quality - made from a mix consisting of
60% copolymer and
40% homopolymer

Supplies of the two constituent materials are available as follows:

Copolymer - 12 tonnes per week at $1900 per tonne
Homopolymer - 15 tonnes per week at $1450 per tonne

Maximum production capacity of the plant is 25 tonnes per week.

If the profit on each tonne of standard quality product is $700 and on each
tonne of super quality is $1000, calculate how much of each quality should be
manufactured in order to maximise the profit.

The above conditions and constraints can be represented mathemetically as
follows:

Let x, and x, represent the tonnes of standard and super grades respectively
to be produced each week.

Then the profit z = 700x, + 1000x.

The total production cannot be greater than 25 tonnes per week, hence

X, t Xp <25
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The quantity of copolymer to be used per week is

0.3x, + 0.6x. <12

The quantity of homopolymer to be used per week is
0.7x, + 0.4x, <15

Since only two variables are involved in each of the above constraints, they
can all be represented on the one graph. If we replace the inequalities by
equalities, we see that they are all the equations of straight lines. These
are shown on Figure 5.1. To comply with all the constraints operating
conditions must lie on, or to the left of the lines denoted by the points B, C,
D, E. These points are known as extreme points (3). The other extreme point
which Ties on the boundary of feasible solutions is the origin,Point A.

5019

X2 (super grade, tons/week)

0 10 20 30 40 50
X: (standard grade, tons/week)
Figure 5.1. Polymer Blending

If we read the co-ordinates of the points of intersection B, C, D, E, we can
evaluate the profit obtainable for each case, as follows:

Operation at point B: production of 20 tonnes per week of super grade only
Profit = 20 % 1000 = $20,000
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Operation at point C: production of 15 tonnes per week of super grade

and 10 tonnes per week of standard
Profit = 15 % 1000 + 10 % 700 = $22,000

Operation at point D: production of 8 tonnes per week of super grade and

17 tonnes per week of standard
Profit = 8 % 1000 + 17 % 700 = $19,900

Operation at point E: production of 21.4 tonnes per week of standard grade

only
Profit = 21.4 x 700 = $14,980

Operation along the CD line is obviously best, because maximum production is
possible. Is the profitability at C the best that can be obtained? It is
easily demonstrated by evaluating profits for other points along CD, that
operation at point C is the most profitable.

The graphical technique can of course deal only with constraints involving
two variables. Analogously, problems involving three variables could be
handled by a three dimensional technique involving the intersection of plane
surfaces. Larger numbers of variables can only be handled by mathematical
methods involving the use of matrices.

THE SIMPLEX METHOD

The best known technique of linear programming is the Simplex method. It
employs the variables in a matrix form and is based upon the observation that
the optimum solution occurs at one of the 'extreme points’ mentioned in Example
5.1. Thus referring to Figure 5.1, the Simplex method would commence at the
origin (the first extreme point of the region of feasible solutions). It would
then evaluate points B, C, D, etc. in turn until the optimum had been reached.

No attempt will be made here to explain or justify the method; many excellent
tests are available which do this (1), (2), (3), {4). The mechanics of use of
the method only will be given, as follows:

The basic form of the Simplex method involves the maximisation of a linear
algebraic equation such as

Z = CiXy + CaXz * .... CaXn
z is called the objective function; the values of ¢ are called the cost vector,
and the above equation can be written in matrix notation as

Z=C'X
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There can be any number i of constraints, and these can be equality
constraints or inequality constraints. The Simplex method only considers cases

where the constraint is bounded by a maximum value, i.e.

ajiXy t @iz2Xz t .... @inXa< bi

(cases involving minimisation of the objective function, negative values of b
and minimum value constraints will be briefly discussed later). This equation
can be written in matrix notation as

AX<B where

A is the constraint matrix;
B is the resource vector;
X is the variable vector.

Furthermore, we only consider positive values of the x variables, i.e. in
matrix notation

x>0

The problem written in the above way is said to be 'standard form'.

The next step is to rewrite the problem in 'canonical form' which involves
rewriting the constraints as equalities. This is done by introducing into each
equation a 'slack variable', thus
AjiX1 T dizXz * ..., QjpXp t Xn+m = b;

Here the subsript n indicates the number of variables present in the
constraints, and the subscript m indicates the number of constraints.

The various equations are then arranged in a table, also referred to as a
‘tableau’. Suppose for instance that the problem to be maximised is as follows:

Maximise Z = CiX; + CaXy + C3Xs
subject to a;iXy * aizX2 * @i1sXs <b,

8z21X1 * 822Xz t 823Xs < b2
X, >0 Xz> 0 Xs >0
Slack variables are introduced into the constraint inequalities so that they
become
Ap2Xy t @12X2 t A1sX3 * X4 = by

Az1X; t @22Xz * 823Xs * X5 = b,

The tableau is then drawn up as shown in Figure 5.2.
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Variable

Variables Coefficients of the

\\\\\7 Variables

Basic X1 X2 X3 Xa Xs

Variables — Res Val
Y:xl. Q1,1 A1,z @i, gy b17\/’ ource Values

Departing X Az,1  dz,2 0 1 b,
Variable +—
=T1 —Ca -Cs ‘\\g 0 0

Ly
(-- Objective Row \TL\Pivot

Entering

Figure 5.2. General form of the Simplex Tableau.

The value 1 is ascribed to each of the slack variables; each slack variable
is also Tisted in the left hand column in which position it is referred to as
a 'basic variable'. For its entry into the tableau the equation of the objective
function is rewritten as:

-C1Xy = Ca2Xz2 = C3Xz t 2z =0

In this form the coefficients appear in the bottom row, the value of z
appearing in the right hand column. The initial value of z is zero,
corresponding to the initial feasible solution (for example as seen to occur at
the origin in Figure 5.1).

A new tableau is then constructed by the manipulation known as pivoting. To
do this the 'pivotal column' and 'pivotal row' must first be established. The
pivotal column is that above the most negative element in the objective row.

We will suppose this to be -c;. Then the pivotal column is that below variable
X3.

To find the pivotal row, 'e ratios' are determined for each coefficient of x

in the pivotal column. In this case, the o ratios are:

0. = byi/as,s
82 = ba/az.s

The smallest positive value of 6 establishes the location of the pivotal row.
Thus if 6, is the smallest value then the pivotal row will be that containing
bz.
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The intersection of the pivotal row and the pivotal column is known as the
'pivot'. Should there be no positive elements in the pivotal column, then no
optimum solution to the problem is possible.

The variable Tisted at the top of the pivotal column is known as the
'entering'variable'; the basic variable in the pivotal row is known as the
'departing variable'. In this case, xs is the entering variable and x5 is the
departing variable.

The first step in drawing up the new tableau is to write the name of the
entering variable in the space previously occupied by the departing variable in
the column of basic variables.

Next, new values are entered in the pivotal row, by dividing the old vaiue
by the value of the pivot( az,sin this case). The element in the pivot position
now has value 1 in the new tableau. Suitable values of the new pivotal row are
then added to or subtracted from each other row, so that all the other elements
in the pivotal column will have value zero. The new tableau is shown in Figure
5.3.

