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INTRODUCTION 

Purpose 

In the chemical engineering design field, computers are used in the 

preparation of heat and mass balances, the selection of optimum flow paths, 

the design of equipment items such as heat exchangers and distillation columns, 

and for the preparation of flow diagrams, layouts and mechanical drawings. 

Laboratory applications include a range of chemical analyses, determinations of 

particle size ranges, etc. whilst on the plant, computers and microprocessors 

are rapidly replacing conventional analog measurement and control devices. 

How is the average chemical engineer equipped to handle these new 

developments? For many older engineers, the computer came along only as an 

afterthought in their studies, if it came at all. Current students of course, 

are much better equipped and receive tuition in programming, so that they are 

able to write programs in one or more of the common languages such as Basic, 

Fortran, Pascal, APL & C, but even they have been overtaken by the recent 

enormous increase in both power and availability of micro or desk-top computers 

such as the IBM PC. They are unlikely also, before completing their tertiary 

studies, to gain much experience writing programs related to their own ι 

engineering discipline. 

Outside of teaching and research, many computers exclusively use software 

which has been developed by the computer manufacturers or other specialist 

companies. Such software packages are produced by large teams of programmers, 

numbering perhaps in the hundreds, working together for months under the 

direction of a co-ordinator. The average user of such a package is unlikely to 

be able to understand the program, even if he has access to it. 

On entering employment, the young graduate may well find that where computers 

are used, such software packages are used with them. Many of these can now be 

run on a microcomputer equipped with a hard disc. In these circumstances, the 

user finds his function limited to the level of inputting data to the machine 

and making decisions with regard to its output, often without regard for the 

theoretical principles on which the software is based. I think this is a 

potentially dangerous situation, ultimately tending to degrade the profession, 

and restricting high level skills to the few. 

The purpose of this book is to encourage the engineer to apply the skills in 

programming which he has learnt to the solution of problems in engineering. 

Programming such solutions is not difficult provided the programmer has a good 
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understanding of the principles to be applied. Any gaps in this understanding 

will soon be uncovered! I am sure that an ability to write such programs, and 

the confidence which goes with it, is invaluable to the engineer working for 

the small company, which cannot justify the expense of the sophisticated 

software packages. For the engineer who does work with such packages, I hope 

this book will provide some insights into the logic which they employ, and 

encourage him also to develop his own programs. 

I have selected a number of topics of interest to chemical engineers, a 

separate chapter being devoted to each. Each chapter presents the theoretical 

principles in summary form, then takes the reader through one or more manual 

calculations, in detail. Then a computer program is presented to perform the 

same task, each program including a detailed description, and being preceded by 

a logic flowchart. 

Programming Language 

The programs in this book are all written in BASIC. 

I have chosen to do this for several reasons. It is the most widely used 

programming language and is acknowledged to be the easiest to learn, and it was 

the first language adopted for use on microcomputers, with which it is still 

widely used. Despite certain limitations with regard to speed and storage, 

Basic in its more developed forms is quite powerful enough for the average user. 

The programs are prepared on IBM PC and PC/XT machines employing Microsoft 

Basic. The diskette which may be purchased with this book will of course run 

on these machines and on other IBM - compatible machines. The form of Basic 

used is in conformity with A.N.S.I. (American National Standards Institute) and 

so is suitable for many other Basic compilers. 

In certain cases the diskette may be unsuitable; this occurs where the byte 

size employed in a particular machine is different from that used on the IBM 

machine. In such a case, unless a translator is available, there is no recourse 

but to type the programs in at the keyboard. Complete program listings are 

provided which enable this to be done. 

Learning to Program 

It may be that you have not yet learned to program. Don't be put off, it is 

not difficult. The first step is to obtain a Basic Manual appropriate to the 

machine you will be using. Next obtain a teaching text, of which a number are 

available (1) (2) (3) (4) (5). With these in hand you should be able to follow 

all the programs given in this book, and to extend them. 

If you wish to progress to more advanced topics, there are also texts which 

will help you to do this (6) (7). 
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Logic Flowcharts 

These are intended to make it easier to follow the program logic. They 

display the principal features of each program only, and employ symbols now 

standardised by A.N.S.I. and I.S.O. (International Organisation for 

Standardisation). The symbols used in this book are tabulated below, with 

brief summaries of their functions. For more information on flowcharts consult 

references already cited (2) (3). 

Mathematics 

The jobs which the chemical engineer is likely to use the computer for fall 

into the following categories: 

1. Storage of data (for example, physical & thermodynamic properties). 

2. Interpretation of data (that is, finding a mathematical 

relationship to fit the data). 

3. Solution of problems involving stagewise processes (distillation, 

liquid extraction, evaporation, etc), treated as a series of 

lumped parameter systems. 

4. Solution of problems in heat, mass and momentum transfer possibly 

involving transients. These are usually distributed parameter 

systems, but may be modelled as series of lumped parameter systems 

by the methods of finite differences (also by finite element methods). 

The techniques employed to solve these problems are simply: 

Standard analytical mathematical methods 

Statistical methods 

Finite difference methods 

Usually, large numbers of simultaneous equations are generated and have to 

be solved. This can be done either by Iteration, or by Matrix Algebra. 

The chemical engineer who wishes to do his own programming then has to have 

some facility with each of the above. However, the necessary skills can be 

developed as the need arises. 

Warnings 

Commercial software includes a great deal of programming whose only function 

is to protect the software and to avoid user mistakes, \lery little of such 

measures is included with the programs in this book; it makes understanding of 

the programs very much harder. If for instance, the program calls for values of 

composition in weight fraction, then the user must ensure that the sum of these 
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values equals unity. If they do not, then errors will arise. So it is 

necessary to be careful in your working. If you don't like this situation then 

you can obtain excellent programming practice by incorporating your own safety 

precautions! 

It is recommended that you purchase the program diskette if possible. It 

will save you many hours of typing and then checking for your mistakes. If you 

do possess the diskette, make a copy of it immediately, and use this copy when 

running or working on the programs. The original diskette should be retained as 

a master copy and only used to restore your working diskette if this has been 

corrupted. 

The asterisk * is used in the text to indicate multiplication, in order to 

avoid confusion with the letter x. 

This book has been written to encourage chemical engineers to develop their 

programming skills. I hope you find it helpful. 

G. Ross 
Swinburne Institute of Technology 
Melbourne 1987 
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FLOW CHART SYMBOLS 

Symbol Meaning or Application 

f Termination ) 

Process 

/ I n p u t 7 
/ Output/ 

This symbol indicates a terminal point, such as 

the beginning or end of a program or subroutine. 

This stands for any function or group of functions 

causing changes in the information flow, for 

example, it could be a sequence of algorithms used 

in a calculation. 

Statements causing branching, such as IF ... THEN 

or FOR ... NEXT. An abbreviated expression for the 

decision is placed inside the symbol with a ? below 

it. 

For example, input from a data statement, output 

to CRT or printer. 

Input from the keyboard. 

Input/Output from/to a magnetic aisc or similar 

device. 

Connector, used for convenience in laying out the 

flowchart, it has no counterpart in tne actual 

program. 

A line with an arrowhead is used to link symbols; 

the direction of the arrow indicates the sequence 

of operations and the direction of the data flow. 

The dotted line has no counterpart in the actual 

program; its purpose is to indicate the symbols 

referred to in a comment or annotation appended to 

the flowchart. 



Chapter 1 

1 

FLOWSHEETING (PROCESS SIMULATION) 

Preparation of flowsheets is an important part of the work of the design 

chemical engineer. The flowsheet is the bridge between design calculation and 

plant hardware. Choice of optimum number of stages of extraction, or of heat 

exchange, depends upon material and energy balance considerations, and may be 

regarded as part of the flowsheeting process. 

Computer flowsheeting is an attempt to assemble many chemical engineering 

design functions into one package (1) (2). Software packages of considerable 

complexity are now available (3) (4). Usually the simulation is limited to 

steady state conditions, thus greatly reducing the complexity of the problems 

to be dealt with. 

A program for flowsheeting purposes obviously cannot be written as a simple 

linear program. Instead it must consist of a control program and a number of 

subroutines. A different subroutine is required for each step or operation in 

the process. A good many of these would be required, and the list might include 

"mix", "split", "compress", "expand", "flash", "distil", "pump","heat exchange", 

"extract", "absorb", "settle", "react", etc. 

The control program would operate in such a way that these subroutines could 

be called upon by the designer as required, interactively at the terminal. The 

designer would assemble the complete flowsheet by appropriate connections 

between the subroutines. 

Each subroutine should perform the function of calculating material and 

energy balances for the process step which it represents. In order to do this 

it would generate (or call from other subroutines) data on physical properties 

of all the fluids and solids concerned with that process step (4). In addition, 

it might be necessary in some cases, such as a multi-component distillation, 

for further design calculations to be made within the subroutine. 

Since capital and operating costs affect the process design, it might be 

necessary also to include further subroutines to handle cost calculations (4). 

As the assembly of the flowsheet continues, the designer may wish to 

incorporate corrections and improvements; he may wish also from time to time to 

observe the effects of variation in process parameters. The program should 

include means to enable this to be done; it should not be necessary to start 

again from the beginning each time a modification has to be incorporated. 
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Obviously, a program to carry out all the functions mentioned above has 

become indeed a "software package". It will have developed gradually by the 

accumulation of new subroutines and by the extension of existing ones. 

Reference to advertisements in the technical press shows how software companies 

are constantly updating their material. 

Typing in of the data and interpretation of the output will be difficult 

and confusing for a flowsheet of any complexity. Consequently graphical 

representations of the flowsheet and display of values would be extremely 

advantageous. However, it is not an essential part of the program, and the 

example in this chapter will show how a flowsheet program can be written in 

BASIC without the use of graphic output. 

The program to be described involves no mathematics other than algebra; 

only simple process steps are included, but a more complex form of the program 

might incorporate material from the other chapters of this book. Writing of 

the program depends of course on the programmers ability to model the 

process (5). 

The growth of the program will be described step by step so that the reader 

can follow the development of the logic. 

STEP ONE 

The beginning program must contain the minimum of necessary ingredients to 

operate in the intended manner, namely: 

- the control program; 

- a subroutine to handle data inputs and commands from the designer; 

- a subroutine to simulate a simple process; 

- a subroutine to handle the output of calculated values. 

The Process Subroutine (MIX) 

The operation of mixing of several process streams will be modelled. 

Given the flowrates, compositions and enthalpies of n entering streams, the 

flowrate, enthalpy and composition of the mixed exit stream should be 

calculated (see Figure 1.1). For the sake of simplicity the algorithms 

written here will be limited to the calculation of flowrate and composition 

(not enthalpy). 

If we have J entering streams, then the flowrate leaving 
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If there are K components present in each stream then the composition of 
the exit stream, 

J+1.K (x1pK * F , + x 2 K * F2 + .... x J K * Fd ) 

'J+1 
(1.2) 

F,, hi, xx, 

rJ > " · " *''* 

Fj+i , h.n-i 

Λι + ι,κ 

Fig. 1.1. Mixing of Streams. 

This calculation should be performed for each component, i.e. for each value 

of the subscript K. In terms of the program, we can store all these values of 

composition in a two dimensional matrix X(J,K) where the first dimension refers 

to the number of the entering or leaving stream, and the second dimension refers 

to the components. We can then proceed to write a simple subroutine embodying 

the above two equations. 

The program FSHT1 which follows, embodies this subroutine and the steps 
outlined above. 



FSHT1. BAS 

( Start J 

Input ;B$ 

Subroutine 
Mix 

B$ =0 Mix 
Yes 

No 

Subroutine/ 
Print 

End 

4 



20 REM - PROGRAM FSHT1.BAS FIRST STEP IN 
30 REM - DEVELOPMENT OF A FLOWSHEET PROGRAM 
40 REM - PROGRAM NOMENCLATURE: 
50 REM - A$(J) - Names of subroutines and box numbers 
60 REM - B$ - Names of subroutines 
70 REM - B(J) - Numbers of the streams entering 
80 REM a subroutine box 
90 REM - C$(J) - Names of components 
100 REM - El - Sum of values of F(J) 
110 REM - E2 - Sum of values of the product F*x 
120 REM - E3 - Sum of values of weight fractions 
130 REM - F(J) - Flowrates 
140 REM - Nl - Number of components 
150 REM - N2 - Number of "boxes" 
160 REM - N3 - Number of flows to be mixed 
170 REM - X(J<K) - Composition as weight fraction of 
180 REM component K in stream from Box J 
190 REM - Y(J<K) - Composition as weight fraction of 
200 REM component K in stream from Box J 
210 REM - PROGRAM DESCRIPTION 
220 REM - LINES 1000,1010 Alphanumeric arrays are declared, 
230 REM and the arbitrary value of 20 allocated for the 
240 REM - largest likely number of operations or "boxes" 
250 REM - on the flowsheet. 
260 REM - LINES 1020-1110 The control program;subroutine 
270 REM - "Feed" is called first;then the designer is 
280 REM - enabled to call subroutine "Mix" as required; 
290 REM - finally subroutine "Print" is called. 
300 REM - LINES 1130-1390 FEED subroutine; 
310 REM - first, the number of components present is 
320 REM - is established and these are named 
330 REM - (lines 1180-1220). Next, each entering stream 
340 REM - is given a number or identifier referred to as 
350 REM - a "Box Number", which the designer must keep a 
360 REM - record of on his flow diagram. As each stream is 
370 REM - numbered it is also given the name "Feed", and 
380 REM - values of flowrate and weight fraction of each 
390 REM - component are entered (lines 1230-1380) 
400 REM - LINES 1420-1650 MIX subroutine;each time this 
410 REM - subroutine is called a box number is allocated 
420 REM - and the box labelled "Mix" (lines 1430-1450). The 
430 REM - designer then enters the number of streams to be 
440 REM - mixed and the boxes from which they arise(lines 
450 REM - (1460-1490). The algorithms previously written 
460 REM - (equations 1.1 and 1.2) are then employed to 
470 REM - calculate flowrate and composition of the mixed 
480 REM - stream leaving(lines 1500-1640). 
490 REM - LINES 1670-1780 PRINT subroutine; the name and 
500 REM - number of each box is printed out with values of 
510 REM - flowrate and weight fraction of each component. 
520 REM - ************************************************ 
1000 DIM A$(20),C$(10) 
1010 DIM B(20),F(20),X(20,10),Y(20,10) 
1020 GOS0B 1130 
1030 PRINT "ENTER MIX,OR END" 
1040 INPUT B$ 
1050 IF B$="MIX" THEN 1080 
1060 IF B$=END" THEN 1100 
1070 GOTO 1Q30 
1080 G0SÜB 1400 

5 
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1090 GOTO 1030 
1100 GOSUB 1670 
1110 GOTO 1790 
1120 REM - ************************************************* 
1130 REM - FEED SUBROUTINE FOR FLOWRATES & 
1140 REM - COMPOSITIONS OF ENTERING STREAMS 
1150 PRINT "FLOWRATES & COMPOSITIONS FOR FLOWS" 
1160 PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER" 
1170 PRINT "OF COMPONENTS & STICK TO THIS NUMBER" 
1180 INPUT "FOR ALL STREAMS";N1 
1190 FOR K=l TO Nl 
1200 PRINT "NAME OF COMPONENT";K; 
1210 INPUT C$(K) 
1220 NEXT K 
1230 PRINT "NUMBER OF STREAMS" 
1240 INPUT N2 
1250 FOR J=l TO N2 
1260 A$(J)="FEED" 
1270 PRINT "FLOW";J;":" 
1280 PRINT "FLOWRATE"; 
1290 INPUT F(J) 
1300 IF F(J)=0 THEN 1390 
1310 E3=0 
1320 FOR K=l TO Nl-1 
1330 PRINT "WT. FRACTION OF ";C$(K); 
1340 INPUT X(J,K) 
1350 E3=E3+X(J,K) 
1360 NEXT K 
1370 X(J,N1)=1-E3 
1380 NEXT J 
1390 RETURN 
X4v/\y xCIlM — * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1410 REM - MIX SUBROUTINE, SIMULATES MIXING OF 
1420 REM - STREAMS CONTAINING UP TO 10 COMPONENTS 
1430 N2=N2+1 
1440 PRINT "THIS IS MIX SUBROUTINE,BOX NUMBER";N2 
1450 A$(N2)="MIX" 
1460 INPUT "NUMBER OF STREAMS TO BE MIXED";N3 
1470 FOR J=l TO N3 
1480 INPUT "BOX NUMBER FROM WHICH STREAM COMES";B(J) 
1490 NEXT J 
1500 E1=0 
1510 FOR J=l TO N3 
1520 E1=E1+F(B(J)) 
1530 NEXT J 
1540 FOR K=l TO Nl 
1550 E2=0 
1560 FOR J=l TO N3 
1570 E2=E2+F(B(J))*X(B(J),K) 
1580 NEXT J 
1590 Y(N2,K)=E2/E1 
1600 NEXT K 
1610 F(N2)=E1 
1620 FOR K=l TO Nl 
1630 X(N2,K)=Y(N2,K) 
1640 NEXT K 
1650 RETURN 
1660 REM - ************************************************* 
1670 REM - PRINT SUBROUTINE 
1680 FOR J=l TO N2 
1690 PRINT A$(J) 
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1700 PRINT "BOX NUMBER";J 
1710 PRINT "FLOWRATE=";F(J) 
1720 FOR K=l TO Nl 
1730 PRINT "WEIGHT FRACTION OF ";C$(K);"=" 
1740 PRINT USING "it. i*##tf" ;X( J, K) 
1750 NEXT K 
1760 PRINT 
1770 NEXT J 
1780 RETURN 
1790 END 

Example 1.1 

A t yp ica l recipe fo r a ba r r i e r cream is as fo l l ows : 

C: 

stearic acid 14.0 
zinc stéarate 4.0 
solubilising agent 2, 
water repellent 2. 

so rb i t o l (70%) 5. 
water 42, 

4% mucilage of 
methyl cellulose 23.0 kg 

kg 
kg 
kg 
kg 

kg 
kg 

Mixes A and B are prepared separately, emulsified together and then Mix C 

is added. 

Calculate the flowrates and compositions of all streams using the program 

FSHT1. 

This is a trivial problem, but it serves to demonstrate the flexible nature 

of the program even at this beginning stage. A simple block diagram is first 

drawn, which indicates the numbering of the boxes (Fig. 1.2). Next the 

program is run and values entered, as follows: 

Box 1 1 
St acid 

Box 2 1 
Zn stea| 

L 

[Box 3 
Sol .ag. 

7\ir LUF 
Box 8 
Mix A 

Box 4 
Wat.rep 

Box 5 1 
Sorb 1 

t t 
Box 10 
Mix 

1 

fßox 6 
IWater 

Γ* Γ 1 Box 9 1 
1 Mix B | 

Box 7 1 
M.cel l ] 

Mix C 

J * , 
[Box 11 1 

Mix 

P roduc X — 4 M 

Fig. 1.2. Mixing of Barrier Cream. 

A: 

B: 



RUN 
FLOWRATES & COMPOSITIONS FOR FLOWS 
ENTERING THE SYSTEM;ENTER THE NUMBER! 
OF COMPONENTS & STICK TO THIS NUMBER| 
FOR ALL STREAMS? 7 
NAME OF 
NAME OF 
NAME 
NAME 
NAME 
NAME 
NAME 

OF 
OF 
OF 
OF 
OF 

COMPONENT 
COMPONENT 
COMPONENT 
COMPONENT 
COMPONENT 
COMPONENT 
COMPONENT 

NUMBER OF STREAMS 
? 7 
FLOW i : 
FLOWRATE? 14 
WT. FRACTION 

FRACTION 
FRACTION 
FRACTION 
FRACTION 
FRACTION 

1 ? ST ACID 
2 ? ZN STEA 
3 ? SOL AGT 
4 ? WATER REP 
5 ? SORBITOL 
6 ? METH CELL 
7 ? WATER 

WT. 
WT. 
WT. 
WT. 
WT. 

WT. 
WT. 
WT. 
WT. 
WT. 

OF 
OF 
OF 
OF 
OF 
OF 

WT 
WT 
WT 
WT 
WT 
FLOW 2 : 
FLOWRATE? 4 
WT. FRACTION 

FRACTION 
FRACTION 
FRACTION 
FRACTION 
FRACTION 

FLOW 3 î 
FLOWRATE? 2.5 
WT. FRACTION OF 

FRACTION OF 
FRACTION OF 
FRACTION OF 
FRACTION 
FRACTION 

FLOW 4 : 
FLOWRATE? 2 
WT. FRACTION 

FRACTION 
FRACTION OF 
FRACTION OF 
FRACTION OF 
FRACTION OF 

ST ACID? 1 
ZN STEA? 0 
SOL AGT? 0 

OF 
OF 
OF 
OF WATER REP? 0 
OF SORBITOL? 0 
OF METH CELL? 0 

WT 
WT 
WT 
WT 
WT 
FLOW 5 : 
FLOWRATE? 5 
WT. FRACTION 

FRACTION 
FRACTION 
FRACTION 
FRACTION 
FRACTION 
6 : 

OF 
OF 

OF 
OF 

ST ACID? 0 
ZN STEA? 1 
SOL AGT? 0 
WATER REP? 0 
SORBITOL? 0 
METH CELL? 0 

ST ACID? Ô 
ZN STEA? 0 
SOL AGT? 1 
WATER REP? 0 
SORBITOL? 0 
METH CELL? 0 

ST ACID? 0 
ZN STEA? 0 
SOL AGT? 0 
WATER REP? 1 
SORBITOL? .0 
METH CELL? 0 

WT. 
WT. 
WT. 
WT. 
WT. 
FLOW 
FLOWRATE? 42. 
WT. FRACTION 

FRACTION 
FRACTION 
FRACTION 
FRACTION 

WT. 
WT. 
WT. 
WT. 

OF ST ACID? 0 
OF ZN STEA? 0 
OF SOL AGT? 0 
OF WATER REP? 0 
OF SORBITOL? .7 
OF METH CELL? 0 

.5 
OF ST ACID? 0 
OF ZN STEA? 0 
OF SOL AGT? 0 
OF WATER REP? 
OF SORBITOL? o » -

►W T . FRACTION OF METH CELL? 0 
FLOW 7 ! 
FLOWRATE? 23 
WT. FRACTION OF ST ACID? 0 
WT. FRACTION OF ZN STEA? 0 
WT. FRACTION OF SOL AGT? 0 
WT. FRACTION OF WATER REP? 0 
WT. FRACTION OF SORBITOL? 0 
WT. FRACTION OF METH CELL? .04 
ENTER MIX,OR END 
? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 8 
NUMBER OF STREAMS TO BE MIXED? 4 
BOX NUMBER FROM WHICH STREAM COMES? 1 
BOX NUMBER FROM WHICH STREAM COMES? 2 
BOX NUMBER FROM WHICH STREAM COMES? 3 
BOX NUMBER FROM WHICH STREAM COMES? 4 
ENTER MIX,OR END 
? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 9 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 5 
BOX NUMBER FROM WHICH STREAM COMES? 6 
ENTER MIX,OR END 
? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 10 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 8 
BOX NUMBER FROM WHICH STREAM COMES? 9 
ENTER MIX,OR END 
? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 11 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 7 
BOX NUMBER FROM WHICH STREAM COMES? 10 
ENTER MIX,OR END 
? END 
FEED 
BOX NUMBER 1 
FLOWRATE* 14 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 

TEED 
BOX NUMBER 2 
FLOWRATE= 4 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

| FEED 
• BOX NUMBER 3 

.0000 

.0000 

.0000 

ST ACID=1. 
ZN STEA=0. 
SOL AGT= 
WATER REP=0.0000 
SORBITOL=0.0000 
METH CELL=0.0000 
WATER=0.0000 

ST ACID=0.0000 
ZN STEA-1.0000 
SOL AGT=0.0000 

OF WATER REP=0.0000 
OF SORBITOL=0.0000 

METH CELL=0.0000 
WATER=0.0000 

OF 
OF 
OF 

OF 
OF 

8 



9 

FLOWRATE= 2.5 
WEIGHT FRACTION OF ST ACID=0.0000 
WEIGHT FRACTION OF ZN STEA=0.0000 
WEIGHT FRACTION OF SOL AGT=1.0000 
WEIGHT FRACTION OF WATER REP=0.0000 
WEIGHT FRACTION OF SORBITOL=0.OOOO 
WEIGHT FRACTION OF METH CELL=0.0000 
WEIGHT FRACTION QF WATER=0.0000 

FEED 
BOX NUMBER 4 
FLOWRATE= 2 
WEIGHT FRACTION OF ST ACID=0.0000 
WEIGHT FRACTION OF ZN STEA=0.0000 
WEIGHT FRACTION OF SOL AGT=0.0000 
WEIGHT FRACTION OF WATER REP=1.0000 
WEIGHT FRACTION OF SQRBITOL=0.0000 
WEIGHT FRACTION OF METH CELL=0.0000 
WEIGHT FRACTION OF WATER=0.0000 

FEED 
BOX NUMBER 5 
FLOWRATE= 5 
WEIGHT FRACTION OF ST ACID=0.0000 
WEIGHT FRACTION OF ZN STEA=0.0000 
WEIGHT FRACTION OF SOL AGT=0.0000 
WEIGHT FRACTION OF WATER REP=0.0000 
WEIGHT FRACTION OF SORBITOL=0.7000 
WEIGHT FRACTION OF METH CELL=0.0000 
WEIGHT FRACTION QF WATER=0.3000 

FEED 
BOX NUMBER h 
FLOWRATE= 42.5 
WEIGHT FRACTION OF ST ACID=0.0000 
WEIGHT FRACTION OF ZN STEA=0.0000 
WEIGHT FRACTION OF SOL AGT=0.0000 
■WEIGHT FRACTION OF WATER REP = 0.0000 
WEIGHT FRACTION OF SORBITOL=0.0000 
WEIGHT FRACTION OF METH CELL=0.0000 
WEIGHT FRACTION OF WATER=1.0000 

FEED Mix C 
BOX NUMBER 7 
FLQWRATE* 23 
WEIGHT FRACTION OF ST ACID=0.0000 
WEIGHT FRACTION OF ZN STEA=0.0000 
WEIGHT FRACTION OF SOL AGT=0.0000 
WEIGHT FRACTION OF WATER REPO.0000 
WEIGHT FRACTION OF SORBITCL=0.0000 
WEIGHT FRACTION OF METH CELL=0.0400 
WEIGHT FRACTION OF WATER=0.9600 

MIX Mix A 
BOX NUMBER 3 
FLOWRATE= 22.5 
WEIGHT FRACTION OF ST ACID=0.6222 
WEIGHT FRACTION OF ZN STEA=0.1778 
WEIGHT FRACTION OF SOL AGT = 0. 1111 
WEIGHT FRACTION OF WATER REF=0.0889 
WEIGHT FRACTION OF SORBITQL = 0. 0 0 0 0 - ^ 

(►WEIGHT FRACTION OF METH CELL=0.0000 
WEIGHT FRACTION OF WATER=0.0000 

MIX Mix B 
BOX NUMBER 9 
FLOWRATE= 47.5 
WEIGHT FRACTION OF ST ACID-0.0000 
WEIGHT FRACTION OF ZN STEA=0.0000 
WEIGHT FRACTION OF SOL AGT=0.0000 
WEIGHT FRACTION OF WATER REP=0.0000 
WEIGHT FRACTION OF SORBITOL=0.0737 
WEIGHT FRACTION OF METH CELL=0.0000 
WEIGHT FRACTION OF WATER=0.9263 

MIX 
BOX NUMBER 10 
FLOWRATE= 70 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

MIX 
BOX NUMBER 11 
FLOWRATE= 93 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

OF 
OF 
OF 
OF 
OF 
OF 
OF 

OF 
OF 
OF 
OF 
OF 
OF 
OF 

A & B 

ST ACID=0.2000 
ZN STEA=0.0571 
SOL AGT=0.0357 
WATER REP=0.028a 
S0RBIT0L=0.0500 
METH CELL=0.0000 
WATER=0.6286 

Product 

ST ACID=0.1505 
ZN STEA=0.0430 
SOL AGT=0.0269 
WATER REP=0.0215 
S0RBIT0L=0.0376 
METH CELL=0.0099 
WATER=0.7105 

Ok 
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STEP TWO 

Having demonstrated the workability of the program, the next step is to add 
further subroutines representing process steps. Two simple examples have been 
selected. 

Process Subroutine (SETTLE) 

It is assumed that the feed to the settler is a two phase mixture of solid 

particles suspended in a solution of solute in solvent. In the settler, 

separation of the phases occurs, a solids-free solution leaving as overflow, 

the solids with the remaining solution leaving as underflow. (See Fig. 1.3). 

Overflow 

FJ 9 XJ,K 

\ j + 1 >XJ + 1,K 

Settle 

J + 1 

Unde rflow 

m» 

^ -
J+2 'XJ+2,K 

K = 1 for solvent, 2 for solute, 3 for sol id. 
Rl = solids/solution ra t io . 

Fig. 1.3. Settl ing 

It is further assumed that: 

- the ratio of solids to solution in the underflow, is known; 

- the concentration of solute in solvent is the same for both 

overflow and underflow liquors; 

- all the solute present is in solution; 

- the solid phase is insoluble in the solvent. 

These assumptions are quite usual for leaching problems, as can be seen by 

reference to undergraduate chemical engineering texts (6) & (7). 

Using the terminology of Figure 1.3 and that previously referred to, the 

following equations can be written: 
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Underflow 

Weight of so l ids leaving = weight of so l ids enter ing = F jx j ,3 

Weight of so lu t ion leaving = F 0 x J 3 / R l 

Hence the t o t a l underflow r a t e , 

Fj + 2
= F j x j , 3 * (1 + 1/R1) (1.3) 

Weight f r a c t i o n of so l i d in the underf low, 

x F j x j . x _ R l ^ 2 , 3 = ^ 1 = ^ R 1 (1.4) 
F J+2 

Weight of solute leaving in the underflow = 

Wt. of solute entering * wt. solution in underflow 
total wt. of solution 

F x * FJXJ,3/R1 
J J , 2 FJ(XJ,I + Xj,2 ) 

Hence the weight fraction of solute in the underflow = 

X j + 2 , 2 =
 F j x J , 2 x J , 3 jfc. i 

R l ( x j , i + x j , 2 ) F J X J > 3 ( 1 + 1/R1) 

.'. X J I 2 , 2 = X J , 2 ( 1 . 5 ) 

( X d , i + X j , 2 ) ( R l + 1) 

By d i f f e rence , the weight f r a c t i o n of solvent in the underf low, 

X J + 2 , I = 1 - XJ + 2 , 2 - XJ + 2 , 3 i 1 · 6 ) 

Overflow 

Weight of solution leaving = FJ+|= Fj - Fj + 2 (1.7) 

Based on the assumption of a solids-free overflow, 

X J - H , 3 = 0 (1.8) 

Weight of solute leaving in the overf low = 

Wt. of solute enter ing *- wt . so lu t ion in overf low 
t o t a l wt. of so lu t ion 

FJXJ,2 * - FJ + I 

Fj ( X J , I + x j , 2 ) 
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Hence the weight fraction of solute in the overflow, 
x J + l,2 _ x J,2 FJ + I 1 

XJ ,ϊ + X J , 2 FJ + I 

·*· X J + I,2 <J,2 (1.9) 
XJ,I + X J , 2 

By difference, the weight fraction of solvent in the underflow, 

X J + I , I = 1 - X J + I , 2 - X J + I,3 (1.10) 

Process Subroutine (SPLIT) 

It is assumed that a process stream has to be subdivided, for example by 

removal of a purge stream, because of a leak, or by a by-pass arrangement. The 

situation is shown in Fig. 1.4. 

Fj , XJ, K 

——̂^ 

Side 
Fj + 

Spl i t 
J + 1 

» Stream — 

1 >XJ-H,K 

Forward Steam 
FJ + 2 »*J + 2,K 

R2 = sidestream/entering stream ratio. 
Fig. 1.4. Splitting of a Stream. 

Composition of both outlet streams will be the same, and equal to the inlet 

composition. Flowrate of the outlet streams are determined by the designated 

value of the ratio of sidestream flow, R2. 

F J + 2 

Fj * R2 (1.11) 

(1.12) 

COMPUTER SOLUTION - STEP TWO 

The program previously given has been modified by the insertion of the above 

two subroutines. Their operation is self explanatory. Of course the 

subroutines are added, tested and if necessary, debugged one at a time. This 

modified program is named FSHT2. The listing follows. No example of its use 

will be given until further modifications have been made. 



FSHT2.BAS 

f Start ) 

Subroutine 
Feed 

Input B$ 

■IfiS-
Mix 

Subroutine 

Yes Spl i t 
Subroutine 

JteL Settle 
Subroutine 

No 

Print 
'Subroutine/ 

( E*J ) 

13 
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10 REM - *************************************************** 
20 REM - PROGRAM FSHT2.BAS SECOND STEP IN 
30 REM - DEVELOPMENT OF A FLOWSHEET PROGRAM 
40 REM - PROGRAM NOMENCLATURE To the nomenclature given 
50 REM - for program FSHTl.BAS has been added the following: 
60 REM - Rl - Solids/Solution ratio 
70 REM - R2 ~ Sidestream/entering stream ratio 
80 REM - **************************************** 
1000 DIM A$(20),C$(10) 
1010 DIM B(20),F(20),X(20,10),Y(20,10) 
1020 GOSUB 1210 
1030 PRINT "ENTER MIX,SPLIT,SETTLE,OR END" 
1040 INPUT B$ 
1050 IF B$-"MIX" THEN 1120 
1060 IF B$="SPLIT" THEN 1140 
1070 IF B$="SETTLE" THEN 1160 
1080 IF B$="SET" THEN 1160 
1090 IF B$="END" THEN 1180 
1100 PRINT "INPUT NOT RECOGNISED" 
1110 GOTO 1030 
1120 GOSUB 1510 
1130 GOTO 1030 
1140 GOSUB 1790 
1150 GOTO 1030 
1160 GOSUB 1990 
1170 GOTO 1030 
1180 GOSUB 2240 
1190 GOTO 2360 

1210 REM - FEED SUBROUTINE FOR FLOWRATES & 
1220 REM - COMPOSITIONS OF ENTERING STREAMS 
1230 PRINT "FLOWRATES & COMPOSITIONS FOR FLOWS" 
1240 PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER" 
1250 PRINT "OF COMPONENTS & STICK TO THIS NUMBER" 
1260 PRINT "FOR ALL STREAMS (FOR SETTLING PROBLEMS USE:" 
1270 PRINT "K=l FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID)" 
1280 INPUT Nl 
1290 FOR K=l TO Nl 
1300 PRINT "NAME OF COMPONENT";K; 
1310 INPUT C$(K) 
1320 NEXT K 
1330 PRINT "NUMBER OF STREAMS" 
1340 INPUT N2 
1350 FOR J=l TO N2 
1360 A$(J)="FEED" 
1370 PRINT "FLOW";J;":" 
1380 PRINT "FLOWRATE"; 
1390 INPUT F(J) 
1400 IF F(J)=0 THEN 1490 
1410 E3=0 
1420 FOR K=l TO Nl-1 
1430 PRINT "WT. FRACTION OF ";C$(K); 
1440 INPUT X(J,K) 
1450 E3=E3+X(J,K) 
1460 NEXT K 
1470 X(J,N1)=1-E3 
1480 NEXT J 
1490 RETURN 
1500 REM - ************************************************* 
1510 REM - MIX SUBROUTINE, SIMULATES MIXING OF 
1520 REM - STREAMS CONTAINING UP TO 10 COMPONENTS 
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1530 N2=N2+1 
1540 PRINT "THIS IS MIX SUBROUTINE,BOX NUMBER";N2 
1550 A$(N2)="MIX" 
1560 PRINT "NUMBER OF STREAMS TO BE MIXED"; 
1570 INPUT N3 
1580 FOR J-l TO N3 
1590 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
1600 INPUT B(J) 
1610 NEXT J 
1620 E1=0 
1630 FOR Ĵ l TO N3 
1640 E1=E1+F(B(J)) 
1650 NEXT J 
1660 FOR K=l TO Nl 
1670 E2=0 
1680 FOR J=l TO N3 
1690 E2=E2+F(B(J))*X(B(J),K) 
1700 NEXT J 
1710 Y(N2,K)=E2/E1 
1720 NEXT K 
1730 F(N2)=E1 
1740 FOR K=l TO Nl 
1750 X(N2,K)=Y(N2,K) 
1760 NEXT K 
1770 RETURN 

1790 REM - SPLIT SUBROUTINE, SIMULATES SPLITTING OF 
1800 REM - ONE STREAM INTO TWO IN A DESIGNATED RATIO 
1810 N2=N2+2 
1820 PRINT "THIS IS SPLIT SUBROUTINE,BOX NUMBER";N2-1 
1830 PRINT "THIS NUMBER ALSO DESIGNATES SIDE STREAM." 
1840 PRINT "FORWARD STREAM DESIGNATED BOX NUMBER";N2 
1850 A$(N2-1)="SPLIT,SIDE STREAM" 
1860 A$(N2)="SPLIT,FORWARD STREAM" 
1870 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
1880 INPUT Bl 
1890 PRINT "SIDE STREAM/TOTAL FLOW RATIO"; 
1900 INPUT R2 
1910 F(N2-1)=F(B1)*R2 
1920 F(N2)=F(B1)-F(N2-1) 
1930 FOR K=l TO Nl 
1940 X(N2-1,K)=X(B1,K) 
1950 X(N2,K)=X(B1,K) 
1960 NEXT K 
1970 RETURN 
\ y C3 vJ 1% MVI ^ ̂  ̂  ̂ " ̂  ̂  ̂ * ̂ 1 ̂  ̂  ̂  ̂ * ̂  ̂  ̂ * ̂  ̂  ^ ̂  ̂ ^ ̂  ̂ * ̂ ' ̂ ^ ̂  ̂ ^ ̂  ̂ * ̂ * ̂  ̂ * ̂ 1 ̂  ̂  ̂  ^' ̂  ̂  ̂  ^ ̂  ^τ ̂ η ̂ · ̂  ̂  ̂  Φ* ̂-

1990 REM - SETTLE SUBROUTINE,SIMULATES OPERATION OF A 
2000 REM - SETTLER. 1 ENTERING STREAM IS ASSUMED, 
2010 REM - CONSISTING OF 3 COMPONENTS ONLY. THESE ARE 
2020 REM - NUMBERED 1 FOR SOLVENT, 2 FOR SOLUTE, 3 FOR 
2030 REM - SOLID. ZERO SOLIDS IN THE OVERFLOW IS ASSUMED 
2040 N2=N2+2 
2050 PRINT "THIS IS SETTLE SUBROUTINE,BOX NUMBER";N2-1 
2060 PRINT "THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM." 
2070 PRINT "UNDERFLOW STREAM IS DESIGNATED BOX NUMBER";N2 
2080 A$(N2-1)="SETTLE,OVERFLOW" 
2090 A$(N2)="SETTLE,UNDERFLOW" 
2100 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
2110 INPUT Bl 
2120 PRINT "SOLIDS/SOLUTION RATIO FOR UNDERFLOW"; 
2130 INPUT Rl 
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2140 F<N2)=F(B1)*X(B1,3)*(1+1/R1) 
2150 F(N2-1)^F(B1)-F(N2) 
2160 X(N2,3)=R1/(1+R1) 
2170 X ( N 2 , 2 ) = X ( B 1 , 2 ) / ( ( X ( B 1 , 1 ) + X ( B 1 , 2 ) ) * ( R 1 + 1 ) ) 
2180 X(N2,1)=1--X(N2,2)-X(N2,3) 
2190 X(N2-1 ,3 )=0 
2200 X ( N 2 - 1 , 2 ) = X ( B 1 , 2 ) / ( X ( B 1 , 1 ) + X ( B 1 , 2 ) ) 
2210 X ( N 2 - 1 , 1 ) = 1 - X ( N 2 - 1 , 2 ) 
2220 RETURN 
^ £n ^J\J 1 Τ χ > ΓΙ "~~" Φ-^φ-φ.^*^ *f>. ^ . ^ ^ . ^ . φ . ^ . ^*γ*.*ψΊ φ. φ ι φ *Τ*̂  ^ Τ* *̂- ^ - *Τ»· ^*· ^ ^ · *Τ»· ̂  ^ Τ̂»· Τ*· *^ ^- * ·̂ ^ - Τ^ ^ · *Τ* ̂  τ^ ^ · Τ»· ^* Τ* ̂  *Τ* ̂ » 

2240 REM - PRINT SUBROUTINE 
2250 FOR J=l TO N2 
2260 PRINT A$(J) 
2270 PRINT "BOX NUMBER";J 
2280 PRINT "FLOWRATE^";F(J) 
2290 FOR K=l TO Nl 
2300 PRINT "WEIGHT FRACTION OF ";C$(K);"="; 
2310 PRINT USING "#. tttfJMT ;X( J, K) 
2320 NEXT K 
2330 PRINT 
2340 NEXT J 
2350 RETURN 
2360 END 

STEP THREE 

Many processes involve recycle loops, and in the development of the flowsheet 

the values of flowrate, composition, etc within the loop are usually unknown. 

The program so far will not handle this situation. 

Where unknowns arise in a calculation in this way, it is frequently possible 

to solve for these by generating a sufficient number of simultaneous equations. 

This method is not applicable in the present case because in order to write the 

program it would be necessary to know the flowsheet beforehand. 

The difficulty can be resolved by using an iterative method. Values are 

assumed for the composition and flowrate, etc of the unknown stream and these 

values are employed in the calculation. Entering values in this way is known 

as 'tearing' the stream (1). The calculation proceeds from box to box as before 

until the variables of the torn stream are recalculated. The assumed and 

recalculated values are compared; if they agree within specified limits then the 

calculation is complete, otherwise new values for the torn stream variables must 

be assumed (4). 

The easiest way to assume new values is to employ the arithmetic mean between 

the previously assumed values and the recalculated ones. These new values 

provide the starting point for another calculation. Iteration proceeds in this 

manner until the values of all variables before and after the 'tear' are in 
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agreement within the specified limits. 

To modify the program in this way, an additional subroutine TEAR has been 

written. 

Process Subroutine (TEAR) 

The box numbers which each torn stream leaves and enters are entered by the 

designer. Flowrates and compositions of these streams are averaged (see 

Figure 1.5). 

Fig. 1.5. The Torn Stream. 

Thus the new value of FN to be used at the next iteration, which we may call 

FN*> is: 

FN = F M + FN 
2 

Similarly, 
* 

X N, K = ^ Μ , Κ + X N, K 
2 

In the remainder of the subroutine new values for all variables in the 

flowsheet are recalculated. 

Control is transferred to this subroutine when one or more torn streams 

occur. The program has been modified so as to incorporate these torn streams. 

This has necessitated certain other modifications namely: 

The first parts of subroutines 'Mix1, 'Split' and 'Settle' were concerned 

with data acquisition. These parts have been made into separate 

subroutines (labelled Part A in each case), which are accessed only once, 

each time these operations are input by the designer. Part B of each 

subroutine is accessed as required at each iteration. 

Program FSHT3 which follows, incorporates these modifications, and an 

example of its use is given. 
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1 

1 

FSHT3 JAS 

Start j 

Ψ Subroutine 
Feed 

Input 

L· 

B$ 

<^B$= Mix J> 

INo 

1 <^B$ = Splib-

φΝο 

/ B $ = SetS, 
\ ? > ^ 

x^Bî = EndS^ 
s . ? >^ 

TYes 

Yes^ 

_Ye^ 

Y e ^ 

No 

Subroutine 
Mix - A 

Subroutine 
Split - A 

Subroutine 
Set - A 

-> 

-^ 

Subroutine 
Mix - B 

Subroutine 
Split - B 

Subroutine 
Set - B 

1 

' 

^ 

•̂  

1 

J 

Input B$ 

Portion within broken lines is 
renamed Subroutine build at the 
next stage 

<B$ = Torn 

V 

vYes. Subroutine 
Tear 

_ J L _ _ 

/
Subroutine/ 
Print / 

- w -
( Stop J 
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20 REM - PROGRAM FSHT3.BAS THIRD STEP IN 
30 REM - DEVELOPMENT OF A FLOWSHEET PROGRAM 
40 REM - PROGRAM NOMENCLATURE The following variables are 
50 REM - used,in addition to those already in use 
60 REM - (see FSHT1 and FSHT2): 
70 REM - Cl - Number of iterations to achieve the 
80 REM specified agreement in torn stream 
90 REM - values 
100 REM - N4 - Number of torn streams 
110 REM - N5 - Duplicate value of N2 used in certain 
120 REM - algorithms 
130 REM - N(J) Number of streams to be mixed at box J 
140 REM - T(J,1) Box number which torn stream J leaves 
150 REM - T(J,2) Box number which torn stream enters 
160 REM - The following variables replace others previously 
170 REM - used: 
180 REM - B(J,K) Box number of stream K entering box J 
190 REM replaces B(J) used in FSHT1 & FSHT2 
200 REM - R(J) Side stream/total flowratio, or solids/ 
210 REM solution ratio, at box J. Replaces Rl 
220 REM & R2 used in FSHT2 
230 REM - DETAILS OF SUBROUTINE TEAR 
240 REM - LINES 2500 - 2570 The value of N4 is entered, that 
250 REM - is the number of streams which are torn; for each 
260 REM - of these the box numbers before and after the tear 
270 REM - are entered (values of T(J,1) and T(J,2)). 
280 REM - LINES 2580 - 2710 The box numbers corresponding 
290 REM - to the values entered above are found (line 2620); 
300 REM - flows are averaged (line 2640); compositions are 
310 REM - averaged (line 2670); this is done for each torn 
320 REM - stream. These new values will be used as inputs 
330 REM - to the boxes which the torn streams enter. 
340 REM - LINES 2720 - 2820 The new values obtained above 
350 REM - are compared with those calculated at the last 
360 REM - iteration. If agreement is within 1% the 
370 REM - remainder of the subroutine is bypassed and the 
380 REM - number of iterations is printed (line 2990). If 
390 REM - all values are not within 1%, another iteration 
400 REM - is carried out. 
410 REM - LINES 2830 - 2960 Box numbers are stepped 
420 REM - through consecutively, the value of A$(L) being 
430 REM - used to identify the nature of each box. Part B 
440 REM - of the appropriate subroutine is called. 
450 REM - LINES 2970 - 3000 If the specified agreement 
460 REM has not been met, then the program terminates 
470 REM - after 50 iterations. 
480 REM **************************^^ 
1000 DIM A$(20),C$(10) 
1010 DIM B(20,10),F(20),N(20),R(20),X(20,10),Y(20,10) 
1020 GOSUB 1290 
1030 PRINT ENTER MIX,SPLIT,SETTLE,OR END" 
1040 INPUT B$ 
1050 IF B$^"MIX" THEN 1120 
1060 IF B$="SPLIT" THEN 1150 
1070 IF B$=MSETTLE" THEN 1180 
1080 IF B$="SET" THEN 1180 
1090 IF B$="END" THEN 1210 
1100 PRINT "INPUT NOT RECOGNISED" 
1110 GOTO 1030 
1120 GOSUB 1590 
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1130 GOSUB 1750 
1140 GOTO 1030 
1150 GOSUB 1950 
1160 GOSUB 2080 
1170 GOTO 1030 
1180 GOSUB 2220 
1190 GOSUB 2360 
1200 GOTO 1030 
1210 PRINT "IF ONE OR MORE STREAMS ARE TORN," 
1220 INPUT "TYPE Y ELSE N";B$ 
1230 IF B$="Y" THEN 1260 
1240 GOSUB 3030 
1250 GOTO 3150 
1260 GOSUB 2490 
1270 GOTO 1240 

1290 REM - FEED SUBROUTINE FOR FLOWRATES & 
1300 REM - COMPOSITIONS OF ENTERING STREAMS 
1310 PRINT "FLOWRATES & COMPOSITIONS FOR STREAMS" 
1320 PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER" 
1330 PRINT "OF COMPONENTS & STICK TO THIS NUMBER" 
1340 PRINT "FOR ALL STREAMS (FOR SETTLING PROBLEMS USE:" 
1350 PRINT "K=l FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID)" 
1360 INPUT Nl 
1370 FOR K=l TO Nl 
1380 PRINT "NAME OF COMPONENT";K; 
1390 INPUT C$(K) 
1400 NEXT K 
1410 PRINT "NUMBER OF STREAMS" 
1420 INPUT N2 
1430 FOR J=l TO N2 
1440 A$(J)="FEED" 
1450 PRINT "FLOW";J;":" 
1460 PRINT "FLOWRATE"; 
1470 INPUT F(J) 
1480 IF F(J)=0 THEN 1570 
1490 E3=0 
1500 FOR K=l TO Nl-1 
1510 PRINT "WT. FRACTION OF ";C$(K); 
1520 INPUT X(J,K) 
1530 E3=E3+X(J,K) 
1540 NEXT K 
1550 X(J,N1)=1~E3 
1560 NEXT J 
1570 RETURN 
1580 REM *************************************************** 
1590 REM - MIX SUBROUTINE, SIMULATES MIXING OF 
1600 REM - UP TO 10 STREAMS CONTAINING 
1610 REM - UP TO 10 COMPONENTS - MIX, PART A *************** 
1620 N2=N2+1 
1630 N5=N2 
1640 PRINT "THIS IS MIX SUBROUTINE,BOX NUMBER";N2 
1650 A$(N2)="MIX" 
1660 PRINT "NUMBER OF STREAMS TO BE MIXED"; 
1670 INPUT N(N5) 
1680 FOR J=l TO N(N5) 
1690 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
1700 INPUT B(N5,J) 
1710 NEXT J 
1720 RETURN 
i 7 0 Λ T?TirM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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1740 REM - MIX, PART B ************************************* 
1750 E1=0 
1760 FOR J=l TO N(N5) 
1770 E1--E1+F(B(N5,J)> 
1780 NEXT J 
1790 FOR K^l TO NI 
1800 E2=0 
1810 FOR J=l TO N(N5) 
1820 E2=E2+F(B(N5,J))*X(B(N5,J),K) 
1830 NEXT J 
1840 Y(N5,K)=E2/E1 
1850 NEXT K 
1860 F(N5)=E1 
1870 FOR K=l TO NI 
1880 X(N5,K)=Y(N5,K) 
1890 NEXT K 
1900 RETURN 
1Q10 RTTM *************************************************** 
1920 REM - SPLIT SUBROUTINE, SIMULATES SPLITTING OF 
1930 REM - ONE STREAM INTO TWO IN A DESIGNATED RATIO 
1940 REM - SPLIT,PART A ************************************ 
1950 N2^N2+2 
1960 N5=N2 
1970 PRINT "THIS IS SPLIT SUBROUTINE, BOX NUMBER";N2-1 
1980 PRINT "THIS NUMBER ALSO DESIGNATES SIDE STREAM. 
1990 PRINT "FORWARD STREAM DESIGNATED BOX NUMBER";N2 
2000 A$(N2-1)-^"SPLIT, SIDE STREAM" 
2010 A$(N2)="SPLIT,FORWARD STREAM" 
2020 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
2030 INPUT B(N5,1) 
2040 PRINT "SIDE STREAM/TOTAL FLOW RATIO"; 
2050 INPUT R(N5) 
2060 RETURN 
2070 REM - SPLIT,PART B 
2080 F(N5-1)^F(B(N5,1))*R(N5) 
2090 F(N5)=F(B(N5,1))-F(N5-1) 
2100 FOR K=l TO Nl 
2110 X(N5-1,K)=X(B(N5,1),K) 
2120 X(N5,K)=X(B(N5,1),K) 
2130 NEXT K 
2140 RETURN 
2150 REM *************************************************** 
2160 REM - SETTLE SUBROUTINE,SIMULATES OPERATION 
2170 REM - OF A SETTLER. 1 ENTERING STREAM 
2180 REM - IS ASSUMED, CONSISTING OF 3 COMPONENTS ONLY 
2190 REM - THESE ARE NUMBERED 1 FOR SOLVENT,2 FOR SOLUTE, 
2200 REM - 3 FOR SOLID. ZERO SOLIDS IN THE OVERFLOW 
2210 REM - IS ASSUMED - SETTLE, PART A ********************* 
2220 N2=N2+2 
2230 N5=N2 
2240 PRINT "THIS IS SETTLE SUBROUTINE,BOX NUMBER";N2-1 
2250 PRINT "THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM." 
2260 PRINT "UNDERFLOW STREAM IS DESIGNATED BOX NUMBER";N2 
2270 A$(N2-1)="SETTLE,OVERFLOW" 
2280 A$(N2)="SETTLE,UNDERFLOW" 
2290 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
2300 INPUT B(N5,1) 
2310 PRINT "SOLIDS/SOLUTION RATIO FOR UNDERFLOW"; 
2320 INPUT R(N5) 
2330 RETURN 
2340 REM *************************************************** 
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2350 REM - SETTLE, PART B ********************************** 
2360 F(N5)=r-F(B(N5,l))*X(B(N5,l),3)*(l+l/R(N5>) 
2370 F(N5-1)=F(B(N5,1))-F(N5) 
2380 X(N5,3)=R(N5)/(1+R(N5)) 
2390 X2=((X(B(N5,1),1)+X(B(N5,1),2))*(R(N5)+1)) 
2400 X(N5,2)=X(B(N5,1),2)/X2 
2410 X(N5,1)=1-X(N5,2)-X(N5,3) 
2420 X(N5-l,3)-0 
2430 X(N5-1,2)=X(B(N5,1),2)/(X(B(N5,1),1)+X(B(N5,1),2)) 
2440 X(N5-1,1)=1-X(N5-1,2) 
2450 RETURN 
2460 REM *************************************************** 
2470 REM - TEAR SUBROUTINE, USED WHEN STREAM DATA 
2480 REM - HAS HAD TO BE ESTIMATED 
2490 PRINT "THIS IS TEAR SUBROUTINE" 
2500 PRINT "HOW MANY TORN STREAMS"; 
2510 INPUT N4 
2520 FOR J-l TO N4 
2530 PRINT "BOX NUMBER WHICH TORN STREAM";J;" LEAVES"; 
2540 INPUT T(J,1) 
2550 PRINT "BOX NUMBER WHICH TORN STREAM";J;" ENTERS"; 
2560 INPUT T(J,2) 
2570 NEXT J 
2580 FOR L=l TO N2 
2590 N5=L 
2600 FOR M=l TO N4 
2610 FOR N=l TO N(N5) 
2620 IF B(N5,N)=T(M,2) THEN 2640 
2630 GOTO 2690 
2640 F(B(N5,N))=(F(T(M,1))+F(T(M,2)))/2 
2650 C1=C1+1 
2660 FOR P=l TO Nl 
2670 X(B(N5,N),P)=(X(T(M,1),P)+X(T(M,2),P))/2 
2680 NEXT P 
2690 NEXT N 
2700 NEXT M 
2710 NEXT L 
2720 FOR M=l TO N4 
2730 FOR P=l TO Nl 
2740 IF X(T(M,1),P)=0 THEN 2800 
2750 IF X(T(M,2),P)=0 THEN 2800 
2760 IF X(T(M,2),P)/X(T(M,1),P)>1.01 THEN 2830 
2770 IF X(T(M,2),P)/X(T(M,1),P)<.99 THEN 2830 
2780 IF F(T(M,2))/F(T(M,1))>1.01 THEN 2830 
2790 IF F(T(M,2>)/F(T(M, DX-99 THEN 2830 
2800 NEXT P 
2810 NEXT M 
2820 GOTO 2990 
2830 FOR L=l TO N2 
2840 N5=L 
2850 IF A$(L)="FEED" THEN 2960 
2860 IF A$(L)="MIX" THEN 2910 
2870 IF A$(L)="SPLIT,SIDE STREAM" THEN 2960 
2880 IF A$(L)-"SPLIT,FORWARD STREAM" THEN 2930 
2890 IF A$(L)="SETTLE,OVERFLOW" THEN 2960 
2900 IF A$(L)="SETTLE,UNDERFLOW" THEN 2950 
2910 GOSUB 1750 
2920 GOTO 2960 
2930 GOSUB 2070 
2940 GOTO 2960 
2950 GOSUB 2360 
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2960 NEXT L 
2970 IF Cl>50 THEN 2990 
2980 GOTO 2580 
2990 PRINT "C1=";C1 
3000 RETURN 

3020 REM - PRINT SUBROUTINE 
3030 PRINT 
3040 FOR J=l TO N2 
3050 PRINT A$(J) 
3060 PRINT "BOX NUMBER";J 
3070 PRINT "FLOWRATE^";F{J> 
3080 FOR K=l TO Ni 
3090 PRINT "WEIGHT FRACTION OF " ; C$(K) ; ,, = M ; 
3100 PRINT USING "#.####";X(J,K) 
3110 NEXT K 
3120 PRINT 
3130 NEXT J 
3140 RETURN 
3150 PRINT "END" 
3160 END 

Example 1.2 

A plastics manufacturer sells his product as a moulding compound consisting 

of a blend of raw polymer, with carbon black, antioxidant and other chemicals. 

The compound is prepared in a two stage process. 

In the first step, all of the carbon black and antioxidant is mixed with 

polymer to produce a concentrated mix referred to as masterbatch. This 

operation is carried out in a batch mixer, the polymer being heated above its 

softening point in the process. The blended product is cooled and diced into 

granules. 

In the second stage, the granular masterbatch and further raw polymer are 

mixed in a dry blender and then fed to a twin screw compounding extruder. Once 

again the polymer is heated above its softening point, is cooled and diced into 

granules. 

At each stage of mixing a certain amount of leakage occurs. Some of this 

material is contaminated and must be discarded; the remainder is recycled to 

the first stage mixer. The flow diagram of the process is shown in simplified 

form in Figure 1.6. 
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Figure 1.6 Polymer Compounding 

Using the data below, use the program described above to calculate the 

flowrates and compositions of all streams. 

Data 

1. 
2. 
3. 
4. 

Raw polymer to 1st stage mixer: 70 kg 
Raw polymer to 2nd stage mixer: 950 kg 
Carbon black: 30 kg 
Anti oxidant: 2 kg 

5% of the 1st stage product appears as leakage; 25% of this has to be 

discarded, the remainder being recycled. 

3% of the 2nd stage product appears as leakage; 30% of this has to be 

discarded, the remainder being recycled. 

The first step in solving this problem is to draw a block diagram. Here the 

individual steps 'mix' and 'split' are shown, boxes and streams being numbered 

in accordance with the convention employed in the program (see Figure 1.7). 
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Figure 1.7 Block diagram for Polymer Compounding Process 

Next the program FSHT3 is run and the values entered, as follows: 
RUN 
FLCWRATES & COMPOSITIONS FOR STREAMS 
ENTERING THE SYSTEM;ENTER THE NUMBER 
OF COMPONENTS 3c STICK TO THIS NUMBER 
FOR ALL STREAMS (FOR SETTLING PROBLEMS USE: 

03 
WT. FRACTION OF ANTI OX? .002 

K=l FOR SOLVENT 2 FOR SOLUTE,3 FOR SOLID) 

NAME OF COMPONENT 1 ? C BLACK 
NAME OF COMPONENT 2 ? ANTI OX 
NAME OF COMPONENT 3 ? POLYMER 
NUMBER OF STREAMS 

FLOW 1 : 
FLOWRATE? 950 
WT. FRACTION OF 
WT. FRACTION OF 
FLOW 2 : 
FLOWRATE? 70 
WT. FRACTION OF 
WT. FRACTION OF 
FLOW 3 : 
FLOWRATE? 30 
WT. FRACTION OF 
WT. FRACTION OF 

J 

C BLACK? 0 
ANTI OX? 0 

C BLACK? 0 
ANTI OX? 0 

C BLACK? 1 
ANTI OX? 0 a*· 

FLOW 4 : 
FLOWRATE? 2 
WT. FRACTION 
WT. FRACTION 
FLOW 5 : 
FLOWRATE? 40 
WT. FRACTION 

OF 
OF 

OF 

C BLACK? 0 
ANTI OX? 1 

C BLACK? . 

25 
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ENTER MIX,SPLIT,SETTLE,OR END 
? MIX 
THIS IS MIX SUBROUTINE/BOX NUMBER 6 
NUMBER OF STREAMS TO BE MIXED? 4 
BOX NUMBER FROM WHICH STREAM COMES? 2 
BOX NUMBER FROM WHICH STREAM COMES? 3 
BOX NUMBER FROM WHICH STREAM COMES? 4 
BOX NUMBER FROM WHICH STREAM COMES? 5 
ENTER MIX,SPLIT,SETTLE,OR END 
? SPLIT 
THIS IS SPLIT SUBROUTINE, BOX NUMBER 7 
THIS NUMBER ALSO DESIGNATES SIDE STREAM. 
FORWARD STREAM DESIGNATED BOX NUMBER 8 
BOX NUMBER FROM WHICH STREAM COMES? 6 
SIDE STREAM/TOTAL FLOW RATIO? .05 
ENTER MIX,SPLIT,SETTLE,OR END 
? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 9 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 1 
BOX NUMBER FROM WHICH STREAM COMES? 8 
ENTER MIX,SPLIT,SETTLE,OR END 
? SPLIT 
THIS IS SPLIT SUBROUTINE, BOX NUMBER 10 
THIS NUMBER ALSO DESIGNATES SIDE STREAM. 
FORWARD STREAM DESIGNATED BOX NUMBER 11 
BOX NUMBER FROM WHICH STREAM COMES? ? 
SIDE STREAM/TOTAL FLOW RATIO? .03 
ENTER MIX,SPLIT,SETTLE,OR END 
? SPLIT 
THIS IS SPLIT SUBROUTINE, BOX NUMBER 12 
THIS NUMBER ALSO DESIGNATES SIDE STREAM. 
FORWARD STREAM DESIGNATED BOX NUMBER 13 
BOX NUMBER FROM WHICH STREAM COMES? 7 
SIDE STREAM/TOTAL FLOW RATIO? .25 
ENTER MIX,SPLIT,SETTLE,OR END 
? SPLIT 
THIS IS SPLIT SUBROUTINE, BOX NUMBER 14 
THIS NUMBER ALSO DESIGNATES SIDE STREAM. 
FORWARD STREAM DESIGNATED BOX NUMBER 15 
BOX NUMBER FROM WHICH STREAM COMES? 10 
SIDE STREAM/TOTAL FLOW RATIO? .3 
ENTER MIX,SPLIT,SETTLE,OR END 
? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 16 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 13 
BOX NUMBER FROM WHICH STREAM COMES? 15 
ENTER MIX,SPLIT,SETTLE,OR END 
? END 
IF ONE OR MORE STREAMS ARE TORN, 
TYPE Y ELSE N? Y 
THIS IS TEAR SUBROUTINE 
HOW MANY TORN STREAMS? 1 
BOX NUMBER WHICH TORN STREAM 1 LEAVES? 
BOX NUMBER WHICH TORN STREAM 1 ENTERS? 
Cl= 7 1 

i ^ -

I FEED 
BOX NUMBER 1 
FLOWRATE- 950 
WEIGHT FRACTION OF C BLACK=Q.0000 
WEIGHT FRACTION OF ANTI 0X=0.0000 
WEIGHT FRACTION OF P0LYMER=1.0000 

FEED 
BOX NUMBER 2 
FLOWRATE= 70 
WEIGHT FRACTION OF C BLACK=0.0000* 
WEIGHT FRACTION OF ANTI 0X=0.0000 
WEIGHT FRACTION OF P0LYMER=1.0000 

FEED 
BOX NUMBER 3 
FLOWRATE= 30 
WEIGHT FRACTION OF C BLACK=1.0000 
WEIGHT FRACTION OF ANTI 0X=0.0000 
WEIGHT FRACTION OF POLYMER=0.0000 

FEED 
BOX NUMBER 4 
FilOWRATE= 2 
WEIGHT FRACTION OF C BLACK=0.0000 
WEIGHT FRACTION OF ANTI 0X=1.0000 
WEIGHT FRACTION OF PGLYMER=0.0000 

FEED RECYCLE 

BOX NUMBER 5 (after tear) 
FL0WRATE= 27.52879 

I WEIGHT FRACTION OF C 8LACK=0.0663 
WEIGHT FRACTION OF ANTI 0X = 0.0044" 
WEIGHT FRACTION OF POLYMER=0.9292 

ΊΜΙΧ MASTERBATCH 
BOX NUMBER 6 
FLOWRATE= 129.6587 
WEIGHT FRACTION OF C BLACK=0.2454 
WEIGHT FRACTION OF ANTI 0X=0.0164 
WEIGHT FRACTION OF PQLYMER=0.7382 

SPLIT,SIDE STREAM 
BOX NUMBER 7 
FLOWRATE= 6.482935 
WEIGHT FRACTION OF C BLACK=0.2454 
WEIGHT FRACTION OF ANTI 0X=0.0164 
WEIGHT FRACTION OF PGLYMER=0.7382 

SPLIT,FORWARD STREAM 
BOX NUMBER 8 
FLQWRATE= 123.1758 
WEIGHT FRACTION OF C BLACK=0.2454 

i6 WEIGHT FRACTION OF ANTI QX*0.0164 
5 'WEIGHT FRACTION OF POLYMER=0.7302 
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MIX 
BOX NUMBER 9 
FLQWRATE* 1073.176 
WEIGHT FRACTION OF C BLACK=0.02B2 
WEIGHT FRACTION OF ANTI QX=0.0019 
WEIGHT FRACTION OF FOLYMER=0.9700 

SPLIT,SIDE STREAM 
BOX NUMBER 10 
FLOWRATE= 32.19528 
WEIGHT FRACTION OF C BLACK=0.0282 
WEIGHT FRACTION OF ANTI 0X=0.0019 
WEIGHT FRACTION OF PQLYMER=0.9700 

SPLIT,FORWARD STREAM PRODUCT 
BOX NUMBER 11 
FLOWRATE= 1040.981 
WEIGHT FRACTION OF C BLACK=0.0282 
WEIGHT FRACTION OF ANTI 0X=0.0019 
WEIGHT FRACTION OF POLYMER*0.9700 

SPLIT,SIDE STREAM WASTE 
BOX NUMBER 12 
FLOWRATE= 1.620734 
WEIGHT FRACTION OF C BLACK=0.2454 
WEIGHT FRACTION OF ANTI 0X=0.0164 
WEIGHT FRACTION OF POLYMER=0.7382 

SPLIT,FORWARD STREAM 
BOX NUMBER 13 
FLOWRATE= 4.862201 
WEIGHT FRACTION OF C BLACK=0.2454 
WEIGHT FRACTION OF ANTI 0X=0.0164 
WEIGHT FRACTION OF POLYMER=0.7382 

SPLIT,SIDE STREAM WASTE 
BOX NUMBER 14 
FLQWRATE= 9.658582 
WEIGHT FRACTION OF C BLACK=0.0232 
WEIGHT FRACTION OF ANTI 0X=0.0019 
WEIGHT FRACTION OF POLYMER=0.9700 

SPLIT,FORWARD STREAM 
BOX NUMBER 15 
FLOWRATE= 22.53669 
WEIGHT FRACTION OF C BLACK=0.0282 
WEIGHT FRACTION OF ANTI 0X=0.0019 
WEIGHT FRACTION OF P0LYMER=0.9700 

Mix RECYCLE 
BOX NUMBER 16 (before tear) 
FLOWRATE= 27.39889 
WEIGHT FRACTION OF C BLACK=0.0667 
WEIGHT FRACTION OF ANTI 0X=0.0044 
WEIGHT FRACTION OF POLYMER=0.9288 

END 
Ok 
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STEP FOUR 

A further step in the evolution of the program is the incorporation of 

subroutines which will permit flowsheet modification, and also changing of the 

values of the process variables. To do this, three additional subroutines have 

been written. 

These were incorporated into the program and debugged one at a time. For 

the sake of brevity however, all three are described below, and the program 

incorporating them all is given. 

Process Subroutine (BUILD) 

On inspection of the program so far, but having these new developments in 

mind, it was obvious that subroutine 'Feed' should not have been treated 

differently from the process subroutines 'Mix', 'Split1, etc. At the same 

time it was decided to simplify the control program by making the segment in 

which the flowsheet building steps occur, into a new subroutine called 'Build'; 

this also made easier the writing of subroutine 'Modify'. 

Process Subroutine (CHANGE) 

The purpose of this subroutine is to change the values of process variables 

on the flowsheet existing at the time the subroutine is called. The values 

involved are flowrates, compositions, splitter ratios and solids/solution ratios. 

Process Subroutine (MODIFY) 

This subroutine is used to modify the flowsheet existing at the time the 

subroutine is called. It is in two parts. In the first part the functions of 

existing boxes and the interconnections between them, are altered; this is done 

by calling up the process subroutines as required. In the second part, control 

is transferred to 'Build' subroutine, which carries on with the assembly of the 

flowsheet from the latest value of N2. 

Program FSHT4 which follows includes these further steps. 



29 

FSHT4.BAS 

C Start J 

Subroutine 
Build 

Details 
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■7 1 r 

-/-

Input 

(Subroutine 
[Tear - A SubroutinerH Tear - B Subroutine 
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L Print 
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Rerun % 
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^ ^ o _ 

> Yes -^ 
^ N7= 1 ■ - > i 
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Yes Subroutine 
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Subroutine 
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Stop ) 

Subroutine 
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No 
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10 EEM ********************************************** 
20 REM - PROGRAM FSHT4.BAS LAST STEP IN 
30 REM - DEVELOPMENT OF A FLOWSHEET PROGRAM 
40 REM - PROGRAM NOMENCLATURE The following additional 
50 REM - variables are used: 
60 REM - Bl - Number of entering streams, splitters, 
70 REM settlers, or number of boxes,to be 
80 REM changed. 
90 REM - B2 - Box number which has to be changed or 
100 REM modified. 
110 REM - N6 - Duplicate of N2, used in "Modify" 
120 REM subroutine 
130 REM - N7 - This variable has two values; value 0 
140 REM indicates no changes to process 
150 REM variables; value 1 indicates changes 
160 REM - DETAILS OF SUBROUTINE BUILD 
170 REM - LINES 1430-1680 The required functions ("Feed", 
180 REM - "Mix",etc) input from the keyboard,(lines 1430, 
190 REM - 1440); the appropriate subroutines are then 
200 REM - called (lines 1450-1670). 
205 REM - DETAILS OF SUBROUTINE CEIANGE 
210 REM - LINES 3500-3710 The number of existing feed 
220 REM - streams whose values will be changed is entered 
230 REM - from the keyboard; for each of these streams the 
240 REM - designer then enters the box number and values of 
250 REM - flowrate and composition. 
260 REM ~ LINES 3720-3850 New values of ratios for 
270 REM - splitters are similarly entered. Note that lines 
280 REM - 3780 and 3790 correct the box number should the 
290 REM - designer have entered that for the side stream, 
300 REM - in error. 
310 REM - LINES 3860-4000 In a similar manner, new values 
320 REM - of ratios for settlers are entered. 
330 REM - DETAILS OF SUBROUTINE MODIFY 
340 REM - LINES 4020-4260 The number of existing boxes 
350 REM - whose function will be changed is entered from the 
360 REM - keyboard,and for each of these the designer then 
370 REM - enters the box number and the required function 
380 REM - ("Feed","Mix",etc - lines 4040 to 4110). The 
390 REM - appropriate subroutines are then called (lines 
400 REM - 4120 to 4260). 
410 REM - LINES 4270-4330 If new boxes are to be added to 
420 REM - the flowsheet then the subroutine "Build"is called 
430 REM **************************************************** 
1000 DIM A$(20),C$(10) 
1010 DIM B(20,10),X(20,10),Y(20,10) 
1020 DIM F(20),NC20),R(20) 
1030 G0SÜB 1390 
1040 N6=N2 
1050 IF N4>0 THEN 1070 
1060 GOTO 1090 
1070 GOSUB 3020 
1080 GOTO 1130 
1090 PRINT 
1100 PRINT "IF ONE OR MORE STREAMS ARE TORN,"; 
1110 INPUT "TYPE Y ELSE N";B$ 
1120 IF B$="Y" THEN 1150 
1130 GOSUB 4350 
1140 GOTO 1180 
1150 GOSUB 2890 
1160 GOSUB 3020 
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1170 GOTO 1130 
1180 N7=0 
1190 PRINT 
1200 PRINT "TO RERUN WITH DIFFERENT VALUES "; 
1210 INPUT "TYPE Y ELSE N";B$ 
1220 IF B$="Y" THEN 1240 
1230 GOTO 1250 
1240 N7=l 
1250 PRINT 
1260 INPUT "TO MODIFY FLOWSHEET TYPE Y, ELSE N";B$ 
1270 IF B$="Y·' THEN 1300 
1280 IF N7-=l THEN 1360 
1290 GOTO 4540 
1300 GOSUB 4020 
1310 N4^0 
1320 IF N701 THEN 1350 
1330 GOSUB 3500 
1340 GOSUB 3350 
1350 GOTO 1040 
1360 GOSUB 3500 
1370 GOSUB 3350 
1380 GOTO 1050 
1390 PRINT 
1400 REM *************************************************** 
1410 REM - BUILD SUBROUTINE 
1420 REM - USED WHEN ASSEMBLING THE FLOWSHEET 
1430 PRINT "ENTER FEED,MIX,SPLIT,SETTLE,OR END"; 
1440 INPUT B$ 
1450 IF B$="FEED" THEN 1530 
1460 IF B$="MIX" THEN 1590 
1470 IF B$="SPLIT" THEN 1620 
1480 IF B$="SETTLE" THEN 1650 
1490 IF B$="SET" THEN 1650 
1500 IF B$="END" THEN 1680 
1510 PRINT "INPUT NOT RECOGNISED" 
1520 GOTO 1390 
1530 IF N1>0 THEN 1570 
1540 GOSUB 1700 
1550 GOSUB 1860 
1560 GOTO 1390 
1570 GOSUB 1860 
1580 GOTO 1390 
1590 GOSUB 2020 
1600 GOSUB 2160 
1610 GOTO 1390 
1620 GOSUB 2340 
1630 GOSUB 2490 
1640 GOTO 1390 
1650 GOSUB 2580 
1660 GOSUB 2770 
1670 GOTO 1390 
1680 RETURN 
1690 REM *************************************************** 
1700 REM - FEED SUBROUTINE FOR FLOWRATES & 
1710 REM - COMPOSITIONS OF ENTERING STREAMS 
1720 REM - FEED, PART A ************************************ 
1730 PRINT "FLOWRATES & COMPOSITIONS FOR STREAMS" 
1740 PRINT "ENTERING THE SYSTEM;ENTER THE NUMBER" 
1750 PRINT OF COMPONENTS & STICK TO THIS NUMBER" 
1760 PRINT "FOR ALL STREAMS (FOR SETTLING PROBLEMS USE:" 
1770 PRINT "K=l FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID)" 
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1780 INPUT NI 
1790 FOR K=l TO NI 
1800 PRINT "NAME OF COMPONENT";K; 
1810 INPUT C$(K) 
1820 NEXT K 
1830 RETURN 

1850 REM - FEED, PART B ************************************ 
1860 N2=--N2+1 
1870 N5^N2 
1880 PRINT "THIS IS FEED SUBROUTINE, BOX NUMBER";N2 
1890 A$(N2)="FEED" 
1900 PRINT "FLOWRATE"; 
1910 INPUT F(N2) 
1920 IF F(N2)=0 THEN 2000 
1930 E3=0 
1940 FOR K=l TO Nl-1 
1950 PRINT "WT FRACTION OF ";C$(K); 
1960 INPUT X(N2,K> 
1970 E3=E3+X(N2,K) 
1980 NEXT K 
1990 X(N2,N1)^1-E3 
2000 RETURN 
£\jX.\) JbtJcaM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

2020 REM - MIX SUBROUTINE, SIMULATES MIXING OF 
2030 REM - UP TO 10 STREAMS CONTAINING 
2040 REM - UP TO 10 COMPONENTS - MIX, PART A *************** 
2050 N2=N2+1 
2060 N5=N2 
2070 PRINT "THIS IS MIX SUBROUTINE,BOX NUMBER";N2 
2080 A$(N2)="MIX" 
2090 PRINT "NUMBER OF STREAMS TO BE MIXED"; 
2100 INPUT N(N5) 
2110 FOR J=l TO N(N5) 
2120 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
2130 INPUT B(N5,J) 
2140 NEXT J 
2150 RETURN 
2160 REM - MIX, PART B ************************************* 
2170 E1=0 
2180 FOR J=l TO N(N5) 
2190 E1=E1+F(B(N5,J)> 
2200 NEXT J 
2210 FOR K=*l TO Nl 
2220 E2=0 
2230 FOR J=l TO N(N5) 
2240 E2=E2+F(B(N5,J))*X(B(N5,J),K) 
2250 NEXT J 
2260 Y(N5,K)=E2/E1 
2270 NEXT K 
2280 F(N5)=E1 
2290 FOR K=l TO Nl 
2300 X(N5,K)=Y(N5,K) 
2310 NEXT K 
2320 RETURN 
2330 REM *************************************************** 
2340 REM - SPLIT SUBROUTINE, SIMULATES SPLITTING OF 
2350 REM - ONE STREAM INTO TWO IN A DESIGNATED RATIO 
2360 REM - SPLIT,PART A ************************************ 
2370 N2=N2+2 
2380 N5=N2 
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2390 PRINT "THIS IS SPLIT SUBROUTINE, BOX NUMBER";N2-1 
2400 PRINT "THIS NUMBER ALSO DESIGNATES SIDE STREAM." 
2410 PRINT "FORWARD STREAM DESIGNATED BOX NUMBER";N2 
2420 A$(N2-1)="SPLIT,SIDE STREAM" 
2430 A$(N2)="SPLIT,FORWARD STREAM" 
2440 PRINT "BOX NUMBER FROM WHICH STREAM COMES"; 
2450 INPUT B(N5,1) 
2460 PRINT "SIDE STREAM/TOTAL FLOW RATIO"; 
2470 INPUT R(N5) 
2480 RETURN 
2490 REM - SPLIT,PART B ************************************ 
2500 F(N5-1)^F(B(N5,1) )*R(N5) 
2510 F ( N 5 ) = F ( B ( N 5 , 1 ) ) - F ( N 5 - 1 ) 
2520 FOR K=l TO Nl 
2530 X(N5-1 ,K)^X(B(N5,1) ,K) 
2540 X(N5,K)=X(B(N5,1) ,K) 
2550 NEXT K 
2560 RETURN 

2580 REM - SETTLE SUBROUTINE,SIMULATES OPERATION 
2590 REM - OF A SETTLER. 1 ENTERING FLOW 
2600 REM - IS ASSUMED, CONSISTING OF 3 COMPONENTS ONLY 
2610 REM - THESE ARE NUMBERED 1 FOR SOLVENT, 2 FOR SOLUTE, 
2620 REM - 3 FOR SOLID. ZERO SOLIDS IN THE OVERFLOW 
2630 REM - IS ASSUMED - SETTLE, PART A ********************* 
2640 N2=N2+2 
2650 N5^N2 
2660 PRINT "THIS IS SETTLE SUBROUTINE,BOX NUMBER";N2-1 
2670 PRINT "THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM." 
2680 PRINT "UNDERFLOW STREAM IS DESIGNATED BOX NUMBER";N2 
2690 A$(N2-1 ) r:"SETTLE, OVERFLOW" 
2700 A$(N2)^"SETTLE,UNDERFLOW" 
2710 PRINT "BOX NUMBER FROM WHICH FLOW COMES"; 
2720 INPUT B(N5,1) 
2730 PRINT "SOLIDS/SOLUTION RATIO FOR UNDERFLOW"; 
2740 INPUT R(N5) 
2750 RETURN 
£ f £) yj f£ E*IM  ̂  ̂  ̂  ̂  ̂  ̂ V r T * Π̂  ^τΓ nr- ̂ r~ ̂ T1 <lr- * l* *1̂  *ΊΓ· *■* * l* *ΊΓ * l* *1* * l* * l̂  *T * * l* Hr- ^Ίτ- * l* *&· *τΓ- *Φ· * Ι̂  Φ Πτ <τΓ· 'Τ* τ* 'ττ  ̂ ΗΓ* Ϋ·  ̂ <Φ·  ̂ * Ι* * Ι* * Ι* 

2770 REM - SETTLE, PART B ********************************** 
2780 F(N5)--F(B(N5, 1) )*X(B(N5, 1 > , 3 ) * ( 1 + 1/R(N5) ) 
2790 F ( N 5 - 1 ) - F < B ( N 5 , 1 ) ) F ( N 5 ) 
2800 X(N5,3)rrR(N5)/ ( l+R(N5)) 
2810 X2 = ( ( X ( B ( N 5 , l ) , l ) - i X ( B ( N 5 , l ) , 2 ) ) * ( R ( N 5 ) + l ) ) 
2820 X ( N 5 , 2 ) ^ X ( B ( N 5 , 1 ) , 2 ) / X 2 
2830 X(N5,1)=1-X(N5,2) -X<N5,3) 
2840 X(N5 l , 3 ) - 0 
2850 X ( N 5 - 1 , 2 ) = X ( B ( N 5 , l ) , 2 ) / ( X ( B ( N 5 , 1 ) , 1 ) + X ( B ( N 5 , 1 ) , 2 ) ) 
2860 X(N5-1 ,1 )=1 -X(N5-1 ,2) 
2870 RETURN 
O O Q f\ O*C1JI ^ ^ . ^ » Α . ^ - ^ . ^ ^ , ^ ,Α, «Xr ̂  ^«^- *&*& *L· ■·*' ^L·1 "^ *L· *& *l··^ *& «i* *b *&*& *L· ^ *& *4t ^ ^ ^ ^ ^ *àf*& «̂  ^^Λ,^-^^-^^^Λ. ^ »Ar 
/ ;OOU IXXLFu ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ * τ · ^ - ^ . ^ * τ ^ ^ ^ ^ ^ ^ ^ . ^ . ^ . ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ γ ^ ^ ^ φ . ^ ^ ^ 
2890 REM - TEAR SUBROUTINE, USED WHEN STREAM DATA 
2900 REM - HAS HAD TO BE ESTIMATED - TEAR, PART A ********** 
2910 PRINT "THIS IS TEAR SUBROUTINE" 
2920 PRINT "HOW MANY TORN STREAMS"; 
2930 INPUT N4 
2940 FOR J^l TO N4 
2950 PRINT "BOX NUMBER WHICH TORN STREAM";J;" LEAVES"; 
2960 INPUT T ( J , 1 ) 
2970 PRINT "BOX NUMBER WHICH TORN STREAM";J;" ENTERS"; 
2980 INPUT T ( J , 2 ) 
2990 NEXT J 
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3 0 0 0 RETURN 
O v J J LU X v J B iM 3|C3|*3It3|t3|C'|C»I»3|C3|C'|»3|»3|C3|C 3|C 3ft 3|C 3fC 3fC 3|C 3fC 3fC 9|C3|C «|C JfC 3(C yfC 3|C 3fC 3|C 3|C 3|C JfC >|C 3|C3fC 3fC 9|C 3|C 3fC ?|C ?fC 9|C 3|C 3|C 3|C 3|C 3fC ?|C >|C?|C 

3 0 2 0 REM - TEAR, PART B * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
3 0 3 0 C1=0 
3 0 4 0 FOR L = l TO N2 
3 0 5 0 N5=L 
3 0 6 0 FOR M=l TO N4 
3 0 7 0 FOR N = l TO N ( N 5 ) 
3 0 8 0 IF B ( N 5 , N ) = T ( M , 2 ) THEN 3 1 0 0 
3 0 9 0 GOTO 3 1 5 0 
3 1 0 0 F ( B ( N 5 , N ) ) = ( F ( T ( M , 1 ) ) + F ( T ( M , 2 ) ) ) / 2 
3 1 1 0 C1=C1+1 
3 1 2 0 FOR P = l TO N l 
3 1 3 0 X ( B ( N 5 , N ) , P ) = ( X ( T ( M , 1 ) , P ) + X ( T ( M , 2 ) , P ) ) / 2 
3 1 4 0 NEXT P 
3 1 5 0 NEXT N 
3 1 6 0 NEXT M 
3 1 7 0 NEXT L 
3 1 8 0 FOR M^l TO N4 
3 1 9 0 FOR P=--l TO N l 
3 2 0 0 IF X ( T ( M , 1 ) , P ) = 0 THEN 3 2 6 0 
3 2 1 0 IF X ( T ( M , 2 ) , P ) = 0 THEN 3 2 6 0 
3 2 2 0 IF X ( T ( M , 2 ) , P ) / X ( T ( M , 1 ) , P ) > 1 . 0 1 THEN 3 2 9 0 
3 2 3 0 I F X ( T ( M , 2 ) , P ) / X ( T ( M , 1 ) , P ) < . 9 9 THEN 3 2 9 0 
3 2 4 0 IF F ( T ( M , 2 ) ) / F ( T ( M , 1 ) ) > 1 . 0 1 THEN 3 2 9 0 
3 2 5 0 I F F ( T ( M , 2 ) ) / F ( T ( M , 1 ) ) < . 9 9 THEN 3 2 9 0 
3 2 6 0 NEXT P 
3 2 7 0 NEXT M 
3 2 8 0 GOTO 3 3 2 0 
3 2 9 0 GOSUB 3 3 6 0 
3 3 0 0 IF C l > 5 0 THEN 3 3 2 0 
3 3 1 0 GOTO 3 0 4 0 
3 3 2 0 PRINT "C1=";C1 
3 3 3 0 RETURN 
"̂) 5̂ * t \J rCi*iPt ^ ^ ^ ^ ^ ^ *^ ^ ^ ^ ^ ^ ^ *^ ^ ^ ^ ^ ^ ^ ^ *^ *^ ^ ^ ^ ^ ^ ^* ^ ^ ^ ^ ^· ̂  *»* *^ *^ *l* π̂  ̂  *^ *^ HF *l* *l* ' I* nh· *l* *l* *l* 

3 3 5 0 REM - TEAR, PART C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
3 3 6 0 FOR L = l TO N2 
3 3 7 0 N5-L 
3 3 8 0 I F A$(L)-3"MIX" THEN 3 4 2 0 
3 3 9 0 IF A$(L)="SPLIT,FORWARD STREAM" THEN 3 4 4 0 
3 4 0 0 IF A$(L)="SETTLE,UNDERFLOW" THEN 3 4 6 0 
3 4 1 0 GOTO 3 4 7 0 
3 4 2 0 GOSÜB 2 1 7 0 
3 4 3 0 GOTO 3 4 7 0 
3 4 4 0 GOSUB 2 4 9 0 
3 4 5 0 GOTO 3 4 7 0 
3 4 6 0 GOSUB 2 7 8 0 
3 4 7 0 NEXT L 
3 4 8 0 RETURN 
3 4 9 0 REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
3 5 0 0 REM - CHANGE SUBROUTINE, USED WHEN INPUT STREAMS, 
3 5 1 0 REM - SPLITTING OR SETTLING RATIOS ARE TO BE CHANGED 
3 5 2 0 PRINT "THIS I S CHANGE SUBROUTINE. INPUT NUMBER OF" 
3 5 3 0 PRINT "ENTERING STREAMS TO BE CHANGED"; 
3 5 4 0 INPUT B l 
3 5 5 0 IF Bl^O THEN 3 7 2 0 
3 5 6 0 FOR J-l TO B l 
3 5 7 0 PRINT "BOX NUMBER OF ENTERING STREAM"; 
3 5 8 0 INPUT B2 
3 5 9 0 IF A$(B2)^"FEED" THEN 3 6 2 0 
3 6 0 0 PRINT "INCORRECT BOX NUMBER HAS BEEN ENTERED" 
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3610 GOTO 3570 
3620 PRINT "NEW FLOWRATE"; 
3630 INPUT F(B2) 
3640 E3=0 
3650 FOR K=l TO Nl-1 
3660 PRINT "NEW WEIGHT FRACTION OF ";C$(K); 
3670 INPUT X(B2,K) 
3680 E3=E3+X(B2,K) 
3690 NEXT K 
3700 X(B2,N1)=1-E3 
3710 NEXT J 
3720 PRINT "NUMBER OF SPLITTERS TO BE CHANGED"; 
3730 INPUT Bl 
3740 IF B1=0 THEN 3860 
3750 FOR J=l TO Bl 
3760 PRINT "BOX NUMBER OF SPLITTER"; 
3770 INPUT B2 
3780 IF A$(B2)="SPLIT,SIDE STREAM" THEN 3820 
3790 IF A$(B2)="SPLIT,FORWARD STREAM" THEN 3830 
3800 PRINT INCORRECT BOX NUMBER HAS BEEN ENTERED" 
3810 GOTO 3760 
3820 B2=B2+1 
3830 PRINT "NEW VALUE OF SIDESTREAM/TOTAL FLOW RATIO"; 
3840 INPUT R{B2) 
3850 NEXT J 
3860 PRINT "NUMBER OF SETTLERS TO BE CHANGED"; 
3870 INPUT Bl 
3880 IF B1=0 THEN 4000 
3890 FOR J=l TO Bl 
3900 PRINT "BOX NUMBER OF SETTLER"; 
3910 INPUT B2 
3920 IF A$(B2)="SETTLE,OVERFLOW" THEN 3960 
3930 IF A$(B2)="SETTLE,UNDERFLOW" THEN 3970 
3940 PRINT "INCORRECT BOX NUMBER HAS BEEN ENTERED" 
3950 GOTO 3900 
3960 B2^B2+1 
3970 PRINT "NEW VALUE OF SOLIDS/SOLUTION RATIO"; 
3980 INPUT R(B2) 
3990 NEXT J 
4000 RETURN 

4020 REM - MODIFY SUBROUTINE, USED WHEN 
4030 REM - MODIFYING THE FLOWSHEET 
4040 PRINT "THIS IS MOD SUBROUTINE. HOW MANY" 
4050 INPUT "EXISTING BOXES TO BE ALTERED";B1 
4060 FOR J^l TO Bl 
4070 PRINT "BOX NUMBER"; 
4080 INPUT B2 
4090 N2^B2-1 
4100 PRINT "FEED,MIX,SPLIT,OR SETTLE"; 
4110 INPUT B$ 
4120 IF B$^"FEED" THEN 4190 
4130 IF B$="MIX" THEN 4210" 
4140 IF B$-^"SPLIT" THEN 4230 
4150 IF B$="SET" THEN 4250" 
4160 IF B$="SETTLE" THEN 4250 
4170 PRINT INPUT NOT RECOGNISED" 
4180 GOTO 4100 
4190 GOSUB 1860 
4200 GOTO 4260 
4210 GOSUB 2020 
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4220 GOTO 4260 
4230 GOSÜB 2490 
4240 GOTO 4260 
4250 GOSOB 2580 
4260 NEXT J 
4270 PRINT "IF NEW BOXES TO BE ADDED INPUT Y ELSE N"; 
4280 INPUT B$ 
4290 IF B$="Y" THEN 4310 
4300 GOTO 4330 
4310 N2=N6 
4320 GOSUB 1390 
4330 RETURN 
4 o 4 U ΓίΗ,Μ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
4350 REM - PRINT SUBROUTINE 
4360 PRINT 
4370 FOR J-l TO N2 
4380 PRINT A$(J) 
4390 PRINT "BOX NUMBER";J 
4400 IF A$(J)="SETTLE,UNDERFLOW" THEN 4430 
4410 IF A$(J)="SPLIT,SIDE STREAM" THEN 4450 
4420 GOTO 4460 
4430 PRINT "SOLIDS/SOLUTION RATION';R(J) 
4440 GOTO 4460 
4450 PRINT "SIDE STREAM/TOTAL FLOW RATIO^";R(J) 
4460 PRINT "FLOWRATE=";F(J) 
4470 FOR K^l TO Nl 
4480 PRINT "WEIGHT FRACTION OF ";C$(K);"-"; 
4490 PRINT USING "*t. tM*##" ;X( J, K) 
4500 NEXT K 
4510 PRINT 
4520 NEXT J 
4530 RETURN 
4540 PRINT "END" 
4550 END 

Example 1.3 

(a) A sand intended for concrete manufacture is washed to reduce its salt 

content in a 2-stage, cross-current operation as shown in Figure 1.8. 

Fresh water 
250 tonnes/day 

Raw sand 
300 tonnes/ 

day 11 
1st Stage 

_Frpsh wafpr 
250 tonnes/day 

Spent 
Wash 

- & * 

I 1 
2nd Stage 

Washed 
"3êffTd 

Spent 
Wash 

Figure 1.8. Two-stage cross-current sand washing operation. 
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300 tonnes per day of sand are washed in this way, using 250 tonnes per day 

of water at each stage. The composition of the sand is given below. The 

underflow leaving each stage is a slurry consisting of 66.6 wt% sand, the 

remainder being dilute salt solution. 

Calculate the flowrates and compositions of all streams and determine the 

salt content of the washed sand on a dry basis. 

(b) An improved slurry pump is available capable of handling a slurry 

containing 70 wt% sand. It has also been observed that by careful operation 

the water flowrate to a stage can be increased to 275 tonnes per day without 

carryover of sand. 

It is proposed to replace the existing pumps with the improved model, and 

simultaneously to convert to countercurrent operation as shown in Figure 1.9. 

Raw sand 
300 tonnes/day 

Sper 
Wast 

I \ 1 
1st Stage 

it 

F 
ï/b 1 

& 1 
Pu 

Ë Y — 

:resh water 
bonnes/day 

\ 1 ! 

2nd Stage 

^ γ ^ 
mp 

— & -
Pump 

Washed 
bandr 

Figure 1.9 Two-stage counter-current sand washing operati on. 

In this way water usage will be reduced to 275 tonnes per day total. Can 
the same purity be attained for the washed sand? 

Composition of Raw Sand 

Water 
Salt 
Sand 

5.0% 
1.5% 

93.5% 
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Sand 

Q. 
Wash 
waj 

u 
later wa±e 

Q 1 IS 
Wash 

er 

(T) Mi 

Settle <£> 

© 
(7) Mi> 

Settle 
2nd stage 
spent wash 

1st Stage 
spent wash 

Washed sand 

Figure 1.10 Block diagram for 2-stage cross-current washing operation. 

Figure 1.11 Block diagram for 2-stage counter-current washing operation. 
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The question gives the slurry composition on a percentage basis; before 

running the program it is necessary to convert the values given to a ratio 

basis. 

Underflow composition: 66.6 wt% sand 
33.4 wt% solution 

Ratio sand/solution = 66.6 9 n 

33.4 - ^'u 

Underflow composition: 

Ratio sand/solution = 

Next block diagrams are drawn for the two cases (Figures 1.10 & 1.11). 

The program FSHT4 is then run and the values entered, as follows: 

ENTER FEED,MIX,SPLIT,SETTLE,OR END? FEED 
FLOWRATES & COMPOSITIONS FOR STREAMS 
ENTERING THE SYSTEMjENTER THE NUMBER 
OF COMPONENTS & STICK TO THIS NUMBER 
FOR ALL STREAMS (FOR SETTLING PROBLEMS USE: 
K=l FOR SOLVENT,2 FOR SOLUTE,3 FOR SOLID) 
? 3 
NAME OF COMPONENT 1 ? WATER 
NAME OF COMPONENT 2 ? SALT 
NAME OF COMPONENT 3 ? SAND 
THIS IS FEED SUBROUTINE, BOX NUMBER 1 
FLOWRATE? 300 
WT FRACTION OF WATER? .05 
WT FRACTION OF SALT? .015 

ENTER FEED,MIX,SPLIT,SETTLE,OR END? FEED 
THIS IS FEED SUBROUTINE, BOX NUMBER 2 
FLOWRATE? 250 
WT FRACTION OF WATER? 1 
WT FRACTION OF SALT? 0 

ENTER FEED,MIX,SPLIT,SETTLE,OR END? FEED 
THIS IS FEED SUBROUTINE, BOX NUMBER 3 
FLOWRATE? 250 
WT FRACTION OF WATER? 1 
WT FRACTION OF SALT? 0 

ENTER FEED,MIX,SPLITfSETTLE,OR END? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 4 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 1 
BOX NUMBER FROM WHICH STREAM COMES? 2 

ENTER FEED,MIX,SPLIT,SETTLE,OR END? SET 
THIS IS SETTLE SUBROUTINE,BOX NUMBER 5 
THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM. 
UNDERFLOW STREAM IS DESIGNATED BOX NUMBER 6 
BOX NUMBER FROM WHICH FLOW COMES? 4 
SOLIDS/SOLUTION RATIO FOR UNDERFLOW? 2 

70.0 wt% sand 
30.0 wt% solution 

70 
30 

2.33 
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ENTER FEED,MIX,SPLIT,SETTLE,OR END? MIX 
THIS IS MIX SUBROUTINE,BOX NUMBER 7 
NUMBER OF STREAMS TO BE MIXED? 2 
BOX NUMBER FROM WHICH STREAM COMES? 3 
BOX NUMBER FROM WHICH STREAM COMES? 6 

ENTER FEED,MIX,SPLIT,SETTLE,OR END? SET 
THIS IS SETTLE SUBROUTINE,BOX NUMBER S 
THIS NUMBER ALSO DESIGNATES OVERFLOW STREAM. 
UNDERFLOW STREAM IS DESIGNATED BOX NUMBER 9 
BOX NUMBER FROM WHICH FLOW COMES? .7 
SOLIDS/SOLUTION RATIO FOR UNDERFLOW? 2 

ENTER FEED,MIX,SPLIT,SETTLE,OR END? END 

IF ONE OR MORE STREAMS ARE TORN,TYPE Y ELSE N? N 

FEED 
BOX NUMBER i 
FLOWRATE= 300 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

FEED 
BOX NUMBER 2 
FLOWRATE= 250 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

FEED 
BOX NUMBER 3 
FLOWRATE= 250 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

MIX 
BOX NUMBER 4 
FLQWRATE= 550 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

SETTLE,OVERFLOW 
BOX NUMBER 5 
FLOWRATE= 129.2Ï 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

OF WATER=0.0500 
OF SALT=0.0150 
OF SAND=0.9350 

OF WATER=1.0000 
OF SALT=0.0000 
OF SAND=0.0000 

OF WATER=1.0000 
OF SALT=0.0000 
OF SAND=0.0000 

OF WATER=0.4818 
OF SALT=0.0082 
OF SAND-0.5100 

1st Stage 
Spent Wash 

OF WATER=0.9833 
OF SALT=0.0167 
OF SAND=0.0000 

- ^ MIX 
BOX NUMBER 7 
FLOWRATE= 670.75 
WEIGHT FRACTION OF WATER=0.5783 
WEIGHT FRACTION OF SALT=0.0035 
WEIGHT FRACTION OF SAND=0.41S2 

SETTLE,OVERFLOW 
BOX NUMBER 8 

2nd Stage 
Spent Wash 

SETTLE,UNDERFLOW 
BOX NUMBER 6 
SOLIDS/SOLUTION RATIO* 2 
FLOWRATE= 420.75 
WEIGHT FRACTION 
WEIGHT FRACTION 
WEIGHT FRACTION 

OF WATER=0.3278 
OF SALTsO.0056 
OF SAND=0.6667 j 

; ^ j 

WEIGHT FRACTION OF WATER=0.9940 
WEIGHT FRACTION OF SALT=0.0060 
WEIGHT FRACTION OF SAND=0.0000 

SETTLE,UNDERFLOW Washed Sand 
BOX NUMBER 9 
SOLIDS/SOLUTION RATIO= 2 
FLOWRATE= 420.75 
WEIGHT FRACTION OF WATER=0.3313 
WEIGHT FRACTION OF SALT=0.0020 
WEIGHT FRACTION OF SAND=0.6667 

COMPUTER SOLUTION, PART B: 
TO RERUN WITH DIFFERENT VALUES TYPE Y ELSE N? Y 

TO MODIFY FLOWSHEET TYPE Y, ELSE N? Y 
THIS IS MOD SUBROUTINE. HOW MANY 
EXISTING BOXES TO BE ALTERED? 0 
IF NEW BOXES TO BE ADDED INPUT Y ELSE N? N 
THIS IS CHANGE SUBROUTINE. INPUT NUMBER OF 
ENTERING STREAMS TO BE CHANGED? 1 
BOX NUMBER OF ENTERING STREAM? 3 
NEW FLOWRATE? 275 
NEW WEIGHT FRACTION OF WATER? 1 
NEW WEIGHT FRACTION OF SALT? 0 
NUMBER OF SPLITTERS TO BE CHANGED? 0 
NUMBER OF SETTLERS TO BE CHANGED? 2 
BOX NUMBER OF SETTLER? 8 
NEW VALUE OF SOLIDS/SOLUTION RATIO? 2.33 
BOX NUMBER OF SETTLER? 6 
NEW VALUE OF SOLIDS/SOLUTION RATIO? 2.33 



IF ONE OR MORE STREAMS ARE TORN,TYPE Y ELBE N? Y 
THIS IS TEAR SUBROUTINE 
HOW MANY TORN STREAMS? 1 
BOX NUMBER WHICH TORN STREAM ί LEAVES? 8 
BOX NUMBER WHICH TORN STREAM 1 ENTERS? 2 
Cl= 9 

FEED 
BOX NUMBER 1 
FLOWRATE= 300 
WEIGHT FRACTION OF WATER=0.0500 
WEIGHT FRACTION OF SALT=0.0150 
WEIGHT FRACTION OF SAND=0.9350 

FEED 
BOX NUMBER 2 
FLOWRATE= 274.9512 
WEIGHT FRACTION OF WATER=0.9936 
WEIGHT FRACTION OF SALT=0.0064 
WEIGHT FRACTION OF SAND=0.0000 

Wash from Settler 2 
(after Tear) 

FEED 
BOX NUMBER 3 
FLQWRATE= 275 
WEIGHT FRACTION OF WATER=1.0000 
WEIGHT FRACTION OF SALT=0.0000 
WEIGHT FRACTION OF SAND=0.0000 

MIX 
BOX NUMBER 4 
FLOWRATE* 574.9024 
WEIGHT FRACTION OF WATER=0.5012 
WEIGHT FRACTION OF SALT=0.0109 
WEIGHT FRACTION OF SAND=0.4879 

SETTLE,QVERFLOW 
BOX NUMBER 5 
FLOWRATE= 174.0161 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 

SETTLE,UNDERFLOW 
BOX NUMBER 6 
SOLIDS/SOLUTION RAT 
FLOWRATE= 400.8863 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 

MIX 
BOX NUMBER 7 
FLOWRATE= 675.8863 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 
WEIGHT FRACTION OF 

WATER=0.9788 
SALT=0.0212 
SAND=0.0000 

10= 2.33 

WATER=0.2939 
SALT=0.0064 
SAND=0.6997 

WATER=0.5812 
SALT=0.0038 
SAND=0.4150 

Wash from Settler 2 
(before tear) 

SETTLE,OVERFLOW 
BOX NUMBER 8 
FLOWRATE= 275 
WEIGHT FRACTION OF WATER=0.9935 
WEIGHT FRACTION OF SALT=0.0065 
WEIGHT FRACTION OF SAND=0.0000 

'SETTLE,UNDERFLOW Washed Sand 
BOX NUMBER 9 
SOLIDS/SOLUTION RATIO= 2.33 
FLOWRATE= 400.8863 
WEIGHT FRACTION OF WATER=0.2984 
WEIGHT FRACTION OF SALT=0.0019 
WEIGHT FRACTION OF SAND=0.6997 

TO RERUN WITH DIFFERENT VALUES TYPE Y ELSE N? V 

TO MODIFY FLOWSHEET TYPE Y, ELSE N? N 
END 
Ok 

43 
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Inspection of the printout shows that for the cross-current operation the 

underflow composition from the second stage is: 

Water 0.3313 
Salt 0.0020 
Sand 0.6667 

1.0000 

Hence for 1 kg of slurry, dry weight = 0.6687 kg and composition is: 

Salt 0.0030 
Sand 0.9970 

1.0000 

For countercurrent operation the printout shows the underflow composition 

as: 

Water 0.2984 
Salt 0.0019 
Sand 0.6997 

1.0000' 

Hence for 1 kg of slurry, dry weight = 0.7016 kg and composition is: 

Salt 0.0027 
Sand 0.0073 

1.0000 

Countercurrent washing under the new conditions will give a slightly 

improved product. 

By comparison, the composition of the raw sand on a dry basis is: 

Salt 0.0158 
Sand 0.9842 

1.0000 

STEP FIVE 

A further modification to the program would be the inclusion of means to 

generate a 'control block' when required. Suppose for instance, in example 1.3 

above that outlet composition of the sand slurry had been specified, and it was 

required to determine the wash water rate. The execution of the program would 

then proceed inside another iterative loop; an initial guess for flowrate would 

be read in, and the calculated value of outlet compositions compared with that 

specified. The value of flowrate would then be adjusted, and another iteration 

performed, and so on until convergence had been achieved (1). 

These and many other options are available in commercial flowsheeting 

software. 
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PROBLEMS - CHAPTER 1 

1. Use the program to modify the solution given in example 1.3 by the 

addition of a third settler. 

2. A vegetable oil is extracted from seeds by leaching with a hydrocarbon 

solvent. The process is carried out batchwise using 500 kg. batches of seed 

and 1000 kg. batches of solvent. 

The fresh seeds contain 20 wt% oil, and 96% of their oil content is to be 

removed in the process. How may washes with fresh solvent will be required in 

order to achieve this if the seed retains 0.38 kg. solvent per kg. oil-free 

seed? If a countercurrent washing process is used instead, what quantity of 

solvent, and what number of stages, would you recommend? 

3. A baking process involves the blending of the following ingredients to 

form Dry Blend A: 

flour 160 kg 
sugar 80 kg 
salt 0.6 kg 
raising agent 1.2 kg 

Dried milk, eggs and fat are blended in the following quantities to form 

Blend B: 

dried milk 10 kg 
dried eggs 10 kg 
fat 40 kg 

Dry Blend A is mixed with 70 kg water. 

Dry Blend B is mixed with 20 kg water. 

The two batches are then combined together for final mixing, and charged 

into moulds for baking. 

Calculate the compositions and quantities of all streams, assuming 

spillage losses of 0.2% occur at each dry blending stage. 

4. Write a subroutine to model a single stage flash evaporator. 

Liquid Feed_ 
-̂

FLASH 

Equilibrium 
pressure p 

Vapour 

Liquid 
^^ 
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5. Modify the program to include the control block described above under 

'Step Five'. 

6. Write subroutines appropriate to your own line of work and incorporate 

them in the program. 
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Chapter 2 

INTERPRETATION AND ACCESSING OF RESULTS AND PHYSICAL DATA 

Mathematical methods of handling these tasks are covered in standard 

mathematical and statistical text books. Some books in this area are of 

particular interest to chemical engineers (1), (2), (3), (4). Computer 

routines for many statistical methods are also available in the literature 

(5), (6). Two examples are given below, with possible applications. In 

addition, the applicability of thermodynamic methods and their use in computer 

programs should not be overlooked (7); see also references with Chapter 4. 

The chapter is concluded with a section on the solution of simultaneous linear 

equations. 

Regression Analysis 

Suppose a number of sets of observational or experimental data to exist. 

Each data set consists of values of a number of independent variables x; and 

the corresponding value of the dependent variable y. The purpose of regression 

analysis is to seek out a mathematical relationship between the dependent 

variable and the independent variables. The relationship selected should be 

that which predicts the value of the dependent variable with the least error. 

Least Squares Polynomial Regression 

The simplest form of this analysis method occurs when we consider data in 

which the dependent variable y is a function of only one independent variable x. 

Such data may be represented by a polynomial relationship of the form: 

Y = a + bx + ex2 + dx 3 + 

For each data point exists a value of the independent variable x; Y is the 

value of the dependent variable predicted by the relationship; a, b, c, etc. 

are parameters whose values have to be determined by analysis of the data. 

Thus if there are n data points, a polynomial relationship may be written 

for each one: 

(2.1) 
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We assume that the uncertainty in x is insignificant compared with the 

uncertainty in Y. There is then, a difference or error between the predicted 

value Y, and the actual or measured value y, i.e. error = 

γ. _ y. = (a + bXj + cxj 2 + dXj3 .... ) - y, (2.2) 

For a polynomial of any given order, the best fitting curve through the data 

will be that which makes the sum of the squares of the errors a minimum. The 

sum of the squares is: 

Σ (Yi - y j 2 = (Yi- yx) 2 + (Y 2 - y 2 ) 2 + .... (Y„ - y n ) 2 (2.3) 
j = I 

Before going further it is necessary to look at the order of the polynomial 

employed. The simplest case would be of the employment of a polynomial of 

order 1, that is, the equation of a straight line: 

Y = a + bx 

In some cases this may fit the data adequately, in other cases, a polynomial 

of order 2, that is, the equation of a parabola may fit the data better, i.e. 

Y = a + bx + ex2. 

In many cases, a polynomial of still higher order may be required. To carry 

out a full regression analysis, a series of polynomials of order 1, 2, 3 ...m 

would each be fitted to the data. The polynomial yielding the lowest value for 

the sum of the squares of the errors would be the optimum one to employ. 

Theoretically the sum of the squares of the errors should be less for 

successively higher order polynomials, but in practice this is not the case due 

to round off errors in the computations (8). 

In order to explain the method further, a second order polynomial will be 

considered. In this case we require to find values of a, b and c only 

(equation 2.1). These values will be the ones which make the sum of the squares 

of the errors a minimum, and this will occur when: 

0 (2.4a) 

0 (2.4b) 

0 (2.4c) 

3a 
i [ Z ( V i -y,v] 

i [Σ< Υ · -*■>'] 

_1 
3c [ Σ ( Υ ι - y \ ) ] 
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The results of differentiation are: 

IE 
3a na + b ΣΧ| + c zxf = Ly{ (2.5a) 

^- = αΣΧ| + bzx? + ΟΣΧ3; = zx,y, (2.5b) 
3D 

9£ 
3c 

= azXj + bzx* + czx*, = zxjy, (2.5c) 

If we consider the application of the method to the equation of a straight 

line (2-term polynominal) then we need only include the first two of the above 

equations. 

Rearranging the first equation gives: 

zyi - bzxj (2.6) 
a " n n 

Substituting this value of a into the second equation and rearranging gives: 

Σχ,γ-, - zx8zy, 
n 

b = (2.7) 
ΣΧ* - (ΣΧ,)2 

n 

Computer Solution of Linear Regression 

It is required to write a program which, given pairs of values x, y; (where i 

can be any number greater than 2) will determine the values of the coefficients 

a and b in the equation: 

y = a + bx 

Program DATAI presented below does this, using equations 2.6 and 2.7. 

The use of a straight line relationship may well be adequate to represent 

physical data over a limited range; experimental data is often represented in 

this way, by the choice of suitable ordinates: 
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DATAI.BAS 
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10 REM **************************************************** 
20 REM - PROGRAM DATAI.BAS 
30 REM - THIS PROGRAM FITS A STRAIGHT LINE TO ANY 
40 REM - GIVEN NUMBER OF X,Y PAIRS. 
50 REM - PROGRAM NOMENCLATURE: 
60 REM Al - unknown a in equation 2.6 
70 REM - A$ - Alphanumeric input: in response 
80 REM to query 
90 REM - bl ■·- unknown b in equation 2.7 
100 REM - XI,Yl - values of the unknowns x and y 
110 REM - X2,Y2 - sum of the values of XI,Yl respectively 
120 REM - X3 - values of XI squared 
130 REM Y3 - the product xy (Xl*Yi) 
140 REM - X4,Y4 - sum of values of X3,Y3 respectively 

«J \J JXXUin * ^ * * ^ ^^ *■* ^ *"̂  1̂"""T*"*̂ ^ Τ*· *Τ̂  Τ^ *r- *Τ* Τ»· Τ»·*r~ τ* *τ· Τ1 Τ1 ^ Τ1 *Τ»- 'Τ' Τ1 Τ- Τ· *Τ* *^ Φ τ^ *Τ» Τ*· ^ Is·'Τ* Τ» ^ ^ ^ Φ·T* Τ* ^ ^ - ^ τ* Τ·- *Τ* 

1000 PRINT "NUMBER OF X, Y PAIRS"; 
1010 INPUT NI 
1020 FOR J=l TO NI 
1030 PRINT "Χ,Υ"; 
1040 INPUT XI,Yl 
1050 X2^-X2+Xl 
1060 X3=X1~2 
1070 X4=X4+X3 
1080 Y2=Y2+Y1 
1090 Y3=X1*Y1 
1100 Y4=Y4+Y3 
1110 NEXT J 
1120 B1-(Y4-X2*Y2/N1)/(X4-(X2A2)/N1) 
1130 A1=Y2/N1-B1*X2/N1 
1140 PRINT "THE DATA CAN BE REPRESENTED BY THE EQUATION:" 
1150 PRINT " Y=A+BX WHERE A=";Al;"B=";B1 
1160 X2-0 
1170 X3^0 
1180 X4=0 
1190 Y2=:0 
1200 Y3=0 
1210 Y4=r0 
1220 INPUT "ANOTHER? TYPE Y OR N";A$ 
1230 IF A$="Y" THEN 1000 
1240 IF A$="N" THEN 1260 
1250 GOTO 1220 
1260 END 

EXAMPLE 2.1 

The data of Table 2-1 has been abstracted from Steam Tables. It is required 

to represent it in simple mathematical form for incorporation into a computer 

program. 
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TABLE 2 . 1 

Temperature 

°c 
20 
30 
70 
100 
120.2 
147.9 

Enthalpy of 
Saturated Liquid 

KJ/kg 

83.9 
125.7 
293 
419.1 
505 
623 

Enthalpy of 
Saturated Vapour 

KJ/kg 

2537.6 
2555.7 
2626.3 
2675.8 
2707 
2744 

Source: Reprinted w i th permission from Y.R. Mayhew and G.F.C. Rogers, 
Thermodynamic and Transport Propert ies of F lu ids , SI Un i t s , 2nd E d i t i o n , 
Basil Blackwell Oxford, U.K. 1969. 

L0AD"A:DATA1 
Ok 
RUN 
NUMBER OF X,Y PAIRS? 6 
X,Y? 2 0 , 8 3 . 8 9 
X,Y? 3 0 , 1 2 5 . 7 
X,Y? 7 0 , 2 9 3 
X,Y? 1 0 0 , 4 1 9 . 1 
X,Y? 1 2 0 . 2 , 5 0 5 
X,Y? 1 4 7 . 9 , 6 2 3 
THE DATA CAN BE REPRESENTED BY THE EQUATION: 

Y=A+BX WHERE A=- .9695129 B= 4 .211242 
ANOTHER? TYPE Y OR N? Y 

Lagrangian In te rpo la t ion Method 

Much of the data used by engineers has t r a d i t i o n a l l y been presented in 

tabular form, and consists o f a ser ies o f values of y f o r corresponding values 

of x. Examples include tables of logar i thmic and t r igonometr ic func t ions , 

steam tab les , and tables of physical chemical data such as vapour pressure, 

s o l u b i l i t y , e tc . 

The use of i n te rpo la t i on formulae has an advantage i n accuracy when using 

such tables in performing manual ca l cu la t i ons . Their use i s invaluable when 

tha t same data i s to be incorporated in a computer program. 

The Lagrangian method i s one of several mathematical i n t e rpo la t i on 

techniques (1 ) . The technique i s employed l a t e r , in the chapter on d i s t i l l a t i o n . 

I t is assumed tha t we have a number o f data p a i r s , χχ y i , x2 y2 » 

.. .XnYn. The in te rva l s between these data points need not be regu lar . 

We require to ca lcu la te the value of y f o r any given value of x between the 

l i m i t s Xi and x n . Then according to the Lagrangian i n t e rpo la t i on method, t h i s 

value of y w i l l be: 
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y = yi* (x - xa) (χ - x 3) (χ - χ») — (χ - χη) 
(Xi- Xa) (Xi- X 3) (Xi- X<J (Xi- Xn) 

+ Y** (x - x j (x - X 3) (x - x j (x - Xn) 
(x2- Xi) (X2- X 3) (x2- Xi.) (x2- Xn) 

+ 

+ yn^ (X - Xi) (X - Xa) (X - X 3) -··· (X - Xn-i) 
(Xn" χι) Un" Xa) Un" X 3) Un" xn-i ) 

(2.8) 

Program DATA2 has been written to employ this method. 

The program stores values xx, x2, etc. in Matrix Axand values of ysl, y2, 

etc. in Matrix B. 

Values (xx- x2) etc. are evaluated and stored in Matrix M. The appropriate 

values are then multiplied together to form the denominators of the above 

expression, and these are stored in Matrix D. These calculations are done in 

the first subroutine. See Table 2.2. 

Values of (x - xx) etc. are then calculated for a given value of x for which 

the value of y is required. These values of (x - xx) etc. are again stored in 

Matrix M. Appropriate values are then multiplied together to give the numerator 

terms of the above expression, and these are stored in Matrix N. Values of each 

term in the expression are then evaluated and summed to give the required value 

of y. These calculations are performed in the second subroutine. 

TABLE 2.2 

Values stored in Matrix M. The product of each row gives the denominator 

terms in Equation 2.8. The matrix is used again in the 2nd subroutine to obtain 

the numerator terms of Equation 2.8. 

Xi - X2 

X2 ~ Xi 

X 3 " X l 

X A ~ X i 

X5 - X i 

|__K = 1 

X l - X 3 

X 2 " X 3 

X 3 "" X 2 

Xz, ~ X 2 

X 5 ~ X 2 

K = 2 

X i - Xi» 

X 2 ~ Xi« 

X 3 - X i , 

Xz, - X 3 

X 5 - X 3 

K = 3 

Xi - X5 

X 2 - X 5 

X 3 - x 5 

Xi» ~ X 5 

X 5 ~ Xi« 

K = 4 

Xi - Xe 

X2 ~ Xe 

X 3 - X ô 

Xz» - X e 

X 5 ~ X e 

K = 5 

J = 1 

J = 2 I 

J = 3 

J = 4 

J = 5 
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DATA2.BAS 

C Start J 

Input 

Subroutine 
1 

/ Input X / 

Subroutine 
2 

V 7 

/ Print Y / 
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10 REM 
20 REM - PROGRAM DATA2.BAS 
30 REM - THIS PROGRAM PERFORMS INTERPOLATION 
40 REM BY THE METHOD OF LAGRANGE 
50 REM - PROGRAM NOMENCLATURE: 
60 REM - A(J),B(J) - Values of the variables χ and y 
70 REM - respectively 
80 REM - A$ - Alphanumeric input in response to 
90 REM query 
100 REM - Al - Value of χ for which the 
110 REM corresponding value of y is sought 
120 REM - Bl - Value of y corresponding to the 
130 REM value of χ input as Al 
140 REM - D(J) - Denominator terms in the Lagrange 
150 REM expression 
160 REM - M(J,K) - Factors of the numerator terms, 
170 REM - x-x, etc 
180 REM - N(J) - Numerator terms in the Lagrange 
190 REM expression 
200 REM - Nl " Number of data pairs 
210 REM - PROGRAM DESCRIPTION 
220 REM - LINES 1000-1060 Matrices are dimensioned, values 
230 REM - of X are stored in matrix A, and values of y are 
240 REM -- stored in matrix Β 
250 REM - LINES 1070-1140 Using the subroutines contained 
260 REM - in statement 1150 onwards, the value of y is 
270 REM ~ calculated corresponding to the given value of χ 
280 REM - LINES 1160-1420 Values are calculated for the 
290 REM groups occurring in the denominators of the terms 
300 REM - of equation 2.8; these are then stored in matrix M 
310 REM - These groups are then multiplied together to form 
320 REM - the denominators of the terms of equation 2.8, 
330 REM and theses are stored in matrix D 
340 REM LINES 1440-1760 Values are calculated for the 
350 REM - groups occurring in the numerators of the terms in 
360 REM - equation 2.8; these are then stored in matrix M. 
370 REM These groups are then multiplied together to form 
380 REM - the numerators of the terms in equation 2.8, and 
390 REM - these are stored in matrix Ν 
400 REM - The individual terms of equation 2.8 are then 
410 REM - evaluated and summed, giving the required 
420 REM - value of y 
430 REM ********************************************* 
1000 DIM A(20),B(20),D(20),N(20) 
1010 DIM M(20,20) 
1020 INPUT "NUMBER OF DATA PAIRS"';N1 
1030 PRINT -'INPUT X,Y" 
1040 FOR J^l TO Nl 
1050 INPUT A(J),B(J) 
1000 NEXT J 
1070 GOSUB 1160 
1080 INPUT "INPUT VALUE OF X";A1 
1090 GOSUB 1460 
1100 PRINT "¥:=:" ;B1 
1110 INPUT "ANOTHER VALUE? TYPE Y OR N";A$ 
1120 IF A$-"Y" THEN 1080 
1130 IF A$ "N" THEN 1770 
1140 GOTO 1110 
1150 REM **************************************** 
1160 REM FIRST SUBROUTINE OF LAGRANGIAN INTERPOLATION 
1170 FOR J-:l TO 20 
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1180 FOR K~l TO 20 
1190 M(J,K)=0 
1200 NEXT K 
1210 NEXT J 
1220 REM - CALCULATES VALUES OF X1-X2 ETC & *************** 
1230 REM - STORES THEM IN MATRIX M 
1240 FOR J-̂ l TO Nl-1 
1250 FOR K=J TO Nl-1 
1260 M(J,K)=A(J)-A(K+1) 
1270 NEXT K 
1280 NEXT J 
1290 FOR K^l TO Nl-1 
1300 FOR J-K+l TO Nl 
1310 M(J,K)=A(J)-A(K) 
1320 NEXT J 
1330 NEXT K 
1340 REM - CALCULATES DENOMINATOR TERMS & ****************** 
1350 REM - STORES THEM IN MATRIX D 
1360 FOR J=l TO Nl 
1370 D{J)~1 
1380 FOR K-l TO Nl-1 
1390 D(J)=D(J)*M(J,K) 
1400 NEXT K 
1410 NEXT J 
1420 RETURN 

1440 REM SECOND SUBROUTINE OF 
1450 REM LAGRANGIAN INTERPOLATION 
1460 FOR J=l TO 20 
1470 FOR K-l TO 20 
1480 M(J,K)=0 
1490 NEXT K 
1500 NEXT J 
1510 REM - CALCULATES VALUES OF X X I ETC & ***************** 
1520 REM STORES THEM IN MATRIX M 
1530 FOR J=l TO NI- 1 
1540 FOR K - J TO Nl-1 
1550 M(J,K)=A1--A(K+1) 
1560 NEXT K 
1570 NEXT J 
1580 FOR K=l TO Nl-1 
1590 FOR J=K+1 TO Nl 
1600 M(J,K)~A1-A{K) 
1610 NEXT J 
1620 NEXT K 
1630 REM CALCULATES NUMERATOR TERMS & ******************** 
1640 REM STORES THEM IN MATRIX N 
1650 FOR J--1 TO Nl 
1660 N(J)=1 
1670 FOR K"l TO Nl 1 
1680 N<J)-=N(J)*M(J,K) 
1690 NEXT K 
1700 NEXT J 
1710 Β1-Ό 
1720 REM EVALUATES EACH TERM & ADDS THEM ***************** 
1730 FOR J=l TO Nl 
1740 B1=B1+B(J)*N(J)/D(J> 
1750 NEXT J 
1760 RETURN 
J770 END 
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EXAMPLE 2.2 

Store the vapour/liquid equilibrium data of Table 2-3 using program DATA2. 

TABLE 2-3 

Temperature 

OC 

100.00 
98.1 
95.2 
91.8 
87.3 
84.7 
83.2 
82.0 

OF 

212 
208.5 
203.4 
197.2 
189.2 
184.5 
181.7 
179.6 

Equilibrium Data for 
at 101.325kPa 

Vapour-Liquid Equilibria 
Mass Fraction Ethanol 

X 

0 
0.020 
0.050 
0.100 
0.200 
0.300 
0.400 
0.500 

y 

0 
0.192 
0.377 
0.527 
0.656 
0.713 
0.746 
0.771 

Ethanol-Water 
(1 Atm)* 

Temperature 

ÜC 

1 81.0 
80.1 
79.1 
78.3 
78.2 
78.1 
78.2 
78.3 

UF 

177.8 
176.2 
174.3 
173.0 
172.8 
172.7 
172.8 
173.0 

System 

Vapour-Liq uid Equilibria 
Mass Fraction Ethanol 

X 

0.600 
0.700 
0.800 
0.900 
0.940 
0.960 
0.980 
1.00 

y | 

0.794 1 
0.822 
0.858 
0.912 
0.942 
0.959 
0.978 
1.00 

Source: Reprinted with permission from G.G. Brown & Others, Unit Operations, 

John Wiley & Sons Inc., New York, U.S.A. Copyright 1950 (Γ ) 

Note that instead of inputting a l l the data to the program, (which would 

of course be done i f i t were to be used for further computations), only 10 data 

pairs have been selected. A comparison can thus be made between the given 

values for the remaining data pairs, and those calculated by interpolation. 

LOAD"A:DATA2 
Ok 
RUN 
NUMBER OK DATA PAIRS? 10 
INPUT X, Y 
? .02,.192 
? .05,.377 
? . 1, .527 

.713 

.771 

.822 

.91.2 
959 
978 

? .3, 
? .5, 
? -7, 
? .9, . 
? .96, 
? .98, 
? 1,1 
INPUT VALUE OF X? 
Y-- .6437698 
ANOTHER VALUE 
INPUT VALUE OF X? 
Y-- .750134 
ANOTHER VALUE? TYPE Y OR N? Y 
INPUT VALUE OF 
Y .7945083 

ANOTHER VALUE? TYPE Y OR N? Y 
INPUT VALUE OF X? .8 
Y~ .8564766 
ANOTHER VALUE? TYPE Y OH N? Y 
INPUT VALUE OF X? .94 
Yr: .941975 
ANOTHER VALUE? TYPE Y OR N? Y 
INPUT VALUE OF X? .99 
Y .9885352 
ANOTHER VALUE? TYPE Y OR N? N 
Ok 

.2 

TYPE Y 
.4 

X? 

OR m 
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Functions of Two Variables 

Such often required information as values of enthalpy or density, is 

frequently a function of two variables, pressure and temperature, or 

concentration and temperature. 

Modification of the previous program provides a method to store and 

represent such data. 

Let the dependent variable be x and the independent variables y and z. 

By use of the subroutines already developed, we find by Lagrangian 

interpolation, the value of x, at the designated value of y for e^ery value of 

z for which we have data. We thus have a number of values of x as a function 

of z only. The Lagrangian subroutines are used again to obtain the value of x 

at the designated value of z. This is the required value. 

A(J) and B(J) are used in the subroutines as before. However, since these 

are now used twice, values of X(J,K) and Y(J,K) and later Z(J) and E(J) have 

to be exchanged with A(J) and B(J). 

These procedures are demonstrated in program DATA3. Enthalpy data for 

NaOH solutions is included with the program; this was employed during program 

development. 
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DATA3.BAS 

( Start J 

Read Data 

Yes 

Subroutine 
1 

i 
-^1 Subroutine 

2 

Process 

\ t 

^ ^ 

>w 

^^ 

Subroutine 
i | 

Subroutine 
2 

/ Print / 

Another \ Yes 
? 

Ih 
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10 i?H!M ^♦♦♦^♦♦♦♦^♦^•^^^^^^^^^^♦^^^^^♦♦^^^^^♦♦^♦♦♦♦♦♦^♦♦♦♦^^^ 
20 REM PROGRAM DATAS.BAS 
30 REM - THIS PROGRAM PERFORMS INTERPOLATION 
40 REM - BY THE METHOD OF LAGRANGE APPLIED 
50 REM - TO DATA WHICH IS A FUNCTION OF 2 VARIABLES 
60 REM - PROGRAM NOMENCLATURE 
70 REM - A(J),B(J) - Serbs of values of y and x 
80 REM respectively for a particular 
90 REM value of z 
100 REM - A$ - Alphanumeric input in response 
110 REM to query 
120 REM - AI - Used to duplicate the value of Yl or 
130 REM Zl for use in the second Lagrange 
140 REM subroutine 
150 REM - D(J) - Denominator terms, as in DATA2 
160 REM - E(J) - Set of values of y, one for each 
170 REM value of z for which we have data 
180 REM - M(J,K) - Factors of the numerator terms,as 
190 REM in DATA2 
200 REM - N(J) - Numerator terms as in DATA2 
210 REM - Nl - Number of x,y pairs for each z value 
220 REM - N2 - Number of values of variable x 
230 REM - X(J,K) - Values of the dependent variable x 
240 REM - Y(J,K),Z(J,K) - Values of the independent 
250 REM - variables y and z 
260 REM - ΥΙ,ΖΙ - Values of y and z for which the 
270 REM corresponding value of x is sought 
280 REM PROGRAM DESCRIPTION 
290 REM - LINES 1340-1430 For each value of z, all the 
300 REM - values of x and y are used to generate the 
310 REM ~ denominator terms (equation 2.8). The chosen 
320 REM - value of y (Yl) is then ascribed to Al and a 
330 REM - value of x (B1) is obtained from the second 
340 REM - subroutine at line 1410, for each value of z. 
350 REM - These values are stored in matrix E (line 1420) 
360 REM - LINES 1440-1580 The values of E(J) are taken 
370 REM - with the values Z(J) for another run through 
380 REM - the Lagrange subroutines, to generate the 
390 REM - required value of x 

1000 DIM A(10),B(10),D(10),E(10),N(10),Z(10) 
1010 DIM M(10,10),X(10,10),Y(10,10) 
1020 N1^5 
1030 N2=4 
1040 FOR J=l TO N2 
1050 FOR K=l TO Nl 
1060 READ Y(J,K),X(J,K) 
1070 NEXT K 
1080 NEXT J 
1090 FOR J=l TO N2 
1100 READ Z(J) 
1110 NEXT J 
1120 REM - ENTHALPY OF NAOH IN BTU/LB,0-30%,40-400 DEG F 
1130 DATA 40,8,100,68,200,167,300,268,400,375 
1140 DATA 40,6,100,60,200,155,300,244,400,335 
1150 DATA 40,5,100,57,200,144,300,232,400,322 
1160 DATA 40,13,100,64,200,151,300,237,400,324 
1170 DATA 0,10,20,30 
1180 INPUT "TYPE 1 FOR NAOH DATA";SI 
1190 IF Sl=l THEN 1320 
1200 PRINT "INPUT YOUR OWN DATA" 
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1210 INPUT "HOW MANY Z VALUES";N2 
1220 PRINT "HOW MANY Y/X PAIRS FOR EACH Z VALUE"; 
1230 INPUT Nl 
1240 FOR J~l TO N2 
1250 PRINT "Z(";J;")··; 
1260 INPUT Z(J) 
1270 PRINT "Y/X VALUES?" 
1280 FOR K--1 TO Nl 
1290 INPUT Y(J,K),X(J,K) 
1300 NEXT K 
1310 NEXT J 
1320 PRINT "INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED" 
1330 INPUT ΖΙ,ΥΙ 
1340 FOR G-l TO N2 
1350 FOR H-i TO Nl 
1360 A(H)=Y(G,H) 
1370 B(H)^X(G,H) 
1380 NEXT H 
1390 GOSUB 1600 
1400 Al-Yl 
1410 GOSUB 1830 
1420 E(G)r:Bl 
1430 NEXT G 
1440 FOR J^l TO 10 
1450 A(J)=Z(J) 
1460 B(J)=E(J) 
1470 NEXT J 
1480 Xl-Nl 
1490 N1=N2 
1500 GOSUB 1600 
1510 Al^Zl 
1520 GOSUB 1830 
1530 PRINT "X=";B1 
1540 N1=X1 
1550 INPUT "ANOTHER X VALUE? TYPE Y OR N";A$ 
1560 IF A$^"Y" THEN 1320 
1570 IF A$="N" THEN 2100 
1580 GOTO 1550 
1590 REM *************************************************** 
1600 REM - FIRST SUBROUTINE OF LAGRANGIAN INTERPOLATION 
1610 REM - CALCULATES VALUES OF X1-X2 ETC & 
1620 REM - STORES THEM IN MATRIX M 
1630 FOR J-l TO Nl-1 
1640 FOR K^J TO Nl-1 
1650 M(J,K)^A(J)-A(K+1) 
1660 NEXT K 
1670 NEXT J 
1680 FOR K=l TO Nl-1 
1690 FOR J=K+1 TO Nl 
1700 M(J,K)=A(J)-A(K) 
1710 NEXT J 
1720 NEXT K 
1730 REM - CALCULATES DENOMINATOR TERMS & ****************** 
1740 REM - STORES THEM IN MATRIX D 
1750 FOR J=l TO Nl 
1760 D{J)=1 
1770 FOR K=l TO Nl-1 
1780 D(J)=D<J)*M(J,K) 
1790 NEXT K 
1800 NEXT J 
1810 RETURN 
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1820 REM *************************************************** 
1830 REM - SECOND SUBROUTINE OF LAGRANGIAN INTERPOLATION 
1840 REM - CALCULATES VALUES OF X-Xl ETC & 
1850 REM - STORES THEM IN MATRIX M 
1860 FOR J=l TO N i l 
1870 FOR K^J TO Nl-1 
1880 M(J,K)-.A1-A(K+1) 
1890 NEXT K 
1900 NEXT J 
1910 FOR K^l TO Nl-1 
1920 FOR J=K+1 TO Nl 
1930 M(J,K)=A1-A(K) 
1940 NEXT J 
1950 NEXT K 
1960 REM CALCULATES NUMERATOR TERMS & ******************* 
1970 REM - STORES THEM IN MATRIX N 
1980 FOR J=l TO Nl 
1990 N(J)-1 
2000 FOR K---1 TO Nl-1 
2010 N(J)=N(J)*M(J,K) 
2020 NEXT K 
2030 NEXT J 
2040 B1~0 
2050 REM - EVALUATES EACH TERM & ADDS THEM ***************** 
2060 FOR J".l TO Nl 
2070 B1-BÎ+B ( J ) *N ( J ) /D ( J ) 
2080 NEXT J 
2090 RETURN 
2100 END 

EXAMPLE 2.3 

Use program DATA3 to store typical density data such as that of Table 2.4, 

as a function of both temperature and concentration. 

TABLE 2.4 

Density of NaCl solutions 

Sodium Chloride (NaCl) 

% 

1 
2 
4 
8 
12 
16 
20 
24 
26 

0°C. 

1.00747 
1.01509 
1.03038 
1.06121 
1.09244 
1.12419 
1.15663 
1.18999 
1.20709 

10°C. 

1.00707 
1.01442 
1.02920 
1.05907 
1.08946 
1.12056 
1.15254 
1.18557 
1.20254 

25°C. 

1.00409 
1.01112 
1.02530 
1.05412 
1.08365 
1.11401 
1.14533 
1.17776 
1.19443 

40°C. 