X1 Xa Xa| Xg Xs
Xg di,1 = A1,3 % 82, Q1,2 = 1,3 % 82,2 011 —di,s by - b: * a.,s
8253 8253 d2y3 22,53
X3 az, Az, 110 1 b2
dz2,3 dz,3 da,3 dz,3
-Ci t Cs3 % 8z, -C2 *+ ¢, % da,2 010 Cs C3 * pi
dz,3 dz,3 dz,3 2,3

Figure 5.3. The new form of the tableau shown in Figure 5.2, after pivoting
about the element a.,»

This tableau provides another feasible solution to the problem, which will
have a larger value than the preceding solution. In this case, the solution
would be:

Z = Cy % b, the values of
a2)3

X, and X, being zero, and that of x; being b,/a.,s

The new tableau in its turn is subjected to the above procedure. The most
negative element in the objective row is identified and the pivoting procedure
is carried out to create another tableau. Where two elements in the objective
row have the same negative value, it is unimportant which is chosen for the
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pivoting step. If no element in the objective row has a negative value, then
the solution given by the tableau is the optimum one and the procedure is
completed. An.example of the technique follows:

EXAMPLE 5.2

Carry out the previous problem by the Simplex method. First we express the
problem in standard form:Maximise z = 700x,+ 1000x, (the objective function).

Subject to the restrictions:
Xy + Xz <25

0.3x, + 0.6x, < 12

0.7x, + 0.4x, < 15

X1 > 0 X2 > 0

Next we rewrite the restrictions as equalities, introducing slack variables;

they now are in canonical form:
Xy + Xz + x5 =25

12

0.3x, + 0.6x; + X,

n

0.7x, + 0.4x, + X5 15

We are now in a position to draw up the first tableau:

Xq Xa X3 Xy Xs
X3 1 1 1 0 0 25
Xa 0.3 {llb 0 1 0 12
Xs 0.7 0.4 0 0 1 15
-700 -1000 0 0 0 0

This is our first feasible solution, corresponding to the origin on

Figure 7.1 (point A), i.e.

1l

X. = 0 tonnes/week
Xz = 0 tonnes/week,
Profit, z =0
By inspection, the entering variable is x, since the value below it in the
objective row (-1000), is the most negative. The column below x. is the pivotal

column.
Next we identify the departing variable by determining the ¢ ratios for the

pivotal column. The values are:
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25/1 =25
12/0.6 = 20
15/0.4 = 37.5

12/0.6 is the lowest value and hence x, is the departing variable. The row
in which x, 1s seen as a basic variable is now the pivotal row. The
intersection of the pivotal column and row is circled to identify it. This is
called the Pivot.

Yalues in the pivotal row are now multiplied by 1/0.6, so as to bring the
value of the pivot to 1.

Suitable multiples of the new pivotal row are now added to/subtracted from
all other rows so that the element in the pivotal column, in each of these
rows is zero.

Thus we obtain the next tableau:

X, Xa Xa Xq Xs
Xs QQ 0 1 -1.66 0 5
X2 0.5 1 0 1.66 0 |20
Xs 0.5 0 1 -0.66 1 7
-200 0 0 1660 0 | 20,000

This is our next feasible solution, corresponding to point B on Figure 5.1,

i.e.
x, =0
X, = 20 tonnes/week,

Profit, z = $20,000

Again we identify the pivotal column, which this time is that under x, ,
the value in the objective row being the most negative (-200). Calculations of
6 values for this column give

5/0.5 = 10
20/0.5= 40
7/0.5 = 14

10 is the smallest value and so the departing variable is xs. The
intersection of the pivotal column and pivotal row is circled. The pivoting
step is again carried out yielding the next tableau:
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X1 X2 X3 Xq Xs
X1 1 0 2 -3.32 0 10
Xz 0 1 -1 3.32 0 15
Xs 0 0 -1 1.0 1 2
0 0 400 664 0 22,000

This is our optimum solution, since there are no negative values in the
objective row. It corresponds to point C on Figure 5.1, i.e.

x, = 10 tonnes/week
Xz = 15 tonnes/week,
Profit, z = $22,000

Computer Solution of Linear Programming Problems by the Simplex Method

The program which follows reproduces exactly the steps of the Simplex
method just described. It is based upon the already stated assumptions namely;
there are some negative elements in the objective row; the constraints are all
of the type <; the right hand side of each is positive.

>
—

[
~—
—

[}
~—

A(d,K) Coefficients of the B
variables

Resource Values

- Basic variables
Coefficients of
the variables

-t
gl —

C(K) Objective Row

Figure 5.4. The relationship between program nomenclature and the tableau.
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LNPRG1.BAS

Start

Input

Process

e

/
Print

Process

Opt Yes
sol

No

Process

Process Print

l End




240
250
260
270
280
280
300
310
320

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
550
580
570
580

600
610

REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM -

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

HOK KKK K K KK 3K 2K K 3K 3K KK K K 3K 3K S K K KK K K K 3K oK 3K KK K 3K K ok 3K K oK 3K K 3K K oK K K K

- PROGRAM LNPRG1.BAS

~ LINEAR PROGRAMMING SIMPLEX METHOD

- NOTE: RHS OF CONSTRAINTS MUST BE POSITIVE

- OBJECTIVE EQUATION MUST CONTAIN SOME POSITIVE

-~ COEFFICIENTS. ALL CONSTRAINTS MUST BE OF TYPE<=

-~ PROGRAM NOMENCLATURE

- A(J,K)} -~ Coefficients of the K variables in the
J constraints (the body of the tableau)

- B({(J) — The resource values, the right hand
side of each constraint (elements of
the right hand column of the tableau)

- C(J} ~ The elements of the objective row

- C1 - The subscript number denoting the
pivotal column

- N1 - Number of variables in the objective
function

- N2 ~ Number of restrictions

- O(J} - Coefficients of the variables in the
objective function

- P1 - Reciprocal of the value of the pivot

- P2,P3 - Used in bringing values in the pivotal
column to zero

- R1 — The subscript number denoting the
pivotal row

- X(J) - The basic variables (elements of the

left hand column of the tableau)
-~ PROGRAM DESCRIPTION
- LINES 1000 - 1300 Matrices likely to be greater
~ in size than the default value of 10 are declared
~ at line 1000;coefficients of the objective
- function are entered (lines 1010 - 1060} and
- subsequently the signs are changed (lines 1270 -
- 1300).
~ The number of restrictions, the values of the
- coefficients and the resource values are then
- entered (lines 1070 - 1230). Note that for each
- restriction, a number is allocated to a slack
- variable (lines 1240 - 1260), and a value of 1
- entered into the appropriate part of the table at
- line 1150
- LINES 1330 - 1460 The first tableau is printed.
- Figure 5.5 displays the relationship between
the nomenclature of the program and the tableau
- While debugging the program, line 2240 read "GOTO
- 1330" so that the tableau was printed out at each
- iteration
- LINES 1500 ~ 1930 The test for an optimum
- solution, namely the absence of negative values in
- the objective row, is first made (lines 1500 -
- 15860). Next the pivotal column is located by
~ discovering the most nedative value in the
- objective row (lines 1590 - 1680). The test for
- a finite optimum, namely the presence of some
- positive entries in the pivotal column, is next
~ applied (lines 1720 - 1770). Finally the
~ pivotal row is located by finding the smallest
- value of theta ratio in the pivotal column
- {lines 1800 - 1880); the coordinates of the pivot
-~ are ascribed to the variables Cl1 and R1l, and the
- values are printed out (lines 18900 - 1930).