0.99908 
1.00593 
1.01977 
1.04798 
1.07699 
1.10688 
1.13774 
1.16971 
1.18614 

60°C. 

0.9900 
.9967 
1.0103 
1.0381 
1.0667 
1.0962 
1.1268 
1.1584 
1.1747 

80°C. 

0.9785 
.9852 
.9988 
1.0264 
1.0549 
1.0842 
1.1146 
1.1463 
1.1626 

100°C. 

0.9651 j 
.9719 
.9855 
1.0134 
1.0420 
1.0713 
1.1017 
1.1331 
1.1492 

Source: National Research Council, International Critical Tables, McGraw Hill 
Book Co, 1933. 
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A portion only of the above data has been used below. A comparison can thus 

be made between the remaining density values on the table, and those calculated 

by the interpolation program. 

LOAD"A:DATA3 
Ok 
RUN 
TYPE 1 FOR NAOH DATA? 2 
INPUT YOUR OWN DATA 
HOW MANY Z VALUES? 5 
HOW MANY Y/X PAIRS FOR EACH Z VALUE? 4 
Z( 1 )? 1 
Y/X VALUES? 
? 0,1.00747 
? 25,1.00409 
? 60,.99 
? 100,.9651 
Z( 2 )? 4 
Y/X VALUES? 
? 0,1.03038 
? 25,1.0253 
? 60,1.0103 
? 100,.9855 
Z( 3 )? 12 
Y/X VALUES? 
? 0,1.09244 
? 25,1.08365 
? 60,1.0667 
? 100,1.042 
Z( 4 )? 20 
Y/X VALUES? 
? 0,1.15663 
? 25,1.14533 
? 60,1.1268 
? 100,1.1017 
Z( 5 )? 26 
Y/X VALUES? 
? 0,1.20709 
? 25,1.19443 
? 60,1.1747 
? 100,1.1492 
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED 
? 2,10 
X= 1.014241 
ANOTHER X VALUE? TYPE Y OR N? 2,80 
?Redo from start 
ANOTHER X VALUE? TYPE Y OR N? Y 
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED 
? 2,80 
X- .9850922 
ANOTHER X VALUE? TYPE Y OR N? Y 
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED 
? 8,25 
X= 1.054119 
ANOTHER X VALUE? TYPE Y OR N? Y 
INPUT VALUES OF Z&Y FOR WHICH X VALUE REQUIRED 
? 16,60 
X= 1.09625 
ANOTHER X VALUE? TYPE Y OR N? N 
Ok 
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Solution of Simultaneous Linear Equations 

This is a frequently required procedure; examples in this text include: 

solution of multi-effect evaporators (Chapter 3); 

solution of finite difference equations for heat transfer (Chapters 6, 

7 and 8). 

The choice of solution method lies between the use of matrix algebra and 

numerical methods involving iteration. 

Solution by Matrix Algebra 

This method is fully explained in numerous texts and will be only briefly 

discussed here (2), (3). 

Suppose that we have a set of linear algebraic equations such as the 

following: 

âiiXi + â12X2
 + .... a l nX n = bx 

a2iXi + a22x2
 + .... a2nxn

 = b2 

: (2.9) 

a n i X i + a n2^2 + . . . . 3nnXn = b n 

where x19 x2 etc are unknown variables; 

a n , ai2 etc are known constant coefficients; 

bi , b2 etc are known constants. 

This set can be written in matrix notation as: 

X i 

x2 

Xn 

= 

bil 

b2 

bn_ 

In more precise matrix notation this can be expressed as: 

A X = B 

where A i s a square matrix of order n and BandX are column vectors of order n. 

The solution of this equation i s : 

X = A-IB 

where A*"1 is the reciprocal of matrix A. 
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The procedures for evaluating the inverse of a matrix are explained in 

mathematical textbooks, and are easily applied providing that the order of the 

matrix is not greater than 3 or 4. With higher orders, the difficulties in 

evaluation become formidable, and it then becomes necessary to employ Gaussian 

elimination (as used in Chapter 5 with the Simplex method). Nevertheless, a 

program to handle matrices of high order is complex and requires considerable 

storage capacity. 

Consequently, micro and desk top computers do not include matrix 

manipulations among their normal range of mathematical functions. 

Where matrix algebra is available to the programmer, then the solution of 

simultaneous equations is easy, as shown by the following simple program, 

DATA4.BAS. 

10 REM **************************************** 
20 REM - PROGRAM DATA4.BAS 
30 REM THIS PROGRAM SOLVES SIMULTANEOUS LINEAR EQUATIONS 
40 REM - BY MATRIX ALGEBRA 
50 REM UNSUITABLE FOR USE UNLESS YOU HAVE A MATRIX 
60 REM PROCESSOR 
70 REM LINE 1000 An arbitrary value of 20 has been set 
80 REM - for the maximum number of unknowns to be handled 
90 REM - LINES 1020 - 1050 Matrices are dimensioned for 
100 REM the inversion and multiplication steps 
110 REM **************************************************** 
1000 DIM A(20,20),B(20),C(20,20),T<20) 
1010 INPUT "NUMBER OF UNKNOWNS";N 
1020 MAT A-ZER(N,N) 
1030 MAT fi-ZER(N) 
1040 MAT C--ZER(N,N) 
1050 MAT T-ZER(N) 
1060 PRINT "INPUT MATRIX" 
1070 MAT INPUT A(N,N) 
1080 PRINT "INPUT VECTOR" 
1090 MAT INPUT B(N) 
1100 MAT C^INV(A) 
1110 MAT T C*B 
1120 MAT PRINT T 
1130 END 
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EXAMPLE 2.4 

Use the above program to solve the following three simultaneous equations: 

3Xi + 8x2 = 71 

5x2 + 3x a = 41 

Xx - 5x3= -40 

The equations are f i r s t rewritten in matrix form: 

X l 

X 2 

X 3 _ 

= 
71 
41 
-40 J 

These values are then input to the program as below, the values obtained 

being: 

Xx = 21.4706 

x2 = 0.8235 

x3 = 12.2941 

RUN 
NUMBER OF UNKNOWNS? 3 
INPUT MATRIX 
? 3 , 8 , 0 
? 0 , 5 , 3 
? 1 , 0 , - 5 
INPUT VECTOR 
? 71,41,-40 
21.4706 
.8235321 
12.29412 

Ok 

Solution by Numerical Methods 

Several variations of the iterative method exist (3). 

The Jacobi Method 

Suppose we have n linear equations, as before. Each equation in turn is 

rewritten so as to express each unknown in terms of the others. 

Thus the equations of the set 2.9 are rewritten as: 
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Xx = bi - ( a 1 2 x2+ . . . . a i n x n ) 
a n 

x2 = b2 - ( a 2 i Xi+ a2 3x3 + a2 nxn) (-2.10) 
a 2 2 

Xn = bn - ( a n Xi+ ann-l X n - i ) 
a 

n n 

The process is begun by assuming values for each of the unknowns on the RHS 

of the above equations. The value of zero is convenient, in which case the 

first iteration yields the values of the unknowns as: 

Xi = bi/ân ; x2 = b2/a22 ; xn
 = bn/ann 

These values are then inserted on the RHS of the equations, giving a further 

set of values of x. The process is conninued until the values obtained at 

successive iterations are considered to be sufficiently close. 

EXAMPLE 2.5 

Solve the equations of Example 2.4 by the Jacobi method. 

First we rewrite the equations as: 

Xi = 71 - 8x2 

41 

40 

3 

.. 
5 

+ 

3x3 

X i 

5 

Inserting the value xx = x2 = x3 = 0 into the RHS of each of the above 

equations, we obtain for the first iteration: 

Xi = 23.667 

x2 = 8.2 

x3 = 8 

The second iteration yields: 

xx = 71 - 8 * 8.2 _ Λ 0 
3 = L 8 

x2 = 41 - 24 _ ~ Δ 
5 J · 4 

x3 = 40 + 23.667 _ 19 7Q 
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The procedure is continued unt i l successive values of the variables agree 

suf f ic ient ly closely. This may take a large number of i terat ions. Rather than 

proceed with the manual calculation, a computer calculation w i l l be carried out 

later. I t may be noted here however that 25 iterations were carried out to 

obtain a satisfactory result namely: 

Xx = 21.468 
x2 = 0.823 
x3 = 12.293 

The Gauss-Seidel Method 

This is similar to the Jacobi method except the new values of the unknowns 

as they are generated, are inserted into the following equation. 

EXAMPLE 2.6 

Solve the equations of Example 2.4 by the Gauss-Seidel method. 

We use the equations as rewritten in Example 3.2 and commence with the 

assumption that Xi = x2 = x3 = 0. 

The f i r s t i terat ion then yields the following: 

x, = 71 - 8x2 = 7Ί = 23.667 
3 3 

x2 = 41 - 3x3 = 41 = 8.2 
5 5 

12.73 x3 = 40 + Xx = 40 + 23.667 
5 5 

The secod i terat ion yields: 

xx = 71 - 8 * 8.2 , 0 
3 = L 8 

x2 = 41 - 3 * 1 2 . 7 3 = 0 > 5 6 2 

x3 = 40 + 1.8 = 8 3 6 
b 

Once again, rather than proceed with the manual calculation, a computer 

calculation w i l l be carried out. This required 18 iterations to obtain a 

result closely similar to that obtained by the Jacobi method in 25 i terat ions. 
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Convergence 

These iterative procedures will not converge in some cases. However, 

convergence is more likely if the equations to be solved are rearranged so as 

to present a strong leading diagonal (3). That is, when the equations are 

written as in equation 2.9, the largest coefficients in successive equations 

occur in the a119 a22» a33,... ann positions. 

This can be done by rearranging the sequence of the equations and the 

sequence of unknowns within them. 

Program DATA5 which follows solves simultaneous equations by these iterative 

methods. 



DATA5.BAS 

70 
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10 HEM **************************************************** 
20 REM PROGRAM DATA5.BAS 
30 REM - SOLUTION OF UP TO 20 SIMULTANEOUS EQUATIONS 
40 REM - BY THE ITERATIVE METHODS OF JACOBI & GAUSS-SEIDEL 
50 REM PROGRAM NOMENCLATURE: 
60 REM C(J) Values of the vector (i.e. RHS of 
70 REM equations 2.9) 
80 REM - Ci - Number of iterations 
90 REM - E(J) - Values of the unknowns, evaluated 
100 REM at each iteration 
110 REM II Skip convergence test on first 
120 REM iteration 
130 REM M(J,K) - Coefficients of the equations 
140 REM Nl Number of unknowns 
150 REM - V(J) - Values of the unknowns at the 
160 REM previous iteration (Jacob!), or 
170 REM Values of the unknowns as modified 
180 REM at each step of the iteration 
190 REM (Gauss Seidel) 
200 REM - W(J) Values of the unknowns at the 
210 REM previous iteration (Gauss- Seidel) 
220 REM - PROGRAM DESCRIPTION 
230 REM - LINE 1000 The arbitrary number of 20 has been 
240 REM - assumed for the maximum number of unknowns to 
250 REM - be handled 
260 REM LINES 1010 - 1180 Choice of solution method is 
270 REM - made, and values of the constants in the equations 
280 REM are entered 
290 REM - LINES 1190 - 1470 The iteration proceeds using 
300 REM - the form given by equation 2.10, the first assumed 
310 REM - value for each unknown being zero. Values of 
320 REM - unknowns calculated at the previous iteration are 
330 REM - multiplied by the appropriate coefficient to give 
340 REM - values of the products ax etc.. These values are 
350 REM - summed and entered into Matrix E (lines 1240, 
360 REM - 1260, etc); the sum of these values is then 
370 REM - subtracted from the vector value and divided by 
380 REM - the appropriate coefficient (line 1380). This 
390 REM - gives the new value of each unknown. If the 
400 REM - Seidel method is being employed, this new value is 
410 REM - immediately brought into use (line 1400). If the 
420 REM - Jacobi method is employed, the new values are 
430 REM - brought into use only after the iteration is 
440 REM - complete (lines 1430 - 1450) 
450 REM - LINES 1480 - 1660 A count is kept of the running 
460 REM - total of iterations. If this number reaches 
470 REM - 100, the program is terminated, the assumption 
480 REM - being that convergence towards the correct 
490 REM - solution is not occurring (lines 1480 - 1510). 
500 REM - At each iteration new values of the unknowns are 
510 REM - compared with previous values; the program 
520 REM - terminates if these differ only within the set 
530 REM - limits (lines 1520 - 1590). Finally, the 
540 REM - solution and the number of iterations taken, is 
550 REM - printed (lines 1620 - 1660). 
560 REM **************************************************** 
1000 DIM M(20,20),C(20),E(20),V(20),W(20) 
1010 PRINT INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL" 
1020 INPUT M$ 
1030 IF M$="J" THEN 1060 
1040 IF M$="GS" THEN 1060 
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1050 GOTO 1010 
1060 INPUT "NUMBER OF UNKNOWNS";N1 
1070 FOR J-X TO Nl 
1080 PRINT "COEFFICIENTS OF EQUATION ";J 
1090 FOR K=l TO Nl 1 
1100 INPÜT;M(J,K) 
1110 NEXT Κ 
1120 INPUT M { J , N 1 ) 
1130 NEXT J 
1140 PRINT "INPUT VECTOR TERMS" 
1150 FOR J^l TO Nl-1 
1160 INPUT;C(J) 
1170 NEXT J 
1180 INPUT C(N1) 
1190 REM - ITERATION SEGMENT 
1200 FOR J::̂ l TO Nl 
1210 IF M ( J , J ) ^ t O THEN 1410 
1220 IF J-1 THEN 1290 
1230 IF J 2 THEN 1340 
1240 E(J)=M(J,1)*V(1) 
1250 FOR K^2 TO J-1 
1260 E{J)^^E{J)+M(J,K)*V(K) 
1270 NEXT Κ 
1280 GOTO 1350 
1290 E(1)^:M(1,2)*V(2) 
1300 FOR K.̂ :3 TO Nl 
1310 E(l)--rE(l)+M(l,K)*V(K) 
1320 NEXT Κ 
1330 GOTO 1380 
1340 E(2)r-M(2, 1)*V(1) 
1350 FOR KrJ\l TO Nl 
1360 E(J)nr.E(J)^M(J,K)*V(K) 
1370 NEXT Κ 
1380 Ε{J) (C{J)-Κ(J))/M(J,J) 
1390 IF M$r"J" THEN 1410 
1400 V(J):rE(J) 
1410 NEXT J 
1420 IF M $ ~ " G S " THEN 1480 
1430 FOR J-~̂ l TO Nl 
1440 V(J)nr.E(J) 
1450 NEXT J 
1460 REM NUMBER OF ITERATIONS AND ************************ 
1470 REM TEST FOR CONVERGENCE * * * ) 4 i * * * * * * * * * ) | c * : * c * ) > c * ) ) i * * * * * * * * 

1480 CI -Cl-tl 
1490 IF C K 100 THEN 1520 
1500 PRINT "NO CONVERGENCE" 
1510 GOTO 1620 
1520 IF 11 -0 THEN 1600 
1530 FOR J :1 TO Nl 
1540 IF W(J)-~0 THEN 1560 
1550 IF V(J)/W(J)<1.0001 THEN 1570 
1560 GOTO 1580 
1570 IF V(J)/W(J)>.9999 THF.N 1620 
1580 W(J)--V(J) 
1590 NEXT J 
1600 I1:-I1 + 1 
1610 GOTO 1200 
1620 PRINT "NUMBER OF ITERATIONS-";CI 
1630 FOR J::l TO Nl 
1640 PRINT "W{" ;J;") ";V{J) 
1650 NEXT J 



1660 END 

LOAD"A:DATAS 
Ok 
RUN 
INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL 
? J 
NUMBER OF UNKNOWNS? 3 
COEFFICIENTS OF EQUATION 1 
? 3? 8? 0 
COEFFICIENTS OF EQUATION 2 
? 0? 5? 3 
COEFFICIENTS OF EQUATION 3 
? 1? 0? -5 
INPUT VECTOR TERMS 
? 71? 41? -40 
NUMBER OF ITERATIONS^ 25 
V( 1 >= 21.47083 
V( 2 )= .8243408 
V( 3 )= 12.29365 
Ok 

RUN 
INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL 
? GS 
NUMBER OF UNKNOWNS? 3 
COEFFICIENTS OF EQUATION 1 
? 3? 8? 0 
COEFFICIENTS OF EQUATION 2 
? 0? 5? 3 
COEFFICIENTS OF EQUATION 3 
? 1? 0? -5 
INPUT VECTOR TERMS 
? 71? 41? -40 
NUMBER OF ITERATIONS^ 18 
V( 1 )- 21.46843 
V( 2 )= .8235001 
V( 3 )r- 12.29368 
Ok 

73 
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The Method of Residuals 

This method was developed and widely used before the advent of computers, 

as a manual solution method. The technique was known as 'Relaxation' and is 

more fully described, with an example, in Chapter 7(9). 

The equations are arranged with all terms on the L.H.S. Then if correct 

values of the unknowns are substituted, the sum of these terms will be zero 

for each equation. Should incorrect values have been chosen, then the terms 

will not add to zero; this non-zero sum is referred to as a residual. 

Thus equations 3.1 are rewritten as: 

ά ι ιΧ ι + a 1 2 X 2 + . . . . a i n X n - D i = R i 

32 i ^ i 3 2 2 ^ 2 "*" . . . . 3 2 n X n ~ D2 = K2 

ö n i X i "*" 3 π 2 ^ 2 "*" . . . . a n n X n ~ bn = Rn 

where R19 R2 etc are the residuals. 

The procedure involves progressive alteration of the variables so as to 

reduce a l l the residuals to acceptably small values. 

PROBLEMS - CHAPTER 2 
1. The Wilson procedure for determination of f i lm heat transfer coefficients 

for f lu id flow inside a pipe is based upon two assumptions (10), (11). 

a. The outside f i lm coefficient is assumed to be constant, (as for 

instance i f the coefficient is large and relat ively invariant, as with 

condensing steam). 

b. Physical properties of the f l u id in the tube do not vary appreciably 

at the test conditions. 

In these circumstances, for a series of tests in a given apparatus, the 

relationships involved can be reduced to the following simple form: 

ÏÏ " K + h 1 V 0 ' 8 

where U = overall coefficient of heat transfer; 

K = constant; 

hi = value of inside film heat transfer coefficient at unit fluid velocity; 

V = fluid velocity. 

Use the linear regression program to deduce hx and K from the following 

data: 
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u 

|w/m2K 

1 1845 
2073 
2271 
1692 
2725 

fluid velocity 

m/s 

0.899 
1.256 
2.060 
0.872 1 
2.774 

2. Rearrange the following set of simultaneous equations so as to provide a 

strong leading diagonal, then solve them using the program, by the Gauss-Seidel 

method: 

2a + b + c + 8d + 9e = 25 

a - 5e = 8 

4b - 3c + 3.Id = 0 

2.5b + d + 4e = -18 

a - b + 4c =4.6 

Can you modify the program to carry out this rearrangement for you? 

3. Below is a table of distribution ratio or K values. Use the interpolation 

program DATA3. 

a. to store K values for CH4over the entire range of temperatures and pressures 

listed; 

b. to store K values for all 9 paraffins listed, over the entire range of 

temperatures, at a pressure of 14.7 psia. 

Pressure = 

1 CH« 
C2H6 
C3He 

i-C^H i o 
/7-C4H10 

/-C5H12 
tf-C5H12 
n-C6Hlu 

1 /7-C7Hi6 

VOLATILITY EQUILIBRIUM DISTRIBUTION 
RATIOS, K = y/x FOR IDEAL SOLUTIONS 

4.4 
40° 

37.8 

100° 

93.3 

200° 

14.7 psia (1.01 x 105 N/m2) 

214 
22.5 
4.95 
1.83 
1.19 
0.41 
0.30 
0.091 
0.028 

252 
38.5 
10.0 
4.6 
3.27 
1.40 
1.02 
0.34 
0.112 

276 
69.0 
25.0 
13.7 
10.4 
5.60 
4.26 
1.89 
0.82 

148.9 

300° 

286 
94.0 
41.0 
25.0 
20.5 
12.2 
7.15 
6.00 
3.23 

204.4 

400° 

291 
110 
56.0 
38.5 
32.5 
21.8 
14.2 
12.0 
7.5 

260 °C 

500° °F 

296 
124 
71.0 
52.0 
46.0 
32.0 
28.3 
19.6 
13.4 
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Pressure = 

CHA 

C 2H 6 
C3H8 

/~Cz»Hi 0 
/7~C^Hio 
/ ~C 5 H12 
tf-C5Hi2 
n-C6Hlu 

f7-C7H16 
1 

Pressure = ] 

CH4 
C2H6 

C3He 

/-C 4 H ! 0 
/7-C A H1 0 
/~CsHi2 
/7-C 5 H 1 2 
/ 7 - C 6H I A 

rt-C7H16 

50 psia (3 

1 64 .3 
6.3 
1.5 
0.59 
0.40 
0.14 
0.104 
0.034 
0.011 

1 

L00 psia ( 

32.0 
3.4 
0.795 
0.31 
0.217 
0.08 
0.058 1 
0.0197 
0.0067 

.45 x 105 

I 76.4 
11.4 
3.15 
1.45 
1.03 
0.43 
0.322 
0.113 
0.0395 

N/m2) 

1 83.8 
21.0 

7.85 
4.25 
3.24 

1 1.70 
1.39 
0.605 
0.27 

6.9 x 105N/m2) 

37.8 
5.8 
1.70 
0.76 
0.545 
0.235 
0.172 1 
0.062 | 
0.022 

41.8 
10.6 
4.17 
2.30 
1.77 
0.94 
0.745 
0.327 
0.143 

1 87.0 
28.5 
13.1 
8.1 
6.7 
4.05 
3.44 
1.93 
1.04 

43.9 
14.8 
6.87 
4.35 
3.5 
2.24 
1.89 
1.05 
0.575 

1 89.0 
34.4 
17.8 
12.0 
10.4 

! 6.75 
5.85 
3.8 
2.46 

45.0 
18.0 
9.4 
6.50 
5.55 
3.74 
3.23 
2.08 
1.38 

1 89.5 
39.0 
22.3 
16.0 
13.9 
9.8 
8.8 
6.0 
4.3 

45.5 
20.4 
11.8 
8.6 
7.4 
5.4 
4.8 
3.3 
2.25 

Source: Reprinted with permission from G.G. Brown & Others, Unit Operations, 
John Wiley & Sons Inc., Copyright 1950 0 

4. Write a program which will store the temperature data of Table 2.2, in 

addition to the equilibrium values. 

5. Write a program applying the least squares method to a polynomial of three 

terms. 
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SOLUTION OF MULTIPLE EFFECT EVAPORATOR PROBLEMS 

The computer solution to such problems can follow exactly the usual manual 

method, and involves solution of simultaneous equations, coupled with an 

iterative procedure (1), (2), (3), (4). 

Assumptions: The method to be described rests upon the following 

assumptions: 

all effects are of the same area; 

heat losses are negligible; 

no carry over of liquid into the vapour phase occurs. 

In the example which follows, further simplifications are made: 

boiling point elevations are ignored; 

only forward feed systems are considered; 

thermal recompression is not included. 

Obviously, none of these assumptions are fundamental, and they can be omitted 

if desired. Figure 3.1 shows the arrangement and nomenclature for a forward 

feed system. Details of specific evaporation problems can be found in 

specialist texts (5), (6) (7). 

Procedure: The following values must be known or calculable: 

overall heat transfer coefficient in each effect; 

temperature of the heating medium; 

pressure and hence temperature of saturated vapour from the last 

effect (presumed to be governed by conditions at the condenser); 

feed flowrate, temperature and concentration; 

desired product concentration. 

Obviously, enthalpy data and boiling point elevation data (if applicable) 

must also be employed. The calculation procedure then involves the following 

steps: 

a. For n effects, product flowrate and total evaporation are calculated from 

a mass balance: 

FxF = Lnx„ (3.1) 

Knowing xn , product flowrate Ln can be calculated . 

F = Ln + V !+ V 2 .... Vn (3.2) 
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Where boiling point rises and enthalpies, dependent on concentration as 

well as temperature, have to be employed, it is necessary to determine the 

concentration in each effect. This can be done approximately at this stage, 

by making the further assumption of equal evaporation in each effect. 

In this case 

Vx = V2 = .... Vn 

= V, + V2 + .... Vn (3.3) 

n 

F = Vx + Lx Hence U is obtained 

FxF= LiXi Hence xx is obtained, and so on for each effect. 

b. Initially, the temperature driving force in each effect is evaluated by 

sharing the overall difference available, amongst the effects in proportion to 

the individual thermal resistances. Overall available temperature difference, 

Δ Τ ο α = Ts - Tn - Σ(ΔΤ)ρ 

(3.4) 

where (AT)R = boiling point rise in effect 

T s = temperature of the heating medium 

Tn = temperature in the final effect. Then temperature driving force in the 

first effect, 

ΔΤχ = ΔΤαο* 1/UX (3.5) 
1/Ux + 1/Ua + ... 1/Un 

where Ulf U2 , etc. are overall heat transfer coefficients in effects 1, 2, etc. 

The values of ΔΤΧ etc. and the consequent effect temperatures are adjusted at 

the second and subsequent iterations. 

c. Evaporation rate from each effect is obtained from heat and material 

balances. An equation can be written for each effect and these simultaneous 

equations can be solved for the unknowns. 

d. Knowing the vapourisation rates, heat loads can now be calculated for each 

effect, and the required heat transfer areas Ax, A2, etc, calculated from the 

rate equation q = υΆΔΤ. 

e. Assuming that effects of equal area are required, (as mentioned before), 

then the mean area is calculated, and values of temperature driving force in 

each effect are adjusted: 

A m = A, + A2 + .... An (3.6) 
n 

ΔΤί = ΔΤχ * Ax/Am (3.7) 

ΔΤ2 = etc. 
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f. The new ΔΤ values are again adjusted so that their sum = 

Ts - Tn - z(AT)R i.e. 

ΔΤχ" = ΔΤί * (Ts- Tn - Σ(ΔΤ)ρ) (3.8) 
ΣΔΤ' 

g. From the new ΔΤ values new effect temperatures are obtained and fresh 

calculation of evaporation from each effect is made (step c). 

If necessary, new boiling point rise values can be incorporated. Steps c. 

to f. are repeated until the effect areas are the same within suitable limits. 

MANUAL SOLUTION OF A MULTI EFFECT EVAPORATION PROBLEM 

EXAMPLE 3.1 

Use the method outlined above to solve the following problem: 

A solution with a negligible boiling-point rise is evaporated in a triple-

effect evaporator, which it enters at 30°C. Saturated steam at 121.8°C (395K) 

enters the calandria of the first effect. The pressure of the vapor in the 

last effect is 26 Kpa. 6 Kg/s of solution containing 10% solids enter the 

system. The product leaves the last effect containing 30% solids. The heat 

transfer coefficients are υΊ = 3000, U2 = 2000, U3 = 1500W/m2K. 

Assuming a forward feed system, with effects of equal area, calculate the 

following: 

the temperature in each effect; 

the vapourisation from each effect; 

the area required in each effect. 

Solution 

From steam tab les , the temperature in the l a s t e f f e c t i s found to be 65.9 C. 

The temperature d r i v i ng force ava i lab le therefore = 

Ts - Tn (since there are no BPt r i s e s ) , = 121.8 - 65.9 = 55.9°C = ΔΤοα 

This is apportioned between the effects as follows: 

Δ Τ ι = ΔΤοα * IßL· (equation 3.5) 
1/Ui + 1/U2 + 1/U3 

ΛΔΤχ = 5 5 . 9 * 1/3000 = 1 ? d o f 
1/3000 + 1/2000 + 1/5000 1ά'* υ 
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ΔΤ3 = 55.9 - 12.4 - 18.6 = 24.9°C 

Similarly: 

= 55.9 

Hence, the e f f ec t temperatures are: 

1st e f f e c t temperature = 121.8 - 12.4 = 109.4°C. 

2nd e f f ec t temperature = 109.4 - 18.6 = 90.8°C. 

3rd e f f e c t temperature = 65.9 as already determined. 

By an overa l l mater ia l balance, the weight of product and the evaporation 

ef fected are ca lcu la ted : 

F * F = Ln* n 

6 x 0.1 = Ln * 0.3. Hence weight of product = OJL = 2.0 Kg/s. 
0.3 

Total evaporation = 6.0 - 2.0 = 4.0 Kg/s. 

Evaporation and heat load in each effect are now calculated using heat and 

material balances as follows: 

1st effect 

SAS + FhF = Lxhx+ ViHx but (3.9) 

F = Vx+ Lx .\ Lx = F-Vx 

values of enthalpies obtained from steam tables are: 

feed liquid at 30°C, h F = 125.7KJ/kg; 

liquid at 109.4°C, hi = 458.4KJ/kg; 

vapour at 109.4°C, Hx = 2690KJ/kg; 

latent heat heating steam, λ 5 = 2198KJ/kg; 

Λ 2198S + 6 x 125.7 = (6-Vi) * 458.4 + Vx * 2690 

2198S + 6 x (125.7-454.3) = Vx(2690 - 458.4) 

2198S - 1996 = 2232 Vx (3.9a) 

2nd effect 

Vi (Ηχ- hx) + Lxhx = L2h2 + V2H2 but (3.10) 

Lx = V2+ L2 Λ L2 = Lx - V2 = F - Vx - V2 

values of enthalpies obtained from steam tables are: 
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l i q u i d a t 90.8°C, h 2 = 380.0KJ/kg; 

vapour a t 90.8°C9 H2 = 2661KJ/kg. 

Λ V^Hx- hx) + (F - Vx)hx = (F - Vx - Y2)h2 + V2H2 

Vx(Hx- 2hx + h2) + F (hx- h2) = V2(H2- h2) 

Vx(2690 - 2 * 458.4 + 380) + 6 (458.4 - 380) = 

V2(2661 - 380) 

Λ 2153Vx + 470.4 = 2281 V2 (3.10a) 

3rd effect 

V2(H2- h2) + L2h2 = L3h3 + V3H3 (3.11) 

L2 = V3 + L3 Λ L3 = L2 - V3 = 

F - Vx - V2 - V3 but 

Vx + V2 + V3 = 4kg/s as calculated above and 

L3 = 2kg/s as calculated above. 

values of enthalpies obtained from steam tables are: 

liquid at 65°C, h3 = 276KJ/kg; 

vapour at 65°C, H3 = 2619KJ/kg. 

Λ V2(H2- h2) + (6 - Va - V2)h2 = 2h3 + (4 - Vx - V2)H3 

Vx(H3- h2) + V2 (H2- 2h2 + H3) = 

2h3 + 4H3 - 6h2 
Vx(2619 - 280) + V2 (2661 - 2*380 + 2619) = 

2 * 276 + 4*2619 - 6*380 

2239Vx + 4520V2 = 8748 (3.11a) 

Λ 2153Vx = 8412 - 4346V2 

Substituting into equations 3.10a, hence 

V2 = 8412 + 470.4 
4346 + 2281 1.34 kg/s hence 

V l = 8 4 1 2 - 4 3 4 6 * 1.34 = 1 2 0 2 kg/s and by difference 

V 3 = 4 - 2.542 = 1.458 kg/s. From equation 3.9a 

S = 2232 * 1.202 + 1996 _ 9 19Q . . 
2Ï98 2.129 kg/s 

Heat loads and required areas in each effect are now readily calculable: 

1st effect heat load = SXS = (3.12) 

2.129*-2198 = 4.68* 103 KJ/s 
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required area = 

4.68* 10» _ 
3000*12.4 - 126m 

2nd effect head load = Vx (Ηχ - hx) = 

1.202 (2690 - 458.4) = 2.682 x 103 KJ/s 

required area = 

2.682* IQ6 7? 2 

2000 * 18.6 ' m 

3rd effect head load = V2 (H2 - ha) = 

1.34 (2661 - 380) = 3.05 x 103 KJ/s 

required area = 

3.05 * 103 

1500 * 24.9 81.6m2 

A m = 126 + 72.1 + 81.6 = 93>2m2 

Corrected values of driving forces and temperatures in the affects are: 

ΔΤχ 

ΔΤ2 

ΔΤ3 

= 12.4 * -P- = 
93.2 

-■»•tl· 
= 24 9 * 8 1 · 6 = 

16.7° 

14.4° 

21.8° 
5279° 

The calculation is now repeated using the following values adjusted to give 

ΔΤοα= 55.9υ. 

ΔΤι = 17.6° 
ΔΤ2 = 15.2° 

ΔΤ3 = 23.7° 

Τχ = 104.2° 

Τ2 = 89.0° 

Τ3 = 65.9° 

The remainder of the calculation is left as an exercise for the reader; the 

result may be checked by comparison with the computer calculation described 

next. 

COMPUTER SOLUTION OF MULTI-EFFECT EVAPORATOR PROBLEMS 

Program EVAP1 which follows, is based on the assumptions which have already 

been stated. It is capable of handling any number of effects, the simultaneous 

equations generated being solved by either matrix algebra, or Seidel iteration. 

The equations for the effects are dealt with below: 

First effect 

FhF + SAg = VxHx + Lxhi 
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Since Li = F - Vi this equation can be rearranged as: 

FF(h - h O = - SAS + Vx (Ηχ- h j (3.15) 

Intermediate effect 

Lxhx + Vx (Ηχ - hx) = V2H2 + L2h2 

Since L2 = Lx - V2 = F - Vx - V2 the equation can be rearranged as: 

F (hx - ha) = Vx (2hx - Ηχ - h2) + V2 (H2 - h2) (3.16a) 

Similar heat and mass balances lead to further equations for additional 

intermediate effects: 

Third effect 

F (h2 - h3) = Vx (h2 - h3) + V2 (2h2 - H2 - h3) + V3 (H3 - h3) (3.16b) 

Fourth effect 

F(h3 - h«) = Vx (h3 - h O + v2 (h3 - h j 

+ V3 (2h3 - H3 - h O + V« (H„ - h j (3.16c) 

Since enthalpy values are known, the only unknowns in these equations are 

S; Vx ; V2 ; etc. 

Table 3.1 shows these equations arranged in matrix form. 

Final effect 

Suppose that Effect 2 is the last; then using xP to denote product 

concentration, 

FxF = L2xP. By a heat balance, as before 

But 

and 

Rearranging: 

Suppose that Effect 3 is the last; then 

Similar arguments to those above then lead to the equation: 

Xp 

Table 3.2 tabulates in matrix form the various equations that may arise from 

the heat balance arouncj the f inal effect. The appropriate values must be 

incorporated in the n row of Table 3.1. 

(3.17a) 

(3.17b) 
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EVAPl.BAS 

ί Start ^ 

Input 

Input 

ZE: 
Process 

Process 

/ Print / 

/ Seidel \, 

J/Yes 
Seidel 
1 subroutine 

\ 
\*? 

r 
Process 

No 

\ ' 
Matrix 
subroutine | 
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20 REM - PROGRAM EVAPl.BAS THIS PROGRAM SOLVES 
30 REM - FORWARD FEED MULTI-EFFECT EVAPORATOR PROBLEMS 
40 REM - UP TO 10 EFFECTS 
50 REM - PROGRAM NOMENCLATURE 
60 REM - A(J) - Heat transfer area, Jth effect, sq m 
70 REM - B(J) - Intermediate values used in 
80 REM correction of temperature differences 
90 REM - D(J) - Temperature difference across effect, 
100 REM Deg C 
110 REM - H(J) - Heat load across effect, KJ/s 
120 REM - L(J) - Liquid flowrate from effect, kg/s 
130 REM - P(J) - Vectors for matrix calculations 
140 REM - R(J) - Thermal resistance, used in 
150 REM calculation of D(J) values 
160 REM - T(J) - Temperature in effect, DEC C 
170 REM - U(J) - Overall heat transfer coefficient 
180 REM in effect, W/sq m, K 
190 REM - V(J) - Vapour rate from effect, kg/s 
200 REM - W(J) - Previously calculated values of V(J) 
210 REM - X(J) - Vapour enthalpy. KJ/kg 
220 REM - Y(J) - Liquid enthalpy, KJ/kg 
230 REM - M(J,J) - Matrix of enthalpy values 
240 REM - N(J,J) - Inverse matrix of enthalpy values 
250 REM - PROGRAM DESCRIPTION 
260 REM - LINES 1000 - 1320 Array dimensions are declared, 
270 REM - and choice of solution method is made. The 
280 REM - relevant data concerning flows, temperatures, etc, 
290 REM - are then input to the program 
300 REM - LINES 1330 - 1450 Driving forces and 
310 REM - temperatures in the effects are calculated 
320 REM - using equations 3.4 and 3.5 
330 REM - LINES 1220, 1460 - 1500 The properties of pure 
340 REM - water have been assumed for the process fluid. 
350 RSM - Enthalpies of saturated liquid and vapour, taken 
360 REM - from steam tables over a limited temperature range 
370 REM - have been fitted to linear equations using 
380 REM - regression analysis (see example 2.1) 
390 REM - LINES 1510 - 1560 Calculations are performed for 
400 REM - a single effect system, using equations 3.1,3.2, 
410 REM - 3.8, and 3.11 
420 REM - LINES 1570 - 1600, 2140 - 2560, and 2580 - 2960 
430 REM - For two or more effects it is necessary to write 
440 REM - general equations for the first, intermediate, and 
450 REM - final effects. The simultaneous linear equations 
460 REM - generated are then solved by either matrix algebra 
470 REM - or by Seidel iteration. Subroutines to do this 
480 REM - are accessed at lines 1570 ~ 1600 
490 REM - SUBROUTINE FOR SOLUTION OF VAPOUR QUANTITIES BY 
500 RSM - MATRIX ALGEBRA LINES 2140 - 2560 
510 REM - Lines 2160 to 2190 establish the required matrix 
520 REM - dimensions; lines 2200 to 2410 ascribe the matrix 
530 REM - values from Tables 3.1 and 3.2 to the matrix M; 
5 40 REM - lines 2420 to 2470 ascribe the vector values from 
550 REM - Tables 3.1 and 3.2 to the matrix P. Solution of 
560 REM - the unknowns (steam supply rate S3, vapourisation 
570 REM - from each effect V(J)> is obtained by 
580 REM - multiplication of the inverse matrix by the vector 
590 REM - at lines 2430 and 2490 
600 REM - SUBROUTINE FOR SOLUTION OF VAPOUR QUANTITIES BY 
610 REM - SEIDEL ITERATION LINES 2580 - 2960 
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620 REM - First a set of duplicate values of V(J) are 
630 REM - established as W(J) (lines 2600 to 2660). If a 
640 REM - double effect solution is required, then direct 
650 REM - solution is possible, without iteration. This 
660 REM - is done using equation 3.17a (lines 2840 and 2850) 
670 REM - and equation 3.15 (line 2860). Determination of 
680 REM - vapour from the last effect is not carried out 
690 REM - within the subroutine. 
700 REM - For cases involving more than two effects, first 
710 REM - effect vapour is calculated using equation 3.16a 
720 REM - (lines 2680 and 2690). Vapour rates from 
730 REM - intermediate effects are calculated using 
740 REM - equations 3.16b,c etc (lines 2710 to 2770). 
750 REM - Vapour from the last but one effect is calculated 
760 REM - using equations 3.17b,c etc (lines 2780 to 2830). 
770 REM - Steam rate is then calculated, as for the double 
780 REM - effect case, at line 2860. A test is then made 
790 REM - to determine whether the values of V(J) and 
800 REM - W(J) agree within preset limits. If they do 
810 REM - not, another iteration is carried out (lines 
820 REM - 2920 to 2950) 
830 REM - LINES 1610 - 1710 Vapour flowrate from the last. 
840 REM - effect is calculated, then for each effect, liquor 
850 REM - flowrate, heat load, and required area for heat 
860 REM - transfer, are calculated. 
870 REM - LINES 1720 - 1870 Values calculated for each 
880 REM - effect are printed. 
890 REM - LINES 1880 - 2080 If inspection of the areas 
900 REM - calculated for the effects shows these to differ 
910 REM -· beyond acceptable limits, then the calculation 
920 REM - is repeated. Lines 1930 to 2040 recalculate 
930 REM - temperature driving forces using equations 3.6 
940 REM -· and 3. 7; lines 2050 to 2070 correct these new 
950 REM - values using equation 3.8 
960 REM - LINES 2090 - 2120 Provide an opportunity to 
970 REM - rerun using a different number of effects and/or 
980 REM - different heat transfer coefficients. 
9 9 0 R E M * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *. HC * * * HC * * * * * * * * * * * * * * * * 
1000 DIM A(10),B(10),D(10),H(10),L(10),M(10,10),N(10,10) 
1010 DIM P(10),R(10),T(10),U(10),V(10),X(10),Y(10) 
1020 PRINT "SIMULTANEOUS EQUATIONS GENERATED WITHIN THE" 
1.030 PRINT "PROGRAM ARE SOLVED BY A-MATRIX ALGEBRA, " 
1040 INPUT "B-SEIDEL ITERATION. INPUT A OR B";C$ 
1050 IF C$="A" THEN 1090 
1060 IF C$="B" THEN 1090 
1070 GOTO 1020 
1080 PRINT 
1090 PRINT "FORWARD FEED UP TO 10 EFFECTS" 
1100 PRINT "STEAM TEMP,DEG C"; 
1110 INPUT SI 
.1120 PRINT "INLET LIQUOR TEMP,DEG C"; 
1130 INPUT Tl 
1140 PRINT "INLET LIQUOR CONC.WT FRACN"; 
1150 INPUT Cl 
1160 PRINT "FESDFLOWRATE,KG/S,r ; 
1170 INPUT Fl 
1180 PRINT "OUTLET LIQUOR TEMF,DEG C"; 
1190 INPUT T2 
1200 PRINT "OUTLET LIQUOR CONC.WT FRACN"; 
1210 INPUT C2 
.1220 REM-LATENT HEAT OF STEAM ****************************** 
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1230 52=2581.74-3.16338*S1 
1240 PRINT 
1250 PRINT "NUMBER OF EFFECTS" 
1260 INPUT Nl 
1270 IF Nl>10 THEN 1240 
1280 PRINT "U VALUES,W/SQ M,DEG K" 
1290 FOR J=l TO Nl 
1300 PRINT "U(";J;")" 
1310 INPUT U(J) 
1320 NEXT J 
1330 REM - WORK OUT TEMPRE DIFFERENCES ********************* 
1340 REM - IN INVERSE PROPORTION TO U VALUES 
1350 Ei~0 
1360 FOR J=l TO Nl 
1370 R1-R1-K1/U(J) 
1380 NEXT J 
1390 FOR J=l TO Nl 
1400 D(J)=(S1-T2)/<U(J)*R1) 
1410 NEXT J 
1420 T(1)=S1-D(1) 
1430 FOR J=2 TO Nl 
1440 T(J)=T(J-1)-D(J) 
1450 NEXT J 
1460 REM-SATURATED VAPOUR AND LIQUID ENTHALPIES ************ 
1470 FOR J=l TO Nl 
1480 X(J)=2508.3+1.63539*T(J) 
1490 Y(J)=4.21119*T(J)-.96387 
1500 NEXT J 
1510 IF N1>1 THEN 1570 
1520 V(1)=F1*(1-C1/C2) 
1530 H(l)=V(l)*X(l)+Fl*(Y(l)*Cl/C2-4.1868*T(1)) 
1540 A(1)=H(1)*1000/(U(1)*D(1)) 
1550 S3=H(1)/S2 
1560 GOTO 1720 
1570 IF C$=',,B" THEN 1600 
1580 GOSUB 2140 
1590 GOTO 1610 
1600 GOSUB 2580 
1610 J=N1 
1620 V(J)=F1-V1-F1*C1/C2 
1630 L(1)=F1-V(1) 
1640 H(1)=L(1)*Y(1)+V(1)*X(1)-F1*4.1868*T1 
1650 FOR J=2 TO Nl 
1660 L(J)=L(J-1)-V(J) 
1670 H(J)=L(J)*Y(J)+V(J)*X(J)-L(J-1)*Y(J-1) 
1680 NEXT J 
1690 FOR J=l TO Nl 
1700 A(J)=H(J)*1000/(U(J)*D(J)) 
1710 NEXT J 
1720 PRINT "EFFECT TEMP DEL.T HEAT AREA VAPN" 
1730 PRINT " DEG C DEG C KJ/S SQ M KG/S" 
1740 FOR J=l TO Nl 
1750 PRINT J;" "; 
1760 PRINT USING "###.#";T(J); 
1770 PRINT " "; 
1780 PRINT USING "###. #" ;D( J) ; 
1790 PRINT " "; 
1800 PRINT USING "####.#";H(J); 
1810 PRINT " "; ' 
1820 PRINT USING "###.fl";A(J); 
1830 PRINT " "; 
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1340 PRINT USING "###. 1*" ; V{ J ) 
1850 NEXT J 
1360 PRINT "STEAM TO FIRST EFFECT"; S3 ;"KG/S" 
1870 PRINT 
1880 IF Nl=l THEN 2090 
1890 PRINT "DC YOU WANT TO RERUN? TYPE Y OR N" 
1900 INPUT A$ 
1910 IF A$="Y" THEN 1930 
1920 GOTO 2090 
1930 A1=0 
1940 FOR J - l TO Nl 
1950 A1=A1+A(J) 
1960 NEXT J 
1970 FOR J = l TO Nl 
1980 R ( J ) - A ( J ) * N 1 / A 1 
1990 NEXT J 
2000 D1=0 
2010 FOR J = l TO Nl 
2020 B ( J ) = R ( J ) * D ( J ) 
2030 D1=D1+B(J) 
2040 NEXT J 
2050 FOR J = l TO Nl 
2060 D ( J ) = B ( J ) * ( S 1 - T 2 ) / D 1 
2070 NEXT J 
2080 GOTO 1420 
2090 PRINT "DIFFERENT NUMBER OF EFFECTS?" 
2100 INPUT "TYPE Y OR N";B$ 
2110 IF B$="Y" THEN 1240 
2120 GOTO 2970 
2 -1 Q -*Λ ΌΤΓΊιΛ \L· ^le vJ/ sl·* sir* sir *Jr* sir' sV sir* vlr* sl·' 'Je sV sir* \L·* slf  ̂ "V *L· **V sir* sk '■•ii' sir* sli" sir* **V sV ^ sl̂  ̂ V sî  >^ sir* sir* sir* sir' sir* sir* sV sir* si/ vL·· >X-· vJr' sir" sir'ŝ  sL·* sir* j  ̂ ^j \^j XXJ7ii\i 'r *τ· 'Γ •T· *r- *τ· *T* "T· *τ·- 'T1 *τ·- *T* -T ■ *τ· *τ· *τ* *τ· *T*· 'r- *τ· **τ· *Τ- *τ* **r- *Τ· -*τ· M*· *τ· ·*Γ· *τ*· ·*Γ- Ί* 'Τ'· *τ**τ* *̂ * •T· 'Τ- 'Γ· **ν- 'Τ' *Τ" **ν· *τ· ρ̂. ^ . ^ . -^ ^ν ^ . /*"*< 

2140 REM - SOLUTION OF VAPOUR TO EACH EFFECT 
2150 REM - BY MATRIX ALGEBRA 
2160 MAT M-ZER(N1,N1) 
2170 MAT N=ZER(N1,N1) 
2180 MAT P=ZER(N1) 
2190 MAT V=ZER(N1) 
2200 M ( l , 1 ) = - S 2 
2210 FOR J = l TO ( N l - 1 ) 
2220 K=J+1 
2230 M ( J , K ) = X ( J ) - Y ( J ) 
2240 NEXT J 
2250 IF Nl=2 THEN 2390 
2260 FOR J=2 TO ( N l - 1 ) 
2270 K=J 
2280 M ( J , K ) = 2 * Y ( J - 1 ) - X ( J - 1 ) - Y ( J ) 
2290 NEXT J 
2300 FOR J=3 TO ( N l - 1 ) 
2310 FOR K=2 TO ( J - l ) 
2320 M ( J , K ) = Y ( J - 1 ) - Y ( J ) 
2330 NEXT K 
2340 NEXT J 
2350 J=N1 
2360 FOR K=2 TO J - l 
2370 M ( J , K ) = Y ( J - 1 ) - X ( J ) 
2380 NEXT K 
2390 J=N1 
2400 K=J 
2410 M ( J , K ) = 2 * Y ( J - 1 ) - X ( J - 1 ) - X ( J ) 
2420 P ( 1 ) = F 1 * ( 4 . 1 8 6 8 * T 1 - Y ( 1 ) ) 
2430 FOR J=2 TO ( N l - 1 ) 
2440 P ( J ) = F 1 * < Y ( J - 1 ) - Y ( J > ) 
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2450 NEXT J 
2460 J=N1 
2470 P<J)=F1*(Y(J-1)-X(J) + (C1/C2).*(X(J)-Y(J))) 
2480 MAT N=INV(M) 
2490 MAT V=N*P 
2500 S3-V(l) 
2510 V1=0 
2520 FOR J-2 TO Nl 
2530 V(J-1)=V(J') 
2540 V1=V1+V(J-1) 
2550 NEXT J 
2560 RETURN 
2570 REM *********************************** 
2530 REM - SOLUTION OF VAPOUR TO EACH EFFECT 
2590 REM - BY SEIDEL ITERATION 
2600 FOR J-l TO Nl-1 
2610 IF V(J)=0 THEN 2640 
2620 W(J)=V(J) 
2630 GOTO 2660 
2640 V(J)=F1*(1-C1/C2)/N1 
2650 W(J)-V(J) 
2660 NEXT J 
2670 IF Nl-2 THEN 2840 
2680 V(1)=F1*(Y(1)-Y(2))-V(2)*(X(2)-Y(2)) 
2690 V(1)=V(1)/(2*Y(1)-X(1)-Y(2)) 
2700 IF Nl=3 THEN 2730 
2710 FOR Ĵ 2 TO Nl-2 
2720 V(J)-F1*(Y(J)-Y(J+1))~V(J+1)*(X(J+1)-Y(J+1)>· 
2730 FOR K=l TO J-l 
2740 V<J)=V(J)-V(K)*(Y(J)-Y{J+1)) 
2750 NEXT K 
2760 V(J)-V(J)/(2*Y(J)-X(J)-Y(J+D) 
2770 NEXT J 
2780 V(N1~1)=F1*(Y(N1-1)-X(N1)+(C1/C2)*(X(N1)-Y(N1))) 
2790 FOR K=l TO Nl-2 
2300 V(N1-1)=V(N1-1)-V(K)*(Y(N1-1)-X(N1)) 
2810 NEXT K 
2820 V(N1-1)=V(N1-1)/(2*Y(N1-1)-X(N1-1)-X(N1)) 
2830 GOTO 2860 
2840 V(1)=F1*(Y(1)-X(2)+(C1/C2)*(X(2)-Y(2))) 
2850 V(1)=V(1)/{2*Y(1)-X(1)-X(2)) 
2860 S3=(V(1)*(X(1>-Y(1))-F1*(4.1868*T1-Y(1)))/S2 
2870 V1=0 
2880 FOR J=l TO Nl-1 
2890 V1=V1+V(J) 
2900 NEXT J 
2910 IF Nl=2 THEN 2960 
2920 FOR J=l TO Nl-1 
2930 IF V(J)/W(J)>1.001 THEN 2600 
2940 IF W(J)/V(J)>1.001 THEN 2600 
2950 NEXT J 
2960 RETURN 
2970 END 
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EXAMPLE 3.2 

Use the computer program to repeat Example 3.1 I t w i l l be seen that the 

f i r s t computer i terat ion gives results closely similar to those obtained by the 

manual calculation. After a further two i terat ions, closely similar values 

are obtained for the required heat transfer areas. 

LOAD"A:EVAPl 
Ok 
RUN 
SIMULTANEOUS EQUATIONS GENERATED WITHIN THE 
PROGRAM ARE SOLVED BY A-MATRIX ALGEBRA, 
B--SEIDEL ITERATION. INPUT A OR B? B 
FORWARD FEED UP TO 10 EFFECTS 
STEAM TEMP,DEG C? 121.8 
INLET LIQUOR TEMP,DEG C? 30 
INLET LIQUOR CONC,WT FRACN? .1 
FEEDFLOWRATE,KG/S? 6 
OUTLET LIQUOR TEMP,DEG C? 65.9 
OUTLET LIQUOR CONCWT FRACN? .3 

NUMBER 
*v> 1 

OF 

. 1 

U VALUES, 
U( 1 ) 
? 1500 
EFFECT 

1 

' EFFECTS 

W/SQ M,DEG K 

TEMP DEL.T 
DEG C DEG C 
65.9 55.9 

HEAT 
KJ/S 

9361.9 

AREA 
SQ M 
111.7 

VAPN 
KG/S 

4.0 
STEAM TO FIRST EFFECT 4.262322 KG/S 

DIFFERENT NUMBER OF EFFECTS? 
TYPE Y OR N? Y 

NUMBER OF EFFECTS 
? 3 
U VALUES, 
U( 1 ) 
? 3000 
U( 2 > 
? 2000 
U( 3 ) 
? 1500 
EFFECT 

1 
2 
3 

STEAM TO 

,W/SQ M; 

TEMP 
DEG C 
109.4 
90. 7 
65. 9 

,DEG K 

DEL.T 
DEG C 
12. 4 
18.6 
24.8 

FIRST EFFECT 2. 

HEAT 
KJ/S 

4679.2 
2673.9 
3050.5 

AREA 
SQ M 
125.6 
71.8 
81.9 

130355 KG/S 

DO YOU WANT TO RERUN? TYPE Y OR 
? Y 
EFFECT 

1 
2 
3 

TEMP 
DEG C 
104. 1 
89.0 
65.9 

DEL.T 
DEG C 
17.7 
15.2 
23. 1 

HEAT 
KJ/S 

4608.8 
2738.3 
3043.3 

N 

AREA 
SQ M 
86.9 
90.3 
88.0 

VAPN 
KG/S 

1.2 
1.3 
1.5 

VAPN 
KG/S 

1.2 
1.3 
1.4 

STEAM TO FIRST EFFECT 2.098313 KG/S 
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DO YOU WANT TO RERUN? TYPE Y OR N 
? Y 
EFFECT TEMP DEL.T HEAT AREA VAPN 

DEG C DEG C KJ/S SQ M KG/S 
1 104.4 17.4 4611.2 88.3 1.2 
2' 88.9 15.5 2733.7 88.1 1.3 
3 65.9 23.0 3045.9 88.3 1.4 

STEAM TO FIRST EFFECT 2.099399 KG/S 

DO YOU WANT TO RERUN? TYPE Y OR N 
? Y 
EFFECT TEMP DEL.T HEAT AREA VAPN 

DEG C DEG C KJ/S SQ M KG/S 
1 104.4 17.4 4612.3 88.3 1.2 
2 88.9 15.5 2733.4 88.3 1.3 
3 65.9 23.0 3045.1 38.2 1.4 

STEAM TO FIRST EFFECT 2.09992 KG/S 

DO YOU WANT TO RERUN? TYPE Y OR N 
? N 
DIFFERENT NUMBER OF EFFECTS? 
TYPE Y OR N? N 
Ok 

PROBLEMS - CHAPTER 3 

1. A forward feed evaporator system has three effects each of 80m2 heat 

transfer surface. Heat transfer coefficients in successive effects are 3000, 

2500 and 2000 W/m2K. Steam enters the calandria of the first effect at a 

présure of 320kPa; the pressure above the liquor in the final effect is 18kPa. 

The feed enters effect one at a concentration of 3 wt% solids and a temperature 

of 40°C; product leaves the final effect at a concentration of 32 wt% solids. 

Use the program to determine the feed and final product rates, assuming the 

solution to have the properties of water. 

Hint: Assume a value for feedrate and use this to run the program; scale 

this figure up or down as required to satisfy the area requirement. 

2. An evaporator system is to be installed for the concentration of an aqueous 

solution of an organic material. It is desired to make an estimate of the 

number of effects which should be employed in order to give the lowest annual 

total costs (operating plus fixed costs). 

Pilot plant work has established that the overall coefficient of heat 

transfer in the evaporator, using low pressure steam for heating, is correlated 

approximately by the following simple relationship: 

U = 2500 - 2000C W/m2K where C = solution concentration, wt fraction. 



94 

Assuming a forward feed system is to be employed, use the program, and the 

data below, to estimate the optimum number of effects to be used: 

Feed rate of solution 

Feed concentration 

Feed temperature 

Product concentration 

Physical properties of 
solution 

Steam temperature 

Final effect temperature 

Heating costs 

Capital cost for equipment 

5.5 kg/s 

0.05 wt fraction 

18.0°C 

0.5 wt fraction 

As for water 

140°C 

60°C 

5c/KWh 

$5,000 per m2 of heat transfer surface 
installed 

Interest payable on capital : 15% p.a. 

Maintenance costs and overheads: 20% p.a. on installed capital 

Additional operating costs 
incurred : $25,000 p.a. 

What would be the effect on your appraisal if energy costs were to be 

doubled? 

Note: The figures quoted above are conjectural only; they should not be taken 

as in any way typifying the industry. 

3. Modify the program described in this chapter to handle: 

a. Backward feed systems. 

b. Crossflow systems. 

c. Process fluids exhibiting boiling point rise. 

d. Enthalpy data such as that discussed in Example 2.3. 

e. Computation of film coefficients as functions of physical properties. 

4. Write an evaporator program using the Newton Raphson method (8). 
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Chapter 4 

SOLUTION OF DISTILLATION PROBLEMS 

The example given here, is based upon the well-known McCabe Thiele 

Graphical Solution method for binary separations (1), (2), (3). Sophisticated 

computer methods of solution have of course been developed (4), (5), (6), (7). 

McCabe Thiele Graphical Method 

Assumption: The method to be described rests upon the following assumptions: 

constant molal overflow; 

equilibrium is attained at each stage. 

In the example which follows it is further assumed that: 

the column consists of both stripping and enriching sections; 

the feed enters between these sections; 

all overhead vapour from the column is condensed and either withdrawn 

as product (distillate) or returned to the column (reflux). 

For complete information on the method the reader should refer to the basic 

texts listed above (1), (2), (3). However, an outline is given below, using 

the nomenclature of Figure 4.1. 

Procedure 

The following data must be available: 

Feed flowrate, enthalpy and composition; 

desired product concentrations and/or flowrates; 

vapour/liquid equilibrium data at the chosen operating pressure. 

Various methods for the calculation of equilibrium data are available (4), 

(8), (9), (10). The equilibrium data is first plotted as a graph of mol fraction 

of more volatile component in the vapour phase (values of y, plotted on the 

ordinate) versus mol fraction of more volatile component in the liquid phase 

(values of x, plotted on the abscissa). A graphical construction is then 

carried out. The procedure involves the construction on the diagram of the 

operating lines, the equations for which are derived as follows: 
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Cooling Medium 

Condenser 

Enriching 
Section 

Feed 
F, Z F 

Stripping 
Section 

Heating Medium 

Reboiler 

e 
W, x w 

Nomenclature: 
D,F,R - flowrates of distillate, feed, residue 
L, V - flowrates of liquid, vapour from plate to plate, above the feed plate 
U,V - flowrates of liquid and vapour below the feed plate 
xo» x w Z F " mo^ · f r a c t i ° n of m o r e volatile component in distillate, residue, 

feed. 

Figure 4.1. Distillation Column Flow Diagram. 

Equation of the Upper Operating Line (Enriching Line) 
See Figure 4.2a. The plates or equilibrium stages are assumed to be 

numbered counting from the top downwards. A mass balance on a molar basis, over 
the top section of the column down to a typical stage n (above the feedplate) 
yields the equations: 

V = L + D (by an overall balance) (4.1) 

Vyn+1 = Lxn + DXQ (by a balance for the more volatile component) (4.2) 

Calling the ratio L/D the reflux ratio R, 

= L.xn +^τ (4.3) 'η+ι R+l R+l 
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a. Flows in the Enriching Section 

* > yn + l *-* *n 

V", ym Γ, xm 

* w 

b. Flows in the Stripping Section 

Figure 4.2. 
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The assumption of constant molal overflow permits this equation to represent 

any equilibrium stage above the feedplate. The equation is that of a straight 

line on the graph of x, y values, known as the Upper Operating Line or 

Enriching Line. 

Equation of the Lower Operating Line (Stripping Line) 

See Figure 4.2b, then 

7 = Γ - W (by an overall balance) (4.4) 

Vym+, + Wxw = Lxm (by a balance for the more volatile component) (4.5) 

■'· ym + i = J L . xm - J L · Xw (4.6) 
7 V" 

This equation is that of a straight line, known as the Lower Operating Line 

or Stripping Line. 

Equation of the g - line 

The locus of intersection of the Upper and Lower Operating Lines is required; 

it can be shown that this locus is also a straight line, the equation for which 

is: 

y = φ[ · x - —f where ̂  = ^4.7) 

and (4.8) 

H v ,H L= enthalpies of vapour, liquid leaving any plate; 

H F = enthalpy of the feed. 

For the derivation of the q-line, the reader should refer to a standard text 

(1), (2), (3). 

Manual Solution of Binary Distillation Problem 

EXAMPLE 4.1 

Use the McCabe Thiele method to solve the following problem: 

A mixture containing 35 wt% heptane and 65 wt% octane is to be fractionated 

so as to produce a distillate containing 97 wt% heptane, and a residue containing 

not more than 4 wt% heptane. The operating pressure is 1.3 x 105 N/m2 and 

1.5 kg/s of feed enters as a liquid at 40°C. 

(i) Calculate the production rates of distillate and residue. 

(ii) Determine the number of plates required at total reflux and the 

minimum reflux ratio required. 
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(iii) Specify the appropriate reflux ratio and number of ideal stages 

which should be provided. 

Properties of Heptane/Octane Mixtures 

.Equilibrium Data at 

Mol fraction 

Liquid Phase 

X 

1.00 
0.95 
0.89 
0.81 
0.61 
0.44 
0.33 
0.28 
0.23 
0.11 
0.097 
0.067 
0.039 
0.012 

1.2 

of 

1 x 105 N/m2 

heptane 

Vapour Phase 

y 
1.00 
0.98 
0.96 
0.90 
0.77 
0.63 
0.51 
0.46 
0.39 
0.20 
0.18 
0.13 
0.078 
0.025 

Enthalpy data: 

Feed liquid at 40°C, H F = 87.1 KJ/kg 

Feed liquid at bubble point, HL = 280.3 KJ/kg 

Feed vapour at dew point, Hv = 581.8 KJ/kg 

Solution 

(a) First the equilibrium data is plotted (Figure 4.3J. 

(b) Next the given compositions of feed, distillate and residue are converted 

to a mol fraction basis: 

Molecular weight of heptane, C7H16= luO 

Molecular weight of octane, Ce H18= 114 

Using a basic weight of 100 kg for each of the three streams: 

The enthalpy and equilibrium data of Table 4.1 should be used. 

TABLE 4.1 



Stream kg kg mois mol fraction Mean mol wt 

Feed 

( x F ) 

D i s t i l l a t e 

(xo) 

Residue 

(xw) 

C7 = 35 
C8 = 65 

C7 = 97 
C8 = 3 

C7 = 4 
C8 = 96 

0.35 
0.57 

Σ0792" 

0.97 
0.026 

Σθ.996 

0.04 
0.842 

£07882 

0.38 
0.62 
1.00 

0.973 
0.027 
1.000 

0.045 
0.955 
1.000 

108.7 

100.4 

113.4 

o 
21 

1.0 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 
Mol fraction heptane in liquid 

1.0 

0.045 0.973 

Figure 4.3. Distillation of Heptane/Octane Mixture at Total Reflux. 

100 
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(c) Quantities of distillate and residue are calculated from a mass balance: 

F = 1.5 kg/s = D + W (from an overall balance) (4.9) 

Fz F = DxD + Wx w (component balance) 

1.5 * 0.35 = 0.97D + 0.04W 

/. 0.541 = D + 0.0412 (4.10) 

Subtracting 4.10 from 4.9 and solving for W 

W = 1.0 kg/s (.00882 mol/s) 
D = 0.5 kg/s (.00498 mol/s) 
F = 1.5 kg/s (.1380 mol/s) 

(d) The values of x D and x w i n mol fractions are entered on the graph, and by 
a stepwise construction the number of plates required at total reflux is found 
to be 8 (Figure 4.3). 

(e) q = Hy - HF = 581.8 - 87.1 = 1.64 
Hv - HL 581.8 - 280.3 

The slope of the q-line = 

q = 1.64 = 2.56 
q-1 0.64 

A line is drawn through z F = 0.38 to intersect the diagonal. Through this point 
of intersection the q-line is drawn at a slope of 2.56 (see Figure 4.4). 

A line is drawn through x D = 0.973 to intersect the diagonal. Through this 
point of intersection a line is drawn to meet the q-line where the latter cuts 
the equilibrium line. This line is the upper operating line, or enriching line, 
and in this position it corresponds to the condition of minimum reflux. 

The enriching line cuts the y-axis at the point 

y = 2LD = 0.39 (Equation 4.3) Hence 
R+l 

Rmjn = 0.973 , _ i /iQ 
0.39 i im** 

The value of R can also be determined from the slope of the operating line. 
This is more convenient for use with the program which follows. 

By geometry, the slope 

R _ = xp - yfl 
R+l Xo - Xq 
where x q and y q are the coordinates of the point of intersection of the q-line 
and the equilibrium curve. 



102 

These points are shown on Figure 4.4, and more clearly on Figure 4.7. 

Q. 

s-
4-

O 
Έ: 

~w 
0.045 

0.2 0.4 xq 0.6 0. 

Mol fraction heptane in liquid 

0.38 

1.0 

0.973 

Figure 4.4. Distillation of Heptane/Octane Mixture 
Minimum Reflux Condition with Cold (40 C) Feed 

(f) A reflux ratio of between 1.2 and 1.5 times the minimum is usually 

recommended (1), (2), (3). Choosing a value of 1.4 for this case, with a cold 

feed, a reflux ratio of 1.4 *- 1.49 ^ 2 . 1 will be chosen for the calculation. 

It is usually recommended that an economic optimum number of stages is twice 

that required at total reflux, i.e. we anticipate that the calculated number of 

stages should be approximately 16. 

The construction is shown in Figure 4.5. Verticals are drawn through the 

values of xw, z F and xD, to intersect the diagonal. The q-line is drawn in at 

the slope of 2.56. The upper operating line is drawn, intercept being 

xD = 0.973 _ 
R+l 2.1+1 0.31 

The lower operating line is then drawn, as shown. 
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ω 

Figure 4 

0.2 0.4 0.6 0.8 11.0 

I Mol fraction heptane in liquid 

I i 
X W " 2F = X D = 
0.045 0.38 0.973 

,5. Distillation of Heptane/Octane Mixture at a Reflux Ration of 2.1. 

The number of ideal stages computed by this technique is seen to be about 

15%, the last stage being the reboiler. Plate Number 8 should be the feed 

plate. 
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First value of 
Al = C2 

Secon< 

"ôf" A 

Second value First value 
of Bl of Bl 

Xw - C3 x 0 = C2 

Figure 4.6. Sequence used in computing number of plates required at Total 
Reflux. 

Enriching Line 
= X D - yq 

q - Line 

Figure 4.7. Determination of minimum reflux ratio from the slope of the 
Enriching Line. 
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COMPUTER SOLUTION OF A BINARY DISTILLATION PROBLEM BY 
THE McCABE-THIELE METHOD 

This method utilises the equations of Lewis and Sorel which when drawn upon 
the y - x diagram of vapour-liquid concentrations, are the operating lines of 
the McCabe-Thiele method described above. 