620
630
840
850
660
870
680
690
700
710
720
730
740
750
760
770
780
790
800
810

REM - LINES 1960 - 2210 In this segment the pivoting
REM - procedure is carried out. First, the entries in
REM - the pivotal row are divided by the value of the
REM - pivot (lines 1960 - 1990); next the new values of
REM - the pivotal row are subtracted from the values of
REM - each of the other rows in turn, an appropriate
REM - number of times, so that all other elements in the
REM - pivotal column have value zero

REM - This is done in two stages, the first being for
REM - rows above the pivotal row (lines 2000 - 2080),
REM - the next for rows below the pivotal row (lines
REM - 2090 - 2160). Finally the same operation is

REM ~ carried out on the objective row (lines 2170 -
REM - 2210)

REM - LINES 2240 -~ 2300 The program then returns

REM - to line 1460 for a further iteration (line 2240)
REM ~ As the tests at lines 1500 - 1560 and 1720 to

REM ~ 1770 determine, the program terminates, printing
REM -~ the appropriate message (lines 1550 & 17860)

REM k3K sk ROk 5K K OK K 5K 3 ok K KOK 3K 5K K 3 K K 3K 3 ok K Kk K K KK 3K K OK KK K oK 5K K 3OK K K KKK K K

1000 DIM A(40,40),B(40),C(40),0(40),X(40)

1010
1020

PRINT "NUMBER OF TERMS IN OBJECTIVE FUNCTION"
INPUT N1

1030 PRINT "COEFFICIENTS OF X1 TO X";N1

1040
1050
1060

FOR J=1 TO N1
INPUT O(J)
NEXT J

1070 PRINT "NUMBER OF RESTRICTIONS";

1080
1080
1100

INPUT N2
FOR J=1 TO N2
PRINT "RESTRICTION";J

1110 PRINT "COEFFICIENTS OF X1 TO X";N1

1120
1130
1140
1180
1180
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

FOR K=1 TO N1

INPUT A(J,K)

NEXT K

A(J,J+K~-1)=1

PRINT "RESOURCE VALUE";

INPUT B(J)

PRINT "INPUT Y TO CONTINUE ELSE N";
INPUT A%

IF Ag="Y" THEN 1230

PRINT "INPUT DATA AGAIN"

GOTO 1100

NEXT J

FOR J=1 TO N2

X(J)y=N1+J

NEXT J

K=-1

FOR J=1 TO N1+N2

C(J)=Kx0(J)

NEXT J

GOTO 1460

REM  5010K AR AR KA AHOK KA HAOK K KKK K AR KK A KK ok A A A Kok Aok ok koK
REM — PRINT THE TABLEAU ¥k ok ook ik Hokok Kok sk KIok dok ok K
FOR J=1 TO N2

PRINT X(J);"";

FOR K=1 TO N1+N2

PRINT A(J,K);

NEXT K

PRINT "i";B(J)

NEXT J
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1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1580
1800
1610
1820
1630
1640
1650
1660
1670
1680
1680
1700
1710
1720
1730
1740
1750
17680
1770
1780
1780
1800
1810
1820
1830
1840
1880
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1870
1980
1990
2000
2010

PRINT " ;

FOR K=1 TO N1+N2

PRINT C(K);

NEXT K

PRINT "!";C(N14N2+1})

PRINT "Z=";C(N1+N2+1)

REM K5Ok AHOK oK KK oK K 53K 35K 3 KK 3K K 3K K K 5K R O M 3K KK K oK oK oK ok K K ok ok ok
REM - TEST FOR OPTIMUM SOLUTION (NO NEGATIVE VALUES

REM — IN OBJECTIVE ROW) kil ok ook kR dok dokRokskolor ok dok ok
FOR K=1 TO N1+N2

IF C(K)>=0 THEN 1540

IF ABS(C(K)}<.0000001 THEN 1540

GOTO 1590

NEXT K

PRINT "OPTIMAL SOLUTION"

GOTO 2250

REM ook sk sk ok ook sk ok ok Kok ke sk okosk e sk s ok Ok 3R 0k SKOK 0K 30K KK oK KKK R 30K KK KKk R Kk
REM —~ FIND PIVOTAL COLUMN skKX¥RRKACK KKK KRR K KAOK KKK KK Kk KK
N4=N4+1

IF N4>50 THEN 2250

FOR K=1 TO Ni+N2-1

IF C(K)>=0 THEN 1680

FOR N=1 TO N1+N2-K

IF C(K)<=C(K+N) THEN 1660

GOTO 1680

NEXT N

GOTO 1700

NEXT K

RIEM  skesk sk sk sk sk sk 3 i oK 30K oK 3k ok ok sk ki kol ik ok ik ok sk ok R Sk sk oketok ek
REM - TEST FOR FINITE OPTIMUM (SOME POSITIVE ENTRIES IN
REM —~ PIVOTAL COLUMN askokokokok ok 3R 30K 3K HOK FOCKOK K AR RIOR Bk Ak K okok ok &
FOR J=1 TO N2

IF A(J,K)<=0 THEN 1750

GOTO 1800

NEXT J

PRINT "NO FINITE OPTIMAL SOLUTION"

GOTO 2250

REM kKoK 3ok ok 3k oK Ok 33Ok oK K 5K ok 3k 305K 3 K ok oK k3K ik kKK 3K kK ok sokokeskokosiok sk kokk
REM — FIND PIVOTAL ROW XXKkKHOKKKKKKIKKKRKKKKHAAKKKAA KKK
FOR J=1 TO N2-1

IF A(J,K)<=0 THEN 1880

FOR N=1 TO N2-J

IF A(J+N,K)<=0 THEN 1860

IF B(J)Y/A(J,K)<=B(J+N)/A(J+N,K) THEN 1860

GOTO 1880

NEXT N

GOTO 1890

NEXT J

X(Jy=K

C1=K

Ri=J

PRINT “PIVOTAL ROW=";;J

PRINT "PIVOTAL COL' WN=";;K

REM stk sk ok ok K oK ok 3k oK oK sk i Aok Kok ok o o 3K 3Ok SOK KK 3K 3K K0K K 3K KK 3K OK IOK KK KK ok K
REM - PIVOTING SEGMENT ¥XKkKKakRAAKKAKKKAARKKAAKAKA KKK KK
P1=1/A(R1,C1)

FOR K=1 TO N1+N2

A(R1,K)=A(R1,K)*P1

NEXT K

B(R1)=B(R1)*P1

FOR J=1 TO Ri-1
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2020 IF A(J,C1)=0 THEN 2080