The equilibrium data required is input as a series of paired values of x 
and y. These data are then interpolated using the method of Lagrange detailed 
in Chapter 2. This technique is unreliable if the number of data pairs is 
inadequate, and it is advantageous to have other methodsavailable, such as those 
given in references already quoted (4), (8), (9), (10). The following simple 
method which assumes ideal behaviour has been included in the program: 

The Relative Volatility 

a = yjy2 ( 411) 
Xi/x2 

where yx,y2 etc. are mol fractions of component 1, 2, etc. in the vapour phase; 
Xi, x2 etc. are mol fractions of component 1, 2, etc. in the liquid phase 

and equilibrium is assumed. 
For a binary mixture, this relationship may be written as a 

= Yi/(1 - y Q (4.12) 
Xi/(l - Xi) 

where xls yxare the mol fractions of the more volatile component in the liquid 
and vapour phases respectively. 

In other words, each pair of values of x and y permits a value of a to be 
calculated. Over limited temperature ranges these values may not vary widely, 
and a geometric mean may be taken. 

From a mean value of a and a given value of y, the corresponding value of x may 
be calculated by rearrangement of the above equation: Since 

a = yx(l - x j 
xx(l - Yi) 

Λ αχχ - οκχ y x = y x - y iX x 

Λ Xi = Υχχ ( 4 .13 ) 
a ( i - y x ) + y i 

Equilibrium data for the system Benzene/Toluene is included with the program; 
this was employed during program development. 
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20 REM - PROGRAM DIST1.BAS 
30 REM - MC CABE THIELE DISTILLATION 
40 REM - PROGRAM NOMENCLATURE 
50 REM - A(J),B(J) - Values of vapour, liquid 
60 REM compositions at equilibrium, input 
70 REM from the terminal 
80 REM - Al - Value input to either the inter-
90 REM polation or the relative 
100 REM volatility subroutine 
110 REM - Bl - Value obtained from either of 
120 REM the above subroutines 
130 REM - C1,C2,C3 - Feed, overhead and bottom 
140 REM compositions in mol fraction 
150 REM - D(J) - Used in the Lagrange interpolation 
160 REM - subroutine described in Chapter 2 
170 REM - F1,D1,W1 - Feed, overhead and bottom 
180 REM flowrates 
190 REM - J1,J2 - Tag the data pairs inappropriate 
200 REM for calculation of rel. volatility 
210 REM - Kl - Increment in iteration procedure 
220 REM - M(J,K) - Used in the Lagrange interpolation 
230 REM - N(J) - subroutine described in Chapter 2 
240 REM - Nl - Number of data pairs 
250 REM - PI - Number of plates at total reflux 
260 REM - Ql - Value of the enthalpy ratio q 
270 REM - Q2 - Value of liquid composition at the 
280 REM intersection of the q-line with the 
290 REM enriching line 
300 REM - Rl - Reflux ratio 
310 REM - R2 - Slope of the enriching line 
320 REM - V(J) - Values of relative volatility 
330 REM - VI - Used in calculation of mean value 
340 REM of relative volatility 
350 REM - V2 - Mean value of relative volatility 
360 REM - X(G),Y(G) - Values of liquid,vapour, 
370 REM compositions on the Gth plate 
380 REM - Y2 - Vapour composition 
390 REM - Zl - Number of data pairs inappropriate 
400 REM for calculation of rel. volatility 
410 REM - PROGRAM DESCRIPTION 
420 REM - LINES 2000 - 2010 Maximum array dimensions are 
430 REM - declared;the arbitrary value of 20 has been 
440 REM - selected for the number of data pairs, and 100 
450 REM - for the maximum number of plates 
460 REM - LINES 2020 - 2190 Equilibrium data for benzene/ 
470 REM - toluene is read from the data statements 2070 
480 REM - & 2110, into matrices A & B. Line 2170 calls the 
490 REM - subroutine which uses these values to calculate 
500 REM - denominator terms of the Lagrange interpolation 
510 REM - described in Chapter 2. Line 2180 calls for the 
520 REM - subroutine which calculates relative volatilities 
530 REM - LINES 2200 - 2310 As an alternative to the data 
540 REM - for benzene/toluene, equilibrium data values are 
550 REM - input to matrices A & B from the keyboard. 
560 REM - LINES 2320 - 2450 Intermediate equilibrium 
570 REM - values are checked if desired. 
580 REM - LINES 2460 - 2470 Choice is made between the 
590 REM - interpolation and relative volatility methods 
600 REM - LINES 2480 - 2500 Composition values in mol 
610 REM - fractions are entered 
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620 REM -
630 REM -
640 REM -
650 REM -
660 REM -
670 REM -
680 REM -
690 REM -
700 REM -
710 REM -
720 REM -
730 REM -
740 REM -
750 REM -
760 REM -
770 REM -
780 REM -
790 REM -
800 REM -
810 REM -
820 REM -
830 REM -
840 REM -
850 REM -
860 REM -
870 REM -
880 REM -
890 REM -
900 REM -
910 REM -
920 REM -
930 REM -
940 REM -
950 REM -
960 REM -
970 REM -
980 REM -
990 REM -
1000 REM ■ 
1010 REM -
1020 REM -
1030 REM ■ 
1040 REM -
1050 REM -
1060 REM -
1070 REM -
1080 REM -
1090 REM 
1100 REM 
1110 REM 
1120 REM 
1130 REM' 
1140 REM 

(Ql> 
and depending on 

1150 REM 
1160 REM 
1170 REM 
1180 REM 
1190 REM 
1200 REM 
1210 REM 
1220 REM 

LINES 2510 - 2700 The number of plates required 
at total reflux is computed in a manner analogous 
to that described for the manual calculation, and 
shown in Figure 4.6 For this case the operating 
lines lie on the diagonal. Distillate 
composition (C2) is taken as a starting point, its 
value being equal to the vapour composition from 
the top plate (Al). Using the x,y data input to 
the program, the value of Al is used to evaluate 
the corresponding value of x (Bl). Since this 
value lies on the diagonal, it is equal to the 
value of vapour composition y from the next plate 
(Al). This new value of Al is used to compute 
its corresponding value (Bl), and so on until 
the value of residue composition (C3)has been 
reached. See Figure 4.6 
The minimum reflux ratio is 
now to be computed: 
LINES 2720 - 2750 A value of q 
is input from the terminal, 
its value, various alternatives are followed. 
LINES 2760 - 2930 For values of Ql other than 
zero or unity, values of vapour composition (Y2) 
are taken successively, starting from distillate 
composition (C2), stepwise in decrements of 0.1 
mol fraction (Kl). Each time this is done the 
value is ascribed to Al and the corresponding 
value of liquid composition x (Bl) is calculated 
using either the interpolation or relative 
volatility method (lines 2800 - 2840). 
A value of x (B2) is also 
calculated from the equation of the q-line 
(Equation 4.7), rearranged as line 2850. If 
values Bl and B2 are the same, the point of 
intersection of the q-line and the equilibrium 
curve has been obtained. This is tested at lines 
2860 and 2900. If B2 exceeds Bl but the values 
do not agree within 1% then the decrement (Kl) is 
- reduced to one tenth of its previous value and 
- the search is continued (lines 2910 - 2930). 
- When agreement between values Bl and B2 has been 
- obtained within 1%, the arithmetic mean of these 
- values is ascribed to variable Q2 (line 2940) 
- LINES 2960 - 3020 For the case of a saturated 
- vapour, q=0 and the slope of the q-line=0. In 
- this case, the q-line is horizontal through the 
- intersection of feed composition (Cl) with the 
- diagonal. The value is thus also the value of 
- y at the intersection of the q-line and the 
- equilibrium lines. This value of y is ascribed 
- to Al, and the interpolation routine used to 
- obtain the corresponding value of xq (Q2) 
- LINES 3030 - 3170 For the case of a saturated 
- liquid, q=l and the slope of the q-line = 
- infinity. In this case, the q-line is a 
- vertical through the intersection of feed 
- composition with the diagonal. This value is 
- thus also the required value of xq (Q2) 
- LINES 3180 - 3250 The minimum reflux ratio is 
- calculated from the slope of the enriching line 
- (Equation 4.3) as discussed in the text. 
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1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 

REM - LINES 3260 - 3940 The calculation of number 
REM - of plates required at given reflux ratio and q 
REM - value is undertaken. The given value of 
REM - distillate composition (C2) is the same as the 
REM - vapour composition from the top plate. This 
REM - value is ascribed to Al and the corresponding 
REM - equilibrium value in the liquid phase is obtained 
REM - from the subroutine (Bl). At line 3350 these 
REM - values (C2 and Bl) corresponding to the vapour 
REM - and liquid equilibrium compositions on plate 1 
REM - are printed. The value of Bl above is that of 
REM - X(l) (line 3330) and this value is used 
REM - at line 3390 to calculate from the 
REM - equation of the enriching line (Equation 4.3) 
REM - the composition of vapour from plate 2. 
REM - The corresponding equilibrium composition 
REM - of liquid on plate 2 is then calculated 

(lines 3410 - 3440). This procedure is 
repeated until the q-line is reached. At each 

REM 
REM 
REM - iteration the value of vapour composition Y(G) 
REM - calculated above is also used to calculate a 
REM - value of liquid composition (Q2) from the 
REM - q-line equation (lines 3480 - 3610). If 
REM - this value is greater than that calculated 
REM - from the operating line equation, then the 
REM - feedplate has been reached. The program then 
REM - moves to the next routine, and continues, this 
REM - time using the equation for the stripping line 
REM - (Equation 4.6) at line 3710. Iteration 
REM - continues until the value of residue 
REM - composition (C3) has been reached. 
REM - LINES 3960 - 4560 The Lagrange interpolation 
REM - routine described in Chapter 2 
REM - LINES 4580 - 4990 Calculation using the 
REM - relative volatility method. A value of relative 
REM - volatility is calculated for each equilibrium 
REM - data pair, and the geometric mean value is then 
REM - calculated (lines 4600 - 4730). The highest 
REM - and lowest values are then selected and printed 
REM - out (lines 4730 - 4970). Values of liquid 
REM - composition (Bl) are calculated as required at 
REM - line 5030. 

DIM A(20),B(20),D(20),N(20),V(20),X(100),Y(100) 
DIM M(20,20) 
REM-DATA FOR BENZENE/TOLUENE 
Nl=7 
FOR J=l TO Nl 
READ B(J) 
NEXT J 
DATA 1.0,0.78,0.581,0.411,0.258,0. 130,0.04 
FOR J=l TO Nl 
READ A(J) 
NEXT J 
DATA 1. 0, 0. 9, 0.777,0.632,0.456,0.261,0.1 
PRINT "TO USE DATA FOR BENZENE/TOLUENE 101.325KPA" 
INPUT "INPUT 1";D 
PRINT 
IF D O l THEN 2200 
PRINT "USING DATA FOR BENZENE/TOLUENE" 
GOSUB 3960 
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2180 GOSÜB 4590 
2190 GOTO 2320 
2200 PRINT "NUMBER OF DATA PAIRS"; 
2210 INPUT Nl 
2220 FOR J=l TO Nl 
2230 A(J)=0 
2240 B(J)=0 
2250 NEXT J 
2260 PRINT "INPUT Y,X" 
2270 FOR J=l TO Nl 
2280 INPUT A(J),B(J) 
2290 NEXT J 
2300 GOSUB 3960 
2310 GOSUB 4590 
2320 PRINT "DO YOU WANT TO CHECK DATA? TYPE Y OR N"; 
2330 INPUT A$ 
2340 PRINT 
2350 IF A$="N" THEN 2450 
2360 PRINT "INPUT VALUE OF VAP COMP Y"; 
2370 INPUT Al 
2380 GOSUB 5010 
2390 PRINT "BY RELATIVE VOLATILITY METHOD X="; 
2400 PRINT USING "##.##";B1 
2410 GOSUB 4260 
2420 PRINT "BY LAGRANGE METHOD X="; 
2430 PRINT USING "##.##";B1 
2440 GOTO 2320 
2450 PRINT 
2460 PRINT "LAGRANGIAN INTERPOLATION OR RELATIVE VOLATILITY" 
2470 INPUT "METHOD, TYPE LI OR RV";B$ 
2480 PRINT "FEED,OVERHEAD AND BOTTOM COMPOSITIONS AS" 
2490 PRINT "MOL FRACT OF MORE VOLATILE COMPONENT"; 
2500 INPUT C1,C2,C3 
2510 REM - TOTAL REFLUX CALCULATION ************************ 
2520 B1=C2 
2530 PRINT " X= Y= PLATE NO" 
2540 FOR G=l TO 100 
2550 A1=B1 
2560 IF B$="LI" THEN 2590 
2570 GOSUB 5010 
2580 GOTO 2600 
2590 GOSUB 4260 
2600 PRINT USING "#.### ";B1;A1; 
2610 PRINT G 
2620 IF BKC3 THEN 2660 
2630 NEXT G 
2640 PRINT "ERROR IN DATA" 
2650 GOTO 5010 
2660 P1=G-(C3-B1)/(A1-B1) 
2670 PRINT "AT TOTAL REFLUX " 
2680 PRINT "NUMBER OF PLATES REQUIRED="; 
2690 PRINT USING "#.##";PI 
2700 PRINT 
2710 REM - MINIMUM REFLUX CALCULATION ********************** 
2720 PRINT "Q VALUE"; 
2730 INPUT Ql 
2740 IF Q1=0 THEN 2960 
2750 IF Ql=l THEN 3030 
2760 Kl=.1 
2770 Y2=C2+K1 
2780 FOR J=l TO 100 
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2790 Y2=Y2-K1 
2800 A1=Y2 
2810 IF B$="LI" THEN 2840 
2820 GOSUB 5010 
2830 GOTO 2850 
2840 GOSUB 4260 
2850 B2=(Y2*(Q1-1)+C1)/Q1 
2860 IF B2>B1 THEN 2900 
2870 NEXT J 
2880 PRINT "J=100M 

2890 GOTO 5010 
2900 IF B2/BK1.01 THEN 2940 
2910 Y2=Y2+K1 
2920 K1=K1*. 1 
2930 GOTO 2780 
2940 Q2=(Bl+B2)/2 
2950 GOTO 3180 
2960 A1=C1 
2970 IF B$="LI" THEN 3000 
2980 GOSUB 5010 
2990 GOTO 3010 
3000 GOSUB 4260 
3010 Q2=B1 
3020 GOTO 3180 
3030 Q2=C1 
3040 Kl = . 1 
3050 Y2=C1 
3060 Y2=Y2+K1 
3070 A1=Y2 
3080 IF B$="LI" THEN 3110 
3090 GOSUB 5010 
3100 GOTO 3120 
3110 GOSUB 4260 
3120 IF BKC1 THEN 3060 
3130 IF B1=C1 THEN 3180 
3140 IF B1/CK1.01 THEN 3180 
3150 Y2=Y2-K1 
3160 K1=K1/10 
3170 GOTO 3060 
3180 R2=(C2-Y2)/(C2-Q2) 
3190 R1=R2/(1-R2) 
3200 PRINT "AT Q VALUE 0F";Q1;" MINIMUM REFLUX RATIO="; 
3210 PRINT USING "##.##";R1 
3220 PRINT "FOR MINIMUM REFLUX RATIO AT ANOTHER Q VALUE" 
3230 INPUT "TYPE MR";A$ 
3240 PRINT 
3250 IF A$="MR" THEN 2720 
3260 PRINT "REFLUX RATIO,Q VALUE,FEEDRATE"; 
3270 INPUT R1,Q1,F1 
3280 A1=C2 
3290 IF B$="LI" THEN 3320 
3300 GOSUB 5010 
3310 GOTO 3330 
3320 GOSUB 4260 
3330 X(1)=B1 
3340 PRINT" X= Y= PLATE NO" 
3350 PRINT USING "#.#*# ";B1;C2; 
3360 PRINT " 1" 
3370 REM - ENRICHING LINE ********************************** 
3380 FOR G=2 TO 100 
3390 Y(G)=X(G-1)*R1/(R1+1)+C2/(R1+1) 
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3400 A1=Y(G) 
3410 IF Β$=,^Ι" THEN 3440 
3420 GOSUB 5010 
3430 GOTO 3450 
3440 GOSUB 4260 
3450 PRINT USING "#.### ";B1;Y(G); 
3460 PRINT G 
3470 X(G)=B1 
3480 REM - Q LINE ********************************* 
3490 IF Q1=0 THEN 3530 
3500 IF Ql=l THEN 3600 
3510 Q2=(Y(G)*(Q1-1)+C1)/Q1 
3520 GOTO 3610 
3530 A1=C1 
3540 IF B$="LI" THEN 3570 
3550 GOSUB 5010 
3560 GOTO 3580 
3570 GOSUB 4240 
3580 Q2=B1 
3590 GOTO 3610 
3600 Q2=C1 
3610 IF Q2>X(G) THEN 3650 
3620 NEXT G 
3630 PRINT "OVER 100 PLATES" 
3640 GOTO 3900 
3650 PRINT "FEEDPLATE" 
3660 D1=F1*(C1-C3)/(C2-C3) 
3670 W1=F1-D1 
3680 L1=Q1*F1+R1*D1 
3690 REM - STRIPPING LINE ********************************** 
3700 FOR H=G+1 TO 100 
3710 Y(H)=L1*X(H-1)/(L1-W1)-C3*W1/(L1-W1) 
3720 A1=Y(H) 
3730 IF B$="LI" THEN 3760 
3740 GOSUB 5010 
3750 GOTO 3770 
3760 GOSUB 4240 
3770 PRINT USING "#.### ";B1;Y(H); 
3780 PRINT H 
3790 IF BKC3 THEN 3840 
3800 X(H)=B1 
3810 NEXT H 
3820 PRINT "OVER 100 PLATES" 
3830 GOTO 3900 
3840 PRINT "FEEDRATE=";F1 
3850 PRINT "DISTILLATE^";D1 
3860 PRINT "RESIDUE=";Wl 
3870 PRINT "NO. OF PLATES^"; 
3880 P1=H-1+(X(H-1)-C3)/(X(H-1)-B1) 
3890 PRINT USING "##.##";P1 
3900 INPUT "TYPE RR FOR REPEAT RUN BY SAME METHOD";A$ 
3910 IF A$="RR" THEN 3260 
3920 INPUT "TYPE RC FOR REPEAT CALCULATION FROM START";A$ 
3930 IF A$="RC" THEN 2450 
3940 GOTO 5050 
J y "̂  \J Χ θ ϋ Γ 4 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ *F· *F· *F* *Γ· Π*· H*· *F* *F* *T* *r* *F- 'Γ* *F* Π*· *Τ· *Τ· *Τ· *Φ* 'F* *Ρ· *Ρ* *Ρ· *F* 'Γ' 

3960 REM - FIRST SUBROUTINE OF LAGRANGIAN INTERPOLATION 
3970 FOR J=l TO Nl 
3980 FOR K=l TO Nl 
3990 M(J,K)=0 
4000 NEXT K 
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4010 NEXT J 
4020 REM - CALCULATES VALUES OF X1-X2 ETC ****************** 
4030 REM - & STORES THEM IN MATRIX M 
4040 FOR J=l TO Nl-1 
4050 FOR K=J TO Nl-1 
4060 M(J,K)=A(J)-A(K+1) 
4070 NEXT K 
4080 NEXT J 
4090 FOR K=l TO Nl-1 
4100 FOR J=K+1 TO Nl 
4110 M(J,K)=A(J)-A(K) 
4120 NEXT J 
4130 NEXT K 
4140 REM - CALCULATES DENOMINATOR TERMS ******************** 
4150 REM - & STORES THEM IN MATRIX D 
4160 FOR J=l TO Nl 
4170 D(J)=1 
4180 FOR K=l TO Nl-1 
4190 D(J)=D(J)*M(J,K) 
4200 NEXT K 
4210 NEXT J 
4220 RETURN 

4240 REM - SECOND SUBROUTINE OF 
4250 REM - LAGRANGIAN INTERPOLATION ************************ 
4260 FOR J=l TO Nl 
4270 FOR K=l TO Nl 
4280 M(J,K)=0 
4290 NEXT K 
4300 NEXT J 
4310 REM - CALCULATES VALUES OF X-Xl ETC ******************* 
4320 REM - & STORES THEM IN MATRIX M 
4330 FOR J=l TO Nl-1 
4340 FOR K=J TO Nl-1 
4350 M(J,K)=A1-A(K+1) 
4360 NEXT K 
4370 NEXT J 
4380 FOR K=l TO Nl-1 
4390 FOR J=K+1 TO Nl 
4400 M(J,K)=A1-A(K) 
4410 NEXT J 
4420 NEXT K 
4430 REM - CALCULATES NUMERATOR TERMS ********************** 
4440 REM - & STORES THEM IN MATRIX N 
4450 FOR J=l TO Nl 
4460 N(J)=1 
4470 FOR K=l TO Nl-1 
4480 N(J)=N(J)*M(J,K) 
4490 NEXT K 
4500 NEXT J 
4510 B1=0 
4520 REM - EVALUATES EACH TERM & ADDS THEM ***************** 
4530 FOR J=l TO Nl 
4540 B1=B1+B(J)*N(J)/D(J) 
4550 NEXT J 
4560 RETURN 
4570 REM *************************************************** 
4580 REM - FIRST SUBROUTINE OF RELATIVE VOLATILITY METHOD 
4590 REM - RELATIVE VOLATILITY VALUES ********************** 
4600 Vl=l 
4610 Z1=0 
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4620 FOR J=l TO Nl 
4630 IF A(J)=li THEN 4680 
4640 IF A(J)=0 THEN 4700 
4650 V(J)=A(J)*(1-B(J))/(B(J)*(1-A(J))) 
4660 V1=V1*V(J) 
4670 GOTO 4720 
4680 J1=J 
4690 GOTO 4710 
4700 J2=J 
4710 Z1=Z1+1 
4720 NEXT J 
4730 V2=V1~(1/(N1-Z1)) 
4740 FOR J=l TO Nl 
4750 FOR K=J TO Nl-1 
4760 IF J=J1 THEN 4820 
4770 IF J=J2 THEN 4820 
4780 IF V(J)>V(K+1) THEN 4800 
4790 GOTO 4820 
4800 NEXT K 
4810 GOTO 4830 
4820 NEXT J 
4830 PRINT "HIGHEST VALUE OF REL V0L="; 
4840 PRINT USING "##.##";V(J) 
4850 FOR J=l TO Nl 
4860 FOR K=J TO Nl-1 
4870 IF J=J1 THEN 4940 
4880 IF J=J2 THEN 4940 
4890 IF V<K+1)=0 THEN 4920 
4900 IF V(J)<V(K+1) THEN 4920 
4910 GOTO 4940 
4920 NEXT K 
4930 GOTO 4950 
4940 NEXT J 
4950 PRINT "LOWEST VALUE OF REL V0L="; 
4960 PRINT USING "##.##";V(J) 
4970 PRINT "MEAN VALUE OF REL V0L="; 
4980 PRINT USING "##.##";V2 
4990 RETURN 

5010 REM - SECOND SUBROUTINE OF RELATIVE VOLATILITY METHOD 
5020 REM - COMPOSITION VALUES ****************************** 
5030 B1=A1/(V2*(1-A1)+A1) 
5040 RETURN 
5050 END 

EXAMPLE 4.2 

Use the above computer program to repeat Example 4.1. It will be seen that 

answers are not precisely the same. This may be attributed to inaccuracies in 

the graphical construction and in the interpolation procedure. 



L0AD"A:DIST1 
Ok 
RUN 
TO USE DATA FOR BENZENE/TOLUENE 101.325KPA 
INPUT 1? 2 

NUMBER OF DATA PAIRS? 14 
INPUT Y,X 
? 1,1 
? .98,.95 
? .96,.89 
? .9,.81 
? .77,.61 
? .63,.44 
? .51,.33 
? .46,.28 
? .39,.23 
? .2,.11 
? .18,.097 
? .13,.067 
? .078,.039 
? .025,.012 
HIGHEST VALUE OF REL VOL= 2.97 
LOWEST VALUE OF REL VOL= 2.02 
MEAN VALUE OF REL VOL= 2.20 
DO YOU WANT TO CHECK DATA? TYPE Y OR N? Y 

INPUT VALUE OF VAP COMP Y? .97 
BY RELATIVE VOLATILITY METHOD X= 0.94 
BY LAGRANGE METHOD X= 0.92 
DO YOU WANT TO CHECK DATA? TYPE Y OR N? N 

LAGRANGIAN INTERPOLATION OR RELATIVE VOLATILITY 
METHOD, TYPE LI OR RV? LI 
FEED,OVERHEAD AND BOTTOM COMPOSITIONS AS 
MOL FRACT 
X= 
0.928 
0.831 
0.736 
0.546 
0.369 
0.218 
0.123 
0.063 
0.032 
AT TOTAL 

OF MORE 
Y= 
0.973 
0.928 
0.831 
0.736 
0.546 
0.369 
0.218 
0. 123 
0.063 

REFLUX 

VOLATILE COMPONENT? .38,.973,.045 
PLATE NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

NUMBER OF PLATES REQUIRED=8. 58 

Q VALUE? 1.64 
AT Q VALUE OF 1.64 MINIMUM REFLUX RATIO= 1.31 
FOR MINIMUM REFLUX RATIO AT ANOTHER Q VALUE 
TYPE MR? M 
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REFLUX RATIO,Q VALUE,FEEDRATE? 2.1,1.64,.138 

x= 
0.928 
0.852 
0.804 
0.777 
0.751 
0.721 
0.678 
0.617 
0.539 
0.477 
FEEDPLATE 
0.442 
0.407 
0.361 
0.294 
0.227 
0. 175 
0. 125 
0.081 
0.047 
0.026 
FEEDRATE= 
DISTILLATE 
RESIDUE^ 8 

Y= 
0.973 
0.942 
0.891 
0.859 
0.840 
0.823 
0.802 
0.773 
0.732 
0.679 

0.633 
0.587 
0.538 
0.475 
0.385 
0.293 
0.222 
0. 154 
0.094 
0.048 
. 138 

PLATE NO 

= 4.981681E-
.818319E--02 

NO. OF PLATES=19. 10 
TYPE RR FOR REPEAT 
TYPE RC FOR REPEAT 

RUN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

02 

BY SAME METHOD? N 
CALCULATION FROM START? RC 

LAGRANGIAN INTERPOLATION OR RELATIVE VOLATILITY 
METHOD, TYPE LI OR RV? RV 
FEED,OVERHEAD AND BOTTOM COMPOSITIONS AS 

.38,.973,.045 MOL FRACT OF MORE 
X= Y= 
0.942 0.973 
0.882 0.942 
0.772 0.882 
0.607 0.772 
0.412 0.607 
0.242 0.412 
0.127 0.242 
0.062 0.127 
0.029 0.062 
AT TOTAL REFLUX 
NUMBER OF PLATES 

VOLATILE COMPONENT? 
PLATE NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

REQUIRED=8.51 

Q VALUE? 1.64 
AT Q VALUE OF 1.64 MINIMUM REFLUX RATIO= 1.56 
FOR MINIMUM REFLUX RATIO AT ANOTHER Q VALUE 
TYPE MR? M 
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REFLUX RATIO,Q VALUE,FEEDRATE? 2.1,1.64,.138 

x= 0 .942 
0 . 9 0 1 
0 .847 
0 .782 
0 . 7 1 1 
0 .639 
0 . 5 7 3 
0 .517 
0 . 4 7 3 
ΤΓΤΤΓΉΡΤ ΔΤΤΓ 
Γ ÏLtLUΓL·AίiL 

0 .435 
0 . 3 8 3 
0 .318 
0 . 2 4 5 
0. 175 
0. 115 
0 .069 
0 .037 
FEEDRATE= 
DISTILLATE 

Y= 
0 . 9 7 3 
0 .952 
0 . 9 2 4 
0 .888 
0 . 8 4 4 
0 . 7 9 5 
0 .747 
0 .702 
0 . 6 6 4 

0 .629 
0 .577 
0 .506 
0 .417 
0 .318 
0 .222 
0. 140 
0 . 0 7 8 

. 138 

PLATE NO 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

= 4 .981681E-02 
RESIDUE^ 8.818319E-02 
NO. OF PLATES=16.75 
TYPE RR FOR REPEAT RUN BY SAME METHOD? N 
TYPE RC FOR REPEAT CALCULATION FROM START? N 
Ok 
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PROBLEMS - CHAPTER 4 

1. Repeat example 4.2 using program DIST1, and assuming that the feed enters 

the tower as a vapour/liquid mixture containing 80 wt% liquid and 20 wt% vapour. 

2. Use the data for acetone/acetic acid, and program DIST1, to solve the 

following problems: 

(a) Determine the number of plates required at total reflux, and the minimum 

reflux ratio required, if a distillation column operates with feed, distillate 

and residue compositions of 40 mol%, 97.5 mol%, and 5 mol% acetone respectively. 

(b) A still column for the separation of an acetone/acetic acid mixture is 

operated as an enriching column only. The feed contains 30 mol% acetone, and 

enters the bottom of the column as a saturated vapour. If a reflux ratio of 

4 is used, determine the number of ideal plates required in order to produce a 

distillate containing 96 mol% acetone. What is the composition of the liquid 

leaving the bottom plate? 

Verify your answer by carrying out the McCabe Thiele construction. 

Equilibrium Data for Acetone/Acetic Acid 
at 1 atm 

Mol% Acetone 
In liquid In Vapour 

0 0 
5 16.2 
10 30.6 
20 55.7 
30 72.5 
40 84.0 
50 91.2 
60 94.7 
70 96.9 
80 98.4 
90 99.3 
100 100 

Temperature 

118.1 
110.0 
103.8 
93.1 
85.8 
79.7 
74.6 
70.2 
66.1 
62.6 
59.2 
56.1 

Source: Reprinted with permission from G.G. Brown & Others, Unit Operations, 
John Wiley & Sons Inc., copyright 1950 @ 

3. Write a program to calculate bubble and dew points of multicomponent mixtures 

from: 

(a) Equilibrium constants; 

(b) Vapour pressures. 



119 

4. Write a program for a single stage flash of a multicomponent mixture: 

(a) Isothermal 

(b) Adiabatic 

5. Write a program fo r a separation of multicomponent mixtures in a mul t i -s tage 

column ( 5 ) , ( 6 ) , (11) : 

(a) With t o t a l condenser 

(b) With p a r t i a l condenser 

6. Modify the McCabe-Thiele program given to handle s t r i p p i n g , w i th and wi thout 

l i v e steam. 
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Chapter 5 

LINEAR PROGRAMMING 
(A) THE SIMPLEX METHOD 

Linear programming is concerned with finding solutions to problems about 

optimum allocation of resources, or production facilities, blending of products, 

etc. Generally these are looked at from the view point of finding the solution 

of lowest cost or greatest profitability. The mathematics of these methods were 

worked out by American economists between about 1945 and 1955 (1). 

The term linear programming refers not to computer programming (although of 

course this is widely used in connection with the technique), but to the 

preparation of programs or plans concerning the future distribution of resources. 

The mathematical expressions employed can be expressed in linear form. 

The following simple example demonstrates the linear nature of the 

relationships and also gives the basis of the solution method. 

EXAMPLE 5.1 

A plastics moulder produces two different qualities of moulded article: 

Standard Quality - made from a mix consisting of 

30% copolymer and 

70% homopolymer 

Super Quality - made from a mix consisting of 

60% copolymer and 

40% homopolymer 

Supplies of the two constituent materials are available as follows: 

Copolymer - 12 tonnes per week at $1900 per tonne 

Homopolymer - 15 tonnes per week at $1450 per tonne 

Maximum production capacity of the plant is 25 tonnes per week. 

If the profit on each tonne of standard quality product is $700 and on each 

tonne of super quality is $1000, calculate how much of each quality should be 

manufactured in order to maximise the profit. 

The above conditions and constraints can be represented mathemetically as 

follows: 

Let Χχ and x2 represent the tonnes of standard and super grades respectively 

to be produced each week. 

Then the profit z = 700xx + 1000x2 

The total production cannot be greater than 25 tonnes per week, hence 

Xi + x2 £25 
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The quantity of copolymer to be used per week is 

0.3xi + 0.6x2 <12 

The quantity of homopolymer to be used per week is 

0.7xi + 0.4x2 £.15 

Since only two variables are involved in each of the above constraints, they 

can all be represented on the one graph. If we replace the inequalities by 

equalities, we see that they are all the equations of straight lines. These 

are shown on Figure 5.1. To comply with all the constraints operating 

conditions must lie on, or to the left of the lines denoted by the points B, C, 

D, E. These points are known as extreme points (3). The other extreme point 

which lies on the boundary of feasible solutions is the origin,Point A. 

50n 

en 

f feasible solutions 

Figure 5.1. 

10 20 30 40 
Xi (standard grade, tons/week) 

Polymer Blending 

Γ 
50 

If we read the co-ordinates of the points of intersection B, C, D, E, we can 
evaluate the profit obtainable for each case, as follows: 

Operation at point B: production of 20 tonnes per week of super grade only 
Profit = 20 x- 1000 = $20,000 
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Operation at point C: production of 15 tonnes per week of super grade 

and 10 tonnes per week of standard 

Profit = 15 * 1000 + 10 * 700 = $22,000 

Operation at point D: production of 8 tonnes per week of super grade and 

17 tonnes per week of standard 

Profit = 8 * 1000 + 17 * 700 = $19,900 

Operation at point E: production of 21.4 tonnes per week of standard grade 

only 

Profit = 21.4 * 700 = $14,980 

Operation along the CD line is obviously best, because maximum production is 

possible. Is the profitability at C the best that can be obtained? It is 

easily demonstrated by evaluating profits for other points along CD, that 

operation at point C is the most profitable. 

The graphical technique can of course deal only with constraints involving 

two variables. Analogously, problems involving three variables could be 

handled by a three dimensional technique involving the intersection of plane 

surfaces. Larger numbers of variables can only be handled by mathematical 

methods involving the use of matrices. 

THE SIMPLEX METHOD 

The best known technique of linear programming is the Simplex method. It 

employs the variables in a matrix form and is based upon the observation that 

the optimum solution occurs at one of the 'extreme points' mentioned in Example 

5.1. Thus referring to Figure 5.1, the Simplex method would commence at the 

origin (the first extreme point of the region of feasible solutions). It would 

then evaluate points B, C, D, etc. in turn until the optimum had been reached. 

No attempt will be made here to explain or justify the method; many excellent 

tests are available which do this (1), (2), (3), (4). The mechanics of use of 

the method only will be given, as follows: 

The basic form of the Simplex method involves the maximisation of a linear 

algebraic equation such as 

Z = CiXi + C2X2 + CnXn 

z is called the objective function; the values of c are called the cost vector, 

and the above equation can be written in matrix notation as 

z = cTx 
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There can be any number i of constraints, and these can be equality 
constraints or inequality constraints. The Simplex method only considers cases 
where the constraint is bounded by a maximum value, i.e. 

a j i X i + a» 2X2 + · . · · a i n X n ^ b i 

(cases involving minimisation of the objective function, negative values of b 

and minimum value constraints will be briefly discussed later). This equation 

can be written in matrix notation as 

A X f B where 

A is the constraint matrix; 

B is the resource vector; 

X is the variable vector. 

Furthermore, we only consider positive values of the x variables, i.e. in 

matrix notation 

The problem written in the above way is said to be 'standard form1. 

The next step is to rewrite the problem in 'canonical form' which involves 

rewriting the constraints as equalities. This is done by introducing into each 

equation a 'slack variable', thus 

aixXi + a j2x2 + ainxn + x n + m = bj 

Here the subsript n indicates the number of variables present in the 

constraints, and the subscript m indicates the number of constraints. 

The various equations are then arranged in a table, also referred to as a 

'tableau'. Suppose for instance that the problem to be maximised is as follows: 

Maximise z = dx,. + c2x2 + c3x3 

subject to auXj + ai2x2 + a13x3 £bi 

92 lXl ' a22^2 "* 323X3 "̂  D2 

Xi _>0 X2Ü 0 x3 >_ 0 

Slack variables are introduced into the constraint inequalities so that they 
become 

άιιΧι "*" 312X2 "*" 3 1 3 X 3 + Xi, = bi 

32lXl """ 322^2 "*" 323X3 "̂" Χδ = b2 

The tablesu is then drswn up 3S shown in Figure 5.2. 
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Variables 

Basic 
Variables 

Departing x 
Variable -*— 

Coefficients of the 
Variables 

Resource Values 

Objective Row ^ P i v o t 

Figure 5.2. General form of the Simplex Tableau. 

The value 1 is ascribed to each of the slack variables; each slack variable 

is also listed in the left hand column in which position it is referred to as 

a 'basic variable'. For its entry into the tableau the equation of the objective 

function is rewritten as: 

-C iX i - C2 X2 C3X3 + Z 

In t h i s form the coe f f i c i en t s appear in the bottom row, the value of z 

appearing in the r i g h t hand column. The i n i t i a l value of z i s zero, 

corresponding to the i n i t i a l feas ib le so lu t ion ( f o r example as seen to occur a t 

the o r i g i n in Figure 5 .1) . 

A new tableau is then constructed by the manipulat ion known as p i vo t i ng . To 

do t h i s the ' p i vo ta l column' and ' p i vo ta l row' must f i r s t be estab l ished. The 

p ivo ta l column is tha t above the most negative element in the ob jec t i ve row. 

We w i l l suppose t h i s to be - c 3 . Then the p ivo ta l column i s tha t below var iab le 

x 3 . 

To f i n d the p ivo ta l row, 'Θ r a t i o s ' are determined f o r each c o e f f i c i e n t of x 

in the p ivo ta l column. In t h i s case, the θ ra t i os are: 

Qi = b x / a ^ s 

θ2 = b2/a2,3 

The smallest pos i t i ve value of θ establ ishes the loca t ion of the p ivo ta l row. 

Thus i f θ2 i s the smal lest value then the p ivo ta l row w i l l be tha t contain ing 

ba. 
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The in te rsec t ion of the p ivo ta l row and the p ivo ta l column is known as the 

' p i v o t ' . Should there be no pos i t i ve elements in the p ivo ta l column, then no 

optimum so lu t ion to the problem is poss ib le . 

The var iab le l i s t e d at the top of the p ivo ta l column is known as the 

' e n t e r i n g ' v a r i a b l e ' ; the basic var iab le in the p ivo ta l row is Known as the 

'depart ing v a r i a b l e ' . In t h i s case, x3 i s the enter ing var iab le and x5 i s the 

depart ing va r iab le . 

The f i r s t step in drawing up the new tableau i s to w r i t e the name of the 

enter ing var iab le in the space previously occupied by the depart ing var iab le in 

the column of basic var iab les . 

Next, new values are entered in the p ivo ta l row, by d i v i d i ng the old value 

by the value o f the p i v o t ( a 2 , 3 i n t h i s case). The element in the p ivo t pos i t ion 

now has value 1 in the new tableau. Sui table values of the new p ivo ta l row are 

then added to or subtracted from each other row, so tha t a l l the other elements 

in the p ivo ta l column w i l l have value zero. The new tableau i s shown in Figure 

5.3. 

X* 

X3 

Xi 

â l j l ~ 3 l j 3 * ^ 2 , 1 

a2,3 

^ 2 , 1 

α 2 9 3 

■Cx + c3 * a 2 ) 1 

<*2 y 3 

X2 

a l > 2 ~ 3 l > 3 Ή" ^ 2 ) 2 

a 2 , 3 

<*2 , 2 

â 2 ,3 

"C2 + C3 * d2,2 

<*2 > 3 

X3 

0 

1 

0 

X* 

1 

0 

0 

X5 

" â 19 3 

<*2 9 3 

1 
<*2 , 3 

£3. 
a 2 9 3 

bi - b2 ^ ai, 3 

^ 2 9 3 

b2 
3 2 »3 

c3 ·*· b2 

&2 9 3 

Figure 5.3. The new form of the tableau shown in Figure 5 .2 , a f t e r p i vo t ing 
about the element a2,s 

This tableau provides another feas ib le so lu t ion to the problem, which w i l l 

have a la rger value than the preceding s o l u t i o n . In t h i s case, the so lu t ion 

would be: 

z = c3 *- ba the values of 
<*2 9 3 

Xi and x2 being zero, and that of x3 being b2/a2,3 

The new tableau in its turn is subjected to the above procedure. The most 

negative element in the objective row is identified and the pivoting procedure 

is carried out to create another tableau. Where two elements in the objective 

row have the same negative value, it is unimportant which is chosen for the 
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pivoting step. If no element in the objective row has a negative value, then 

the solution given by the tableau is the optimum one and the procedure is 

completed. An example of the technique follows: 

EXAMPLE 5.2 

Carry out the previous problem by the Simplex method. F i r s t we express the 

problem in standard form: Maximise z = 700xλ + 1000x2 (the ob jec t i ve f unc t i on ) . 

Subject to the r e s t r i c t i o n s : 

xx + x2 £ 25 

0.3xx + 0.6x2 £ 12 

0.7xx + 0.4x2 £ 15 

Xi _> 0 x2 _> 0 

Next we rewr i te the r e s t r i c t i o n s as e q u a l i t i e s , in t roduc ing slack var iab les ; 

they now are in canonical form: 

xx + x2 + χ3 = 25 

0.3xx + 0.6x2 + x4 = 12 

0.7Χχ + 0.4x2 + χ5 = 15 

We are now in a pos i t ion to draw up the f i r s t tableau: 

x3 

X* 

X5 

X i 

1 

0.3 

0.7 

-700 

x2 

1 

© 
0.4 

-1000 

x3 

1 

0 

0 

0 

X* 

0 

1 

0 

0 

x5 

0 

0 

1 

0 

25 

12 

15 

0 

This i s our f i r s t feas ib le s o l u t i o n , corresponding to the o r i g i n on 

Figure 7.1 (po in t A ) , i . e . 

xx = 0 tonnes/week 

x2 = 0 tonnes/week, 

P r o f i t , z = 0 

By inspect ion, the enter ing var iab le i s x2 since the value below i t in the 

ob jec t ive row (-1000), i s the most negat ive. The column below x2 i s the p ivo ta l 

column. 

Next we i d e n t i f y the depart ing var iab le by determining the θ ra t i os f o r the 

p ivo ta l column. The values are: 
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25/1 = 25 

12/0.6 = 20 

15/0.4 = 37.5 

12/0.6 i s the lowest value and hence x2 i s the depart ing va r iab le . The row 

in which x„ i s seen as a basic var iab le i s now the p ivo ta l row. The 

in te rsec t ion o f the p ivo ta l column and row is c i r c l e d to i d e n t i f y i t . This i s 

ca l led the P ivot . 

Values in the p ivo ta l row are now m u l t i p l i e d by 1/0.6, so as to br ing the 

value of the p ivo t to 1. 

Sui table mul t ip les of the new p ivo ta l row are now added to /subt rac ted from 

a l l other rows so tha t the element in the p ivo ta l column, in each of these 

rows is zero. 

Thus we obtain the next tab leau: 

X3 

X2 

X5 

Xi 

(0J) 
0.5 
0.5 

-200 

x2 
0 

1 

0 

0 

x3 
1 

0 

1 

0 

x* 
-1.66 

1.66 

-0.66 

1660 

x5 
0 

0 

1 

0 

5 

20 

7 

20,000 

This is our next feas ib le s o l u t i o n , corresponding to po in t B on Figure 5 . 1 , 

i . e . 

Xx = 0 

x2 = 20 tonnes/week, 

P r o f i t , z = $20,000 

Again we i d e n t i f y the p ivo ta l column, which t h i s time is tha t under xx , 

the value in the ob jec t i ve row being the most negative (-200). Calculat ions of 

θ values fo r t h i s column give 

5/0.5 = 10 
20/0.5'= 40 
7/0.5 = 14 

10 i s the smallest value and so the depart ing var iab le i s x 3 . The 

in te rsec t ion of the p ivo ta l column and p ivo ta l row i s c i r c l e d . The p ivo t ing 

step is again car r ied out y i e l d i n g the next tab leau: 
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X i 

χ 2 

χ 5 

X i 

1 
0 
0 
0 

X2 

0 
1 
0 
0 

X3 

2 
-1 
-1 
400 

X* 

-3.32 
3.32 
1.0 
664 

x5 

0 
0 
1 
0 

10 
15 
2 

22,000 

This is our optimum solution, since there are no negative values in the 

objective row. It corresponds to point C on Figure 5.1, i.e. 

Xi = 10 tonnes/week 

x2 = 15 tonnes/week, 

Profit, z = $22,000 

Computer Solution of Linear Programming Problems by the Simplex Method 

The program which follows reproduces exactly the steps of the Simplex 

method just described. It is based upon the already stated assumptions namely; 

there are some negative elements in the objective row; the constraints are all 

of the type <; the right hand side of each is positive. 

X(J) 

CO 

ω 

rö 

rö 

> 
o 
CO 
fÖ 
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CO 
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d) 
O 
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] 

C(K) 

^ 
th
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va

ri
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b
le

s 

< -s
 

D
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 1 

Object ive Row 

B(J) 

CO 
<D 
13 

A3 

> 
ω 
o 
S-

o 
CO 

} f 

1 

Figure 5.4. The relationship between program nomenclature and the tableau. 
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] 0 REM ****************************^ 
20 REM - PROGRAM LNPRGl.BAS 
30 REM - LINEAR PROGRAMMING SIMPLEX METHOD 
40 REM - NOTE: RHS OF CONSTRAINTS MUST BE POSITIVE 
50 REM - OBJECTIVE EQUATION MUST CONTAIN SOME POSITIVE 
60 REM - COEFFICIENTS. ALL CONSTRAINTS MUST BE OF TYPE<= 
70 REM - PROGRAM NOMENCLATURE 
80 REM - A(J,K) - Coefficients of the K variables in the 
90 REM J constraints (the body of the tableau) 
100 REM - B(J) - The resource values, the right hand 
110 REM side of each constraint (elements of 
120 REM the right hand column of the tableau) 
130 REM - C(J) - The elements of the objective row 
140 REM - Cl - The subscript number denoting the 
150 REM pivotal column 
160 REM - Nl - Number of variables in the objective 
170 REM function 
180 REM - N2 - Number of restrictions 
190 REM - 0(J) - Coefficients of the variables in the 
200 REM objective function 
210 REM - PI - Reciprocal of the value of the pivot 
220 REM - P2,P3 - Used in bringing values in the pivotal 
230 REM column to zero 
240 REM - Rl - The subscript number denoting the 
250 REM pivotal row 
260 REM - X(J) - The basic variables (elements of the 
270 REM left hand column of the tableau) 
280 REM - PROGRAM DESCRIPTION 
290 REM - LINES 1000 - 1300 Matrices likely to be greater 
300 REM - in size than the default value of 10 are declared 
310 REM - at line 1000;coefficients of the objective 
320 REM - function are entered (lines 1010 - 1060) and 
330 REM - subsequently the signs are changed (lines 1270 -
340 REM - 1300). 
350 REM - The number of restrictions, the values of the 
360 REM - coefficients and the resource values are then 
370 REM - entered (lines 1070 - 1230). Note that for each 
380 REM - restriction, a number is allocated to a slack 
390 REM - variable (lines 1240 - 1260), and a value of 1 
400 REM - entered into the appropriate part of the table at 
410 REM - line 1150 
420 REM - LINES 1330 - 1460 The first tableau is printed. 
430 REM - Figure 5.5 displays the relationship between 
440 REM - the nomenclature of the program and the tableau 
450 REM - While debugging the program, line 2240 read "GOTO 
460 REM - 1330" so that the tableau was printed out at each 
470 REM - iteration 
480 REM - LINES 1500 - 1930 The test for an optimum 
490 REM - solution, namely the absence of negative values in 
500 REM - the objective row, is first made (lines 1500 -
510 REM - 1560). Next the pivotal column is located by 
520 REM - discovering the most negative value in the 
530 REM - objective row (lines 1590 - 1680). The test for 
540 REM - a finite optimum, namely the presence of some 
550 REM - positive entries in the pivotal column, is next 
560 REM - applied (lines 1720 - 1770). Finally the 
570 REM - pivotal row is located by finding the smallest 
580 REM - value of theta ratio in the pivotal column 
590 REM - (lines 1800 - 1880); the coordinates of the pivot 
600 REM - are ascribed to the variables Cl and Rl, and the 
610 REM - values are printed out (lines 1900 - 1930). 
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620 REM - LINES 1960 - 2210 In this segment the pivoting 
630 REM - procedure is carried out. First, the entries in 
640 REM - the pivotal row are divided by the value of the 
650 REM - pivot (lines 1960 - 1990); next the new values of 
660 REM - the pivotal row are subtracted from the values of 
670 REM - each of the other rows in turn, an appropriate 
680 REM - number of times, so that all other elements in the 
690 REM - pivotal column have value zero 
700 REM - This is done in two stages, the first being for 
710 REM - rows above the pivotal row (lines 2000 - 2080), 
720 REM - the next for rows below the pivotal row (lines 
730 REM - 2090 - 2160). Finally the same operation is 
740 REM - carried out on the objective row (lines 2170 -
750 REM - 2210) 
760 REM - LINES 2240 - 2300 The program then returns 
770 REM - to line 1460 for a further iteration (line 2240) 
780 REM - As the tests at lines 1500 - 1560 and 1720 to 
790 REM - 1770 determine, the program terminates, printing 
800 REM - the appropriate message (lines 1550 & 1760) 
810 REM **************************************************** 
1000 DIM A(40,40),B(40),C(40),0(40),X(40) 
1010 PRINT "NUMBER OF TERMS IN OBJECTIVE FUNCTION" 
1020 INPUT Nl 
1030 PRINT "COEFFICIENTS OF XI TO X";N1 
1040 FOR J=l TO Nl 
1050 INPUT 0(J) 
1060 NEXT J 
1070 PRINT "NUMBER OF RESTRICTIONS"; 
1080 INPUT N2 
1090 FOR J=l TO N2 
1100 PRINT "RESTRICTION";J 
1110 PRINT "COEFFICIENTS OF XI TO X";N1 
1120 FOR K=l TO Nl 
1130 INPUT A(J,K) 
1140 NEXT K 
1150 A(J,J+K-1)=1 
1160 PRINT "RESOURCE VALUE"; 
1170 INPUT B(J) 
1180 PRINT "INPUT Y TO CONTINUE ELSE N"; 
1190 INPUT A$ 
1200 IF A$="Y" THEN 1230 
1210 PRINT "INPUT DATA AGAIN" 
1220 GOTO 1100 
1230 NEXT J 
1240 FOR J=l TO N2 
1250 X(J)=N1+J 
1260 NEXT J 
1270 K=-l 
1280 FOR J=l TO N1+N2 
1290 C(J)=K*0(J) 
1300 NEXT J 
1310 GOTO 1460 
1320 REM *************************************************** 
1330 REM - PRINT THE TABLEAU ******************************* 
1340 FOR J=l TO N2 
1350 PRINT X(J);"|"; 
1360 FOR K=l TO N1+N2 
1370 PRINT A(J,K);' 
1380 NEXT K 
1390 PRINT "!";B(J) 
1400 NEXT J 
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1410 PRINT H "; 
1420 FOR K=l TO N1+N2 
1430 PRINT C(K); 
1440 NEXT K 
1450 PRINT "!";C(N1+N2+1) 
1460 PRINT "Z=";C(N1+N2+1) 
Λ A*~7 C\ TDTPlüf *4t ^ ^* ^ ^ V̂* Ά* ^ ^* Nlf *& ^ ^* ^ Ά* *4t *4t & ^ 'Φ* ^ *̂ " Ά* r̂" ^ ^ ^ *Ψ* ^* ^ ^ ^ Ά' ^* ^ ^ ^ Ά* ^ *A" *4f *4f ^ ^ *Φ· 'Ά' ^ " ^ ^ ^* ^ A. * I f V/ JX JZJ ΙΛΙ ^ *Τ· *Τ· 'T'· «T* 'T* φ ·Τ· 'T* *Τ· *Τ̂  *Τ· 'Τ* ^ ^ *Τ» *Τν τ̂*· *Τ· *Τ* ^ · *Τ- *Τ· *Τ· *Τ» *Τ· *Τ* *Τ· 'Τ'· «Τ· ^» *Τ· ^* ^ · *Τ* *Τ· *Τ· *V* 'Τ* «Τ· *Τ* 'Τ* Φ *Τ* ^1· ^* ·Τ* ^ · ^ · ^1· φ 

1480 REM - TEST FOR OPTIMUM SOLUTION (NO NEGATIVE VALUES 
1490 REM - IN OBJECTIVE ROW) ******************************* 
1500 FOR K=l TO N1+N2 
1510 IF C(K)>=0 THEN 1540 
1520 IF ABS(C(K))<.0000001 THEN 1540 
1530 GOTO 1590 
1540 NEXT K 
1550 PRINT "OPTIMAL SOLUTION" 
1560 GOTO 2250 

 ̂ Jj f yj ΧΧ/ΪΙΛΛΤΛ  ̂  ̂  ̂  ̂ ^  ̂  ̂  ̂ "̂  ̂  ̂  ̂  ̂  ̂  ̂ *̂  ̂  ̂ "̂  ̂  ̂ ^ ^ ^ ^  ̂ ^ ^ ^  ̂ ^ ^ ^ ^ '<rt  ̂  ̂ *»̂ π̂  π̂  *l̂   ̂ π̂  π̂  τ̂  Π̂  ^Γ· π̂  π̂  π̂  π̂  

1580 REM - FIND PIVOTAL COLUMN ***************************** 
1590 Ν4=Ν4+1 
1600 IF N4>50 THEN 2250 
1610 FOR K=l TO N1+N2-1 
1620 IF C(K)>=0 THEN 1680 
1630 FOR N=l TO N1+N2-K 
1640 IF C(K)<=C(K+N) THEN 1660 
1650 GOTO 1680 
1660 NEXT N 
1670 GOTO 1700 
1680 NEXT K 

1700 REM - TEST FOR FINITE OPTIMUM (SOME POSITIVE ENTRIES IN 
1710 REM - PIVOTAL COLUMN ********************************** 
1720 FOR J=l TO N2 
1730 IF A(J,K)<=0 THEN 1750 
1740 GOTO 1800 
1750 NEXT J 
1760 PRINT "NO FINITE OPTIMAL SOLUTION" 
1770 GOTO 2250 

1790 REM - FIND PIVOTAL ROW ******************************** 
1800 FOR J=l TO N2-1 
1810 IF A(J,K)<=0 THEN 1880 
1820 FOR N=l TO N2-J 
1830 IF A(J+N,K)<=0 THEN 1860 
1840 IF B(J) /A(J,K)<=B(J+N)/A(J+N,K) THEN 1860 
1850 GOTO 1880 
1860 NEXT N 
1870 GOTO 1890 
1880 NEXT J 
1890 X(J)=K 
1900 C1=K 
1910 R1=J 
1920 PRINT "PIVOTAL ROW=";;J 
1930 PRINT "PIVOTAL COLr tN=";;K 
1940 REM *************************************************** 
1950 REM - PIVOTING SEGMENT ******************************** 
1960 P1=1/A(R1,C1) 
1970 FOR K=l TO N1+N2 
1980 A(R1,K)=A(R1,K)*P1 
1990 NEXT K 
2000 B(R1)=B(R1)*P1 
2010 FOR J = l TO R l - 1 
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2020 IF A(J,C1)=0 THEN 2080 
2030 P2=A(J,C1)/A(R1,C1) 
2040 FOR K=l TO N1+N2 
2050 A(J,K)=A(J,K)-A(R1,K)*P2 
2060 NEXT K 
2070 B(J)=B(J)-B(R1)*P2 
2080 NEXT J 
2090 FOR J=R1+1 TO N2 
2100 IF A(J,C1)=0 THEN 2160 
2110 P2=A(J,C1)/A(R1,C1) 
2120 FOR K=l TO N1+N2 
2130 A(J,K)=A(J,K)-A(R1,K)*P2 
2140 NEXT K 
2150 B(J)=B(J)-B(R1)*P2 
2160 NEXT J 
2170 P3=C(C1)/A(R1,C1) 
2180 FOR K=l TO N1+N2 
2190 C(K)=C(K)-A(R1,K)*P3 
2200 NEXT K 
2210 C(N1+N2+1)=C(N1+N2+1)-B(R1)*P3 
£ ^ £ \J iCJtLVA ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^* ^* ^" ^ ^ ^ ^* ^ ^ ^ ^" ^ ^" ^ ^ ^" ^" ^ ^" ^" ^" ^" ^* ^ ^ ^1 ^" ^ ^ ^ ^ ^ ^ 

2230 REM - END OF PIVOTING SEGMENT ************************* 
2240 GOTO 1460 
2250 FOR J=l TO N2 
2260 IF X(J)>N1 THEN 2280 
2270 PRINT "COEFFICIENT OF X";X(J);"=";B(J) 
2280 NEXT J 
'2290 PRINT "VALUE OF OBJECTIVE IS";C(N1+N2+1) 
2300 END 

EXAMPLE 5.3 

Solve the following problem using the above computer program: 

A f e r t i l i s e r manufacturer markets three grades of f e r t i l i s e r made from 

mixtures of potassium n i t ra te , calcium phosphate and ammonium sulphate. The 

mixture ratios and pro f i t figures are tabulated below. For next weeks 

operations the stocks of components held are: ni t rate 70 tonnes; phosphate 

60 tonnes; sulphate 30 tonnes. Determine how the stocks should be used so as 

to maximise the pro f i t . 

Grade A 
Grade B 
Grade C 

Nitrate 

57% 
57% 
29% 

Phosphate 

43% 
29% 
29% 

Sulphate 

14% 
42% 

Profit 

$350/ton 
$300/ton 
$250/ton 
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Let the weights of grades A, B & C produced be x l 5 x2 5 and x3 respect ive ly . 

Then p r o f i t z = 350xx + 300x2 + 250ix3 

The const ra in ts are: 

N i t r a te - 0.57xx + 0.572 + 0.293 <_ 70 

Phosphate - 0.43xx + 0.29x2 + 0.29χ3 £ 60 

Sulphate - 0.14x2 + 0.42x3 £ 30 

These f igures are entered in to the program; the values o f xx and x3 obtained 

are eas i l y shown to meet the cons t ra in t s , i . e . 

wt n i t r a t e used = 0.57xx + 0.29x3 

= 0.57 x 86.466 + 0.29 x 71.428 
= 70.00 tonnes 

wt phosphate used = 0 . 4 3 x 86.466 + 0.29 x 71.428 

= 57.89 tonnes 

wt sulphate used = 0.42 x 71.428 = 30.00 tonnes 

= 30.00 tonnes 

LOAD"A:LNPRGl 
Ok 
RUN 
NUMBER OF TERMS IN OBJECTIVE 
? 3 
COEFFICIENTS OF XI TO X 3 
? 350 
? 300 
? 250 
NUMBER OF RESTRICTIONS? 3 
RESTRICTION 1 
COEFFICIENTS OF XI TO X 3 
? .57 
? .57 
? .29 
RESOURCE VALUE? 70 
INPUT Y TO CONTINUE ELSE N? Y 
RESTRICTION 2 
COEFFICIENTS OF XI TO X 3 
? .43 
? .29 
? .29 
RESOURCE VALUE? 60 
INPUT Y TO CONTINUE ELSE N? Y 
RESTRICTION 3 
COEFFICIENTS OF XI TO X 3 
? O 
? .14 
? .42 
RESOURCE VALUE? 30 

FUNCTION 

INPUT Y TO CONTINUE ELSE N? Y 
Z= O 
PIVOTAL ROW= 1 
PIVOTAL COLUMN= 1 
Z= 42982.46 
PIVOTAL ROW= 3 
PIVOTAL COLUMN= 3 
Z= 48120.3 
OPTIMAL SOLUTION 
COEFFICIENT OF X 1 = 86.46616 
COEFFICIENT OF X 3 = 71.42858 
VALUE OF OBJECTIVE IS 48120.3 
Ok 
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The preceeding simple examples do not do full justice to the power of the 

Simplex technique. However, in order to encompass more difficult problems, 

modifications to the technique are required. 

For instance, it might be a requirement that the objective function be 

minimised rather than maximised. This might occur for example in a problem 

involving the usage of some constructional material. To do this we instead 

maximise the negative of the function. Thus if the objective function is: 

2 = CiXi + c2x2 + CnXn then we write this problem as: maximise 

Z =~CiXi - C2X2 ~ ···· CnXn 

The Simplex method as given above will not work in this case because there 

will be no negative values in the bottom row of the tableau. 

Or suppose that we need to meet an exact specification. For example, in the 

blejiding of gasolines, close specifications have to be met for both octane 

number and vapour pressure. The constraints in such cases could be expressed 

as statements of equality. Suppose the physical property of interest P, to be 

a simple additive function proportional to the weight fraction of each component 

in the mixture. The specified value of the property for the mixture is Ps 

Then 

P1X1 + P2X2 + . . . . PnXn _ p 

X1 ' X2 ' . . . . X n 

Λ ( P i - P 8 ) X i + (Pa - P s ) * 2 + . . . . ( P n - P s )Xn = 0 

This equality can be represented by the pair of inequali t ies: 

(Pi. - RJ Xi + (P2 - Ps)x2 + . . . . (Pn - Ps)xn >_ 0 

( P i - P s ) X i + (P2 - P S )X 2 + . . . . (Pn - Ps)Xn 1 0 

To conform to the correct canonical form, the first inequality must be 

rewritten as: 

" ( P i - P j X n - (P2 - Ps )Xa - « . . . (Pn - P J X n l O 

We now have a pair of constraints in suitable form for entry into the 

tableau. Unfortunately, difficulty will be experienced with selection of the 

pivot, as pivotal rows containing a zero in the right hand column will always 

be selected. 

If a statement of equality contains a positive value on the right hand side, 

then when rewritten as a pair of inequalities, one of these will have a negative 

value on the right hand side. This is also inadmissible. For the resolution 

of these and other difficulties, more advanced methods such as the revised 
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Simplex method must be used (3). 

EXAMPLE 5.4 

The same manufacturer receives an order f o r 25 tonnes of a mixture which i s 

to contain 30% n i t r a t e , 30% phosphate and 40% sulphate. He decides to produce 

t h i s by mixing appropriate quan t i t i es o f A,B and C. How much of each should he 

use i f the p r o f i t on the new mixture i s $500 per tonne? 

Let the weights of A, B and C to be used be x1 9 x2 and x3 respect ive ly . 

Then p r o f i t z = 

(xx + x2 + x3 ) * 500 - (350X! + 200x2 + 250x3) 

.'. z = 150xx + 300x2 + 250x3. The const ra in ts are: 

N i t ra te 0.57Xi + 0.57x2 + 0.29x3 = 0.3 * 25 

Phosphate 0.43Xi + 0.29x2 + 0.29x3 = 0.3 * 25 

Sulphate 0.14x2 + 0.42x3 = 0.4 * 25 

The simplex method and the program above, assume not equa l i t i es but 

i nequa l i t i es of the form <_. Enter the above values and inspect the r e s u l t . 

LOAD"A:LNPRGl 
Ok 
RUN 
NUMBER OF TERMS IN OBJECTIVE FUNCTION 
? 3 
COEFFICIENTS OF XI TO X 3 
? 150 
? 300 
? 250 
NUMBER OF RESTRICTIONS? 3 
RESTRICTION 1 
COEFFICIENTS OF XI TO X 3 
? .57 
? .57 
? .29 
RESOURCE VALUE? 7.5 
INPUT Y TO CONTINUE ELSE N? Y 
RESTRICTION 2 
COEFFICIENTS OF XI TO X 3 
? .43 
? .29 
? .29 
RESOURCE VALUE? 7.5 
INPUT Y TO CONTINUE ELSE N? Y 
RESTRICTION 3 
COEFFICIENTS OF XI TO X 3 
? 0 
? . 14 
? .42 
RESOURCE VALUE? 10 
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INPUT Y TO CONTINUE ELSE N? Y 
Z= 0 
PIVOTAL ROW= 1 
PIVOTAL COLUMN= 2 
Z= 3947.368 
PIVOTAL ROW= 3 
PIVOTAL COLUMN= 3 
Z= 6224.85 
OPTIMAL SOLUTION 
COEFFICIENT OF X 2 = 1.257546 
COEFFICIENT OF X 3 = 23.39034 
VALUE OF OBJECTIVE IS 6224.85 
Ok 

It will be seen that the quantities of grades A and C to be used add to 

24.65 tonnes, and not 25. 

Concentration of nitrate in the mix = 

0.57 * 1.258 + 0.29 * 23.390 = 

24.65 
7*50 _ n or™ 
24.65 O'ôm 

Concentration of phosphate in the mix = 

0.43 *- 1.258 + 0.29 * 23.390 
24.65 

' '32 _ Q OQ-7 

24.65 u ^ y / 

Concentration of sulphate in the mix = 

0.42 * 23.390 
24.65 

Ιθ5 = 0 · 3 9 9 

In order to meet the specification exactly, a more advanced calculation 
method must be used. 
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(B) THE TRANSPORTATION PROBLEM 

This is one of several special classes of linear programming problem. It 

is concerned with the transportation of goods between a number of supply and 

delivery points. Having specified the journey costs for each possible route, 

the problem is to determine the allocation of routes which satisfies the demand 

at minimum cost of transportation. 

The solution method is based upon the assumption that supply and demand are 

equal. Where demand exceeds supply, no solution is possible and the problem 

must be reformulated. The situation in which supply exceeds demand can be 

handled by the allocation of dummy delivery points having zero transportation 

costs. 

The problem can be formulated for solution by the Simplex method (3). 

However, it is more usual to employ a special method which should take less 

computing time since it employs a much smaller matrix. This method will be 

briefly described below, further information being available in books already 

cited (1), (2), (3), (4). 

The easiest way to explain the problem and the method of solution, is by an 

example. 

EXAMPLE 5.5 

Three factories (supply points) A, B and C produce respectively 500, 500 

and 1000 tonnes per week of product. This has to be transported according to 

market demand to four warehouses (delivery points)U, V, W, and X. Next week 

their requirements are 300, 400, 500 and 800 tonnes respectively. We may 

represent these quantities as the supply vector, 

s = Γ 50θ1 
500 

[lOOOj 

and the demand vector 

d = Γ300] 
400 
500 

|_800J 

The journey costs in $/tonne between the various supply and delivery points 

are given in the following matrix (the cost matrix): 

c = |~4 4 3 f] 
4 7 7 8 

|_4 5 6 7J 

How should the supply be allocated so as to satisfy the demand at the 

lowest possible cost for transportation? 

The first step in the solution procedure is to present the above data in a 

tableau (Figure 5.5); units of 100 tonnes are shown. 
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Supply 
Point 

A 

B 

C 

Delivery 
Point 

^ 
5 

5 

10 

u 

3 
4 o 

1 4 

•A. 

V 

4 
4 o 
7 

0 

5 

w 

5 

5 ° ^ Ί \ 
6 

3 

X 

8 

^J 
8 

t 3 

7 
0 

Supply 
Vector 

j 

• Demand Vector 

—"\/—Journey Costs 
(Cost Matrix) 

Supplies allocated to the 
various routes 

Figure 5.5. Tableau for Example 5.5 - the basic solution. 

The next step is to allocate as much of the supply as possible to the 

cheapest routes taken in turn, in order of increasing costs. 

The lowest journey cost is that of route AX ($l/tonne); we allocate all 

the supply from point A by this route. The value 5 is entered in the 

appropriate square in the tableau. Supply from points B and C only remains to 

be considered. 