2030 P2=A(J,Cl)/A(R1,C1)

2040 FOR K=1 TO N1+N2

2050 A(J,K)=A(J,K)-A(R1,K)*P2

2060 NEXT K

2070 B(J)=B(J)-B(R1)%P2

2080 NEXT J

2090 FOR J=R1+1 TO N2

2100 IF A(J,C1)=0 THEN 2160

2110 P2=A(J,C1)/A(R1,C1)

2120 FOR K=1 TO N1+N2

2130 A(J,K)=A(J,K)~A(R1,K)*P2

2140 NEXT K

2150 B(J)=B(J)-B(R1)%P2

2160 NEXT J

2170 P3=C(C1l)/A(R1,C1)

2180 FOR K=1 TO N1+N2

2190 C(K)=C(K)-A(R1,K)*P3

2200 NEXT K

2210 C(N1+NZ2+1)=C(N1+N2+1)-B(R1)*P3

2220 REM koK skokok 3ok ok ok koK ook SOk SKOK 3K KK 2K oK K 30K 30K 5K OK KK 0K JOK KR OK KKk koK
2230 REM - END OF PIVOTING SEGMENT ok¥kikaciokokk ko ok kdordok
2240 GOTO 1460

2250 FOR J=1 TO N2

2260 IF X(J)>N1 THEN 2280

2270 PRINT “COEFFICIENT OF X";X(J);"=";B(J)
2280 NEXT J

‘2290 PRINT "VALUE OF OBJECTIVE IS";C(N1+N2+1)
2300 END

EXAMPLE 5.3

Solve the following problem using the above computer program:

A fertiliser manufacturer markets three grades of fertiliser made from
mixtures of potassium nitrate, calcium phosphate and ammonium sulphate. The
mixture ratios and profit figures are tabulated below. For next weeks
operations the stocks of components held are: nitrate 70 tonnes; phosphate
60 tonnes; sulphate 30 tonnes. Determine how the stocks should be used so as
to maximise the profit.

Nitrate Phosphate Sulphate Profit
Grade A 57% 43% - $350/ ton
Grade B 57% 29% 14% $300/ ton
Grade C 29% 29% 42% $250/ ton
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Let the weights of grades A, B & C produced be x,, x», and xs respectively.
Then profit z = 350x, + 300x, + 2501,

The constraints are:

Nitrate - 0.57x, + 0.57, + 0.295; < 70
Phosphate - 0.43x; + 0.29xz + 0.29x; < 60
Sulphate - 0.14x, + 0.42x5; < 30

These figures are entered into the program; the values of x, and x; obtained

are easily shown to meet the constraints, i.e.

wt nitrate used = 0.57x, + 0.29x;
0.57 x 86.466 + 0.29 x 71.428
70.00 tonnes

0.43 x 86.466 + 0.29 x 71.428
57.89 tonnes

wt phosphate used

wt sulphate used = 0.42 x 71.428 = 30.00 tonnes
30.00 tonnes

LOAD"A:LNPRG1
Ok

RUN

NUMBER OF TERMS IN OBJECTIVE FUNCTION
? 3

COEFFICIENTS OF X1 TO X 3
? 350

? 300

? 250

NUMBER OF RESTRICTIONS? 3
RESTRICTION 1

COEFFICIENTS OF X1 TO X 3 INPUT Y TO CONTINUE ELSE N? Y
? .57 Z= 0

? .57 PIVOTAL ROW= 1

? .29 PIVOTAL COLUMN= 1

RESOURCE VALUE? 70 7= 42982.46

INPUT Y TO CONTINUE ELSE N? Y PIVOTAL ROW= 3

RESTRICTION 2 “ PIVOTAL COLUMN= 3
COEFFICIENTS OF X1 TO X 3 Z= 48120.3

? .43 OPTIMAL SOLUTION

2 .99 COEFFICIENT OF X 1 = 86.46616
? .29 COEFFICIENT OF X 3 = 71.42858
RESOURCE VALUE? 60 VALUE OF OBJECTIVE IS 48120.3
INPUT Y TO CONTINUE ELSE N? Y Ok

RESTRICTION 3
COEFFICIENTS OF X1 TO X 3
? 0

? .14

? .42

RESOURCE VALUE? 30
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The preceeding simple examples do not do full justice to the power of the
Simplex technique. However, in order to encompass more difficult problems,
modifications to the technique are required.

For instance, it might be a requirement that the objective function be
minimised rather than maximised. This might occur for example in a problem
involving the usage of some constructional material. To do this we instead
maximise the negative of the function. Thus if the objective function is:

Z = CiXy T C2Xa + .... Caxn then we write this problem as: maximise
Z ==C31X;3 - C2Xz = «u.. CnXn

The Simplex method as given above will not work in this case because there
will be no negative values in the bottom row of the tableau.

Or suppose that we need to meet an exact specification. For example, in the
blending of gasolines, close specifications have to be met for both octane
number and vapour pressure. The constraints in such cases could be expressed
as statements of equality. Suppose the physical property of interest P, to be
a simple additive function proportional to the weight fraction of each component
in the mixture. The specified value of the property for the mixture is Ps
Then

Puixy + Poxp + ... Poxa _ p
X1t X2+ .... Xn s
(Py =Pg)x: + (P2 -P)xz* ovv. (Pa=-Pg)xn =0

This equality can be represented by the pair of inequalities:
(Pa-p )X+ (P2 =P )xa+ oo (Pn =P )xn >0

(Pr =P)xa v (P2 =P)x2 + oot (P - pg)Xn 2 O

To conform to the correct canonical form, the first inequality must be
rewritten as:

-(P, - P )Xa - (P2 =P jxz2 - veov (Pp - P )xac 0

We now have a pair of constraints in suitable form for entry into the
tableau. Unfortunately, difficulty will be experienced with selection of the
pivot, as pivotal rows containing a zero in the right hand column will always
be selected.

If a statement of equality contains a positive value on the right hand side,
then when rewritten as a pair of inequalities, one of these will have a negative
value on the right hand side. This is also inadmissible. For the resolution
of these and other difficulties, more advanced methods such as the revised
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Simplex method must be used (3).

EXAMPLE 5.4

The same manufacturer receives an order for 25 tonnes of a mixture which is
to contain 30% nitrate, 30% phosphate and 40% sulphate. He decides to produce
this by mixing appropriate quantities of A,B and C. How much of each should he
use if the profit on the new mixture is $500 per tonne?

Let the weights of A, B and C to be used be x,, X, and x5 respectively.
Then profit z =

(x: + Xz + X3) % 500 - (350x, + 200x, + 250xs)

z = 150x, + 300x, + 250x5;. The constraints are:
Nitrate 0.57x, + 0.57x, + 0.29xs = 0.3 % 25
Phosphate 0.43x, + 0.29x. + 0.29xs = 0.3 % 25
Sulphate 0.14x, + 0.42x5; = 0.4 x 25

The simplex method and the program above, assume not equalities but
inequalities of the form <. Enter the above values and inspect the result.