The lowest journey costs from these supply points are for routes BU and CU 

($4/tonne). Either might be chosen. We will suppose that route CU is the one 

selected; the value 3 is entered in the appropriate square or cell in the 

tableau. The remaining supplies are allocated in a similar manner and the 

result is also shown in Figure 5.5. 

These figures are repeated in Figure 5.6A. The transportation cost for this 

allocation = 

500*1 + 200*7 + 300*8 + 300*4 + 400*5 + 300*6 = $9,300. 

Is this the cheapest possible allocation? Some sort of test must be 

devised which determines whether the lowest cost solution to the problem can be 

found. If the lowest cost solution has not been found, then a procedure must 

also be devised by which to modify the original solution. 

The overall cost is lowered by altering the tableau by one journey at a 

time. This alteration is made for one unit of cargo at a time ,though in many 

cases involving a manual solution it may be appropriate to make the alteration 

for many units of cargo simultaneously. 

Each alteration that we make to the tableau must be balanced so that the 

supply and demand restrictions are met. 
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Figure 5.6. Tableaux for Example 5.5 
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A - The Basic Solution 
after allocation of 
supply to the cheapest 
routes in turn. 

Transportation Cost = 
$9,300 
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B - The first 
transposition 

Transportation Cost 
$9,100 
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Ci = 
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0 
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7 

C - The next and final 
transposition 

Transportation Cost = 
$9,000 

Real costs are shown in the top left hand corner of each cell. Fictitious 
costs are shown in the bottom right hand corner of each cell. Supply allocated 
to that route is shown in the middle of each cell. 
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These alterations are made by considering the unused routes. The steps of 

the procedure are as follows (see Figure 5.7): 

K N 

Λ-·! V 1 
1 
1 
| rx± L/* 

^ΓΊ 
^\ 1 

1 
1 
1 _iA V 

Ç j Unused route 

^ \ Used route 

□ Route which may be used or unused 
prior to the transposition 

Figure 5.7. The Transportation Loop 

1. An unused route is selected (co-ordinates J, K). 

2. A used route is found in the column containing the unused route 

(co-ordinates M, K). 

3. A used route is found in the row containing the unused route 
(co-ordinates J, N). 

4. A unit of cargo allocated to route J, N is instead allocated to route 
J, K. 

5. A unit of cargo allocated to route M, K is instead allocated to route 
M, N. 

These transpositions, shown in Figure 5.7 are known as a 'transportation 
loop'. 

How do we select the unused route for the next transposition of the tableau? 
Here are three methods: 
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Route Selection - Method 1, Fictitious Costs (5) 

This method works well on small matrices, but contradictory values of 

fictitious costs can be obtained in some cases. It is therefore, unsuited to a 

computer solution. However, it will be briefly explained here, and then 

employed to complete Example 5.5. 

Fictitious cost components c, and dj are defined for each route used in a 

particular tableau. The sum of these components must equal the actual costs of 

each route used in the tableau. Costs for the unused routes are then 

calculated using the same cost components. In this case, values of cost will 

be obtained which may or may not be the same as the actual cost for that 

particular route. 

If the value of fictitious cost obtained for an unused route is greater than 

the real cost for that route, then the tableau is not optimal. The unused route 

which has been found should be used for the next transposition of the tableau. 

Referring again to Figure 5.6A, the journey costs are shown in the top left 

hand corner of each cell. Fictitious costs are computed as follows: Assume 

dx = 1, then CA must have value 0 since cost of route 

AX is 1 (dx + cA = 1 + 0 = 1). Consequently 

ce = 7 since dx = 1 and cost of route BX is 8 

.'. d w = 0 since cost of route BW is 7 (7 + 0 = 7) 

c c = 6 since cost of route CW is 6. 

Similarly values du and dv are found; their values are marked on the 

diagram. 

The addition of the cost components gives the cost figures shown in the 

bottom right hand corner of each cell. It will be seen that for cell BU, the 

fictitious cost exceeds the real cost. 

We will employ BU as the unused route in the transposition of the tableau. 

200 tonnes will be consigned along this route instead of along route BW. To 

balance this, 200 additional tonnes will be consigned along route CW instead of 

along route CU. This gives us the tableau shown in Figure 5.6B. 

Transportation cost for this allocation of routes = $9,100, a saving of 

$200 compared with the previous tableau. 

Cost components and fictitious costs are again computed and it is seen that 

for cell CX the fictitious cost again exceeds the real cost. A transposition 

about this cell yields the tableau of Figure 5.6C. 

Transportation cost for this arrangement = $9,000, a further saving of $100. 

Cost components and fictitious costs are again computed and this time in no 

case is the fictitious cost greater than the real cost. This tableau therefore 

represents an optimal solution. 
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We can express the solution verbally as: 

500 tons from point A to point X 

300 tons from point B to Point U 

200 tons from point B to point X 

400 tons from point C to point V 

500 tons from point C to point W 

100 tons from point C to point X 

It should be noted that if route BU had been selected instead of route CU, 

at the initial allocation step, then an optimal solution would have been 

obtained directly. 

Route Selection, Method 2 - Dual Problem 

This method involves another technique of the Simplex method known as the 

Dual Problem. It will not be discussed here but is described by Kolman and 

Beck (3). 

Route Selection, Method 3 - Trial and Error 

All the possible transpositions of a given tableau, about all the unused 

routes, are evaluated and the one giving the lowest cost is selected. This 

procedure is followed with successive tableaux until a situation is reached 

wherein no further reduction in cost is achieved. This is then, the optimum 

solution. 

Computer Solution of the Transportation Problem 

Route selection by Method 3 above, although more wasteful of computer time 

than Method 2, is easier to program requiring no further knowledge of the 

Simplex method. It is employed in the program which follows. 
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20 REM - PROGRAM LNPRG2.BAS 
30 REM - THE TRANSPORTATION PROBLEM 
40 REM - PROGRAM NOMENCLATURE 
50 REM - A(J) - Number of cargoes available at supply 
60 REM point J 
70 REM - B(K) - Number of cargoes required at 
80 REM destination K 
90 REM - C(J,K) Cost of journey from supply point J to 
100 REM destination K 
110 REM - D(J) - Number of the destination with cheapest 
120 REM journey cost from origin J 
130 REM - E(J,K) Number of cargoes despatched from supply 
140 REM point J to destination K 
150 REM - F(J) - Number of cargoes despatched from supply 
160 REM point J 
170 REM - G(K) - Number of cargoes received at 
180 REM destination K 
190 REM - H(J,K> Duplicate of Matrix C 
200 REM - L(J) - Cost of cheapest journey from supply 
210 REM point J 
220 REM - M(0) - Value of J from which a cargo is 
230 REM - despatched to destination K 
240 REM - N(P) - Value of K to which a cargo is despatched 
250 REM from supply point J 
260 REM - Nl - Number of supply points 
270 REM - N2 - Number of destinations 
280 REM - N3 - Total number of cargoes residing at the 
290 REM supply points 
300 REM - N4 - Total number of cargoes required at the 
310 REM destinations 
320 REM - N5 - Number of starting points for a search 
330 REM - SI - Duplicate of value Nl 
340 REM - S2 - Duplicate of value N2 
350 REM - S3 - Value used to bypass print statements 
360 REM - S4 - Selected value used to bypass print 
370 REM statements 
380 REM - T2 - Total cost for any given designation 
390 REM of cargoes 
400 REM - T3 - Lowest value of total cost found in the 
410 REM previous iteration 
420 REM - V(L) - Total cost if alternative rearrangement 
430 REM L is used in the allocation of a starting 
440 REM point 
450 REM - W(J,K) Duplicate of Matrix E 
460 REM - X(L) - Value of J used with rearrangement L 
470 REM - Y(L) - Value of K used with rearrangement L 
480 REM - PROGRAM DESCRIPTION 
490 REM - This program involves a control segment (lines 
500 REM - 3010 - 4310) in conjunction with several 
510 REM - subroutines 
520 REM - CONTROL SEGMENT: 
530 REM - LINE 3010 Arrays of more than 10 elements 
540 REM - are dimensioned 
550 REM - LINES 3020 - 3270 Data for the problem is entered 
560 REM - If the total number of cargoes at the supply 
570 REM - points does not equal the total number required at 
580 REM - the destinations, a message is printed and the 
590 REM - program execution is returned for re-entry of data 
600 REM - (lines 3160 - 3200). This reminder is useful 
610 REM - when a dummy destination has to be allocated 
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620 
630 
640 
650 
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1070 
1080 
1090 
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REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
REM -
' REM -
> REM -
'REM -
• REM -
' REM -
' REM -
' REM -
• REM -
• REM -
• REM -
' REM -
• REM -
• REM -
' REM -
REM -

> REM -
' REM -
' REM -
REM -

' REM -
REM -

' REM -
REM -

LINES 3280 - 3300 In developing the program, 
of intermediate values was required. The 
facility to do this is retained so that values 
may be manually checked 
LINES 3310 - 3470 Since the subsequent 
manipulations will employ the variables Nl and N2 
and the contents of Matrix C, these values are 
duplicated. The matrix of journey costs is 
printed out if desired 
LINES 3480 - 3740 This segment allocates cargoes 
to destinations in the same way as described for 
the first part of the manual calculation. 
Cargoes are allotted one at a time up to the 
total number required (N3 at line 3480). At 
each successive iteration within loop L, the 
route having the lowest cost is selected. This 
selection is carried out in the subroutine 
Cheapest Journey (lines 4350 - 4620). 
Having selected the cheapest route, the record of 
journeys held in Mat E is increased by one (line 
3520); the tally of cargoes despatched from the 
appropriate supply point is increased by one, and 
the value is compared with the number originally 
available (lines 3530 - 3540) 
When all cargoes residing at a given supply point 
have been despatched, the journey costs from that 
supply point are increased to a very large value 
so that no more journeys from that point will be 
selected (lines 3550 - 3570). When the required 
number of cargoes has been allocated to a 
destination, the journey costs to that destination 
are increased to a very large value also (lines 
3580 - 3630). The matrix of selected journeys is 
then printed out (lines 3680 - 3740) if required. 
LINES 3750 - 3900 The total cost for the 
allocation of journeys made at the previous step 
is evaluated by subroutine Total Cost (lines 4650 
to 4750) and the value printed out if required. 
- If this allocation of cargoes is the first (line 
- 3780) or if it is cheaper than the previous 
■ allocation (line 3790), then a search is made for 
■ a cheaper allocation. This search commences at 
- line 3930. 
- If the latest allocation is the cheapest then 
• this is indicated (line 3810), the complete 
- recommended designation of cargoes is printed out 
■ at line 3870 utilising subroutine Designation 
- (lines 5620 - 5710), the total cost is evaluated 
■ at line 3880 using subroutine Total Cost (lines 
- 4650 - 4750) and printed out, and execution is 
• terminated (line 3920) 
■ LINES 3930 - 4310 Modifications are made 
■ to the previous allocation of journeys, 
- in a search for a lower total cost. First, 
- starting points for the search are allocated. 
- This is done at line 3940 using subroutine 
• Allocate (lines 4790 - 4970). The starting 
• points found are possible journeys for which no 
• cargoes have been allocated. The coordinates 
• of these possible journeys are stored in Mat X & 
• Mat Y. 
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1230 
1240 
1250 
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1300 
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REM 
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REM 
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REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

These starting points are then employed to 
determine an alternate allocation of cargoes at 
lines 3970 - 4200. Each starting point is taken 
in turn (lines 4020 - 4040) and all the possible 
rearrangements (transportation loops) using that 
point are evaluated. This is done at line 4050 
using subroutine Cheapest Alternative (lines 
5020 - 5580), and subroutine Total Cost at line 
4060. At line 4070 the cost of the cheapest 
rearrangement based on a particular starting 
point is stored as V(L), L being the 
designation of a particular rearrangement. 
We now have a number of possible rearrangements, 
one for each starting point. Each of these 
rearrangements is known to be the cheapest for 
its particular starting point. At lines 4140 -
4200 the cheapest of these rearrangements is 
selected. The value of L found at this step is 
used in statements 4210 - 4310 to reallocate 
cargoes and then return program executionto line 
3650 for another iteration. 
SUBROUTINE CHEAPEST JOURNEY (LINES 4350 - 4620) 
This makes the preliminary allocation of cargoes 
by selecting routes one at a time on the basis of 
cheapest first. Values of journey costs C(J,K), 
are compared in order to find the lowest in each 
row of the matrix (tableau) (lines 4370 - 4470). 
This value is ascribed to L(S) and the column 
number (value of K) is ascribed to D(S), S being 
the row number (value of J). This allocation 
is made for values of S from 1 to SI (the number 
of supply points) within the S loop (lines 4350 -
4510). 
The members of the set L(S) are next compared, in 
order to find the smallest value (lines 4520 -
4610). The value of N generated within the 
first loop, and the value of S generated within 
the second give the required coordinates of the 
cheapest journey. 
SUBROUTINE TOTAL COST (LINES 4650 - 4750) 
This subroutine calculates the cost for a given 
allocation of routes and cargoes. The number of 
carriers allotted to a given route, E(S,T), is 
multiplied by the cost of that particular journey 
H(S,T), the product being added to the running 
total of costs, T2. 
SUBROUTINE ALLOCATE (LINES 4790 - 4970) 
Possible routes which are not in use are located. 
The number of these,N5, is counted, and the 
coordinates of each are stored in Matrices X & Y 
SUBROUTINE CHEAPEST ALTERNATIVE (LINES 5020 -
5580) The subroutine starts off with values of 
coordinates J & K corresponding to one of the 
starting points for a search. These values have 
previously been retrieved from Matrices X and Y 
at lines 4030 & 4040 and 4210 & 4220. 
Coordinates J,K represent an unused route. 
Taking destination K first, cargoes allocated to 
it from other supply points are found and stored 
in Matrix M (lines 5160 - 5200). Taking supply 
point J next, journeys from it allocated to 
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1840 REM - destinations other than K are stored in Matrix N 
1850 REM - (lines 5210 - 5250). Values of M and N are now 
1860 REM - taken in turn, and every possible rearrangement 
1870 REM - of journeys about the given starting point (J,K) 
1880 REM - is evaluated (lines 5260 - 5460). 
1890 REM - One cargo is allocated to route J,K; to 
1900 REM - maintain the correct distribution, cargo 
1910 REM - allocations to three other routes also have to be 
1920 REM - altered, namely locations J,N; M,K; and M,N 
1930 REM - (lines 5340 - 5370). See also Figure 5.8. The 
1940 REM - total cost for the new allocations is now 
1950 REM - calculated at line 5380 and subroutine Total Cost 
1960 REM - The above sequence is carried out for every 
1970 REM - possible rearrangement about a given starting 
1980 REM - point. This gives a number of values of total 
1990 REM - journey costs. Interim use is made of Matrix C 
2000 REM - for storage of these (line 5390). Subroutine 
2010 REM - Cheapest Journey is now used again to select the 
2020 REM - lowest total cost (line 5470) 
2030 REM - The allocation of cargoes corresponding to this 
2040 REM - lowest cost rearrangement is made and stored in 
2050 REM - Matrix E (lines 5480 - 5580) 
2060 REM - SUBROUTINE DESIGNATION (LINES 5620 - 5700) 
2070 REM - The final step in the execution of the program is 
2080 REM - the printing out of the optimum allocation of 
2090 REM - cargoes. If a dummy destination has been 
2100 REM - employed because supply exceeds demand, then 
2110 REM - allocations along the fictitious routes are not 
2120 REM - printed (line 5650). 
£ J_ ̂ 3 \J JLVIIÎJM ^ ^ ^ ^* ̂  ^ ^ ^ ^ ^ ^* ̂  ^ ^ ^ ^ ^ ^ ^ ^ ^* ̂ * ̂  ^* ̂ * ̂ * ̂ * ̂  ^ ^ ^* ^* ̂ * ̂ * ̂ * ̂ * ̂ * ̂ * ̂  ^* ̂ " ̂ * ̂  ^* ̂ * ̂ * ̂ " ̂ * ̂ * ̂  ^* 

3000 REM - CONTROL SEGMENT *********>K***>|C*******>K*********** 
3010 DIM V(100),X(100),Y(100) 
3020 PRINT "NUMBER OF SUPPLY POINTS (MAX 10)"; 
3030 INPUT Nl 
3040 FOR J=l TO Nl 
3050 PRINT "NUMBER OF CARGOES AT SUPPLY POINT";J; 
3060 INPUT A(J) 
3070 N3=N3+A(J) 
3080 NEXT J 
3090 PRINT "NUMBER OF DESTINATIONS (MAX 10)"; 
3100 INPUT N2 
3110 FOR K=l TO N2 
3120 PRINT "NUMBER OF CARGOES REQUIRED AT DESTINATION";K; 
3130 INPUT B(K) 
3140 N4=N4+B(K) 
3150 NEXT K 
3160 IF N3=N4 THEN 3210 
3170 PRINT "NO. OF CARGOES AVAILABLE NOT EQUAL TO" 
3180 PRINT "CARGOES REQUIRED" 
3190 N4=0' 
3200 GOTO 3090 
3210 FOR J=l TO Nl 
3220 PRINT "TYPE COST OF JOURNEYS FROM SUPPLY POINT";J 
3230 PRINT "TO EACH DESTINATION" 
3240 FOR K=l TO N2 
3250 INPUT C(J,K) 
3260 NEXT K 
3270 NEXT J 
3280 PRINT "INPUT 1 FOR MIN,2 FOR PARTIAL,3 FOR FULL" 
3290 PRINT "INFO ON INTERMEDIATE STEPS" 
3300 INPUT S4 
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3310 FOR J=l TO Nl 
3320 FOR K=l TO N2 
3330 H(J,K)=C(J,K) 
3340 E(J,K)=0 
3350 NEXT K 
3360 NEXT J 
3370 S1=N1 
3380 S2=N2 
3390 IF S4=l THEN 3480 
3400 PRINT 
3410 PRINT "MATRIX OF JOURNEY COSTS" 
3420 FOR J=l TO Nl 
3430 FOR K=l TO N2-1 
3440 PRINT C(J,K); 
3450 NEXT K 
3460 PRINT C(J,N2) 
3470 NEXT J 
3480 FOR L=l TO N3 
3490 GOSÜB 4340 
3500 J=S 
3510 K=N 
3520 E(J,N)=E(J,N)+1 
3530 F(J)=F(J)+1 
3540 IF F(J)<A(J) THEN 3580 
3550 FOR K=l TO N2 
3560 C(J,K)=1E+12 
3570 NEXT K 
3580 N=D(J) 
3590 G(N)=G(N)+1 
3600 IF G(N)<B(N) THEN 3640 
3610 FOR J=l TO Nl 
3620 C(J,N)=1E+12 
3630 NEXT J 
3640 NEXT L 
3650 IF S4=l THEN 3750 
3660 PRINT 
3670 PRINT 
3680 PRINT "MATRIX OF JOURNEYS" 
3690 FOR J=l TO Nl 
3700 FOR K=l TO N2-1 
3710 PRINT E(J,K); 
3720 NEXT K 
3730 PRINT E(J,N2) 
3740 NEXT J 
3750 GOSÜB 4640 
3760 IF S4=l THEN 3780 
3770 PRINT "TOTAL C0ST";T2 
3780 IF T3=0 THEN 3930 
3790 IF T2<T3 THEN 3930 
3800 PRINT 
3810 PRINT "LOWEST TOTAL COST" 
3820 FOR J=l TO Nl 
3830 FOR K=l TO N2 
3840 E(J,K)=W(J,K) 
3850 NEXT K 
3860 NEXT J 
3870 GOSÜB 5610 
3880 GOSÜB 4640 
3890 IF S4>1 THEN 3910 
3900 PRINT "TOTAL C0ST=";T2 
3910 PRINT 
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3920 GOTO 5720 
3930 T3=T2 
3940 GOSUB 4780 
3950 IF N5>0 THEN 3970 
3960 GOTO 3870 
3970 FOR J=l TO Nl 
3980 FOR K=l TO N2 
3990 W(J,K)=E(J,K) 
4000 NEXT K 
4010 NEXT J 
4020 FOR L=l TO N5 
4030 J=X(L) 
4040 K=Y(L) 
4050 GOSUB 5000 
4060 GOSUB 4640 
4070 V(L)=T2 
4080 FOR J=l TO Nl 
4090 FOR K=l TO N2 
4100 E(J,K)=W(J,K) 
4110 NEXT K 
4120 NEXT J 
4130 NEXT L 
4140 FOR L=l TO N5-1 
4150 FOR M=L+1 TO N5 
4160 IF V(L)<V(M) THEN 4180 
4170 GOTO 4200 
4180 NEXT M 
4190 GOTO 4210 
4200 NEXT L 
4210 J=X(L) 
4220 K=Y(L) 
4230 FOR G=l TO Nl 
4240 FOR H=l TO N2 
4250 E(G,H)=W(G,H) 
4260 NEXT H 
4270 NEXT G 
4280 S3=l 
4290 GOSUB 5000 
4300 S3=0 
4310 GOTO 3650 

4330 REM - SUBROUTINE CHEAPEST JOURNEY ********************* 
4340 REM - FIND CHEAPEST JOURNEY FROM EACH SUPPLY POINT 
4350 FOR S=l TO SI 
4360 IF S2=l THEN 4490 
4370 FOR N=l TO S2-1 
4380 FOR T=N+1 TO S2 
4390 IF C(S,N)<=C(S,T) THEN 4430 
4400 IF T<S2 THEN 4470 
4410 N=S2 
4420 GOTO 4440 
4430 NEXT T 
4440 L(S)=C(S,N) 
4450 D(S)=N 
4460 GOTO 4510 
4470 NEXT N 
4480 GOTO 4510 
4490 L(S)=C(S,1) 
4500 D(S)=1 
4510 NEXT S 
4520 FOR S=l TO Sl-1 
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4530 FOR N=S+1 TO SI 
4540 IF L(S)<=L(N) THEN 4580 
4550 IF N<S1 THEN 4600 
4560 S=N 
4570 GOTO 4610 
4580 NEXT N 
4590 GOTO 4610 
4600 NEXT S 
4610 N=D(S) 
4620 RETURN 

4640 REM - SUBROUTINE TOTAL COST *************************** 
4650 T2=0 
4660 FOR S=l TO Nl 
4670 FOR T=l TO N2 
4680 IF E(S,T)=0 THEN 4700 
4690 T2=T2+H(S,T)*E(S, T) 
4700 NEXT T 
4710 NEXT S 
4720 IF S3>0 THEN 4750 
4730 IF S4<3 THEN 4750 
4740 PRINT "TOTAL C0ST=";T2 
4750 RETURN 

4770 REM - SUBROUTINE ALLOCATE ***************************** 
4780 REM - ALLOCATE STARTING POINTS FOR SEARCH ************* 
4790 N5=0 
4800 FOR J=l TO Nl 
4810 FOR K=l TO N2 
4820 C(J,K)=0 
4830 NEXT K 
4840 NEXT J 
4850 FOR J=l TO 100 
4860 X(J)=0 
4870 Y(J)=0 
4880 NEXT J 
4890 FOR J=l TO Nl 
4900 FOR K=l TO N2 
4910 IF E(J,K)>0 THEN 4950 
4920 N5=N5+1 
4930 X(N5)=J 
4940 Y(N5)=K 
4950 NEXT K 
4960 NEXT J 
4970 RETURN 
4980 REM *************************************************** 
4990 REM - SUBROUTINE CHEAPEST ALTERNATIVE ***************** 
5000 REM - FIND THE CHEAPEST ALTERNATIVE REARRANGEMENT TO 
5010 REM - REDUCE TOTAL COST ******************************* 
5020 FOR G=l TO Nl 
5030 M(G)=0 
5040 NEXT G 
5050 FOR H=l TO N2 
5060 N(H)=0 
5070 NEXT H 
5080 FOR G=l TO Nl 
5090 FOR H=l TO N2 
5100 C(G,H)=0 
5110 E(G,H)=W(G,H> 
5120 NEXT H 
5130 NEXT G 
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5140 S1=0 
5150 S2=0 
5160 FOR M=l TO Nl 
5170 IF E(M,K)=0 THEN 5200 
5180 S1=S1+1 
5190 M(S1>=M 
6200 NEXT M 
5210 FOR N=l TO N2 
5220 IF E(J,N)=0 THEN 5250 
5230 S2=S2+1 
5240 N(S2)=N 
5250 NEXT N 
5260 FOR 0=1 TO SI 
5270 M=M(0) 
5280 FOR P=l TO S2 
5290 N=N(P) 
5300 IF S3>0 THEN 5340 
5310 IF S4=l THEN 5340 
5320 IF S4=2 THEN 5340 
5330 PRINT ,,J=" ; J; "K=" ;K; "M=" ;M; "N=" ;N 
5340 E{J,K)=E(J,K)+1 
5350 E(J,N)=E(J,N)-1 
5360 E(M,N)=E(M,N)+1 
5370 E(M,K)=E(M,K)-1 
5380 GOSÜB 4640 
5390 C(0,P)=T2 
5400 FOR G=l TO Nl 
5410 FOR H=l TO N2 
5420 E{G,H)=W(G,H) 
5430 NEXT H 
5440 NEXT G 
5450 NEXT P 
5460 NEXT 0 
5470 GOSUB 4340 
5480 M=M(S) 
5490 N=N(N) 
5500 IF S3>0 THEN 5540 
5510 IF S4<3 THEN 5540 
5520 PRINT "LOWEST VALUE" 
5530 PRINT "J=";J;"K=n;K;"M=";M;"N=";N 
5540 E(J,K)=E(J,K>+1 
5550 E(J,N)=E(J,N)-1 
5560 E{M,N)=E(M,N)+1 
5570 E(M,K)=E(M,K)-1 
5580 RETURN 
5590 REM ******************************** 
5600 REM - SUBROUTINE DESIGNATION ************************** 
5610 REM - PRINT DESIGNATION OF CARGOES ******************** 
5620 PRINT 
5630 FOR J=l TO Nl 
5640 FOR K=l TO N2 
5650 IF H(J,K)=0 THEN 5690 
5660 IF E(J,K)=0 THEN 5690 
5670 PRINT "SEND";E(J,K);"CARGO(ES) FROM SUPPLY POINT";J 
5680 PRINT "TO DESTINATION";K 
5690 NEXT K 
5700 NEXT J 
5710 RETURN 
5720 END 
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EXAMPLE 5.6 

Repeat Example 5.5 using the above program. It will be observed that the 

program has produced two alternative allocations of minimum cost. 

RUN 
NUMBER OF SUPPLY POINTS (MAX 10)? 3 
NUMBER OF CARGOES AT SUPPLY POINT 1 ? 5 
NUMBER OF CARGOES AT SUPPLY POINT 2 ? 5 
NUMBER OF CARGOES AT SUPPLY POINT 3 ? 10 
NUMBER OF DESTINATIONS (MAX 10)? 4 
NUMBER OF CARGOES REQUIRED AT DESTINATION 1 ? 3 
NUMBER OF CARGOES REQUIRED AT DESTINATION 2 ? 4 
NUMBER OF CARGOES REQUIRED AT DESTINATION 3 ? 5 
NUMBER OF CARGOES REQUIRED AT DESTINATION 4 ? 8 
TYPE COST OF JOURNEYS FROM SUPPLY POINT 1 
TO EACH DESTINATION 
? 4 
? 4 
? 3 
? 1 
TYPE COST OF JOURNEYS FROM SUPPLY POINT 2 
TO EACH DESTINATION 
? 4 
? 7 
? 7 
? 8 
TYPE COST OF JOURNEYS FROM SUPPLY POINT 3 
TO EACH DESTINATION 
? 4 
? 5 
? 6 
? 7 
INPUT 1 FOR MIN,2 FOR PARTIAL,3 FOR FULL 
INFO ON INTERMEDIATE STEPS 
? 2 

MATRIX OF JOURNEY COSTS 
4 4 3 1 
4 7 7 8 
4 5 6 7 

MATRIX OF JOURNEYS 
0 0 0 5 
3 0 0 2 
0 4 5 1 
TOTAL COST 90 

MATRIX OF JOURNEYS 
0 0 0 5 
3 0 1 1 
0 4 4 2 
TOTAL COST 90 

LOWEST TOTAL COST 
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SEND 5 CARGO(ES) FROM SUPPLY POINT 1 
TO DESTINATION 4 
SEND 3 CARGO(ES) FROM SUPPLY POINT 2 
TO DESTINATION 1 
SEND 2 CARGO(ES) FROM SUPPLY POINT 2 
TO DESTINATION 4 
SEND 4 CARGO(ES) FROM SUPPLY POINT 3 
TO DESTINATION 2 
SEND 5 CARGO(ES) FROM SUPPLY POINT 3 
TO DESTINATION 3 
SEND 1 CARGO(ES) FROM SUPPLY POINT 3 
TO DESTINATION 4 

Ok 

EXAMPLE 5.7 

Repeat the above program, but this time assume there is an excess of supply 

available, the quantities being 600, 600 and 1200 tons at supply points A, B 

and C respectively. 

It will be observed that the increase in available supplies has permitted a 

lower cost allocation to be found. Note also that the progrmm has again 

produced two alternative allocations of minimum cost. 

If Option 1 had been selected at the beginning, only the minimum cost 

allocation would have been printed out. 

RUN 
NUMBER OF SUPPLY POINTS (MAX 10)? 3 
NUMBER OF CARGOES AT SUPPLY POINT 1 ? 6 
NUMBER OF CARGOES AT SUPPLY POINT 2 ? 6 
NUMBER OF CARGOES AT SUPPLY POINT 3 ? 12 
NUMBER OF DESTINATIONS (MAX 10)? 4 
NUMBER OF CARGOES REQUIRED AT DESTINATION 1 ? 3 
NUMBER OF CARGOES REQUIRED AT DESTINATION 2 ? 4 
NUMBER OF CARGOES REQUIRED AT DESTINATION 3 ? 5 
NUMBER OF CARGOES REQUIRED AT DESTINATION 4 ? 8 
NO. OF CARGOES AVAILABLE NOT EQUAL TO 
CARGOES REQUIRED 
NUMBER OF DESTINATIONS (MAX 10)? 5 
NUMBER OF CARGOES REQUIRED AT DESTINATION 1 ? 3 
NUMBER OF CARGOES REQUIRED AT DESTINATION 2 ? 4 
NUMBER OF CARGOES REQUIRED AT DESTINATION 3 ? 5 
NUMBER OF CARGOES REQUIRED AT DESTINATION 4 ? 8 
NUMBER OF CARGOES REQUIRED AT DESTINATION 5 ? 4 
TYPE COST OF JOURNEYS FROM SUPPLY POINT 1 
TO EACH DESTINATION 
? 4 
? 4 
? 3 
? 1 
? 0 
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TYPE COST OF JOURNEYS FROM SUPPLY POINT 2 
TO EACH DESTINATION 
? 4 
? 7 
? 7 
? 8 
? 0 
TYPE COST OF JOURNEYS FROM SUPPLY POINT 3 
TO EACH DESTINATION 
? 4 
? 5 
? 6 
? 7 
? 0 
INPUT 1 FOR MIN,2 FOR PARTIAL,3 FOR FULL 
INFO ON INTERMEDIATE STEPS 
? 2 

MATRIX OF JOURNEY COSTS 
4 4 3 1 0 
4 7 7 8 0 
4 5 6 7 0 

MATRIX OF JOURNEYS 
0 0 0 2 4 
3 0 0 3 0 
0 4 5 3 0 
TOTAL COST 109 

MATRIX OF JOURNEYS 
0 0 0 3 3 
3 0 0 2 1 
0 4 5 3 0 
TOTAL COST 102 

MATRIX OF JOURNEYS 
0 0 0 4 2 
3 0 0 2 1 
0 4 5 2 1 
TOTAL COST 96 

MATRIX OF JOURNEYS 
0 0 1 4 1 
3 0 0 2 1 
0 4 4 2 2 
TOTAL COST 93 

MATRIX OF JOURNEYS 
0 0 0 5 1 
3 0 1 1 1 
0 4 4 2 2 
TOTAL COST 90 

MATRIX OF JOURNEYS 
0 0 1 5 0 
3 0 0 1 2 
0 4 4 2 2 
TOTAL COST 86 

MATRIX OF JOURNEYS 
0 0 0 6 0 
3 0 1 0 2 
0 4 4 2 2 
TOTAL COST 83 

MATRIX OF JOURNEYS 
0 0 0 6 0 
2 0 1 0 3 
1 4 4 2 1 

TOTAL COST 83 

LOWEST TOTAL COST 
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SEND 6 CARGO(ES) FROM SUPPLY POINT 1 
TO DESTINATION 4 
SEND 3 CARGO(ES) FROM SUPPLY POINT 2 
TO DESTINATION 1 
SEND 1 CARGO(ES) FROM SUPPLY POINT 2 
TO DESTINATION 3 
SEND 4 CARGO(ES) FROM SUPPLY POINT 3 
TO DESTINATION 2 
SEND 4 CARGO(ES) FROM SUPPLY POINT 3 
TO DESTINATION 3 
SEND 2 CARGO(ES) FROM SUPPLY POINT 3 
TO DESTINATION 4 

Ok 

Texts dealing with more advanced linear programming concepts, and their 

solution by computer, are available (6), (7). 

PROBLEMS - CHAPTER 5 

1. A manufacturer of rubber gloves produces these in three grades. The 

manufacturing step is the same for each grade, the differences being in 

testing and packaging. 

Gloves for surgical use are stringently tested, elaborately packed and then 

sterilised by a radioactive source. 

Gloves for clean non-sterile use undergo simple testing and packing 

procedures and no sterilisation step, 

Gloves for household use are packed similarly to those for clean non-sterile 

use, but both the testing and sterilisation steps are omitted. 

Maximise the net daily profit for the factory using the following figures: 

Manufacturing capacity: 2,500 pairs/day of all types. 

Testing capacity: 2 non-sterile gloves can be tested in the 

time taken for one surgical glove. Testing equipment can handle 

both types at a rate equivalent to 1,200 pairs/day of surgical gloves. 

Packaging capacity: 1,000 pairs/day of surgical gloves and 2,000 

pairs/day of other types. 

Profit: On surgical gloves $1 per pair, on non-sterile gloves 

$0.75 per pair, on household gloves $0.50 per pair. 
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2. A manufacturer makes a single product, his maximum production rate being 

5000 tons per month. Profit after deduction of raw material and production 

costs is $25/ton. Unsold material is stored in the warehouse at a cost of 

$1.50/ton per month, the cost being computed on the quantity in storage at the 

end of each month. 

Sales expectations for the next four months are: 

Month 1 4800 tons 

Month 2 6000 " 

Month 3 3000 " 

Month 4 4000 " 

There are 1000 tons in storage at the beginning of this four-month period. 

Determine the monthly production rates which will maximise the company profits 

and leave no unsold material in store at the end of this four-month period. 

3. A company is receiving bids for the supply of centrifugal pumps in four 

capacities. Five pump manufactuters submit bids, which are tabulated in 

hundreds of dollars, in the table below. 

The purchasing company decides to purchase no more than one pump from each 

supplier. How should the purchases be made in order to minimise the total cost 

of purchase? 

Table of Bids for Pumps, $100s 

Supplier 

A 
B 
C 
D 
E 

Pump 
Specification 

No 
Req'd 

U 
1 

60 
70 
65 

no bid 
50 

V 
1 

70 
75 
65 

no bid 
60 

W 

1 

80 
75 
70 
70 

no bid 

X 
1 

90 
80 
80 
75 

no bid 

4. A manufacturer operates 8 batch reactors. Due to differences in age, 

design and location, production costs vary from reactor to reactor . Each can 

produce up to 4 batches per week. Five products are manufactured, production 

costs for each being tabulated below. What assignment of jobs will minimise 

the total cost of producing the batches enumerated in the table, during one 

week of operation? 
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Batch production cost, $1000s 

Reactor 

1 
2 
3 
4 
5 
6 
7 
8 

Product 

available requ^ed 

4 
4 
4 
4 
4 
4 
4 
4 

A 

6 

1.0 
1.2 
0.9 
1.0 
0.9 
1.1 
1.2 
1.1 

B 

4 

1.5 
1.8 
1.4 
1.2 
1.5 
1.3 
1.5 
1.4 

C 

5 

1.8 
2.0 
1.6 
1.7 
1.6 
1.5 
1.8 
1.5 

D 

3 

0.9 
1.1 
0.9 
1.0 
1.1 
0.9 
1.1 
1.0 

E 

8 

2.0 
2.3 
1.8 
2.2 
2.0 
2.1 
2.3 
1.9 

5. A chemicals manufacturer operates a batch reactor facility in which he 

produces three chemical intermediates on a week to week basis. Figures for 

each batch of these products are as follows: 

Product 

A 

B 
C 

Production time 
per batch 

23 hours 

8 hours 

31 hours 

Raw Material 
usage 

500kg X 
200kg Y 

400kg X 

400kg X 
400kg Y 

Profit per 
batch 

$2600 

$ 950 

$3200 

The plant is normally operated for 100 hours per week; operation beyond this 

time incurs a cost penalty of $200 per hour. Raw material stocks available for 

next weeks operation consist of: 

Material X 2000kg 
Material Y 1000kg 

Assuming all product can be sold, how should the manufacturer schedule his 

production for next week? 
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1 L.W. Swanson, Linear Programming Basic Theory and Applications, McGraw Hill 

Book Co., New York, U.S.A., 1980 
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Basingstoke, U.K. 1963 
5 D.F. Rudd and C.C. Watson, The Strategy of·Process Engineering, John Wiley 

and Sons, New York, U.S.A., 1968 
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Chapter 6 

SOLUTION OF A COUNTERCURRENT STEADY STATE HEAT EXCHANGER 

The Problem 

We have a truly countercurrent heat exchanger of area A and overall heat 

transfer coefficient U. The inlet temperatures, mass flowrates and specific 

heats of each fluid are known. What are the outlet temperatures? 

Hot Fluid 

Cold Fluid 

The conventional way to solve this problem is by the use of an 

effectiveness - number of transfer units (ε - NTU) chart. Such a chart is a 

representation of relationships derived analytically from first principles. 

For the countercurrent case the relationship used is: 

UA , , Cmin 

ε-
1 - exp Γ- ψ. · (1 - ψ^ )] 

1 -pùL . expi-j^. · (1 UA #1 Cmin 
Cm'.n Cmax 'J where: 

C=m*c (i.e. the product of mass flowrate and specific heat for one fluid. 

The fluid having the smaller value of this product is designated by the 

subscript 'min' the other fluid by the subscript 'max'). 

ε, the effectiveness = actual temperature change 
maximum possible temperature change 

(where the actual temperature change is evaluated for the fluid with minimum 

value of mc, and maximum possible change is equal to the difference between 

entering temperatures). The method is described in textbooks on heat transfer 

(1), (2), (3). 

The relationship is usually expressed graphically, the heat transfer 

effectiveness ε, being plotted against the group UA (referred to as the number 

of transfer units NTU). Cmin 

The ratio Cm\n is employed as a parameter, 
r 
υπιαχ 

Figure 6.1 shows charts for four different surface geometries. 
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Heat transfer effectivenesss 
as a function of number of 
transfer units and capacity 
rate ratio; counterflow 
exchanger. 
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Figure 6.1. Thermal effectiveness of various heat exchanger configurations. 
Source: Reprinted with permission from W.M. Kays & A.L. London, 
Compact Heat Exchangers, 3rd Ed., McGraw-Hill Book Co., 1984. 
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EXAMPLE 6.1 

A heat exchanger has an area o f 2m2, and an overa l l c o e f f i c i e n t o f 2500 w/m2k. 

Fluids enter the exchanger as fo l l ows : 

Hot f l u i d - 3 kg/s enter ing at 330 K 

Cold f l u i d - 2.2 kg/s enter ing a t 290 K 

Spec i f ic heat o f hot f l u i d - 1100J/kg,K 

Speci f ic heat of cold f l u i d - 3000J/kg,K 

mc fo r hot f l u i d = 1100 * 3 = 3300 J/s ,K 

mc fo r cold f l u i d = 3000 * 2.2 = 6600 J/s,K 

Cmin _ 3300 = 0 5 
Cmax 6600 

^- = NTU = 2 -x- 2500 = 1.52. From the chart, 
Lmin 3300 

ε = 0.69 = temperature change of (mc) min f l u i d (hot f l u i d ) 
330 - 290 

.'. temperature change of hot fluid = 

0.69 * 40 = 27.6K. Hot fluid leaves at 339-27.6 = 302.4K. 

By a heat balance, cold fluid temperature change = 

27.6 *|300 = 1 3 8 K > H e n œ the col(J flui(J leaves at 290 + 13.8 = 303.8K. 
6600 

We will now look at a computer solution to this problem, and use the computer 

to check the above answer. The solution is prepared from basic principles, 

using the method of finite differences. 

Obviously this is a comparatively trivial problem. However, it shows how 

this method involves the solution of a number of simultaneous equations, and 

how these may be solved either by iteration or by matrix inversion. Further 

more, the method may be extended to cover other cases such as crossflow, and 

the one shell pass multi-tube pass exchanger etc. 

Solution of this problem by finite differences, using a manual solution by 

relaxation, is given by Dusinberre (4). 

The finite difference solution starts by subdividing the exchanger into a 

number of zones. For example, 3 zones are shown below. 

We use the relationships: 

q = UAAT and 

q = mcdT = CdT 
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Tl 

+ · 
1 

1 
1 
1 

Ta 

^ "4*" 

Zone ' 
1 I 

Λ —L. ■ 

T3 

—- 1 

* 1 
I 1 

Zone | 
2 1 

1 

T, 
Hot Fluid 

Zone 
3 

Cold Fluid 

b x J2 J 3 5 A 

We assume U is constant, no heat losses, steady state and constant values of 

C Hand Cc. Area of complete exchanger is A. We assume that Temperatures Tx 

and SA are known. The area available for heat transfer = A/Ni, where Nx = 

number of zones employed. 

The driving force in any zone is assumed to be the difference between the 

fluid temperatures averaged between inlet and outlet. 

Thus, for Zone 1: 

qi = (Tx + T2 - Sx + Sa) * UA = (Τχ + Ta - Sx - S2) * UA/6 
2 2 3 

Also qx = C H (Ti - T2) where C H = m * c for the hot fluid and 

qi = Cc (Si - Si) 

Equating 6.1 and 6.2: 

C H . ( T i - T2) = (Ti + T2 - Si - S2) * UA/6 

UA.Sa Ti - T2 = UA.Ti + UA.Ta 
6CH 6CH 

U A . S I 

6CH 

; i + ^ H ) = T i . ( l 
UA « UA 
6CH

;
 6CH-

6 C H 

(S, + S2) 

Tl (i - Wj+ SH- (S' + S' 
(1 + UA/6CH) 

( 6 . 1 ) 

(6.2) 

(6.3) 

Next, equating 6.1 and 6.3: 

Cc (Si - Sa) = (Tx + Ta - Sx - S2) * UA/6 

Si - S2 = UA . Ti + UA.Ta - UA.Si - UA.Sa 
6Cc 6Cc . 6Cc 6Cc 

whence, Si = S2 (1 - UA )+ UA . (Tx + T2) 
6CQ 6CQ 

(1 + UA/6Cc) 

Zones 2 and 3 by analogy, result in similar equations, giving the following 6 

equations in 6 unknowns (Tx and S< being known): 
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τ2 

τ3 

= τ, 

= τ2 

(1 -

(1 

(ι -

(1 

UA/6CH) 

+ UA ) 
6CH 

UA/6CH) 

+ UA ) 

+ UA 
6CH 

+ UA 
6CH 

(Sx 

(sa 

+ 

+ 

SJ 

s3) 

(6.4a) 

(6.4b) 

6CH 

T„ = T3 (1 - UA )+ UA (S3 + S J (6.4c) 
6CH 6CH 

(1 + UA ) 
6CH 

S, = S2 (1 - UA )+ UA ( T i + τ 2 ) ( 6 e 4 d ) 

6CC
 6 C c 

(6.4e) 

(6 .4 f ) 

s2 

s3 

(1 + UA ) 
6CC 

= S3 (1 - UA )+ UA (T2 + T3) 
6Cr 6CC 

(1 + UA ) 
6CC 

= S, (1 - UA )+ UA (T, + T J 
6CC 6CC 

(1 + UA ) 
6CC 

There are two methods of solving the above simultaneous equations:-

1) By Matrix Inversion. It is too complex to solve the equations by direct 

substitution, but it can be done by matrix inversion. 

The equations are rearranged with unknowns on the RHS and knowns on the LHS. 

Ti and S*, are known, also the groups UA/6 CH and UA/6CC (see Table 6.1). We 

arrange these into the rows and columns of the Vector and Matrix (see Table 

6.2). Solution of the unknowns is then obtained by inversion of the matrix, 

followed by multiplication of the inverse matrix by the vector. 

2) By Iteration. The equations developed above (equations 6.4a to f), are 

employed in a Seidel iteration, as described in Chapter 2. 
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COMPUTER SOLUTION 

Two programs are described below. The first employs matrix inversion to 

solve the simultaneous equations; the second employs iteration. It should be 

noted that the first program (CONV 1) is unsuitable for use on a desktop computer 

since it employs matrix algebra. 

C0NV1.BAS C0NV2.BAS 
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1 C\ ΤΡΈ1 \*Α 5k5k5k5k5k5k5k5k5k5k5kik5k5kik5k5k5k*5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k5k k̂ 

20 REM - PROGRAM C0NV1. BAS 
30 REM - COUNTERCURRENT STEADY STATE HEAT EXCHANGE 
40 REM - SOLUTION OF OUTLET TEMPERATURES BY 
50 REM - MATRIX INVERSION 
60 REM - PROGRAM NOMENCLATURE 
70 REM - Fl - Value of the product UA 
80 REM - F2,F3 - Values of the product mc for the 
90 REM cold and hot fluids respectively 
100 REM - M(J,K) - Matrix of coefficients of the unknowns 
110 REM - N(J,K) - Inverse matrix of M 
120 REM - P(J) - Vector values from Table 6.2 
130 REM - Q2 - The equivalent to the term UA/6Cc in 
140 REM equation 6.4a to f etc 
150 REM - Q3 - The equivalent to the term UA/6Ch in 
160 REM equation 6.4 etc 
170 REM --Nl - The number of zones 
180 REM - T1,T2 - Inlet temperatures of cold & hot 
190 REM fluids respectively 
200 REM - V(J) - Values obtained by multiplying the 
210 REM inverse matrix N by vector P 
220 REM - PROGRAM DESCRIPTION 
230 REM - LINES 1000 - 1140 Maximum array sises are 
240 REM - declared (line 1000) and values of the variables 
250 REM - are entered (lines 1010 - 1080). Next the two 
260 REM - groups which occur so frquently in the equations 
270 REM - are evaluated (lines 1090 & 1100). Then the 
280 REM - matrices are dimensioned (lines 1110 - 1140). 
290 REM - This is necessary to avoid errors in 
300 REM - matrix inversion and multiplication as 
310 REM - these operations would otherwise involve matrices 
320 REM - of the sises declared in the DIM statement 
330 REM - LIMES 1150 - 1510 Values of the coefficients of 
340 REM - the unknowns in the equations (Equations 6.4a 
350 REM - to f) are entered into Matrix M at the locations 
360 REM - indicated by Table 6.2. The vector values from 
370 REM - equation 6.4 and Table 6.2 are., similarly, entered 
380 REM - into Matrix P (lines 1470 - 1510). Note that for 
390 REM -all zones other than those at the ends of the 
400 REM - exchanger, the vector value is zero. 
410 REM - LINES 1520 - 1590 Finally, the matrix inversion 
420 REM - and multiplication steps are carried out (lines 
430 REM - 1520 & 1530), and the values obtained are printed 
440 REM - out (lines 1540 - 1590). Note that the values of 
450 REM - the unknowns, as they occur in Matrix V, are in 
460 REM - the sequence T2,T3,T4,etc, Sl,S2,etc. 
470 REM **************************************************** 
1000 DIM N(20,20),M(20,20),V(20),P(20) 
1010 INPUT "VALUE OF UA";F1 
1020 PRINT "VALUE OF PRODUCT OF MASS FL0WRATE &" 
1030 INPUT "SPECIFIC HEAT FOR THE COLD FLUID. M*C=";F2 
1040 PRINT "VALUE OF PRODUCT M*C FOR THE HOT FLUID " 
1050 INPUT "M*C=";F3 
1060 PRINT "INLET TEMPERATURES OF COLD & HOT FLUIDS " 
1070 INPUT "RESPECTIVELY";T2, Tl 
1080 INPUT "NUMBER OF ZONES";N1 
1090 Q2=F1/(2*N1*F2) 
1100 Q.3~F1/(2*N1*F3) 
1110 MAT N=ZER(2*N1,2*N1) 
1120 MAT M-ZER(2*N1, 2*N1) 
1130 MAT V=ZER(2*N1) 



1140 MAT P=ZER(2*N1) 
1150 FOR J=l TO Nl 
1160 K=J 
1170 M(J,K)=1+Q3 
1180 NEXT J 
1190 FOR J=N1+1 TO 2*N1 
1200 K=J 
1210 M(J,K)=1+Q2 
1220 NEXT J 
1230 FOR J=2 TO Nl 
1240 K=J-1 
1250 M(J,K)=Q3-1 
1260 NEXT J 
1270 FOR J=N1+1 TO 2*N1-1 
1280 K=J+1 
1290 M(J,K)=Q2-1 
1300 NEXT J 
1310 FOR J=N1+1 TO 2*N1 
1320 K=J-N1 
1330 M(J,K)=-Q2 
1340 NEXT J 
1350 FOR J=Nl+2 TO 2*N1 
1360 K=J-1-N1 
1370 M(J,K)=-Q2 
1380 NEXT J 
1390 FOR J=l TO Nl 
1400 K=J+N1 
1410 M(J,K)=-Q3 
1420 NEXT J 
1430 FOR J=l TO Nl-1 
1440 K=J+1+N1 
1450 M(J,K)=-Q3 
1460 NEXT J 
1470 P(1)=T1*(1-Q3) 
1480 P(N1)=T2*Q3 
1490 J=N1+1 
1500 P(J)=T1*Q2 
1510 P(2*N1)=T2*(1-Q2) 
1520 MAT N=INV(M) 
1530 MAT V=N*P 
1540 PRINT "VALUES OF HOT & COLD FLUIDS" 
1550 PRINT T1,V(N1+1) 
1560 FOR J=l TO Nl-1 
1570 PRINT V(J),V(J+N1+1) 
1580 NEXT J 
1590 PRINT V(N1),T2 
1600 END 

169 



170 

20 REM - PROGRAM CONV2.BAS 
30 REM - COUNTERCURRENT STEADY STATE HEAT EXCHANGE 
40 REM - SOLUTION OF OUTLET TEMPERATURES 
50 REM - BY SEIDEL ITERATION 
60 REM - PROGRAM NOMENCLATURE 
70 REM - Cl - Number of iterations 
80 REM - FI - Value of the product UA 
90 REM - F2,F3 - Values of the product mc for the cold 
100 REM and hot fluids respectively 
110 REM - F4 - Ratio of approach of successive 
120 REM iterations 
130 REM - Nl - The number of zones 
140 REM - Q2 - The equivalent to the term UA/6Cc in 
150 REM Equation 6.4a to f etc 
160 REM - Q3 - The equivalent to the term UA/6Ch in 
170 REM Equation 6.4 etc 
180 REM - S(J) - The unknowns S in equations 6.4a to f 
190 REM - T(J) - The unknowns T in equations 6.4a to f 
200 REM - T1,T2 - Inlet temparatures of cold and hot 
210 REM fluids respectively 
220 REM - V(J),W(J) Values of T(J),S(J) respectively, at 
230 REM the previous iteration 
240 REM - PROGRAM DESCRIPTION 
250 REM - LINES 1000 - 1150 Array values are declared 
260 REM - (line 1000) and values of the variables are 
270 REM - entered (lines 1020 - 1110). A value is then 
280 REM - chosen for the desired approach for successive 
290 REM - iterations (lines 1140 & 1150); next the two 
300 REM - groups UA/NC are evaluated (lines 1160 & 1170) 
310 REM - LINES 1180 - 1250 Temperature values are 
320 REM - assigned appropriately to the nodes. Inlet 
330 REM - values are assigned first (lines 1180 & 1190), 
340 REM - and the arithmetic mean of these values to all 
350 REM - other nodes (lines 1200 - 1250) 
360 REM - LINES 1260 - 1320 Seidel iteration is performed 
370 REM - using the form developed in Equations 6.4a to f; a 
380 REM - count is kept of the running total of iterations 
390 REM - (line 1320) 
400 REM - LINES 1330 - 1440 At each iteration, values of 
410 REM - the unknowns, generated at the step above, are 
420 REM - compared with the previous values. If new values 
430 REM - (T(J) and S(J)) are within the ratio (F4) of 
440 REM - previous values (V(J) and W(J)), then the program 
450 REM - terminates (lines 1330 - 1370). Otherwise, the. 
460 REM - new values of the unknowns become previous values 
470 REM - by assignment to matrices V and W and a further 
480 REM - iteration is performed (lines 1400 - 1440) 
490 REM - LINES 1450 - 1520 Having satisfied the test at 
500 REM - lines 1330 - 1380 above, the number of iterations 
510 REM - taken, and the results, are printed out (lines 
520 REM - 1460 - 1500). Finally, the number of iterations 
530 REM - (Cl) is set to zero, and the user is invited to 
540 REM - rerun the data (lines 1510,1520,1100). 
550 REM ************************** 
1000 DIM T(15),S(15),V(15),W(15) 
1010 C1=0 
1020 INPUT "VALUE OF UA";F1 
1030 PRINT "VALUE OF PRODUCT OF MASS FLOWRATE &" 
1040 INPUT "SPECIFIC HEAT FOR THE COLD FLUID. M*C=";F2 
1050 PRINT "VALUE OF PRODUCT M*C FOR THE HOT FLUID. "; 
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1060 INPUT "M*C=";F3 
1070 PRINT "INLET TEMPERATURES OF COLD & " 
1080 INPUT "HOT FLUIDS RESPECTIVELY";T2,Tl 
1090 PRINT 
1100 PRINT "HOW MANY ZONES BETWEEN 3 & 14 INCLUSIVE"; 
1110 INPUT Nl 
1120 IF NK3 THEN 1530 
1130 IF Nl>14 THEN 1530 
1140 PRINT "RATIO OF APPROACH FOR SUCCESSIVE "; 
1150 INPUT "ITERATIONS";F4 
1160 Q2=F1/(2*N1*F2) 
1170 Q3=F1/(2*N1*F3) 
1180 T(1)=T1 
1190 S(N1+1)=T2 
1200 FOR J=2 TO Nl+1 
1210 T(J)=(Tl+T2)/2 
1220 NEXT J 
1230 FOR J=l TO Nl 
1240 S(J)=(Tl+T2)/2 
1250 NEXT J 
1260 FOR J=2 TO Nl+1 
1270 T(J)=(T(J-1)*(1-Q3)+Q3*(S(J-1)+S<J)))/(1+Q3) 
1280 NEXT J 
1290 FOR J=l TO Nl 
1300 S(J)=(S(J+1)*(1-Q2)+Q2*(T(J)+T(J+1)))/(1+Q2) 
1310 NEXT J 
1320 C1=C1+1 
1330 FOR J=l TO Nl+1 
1340 IF V(J)/T(J)>F4 THEN 1400 
1350 IF W(J)/S(J)>F4 THEN 1400 
1360 IF V(J)/T(J)<1/F4 THEN 1400 
1370 IF W(J)/S(J)<1/F4 THEN 1400 
1380 NEXT J 
1390 GOTO 1450 
1400 FOR J=l TO Nl+1 
1410 V(J)=T(J) 
1420 W(J)=S(J) 
1430 NEXT J 
1440 GOTO 1260 
1450 PRINT 
1460 PRINT "NUMBER OF ITERATIONS=";Cl 
1470 PRINT "VALUES OF HOT & COLD FLUIDS" 
1480 FOR J=l TO Nl+1 
1490 PRINT J,T(J),S(J) 
1500 NEXT J 
1510 C1=0 
1520 GOTO 1100 
1530 END 
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EXAMPLE 6.2 
Solve the problem presented in Example 6.1 using program C0NV2. 

LOAD"A:CONV2 
Ok 
RUN 
VALUE OF UA? 5000 
VALUE OF PRODUCT OF MASS FLOWRATE & 
SPECIFIC HEAT FOR THE COLD FLUID. M*C=? 6600 
VALUE OF PRODUCT M*C FOR THE HOT FLUID. M*C=? 3300 
INLET TEMPERATURES OF COLD & 
HOT FLUIDS RESPECTIVELY? 290,330 

HOW MANY ZONES BETWEEN 3 & 14 INCLUSIVE? 3 
RATIO OF APPROACH FOR SUCCESSIVE ITERATIONS? 1.0001 

NUMBER OF ITERATIONS^ 9 
VALUES OF HOT & COLD FLUIDS 
1 330 303.9195 
2 318.308 298.0639 
3 309.2314 293.5223 
4 302.1875 290 
HOW MANY ZONES BETWEEN 3 & 14 INCLUSIVE? 9 
RATIO OF APPROACH FOR SUCCESSIVE ITERATIONS? 1.0001 

NUMBER OF ITERATIONS= 20 
VALUES OF HOT & COLD FLUIDS 
1 330 
2 325.7913 
3 321.9187 
4 318.3561 
5 315.0793 
6 312.0658 
7 309.2948 
8 306.7471 
9 304.4049 
10 302.2518 

HOW MANY ZONES BETWEEN 3 
Ok 

303.9355 
301.8108 
299.8597 
298.0681 
296.4228 
294.9117 
293.5235 
292.2483 
291.0766 
290 

& 14 INCLUSIVE? 2 
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PROBLEMS - CHAPTER 6 

1. A thin copper pipe 1cm in diameter is used to convey water through an air 

space having a temperature of 40 C. The pipe is 100m long, and water flows 

through it at a rate of 3 * l O ' V / s If water enters the pipe at a 

temperature of 10°C, determine its temperature at 10m intervals along the 

length of the pipe, using the data given below: 

Mean Value of Overall Heat 

Transfer Coefficient : 25W/m2K 

Density of Water : 999 kg/m3 

Specific heat of water : 4800 J/kg,K 

Hint: We assume no change in the air temperature and simulate this when 

using the program, byascribing a very large value to mc for the 

hot fluid. You can of course check your outlet temperature using 

the charts given earlier in the chapter. 

2. A bio-organic nutrient medium is subjected to a sterilisation cycle before 

being admitted to a fermenter. The medium leaves the steriliser at 100°C and 

is rapidly cooled to limit degradation; further cooling lowers the temperature 

to a value appropriate for fermentation. The cooler consists of two pipes 

arranged concentrically, medium flowing through the inner pipe, and cooling 

water passing countercurrently through the annul us. 

Use the program C0NV2 and the data below to determine the time taken to cool 

the medium from 100°C to 70°C: 

Inlet temperature of water 

Flowrate of water 

Specific heat of water 

Flowrate of nutrient medium 

Specific heat of medium 

10°C 

10.0kg/s 

4800 J/kg,K 

2.5 kg/s 

4000 J/kg,K 

Overall heat transfer coefficient based on 

onside diameter of inner 

pipe 

Length of inner pipe 

Diameter of inner pipe 

500 w/m2K 

150m 

5 cm 

3. Using the technique described in this chapter, write programs to solve for 

the outlet temperatures of: 

a. A one shell pass, two tube pass exchanger. 

b. A crossflow exchanger, both fluids unmixed. 

Use Fig. 6.1 to check your results. 
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4. Write a program which will determine the heat exchanger area required for 

a given duty if three of the four terminal temperatures, and film coefficients 

are known. 

REFERENCES 
1 J.P. Holman, 3rd Edition, Heat Transfer, McGraw Hill Book Co., New York, 

U.S.A., 1972 
2 F. Kreith, 3rd Edition, Principles of Heat Transfer, International Textbook 

Co., Scranton Pa, U.S.A., 1973 
3 S. Kakac, A.E. Bergles, F. Mayinger, Heat Exchangers, Hemisphere Publishing, 

New York, U.S.A., 1981 
4 G.M. Dusinberre, Heat Transfer Calculations by Finite Differences, 

International Textbook Co., Scranton Pa, U.S.A. 1961 
5 M.E. Leesley, Editor, Computer-aided Process Plant Design, Gulf Publishing 

Co., Houston, Texas, U.S.A., 1982 

Further references to the finite difference technique are listed at the end 

of Chapter 7. 
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Chapter 7 

SOLUTION OF PROBLEMS IN CONDUCTION HEAT TRANSFER AT STEADY STATE 
BY THE METHOD OF FINITE DIFFERENCES 

This mode of heat transfer is said to take place by the transfer of 
vibrational energy between molecules. It is the mechanism which accounts for 
the transfer of heat within solid bodies. In the case of fluids, conduction 
heat transfer is generally much less significant than heat transfer by other 
modes such as convection, condensation or boiling. 

The application of conduction theory is useful in the calculation of heat 
flows through insulating layers, and in the design of furnace enclosures. In 
the latter case, it is also important to be able to determine temperature 
distribution since this governs the phenomena of spalling and creep. 

In this chapter, methods will be detailed for dealing with conduction heat 
transfer under steady state conditions (i.e. invariant with respect to time). 
The next chapter will deal with the extension of the arguments to include 
transient behaviour. 

When heat flows through a body by the mechanism known as conduction, the 
quantity of heat flowing per unit of time is related to the other variables by 
the general expression: 

Flowrate <r Driving Force 
Resistance 

In this case the driving force is difference in temperature and the 
resistance results from the shape and physical properties of the conducting body. 
Thus in the case of a flat slab of material such as that shown in Figure 7.1, 
this relationship is written for conduction between the vertical faces shown as: 

49. = -kA — (7 1) 
dt KM dx [/'i} 

This equation is known as the Fourier equation (1), and is directly useful 
in many cases where the system can be described in one dimension and easily 
integrated. These cases are thoroughly treated in many textbooks and some 
examples are given later. 

Where A = area across which heat transfer occurs ; 
k = thermal conductivity of the conducting material (e.g. in W/m K); 
Q = amount of heat transferred; 
t = time; 
x = distance; 
T = temperature 
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Surface of area A at temperature Ti 

; Surface of area A at temperature T2 

Figure 7.1. Heat conduction through a flat slab. 

The more general case is arrived at by applying the above relationship to 

conduction in three dimensions. Thus consider a homogeneous solid body, having 

uniform values throughout of the properties p, c and k (density, specific heat, 

thermal conductivity). 

Due to various heat transfer mechanisms operating at the surfaces of this 

body, there may be a wide range of temperatures within it. An element within 

the body is shown in Figure 7.2. This can exchange heat by conduction, with six 

other contiguous cubical elements. It is assumed that the behaviour of each 

element can be represented by a point or node at its centre. Using the 

nomenclature of finite differences, a heat balance around the central element 

(element 1)) can be written. The subscripts refer to conditions within a 

given element of the same number: 

k AyAz. (T3- T J + k AyAz (T„- Tx) + k AyAx (T6- Tx) + 
AX AX ΔΖ 

k AyAx m (T7- Ti) + k AxAz # (T5- Ti) + k AxAz (T2- Ti) = 
Az Ay Ay 

Ax Ay Az Pc (Τχ - T J (7.2) 

ΔΘ 
where Τχ = new value of temperature of node 1 after exchange of heat for time 
ΔΘ. 
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Figure 7.2. Conduction in three dimensions. 

Dividing through by Δχ . Ay . Δζ and rearranging, this can be rewritten 
as: 

k (T3 - T J - k (Τχ - T J k (T6 - Τχ) - k (Τχ - T7) 
Δχ Δχ + Δζ Δζ + 

Δχ Δζ 

k (Ta- tx) - k (Τχ- Τ5) 
ΔΥ Ay = pC (Τχ - Τχ) 

Ay Δθ 
(7.3) 

In the limit, when Δχ, Ay, Δζ, and ΔΘ -> 0, then 

δ_ (köl) _δ_ (köX) _δ_ (kfij) = δΐ 
δχ (δχ ) ôy (ôy ) δζ (δζ Ν Ω pc or: 

(7.4) 

δ 2 Τ + δ 2 Τ + δ 2 Τ 

ô x 2 ö y 2 δ ζ 2 I . âl where a = *-
a δθ pc 

(7.5) 

This equation is a form of the Fourier equation expressing conduction in 
three dimensions. Obvious simplifications can be made if less than three 
dimensions need be considered. When the body is at steady state conditions, 
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then the right hand side of equations 7.2 to 7.5 = 0. We thus get an equation 

known as the Laplace equation (1), (2): 

i!I + i!I + 1 Ü - n n *\ 
ox2 oy2 όζ2 U.o; 

For other applications, heat generation terms can also be included. 

Although partial differential equations usefully describe what is occurring, 

they are often of little practical application, due to the complex geometry of 

the solid body under consideration. Furthermore, it is usually necessary to 

consider heat transfer occurring at the surfaces of the body by convection and 

radiation. In such cases, finite difference methods of solution are much more 

useful and applicable (1), (2), (3), (4). 

In the derivation of the Fourier equation, the elements considered were 

assumed to be differentially small. By solution of the equation, is obtained 

the 'correct' solution to a problem. If elements finite in size are considered, 

the solution obtained will be less accurate. On the other hand, more complex 

situations can be dealt with. The procedure will now be described in more 

detail. 

Bodies Having Surfaces Formed of Planes Arranged at Right Angles 

In such cases, the body is subdivided into a convenient number of regular 

elements having plane boundaries. (Where the body has a uniform cross-section 

and relatively great length, a two dimensional system need only be considered). 

Each subdivision is considered to be a lumped system, that is, it can be 

represented by a point or node at its centre. An equation such as equation 7.2 

is then written around each node in turn. 

In the case of steady state problems, certain boundary conditions are known, 

or must be assumed, but otherwise nodal temperatures are unknown. Where the 

equations generated are linear, a variety of methods may be used to solve for 

the unknown values, namely trial and error, determinants, relaxation and 

iteration. Where the equations are non-linear (for example where radiation is 

involved) then some of these methods may not be available. 

Examples of Finite Difference Solutions to Steady State Conduction Problems, 

Using Linear or Rectilinear Nodal Networks 

EXAMPLE 7.1 

(a) Estimate the temperature distribution within a duct having the typical 

cross section shown in Figure 7.3a. Hence calculate the heat loss from the 

duct per unit of length, assuming the thermal conductivity of the material to 

be 1 W/mK. The inner face of the duct is constant at 500 K and the outer face 

at 320 K. 
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Figure 7.3a. 

Figure 7.3b. 

This is a well known example which has been repeated in a number of 
references. It is nevertheless included here as it provides an excellent 
example of the technique (1), (2). 

On arguments of symmetry, only one eighth of the figure need be considered. 
On this a rectilinear network of nodes can be arranged. Such a network is shown 
in Figure 7.3b. Should a more accurate representation be required, then a finer 
network could be drawn. The network shown will not give an accurate result, 
but serves to illustrate the method. 

First write the equations representing each node. The subscripts indicate 
the value of the property at the node under consideration. 

Tx = T2 = T3 = T2' = 500 K 

Ti3= Tli4 = T15etc. = 320 K 
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It should be noted that nodes such as 9'. 6', IV and 14' are also mirror 

images of the unsuperscripted node of the same number. 