LOAD"A:LNPRG1

Ok

RUN

NUMBER OF TERMS IN OBJECTIVE FUNCTION
7 3

COEFFICIENTS OF X1 TO X 3

? 150

? 300

? 250

NUMBER OF RESTRICTIONS? 3
RESTRICTION 1

COEFFICIENTS OF X1 TO X 3

? .57

e .57

? .29

RESQURCE VALUE? 7.5

INPUT Y TO CONTINUE ELSE N? Y
RESTRICTION 2

COEFFICIENTS OF X1 TO X 3

? .43

? .29

? .29

RESOURCE VALUE? 7.5

INPUT Y TO CONTINUE ELSE N? Y
RESTRICTION 3

COEFFICIENTS OF X1 TO X 3

? 0

? .14

? .42

RESOURCE VALUE? 10



INPUT Y TO CONTINUE ELSE N? Y
Z= 0

PIVOTAL ROW= 1

PIVOTAL COLUMN= 2

Z= 3947.368

PIVOTAL ROW= 3

PIVOTAL COLUMN= 3

Z= 6224.85

OPTIMAL SOLUTION

COEFFICIENT OF X 2 = 1.257546
COEFFICIENT OF X 3 = 23.39034
VALUE OF OBJECTIVE IS 6224.85

Ok

It will be seen that the quantities of grades A and C to be
24.65 tonnes, and not 25.
Concentration of nitrate in the mix =

0.57 x 1.258 + 0.29 % 23.390
24.65

7.50 _
SH 65 0.304

Concentration of phosphate in the mix

0.43 % 1.258 + 0.29 % 23.390
24.65
.32

75 = 0.297

N~

Concentration of sulphate in the mix

0.42 % 23.390
24.65

9.82 _
5565 " 0.399

In order to meet the specification exactly, a more advanced
method must be used.
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(B) THE TRANSPORTATION PROBLEM

This is one of several special classes of linear programming problem. It
is concerned with the transportation of goods between. a number of supply and
delivery points. Having specified the journey costs for each possible route,
the problem is to determine the allocation of routes which satisfies the demand
at minimum cost of transportation.

The solution method is based upon the assumption that supply and demand are
equal. Where demand exceeds supply, no solution is possible and the problem
must be reformulated. The situation in which supply exceeds demand can be
handled by the allocation of dummy delivery points having zero transportation
costs.

The problem can be formulated for solution by the Simplex method (3).
However, it is more usual to employ a special method which should take Tess
computing time since it employs a much smaller matrix. This method will be
briefly described below, further information being available in books already
cited (1}, (2), (3), (4).

The easiest way to explain the problem and the method of solution, is by an

example.
EXAMPLE 5.5

Three factories (supply points) A, B and C produce respectively 500, 500
and 1000 tonnes per week of product. This has to be transported according to
market demand to four warehouses (delivery points)U, V, W, and X. Next week
their requirements are 300, 400, 500 and 800 tonnes respectively. We may
represent these quantities as the supply vector,

s =[500]

500
11000 |

and the demand vector

d ={300]}
400
500

| 800 ]

The journey costs in $/tonne between the various supply and delivery points
are given in the following matrix (the cost matrix):

c ={4 4 3 1
4 7 7 8
4 5 6 7

How should the supply be allocated so as to satisfy the demand at the
lowest possible cost for transportation?

The first step in the solution procedure is to present the above data in a
tableau (Figure 5.5); units of 100 tonnes are shown.
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Delivery
Point U v W X
O
Suppl &, «—— Demand Vector
Point. M 3 4 5 8
4 4 3 I
A 5 0 0 0 r 5
< A\ /— Journey Costs
4 7 7 \|® (Cost Matrix)
B 5 0 0 2 3
X A
4 5 6 7
C 10 3 —l 3 0
Supply __,} Supplies allocated to the
Vector various routes

Figure 5.5. Tableau for Example 5.5 - the basic solution.

The next step is to allocate as much of the supply as possible to the
cheapest routes taken in turn, in order of increasing costs.

The Towest journey cost is that of route AX ($1/tonne); we allocate all
the supply from point A by this route. The value 5 is entered in the
appropriate square in the tableau. Supply from points B and C only remains to
be considered.

The lowest journey costs from these supply points are for routes BU and CU
($4/tonne). Either might be chosen. We will suppose that route CU is the one
selected; the value 3 is entered in the appropriate square or cell in the
tableau. The remaining supplies are allocated in a similar manner and the
result is also shown in Figure 5.5.

These figures are repeated in Figure 5.6A. The transportation cost for this
allocation =

500%1 + 200%7 + 300x8 + 300x4 + 400x5 + 300x6 = $9,300.

TIs this the cheapest possible allocation? Some sort of test must be
devised which determines whether the lowest cost solution to the problem can be
found. If the Towest cost solution has not been found, then a procedure must
also be devised by which to modify the original solution.

The overall cost is lowered by altering the tableau by one journey at a
time. This alteration is made for one unit of cargo at a time ,though in many
cases involving a manual solution it may be appropriate to make the alteration
for many units of cargo simultaneously.

Each alteration that we make to the tableau must be balanced so that the
supply and demand restrictions are met.
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Figure 5.6. Tableaux for Example 5.5
U v W X
3 4 5 8 C.
4 4 3 t
A5 0 0 0 5 0
-2 =-{ [4] ]
2 7 7 8
B5 o” 0 2 3 7
5 6 7 8
4 5 6 7
¢ 10 3 3 ™3 0 6
4 5 6 7
dj = -2 -1 0 1
Ci
4 4 3 !
0 0 0 5 0
-3 -2 -1 |
4 7 7 8
2’ 0 0 3 7
4 5 6 8
4 5 6 7 7
I 4 5 ™o
4 5 [ 8
dj = -3 -2 -1 1
4 4 3 |
0 0] 0 5
-3 - o} i 0
4 7 7 8
3 0 0 2 7
4 6 7 8
4 5 [ 7
0 4 5 1 6
3 5 6 7
d; = -3 -1 0 1

A - The Basic Solution

after allocation of
supply to the cheapest
routes in turn.

Transportation Cost =
$9,300

B - The first
transposition

Transportation Cost =
$9,100

C - The next and final
transposition

Transportation Cost =
$9,000

Real costs are shown in the top left hand corner of each cell. Fictitious
costs are shown in the bottom right hand corner of each cell. Supply allocated

to that route is shown in the middle of each cell.
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These alterations are made by considering the unused routes. The steps of

the procedure are as follows (see Figure 5.7):

Y
&

<::> Unused route
<<::> Used route

D Route which may be used or unused
prior to the transposition

Figure 5.7. The Transportation Loop

1. An unused route is selected (co-ordinates J, K).

2. A used route is found in the column containing the unused route
(co-ordinates M, K).

3. A used route is found in the row containing the unused route
(co-ordinates J, N).

4. A unit of cargo allocated to route J, N is instead allocated to route

J, K.

5. A unit of cargo allocated to route M, K is instead allocated to route
M, N.

These transpositions, shown in Figure 5.7 are known as a 'transportation
loop'.

How do we select the unused route for the next transposition of the tableau?
Here are three methods:
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Route Selection - Method 1, Fictitious Costs (5)
This method works well on small matrices, but contradictory values of

fictitious costs can be obtained in some cases. It is therefore, unsuited to a
computer solution. However, it will be briefly explained here, and then
employed to complete Example 5.5.

Fictitious cost components ¢, and d; are defined for each route used in a
particular tableau. The sum of these components must equal the actual costs of
each route used in the tableau. Costs for the unused routes are then
calculated using the same cost components. In this case, values of cost will
be obtained which may or may not pe the same as the actual cost for that
particular route.

If the value of fictitious cost obtained for an unused route is greater than
the real cost for that route, then the tableau is not optimal. The unused route
which has been found should be used for the next transposition of the tableau.

Referring again to Figure 5.6A, the journey costs are shown in the top left
hand corner of each cell. Fictitious costs are computed as follows: Assume

dy = 1, then ca must have value 0 since cost of route
AXis 1 (dy Hca=1+0=1). Consequently
Cg =7 since dy = 1 and cost of route BX is 8
dw= 0 since cost of route BW is 7 (7 + 0 = 7)
c¢c = 6 since cost of route CW is 6.

Similarly values dy and dy are found; their values are marked on the
diagram.

The addition of the cost components gives the cost figures shown in the
bottom right hand corner of each cell. It will be seen that for cell BU, the
fictitious cost exceeds the real cost.

We will employ BU as the unused route in the transposition of the tableau.
200 tonnes will be consigned along this route instead of along route BW. To
balance this, 200 additional tonnes will be consigned along route- CW instead of
along route CU. This gives us the tableau shown in Figure 5.6B.

Transportation cost for this allocation of routes = $9,100, a saving of
$200 compared with the previous tableau.

Cost components and fictitious costs are again computed and it is seen that
for cell CX the fictitious cost again exceeds the real cost. A transposition
about this cell yields the tableau of Figure 5.6C.

Transportation cost for this arrangement = $9,000, a further saving of $100.

Cost components and f}ctitious costs are again computed and this time in no
case is the fictitious cost greater than the real cost. This tableau therefore

represents an optimal solution.
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We can express the solution verbally as:

500 tons from point A to point X
300 tons from point B to Point U
200 tons from point B to point X
400 tons from point C to point V
500 tons from point C to point W
100 tons from point C to point X

It should be noted that if route BU had been selected instead of route CU,
at the initial allocation step, then an optimal solution would have been
obtained directly.

Route Selection, Method 2 - Dual Probliem

This method involves another technique of the Simplex method known as the
Dual Problem. It will not be discussed here but is described by Kolman and
Beck (3).

Route Selection, Method 3 - Trial and Error

A11 the possible transpositions of a given tableau, about all the unused
routes, are evaluated and the one giving the Towest cost is selected. This
procedure is followed with successive tableaux until a situation is reached
wherein no further reduction in cost is achieved. This is then, the optimum
solution.

Computer Solution of the Transportation Problem

Route selection by Method 3 above, although more wasteful of computer time
than Method 2, is easier to program requiring no further knowledge of the
Simplex method. It is employed in the program which follows.
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LNPRGZ.BAS

Start

Input

Process
Cheapest Jny
Process

Total Cost

No

T2<T3 Ye
?

rint

A
|\lo

Designation
Total Cost

rint

Bl
N

End

!

Allocate

Process
Cheapest Alt
Total Cost
Process

No

Process
Cheapest Alt




280
270
280
280
300
310
320
330
340
350
360
370

3980
400
410
420

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
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PROGRAM LNPRG2.BAS
THE TRANSPORTATION PROBLEM
PROGRAM NOMENCLATURE

A(J) - Number of cargoes available at supply
point J
B(K} ~ Number of cargoes required at

destination K

C(J,K) Cost of Jjourney from supply point J to
destination K

D(J) - Number of the destination with cheapest
journey cost from origin J

E(J,K) Number of cargoes despatched from supply
point J to destination K

F(J) - Number of cargoes despatched from supply
point J
G(K) - Number of cargoes received at

destination K
H({J,K) Duplicate of Matrix C

L(J)} - Cost of cheapest Jjourney from supply
point J

M(0) - Value of J from which a cargo is
despatched to destination K

N(P} - Value of K to which a cargo is despatched
from supply point J

N1 - Number of supply points

N2 ~ Number of destinations

N3 - Total number of cargoes residing at the
supply points

N4 - Total number of cargoes required at the
destinations

N5 - Number of starting points for a search

S1 - Duplicate of value N1

52 -~ Duplicate of value N2

83 - Value used to bypass print statements

5S4 - Selected value used to bypass print
statements

T2 - Total cost for any given designation
of cargoes

T3 - Lowest value of total cost found in the
previous iteration

V(L) -~ Total cost if alternative rearrangement
L is used in the allocation of a starting
point

W(J,K) Duplicate of Matrix E

X(L) - Value of J used with rearrangement L

Y(L) -~ Value of K used with rearrangement L

PROGRAM DESCRIPTION

This program involves a control segment (lines
3010 -~ 4310) in conjunction with several
subroutines

CONTROL SEGMENT:

LINE 3010 Arrays of more than 10 elements

are dimensioned

LINES 3020 - 3270 Data for the problem is entered
If the total number of cargoes at the supply
proints does not equal the total number required at
the destinations, a message is printed and the
program execution is returned for re-entry of data
(lines 3160 - 3200). This reminder is useful
when a dummy destination has to be allocated

145
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620
630
640
650
660
870
680
690
700
710
720
730
740
750

760 REM -
770 REM -
780 REM -

790
800
810
820
830

850

860 REM -

870

880 REM -

890

900 REM -

910
920

940
980
960
970

980 REM -

990
1000

1010

1020
1030
1040
1080
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

REM -
REM -
REM -
REM -
REM -
REM ~
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -

REM -

REM -

REM -

REM -
REM -
REM -

REM -

REM -

LINES 3280 -~ 3300 In developing the program,

of intermediate values was required. The
facility to do this is retained so that values
may be manually checked

LINES 3310 - 3470 Since the subsequent
manipulations will employ the variables N1 and N2
and the contents of Matrix C, these values are
duplicated. The matrix of Jjourney costs is
printed out if desired

LINES 3480 - 3740 This segment allocates cargoes
to destinations in the same way as described for
the first part of the manual calculation.