For the remaining nodes, heat balance equations must be written 

Node 4: 

kAc (T3 - T j + kAç (T5 - T«) + kA^ (T9 - T j + kA^ (T9 - T j 
Δχ Δχ Ay Ay 

= sum of heat flows to and from node 4 

= zero at steady state. 

Since Δχ = Ay, this equation simplifies to: 

kAc (2T5 + 2T9 - 4T4) = 0 
Δχ 

The area for conduction between nodes, for unit depth normal to the cross 

section, Ac = 0.2m2. Distance between nodes, Δχ = 0.2m. .Thermal conductivity, 

k = 1 W/mK. Therefore the above equation, without cancellation reduces to: 

2T5 + 2T9 - 4TA = 0. 

Equations for the remaining nodes are similarly written, and are tabulated 

in Table 7.1. 

There are a number of ways by which the above equations may be solved. These 

will be discussed in turn in this and the examples which follow. 

1. Direct Solution by Matrix Algebra. 

In the example above there are as many equations as there are unknowns, 

consequently a direct analytical solution is possible. This can be done using 

determinants. The first step is to rewrite the above equations, substituting 

the given boundary conditions. Thus we obtain Table 7.2. 

Node 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Equation 

-4T„ + 2T5 + 2T9 

Τχ + T* - 4T5 + T6 + 

T2 + T5 - 4T6 + T 7 + 

T3 + 2T6 - 4T7 + T12 

-4T8 + 2T9 + 2Τχ« 

T* + T8 - 4T9 + T10+ 

T5 + T9 - 4T10+ Tn+ 

T6 + Tio- 4TX1+ T12+ 

T 7 + 2TX1- 4T12+ Tle 

= 0 

Τχο = 0 

T1X = 0 

= 0 

= 0 

T15 = 0 

Tle = 0 

T17 = 0 

= 0 

Equation 

-4T* + 2T5 + 2T9 

T* - 4T5 + T6 + Tio 

T5 - 4T6 + T7 + T U 

2T6 - 4T7 + T12 

-4T8 + 2T9 

T* + T8 - 4T9 + Tio 

T5 + T9 - 4T10-+ T u 

T6 + Tio- 4Τϋ+ T12 

T7 + 2Ται- 4T12 

= 0 

= -500 

= -500 

= -500 

= -640 

= -320 

= -320 

= -320 

= -320 

Table 7.1. Table 7.2. 



181 

These equations are written in matrix notation in Table 7.3 or, in general 

terms, AT= B where A represents a square matrix of the ninth order, and 

T and B are column vectors also of ninth order. The solution of this equation 

is 

T = A-1B where A"1 represents the inverse or reciprocal of the above matrix. 

Rules for obtaining the inverse of a matrix have been briefly discussed in 

Chapter 2. 

Ta 

4 

-4 

+ 1 

0 

0 

0 

+1 

0 

0 

0 

ble 7 

5 

+2 

-4 

+ 1 

0 

0 

0 

+1 

0 

0 

3. 

6 

0 

+ 1 

-4 

+2 

0 

0 

0 

+1 

Û 

7 

0 

0 

+1 

-4 

0 

0 

0 

0 

+1 

8 

0 

0 

0 

0 

-4 

+ 1 

0 

0 

0 

9 

+2 

0 

0 

0 

+2 

-4 

+1 

0 

0 

10 

0 

+ 1 

0 

0 

0 

+1 

-4 

+ 1 

0 

11 

0 

0 

+1 

0 

0 

0 

+1 

-4 

+2 

12_ 

0 

0 

0 

+1 

0 

0 

0 

+ 1 

-4 

T* 
T5 
T6 
T7 

Te 
T9 

Tio 

Tu 

T12 

= 

o] 
-500 

-500 

-500 

-640 

-320 

-320 

-320 

-320 

Assuming matrix algebra is available, the simple Basic program DATA4, given 

in Chapter 2 may be employed: 

RUN 
NUMBER OF UNKNOWNS? 9 
INPUT MATRIX 
? -4,2,0,0,0,2,0,0,0 

1,-4, 1,0,0,0, 1,0,0 
0,1,-4,1,0,0,0, 1,0 
0,0,2,-4,0,0,0,0, 1 
0,0,0,0,-4,2,0,0,0 
1,0,0,0, 1,-4, 1,0,0 
0, 1,0,0,0, 1,-4, 1,0 
0,0, 1,0,0,0, 1,-4, 1 
0,0,0, 1,0,0,0,2, -4 

INPUT VECTOR 
? 0,-500,-500,-500,-640,-320, -320, -320, -320 
387.204 
421.756 
432.743 
435.316 
336.326 
352.652 
367.077 
373.9 
375.779 

Ok 
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Alternatively, the i terat ive procedure described in Chapter 2 may be 

employed, using Program Data 5. This yields a closely similar solution: 

LOAD"A:DATA5 
Ok 
RUN 
INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL 
? GS 
NUMBER OF UNKNOWNS? 9 
COEFFICIENTS OF EQUATION 1 
? -4? 2? 0? 0? 0? 2? 0? 0? 0 
COEFFICIENTS OF EQUATION 2 
? 1? -4? 1? 0? 0? 0? 1? 0? 0 
COEFFICIENTS OF EQUATION 3 
? 0? 1? -4? 1? 0? 0? 0? 1? 0 
COEFFICIENTS OF EQUATION 4 
? 0? 0? 2? -4? 0? 0? 0? 0? 1 
COEFFICIENTS OF EQUATION 5 
? 0? 0? 0? 0? -4? 2? 0? 0? 0 
COEFFICIENTS OF EQUATION 6 
? 1? 0? 0? 0? 1? -4? 1? 0? 0 
COEFFICIENTS OF EQUATION 7 
? 0? 1? 0? 0? 0? 1? -4? 1? 0 
COEFFICIENTS OF EQUATION 8 
? 0? 0? 1? 0? 0? 0? 1? -4? 1 
COEFFICIENTS OF EQUATION 9 
? 0? 0? 0? 1? 0? 0? 0? 2? -4 
INPUT VECTOR TERMS 
? 0? -500? -500? -500? -640? -320? -320? -320? -320 
NUMBER OF ITERATIONS^ 16 
V( 1 )= 387.0281 
V( 2 )= 421.6482 
V( 3 )= 432.6691 
V( 4 )= 435.2617 
V( 5 )= 336.2427 
V( 6 )= 352.5548 
V( 7 )= 367.0021 
V( 8 )= 373.8449 
V( 9 )= 375.7379 
Ok 
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The temperatures at the various nodes are listed in Table 7.4. These values 
are shown superimposed upon the node diagram in Figure 7.4. 

Table 7.4. 

Node 

4 
5 
6 
7 
8 
9 
10 
11 
12 

Values of Node 

Temperature 

387.2 
421.8 
432.7 
435.3 
336.3 
352.7 
367.1 
373.9 
375.8 

Temperatures. 

Figure 7.4. Values of temperature at the nodes. 

2. Solution by Manual Iteration 

The equation can also be solved by iteration, proceeding from guessed values 

of the temperatures. This can be done manually by the method of 'Relaxation', 

which was much favoured before the advent of computers (4). 

If incorrect values of the temperatures are chosen, then the RHS of each 

equation listed in Table 1 will not be zero. It will have a value, called its 

residual value, R. 

The method proceeds by adjusting the guessed temperature values so as to 

reduce the residuals until they are acceptably small. 

Substituting known boundary values, the equations of Table 7.1 are rewritten 

as in Table 7.5. 

The effect of unit changes in node temperature upon the values of the 

residuals is next tabulated (Table 7.6). 
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Node 

4 

5 

6 

7 

9 

10 

11 

12 

Equation 

-4T* + 2T5 + 2T9 = R, 

500 + T4 - 4T5 + T6 + T10 = R5 

500 + T5 4T6 + T 7 + Txl = R6 

500 + 2T6 - 4T7 + T1 2 = R7 

640 - 4T8 + 2T9 = R8 

320 + TA + T8 - 4T9 + T10 = R9 

320 + T5 + T9 - 4T10+ T1X = R10 

320 + T6 + T10- 4Tn+ T12 = R1X 

320 + T-7 + 2Tn- 4T12 + R12 

Table 7.5. Equations arranged for solution by Relaxation. 

ΔΤ, = 1 

ΔΤ5 = 1 

ΔΤ6 = 1 

ΔΤ7 = 1 

ΔΤ8 = 1 

ΔΤ9 = 1 

ΔΤ10 = 1 

ΔΤϋ = 1 

ΔΤ12 = 1 

àRu 

-4 

+2 

0 

0 

0 

+2 

0 

0 

0 

AR5 

+ 1 

-4 

+ 1 

0 

0 

0 

+ 1 

0 

0 

AR6 

0 

+ 1 

-4 

+ 1 

0 

0 

0 

+ 1 

0 

AR7 

0 

0 

+2 

-4 

0 

0 

0 

0 

+1 

AR8 

0 

0 

0 

0 

-4 

+2 

0 

0 

0 

AR9 

+ 1 

0 

0 

0 

+ 1 

-4 

+ 1 

0 

0 

AR10 

0 

+ 1 

0 

0 

0 

+ 1 

-4 

+ 1 

0 

ARn 

0 

0 

+1 

0 

0 

0 

+1 

-4 

+ 1 

AR12 

0 

0 

0 

+ 1 

0 

0 

0 

+2 

-4 

Table 7.6. Relaxation Pattern. 

Temperatures for the nodes are now assumed, and corresponding values of the 

residuals are worked out. Values of these are now put at the head of the 

Relaxation Table (Table 7.7) and stepwise temperature adjustments are made. 

The largest residuals are adjusted first. In this case, the value of 400 has 

been ascribed to eyery unknown temperature. Then 

Ru = -1600 + 800 + 800 = 0 

R5 = 500 + 400 - 1600 + 400 + 400 = +100 

The other residuals are similarly computed and entered into the table. The 

first steps in the table have been numbered, the actions occurring at each step 

being listed below. It should be noted that as each alteration to a 
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TABLE 7.7. Relaxation Table. 

1 
? 

3 

4 
5 

6 

7 
8 

9 

10 
11 

1? 
13 

14 
15 

16 

17 
18 

19 
20 
21 

22 
23 

24 

25 

26 
27 

28 
29 

30 

34 

L 
Aoo 

4oo 

4oo 

~ / o 
3<?o 

3?o 

~ 2 
3 8 8 

3 8 8 

k« 
O 

- 6 o 

-*> 

- P o 

- 2 θ 

- 4 0 

o 

o 

- /o 

-a 

- 2 

l 9 

4oo 

4&o 

JrPO 

f P O 

4 2 0 

4 2 0 

4 2 Q 

K5 

+/oo 

+7.S 

4-75 

+?5 

4-15 

4 * 5 

+25 

4-/5 

+ /S 

4-8 

+ 6 

•f-G 

u 
4oo 

4 o 0 

4-PO 

4?o 

42o 

-HO 

\â2SL 

43o 

4 3 o 

Kfi 

•WÛO 

+80 
+8o 

o 

+2S 

+45 
+45 

+5 

- 5 

+2 

+2 

4 - 5 

+ 5 

1 7 

ΑΌ0 

4oo 

+25 
4 P S 

4-2 5 

+ 7 
4 3 2 

432 

4 3 2 

k7 

+ 10O 

+ 100 

+70 

4I IO 

4-iO 

+10 

+ 3 0 

+ 2 

+2 

4-5 

+ 5 

T8 

4oe> 

-4° 
3 6 0 

360 

3éO 
- 1 5 

3 4 5 

- 5 

^4-0 

3 4 0 

- 2 

3 3 * 

3 3 8 

Re 

- / 6 0 

O 

- 6 O 

- 6 O 

- 6 0 

O 

- 2 0 

O 
O 

—/o 

- 2 
- 2 

T* 
4 0 0 

- 3 0 

3 7 θ | 

3 7 0 

37Ο 

- I O 

|360 

3 6 0 

- 5 
355 

3 5 5 

R* 
- « 0 

-120 

0 

- 2 5 

- 2 5 

- 2 5 

- 4 0 

O 

-10 

- /S 
- / 5 

- 2 2 

- 2 

- 4 

- 6 

- 6 

T10 

4 0 0 

- 2 5 

3 7 5 

3 7 5 

3 7 5 

3 7 5 
- 7 
3 6 t f 

3 6 8 

Rio 

- 8 0 

- / / o 

- / o 

- 3 0 

- 3 0 

- / o 
- / o 

-20 

- 3 0 

- 3 o 

l·2 

- 7 

-4-

- 4 -

T l 1 
4 0 0 

- 2 0 

38C^ 

3 8 0 

3 8 0 

- / O 

^7o 

370 

+ 3 
3 7 3 

373 

R11 

- 8 0 

4-/05 

- 2 5 

- 2 5 

- 5 5 

- 3 5 

-35 

+ 5 

4 - / 5 

4 - S 

+ // 

- / 

- / 

TxJ 
4oo 

400 

- 3 o 
3 7 θ | 

3 7 0 

3 7 o 

+3 
373 

373 

R12 

-so i 

- / 2 0 

- / 2 d 

O 

4-25 

+ 5 

-f /2 

+/2 

O 

4 - 6 

' + 6| 
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temperature is made, its value has been entered thus: [360 

Step 1 : enter estimated temperatures, and corresponding values of residuals 

calculated from Table 7.5; 

Step 2 : the largest residual (R8) is selected and an alteration to T 8 made 

which will result in value zero for this residual; 

Step 3 : the new values of T8, R8 and the other residuals affected, are 

entered; 

Steps 4,5 : the same procedure is repeated with the next largest residual, 

R*; 

Steps 6-9 : the procedure is repeated with residuals R10 and RX1; 

Step 10 : values of temperatures are entered and residuals calculated using 

the equations of Table 7.5. This is done as a check on the 

accuracy of the work. In this case no errors have occurred. 

The calculation proceeds in this fashion until the desired degree of accuracy 

has been attained. At line 34 a discrepancy in the value of R n may be noted. 

It is unnecessary to work back to correct the error. The calculation proceeds 

using the newly calculated values of the residuals. 

3. Calculation of Heat Loss 

From the temperature distribution obtained, and shown in Figure 7.4 the heat 

conducted along each path through the network can be calculated, as shown below. 

The heat conducted through each row of nodes should be the same, and indeed the 

values calculated are closely similar. 

Considering one-eighth of the figure only: 

Heat conducted node 1 to 5 = 

kA (Tx - T5) = 1(500 - 422) = 78 
x 

Heat conducted node 2 to 6 similarly= 

1(500 - 433) = 67 

Heat conducted node 3 to 7 = 

M500 - 435) = 32% 
total = 177%W 
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Similarly for the second row of nodes: 

Nodes 4 to 9 

Nodes 5 to 10 

Nodes 6 to 11 

Nodes 7 to 12 

total 

or for the third row: 

Nodes 8 to 14 

Nodes 9 to 15 

Nodes 10 to 16 

Nodes 11 to 17 

Nodes 12 to 18 

total 

= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 

34 
55 
59 
29̂  

\im* 

16 
33 
47 
54 
28 
178W 

Total heat loss per metre length of the section thus = 8 -* 178 = 1424W. 

EXAMPLE 7.2 

Repeat calculation A, but assuming the shape is made up of two layers of 

material of different thermal conductivities as shown in Figure 7.5. 

outer layer 

K - iw/mK 

inner layer 

k = 2W/mK -Λ 

^ 

\ 
\ 

\ 

^>v\x ^ 
' \ " \ \ \ 
% 

4 \ 

y/////, 

V//0 s\S 
0.8m 

2.0m 

1 
V< ' \ 
0.3 
lin 

\ 
\ 
\ 

0.3 
m 

i 

0.8m 

_._L 
0.3m 

I 

i 

2. 

\ 

Figure 7.5. 
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Further assume that heat transfer between the duct walls and the 

surroundings are described by combined coefficients of heat transfer by 

radiation and convection of 30 W/m2K for the inner surface, and 7 W/m2K for the 

outer surface. Temperature of gas flowing in the duct is 500 K and ambient 

temperature is 290 K. 

Since surface temperatures are unknown, a much greater number of nodes must 

be considered. Using the same network as before (Figure 7.3b), equations are 

written as follows: 

Node 1 : 

(|x + |X) hx. (TF - T O + |fx . kx . (Ta - T O + g- . k, (T5 - T O + T 

0 . kx (Ts - T O + ffx . ki. (Ta7 - T O = 0 where TF = gas temperature 

within the duct. 

Since Δχ = Ay = 0.2; TF = 550; kx = 2; and hi = 30, this simplifies to: 

0.2 ·* 30 (550 - Tx) + Ta - Tx + 2 (T5 - Tx) + 2 (Τ^ - Tx) + Ta' - Τχ = 0 

Λ 3300 - 12Τχ + 2Τ2 + 4Τ5 = 0 

Node 2 : 

Δ^ ν ( τ τ ) +ΔΧ .?„ 1 « ( Τ χ ρ - TO + 
Δχ ' k l · [U 5) ày 1/kx + l / k 2 

Ay. . / τ τ χ + Δχ . k i . (Τχ - Τ 5 ) = 0 

Λ 2(Τ6 - Τ5) + 2 χ-0.666 (Τ10- Τ5) + 2(Τ* + Τχ - 2Τ5 ) = 0 

/. 2Τχ + 2Τ„ - 7.333 Τ5 + 2Τ6 + 1.333 Τιο = 0 

Node 10 : 

| j f . k2 . ( T u - Τχο>+ g " - k2. (Τχβ- T1 0)+ g . ka . (T , - Tio) + 

Δ^ " 2 · 1/kx + l / k a ' ( T 5 " T l o ) = ° 

/ . T u - Tio + T i e - T io + T9 - Τχο + 1 . 3 3 3 (T 5 - T 1 0 ) = 0 

Λ 1 .333 T5 + T 9 - 4 . 3 3 3 T 1 0 + T u + T i 6 = 0 
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Node 16 : 

g x . kx ( T 1 7 - T 1 6 ) + f £ x . k l e ( T 1 5 - T 1 6 ) + 0 . kx. (T 1 0 - T 1 6 ) + 

Δ χ . η 2 . (Ta - T 1 6 ) = 0 

where Ta = ambient temperature. 

Since h2 = 7; kx = 1; Τα = 290 this simplif ies to :-

h (T1 7 - T 1 6 ) + h (T 1 5 - T1 6) + T 1 0 - T 1 6 + 1.4 (290 - T 1 6 ) = 0 

Λ 406 + T 1 0 + 0.5 T1 5 - 3.4 T1 6 + 0.5 T X 7 = 0 

The other nodes are similarly handled, leading to the equations tabulated 

in Table 7.8. 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

0 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Equation 

-12"Ti + 2T2 + 4T5 = -3300 

Tx - 10T2 + T3 + 2T6 = -3300 

2T2 - 10T3 + 2T 7 = -3300 

-6 .666 T* + 4T5 + 2.666 T9 = 0 

2Τχ + 2T„ - 7.333 T5 + 2 T6 + 1 

2T2 + 2T5 - 7.333 T6 + 2 T7 + 1 

2T3 + 4T6 - 7.333 T7 + 1.333T1 2 

-4Te + 2T9 + 2Tx« = 0 

1.333T« + Te - 4 .333 T9 + T1 0 + 

1.333Ï3 + T9 - 4 .333 T10+ T u + 

1.333T· + T10- 4 .333 TX1+ T1 2 + 

1.333T7 + 2Τχ! - 4 .333T 1 2 + T 1 8 

-2.4Τχ3 + T14l = 0 

T8 + 0 .5T 1 3 - 3.4T1 A + 0 .5 T 1 5 = 

T9 + Ο.δΤκ, - 3 .4T 1 5 + 0 .5 T 1 6 = 

Τχο + 0 .5T 1 S - 3 .4T 1 6 + 0 .5 T17 

T u + 0 .5T 1 6 - 3 . 4 T 1 7 + 0.5 Τχ. 

Txa + Τχ7 - 3 .4 Τχ. =-406 

333Τχο 

333Τχχ 

= 0 

T1 5 = 

T 1 6 = 

T 1 7 = 

= 0 

=-406 

= -406 

= -406 

=-406 

= 

= 

0 

0 

0 

0 

0 

Table 7.81 

These equations may be solved either by matrix inversion or by iteration. 

Using program DATA5 the following temperature values are obtained. These are 

shown in Figure 7.6. 
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RUN 
INPUT J FOR JACOBI METHOD, GS FOR GAUSS-SEIDEL 
? GS 
NUMBER OF UNKNOWNS? 18 
COEFFICIENTS OF EQUATION 1 
? -12? 2? 0? 0? 4? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 2 
? 1? -10? 1? 0? 0? 2? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 3 
? 0? 2? -10? 0? 0? 0? 2? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 4 
? 0? 0? 0? -6.666? 4? 0? 0? 0? 2.666? 0? 0? 0? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 5 
? 2? 0? 0? 2? -7.333? 2? 0? 0? 0? 1.333? 0? 0? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 6 
? 0? 2? 0? 0? 2? -7.333? 2? 0? 0? 0? 1.333? 0? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 7 
? 0? 0? 2? 0? 0? 4? -7.333? 0? 0? 0? 0? 1.333? 0? 0? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 8 
? 0? 0? 0? 0? 0? 0? 0? -4? 2? 0? 0? 0? 0? 2? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 9 
? 0? 0? 0? 1.333? 0? 0? 0? 1? -4.333? 1? 0? 0? 0? 0? 1? 0? 0? 0 
COEFFICIENTS OF EQUATION 10 
? 0? 0? 0? 0? 1.333? 0? 0? 0? 1? -4.333? 1? 0? 0? 0? 0? 1? 0? 0 
COEFFICIENTS OF EQUATION 11 
? 0? 0? 0? 0? 0? 1.333? 0? 0? 0? 1? -4.333? 1? 0? 0? 0? 0? 1? 0 
COEFFICIENTS OF EQUATION 12 
? 0? 0? 0? 0? 0? 0? 1.333? 0? 0? 0? 2? -4.333? 0? 0? 0? 0? 0? 1 
COEFFICIENTS OF EQUATION 13 
? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? -2.4? 1? 0? 0? 0? 0 
COEFFICIENTS OF EQUATION 14 
? 0? 0? 0? 0? 0? 0? 0? 1? 0? 0? 0? 0? .5? -3.4? .5? 0? 0? 0 
COEFFICIENTS OF EQUATION 15 
? 0? 0? 0? 0? 0? 0? 0? 0? 1? 0? 0? 0? 0? .5? -3.4? .5? 0? 0 
COEFFICIENTS OF EQUATION 16 
? 0? 0? 0? 0? 0? 0? 0? 0? 0? 1? 0? 0? 0? 0? .5? -3.4? .5? 0 
COEFFICIENTS OF EQUATION 17 
? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 1? 0? 0? 0? 0? .5? -3.4? .5 
COEFFICIENTS OF EQUATION 18 
? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 1? 0? 0? 0? 0? 1? -3.4 
INPUT VECTOR TERMS 
? -3300? -3300? -3300? 0? 0? 0? 0? 0? 0? 0? 0? 0? -406? -406? 
-406? -406? -406? -406 
NUMBER OF ITERATIONS^ 24 
V{ 1 >= 517.105 
V{ 2 )= 530.3788 
V( 3 )= 532.3973 
V( 4 )= 428.7415 
V{ 5 )= 461.3569 
V( 6 )= 477.3167 
V( 7 )= 481.7324 
V( 8 )= 346.7833 
V( 9 )= 380.326 
V( 10 )= 403.1131 
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V( 11 )= 415.3587 
V( 12 )= 419.0901 
V( 13 )= 299.7733 
V( 14 )= 313.539 
V( 15 )= 326.8167 
V( 16 )= 336.2425 
V( 17 )= 341.4722 
V( 18 )= 343.1065 
Ok 

i l ■ 
1 / ' / '/ / 
17 11 6 2 
(342) (416) (478) (531) 
16 10 5 - - -A- 2 3 2 - -
(336) (404) (462) X 5 1 7 ) (531) (533) (531) 

! / ! / ' / ' I I i ! 
15 9---^4 5 6 7 6--
(327) (381) ,<430) (462) (478) (482) (478) 

i, !/ I I I I ! 
14 _8 9 10 11 12 11- -
(314) /(347) (381) (404) (416) (419) (416) 
13 14 15 16 17 18 1 7 - -
(300) (314) (327) (336) (342) (343) (342) 

Figure 7.6. Values of temperature at the nodes. 

NON-RECTILINEAR AND IRREGULAR BOUNDARIES 

A. Modified Rectilinear Network 

Suppose a portion of the network is intersected by a bounding surface of the 

solid, as shown for example in the two dimensional network of Figure 7.7. The 

heat transfer terms in the paths affected are rewritten thus: 
Heat transfer between node 1 and the surface at 2' = 

(7.7) 

(7.8) 

(7.9) 

Heat transfer between node 1 and the surface at 5' = 

Heat transfer between nodes 1 and 3, would = 
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Triangles 
included 

Figure 7.7. Rectilinear net, modified at an irregular boundary. 

The method is of course, in error by the triangles which are included. 

Consequently, accuracy depends upon the fineness of the net used. 

B. Triangular Network 

The use of a triangular network in the vicinity of an irregular boundary has 

been proposed (4). The triangular network must be drawn so that no angle is 

greater than 90°. Then supposing A, B and C to be three nodes at the corners 

of the triangle, the conductances between them are: 

k cot ABCA conductance A to B = 

conductance A to C = 

conductance B to C = 

k cot L CBA 

k cot Z.BAC 

(7.10) 

[7.11) 

(7.12) 

If there is more conducting material outside the triangle, then this must be 

included as additional conductance terms. It can easily be shown that use of the 

triangular network leads to the same result as the modified rectilinear net. 
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However, for purposes of visualisation, the triangular net may be easier to use, 

and can reduce the number of nodes required. 

For a triangular network, the situation of Figure 7.7 would be redrawn as in 

Figure 7.8. 

Conducting paths 

Figure 7.8. Triangular network alternative to that of Figure 1.10. 

The heat transfer terms would then be as follows: 

Heat transfer between nodes 1 and 2' = 

kcotz.132 + kcotz.152 

L2 " Ay12
 + 2 ' AyxaJ (Tz " Tl) (7.13) 

which is the same result as before. Methods of minimising the number of nodes 
required, at a given mesh size, are available (5), (6). 

C. Polar Co-ordinates 

Where the boundary, or a portion of it has a cross section which is an arc 

of a circle, a polar co-ordinate system may be more convenient. Figure 7.9 

shows a typical arrangement of nodes in an annular segment. 
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Figure 7.9. Nodes in an annular segment. 

This arrangement has been made on the basis of equal increments of radius 

being assigned to each node. Other arrangements are of course possible, for 

example on the basis of equal increments of cross sectional area being assigned. 

Taking the depth in the axial direction as unity, and using the arrangement 

of Figure 7.9, heat transfer by conduction between nodes can be written as: 

Heat transfer between Nodes 1 and 2 = 

^ (T - T ) 
Δχ llz llj 

k (Ta - τ,) 
• irrb(0/18O) 

(7.14) 

k (T„ - Tx) 

Heat transfer between Nodes 1 and 4 = 

J>n + rh)-l. J_ 
πί 2 J 180 

Heat transfer between Nodes 3 and 4 = 

rh - rn. k (T«, - T3) 
2 πΓα(θ/180) 

(7.15) 

(7.16) 

Conduction through other paths outisde the annular segment should be included 

as additional terms. 
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EXAMPLE 7.3 

Example of the solution of a problem involving non-rectilinear boundaries 

Figure 7.10 shows the cross section proposed for a water cooled skid pipe 

for use in a heating furnace (7). The shape is to be constructed by welding 

strips made from rectangular bars, onto plain steel pipe. Assuming the thermal 

conductivity of the metal to be 48 W/mK, determine the temperature distribution 

over the cross section when the pipe is used in a furnace operating at 1300 K. 

The temperature of the water inside the pipe is 373 K. 

Figure 7.10. Cross-section of water-cooled skid pipe. 

Solution 

A suggested arrangement of nodes is shown in Figure 7.11. In order to 

simplify the calculations, a number of assumptions have been made: 

i. The resistance to heat transfer offered by the water within the pipe 

is small, and will be ignored. Consequently nodes 11 to 16 inclusive 

are assumed to be at 373K. 

ii. The furnace is assumed to behave as a black body enclosure, i.e. 

particular effects such as those due to an adjacent flame, are 

ignored. 
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& ■ <D 

*K 
\ 

161 \ 

12Ï 

^/ 

Figure 7.11. Suggested arrangement of nodes-water cooled skid pipe. 
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iii. No allowance is made for the effect of the adjacent floor etc. 

on the heat transfer by convection from the gas. 

iv. No allowance is made for heat transfer by conduction between the 

furnace floor and nodes 7 and 8. 

Node 1 

As, Γ Μ Τ Ρ - Tx) +εσ(ΤΡ - V ) ] + A,Jç (T2 - T j = 0 
L J Δχ 

The coefficient of heat transfer by convection is assumed to be: 

hx = 1.24 (TF - T01 / s 

This expression is based upon relationships for natural convection in air 

(1), (8). 

Heat transfer by radiation is given by the expression 

εσ (Τρ* - Tj* ) where 

e = emissivity of the surface, (assumed to be in a heavily oxidised condition) 

= 0.95 

σ = Stefan Bolzman constant = 

5.668* 10"8 wm~2 K~* 

ASI= area for heat loss by these mechanisms obtained from Fig. 7.10 = 

0.0055 + 0.08 m2 
« — m 

The equation for Node 1 can thus be wr i t ten: 
V 

0.0837 (TF - T J 3 + 3.826 e(TF" - ll
u ) + 

109 

0.3438k (Ta - TO = 0 

Node 2 

,0.08 + 0.2π * 21_) [ 1.24 (TF - Τ2) ' 3 + 5.668ε (TF* - Τ 2 θ ]+ 
{ 2 180 L 108 J 

0.055k (Ti - Ta) + 0.16π (21 + 3) * k(T16- Ta) + 0.04k (T3 - Ta) _ n 
2*0.08 180 0.08 0.2π *42/180 " U 

Λ 0.1405 (TF - T2f / 3 + 6.422 (TP
4 - Ta* ) + 

"TO 9 -

k [ 0.3438 (Tx - T2) + 0.8378 (T16- T2) + 0.2728 (T3 - T2 )] = 0 
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Node 5 

Γ % Λ 
(θ.2π * 20_ + 0.075) 1.24 (TF - Τ5) + 5.668ε ( V - Τ5") + 

180 2 L 108 J 

0.04k CU - T5) + 0.16π (2Q+12)k (Τ^ - Τ5) + 
0.2ττ * 40/180 180 * 0.08 

(0.4 + cotz. 589) * k (T9 - Τ5) + 
0.2ττ * 24/180 2 

(cot Δ598 + cot Ζ.578 ) * k (Τ8 - Τ5) +(cot Δ587 + cotz.567) -χ-
2 2 

k (Τ7 - Τ5) + cot Α576 * k (T6 - Τ5) = 0 
2 

Equations for nodes 1 to 10 are written in this fashion and evaluated for 

angles and lengths measured from Figure 7.11. 

It will be appreciated that direct solution of these simultaneous equations 

is impracticable since they are non-linear. Manual iteration by the method of 

relaxation is impossible for the same reason. In such a situation, computer 

iteration is the only way to obtain a solution. 

Computer Solution of Temperature Distribution in a Water-Cooled Skid Pipe 

The equations for the nodes developed above, are used in the Basic program 

which follows. The equations are written in terms of finite remainders. 

Starting from assumed temperature values, the program is executed by adjusting 

each temperature by an amount proportional to its remainder value. Iteration 

is continued until successive values of each temperature are substantially 

constant. 

A difficulty with such a computer program is in deciding the size of 

adjustment to be made at each iteration. A large adjustment should reduce the 

number of iterations required, but may cause instability in the calculation. 

A small adjustment will necessitate a large number of iterations being made. 

A simple search routine has been included in order to select a suitable 

increment of the remainders. 

The computer values of temperatures at the nodes are shown on Figure 7.12. 
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1 C\ "PTpVjf 5|£ jif *Jf >t >!• *Jf St? ^Lc^f s|̂ > ^ > l f ^fcilf^k' bk" ifc 5ίί bl̂ ^Jf ^If^lf bk" îlf i t ^f ^ l̂f ^ b l f ^ ^ ^ ^ ^ ^*^* ^ ^ ^ ^t ^ ^ ^ ^ ^ ^ 4* ^ ^ ^ ^ 

20 REM - THIS IS SSCOND1.BAS 
30 REM - THIS PROGRAM EVALUATES TEMPERATURE DISTRIBUTION IN 
40 REM - A WATER COOLED SKID PIPE 
50 REM - PROGRAM NOMENCLATURE 
60 REM - C1,C2 - Number of iterations, and number 
70 REM of iterations between printouts, 
80 REM respectively 
90 REM - El - Emissivity 
100 REM - F1,F2 - Furnace and wall temperatures, 
110 REM respectively 
120 REM - F4 - Acceptable difference in nodal 
130 REM temperatures at successive iterations 
140 REM - K - Thermal conductivity 
150 REM - R(J) - Remainders calculated from the node 
160 REM equations 
170 REM - Rl - Factor used in incrementing nodal 
180 REM temperatures 
190 REM - S(J) - New values of nodal temperatures 
200 REM - T(J) - Values of nodal temperatures used in 
210 REM calculation of remainders 
220 REM - PROGRAM DESCRIPTION 
230 REM - LINES 1000 - 1070 Matrix T is dimensioned and 
240 REM - physical properties and temperatures entered 
250 REM - LINES 1080 - 1150 The count of iterations is set 
260 REM - to zero (lines 1080 & 1090). A mean between 
270 REM - furnace and pipe wall temperatures is ascribed 
280 REM - to the unknown temperatures at the nodes. 
290 REM - Values of the wall temperature 
300 REM - are ascribed to all nodes on the 
310 REM - interior surface of the pipe (lines 1130 - 1150) 
320 REM - LINES 1170 - 1460 Remainders are evaluated using 
330 REM - the node equations, examples of which have been 
340 REM - given earlier 
350 REM - LINES 1470 - 1700 Values of temperatures at the 
360 REM - nodes are adjusted, the adjustment being 
370 REM - proportional to the size of the remainder 
380 REM - (calculated at statements 1170 to 1460 above) 
390 REM - The adjusted values are entered into Matrix S 
400 REM - (lines 1470 - 1490) 
410 REM - Next'a test is performed to check whether values 
420 REM - at the latest iteration differ by more than a 
430 REM - designated amount (F4) from those at the previous 
440 REM - iteration (lines 1510 - 1530). If they do not, 
450 REM - the program terminates with a printout of the 
460 REM - computed values (line 1540) 
470 REM - If any temperature values differ by more than the 
480 REM - designated amount, further iteration is necessary 
490 REM - First however a check for stability is made (lines 
500 REM - 1610 - 1640). If all temperature values lie 
510 REM - between those of furnace and pipe wall, a further 
520 REM - iteration is carried out (lines 1650 & 1710 to 
530 REM - 1780). If instability is detected, a message is 
540 REM - printed (line 1660), the value of increment Rl is 
550 REM - halved (line 1680), and the calculation is 
560 REM - restarted from the beginning (line 1700) 
570 REM - LINES 1710 - 1780 Values are printed out at 
580 REM - every tenth iteration 
590 REM - LINES 1790 - 1870 Final values are printed out 
600 REM - and the user is invited to rerun the program 
610 REM **************************************************** 
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1000 DIM T(20) 
1010 PRINT "PROPERTIES OF SKID PIPE" 
1020 INPUT "THERMAL CONDUCTIVITY";K 
1030 INPUT "EMISSIVITY";E1 
1040 INPUT "FURNACE TEMPERATURE,ABSOLUTE";F1 
1050 INPUT "WALL TEMPERATURE,ABSOLUTE";F2 
1060 INPUT "DELTA R";R1 
1070 INPUT "APPROACH, DEGREES";F4 
1080 C1=0 
1090 C2=0 
1100 FOR J=l TO 10 
1110 T(J)=(Fl+F2)/2 
1120 NEXT J 
1130 FOR J=ll TO 16 
1140 T(J)=F2 
1150 NEXT J 
1160 REM - NODE EQUATIONS ********************************** 
1170 R(1) = .0837*(F1-T(l)ri. 333+3. 826E-09*E1*(F1A4-T( 1) Λ4) 
1180 R(1)=R(1) + .3438*K*(T(2)-T(D) 
1190 R(2)=.1405*(F1-T(2))~1.333+6.422E-09*E1*(F1~4-T(2)Λ4) 
1200 R(2)=R(2)+K*(.3438*(T(1)-T(2))+.8378*(T(16)-T(2))) 
1210 R(2)=R(2)+K*.2723*(T(3)-T(2)) 
1220 R(3)=.1883*(F1-T(3))~1.333 
1230 R(3)=R(3)+8.606001E-09*E1*(F1~4-T(3r4) 
1240 R(3)=R(3)+K*(.2728*(T(2)-T(3))+.2546*(T(4)-T(3))) 
1250 R(3)=R(3)+K*1.518*(T(15)-T(3)) 
1260 R(4) = .184*(F1-T(4)ri.333+8.409E-09*E1*(F1A4-T(4)~4) 
1270 R(4)=R(4)+K*(.2546*(T(3)-T(4))+.2865*(T(5)-T(4))) 
1280 R(4)=R(4)+K*1.484*(T(14)-T(4)) 
1290 R(5) = . 1331*(F1-T(5)n. 333+6. 083E-09*E1*(F1~4-T(5)Λ4) 
1300 R(5)=R(5)+K*(.2865*(T(4)-T(5))+. 1529*(T(6)-T(5))) 
1310 R(5)=R(5)+K*(.3373*(T(7)-T(5))+.182*(T(8)-T(5))) 
1320 R(5)=R(5)+K*(.6497*(T(9)-T(5))+1.117*(T(13)-T(5))) 
1330 R(6) = .06138*(F1-T(6>ri.333+2.806E-09*E1*(F1~4-T(6r4) 
1340 R(6)=R(6)+K*(.1625*(T(5)-T(6))+1.539*(T(7)-T(6))) 
1350 R(7) = .06138*(F1-T(7))n.333+2.806E-09*E1*(F1~4-T(7)~4) 
1360 R(7)=R(7)+K*(.3373*(T(5)-T(7))+1.539*(T(6)-T(7))) 
1370 R(7)=R(7)+K*.3768*(T(8)-T(7)) 
1380 R(8)=.0632*(F1-T(8))~1.333+2.891E-09*E1*(F1~4-T(8)Λ4) 
1390 R(8)=R(8)+K*(.182*(T(5)-T(8)) + . 3768*(T(7)-T(8))) 
1400 R(8)=R(8)+K*1.539*(T(9)-T(8)) 
1410 R(9)=.073*(F1-T(9))~1.333+3.337E-09*E1*(F1~4-T(9)Λ4) 
1420 R(9)=R(9)+K*(.6497*(T(5)-T(9))+1.539*(T(8)-T(9))) 
1430 R(9)=R(9)+K*(.4407*(T(10)-T(9))+.8727*(T(12)-T(9))) 
1440 R(10)=.1125*(Γ1-Τ(10))Λ1.333 
1450 R(10)=R(10)+5.144E-09*E1*(F1~4-T(10)Λ4) 
1460 R(10)=R(10)+K*(.8815*(T(9)-T(10))+.9076*(T(11)-T(10))) 
1470 FOR J=l TO 10 
1480 S(J)=T(J)+R(J)*R1 
1490 NEXT J 
1500 REM - CONVERGENCE TEST ******************************** 
1510 FOR J=l TO 10 
1520 IF ABS(S(J)-T(J))>F4 THEN 1550 
1530 NEXT J 
1540 GOTO 1790 
1550 FOR J=l TO 10 
1560 T(J)=S(J) 
1570 NEXT J 
1580 C1=C1+1 
1590 C2=C2+1 
1600 REM - STABILITY TEST ********************************** 
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1610 FOR J=l TO 10 
1620 IF S(J)>F1 THEN 1660 
1630 IF S(J)<F2 THEN 1660 
1640 NEXT J 
1650 GOTO 1710 
1660 PRINT "UNSTABLE BEHAVIOUR" 
1670 PRINT 
1680 Rl=Rl/2 
1690 PRINT "NEW VALUE OF R1=";R1 
1700 GOTO 1080 
1710 IF C2<10 THEN 1170 
1720 C2=0 
1730 PRINT "ITERATION";C1 
1740 FOR J=l TO 10 
1750 PRINT J,T(J) 
1760 NEXT J 
1770 PRINT 
1780 GOTO 1170 
1790 PRINT "NUMBER OF ITERATIONS^";Cl 
1800 PRINT "DELTA R VALUE USED =";R1 
1810 PRINT "APPROACH USED =";F4;"DEGREES" 
1820 FOR J=l TO 16 
1830 PRINT J,T(J) 
1840 NEXT J 
1850 INPUT "INPUT 1 TO RERUN";F4 
1860 IF F4=l THEN 1060 
1870 END 

L0AD"A:SSC0ND1 
Ok 
RUN 
PROPERTIES OF SKID PIPE 
THERMAL CONDUCTIVITY? 48 
EMISSIVITY? .95 
FURNACE TEMPERATURE,ABSOLUTE? 1300 
WALL TEMPERATURE,ABSOLUTE? 373 
DELTA R? .05 
APPROACH, DEGREES? .1 
UNSTABLE BEHAVIOUR 

NEW VALUE OF Rl= .025 
UNSTABLE BEHAVIOUR 

NEW VALUE OF Rl= .0125 
UNSTABLE BEHAVIOUR 

NEW VALUE OF Rl= .00625 
ITERATION 10 
1 1084.684 
2 816.3517 
3 699.1298 
4 693.2986 
5 756.1986 
6 1021.031 
7 994.5483 
8 855.6071 
9 747.7815 
10 711.468 

ITERATION 20 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1113.917 
825.5598 
700.7467 
694.643 
763.6646 
1047.246 
1018.25 
866.6467 
754.7773 
714.8123 

ITERATION 30 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1117.136 
826.6108 
700.9605 
694.9393 
765.3291 
1052.33 
1022.943 
869.3926 
756.6096 
715.8909 

NUMBER OF ITERATIONS= 34 
DELTA R VALUE USED = .00625 
APPROACH USED = .1 DEGREES 
1 1117.366 
2 826.6862 
3 700.9777 
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4 694.974 
5 765.5301 
6 1052.936 
7 1023.504 
8 869.7278 
9 756.8342 
10 716.025 
11 373 
12 373 
13 373 
14 373 
15 373 
16 373 
INPUT 1 TO RERUN? 2 
Ok 

14 4 
(373) (695) 

^ ( 3 7 3 ) 

(757) N6 (1053) 
\ 7 (1024) 

(870) 

Figure 7.12. Temperatures at the nodes, using the computed values. 
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Three-Dimensional Networks 

In the preceding examples, three-dimensional bodies have been represented 

mathematically by 1 - or 2 - dimensional systems. This yery considerably 

reduces the complexity of the problem and the amount of work required to solve 

it. Writing finite difference equations is a laborious process. 

Two devices are frequently employed either alone or together to reduce the 

complexity of the problem: 

(a) the body is assumed to be of constant cross section, and end 

effects are ignored; 

(b) the cross section of the body is represented uni-dimensionally 

by straight lines and circular ars. 

The complexity of the shape which can be described by a 3-dimensional 

network is limited only by the powers of visualisation of the worker. However, 

where it is felt that a 3-dimensional system must be employed, extreme care 

should be exercised in setting up the equations. Drawings and sketches should 

be carefully inspected for any anomalies, which then help to pin-point errors. 

Numerous references exist which can supply further information in more 

advanced areas (6), (8), (10), (11). 

To conclude this chapter, here is an example of a problem in 3-dimensions: 

EXAMPLE 7.4 

Figure 7.13 shows a shape which is to be cast. It is required to determine 

the temperature distribution throughout the mould into which the casting 

material is poured. The following assumptions are made: 

(a) The mould is contained within a cube of dimensions 11 units x 

11 units x 11 units. 

(b) The casting material and hence the faces of the casting are 

at a uniform temperature of 1200K. 

(c) The outer faces of the moulding box are at a uniform temperature 

of 400K. 

(d) Transient effects are ignored. 

A program has been written which accepts the co-ordinates of the shape 

within a 3-dimensional matrix of a specified size. Figure 7.13 indicates the 

chosen co-ordinate system, coinciding with the edges of the moulding box. 
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K-axis 
or N-axis 

M-axis 

Figure 7.13. Co-ordinates for a 3-dimensional figure. 

Heavy broken lines indicate the axes, which are coincident with the edges of 
the casting box. 
Light broken lines indicate the coordinates of the L-M plane, at the fourth 
position along the N-axis. 
Cross hatching indicates the intersection of this plane with the 3-dimensional 
figure. 

This problem is one for which Basic is not well suited. Memory allocation 

for Basic is only 64K bytes, and this is inadequate for the storage of large 

arrays such as those required in this case. The only way out of this difficulty 

is by the use of files. Extra programming is required to handle the files which 

are stored on disc or cassette. Shuffling numbers back and forth between disc 

and computer takes time, much of which is associated with the speed of response 

of the hardware. Consequently the program is excessively slow. There are 

however a number of ways in which computing time can be reduced: 

1. Improve the hardware. This might be done by using a machine with a 

faster processor, and by using a hard disc for storage instead of a floppy disc. 
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2. Improve the program. In this instance this can be done by writing the 

program to use random files, rather than sequential files. Programs are given 

for both these cases. 

3. Run the program on a ramdisc (virtual disc). This circumvents the 

storage limitations of the Basic compiler by taking the files out of the Basic 

area into the random access memory of the computer. 

4. Improve or change the language. Basic normally operates through an 

interpreter, that is, each program line is compiled and checked for errors each 

time it is run through. A software option is available which produces a 

compiled version of a Basic program. Running such a compiled Basic program 

effects a considerable time saving. Another alternative is to use a language 

such as Pascal; since this does not have the memory limitations of Basic, the 

use of files is unnecessary, since large arrays can be generated. A consequent 

saving in processing time results. 

Table 7.9 gives the times for only one iteration of the programs, using some 

of these various alternatives. 

Computer 

PC 

PC/XT 

Drive 

Floppy disc 

Ramdisc 

Hard disc 

Hard disc 

Ramdisc 

Program 

Sequential files 

Sequential files 

Sequential files 

Random files 

Ramdom files 

Language 

Basic 

Basic 

Basic 

Basic 

Basic 

Time for one 
iteration of 
the program 

15 minutes 

7 min. 35 sec. 

7 min. 56 sec. 

5 min. 7 sec. 

4 min. 24 sec. 

Table 7.9. Iteration times for solution of Example 7.4. 

Since forty of fifty iterations are required in order to obtain a 

reasonable result, these programs take a long time to run. 

There being no intersection of the shape with the L-M plane at values of 

N = 1,2,3, zeros are entered to the computer for these locations. At N = 4, 

values of L = 5,7 and M = 6,7 are entered. (This is also shown on Figure 7.13). 

The computer programs, the input data values, and the temperatures calculated 

are given below. Table 7.10 gives the temperatures obtained at the 50th 

iteration and Figure 7,14 shows these values graphically. 



SSC0ND2.BAS AND 

SSC0ND3.BAS 
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Process 

1 
\ * - w Subroutine 

Read 1 
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10 REM ************************************** 
20 REM - PROGRAM SSCOND2.BAS THIS PROGRAM 
30 REM - CALCULATES TEMPERATURE DISTRIBUTION FOR 
40 REM - SOLIDS IN THREE DIMENSIONS AT STEADY STATE 
50 REM - USING SEQUENTIAL FILES 
60 REM - PROGRAM NOMENCLATURE 
70 REM - AK,CK - L,M coordinates of top left hand 
80 REM corner of a cross section of the 
90 REM shape (see Figure 7.13) 
100 REM - BK,DK - L,M coordinates of bottom right hand 
110 REM corner of a cross section of the shape 
120 REM (see Figure 7.13) 
130 REM - Cl - Number of iterations 
140 REM - Nl - Number of subdivisions along an axis 
150 REM - PK - Number of rectangular segments of the 
160 REM shape for which values of coordinates 
170 REM aAK,BK etc. have to be read 
180 REM - T(L,M,N) Values of temperatures at the nodes 
190 REM - Tl - Temperature of the surfaces of the box 
200 REM - T2 - Temperature of shape 
210 REM - Z(L,M) - Values of temperatures at the nodes at 
220 REM one cross section (i.e. one particular 
230 REM value of ordinate N) 
240 REM - PROGRAM DESCRIPTION 
250 REM - LINES 2000 - 2020 Arrays are dimensioned and 
260 REM - temperature values are entered from the keyboard 
270 REM - LINES 2040 - 2110 These data statements contain 
280 REM - data pertaining to Example 7.4 
290 REM - LINES 2150 - 2320 File DATAI is opened, ready 
300 REM - for the transfer to it of values of temperatures 
310 REM - at the nodes (line 2150). Because of limitations 
320 REM - in BASIC with regard to memory, this transfer must 
330 REM - be done by instalments. What we have to be able 
340 REM - to do is to store all the elements of a 20,20,20 
350 REM - matrix;since BASIC cannot handle this, we have to 
360 REM - do this by taking the elements from successive 
370 REM - 20,20 matrices. First the value Tl input at line 
380 REM - 2010, is ascribed to all the elements of Matrix Z 
390 REM - (lines 2170 - 2210). Next, some of these 
400 REM - values are changed by entering values of T2 in 
410 REM - accordance with the information contained in the 
420 REM - data statements (line 2240 and subroutine Read) 
430 REM - These values are then written to the file (lines 
440 REM - 2250 - 2290). This is done for each value of K 
450 REM - (lines 2160 - 2300), so that all the initial 
460 REM - values of temperatures at the nodes have been 
470 REM - transferred to the file. The file is then 
480 REM - closed (line 2310);line 2320 allows the data 
490 REM - statements to be read again. 
500 REM - LINES 2330 - 2340 The iteration count is 
510 REM - increased by 1, and the value is printed 
520 REM - LINES 2420 - 3050 File Datai is again opened, 
530 REM - this time so that values may be read from the file 
540 REM - In order to perform the finite difference 
550 REM - calculation for each node, values for the nodes on 
560 REM - either side must be available. Referring to 
570 REM - Figure 7.13, temperature values are required for 
580 REM - all values of L & M, and for 3 values of N (or K) 
590 REM - For this purpose the three dimensional matrix T 
600 REM - is employed. Temperatures at the surfaces of the 
610 REM - box are assumed to be invariant at value Tl. The 
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620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
lOOC 

REM ■ 
REM · 
REM ■ 
REM ■ 
REM ■ 
REM · 
REM -
REM · 
REM -
REM · 
REM ■ 
REM -
REM -
REM · 
REM -
REM -
REM -
REM · 
REM · 
REM -
REM -
REM ■ 
REM ■ 
REM · 
REM ■ 
REM ■ 
REM · 
REM · 
REM -
REM ■ 
REM ■ 
REM ■ 
REM ■ 
REM ■ 
REM ■ 
REM ■ 
REM · 
REM ■ 
) REM 

1010 REM 
102C ) REM 
1030 REM 
104C ) REM 
1050 REM 
106C 
107C 
108C 
109C 
H O C 
H I C 
112C 
113C 
114C 
115C 
116C 
117C 
118C 
119C 
120C 
121C 
200C 

) REM 
) REM 
) REM 
) REM 
) REM 
) REM 
) REM 
) REM 
> REM 
) REM 
> REM 
) REM 
> REM 
) REM 
) REM 
) REM 
> DIM 

- first two sets are read directly from the file 
- (lines 2420 - 2490). In order to get further 
- values from the file in the correct order, it is 
- necessary to close the file (line 2500), and then 
- to reopen it (line 2520) for each successive step 
- across the matrix (value of K). Values are then 
- read from the file, starting at the beginning of 
- the record each time (lines 2540 - 2600). Values 
- preceding those required, are successively over-
- written at each step of the J loop, leaving the 
- required values in Matrix T when J=K. The file 
- is then closed (line 2610). Another file is 
- employed to store the new temperature values 
- generated at each iteration, and Data2 is opened 
- for this purpose (line 2630). Since boundary 
- values = Tl, these are first written to the file 
- (lines 2640 - 2690) and these are printed out 
- (line 2700 & subroutine Print). Next the finite 
- difference equations are evaluated (lines 2730 -
- 2780). It was decided to apply these algorithms 
- to all elements in the net, but this necessitates 
- the reinstatement of the constant value T2 at the 
- nodes corresponding to the location of the shape. 
- This is done at line 2790 using subroutine Read 
- (lines 3320 - 3420) This completes one "cross 
- section" of the solid, i.e. a unit step along the 
- N (or K) axis. The values are therefore written 
- to the file (lines 2800 - 2840); the file is 
- closed (line 2850) and the values are printed out 
- (line 2860 & subroutine Print) 
- The "cross section" is then moved one step along 
- the N axis at lines 2890 - 2950. The sequence 
- described above is one traverse of the K loop; 
- the program then moves from line 2960 back to 
- line 2510, for the next value of K. This 
- procedure is continued until temperatures at all 
- nodes have been computed. Finally, temperatures 
- at the end wall of the box (i.e. K=N1) are 
- reassigned the value Tl; these values are 
- written to Data2 (lines 2980 - 3030); printed 
- (line 3040); and the file is closed (line 3050) 
- This completes one iteration. 
- LINES 3080 - 3290 Before another iteration can 
- be undertaken, the values calculated above for 
- nodal temperatures must be transferred from file 
- Data2 to file Datai. This procedure also must 
- be carried out stepwise. In order to obtain 
- values in their correct sequences, the J loop is 
- employed (lines 3100 - 3160) to remove values 
- from Data2 and successively overwrite them to 
- Matrix Z, until the correct ones appear at the 
- last step of the J loop. These values are then 
- written to file Datai (lines 3190 - 3270). The 
- program then returns to line 2320 and another 
- iteration is commenced. 
- Due to the lengthy nature of this iterative 
- procedure, no means to test for convergence has 
- been included in the program. Iteration will 
- continue until interrupted by the programmer. 

Z(20,20),T(20,20,3) 
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2010 INPUT "BASE TEMPERATURE";Tl 
2020 INPUT "SHAPE. TEMPERATURE";T2 
2030 REM - DATA FOR EXAMPLE 7.4 **************************** 
2040 Nl=12 
2050 DATA 0,0 
2060 DATA 1,5,7,7,8 
2070 DATA 2,6., 8,5,6,5,7,7,8 
2080 DATA 2,6,8,5,6,5,7,7,8 
2090 DATA 1,5,7,7,8 
2100 DATA 1,5,7,7,8 
2110 DATA 0,0,0 

2130 REM - TEMPERATURE VALUES Tl & T2 ARE ASCRIBED TO ALL 
2140 REM - NODAL POINTS AND STORED IN FILE DATAI *********** 
2150 OPEN "DATAI" FOR OUTPUT AS #1 
2160 FOR K=l TO Nl 
2170 FOR L=l TO Nl 
2180 FOR M=l TO Nl 
2190 Z(L,M)=T1 
2200 NEXT M 
2210 NEXT L 
2220 IF K=l THEN 2250 
2230 IF K=N1 THEN 2250 
2240 GOSUB 3320 
2250 FOR L=l TO Nl 
2260 FOR M=l TO Nl 
2270 PRINT #1,Z(L,M) 
2280 NEXT M 
2290 NEXT L 
2300 NEXT K 
2310 CLOSE #1 
2320 RESTORE 
2330 C1=C1+1 
2340 PRINT 
2350 BEEP 
2360 BEEP 
2370 PRINT "ITERATION";Cl 
^ Ĵ Ö \S M- PiΓ\1 ^" ̂ * ̂  ^ ^ ^* ̂  ^' ̂ " ̂  Π*· 'Κ' Π̂ · *Τ· *Ύ* η^ *r* 'Γ· nr· 'r· 'Γ· Π^ 'Ρ· ̂Γ- Φ η^ *Τ* *Τ· Φ *Υ· *Υ* *Γ· *Τ* <Τ* *Γ· 'Γ· *T* ̂ τ· *Τ* Π*· *Τ· Π^ *Τ* *F- ̂Γ- Π^ *Τ* *Τ· Π^ *Τ* *Τ· 

2390 REM - INPUT TEMPERATURE VALUES FROM DATAI,EVALUATE 
2400 REM - FINITE DIFFERENCE EQUATIONS & STORE THESE NEW 
2410 REM - VALUES IN FILE DATA2 **************************** 
2420 OPEN "DATAI" FOR INPUT AS #1 
2430 FOR N=l TO 2 
2440 FOR L=l TO Nl 
2450 FOR M=l TO Nl 
2460 INPUT #1,T(L,M,N) 
2470 NEXT M 
2480 NEXT L 
2490 NEXT N 
2500 CLOSE #1 
2510 FOR K=3 TO Nl 
2520 OPEN "DATAI" FOR INPUT AS #1 
2530 IF EOF(l) THEN 2610 
2540 FOR J=l TO K 
2550 FOR L=l TO Nl 
2560 FOR M=l TO Nl 
2570 INPUT #1,T(L,M,3) 
2580 NEXT M 
2590 NEXT L 
2600 NEXT J 
2610 CLOSE #1 
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2620 IF K>3 THEN 2720 
2630 OPEN "DATA2" FOR OUTPUT AS 1*2 
2640 FOR L=l TO Nl 
2650 FOR M=l TO Nl 
2660 Z(L,M)=T1 
2670 PRINT #2,Z(L,M) 
2680 NEXT M 
2690 NEXT L 
2700 GOSUB 3450 
2710 GOTO 2730 
2720 OPEN "DATA2" FOR APPEND AS 1*2 
2730 FOR L=2 TO Nl-1 
2740 FOR M=2 TO Nl-1 
2750 Z(L,M)=T(L+1,M,2)+T(L-l,M, 2)+T(L,M+l,2)+T(L,M-l,2) 
2760 Z(L,M)=(Z(L,M)+T(L,M,3)+T(L,M,l))/6 
2770 NEXT M 
2780 NEXT L 
2790 GOSUB 3320 
2800 FOR L=l TO Nl 
2810 FOR M=l TO Nl 
2820 PRINT **2,Z(L,M) 
2830 NEXT M 
2840 NEXT L 
2850 CLOSE 1*2 
2860 GOSUB 3450 

2880 REM - MOVE ONE STEP ALONG THE N AXIS ****************** 
2890 FOR N=l TO 2 
2900 FOR L=l TO Nl 
2910 FOR M=l TO Nl 
2920 T(L,M,N)=T(L,M,N+1) 
2930 NEXT M 
2940 NEXT L 
2950 NEXT N 
2960 NEXT K 
2970 OPEN "DATA2" FOR APPEND AS 1*2 
2980 FOR L=l TO Nl 
2990 FOR M=l TO Nl 
3000 Z(L,M)=T1 
3010 PRINT **2,Z(L,M) 
3020 NEXT M 
3030 NEXT L 
3040 GOSUB 3450 
3050 CLOSE 1*2 

3070 REM - TRANSFER VALUES FROM DATA2 TO DATAI ************* 
3080 FOR K=l TO Nl 
3090 OPEN "DATA2" FOR INPUT AS 1*2 
3100 FOR J=l TO K 
3110 FOR L=l TO Nl 
3120 FOR M=l TO Nl 
3130 INPUT #2,Z(L,M) 
3140 NEXT M 
3150 NEXT L 
3160 NEXT J 
3170 CLOSE 1*2 
3180 IF K>1 THEN 3210 
3190 OPEN "DATAI" FOR OUTPUT AS 1*1 
3200 GOTO 3220 
3210 OPEN "DATAI" FOR APPEND AS 1*1 
3220 FOR L=l TO Nl 
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3230 FOR M=l- TO NI 
3240 PRINT #1,Z(L,M) 
3250 NEXT M 
3260 NEXT L 
3270 CLOSE #1 
3280 NEXT K 
3290 GOTO 2320 

3310 REM - SUBROUTINE READ ********************************* 
3320 READ PK 
3330 IF PK<1 THEN 3420 
3340 FOR J=l TO PK 
3350 READ AK,BK,CK,DK 
3360 FOR L=AK TO BK 
3370 FOR M=CK TO DK 
3380 Z(L,M)=T2 
3390 NEXT M 
3400 NEXT L 
3410 NEXT J 
3420 RETURN 

3440 REM - SUBROUTINE PRINT ******************************** 
3450 FOR M=l TO Nl 
3460 FOR L=l TO Nl-1 
3470 PRINT USING "#####";Z(L,M); 
3480 NEXT L 
3490 PRINT USING "#####";Z(N1,M) 
3500 NEXT M 
3510 PRINT 
3520 RETURN 
3530 END 
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20 
30 
40 
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90 

REM - PROGRAM SSCOND3.BAS 
THIS PROGRAM CALCULATES TEMPERATURE 
DISTRIBUTION FOR SOLIDS IN THREE DIMENSIONS 
AT STEADY STATE USING RANDOM FILES 
PROGRAM NOMENCLATURE 
This is as already given for SSCOND2, but the 
following additional variables are used: 

REM 
REM 
REM 
REM 
REM 
REM 
REM M$,N$ - String variables used for random access 

100 REM to files Data2, Datai respectively 
110 REM - M6,N6 - The number of the file record to be read 
120 REM (GET statements), or written (PUT 
130 REM statements). Used for files Data2, & 
140 REM Datai respectively 
150 REM - PROGRAM DESCRIPTION 
160 REM - The logic flowchart is identical with that for 
170 REM - SSC0ND2. Changes made in the program are: 
180 REM - Use of different statements to address the 
190 REM - files (i.e. GET, PUT etc.) 
200 REM - Opening and closing of files during the running 
210 REM - of the program is eliminated 
220 REM - Since N6 and M6 keep a record of the positions 
230 REM - of the file pointers, the "J loops" used in 
240 REM - SSC0ND2 are not required 
250 REM - The latter two changes account for the reduced run 
260 REM - time of this program when compared with SSC0ND2 
270 REM **************************************************** 
2000 DIM Z(20,20),T(20,20,3) 
2010 INPUT "BASE TEMPERATURE";Tl 
2020 INPUT "SHAPE TEMPERATURE";T2 
2030 REM - DATA FOR EXAMPLE 7.4 **************************** 
2040 Nl=12 
2050 
2060 
2070 
2080 

DATA 
DATA 
DATA 
DATA 

0, 
1, 
2, 
2, 

,0 
5, 
,6, 
.6, 

7, 
8, 
8, 

7, 
5, 
5, 

8 
,6, 
6, 

5, 
5, 
,7, 
7, 

,7, 
7, 
,8 
,8 

2090 DATA 1,5,7,7,8 
2100 DATA 1,5,7,7,8 
2110 DATA 0,0,0 

2130 REM - TEMPERATURE VALUES Tl & T2 ARE ASCRIBED TO ALL 
2140 REM - NODAL POINTS AND STORED IN FILE DATAI *********** 
2150 OPEN "DATAI" AS #1 LEN=12 
2160 FIELD #1,N1 AS N$ 
2170 OPEN "DATA2" AS #2 LEN=12 
2180 FIELD #2,N1 AS M$ 
2190 FOR K=l TO Nl 
2200 FOR L=l TO Nl 
2210 FOR M=l TO Nl 
2220 Z(L,M)=T1 
2230 N£XT M 
2240 NEXT L 
2250 IF K=l THEN 2280 
2260 IF K=N1 THEN 2280 
2270 GOSUB 3310 
2280 FOR L=l TO Nl 
2290 FOR M=l TO Nl 
2300 LSET N$=MKS$(Z(L,M)) 
2310 PUT #1 
2320 NEXT M 
2330 NEXT L 
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2340 NEXT K 
2350 RESTORE 
2360 C1=C1+1 
2370 PRINT 
2380 BEEP 
2390 BEEP 
2400 PRINT "ITERATION";C1 
2410 REM *************************************************** 
2420 REM - INPUT TEMPERATURE VALUES FROM DATAI,EVALUATE 
2430 REM - FINITE DIFFERENCE EQUATIONS & STORE THESE NEW 
2440 REM - VALUES IN FILE DATA2 **************************** 
2450 M6=0 
2460 N6=0 
2470 FOR N=l TO 2 
2480 FOR L=l TO Nl 
2490 FOR M=l TO Nl 
2500 N6=N6+1 
2510 GET #1,N6 
2520 T(L,M,N)=CVS(N$) 
2530 NEXT M 
2540 NEXT L 
2550 NEXT N 
2560 FOR K=3 TO Nl 
2570 FOR L=l TO Nl 
2580 FOR M=l TO Nl 
2590 N6=N6+1 
2600 GET #1,N6 
2610 T(L,M,3)=CVS(N$) 
2620 NEXT M 
2630 NEXT L 
2640 IF K>3 THEN 2740 
2650 FOR L=l TO Nl 
2660 FOR M=l TO Nl 
2670 Z(L,M)=T1 
2680 M6=M6+1 
2690 LSET M$=MKS$(Z(L,M)) 
2700 PUT tt2,M6 
2710 NEXT M 
2720 NEXT L 
2730 GOSUB 3440 
2740 FOR L=2 TO Nl-1 
2750 FOR M=2 TO Nl-1 
2760 Z(L,M)=T(L+1,M,2)+T(L-l,M,2)+T(L,M+l,2)+T(L,M-l,2) 
2770 Z(L,M)=(Z(L,M)+T(L,M,3)+T(L,M,l))/6 
2780 NEXT M 
2790 NEXT L 
2800 GOSUB 3310 
2810 FOR L=l TO Nl 
2820 FOR M=l TO Nl 
2830 M6=M6+1 
2840 LSET M$=MKS$(Z(L,M)) 
2850 PUT #2,M6 
2860 NEXT M 
2870 NEXT L 
2880 GOSUB 3440 

2900 REM - MOVE ONE STEP ALONG THE N AXIS ****************** 
2910 FOR N=l TO 2 
2920 FOR L=l TO Nl 
2930 FOR M=l TO Nl 
2940 T(L,M,N)=T(L,M,N+1) 
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2950 NEXT M 
2960 NEXT L 
2970 NEXT N 
2980 NEXT K 
2990 FOR L=l TO Nl 
3000 FOR M=l TO Nl 
3010 Z(L,M)=T1 
3020 M6=M6+1 
3030 LSET M$=MKS$(Z(L,M)) 
3040 PUT #2,M6 
3050 NEXT M 
3060 NEXT L 
3070 GOSÜB 3440 

3090 REM - TRANSFER VALUES FROM DATA2 TO DATAI ************* 
3100 M6=0 
3110 N6=0 
3120 FOR K=l TO Nl 
3130 FOR L=l TO Nl 
3140 FOR M=l TO Nl 
3150 M6=M6+1 
3160 GET #2,M6 
3170 Z(L,M)=CVS(M$) 
3180 NEXT M 
3190 NEXT L 
3200 FOR L=l TO Nl 
3210 FOR M=l TO Nl 
3220 N6=N6+1 
3230 LSET N$=MKS$(Z(L,M)) 
3240 PUT #1,N6 
3250 NEXT M 
3260 NEXT L 
3270 NEXT K 
3280 GOTO 2350 

3300 REM - SUBROUTINE READ ********************************* 
3310 READ PK 
3320 IF PK<1 THEN 3410 
3330 FOR J=l TO PK 
3340 READ AK,BK,CK, DK 
3350 FOR L=AK TO BK 
3360 FOR M=CK TO DK 
3370 Z(L,M)=T2 
3380 NEXT M 
3390 NEXT L 
3400 NEXT J 
3410 RETURN 
3420 REM *************************************************** 
3430 REM SUBROUTINE PRINT ********************************** 
3440 FOR M=l TO Nl 
3450 FOR L=l TO Nl-1 
3460 PRINT USING "*#1ΜΜΤ ;Z(L,M); 
3470 NEXT L 
3480 PRINT USING "#####";Z(N1,M) 
3490 NEXT M 
3500 PRINT 
3510 RETURN 
3520 CLOSE #1 
3530 CLOSE #2 
3540 END 
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411 
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434 
447 
458 
464 
461 
449 
432 
416 
400 

400 
415 
431 
448 
466 
483 
492 
488 
469 
446 
422 
400 

400 
418 
436 
457 
479 
498 
509 
504 
482 
454 
427 
400 

400 
418 
438 
460 
483 
503 
515 
509 
487 
457 
428 
400 

400 
421 
445 
471 
498 
524 
542 
535 
505 
468 
433 
400 

400 
430 
463 
501 
542 
582 
611 
602 
552 
497 
446 
400 

400 
436 
476 
522 
571 
616 
648 
636 
580 
515 
455 
400 

400 
438 
479 
527 
579 
626 
658 
647 
589 
521 
458 
400 

400 
433 
469 
511 
558 
606 
647 
637 
572 
506 
450 
400 

400 
447 
499 
563 
636 
715 
803 
790 
662 
555 
471 
400 

400 
456 
520 
599 
691 
775 
855 
840 
705 
583 
484 
400 

400 
458 
525 
607 
702 
788 
868 
852 
717 
592 
489 
400 

400 
443 
492 
551 
620 
695 
781 
769 
643 
541 
464 
400 

400 
463 
536 
630 
749 
887 

1200 
1200 
799 
610 
493 
400 

400 
476 
569 
695 
867 
988 

1200 
1200 
849 
646 
509 
400 

400 
479 
574 
704 
877 
999 

1200 
1200 
862 
657 
515 
400 

400 
450 
509 
581 
665 
740 
816 
799 
667 
555 
470 
400 

400 
474 
565 
690 
858 
977 

1200 
1200 
831 
630 
501 
400 

400 
492 
611 
805 

1200 
1200 
1200 
1200 
884 
668 
519 
400 

400 
495 
617 
813 

1200 
1200 
1200 
1200 
897 
6-80 
526 
400 

400 
452 
512 
585 
668 
734 
798 
778 
650 
545 
466 
400 

400 
477 
572 
702 
870 
976 

1200 
1200 
806 
616 
495 
400 

400 
496 
621 
825 

1200 
1200 
1200 
1200 
857 
652 
513 
400 

400 
498 
627 
832 

1200 
1200 
1200 
1200 
870 
664 
519 
400 

400 
447 
500 
564 
632 
674 
689 
662 
588 
515 
454 
400 

400 
469 
554 
670 
819 
875 
878 
828 
684 
568 
477 
400 

400 
486 
600 
790 

1200 
1200 
988 
892 
732 
598 
491 
400 

400 
489 
605 
796 

1200 
1200 
999 
905 
745 
608 
496 
400 

400 
436 
477 
522 
565 
589 
590 
569 
527 
481 
439 
400 

400 
453 
515 
590 
669 
701 
691 
653 
584 
516 
455 
400 

400 
466 
545 
653 
788 
815 
762 
701 
619 
538 
466 
400 

400 
468 
549 
658 
795 
823 
773 
713 
629 
545 
469 
400 

400 
424 
450 
477 
501 
513 
512 
499 
476 
450 
425 
400 

400 
435 
473 
515 
554 
571 
566 
544 
509 
471 
435 
400 

400 
442 
490 
545 
599 
617 
603 
572 
530 
485 
441 
400 

400 
444 
492 
549 
604 
624 
610 
580 
536 
489 
444 
400 

400 
412 
424 
436 
447 
452 
452 
446 
436 
424 
412 
400 

400 
417 
435 
453 
469 
477 
475 
465 
451 
434 
417 
400 

400 
420 
442 
466 
486 
495 
491 
478 
460 
440 
420 
400 

400 
421 
444 
468 
489 
498 
494 
482 
463 
442 
421 
400 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

Table 7.10. Values of temperature across the L-M plane at values of 
N=3,4,5 & 6. 
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Figure 7.14. Isotherms across the L-M plate at values of N = 4 and 5. 

PROBLEMS - CHAPTER 7 

1. Use program SSCONDl to determine the temperature distribution within the 
skid pipe of Example 7.3 assuming it to be constructed of alumiunium, of 
thermal conductivity 234W/mK. 

2. Use program SSC0ND3 to determine steady state temperature distribution 

within a moulding box containing a vertical cylinder, height 6 units, diameter 

8 units, located centrally within the box. Assume the face temperatures of box 

and cylinder to be 400K and 1200K respectively. 

Note: Rewrite the Data statements at the beginning of the program so as to 

describe the new configuration. It will be represented as a number of 

contiguous rectangular slabs. 

3. A solid steel rod 2 cm in diameter, spans a duct 800 mm wide, through which 

gas passes at 400K. The ends of the rod in contact with the duct walls, may be 
assumed to be at a constant temperature of 900K. 

Thermal conductivity of steel = 50 W/mK 
Heat transfer coefft, rod to gas = 25 W/mK 
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A 
A i 

800mm 

200mm Steel Rod 

Tt t f I Duct wall 

Gas Flow 

Determine the temperature distribution in the rod, and the heat loss from it, 

under steady state conditions, by the following methods: 

a. By formulation and solution of the differential equation 

describing the system. 

b. By the finite difference method, employing manual solution of 

the equations. 

c. By writing a computer program based on the finite difference 

method, to handle the general case, using n nodes 

4. The sketch shows a portion of a pipe provided with external annular fins. 

Fluid flowing within the pipe is cooled by atmospheric air flowing 

transversely across the pipe. 

Write a program to deal with this configuration, which will determine the 

temperature distribution within a fin, and the heat loss from the assembly. 
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Chapter 8 

UNSTEADY STATE CONDUCTION OF HEAT 

Transient situations occur for instance in casting, ingot heating, and 
annealing; and in furnace start up and shut-down. Problems encountered include 
the prediction of heating or cooling times; and the effect which particular 
rates of heating or cooling will have on the sizes of the physical forces 
generated by differential thermal expansion. 

This chapter is a continuation of the methods discussed in the previous 
chapter. Transient conduction in three dimensions is described by the equation 
previously derived: 

_£L + i ! I + J?I = p ç . J L (7.5) 
ax2 ay2 8z2 k 3Θ 

Analytical solution is possible i f suitable simplif ication is made: 

(a) Assuming Negligible Thermal Resistance 
The assumption can be made that the thermal resistance within the circuit is 

negligible (the lumped parameter model). This assumption is considered to be 
satisfactory if the Biot Modulus (hL/k) is less than 0.1 (1). In this case, 
heat transfer between the body and its surroundings only need be considered, 
and is described by the equation: 

-cpVdT = hA(T - TQ )de where A = surface area of body; (8.1) 
V = volume of body. 

This equation is easily solved by separation of the variables and 
integration, yielding: 

Te u Tg = g-ihA/c^vje where subscript 0 indicates time Θ = zero (8.2) 
T0 " ̂ α a indicates ambient 

Where the temperature of the environment is also varying the solution is 
more difficult, but can be found in text books dealing with conduction heat 
transfer (1), (2). 

(b) Assuming Finite Thermal Resistance, but simple Geometry (i.e. one 
dimensional system) 

In this case, equation 7.5 is rewritten as: 

3 T _ QC_ ĵ T /Q q\ 
3X2 " k ' 3Θ Κ * · ό ) 

The mathematics of this solution can also be found. 
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The results are available in graphical form, for a number of bodies which 
can be treated one dimensionally (infinite plane slab, infinite cylinder, 
sphere). The method can also be extended to deal with brick-shaped solids and 
finite cylinders. The range of practical applications of these graphical 
methods is severely limited, particularly when one bears in mind the present 
day availability of computers. 

(c) Finite Difference Methods 
As an alternative to analytical methods, Finite Difference methods can be 

employed. These methods can handle finite thermal resistances coupled with 
complex geometries. However this is done by assuming temperatures to remain 
constant during finite time increments. This of coursje leads to inaccuracy in 
the results obtained, accuracy depending on the size of the time increments 
selected and approaching the analytical solution (if one were obtainable) as the 
time increments become wery small. These methods are nowadays preferable to 
analytical methods, due to the availability of computers . 

Graphical Solution of the One Dimensional Case: 
This is an application of the finite difference equation and is known as a 

Schmidt plot (1), (3). 
For this case, equation 8.3 is written in finite difference notation as: 

A!T = pc ΔΤ (8 4) 
Ax 7 k · ΔΘ lö'4j 

Rewriting this in terms of temperatures at the beginning and end of one time 

interval, we obtain this equation in a usable form: 

kCrt-i - Tl) - k(TJ - TnVi ) 
AX ΔΧ = pc ( T n

f t l - ΤηΓ ) 

ΔΧ ΔΘ 
(8.5) 

Hence, Tj·» = Vn + k_ . Δθ (Tj„ - 2T* + Tn'_,) (8.6) 
PC ΔΧ2 

where Tj refers to the temperature of node n at time t 

and Tj+I refers to the temperature of that node at time t + ΔΘ 

In solving a problem algebraically, the system would be split into nodes, and 

an equation such as this would be written for each. 

In order to employ the method graphically, select values of Δχ and Δθ so that 

18.7) 

(8.8) 

Then equation 8.6 can be written as: 
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In other words, the new value of temperature at node n is simply the 

arithmetic mean of the old values of temperature at the nodes on either side of 

it. If we represent nodes by equidistant lines, the length of line being 

proportional to temperature, then a straight line drawn from Τί + ι to T„_ ι 

will intersect the line for node n at value Tj+I . 

EXAMPLE 8.1 

A flat slab of metal 0.3m thick and at a temperature of 300K is suddently 

inserted into a furnace having a temperature of 1300K. The combined coefficient 

of heat transfer by convection and radiation from the furnace to the slab, (hF) 

may be assumed constant, with the value of 124 W/m2K. 

Determine the time required for the centre of the slab to reach 600K. 

Assume the following values of metal properties: 

Thermal conductivity, k = 17.3 W/m J< 

Specific Heat, c = 232.5 J/kg,K 

Density, p= 6000 kg/m3 

SOLUTION A - GRAPHICAL METHOD 

The slab is divided into an arbitrary number of layers. Assuming a layer 

thickness of 0.03m, only 5 layers need be considered, from arguments of symmetry. 

These are shown on Fig. 8.1. An additional layer is shown on this figure, 

representing the resistance at the surface. 

The width of this layer on the diagram is evaluated so as to have an 

equivalent conductance to that of the surface coefficient. 

i.e. h, the surface coefficient of heat transfer 

= k , the equivalent conductance of a solid layer of slab material; 
ηΔχ 

ηΔχ = the thickness of this simulated extra layer 

Lines representing the nodes, and the additional layer representing the 

surface conductance» are shown on Fig. 8.1. Initially temperatures at the 

various stations are indicated by the horizontal line at 300K. The construction 

is then commenced. Thus Tx after one time interval ΔΘ is obtained by 

constructing a line joining the values of 1300 at T0 with 300 at TJ. The 

intersection of this line with node 1, gives the value Τί , and completes the 

first iteration. At the second iteration TÎ is joined to J°3 the intersection 

with node 2 giving the value 11 . This completes the second iteration. T0 

is then joined to M and Ta is joined to T° giving T? arid Tf . This 

completes the third iteration. At iteration 5, a line is drawn from TÎ to J° , 
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O.2.«* θ3 ο 

Figure 8.1. 



224 

giving T| . Assuming there is no temperature gradient at the centre of the 

slab (by reasons of symmetry), then this value of TJ will also be the value of 

T| . This is indicated on the diagram by a dotted line. The construction is 

continued until one of these dotted lines is drawn at or above the stipulated 

value of 600K. Note that in the preceding section, superscripts refer to the 

number of the iteration (not an exponent), and subscripts refer to location, as 

on Figure 8.1. 

To count the iterations required, it should be noted that construction lines 

are drawn from nodes 1 to 0 at alternate iterations only. It will be seen that 

about 31 iterations are required to reach 600K. From equation 8.7, 

Δθ: ΔΧ2 ££ = 0.032 JU£ 
36.3 seconds 2 k 2 ~ 1.24 

Hence the time to reach 600K ~ 1125 seconds. 

The temperatures at the various nodes will be approximately: 

Tx = 855K; T2 = 757K; T3 = 695K; T* = 631K; T5 = 610K; T6 = 610K. 

SOLUTION B - COMPUTER ITERATION 

An alternative computer solution to this problem, requires that equations be 
generated describing a heat balance around each node. The system of nodes used 
in this calculation is the same as that used in Solution A, and is shown in 
Fig. 8.2. The heat balances are written considering unit area of surface. 

Solid Surface Mid-Section 

Figure 8.2. System of Nodes for Example 8.1. 
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Node 1 

Rearranging this equation to solve for the new value of Ti, we obtain: 

Similarly we obtain the other equations: 

etc. 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

These equations are incorporated in the Basic program below. The results 

obtained are closely similar to those already given. 

For a calculation which has to be performed once only the graphical 

technique may well be preferred, since the construction time is probably less 

than that required to generate the node equations and write the program. It is 

probably also sufficiently accurate. The computer solution of course has the 

advantage where a large number of similar calculations have to be performed. 



226 

TRSCONDl a 

TRSC0ND2 

( Start 

V 

Process 

he 
ι ι 

Process A 
1 _ i 

/C5<C4 ^ > 

^ 

v/cen 

1 Yes 

!f^ 

t r e \ 
\ <T4 / 

nd 

) 
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Ves 

y 
y y 

y 
y 
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No 

/ Print / 
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In the case of TRSC0ND2 
this process step includes 
the portion set out below: 

i 
Process 

Process 

Converge \ . 
X ? ^y 

ψ Yes 

XI = 1 

\ 
*r" 

f 
Process 

No 
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10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

190 REM 
200 REM 
210 REM 
220 REM 
230 REM 
240 REM 
250 REM 
260 REM 
270 REM 
280 REM 
290 REM 
300 REM 
310 REM 
320 REM 
330 REM 
340 REM 
350 REM 
360 REM 
370 REM 
380 REM 
390 REM 
400 REM 
410 REM 
420 REM 
430 REM 
440 REM 
450 REM 
460 REM 
470 REM 
480 REM 
1000 REM -
1010 INPUT 
1020 INPUT 
1030 INPUT 
1040 PRINT 
1050 INPUT 

- PROGRAM TRSCOND1.BAS CALCULATES TEMPERATURE 
- DISTRIBUTION WITHIN A PLANE SLAB SUDDENLY SUBJECT 
- TO A STEP CHANGE IN ENVIRONMENTAL TEMPERATURE 
- USING EXPLICIT OR FORWARD DIFFERENCE ITERATION 
- PROGRAM NOMENCLATURE 
- Cl - Time interval, delta t 
- C2 - Time to latest iteration 
- C3 - Adjusts C2 at the last iteration 
- C4 - Time since last printout 
- C5 - Interval between printouts 
- Dl - Density 
- D2 - C1/(D1*S1*T3) 
-HI - Heat transfer coefficient 
- Kl - Thermal conductivity 
- K2 - K1/T3 
- Nl - Number of nodes 
- N2 - Slab thickness 
- S(J) - Temperature values at the nodes at the 

latest iteration 
- S I - Specific heat 
- T(J) - Temperature values at the nodes at the 

previous iteration 
- Tl - Slab temperature at start 
- T2 - Environment temperature 
- T3 - Distance between nodes 
- T4 - Temperature required at centre of slab 
- PROGRAM DESCRIPTION 
- LINES 1010 - 1130 Values of temperature and 
- physical properties are entered 
- LINES 1170 - 1210 Intermediate values required 
- in the node equations are calculated 
- LINES 1220 - 1270 Value Tl is ascribed to all 
- nodes 
- LINES 1290 
- calculated 
- LINES 1340 

1060 
1070 
1080 
1090 
1100 
1110 
1120 

- 1330 Temperatures at the nodes are 
from previous values 
- 1430 The count of iteration times 

- is increased (lines 1340,1350); if interval since 
- last printout equals C5, then the latest values 
- are printed 
- LINES 1440 - 1560 If temperature at centre of 
- slab is less than the required value, then program 
- execution performs another iteration (line 1440) 
- Otherwise the total time is adjusted in proportion 
- to the amount the central node temperature has 
- exceeded T4 at the last iteration, and values are 
- printed out 

PHYSICAL PROPERTIES ***************************** 
"DELTA T, SECONDS";C1 
"INTERVAL BETWEEN PRINTOUTS, SECS";C4 
"NUMBER OF NODES-UP TO 10";N1 
"PHYSICAL PROPERTIES OF THE SLAB, SI UNITS:" 
"SLAB THICKNESS";N2 

INPUT "THERMAL CONDUCTIVITY";K1 
INPUT "DENSITY";D1 
INPUT "SPECIFIC HEAT";SI 
INPUT "SLAB TEMPERATURE";T1 
INPUT "ENVIRONMENT TEMPERATURE";T2 
INPUT "REQUIRED TEMPERATURE AT CENTRE OF SLAB";T4 
PRINT "COMBINED COEFFICIENT OF CONVECTIVE" 
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1130 INPUT "AND RADIATIVE TRANSFER";H1 
1140 PRINT 
1150 REM - CALCULATE INTERMEDIATE VALUES & ASCRIBE INITIAL 
1160 REM - VALUES TO THE NODES ***************************** 
1170 T3=N2/(2*(N1-1)) 
1180 C2=0 
1190 K2=K1/T3 
1200 D2=D1*S1*T3/C1 
1210 D2=l/D2 
1220 FOR J=l TO Nl 
1230 S(J)=T1 
1240 NEXT J 
1250 FOR J=l TO Nl 
1260 T(J)=S(J) 
1270 NEXT J 
1280 REM - CALCULATE TEMPERATURES AT THE NODES************** 
1290 S(1)=T(1)+2*D2*((T2-T(1))*H1+(T(2)-T(1))*K2) 
1300 FOR J=2 TO Nl-1 
1310 S(J)=T(J)+D2*(T(J-1)+T(J+1)-2*T(J))*K2 
1320 NEXT J 
1330 S(N1)=T(N1)+2*D2*<T<N1-1)-T(N1))*K2 
1340 C2=C2+C1 
1350 C5=C5+C1 
1360 IF C5<C4 THEN .1440 
1370 REM - PRINT VALUES ************************************ 
1380 FOR J=l TO Nl 
1390 PRINT USING "####";S(J); 
1400 NEXT J 
1410 PRINT " ";C2;"SECS" 
1420 C5=0 
1430 PRINT 
1440 IF S(N1)<T4 THEN 1250 
1450 C3=(S(N1)-T4)/(S(N1)-T(N1)) 
1460 C2=C2-C1*C3 
1470 FOR J=l TO Nl 
1480 T(J)=S(J)-(S(J)-T(J))*C3 
1490 NEXT J 
1500 PRINT 
1510 PRINT "TIME TO REACH";T4;"=";C2;"SECS" 
1520 PRINT 
1530 FOR J=l TO Nl 
1540 PRINT USING "####.#M;T(J); 
1550 NEXT J 
1560 END 

EXAMPLE 8.2 
Use the program TRSCONDl to solve Example 8.1 
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L0AD"A:TRSC0ND1 
Ok 
RUN 
DELTA T, SECONDS? 30 
INTERVAL BETWEEN PRINTOUTS, SECS? 180 
NUMBER OF NODES-UP TO 10? 6 
PHYSICAL PROPERTIES OF THE SLAB, SI UNITS: 
SLAB THICKNESS? .3 
THERMAL CONDUCTIVITY? 17.3 
DENSITY? 6000 
SPECIFIC HEAT? 232.5 
SLAB TEMPERATURE? 300 
ENVIRONMENT TEMPERATURE? 1300 
REQUIRED TEMPERATURE AT CENTRE OF SLAB? 600 
COMBINED COEFFICIENT OF CONVECTIVE 
AND RADIATIVE TRANSFER? 124 

593 

677 

732 

776 

816 

853 

467 

556 

619 

672 

720 

764 

377 

462 

529 

588 

642 

691 

332 

398 

464 

526 

584 

638 

309 

361 

425 

489 

549 

605 

304 

349 

412 

476 

537 

594 

180 SECS 

360 SECS 

540 SECS 

720 SECS 

900 SECS 

1080 SECS 

TIME TO REACH 600 = 1098.862 SECS 

856.5 768.0 696.2 643.3 610.9 600.0 
Ok 

METHODS OF ITERATION 

The method of solution just described is referred to as an explicit or 

forward difference method. Values of temperature known at the beginning of a 

time interval, are used to solve the node equations and hence determine values 

of temperature at the end of each time interval. The disadvantage of the 

method is that if a sufficiently large value of the time interval ΔΘ is chosen, 

absurd answers are obtained. As a general guide, the numerical solution for 

interior points in a network will converge (and not diverge) (3) if 

Mx >_ 2 for one dimensional cases 

Ma >_ 4 for two dimensional cases 

M3 > 6 for three dimensional cases 

where Mx = Δχ^_ £Ç_ 
Δθ ' k etc. 
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Nevertheless, situations do sometimes arise in which the value of ΔΘ required 

by the above considerations is excessively small, resulting in excessively long 

computation time. This is exemplified in problems such as ablation, where 

decomposition of the conducting material is occurring, leading to smaller values 

of ΔΧ at each iteration. 

In such situations, an implicit method of calculation may be employed. The 

implicit method uses temperatures at the middle or end of the time interval. 

Since these temperatures are unknown, the node equations must be solved 

simultaneously at each iteration. This is a more laborious job than the 

explicit method. Only experience can decide whether this will involve less 

computing time than the normal method. However, it is certain that the implicit 

method will considerably reduce the fluctuations encountered otherwise (4), (5), 

(6). 

As an example, the previous problem will be reworked using the implicit 

technique. 

SOLUTION C - COMPUTER ITERATION (IMPLICIT TECHNIQUE) 

The node equations are rewritten based upon the temperature driving forces 

obtaining at the end of a time interval instead of at the beginning: 

Node 1 

(TF - Τΐ + Ι )h + k_. (Tl+I - Tt+I ) = P Ç M (Tî + I - Τί ) 
ΔΧ 2ΔΘ 

/ . T Î + I = TFh + k_ T Î + I + pçAx TÎ 
AX_J 2ΔΘ 

h + JL· +£ÇAx 
ΔΧ 2ΔΘ 

Node 2 

T(TÎ + I - T Î 4 ' ) + ( Τ ί 4 1 - Τ ί + Ι ) l k _ = £CAx ( Τ ί + Ι - TÎ ) 
L JÄX Δθ 

Λ TÎ + I =(Τΐ+ι + Τΐ + Ι ) k_ + £ÇAx TÎ 
ΔΧ Δθ 

2k + pcAx 
ΔΧ 2ΔΘ 

Similarly we obtain the other equations. The central node (node 6 for this 

example) yields the equation: 
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T t + ! _ Tt +I 
I 6 ~ · 5 2k 

ΔΧ 

pCAX Tt 

2k + pCAx 
ΔΧ ΔΘ 

We now have a set of simultaneous equations, and also a set of unknowns, 

since values Tit+I , TÎ4 etc. are unknown. A solution can be obtained by 

matrix algebra or by i terat ion. In the Basic program given below, Seidel 

i terat ion is employed within the main i terat ive loop. 

3 0 
20 
30 
40 
50 
60 
70 
80 
90 

tf.KM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 
220 REM 
230 REM 
240 REM 
250 REM 
260 REM 
270 REM 
280 REM 
290 REM 
300 REM 
1000 REM -
1010 INPUT 
1020 INPUT 
1030 INPUT 
1040 PRINT 
1050 INPUT 

****************************************** 
- PROGRAM TRSC0ND2.BAS CALCULATES TEMPERATURE 
- DISTRIBUTION WITHIN A PLANE SLAB SUDDENLY SUBJECT 
- TO A STEP CHANGE IN ENVIRONMENTAL TEMPERATURE 
- USING IMPLICIT OR BACKWARD DIFFERENCE ITERATION 
- PROGRAM NOMENCLATURE: As for TRSC0ND1 except for 
- the following 

1060 
1070 
1080 
1090 
1100 
1110 
1120 PRINT 
1130 INPUT 
1140 PRINT 

- D2 - D1*S1*T3/C1 
- R(J) Temperature values at the previous 

iteration within the Seidel loop for 
solution of simultaneous equations 

- S(J) Temperature values at the nodes during 
the Seidel iteration 

- XI - Value 1 when simultaneous equations have 
converged, otherwise zero 

- S(J) Temperature values at the nodes during 
the Seidel iteration 

- PROGRAM DESCRIPTION: As for TRSCOND1 except for 
- the portion dealing with solution of simultaneous 
- equations as follows -
- LINES 1300 - 1460 Node temperatures are 
- calculated (lines 1300 - 1340), using the Seidel 
- iteration method. These values are stored as 
- values of S(J). They are compared with 
- values of R(J) (lines 1370,1380), and the values 
- are then transferred from matrix S to matrix R 
- Unless agreement is within specified limits, 
- another Seidel iteration is performed (lines 1440 
- to 1460) 

PHYSICAL PROPERTIES ***************************** 
"DELTA T, SECONDS*' ;C1 
"INTERVAL BETWEEN PRINTOUTS, SECS";C4 
"NUMBER OF NODES-UP TO 10";N1 
"PHYSICAL PROPERTIES OF THE SLAB, SI UNITS:" 
"SLAB THICKNESS";N2 

INPUT "THERMAL CONDUCTIVITY";Kl 
INPUT "DENSITY";D1 
INPUT "SPECIFIC HEAT";SI 
INPUT "SLAB TEMPERATURE";T1 
INPUT "ENVIRONMENT TEMPERATURE";T2 
INPUT "REQUIRED TEMPERATURE AT CENTRE OF SLAB";T4 

COMBINED COEFFICIENT OF CONVECTIVE" 
AND RADIATIVE TRANSFER";HI 
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1150 REM - CALCULATE INTERMEDIATE VALUES & ASCRIBE INITIAL 
1160 REM - VALUES TO THE NODES ***************************** 
1170 T3=N2/(2*(N1-1)) 
1180 C2=0 
1190 K2=K1/T3 
1200 D2=D1*S1*T3/C1 
1210 FOR J=l TO Nl 
1220 S(J)=T1 
1230 R(J)=S(J) 
1240 NEXT J 
1250 FOR J=l TO Nl 
1260 T(J)=S(J) 
1270 NEXT J 
1280 REM - CALCULATE TEMPERATURES AT THE NODES SOLVING FOR 
1290 REM - THE UNKNOWNS BY SEIDEL ITERATION **************** 
1300 S(l)=(T(l)*D2/2+S(2)*K2+T2*Hl)/(D2/2+K2+Hl) 
1310 FOR J=2 TO Nl-1 
1320 S(J)=(T(J)*D2+(S(J-1)+S(J+1))*K2)/(2*K2+D2) 
1330 NEXT J 
1340 S(N1)=(T(N1)*D2+S(N1-1)*2*K2)/(2*K2+D2) 
1350 REM - CHECK CONVERGENCE OF SEIDEL ITERATIONS ********** 
1360 FOR J=l TO Nl 
1370 IF R(J)/S(J)>1.0001 THEN 1410 
1380 IF S(J)/R(J)>1.0001 THEN 1410 
1390 NEXT J 
1400 XI=1 
1410 FOR J=l TO Nl 
1420 R(J)=S(J) 
1430 NEXT J 
1440 IF Xl=l THEN 1460 
1450 GOTO 1300 
1460 X1=0 
1470 C2=C2+C1 
1480 C5=C5+C1 
1490 IF C5<C4 THEN 1570 
1500 REM - PRINT VALUES ************************************ 
1510 FOR J=l TO Nl 
1520 PRINT USING "####";S(J); 
1530 NEXT J 
1540 PRINT " ,';C2;,,SECS" 
1550 C5=0 
1560 PRINT 
1570 IF S(N1)<T4 THEN 1250 
1580 C3=(S(N1)-T4)/(S(N1)-T(N1>) 
1590 C2=C2-C1*C3 
1600 FOR J=l TO Nl 
1610 T(J)=S(J)-(S(J)-T(J))*C3 
1620 NEXT J 
1630 PRINT 
1640 PRINT "TIME TO REACH";T4;"=";C2;"SECS" 
1650 PRINT 
1660 FOR J=l TO Nl 
1670 PRINT USING "###*.#";T(J); 
1680 NEXT J 
1690 END 
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If sufficiently small values of ΔΘ are employed, both the explicit and 

implicit methods give closely similar solutions. With regard to Example 8.2 , 

according to the stability criteria already given, the maximum value of Δθ to 

be used with the explicit method 

= (ΔΧ)2 pç. = 0.03
2 105 

M * k 2 # 1.24 

=36.3 seconds 

A value of ΔΘ = 30 seconds was used in the explicit solution already given. 

What happens if a value greater than 36.3 is employed? The following printouts 

show results for both methods, using values of ΔΘ greater than the critical 

value. 

EXAMPLE 8.3 

Use the program TRSCONDl to solve Example 8.1, but use a value of ΔΘ greater 

than the critical value of 36.3 seconds. 

RUN 
DELTA T, SECONDS? 50 
INTERVAL BETWEEN PRINTOUTS, SECS? 50 
NUMBER OF NODES-UP TO 10? 6 
PHYSICAL PROPERTIES OF THE SLAB, SI UNITS: 
SLAB THICKNESS? .3 
THERMAL CONDUCTIVITY? 17.3 
DENSITY? 6000 
SPECIFIC HEAT? 232.5 
SLAB TEMPERATURE? 300 
ENVIRONMENT TEMPERATURE? 1300 
REQUIRED TEMPERATURE AT CENTRE OF SLAB? 600 
COMBINED COEFFICIENT OF CONVECTIVE 
AND RADIATIVE TRANSFER? 124 

596 300 300 

397 504 300 

813 289 441 

236 754 240 

1265 43 702 

-4091339 -83 

2506-8451404-

300 

300 

300 

397 

222 

653 

-152 

300 

300 

300 

300 

367 

221 

636 

300 

300 

300 

300 

300 

392 

156 

50 SECS 

100 SECS 

150 SECS 

200 SECS 

250 SECS 

300 SECS 

350 SECS 

%-24703014%-12181463-238 818 400 SECS 

TIME TO REACH 600 = 383.5354 SECS 

-831.01743.0-354.4 931.4 50.2 600.0 
Ok 
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It will be seen that a value of ΔΘ = 50 seconds, used with the explicit 

method, shows instability which has increased sufficiently to yield negative 

values for node temperatures. 

EXAMPLE 8.4 

Repeat the above exercise using the program TRSC0ND2. 

LOAD"A:TRSCOND2 
Ok 
RUN 
DELTA T, SECONDS? 500 
INTERVAL BETWEEN PRINTOUTS, SECS? 500 
NUMBER OF NODES-UP TO 10? 6 
PHYSICAL PROPERTIES OF THE SLAB, SI UNITS: 
SLAB THICKNESS? .3 
THERMAL CONDUCTIVITY? 17.3 
DENSITY? 6000 
SPECIFIC HEAT? 232.5 
SLAB TEMPERATURE? 300 
ENVIRONMENT TEMPERATURE? 1300 
REQUIRED TEMPERATURE AT CENTRE OF SLAB? 600 
COMBINED COEFFICIENT OF CONVECTIVE 
AND RADIATIVE TRANSFER? 124 

667 558 485 440 416 408 500 SECS 

807 711 637 586 555 546 1000 SECS 

899 820 757 711 683 674 1500 SECS 

TIME TO REACH 600 = 1212.756 SECS 

8 4 6 . 2 7 5 7 . 4 6 8 8 . 1 6 3 9 . 0 6 0 9 . 7 6 0 0 . 0 
Ok 

This time the yery large value of 500 seconds has been used for ΔΘ. 

Nevertheless, the implicit method gave acceptable answers and required only 

three iterations. 
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To conclude this chapter, here is a problem involving transient heat 

transfer within a three-dimensional solid form. The physical situation is more 

complicated, but the program i t s e l f is quite simple. 

EXAMPLE 8.5. 

A furnace is employed for heating long steel b i l l e ts which cannot be fu l l y 

contained by i t . The arrangement is shown in Figure 8.3. Write a program to 

calculate the heating time and heat losses for such an arrangement. 

Steel B i l l e t 

Refractory Furnace Walls 

Figure 8.3. Problem in B i l l e t Heating. 

A steel b i l l e t 0.38m diameter by 2.3m long has to be heated so that 1.16m at 

one end is above 900 K. Calculate heating time and heat requirement assuming 

furnace temperature to be 1200K, and ambient temperature 300 K. Values of 

physical properties required are given in Table 8.1 below. 

Emissivity of mild steel = 0.94 

Stefan radiation constant = 5.668 x 10 W/maK* 
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Mild Steel 
(subscript m) 

Refractory 
(subscript r) 

Air at 925K 

Air at 325K 

Density 

P 

kg/m3 

7850 

2300 

0.382 

1.09 

Specific 
Heat 
c 

J/kgK 

460 

837 

1125 

1006 

Thermal 
Conductivity 

k 

W/mK 

45 

1.23 

0.0639 

0.0275 

Viscosity 

Ns/m2 

-

-

4 * 10"5 

1.97 * 10 

Volume coefficient 
of Expansion 

3 

K"1 

-

-

1.22 * 10~3 

3.1 * 10"3 

Table 8.1. Physical Properties and Constants. 

The solution will assume instantaneous insertion of the billet, and that 

gaps between billet and furnace walls are sealed with refractory cement. 

For natural convection from horizontal cylinders, McAdams recommends the 

following equation: 

hD _ n ς J DVgßAT içjijl °·25 

ΪΓ - °·53[ ^ * (k )J 
where ΔΤ = temperature difference between surface and fluid, and 

h = film heat transfer coefficient. 

This equation can be used for values of the Rayleigh number (within the 

square brackets) between 103 and 109. Physical properties are evaluated at a 

film temperature halfway between that of the surface of the cylinder, and that 

of the ambient fluid. 

Inside the Furnace 

The circulation of gas within the furnace does not conform to the patterns of 

natural circulation appropriate to the above correlation; in particular it has 

been developed for cases where the cylinder is hotter than its surroundings. 

Nevertheless it will be sufficiently accurate in the present case, since the 

greater part of the heat transfer will occur by radiation. This equation will 

also be applied to the ends. 

At the commencement of heating, average film temperature = 300 + 1200 = 
2 

750 K; and at the end of heating, average film temperature = 1000 + 1200 = 
2 

1100 K. 
To simplify the calculation, convection within the furnace will be evaluated 

using fluid properties at 925 K, as given in Table 8.1. 
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Then h = 0.0639 * 0 .53 
0.38 

= 1.277 ΔΤρ k = hf 

Outside the Furnace 

At the commencement of heating, film temperature = 300 K. A preliminary 

rough calculation indicates the mean surface temperature of the billet 

protruding from the furnace will be 400 K at the end of the heating period, i.e. 

an average film temperature of 350 K. 

Convection from the exposed portion will be evaluated using film properties 

at 325 K, as tabulated in Table 8.1. 

Then h = 0.0275 * 0.53 Γθ.383* 1.092*- 9.81 -* 3.1 * 1Q~3* 10061 ΔΤ α
% 

0.38 L 1.97 * H) " * * 0.0275 J" 

= 1.68 ΔΤ/* = h n a a 

The proposed arrangement of nodes is shown in Figure 8.4. A concentric 

subdivision of the billet into two zones, has been made. For greater accuracy 

further subdivision would be employed. 

0.383x 0.3822* 9.81 * 1.22 * 1 0 " % 1125 ATC 
4 x 10-5* 0.0639 

Figure 8.4. System of Nodes for Example 8.2. 
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The equations for the nodes can now be written, and these are tabulated in 

Table 8.2. The equations can be simplified and rearranged for use in the 

computer program. 

These modifed equations are listed in Tables 8.3a and 8.3b. Note that D(l) 

etc. of Table 8.3 = _4 ̂  R.H.S. of the corresponding equation of Table 8.2. 
πϋχ2 

When evaluating heatloads, the increment of sensible heat added to the 

billet = D(l) etc. * π Ρ ^ * ΔΘ. 
4 

A value for the mean refractory temperature at node 9 is required. This 

has been left as an input obtained by a simple preliminary calculation. 

The computer program which has been developed from these equations is given 

below. A sample calculation based on the specified temperatures and dimensions 

is also given. 
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.1 */ xoiiiM ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ) i c ^ ) i c ) K ^ ^ ^ ^ > | c > i C ) K ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

20 REM - PROGRAM TRSCOND3.BAS CALCULATES TEMPERATÜRE 
30 REM - DISTRIBUTION AND HEATING TIME FOR A BILLET 
40 REM - PARTIALLY INSERTED IN A FURNACE 
50 REM - PROGRAM NOMENCLATURE 
60 REM - Al - Ambient temperature 
70 REM - A2 - Intermediate value using Al 
80 REM - Bl - Required billet temperature 
90 REM - B2 - Billet temperature at distance L3 
100 REM - Cl - Time interval between iterations 
110 REM - C2 - Total time taken to latest iteration 
120 REM - C3 - Number of iterations since last printout 
130 REM - D(J) - Right hand sides of node equations listed 
140 REM in Table 8.3 
150 REM - Dl - Inner element diameter 
160 REM - D2 - Billet diameter 
170 REM - D3 - Intermediate value using Dl & D2 
180 REM - D4,D5 Intermediate forms of D(4),D(5) 
190 REM respectively 
200 REM - El - Emissivity 
210 REM - E2 - El*Stefan constant 
220 REM - Fl - Furnace temperature 
230 REM - F2 - Intermediate value using Fl 
240 REM - K1,K2 Thermal conductivities of billet, 
250 REM refractory respectively 
260 REM - LI - Billet overall length 
270 REM - L2 - Billet length within furnace 
280 REM - L3 - Billet length to be heated above 
290 REM designated temperature 
300 REM - M2 - Multiplier used in evaluating Q2 
310 REM - Ql - Sensible heat in billet 
320 REM - Q2 - Related to rate of heat loss 
330 REM to atmosphere 
340 REM - Q3 - Heat to atmosphere 
350 REM - Rl - Density of billet 
360 REM - S(J) Temperatures at the nodes at the latest 
370 REM iteration 
380 REM - SI - Specific heat of billet 
390 REM - S2 - Product R1*S1 
400 REM - T(J) Temperatures at the nodes at the previous 
410 REM iteration 
420 REM - T9 - Mean refractory temperature 
430 REM - X(J) Length of billet segments as shown on 
440 REM Figure 8. 4 
450 REM - XJ - Distance to node measured from furnace end 
460 REM of billet 
470 REM - Yl - Radial distance between nodes 
480 REM - ZJ - Used to locate end of heated section 
490 REM - PROGRAM DESCRIPTION 
500 REM - LINES 1010 - 1240 Values of dimensions and 
510 REM - physical properties are entered 
520 REM - LINES 1340 - 1390 Distances between nodes 
530 REM - are evaluated 
540 REM - LINES 1400 - 1460 Initially, temperatures at all 
550 REM - nodes are set to ambient temperature value Al 
560 REM - LINES 1490 - 1750 Values of D(J) as tabulated in 
570 REM - Table 8.3 are evaluated 
580 REM - LINES 1770 - 1830 Heat loads are evaluated 
590 REM - LINES 1840 - 1890 New values of node 
600 REM - temperatures are calculated and stored in matrix S 
610 REM - LINES 1900 - 2040 Time and iteration counts are 
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620 REM - updated and values at each 5th iteration are 
630 REM - printed (lines 1920,1940). The temperature at 
640 REM - the end of the billet section (L3) required to be 
650 REM - above the predetermined value Bl, is calculated 
660 REM - using subroutine "Interpolate" (line 1960); if 
670 REM - this value is less than Bl, then the program 
680 REM - executes another iteration (line 1970). 
690 REM - Otherwise, final values are printed out & 
700 REM - execution ceases (lines 1990 - 2040) 
710 REM - SUBROUTINE PRINT (LINES 2060 - 2230) First the 
720 REM - distances of the nodes,measured from the hottest 
730 REM - end of the billet are printed. Below them are 
740 REM - printed temperature values at nodes 8,7,6 & 5. 
750 REM - Below these are printed temperature values at 
760 REM - nodes 1,2,3 & 4 
770 REM - SUBROUTINE INTERPOLATE (LINES 2270 - 2350) The 
780 REM - end of the billet section required to be above 
790 REM - temperature Bl, does not necessarily coincide with 
800 REM - a node. The number of the node on each side of 
810 REM - this end is found (lines 2290,2300), then the 
820 REM - value of temperature at the end of the section 
830 REM - (i.e. distance L3 from the hottest end of the 
840 REM - billet & denoted B2) is found by interpolating 
850 REM - linearly between the values of temperature of the 
860 REM - adjoining nodes (line 2310). 

1000 REM - DIMENSIONS AND PHYSICAL PROPERTIES ************ 
GIVE ALL DIMENSIONS IN METRES-
BILLET DIAMETER";D2 
INNER ELEMENT DIAMETER";D1 
THICKNESS OF FURNACE WALL";X(3) 
LENGTH OF BILLET";LI 
BILLET LENGTH WITHIN FURNACE";L2 

1070 IF L2+X(3)<L1 THEN 1110 
1080 PRINT "PROGRAM DOES NOT HANDLE THIS - OUTER END" 
1090 PRINT "OF BILLET WITHIN FURNACE WALL" 
1100 GOTO 2360 
1110 PRINT "LENGTH OF BILLET TO BE HEATED ABOVE-

DESIGNATED TEMPERATURE";L3 
PHYSICAL PROPERTIES OF BILLET,SI UNITS:" 
EMISSIVITY";E1 
THERMAL CONDUCTIVITY";K1 
DENSITY";R1 
SPECIFIC HEAT";SI 
THERMAL CONDUCTIVITY OF REFRACTORY";K2 
GIVE ALL TEMPERATURES IN DEG KELVIN" 
FURNACE TEMP";F1 
REQUIRED BILLET TEMP" 
AMBIENT TEMP";A1 
MEAN REFRACTORY TEMP" 
TIME INTERVAL IN SECONDS";C1 

1250 S2=S1*R1 
1260 REM - EMISSIVITY MULTIPLIED BY ************************ 
1270 REM - STEFAN B0LZMAN CONSTANT,SI UNITS **************** 
1280 E2=El*5.6688E-08 
1290 Yl=D2/2 
1300 D3=D2~2-D1~2 
1310 PI=3.14159 
1320 F2=F1~4 
1330 A2=A1^4 
1340 X(7)=Ll-L2-X(3)/2 

1010 PRINT 
1020 INPUT 
1030 INPUT 
1040 INPUT 
1050 INPUT 
1060 INPUT 

1120 INPUT 
1130 PRINT 
1140 INPUT 
1150 INPUT 
1160 INPUT 
1170 INPUT 
1180 INPUT 
1190 PRINT 
1200 INPUT 
1210 INPUT 
1220 INPUT 
1230 INPUT 
1240 INPUT 

;B1 

;T9 
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1350 X(4)=L1-L2-X(3) 
1360 X(5)=(L2+X(3)/2)/2 
1370 X(6)=X(5) 
1380 X(2)=2*(X(6)-X(3)/2) 
1390 X(1)=L2-X(2) 
1400 FOR J=l TO 8 
1410 S(J)=A1 
1420 NEXT 
1430 GOSUB 2050 
1440 FOR J=l TO 8 
1450 T(J)=S(J) 
1460 NEXT 
1470 REM - EVALUATE RIGHT HAND SIDES ********************* 
1480 REM - OF NODE EQUATIONS ***************************** 
1490 D(1)=E2*(F2-T(1)~4)+1.277*(F1-T(1))"1.25 
1500 D(1)=D<1)+K1*(T(2)-T(1))/X<5) 
1510 D(1)=D(1)+4*K1*X(1)*(T(8)-T(1))/(D1*Y1) 
1520 D(2)=(T(1)-T(2))/X(5)+(T"(3)-T(2))/X(6) 
1530 D(2)=K1*(D(2)+4*X(2)*(T(7)-T(2))/(Y1*D1)) 
1540 D(3)=(T(2)-T(3))/X(6)+(T(4)-T(3))/X(7) 
1550 D(3)=K1*(D(3)+4*X(3)*(T(6)-T(3))/(Y1*D1)) 
1560 IF A1>=T(4) THEN 1580 
1570 D4=-E2*(T(4)"4-A2)-1.68*(T(4)-Al)n.25 
1580 D(4)=K1*((T(3)-T(4))/X(7)+4*X(4)*(T(5)-T(4))/(Y1*D1)) 
1590 IF A1>=T(4) THEN 1610 
1600 D(4)=D4+D(4) 
1610 IF A1>=T(5) THEN 1630 
1620 D5=(-E2*(T(5)~4-A2)-1.68*(T(5)-A1)~1.25)*(D3+4*D2*X(4)) 
1630 D(5)=K1*(D3*(T(6)-T(5))/X(7)+4*D1*X(4)*(T<4)-T(5))/Y1) 
1640 IF A1>=T(5) THEN 1660 
1650 D(5)=D5+D(5) 
1660 D(6)=K1*D3*((T(5)-T(6))/X(7)+(T(7)-T(6))/X(6)) 
1670 D(6)=D(6)+4*K1*D1*X(3)*(T(3)-T(6))/Y1 
1680 D(6)=D(6)+4*K2*D2*X<3)*(T9-T(6))/Yl 
1690 D(7)=(E2*(F2-T(7)~4)+1.277*(F1-T(7)K1.25)*D2*X(2)*4 
1700 D(7)=D(7)+4*K1*D1*X(2)*(T(2)-T(7))/Y1 
1710 D(7)=D(7)+K1*D3*((T(8)-T(7))/X(5)+(T(6)-T(7))/X(6)> 
1720 D(8)=E2*(F2-T(8)~4)+1.277*(F1-T(8))~1.25 
1730 D(8)=D(8)*(D2*X(1)*4+D3) 
1740 D(8)=D(8)+K1*D1*X(1)*4*(T(1)-T(8))/Y1 
1750 D(8)=D(8)+K1*D3*(T(7)-T(8))/X(5> 
1760 REM - EVALUATE HEAT LOADS ***************************** 
1770 Ql=Ql+Cl*PI*Dl~2*(D(l)+D(2)+D(3)+D(4))/4 
1780 Ql=Ql+Cl*PI*(D(5)+D(6)+D(7)+D(8))/4 
1790 Q2=D1~2*(E2*(T(4)A4-A2)+1.68*(T(4)-A1)A1.25)/4 
1800 M2=D3/4+D2*X(4) 
1810 Q2=Q2+M2*(E2*(T(5)"4-A2)+1.68*(T(5)-A1)"1.25) 
1820 Q2=Q2+D2*X(8)*(E2*(T(6)~4-A2)+1.68*(T(6)-A1)A1.25) 
1830 Q3=Q3+Q2*C1*PI 
1840 FOR J=l TO 4 
1850 S(J)=T(J)+C1*D(J)/(S2*X(J)) 
1860 NEXT 
1870 FOR J=5 TO 8 
1880 S(J)=T(J)+C1*D(J)/(S2*X(9-J)*D3) 
1890 NEXT 
1900 C2=C2+C1 
1910 C3=C3+1 
1920 IF C3=5 GOTO 1940 
1930 GOTO 1960 
1940 GOSUB 2050 
1950 C3=0 
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1960 GOSUB 2250 
1970 IF B2<B1 THEN 1440 
1980 PRINT 
1990 PRINT "TIME TO REACH";B1;"DEGREES K=";C2;"SECONDS" 
2000 PRINT "HEAT TO BILLET=";Q1;"JOULES" 
2010 PRINT "HEAT TO ATMOSPHERE=";Q3;"JOULES" 
2020 PRINT "TOTAL HEAT REQUIREMENTS^' ;Q1+Q3;"JOULES" 
2030 GOSUB 2050 
2040 GOTO 2360 
2050 REM - PRINT SUBROUTINE ******************************** 
2060 PRINT 
2070 PRINT;C2;"SECONDS" 
2080 XJ=0 
2090 PRINT USING "#.## ";0; 
2100 FOR J=5 TO 7 
2110 XJ=XJ+X(J) 
2120 PRINT USING "#.## ";XJ; 
2130 NEXT 
2140 PRINT " METRES" 
2150 FOR J=8 TO 5 STEP -1 
2160 PRINT USING "#$## ";S(J); 
2170 NEXT 
2180 PRINT " DEGREES" 
2190 FOR J=l TO 4 
2200 PRINT USING "#### ";S(J); 
2210 NEXT 
2220 PRINT " DEGREES" 
2230 RETURN 

2250 REM - SUBROUTINE INTERPOLATE CALCULATES TEMPERATURE 
2260 REM - AT THE END OF LENGTH L3 ************************* 
2270 XJ^O 
2280 FOR J=5 TO 7 
2290 ZJ=XJ+X(J) 
2300 IF L3>ZJ THEN 2330 
2310 B2=S(J-4)-(S<J-4)-S(J-3))*(L3-XJ)/X(J) 
2320 GOTO 2350 
2330 XJ=ZJ 
2340 NEXT 
2350 RETURN 
2360 END 

RUN 
GIVE ALL DIMENSIONS IN METRES 
BILLET DIAMETER? .38 
INNER ELEMENT DIAMETER? .25 
THICKNESS OF FURNACE WALL? . 35 
LENGTH OF BILLET? 2.3 
BILLET LENGTH WITHIN FURNACE? 1.35 
LENGTH OF BILLET TO BE HEATED ABOVE 
DESIGNATED TEMPERATURE? 1.16 
PHYSICAL PROPERTIES OF BILLET,SI UNITS: 
EMISSIVITY? .94 
THERMAL CONDUCTIVITY? 45 
DENSITY? 7850 
SPECIFIC HEAT? 460 
THERMAL CONDUCTIVITY OF REFRACTORY? 1.23 
GIVE ALL TEMPERATURES IN DEG KELVIN 
FURNACE TEMP? 1200 
REQUIRED BILLET TEMP? 900 
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AMBIENT TEMP? 300 
MEAN REFRACTORY TEMP? 870 
TIME INTERVAL IN SECONDS? 400 

0 SECONDS 
0.00 
300 
300 

2000 
0.00 
1114 
997 

4000 
0.00 
1191 
1178 

6000 
0.00 
1198 
1195 

8000 
0.00 
1199 
1198 

0.76 
300 
300 

SECONDS 
0.76 
972 
748 

SECONDS 
0.76 
1143 
1068 

SECONDS 
0.76 
1180 
1156 

SECONDS 
0.76 
1189 
1177 

1.53 
300 
300 

1.53 
349 
333 

1.53 
417 
407 

1.53 
485 
477 

1.53 
543 
537 

10000 SECONDS 
0.00 
1199 
1199 

0.76 
1191 
1182 

1.53 
591 
586 

12000 SECONDS 
0.00 
1200 
1199 

0.76 
1192 
1185 

1.53 
630 
626 

2.30 
300 
300 

2.30 
301 
301 

2.30 
304 
304 

2.30 
311 
311 

2.30 
320 
321 

2.30 
331 
332 

2.30 
343 
344 

METRES 
DEGREES 
DEGREES 

METRES 
DEGREES 
DEGREES 

METRES 
DEGREES 
DEGREES 

METRES 
DEGREES 
DEGREES 

METRES 
DEGREES 
DEGREES 

METRES 
DEGREES 
DEGREES 

METRES 
DEGREES 
DEGREES 

TIME TO REACH 900 DEGREES K= 12800 SECONDS 
HEAT TO BILLET^ 5.532156E+08 JOULES 
HEAT TO ATMOSPHERE= 1752116 JOULES 
TOTAL HEAT REQUIREMENTS^ 5.549678E+08 JOULES 

PROBLEMS - CHAPTER 8 
1. The metal slab of Example 8.1 is subjected to a furnace environment at 

1300 K on one side only, the environment on the other side remaining constant at 

300 K. The combined coefficient of heat transfer by convection and radiation 

from the slab to ambient a i r (ha) may be taken as constant at 20 W/m2K. Using 

the physical properties of Example 8 .1 , determine the time required to reach 

steady state and the temperature distr ibut ion within the slab at that time: 

a. By a Schmidt p lot ; 

b. By modifying program TRSC0ND1. This might be done by modifying 

equation 8.13 for node 6, and assuming this node to be on the 
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cold face of the slab. By analogy with equation 8.9, the heat 

balance equation would be: 

(TQ - Τί )ha + k_ (Tfs - l l ) 
ΔΧ 

= pcAx/2 (T6t + I - TÎ J 
ΔΘ 

2. In the moulding of rubber tyres, we might approximate the tyre to a hollow 

torus, the internal and external faces of which are raised to a constant 

elevated temperature. Write a program for this configuration which will compute 

the time required to reach any chosen vulcanisation temperature within the tyre. 

Volume of a torus = 2π2 Rr2 

Surface area " = 4π2 Rr 

where r = radius of the cross section; 

R = mean radius of the ring. 

Physical data on rubber is available (7). 

3. Suppose that the steel billet of Example 8.5 is withdrawn from the furnace 

after heating to the required temperature. Determine the temperatures at the 

nodes, one hour after withdrawal: 

a. Approximately, by a manual calculation, working from the 

temperatures which have been generated by the progrma TRSC0ND3. 

b. By modifying program TRSC0ND3. This might be done by ascribing 

to furnace temperature Fl and refractory temperature T9 the value 

of the ambient air temperature Al. What further modifications 

to the program would yield a better answer? 

4. Modify program TRSC0ND3 so that the number of nodes employed can be selected 

at the keyboard. 
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Chapter 9 

AUTOMATIC CONTROL 

Problems in control are mostly concerned with transient behaviour (1), (2), 

(3), (4). Even quite simple systems when tackled from a theoretical standpoint 

involve the solution of complicated differential equations. The use of Laplace 

transforms was applied to this type of problem in the 1940's (1). 

The concept of the transfer function was defined as the ratio of the Laplace 

transforms of the responding variable to that of the disturbing variable, 

G(s) = YCll 
X(s) 

where G(s) = transfer function for process element 

Y(s) = Laplace transform of responding variable 

X(s) = Laplace transform of the disturbing variable. 

The procedure involves the drawing up of a Block Diagram, each block on the 

diagram representing a process step, or control element. A transfer function 

based on a linear differential equation is then written for each element. These 

elements are then combined according to the rules of algebra, and finally the 

solution is obtained by inversion back into the time domain, of the equation 

representing the system and the disturbing variable. The use of Laplace 

transforms has been likened to the use of logarithms (1). By converting numbers 

to their logarithms, the processes of multiplication and division are replaced by 

the simpler processes of addition and subtraction; on completion of the 

manipulations the transformation back to the real number system is made using 

anti-logarithms. By the use of Laplace transforms in this way, we obtain the 

response, with respect to time of the responding, that is the output, variable: 

L {Y(t)} = G(s) . X(s) 

Even this procedure becomes unwieldy when the system is greater than third 

order. Graphical methods were therefore developed which allow systems of any 

order to be represented, namely the Root Locus and Frequency Response techniques. 

The Root Locus technique, first published in 1948 (l), although a laborious 

procedure, does permit a full evaluation of the system response to be made. 

Unfortunately this method is unsuitable where the system involves a 

transportation lag, so common in chemical engineering situations. The Frequency 

Response technique does permit the inclusion of the transportation lag, but on 

the other hand it does not provide a complete prediction of the system response. 



250 

Both these procedures can of course be simulated on the digital computer, 

but this is largely unnecessary, as a program can be written to determine the 

time response of a system directly, using finite differences. As with the older 

methods, it is convenient to start with a block diagram. A differential 

equation is then written for each component of the diagram, but instead of 

transforming these by the Laplace method, each is rewritten as a finite 

difference equation (5), (6), (7), (8). 

In the remainder of this chapter, both approaches will be demonstrated for 

some simple open and closed loop systems. 

The First Order Function 

Many simple lumped parameter systems may be represented by a first order 

differential equation. Examples include the thermometer, liquid level systems, 

and mixing, heat transfer, mass transfer and chemical reaction when these are 

carried out in a stirred tank. Distributed parameter systems may often be 

represented by a series of such first order elements. For example, the 

hydraulic behaviour of a distillation column containing N trays, might be 

represented as a series of N first order elements. 

The transfer function and corresponding finite difference equation will be 

derived for the heated and stirred tank shown in Figure 9.1. 

Rotating stirrer 

. s Contents, mass M 
i > i temperature θ2 

J - V Jacket temperature = θΗ 

Fluid out, rate w 
temperature 02 

Condensate 

Figure 9.1. Heat transfer to stirred tank. 
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A heat balance over the tank can be written as: 

wc9i - wc92 + UA (Θ Η - Θ 2 ) = me des. (9.1) 
dt 

where w = mass flowrate of liquid entering and leaving the tank; 

c = specific heat of the liquid; 

m = mass of liquid contained in the tank, assumed to be constant 

(including if necessary a mass to represent the tank walls and 

stirrerj; 

0! = temperature of entering liquid; 

02 = temperature of tank contents, assumed to be uniform, and therefore 

equal to the temperature of the liquid leaving; 

0H = jacket temperature; assumed to be constant; 

U = overall coefficient of heat transfer, jacket to tank contents; 

A = heat transfer area. 

At steady state, this differential equation becomes: 

WC0ls - WC02e + UA (eH-0as) = ° (9·2) 

where Θι*= steady state value of entering liquid temperature; 

02s= steady state value of leaving liquid temperature. 

Subtracting 9.2 from 9.1 and rewriting in terms of Deviation Variables, we 

obtain: 

wcTx - wcT2 + UAT2 = mc dj^ 
dt 

where ΊΊ = Θι - 0l s = the deviation of 0xfrom its steady state value 

and T2 = 02 - 02S similarly. 

Rearranging this equation: 

where K, the gain constant dimensionless 

τ, the time constant , dimension of time. 

We can rewrite this equation in more general terms as: 

(9.4) 

(9.3) 
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where X = the deviation of the disturbing variable from its steady state value; 

Y = the deviation of the responding variable from its steady state value. 

a. We can transform equation 9.4 into the standard form of a first order 

transfer function. Before doing so, it should be noted that the variables X, Y 

etc. above are all time dependent and more correctly should be written X(t), 

Y(t), etc. indicating that the value is that which obtains at time t. 

By taking Laplace transforms of equation 9.4, we obtain: 

KX(s) = Y(s) + TS Y(s); 

where X(s) = Laplace transform of the function represented by X above; 

Y(s) = Laplace transform of the function represented by Y above; 

sY(s) = Laplace transform of dY_ 
dt 

This equation rearranged as: 

Y(s) = K (9.5) 
M?) Ts+1 

is now in the form of a f i r s t order transfer function. 

b. Alternatively, equation 9.4 can be written in f i n i t e difference notation 

as: 

KX = Y2 + T (Y2 - YJ 19.6) 
At 

where Yi = deviation value of response at time t 

Y2 = deviation value of response at time t + At 

and At = time interval. 

Rearranging the equation, 

KX = Y2(l + j r j - γχ _τ_ 
At At 

.\ Y2 = KX + Υ,τ/At (9.7) 
1 + τ/At 

This equation can be used in a computer program to represent a first order 

system component. 

The Second Order Function 

The large class of mechanical devices involving both a spring and a damping 

resistance are described by this function. This includes vehicle suspension 

systems, hydraulic servomechanisms, and the pneumatic control valve. Everyday 

examples include the hydraulic door closer and the liquid - filled manometer. 
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As an example, the transfer function and corresponding finite difference 

equation will be derived for the pneumatic control valve shown in Figure 9.2. 

Air signal 

fluid 

Diaphragm 

Spring 

Actuator body 

Valve stem 

Valve seal 

Valve plugs 

Valve body 

Figure 9.2. Direct-acting pneumatically operated control valve. 

Forces involved in the operation of this mechanism are: 

1. The force exerted by air pressure applied to the top of the diaphragm, 

acting downwards. This force F(t) = PA 

where P = air pressure (gauge) 

A = diaphragm area 

2. The force exerted by the return spring, acting upwards. This force = -HL 

where H = Hooks constant (force/length) 

L = distance travelled by the end of the spring at the underside of the 
diaphragm, 
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the negative sign indicates that this force operates in the opposite direction 

to that of the diaphragm. 

3. The force to overcome viscous friction acting at the valve guides and the 

valve seal. This force = -CdL/dt 

where C = a coefficient of friction under laminar (viscous) flow conditions. 

4. The force to overcome the inertia of the moving parts. This force =-Md2L/dt2 

where M = mass of the moving parts (valve stem and diaphragm). 

5. Pressure drop forces acting across the valve plugs. With a double-seated 

valve such as that shown, the forces across the seats act in opposition to one 

another and may be assumed to have a resultant of zero. 

The sum of forces 1 to 3 will result in acceleration of the Mass M; 

^ = F(t) - HL - CdL 
dt dt 

which can be rearranged as: 

Ά ^LL+ C. dL 
H ' dt2 H ' dt 
M d " L + £ - & + L « F i t ) (9.8) 

H 

Rewriting in standard nomenclature we obtain: 

' ■ & ♦ * ■ « ♦ , . , (9.9) 

where X and Y are the disturbing and responding variables as before. 

τ , (tau) the time constant = R j l \ dimensions of time 

1 , 
l f p 2 ] " 2 

ζ-, (zeta) the damping coefficient = ̂ -ferr > dimensionless '£11 
MHJ 

a) If we assume the moving parts to be at rest before the disturbance occurs, 

then the Laplace transform of equation 9.9 is 

T V Y ( S ) + 2ζτΥ(ε) + Y(s) = X(s) 

This equation rearranged as: 

Y(s) _ 1 (9.10) 
Xts) T 2 S 2 + 2cxs + 1 

is now in the form of a second order transfer function. 

bj Alternatively, the differential equation of 9.9 can be rewritten in finite 

difference notation as: 
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τ_^Υ + 2ζτ|Υ + γ = χ (9>11) 

It should be noted in what follows, the interval At is assumed constant in 
size; subscripts 1, 2, 3, etc. indicate values at successive time intervals. 

Hence AY. = Y2 - Yt 

At At 

and &± = Y2 - Υχ Υχ - Y0 
At2 At " At 

At 

where Y2, Y19 Y0, indicate values of Y at times t +At, t, and t-At respectively. 

Hence the equation is: 

T* &ÂÎiiizrf+ 2 ζ τ ( Ι ί "Yl) + Y* -x ( 9 · 1 2 ) 
At 

Rearrange the equation to solve f o r Y2: 

^ 2 ( Y 2 - 2Y, + Yo) + 2 C M V Y l ) + Y 2 = x 

At2* Ya At2 i Y o " ΙΊχ) At At Y a X 

Y a ( i l + 2£T + , ) = χ . Il ( γ _ 2Y W 2 ζ Ί Υ * 
A t * Zt * X At2 l Y o ^ Y l j At 

At2 At L 

This equation can be used in a computer program to represent a second order 
system component. 

THE CONTROLLER MECHANISM 
This consists of two parts: 

1. The Comparator 
This performs the arithmetic operation of subtraction. The measured value of 

the controlled variable is subtracted from the desired value or set point. The 
difference between these values is called the error. 

e(t) = R(t) - B(t) (9.14) 
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where ε = the error signal 

R = deviation from its steady state value, of the desired value or set 

point signal 

B = deviation from its steady state value, of the measured value or 

feedback signal. 

Figure 9.3a shows the conventional representation of the comparator. 

Set Point 

signal, R 
Error Signal ,ε^ 

Measured value 
or Feedback signal, B 

a. - The Comparator 

in many cases, disturbance of the system does not arise by alteration of the 

set point (the servo problem). Instead it arises in some other way (the 

regulator problemj; in such cases the value of R = 0 and equation 9.14 becomes: 

e(t) = - B(tj 

a) in the Laplace transform method, the comparator does not appear as a 

separate function; it is incorporated within the algebra of the feedback loop, 

shown for example in Figure 9.3b. 

b. The Negative Feedback Loop 

Figure 9.3. Elements of the Block Diagram. 
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The Laplace transform for such a loop is written: 

C(S) _ G x (9.15) 

Where G = product of transfer functions in the forward path; 
H = product of transfer functions in the backward path. 

b) Using the finite difference method, the comparator will be regarded as a 
separate part of the system, represented by equation 9.14. 

2. The Controller 
This acts upon the error signal so as to produce the control signal which 

goes to the final control element (e.g. the control valve, or other device). 
The proportional - integral - derivative modes of the controller are 

represented by the following equation: 

P= Kcs + T^/^dt
 + ΚΛ Jf (9.16) 

where P = deviation from its steady state value, of the output (control) signal; 
Kc= controller gain constant (dimensionless); 
τ,= controller integral time constant (dimension of time); 
xD= controller derivative time constant (dimension of time). 

The values of K, τ, and TD are selected and set by the operator. This may be 
done using the adjustment knobs within the controller, or alternatively by 
inputting values at the keyboard of the computer which replaces it (9). 
a) The Laplace transform of equation 9.16 is: 

P(S) = Kce(s) + Jk- 4 ^ + Rossis) 

which rearranged as a transfer function is: 

Iîf) = K c ( i + ̂ y + *■*> (9.17) 

b) Alternatively, equation 9.16 can be rewritten in finite difference notation 
as: 

P - Kce ♦ £ Σ «At ♦ Κ Λ Μ 

= Kce2+ Κς. (ε 2 At +^εΔΐ) 

+ KCTD ( ε 2 - ε ι ) 
At 

Where ε2 ,ε ι represent values of ε at times t+At and t respectively. 
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OTHER ELEMENTS OF THE BLOCK DIAGRAM 

The Summing Junction 

This performs the arithmetic operation of addition, and is shown 
diagrammatically in Figure 9.4a. 

Disturbing Signal 
U 

t + 

a. The Summing Junction 

The summing junction is conventionally used to represent the point of entry 

of a disturbance to the system. 

In the example shown, 

Y(t) = X(t) + U(t) (9.17) 

where U = the disturbing signal. 

a) In the Laplace transform method, equation 9.17 is replaced by: 

Y(s) = X(s) + U(s) (9.18) 

b) With the finite difference method, the summing junction will be represented 
by equation 9.17. 

The Takeoff Point 

This indicates a branch on the block diagram, the same signal now appearing 
at two points as shown in Figure 9.4b. 

b. The Takeoff Point 

Figure 9.4. Elements of the Block Diagram 



259 

REPRESENTATION OF THE DISTURBING FUNCTION 

The four functions most commonly used are as follows: 

The Step Function 

An instantaneous change in the value of the variable takes place. We 

normally assume this change to occur at time t = 0, in which case the function 

can be represented as: 

X = 0 t <0 

X = A + >0 

where A = magnitude of the deviation in the value of X. 

This function is shown graphically in Figure 9.5a. 

(9.19) 

Value of the 
Disturbing . 

Variable, χ 

X = 0 

t = 0 

Time, t 

a. The Step Function 
Figure 9.5. Disturbing Functions. 

a) The Laplace transform of thé Step Function is 

X(s) = A 
s 

(9.20) 

b) Using finite differences, the step function will be represented by equation 

9.19. 

The Pulse Function 

An instantaneous change in the value of the variable occurs, followed later 

by another instantaneous change of equal magnitude, but opposite sign. If we 

assume the first change to occur at time t = 0, then the function can be 

represented as: 

X = 0 t <0 
X = A t £ t o ^ (9.21) 

X = 0 t >t 
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This function is shown graphically in Figure 9.5b. 