Cargdoes are allotted one at a time up to the

total number required (N3 at line 3480). At
each successive iteration within loop L, the
route having the lowest cost is selected. This

selection is carried out in the subroutine
Cheapest Journey (lines 4350 - 4820).
Having selected the cheapest route, the record of
journeys held in Mat E is increased by one (line
3520); the tally of cargoes despatched from the
appropriate supply point is increased by one, and
the value is compared with the number originally
available (lines 3530 -~ 3540)
When all cargoes residing at a given supply point
have been despatched, the journey costs from that
supply point are increased to a very large value
so that no more journeys from that point will be
selected (lines 3550 - 3570). When the required
number of cargoes has been allocated to a
destination, the Jjourney costs to that destination
are increased to a very lardge value also (lines
3580 - 3630). The matrix of selected Jjourneys is
then printed out (lines 3680 - 3740) if required.
LINES 3750 - 3900 The total cost for the
allocation of journeys made at the previous step
is evaluated by subroutine Total Cost (lines 4650
to 4750) and the value printed out if required.
If this allocation of cargoes is the first (line
3780) or if it is cheaper than the previous
allocation (line 3790), then a search is made for
a cheaper allocation. This search commences at
line 3930.
If the latest allocation is the cheapest then
this is indicated (line 3810), the complete
recommended designation of cargoes is printed out
at line 3870 utilising subroutine Designation
(lines 5620 - 5710), the total cost is evaluated
at line 3880 using subroutine Total Cost (lines
4650 - 4750} and printed out, and execution is
terminated (line 3920)
LINES 3930 - 4310 Modifications are made
to the previous allocation of journeys,
in a search for a lower total cost. First,
starting points for the search are allocated.
This is done at line 3940 using subroutine
Allocate (lines 4790 - 4970}. The starting
points found are possible journeys for which no
cargoes have been allocated. The coordinates
of these possible journeys are stored in Mat X &
Mat Y.
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These starting points are then employed to
determine an alternate allocation of cargoes at
lines 3970 - 4200. Each starting point is taken
in turn (lines 4020 - 4040) and all the possible
rearrangements (transportation loops) using that
point are evaluated. This is done at line 4050
using subroutine Cheapest Alternative (lines

5020 - 5580), and subroutine Total Cost at line
4060. At line 4070 the cost of the cheapest
rearrangement based on a particular starting
point is stored as V(L), L beind the

designation of a particular rearrangement.

We now have a number of possible rearrangements,
one for each starting point. Each of these
rearrangements is known to be the cheapest for
its particular starting point. At lines 4140 -
4200 the cheapest of these rearrangements is
selected. The value of L found at this step is
used in statements 4210 - 4310 to reallocate
cargoes and then return program executionto line
3650 for another iteration.

SUBROUTINE CHEAPEST JOURNEY (LINES 4350 - 4820)
This makes the preliminary allocation of cargdoes
by selecting routes one at a time on the basis of
cheapest first. Values of journey costs C{(J,K),
are compared in order to find the lowest in each
row of the matrix (tableau) (lines 4370 - 4470).
This value is ascribed to L{(S) and the column
number (value of K) is ascribed to D(S), S being
the row number (value of J). This allocation

is made for values of S from 1 to S1 (the number
of supply points) within the S loop (lines 4350 -
4510).

The members of the set L(S) are next compared, in
order to find the smallest value (lines 4520 -
4610). The value of N denerated within the
first loop, and the value of S generated within
the second give the required coordinates of the
cheapest Jjourney.

SUBROUTINE TOTAL COST (LINES 4650 - 4750)

This subroutine calculates the cost for a given
allocation of routes and cargoes. The number of
carriers allotted to a given route, E(S,T), is
multiplied by the cost of that particulaer journey
H(S,T), the product being added to the running
total of costs, T2.

SUBROUTINE ALLOCATE (LINES 47390 - 43870)

Possible routes which are not in use are located.
The number of these,N5H, is counted, and the
coordinates of each are stored in Matrices X & Y
SUBROUTINE CHEAPEST ALTERNATIVE (LINES 5020 -
5580) The subroutine starts off with values of
coordinates J & K corresponding to one of the
starting points for a search. These values have
previously been retrieved from Matrices X and Y
at lines 4030 & 4040 and 4210 & 4220.

Coordinates J,K represent an unused route.

Taking destination K first, cargoes allocated to
it from other supply points are found and stored
in Matrix M (lines 51860 -~ 5200). Taking supply
point J next, journeys from it allocated to
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1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3220
3230
3240
3250
3280
3270
3280
3290
3300

REM - destinations other than K are stored in Matrix N
REM - (lines 5210 - 5250). Values of M and N are now
REM - taken in turn, and every possible rearrangement
REM - of journeys about the given starting point (J,K)
REM - is evaluated (lines 5260 -~ 5460).

REM - One cardo is allocated to route J,K; to

REM - maintain the correct distribution, cargo

REM - allocations to three other routes alsoc have to be
REM - altered, namely locations J,N; M,K; and M,N

REM - (lines 5340 - 5370). See also Figure 5.8. The
REM - total cost for the new allocations is now

REM - calculated at line 5380 and subroutine Total Cost
REM - The above sequence is carried out for every

REM - possible rearrangement about a given starting

REM - point. This gives a number of values of total
REM - journey costs. Interim use is made of Matrix C
REM - for storage of these (line 5390). Subroutine

REM - Cheapest Journey is now used again to select the
REM ~ lowest total cost (line 5470)

REM - The allocation of cargdgoes corresponding to this
REM - lowest cost rearrangement is made and stored in
REM - Matrix E (lines 5480 - 5580)

REM - SUBROUTINE DESIGNATION (LINES 5620 - 5700)

REM - The final step in the execution of the program is
REM - the printing out of the optimum allocation of
REM - cargoes. If a dummy destination has been

REM -~ employed because supply exceeds demand, then
REM - allocations along the fictitious routes are not
REM - printed (line 5650).

REM  kesiokook sk ok koK ok koK oK ok K sk K sk 3k OiOk K K oK K ok K sk KK K K 3K K K K 3K KK R K KKK KKK kKoK sk
REM — CONTROL SEGMENT #0k¥OKKMKKAHOK K K AK KK H oK oK K A K AR A K KoK ok
DIM V(100),X(100),Y(100)

PRINT "NUMBER OF SUPPLY POINTS (MAX 10)";

INPUT N1

FOR J=1 TO N1

PRINT "NUMBER OF CARGOES AT SUPPLY POINT";J;

INPUT A(J)

N3=N3+A(J)

NEXT J

PRINT "NUMBER OF DESTINATIONS (MAX 10)";

INPUT N2

FOR K=1 TO N2

PRINT "NUMBER OF CARGOES REQUIRED AT DESTINATION";K;
INPUT B(K)

N4=N4+B(K)

NEXT K

IF N3=N4 THEN 3210

PRINT "NO. OF CARGOES AVAILABLE NOT EQUAL TO"

PRINT “CARGOES REQUIRED"

N4=0

GOTO 3080

FOR J=1 TO N1

PRINT "TYPE COST OF JOURNEYS FROM SUPPLY POINT";J
PRINT “TO EACH DESTINATION"

FOR K=1 TO N2

INPUT C(J,K)

NEXT K

NEXT J

PRINT "INPUT 1 FOR MIN,2 FOR PARTIAL,3 FOR FULL"
PRINT “"INFO ON INTERMEDIATE STEPS"

INPUT S4



FOR J=1 TO N1
FOR K=1 TO N2
H(J,K)=C(J,K)
E(J,K)=0
NEXT K

NEXT J

S1=N1

S52=N2

IF S4=1 THEN 3480

PRINT

PRINT "MATRIX OF JOURNEY COSTS"