Value of the 
Disturbing 
Variable, χ 

X = 0 

t = 0 

X= A 

X = 0 

t - to 
Time, t 

b. The Pulse Function 

Figure 9.5. Disturbing Functions. 

A special case of the pulse function occurs if t0 approaches zero. If 

to= l/A, then at large values of A, t0 approaches zero, but the area of the 

pulse on the diagram is equal to 1. This is referred to as a unit impulse. 

a) The Laplace transform of the Pulse Function is: 

X( s ) = j (1 - e-*"5 ) (9.22) 

The Laplace transform of the Impulse Function is: 

X(s) = k (9.23) 

where k = area of the function; 

= Ax-to 

b) For the purpose of the finite difference method, equation 9.21 will be used; 

the value of t0 must be exactly divisible by At, and for an impulse, the value 

of to = At should be chosen. 

The Ramp Function 

In this case the variable varies linearly with time. As before, this change 

is usually assumed to occur at time t = 0, in which case it can be represented 

as: 

x = o t < o ^ (9e24) 

X = At t >0 



261 

This function is shown graphically in Figure 9.5c. 

Value of the 
Disturbing 
Variable, X 

X = 0 

t = 0 

Time, t 

c. The Ramp Function. 

Figure 9.5. Disturbing Functions. 
a) The Laplace transform of the Ramp Function is: 

X(s) = A 
s2 

(9.25) 

b) The finite difference method will use equation 9.24. 

(9.26) 

The Sine Function 

This function, of yery great importance because of its use with the Frequency 

Response method, can be represented as: 

X = 0 - t <0 

X = Asiruot t >0 

where œ(omega) = radian frequency (radians/time). 

This is shown graphically in Figure 9.5d. 

Value of the 
Disturbing 
Variable, X 

X = 0 

π/ω 

d. The Sine Function. 

Figure 9.5. Disturbing Functions. 
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a) The Laplace transform of the Sine Function is: 

X(s) = f ^ r (9.27) 

b) The finite difference method will use equation 9.26. 

EXAMPLE 9.1 

A control valve is operated by an air-actuated diaphragm motor having an 
effective area of 6.5 x 10~2m2. The weight of the moving parts is 140kg; the 
stiffness of the spring is 105 N m"1; the damping constant is 3 x 103 N sm"1. 

Determine the response of the valve to the following disturbances: 

a) A step change in air pressure from 2.1 x 105 to 2.7 x 105 Nnf2 

b) A change in air pressure from 2.1 x 105 to 3.2 x 105 Nm"2lasting for 0.2 
seconds. 

The differential equation for this case has already been given: 

M d2L C dL , _ fit) ,Q M 

H d ^ H e dt L " H (9>8) 

For t h i s case, M = 140kg 

H = 105Nm_1 

C = 3 *10 3 NsM^ 

Λ 9 - 1 } & » 1 . 4 * 1 0 - ν 

C = ^ 1 0 3 = 3 . 1 0 - 3 

f i l l = 6 . 5 * 1 ( Γ » * (2 .7-2 .1)10 5
 = 

H 105 

Using the identity 

whence τ = 0.037S 

2 whence 

= 0.405 

(9.9) 
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a) For the case of a step change, 

X = 0 t <0 

X = 0.039 t >0 

Λ X(s) = _ 0.039 

The transfer function for the 2nd order case is: 

1 Y(s) . 
XÏ?) T V + 2 C T S + 1 

(9.10) 

Λ Y(s) = 
0.039 1 

1.4 * 10"3s2 + 3 * 10 2 s 2 + 1 

The transient response of the system may be obtained by transformation of 

this equation back into the time domain. Details of this procedure will not be 

given here, but may be obtained from specialist texts (1), (2), (3), (4), (8). 

The result may be expressed in general terms as: 

If Y(s) = 
S ( T 2 S 2 + 2CTS + 1) 

then, for the case where ζ <1, the solution is 

Y(t) = A I l~ y W e ^ *'n (^^^'^ + ~̂ n~' Α ~ ^ * ) (9.28) 

Using the values found above, that 

A = 0.039 

τ = 0.037 

ζ = 0.405 

we obtain the values listed in Table 9.1a and shown graphically on Figure 9.6 

which demonstrate the oscillatory nature of the response. 

b) As an approximation, we may regard this change in air pressure as an impulse 

of size: 

6.5 * 10"2 * (3.2 - 2.1) * 105 x 0.2 = 

105 
1.43 * 10 ms 

The Laplace transform of this impulse is 

X(S) = 1.43 * 10"2 

Consequently we require the solution to the equation 

1 43 -x- 10 ~2 
Y(s) = „.2S2 + 2rTs + 1 u s i n 9 tne values of τ and ζ found above. 

If Y(s) T 2 S 2 + 2cxs + 1 

then Y(t) = A (9. 
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0.1-, 

0.08 J 

0.06 J 

0.04 J 

0.02 

-0.02 H 

-0.04 J 

Response, 
metres 

Response to a Step Change 

•Response to an Impulse 

0.1 0.2 

Time, sees 

0.3 0.4 

-0.06 J 

Figure 9.6. Response of a Pneumatic Control Valve to a change in Air Pressure. 

Using the values found above, with A = 1.43 x 10" we obtain the values 

listed in Table 9.1b and shown in Figure 9.6. 

It will be be seen that there is an error in the result. The response is 

shown to be decaying after 0.05 seconds although the duration of the pulse is 

0.2 seconds. The error has of course arisen because, for simplicity, the pulse 

has been treated as an impulse. 

TABLE 9.1 

Response of Pneumatic Control Valve to Changes in Air Pressure 

a) Step Change from 2.1 x 105 to 2.7 x 105N/m2 

Displacement 
metres 

Time 
Sees 

0 
0.01 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 

0 
0.0013 
0.0221 
0.0456 
0.0472 
0.0399 
0.0366 
0.0378 
0.0393 



265 

Impulse occasioned by a change in air pressure from 
2.1 x 10§ to 3.2 x 105 N/m2 lasting for 0.2 seconds 

Time 
sees 

0 
0.01 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

Displacement 
metres 

0 
+0.0927 
+0.2309 
+0.0879 
-0.0438 
-0.0461 
-0.0029 
+0.0143 
+0.0064 
-0.0024 

EXAMPLE 9.2 

The temperature of the contents of a jacketted kettle such as that shown in 

Figure 9.1 is measured by means of a thermocouple. The thermocouple signal is 

received by a controller, which sends a pneumatic signal to an air-actuated 

control valve. This valve controls the steam supply to the jacket. The 

transfer functions for the various elements are as follows: 

(valve) 

G (kettle) 

6.4 
1 + 12s 

0.085 
1 + 300s 

kW 
kPa 

!ç 
kW 

H (thermocouple) 0.038 mV 

Whilst the plant is operating at steady state, the line carrying air to the 

pneumatic actuator is damaged, resulting in a sudden drop in signal pressure. 

This may be modelled as a step change of magnitude - 6kPa. 

What will be the effect on the temperature of the vessel contents? Solve 

this problem by the Laplace transform technique, assuming a proportional 

controller Gc, having a gain constant of 350 kPa/mV. 

The Block Diagram for this system is shown in Figure 9.7. 

U(s) 

Figure 9.7. Block diagram for Example 9.2. 
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Or, rewritten in standard quadratic form: 

By the rules of block diagram reduction, the transfer function for the entire 

process is: 

The Laplace transform of the step change U(t) is: 

Hence, 

The ultimate time response of the system is easily determined from this 

equation by applying the Final Value Theorem. This theorem may be stated 

mathematically as: 

Multiplying the expression for V(s) by s, and then setting s=0, we obtain: 

The transient response is obtained using Equation 9.28 and results are 
tabulated in Table 9.2 and shown graphically in Figure 9.8. We see that there 
is an oscillatory response, and that after about 300 seconds the final response 
is obtained, the temperature of the kettle being low by -0.396°C. 
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TABLE 9.2 

Deviation of kettle temperature due to a step change in signal pressure of 
-6kPa 

t, Time from commencement 
of disturbance 

Seconds 

0 
50 
100 
150 
200 
250 
300 

V(t) deviation of 
bath temperature 

°C 

0 
-0.26690 
-0.37945 
-0.39487 
-0.39603 
-0.39602 
-0.39600 

-0.396 

Time, seconds 

Figure 9.8. Response of kettle temperature to an Air Leak. 
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EXAMPLE 9.3 

Using the Laplace transform method, rework Example 9.2 this time assuming 

the controller also has integral and derivative functions. 

a) If the values of derivative and integral time constants are 10 seconds 

and 25 seconds respectively, what is the effect of the disturbance? 

b) At the given values of Kc and TD, can an incorrect choice of τ, 

cause instability? 

a) Referring to the solution of Example 9.2, 

V(S) = - s(l + Gv HGC) 
6 GyG 

In this case Gc = Kc + K C T D S + Kc/ sx, 

350 + 3500s + 350/25S 

Hence, 

6* 6.4 0.085 
V(s) 1 + 12s * 1 + 300s 

ψ + r f ï2s* rfföös* °·038 ^350 + 3 5 0 0 s + f f?>] 

-3.264 
3600s3 + 384.4s2 + 8.235s + 0.289 

Solution of this expression involves factorisation of the denominator, 

separation into partial fractions, and transformation of the individual terms 

back into the time domain. 

This arduous procedure w i l l not be given here; however the ultimate response 

of the system is easily determined by application of the Final Value Theorem. 

In this case, 

lim sV(s) = V(t) 

s—*0 t — * oo 

- 3 . 2 6 4 _ 0 
3600s2 + 384.4s + 8.235 + 0.289 

s 
s >0 

b) A complete exploration of the effects of varying the controller function is 

best carried out by the Root Locus method. This involves factorisation of the 

numerator and denominator of the transform, plotting the poles and zeros thus 

obtained, and investigating graphically, the behaviour of the roots as a chosen 

parameter is varied. 



The procedure is lengthy, but one portion of the method may be quickly 

applied to the present problem. This is the Routh Test (1), (2), (3), (8). 

Routh Test 

This is carried out upon the denominator of the system transfer function. 

The denominator equated to zero, is called the Characteristic Equation. In 

this case, 

1 + GVGHGC = 0 

The controller function we wish to explore is the value of integral time, τ, . 

The characteristic equation may therefore be written: 

(1 + 12s)(l + 300s) + h^- (350 + 3500s + ™ ) = 0 

Expanding the terms and multiplying throughout by s to eliminate the term 

1/s, we obtain: 

3600s3+ 384.4s2 + 8.235s + 7.235 0 

The coefficients of s are then arranged to form the f i r s t two rows of the 

Routh Array. The lower rows are then formed by multiplying the appropriate 

terms together as shown in Table 9.3. 

TABLE 9.3 

The Routh Array - Example 9.3 

Row 

s3 

s2 

s1 

s° 

3 6 0 0 - ^ ^ ^ ^ 8 . 2 3 5 

384.4 - " ^ ' ^ ^ ^ ^ 7.235 

8.235 - 67Γ76 " ^ 0 
τ 

7.235/τ 0 

s1 = 384.4 * 8.235 - 3600 x- 7.235/τ, 
384.4 

= 8.235 - 67.76 
Τ! 

s° = (8.235 - 67.76) 7.235 η 
τ * τ ~ U 

(8.235 - 67.76) 
= 7.235 Τ| 

τ, 

0 

0 

0 

0 
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The system is unstable if a negative value appears. In this case, the first 

term in the s' row will be negative if 

o ooc 67.76 Λ -· Λ ;r - 67.76 _ 0 00 8.235 < 0 i.e. if τ, < - g~5 = 8.23 

τι = 8.23 is a critical value for marginal stability of the system. 

COMPUTER SOLUTION OF CONTROL PROBLEMS BY FINITE DIFFERENCES 

Program CNTRLl utilises the finite difference equations developed earlier in 

the chapter. The structure of the program is generally similar to that 

developed for Flowsheeting (chapter 1). 

Since it is convenient to have the response data in graphical form, the 

program provides means for this. Output data are stored on a disc file; the 

program Graph 1 which follows can be used subsequently to retrieve this data and 

produce a graphical plot. 

To use the latter program it is necessary for your computer to be provided 

with a graphics card, and of course the supporting software. 

The program is short and simple but employs functions not seen in the 

preceeding programs. 
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(start J 
CNTRL1.BAS 

Input 

Yes 
Graph 

No 

Subroutine 
Disturb A 

11 
(Subroutine j__ 
iBuild | 

/ Print / 

Yes 

Yes 

^uorounne 
Disturb B 

Yes 

J Process * 
i_ Segmen t_ ( 

See 
Separate 
Sheet 

See 
Separate 
Sheet 
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Subroutine BUILD - CNTRL1.BAS 

Γ Start J 

Input 
1\ 

omp Subroutine 
Comp A 

'No 

Sum Yes Subroutine 
Sum A 

.No 

Take Subroutine 
Take A 

/No 

Control Yes 

/No 

Subroutine 
Control A 

Process Yes Subroutine 
Proc A 

End No 

Yes 

Return " ) 



Process Segment 

CNTRL1.BAS 
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Start 
) 

Comp 
? y / 

INO 

Sum ^ 
? S 

XNO 

Take >s 
Fwd s 

XNO 

T a k e N 
Side y 

S. Ί y' 
ψΝο 

Control 
? S 

ψΝο 

ProcessS 
? 

|Νο 

J<N1 

Yes 

Yes 

Yes 

Yes 

Yes 

^ Yes 

. Yes 

*»J 

-̂ | 
•̂  

•̂  

^ 

^ 

Subroutine 
Comp B 

Subroutine 
Sum B 

Subroutine 
Take B 

Subroutine 
Control B 

bubroutine 
Process B 

Ĵ 

v l 

1 ^J 

>l 

kNo 

Contir 
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10 REM *************************************************** 
20 REM - PROGRAM CNTRL1.BAS THIS PROGRAM SIMULATES 
30 REM - OPEN AND CLOSED LOOP SYSTEMS USING 
40 REM - A FINITE DIFFERENCE METHOD 
50 REM - PROGRAM NOMENCLATURE 
60 REM - A$jB$ - Alphanumeric inputs in response to 
70 REM computer queries 
80 REM - A$(J) - Names of the items on the Block Diagram 
90 REM - B(J,K)- Where K=l, this is the item from which 
100 REM comes the forward signal entering item J 
110 REM Where K=2, this is the item number from 
120 REM which comes the backward or side signal 
130 REM - C(J) - Damping coefficient, 2nd order function 
140 REM item J 
150 REM - Cl - When value =1, prevents programming of a 
160 REM second controller 
170 REM - El - Value of integral of controller 
180 REM error signal 
190 REM - K(J) - Value of gain constant, item J 
200 REM - Ml - Magnitude of step or impulse, slope of 
210 REM ramp, amplitude of sine wave 
220 REM - M2 - Duration of impulse, radian frequency of 
230 REM sine wave 
240 REM - Nl - Number of items on the block diagram 
250 REM (where an item can be a block, summing 
260 REM junction, comparator or takeoff point) 
270 REM - N2 - Number of data printouts; program 
280 REM terminates at N2=50 
290 REM - N3 - Item number from which response signal 
300 REM comes 
310 REM - N6 - Duplicates final value of Nl 
320 REM - 0(J) - Indicator of first or second order for 
330 REM process at item J 
340 REM - R(J) - Value of process time constant, item J 
350 REM - S(J) - Value of the signal leaving item J at 
360 REM time t+dt 
370 REM - T(J) - Value of the signal leaving item J 
380 REM at time t 
390 REM - Tl - Value of the time interval dt,sees 
400 REM - T2 - Controller derivative time, sees 
410 REM - T3 - Controller integral time, sees 
420 REM - T4 - Total elapsed time, sees 
430 REM - T5 - Time interval required between 
440 REM printouts, sees 
450 REM - T6 - Time interval since last printout 
460 REM - T7,T8 Intermediate values in calculation 
470 REM of response of second order function 
480 REM - U(J) - Value of the signal leaving item J 
490 REM at time t-dt 
500 REM - PROGRAM DESCRIPTION: 
510 REM - THE CONTROL PROGRAM: LINES 2000 - 3030 
520 REM - LINES 2000 - 2210 Necessary array declarations 
530 REM - are made (line 2000) then the opportunity is 
540 REM - given to file the output, and to select the disc 
550 REM - to be used for storage. Next the subroutines 
560 REM - "Disturb" and "Build" are called (lines 2200 & 
570 REM - 2210). These enable the designer to enter from 
580 REM - the keyboard those parameters concerned with the 
590 REM - disturbing signal and the block diagram 
600 REM - respectively 

REM - LINES 2220 - 2290 The finite difference time 
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620 REM - interval (Tl), and printout details are entered 
630 REM - LINES 2300 - 2680 By calling up appropriate 
640 REM - subroutines as needed, the required disturbing 
650 REM - signal is generated (line 2340). The response 
660 REM - is then calculated for each element of the block 
670 REM - diagram in turn (lines 2440 - 2610) Values of 
680 REM - these responses are stored in Matrix S. Before 
690 REM - undertaking another iteration, the set of previous 
700 REM - responses stored in Matrix T, is transferred to 
710 REM - Matrix U and the set of values in Matrix S is now 
720 REM - transferred to Matrix T (lines 2620 - 2650). In 
730 REM - this way, three successive sets of values of 
740 REM - system element responses, are available. These 
750 REM - are required for example when dealing with a 2nd 
760 REM - order function. A check is then made (lines 2660 
770 REM - to 2680) as to whether or not a data printout is 
780 REM - required, and the program then returns either to 
790 REM - line 2350 (printout), or to line 2410 (no 
800 REM - printout). A running check is also kept on the 
810 REM - number of data printouts; when 
820 REM - this reaches the arbitrary total of 50, 
830 REM - iteration ceases (lines 2380 & 2390) 
840 REM - LINES 2690 - 3030 In this segment are contained 
850 REM - the options to change parameters. Variables are 
860 REM - first set to zero (lines 2750 - 2790) 
870 REM - Parameters are then varied as follows: 
880 REM - Finite difference time, & time 
890 REM - between printouts (lines 2810 - 2850) 
900 REM - Disturbing signal (lines 2860 - 2900) 
910 REM - Controller settings (lines 2910 - 2940) 
920 REM - DETAILS OF DISTURB SUBROUTINE 
930 REM - LINES 3050 - 3390 (Disturb Part A) This part of 
940 REM - the subroutine is used to establish the desired 
950 REM - characteristics of the disturbing signal 
960 REM - LINES 3410 - 3560 (Disturb Part B) The required 
970 REM - disturbing signal is simulated using the 
980 REM - appropriate equation from among those quoted 
990 REM - earlier in Chapter 9. This part is called at 
1000 REM - each iteration of the control program 
1010 REM - DETAILS OF SUBROUTINE BUILD 
1020 REM - LINES 3590 - 3920 Each numbered element of the 
1030 REM - block diagram is taken up in turn during the 
1040 REM - operation of this subroutine. According to the 
1050 REM - nature of the element (comparator,summing 
1060 REM - junction, etc), an appropriate subroutine 
1070 REM - is then called. Build subroutine is called 
1080 REM - only once during the running of the program 
1090 REM - DETAILS OF SUBROUTINES COMP, SUM, TAKE, CONTROL 
1100 REM - AND PROCESS. 
1110 REM - LINES 3940 - 4980 Each of these subroutines is 
1120 REM - similarly constructed. Part A of each 
1130 REM - subroutine is used to ascribe the appropriate 
1140 REM - name to the corresponding item 
1150 REM - on the block diagram; and to 
1160 REM - establish the number of adjacent items, 
1170 REM - from which signals come. Additionally, with 
1180 REM - subroutines Control and Process, appropriate 
1190 REM - parameters are entered from the keyboard. 
1200 REM - With the exception of Control subroutine, Part A 
1210 REM - of each of the subroutines may be called 
1220 REM - only once during the running of the program 
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1230 REM - In part B of each subroutine is carried out the 
1240 REM - calculation of the response appropriate to the 
1250 REM - item, using the equations developed earlier in 
1260 REM - Chapter 9. These parts of the subroutines are 
1270 REM - called when necessary at each iteration of the 
1280 REM - control program. 

2000 DIM A$(20),S(20),T(20),U(20) 
2010 PRINT "DO YOU WANT TO FILE OUTPUT FOR GRAPHS? " 
2020 INPUT "TYPE Y OR N";B$ 
2030 IF B$="Y" THEN 2060 
2040 IF B$="N" THEN 2200 
2050 GOTO 2010 
2060 PRINT "ON WHICH DISC DO YOU WANT FILES TO RESIDE" 
2070 INPUT "TYPE A, B, C,0R D";A$ 
2080 IF A$="A" THEN 2130 
2090 IF A$="B" THEN 2150 
2100 IF A$="C" THEN 2170 
2110 IF A$="D" THEN 2190 
2120 GOTO 2060 
2130 OPEN "A:DATA" FOR OUTPUT AS #1 
2140 GOTO 2200 
2150 OPEN "B:DATA" FOR OUTPUT AS #1 
2160 GOTO 2200 
2170 OPEN "C:DATA" FOR OUTPUT AS #1 
2180 GOTO 2200 
2190 OPEN "D:DATA" FOR OUTPUT AS #1 
2200 GOSUB 3050 
2210 GOSUB 3580 
2220 PRINT 
2230 PRINT "DELTA T, SECONDS"; 
2240 INPUT Tl 
2250 PRINT "ITEM NUMBER FROM WHICH THE REQUIRED OUTPUT" 
2260 INPUT "SIGNAL COMES";N3 
2270 PRINT "REQUIRED TIME INTERVAL BETWEEN PRINTOUTS, " 
2280 INPUT "SECONDS";T5 
2290 T5=T5/T1 
2300 E1=0 
2310 PRINT 
2320 PRINT " TIME DISTURBING RESPONSE" 
2330 PRINT " SECS SIGNAL" 
2340 GOSUB 3410 
2350 PRINT USING "####.### ";T4,S(1),S(N3) 
2360 IF B$="N" THEN 2380 
2370 WRITE #1,T4,S(1),S(N3) 
2380 N2=N2+1 
2390 IF N2=50 THEN 2690 
2400 T6=l 
2410 T4=T4+T1 
2420 T6=T6+1 
2430 GOSUB 3410 
2440 FOR J=2 TO Nl 
2450 IF A$(J)="COMP" THEN 2520 
2460 IF A$(J)="SUM" THEN 2540 
2470 IF A$(J)=MTAKE,FORWARD" THEN 2610 
2480 IF A$(J)="TAKE,SIDE" THEN 2560 
2490 IF A$(J)="CON" THEN 2580 
2500 IF A$(J)="PROC" THEN 2600 
2510 GOTO 2610 
2520 GOSUB 4060 
2530 GOTO 2610 
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2540 GOSUB 4250 
2550 GOTO 2610 
2560 GOSUB 4400 
2570 GOTO 2610 
2580 GOSUB 4620 
2590 GOTO 2610 
2600 GOSUB 4890 
2610 NEXT J 
2620 FOR 1=1 TO Nl 
2630 U(I)=T(I) 
2640 T(I)=S(I) 
2650 NEXT I 
2660 IF T6<T5 THEN 2410 
2670 IF T6=T5 THEN 2410 
2680 GOTO 2350 
2690 PRINT "INPUT Y TO RERUN"; 
2700 INPUT A$ 
2710 IF A$="Y" THEN 2730 
2720 GOTO 5010 
2730 N2=0 
2740 E1=0 
2750 FOR 1=1 TO Nl 
2760 S(I)=0 
2770 T(I)=0 
2780 U(I)=0 
2790 NEXT I 
2800 T4=0 
2810 PRINT "DELTA T,SECS"; 
2820 INPUT Tl 
2830 PRINT "REQUIRED TIME INTERVAL BETWEEN PRINTOUTS,SECS"; 
2840 INPUT T5 
2850 T5=T5/T1 
2860 PRINT "INPUT Y TO CHANGE DISTURBING SIGNAL"; 
2870 INPUT A$ 
2880 IF A$="Y" THEN 2900 
2890 GOTO 2910 
2900 GOSUB 3090 
2910 PRINT "INPUT Y TO CHANGE CONTROLLER SETTINGS"; 
2920 INPUT A$ 
2930 IF A$="Y" THEN 2950 
2940 GOTO 2320 
2950 PRINT "INPUT ITEM NUMBER OF CONTROLLER"; 
2960 N6=N1 
2970 INPUT Nl 
2980 IF A$(N1)="C0N" THEN 3010 
2990 PRINT "INCORRECT CONTROLLER NUMBER" 
3000 GOTO 2910 
3010 GOSUB 4530 
3020 N1=N6 
3030 GOTO 2320 
3040 REM **************************** 
3050 REM - DISTURB SUBROUTINE USED TO GENERATE 
3060 REM - THE DISTURBING SIGNAL 
3070 REM - DISTURB PART A ********************************** 
3080 Nl=l 
3090 PRINT "THIS IS DISTURB SUBROUTINE ITEM";N1 
3100 PRINT "ENTER STEP,RAMP,PULSE OR SINE"; 
3110 INPUT A$ 
3120 IF A$<>"STEP" THEN 3170 
3130 A$(1)="STEP" 
3140 PRINT "MAGNITUDE OF STEP"; 
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3150 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 
3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 
3690 
3700 
3710 
3720 
3730 
3740 
3750 

THEN 3220 

INPUT Ml 
GOTO 3390 
IF A$<>"RAMP" 
A$(1)="RAMP" 
PRINT "SLOPE OF RAMP"; 
INPUT Ml 
GOTO 3390 
IF A$<>"PULSE" THEN 3240 
GOTO 3250 
IF A$<>"PUL" THEN 3310 
A$(1)="PULSE" 
PRINT "MAGNITUDE OF PULSE"; 
INPUT Ml 
PRINT "DURATION OF PULSE, SECONDS"; 
INPUT M2 
GOTO 3390 
IF A$="SINUSOID" THEN 3350 
IF A$="SIN" THEN 3350 
PRINT "INPUT NOT RECOGNISED" 
GOTO 3100 
PRINT "AMPLITUDE OF SINE WAVE"; 
INPUT Ml 
PRINT "RADIAN FREQUENCY"; 
INPUT M2 
RETURN 

REM - DISTURB PART B **************************** 
IF A$(1)="STEP" THEN 3460 
IF A$(1)="RAMP" THEN 3480 
IF A$(1)="PULSE" THEN 3500 
GOTO 3550 
S(1)=M1 
GOTO 3560 
S(1)=M1*T4 
GOTO 3560 
IF (T4-T1)>M2 THEN 3530 
S(1)=M1 
GOTO 3560 
S(1)=0 
GOTO 3560 
S(1)=M1*SIN(M2*T4) 
RETURN 

REM - BUILD SUBROUTINE USED WHEN ASSEMBLING THE 
REM - BLOCK DIAGRAM - BUILD PART A ******************** 
PRINT 
PRINT "BUILD SUBROUTINE. ENTER COMPARATOR, " 
PRINT "SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER," 
INPUT "PROCESS OR END";A$ 
IF A$="COMPARATOR" THEN 3790 
IF A$="COMP" THEN 3790 
IF A$="SUMMING JUNCTION" THEN 3810 
IF A$="SUM" THEN 3810 
IF A$="TAKEOFF POINT" THEN 3830 
IF A$="TAKE" THEN 3830 
IF A$="TAKEOFF" THEN 3830 
IF A$="CONTROLLER" THEN 3850 
IF A$="CONTROL" THEN 3850 
IF A$="CON" THEN 3850 
IF A$="PROCESS" THEN 3900 
IF A$="PROC" THEN 3900 
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3760 IF A$="END" THEN 3920 
3770 PRINT "INPUT NOT RECOGNISED" 
3780 GOTO 3600 
3790 GOSUB 3940 
3800 GOTO 3600 
3810 GOSUB 4130 
3820 GOTO 3600 
3830 GOSUB 4290 
3840 GOTO 3600 
3850 IF C1=0 THEN 3880 
3860 PRINT "PROGRAM CAN ONLY HANDLE ONE CONTROLLER" 
3870 GOTO 3600 
3880 GOSUB 4450 
3890 GOTO 3600 
3900 GOSUB 4680 
3910 GOTO 3600 
3920 RETURN 
3930 REM ********************************* 
3940 REM - COMP SUBROUTINE, SIMULATES THE COMPARATOR 
3950 REM - COMP PART A ************************************* 
3960 N1=N1+1 
3970 PRINT "COMP SUBROUTINE, ITEM NUMBER";N1;" THIS NUMBER" 
3980 PRINT "ALSO DENOTES THE OUTPUT SIGNAL" 
3990 A$(N1)="C0MP" 
4000 PRINT "ITEM NUMBER FROM WHICH FEED FORWARD " 
4010 INPUT "SIGNAL COMES, IF NO SIGNAL INPUT ZERO";B(N1,1) 
4020 PRINT "ITEM NUMBER FROM WHICH FEED BACK SIGNAL COMES"; 
4030 INPUT B(N1,2) 
4040 RETURN 
4060 REM - COMP PART B ************************************* 
4070 IF B(J,1)=0 THEN 4100 
4080 S(J)=S(B(J,1))-S(B(J,2)) 
4090 GOTO 4110 
4100 S(J)=-S(B(J,2)) 
4110 RETURN 

4130 REM - SUM SUBROUTINE, SIMULATES A SUMMING JUNCTION 
4140 REM - SUM PART A ************************************** 
4150 N1=N1+1 
4160 PRINT "SUM SUBROUTINE, ITEM NUMBER";N1;"THIS NUMBER" 
4170 PRINT "ALSO DENOTES THE OUTPUT SIGNAL" 
4180 A$(N1)="SUM" 
4190 PRINT "ITEM NUMBER FROM WHICH FORWARD SIGNAL COMES"; 
4200 INPUT B(N1,1) 
4210 PRINT "ITEM NUMBER FROM WHICH SIDE SIGNAL COMES"; 
4220 INPUT B(N1,2) 
4230 RETURN 
4240 REM *************************************************** 
4250 REM - SUM PART B ************************************** 
4260 S(J)=S(B(J,1))+S(B(J,2)) 
4270 RETURN 
4280 REM *************************************************** 
4290 REM - TAKE SUBROUTINE, SIMULATES A TAKEOFF POINT' 
4300 REM - TAKE PART A ************************************* 
4310 Nl=Nl+2 
4320 PRINT "TAKE SUBROUTINE ITEM NUMBER";N1-1;"THIS NUMBER" 
4330 PRINT "ALSO DESIGNATES THE FORWARD SIGNAL." 
4340 PRINT "SIDE SIGNAL IS DENOTED BY NUMBER";N1 
4350 A$(N1-1)="TAKE,FORWARD" 
4360 A$(N1)="TAKE,SIDE" 
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4370 PRINT "ITEM NUMBER FROM WHICH SIGNAL COMES"; 
4380 INPUT B(N1,1) 
4390 RETURN 
4400 REM - TAKE PART B 
4410 S(J-1)=S(B(J,1)) 
4420 S(J)=S(B(J,1)) 
4430 RETURN 

4450 REM - CONTROL SUBROUTINE, SIMULATES THE CONTROLLER 
4460 REM - CONTROL PART A ********************************** 
4470 N1=N1+1 
4480 PRINT "CONTROL SUBROUTINE ITEM NUMBER";N1;"THIS NUMBER" 
4490 PRINT "ALSO DESIGNATES THE OUTPUT SIGNAL" 
4500 A$(N1)="C0N" 
4510 PRINT "ITEM NUMBER FROM WHICH SIGNAL COMES"; 
4520 INPUT B(N1,1) 
4530 PRINT "VALUE OF GAIN CONSTANT"; 
4540 INPUT K(N1) 
4550 PRINT "VALUE OF DERIVATIVE TIME, SECONDS"; 
4560 INPUT T2 
4570 PRINT "VALUE OF INTEGRAL TIME, SECONDS"; 
4580 INPUT T3 
4590 Cl=l 
4600 RETURN 

4620 REM - CONTROL PART B ********************************** 
4630 E1=E1+T1*S(B(J,1)) 
4640 S(J)=K(J)*S(B(J,1)) 
4650 S(J)=S(J)+K(J)*T2*(S(B(J,1))-T(B(J,1)))/Tl+K(J)*E1/T3 
4660 RETURN 
4680 REM - PROCESS SUBROUTINE, SIMULATES ANY FIRST OR SECOND 
4690 REM - ORDER FUNCTION - PROCESS PART A ***************** 
4700 N1=N1+1 
4710 PRINT "PROCESS SUBROUTINE ITEM NUMBER";N1 
4720 A$(N1)="PR0C" 
4730 PRINT "ITEM NUMBER FROM WHICH SIGNAL COMES"; 
4740 INPUT B(N1,1) 
4750 PRINT "VALUE OF TIME CONSTANT"; 
4760 INPUT R(N1) 
4770 PRINT "INPUT 1 OR 2 FOR FIRST OR SECOND ORDER"; 
4780 INPUT 0(N1) 
4790 IF 0(N1)=1 THEN 4820 
4800 IF 0{N1)=2 THEN 4850 
4810 GOTO 4770 
4820 PRINT "VALUE OF GAIN CONSTANT"; 
4830 INPUT K(N1) 
4840 GOTO 4870 
4850 PRINT "VALUE OF DAMPING COEFFICIENT"; 
4860 INPUT C(N1) 
4870 RETURN 
4880 REM *************************************************** 
4890 REM - PROCESS PART B ********************************** 
4900 IF 0(J)=2 THEN 4950 
4910 REM - FIRST ORDER FUNCTION **************************** 
4920 S(J)=(S(B(J,1))*K(J)+T(J)*R(J)/T1)/(1+R(J)/T1) 
4930 GOTO 4980 
4940 REM - SECOND ORDER FUNCTION *************************** 
4950 T7=R(J)/T1 
4960 T8=2*T7*C(J) 
4970 S(J)=(S(B(J,1))+(2*T(J)-U(J))*T7~2+T(J)*T8)/(T7~2+T8+1) 
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4980 RETURN 
4990 REM******************************************** 
5000 IF B$="N" THEN 5020 
5010 CLOSE #1 
5020 END 

EXAMPLE 9 .4 COMPUTER SOLUTION OF EXAMPLE 9 . 1 

L0AD"A:CNTRL1 
Ok 
RUN 
DO YOU WANT TO FILE OUTPUT FOR GRAPHS? 
TYPE Y OR N? Y 
ON WHICH DISC DO YOU WANT FILES TO RESIDE 
TYPE A,B,C,OR D? A 
THIS IS DISTURB SUBROUTINE ITEM 1 
ENTER STEP,RAMP,PULSE OR SINE? STEP 
MAGNITUDE OF STEP? .039 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? PROC 
PROCESS SUBROUTINE ITEM NUMBER 2 
ITEM NUMBER FROM WHICH SIGNAL COMES? 1 
VALUE OF TIME CONSTANT? .037 
INPUT 1 OR 2 FOR FIRST OR SECOND ORDER? 2 
VALUE OF DAMPING COEFFICIENT? .405 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? END 

DELTA T, SECONDS? .01 
ITEM NUMBER FROM WHICH THE REQUIRED OUTPUT 
SIGNAL COMES? 2 
REQUIRED TIME INTERVAL BETWEEN PRINTOUTS, 
SECONDS? .01 

TIME 
SECS 
0.000 
0.010 
0.020 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.110 
0.120 
0. 130 
0.140 
0. 150 
0.160 

DISTURBING 
SIGNAL 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 

RESPONSE 

0.000 
0.002 
0.006 
0.011 
0.016 
0.022 
0.027 
0.031 
0.035 
0.039 
0.041 
0.043 
0.044 
0.045 
0.045 
0.045 
0.044 

— 

0. 170 
0. 180 
0.190 
0.200 
.210 
220 

.230 
0 . 2 4 0 
0 . 2 5 0 
0 . 2 6 0 
0 . 2 7 0 
0 . 2 8 0 

0. 
0. 
0. 

0. 039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0. 039 

0.044 
0.043 
0.042 
0.041 
0.040 
0.040 
0.039 
0.039 
0.038 
0.038 
0.038 
0.038 
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Ο. 290 
0. 300 
0. 3 1 0 
Ο. 320 
0. 330 
0. 340 
Ο. 350 
0. 360 
0. 370 
0.380 
0. 390 
0. 400 
0. 410 
0. 420 
0.430 
0.440 
0. 450 
0. 460 
0. 470 
Ο. 480 
0.490 

INPUT Υ 

0.039 
0. 039 
Ο. 039 
0. 039 
0.039 
0. 039 
0.039 
0.039 
0.039 
0. 039 
0.039 
0. 039 
0. 039 
0. 039 
0. 039 
0. 039 
0.039 
0.039 
0.039 
0. 039 
0.039 

ΤΟ RERUN? Υ 

0. 038 
0. 038 
0. 038 
0. 038 
0.038 
0. 039 
0. 039 
0.039 
Ο. 039 
0. 039 
0. 039 
0.039 
0. 039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0.039 
0. 039 

(a) Response to a Step Change 

DELTA T , S E C S ? . 0 1 
REQUIRED TIME INTERVAL BETWEEN PRINTOUTS,SECS? . 0 1 
INPUT Y TO CHANGE DISTURBING SIGNAL? Y 
THIS I S DISTURB SUBROUTINE ITEM 2 
ENTER STEP,RAMP, PULSE OR S I N E ? PUL 
MAGNITUDE OF PULSE? . 0 7 1 5 
DURATION OF PULSE, SECONDS? . 2 
INPUT Y TO CHANGE CONTROLLER SETTINGS? Ν 

TIME 
SECS 

DISTURBING 
SIGNAL 

RESPONSE (b) Response to a Pulse 

0.000 0 .072 0.000 
0 . 0 1 0 0 .072 0. 004 
0. 020 0. 072 0. O i l 
0.030 0 .072 0 .020 
0. 040 0 .072 0.030 0. 290 0.000 - 0 . 0 0 1 
0. 050 0 .072 0. 039 0. 300 0.000 -0 .006 
0.060 0. 072 0.049 0. 3 1 0 0.000 -0 .009 
0.070 0 .072 0.058 0. 320 0. 000 - 0 . o i l 
0.080 0. 072 0. 065 0 .330 0.000 - 0 . 0 1 2 
0.090 0 .072 0 . 0 7 1 0. 340 0.000 - 0 . 0 1 2 
0. 100 0 .072 0. 076 0. 350 0.000 - 0 . 0 1 2 
0. 1 1 0 0 .072 0. 079 0. 360 0.000 - 0 . 0 1 0 
0. 120 0 .072 0.082 0. 370 0.000 -0 .009 
0. 130 0 .072 0. 083 0.380 0. 000 -0 .007 
0. 140 0 .072 0.083 1 0 .390 0.000 -0 .005 
0. 150 0 .072 0.083 0.400 0.000 -0 .004 
0. 160 0 .072 0.082 0. 410 0.000 - 0 . 0 0 2 
0. 170 0 .072 0.080 0 .420 0.000 - 0 . 0 0 1 
0. 180 0 .072 0.079 0 .430 0.000 -0 .000 
0. 190 0 .072 0. 077 0.440 0.000 0 .001 
0. 200 0 .072 0.076 0.450 0.000 0 .001 
0. 2 1 0 0.000 0.070 0.460 0.000 0.002 
0 .220 0.000 0.062 0. 470 0.000 0.002 
0 .230 0.000 0 .052 0.480 0.000 0.002 
0 .240 0.000 0.042 0. 490 0.000 0.002 
0 .250 0.000 0 . 0 3 1 INPUT Y TO RERUN? Ν 
0.260 0.000 0 . 0 2 1 Ok 
0 .270 0.000 0 . 0 1 2 
0 .280 0.000 0.005 ^ 
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20 REM - PROGRAM GRAPHl.BAS THIS PROGRAM IS USED 
30 REM - TO GRAPH THE OUTPUT FROM CNTRL1.BAS 
40 REM - PROGRAM DESCRIPTION 
50 REM - LINES 1000,1690 Used to erase the soft key 
60 REM - display on commencement and to reinstate the 
70 REM - display on completion, of a program run 
80 REM - LINE 1190 Used to avoid the "Input past 
90 REM - End" error which would otherwise appear if one 
100 REM - inadvertently attempted to access more data than 
110 REM - that actually held in the file 
120 REM - LINES 1390 - The screen is cleared (line 1390); 
130 REM - the scale of the graph is set (line 1400); the 
140 REM - graph of the disturbance (lines 1420 & 1440) and 
150 REM - of the response (lines 1430 & 1450) are drawn 
160 REM - LINE 1520 Stops the program until any key 
170 REM - is pressed 

1000 KEY OFF 
1010 DIM M(100,100) 

1 Λ Ο Λ DTVif T T T "CG >4"^ & ^ Ά· Ά' *̂ Ά" ^ ^ ^ Ά* ^"^ & "4fk & & Ά" Ά" ^ Ά" ^ Ά" Ά" *̂ ̂  ^ ^ ^ ^ ^^ <k ^ Ά" ^ ^ ^"^^ "̂  

1030 PRINT "ON WHICH DISC DO THE FILES RESIDE" 
1040 INPUT "TYPE A,B,C,0R D";A$ 
1050 IF A$="A" THEN 1100 
1060 IF A$="B" THEN 1120 
1070 IF A$="C" THEN 1140 
1080 IF A$="D" THEN 1160 
1090 GOTO 1030 
1100 OPEN "A:DATA" FOR INPUT AS #1 
1110 GOTO 1170 
1120 OPEN "B:DATA" FOR INPUT AS #1 
1130 GOTO 1170 
1140 OPEN "C:DATA" FOR INPUT AS #1 
1150 GOTO 1170 
1160 OPEN "D:DATA" FOR INPUT AS #1 
1170 B1=0 
1180 FOR J=l TO 50 
1190 IF E0F(1) THEN 1610 
1200 INPUT #1,M(J,1),M(J,2),M(J,3) 
1210 NEXT J 
1220 IF A1>0 THEN 1410 
1230 REM - GRAPH SIZE ******************************* 
1240 PRINT "INPUT COORDINATES FOR BTM LH CORNER" 
1250 INPUT "OF GRAPH X,Y";X1,Y1 
1260 PRINT "INPUT COORDINATES FOR TOP RH CORNER" 
1270 INPUT "OF GRAPH X,Y";X2,Y2 
1280 PRINT "INPUT Y TO SUPERIMPOSE GRAPHS ELSE N" 
1290 PRINT "AFTER THEY APPEAR PRESS ANY KEY TO CONTINUE" 
1300 INPUT B$ 
1310 IF B$="Y" THEN 1360 
1320 IF B$="N" THEN 1340 
1330 GOTO 1280 
1340 Al=l 
1350 GOTO 1390 
1360 PRINT "HOW MANY GRAPHS"; 
1370 INPUT Al 
1380 REM - PLOT THE GRAPHS ********************************* 
1390 SCREEN 2 :CLS 
1400 WINDOW (X1,Y1)-(X2,Y2) 
1410 FOR J=l TO 50 
1420 PSET (M(J,1),M(J,2)) 
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1430 PSET (M(J,1),M(J,3)) 
1440 LINE <M(J-1,1),M(J-1,2))-(M(J,1),M(J,2)) 
1450 LINE (M(J-1,1),M(J-1,3))~(M(J,1),M(J,3)) 
1460 NEXT J 
1470 B1=B1+1 
1480 IF B1=A1 THEN 1500 
1490 GOTO 1180 
1500 A1=0 
1510 B1=0 
1520 C$=INKEY$: IF C$="" THEN 1520 
1530 CLS 
1540 PRINT "INPUT S TO RUN SAME DATA,N TO RUN 
1550 INPUT "NEXT SET,ELSE E";B$ 
1560 IF B$="E" THEN 1590 
1570 IF B$="S" THEN 1240 
1580 IF B$="N" THEN 1180 
1590 CLOSE 4*1 
1600 GOTO 1630 
1610 PRINT "END OF FILE" 
1620 CLOSE #1 
1630 PRINT "INPUT A TO RERUN FROM THE BEGINNING, 
1640 INPUT "ELSE E";B$ 
1650 IF B$="E" THEN 1690 
1660 IF B$<>"A" THEN 1630 
1670 A1=0 
1680 GOTO 1050 
1690 KEY ON 
1700 END 

LOAD"A:GRAPH1 
Ok 
RUN 
ON WHICH DISC DO THE FILES RESIDE 
TYPE A,B,C,OR D? A 
INPUT COORDINATES FOR BTM LH CORNER 
OF GRAPH X,Y? -. 1,-.01 
INPUT COORDINATES'FOR TOP RH CORNER 
OF GRAPH X,Y? .7, .06 
INPUT Y TO SUPERIMPOSE GRAPHS ELSE N 
AFTER THEY APPEAR PRESS ANY KEY TO CONTINUE 
? N 

INPUT S TO RUN SAME DATA,N TO RUN n . . 
NEXT SET, ELSE E? N D r a w 9raPh (b)> _ 
INPUT COORDINATES FOR BTM LH CORNER response to a pulse. 
OF GRAPH X,Y? - . l , - . 0 3 
INPUT COORDINATES FOR TOP RH CORNER 
OF GRAPH X,Y? .7,.1 
INPUT Y TO SUPERIMPOSE GRAPHS ELSE N 
AFTER THEY APPEAR PRESS ANY KEY TO CONTINUE 
? N 

Draw graph (a), 
response to a step 
change. 
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COMPUTER - GENERATED PLOTS OF DISTURBANCE AND RESPONSE 

EXAMPLE 9.4 

(a) Response to a Step Change 

(b) Response to a Pulse 
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Example 9.5 

Repeat Examples 9.2 and 9.3 using the above programs. 

First the Block Diagram is redrawn, showing the item numbers to be used when 
inputting data (Figure 9.9). 

0 
U(t) 

fg\ I + . 

(R)—»lGc ® N % r r ^ — r ©1 
Θ 

v(t) 

Figure 9.9. Block diagram for Example 9.5. 

In repeating Example 9.2 the following values are used: 

Item 1 - Step, magnitude = -6 

2 - Sum 

3 - Process, 1st order, τ = 12, K = 6.4 

4 - Process, 1st order, τ = 300, K = 0.085 

5 - Takeoff 

6 -

7 - Process, 1st order, τ = 0, K = 0.038 

8 - Comparator, no feedforward signal 

9 - Controller, K = 350 

T D = 0 
τι= oo 

In repeating Example 9.3a the following controller settings are used: 

K = 350 

T D = 10 

τ, = 25 

In repeating Example 9.3b the following controller settings are used: 

K = 50 

τι = 8.23 



L0AD"A:CNTRL1 
Ok 
RUN 
DO YOU WANT TO FILE OUTPUT FOR GRAPHS? 
TYPE Y OR N? Y 
ON WHICH DISC DO YOU WANT FILES TO RESIDE 
TYPE A,B,C,OR D? A 
THIS IS DISTURB SUBROUTINE ITEM 1 
ENTER STEP,RAMP,PULSE OR SINE? STEP 
MAGNITUDE OF STEP? -6 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? SUM 
SUM SUBROUTINE, ITEM NUMBER 2 THIS NUMBER 
ALSO DENOTES THE OUTPUT SIGNAL 
ITEM NUMBER FROM WHICH FORWARD SIGNAL COMES? 9 
ITEM NUMBER FROM WHICH SIDE SIGNAL COMES? 1 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? PROC 
PROCESS SUBROUTINE ITEM NUMBER 3 
ITEM NUMBER FROM WHICH SIGNAL COMES? 2 
VALUE OF TIME CONSTANT? 12 
INPUT 1 OR 2 FOR FIRST OR SECOND ORDER? 1 
VALUE OF GAIN CONSTANT? 6.4 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? PROC 
PROCESS SUBROUTINE ITEM NUMBER 4 
ITEM NUMBER FROM WHICH SIGNAL COMES? 3 
VALUE OF TIME CONSTANT? 300 
INPUT 1 OR 2 FOR FIRST OR SECOND ORDER? 1 
VALUE OF GAIN CONSTANT? .085 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? TAKE 
TAKE SUBROUTINE ITEM NUMBER 5 THIS NUMBER 
ALSO DESIGNATES THE FORWARD SIGNAL. 
SIDE SIGNAL IS DENOTED BY NUMBER 6 
ITEM NUMBER FROM WHICH SIGNAL COMES? 4 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? PROC 
PROCESS SUBROUTINE ITEM NUMBER 7 
ITEM NUMBER FROM WHICH SIGNAL COMES? 6 
VALUE OF TIME CONSTANT? 0 
INPUT 1 OR 2 FOR FIRST OR SECOND ORDER? 1 
VALUE OF GAIN CONSTANT? .038 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? COMP 
COMP SUBROUTINE, ITEM NUMBER 8 THIS NUMBER 
ALSO DENOTES THE OUTPUT SIGNAL 
ITEM NUMBER FROM WHICH FEED FORWARD 
SIGNAL COMES, IF NO SIGNAL INPUT ZERO? 0 

287 
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ITEM NUMBER FROM WHICH FEED BACK SIGNAL COMES? 7 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? CONTROL 
CONTROL SUBROUTINE ITEM NUMBER 9 THIS NUMBER 
ALSO DESIGNATES THE OUTPUT SIGNAL 
ITEM NUMBER FROM WHICH SIGNAL COMES? S 
VALUE OF GAIN CONSTANT? 350 
VALUE OF DERIVATIVE TIME, SECONDS? 0 
VALUE OF INTEGRAL TIME, SECONDS? 9E19 

BUILD SUBROUTINE. ENTER COMPARATOR, 
SUMMING JUNCTION,TAKEOFF POINT, CONTROLLER, 
PROCESS OR END? END 

DELTA T, SECONDS? 1 
ITEM NUMBER FROM WHICH THE REQUIRED OUTPUT 
SIGNAL COMES? 5 
REQUIRED TIME INTERVAL BETWEEN PRINTOUTS, 
SECONDS? 10 

TIME 
SECS 
0. 000 
10.000 
20■000 
30.000 

DISTURBING 
SIGNAL 
-6.000 
-6.000 
-6.000 
-6.000 

RESPONSE 

0. 000 
-0.036 
-0.104 
-0.176 

Solution to Example 9.2 
Response data output by the 
computer has been omitted 

460.000 
470.000 
480.000 
490.000 

-6.000 
-6.000 
-6.000 
-6.000 

-0.396 
-0.396 
-0.396 
-0.396 

INPUT Y TO RERUN? Y 
DELTA T,SECS? 1 
REQUIRED TIME INTERVAL BETWEEN PRINTOUTS,SECSI 
INPUT Y TO CHANGE DISTURBING SIGNAL? N 
INPUT Y TO CHANGE CONTROLLER SETTINGS? Y 
INPUT ITEM NUMBER OF CONTROLLER? 9 
VALUE OF GAIN CONSTANT? 350 
VALUE OF DERIVATIVE TIME, SECONDS? 10 
VALUE OF INTEGRAL TIME, SECONDS? 25 

10 

TIME 
SECS 
0. 000 
10.000 
20.000 
30.000 

DISTURE <ING 
SIGNAL 
-6.000 
-6.000 
-6.000 
-6.00C 

1 

> 

r 

RESPO 

0.000 
-0.034 
-0.094 
-0.152 

Solution to Example 9.3a 
Response data output by the 
computer has been omitted 
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460.000 
470.000 
480.000 
490.000 

-6.000 
-6.000 
-6.000 
-6.000 

-0.003 
-0.005 
-0.007 
-0.007 

INPUT Y TO RERUN? Y 
DELTA T,SECS? 1 
REQUIRED TIME INTERVAL BETWEEN PRINTOUTS,SECS^ 
INPUT Y TO CHANGE DISTURBING SIGNAL? N 
INPUT Y TO CHANGE CONTROLLER SETTINGS? Y 
INPUT ITEM NUMBER OF CONTROLLER? 9 
VALUE OF GAIN CONSTANT? 350 
VALUE OF DERIVATIVE TIME, SECONDS? 10 
VALUE OF INTEGRAL TIME, SECONDS? 8.23 

10 

TIME 
SECS 
0.000 
10.000 
20.000 
30.000 

DISTURBING 
SIGNAL 
-6.000 
-6.000 
-6.000 
-6.000 

RE 

0. 
-0. 
-0. 
-0. 

ÎSPO 

000 
034 
092 
140 

Solution to Example 9.3b 
Response data output by the 
computer has been omitted 

460.000 -6.000 -0.055 
470. 000 -6.000 0.014 
480.000 -6.000 0.079 
490.000 -6.000 0. 127 
INPUT Y TO RERUN? Y 
DELTA T,SECS? 1 
REQUIRED TIME INTERVAL BETWEEN PRINTOUTS,SECS? 10 
INPUT Y TO CHANGE DISTURBING SIGNAL? N 
INPUT Y TO CHANGE CONTROLLER SETTINGS? Y 
INPUT ITEM NUMBER OF CONTROLLER? 9 
VALUE OF GAIN CONSTANT? 350 
VALUE OF DERIVATIVE TIME, SECONDS? 10 
VALUE OF INTEGRAL TIME, SECONDS? 4 

TIME 
SECS 
0. 000 
10.000 
20.000 
30.000 

DISTURBING 
SIGNAL 
-6.000 
-6.000 
-6.000 
-6.000 

RE 

0 
-0. 
-0. 
-0. 

ESPO 

000 
034 
088 
122 

Solution to Example 9.3b continued. 
Response data omitted 

460.000 
470.000 
480.000 
490.000 

-6.000 
-6.000 
-6.000 
-6.000 

INPUT Y TO RERUN? N 

1.587 
2.669 
2.773 
1. 704 
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LOAD"A:GRAPH1 
Ok 
RUN 
ON WHICH DISC DO THE FILES RESIDE 
TYPE A,B,C,OR D? A 
INPUT COORDINATES FOR BTM LH CORNER 
OF GRAPH X,Y? -. l,-.6 
INPUT COORDINATES FOR TOP RH CORNER 
OF GRAPH X,Y? 650,2 
INPUT Y TO SUPERIMPOSE GRAPHS ELSE N 
AFTER THEY APPEAR PRESS ANY KEY TO CONTINUE 
? Y 
HOW MANY GRAPHS? 4 

The four plots generated above are shown superimposed below. Note that the 

scale chosen does not permit inclusion of the disturbance. 
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The results obtained show the value of T = 8.23 to be close to critical; 

the response is decaying slowly. Finally, using the value of T = 4 , an 

unstable response is demonstrated. 

PROBLEMS - CHAPTER NINE 

1. The response of the tube side effluent temperature of a shell and tube heat 

exchanger to changes in shell side flowrate is described by the following 

transfer function: 

3.5 °C 
(l+28s)(l+4s) litre/s 

Plot the response of the effluent temperature to a step disturbance in the 

shell side flowrate of 1 litre/sec. 

2. The Block Diagram for a control system is given below. Select a value of 

K which will provide an acceptable response: 

R(s) itö -
* y V " T 

K 
s ( s 2 + 7s + 13 ) 

C(sj 

3. Water flows through two tanks in series, with hold up capacities of 1 and 2m3 

respectively, at the rate of 1.5 kg/s. 1 litre of N H2S0^is accidentally 

dropped into the first tank. Assume it is instantly dispersed into the rest of 

the contents of the tank, and that perfect mixing occurs in each tank. Hence 

plot the concentration of acid in the effluent from the second tank as a function 

of time. 

4. Modify the program to include for the presence in the circuit of more than 

one controller. Use the modified program to determine optimum settings for the 

two proportional controllers in the cascade system shown below: 
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Gi, G2, G3, Gi, and G5 are each first order functions in series, with time 

constants of 10, 20, 30, 40, and 50 seconds respectively. Gain constants are 

2, 1, 1, 2, 1 respectively. 

5. Write additional subroutines to represent the following functions: 

Capacitance; 

transportation lag; 

exo/endo thermic reactions; 

flow resistance 

6. The program assumes that responses from controller, valve, transmitter, 

etc. are all unbounded. In fact such devices have a limited range of response. 

For example, pneumatic systems frequently operate within the range of 0 to 15 

psig, and electrical systems within the range 0 to 20m A. 

Modify the program to account for such limitations. 
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SUBJECT INDEX 

A.N.S.I., VI, VII 
Asterisk, VII 
Automatic Control, V, 249-292 

block diagrams, 249, 256, 258, 265, 
286, 291 
computer solution to problems, 270-291 
control loops, 256, 265 
controller mechanism, 255 

modes, 257, 268 
deviation variables, 251, 252 
disturbing functions, 258-262 
error signal, 255, 256 
frequency response, 249, 261 
Laplace transform, 249-270 
response, to a pulse, step, 285 

transient, 266 
ultimate, 266 

root locus, 249, 268-270 
Routh test, 269, 270 
set point, 255, 256 
time constant, 254 
transfer function, 249-254 
transportation lag, 249,292 

Backward difference 230-234 
Balances, material and energy, 1 
Barrier cream, 7 
BASIC, 

programming, VI 
compiled, 206 
memory allocation, 205 

Basic solution, 140 
Biot modulus, 220 
Black body, 195 
Blending, plastics, 23-27 
Block diagrams, 

flowsheeting, 7, 24, 25, 40 
control loops, 249, 256, 258, 265, 286 

291 
Box number, 6 
Computers, use of, V 

hardware, 205, 206 
ramdisc, 206 
random files, 205, 206, 213-215 
sequential files, 205, 206, 208-212 

Conduction heat transfer, 
steady state, 175-219 

boundary conditions, 180 
unknown surface temperatures, 

188-191 
definition of, 175 
flat slab, 175, 176 
Fourier equation, 175, 177 
iteration times, 205, 206 
Laplace equation, 178 
linear or rectilinear networks, 

178-191 
by matrix algebra, 180, 181 
manual solution, 183-186 

non-linear equations, 198 

non-linear boundaries, 
191-203 
polar coordinates, 193, 

194 
triangular network, 192, 

193 
problems, 217, 218 
radiation and convection, 197 
solution by iteration, 178, 

182 
relaxation, 178, 183-186 

three dimensional, 204-217 
Conduction heat transfer 

Unsteady state (transient), 220-
248 
Biot modulus, 220 
convergence, 229 
critical value, 233 
explicit or forward difference, 

229 
Schmidt plot, 221-224 
simple geometry, 220, 221-229 
graphical method, 221-224 
graphs for simple geometries, 

221 
implicit or backward 

difference, 230-234 
iteration methods, 229-234 
negligible internal resistance 

220 
problems, 247, 248 
stability criteria, 229, 233 
three dimensional, 235-247 

Control 
block, in flowsheeting, 44 
loops, 256, 265 

s theory - see automatic control 
Controller - see automatic control 
Constraints, 120-123, 130 
Countercurrent 

leaching, 39-44 
heat exchange, 160-174 

Convection, 
countercurrent heat exchange, 

160-174 
duct walls, 188 
horizontal cylinders, 236 
Rayleigh number, 236 
skid pipe, 197 

Convergence, of iterative procedures, 
69, 229-234 

Cross current, 38-44 
Data, physical 

acetone/acetic acid, 118 
benzene/toluene, 107, 109 
ethanol/water, 57 
paraffins, 75, 76 
sodium chloride, 62 
sodium hydroxide, 58, 60 
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steam, 52 
various, 236 
water, 173 

Density of NaCl solutions, 62 
Deviation variables, 251, 252 
Diagrams, 

block, see Block diagrams 
flow, see Flow diagrams 

Disc, 
for this book, VI 
floppy, hard, ram, 205, 206 

Distillation, 
relative volatility, 105, 107 
enriching, 96-98 
equilibrium data, 99, 107, 118 
feedplate, 103 
flow diagram, 96 
Lagrange interpolation, 105, 107 
Lewis and Sorel, 105 
McCabe Thiele procedure, 95-98 

manual solution, 98-104 
problems, 118-119 
q-line, 98, 108 

reflux, minimum, total, 101, 104, 108 
recommended, 102 

relative volatility, 105, 107 
stripping, 98 

Distributed parameter systems, VII, 250 
Disturbing functions, 258-262 
Dummy points, 138, 145, 154 
Effectiveness, 160, 161 
Emissivity, 197,235 
Enthalpy, 2, 58 
Equilibrium data - see data, physical 
Error signal, 255, 256 
Evaporation, 77-94 

assumptions, 77 
boiling point rise, 79, 80 
calculation procedure, 77-80 

computer solution, 83-93 
manual solution, 80-83 

flow diagram for, 78 
forward speed, 77, 78, 80, 87, 93 
heat balance equations, 83-85 
temperature driving forces, 79, 80, 83 
triple effect, 80 

Examples, 
automatic control, 262, 265, 268, 281, 
distillation, 98, 114 
heat transfer, 

steady state, conduction, 178, 187 
195, 204 
convection, 162, 172 

transient, conduction, 222, 228, 
233, 234 

evaporation, 80, 92 
interpolation, 57, 62 
linear programming, 120, 126, 133, 136 

138, 153, 154 
linear regression, 52 
mixing, 7, 23 

sand washing, 38 
simultaneous equations, 

by iteration, 67, 68 
by matrix algebra, 66 

Explicit method, 229 
Extreme points, 121, 122 
Feasible solution, 121, 126-127 
Fictitious costs, 140-143 
Files, use of, 206 

random, 206, 213-215 
sequential, 206, 207-212 

Finite difference 
concentric subdivision, 237 
convective heat exchange, 162-172 
conduction, steady state, 176-178 

transient, 221-248 
linear or rectilinear networks, 

183-186 
non-linear boundaries, 191-198 
stability of, 229, 233 
three dimensional networks, 204-

217 
unstable behaviour, 202 

Floppy disc, 205, 206 
Flowcharts, logic, VII 

C0NV1, C0NV2, 167 
CNTRL1 271-273 
DATAI, 50 
DATA2, 54 
DATA3, 59 
DATA5, 70 
DIST1, 106 
EVAP1, 86 
FSHT1, 4 
FSHT2, 13 
FSHT3, 18 
FSHT4, 29-31 
LNPRG1, 129 
LNPRG2, 144 
SSC0ND1, 199 
SSC0ND2, SSC0ND3, 207 
TRSC0ND1, TRSC0ND2, 226 
TRSC0ND3, 242 

Flow diagrams, 
barrier cream, 7 
distillation, 96 
multiple effect evaporator,' 78 

286 polymer compounding, 24 
sand washing, 38, 39 
stirred tank, 250 

Flowsheets, flowsheeting, 1-46 
problems, 45, 46 

Foward difference, 229 
Forward feed - see evaporation 
Fourier equation, 175, 177 
Frequency response, 249, 261 
Gaussian elimination, 65 
Gauss seidel, 68, 71, 83, 87, 231 
Graphical methods, 

iMcCabe Th ie l e , 95-103 
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conduction, transient, 221-224 
control theory, 249, 250 
convection, 160 
linear programming, 121 

Graphs, 
computer generated, 290 
program for, 283 

Hard disc, 205, 206 
Heat balance equations, 83-85 
Heat exchange, 

computer solution, 162-172 
Dusinberre, 162 
iteration, 164, 170 
matrix inversion, 164, 168 
effectiveness-NTU method, 160-162 

Implicit method, 230-234 
Interpolation, 52-63 

function of two variables, 58-63 
I.S.O., VII 
Iteration, 

evaporator calculations, 92 
explicit or forward difference, 229 
implicit or backward difference, 230 
methods of, for transients, 229-234 
stability criteria, 233 
evaporator calculations, 92 
see also mathematical methods 

Jacobi method, 66, 71 
Lagrange interpolation, 105, 107 
Laplace equation, 178 
Laplace transform, 249-270 
Leaching, 10 
Least squares regression, 47 
Lewis and Sorel, 105 
Linear equations - see simultaneous 

linear equations 
Linear programming, 

problems, 156-158 
simplex, 120-137 

constraints, 120-123, 130 
extreme points, 121, 122 
feasible solutions, 121, 126-127 
method, 122-126 
optimum solution, 128 
pivoting, 124-127, 130, 131 
standard and canonical form, 123, 

126, 135 
tableau, 123-127, 130, 131 
terminology, 124 
variables, 123-126 

transportation, 138-156 
basic solution, 140 
dummy points, 138, 145, 154 
fictitious costs, 140-143 
loop, 141, 147 
restrictions, 138, 139 
tableau, 139, 142 
transpositions, 140 
trial and error, 143 

Logic flowchart - see flowcharts 
Loops, 

control, 256, 265 
iterative, 44 
recycle, 16 
transportation, 141 

Lumped parameter systems, VII 
conduction, 220 
control theory, 250 

McCabe Thiele - see distillation 
Material and energy balances, 

flowsheeting, 1 
evaporation, 77, 81 

see also heat balance equations 
Mathematics, 

jobs involving, VII 
problems, 74-76 

Mathematical methods, 
Gauss Seidel, 68, 71, 83, 87, 231 
interpolation, 52 
Jacobi, 66, 71 
Laplace transform, 249-270 
matrix albebra - see matrices 
regression, 47 
simultaneous equations, 

iteration, 66 
matrix algebra, 64, 83, 87 
relaxation, 74 

simplex, 65 
Matrices, use in, 

interpolation procedure, 53 
linear programming, 123, 130, 142-

148 
solution of evaporators, 84-91 

heat exchanger, 162-168 
simultaneous equations, 64, 65 

87 
steady state conduction, 180, 181, 

189, 200 
unsteady state (transient) 

conduction, 227, 231, 243 
Mixing, 2, 3, 17, 24 

examples, 7, 23 
Multiple effect evaporator, 78 
Nodes - see finite differences, 

conduction 
NTU, 160, 161 
Optimum solution, 128 
Overflow, 10-12, 39, 41 
Parameter, 

distributed, VII, 250 
lumped, VII, 220, 250 

Pascal, 206 
Pivot, 124-127, 130, 131 
Plastics blending, 23-27 
Polar coordinates, 193, 194 
Polymer compounding, 24 
Polynomial, order of, 48 
Problems, 

conduction, steady state, 217, 218 
transient, 247, 248 

control theory, 291, 292 
distillation, 118, 119 
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flowsheeting, 45, 46 
heat transfer, 173, 174 
linear programming, 156-158 
mathematical methods, 74-76 

Programs, 
DATA4, 65 
GRAPH1, 283 
- see also flowcharts 

Radiation, 
black body enclosure, 195 
combined coefficient, 188, 222 
emissivity, 197, 235 
furnace, 235 
Stefan Bolzman, 197, 235 

Ram disc, 206 
Random file, 205, 206, 213-215 
Rayleigh number, 236 
Recycle loops, 16 
Regression, 47 
Relative volatility, 105, 107 
Relaxation, 178, 183-186 
Residuals, 74, 183-186 
Restrictions, 138, 139 
Root locus, 249, 268-270 
Routh test, 269, 270 
Sand washing, 38 
Settling, 10, 17 
Sequential file, 205, 206, 213-215 
Simplex method - see linear programming 
Simultaneous linear equations, 64 

solutions, convergence of, 69 
i te ra t ion, 66-73 
matrix algebra, 64-66, 83, 87 
relaxation, 74, 183-186 

Slurry, 39, 41 
Spl i t t ing, 12, 24 
Stabi l i ty , 

control systems, 270, 286-291 
finite difference, 229, 233 

Standard and canonical forms, 123, 126, 135 
Steam tables, 52, 80 
Stefan Bolzman, 197, 235 
Stirred tank, 250 
Tableau, 123-127, 130, 131 
Tearing, 16-19 
Temperature driving force, 

evaporators, 79-83 
Torn stream, 16-19 
Transportation, 

loop, 141, 147 
lag, 249, 292 

Triangular network, 192, 193 
Underflow, 10-12, 39-41 
Worked examples - see examples 