FOR J=1 TO N1

FOR K=1 TO N2-1

PRINT C(J,K);
NEXT K

PRINT C(J,N2)
NEXT J

FOR L=1 TO N3
GOSUB 4340
J=8s

K=N

E(J,N)=E(J,N)+1

F(J)=F(J)+1

IF F(J)<A(J) THEN 3580

FOR K=1 TO N2
C(J,K)=1E+12
NEXT K

N=D(J)
G(N)=G(N)+1

IF G(N)<B(N) THEN 3640

FOR J=1 TO N1
C(J,N)=1E+12
NEXT J
NEXT L

IF S4=1 THEN 3750

PRINT
PRINT

PRINT "MATRIX OF JOURNEYS"

FOR J=1 TO N1

FOR K=1 TO N2-1

PRINT E(J,K);
NEXT K

PRINT E(J,N2)
NEXT J

GOSUB 4640

IF S4=1 THEN 3780
PRINT "TOTAL COST";T2
IF T3=0 THEN 3930
IF T2<T3 THEN 3830

PRINT

PRINT "LOWEST TOTAL COST"

FOR J=1 TO N1
FOR K=1 TO N2
E(J,K)=W(J,K)
NEXT K

NEXT J

GOSUB 5610
GOSUB 4640

IF 54>1 THEN 3910
PRINT "TOTAL COST=";T2

PRINT

149
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3920
3930
3940
3850
3960
3970
3980
3980
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4280
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520

GOTO 5720

T3=T2

GOSUB 4780

IF N5>0 THEN 3970
GOTO 3870

FOR J=1 TO N1

FOR K=1 TO N2
W(J,K)=E(J,K)
NEXT K

NEXT J

FOR L=1 TO N5
J=X(L)

K=Y(L)

GOSUB 5000

GOSUB 4640
v(L)=T2

FOR J=1 TO N1

FOR K=1 TO N2
E(J,K)=H(J,K}
NEXT K

NEXT J

NEXT L

FOR L=1 TO N5-1
FOR M=L+1 TO N5
IF V(L)<V(M) THEN 4180
GOTO 4200

NEXT M

GOTO 4210

NEXT L

J=X(L)

K=Y(L)

FOR G=1 TO N1

FOR H=1 TO N2
E(G,H)=W(G,H)
NEXT H

NEXT G

$3=1

GOSUB 5000

S3=0

GOTO 3650

REM kKoo ok ok ok ok 3K oK 3K Ao K KOk o K o 3 K KK 2K 5K K 3K OK 3OK K KK K KO KOR OK 3OK K Kook oKk
REM - SUBROUTINE CHEAPEST JOURNEY k¥3oksokdokdokxkkxokkkkkkdkk
REM - FIND CHEAPEST JOURNEY FROM EACH SUPPLY POINT
FOR S=1 TO S1

IF S2=1 THEN 4490
FOR N=1 TO S52-1
FOR T=N+1 TO 82
IF C(S,N)<=C(S,T) THEN 4430
IF T<S2 THEN 4470
N=52

GOTO 4440

NEXT T
L(S)=C(S,N)
D(8)=N

GOTO 4510

NEXT N

GOTO 4510
L(8)=C(S8, 1)
D(8)=1

NEXT S

FOR S8=1 TO S1-1
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FOR N=S+1 TO S1

IF L(S)<=L(N) THEN 4580

IF N<S1 THEN 4600

S=N

GOTO 4610

NEXT N

GOTO 4810

NEXT 8

N=D(S)

RETURN

REM 30K K0k ok ok 33K K K 3K 3K 3K K K 3K 3K 3K 3K oK 3K K 3K 5K oK 3K 3K K o oK KKK 3K ok 3ok KKK 3K oK KoK K sk ok K
REM — SUBROUTINE TOTAL COST *kkkkdOkkok KMok sk ok kKK ok koK kK sk ok kK ok
T2=0

FOR S=1 TO N1

FOR T=1 TO N2

IF E(S,T)=0 THEN 4700

T2=T2+H(S, T)XE(S, T)

NEXT T

NEXT S

IF S3>0 THEN 4750

IF S4<3 THEN 4750

PRINT "TOTAL COST=";T2

RETURN

REM ok Kok skook 3 33K ok 5k 3k 5K 3K oK 3 3K 3K 3K oK oK 3K KKK 3K 3K 3K K 3Kk 3K 3K 3K K K ok K KKK 3K oK oK ok ok ok ok
REM - SUBROUTINE ALLOCATE koK sk ok KKk ok oK 3K 3 oK ok 3k 3K K 3Kk 3K 3K 3K ok Kk K
REM -~ ALLOCATE STARTING POINTS FOR SEARCH kickiokkokkdkkskok
N5=0

FOR J=1 TO N1

FOR K=1 TO N2

C(J,K)=0

NEXT K

NEXT J

FOR J=1 TO 100

X(J)=0

Y(J}=0

NEXT J

FOR J=1 TO N1

FOR K=1 TO N2

IF E(J,K)>0 THEN 4850

NB=N5+1

X(N5)Y=J

Y{N5)=K

NEXT K

NEXT J

RETURN

REM 5kt k ok sk ok sk sk k3K ok 3K HOKH K oK KKK KKK 30K 3K 33K 3 3K K KO SRR K K S K oK S oK 3K ok
REM - SUBROUTINE CHEAPEST ALTERNATIVE kKKK kkoK¥ok Kk
REM - FIND THE CHEAPEST ALTERNATIVE REARRANGEMENT TO
REM - REDUCE TOTAL COST okokokokokok 3ok ok K s ok ok ok ok ok sk 3ok ok 3k 5k KOk oK ok KoK
FOR G=1 TO N1

M(G}=0

NEXT G

FOR H=1 TO N2

N(H)=0

NEXT H

FOR G=1 TO N1

FOR H=1 TO N2

C(G,H)=0

E(G,H)=W(G, H)

NEXT H

NEXT G
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5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5380
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720

51=0

82=0

FOR M=1 TO N1

IF E(M,K)=0 THEN 5200

S1=81+1

M(S1)=M

NEXT M

FOR N=1 TO N2

IF E(J,N)=0 THEN 5250

852=82+1

N(S2)=N

NEXT N

FOR 0=1 TO 81

M=M(0)

FOR P=1 TO 82

N=N(P}

IF $3>0 THEN 5340

IF S4=1 THEN 5340

IF 54=2 THEN 5340

PRINT “J=";J;"K=";K;"M=";M; "N=";N
E(J,K)=E(J,K)+1

E(J,N)=E(J,N}-1

E(M,NY=E(M,N)+1

E(M,K)=E(M,K)~1

GOSUB 4640

C(0,P)=T2

FOR G=1 TO N1

FOR H=1 TO N2

E(G,H)=W(G,H)

NEXT H

NEXT G

NEXT P

NEXT O

GOSUB 4340

M=M(S)

N=N(N}

IF 83>0 THEN 5540

IF 84<3 THEN 5540

PRINT "LOWEST 